
Otto-von-Guericke-Universität Magdeburg
Faculty of Computer Science

D
S E
B

Databases

Software
Engineering

and

Master Thesis

An Evaluation of Deep Hashing for
High-Dimensional Similarity Search

on Embedded Data

Author:

Rutuja Shivraj Pawar
October 02, 2019

Internal Supervisors:

Prof. Dr. rer. nat. habil. Gunter Saake, M.Sc. Gabriel Campero Durand
University of Magdeburg

External Supervisor:

Prof. Dr.-Ing. Sebastian Michel
Technische Universität Kaiserslautern

Pawar, Rutuja Shivraj:
An Evaluation of Deep Hashing for High-Dimensional Similarity Search on Embedded Data
Master Thesis, Otto-von-Guericke-Universität Magdeburg
Faculty of Computer Science, 2019.

Abstract

In today’s era, the rate at which data is accumulating is exponential, which makes it increas-
ingly challenging to retrieve relevant information. In such a scenario, high-dimensional
similarity search serves as a popular method to extract relevant information from large data
volumes or Big Data, and it further drives di�erent Machine Learning (ML) tasks including,
Near Duplicate Detection & Location Recognition. However, Big Data, due to its charac-
teristics, poses a variety of challenges to ML applications, such as high class imbalance,
the need for feature engineering to support heterogeneous data and the need for e�cient
solutions for queries over array data. Consequently, in this thesis, we aim to optimize the
data analytics pipeline for the utilization and e�ective management of feature engineering
data (embedding data), o�ering as one of the solutions in the context of high-dimensional
similarity search. In doing so, we evaluate the impact of similarity-preserving hashing on
helping with data blocking and skipping for ML applications of supervised entity resolution
and top-k similarity search.

Precisely, we make the following contributions:

First, we utilize and work with embedding data, as an approach to highlight semantic
similarity in the data, thus making it more manageable. In doing so, we experiment with
three dataset pairs from two di�erent domains, Bibliographic and E-commerce, with their
attributes embedded using a fastText pre-trained model. Further, based on its fast query
speed and low memory costs, we consider similarity-preserving hashing as the technique to
manage these embedding data and e�ciently support high-dimensional similarity search.
Speci�cally, we consider two hashing techniques, Locality Sensitive Hashing (LSH) being
data-independent, and Learning To Hash (L2H) being data-dependent.

Second, based on well-de�ned metrics, we experimentally evaluate the e�ciency and classi-
�cation accuracy of LSH - Super-Bit, with a focus on the task of supervised entity resolution.

Third, based on the same metrics, we experimentally evaluate and compare LSH - Super-Bit
with L2H - Deep Hashing. In doing so, we utilize our designed Deep Hash Neural Net (DHNN),
based on the literature. This designed network serves as our main contribution in o�ering a
deep hashing neural network generalized to work with embedding data. In this evaluation,
we are able to report a superior performance of L2H - Deep Hashing over LSH - Super-Bit,
for the task of supporting supervised entity resolution.

iv

Finally, based on the outcome of the experimental evaluation, we further evaluate the runtime
performance and speed-up brought by L2H - Deep Hashing to top-k similarity search queries
in Apache Spark, using di�erent �le formats.

Acknowledgement

Through writing this acknowledgement, I wish to express my deep sense of gratitude to all
the people involved in the realization of this Master Thesis.

First and foremost, I would like to express my sincere gratitude to my supervisor and mentor
M.Sc. Gabriel Campero Durand, for his continuous guidance, motivation, and expert advice
throughout this thesis research. The enriching discussions that we had combined with his
constructive feedback and immense knowledge added to a valuable contribution to this
research. I could not have imagined having a better mentor than him for my thesis.

I am grateful to Prof. Dr. rer. nat. habil. Gunter Saake for giving me the opportunity to
conduct my thesis research under his chair and sharing his valuable feedback as the �rst
reviewer for this thesis. The excellent research environment and the valuable ongoing
research at his Database and Software Engineering Workgroup always motivated me to
write my thesis under his chair. I am also thankful to Prof. Dr.-Ing. Sebastian Michel,
with whom I had the opportunity to interact and have an insightful discussion after his
Keynote speech on Similarity Search and Data Exploration over Entity Rankings at the 31st

GI-Workshop on Foundations of Databases (Grundlagen von Datenbanken) in Saarburg. I
would like to especially appreciate his quick response in acceptance as the second reviewer
for this thesis and sharing his valuable feedback.

I would also like to thank M.Sc. Xiao Chen for her experienced guidance in the setup and
experiment with the Apache Spark cluster. Additionally, I would like to thank Technical
Administrator, Dipl.-Inf. Ste�en Thorhauer for his quick response helpful in the timely setup
of the Spark cluster.

Finally and most importantly, I would like to thank my family: my grandparents Ajji and
Ajoba, my parents Mamma and Pappa, and my little sister Amarja for their immense contin-
uous support, motivation and good wishes in all the ventures of my life that I undertake!

Declaration of Academic Integrity

I hereby declare that this thesis is solely my own work and I have cited all the external
sources used.
Magdeburg, October 06, 2019

———————–———
Rutuja Shivraj Pawar

Matriculation No. 220051

Contents

List of Figures 8

List of Tables 9

1 Introduction 1
1.1 Motivation . 1
1.2 Previous Work . 3
1.3 Initial Research Questions . 4
1.4 Research Methodology . 4
1.5 Thesis Structure . 6

2 Background 7
2.1 Systematic Literature Review . 8

2.1.1 Literature Search Process . 8
2.1.2 Overview of Selected Papers . 9

2.2 Overview on Embeddings . 9
2.3 Large-Scale Data Processing . 12

2.3.1 Examples of Large-Scale Data Processing Systems 12
2.3.2 Optimizers for Data�ow Large-Scale Data Processing 20
2.3.3 Storage for Large-Scale Data Processing 23

2.3.3.1 Distributed File System (HDD) 23
2.3.3.2 Distributed In-Memory Storage 26
2.3.3.3 Storage Formats . 28

2.3.4 Benchmarks . 32
2.4 Machine Learning and Data Management Interfaces in the Context of Em-

beddings . 33
2.5 Optimizations for Embeddings and Array Data 37

2.5.1 Optimized Management of Embeddings 37
2.5.2 High-Dimensional Hashing . 38

2.5.2.1 Locality Sensitive Hashing 39
2.5.2.2 Learning To Hash . 40
2.5.2.3 Supervised Entity Resolution 43

2.6 Summary . 44

2 Contents

3 Design Overview and Prototypical Implementation 49
3.1 Design Overview . 49
3.2 Final Research Questions . 52
3.3 Proposed Approach . 52

3.3.1 Problem De�nition . 53
3.3.2 Learning the Hash Function . 53
3.3.3 Model Learning . 56

3.4 Prototypical Implementation . 58
3.4.1 Experimental setup . 58
3.4.2 Input Datasets . 59
3.4.3 Pre-Processing and Vectorization of Input Datasets 59
3.4.4 Evaluation Metrics . 60

3.5 Summary . 61

4 Locality Sensitive Hashing 63
4.1 Research Question . 63
4.2 Data Pipeline . 64

4.2.1 Pre-Processing and Vectorization . 64
4.2.2 Locality Sensitive Hashing Technique 64
4.2.3 Evaluation . 65

4.3 Results . 65
4.4 Summary . 87

5 Learning To Hash 89
5.1 Research Question . 89
5.2 Data Pipeline . 90

5.2.1 Pre-Processing and Vectorization . 90
5.2.2 Learning To Hash Technique . 90
5.2.3 Evaluation . 90

5.3 Results . 91
5.4 Summary . 110

6 Similarity Search Using Di�erent File Formats in Apache Spark 113
6.1 Research Question . 113
6.2 Data Pipeline . 114

6.2.1 Data Storage . 114
6.2.2 Evaluation . 114

6.3 Results . 115
6.4 Summary . 123

7 Related Work 125
7.1 Blocking Techniques for Entity Resolution 125
7.2 Supervised Deep Hashing . 126
7.3 E�cient Techniques for High-Dimensional Similarity Search 126

Contents 3

8 Conclusion and Future Directions 127
8.1 Conclusion . 127
8.2 Future Directions . 128

9 Appendix 1: Derivation of Loss Function 131

10 Appendix 2: Prototypical Implementation of a Deep Hash Network 135

Bibliography 137

List of Figures

1.1 Machine Learning Challenges Associated with Big Data Characteristics
(adapted from L’heureux et al. [1]) . 3

1.2 Data Analytics Pipeline (adapted from L’heureux et al. [1]) 3

1.3 Di�erent phases of Data Science Edge [2] . 5

2.1 Visualization of Embedding Analogies of Country-Capital on the Left and
Verb Tense on the Right . 11

2.2 Systems compromising the SQL-on-BigData landscape [3] 18

2.3 Taxonomy of Areas of Improvement for MapReduce [4] 20

2.4 High-level Overview of Apache Spark Stack [5] 21

2.5 Types of Distributed File System (DFS) . 24

2.6 Taxonomy connecting File Format to Layout [6] 29

2.7 Similarity mapping between ML pipeline main steps on left to that of MLlib
pipeline main concepts on right (adapted from Meng et al. [7]) 35

2.8 Taxonomy of Hashing Models47 . 39

2.9 Super-Bit Orthogonal Projection Vectors of Random Projection Vectors from
Normal Distribution N(0, 1) [8] . 40

2.10 End-to-end Architecture of Deep Pairwise-Supervised Hashing (DPSH) [9] . 42

2.11 End-to-end Architecture of Triplet-Based Deep Hashing [10] 42

2.12 Architecture of Deep Hashing Network (DHN) [11] 42

2.13 General Process of Entity Resolution [12, 13] 44

3.1 High-level overview of the research area of this thesis16 51

3.2 Overview of the Proposed Deep Hashing Method for Deep Hash Neural Net
(DHNN) . 56

6 List of Figures

3.3 Deep Hash Neural Net (DHNN) . 57

4.1 Locality Sensitive Hashing (LSH) Schematic Representation 64

4.2 Coverage of Amazon-Google Dataset (Single Feature Hashing) 67

4.3 Computation of Amazon-Google Dataset (Single Feature Hashing) 68

4.4 Pareto Front Plot of Amazon-Google Dataset (Single Feature Hashing) . . . 69

4.5 Pareto Front Plot of Amazon-Google Dataset (Selective Labelling Single
Feature Hashing) . 69

4.6 Coverage of Amazon-Google Dataset (All Features Hashing) 70

4.7 Computation of Amazon-Google Dataset (All Features Hashing) 71

4.8 Pareto Front Plot of Amazon-Google Dataset (All Features Hashing) 72

4.9 Pareto Front Plot of Amazon-Google Dataset (Selective Labelling All Features
Hashing) . 72

4.10 Coverage of DBLP-ACM Dataset (Single Feature Hashing) 73

4.11 Computation of DBLP-ACM Dataset (Single Feature Hashing) 74

4.12 Pareto Front Plot of DBLP-ACM Dataset (Single Feature Hashing) 75

4.13 Pareto Front Plot of DBLP-ACM Dataset (Selective Labelling Single Feature
Hashing) . 75

4.14 Coverage of DBLP-ACM Dataset (All Features Hashing) 76

4.15 Computation of DBLP-ACM Dataset (All Features Hashing) 77

4.16 Pareto Front Plot of DBLP-ACM Dataset (All Features Hashing) 78

4.17 Pareto Front Plot of DBLP-ACM Dataset (Selective Labelling All Features
Hashing) . 78

4.18 Coverage of Walmart-Amazon Dataset (Single Feature Hashing) 79

4.19 Computation of Walmart-Amazon Dataset (Single Feature Hashing) 80

4.20 Pareto Front Plot of Walmart-Amazon Dataset (Single Feature Hashing) . . . 81

4.21 Pareto Front Plot of Walmart-Amazon Dataset (Selective Labelling Single
Feature Hashing) . 81

4.22 Coverage of Walmart-Amazon Dataset (All Features Hashing) 82

4.23 Computation of Walmart-Amazon Dataset (All Features Hashing) 83

4.24 Pareto Front Plot of Walmart-Amazon Dataset (All Features Hashing) 84

List of Figures 7

4.25 Pareto Front Plot of Walmart-Amazon Dataset (Selective Labelling All Fea-
tures Hashing) . 84

4.26 Comparison of Classi�cation Accuracy on the Datasets 87

5.1 Coverage of Amazon-Google Dataset (Single Feature Hashing) for di�erent
Code Lengths . 92

5.2 Computation of Amazon-Google Dataset (Single Feature Hashing) for di�er-
ent Code Lengths . 92

5.3 Pareto Front Plot of Amazon-Google Dataset (Single Feature Hashing) for
di�erent Code Lengths . 93

5.4 Coverage of Amazon-Google Dataset (All Features Hashing) for di�erent
Code Lengths . 94

5.5 Computation of Amazon-Google Dataset (All Features Hashing) for di�erent
Code Lengths . 94

5.6 Pareto Front Plot of Amazon-Google Dataset (All Features Hashing) for
di�erent Code Lengths . 95

5.7 Coverage of DBLP-ACM Dataset (Single Feature Hashing) for di�erent Code
Lengths . 95

5.8 Computation of DBLP-ACM Dataset (Single Feature Hashing) for di�erent
Code Lengths . 96

5.9 Pareto Front Plot of DBLP-ACM Dataset (Single Feature Hashing) for di�erent
Code Lengths . 96

5.10 Coverage of DBLP-ACM Dataset (All Features Hashing) for di�erent Code
Lengths . 97

5.11 Computation of DBLP-ACM Dataset (All Features Hashing) for di�erent
Code Lengths . 97

5.12 Pareto Front Plot of DBLP-ACM Dataset (All Features Hashing) for di�erent
Code Lengths . 98

5.13 Coverage of Walmart-Amazon Dataset (Single Feature Hashing) for di�erent
Code Lengths . 99

5.14 Computation of Walmart-Amazon Dataset (Single Feature Hashing) for dif-
ferent Code Lengths . 99

5.15 Pareto Front Plot of Walmart-Amazon Dataset (Single Feature Hashing) for
di�erent Code Lengths . 100

5.16 Coverage of Walmart-Amazon Dataset (All Features Hashing) for di�erent
Code Lengths . 100

8 List of Figures

5.17 Computation of Walmart-Amazon Dataset (All Features Hashing) for di�erent
Code Lengths . 101

5.18 Pareto Front Plot of Walmart-Amazon Dataset (All Features Hashing) 101

5.19 Coverage Variation for Neighboring Matches Amazon-Google (Single Feature
Hashing) for di�erent Code Lengths . 102

5.20 Coverage Variation for Neighboring Matches Amazon-Google (All Features
Hashing) for di�erent Code Lengths . 103

5.21 Coverage Variation for Neighboring Matches DBLP-ACM (Single Feature
Hashing) for di�erent Code Lengths . 103

5.22 Coverage Variation for Neighboring Matches DBLP-ACM (All Features Hash-
ing) for di�erent Code Lengths . 104

5.23 Coverage Variation for Neighboring Matches Walmart-Amazon (Single Fea-
ture Hashing) for di�erent Code Lengths . 104

5.24 Coverage Variation for Neighboring Matches Walmart-Amazon (All Features
Hashing) for di�erent Code Lengths . 105

5.25 Comparison of Classi�cation Accuracy on the Datasets 107

6.1 Baseline (Search without Hash Code) Top-10 Similarity Search Results . . . 115

6.2 Hashing (Search with Hash Code) Top-10 Similarity Search Results 115

6.3 Execution Time for Amazon-Google Dataset with CSV Storage 116

6.4 Execution Time for Amazon-Google Dataset with Parquet without Partition
Storage . 116

6.5 Execution Time for Amazon-Google Dataset with Parquet with Partition
Storage . 117

6.6 Execution Time for DBLP-ACM Dataset with CSV Storage 118

6.7 Execution Time for DBLP-ACM Dataset with Parquet without Partition Storage 118

6.8 Execution Time for DBLP-ACM Dataset with Parquet with Partition Storage 119

6.9 Execution Time for Walmart-Amazon Dataset with CSV Storage 120

6.10 Execution Time for Walmart-Amazon Dataset with Parquet without Partition
Storage . 120

6.11 Execution Time for Walmart-Amazon Dataset with Parquet with Partition
Storage . 121

6.12 Comparison of Execution Time for all Datasets 122

List of Tables

2.1 Literature Search Queries . 8

2.2 Overview of Important Scienti�c Literature 10

2.3 Overview of Big Data Benchmarks . 47

3.1 Deep Hash Neural Net (DHNN) Network and Training Parameters 58

3.2 Overview of Datasets . 59

4.1 F1 Scores for all Datasets reported for Single Feature hashing on the Left and
for All Features hashing on the Right . 86

5.1 Comparison of Brute-Force Approach and L2H - Deep Hashing Hashing
Technique with Single Feature Hashing and All Features Hashing 106

5.2 F1 Scores for all Datasets reported for Single Feature hashing at the Top and
for All Features hashing at the Bottom . 108

5.3 Comparison of LSH - Super-Bit and L2H - Deep Hashing Hashing Techniques
with Single Feature Hashing and All Features Hashing 109

1. Introduction

1.1 Motivation
Applications drive the progress of data management technologies. Nowadays, Machine Learn-
ing (ML) programs are one key class of such applications. They are becoming increasingly
relevant since they facilitate the process of extracting meaningful information from ever-
growing amounts of business data. In today’s era of big data, realizing successful ML
applications has become increasingly challenging [1]. However, research is showing that
some of these challenges can be addressed by e�cient data management and processing.
Figure 1.1 depicts these di�erent challenges in the context of the four Big Data processing
characteristics. Some relevant challenges include, class imbalance (i.e., real-world data can
exhibit very few examples of a particular class in a classi�cation task, requiring special
handling), the requirement for complex feature engineering (i.e., extracting appropriate data
representations for a particular task), data heterogeneity (i.e., it is di�cult to have machine
learning algorithms capable of working well over dimensions that are highly diverse in data
types), the requirement for e�cient processing of enormous amounts of data (i.e., the need
for fast large-scale processing frameworks), among others.

