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Doctoral school 579, Mechanical and energy sciences, Materials and geology (SMEMAG)
Paris-Saclay University

by Seyed Ali Hosseini, M.Sc.
born 03.02.1988 in Abhar

Jury:
Prof. Dr. Berend van Wachem, President
Otto-von-Guericke-Universität Magdeburg
Prof. Dr. Vincent Giovangigli, Reviewer
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Abstract

The lattice Boltzmann method has emerged as a rather efficient alternative to classical nu-
merical methods for fluid flow simulation during the past twenty years. Since its appearance,
it has been applied to a variety of flow configurations ranging from single-phase isothermal
flows, to multi-phase and particulate flows. As such, it can also potentially be used for such
complex flows as those involved in low Mach number combustion. Such flows usually involve
large numbers of field variables, like species mass fractions, large temperature variations,
variable transport properties and span multiple space- and timescales.
To be able to efficiently deal with the variations in transport properties, especially the vis-
cosity, the collision operator in the lattice Boltzmann solver must be appropriately chosen,
as in its most basic form, i.e. the single relaxation time operator, is subject to stability issues
for vanishing non-dimensional viscosities. In addition, dilatation effects must be introduced
into the solver as the first-neighbor lattice Boltzmann scheme in its original form was based
on the assumption of an isothermal flow. The flow solver has to be supplemented with ad-
ditional components modeling the balance equations for the energy and species mass fields.
To answer all the previously cited challenges and efficiently model low Mach combustion
using the lattice Boltzmann method, the flow solver (with plethora of collision operators) is
first thoroughly analyzed using a variety of approaches, such as the von Neumann method.
A variety of collision models including multiple relaxation (both raw and central moments),
regularized, and equilibrium distribution functions, including different orders of the Hermite
expansion, and the entropic equilibrium are considered. The effect of the choice of the free
parameters and projection basis for the multiple relaxation time operators are also studied.
Then, two different approaches for introducing dilatation effects into the flow solver are pro-
posed and validated for a variety of configurations. These approaches include one relying on
a decomposition of pressure into a uniform thermodynamic and fluctuating hydrodynamic
components, and a fully compressible formulation relying on a thermal Hermite expansion
of the equilibrium. Appropriate collision operators, resulting on the widest stability domain
for the latter are also proposed. In addition, minimalist LB solvers, appropriate for the
targeted flows are derived to model energy and species mass transport. Contrary to the
classical passive scalar lattice Boltzmann models, the proposed formulations are not limited
to constant specific heat capacity and/or density and include higher-order effects such as vis-
cous dissipation heating. Furthermore, for the species mass balance equations, the proposed
models are able to recover the Hirschfelder-Curtiss approximation with the mass corrector.
The developed models and approaches are then used to perform simulations of combustion.
A variety of cases, covering premixed and diffusion flames, 1-, 2- and 3-D flows are consid-
ered. The proposed approaches are shown to correctly capture the dynamics of the targeted
system of equations.
Keywords: Lattice Boltzmann, Multi-species flows, detailed chemistry, combus-
tion, reacting flows.
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Zusammenfassung

Die Lattice-Boltzmann-Methode hat sich in den letzten zwanzig Jahren als eine effiziente
Alternative zu den klassischen numerischen Methoden für die Strömungssimulation entwick-
elt. Seit ihrem Erscheinen wurde sie auf eine Vielzahl von Strömungen angewandt, die von
einphasigen isothermischen Strömungen bis hin zu Mehrphasen- und Partikelströmungen
reichen. Als solches kann sie potenziell auch für so komplexe Strömungen wie bei Verbren-
nungen mit niedriger Machzahl eingesetzt werden. Solche beinhalten normalerweise eine
groβe Anzahl von Feldvariablen, wie Artenmassenanteile, groβe Temperaturschwankungen,
variable Transporteigenschaften und erstrecken sich über mehrere Raum- und Zeitskalen.
Um mit der Variation der Transporteigenschaften, insbesondere der Viskosität, effizient
umgehen zu können, muss der Kollisionsoperator im Lattice -Boltzmann-Löser entsprechend
gewählt werden, da in seiner grundlegendsten Form, dem single relaxation time Operator,
Stabilitätsprobleme für verschwindende nichtdimensionale Viskositäten auftreten. Zusätzlich
müssen Dilatationseffekte in den Solver eingeführt werden, da das erste Lattice-Boltzmann-
Methode in seiner ursprünglichen Form auf der Annahme einer isothermischen Strömung
basierte. Der Strömungslöser muss durch zusätzliche Komponenten ergänzt werden, die
die Gleichungen für die Energie- und Spezies-Massenfelder modellieren. Um alle zuvor
genannten Herausforderungen zu beantworten und die Verbrennung bei niedriger Machzahl
mit der Lattice-Boltzmann-Methode effizient zu modellieren, wird der Strömungslöser (mit
einer Vielzahl von Kollisionsoperatoren) zunächst mit verschiedenen Ansätzen, wie z.B.
der von-Neumann-Methode, analysiert. Eine Vielzahl von Kollisionsmodellen einschlieβlich
mehrfacher Relaxation (raw and central moments), Regularisierungs- und Gleichgewichts-
verteilungsfunktionen, einschlieβlich unterschiedlicher Ordnungen der Hermite-Expansion,
und das entropische Gleichgewicht werden berücksichtigt. Die Auswirkung der Wahl der
freien Parameter und der Projektionsgrundlage f̈r die unterschiedlichen Relaxationszeitop-
eratoren wird ebenfalls untersucht. Anschlieβend werden zwei verschiedene Ansätze zur
Einführung von Dilatationseffekten in den Löser vorgeschlagen und für eine Vielzahl von Kon-
figurationen validiert. Diese Ansätze umfassen eine Zerlegung des Drucks in gleichmäβige
thermodynamische und fluktuierende hydrodynamische Komponenten und eine vollständig
kompressible Beschreibung, die auf einer thermischen Hermite-Ausdehnung des Gleichgewichts
beruht. Es werden auch geeignete Kollisionsoperatoren vorgeschlagen, die aus dem gröβten
Stabilitätsbereich für letztere resultieren. Darüber hinaus werden minimalistische Lattice-
Boltzmann-Lser abgeleitet, die für diese anwendungen geeignet sind, um den Energie- und
Spezies-Massen-Löser zu modellieren. Im Gegensatz zu den klassischen passiven skalaren
Lattice-Boltzmann-Methoden sind die vorgeschlagenen Formulierungen nicht auf eine kon-
stante spezifische Wärmekapazitt und/oder Dichte beschränkt und schlieβen Effekte höherer
Ordnung wie z.B. viskose Dissipationserwärmung ein. Darüber hinaus können die vorgeschla-
genen Modelle für die Gleichungen der Spezies-Massen-bilanz die Hirschfelder-Curtiss- Ap-
proximation mit dem Massenkorrektor wiederherstellen. Die entwickelten Modelle und Ansätze
werden dann zur Durchführung von Verbrennungssimulationen verwendet. Eine Vielzahl
von Konfigurationen, die Vormisch- und Diffusionsflammen, 1-, 2- und 3-D-Strömungen um-
fassen, werden berücksichtigt. Alle vorgeschlagenen Ansätze zielen darauf ab, die Dynamik
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ensprechender Gleichungssystem korrekt zu erfassen.
Keywords: Lattice-Boltzmann, multi-Spezies Strömungen, detaillierten Reak-
tionsmechanisme, Verbrennung, reaktive Strömungen.
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Physical constants
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1.1. Context, motivations and objectives

1.1 Context, motivations and objectives

The LBM in its current form made its first appearance in the literature in 1988 [14, 15]
as an alternative to the lattice Gas Automata [16, 17, 18, 19]. As put forward by the au-
thors, this formulation (the use of Boltzmann’s equation and a probability function instead
of discrete particles on the lattice) allowed to eliminate the statistical noise that plagued the
LGA [14]. Since this first article, and its first numerical realization in [20], it has become
a numerical method of choice for fluid dynamics simulations and a serious competitor for
classical solvers (different discretization approaches for the Navier-Stokes equations are what
we refer to as classical methods). According to S. Succi this success and popularity relies
on four magic ingredients [21, 22, 23], namely : (a) Exact free streaming, (b) local lattice
equilibria, (c) tunable relaxation matrix and (d) flexible external source. These ingredients
also form the basis for the definition of the Lattice Boltzmann Method : Within the context
of the present manuscript only solvers for the phase-space discretized Boltzmann equation
relying on Lagrangian discretization of space and time are considered to fall in this category.
The strict locality of the collision operator (involving non-linear terms) and strict linearity
and exactness of the streaming operator allow for enhanced numerical properties and inex-
pensive operators. Furthermore, the locality of the operators and their explicit nature are
well-adapted to parallel processing as they come with limited communication overhead. The
subsequent growth of this numerical method and its extension to plethora of flows are clearly
supporting the previously enumerated points.
While rather well-developed in many areas such as multi-phase flows (using either pseudo-
potentials [24], free energy [25, 26, 27] or phase-field [28, 29] formulations) as pointed out
by the number of citation of X. Shan and H. Chen’s seminal article (around 3000 at the
time of the writing of this manuscript) [24] or flow in porous media [30, 31] efforts at devel-
oping an efficient LB-based numerical solver for multi-species (especially reacting thermal
multi-species) flows were stagnating till the end of 2016 when this project started. Al-
though a number of models had been published in the literature, such as [32, 33, 34, 35, 36],
simulation were (and still are) limited to very basic configurations. At that time only a
handful of articles were published on combustion simulation (partly or entirely) with LBM,
i.e. [7, 37, 38, 39, 40, 41, 42, 43, 44]. Of these articles and models most were limited to the
cold flow assumption [7, 39, 40, 41, 42]. Three of these articles, while incorporating density
change in the flow solver relied on improper solvers (the classical advection-diffusion LB
solver) for the species and energy balance equations as they are only valid for constant den-
sity and specific heat capacities [37, 38, 44]. Finally, all of these articles presented simulations
with simple correlations for transport properties (constant-valued), constant thermodynamic
parameters (specific heat capacity and enthalpy), simple one-step global chemistry, simple
species diffusion based on the Fick generalized approximation and were limited at best to
2-D simulations.
Given the previously mentioned advantages of the LBM, the aim of this project was to ex-
tend it to Direct Numerical Simulation of low Mach number combustion: An application
involving large numbers of species and highly coupled PDEs and spanning multiple scales,
making the simulations both process and memory hungry. While it was clear that the LBM
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1.2. Thesis outline

could help reduce processing load in such simulations it was unclear how it would affect the
simulations memory-wise, as performances of LBM-based codes are memory-bound. This
is of course to be expected as the LBM involves more variables per grid-points (discrete
populations). The previous property of LBM-based solvers (larger number of variables per
conserved macroscopic moment), along with the large number of species usually encoun-
tered in DNS with detailed chemistry and the desire to develop a numerically efficient model
prompted us not to consider fully kinetic models, i.e. real multi-component kinetic models
and higher-order stencils for fully compressible flows, from the early stage of this work. The
approach was instead to develop a solver with only first-neighbor stencils, with, wherever
necessary, top-down closures for the model. As such for the energy and species balance
equations only advection-diffusion LB solvers and classical finite differences have been con-
sidered. Given the state of the literature when this work started the following challenges had
to be dealt with: (a) Development of a solver incorporating thermo-compressibility effects
able to deal with large deviations from the stencil reference state, (b) extension of existing
advection-diffusion LB solvers to solve the energy balance equation with variable density
and specific heat capacity, (c) integration of more complex species diffusion models into the
advection-diffusion solver and (d) coupling of LB (or FD) species and energy balance solvers
to flow solver.

1.2 Thesis outline

This thesis presents solutions for the previously-defined challenges to develop a LBM-based
DNS solver for combustion. All models and simulations presented in the manuscript have
been implemented and performed using the in-house solver ALBORZ. These features are de-
tailed in section 1.3. The thesis is organised in eight chapters covering all major challenges
associated to the simulation of multi-species reacting flows with the LBM:

Chapter 2 (Discrete kinetic theory of gases for the hydrodynamic regime): This chapter
provides the basic principles of the kinetic theory of gases, different approaches to reduce
the kinetic description for the hydrodynamic regime, a detailed derivation of the LBM along
with different collision models.

Chapter 3 (The isothermal lattice Boltzmann method: detailed study of properties):
This chapter illustrates the limitations of the isothermal LBM with different EDFs (Hermite-
based and entropic) and collision operators. The restrictions are illustrated and studied via
the Chapman-Enskog analysis and evaluation of higher-order moments error at the contin-
uum level and then using the linearized von Neumann analysis for the spectral properties
and stability domains.

Chapter 4 (Species and energy balance equations): This chapter introduces advection-
diffusion LB models developed for flows with variable densities and specific heat capacities,
and more advanced diffusion models for the species (i.e. Fick and Hirschfelder-Curtiss with
mass corrector). The abilities of the former are illustrated through multiple cases such as
conjugate heat transfer.

Chapter 5 (Thermo-compressibility on standard stencils): Two different approaches to
extend the isothermal LB flow solver to thermo-compressible flows are presented: (a) A low
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1.3. Miscellaneous activities

Mach number-type thermo-compressible solver based on decoupling thermodynamic and hy-
drodynamic pressure and (b) one based on a thermal Hermite expansion of the distribution
function. To illustrate the ability of the latter to take into account deviations from the
reference temperature, and the effects of these deviations on numerical properties, an ap-
proach similar to the one used in the previous chapter is taken, i.e. VN analysis of spectral
properties.

Chapter 6 (Numerical application: Combustion simulation): All models developed and
presented in previous chapters are used to perform fully coupled combustion simulations.
These simulations include both diffusion and pre-mixed flames and 1-, 2- and 3-D simula-
tions. Both numerical performances and efficiency of the models are analyzed in this chapter
through these test-cases.

Chapter 7 (Shifted stencils: A promising approach to extend the stability domain of
the lattice Boltzmann method): This chapter includes detailed perspectives on local state-
adaptive LB stencils (based on the shifted stencils concept) to extend the stability domain
of the LBM.

Chapter 8 (Conclusions and perspectives): The present manuscript ends with conclud-
ing remarks and detailed perspectives for the presented work.
A list of publications based on results and studies reported in the present manuscript is given
in appendix A. Furthermore, at the beginning of each chapter corresponding publications
from the author are listed.

1.3 Miscellaneous activities

Apart from results presented here, a number of side projects were also conducted during
the course of this Ph.D., including multi-phase flow simulations, e.g. gas-liquid flows and
solid-liquid systems for crystallization simulations. These projects are best illustrated by
looking at the features of the code developed during this Ph.D. The code ALBORZ, initially
developed in [45] as a single-file C++ code for particulate flow simulations, including the
classical isothermal LBM with a second-order EDF using single and/or multiple relaxation
time collision operators was completely re-written and re-organized as a collection of libraries
taking advantage of object-oriented programming features in C++. All libraries and features
(except the Immersed Boundaries module developed in [45]) available in ALBORZ as of 2020
were developed and implemented by the author and within the context of the present doctoral
work. These modules and corresponding features are listed in Table 1.1.
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Module content
Flow solver.cpp - Isothermal solver based on Hermite expansion (up to sixth-order

expansion).
- Entropic isothermal EDF [46].
- Compressible solver with Hermite expansions (up to sixth-order).
- Low Mach number thermo-compressible solver [47, 48].
- Forcing schemes: Shan-Chen [24], Guo [49] and Kupershtokh [50].
- Collision models: SRT, TRT [51], LKS [52, 53, 54], MRT [55], CM-
MRT [56], projection regularized [57], recursive regularized [58] and
entropic [46].
- Boundary conditions: Bounce-back (velocity and pressure) [59],
equilibrium, non-equilibrium extrapolation (velocity and pressure)
[60].
- Stencils: D1Q3, D2Q9, D3Q15, D3Q19 and D3Q27.

Thermal solver.cpp - LB-based enthalpy balance solver for compressible flow with vari-
able specific heat capacity [61].
- Finite-difference solver, time-stepping: Euler, RK2. Convection
term: central second- and fourth-order, upwind first- and third-
order, WENO-3 and WENO-5. Diffusion term: second-order and
fourth-order based on [62].
- Collision models: SRT, TRT, LKS and MRT.
- Stencils: D1Q3, D2Q4, D2Q5, D2Q9, D3Q7, D3Q15, D3Q19 and
D3Q27.

Species solver.cpp - LB-based species balance solver for compressible flow with Fick,
Hirschfelder-Curtiss approximation and mass corrector [63].
- Finite Differences solver, time-stepping: Euler, RK2. Convection
term: central second- and fourth-order, upwind first- and third-
order, WENO-3 and WENO-5. Diffusion term: second-order and
fourth-order based on [62].
- Collision models: SRT, TRT, LKS and MRT.
- Stencils: D1Q3, D2Q4, D2Q5, D2Q9, D3Q7, D3Q15, D3Q19 and
D3Q27.

Phase Field.cpp - LB-based phase-field solver for Allen-Cahn dynamics [63].
Pseudopotential.cpp - Pseudo-potential model with single- and dual-range potentials.

- EoS: Shan-Chen, Carnahan-Starling, Redlich-Kwong, Peng-
Robinson and Van der Waals.

Geometry.cpp - Parallel (MPI) STL reader based on ray-tracing method, with
ability to read multiple STL files.

Parallel.cpp - Parallel (MPI-based) processing with 3-D domain decomposition.

Table 1.1: List of features implemented in ALBORZ.
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2.1. Introduction to the kinetic theory of gases and the Boltzmann equation

2.1 Introduction to the kinetic theory of gases and the

Boltzmann equation

The aim of this section is to introduce the most essential components of the kinetic theory
of gases, starting from the single-particle distribution function and the Boltzmann equa-
tion. More general statistical formulation such as Liouville’s equation [64] and the BBGKY
(Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy [65, 66, 67, 68], falling outside the scope
of the present manuscript, will not be reviewed. A class of approximations to the collision
operator (referred to as linear models) will also be introduced, as they are one of the main
ingredients of the LBM. The section will then go on to introduce some approaches to ob-
tain reduced models from the Boltzmann equation and derive the classical LBM along with
different collision models developed to enhance the numerical properties of the solver.

2.1.1 The Boltzmann equation

Let us consider a control volume, of volume V filled with N molecules of mass m. Ignoring
the additional rovibrational degrees of freedom, the state of each component in the control
volume can be fully determined via space coordinates i ∈ {x, y, z} and the phase-space
vector ξi ∈ {ξx, ξy, ξz} giving respectively its position in space and velocity. As such each
molecule represents a point in physical space r ∈ R3, and in phase-space ξ ∈ R3. The
state of a gas made up of these single points can then be characterized using a probability
distribution function f (r, ξ, t) such that f (r, ξ, t)

∏
i,r=x,y,z dξidr represents the number of

molecules moving with velocities within the range (ξx, ξy, ξz) and (ξx + dξx, ξy + dξy, ξz + dξz)
and within a box of size dx×dy×dz located at (x, y, z) at time t. Going back to the control
volume considered at the beginning of this section one can compute the total number of
molecules as:

N =

∫
V

∫
R3

f (r, ξ, t)
∏

i,r=x,y,z

drdξi. (2.1)

Following this same approach one can easily compute other thermo-hydrodynamic properties.
For example the fluid velocity is computed as the first moment of the distribution function:

ui =

∫
V

∫
R3 ξif (r, ξ, t)

∏
j,r=x,y,z drdξj∫

V

∫
R3 f (r, ξ, t)

∏
j,r=x,y,z drdξj

, (2.2)

while for the internal energy (assuming only translational motion degrees of freedom) one
has:

ρε =

∫
V

∫
R3

1

2

( ∑
i=x,y,z

(ξi − ui)2

)
f (r, ξ, t)

∏
j,r=x,y,z

drdξj. (2.3)

Other variables can also be computed using the same approach. Details are given in subsec-
tion 2.1.2.
To derive a balance equation, similar to those used in classical fluid dynamics for the macro-
scopic hydrodynamic variables, let us consider the infinitesimal control volume

∏
i,r=x,y,z drdξi
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in physical and phase-space and the number of components in this volume:

dN (t) = f (r, ξ, t)
∏

i,r=x,y,z

drdξi. (2.4)

To get the number of particles at time t+δt one must determine the processes affecting their
balance:

1. Molecular flux in physical space due to convection with velocity ξ,

2. Molecular flux in phase-space via convection caused by external body forces,

3. Molecular collision.

First considering components moving at speed ξ, the net flux of molecules into the control
volume

∏
r=x,y,z dr can be written as:

−
∫
Sr

f (r, ξ, t) ξ · eSrdSr
∏

i=x,y,z

dξi = −ξ ·∇f (r, ξ, t)
∏

i,r=x,y,z

drdξi, (2.5)

where Sr is the surface surrounding the control volume in physical space, eSr is the unit
vector perpendicular to the aforesaid surface. The RHS is derived using Gauss’s theorem.
Using the same approach the net flux in phase-space can be computed as:

−
∫
Sξ

f (r, ξ, t)F · eSξdSξ
∏

r=x,y,z

dr = −F ·∇ξf (r, ξ, t)
∏

i,r=x,y,z

drdξi, (2.6)

where as for the previous equation Sξ is the surface surrounding the control volume in phase-
space and eSξ is the unit vector perpendicular to the aforesaid surface.
To compute the flux due to molecular collision let us consider a molecule moving at speed
ξ, colliding with another class of molecules moving at velocity ξ1 resulting in post-collision
velocities ξ∗ and ξ∗1. To facilitate the process we will study the collision on a frame moving
at velocity ξ1. In this frame the first class of molecules are moving at velocity ξ

′
= ξ − ξ1

while the second class are stagnant. The volume swept by a molecule of the first class is
ξ

′
bdbdσ, where b is the impact parameter and dσ the differential cross-section, while the

number of molecules of the second class per unit volume is f (r, ξ1, t)
∏

i=x,y,z dξ1,i. As such
the number of collisions is:

f (r, ξ1, t) ξ
′
bdbdσ

∏
i=x,y,z

dξ1,i.

Given that the number of molecules of class ξ in the infinitesimal physical and phase-space
control volume is f (r, ξ, t)

∏
i,r=x,y,z drdξi the total collision rate taking molecules outside

the considered control volume is:

Ωout

∏
i,r=x,y,z

drdξi =

∫
b,σ

∫
ξ1

f (r, ξ1, t) f (r, ξ, t) ξ
′
bdbdσ

∏
i,r=x,y,z

drdξidξ1,i. (2.7)
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2.1. Introduction to the kinetic theory of gases and the Boltzmann equation

Following the same procedure in the reverse direction, i.e. collision of particles outside the
considered control volume resulting in flux of components into the volume one gets:

Ωin

∏
i,r=x,y,z

drdξi =

∫
b,σ

∫
ξ1

f (r, ξ∗1, t) f (r, ξ∗, t) ξ
′∗bdbdσ

∏
i,r=x,y,z

drdξ∗i dξ
∗
1,i, (2.8)

which in turn, using the summational invariants of the elastic collision process can be re-
written as:

Ωin

∏
i,r=x,y,z

drdξi =

∫
b,σ

∫
ξ1

f (r, ξ∗1, t) f (r, ξ∗, t) ξ
′
bdbdσ

∏
i,r=x,y,z

drdξidξ1,i. (2.9)

Using the equations obtained for both the in- and out-flux one gets the following expression
for the collision term:

Ω =

∫
b,σ

∫
ξ1

(f (r, ξ∗1, t) f (r, ξ∗, t)− f (r, ξ1, t) f (r, ξ, t)) ξ
′
bdbdσ

∏
i=x,y,z

dξ1,i. (2.10)

Using the expressions derived for all mechanisms the Boltzmann equation can be introduced
as:

∂tf (r, ξ, t) + ξ · ∇f (r, ξ, t) + F ·∇ξf (r, ξ, t) = Ω. (2.11)

Before going into further details about the Boltzmann equation it is important to notice that
a number of assumptions have been made in the here-presented derivation:

• The Boltzmann equation is only valid under the assumption that f (r, ξ, t) is a smooth
(in space, phase-space and time) square-integrable function.

• Only two-body interactions have been taken into account in the collision operator.
This only holds for a rarefied gas where the probability of multi-body interactions is
much smaller than two-body ones.

• During collision the effect of external forces is negligible (in comparison with inter-
molecular effects).

• The pre- and post-collision velocities of interacting molecules are uncorrelated. In
practice, this means that the collision probability can be expressed as the product of
uncorrelated single component probability functions. This is known as the molecular
chaos assumption, also referred to as Stosszahlansatz by Boltzmann. To lift this re-
striction one must consider more complex models such as the Liouville equations [64]
or the BBGKY hierarchy [65, 66, 67, 68].

2.1.2 Macroscopic variables and equilibrium balance equations

As briefly discussed in the previous section, all macroscopic variables appearing in classical
thermo-hydrodynamics equations can be computed as moments of the single-particle distri-
bution function. The first three moments of the distribution function are invariants of the
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collision operator (as dictated by the summational invariants of elastic microscopic collision):

ρ =

∫
ξ

f(ξ)d
∏

i=x,y,z

ξi, (2.12a)

ρuj =

∫
ξ

ξjf(ξ)d
∏

i=x,y,z

ξi, (2.12b)

ρε =

∫
ξ

1

2

( ∑
j=x,y,z

(ξj − uj)2

)
f(ξ)d

∏
i=x,y,z

ξi. (2.12c)

Other non-conserved variables can also be computed as moments of the distribution function
as:

Tjk =

∫
ξ

(ξj − uj)(ξk − uk)f(ξ)d
∏

i=x,y,z

ξi, (2.13a)

qk =

∫
ξ

1

2

( ∑
j=x,y,z

(ξj − uj)2

)
(ξk − uk)f(ξ)d

∏
i=x,y,z

ξi, (2.13b)

where Tjk and qk are respectively the different components of the total stress tensor (including
pressure) and energy flux vector.
Going back to the Boltzmann equation, the balance equations for the conserved macroscopic
variables can be obtained by taking the corresponding moments. Here we will assume that
the fluid is at thermodynamic equilibrium. In practice this means that the collision operator’s
net effect is null. At order zero one obtains the continuity equation:

∂t

∫
ξ

f(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
ρ

+∇ ·
∫
ξ

ξf(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
ρu

+F ·
∫
ξ

∇ξf(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
0

=

∫
ξ

Ωd
∏

i=x,y,z

ξi︸ ︷︷ ︸
0

,

(2.14)
where for the last term on LHS we have used the divergence theorem along with the fact
that the distribution function vanishes at ξi −→ ±∞. Following the same procedure at order
one:

∂t

∫
ξ

ξf(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
ρu

+∇ ·
∫
ξ

u⊗ uf(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
ρu⊗u

+∇ ·
∫
ξ

(ξ − u)⊗ (ξ − u) f(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
T

− F ·
∫
ξ

∇ξξf(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
ρF

=

∫
ξ

ξΩd
∏

i=x,y,z

ξi︸ ︷︷ ︸
0

, (2.15)
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2.1. Introduction to the kinetic theory of gases and the Boltzmann equation

which is Euler’s equation for momentum balance (at thermodynamic equilibrium T = pI).
Finally taking the second-order moment, one gets the energy balance equation (without
non-equilibrium fluxes):

∂t

∫
ξ

ξ2

2
f(ξ)d

∏
i=x,y,z

ξi︸ ︷︷ ︸
ρ(ε+u2/2)

+∇ ·
∫
ξ

u
ξ2

2
f(ξ)d

∏
i=x,y,z

ξi︸ ︷︷ ︸
ρu(ε+u2/2)

+∇ ·
∫
ξ

u(ξ − u)2f(ξ)d
∏

i=x,y,z

ξi︸ ︷︷ ︸
u·T

− F ·∇ξ

∫
ξ

ξ2

2
f(ξ)d

∏
i=x,y,z

ξi︸ ︷︷ ︸
−ρu·F

=

∫
ξ

ξ2Ωd
∏

i=x,y,z

ξi︸ ︷︷ ︸
0

. (2.16)

2.1.3 Thermodynamic equilibrium: the Maxwell-Boltzmann dis-
tribution

Going back to the Boltzmann equilibrium, it can be seen that the collision term on the
RHS of the equation represents the net flux of components in/out of the considered control
volume in phase-space. At equilibrium, this flux amounts to zero. As such at thermodynamic
equilibrium:∫

b,σ

∫
ξ1

(f (r, ξ∗1, t) f (r, ξ∗, t)− f (r, ξ1, t) f (r, ξ, t)) ξ
′
bdbdσ

∏
i=x,y,z

dξ1,i = 0. (2.17)

This equality only holds if:

f (r, ξ1, t) f (r, ξ, t) = f (r, ξ∗1, t) f (r, ξ∗, t) . (2.18)

Taking the logarithm of this expression [69]:

ln f (r, ξ1, t) + ln f (r, ξ, t) = ln f (r, ξ∗1, t) + ln f (r, ξ∗, t) , (2.19)

it can be clearly seen that ln f is a summational invariant and as such can be written as a
linear combination of the conserved moments:

ln f = A+B · ξ + Cξ2. (2.20)

Using this expression and the constraints on the conserved moments to determine the con-
stants [69], one gets to the Maxwell-Boltzmann distribution:

f (eq) (ξ) = ρ

(
m

2πkBT

)3/2

exp

[
−m(ξ − u)2

2kBT

]
, (2.21)

as the equilibrium state and extremizer of the entropy functional. More generally, the expo-
nent can be replaced with the Hamiltonian of the considered system.

12



2.1. Introduction to the kinetic theory of gases and the Boltzmann equation

2.1.4 Approximations to the collision term

Given the complexity of the collision operator, even using simplified cross-section models,
a wide number of approximations have been proposed. These simpler expressions for the
collision operator are usually referred to as kinetic models. A number of linear kinetic models
will be introduced in this section.

2.1.4.1 Linear approximation: Bhatnagar-Gross-Krook

One of the oldest, simplest and most efficient approximations to the collision term in the
Boltzmann equation was proposed by Bhatnagar, Gross and Krook in [70]. In this ap-
proximation, the collision term is modeled through a linear relaxation operator towards the
equilibrium state:

Ω(BGK) =
1

τ

(
f (eq) − f

)
, (2.22)

where τ is the relaxation time. A simple perturbation analysis shows that in order to correctly
recover the Navier-Stokes equations, the relaxation coefficient must be set to:

τ =
µ

p
, (2.23)

where µ is the fluid dynamic viscosity. This collision operator satisfies all the fundamental
properties of the collision operator, namely invariance constraints:

1

τ

∫
ξ

(
f (eq) − f

) ∏
i=x,y,z

dξi = 0, (2.24a)

1

τ

∫
ξ

ξj
(
f (eq) − f

) ∏
i=x,y,z

dξi = 0, (2.24b)

1

2τ

∫
ξ

( ∑
i=x,y,z

ξ2
i

)(
f (eq) − f

) ∏
i=x,y,z

dξi = 0. (2.24c)

and the H-theorem. However, it is only valid in near-equilibrium regimes and leads to a
restriction on the Prandtl number. The latter comes from the fact that all moments of the
distribution function relax at the same rate, leading to a fixed Prandtl number. To overcome
this restriction a number of solution have been proposed [71], namely ellipsoidal BGK (ES-
BGK) operators, BGK collision models with velocity-dependent relaxation coefficients or the
Shakhov model. Some of these approaches will be briefly reviewed in the next section.

2.1.4.2 Extension to variable Prandtl numbers

One of the first modifications to the classical BGK collision operator, developed to overcome
the fixed Prandtl number issue was the ES-BGK model. While retaining the linear relaxation

13



2.2. Brief overview of reduced kinetic models

form of the original BGK, it relies on a slightly modified equilibrium function defined as:

f (eq,ES−BGK) (ξ) =
ρ√

2π det(T ′
)

exp

[
−(ξ − u)⊗ (ξ − u) : T ′−1

2

]
, (2.25)

where T ′
is the corrected stress tensor defined as [72]:

T ′
=

1

ρ
(pI(1− a) + aT ) , (2.26)

and a is the free parameter allowing the model to impose a viscosity-independent thermal
diffusion coefficient (Pr = 1

1−a). It is also worth nothing that in this model the relaxation
coefficient is defined as:

τ = (1− a)
µ

p
. (2.27)

To ensure that the matrix T ′−1
is positive definite one must have −1

2
≤ a ≤ 1.

Another approach to allow for variable Prandtl numbers in the context of a linear BGK-type
collision operator was proposed by Shakhov [73, 74]. Similar to the ES-BGK he proposed a
modified (Maxwellian) equilibrium distribution function defined as:

f (eq,S−BGK) (ξ) = f (eq)

[
1 +

1− Pr

5

q · (ξ − u)

pkBT/m

(
(ξ − u)2

kBT/m
+

5

2

)]
. (2.28)

The relationship between the relaxation coefficient and fluid viscosity is similar to that of the
BGK model. As obvious from the above definition, in this approach a correction is applied
to the fourth-order moment of the EDF (controlling non-equilibrium effects in the energy
balance equation at the NS level) via the corresponding Hermite polynomial and coefficients.
The Hermite polynomials and their properties will be further detailed in subsection 2.3.2.

2.2 Brief overview of reduced kinetic models

To be able to model fluid flows in the rarefied regime or for large Knudsen numbers beyond
the NS and Euler descriptions, from the kinetic theory of gases, a number of approaches have
been proposed to systematically reduce the complexity of the Boltzmann equation. Two of
the most popular approaches are reviewed here.

2.2.1 Grad’s moments method

Grad’s approach to reduce the Boltzmann equation relies on the assumption that the state
of the gas can be described by a set of moments of the distribution function:

Π =

∫
Ψ (ξ) f

∏
i=x,y,z

dξi, (2.29)

14



2.2. Brief overview of reduced kinetic models

where Ψ is a vector of polynomial functions of the phase-space variable ξ and Π the
corresponding moments. For example in the case of Grad’s 13-moments theory one has:
Ψ = {1, ξi, ξ2, ξiξj, ξ

2ξi}. In general, the number and choice of moments depends on the
studied configuration described by non-dimensional numbers such as the Knudsen number.
The system of PDE’s for Grad’s approach are then obtained by taking the corresponding
moments of Boltzmann’s equation [75]:

∂t

(∫
Ψ (ξ) f

∏
i=x,y,z

dξi

)
︸ ︷︷ ︸

Π

+∇ ·
(∫

ξΨ (ξ) f
∏

i=x,y,z

dξi

)
︸ ︷︷ ︸

φ(Π)

+

∫
Ψ (ξ)F ·∇ξf

∏
i=x,y,z

dξi

=

(∫
ΩΨ (ξ) f

∏
i=x,y,z

dξi

)
︸ ︷︷ ︸

S(Π)

, (2.30)

where φ are the fluxes of moments Π and S are the effects of molecular collision (interac-
tion). It can readily be observed that this system is not closed as it involves higher-order
moments (in the convective term) of the distribution function and moments of the collision
term.
To provide closure for the higher-order terms appearing in the balance equations, the distri-
bution function is reconstructed using a truncated (of order N corresponding to the highest-
order moments considered in the model) Hermite expansion as [76]:

f (N) = f (eq)

(
N∑
n=0

an : Hn

)
, (2.31)

where Hn and an are the Hermite polynomials and coefficients tensors. Details of the theory
of Hermite polynomials and expansion will be given in the next section to derive the lattice
Boltzmann equations. The distribution function is then used to compute the higher-order
moments as [75, 76]:

φ (Π) =

∫
ξΨ (ξ) f (N)

∏
i=x,y,z

dξi. (2.32)

Another approach for the construction of the distribution function relies on the concept of
entropy. In this approach the distribution function is found as the maximizer of the entropy
density subject to constraints stemming from the considered system of moments [69]. In
variational calculus this function can be found using Lagrange multipliers. This results in
finding the extremum value of the following non-constrained functional:

L = −k
∫

(f ln f) dξ −
∑
α

λα

∫
Ψαfdξ (2.33)

15



2.2. Brief overview of reduced kinetic models

where λα are the Lagrange multipliers associated to each moment. The resulting distribu-
tion function is then introduced back into Eq. 2.29 to compute the values of the Lagrange
multipliers.

2.2.2 Chapman-Enskog approach

As previously discussed, in the balance equations for the conserved moments of the distribu-
tion function there are additional terms such as the stress tensor and energy flux vector that
need closure. One way to have a closed system of equation is through the so-called moments
methods, of which Grad’s approach is a popular example. Another approach, within the
context of the kinetic theory was proposed by Enskog [77, 78] and Chapman [79, 80, 78].
Different from Grad’s method, in this approach only balance equations for conserved mo-
ments are considered, i.e. Πc = {ρ,u, ε} and closures for higher-order moments appearing in
the balance equations are provided as functions of these conserved variables and their space
derivatives. In practice this is achieved by approximating the distribution function as:

f (CE) = f

(
Πc,

∂Πc

∂i
,
∂2Πc

∂i∂j
, . . .

)
, i, j ∈ {x, y, z}. (2.34)

The basic idea is to expand the distribution function as a power series of a smallness param-
eter ε, tied to the Knudsen number:

f (CE) = f (0) + εf (1) + ε2f (2) + ε3f (3) + . . . (2.35)

For the collision term in the Boltzmann equation to remain finite in the limit of vanishing
Knudsen numbers one must have f (0) = f (eq). As such, and considering that the first five
moments are invariants of the collision operator, the expansion is subject to the following
so-called compatibility conditions:∫

ξ

f (i) (ξ)
∏
j

dξj = 0,∀i 6= 0, (2.36a)∫
ξ

ξf (i) (ξ)
∏
j

dξj = 0,∀i 6= 0, (2.36b)∫
ξ

ξ2f (i) (ξ)
∏
j

dξj = 0,∀i 6= 0. (2.36c)

The CE approach consists of introducing the expansion of Eq. 2.35 along with expansions of
the space and time derivatives into Boltzmann’s equation to obtain the normal solutions for
different orders of f (i) [81]. Given that this approach is thoroughly treated in subsection 3.1.1
to analyze the asymptotic behavior of the LBM, it will not be further detailed here.
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2.3. Phase-space discretization and construction of discrete thermodynamic attractors

2.3 Phase-space discretization and construction of dis-

crete thermodynamic attractors

Looking at the continuous form of the Boltzmann equation supplemented with the linear
BGK collision operator, it is observed that it comes with a 7-D phase-space (assuming that
translational motion in 3-D space is the only degree of freedom in the Hamiltonian). As
such, prior to discretization in space and time, additional phase-space variables (i.e. particle
velocities space) need to be discretised. Given that the LBM is intended as a DNS solver for
the NS system of equations, phase-space discretization is subject to a number of constraints,
namely correct recovery of the moments appearing at the Euler and NS levels. A number
of strategies have been devised to that effect during the past couple of years. Some of these
strategies are reviewed in the next subsections.

