Ein Beitrag zur thermischen Auslegung von Stromrichterventilen mit zweiseitig gekühlten Halbleiterbauelementen

vorgelegt von Diplom-Ingenieur Jürgen Schwarz aus Berlin

Vom Fachbereich Elektrotechnik der Technischen Universität Berlin zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigte Dissertation

Promotionsausschuß:Vorsitzender:Prof. Dr. Ing.B. KulickeBerichter:Prof. Dr.-Ing.M.MichelBerichter:Prof. Dr. phil. nat.W. Gerlach

Tag der wissenschaftlichen Aussprache: 29. April 1986

Berlin 1986 D 83 (d) Charles of the construction of the left state of the base of the construction of the left state of the construction of the construction of the construction.

and the second sec

Abstract

Schwarz, Jürgen:

Ein Beitrag zur thermischen Auslegung von Stromrichterventilen mit zweiseitig gekühlten Halbleiterbauelementen

Konventionelle Verfahren zur thermischen Dimensionierung von Stromrichterventilen mit zweiseitig gekühlten Halbleiterbauelementen berücksichtigen die unterschiedlichen thermischen Verhältnisse auf der Anoden- und der Kathodenseite nicht. Werden solche Halbleiterbauelemente mit Kühleinrichtungen in Zusammenhang gebracht, deren Verhalten von der Wärmezufuhr auf beiden Seiten abhängig ist, so können schon bei der stationären Dimensionierung Fehler auftreten. Diese werden mit der vorliegenden Arbeit ausgeräumt.

Auf der Grundlage der abgeleiteten Gleichungen und von gemessenen Verteilungen der elektrischen und der thermischen Eigenschaften von Halbleiterbauelementen sowie der thermodynamischen Parameter der Kühlelemente ermöglicht es die Monte-Carlo-Simulation, daraus berechnete Verteilungen der Sperrschichttemperaturen in den Ventilen zur statistisch begründeten, kostenoptimalen, thermischen Dimensionierung heranzuziehen.

Aus dem mechanischen Aufbau der Halbleiterbauelemente läßt sich durch feine Stufung ein thermisches Ersatzschaltbild in Kettenbruchschaltung ableiten, welches das thermische Verhalten der Halbleiterbauelemente im Rahmen der bestehenden Meßgenauigkeit widerspiegelt. Dieses Wärmeersatzschaltbild gestattet die Behandlung des zweiseitig gekühlten Halbleiterbauelementes als lineares, thermisches Dreitor. Mit Hilfe der Dreitorparameter läßt sich der Verlauf des transienten Wärmewiderstandes des Ventils durch Auswertung von Messungen im Originalaufbau und auch durch die Bestimmung des Übergangsverhaltens der Kühleinrichtung bestimmen. Letzteres Verfahren liefert genauere (und niedrigere) Werte.

ň

Danksagung

Diese Arbeit entstand im Fachbereich Leistungselektronik und Anlagenbau der AEG Aktiengesellschaft.

Mein besonderer Dank gilt dem Leiter der Entwicklung, Herrn Dipl.-Ing. A. Schräder, ohne dessen freundliche Unterstützung diese Arbeit nicht zustande gekommen wäre.

Außerdem habe ich Herrn Prof. Dr.-Ing. M. Michel vom Institut für Allgemeine Elektrotechnik der TU Berlin für die Betreuung der Arbeit und viele wertvolle Hinweise zu danken. Besonders gefreut habe ich mich darüber, daß sich Herr Prof. Dr. phil. nat. W. Gerlach vom Institut für Werkstoffe der Elektrotechnik der TU Berlin zur Übernahme des zweiten Gutachtens bereit erklärt und mir wichtige Ratschläge zur Abfassung der Arbeit gegeben hat.

Daneben gilt mein Dank vielen, auch den hier nicht genannten, Mitarbeitern der AEG AG, die zum Gelingen beigetragen haben. Herr Dipl.-Ing. J. Hengsberger gab viele Ratschläge und Herr Ing. (grad.) B. Korrmann unterstützte mich bei der Durchführung der Messungen. Den Herren Dipl.-Ing. H.-G. Zellerhoff und Dipl.-Phys. E. Borchert vom Geschäftsbereich Industriekomponenten danke ich für die mühsame Bereitstellung von statistischem und analytischem Material über die Halbleiterbauelemente, und Herrn Ing. (grad.) A. Seelig vom Forschungsinstitut Frankfurt am Main unterstützte mich beim Aufbau der Meßeinrichtung zur Bestimmung des Übergangsverhaltens der Kühldosen.

Mit Herrn Dr. rer. nat. W. Dreyer vom Hermann-Föttinger-Institut für Thermo- und Fluiddynamik der TU Berlin konnte ich wertvolle Diskussionen über die thermodynamischen Aspekte der Arbeit führen.

Nicht zuletzt schulde ich meiner Frau Katharina Dank, die in der Zeit der Entstehung dieser Dissertation mit unendlicher Geduld die zusätzliche Belastung für Familie und Haushalt getragen hat.

Inhaltsverzeichnis

				Seite
0	Veri	wendete	e Symbole	13
	0.1	Forme	lzeichen	13
	0.2	Indize	es	15
1	Ein	leitung	g	17
2	Str	omricht	terventile und ihre Komponenten	19
	2.1	Thyris	stor-Hochleistungsventile	19
	2.2	Hochle	eistungsthyristoren	23
	2.3	Kühldo	osen für Hochspannungsstromrichter	24
3	Sta	tionäre	es thermisches Verhalten	29
	3.1	Verha	lten der Halbleiterbauelemente	29
		3.1.1	Innerer Aufbau	29
		3.1.2	Thermisches Ersatzschaltbild	31
		3.1.3	Messung der thermischen Widerstände	35
		3.1.4	Beziehungen zwischen den verschiedenen thermisc	hen
			Parametern	36
			3.1.4.1 Diskrete Beziehungen	36
			3.1.4.2 Beziehungen zwischen den Einzelwiderstä	inden
			und dem Parallelwiderstand	40
			3.1.4.3 Beziehungen zwischen dem Summenwidersta	ind
			und dem Parallelwiderstand	44
			3.1.4.4 Auswertung der Messungen des Summenwide	er-
			standes	49
		3.1.5	Berechnung der thermischen Widerstände	52
			3.1.5.1 Thermische Widerstände des Materials	52
			3.1.5.2 Thermische Widerstände der Übergänge	
			(Kontaktwiderstände)	53
			3.1.5.3 Erhöhung des thermischen Widerstandes	
			durch Einschnürung des Wärmestromes	56
			3.1.5.4 Berechnung für den Thyristor	
			T 2200 N 3600 4400	61
			3.1.5.5 Berücksichtigung der Herstellungstolera	anzen 63
		3.1.6	Einfluß der Wärmeleistungsquelldichte auf den	sta-
			tionären thermischen Widerstand	64

		Seite
2 2	Janhaltan dan Kühlelemente	1.5
3.2	verhalten der Kunlelemente	
	3.2.1 Aufbau der Kühldosen	63
	3.2.2 Verhalten des Kühlmittelkreislaufes	21
	3.2.3 Verhalten der Kühldosen bei unsymmetrischer	
	Speisung	73
	3.2.4 Konventionelle Behandlung der Kühldosen	83
	3.2.5 Statistische Untersuchung der Kühldosenparameter	85
	3.2.5.1 Verteilung der thermischen Widerstände	89
	3.2.5.2 Verteilung des Druckabfalls	89
	3.2.5.3 Korrelationskoeffizienten	94
	3.2.5.4 Auswahl einer repräsentativen Kühldose	96
	3.2.6 Stationäre thermische Parameter der Kühldosen	96
3.3	Verhalten der Halbleiterbauelemente und der Kühlelemente	
	im Säulenverband	99
	3.3.1 Verhalten einer unendlich langen, symmetrischen	
	Säule	99
	3.3.1.1 Konventionelles Berechnungsverfahren	99
	3.3.1.2 Berücksichtigung der gegenseitigen Abhängig	g =
	keiten	99
	3.3.1.3 Vergleich beider Rechenverfahren	103
	3.3.2 Verhalten einer endlich langen Säule	104
	3.3.2.1 Gleichungssystem	106
	3.3.2.2 Endlich lange, symmetrische Säule	109
	3.3.2.3 Ausfall einer Kühldose	111
	3.3.3 Thermische Reihenschaltung von zwei Säulen (Doppel-	4
	săule)	113
	3.3.3.1 Gleichsinnige thermische Reihenschaltung	114
	3.3.3.2 Gegensinnige thermische Reihenschaltung	117
	3.3.4 Thermische Reihenschaltung der Kühlelemente	120

			Seite
Dyna	amische	es thermisches Verhalten	123
4.1	Verhal	lten der Halbleiterbauelemente	123
	4.1.1	Das Gleichungssystem	123
		4.1.1.1 Vereinfachung des Gleichungssystems	124
		4.1.1.2 Anfangs-, Rand- und Übergangsbedingungen	125
		4.1.1.3 Grenze der Gültigkeit des Gleichungs-	
		systems	127
	4.1.2	Lösung des Gleichungs-Systems	129
		4.1.2.1 Anwendung der Linienmethode	129
		4.1.2.2 Anwendung des Differenzenverfahrens	131
		4.1.2.3 Vergleich der Ergebnisse	131
	4.1.3	Thermisches Ersatzschaltbild	138
		4.1.3.1 Aufbau des Ersatzschaltbildes	138
		4.1.3.2 Berechnung der thermischen Kapazitäten	142
		4.1.3.3 Berechnung für den Thyristor	
		T 2200 N 3600 4400	143
	4.1.4	Berechnung der thermischen Dreitorparameter	143
		4.1.4.1 Das zweiseitig gekühlte Halbleiterbau-	
		element als Dreitor	143
		4.1.4.2 Parameter des anoden- und des kathoden-	
		seitigen Zweitors	146
		4.1.4.3 Beziehungen zwischen den Y- und den	
		Z-Parametern	151
		4.1.4.4 Y-, Z- und H-Parametern des Dreitors	152
	4.1.5	Transienter Wärmewiderstand	155
		4.1.5.1 Messung des transienten Wärmewiderstandes	155
		4.1.5.2 Berechnung des idealen transienten Wärme-	
		widerstandes	156
		4.1.5.3 Grenzwerte des transienten Wärmewider-	
		standes	158

				Seite
4.2	Verhal	ten_der_	Kühlelemente	161
	4.2.1	Messung	des Übergangsverhaltens	161
		4.2.1.1	Theoretischer Ansatz und Meßprinzip	161
		4.2.1.2	Messung von Z $_{1}(t)$ und Z $_{2}(t)$	161
		4.2.1.3	Messung von $Z_{13}(t)$, $Z_{23}(t)$ und $Z_{33}(t)$	167
	4.2.2	Messung	im Originalaufbau	168
		4.2.2.1	Meßverfahren	168
		4.2.2.2	Konventionelle Auswertung	171
		4.2.2.3	Bezogene Gehäusetemperaturen	171
	4.2.3	Auswertu	ing der Messungen	171
		4.2.3.1	Auswertung des Übergangsverhaltens	174
		4.2.3.2	Auswertung der Messungen im Originalauf-	
			bau	174
		4.2.3.3	Transformation in den Bildbereich der	
			Laplace-Transformation	175
4.3	Verha	lten der	Halbleiterbauelemente und der Kühlelemente	
	im_Să	lenverba	nd	181
	4.3.1	Konventi	onelles Verfahren	181
	4.3.2	Verhalte	n der unendlich langen, symmetrischen	
		Säule		182
		4.3.2.1	Lösung des Gleichungssystems	182
		4.3.2.2	Implementation des Systemverhaltens	185
		4.3.2.3	Verhalten der einfachen Säule	185
		4.3.2.4	Verhalten der Doppelsäule mit gleich-	
			sinniger thermischer Reihenschaltung	193
	4.3.3	Auswertu	ng der Messungen im Originalaufbau	199
		4.3.3.1	Wirkung des Leistungssprunges	200
		4.3.3.2	Wirkung der Gehäusetemperaturverläufe	200
		4.3.3.3	Lösung und Rechenbeispiel	202
	4.3.4	Berechnu	ng der gespeicherten Energie	210
	4.3.5	Systembe	trachtungen und kritischer Vergleich	210

		56
Grun	dzüge eines statistisch begründeten Dimensionierungs-	
verf	ahrens zur Berechnung der maximal zulässigen Be-	
last	ung von Halbleiterstromrichtern	4
5.1	Vorbemerkungen	1
	5.1.1 Allgemeine Betrachtungen	2
	5.1.2 Thermische Dimensionierung von Halbleiterstrom-	
	richtern	1
	5.1.3 Anwendung zur stationären thermischen Dimensio-	
	nierung von Hochspannungsventilen	1
5.2	Statistisch aufbereitete Daten der eingesetzten Bau-	
	elemente	10.00
	5.2.1 Daten der Thyristoren	1
	5.2.1.1 Elektrische Eigenschaften	-
	5.2.1.2 Thermische Eigenschaften	1000
	5.2.1.3 Korrelation zwischen thermischen und	
	elektrischen Eigenschaften	1000
	5.2.2 Daten der Kühldosen	10000
5.3	Monte-Carlo-Simulation	12/27/1
	5.3.1 Leistungsverteilung	0.0
	5.3.2 Temperaturverteilung	100
	5.3.2.1 Gleichungssystem der endlich langen Säule	-
	5.3.2.2 Gleichungssystem der unendlich langen	
	Säule	-
	5.3.2.3 Simulation und Auswertung	1
5.4	Ergebnisse an Hand von Beispielen	10.01
5.5	Anwendung des Verfahrens	114020411
Quel	len	1

0 Verwendete Symbole

Hier werden nur die oft wiederkehrenden und an der verwendeten Stelle nicht erklärten Symbole aufgeführt.

0.1 Formelzeichen

a	Temperaturleitfähigkeit
A	Fläche der Scheiben des Halbleiterbau- elementes
° p	spezifische Wärmekapazität bei kon- stantem Druck
C	Wärmekapazität
Cov(X,Y)	Kovarianz der Zufallsvariablen X und Y
d	Dicke der Scheiben des Halbleiterbau- elementes
E(X)	Erwartungswert der Zufallsvariablen X
g	Verhältnis zwischen R _{thJG} und R _{thGG} nach Gl. (31-8)
G	Geltungsgebiet der Gleichung
h	spezifische Enthalphie
H(p), H(t)	thermischer Hybridparameter
м	Masse
Ň	Massenstrom
n	Anzahl der Halbleiterbauelemente in der endlich langen Säule
N	Nenner in einer Gleichung
p	Wärmequelldichte
P	(Verlust-) Leistung
ġ	Wärmeflußdichte
Q	Wärmemenge (Energie)
Q	Wärmefluß
Q _{rr}	Sperrverzögerungsladung der Halbleiter- bauelemente
r	Radius (in Zylinderkoordinaten)
r, r ^X	empirisch ermittelter Korrelations- koeffizient [10]
r _{S,B}	Rangkorrelationskoeffizient nach Spearman mit Berücksichtigung von Bindungen [10]
R	thermischer Widerstand
R	konventionell ermittelter thermischer Widerstand

5	empirisch ermittelte Standardab- weichung
t	Zeit
T	Temperatur
υ _T	Durchlaßspannung der Halbleiterbau- elemente
v	spezifisches Volumen
٧	Verhältnis von R _{thJG(K)} ^{zu R} thJG(A) nach Gl. (31-7)
V	Volumen
V(X)	Varianz der Zufallsvariablen X
Ŷ	Volumenstrom
w	Geschwindigkeit
Χ	Achse (in Zylinderkoordinaten)
x	arithmetischer Mittelwert
X. Y	Zufallsvariable
Y(p), Y(t)	thermischer Leitwertparameter
Z(p), $Z(t)$	thermischer Widerstandsparameter
$Z_{th}(p)$, $Z_{th}(t)$	transienter thermischer Widerstand
Z _{th} *(t)	konventionell ermittelter transienter thermischer Widerstand
н	Zählerpolynom der Hybridparameter im Bildbereich
2	Nennerpolynom der Hybridparameter im Bildbereich
m	Nennerpolynom der Leitwertparameter im Bildbereich
N	Nennerpolynom der Widerstandsparameter im Bildbereich
ц.	Zählerpolynom der Leitwertparameter im Bildbereich
2	Zählerpolynom der Widerstandsparameter im Bildbereich
α	Signifikanzniveau
α	Wärmeübergangskoeffizient
∂ G	Rand des Geltungsgebietes der Gleichung
Δ	skalarer Laplace-Operator
Δ P	Druckabfall
e	statistische Sicherheit

θ	Celsiustemperatur
θ*	nach Gl. (32-6) bzw. Gl. (42-7) bezogene Temperatur
λ	Wärmeleitfähigkeit
μ	Parameter der Normalverteilung (Erwartungswert)
ρ	Dichte
ρ	Korrelationskoeffizient
σ	Parameter der Normalverteilung (Standardabweichung)
σ_{B}	Zugfestigkeit
τ	thermische Zeitkonstante
τ	Rangkorrelationskoeffizient nach Kendall [23]
φ	Winkel (in Zylinderkoordinaten)
$\varphi(t)$	Ausgleichsfunktion nach Gl. (42-8)

0.2 Indizes

A	Anodenseite
Α	Kühlmittelzufluß (ambient)
aK	anodenseitige Kühlung
В	Kühlmittelabfluß
с	Halbleitergehäuse (case)
D	Kühlmittelabfluß der zweiten Säule
G	Obergang Halbleiterbauelement-Kühlelement
н	Kühlelementoberfläche (heatsink)
J	Sperrschicht (junction)
к	Kathodenseite
KD	Kühldose
kK	kathodenseitige Kühlung
м	Mittelwert von Kühlmittelzufluß und -abfluß
N	Nennwert
p	Druck
oK	ohne Kühlung
th	thermisch
тн	Halbleiterbauelement (Thyristor)
W	Kühlmittel (Wasser)
1	Seite 1
2	Seite 2
12	Wirkung auf Seite 1 herrührend von Seite 2
21	Wirkung auf Seite 2 herrührend von Seite 1

- 1 C

1.0

1 Einleitung

Stromrichterventile für große Leistungen werden seit vielen Jahren mit zweiseitig gekühlten Halbleiterbauelementen ausgeführt. Diese Scheibenzellenbauweise ermöglicht eine Wärmeabfuhr aus dem Siliziumkristall sowohl zur Anoden- als auch zur Kathodenseite hin, so daß die Zellen wesentlich intensiver ausgenutzt werden können [1].

Die besonderen thermischen Eigenschaften dieser Hochleistungsdioden und -thyristoren und ihrer Kühleinrichtungen werden nur sehr zögernd in die einschlägigen Normen [2-4] aufgenommen, und auch in der Literatur findet sich nur wenig. Im allgemeinen werden die nach beiden Seiten unterschiedlichen Wärmeflüsse und auch die unterschiedlichen Temperaturen des Gehäuses auf der Anoden- und der Kathodenseite nicht berücksichtigt. Die Kühleinrichtungen werden auf ähnliche Weise "eindimensional" behandelt, indem man ihnen nur einen Wärmewiderstand zuordnet. Solange die Anodenseite unabhängig von der Kathodenseite gekühlt wird, ergeben sich aus dieser Behandlung der Kühlelemente auch keine zusätzlichen Fehler. Ist dies aber nicht der Fall – und dieser Fall ist nicht selten -, dann müssen die gegenseitigen Abhängigkeiten Berücksichtigung finden.

Gerade bei Halbleiterbauelementen mit großen Schaltleistungen kommt es aus wirtschaftlichen Gründen darauf an, diese einerseits möglichst gut auszunutzen und andererseits eine große Zuverlässigkeit und Verfügbarkeit zu erzielen. Insbesondere bei Anlagen zur Energieerzeugung und Energieverteilung werden diesbezüglich sehr hohe Anforderungen gestellt. Um diese Forderungen erfüllen zu können, ist es erforderlich, die noch bestehenden Unsicherheiten bei der thermischen Dimensionierung von Ventilen mit zweiseitig gekühlten Halbleiterbauelementen auszuräumen. Durch eine zweckmäßige Kombination von Rechnung und Messung soll eine möglichst exakte Vorausbestimmung von Höchstwerten, Verteilungen und Verläufen der Temperaturen, insbesondere der Sperrschichttemperaturen, in den Ventilen ermöglicht werden.

DATE INCOME. 2

2 Stromrichterventile und ihre Komponenten

Die Betrachtungen in dieser Arbeit orientieren sich in erster Linie an Thyristor-Hochleistungsventilen für hohe Spannungen. Die daraus abgeleiteten Erkenntnisse können aber ohne weiteres auch auf andere Fälle übertragen werden. Darauf wird im Einzelfall hingewiesen.

2.1 Thyristor-Hochleistungsventile

Da einzelne Thyristoren keine Sperr- und Blockierspannungsfestigkeit haben, die wesentlich über 5 kV hinausgeht, ist hier eine Reihenschaltung einer Vielzahl von Thyristoren erforderlich. Anwendung finden diese Ventile unter anderem in der Hochspannungs-Gleichstrom-Übertragung (HGÜ), zur Blindleistungskompensation in Anlagen der Energieversorgung, zur Stromversorgung in der chemischen Industrie und als Stellglied von elektrischen Antrieben größter Leistung. Das Bild 2-1 zeigt eine ausgeführte Anlage.

Es ist Stand der Technik, diese Ventile in Innenraumtechnik mit Flüssigkeitskühlung durch entionisiertes Wasser auszuführen [5]. Diese Bauweise hat sich als die zur Zeit im Bau und Betrieb kostengünstigste herausgestellt.

Thyristor-Hochspannungsventile werden üblicherweise aus kleinen Teilabschnitten – sogenannten Modulen – zusammengesetzt (Bilder 2-2 und 2-3). Das ermöglicht eine rationelle Fertigung und erleichtert sowohl Prüfung als auch Transport, Montage vor Ort und Reparatur. Die Module enthalten die Thyristoren und Bedämpfungsglieder mit ihren Kühleinrichtungen sowie die zu jedem Thyristorabschnitt gehörende Hilfselektronik.

Bild 2-1: Thyristor-Ventil Nelson-River II Kanada + 500 kV, 2000 A, 2000 MW Zur Hochspannungsgleichstromübertragung (Arbeitsgemeinschaft HGÜ: AEG-Telefunken, BBC, Siemens AG)

<u>Bild 2-2:</u> Wassergekühltes Thyristormodul für Mittelspannungs-Stromrichter mit 56-mm-Thyristoren (AEG-Telefunken)

<u>Bild 2-3:</u> Kühlwasserrohrsystem in einem Modul mit 56-mm-Thyristoren (AEG-Telefunken)

Die Thyristorsäule besteht aus einer Aneinanderreihung von z. Zt. bis zu 15 Thyristoren und 16 Kühldosen, eingebettet in einen mechanischen Spannverband. Durch eine definierte Anpreßkraft wird eine einwandfreie Kontaktgabe zwischen den Thyristoren und Kühldosen gewährleistet und ein sicherer Strom- und Wärmeübergang ermöglicht.

Das Kühlwasserrohrsystem (siehe Bild 2-3) besteht aus einem Sammelrohr mit entsprechend der Zahl von eingebauten Thyristoren vorgesehenen Verzweigungen. Jede Kühldose erhält damit ihre eigene Wasserversorgung. In Reihe zur Kühldose ist jeweils ein wassergekühlter Hochleistungswiderstand aus der Beschaltungsbaugruppe geschaltet. Zunächst fließt das Kühlwasser dabei durch die Kühldose und anschließend durch den Widerstand. Enge Toleranzen der Strömungswiderstände in den parallelen Kühlwasserkreisen sorgen für eine gleichmäßige Durchflußmenge [6].

In Anlagen zur Blindleistungskompensation werden die Thyristoren jeweils antiparallel geschaltet, um einen Betrieb des Stromrichters als Wechselstromsteller bzw. Wechselstromschalter zu ermöglichen. Module für solche Anlagen enthalten dann zwei Thyristorsäulen mit gegemeinsamen RC-Gliedern. Der Kühlmittelkreislauf der beiden Säulen kann hier parallel oder seriell gestaltet werden (siehe dazu Abschnitt 3.3.3).

2.2 Hochleistungsthyristoren

Hochspannungs- bzw. Hochleistungsthyristoren werden heute bis zu einem Kristalldurchmesser von 100 mm hergestellt [7]. Mit ihnen lassen sich ohne Parallelschaltung Brückengleichströme von etwa 4000 A und Strangwechselströme von etwa 3300 A realisieren. Bild 2-4 zeigt einen Schnitt durch einen Hochleistungsthyristor der Fa. AEG AG.

Dioden in Scheibenzellenbauweise werden nur bis zu einem Kristalldurchmesser von 75 mm hergestellt, da über den damit abgesteckten Arbeitsbereich von ca. 10000 A Dauergrenzstrom hinaus kein ausreichender Bedarf besteht.

2.3 Kühldosen für Hochspannungsstromrichter

Zwischen den Thyristoren in einer Säule werden die Kühldosen angeordnet, die von dem Kühlwasser durchflossen werden. Durch die Verwendung von Wasser als Kühlmittel können die Kühldosen und damit auch die Säulen sehr klein gestaltet werden. Wasser besitzt die größte spezifische Wärmekapazität und gewährleistet einen sehr großen Wärmeübergangskoeffizienten. Da der Wasserkreislauf dieselben Potentialdifferenzen wie das Ventil selbst zu tragen hat, muß die Leitfähigkeit des Kühlwassers durch hochgradige Entionisierung herabgesetzt werden.

Insgesamt wird der mit dem Wasser in Berührung kommende Werkstoff stark belastet. Zum einen können Leckströme eine elektrolytische Abtragung bewirken. Durch zweckmäßig angeordnete Schutz- und Steuerelektroden wird diese Erscheinung minimiert. Zum anderen wird das Material infolge der Kühlmittelgeschwindigkeit durch Kavitation beansprucht, auch Korrosionserscheinungen müssen sicher verhindert werden. Aus diesen Gründen wird das Wasser außer mit den Polyamid-Verteilungsrohren nur mit Edelstahl in Berührung gebracht.

Eine Möglichkeit zur konstruktiven Gestaltung der Kühlelemente besteht nun darin, die Kühldosen ganz aus Edelstahl zu fertigen, und die Kühlkanäle durch Bohrungen zu erzeugen [8]. Durch die relativ schlechte Wärmeleitfähigkeit des Edelstahls ($\lambda \approx 15 \frac{W}{m + K}$) haben solche Kühldosen relativ hohe Wärmewiderstände. Außerdem ist der Arbeitsaufwand zur Herstellung ziemlich groß.

Bild 2-4: Schnitt durch einen Hochleistungsthyristor mit einem Kristalldurchmesser von 56 mm (AEG-Telefunken)

Günstiger sind Kühldosen mit einer in Aluminium eingegossenen Edelstahlspirale (Bilder 2–5 und 2–6). Sie weisen einen bezogen auf die wirksame Rohrlänge und den Durchmesser des Kühlkanales geringeren Druckabfall auf. Durch die Wärmeleitfähigkeit der verwendeten Aluminiumgußlegierung von $\lambda \approx 150 \frac{W}{m + K}$ entstehen größere Temperaturdifferenzen nur in dem dünnwandigen Edelstahlrohr und in der laminaren Grenzschicht des Wärmeüberganges Rohrwand-Wasser. Das technologisch aufwendigere Herstellungsverfahren ist weitaus produktiver als das oben genannte Verfahren mit einer Fertigung aus massivem Material.

<u>Bild 2-5</u>: Kühldose für Thyristoren mit 56 mm und Kühldose für Thyristoren mit 75 und 100 mm Kristalldurchmesser zusammen mit den dazugehörenden Thyristoren (AEG-Telefunken)

Bild 2-6: Aufgeschnittene Kühldose und eine Edelstahlspirale vor dem Eingießen (AEG-Telefunken)

3 Stationäres thermisches Verhalten

Berechnungen des stationären thermischen Verhaltens erfolgen zweckmäßig mit Hilfe von Wärmewiderständen. Eine Definition des Wärmewiderstandes lautet: "Quotient aus der Temperaturdifferenz zwischen den beiden Bezugspunkten einerseits und des von einem Bezugspunkt zum anderen fließenden Wärmestroms andererseits im stationären Fall" (in Anlehnung an [3]).

Als Bezugspunkte werden die Sperrschicht des Halbleiterbauelementes (J), die Temperatur am Übergang Halbleiterbauelement-Kühlelement und die Kühlmitteltemperatur verwendet. Je nachdem, ob der Übergangswiderstand Halbleiterbauelement-Kühlelement dem Halbleiterbauelement oder dem Kühlelement zugeordnet wird, wird der Bezugspunkt an diesem Übergang mit H oder C bezeichnet. Für Betrachtungen, die in beiden Fällen Gültigkeit haben sollen, wird ein G verwendet. Das Kennzeichen der Kühlmittelzuflußtemperatur sei ein A. Nur in den seltenen Fällen, wo der Mittelwert von Kühlmittelzufluß- und Kühlmittelabflußtemperatur als Bezugsgröße dient, wird ein M verwendet. Hinter diese Kennzeichen in Klammern gesetzte Buchstaben bzw. Zahlen [(A), (K), (1), (2)] kennzeichnen die Anoden- bzw. die Kathodenseite oder die Seite 1 bzw. die Seite 2 der verwendeten Bauelemente. Dabei kann die Seite 1 sowohl der Anodenseite als auch der Kathodenseite entsprechen, dies ergibt sich aus dem jeweiligen Anwendungsfall.

3.1 Verhalten der Halbleiterbauelemente

Das stationäre Verhalten der Halbleiterbauelemente wird im allgemeinen mit nur einem thermischen Widerstand R_{thJC} oder R_{thJH} beschrieben. Bei zweiseitig gekühlten Halbleiterbauelementen reicht die Angabe dieses einen Wertes zur vollständigen Beschreibung nicht mehr aus.

3.1.1 Innerer Aufbau

Bild 3-1 zeigt den inneren Aufbau eines Hochspannungs-Thyristors.

Bild 3-1: Innerer Aufbau des Hochspannungs-Thyristors T 2200N 3600... 4400 (AEG-Telefunken)

Auf der Kathodenseite muß der Wärmestrom durch vier Scheiben und vier Übergänge fließen, während auf der Anodenseite nur drei Scheiben und zwei Übergänge angeordnet sind (der Siliziumkristall ist auf die Wolfram-Trägerscheibe auflegiert). Ein symmetrischer Aufbau liegt hier also nicht vor, und es ist im allgemeinen,mit unterschiedlichen Wärmewiderständen auf den beiden Seiten zu rechnen. Radiale Wärmeflüsse über das Keramikgehäuse sind vernachlässigbar und werden bei den folgenden Betrachtungen nicht berücksichtigt.

3.1.2 Thermisches Ersatzschaltbild

Aus dem Aufbau der zweiseitig gekühlten Halbleiterbauelemente läßt sich sofort auf ihr thermisches Ersatzschaltbild schließen (Bild 3-2).

<u>Bild 3-2:</u> Thermisches Ersatzschaltbild eines zweiseitig gekühlten Halbleiterbauelementes

Mit Einführung der abkürzenden Bezeichnungen A und K für die Indizes der Widerstände der Anoden- und Kathodenseite erhält man mit

$$\begin{pmatrix} P_{J} \\ P_{G(A)} \\ P_{G(K)} \end{pmatrix} = \begin{pmatrix} \frac{1}{R_{A}} + \frac{1}{R_{K}} & -\frac{1}{R_{A}} & -\frac{1}{R_{K}} \\ \frac{1}{R_{A}} & -\frac{1}{R_{A}} & 0 \\ \frac{1}{R_{K}} & 0 & -\frac{1}{R_{K}} \end{pmatrix} + \begin{pmatrix} T_{J} \\ T_{G(A)} \\ T_{G(K)} \end{pmatrix}$$
(31-1)

31

bzw.

$$\begin{pmatrix} T_{J} \\ P_{G(A)} \\ P_{G(K)} \end{pmatrix} = \frac{1}{R_{A} + R_{K}} \cdot \begin{pmatrix} R_{A} & R_{K} & R_{A} \\ R_{K} & -1 & 1 \\ R_{A} & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} P_{J} \\ T_{G(A)} \\ T_{G(K)} \end{pmatrix}$$
(31-2)

zwei Gleichungen, die das thermische Verhalten beschreiben.

Um die thermischen Eigenschaften eines solchen Bauelementes mit einem Wert beziffern zu können, geht man von der Definition des Wärmewiderstandes in DIN 41862 [3] aus:

"Quotient aus der Differenz zwischen der inneren Ersatztemperatur undder Gehäusetemperatur einerseits und der im Halbleiterbauelement auftretenden konstanten Verlustleistung andererseits im stationären Fall."

Diese Definition ist nur dann sinnvoll, wenn beide Gehäusetemperaturen $T_{G(A)}$ und $T_{G(K)}$ gleich groß sind. Dann ist der thermische Widerstand des Halbleiterbauelementes gleich der Parallelschaltung der beiden Teilwiderstände

$$R_{\text{thJG}} = \frac{R_{\text{A}} \cdot R_{\text{K}}}{R_{\text{A}} + R_{\text{K}}} \quad . \tag{31-3}$$

Dies entspricht auch einem Vorschlag in [9] .

Welchen Einfluß haben nun die äußeren Wärmewiderstände auf ein gemessenes Ergebnis? Bei einer Messung sind die ermittelten Gehäusetemperaturen im allgemeinen nicht gleich, und deshalb werden diese Werte üblicherweise gemittelt. Mit der Gleichung

$$R_{thJG}^{*} = \frac{T_{J} - \frac{1}{2} (T_{G(A)} + T_{G(K)})}{P_{J}}$$
(31-4)

wird dann ein Näherungswert für den thermischen Widerstand berechnet. Ausgehend von dem Ersatzschaltbild nach Bild 3-3 zeigt das Bild 3-4 die Abweichungen des mit Gl. (31-4) ermittelten Näherungswertes.

<u>Bild 3-3:</u> Thermisches Ersatzschaltbild der Temperaturmessung an zweiseitig gekühlten Halbleiterbauelementen bei unabhängiger Kühlung

Berlin, den 24. November 1984

Stationärer Wärmewiderstand von zweiseitig gekühlten Halbleiterbauelementen Darstellung der Differenzen bei Messungen mit unabhängiger Kühlung beider Seiten

R JG M - Kassetten 41/42 - Variante 03 - 22. November 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken)

stationärer W	ärmewiderstand	der	Anodenseite	R th JC(A)	=	12.180	mK/W
stationärer W	ärmewiderstand	der	Kathodenseite	R th JC(K)	=	16.356	mK/W
idealer Wärme	widerstand des	Baue	lementes	R_th_JC	=	6.981	mK∕₩

Parameter: (R th CA(A)+R th CA(K))/R th JC

Bild 3-4: Einfluß der äußeren thermischen Widerstände auf den gemessenen thermischen Widerstand des Halbleiterbauelementes

3.1.3 Messung der thermischen Widerstände

Zur Messung der thermischen Widerstände von zweiseitig gekühlten Halbleiterbauelementen haben sich insbesondere zwei Verfahren bewährt: die Wärmedurchflußmethode und die einseitige Wärmestromkompensationsmethode [9].

Für Routinemessungen wird die Wärmedurchflußmethode verwendet. Dazu wird die Meßzelle zwischen zwei Stempel gespannt, von denen einer beheizt und einer gekühlt wird. Beide Stempel sind mit mehreren Temperaturmeßstellen versehen. Die Meßzelle ist stromlos. Aus den stationären Temperaturdifferenzen können nun der Wärmestrom durch die Zelle und damit der Summenwiderstand R_{thGG} des anodenund des kathodenseitigen Wärmewiderstandes berechnet werden. Aussagen über die Aufteilung beider Widerstände können mit dieser Methode nicht gewonnen werden.

Wesentlich aufwendiger ist die einseitige Wärmestromkompensationsmethode. Mit einem äußerlich ähnlichen Aufbau wie bei der Wärmedurchflußmethode wird hier die Zelle jedoch durch einen elektrischen Strom erwärmt. Die Heizung des einen Stempels wird nun so eingestellt, daß der Temperaturgradient in ihm null ist, d. h., daß der Wärmestrom nur zur anderen Seite abfließt. Aus den dann gemessenen Temperaturdifferenzen kann der thermische Widerstand der Zelle auf der gekühlten Seite berechnet werden. Bis zur Einstellung eines stationären Zustandes, der die o. g. Bedingungen erfüllt, vergeht einige Zeit, so daß diese Methode für Stückprüfungen nicht geeignet ist, zumal sie je Halbleiterbauelement zweimal durchzuführen ist.

Für Thyristoren der Baureihe T 2200 N 3600 ... 4400 liegen einige detaillierte Meßergebnisse vor (Tafel 3-1). Der Stichprobenumfang ist relativ klein und die daraus ableitbaren Aussagen entsprechend unsicher. Bild 3-5 zeigt die mit der einseitigen Wärmekompensationsmethode ermittelten Verteilungen der einzelnen thermischen Widerstände und Bild 3-6 die dazugehörende statistische Auswertung. Man kann davon ausgehen, daß die

				Meßwerte	berechnete Wer	
I	Nr.	R _{thJC(A)}	R _{thJC(K)}	RthCC	RthJC	ofo
1	179	11.6	13.2	24.8	6.17	1.14
2	200	11.6	16.9	28.6	6.88	1.46
3	408	11.9	14.0	25.9	6.43	1.18
4	409	12.6	15.5	28.2	6.95	1.23
5	410	11.5	13.9	25.5	6.29	1.21
6	411	11.2	12.8	24.0	5.97	1.14
7	412	10.8	13.6	24.5	6.02	1.26
8	413	11.5	12.1	23.5	5.90	1.05
9	467	10.9	12.3	23.2	5.78	1.13
Ein	heit	mK/W	mK∠W	mK∠W	mK∠W	p.u.

Tafel 3-1: Mit der einseitigen Wärmestromkompensations- und mit der Wärmedurchflußmethode ermittelte thermische Widerstände von neun Thyristoren des Typs T 2200 N 3600 ... 4400

> Wärmewiderstände normalverteilt sind und daß der anodenseitige thermische Widerstand unabhängig vom kathodenseitigen ist. Die aus den Zahlenwerten berechneten Konfidenzgrenzen der statistischen Parameter sind aber noch recht grob.

> Zur Erhöhung der Genauigkeit kann man aber die im wesentlich größerer Menge vorliegenden Meßwerte aus der Wärmedurchflußmessung heranziehen. Zu diesem Zweck muß man einige Beziehungen zwischen den Widerständen ableiten.

3.1.4 Beziehungen zwischen den verschiedenen thermischen Parametern

3.1.4.1 Diskrete Beziehungen

Mit Gl. (31-3) wurde bereits der Zusammenhang zwischen den Einzelwiderständen und dem Widerstand der Parallelschaltung angegeben:

$$R_{thJG} = f(R_1, R_2) = \frac{R_1 - R_2}{R_1 + R_2}$$
.

Für den Summenwiderstand gilt die einfache Beziehung

$$R_{thGG} = f(R_1, R_2) = R_1 + R_2$$
 (31-6)
Berlin, den 01. Dezember 1914

Thermische Eigenschaften von Thyristoren in Scheibenzellenbauweise

Stt RT - Variante 06 - Kassetten 61/62 - 01. Dezember 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

R_th_JC-, R_th_JC(A)- und R_th_JC(K)-Verteilung von 9 Thyristoren:

Bemerkung: Wahrscheinlichkeitsnetz der Normalverteilung

Zu der empirischen und der theoretischen Verteilung sind noch die einseitigen oberen Toleranzgrenzen mit der statistischen Sicherheit $\beta = 0.95$ eingezeichnet. Voraussetzung zur Berechnung ist das Vorliegen einer normalverteilten Grundgesamtheit.

<u>Bild 3-5:</u> Verteilung der mit der einseitigen Wärmestromkompensationsmethode ermittelten thermischen Widerstände der Thyristoren aus Tafel 3-1

Berlin, den 01. Dezember 1984

Thermische Eigenschaften von Thyristoren in Scheibenzellenbauweise

Stt_RT - Variante 06 - Kassetten 61/62 - 01. Dezember 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

Statistische Auswertung:

arithmetischer Mittelwert von R_th_JC(A)	x quer	=	11.511	mK/W
empirische Standardabweichung von R th JC(A)	s	=	0.540	mK/W
empir. KorrKoeff.: R_th_JC(R) - R_th_JC(K)	r×	=	0.563	
Minimalwert von R_th_JC(A)	× min	=	10.800	mK/W
Maximalwert von R_th_JC(A)	× max	=	12.600	mK/W
Spannweite von R_th_JC(A)	R	=	1.800	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.20$ NiCht abgelehnt. Die Testgröße ist D_n = 0.212 und der kritische Wert nach Lilliefors K_n α ist K = 0.223. Der Umfang der Stichprobe ist n = 9.

arithmetischer Mittelwert von R_th_JC(K)	x quer	=	13.811	mK/W
empirische Standardabweichung von R th JC(K)	s	=	1.545	mK/W
empir. KorrKoeff.: R_th_JC - R_th_JC(A)	r×	=	0.813	
Minimalwert von R_th_JC(K)	× min	=	12.100	mK/W
Maximalwert von R_th_JC(K)	×max	=	16.900	mK/W
Spannweite von R th JC(K)	R	=	4.800	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.10$ Nicht abgelehnt. Die Testgröße ist D_n = 0.229 und der kritische Wert nach Lilliefors K_n_ α ist K = 0.249. Der Umfang der Stichprobe ist n = 9.

arithmetischer Mittelwert von R_th_JC	x quer	=	6.266 mK/W
empirische Standardabweichung von R_th_JC	s	=	0.418 mK/W
empir. KorrKoeff.: R_th_JC - R_th_JC(K)	r×	=	0.943
Minimalwert von R_th_JC	× min	=	5.779 mK/W
Maximalwert von R_th_JC	× max	=	6.950 mK/W
Spannweite von R th JC	R	=	1.171 mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.20$ Nicht abgelehnt. Die Testgröße ist D_n = 0.167 und der kritische Wert nach Lilliefors K_n_ α ist K = 0.223. Der Umfang der Stichprobe ist n = 9.

Einseitige ober	Konfidenzgrenzen	bei normalvertei	ilter Grundgesamtheit:
-----------------	------------------	------------------	------------------------

statistis	che	Sicherheit			ε	=	0.990	
KonfGr.	des	Erwartungswertes	von	R th JC(R)	νo	=	12.033	mK/W
KonfGr.	der	Standardabweichung	von	R_th_JC(A)	د_o	=	1.188	mK∕W
KonfGr.	des	Erwartungswertes	von	R_th JC(K)	οų	=	15.304	mK/W
KonfGr.	der	Standardabweichung	von	R_th_JC(K)	e_0	=	3.401	mK∠W
KonfGr.	des	Erwartungswertes	von	R_th_JC	οų	=	6.671	mK/W
KonfGr.	der	Standardabweichung	von	R_th_JC	©_0	=	0.921	mK/W

<u>Bild 3-6:</u> Statistische Auswertung der Verteilungen von Bild 3-5 (Thyristoren aus Tafel 3-1) Außerdem wird das Verhältnis zwischen dem kathodenund dem anodenseitigen thermischen Widerstand benötigt, welches mit

$$v_{JG} = f(R_1, R_2) = \frac{R_2}{R_1}$$
 (31-7)

berechnet wird. Zwischen dem Widerstand der Parallelschaltung und dem Summenwiderstand setzt man

$$R_{thJG} = g \cdot R_{thGG}$$
(31-8)

an, mit dem Faktor

$$g = f(v) = \frac{v}{(1 + v)^2}$$
 (31-9)

Der Faktor g hat ein Maximum bei v = 1 mit g = 0,25und ist sonst immer kleiner (Bild 3-7).

Bild 3-7: Verhaltnis g zwischen dem Parallel- und dem Summenwiderstand

3.1.4.2 Beziehungen zwischen den Einzelwiderständen und dem Parallelwiderstand

Grundlage der folgenden Betrachtungen ist die Annahme normalverteilter und unabhängiger anoden- und kathodenseitiger Wärmewiderstände mit den Erwartungswerten μ_1 und μ_2 sowie den Standardabweichungen σ_1 und σ_2 . Berechnet werden soll der Erwartungswert und die Varianz einer Funktion f (R₁, R₂) der beiden Widerstände. Zu diesem Zweck entwickelt man die Funktion um die Erwartungswerte nach Taylor und erhält

 $f(R_1, R_2) = f(\mu_1 + h_1, \mu_2 + h_2) = f(\mu_1 + \mu_2) +$

$$\sum_{i=1}^{\infty} \frac{1}{i!} \cdot \sum_{j=0}^{1} \binom{i}{j} \frac{\partial^{i} f(\mu_{1}, \mu_{2})}{\partial^{i-j} R_{1} \cdot \partial^{j} R_{2}} h_{1}^{i-j} \cdot h_{2}^{j}.$$
(31-10)

Zur Berechnung des Erwartungswertes müssen in die Gleichung die Erwartungswerte der einzelnen Glieder h_1 , h_2 , h_1^2 , h_1h_2 , h_2^2 usw. eingesetzt werden. Bei normalverteilten Zufallsvariablen sind diese aber leicht zu berechnen. Hier gilt nach [11, 12]

$$E(X-\mu)^{2k} = \frac{(2k)!}{2^{k} \cdot k!} \sigma^{2k}$$

= 1 · 3 · 5 · ... · (2k-1) σ^{2k} ; k=1(1) ∞
 $E(X-\mu)^{2k+1} = 0$; k=0(1) ∞ .

Zusammen mit der Beziehung für unabhängige Zufallsvariable

$$E[(X-\mu_{Y})(Y-\mu_{Y})] = E(X-\mu_{Y}) \cdot E(Y-\mu_{Y})$$
(31-12)

können die ersten Glieder der Reihenentwicklung angegeben werden

$$E[f(R_{1}, R_{2})] = f(\mu_{1}, \mu_{2}) + \frac{1}{2} \left[\frac{\partial^{2} f}{\partial R_{1}^{2}} \sigma_{1}^{2} + \frac{\partial^{2} f}{\partial R_{2}^{2}} \sigma_{2}^{2} \right] + \frac{1}{24} \left[3 \frac{\partial^{4} f}{\partial R_{1}^{4}} \sigma_{1}^{4} + 6 \frac{\partial^{4} f}{\partial R_{1}^{2} \partial R_{2}^{2}} \sigma_{1}^{2} \sigma_{2}^{2} + 3 \frac{\partial^{4} f}{\partial R_{2}^{4}} \sigma_{2}^{4} \right] + \frac{1}{720} \left[\cdots \right] + \cdots, \quad (31-13)$$

wobei die partiellen Ableitungen, an den Erwartungswerten μ_1 und μ_2 zu berechnen sind.

Für den Erwartungswert der Parallelschaltung erhält man nach Bildung der partiellen Ableitungen der Gl. (31-3) den Ausdruck

$$E(R_{thJG}) = \frac{\mu_1 \cdot \mu_2}{\mu_1 + \mu_2} - \frac{(\mu_2 \cdot \sigma_1)^2 + \mu_1 \cdot \sigma_2)^2}{(\mu_1 + \mu_2)^3} - \frac{3 \mu_2^2 \cdot \sigma_1^4 + (\mu_1^2 - 4\mu_1 \mu_2 + \mu_2^2) \cdot \sigma_1^2 \cdot \sigma_2^2 + 3\mu_1^2 \cdot \sigma_2^4}{(\mu_1 + \mu_2)^5} - \dots$$
(31-14)

Der sich ergebende Erwartungswert wird mit wachsender Streuung der Teilwiderstände immer kleiner (Bild 3-8). Mit den Gleichungen für die Varianzen

$$V (aX+b) = a^2 \cdot V(X)$$
 (31-15)

und

$$V(a_{0} + \sum_{i=1}^{n} a_{i} X_{i}) = \sum_{i=1}^{n} a_{i}^{2} V(X_{i}) + 2 \sum_{i < j}^{n} a_{i} a_{j} Cov(X_{i}, X_{j}) \quad (31-16)$$

erhält man für die Varianz der Funktion f (R_1 , R_2) allgemein

Berlin, den 07. Dezember 1984 Feihenentwicklung nach Taylor zur Berechnung des thermischen Widerstandes von Halbletterbauelementen in Scheibenzellenbauweise EVR JC - Variante 02 - Kassetten 61/62 - 06. Dezember 1984 - 8z Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) Bauelement: Berechnung des Zusammenhanges zwischen den Standardabweichungen der Teilwiderstände R_th_JC(A) und R_th_JC(K) und dem Erwartungswert des Gesamtwiderständes R_th_JC Enwartungswert von R_th_JC(A) 11.369 mK/W P_A N K = Erwartungswert von R_th_JC(K) 13.641 mK/W = Näherungslösung für den Erwartungswert

6.201 mK/W

Parameter: Standardabweichung & von R th JC(R) [mK/W]

R_th_JC(A) || R_th_JC(K)

<u>Bild 3-8:</u> Enwartungswert der Parallelschaltung zweier mit Streuungen behafteter norwalverteilter, unabhängiger Widerstände

$$\begin{split} \mathbb{V}\left[f\left(\mathbb{R}_{1},\mathbb{R}_{2}\right)\right] &= \left[\left(\frac{\partial f}{\partial \mathbb{R}_{1}}\right)^{2} \cdot \mathbb{V}\left(\mathbb{R}_{1}\right) + \left(\frac{\partial f}{\partial \mathbb{R}_{2}}\right)^{2} \cdot \mathbb{V}\left(\mathbb{R}_{2}\right)\right] + \\ &+ \frac{1}{4} \left\{\left(\frac{\partial^{2} f}{\partial \mathbb{R}_{1}^{2}}\right)^{2} \cdot \mathbb{V}\left[\left(\mathbb{R}_{1}-\mu_{1}\right)^{2}\right] + 4 \left(\frac{\partial^{2} f}{\partial \mathbb{R}_{1}^{2} \partial \mathbb{R}_{2}}\right)^{2} \\ &\cdot \mathbb{V}\left[\left(\mathbb{R}_{1}-\mu_{1}\right)\left(\mathbb{R}_{2}-\mu_{2}\right)\right] + \\ &+ \left(\frac{\partial^{2} f}{\partial \mathbb{R}_{2}^{2}}\right)^{2} \cdot \mathbb{V}\left[\left(\mathbb{R}_{2}-\mu_{2}\right)^{2}\right] \left\{\left. + \ldots \right. (31-17)\right] \end{split}$$

Bei dieser Gleichung ist bereits berücksichtigt, daß die Kovarianzen Cov (X^2, X) , Cov $(X^2, X \cdot Y)$ und Cov (X, Y)bei normalverteilten, unabhängigen Variablen X und Y alle null sind. Zur Berechnung der Varianzen verwendet man die Gleichung

$$V[(R_{1}-\mu_{1})^{j} \cdot (R_{2}-\mu_{2})^{k}] = E[(R_{1}-\mu_{1})^{2j}] \cdot E[(R_{2}-\mu_{2})^{2k}] - E^{2}(R_{1}-\mu_{1})^{j} \cdot E^{2}(R_{2}-\mu_{2})^{k}, \quad (31-18)$$

welche aus der Beziehung [11]

 $V(X) = E(X^2) - E^2(X)$ (31-19)

und Gl. (3-12) hergeleitet ist. Für die Kovarianzen kann man aus

$$Cov (X,Y) = E (X \cdot Y) - E(X) \cdot E(Y)$$
 (31-20)

die Gleichung

$$Cov[(R_{1}-\mu_{1})^{i} \cdot (R_{2}-\mu_{2})^{j}, (R_{1}-\mu_{1})^{k} \cdot (R_{2}-\mu_{2})^{1}] =$$

$$= E[(R_{1}-\mu_{1})^{i+k}] - E[(R_{2}-\mu_{2})^{j+1}] -$$

-
$$E[(R_1 - \mu_1)^i] \cdot E[(R_1 - \mu_1)^k] \cdot E[(R_2 - \mu_2)^i] \cdot E[(R_2 - \mu_2)^i]$$
 (31-21)

ableiten.

Das erste Glied der Reihe (31-17) entspricht dem bekannten Fehlerfortpflanzungsgesetz für unabhängige Variable [11]. Speziell für Gl. (31-3) erhält man hier

$$\sigma(R_{\text{thJG}}) = \sqrt{V(R_{\text{thJG}})} \approx \frac{\sqrt{(\mu_2^2 \sigma_1)^2 + (\mu_1^2 \sigma_2)^2}}{(\mu_1 + \mu_2)^2}.$$
 (31-22)

Bild 3-9 zeigt mit der Gl. (31-17) berechnete Werte für ein Beispiel.

Auf Konsistenz- und Konvergenzbeweise für die Gleichungen (31-14) und (31-17) sei hier verzichtet. Notwendige Bedingungen für die Konvergenz der Reihenentwicklung sind $\sigma_1 < \mu_1$ und $\sigma_2 < \mu_2$.

3.1.4.3 Beziehungen zwischen dem Summenwiderstand und dem Parallelwiderstand

Die für beliebige Funktionen f = f (R_1 , R_2) abgeleiteten Gln. (31-13) und (31-17) gestatten es, auch die Erwartungswerte und die Streuungen von v_{JG} und von R_{thGG} auszurechnen.