To overcome these challenges, there are two main solution categories, �rstly, data, processing
and algorithm manipulations to handle big data and secondly, the creation and adaption of
di�erent ML paradigms with existing algorithm modi�cations. In the context of the �rst
category, the respective three types of manipulations can take place in the di�erent stages
of the data analytics pipeline, from data extraction to decision making [14], as depicted in
Figure 1.2. It is in this category, where data management solutions are called upon to assist
companies in their ML applications.

In recent years, embeddings have become popular as a �rst step data manipulation technique
in data analytics pipelines. This technique is helpful to alleviate the curse of dimensionality
and to standardize feature engineering in domains where data is non-euclidean (e.g., images,
text, graphs)1. Embedding is the process of mapping entities of such kind of data, into

2 1. Introduction

individual dense continuous vectors, with a given number of dimensions. It can also be
de�ned as a mapping of discrete variables (e.g., words) to a vector of continuous numbers.
Di�erent embedding processes are also able to highlight latent similarity in the data, through
the placement of similar inputs close together in the embedding space [15]. As a result of
the embedding process for each entity in a dataset, a number of dense numerical vectors is
produced which can be used as features for ML. The embedded data can also be used for
similarity retrieval tasks, complementing the search over raw data. However, loading and
managing a large amount of embeddings for their processing in productive applications can
be a problem since most data management solutions are not tailored to such kind of vector
data nor to the kind of operations done with them. Hence, e�ective storage and retrieval
mechanisms for these embeddings are likely to play an important role moving forward.

In this thesis, we aim to study some optimizations of the data analytics pipeline (Figure 1.2)
for the utilization and e�ective management of embedding data. Speci�cally, in the context of
the processing manipulation techniques which focus on modifying how data is processed and
stored to improve ML performance, similarity-preserving hashing is one technique which
has become e�ectively popular in managing vector data, due to its fast query speed and low
memory costs for supporting top-k similarity search [16–24]. However, most research in
this domain has either focused on the application side or has been scoped for multimedia
data, without considering general embeddings. As a result, practitioners lack published
experimental evaluations that could help them in selecting a technique to manage embed-
dings in large-scale processing, especially concerning embeddings for more traditionally
structured textual data. In addition, practitioners lack su�cient information on the expected
performance gains from selecting a given similarity-preserving hashing technique.

In this thesis, we experimentally study and evaluate two hashing techniques, that can be
applied to e�ciently manage embedding data, namely Locality Sensitive Hashing (LSH) and
Learning To Hash (L2H). Due to the lack of availability in general solutions for L2H, we
develop our own approach to supervised hashing with deep neural networks, known as
Deep Hash Neural Net (DHNN). We study the hashing techniques, considering how they can
be applied for entity resolution (i.e., contributing to the blocking process), and for top-k
similarity search (i.e., contributing to data skipping). Some key components of our study
are the use of datasets that are standard for entity resolution, and that represent structured
textual data. We also use a standard pre-trained embedding model, FastText [25], and we
use Apache Spark2studying di�erent Hadoop �le formats. Consequently, with our work, we
seek to realistically evaluate the impact of similarity-preserving hashing on helping with
data blocking and skipping for ML applications of supervised entity resolution and top-k
similarity search.

1.2. Previous Work 3

Figure 1.1: Machine Learning Challenges Associated with Big Data Characteristics (adapted
from L’heureux et al. [1])

Figure 1.2: Data Analytics Pipeline (adapted from L’heureux et al. [1])

1.2 Previous Work
On viewing embeddings as a form of vector array data and techniques used for array data
management, previous work related to the area of research of this thesis includes the research
of Sun et al.[26], which highlights the idea of data skipping to scan a large amount of data
quickly. The underlying mechanism of data skipping lies in the fact that the data is organized
into blocks with metadata maintained for each of the block, which then can be utilized by
the query to skip irrelevant blocks of data. Sun et al.[26] propose a �ne-grained data layout
framework called Generalized Skipping-Oriented Partitioning and Replication (GSOP-R)
which maximizes query performance through aggressive data skipping. The GSOP-R works
on a speci�c set of features summarizing the workload patterns. It then uses these features to
transform the incoming data into a small set of feature vectors performing clustering on them
for blocking, with the �exibility of scope for both horizontal and vertical partitioning schemes.
GSOP-R is also further prototyped and evaluated on Apache Spark with the partitioned data
being stored into Apache Parquet3, a columnar storage format.

Further, Stonebraker et al.[27] provide practical insights, by considering how to build data
systems to support the array data model. This would enable e�ective data processing in

4 1. Introduction

the context of scienti�c data [28], which can be best modeled as an array. In a distributed
cluster setup, authors consider a division of the array data into storage chunks and study
techniques for its e�ective partitioning, with the goal of maintaining the storage load evenly
among the nodes. Consequently, authors report on a hash partitioning scheme to allow for
�ne-grained storage partitioning. Additionally, authors also highlight the important role of
k-nearest neighbors, as an application that needs to be easily and naturally executed on an
array data model. Stonebraker et al.[27] precisely develop SciDB [29] as a new open-source
scienti�c database, built on the array data model to support multi-dimensional arrays with
any number of dimensions.

1.3 Initial Research Questions
Below are the initial research questions formulated to be answered through this thesis:

• RQ1: What is the best possible coverage and block distribution achievable using a
standard high-dimensional Locality Sensitive Hashing technique?

• RQ2: How does a Learning To Hash technique compare to the standard high-dimensional
hashing technique, considering its coverage and block distribution, and how it con-
tributes to the blocking task of supervised entity resolution?

• RQ3: What is the performance bene�t achievable by hashing with this technique, in
contrast to the other approach, for supporting top-k similarity search in Spark?

1.4 Research Methodology
The selection of a proper research methodology is a crucial task before starting the research,
as it provides a systematic approach to solve a problem. This is highly in�uenced by the �eld
in which the research is being carried out since di�erent research methodologies cater to
di�erent aspects of a domain. Considering that our area of research is a combination of Data
Science and Big Data, we required a research methodology which is well-suited for this area.
As compared to the di�erent Data Science process models (e.g., CRISP-DM), Data Science
Edge (DSE) [2] is an enhanced process model which well accommodates both data science
activities and Big Data technologies. Thus, DSE was selected to be an appropriate research
methodology to carry out structured research for this thesis.

As shown in the Figure 1.3, DSE consists of �ve iterative and adaptive process stages, which
can be repeated to incrementally improve the obtained result, as described below:

1.4. Research Methodology 5

Figure 1.3: Di�erent phases of Data Science Edge [2]

(i) Plan This phase deals with the planning and a rough estimation of the activities to
be carried out, with a clear view of the objective to be achieved. Understanding and
analyzing the requirements with the identi�cation of the critical areas are also a part of
the Plan phase.

(ii) Collect This phase deals with the collection of the required data for the project and
its management. Understanding the sources and the nature of the data to be collected in
order to devise appropriate data management strategies are the activities that constitute
the Collect phase.

(iii) Curate This phase deals with visualizing the data in order to understand its di�erent
characteristics. A set of tailored data cleaning activities to remove potential outliers or
errors from the data, that would otherwise adversely a�ect the analysis on the data,
constitute the core tasks of the Curate phase.

(iv) Analyze This phase deals with analyzing the carefully curated data to obtain mean-
ingful insights from it. Devising, modeling, and implementing technical strategies and
solutions to obtain useful results from the data to answer the given problem are the
tasks of the Analyze phase.

(v) Act This phase deals with communicating and presenting the obtained results from the
Analyze phase in a simpli�ed and clear way, mainly through meaningful visualizations.
Description of the use of the obtained results and its intuitive presentation are the tasks
that conform to the Act phase.

Consequently, a complete pass of these phases was carried out separately for each of the
research questions in this thesis work.

6 1. Introduction

1.5 Thesis Structure
This remainder of this thesis is structured as follows:

• Chapter 2 provides an understanding of the background and related work in the
research area of this thesis.

• Chapter 3 provides an overview of the thesis design, its prototypical implementation
details, and the experimental setup.

• Chapter 4 presents the experimental evaluation results of the Locality Sensitive Hashing
(LSH) technique, encompassing the block distribution, and supervised entity resolution.

• Chapter 5 presents the experimental evaluation results of the Learning To Hash (L2H)
technique, encompassing the block distribution, and supervised entity resolution.

• Chapter 6 presents the experimental evaluation of the runtime performance achieved
when applying the Learning To Hash (L2H) technique on similarity search queries in
Apache Spark.

• Chapter 7 presents the related work for this thesis.

• Chapter 8 concludes the thesis research work by summarizing some important �ndings,
and elaborating on possible future work for the research area of this thesis.

1As an illustration for how mainstream embeddings have become, Microsoft has released entity embeddings
for all authors of their open-source Microsoft Academic Graph http://ma-graph.org/entity-embeddings/, aiming
to help practitioners of scholarly network analysis.

2https://spark.apache.org/
3https://parquet:apache:org/

http://ma-graph.org/entity-embeddings/
https://spark.apache.org/
https://parquet:apache:org/

2. Background

This chapter focuses on understanding the background in the research area of this thesis.
It covers the important relevant literature with a detailed description to create a solid
foundational understanding of the research area. It aims to have a critical evaluation of the
literature in the research area of this thesis, eventually contributing towards the design and
implementation of the speci�c research topic for this thesis.

This chapter is structured as follows:

• Section 2.1 presents a brief description of the steps performed in the literature search
process to identify the important literature on the research topic.

• Section 2.2 presents an overview of the idea of embeddings and their applicability.

• Section 2.3 presents di�erent aspects related to large-scale data processing, a do-
main where solutions to manage embedding data, supporting tasks like e�cient high-
dimensional similarity search, are not available at the moment.

• Section 2.4 presents a brief overview of machine learning applications on large scale
processing, in the context of embedding data.

• Section 2.5 presents the di�erent optimizations techniques applicable for managing
embeddings as a form of array data. Here we also describe the idea of high-dimensional
hashing on embedding data with a focus on two hashing techniques, namely Locality
Sensitive Hashing (LSH) and Learning To Hash (L2H).

• Section 2.6 presents a summary of the content discussed in this chapter.

8 2. Background

2.1 Systematic Literature Review

2.1.1 Literature Search Process

Our Literature Search process was carried out as follows:

(i) De�ne a list of keywords on your subject area

The search was carried out on �ve di�erent databases namely, IEEE Xplore, Springer
Link, Google Scholar, Elsevier and ACM Digital Library selected based on their high
quality of published papers and for a non-biased search. Additionally, as the research
topic encompasses various areas, the focus was given on prominent areas to have
a scoped search. The three main areas included Large-Scale Data Processing, Ma-
chine Learning and Data Management Interfaces in the Context of Embeddings and
Optimizations for Embeddings and Array data.
The search terms for each of the identi�ed areas were devised as follows,

• Identify an initial list of keywords for the selected area
• Generate a combination of keywords which will output good results
• Run a search query on the database. Re�ne the initial keyword list based upon

the inspection of the retrieved papers, and then generate new combinations of
keywords as well.

The search queries based on the above search terms were then executed on the selected
databases. The output results of the search were then further reduced by the inclusion
and exclusion criteria. The citation lists of the shortlisted papers were also used to
identify more papers, avoiding papers by the same authors.

Sample Search Queries Total Hit

“large-scale processing” AND “survey” AND “hadoop” AND “mapreduce” 307

“apache spark” AND (“word embedding” OR “benchmark” OR (“mllib” AND “applications”)) 4700

“spark optimizer” OR ((“Catalyst” OR “Tungsten”) AND “apache spark”) 439

“apache parquet” OR (“avro” AND “orc”) OR “apache kudu” OR “apache arrow” 457

“in-memory grid” OR “in memory grid” OR “apache ignite” OR “alluxio” 664

“embedding” AND “survey” AND “fasttext” AND “word2vec” 283

“SciDB” AND “hashing” 142

Table 2.1: Literature Search Queries

2.2. Overview on Embeddings 9

(ii) Select among those papers

The paper set was re�ned based on the following inclusion and exclusion criteria:
Inclusion criteria: A paper must be either published in a book, journal or conference
proceedings, It must be relevant to the topic under consideration, It should give a
large-scale view of the �eld, and It must be written in English.
Exclusion criteria: A paper which does not provide relevant insights on the selected
area, Is too specialized for the selected area or describes a highly specialized application
for the selected area, Is a book review, Is a thesis or Is not peer-reviewed.

(iii) Compare the papers you select with your original paper (called “seed paper”
hereafter):

The papers “Big Data 2.0 Processing Systems A Survey” [30] and “Text Similarity in
Vector Space Models: A Comparative Study” [15] and “SciDB DBMS Research at M.I.T”
[29] were selected as the seed papers for the main areas on Large-Scale Data Processing,
Machine Learning and Data Management Interfaces in the Context of Embeddings and
Optimizations for Embeddings and Array data respectively, based on its relevancy to
the area and matching keyword search and citations. The selected papers based on the
inclusion and exclusion criteria were then compared with the respective seed papers,
and the paper set was then further re�ned.

(iv) Use the seed paper to expand the list of papers from 1.2

Based on the seed papers, the set of papers was further expanded and then re�ned,
eliminating irrelevant material.

A total set of 97 main scienti�c papers was then considered for the research. Consequently,
during the course of this entire research, based on these main papers, this set builds upon
and expands into a total of 235 scienti�c papers constituting the research literature.

2.1.2 Overview of Selected Papers

Table 2.2 depicts an overview of the important scienti�c literature for the respective areas.

