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Abstract: The aim of the article is to study the possibility of improving gradient optimization methods. The leading 
approach to the chosen concept is based on the possibility of a featured description of the gradient that sets 
the direction of the search for a solution. A modification of the method of steepest descent of global 
optimization based on the Hilbert-Huang transform is proposed. The proposed solution is based on the 
decomposition of the gradient of the objective function into empirical modes. The main results of the work 
are iterative optimization methods, in which, in addition to the gradient, its empirical modes are also taken 
into account. New estimates of the descent step are obtained, which could not be deduced in the classical 
formulation of the steepest descent method. Their correctness is due to the fact that in the absence of the 
possibility of gradient decomposition, they are reduced to existing estimates for the steepest descent 
method. The theoretical significance of the results lies in the possibility of expanding the existing gradient 
methods by a previously not used gradient description method. The practical significance is that the 
proposed recommendations can help accelerate the convergence of gradient methods and improve the 
accuracy of their results. Using the Python language, computational experiments were carried out, as a 
result of which the adequacy of the proposed method and its robustness were confirmed. 

1 INTRODUCTION 

The optimization problem is a significant 
mathematical model in a wide class of disciplines. 
Its methods are applied in areas such as computer-
aided design, machine learning, mathematical 
modeling, and others. As one of the main statements 
of the optimization problem, we will further 
consider the problem of finding the minimum of a 
function. Let the task of finding the minimum  

( ) minF X → , nRX ∈ , (1)
where F(X) – objective function; X – objective 

function parameters. 
The formula for the coordinate descent process 

for (1) in the case of applying the gradient has the 
form 

1 ( )k k k kX X F Xλ+ = − ∇ , 0,1,2....k = , (2) 
where ( )kF X∇  – objective function 

gradient; kX , 1kX +  – objective function parameters 

at k and k+1 iteration respectively; kλ  – step value, 
0kλ ≥ . 

The essence of the steepest descent method is the 
selection of such kλ , where, with a known kX , the 
condition is satisfied. 

( ( )) mink k kF X F Xλ− ∇ → , 0kλ ≥ . (3) 
Let us consider the possibility of modifying the 

steepest descent method based on the representation 
of the gradient of the objective function in some 
basis. 

Indeed, we can consider gradient ( )kF X∇  as a 
discrete one-dimensional signal having a length 
equal to the dimension of the search space. This 
makes it possible to apply the methods of signal 
processing theory to it.  

Having a spatial decomposition of the gradient 
of the objective function in some basis, one can both 
improve the convergence of gradient methods and 
get the opportunity to synthesize their modifications 
with fundamentally new properties. 
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2 EMPIRICAL MODE DECOM-
POSITION OF GRADIENT 

Let us consider the possibility of applying the 
empirical mode decomposition method to the 
gradient of the objective function [2, 3]. The 
principle of decomposition into empirical modes 
developed relatively recently. Its main specialization 
is the analysis of non-stationary processes. It is quite 
well established in a broad range of problems [6, 7]. 

One of the significant advantages of the 
empirical mode decomposition (EMD) method is 
that it does not require a choice of basis. Unlike 
Fourier or wavelet analysis, a mathematical 
apparatus is less developed for it. However, this fact 
does not reduce interest in studying the effectiveness 
of its application for practical problems. 

Let us consider some general features of the 
empirical mode method. The basic functions used in 
the decomposition are extracted directly from the 
original signal. This, in turn, allows us to take into 
account its individual structural features. 

The qualitative basis of the apparatus of 
empirical modes is to use the multiple addition of 
white noise to the signal. Next, the average value of 
the distinguished components is calculated by the 
classical method of decomposition as the result. 

As a result of decomposition, the signal is 
presented in the time-frequency domain, which 
allows revealing hidden modulations and energy 
concentration regions. Since the decomposition is 
based on the data of a specific local time domain of 
the signals, it is also applicable to non-stationary 
signals. Using EMD, it is possible to determine the 
instantaneous frequency as a function of time, which 
allows you to get a clear idea of the internal 
structure of the signal [2–5]. 

An empirical mode (or intrinsic mode function, 
IMF) is such a function that has the following 
properties [7]: 

1) The number of function extrema (maxima and
minima) and the number of zero intersections
should not differ by more than one.

2) At any point, the average value of the
envelopes defined by local maxima and local
minima should be zero.