2.3.1 Direct moment-matching methods

As clearly stated by its name, in this approach one tries to construct a discrete equilibrium
by matching the moments appearing in the targeted macroscopic balance equations. Solvers
based on this approach are also sometimes referred to as Discrete Velocity Method solvers
[82].
To identify the constraints, one first uses the CE analysis. For example, a simple CE analysis
at order ε shows that to correctly recover the NS and continuity equations, one needs to
exactly match moments up to order three [83]. For example let us consider a 1-D system
with only translational degrees of freedom. The following moments need to be correctly
recovered:

Π0 =

∫
ξx

ρ

√
m

2πkBT
exp

[
−m(ξx − ux)2

2kBT

]
dξx = ρ, (2.37a)

Πx =

∫
ξx

ξxρ

√
m

2πkBT
exp

[
−m(ξx − ux)2

2kBT

]
dξx = ρux, (2.37b)

Πx2 =

∫
ξx

ξ2
xρ

√
m

2πkBT
exp

[
−m(ξx − ux)2

2kBT

]
dξx = ρ

(
u2
x +

kBT

m

)
, (2.37c)

Πx3 =

∫
ξx

ξ3
xρ

√
m

2πkBT
exp

[
−m(ξx − ux)2

2kBT

]
dξx = ρux

(
u2
x + 3

kBT

m

)
. (2.37d)

In the second step of the discrete equilibrium state construction, one chooses a symmetrical
stencil (set of discrete velocities) with a number of degrees of freedom equal to or greater
than the number of constraints [84, 85, 86]. For example, in the case of the isothermal NS
solver, one can either use a four-velocity model or a five-velocity model with an additional
constraint to have a unique solution. The discrete equilibrium is then found by solving the
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2.3. Phase-space discretization and construction of discrete thermodynamic attractors

following system of equations:
1 1 1 1
c0 c1 c2 c3

c2
0 c2

1 c2
2 c2

3

c3
0 c3

1 c3
2 c3

3



f

(eq)
0

f
(eq)
1

f
(eq)
2

f
(eq)
3

 =


ρ
ρux

ρ
(
u2
x + kBT

m

)
ρux

(
u2
x + 3kBT

m

)
 , (2.38)

where c0−3 are the discrete velocities in the stencil and f
(eq)
0−3 are the unknown discrete equi-

libria to be found by solving this system. The linear system formed using symmetrical
stencils might not always be invertible. As such, for some models one might need to add
non-symmetrical components to the system [87].

2.3.2 Quadrature-based methods: projection onto Hermite poly-
nomials basis

One approach to discretise phase-space and derive the corresponding discrete EDF consists
in expanding it in terms of Hermite polynomials and operating a truncation by using Gauss-
Hermite quadratures [88, 89, 90].
Before starting the derivation, let us review the basic concepts of multi-variate Hermite
polynomials. More details on the Hermite polynomials can be found in Appendix B. They
are defined as [89]:

Hn (ξ) =
(−1)n

w (ξ)
∇n
ξw (ξ) , (2.39)

where w (ξ) is the normalized weight function defined as:

w (ξ) = (2π)−D/2 exp

(
−ξ

2

2

)
, (2.40)

with D the dimension of ξ. A function f can then be expanded in terms of Hermite poly-
nomials as:

f = w (ξ)
∞∑
i=0

1

n!
an : Hn (ξ) , (2.41)

where “:” is the Frobenius inner product and the coefficients an are computed as:

an =

∫
Hn (ξ) fdξ. (2.42)

The first step in the expansion is the choice of the non-dimensionalization strategy. While not
necessary in the expansion, this choice is one of the most important steps in the construction
of a discrete kinetic scheme as it will play a key role in the final numerical scheme’s behavior
(especially higher-order moments errors). The recent development of LB models relying
on non-symmetrical stencils and adaptive non-dimensionalization is a clear proof of the
previous assertion. Some of these more advanced non-dimensionalization strategies leading
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to shifted stencils or off-lattice propagation will be treated in details in the next chapters
[91, 92, 93, 94, 95, 9]. For the sake of simplicity, in this section the continuous Maxwell-
Boltzmann EDF is written in the following non-dimensional form as:

f (eq) (ξ, ρ,u, θ) = ρ(2πθ)−D/2 exp

[
−(ξ − u)2

2θ

]
, (2.43)

where for the remainder of this subsection u, and ξ are non-dimensionalized with a reference
speed of sound cs, θ = kBT/m

c2s
and cs = kBT0

m0
, and T0 and m0 are respectively defined as the

reference temperature and molecular mass. This results in the following first few Hermite
polynomials:

H0 = 1, (2.44a)

Hi1 = ξi1 , (2.44b)

Hi1i2 = ξi1ξi2 − δi1i2 , (2.44c)

Hi1i2i3 = ξi1ξi2ξi3 − [ξi1δi2i3 ]cyc , (2.44d)

Hi1i2i3i4 = ξi1ξi2ξi3ξi4 + [δi1i2δi3i4 ]cyc − [ξi3ξi4δi1i2 ]cyc , (2.44e)

where []cyc designates cyclic permutations over the involved indexes, and corresponding
isothermal (θ = 1) Hermite coefficients:

a
(eq)
0 = ρ, (2.45a)

a
(eq)
i1

= ρui1 , (2.45b)

a
(eq)
i1i2

= ρui1ui2 , (2.45c)

a
(eq)
i1i2i3

= ρui1ui2ui3 , (2.45d)

a
(eq)
i1i2i3i4

= ρui1ui2ui3ui4 . (2.45e)

In the context of the classical LBM, the flow is assumed isothermal. The continuous EDF is
then expanded as:

f (eq) (ξ, ρ,u) = w (ξ)
∞∑
n=0

1

n!
a(eq)
n (ρ,u) : Hn (ξ) . (2.46)

As seen here, the expanded EDF still goes over the entire phase-space. Given the form of
the EDF and the corresponding moments:

Πxiyjzk =

∫
ξx
iξy

jξz
kf (eq) (ξ, ρ,u) dξ, (2.47)

and using the Hermite expansion, it can be written as:

Πxiyjzk =

∫
P∞ (ξ, ρ,u)w (ξ) dξ, (2.48)
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where:

P∞ (ξ, ρ,u) =
ξx
iξy

jξz
kf (eq) (ξ, ρ,u)

w (ξ)
, (2.49)

and P∞ (ξ, ρ,u) as defined here is a polynomial function of the variable ξ with order ∞ as
the Hermite expansion has not yet been truncated. Given that the aim of the LB method
is to solve the Boltzmann equation in the hydrodynamic regime one only needs to correctly
recover the moments of the EDF involved in the hydrodynamic equations. Furthermore,
Hermite polynomials are orthogonal functions and as such higher-order polynomials have no
effect on lower-order terms. Given the previously cited arguments, one can limit the Hermite
expansion of the EDF:

f (eq,N) (ξ, ρ,u) = w (ξ)
N∑
n=0

1

n!
a(eq)
n (ρ,u, ) : Hn (ξ) , (2.50)

where N corresponds to the highest-order moment involved in the targeted dynamics. For
example, to correctly recover the NS equations for an isothermal flow one needs to correctly
recover the third-order moment of the EDF. Now the polynomial P∞ can be replaced with
a finite-order polynomial:

PM (ξ, ρ,u) =
ξx
iξy

jξz
kf (eq),N (ξ, ρ, ξ)

w (ξ)
, (2.51)

where M = 2N . The integral of Eq. 2.48 can be evaluated using a discrete sum through a
Gauss-Hermite quadrature as:∫

PM (ξ, ρ,u)w (ξ) dξ ∼=
Q∑
α=0

wαP
M (cα, ρ,u) (2.52)

where cα are discrete non-dimensional abscissae used for the quadrature and wα are the
corresponding weights. According to the fundamental theorem of Gaussian quadratures,
choosing the abscissae to be the roots of the orthogonal polynomial of the corresponding
degree results in the maximum algebraic degree of precision, namely 2Q − 1. To correctly
recover the targeted moments one must have M ≤ 2Q−1. The third-order quadrature (des-
ignated by E3

1,5 in 1-D) results in the following abscissae: cα,i ∈ {−
√

3, 0,
√

3} corresponding

to the following values {−
√

3kBT0/m0, 0,
√

3kBT0/m0} in physical units. It is already clear
that the third-order quadrature can not correctly recover all the moments appearing at the
NS level. The corresponding weights are computed as:

wα =
n!

(Hn−1 (cα,i))
2 . (2.53)

In the multi-variate case, the weights can be computed as the products of the weights in
each dimension.
In the classical second-order EDF LB formulation (where only mass and momentum are
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conserved), this discretization procedure results in the following discrete EDF:

f (eq,2)
α (cα, ρ,u) = wαρ

(
1 + cα · u+

(cα · u)2

2
− u

2

2

)
. (2.54)

Computing the diagonal component of the second-order central moment of the EDF one gets
the following pressure (in physical units):

p =
∑
α

c2
α,if

(eq,2)
α (cα, T0) = ρ

kBT0

m0

, (2.55)

and therefore, the following isothermal speed of sound:

cs =

√(
∂p

∂ρ

)
T

=

√
kBT0

m0

. (2.56)

2.3.3 Entropic discrete equilibrium distribution functions

In the context of the entropic lattice Boltzmann method as described in [96], the discrete
equilibrium state is found as the minimizer of a convex discrete entropy functional under
mass and momentum conservation constraints. The derivation starts with the roots of the
third-order Hermite polynomials as the discrete abscissae and considering the following con-
servation constraints: ∑

α

f (eq)
α = ρ, (2.57)

∑
α

cαf
(eq)
α = ρu, (2.58)

where notations follow those adopted in the previous subsection. The EDF is derived as the
function extremizing the discrete entropy function:

Hwα,cα =
∑
α

fα ln

(
fα
wα

)
, (2.59)

under the previously set constraints. Given the Galilean invariance of the weights the ex-
pression for the entropy function is also Galilean invariant [94]. The EDF can be expressed
as:

f (eq)
α = wα exp (λ0)

D∏
i=1

exp (cα,iλi) , (2.60)

where λ0 and λi are the Lagrange multipliers associated with constraints on the zeroth and
first-order moments. Introducing the following changes of variables, X = exp (−λ0) and
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Zi = exp (λi) the EDF is re-written as:

f (eq)
α = wαX

−1

D∏
i=1

Zcα,i . (2.61)

Writing down the conservation equations using the new variables for the D2Q9 stencil, the
following algebraic system of equations is obtained:

ρX =
∑
α

wα
∏
i=x,y

Zcα,i , (2.62a)

ρuxX =
∑
α

wαcα,x
∏
i=x,y

Zcα,i , (2.62b)

ρuyX =
∑
α

wαcα,y
∏
i=x,y

Zcα,i . (2.62c)

Solving this system of equation for Zx, Zy and X and keeping positive roots one gets:

Zi =
2ui +

√
ui2 + 1

1− ui
, (2.63)

X−1 = ρ
∏
i=x,y

(
2−

√
ui2 + 1

)
, (2.64)

and therefore can express the entropic discrete equilibrium as:

f (eq)
α = wαρ

∏
i=x,y

(
2−

√
ui2 + 1

)(2ui +
√
ui2 + 1

1− ui

)cα,i
. (2.65)

2.4 Space and time-discretization

2.4.1 Eulerian approaches

Considering any one of the phase-space discretized Boltzmann equations, i.e. Hermite poly-
nomials, entropic and moment-matching, it can be observed that the system to be solved
consists of a number of coupled hyperbolic PDEs. As such, to retain an acceptable CFL
condition and prevent dispersion errors at large wave numbers (also referred to as Gibbs
oscillations), one is limited to first-order upwind space discretization. Going to higher-order
space accuracy would require non-linear operators, i.e. flux and slope limiters etc, to be
added on top of the discretization. For example Beam and Warming’s second-order scheme
[97] has been extensively used with moment-matching-type discrete equilibrium construc-
tion techniques [82, 83, 84]. The ENO (Essentially Non-Oscillatory) class of solvers are
also well suited for such hyperbolic systems of PDEs [98, 99, 100] and can, theoretically,
reach relatively high orders of accuracy in space (in smooth regions). For example, with
the WENO-5 scheme one can achieve fifth-order accuracy in smooth regions and third-order
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2.4. Space and time-discretization

accuracy near discontinuities [101]. However, it should be noted that the phase-space dis-
cretized Boltzmann PDEs discretized with classical Eulerian methods do not seem to present
any advantage compared to macroscopic solvers. In fact, given that they rely on a larger
number of variables they could be more costly than classical compressible solvers. The added
value of this kind of approach might be more pronounced for simulations dealing with larger
Knudsen numbers or considering non-equilibrium effects. As such they can be perceived as
alternatives to higher-order PDEs such as Grad’s moments method.

2.4.2 Lagrangian method with on-lattice propagation

Starting from the phase-space discretized form of the Boltzmann equation (a set of Q PDEs):

∂tfα + cα ·∇fα = Ωα, (2.66)

the idea of the Lagrangian approach consists of integrating them along their respective
characteristic lines, which contrary to Lagrangian solvers for the NS equations (given that
fluid particle path-lines are space- and time-dependent), results in an exact solution for the
advection term. As such integrating the equations from a time t to t + δt along the stencil
directions one obtains:

fα (x+ cαδt, t+ δt)− fα (x, t) =

∫ t+δt

t

Ωα

(
x(t

′
), t
′
)
dt
′
. (2.67)

Obviously within the context of the Lagrangian approach δx/δt is tied to the abscissae
obtained from the Gauss-Hermite quadrature. In the case of the third-order quadrature:

cα,i =

√
3kBT0

m0

=
δx
δt
. (2.68)

Coming back to Eq. 2.67, to get a second-order accurate scheme one can use the trapezoidal
rule to evaluate the integral on the RHS:∫ t+δt

t

Ωα

(
x(t

′
), t
′
)
dt
′
=
δt
2

Ωα (x, t) +
δt
2

Ωα (x+ cαδt, t+ δt) +O
(
δ3
t

)
, (2.69)

which in turn results in an implicit scheme. To take out the implicitness of the resulting
equation, the following change of variables is introduced:

f̄α = fα −
δt
2

Ωα, (2.70)

f̄ (eq)
α = f (eq)

α , (2.71)

Ωα =
1

τ + δt/2

(
f̄ (eq)
α − f̄α

)
. (2.72)
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Using this change of variable and Eqs. 2.67 and 2.69 one gets:

f̄α (x+ cαδt, t+ δt)− f̄α (x, t) +
δt
2

Ωα (x+ cαδt, t+ δt)−
δt
2

Ωα (x, t) =

δt
2

Ωα (x+ cαδt, t+ δt) +
δt
2

Ωα (x, t) , (2.73)

which in turn using Eqs. 2.70–2.72 results in :

f̄α (x+ cαδt, t+ δt)− f̄α (x, t) =
δt
τ̄

(
f̄ (eq,N)
α (x, t)− f̄α (x, t)

)
, (2.74)

where τ̄ is defined as:
τ̄ = τ + δt/2. (2.75)

It is also interesting to note that the new distribution functions have the following properties:∑
α

f̄α =
∑
α

fα −
δt
2

∑
α

Ωα = ρ, (2.76)

∑
α

cαf̄α =
∑
α

cαfα −
δt
2

∑
α

cαΩα = ρu, (2.77)

and more generally for higher-order moments:∑
α

Hn (cα) f̄α =
∑
α

Hn (cα) fα −
δt
2

∑
α

Hn (cα) Ωα =

(
1 +

δt
2τ

)
an −

δt
2τ
a(eq,N)
n . (2.78)

While to derive the previous scheme, particle streaming was restricted to be on-grid, it is
not a necessary condition for working LB scheme. For the so-called semi-Lagrangian methods
the restriction of Eq. 2.68 is relaxed, resulting in off-lattice propagation. As such, in this
formulation the time-evolution operator of Eq. 2.74 is supplemented with an interpolation
step to reconstruct the populations at the discrete grid-points:

f̄α (x, t+ δt) =
∑
xi

A (x,xi)

[
f̄α (xi − cαδt, t) +

δt
τ̄

(
f̄ (eq,N)
α (xi − cαδt, t)− f̄α (xi − cαδt, t)

)]
,

(2.79)
where A (x,xi) are the coefficients involved in the interpolation process and xi are the
interpolation stencil points. In practice, this approach has two main advantages: (a) it
allows one to use quadratures of order four or five (since those result in non-space-filling
stencils, they are unusable with the on-lattice solvers), (b) freedom over the choice of the
time-step as the streaming does not need to fall on-grid [102, 103]. It also allows for the
implementation of conforming meshes in the context of the LBM [104]. A more detailed
analysis and discussion of such an approach is left to chapter 7.
The overbars on the re-defined discrete populations and relaxation time will be omitted
during the rest of the manuscript for the sake of simplicity. Some of the discrete stencils
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resulting from the space-time discretization process are listed in appendix C.

2.5 Enhanced collision operators for the LBM

It has been widely observed that in the limit of vanishing non-dimensional viscosities, the
classical SRT collision operator with a second-order polynomial EDF leads to an almost
unconditionally unstable scheme. To overcome this issue and facilitate under-resolved sim-
ulations with the LBM a number of more advanced models have been developed over the
past decades. A number of the most widely used collision operators will be reviewed in this
section.

2.5.1 Collision operator in momentum space

All modified BGK collision models in this category rely on the following main paradigm:
Application of the equilibration operator in alternative spaces [105] as a way to de-alias the
physical and ghost modes. It is interesting to note that such modal decompositions were also
used in Shakhov’s collision operator to allow for a variable Prandtl number. These alternative
spaces are usually moments of the distribution function, chosen and tailored to suit specific
properties. The following section will review some of the most well known collision models
of this category.

2.5.1.1 Raw moments-based decomposition

The first category, developed and published in the early 2000s’ is the so-called Multiple
Relaxation Time (MRT) collision model [105, 55, 106, 107]. The idea behind this approach
is to apply the collision step in momentum space, contrary to the classical SRT formulation
where collision is carried out directly in phase-space. This allows for independent control over
the relaxation rates of linearly independent moments, opening the door for a more flexible
equilibration path [107, 106]. The added degrees of freedom can be useful both physically
and numerically [108]. In this approach, the BGK collision operator is written as:

Ω(MRT )
α = M−1SM

(
f (eq)
α − fα

)
, (2.80)

where M is the transformation matrix such that:

Πα =
∑
β

Mα,βfβ, (2.81)

where Πα are the moments chosen for the application of the collision operation. For the
remainder of this work, raw moments of the distribution function will be designated as
Πxiyjzk , with:

Πxiyjzk =
∑
α

ciα,xc
j
α,yc

k
α,zfα. (2.82)
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As seen in Eq. 2.80, using the transformation matrix M the discrete populations are taken
to momentum space. Then the relaxation matrix S is applied and relaxed moments are
converted back to discrete populations through M−1. For a typical DdQq stencil, q linearly
independent moments are needed to span the phase-space. For example, given the properties
of the Hermite polynomials, the first q linearly independent Hermite coefficients are an
obvious choice. For the D2Q9 stencil, the following moments –Hermite coefficients– can be
used:

Π = {Π0,Πx,Πy︸ ︷︷ ︸
a1

,

a2︷ ︸︸ ︷
Πxy,Πx2 − c2

s,Πy2 − c2
s,Πx2y − c2

sΠy,Πxy2 − c2
sΠx︸ ︷︷ ︸

a3

,

a4︷ ︸︸ ︷
Πx2y2 − c2

s (Πx2 + Πy2) + c4
s}.

(2.83)
For this specific example, the corresponding equilibrium moments, assuming terms up to
order two have been kept in the Hermite expansion, are:

Π(eq) = {ρ, ρux, ρuy, ρuxuy, ρu2
x, ρu

2
y, 0, 0, 0}. (2.84)

It is interesting to note that keeping Hermite polynomials up to order four, the discrete
equilibrium moments match those of the continuous EDF. Another parameter appearing in
Eq. 2.80 is the relaxation coefficients matrix, S, mostly defined as a diagonal matrix with
components 1/τα controlling the relaxation rate of their corresponding raw moment. Of the
available nine relaxation coefficients in the D2Q9 stencil, three are tied to fluid viscosity
(one to shear and two to bulk viscosities) as the corresponding moments appear in the
viscous stress tensor and three are conserved moments; The rest can be tuned, for stability
[55], optimal dispersion [109], fixing the boundary position for the half-way bounce-back
boundary condition [30] etc.
As noted in [110, 111], using the full set of moments leads to a number of free parameters
(the ghost moments relaxation coefficients), for which no formal physical closures exist. As
previously mentioned, apart from the entropic argument, only a posteriori closures based
on numerical arguments can be devised for these free parameters. Another way around this
issue is to adopt targeted (on specific moments of the distribution function) minimalist MRT
formulations. The TRT (Two Relaxation Time) collision operator developed and proposed
by I. Ginzburg is an example of these minimalist models [112, 113, 51]. In this collision
model the distribution function is decomposed into symmetrical, f+

α , and non-symmetrical
parts, f−α , defined as [51]:

f+
α =

fα + fᾱ
2

, (2.85a)

f−α =
fα − fᾱ

2
, (2.85b)

resulting in two relaxation coefficients, τ+ and τ−, with the first one tied to the fluid viscosity.
The BGK collision operator is then expressed as [113]:

Ω(TRT )
α =

1

τ+

(
f (eq)+
α − f+

α

)
+

1

τ−
(
f (eq)−
α − f−α

)
. (2.86)
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As demonstrated in [114], judicious choices of the free parameter (the so-called “magic
values”) can lead to, among other effects, the wall being placed exactly half-way when used
with the half-way bounce-back boundary condition. Defining :

Λ =

(
δt
τ+
− 1

2

)(
δt
τ−
− 1

2

)
, (2.87)

it can be shown that setting Λ = 3/16 places the wall half-way [115], while Λ = 1/6 and
Λ = 1/12 cancel out, respectively, the third- and fourth-order spatial error terms [116, 117]
and Λ = 1/4 results in optimal stability [118].
Another example of a minimalist MRT scheme, studied later on in details, is that of the LKS
[52, 119]. This collision model is a TRT scheme in the space of Hermite moments, where
second-order moments are relaxed using the fluid viscosity while higher-order moments(three
and four) are relaxed using a free parameter [54]. For the LKS the collision operator is written
as [53, 52]:

Ω(LKS)
α = −1

λ

(
fα − f (eq,LKS)

α

)
. (2.88)

The second relaxation coefficient λ is related to the SRT relaxation coefficient as [119]:

λ− A = τ, (2.89)

where A is a constant fixed by the choice of the free parameter. The EDF is then defined as
[54]:

f (eq,LKS)
α = f (eq)

α − A

τ

wα
2
a

(neq)
2 : H2,α. (2.90)

The original regularized lattice Boltzmann method (RLBM) is an LKS solver where the
free relaxation coefficient is set to 1 [54]. This collision operator has been applied to a
variety of configurations ranging from multi-phase [120] to non-Newtonian flows [121] and
advection-diffusion equations with variable diffusion coefficients [122, 123].

2.5.1.2 Central moments-based decomposition

In the Central Moments Multiple Relaxation Time (from here on referred to as CM-MRT)
model, while the paradigm is quite similar to the MRT, a different set of moments are used:
the central moments, designated by Π̃xiyjzk and defined as [124, 125]:

Π̃xiyjzk =
∑
α

(cα,x − ux)i(cα,y − uy)j(cα,z − uz)kfα. (2.91)

Taking again the example of the D2Q9 stencil with the Hermite coefficients as the projection
space and a fourth-order expansion of the EDF results in the following central equilibrium
moments [126]:

Π̃(eq) = {ρ, 0, 0, 0, 0, 0, 0, 0, 0}. (2.92)
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Lower-order EDFs will result in a different set of equilibria with higher-order moments
different from their continuous counter-parts [127]. As for the MRT, the collision operator
is expressed as:

Ωα = M−1N−1SNM
(
f (eq)
α − fα

)
(2.93)

where the additional matrix appearing in the equation, N , converts raw moments to central
moments:

Π̃ = NΠ. (2.94)

The different components of this matrix can be obtained using the binomial theorem. To
illustrate the derivation of these matrices, a limited number of them are explicitly given in
appendix D.

2.5.2 Pre-collision population reconstruction via regularization

Roughly speaking, the rational behind regularized collision operators is to filter out higher-
order components of the distribution functions (in the sense of the Chapman-Enskog ex-
pansion). It can be shown that first-order terms appear at the NS level, while higher-order
terms intervene at the Burnett, super Burnett etc. scales (not of interest in the context of
the LBM). In the context of the regularized collision approach the non-equilibrium part of

the distribution function is reconstructed using only first-order contributions, f
(neq)
α ≈ f

(1)
α .

The discrete time-evolution equation can be re-expressed as [57, 128]:

fα (x+ cαδt, t+ δt) = f (eq)
α (x, t) +

(
1− δt

τ

)
f (neq)
α (x, t) . (2.95)

Following the Hermite expansion used for the EDF, we can express the first-order component
of the distribution function as:

f (1)
α = wα

∑
n=2

1

n!
a(1)
n : Hn. (2.96)

In the original regularized model [57] only the second-order Hermite polynomial was consid-
ered for the reconstruction process:

f (1)
α = wα

a
(1)
2 : H2

2
. (2.97)

The only unknown in this equation is a
(1)
2 . In [57], this coefficient is computed as:

a
(1,PR)
2 ≈ a(neq)

2 =
∑
α

H2 :
(
fα − f (eq)

α

)
. (2.98)

In the context of the classical LB formulation with a second-order polynomial EDF, and given
the orthogonality of the independent moments, this collision operator aimed at eliminating
non-equilibrium effects of higher-order (kinetic) moments. It is interesting to note that this
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formulation has a number of shortcomings: (a) Errors in all components of the third-order
moments tensor of the EDF (given the absence of higher-order terms in the EDF), and (b)

presence of higher-order effects (tied to f
(i)
α with i ≥ 2) coming from the approximation used

for a
(1)
2 . The latter can be, to some extent, cured using a CE-based closure for a

(1)
2 . Using

this approach it can be shown that [58]:

a
(1,CE)
2 = −ρc2

s

τ

δt

(
∇u+ ∇uT

)
. (2.99)

This expression can be computed using classical FD approximations [129]. Additionally,
recently published results seem to show that a weighted combination of both these closures
can be effective in extending the stability domain of the scheme [129, 130]:

a
(1)
2 = σa

(1,PR)
2 + (1− σ)a

(1,CE)
2 , (2.100)

where σ is the weight.
The first problem with the RLBM of [57], namely errors in the off-diagonal components of
the third-order moments tensor can accounted for by using third- (or fourth-)order terms in
the EDF and using the recursive properties of the off-equilibrium Hermite coefficients [58],
i.e.:

a
(1)
n,ij...klm = a

(1)
n−1,ij...klum +

[
a

(1)
lmuiuj...uk

]
cyc
. (2.101)

For the D2Q9 stencil, assuming a fourth-order isothermal polynomial EDF the different
non-equilibrium Hermite coefficients are computed as:

a
(1)

xy2 = uxa
(1)

y2 + 2uya
(1)
xy , (2.102a)

a
(1)

x2y = uya
(1)

2,x2 + 2uxa
(1)
xy , (2.102b)

a
(1)

x2y2 = uya
(1)

x2y + ux
2a

(1)

y2 + uxuya
(1)
xy . (2.102c)

These coefficients are explicitly given here, as this model is considered in the extensive linear
stability analysis of the next chapter.

2.5.3 Entropic lattice Boltzmann method

The original entropic LBM ensures stability of the solver by imposing a monotonous decrease
of a discrete entropy function. While a number of different discrete entropy functionals have
been proposed in the context of the ELBM [131, 132], the following form has gained the
most attention [133, 134, 46, 135, 136]:

H =
∑
α

fα ln

(
fα
wα

)
. (2.103)
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In practice, the monotonicity of the discrete entropy is enforced using a two-step linear
reconstruction achieved through the following modified time-evolution equation [133, 134]:

fα (x+ cαδt, t+ δt)− fα (x, t) = βγ
(
f (eq,ELBM)
α (x, t)− fα (x, t)

)
, (2.104)

where β is tied to the fluid viscosity as:

β =
δt

2τ + δt
, (2.105)

with τ = ν/c2
s, while γ is obtained by solving the following system [137]:

H (f ∗) = H (f) , (2.106)

with:
f ∗α = fα + γ

(
f (eq,ELBM)
α − fα

)
. (2.107)

This two-step reconstruction procedure is illustrated in Fig. 2.1. In the first step, the equal
entropy mirror state (relative to the equilibrium), f ∗, is found by solving the non-linear
equation shown in Eq. 2.106. As observed there γ is the maximum path length not resulting
in an increase in entropy [138]. It is interesting to note that at thermodynamic equilibrium
Eq. 2.106 has the non-trivial root γ = 2 which corresponds to the SRT collision operator
[138]. In the second step, dissipation is introduced via the parameter β. The solution to

Figure 2.1: Schematic representation of the relaxation process in the ELBM. Dashed lines
represent entropy levels while the triangle illustrates the positivity polytope.

Eq. 2.106 can be obtained using a Newton-Raphson iterative solver as:

γn+1 = γn − Gn

∂γGn
, (2.108)

with:
Gn = H (f ∗n)−H (f) , (2.109)
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and:
∂Gn

∂γ
=
∑
α

[
1 + ln

(
f ∗n

wα

)] (
f (eq,ELBM)
α − fα

)
, (2.110)

where γn and γn+1 are solutions obtained in the previous and current iterations. The iterative
root-finding algorithm being rather expensive (especially when the populations get away from
equilibrium) alternative approaches have been developed in recent years[133, 138]. These
approximate solutions are also useful in the vicinity of equilibrium as the Newton-Raphson
solver might diverge there.
The ELBM as described here relying on changing the effective viscosity to stabilize the
simulation, and coming with non-negligible computational overhead, a modified version of
it has been proposed relying on moments decomposition [111]. This approach is commonly
referred to as the KBC model (short for Karlin-Bösch-Chikatamarla). This approach differs
from the ELBM in the way the mirror state is constructed:

f ∗α = 2f (eq)
α − fα + (γ − 2)

(
h(eq)
α − hα

)
, (2.111)

where hα is the part of the distribution function containing ghost moments. As observed here
the entropy-enforcing parameter γ now only affects ghost moments, theoretically allowing
for the correct fluid viscosity to be enforced. This approach has been observed to be very
effective in allowing for under-resolved simulations [139, 140, 141].

2.6 Summary

The aim of the present chapter was to introduce the theoretical background of the LBM. It
is worth noting that all of the collision models presented in this chapter have been imple-
mented in ALBORZ and will be used later in different sections of the present manuscript.
The information to retain from this chapter is the discrete time-evolution equation for the
LBM given in Eqs. 2.74 and 2.75. Furthermore, the discrete isothermal equilibrium attrac-
tors obtained through projection onto Hermite polynomial space and entropy extremization
are given in Eqs. 2.54 and 2.65.
Apart from the discrete equilibrium state, it was shown that in order to achieve better nu-
merical properties the equilibration path controlled by the collision operator can also be
improved. Enhanced versions of the SRT collision operator derived in the LBM community
intend to control higher-order ghost moments effect and prevent modal interaction by re-
moving aliasing effects introduced by the collision operator. This argument prompted the
development of models relying on relaxation in alternate spaces (e.g. raw moments, central
moments, cumulants [142, 143] etc) instead of phase-space. While focusing on de-aliasing via
modal decomposition, these models come with a large number of free parameters that can
only be parametrized with a posteriori arguments such as linear stability analyses (as shown
in the next chapter). Other classes of collision models such as the Regularized class aim
at filtering out higher-order contribution by reconstructing the non-equilibrium part of the
distribution function using CE analysis. The entropic model does not filter out higher-order
contributions; It aims at keeping the scheme (and therefore higher-order contributions) dis-
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sipative and hence guarantee non-linear stability by enforcing the H-theorem at the discrete
level.
The next chapter will provide a more in-depth analysis of the physical and numerical prop-
erties of the isothermal LBM, along with the different enhanced collision models and their
effects on the stability of the scheme.
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3.1. Bulk flow solver analysis : Asymptotic behavior

3.1 Bulk flow solver analysis : Asymptotic behavior

In this first section, we are only interested in a continuum-level analysis of the classical
isothermal LBM. The behavior and characteristics of different EDFs at this level are studied
using first the Chapman-Enskog expansion and then by looking at the error in higher-order
moments, especially those appearing at the NS level, in order to establish usability domains
in terms of the Mach number.

3.1.1 Asymptotic analysis : the Chapman–Enskog development

The Chapman–Enskog analysis within the context of the LBM relies on concepts from per-
turbation analysis and the Taylor–McLaurin expansion to recover the macroscopic equations
solved by the LBM at different time-scales. The first step is the introduction of a Taylor–
McLaurin expansion to get space and time-continuous approximations to the discrete equa-
tion:

fα (x+ cαδt, t+ δt) =
N∑
n=0

δt
n

n!
(∂t + cα ·∇)n fα (x, t) , (3.1)

which results in the following system of PDEs:

N∑
n=1

δt
n

n!
(∂t + cα ·∇)n fα (x, t) = δtΩα (x, t) . (3.2)

The next step is what one might perceive as a modal decomposition, by introducing different
time-scales and expanding different parameters as power series of these scales:

δt
T
∂t =

∞∑
i=1

εi∂
(i)
t , (3.3a)

fα =
∞∑
i=0

εif (i)
α , (3.3b)

δt
T
∇ = ε∇(1). (3.3c)

This is achieved by non-dimensionalizing the equations using a characteristic time T , scale
L and velocity C = L/T . This expansion results in a series of PDEs at these different
time-scales (tracked through the parameter ε):

ε0 : 0 =
1

τ

(
f (eq)
α − f (0)

α

)
, (3.4a)

ε1 :
(
∂

(1)
t + cα ·∇(1)

)
f (0)
α = −1

τ
f (1)
α , (3.4b)

ε2 : ∂
(2)
t f (0)

α +
(
∂

(1)
t + cα ·∇(1)

)
f (1)
α +

1

2

(
∂

(1)
t + cα ·∇(1)

)2

f (0)
α = −1

τ
f (2)
α . (3.4c)
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3.1. Bulk flow solver analysis : Asymptotic behavior

Using these PDEs and solvability conditions (based on conservation properties of the collision
operator):

∀i > 0 :
∑
α

f (i)
α = 0, (3.5a)

∀i > 0 :
∑
α

cαf
(i)
α = 0, (3.5b)

one can readily recover the corresponding macroscopic balance equations. For example at
the Euler level (order ε1) one gets the following mass and momentum balance equations:

Π0, ε
1 : ∂

(1)
t ρ+ ∇(1) · ρu = 0, (3.6a)

Π1, ε
1 : ∂

(1)
t ρu+ ∇(1) · ρu⊗ u+ ∇(1) · p = 0, (3.6b)

with p = pI = ρr0T0I, which correspond to a compressible isothermal flow.
At the NS level (order ε2) while the mass balance is straightforward, getting the momen-

tum conservation equations is a bit more tedious. After some algebra one gets the following
PDE at this scale:

ε2 : ∂
(2)
t f (0)

α +
(
∂

(1)
t + cα ·∇(1)

)(
1− τ

2

)
f (1)
α = −1

τ
f (2)
α , (3.7)

which in turn, taking the first-order moments results in:

Π1, ε
2 : ∂

(2)
t ρu+ ∇(1) ·

(
1

2
− τ
)(

∂
(1)
t Π

(eq)
2 + ∇(1) ·Π(eq)

3

)
= 0. (3.8)

One interesting issue to note is that, due to the limitations brought about by the quadrature,
using a third-order stencil (first neighbor) introduces an aliasing between moments of order
one and three: ∑

α

c3
α,if

(eq)
α =

∑
α

cα,if
(eq)
α . (3.9)

This symmetry defect is the main reason behind Galilean invariance issues encountered at
the NS level for moderate and large Mach number flows. While for the continuous Boltzmann
equation one would get the following third-order moments tensor:

Π
(eq)
i1i2i3

= ρui1ui2ui3 + ρ [ui1δi2,i3 ]cyc , (3.10)

first-neighbor stencils in combination with a third-order Hermite expansion for the EDF
result in the following:

Π
(eq,N=3)
i1i2i3

= ρδi1i2i3 [ui1δi2,i3 ]cyc + ρ (1− δi1i2i3) {ui1ui2ui3 + [ui1δi2,i3 ]cyc}. (3.11)

The next subsection will focus on the effect of local velocity (or Mach number) on such errors
for different EDFs.
Using the CE formalism it can be shown that the addition of a correction term for the
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3.1. Bulk flow solver analysis : Asymptotic behavior

third-order moments tensor can resolve this issue [9, 144, 145, 146]:

Ψα =

(
1− δt

2τ

)
wα
2

(∇⊗Hα,2) : δΠ
(eq)
3 . (3.12)

where δΠ
(eq)
3 = Π

(eq)
3 − Π

(eq,N)
3 reduces to its diagonal components for N > 2. A more

thorough derivation and analysis of the correction for the third-order moments tensor will
be provided in chapter 5.

3.1.2 Asymptotic error analysis

The previous CE analysis shows that LB formulations based on standard first-neighbor sten-
cils do not exactly recover the NS level dynamics, i.e. the stress tensor. This comes from
the fact that, due to lack of symmetry (tied to the order of the Gauss-Hermite quadrature),
the third-order moments tensor does not correspond to its phase-space continuous counter-
part. While including higher-order (third-order) components of the Hermite expansion in
the EDF can help correct the deviatoric components, consistency of the diagonal compo-
nents can only be re-established through additional correction terms. As such, to have a
better measure of the applicability domain of the LB scheme, we will look at the deviations
of these moments (for the isothermal case) from their continuous counterparts for varying
Mach numbers. Although readily extendable to other stencils, the D2Q9 stencil will be con-
sidered here. Moments such as Πx2 , Πy2 , Πx2y, Πxy2 , Πx3 and Πy3 , among others, will be
studied through the normalized deviation defined as:

δ =

∣∣∣∣∣1−
∑

α c
i
α,xc

j
α,yf

(eq,N)
α

Π
(eq)

xiyj

∣∣∣∣∣ , (3.13)

where Π
(eq)

xiyj
is the continuous moment and

∑
α c

i
α,xc

j
α,yf

(eq,N)
α is the moment of the discrete

EDF. The diagonal component of the second-order moment tensor for discrete and contin-
uous EDFs are shown in Fig. 3.1. It is observed that including the second-order terms in
the Hermite expansion leads to the correct second-order moments (diagonal components)
regardless of the Mach number. While the continuous EDF recovers the following moment:

Πx2 = ρ
(
u2
x + c2

s

)
, (3.14)

for the first-order Hermite expansion and entropic EDF we respectively get:

Πx2 = ρc2
s, (3.15)

Πx2 =
ρ (12u3

x − 16u2
x + 8ux − 4) + ρ (5u2

x − 10ux + 1)
√
u2
x/c

2
s + 1 + (u2

x/c
2
s + 1)

3/2

6(ux − 1)(2ux +
√
u2
x/c

2
s + 1)

. (3.16)

It is also interesting to note that, while the entropic EDF does not exactly recover the
correct diagonal components of the second-order moments tensor, the deviations from the
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Figure 3.1: (left) Π
(eq)

x2 moment and (right) relative deviations δ for (in red) first- and (in blue)
second-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The third-order error line in the left plot is not
visible as it is equal to zero.

continuous moment are much less pronounced than the first-order Hermite expansion, and
even negligible for Mach numbers up to 0.4. As such the non-conservation of isothermal
energy in the entropic EDF is not a restriction on the validity domain per se. Furthermore, all
EDFs (even the first-order Hermite expansion) correctly recover the off-diagonal components
of the second-order moments tensor.
As shown in the CE analysis, for the NS level dynamics to be correctly recovered, the
components of the third-order moments tensor must also match those of the continuous
EDF. However, as observed in Fig. 3.2, none of the EDFs are able to recover the correct
diagonal components for this tensor. This shortcoming is not related to the equilibrium state
but, as shown in the Hermite expansion section, to the limited order of the Gauss-Hermite
quadrature used for first-neighbor stencils. In Fig. 3.2, it is observed that all three EDFs
considered there (second- and third-order Hermite expansion and entropic) have the same
moments. For the off-diagonal components of the third-order moments tensor however, as
shown in Fig. 3.3, different EDFs result in different behaviors. While Hermite expansions
of order higher than three exactly recover the correct moments, the second-order Hermite
expansion and entropic EDFs show some deviations. Although not exactly recovering the
correct moment the entropic EDF still closely follows its continuous counterpart even for
large Mach numbers. This could, in part, explain why the entropic model exhibits less
pronounced Galilean invariance problems as compared to the classical LBM with second-
order EDF at moderate Mach numbers. As such, in agreement with the CE development, it
is observed that in order to correctly recover the off-diagonal components of the third-order
moments tensor in 2-D, the third-order terms of the Hermite expansion must be included.
For the Fourier equation on the other hand, the components of the fourth-order moments
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Figure 3.2: (left) Π
(eq)

x3 moment and (right) relative deviations δ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The red and blue lines are not visible as the green
lines fall exactly on top of them.
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Figure 3.3: (left) Π
(eq)

x2y moment and (right) relative deviations δ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The blue lines in the left plot fall exactly on the
black plain lines. They are also not visible in the right plot as they are equal to zero.
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tensor must also be correctly recovered. The diagonal components, i.e. Π
(eq)

x4 are shown in
Fig. 3.4. None of the EDFs considered here are able to follow the continuous curve for all
Mach numbers. As for the diagonal components of the third-order moments tensor this is
related to the limited degrees of freedom in the stencil. For the off-diagonal components of
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Figure 3.4: (left) Π
(eq)

x4 moment and (right) relative deviations δ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line. The red lines are not visible as they coincide with
the blue ones.

the form Π
(eq)

xiyj
with both i < 3 and j < 3, only the fourth-order Hermite expansion is able to

correctly recover the continuous moments. For the other components, the limited symmetry
of the stencil results in discrepancies at moderate and high Mach numbers. Results are
displayed in Figs. 3.5 and 3.6.