2.2 Overview on Embeddings
An embedding is the translation of high-dimensional vectors or non-euclidean data, into
a low-dimensional space1. In the context of textual input, word embeddings are able to
transform each work in text into an individual dense continuous vector, with a given number
of dimensions, while preserving their semantic information through the placement of similar
inputs close together in the embedding space [15]. Text embedding methods can be catego-
rized into, Count-based which rely on a bag-of-words model where the order of the words is
ignored eg., Topic Models and Prediction-based based on sequence-of-words models where
the order of the words is taken into account eg., Neural Models. Additionally, embeddings
can also be generated for input data formats including graphs, audio/video etc. As seen in

10 2. Background

Category Literature
Overview on Embeddings [1] [31] [32] [33] [34] [35] [36]
Large-Scale Data Processing [30] [37] [38]

Examples of Large-Scale Data Processing Systems

[39] [40] [41] [42] [43] [44] [45]
[46] [47] [48] [49] [50] [51] [52]
[53] [54] [3] [55] [56] [57] [58]
[59] [60]

Optimizers for Data�ow Large-Scale Data Processing [5] [61] [62] [4] [63] [64] [65]

Storage for Large-Scale Data Processing
[66] [67] [68] [69] [70] [71] [72]
[6] [73] [74] [75] [76] [77] [78]
[79] [80]

Benchmarks
[81] [82] [83] [84] [85] [86] [87]
[88]

Machine Learning and Data Management Interfaces in the Context of Embeddings
[15] [89] [90] [91] [92] [93] [94]
[95] [96] [97] [98] [7]

Optimizations for Embeddings and Array Data
[29] [27] [99] [100] [101] [102] [103]
[104] [105]

Locality Sensitive Hashing [106] [107] [8]
Learning To Hash [108] [18] [9] [11] [109] [110] [10]
Supervised Entity Resolution [12] [13]

Table 2.2: Overview of Important Scienti�c Literature

Figure 2.1, as a visualization for real embeddings, it depicts geometrical relationships that
capture semantic relations as between country and its capital on the Left and verb tenses on
the Right. Consequently, embeddings make it easier and e�cient to do Machine Learning
(ML) on relatively large inputs with the facility of learning and reusing the embeddings as
features across models, for di�erent tasks. The embedding space also constitutes a sort of
meaningful space which gives opportunities for the ML system to detect semantic patterns
useful for the learning tasks. In addition, the embedding space, with its enhancing of simi-
larities, can help in similarity search tasks, which are common in information retrieval or
recommender systems.

In recent years many approaches to embeddings for di�erent datasets, with practitioners
making available pre-trained models such as Glove, Word2Vec and fastText. Surveying this
variety of models is beyond the scope of this thesis, however, we refer the interested reader
to authoritative surveys on the topic, concerning textual [111] and network-structured data
[112].

2.2. Overview on Embeddings 11

Figure 2.1: Visualization of Embedding Analogies of Country-Capital on the Left and Verb
Tense on the Right

Considering the area of applicability and in�uence of embeddings speci�cally for ML, Fig-
ure 1.1 depicts on di�erent challenges faced by ML applications in context of the four Big
Data characteristics namely, Volume, Velocity, Variety and Veracity. In such a scenario, em-
beddings act as a data manipulation technique in the data analytics pipeline [14] which helps
to alleviate the curse of dimensionality and increase data manageability through preserving
its semantic relationships.

To illustrate the applications of embeddings in ML, we observe the work of Pablos et al.
[34], where word embeddings are employed in machine learning based sentiment analysis,
providing input features to complex supervised classi�cation systems, thus obtaining senti-
ment classi�ers. Regarding applications of embeddings in recommender systems, we can
consider the work of Guerraoui et al. [36], who present DEEPCIP a word embedding-based
recommender inspired from the neural word embeddings approach Word2vec [113, 114],
designed to select and recommend items to a user based on their implicit feedback measuring
their item consumption through time, with competitive performance. Further, Kose et al. [31]
propose a song recommender system which utilizes Word2vec to generate a vector represen-
tation of the songs. Word2vec is further adapted to the Apache Spark2 Big Data framework,
to generate a user-speci�c playlist when executed on a distributed vector representation of
songs.

Concerning the practical aspect of working with embeddings in modern data management
systems, Svyatkovskiy et al. [32] evaluate the Spark framework for a data-intensive ML
problem and demonstrate its e�ciency. As embeddings are a form of multi-dimensional
vector array data, related state-of-art works in this area, design and implement a hierarchical
index strategy for Spark with HDFS to e�ciently query and process geospatial raster data
[33], propose a scalable approach towards e�ciently analysing large Earth observation (EO)
datasets through the representation of collection of EO’s into multi-dimensional arrays
coupled with the utilization of SciDB [27, 29] for computationally intensive analytics [35].

12 2. Background

In the next section, we provide a comprehensive overview, to give a broad contextual
understanding of large-scale data processing solutions. This is done in consideration that
such kind of solutions seem to require novel methods for managing embedding data, since
this kind of data has not been the focus of these solutions so far.

2.3 Large-Scale Data Processing
In today’s digital era, we are overwhelmed with the tremendous and explosive growth of data
from various sources and in di�erent formats, also termed as Big Data [115]. Consequently,
Big Data poses di�erent challenges for its underlying frameworks in its large-scale storage
and processing, which has led to constant evolution in the large-scale data processing systems
[30]. Big Data is not useful in and of itself unless a utility is associated with it. Large-scale
processing of such data to extract meaning and value out of it has, therefore, has become
increasingly important to render utility to this data, thus serving as a foundation to take
data-driven decisions visualizing a complete picture of the concerned application domain.
Various academic and industrial sectors are increasingly dependent upon the knowledge
extracted from Big Data, establishing it as a key resource in today’s modern world, which
further makes Big Data tools crucial for the optimized and e�cient processing of this large-
scale data. Large-scale data processing systems are almost synonymous with Big Data
tools. They can be categorized into di�erent system layers based on their features and
applicability, namely, Data Storage Layer, Data Processing Layer, Data Querying Layer, Data
Access Layer and Management Layer [37]. Consequently, the increased demand for large-
scale data processing and analysis, caused an increase in the development of large-scale data
processing systems from both the academia and industry [38].

In this section, we present in detail the di�erent aspects of large-scale data processing
with the description of available frameworks which facilitate large-scale data processing
applicable for di�erent application scenarios, the optimizations for large-scale data pro-
cessing, the di�erent available optimized storage possibilities and �nally we also outline
the benchmarking evaluations which help to quantify and evaluate the performance of the
di�erent large-scale data processing frameworks. The goal of this section is to provide a
comprehensive context for our current and follow-up research, informing our choice of
platform to select for studying the use of embeddings.

2.3.1 Examples of Large-Scale Data Processing Systems

There exist several Large-Scale Data Processing Systems designed to provide di�erent func-
tionalities. Below presented are some of the examples of Large-Scale Data Processing Systems
accordingly categorized:

(i) Bulk-SynchronousParallel (BSP) The Bulk-Synchronous Parallel [43] model acts as
a bridge between the theoretical and practical aspects for the implementation of parallel
computation. BSP is neither a programming or hardware model, but lies in between
them acting as a standard for mapping high-level programs to machines, maximizing

2.3. Large-Scale Data Processing 13

the e�ciency for parallel computation. The BSP model compromises of three attributes,
namely, a number of components which perform memory/processing functions, a router
which delivers messages between the components, and a synchronization mechanism
between the components. Computation in a BSP model consists of a sequence of
supersteps, during which each processing component performs a local computation
with the sending and receiving of messages to and from other components. In the
processing at each superstep, the local computation depends only on the local data
present in-memory at the start of each superstep with a communication pattern known
as h-relation, meaning that each processing component can send and receive a maximum
of de�ned h-messages. As the components and router are di�erent entities, this creates
a simpli�ed model which separates the tasks of computation and communication.
To ensure performance guarantees, the BSP model utilizes a Barrier synchronization
enforcing all the processing components to synchronize at a speci�c point, the end of a
superstep. Additionally, to reduce waiting times, the synchronization mechanism can
be switched o� for a subset of components, leading to certain asynchronous behavior.
Consequently, the BSP model aims at achieving guaranteed performance at a near to
optimal utilization of distributed processors, facilitating high-throughput in parallel
computations. As an example application, the high-level organization of Pregel [42]
(introduced later in ix Large-Scale Graph Processing) programs are based on the BSP
model.

(ii) MapReduce MapReduce [44] is a computation framework for the e�cient processing
of large datasets in a parallel distributed environment. Unlike BSP, it is based on a
simpli�ed restricted programming model which automatically parallelizes the computa-
tions providing e�ective fault-tolerance. In the MapReduce programming model, users
can express the computation by implementing two functions, namely, the Map and the
Reduce. Given a set of input key/value pairs, the Map function processes the input to
produce intermediate key/value pairs as an input to the Reduce function which then
merges all the values associated with the same key. In a parallel distributed execution
environment, the input data to be processed is automatically partitioned into M splits
by the MapReduce library with the workload distributed among a set of worker nodes
which perform the Map and the Reduce tasks and are all controlled by a master. The
processing output of MapReduce is then available as a set of output �les corresponding
to each Reduce task. Additionally, MapReduce implements a number of optimizations to
minimize network tra�c, including locality-aware scheduling. Consequently, MapRe-
duce as a restricted programming model abstracts the complexities related to large-scale
parallel distributed processing (e.g., load-balancing, fault-tolerance), thus providing
ease of use towards expressing a large variety of problems.

(iii) Data�ow Computation frameworks for batch-oriented data�ow, like MapReduce do
not e�ciently cater to data reuse of intermediate results across multiple computations.
As a result, the utilization of Resilient Distributed Datasets (RDDs), as proposed by
Zaharia et al. [45], or similar concepts, which store data in-memory and can recover
it without replication through tracking the lineage graph consisting of operations
used to build the data, becomes a more optimal alternative. Data�ow engines are this

14 2. Background

framework that use such computational graph, without the requirements of batch
processing and synchronization points, as in Map Reduce. Spark, with its internal use
of RDDs, is an example of a data�ow engine. In this example, each RDD is a read-only,
partitioned collection of records with immutable nature and can be created through
deterministic operations on stable storage data or from other RDDs. Users can control
RDD aspects, namely, partitioning and persistence allowing for speci�cation for storage
reuse and optimize placement strategies. RDDs implemented in Spark2thus allow
users to cache previous computations in-memory making them well-suited towards
iterative machine learning applications and interactive data mining. Spark provides
a functional programming API in the Scala3programming language to manipulate
RDDs as distributed memory abstractions with coarse-grained transformations like
map, �lter, and join, and additionally also provides support for interactive query of
big datasets from the Scala interpreter. Consequently, Spark with RDD can e�ciently
express a number of cluster programming models, namely Pregel [42], HaLoop [116]
etc. and emerges as an e�ective programming model for batch analytics. However,
Spark has over 150 con�gurable parameters, which makes it a challenging task to �nd
the optimal parameter con�guration for applications and clusters in order to reduce
the processing time and enhance the overall performance. Considering parameter
tuning, experimental studies [46] provide a systematic approach for parameter setting
through investigating the impact of some of the important tunable parameters related
to shu�ing, compression and serialization on the performance of Spark applications.

(iv) Timely Data�ow Timely Data�ow is a model of data-parallel computation which
extends the traditional data�ow model through associating each communication event
with a virtual timestamp. As an example, Naiad [41] presents itself as a single plat-
form for executing stateful data-parallel cyclic data�ow applications in a distributed
setup with high throughput and low latency. Naiad extends traditional data�ow to
provide support for incremental and iterative data-parallel computation. The virtual
timestamps mechanism constituting the timely data�ow in Naiad facilitates for e�cient
and lightweight co-ordination in a distributed setup. These logical timestamps are
designed based on a restricted looping structure present in the timely data�ow graphs
in which vertices of the directed graph are organized into possible nested loop contexts
containing the cycles in the graph and associated with three special nodes namely
ingress, egress and feedback. The edges entering a loop context must pass through the
ingress node and the ones leaving must pass through the egress node. Additionally, at
least one feedback node is present in a loop context. These vertices then act upon and
adjust accordingly the timestamps of the messages passing through them. Additionally,
Naiad provides optimization techniques to reduce the communication overhead in a
distributed setup and also for fault tolerance mechanism providing consistent recovery
in case of failures. Naiad o�ers a �exible structure in a way that many powerful pro-
gramming models can be built upon its low-level primitives, thus enabling diverse tasks
like streaming data analysis, iterative machine learning and interactive graph mining.

(v) Streaming Streaming relates to the handling and processing of data continuously re-
ceived from di�erent sources, with the additional aspect that queries often happen over

2.3. Large-Scale Data Processing 15

a limited window of recently seen data, instead than over the complete historical data.
In comparison to the processing of batch-oriented data, streaming data exhibits varying
characteristics and posses several challenges, requiring specialized e�cient systems
to handle them [117]. These specialized systems known as Stream Processing Engines
(SPEs) are designed to process streaming data as it arrives on-the-�y without the neces-
sity of storing it. Additionally, these SPEs must be able to ful�ll the eight requirements
of stream processing [47] to be able to e�ciently process high-volume data streams with
low latency and exhibit varied applicability. The STREAM [48] project at Stanford is a
representative research initiative proposing a data stream management system (DSMS)
to process continuous data streams. STREAM proposed as a general-purpose DSMS
utilizes its own query language called as the continuous query language (CQL) [49]
which extends SQL to be adaptable for continuous queries on data streams. Additionally,
CQL, as a query language, is expressive enough to capture the dynamic characteristics
of data streams through complex queries. Further, continuous queries speci�ed in CQL
are evaluated through their translation into a physical query plan to be executed by the
DSDM. Several mechanisms, including the elimination of data redundancy, optimized
operator scheduling are employed by STREAM to e�ciently execute these query plans
and improve the overall system performance. Additionally, STREAM compromises of
StreaMon [118] for monitoring and adaptive query processing for data streams with
varying characteristics. Additionally, STREAM also includes a graphical query and
system visualizer to facilitate users to inspect the system interactively.
Storm is a popular project for stream processing [50], serving as a real-time distributed
data stream processing system at Twitter. Storm is a scalable and resilient system
capable of easily and e�ciently analyzing social media streams as with Twitter and
supports for real-time data-driven decisions. Supporting real-time stream analytics
e�ectively also requires an e�cient management system in place for the collection and
delivery of the large amounts of streaming data generated. Apache Kafka [51] supports
this requirement, with a focus on storage management and communication instead of
query processing. It serves as a distributed messaging system to manage large amounts
of streaming data through in-memory analytics, facilitating large data movements in
a robust and scalable manner. Kafka provides support for o�ine as well as online
analytics and also exhibits the advantage of employing a pull-based consumption model
which allows an application to consume data according to its own needs without being
overloaded, thus maximizing the overall throughput. Additionally, in Storm, Kafka can
be utilized to pull data from message queues, to generate a stream of tuples for their
further processing.

(vi) Batch meets Streaming Batch meets Streaming represents systems which are de-
signed to support both batch and stream data processing. As an example, Apache Flink
[39] is an open-source system providing a uni�ed single execution model for batch and
stream data processing, which can express and execute di�erent classes of data process-
ing applications as pipelined fault-tolerant data �ows. Deployment, core runtime (the
distributed data�ow engine), APIs and libraries are the four main layers that contribute
towards the Flink architecture with all programs eventually compiled to a common

16 2. Background

representation of the data�ow graph. Flink provides a sophisticated highly �exible
windowing mechanism which can compute both early & approximate and delayed &
accurate results in the same operation in large-scale data-stream processing. Addition-
ally, it also supports di�erent notions of time, providing �exibility in de�ning event
correlations in data-stream processing. Flink also supports competitive optimized batch
processing through the inclusion of specialized APIs, data structures and algorithms.
Eventually, Flink as a uni�ed platform for processing batch and stream data supports
out-of-order processing, iterative processing, consistency through the maintenance of
exactly-once state and provides for results with high throughput and low latency.