Für den Summenwiderstand gilt exakt

$$E(R_{thGG}) = \mu_1 + \mu_2$$
 (31-23)

$$\sigma (R_{thGG}) = \sqrt{\sigma_1^2 + \sigma_2^2}$$
 (31-24)

Bricht man die Reihenentwicklung nach dem ersten Glied ab, dann erhält man für v_{1c}

$$E(v_{JG}) \approx \frac{\mu_2}{\mu_1} \cdot (1 + \frac{\sigma_1^2}{\mu_1^2})$$
 (31-25)

und

$$\sigma(v_{\rm JG}) \approx \frac{1}{\mu_1} \sqrt{\sigma_2^2 + (\frac{\mu_2}{\mu_1} \cdot \sigma_1)^2}$$
 (31-26)

Berlin, den 07. Dezember 1914

Reihenentwicklung nach Taylor zur Berechnung des thermischen Widerstandes von Halbleiterbauelementen in Scheibenzellenbaumeise

EVR_JC - Variante 02 - Kassetten 61/62 - 06. Dezember 1984 - 5z

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

Berechnung des Zusammenhanges zwischen den Standardabweichungen der Teilwiderstände R_th_JC(A) und R_th_JC(K) und der Standardabweichung des Gesamtwiderstandes R_th_JC

Erwartungswert von R_th_JC(A)	NA	=	11.369 mK/W
Erwartungswert von R_th_JC(K)	μ <u></u> κ	=	13.641 mK/W
Näherungslösung für den Erwartungswert			
R_th_JC(A) R_th_JC(K)		-	6.201 mK/W

Parameter: Standardabweichung & von R_th_JC(R) [mK/W]

<u>Bild 3-9:</u> Standardabweichung der Parallelschaltung zweier mit Streuungen behafteter normalverteilter, unabhängiger Widerstände 45

Mit Hilfe der Gleichung

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sqrt{V(X) - V(Y)}}$$
(31-27)

lassen sich auch die Korrelationskoeffizienten zwischen den Größen bestimmen. Bild 3-10 zeigt mit der Reihenentwicklung berechnete Zahlenwerte für ein Beispiel. Hier finden die nach Bild 3-11 empirisch ermittelten Korrelationskoeffizienten ihre theoretische Bestätigung. Gelingt es jetzt, die empirisch gefundene Regressionsfunktion aus den Ausgangsdaten μ_1 , σ_1 und μ_2 , σ_2 theoretisch zu bestimmen, dann kann der Erwartungswert für v_{JG} auf R_{thGG} in Gl. (31-9) eingesetzt werden und so eine geeignete Beziehung zwischen R_{thGG} und R_{thJG} aufgestellt werden. Für die Schätzung von v_{JG} auf R_{thGG} setzt man

$$\mathbf{v}_{\mathsf{JG}} = \alpha + \beta \cdot \mathbf{R}_{\mathsf{thGG}} \tag{31-28}$$

an und berechnet α und β nach [11] mit

$$\beta = \frac{\text{Cov}(v_{\text{JG}}, R_{\text{thGG}})}{V(R_{\text{thGG}})} = \rho (v_{\text{JG}}, R_{\text{thGG}}) \sqrt{\frac{V(v_{\text{JG}})}{V(R_{\text{thGG}})}} (31-29)$$

 $\alpha = E(v) - \beta \cdot E(R_{\text{thGG}}). \qquad (31-30)$

Bild 3-10 zeigt den so ermittelten Zusammenhang zwischen dem Summen- und dem Parallelwiderstand, der durch Einsetzen der mit Gl. (31-28) errechneten Werte für v_{JC} in Gl. (31-9) entsteht. Zur Illustration sind in das Bild dreihundert mit der Monte-Carlo-Methode simulierte Beispiele eingetragen.

46

Berlin, den 07. Dezember 1984

Berechnung von statistischen Parametern des thermischen Widerstandes von Halbleiterbauelementen in Scheibenzellenbauweise

T_V-CC - Variante 03 - Kassetten 63/64 - 06. Dezember 1984 - Sz

Thuristor T 2200 N 3600 ... 4400 (AEG-Telefunken AG) Bauelement: μ_Α σ_Α κ_Κ Erwartungswert von R th JC(A) 11.369 MK/W = Standardabweichung von R_th_JC(R) 0.435 mK/W = Erwartungswert von R th JC(K) 13.641 mK/W -Standardabweichung von R_th_JC(K) 1.244 mK/W = 20_4 20_2 Erwartungswert von R th CC 25.010 mK/W = Standardabweichung von R th CC 1.318 mK/W = H JC Erwartungswert von R th JC 6.186 mK/W Standardabweichung von R th JC G JC 0.290 mK/W -Erwartungswert von v JC = R th JC(K)/R th JC(A) NU JC = 1.202 Standardabweichung von v_JC = R_th_JC(K)/R_th_JC(A) GVJC 0.119 = 6 7C ^ =
6 7C ^ =
6 7C ^ = Korrelationskoeffizient R th JC und v JC 0.648 Korrelationskoeffizient R th JC und R th CC 8.989 Korrelationskoeffizient R th CC und v JC 0.741

Darstellung des Zusammenhanges zwischen dem gemessenen Summenwiderstand R_th_CC der Teilwiderstände R_th_JC(A) und R_th_JC(K) und dem Erwartungswert des Gesamtwiderstandes R th JC mit 300 simulierten Beispielen

<u>Bild 3-10:</u> Statistische Zusammenhänge bei normalverteilten, unabhängigen thermischen Widerständen der Anoden- und Kathodenseite

Berlin, den 01. Dezember 1984

Thermische Eigenschaften von Thyristoren in Scheibenzellenbauweise

Stt_RT - Variante 06 - Kassetten 61/62 - 01. Dezember 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken)

v_JC = R_th_JC(K)/R_th_JC(A) - R_th_JC - Spektrum von 9 Thyristoren:

<u>Bild 3-11:</u> $v_JC-R_th_JC-Spektrum mit eingezeichneter linearer Regressions$ $funktion der Art <math>v = a + b + R_th_JC$ mit den Daten aus Tafel 3-1

3.1.4.4 Auswertung der Messungen des Summenwiderstandes

Verwendet man den Faktor g = 0,25 als festen Wert für die Umrechnung des gemessenen Summenwiderstandes in den interessierenden Parallelwiderstand, liegt man immer auf der sicheren Seite, d. h., der so ermittelte Wert ist immer größer oder gleich dem wahren Wert. Um aber die Gleichungen des vorliegenden Abschnittes anwenden zu können, sind a-priori-Informationen über die Erwartungswerte und die Streuungen der Teilwiderstände erforderlich. Durch proportionale Umrechnung der ausgewerteten Zahlen aus Tafel 3-1 (Bild 3-6) erhält man mit Hilfe der Gleichungen (31-23, 24) die Näherungsbeziehungen

$$\mu_1 \approx \frac{\overline{x}_1}{\overline{x}_1 + \overline{x}_2} \cdot \overline{x}_{CC}$$
(31-31)

$$\mu_2 \approx \frac{\overline{x}_2}{\overline{x}_1 + \overline{x}_2} \cdot \overline{x}_{CC}$$
(31-32)

$$\sigma_{1} \approx \sqrt{\frac{s_{1}^{2}}{s_{1}^{2} + s_{2}^{2}}} s_{CC}$$
(31-33)

$$\sigma_{2} \approx \sqrt{\frac{s_{2}^{2}}{s_{1}^{2} + s_{2}^{2}}} \quad s_{CC}, \qquad (31-34)$$

wobei \overline{x}_1 , \overline{x}_2 , \overline{x}_{CC} die arithmetischen Mittelwerte der Einzelmessungen und s₁, s₂ und s_{CC} die empirisch ermittelten Standardabweichungen sind.

Tafel 3-2 zeigt die Daten von 112 ausgemessenen Thyristoren und Bild 3-12 die daraus gewonnene Verteilungsfunktion des thermischen Widerstandes. Die Lilliefors-Modifikation des Kolmogoroff-Anpassungstestes und der χ^2 -Anpassungstest auf eine Normalverteilung mit dem in Bild 3-12 angegebenen empirischen Parametern werden auf einem Signifikanzniveau von $\alpha = 1$ % abgelehnt. Die

Thermische Eigenschaften von Halbleiterbauelementen in Scheibenzellenbauweise

stt_Rw - Variante 02 - Kassetten 63/64 - 03. Dezember 1984 - Sz

Bauelement:

Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

I	Nr.	R_th_CC [mK/W]	I	Nr.	R_th_CC [mK/W]	I	Nr.	R_th_CC [mK/W]
1	849	26.0	39	1099	25.6	76	1358	25.6
2	900	23.6	40	1104	25.2	77	1363	25.6
3	986	25.2	41	1109	25.2	78	1368	25.6
4	912	24.4	42	1114	24.8	79	1373	25.6
5	918	24.4	43	1119	25.6	80	1378	28.0
6	924	24.4	44	1124	28.0	81	1380	24.0
7	930	24.4	45	1129	25.2	82	1385	26.0
8	935	25.2	46	1132	28.0	83	1390	24.0
9	942	26.0	47	1137	27.6	84	1395	24.8
10	947	25.2	48	1147	28.0	85	1400	23.6
11	952	24.4	49	1152	26.4	86	1405	24.8
12	958	23.2	50	1157	27.6	87	1410	25.2
13	964	23.6	51	1163	26.0	88	1415	26.4
14	969	25.2	52	1168	25.2	. 89	1420	25.2
15	974	26.0	53	1173	28.0	90	1425	25.2
16	979	26.0	54	1178	27.2	91	1430	25.2
17	986	24.4	55	1183	27.6	92	1435	26.4
18	992	24.4	56	1188	26.8	93	1436	24.4
19	1000	23.6	57	1266	25.6	94	1441	24.8
20	1001	24.4	58	1271	23.6	95	1446	22.4
21	1005	27.2	59	1276	24.8	96	1451	23.6
22	1015	25.2	68	1281	25.2	97	1455	23.6
23	1021	25.2	61	1286	24.4	98	1460	23.6
24	1824	23.6	62	1291	24.4	99	1465	25.6
25	1029	23.6	63	1296	24.4	100	1470	24.4
26	1034	24.4	64	1301	23.2	101	1475	22.8
27	1039	24.8	65	1307	26.0	102	1480	24.8
28	1044	23.6	66	1312	24.8	103	1485	23.6
29	1049	24.8	67	1317	25.6	104	1490	24.8
30	1054	27.2	68	1322	24.8	105	1495	24.4
31	1059	22.4	69	1327	23.6	106	1500	24.4
32	1064	24.4	70	1332	25.6	107	1505	23.6
33	1069	23.2	71	1337	24.4	108	1510	22.8
34	1074	24.4	72	1342	23.6	109	1514	23.6
35	1879	24.8	73	1347	24.8	110	1519	25.6
36	1084	26.0	74	1352	24.4	111	1524	23.2
37	1089	28.0	75	1357	26.0	112	1529	23.6
38	1094	26.4					0.000	1000

Statistische Auswertung:

arithmetischer Mittelwert	von	R_th_CC	x_quer	-	25.011	mK/W
empirische Standardabweichung	von	R_th_CC	5	=	1.317	mK∕₩
Minimalwert	von	R th CC	× min		22.400	mK/W
Maximalwert	von	RthCC	×ma×	=	28.000	mK/W
Spannweite	von	R_th_CC	R	=	5.600	mK/W

Tafel 3-2: Mit der Wärmedurchflußmethode ermittelte Summenwiderstände von 112 Thyristoren des Typs T 2200 N 3600 ... 4400

Berlin, den 07. Dezember 1984

Thermische Eigenschaften von Halbleiterbauelementen in Scheibenzellenbauweise

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken)

R_th_JC - Verteilung von 112 Thyristoren:

Bemerkung: Wahrscheinlichkeitsnetz der Normalverteilung

Statistische Auswertung:

arithmetischer Mittelwert	von	R th JC	x quer	=	6.192	mK/W
empirische Standardabweichung	von	R_th_JC	5	=	0.281	mK/W
Minimalwert	von	R th JC	x_min	=	5.599	mK/W
Maximalwert	von	RthJC	×ma×	=	6.804	mK/W
Spannweite	von	R_th_JC	R	=	1.205	mK/W
Einseitige obere Konfidenzgre	nzen	L				
et stietische Cichenheit				=	8.998	

Konfidenzgrenze des Erwartungswertes von R_th_JC $\mu_0 = 6.254 \text{ mK/W}$

<u>Bild 3-12:</u> Mit Hilfe von Bild 3-10 aus den Summenwiderständen errechnete Werte des Parallelwiderstandes von 112 Thyristoren Ursache dafür sind vermutlich in mehreren vorgenommenen Technologieveränderungen des Herstellers zu suchen, so daß die Thyristoren nicht aus einer Grundgesamtheit stammen. Für die weiteren Rechnungen kann man aber die so gewonnenen Daten als repräsentativ annehmen.

3.1.5 Berechnung der thermischen Widerstände

In [9] ist ein Verfahren zur Durchführung einer Punktschätzung des thermischen Widerstandes von Halbleiterbauelementen in Scheibenzellenbauweise angegeben. Es wird im folgenden kurz skizziert und um eine Möglichkeit zur Berücksichtigung der Wärmestromausbreitung erweitert.

3.1.5.1 Thermische Widerstände des Materials

Der thermische Widerstand eines homogenen, isotropen Körpers mit konstantem Querschnitt ist bekanntlich

$$R_{\gamma} = \frac{d}{\lambda \cdot A} \cdot A \quad (31-35)$$

Er läßt sich aus den gegebenen Abmessungen der Scheiben und den Werten der Wärmeleitfähigkeit aus Tafel 3-3 leicht bestimmen.

Material	Kurzzeichen	ę	¢ p	λ	¢₿
Silizium	Si	2 330	800	84.0	700
Nickel	Ni	8 900	460	92.0	330
Kupfer	Cu	8 930	383	392	220
Molybdän	Mo	18 288	260	159	708
Rhodium	Rh	12 400	247	88.0	240
Silber	Ag	10 500	235	423	130
Wolfram	W	19 300	140	197	400
Gold	Au	19 290	133	310	120
Silumin	Si-Al	2 330	800	84.0	-
Einheit		kg∕m ³	J/(kg*K)	W/(m*K)	N/mm ²

Tafel 3-3: Materialkenngrößen von in Halbleiterbauelementen eingesetzten Stoffen (aus [9,13-15])

3.1.5.2 Thermische Widerstände der Übergänge (Kontaktwiderstände)

> Die Wärme wird in den hier betrachteten Fällen in erster Linie durch die Stellen des echten Kontaktes der sich gegenüberliegenden Rauhigkeitsspitzen und durch die Wärmeleitung im Spaltraum der sich nicht direkt berührenden Rauhigkeitsspitzen übertragen. Der Gesamtwiderstand des Kontaktes setzt sich dann aus der Parallelschaltung des Engewiderstandes (Bezeichnung nach [60]) und dem Wärmewiderstand des Spaltraumes zusammen. Der sogenannte Hautwiderstand, der von Fremdschichten an der Oberfläche des Kontaktes hervorgerufen wird, kann bei den hier verwendeten Edelmetallen im Zusammenhang mit den großen Kontaktkräften vernachlässigt werden.

> Nach Shlykov und Ganin[61] hat sich folgender Näherungsausdruck für die echte Kontaktfläche

$$A_{K} = \frac{F}{C \cdot \sigma_{B}}$$
(31-36)

mit der Normierungskonstanten C, die für kaltverformtes Material 5 und sonst 3 ist, bewährt. Hier wird immer mit C = 3 gerechnet.

Man kann nun annehmen, daß die echte Kontaktfläche A_K aus z einzelnen kreisförmigen Mikroberührungsstellen mit der mittleren Fläche $\pi \cdot \overline{r}_R^2$ besteht. Diese mittlere Fläche bleibt nach gesicherten Erkenntnissen auch mit steigender Kraft konstant; die Zahl der Mikroberührungspunkte nimmt proportional der Kraft zu. Der mittlere Radius \overline{r}_R ist unabhängig vom Material etwa 30 µm groß (nach [62]). Für den Wärmewiderstand R_R einer kreisförmigen Mikro-Kontaktstelle mit dem Radius r_p gilt nach Holm [60]:

$$R_{R} = \frac{1}{2 \cdot \overline{r}_{R} \cdot \overline{\lambda}_{R}} \quad . \tag{31-37}$$

53

Für die mittlere Wärmeleitfähigkeit wird bei unterschiedlichen Kontaktmaterialien

$$\overline{\lambda}_{R} = \frac{2 \cdot \lambda_{1} \cdot \lambda_{2}}{\lambda_{1} + \lambda_{2}}$$
(31-38)

eingesetzt. Unter den bei Halbleiterbauelementen geltenden Bedingungen kann man die einzelnen Mikro-Kontaktstellen als unabhängig voneinander annehmen, so daß man für den Engewiderstand folgende Gleichung erhält:

$$R_{E} = \frac{1}{z \cdot 2 \cdot \overline{r}_{R} \cdot \overline{\lambda}_{R}} . \qquad (31-39)$$

Mit dem Ausdruck für z

$$z = \frac{A_{K}}{\pi \cdot \overline{r}_{R}^{2}}$$
(31-40)

ergibt sich für den Engewiderstand

$$R_{E} = \frac{\pi \cdot C \cdot \sigma_{B} \cdot \overline{r}_{R}}{2 \cdot F \cdot \overline{\lambda}_{R}}$$
 (31-41)

Bei "gut ebenen" Flächen ist die Spaltdicke δ des Kontaktes unabhängig von der auf sie wirkenden Kraft. Die Spaltdicke ist nur von der Oberflächenbearbeitung der Materialien abhängig. Für den Spaltraum-Widerstand ergibt sich dann

$$R_{S} = \frac{\overline{\delta}}{\lambda_{S} \cdot A_{S}} . \qquad (31-42)$$

Dabei ist A_S die Größe der sich gegenüberstehenden und nicht berührenden Fläche. Da die echte Kontaktfläche A_K nach Gl. (31–36) wesentlich kleiner als die Fläche A_S ist, kann für A_S mit guter Näherung die Gesamtfläche des Kontaktes A ($A = A_S + A_K$) eingesetzt werden. Tafel 3–4 enthält die Wärmeleitfähigkeit von typischen Spaltfüllmaterialien.

Material	۸s
Stickstoff Luft	0.028 0.028
Kontaktschutzfett P 1 (Fa. Karl Pfisterer)	0.15
Einheit	W/(m*K)

Tafel 3-4: Wärmeleitfähigkeit von typischen Spaltfüllmaterialen bei 50 °C und 1 bar (aus [14] und nach Angaben der Fa. Pfisterer)

Sind unterschiedliche Kontaktmaterialien bzw. Oberflächenbearbeitungen vorhanden, so gilt für $\overline{\delta}$

$$\overline{\delta} = \frac{\delta_1 + \delta_2}{2} \quad . \tag{31-43}$$

Die Spaltdicke δ kann bei der bei der Halbleiterbauelementeproduktion üblichen Fertigungsqualität mit δ = 2 um angesetzt werden.

Der gesamte Kontaktwiderstand ergibt sich jetzt aus der Parallelschaltung von ${\rm R_S}$ mit ${\rm R_F}$ zu

$$\frac{1}{R_{K}} = \frac{2 \cdot F \cdot \overline{\lambda}_{R}}{\pi \cdot c \cdot \sigma_{R} \cdot \overline{r}_{R}} + \frac{\lambda_{S} \cdot A}{\overline{\delta}} \quad . \tag{31-44}$$

Mit dieser Gleichung gewinnt man einen brauchbaren Anhalt für die Größe der Kontaktwiderstände.

3.1.5.3 Erhöhung des thermischen Widerstandes durch Einschnürung des Wärmestromes

Halbleiterbauelemente in Scheibenzellenbauweise bestehen im Inneren aus mehreren übereinanderliegenden Scheiben teilweise unterschiedlichen Durchmessers. Der Wärmewiderstand der gesamten Zelle kann nun nicht einfach durch Addition der Wärmewiderstände der einzelnen Scheiben mit den Kontaktwiderständen bestimmt werden. Stoßen zwei Scheiben unterschiedlichen Durchmessers aufeinander, so muß noch die allmähliche Ausbreitung des Wärmestromes in der größeren Scheibe berücksichtigt werden. Auch in der kleineren Scheibe tritt eine Erhöhung der Wärmestromdichte am äußeren Rand auf. Dieser Einfluß wird im folgenden vernachlässigt, da durch den Obergangswiderstand (Kontaktwiderstand) zwischen beiden Scheiben eine Vergleichmäßigung der Wärmeflußdichte an der Kontaktfläche auftritt. Allzu genaue Betrachtungen erübrigen sich auch, da die Exemplarstreuungen sowieso recht groß sind.

Für die zu berechnende Anordnung (Bild 3-13) muß die Laplace'sche Differentialgleichung $\Delta T = 0$ gelöst werden. Die gewählten Randbedingungen sind in Bild 3-14 dargestellt. Der Rand III soll eine feste Temperatur T = 0 haben (Randbedingung erster Art).

Die radiale Wärmeströmung über den Rand II hinaus wird vernachlässigt, d. h. der Rand II sei adiabat. Demzufolge ist die Normalkomponente der Wärmeströmung am Rand gleich Null.

Der Rand I, die "Wärmestromeinführung", wird auf unterschiedliche Weise behandelt. Einmal wird das Potentialfeld, und daraus der thermische Widerstand der Anordnung, bei vorgegebenem festen Potential am Rand I (T = 1) berechnet (Bild 3-15).

Bild 3-15: Isothermen für d^{*} = 3/17, r_1^* = 14/17 und $\alpha^* \rightarrow \infty$.

Als Ergebnis treten aber in der Nähe von $r = r_i$ sehr hohe Wärmestromdichten auf, die auf einen größeren zusätzlichen Temperaturabfall im speisenden Zylinder schließen lassen. Berücksichtigt man zusätzlich den Kontaktwiderstand zwischen den beiden Scheiben, so wird die Wärmestromdichte "begradigt" (Bild 3-16).

Bild 3-16: Isothermen für d[×] = 3/17, $r_i^{×}$ = 14/17 und $\alpha^{×}$ = 30 bezogen auf den Punkt r = z = 0

Die Aufgabe wurde im interessierenden Bereich mit Hilfe eines Differenzenverfahrens und Lösung des linearen Gleichungssystems nach Gauß-Seidel [16] für viele Beispiele gelöst.

Um allgemeingültige Ergebnisse zu erhalten, wurden die Größen r_i , d, r_a, α und λ so aufeinander bezogen, daß mit einer Rechnung alle ähnlichen Felder erfaßt wurden.

Bekannt sein müssen die auf den Radius der Scheibe bezogene Dicke

$$d^* = \frac{d}{r_a}$$
, (31-45)

das Radienverhältnis der aufeinanderstoßenden Scheiben

$$r_{i}^{*} = \frac{r_{i}}{r_{a}}$$
 (31-46)

und der bezogene Widerstandsbelag (Kontaktwiderstand)

$$\alpha^{\star} = \frac{\alpha \cdot r_{a}}{\lambda} = \frac{r_{a}}{R_{\kappa} \cdot A \cdot \lambda} \quad . \tag{31-47}$$

Ausgedrückt wird die Erhöhung des thermischen Widerstandes durch eine scheinbare Vergrößerung der Dicke der Scheibe um δ , und damit gilt für die Erhöhung

$$R_{W} = \frac{\delta}{\lambda A} \qquad (31-48)$$

Bild 3-17 zeigt die berechneten Lösungen $\delta^* = \frac{\delta}{ra}$ für $\alpha^* = 50$. Der Einfluß von α^* auf die Ergebnisse^a ist nicht sehr groß, so daß Bild 3-17 recht typisch ist.

Die Wärmestromeinschnürung durch die in den Scheiben vorhandenen Spalten und Bohrungen wird nicht weiter berücksichtigt, da die Flächenänderungen relativ klein sind und allgemeine Berechnungen nur sehr aufwendig durchführbar wären. Berechnung der Vergrößerung des thermischen Niderstandes von Zylindern, ausgedrückt durch die scheinbare Verlängerung 6[×], bei axialer Einspeisung des Wärmestromes durch einen Zylinder mit kleinerem Radius

WZeich - Kassetten 45/46 - Variante 01 - 01. August 1983 - Sz

Räumliche graphische Darstellung von $\delta^x = \delta r_a$ in Abhängigkeit von $r_i^x = r_i r_a$ und von $d^x = d r_a$ bei $\alpha^x = \alpha * r_a r_b = 50$:

3.1.5.4 Berechnung für den Thyristor T 2200 N 3600 ... 4400

Tafel 3-5 zeigt die Abmessungen der einzelnen Teile des Thyristors, Tafel 3-6 die berechneten Material- und Tafel 3-7 die berechneten Kontaktwiderstände. Die angegebenen Zahlenwerte werden durch einfache Nachrechnung aber nicht immer erreicht, da teilweise hier nicht weiter erwähnte Unregelmäßigkeiten im Aufbau, wie z. B. Schlitze in den Scheiben, in die Ergebnisse eingeflossen sind.

Aus den Tafeln ergibt sich ein Summenwiderstand $R_{thCC} = 25,1 \frac{mK}{W}$. Bei einer Aufteilung des Siliziumkristalls in einem Widerstand von 1,018 $\frac{mK}{W}$ für die Kathoden- und von 0,781 $\frac{mK}{W}$ für die Anodenseite (der Materialwiderstand wird halbiert, und der Einschnürungswiderstand wird der Kathodenseite zugeschlagen) sind die thermischen Widerstände $R_{thJC}(A) = 10,967 \frac{mK}{W}$ und $R_{thJC}(K) = 14,131 \frac{mK}{W}$. Die Parallelschaltung hat den Wert von $R_{thJC} = 6,175 \frac{mK}{W}$. Vergleicht man diese Werte mit dem Bild 3-5, so ergibt sich eine befriedigende Genauigkeit für die Punktschätzung der thermischen Widerstände.

#	Bezeichnung	Mat.	Abmessungen [mm]	Oberfläche
1	Kathoden-Scheibe	SE-Cu	ø100 × 11.0	außen: Ni, innen: Cu
2	Kathoden-Druckscheibe	SE-Cu	ø 86 × ø 8 × 4.0	Ag
з	Kathoden-Mo-Scheibe	Mo	Ø 86 × Ø16 × 0.30	Au
4	Kathoden-Cu-Scheibe	SE-Cu	ø 86 × ø16 × 0.30	Ag und Rh
5	Silizium-Tablette	Si	ø 98 x 0.89	ohne (verb. über
6	W-Trägerscheibe	W	Ø 98 × 7.0	ohne) 30 µm Si-Al
7	Anoden-Cu-Scheibe	SE-Cu	Ø 94 × 0.30	Ag
8	Anoden-Scheibe	SE-Cu	ø100 × 11.0	außen: Ni, innen: Cu

Tafel 3-5: Aufbau des Thyristors T 2200 N 3600 ... 4400 (AEG-Telefunken)

*	Bmrkg	A	Ry	ri*	ď×	¢4×	6×	6	RW	Rth
1		7854	3.573	0.86	0.22	36	0.033	1.65	0.536	4.109
2	oben	5757								a research
2	unten	5711	1.779			1.1				1.779
3	Patricipion of the	5605	0.337							0.377
4		5478	0.140							0.140
5	oben	5809	100000000							Para Chance
5	unten	7543	1.562	0.93	0.02	27	0.003	0.14	0.237	1.799
5-6		7543	0.047	1000	- Province -	03030	120-041-02032-0	100000000	000000000000000	0.047
6	0 0	7543	4.711	0.96	0.14	40	0.004	0.20	0.132	4.843
7		6940	0.110	0.0000000000000000000000000000000000000	1.00000000	Cover 1	0.00000000000000	1000000000	A CARDON AND COM	0.110
8		7854	3.573	0.94	0.22	30	0.007	0.35	0.114	3.687
Einheit		mm2	mK/W	-	-	-	-	10 10	mK∠W	mK/W

<u>Tafel 3-6:</u> Berechnete Material- und Einschnürungswiderstände für den Thyristor T 2200 N 3600 ... 4400

#	Kontakt	€₿	Σ_{R}	RE	2	×s	A	RS	RK	01
0-1	Ni-Ni	330	92	7.244	2.0	0.150	7854	1.698	1.375	92.6
1-2	Cu-Aa	130	407	0.645	2.0	0.028	5757	12.41	0.613	283.0
2-3	Ra-Au	120	358	0.677	2.0	0.028	5563	12.84	0.643	279.0
3-4	Au-Rh	120	137	1.768	2.0	0.028	5478	13.04	1.557	117.0
4-5	Rh-Si	240	86	5.636	2.0	0.028	5478	13.04	3.935	46.4
6-7	W -Ag	130	269	0.977	2.0	0.028	6940	10.29	0.892	162.0
7-8	Ro-Cu	130	407	0.645	2.0	0.028	6940	10.29	0.607	237.0
8-0	Ni-Ni	330	92	7.244	2.0	0.150	7854	1.698	1.375	92.6
Einheit		N mm ²	₩ m≠K	mK W	հա	_W m★K	mm2	mK W	mK W	$\frac{kW}{m^2 \star K}$

Bei den Übergängen 0-1 und 8-0 handelt es sich um die Kontaktwiderstände vom Thyristor zur Kühldose R_{thCH(A)} bzw. R_{thCH(K)}.

Tafel 3-7: Berechnung der Kontaktwiderstände für F = 70 kN und $r_{\rm R}$ = 30 μm des Thyristors T 2200 N 3600 ... 4400

3.1.5.5 Berücksichtigung der Herstellungstoleranzen

Halbleiterbauelemente werden mit sehr kleinen Fertigungstoleranzen hergestellt. Trotzdem weist der thermische Widerstand erhebliche Streuungen auf (Bild 3-5).

Wenn der zu berechnende Wärmewiderstand zur Auslegung bei Grenzbedingungen (Überlastverhalten u. ä.) dienen soll, interessiert im allgemeinen nur der Wärmewiderstand des "schlechtesten" Thyristors. Nun kann aber angenommen werden, daß die Materialwiderstände im Bauelement, relativ kleine Exemplarstreuungen aufzuweisen haben und daß die Toleranzen in erster Linie auf die schwankenden und nur schlecht reproduzierbaren Kontaktwiderstände zurückzuführen sind.

Um diesen Sachverhalt zu berücksichtigen, werden alle Kontaktwiderstände mit einem Faktor multipliziert, der sich aus der Differenz zwischen den jeweiligen, vom Hersteller angegebenen, Maximalwerten für die stationären Wärmewiderstände R_{thJC(A)} und R_{thJC(K)} einerseits und den vorher ermittelten Werten andererseits ergibt:

$$k_{A} = \frac{R_{thJC(A)} - \sum R_{V(A)} - \sum R_{W(A)}}{\sum R_{K(A)}}$$
(31-49)

$$k_{K} = \frac{R_{thJC(K)} - \sum R_{V(K)} - \sum R_{W(K)}}{\sum R_{K(K)}}$$
(31-50)

Der nun veränderte bezogene Kontaktwiderstand α^* braucht bei der Wärmestromeinschnürung nachträglich nicht mehr in Betracht gezogen zu werden, da sein Einfluß relativ klein ist.

Die Höchstwerte für den Thyristor T 2200 N 3600 ... 4400 sind bei Berücksichtigung statistischer Zusammenhänge auf $R_{thJC(A)} = 12,18 \frac{mK}{W}$ und $R_{thJC(K)} = 16,36 \frac{mK}{W}$ festgelegt worden. Damit werden die Faktoren nach den Gln. (31-49, 50) $k_A = 1,797$ und $k_K = 1,326$, und für die Kontaktwiderstände gelten die Werte nach Tafel 3-8. Diese festgesetzten Kontaktwiderstände liegen den weiteren Rechnungen zugrunde.

#	0-1 ×>	1-2	2-3	3-4	4-5	6-7	7-8	8-0 ×)	
^{k * R} K	2.000	0.813	0.852	2.064	5.216	1.603	1.091	2.000	mK∕W

X) vom Hersteller festgelegte Höchstwerte des Übergangswiderstandes Thyristor-Kühlelement R_{thCH(A)} bzw. R_{thCH(K)}

Tafel 3-8: Festgesetzte Kontaktwiderstände für den Thyristor T 2200 N 3600 ... 4400

3.1.6 Einfluß der Wärmeleistungsguelldichte auf den stationären thermischen Widerstand

Die bisherigen Betrachtungen gehen davon aus, daß die Wärmeleistung konzentriert in einer Querschnittsfläche des Siliziumkristalls freigesetzt wird. Dies ist nur eine grobe Näherung. Realistischer ist die Annahme einer gleichmäßigen Wärmeleistungsquelldichte im aktiven Teil des Halbleiterbauelementes [17].

Ein Verfahren zur Berechnung des Verlaufes der Wärmeleistungsquelldichte in einem Thyristor enthält [18]. Auf der Basis dieser Veröffentlichung wurde der Verlauf für den Thyristor T 2200 N 3600 ... 4400 berechnet [19]. Bild 3-18 zeigt das erzielte Ergebnis. Es treten relativ große Wärmeleistungsquelldichten im n⁺- und im p⁺-Emitter, d. h. am Rande des Silizium-Kristalls auf. An den p-n-Übergängen und an den Metall-Halbleiter-Übergängen in oder am aktiven Teil des Halbleiterbauelementes treten (näherungsweise) Sprünge der Wärmestromdichte auf, das heißt, die Ladungsträger benötigen zum Überwinden dieser Übergänge Energie, die sie ihrer Umgebung entziehen [18].

Berlin, den 7. Januar 1985

Lösung der eindimensionalen Wärmeleitungsgleichung bei Thyristoren und Dioden in Scheibenzellenbauweise

Par_TH - Variante 04 - Kassetten 55/56 - 31. März 1984 - Sz

Darstellung der Leistungsentwicklung im Silizium-Kristall nach M. Adler:

Bild 3-18: Leistungsentwicklung im Durchlaßzustand des Thyristors (nach [19])

Zur Berechnung der sich aus den verschiedenen Leistungsverläufen ergebenden stationären Temperaturverläufe muß die aus Gl. (41-4) für $\frac{\partial T}{\partial t} = 0$ abgeleitete gewöhnliche Differentialgleichung

$$\lambda \frac{d^2 T}{dx^2} + p(x) = 0$$
 (31-51)

gelöst werden. Die Rand- und Übergangsbedingungen sind identisch mit denen von Abschnitt 4.1.1.2. Die Lösung ergibt sich als Nebenergebnis aus der Lösung des dynamischen Falles für große Zeiten und wird hier nicht abgeleitet (siehe Abschnitt 4.1.2.2).

Bild 3-19 zeigt die sich einstellenden Temperaturverläufe bei den drei verschiedenen Annahmen für den Verlauf der Leistungsquelldichte unter sonst unveränderten Bedingungen.

Bei einer zentralen Leistungseinspeisung sind die auftretenden Temperaturen naturgemäß am größten. Der stationäre Temperaturverlauf bei einer gleichmäßigen Leistungsentwicklung hat die Form einer Parabel zweiten Grades. Die sich bei dem berechneten Leistungsverlauf nach Bild 3-18 einstellenden Temperaturen liegen noch unter der Parabel, da hier die Leistungsquelldichte an den Enden des Siliziumkristalls besonders intensiv ist. Die Differenzen zur Parabel sind allerdings gering.

Zuerst müßte geklärt werden, welche Temperatur die Ersatzsperrschichttemperatur ist. In der Literatur wird im allgemeinen die höchste Temperatur als diese Ersatzsperrschichttemperatur angenommen [9,17], obwohl anzunehmen ist, daß das übliche Temperaturmeßverfahren wohl eher über dem Kristall mittelt.

Da aber die Kontaktwiderstände im Thyristor stark streuen und die Wärmeübergangskoeffizienten sowieso so "eingestellt" werden. daß sich ein vorbestimmter Endwert ergibt (siehe Abschnitt 3.1.5.5), wurde auf weitere Untersuchungen verzichtet und im folgenden immer mit der höchsten Temperatur im Kristall gerechnet.

Berlin, den 7. Januar 1985

Lösung der eindimensionalen Wärmeleitungsgleichung bei Thyristoren und Dioden in Scheibenzellenbauweise

Par TH - Variante 04 - Kassetten 55/56 - 31. März 1984 - Sz

Bauelement: Aufbau: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) Modell "junction-case" [J-C]

 $\underline{\text{Bild 3-19:}}$ Temperaturverlauf im Silizium-Kristall bei verschiedenen Annahmen für den Leistungsverlauf

3.2 Verhalten der Kühlelemente

Werden die beiden Seiten eines Halbleiterbauelementes unabhängig gekühlt, d. h. beeinflußt ein Wärmestrom zur Anodenseite hin die Verhältnisse auf der Kathodenseite nur über die Sperrschicht, wie z. B. in Bild 3-3 dargestellt, dann genügt zur eindeutigen Beschreibung der Kühleinrichtung die Angabe eines Wärmewiderstandes $R_{thGA} = f(\dot{M}, T_A, P_G)$. Dieser Wärmewiderstand ist im allgemeinen eine Funktion der Kühlmittelmassenstromdichte, der Kühlmitteleintrittstemperatur und der zugeführten Verlustleistung. Außerdem ist dieser Wärmewiderstand vom Aufbau, insbesondere vom dazugehörenden Halbleiterbauelement und auch von der anliegenden Seite des Halbleiterbauelementes abhängig.

Ist die Unabhängigkeit der Kühlung aber nicht gewährleistet, so müssen weitergehende Betrachtungen angestellt werden. Dies trifft insbesondere für die in Abschnitt 2.3 erwähnten Kühldosen zu.

3.2.1 Aufbau der Kühldose

Der Aufbau der hier behandelten Kühldosen ist in Bild 3-20 dargestellt. In die Kühldosen ist die in Bild 3-21 wiedergegebene Edelstahlspirale eingegossen. Das Kühlwasser fließt vom Zufluß der Kühldose auf einer Seite von außen nach innen, dann auf die andere Seite, um dort wieder von innen nach außen zum Ausfluß zu gelangen.

Durch geeignete technologische Maßnahmen wird eine präzise Lage der Spirale in dem Gußstück und ein inniger, gut wärmeleitender Übergang vom Aluminiumguß zum Edelstahl gewährleistet.

<u>Bild 3-20:</u> Kühldose AEG 029.076 404 für Thyristoren mit 75 und mit 100 mm Kristalldurchmesser zur Kühlung mit entionisiertem Reinwasser

Bild 3-21: Zeichnung der in die Kühldose nach Bild 3-20 eingegossenen Edelstahlspirale

3.2.2 Verhalten des Kühlmittelkreislaufes

Der in das Kühlelement einströmende Kühlmittelmassenstrom errechnet sich mit der Gleichung

$$\dot{M} = (\rho \cdot \dot{V})_{T_A} . \tag{32-1}$$

Aus dem Massenerhaltungssatz ergibt sich, daß dieser Massenstrom im stationären Zustand für Ein- und Ausfluß gleich ist. Dies trifft für den Volumenstrom nicht zu, da die Druck- und die Temperaturdifferenz zwischen Ein- und Ausfluß eine Dichteveränderung des Kühlmittels bewirkt. Zwar ist die Dichteveränderung bei Wasser nicht groß (ca. 1,5 % bei 20 °C \rightarrow 60 °C), aber dennoch ist die Verwendung des Massenstromes als Bezugsgröße befriedigender, weil auch theoretisch exakte Ergebnisse entstehen. Diese sind dann auch auf andere Kühlmittel (z. B. Luft) übertragbar.

Der 1. Hauptsatz der Wärmelehre, formuliert für offene Systeme, lautet [20]

$$\left\{ (h_{B} + \frac{1}{2} w_{B}^{2}) - (h_{A} + \frac{1}{2} w_{A}^{2}) \right\} \cdot \dot{M} = \dot{Q} + L \quad (32-2)$$

mit der Geschwindigkeit w, der zugeführten Wärme \hat{Q} und der Leistung der Volumenkraft sowie der Spannung L. Nun ist die Gesamtleistung L hier null, und Zahlenwerte für die Enthalpie h_A beim Eintritt und h_B beim Austritt aus dem Kühlelement kann man einem Tafelwerk (z. B. [14, 21]) entnehmen. Ein Zahlenbeispiel möge die hier vorliegenden Verhältnisse verdeutlichen:

<u>Gegeben</u>: Kühlmittel: Wasser, $\dot{V}_A = 150,0 \frac{1}{h} = 41,66\overline{6} \cdot 10^{-6} \frac{m^3}{5}$

Rohr mit ø 4,5 mm Innendurchmesser \Rightarrow A = 15,904 mm² ϑ_A = 50 °C, p_A = 0,3 MPa ϑ_B = 60 °C, p_B = 0,15 MPa

<u>Gesucht:</u> \dot{M} , \dot{V}_{B} , w_{A} , w_{B} , \dot{Q}

<u>Lösung:</u> Aus Tafel [21] : $v_A = 0,0010120 \frac{m^3}{k_B}$

$$\dot{h}_{A} = 209.5 \frac{kJ}{kg}$$

$$v_{B} = 0.0010171 \frac{m^{3}}{kg}$$

$$\dot{h}_{B} = 251.2 \frac{kJ}{kg}$$

$$\dot{h}_{B} = 251.2 \frac{kJ}{kg}$$

$$\dot{v}_{B} = v_{B} \cdot \dot{N} = 41.877 \cdot 10^{-6} \frac{m^{3}}{s} = 150.8 \frac{1}{7}$$

$$w_{A} = \frac{\dot{v}_{A}}{A} = 2.620 \frac{m}{s}$$

$$w_{B} = \frac{\dot{v}_{B}}{A} = 2.633 \frac{m}{s}$$

$$\dot{Q} = \dot{M} \left\{ (h_{B} - h_{A}) + \frac{1}{2} (w_{B}^{2} - w_{A}^{2}) \right\}$$

$$= 0.04117 \frac{kg}{s} \left\{ 41700 \frac{J}{kg} + 0.0347 \frac{m^{2}}{s^{2}} \right\}$$

$$\dot{Q} = 1717 W$$

Man sieht, daß die Differenz der Geschwindigkeitsquadrate bei dem hier vorliegenden Anwendungsfall zu vernachlässigen ist. Da die Arbeit mit den umfangreichen Tafelwerken nicht sehr praktisch ist, weil viel interpoliert werden muß, kann man die Differenz $h_B - h_A$ näherungsweise durch eine Integration über c_p berechnen. Dabei handelt es sich um eine Näherung, wenn auch mit sehr großer Genauigkeit, weil der betrachtete Prozeß nicht isobar ist.

Zusammenfassend ergibt sich

$$\dot{Q} = \dot{M} \cdot \frac{T_B}{T_A} \int c_p (T) dT,$$
 (32-3)

wobei die c_p-Werte bei einem mittleren Druck verwendet werden. Mit den Zahlenwerten des obigen Beispiels ergibt sich ein Wert von $\hat{Q} = 1722$ W. Berücksichtigt man die Genauig-keit der Temperaturmessungen mit Meßunsicherheiten, die über 0,2 K liegen, dann erfüllt Gl. (32-3) die Anforderungen mit ausreichender Genauigkeit.
Es sei betont, daß die hier abgeleitete Näherungslösung nach Gl. (32-3) ohne weitere Prüfung nur für Wasser angewendet werden sollte. Die exakte Lösung ist in Gl. (32-2) dargestellt.

Zum Abschluß dieses Abschnittes wird ein "formaler thermischer Widerstand des Kühlmittels" mit

$$R_{W}: = \frac{1}{\dot{M} \cdot \overline{c}_{p}}$$
(32-4)

definiert. Dabei ist \overline{c}_p der arithmetische Mittelwert der spezifischen Wärmekapazität c $_p$ des Kühlmittels über dem betrachteten Temperaturbereich

$$\overline{c}_{p} = \frac{1}{T_{B} - T_{A}} = \frac{T_{B}}{T_{A}} \int c_{p}(T) dT.$$
 (32-5)

Dieser thermische Widerstand R_W wird hier eingeführt, weil man eine Größe benötigt, die mit Q multipliziert, die Temperaturdifferenz zwischen ein- und austretendem Kühlmittel liefert.

3.2.3 Verhalten der Kühldosen bei unsymmetrischer Speisung

Zur Untersuchung des Verhaltens der Kühldosen bei unsymmetrischer Speisung wurde eine Meßeinrichtung mit einem prinzipiellen Aufbau nach Bild 3-22 erstellt. Das Bild 3-23 zeigt die Meßeinrichtung mit eingespannten 75-mm-Thyristoren und der dazugehörenden Kühldose.

Die Halbleiterbauelemente werden aus zwei getrennten Stromversorgungsgeräten gespeist, so daß sich beliebige Leistungsverhältnisse einstellen lassen. Zur Auswertung müssen die Temperaturen an den Übergängen Halbleiterbauelement – Kühldose, sowie der Volumenstrom V als auch die Temperaturen am Eintritt T_A und dem Austritt T_B des Kühlmittels bestimmt werden. Außerdem sind die elektrischen Leistungen, in den Halbleiterbauelementen P_{J(A)} und P_{J(K)} zu messen. Es hat sich als zweckmäßig erwiesen, die Temperaturen des Gehäuses des Halbleiterbauelementes T_{C(A)} und T_{C(K)} zur weiteren Verarbeitung zu verwenden. Einerseits sind dort

Bild 3-22: Prinzip des Aufbaus zur Messung des unsymmetrischen Verhaltens von Kühldosen

die Temperaturgradienten kleiner als an der Oberfläche der Kühldose, und andererseits werden bei dieser Art der Messung die Eigenschaften der Oberflächenbearbeitung der Kühldose in Form der Übergangswiderstände R_{thCH} in das Ergebnis einbezogen. Dadurch geht der vom Halbleiterhersteller relativ pauschal angegebene Übergangswiderstand nicht in die folgende Rechnung ein. Ein weiterer, sich aus der Wahl der Meßpunkte ergebender Vorteil, ist darin zu sehen, daß der Zeitaufwand zur Durchführung der Messungen an mehreren Kühldosen kleiner bleibt.

Aus Bild 3-22 ergibt sich, daß man das System mit zwei Dioden bzw. Thyristoren und einer Kühldose auf vier verschiedene Arten betreiben kann. Einmal kann die Kühldose gedreht werden (Seite 1 ↔ Kathode, Seite 1 ↔ Anode), zum anderen können die Kühlmittelrichtungen vertauscht werden (von Seite 1 zu Seite 2, von Seite 2 zu Seite 1).

<u>Bild 3-23:</u> Meßaufbau zur Ermittlung des stationären Verhaltens der Kühldosen bei unsymmetrischer Speisung

Mehrere Messungen haben ergeben, daß eine Kühldosendrehung keine signifikanten Änderungen des Wärmewiderstandes bewirkt; die Kühldose ist schließlich streng symmetrisch aufgebaut. Sich dennoch ergebende Differenzen gehen in den übrigen Meßtoleranzen unter.

Die Messungen werden jetzt so durchgeführt, daß zur Bestimmung der Eigenschaften eines Meßpunktes die gesamte umgesetzte Leistung Q und die Kühlmitteleinlauftemperatur T_A in etwa konstant bleiben. Ein Teil der Wärme, insbesondere bei Messungen mit höheren Kühlmitteltemperaturen, wird durch Konvektion und Strahlung an die Umgebung abgeführt. Deshalb ist Q nicht identisch mit der Summe der elektrischen Leistungen, sondern Q muß mit der Gleichung für die kalorimetrisch abgeführte Wärme (32-3) berechnet werden.

In den Bildern 3–24 bis 3–27 ist das Verhalten einer Kühldose in einem ausgewählten Arbeitspunkt mit unterschiedlichen Kühlmittelrichtungen dargestellt. Die Temperaturen werden auf die Kühlmittelzulauftemperatur und den kalorimetrisch ermittelten Wärmestrom \hat{Q}

$$\vartheta_{CA(X)}^{*} = \frac{T_{C(X)} - T_{A}}{0}$$
, (32-6)

und die eingespeisten elektrischen Leistungen werden nun auf $\ddot{\boldsymbol{Q}}$

$$P_{C(X)} \approx \frac{P_{J(X)}}{P_{J(A)} + P_{J(K)}} \cdot \dot{q}$$
(32-7)

bezogen.

Man sieht, daß die Kühldose in unerwartet guter Weise lineares Verhalten zeigt. Man kann also für das stationäre thermische Verhalten der Kühldosen die Beziehung

$$\begin{pmatrix} T_{1} \\ T_{2} \\ T_{B} \\ \dot{Q} \end{pmatrix} = \begin{pmatrix} R_{11} & R_{12} & 1 \\ R_{21} & R_{22} & 1 \\ R_{W} & R_{W} & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} P_{1} \\ P_{2} \\ T_{A} \end{pmatrix}$$
(32-8)

ansetzen. Die Parameter R_{YX} der Kühldose sind selbstver-

Stationärer Wärmewiderstand von Kühldosen bei unsymmetrischer Speisung

Kd_Uns - Kassetten 41/42 - Variante 04 - 21. Februar 1984 - Sz

File-Name:	2 51c

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) Modell: "junction-case" (J-C)

 Kühldose:
 AEG 029.076 404 (100 mm)
 Nr. 2
 Messung 26.01.84

 Aufbau:
 Kathode <===> Seite 1 | Anode <==> Seite 2
 Kühlmittel-Richtung von Seite 1 zu Seite 2

 Kühlmittel:
 Wasser

anodenseitiger stationärer Wärmewiderstand	R_th_JC(A)	=	12.180	mK/W
kathodenseitiger stationärer Wärmewiderstand	R th JC(K)	=	16.356	mK/W
idealer stationärer Wärmewiderstand	R_th_JC	=	6.981	mK∕W
durchschnittliche Kühlmitteleinlauftemperatur	3 A	=	20.5	°C

9_A 9_B 32.1 °C durchschnittliche Kühlmittelauslauftemperatur = V_punkt Volumendurchsatz des Kühlmittels bei § A 150.0 1/h durchschnittlicher Kühlmengendurchsatz 41.59 q/s M punkt = durchschnittliche kalorimetrische Leistung Q punkt -2 016 W durchschnittliche elektrische Leistung PJ -2 005 W

formaler thermischer Widerstand des Kühlmittels R_W = 5.753 mK/W

Meßwerte:

9_C(1)	P_J(1)	\$_C(2)	P_J(2)	*_R	9_B
58.2 °C	2 003 W	32.5 °C	8 W	20.7 °C	32.2 °C
41.1 °C	1 004 W	42.2 °C	1 004 W	20.4 °C	31.9 °C
23.8 °C	ØW	53.0 °C	2 005 W	20.5 °C	32.3 °C

Meßpunkte:

P_C(1)/Q_punkt	9_CR(1)*	[mK/W]	P_C(2)/Q_punkt	\$_CR(2)*	[mK/W]
1.000		18.76	0.000		5.92
0.500		10.34	0.500		10.90
0.000		1.59	1.000		15.84

Dreitorparameter der Kühldose:

R 11 CA	=	18.81 mK/W	R 12 CA	-	1.65 mK/W
R_21_CR	=	5.93 mK/W	R_22_CA	=	15.85 mK/W

<u>Bild 3-24</u>: Darstellung eines ausgewählten Arbeitspunktes mit der Kühlmittelrichtung 1 ---> 2

Stationärer Wärmewiderstand von Kühldosen bei unsymmetrischer Speisung

Kd_Uns - Kassetten 41/42 - Variante 04 - 21. Februar 1984 - Sz

File-Name:	2_510
Bauelement: Modell:	Thyristor T 2200 N 3600 4400 (AEG-Telefunken) "junction-case" (J-C)
Kühldose:	AEG 029.076 404 (100 mm) Nr. 2 Messung 26.01.84
Hufbaui	Kathode <===> Seite 1 Hhode <===> Seite 2 Kühlmittel-Richtung von Seite 1 zu Seite 2
Kühlmittel:	Wasser
Thermische Wide	rstände:

konventioneller	Widerstand der Kühldose	R th CM*	=	7.68 mK/W
konventioneller	Widerstand in der Säule	R_th_JA*	=	17.54 mK/W
Wärmewiderstand	in der unendlich langen Säule	R_th_JA	=	17.55 mK∕W

Graphische Darstellung:

Stationärer Wärmewiderstand von Kühldosen bei unsymmetrischer Speisung

	Kd_Ur	is - Kassetten	41/42 - Var	iante 04 - 21.	Februar 1984 - Sz
File-Name:	2_72	2b			
Bauelement: Modell:	Thyr "jur	istor T 2200 action-case" (N 3600 4 J-C>	400 (REG-Telefu	unken)
Kühldose: Aufbau:	AEG Kath	029.076 404 ode <===> Sei	(100 mm) Nr te 1 Ano	. 2 Messung de <===> Seite	20.01.84 2
Kühlmittel:	Kühl Wass	mittel-Richtu er	ng von Seite	2 zu Seite 1	
anodenseitige kathodenseiti idealer stati	er stationä ger static onärer Wär	irer Wärmewide Inärer Wärmewi Imewiderstand	rstand derstand	R_th_JC(A) R_th_JC(K) R_th_JC	= 12.180 mK/W = 16.356 mK/W = 6.981 mK/W
durchschnittl durchschnittl Volumendurchs durchschnittl	iche Kühlm iche Kühlm atz des Kü icher Kühl	itteleinlauft ittelauslauft hlmittels bei mengendurchsa	emperatur emperatur \$_A tz	9_A 9_B V_punkt M_punkt	= 20.9 °C = 32.4 °C = 150.0 1/h = 41.59 g/s
durchschnitt1 durchschnitt1	iche kalor iche elekt	imetrische Le rische Leistu	istung ng	Q_punkt P_J	= 2 006 W = 2 001 W
formaler ther	mischer Wi	derstand des	Kühlmittels	R_W	= 5.753 mK/W
Meßwerte:					
9_C(1)	P_J(1)	\$_C(2)	P_J(2)		9_A 9_B
58.4 °C 51.8 °C 45.5 °C 39.5 °C 33.3 °C	1 998 W 1 499 W 1 001 W 498 W 0 W	23.7 °C 31.4 °C 39.0 °C 46.5 °C 54.4 °C	0 W 501 W 1 008 W 1 503 W 1 999 W	28.6 28.7 28.9 21.6 21.3	5 °C 32.2 °C 7 °C 32.2 °C 9 °C 32.3 °C 9 °C 32.5 °C 8 °C 32.0 °C
Meßpunkte:					
P_C(1)/Q_punk	t 9_0	A(1)× [mK/W]	P_C	(2)/Q_punkt	\$_CA(2)× [mK/W]
1.00 0.75 0.49 0.24 0.00	0 0 19 19	18.75 15.54 12.43 9.26 5.92		0.000 0.250 0.502 0.751 1.000	1.55 5.34 9.12 12.74 16.28
Dreitorparame	ter der Kü	hldose:			
R_11_CA = R_21_CA =	18.77	mK∠W mK∠W		R_12_CA R_22_CA	= 6.00 mK/W = 16.37 mK/W

<u>Bild 3-26:</u> Darstellung eines ausgewählten Arbeitspunktes mit der Kühlmittelrichtung 2 --> 1

Stationärer Wärmewiderstand von Kühldosen bei unsymmetrischer Speisung

Kd_Uns - Kassetten 41/42 - Variante 04 - 21. Februar 1984 - Sz

File-Name:	2_72b
Bauelement:	Thyristor T 2200 N 3600 4400 (REG-Telefunken)
Modell:	"junction-case" (J-C)
Kühldose:	REG 029.076 404 (100 mm) Nr. 2 Messung 20.01.84
Aufbau:-	Kathode <===> Seite 1 Anode <===> Seite 2 Kühlmittel-Richtung von Seite 2 zu Seite 1
Kühlmittel:	Wasser

Thermische Widerstände:

konventioneller	Widerstand der Kühldose	R th CM×		7.81 mK/W
konventioneller	Widerstand in der Säule	R_th_JA×	=	17.67 mK/W
Wärmewiderstand	in der unendlich langen Säule	R th JA	=	17.72 mK/W

Graphische Darstellung:

<u>Bild 3-27:</u> Darstellung eines ausgewählten Arbeitspunktes mit der Kühlmittelrichtung 2 ---> 1

ständlich vom Arbeitspunkt

 $R_{\chi\chi} = R_{\chi\chi}$ (M, T_A , Q, Kühlmittelrichtung) (32-9) und auch vom gewählten Meßpunkt (C oder H) abhängig. Zur vollständigen Kennzeichung werden sie mit den Bezugspunkten indiziert (CA bzw. HA). Die Ermittlung der Zahlenwerte erfolgt durch eine Ausgleichsrechnung mit der Gauß'schen Methode der kleinsten Quadrate.