IMF is an oscillatory function, but instead of a 
constant amplitude and frequency, as in a simple 
harmonic, IMF can have a variable amplitude and 
frequency, as functions of an independent variable 
(time, coordinate, etc.). 

The first property guarantees that the local 
maxima of the function are always positive, the local 

minima are respectively negative, and between 
them, there always are intersections of the zero line. 

The second property ensures that the 
instantaneous frequencies of the function will not 
have undesirable fluctuations resulting from the 
asymmetric waveform. 

Any function and any arbitrary signal that 
initially contains an arbitrary sequence of local 
extrema (minimum 2) can be divided into the IMFs 
family and the residual trend. If the data are devoid 
of extrema, but contain inflection points (“hidden” 
extrema of superimposing mode functions and steep 
trends), then signal differentiation can be used to 
“open” extrema [8, 9]. 

Suppose that there is an arbitrary signal x(t). The 
essence of the EMD method consists in sequentially 
calculating the functions of the empirical modes cj(t) 
and the residues rj(t) = rj-1(t) - cj(t), where j = 1, 2, 
...,n at r0 = x(t). The decomposition result will be the 
representation of the signal as a sum of mode 
functions (IMFs) and the final residual [6–9]: 

1
( ) ( ) ( )

n

j n
j

x t c t r t
=

= +∑ , (4) 

where n is the number of IMFs that is 
established during the calculations. 

3 EMD ALGORITHM 

The block diagram of the EMD algorithm is 
presented in Figure 1 [4–6]. 

The EMD algorithm consists of the following 
operations: 

1) For any data x(t), all local extrema are
identified.

2) Based on the extrema, the upper, u(t), and
lower, l(t), envelopes are formed (in this case,
cubic spline interpolation can be used).

3) Envelope mean value is calculated as
4) m(t) = [u(t) + l(t)] / 2.
5) The difference between the original signal and

the average value is considered as IMF
6) h(t) = x(t) - m(t).
7) The current h(t) value is evaluated for IMF

compliance.
8) If h(t) does not satisfy the definition of IMF, go

to steps 1-5. Otherwise, the IMF is accepted as
component c(t).

9) The residual function r(t) = x(t) - c(t) is
determined. Steps 1 to 6 are repeated for r(t).

10) The operation ends when r(t) contains no more
than one extremum.
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So, using the EMD method, let decomposition of 
∇F(Xk) constructed on basis of modes {Hi(Xk)}, 
i=1,…,m in such a way that 

1
( ) ( )

m

k j k
j

F X H X
=

∇ = ∑ . (5) 

Start

Valid data? Trend

Residue, extrema

Upper and lower envelopes

IMF?

Data-IMF

Stop

Stop?
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No
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Figure 1: The block diagram of the EMD algorithm. 

Set a descent for each of the mods 
1 ( )j

k k k j kX X H Xλ+ = − , 1,2, ,j m= K . (6) 
The obtained set of points {Xi

k+1}, i=1,…,m can 
be considered as a combination of some alternative 
results obtained by approximating the gradient of the 
objective function while maintaining its structural 
properties. At a qualitative level, this makes the 
process of finding the optimum nonlocal. 

The presence of many possible alternatives to the 
solution can accelerate the convergence of the search 
process. On the other hand, it can be expected that it 
will be more stable in situations where the initial 
approximation is given far enough from the optimal 
solution. 

4 DESCENT STEP SELECTION 

From statements (5), (6), two variants of 
modification of the search rule for step λk were 
formulated in the paper. In the first case, we can 
require the following condition 

1
1 1

( ) ( ( )) min
m m

j
k k k j k

j j
F X F X H Xλ+

= =

= − →∑ ∑ . (7) 

Thus, the above condition consists in finding a 
step that minimizes the sum of the function values 
calculated at points obtained by descent along all 
components of the EMD of gradient ∇F(Xk). The 
decrease in the value of the function on average over 
the totality of values on the set {Xi

k+1}, i=1,…,m 
allows us to talk about the global nature of 
optimization. 