(vii) Hybrids Selection of an appropriate hybrid of systems for a large-scale data pro-
cessing work�ow might be bene�cial in achieving high throughput. In the absence of
a dynamic work�ow manager, design, implementation or scaling of such a work�ow
requires high expertise and is often challenging and time-consuming mainly due to the
tight coupling between the front-end frameworks and the back-end execution engines.
In such a scenario, Musketeer [119] is the �rst Big Data work�ow manager which
decouples this coupling, providing enhanced �exibility by facilitating users to write
the work�ow once and dynamically map it to many di�erent systems. Eventually, this
makes the design, implementation and porting of the work�ow to other systems much
easier and e�cient as compared to �xed single system mappings. The decoupled data
processing architecture of Musketeer is divided into three layers namely, Front-End
Frameworks which users utilize to specify their work�ow using high-level abstractions,
Intermediate Representation (IR) which dynamically converts and optimizes the speci-
�ed work�ow into a common form acceptable by the front and back-end, ideally in the
form of a directed acyclic graph (DAG), and Back-End Execution Engines which based on
user or automatic selection execute the jobs generated from DAG. Additionally, though
Musketeer provides support for only limited front-end frameworks and back-end ex-
ecution engines, the approach can be extended to support others as well, eventually
facilitating mainly non-specialist users to implement �exible work�ows easily.
Another work�ow optimizer variant, Weld [120] provides a common runtime for cross-
library optimizations in complex work�ows and compromises of an IR based on parallel
loops and a results merging construct called builders which can e�ectively capture loop
transformations as compared to the IR utilized in Musketeer. Weld as a programming
interface consists of three key components to optimize analytics applications, namely,
an Intermediate Representation which allows libraries to express their data-parallel
computation structure, a Runtime API which collects the IR code from di�erent libraries
for lazy execution, and a Compiler Backend which compiles the complete optimized
Weld IR program to parallel machine code to be executed against the in-memory data
of the application. Consequently, Weld enables e�ective composition of hybrids of
libraries utilized in data analytics application enabling end-to-end optimization.

(viii) SQL on Hadoop SQL-on-BigData systems generally fall into two categories, namely
native Hadoop-based systems eg., Apache Hive4and database-Hadoop hybrids eg., Hadapt5

which integrate existing tools with the Hadoop ecosystem [3]. Additionally, analytic

2.3. Large-Scale Data Processing 17

appliance-based products, eg., Oracle Exadata6have connectors for the Big Data storage
systems from where they extract data to process within their proprietary SQL engines.
Figure 2.2 aptly depict the di�erent open-source as well as commercial systems avail-
able in the SQL-on-BigData landscape. SQL for Big Data processing is of signi�cance
given its familiarity to most developers, and the ease of working with it as a high
level intuitive declarative language, thus leading to an increase in the development
of primarily SQL-on-Hadoop systems [58]. These systems eliminate the limitation of
MapReduce framework requiring a considerable amount of programming for tasks that
can be accomplished using simple SQL commands, which further adds to its complexity
and limited usability for large-scale data processing [56]. Some of these systems include
Drill7, HAWQ (Hadoop with Query)8, Hive, Impala9, Presto10and Spark SQL11. These
systems are useful for ad-hoc querying and analysis in large-scale data processing, as
analysed in the study or Rodrigues et al. [52], where their main characteristics are
highlighted. This study evaluates that no tool emerges as the optimal one but di�erent
tools can be utilized e�ectively for di�erent requirements, eg., Hive is robust towards
long-term queries and is e�ective for batch processing, Impala and HAWQ can be better
utilized towards real-time analysis due to their fast response times and including Spark
they can also be better utilized towards advanced analytics. The performance of these
systems is further experimentally evaluated in follow-up studies by the authors [53, 54]
using the TPC-H12and TPC-DS13benchmarks, respectively, with both evaluations prov-
ing the fact that there is no one-size that �ts for all the SQL on Hadoop processing
requirements. Additionally, a further experimental study [55] evaluates extensively the
performance of the systems Apache Hive, Spark SQL, Apache Impala and PrestoDB
using three di�erent benchmarks namely TPC-H, TPC-DS [121] and TPCx-BB [122]
considering di�erent application scenarios and workload characteristics.
Looking into the characteristics of some of the SQL-on-Hadoop systems utilizing the
MapReduce framework for query execution, Apache Hive [60] is the �rst work towards
providing a scalable open-source data warehouse solution built on the top of Hadoop
with support for queries expressed in a SQL-like query language HiveQL. HiveQL being
�exible and extensible supports for a majority of SQL-like query constructs and also
for data de�nition (DDL) and manipulation (DML) statements facilitating simpli�ed
data querying, creation and manipulation. A HiveQL query is basically compiled
into a Directed Acyclic Graph (DAG) of MapReduce jobs for execution. The major
components of the Hive architecture include, External Interfaces consisting of User
and Application Programming Interfaces (API), the Thrift14server, the Metastore as the
system catalog, the Driver managing the compilation, optimization and execution of
a HiveQL statement, the Compiler and Hadoop as the Execution Engine. Yet another
system Apache Pig15provides a high-level scripting language Pig Latin [59] which
combines both the aspects of high-level declarative querying like SQL and low-level
procedural programming like MapReduce to express large-scale data processing tasks.
A Pig Latin program is usually a sequence of steps, with each step carrying out a single
data transformation. Concerning the program execution, the Pig execution framework
�rst generates a logical query plan from the Pig Latin program, which is then compiled

18 2. Background

into a series of MapReduce jobs for execution primarily over Hadoop. Additionally,
Pig also consists of its own debugging environment called Pig Pen, making it easier
for users to build and debug their Pig Latin programs in an incremental way. On
the contrary, there also exists SQL-on-Hadoop systems which do not rely on other
frameworks like MapReduce for their job execution. As an example, Apache Impala9 is
a massively parallel processing (MPP) SQL query engine for data stored using Hadoop.
Impala exploits a shared-nothing parallel database architecture on Hadoop through
running queries using its own long-running daemons on each of the HDFS DataNode
instead of relying on the MapReduce framework. There exists a main daemon process
impalad which comprises the query planner, coordinator and the execution engine.
Eventually, all queries are compiled into a pipelined execution plan. Considering
experimental evaluation and benchmarking of these two variants of SQL-on-Hadoop
systems, the study of Floratou et al. [58] provides performance comparisons of Apache
Hive and Apache Impala using TPC-H like and TPC-DS inspired workloads. This study
evaluates the signi�cant performance advantages of Impala over Hive thus highlighting
the advantages of using a shared-nothing database architecture as compared to a
MapReduce based runtime for analytical SQL queries.
Apache Kudu [57] is a novel storage engine for structured data which plays a role as
a middle ground between fast sequential access and fast random access. It can run in
parallel with the existing HDFS installation and can be accessed via tools like Impala,
Spark and MapReduce. Consequently, Kudu can be well-utilized towards fast analytics
over well-structured distributed data over Hadoop. Furthermore, the di�erent storage
formats are elaborated upon in Section 2.3.3.3.
For our work, we employ Apache Spark, with a SQL-like-querying, provided by the
Spark dataframe interface.

Figure 2.2: Systems compromising the SQL-on-BigData landscape [3]

2.3. Large-Scale Data Processing 19

(ix) Large-Scale Graph Processing Large-Sized graphs possess di�erent challenges for
their e�ective processing. Hence, e�cient computation models providing competitive
performance are required to process such complex large-sized graph datasets. As an
example, Pregel [42] as a distributed programming framework from Google facilitates
the e�cient stateful processing of large-scale graphs with high scalability, performance
and fault-tolerance. Pregel allows the implementation of an arbitrary graph algorithm
with the input and output of a Pregel program ideally to be isomorphic directed graphs
with no restrictions imposed on a speci�c choice of �le format for these graphs. A
typical Pregel computation consists of a sequence of iterations known as supersteps
and during which a user-de�ned function containing the processing logic at each
vertex is invoked in parallel. The communication in the entire graph occurs through
its edges given the design of Pregel for sparse graphs; with the delivery of messages
asynchronously in batches reducing latency. Additionally, Pregel programs are also
inherently deadlock-free with their termination when all vertices are inactive with no
messages in transit. Pregel o�ers a C++ API which is expressive and easy to program,
hiding the related details of distribution. The implementation of Pregel is based on the
Google cluster architecture [123] with the Pregel library dividing the input graph into
partitions of a set of vertices and their edges, which are further assigned to worker
machines. The master in place is responsible to co-ordinate the activities of workers.
Consequently, Pregel, with its in-built features, presents itself as a simpli�ed model for
large-scale graph computing.

(x) Deep Learning Deep Learning models performing complex tasks exhibit large com-
putational requirements. Training such models e�ciently requires a scalable approach
driven by large-scale distributed systems. As an example, Project Adam [40] is a scal-
able distributed deep learning training system compromising of commodity server
machines, especially focusing on visual recognition tasks in a deep neural network
(DNN). The high-level system architecture of Adam is based on Multi-Agent system
and compromises of data serving & model training machines & global parameter server
achieving both model and data parallelism. Thus, this allows for the partitioning of a
large model across several machines, and hence multiple replicas of the same model can
be trained in parallel using di�erent partitions of the training data set with a common
set of parameters asynchronously updated by them on a global parameter server. Adam
partitions the model vertically, which minimizes the need for cross-machine commu-
nications and additionally the presence of asynchronous batched parameter updates
contribute towards its multi-machine scalability. Also, multi-threaded model training
is achieved on a single machine through permitting threads to update local parame-
ter weights without locks. Additionally, Adam as a system for large DNNs training,
exhibits strategies to mitigate the impact of speed variance due to slow machines and
also consists of fault-tolerant strategies that can be exercised on the global parameter
server.

After reviewing and providing a taxonomy for frameworks in charge of large scale processing,
we consider the kinds of optimizations performed in them in the following sections. This is

20 2. Background

informative for our research, considering that as approaches like traditional hashing provide
performance optimizations for algorithms like joins; similarity-sensitive hashing can also
provide for performance optimizations, which is the core of our study.

2.3.2 Optimizers for Data�ow Large-Scale Data Processing

MapReduce [44] as a framework for massive parallel processing exhibits several limitations
when concerned with its utilization for e�cient large-scale parallel processing and data
analytics [4]. Figure 2.3 depicts these areas of improvements for MapReduce. The survey of
Doulkeridis et al. [4] elaborates upon the di�erent state-of-art research techniques focused
on the optimization of these taxonomic areas.

Considering that Apache Spark2 has emerged as a de-facto framework for Big Data Analyt-
ics [5], in this section, the optimizations that can be applied throughout the Spark Stack,
enhancing its overall performance will be our primary focus.

Figure 2.3: Taxonomy of Areas of Improvement for MapReduce [4]

Figure 2.4 depicts the high-level architectural overview of Spark. The main component of
Spark is the Spark core written in Scala and o�ering APIs in Scala, Java, Python and R for
large-scale data processing. Spark core also o�ers various functionalities for in-memory
cluster computing including data shu�ing, job recovery etc. Further, Spark core runs on
di�erent cluster managers namely Amazon EC216, Hadoop YARN [124], Apache Mesos [125]
and its own standalone built-in cluster manager for job execution on various cluster resources.
Additionally, Spark core can access data from any Hadoop data source Eg. HDFS, Cassandra17,
HBase18, Hive4, Alluxio[69] etc. Di�erent upper-level libraries are built on top of Spark core
to deal with di�erent workloads including Spark SQL [62] dealing with structured data
processing, Spark Streaming [126] for stream data processing, MLlib [7] for scalable machine
learning and GraphX [127, 128] dealing with graph processing. Additionally, di�erent Spark
packages are external open-source packages and libraries built to work with the Spark core
or the upper-level libraries, Eg. Blink DB as an approximate query engine over Spark SQL.
Further SparkR [129] is an internal R package providing a R based front-end to Spark.

2.3. Large-Scale Data Processing 21

Figure 2.4: High-level Overview of Apache Spark Stack [5]

Below are some tools developed to o�er optimizations for the Spark stack, increasing the
overall throughput:

(i) Project Tungsten Project Tungsten19tailored towards the optimization of Spark
applications focuses on improving the memory & CPU e�ciency and maximum uti-
lization of the underlying hardware [5, 61]. Tungsten as a key component of Spark’s
execution engine aims to achieve its goals through the incorporation of three main fea-
tures namely, Manual memory management by leveraging application semantics which
involves managing the application memory manually without the requirement of auto-
matic memory management with Java Garbage Collector thus minimizing the memory
footprint, Data storage in CPU cache versus memory for faster data access, Manual code
generation which involves e�cient bytecode generation as compared to standard Java
VM execution, through the use of modern compilers and CPUs.

(ii) Catalyst Optimizer The catalyst Optimizer lies at the core of Spark SQL providing
for e�cient physical plan selection towards optimized job execution [62]. Catalyst is an
extensible query optimizer built using the functional features of the Scala programming
language supporting both rule and cost-based optimization. Catalyst at its core consists
of a library which expresses the input expressions as a tree which can be manipulated
using di�erent rules. Additionally, the tree transformation framework consists of several
libraries and a set of user-modi�able rules which optimize the di�erent phases of query
execution, including logical plan analysis and optimization, physical planning and
code generation to Java bytecode. All of these phases are purely rule-based except the

22 2. Background

physical planning phase, which generates and compares multiple plans executing the
most cost-optimized one. Additionally, being an extensible optimizer Catalyst also o�ers
for several public extension points to include external data sources and user-de�ned
types allowing for advanced analytics with SparkSQL.

(iii) RIOS (Runtime Integrated Optimizer for Spark) RIOS [64] which can be viewed
as an enhancement of Catalyst [62] is an adaptive query optimizer for Spark which
selects an optimal physical query execution plan at runtime based on the idea of
involving late binding of the rich and more relevant statistics gathered at runtime
without the need of their upfront collection involving signi�cant cost-overheads. RIOS
speci�cally focuses on predicate selections for a given query to determine an optimal
cost-e�ective join order & physical join implementation and to do so, it performs
an iterative execution time strategy EGAP (Execute, Gather, Aggregate, Plan) which
leverages the lazy batch strategy for building and executing query plans in Spark to
derive much e�ective plans. The iterative EGAP strategy involves Execution which
executes all the data and pre-partitions stages corresponding to join operations in a
physical join plan, Gather which augments the Spark stages to collect more accurate
statistics related to the join attributes in the pre-partitioning step, Aggregate which
aggregates the collected statistics back to the scheduler (Spark Driver), Plan which lazily
plans the next best join order and method based on the estimate Eg. Join cardinality
determined given the collected statistics. Consequently, RIOS generates and modi�es
an execution plan at runtime progressively and greedily, thus quickly determining the
optimal plan for a given query without incurring additional overheads Eg. Exploration
of the entire plan space.

(iv) Flare Flare [65] presents itself as a new back-end for Spark which improves its
relational performance to be at par with the best SQL engines and also optimizes its
performance in the presence of heterogeneous workloads, based on the idea of native
code generation instead of JVM code. The architecture of Flare facilitates its integration
with Spark at three levels, Flare Level 1 provides for native code compilation of the
query stages within Tungsten19 serving as a lightweight accelerator for certain queries
but constrained within the Spark’s runtime execution model, Flare Level 2 provides for
further optimization of the relational workloads through changes in the Spark’s runtime
execution model achieving signi�cant speed-ups through the compilation of the entire
Spark-generated query plans to native code eliminating Spark’s runtime abstraction
layers, Flare Level 3 provides for e�cient code-generation for heterogeneous workloads
through the introduction of an intermediate layer between the query plans and the
code generated in the form of mapping to high-performance domain-speci�c language
(DSL) o�ered by the Delite [130] compiler framework.