An dieser Stelle hat man mit Gl. (32-8) eine Beziehung erhalten, mit der das äußere stationäre thermische Verhalten der Kühldosen vollständig beschrieben wird. Es können die Temperaturen auf den beiden Seiten der Kühldose in Abhängigkeit von den jeweils eingespeisten Leistungen und der Kühlmittelzuflußtemperatur berechnet werden. Im Gegensatz zu konventionellen Betrachtungen, bei denen sich als Ergebnis von Messungen nur ein thermischer Widerstand ergab (siehe Abschnitt 3.2.4), hat die Kühldose hier fünf thermische Parameter R₁₁, R₁₂, R₂₁, R₂₂ und R_W, von denen einer, nämlich R_W, mit Hilfe von Gl. (32-4) leicht theoretisch bestimmbar ist.

Betrachtet man jetzt die Meßergebnisse auf den Bildern 3-24 bis 3-27 näher und sieht man sich speziell die beiden Extremfälle einseitiger Kühlung an, dann fällt auf, daß die Seite 2 grundsätzlich einen kleineren Wärmewiderstand als die Seite 1 hat. Dieser Effekt ist auf den Aufbau des Thyristors, nicht etwa auf Unsymmetrien in der Kühldose zurückzuführen. Aus Tafel 3-5, S. 61 kann man entnehmen, daß der Wärmestrom auf der Anodenseite des Thyristors über größere Flächen abgeführt wird, als auf der Kathodenseite. Diese Wärmestromeinschnürung wirkt sich bis auf den Thyristorboden aus, so daß die mit der Anode verbundene Seite der Kühldose immer einen niedrigeren Wärmewiderstand aufweist. Bei dem Thyristor T 1270 N 3600 ... 4400 ist dieser Effekt aber bei weitem nicht so ausgeprägt, da dort die leitenden Flächen im Thyristor nicht so stark differieren. Die Temperaturerhöhung auf der nicht beheizten Seite der Kühldose hängt stark davon ab, in welcher Richtung das Kühlmittel fließt. Die abfließende Seite hat dabei den höheren Wärmewiderstand, der in etwa R_W entspricht. Für die zufließende Seite gilt ein Wert von etwa 0,2 ... 0,5 · R_W, je nach Größe des Volumenstromes des Kühlmittels.

Die Kühlmittelrichtung wirkt sich aber auch auf die thermischen Widerstände der jeweils beheizten Seite (R₁₁ und R₂₂) aus. Dabei gilt der Grundsatz, daß die zufließende Seite einen höheren und die abfließende Seite einen niedrigeren Wärmewiderstand hat. Diesem Effekt ist aber der schon oben erwähnte Einfluß der unterschiedlichen Wärmestromeinschnürung überlagert.

Spätestens hier wird nun auch klar, warum alle Versuche, das Verhalten der Kühldose durch ein Netzwerk von Wärmewiderständen zu beschreiben, scheitern mußten. Aus systemtheoretischen Überlegungen gilt für ein passives Netzwerk mit Zählpfeilrichtung nach Bild 3-28 R₁₂ = R₂₁.

Dies ist hier aber nicht erfüllt. Darum läßt sich für die Kühldose kein passives thermisches Ersatzschaltbild angeben.

Bild 3-28: Kühldose als Dreitor

3.2.4 Konventionelle Behandlung der Kühldosen

Bisher wurden thermische Messungen an Kühldosen für Hochspannungsstromrichter mit einer einfachen Meßeinrichtung, die im Prinzip Bild 3-22 entspricht, durchgeführt. Dabei kamen zwei Halbleiterbauelemente mit etwa gleichem Durchlaßspannungsabfall zum Einsatz und beide Bauelemente wurden mit dem gleichen Durchlaßgleichstrom beaufschlagt, d. h. von beiden Seiten wurden in etwa gleiche Leistungen in die Kühldose eingespeist.

Gemessen wurden die gleichen Größen wie in Abschnitt 3.2.3, also $T_{G(A)}$, $T_{G(K)}$, \mathring{V} , T_{A} , T_{B} , $P_{J(A)}$ und $P_{J(K)}$.

Der thermische Widerstand der Kühldose wurde dann mit

$$R_{thGM}^{*} = \frac{\frac{1}{2} (T_{G(A)} + T_{G(K)}) - \frac{1}{2} (T_{A} + T_{B})}{\dot{Q}}$$
(32-10)

definiert. Der so ermittelte "eindimensionale" Wärmewiderstand wurde der Kühldose zugeordnet.

Wird Gl. (32-8) mit P $_1$ = P $_2$ in die Gl. (32-10) eingesetzt, dann erhält man mit

$$R_{thGM}^{*} = \frac{1}{4} (R_{11} + R_{12} + R_{21} + R_{22}) - \frac{1}{2} R_{W}$$
(32-11)

den Zusammenhang zu den Dreitorparametern der Kühldose. Hier mußte der halbe formale thermische Widerstand des Kühlmittels subtrahiert werden, da der thermische Widerstand der Kühldose in Gl. (32–10) auf die mittlere Kühlmitteltemperatur bezogen ist. Dieser Einfluß kann mit der Definition

$$R_{thGA}^{*} := \frac{\frac{1}{2} (T_{G(A)} + T_{G(K)}) - T_{A}}{\dot{0}} . \qquad (32-12)$$

"herausgerechnet" werden. Aus Gl. (32-8) erhält man hier

$$R_{thGA}^{*} = \frac{1}{4} (R_{11} + R_{12} + R_{21} + R_{22}).$$
 (32-13)

Welchen Einfluß haben nun die unvermeidlichen Unsymmetrien bei der Messung auf das hier erzielte Ergebnis? Mit m = $\frac{P_{G(1)}}{P_{G(2)}}$ erhält man den meßtechnisch ermittelten thermischen Widerstand der Kühldose zu

$$R_{thGA}^{+} = \frac{R_{11} + R_{21} + m (R_{12} + R_{22})}{2 (1 + m)}$$
(32-14)

83

Berlin, den 21. Dezember 1704

Konventioneller stationärer Wärmewiderstand von Kühldosen für zweiseitig gekühlte Halbleiterbauelemente

Darstellung des Einflusses der Unsymmetrie der Speisung bei der Messung

R thCA - Kassetten 41/42 - Variante 01 - 21. Dezember 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) Aufbau: Modell "junction-case" [J-C] Kühlelement: 100-mm-Kühldose AEG 029.076 404

Volumenstrom des Kühlmittels	V punkt	=	60.0	1/h
stationärer Wärmewiderstand auf der Anodenseite	R 11 CA	=	25.44	mK/W
Durchgriff von der Kathoden- zur Anodenseite	R 12 CA	=	15.03	mK/W
Durchgriff von der Anoden- zur Kathodenseite	R 21 CA	=	6.05	mK/W
stationärer Wärmewiderstand auf der Kathodenseite	R 22 CA	=	29.25	mK/W
konventioneller Wärmewiderstand des Kühlelementes	R_th_CA*	=	18.94	mK∕₩
Volumenstrom des Kühlmittels	V punkt	=	150.0	1/h
stationärer Wärmewiderstand auf der Anodenseite	R 11 CA	=	15.85	mK/W
Durchgriff von der Kathoden- zur Anodenseite	R 12 CA	=	5.93	mK/W
Durchgriff von der Anoden- zur Kathodenseite	R 21 CA	=	1.65	mK/W
stationärer Wärmewiderstand auf der Kathodenseite	R 22 CA	=	18.81	mK/W
konventioneller Wärmewiderstand des Kühlelementes	R th CA×	=	10.56	mK/W

Parameter: Volumenstrom des Kühlmittels V punkt [1/h]

84

Für zwei ausgemessene Arbeitspunkte der 100-mm-Kühldose ist dieser Einfluß in Bild 3-29 dargestellt. Kommen zur Messung zwei gut gepaarte Halbleiterbauelemente zum Einsatz, so lassen sich dennoch Unsymmetrien bis zu 10 % nicht vermeiden, weil die Paarung im allgemeinen nur bei einem Arbeitspunkt der Zellen erfolgt. Die durch die Unsymmetrie verursachten Meßabweichungen liegen damit in der Größenordnung von bis zu 1 %, sind also nicht sehr groß.

In [8] wurde den Kühldosen der Wärmewiderstand

$$R_{thGA} = \frac{T_{J} - T_{A} - R_{thJG} \cdot P_{J}}{P_{J}}$$
(32-15)

zugeordnet. Hier ergeben sich zwar durch Addition mit dem Wärmewiderstand des Halbleiterbauelementes und anschließender Multiplikation mit der Verlustleistung richtige Werte für die Temperaturdifferenz zwischen Sperrschicht und Kühlmittelzulauftemperatur, aber der Wärmewiderstand der Kühldose ist durch Temperaturmessungen an der Kühldose selbst nicht bestimmbar. Dies ist allerdings nicht sehr befriedigend.

3.2.5 Statistische Untersuchung der Kühldosenparameter

Zur Auswahl einer repräsentativen Kühldose, an der weitere Messungen an verschiedenen Arbeitspunkten durchzuführen sind, wurden im Laufe der Zeit insgesamt 11 Kühldosen an einem Arbeitspunkt untersucht. Es wurde nur ein Meßpunkt angefahren, und die in erster Linie interessierenden Parameter R_{11CA} und R_{22CA} wurden bei Annahme fester Werte für die "Durchgriffe" R12CA und R21CA errechnet. Bild 3-30 zeigt die Meßwerte und das erhaltene Spektrum. Dabei entspricht ein * einem Wertepaar R_{thJA} - R_{11CA}, ein + einem Wertepaar R_{11CA} - R_{22CA} und ein x einem Wertepaar R_{thJA} - R_{22CA}. Zunächst fällt auf, daß drei Wertepaare, die alle zu der Kühldose Nr. 1 gehören, aus dem übrigen Spektrum herausfallen (die drei Wertepaare oben rechts). Der Ausreißertest nach Grupps [23] bestätigt diesen Sachverhalt auf einem Signifikanzniveau von $\alpha < 0,01$. Leider ließen sich die Messungen an der Kühldose nicht wiederholen, da sie zwischenzeitlich zur weiteren Überprüfung zersägt wurde. Für die weiteren Betrachtungen

Stt KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

 Kühldose:
 AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

 Halbleiterbauelement:
 T 2200 N 3600 ... 4400 [Model1: J-C] (AEG-Telefunken)

 Betriebsbedingungen:
 V_punkt = 150 l/h
 0_punkt = 2000 W
 9_A = 20 °C

 Kühlmittel:
 Wasser Seite 1 --> Seite 2 Meßstelle: case

 Aufbau:
 Kathode <===> Seite 1 | Anode <==> Seite 2

Daten der thermodynamischen Eigenschaften von 11 Kühldosen:

I	Nr.	R_11_CA	R_12_CR	R_21_CA	R_22_CA	R_th_JA	p [ban]
		LINK MJ	LUIKZMJ	LIIIV MJ	L mK / MJ	LIIIVAMA	LUAN
1	1	19.62	1.65	5.93	17.87	18.33	unbekannt
2	2	18.81	1.65	5.93	15.85	17.55	0.98
з	з	18.58	1.65	5.93	15.80	17.49	0.99
4	4	18.32	1.65	5.93	15.85	17.46	unbek annt
5	5	18.78	1.65	5.93	15.61	17.47	0.98
6	6	18.06	1.65	5.93	15.27	17.22	0.99
7	7	18.68	1.65	5.93	15.43	17.39	1.02
8	8	18.17	1.65	5.93	15.78	17.40	0.99
9	9	18.42	1.65	5.93	15.76	17.45	0.97
10	10	17.70	1.65	5.93	15.36	17.18	1.00
11	13	18.55	1.65	5.93	15.28	17.32	1.05

Spektren der thermischen Widerstände von 11 Kühldosen:

86

Stt KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose:AEG-Kühldose 029.076 404 für 75- und 100-mm-ThyristorenHalbleiterbauelement:T 2200 N 3600 ... 4400 [Modell: J-C] (AEG-Telefunken)Betriebsbedingungen:V_punkt = 150 l/hQ_punkt = 2000 WKühlmittel:Wasser Seite 1 --> Seite 2Meßstelle: caseAufbau:Kathode <===> Seite 1Anode <==> Seite 2

R_11_CR-, R_22_CR- und R_th_JR-Verteilung von 10 Kühldosen bzw. Säulen:

Die Berechnung der R_th_JA-Werte erfolgte bei als konstant angenommenen thermischen Widerständen der Thyristoren:

thermischer Widerstand auf Seite 1 (Kathode) thermischer Widerstand auf Seite 2 (Anode)

R_th_JC(1) = 16.360 mK/W R_th_JC(2) = 12.180 mK/W

Zu der empirischen und der theoretischen Verteilung sind noch die einseitigen oberen Toleranzgrenzen mit einer statistischen Sicherheit von $\beta = 0.95$ eingezeichnet. Voraussetzung zur Berechnung ist das Vorliegen einer normalverteilten Grundgesamtheit.

Bild 3-31: Graphische Darstellung der Verteilung der thermischen Widerstände

Stt KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose:	REG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren
Halbleiterbauelement:	T 2200 N 3600 4400 [Model1: J-C] (AEG-Telefunken)
Betriebsbedingungen:	V punkt = 150 1/h Q_punkt = 2000 W 3_A = 20 °C
Contraction of the second s	Kühlmittel: Wasser Seite 1> Seite 2 Meßstelle: case
	Aufbau: Kathode (===> Seite 1 Anode (===> Seite 2

Statistische Auswertung:

arithmetischer Mittelwert	von	R th JA	x quer	=	17.392	mK/W
empirische Standardabweichung	von	R_th_JA	5	=	0.117	mK/W
Minimalwert	von	R th JA	×min	=	17.183	mK/W
Maximalwert	von	R th JA	× max	=	17.548	mK/W
Spannweite	von	R_th_JA	R	=	0.365	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von α > 0.20 Nicht abgelehnt. Die Testgröße ist D_n = 0.192 und der kritische Wert nach Lilliefors K_n_ α ist K = 0.215. Der Umfang der Stichprobe ist n = 10.

arithmetischer Mittelwert	von	R 11 CA	x quer	=	18.407	mK/W
empirische Standardabweichung	von	R_11_CA	5	=	0.351	mK/W
Minimalwert	von	R_11_CA	×_min	=	17.700	mK/W
Maximalwert	von	R 11 CA	×max	=	18.810	mK/W
Spannweite	von	R 11 CA	R	=	1.110	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von α > 0.20 nicht abgelehnt. Die Testgröße ist D_n = 0.158 und der kritische Wert nach Lilliefors K n α ist K = 0.215. Der Umfang der Stichprobe ist n = 10.

arithmetischer Mittelwert	von	R 22 CA	x quer	=	15.599	mK/W
empirische Standardabweichung	von	R_22_CA	s	=	0.241	mK∕₩
Minimalwert	von	R_22_CR	× min	-	15.270	mK/W
Maximalwert	von	R 22 CA	×max	=	15.850	mK/W
Spannweite	von	R_22_CR	R	=	0.580	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von a > 0.05 Nicht abgelehnt. Die Testgröße ist $D_n = 0.248$ und der kritische Wert nach Lilliefors K n α ist K = 0.258. Der Umfang der Stichprobe ist n = 10.

Einseitige Konfidenzgrenzen bei normalverteilter Grundgesamtheit:

statistis	che i	Sicherheit			e	=	0.990	
KonfGr.	des	Erwartungswertes	von	R th JA	μo	=	17.497	mK/W
KonfGr.	der	Standardabweichung	von	RthJA	6 0	=	0.244	mK/W
KonfGr.	der	Standardabweichung	von	R_th_JA	e_u	=	0.076	mK/W
KonfGr.	des	Erwartungswertes	von	R 11 CA	μο	=	18.720	mK/W
KonfGr.	der	Standardabweichung	von	R 11 CA	6 0	=	8.729	mK/W
KonfGr.	der	Standardabweichung	von	R_11_CA	e_u	=	0.226	mK/W
KonfGr.	des	Erwartungswertes	von	R 22 CA	ρο	=	15.814	mK/W
KonfGr.	der	Standardabweichung	von	R 22 CA	6 0	=	0.499	mK/W
KonfGr.	der	Standardabweichung	von	R_22_CA	e_u	=	0.155	mK/W

Bild 3-32: Statistische Auswertung der Verteilung der thermischen Widerstände 88

bleiben die Meßergebnisse der Kühldose Nr. 1 unberücksichtigt.

3.2.5.1 Verteilung der thermischen Widerstände

Die sich ergebende Verteilung der thermischen Widerstände und die daraus berechneten statistischen Parameter zeigen die Bilder 3-31 und 3-32. Der durchgeführte Kolmogoroff-Anpassungs-Test auf eine Normalverteilung wird nicht abgelehnt. Man kann also für weitere Betrachtungen die thermischen Widerstände der Kühldosen als normalverteilt ansehen.

3.2.5.2 Verteilung des Druckabfalls

Bild 3-33 zeigt die linear aufgetragene Dichtefunktion des Druckabfalls von 363 Kühldosen aus der Wareneingangskontrolle. Leider wurden die Ergebnisse in nur 7 Klassen aufgeteilt, so daß eine ordentliche statistische Auswertung nicht möglich ist. Man sieht aber, daß hier keine Normalverteilung, sondern daß eine linkssteile Verteilung vorliegt.

Untersuchung der Zahlen haben ergeben, daß man die Verteilung durch eine dreiparametrige logarithmische Normalverteilung annähern kann, was durch die Bilder 3-34 und 3-35 bestätigt wird. Die empirischen Verteilungsparameter wurden mit der Maximum-Likelihood-Methode berechnet [22].

Auf Bild 3-33 wurde auch das arithmetische Mittel des Druckabfalls berechnet, ein Wert, der keine große Aussagekraft hat, da die Wasserkreisläufe der Kühldosen ja nicht in Reihe, sondern parallel betrieben werden. Interessant ist ja vielmehr der Druckabfall Δp_N , der nötig ist, um in n parallel betriebenen Kühldosen, den Volumenstrom n · Ý_N hervorzurufen.

89

Stt_KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose: Halbleiterbauelement: Betriebsbedingungen:

		Klassen-	Grenzen		1	Häufigkeit	
I	Anfang [bar]	Mitte [bar]	Ende [bar]	Breite [bar]	absolute [Stück]	relative [%]	kumul. [%]
1	0.825	0.850	0.875	0.050	2	0.6	0.6
2	0.875	0.900	0.925	0.050	71	19.6	20.1
3	0.925	0.950	0.975	0.050	220	60.6	80.7
4	0.975	1.000	1.025	0.050	50	13.8	94.5
5	1.025	1.050	1.075	0.050	13	3.6	98.1
6	1.075	1.100	1.125	0.050	2	0.6	98.6
7	1.125		1949 (1947) (194		5	1.4	100.0

arithmetischer Mittelwert	von ⊿ p	x quer	=	0.954 bar
gewichtetes harmonisches Mittel	von 1 p	× harm N	=	0.952 bar
empirische Standardabweichung	von ⊿_p	s	=	0.044 bar

<u>Bild 3-33:</u> Empirische Dichtefunktion des Druckabfalls von 363 Kühldpsen (Messung beim Wareneingang)

Stt KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose:AEG-Kühldose 029.076 404 für 75- und 100-mm-ThyristorenHalbleiterbauelement:T 2200 N 3600 ... 4400 [Model1: J-C] (AEG-Telefunken)Betriebsbedingungen:V_punkt = 150 l/h Q_punkt = 2000 W §_A = 20 °CKühlmittel:Wasser Seite 1 --> Seite 2 Meßstelle: caseRufbau:Kathode <==> Seite 1 | Anode <==> Seite 2

Druckabfall-Verteilung von 9 Kühldosen:

Bemerkung: Wahrscheinlichkeitsnetz der dreiparametrigen logarithmischen Normalverteilung mit einem Fluchtpunkt von ⊿p 0 = 0.962 bar.

Bild 3-34: Druckabfallverteilung (Messung im Labor)

Stt KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose: Halbleiterbauelement: Betriebsbedingungen: AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren T 2200 N 3600 ... 4400 [Modell: J-C] (AEG-Telefunken) V punkt = 150 1/h Q_punkt = 2000 W \Rightarrow A = 20 °C Kühlmittel: Wasser Seite 1 --> Seite 2 Meßstelle: case Aufbau: Kathode <==> Seite 1 | Anode <==> Seite 2

Statistische Auswertung:

empirischer Fluchtpunkt d	ler Verteilung	⊿p 0	=	0.962	bar
arithmetischer Mittelwert d	ler Verteilung	qb y	=	-3.572	
empirische Standardabweichung d	ler Verteilung	e_dp	=	0.670	
arithmetischer Mittelwert	von ⊿ p	x quer	=	0.997	bar
gewichtetes harmonisches Mittel	von 2 p	x harm N	=	0.997	bar
empirische Standardabweichung	von <u>A</u> p	5	=	0.026	bar
Minimalwert	von ⊿ p	× min	=	0.970	bar
Maximalwert	von d p	× max	=	1.054	bar
Spannweite	von 1 p	R	=	0.084	bar

Der Kolmogoroff-Test auf eine Lognormalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.20$ hicht abgelehnt. Die Testgröße ist D_n = 0.172 und der kritische Wert K_n_ α ist K = 0.339. Der Umfang der Stichprobe ist n = 9.

Einseitige obere Konfidenzgrenzen der Verteilung:

statistische Sicherheit	8	-	0.950	
KonfGr. des Erwartungswertes von ⊿_p	o_4	=	1.013	bar
KonfGr. der Standardabweichung von ⊿_p	x_str_o	=	0.136	bar
KonfGr. der Verteilungs-Parameter	⊿p 0 o	=	0.992	bar
KonfGr. der Verteilungs-Parameter	p schl o	=	-3.157	
KonfGr. der Verteilungs-Parameter	c_sch1_o	=	1.147	
Korrelationsbeziehungen zwischen den Parametern:				
Umfang der Stichprobe	n	=	10	
emp. KorrKoeffiz. zw. R th JA u. R 11 CA	r×	=	0.815	
Rang-KorrKoeff. n. Spearman m. Bindungen	r_S,B	=	0.733	
Umfang der Stichprobe	n	=	10	
emp. KorrKoeffiz. zw. R th JA u. R 22 CA	r×	=	0.866	
Rang-KorrKoeff. n. Spearman m. Bindungen	r_S,B	=	0.839	
Umfang der Stichprobe	n	=	9	
Rang-Korrelations-Koeffizient zwischen				
R_th_JR und $ extsf{D}_p$ nach Spearman mit Bindungen	r_S,B	=	-0.647	
Umfang der Stichprobe	n	=	10	
emp. KorrKoeffiz. zw. R 11 CA u. R 22 CA	r×	=	0.375	
Rang-KorrKoeff. n. Spearman m. Bindungen	r_S,B	=	0.383	
Umfang der Stichprobe	n	=	9	
Rang-Korrelations-Koeffizient zwischen				
R_11_CR und $ riangle_p$ nach Spearman mit Bindungen	r_S,B	=	-0.264	
Umfang der Stichprobe	n	-	9	
Rang-Korrelations-Koeffizient zwischen				
R 22 CA und ⊿ p nach Spearman mit Bindungen	r S.B	=	-0.562	

<u>Bild 3-35:</u> Statistische Auswertung der Druckabfallverteilung und Korrelation 92 zwischen den thermodynamischen Parametern der Kühldosen Für den Druckverlust innerhalb eines Rohres gilt nach [14]

$$\Delta p = \xi_{W} \cdot \frac{1}{d_{i}} \cdot \frac{\rho \cdot w_{i}^{2}}{2}$$
(32-16)

mit dem Widerstandsbeiwert für turbulente Strömung in Rohrwendeln

$$\xi_{\rm W} = \frac{0.3164}{\text{Re}^{0.25}} \left[1 + 0.095 \left(\frac{d_{\rm i}}{D}\right)^2 \cdot \text{Re}^{0.25} \right], \qquad (32-17)$$

der Geschwindigkeit des Kühlmittels im Rohr

$$w_i = \frac{4}{\pi \cdot d_i^2} \cdot \tilde{v} \qquad (32-18)$$

und der Reynolds-Zahl

$$Re = \frac{W_i \cdot \rho \cdot d_i}{\eta} \quad . \tag{32-19}$$

Wendet man diese ursprünglich für Rohrwendeln bestimmten Gleichungen als Näherungen für die hier vorliegende Rohrspirale an und setzt dazu die Gln. (32-17) bis (32-19) in Gl. (32-16) ein, so erhält man prinzipiell

$$\Delta p = k_1 \cdot \dot{v}^2 + k_2 \cdot \dot{v}^{7/4}. \qquad (32-20)$$

Das Verhältnis k₁ zu k₂ wird aus der Geometrie der Rohrspirale bestimmt. Am Außenrand der Kühldose ist der Krümmungsradius D = 113 mm, innen ist D = 27 mm, d. h. mit

$$\frac{k_1}{k_2} = 0,095 \left(\frac{d_i}{D}\right)^2$$
(32-21)

und dem Innendurchmesser des Rohres von d $_i$ = 4,5 mm liegt das Verhältnis zwischen

$$\frac{k_1}{k_2} = 0,151 \cdot 10^{-3} \dots 2,64 \cdot 10^{-3} \dots (32-22)$$

Im Rahmen der hier vorliegenden Meßgenauigkeit und auch in Hinblick auf die Ähnlichkeit von \dot{v}^2 und $\dot{v}^{7/4}$ kann man also näherungsweise

$$\Delta p = k \cdot V \frac{7}{4}$$
 (32-23)

aufschreiben, eine Gleichung, die auch experimentell bestätigt wurde. Bestimmt man k für eine bestimmte Kühldose i, gilt damit

$$k_{i} = \frac{\Delta p_{i}}{\dot{v}_{N}^{7/4}}$$
(32-24)

mit V_N, dem bei der Messung fließenden Volumenstrom. Für den Betrieb mit einem anderen Druckabfall gilt

$$\dot{\mathbf{V}} = \left(\frac{\Delta \mathbf{p}}{\mathbf{k}_{i}}\right)^{4/7} = \dot{\mathbf{v}}_{N} \cdot \Delta \mathbf{p} \cdot (\Delta \mathbf{p}_{i})^{-4/7}, \quad (32-25)$$

und für n parallele Kühldosen erhält man

$$V_{\Sigma} = \sum_{i=1}^{n} \left(\frac{\Delta p}{K_{i}}\right)^{4/7} = \Delta p^{4/7} \cdot \dot{V}_{N} \cdot \sum_{i=1}^{n} (\Delta p_{i})^{-4/7} \cdot (32-26)$$

Das gewichtete harmonische Mittel des Druckabfalls wird damit

$$\Delta p_{N} = \left[\frac{n}{\sum_{i=1}^{n} (\Delta p_{i})^{-4/7}}\right]^{7/4}$$
(32-27)

3.2.5.3 Korrelationskoeffizienten

Bild 3-35 zeigt die errechneten Korrelationskoeffizienten zwischen den thermodynamischen Parametern der Kühldosen. Die Gleichungen zur Berechnung der Parameter wurden [10] entnommen. Nun darf aber der empirische Korrelationskoeffizient r^{*} sinnvoll nur zwischen normalverteilten Grundgesamtheiten angewandt werden, so daß bei den Beziehungen zu Δp nur der Rang-Korrelationskoeffizient errechnet wurde, da Δp nicht normalverteilt ist.

Das zwischen R_{thJA} und R_{11CA} bzw. R_{22CA} algorithmische Beziehungen bestehen, muß nicht mit den Korrelations-Koeffizienten nachgewiesen werden, dies ergibt sich aus Abschnitt 3.3.1.2. Interessanter ist der Zusammenhang zwischen Druckabfall und R_{11CA} bzw. R_{22CA} und den thermischen Widerständen untereinander. Leider liegt hier nur eine kleine Stichprobe vor, so daß sich keine sehr scharfen Aussagen machen lassen.

Zuerst betrachte man den Zusammenhang zwischen dem Druckabfall und den thermischen Widerständen. Der Zusammenhang zwischen R_{22CA} und Δp ist bereits signifikant auf ca. 6 %-Niveau, zwischen R_{11CA} und Δp kann von einer signifikanten Korrelation nicht gesprochen werden. Nun besteht aber zwischen Druckabfall und Wärmeübergang im Rohr ein unmittelbarer Zusammenhang [14], mit steigendem Druckabfall wird der Wärmeübergang besser. So hat der berechnete negative Rang-Korrelationskoeffizient seinen analytischen Hintergrund, der beim Zusammenhang zwischen R_{th,IA} und Δp mit einem Signifikanzniveau von ca. 4 % noch deutlicher ausgedrückt wird. Man hat hier den vorteilhaften Effekt, daß bei den Kühldosen, die bedingt durch den höheren Druckabfall einen kleineren Volumenstrom des Kühlmittels aufweisen, wenigstens die thermischen Widerstände (bezogen auf \dot{V}_N) kleiner sind.

Die Schwankungen des Druckabfalls der Kühldose sind nun aber nicht nur durch Schwankungen des Innendurchmessers und der Rauhigkeit hervorgerufen, sondern auch durch Knickstellen, insbesondere in der Mitte der Spirale der Kühldose. Eine solche Knickstelle (oder auch eine Teilverstopfung) erhöht zwar den Druckabfall, die dadurch hervorgerufene Verbesserung des Wärmeüberganges ist aber nur minimal. Außerdem rufen auch Inhomogenitäten u. a. im Aluminium-Körper der Kühldose Schwankungen der thermischen Widerstände hervor.

Die schwach positive Korrelation zwischen den thermischen Widerständen R_{11CA} und R_{22CA}, die aber noch nicht signifikant ist, könnte ihre Erklärung in den gemeinsamen Beziehungen über den Druckabfall finden.

Berechnet man den partiellen Rangkorrelationskoeffizienten zwischen R_{11CA} und R_{22CA} unter Δp nach Kendall [23], so ergibt sich ein Wert von $\tau_{(R_{11CA}, R_{22CA})/\Delta p} = 0,272$ gegenüber dem direkt ermittelten Kendall'schen τ von $\tau_{(R_{11CA}, R_{22CA})} = 0,389$.

95

Um hier zu genaueren Aussagen zu gelangen, wäre die Untersuchung einer größeren Zahl von Kühldosen erforderlich. Zum Nachweis eines Korrelationskoeffizienten von 0,2 auf 5 % Signifikanzniveau sind z. B. Messungen an ca. 70 Kühldosen erforderlich.

3.2.5.4 Auswahl einer repräsentativen Kühldose

Wegen der Vielzahl und dem Aufwand der durchzuführenden Messungen können diese nur mit einer repräsentativen Kühldose durchgeführt werden. Diese Kühldose soll am oberen Toleranzniveau liegen, da bei den Untersuchungen in erster Linie Höchstwerte interessieren. Nun liegt es nahe, die Meßergebnisse der Kühldose Nr. 2 als repräsentativ für den Höchstwert der thermischen Widerstände anzusehen. Man muß nun bestimmen, welches Toleranzintervall die Meßwerte dieser Kühldose repräsentieren. Da bei großen zu untersuchenden Stückzahlen die Normalverteilung der thermischen Widerstände nicht mehr gewährleistet sein muß, ist es sicherer, ein verteilungsfreies Verfahren anzuwenden. Nach [23] gilt für die Trefferwahrscheinlichkeit

$$p \simeq \frac{2 [2n + 1 - r - m] - \chi_2^2(r+m); 1-\alpha}{2 [2n + 1 - r - m] + \chi_2^2(r+m); 1-\alpha}$$
(32-28)

mit n, dem Stichprobenumfang und r und m, den laufenden Nummern der als repräsentativ anzusehenden Meßwerte. Da hier nur ein einseitiges, oberes Toleranzintervall interessiert, ist r = 0. Bei einer Irrtumswahrscheinlichkeit von α = 0,1 erhält man mit dem Quantil der χ^2 -Verteilung $\chi^2_{2;0,9}$ = 4,61 eine Trefferwahrscheinlichkeit p \simeq 0,79. Man kann also die Kühldose Nr. 2 als repräsentativ für den 80-%-Wert der Verteilung annehmen, muß dabei aber eine Irrtumswahrscheinlichkeit von 10 % in Kauf nehmen.

3.2.6 Stationäre thermische Parameter der Kühldosen

Die thermischen Parameter der Kühldose Nr. 2 wurden im Zusammenwirken mit dem Thyristor T 2200 N 3600 ... 4400 weiter untersucht. Das Bild 3-36 zeigt die dabei erzielten Ergebnisse.

Stationäres thermisches Verhalten der Kühldosen

Diss_B - Variante 01 - Kassetten 57/58 - 21. Februar 1984 - Sz

Bild 3-36: Stationare thermische Parameter (80-%-Werte) der Kühldosen REG 029.076 404 (ø 100 mm) in Zusammenwirken mit dem Thyristor T 2200 N 3600 ... 4400 (ø 100 mm)

Mit steigendem Kühlmittelvolumenstrom \dot{V} sinken die fünf thermischen Parameter der Kühldose, wobei eine weitere Vergrö-Berung von \dot{V} die bei der Auslegung dominierenden Parameter R_{11} und R_{22} nur noch wenig reduzieren würde. Außerdem stehen einer solchen Erhöhung auch zu große mechanische Beanspruchungen der Rohrwände entgegen.

Der thermische Widerstand der Seite der Kühldose, an der die Kathode des Thyristors anliegt (hier Seite 1), ist auf Grund der ausgeprägteren Wärmestromeinschnürung generell größer als der thermische Widerstand, der an der Anode anliegenden Seite. Der Durchgriff der Kühldose auf die Seite, auf der das Kühlmittel abfließt, lehnt sich weit an den formalen thermischen Widerstand des Kühlmittels R_W an, ist aber immer geringfügig größer. Der Durchgriff auf die andere Seite liegt, je nach Größe des Kühlmittelvolumenstromes bei etwa 20 bis 50 % von R_W .

Es wurden auch Messungen mit umgedrehter Kühlmittelrichtung und mit vertauschten Anoden- bzw. Kathodenseiten durchgeführt. Dabei zeigte sich, daß die Vertauschung der Anodenmit der Kathodenseite, wenn gleichzeitig die Kühlmittelrichtung vertauscht wurde, keinen signifikanten Einfluß auf die Ergebnisse hatte. Dagegen wirkte sich die alleinige Vertauschung der Kühlmittelrichtung auf die erzielten Ergebnisse aus. Auf der jeweils abfließenden (wärmeren) Seite wurden die thermischen Widerstände niedriger, auf der zufließenden (kälteren) Seite höher. Ursache ist die mit steigender Temperatur abnehmende Viskosität des Kühlmittels (das Wasser wird "flüssiger") und die damit abnehmende Grenzschichtstärke.

3.3 <u>Verhalten der Halbleiterbauelemente und der Kühlelemente im</u> Säulenverband

Mit den Gln. (31-1,2) für zweiseitig gekühlte Halbleiterbauelemente und Gl. (32-8) für die Kühldosen wird das stationäre thermische Verhalten der eingesetzten Bauteile in Hochleistungsventilen vollständig beschrieben. Nun ist es noch erforderlich, Gleichungen abzuleiten, die das Zusammenwirken der Halbleiterbauelemente und der Kühldosen im Säulenverband beschreiben.

3.3.1 Verhalten einer unendlich langen, symmetrischen Säule

3.3.1.1 Konventionelles Berechnungsverfahren

Beim konventionellen Berechnungsverfahren wurde der thermische Gesamtwiderstand mit

$$R_{thJA} = R_{thJG} + R_{thGM} + \frac{1}{2} R_W$$
 (33-1)

ermittelt. Bei Verwendung des thermischen Widerstandes $^{\,\,\star}_{\rm thGA}$ aus Gl. (32-12) geht der Wert R $_{\rm W}$ nicht mehr in die Rechnung ein:

$$R_{thJA}^{*} = R_{thJG}^{*} + R_{thGA}^{*}$$
 (33-2)

Dies macht deutlich, daß ein Bezug der Kühldosenparameter auf die mittlere Kühlmitteltemperatur keinen Vorteil erbringt, da dann ein Anteil subtrahiert wird, der zur Berechnung des Endergebnisses mit Gl. (33-1) wieder addiert werden muß.

3.3.1.2 Berücksichtigung der gegenseitigen Abhängigkeiten

Am einfachsten ist das stationäre thermische Verhalten einer unendlich langen Säule aus Halbleiterbauelementen und Kühldosen, die alle gleiche thermische Parameter haben, zu berechnen. Auch die Kühlmittelzulauftemperatur soll in allen Kühldosen gleich groß sein. Zwangsläufig sind dann alle Ersatzsperrschichttemperaturen ebenfalls gleich.

<u>Bild 3-37:</u> Ausschnitt aus einer unendlich langen, symmetrischen Säule aus zweiseitig gekühlten Halbleiterbauelementen und Kühldosen

Mit den Bezeichnungen aus Bild 3-37 ergeben sich die Gleichungen

 $T_J = R_1 \cdot P_1 + T_1 = R_2 \cdot P_2 + T_2$ (33-3)

$$T_1 = R_{11} \cdot P_1 + R_{12} \cdot P_2 + T_A$$
 (33-4)

$$T_2 = R_{21} \cdot P_1 + R_{22} \cdot P_2 + T_A$$
(33-5)

$$P_{J} = P_{1} + P_{2} . (33-6)$$

Daraus erhält man für die Unbekannten

$$T_{1} = \frac{R_{11} (R_{2} + R_{22}) + R_{12} (R_{1} - R_{21})}{R_{1} + R_{2} + R_{11} - R_{12} - R_{21} + R_{22}} \cdot P_{J} + T_{A}$$
(33-7)

$$T_{2} = \frac{R_{21} (R_{2} - R_{12}) + R_{22} (R_{1} + R_{11})}{R_{1} + R_{2} + R_{11} - R_{12} - R_{21} + R_{22}} \cdot P_{J} + T_{A}$$
(33-8)

$$P_{1} = \frac{R_{2} + R_{22} - R_{12}}{R_{1} + R_{2} + R_{11} - R_{12} - R_{21} + R_{22}} \cdot P_{J}$$
(33-9)

$$P_{2} = \frac{R_{1} + R_{11} - R_{21}}{R_{1} + R_{2} + R_{11} - R_{12} - R_{21} + R_{22}} \cdot P_{J}$$
(33-10)

und letztlich für den thermischen Widerstand bei unendlich langer Säule

$$R_{\text{thJA}} \Big|_{\infty} = \frac{T_{\text{J}} - T_{\text{A}}}{P_{\text{J}}} = \frac{(R_1 + R_{11}) \cdot (R_2 + R_{22}) - R_{12} \cdot R_{21}}{R_1 + R_2 + R_{11} - R_{12} - R_{21} + R_{22}} .$$
(33-11)

Für $R_{12} = R_{21} = 0$ enthalten die Gleichungen auch den Fall unabhängiger Kühlung entsprechend Bild 3-3.

Bild 3-38 zeigt die aus Bild 3-36 ermittelten Verläufe des stationären thermischen Widerstandes einer unendlich langen, symmetrischen Säule aus Thyristoren und Kühldosen als Funktion des Kühlmittelvolumenstromes.

Dabei zeigte sich auch hier ein Einfluß der Kühlmittelrichtung. Im allgemeinen wurden mit einer Kühlmittelrichtung von der Anoden- zur Kathodenseite niedrigere Wärmewiderstände erreicht. Die Unterschiede liegen aber nur in

Stationäres Verhalten von Säulen aus Dioden bzw. Thyristoren und Kühldosen

Diss_B - Variante 01 - Kassetten 57/58 - 21. Februar 1984 - Sz

Arbeitsbedingungen: Kathode <==> Seite 1 | Anode <==> Seite 2 Kühlmittelrichtung von Seite 1 zu Seite 2

<u>Bild 3-38:</u> Stationärer thermischer Widerstand $R_{thJA}|_{\infty}$ in einer unendlich langen, symmetrischen Säule aus Kühldosen AEG 029.076 404 (Ø 100 mm) und Thyristoren T 2200 N 3600 ... 4400 (Ø 100 mm)

der Größenordnung von etwa 1 %, gehen also im Rahmen der hier vorliegenden Meßunsicherheiten verloren. Für das Bild 3-38 wurden die ungünstigeren Werte verwendet (Kühlmittelrichtung von der Kathoden- zur Anodenseite).

3.3.1.3 Vergleich beider Rechenverfahren

Ein Zahlenbeispiel möge zunächst die Ergebnisse verdeutlichen:

Gegeben: Thyristor T 2200 N 3600 ... 4400 Anode ∞ Seite 1 / Kathode ∞ Seite 2 Kühlwasserrichtung von Seite 2 zu Seite 1 $R_1 = 12, 18 \frac{mK}{W}$ $R_2 = 16,36 \frac{mK}{M}$ Kühldose AEG 029.076 404 für 100-mm-Thyristoren $\dot{V}_{A} = 60 \frac{1}{b}, \vartheta_{A} = 20,0 \text{ °C}, \vartheta_{B} = 49,5 \text{ °C},$ $P_1 + P_2 = 2080 W$ $R_{11} = 25,44 \frac{mK}{W}$ $R_{12} = 15,03 \frac{mK}{W}$ $R_{21} = 6,05 \frac{mK}{W}$ $R_{22} = 29,25 \frac{mK}{W}$ <u>Gesucht:</u> R_W , \dot{Q} , R_{thJA}^{\star} , ϑ_1 , ϑ_2 , P_1 , P_2 , $R_{thJA}|_{\infty}$, ϑ_J <u>Lösung:</u> $\dot{M} = \rho_A \cdot \dot{V}_A = 998,3 \frac{kg}{m^3} \cdot 60 \frac{1}{h} \cdot \frac{1}{3} \frac{m^3 \cdot h}{6 \cdot 10^6 \cdot 1 \cdot s} = 16,64 \frac{g}{s}$ $R_W = \frac{1}{\tilde{M} \cdot \bar{c}_p} = \frac{1}{0,01664 \frac{kg}{s} \cdot 4180 \frac{J}{kg \cdot K}} = 14,38 \frac{mK}{W}$ $\dot{Q} = \frac{\vartheta_{B} - \vartheta_{A}}{R_{W}} = \frac{(49, 5 - 20, 0)K}{14, 38 \text{ mK}} = 2052 \text{ W}$ $R_{thJC}^{*} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{12,18 \cdot 16,36}{12,18 + 16,36} \frac{mK}{W} = 6,98 \frac{mK}{W}$ $R_{thCM}^{*} = \frac{1}{4} (R_{11} + R_{12} + R_{21} + R_{22}) - \frac{1}{2} R_{W} = 11,75 \frac{mK}{W}$ $R_{+h,1A}^{*}$ = (6,98 + 11,75 + $\frac{1}{2}$ + 14,38) $\frac{mK}{W}$ = 25,92 $\frac{mK}{W}$

$$\begin{split} \vartheta_{1} &= \frac{25,44(16,36+29,25)+15,03(12,18-6,05)}{12,18+16,36+25,44-15,03-6,05+29,25)} \frac{mK}{W} \cdot 2052 \ \text{W}+20^{\circ}\text{C}= \ 61,4^{\circ}\text{C}\\ \vartheta_{2} &= \frac{6,05(16,36-15,03)+29,25(12,18+25,44)}{W} \frac{mK}{W} \cdot 2052 \ \text{W}+20^{\circ}\text{C}= \ 56,3^{\circ}\text{C}\\ P_{1} &= \frac{16,36+29,25-15,03}{2052} \cdot 2052 \ \text{W} = \ 1009,7 \ \text{W}\\ P_{2} &= \frac{12,18+25,44-6,05}{2052} \cdot 2052 \ \text{W} = \ 1042,3 \ \text{W}\\ R_{\text{thJA}} \Big|_{\infty} &= \frac{(12,18+25,44)(16,36+29,25)-15,03\cdot6,05}{2052} \ \frac{mK}{W} = \ 26,15 \ \frac{mK}{W}\\ \vartheta_{3} &= R_{\text{thJA}} \Big|_{\infty} &\cdot P_{3} + \vartheta_{A} = \ 26,15 \ \frac{mK}{W} \cdot 2052 \ \text{W} + \ 20^{\circ}\text{C} = \ 73,6^{\circ}\text{C} \end{split}$$

Welchen Einfluß haben die "Durchgriffe" der Kühldose auf das erzielte Ergebnis?

Dieser Einfluß ist für das oben durchgerechnete Beispiel in Bild 3-39 mit variierten Werten für die Durchgriffe R_{12} und R_{21} dargestellt. Das konkrete Beispiel ist in das Diagramm als Punkt eingetragen. Eine Verallgemeinerung ist nur schlecht möglich, allerdings besteht die Tendenz, daß die sich ergebenden Abweichungen mit wachsendem Volumenstrom immer kleiner werden. Beim Vergleich ist allerdings zu berücksichtigen, daß zu den in Bild 3-39 dargestellten Abweichungen unter Umständen noch die bei der Messung von R_{thJC} nach Bild 3-4 und die bei der Messung von R_{thCA}^* nach Bild 3-29 auftretenden Abweichungen addiert werden müssen. Im Einzelfall können sich diese Abweichungen auch aufheben, insbesondere dann, wenn die Messung der Sperrschichttemperatur zusammen mit der später verwendeten Kühleinrichtung erfolgt. Davon kann man aber nicht ausgehen.

3.3.2 Verhalten einer endlich langen Säule

Bild 3-40 zeigt eine endlich lange Säule aus n zweiseitig gekühlten Halbleiterbauelementen und n + 1 Kühldosen bei beliebig unsymmetrischen Kühlbedingungen. Deren Verhalten soll in folgendem berechnet werden.

Berlin, den 24. November 1984

Stationärer Wärmewiderstand von zweiseitig gekühlten Bauelementen in unendlich langen, symmetrischen Säulen

Darstellung des Einflusses der Durchgriffe R_12 und R_21

R thJA - Kassetten 41/42 - Variante 01 - 22. November 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

Kühlelement: 100-mm-Kühldose AEG 029.076 404 mit V_punkt = 60 1/h

stationärer Wärmewiderstand der Anodenseite Durchgriff von der Kathoden- zur Anodenseite Durchgriff von der Anoden- zur Kathodenseite stationärer Wärmewiderstand der Kathodenseite formaler Wärmewiderstand des Kühlelementes Unendlich lange, symmetrische Säule:

konventioneller Wärmewiderstand $$\rm R_th_JR^{\star}$$ = 25.92 mK/W Wärmewiderstand mit Berücksichtigung der Durchgriffe $\rm R_th_JR$$ = 26.14 mK/W

Parameter: (R_12+R_21)/(R_1+R_11+R_2+R_22)

Bild 3-40: Endlich lange Säule aus n Halbleiterbauelementen und n+1 Kühldosen

3.3.2.1 Gleichungssystem

Einen Ausschnitt aus der Säule um das i-te Halbleiterbauelement herum stellt Bild 3-41 dar. Hier gelten folgende Gleichungen:

$$T_{J,i} = R_{1,i} \cdot P_{1,i} + T_{1,i}$$
 (33-12)

$$T_{J,i} = R_{2,i} \cdot P_{2,i} + T_{2,i}$$
 (33-13)

$$P_{J,i} = P_{1,i} + P_{2,i}$$
 (33-14)

$$T_{1,i} = R_{11,i} \cdot P_{1,i} + R_{12,i} \cdot P_{2,i+1} + T_{A,i}$$
 (33-15)

$$T_{2,i} = R_{21,i-1} \cdot P_{1,i-1} + R_{22,i-1} \cdot P_{2,i} + T_{A,i-1}$$
 (33-16)

$$T_{J,i-1} = R_{1,i-1} \cdot P_{1,i-1} + T_{1,i-1}$$
 (33-17)

$$T_{J,i+1} = R_{2,i+1} \cdot P_{2,i+1} + T_{2,i+1}$$
 (33-18)

$$T_{1,i-1} = R_{11,i-1} \cdot P_{1,i-1} + R_{12,i-1} \cdot P_{2,i} + T_{A,i-1}$$
 (33-19)

$$T_{2,i+1} = R_{21,i} \cdot P_{1,i} + R_{22,i} \cdot P_{2,i+1} + T_{A,i}$$
. (33-20)

Bild 3-41: Ausschnitt aus einer Säule um das i-te Halbleiterbauelement

Diese 9 Gleichungen können durch längere Rechnung in die Form $-\frac{R_{12,i}}{N_{i+1}}T_{J,i+1} + \left[\frac{R_{2,i+1}+R_{22,i}}{N_{i+1}} + \frac{R_{1,i-1}+R_{11,i-1}}{N_{i}}\right]T_{J,i} - \frac{R_{21,i-1}}{N_{i}}T_{J,i-1} = \frac{R_{1,i-1}+R_{11,i-1}-R_{21,i-1}}{N_{i}}T_{A,i-1} + P_{J,i} + \frac{R_{2,i+1}+R_{22,i}-R_{12,i}}{N_{i+1}}T_{A,i}$ mit
(33-21)

 $N_i = (R_{1,i-1}+R_{11,i-1}) \cdot (R_{2,i}+R_{22,i-1}) - R_{12,i-1} \cdot R_{21,i-1}$ (33-22) Uberführt werden.

Man hat hier ein tridiagonales Gleichungssystem zur Berechnung der Sperrschichttemperaturen $T_{J,i}$ erhalten, das sehr produktiv durch LR-Zerlegung [24] lösbar ist. Eine gesonderte Behandlung erfordern allerdings noch die Halbleiterbauelemente an den Rändern (Gleichungen für $T_{J,i}$ und $T_{J,n}$). Für i = 1 gilt

$$\frac{\binom{R_{2,2} + R_{22,1}}{N_2} + \frac{1}{R_{2,1} + R_{22,0}}}{\frac{T_{A,0}}{R_{2,1} + R_{22,0}} + P_{J,1} + \frac{R_{2,2} + R_{22,1} - R_{12,1}}{N_2} T_{A,1}$$
(33-23)
Analog erhält man für das Ende der Säule

$$\left(\frac{1}{R_{1,n} + R_{11,n}} + \frac{R_{1,n-1} + R_{11,n-1}}{N_n}\right) \quad T_{J,n} - \frac{R_{21,n-1}}{N_n} \quad T_{N,n-1} = \frac{R_{1,n-1} + R_{11,n-1} - R_{21,n-1}}{N_n} \quad T_{A,i-1} + P_{J,n} + \frac{T_{A,n}}{R_{1,n} + R_{11,n}} \quad . \tag{33-24}$$

Für die in den einzelnen Kühldosen umgesetzten Leistungen erhält man aus

$$\dot{Q}_{i} = P_{1,i} + P_{2,i+1}$$
 (33-25)

zusammen mit dem Gleichungssystem (33-12...20)

$$\hat{Q}_{i} = \frac{1}{N_{i+1}} \left[(R_{2,i+1} + R_{22,i} - R_{21,i}) \cdot (T_{J,i} - T_{A,i}) + (R_{1,i} + R_{11,i} - R_{12,i}) \cdot (T_{J,i+1} - T_{A,i}) \right] (33-26)$$

mit den speziellen Gleichungen für den Rand

$$\hat{Q}_0 = \frac{T_{J,1} - T_{A,0}}{R_{2,1} + R_{22,0}}$$
 (33-27)

$$\hat{Q}_{n} = \frac{T_{J,n} - T_{A,n}}{R_{1,n} + R_{21,n}}$$
 (33-28)

Die Berechnung der Kühlmittelaustrittstemperaturen kann jetzt mit

$$T_{B,i} = R_{W,i} \cdot Q_i + T_{A,i}$$
 (33-29)

erfolgen.

Für den Sonderfall n = 1 gelten andere Gleichungen. Hier wird nur ein Halbleiterbauelement mit zwei Kühldosen betrieben. Dadurch haben die Durchgriffe der Kühldosen keinen Einfluß auf das Ergebnis. Für die Sperrschichttemperatur gilt
$$T_{J} = \frac{(R_{1}+R_{11,1}) \cdot (R_{2}+R_{22,0}) \cdot P_{J}+ (R_{2}+R_{22,0})T_{A,1}+(R_{1}+R_{11,1})T_{A,0}}{R_{1}+R_{11,1}+R_{2}+R_{22,0}}, \quad (33-30)$$

und für die umgesetzten Leistungen sind die Gln. (33-27, 28) = für n=1 verwendbar.

3.3.2.2 Endlich lange, symmetrische Säule

Das in Abschnitt 3.3.2.1 hergeleitete lineare Gleichungssystem gestattet die Berechnung des Einflusses der Länge einer Säule auf den stationären thermischen Widerstand des am stärksten beanspruchten Halbleiterbauelementes.

In Bild 3-42 sind die Ergebnisse für n = 1 ... 10 zu sehen. Die dargestellten Zahlen zeigen die jeweiligen auf die (gleichen) Kühlmittelzulauftemperaturen und die (gleichen) Verlustleistungen bezogenen Sperrschichttemperaturen. D. h., multipliziert man die Zahlen mit der Verlustleistung der einzelnen Halbleiterbauelemente und addiert dazu die Kühlmittelzuflußtemperatur, dann ergeben sich die Sperrschichttemperaturen in den jeweiligen Thyristoren. Bedingt durch die bessere Kühlung am Rand der Säule, wo die äußeren Halbleiterbauelemente auf einer Seite von nur einseitig beaufschlagten Kühldosen gekühlt werden, sind dort die Sperrschichttemperaturen am niedrigsten. Dies gilt insbesondere dann, wenn das Kühlmittel von der nicht beaufschlagten Seite auf die beaufschlagte Seite der Kühldose fließt (der "fehlende" korrespondierende Durchgriff ist dann hoch).

Der erzielbare Dimensionierungsgewinn gegenüber der unendlich langen Säule ist nur klein. Man sieht, daß ab n = 4, praktisch kein Dimensionierungsgewinn zu erzielen ist, selbst bei n = 3 ist die Verringerung des thermischen Widerstandes im mittleren Thyristor nur sehr klein.

Bei der Auswertung ist zu beachten, daß hier die Parameter der Kühldose als unabhängig von der umgesetzten Leistung angenommen wurden, obwohl dies nicht der Realität entspricht. Dadurch ergeben sich geringfügig niedrigere Ergebnisse für die Sperrschichttemperaturen, d. h. es wird etwas zu gut gerechnet.