The simple study of the behavior of different higher-order moments of the EDFs appearing
at different orders of the CE expansion clearly establishes the validity domain of the LB
scheme based on standard first-neighbor stencils. This validity domain and aliasing effects
between different moments caused by the quadrature are illustrated in Fig. 3.7. As shown
there, for a solver intended for Euler-level dynamics (without conservation of energy) the
second-order Hermite expansion is sufficient, while the entropic EDF needs corrections for
the diagonal components of the second-order moments tensor. To correctly recover NS level
dynamics (or Euler level with energy conservation) none of the considered EDFs can exactly
match the stress tensor. The third-order Hermite expansion (the EDF that matches the
larger number of components) still needs corrections for the diagonal components of the
third-order moments tensor. Finally, for Burnett level dynamics (or NS level with energy
conservation), as mentioned previously, even using the fourth-order Hermite expansion one
would need to include corrections for all components involving directional moments of order
higher than two.
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Figure 3.5: (left) Π
(eq)

x2y2 moment and (right) relative deviations δ for (in red) second- and (in
blue) third-order Hermite polynomial expansion and (in green) entropic EDF. The continuous
moment is shown with black plain line.
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Figure 3.6: (left) Π
(eq)

x3y moment and (right) relative deviations δ for (in red) second- and (in
blue) third-order-Hermite polynomial expansion and (in green) entropic EDF. The continu-
ous moment is shown with black plain line. The red and blue lines are not visible as they
coincide with the green lines.
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NS & Euler energy

Figure 3.7: Hierarchy of moments on the D2Q9 stencil. Moments correctly recovered with
(Green boxes) entropic, (Green+Red boxes) second, (Green+Red+Blue boxes) third and
(Green+Red+Blue+Yellow boxes) fourth-order EDFs. Boxes in gray are moments that can-
not be recovered on this stencil. Aliasing effects between moments induced by the quadrature
are shown with red arrows.

3.2 Bulk flow solver analysis: non-vanishing wave-numbers

The von Neumann (VN) stability analysis aims at studying the time evolution of a per-
turbation f

′
α that is injected into the linearized discrete time evolution equations. The

perturbation is expanded as a combination of standing waves, whose propagation speed and
attenuation rate will be obtained as a result of the VN analysis. A positive attenuation rate
will result in a growth of the error at the corresponding wave-length and linear instability of
the solver for the set of parameters considered (τ , Ma, etc). On the contrary, the scheme is
linearly stable if it remains negative for all wave-numbers.
Furthermore, the spectral behavior and accuracy can be readily analyzed by comparing the
spectral dispersions and dissipations to the theoretical modes obtained from the linearized
NS equations. The NS theoretical modes for an isothermal flow can be expressed as [109]:

ωshear = u · k − iνk2, (3.17a)

ωacoustic = (u± cs) · k − i
(
D − 1

D
ν +

η

2

)
νk2, (3.17b)

where D is the physical dimension of the system and k the wave-number vector. As a
consequence, the VN stability analysis can be used to evaluate the spectral behavior and
linear stability domain of a LBM for a given set of parameters. As such it can be perceived
as a tool to objectively evaluate the stabilization properties of different collision models, on
the basis of necessary conditions. The latter comes from the fact that the analysis relies
on a linearization step and as such gets the sufficient condition for stability only under the
linear regime assumption (small amplitude perturbations). It has been widely used in the
past to evaluate the stability properties of the lattice Boltzmann method. Interested readers
are referred to [147, 148, 149, 150, 54, 151, 109], among other sources.
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3.2. Bulk flow solver analysis: non-vanishing wave-numbers

3.2.1 Methodology : The von Neumann formalism

Starting with a given set of coupled continuous/discretized PDEs, bound by periodic bound-
ary conditions, defined as:

L (fα,x, t) = 0, (3.18)

where L is the time evolution operator, the equations have to be linearized in order to use
the VN method. To achieve this for the LB system of equations one can expand (first-order
Taylor-McLaurin expansion) the distribution function around a reference state fα (ρ̄, ū):

fα ≈ f̄α + f
′

α, (3.19)

δtΩα(fα) ≈ δtΩα|f̄α + Jαβf
′

β, (3.20)

where Einstein’s notation (summation) over β is used, and for the sake of clarity, f̄α =
fα (ρ̄, ū). Obviously, relying on a first-order expansion around the distribution function this
expansion is only valid in the linear regime (i.e. small perturbations around the reference
state). In addition, Jαβ is the Jacobian of the collision operator evaluated about f̄β, i.e, Jαβ =
∂fβδtΩα|f̄β . Placing back these expressions into the discrete LB time-evolution equation:

f
′

α (x+ cαδt, t+ δt)− f
′

α (x, t) = Jαβf
′

α (x, t) −
(
f̄α (x+ cαδt, t+ δt)− f̄α (x, t)− δtΩα|f̄α

)︸ ︷︷ ︸
=0

,

(3.21)
and taking out the last terms on the RHS one gets:

f
′

α (x+ cαδt, t+ δt) = (δαβ + Jαβ) f
′

β (x, t) , (3.22)

where δαβ is the Kronecker delta function. Using the SRT collision operator for instance, we
can then re-write the linearized time-evolution equation as:

f
′

α (x+ cαδt, t+ δt) =

[(
1− δt

τ

)
δαβ +

δt
τ
J

(eq)
αβ

]
f
′

β (x, t) , (3.23)

with J
(eq)
αβ = ∂βf

(eq)
α |f̄β and f̄β = f

(eq,N)
β (ρ̄, ū). To compute the Jacobian matrix of the EDF,

knowing that ∂fβfγ = δβ,γ, the following expressions can be used:

∂fβa
(eq)
0 = ∂fβ(ρ) =

∑
γ

δβ,γ = 1, (3.24)

∂fβa
(eq)
1 = ∂fβ(ρu) =

∑
γ

cγδβ,γ = cβ. (3.25)

Once re-written as a function of the conserved Hermite coefficients, computing the Jacobians
of higher-order components of the Hermite expansion is straightforward. Let us consider the
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second-order Hermite coefficient for example:

∂fβa
(eq)
2 = ∂fβ

a
(eq)
1 ⊗ a(eq)

1

a
(eq)
0

= −a
(eq)
1 ⊗ a(eq)

1

(a
(eq)
0 )2

+
a

(eq)
1 ⊗ cβ +

(
a

(eq)
1 ⊗ cβ

)T
a

(eq)
0

. (3.26)

Eventually, for the second-order EDF the Jacobian reads:

J
(eq,2)
αβ = wα

(
H0,α + H1,α : ∂fβa

(eq)
1 + H2,α :

∂fβa
(eq)
2

2

)
. (3.27)

Detailed expression for the Jacobians of the different EDFs and collision operators are found
in appendix E. The last step of the VN analysis is to assume that perturbations f ′α are
monochromatic plane waves :

f ′α = Fα exp [i(k · x− ωαt)],

where Fα is the wave amplitude, i is the imaginary unit, ||k|| = k is the wave-number, and
ω is the complex time frequency of the wave. k is related to the wave-length of f ′α, whereas
=(ω) and <(ω) are related to its attenuation and propagation speed. By injecting these
perturbations into Eq. (3.22) one obtains the following eigenvalue problem of size Q (the
number of discrete velocities) :

MF = exp (−iωα)F , (3.28)

where F is the eigenvector composed of all amplitudes. It is related to the eigenvalue
exp (−jω). M is the matrix associated to Eq. (3.22). In the present work, this matrix can
be expressed as :

M = E [δ + J ] , (3.29)

with
Eαβ = exp[−i(cα · k)]δαβ. (3.30)

It is important to notice that the matrix M and the eigenvalue problem (3.28) depend on
the mean flow (ρ̄, ū), the wave-number (kx and ky in 2D) and the relaxation coefficient τ ,
or equivalently the kinematic viscosity ν. This means that for each set of these parameters
the eigenvalue problem needs to be solved to obtain the corresponding values of <(ω) and
=(ω). Doing so, the spectral properties (dispersion and dissipation) can be obtained for any
given collision model.

3.2.2 Stability domain: Effect of equilibrium state

As mentioned previously, the equilibrium state is one of the most important components of a
kinetic scheme and controls, for the most part, the leading-order dynamics of the system (i.e.
the macroscopic PDEs of interest), but also the behavior of higher-order (errors, ghost modes)
terms. The effects of the EDF on leading-order terms were studied in previous sections. In
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this subsection, using the VN formalism we look at the effect of the EDF on the linear
stability domain. To do so the eigenvalue problem of the VN equations is solved for different
values of non-dimensional viscosities, over the entire wave-number space, i.e. kx and ky with
a resolution of 100 points in each direction. The highest Mach number resulting in negative
dissipation rates over all wave-numbers is retained as the linear stability limit. These limits
are shown in Fig. 3.8. Looking at those results a number of points are worth noting: For
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Figure 3.8: Linear stability domains of SRT collision operator with EDFs of orders (from
left to right) two, three and four

all of these EDFs, regardless of the value of the non-dimensional viscosity (Fourier number),
the maximum stable Mach number never goes beyond Ma =

√
3− 1 ≈ 0.732. Furthermore

while the addition of third-order components appears not to have a large effect on the
stability domain, the fourth-order component (which does not affect the terms appearing
at the NS level) extends it. It is also worth noting that the entropic EDF, not illustrated
here but detailed in [152], was found to be linearly stable for all values of the Mach number
supported by the stencil, i.e. Ma =

√
3, even for vanishing viscosities. An illustration of the

corresponding linear stability domain can be found in Fig. 7.5 in chapter 7. This in turn
confirms the effectiveness of the discrete EDF construction approach in guaranteeing linear
stability (by enforcing a discrete H-theorem).
Apart from extending the linear stability domain, the addition of the fourth-order component
results in more isotropic behavior especially for small values of the non-dimensional viscosity.
The directional stability domains obtained with different orders of the EDF are shown in
Fig. 3.9. Finally, one can readily confirm the assertion made in the previous subsections
concerning the effect of third-order Hermite terms on the deviatoric components of the
third-order moments tensor by looking at the spectral dissipation of physical modes. The
spectral dissipation of the shear modes of the third and second-order EDF for three different
Mach numbers are shown in Fig. 3.10. It is clearly observed that for the third-order EDF,
in the limit of vanishing wave-numbers, the obtained dissipations converge to the correct
value regardless of the Mach number. However for the second-order EDF signs of Galilean
invariance problems are clearly observed as the continuum limit of shear mode dissipation
changes with the Mach number.
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Figure 3.9: Illustration of anisotropy of linear stability domains for EDFs of orders (from left
to right) two, three and four, and for seven different non-dimensional kinematic viscosities,
i.e. ( )5× 10−4, ( )1× 10−3, ( )5× 10−3, ( )0.01, ( )0.05, ( )0.1, ( )0.5.
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Figure 3.10: Shear mode dissipation rate (normalized by its physical counterpart) for (left)
third- and (right) second-order EDF for three different Mach numbers, i.e. (in red) 0.1, (in
blue) 0.2 and (in green) 0.3. The continuum reference is shown with a plain black line.

The results obtained in this subsection also point to the fact that the SRT collision operator
becomes practically unusable below non-dimensional viscosities of 10−3 − 10−4. Different
strategies, detailed in the first chapter, have been developed to allow simulations at lower
non-dimensional viscosities. We will analyze the spectral properties of some of these models
in the next subsections.
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3.2.3 Equilibration strategy I: Filtering out higher-order contri-
butions with regularization

As discussed in the second chapter, the regularization of the distribution function is an
approach developed to extend the stability domain of the SRT collision operator and enhance
the overall accuracy of the scheme. In order to evaluate the effect of the regularization step on
stability, both projection (second-order) and recursive regularization (third and fourth-order)
have been studied using the VN method. The linear stability domains are shown in Fig. 3.11
and compared to the SRT. The second-order projection regularized collision model does not
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Figure 3.11: Linear stability domains of (from left to right) second-order projection, third
and fourth-order recursive regularized collision operators. Stability domains of corresponding
SRT operators are shown with grey dashed lines.

seem to extend the stability domain of the scheme. On the contrary, in the limit of vanishing
non-dimensional viscosities it results in a reduced stability domain (as compared to its SRT
counterpart). However, the recursive regularized operators (both third and fourth-order)
significantly increase the maximum stable velocities for mid-range non-dimensional viscosities
(i.e. 10−5 < νδt/δ

2
x < 5 × 10−2). At smaller viscosities the stability domains converge back

to those of their SRT counterparts. Alongside its effect on the linear stability domain, the
regularization step can also be observed to have a positive impact on the isotropy of the
collision operator. This effect can be observed in Fig. 3.12. The recursive regularization is
observed to counter-balance the presence of deviatoric (and absence of diagonal) components
of the third-order moments tensor and the resulting pronounced anisotropy along the x- and
y-axes.

To have a better understanding of how stabilization is achieved and which modes are
affected one can look at the spectral dissipation rates. While it is clear that ghost modes
are over-relaxed (by setting them directly to their equilibrium), it is unclear how physical
modes are affected by regularization. The spectral dissipation of second-order projection
and third-order recursive regularized collision models are shown in Fig. 3.13. While for the
second-order projection regularized collision operator the shear mode dissipation rate changes
sign past a threshold Mach number and becomes unstable, for the regularized operator the
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filtering is observed to clearly work. As the velocity increases, the filtering decreases to lower
wave-numbers. This way wave-numbers at which modal interactions occur are filtered-out
and eigen-mode collisions are prevented [151]. This process however comes with very large
over-dissipation of moderately resolved features. For example at a Mach number of 0.05, as
shown in Fig. 3.13 flow structures resolved with 16 points or less experience at least a 50
percent increase in dissipation rate (as compared to the intended physical dissipation).
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3.2.4 Equilibration strategy II: Independent relaxation of ghost
moments, the minimalist example of the LKS

As a minimalist illustration of the concept of Generalized BGK collision operators we consider
the effect of the previously introduced LKS on stability. In this collision model, while the
second-order Hermite coefficients relax at a rate τ tied to the fluid viscosity, other moments
are relaxed at a separate rate λ tied, for the purposes of this section, to a separate viscosity
η as:

λ =
η

c2
s

+
δt
2
. (3.31)

In order to clarify the effect of this parameter on linear stability, a systematic VN study with
a wide range of parameters have been performed. The results are shown in Fig. 3.14. These
plots also provide comparison with the SRT and projection regularized collision operators.
As observed there, setting λ = 1, or ηδt

δ2x
= 1

6
(equivalent to regularization of the second-order

moments via projection), systematically lowers the stability limits, even compared to the
SRT.
It can be observed that the added degree of freedom in the model can help improve the
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Figure 3.14: Linear stability domain iso-contours of the LKS with EDFs of orders (from left
to right) two, three and four. The color bar shows the maximum achievable Mach number.

stability domain to some extent. It is also interesting to note that with an optimized value of
this parameter the LKS outperforms the second-order projection regularized model (equiv-
alent to λ = 1).
It is also worth mentioning that the LKS (while resulting in marginal improvement of the
stability domain) does not affect the acoustic modes dissipation. As noted by P. Dellar, a
number of MRT models improve stability by over-damping acoustic modes, and therefore
modifying a physical parameter, namely the bulk viscosity coefficient [108]. The modus
operandi of the LKS is illustrated in Fig. 3.15 through the spectral dissipation of different
modes. The choice of higher second relaxation coefficient values mainly affects the ghost
modes (that are over-dissipated). This is in agreement with the basic principle of the regu-
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larized collision operator. Furthermore, it can be seen that the second relaxation coefficient
does not affect the dissipation rate of acoustic modes.

This last assertion can be further shown by simulating dissipating acoustic waves in
the linear regime. Using a domain of size 64 × 2, and setting ρ0 = 1kg/m3 and δρ =
10−6kg/m3 the dissipation rate of the acoustic modes were measured for different values of
the second relaxation coefficient and values of Kn=Ma/Re. The obtained results are depicted
in Fig. 3.16. As expected, and in agreement with spectral dissipation results the choice of the
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Figure 3.16: Dissipation rate of acoustic modes using the LKS with different values of the
second relaxation coefficient versus SRT, obtained using the decaying acoustic wave test-case.
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second relaxation coefficient does not affect the behavior of acoustic modes, as they exactly
follow their SRT counterparts.

3.2.5 Equilibration strategy III: Choice of basis moments, LKS vs
TRT

In the second chapter, it was mentioned that the choice of the basis moments in the context of
MRT collision operators can affect the behavior of the solver and its numerical properties. To
illustrate this effect, following the analysis of the LKS in the previous subsection, we present
corresponding results for the TRT. The linear stability domains for various orders of the EDF
and second relaxation coefficients are given in Fig. 3.17. For the sake of uniformity of the
analysis presented in this chapter, the notations used for the LKS are also adopted for the
TRT; The relaxation coefficient of odd moments is tied to a secondary viscosity coefficient η
as in Eq. 3.31. It is interesting to note that in the LKS, moments tied to Hermite polynomials

10
-5

10
-3

10
-1
10
0

10
-5

10
-3

10
-1

10
0

SRT
=1/4

10
-5

10
-3

10
-1
10
0

SRT
=1/4

10
-5

10
-3

10
-1
10
0

0

0.2

0.4

0.6

0.8

SRT
=1/4

Figure 3.17: Linear stability domain of the TRT collision operator for EDF of orders (from
left to right) two, three and four. The color bar shows the maximum achievable Mach
number.

Hn ∈ {H0,Hx,Hy,Hx2y,Hxy2 ,Hx2y2} relax with viscosity η while for Hn ∈ {Hx2 ,Hy2 ,Hxy},
they are tied to ν. For the TRT on the other hand, Hn ∈ {H0,Hx2 ,Hy2 ,Hxy,Hx2y2} are tied
to the physical viscosity while Hn ∈ {Hx,Hy,Hx2y,Hxy2} relax with the second relaxation
coefficient. As such, similar to the LKS one expects the TRT not to affect acoustic modes
dissipation (This is readily confirmed by looking at Fig. 3.18 where acoustic modes of both
collision operators coincide). However, one expects to see differences in the ghost moments
Πx2y2 , Πx and Πy. This is confirmed by the spectral dissipation rates shown in Fig. 3.18.
The control of all products of the form Λ = c4

s

(
τ (odd) − 1/2

) (
τ (even) − 1/2

)
, where τ (odd) and

τ (even) are the relaxation coefficients of any odd and even-order moment through the specific
decomposition operated in the TRT allows it to control the position of the wall when used
with the bounce-back rule. In the case of the LKS, the decomposition in Hermite space
does not allow for this using only two relaxation coefficients. For any modal decomposition
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on different modes using the (in blue) TRT and (in red) LKS models. The second relaxation
coefficient is set to 5× 10−5 for both models.

other than the one operated in the TRT, one would have to use the full set of independent
moments in order to control the wall position in the bounce-back rule. A detailed analysis
of this point can be found in [53].

3.2.6 Equilibration strategy IV: central moments

Central moments decomposition of phase-space (instead of raw moments) for the collision
operator, as detailed in the previous chapter, has been shown to allow for wider stability
domains [56, 153]. While reducing the Galilean invariance tied to higher orders, it is more
effective in de-aliasing relaxation of the different moments. Just as for the MRT collision
operator, a number of authors have argued that apart from the relaxation coefficient of
non-physical modes the choice of the moments space is a determining factor in the stability
and accuracy of the scheme [154]. Given that the effect of the moments basis has been
treated in previous sections, it will not be studied here anymore. With the emergence of
the central moments-based MRT operator another parameter (or free component) of the
collision operator gained attention: The order of the EDF. A number of authors argued
that instead of computing the corresponding equilibrium moments of the chosen basis (from
the discrete second-order EDF) one can use moments of the continuous Maxwell-Boltzmann
distribution in the collision operator to improve stability. This in turn was later shown to be
equivalent to using a higher-order Hermite expansion in the discrete EDF [127]. To clarify
some of these points, the linear stability domains of collision operators based on raw and
central moments were computed. Hermite polynomials were chosen as the moments basis
and all non-relevant (ghost) modes were relaxed at the same rate (independent from the
viscosity). In effect this is equivalent to the LKS collision operator applied in the local fluid
velocity frame (instead of a frame at rest). As such the free parameter controlling ghost
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moments relaxation is designated using the same variables. The obtained results are shown
in Fig. 3.19. It can be observed that by setting ηδt

δ2x
= νδt

δ2x
one recovers the stability domain of
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Figure 3.19: Stability domain of a two relaxation time collision operator (similar to the LKS)
based on central moments instead of raw moments.

the SRT collision operator with fourth-order EDF. Furthermore, the optimal linear stability
domain is achieved when setting the relaxation coefficient of ghost moments to one, which
would be equivalent to regularization in the fluid frame. However, it is important to note that
the previous assertion only holds for the reduced search-space considered here, i.e. relaxing
all ghost moments at the same rate. To better understand the effect of applying the collision
operator in the fluid frame the stability domains of the (projection) regularized scheme in
the static (at rest) and fluid frame are compared in Fig. 3.20. One can clearly observe that
the transition to central moments has a rather pronounced effect on the stability domain
at small non-dimensional viscosities. Another observation is that the use of the full set of
Hermite polynomials in the EDF (fourth-order in the case of the D2Q9 stencil) does further
extend the stability domain.
Coreixas et al. [154] noted that a central moments collision operator in Hermite polynomial
space where all ghost modes are set to equilibrium is equivalent to the recursive regularized
scheme of the same order. This fact can also be observed in Fig. 3.20. The stability domain
of the central moments collision operator with fourth-order EDF corresponds to the one
found earlier for the recursive regularized model in Fig. 3.11.

3.3 Numerical applications

To better analyze and understand the operation mode of different collision operators studied
in this chapter two classical test-cases are considered in this section: (a) the 2-D periodic
shear layer and (b) the 3-D Taylor-Green vortex. Through these test-cases it will be shown
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Figure 3.20: Stability limits of (left) raw and (right) central multiple relaxation time collision
operator (Hermite coefficients are the chosen moments basis) for different orders of the EDF
(N). All relaxation coefficients except those tied to the shear and bulk viscosity are set to
one.

that aiming solely for the scheme maximizing the stability domain does not guarantee reliable
under-resolved simulations.

3.3.1 2-D periodic shear layer: Stability for under-resolved simu-
lations

The periodic shear layer test-case is an interesting 2-D configuration to assess the stability
and dispersion errors of a numerical scheme [155, 156]. As such, the ability of different
collision models to cope with under-resolved features will be studied through this test-case
here. This 2-D case is made up of two longitudinal shear layers, located at y = L/4 and
y = 3L/4, that evolve in a fully-periodic simulation domain of size L × L. Periodicity
allows to study the stability properties of the bulk solver without any effects from boundary
conditions [157]. As a result of a small perturbation introduced in the velocity field, the
shear layers roll-up –due to a Kelvin-Helmholtz instability– and eventually generate two
counter-rotating vortices. For many numerical schemes, the under-resolved simulations of
this test-case results in additional spurious vortices, ultimately leading to divergence (in
some cases the additional vortices are effectively dissipated and do not lead to blow-up).
Given that the formation of the additional vortices have been identified as non-linear effects,
cases leading to numerical blow-ups through these numerical artifacts are interesting to study
(especially when instabilities are not predicted by the linear analysis). The velocity field is
initialized through the following functions:

ux = u0 tanh
[
α
(
0.25− | y

L
− 0.5|

)]
, ∀y (3.32a)

uy = u0δ sin
[
2π
(
x
L

+ 0.25
)]
, ∀x (3.32b)
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where u0 is the mean flow speed, α controls the thickness of the shear layer and δ determines
the amplitude of the perturbation. All simulations are performed at Re=30,000, at three
different resolutions, namely 32× 32, 64× 64 and 128× 128. For all simulations the initial
velocity is set to u0 = 0.04, while the perturbation amplitude and shear layer thickness are
respectively set to δ = 0.05 and α = 80. Four different models are considered here: (a)
second-order projection regularized , (b) third-order recursive regularized, (c) fourth-order
LKS with free parameter optimized for widest stability domain and, (d) MRT based on
central Hermite moments (with all relaxation coefficients set to one except those affecting
viscosity). The vorticity fields obtained at t = tc = L/u0 are shown in Fig. 3.21, where L
is the size of the box here equal to the number of grid-points in each dimension. Contrary

Figure 3.21: Vorticity fields for the periodic shear layer case at t = tc using (from left to right)
second-order projection regularized, third-order recursive regularized, LKS with fourth-order
EDF and MRT with central Hermite polynomials at three different resolutions (from top to
bottom): 32× 32, 64× 64 and 128× 128

to the SRT collision operator (unstable for all considered resolutions), all models used in
this section were stable for all resolutions. The LKS (in resting frame), however, led to two
additional spurious vortices. The appearance of these spurious vortices is tied to dispersion
errors at large wave-numbers. While these dispersion errors, as shown previously, exist for
all collision models, they are filtered out due to the large hyper-viscosity introduced at those
wave-lengths for the other models. This effect will be studied in more details in the next
subsection. The formation of these additional vortices can also be observed in the time
evolution curves of the kinetic energy, Ek, as shown in Fig. 3.22. At approximately t = 0.5tc
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Figure 3.22: Normalized (left axes and plain lines) kinetic energy and (right axes and dashed
lines) kinetic energy dissipation rates at three different resolutions: (from left to right)
32× 32, 64× 64 and 128× 128 using four different collision models: (in black) second-order
projection regularized, (in red) third-order recursive regularized, (in blue) fourth-order LKS
and (in green) central Hermite MRT.

a jump in the kinetic energy associated to the formation of these vortices can be observed
(for the LKS). This effect is less visible in the simulation at 128 as the simulation domain
is bigger and the overall kinetic energy is a global parameter. It can also be observed that
the central MRT and recursive regularized collision operators reproduce almost exactly the
same behavior.
It seems surprising that the second-order projection regularized operator is stable for all
these configurations, as referring to the VN analyses one would expect linear instabilities.
The absence of linear instabilities for this operator can be explained by a number of facts: (a)
small amplification factors, even though unstable, would require a very large number of time-
steps to lead to a blow up; (b) the fluid velocity not being above the stability threshold at all
domain points, low-velocity areas act as energy sinks by dissipating modes that are unstable
in larger velocity areas; (c) the reduced number of grid points itself operates as a filter,
limiting the maximum number of modes by the number of grid points. As such, unstable
modes not resolved by the simulation do not appear and result in a stable simulation. This
last assertion can readily be confirmed by performing VN analyses with different resolutions
as shown in Fig. 3.23.

3.3.2 3-D Taylor-Green vortex: Effect of ghost modes relaxation
on under and moderately resolved features

In order to study the effect of ghost modes relaxation rates on dissipation and dispersion
errors at moderate and large wave-numbers (structures resolved with four points or less)
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Figure 3.23: Effect of resolution on stability: maximum amplification max [= (ω) δ2
x/δt] in

the kx − ky space obtained using SRT collision operator with second-order EDF for three
different resolutions, (from left to right) 16×16, 64×64 and 128×128 points. Unstable wave-
numbers are shown with red contour lines, only visible as a very small dot in the right-most
figure.

the 3-D Taylor-Green vortex is studied here. This problem consist of an all-around periodic
cubic simulation domain, initialized using the following equations:

ux = u0 sin x
L

cos y
L

cos z
L
, (3.33a)

uy = −u0 cos x
L

sin y
L

cos z
L
, (3.33b)

uz = 0, (3.33c)

p = p0 +
ρ0u20
16

(
cos 2z

L
+ 2
) (

cos 2x
L

+ cos 2y
L

)
, (3.33d)

where L is the size of the box. For the purposes of the present study, the Reynolds number is
set to Re=1600 and u0 to 0.1. The simulations are performed at three different resolutions,
i.e. 323, 643 and 1283. The LKS with a fourth-order EDF is used and different values of
the second relaxation coefficient are considered. The obtained results are then compared
to a well-resolved simulations (i.e. 5123) performed using the SRT collision models with a
fourth-order EDF. The energy spectra obtained from these simulations are summarized in
Fig. 3.24. Zoomed-in curves are shown in Fig. 3.25. These energy spectra clearly illustrate
the effect of the relaxation of higher-order moments on dissipation errors. For λ = 1 (i.e.
second-order projection regularization) under-resolved flow features are consistently over-
damped regardless of the considered resolutions. This over-dissipation is observed to affect
even moderately resolved flow features. While lower values of the second relaxation coeffi-
cient result in higher energy concentration at higher wave-numbers, they do not necessarily
guarantee correct dispersion. The dispersion error can be observed by looking at the vortic-
ity iso-surfaces displayed in Fig. 3.26. Indeed, for smaller values of the free parameter, the
flow field is polluted by large wave-number features caused by dispersion error of small-scale
under-resolved features. To better distinguish structures caused by dispersion errors from
physical ones, the same field is shown in Fig. 3.27 for the reference simulation. Given that

57



3.3. Numerical applications

10
1

10
2

10
3

10
-20

10
-10

32
3

64
3

128
3

Figure 3.24: Energy spectra at t = 10tc as obtained with different resolutions. The reference
result at 5123 using the SRT collision operator is shown with a black plain line.
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Figure 3.25: Energy spectra at t = 10tc as obtained with (from left to right) 323, 643 and
1283 using the LKS collision model. The reference result at 5123 using the SRT collision
operator is shown with a black plain line.

for all three considered resolutions the grid-size is larger than the smallest scale, large wave-
number features (under-resolved with k ≥ π/2) are created and – if not dissipated – will
pollute numerically the flow field. This assertion is corroborated by the spectral dispersion
of the solver at viscosities and Mach numbers corresponding to those of the simulations, as
illustrated in Fig. 3.28. Above π/2, corresponding to features resolved with four points or
less, there is a five percent error in the shear mode velocity experienced by the signal.
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Figure 3.26: Iso-surfaces of the z-component of vorticity ωz = 0 (bottom view in the z-
direction, only the upper left quadrant –of the full domain as shown in Fig. 3.27– is shown)
at t = 10tc obtained using the LKS at three different resolutions (from top to bottom): 323,
643, 1283 with five different values for the free parameter (from left to right): λ =0.515, 0.53,
0.59, 0.65, 1.

3.4 Summary and closing remarks

When using a lattice Boltzmann solver on a stencil based on third-order quadratures there
are a number of key parameters to carefully consider:

• The choice of the order of the discrete EDF,

• The Galilean invariance for the dissipation rate of the acoustic modes,

• The choice of the collision operator.

• The choice of the free parameters in the different collision models (i.e. relaxation rates
and moments basis).

The choice of the order of the discrete EDF can be important with respect to different aspects.
The use of the classical second-order EDF leads to Galilean invariance in the dissipation rate
of the shear mode. This error becomes more and more important at intermediate and high
Mach numbers. As shown by the CE and higher-order moments error analysis, this problem
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Figure 3.27: Iso-surfaces of the z-component of vorticity ωz = 0 (bottom view in the z-
direction) at t = 10tc obtained using the SRT at resolutions 5123 as the reference solution.
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Figure 3.28: Spectral dispersion of the shear mode using the SRT with fourth-order EDF,
for Ma = 0.172 and viscosities corresponding to TGV simulation with (in red) 323 and (in
blue) 1283 grid points. Reference is shown with black plain line.

is tied to the fact that the deviatoric components of the third-order moments tensor are not
correctly recovered. The addition of the fourth-order component of the EDF does not have
any effect on the stress tensor at the NS level. However, as shown by the spectral dissipation
and stability curves, it can have a non-negligible effect on the linear stability domain of the
solver regardless of the collision model.
The limited order of the quadratures does not allow first neighbor stencils to correctly recover
diagonal components of the third-order moments tensor. These components are tied to
the dissipation rate of normal (acoustic) modes. As such, regardless of the order of the
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EDF or the collision model, there is a Galilean invariance issue with the dissipation rate of
these modes. This error can only be removed (at the NS level) through the addition of a
correction term. Therefore, the presence of third-order components of the EDF along with
this correction term are necessary for acoustic studies.
Among the different collision operators studied in this chapter, the central moments MRT
and fourth-order recursive regularized schemes has the widest linear stability domains. This
is not surprising as by setting the moments basis to central Hermite polynomials and filtering
out ghost modes (by setting the corresponding relaxation coefficient to one) one recovers the
recursive regularized model. The central moments formulation, however, has the additional
advantage of allowing for variable relaxation of the ghost moments. As observed in the
parametric study of the LKS, fine tuning the free relaxation coefficients can extend the
stability domain and/or reduce the hyper-viscosity by the model. Reducing the hyper-
viscosity and allowing structures with larger wave-numbers to persist can also lead to the
presence of spurious oscillations coming from spectral dispersion inconsistency at these wave-
numbers. Furthermore, as opposed to the recursive regularized one, the central moments
formulation can also allows to eliminate the viscosity-dependence of the position of the
wall in the half-way bounce-back boundary condition, by correctly setting the values of the
corresponding relaxation coefficients.
Now that the properties of the basic isothermal LB formulation, and all more advanced
collision operators have been clarified, the next chapter will focus on presenting LB-based
solvers for the species and energy balance equations.
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4.1. Introduction to macroscopic equations

4.1 Introduction to macroscopic equations

Before going into the details of the LB solvers for the energy and species mass balance
equations, let us introduce the macroscopic descriptions for multi-species reactive flows and
corresponding target equations.

4.1.1 Species mass balance equations

At the macroscopic level, similar to total mass and momentum, one can write balance equa-
tions for each species in the following form:

∂tρYk + ∇ · ρYk (u+ Vk) = Mk ω̇k, (4.1)

where Yk = ρk/ρ is the kth species mass fraction, Mk the kth species molar mass, ω̇k the
production rate (through chemical reactions) per unit volume and Vk the diffusion velocity,
associated to non-equilibrium effects.

4.1.1.1 Production rate

The species production rate is a key component needing closure in the balance equation.
Let us consider a reactive gaseous flow consisting of Nsp species χ

k
, k = 1, . . . Nsp. Chemical

reactions can be represented by a detailed chemical scheme involving I elementary reactions
represented in the form:

Nsp∑
k=1

ν
′

kiχk 

Nsp∑
k=1

ν
′′

kiχk, for i = 1 . . . I, (4.2)

where ν
′

ki and ν
′′

ki are the ith reaction stoichiometric coefficients. These coefficients verify the
mass conservation through the following equation:

Nsp∑
k=1

ν
′

kiMk =

Nsp∑
k=1

ν
′′

kiMk. (4.3)

The production rate of the kth species ω̇k can be computed from the reactions progress
rates qi as:

ω̇k =
I∑
i=1

νkiqi, (4.4)

with:
νki = ν

′′

ki − ν
′

ki. (4.5)

The mass conservation can easily be shown by summing the species production rates and
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using Eq. 4.3:
Nsp∑
k=1

Mkω̇k =
I∑
i=1

Nsp∑
k=1

Mk (ν
′′

ki − ν
′

ki)qi = 0. (4.6)

The progress rate of the ith reaction, qi, reads:

qi = kfi

Nsp∏
k=1

[χk]
ν
′
ki − kri

Nsp∏
k=1

[χk]
ν
′′
ki , (4.7)

and involves the molar concentration of kth species, [χk] = ρYk/Mk. The forward and reverse
reaction rate constants, kfi and kri, are expressed by an Arrhenius-type function. The
forward rate is:

kfi = AiT
βi exp

(−Ei
RT

)
, (4.8)

where Ai is the pre-exponential factor, βi the temperature exponent, Ei the activation energy
of the ith reaction andR the universal gas constant. The reverse reaction rate kri is computed
using the equilibrium constant keqi as:

kri =
kfi
keqi

. (4.9)

The equilibrium constant is defined as [158]:

keqi =
( p0

RT
)∑Nsp

k=1 νki
exp

(
∆S0

i

R − ∆H0
i

RT

)
, (4.10)

where p0 is the reference pressure, ∆H0
i and ∆S0

i are the enthalpy and entropy changes for
the ith reaction:

∆H0
i =

Nsp∑
k=1

νkiMkhk(T ), (4.11)

∆S0
i =

Nsp∑
k=1

νkiMksk(T ), (4.12)

where sk and hk are respectively the entropy and total enthalpy (taking into account sensible
and chemical contributions) of the kth species.