(v) Apache Calcite Calcite [63] is an extensible query processing and optimization frame-
work designed to work with heterogeneous workloads for di�erent types of queries of
which include SQL, queries over semi-structured, geospatial and streaming data. The
main architectural components of Calcite consist of Query Parser and Validator which
converts the query into a tree of relational operators, Adapters which provide �exibility

2.3. Large-Scale Data Processing 23

in determining the underlying storage mechanism, Query Optimizer which utilizes
the relational tree and provides for cost-based and rule-based optimization, Relational
Builder Interface which provides to express input queries with relational constructs.
Calcite at its core optimizes queries in the form of relational expressions and is also
able to map these back into the particular system’s query processing unit. Additionally,
Calcite incorporates the dynamic programming approach and prevents trapping into
the local minima while minimizing the query execution costs in comparison to Catalyst
[62] and hence can help to achieve better performance improvements for Spark SQL20.

With this, we conclude our review of projects that optimize the performance of Spark appli-
cations. Generally, these projects perform query plan optimization, query compilation and
handle memory management. Unfortunately, the information on the current optimizations
provided by these systems is general in nature and it is di�cult to understand how hashing
is used internally for the optimization tasks. In our work, we consider as an optimization the
algorithm restructuring brought by similarity-sensitive hashing to the tasks of supervised
entity resolution. We expect that such hashing could be included, in future work, as an
optimization within the developed tools.

2.3.3 Storage for Large-Scale Data Processing

In this section, we describe the di�erent storage possibilities for optimized large-scale
data processing. These are important for our research, since hashing contributes to data
distribution, a core storage task. In this section, we highlight on Distributed File System
(DFS) and its di�erent types, Distributed in-memory storage and �nally on the available
various storage formats.

2.3.3.1 Distributed File System (HDD)

A Distributed File System (DFS) is a �le system utilized towards e�cient storage and retrieval
of data in a distributed client-server setup. In this part, we highlight the di�erent types of
DFS along with their features. Further, we also present an example of a database designed
for large-scale data processing. Speci�cally, here we elaborate upon Bigtable [68] which is
designed for distributed storage of structured data and utilizes a speci�c DFS, the Google
File System (GoogleFS) [67], as a building block.

Types of Distributed File System (DFS) Most of the distributed systems require coupling
with distributed �le systems to achieve better throughput. There are di�erent types of DFSs
[66], which cater to di�erent requirements of the distributed systems. Figure 2.5 depicts the
di�erent types of large-scale DFS:

24 2. Background

Figure 2.5: Types of Distributed File System (DFS)

(i) Google File System (GoogleFS) GoogleFS [67] is broadly used within Google and
is optimized accordingly based on Google’s data storage and usage requirements. Files
in GoogleFS are divided into �xed-size 64 MB chunks accompanied by a 64-bit chunk
handle, which are then distributed to the di�erent nodes across the cluster also known
as chunk servers. The master node has the responsibility of maintaining the metadata of
all the chunks and their mapping to the �le, and receives all the requests from the client
nodes. On request, the master node sends this metadata to the client, which can then
connect directly to the chunk server for data transfer. Additionally, GoogleFS can handle
multiple operations occurring simultaneously on the same chunk with the help of the
e�ectively designed locking mechanism in place. Further, to prevent overwhelming of
the master node with the client requests and causing it to be a performance bottleneck,
GoogleFS stores the metadata in the master’s memory, which increases the overall
processing speed. Data in GoogleFS is triple replicated to employ fault-tolerance and
recovery in case of node failure.

(ii) Hadoop Distributed File System (HDFS) HDFS [131] is an open-source version of
GoogleFS providing similar functionality and architecture and is based on the pattern
of write-once-read-many. HDFS has di�erent variants focusing on varied areas as
described below:

• Ring File System (RFS) RFS [132] is considered to be a scalable and fault-
tolerant DFS consisting of multiple master nodes acting as meta servers. These
meta servers separately maintain part of the metadata using Distributed Hash Table
(DHT) and also data is triple replicated on other meta servers. This con�guration
eases the load on a single master node and eliminates the single point of failure.

• E�cient Distributed File System (EDFS) EDFS [133] is a semi-centralized
DFS and is similar to RFS in eliminating the single point of failure. In addition to
the multiple master nodes, it consists of a front-end server which manages sessions
and through hashing routes the requests to the master nodes. Additionally, EDFS
replaces the conventional TCP protocol with another unnamed protocol, which is
comparatively faster than TCP.

• GreenHDFS GreenHDFS [134] focuses on energy-conservation in a large-scale
DFS. The data node in GreenHDFS is categorized into two zones, namely the hot

2.3. Large-Scale Data Processing 25

zone, which consists of frequently accessed or newly created �les and the others
being in the cold zone. Additionally, each �le is associated with a temperature
being of high value for the hot zone and low for the cold zone. Ideally, the rise or
the fall in the �le temperature depends on the access rate with a high access rate
indicating a rise in temperature and the �le being in the hot zone and a low access
rate decreases the �le temperature with the �le being in the cold zone. There
exists a File Migration policy which checks this �le temperature and migrates the
�le from hot to cold zone and vice versa. These cold servers are put in a sleeping
mode to achieve optimal energy savings.

• QuantcastFS (QFS) QFS focuses on providing better performance and cost-
e�cient processing in a large-scale DFS. It consists of meta servers and chunk
servers but ideally one chunk server per node. Additionally, it consists of a
client component which acts as an interface presenting a �le system API to the
other software layers and facilitates mapping of the meta server requests to the
concerned chunk server and interacts directly with the chunk server.

(iii) General Parallel File System (GPFS) GPFS [135] is a centralized, parallel and
shared-disk DFS exhibiting high scalability. Large �les are divided into con�gurable
blocks from 16 KB up to 1MB with a default of 256 KB. Sub-blocks of 1

32
size of an

ordinary block are used to store small �les. Additionally, support for a large directory
which can contain millions of �les with extensible hashing to locate these �les is also
provided by GPFS. A distributed locking mechanism in place synchronizes the access to
shared disks. Regarding the special roles played by nodes in GPFS, one node is selected
as the allocation manger which maintains statistics about the free space available in all
allocation regions and dynamically elected metanodes are utilized for the centralized
management of �le metadata. GPFS also utilizes its own fault-tolerant mechanism
which involves restoring the metadata and releasing of the resources held by the failed
node. It also has replacement policies in place in case it needs to replace any special
roles played by the failed node.

(iv) Global File System (GFS) GFS [136] is a shared-disk DFS which allows direct
concurrent access to the shared block storage by all nodes. The nodes in GFS are not
assigned any special roles and hence, all function as peers. GFS employs a journaling
�le system as each node in a cluster has its own journal and the changes to the metadata
of the �le system are written to this journal �rst and then on to the �le system. This
helps in case of node failures to recover the consistency of the �le system through
replicating these metadata operations recorded in the journal. Similarly, data also can
be recorded in the journal to increase the performance of this fault-tolerant mechanism.

(v) Sector Sector [137] is capable of being deployed over a wide area and allows handling
and processing of large datasets from any location. It consists of a master node, a security
server and a number of slaves nodes, with the security server being connected to the
master and maintaining information on the number of slaves, �le access information
etc. Files are divided into Sector slices with the storage of each slice in the native �le

26 2. Background

system of the slave node as a �le. To ensure data security, the slaves only function
as per the master’s instruction with the establishment of the connection between a
client and a slave node only after the master’s validation of the client request with the
security server. The data in the Sector is triple replicated, thus ensuring fault-tolerance
and failed nodes also can be recovered easily with the required recovery mechanisms in
place. Sector utilizes UDP protocol, which is faster as compared to the conventional TCP
protocol used. Additionally, Sector includes a reliable library called group messaging
protocol for message passing to provide additional reliability.

Database designed for Large-Scale Data Processing Bigtable [68] is an example of a
distributed storage system with the primary goal of directly supporting client applications
that wish to store and manage large-scale structured data. Bigtable was mainly designed as
Google’s own storage solution and thereby supports a large number of Google projects and
products including Google Analytics, Google Earth etc., thus providing high performance,
scalability and �exibility in spite of the demanding workloads. Bigtable utilizes a simple data
model consisting of a sparse, persistent and distribute multi-dimensional sorted map which is
indexed using row key, column key and a timestamp, with values stored as an uninterpreted
array of bytes. Row ranges in a Bigtable are referred to as tablets and form the basic unit
of load distribution and balancing. Column keys, on the other hand, form the basic unit of
access control through their grouping into sets called column families. Further, timestamps
usually maintain the version controlling of the stored data. This simple data model provides
the client with dynamic control over the data layout and format and also allows them to
specify locality of the data through carefully selected data schema. Bigtable also provides
a client API with di�erent functions and features, allowing users to manipulate the stored
data. Bigtable is built utilizing di�erent building blocks from the Google infrastructure,
some of them include GoogleFS to store log and data �les, Google SSTable �le format to
store Bigtable data internally, Chubby [138] as a distributed lock service. Bigtable is based
on the shared-nothing architecture and its implementation consists of three fundamental
components namely, a library which is linked to every client to cache the tablet locations,
many tablet servers responsible for handling read and write requests, tablet management
and a master server responsible for functions including tablet assignment to tablet servers,
tablet servers management. Additionally, Bigtable consists of various re�nements in its
implementation, including the use of Bloom �lters [139], mechanisms to speed-up tablet
recovery etc., which eventually make it a reliable structured data storage solution with high
performance and availability.

2.3.3.2 Distributed In-Memory Storage

Distributed In-Memory Storage enables the stored data to reside on the main memory
supporting faster retrieval and e�cient utilization in response-time critical applications.
In this part, we present Alluxio [69] as an example of a distributed in-memory storage
system. Further, we highlight the techniques to store data facilitating its faster access by
Structured Query Language (SQL) engines running on the Apache Hadoop ecosystem [70].
Additionally, we also discuss EventIndex on Apache Kudu21storage [71], which facilitates

2.3. Large-Scale Data Processing 27

e�cient and faster retrieval of event data integrated with Apache Kudu’s large-scale analytical
features with column-oriented storage. Finally, we discuss RAMCloud [72], a data storage
system hosting all of its data permanently in-memory providing high-throughput data access
required for large-scale data processing.
Example System Alluxio [69] is a virtual distributed �le system with memory-centric
architecture enabling faster data access. Alluxio hides the storage complexity from the
applications by providing itself as a data abstraction layer and enabling them to access data
from di�erent data stores seamlessly. Alluxio is based on a master-worker architecture with
the workers handling the data requests and transferring the required data from the Alluxio
local cached storage or the data stores to the applications requesting it, and with the master
managing the workers and also the metadata requests. The Alluxio client is typically a
library which can be used by the applications to interface with the servers and can be chosen
from a set of di�erent available interfaces (eg., Hadoop compatible �le system interface)
based on the application with minimal or no code changes. Alluxio with its features and
rich set of APIs helps to decouple computation and storage e�ectively, and thus �nds its
varied applications including accelerating data analytics, simplifying data access for machine
learning models.
Caching for SQL Engines onHadoop SQL engines on Hadoop combine the convenience
of querying data using SQL and the power of distributed data processing with Hadoop.
However, these engines are not tightly integrated into the Hadoop ecosystem and hence
caching of data for these SQL engines can signi�cantly increase the query performance.
There are primarily two methods [70] to achieve this, namely, SQL Engine Internal Caching
and External Storage Systems for Caching. SQL Engine Internal Caching enables the SQL
engine to implements its own internal cache providing the most control over it. This internal
cache being located closest to the computation bene�ts from maximum performance with
faster access, but faces the limitation of not being shareable typically in a multi-tenant
environment. Typical frameworks that support internal caching include Apache Spark SQL11,
Apache Hive LLAP22. External Storage Systems for Caching as another technique utilizes
an external storage system for data caching enabling data sharing and thus eliminating the
limitation of the previous technique. Additionally, an independent cache provides more
�exibility and manageability. This can greatly improve the performance when co-located
with the computation cluster as it behaves like a shareable internal cache. Typical frameworks
that support external caching include the previously discussed Alluxio [69], Apache Ignite23.
Another alternative for external caching is the use of the centralized caching feature of the
Hadoop Distributed File System (HDFS) which typically stores the user-speci�ed �les in the
memory of the HDFS DataNodes. This technique is bene�cial to speed up local access to
the data but exhibits limited �exibility and becomes a performance bottleneck when SQL
engines and HDFS are not co-located. Typical frameworks that support HDFS centralized
cache include Apache Impala9 and IBM Big SQL [140].
EventIndex on Apache Kudu Storage EventIndex is a system designed to be a complete
catalogue that allows for fast and e�cient searching of events from a large number of events
contained in an enormous number of �les and often scattered in a world-wide distributed
computing system. As an example, the ATLAS EventIndex [141] designed for cataloguing all

28 2. Background

events of the ATLAS experiment [142] and primarily using the main data store as Hadoop
based on MapFiles24and HBase18 allowing in-memory storage for key-value pairs providing
e�cient event data access. EventIndex can be e�ectively utilized towards event �nding,
retrieving, counting, and selection as well as towards data consistency checks. EventIndex
exhibits a partitioned architecture which follows the data �ow with components as Data
Production, Data Collection, Data Storage and Query Interfaces (Command-line Interface
(CLI) as well as Graphical-User Interface (GUI)). Apache Kudu implements column-oriented
storage layer that complements HDFS and HBase in the Hadoop ecosystem and exhibits
more e�cient, �exible features towards large-scale analytics. EventIndex on Apache Kudu
[71] aims towards utilizing the high-performance features of Apache Kudu which is thus
able to provide a uni�ed solution and cover more use cases as compared to the primarily
used data store Hadoop based on MapFiles and HBase. Some of these use cases include data
access using SQL queries, the possibility of utilization of analytical tools, faster data injection
and query response. EventIndex on Apache Kudu storage thus aims to decommission the
primarily used Hadoop infrastructure based on MapFiles and HBase and replace it with
Apache Kudu, thus providing high-performance, scalability and �exibility.

Key-Value Store for Large-Scale Data Processing High-performance key-value storage
(KVS) systems are known to be the backbone supporting many large-scale applications.
RAMCloud [72] is a high-performance KVS which stores all its information completely
in-memory exhibiting high-throughput and low latency for data access. A large-scale storage
system using RAMCloud can be created by pooling a large number of commodity servers
with the storage of data entirely in their main-memory. RAMCloud primarily relies on
DRAM for storage and utilizes disk-based storage for backup and archival. RAMCloud
scales automatically without additional complexity and providing applications with a uni�ed
view of the storage system. Additionally, RAMCloud also consists of di�erent mechanisms
in place to provide a high-level of durability and availability. Although RAMCloud is not
as cost-e�ective as compared to disk-based or caching solutions, it provides guaranteed
performance irrespective of the data access patterns or its locality and is well-suited towards
latency-sensitive applications. Consequently, RAMCloud with its features eliminates the
drawback of disk-oriented storage in-terms of latency, scalability, as well as caching solutions
in-terms of durability, and presents itself to be a long-term general-purpose solution for
large-scale application processing with high-throughput requirements.

2.3.3.3 Storage Formats

Storage Formats describe the layout for the data. Selecting an appropriate format is crucial for
the e�cient storage and maintenance of data for large-scale data processing. Data processing
and management systems ideally consist of three levels, namely, User-Interface, which pro-
vides a medium to interact with the data, eg., SQL, Logical Data Layout which conceptualizes
the data storage and its handling to the user eg., Data units as tables and records in RDBMS,
Physical Data Layout which deals with how the data is physically stored and handled on
a storage medium eg., Textual-based layout like CSV and JSON [6]. Figure 2.6 depicts the
taxonomy connecting the logical and physical layout. It depicts tabular, tree (nested and
graph) as the three fundamental logical data layouts with their further classi�cation into

2.3. Large-Scale Data Processing 29

physical layouts consisting of textual and binary. These two data serialization formats are
further mapped to their appropriate �le formats depicting how the data is further structured
and organized on a storage medium.