Berlin, den 21. Dezember 1984

Stationärer Wärmewiderstand in Säulen aus Halbleiterbauelementen und Kühldosen Saule - Kassetten 41/42 - Variante 04 - 20. Februar 1984 - Sz File-Name: 2 51c Kühldose: AEG 029.076 404 (100 mm) Nr. 2 Messung 26.01.84 Kühlmittel: Wasser mit einem Volumenstrom von V punkt = 150 1/h Aufbau: Kathode (===> Seite 1 | Anode (===> Seite 2 Kühlmittel-Richtung von Seite 1 zu Seite 2 Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken) Model1: "junction-case" (J-C) 12.180 mK/W anodenseitiger stationärer Wärmewiderstand R th JC(A) = 16.356 mK/W kathodenseitiger stationärer Wärmewiderstand $R_th_JC(K) =$ 6.981 mK/W idealer stationärer Wärmewiderstand R th JC = 20.5 °C durchschnittliche Kühlmitteleinlauftemperatur 3 A = durchschnittliche Kühlmittelauslauftemperatur 9 B = 32.1 °C Volumendurchsatz des Kühlmittels bei 3 A V punkt = 150.0 1/h Kühlmengendurchsatz M punkt -41.59 g/s durchschnittliche kalorimetrische Leistung @ punkt = 2 051 W durchschnittliche elektrische Leistung 2 005 W P_J -5.753 mK/W formaler thermischer Widerstand des Kühlmittels RW = Dreitorparameter der Kühldose: R 11 CA -18.81 mK/W R 12 CA = 1.65 mK/W R_21_CA -5.93 mK/W R_22 CA = 15.85 mK/W Thermische Widerstände: konventioneller Wärmewiderstand der Kühldose R th CM* 7.68 mK/W = konventioneller Wärmewiderstand in der Säule R th JA* 17.54 mK/W = thermischer Widerstand der unendlich langen Säule R_th_JA 17.55 mK/W thermische Widerstände in der endlich langen, symmetrischen Säule: 1: 15.60 15.98 17.02 2: 3: 15.99 17.39 17.15 15.99 17.48 17.52 17.16 4: 5: 15.99 17.40 17.53 17.54 17.16 15.99 17.40 17.53 17.55 17.54 17.16 6: 7: 15.99 17.40 17.53 17.55 17.55 17.54 17.16 8: 15.99 17.40 17.53 17.55 17.55 17.55 17.54 17.16 9: 15.99 17.40 17.53 17.55 17.55 17.55 17.55 17.54 17.16 10:15.99 17.40 17.53 17.55 17.55 17.55 17.55 17.55 17.16 thermische Widerstände in der endlich langen, symmetrischen Säule bei vertauschter Kühlmittelrichtung (formale Rechnung mit vertauschten R 12 (===> R 21): 1: 15.60 2: 17.04 15.96 3: 17.17 17.39 15.97 4: 17.18 17.52 17.40 15.97 5: 17.18 17.54 17.53 17.40 15.97 6: 17.18 17.54 17.55 17.53 17.40 15.97 7: 17.18 17.54 17.55 17.55 17.53 17.40 15.97 8: 17.18 17.54 17.55 17.55 17.55 17.53 17.40 15.97 9: 17.18 17.54 17.55 17.55 17.55 17.55 17.53 17.40 15.97 17.54 10:17.18 17.55 17.55 17.55 17.55 17.55 17.53 17.40 15.97

Bild 3-42: Vergleich der unendlich langen Säule mit der endlich langen Säule

3.3.2.3 Ausfall einer Kühldose

Interessant sind noch die thermischen Verhältnisse bei Ausfall einer Kühldose. Nimmt man an, daß durch die mittlere Kühldose (bei ungeradem n, die links von der Mitte befindliche Kühldose) kein Kühlmittel fließt (Verstopfung), dann ergeben sich die ungünstigsten Verhältnisse.

Zur Berechnung ist die Aufstellung zweier neuer Gleichungen erforderlich, die strukturell zu Gl. (33-21) passen müssen. Mit den Bezeichnungen aus Bild 3-43 und den prinzipiellen Gleichungen für das Verhalten einer Kühldose ohne Kühlmitteldurchsatz

$$P_{1,i} = -P_{2,i+1}$$
 (33-31)

$$T_{1,i} = R_{D,i} + P_{1,i} + T_{2,i+1}$$
 (33-32)

ergeben sich die beiden gesuchten Gleichungen zu

$$= \frac{T_{J,i+1}}{R_{1,i}+R_{D,i}+R_{2,i+1}} + \left(\frac{1}{R_{1,i}+R_{D,i}+R_{2,i+1}} + \frac{R_{1,i-1}+R_{11,i-1}}{N_i}\right) T_{J,i} - \frac{R_{21,i-1}}{N_i} T_{J,i-1} = P_{J,i} + \frac{R_{1,i-1}+R_{11,i-1}-R_{21,i-1}}{N_i} T_{A,i-1} (33-33) - \frac{R_{12,i+1}}{N_{i+2}} T_{J,i+2} + \left(\frac{R_{2,i+2}+R_{22,i+1}}{N_{i+2}} + \frac{1}{R_{1,i}+R_{D,i}+R_{2,i+1}}\right) T_{J,i+1} - \frac{R_{1,i-1}}{R_{1,i}+R_{D,i}+R_{2,i+1}} + \frac{1}{R_{1,i}+R_{D,i}+R_{2,i+1}} + \frac{1}{R_{1,i}+R_{2,i+1}} + \frac{1}{R_{1,i}+R$$

$$-\frac{1}{R_{1,i}+R_{D,i}+R_{2,i+1}}T_{J,i} = P_{J,i+1} + \frac{R_{2,i+2}+R_{22,i+1}-R_{12,i+1}}{N_{i+2}}T_{A,i+1}.$$
(33-34)

Dabei ist R_D der thermische Durchlaßwiderstand der Kühldose, der bei der 100-mm-Kühldose beim Einsatz von 100-mm-Thyristoren mit R_D cc = 77,5 $\frac{mK}{W}$ ausgemessen wurde.

Bild 3-44 zeigt die erzielten Ergebnisse. Während die Sperrschichttemperaturen der Halbleiterbauelemente, die einen größeren Abstand zu der ausgefallenen Kühldose haben, gegenüber dem Normalbetrieb fast unverändert sind (siehe Bild 3-42), treten in den unmittelbar an der unwirksamen Kühldose anliegenden Thyristoren stark erhöhte Temperaturen auf. Aber auch die jeweils folgenden Halbleiterbauelemente werden verstärkt beansprucht. Sonderfälle, wie Ausfall der Kühldose am Rande oder mehrere ausgefallenen Kühldosen, wurden nicht weiter verfolgt.

Berlin, den 21. Dezember 1984

Stationärer Wärmewiderstand in Säulen aus Halbleiterbauelementen und Kühldosen Säule - Kassetten 41/42 - Variante 04 - 20. Februar 1984 - Sz File-Name: 2 51c Kühldose: AEG 829.876 484 (188 mm) Nr. 2 Messung 26.01.84 Wasser mit einem Volumenstrom von V_punkt = 150 1/h Kühlmittel: Kathode <===> Seite 1 | Anode <===> Seite 2 Aufbau: Kühlmittel-Richtung von Seite 1 zu Seite 2 Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) Model1: "junction-case" (J-C) 12.180 mK/W anodenseitiger stationärer Wärmewiderstand R_th_JC(A) = R_th_JC(K) = kathodenseitiger stationärer Wärmewiderstand 16.356 mK/W 6.981 mK/W idealer stationärer Wärmewiderstand R th JC Durchlaßwiderstand der Kühldose R D CC = 77.5 mK/W Verhältnisse in der endlich langen Säule bei Rusfall der mittleren Kühldose: 4: 31.40 # 34.81 16.35 18.79 5: 16.35 31.41 # 34.82 19.16 17.32 6: 16.00 17.77 31.60 # 34.87 19.17 17.32 7: 16.00 17.77 31.61 # 34.87 19.18 17.69 17.18 8: 15.99 17.90 31.62 # 34.88 17.41 19.18 17.69 17.18 9: 15.99 17.90 31.62 # 34.88 17.41 19.18 17.70 17.55 17.17 10:15.99 17.40 17.54 17.91 31.63 # 34.88 19.18 17.70 17.55 17.17 Bild 3-44: Thermische Widerstände in Säulen mit einer ausgefallenen Kühldose (nicht vom Kühlmittel durchflossene Kühldose durch # dargestellt)

3.3.3 Thermische Reihenschaltung von zwei Säulen (Doppelsäulen)

Bei Stromrichtern zur Blindleistungskompensation, die keine zu großen umzusetzenden Verlustleistungen haben, bietet sich zur Kostenreduzierung die thermische Reihenschaltung des Kühlmittelkreislaufes von zwei Kühldosen an, da durch die Gegenparallelschaltung der Thyristoren immer zwei Kühldosen auf gleichem elektrischen Potential liegen (Bild 3-45).

Dabei besteht die Möglichkeit, die Kühlkreisläufe gleichsinnig (Bild 3-45a) oder gegensinnig (Bild 3-45b) zu betreiben.

3.3.3.1 Gleichsinnige thermische Reihenschaltung

Die gleichsinnige thermische Reihenschaltung nach Bild 3-45a) hat den gravierenden Vorteil des einfacheren mechanischen Aufbaus. Dem steht der Nachteil entgegen, daß in Säule 2 prinzipiell höhere Ersatzsperrschichttemperaturen auftreten als in Säule 1.

Bei unendlich langen, symmetrischen Säulen gilt für die Säule 1 die Gleichung

$$\frac{\binom{1}{m}}{\binom{1}{m}} = \frac{\binom{R_1 + R_{11} \cdot (R_2 + R_{22}) - R_{12} \cdot R_{21}}{R_1 + R_2 + R_{11} - R_{12} - R_{21} + R_{22}} (33-35)$$
und für Säule 2 entsprechend

$$R_{\text{thJA}}^{(2)}\Big|_{\infty} = \frac{\frac{(R_1 + R_{11}) \cdot (R_2 + R_{22}) - R_{12} \cdot R_{21}}{R_1 + R_2 + R_{11} - R_{12} - R_{21} + R_{22}} \Big|_{(2)}^{(2)} + R_{W}.$$
(33-36)

Will man die Verhältnisse in einer endlichen Doppelsäule untersuchen, so muß man den Kühlkreislauf genauer betrachten, um die Zuordnung der Kühldosenparameter an die Strömungsverhältnisse festzulegen (Bild 3-46). Man sieht, daß bei vernünftiger konstruktiver Gestaltung des Kühlkreislaufes die "Durchgriffe" der Kühldose R₁₂ und R₂₁ in beiden Säulen vertauscht sind, d. h., wenn in der ersten Säule das Wasser zuerst zur Kathodenseite fließt, dann fließt es in der zweiten Säule zuerst zur Anodenseite und umgekehrt.

Zur Lösung des Gleichungssystems stellt man für jede Säule das Gleichungssystem nach den Gln. (33-21) bis (33-24) auf, berechnet bei Säule 1 die kalorimetrischen Leistungen mit den Gln. (33-26) bis (33-28) und kann dann mit Gl. (33-29) die Zuflußtemperaturen der Säule 2 ermitteln.

Bild 3-47 zeigt die so berechneten Ergebnisse für die Anzahl der in Reihe geschalteten Thyristoren von n = 2 bis 10. In der ersten Säule entsprechen die Ergebnisse dem Bild 3-42. Die Halbleiterbauelemente der zweiten Säule weisen entsprechend der erhöhten Kühlmittelzulauftemperaturen vergrößerte Sperrschichttemperaturen auf.

a) Kühlmittel fließt zuerst zur Kathodenseite

b) Kühlmittel fließt zuerst zur Anodenseite

Bild 3-46: Gleichsinnige thermische Reihenschaltung zweier Säulen mit Darstellung des Kühlkreislaufes

Berlin, den 21. Dezember 1984

Sta	ationä	irer	Wär	ne	wie	der	121	and	11	n S	ău'	ler	a	us.	Ha	101	e1	tert	a	16	eme	nte	n	uni	1 1	(üh1	do	sen	1
					s	au	le	- K	as:	set	ter	n 4	11/	42	-	Var	ia	nte	0.	4 -	- 20	. F	et	ru	ar	198	34	- 9	z
File Küh	e-Name Idose:	:			2	5 EG	1c 02	9.0	76	40	4	(1	.00	m	m >	Nr	•	2		1es	isun	a 2	6.	01	. 8	4			
Küh	lmitte	:1:			ы.	as	ser	mi	t	ein	em.	Ve	olu	me	nst	ror	n y	on	V 1	our	nkt	= 1	50	1	h				
Auft	bau:				K K	at i üh	hod 1mi	e < tte	1-1	=> Ric	Se	ite	1 1 1	on	Se	And	ode 1	<= zu	S	> : e i :	Seit te 2	e a	2						
Bau	elemer ell:	nt:			Ti.	hy ju	ris nct	tor	Т -с	22 ase	00 "	N (J-	36	00	••		448	10 (1	AEI	G-1	[e]e	fur	ik e	n)					
Veri	halter	n bei	g	lei	ch	si	nni	ger	t	her	m i	scł	ner	R	eih	ens	sch	alt	un	9 :	zwei	er	S	iu 1	en	:			
kon	ventio	onell	er	Wä	ir m	eω	ide	rst	an	d i	n	der	~ S	ău	le	1		R	th	J	A 1×		E.		1	7.5	4 r	nK/I	i.
kon	ventio	onell	er	Wa	r.m	eω	ide	rst	an	d i	n	der	• S	äu	le	2		R	th	J	A_2*	3	•		2	3.2	9 1	nK/b	1
the	rmisch	ner W	id	ers	ta	nd	de	r u	ne	ndl	ic	her	n S	äu	le	1		R_	t h	J	A_1				1	7.5	5 1	nK/V	4
the	rmisch	her W	id	ers	ta	nd	de	r u	ne	ndl	ic	her	n S	äu	1e	2		R_	th.		A_2	1	•		2	3.3	3 1	nK/V	ł.
2:												15.	. 98		17	. 0	2 9												
3:										15	.9	9	1 2	7.	39 82		17.	15											
4:								1	5.	99		17.	. 40		17	.5	2	17	.1	6									
5:							15	. 99		17	.4	8	1	7.	53		17.	54		17	.16								
6:					1	5.	99	1	7.	40	•••	17	. 53	3.	17	.5	5	17	.5	4	17	. 14	5						
7.					2	1.	47	2	3.	12		23	. 28	-	23	• 2	17	23	. 0	8	20	. 31	5	10					
· · ·				21.	47		23	. 12	2	23	.2	3	2	3.	30	2120	23.	. 27		23	. 00	- 2	20	. 38					
8:		15	.9	9	1	7.	40	1	7.	53		17	. 55	2	17	.5	5	17	.5	5	17	. 5	4	1	7.	16			
		21	.4	7	2	з.	12	2	3.	28		23	. 30		23	.3	0	23	.2	7	23	. 01	а	2	0.	38			
9:	15	5.99		17.	. 40		17	. 53	1	17	.5	5	1	7.	55		17.	.55		17	.55		17	. 54		17	. 1	6	
	21	1.47		23.	12	_	23	. 28	<u>.</u>	23	. 3	0	2	з.	30		23.	. 30		23	. 27		23	.00	١.	20	. 31	8	
10:	15.99	17	. 4	9	1	2.	53	1	7.	55		17	. 55		17	.5	5	17	. 5	5	17	. 5	5	1	2.	54	-	17.	16
	21.47	23	• 1	4	4	٥.	20	.4	3.	30		23	. 30		23	. 3	0	23	• 2	0	63	• 4	6	6	5.	90		20	20

Bemerkung: Das thermische Verhalten der zweiten Säule wurde als identisch mit dem der ersten Säule angenommen. Die unterschiedlichen Kühlmittelrichtungen in beiden Säulen wurden lediglich durch Vertauschung von R_12 mit R_21 berücksichtigt.

<u>Bild 3-47:</u> Verhältnisse bei einer gleichsinnigen thermischen Reihenschaltung zweier Säulen

3.3.3.2 Gegensinnige thermische Reihenschaltung

Vorteil der gegensinnigen thermischen Reihenschaltung zweier Säulen ist die gleichmäßigere Temperaturverteilung. Trotz dieses Vorteils wird man diese Variante nur bei kritischen Auslegungen anwenden, da der konstruktive Aufwand erheblich höher ist. Um den sich ergebenden Vorteil abzuschätzen, wurde die folgende Rechnung durchgeführt.

Es sind acht Varianten der Gestaltung des Kühlmittelkreislaufes, bei Annahme gleicher Kühldosen und gleicher Thyristoren, denkbar. Für den Fall der unendlich langen, symmetrischen Doppelsäule werden alle diese Fälle mit Bild 3-48 behandelt. Man erhält hier ein lineares Gleichungssystem mit den vier unbekannten Sperrschichttemperaturen, das hier aber nicht einzeln aufgeschrieben werden soll, zumal die Ergebnisse sehr lang und unübersichtlich sind. Zwei, die eigentlich interessanten Sonderfälle, sind in Bild 3-49 dargestellt. Hier sind die in einem Strang liegenden Sperrschichttemperaturen gleich, das zu lösende Gleichungssystem hat nur noch zwei Unbekannte, ist aber auch noch sehr unübersichtlich.

Einfacher erzielt man eine Lösung durch Verwendung des tridiagonalen Gleichungssystems für die einfache Säule aus Abschnitt 3.3.3.2 mit Hilfe der Fixpunktiteration [25], hier angewandt auf ein lineares Gleichungssystem. Zu diesem Zweck gibt man die Kühlmittelzulauftemperaturen der Säule 1 abwechselnd mit 0 und mit $R_W \cdot P_J$ vor. Die O-te Kühldose beginnt mit 0, und hat die Säule eine gerade Zahl von Kühldosen, dann wird bei der letzten Kühldose die Kühlmitteleinlauftemperatur mit $\frac{1}{2} R_W \cdot P_J$ vorgegeben. Dann berechnet man die Sperrschichttemperaturen und die Kühlmittelauslauftemperatur als Eingangsgröße zur Berechnung der Verhältnisse in der 2. Säule. Deren Ausflußtemperaturen werden wiederum zur wiederholten Berechnung der Verhältnisse der 1. Säule benutzt. Dieses Ver-

<u>Bild 3-48:</u> Ersatzschaltbild der unendlich langen, symmetrischen Doppelsäule bei gegensinniger thermischer Reihenschaltung der Kühlkreisläufe

a) Kühlmittelzufluß auf der Kathodenseite

b) Kühlmittelzufluß auf der Anodenseite

Bild 3-49: Sonderfälle von Bild 3-48 mit gleichen Strangtemperaturen

fahren wird solange fortgesetzt, bis die Abweichungen der umgesetzten Leistungen ein bestimmtes Maß nicht überschreiten.

Würde man direkt ein Gleichungssystem für eine Doppelsäule mit gegensinniger thermischer Reihenschaltung endlicher Länge aufstellen, so ginge der Vorteil der Tridiagonalität des Gleichungssystems nach Gl. (33-21) verloren. Bestenfalls könnte man durch geschicktes Sortieren der unbekannten Temperaturen eine fünfzeilige Bandmatrix erhalten. Mit Hilfe der oben erwähnten Fixpunktiteration kommt man aber schneller zu einem Ergebnis.

Bild 3-50 zeigt die mit der Fixpunktiteration erzielten Ergebnisse. Während bei einem Kühlmittelzufluß auf der Anodenseite (das kalte Wasser korrespondiert mit den niedrigeren Wärmewiderständen) die Sperrschichttemperaturen in den Strängen stark differieren (Rechnung 2), ergeben sich bei einem Kühlmittelzufluß auf der Kathodenseite wesentlich ausgeglichenere Verhältnisse (Rechnung 1). Gegenüber der gleichsinnigen thermischen Reihenschaltung können hier die Ventile mit einer etwa um 10 % erhöhten Verlustleistung betrieben werden. Bei der ungünstigeren Variante (Rechnung 2) liegt dieser Gewinn bei nur etwa 5 %.

3.3.4 Thermische Reihenschaltung der Kühlelemente

Prinzipiell besteht auch die Möglichkeit, alle Kühldosen einer Säule thermisch in Reihe zu schalten [8]. Dies ist nur bei einem großen Kühlmittelvolumenstrom sinnvoll. Mit Hilfe der Fixpunktiteration kann auch dieses Problem mit Gl. (33-31) gelöst werden, indem man zusätzlich

 $T_{A,i+1} = T_{B,i}$

(33 - 37)

ansetzt. Auch sind die Sperrschichttemperaturen bei Luftkühlung von Säulen aus Halbleiterbauelementen und Luftkühlkörpern [26] mit einem solchen Ansatz bestimmbar.

Berlin, den 21. Dezember 1984

Stationärer Wärmewiderstand in Säulen aus Halbleiterbauelementen und Kühldosen

	Säule - Kassetten 41/42 - Variante 04 - 20. Februar 1984 - Sz
File-Name:	2_51c
Kühldose:	AEG 029.076 404 (100 mm) Nr. 2 Messung 26.01.84
Kühlmittel:	Wasser mit einem Volumenstrom von V punkt = 150 1/h
Aufbau:	Kathode <===> Seite 1 Anode <===> Seite 2
	Kühlmittel-Richtung von Seite 1 zu Seite 2
Bauelement:	Thyristor T 2200 N 3600 4400 (AEG-Telefunken)
Model1:	"junction-case" (J-C)

Rechnung 1: Kühlmittelzufluß auf der Kathodenseite beider Säulen

Wärmewiderstand im Strang 1 der unendl. 1g. Säule R_th_JA 1 = 20.24 mK/WWärmewiderstand im Strang 2 der unendl. 1g. Säule R_th_JA 2 = 21.66 mK/W

2:				19	.48 19	.25		
				18	.95 17.	.77		
3:				19.64	19.83	19.16		
				19.16	19.83	19.64		
4:			19	.66 19	.92 21	.44 19.	57	
			19	.19 20	.12 21.	.40 17.	86	
5:			19.67	19.92	21.60	20.15	19.19	
100			19.19	20.15	21.60	19.92	19.67	
6:		1	9.67 19	.92 21	.63 20.	.23 21.	47 19.57	
-		1	9.19 20	.15 21	.63 28.	.21 21.	42 17.86	
7:		19.67	19.92	21.63	20.24	21.63	28.15 1	9.19
400		19.19	20.15	21.63	20.24	21.63	19.92 1	9.67
8:	19	9.67 1	9.92 21	.63 20	.24 21.	.66 20.	23 21.47	19.57
1222	19	9.19 2	0.15 21	.64 20	.24 21.	.66 20.	21 21.42	17.86
9:	19.67	19.92	21.63	20.24	21.66	28.24	21.64 2	8.15 19.19
	19.19	20.15	21.64	20.24	21.66	20.24	21.63 1	9.92 19.67
10:19	9.67 19	9.92 2	1.63 20	.24 21	.66 20.	.24 21.	66 20.23	21.47 19.57
19	9.19 20	3.15 2	1.64 20	.24 21	.66 20.	.24 21.	66 20.21	21.42 17.86

<u>Rechnung 2:</u> Kühlmittelzufluß auf der Anodenseite beider Säulen Wärmewiderstand im Strang 1 der unendl. 1g. Säule R_th_JA|1 = 22.24 mK/W Wärmewiderstand im Strang 2 der unendl. 1g. Säule R_th_JA|2 = 19.45 mK/W

2:								18	. 58	20	. 05							
							10100	17	.69	19	. 02	-						
3:							18	.82	21.	87	17	.79						
4:						18	.83	22	.01	19	.18	20	.25					
						17	.79	22	. 84	19	.33	19	. 19					
5:					18	.84	22	.04	19.	. 42	22	.07	17	.79				
20				12.22	17	.79	22	.07	19.	. 42	22	. 04	18	.84				
6:				18.	84	22	.04	19.	. 44	22	.21	19	. 19	20.	26			
				17.	79	22	.07	19	.43	22	.21	19	.35	19.	19			
7:			18.	. 84	22	. 04	19	.44	22.	.24	19	. 43	22	. 07	17	.79		
			17	.79	22	.07	19	.43	22.	.24	19	. 44	22	. 84	18	.84		
8:		18.	84	22.	04	19	.44	22.	.24	19	.44	22	.22	19.	19	20	.26	
		17.	79	22.	07	19	.43	22	.24	19	.45	22	.21	19.	35	19	.19	
9:	18.	84	22	. 04	19	. 44	22	.24	19.	45	22	.24	19	.43	22	. 07	17.	79
	17.	.79	22	. 07	19	.43	22	.24	19.	.45	22	.24	19	. 44	22	.04	18.	.84
10:1	8.84	22.	04	19.	44	22	.24	19	. 45	22	.24	19	. 44	22.	22	19	. 19	20.26
1	7.79	22.	87	19.	43	22	.24	19	.45	22	.24	19	. 45	22.	21	19	.35	19.19

Bemerkung: Das thermische Verhalten der Kühldosen mit verdrehter Wasserrichtung wurde nur durch die vertauschten Durchgriffe R_12 und R_21 berücksichtigt. R_11 und R_22 wurden unverändert übernommen.

<u>Bild 3-50:</u> Verhältnisse bei einer gegensinnigen thermischen Reihenschaltung zweier Säulen

3. · · · ·

4 Dynamisches thermisches Verhalten

Zur Beschreibung des dynamischen thermischen Verhaltens hat sich der transiente Wärmewiderstand bewährt. Er wird in [3, 4] durch

"Quotient aus der am Ende einer bestimmten Zeitspanne erreichten Änderung der Differenz zwischen der inneren Ersatztemperatur und der Temperatur eines festgelegten äußeren Bezugspunktes einerseits und einer zu Beginn dieser Zeitspanne auftretenden sprungförmigen Verlustleistungsänderung (die diese Temperaturänderung verursacht) andererseits. Unmittelbar vor dieser Zeitspanne muß die Temperaturverteilung zeitlich konstant gewesen sein."

definiert.

4.1 Verhalten der Halbleiterbauelemente

Eine Beschreibung des dynamischen Verhaltens der Halbleiterbauelemente muß mit den stationären Ergebnissen korrelieren. Dies kann konsequenterweise nur durch eine getrennte Betrachtung der Anoden- und Kathodenseite gewährleistet werden. Man benötigt also zu den Gleichungen (31-1) bzw. (31-2) äquivalente Beziehungen für den dynamischen Fall.

4.1.1 Das Gleichungssystem

Es ist die Fourier'sche Differentialgleichung der Wärmeleitung

div (λ grad T) = $\frac{\lambda}{a} = \frac{\partial T}{\partial t}$ - p, $x \in G$, t > 0 (41-1)

für den in den Bildern 2-4 und 3-1 dargestellten Aufbau zu lösen. Dabei ist T (x, t) ein dreidimensionales, von der Zeit abhängiges Temperaturfeld und p (x,t, T) die entsprechende Wärmequelldichte in diesem Gebiet.

4.1.1.1 Vereinfachung des Gleichungssystems

Abgesehen von der Verästelung der Gatestruktur und des Schlitzes zur Herausführung des Gateanschlusses bei Thyristoren sind die hier betrachteten Halbleiterbauelemente Rotationskörper, so daß in Zylinderkoordinaten die Gleichung

$$\frac{\partial \mathbf{I}}{\partial \varphi} = \mathbf{0}$$

(41-2)

Sieht man von den verschiedenen Durchmessern der einzelnen Scheiben, die eine Wärmestromeinschnürung hervorrufen, ab, so kann man sicherlich mit guter Näherung die radialen Wärmeflüsse gleichfalls vernachlässigen, da die an den wärmeleitenden Scheiben anliegenden Teile aus schlechten Wärmeleitern (Silikongummi, Teflon, Keramik) bestehen. Es fließt kein nennenswerter Anteil der Wärme radial (über das Gehäuse) ab, d. h. man kann in Zylinderkoordinaten

 $\frac{\partial T}{\partial r} = 0$ (41-3) ansetzen. In Abschnitt 4.1.2.3 wird noch einmal auf die

Wärmestromeinschnürung eingegangen.

Bei Thyristoren wird allerdings noch ein radialer Wärmefluß durch die endliche Ausbreitungsgeschwindigkeit des Plasmas nach dem Zünden hervorgerufen. Dieser Anteil, der örtliche Überhitzungen im Siliziumkristall in Gatenähe hervorruft, ist allerdings nur sehr schwer zu erfassen, insbesondere auch deshalb, weil die Ausbreitung von vielen äußeren Randbedingungen abhängt und sie selbst schon schwierig vorausberechenbar ist. Zudem wird dieser Einfluß bei den üblichen Meßverfahren zur Ermittlung des transienten Wärmewiderstandes nicht erfaßt [17], es wird ja auch grundsätzlich nur der Zeitverlauf <u>einer</u> "virtuellen" Sperrschichttemperatur (nach DIN 47786: inneren Ersatztemperatur) ermittelt. Örtliche Überhitzungen, hervorgerufen durch Zündausbreitung, treten bei den Messungen auch nicht auf, da das Halbleiterbauelement i. allg. stationär vorgeheizt wird und nur die Abkühlungskurven ausgewertet werden.

Von der zu lösenden Wärmeleitungsgleichung (41–1) bleibt bei den Annahmen λ , a = const. und p \neq p (T) die eindimensionale, lineare, parabolische, partielle Differentialgleichung

$$\frac{\partial T(x,t)}{\partial t} = a \cdot \frac{\partial^2 T(x,t)}{\partial x^2} + \frac{a}{\lambda} \cdot p (x,t), x \in G, t > 0$$
(41-4)
übrig.

4.1.1.2 Anfangs-, Rand- und Übergangsbedingungen

Hier liegt kein homogener zu untersuchender Körper vor, sondern eine Anordnung mehrerer übereinanderliegender Schichten mit teilweise unterschiedlichen thermischen Eigenschaften. Solche Anordnungen sind bei einfachen Annahmen für p = p(x, t) einer analytischen Berechnung zugänglich (in der Literatur, z. B. [17] und [27], ausführlich beschrieben). Bei diesen Rechenverfahren werden aber, und das ist für den hier vorliegenden Anwendungsfall ein großer Mangel, Übergangswiderstände zwischen den Schichten nicht berücksichtigt. Diese Übergangswiderstände stellen, wie in Abschnitt 3.1.5.4 nachgewiesen wurde, einen erheblichen Anteil am Gesamtwiderstand und können darum nicht einfach vernachlässigt werden.

Für die Temperaturen an zwei aneinanderliegenden Ebenen gilt die Beziehung

 $\dot{q}_{\alpha} = -\lambda_1 \left(\frac{\partial T}{\partial \pi}\right)_1 = \lambda_2 \left(\frac{\partial T}{\partial \pi}\right)_2 = \alpha \left(T_1 - T_2\right).$ (41-5)

Die Ableitung in Normalenrichtung $\frac{\partial T}{\partial n}$ kann beim eindimensionalen Fall durch $\frac{\partial T}{\partial x}$ bzw. - $\frac{\partial T}{\partial x}$ ersetzt werden.

In dem hier zu untersuchenden Fall sind aber noch weitere Unstetigkeitsstellen vorhanden. An den p-n-Übergängen und an den Metall-Halbleiterübergängen im oder am aktiven Teil des Halbleiterbauelementes treten (näherungsweise) Sprünge in der Wärmestromdichte auf, d. h. die Ladungsträger benötigen zum Überwinden dieser Übergänge Energie, die sie ihrer Umgebung entziehen (siehe Abschnitt 3.1.6). Hier ergibt nach Bild 4-1 aus $\dot{q}_2 = \dot{q}_0 + \dot{q}_1$

$$- \lambda_1 \left(\frac{\partial T}{\partial x}\right) + \dot{q}_0 = - \lambda_2 \left(\frac{\partial T}{\partial x}\right) . \qquad (41-6)$$

Bild 4-1: Berücksichtigung von Sprüngen in der Wärmestromdichte

Tritt jetzt solch ein Metall-Halbleiterübergang zusammen mit einem Kontaktwiderstand auf (hier im Übergang Siliziumkristall mit der Kathoden-Kupfer-Scheibe), so muß die Beziehung nach Gl. (41-5) modifiziert werden. Nach Bild 4-2 gilt dann

$$\dot{q}_{\alpha} = -\lambda_{1} \left(\frac{\partial T}{\partial \pi}\right)_{1} + \dot{q}_{1} = \lambda_{2} \left(\frac{\partial T}{\partial \pi}\right)_{2} - \dot{q}_{2} = \alpha \left(T_{1} - T_{2}\right). \quad (41-7)$$

Zur Lösung der Gl. (41-4) gehören noch Anfangs- und Randbedingungen. Als Anfangsbedingung wird

$$T(x, t) = T_0 = 0, x \in G, t = 0$$
 (41-8)

gewählt. Die Randbedingungen werden als homogen

T(x, t) = 0, $x \in \partial G$ (41-9)

angenommen, d. h. es wird mit idealer Kühlung am Gehäuse des Halbleiterbauelementes ohne Berücksichtigung der Übergangswiderstände zur Kühleinrichtung erechnet (Modell "junction-case").

4.1.1.3 Grenzen der Gültigkeit des Gleichungssystems

Abschließend stellt sich noch die Frage, ob die am Anfang dieses Abschnittes getroffenen Voraussetzungen zur Umformung von Gl. (41–1) in Gl. (41–4) λ , a = const. und p \neq p (T) überhaupt richtig sind. [13] kann man entnehmen, daß λ , a = const. für fast alle in den Halbleiterbauelementen vorkommenden Materialien im Temperaturbereich von 20 °C bis 300 °C näherungsweise erfüllt ist. p ist in den Materialien auch nahezu null, weil diese Stoffe elektrisch gut leitfähig sind^{*)}.

^{*)} Bei Wärmequelldichte in der Wolframträgerscheibe, dem Stoff mit der niedrigsten elektrischen Leitfähigkeit im Thyristor T 2200 N 3600 ... 4400 ist mit p $\approx 25 \cdot 10^{-6}$ W/mm³ etwa 40000 bis 400000 mal kleiner als die Wärmequelldichte im Siliziumkristall entsprechend Bild 3-18.

Eine Ausnahme macht das Silizium. Hier sind λ und a stark temperaturabhängig [13],und p \neq p (T) ist auch nicht erfüllt. Eine Zurückführung der Gl. (41–1) auf den eindimensionalen Fall liefert dann

$$\frac{\partial T}{\partial t} = \frac{a}{\lambda} (x, T) \cdot \left[\frac{\partial}{\partial x} (\lambda (x, T) \cdot \frac{\partial T}{\partial x}) + p (x, t, T) \right], x \in G, t > 0.$$
(41-10)

Im Unterschied zu Gl. (41-4) ist diese quasilinear. Sind λ und a unabhängig von x (und damit von der Dotierung und sonstigen Behandlung) kann man Gl. (41-10) zu

$$\frac{\partial T}{\partial t} = a (T) \cdot \frac{\partial^2 T}{\partial x^2} + \frac{p(x, t, T)}{c(T) \cdot \rho(T)}$$
(41-11)

vereinfachen, denn für die Temperaturleitfähigkeit a gilt bekanntlich

$$a = \frac{\lambda}{c \cdot \rho} \quad . \tag{41-12}$$

Bei der Lösung der Gl. (41-11) ergibt sich keine Proportionalität zwischen zugeführter Leistungsdichte p und Temperatur T, und es ist fraglich, ob es sinnvoll ist, unter diesen Umständen, einen transienten Wärmewiderstand zu definieren. Wie in den Bildern 3-19 und 4-4 bis 4-6 sichtbar wird, ist aber der Temperaturabfall im Siliziumkristall selbst relativ klein, so daß dieser nichtlineare Anteil eine zu vernachlässigende Rolle spielt. Im Bereich kurzer Zeiten gilt dies nicht. Hier hilft eine andere Erscheinung weiter. Nimmt man eine gleichmäßige Leistungsentwicklung im Kristall an, kann man die Kristalltemperatur im Bereich kurzer Zeiten als unabhängig von x ansetzen und vermuten, daß dann noch keine Wärme an die umliegenden Schichten abgeführt wird. Dann ist $\frac{\partial^2 T}{\partial x^2} \approx 0$, und die Gl. (41-11) vereinfacht sich

weiter zu

$$\frac{dT}{dt} \approx \frac{p(t, T)}{c(T) \cdot \rho(T)} . \qquad (41-13)$$

Da aber c und ρ nicht übermäßig stark von der Temperatur abhängen [13] , ist also auch in diesem Bereich eine Linearität zwischen Temperatur und Leistung, zumindestens näherungsweise, gegeben. Dies erklärt auch die guten Erfahrungen, die im Laufe der Zeit mit der Anwendung des transienten Wärmewiderstandes zur Auslegung von Stromrichtern gemacht wurden.

Die Gl. (41-11) läßt sich natürlich sogar auf relativ einfache Weise numerisch lösen (z. B. [28]). Die Ergebnisse sind aber kaum allgemein verwendbar, da sehr viele Parameter in die Lösung eingehen (Ausgangstemperatur, Stromverlauf, Vorbelastung u. a.).

4.1.2 Lösung des Gleichungssystems

Zur Lösung des Gleichungssystems (Gln. (41-4) - (41-9)) sind in der Literatur viele Möglichkeiten beschrieben. Analytische Methoden (z. B. [17] und [27]) und gemischt analytisch-numerische Methoden [29] werden hier nicht weiter in Betracht gezogen, da auch der Einfluß des Leistungsverlaufes im Siliziumkristall berücksichtigt werden soll und dies praktisch nur numerisch möglich ist.

4.1.2.1 Anwendung der Linienmethode

Diskretisiert man Gl. (41-4) in Ortsrichtung

$$\frac{dT(x_i)}{dt} = a(x_i) \frac{T(x_i+h)-2T(x_i)+T(x_i-h)}{h^2} + \frac{a}{\lambda}(x_i) \cdot p(x_i)+0(h^2),$$
(41-14)

so erhält man ein System von gewöhnlichen Differentialgleichungen, dessen Lösung eine Näherungslösung von Gl. (41-4) ist.

Charakteristisch für dieses Verfahren, das im Detail in [30] beschrieben ist, ist die zeitkontinuierliche Lösung an diskreten Punkten x_i . Es ist äquivalent zu dem von Clemens Louis Beuken entwickelten thermischen Modell aus Widerständen und Kapazitäten in Kettenbruchschaltung [31]. Für die thermische Ersatzschaltung nach Bild 4-3 gilt die Differentialgleichung

<u>Bild 4-3:</u> Ausschnitt aus einem thermischen Modell nach Beuken, erweitert um Stromquellen zur Simulation der Wärmequelldichte

$$\frac{du_{i}}{dt} = \frac{1}{C_{i}} \left[\frac{u_{i-1} - u_{i}}{R_{i-1}} - \frac{u_{i+1} - u_{i}}{R_{i}} + i_{i} \right]$$
(41-15)
und speziell für $R_{i} = R_{i-1}$
$$\frac{du_{i}}{dt} = \frac{1}{C_{i} \cdot R_{i}} (u_{i-1} - 2u_{i} + u_{i+1}) + \frac{i_{i}}{C_{i}},$$
(41-16)

also es ergibt sich ein zur Gl. (41-14) äquivalentes Differentialgleichungssystem. Dieses gewöhnliche Differentialgleichungssystem löste Beuken analog durch den Aufbau einer elektrischen Ersatzschaltung. Flexibler ist eine numerische Lösung dieses im allgemeinen sehr steifen Systems. Ein geeignetes und schnelles Lösungsverfahren ist die automatisch durchgeführte Laplace-Transformation [58].

Will man jetzt aber in Ortsrichtung eng diskretisieren, um eine große Genauigkeit zu erzielen, so erhält man eine Ersatzschaltung mit vielen Kondensatoren C_i. Übersteigt die Anzahl der Kondensatoren die Zahl von ca. 25...30, so macht die Rücktransformation in den Zeitbereich große Schwierigkeiten. Es sind dann nämlich Nullstellen eines Polynoms mehr als 25...30sten Grades zu bestimmen. Dies ist ohne Verwendung spezieller Algorithmen mit üblichen Computern nicht möglich. Andererseits kann man das Gleichungssystem auch iterativ lösen, im allgemeinen mit speziellen Verfahren zur Lösung steifer Differential-Gleichungssysteme (implizite Verfahren). Dann ist es aber einfacher, die Gl. (41-4) auch noch in Zeitrichtung zu diskretisieren und ein Differenzenverfahren anzuwenden.

4.1.2.2 Anwendung des Differenzenverfahrens

Zur Berechnung der Ableitung in Zeitrichtung lassen sich der vorwärts oder der rückwärts genommene sowie der zentrale Differenzenquotient verwenden. Die Wahl der verschiedenen Arten hat ganz entscheidenden Einfluß auf die Stabilität und die Genauigkeit der Lösung und auf das anzuwendende Lösungsverfahren. Am günstigsten ist die Verwendung des zentralen Differenzenquotienten, des impliziten Verfahrens nach Crank-Nicolson [32] . Der globale Abbruchfehler ist dann 0 $(h^2 + k^2)$ und entsprechende Gleichungen sind z. B. in [30] zu finden. Zusätzlich sind den Gl. (41-6) und (41-7) entsprechende Differenzengleichungen der Ordnung O (h²) zu bilden. Dies geschieht durch die Einführung von jeweils zwei Hilfspunkten, die benötigt werden, um den zentralen Differenzenquotienten an den Unstetigkeitsstellen bilden zu können. Die beiden Hilfspunkte werden mit Hilfe der Diskretisierungsgleichung des Crank-Nicolson-Verfahrens und mit Hilfe der Stetigkeitsbedingungen wieder eleminiert. Man erhält dann eine bzw. zwei Differenzengleichungen, die vom Schema genau in das für jeden Zeitschritt aufzustellende tridiagonale lineare Gleichungssystem passen.

4.1.2.3 Vergleich der Ergebnisse

Die beiden beschriebenen Lösungsverfahren wurden auf einem Rechner implementiert und mit den Daten des Thyristors T 2200 N 3600...4400 (AEG-Telefunken) nach Tafel 3-5 gerechnet. Die Bilder 4-4 bis 4-6 zeigen die mit dem Differenzenverfahren erzielten Ergebnisse mit den aus Abschnitt 3.1.6 entnommenen Annahmen für die Leistungsverläufe im Siliziumkristall. Naturgemäß konnte bei dem hier vorliegenden eindimensionalen Modell der Einfluß der Wärmestromeinschnürung nicht berücksichtigt werden. Auch wurde der Einfluß der Oberflächen auf die Wärmekapazitäten und die Materialwiderstände nicht einkalkuliert. Die α -Werte wurden hier soweit verringert, daß sich der stationäre thermische Widerstand bei zentraler Leistungseinspeisung in der Mitte des Kristalls auf den meßtechnisch ermittelten Höchstwert (des schlechtesten Thyristors) einstellt.

Die Bilder 4-4 bis 4-6 sind Momentaufnahmen der bezogenen Temperaturverläufe im Innern der Thyristoren über der maßstäblich dargestellten Dicke mit der Zeit als Parameter. Deutlich ist in allen Bildern, die sich – ausgehend vom Siliziumkristall – ausbreitende Wärmeströmung zu erkennen. Erst ab etwa 0,1 s erreicht diese Strömung die Anodenund die Kathodenscheibe (Bezeichnung nach Bild 3-1, S. 30) und nach etwa 0,5 s die Außenflächen des Thyristors. Nach ca. 8 s sind die Temperaturverläufe stationär, u. a. erkennbar an den linear abfallenden Kennlinien in den Materialien. Der stationäre Temperaturverlauf im Siliziumkristall selbst ist vergrößert im Bild 3-19 dargestellt. Die Sprünge in den Temperaturverläufen sind auf die hier berücksichtigten Kontaktwiderstände zwischen den einzelnen Scheiben zurückzuführen.

Während zwischen den Bildern 4-5 und 4-6 kaum Unterschiede zu erkennen sind, zeigt sich bei der zentralen Leistungseinspeisung in der Mitte des Siliziumkristalls zu allen Zeitpunkten eine deutliche Temperaturspitze, deren Ursache in der extremen Voraussetzung liegt. Als Folge liegen die aus diesem Bild abgeleiteten transienten Wärmewiderstände um einen etwa konstanten Betrag (für t > 1 ms) über den aus den Bildern 4-5 und 4-6 abgeleiteten Wärmewiderständen. Dabei wurde der Maximalwert der Temperatur im Siliziumkristall der Zeichnung zugrunde gelegt.

In Bild 4-8 werden die Ergebnisse der Lösung mit der Linienmethode (RC-Ersatzschaltbild nach Beuken, dimensioniert nach Abschnitt 4.1.3.3) mit dem Bild 4-7 verglichen. Man sieht die doch recht gute Übereinstimmung mit der Lösung der partiellen Differentialgleichung nach dem Crank-Nicolson-Verfahren.

Größere Abweichungen treten nur im Bereich kurzer Zeiten auf (bis ca. 10 ms), wobei hier die Lösung mit gleichmäßiger Leistungsverteilung sicherlich die realistischsten Werte liefert. Allerdings muß hier noch der Einfluß der Plasmaausbreitung im Thyristor Berücksichtigung finden, der partielle Temperaturerhöhungen hervorruft (die Ausbreitungszeit bei T 2200 N 3600...4400 beträgt ca. 3 ms).

Beim RC-Modell hat man, obwohl es auch eindimensional ist, die Möglichkeit, den Einfluß der Wärmestromausbreitung

Lösung der eindimensionalen Warmeleitungsgleichung bei Thyristoren und Dioden in Scheibenzellenbauweise

Par_TH - Variante 04 - Kassetten 55/56 - 31. März 1984 - Sz

Berechnung mit zentraler Leistungseinspeisung in der Mitte des Silizium-Kristalls:

Bild 4-4: Temperaturverlaufe im Thoristor bei einer zentralen Leistungseinspeisung (Parameter: Zeit t)

133

Lösung der eindimensionalen Wärmeleitungsgleichung bei Thyristoren und Dioden in Scheibenzellenbauweise

Par_TH - Variante 04 - Kassetten 55/56 - 31. März 1984 - Sz

Berechnung mit gleichmäßiger Leistungsentwicklung im Silizium-Kristall:

<u>Bild 4-5:</u> Temperaturverläufe im Thyristor bei gleichmaßiger Leistungzentwicklung (Parameter: Zeit t)

Lösung der eindimensionalen Wärmeleitungsgleichung bei Thyristoren und Dioden in Scheibenzellenbauweise

Par_TH - Variante 04 - Kassetten 55/56 - 31. März 1984 - Sz

Berechnung mit einem Leistungsverlauf nach Michael S. Adler [18]:

<u>Bild 4-6:</u> Temperaturverläufe im Thyristor bei einer Leistungsentwicklung nach Bild 3-18 (Parameter: Zeit t)

135

Lösung der eindimensionalen Wärmeleitungsgleichung bei Thuristoren und Dioden in Scheibenzellenbauweise

Par_TH - Variante 04 - Kassetten 55/56 - 31. März 1984 - Sz

Bauelement: Aufbau: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) Modell "junction-case" [J-C]

Graphische Darstellung der transienten Wärmewiderstände:

<u>Bild 4-7:</u> Vergleich der sich ergebenden tränsienten Wärmewiderstände bei verschiedenen Arten der Leistungseinspeisung

Lösung der eindimensionalen Wärmeleitungsgleichung bei Thyristoren und Dioden in Scheibenzellenbauweise

Par_TH - Variante 04 - Kassetten 55/56 - 31. März 1984 - Sz

Bauelement:	Thyristor T 2200 N 3600 4400 (REG-Telefunken)
Aufbau:	Modell "junction-case" [J-C]

Graphische Darstellung der transienten Wärmewiderstände:

durch höhere Materialwiderstände zu berücksichtigen (Abschnitt 3.1.5.3). Insoweit sind die Ergebnisse im mittleren Zeitbereich (10 ms ... 1 s) mit dem Beuken-Modell sogar realistischer als mit der Lösung nach Crank-Nicolson.

4.1.3 Thermisches Ersatzschaltbild

Die Anwendung der Linienmethode zur Lösung der eindimensionalen Wärmeleitungsgleichung führt auf ein thermisches Ersatzschaltbild aus Wärmewiderständen und Wärmekapazitäten.

4.1.3.1 Aufbau des Ersatzschaltbildes

Für die in Bild 3-1 dargestellten Hochspannungs-Thyristoren hat sich das in Bild 4-9 gezeigte thermische Ersatzschaltbild bewährt. Bei der Dimensionierung wird nach folgenden Prinzipien vorgegangen:

- Den "dicken" Scheiben (hier die Scheiben 1, 2, 6 und 8) werden drei thermische Kapazitäten und zwei thermische Widerstände zugeordnet (Bild 4-10). Die außen liegenden Kondensatoren erhalten je ein Viertel und der mittlere Kondensator die Hälfte der Wärmekapazität der gesamten Scheibe. Der thermische Widerstand wird je zur Hälfte auf die beiden Widerstände aufgeteilt. Hat die Scheibe, aus der der Wärmestrom zufließt, einen kleineren Durchmesser als die betrachtete Scheibe, so wird der sich aus der Einschnürung des Wärmestromes ergebende zusätzliche Wärmewiderstand ausschließlich R₁ zugeordnet. Hat die den Wärmestrom aufnehmende Scheibe einen kleineren Durchmesser, wird der entsprechende Anteil ausschließlich R₂ zugeschlagen.

- Den "dünnen" Scheiben (hier die Scheiben 3, 4 und 7) werden eine thermische Kapazität und ebenfalls zwei thermische Widerstände zugeordnet (Bild 4-11). Die Widerstände werden nach den gleichen Grundsätzen wie bei "dicken" Scheiben bemessen. Die Wärmekapazität wird aber als in einem Kondensator C konzentriert angenommen.
- Die Wärmekapazität des Siliziumkristalls wird, wie bei den dicken Scheiben, in drei Kondensatoren aufgeteilt, wobei an der Wärmequelle die halbe und an den Enden je ein Viertel der Kapazität angesetzt ist. Der thermische Widerstand wird je zur Hälfte der Anoden- und der Kathodenseite zugeschlagen [1, 9]. Die Wärmestromeinschnürung wird durch eine Vergrößerung des Widerstandes R, berücksichtigt (Bild 4-12).
- Zwischen den durch Druckkontakt verbundenen Scheiben wird ein (kapazitätsloser) thermischer Übergangswiderstand nach Abschnitt 3.1.5.5 angenommen.
- Der Übergangswiderstand zwischen dem Siliziumkristall und der anlegierten Mo- bzw. W-Trägerscheibe sei null. Der thermische Widerstand des Silumins wird dem Siliziumkristall, die thermische Kapazität dem Übergang Kristall - Trägerscheibe zugeordnet.
- Die galvanisch bzw. mechanisch aufgetragenen Oberflächenbeschichtungen der Scheiben werden bei vernachlässigten Übergangswiderständen den thermischen Widerständen und Kapazitäten der jeweiligen Seite zugeschlagen.

Die nach diesen Grundsätzen bemessenen Ersatzschaltbilder weisen eine gute Übereinstimmung zwischen Meß- und Rechenergebnissen auf (siehe Abschnitt 4.1.5.1).

Bild 4-10: Thermisches Ersatzschaltbild der "dicken" Scheiben

Bild 4-11: Thermisches Ersatzschaltbild der "dünnen" Scheiben

4.1.3.2 Berechnung der thermischen Kapazitäten

Für die thermische Kapazität eines homogenen, isotropen Körpers gilt

$$C = \rho \cdot c_{p} \cdot V . \qquad (41-17)$$

Das Volumen V der Scheiben errechnet sich mit der bekannten Gleichung

$$V = d \cdot \pi \cdot r_a^2 \tag{41-18}$$

mit den Maßen nach Bild 3-13.

Lediglich der Siliziumkristall hat eine besondere Form (Bild 4-13). Sein Volumen setzt sich aus zwei Kegelstümpfen zusammen. Mit den in Bild 4-13 angegebenen Maßen ergibt sich

$$V = \frac{\pi}{3} \left[(d_2 - d_1) \cdot (r_1^2 + r_1 r_2) + d_1 (r_3^2 + r_2 r_3) + d_2 r_2^2 \right].$$
(41-19)

Werte für die Dichte ρ und die spezifische Wärmekapa-zität c_ der Stoffe können Tafel 3-3 entnommen werden.

Bild 4-13: Aufbau der Silizium – Tablette

4.1.3.3 Berechnung für den Thyristor T 2200 N 3600...4400

Tafel 4-1 zeigt die mit Hilfe der Gln. (41-17) bis (41-19) errechneten Wärmekapazitäten des Thyristors T 2200 N 3600...4400 und Bild 4-14 zeigt die Größen der einzelnen Elemente des thermischen Ersatzschaltbildes.

#	V	М	C
1	86 400	772	295.7
2	22 930	204.8	78.54
3	1 682	17.15	4.463
4	1 643	14.68	6.060
5	6 989	16.29	13.028
5-6	226	0.53	0.422
6	52 800	1019	142.7
7	2 082	18.59	9.066
8	86 400	772	295.7
Einheit	mm 3	9	J∕K

Tafel 4-1: Wärmekapazitäten des Thyristors T 2200 N 3600 ... 4400 (in die berechneten Zahlenwerte sind noch Oberflächenbeschichtungen und mechanische Bearbeitungen eingeflossen, die nicht einzeln ausgewiesen sind)

4.1.4 Berechnung der thermischen Dreitorparameter

Aus dem in Bild 4-9 dargestellten thermischen Ersatzschaltbild lassen sich nun Gleichungen, die das dynamische thermische Verhalten der Halbleiterbauelemente beschreiben, ableiten.