4.1.1.2 Diffusion velocity

First, it is useful to notice that by summing up Eq. 4.1 over all involved species:

∂tρ

(
Nsp∑
k=1

Yk

)
︸ ︷︷ ︸

∂tρ

+∇ · ρu
(
Nsp∑
k=1

Yk

)
︸ ︷︷ ︸

∇·ρu

+∇ρ ·
(
Nsp∑
k=1

YkVk

)
=

Nsp∑
k=1

Mk ω̇k︸ ︷︷ ︸
=0

. (4.13)
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and comparing to total mass balance equation, one can easily show that the total diffusion
mass flux must vanishe:

Nsp∑
k=1

YkVk = 0. (4.14)

Based on the Maxwell-Stefan kinetic theory, the diffusion velocities Vk should satisfy the
following system of equations [159, 160]:

Nsp∑
k′=1

XkXk′

Dkk′
(Vk′ −Vk) = dk +

Nsp∑
k′=1

XkXk′

ρDkk′
(DT

k

Yk
−
DT
k′

Yk′

)∇T
T
. (4.15)

where Dkk′ is the binary diffusion coefficient, and Xk is the kth species mole fraction, related
to mass fraction Yk by:

Xk =
M̄

Mk

Yk. (4.16)

In this equation, M̄ represents the mixture-averaged molar mass computed as:

M̄ =

Nsp∑
k=1

MkXk =
1∑Nsp

k=1 Yk/Mk

. (4.17)

In Eq. 4.15, dk corresponds to the species diffusion driven forces:

dk = ∇Xk + (Xk − Yk)
∇p
p

+
ρ

p

Nsp∑
k′=1

YkYk′ (Fk′ − Fk), (4.18)

with Fk the external force exerted on the kth species. The last term on RHS of Eq. 4.15
corresponds to the Soert effect with DT

k the Ludwig-Soret diffusion coefficient of the kth

species. Finally, the system of Eqs. 4.15 (rank of Nsp − 1) combined with Eq. 4.14 can
be inverted to obtain the diffusion velocities Vk. It should however be underlined that, in
reactive flow simulations, the inversion should be done at each point of space and time,
which will be very CPU time consuming when the gas flow consists of several tens of species.
Simplified diffusion are therefore employed for complex reactive flow systems such as:

• Hirschfelder-Curtiss approximation: This model is generally used in the combustion
community [161]:

YkVk = −Dk
Mk

M̄
∇Xk, (4.19)

where Dk is the mixture-averaged diffusion coefficient, which can be modeled as:

Dk =
1− Yk∑

k′ 6=kXk′/Dkk′
. (4.20)
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The approximation introduces a number of shortcomings including, among others, non
conservation of overall mass. Indeed, when the species diffusion coefficients and/or mo-
lar mass are very different, this approximation does not conserve overall mass through
Eq. 4.14. A correction velocity V c is therefore employed to overcome this difficulty
[162] :

YkVk = −Dk
Mk

M̄
∇Xk + YkV

c, (4.21)

with

V c =

Nsp∑
k′=1

Dk′
Mk

′

M̄
∇Xk′ (4.22)

• Fick approximation: One of the simplest models is the so-called generalized Fick ap-
proximation [162]:

YkVk = −Dk∇Yk, (4.23)

whereDk is an effective species diffusion coefficient. Here again mass conservation is ob-
tained only if all species have the same diffusion coefficient, Dk = D. The overall mass
conservation issue is usually dealt with using one of the two following approaches[162]:
(a) solving the species mass balance equation for Nsp − 1 species and computing the
mass fraction of the last species, with index Nsp at each point as:

YNsp = 1−
Nsp−1∑
k=1

Yk, (4.24)

or (b) introducing a so-called correction velocity V c [162] to explicitly enforce mass
conservation:

YkVk = −Dk∇Yk + YkV
c, (4.25)

with

V c =

Nsp∑
k′=1

Dk′∇Yk′ . (4.26)

4.1.2 Energy balance equation

Let us now introduce the macroscopic energy equations, i.e. its different forms, in this
subsection. Following [162], starting with the total energy, εt = ε+u2/2, with ε the internal
energy, one gets:

∂tρεt + ∇ · ρεtu+ ∇ · q + ∇ · pu−∇⊗ u : T = 0, (4.27)

In this equation, T is the stress tensor, and q is the heat flux:

q = −λ∇T +

Nsp∑
k=1

ρkhkVk, (4.28)
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with λ the thermal conductivity. The last term in Eq. 4.28 expresses energy transport due to
diffusion of species with different enthalpies hk. Making use of the relation between energy
and enthalpy, ht = εt + p/ρ, with ht = h+ u2/2, one can write:

∂tρht + ∇ · ρhtu− ∂tp+ ∇ · q −∇⊗ u : T = 0. (4.29)

Subtracting the kinetic energy u2/2 from Eqs. 4.27 and 4.29, one can get the balance equa-
tions for respectively the internal energy and enthalpy:

∂tρε+ ∇ · ρεu+ ∇ · q + p∇ · u− T : ∇⊗ u = 0, (4.30)

∂tρh+ ∇ · ρhu− ∂tp− u ·∇p+ ∇ · q − T : ∇⊗ u = 0. (4.31)

Finally, for flows involving multiple species and chemical reactions, more suitable forms of
the balance equations are found by relying on the concepts of sensible energy and enthalpy,
defined as:

εs = ε−
Nsp∑
k=1

∆ε0kYk and hs = h−
Nsp∑
k=1

∆h0
kYk,

and using

εs =

∫ T

T0

cvdT − r̄T0 and hs =

∫ T

T0

cpdT.

In these equations T0 is a reference temperature and ∆ε0 and ∆h0
k are respectively the energy

and enthalpy of formation at this temperature and r̄ = R/M̄ . Heat capacities, enthalpy and
internal energy are calculated as:

cv =

Nsp∑
k=1

Ykcvk and cp =

Nsp∑
k=1

Ykcpk,

ε =

Nsp∑
k=1

Ykεk and h =

Nsp∑
k=1

Ykhk.

The resulting balance equations are obtained as [162]:

∂tρεs + ∇ · ρεsu+ p∇ · u−∇ · λ∇T + ∇ ·
(
Nsp∑
k=1

ρkhs,kVk

)
− T : ∇⊗ u = ω̇T , (4.32)

and

∂tρhs +∇ ·ρhsu−∂tp−u ·∇p−∇ ·λ∇T +∇ ·
(
Nsp∑
k=1

ρkhs,kVk

)
−T : ∇⊗u = ω̇T , (4.33)
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with

ω̇T = −
Nsp∑
k=1

∆h0
kMkω̇k.

In addition to these two equations, balance equations for sensible total energy (also referred
to as total non-chemical energy) and enthalpy can also be written as:

∂tρεt,s + ∇ · ρεt,su+ ∇ · pu−∇ · λ∇T + ∇ ·
(
Nsp∑
k=1

ρkhs,kVk

)
−∇⊗ u : T = ω̇T , (4.34)

and:

∂tρht,s + ∇ · ρht,su− ∂tp−∇ · λ∇T + ∇ ·
(
Nsp∑
k=1

ρkhs,kVk

)
−∇⊗ u : T = ω̇T . (4.35)

Given that the interest of the present thesis lies in multi-species flows, the last four forms
of the energy balance equation, as expressed in Eqs. 4.32–4.35 will be used in the remainder
of the manuscript, and considered to be the target macroscopic equations for the developed
LB models.

4.1.3 Parameter evaluation

For detailed mixture-averaged simulations pure substance thermodynamic parameters such
as specific heat capacities and enthalpies are extracted from NASA’s Chemical Equilibrium
with Application (CEA) database, expressed as polynomials of the temperature [163]:

Mkcp,k
R =

5∑
n=1

an,kT
(n−1), (4.36a)

hk
RT =

a6,k

T
+

5∑
n=1

an,k
n
T (n−1), (4.36b)

which can then be used to compute the mixture-average specific heat capacity as:

c̄p =

Nsp∑
k=1

cp,kYk. (4.37)

The specific heat capacity at constant volume can readily be computed from the constant
pressure one, for an ideal gas, as:

cv,k = cp,k −
R
Mk

, (4.38)
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4.2. Modified advection-diffusion LB solver for energy balance equation

leading to the following expression for the mixture-averaged capacity:

c̄v = c̄p −
R
M̄
. (4.39)

The mixture-average fluid viscosity is computed using Wilke’s semi-empirical formula [164]
later modified by Bird [165]:

µ̄ =

Nsp∑
k=1

Xkµk∑Nsp

k′=1
Xk′Φkk′

, (4.40)

with:

Φkk′ =
1√
8

(
1 +

Mk

Mk′

)−1/2
(

1 +

(
µk
µk′

)1/2(
Mk′

Mk

)1/4
)2

. (4.41)

The mixture-averaged thermal conductivity is computed using averaging formulae proposed
by Burgoyne and Weinberg [166, 167, 168, 160]:

λ̄ =
1

2

Nsp∑
k=1

Xkλk +
1

2

(
Nsp∑
k=1

Xk/λk

)−1

. (4.42)

4.2 Modified advection-diffusion LB solver for energy

balance equation

4.2.1 Theoretical background

After a thorough analysis of the properties and limitations of the isothermal LB flow solver,
this section will focus on developing the necessary tools in the context of the LB formulation
to solve the energy balance equations. The aim is to develop the simplest numerical scheme
appropriate for the targeted applications.

4.2.1.1 Brief overview of different LB formulations for energy balance

As explained in details in Chapter 2, the standard first-neighbor stencils based on third-
order quadrature are unable to correctly recover the moments involved in the energy balance
equation at the Euler and NS levels. To overcome these issues, there are two possible
approaches: (a) coupled and (b) decoupled; The first approach, called coupled here, is a
straight-forward extension of the discrete kinetic solver construction methods detailed in
Chapter 2. It consists in taking into account the additional constraints on higher-order
moments stemming from the energy balance equations at the Euler and NS levels and using
larger stencils to satisfy them. Given that the derivation of such formulations does not
involve new concepts (compared to the isothermal construction of Chapter 2) and that they
are not pursued in the present work, they will not be further detailed here. Interested readers
are referred to [169, 170, 171], among other sources.
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4.2. Modified advection-diffusion LB solver for energy balance equation

The decoupled formulation consists in using the LB flow solver for mass and momentum
balances and introducing an additional set of distribution functions for the energy balance
equation [172, 173, 174, 175, 176, 177, 178], reason why it also referred to as the double-
distribution formulation. This can be achieved through a mesoscopically-consistent approach
where the new distribution function is defined as (if one chooses to model internal energy):

g =
(ξ − u)2

2
f. (4.43)

Using Boltzmann’s equation and the new distribution function one can then derive a time-
evolution equation:

∂tg + ξ ·∇g + f (u− ξ) (∂t + ξ ·∇)u =
(ξ − u)2

2
Ω, (4.44)

which can in turn, be discretized in phase-space and then in physical space and time to yield
a collision-streaming equation similar to that of the flow field. In its simplest form, this
approach reduces to a formulation usually referred to as the advection-diffusion or passive
scalar approach [175]. In this approach, similar to the classical LBM, the following discrete
time-evolution equation is used:

gα (x+ cαδt, t+ δt) =

(
1− δt

τT

)
gα (x, t) +

δt
τT
g(eq)
α (x, t) + δtwα

ω̇T
ρcp

, (4.45)

where both the discrete equilibrium state g
(eq)
α and collision time τT can be readily determined

through the CE expansion, as shown in the next subsection. In the limit of incompressible
flows the EDF is usually defined as:

g(eq)
α (T,u) = wαT

(
1 +

cα · u
c2
s

+
(cα · u)2

2c4
s

− u2

2c2
s

)
, (4.46)

while the relaxation time is computed as:

τT =
λ/ρcp
c2
s

+
δt
2
. (4.47)

While widely used in the literature for many different applications, especially under the
incompressible flow assumption [179, 180, 181], it is not well-suited for flows targeted in
the present work, i.e. flows involving variable density and thermodynamic properties. The
shortcomings of this model will be reviewed in the next subsection through a brief CE
analysis.
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4.2.1.2 CE analysis: shortcomings of the advection-diffusion LB model

Using the same formalism as that used in subsection 3.1.1, at order ε1 one gets:

ε1 : ∂
(1)
t T + ∇(1) · uT = 0. (4.48)

At order ε2, for a linear EDF:

ε2 : ∂
(2)
t T + ∇(1) ·

(
1

2
− τT

)
{∂(1)

t uT + ∇(1)c2
sT} =

ω̇
(2)
T

ρcp
, (4.49)

while a quadratic EDF would result in:

ε2 : ∂
(2)
t T + ∇(1) ·

(
1

2
− τT

)
{∂(1)

t uT + ∇(1)c2
sT + ∇(1) · T (u⊗ u)} =

ω̇
(2)
T

ρcp
. (4.50)

Summing up the equations at order ε1 and ε2 one gets the following PDE, recovered by the
advection-diffusion scheme:

∂tT + ∇ · uT −∇ · λ
ρcp

∇T −∇ · λ

c2
sρcp

∂tuT +O
(
ε3
)

=
ω̇T
ρcp

. (4.51)

Comparing this equation with any one of the different forms of the energy balance equations
a number of shortcomings are observed:

• Variable density: Assuming constant specific heat capacity, and that one intends to
recover the energy balance equation in its non-conservative form, the advection term
recovered by the LB scheme is different from what it should be, i.e. u · ∇T . An
additional error is found in the diffusion term as it should be 1

ρ
∇ · λ

cp
∇T . Given that

cp is assumed to be constant it is taken inside the first space-derivative to mimic the
expression in Eq. 4.51.

• Variable specific heat capacity: Lifting the assumption of a constant specific heat
capacity, the diffusion term should be 1

ρcp
∇ · λ∇T .

• The solver is only second-order accurate under diffusive scaling. Under acoustic scaling,
there is an error term, i.e. last term on the LHS, of the form ∇ · λ

c2sρcp
∂tuT .

Taking all those issues into account, to correctly recover the energy balance equation for
variable density and heat capacity, the time-evolution equation must include a correction
term Φα defined as:

Φα = wα{T∇ · u+ λ∇T ·∇ 1

ρcp
}. (4.52)
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Introducing this correction term in the CE expansion via:

Φα = εwαT∇(1) · u︸ ︷︷ ︸
Φ

(1)
α

+ε2wαλ∇T ·∇ 1

ρcp︸ ︷︷ ︸
Φ

(2)
α

, (4.53)

the PDE recovered at the Euler and NS levels changes to (under diffusive scaling):

∂tT + u ·∇T − 1

ρcp
∇ · λ∇T +O

(
ε3
)

=
ω̇T
ρcp

. (4.54)

While leading to the correct macroscopic equation, this approach is not computationally
attractive as it involves non-local operators and complicated additional terms. Furthermore,
while correctly recovering the compressible form of the energy balance equation, the internal
energy formulation as proposed in [176, 177, 178] would need a number of complicated
non-conservative correction terms coming from the mixture-averaged nature of the targeted
balance equations. As such, in the next part, a LB model adapted to the mixture-averaged
formulation will be presented.

4.2.1.3 Advection-diffusion model for the mixture-averaged energy balance equa-
tion

For applications targeted in the present work, the balance of total sensible energy seems to
be the best choice, as all involved terms are in the conservative form, and easily recovered
with the LB scheme by correctly defining the discrete equilibrium state.

Before going into the details of the model, we must introduce non-dimensionalization
factors for the involved variables. As for the LB flow solver, the non-dimensionalization
strategy is essential to a stable scheme and controlled higher-order errors. As shown in [150]
in the limit of vanishing diffusion coefficient, the linear stability domain of the advection-
diffusion models tends towards the positivity area of the EDF. Given that the intent of the
present section is to recover the correct PDE by modifying the second-order moment of the
EDF, via EDFs of the general form:

g(eq)
α = wα

[
a

(eq)
0 +

1

c2
s

a
(eq)
1 ·H1,α +

1

2c2
s

∑
i=x,y,z

a
(eq)

i2 Hi2,α

]
, (4.55)

it is clear that for the resting population to remain positive one must have:

1

D
≥ a

(eq)

i2

a
(eq)
0

, (4.56)

where D is the physical dimension of the flow. For moving populations, the following condi-
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tion guarantees positivity of all EDFs:

c2
s

[
1 +

1−Dc2
s

2c2
s

a
(eq)
ii

a
(eq)
0

]
≥ ||a

(eq)
1 ||
a

(eq)
0

. (4.57)

As such we introduce a reference energy per unit volume Eref with units J/m3, and a reference
temperature T ref, not to be confused with the reference temperature T0 tied to the lattice
spacing and time-step. Therefore, the energy, temperature and pressure as employed in this
section are tied to their dimensional counterparts as:

ρ
′
ε
′

t,s =
ρεt,s
Eref

, (4.58a)

p
′
=

p

Eref
, (4.58b)

T
′
=

T

T ref
. (4.58c)

For the remainder of this subsection all energies and temperatures, unless stated otherwise,
are in non-dimensional form. The prime symbol is dropped for the sake of readability.
To correctly recover the target PDE, the transported variable, also zeroth-order moment of
the EDF, is: ∑

α

gα = ρεt,s = ρ

(
u2

2
+

∫ T

T0

c̄vdT

)
, (4.59)

while the first-order moment should be:∑
α

cαgα = ρ (εt,s + p/ρ) . (4.60)

and the second-order moment: ∑
α

c2
α,igα = c2

sT. (4.61)

Based on these three conditions and the orthogonality of Hermite polynomials one can readily
define a second-order discrete equilibrium state as:

g(eq)
α = wα

ρεt,s︸︷︷︸
a
(eq)
0

+ (ρεt,s + p)u︸ ︷︷ ︸
a
(eq)
1

·H1,α

c2
s

+ (T − ρεt,s)︸ ︷︷ ︸
a
(eq)

i2

1

2c2
s

∑
i=x,y,z

Hi2,α

 . (4.62)

Going back to the reference energy and temperature, the following restriction would have to
be met to guarantee positivity of resting populations:

D + 1

D
≥ T

ρεt,s

Eref

T ref
. (4.63)
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Given the temperature-dependence of the sensible energy/enthalpy, a root-finding algorithm
must be employed to compute the temperature. The root of the following equation:

εt,s −
u2

2
−
∫ T

T0

c̄v(T )dT = 0, (4.64)

is computed using the Newton-Raphson method where the n+ 1th iteration is given as:

T n+1 = T n +
εt,s − u2

2
−
∫ Tn
T0

c̄v(T
n)dT

c̄v(T n)
. (4.65)

In practice, starting with the temperature at the previous time-step as the first guess, it
takes on average only two iterations to get a converged value for the new temperature.
Using the CE analysis introduced in the previous section, at order ε1 one recovers the fol-
lowing balance equation for the proposed EDF:

ε1 : ∂
(1)
t ρεt,s + ∇(1) · (ρεt,s + p)u = 0, (4.66)

while at order ε2 the following PDE is found:

ε2 : ∂
(2)
t ρεt,s + ∇(1) · (1

2
− τT ){∇(1)c2

sT + ∂
(1)
t (εt,s + p)u} = ω̇

(2)
T . (4.67)

The last term, as shown in [182] can be accounted for via a correction defined as:

Φα =
wα
c2
s

(
1− δt

2τT

)
cα · ∂t (ρεt,s + p)u︸ ︷︷ ︸

a
(eq)
1

. (4.68)

Furthermore, the relaxation coefficient is found to be:

τT =
λT ref

c2
sE

ref
+
δt
2
. (4.69)

To account for viscous dissipation heating, we introduce a source term, Ξ, such that:

Ξα = εΞ(1)
α + ε2Ξ(2)

α +O
(
ε3
)
. (4.70)

This expansion is justified by the fact that viscous dissipation is a non-equilibrium effect.
Being a non-equilibrium effect, it should not affect the energy balance equation at the Euler
level. Therefore: ∑

α

Ξ(1)
α = 0. (4.71)

Taking this new term into account and using the previously-listed restrictions on it, Eq. 4.67
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changes into:

ε2 : ∂
(2)
t ρεt,s + ∇(1) · (1

2
− τT ){∇(1)c2

sT + ∂
(1)
t (ρεt,s + p)u}+ ∇(1) ·

(
τT
∑
α

cαΞ(1)
α

)
= ω̇

(2)
T .

(4.72)
This in turn results in a new restriction on Ξα, i.e.:∑

α

τTcαΞ(1)
α = u

(
1

2
− τ
)
{∂(1)

t Π
(0)
2 (fα) + ∇(1) ·Π(0)

3 (fα)}. (4.73)

where Π
(0)
2 (fα) and Π

(0)
3 (fα) are the moments of the flow field distribution function and τ

is the fluid solver relaxation coefficient. To satisfy all restrictions on this term, it can be
defined as:

Ξα =
1− 1/2τ

τT
u · cα

(
fα − f (eq)

α

)
, (4.74)

which can also be written in a more efficient way as:

Ξα(x, t) =
1− 2τ

2τT
u(x, t) · cα [fα(x+ cαδt, t+ δt)− fα(x, t)] . (4.75)

To sum up, the time-evolution equation for the proposed model can be expressed as:

gα(x+ cαδt, t+ δt)− gα(x, t) =
δt
τT

(
g(eq)
α (x, t)− gα(x, t)

)
+ Ξα + Φα + δtwαω̇T , (4.76)

where the expressions for the EDF, source terms Φα and Ξα are respectively given by
Eqs. 4.62, 4.68 and 4.75.
It is also worth mentioning that in some cases, to have better control over higher-order errors
and wider stability domains the MRT collision operator is used. The independent Hermite
coefficients are used as the moments basis. For example, on the D2Q5 stencil, the following
moments are used as basis:

Π = {Π0,Πx,Πy,Πx2 ,Πy2}, (4.77)

resulting in the following equilibrium moments:

Π(eq) = {ρεt,s, ρ(εt,s + p/ρ)ux, ρ(εt,s + p/ρ)uy, c
2
s(T − ρεt,s), c2

s(T − ρεt,s)}. (4.78)

The transformation matrices on different stencils are detailed in appendix D. The proposed
model along with the different source terms will be assessed in the next subsection through
a variety of numerical applications.
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4.2.2 Numerical application and validation

4.2.2.1 Heat diffusion with variable thermal conductivity

As first validation cases, two pseudo 1-D configurations involving variable thermal conduc-
tivities are studied: (a) solid two-layer medium and (b) single layer slab with temperature-
dependent conductivity. In the first configuration, the simulation domain is composed of
two regions, of lengths L1 = L/2 and L2 = L/2, with the same heat capacities and densities
but different thermal diffusion coefficients, i.e. λ1 = 0.1 and λ2 = 0.2 W/m.K. In the second
configuration the thermal conductivity is defined as a linear function of the temperature as:

λ(T ) = λ(T ∗)
T

T ∗
, (4.79)

where T ∗ = 300 K and λ(T ∗) = 0.1 W/m.K. In both cases the domain size is set to L = 100
m, fixed temperatures are enforced at the top and bottom boundaries, i.e. Th = 1000 and
Tc = 300 K respectively, while periodic boundary conditions are applied in the x-direction.
The governing equations are: 

∂tT − ∂yλ(T, y)∂yT = 0,

T (y = 0) = Tc,

T (y = L) = Th.

(4.80)

The analytical steady-state solution for the two-block configuration can be found to be:

T (y) =


Th−Tc

λ1
(
L1
λ1

+
L−L1
λ2

)y + Tc, y < L1

Th−Tc
λ2
(
L1
λ1

+
L−L1
λ2

)y + Th − (Th−Tc)L
λ2
(
L1
λ1

+
L−L1
λ2

) , L1 ≤ y ≤ L,
(4.81)

while for the second configuration one gets:

T (y) =

√(
y

L
T 2
h +

(L− y)

L
T 2
c

)
. (4.82)

For both cases the grid and time-step sizes are set to unity. The steady-state solutions
obtained using the proposed solver are compared to their analytical counterparts in Fig. 4.1.
As expected the solver is in excellent agreement with analytical solutions.

4.2.2.2 Transient diffusion with variable specific heat capacity

Previous test-cases have shown that the proposed scheme is able to model heat diffusion with
variable thermal conductivity. This next configuration is used to prove that it is also able to
deal with diffusion with variable specific heat capacities and densities. It consists of a domain
of height L = 3m, with three regions of lengths L1, L2 and L3, all set to L/3 in the present
study. At the upper and lower boundaries constant temperatures, respectively Tc = 300K
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Figure 4.1: Steady-state (red plain line) analytical and (black symbols) numerical solu-
tions, obtained using the proposed model, for the (left) two-block and (right) temperature-
dependent thermal conductivity test-cases.

and Th = 1000K, are enforced. The specific heat capacities and thermal conductivities of
each region are shown in Table 4.1. The simulation is performed setting δx = 3× 10−2m and

λ[W/m.K] cp[J/kg.K] L[m]

Zone 1 1. 1. 1.
Zone 2 0.1 0.033 1.
Zone 3 1. 1. 1.

Table 4.1: Simulation parameters for unsteady three-block media test-case [183]

δt = 1 × 10−4s. Initially the temperature in the domain is set to Tc. Temperature profiles
obtained at different times are compared to reference results from a spectral simulation
reported in [183]. The results are displayed in Fig. 4.2. The unsteady temperature profiles
at four different times are compared in Fig. 4.2. As for previous configurations, it is observed
that the temperature profiles obtained with the proposed model are in excellent agreement
with reference solutions.

4.2.2.3 Validation of viscous heating term: 2-D thermal Couette flow

To assess the validity of the viscous heating term as proposed in Eq. 4.75 in combination
with the anti-bounce-back equation, the thermal Couette flow is considered. The configu-
ration consists of a 2-D channel of height L bounded by a stagnant wall (at the bottom)
at temperature Tc (set to 300 K here) and a moving wall (at the top), at velocity u0 (set
to 0.05 m/s) and temperature Th (set to 300.002 K). The Reynolds number for this flow is
defined as Re = u0L

ν
. The flow is governed by the Brinkman number, i.e. Br = PrEc, where

the Prandtl number is defined as Pr = ρcpν

λ
and the Eckert number as Ec = u02

cv(Th−Tc)
. Using
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Figure 4.2: Unsteady (red plain line) spectral and (black symbols) numerical solutions,
obtained using the proposed model, at different times for the three-block media configuration.

this non-dimensional number the analytical solution can be expressed as [184, 185, 9]:

T (y) = Tc +
y

L

[
1 +

Br

2

(
1− y

L

)]
(Th − Tc). (4.83)

To validate the ability of the proposed model to capture viscous heating, this configuration
was modeled for different Brinkman numbers. Obtained results are compared to analytical
solutions in Fig. 4.3. Simulation are performed, as for previous cases, on the D2Q9 stencil,
using 50 grid-points in the y-direction. As observed in Fig. 4.3 the obtained temperature
profiles are in excellent agreement with analytical solutions.

4.2.2.4 2-D channel flow with heated obstacles

To confront the model to more realistic configurations and showcase the ability of the model
to capture conjugate heat transfer, a 2-D channel flow with heated square obstacles on
both upper and lower walls is considered here [3, 186]. The geometrical configuration and
boundary conditions are shown in Fig. 4.4. This test-case has been studied in details in
[3, 186] at different Reynolds numbers ranging from 400 to 2000 with different solid-to-fluid
thermal conductivity ratios. In the present work a Reynolds number of 400 is considered,
where the Reynolds number is defined as:

Re =
Dhū0

ν
, (4.84)

where Dh is the hydraulic diameter defined as Dh = 2H and ū0 is the average inlet velocity
(a Poiseuille profile is imposed at the inlet). The Prandtl number is set to 0.71 and the
solid-to-fluid thermal conductivity ratio, λs/λf to 10. The kinematic viscosity was taken
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Figure 4.3: Steady-state (red plain line) analytical and (black symbols) numerical solutions,
obtained using the proposed model, for the thermal 2-D Couette flow.
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Figure 4.4: Configuration for 2-D channel flow with heated obstacles mounted on upper and
lower walls

as 1.568× 10−5m2/s (corresponding to that of air), while thermal conductivity, density and
specific heat capacity in the fluid were respectively set to 0.0262 W.m−1K−1, 1.177 kg/m3

and 1004.9 J/kg.K. Following [3, 186], the density and specific heat capacity of the solid
obstacle have been set equal to that of the fluid. Furthermore, the channel height H is set
to 1 mm and ū0 = 3.136 m/s. The heat flux at the base of each obstacle, q is set to 436.7
W.m−2.
Adiabatic, fixed-temperature, and fixed-velocity boundary conditions are applied using the
anti-bounce-back formulation. Non-zero constant-flux boundary condition at the base of the
solid obstacles is enforced following [187], where missing populations are computed as:

gα(x, t) = (wα + wᾱ)Tw − g∗ᾱ(x, t− δt), (4.85)
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where g∗α is the post-collision population and Tw is computed as:

Tw =
2q(x, t)

λ(x, t)
+ T (x, t− δt). (4.86)

To minimize boundary effects from the inlet and outlet, the first obstacle is placed at a
distance of L1 = 5H from the inlet while Lout, the horizontal distance between the last
obstacle and the outlet boundary is set to 20H. The simulation is performed on a grid of
size 80× 2100, with H resolved with 80 grid-points and h with 20, δx is set to 1.25× 10−5 m
and δt to 4.7×10−8 s. The center-to-center horizontal distance between the bottom obstacles
is 2h. The streamlines obtained at steady-state are shown in Fig. 4.5. The non-dimensional

2

3

1

1

0

5 6 7 8 9 10 11 12

Figure 4.5: Steady-state streamlines for the 2-D channel flow with heated obstacles at
Re=400.

temperature distributions, defined as:

θ =
T − T0

qH/λf
, (4.87)

on the surfaces of all obstacles are also compared to reference data from [3, 186] in Fig. 4.6.
Comparing the non-dimensional temperature distribution on the surfaces of the obstacles,
as a function of the peripheral distance, it is observed that the proposed scheme is able to
correctly model conjugate heat transfer.

4.2.2.5 Heated lid-driven cavity with variable thermo-physical properties

The next test-case is based on a classical configuration within the LBM community: The
2-D lid-driven cavity. In its isothermal form, this case consists of a rectangular domain of
size Lx × Ly bounded by three static and one moving wall. In the present study, additional
degrees of complexity in the form of heat transfer and variable thermo-physical properties are
considered. While the temperature at the static walls is fixed at Tc = 300K, a temperature
of Th = 1500K is enforced at the moving wall. The overall configuration of the studied case
is illustrated in Fig .4.7. The specific heat capacity is temperature-dependent and defined
as:

cp (T ) = a1T + a0, (4.88)
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Figure 4.6: Non-dimensional temperature distribution on the surfaces of the three heated
obstacles. Red plain lines represent reference data from [3] while black symbols designate
results from the present work.
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Figure 4.7: Heated lid-driven cavity configuration.

with a1 = 0.00187733J/K2.kg and a0 = 1.9368J/K.kg. The fluid thermal conductivity is
computed as:

λ (T ) = 8.333× 10−5T, (4.89)

while the kinematic viscosity is expressed as:

ν (T ) = 4.167× 10−5T. (4.90)

For the results presented here, Lx = Ly = L = 200 m. To validate the proposed numerical
method, simulations are performed using both LB and ANSYS Fluent on a 200× 200 grid,
with δx = 1 m, and steady-state results are compared. The obtained velocity and tempera-
ture profiles along the horizontal and vertical centerlines are shown in Figs. 4.8 and 4.9. As
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Figure 4.8: Steady-state velocity profiles along the (left) horizontal and (right) vertical
centerlines, obtained using (red plain lines) Fluent and (black symbols) the LB solver.

observed in those figures, the agreement between the two schemes is excellent, putting for-
ward the ability of the proposed solver to model thermal flows with variable thermo-physical
properties.

0 50 100 150 200

300

600

900

1200

1500

0 50 100 150 200

300

600

900

1200

1500

Figure 4.9: Steady-state temperature profiles along the (left) horizontal and (right) vertical
centerlines, obtained using (red plain lines) Fluent and (black symbols) the LB solver.

As mentioned in the first sections, one of the advantages of more complex and dissipative
collision models such as the MRT (using either raw or central moments) is the possibility to
perform under-resolved simulations. To illustrate the robustness of the proposed solver in
the face of under-resolved features, simulations were performed using a number of different
resolutions, i.e. 200 × 200, 100 × 100 and 50 × 50. While the raw moments MRT collision
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operator was used for energy, central moments were used for the flow solver. The results
obtained using the three different resolutions are compared in Fig. 4.10. It is interesting
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Figure 4.10: Steady-state (left) velocity and (right) temperature profiles along the horizontal
centerlines at different resolutions: (in black) 200 × 200, (in red) 100 × 100 and (in blue)
50× 50.

to observe that while a scheme relying on SRT collision operators for both fields would
have resulted in numerical instabilities at low resolutions, the proposed scheme is stable.
Furthermore, even at the lowest resolution, i.e. only 50 grid-points in each direction, the
flow features and fields are well-captured.

4.2.2.6 Turbulent flow over a multi-layered wall-mounted cube

The last configuration studied using the proposed model for energy balance is the heated
wall-mounted cube subject to a turbulent velocity field. In [5], the turbulent flow structure
and surface heat transfer from a heated cube placed in a spatially periodic array of cubes
mounted on one of the walls of a plane channel was studied. To better understand the
physics, numerical studies on an equivalent configuration were conducted. In the numerical
study, to reduce computation costs, a single heated cube of size h was mounted at the center
of the bottom wall and surrounded by periodic boundary conditions (only applied to the
flow field) in both span- and stream-wise directions. Given that in the original configuration
none of the other cubes were heated, the energy field was subjected to constant temperature
(at 293.15 K) at the inlet and zero-gradient boundary conditions at the outlet in the stream-
wise direction [4]. The cube placed at the center of the bottom wall, in agreement with the
experimental configuration, consisted of a smaller constant temperature cube of size 0.8h
and temperature 348.15 K wrapped in a thin layer of epoxy of thickness 0.1h [4]. At the top
and bottom walls adiabatic boundary conditions were imposed on the temperature field. The
overall geometrical configuration is shown in Fig. 4.11. Following [4], the flow was studied
at Reh=3854 with Reh = hU0

ν
, where U0 is the average velocity deduced from the imposed
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Figure 4.11: Geometrical configuration of channel flow with heated multi-layered wall-
mounted obstacle.

flow rate. The physical parameters of the working fluid and epoxy are given in Tables 4.2
and 4.3.

ρf [kg/m3] λf [W/m.K] cpf [J/kg.K] ν[m2/s]

1.16 0.0257 1007.0 1.567× 10−5

Table 4.2: Simulation parameters for turbulent channel flow with heated obstacle: fluid
properties

ρs kg/m3 λs[W/m.K] cps[J/kg.K]

1150 0.236 1668.5

Table 4.3: Simulation parameters for turbulent channel flow with heated obstacle: solid
properties

The simulation was performed on a 600 × 600 × 510 grid, leading to δx = 10−4 m.
The time-step δt was set to 2.48 × 10−6 s, leading to τ = 0.51168 and Ū0δt

δx
= 0.1. The

flow field was modeled on a D3Q19 stencil while a D3Q7 stencil was used for the energy
field. Both fields were modeled using the SRT collision operators. To maintain the flow at
Reh=3854, a background uniform pressure gradient was applied in the stream-wise direction.
The additional pressure gradient ~∇ · p0(t) to apply at each time-step was computed as as:

~∇ · p0(t) = (ρfU0 − ¯ρux(t)) , (4.91)

where ¯ρux is averaged over the entire domain at each time-step. According to [4], the vor-
tex shedding period is approximately 15000 time-steps (based on the chosen time-step size).
As such after a transition period of 225,000 steps, equivalent to 15 shedding cycles average
fields were taken over 25 shedding periods, equivalent to 375,000 steps. During the course
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of the transition period, the diffusion coefficient of the fluid, initially set to a higher value
to accelerate convergence, was changed back to its original value after 50,000 steps[4]. The
simulation was initialized with a fluid at T=293.15 K. The simulation was carried out on
900 processing units clocked at 2.4 GHz on the Neumann cluster at the “Otto-von-Guericke”
university of Magdeburg.
The flow structure is illustrated via averaged vorticity iso-surfaces in Fig. 4.12 and instan-
taneous velocity and temperature fields in Fig. 4.13. Looking at the overall flow structure,

Figure 4.12: Iso-surface of the average vorticity magnitude. The iso-surface value is fixed at
3% of the maximum value

one can observe a large horseshoe-shaped re-circulating zone in front of the obstacle which
is in agreement with reported results from both LES [4] and KBC [6] simulations. The tur-
bulent velocity field is further assessed by looking at average stream-wise velocity and the
stream-wise and span-wise diagonal components of the Reynolds stress tensor in Fig. 4.14.
Two sets of reference data are shown with those from the present study in this figure: (a)
Experimental data from [5] and LES results from [4]. While minor differences are observed,
overall the results from the present study are in good agreement with the reference data.
It is worth mentioning that in the LB study a maximum non-dimensional velocity of 0.15
was reached, which can affect the flow field in the form of compressibility error. Further-
more, given the use of the bounce-back boundary condition on the walls in parallel with the
D3Q19 stencils and a body force, errors are to be expected close to the obstacle in the flow
field [188, 189]. Furthermore, results from the present study are closer to experimental data
compared to LES results in the core and near the upper wall. This might be due to the use
of finer grids in the present study in those regions.
The temperature profiles on the surface of the obstacle obtained through the present study

are shown in Figs. 4.15 and 4.16. In both figures, the obtained data is benchmarked against
three sets of data: (a) experimental [5], (b) Large-Eddy [4] and (c) ELBM simulation [6].

87



4.3. Species mass balance equations

1

<latexit sha1_base64="FZmD/TgogMk0R2lq+fA7wj5ysTE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyxuWK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sua559Vq9Va80qnkcRbiAS6iCBzfQgHtoQhsYIDzDK7w5j86L8+58rFoLTj5zDn/gfP4AdRGMog==</latexit>

0

<latexit sha1_base64="X57KH4l8AclMbJ4WHVqkZLpsQXU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5JIQY8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyx2WK27NXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sua559Vq9Va80qnkcRbiAS6iCBzfQgHtoQhsYIDzDK7w5j86L8+58rFoLTj5zDn/gfP4Ac42MoQ==</latexit>

T [K]

<latexit sha1_base64="+JeP7/yFvuHwIGvI+7EFIr82tSs=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvQU0mkoMeCF8FLhX4IaSib7bZdutkNuxOxhP4MLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0oEN+h5305hY3Nre6e4W9rbPzg8Kh+fdIxKNWVtqoTSDxExTHDJ2shRsIdEMxJHgnWjyc3c7z4ybbiSLZwmLIzJSPIhpwStFLSC3jhST9ndLOyXK17NW8BdJ35OKpCj2S9/9QaKpjGTSAUxJvC9BMOMaORUsFmplxqWEDohIxZYKknMTJgtTp65F1YZuEOlbUl0F+rviYzExkzjyHbGBMdm1ZuL/3lBisPrMOMySZFJulw0TIWLyp3/7w64ZhTF1BJCNbe3unRMNKFoUyrZEPzVl9dJ57Lm12v1+3qlUc3jKMIZnEMVfLiCBtxCE9pAQcEzvMKbg86L8+58LFsLTj5zCn/gfP4ATQWRMQ==</latexit>

348.15

<latexit sha1_base64="oYriQJvALFAJNJk3t9Ipyl1su4A=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahp2VXV+yx4MVjBfsB7VKyabaNzSZLkhVK6X/w4kERr/4fb/4b03YP2vpg4PHeDDPzopQzbTzv2ylsbG5t7xR3S3v7B4dH5eOTlpaZIrRJJJeqE2FNORO0aZjhtJMqipOI03Y0vp377SeqNJPiwUxSGiZ4KFjMCDZWal0FNde/7pcrnustgNaJn5MK5Gj0y1+9gSRZQoUhHGvd9b3UhFOsDCOczkq9TNMUkzEe0q6lAidUh9PFtTN0YZUBiqWyJQxaqL8npjjRepJEtjPBZqRXvbn4n9fNTFwLp0ykmaGCLBfFGUdGovnraMAUJYZPLMFEMXsrIiOsMDE2oJINwV99eZ20Ll0/cIP7oFKv5nEU4QzOoQo+3EAd7qABTSDwCM/wCm+OdF6cd+dj2Vpw8plT+APn8we3w43W</latexit>

293.15

<latexit sha1_base64="gu+KeAkZB2i1f6Oor3HXzmmq2vk=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSL0tOzWinorePFYwX5Au5Rsmm1js8mSZIWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5YcKZNp737aytb2xubRd2irt7+weHpaPjlpapIrRJJJeqE2JNORO0aZjhtJMoiuOQ03Y4vp357SeqNJPiwUwSGsR4KFjECDZWalVvLlz/sl8qe643B1olfk7KkKPRL331BpKkMRWGcKx11/cSE2RYGUY4nRZ7qaYJJmM8pF1LBY6pDrL5tVN0bpUBiqSyJQyaq78nMhxrPYlD2xljM9LL3kz8z+umJroOMiaS1FBBFouilCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUNGG4C+/vEpaVdevubX7WrleyeMowCmcQQV8uII63EEDmkDgEZ7hFd4c6bw4787HonXNyWdO4A+czx+2P43V</latexit>

Figure 4.13: Instantaneous (left) velocity and (right) temperature fields for the turbulent
channel flow with a heated obstacles.

Both figures show that the results obtained in the present study are within an acceptable
range from previously reported data from either simulations or experiments. The large dif-
ferences close to the bottom wall of the channel can be explained by the type of boundary
condition used in the present simulation. The zero-gradient boundary condition only en-
forces zero-flux in the direction perpendicular to the wall, thus allowing for heat transfer on
the surface of the boundary itself. This issue can be dealt with by using a full bounce-back
boundary condition for the energy field.