Figure 2.6: Taxonomy connecting File Format to Layout [6]

Considering the di�erent disk-based �le formats, several research works [73–75, 79, 80]
highlight and describe some of the relevant ones to Big Data processing with their features
as follows:

(i) Sequential File A sequential �le is a binary �le well-suited towards parallel comput-
ing, given that it can be easily split up. It utilizes the key-value format to store data.
The sequential �le format consists of the �rst three identity characters as SEQ, followed
by the records and the header. The sequential �le can be compressed in two ways;
namely, record-wise performed on a single record and block-wise on multiple records.
Further, sequential �le format is supported by Apache Pig15 and Hadoop. Additionally,
Hadoop also provides for a �le format called MapFile, which is a sorted sequential �le
maintaining indexed data and facilitating better read performance.

(ii) Avro Avro25is a row-based �le format which stores the entire record one after the other.
The data structure is de�ned using a schema usually written in JSON and contained in
the metadata header of an Avro �le. This schema de�ned can be altered as the stored
data evolves, facilitating ease of stored data modi�cation. Avro exhibits the limitation
that it does not store information about the stored data values and hence cannot support
data skipping.

30 2. Background

(iii) Record Columnar (RC) The RC �le format [143] was designed to reduce space
consumption by relational data storage. The RC �le format �rst partitions the relational
data horizontally and then converts them to vertical partitions providing the column
storage of a particular record together in the same data node, thus reducing tuple
reconstruction costs and unnecessary column reads. RC �le format, however, does not
specify indexing of records and only provides for single row serializability, as a result
of which various compression techniques cannot be used on it e�ciently.

(iv) Column Input (CI) The CI �le format [144] stores each column in the relational
data as a separate �le. This eventually helps to provide better performance through
accessing only the �les containing the desired columns, but it requires to have an
additional implementation in place to co-locate �les containing adjacent columns. This
extra logic is crucial to decrease the network I/O required in record reconstruction.

(v) Parquet The Parquet26�le format is well-suited towards storage of relations with
a large number of columns and processing of nested data. Parquet being a columnar
storage-based �le format provides for a high-performance, cost-e�ective data storage.
It stores data as one column after the other, placing data of the same type together
and providing for type-based compression. Also, data is organized in row groups,
which supports data skipping, scanning fewer relations in conditional query execution.
Parquet organizes its data in pages containing the header, information on de�ned and
repeated data levels and the actual data. Parquet is supported by Apache Hive4, Hadoop,
Pig, Impala, Drill7, Spark.

(vi) Optimized Row Columnar (ORC) The ORC27�le format was basically designed
to eliminate the limitations of the RC �le format. An ORC �le is divided into a set of
stripes corresponding to multiple groups of row data, with a default con�gurable size of
about 250 MB and functioning similar to an HDFS block. Each stripe contains only an
entire row data uniquely, with its column data stored as one after the another, similar to
as in Parquet. Additionally, each stripe contains index information, actual data, stripe
footer (containing information related to encoding and the location of the columns in
the data), and with the �le footer (containing information related to the data stored in
the �le) and a PostScript (containing necessary information to parse the �le) towards
the end of the �le. An ORC �le can be compressed in chunks facilitating e�cient data
skipping. ORC is more advanced as compared to Parquet given its features, including,
support for transactions, better read performance as it e�ectively stores data statistics,
e�cient reduction in the data size consuming less space. ORC is further supported by
Apache Hive, Pig, Hadoop.

(vii) Albis Albis [75] is a light-weight �le format with a binary API used to store relational
data on modern hardware and providing performance close to that of the hardware
used. Additionally, Albis supports primitive as well as variable data types, having a
simple and nested schema. Albis partitions the relational data horizontally into multiple
row groups and then vertically into multiple column groups. Each column group is
then considered as a separate table having its own schema where the row data is stored

2.3. Large-Scale Data Processing 31

one after the other in a continuous way. Albis aims to reduce the CPU costs, and hence,
it stores data without any compression or encoding as a simple binary blob trading
storage space to achieve better performance and generating a large-sized �le. Albis
also facilitates easy data management by storing the data, metadata and the schema in
separate �les with certain speci�ed conventions. Unlike most of the other �le formats,
Albis aims to strike a balance between the CPU-I/O work division providing competitive
performance on the available modern high-performance network and storage hardware.

Considering the di�erent disk-based open-source �le formats, we can observe the e�ciency
of columnar data storage, especially ORC and Parquet towards large-scale data processing
and fast analytics [74]. In the context of open-source technologies for columnar data storage,
Apache Arrow28provides for in-memory columnar representation, which can be used on
the top of the disk-based �le formats to provide fast and e�cient analytical processing.
Additionally, Apache Kudu in the Hadoop ecosystem provides for e�cient columnar scanning
and processing. Further, it provides for mutable storage in contrast to the above discussed
immutable disk-based �le formats requiring dataset rewriting in case of data modi�cations.

The determination of an optimal storage system varies for di�erent applications as it mostly
depends upon the speci�c use-cases catered by the application. Considering the scenario
of the selection of an optimized storage format for a speci�c application, we elaborate
upon EventIndex as discussed in Section 2.3.3.2. The comparative experimental study of
Baranowski et al. [78] considers the di�erent data formats including MapFile, Parquet, Avro,
HBase and Kudu for the evaluation to optimize data storage and search performance for
ATLAS EventIndex. This evaluation was carried out to determine an e�cient alternative to
the existing core storage implementation based on MapFiles and HBase, which exhibited
concerns related to data ingestion, data duplication, data latency, random data look-up
especially with the usage of MapFile format. Based on the experimental evaluation for
di�erent parameters, it was revealed that, as compared to MapFile all the other considered
solutions provided faster data ingestion speed, the use of HBase or Kudu provides support
for in-place data mutation making it feasible to modify data records in-place directly, use of
Parquet or Kudu outputs storage e�cient solutions, random data look-up time is reduced
by the use of HBase or Kudu, fast and scalable data analytics is possible through the use of
Parquet or Kudu. Consequently, with respect to the requirements of ATLAS EventIndex to
consolidate data into a single platform, Apache Kudu was found out to be the best �exible
solution. Additionally, considering a generic perspective, this study revealed columnar data
stores Parquet and Kudu to be good candidates for data storage systems as they provide
an e�ective balance between all the di�erent evaluation parameters considered. Another
experimental study, from Oles et al. [76] in the context of scalable web systems evaluated
the performance of Apache Kudu in comparison to Parquet (with and without partitions),
Impala-HBase and Phoenix-HBase revealing Apache Kudu to output better performance and
determining itself to be a comparatively promising alternative.

Considering the performance estimation of di�erent storage formats with the industry-
accepted TPC-H benchmark12, Pirzadeh et al. [77] evaluate some of them in the context of
evaluating the performance of Big Data systems for OLAP-style workloads. The experimental

32 2. Background

evaluation considers four Big Data systems from the di�erent regions of the Big Data platform
design space including, Apache Hive and Spark SQL (from SQL on Hadoop), System-X (a
commercial parallel relational DBMS) and Apache AsterixDB [145] (from NoSQL systems).
Columnar storage formats, ORC being mainly optimized for Hive and Parquet being the
suggested �le format for Spark were considered for evaluation. The workload consisted of
variations in the schema and queries to include nested schema and comprised of a set of 22
TPC-H queries executed with di�erent combinations of system or settings. Concerning the
storage formats, this TPC-H based performance study revealed the signi�cant performance
improvements through the utilization of the optimized columnar storage formats ORC and
Parquet. Additionally, it also concludes that no schema variant, storage format or system
performed the best for all the queries.

To wrap things up, in this section, we have considered comprehensively the storage tools
that enable large-scale processing. These span from supporting distributed disk-oriented �le
systems and databases, to in-memory solutions and �le formats. From our review, storage �le
formats seem especially well-suited for fast prototyping of storage ideas, and for integrating
in the future concepts for automated data skipping based on similarity hashing. We also
�nd across all solutions a prevalent but varied use of hashing techniques to support the data
distribution, and that no solution seems to be specially built to support high dimensional
dense array data, like embeddings, and similarity search operations over it.

In the next sections, we shift from general frameworks to applications over them. Speci�cally,
those related to ML and embeddings; but before that, we consider the aspect of general
benchmarks for large scale processing, in order to identify the degree to which similarity
search is considered as a representative application, and presenting the most closely related
evaluations found in the literature.

2.3.4 Benchmarks

In the context of large-scale data processing, there is a rapid increase in the systems or
frameworks catering towards e�cient management & handling of Big Data, making it
challenging to gauge their e�ciency. In such a scenario, Benchmarks play an important role
to evaluate and quantify the performance of these systems with the main aim of comparing
them. The compendium study of Ivanov et al. [81] surveys existing Big Data Benchmarks.
Additionally, the comprehensive survey of Baru et al. [82] categorizes open-source Big Data
Benchmarks into three types namely Micro Benchmarks, which aim to evaluate individual
system components or particular system behaviours, End-to-End Benchmarks which aim to
evaluate the entire system with a typical application scenario for a collection of di�erent
relevant workloads, Benchmark suites which aim to provide comprehensive benchmarking
solution by o�ering combinations of di�erent micro or/and end-end benchmarks. The
outcome of the two surveys [81, 82] is summarized in Table 2.3.

Further, looking into benchmarking studies that evaluate the performance of Big Data
systems, Garcia et al. [88] o�ers an empirical evaluation and comparison of Apache Spark
[45] and Apache Flink [39] for machine learning applications in batch data processing mode.
This study compares the frameworks through the experimental run of three ML algorithms

2.4. Machine Learning and Data Management Interfaces in the Context of Embeddings 33

namely Support Vector Machines (SVM), Linear Regression (LR) and Distributed Information
Theoretic Feature Selection (DITFS) [165], on a Big dataset, evaluating the e�ciency of Spark
as compared to Flink with better scalability and overall faster runtimes for machine learning
implementations. Additionally, Awan et al. [87] evaluate the performance of Spark from a
micro-architectural perspective and report deep insights about in-memory analytics with
Spark on a large-scale up server. This experimental evaluation is based on both batch and
stream workloads as a subset from BigDataBench [148] & HiBench [152] for batch and as a
super set from StreamBench [166] & also covers real-time analytics patterns [167] for stream
processing.
As observed from our Literature survey for Big Data Benchmarks, we found that there are
no clear standard benchmarks de�ned for the evaluation of the performance of Big Data
systems in the storage and retrieval of embedding data. Hence we further elaborate upon two
closely related works in this domain particularly Wang et al. [83] who discuss benchmarking
array data with DSIM bench and the work of Taft et al. [84], which also considers a Big
Data benchmark that looks at array data. The relevancy of these papers in the context of
microarray data to understand the benchmarking for embeddings can be mapped to the
de�nition of microarrays to be anchored arrays of short DNA elements as part of a large-scale
gene expression [168], which represents similarity in its context to embeddings. In this
context, Wang et al. [83] present DSIMBench as a benchmark to e�ciently evaluate analytical
work�ows highlighting the most optimal setup in the analysis of microarray data in R. The
experimental evaluation with the aim to optimize Big microarray data analysis in R using
DSIMBench [83] consists of eight R work�ows based on di�erent data distributions and
computational solutions measuring performance characteristics in dealing with data loading
and parallel computation. Additionally, Taft et al. [84] present GenBase as a benchmark to
evaluate the performance of systems for e�cient Big Data data management & analytics. The
benchmark evaluates on �ve queries including Predictive Modeling, Covariance, Biclustering,
Singular Value Decomposition (SVD) [169] and Statistical Tests, with each consisting of a mix
of data management, linear algebra and statistical operations workloads. Additionally, the
experimental evaluation of GenBase [84] is based on a representative use case of microarray
genomics data workloads but can be extended to other domains consisting of mixed workloads
of data management and complex analytics.
After describing benchmarks, in the next section, we consider uses discussed in the context
of embeddings.

2.4 Machine Learning and Data Management Interfaces
in the Context of Embeddings

This section brie�y highlights Machine Learning (ML) in the context of semantic knowledge
extraction using word embeddings. It presents a view on how embeddings are utilized
in practical end-to-end ML pipelines, consequently supporting di�erent ML workloads
e�ciently.
Traditional relational database systems are used to process and analyse well-quali�ed typed
entities through SQL queries which can precisely capture the syntactic relationships within

34 2. Background

the data but leaves its semantic interpretation on the user. SQL also with its extensions is not
able to provide a holistic view of the underlying relational data and thus cannot e�ciently
capture the semantics through the inter-or-intra-column relationships in the data, [90, 91].
Thus to provide a solution to e�ciently tackle this situation, researchers have proposed
the idea of a Cognitive Database [92, 170], which serves as an extension to traditional
relational database systems (in fact it does not o�er any implementation di�erences), adding
Word-Embedding [171–174], an unsupervised neural network based approach from Natural
language Processing (NLP) to extract these semantic relationships from a database table or a
collection of tables. Further, Bordawekar et al. [92] detail the use of word embeddings to
enable semantic queries in relational databases. Mikolov et al. put forth a method to extract
the latent information from database data into a vector-representation as word embeddings
[173] which captures the syntactic as well as semantic characteristics, and Bordawekar et al.
[92] discuss on further using these vectors to augment traditional SQL-queries which now
have cognitive capabilities also know as Cognitive Intelligence (CI) queries i.e., these can be
used to answer advanced complex queries including semantic matching, predictive queries etc.
Consequently, Bordawekar et al. [92] demonstrate how embeddings can be utilized towards
enhancing database querying capabilities by providing a relational as well as a semantic
view of the database. Additionally, authors [90] highlights and discusses the advantages
of word-embeddings in Cognitive databases towards providing a controlled disclosure of
the database information in a variety of ways. Further, Neves et al. [91] demonstrate a
Spark-based cognitive database prototype with both Scala and Python interfaces and also
explains with examples, di�erent types of CI queries possible utilizing the prototype.
Concerning cognitive capabilities with Spark, Hamilton et al. [94] presents Microsoft Machine
Learning for Apache Spark (MMLSpark), an ecosystem which expands the capabilities of
Spark providing for a single API to execute di�erent machine learning workloads in a
variety of distributed production-grade environments. MMLSpark expands the native library
of algorithms in Spark ML43, integrates Spark with the networking language HTTP and
importantly integrates Spark with Azure Cognitive Services44providing intelligent solutions
for di�erent ML workloads. Consequently, MMLSpark allows users to create scalable ML
systems exposing them as distributed web services and precisely expands Spark’s ability in
the area of Deep Learning. However, this solution does not consider explicitly embedding
data.
Additionally in the area of utilization of word embeddings towards enrichment of queries
in Database Management Systems (DBMS), FREDDY from Gunther et al. [93] (Fast woRd
EmbedDings Database sYstems), is a prototype system based on the PostgreSQL database
system, which provides for simpli�ed and wide querying based on User De�ned Formats
(UDFs) helping to extract semantic information from word embeddings.
Considering the aspect of evaluating the performance of text vectorization methods for
the automatic measurement of semantic text similarity, Shahmirizadi et al. [15] present a
comparative study with the experimental evaluation of TFIDF (Term Frequency–Inverse
Document Frequency) & its related extensions, Latent Semantic Indexing (LSI) Topic model
and D2V (Document to Vector) Neural model. Based on the experimental evaluation for a
speci�c application, i.e., patent-to-patent similarity, this study evaluates that simple TFIDF is

2.4. Machine Learning and Data Management Interfaces in the Context of Embeddings 35

a good choice in terms of performance and cost when the similarity di�erences between the
vectors are relatively small. Additionally, TFIDF extensions also do not justify to be more
bene�cial than the simple variant in terms of performance and cost. Regarding the use of
complex embedding methods like LSI and D2V, they only justify the performance and cost
when the text is condensed, and the similarity detection task is relatively coarse. Further in the
context of ML tasks, highlighting on the problems faced mainly by classi�cation, skewed input
datasets often consists of the unequal representation of positive and negative classes causing
the class imbalance problem [175] which a�ects the classi�cation accuracy. Consequently,
authors like Fernandez et al. [89] highlight on the di�erent state-of-art approaches in
dealing with such imbalanced data in classi�cation, categorized into Data pre-processing
which involves techniques based on data under-sampling or over-sampling, Cost-sensitive
learning which involves algorithmic modi�cations considering a higher signi�cance for the
positive class, Applications on imbalanced Big Data which involves techniques considered in
addressing real-world problems in di�erent application areas.