We can estimate the optimal descent step in (7). 
Expand the left side in a Maclaurin series 

( ) ( )( )1

2

( ) , ( )

( ) ( ) ( )

j
k k k k j k

T
k j k k j k

F X F X F X H X

H X G X H X

λ

λ
+ ≈ − ∇ +

+
, (8) 

where G(Xk) – Hessian matrix of objective function; 
Then for (7) we obtain the following 

approximation 

( )

( ) ( )( )(
)

1
1

1

2

( )

, ( )

( ) ( ) ( )

m
j

k k
j

m

k k k j k
j

T
k j k k j k

f F X

F X F X H X

H X G X H X

λ

λ

λ

+
=

=

= ≈

≈ − ∇ +

+

∑

∑

The necessary optimality condition in this case 
has the form 

( )
0k

k

df
d

λ
λ

= . (9) 

From (9) we obtain an estimation for the step 

( )( )

( ) ( )( )

1

1

1

, ( )

( ) ( ) ( )

,

( ) ( ) ( )

m

k j k
j

k m
T
j k k j k

j

k k
m

T
j k k j k

j

F X H X

H X G X H X

F X F X

H X G X H X

λ =

=

=

∇
= =

∇ ∇
=

∑

∑

∑

(10) 

Expression (9) allows us to estimate the descent 
step taking into account several empirical modes, 
which are the levels of gradient decomposition in the 
space of empirical modes. 

The solution to problem (7) can be used in two 
ways. The first of them is that the obtained λk can be 
used to go over to the next approximation in (2). 
Another way is to iterate over alternatives from the 
set {Xi

k+1}, i=1,…,m. The point Xi
k+1 at which the 

smallest value is reached can be considered as the 
next approximation to which process (7) can be 
reapplied. 

Another search option for λk is to minimize the 
expression 
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{ }1 1

inf ( ) min
mi

k i
X X

F X
+ =

∈
→ . (11) 

It can be seen from the above that the use of 
EMD allows us to obtain many alternative solutions 
to problem (1). Moreover, it can be reformulated in 
terms of alternative expressions (7), (10). 

5 EXPERIMENTS 

As a technique that allows us to evaluate the 
algorithms proposed in (7), (9), we used the solution 
of test problems of multidimensional optimization 
problems reduced to statement (1). The optimization 
results were compared with those obtained using the 
standard steepest descent algorithm. The maximum 
number of iterations was set as 50000, the 
convergence error was set as 10–11. As the first test 
function, a quadratic function of the form  

2

1
( )

n

i
i

F X i x
=

= ⋅∑ (12) 

was used. 
The test value of the function is F* = 0. The 

initial approximation has the form x0 = (-2, 2, -2, 2, -
2, 2, -2, 2, -2, 2,-2, 2,). The simulation results are 
shown in table 1. 

As the second test function, the Rastrigin 
function was used [1]. The test value of the function 
is F* = 0. The initial approximation has the form x0 = 
(-5, 5, -5, 5, -5, 5, -5, 5, -5, 5,-5, 5,). The simulation 
results are shown in table 2. 

As the third test function, the Rosenbrock 
function [1] was used. The test value of the function 
is F* = 0. The initial approximation has the form x0 = 
(-2, 2, -2, 2, -2, 2, -2, 2, -2, 2,-2, 2,). The simulation 
results are shown in table 1. 

Table 1: Experiments results for function (12). 

Method Function 
value 

Number of 
iterations 

Method (2), (3) 0 108 
Method (7) with search 0 103 

Method (7), (2) – – 
Method (11) with search 0 107 

Table 2: Experiments results for Rastrigin function. 

Method Function 
value 

Number of 
iterations 

Method (2), (3) 0 14 
Method (7) with search 0 12 

Method (7), (2) 0 15 
Method (11) with search 0 10 

Table 3: Experiments results for Rosenbrock function. 

Method Function 
value 

Number of 
iterations 

Method (2), (3) 4.485∙10-17 30905 
Method (7) with search 1.415∙10-16 30884 

Method (7), (2) 4.968∙10-17 10052 
Method (11) with search 9.4∙10-4 1924 

6 CONCLUSION 

From the presented results it is seen that the gradient 
decomposition in the case of applying the EMD 
method gives adequate optimization results. At the 
same time, when trying to combine it with the 
traditional steepest descent method, a situation of 
solution divergence may arise. On the other hand, 
the application of methods (7), (11) can lead to a 
decrease in the number of iterations in comparison 
with the traditional method of steepest descent. 
Thus, the possibilities of a refined search for the 
descent step that exist in (7), (11), as well as the 
choice of an approximation obtained from many 
alternative options, are the strengths of the method 
proposed in the work. 
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