Overall, through a variety of different test-cases, involving different levels of complexity,
it was shown that the proposed scheme can properly model the energy balance equation with
variable density and heat capacities. The next section will focus on proposing and validating
a model for species mass balance.

4.3 Species mass balance equations

As for the previous section, first the theory behind the proposed model for species mass
balance is presented. Next, the developed model is validated through a variety of test-cases.

4.3.1 Background and theory

4.3.1.1 Brief overview of the literature with a focus on low-order models

A number of multi-component models relying on the linear BGK relaxation collision operator
satisfying non-negativity of density and the second law of thermodynamics have been pro-
posed over the past decades, the most notables of which can be split in two main categories:
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Figure 4.14: Normalized time-averaged turbulent velocity profiles along three vertical lines on
the vertical plane located at y/h=2. From left to right: x/h=1.2, 1.8 and x/h=2.8. From top
to bottom: average stream-wise velocity, stream-wise diagonal component of Reynolds stress
tensor and span-wise diagonal component of Reynolds stress tensor respectively. Symbols:
Black solid line: present study, red solid line: LES [4] and black symbols: experimental [5]

(a) models relying on a sum of linear BGK collision operators written as:

Ωk =

Nsp∑
k′=1

1

τkk′

(
f

(eq)

kk′
− fk

)
, (4.92)

where Ωk is the collision term appearing in the Boltzmann equation, fk is the distribution
function of species k and τkk′ is the relaxation coefficient associated to the cross-collision of
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Figure 4.15: Surface temperature distribution along the 0–1–2–3 path-line on a vertical plane
at y/h=2. Black solid line: present study, red solid line: LES [4], blue solid line: KBC [6]
and black symbols: experimental [5]
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Figure 4.16: Surface temperature distribution along the 0–1–2–3–0 path-line on a horizontal
plane at z/h=0.5. Black solid line: present study, red solid line: LES [4], blue solid line:
KBC [6] and black symbols: experimental [5]

species k and k
′
. Each term in the summation models collision between one couple of species

and f
(eq)

kk′
can be interpreted as pseudo-equilibria around temperature Tkk′ and velocity ukk′

defined so as to satisfy the appropriate conservation laws [190, 191].

(b) models relying on a single relaxation operator to model all collisions in the system
and therefore using a general equilibrium [192, 193]. The latter have the additional property
of satisfying the indifferentiability principle [193]. A number of reduced LB solvers based
on these kinetic models have been developed in the past couple of years. Given that such
models would require at least third-order quadratures for each species distribution function
(for an isothermal flow), they are not further pursued here. Interested readers are, among
other source, referred to [36, 82, 194, 195, 32, 196, 34, 197].
As for the energy balance equation, going back to the simplest model, namely the advection-
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diffusion LB scheme for species mass balance equation, it relies on an equilibrium distribution
function defined as:

g
(eq)
α,k = wαYk

(
1 +

cα · u
c2
s

+
(cα · u)2

2c4
s

− u2

2c2
s

)
, (4.93)

where the quadratic terms can be taken out. The relaxation coefficient is also defined as:

τk =
c2
sDkδt
δ2
x

+
δt
2
. (4.94)

Using the CE expansion, it can be easily shown that this scheme leads to the following PDE
up to second-order in ε2:

∂tYk + ∇ · Yku−∇ ·Dk∇Yk −∇ · Dk

c2
s

∂tYku =
Mkω̇k
ρ

. (4.95)

This form of the species mass balance is not convenient in many aspects:

• Variable density: The advection term recovered by the LB scheme is different from
what it should be, i.e. u ·∇Yk.

• Diffusion model: The scheme recovers the generalized Fick approximation without the
mass corrector. As such it is not well-suited for configurations involving non-premixed
combustion, and if written for all species it does not conserve overall mass.

• The solver is only second-order accurate under diffusive scaling. Under acoustic scaling,
there is an error term, i.e. last term on the LHS of Eg. 4.95, of the form ∇ · Dk

c2s
∂tYku.

Following the approach used in the first section of this chapter for the energy balance equa-
tion, a modified scheme will be proposed in the next subsection to overcome these issues.

4.3.1.2 Overcoming issues in the advection-diffusion model: advanced diffusion
models and variable density

To overcome the restriction on density, and the diffusion model, let us redefine the EDF as:

g
(eq)
α,k = wα

[
a

(eq)
0,k +

1

c2
s

Hα · a(eq)
1,k +

1

2c2
s

∑
i=x,y,z

Hi2,αa
(eq)

i2,k

]
, (4.96)

where to recover the compressible form of the balance equation with the Hirschfelder-Curtiss
approximation the coefficients are set to:

a
(eq)
0,k = ρk = ρYk, (4.97a)

a
(eq)
i = ρkui, (4.97b)

a
(eq)

i2 = Xk/Γ
ref − ρk. (4.97c)
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Similar to the model for energy balance, to guarantee positivity of the EDF, physical param-
eters must be re-scaled by reference state parameters. As such the non-dimensional density
as appearing in the EDF is defined as:

ρ
′

k =
ρk

ρref
, (4.98)

while the mole fraction in the EDF, has been re-scaled by a reference species to average

molar mass ratio, i.e. Γref = M̄ref/Mk. As for the previous subsection, for the sake of
readability the prime symbol will be dropped. In that case the relaxation time is defined

as τk =
δ2t
δ2xc

2
s

ρDkΓ

ρrefM̄/Mk

+ δt
2

. These re-definitions lead to the following positivity condition for

resting populations:

D + 1

D
≥ M̄/Mk

ρ

ρref

M̄ref/Mk

, (4.99)

which can be used to set the reference state. To recover the Fick approximation the coeffi-
cients must be defined as:

a
(eq)
0,k = ρk = ρYk, (4.100a)

a
(eq)
i = ρkui, (4.100b)

a
(eq)

i2 = Yk − ρk, (4.100c)

and τk =
δ2t
δ2xc

2
s

ρ

ρref
Dk + δt

2
.

The next point is to introduce the mass corrector in the LB model; This term can readily
be taken into account by introducing it into the EDF as proposed by the author in [63].
However, being a non-equilibrium effect it can also be introduced into the solver following
the approach proposed for viscous heating in the previous section. Let us define the source
term Vcα,k supposed to recover the correction velocity. Being tied to the non-equilibrium part
of the species distribution functions it is clear that it can be expanded as:

Vcα,k = εVcα,k(1) + ε2Vcα,k(2) +O
(
ε3
)
, (4.101)

in the context of the CE analysis. At the Euler level, taking this term into account one gets:

ε1 : ∂
(1)
t ρk + ∇(1) · ρku =

∑
α

Vcα,k(1), (4.102)

resulting in the first constraint on Vcα,k, i.e.:∑
α

Vcα,k = 0. (4.103)
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At the NS level the following equation is obtained after some simple algebra:

ε2 : ∂
(2)
t ρk+∇(1) ·

(
1

2
− τk

)
{∂(1)

t ρku+∇(1)c2
sXk}+∇(1) ·τk

∑
α

cαVcα,k(1) = Mkω̇
(2)
k , (4.104)

which leads to the following restriction:

∑
α

cαVcα,k(1) =
Yk
τk

Nsp∑
k′=1

Dk′Mk′

M̄
∇(1)Xk′ . (4.105)

Considering these restriction the following expression for Vcα,k is proposed:

Vcα,k = −Yk
τk

Nsp∑
k′=1

(
1− 1

2τk′

)[
gα,k′ − g

(eq)

α,k′

]
, (4.106)

which can be re-written as:

Vcα,k = −Yk
τk

Nsp∑
k′=1

(
1

2
− τk′

)[
gα,k′ (x+ cαδt, t+ δt)− gα,k′ (x, t)

]
. (4.107)

Following the same approach, an expression for the Ludwig-Soret effect can also be derived
as:

Θα,k =
DT δt
τkTδ2

x

[gα(x+ cαδt, t+ δt)− gα(x, t)] . (4.108)

To sum up the proposed model relies on a discrete time-evolution equation defined as:

gα,k(x+cαδt, t+δt)−gα,k(x, t) =
δt
τk

(
g

(eq)
α,k (x, t)− gα,k(x, t)

)
+Vcα,k+Θα,k+Φα,k+δtwαMkω̇k,

(4.109)
where the expressions for the EDF and correction terms have been derived and presented
respectively in Eqs. 4.96-4.100, 4.107 and 4.108. The proposed model will be used to study
a variety of multi-species flows and benchmarked against reference solutions in the next
subsection.

4.3.2 Validation of the proposed model

4.3.3 Hirschfelder-Curtiss diffusion: pseudo 1-D diffusion

As a first validation, pseudo 1-D pure diffusion mixing of a system consisting of three species
is considered: C6H14, N2 and H2. Given that large molar mass ratios can lead to unstable
schemes, these species have been chosen to prove the robustness of the model. The domain is
initially divided into two halves with YH2 = 0.2, YN2 = 0.8 and YC6H14 = 0 in the bottom half
and YH2 = 0, YN2 = 0.8 and YC6H14 = 0.2 in the top half. Both boundaries (top and bottom)
are set to zero-gradient. Simulations are performed using both the proposed LB scheme and
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a second-order finite-difference solver, with δx = 1× 10−3m and δt = 1× 10−3s on a domain
of size L = 0.1m. For both solvers the Hirschfelder-Curtiss approximation without the mass
corrector is used. The effective diffusion coefficients for species are computed as [198]:

Dk =
1− Yk∑

k′ 6=kDkk′/Yk′
, (4.110)

where the binary diffusion coefficient are computed using Chapmann and Enskog’s model as
[198]:

DAB =
0.00266T 3/2

p
√
MABσ2

ABΩAB

, (4.111)

where σAB is the interaction characteristic length in Å, ΩAB the dimensionless collision inte-
gral and MAB = 2

1/MA+1/MB
. The collision integral can be computed using the approximation

proposed by Neufield et al. as [199, 198]:

ΩAB =
1.06036

kBT/εAB
0.1561 +

0.193

exp (0.47635kBT/εAB)
+

1.03587

exp (1.52996kBT/εAB)

+
1.76474

exp (1.03587kBT/εAB)
, (4.112)

where assuming a Lennard-Jones interaction potential:

εAB =
√
εAεB, (4.113)

and:

σAB =
σA + σB

2
. (4.114)

The list of properties needed to evaluate the binary diffusion coefficient of the considered
species are given in Table 4.4.

Species M [kg/mol] σ[Å] ε/kB

C6H14 0.086178 399.3 5.949
N2 0.028 71.4 3.798
H2 0.002 59.7 2.827

Table 4.4: List of properties used to evaluate binary diffusion coefficients.

Using the properties listed in Table 4.4 and assuming the mixture to be at T = 300K and
a pressure of 1 bar one obtains the following binary coefficients: DH2−N2 = 7.0958×10−5m2/s,
DC6H14−H2 = 4.52× 10−6m2/s and DC6H14−N2 = 1.1277× 10−6m2/s.
The simulations using both solvers were performed for 1000 time-steps. The obtained species
profiles at t=1s are displayed in Fig. 4.17. As observed here, the proposed scheme is able to
correctly reproduce the target diffusion term, i.e. the Hirschfelder-Curtiss approximation,
even in the presence of species with large molar mass discrepancies.
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Figure 4.17: Species profiles for the C6H14/N2/H2 pure diffusion test-case at t=1s. Red plain
lines have been obtained using a FD solver while black symbols represent results from the
proposed LB solver.

4.3.4 Validation of mass corrector: 2-D counterflow Propane/air
flame

To validate the mass corrector, we consider a premixed 2-D Propane/air counterflow flame
under the cold flame assumption. It must be noted that by cold flame assumption, we refer
to the fact that dilatation effects are not taken into account. The geometrical configuration
is depicted in Fig. 4.18. The test-case involves two inlets with uniform velocity distribution
at opposing ends of the simulation domain, denoted BC1 and BC2, and two outlets with
constant pressure, perpendicular to the inlets, written BC3 and BC4. At both inlets, con-
stant temperature and chemical composition are imposed, while at the outlets zero-gradient
boundary conditions are used for both species and temperature. Following the test-case pre-
sented by Yamamoto [7], the equivalence ratio of the incoming gas mixture is set to φ = 0.6.
The inlet velocity, temperature and mass fractions are listed in Table 4.5.

uin [m/s] Tin [K] YC3H8,in YO2,in YN2,in

0.2 300 0.037 0.2245 0.7385

Table 4.5: Imposed values at inlet boundaries for Propane/air counterflow flame.

The grid spacing and time-step have been respectively set to δx = 3.5 × 10−5 m and
δt = 1 × 10−5 s. The initial temperature and chemical composition are set to those of the
inlet boundary conditions. In order to start the reaction, at t = 0, in the region referred to
as “reaction initiation zone” in Fig. 4.18, the initial temperature is set to 1200 K, to ignite
the Propane/air mixture.
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The chemical scheme involves 5 species and a single-step global reaction defined as:

C3H8 + 5(O2 + 3.76N2)→ 4H2O + 3CO2 + 5× 3.76N2. (4.115)

Following the case as set in [7], under the assumption of a diluted flame, the diffusion
coefficients (for species, heat and momentum) differ from each other, but are taken to be
constant over time and space. The list of species along with their properties are presented
in Table 4.6.

Species D [m2/s]

C3H8 1.1× 10−5

O2 2.1× 10−5

N2 2.2× 10−5

H2O 2.2× 10−5

CO2 1.6× 10−5

Table 4.6: List of species with corresponding molecular diffusion coefficient

20 mm

33.4 mm

(BC2)

(BC1)

(BC4)(BC3)

Reaction initiation zone

Figure 4.18: Geometrical configuration 2-D counterflow Propane/air flame.

At the beginning of the simulation, slowly dissipating pressure waves appear in the nu-
merical domain. To accelerate convergence and dissipate acoustic waves, for the present
study simple low-pass filters are used at the outflow boundaries. Details of the implemented
filter along with corresponding parameters can be found in [200]. To further accelerate con-
vergence to steady-state the simulation starts with a pre-conditioning step where only the
flow field is modeled. During this phase, filtered boundary conditions are used. Once the
flow field has reached a prescribed convergence level the full simulation, involving species
and temperature, starts and boundary filters are turned off. The pre-conditioning phase
starts with a uniform density of 1 kg/m3 and zero velocity.

The steady-state velocity profiles are compared to those from [7] in Fig. 4.19. As shown
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Figure 4.19: Velocity distribution along (left) vertical and (right) horizontal centerlines from
(plain red line) [7] and (black symbols) current study.

in Fig. 4.19 the velocity profiles along both lines are in perfect agreement with the published
data. In his study, Yamamoto solved the advection-diffusion equation only for the species
involved in the reaction, meaning that all the inconsistencies stemming from both the numer-
ical scheme and the diffusion velocity-induced non-conservation of mass were absorbed into
the diluting species, i.e. N2. In the context of the present work, three sets of simulations were
run in order to clarify the effect of each modification onto the original advection-diffusion
scheme: (1) Using the original LB advection-diffusion scheme without any modification; (2)
Using the original LB advection-diffusion model with the mass corrector; 3) Finally using
the modified model (dilatable) taking into account the correction velocity. In all cases,
the advection-diffusion equations are solved for all species, including N2. The species mass
fraction and temperature profiles along the vertical centerline are shown in Fig. 4.20. As
previously for the velocity profiles, the obtained results agree with the reference. This agree-
ment was expected as all thermo-chemical properties employed in this case are fixed and
homogeneous in space; therefore, they do not depend on local composition or temperature.
Additionally, the flame is diluted, reducing the importance of density gradients and molecu-
lar diffusion. It is now interesting to look at the effect of the three different models on overall
mass conservation. The total mass fraction Ytot =

∑Nsp
k=1 Yk is plotted along the vertical cen-

terline in Fig. 4.21 for all three approaches. As shown in Fig. 4.21, the total mass fraction
in the classical AD-LB not only admits fluctuations similar to the mixture density, it is also
subject to additional loss of mass at the diffusion/reaction fronts. Errors observed in areas
subject to mixing can be attributed to the diffusion operator. This can be further confirmed
by looking at the total mass fraction profile for the second approach, classical AD-LB with
correction velocity. The two sharp minima appearing at the flame fronts are completely
canceled out. Finally, the overall mass profile from the third solver introduced in this work,
shows no significant deviation from the target value, 1. The overall mass loss/gain observed
in the classical AD-LB model has been canceled out by using the approach presented in this
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Figure 4.20: Comparison of (left) temperature and (right) species profiles along vertical
centerlines from (plain red line) [7] and (black symbols) current study.
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Figure 4.21: Overall mass fraction along vertical centerline obtained using (red) classical
advection-diffusion formulation, (blue) classical model with mass corrector and (black) pro-
posed model with mass corrector.

work. In this test-case, even before correction the non-conservation of mass was below 0.5 %,
which can be considered to be negligible. This is partly due to the fact that the mixtures are
diluted in N2. As previously mentioned, the inconsistency stemming from the diffusion ve-
locity is not grid-dependent, it is mainly function of the involved species diffusion coefficients
and mass fractions; the larger the discrepancies in effective diffusion coefficient the larger the
non-conservation of mass. For example one would expect to have more pronounced effects
for non-diluted cases, mixtures involving species with large discrepancies in binary diffusion
coefficient, large temperature and/or density gradients. . .
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4.3.5 Validation of mass corrector: 3-D counterflow non-premixed
Ozone/air reacting flow

The last case studied is noticeably more complex, a 3-D counterflow non-premixed Ozone/air
reacting flow. Only the modified AD-LB with the correction velocity is employed here. The
detailed chemical scheme consists of 4 species (O2, O3, O and N2) along with 18 elementary
reactions. Further information can be found in [168, 1]. The list of involved reactions can be
found in Appendix F. The multi-component thermo-chemical and transport properties are all
computed locally using REGATH as a function of temperature, pressure and composition
[201]. The geometry along with the dimensions and boundary conditions are shown in
Fig. 4.22. The physical domain has been discretized using a 400× 400× 400 grid, while the

Figure 4.22: Geometrical configuration of 3-D counterflow non-premixed Ozone/air reacting
flow.

time-step was set to 6 × 10−7 s. The flow field is modeled on the D3Q19 stencil, while the
D3Q7 stencil is used for the temperature and species fields. Both solvers use SRT collision
operators. Contrary to the flow field solver, the species solver only conserves one macroscopic
property; as such a smaller number of velocities are sufficient. All boundaries are defined as
constant pressure, adiabatic, and zero-gradient for the species, except for the two opposite
circular inlets on the upper and lower surfaces. These two inlets are defined with constant
velocity (Poiseuille distribution), temperature and composition. The values corresponding
to the inlet boundaries are listed in Table 4.7.

umaxin [m/s] Tin [K] YO2,in YN2,in YO3,in

Lower 0.3 300 0 0.767 0.233
Upper -0.3 300 0.233 0.767 0

Table 4.7: Imposed values at inlet boundaries for the counterflow Ozone/air flow.
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The simulation is repeated for both the original AD-LB and the modified model with the
correction velocity. As for the previous case, the simulation starts with a pre-conditioning
step. The validity of the obtained solutions is first checked by comparing the profiles along the
centerline oriented in the z-axis with a reference steady-state implicit finite-difference solver,
REGATH-1D. The reference solver uses the same thermo-chemical library and parameter
evaluation algorithms as LB. Details of the governing equations and numerical method for
the reference solver can be found in [201]. The z-component of the velocity along the vertical
centerline is compared to the solution from the reference solver in Fig. 4.23. The species mass

0 0.5 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 4.23: Velocity profile along vertical (z-direction) centerline from (plain red line) RE-
GATH and (black symbols) current study.

fraction profiles are shown in Fig. 4.24. These figures demonstrate that the LB solver recovers
the solution from the reference finite-difference solver. To demonstrate the effectiveness of the
proposed formulation in dealing with the non-conservation of mass, even in cases involving
variable diffusion coefficients, the total mass Ytot =

∑Nsp
k=1 Yk obtained with classical AD-

LB (without correction velocity) and with our improved formulation (including correction
velocity and releasing the incompressibility assumption) are compared in Fig. 4.25. As seen
in Fig. 4.25, the improved formulation proposed in this work is able to conserve total mass
much better than the standard approach, although mass loss/gain were small even before
correction. As previously stated, this effect becomes much more pronounced in non-diluted
mixtures and flows subject to large variations in temperature and/or density.

4.4 Final remarks

During the course of this chapter, a number of modified LB schemes based on the advection-
diffusion formulation, only conserving the zeroth-order moment, appropriate for energy and
species balance equations with variable thermo-physical properties were derived. Further-
more, expressions for higher-order coupling terms such as the Ludwig-Soret effect or viscous
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Figure 4.24: Species profiles along vertical (z-direction) centerline from (plain red line) RE-
GATH and (black symbols) current study.
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Figure 4.25: Overall mass fraction along vertical (z-direction) centerline with (red) classical
AD-LB and (black) the proposed model.

dissipation heating were derived and validated. It was shown that the proposed models,
which can be interpreted as DNS for the target macroscopic equations, were able to recover
the proper physics while relying on reduced stencils, i.e. D2Q5 in 2-D and D3Q7 in 3-D.
Furthermore, to reduce errors coming from higher-order moments and extend the stability
domain of the solvers, appropriate non-dimensionalization schemes and corresponding MRT
formulations were given.
Now that appropriate solvers for the energy and species mass balance equations have been
proposed and validated, the next chapter will focus on introducing dilatation/compressibility
effects into the flow solver.
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Thermo-compressibility on standard
stencils
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5.1. Beyond Boussinesq: Low Mach number approximation

The classical LB solver of chapter 3 was derived assuming an isothermal flow and as
such is unable to reproduce dilatation effects. The aim of the present chapter is to introduce
these effects into the solver in order to model flames without the cold flame assumption. Two
different approaches will be introduced and analyzed in this chapter: (a) A model similar
to the low Mach number approximation used in classical combustion simulations and (b) a
compressible formulation based on the extension of the Hermite expansion to thermal flows.
Both of the considered models rely on standard first-neighbor stencils and are intended for
low Mach flows.

5.1 Beyond Boussinesq: Low Mach number approxi-

mation

5.1.1 Model formalism

The idea behind the zero-Mach limit formulation of the compressible fluid system of equations
consists of operating a multi-scale perturbation analysis as a function of the Mach number.
This in turn decouples the flow from acoustics and can allow for much larger time-steps.
Considering a low Mach number flow, the different independent variables governing the fluid
flow are expanded in terms of the Mach number (a very small parameter) [202]:

p = p(0) + Ma p(1) + Ma2p(2) +O
(
Ma3

)
, (5.1a)

u = u(0) + Ma u(1) +O
(
Ma2

)
, (5.1b)

ρ = ρ(0) + Ma ρ(1) +O
(
Ma2

)
, (5.1c)

T = T (0) + Ma T (1) +O
(
Ma2

)
. (5.1d)

Upon introduction of these expansions into the PDEs one finds the following equations at
order zero:

∇p(0) = 0, (5.2a)

∂tρ
(0) + ∇ · ρ(0)u(0) = 0, (5.2b)

∂tρ
(0)u(0) + ∇ · ρ(0)u(0) ⊗ u(0) + ∇p(1)

−∇ · µ
(
∇⊗ u(0) + ∇⊗ u(0)T − 2

3
∇u(0)I

)
= 0 (5.2c)

p(0) = ρ(0)r̄T (0), (5.2d)

where p(0) is the thermodynamic pressure, uniformly distributed in space, and p(1) the hy-
drodynamic pressure admitting fluctuations in time and space. In practice, the acoustics
are filtered by operating a Helmholtz-Hodge decomposition of the velocity vector field into
a solenoidal and irrotational field. Reconstruction of purely hydrodynamic effects through a
divergence-free velocity field allows to filter out acoustic effects while the second component
of the decomposition (non-solenoidal field) introduces dilatation effects. The fluid density
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5.1. Beyond Boussinesq: Low Mach number approximation

is determined through the EoS and the uniform thermodynamic pressure. The aim of the
next section is to propose a LB-based model capable to represent this low Mach number
formulation.

5.1.1.1 Decoupling of density: introducing hydrodynamic pressure

Over the past score years, a number of attempts have been made at developing models for
combustion simulation based (partially or entirely) on LB solvers. A number of these models
based their developments on low Mach (decoupled) formulations [37, 38, 43]. However none
of these proposed models have gone beyond simple steady configurations. The present part
of the thesis will introduce a pressure/density decoupling approach initially developed for
simulation of multi-phase flows with large density ratios, see for instance [203, 204]. This
formulation was later extended and used (under different assumptions) for 2-D thermo-
compressible flows in [48, 205, 206]. The main idea behind the development of a LB-based
solver for thermo-compressible flows, following the previously introduced philosophy of low
Mach formulations is to decouple the flow density from velocity and hydrodynamic pressure
space fluctuations. To achieve this decoupling, and given that the thermodynamic pressure
tied to density through the EoS, equal to p = ρc2

s in the LBM, is assumed to be uniform
in space, the first step is to introduce a hydrodynamic pressure independent from the local
density, at the Euler level. This is achieved by introducing a body force defined as [44]:

F = ∇ρc2
s −∇ph + Fb, (5.3)

where Fb designates other external body forces such as gravity. While this body force
modifies the pressure term at the Euler level, it does not eliminate the velocity-dependence
of the local fluid density; Furthermore, since the hydrodynamic pressure does not appear in
the Boltzmann equation (except in the introduced body force), it needs closure. To recover
the hydrodynamic pressure as the zeroth-order moment and completely decouple the flow
density from hydrodynamics the following new distribution function is introduced:

g
′

α = c2
sfα + wα

(
ph − ρc2

s

)
. (5.4)

It can readily be observed that the zeroth-order moment of this new distribution function is
ph. Introducing this new distribution back into Boltzmann’s equation the following contin-
uous time-evolution PDE is obtained:

∂tg
′

α + cα ·∇g
′

α =
1

τ

(
g(eq)
α

′

− g′α
)

+ wα (∂tph + cα ·∇ph)

− wαc2
s (∂tρ+ cα ·∇ρ)− F ·∇cαfα, (5.5)

where ∂tρ+ cα ·∇ρ can be re-written using the continuity equation as:

∂tρ+ cα ·∇ρ = (cα − u) ·∇ρ− ρ∇ · u. (5.6)
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5.1. Beyond Boussinesq: Low Mach number approximation

Furthermore, the last term on the RHS of Eq. 5.5 can be approximated as [204]:

F ·∇cαfα = −F · cα − u
ρc2

s

f (eq)
α , (5.7)

and terms of the form ∂tph and uj ·∇ph, with j ≥ 1, can be neglected as they are third-order
in non-dimensional velocity. Eventually, before discretization in space and time the following
PDE is recovered:

∂tg
′

α + cα ·∇g
′

α =
1

τ

(
g(eq)
α

′

− g′α
)

+ c2
s

(
f

(eq)
α

ρ
− wα

)
(cα − u) ·∇ρ+ wαc

2
sρ∇ · u

+ Fb · (cα − u)
f

(eq)
α

ρ
. (5.8)

5.1.1.2 Introducing thermo-compressibility: Evaluation of velocity divergence

The previously introduced formalism decoupled the density from the flow field, i.e. velocity
and hydrodynamic pressure field. However, it also eliminated the implicit equation of state
in the original LB formulation. Furthermore, the zeroth-order moment of the distribution
function being the hydrodynamic pressure, the continuity equation is not imposed in the
model anymore. Following the original low Mach formulation, the density is now computed
using the thermodynamic pressure, local temperature and EoS as:

ρ =
pth
r̄T

. (5.9)

Furthermore, for the model to satisfy the continuity equation, it is used to evaluate the
velocity divergence appearing in Eq. 5.8 as:

∇ · u = −∂tρ+ u ·∇ρ

ρ
, (5.10)

and further developed using the EoS as:

∇ · u = −∂tpth + u ·∇pth
pth

− ∂t
1
T

+ u ·∇ 1
T

1
T

− ∂t
1
r̄

+ u ·∇1
r̄

1
r̄

. (5.11)

The space-derivative of pth cancels out as it is assumed to be uniform. Furthermore the
second term on the LHS can be re-written as:

− ∂t
1
T

+ u ·∇ 1
T

1
T

=
∂tT + u ·∇T

T
, (5.12)
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5.1. Beyond Boussinesq: Low Mach number approximation

while the third one is readily developed as:

− ∂t
1
r̄

+ u ·∇1
r̄

1
r̄

=

Nsp∑
k=1

M̄

Mk

(∂tYk + u ·∇Yk) , (5.13)

where we have used r̄ = R∑Nsp
k=1 Yk/Mk. Putting all these terms back together one gets:

∇ · u = −∂tpth
pth

+
∂tT + u ·∇T

T
+

Nsp∑
k=1

M̄

Mk

(∂tYk + u ·∇Yk) , (5.14)

for a multi-species flow. The previous equation along with Eqs. 5.8 and 5.10 and:∑
α

gα = ph, (5.15a)∑
α

cαgα = ρc2
su, (5.15b)

constitute the main equations for the LB-based low Mach model for thermo-compressible
flows.
Using the CE formalism introduced in subsection 3.1.1, it can readily be observed that at
order ε1 the following PDE is recovered for the hydrodynamic pressure:

1

ρc2
s

∂
(1)
t ph+∇(1) ·u = −∂

(1)
t pth
pth

+
∂

(1)
t T + u ·∇(1)T

T
+

Nsp∑
k=1

M̄

Mk

(
∂

(1)
t Yk + u ·∇(1)Yk

)
. (5.16)

While this LB-based low Mach formulation does not exactly impose the intended velocity
divergence, the error term 1

ρc2s
∂

(1)
t ph is of order O( u3

(δx/δt)
3 ) and therefore negligible for small

non-dimensional velocities. This argument is further comforted by the restrictive CFL condi-
tion on different collision operators (especially SRT) in the limit of vanishing non-dimensional
viscosities (relaxation coefficients).

5.1.1.3 Space and time-discretized equations

Given that the space discretization process relying on integration along characteristic lines
has been thoroughly detailed in subsection 2.4.2 for the classical LB formulation, re-deriving
the discrete equations for the previously-introduced model would be redundant. As such
only the final equations are given here. The discrete collision-streaming equation for the
new distribution function is:

g
′

α (x+ cαδt, t+ δt)− g
′

α (x, t) =
δt
τ

(
g(eq)

′

α (x, t)− g′α (x, t)
)

+

(
1− δt

2τ

)
wαc

2
sρ∇ · u

+

(
1− δt

2τ

)
(cα − u)

(
f

(eq)
α

ρ
− wα

)
c2
s∇ρ+ Fα,b, (5.17)
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5.1. Beyond Boussinesq: Low Mach number approximation

where we have dropped the overbar of the post-discretization distribution function for the
sake of simplicity and Fα,b is the contribution of the external body forces, e.g. gravity, which
can be evaluated through anyone of the available LB forcing schemes. It is interesting to
note that apart from the presence of species, the model as used here is different from those
proposed in [48, 205] as it includes a factor 1− δt

2τ
. The absence of this factor, also needed for

the correction term of the compressible scheme in the next section, leads to serious stability
issues. The moments of the distribution function are defined as:∑

α

gα = ph −
c2
sδt
2

(ρ∇ · u+ u ·∇ρ) , (5.18a)

∑
α

cαgα = ρc2
su−

c2
sδt
2
Fb. (5.18b)

It is also worth mentioning that this formulation where the temperature is defined through
the EoS, which would need the local temperature and composition, can not be used in combi-
nation with solvers for the conservative form of the energy and species mass balance equations
with explicit coupling. Given that in the conservative form extensive forms of variables are
transported, to get to the intensive parameters one needs the local density. The local den-
sity on the other hand in this low Mach formulation is unknown and determined through
the EoS and local intensive variables, i.e. temperature and mass fractions. Therefore, to
only correct way to couple these two solvers is implicit, and involves an iterative solver. As
such for the remainder of this study, the low Mach formulation is always used in combination
with a finite-difference solver for the non-conservative form of the energy and species balance
equations. Furthermore, given that in this model the thermodynamic pressure is supposed
to be uniform in space, for energy balance, the sensible enthalpy formulation is used and the
space gradient of pressure is set to zero.

5.1.2 Validation and numerical application

To showcase the ability of the scheme to capture thermo-compressibility effects and its
robustness in the face of under-resolved simulations, it is now used to model two different
test-cases involving 2 and 3-D flows.

5.1.2.1 Natural convection in a 2-D heated cavity with large temperature ratios

As a natural candidate for the validation of thermo-compressibility effects in the low Mach
number model and proper coupling with the temperature field, natural convection in a heated
2-D cavity is studied here. Different from configurations studied using incompressible solvers
supplemented with the Boussinesq force, the cases studied here involve large temperature
variations and as such do not fall in the validity domain of the Boussinesq approximation.
This test-case involves a rectangular domain of size L × L, surrounded with static walls.
The top and bottom walls are insulators and therefore modeled using zero-flux boundary
conditions while the left and right walls are maintained at constant temperatures, respec-
tively Th = 960K and Tc = 240K. Given the large variations in temperature, temperature-
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5.1. Beyond Boussinesq: Low Mach number approximation

dependence of the fluid viscosity is taken into account via Sutherland’s correlation:

µ(T ) = µ(T ∗)

(
T

T ∗

)3/2
T ∗ + S

T + S
, (5.19)

where S = 110.5K, T ∗ = 273K and µ(T ∗) = 1.68 × 10−5kg/m.s. The dynamics of this flow
are governed by one non-dimensional number, namely the Rayleigh number defined as:

Ra =
Prgρ2

0(Th − Tc)L3

µ2
0T0

, (5.20)

where g = 9.81m/s2, Pr=0.71, T0 is the reference temperature set to T0 = Th+Tc
2

= 600K, and
ρ0 and µ0 are the density and dynamic viscosities at this temperature. This configuration
has been extensively studied for a wide range of Ra numbers in [8] and used for validation in
a large number of models, e.g. [177, 146, 207, 48]. For the present validation, two different
Rayleigh numbers are modeled: 104 and 106. In both cases, the simulations are performed
on a 100× 100 domain. Ra number, reference temperature, left and right wall temperature,
gravity and Pr number are kept constant while the domain size is modified. At Ra=104, δx
is set to 1.4454× 10−4m and δt to 10−5s while for Ra=106, δx and δt are respectively set to
6.7067 × 10−4 and 5 × 10−5s. The steady-state non-dimensional velocity profiles along the
horizontal and vertical centerlines are compared to reference values from [8] in Fig. 5.1. The
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Figure 5.1: Steady-state velocity profiles along the (red) horizontal and (blue) vertical cen-
terlines for (left) Ra=104 and (right) Ra=106 obtained from (red and blue plain lines) [8]
and (black symbols) the LB solver.

110



5.1. Beyond Boussinesq: Low Mach number approximation

velocities are non-dimensionalized using a characteristic velocity defined as:

u∗ =
µ0

√
Ra

ρ0L
. (5.21)

Furthermore, the temperature distribution along three horizontal lines at y/L = 0, 0.5 and
1 are shown in Fig. 5.2. All data are in excellent agreement with the reference solutions. To
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Figure 5.2: Steady-state temperature profiles along three horizontal lines for (left) Ra=104

and (right) Ra=106 obtained from (red plain lines) [8] and (black symbols) the LB solver.

better illustrate the flow structure, the temperature field along with iso-contours for both
studied configurations are shown in Fig. 5.3.

5.1.2.2 Three-dimensional thermo-compressible Taylor-Green vortex with species

As a second test-case, to put forward the ability of the scheme to deal with large temper-
ature discrepancies in the domain and its robustness in the face of complex flows we study
a modified thermo-compressible Taylor-Green vortex in 3-D. The test-case was first pro-
posed and used within the context of the “Verification and Validation of Combustion DNS”
workshop at the 17th International Conference on Numerical Combustion to validate and
benchmark high-order codes for DNS of combustion [208, 209]. The flow field is initialized
using the same equations as the classical Taylor-Green case in a fully periodic box of size
Lx = Ly = Lz = 2πmm. The initial velocity field can be found in subsection 3.3.2. At the
difference of the classical Taylor-Green case, here the fluid consists of a gaseous mixture of
three species, i.e. H2, O2 and N2, and takes into account heat transfer. The temperature
field is initialized as:

T (x) = Tc + (Th − Tc)ψT (x), (5.22)

where:

ψT (x) = sgn(Rd −R) tanh

[
c(Rd −R)

R

]
, (5.23)
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5.1. Beyond Boussinesq: Low Mach number approximation

Figure 5.3: Temperature field and iso-contours for (left) Ra=104 and (right) Ra=106. Iso-
contours go from T = 240K to 960K with δT = 30K.

and:

Rd =

√
(x− Lx/2)2. (5.24)

For the species on the other hand, the initial conditions are defined through:

YO2(x) = YO2,0ψ(x), (5.25a)

YH2(x) = YH2,0 (1− ψ(x)) , (5.25b)

YN2(x) = 1− YH2(x)− YN2(x), (5.25c)

with:

ψ(x) =
1 + tanh

[
c(Rd−R)

R

]
2

, (5.26)

where YO2,0 = 0.232918, YH2,0 = 0.055604, R = 0.785mm, c = 3 and u0 = 4m/s. Further-
more, while the fluid viscosity, thermal conductivity and specific heat capacities are evaluated
using mixture-average formulation, detailed in the previous chapter, the species diffusion co-
efficients are set by fixing the corresponding Lewis numbers: LeH2 = 0.329, LeO2 = 1.2703
and LeN2 = 1.8268. It is also worth mentioning that species diffusion is approximated us-
ing the Hirschfelder-Curtiss model with the mass corrector. To put forward the ability of
the model to simulate dilatation/flow structure interactions and robustness in the face of
under-resolved features, the test-case was run on a 128 × 128 × 128 grid and δt was set to
10−7s. To better illustrate the dynamics of the flow and the interactions between the differ-
ent fields, they are shown in Fig. 5.4 at different times from t =0 to 1.5ms, as obtained from
LB simulations. As observed there, the species and energy distributions undergo diffusion
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5.1. Beyond Boussinesq: Low Mach number approximation

Figure 5.4: Flow state at different times for the thermal Taylor-Green vortex. From left to
right: vorticity magnitude, temperature, H2 and O2 mass fractions. From top to bottom:
t =0, 0.5, 1, 1.5 ms.

and are convected by the vortices in the flow field. The presence of vortical structure in the
flow field, as observed here, mimics turbulent mixing of the species and temperature fields.
The results obtained at t = 0.5ms, are compared to reference solutions obtained using the
DNS tool DINO [210] on a 256 × 256 × 256 grid in Figs. 5.5 and 5.6. The grid-size of the
reference solution along with discretization order of the solver (sixth-order in space [210])
clearly illustrates the fact that the LB simulation is under-resolved, explaining the small
discrepancies observed in Fig. 5.5. However, it can be observed that the agreement between
the two solutions is very good. The same observation holds for the species mass fractions
and the time-evolution of maximum temperature in the domain shown in Fig. 5.6.

As mentioned at the beginning of this chapter, apart from the presented low Mach for-
mulation, one can go about modeling compressible flows on standard stencils by using the
thermal Hermite expansion to discretize phase-space. This alternative is detailed in the next
section.
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Figure 5.5: (left) Velocity profiles along the x-direction at y = Ny/2 and z = Nz/2 and
(right) along the y-direction at x = Nx/2 and z = Nz/2. Results obtained through the
proposed model are shown with black symbols while reference solutions from DINO are
plotted with plain red lines.
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Figure 5.6: (left) Species mass fraction profiles along the x-direction at y = Ny/2 and
z = Nz/2 and (right) variations of maximum temperature in the domain with time. Results
obtained through the proposed model are shown with black symbols while reference solutions
from DINO are plotted with plain red lines.