Embeddings in the context of Practical Machine Learning End-to-End Pipelines

Machine Learning (ML) processes are usually a series of steps that run in a sequential manner
and need to be repeated several times usually to achieve the optimal model, also called as the
ML pipeline. Luu et al. [95] explain practical ML with Spark using MLlib [7], aligning this to
an end-to-end ML pipeline. Figure 2.7 depicts this similarity mapping of the ML pipeline
consisting of the main steps to that of the MLlib pipeline.

Figure 2.7: Similarity mapping between ML pipeline main steps on left to that of MLlib
pipeline main concepts on right (adapted from Meng et al. [7])

The four main abstractions in the MLlib pipeline include Transformers which transform the
input data in the dataframe to build features through data manipulation to be consumed by
the ML algorithm, Estimators which are an abstraction for the ML algorithm which train on
the data, Evaluators which help towards ML model tuning to achieve optimal performance
and Pipelines which helps to easily develop and maintain the entire iterative sequential MLlib
work�ow. Speci�cally concerning our research area, in the context of Estimators, when
working with text data, we have the concept of word embeddings in place. The estimator
here is speci�cally Word2Vec, which provides for the data transformation from word tokens

36 2. Background

to numeric vector utilizing the technique of word embeddings mapping semantically similar
words to nearby points. These embeddings can be further used towards ML applications
in the context of Natural Language Processing (NLP) including, word similarities, word
analogies, machine translation and entity recognition. Additionally, we further highlight the
di�erent aspects of sophisticated ML using Big Data Processing systems.

Spark supports scalable and iterative machine learning through its open-source distributed
ML library called MLlib [7]. MLlib includes a wide range of learning settings with several
statistical, optimization, linear algebra primitives and also supports several languages includ-
ing Scala, JAVA, Python, R, providing with a high-level API and thus contributing towards
the development of high-performing end-to-end ML pipelines. In the area of standardizing
the ML lifecycle with a goal towards simplifying and accelerating ML development, Zaharia
et al. [176] present ML�ow as a software platform towards streamlining of the ML lifecycle.
Consequently, ML�ow provides users with generic APIs that are compatible with any ML
library, algorithm & programming language, thus contributing towards broad �exibility
and simplifying the three main challenges in ML development towards Experimentation,
Reproducibility and Model deployment.

Further concerning the comparative performance evaluation of Big Data Processing systems
with a focus on ML, the study of Veiga et al. [98] compares and evaluates the performance
of Big Data Analytics frameworks namely Hadoop, Spark and Flink suggesting signi�cant
performance improvements when Hadoop is replaced by Spark or Flink. Importantly, it
considers K-means as one of the benchmarks for the performance evaluations for iterative
algorithms comparing the algorithm implementation present in Apache Mahout45for Hadoop,
with MLlib46for Spark and source code implementation adapted from an example in Flink.
The experimental evaluation indicates the best results for K-means by Spark’s optimized
MLlib library, followed by Flink and then Hadoop. Consequently, Spark as a rapidly growing
scalable, fast and robust system for Big Data Analytics requires a performance assessment
suite to evaluate the performance of Spark-based analytics platforms. In this direction,
Agrawal et al. [96] introduce a framework for the creation of a comprehensive Spark
performance testing suite with a current focus on ML and graph processing workloads.
Importantly for our research, work like this speci�cally highlights the di�erent types of
widely used ML workloads encountered in Big Data processing namely, Logistic Regression
as an ML classi�er to predict continuous or categorical data, Support Vector Machine which
map inputs implicitly to high-dimensional feature space and conduct e�ciently non-linear
classi�cations, Matrix Factorization being typically used in a recommendation system as a
collaborative �ltering technique �lling out the missing entries in a user-item association
matrix, and Random Forest Classi�cation which performs classi�cation tasks using a large
set of relatively simple decision trees.

After describing applications of embeddings and ML in large scale processing, in the following
section, we focus on optimizations developed for array data, presenting in this context the
speci�c approaches of similarity-preserving hashing.

2.5. Optimizations for Embeddings and Array Data 37

2.5 Optimizations for Embeddings and Array Data
This section highlights the optimizations which can be applied for embeddings as a form of an
array data. Relevantly, related work highlights on two types of optimizations namely based
on Cost Model and Access Path Selections. Further, we also highlight upon high-dimensional
similarity-preserving hashing on embedding data with a focus on two approaches, namely,
Locality Sensitive Hashing (LSH) and Learning To Hash (L2H).

2.5.1 Optimized Management of Embeddings

In the context of optimized storage of embedding data, Svensson et al. [99] present a
systematic research survey in the area of database architectures and precisely mentions SciDB
[27, 29] as a new open-source scienti�c database idea based on the array data model to support
multi-dimensional arrays with any number of dimensions. SciDB aimed towards addressing
the challenge of large-scale complex scienti�c data analysis supports two main types of
operators on array data, namely, Structural operating on the array structure independent
of the data eg., Reshape, and Content-Dependent performing data-dependent content-based
operations eg., Aggregation. Further, data loading in SciDB involves bulk-data loading with
the storage organized as a mapping of the data to disk buckets into rectangular chunks
of an array. The R-tree data structure in place keeps track of the disk locations and the
bucket contents. Additionally, optimizations (discussed as open research areas in this paper)
can be applied to this storage layout determining optimal bucket size, bucket compression,
bucket merging etc. further leading to increased performance. Further, as another variant
for array storage, TileDB [100] is a multi-dimensional array storage manager optimized
for both dense and sparse arrays. Its main idea lies in the fact that array elements data is
organized into ordered collections known as Fragments which can be dense or sparse and
group contiguous array elements into �xed capacity Data Tiles. TileDB as a novel storage
manager, consequently supports for parallelization o�ering faster reads and writes.

Furthermore, in the area of optimized skyline query processing [177–181] on high-dimensional
data, [103] presents an e�cient, scalable and robust algorithm for parallel skyline compu-
tation realized over a Hadoop MapReduce platform. This algorithm speci�cally addresses
two important challenges, namely, Data Skew and Data Stragglers faced by skyline query
processing in distributed environments over very large datasets.

Additionally, as another instance of high-dimensional vector data, Big Spatial Vector Data
(BSVD) includes a wide range of spatial data types, eg., Mapping data, location-based data,
etc., and can be represented by points, lines or polygon areas [182, 183]. Yao et al. [105]
provide a comprehensive overview of state-of-art technologies and techniques related to
data management and processing of BSVD.

Considering optimized storage layouts, hybrid layouts are increasingly popular for layout
optimization to perform ad-hoc data analysis in large-scale data processing. The Hybrid
layout typically divides the raw data into horizontal partitions where data is stored vertically
inside each partition with support for data encoding and compression. However, these
layouts require con�gurable parameters, eg., Horizontal partition size, which can directly

38 2. Background

in�uence the query performance. Hence ATUN-HL [102] prototyped for Apache Parquet
(an open-source implementation of hybrid layout in HDFS) provides for auto-tuning of these
parameters to determine their best possible value based on cost-based optimization given as
an input data and workload characteristics.

In the context of optimized query processing with Apache Spark on data encoded in Apache
Parquet, Braams et al. [104] experimentally study the optimization technique of Predicate
Pushdown which speeds up selective queries through pushing down �ltering operations
into the scan operator which is responsible to read the data and the study also presents an
optimized �ne-grained predicate pushdown implementation within the context of this data
processing framework. Consequently, this research, with its di�erent application scenarios
demonstrates the signi�cant increase in query performance through the exploitation of early
�ltering opportunities for queries involving equality and range predicates or selective joins.
This technique can be reasonably applied to embedded data, with similarity-based skipping
using similarity-preserving hash codes.

2.5.2 High-Dimensional Hashing

In recent years Approximate Nearest Neighbor (ANN) [107] search has become a prominent
topic of research to e�ectively process the ever-increasing amount of data in real-world
applications. Among the existing ANN techniques, hashing has become e�ectively popular
due to its fast query speed, and low memory costs [16–24]. A hashing model takes an input
data point (images, document, etc.) and outputs a sequence of bits or hashcode representing
that data point. The taxonomy47of the hashing models based on their fundamental properties
as depicted in Figure 2.8 broadly divides them into two categories, Projection which focus
on learning a low-dimensional transformation of input data in such a way that related data
points are closer together in the hashed space and Quantisation which focus on converting
these projections into binary bits by using a thresholding mechanism. Projection can be
further divided into two categories, Data-Independent where the hash function is randomly
learned independently of the input data distribution & representative methods include
Locality Sensitive Hashing (LSH) [106, 107] and its variants and Data-Dependent which
take into account the input data distribution & representative methods include Learning
To Hash (L2H) [17, 18, 108] methods. Data-Dependent models can be further categorized
into Supervised which learn the hash function leveraging the supervised information in the
form of labels to maximize the occurrence of related data points to be hashed to the same
buckets and Unsupervised which learn the hash function without requiring the supervised
label information typically through data factorizing. In comparison to data-dependent, data-
independent methods can achieve comparable or even better accuracy with shorter hash codes
and hence are becoming increasingly popular in real-world applications. Consequently, these
high-dimensional hashing methods can reasonably be studied for their utilization towards
the e�cient management and retrieval of embedding data. In our thesis study, we speci�cally
consider projection with data-independent and data-dependent supervised hashing models.
Further, we elaborate more upon these hashing methods.

2.5. Optimizations for Embeddings and Array Data 39

Figure 2.8: Taxonomy of Hashing Models47

2.5.2.1 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) [106, 107] is an approximate data-independent scalable
algorithm which provides for faster comparisons between points in a very high-dimensional
space through their random projection to low-dimensional bit signatures preserving their
cosine distance approximately. LSH hashes input data points to buckets in such a way that
similar data points are mapped to the same bucket with a high probability and data points
away from each other are likely to be placed into di�erent buckets. Consequently, LSH �nds
its applications in several domains some of them including, Near-duplicate detection [184],
Hierarchical clustering [185], Genome-wide association study [186] etc. There exists various
kinds of LSH and one among them is Binary LSH which generates binary codes for the input
data points and calculates the approximate distance or similarity between them through
Hamming Distance on these binary codes through mainly bitwise operations. This acts as a
scalable solution in large-scale applications as these binary computations are much faster and
storage-e�cient. Additionally, we also have data representations in large-scale applications
where the natural pairwise similarity between them is only related to the angle between
them, eg., Normalized bag-of-words representation for videos, documents, images; in such
cases, angular (cosine) similarity serves as similarity measurement. One of these methods is
the Sign-Random-Projection LSH (SRPLSH) [187] which is a binary LSH method and provides
unbiased estimates of angular similarity. However, SRPLSH su�ers from the problem of large
variances and thus leads to large estimation errors. Thus Super-Bit LSH (SBLSH) [8] improves
upon SRPLSH to provide unbiased estimates of angular similarity with smaller variances
when the angle of estimation lies between (0,π/2] (which is maintained by real-applications
as mostly they have non-negative vector representations with their orientations limited
in this range). SBLSH accomplishes this by converting the random projection vectors to
orthogonal vectors in batches (each consisting of L items, also called buckets) producing
independent samples, as shown in Figure 2.9. The resulting bits of these independent samples
are then grouped together as N-Super-Bit where N is the Super-Bit depth (also called stages).
As per the experimental evaluations of Ji et al. [8], for angular similarly estimation and
approximate nearest neighbor, SBLSH outperforms SRPLSH providing higher accuracy.

40 2. Background

Figure 2.9: Super-Bit Orthogonal Projection Vectors of Random Projection Vectors from
Normal Distribution N(0, 1) [8]

2.5.2.2 Learning To Hash

Learning To Hash (L2H)48[18, 108] is a set of data-dependent hashing methods which aim to
learn a compact and similarity-preserving bitwise representation with shorter hash codes in
such a way that similar inputs are mapped to nearby binary hash codes. L2H methods fall into
two categories namely, Unimodal and Multimodal with each constituting of learning methods
as Supervised which utilize the supervised label information to learn the hash codes during the
training procedure and Unsupervised which only utilize the feature or attribute information
of data points without any supervised label information during the training procedure.
The possibility of providing the supervised label information is achieved in three di�erent
forms namely, Point-wise labels, Pairwise labels and Ranking labels. Some of the unimodal
supervised learning methods include Semi-Supervised Hashing (SSH) [188], Minimal Loss
Hashing (MLH) [189], Linear Discriminant Analysis based Hashing (LDAHash) [190], Kernel-
based Supervised Hashing (KSH) [19], Latent Factor Models for Supervised Hashing (LFH)
[110], FastH [22], Supervised Discrete Hashing (SDH) [23], Column Sampling based Discrete
Supervised Hashing (COSDISH) [24]. Further, some of the unimodal unsupervised learning
methods include Principle Component Analysis (PCAH) [191], Spectral Hashing (SH) [192],
Self-Taught Hashing (STH) [193], Anchor Graph-Based Hashing (AGH) [194], Iterative
Quantization (ITQ) [17], IsoHash [18], Discrete Graph Hashing (DGH) [195], Scalable Graph
Hashing (SGH) [196]. Multimodal hashing constitutes of Multi-Source Hashing which aims to
learn better binary codes than unimodal hashing through leveraging auxiliary views assuming
that all the view are provided for the query and includes methods namely, Multiple Feature
Hashing (MFH) [197], Composite Hashing (CH) [198], and Cross-Modal Hashing which
returns similar items as that to the input query item and includes methods namely, Cross View
Hashing (CVH) [199], Multimodal Latent Binary Embedding (MLBE) [200], Co-Regularized
Hashing (CRH) [201], Inter-Media Hashing (IMH) [202], Relation-Aware Heterogeneous
Hashing (RaHH) [203], Semantic Correlation Maximization (SCM) [204], Collective Matrix
Factorization Hashing (CMFH) [205], Quantized Correlation Hashing (QCH) [206], Semantics-
preserving hashing (SePH) [207]. Ranking-Based Hashing constituting L2H compromise of
ranking-based methods including Hamming Distance Metric Learning (HDML) [208], Order
Preserving Hashing (OPH) [209], Ranking-Based Supervised Hashing (RSH) [210], Ranking
Preserving Hashing (RPH) [211] which are supported by supervised information in the form
of ranking labels for the data. Further, Deep Hashing constituting supervised L2H utilizes

2.5. Optimizations for Embeddings and Array Data 41

Deep Learning compromising of hashing methods including Convolutional Neural Network
Hashing (CNNH) [212], Network In Network Hashing (NINH) [213], Deep Semantic Ranking
Based Hashing (DSRH) [214], Deep Regularized Similarity Comparison Hashing (DRSCH)
[215], Deep Hashing (DH) [216], Deep Pairwise-Supervised Hashing (DPSH) [9].
Deep Hashing