4.1.4.1 Das zweiseitig gekühlte Halbleiterbauelement als Dreitor

Bei zweiseitig gekühlten Halbleiterbauelementen fließt die in der Sperrschicht entstehende Wärme über das anodenseitige und das kathodenseitige Zweitor (Vierpol) zu den Kühlelementen ab (Bild 4-15). Formal läßt sich das Verhalten dieser einzelnen Zweitore mit der in den Bildbereich der Laplace-Transformation umgesetzten Matrizengleichungen [33]

Berlin, den 02. August 1984

Thermisches Ersatzschaltbild von zweiseitig gekühlten Halbleiterbauelementen

Diss B - Variante 01 - Kassetten 57/58 - 21. Februar 1984 - Sz

Bauelement:	Thyristor	т	2200	Ν	3600	 4400	(AEG-Telefunken)

File-Name: T2200 (Bauelement)

Daten der Ersatzschaltung des Halbleiterbauelementes:

Kapazität des Eingangskondensators:

C_k0_TH(00) = 6.514 J/K

Parameter der Kettenbruchschaltung (Anodenseite):

R kA TH(01)	=	0.828	mK/W
R kA TH(02)	=	2.356	mK/W
R kA TH(03)	-	2.488	mK/W
R_kA_TH(04)	=	1.663	mK/W
R_kA_TH(05)	=	1.151	mK/W
R kA TH(06)	=	1.901	mK/W
R_kA_TH(07)	=	1.795	mK/W
Summe: R kA TH	=	12.180	mK/W

C_kA_TH(02)	=	39.347	J/K
C_kA_TH(03)	=	71.335	J/K
C kA TH(04)	=	35.668	J/K
C_kA_TH(05)	=	9.066	J/K
C_kR_TH(06)	=	73.917	J/K
C_kA_TH(07)	=	147.835	J/K
C_kA_TH(08)	=	73.918	J/K

Parameter der Kettenbruchschaltung (Kathodenseite):

R_kK_TH(01)	=	1.018	mK/W				
R_kK_TH(02)	=	5.294	mK/W	C kK TH(02)	=	3.257	J/K
R_kK_TH(03)	=	2.311	mK/W	C_kK_TH(03)	=	6.060	J/K
R_kK_TH(04)	=	1.021	mK/W	C_kK_TH(04)	=	4.463	J/K
R_kK_TH(05)	=	0.891	mK/W	C_kK_TH(05)	=	19.635	J/K
R_kK_TH(06)	=	0.891	mK/W	C_kK_TH(06)	=	39.271	J/K
R_kK_TH(07)	=	0.813	mK/W	C_kK_TH(07)	=	19.635	J/K
R_kK_TH(08)	=	2.323	mK/W	C_kK_TH(08)	=	73.917	J/K
R_kK_TH(09)	=	1.795	mK/W	C_kK_TH(09)	=	147.835	J/K
				C_kK_TH(10)	=	73.918	J/K
Summe: R_kK_TH	=	16.356	mK/W				

Daten der Übergangswiderstände zur Kühleinrichtung:

R_kA_CH	=	2.000	mK/W
R_kK_CH	=	2.000	mK/W

<u>Bild 4-14:</u> Daten des thermischen Ersatzschaltbildes des Thyristors T 2200 N 3600 ... 4400
$$\begin{pmatrix} P_{J}(A) \\ P_{G}(A) \end{pmatrix} = \begin{pmatrix} Y_{A11} & Y_{A12} \\ Y_{A21} & Y_{A22} \end{pmatrix} \cdot \begin{pmatrix} T_{J} \\ T_{G}(A) \end{pmatrix}$$

$$\begin{pmatrix} P_{J}(K) \\ P_{G}(K) \end{pmatrix} = \begin{pmatrix} Y_{K11} & Y_{K12} \\ Y_{K21} & Y_{K22} \end{pmatrix} \cdot \begin{pmatrix} T_{J} \\ T_{G}(K) \end{pmatrix}$$

$$(41-21)$$

beschreiben. Für das Verhalten des aus diesen beiden Zweitoren zusammengesetzten Dreitores (Bild 4-16) gilt prinzipiell die Gleichung

Halbleiterbauelement

<u>Bild 4-15:</u> Anordnung des anodenseitigen und des kathodenseitigen Zweitors im zweiseitig gekühlten Halbleiterbauelement

$$\begin{pmatrix} P_{J} \\ P_{G(A)} \\ P_{G(K)} \end{pmatrix} = \begin{pmatrix} Y_{11} & Y_{12} & Y_{13} \\ Y_{21} & Y_{22} & Y_{23} \\ Y_{31} & Y_{32} & Y_{33} \end{pmatrix} \cdot \begin{pmatrix} T_{J} \\ T_{G(A)} \\ T_{G(K)} \end{pmatrix}.$$
(41-22)

Mit dieser Gleichung ist eine zu Gl. (31-1) äquivalente Beziehung für den dynamischen Fall bereitgestellt. Dabei sind alle in den Gl. (41-20) bis 41-22) verwendeten Parameter komplex.

4.1.4.2 Parameter des anoden- und des kathodenseitigen Zweitors [57]

Es sind die Zweitorparameter, der im Bild 4-17 dargestellten Zweitore, aus den Bauelementedaten zu errechnen. Dabei ist zu unterscheiden, ob der Kontaktwiderstand zwischen dem Gehäuse des Halbleiterbauelementes und der Oberfläche der Kühleinrichtung dem Halbleiterbauelement oder der Kühleinrichtung zugeordnet wird. Es sind die Parameter der Gleichung

$$\begin{pmatrix} P_{J} \\ P_{G} \end{pmatrix} = \begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix} \cdot \begin{pmatrix} T_{J} \\ T_{G} \end{pmatrix}$$
(41-23)

zu errechnen.

Y₁₁(p) entspricht der Kurzschluß-Eingangsadmittanz

$$Y_{11}(p) = \frac{P_{J}(p)}{T_{J}(p)} |_{T_{G}} = 0$$
 (41-24)

Das Ergebnis wird mit Hilfe von [34, 35] durch Kettenbruchentwicklung errechnet und hat die Form einer gebrochenen rationalen Funktion

$$Y_{11}(p) = \frac{p^{n^*} \cdot b_{n^*} + p^{n^*} \cdot b_{n^*+1} \cdot b_{n^*+1} + \dots + p^2 b_2 + p \cdot b_1 + b_0}{p^{n^*} \cdot a_{n^*+1} + p^{n^*} \cdot a_{n^*+2} + \dots + p^2 a_2 + p \cdot a_1 + a_0}$$
(41-25)

a) Fall "junction-case/JC"

b) Fall, junction - heatsink / J H "

Bild 4-17: Schaltbild des anoden- und des kathodenseitigen Zweitors

mit

$$n^* = \begin{cases}
n & f \ddot{u}r & den Fall "JH" \\
n - 1 & f \ddot{u}r & den Fall "JC"
\end{cases}$$
(41-26)

Nach der Vierpoltheorie gilt für jeden linearen, passiven Vierpol die Beziehung [36]

$$Y_{12}(p) = -Y_{21}(p)$$
 (41-27)

Folglich muß nur einer der beiden Werte, entweder die negative Kurzschluß-Übertragungsadmittanz rückwärts $Y_{12}(p)$ oder die Kurzschluß-Übertragungsadmittanz vorwärts $Y_{21}(p)$, berechnet werden.

Aus Gl. (41-23) kann man

$$Y_{21}(p) = \frac{P_{G}(p)}{T_{J}(p)} | T_{G} = 0$$
(41-28)

entnehmen.

Für einen beliebigen Punkt k in der Kettenbruchschaltung gilt nach Bild 4-18

$$T_k = P_k \cdot R_k + T_{k+1}$$
 (41-29)

$$P_k = T_{k+1} \cdot p \cdot C_{k-1} + P_{k+1}$$
 (41-30)

Durch schrittweises Vorgehen ergibt sich (Fall "JH")

$$P_{n} = P_{G}$$

$$T_{n} = P_{n} \cdot R_{n} + T_{n+1}$$

$$= P_{G} \cdot R_{n}$$

$$P_{n-1} = T_{n} \cdot p \cdot C_{n} + P_{n}$$

$$= P_{G} \cdot R_{n} \cdot p \cdot C_{n} + P_{G}$$

$$= P_{G} (1 + p \cdot C_{n} \cdot R_{n})$$

$$T_{n-1} = P_{n-1} \cdot R_{n-1} + T_{n}$$

$$= P_{G} (1 + p \cdot C_{n} \cdot R_{n}) \cdot R_{n-1} + P_{G} \cdot R_{n}$$

$$= P_{G} (R_{n} + R_{n-1} + p \cdot C_{n} \cdot R_{n} \cdot R_{n-1})$$

$$P_{n-2} = T_{n-1} \cdot p \cdot C_{n-1} + P_{n-1}$$

$$(41-31)$$
usw.
Das Ergebnis erhält man in der Form

$$Y_{21}(p) = \frac{1}{p^{n-1} \cdot a_{n-1} + p^{n-2} \cdot a_{n-2} + \dots + p \cdot a_1 + a_0}$$
(41-32)

148

Y₂₂(p) ergibt sich aus

$$Y_{22}(p) = \frac{P_{G}(p)}{T_{G}(p)} |_{T_{J}} = 0$$
(41-33)

als negative Kurzschluß-Ausgangsadmittanz. Sie wird analog $Y_{11}(p)$ berechnet.

Das Ergebnis hat die Form

$$Y_{22}(p) = \frac{p^{n-1} \cdot b_{n-1} + p^{n-2} \cdot b_{n-2} + \dots + p^2 b_2 + p \cdot b_1 + b_0}{p^{n-1} \cdot a_{n-1}^* + p^{n-2} \cdot a_{n-2}^* + \dots + p^2 a_2 + p \cdot a_1 + a_0}$$
(41-34)

Die sich bei der Rechnung bei einem Zweitor ergebenden Nennerpolynome mit den Koeffizienten $a_0, a_1, \dots, a_{n-1}^*$ haben sämtlichst dieselben Nullstellen, die alle verschieden und auf der negativen reellen Achse der komplexen Ebene zu finden sind [37, 38]. Wird der Koeffizient b₀ der Zählerpolynome immer zu b₀ = 1 bzw. - 1 festgelegt, dann sind die Nennerpolynome der Y-Parameter gleich.

Im folgenden werden die Admittanzen, wenn es erforderlich ist, in der Form

$$Y(p) = -\frac{y(p)}{\pi(p)}$$
 (41-35)

dargestellt. Diese Form hat sich bei der weiteren Berechnung als zweckmäßig erwiesen.

Eine andere Form der Darstellung der Beziehungen zwischen den Temperaturen und Leistungen an einem thermischen Zweitor ist die Widerstandsform

$$\begin{pmatrix} T_{J} \\ T_{G} \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} \\ & & \\ Z_{21} & Z_{22} \end{pmatrix} \cdot \begin{pmatrix} P_{J} \\ P_{G} \end{pmatrix}$$
(41-36)

Da ein Zweitor durch seine Y-Parameter vollständig bestimmt ist, lassen sich seine Z-Parameter direkt durch mathematische Beziehungen aus den Y-Parametern errechnen (siehe Gl. (41-44, 45)). Die praktische numerische Berechnung macht aber bei langen RC-Ketten Schwierigkeiten, da hierbei Differenzen von annähernd gleich großen Zahlen berechnet werden müssen, was auf einem Rechner zu unbrauchbaren Ergebnissen führen kann. Besser, weil genauer, ist dann die Berechnung der Z-Parameter aus den Bauelementengrößen selbst.

Mit Hilfe der Beziehungen

$$Z_{11}(p) = \frac{T_{J}(p)}{P_{J}(p)} | P_{G} = 0$$
(41-37)

$$Z_{21}(p) = -Z_{12}(p) = \frac{T_{G}(p)}{P_{J}(p)} |_{P_{G}} = 0$$

$$Z_{22}(p) = \frac{T_{G}(p)}{P_{G}(p)} |_{P_{J}} = 0$$
(41-38)
(41-39)

lassen sich diese Parameter analog den Y-Parametern errechnen. Sie haben die Form

$$Z_{11}(p) = \frac{a_{n-1} \cdot p^{n-1} + a_{n-2} \cdot p^{n-2} + \dots + a_0}{b_n \cdot p^n + b_{n-1} \cdot p^{n-1} + \dots + b_1 p}$$
(41-40)

$$Z_{12}(p) = -Z_{21}(p) = \frac{-1}{b_n \cdot p^n + b_{n-1} \cdot p^{n-1} + \dots + b_2 p^2 + b_1 p} (41-41)$$

$$Z_{22}(p) = \frac{a_n \cdot p^n + a_{n-1} \cdot p^{n-1} + \dots + a_1 p + a_0}{b_n \cdot p^n + b_{n-1} \cdot p^{n-1} + \dots + b_1 p} .$$
(41-42)

150

Für die Nennerpolynome der Z-Parameter gilt das gleiche wie für die der Y-Parameter, sie weisen alle dieselben negativen reellen nichtmehrfachen Nullstellen, sowie eine Nullstelle bei Null auf. Wird hier analog zu den Y-Parametern a_0 immer zu $a_0 = 1$ bzw. - 1 gewählt, sind die Nennerpolynome gleich.

Die Darstellungsform der Impedanzen wird, falls es erforderlich ist, zu

$$Z(p) = \frac{Z(p)}{N(p)}$$
 (41-43)

gewählt.

4.1.4.3 Beziehungen zwischen den Y- und Z-Parametern

Die Y- und die Z-Parameter lassen sich nach [33] wie folgt ineinander umrechnen

$$\|Y\| = \frac{1}{\det \|Z\|} \begin{pmatrix} z_{22} & -z_{12} \\ -z_{21} & z_{11} \end{pmatrix}$$
(41-44)
$$\begin{pmatrix} Y_{22} & -Y_{12} \end{pmatrix}$$

$$\| Z \| = \frac{1}{\det \| Y \|} \begin{pmatrix} 22 & 12 \\ -Y_{21} & Y_{11} \end{pmatrix}$$
 (41-45)

Dabei gelten

det
$$||Z|| = \frac{1}{\det ||Y||} = Z_{11} \cdot Z_{22} - Z_{12} \cdot Z_{21}$$
 (41-46)

det
$$||Y|| = \frac{1}{\det ||Z||} = Y_{11} \cdot Y_{22} - Y_{12} \cdot Y_{21} \cdot (41 - 47)$$

Die numerische Berechnung der Polynome der Determinanten macht, wie bereits im letzten Abschnitt angedeutet, Schwierigkeiten. Es läßt sich zeigen, daß ganz allgemein

det
$$||Z|| = \frac{z_{11} \cdot z_{22} - z_{12} \cdot z_{21}}{N \cdot N} = \frac{z_{11} \cdot z_{22} + 1}{N^2}$$

ohne Rest durch N und

det
$$||Y|| = \frac{y_{11} \cdot y_{22} - y_{12} \cdot y_{21}}{m \cdot m} = \frac{y_{11} \cdot y_{22} + 1}{\binom{m}{41-49}}$$

ohne Rest durch m teilbar sind. Die Ausführung dieser Division ist bei längeren RC-Ketten auf dem Digitalrechner nicht durchführbar.

Durch einfache Rechnungen [57] kann man zeigen, daß

 $z_{11} \cdot z_{22} + 1 = y_{11} \cdot y_{22} + 1 = -m \cdot x$ (41-50)

ist. Damit hat man geeignete Beziehungen zur Umrechnung der Parameter beisammen.

4.1.4.4 Y-, Z- und H-Parameter des Dreitors

Zu berechnen sind die Y-Parameter nach Gl. (41-22). Grundlage seien die Y-Parameter des anoden- und des kathodenseitigen thermischen Zweitors nach Bild 4-15. Unter Zugrundelegung des Bildes 4-16 ergibt sich:

$$T_{J(A)} = T_{J(K)} = T_{J}$$
 (41-51)

$$P_J = P_{J(A)} + P_{J(K)}$$
 (41-52)

Werden die Gleichungen in die Zweitorgleichungen der Anodenund Kathodenseite eingesetzt, dann ergibt sich die Dreitorgleichung zu

$$\begin{pmatrix} P_{J} \\ P_{G(A)} \\ P_{G(K)} \end{pmatrix} = \begin{pmatrix} Y_{A11} + Y_{K11} & Y_{A12} & Y_{K12} \\ Y_{A21} & Y_{A22} & 0 \\ Y_{K21} & 0 & Y_{K22} \end{pmatrix} \cdot \begin{pmatrix} T_{J} \\ T_{G(A)} \\ T_{G(K)} \end{pmatrix}.$$

$$(41-53)$$

Dabei gelten auf Grund der Symmetriebedingungen für lineare passive Vierpole nach Gl. (41-27) auch hier

$$Y_{12}(p) = -Y_{21}(p)$$
 (41-54)

$$Y_{13}(p) = -Y_{31}(p)$$
 (41-55)

und zusätzlich

$$Y_{23}(p) = Y_{32}(p) = 0.$$
 (41-56)

Für Y₁₁(p) kann man durch Anwendung der Darstellungsform nach Gl. (41-35) ableiten

$$Y_{11}(p) = Y_{A11}(p) + Y_{K11}(p)$$
 (41-57)

$$Y_{11}(p) = \frac{y_{A11}}{m_A} + \frac{y_{K11}}{m_K}$$
(41-58)

$$Y_{11}(p) = \frac{y_{A11} \cdot m_{K} + y_{K11} \cdot m_{A}}{m_{A} \cdot m_{K}} = \frac{y_{11}}{m_{A} \cdot m_{K}} .$$
(41-59)

Für die Determinante der Matrix || Y || gilt det $|| Y || = Y_{11} \cdot Y_{22} \cdot Y_{33} - Y_{13} \cdot Y_{22} \cdot Y_{31} - Y_{12} \cdot Y_{21} \cdot Y_{33}$ (41-60)

$$= Y_{K22} \cdot \det \| Y_A \| + Y_{A22} \cdot \det \| Y_K \| . \qquad (41-61)$$

Die anderen Glieder der Determinante entfallen, da $\rm Y^{}_{23}$ und $\rm Y^{}_{32}$ null sind.

Analog zu den Y-Parametern nach der Gl. (41-22) lassen sich für das Dreitor Z-Parameter definieren:

$$\begin{pmatrix} T_{J} \\ T_{G(A)} \\ T_{G(K)} \end{pmatrix} = \begin{pmatrix} Z_{11} & Z_{12} & Z_{13} \\ Z_{21} & Z_{22} & Z_{23} \\ Z_{31} & Z_{32} & Z_{33} \end{pmatrix} \cdot \begin{pmatrix} P_{J} \\ P_{G(A)} \\ P_{G(K)} \end{pmatrix}$$
(41-62)

Bei Berücksichtigung der Bilder 4-15, 16 sollen diese aus den Z-Parametern des anoden- und des kathodenseitigen Vierpols errechnet werden.

Es gelten die Gl. (41-51) und (41-52) sowie

$$T_J = Z_{A11} \cdot P_{J(A)} + Z_{A12} \cdot P_{G(A)}$$
 (41-63)

$$T_{G(A)} = Z_{A21} \cdot P_{J(A)} + Z_{A22} \cdot P_{G(A)}$$
 (41-64)

$$T_{J} = Z_{K11} \cdot P_{J(K)} + Z_{K12} \cdot P_{G(K)}$$
 (41-65)

$$T_{G(K)} = Z_{K21} \cdot P_{J(K)} + Z_{K22} \cdot P_{G(K)}$$
 (41-66)

Daraus erhält man für die Z-Matrix

$$\| z \| = \frac{1}{Z_{A11} + Z_{K11}} \begin{pmatrix} Z_{A11} \cdot Z_{K11} & Z_{A12} \cdot Z_{K11} & Z_{A11} \cdot Z_{K12} \\ Z_{A21} \cdot Z_{K11} & Z_{A22} \cdot Z_{K11} + \det \| Z_A \| & Z_{A21} \cdot Z_{K21} \\ Z_{A11} \cdot Z_{K21} & Z_{A12} \cdot Z_{K21} & Z_{A11} \cdot Z_{K22} + \det \| Z_K \| \end{pmatrix},$$

$$(41-67)$$

In anderer Form läßt sich für die Z-Matrix

$$\| z \| = \frac{1}{z_{A11} \cdot N_{K} + z_{K11} \cdot N_{A}} \begin{pmatrix} z_{A11} \cdot z_{K11} & z_{K11} & z_{A11} \\ z_{K11} & z_{A22} \cdot z_{K11} - m_{A} \cdot N_{K} & -1 \\ z_{A11} & -1 & z_{A11} \cdot z_{K22} - m_{K} \cdot N_{A} \end{pmatrix}$$

$$(41-68)$$

aufschreiben.

Zur Berechnung des Sperrschichttemperaturverlaufes aus dem Verlustleistungsverlauf und den Gehäusetemperaturverläufen werden Hybridparameter

$$\begin{pmatrix} T_{J} \\ P_{G}(A) \\ P_{G}(K) \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix} \cdot \begin{pmatrix} P_{J} \\ T_{G}(A) \\ T_{G}(K) \end{pmatrix}$$
(41-69)

benötigt. Man erhält sie entweder direkt aus den Y-Parametern des Dreitors

$$\| H \| = \frac{1}{Y_{11}} \cdot \begin{pmatrix} 1 & -Y_{12} & -Y_{13} \\ Y_{21} & Y_{11} \cdot Y_{22} - Y_{12} \cdot Y_{21} & -Y_{13} \cdot Y_{21} \\ Y_{31} & -Y_{12} \cdot Y_{31} & Y_{11} \cdot Y_{33} - Y_{13} \cdot Y_{31} \end{pmatrix}$$

$$(41-70)$$

oder aber aus den Y-Parametern der anoden- und kathodenseitigen Zweitore

$$\| H \| = \frac{1}{Y_{A11} + Y_{K11}} \begin{pmatrix} 1 & -Y_{A12} & -Y_{K12} \\ -Y_{A12} & Y_{K11} \cdot Y_{A22} + \det \| Y_A \| & Y_{A12} \cdot Y_{K12} \\ -Y_{K12} & Y_{A12} \cdot Y_{K12} & Y_{A11} \cdot K_{22} + \det \| Y_K \| \end{pmatrix}$$

$$(41-71)$$

Mit den einzelnen Polynomen ergibt sich

$$\| H \| = \frac{1}{c} \cdot \begin{pmatrix} H_{11} & H_{12} & H_{13} \\ H_{21} & H_{22} & H_{23} \\ H_{31} & H_{32} & H_{33} \end{pmatrix} = \frac{1}{\frac{1}{y_{11}}} \begin{pmatrix} m_A \cdot m_K & m_K & m_A \\ m_K & y_{K11} \cdot y_{A22} - N_A \cdot m_K & 1 \\ m_A & 1 & y_{A11} \cdot y_{K22} - m_A \cdot N_K \end{pmatrix}$$

mit y₁₁ aus Gl. (41-59).

4.1.5 Transienter Wärmewiderstand

4.1.5.1 Messung des transienten Wärmewiderstandes

Wie bereits in [39] nachgewiesen wurde, führt die am Anfang dieses Abschnittes zitierte Definition des transienten Wärmewiderstandes aus den Normen [3, 4] nur dann zu richtigen Ergebnissen, wenn bei Messungen und Rechnungen die Temperatur des Bezugspunktes konstant bleibt. Diese berechtigte Forderung erschwert eine getrennte Messung des transienten Wärmewiderstandes des Halbleiterbauelementes auch schon bei einseitiger Kühlung sehr. Bei zweiseitig gekühlten Halbleiterbauelementen wären dann die Gehäusetemperaturen beider Seiten gleich und konstant zu halten. Dies ist nur sehr schwer zu realisieren.

Im folgenden sollen die sich aus den auftretenden Abweichungen ergebenden Differenzen berechnet und ihre Größe eingegrenzt werden. Messungen des transienten Wärmewiderstandes von Halbleiterbauelementen erfolgen im allgemeinen in einem Aufbau, der Bild 4-15 entspricht. Der Einfachheit halber werden üblicherweise die Gehäusetemperaturen der Anoden- und der Kathodenseite gemittelt und mit der Differenz dieses Mittels zur inneren Ersatztemperatur gerechnet:

$$Z_{thJG}^{*}(t) = \frac{T_{J}(t) - \frac{1}{2} (T_{G(A)}(t) + T_{G(K)}(t))}{P_{J}}.$$
 (41-73)

Dieses Verfahren hat auch seine Berechtigung. Es liefert bei Messungen im Originalaufbau, d. h. wenn sowohl der transiente Wärmewiderstand des Thyristors als auch der transiente Wärmewiderstand der Kühleinrichtung unter gleichen Bedingungen ermittelt wird, richtige Ergebnisse. Dann dürfen die so erhaltenen Werte unmittelbar addiert werden.

Die Ergebnisse sind aber einzeln, wie in dieser Arbeit gezeigt wird, nur bedingt zu verwenden. Bereits in Abschnitt 3.1.2 wurde nachgewiesen, daß nicht einmal die so ermittelten stationären Endwerte korrekt sind.

Bild 4-19 zeigt gemessene, vom Hersteller AEG-Telefunken angegebene Höchstwerte des transienten Wärmewiderstandes des 56-mm-Thyristors T 625 N 3600...4400 im Fall "junction-case".

4.1.5.2 Berechnung des idealen transienten Wärmewiderstandes

Ausgehend von der Definition des transienten Wärmewiderstandes $Z_{th}(t)$ nach DIN 41862 kann man diesen formal aus der thermischen Impedanz $Z_{th}(p)$ durch Rücktransformation aus dem Bildbereich der Laplacetransformation [58]

$$Z_{th}(t) = \mathscr{L}^{-1} \left\{ \frac{Z_{th}(p)}{p} \right\}$$
 (41-74)

berechnen. Dabei ergibt sich die thermische Impedanz direkt aus dem Quotienten der Temperaturdifferenzen und der Verlustleistungsänderung

$$Z_{thJG}(p) = \frac{T_J(p) - T_G(p)}{P_J(p)} . \qquad (41-75)$$

Der ideale transiente Wärmewiderstand eines Halbleiterbauelementes sei der mit konstanter Gehäusetemperatur

Berlin, den 7. Januar 1985

Berechnung der Grenzwerte des gemessenen transienten Wärmewiderstandes von Thyristoren und Dioden in Scheibenzellenbauweise

ZThDtG-mod - Kassetten 39/40 - Variante 02 - 10. Februar 1983 - Sz

Bauelement: Thyristor T 625 N 3600 ... 4400 (AEG-Telefunken) Aufbau: Modell "junction-case" [J-C] File-Name: T0625 (Bauelement)

Graphische Darstellung:

Bild 4-19: Vergleich zwischen Messung und Rechnung des transienten Wärmewiderstandes des Thyristors T 625 N 3600 ... 4400 $T_{G(A)}(t) = T_{G(K)}(t) = const.$ (entspricht $T_{G(A)}(p) = ...$... $T_{G(K)}(p) = 0$) ermittelte Verlauf. Die entsprechende thermische Impedanz ergibt sich mit Gl. (41-75) zu

 $Z_{thJG}(p) = H_{11}(p)$ (41-76)

In Bild 4-19 ist der so berechnete Verlauf für den Thyristor T 625 N 3600...4400 (Fall "junction-case") eingezeichnet. Man sieht im mittleren Zeitbereich erhebliche Abweichungen zu dem gemessenen Verlauf.

4.1.5.3 Grenzwerte des transienten Wärmewiderstandes

Welche Grenzwerte kann der mit Gl. (41-73) berechnete formale transiente Wärmewiderstand des Halbleiterbauelementes annehmen?

Wird das Halbleiterbauelement überhaupt nicht gekühlt, das heißt, sind $P_{C(A)} = P_{C(K)} = P_{H(A)} = P_{H(K)} = 0$, dann ergibt sich für den gemessenen Wert im Bildbereich der Laplacetransformation, unabhängig vom verwendeten Modell ("junction-case" bzw. "junction-heatsink").

$$Z_{thJC oK}^{*}(p) = Z_{thJH oK}^{*}(p) = Z_{11}(p) - \frac{1}{2} \cdot [Z_{21}(p) + Z_{31}(p)]$$
.
(41-77)

Für diesen Fall ist eine Grenzwertbetrachtung für große Zeiten interessant. Durch Anwendung des Anfangswert-Theorems [40]

erhält man

$$\lim_{t \to \infty} Z_{thJGoK}^{*}(t) = \frac{\sum_{i=1}^{n_{A}-1} [R_{kAi} \cdot \sum_{j=i+1}^{n_{A}} C_{kAj}] + \sum_{i=1}^{n_{K}-1} [R_{kKi} \cdot \sum_{j=i+1}^{n_{K}} C_{kKj}]}{2 \cdot (C_{k0} + \sum_{i=2}^{n_{A}} C_{kAi} + \sum_{i=2}^{n_{K}} C_{kKi})}.$$
(41-79)

In Bild 4-20 ist das Ergebnis für den Thyristor T 625 N 3600...4400 eingezeichnet. Man sieht den interessanten Effekt, daß das ungekühlte Halbleiterbauelement, den niedrigsten formalen transienten Wärmewiderstand aufzuweisen hat.

Für extrem unsymmetrische Kühlung (hier nur kathodenseitige Kühlung) gilt z.B.

$$P_{G(A)} = T_{G(K)} = 0 . (41-80)$$

Daraus ergibt sich

$$Z_{\text{thJG } kK}^{*}(p) = \frac{Z_{A11} - \frac{1}{2} \cdot Z_{A21}}{Z_{A11} \cdot Y_{K11} + 1}$$
(41-81)

und analog gilt für anodenseitige Kühlung

$$Z_{thJG aK}^{*}(p) = \frac{Z_{K11} - \frac{1}{2} \cdot Z_{K21}}{Z_{K11} \cdot Y_{A11} + 1} . \qquad (41-82)$$

Beide Verläufe sind für den Fall "junction-case" ebenfalls in Bild 4-20 eingetragen. Zusätzlich enthält das Bild noch den Verlauf des transienten Wärmewiderstandes Z_{thJC}^{\star} für den Fall der idealen Kühleinrichtung. Er ist bei Annahme $T_{H(A)} = T_{H(K)} = const.$, das heißt mit Berücksichtigung des Übergangswiderstandes zur Kühleinrichtung, die selbst aber ideal sein soll, errechnet. Die dafür erforderlichen Gleichungen sind im Abschnitt 4.3.2.1 abgeleitet. Berechnung der Grenzwerte des gemessenen transienten Wärmewiderstandes von Thyristoren und Dioden in Scheibenzellenbauweise

ZThDtG-mod - Kassetten 39/40 - Variante 02 - 10. Februar 1983 - Sz

Bauelement: Thyristor T 625 N 3600 ... 4400 (AEG-Telefunken) Aufbau: Modell "junction-case" [J-C] File-Name: T0625 (Bauelement)

Graphische Darstellung:

kK ... nur kathodenseitige Kühlung iK ... ideale Kühleinrichtung aK ... nur anodenseitige Kühlung oK ... ohne Kühlung

<u>Bild 4-20:</u> Grenzwerte des meßbaren (formalen) transienten Wärmewiderstandes des Thyristors T 625 N 3600 ... 4400 unter verschiedenen extremen Kühlbedingungen

Bedeutung der Abkürzungen:

4.2 Verhalten der Kühlelemente

Um Aussagen über das dynamische Verhalten der Kühleinrichtung zu erhalten, kann man entweder versuchen, deren Verhalten als eigenständige Komponente zu beschreiben [39] oder aber Messungen im Originalaufbau, bestehend aus den Halbleiterbauelementen und der Kühleinrichtung, vorzunehmen.

4.2.1 Messung des Übergangsverhaltens

4.2.1.1 Theoretischer Ansatz und Meßprinzip

In Anlogie zu Gl. (32-8) wird für das dynamische Verhalten der Kühldosen die Gleichung

$\left(T_{1} \right)$		Z ₁₁	z ₁₂	Z13		$\left(\begin{array}{c} P \\ 1 \end{array} \right)$	
т2	=	Z ₂₁	Z ₂₂	Z ₂₃	16	P2	(42-1)
(TB)	/	\ z ₃₁	Z ₃₂	Z ₃₃		$\left\langle T_{A}\right\rangle$	

postuliert.

Im stationären Betrieb (t $\rightarrow \infty$) haben Z₁₃, Z₂₃ und Z₃₃ den Wert 1, Z₃₁ und Z₃₂ den Wert R_W und die übrigen Z-Parameter haben die entsprechenden R-Werte (z. B. Z₁₁ = R₁₁).

Um das Übergangsverhalten der Kühldose meßtechnisch zu ermitteln, müssen die Größen auf der rechten Seite von Gl. (42–1) (P₁, P₂ und T_A) bei konstant gehaltenem \dot{M} einzeln sprunghaft geändert werden. Aus den dann gemessenen Verläufen von T₁, T₂ und T_B können dann die Z-Parameter bestimmt werden.

4.2.1.2 Messung von Z $_1(t)$ und Z $_2(t)$

Die Messung von Z_{11} , Z_{21} , Z_{31} , Z_{12} , Z_{22} und Z_{32} erfordert die technische Realisierung eines Leistungssprunges auf Seite 1 bzw. Seite 2 der Kühldose. Dies ist natürlich nur annähernd zu realisieren.

Die Erwärmung durch ein Halbleiterbauelement scheidet dabei gänzlich aus, da die ihm innewohnenden thermischen Zeitkonstanten von bis zu 10 s einem Sprung auch annähernd nicht entsprechen. Überhaupt sind konduktive Erwärmungsverfahren für diesen Fall nur mit größerem konstruktivem Aufwand zu realisieren. Da hier eine relativ hohe Leistung (500...2000 W) auf einer ziemlich großen Fläche (ø 50... ø 100 mm), bei gleichzeitig möglichst kleiner Wärmekapazität aufzubringen ist, muß die Wärmequelle selbst möglichst "dünn" sein. Denkbar wäre hier die Realisierung einer archimedischen Spirale aus Widerstandsdraht. Dabei sind aber Schwierigkeiten mit dem Wärmekontakt zur Kühldose und mit der Isolation zu erwarten (die Kühldose ist elektrisch leitfähig). Eine andere Möglichkeit würde in der Anwendung einer speziell hergestellten Scheibe aus einem halbleitenden Material bestehen, die "man dann noch kontaktieren muß [39]. Die Scheibe und die Kontaktschiene besitzen selbst noch eine erhebliche Wärmekapazität.

Ein nahezu ideales Verfahren zur Erzeugung eines Leistungssprunges stellt die Induktionserwärmung dar [41, 42]. Zudem steht mit dem in [43] beschriebenen Wechselrichter ein gut geeignetes Gerät zur praktischen Realisierung zur Verfügung. Bei einer Betriebsfrequenz des Wechselrichters von ca. 25 kHz beträgt die Eindringtiefe in unlegierten Stahl (St 37 nach DIN 1541) etwa 0,1 mm. Daraus ergibt sich eine Mindeststärke der Wärmequelle (Stahlscheibe) von etwa 0,5 mm, die dann bei einem Durchmesser von 100 mm eine Wärmekapazität von 14,9 $\frac{J}{K}$ aufweist. Im Gegensatz dazu beträgt die Wärme-kapazität des Kupferbodens der 100-mm-Zelle 296 $\frac{J}{K}$ (siehe Tafel 4-1). Bei einer Induktionsleistung von 1500 W lassen sich mit der Stahlscheibe Temperaturgradienten von bis zu 100 $\frac{K}{5}$ (ohne Wärme-übertragung) erzielen.

Zur Messung wurde oben und unten je eine Stahlscheibe von 100 mm Durchmesser auf die Kühldose aufgelegt. Diese Stahlscheiben wurden durch Induktorspulen von 110 mm Durchmesser erwärmt. Bild 4-21 zeigt die Meßanordnung und Bild 4-22 einen linear aufgetragenen Temperaturverlauf auf der beheizten Seite. Der steile Anstieg in Bild 4-22 zeigt sehr deutlich die recht gute Verwirklichung des gewünschten Leistungssprunges. Die Bilder 4-23 und 4-24 zeigen die vollständige Darstellung für einen Arbeitspunkt. Der Meßpunkt muß hier an der Kühldosenoberfläche liegen, weil ohne Halbleiterbauelement gemessen wird. Der in Abschnitt 3.2.3 beschriebene Einfluß

Bild 4-21: Meßanordnung zur Messung des Ubergangsverhaltens der Kühldosen durch Erzeugung eines Verlustleistungssprunges

Ergebnisse der Messungen an Kühlelementen bei sprunghafter Erwärmung

Diss_B - Version 1.1 - Kassetten 57/58 - 17. Oktober 1985 - Sz

 \dot{V} = 150.0 1/h, P₁ = 0, P₂ = $\dot{0}$ = 1593 W, $\vartheta_{\dot{H}}$ = 15.9 °C Meßstelle auf Seite 2, Wärmequelle \varnothing 100 mm Kühlmittelrichtung: Seite 1 ===> Seite 2

<u>Bild 4-22:</u> Verlauf der Temperatur an der Kühldosenoberfläche bei einer sprunghaften Wärmestromeinspeisung mit induktiver Erwärmung (lineare Barstellung)

Ergebnisse der Messungen an Kühlelementen bei sprunghafter Erwärmung

Diss B - Version 1.1 - Kassetten 57/58 - 21. Februar 1984 - Sz

Bauelement: Modell:	Thyris: Modell	for T 2200 N 3600 "junction-heatsink"	. 4400 (REG) [J-H]						
Kühlung:	AEG-Kül	hldose 029.076 404	(100 mm) Nr. 2	Mess	ung 04.10.85				
Aufbau:	Kühlmi	ttel-Richtung von de	er Anoden- zur K	athoden	iseite				
File-Namen:	I1115	(Kühldose)	T2200	(Thyria	itor)				
Meßstelle:	Anlage	flächen der Kühldose	(heatsink)						
Kühlmittel:	Wasser								
Aufbau:	Kathod	Kathode <===> Seite 1 Anode <===> Seite 2							
	Kühlmi	ttel-Richtung von Se	ite 2 zu Seite	1					
Volumendurci	hsatz de	es Kühlmittels	V punkt	=	150.0 1/h				
umgesetzte	Verlust	leistung	Q punkt	-	1 166 W				
mittlere Kül	hlmitte	lzuflußtemperatur	9 A	=	18.1 °C				

Graphische Darstellung der gemessenen dynamischen Parameter der Kühldose:

Bild 4-23: Beispiel für den gemeisenen Verlauf der dimamischen Farameter der Kühldosen (Erregung von Seite 19

Ergebnisse der Messungen an Kühlelementen bei sprunghafter Erwärmung

Diss_B - Version 1.1 - Kassetten 57/58 - 21. Februar 1984 - Sz

Bauelement:	Thyrist	or T 2200 N 3600	4400 (F	EG)			
model1:	nodell	"junction-neatsin	NK" LJ-HJ				
Kühlung:	AEG-Küh	1dose 029.076 404	4 (100 mm)	Nr. 2	Messun	g 04.10	3.85
Aufbau:	Kühlmit	tel-Richtung von	der Anoden-	· zur Ka	athodense	ite	
File-Namen:	I1115	(Kühldose)	Т2	200	Thyristo	r)	
Meßstelle:	Anlagef	lächen der Kühlde	ose (heatsin	nk)			
Kühlmittel:	Wasser						
Aufbau:	Kathode Köhlmit	<===> Seite 1	Anode <==	=> Seite	e 2		
	N MOT T IN T V	cer-krencung oon	Serve 2 20	Serve .			
Volumendunci	hsatz de	s Kühlmittels	V	punkt	=	150.0	1/h
umgesetzte	Verlust1	eistung	ຊີ	punkt	=	1 860	M
mittlere Kü	hlmittel	zuflußtemperatur	9_	R	=	18.2	°C

Graphische Darstellung der gemessenen dunamischen Parameter der Kühldose:

der Wärmestromeinschnürung, bedingt durch den unsymmetrischen Aufbau der Halbleiterbauelemente, kann sich bei diesem Meßverfahren natürlich nicht widerspiegeln. Vielmehr zeigen die hier ermittelten stationären Endwerte deutlich niedrigere Werte als die Messungen mit angelegten Meßzellen (Apparatur nach Bild 3-23). Um diesen Effekt auszugleichen, wurden die induktiv erhaltenen transienten Verläufe linear hochgerechnet. Basıs dafür sind die zuvor stationär mit einer Einspeisung über Halbleiterbauelemente ermittelten Werte.

4.2.1.3 Messung von $Z_{13}(t)$, $Z_{23}(t)$ und $Z_{33}(t)$

Zur Messung dieser Z-Parameter muß ein Sprung der Kühlmittelzuflußtemperatur realisiert werden. Auch dieser läßt sich nur annähernd verwirklichen, da das Kühlmittel erst über ein kaltes Rohrstück zur Kühldose fließen muß. Zudem wirken sich hier auch die Zeitkonstanten der Thermoelemente auf die Ergebnisse, vor allem für $Z_{3,2}(t)$, aus.

Mit einigen theoretischen Überlegungen können aber zusammen mit den Meßergebnissen genauere Aussagen über Z₃₃(t) gewonnen werden.

 $\rm Z_{33}(t)$ weist eine Totzeit $\rm t_T$ auf, die ihre Ursache in der endlichen Geschwindigkeit w₁ des Kühlmittels in der Spirale hat. Für die Totzeit gilt

$$t_{T} = \frac{1 \cdot d_{i}^{2} \cdot \pi}{4 \cdot \dot{v}} . \qquad (42-2)$$

Die Tafel 4-2 zeigt konkrete Zeiten für die 100-mm-Kühl- dose mit l = 2,77 m und d, = 4,5 mm.

Volumenstrom V	30	60	90	120	150	180	1×h
Totzeit t _T	5.287	2.643	1.762	1.322	1.057	0.881	5

<u>Tafel 4-2:</u> Totzeitanteil t_T in Z₃₃(t) der Kühldose AEG 029.076 404 für Thyristoren mit einem Kristalldurchmesser von 75 mm und 100 mm Setzt man nach dieser Totzeit für $Z_{33}(t)$

$$Z_{33}(t) = \sum_{i=1}^{n} R_i \cdot (1 - e^{-(t - t_T)/\tau_i})$$
 (42-3)

an, dann erhält man mit dem Energiesatz die Bedingung

$$\sum_{i=1}^{n} R_{i} \cdot \tau_{i} = C_{KD} \cdot R_{W} - t_{T}, \qquad (42-4)$$

die zusammen mit

$$\sum_{i=1}^{n} R_{i} = 1$$
 (42-5)

eingehalten werden muß. Tafel 4–3 zeigt die Werte für die AEG-Kühldose mit C_{KD} = 1950 $\frac{J}{K}$, der gesamten thermischen Kapazität der Kühldose.

Volumenstrom V	30	60	90	120	150	180	1/h
$\sum R_i * \tau_i$	51.1	25.6	17.0	12.8	10.2	8.52	s

Tafel 4-3: Bezogener Energieinhalt der Kühldose AEG 029.076 404 für Thyristoren mit einem Kristalldurchmesser von 75 mm und 100 mm

> Bild 4-25 zeigt gemessene Werte für $Z_{13}(t)$, $Z_{23}(t)$ und $Z_{33}(t)$. Gl. (42-4) wird hier mit einer Genauigkeit von etwa 25 % eingehalten (vgl. Bild 4-32). Die Differenz ist auf die am Anfang dieses Abschnittes erwähnten Schwierigkeiten zurückzuführen.

4.2.2 Messung im Originalaufbau

4.2.2.1 Meßverfahren

In dem Originalaufbau, dessen transientes Verhalten bestimmt werden soll, werden Meßstellen an den Übergängen von Halbleiterbauelement zum Kühlelement angebracht. Dann wird in dem Halbleiterbauelement ein Verlustleistungssprung erzeugt und die Temperaturverläufe an den Übergängen gemessen. Bei dieser Messung sind T_A , P_J und \dot{M} konstant zu halten. Bild 4-26 zeigt eine Meßanordnung aus 3 Thyristoren und 4 Kühldosen zur Messung des dynamischen thermischen Verhaltens einer Säule aus zweiseitig gekühlten Halbleiterbauele-

Ergebnisse der Messungen an Kühlelementen bei sprunghafter Erwärmung

Diss B - Version 1.1 - Kassetten 57/58 - 21. Februar 1984 - Sz

Bauelement: Modell: Kühlung: Aufbau:	Thyrist Modell AEG-Küh Kühlmit	or T 2200 N 3600 "junction-heatsin Idose 029.076 404 tel-Richtung von	4400 (AEG) .k" [J-H] (100 mm) Nr. 2 der Anoden- zur K	e Mess (athoden	ung 13.08.85 seite
File-Namen:	11115	(Kühldose)	T2200	(Thyris	tor)
Meßstelle: Kühlmittel: Aufbau:	Anlagef Wasser Kathode Kühlmit	lächen der Kühldo <===> Seite 1 tel-Richtung von	se (heatsink) Anode (===) Sei Seite 2 zu Seite	te 2 1	
Volumendurch Temperaturs Bezugstemper Kühlmittelz	hsatz de prung de ratur uflußtem	s Kühlmittels s Kühlmittels peratur	V_punkt ⊿_T 9_8 9_8		150.0 1/h 25.5 K 25.6 °C 51.0 °C

Graphische Darstellung der gemessenen dynamischen Parameter der Kühldose:

Bild 4-26: Meßaufbau zur Bestimmung des dynamischen thermischen Verhaltens einer Säule aus Thyristoren und Kühldosen menten und Kühldosen. Hier sei betont, daß die in Bild 3-23 gezeigte Meßanordnung zur Bestimmung des Übergangsverhaltens von Säulen gänzlich ungeeignet ist, da diese wesentlich größere thermische Zeitkonstanten aufzuweisen hat als die Säule selbst.

4.2.2.2 Konventionelle Auswertung

Die gemessenen Temperaturverläufe werden analog zu Gl. (32-12) mit

$$Z_{thGA}^{*}(t) = \frac{\frac{1}{2} (T_{G(A)}(t) + T_{G(K)}(t)) - T_{A}}{P_{J}}$$
(42-6)

ausgewertet. Dieser so ermittelte Verlauf wird als transienter thermischer Widerstand des Kühlelementes bezeichnet.

4.2.2.3 Bezogene Gehäusetemperaturen

Zur weiteren Verarbeitung der Daten ist es zweckmäßig, die gemessenen Temperaturverläufe auf die Kühlmittelzulauftemperatur und den Verlustleistungssprung je Bauelement mit der Gleichung

$$\vartheta_{GA(X)}^{*}(t) = \frac{T_{G(X)}(t) - T_{A}}{P_{J}}$$
 (42-7)

zu beziehen. Die Bilder 4-27 und 4-28 zeigen ein ausgewähltes Beispiel mit numerischer und graphischer Darstellung der gemessenen Verläufe.

4.2.3 Auswertung der Messungen

Die gemessenen Verläufe Z_{th}(t) des transienten Verhaltens der Kühldosen werden durch eine Ausgleichsfunktion mit dem Ansatz

$$\varphi(t) = \sum_{i=1}^{m} R_i \cdot (1 - e^{-t/\tau} i)$$
(42-8)

angenähert. Dieses unter dem Namen Exponentialsummenzerlegung bekannte Verfahren wird in der Literatur oftmals behandelt [35. 44 - 46].

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken) [02. August 1983] Kühlung: Säule aus Thyristoren T 2200 N 4200 und Kühldose REG 029.076 404 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Messung: Versuch Nr. 02 vom 19. Juli 1984

filename:	S2_02	(Kühldose)	T2200	(Bauelement)
Meßstelle:	Anlagef	lächen des Thyristors (case)		
Aufbau:	Modell	"junction-case" [J-C]		

Volumendurchsatz des Kühlmittels V_punkt = 150.0 1/h mittlerer Verlustleistungssprung 0_punkt = 1911.3 W mittlere Kühlmittelzuflußtemperatur 9 A = 19.4 °C

Temperaturverlauf an den Meßstellen:

Anodenseite:

Kathodenseite:

I	t [≲]	9_C(A) [°C]	9_A [°€]	9_C(A)* ImK/WJ	I	t Cel	8_C(K) [°C]	8_A [00]	8_C(K)* TmK/WJ
Y.	0.2	10.0	10.0	0 41		0.0	10.2	10.0	0.71
-	2.4	22.9	17.0	2.12	-	0.0	17.0	17.0	2 14
4.0	4.9	22.9	10.0	3.10	4	5.2	23.7	10.0	4 42
4	7.0	29 2	17.9	5 90	4	7.4	20.0	17.0	5 45
5	9.0	20 0	17.0	2	-	0.0	20.3	17.0	6.40
6	11 4	22.2	10 0	7 51	ć	12.0	27.7	10 0	6.10
2	12 7	22.0	17.0	0.02	2	14.0	21 5	12.0	7 10
8	15 9	24 2	17.9	0.00	6	16 5	22.4	17.9	7.10
0 0	18.1	25 0	17 9	0.00	0	10.0	22.4	17.9	7 92
10	20.2	25.0	10.0	0.00	10	20.0	22.0	10.0	0.00
11	22 6	36.3	10.0	0 27	10	20.7	24 1	10.0	0.20
12	24 8	36.5	17.9	0 75	12	25.d	24.2	17.9	0.44
13	30.1	37 3	17.9	10.21	13	20.7	34.2	17.0	0.00
14	40.1	38.2	17.9	10 22	14	40 7	25.7	17.9	9 20
15	50.0	38 6	17 9	10 29	15	50 6	26.0	17.0	9.52
16	50.1	20.0	17 0	11 02	16	50.0	26.0	17 0	9 21
17	79.9	29 9	17 7	11 . 0	17	70 5	26.2	17.0	9 72
18	80.0	39.0	17.7	11.17	10	00.0	36.3 36 A	17.7	9.77
19	90.0	20 0	17.5	11.01	10	00.0	30.4	17.5	0.01
20	199.9	39.1	17.7	11 21	20	100 6	06.2 06 A	17.7	9.01
21	120.0	39.2	17.7	11 26	21	120.6	26.4	17.7	0 00
22	140.0	39.6	18.0	11 30	22	140.0	37.0	10 0	6 63
23	169.9	39.9	18 1	11 40	22	150 5	27 1	10.0	9.97
24	180.0	40.2	18 6	11 20	24	199.6	37.6	10 6	9 92
25	200.0	48.6	19.0	11.30	25	200.6	38.6	19.0	0 02
26	220.0	49.9	19.2	11.25	26	228.6	38.2	19.2	9.93
27	240.0	41.2	19.6	11.30	27	248.6	38 4	19 5	9.05
28	260.1	41.3	19.8	11.26	28	269.7	38.7	19.8	9,89
29	280.1	41.5	28.2	11.17	29	280.7	38.9	20.2	9.77
30	300.1	41.6	20.3	11.17	30	300.7	39.0	28.3	9.81
31	400.1	42.4	21.0	11.01	31	408.7	39.7	21.0	9.77
32	500.0	42.8	21.5	11.17	32	500.6	48.2	21.5	9.77
33	600.1	43.3	22.0	11.12	33	600.7	40.6	22.0	9.73
34	700.1	43.4	22.1	11.12	34	700.7	40.8	22.1	9.77
35	800.1	43.5	22.2	11.12	35	800.7	40.9	22.2	9.77

<u>Bild 4-27:</u> Numerische Darstellung von gemessenen Temperaturverläufen am Thyristorgehäuse bei einer Messung in der Säule nach Bild 4-26

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: Säule aus Thyristoren T 2200 N 4200 und Kühldose AEG 029.076 404 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Messung: Versuch Nr. 02 vom 19. Juli 1984

filen	ame: S2	_02 (Kü	hldose)			T2200	(Bauel	ement)	
I	t [s]	\$_C(A) [°C]	*_A [°C]	9_C(A)* [mK/k]	I	t [s]	9_C(K)	(°€)	9_C(K)× [mK/W]
36	900.0	43.6	22.3	11.17	36	900.6	41.0	22.3	9.77
37	1000.1	43.6	22.3	11.17	37	1000.7	41.0	22.3	9.81
38	1200.0	43.6	22.3	11.17	38	1200.6	41.0	22.3	9.81
39	1400.0	43.7	22.4	11.12	39	1400.6	41.1	22.4	9.81
40	1600.0	43.8	22.5	11.17	40	1600.6	41.2	22.5	9.81
41	1800.0	43.8	22.5	11.17	41	1800.6	41.2	22.5	9.77
42	2000.1	43.7	22.5	11.08	42	2000.7	41.2	22.5	9.77
43	2200 0	43 6	22 3	11 17	43	2200.6	41.0	22.3	9.81

Bild 4-28: Numerische und graphische Lanstellung von gemessenen Teunersturm verlaufen am Thoristorgerause und berechnete Holistverte bei einer Messung in der Saule nach Bild 4-26

. . 3

1.2.3.1 Auswertung des Übergangsverhaltens

Für den Fall des gemessenen Übergangsverhaltens nach Abschnitt 4.2.1 hat es sich als sinnvoll erwiesen, gleiche Pole für alle Z-Parameter der Kühldose anzunehmen, das heißt, alle auftretenden Parameter werden in gleiche Zeitkonstanten zerlegt. Als Optimierungskriterium hat sich auch hier das Gauß'sche Prinzip der kleinsten Quadrate

$$F = \sum_{\nu=1}^{p} \kappa^{\nu} \left\{ \sum_{i=1}^{n} \left[Z^{\nu}(t_{i}^{\nu}) - \varphi^{\nu}(t_{i}^{\nu}) \right]^{2} \right\} = \min (42-9)$$

mit p, der Anzahl der Parameter (hier je nach Anwendungsfall 4, 6 oder 9) und K^{ν}, einem Faktor, der eine unterschiedliche Bewertung der einzelnen Parameter, je nach Größe und Anzahl der Stützstellen, zum Ausdruck bringt, bewährt.

Die Bilder 4-29 bis 4-32 zeigen die aus Gl. (42-9) errechneten Ausgleichsfunktionen und ihre numerische Darstellung einschließlich einer Fehlerbewertung.

4.2.3.2 Auswertung der Messungen im Originalaufbau

Zur Auswertung der Messungen im Originalaufbau genügt eine eindimensionale Exponentialsummenzerlegung mit dem Kriterium

$$F = \sum_{i=1}^{n} \left[Z(t_i) - \varphi(t_i) \right]^2 = \min.$$
 (42-10)

Für den Fall der Messung am Gehäuse des Halbleiterbauelementes muß zusätzlich noch die Nebenbedingung

$$\varphi'(t=0) = \frac{d\varphi(t=0)}{dt} = \sum_{i=1}^{m} \frac{R_i}{\tau_i} = 0$$
 (42-11)

eingehalten werden, da eine endliche Temperaturanstiegsgeschwindigkeit bei der Zeit Null und dem Ersatzschaltbild nach Bild 4-9 einen scheinbaren, physikalisch natürlich unmöglichen, Leistungssprung bewirken würde.

Bild 4-33 zeigt das Ergebnis der Zeitkonstantenzerlegung bei Einhaltung der Bedingungen (42-10) und (42-11). 4.2.3.3 Transformation in den Bildbereich der Laplace-Transformation

Die ermittelten Ausgleichsfunktionen können abschließend durch die Laplace-Transformation mit der Gleichung

$$Z^{\nu}(p) = \sum_{i=1}^{m} \frac{\tau_{i} \cdot R_{i}^{\nu}}{p \tau_{i} + 1}$$
(42-12)

in den Bildbereich überführt werden [58].