5.2 Implicit approach: Thermal discrete equilibrium

The second approach to introducing dilatation effects into the flow solver is to lift the isother-
mal assumption in the Hermite expansion of the EDF. This section will introduce the cor-
responding theoretical background and validate the resulting solver.
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5.2. Implicit approach: Thermal discrete equilibrium

5.2.1 Equilibrium distribution function: Thermal Hermite expan-
sion

To go from the classical isothermal Hermite expansion of the continuous EDF used in the
classical LB formulation to one incorporating a thermal ideal EoS, one just needs to lift the
isothermal assumption in the expansion of the continuous EDF:

f (eq) (ξ, θ) = ρ(2πθ)−D/2 exp−(ξ − u)2

2θ
. (5.27)

While Hermite polynomials as shown in Eq. 2.44 remain unchanged, the corresponding co-
efficients are modified. The first four orders (supported by the D2Q9 stencil, and post
discretization in space and time) are defined as:

a
(eq)
0 = ρ, (5.28a)

a
(eq)
i1

= ρui1 , (5.28b)

a
(eq)
i1i2

= ρui1ui2 + ρc2
s (θ − 1) δi1i2 , (5.28c)

a
(eq)
i1i2i3

= ρui1ui2ui3 + ρc2
s (θ − 1) [ui1δi2i3 ]cyc , (5.28d)

a
(eq)
i1i2i3i4

= ρui1ui2ui3ui4 + ρc4
s(θ − 1)2 [δi1i2δi3i4 ]cyc + ρc2

s (θ − 1) [ui1ui2δi3i4 ]cyc , (5.28e)

resulting in, for example, the following second-order EDF:

f (eq,2)
α (cα, ρ,u, θ) = wαρ

(
1 +

cα · u
c2
s

+
(cα · u)2

2c4
s

− u2

2c2
s

+
(c2
α −D) (θ − 1)

2c4
s

)
. (5.29)

Different from the isothermal formulation, here the constant temperature speed of sound is
not function of the reference temperature:√(

∂p

∂ρ

)
T

=

√
kBT

m
. (5.30)

To better understand the changes induced by the introduction of temperature into the dis-
crete EDF the resulting macroscopic PDEs at the Euler and NS levels need to be evaluated.

5.2.2 Chapman-Enskog analysis

Following the development introduced in subsection 3.1.1, and including a correction term
for the diagonal components of the third-order moments tensor (to be defined from this
analysis) one gets:

N∑
n=1

δt
n

n!
(∂t + cα ·∇)n fα (x, t) = δtΩα (x, t) + C, (5.31)
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where ref is the correction term. Operating the multi-scale expansion, with the addition of
the following:

Ψα = εΨ(1)
α , (5.32)

where we have used the fact that this error involves a first-order space derivative to make
the expansion, it can be readily shown that the following PDEs are recovered at order ε1 for
the previously-introduced thermal model:

Π0, ε
1 : ∂

(1)
t ρ+ ∇(1) · ρu =

∑
α

Ψ(1)
α , (5.33a)

Π1, ε
1 : ∂

(1)
t ρu+ ∇(1) · ρu⊗ u+ ∇(1) · p =

∑
α

cαΨ(1)
α , (5.33b)

where the pressure is now p = ρkBT
m

. At the NS level, i.e. ε2, one gets:

Π0, ε
2 : ∂

(2)
t ρ = 0, (5.34a)

Π1, ε
2 : ∂

(1)
t ρu+ ∇(1) ·

(
1

2
− τ
)(

∂
(1)
t Π

(eq)
2 + ∇(1) ·Π(eq)

3

)
+∇(1) · τ

(∑
α

cα ⊗ cαΨ(1)
α

)
+ ∂

(1)
t

(∑
α

cαΨ(1)
α

)
= 0. (5.34b)

Based on Eqs. 5.33 and 5.34, Ψα should satisfy the following conditions:∑
α

Ψα = 0, (5.35a)∑
α

cαΨα = 0, (5.35b)

∑
α

cα ⊗ cαΨα =

(
1− δt

2τ

)
∇ ·

(
δΠ

(eq)
3

)
. (5.35c)

More precisely, the third condition can be detailed as:∑
α

c2
α,i1

Ψα =

(
1− δt

2τ

)
∂x
[
ρui1

(
u2
i1

+ 1− 3θ
)]
, (5.36a)∑

α

cα,i1cα,i2Ψα = 0. (5.36b)

This system can be solved through either one of these two approaches: (a) Solving the
corresponding system of equations consisting of the above-cited constraints [9, 144, 211],
(b) using the properties of Hermite polynomials (namely the fact that they are mutually
ortho-normal [146, 145, 130, 212, 207, 177]). The latter leads to the following expression for
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the correction term:

Ψα =
1

2

(
1− δt

2τ

) ∑
i=x,y,z

Hi2∂iδΠi3 . (5.37)

While similar to the expression used in the literature, the correction term used in the present
work differs from those proposed for instance in [146, 145, 130, 212] in that it has a factor(
1− δt

2τ

)
. The necessity of this factor to both stability and recovery of correct acoustic modes

dissipation will be further demonstrated in the next section through spectral analysis.
To further illustrate the errors in the moments of the discrete EDFs, they are plotted in
Fig. 5.7 as a function of the non-dimensional temperature. It is clear that the error goes to
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Figure 5.7: Error in (left) the deviatoric component of the third-order moments tensor for
a second-order EDF and (right) in the diagonal components for a third-order EDF, both
shown as a function of local temperature.

zero at θ = 1, i.e. the reference temperature, while deviations from this state result in very
pronounced errors in third-order moments.
The introduction of the thermal Hermite expansion into the LBM does not introduce any
changes to the scheme and space-time and phase-space discretization strategy. As such all
of the advanced collision models reviewed in section 2.5 can still be used with very little
changes. However, as will be shown later in this chapter, while approaches such as the MRT
based on central moments effectively increase the stability domain of the isothermal LBM,
they do not lead to the widest interval of usable non-dimensional temperatures. As such, a
temperature-scaled central moments formulation will be introduced in the next part.

5.2.3 Further extension of stability domain: temperature-scaled
central moments

Similar to the cascaded approach, one can perform the collision step in the space of central
temperature-scaled moments. This concept was, for the first time used in [171], to extend
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the regularized collision model stability domain on higher-order stencils. The idea consists
in taking the populations to the temperature-scaled moments space, defined as:

Π̃θ,xiyjzk =
∑
α

(
cα,x − ux√

θ

)i(
cα,y − uy√

θ

)j(
cα,z − uz√

θ

)k
fα, (5.38)

performing the collision and then transforming the moments back to discrete populations.
This leads to the following collision operator:

Ωα = M−1
θ N−1

θ SNθMθ

(
f (eq)
α − fα

)
, (5.39)

resulting in the following discrete time-evolution equations:

fα (x+ cαδt, t+ δt) = M−1
θ N−1

θ (I − S) Π̃θ +M−1
θ N−1

θ SΠ̃
(eq)
θ +M−1

θ N−1
θ F̃ θ, (5.40)

where F̃ θ is the external body force. Choosing for example the scaled central Hermite
coefficients as the moments basis, one gets the following equilibrium moments (for a fourth-
order EDF):

Π̃
(eq)
θ = {ρ, 0, 0, 0, 0, 0, 0, 0, 0}, (5.41)

instead of:
Π̃(eq) = {ρ, 0, 0, 0, ρc2

s (θ − 1) , ρc2
s (θ − 1) , 0, 0, ρc4

s(θ − 1)2}, (5.42)

for the corresponding central moments MRT formulation. The forcing term, F , using the
exact differences formulation [213, 214] becomes:

F̃ θ = {0, Fx√
θ
,
Fy√
θ
,
FxFy
θ

,
Fx

2

θ
,
Fy

2

θ
,
Fx

2Fy
θ3/2

,
FxFy

2

θ3/2
,
Fx

2Fy
2

θ2
}, (5.43)

while with Guo’s approach [49] one gets:

F̃ θ = {0, (1− δt/2τ)
Fx√
θ
, (1− δt/2τ)

Fy√
θ
, 0, 0, 0, 0, 0, 0}. (5.44)

The effect of this collision model on the linear stability domain will be studied with more
details in the next section using the von Neumann analysis. For the remainder of this
manuscript, all simulations performed using the compressible formulation rely on this colli-
sion operator.
Before going into a detailed analysis of the numerical properties of the compressible solver,
the effect of the correction term and thermal Hermite expansion are assessed through a
number of simple test-cases.

5.2.4 Validation and numerical application

The aim of this part is to validate the physical behavior of the model, through simple test-
cases. As such, correct dissipation rates and sound speeds are first validated using acoustic
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and shear waves dissipation and propagation. Then, to validate compressibility, a low Mach
version of the Sod shock-tube is simulated. All simulations use previously-derived LB solvers
for the energy balance equation (the total sensible energy formulation).

5.2.5 Galilean invariance: sound speed, acoustic and shear wave
dissipation rate

In order to validate the temperature-dependence of sound speed in the compressible model,
following [9], a pseudo 1-D domain is separated into two regions with the same temperature
and initial velocity and a pressure difference of ∆p = 10−4J/m3 between them. The system
is left to evolve and the shock front is tracked in time to compute the speed of sound. The
simulations are performed for different specific heat ratios, i.e. γ = 1.4, 2 and 3, and non-
dimensional temperatures. The obtained results are shown in Fig. 5.8. They are compared
to the theoretical isentropic sound speed, cs,T =

√
γkBT/m.
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Figure 5.8: Isentropic sound speeds obtained using the compressible model for different non-
dimensional temperatures and specific heat ratios. Reference sound speed are shown with
plain lines while simulations results are represented with symbols.

In order to validate the effects of the correction terms, a decaying shear wave is modeled.
While the third-order thermal equilibrium correctly recovers shear mode dissipations, the
second-order EDF needs correction terms for the off-diagonal components of the third-order
moments tensor. As such, to validate these corrections a domain of size 2 × Ny (with
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Ny = 200) is used to perform a simulation with the following initial conditions [9]:

ρ(x, y) = 1, (5.45a)

ux(x, y) = 1× 10−4 sin

(
2πy

Ny

)
, (5.45b)

uy(x, y) = 0, (5.45c)

θ = θ0. (5.45d)

The kinematic viscosity is set to ν = 0.1m2/s. The simulations are performed over 50, 000
time steps using second- (both with and without the correction for off-diagonal components)
and third-order EDFs for θ ∈ [0.1 − 1.2]. By monitoring the time evolution of the maxi-
mum velocity of this wave and fitting an exponential function to it, the effective numerical
kinetic viscosities are then measured. The obtained results are displayed in Fig. 5.9. As
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Figure 5.9: Effective dissipation rate of the shear mode for the (in black) third- and second-
order EDF (in blue) with and (in red) without the correction term obtained for the decaying
shear wave test-case. The reference viscosity is shown with a plain line.

observed in this figure, the second-order EDF is unable to correctly dissipate shear waves.
At lower temperatures, the deviations from the reference temperature result in pronounced
over-dissipation of the waves. It can also be observed that the addition of the off-diagonal
components correction restores the appropriate dissipation rate for the second-order EDF.

To assess the accuracy of the acoustic modes dissipation, the test-case presented in [108]
is used. This case having already been used to investigate the effect of the second relaxation
coefficient in the LKS in subsection 3.2.4 it will not be detailed again. In the context of this
study, Nx = 200, ρ0 = 1kg/m3 and δρ = 10−6kg/m3 are used. As with the previous case,
different temperatures are considered with a third-order equilibrium both with and without
the correction term. The results are shown in Fig. 5.10. It can be clearly observed that the
correction term restores the appropriate acoustic mode dissipation rate into the solver.
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Figure 5.10: Effective dissipation rate of the acoustic modes for the third-order EDF (in
blue) with and (in red) without the correction term obtained for the decaying acoustic wave
test-case. The reference viscosity is shown with a plain line. Black symbols are not visible
as they fall exactly on top of the blue ones.

The three test-cases presented in this part have clearly established that by using a third-order
EDF along with the appropriate correction term for the diagonal components of the third-
order moment tensor one can effectively restore the Galilean invariance in the dissipation
rates of acoustic and shear modes.

5.2.5.1 Low Mach number viscous 1-D Sod shock tube

In order to both validate the scheme and illustrate its ability to model compressible flows a
low Mach version of the Sod shock tube configuration is considered [9, 207]. The test-case as
used in this subsection is taken from [9]. The simulation is initialized by dividing a pseudo
1-D domain into two separate halves, with:

{ρ, ux, T} = {0.5, 0, 0.2}, ∀x : x/L ≤ 0.5, (5.46a)

{ρ, ux, p} = {2, 0, 0.025} ∀x : x/L > 0.5. (5.46b)

Following [9], the simulation is performed over 1287 time-steps, setting δx = 1m, δt = 1s, µ =
0.025kg/m.s and cv = 1J/kg.K (γ = 2). The obtained results (using the temperature-scaled
central moments formulation) are compared to their analytical counterparts in Fig. 5.11. It
can be observed that the analytical solution agrees very well with results from the simulation.
A similar configuration is modeled in [207], where the authors use a central moments formu-

lation based on the following basis, Π̃ = {Π̃0, Π̃x, Π̃y, Π̃x2+Π̃y2 , Π̃x2−Π̃y2 , Π̃xy, Π̃x2y, Π̃xy2 , Π̃x2y2},
and set all relaxation parameters to 1, except the one tied to shear viscosity, set to νδt/δ

2
x=0.01.

It is interesting to note that in this test-case the value of shear viscosity has no effect on the
simulation, as it is a pseudo 1-D case with only normal modes. As such by setting the relax-
ation coefficient of the acoustic mode to 1, the effective viscosity is fixed at νδt/δ

2
x = 0.167
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Figure 5.11: Sod shock tube simulation results at t = 1273δt. Black symbols represents
results obtained through the LB simulation while the red lines are the reference profiles from
[9].

(as done in [207]).
The simulations performed in this section illustrated the ability of this formulation to cor-
rectly capture compressibility effects. However, it has been observed that deviation of the
temperature in the EDF from the reference temperature leads to errors in higher-order mo-
ments, which in turn can affect both accuracy and linear stability domain. As such the
next section, similar to the analysis of section 3.2, will focus on analyzing the effect of local
temperature and different collision operators on the linear stability domain. Furthermore,
the correction term as derived in this section will be further validated through an analysis
of the spectral dissipation.
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5.3. Spectral analysis of the implicit scheme

5.3 Spectral analysis of the implicit scheme

In order to quantify the effects of temperature deviation from the reference state of the stencil,
as in section 3.2, the VN analysis will be used to determine the linear stability domain in
terms of the temperature, analyze spectral properties of the solver for fluid temperatures
different from the stencil reference temperature, and validate the form of the correction term
as derived in the previous section.

5.3.1 Effect of EDF order

As for the isothermal formulation, the order of the Hermite expansion used in the EDF can
affect the linear stability domain and spectral properties. While a second-order EDF leads to
velocity and temperature-dependent error in the dissipation of the shear mode, the third- and
fourth-order EDFs have virtually the same spectral properties (for physical modes). However,
while not affecting NS level dynamics the fourth-order term can improve the stability domain
of the scheme, as for the isothermal formulation. To that end, the linear stability domains
of the SRT collision operator with different orders of the EDF were evaluated. The results
(maximum achievable non-dimensional velocities) are shown in Fig. 5.12. As expected from
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Figure 5.12: Stability domain (in the θ − νδt/δ2
x space) of the SRT collision operator with

(from left to right) second, third and fourth-order EDFs. The colorbar shows the maximum
achievable velocity, i.e. u

δx/δt
.

the LB development and continuum error analysis, at θ = 1, the solver exhibits a much
wider usability domain (in terms of non-dimensional viscosity). It is also interesting to note
that close to θ = 0 the scheme becomes unconditionally unstable for any value of the non-
dimensional viscosity. While the addition of third-order components does not have any major
impact on the stability domain (especially for small non-dimensional viscosities), the fourth-
order EDF extends it, making the solver usable for non-dimensional viscosities as small as
νδt/δ

2
x = 10−3 at θ = 0.1 (from νδt/δ

2
x = 10−2 for the second- and third-order EDFs).

To better illustrate the limitations stemming from the obtained linear stability domain,
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5.3. Spectral analysis of the implicit scheme

it is interesting to consider a typical configuration encountered in combustion involving
temperatures going from 300 to 3000 K: setting the reference temperature to 3000 K, 0.1 <
θ < 1, the fourth-order EDF is stable for 10−3 < νδt/δ

2
x.

5.3.2 Advanced collision model: effect of regularization

The use of the regularized family of collision models is also observed to further extend the
stability domain. The expressions and discrete time-evolution equations for different orders
of this class of models were detailed in subsection 2.5.2. The only difference between the
expressions presented there and the thermal version lies in the expression of ax2y2 [170]:

a
(1)

x2y2 = u2
xa

(1)

y2 + u2
ya

(1)

x2 + 4uxuya
(1)
xy + (θ − 1)

(
a

(1)

y2 + a
(1)

x2

)
. (5.47)

The obtained results, from the VN analysis, are illustrated in Fig. 5.13. Although the
fourth-order recursive regularized scheme, as expected, allows to achieve the highest non-
dimensional velocities for θ ∈ [0.5, 1.5] it is outperformed by the classical second-order reg-
ularized collision operator for θ < 0.5. Although showing good linear stability properties at
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Figure 5.13: Stability domain (in the θ − νδt/δ2
x space) of the regularized collision operator

of different order, (from left to right) second-, third- and fourth-order. The color bar shows
the maximum achievable velocity, i.e. u

δx/δt
.

low non-dimensional temperatures, it must be noted that the second-order expansion used in
the classical regularized collision model results in over-dissipation of all physical modes (both
shear and acoustic) even at the continuum limit, as obsered in Fig. 5.9. This over-dissipation
is also one of the reasons it is exhibiting an unexpectedly wide stability domain.

5.3.3 Central moments MRT versus temperature-scaled central
moments

As seen in section 3.2, performing the collision operation in central moments space can
have a considerable effect on the linear stability domain for the isothermal LBM. How-
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ever, it is unclear whether this collision operator would also have a pronounced impact on
the stability domain in terms of the fluid temperature. To clarify its effect, and showcase
the performances of previously-introduced temperature-scaled central moments the linear
stability domain of both operators using Hermite polynomials as the moments space were
studied, setting the ghost relaxation coefficients to one. The obtained stability domains
are illustrated in Fig. 5.14. Comparing the stability domains it can be observed that using
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Figure 5.14: Stability domain (in the θ− νδt/δ2
x space) of (left) central moments and (right)

temperature-scaled central moments MRT collision operators. The color bar shows the
maximum achievable velocity, i.e. u

δx/δt
.

temperature-scaled central moments widens the stability domain to smaller non-dimensional
viscosities. As previously mentioned and shown in [154] using central Hermite polynomials
in a MRT collision model and setting ghost relaxation coefficients to one, the isothermal
recursive regularized collision operator is recovered. Looking at the stability domains in
Figs. 5.13 and 5.14, and through some standard algebra it can be shown that switching
to temperature-scaled moments and setting ghost moments relaxations to one, the thermal
recursive regularized collision model is recovered.
The temperature-scaled central moments MRT, however, has the advantages of: (a) allowing
for tunable relaxation coefficients for ghost moments and, therefore, potentially independent
control on the over-dissipation effects and (b) being computationally more efficient; Fi-
nally, while in 2-D a fourth-order recursive regularized collision operator is equivalent to the
temperature-scaled MRT model, in 3-D on a D3Q27 one would have to recursively regularize
moments up to order six to match the performances of the temperature-scaled operator.
As such, of all collision models studied in this section, and more generally in this thesis, the
temperature-scaled central moment MRT model is more adapted to thermal flows.
As a final step in the spectral analysis of the compressible model, the next section will
study the spectral dissipation properties of the bare and corrected models to corroborate the
expression previously obtained for this correction term.
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5.3.4 Effect of correction term

To validate the correction term expression as obtained in the previous section, the derivatives
are approximated using a second-order central-differences scheme at first, and used to get the
spectral dissipation rates of all physical modes for a given set of parameters, i.e. temperature
and velocity. The obtained results using the third-order EDF both with and without the
correction are displayed in Fig. 5.15. The flow velocity vector is in the x-direction and only
results on the kx axis are shown. While, as shown there, one observes over-dissipation of
the acoustic modes at θ = 0.5, the introduction of the correction term restores the correct
dissipation rate (independent of temperature) at the continuum limit. Given the effect of
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Figure 5.15: (left) Dispersion and (right) dissipation of the acoustic and shear modes for a
third-order EDF (in blue) with and (in red) without the correction term at ux = 0.05 and
θ = 0.5 for νδt/δ

2
x = 1 × 10−4. Plain black lines are the reference spectral dispersion and

dissipation curves.

the correction term on the dissipation of acoustic modes at low wave-numbers, it might
also be interesting to see whether higher-order evaluations of the correction term would
lead to enhanced results. This effect is illustrated in Fig. 5.16, where the gradient in the
correction term is computed using second-, fourth- and sixth-order central-differences for
two different fluid temperatures, i.e. θ = 0.05 and 1.4. The coefficients of the corresponding
finite-differences approximations are given in Table 5.1. As observed in Fig. 5.16, for θ <

Table 5.1: Coefficients for finite-differences approximations

Order x− 3δx x− 2δx x− δx x+ δx x+ 2δx x+ 3δx
2 0 0 −1/2 1/2 0 0
4 0 1/12 −2/3 2/3 −1/12 0
6 −1/60 3/20 −3/4 3/4 −3/20 1/60

1, the use of higher-order approximations reduces the over-dissipation observed at higher
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wave-numbers. For θ > 1 on the other hand, higher-order approximations are observed
to introduce dissipation into the system (while getting closer to the physical dissipation
rate) and can potentially be beneficial to the stability of the solver. In conclusion, the
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Figure 5.16: Spectral dissipation of the acoustic modes using a third-order EDF and the
correction term evaluated using (in black) second-, (in red) fourth-, and (in blue) sixth-order
central-differences for (left) θ = 0.05 and (right) θ = 1.4. Plain black lines are the reference
spectral dispersion and dissipation curves.

spectral analysis of the dissipation of acoustic modes showed that the correction as derived
in this section restores the correct physical acoustic dissipation in the limit of vanishing wave
numbers (continuum). Furthermore, the order of the approximation used for the derivatives
in the correction term affects the dissipation rate at higher wave-numbers. As such, while
leading to additional communication overhead in parallel codes, the use of a fourth-order
central-differences approximation can be useful to increase both the accuracy and stability
of the solver.

5.4 Concluding remarks

The present chapter was dedicated to the last theoretical step in the development of a
mixture-averaged single-fluid LB-based solver intended for low Mach number combustion
simulation: the introduction of dilatation effects into the flow solver. To that end, two differ-
ent approaches have been proposed, detailed and validated: a low Mach thermo-compressible
formulation relying on decoupling density and hydrodynamic pressure, and a compressible
formulation based on a thermal Hermite expansion of the distribution function. The for-
mer was shown to correctly capture dilatation effects through configurations such as the
heated cavity with large temperature differences. Given the fact that the fluid density in
this model is evaluated using local temperature and thermodynamic pressure, it can only
efficiently be coupled with discrete solvers for the non-conservative forms of the species and
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energy balance equations. The LB solvers for energy and species mass balance proposed in
the previous chapter are not good matches for this thermo-compressible solver. Therefore,
it is coupled to a finite-differences solver implemented in ALBORZ, with the possibility to
choose between different space-discretization strategies for the convection term, e.g. second-
and fourth-order central, first- and third-order upwind, and finally third- and fifth-order
Weighted Essentially Non-Oscillatory [215, 100].
The latter, i.e. compressible solver, was also shown to correctly capture all physical proper-
ties of the compressible flow such as sound speed and dissipation rate of shear and acoustic
modes. Furthermore, it was shown to accurately model compressible configurations such
as the Sod shock tube. Contrary to the first approach, this compressible solver was cou-
pled to LB-based solvers for the energy and species balance equations. This solver however,
similar to the isothermal LBM is subject to stability issues when the local temperature de-
viates from the reference temperature. The effect of fluid temperature on stability along
with different collision models were studied through systematic von Neumann analyses. A
temperature-scaled central moments MRT collision operator, shown to be equivalent to a
thermal fourth-order recursive regularized collision operator on the D2Q9 stencil was ob-
served to have the widest stability domain. As such it is chosen as the collision operator
used in the next chapter to perform combustion simulations.
The models developed and analyzed in chapters 1 through 5 are used to model different
configurations involving low Mach number combustion in the next chapter.
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Chapter 6

Numerical application: Combustion
simulation
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6.1. Employed code and models

The aim of the present chapter is to validate the previously developed/proposed ap-
proaches to combustion simulation. As such it is organised into three main sections, namely
a first section introducing the overall structure of the used codes, a second section illustrating
the accuracy and ability of the code to model combustion through a multitude of test-cases
and finally a third section with final remarks and conclusions.

6.1 Employed code and models

The examples shown in what follows have been compiled at different stages of this project,
and thus rely on different libraries implemented in the code. In general, the employed
numerical tool combines three main components: (a) Solver for mixture-averaged continuity
and momentum balance equations; (b) solvers for the energy and species mass balance
equations; and (c) a module for thermo-physical parameters and chemistry evaluation.
For the flow solver, as mentioned in the previous chapter, two different formulations have
been used: (a) low Mach number dilatable solver of section 5.1; and (b) compressible solver
of section 5.2. For the species mass and energy balance equations, they can be solved
either using the LB formulation introduced in chapter 3 or in combination with classical FD
solvers. Furthermore, depending on the type of flow, i.e. compressible or low Mach dilatable,
the energy balance equation is solved for either the total sensible energy or total sensible
enthalpy. Due to the the coupling possibilities and limitations of each solver, three different
schemes are used in this chapter:

• Low Mach dilatable LB solver coupled to FD solver for energy and species mass bal-
ance (Approach I): In this approach, the flow field is modeled through the low Mach
formulation of section 5.1. Coupling of this code to solvers for the conservative form
of the transport equations for energy and species requiring an iterative process, FD
solvers are used. The FD solvers, while readily extendable to higher orders, rely here
only on a first-order Euler discretization in time. Furthermore, given that the flow
solver is only dilatable, sensible enthalpy is used for the energy field, while the space-
derivative of pressure is set to zero (given the assumption of uniform thermodynamic
pressure). For all solvers in this section the thermo-chemical parameters are computed
using REGATH. The overall structure of this approach is illustrated in Fig. 6.1.

• Compressible LB solver coupled to FD solver for energy and species mass balance (Ap-
proach II): The second approach relies on the compressible flow solver of section 5.2
while using FD, as for the previous solver, for energy and species mass balance. Dif-
ferent from the previous solver, given the compressible nature of the flow solver, the
sensible energy form of the energy balance equation is solved. The sensible energy is
used instead of the total energy as the FD solver can handle non-conservative terms.
The overall algorithm of this approach is displayed in Fig. 6.2.

• Compressible LB solver coupled to LB solvers for energy and species mass balance
(Approach III): The last approach, completely based on LB, relies on the compressible
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Boundary conditions

Boundary conditions

Boundary conditions

REGATH (thermo-chemistry)

ALBORZ (LBM) ALBORZ (finite-differences)

Figure 6.1: Overall algorithm structure and communication scheme for the low Mach for-
mulation coupled to a finite-difference solver (Approach I).

flow solver of section 5.2, as for the second one, while using the modified LB-based
advection-diffusion solvers of chapter 3. Apart from the discrete solver, the main
difference between this approach and the previous one is the form of the solved PDEs:
while the FD approach solves the non-conservative form of the balance equations,
here the LB solvers rely on the conservative form. Furthermore, given this limitation
on the form of the terms, the total sensible energy is considered for the energy field
(mainly to recover the pressure and viscous heating terms in conservative form). The
corresponding algorithm is shown in Fig. 6.3.

While slightly different in the forms of the considered balance equations and flow field solver,
given that low Mach number flows are considered in this section, we do not expect to observe
major discrepancies between the different approaches.
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Boundary conditions
Boundary conditions

Boundary conditions

REGATH (thermo-chemistry)

ALBORZ (LBM)

ALBORZ (finite-differences)

Figure 6.2: Overall algorithm structure and communication scheme for the compressible
LBM coupled to a FD solver (Approach II).

6.2 Numerical applications and validation

Two classes of numerical applications are considered in this section: (a) simple 1-D flames and
(b) more complex multi-dimensional cases. While the latter are used to showcase the ability
of the models to handle complex configurations, the former are mainly used to evaluate the
order of convergence of the different schemes. Although performed with all three approaches,
in the second part, for the sake of readability only results obtained using the most efficient
method (approach I) will be shown and compared to reference data.
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Boundary conditions

REGATH (thermo-chemistry)

ALBORZ (LBM)

Boundary conditions Boundary conditions

Figure 6.3: Overall algorithm structure and communication scheme for the compressible
LBM coupled to LB advection-diffusion solvers for the energy and species mass balance
(Approach III).

6.2.1 1-D flame simulations

6.2.1.1 First validation case: 1-D premixed Propane/air flame with simple
thermo-chemistry

As a first validation study, the case of a pseudo 1-D freely-propagating premixed Propane/air
flame is considered. This configuration consists of a 2-D simulation domain bounded by an
inlet and outlet boundary condition in the x-direction and periodic boundary conditions
(with only two grid-points) in the y-direction. At the inlet, a given mass flow-rate with a
fixed temperature and composition is imposed through a fixed-velocity boundary condition
on the flow solver and a set of Dirichlet boundary conditions on the temperature and species
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6.2. Numerical applications and validation

solvers. These boundary conditions correspond to the fresh gas composition. At the outlet,
Neumann first-order zero-gradient boundary conditions are imposed on all fields.
The simulations are initialized by imposing respectively fresh and burnt gas compositions,
temperature and density on the left and right halves of the domain. Following [216, 47] the
dynamic viscosity is approximated through a Sutherland model:

µ = µ(T ∗)

(
T

T ∗

)β
, (6.1)

where T ∗ is a reference temperature set to 298K here, µ(T ∗) the dynamic viscosity at this
temperature, set to 1.782× 10−5kg/m.s and β is a parameter set to 0.69 [216]. The thermal
and species diffusion coefficients are determined through fixed Prandtl and Schmidt numbers
given in Table 6.1.

Parameter value

Pr 0.682
ScC3H8 1.241
ScO2 0.728
ScH2O 0.941
ScCO2 0.537
ScN2 0.682

Table 6.1: Prandtl and Schmidt numbers used in the 1-D Propane/air simulations

To reproduce the test-case as studied in [216], the mixture heat capacity is taken to be
constant and equal to 1008 J/kg.K. The chemistry is described through a one-step global
reaction:

C3H8 + 5 (O2 + γN2) −→ 3CO2 + 4H2O + 5γN2,

where γ = 3.76, and the reaction rate constant k, the activation energy Ea and the tempera-
ture exponent β are respectively set to 9.9×10−7m3.mol−1s−1, 125520 J and 0. Furthermore,
the overall heat of reaction is taken to be equal to 2.0× 106J/mol [216, 7].
An interesting point to discuss here is the choice of δx and δt with regards to the restrictions
on linear stability of each solver. Considering a configuration leading to the highest tem-
perature ratio, i.e. φ = 1, one expects to have a minimum and maximum temperature of
300 and 3070K in the domain leading to ν ∈ [1.52× 10−5 ;7.68× 10−4]m2/s, while the max-
imum velocity in the domain is expected not to exceed 6m/s. As such, for the compressible
solver we choose the reference temperature to be 1820K, leading to θ ∈ [0.16; 1.7]. Setting
δx = 5 × 10−5m, the chosen temperature leads to δt = 4 × 10−8s. The low Mach number
formulation on the other hand can take larger time-steps. The settings are expected to be
stable for other equivalence ratios (as other values of φ would lead to lower adiabatic tem-
peratures), and as such are used for all simulations reported in this part. Simulations were

ran for equivalence ratios, φ =
(YC3H8

/YO2)
(YC3H8

/YO2)st
, going from 0.5 to 1. The flame front speed is

computed by recording its position at different time-steps. Once the speed reaches a steady
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6.2. Numerical applications and validation

value it is recorded as the flame laminar speed. The flame front speed and temperature
at different equivalence ratios, as obtained from the three different solvers are compared to
reference results obtained using Cantera [217] in Fig. 6.4. It can be observed that apart from
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Figure 6.4: Propane/air laminar flame speed and adiabatic temperature obtained using the
different approaches.

very minor differences between the three solvers, they are all able to reproduce the correct
laminar flame speeds. To better understand the differences between the different schemes
their orders of convergence are studied in the next part.

6.2.1.2 Order of accuracy: Methane/Air 1-D freely-propagating flame with
BFER scheme

To assess the overall order of accuracy of the proposed solvers, a 1-D freely-propagating
Methane/air flame (similar to the previous test-case) is modeled using the BFER 2-step
chemistry model [218]. The two steps in this scheme are defined as:

CH4 +
3

2
O2 −→ CO + 2H2O,

CO +
1

2
O2 
 CO2.

Corresponding reaction rates can be found in appendix F. Detailed transport and thermo-
dynamic properties are used for this simulation. The physical size of the domain is 1 cm.
Initially, the domain is divided into two equal size sections. The left-hand side is initialized
using fresh gas while the right-hand side is filled with burnt gas. The initial conditions are
given in Table 6.2. Similar to the previous test-cases, at the inlet fresh gas composition,
temperature and density are imposed along with constant velocity, while the outlet is mod-
eled using zero-gradient boundary conditions.
Simulations were performed using five different grid-sizes, namely 10−5, 1.5×10−5, 2×10−5,
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6.2. Numerical applications and validation

Parameter fresh gas burnt

T [K] 800 2230
u[m/s] 0 0
YCH4 0.0393 0
YO2 0.2239 0.0682
YH2O 0 0.0883
YCO2 0 0.1046
YCO 0 2.01× 10−3

YN2 0.7368 0.73689

Table 6.2: Methane/air BFER free flame initial conditions.

3 × 10−5 and 4 × 10−5m. Given the order of accuracy of the FD time integration scheme
employed for the hybrid solvers, a diffusive scaling for the time-step is preferred. However,
given the restriction on fluid temperature deviations from the stencil reference temperature,
for approaches II and III an acoustic scaling is chosen. The resulting time-step sizes are
listed in Table 6.3. After convergence, the flame front propagation speeds were measured

Scheme/δx 10−5m 1.5× 10−5m 2× 10−5m 3× 10−5m 4× 10−5m

δt I 10−5s 2.25× 10−5s 4× 10−5s 9× 10−5s 1.6× 10−4s
δt II and III 10−5s 1.5× 10−5s 2× 10−5s 3× 10−5s 4× 10−5s

Table 6.3: Grid and time-step sizes used for the different schemes for the Methane/air free
flame.

and corresponding errors (as compared to a reference Cantera simulation) were computed.
The obtained results are shown in Fig. 6.5. As observed there the first approach is close to
second-order accuracy under diffusive scaling. This is to be expected as both the FD solvers
and low Mach LB solver are second-order under diffusive scaling. The second approach
on the other hand is only first-order accurate under acoustic scaling. As for the previous
scheme, this behavior was to be expected as the FD solver is only first-order in time. The
third approach is close to second-order accuracy under acoustic scaling. This is because the
species and energy balance equations are modeled using LB solvers which using the appropri-
ate correction terms, as used here, are supposed to be second-order accurate under acoustic
scaling. It is also worth noting that while second-order accurate, the first approach exhibits
larger errors. This can partially be explained by the larger time-step sizes (as compared to
approaches II and III) used to perform the simulations. The species and flow field profiles
as obtained from the simulation with the highest resolution are shown in Fig. 6.6. To have a
full picture of the performances of all approaches, their respective computational times are
discussed later in the conclusions. Before that, a number of simulation results in 2- and 3-D
are presented in the next subsection.
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Figure 6.5: Convergence of the different approaches for the Methane/air free flame.
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Figure 6.6: (left) species mass fraction and (right) density and velocity profiles at the flame
front for the Methane/air 1-D freely propagating flame. Results from the LB simulation
(with approach III) with the highest resolution are shown with black symbols while reference
profiles from Cantera are shown with plain lines.

6.2.2 Complex configurations

A number of more complex configurations are modeled in this subsection to illustrate the
versatility of the solver and its ability to deal with configurations typically encountered in
low Mach combustion. For the sake of clarity, unless stated otherwise, only results obtained
using approach I are shown.
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6.2. Numerical applications and validation

6.2.2.1 Premixed Propane/air 2-D counterflow flame with simple chemistry

The test-case considered here, is that of a 2-D premixed counterflow burner, similar to the
one studied in [7]. The corresponding geometry is shown in Fig. 6.7. As shown there, at

Figure 6.7: Geometrical configuration of the 2-D counterflow premixed Propane/air flame.

the top and bottom inlets, the fresh gas mixture is injected at a constant velocity, at an
equivalence ratio of φ = 0.6 and a constant temperature of 300 K, and at the outlets (left
and right) a constant pressure is imposed on the flow field while the species and temperature
fields are subjected to zero-gradient boundary conditions. At solid walls, zero-gradient BCs
are imposed on both temperature and species fields. The simulation is initialized with fresh
gas in the blank region in Fig. 6.7 while the grey-colored region is filled with burnt gas. Due
to the symmetrical configuration of the burner, only the upper right quadrant is considered in
the simulations. The chemical scheme, thermodynamic and transport properties follow those

Parameter fresh gas burnt

T [K] 300 1970
ρ[kg/m3] 1.17 0.162
u[m/s] 0 0
YC3H8

0.037 0

YO2
0.224 0.089

YH2O 0 0.061

YCO2
0 0.111

YN2
0.739 0.739

Table 6.4: 2-D counterflow burner initial conditions.

set in part 6.2.1.1. The test-case is modeled using both the LB solver and the commercial
CFD solver ANSYS-Fluent for comparison. The initial conditions are given in Table 6.4.
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6.2. Numerical applications and validation

Both simulations were performed at atmospheric pressure.
In Fluent, the pressure-based solver is used to model the previously defined flow on a uniform
grid of size δx = 2×10−5m. The inlet and outlet are respectively modeled using the constant
velocity and outflow boundary conditions.
In the LB solver the grid and time-step sizes are respectively set to δx = 5.55× 10−5m and
δt = 5 × 10−7s. It is interesting to note that for approaches II and III to be stable, δt had
to be set to = 4× 10−8s.
At steady-state, the solutions obtained using both Fluent and the LB solver are compared.
First, to quantify the position of the flame front the density and Propane net production
rates are compared in Fig. 6.8. As shown in this figure, there is an excellent agreement
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Figure 6.8: Density and Propane consumption rate fields at steady-state as obtained from
LBM and Fluent.

concerning position and shape of the flame fronts for both solvers. Furthermore, to verify
that the thermal dilatation effect is correctly captured, the y-component of the velocity
vectors along the vertical centerline are compared in Fig. 6.9. It is readily observed that the
LB solver is able to correctly capture the flow field, and associated dilatation effects.

6.2.2.2 Premixed Propane/air counterflow flame with simple chemistry in 3-D

As an extension to the previous case and to illustrate the ability of the solver to handle 3-D
flows, the 3-D version of the previously discussed 2-D counterflow premixed flame is modeled
here. All parameters and boundary conditions are similar to the previous case. The geometry
in 3-D is shown in Fig 6.10. The simulations are performed on a D3Q27 stencil while the grid
and time-step sizes are respectively set to δx = 1.67 × 10−4m and δt = 6 × 10−6s, leading
to a simulation domain of 200 × 200 × 120 grid points. The steady-state fields obtained
from the LB simulation are displayed in Fig 6.11. In this figure, the flame front represented
by a Propane production rate iso-surface is shown in light gray and combustor walls are
illustrated with darker gray surfaces. To validate the results, the temperature and species
mass fractions along the central vertical line (in the z-direction) are compared to a pseudo
1-D simulation in cylindrical coordinates obtained from REGATH in Fig. 6.12. Though the
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Figure 6.9: Profiles of y−component of velocity on the vertical centerline as obtained from
(red plain line) Fluent and (black symbol) lattice Boltzmann simulations.
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Figure 6.10: Geometrical configuration of the 3-D counter flow premixed Propane/Air flame.

LB simulation is 3-D while the solution from REGATH is 1D-axisymmetric, the distance
from the vertical centerline to the domain boundaries is large enough so that boundary
effects are negligible. As for all previous test-cases, the results obtained with the LB solver
are in excellent agreement with their REGATH counterparts corresponding to a pure FD
approximation.

6.2.2.3 Methane/air 2-D coflow diffusion flame with two-step chemistry

As a third configuration, to show that the proposed models are able to handle both premixed
and diffusion flames, a 2-D coflow Methane/air diffusion flame is considered. The simulation
uses the same thermo-chemical settings as those used in part 6.2.1.2, i.e. the BFER scheme
along with detailed transport models. The geometrical configuration along with boundary
conditions are given in Fig. 6.13 and Table 6.5. The fuel is injected at the center while a
mixture of O2/N2 comes in from the sides. The time-step and grid-sizes were respectively
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Figure 6.11: Flow field obtained at steady-state for the 3-D counterflow test-case. Shown in
this figure: Iso-surface of Propane consumption rate ω̇C3H8 in light gray; streamlines colored
with normalized velocity magnitude (see color scale); cut showing the z-component of the
velocity vector in the central plane (see color scale).
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Figure 6.12: Profiles of (left) species mass fractions and (right) temperature along the cen-
terline in the z-direction as obtained from (red plain lines) REGATH and (black symbols)
LB simulation.

set to δt = 9 × 10−8s and δx = 3 × 10−5m. The choice of the time-step size was mainly
dictated by the chemistry and not stability limits of solvers. The same configuration was
ran on Fluent. The fluid velocity, temperature, CO, CO2 and O2 mass fraction fields at
steady-state are shown in Fig. 6.14. The results obtained from this simulation are compared
to their counterpart from Fluent in Fig. 6.15. As observed there, the species profiles are
in excellent agreement with the reference solver. Small discrepancies are observed in the
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Figure 6.13: Geometrical configuration of the 2-D coflow Methane/air flame.

Parameter central inlet left/right inlets

T [K] 950 950
u0[m/s] 0.8 0.5
YCH4 0.1 0
YO2 0 0.224
YH2O 0 0
YCO2 0 0
YCO 0 0
YN2 0.9 0.776

Table 6.5: 2-D Methane/air coflow burner boundary conditions data.

velocity profiles near the top outlet. These discrepancies can be attributed, at least partly,
to the different treatment of outlet boundaries in the LB solver and Fluent simulations.

6.2.2.4 Flame/vortex interaction

The last case to be treated here illustrates the capability of the solver to model turbulent
flows, by showing that it can reproduce different interaction regimes between a flame front
and flow structures.
Looking into premixed flame interaction with turbulent flow structures, five distinct regimes
have been identified [10], as illustrated through a diagram in Fig. 6.16 as a function of
characteristic speeds and sizes of the flow structure and flame:

• Laminar flame: The flow remains laminar with minor wrinkling in the flame front,

• Wrinkled flamelet : The flow structure characteristic size is larger than the flame thick-
ness and can not penetrate into the flame. However the turn-over velocity of the eddy

143



6.2. Numerical applications and validation

0.0172

<latexit sha1_base64="/5AM38D6uFIIQaxVybVSa2MDo4I=">AAAB7XicbZDLSgMxFIZP6q3WW9Wlm2ARXJWZUqjLghuXFewF2qFk0kwbm0mGJCOUoe/gxoUibn0fd76NaTsLbf0h8PGfc8g5f5gIbqznfaPC1vbO7l5xv3RweHR8Uj496xiVasraVAmleyExTHDJ2pZbwXqJZiQOBeuG09tFvfvEtOFKPthZwoKYjCWPOCXWWR2v6vmN2rBccbAU3gQ/hwrkag3LX4ORomnMpKWCGNP3vcQGGdGWU8HmpUFqWELolIxZ36EkMTNBttx2jq+cM8KR0u5Ji5fu74mMxMbM4tB1xsROzHptYf5X66c2ugkyLpPUMklXH0WpwFbhxel4xDWjVswcEKq52xXTCdGEWhdQyYXgr5+8CZ1a1a9X6/f1ShPncRThAi7hGnxoQBPuoAVtoPAIz/AKb0ihF/SOPlatBZTPnMMfoc8fpHyNww==</latexit>

0

<latexit sha1_base64="NnjePHfLyKRSeGVgne2HmxTQnQg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyx2WK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6tWqtVas0SB5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz9xJYyZ</latexit>

YCO

<latexit sha1_base64="ZkpOLI2oZg/fIxtDLDJ+95FsMrA=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIpp4IruGRI8kXLyJiTwMbMjs0MCE2YczvUSy2e/w4kFjvPox3vwbB9iDgpV0UqnqTneXF0mh0ba/rdza+sbmVn67sLO7t39QPDxq6jBWHBo8lKFqe0yDFAE0UKCEdqSA+Z6EljeuzfzWBJQWYXCP0whcnw0DMRCcoZHch17SRXjCpHabpr1iyS7bc9BV4mSkRDLUe8Wvbj/ksQ8Bcsm07jh2hG7CFAouIS10Yw0R42M2hI6hAfNBu8n86JSeG6VPB6EyFSCdq78nEuZrPfU90+kzHOllbyb+53ViHFy7iQiiGCHgi0WDWFIM6SwB2hcKOMqpIYwrYW6lfMQU42hyKpgQnOWXV0nzsuxUypW7Sql6lsWRJyfklFwQh1yRKrkhddIgnDySZ/JK3qyJ9WK9Wx+L1pyVzRyTP7A+fwAi4ZJA</latexit>

YCO2

<latexit sha1_base64="T7RLLJPjMKgs4598V+kfc14e84I=">AAAB+HicdVDLSsNAFJ34rPXRqks3g1VwFZISqN0VunFnBfuQtoTJdNIOnUzCzI1YQ7/EjQtF3Pop7vwbpw9BRQ9cOJxzL/feEySCa3CcD2tldW19YzO3ld/e2d0rFPcPWjpOFWVNGotYdQKimeCSNYGDYJ1EMRIFgrWDcX3mt2+Z0jyW1zBJWD8iQ8lDTgkYyS8WbvysB+wOsvrl1C9P/WLJsatz4AWpeEtSdbFrO3OU0BINv/jeG8Q0jZgEKojWXddJoJ8RBZwKNs33Us0SQsdkyLqGShIx3c/mh0/xqVEGOIyVKQl4rn6fyEik9SQKTGdEYKR/ezPxL6+bQnjez7hMUmCSLhaFqcAQ41kKeMAVoyAmhhCquLkV0xFRhILJKm9C+PoU/09aZdv1bO/KK9VOlnHk0BE6RmfIRRVUQxeogZqIohQ9oCf0bN1bj9aL9bpoXbGWM4foB6y3T6BJk6k=</latexit>

0.1

<latexit sha1_base64="OAbD9Xw9dq27QzeTCBKJ3q9dPPE=">AAAB6nicdVBNS8NAEJ3Ur1q/oh69LBbBU0gkUHsrePFY0X5AG8pmu2mXbjZhdyOU0J/gxYMiXv1F3vw3btMIKvpg4PHeDDPzwpQzpV33w6qsrW9sblW3azu7e/sH9uFRVyWZJLRDEp7IfogV5UzQjmaa034qKY5DTnvh7Grp9+6pVCwRd3qe0iDGE8EiRrA20q3reCO77jrNAmhFGn5Jmh7yHLdAHUq0R/b7cJyQLKZCE46VGnhuqoMcS80Ip4vaMFM0xWSGJ3RgqMAxVUFenLpAZ0YZoyiRpoRGhfp9IsexUvM4NJ0x1lP121uKf3mDTEeXQc5EmmkqyGpRlHGkE7T8G42ZpETzuSGYSGZuRWSKJSbapFMzIXx9iv4n3QvH8x3/xq+3UBlHFU7gFM7Bgwa04Bra0AECE3iAJ3i2uPVovVivq9aKVc4cww9Yb58gwo2f</latexit>

0

<latexit sha1_base64="2BL/amtEDm1MaO849jFAxytbpmk=">AAAB6HicdVBNS8NAEJ3Ur1q/qh69LBbBU0ikUHsrePHYgm2FNpTNdtKu3XywuxFK6C/w4kERr/4kb/4bt2kEFX0w8Hhvhpl5fiK40o7zYZXW1jc2t8rblZ3dvf2D6uFRT8WpZNhlsYjlrU8VCh5hV3Mt8DaRSENfYN+fXS39/j1KxePoRs8T9EI6iXjAGdVG6jijas2xmznIijTqBWm6xLWdHDUo0B5V34fjmKUhRpoJqtTAdRLtZVRqzgQuKsNUYULZjE5wYGhEQ1Relh+6IGdGGZMglqYiTXL1+0RGQ6XmoW86Q6qn6re3FP/yBqkOLr2MR0mqMWKrRUEqiI7J8msy5hKZFnNDKJPc3ErYlErKtMmmYkL4+pT8T3oXtlu36516rUWKOMpwAqdwDi40oAXX0IYuMEB4gCd4tu6sR+vFel21lqxi5hh+wHr7BEZfjSw=</latexit>

YO2

<latexit sha1_base64="sbEtjsvZ+oYY8w6Yg2K5+ahf9Tw=">AAAB9XicbVBNS8NAEN3Ur1q/qh69LFbBU0lKQY8FL96sYD+kjWGz3bRLN5uwO1FLyP/w4kERr/4Xb/4bt20O2vpg4PHeDDPz/FhwDbb9bRVWVtfWN4qbpa3tnd298v5BW0eJoqxFIxGprk80E1yyFnAQrBsrRkJfsI4/vpz6nQemNI/kLUxi5oZkKHnAKQEj3d95aR/YE6TXmVfLvHLFrtoz4GXi5KSCcjS98ld/ENEkZBKoIFr3HDsGNyUKOBUsK/UTzWJCx2TIeoZKEjLtprOrM3xqlAEOImVKAp6pvydSEmo9CX3TGRIY6UVvKv7n9RIILtyUyzgBJul8UZAIDBGeRoAHXDEKYmIIoYqbWzEdEUUomKBKJgRn8eVl0q5VnXq1flOvNE7yOIroCB2jM+Sgc9RAV6iJWogihZ7RK3qzHq0X6936mLcWrHzmEP2B9fkDw6OSmA==</latexit>

0.224

<latexit sha1_base64="QfvIQiwZ9u59zKWCHxIF2FCugyc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0hKQI8FLx4rmLbQhrLZbtqlu5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPz4owzbTzv26lsbe/s7lX3aweHR8cn9dOzjk5zRWhIUp6qXow15UzS0DDDaS9TFIuY0248vVv43SeqNEvlo5llNBJ4LFnCCDZWCj232QyG9YbnekugTeKXpAEl2sP612CUklxQaQjHWvd9LzNRgZVhhNN5bZBrmmEyxWPat1RiQXVULI+doyurjFCSKlvSoKX6e6LAQuuZiG2nwGai172F+J/Xz01yGxVMZrmhkqwWJTlHJkWLz9GIKUoMn1mCiWL2VkQmWGFibD41G4K//vIm6TRdP3CDh6DRQmUcVbiAS7gGH26gBffQhhAIMHiGV3hzpPPivDsfq9aKU86cwx84nz8y142H</latexit>

0

<latexit sha1_base64="NnjePHfLyKRSeGVgne2HmxTQnQg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx5bsB/QhrLZTtq1m03Y3Qgl9Bd48aCIV3+SN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RS2tnd294r7pYPDo+OT8ulZR8epYthmsYhVL6AaBZfYNtwI7CUKaRQI7AbTu4XffUKleSwfzCxBP6JjyUPOqLFSyx2WK27VXYJsEi8nFcjRHJa/BqOYpRFKwwTVuu+5ifEzqgxnAuelQaoxoWxKx9i3VNIItZ8tD52TK6uMSBgrW9KQpfp7IqOR1rMosJ0RNRO97i3E/7x+asJbP+MySQ1KtloUpoKYmCy+JiOukBkxs4Qyxe2thE2ooszYbEo2BG/95U3Sual6tWqtVas0SB5HES7gEq7Bgzo04B6a0AYGCM/wCm/Oo/PivDsfq9aCk8+cwx84nz9xJYyZ</latexit>

u[m/s]

<latexit sha1_base64="6tmhqVQwxrJHg8PgVKsH41Jg9D8=">AAAB/XicbZDLSsNAFIYnXmu9xcvOzWAVXNVECrosuHFZwV4gDWUynbRDJ5MwcyLWEHwVNy4Ucet7uPNtnLZZaOsPAx//OYdz5g8SwTU4zre1tLyyurZe2ihvbm3v7Np7+y0dp4qyJo1FrDoB0UxwyZrAQbBOohiJAsHaweh6Um/fM6V5LO9gnDA/IgPJQ04JGKtnH6ZeF9gDZFF+PgOd+z274lSdqfAiuAVUUKFGz/7q9mOaRkwCFURrz3US8DOigFPB8nI31SwhdEQGzDMoScS0n02vz/Gpcfo4jJV5EvDU/T2RkUjrcRSYzojAUM/XJuZ/NS+F8MrPuExSYJLOFoWpwBDjSRS4zxWjIMYGCFXc3IrpkChCwQRWNiG4819ehNZF1a1Va7e1Sv2kiKOEjtAxOkMuukR1dIMaqIkoekTP6BW9WU/Wi/Vufcxal6xi5gD9kfX5A3cFlco=</latexit>

1.3

<latexit sha1_base64="aXJpFF3qBLVlESBQkDbODNRHVKY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0i0oMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvTAXXxvO+nNLa+sbmVnm7srO7t39QPTxq6yRTDFssEYnqhlSj4BJbhhuB3VQhjUOBnXByM/c7j6g0T+SDmaYYxHQkecQZNVa6993LQbXmud4C5C/xC1KDAs1B9bM/TFgWozRMUK17vpeaIKfKcCZwVulnGlPKJnSEPUsljVEH+eLUGTmzypBEibIlDVmoPydyGms9jUPbGVMz1qveXPzP62Umug5yLtPMoGTLRVEmiEnI/G8y5AqZEVNLKFPc3krYmCrKjE2nYkPwV1/+S9oXrl9363f1WoMUcZThBE7hHHy4ggbcQhNawGAET/ACr45wnp03533ZWnKKmWP4BefjG1AWjQ8=</latexit>

0.487

<latexit sha1_base64="6a7QID0uj5++ZIqxrMkfmBANyeg=">AAAB7HicbVBNS8NAEJ31s9avqkcvi0XwFBIJtMeCF48VTFtoQ9lsN+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8KBNcG9f9RlvbO7t7+5WD6uHR8clp7ey8o9NcURbQVKSqFxHNBJcsMNwI1ssUI0kkWDea3i387hNTmqfy0cwyFiZkLHnMKTFWClzHbzaGtbrruEvgTeKVpA4l2sPa12CU0jxh0lBBtO57bmbCgijDqWDz6iDXLCN0Ssasb6kkCdNhsTx2jq+tMsJxqmxJg5fq74mCJFrPksh2JsRM9Lq3EP/z+rmJm2HBZZYbJulqUZwLbFK8+ByPuGLUiJklhCpub8V0QhShxuZTtSF46y9vks6t4/mO/+DXW7iMowKXcAU34EEDWnAPbQiAAodneIU3JNELekcfq9YtVM5cwB+gzx9DjY2S</latexit>

T [K]

<latexit sha1_base64="S8C/q9zO+WBqeqLBFtu8S0KpiFE=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LFbBU0mkoMeCF8FLhbYW0lA222m7dLMJuxOxhP4MLx4U8eqv8ea/cdvmoK0PBh7vzTAzL0ykMOi6305hbX1jc6u4XdrZ3ds/KB8etU2cag4tHstYd0JmQAoFLRQooZNoYFEo4SEc38z8h0fQRsSqiZMEgogNlRgIztBKftPvIjxhdjcNeuWKW3XnoKvEy0mF5Gj0yl/dfszTCBRyyYzxPTfBIGMaBZcwLXVTAwnjYzYE31LFIjBBNj95Ss+t0qeDWNtSSOfq74mMRcZMotB2RgxHZtmbif95foqD6yATKkkRFF8sGqSSYkxn/9O+0MBRTixhXAt7K+UjphlHm1LJhuAtv7xK2pdVr1at3dcq9bM8jiI5IafkgnjkitTJLWmQFuEkJs/klbw56Lw4787HorXg5DPH5A+czx9qpJFB</latexit>

2220

<latexit sha1_base64="alVjv42xd+BA6ihACuAX0yogO/I=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lCQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgh9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNq777VS2tnd296r7tYPDo+OT+ulZT8epIrRLYh6rQYg15UzSrmGG00GiKBYhp/1wflf4/SeqNIvlo8kSGgg8lSxiBJtC8n3fHdcbbtNdAm0SryQNKNEZ179Gk5ikgkpDONZ66LmJCXKsDCOcLmqjVNMEkzme0qGlEguqg3x56wJdWWWColjZkgYt1d8TORZaZyK0nQKbmV73CvE/b5ia6DbImUxSQyVZLYpSjkyMisfRhClKDM8swUQxeysiM6wwMTaemg3BW395k/T8ptdqth5ajTYq46jCBVzCNXhwA224hw50gcAMnuEV3hzhvDjvzseqteKUM+fwB87nD8RqjU0=</latexit>

950

<latexit sha1_base64="ndSclPTIxsAiv5tGTUmIE1rwaZw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkot4KXjxWtB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj25nffkKleSwfzSRBP6JDyUPOqLHSw82l2y9X3Ko7B1klXk4qkKPRL3/1BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiVnVhmQMFa2pCFz9fdERiOtJ1FgOyNqRnrZm4n/ed3UhNd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLq6R1UfVq1dp9rVIneRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnBfn3flYtBacfOYY/sD5/AFiXY0b</latexit>

Figure 6.14: Steady-state species, velocity and temperature fields for the Methane/air coflow
diffusion flame.
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Figure 6.15: (left) velocity and (right) species mass fraction profiles along the vertical cen-
terline as obtained from (red plain line) Fluent and (black symbols) the LB solver.

is smaller than the flame front speed, consuming the fresh gas before it can form a
pocket,

• Corrugated flamelet : As for the previous regime, the flow structure is bigger than the
flame thickness. Here the flow structure is able to stretch the flame front and eventually
create small pockets with sizes comparable to that of the fluid structure,

• Thin reaction zones : The flow structure is smaller than or comparable to the flame
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thickness, however it is still bigger than the thickness of the inner layer (typically one-
tenth of the flame thickness). While not able to penetrate into the inner layer, the flow
structure enhances energy and mass transfer in the pre-heat zone,

• Broken reaction zone: Mixing due to small turbulent structure becomes faster than
the chemistry, and can lead to local extinction.

Indeed, it has been observed that flow structure size (as compared to the flame thickness)
and energy (or velocity) are two parameters determining the effect of the flow structure
on the flame front. To mimic flow/flame interactions, a number of studies have focused
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Figure 6.16: Regime diagram for premixed turbulent combustion [10].

on direct numerical simulations of the interaction between a pair of vortices and a flame
front [219, 220]. As such, following those studies, the interaction of a Methane/air premixed
flame front with two counter-rotating Lamb-Oseen vortices [221] is considered in a 2-D
configuration. The overall configuration is illustrated in Fig. 6.17. Such a configuration,
among other sources, was also studied with details in [222, 223, 2]. The simulations consist
of a rectangular domain of size Lx × Ly, with the flame front initially placed at x = Lx/2.
A fresh gas mixture at equivalence ratio of 0.7 and temperature of 800K fills the left-hand
side of the domain while the right-hand side is filled with burnt gas. Two counter-rotating
Lamb-Oseen vortices of radius rc are then placed at a horizontal distance d from the flame
front. While top and bottom boundaries are periodic, at the inlet (on the left) constant
temperature, composition and flow-rates are enforced. The outlet (on the left) is modeled
using zero-gradient boundary conditions. The Lamb-Oseen vortices are initialized as:

uθ(r) =
Γ

2πr

[
1− exp

(
r2

r2
c

)]
, (6.2)
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Figure 6.17: Overall configuration of the 2-D premixed flame/vortex interaction case.

where Γ is the vortex strength (also called vortex circulation) expressed in m2/s and r the
radial distance from the vortex center. For all cases studied here, the BFER chemical scheme
is used to model the flame [218], δx is set to 4.26× 10−5m and δt = 6× 10−8s. Furthermore,
Lx is set to 42.6mm and Ly to 17.04mm. The species and temperature profiles are initialized
using the solution of a 1-D freely-propagating flame at φ = 0.7. The vortices are then
initialized at a distance of 8rc from the flame front.

Twelve different combinations of vortex strength and core radius are considered here.
They are listed in Table 6.6. Before going into simulation of the different configurations and

case Γ[m2/s] rc[m] umax[m/s]

1 6.71× 10−2 3.43× 10−4 22.27
2 3.355× 10−2 3.43× 10−4 11.14
3 1.6775× 10−2 3.43× 10−4 5.57
4 8.3875× 10−3 3.43× 10−4 2.78
5 6.71× 10−2 1.715× 10−4 44.54
6 3.355× 10−2 1.715× 10−4 22.27
7 1.6775× 10−2 1.715× 10−4 11.14
8 8.3875× 10−3 1.715× 10−4 5.57
9 6.71× 10−2 8.575× 10−5 89.08
10 3.355× 10−2 8.575× 10−5 44.54
11 1.6775× 10−2 8.575× 10−5 22.27
12 8.3875× 10−3 8.575× 10−5 11.14

Table 6.6: Characteristics of considered configurations for the vortex/flame interaction study.

sets of parameters, a first simulation (corresponding to case number 1) was performed. The
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resulting iso-temperature contours at different stages of the interaction were then extracted
and compared to simulations reported in [2], performed with AVBP. Given that there were
minor differences between the present study and that reported in [2], such as initial distance
between the vortex pair and flame front, the comparison is only intended as a qualitative
validation of the solver. Given that the study presented here does not make use of grid
refinement, resolving the flame front and using the same domain size as that in [2] would
have been time-consuming. Temperature fields at three stages of the pocket formation
process as obtained from LB simulations and results from [2] are shown in Fig. 6.18. A good
agreement, in terms of pocket size and shape, can be observed here. The different stages

Figure 6.18: Snapshots of iso-temperature contours (from 1000 to 2000K with δT = 200K) at
three stages of the pocket formation process as obtained (bottom halves) from LB simulations
and (top halves) from [2] using AVBP.

of the pocket formation process are further illustrated in Fig. 6.19 via snapshots of the fuel
mass fraction field at four different times. In the first three snapshots, the flame is stretched
around the pair of vortices. Given that the rotation velocity of the vortices is larger than
the flame speed they take a pocket of fresh gas into the burnt gas area. After entering the
burnt gas area, as the vortices move, the pocket of fresh gas gets smaller due to consumption
by the flame around the vortices. Finally, approximately 0.3ms after the initial interaction
between the flame and the vortices, the pocket of fresh air disappears.

The simulations were then repeated for all sets of parameters in Table 6.6. The interac-
tions between the vortices and flame front are illustrated in Fig. 6.20 through the temperature
fields. Having in mind that at the fresh gas temperature and equivalence ratio considered
here the flame front speed is SL = 1.79m/s while the thickness is δF = 3.43×10−4m, it can be
seen that for the largest vortices, at umax = 2.78m/s, the flame propagation dominates over
the convective flux induced by the vortex and the fresh gas pocket is not formed. Although
the initial maximal velocity in the vortex is larger than the flame front speed, one must also
take into account dissipative losses before the vortex pair gets to the flame front. At higher
velocities, it can be observed that the vortex pair is able to form a pocket of fresh gas in the
burnt gas region. Looking at simulations with smaller vortices, it can also be seen that the
size of the pocket, as expected, is proportional to the size of the vortices. Furthermore, as the
size of the perturbation gets smaller, and closer to the flame thickness, δF = 3.43× 10−4m,
the vortices are unable to form pockets and only induce wrinkling in the flame front.

147



6.3. Concluding remarks

Figure 6.19: Fuel mass fraction fields at three different times, i.e. (from left to right): 0,
0.08, 0.16, 0.24 and 0.32ms for case 1.

Simulations performed in this section showed that the LB-based numerical schemes con-
sidered in the present manuscript can be used to model low Mach number combustion in
multi-dimensional configurations, for both premixed and diffusion flames, and can correctly
capture flame/flow interaction.

6.3 Concluding remarks

Out of the three different approaches considered in this chapter it was observed that the
compressible solver based on thermal Hermite expansion had a more limited stability do-
main (at least based on first-neighbor stencils and using collision models considered in this
manuscript). The low Mach formulation on the other hand, although not completely elim-
inating acoustic effects, allowed for larger time-steps. Furthermore, for the compressible
formulation to be usable for complex flows, more advanced collision models along with at
least a third-order EDF must be employed. These additional components surely affect the
performances of the solver. To better illustrate their effect, the computational performances
of different collision models in terms of million lattice updates per second (MLUPS) on
a D3Q27 stencil and a 128 × 128 × 128 domain and using a single processing unit were
measured. The results are shown in Fig. 6.21. It must be noted that these performances
only account for a single-species isothermal flow. Furthermore, the code not having been
optimized, and written to be modular more than efficient, these results do not reflect best
possible performances. As shown there, on a D3Q27 stencil, the addition of third-order terms
has a non-negligible impact on the performances of the solver. Taking into account the full
Hermite expansion in the EDF (order six) introduces a factor of nine in the computation
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Figure 6.20: Instantaneous snapshots of temperature field as obtained for different sets of
parameters: (from left to right) vortex core radii 3.43×10−4, 1.715×10−4 and 8.575×10−5m;
and (from top to bottom) vortex strengths 6.71 × 10−2, 3.355 × 10−2, 1.6775 × 10−2 and
8.3875× 10−3m2/s.

time of the scheme. Based on these results, the temperature-scaled central moments MRT
collision operator is the most efficient way to take into account the full Hermite expansion in
EDF and extend the stability domain of the collision operator as it only introduces a factor
of 2.5 in the computation time. The low Mach formulation on the other hand, not needing
the third-order components of the EDF and relying on a SRT collision operator is observed
to match the performances of the bare second-order SRT solver and outperform the com-
pressible solver by a factor of 2.7. Throughout the different simulations, it was also observed
that using finite differences to solve additional fields in 3-D, i.e. energy and species mass
balance, would result in a performance of 5.59 MLUPS per field while the corresponding
LB solver would peak at 5.1 MLUPS for the smallest possible stencil, i.e. D3Q7. It must
be noted that time spent on evaluating thermo-physical parameters and source terms is not
taken into account here. The coupling to REGATH and computation of thermo-physical pa-
rameters and source terms, assuming a flow with three species and a single reaction accounts
for approximately 60 percent of the computation time. The large amount of resources spent
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Figure 6.21: Performances of (left) the different collision models for the compressible formula-
tion and (right) comparison of compressible solver to low Mach formulation. EQN designates
the order of the EDF, CM-MRT refers to the MRT collision operator in temperature-scaled
central moment space, RR to the recursive regularized collision operator and low Mach to the
low Mach dilatable solver with a second-order EDF, in terms of MLUPS, short for Million
Lattice Updates Per Second.

on the evaluation of these parameters using REGATH might be explained, at least in part,
by the fact that ALBORZ is a C++ code while REGATH is written in Fortran. Given the
different approaches to memory allocation for multi-dimensional arrays in each one of these
programming languages, non-negligible resources and time are spent on converting data ar-
rays between them. As such, elaboration of a more efficient communication scheme between
the two solvers is expected to have non-negligible impact on the performances of the overall
code.
In conclusion, while all three approaches considered in this section are able to model low
Mach number combustion, the low Mach formulation of section 5.1 coupled to FD solvers
(approach I) for the additional fields allows both for larger time-steps and better perfor-
mances. Furthermore, the use of FD solvers for energy and species balance equations allows
for more flexibility in terms of the order of discretization in both space and time. It must also
be noted that while FD solvers based on a first-order time-discretization were slightly faster
than their LB counterparts, the latter were second-order accurate under both acoustic and
diffusive scaling. To achieve a similar order of accuracy (for example using a second-order
RK scheme) the cost would nearly double. The compressible solver on the other hand is
a promising formulation for fully compressible flows, and can be further improved through
concepts such as flow state-adaptive discretization of the distribution function. Some of
these concepts and possible directions are reviewed and studied in the next chapter.
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Chapter 7

Shifted stencils: A promising
approach to extend the stability
domain of the lattice Boltzmann
method
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7.1. Adaptive phase-space discretization of distribution function: brief overview

7.1 Adaptive phase-space discretization of distribution

function: brief overview

Throughout the different sections of the present thesis, it was shown and observed through
both theoretical analysis (asymptotic and spectral) and numerical applications that the
non-dimensionalization strategy and parameters, also known as reference state, have a huge
impact on the performances of the LB-based solver. They impact both stability and accu-
racy of the scheme. The error terms appearing at higher-order levels of the CE expansion, of
no physical interest, usually tied to higher-order (not supported by the stencil) moments of
the EDF are controlled by the scaling of the conserved variables. In chapters 2 and 5 it was
clearly shown that deviations of the local flow state from reference temperature θ = 1 tied
to δ2

x/δ
2
t and velocity u = 0 resulted in reduced stability domains and larger errors coming

from higher-order moments. The same behavior was also observed for advection-diffusion
based solvers in chapter 4. While one would expect the use of higher-order quadratures to
help broaden the stability domain and reduce errors, their effect remains limited. Further-
more, these quadratures come at much larger computational costs (especially in terms of
memory consumption and memory access bandwidth). A new concept, first introduced in
[224, 225, 226] and later improved in [95], extended the applicability domain of the LBM by
using adaptive discrete velocity stencils. While new in the LBM community, it is interesting
to note that this approach to extending discrete Boltzmann solvers to high Mach number
applications had already been proposed in [11, 12, 13] in the context of kinetic solvers with
Eulerian discretization of physical space. In the model proposed in [11, 12, 13] the origin of
the discrete velocity set was determined by the local fluid velocity while its unit was tied to
the local internal energy (tied to local temperature). This approach is illustrated in Fig. 7.1.
In this figure, the blue dashed vectors represent the discrete velocities used for phase-space
discretization. These discrete velocities are composed of the local fluid velocity (red vector)
and peculiar velocity components (black vectors), as appearing in the Maxwell-Boltzmann
EDF. The peculiar components, are scaled with the local internal energy. The final discrete
velocities are therefore direct results of the local fluid state. Another interesting point noted
in [12] is that for a stencil based on first neighbors, in the limit of vanishing viscosities, this
approach leads to the Euler equations. The benefits of such an adaptive construction of the
discrete velocities are limited in the context of an Eulerian discretization of space, as the
solver would still be limited by the CFL condition. The LB formulation however, based on
an exact integration of the convection term in the Boltzmannn equation could benefit much
more from an adaptive reconstruction of the discrete populations, as it would guarantee that
numerical scheme characteristics embed the analytical (from the continuous PDE) domain
of dependence. That is why Sun et al. were able to model high Mach number flows using
this approach and the LBM formalism in [224, 225, 226]. Adaptive discrete velocities were
recently updated (with a predictor-corrector formulation) and reformulated in a more con-
sistent theoretical framework in [95] as the PonD (Particles on Demand) formulation. In
the PonD method, the populations are not guaranteed to fall on a discrete grid-point after
the streaming step, as the discrete velocities have a continuous component stemming from
the local fluid speed. As such, the collision and streaming steps are supplemented with a
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7.2. Galilean invariance of Gauss-Hermite quadratures

reconstruction step (of populations on the discrete grid-points) using Lagrange polynomials.
An on-grid version of the method (minus the adaptive nature of the velocity shift) was also
used in [94]. To clarify the effect of adaptive stencils and their potential in modeling flows

Figure 7.1: The concept of adaptive stencils as proposed in [11, 12, 13].

involving large temperature variations and Mach number, as a proof of concept, we will
present a brief numerical and theoretical analysis of the LBM on shifted stencils.

7.2 Galilean invariance of Gauss-Hermite quadratures

To demonstrate the Galilean invariance of the Gauss-Hermite quadrature, one can start with
the Maxwell-Boltzmann EDF and write it in a non-dimensional form as:

f (eq) (ξ∗,u∗, θ) = ρ(2πθ)−D/2 exp−(ξ∗ − u∗)2

2θ∗
, (7.1)

where D is the physical dimension of the system, θ∗ = kBT/m
cs

while ξ∗ = ξ−U
cs

and u∗ = u−U
cs

.
With this change of variable the reference velocity changes from zero toU , while the reference
sound speed is set to cs. Proceeding as for the classical stencils to expand the EDF in terms
of Hermite polynomials [90, 227, 88]:

f (eq) (ξ∗,u∗, θ∗) = w (ξ∗)
∞∑
n=0

1

n!
a(eq)
n (u∗, θ∗) : Hn (ξ∗) , (7.2)

where the weight function w (ξ∗) is defined as:

w (ξ∗) = (2π)−D/2 exp

(
−ξ
∗2

2

)
, (7.3)
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one obtains the first few Hermite polynomials as a function of the re-defined velocities:

H0 = 1, (7.4a)

H1,i1 = ξ∗i1 , (7.4b)

H2,i1i2 = ξ∗i1ξ
∗
i2
− δi1i2 , (7.4c)

H3,i1i2i3 = ξ∗i1ξ
∗
i2
ξ∗i3 −

[
ξ∗i1δi2i3

]
cyc
, (7.4d)

H4,i1i2i3i4 = ξ∗i1ξ
∗
i2
ξ∗i3ξ

∗
i4

+ [δi1i2δi3i4 ]cyc −
[
ξ∗i1ξ

∗
i2
δi3i4

]
cyc

(7.4e)

It is interesting to note that the forms and expression of the polynomials are exactly similar
to those in Eq. 2.44. Using these polynomials and the EDF, the corresponding coefficients
can be computed:

a
(eq)
0 = ρ, (7.5a)

a
(eq)
i1

= ρu∗i1 , (7.5b)

a
(eq)
i1i2

= ρu∗i1u
∗
i2

+ ρ (θ∗ − 1) δi1i2 , (7.5c)

a
(eq)
i1i2i3

= ρu∗i1u
∗
i2
u∗i3 + ρ (θ∗ − 1) [ui1δi2i3 ]cyc , (7.5d)

a
(eq)
i1i2i3i4

= ρu∗i1u
∗
i2
u∗i3u

∗
i4

+ ρ(θ∗ − 1)2 [δi1i2δi3i4 ]cyc + ρ (θ∗ − 1)
[
u∗i1u

∗
i2
δi3i4

]
cyc
. (7.5e)

As for the Hermite polynomials it is readily observed that, setting U = 0 and cs to√
kBT0/m0, one would recover the classical LBM formulation Hermite coefficients. Discretiz-

ing phase-space using the Gauss-Hermite quadrature [227, 88], at order three for example,
one obtains exactly the same non-dimensional abscissae c∗α with (in the case of the D2Q9
stencil) c∗α,i ∈ {−

√
3, 0,
√

3}, and corresponding weights, i.e. wα = Πi=x,ywα,i. This clearly
establishes the Galilean invariance of the phase-space discretization procedure. To better
convey the possibilities of such an approach let us first write down the resulting discrete
EDF (expanded up to order two for simplicity) in terms of flow field variables:

f (eq,2)
α = wαρ

[
1 +

(cα −U ) · (u−U)

c2
s

+
[(cα −U) · (u−U)]2

2c4
s

− (u−U)2

2c2
s

+

[
(cα −U)2 −D

]
(θ∗ − 1)

2c4
s

]
. (7.6)

Setting U = 0 and cs = δx
δt
√

3
one recovers the classical LBM formulation.

7.3 Shifted stencils with on-lattice streaming

In Eq. 7.6, setting cs = δx
δt
√

3
and U = Nx δxδt ex + Ny δxδt ey, where ex and ey are the unit

vectors in the x- and y-directions and Nx and Ny integer constants, one can obtain shifted
stencils with on-lattice propagation. Four sample D2Q9 shifted stencils are shown in Fig. 7.2.
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7.3. Shifted stencils with on-lattice streaming

Shifted stencils are very interesting as they retain all the main advantages of the LBM

Nx =
�x

�t
, Ny = 0
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Figure 7.2: Shifted stencils as obtained through introducing unit shift velocities in the x-
and y-directions.

formulation, namely exact advection step and linear collision operator. Furthermore, there
is no computational overhead going from classical stencils to shifted ones. The shift in the
stencil allows one to access much higher CFL (or Mach) numbers. This can be readily verified
by looking at the higher-order error curves for different values of the shift velocity. The
normalized errors for the diagonal and off-diagonal components of the third-order moments
tensor, using a second-order EDF, are displayed in Fig. 7.3. Three different shifts in the
x-direction are considered: Nx = 0, Nx = δx

δt
and Nx = 2 δx

δt
. The span-wise Mach number

is set to 0.2. While the non-shifted stencil admits very large errors at high Mach numbers,
it can be seen that for the shifted stencils, the errors vanish at Mach numbers of

√
3 and

2
√

3, which are the Mach numbers corresponding to the imposed shifts on the stencils. To
further theoretically confirm that shifted stencils can extend the usability domain of the
LBM in terms of Mach number, following the formalism introduced in subsection 3.2.1,
linear stability domains of the shifted stencils have been computed.

In order to show that the shift in the stencil conserves all the properties of the different
collision operators, these analyses have been performed with three different EDFs and an two

156



7.3. Shifted stencils with on-lattice streaming

0 1 2 3 4 5

Ma
x

10
-10

10
-5

10
0

10
5

0 1 2 3 4 5

Ma
x

10
-6

10
-4

10
-2

10
0

10
2

Figure 7.3: Normalized error of moments (left) Πx3 and (right) Πx2y with (in red) Nx = 0,
(in blue) Nx = δx

δt
and (in green) Nx = 2 δx

δt
. The span-wise Mach number is set to 0.2 and a

second-order expansion is used for the EDF.

collision operators. These include Hermite expanded EDFs of orders two and four and the
entropic EDF, all with the SRT collision operator and the fourth-order LKS and recursive
regularized collision operators. The obtained stability domains with a shift of Ux = δx

δt
are

illustrated in Fig. 7.4. The stability domains are computed for different values of the non-
dimensional viscosity and over the entire Mach number vector space (taking into account
both the magnitude of the velocity vector and its orientation in 2-D space). As such the angle
appearing in this figure represents the angle between the velocity vector and the x−axis. To
get a clearer image of the effect of the velocity shift, the linear stability domains of these
EDFs and collision operators on non-shifted stencils are also shown in Fig. 7.5. As observed
by comparing the linear stability domains of Figs. 7.4 and 7.5, the shift in the stencil induces
the same shift in the linear stability domain, making high Mach number flow simulations
possible.