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSau 0 - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement:	Thyristor T 2200 N 3600 4400 (AEG-Telefunken) [02. August 1983]
Kühlmittel:	100-mm-Kunidose HEG 029.076 404 Nr. 2 Messung 13.08.85704.10.85 Wasser mit einem Volumenstrom von 150.0 1/h
Aufbau:	Doppelsäule mit gleichsinniger thermischer Reihenschaltung Kühlmittel-Richtung in Säule 1 von der Kathoden- zur Anodenseite Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite
File-Namen:	I1115 (Kühldose) T2200 (Halbleiterbauelement)
Meßstelle:	Anlageflächen des Kühlelementes (heatsink)

Aufbau:	Säule	1:	Kathode <===> Seite 1	Anode <===> Seite 2
	Säule	2:	Anode <===> Seite 1	Kathode <===> Seite 2
	Säule	1:	Kühlmittelrichtung von	Seite 1 zu Seite 2
	Säule	2:	Kühlmittelrichtung von	Seite 1 zu Seite 2
			-c 252	

Volumenstrom des Kühlmittels	V punkt	=	150.0	1/h
Verlustleistungssprung	PJ	=	1513.3	ы
mittlere Kühlmittelzuflußtemperatur	\$_A	=	18.1	°C

Graphische Darstellung der gemessenen dynamischen Parameter der Kühldose und ihrer Approximation:

<u>Bild 4-29:</u> Dynamische Parameter der Kühldosen nach den Bildern 4-23 bis 4-25 zur Berechnung des Verhaltens der unendlich langen, symmetrischen 176 Doppelsäule mit der neundimensionalen Ausgleichsfunktion

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSau 0 - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 829.076 404 Nr. 2 Messung 13.08.85/84.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 158.0 1/h Aufbau: Doppelsäule mit gleichsinniger thermischer Reihenschaltung

Kühlmittel-Richtung in Säule 1 von der Kathoden- zur Anodenseite Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose) T2200 (Halbleiterbauelement)

Numerische Approximation der dynamischen Parameter der Kühldose:

Berechnung: sukzessive Approximation mit minimalen guadratischem Fehler R 11 H8 v_11 HA (01) = 1216.531 ms v_11 HA (02) = 1583.679 ms v_11 HA (03) = 17.097 s (01) 19.630 mK/W = R 11 HA (02) = -8286.082 µK/W R 11 HA (03) = 3056.700 µK/W R 11 HA summe = 14.401 mK/W Zahl der Stützstellen 12 = 57 quadratisches Mittel der Abweichungen 136.56 pK/W = maximale Abweichung -- 303.75 µK/W maximale relative Abweichung - 8.16 % -R_12_HR (01) t 12 HA (01) = 1216.531 ms = 1061.305 µK/W R_12_HA (02) R_12_HA (03) = -1431.267 µK/W t 12 HA (02) = 1583.679 ms = 1987.074 µK/W t_12_HA (03) = 17.097 s R 12 HA summe = 1617.113 µK/W Zahl der Stützstellen 60 = n quadratisches Mittel der Abweichungen = 48.16 µK/W + 107.59 pK/W maximale Abweichung = maximale relative Abweichung 77.76 % = $R_{13}HR$ (01) = -1744.197 10-3 τ_{13} HA (01) = 1216.531 ms

N_10_NH (02/	- 22121102 10-0	C 13 HH	1021 -	1000.012	111.25
R_13_HR (03)	= 464.629 10-3	t 13 HA	(03) =	17.097	5
R_13_HA_summe	= 993.213 ₁₀ -3				
Zahl der Stützs	tellen	n	=	45	
quadratisches M	littel der Abweichungen		=	9 381.26	10-6
maximale Abweic	hung		=	- 31.23	10-3
maximale relati	ve Abweichung			+ 89.85	%

<u>Bild 4-30:</u> Berechnete neundimensionale Ausgleichsfunktion der dynamischen Parameter der Kühldose nach den Bildern 4-23 bis 4-25 zur Ermittlung des Verhaltens der unendlich langen, symmetrischen Doppelsäule

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSau 0 - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h

Aufbau: Doppelsäule mit gleichsinniger thermischer Reihenschaltung Kühlmittel-Richtung in Säule 1 von der Kathoden- zur Anodenseite Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose)

T2200 (Halbleiterbauelement)

Numerische Approximation der dynamischen Parameter der Kühldose:

Berechnung	1:	suk	zessi	ve	Approximation mi	t min	imal	en qu	adrat	isc	hen	Fe	hle	C
R 21 HA (01)	=	-11.	981	mK∠W		τ 2	1 HA	(01)	=	12	16.	531	ms
R 21 HA (82)	=	14.	518	mK∠W		t 2	1 HA	(02)	=	. 15	583.	679	In S
R 21 HA (03)	=	3414.	997	NKXW		t 2	1 HA	(03)	=		17.	097	5
R_21_HA_su	mme	=	5952.	077	μκ∠w		-	23 - 1002						
Zahl der S	tützst	elle	n				n			=			57	
quadratisches Mittel der Abweichungen										=		40	.86	NK-M
maximale A	Ibweich	ung								=	+	85	.70	µK/W
maximale r	elativ	e Ab	weich	ung						=	+	19	.74	%
-			1001103 101	717214			Dertin (C.D.)							
R_22_HA (01)	=	21.	661	mK/W		t_2	2_HA	(01)	=	12	:16.	531	m s
R_22_HA (02)	= -	8443.	351	μK∠W		t_2	2_HA	(02)	=	15	183.	679	m S
R_22_HA (03)	=	3470.	138	μK/W		t_2	2_HA	(03)	=		17.	097	5
R_22_HA_su	imme	=	16.	688	mK∕W									
Zahl der S	tützst	elle	n				n			=			60	
quadratisc	hes Mi	ttel	der	Арм	eichungen					=		183	.51	NK/W
maximale A	bweich	ung								=	+	671	.28	NK-M
maximale r	elativ	e Ab	weich	ung						=	+	69	.36	%
B 00 110														
R_23_HH (01)		2076.	766	10-3		t_2	3_HA	(01)	=	12	:16.	531	m S
R_23_HH (02)	=	2484.	531	10-3		t_2	3_HA	(02)	=	15	183.	679	m S
R_23_HA (83)	=	587.	636	10-3		t_2	3_HA	(03)	=		17.	097	5
R_23_HH_su	mme	=	995.	402	10-3									
Zahl der S	tützst	elle	n				n			=			45	
quadratisc	hes Mi	ttel	der	APM	eichungen					=	7	026	.73	10-6
maximale A	Ibweich	ung								=	(\overline{a})	18	.49	10-3
maximale r	elativ	e Ab	weich	ung						=	+	18	.68	%

<u>Bild 4-31:</u> Berechnete neundimensionale Ausgleichsfunktion der dynamischen Parameter der Kühldose nach den Bildern 4-23 bis 4-25 zur Ermittlung des Verhaltens der unendlich langen, symmetrischen Doppelsäule

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSäu Ø - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h

Aufbau: Doppelsäule mit gleichsinniger thermischer Reihenschaltung Kühlmittel-Richtung in Säule 1 von der Kathoden- zur Anodenseite Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose)

T2200 (Halbleiterbauelement)

Numerische Approximation der dynamischen Parameter der Kühldose:

Berechnung: sukzessive Approximation mit minimalen guadratischem Fehler

R 31 HA (01)	= -9167.993 NK/W	τ 31 HA	(01) =	1216.531	m S
R 31 HA (02)	= 10.964 mK/W	t 31 HA	(02) =	1583.679	m S
R 31 HA (03)	= 3902.854 µK/W	t 31 HA	(03) =	17.097	2
R_31_HA_summe	= 5698.888 µK/W				
Zahl der Stütz:	stellen	n	=	57	
quadratisches 1	littel der Abweichungen		=	53.30	NK/W
maximale Abweid	thung		=	+ 138.78	NK/W
maximale relat	ive Ábweichung		=	+ 70.02	%
R 32 HA (01)	= -5442.341 µK/W	€ 32 HA	(01) =	1216.531	m S
R 32 HR (02)	= 8395.809 uK/W	T 32 HB	(02) =	1583.679	m s
R 32 HA (03)	= 2653.144 µK/W	t 32 HA	(03) =	17.097	5
R_32_HA_summe	= 5606.612 µK/W				
Zahl der Stütz:	stellen	n	=	60	
quadratisches	1ittel der Abweichungen		=	146.06	NK/M
maximale Abweid	chung) =	+ 360.20	pK/W
maximale relat	ive Abweichung		=	+ 456.51	%
R 33 HA (01)	= -1520.0813	τ 33 HA	<01> =	1216.531	m S
R 33 HA (02)	= 1743.044 -3	τ_33_HA	(02) =	1583.679	In S
R 33 HA (03)	= 772.042 -3	t 33 HA	(03) =	17.097	5
R_33_HA_summe	= 995.006 10 ⁻³				
Zahl der Stütz:	stellen	n	=	45	
quadratisches 1	Mittel der Abweichungen		=	7 996.90	10-6
maximale Abwei	: hung		=	- 20.35	10-3
maximale relat	ive Abweichung		=	+ 119.78	1

Bild 4-32: Berechnete neundimensionale Ausgleichsfunktion der dynamischen Parameter der Kühldose nach den Bildern 4-23 bis 4-25 zur Ermittlung des Verhaltens der unendlich langen, symmetrischen Doppelsäule

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: Säule aus Thyristoren T 2200 N 4400 und Kühldosen AEG 029.076 404 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Messung: Versuch Nr. 02 vom 19. Juli 1984

filename: S2_02 (Kühldose) T2200 (Bauelement)

Approximation des Temperaturverlaufes auf der Anodenseite:

R-t-Wertepärchen in Partialbruchschaltung:

R CA(A) (01) =	-1	906.601	NKVW	t CA(A)	(01)	=		840.024	ms
R CA(A) (82) =	6	063.877	NK-W	t CA(A)	(02)	=	3	312.584	ms
R CA(A) (03) =	7	143.919	NK-W	t CA(A)	(03)	=		16.255	s
R_CA(A) (84) =		161.065	NK-M	t_CA(A)	(04)	=		464.885	s
Summe: R	CA(A) =		11.140	mK/W						

Bewertung der Approximationsgenauigkeit:

Art der Berechnung:	quadratische	App	Approximation		
Zahl der Stützstellen	n	=	68		
quadratisches Mittel der Abweichungen		=	47.336	NK/M	
maximale Abweichung		=	-149.479	µK/W	
maximale relative Abweichung		=	-3.171	%	

Approximation des Temperaturverlaufes auf der Kathodenseite:

R-t-Wertepärchen in Partialbruchschaltung:

R CA(K)	(01)	=	-3	437.149	μK∠W	t CA(K)	(01)	=	1	328.905	ms:
R CA(K)	(82)	=	7	803.134	NK-W	t CA(K)	(02)	=	3	420.597	ms
R CA(K)	(03)	=	5	554.619	NK-W	E CA(K)	(03)	=		18.170	s
R_CA(K)	(04)	=	-	127.281	NK-M	T_CA(K)	(04)	=		274.119	5

Summe: R_CA(K) = 9 793.322 µK/W

Bewertung der Approximationsgenauigkeit:

Art der Berechnung:	sukzessive	Appro	oximation	
Zahl der Stützstellen	n	=	80	
quadratisches Mittel der Abweichungen		=	48.547	pK/W
maximale Abweichung		=	-192.416	µK/W
maximale relative Abweichung		=	49.320	%

<u>Bild 4-33:</u> Berechnete Ausgleichsfunktionen für die Gehäusetemperaturverläufe aus den Bildern 4-27 und 4-28, berechnet durch Anwendung der Gln. (42-8) und (42-10) bei Einhaltung der Nebenbedingung (42-11)
4.3 Verhalten der Halbleiterbauelemente und der Kühlelemente im Säulenverband

Auf der Grundlage der Ergebnisse der Abschnitte 4.1 und 4.2 sollen hier ähnlich wie in Abschnitt 3.3 das Zusammenwirken der Halbleiterbauelemente und der Kühlelemente im Säulenverband untersucht werden. Eine vollständige theoretische Vorausberechnung wird hier nur für die einfache, unendlich lange, symmetrische Säule und für die unendlich lange, symmetrische Doppelsäule mit gleichsinniger thermischer Reihenschaltung durchgeführt. Die Ergebnisse von Abschnitt 3.3.2 haben gezeigt, daß der sich durch die endliche Länge der Säulen ergebende Dimensionierungsgewinn nur sehr klein ist. Die Betrachtungen über die thermische Reihenschaltung zweier Säulen wurden deshalb auf die gleichsinnige thermische Reihenschaltung beschränkt, da Anwendungen der gegensinnigen Gestaltung des Kühlkreislaufes bisher nicht bekannt geworden sind und der erhöhte konstruktive Aufwand solche auch nicht erwarten läßt.

4.3.1 Konventionelles Verfahren

Das konventionelle Verfahren zur Bestimmung des transienten Wärmewiderstandes besteht darin, eine Messung im Originalaufbau nach Abschnitt 4.2.2.1 vorzunehmen und den daraus nach Abschnitt 4.2.2.2 errechneten transienten Wärmewiderstand des Kühlelementes $Z_{thGA}^{*}(t)$ mit dem transienten thermischen Widerstand des Halbleiterbauelementes nach Gl. (41-73) zu addieren:

$$Z_{thJA}^{*}(t) = Z_{thJG}^{*}(t) + Z_{thGA}^{*}(t).$$
 (43-1)

Diese Gleichung liefert richtige Werte, wenn die beiden Einzelterme unter gleichen Bedingungen, d. h., wenn sie z.B. zusammen gemessen wurden. Ist dies nicht der Fall. dann sind die auftretenden Differenzen umso größer, je mehr die Meßverhältnisse differiert haben. Wird in Gl. (43-1). anstelle des Verlaufes $Z_{thJG}^{*}(t)$, der ideale transiente Wärmewiderstand $Z_{thJG}(t)$ nach Gl. (41-76) eingesetzt, so sind die so ermittelten Werte für $Z_{thJA}^{*}(t)$ in jedem Fall zu groß (siehe Abschnitt 4.3.5). 4.3.2 Verhalten der unendlich langen, symmetrischen Säule Mit den Gln. (41-53), (41-62) bzw. (41-69) liegen Gleichungen vor, die das dynamische thermische Verhalten der Halbleiterbauelemente vollständig beschreiben, und mit Gl. (42-1) ist eine solche für das Kühlelement gegeben.

4.3.2.1 Lösung des Gleichungssystems

Sind $P_{J}(p)$ und $T_{A}(p)$ die unabhängigen Variablen des Systems, so können die unbekannten Größen $T_{J}(p)$, $T_{1}(p)$, $T_{2}(p)$, $P_{1}(p)$, $P_{2}(p)$ und $T_{B}(p)$ berechnet werden. Von den drei Gleichungen zur Beschreibung des Verhaltens des Halbleiterbauelementes ist die Verwendung der Gl. (41–53) zum Einsetzen am zweckmäßigsten, da die Y-Parameter am wenigsten "redundant" sind.

Für die Sperrschichttemperatur ergibt sich die Gleichung

$$T_{J}(p) = \frac{\left[(1 - Y_{A22} \cdot Z_{11}) \cdot (1 - Y_{K22} \cdot Z_{22}) - Y_{A22} \cdot Y_{K22} \cdot Z_{12} \cdot Z_{21} \right] \cdot P_{J}(p) - \dots}{(Y_{A11} + Y_{K11}) \left[(1 - Y_{A22} \cdot Z_{11}) \cdot (1 - Y_{K22} \cdot Z_{22}) - Y_{A22} \cdot Y_{K22} \cdot Z_{12} \cdot Z_{21} \right] + \dots}$$

$$\frac{\dots + Y_{A12} \begin{bmatrix} Z_{13}(1-Y_{K22}, Z_{22}) + Y_{K22}, Z_{12}, Z_{23} \end{bmatrix} + \dots}{\dots + (Z_{11}, Z_{22}, Z_{12}, Z_{21}) \cdot (Y_{A12}, Y_{K22} + Y_{A22}, Y_{K12}) - \dots}$$

$$\frac{\dots + Y_{K12} \begin{bmatrix} Z_{23}(1-Y_{A22}, Z_{11}) + Y_{K22}, Z_{13}, Z_{21} \end{bmatrix} \{ \cdot T_{A}(p)}{\dots - Y_{A12}, Y_{K12}, (Z_{12}+Z_{21}) - Y_{A12}^{2}, Z_{11}, Y_{K12}^{2}, Z_{22}}.$$

$$(43-2)$$

Bezeichnet man den Nenner von Gl. (43–2) mit $N_{\mbox{\rm JA}},$ dann kann man für die Gehäusetemperaturen

$$T_{1}(p) = \frac{-\left[Z_{11} \cdot Y_{A12} \cdot (1 - Y_{K22} \cdot Z_{22}) + Z_{12} \cdot (Y_{K12} + Y_{A12} \cdot Y_{K22} \cdot Z_{21})\right] \cdot P_{J}(p) + \dots}{N_{JA}}$$

$$\frac{\dots + \left\{ (Y_{A11} + Y_{K11}) \cdot \left[Z_{13} \cdot (1 - Y_{K22} \cdot Z_{22}) + Y_{K22} \cdot Z_{12} \cdot Z_{23}\right] + \dots}{\dots + Y_{A12} \cdot Y_{K12} \cdot (Z_{11} \cdot Z_{23} - Z_{13} \cdot Z_{21}) + Y_{K12}^{2} \cdot (Z_{12} \cdot Z_{23} - Z_{13} \cdot Z_{22})\right\} \cdot T_{A}(p)}{(43-3)}$$

$$T_{2}(p) = \frac{-\left[Z_{22} \cdot Y_{K12} \cdot (1 - Y_{A22} \cdot Z_{11}) + Z_{21} \cdot (Y_{A12} + Y_{A22} \cdot Y_{K12} \cdot Z_{12})\right] \cdot P_{J}(p) + \dots}{N_{JA}}$$

$$\frac{\dots + \left\{ (Y_{A11} + Y_{K11}) \left[Z_{23} \cdot (1 - Y_{A22} \cdot Z_{11}) + Y_{A22} \cdot Z_{13} \cdot Z_{21}\right] + \dots}{\dots + Y_{A12} \cdot Y_{K12} \cdot (Z_{13} \cdot Z_{22} - Z_{12} \cdot Z_{23}) + Y_{A12}^{2} \cdot (Z_{13} \cdot Z_{21} - Z_{11} \cdot Z_{23})\right\} \cdot T_{A}(p)}{(43-4)}$$

und für die Leistungen

$$P_{1}(p) = \frac{-\left[Y_{A12} \cdot (1 - Y_{K22} \cdot Z_{22}) + Y_{A22} \cdot Y_{K12} \cdot Z_{12} \right] \cdot P_{J}(p) + \dots}{N_{JA}}$$

$$\frac{\dots + \left\{ (Y_{A11} + Y_{K11}) \cdot Y_{A22} \cdot \left[Z_{13} \cdot (1 - Y_{K22} \cdot Z_{22}) + Y_{K22} \cdot Z_{12} \cdot Z_{23} \right] + \dots}{\dots + \left[(Y_{A12}^{2} \cdot Y_{K22} + Y_{K12}^{2} \cdot Y_{A22}) \cdot (Z_{12} \cdot Z_{23} - Z_{13} \cdot Z_{22}) + \dots}{\dots + Y_{A12} \cdot (Y_{A12} \cdot Z_{13} + Y_{K12} \cdot Z_{23}) \right\} \cdot T_{A}(p)}$$

$$P_{2}(p) = \frac{-\left[Y_{K12} \cdot (1 - Y_{A22} \cdot Z_{11}) + Y_{K22} \cdot Y_{A12} \cdot Z_{21} \right] \cdot P_{J}(p) + \dots}{N_{JA}}$$

$$\frac{\dots + \left\{ (Y_{A11}^{2} + Y_{K11}) \cdot Y_{K22} \cdot \left[Z_{23} \cdot (1 - Y_{A22} \cdot Z_{11}) + Y_{A22} \cdot Z_{13} \cdot Z_{21} \right] + \dots \right\}}{\dots + \left[(Y_{K12}^{2} \cdot Y_{A22} + Y_{A12}^{2} \cdot Y_{K22}) \cdot (Z_{13} \cdot Z_{21} - Z_{11} \cdot Z_{23}) + \dots \right]}{\dots + \left[(Y_{K12}^{2} \cdot (Y_{A12} \cdot Z_{13} + Y_{K12} \cdot Z_{23}) \right] \cdot T_{A}(p)}$$

$$(43-6)$$

notieren. Für die Kühlmittelausflußtemperatur T_B gilt

$$\begin{split} \mathsf{T}_{\mathsf{B}}(\mathsf{p}) &= \frac{- \left\{ \begin{array}{c} z_{31} \cdot \left[\begin{array}{c} \mathsf{Y}_{A12} \cdot (1 - \mathsf{Y}_{K22} \cdot \mathsf{Z}_{22} \right) + \begin{array}{c} \mathsf{Y}_{A22} \cdot \operatorname{Y}_{K12} \cdot \mathsf{Z}_{12} \right] + \cdots \right.}{\mathsf{N}_{\mathsf{J}\mathsf{A}}} \\ & \\ \begin{array}{c} \cdots + \left[z_{32} \cdot \left[\begin{array}{c} \mathsf{Y}_{K12} \cdot (1 - \mathsf{Y}_{A22} \cdot \mathsf{Z}_{11} \right) + \begin{array}{c} \mathsf{Y}_{K22} \cdot \mathsf{Y}_{A12} \cdot \mathsf{Z}_{21} \right] \right\} \mathsf{P}_{\mathsf{J}}(\mathsf{p}) + \cdots \\ \\ \cdots + \left\{ \left[\left(\begin{array}{c} \mathsf{Y}_{A11} + \operatorname{Y}_{K11} \right) \cdot \mathsf{Y}_{A22} \cdot \mathsf{Y}_{K22} + \left(\operatorname{Y}_{\mathsf{A}12}^{2} \cdot \mathsf{Y}_{\mathsf{K22}} + \operatorname{Y}_{\mathsf{K}12}^{2} \cdot \mathsf{Y}_{\mathsf{A}22} \right) \right] \cdot |\mathsf{z}| + \cdots \\ \\ \cdots + \left[\left(\begin{array}{c} \mathsf{Y}_{A11} + \operatorname{Y}_{\mathsf{K}11} \right) \cdot \mathsf{Y}_{\mathsf{A22}} + \operatorname{Y}_{\mathsf{A}12}^{2} \right] \cdot \left(z_{23} \cdot z_{31} - z_{11} \cdot z_{33} \right) + \cdots \\ \\ \cdots + \left[\left(\begin{array}{c} \mathsf{Y}_{A11} + \operatorname{Y}_{\mathsf{K}11} \right) \cdot \operatorname{Y}_{\mathsf{K}22} + \operatorname{Y}_{\mathsf{K}12}^{2} \right] \cdot \left(z_{23} \cdot z_{32} - z_{22} \cdot z_{33} \right) + \cdots \\ \\ \end{array} \right] \\ \end{array} \\ \\ \begin{array}{c} \cdots + \left[\left(\begin{array}{c} \mathsf{Y}_{\mathsf{A}11} + \operatorname{Y}_{\mathsf{K}11} \right) \cdot \operatorname{Y}_{\mathsf{K}22} + \operatorname{Y}_{\mathsf{K}12}^{2} \right] \cdot \left(z_{23} \cdot z_{32} - z_{22} \cdot z_{33} \right) + \cdots \\ \\ \end{array} \right] \\ \end{array} \\ \\ \begin{array}{c} \cdots + \left(\begin{array}{c} \mathsf{Y}_{\mathsf{A}12} \cdot \operatorname{Y}_{\mathsf{K}12} \cdot \left(z_{13} \cdot z_{32} + z_{23} \cdot z_{31} - z_{12} \cdot z_{33} - z_{21} \cdot z_{33} \right) + \cdots \\ \end{array} \right] \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} (43 - 7) \end{array}$$

mit

|Z| = det ||Z||, (43-8)

der Determinante von Gl. (42-1). Mit $Z_{12}(p) = Z_{21}(p) = 0$ enthalten die Gleichungen auch die Beziehungen für die unabhängige Kühlung beider Seiten.

4.3.2.2 Implementation des Systemverhaltens

Zur Implementation auf dem Rechner müssen die einzelnen Polynome der Gln. (43-2) bis (43-7) getrennt herausgearbeitet werden, da die auftretenden Rundungsfehler eine direkte Arbeit mit den rationalen Funktionen in den oben genannten Gleichungen ausschließen.

Mit der in den Gln. (41-35) und (41-43) definierten Schreibweise erhält man durch Umwandlung der Gl. (43-2) den Ausdruck

$$T_{J}(p) = \frac{\left[(m_{A} \cdot n \cdot y_{A22} \cdot z_{11})(m_{K} \cdot n \cdot y_{K22} \cdot z_{22}) - y_{A22} \cdot y_{K22} \cdot z_{12} \cdot z_{21}\right] p_{J}(p) + ...}{n_{A} \cdot \left[m_{K} \cdot n \cdot z_{11} - y_{K22}(z_{11} \cdot z_{22} - z_{12} \cdot z_{21})\right] + ...}$$
$$\frac{\dots + \left[n \cdot (m_{A} \cdot z_{23} + m_{K} \cdot z_{13}) + y_{A22} \cdot (z_{13} \cdot z_{21} - z_{11} \cdot z_{23}) + ...\right]}{\dots + n_{K} \cdot \left[m_{A} \cdot n \cdot z_{22} - y_{A22} \cdot (z_{11} \cdot z_{22} - z_{12} \cdot z_{21})\right] + ...}$$
$$\frac{\dots + y_{K22} \cdot (z_{12} \cdot z_{23} - z_{13} \cdot z_{22}) + y_{K11}(m_{A} \cdot n \cdot y_{A22} \cdot z_{11}) - z_{12} - z_{21}\right]}{\dots + n\left[y_{A11} \cdot (m_{K} \cdot n \cdot y_{K22} \cdot z_{22}) + y_{K11}(m_{A} \cdot n \cdot y_{A22} \cdot z_{11}) - z_{12} - z_{21}\right]}{(43-9)}$$

und entsprechende Gleichungen auch für die anderen Unbekannten.

Voraussetzung für diese Gleichungen ist das Vorhandensein gleicher Pole für alle Z-Parameter der Kühldose. Dies vorzuschreiben, hat sich zur Auswertung als zweckmäßig erwiesen und wird durch eine mehrdimensionale Zeitkonstantenzerlegung nach Abschnitt 4.2.3.1 erzwungen. Anderenfalls hat der Nenner der Gl. (43-9) zu viele Nullstellen. X ist das gemeinsame Nennerpolynom aller Z-Parameter der Kühldose.

4.3.2.3 Verhalten der einfachen Säule

Zur Berechnung des Verhaltens der einfachen Säule können die Gln. (43–2) bis (43–7) unmittelbar zur Anwendung kommen. Dazu wird mit $T_{A}(p) = 0$ gerechnet.

Die Bilder 4-34 bis 4-39 zeigen ein durchgerechnetes Beispiel mit dem Übergangsverhalten der Kühldose nach den Bildern 4-23 bis 4-25.

Berechnung des Temperaturverlaufes in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

ZSäu_0 - Kassetten 35/36 - Variante 03 - 18. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 l/h Aufbau: Kühlmittel-Richtung von der Anoden- zur Kathodenseite

File-Namen:	I1115	(Kühldose)	T2200	(Halblei	terbauelement)
Meßstelle:	Anlage	flächen des Kühlele	mentes (heatsink)		
Aufbau:	Anode Kühlmi	(===> Seite 1 K Ltelrichtung von Se	athode <===> Seite 2 ite 1 zu Seite 2		
Volumenstro	m des Ki	ühlmittels	V punkt	-	150.0 1/h
Verlustleis	tungsspi	rung	PJ	=	1513.3 W
mittlere Kü	hlmitte	lzuflußtemperatur	9_6	=	18.1 °C

Graphische Darstellung der gemessenen dynamischen Parameter der Kühldose und ihrer Approximation:

Bild 4-34:Ausgangsdaten (dynamische Parameter der Kühldosen nach den Bildern
4-23 und 4-24) zur Berechnung des Verhaltens der unendlich langen,
symmetrischen Säule mit der sechsdimensionalen Ausgleichsfunktion

Berechnung des Temperaturverlaufes in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

ZSäu_0 - Kassetten 35/36 - Variante 03 - 18. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken) [02. Rugust 1983] Kühlung: 100-mm-Kühldose REG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 l/h Aufbau: Kühlmittel-Richtung von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose) T2200 (Halbleiterbauelement)

Numerische Approximation der dynamischen Parameter der Kühldose:

Berechnung: optimale Approximation mit minimalen guadratischem Fehler

R 11 HA (01) = 11.757 mK/W	t 11 HA (01) =	1 014.908 ms
R 11 HA (82) = - 325.767 µK/W	t 11 HA (02) =	1 267.806 ms
R_11_HA (03) = 2 966.363 µK/W	t 11 HA (03) =	17.211 s
R_11_HA_summe = 14.398 mK/W		
Zahl der Stützstellen	n =	57
quadratisches Mittel der Abweichungen	=	102.71 pK/1
maximale Abweichung	=	+ 215.39 pK/1
maximale relative Abweichung	-	- 5.69 %
R_12_HA (01) = 1 516.572 µK/W	τ_12_HA (01) =	1 014.908 ms
R_12_HA (02) = -1 864.459 µK/W	τ_12_HA (02) =	1 267.806 ms
R_12_HA (03) = 1 964.766 µK/W	t_12_HA (03) =	17.211 5
R_12_HA_summe = 1 616.879 µK/W		
Zahl der Stützstellen	n =	60
quadratisches Mittel der Abweichungen	=	38.80 µK/1
maximale Abweichung	=	- 107.19 pK/l
maximale relative Abweichung	-	- 65.08 %
R_21_HA (01) = - 15.287 mK/W	€_21_HA (01) =	1 014.908 ms
R_21_HR (02) = 17.627 mK/W	$z_{21}HR(02) =$	1 267.806 M3
R_21_HA (03) = 3 625.996 µK/W	t_21_HA (03) =	17.211 5
R_21_HA_summe = 5 966.518 µK/W		
Zahl der Stützstellen	n =	57
quadratisches Mittel der Abweichungen	=	69.63 pK/1
maximale Abweichung		- 166.40 pK/1
maximale relative Abweichung	=	+ 9.48 %

<u>Bild 4-35:</u> Berechnete sechsdimensionale Ausgleichsfunktion der dynamischen Parameter der Kühldose nach den Bildern 4-23 und 4-24 zur Ermittlung des Verhaltens der unendlich langen, symmetrischen Säule

Berechnung des Temperaturverlaufes in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

ZSäu 0 - Kassetten 35/36 - Variante 03 - 18. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 l/h Aufbau: Kühlmittel-Richtung von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose)

T2200 (Halbleiterbauelement)

Numerische Approximation der dynamischen Parameter der Kühldose:

Berechnung: optimale Approximation mit minimalen quadratischem Fehler

R 22 HA (01)	= 11.263 mK/W	t 22 HA	(01) =	1 014.908	m S
R 22 HA (02)	= 2 114.420 µK/W	t 22 HA	(02) =	1 267.806	ms
R 22 HA (03)	= 3 301.751 µK/W	t 22 HA	(03) =	17.211	s
R_22_HA_summe	= 16.679 mK/W				
Zahl der Stütz	stellen	n	=	60	
quadratisches	Mittel der Abweichunge	'n	=	191.27	NK/M
maximale Abwei	chung		=	+ 710.05	NK/W
maximale relat	ive Abweichung		=	+ 72.63	%
R 31 HA (01)	= - 11.698 mK/W	τ 31 HA	(01) =	1 014.908	ms
R 31 HA (02)	= 13.356 mK/W	531 HA	(02) =	1 267.806	ms
R 31 HA (03)	= 4 051.209 µK/W	531 HA	(03) =	17.211	s
R_31_HA_summe	= 5 709.714 μK/W	170 B-8			
Zahl der Stütz	stellen	n	=	57	
quadratisches	Mittel der Abweichunge	'n	=	56.01	NK/W
maximale Abwei	chung		=	- 121.16	NK/W
maximale relat	ive Abweichung		=	+ 63.47	%
R 32 HA (01)	= -9 238.079 µK/W	€ 32 HA	(01) =	1 014.908	In S
R 32 HA (02)	= 12.124 mK/W	t 32 HB	(02) =	1 267.806	m 5-
R 32 HA (03)	= 2 725.785 µK/W	± 32 HB	(03) =	17.211	s
R_32_HA_summe	= 5 611.440 µK/W		0000000-0000000		
Zahl der Stütz	stellen	n	=	60	
quadratisches	Mittel der Abweichunge	m	=	120.54	NK/W
maximale Abwei	chung		=	+ 281.41	pK/W
maximale relat	ive Abweichung		=	+ 344.43	1

<u>Bild 4-36:</u> Berechnete sechsdimensionale Ausgleichsfunktion der dynamischen Parameter der Kühldose nach den Bildern 4-23 und 4-24 zur Ermittlung des Verhaltens der unendlich langen, symmetrischen Säule

Berechnung des Temperaturverlaufes in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

ZSäu 0 - Kassetten 35/36 - Variante 03 - 18. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Aufbau: Kühlmittel-Richtung von der Anoden- zur Kathodenseite

A second se

File-Namen: I1115 (Kühldose)

T2200 (Halbleiterbauelement)

Ersatzschaltbild der unendlich langen Säule in Partialbruchschaltung:

Ι	=	0	R th JA	=		17.719	mK/W								
Ι	=	1	R th JA	=	-	127.679	NK/M	τ	=	1	758.088	NS			
Ι	=	2	R th JA	=	- 1	162.982	nK/W	τ	=	2	619.113	NS			
Ι	=	з	R th JA	=	-5	334.236	pK/W	τ	=	5	654.263	US			
I	=	4	R_th_JA	=	-	330.898	NK/W	τ	=	5	944.188	NS			
I	=	5	R_th_JA	=	-	11.727	NK/W	τ	=	6	676.784	NS			
Ι	=	6	R th JA	=	-	24.683	NK/W	τ	=	9	575.592	NS			
Ι	=	7	R_th_JA	=	-3	811.531	nK/W	τ	=		17.517	m s			
I	=	8	R_th_JA	=	-	28.996	NK/M	τ	=		35.087	m s			
I	=	9	R th JA	=	-	31.504	NKVW	τ	=		47.382	m s			
I	=	10	R_th_JA	=	-	25.270	NK-W	τ	=		49.956	m s			
I	=	11	R_th_JA	=	-	34.692	NK/W	τ	=		52.235	m s			
I	=	12	R th JA	=	-	430.148	pK/W	τ	=		62.275	10.5			
I	=	13	R_th_JA	=	-	338.099	NK/W	τ	=		93.845	m s			
I	=	14	R th JA	=	-1	860.608	nK/W	τ	=		135.900	m s			
I	=	15	R_th_JA	=	-	304.222	NK/W	τ	=		202.336	m s			
I	=	16	R_th_JA	=	-	16.158	NK/W	τ	=		299.050	m S			
I	=	17	R th JA	=	-2	307.352	NK/W	τ	=		558.726	m s			
I	=	18	R_th_JA	=		49.072	NK/W	τ	=	1	255.934	ms	11.923	mHz	166.2 °
I	=	19	R th JA	=	100	164.279	NK/W	τ	=	2	478.594	ms			
I	=	20	R th JA	=	-6	309.181	NK/W	τ	=	6	896.758	ms			
I	=	21	R th JA	=	5	519.178	nK/W	τ	=		16.985	s			
I	=	22	R_th_JA	=	-7	184.916	μΚ/Ψ	τ	=		21.273	s			

<u>Bild 4-37:</u> Numerische Darstellung der Parameter des transienten Wärmewiderstandes, berechnet durch Auswertung des Übergangsverhaltens der Kühldosen (Bilder 4-23 und 4-24)

Berechnung des Temperaturverlaufes in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

ZSãu 0 - Kassetten 35/36 - Variante 03 - 18. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Aufbau: Kühlmittel-Richtung von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose)

T2200 (Halbleiterbauelement)

Graphische Darstellung der thermischen Verhältnisse in dem System:

(mit Darstellung des formalen Anteiles des Halbleiterbauelementes)

<u>Bild 4-38:</u> Graphische Darstellung der thermischen Verhältnisse in einer einfachen, unendlich langen, symmetrischen Säule, berechnet durch Ruswertung des Übergangsverhaltens der Kühldosen (Bilder 4-23 und 4-24)

Berechnung des Temperaturverlaufes in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

ZSäu 0 - Kassetten 35/36 - Variante 03 - 18. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 l/h Aufbau: Kühlmittel-Richtung von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose)

T2200 (Halbleiterbauelement)

Graphische Darstellung der bezogenen Leistungsverläufe:

gespeicherte	Energie	1 m	Thyristor	Q TH [×]	=	10.8	14
gespeicherte	Energie	in	der Kühldose	Q_KD*	=	11.6	J / I
gespeicherte	Energie	je	Thyristorplatz	Q THP*	() = (22.4	J /1

Bild 4-39: Graphische Darstellung der Verläufe der Leistungsflüsse über die Übergänge Bauelement-Kühlelement und in den Kühlmittelkreislauf in einer einfachen, unendlich langen, symmetrischen Säule, berechnet durch Ruswertung des Übergangsverhaltens der Kühldosen (Bilder 4-23 und 4-24) Die Matrix mit dem Übergangsverhalten der Kühldose wird im Programm so vertauscht, daß die Anodenseite Seite 1 entspricht. Das ist die Ursache der Vertauschungen in den Bildern 4-34 bis 4-36.

In Bild 4-37 ist das numerische Ergebnis des transienten thermischen Widerstandes in der prinzipiellen Form

$$Z_{th}(t) = R_0 + \sum_{i=1}^{n} R_i \cdot e^{-t/\tau_i} + \sum_{j=1}^{m} R_j \cdot e^{-t/\tau_j \cdot \cos(\omega_j t + \varphi_j)}$$
(43-10)

dargestellt. Diese Form mit dem Auftreten von gedämpften Schwingungen mag zunächst erstaunen. Die Ursache ist in den Ausgleichsfunktionen des Kühldosenverhaltens zu suchen, die oft auf negative Teilwiderstände führt, die diese Schwingungen anregen können. Die Schwingungen sind aber stark gedämpft und haben so kleine Amplituden, daß sie im Ergebnis nicht als Schwingungen in Erscheinung treten.

In Bild 4-37 treten konjugiert komplexe Nullstellen des Nenners und damit auch solche Schwingungen auf. Die Bilder 4-38 und 4-39 zeigen die graphische Darstellung der Systemverhältnisse.

Sămtliche Temperaturen werden analog zu Gl. (42-7) bezogen dargestellt

$$\vartheta^{*}_{XA(Y)}(t) = \frac{T_{X(Y)}(t) - T_{A}}{P_{J}}$$
 (43-11)

Ähnlich werden die Leistungen in Bild 4-39 auf den Verlustleistungssprung in der Sperrschicht mit

$$P_{X(Y)}^{*}(t) = \frac{P_{X(Y)}(t)}{P_{J}}$$
(43-12)

bzw.

$$\dot{Q}^{*}(t) = \frac{T_{B}(t) - T_{A}}{R_{W} \cdot P_{J}}$$
 (43-13)

bezogen. Zusätzlich zu den Temperaturverläufen zeigt Bild 4–38 den formalen Anteil des Halbleiterbauelementes zum transienten Wärmewiderstand $Z_{thJH}^{\star}(t)$ nach Gl. (41–73). Diesen Verlauf des transienten Wärmewiderstandes des Thyristors würde man auch bei einer Messung mit Kühlverhältnissen, wie sie in der Säule vorliegen, erhalten.

4.3.2.4 Verhalten der Doppelsäule mit gleichsinniger thermischer Reihenschaltung

Bild 3-46 zeigt den hier vorliegenden Aufbau. Die am Kühlmittelzufluß liegende erste Säule zeigt dasselbe Verhalten wie die einfache Säule nach Abschnitt 4.3.1.4, da eine Rückwirkung nicht auftritt. Die zweite Säule wird mit ansteigender Kühlmittelzuflußtemperatur betrieben. Bezeichnet man diese Temperatur mit T_B und die Ausflußtemperatur der zweiten Säule mit T_D, dann kann man z. B. für T₁(p) der zweiten Säule symbolisch

$$T_{J}(p) = \frac{z_{JP}}{N_{JA}} \cdot P_{J}(p) + \frac{z_{JA}}{N_{JA}} \cdot \frac{z_{BA}}{N_{JA}} \cdot P_{J}(p) + T_{A}$$
$$= \frac{z_{JP} \cdot N_{JA} + z_{JA} \cdot z_{BA}}{N_{JA}^{2}} \cdot P_{J}(p) + T_{A}$$
(43-14)

aufschreiben. Hier liegt also ein Nenner mit durchweg doppelten Nullstellen vor. Damit hat das Ergebnis nicht mehr die Struktur von Gl. (43-10), sondern prinzipiell gilt hier

$$T_{J}(t) = T_{0} + \sum_{i=1}^{m} (T_{i} + T_{i}^{*} \cdot t) e^{-t/\tau_{i}} + \sum_{j=1}^{m} (T_{j} + T_{j}^{*} \cdot t) e^{-t/\tau_{j}} \cdot \cos(\omega_{j}t + \varphi_{j}).$$
(43-15)

Die Auswertung solch langer Polynome (immerhin von Grad 40 bis über 50) bereitet aber große Schwierigkeiten. Zur Vereinfachung kann man, und das wurde hier ausgeführt, den Verlauf von $T_B(t)$ mit Hilfe der Gln. (42-8) und (42-10) durch eine wesentlich vereinfachte Approximationsfunktion mit im allgemeinen nur zwei Zeitkonstanten ersetzen. Mit

$$T_{B}^{*}(p) = \frac{\frac{2}{N_{BA}(p)}}{\frac{N_{BA}(p)}{N_{BA}(p)}} \cdot P_{J}(p) + T_{A}$$
(43-16)

erhält man dann für T_{.1}(p)

$$T_{J}(p) = \frac{z_{JP} \cdot N_{BA} + z_{JA} \cdot z_{BA}}{N_{JA} \cdot N_{BA}} \cdot P_{J}(p) + T_{A} \cdot (43-17)$$

Analoge Gleichungen lassen sich für die anderen Temperaturen und die Leistungen aufstellen.

Die Bilder 4-40 bis 4-42 zeigen ein erstelltes Rechenbeispiel auf der Basis der in den Bildern 4-23 bis 4-25 und 4-29 bis 4-32 wiedergegebenen Kühldosenparameter.

Der formale Anteil des Halbleiterbauelementes am transienten Wärmewiderstand liegt bei der zweiten Säule unter dem der ersten Säule. Hier liegen der Erwärmung der Sperrschicht drei Ursachen zugrunde:

- die Eigenerwärmung, ausgedrückt durch den idealen transienten Wärmewiderstand des Halbleiterbauelementes,
- die Gehäusetemperatursteigerung durch die an die Kühldose abgegebene Leistung und
- die Steigerung der Kühlmittelzuflußtemperatur durch die Erwärmung in der ersten Säule.

Die dritte Ursache läßt den formalen Anteil des Halbleiterbauelementes am transienten Wärmewiderstand, wie in Abschnitt 4.3.5 dargestellt, weiter sinken.

Nun könnte man dieser Rechnung entgegenhalten, daß hier gar nicht der kritischste Fall nachgerechnet wurde. Dieser liegt vor, wenn in Säule 1 ein Thyristor mit minimalem thermischen Widerstand und in Säule 2 ein solcher mit maximalem thermischem Widerstand installiert ist. Bild 4-43 zeigt, daß der Einfluß des Wärmewiderstandes des Thyristors auf den Verlauf der Kühlmittelausflußtemperatur vernachlässigbar ist. Der stationäre Endwert ist nur vom Massenstrom M des Kühlmittels abhängig und wird sowieso nicht beeinflußt.

Für den Thyristor in Säule 1 wurde ein thermischer Widerstand von $R_{thJC} = 6,4$ mK/W (anodenseitig: 12,218 mK/W, kathodenseitig: 13,440 mK/W) angenommen und mit unveränderten thermischen Kapazitäten und Materialwiderständen, aber verringerten Kontaktwiderständen, gerechnet. Der Einfluß der Streuungen des Verhal-

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSau 0 - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h

Aufbau: Doppelsäule mit gleichsinniger thermischer Reihenschaltung Kühlmittel-Richtung in Säule 1 von der Kathoden- zur Anodenseite Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite

File-Namen: Ill15 (Kühldose)

T2200 (Halbleiterbauelement)

Thermisches Ersatzschaltbild der zweiten Säule in Partialbruchschaltung:

1	=	ø	R th JA2	=		23.467	mK/W									
I	\approx	1	R th JA2	=	-	127.679	NK/W	τ	\equiv	1	758.088	NS				
I	=	2	R th JA2	=	-1	162.982	nK/W	τ.	=	2	619.113	US.				
I	=	3	R th JA2	=	-6	447.991	pK-W	τ.	=	5	654.262	NS.				
1	=	4	R th JA2	=	-	330.899	pK/W	τ	=	5	944.189	NS				
I	=	5	R th JA2	=	-	11.727	pK/W	τ	=	6	676.784	NS				
I	=	6	R th JA2	=	-	24.683	NK/W	τ	=	9	575.592	NE				
I	=	7	R th JA2	=	-3	811.544	nK/W	τ	=		17.517	m S				
I	=	8	R th JA2	=	-	29.000	NK/W	τ	=		35.087	m s				
I	=	9	R th JA2	=	-	33.295	NK-W	τ	=		47.422	m s				
I	π	10	R th JA2	=	-	24,985	NK-W	T,	=		50.281	m s				
I	=	11	R th JA2	=	-	35.533	pK/W	τ	=		52.362	m s				
1	=	12	R th JA2	=	-	429.811	pK/W	τ	=		62.369	ms.				
I	=	13	R th JA2	=	-	337.732	PKYM	τ	=		94.127	tii ≲				
I	=	14	R th JA2	=	-3	833.535	nK/W	τ.	=		137.332	$m \le$				
I	=	15	R th JA2	=	-	312.047	NK-W	T.	=		205.841	$\mathfrak{m} \cong$				
1	=	16	R th JA2	=	-	13.711	NK/W	τ	=		304.400	m≤				
I	=	17	R th JA2	=	-2	345.054	NK/W	τ	=		564.176	m S				
1	=	18	R th JA2	=		512.566	NK/W	τ	=	1	340.981	10 ≲				
I	=	19	R th JA2	=	1	453.741	NK-W	τ	=	1	946.455	m s	7.404	mHz	228.5	9
1	=	20	R th JA2	=	-	22.198	NK/W	τ	=	2	177.017	$m \equiv$				
I	=	21	R th JA2	=	-5	073.800	pK/W	τ	=	6	862.746	ms				
I	-	22	R_th_JA2	=		69.088	NK/W	t,	=		16.775	5				
1	=	23	R_th_JA2	=		58.840	mK/W	τ	=		19.303	5				
I	=	24	R th JA2	=	-	72.764	mK/W	τ	=		21.166	5				

Bild 4-48: Numerische Darstellung der Parameter des transienten Wärmewiderstandes, berechnet durch Auswertung des Übergangsverhaltens der Kühldosen (Bilder 4-23 bis 4-25)

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSau_0 - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Aufbau: Doppelsäule mit aleichsinniger thermischer Reihenschaltung

Ifbau: Doppelsäule mit gleichsinniger thermischer Reihenschaltung Kühlmittel-Richtung in Säule 1 von der Kathoden- zur Anodenseite Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose) T2208 (Halbleiterbauelement)

Graphische Darstellung der thermischen Verhältnisse in dem System:

(mit Darstellung des formalen Anteiles des Halbleiterbauelementes)

Bild 4-41: Graphische Darstellung der thermischen Verhaltnisse in einer unendlich langen, symmetrischen Doppelsäule, berechnet durch Auswertung des Übergangsverhaltens der Kühldosen (Bilder 4-23 bis 4-25)

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSäu 0 - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 829.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Aufbau: Doppelsäule mit gleichsinniger thermischer Reihenschaltung

Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose)

T2200 (Halbleiterbauelement)

Graphische Darstellung der bezogenen Leistungsverläufe:

gespeicherte Energie im Thyristor (2. Säule)0_TH*=15.6J/Wgespeicherte Energie in der Kühldose (2. Säule)0_KD*=28.4J/Wgespeicherte Energie je Thyristorplatz (2. Säule)0_THP*=44.0J/W

Bild 4-42: Graphische Darstellung der Verläufe der Leistungsflüsse über die Übergänge Bauelement-Kühlelement und in den Kühlmittelkreislauf in einer unendlich langen, simmetrischen Doppelsäule, berechnet durch Ruswertung des Übergangsverhaltens der Kühldosen (Bilder 4-23 bis 4-25) 10

Berlin, den 15. November 1985

Berechnung des Temperaturverlaufes in der Sperrschicht von in Doppelsäulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

DSau_0-mod - Kassetten 67/68 - Variante 02 - 15. September 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [Minimum von R_th] Kühlung: 100-mm-Kühldose AEG 029.076 404 Nr. 2 Messung 13.08.85/04.10.85 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Aufbau: Doppelsäule mit gleichsinniger thermischer Reihenschaltung

Kühlmittel-Richtung in Säule 1 von der Kathoden- zur Anodenseite Kühlmittel-Richtung in Säule 2 von der Anoden- zur Kathodenseite

File-Namen: I1115 (Kühldose)

B2200/T2200 (Halbleiterbauelemente)

Graphische Darstellung der thermischen Verhältnisse in dem System:

(mit Darstellung des formalen Anteiles des Halbleiterbauelementes)

<u>Bild 4-431</u> Graphische Darstellung der thermischen Verhaltnisse in einer unerzlich langen Doppelsaule, deren Saule 1 mit Thuristoren mit ihritigien und deren Saule 2 mit Thuristoren mit ma imglen thermischer Nigerstanden bestückt ist isonstige Daten mit Fild 4-41.

tens der Kühldose wurde nicht nachgerechnet, dürfte aber ebenfalls vernachlässigbar sein.

4.3.3 Auswertung der Messungen im Originalaufbau

Betrachtet man das Halbleiterbauelement als thermisches Dreitor, so läßt sich der Verlauf der Sperrschichttemperatur aus der Summe der Einflüsse von allen Toren bestimmen. Dazu wird eine Messung nach Abschnitt 4.2.2.1 durchgeführt, und aus den so ermittelten Verläufen der Gehäusetemperaturen und der Höhe des Leistungssprunges läßt sich der transiente Wärmewiderstand des Gesamtsystems berechnen. Der Vorteil dieses Verfahrens ist, daß es unabhängig von den Eigenschaften der Kühlelemente anwendbar ist, d. h. es funktioniert sowohl bei abhängigen Kühleinrichtungen (z. B. Kühldosen, Siedekühlung) als auch bei unabhängigen Kühleinrichtungen ohne Schwierigkeiten.

Der Nachteil dieser Vorgehensweise soll aber nicht verschwiegen werden. Im allgemeinen interessiert der schlechteste Verlauf des transienten Widerstandes, d. h. die dabei auftretenden Höchstwerte. Das zur Messung eingesetzte Halbleiterbauelement weist aber im allgemeinen diese Höchstwerte nicht auf, meist sind die konkreten thermischen Widerstände überhaupt nicht bekannt. Niedrigere thermische Widerstände des Halbleiterbauelementes bedingen kleinere thermische Zeitkonstanten und damit eine schnellere Erwärmung der Kühleinrichtung gegenüber dem Fall einer Messung mit einem Halbleiterbauelement mit maximalen Wärmewiderständen.

Werden jetzt die Meßergebnisse mit der schnelleren Erwärmung mit dem thermischen Ersatzschaltbild des schlechtesten Halbleiterbauelementes in Zusammenhang gebracht, so ergeben sich partiell zu hohe Werte für den transienten Wärmewiderstand. Ausdruck für diesen Widerspruch ist das scheinbare zeitweilige Auftreten eines Leistungsflusses in negativer Richtung über das Gehäuse des Halbleiterbauelementes nach Bild 4-49. Entsprechend Gl. (41-69) können die interessierenden Sperschichttemperatur- und Leistungsverläufe nach dem Superpositionsgesetz aus der Summe, der von den drei Ursachen (Leistungssprung und Gehäusetemperaturverläufe auf der Anoden- und der Kathodenseite) hervorgerufenen Wirkungen, gebildet werden. Das Verhalten des Halbleiterbauelementes wird dabei als linear vorausgesetzt (siehe Abschnitt 4.1.1.3).

4.3.3.1 Wirkung des Leistungssprunges

Die Wirkung des Leistungssprunges ist in Abschnitt 4.1.5.2 untersucht worden. Mit $P_J(p) = \frac{1}{p} \cdot P_J$ ergibt sich nach Bezug auf P_J für die interessierenden Größen

$$\frac{T_{J}(t)}{P_{J}}\Big|_{P_{J}} = \mathscr{L}^{-1}\left\{\frac{H_{11}(p)}{p}\right\}$$
(43-18)

$$\frac{P_{G(A)}(t)}{P_{J}}\Big|_{P_{J}} = \mathscr{L}^{-1}\left\{\frac{H_{21}(p)}{p}\right\}$$
(43-19)

$$\frac{P_{G(K)}(t)}{P_{J}}\Big|_{P_{J}} = \mathcal{S}^{-1}\left\{\frac{H_{31}(p)}{p}\right\}.$$
(43-20)

4.3.3.2 Wirkung der Gehäusetemperaturverläufe

Hier liegen gemessene Temperaturverläufe vor, deren Einfluß zu untersuchen ist. Dazu kann der Duhamel'sche Integralsatz [47, 59] Anwendung finden.

Zunächst berechnet man die Wirkung im System, wenn die eingeprägte Ursache gleich dem Einheitssprung $\epsilon(t)$ ist. Hier gilt für einen beliebigen Parameter der H-Matrix

$$h(t) = S^{-1} \left\{ \frac{H(p)}{p} \right\}$$
 (43-21)

Im Zeitbereich läßt sich allgemein schreiben

$$h(t) = H_{-1} \cdot \delta(t) + H_0 \cdot \epsilon(t) + \sum_{j=1}^{n} H_j (1 - e^{-t/\gamma j}) (43 - 22)$$

Dabei treten Einheitssprung ϵ (t) und Dirac-Impuls δ (t) nur bei den Parametern H₂₂(p) und H₃₃(p) auf, der Dirac-Impuls auch nur im Fall "junction-case".

Der Duhamel'sche Integralsatz liefert die Lösung

$$b(t) = h(t) \cdot a(0) + \int_{0}^{t} h(t - \zeta) \cdot a'(\zeta) \cdot d\zeta,$$
 (43-23)

wobei a(t) die Ursache und b(t) die erzielte Wirkung ist. Das hier vorliegende Faltungsintegral ist numerisch nur aufwendig auszuwerten. Deshalb ist es günstig, für den punktweise gegebenen Temperaturverlauf a(t) eine geeignete Ausgleichskurve zu errechnen. Dies geschieht nach Abschnitt 4.2.3.2, wobei darauf zu achten ist, daß für den Fall des Auftretens des Dirac-Impulses in der Sprungantwort nach Gl. (43-22), die erste Ableitung bei t = 0 mit Null festgelegt werden muß (Ausgleichsrechnung mit Nebenbedingung). Anderenfalls tritt bei t = 0 ein Leistungssprung am Gehäuse auf, was natürlich physikalisch unsinnig ist.

Da in allen hier vorliegenden Fällen a(t=0) = 0 ist, liefert Gl. (43-23) mit Gl. (42-8) für a(t) die Lösung

$$\begin{split} \mathsf{b}(\mathsf{t}) &= \sum_{i=1}^{m} \mathsf{R}_{i} \left[\mathsf{H}_{0} + \left(\frac{\mathsf{H}_{-1}}{\tau_{i}} - \mathsf{H}_{0} \right) \cdot \mathsf{e}^{-\mathsf{t}/\tau_{i}} \right] + \\ &+ \left(\sum_{j=1}^{n} \mathsf{H}_{j} \right) \cdot \sum_{i=1}^{m} \mathsf{R}_{i} \cdot \left(1 - \mathsf{e}^{-\mathsf{t}/\tau_{i}} \right) - \\ &- \sum_{j=1}^{n} \left\{ \gamma_{j} \cdot \mathsf{H}_{j} \cdot \left[\sum_{\substack{i=1\\\tau_{i}\neq\gamma_{j}}}^{m} \frac{\mathsf{R}_{i}}{\tau_{i}-\gamma_{j}} \left(\mathsf{e}^{-\mathsf{t}/\tau_{i}} - \mathsf{e}^{-\mathsf{t}/\gamma_{j}} \right) \right] \right\} - \end{split}$$

$$-t \cdot \left[\sum_{i=1}^{m} \frac{R_i}{\tau_i}\right] \cdot \left[\sum_{j=1}^{n} H_j \cdot e^{-t/\gamma_j}\right].$$
(43-24)
$$\widetilde{fur \tau_i} = \gamma_j$$

Die auf den ersten Blick sehr aufwendige Lösung wird wesentlich einfacher, wenn man bedenkt, daß der Fall $\tau_i = \gamma_j$ praktisch auszuschließen ist und $\sum_{i=1}^{m} \frac{R_i}{\tau_i}$ bei Auftreten von H₋₁ definitionsgemäß verschwindet.

4.3.3.3 Lösung und Rechenbeispiel

Die Gesamtlösung erhält man durch Überlagerung (d. h. Addition) der sich aus den einzelnen Wirkungen ergebenden Reaktionen. Da alle H-Parameter gleiche Pole aufweisen, bleibt die Zahl der auftretenden Zeitkonstanten beschränkt.

Die Bilder 4-44 bis 4-49 zeigen ein ausführlich dargestelltes Beispiel mit den numerischen H-Parametern des Thyristors, dessen Einzelbauelemente Bild 4-14 entnommen wurden.

Als Ausgangsbasis der Rechnung zeigen die Bilder 4-27 und 4-28 die auf den Verlustleistungssprung bezogenen, gemessenen anoden- und kathodenseitigen Temperaturverläufe und Bild 4-33 die daraus berechneten Ausgleichsfunktionen. In der Graphik auf Bild 4-28 sind zugleich die theoretischen Höchstwerte des Temperaturverlaufes auf der Kathoden- und Anodenseite des Thyristorgehäuses aufgetragen. Sie wurden mit Hilfe der Gleichungen

$$\vartheta^{*}_{CA(A) \circ K}(t) = \mathscr{L}^{-1} \left\{ \frac{Z_{21}(p)}{p} \right\}$$
(43-25)
$$\vartheta^{*}_{CA(K) \circ K}(t) = \mathscr{L}^{-1} \left\{ \frac{Z_{31}(p)}{p} \right\}$$
(43-26)

aus den Z-Parametern des Thyristors ermittelt. Man sieht, daß die gemessenen Temperaturverläufe über diesen theoretischen Grenzwerten liegen. Die Ursache für diesen Effekt wurde bereits in der Einführung zu Abschnitt 4.3.3 (S. 205) erläutert. Eine weitere Fehlerquelle kann auch in der verwendeten Meßeinrichtung gesucht werden, da die Meßzeitpunkte im Bereich kurzer Zeiten nicht sehr genau definiert sind. Um diese Effekte etwas auszugleichen, wurden die Punkte, mit deren Hilfe die Ausgleichsfunktionen errechnet wurden, so festgelegt, daß sie auf keinen Fall über den theoretischen

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02.08.83] Meßstelle: Anlageflächen des Thyristors (case) filename: T2200 (Bauelement)

Parameter des idealen transienten Wärmewiderstandes [H 11]:

R th JC	(01)	=		127.679	pK-W	
R th JC	(82)	=	1	162.982	nK/W	
R th JC	(03)	-	2	781.251	pK/W	
R th JC	(84)	=		338.895	NK/W	
R th JC	(05)	=		11.728	NK/W	
R th JC	(06)	=		24.683	NK/W	
R th JC	(87)	=	3	811.530	nK/W	
R th JC	(08)	=		29.352	NKZW	
R th JC	(09)	=		70.785	NK-W	
R th JC	(18)	-		403.039	NK-W	
R th JC	(11)	=		364.589	NK-N	
R th JC	(12)	=	6	673.139	nK/W	
R th JC	(13)	=		754.748	NK-W	
R th JC	(14)	=		93.661	NK-W	
R_th_JC	(15)	=	4	758.410	µK∕₩	
Summe:	R th JC	=	6	981.218	NKZW	

t th JC	(02)	-	2	619,113	NS	
t th JC	(03)	=	5	654.266	NS	
t th JC	(04)	=	5	944.184	US	
t th JC	(05)	=	6	676.787	NS	
t th JC	(86)	=	9	575.593	105	
t th JC	(87)	=		17.517	$m \le$	
t th JC	(08)	=		35.114	115	
t th JC	(89)	=		48.926	In S	
t th JC	(10)	=		60.846	MS.	
t th JC	(11)	=		88.322	tir S	
t th JC	(12)	=		137.370	In s	
t th JC	(13)	=		249.581	ns.	
t th JC	(14)	=		540.259	In S	
t th JC	(15)	=	1	205.441	m s	

t th JC (01) = 1 758.088 µs

Parameter der Sprungantwort (anodenseitig) [H 12 = H 21]:

H 12 JC (0	=		20.600		¥ 12 JC	(01)	=	1	758.088	NS
H 12 JC (0	(2) =	2	868.764	10-15	¥ 12 JC	(82)	=	2	619.113	NS
H 12 JC (8	(3) =	1	203.709	10-9	¥ 12 JC	(83)	=	5	654.266	113
H 12 JC (0	(4) =	-1	669.892	-9	¥ 12 JC	(84)	=	5	944.184	NS
H 12 JC (0	(5) =	-	36.708	10-9	¥ 12 JC	(05)	=	6	676.787	NS
H 12 JC (0	(6) =	-	253.178	10-9	¥ 12 JC	(86)	=	9	575.593	NS
H 12 JC (0	(7) =	-2	078.740	-9	¥ 12 JC	(87)	=		17.517	m s
H 12 JC (0	= (8)	4	288.226	···-6	¥ 12 JC	(88)	=		35.114	015
H 12 JC (0	(9) =	-4	761.208	10-5	¥ 12 JC	(89)	=		48.926	10.5
H 12 JC (1	Ø) =	-	57.272	-3	¥ 12 JC	(18)	=		60.846	10.3
H 12 JC (1	1) =		152.976	3	¥ 12 JC	(11)	=		88.322	m s
H 12 JC (1	2> =	5	293.585	10-6	8 12 JC	(12)	=		137.370	m s
H 12 JC (1	3) =	-	419.021	10-3	¥ 12 JC	(13)	=		249.581	ns.
H 12 JC (1	4) =		83.720	-3	¥ 12 JC	(14)	=		540.259	n:s
H_12_JC (1	5) =		807.957	10-3	¥_12_JC	(15)	=	1	205.441	N/S
Summe: H_1	2_JC =		573.171	10 ⁻³						

Bild 4-44: Sprungantwort der H-Parameter des Thyristors nach Bild 4-14

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02.08.83] Meßstelle: Anlageflächen des Thyristors (case) filename: T2200 (Bauelement)

Parameter der Sprungantwort (kathodenseitig) [H 13 = H 31]:

H 13 JC	(01)	=		392.391	10-12
H_13_JC	(82)	=	(π)	17.195	10-9
H 13 JC	(03)	=		143.303	10-12
H_13_JC	(04)	=		33.020	10-6
H 13 JC	(05)	=	-	77.278	·0-6
H 13 JC	(06)	=		132.222	10-6
H 13 JC	(87)	=	-	202.557	10-6
H 13 JC	(08)	=	-	356.704	10-6
H 13 JC	(89)	=	-	16.911	10-3
H 13 JC	(10)	=		28.059	10-3
H 13 JC	(11)	=		27.755	-3
H 13 JC	(12)	=	-	36.267	10-3
H 13 JC	(13)	=	~	114.307	10-3
H 13 JC	(14)	=	-	137.981	3
H_13_JC	(15)	=		676.952	10-3
Summe: 1	H_13_JC	=		426.829	10 ⁻³

¥ 13 JC	(01)	=	1	758.088	US
8 13 JC	(02)	=	2	619.113	NS
¥ 13 JC	(83)	=	5	654.266	NS
¥ 13 JC	(84)	=	5	944.184	NS
x 13 JC	(05)	=	6	676.787	US
¥ 13 JC	(86)	=	9	575.593	NS
8 13 JC	(07)	=		17.517	ms.
x 13 JC	(08)	=		35.114	ms
x 13 JC	(09)	=		48.926	ms
x 13 JC	(18)	=		60.846	n:s
x 13 JC	(11)	=		88.322	ms
x 13 JC	(12)	=		137.370	ms
x 13 JC	(13)	=		249.581	ms
x 13 JC	(14)	=		540.259	ms
8_13_JC	(15)	=	1	285.441	m s

Parameter der Sprungantwort (anodenseitig) [H 22]:

D 22 JC		=	-	73.918	S(t)	×	W-K						
S 22 JC		=	-	557.165	s(t)	*	W~K						
H 22 JC ((01)	=	8	928.786	nW/K			¥ 22 JC	(01)	=	1	758.088	NS
H 22 JC	(82)	=	-	28.711	NW/K			¥ 22 JC	(82)	=	2	619.113	µs.
H 22 JC	(83)	=	3	445.728	NW-K			8 22 JC	(83)	=	5	654.266	NS.
H 22 JC	(04)	=	-4	494.009	NW/K			¥ 22 JC	(84)	=	5	944.184	NS
H 22 JC	(05)	=	1	619.248	NW/K			¥ 22 JC	(85)	=	6	676.787	NS
H_22_JC	(86)	=	-	127.969	NW-K			8 22 JC	(86)	=	9	575.593	NS
H 22 JC	(87)	=		15.256	NW/K			¥ 22 JC	(07)	=		17.517	n's
H_22_JC	(88)	=		624.159	mW/K			¥ 22 JC	(88)	=		35.114	m s
H_22_JC	(09)	=		320.269	mW/K			8 22 JC	(09)	=		48.926	m≲
H_22 JC	(10)	=	8	138.273	mW/K			8 22 JC	(18)	=		60.846	m s
H_22_JC ((11)	=		64.187	W/K			8 22 JC	(11)	=		88.322	m s
H_22_JC	(12)	=	4	199.230	mW/K			¥ 22 JC	(12)	=		137.370	ms
H_22_JC	(13)	=		232.632	W-K			¥ 22 JC	(13)	=		249.581	ni S
H_22_JC ((14)	=		74.833	W/K			¥ 22 JC	(14)	=		540.259	In S
H_22_JC	(15)	=		137.188	₩×K			¥_22_1C	(15)	=	1	205.441	Ri S
Summe: H	22 JC	=		522.122	W/K								

Bild 4-45: Sprungantwort der H-Parameter des Thyristors nach Bild 4-14

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02.08.83] Meßstelle: Anlageflächen des Thyristors (case) filename: T2200 (Bauelement)

Parameter der Durchgangs-Sprungantwort [H 23=H 32]:

H_23_JC (0	= (15		63.308	aW/K	¥ 23 JC	(01)	=	1	758.088	NS
H 23 JC (8	32) =	-	42.416	FW/K	¥ 23 JC	(02)		2	619.113	NS
H 23 JC (8	3) =		61.206	nW/K	¥ 23 JC	(03)	=	5	654.266	NS
H 23 JC (8	(4) =	-	166.638	nW/K	¥ 23 JC	(84)	=	5	944.184	115
H 23 JC (0	35) =		241.878	nW/K	¥ 23 JC	(05)	=	6	676.787	NS
H 23 JC (0	(6) =	-1	356.212	nW/K	¥ 23 JC	(06)	=	9	575.593	NS
H 23 JC (0	(7) =		110.471	NW-K	x 23 JC	(87)			17.517	ms
H_23 JC (0	= (8)	-	52.017	mW/K	¥ 23 JC	(08)	=		35.114	ms
H 23 JC (8	9) =	1	137.465	mW/K	x 23 JC	(09)	=		48.926	ms
H 23 JC (1	.0) =	-3	987.181	mW~K	¥ 23 JC	(10)	=		60.846	In S
H 23 JC (1	1) =		11.646	W/K	x 23 JC	(11)	=		88.322	ms
H_23_JC (1	2) =	-	28.770	W/K	¥ 23 JC	(12)	=		137.370	ms
H_23_JC (1	3) =		63.461	W-K	¥ 23 JC	(13)	=		249.581	ms
H_23_JC (1	4) =	-	123.335	W-K	¥ 23 JC	(14)	=		548.259	m 5
H_23_JC (1	5) =		114.944	W/K	¥_23_JC	(15)	=	1	205.441	In S
Summe: H 2	3 JC =		35.043	W/K						

Parameter der Sprungantwort (kathodenseitig) [H 33]:

D 33 JC	=	-	73.918	5(2)	*	W~K						
S_33_JC	=	-	557.165	0(1)	*	W-K						
H 33 JC (0	1) =		22.408	NW/K			¥ 33 JC	(01)		1	758.088	µs.
H 33 JC (0	2) =	-	40.323	NW/K			8 33 JC	(02)	=	2	619.113	NS
H_33_JC (0	3) =		338.693	NW-K			8 33 JC	(83)	=	5	654.266	US
H_33_JC (0	4) =	-	223.764	NW/K			8 33 JC	(84)	=	5	944.184	NS
H_33_JC (0	5) =		352.478	pW/K			8 33 JC	(85)	=	6	676.787	µs.
H_33_JC (0)	6) =		781.916	NW/K			8 33 JC	(06)	=	9	575.593	ps.
H_33_JC (0)	7) =		10.754	mW/K			¥_33_JC	(07)	=		17.517	ns.
H_33_JC (0	e) =	4	324.864	NW/K			8 33 JC	(08)	=		35.114	10 5
H_33_JC (0	9) =	4	040.007	mW/K			¥ 33 JC	(09)	=		48.926	m s
H 33 JC (1)	= (9	1	953.419	mW/K			x 33 JC	(10)	=		60.846	to S
H_33_JC (1	1) =	2	112.915	mW/K			x_33_1C	(11)	=		88.322	th 5
H_33_JC (1)	2) =		197.108	W/K			¥_33_JC	(12)	=		137.370	to S
H_33_JC (1	3) =		17.312	W/K			8_33_JC	(13)			249.581	$10 \pm$
H_33_JC (1	4) =		203.273	W/K			¥_33_JC	(14)	=		540.259	ħi ≦
H_33_JC (1)	5) =		96.306	W~K			8_33_1C	(15)		1	205.441	m S
Summe: H_3	3_JC =		522,122	W≻K								

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02.08.83] Kühlung: Säule aus Thyristoren T 2200 N 4400 und Kühldosen AEG 029.076 404 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 l/h Messung: Versuch Nr. 02 vom 19. Juli 1984

filename: S2_02 (Kühldose) T2200 (Bauelement)

Parameter der Antwort des Systems an der Sperrschicht:

R th JA (01)	=	127.679	NKYW	t th JA	(01)	=	1	758.088	NB
R th JA (02)	= 1	162.982	nK/W	t th JA	(82)	=	2	619.113	NS
R th JA (03)	= 2	2 781.333	pK/W	t th JA	(83)	=	5	654.266	ps
R th JA (04)	=	330.895	NK-W	tthJA	(04)	=	5	944.184	NS
R th JA (05)	=	11.728	NK/W	thJA	(05)	=	6	676.787	NS
R th JA (06)	=	24.683	NK-W	t th JA	(86)	=	9	575.593	NS
R th JA (07)	= 3	8 811.449	nK/W	t th JA	(07)	=		17.517	ms.
R th JA (08)	=	29.363	NK-W	c th JA	(08)	=		35.114	ms
R th JA (09)	=	70.705	NK-W	t th JA	(89)	=		48.926	ms
R th JA (10)	=	402.686	NK-W	t th JA	(10)	=		68.846	ms
R th JA (11)	=	367.781	NK-W	t th JA	(11)	=		88.322	ms
R th JA (12)	= 5	5 940.631	nK/W	t th JA	(12)	=		137.378	ms
R th JA (13)	=	658.955	WK-W	E th JA	(13)	=		249.581	ms
R th JA (14)	=	162.812	NKZW	E th JA	(14)	=		540.259	ms
R th JA (15)	= 4	011.358	WK-W	c th JA	(15)	=		840.024	ms
R th JA (16)	=	15.863	mKZW	t th JA	(16)	=	1	205.441	ms
R th JA (17)	= -	- 23.599	mKZW	E th JA	(17)	=	1	328.905	115
R th JR (18)	= (5 198.466	NKVW	t th JA	(18)	=	3	312.584	m s
R th JA (19)	= 5	5 897.480	NK-W	thJA	(19)	=	3	442.630	10.5
R th JA (20)	= .	4 535.609	NK-W	t th JA	(20)	=		16.255	s
R th JA (21)	= 3	2 596.443	NKYW	t th JA	(21)	=		18.189	5
R th JA (22)	= .	- 54.138	UK/W	t th JA	(22)	=		275.885	5
R_th_JA (23)	= .	92.639	NK-W	t_th_JA	(23)	=		464.885	3
Summe: R th JA	-	17.546	mK Z M						

<u>Bild 4-47:</u> Numerische Darstellung der Parameter des transienten Wärmewiderstandes, berechnet durch Auswertung der Messung in der Säule (Bilder 4-27, 4-28 und 4-33)

206

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: Säule aus Thyristoren T 2200 N 4400 und Kühldosen AEG 029.076 404 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Messung: Versuch Nr. 02 vom 19. Juli 1984

filename: S2_02 (Kühldose) T2200 (Bauelement)

Graphische Darstellung der Verhältnisse in dem System:

Bild 4-48: Graphische Barstellung der thermischen Verhältnisse in dem und an dem Thyristor bei einem Verlustleistungssprung, berechnet durch Auswertung der Messung in der Säule (Bilder 4-27, 4-28 und 4-30)

Berechnung des Temperaturverlaufes in der Sperrschicht von Halbleiterbauelementen in Scheibenzellenbauweise

Berechnung mit dem Duhamel'schen Integralsatz bei Vorgabe der Temperaturverläufe an der Anode und der Kathode

ZDIth0 - Kassetten 43/44 - Variante 03 - 30. Juli 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken) [02. August 1983] Kühlung: Säule aus Thyristoren T 2200 N 4400 und Kühldosen REG 029.076 404 Kühlmittel: Wasser mit einem Volumenstrom von 150.0 1/h Messung: Versuch Nr. 02 vom 19. Juli 1984

filename: S2_02 (Kühldose) T2200 (Bauelement)

Graphische Darstellung des bezogenen Leistungsverlaufes:

<u>Bild 4-49:</u> Graphische Darstellung der Verläufe der Leistungsflüsse über die Übergänge Bauelement-Kühlelement und in den Kühlmittelkreislauf, berechnet durch Ruswertung der Messung in der Säule (Bilder 4-27, 4-28 und 4-33) Höchstwerten liegen. Trotzdem läßt es sich nicht vermeiden, daß die damit berechneten Ausgleichsfunktionen teilweise über den theoretischen Höchstwerten liegen.

Die Eigenschaften des Thyristors zeigen die Bilder 4-14 und 4-44 bis 4-46, und schließlich ist in Bild 4-47 das numerische (bezogene) Ergebnis für den Sperrschichttemperaturverlauf dargestellt.

Da hier, wegen des Ansatzes (42–8) für die Gehäusetemperaturverläufe, keine Schwingungen im Ergebnis auftreten können, wurde das numer<u>i</u>sche Ergebnis in der Form

$$\vartheta_{JA}^{*}(t) = \sum_{i=1}^{n} R_{i} \cdot (1 - e^{-t/\tau_{i}})$$
 (43-27)

dargestellt.

Weitere graphische Darstellungen sind in den Bildern 4-48 und 4-49 zu sehen. Dabei zeigt Bild 4-48 die im System auftretenden bezogenen Temperaturverläufe. Die Wirkung des Leistungssprunges (idealer thermischer Widerstand des Thyristors) und die Wirkung des Gehäusetemperaturverlaufes auf die Sperrschichttemperatur sind getrennt aufgetragen. Beide Anteile addiert liefern den gesamten bezogenen Sperrschichttemperaturverlauf des Systems (transienter thermischer Widerstand).

Zusätzlich zeigt Bild 4-48 den minimalen Anteil des Thyristors zum thermischen Widerstand (siehe Abschnitt 4.1.5.3) und den formalen Anteil desselben. Daß der formale Anteil teilweise unter dem minimalen Anteil liegt, ist auf die oben erwähnte Überschreitung der theoretischen Grenzwerte der Gehäusetemperaturen zurückzuführen.

Zum Abschluß zeigt Bild 4-49 die berechneten Leistungsverläufe und die gemessene, bezogene Kühlmittelausflußtemperatur mit den gespeicherten Energiemengen. Die hier berechneten, partiell negativen Leistungsflüsse sind ebenfalls auf das zu schnelle Ansteigen der Gehäusetemperaturen zurückzuführen, wie bereits oben erläutert wurde.

4.3.4 Berechnung der gespeicherten Energie

Interessiert man sich für die im Halbleiterbauelement und in dem Kühlelement gespeicherten Wärmemenge, so kann man diese aus den Ansätzen

$$P_{G} = \sum_{i=1}^{n} P_{Gi} \cdot (1 - e^{-t/\tau_{Gi}})$$
(43-28)

$$P_{A} = \sum_{j=1}^{m} P_{Aj} \cdot (1 - e^{-t/\tau_{Aj}})$$
(43-29)

bei Gültigkeit der Nebenbedingung

$$P_J = \sum_{i=1}^{n} P_{Gi} = \sum_{j=1}^{m} P_{Aj}$$
 (43-30)

mit Hilfe der Gleichungen

$$Q_{TH} = \int_{O_{\infty}}^{\infty} [P_J - P_G(t)] \cdot dt \qquad (43-31)$$

$$Q_{KD} = \int_{O} [P_{G}(t) - P_{A}(t)] \cdot dt$$
 (43-32)

wie folgt errechnen:

$$Q_{TH}^{*} = \frac{Q_{TH}}{P_{J}} = \frac{1}{P_{J}} \sum_{i=1}^{n} \tau_{Gi} \cdot P_{Gi}$$
(43-33)
$$Q_{KD}^{*} = \frac{Q_{KD}}{P_{J}} = \left(\sum_{i=1}^{n} \tau_{Ai} \cdot P_{Ai} - \sum_{i=1}^{m} \tau_{Gj} \cdot P_{Gj}\right) / P_{J} \cdot (43-34)$$

4.3.5 Systembetrachtungen und kritischer Vergleich

Fragt man nach der Ursache der Differenz der Ergebnisse nach Bild 4-50 zwischen der konventionellen Methode, der Rechnung mit dem Duhamel'schen Integralsatz und dem Verfahren mit induktiver Erwärmung (komponentenweise Ermittlung der thermischen Parameter) zur Bestimmung des transienten Wärmewiderstandes in einer Säule aus Halbleiterbauelementen und Kühldosen, so ergibt sich die Antwort aus einer einfachen Systembetrachtung.

Vergleich der Verfahren zur Bestimmung des transienten Wärmewiderstandes

Diss B - Version 1.1 - Kassetten 57/58 - 21. Februar 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Kühlung: 100-mm-Kühldose AEG 029.076 404 zusammen mit einem 100-mm-Thyristor Kühlmittel: Wasser Aufbau: Kühlmittel-Richtung von der Kathoden- zur Anodenseite

Volumendurchsatz des Kühlmittels	V punkt	=	150 1/h
Verlustleistungssprung	P_J	-	1 497 W
Kühlmittelzuflußtemperatur	9_A	=	15.8 °C

<u>Bild 4-50:</u> Vergleich der mit den drei Verfahren ermittelten Verläufe des transienten Wärmewiderstandes in einer einfachen, unendlich langen, symmetrischen Säule

Zunächst werden das konventionelle Verfahren nach Abschnitt 4.3.1 und das Verfahren der Rechnung mit dem Duhamel'schen Integralsatz nach Abschnitt 4.3.3 miteinander verglichen, da beide Verfahren unmittelbar von denselben Meßwerten ausgehen.

Der Verlauf der Sperrschichttemperatur wird von drei Ursachen beeinflußt, dem Verlustleistungssprung und den Verläufen der Gehäusetemperaturen. Die Gehäusetemperaturverläufe wiederum haben ihre Ursache in der Leistungsabgabe über die Gehäuseflächen an die Kühleinrichtung.

Während der Einfluß des Verlustleistungssprunges in beiden Verfahren gleich und richtig berücksichtigt wird, wird der Einfluß der Gehäusetemperaturverläufe beim konventionellen Verfahren als unmittelbar auf die Sperrschicht wirkend angenommen. Dies ist natürlich falsch. Vielmehr tritt, bedingt durch das thermische Verhalten des Halbleiterbauelementes, nur eine verzögerte Wirkung auf die Sperrschicht auf. Dies kann in Bild 4-48 sehr deutlich beobachtet werden. Diese Differenz zwischen dem Mittelwert der Gehäusetemperaturen und der Wirkung auf die Sperrschicht ist die unmittelbare Ursache der unterschiedlichen Ergebnisse.

Man könnte nun geneigt sein zu vermuten, daß der thermische Widerstand immer kleiner als der auf konventionelle Weise ermittelte thermische Widerstand ist. Dies trifft aber nicht zu. Voraussetzung dafür ist, daß in Anwendungsfällen wirklich mit dem idealen transienten thermischen Widerstand des Halbleiterbauelementes gerechnet wird. Wird statt dessen mit einem direkt meßtechnisch ermittelten transienten Verlauf des thermischen Widerstandes gerechnet, so kann der wahre Verlauf sowohl kleiner als auch größer sein, je nachdem ob die bei der Messung des Halbleiterbauelementes verwendete Kühleinrichtung besser oder schlechter als die des zu bestimmenden Systems war. Bei Verwendung des in Bild 4-19 gezeigten meßtechnisch ermittelten transienten Wärmewiderstandes für den Thyristor T 625 N 3600 ... 4400 kann man davon ausgehen, partiell zu niedrige Werte für den transienten Wärmewiderstand der Gesamtanordnung zu erhalten, da diese Meßwerte mit einer relativ schlechten Kühleinrichtung $(R_{thCA(A)} \approx R_{thCA(K)} \approx 80 \frac{mK}{W})$ ermittelt wurden.

Auf Grund des zur Messung eingesetzten Thyristors, der in seinen thermischen Eigenschaften nicht dem Ersatzschaltbild nach Bild 4-14 entsprach, sondern niedrigere thermische Widerstände hatte, liefert auch das Verfahren der Auswertung der Messungen mit dem Duhamel'schen Integralsatz zu große Ergebnisse für den transienten Wärmewiderstand der Gesamtanordnung.

Zusammenfassend kann man feststellen, daß die Ergebnisse dem wahren Verlauf des transienten Wärmewiderstandes am nächsten kommen, die mit getrennter Messung des Übergangsverhaltens der Kühldosen ermittelt wurden, weil hier kein prinzipbedingter Fehler auftritt. Günstig ist, daß sich bei diesem Verfahren sogar die niedrigsten Werte ergeben.

Die Bilder 4-51 und 4-52 zeigen die so ermittelten Werte des transienten Wärmewiderstandes von in Säulen angeordneten Thyristoren und Kühldosen mit dem Kühlmittelvolumenstrom als Parameter. Diese Diagramme bzw. deren errechnete Exponentialapproximationen sind die auf der Basis dieser Arbeit gewonnene Grundlage zur thermischen Auslegung von Hochleistungsstromrichtern bei Konstantstrom- und Impulsstrombelastung. Sie ermöglichen eine exakte Dimensionierung, ohne daß vermeidbare Reserven zugelassen wurden, sofern man auf einer deterministischen Basis bleibt.

Deutlich ist zu sehen, daß der Kühlmittelvolumenstrom bis zu einer Betriebszeit von etwa 10 s nur einen geringfügigen Einfluß auf die Ergebnisse hat. Erst bei größeren Zeiten tritt eine Auffächerung ein, wobei zu erkennen ist, daß die auftretenden Zeitkonstanten mit steigendem Volumenstrom immer kleiner werden, d. h. der stationäre Endwert wird früher erreicht.

Temperaturverlauf in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

RTau S-mod - Kassetten 67/68 - Version 1.1 - 24. Oktober 1985 - Sz

Verfahren: Auswertung aus dem Übergangsverhalten der Kühldosen

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken) [02. August 1983] Modell: Modell "junction-heatsink" [J-H] Meßstellen: Anlageflächen der Kühldosen (heatsink)

Kühlung: 100-mm-Kühldose AEG 029.076 404 zusammen mit einem 100-mm-Thyristor Kühlmittel: Wasser Aufbau: einfache, unendlich lange, symmetrische Säule Kühlmittel-Richtung von der Kathoden- zur Anodenseite

File-Name: E2200Ü

mittlerer Verlustleistungssprung	PJ	=	1 543 W
mittlere Kühlmittelzuflußtemperatur	\$_A	=	16.7 °C

Graphische Darstellung der berechneten transienten Wärmewiderstände:

Parameter: Volumenstrom des Kühlmittels [1/h]

<u>Bild 4-51:</u> Nach Abschnitt 4.3.2.3 berechnete Verläufe des transienten Warmewiderstandes von einfachen Säulen aus zweiseitig gekühlten Halbleiterelementen und Kühldosen mit dem Kühlmittelvolumenstrom als Parameter

214

Temperaturverlauf in der Sperrschicht von in Säulen angeordneten zweiseitig gekühlten Halbleiterbauelementen

RTau S-mod - Kassetten 67/68 - Version 1.1 - 24. Oktober 1985 - Sz

Verfahren: Auswertung aus dem Übergangsverhalten der Kühldosen

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken) [02. August 1983] Modell "junction-heatsink" Modell: [J-H] Anlageflächen der Kühldosen (heatsink) Meßstellen:

Kühlung: 100-mm-Kühldose AEG 029.076 404 zusammen mit einem 100-mm-Thyristor Kühlmittel: Wasser Rufbau: unendlich lange, symmetrische Doppelsäule Kühlmittel-Richtung in Säule 1 von der Anoden- zur Kathodenseite Kühlmittel-Richtung in Säule 2 von der Kathoden- zur Anodenseite

D2200Ü File-Name:

mittlerer Verlustleistungssprung	ΡJ	=	1 543 W
mittlere Kühlmittelzuflußtemperatur	9_8	=	16.7 °C

Graphische Barstellung der berechneten transienten Wärmewiderstände:

Parameter: Volumenstrom des Kühlmittels [1/h]

Bild 4-52: Nach Abschnitt 4.3.2.4 berechnete Verläufe des transienten Wärmewiderstandes von Doppelsäulen aus zweiseitig gekühlten Halbleiterelementen und Kühldosen mit dem Kühlmittelvolumenstrom als 215 Parameter
5 Grundzüge eines statistisch begründeten Dimensionierungsverfahrens zur Bestimmung der maximal zulässigen Belastung von Halbleiterstromrichtern

5.1 Vorbemerkungen

5.1.1 Allgemeine_Betrachtungen_(in_Anlehnung_an_[48]_)

Die meisten Vorgänge in Wirtschaft, Natur und Technik sind mit zufälligen Schwankungen behaftet. Diese Zufälligkeiten werden häufig bei der Betrachtung solcher Vorgänge ignoriert. Man konzentriert sich auf mittlere Tendenzen, um zunächst das Wesen eines untersuchten Zusammenhanges interpretieren zu können. Oft genug bestimmt aber nicht der Mittelwert, sondern ein Extremwert das Verhalten eines Systems. In der Technik wird das in der Regel bis heute dadurch berücksichtigt, daß bekannte mittlere Werte mit "Sicherheitsfaktoren" multipliziert werden. Auf diese Weise paßt man beispielsweise die mechanische Festigkeit der verschiedensten Konstruktionen den zu erwartenden statischen und dynamischen Beanspruchungen an. Sowohl die genauere Beschreibung der Vorgänge an sich als auch der heute besonders notwendige sparsame Umgang mit Rohstoffen und Energie erfordert ein verbessertes Herangehen an die skizzierte Problematik. An die Stelle der deterministischen Beschreibung mittlerer Tendenzen muß eine - bis zur konstruktiven Gestaltung technischer Gebilde - durchgehende statistische Behandlung der zufälligen Vorgänge treten. Diese Aufgabe ist jedoch viel leichter formuliert als realisiert. Sie stößt häufig sowohl auf experimentelle Probleme des jeweiligen Fachgebiets als auch auf große mathematische Formulierungsschwierigkeiten. Mit einer geschlossenen Lösung des Problems ist deshalb wohl in keinem Fachgebiet zu rechnen. vielmehr ist man überall bemüht, in enger Zusammenarbeit von Fachleuten und Mathematikern, technisch wirksame Teillösungen abzuleiten. Auch in der Elektrotechnik kann die umrissene Entwicklung beobachtet werden.

Bevor zur statistischen Formulierung eines zufälligen (stochastischen) Prozesses geschritten werden kann, muß er phänomenologisch bekannt sein. Es ist daher grundsätzlich mit Experimenten zu beginnen, deren Resultate (Meßgrößen) innerhalb gewisser zufälliger Grenzen schwanken werden. Die Ursachen der Schwankungen experimenteller Ergebnisse können entweder dem Prozeß innewohnen, von seinen Randbedingungen herrühren oder in zufälligen Meßfehlern liegen. Letztere sind so klein wie möglich zu halten und sollten möglichst exakt festgestellt werden. Sie werden in den nachfolgenden Betrachtungen nicht berücksichtigt.

Das Wechselspiel zwischen dem Ablauf eines Zufallsprozesses und seinen Randbedingungen steht oft im Mittelpunkt experimenteller Untersuchungen. Dabei wird man bestrebt sein, die Randbedingungen jeweils in definierter Weise einzustellen und konstant zu halten. Oft ist das nur mit hohem Aufwand, mitunter auch gar nicht möglich. Beispielsweise wird der Durchschlag einer Isolierstrecke in atmosphärischer Luft in recht unübersichtlicher Weise von klimatischen Bedingungen. UV- und Höhenstrahlung. Luftströmungen und Staub beeinflußt. In aufwendigen Experimenten können zwar die Wirkungen dieser Randbedingungen getrennt studiert werden, jedoch ist zu beachten, daß solche Luftisolierungen ja auch unter der komplexen Wirkung solcher und anderer Randbedingungen betrieben werden müssen. So nützlich es für das Verständnis der Zusammenhänge sein kann, die Wirkungen spezieller Einflußgrößen zu kennen, so zweckmäßig kann es technisch sein, nicht zwischen der den Prozessen innewohnenden Zufälligkeit (Stochastik) und der Wirkung zufälliger Randbedingungen zu unterscheiden. Die Randbedingungen sind dabei nur soweit einzustellen, wie es die Praxis erfordert. Ein zufälliger Versuch liefert dann zufällig schwankende Meßwerte (Realisierungen von Zufallsgrößen), die auszuwerten und technisch zu interpretieren sind.

Mit wachsender Parameterzahl wird der Aufwand für experimentelle Untersuchungen größer und damit kostspieliger. Werden die interessierenden Vorgänge auf der Basis weniger Experimente modelliert und mit diesen Modellen auf andere Parameterkombinationen extrapoliert. so kann der Aufwand reduziert werden. Bei der Modellierung muß natürlich der stochastische Charakter der Prozesse gewahrt bleiben. In vielen Fällen, z. B. bei der Behandlung der hier vorliegenden Dimensionierungsprobleme. bewährt sich eine Monte-Carlo-Simulation. Manchmal muß jedoch der physikalische Prozeß als stochastischer Prozeß behandelt werden, wobei die Theorie stochastischer Prozesse hierfür die nötigen mathematischen Hilfsmittel liefert.

5.1.2 <u>Thermische Dimensionierung von Halbleiterstromrichtern</u> Die zulässige Dauerstrombelastbarkeit von Stromrichtern wird in erster Linie durch die im aktiven Teil der Halbleiter auftretenden Temperaturen bestimmt. Diese virtuellen Sperrschichttemperaturen können im allgemeinen nicht direkt gemessen werden, sondern werden aus den Betriebsbedingungen des Stromrichters heraus berechnet. Dabei wird auf die Zahlenangaben des Herstellers über das Verhalten der Halbleiterbauelemente zurückgegriffen. Außerdem werden Experimente durchgeführt, um spezielle Einsatzbedingungen (Einbauart. Kühlkörper. Lüfter usw.) zu berücksichtigen.

Die allen diesen Größen innewohnenden Zufälligkeiten finden dabei keine Widerspiegelung im Dimensionierungsverfahren. Es wird mit den Höchstwerten der Durchlaßspannung, der Q_{rr}-Werte und der thermischen Widerstände beim Einsatz von Thyristoren gerechnet ^{*)} (andere Zahlen sind vom Hersteller auch nur selten zu erfahren), und diese Höchstwerte werden dann zusammen mit den ermittelten Höchstwerten der äußeren thermischen Widerstände kombiniert, und daraus die Sperrschichttemperatur errechnet.

Diese unbefriedigende Vorgehensweise gestattet keine optimale Dimensionierung der Ventile. Es wird dabei zu sehr auf der sicheren Seite gearbeitet. Durch Anwendung des im folgenden skizzierten und an einem Beispiel durchgerechneten Verfahrens kann das (immer) auftretende Dimensionierungsrisiko quantitativ eingeschätzt werden, d. h. es können Aussagen darüber getroffen werden, welcher Anteil der Halbleiterbauelemente bei einer vorzugebenden statistischen Sicherheit die zulässige Sperrschichttemperatur von z. B. 90 °C nicht überschreitet.

^{*)} Dies gilt für normale Dimensionierungen. Bei Hochspannungsstromrichtern wird mit dem 90-%-Wert der Durchlaßspannung gearbeitet und auch die Korrelation zwischen U_T und Q_{rr} findet Berücksichtigung (siehe Abschnitt 5.4).

Auf eines sei aber gleich hingewiesen: Aussagen mit einer hundertprozentigen Sicherheit lassen sich nicht machen. Dies ist bei herkömmlichen Dimensionierungsverfahren auch nur dann möglich, wenn sämtliche, die Temperatur beeinflussende Parameter in einer Stückprüfung meßtechnisch ermittelt werden. Aus Aufwandsgründen werden aber z. B. die thermischen Widerstände sowohl der Kühldosen als auch der Thyristoren nur stichprobenhaft überprüft. So können bei einzelnen Thyristoren durchaus höhere Wärmewiderstände, als bisher angenommen wurde, auftreten. Die Kontaktwiderstände zwischen den Scheiben hängen von vielen Parametern, unter anderem von der Zugfestigkeit der Materialien, der Oberflächengüte (der Spaltdicke) und eventuellen Verformungen durch innere Spannungen und Temperaturgradienten ab und sind damit starken Streuungen unterworfen. So lassen sich 100-%-Werte für die thermischen Widerstände nicht angeben. Trotzdem wird mit solchen Werten gearbeitet und gerechnet.

Der Vorteil des statistisch begründeten Verfahrens liegt nun darin, daß man von der Merkmalsverteilung einer Stichprobe, Rückschlüsse auf das Verhalten der Grundgesamtheit ziehen kann. Außerdem ist die Berücksichtigung auftretender Korrelationen und gegenseitiger Beeinflussung möglich. So tritt bei einem Exemplar eines Thyristors z. B. nie die maximale Durchlaßspannung zusammen mit der maximalen Sperrverzugsladung und damit nie die maximale Durchlaßverlustleistung zusammen mit der maximalen Ausschaltverlustleistung auf (Beispiel für einen korrelativen Zusammenhang). Und auch in einer Säule aus Thyristoren und Kühldosen ist die Wahrscheinlichkeit, daß gerade zwei Thyristoren mit maximaler Verlustleistung nebeneinander zu liegen kommen, sehr gering, nämlich p², wenn p die Wahrscheinlichkeit für das Auftreten eines Thyristors mit maximaler Durchlaßverlustleistung ist.

5.1.3 Anwendung zur stationären thermischen Dimensionierung von Hochspannungsventilen

Das oben skizzierte Verfahren ist besonders zur Dimensionierung von Hochspannungsventilen geeignet. Zum einen treten hier überhaupt gegenseitige Abhängigkeiten auf, d. h. die Halbleiterbauelemente beeinflussen sich gegenseitig. Zum anderen sind durch die enge Zusammenarbeit mit dem Halbleiterhersteller viele Parameter der Thyristoren bekannt und liegen in statistisch auswertbaren Formen vor, eine Voraussetzung, die die Anwendung des Verfahrens erst ermöglicht. Außerdem liegen auch genauere Kenntnisse über das Verhalten der Kühldosen (Abschnitt 3.2.5) vor. Ein nicht zu vernachlässigender Aspekt ist die Tatsache, daß die starke Konkurrenzsituation auf dem Gebiet der Hochspannungsstromrichter möglichst optimale und genaue Vorausberechnungen über das Verhalten und die Verluste der Stromrichter erfordern. Die Statistik ermöglicht hier Vorausberechnungen von Konfidenzintervallen der zu erwartenden Verluste.

Für die thermische Dimensionierung der Stromrichter sind in erster Linie die Thyristoren und die Kühldosen entscheidend. Andere, die Dimensionierung sogar gravierend bestimmende Daten, wie die maximale Umgebungstemperatur der Anlage, der Einfluß der Rückkühlung usw., werden hier nicht weiter betrachtet, sondern als unbeeinflußbar vorgegeben angenommen. Eingangsgröße der Rechnung sei also ein bestimmter Volumenstrom des Kühlmittels für die gesamte Anlage bei einer festen (maximalen) Zuflußtemperatur. Außerdem wird ein fester Arbeitspunkt der maximalen Beanspruchung des Stromrichters. d. h. der Punkt der maximalen Thyristorverlustleistung (im allgemeinen maximaler Betriebsstrom bei maximaler Netzspannung), der Dimensionierung zugrunde gelegt. Von diesen Werten ausgehend berechnet man die Verteilung der Sperrschichttemperaturen in den Halbleiterbauelementen. Diese Verteilung, die auch Schlußfolgerungen auf die Toleranzgrenzen zuläßt, gestattet dann Aussagen über das Dimensionierungsrisiko, insbesondere in Hinblick auf Fehlerfälle (Kurzschlüsse, Wechselrichterkippen). Ergeben sich hier

noch Reserven, könnten entweder die zulässigen Ströme heraufgesetzt, die Kühlanlage verkleinert oder das gesamte Basic-Design verändert werden (kleinere Reihenschaltungszahl bei höherem Strom).

5.2 Statistisch aufbereitete Daten der eingesetzten Bauelemente

Die folgenden Betrachtungen werden auf Thyristoren des Typs T 2200 N 3600 ... 4200 und auf Kühldosen des Typs AEG 029.076 404 (Ø 100 mm) beschränkt, da nur für diese Bauelemente geeignete Daten zur Verfügung stehen.

5.2.1 Daten der Thyristoren

5.2.1.1 Elektrische Eigenschaften

Über die Verteilung der Durchlaßspannung der Thyristoren bei einem Strom von 4 kA liegt eine Tabelle mit den Daten von 180 Exemplaren vor. Der χ^2 -Anpassungstest und die Lilliefors-Modifikation des Kolmogoroff-Anpassungstestes auf eine Normalverteilung wurden auf einem Signifikanzniviau von 1 % abgelehnt [10]. Da die Verteilung offensichtlich linkssteil ist, wurde ein Test auf das Vorliegen einer dreiparametrigen logarithmischen Normalverteilung durchgeführt. der nicht abgelehnt wurde (Bilder 5-1 und 5-2). Die empirischen Parameter wurden mit der Maximum-Likelihood-Methode errechnet [22].

Leider liegt hier keine vollständige Stichprobe vor. Es handelt sich vielmehr um eine abgeschnittene Verteilung, bei der die Anzahl der ausgefallenen Exemplare nicht bekannt ist (bei der Stückprüfung werden u. a. die Thyristoren mit einer Durchlaßspannung über 1,95 V ausgesondert). Zwar gibt es Methoden, die die Berechnung der Verteilungs-Parameter auch bei abgeschnittenen Verteilungen ermöglichen [49], aber dazu ist eine Information über die ursprüngliche Stückzahl der Stichprobe erforderlich.

Die Berechnung erfolgte hier so, als ob eine vollständige Stichprobe vorhanden ist. Dies ist bei einer angenommenen kleinen Anzahl ausgefallener Exemplare auch zulässig. Datenerfassung der elektrischen Eigenschaften von Halbleiterbauelementen und deren statistische Verarbeitung

Da_Thy - Variante 04 - Kassetten 61/62 - 25. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

U T - Verteilung von 180 Thyristoren:

Bemerkung: Wahrscheinlichkeitsnetz der dreiparametrigen logarithmischen Normalverteilung mit einem Fluchtpunkt von U_0 = 1.327 V.

<u>Bild 5-1:</u> Durchlaßspannungsverteilung von Thyristoren des Typs T 2200 N 3600 ... 4400 bei einem Durchlaßstrom von 4000 A

Berlin, den 26. Juni 1984

Datenerfassung der elektrischen Eigenschaften von Halbleiterbauelementen und deren statistische Verarbeitung

Da_Thy - Variante 04 - Kassetten 61/62 - 25. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken)

Statistische Auswertung:

empirischer Fluchtpunkt	der	Verteilung	UB	-	1.327 V	ŝ
arithmetischer Mittelwert	der	Verteilung	TUT	-	-1.181	
empirische Standardabweichung	der	Verteilung	∉_UT	=	0.309	
arithmetischer Mittelwert	von	UT	x_quer	-	1.649 V	ļ
empirische Standardabweichung	von	UT	5	-	0.100 V	ŝ
Minimalwert	von	UT	×_min	=	1.460 V	ţ
Maximalwert	von	UT	× hax	-	1.950 V	ť
Spannweite	von	UT	R	=	0.490 V	ĺ

Der Kolmogoroff-Test auf eine Lognormalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.20$ hlCht abgelehnt. Die Testgröße ist D_n = 0.050 und der kritische Wert K_n_ α ist K = 0.080. Der Umfang der Stichprobe ist n = 180.

Der χ^2 -Anpassungs-Test auf eine Lognormalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.025$ Nicht abgelehnt. Die Testgröße ist t = 12.72 und der kritische Wert χ^2 m_ α ist χ^2 = 14.45. Die Anzahl der Klassen ist n_klasse = 9. Die Anzahl der Freiheitsgrade ist damit m = 6.

Konfidenzgrenzen der Verteilung:

stati	stisch	e Sicherheit			¢	=	0.990	
eins.	obere	Konfidenzgrenze	des	Enwartungswertes	x_erw_o	=	1.666	٧
eins.	obere	Konfidenzgrenze	der	Standardabweichung	×_str_o	=	0.125	Y
eins.	obere	Konfidenzgrenze	der	Verteilungsparameter	U_sch1_o	=	1.364	۷
eins.	obere	Konfidenzgrenze	der	Verteilungsparameter	p_schl_o	=	-1.127	
eins.	obere	Konfidenzgrenze	der	Verteilungsparameter	c_schl_o	-	0.352	

<u>Bild 5-2:</u> Statistische Ruswertung der Durchlaßspannungsverteilung von Thyristoren des Typs T 2200 N 3600 ... 4400 bei 4000 A Durchlaßstrom Auch für die Randverteilungen der Sperrverzugsladung Q_{rr} wird eine logarithmische Normalverteilung nicht abgelehnt (Bilder 5-3 und 5-4).

Bild 5–5 zeigt das U_T-Q_{rr}-Spektrum der 180 Thyristoren. Man sieht den eindeutigen korrelativen Zusammenhang zwischen diesen Werten. In das Spektrum wurde noch eine empirische Regressionsfunktion der Art

$$Q_{rr} = \frac{a}{b + U_T}$$
(5-1)

eingezeichnet. Man sieht aber, daß die Residuen (Differenzen zwischen Meßwerten und Regressionsfunktion) bei größeren Q_{rr}-Werten nicht mehr symmetrisch zur Regressionsfunktion liegen. Ein aufwendigerer Ansatz als Gl. (5-1) könnte hier Abhilfe schaffen.

5.2.1.2 Thermische Eigenschaften

Die thermischen Eigenschaften der Thyristoren wurden bereits in den Abschnitten 3.1.3 und 3.1.4 ausführlich behandelt. Das Bild 3-5 zeigt gemessene und Bild 3-10 die festgelegten statistischen Parameter der stationären thermischen Widerstände der Anoden- und der Kathodenseite der Halbleiterbauelemente.

5.2.1.3 Korrelation zwischen thermischen und elektrischen Eigenschaften

> Bei 32 Thyristoren sind sowohl die elektrischen als auch die thermischen Parameter bekannt (Bild 5-6). Wie ersichtlich und auch wie zu erwarten, ergibt sich kein signifikanter korrelativer Zusammenhang zwischen diesen Werten.

5.2.2 Daten der Kühldosen

In Abschnitt 3.2.5 sind die thermodynamischen Eigenschaften der Kühldosen, bereits statistisch aufbereitet, niedergelegt. Allerdings entsprechen die Meßbedingungen in einer Hinsicht nicht dem realistischen Einsatz in Anlagen. Bei den Labormessungen wurde der Einfluß des unterschiedlichen Druckabfalls Datenerfassung der elektrischen Eigenschaften von Halbleiterbauelementen und deren statistische Verarbeitung

Da_Thy - Variante 04 - Kassetten 61/62 - 25. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

Q_rr - Verteilung von 180 Thyristoren:

<u>Bild 5-3:</u> Verteilung der Sperrverzugsladung von Thyristoren des Typs T 2200 N 3600 ... 4400 bei einer Stromabfallgeschwindigkeit von 3 R/µs und einem vorhergehenden Durchlaßstrom von 3600 R

Berlin, den 26. Juni 1984

Datenerfassung der elektrischen Eigenschaften von Halbleiterbauelementen und deren statistische Verarbeitung

Da Thy - Variante 84 - Kassetten 61/62 - 25. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (REG-Telefunken)

Statistische Ruswertung:

empirischer Fluchtpunkt	der	Verteilung	00	=	0.424	mAs
arithmetischer Mittelwert	der	Verteilung	parr	=	-6.401	
empirische Standardabweichung	der	Verteilung	s_qrr	=	0.366	
arithmetischer Mittelwert	von	Qrr	x quer	-	2.197	mAs
empirische Standardabweichung	von	Qrr	5	=	0.654	mAs
Minimalwert	von	Qrr	× min	=	1.150	MAS
Maximalwert	von	Qrr	× max		4.170	mAs
Spannweite	von	Q_rr	R	=	3.020	mAs

Der Kolmogoroff-Test auf eine Lognormalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \geq 0.20$ hlicht abgelehnt. Die Testgröße ist D_n = 0.049 und der kritische Wert K_n_ α ist K = 0.080. Der Umfang der Stichprobe ist n = 180.

Der χ^2 -Anpassungs-Test auf eine Lognormalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.100$ hicht abgelehnt. Die Testgröße ist t = 6.57 und der kritische Wert χ^2 _m_ α ist χ^2 = 12.02. Die Anzahl der Klassen ist n_klasse = 10. Die Anzahl der Freiheitsgrade ist damit m = 7.

Konfidenzgrenzen der Verteilung:

27.37 1	2.4.5	eche	Sic	han	heit
		20116	~	1121	1610

eins.	obere	Konfidenzgrenze	des	Erwartungswertes	x erw o	=	2.311	mAs
eins.	obere	Konfidenzgrenze	der	Standardabweichung	x_str_o	=	0.841	mĤs
eins.	obere	Konfidenzgrenze	der	Verteilungsparameter	U_sch1_o	=	0.670	mAs
eins.	obere	Konfidenzgrenze	der	Verteilungsparameter	N schl o	=	-6.337	
eins.	obere	Konfidenzgrenze	der	Verteilungsparameter	s_schl_o	=	0.417	

Bild 5-4: Statistische Auswertung der Sperrverzugsladungsverteilung von Thyristoren des Typs T 2200 N 3600 ... 4400 bei einer Stromabfallgeschwindigkeit von 3 A/µs und einem vorhergehenden Durchlaßstrom von 3600 A

8.998

=

£

Datenerfassung der elektrischen Eigenschaften von Halbleiterbauelementen und deren statistische Verarbeitung

Da Thy - Variante 04 - Kassetten 61/62 - 25. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

U_T - Q_rr - Spektrum von 180 Thyristoren:

 $\underline{Bemerkung:} \mbox{ In die Graphik ist eine empirische Regressionsfunktion der Art \\ Q_rr = a_regr/(b_regr+U_t) eingezeichnet. Die Koeffizienten$ wurden nach der Methode der kleinsten Quadrate errechnet.