As a proof of concept, and to corroborate spectral analysis results, the case of the isother-
mal convected vortex is considered. This test-case consists of a vortex convected by a uniform
background velocity field. The vortex is initialized as:

ux = u0 − β0u0
y − yc
r0

exp− r
2

2r2
0

, (7.7a)

uy = β0u0
x− xc
r0

exp− r
2

2r2
0

, (7.7b)

ρ = 1− β2
0u

2
0

2c2
s

exp−r
2

r2
0

, (7.7c)

where u0 is the background convection velocity, β0u0 is the vortex strength, r0 the vortex
radius, xc and yc the coordinates of the vortex center. This configuration corresponds to
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Figure 7.4: Linear stability domains of the shifted stencil (Ux = δx/δt) for (top row) different
EDFs: (from left to right) entropic, second- and fourth-order, and (bottom row) different
collision models (with the fourth-order EDF), i.e. (from left to right) LKS and recursive
regularized, for different values of the non-dimensional viscosity: ( )0.5, ( )0.1, ( )0.05,
( )0.01, ( )5×10−3, ( )1×10−3, ( )5×10−4. The angles designate the orientation of
the velocity (Mach number) vector. The Ma number axis scale is different for the entropic
EDF as the domain is considerably larger.

the isothermal configuration of the isentropic vortex convection of [228]. To further amplify
instabilities, for all simulation results presented in this section, the vortex strength is set to:

β0u0 =
|u0 − U |

5
, (7.8)
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Figure 7.5: Linear stability domains of the non-shifted stencil for (left) second- and fourth-
order SRT, LKS and recursive regularized (shown as RR) with fourth-order EDFs and (right)
the entropic EDF, for different values of the non-dimensional viscosity: ( )0.5, ( )0.1,
( )0.05, ( )0.01, ( )5 × 10−3, ( )1 × 10−3, ( )5 × 10−4. While stability limits for
each model are shown only in one quadrant, it should be noted that they are the same in
the other quadrants. The Ma number axis scale used for the entropic EDF is different from
the other schemes as the corresponding linear stability region is considerably larger.

and the vortex radius to 1/20 of the domain size. The simulation domain is bound by
periodic boundary conditions all around. Furthermore, populations are initialized using the
corresponding equilibrium function.
To confirm the effect of the velocity shift on stability when the shift coincides with the flow
speed, inviscid cases are first considered. The resolution is fixed at 256 × 256. For the
inviscid configurations, simulations are performed over 20 convective cycles. The initial and
final pressures, as obtained using the SRT collision operator with a second-order EDF for
different velocities and corresponding shifts are shown in Fig. 7.6. Results shown in Fig. 7.6
correspond to Ma = 1.73, 3.46 and 5.19, which would have been impossible to carry out on
normal stencils. To further demonstrate the effect of the velocity shift on the behavior of
the solver the isothermal convected vortex case was ran for different Mach numbers and non-
dimensional viscosities, over 70 convective cycles. The overall kinetic energy of the domain
was monitored to detect the onset of instability. The obtained results were then used to
establish a stability domain for each one of the EDFs and collision operators. The results
are displayed in Fig. 7.7. The entropic EDF was not considered in this study, as purely
considering linear stability would not have been a good measure of its applicability domain.
As mentioned previously and illustrated in Fig. 7.5, the entropic EDF is unconditionally
stable for all velocities within the bounds set by the stencil. While linearly stable, the entropic
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Figure 7.6: Comparison of pressure contours for an inviscid vortex at (dotted red lines) t/tc =
0 and (plain black lines) t/tc = 20 with tc = L/u0 being the convective characteristic time
and L the simulation domain size. Vortices are convected at (from left to right) u0 = δx/δt,
u0 = 2δx/δt and u0 = 3δx/δt using SRT collision operator with the second-order polynomial
EDF. The lattice shifts are set to the background velocity.
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Figure 7.7: Stability domains of different EDFs and collision models as obtained from the
isothermal vortex test-case on a shifted stencil with a shift of Ux = δx/δt. As shown in the
plot, the SRT collision operator along with two different EDFs, i.e. second- (SRT-EQ2) and
fourth-order (SRT-EQ4), are considered. Furthermore, the LKS and recursive regularized
(RR) collision operators with fourth-order EDFs are also studied. Upper and lower lines
represent the upper and lower stability limits.

EDF exhibits large errors (both dispersive and dissipative) as the local speed deviates from
the reference state of the stencil. These errors are illustrated in Fig. 7.8 where the pressure
contours after one convective cycle are compared to the initial ones for a simulation on a
shifted stencil with Ux = δx

δt
and vortex convection velocities of u0 = 0.8 δx

δt
and u0 = 1.2 δx

δt
.

These errors can be further quantified by measuring the L2 norm of the velocity field errors.
Figure 7.9 compares the L2 norm of the error in the velocity fields as obtained with the
entropic and fourth-order Hermite expanded EDF for different values of the Mach number
on a stencil with a shift of Ux = δx

δt
. As expected, as the vortex convection velocity gets away
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7.3. Shifted stencils with on-lattice streaming

Figure 7.8: Comparison of pressure contours for an inviscid vortex at (red dashed lines)
t/tc = 0 and (black plain lines) t/tc = 1 with tc = L/u0 being the convective characteristic
time. Vortices are convected at (left) u0 = 0.8δx/δt and (right) u0 = 1.2δx/δt, using the
entropic EDF. The lattice shifts are set to Ux = δx/δt.

from the reference stencil velocity (or Mach number), the errors grow. However, comparing
the errors of the fourth-order and entropic EDF, it can be observed that these errors are
more pronounced for the latter. This in turn is in agreement with results shown in Fig. 7.8
and the higher-order error analysis presented earlier in this section.
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Figure 7.9: L2 norm of error for the entropic and fourth-order EDFs at t/tc = 1 on a shifted
stencil with a shift of Ux = δx/δt.

All of the simulation and analyses provided in this part confirm that shifted stencils
are potentially viable solutions towards simulation of high Mach number flows using the
LBM. While the present analysis was limited to shifted-stencils with on-lattice propaga-
tion, one can readily refer to [95] for local flow state-adaptive stencils, supplemented with a
predictor-corrector algorithm (to allow for better stability and smaller errors) and population
reconstruction via higher-order interpolation through Lagrange polynomials. An adaptive
scheme based solely on on-lattice shifts can not be achieved on first-neighbor stencils, as
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there is no overlap of the stability domains to allow for stable transition from one stencil to
another. However, going one order higher in quadratures, such an overlap can be achieved,
and can potentially allow for adaptive shifted stencils with on-grid streaming.

7.4 Final remarks

The study detailed in this chapter clearly shows that the performances of the lattice Boltz-
mann solver are closely tied to the deviation of the local fluid state from the stencil reference
state. It was also shown, through both theoretical and numerical analyses that adapting the
stencil reference state to the local fluid state (through shifted stencils among many other
possible approaches) is a very inexpensive and efficient way to improve the numerical prop-
erties of the solver and extend its usability domain to larger Mach numbers and inviscide
flows. This approach will be further studied and possibly extended to multi-species kinetic
models in the future.
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8.1. Conclusions

8.1 Conclusions

The present thesis focused on the development and validation of numerical schemes based
on the LBM formalism for reacting flows. Given that the aim was to develop a numerical
solver for large-scale simulations and, possibly, detailed chemistry, from the very start of
the work only decoupled approaches for the thermal multi-species flows were considered.
The reason behind this choice was to minimize memory consumption and computational
load, as fully multi-component formulations would have led to large stencils, for each one
of the species. For example, for an isothermal multi-species flow with Nsp species, one
would need a minimum of 19 discrete populations per grid-point per species, i.e. 19Nsp

discrete populations. However, in the decoupled mixture-averaged formulation, the number
of discrete populations to be stored in memory at each grid-point reduces to 7Nsp+19 (using
a D3Q7 stencil for the species). To develop such decoupled models in the context of the LBM
the following challenges and solutions were respectively identified and proposed:

• Stability issues of the SRT collision operator: To understand the stability of the SRT
collision operator at vanishing viscosities and check the performance of more advanced
collision operators found in the literature, their stability domains and spectral prop-
erties were systematically analyzed using the von Neumann formalism. It was shown
that the MRT collision operator in central moments space had the widest stability
domain, along with the recursive regularized model of the same order. While a sys-
tematic VN analysis of the free parameter (ghost moments relaxation coefficient) in
the MRT collision operator showed that setting higher-order moments to their equilib-
rium counterparts would result in the widest linear stability domain, it must be noted
that the search-space was limited by relaxing all higher-order moments at the same
rate. Furthermore, it was also observed that using the regularization argument as clo-
sure for the relaxation of these moments would introduce pronounced grid-dependent
hyper-viscosity.

• Minimalist LB-based solvers for energy and species mass balance equations: The clas-
sical passive scalar LB models, developed for classical advection-diffusion PDEs were
extended to recover the correct forms of the energy and species mass balance equations.
In addition, as an alternative to these solvers, finite-difference solvers were also con-
sidered and coupled to the LB code. These minimalist models were shown to correctly
capture the target dynamics through a number of different test-cases.

• Introduction of dilatation effects in the LB flow solver: Two different approaches to
introduce dilatation effects into the LB flow solver were studied. One is similar to
the low Mach formulation used in classical combustion codes, relying on decoupling
thermodynamic pressure and velocity field. The second approach relies on a thermal
Hermite expansion recovering, with the appropriate correction term, the fully com-
pressible NS equations. While both are able to capture dilatation effects, a systematic
VN analysis showed that the latter is subject to accuracy and stability issues. To
account for the issue with Galilean invariance of the shear mode dissipation rate it was
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shown that a third-order (or higher) Hermite expansion is necessary. For the acous-
tic modes however, this artifact is tied to the order of the Gauss-Hermite quadrature
and can only be accounted for through a correction term. The linear stability domain
was also extended using an MRT collision operator in a temperature-scaled central
moments space.

While all proposed schemes were shown to correctly model combustion, the low Mach for-
mulation coupled to FD solvers for the energy and species mass balance equations was
observed to yield the best performances. While the decoupling of acoustics from the flow
field allowed for larger time-step sizes, the use of FD solvers with first-order Euler time-
discretization slightly outperformed the full LB solver. This last assertion must be nuanced
by the fact that while the FD solvers were first-order accurate under acoustic scaling, their
LB counterparts showed second-order convergence under both diffusive and acoustic scaling.
Furthermore, the use of FD solvers for the species mass and energy balance equations allows
for more flexibility in terms of the discretization strategy (in both space and time). As
such, for the applications targeted here, the hybrid LB-FD approach appears to be the most
promising for future developments.

8.2 Perspectives

The von Neumann analysis along with numerical application of the first-neighbor stencil to
thermal flows showed that it had a rather limited stability area and therefore applicability
domain. To alleviate this issue, at least partly, a temperature-scaled collision operator was
proposed. The von Neumann analysis showed that this modified collision operator extended
the stability domain (while setting relaxation coefficient of all ghost modes to 1). It is clear
that the additional degrees of freedom provided by the MRT nature of the collision operator
provide a large search-space to ensure linear stability. Apart from the linear stability do-
main, it was also observed that the regularization path leads to pronounced over-dissipation
of mid-range structures (in terms of the wave number). The entropic MRT, also referred
to as KBC, can be a good alternative to provide closure for this collision operator while
taking advantage of the full parameter space tied to the relaxation of ghost moments. As
such, one interesting future work is to apply this closure to the relaxation coefficients of the
temperature-scaled collision operator for the simulation of thermal flows.

Another aspect not treated in the present manuscript is the issue of efficient and accu-
rate treatments of boundaries in the context of the presented formulations. The half-way
bounce-back family of boundary conditions is one of the attractive features of the LB formu-
lation, as they are both simple and efficient to implement, second-order accurate and allow
to model walls without being confronted to the issue of providing closure for the pressure
at the boundary. In practice, this is one of the most pressing issues when using incompress-
ible solvers for flows in complex geometries. Given the complexity of specifying boundary
conditions for the Poisson equation, complex geometries are usually handled with Immersed
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Boundaries. Such an approach, while allowing for flow simulations in complex geometries
[229] has serious effects on the performances (both in terms of accuracy and efficiency) of
the solvers. Efficiency is affected by the fact that the NS equations have to be solved in
the solid areas, introducing non-negligible overhead especially for flows in porous media.
Furthermore, devising a high-order accurate Immersed Boundary treatment has proven to
be a rather difficult task [230, 231, 232]. Bounce-back conditions are especially useful for
the low Mach LB formulation used in the present work, as one does not need to explicitly
enforce boundary conditions on the hydrodynamic pressure at the walls. While used for
the present simulations, the boundary conditions still need improvements such as curved-
boundary treatment (readily treated in the literature, e.g. [233, 234, 235]) and addition of
non-reflective features, especially useful for the compressible solver.
During the course of the present thesis, and through the different numerical and theoretical
analyses, it was observed that the stencil reference state controls the numerical behavior of
the LB solver. This fact is readily confirmed by the fact that at this specific state, the discrete
populations correctly match all the moments of their continuous counterpart, and exactly
satisfy the H-theorem. It was also shown that using shifted stencils can open the door for
high Mach number simulations. As such, the concept of adaptive phase-space discretization
is a promising direction to enhance numerical properties of LB solvers and extend their appli-
cation domain to higher Mach numbers and temperatures, and even efficient kinetic models
for multi-species flows. Therefore, another possible feature work would focus on develop-
ing numerical solvers for appropriate multi-species kinetic models relying on state-adaptive
phase-space discretization.
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[65] J. Yvon. La théorie statistique des fluides et l’équation d’état, volume 203. Hermann
& Cie, 1935. (page 8, 10)

[66] J.G. Kirkwood. The statistical mechanical theory of transport processes I. general
theory. The Journal of Chemical Physics, 14(3):180–201, 1946. (page 8, 10)

[67] J.G. Kirkwood. The statistical mechanical theory of transport processes II. transport
in gases. The Journal of Chemical Physics, 15(1):72–76, 1947. (page 8, 10)

[68] M. Born and H.S. Green. A general kinetic theory of liquids I. the molecular distri-
bution functions. Proceedings of the Royal Society of London. Series A. Mathematical
and Physical Sciences, 188(1012):10–18, 1946. (page 8, 10)

[69] G.M. Kremer. An introduction to the Boltzmann equation and transport processes in
gases. Springer Science & Business Media, 2010. (page 12, 15)

[70] P.L. Bhatnagar, E.P. Gross, and M. Krook. A model for collision processes in gases.
I. small amplitude processes in charged and neutral one-component systems. Physical
Review, 94:511–525, May 1954. (page 13)

[71] Y. Zheng and H. Struchtrup. Ellipsoidal statistical Bhatnagar–Gross–Krook model
with velocity-dependent collision frequency. Physics of Fluids, 17(12):127103, 2005.
(page 13)

[72] J. Meng, Y. Zhang, N.G. Hadjiconstantinou, G.A. Radtke, and X. Shan. Lattice
ellipsoidal statistical BGK model for thermal non-equilibrium flows. Journal of Fluid
Mechanics, 718:347–370, 2013. (page 14)

[73] E.M. Shakhov. Generalization of the Krook kinetic relaxation equation. Fluid Dynam-
ics, 3(5):95–96, 1968. (page 14)

[74] E.M. Shakhov. Approximate kinetic equations in rarefied gas theory. Fluid Dynamics,
3(1):112–115, 1968. (page 14)

[75] I.V. Karlin. Derivation of regularized Grad’s moment system from kinetic equations:
Modes, ghosts and non-Markov fluxes. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 376(2118):20170230, 2018.
(page 15)

[76] H. Struchtrup and M. Torrilhon. Regularization of Grads 13 moment equations:
Derivation and linear analysis. Physics of Fluids, 15(9):2668–2680, 2003. (page 15)

172



Bibliography

[77] D. Enskog. The numerical calculation of phenomena in fairly dense gases. Arkiv Mat.
Astr. Fys, 16(1):1–60, 1921. (page 16)

[78] H. Struchtrup. Macroscopic Transport Equations for Rarefied Gas Flows. Springer,
2005. (page 16)

[79] S. Chapman. On the kinetic theory of a gas. part II.A composite monatomic gas:
Diffusion, viscosity, and thermal conduction. Philosophical Transactions of the Royal
Society of London. Series A, 217(549-560):115–197, 1918. (page 16)

[80] S. Chapman. VI. On the law of distribution of molecular velocities, and on the theory
of viscosity and thermal conduction, in a non-uniform simple monatomic gas. Philo-
sophical Transactions of the Royal Society of London. Series A, 216(538-548):279–348,
1916. (page 16)
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[95] B. Dorschner, F. Bösch, and I.V. Karlin. Particles on demand for kinetic theory.
Physical Review Letters, 121(13):130602, 2018. (page 19, 153, 161)

[96] S. Ansumali, I.V. Karlin, and H. Christian Öttinger. Minimal entropic kinetic models
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ible lattice Boltzmann simulations of reacting flows with detailed thermo-chemical
models. Computers & Mathematics with Applications, 79(1):141–158, 2020. (page 71,
99)

[169] N. Frapolli. Entropic lattice Boltzmann models for thermal and compressible flows.
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B.1. Single variable Hermite polynomials

B.1 Single variable Hermite polynomials

The single variable Hermite polynomial Hn of order n of a variable x is defined as:

Hn(x) =
(−1)n

w(x)

dn

dxn
w(x), (B.1)

where the normalized function w(x) is defined as:

w(x) =
1√
2π
e−

x2

2 . (B.2)

Based on this definition, the first few polynomials can be computed as:

H0 = 1, (B.3a)

H1 = x, (B.3b)

H2 = x2 − 1, (B.3c)

H3 = x3 − 3x, (B.3d)

H4 = x4 − 6x2 + 3, (B.3e)

H5 = x5 − 10x3 + 15x, (B.3f)

H6 = x6 − 15x4 + 45x2 − 15. (B.3g)

These polynomials are mutually orthogonal with respect to the weight function, w(x), i.e.:∫ +∞

−∞
Hm(x)w(x)Hn(x)dx = n!δmn, (B.4)

where δmn is the Kronecker delta function. Furthermore, they form a complete orthogonal
basis of the Hilbert space of functions f(x) satisfying:∫ +∞

−∞
|f(x)|2w(x)dx <∞. (B.5)

As such, one can express the function f(x) as:

f(x) =
∞∑
n=0

anHn(x), (B.6)

where an is the order n Hermite coefficient. Multiplying both sides by Hm(x)w(x) and
integrating over x:∫ +∞

−∞
Hm(x)w(x)f(x)dx =

∞∑
n=0

an

∫ +∞

−∞
Hm(x)w(x)Hndx, (B.7)
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B.1. Single variable Hermite polynomials

and using the mutual orthogonality of Hermite polynomials, we get an expression for the
Hermite coefficients as:

am =
1

m!

∫ +∞

−∞
Hm(x)w(x)f(x)dx. (B.8)

Alternatively, one can also expand the function f(x) as:

f(x) = w(x)
∞∑
n=0

1

n!
anHn(x), (B.9)

resulting in the following expression for the coefficient a(m):

am =

∫ +∞

−∞
Hm(x)f(x)dx. (B.10)

To better illustrate this, let us consider the example of the following function:

f(x) = ρ
1√
2πθ

e−
(x−u)2

2θ . (B.11)

This function can be shown to be square-integrable with respect to the previously-defined
weight function. As such the corresponding Hermite coefficients can be computed through
Eq. B.10:

am =
1√
2πθ

∫ +∞

−∞
Hm(x)e−

(x−u)2
2θ dx, (B.12)

which using the change of variable η = (x− u)/
√
θ can be re-written as:

am =
1√
2π

∫ +∞

−∞
Hm(
√
θη + u)e−

η2

2 dη. (B.13)

The different order coefficients can be easily evaluated using the following integral:

∫ +∞

−∞
xke−ax

2

dx =

0 k = 2k
′
+ 1

(2k
′−1)!

(2a)k
′

√
π
a

k = 2k
′ , (B.14)

leading to the following expansion:

f(x) =
∞∑
n=0

ρw(x)

n!
anHn(x). (B.15)

The first few terms are given in Table B.1.
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n an Hn(x)

0 1 1
1 u x
2 u2 + (θ − 1) x2 − 1
3 u3 + 3u(θ − 1) x3 − 3x

4 u4 + 6u2(θ − 1) + 3(θ − 1)2 x4 − 6x2 + 3

5 u5 + 10u3(θ − 1) + 15u(θ − 1)2 x5 − 10x3 + 15x

6 u6 + 15u4(θ − 1) + 45u2(θ − 1)2 + 15(θ − 1)3 x6 − 15x4 + 45x2 − 15

7 u7 + 21u5(θ − 1) + 105u3(θ − 1)2 + 105u(θ − 1)3 x7 − 21x5 + 105x3 − 105x

8
u8 + 28u6(θ − 1) + 210u4(θ − 1)2 + 420u2(θ − 1)3

+105(θ − 1)4
x8 − 28x6 + 210x4 − 420x2

+105

9
u9 + 36u7(θ − 1) + 378u5(θ − 1)2 + 1260u3(θ − 1)3

+945u(θ − 1)4
x9 − 36x7 + 378x5 − 1260x3

+945x

Table B.1: Hermite polynomials and coefficients for the Gaussian distribution function

B.2 Multivariate Hermite polynomials

In a D-dimensional space the Hermite polynomial of order n is defined as:

Hn (x) =
(−1)n

w (x)
∇nw (x) , (B.16)

where ∇n is the nth order derivative resulting in a tensor of rank n and w (x) is the weight
function defined as:

w (x) =
1

2πD/2
e−

x2

2 . (B.17)

Orthogonality of the multivariate Hermite polynomials results in:∫ +∞

−∞
w (x)Hi (x) : Hj (x) dx =

{
0 m 6= n

n!δi,j m = n
, (B.18)

where i and j are abbreviations for the set of indices {i1, i2, . . . , in} and {j1, j2, . . . , jn}
respectively, and δi,j is equal to unity if i is a permutation of j and zero otherwise. In a 3-D
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B.2. Multivariate Hermite polynomials

space the first few Hermite polynomials are computed as:

H0 = 1, (B.19a)

Hi = xi, (B.19b)

Hij = xixj − δij, (B.19c)

Hijk = xixjxk − (δijxk + δikxj + δjkxi) , (B.19d)

Hijkl = xixjxkxl − (δijxkxl + δikxjxl + δilxjxk + δjkxixl + δjlxixk + δklxixj)

+ (δijδkl + δikδjl + δilδjk) , (B.19e)

Hijklm = xixjxkxlxm − (δlmxixjxk + δkmxixjxl + δklxixjxm + δjmxixkxl

+δjlxixkxm + δklxixlxm + δimxjxkxl + δilxjxkxm + δikxjxlxm + δijxkxlxm)

+ xm (δijδkl + δikδjl + δilδjk) + xl (δijδkm + δikδjm + δimδjk)

+ xk (δijδlm + δilδjm + δimδjl) + xj (δikδlm + δilδkm + δimδkl)

+ xi (δjkδlm + δjlδkm + δjmδkl) , (B.19f)

Hijklmn = xixjxkxlxmxn − (xixjxkxlδmn + xixjxkxmδln + xixjxkxnδlm

+xixjxlxmδkn + xixjxlxnδkm + xixjxmxnδlk + xixkxlxmδjn

xixkxlxnδjm + xixkxmxnδjl + xixlxmxnδjk + xjxkxlxmδin

+xjxkxlxnδim + xjxlxmxnδik + xjxkxlxnδim + xjxkxmxnδil + xkxlxmxnδij)

+ xixj (δklδmn + δkmδln + δknδlm) + xixk (δjlδmn + δjmδln + δjnδml)

+ xixl (δjkδmn + δjmδkn + δjnδmk) + xixm (δjkδln + δjlδkn + δjnδlk)

+ xixn (δjkδlm + δjlδkm + δjmδlk) + xjxk (δinδlm + δilδnm + δimδln)

+ xjxl (δinδkm + δikδnm + δimδkn) + xjxm (δinδkl + δikδnl + δilδkn)

+ xjxn (δilδkm + δikδlm + δimδkl) + xkxl (δmnδij + δmiδnj + δmjδin)

+ xkxm (δijδln + δilδjn + δinδlj) + xkxn (δmlδij + δmiδlj + δmjδil)

+ xlxm (δijδkn + δikδjn + δinδkj) + xlxn (δmkδij + δmiδkj + δmjδik)

+ xnxm (δijδkl + δikδjl + δilδkj) + δij (δklδmn + δkmδln + δknδml)

+ δik (δjlδmn + δjmδln + δjnδml) + δil (δkjδmn + δkmδjn + δknδmj)

+ δim (δjlδln + δjkδln + δjnδkl) + δin (δkjδml + δkmδjl + δklδmj) . (B.19g)

As for the single variable case, for a square-integrable function f (x), it can be expressed as:

f (x) = w (x)
∞∑
n=0

an : Hn (x) , (B.20)

where the Hermite coefficients a(n) are defined as:

an =
1

n!

∫ +∞

−∞
f (x)Hn (x) dx, (B.21)
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B.2. Multivariate Hermite polynomials

resulting in the following coefficients for the Maxwell-Boltzmann distribution function:

a0 = ρ, (B.22a)

ai = ρui, (B.22b)

aij = ρuiuj + ρ (θ − 1) δij, (B.22c)

aijk = ρuiujuk + ρ (θ − 1) (δijuk + δikuj + δjkui) , (B.22d)

aijkl = ρuiujukul + ρ (θ − 1) (δijukul + δikujul + δilujuk + δjkuiul + δjluiuk + δkluiuj)

+ ρ(θ − 1)2 (δijδkl + δikδjl + δilδjk) , (B.22e)

aijklm = ρuiujukulum + ρ (θ − 1) (δlmuiujuk + δkmuiujul + δkluiujum + δjmuiukul

+δjluiukum + δkluiulum + δimujukul + δilujukum + δikujulum + δijukulum)

+ ρ(θ − 1)2 [um (δijδkl + δikδjl + δilδjk) + ul (δijδkm + δikδjm + δimδjk)

+uk (δijδlm + δilδjm + δimδjl) + uj (δikδlm + δilδkm + δimδkl)

+ui (δjkδlm + δjlδkm + δjmδkl)] , (B.22f)

aijklmn = ρuiujukulumun + ρ (θ − 1) (uiujukulδmn + uiujukumδln + uiujukunδlm

+uiujulumδkn + uiujulunδkm + uiujumunδlk + uiukulumδjn

uiukulunδjm + uiukumunδjl + uiulumunδjk + ujukulumδin

+ujukulunδim + ujulumunδik + ujukulunδim + ujukumunδil + ukulumunδij)

+ ρ(θ − 1)2 [uiuj (δklδmn + δkmδln + δknδlm) + uiuk (δjlδmn + δjmδln + δjnδml)

+uiul (δjkδmn + δjmδkn + δjnδmk) + uium (δjkδln + δjlδkn + δjnδlk)

+uiun (δjkδlm + δjlδkm + δjmδlk) + ujuk (δinδlm + δilδnm + δimδln)

+ujul (δinδkm + δikδnm + δimδkn) + ujum (δinδkl + δikδnl + δilδkn)

+ujun (δilδkm + δikδlm + δimδkl) + ukul (δmnδij + δmiδnj + δmjδin)

+ukum (δijδln + δilδjn + δinδlj) + ukun (δmlδij + δmiδlj + δmjδil)

+ulum (δijδkn + δikδjn + δinδkj) + ulun (δmkδij + δmiδkj + δmjδik)

+unum (δijδkl + δikδjl + δilδkj)] + ρ(θ − 1)3 [δij (δklδmn + δkmδln + δknδml)

+δik (δjlδmn + δjmδln + δjnδml) + δil (δkjδmn + δkmδjn + δknδmj)

+δim (δjlδln + δjkδln + δjnδkl) + δin (δkjδml + δkmδjl + δklδmj)] . (B.22g)
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C.1. 2-Dimensional stencils

C.1 2-Dimensional stencils

In the context of this manuscript, two sets of discrete velocities are employed: (a) D2Q5 and
D2Q9. Both of these stencils are shown in Fig. C.1.

Figure C.1: 2-D stencils used in this manuscript: (left) D2Q5 and (right) D2Q9.

• The D2Q5 stencil consists of the following velocity vectors:

cα =

(
0 1 0 −1 0
0 0 1 0 −1

)
, (C.1)

associated to the following discrete weights:

wα =
(

1
3

1
6

1
6

1
6

1
6

)
. (C.2)

Given the number of degrees in the quadrature leading to the stencil, it can only
correctly recover moments associated to the following Hermite polynomials: H =
{H0,Hx,Hy,Hx2 ,Hy2}. As such it can not be used for the flow field, as it is unable to
recover moments appearing in the stress tensor.

• The D2Q9 stencil on the other hand has the following vectors:

cα =

(
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

)
, (C.3)

associated to the following discrete weights:

wα =
(

4
9

1
9

1
9

1
9

1
9

1
36

1
36

1
36

1
36

)
. (C.4)

This stencil can correctly recover moments associated to the following Hermite polyno-
mials: H = {H0,Hx,Hy,Hx2 ,Hy2 ,Hxy,Hx2y,Hxy2 ,Hx2y2}. It can therefor be used for
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the momentum conservation equation with an error in NS level stress tensor associated
to the diagonal components of the third-order moments tensor.

C.2 3-Dimensional stencils

Of all possible first-neighbour 3-D stencils, four are used within the context of this work. All
of them all shown in Fig. C.2. Starting with the largest one:

Figure C.2: 3-D stencils used in this manuscript: (top left) D3Q7, (top right) D3Q15,
(bottom left) D3Q19 and (bottom right) D3Q27.
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• D3Q27, it is made up of the following discrete velocities:

cα =

 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1 1 1 −1 −1 1 1 −1 −1

 ,

(C.5)
associated to these weights:

wα =
(

8
27

2
27

2
27

2
27

2
27

2
27

2
27

1
54

1
54

1
54

1
54

1
54

1
54

1
54

1
54

1
54

1
54

1
54

1
54

1
216

1
216

1
216

1
216

1
216

1
216

1
216

1
216

)
.

(C.6)
This stencil can support the following set of independent Hermite polynomials:

H = {H0,Hx,Hy,Hz,Hxy,Hxz,Hyz,Hx2 ,Hy2 ,Hz2 ,Hx2y,Hxy2 ,Hx2z,Hxy2 ,Hy2z,Hyz2 ,

Hxyz,Hx2y2 ,Hx2z2 ,Hy2z2 ,Hxyz2 ,Hxy2z,Hx2yz,Hx2y2z,Hx2yz2 ,Hxy2z2 ,Hx2y2z2}. (C.7)

• The D3Q19 stencil can also be used for both the flow field and advection-diffusion
equations. It consists of the following discrete velocities:

cα =

 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

 ,

(C.8)
and weights:

wα =
(

1
3

1
18

1
18

1
18

1
18

1
18

1
18

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

1
36

)
.

(C.9)

• The D3Q15 is made up of the following discrete velocities:

cα =

 0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0

 , (C.10)

with their associated weights:

wα =
(

2
9

1
9

1
9

1
9

1
9

1
9

1
9

1
72

1
72

1
72

1
72

1
72

1
36

1
36

1
36

)
. (C.11)

• The smallest stencil used in this study, only applicable to advection-diffusion equations
is the D3Q7:

cα =

 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 1 −1 0 0

 , (C.12)

with weights:
wα =

(
1
4

1
8

1
8

1
8

1
8

1
8

1
8

)
. (C.13)
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D.1. Transformation matrices

D.1 Transformation matrices

Given that larger stencils such as D3Q19 or D3Q27 would result in rather large trans-
form matrices, only transforms for smaller stencils are explicitly given here. Transforms for
higher-order stencils and central moments and scaled-central moments space can be readily
computed using the discrete velocity vectors and definitions of chosen sets of moments.

D.1.1 D2Q5 stencil

For the D2Q5 stencil the first five 2-D Hermite polynomials are used as the moments basis,
i.e. Π ∈ {H0,Hx,Hy,Hx2 ,Hy2}. The moments transformation matrix and its inverse are
given as:

M =


1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
−cs2 1− cs2 −cs2 1− cs2 −cs2

−cs2 −cs2 1− cs2 −cs2 1− cs2

 (D.1)
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2
0 1

2

 (D.2)

D.1.2 D2Q9 stencil

For the D2Q5 stencil the first nine 2-D Hermite polynomials are used as the moments basis,
i.e. Π ∈ {H0,Hx,Hy,Hxy,Hx2 ,Hy2 ,Hx2y,Hxy2 ,Hx2y2}, resulting in the following transfor-
mation matrices:

M =



1 1 1 1 1 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 0 0 0 1 −1 1 −1
−cs2 1− cs2 −cs2 1− cs2 −cs2 1− cs2 1− cs2 1− cs2 1− cs2

−cs2 −cs2 1− cs2 −cs2 1− cs2 1− cs2 1− cs2 1− cs2 1− cs2

0 0 −cs2 0 cs
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2 − 1 cs
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(D.3)
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D.1. Transformation matrices
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D.1.3 D3Q7 stencil

For the D3Q7 stencil the first seven 3-D Hermite polynomials are used as the moments basis,
i.e. Π ∈ {H0,Hx,Hy,Hz,Hx2 ,Hy2 ,Hz2}. The populations are transformed into moments
and back through the following matrices:

M =



1 1 1 1 1 1 1
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1
−cs2 1− cs2 1− cs2 −cs2 −cs2 −cs2 −cs2

−cs2 −cs2 −cs2 1− cs2 1− cs2 −cs2 −cs2

−cs2 −cs2 −cs2 −cs2 −cs2 1− cs2 1− cs2


(D.5)
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Appendix E

Jacobians of different collision
operators
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E.1. SRT collision model

For the expressions presented here to be valid for both shifted and regular stencils, the
derivations are made using the non-dimensional variables u∗ and c∗α introduced in chapter 7.
A more detailed derivation of the Jacobians can be found in [150, 54, 152, 236].

E.1 SRT collision model

E.1.1 Hermite-expansion based EDF

For the D2Q9 stencil, the fourth-order EDF can be explicitly written as:

f (eq,4)
α = wαρ

1 + c∗α · u∗ +
1

2
Hα,2 : a

(eq)
2︸ ︷︷ ︸

f
(eq,2)
α

+
1

2

(
Hα,x2ya

(eq)

x2y +Hα,xy2a
(eq)

xy2

)
+

1

4
Hα,x2y2a

(eq)

x2y2

 .
(E.1)

To compute the Jacobian of the EDF at different orders, the following equations can be used:

∂ρa
(eq)

3,x2y

∂fβ
= 2c∗β,xu

∗
xu
∗
y + c∗β,yu

∗
x

2 − 2u∗yu
∗
x

2, (E.2a)

∂ρa
(eq)

3,xy2

∂fβ
= 2c∗β,yu

∗
yu
∗
x + c∗β,xu

∗
y

2 − 2u∗xu
∗
y

2, (E.2b)

∂ρa
(eq)

4,x2y2

∂fβ
= 2c∗β,xu

∗
y

2u∗x + c∗β,xu
∗
yu
∗
x

2 − 3u∗x
2u∗y

2, (E.2c)

E.1.2 Exact entropic EDF

For the entropic EDF, re-writing it as:

f (eq)
α = wαρ

∏
i=x,y

ΛiΓα,i, (E.3)

the Jacobian can be expressed as:

∂f
(eq)
α

∂fβ
= wα

[∏
i=x,y

ΛiΓα,i +
∑
i=x,y

ρ

(
Γα,i

∂Λi

∂fβ
+ Λi

∂Γα,i
∂fβ

)∏
j 6=i

ΛjΓα,j

]
, (E.4)
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E.2. RLBM collision model

where:

Λi = 2− Si
ρ
, (E.5a)

Γα,i =

(
2u∗i + Si

ρ

1− u∗i

)c∗α,i

, (E.5b)

Si = ρ
√

3u∗i
2 + 1, (E.5c)

and :

∂Λi

∂fβ
=
Si
ρ2
− 1

ρ

∂Si
∂fβ

, (E.6a)

∂Γα,i
∂fβ

= c∗α,i

[
2c∗β,i + ∂Si

∂fβ

ρ (1− u∗i )
−

(2ρu∗i + Si)
(
1− c∗β,i

)
ρ2(1− u∗i )2

](
2u∗i + Si

ρ

1− u∗i

)c∗α,i−1

, (E.6b)

∂Si
∂fβ

=
ρ
(
3c∗β,iu

∗
i + 1

)
Si

. (E.6c)

E.2 RLBM collision model

For the fourth-order recursive regularized collision operator, one must compute the Jacobian
of the reconstructed non-equilibrium part of the distribution function:

∂f
(neq,4)
α

∂fβ
= wα

[
1

2
H2,α :

(∑
β

H2,βfβ − a(eq)
2

)

+
1

2

(
Hα,x2y

∂a
(1)

x2y

∂fβ
+Hα,xy2

∂a
(1)

xy2

∂fβ

)
+

1

4
Hα,x2y2

∂a
(1)

x2y2

∂fβ

]
(E.7)

where:

∂a
(1)

x2y

∂fβ
=

∂

(
a
(eq)
y a

(1)

x2

a
(eq)
0

+ 2
a
(eq)
x a

(1)
xy

a
(eq)
0

)
∂fβ

= u∗y
∂a

(1)

x2

∂fβ
+ 2u∗x

∂a
(1)
xy

∂fβ
, (E.8a)
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Appendix F

Detailed chemical schemes

F.1 Detailed kinetic scheme for an Ozone/air reacting

flow (from [1])

k = AT βe−
E
RT A β E

for reaction:
1 2O + M↔ O2 + M 1.200000E+17 -1.000000E+00 0.000000E+00
2 O3 + O2 → O2 + O + O2 1.540000E+14 0.000000E+00 2.305850E+04
3 O3 + O→ O2 + O + O 2.480000E+15 0.000000E+00 2.272160E+04
4 O3 + O3 → O2 + O + O3 4.400000E+14 0.000000E+00 2.305850E+04
5 O3 + N2 → O2 + O + N2 4.000000E+14 0.000000E+00 2.266190E+04
6 O2 + O + O2 → O3 + O2 3.260000E+19 -2.100000E+00 0.000000E+00
7 O2 + O + N2 → O3 + N2 1.600000E+14 -4.000000E-01 -1.390700E+03
8 O2 + O + O→ O3 + O 2.280000E+15 -5.000000E-01 -1.390700E+03
9 O2 + O + O3 → O3 + O3 1.670000E+15 -5.000000E-01 -1.390700E+03
10 O2 + O2 → O + O + O2 9.800000E+24 -2.500000E+00 1.180382E+05
11 O2 + O→ O + O + O 3.500000E+25 -2.500000E+00 1.180382E+05
12 O2 + O3 → O + O + O3 1.200000E+19 -1.000000E+00 1.180382E+05
13 O + O + O2 → O2 + O2 1.500000E+16 -4.000000E-01 0.000000E+00
14 O + O + N2 → O2 + N2 6.000000E+13 0.000000E+00 -1.789700E+03
15 O + O + O→ O2 + O 5.340000E+16 -4.000000E-01 0.000000E+00
16 O + O + O3 → O2 + O3 1.300000E+14 0.000000E+00 -1.789700E+03
17 O2 + O2 → O3 + O 1.200000E+13 0.000000E+00 1.003871E+05
18 O3 + O→ O2 + O2 4.820000E+12 0.000000E+00 4.095600E+03
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F.2. Two-step BFER scheme for Methane/air flame [2])

F.2 Two-step BFER scheme for Methane/air flame [2])

k = A[CH4]νCH4 [O2]νO2T βe−
E
RT A β E νCH4 νO2

for reaction:
1 CH4 + 3

2
O2 → CO + 2H2O 4.900000E+9 0.000000E+00 3.550000E+04 0.5 0.65

2 CO + 1
2
O2 ↔ +CO2 2.000000E+8 0.700000E+00 1.200000E+04 0 0

The units of A, β and T are all based on moles, calories and seconds. M is used to represent
an arbitrary third-body for the reaction.

204



F.2. Two-step BFER scheme for Methane/air flame [2])
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