Bild 5-5: UT - Qrr - Spektrum von Thyristoren des Typs T 2200 N 3600 ... 4400

Berlin, den 26. Juni 1984

Datenerfassung der elektrischen Eigenschaften von Halbleiterbauelementen und deren statistische Verarbeitung

Da_Thy - Variante 04 - Kassetten 61/62 - 25. Juni 1984 - Sz

Bauelement: Thyristor T 2200 N 3600 ... 4400 (AEG-Telefunken)

einfache statistische Auswertung der Daten der thermischen Widerstände:

Anzahl der Thyristoren mit bekanntem R_th_JC	N rth	=	32	Stück
arithmetischer Mittelwert von R_th_JC	x quer	=	5.816	mK/W
empirische Standardabweichung von R_th_JC	5	=	0.296	mK∕W
Minimalwert von R_th_JC	× min	-	5.300	mK/W
Maximalwert von R_th_JC	×ma×	=	6.700	mK/W
Spannweite von R_th_JC	R	=	1.400	mK∕W

Rangkorrelationskoeffizienten (mit Bindungen) zwischen den Parametern:

Korrelation	zwischen	UT	und	Qrr	r S,B	=	-0.785
Korrelation	zwischen	UT	und	R th JC	r S, B	=	-0.007
Korrelation	zwischen	Q_rr	und	R_th_JC	r_S,B	=	0.190

U_T - R_th_JC - Spektrum von 32 Thyristoren:

<u>Bild 5-6:</u> Zusammenhang zwischen elektrischen und thermischen Parametern von Thyristoren des Typs T 2200 N 3600 ... 4400

eleminiert, indem der Kühlmitteldurchsatz über ein Regelventil und einen Durchflußmesser auf einen bestimmten Volumenstrom eingestellt wurde. In Anlagen werden die Kühldosen aber parallel betrieben, so daß durch die Kühldosen mit größerem Druckabfall ein kleinerer Kühlmittelstrom fließt. Nun könnte man diesen Einfluß mit dem in Abschnitt 5.3 beschriebenen Rechenverfahren ebenfalls durch Simulation des sich zufällig einstellenden Volumenstromes berücksichtigen. Die dabei auftretenden Schwierigkeiten der korrelativen Zusammenhänge der beiden Seiten der Kühldosen können aber durch eine Umrechnung der Daten auf konstanten Druckabfall (bei zufällig schwankendem Volumenstrom) umgangen werden. Als Druckabfall wird das in Abschnitt 3.2.5.2 abgeleitete gewichtete harmonische Mittel verwendet.

Für die thermischen Widerstände wurden einfache empirische Beziehungen der Art

$$R_{XX} = (a + b \frac{\dot{v}_N}{\dot{v}}) \cdot R_{XX}$$
(5-2)
$$\Delta p = \text{const.}$$

aus den Meßwerten der Kühldose Nr. 2 abgeleitet. Bei den relativ kleinen Schwankungen um den Nennarbeitspunkt \hat{V}_N ist dies mit ausreichender Genauigkeit zulässig. Die Bilder 5–7 bis 5–9 zeigen die jetzt erzielten Ergebnisse.

Der Einfluß des ebenfalls zufällig schwankenden Druckabfalles der mit den Kühldosen nach Bild 2-7 in Reihe geschalteten wassergekühlten Beschaltungswiderständen wurde bei diesen Betrachtungen nicht berücksichtigt, da darüber keine Daten vorliegen. Da der Druckabfall in den Widerständen aber relativ klein ist (ca. 0,2 bar bei $\dot{V} = 150$ l/h), sind die sich ergebenden Ungenauigkeiten nicht allzu groß.

Abschließend noch ein paar Hinweise zu den auf Bild 5-9 errechneten einseitigen Konfidenzgrenzen. Leider liegen nur auswertbare Daten von 9 Kühldosen vor, so daß die errechneten Konfidenzgrenzen recht grob sind. Diese Ungenauigkeiten werden sich bis hin in das Ergebnis der zu errechnenden Sperrschichttemperaturverteilung bemerkbar machen. Diese Schwierigkeiten lassen sich umgehen, indem man bei der Simulation der Kühldoseneigenschaften

Thermodynamische Eigenschaften von Kühldosen

Stt_KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose:	AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren
Halbleitenbauelement:	T 2200 N 3600 4400 [Model1: J-C] (AEG-Telefunken)
Betriebsbedingungen:	Parallel-Betrieb der Kühlkreisläufe mit d_p = x_harm_N d_p = .997 bar 0_punkt = 2000 W 9_A = 20 °C
	Kühlmittel: Wasser Seite 1> Seite 2 Meßstelle: case
	Aufbau: Kathode (===) Seite 1 Anode (===) Seite 2

Daten der thermodynamischen Eigenschaften von 9 Kühldosen:

1	Nr.	R_11_CA EmK/WJ	R_12_CA [mK/W]	R_21_CA [mk/W]	R_22_CA TmKZWJ	R _{th} JA TmK/WJ	V_punkt [1/h]
1	2	18.74	1.63	5.87	15.78	17,49	151.5
2	3	18.55	1.64	5.91	15.77	17.47	150.6
3	5	18.71	1.63	5.87	15.54	17.41	151.5
4	6	18.03	1.64	5.91	15.24	17.20	150.6
5	7	18.77	1.67	6.01	15.52	17.46	148.0
6	8	18.14	1.64	5.91	15.75	17.38	158.6
7	9	18.31	1.62	5.84	15.65	17.36	152.3
8	10	17.71	1.65	5.94	15.37	17.19	149.7
9	13	18.78	1.70	6.12	15.51	17.50	145.3

Thermodynamische Eigenschaften von Kühldosen

Stt KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose:
Halbleiterbauelement:AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren
T 2000 N 3600 ... 4400 [Modell: J-C] (AEG-Telefunken)
Parallel-Betrieb der Kühlkreisläufe mit $\Delta_p = x harm_N$
 $\Delta_p = .997$ bar $\Omega_punkt = 2000 W$
 $\Im A = 20 \circ C$
Kühlmittel: Wasser Seite 1 -> Seite 2 Meßstelle: case
Aufbau: Kathode <==> Seite 1 | Anode <==> Seite 2

R 11 CA-, R 22 CA- und R th JA-Verteilung von 9 Kühldosen bzw. Säulen:

Die Berechnung der R_th_JA-Werte erfolgte bei als konstant angenommenen thermischen Widerständen der Thyristoren:

Bemerlung: Wahrscheinlichkeitsnetz der Normalverteilung

Zu der empirischen und der theoretischen Verteilung sind noch die einseitigen oberen Toleranzgrenzen mit einer statistischen Sicherheit von $\beta = 0.95$ eingezeichnet. Voraussetzung zur Berechnung ist das Vorliegen einer normalverteilten Grundgesamtheit.

<u>Bild 5-8:</u> Verteilung der thermischen Widerstände der Kühldosen nach erfolgter Umrechnung auf einen Betrieb mit konstantem Druckabfall

132

Thermodynamische Eigenschaften von Kühldosen

Stt_KD - Variante 04 - Kassetten 61/62 - 09. Juli 1984 - Sz

Kühldose:	AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren
Halbleiterbauelement:	T 2200 N 3600 4400 [Model1: J-C] (AEG-Telefunken)
Betriebsbedingungen:	Parallel-Betrieb der Kühlkreisläufe mit $\Delta_p = x_harm_N$ $\Delta_p = .997$ bar $Q_punkt = 2000$ W $\frac{1}{2}$ A = 20 °C Kühlmittel: Wasser Seite 1> Seite 2 Meßstelle: case Aufbaut Kathode (===> Seite 1 - 1 Brode (===> Seite 2

Statistische Auswertung:

arithmetischer Mittelwert	von	R th JA	x quer	=	17.386	mK/W
empirische Standardabweichung	von	R th JA	s	=	0.117	mK/W
Minimalwert	von	RthJA	×min	=	17.194	mK/W
Maximalwert	von	RthJA	× max	=	17.499	mK/W
Spannweite	von	R_th_JA	R	=	0.305	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \geq 0.20$ Nicht abgelehnt. Die Testgröße ist D_n = 0.194 und der kritische Wert nach Lilliefors K_n_ α ist K = 0.223. Der Umfang der Stichprobe ist n = 9.

arithmetischer Mittelwert	von	R_11_CA	x quer	=	18.418	mK/W
empirische Standardabweichung	von	R 11 CA	s	=	0.386	mK/W
Minimalwert	von	R 11 CA	× min	=	17.713	mK/W
Maximalwert	von	R 11 CA	× max	=	18.775	mK/W
Spannweite	von	R 11 CA	R	=	1.062	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.20$ Nicht abgelehnt. Die Testgröße ist D_n = 0.221 und der kritische Wert nach Lilliefors K_n_ α ist K = 0.223. Der Umfang der Stichprobe ist n = 9.

arithmetischer Mittelwert	von	R_22_CA	x_quer	=	15.572	mK/W
empirische Standardabweichung	von	R_22_CA	s	=	0.186	mK/W
Minimalwert	von	R 22 CA	× min	=	15.243	mK/W
Maximalwert	von	R 22 CA	× max	=	15.780	mK/W
Spannweite	von	R_22_CA	R	=	0.537	mK/W

Der Kolmogoroff-Test auf eine Normalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.20$ Nicht abgelehnt. Die Testgröße ist D_n = 0.168 und der kritische Wert nach Lilliefors K n α ist K = 0.223. Der Umfang der Stichprobe ist n = 9.

Einseitige Konfidenzgrenzen bei normalverteilter Grundgesamtheit:

statistis	che :	Sicherheit			e	=	0.900	
KonfGr.	des	Erwartungswertes	von	R th JA	μο	=	17.441	mKZW.
KonfGr.	der	Standardabweichung	von	RthJA	GO	=	0.177	mK/W
KonfGr.	der	Standardabweichung	von	R_th_JA	e_u	=	0.090	$\mathfrak{m}K \times W$
KonfGr.	des	Erwartungswertes	von	R 11 CA	μο	=	18.598	mK∠W
KonfGr.	der	Standardabweichung	von	R 11 CA	6 O	=	0.585	mK/W
KonfGr.	der	Standardabweichung	von	R_11_CA	e_u	=	0.299	$\mathfrak{m}K/\mathcal{M}$
KonfGr.	des	Erwartungswertes	von	R 22 CA	μo	=	15.658	mK/W
KonfGr.	der	Standardabweichung	von	R 22 CA	6 0	=	0.282	mK/W
KonfGr.	der	Standardabweichung	von	R_22_CA	e_u	=	0.144	$\mathfrak{m}K\mathbb{Z}W$

<u>Bild 5-9:</u> Statistische Auswertung der Verteilung der thermischen Widerstände der Kühldosen nach erfolgter Umrechnung auf einen Betrieb mit konstantem Druckabfall 233 an den Konfidenzgrenzen entlang rechnet. D. h., ist der simulierte Wert der N(0,1)-Verteilung größer als Null, wird mit μ_0 und σ_0 , ist er kleiner als Null, wird mit μ_0 und σ_u bewertet. Damit liegt man auf der sicheren Seite [48], und wie sich später zeigen wird, ist die dadurch bedingte berechnete Temperaturerhöhung nur etwa 0,2 bis 0,3 K.

5.3 Monte-Carlo-Simulation

Zur Berechnung der interessierenden Temperatur-Verteilung wird die Monte-Carlo-Simulation verwendet [50-55]. Prinzipiell bestehen bei der Simulation zwei Möglichkeiten. Einmal kann man die Simulation mit den vorher ausgemessenen Realisierungen aus der Grundgesamtheit vornehmen und diese zufällig auswählen. Die andere Möglichkeit besteht darin, die berechneten theoretischen Verteilungen zu simulieren. Beide Methoden haben Vorund Nachteile. Der Theorie besser gerecht wird eine Simulation der theoretischen Verteilungen, hier können auch Zwischenwerte und sogar Werte außerhalb der ausgemessenen Realisierungen Anwendung finden. Im anderen Fall findet eine exaktere Berücksichtigung der bestehenden Verteilungen statt, da die theoretischen Verteilungen bei großen ausgemessenen Stückzahlen nur selten die praktisch vorhandenen widerspiegeln.

Es hat sich als zweckmäßig erwiesen, die Berechnung der Leistungsverteilung von der Berechnung der Temperaturverteilung zu trennen und separat auszuführen.

5.3.1 Leistungsverteilung

Auf der Basis der in den Bildern 5-1 bis 5-5 angegebenen elektrischen Daten wurde die Verlustleistungsverteilung in den Thyristoren eines Stellers zur Blindleistungskompensation errechnet. Die Verlustleistung in einem Hochspannungsthyristor setzt sich aus der normalen Durchlaßverlustleistung und aus den hier nicht zu vernachlässigenden Ein- und Ausschaltverlusten zusammen. Während die Einschaltverluste mit steigender Durchlaßspannung auch größer werden, sinken die Ausschaltverluste entsprechend dem in Bild 5-5 dargestellten korrelativen Zusammenhang. Die sich ergebende Verlustleistungsverteilung, die in Bild 5-10 dargestellt ist, lehnt sich weitgehend an die Durchlaßspannungsverteilung von Bild 5-1 an, da die Durchlaßverluste weit überwiegen.

Hier erfolgte eine Berechnung mit den diskreten Werten der Thyristoren. Dafür gab es zwei Gründe neben dem bereits oben erwähnten. Erstens liegt eine relativ große Stichprobe vor, und zweitens kann mit der so durchgeführten Simulation dem korrelativen Zusammenhang zwischen Durchlaßspannung und Sperrverzugsladung am besten entsprochen werden.

Die Bilder 5-10 und 5-11 zeigen die Leistungsverteilung für ein Rechenbeispiel.

Die hier berechneten Parameter der Verteilung werden als Eingangsgrößen für die Simulation der Temperaturverteilung verwendet. Dabei wird die Verteilung auch bei der Simulation abgeschnitten und zwar genau bei dem Wert, der sich als Maximalwert bei der Leistungssimulation ergibt (in Bild 5-11): $P_{Jmax} = 2.935 \text{ kW}$), da bei der Stückprüfung der Thyristoren solche mit einer Durchlaßspannung über 1.95 V ausgesondert werden (siehe Abschnitt 5.2.1.1).

5.3.2 Temperaturverteilung

5.3.2.1 Gleichungssystem der endlich langen Säule

Ein Gleichungssystem für die endlich lange Säule wurde bereits in Abschnitt 3.3.2.1 abgeleitet. Ergebnis war ein tridiagonales Gleichungssystem zur Berechnung der Kristalltemperaturen in den Thyristoren.

^{*)} Diese Wahl ist nicht frei von einer gewissen Willkür. Es ist nicht auszuschließen, daß es in der Grundgesamtheit nicht noch weitere Thyristoren mit einer Durchlaßspannung von 1,95 V gibt, die aber eine höhere Sperrverzögerungsladung Qrr aufweisen und damit eine höhere Ausschaltverlustleistung haben. als der eine vorhandene Thyristor mit UT = 1.95 V (vgl. Bild 5-5). So könnte man ein höheres Pjmax festlegen; eine genauere Schätzung ist aber schwierig, der Wert dürfte nicht wesentlich über dem festgelegten liegen.

Berechnung der Leistungsverteilung in Blindstrom-Stellern

Pu Vtl - Variante 02 - Kassetten 07/08 - 27. Juni 1984 - Sz

Anlage: +10/-35 - MVAr-Kompensator Arbeitspunkt: 5340 V, 3316 A, 50 Hz, α = 92 °el., 6 Thyristoren in Reihe Thyristoren: T 2200 N 3600 ... 4400 (AEG-Telefunken RG)

Leistungsverteilung im Steller:

Bild 5-10: Graphische Darstellung der Verlustleistungsverteilung in den Thyristoren eines Stellers (+10/-35 - MVAr-Kompensator)

Berlin, den 28. Juni 1984

Berechnung der Leistungsverteilung in Blindstrom-Stellern

Pv Vtl - Variante 02 - Kassetten 07/08 - 27. Juni 1984 - Sz

Anlage: $\pm 10/-35$ - MVAr-Kompensator Arbeitspunkt: 5340 V, 3316 A, 50 Hz, $\alpha = 92$ °el., 6 Thyristoren in Reihe Thyristoren: T 2200 N 3600 ... 4400 (AEG-Telefunken AG)

Statistische Auswentung:

empirischer Fluchtpunkt	der	Verteilung	PØ	-	2.136 kW
arithmetischer Mittelwert	der	Verteilung	NPJ	=	5.872
empirische Standardabweichung	der	Verteilung	G_₽J	=	0.356
arithmetischer Mittelwert	von	P_J	x_quer		2.514 kW
empirische Standardabweichung	von	P_J	5	=	0.135 kW
Minimalwert	von	PJ	x min	=	2.260 kW
Maximalwert	von	PJ	× nax		2.935 kW
Spannweite	von	PJ	R	=	0.675 kW

Der Kolmogoroff-Test auf eine Lognormalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \geq 0.20$ hlicht abgelehnt. Die Testgröße ist D_n = 0.038 und der kritische Wert K_n_ α ist K = 0.080. Der Umfang der Stichprobe ist n = 180.

Der χ^2 -Anpassungs-Test auf eine Lognormalverteilung mit den oben geschriebenen empirischen Parametern wurde mit einem Signifikanzniveau von $\alpha \ge 0.100$ MiCht abgelehnt. Die Testgröße ist t = 6.44 und der kritische Wert $\chi^2_m_\alpha$ ist χ^2 = 10.64. Die Anzahl der klassen ist n_klasse = 9. Die Anzahl der Freiheitsgrade ist damit m = 6.

Konfidenzgrenzen der Verteilung:

stati	stisch	e Sicherhe	it		ε		0.990	
eins.	obere	KonfGr.	des	Erwartungswertes	x_erw_o	=	2.538	kМ
eins.	obere	KonfGr.	des	Standardabweichung	x_str_o		0.173	kW
eins.	obere	KonfGr.	d.	VertParameter	P_sch1_o	=	2.187	kШ
eins.	obere	KonfGr.	d.	VertParameter	p schl o	=	5.934	
eins.	obere	KonfGr.	d.	VertParameter	e_schl_o	=	0.405	

Bild 5-11: Statistische Auswertung der Verlustleistungsverteilung in den Thyristoren eines Stellers (+10/-35 - MVAr-Kompensator)

5.3.2.2 Gleichungssystem der unendlich langen Säule

Stellt man sich eine unendlich lange Säule aus Thyristoren und Kühldosen mit jeweils unterschiedlichen Daten vor, so erhält man auch ein unendlich langes, tridiagonales Gleichungssystem. Dieses läßt sich nicht lösen und nicht einmal vollständig formulieren. Das Problem kann bewältigt werden, indem der n-te Thyristor über die n-te Kühldose an den 1. Thyristor gekoppelt wird; formal wird die Säule als geschlossener Kreis behandelt.

Dann gelten folgende Gleichungen für den 1. und den n-ten Thyristor

$$-\frac{R_{21,n-1}}{N_{n}} \cdot T_{J,n-1} + \left[\frac{R_{1,n-1}+R_{11,n-1}}{N_{n}} + \frac{R_{2,1}+R_{22,n}}{N_{1}}\right] T_{J,n} - \frac{R_{12,n}}{N_{1}} \cdot T_{J,1} = \\ = \frac{R_{1,n-1}+R_{11,n-1}-R_{21,n-1}}{N_{n}} \cdot T_{A,n-1} + P_{J,n} + \frac{R_{2,1}+R_{22,n}-R_{12,n}}{N_{1}} \cdot T_{A,n}$$
(5-3)
$$-\frac{R_{21,n}}{N_{1}} \cdot T_{J,n} + \left[\frac{R_{1,n}+R_{11,n}}{N_{1}} + \frac{R_{2,2}+R_{22,1}}{N_{2}}\right] T_{J,1} - \frac{R_{12,1}}{N_{2}} \cdot T_{J,2} = \\ = \frac{R_{1,n}+R_{11,n}-R_{21,n}}{N_{1}} \cdot T_{A,n} + P_{J,1} + \frac{R_{2,2}+R_{22,1}-R_{12,1}}{N_{2}} \cdot T_{A,1} , \quad (5-4)$$

hier speziell mit

 $N_1 = (R_{1,n} + R_{11,n}) \cdot (R_{2,1} + R_{22,n}) - R_{12,n} \cdot R_{21,n}$ (5-5)

Zusammen mit den Gleichungen aus Abschnitt 3.3.2.1 ist jetzt ein zyklisch tridiagonales, lineares Gleichungssystem entstanden, das sich ähnlich wie tridiagonale Gleichungssysteme sehr produktiv lösen läßt [24].

238

5.3.2.3 Simulation und Auswertung

Die im Abschnitt 5.2 berechneten theoretischen Verteilungen werden, wie z. B. in [51] und [52] beschrieben, auf dem Rechner simuliert. Mit den sich dann ergebenden Werten für die Parameter der Thyristoren und Kühldosen wird dann das entsprechende Gleichungssystem gelöst.

Die Anwendung varianzreduzierender Methoden [55] ist hier nur schwer möglich. Die Verwendung antithetischer Zufallsgrößen kommt nicht in Frage, weil nicht nur der Erwartungswert der Sperrschichttemperaturen, sondern insbesondere die Verteilung derselben interessiert.

Antithetische Zufallsgrößen setzen die Streuungen herab, rufen hier eine Verfälschung des Ergebnisses hervor. Auch die Anwendung der parallelen Doppelsimulation stößt auf Schwierigkeiten, wenn der Einfluß der Säulenlänge auf die Temperaturverteilungen untersucht werden soll. Zwar lassen sich dieselben Zufallszahlen für die einzelnen Variablen ohne Schwierigkeiten wieder erzeugen, aber sie treffen nicht "aneinander", so daß sich gegenüber der konsekutiven Doppelsimulation keine Varianzreduktion ergibt.

Mit der Lösung der Gleichungssysteme erhält man eine große Zahl von berechneten Sperrschichttemperaturen. Diese werden sortiert, und es werden einseitige Toleranzintervalle der Verteilung errechnet. Da keine Normalverteilung vorliegt, mußte mit nichtparametrischen Toleranzintervallen gerechnet werden [23]. Es wird das größte m bestimmt, welches die Ungleichung

$$(4 \cdot n - 2 \cdot m + 2) \cdot \frac{1-p}{1+p} \ge \chi^2_{2m;1-\alpha}$$
 (5-6)

gerade noch erfüllt.

Die Quantile der χ^2 -Verteilung wurde mit den in [56] wiedergegebenen Unterprogrammen berechnet. Das gesuchte einseitige obere Toleranzintervall ist dann gerade

$$[-x; X_{(n-m+1)}].$$
 (5-7)

1.16

5.4 Ergebnisse an Hand eines Beispiels

Die Bilder 5-12 bis 5-18 zeigen die Ergebnisse der Simulation des Rechenbeispiels. Dabei sind die Ventile bei jeder Simulation unterschiedlich gestaltet, um den Einfluß des Aufbaus auf die Temperaturverteilung zu zeigen.

Bild 5-12 zeigt die Ausgangsdaten der Simulation. In Bild 5-13 ist der Einfluß der Säulenlänge auf die Temperaturverteilung dargestellt, und Bild 5-14 zeigt die Temperaturverteilung in einem Ventil mit 7 Thyristorplätzen und nur 6 eingesetzten Thyristoren. Der freie Thyristorplatz ist mit einem Dummy aus Aluminium besetzt. Interessant ist besonders der Einfluß der Lage des Dummys. Die Anordnung des Dummys in der Mitte (Platz p = 4) der Säule verursacht eine Senkung der Sperrschichttemperaturen gegenüber einem Platz am Rande (p = 1) um etwa 0,8 K.

Die Bilder 5-15 und 5-16 zeigen den Einfluß der Rechnung an den Konfidenzgrenzen der Kühldosenparameter gegenüber einer Rechnung mit den direkt ermittelten Werten für den Erwartungswert und die Standardabweichung in den Bildern 5-12 und 5-13. Die Bilder 5-17 und 5-18 zeigen einen Ausschnitt aus den für diese Fälle mit Gl. (5-6) ermittelten Toleranzintervallen. Man sieht, daß die "sichere" Rechnung an den Konfidenzgrenzen der Kühldosenparameter keine größere Temperaturdifferenzen als 0,3 K hervorrufen.

Die berechneten Verteilungen sind an den Grenzen recht "unruhig". Dies ist auf die, auch der Simulation zugrundeliegenden Zufälligkeiten zurückzuführen und ist prinzipbedingt. Diese Zufälligkeiten werden durch die Berechnung der Toleranzintervalle nach den Gl. (5-6) und (5-7) "herausgerechnet".

Die herkömmliche Dimensionierung hätte Sperrschichttemperaturen von

 $\vartheta_{J} = R_{thJA} \cdot P_{Jmax} + \vartheta_{A}$ = 17,55 $\frac{mK}{W} \cdot 2,935 \text{ kW} + 50 \text{ °C} = 101,5 \text{ °C}$ für die Dimensionierung mit P_{.lmax} und von

 $\vartheta_{j} = R_{thjA} \cdot P_{j90\%} + \vartheta_{A}$

= 17,55 $\frac{mK}{W}$ · 2,831 kW + 50 °C = 99,7 °C

für die Dimensionierung mit dem 90-%-Wert der Durchlaßspannung erbracht. Die Zahlenwerte dazu stammen aus Bild 3-38. Dazu ist noch zu bemerken, daß der Wert R_{thJA} der unendlich langen Säule auf der Basis des 80-%-Toleranzintervalls der Kühldose errechnet wurde.

5.5 Anwendung des Verfahrens

Die Anwendungsmöglichkeiten dieses Verfahrens sind nicht auf Hochspannungsstromrichter beschränkt. Vorteile sind vor allem für Fälle abhängiger Kühlung zu erwarten, d. h., wenn sich mehrere Bauelemente in ihrer Erwärmung gegenseitig beeinflussen. Dies ist zum Beispiel bei der Montage mehrerer Halbleiterbauelemente auf einem Kühlkörper der Fall. Auch tritt dieser Effekt bei der Siedekühlung, hier allerdings nur beschränkt, auf. Ein weiterer Anwendungsfall ist bei Luftkühlung gegeben, wenn mehrere Wärmequellen seriell angeordnet sind.

Hauptschwierigkeit bei der Anwendung dürfte die Beschaffung ausreichend gesicherter Daten sein. Insbesondere Messungen an Kühleinrichtungen sind relativ aufwendig, da dort große Zeitkonstanten auftreten. Angaben über die Verteilung von Durchlaßverlusten und thermischen Widerständen müßten von den Halbleiterherstellern geliefert werden.

Berlin, den 07. Dezember 1984

Sperrschicht-Temperaturverteilung in Säulen aus Thyristoren und Kühldosen

thJ_Vt - Kassetten 63/64 - Variante 03 - 07. Dezember 1984 - Sz

Anlage:	
Arbeitspunkt	:
Thyristor:	
Kühldose:	

+10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln) 5340 V, 3316 A, 50 Hz, α = 92.0 °el., 6 Thyr. in Reihe T 2200 N 3600 ... 4400 [Model1: J-C] (AEG-Telefunken) AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

Anlage:	+10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln)
1	5340 V, 3316 A, 50 Hz, α = 92.0 °el., 6 Thyr. in Reihe

Leistungsverteilung:	logarithm	ische	Normalver	rteilung
Grundlage der Verteilungsparameter	n_PJ	=	180	Thyristoren
Fluchtpunkt der Verteilung	PJØ	=	2.136	kW
Verteilungsparameter	PJ	=	5.872	
Verteilungsparameter	GPJ	=	0.356	
festgelegter Maximalwert der Leistung	P_J_max	-	2.935	kW
Erwartungswert	E(P J)	=	2.514	kW
Standardabweichung SQR(D2(P_J)) =	S(P_J)	=	0.139	kW
Kühlmittelzulauftemperatur	3 A	=	50.0	°C
Näher. für den Erwartungsw. des Junction-9	E(& J)	=	92.1	°C

Thuristoren:	Т	2288 N	3600	 4400	[Model1:	J-C1	(AEG-Telefunken)
11191 12001 0111		5600 H	0000	 4400	FUNDED	V V 2	ALLEN TREAMIN STL

Verteilung der the	rmis	chen Widerstände:	Normalvert			
Grundlage der Vert	eilu	ngsparameter	n_TH	=	112	Thyristoren
Erwartungswert	der	Anodenseite	W_TH_JC(A)	-	11.369	mK/W
Standardabweichung	der	Anodenseite	G TH JC(A)	=	8.435	mK/W
Erwartungswert	der	Kathodenseite	N TH JC(K)	-	13.641	mK/W
Standardabweichung	der	Kathodenseite	G_TH_JC(K)	-	1,244	mK/W

thermischer Widerstand des Thyristor-Dummys R_TH_Dummy = 23.580 mK/W

Kühldosen: AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren Kühlmittelrichtung: Kathoden-Seite ---> Anoden-Seite

Druckabfall der Kühldosen	⊿p	=	0.997	bar
durchschnittlicher Volumenstrom	V_punkt	=	150	1/h
Verteilung der thermischen Widerstände:	Normalve	rteilun	9	
Grundlage der Verteilungsparameter	n_KD	=	9	Kühldosen
Erwartungswert	µ_11_CA	=	15.572	mK/W
Standardabweichung	6_11_CA	=	0.186	mK∠W
thermischer Widerstand (Streuung unbekannt)	R_12_CA	=	5,931	mK∠W
thermischer Widerstand (Streuung unbekannt)	R_21_CR	=	1.647	mK∕₩
Erwartungswert	µ 22 CA	=	18.418	mK/W
Standardabweichung	g_22_CA	=	0.386	mK⊻W
Simulationen:	mit der	Monte-C	arlo-Meti	node
Richtwert für die Anzahl der Simulationen	n	=	10 000	

<u>Bild 5-12:</u> Daten für die Monte-Carlo-Simulationen in den Bildern 5-13, 5-14 und 5-17 (Rechnung mit den gemessenen Verteilungen der Kühldosenparameter)

Berlin, den 07. Dezember 1984

Spernschicht-Temperaturverteilung in Säulen aus Thyristoren und Kühldosen

thJ Vt - Kassetten 63/64 - Variante 03 - 07. Dezember 1984 - Sz

Anlage: Arbeitspunkt: Thyristor: Kühldose: +10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln) 5340 V, 3316 A, 50 Hz, « = 92.0 °el., 6 Thyr. in Reihe T 2200 N 3600 ... 4400 [Modell: J-C] (AEG-Telefunken) AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

Sperrschicht-Temperaturverteilungen in den Säulen:

Bemerkung: Wahrscheinlichkeitsnetz der Normalverteilung

<u>Bild 5-13:</u> Einfluß der Länge der Säule auf die sich einstellende Verteilung der Sperrschicht-Temperaturen in den Thyristoren (vollbestückte Säulen mit den Daten von Bild 5-12) Sperrschicht-Temperaturverteilung in Säulen aus Thyristoren und Kühldosen

thJ Vt - Kassetten 63/64 - Variante 03 - 07. Dezember 1984 - Sz

Anlage: Arbeitspunkt: Thyristor: Kühldose: +10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln) 5340 V, 3316 A, 50 Hz, α = 92.0 °el., 6 Thyr. in Reihe T 2200 N 3600 ... 4400 [Modell: J-C] (AEG-Telefunken) AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

Sperrschicht-Temperaturverteilungen in den Säulen:

Bemerkung: Wahrscheinlichkeitsnetz der Normalverteilung

Bild 5-14: Einfluß der Lage des Dummys in der Säule auf die sich einstellende Verteilung der Sperrschicht-Temperaturen in den Thyristoren (teilbestückte Säulen mit den Daten von Bild 5-12)

Berlin, den 07. Dezember 1984

Sperrschicht-Temperaturverteilung in Säulen aus Thyristoren und Kühldosen

thJ_Vt - Kassetten 63/64 - Variante 03 - 07. Dezember 1984 - Sz

Anlage:	+10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln)
Arbeitspunkt:	5340 V, 3316 A, 50 Hz, α = 92.0 °el., 6 Thyr. in Reihe
Thyristor:	T 2200 N 3600 4400 [Model1: J-C] (AEG-Telefunken)
Kühldose:	AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

Anlage:	+10/-	-35-	-MVAr-	-Kor	nper	isat	or	 (anschnittgesteuerte Drossel) 						sseln)
	5340	٧,	3316	A,	50	Ηz,	01	=	92.0	°∈1.,	6	Thyr.	in	Reihe

Leistungsverteilung:	logarithm	ische	Normalverteilung			
Grundlage der Verteilungspar	n_PJ	=	180	Thyristoren		
Fluchtpunkt der Verteilung		P_J_0	=	2.136	kW	
Verteilungsparameter		NPJ	=	5.872		
Verteilungsparameter		GPJ	=	0.356		
festgelegter Maximalwert der	Leistung	P_J_max	=	2.935	kШ	
Erwartungswert		E(P_J)	=	2.514	kW	
Standardabweichung	SQR(D2(P_J)) =	S(P_J)	=	0.139	k₩	
		12 1121		FO 0		

Kühlmit	tel:	zulau	iftemperatur			9 A	=	50.0 °C
Näher.	für	den	Erwartungsw.	des	Junction-9	E(%_J)	=	92.2 °C

T 2200 N 3600 ... 4400 [Modell: J-C] (AEG-Telefunken) Thyristoren:

Verteilung der them	^mis(chen Widerstände:	Norma	alvert	eilung		
Grundlage der Verte	eilu	ngsparameter	n_TH		-	112	Thyristoren
Erwartungswert	der	Anodenseite	μTH	JC(A)	=	11.369	mK/W
Standardabweichung	der	Anodenseite	g_TH	JC(A)	=	0.435	m K 🗸 W
Erwartungswert	der	Kathodenseite	μTH	JC(K)	=	13.641	mK/W
Standardabweichung	der	Kathodenseite	GTH	JC(K)	=	1.244	m K / W

AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren Kühldosen: Kühlmittelrichtung: Kathoden-Seite ---> Anoden-Seite

Druckabfall der Kühldosen	⊿p	=	0.997	bar
durchschnittlicher Volumenstrom	V_punkt	=	150	1/h
Verteilung der thermischen Widerstände:	Normalvert	eilung		
Grundlage der Verteilungsparameter	n_KD	=	9	Kühldosen
obere Konfidenzgrenze des Erwartungswert	μ 11 CA ο	=	15.658	mK∠W
untere Konfidenzgrenze der Standardabw.	g 11 CA u	=	0.282	mK/W
obere Konfidenzgrenze der Standardabw.	6_11_CA_0	=	0.144	mK/W
thermischer Widerstand (Streuung unbekannt)	R_12_CA		5.931	$\mathfrak{m}K \not \subset W$
thermischer Widerstand (Streuung unbekannt)	R_21_CA	=	1.647	m K Z W
obere Konfidenzgrenze des Erwartungswert	μ_22_CA_0	=	18.598	m K < W
untere Konfidenzorenze der Standardabw.	6 22 CA U	=	0.299	mKZW.
obere Konfidenzgrenze der Standardabw.	@_22_CA_0	=	0.585	mK∠W

Simulationen:						mit	der	Monte-Car	10-Methode
Richtwert	für	die	Anzahl	der	Simulationen	n		=	10 000

Bild 5-15: Daten für die Monte-Carlo-Simulationen in den Bildern 5-16 und 5-18 (Rechnung an den Konfidenzgrenzen der gemessenen Verteilungen der Kühldosenparameter) . . . Sperrschicht-Temperaturverteilung in Säulen aus Thyristoren und Kühldosen

thJ_Vt - Kassetten 63/64 - Variante 03 - 07. Dezember 1984 - Sz

Anlage: Arbeitspunkt: Thyristor: Kühldose: +10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln) 5340 V, 3316 A, 50 Hz, α = 92.0 °el., 6 Thyr. in Reihe T 2200 N 3600 ... 4400 [Model1: J-C] (AEG-Telefunken) AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

Sperrschicht-Temperaturverteilungen in den Säulen:

Parameter: Anzahl der Thyristoren in der Säule

Bemerkung: Wahrscheinlichkeitsnetz der Normalverteilung

<u>Bild 5-16:</u> Einfluß der Länge der Säule auf die sich einstellende Verteilung der Sperrschicht-Temperaturen in den Thyristoren (vollbestückte Säulen mit den Daten von Bild 5-15)

Sperrschicht-Temperaturverteilung in Säulen aus Thyristoren und Kühldosen

thJ Vt - Kassetten 63/64 - Variante 03 - 07. Dezember 1984 - Sz

Anlage:	+10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln)
Arbeitspunkt:	5340 V, 3316 R, 50 Hz, ∝ = 92.0 °el., 6 Thyr. in Reihe
Thyristor:	T 2200 N 3600 4400 [Model1: J-C] (AEG-Telefunken)
Kühldose:	AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

1.	Anzahl der Thyristoren je Säul	e	n_Säule	=	5	Stück
	arithmetischer Mittelwert		\$_quer	=	98.543	°C
	empirische Standardabweichung		s_\$	-	2.493	к
	Minimalwert der Temperatur		3 min	=	82.768	°C
	Maximalwert der Temperatur		\$ max	=	99.911	°C
	Spannweite der Temperatur		R_9	=	17.143	к
	einseitige Toleranzintervalle:					
	Irrtumswahrscheinlichkeit		04	-	5	%
	Toleranzintervall mit p = 99.9	2	9 J p	=	98.9	°C
	Toleranzintervall mit p = 99.8	3 %	9 J p	-	98.4	°C
	Toleranzintervall mit p = 99.5	2	9 J p	=	97.4	°C
	Toleranzintervall mit p = 99.0	2	9 J p	=	96.7	°C
	Toleranzintervall mit $p = 98.0$	1 %	9 J p	=	96.1	°C
	Toleranzintervall mit p = 95.0	1 %	9 J p	=	95.0	°C
	Toleranzintervall mit $p = 90.0$	2	8 J p	=	94.0	°C
	Toleranzintervall mit p = 80.0	1 %	9 J p	=	92.9	°C
	Toleranzintervall mit $p = 58.0$	1 %	9 J p	=	98.6	°C

2. Simulation einer unendlich langen Säule aus Thyristoren und Kühldosen

arithmetischer Mit	ttelwe	rt			9 guer	=	91.598	°C
empirische Standar	rdabwe	ícl	s_9	=	2.032	к		
Minimalwert der Te	empera	tu	r		\$ min	=	85.952	°C
Maximalwert der Te	empera	2 ui	n		9 max	=	99.591	°C
Spannweite der Te	empera	tui	r		R_9	=	13.639	к
einseitige Tolerar	nzinte	rv	alle:					
Irrtumswahrschein	lichke	it			ox		5	×
Toleranzintervall	mit p	=	99.9	*	эJр	=	98.9	°C
Toleranzinteruall	mit p	=	99.8	%	9 J p	=	98.4	°C
Toleranzinteruall	mit p	=	99.5	%	8 J p	=	97.9	°C
Toleranzinterval1	mit p	=	99.0	%	8 J p	=	97.3	°C
Toleranzinteruall	mit p	=	98.0	%	8 J p	=	96.6	°C
Toleranzintervall	mit p	=	95.0	%	9 J p	=	95.6	°C
Toleranzintervall	mit p	=	98.0	%	9 J p	=	94.6	°C
Toleranzintervall	mit p	=	88.0	2	8 J p	=	93.6	°C
Toleranzintervall	mit p	=	50.0	%	s J p	-	91.6	°C

Bild 5-17: Statistische Ruswertung der Monte-Carlo-Simulation (vollbestückte Säule mit den Daten von Bild 5-12)

Berlin, den 07. Dezember 1984

Sperrschicht-Temperaturverteilung in Säulen aus Thyristoren und Kühldosen

thJ_Vt - Kassetten 63/64 - Variante 03 - 07. Dezember 1984 - Sz

Anlage:	+10/-35-MVAr-Kompensator (anschnittgesteuerte Drosseln)
Arbeitspunkt:	5340 V, 3316 A, 50 Hz, α = 92.0 °el., 6 Thyr. in Reihe
Thyristor:	T 2200 N 3600 4400 [Model1: J-C] (AEG-Telefunken)
Kühldose:	AEG-Kühldose 029.076 404 für 75- und 100-mm-Thyristoren

1.	Anzahl der Thyris	torei	n ,	je	Saule	£	n_Saule	-	5	Stuck
	arithmetischer Mi	ttel	wer	۰t			9 quer	=	90.715	°C
	empirische Standa	rdabi	we	icł	nung		s_9	=	2.500	к
	Minimalwert der T	emper	rat	u	~		\$_min	=	82.974	°C
	Maximalwert der To	emper	rat	Lu:	-		9 max	=	100.273	°C
	Spannweite der T	empe	rat	t ui	r		R_9	=	17.299	к
	einseitige Tolera	nzin	ter	۰v.	alle:					
	Irrtumswahrschein	lich	ke	it			64	=	5	×
	Toleranzintervall	mit	p	=	99.9	%	эjр	-	99.2	°C
	Toleranzinterval1	mit	p	=	99.8	%	8 J p	=	98.5	°C
	Toleranzintervall	mit	p	=	99.5	%	a I e	-	97.6	°C
	Toleranzintervall	mit	p	=	99.0	%	9 J p	-	96.9	°C
	Toleranzintervall	mit	p	=	98.0	×	8 J p	=	96.3	°C
	Toleranzinteruall	mit	'n	=	95.0	2	8 J p	=	95.1	°C
	Toleranzinteruall	mit	p	=	90.0	2	3 J p	-	94.2	° C
	Toleranzinteruall	mit	'n	=	88.8	2	a I n	-	93.1	°C
	Toleranzintervall	mit	p	=	50.0	%	9_J_p	=	90.8	°C

2. Simulation einer unendlich langen Säule aus Thyristoren und Kühldosen

769 045 167 736 569	°CK °CK
045 167 736 569	× °C °C
167 736 569	°C °C
736	°C
569	
	К
5	*
9.2	°C
8.6	°C
8.1	°C
7.6	°C
6.8	°C
5.8	°C
4.8	°C
3.8	°C
1.8	°C
	569 5 9.26 8.1 7.6 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8

Bild 5-18: Statistische Ruswertung der Monte-Carlo-Simulation (vollbestückte Säule mit den Daten von Bild 5-15)

6. Quellen

- [1] Wasserrab. Th.: Dauergleichstrom von Leistungsdioden und Thyristoren. etz-b Bd. 28 (1976) H. 5, S. 112 - 116.
- [2] DIN 41784: Thyristoren Meß- und Prüfverfahren. Norm. Teil 1: 12 S. (Aug. 1973) und 25 S. (Entwurf Juni 1982).
- [3] DIN 41862: Halbleiterbauelemente und integrierte Mikroschaltungen - Mit der Temperatur zusammenhängende Begriffe, Benennungen und Erklärungen. Norm, 4 S. (Dez. 1971) und Beiblatt 5 S. (Dez. 1971).
- [4] DIN 47786: Thyristoren Begriffe. Norm, 22 S. (Juni 1976).
- [5] Beriger, C.; Hengsberger, J.; Thiele, G.: HGÜ-Ventilentwicklung, etz Bd. 102 (1981) H. 25, S. 1338 - 1342.
- [6] -: MEGASEMI Stromrichter-System f
 ür Mittelspannungen. Berlin, Frankfurt/M.: AEG-TELEFUNKEN 1980.
- [7] Jaecklin, A. A.; Lips, H. P.: Hochleistungsthyristoren für Hochspannungs-Gleichstrom-Übertragung (HGÜ).
 Brown Boveri Mitt. Bd. 69 (1982) H. 7/8. S. 242 - 249.
- [8] Salanki, T.: Bemessung von Kühldosen für Thyristoren und ihre Anwendung in Hochspannungs-Stromrichteranlagen. Siemens-Zeitschrift Bd. 52 (1978) H. 1, S. 43 - 46.
- [9] Glöckel. R.: Wärmewiderstandsbestimmung an Siliziumgleichrichtern und Siliziumthyristoren in Scheibenzellenbauweise. Dissertation TU Hannover 1968.
- [10] Sachs, L.: Angewandte Statistik. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag 1984.

- [11] Rasch, D.: Einführung in die mathematische Statistik. Bd. I: Wahrscheinlichkeitsrechnung und Grundlagen der mathematischen Statistik. Berlin: Deutscher Verlag der Wissenschaften 1978.
- [12] Müller, P. H.; Neumann, P.; Storm, R.: Tafeln der mathematischen Statistik. München, Wien: Carl Hanser Verlag 1977.
- [13] Goldsmith, A.; Waterman, T. E.; Hirschhorn, H. J.: Handbook of thermophysical properties of solid materials. Volume I: Elements. New York: The Macmillan Company 1961.
- [14] VDI-Wärmeatlas. Berechnungsblätter für den Wärmeübergang. Düsseldorf: VDI-Verlag 1984.
- [15] Hermsdorf, L.; Hoch, G.; Krämer, D.; Reibetanz, W.: Leiterwerkstoffe. In: Taschenbuch Elektrotechnik.
 E. Philippow (Hrsg.). Band 1: Allgemeine Grundlagen. München, Wien: Carl Hanser Verlag 1976.
- [16] Knörrich, K.; Koller, A.: Digitale Berechnung von ebenen und rotationssymmetrischen Potentialfeldern mit beliebigen Randbedingungen. ETZ-A Bd. 91 (1970) H. 6, S. 339 - 344.
- [17] Müller, H.: Berechnung des transienten thermischen Verhaltens von Halbleiterventilen im Bereich kurzer Zeiten. Dissertation RWTH Aachen 1972.
- [18] Adler, M. S.: Accurate Calculations of the Forward Drop and Power Dissipation in Thyristors. IEEE Transactions on Electron Devices Vol. 25 (1978) No. 1, pp. 16 - 22.
- [19] Borchert, E.: Verlustleistung in 100-mm-Thyristoren. Warstein-Belecke: Unveröffentlichte Mitteilung vom 22.2.1984.

- [20] Müller, I.: Thermodynamik I. Manuskript der Vorlesung "Grundzüge der Thermodynamik". Berlin: Technische Universität Berlin SS 1983.
- [21] Elsner, N.; Fischer, S.; Klinger, J.: Thermophysikalische Stoffeigenschaften von Wasser. Leipzig: Deutscher Verlag für Grundstoffindustrie 1982.
- [22] Härtler, G.: Statistische Mehoden für die Zuverlässigkeitsanalyse. Berlin: Verlag Technik 1983.
- [23] Hartung, J.; Elpelt, B.; Klösener, K.-H.: Statistik. München, Wien: R. Oldenbourg Verlag 1982.
- [24] Engeln-Müllges, G.; Reutter, F.: Formelsammlung zur Numerischen Mathematik mit BASIC-Programmen. Mannheim, Wien, Zürich: Bibliographisches Institut 1983.
- [25] Jeggle, H.: Numerische Mathematik I f
 ür Ingenieure. Unkorrigiertes Skript der Vorlesung SS 1983, TU Berlin.
- [26] Salanki, T.: Berechnungsmethode für Luftkühlkörper von Thyristoren hoher Leistung. Siemens-Zeitschrift Bd. 50 (1976) H. 3, S. 172 - 177.
- [27] Störmer, R.: Der Wärmeausgleich in geschichteten Werkstoffen. Wiss. Veröff. Siemens-Konzern Bd. 17 (1938) H. 1, S. 90-98.
- [28] Lampe, W.: Über das eindimensionale lineare und nichtlineare Diffusionsproblem. Archiv für Elektrotechnik Bd. 53 (1969) H. 3, S. 155 - 162.
- [29] Voigt, H.; Abramenko. B.: Instationäre thermische Vorgänge im Thyristor. Zeitschr. für angewandte Physik Bd. 20 (1966) H. 6. S. 560-563.

- [30] Grigorieff, R. D.: Numerische Mathematik II für Ingenieure. Unkorrigiertes Skript der Vorlesung WS 1983/84, TU Berlin.
- [31] Beuken, C. L.: Wärmeverluste bei periodisch betriebenen elektrischen öfen. Dissertation Sächsische Bergakademie Freiberg 1936.
- [32] Crank, J.; Nicolson, P.: A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Proc. Cambr. Philos. Soc. Vol. 43 (1949), pp. 50 - 67.
- [33] Klein, W.; Motz, T.: Vierpoltheorie.
 In: Handbuch für Hochfrequenz- und Elektrotechniker.
 C. Rint (Hrsg.). Band 2. München, Heidelberg:
 Hüthig und Pflaum Verlag 1978.
- [34] Klein, W.: Theorie der Netzwerke. In: Handbuch für Hochfrequenz- und Elektrotechniker. C. Rint (Hrsg.). Band 1. Berlin: Verlag für Radio-Foto-Kinotechnik 1949.
- [35] Köchli, W.: Identifikation des thermischen Verhaltens einer Hochleistungsdiode. Dissertation ETH Zürich 1969.
- [36] Philippow, E.: Grundlagen der Elektrotechnik. Leipzig: Akademische Verlagsgesellschaft Geest & Portig KG 1967.
- [37] Cauer, W.: Die Verwirklichung von Wechselstromwiderständen vorgeschriebener Frequenzabhängigkeit. Archiv für Elektrotechnik Bd. 17 (1926) H. 4, S. 355 - 388.
- [38] Fritzsche, G.: Entwurf passiver Analogvierpole. Netzwerk II. Braunschweig, Wiesbaden: Friedr. Vieweg & Sohn 1980.
- [39] Anwander, E.; Lawatsch, H.: Thermische Messungen und thermische Ersatzschaltbilder von Halbleiterbauelementen und Kühlern für die rechnergestützte Bemessung und Simulierung von Stromrichtern. ETZ-A Bd. 96 (1975) H. 6, S. 261 - 265.
- [40] Simonyi, K.: Theoretische Elektrotechnik. Berlin: Deutscher Verlag der Wissenschaften 1977.
- [41] Kretzmann, R.: Handbuch der Industriellen Elektronik. Berlin: Verlag für Radio-Foto-Kinotechnik 1954.
- [42] Benkowsky, G.: Induktionserwärmung. Berlin: Verlag Technik 1980.
- [43] Seelig. A.: Mittelfrequenz-Wechselrichter für das induktive Kochen. Wiss. Ber. AEG-Telefunken Bd. 55 (1982) H. 1/2, S. 80 - 89.
- [44] Büttner, W.: Ein numerisches Verfahren zur Exponentialapproximation von transienten Wärmewiderständen. Archiv für Elektrotechnik Bd. 59 (1977), S. 351 - 359.
- [45] Golub, G. H.; Pereyra, V.: The Differentiation of pseudoinverses and nonlinear least squares problems whose variables separate. SIAM J. Num. Anal. Vol. 10 (1973) No. 2, pp. 413 - 432.
- [46] Osborne, M. R.: Sime special nonlinear least squares problems. SIAM J. Num. Anal. Vol. 12 (1975) No. 4, pp. 571 - 592.
- [47] Meinhardt, J.: Spezielle anwendungsorientierte Rechenverfahren der Elektrotechnik. In: Taschenbuch der Elektrotechnik.
 E. Philippow (Hrsg.). Band 1: Allgemeine Grundlagen.
 München. Wien: Carl Hanser Verlag 1976.

- [48] Hauschild, W.; Mosch, W.: Statistik f
 ür Elektrotechniker. Berlin: Verlag Technik 1984.
- [49] Lawless, J. F.: Statistical Models and Methods for Lifetime Data. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons 1982.
- [50] Buslenko, N. S.; Schreider, J. A.: Die Monte-Carlo-Methode und ihre Verwirklichung mit elektronischen Digitalrechnern. Leipzig: B. G. Teubner Verlagsgesellschaft 1964.
- [51] Hengartner, W.; Theodorescu, R.: Einführung in die Monte-Carlo-Methode. München, Wien: Carl Hanser Verlag 1978.
- [52] Ermakow, S. M.: Die Monte-Carlo-Methode und verwandte Fragen. München, Wien: R. Oldenbourg Verlag 1975.
- [53] Bauknecht, K.; Kohlas, J.; Zehnder, C. A.: Simulationstechnik. Berlin, Heidelberg, New York: Springer Verlag 1976.
- [54] Niemeyer, G.: Systemsimulation. Frankfurt/M.: Akademische Verlagsgesellschaft 1973.
- [55] Köcher, R.; Matt, G.; Oertel, C.; Schneeweiß, H.: Einführung in die Simulationstechnik. Frankfurt/Main: DGOR - Deutsche Gesellschaft für Operations Research 1972.
- [56] Mardia, K. V.; Zemroch, P. J.: Tables of the F- and related distributions with algorithmus. London, New York, San Francisco: Academic Press 1978.
- [57] Schwarz, J.: Kühlung von Leistungshalbleitern. Elektronik Journal Bd. 20 (1985) H. 13/14, S. 38 - 43.

- [58] Schwarz, J.: Behandlung von Polynomen Teil 1 ... 5.
 CAL Comp. Anw. Lab. Bd. 3 (1985) H. 1, S. 45 49;
 H. 2, S. 76 83; H. 3/4, S. 136 142; H. 5, S. 224 229; H. 6, S. 298 313.
- [59] Schwarz, J.: Junction- und Case-Temperatur. Elektronik Journal Bd. 20 (1985) H. 17, S. 60 - 66.
- [60] Holm, R.: Electric Contacts. Berlin, Heidelberg, New York: Springer-Verlag 1967.
- [61] Shlykov, Yu. P.; Ganin, Ye. A.: Thermal Resistance of Metallic Contacts. Int. J. Heat Mass Transfer. Vol. 7 (1964), pp. 921 - 929.
- [62] Boeschoten, F.; van der Held, E. F. M.: The Thermal Conductance of Contacts Between Aluminium and Other Metals. Physica Vol. 23 (1957), pp. 37 - 44.

Lebenslauf

Jürgen Schwarz

26.02.1947 geboren in Berlin, deutsche Staatsangehörigkeit, verheiratet, ein Kind Sohn des Chemikers Dr. rer. nat. Horst Schwarz und seiner Ehefrau Dr. med. Inge Schwarz, geb. Pietrasch 1953 - 1963 Schulausbildung in einer Grundschule und einer Oberschule 1963 Mittlere Reife 1963 - 1965 Lehrausbildung zum Mechaniker in der VEB Werkzeugfabrik Treptow in Berlin (Ost) 1965 Facharbeiterprüfung 1963 - 1965 Besuch der Abendoberschule zur Erlangung der Hochschulreife 1965 Abitur 1965 - 1966 Tätigkeit als Mechaniker beim VEB Steremat Berlin (Ost) 1966 - 1970 Studium der Elektrotechnik an der Technischen Universität Dresden 1970 Diplom-Hauptprüfung 1970 - 1971 Wissenschaftlicher Assistent an der Technischen Universität Dresden 1971 - 1980 Entwicklungsingenieur, Themenleiter und Ingenieur für Meßwesen beim VEB Elektroprojekt und Anlagenbau Berlin (Ost) seit 1981 Entwicklungsingenieur in der Stromrichterfabrik der AEG-TELEFUNKEN Anlagentechnik Aktiengesellschaft seit 1983 Aufbau- bzw. Promotionsstudium an der Technischen Universität Berlin

100 C