Considering deep hashing methods from the literature to be utilized in the design for our L2H
technique, Li et al. [9] propose a novel deep hashing method called Deep Pairwise-Supervised
Hashing (DPSH) which does simultaneously feature learning and hash-code learning using
supervised pairwise labels in an end-to-end architecture utilizing feedback mechanism to
learn better hash codes. This end-to-end learning framework as seen in Figure 2.10 for image
retrieval has three key components, the �rst component is a Convolutional Neural Network
(CNN) to learn image representation from pixels, the second component is a hash function
which maps the learned image representation to hash codes and the third component is a loss
function which measures the generated hash code in comparison with the pairwise labels.
Inspired by this work, Wang et al. [10] propose a novel triplet based deep hashing method (a
special case of ranking labels) which simultaneously performs image feature and hash code
learning in an end-to-end manner aiming to maximize the likelihood of the input triplet
labels. This method experimentally evaluates to outperform the deep hashing based on
pairwise labels and pre-existing triplet label based deep hashing methods. This end-to-end
learning framework, as seen in Figure 2.11 has three components, a deep neural network
to learn features from images, one fully-connected layer to learn hash codes for from these
features and the loss function.
Regarding the objective function to learn similarity-preserving hash codes, Zhang et al. [110]
was the �rst to proposes a supervised hashing method, Latent Factor Hashing (LFH) to learn
similarity-preserving binary codes based on latent factor models and which can be e�ciently
used to train large-scale supervised hashing problems. LFH models the likelihood of pairwise
similarities as a function of Hamming Distance between the corresponding points. However,
the optimization of this objective function is a discrete optimization problem which is not
easy to solve, and hence this constraint is relaxed by transforming the discrete codes to
continuous which might not achieve satisfactory performance [24]. Hence deep hashing
methods utilizing LFH propose novel strategies to solve this discrete optimization problem
in a discrete way, thus improving accuracy [9]. Wang et al. [10] rather solve this discrete
optimization problem in a continuous way as proposed by Zhang et al. [110], but considers
the quantization error induced by this relaxation in the loss function. Further, regarding an
optimized loss function for pairwise supervised hashing, Zhu et al. [11] proposes a novel
Deep Hashing Network (DHN) architecture which can simultaneously optimize pairwise-
cross entropy loss on the learned semantic similar pairs and the pairwise quantization loss
on the learned hash codes. This serves as an advantage towards better similarity-preserving
learning and controlling the quality of the learned hash codes. The pipeline architecture of
DHN as seen in Figure 2.12 consists of four key components, the �rst component is a sub-
network constituting of multiple convolution-pooling layers to learn image representations,
the second component is a fully-connected hashing layer to generate compact hash codes,
the third component is the pairwise cross-entropy loss function, and the fourth component is

42 2. Background

the pairwise quantization loss function. Li et al. [109] propose a novel deep hashing method
Deep Supervised Discrete Hashing (DSDN) which uses both pairwise label and classi�cation
information to generate discrete hash codes in a one stream framework. The optimization
process keeps this discrete nature of the hash codes to reduce the quantization error and
thus an alternating minimization method is derived to optimize the loss function.

Figure 2.10: End-to-end Architecture of Deep Pairwise-Supervised Hashing (DPSH) [9]

Figure 2.11: End-to-end Architecture of Triplet-Based Deep Hashing [10]

Figure 2.12: Architecture of Deep Hashing Network (DHN) [11]

In our work, we develop a solution for deep hashing, based on triplet labels.

2.5. Optimizations for Embeddings and Array Data 43

With this section, we conclude our review of large-scale processing and management so-
lutions for embedding data. In the following sub-section, we discuss one use case that we
evaluate for embedding data: supervised entity resolution.

2.5.2.3 Supervised Entity Resolution

Entity Resolution (ER) is the process of identifying records in information systems that
correspond to the same real-world entity [12]. Figure 2.13 depicts the general process �ow
for ER [13]. Speci�cally, we elaborate on these �ve steps mapping them to our thesis work,

• Data Pre-Processing We utilize and work with embedding data which highlights the
semantic similarity in the data making it more manageable. Thus this step involves the
processing and vectorization of the structured input datasets resulting in embedding
data.

• Blocking Blocking splits the input data into blocks with the goal of a high-likelihood
placement of the similar records in the same blocks, thus reducing the search space
for the ER tasks. Consequently, given its fast query speed and low memory costs, we
consider similarity-preserving hashing techniques to block these embedding data.

• Pair-wise comparison Pair-wise comparison evaluates the similarity between a pair
of entities. Speci�cally, we use Cosine similarity [217–219] to compute this pair-wise
similarity between the hashed vectors.

• Classi�cation Once the similarity scores are calculated, we further evaluate the
hashed entity pairs against the benchmark dataset i.e., Ground Truth which contains
the actual correct pair mappings. This eventually trains a model (in our case, we use the
eXtreme Gradient Boosting or the XGBoost49[220] classi�er) and perform classi�cation
deciding whether the hashed pair of entities are a match or non-match.

• Evaluation The evaluation steps further evaluates the classi�cation accuracy of the
hashing technique. Speci�cally, we utilize the F1 score.

44 2. Background

Figure 2.13: General Process of Entity Resolution [12, 13]

2.6 Summary
Summarizing, we present in this chapter a comprehensive background which provides
context to the research area of this thesis. We started by brie�y presenting the idea of
embeddings with their applicability. In the Large-Scale Data Processing section, we provided
a lengthy description of large-scale data processing systems, which can be considered as
driving key resources in today’s modern world. Additionally, we also outline the di�erent
state-of-art works to achieve optimized large-scale data processing leading to increased
performance, considering optimizations and storage engines. Further, moving from the
systems to the application perspective, to evaluate the e�ciency of the di�erent large-
scale data processing frameworks, we outline the existing state-of-art in benchmarking and
evaluation of these systems. In the Machine Learning and Data Management Interfaces in
the Context of Embeddings section, we present the utilization of embeddings in practical

2.6. Summary 45

end-to-end ML pipelines towards semantic knowledge extraction and e�cient support for
di�erent ML workloads. In the Optimizations for Embeddings and Array Data section, we
focus on listing possible optimizations which can be reasonably applied for embeddings as a
form of array data, among them in the High-Dimensional Hashing section, we explain the
idea of hashing as a popular approximate nearest neighbor technique and consequently we
give details on LSH and L2H. Additionally, we also elaborate upon the general process of
entity resolution, as it is relevant to our evaluation. Through this hierarchical structuring of
this chapter, we aim to instill in the readers a broad understanding of the research area of

46 2. Background

this thesis slowly converging towards the main topic of research. In the next Chapter 3, we
present an overview of the thesis design outlining its prototypical implementation.

1https://developers.google.com/machine-learning/crash-course/embeddings/
2https://spark.apache.org/
3http://www.scala-lang.org
4https://hive.apache.org/
5www.hadapt.com
6https://www.oracle.com/technetwork/database/exadata/overview/index.html
7https://drill.apache.org/
8http://hawq.apache.org/
9https://impala.apache.org/

10http://prestodb.github.io/
11https://spark.apache.org/sql/
12http://www.tpc.org/tpch/
13http://www.tpc.org/tpcds/default.asp
14http://incubator.apache.org/thrift
15https://pig.apache.org/
16https://aws.amazon.com/ec2/
17https://github.com/datastax/spark-cassandra-connector
18https://hbase.apache.org/
19https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
20https://www.datascience.com/blog/grunion-data-science-tools-query-optimizer-apache-spark
21https://kudu.apache.org/
22https://cwiki.apache.org/con�uence/display/Hive/LLAP
23https://ignite.apache.org/index.html
24https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/MapFile.html
25http://avro.apache.org/
26https://parquet.apache.org/
27https://orc.apache.org/
28https://arrow.apache.org/
29https://amplab.cs.berkeley.edu/benchmark/
30http://www.tpc.org/tpcx-bb/default.asp
31https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
32http://prof .ict.ac.cn/BigDataBench/
33https://github.com/bigframeteam/BigFrame/wiki
34https://hadoop.apache.org/docs/stable1/gridmix.html
35https://wiki.apache.org/hadoop/Grep
36http://hadoop.apache.org/docs/r0.23.11/api/org/apache/hadoop/examples/pi/
37https://github.com/Intel-bigdata/HiBench
38http://sardes.inrialpes.fr/research/mrbs/index.html
39https://cwiki.apache.org/con�uence/display/PIG/PigMix
40https://bitbucket.org/lm0926/sparkbench/src/master/
41https://github.com/SWIMProjectUCB/SWIM/wiki
42http://www.tpc.org/tpcx-hs/default.asp
43https://spark.apache.org/docs/1.2.2/ml-guide.html
44https://azure.microsoft.com/en-us/services/cognitive-services/
45http://mahout.apache.org/
46http://spark.apache.org/mllib/
47https://learning2hash.github.io/base-taxonomy/
48http://cs.nju.edu.cn/lwj/slides/L2H.pdf
49https://xgboost.readthedocs.io/en/latest/index.html

https://developers.google.com/machine-learning/crash-course/embeddings/
https://spark.apache.org/
http://www.scala-lang.org
https://hive.apache.org/
www.hadapt.com
https://www.oracle.com/technetwork/database/exadata/overview/index.html
https://drill.apache.org/
http://hawq.apache.org/
https://impala.apache.org/
http://prestodb.github.io/
https://spark.apache.org/sql/
http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/default.asp
http://incubator.apache.org/thrift
https://pig.apache.org/
https://aws.amazon.com/ec2/
https://github.com/datastax/spark-cassandra-connector
https://hbase.apache.org/
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://www.datascience.com/blog/grunion-data-science-tools-query-optimizer-apache-spark
https://kudu.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LLAP
https://ignite.apache.org/index.html
https://hadoop.apache.org/docs/r2.7.3/api/org/apache/hadoop/io/MapFile.html
http://avro.apache.org/
https://parquet.apache.org/
https://orc.apache.org/
https://arrow.apache.org/
https://amplab.cs.berkeley.edu/benchmark/
http://www.tpc.org/tpcx-bb/default.asp
https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
http://prof.ict.ac.cn/BigDataBench/
https://github.com/bigframeteam/BigFrame/wiki
https://hadoop.apache.org/docs/stable1/gridmix.html
https://wiki.apache.org/hadoop/Grep
http://hadoop.apache.org/docs/r0.23.11/api/org/apache/hadoop/examples/pi/
https://github.com/Intel-bigdata/HiBench
http://sardes.inrialpes.fr/research/mrbs/index.html
https://cwiki.apache.org/confluence/display/PIG/PigMix
https://bitbucket.org/lm0926/sparkbench/src/master/
https://github.com/SWIMProjectUCB/SWIM/wiki
http://www.tpc.org/tpcx-hs/default.asp
https://spark.apache.org/docs/1.2.2/ml-guide.html
https://azure.microsoft.com/en-us/services/cognitive-services/
http://mahout.apache.org/
http://spark.apache.org/mllib/
https://learning2hash.github.io/base-taxonomy/
http://cs.nju.edu.cn/lwj/slides/L2H.pdf
https://xgboost.readthedocs.io/en/latest/index.html

2.6. Summary 47

Benchmark Description

AMP Lab Benchmark29 An open-source micro benchmark to measure the quantitative
and qualitative analytical capabilities of data warehousing systems

TPCx-BB30also formerly known as
BigBench31[86, 146, 147]

An open-source end-to-end application-level benchmark to
measure the characteristics of a Big Data Analytics system

BigDataBench32[148]
An open-source benchmark suite to evaluate Big Data
systems under di�erent workloads

BigFrame33[149] A benchmark generator which o�ers benchmarking-as-a-service

CloudRank-D [150]
A benchmark suite to evaluate the performance of cloud
computing systems which run Big Data applications

CloudSuite [151]

An open-source benchmark suite which analyzes and identi�es
performance issues in the processor’s core micro-architecture and
memory system organization when running Big Data cloud
workloads

GridMix34 An open-source end-to-end benchmark to evaluate the
performance of a Hadoop cluster

Hadoop Workload
Examples3536

These ready-to-use examples in the Hadoop framework are
designed to learn and micro benchmark Hadoop

HiBench37[152]
An open-source benchmark suite for Hadoop which can evaluate
the performance of MapReduce and Spark

MRBench[153]
An open-source end-to-end benchmark to measure the
business-oriented performance of MapReduce systems

MapReduce Benchmark Suite
(MRBS)38[154, 155]

An open-source benchmark suite to evaluate the performance of
MapReduce systems

Pavlo’s Benchmark (CALDA) [156, 157]
An open-source micro benchmark which measures the
performance of Hadoop in comparison with that of the
traditional database systems

PigMix/PigMix239 An open-source end-to-end benchmark to measure the
performance of Apache Pig systems

PRIMEBALL [158]
Measures and compares the performance of Big Data parallel
processing frameworks in cloud

SparkBench40[159] An open-source benchmark suite for Apache Spark

Statistical Workload Injector
for MapReduce (SWIM)41[160, 161]

An open-source end-to-end benchmark which provides for
rigorous performace measurements of MapReduce systems by
utilizing real-time workloads

TPC-H12
An open-source end-to-end technology-agnostic de-facto
benchmark for measuring the data warehousing capability of a
system

TPC-DS13 An open-source end-to-end benchmark which evaluates the
performance of decision-support systems

TPCx-HS42[85, 162]

An open-source �rst industry standard micro benchmark to
stress test both Hadoop software & hardware components
including the execution engine (MapReduce or Spark) and the
system layers compatible with the Hadoop FS API

Yahoo! Cloud Serving Benchmark
(YCSB) [163, 164]

An open-source end-to-end benchmark which measures and
compares the performance of usually NoSQL database
management systems

Table 2.3: Overview of Big Data Benchmarks

3. Design Overview and Prototypical
Implementation

This chapter focuses on bridging the gap between the literature overview carried out and
the implementation and experimentation undertaken as part of this thesis research. In this
chapter, we present the design of our thesis and explain details regarding its prototypical
implementation.

This chapter is structured as follows:

• Section 3.1 presents an overview of the design of this thesis.

• Section 3.2 recapitulates the research questions of focus for this thesis.

• Section 3.3 presents our proposed approach for deep hashing based on the literature
as the main contribution of this thesis research.

• Section 3.4 presents an overview of the details associated with the prototypical imple-
mentation for this thesis.

• Section 3.5 presents an e�ective summarization of the important aspects of this chapter.

3.1 Design Overview
This section presents a high-level overview on the research area of this thesis and then maps
it to the actual topic of focus for this thesis. Figure 3.1 depicts this high-level overview. In
the research area of e�cient management of embedding data for use in Machine Learning
(ML) applications, we have di�erent input data formats available. These data formats can
be Structured (e.g., structured text documents, graphs) or Unstructured (e.g., audio, video).
Using embedding methods on these data formats, such as count-based (e.g. topic models) or

50 3. Design Overview and Prototypical Implementation

prediction-based (e.g. neural models) methods (elaborated upon in Chapter 2 Section 2.2), we
can obtain their vector representation in a low-dimensional embedding space, which now
increases data manageability by highlighting data semantic similarity in a uniform space. As
examples, in the Figure 3.1 we can see di�erent embedding spaces for graphs1, words2[15]
and joint/combined cases (image & audio)3[221]. Further, in order to store and manage these
embeddings e�ciently, di�erent similarity-preserving hashing techniques, such as Locality
Sensitive Hashing (LSH) [106, 107] or Learning To Hash (L2H) [18, 108], can be utilized. These
facilitate improved query speeds and reduced memory costs (elaborated upon in Chapter 2
Section 2.5.2), through hashing similar data together with a high probability. Such blocking
of the embedded data into data groups based on their similarity can contribute to di�erent
ML tasks, even beyond just the e�ciency in data management. As examples, in the Figure 3.1
we can visualize the e�ciency of image retrieval tasks with nearest neighbors4[222, 223],
content-based information retrieval 5, near duplicate detection [224], location recognition
[225], waveform retrieval for earthquake detection6[226].

Mapping speci�cally to this research area, in our thesis, we deal with structured textual
data, embedded using Facebook’s pre-trained neural model fastText [25]. This was selected
as a general o�-the-shelf solution, which we consider to be representative of the solutions
available. In order to e�ciently store and manage these word embeddings, we experimentally
study and evaluate two hashing techniques, namely LSH and L2H. As applications, we
measure two performance factors. On one side, the performance e�ciency of these hashing
techniques in accelerating top-k similarity search queries on this hashed embedded data. On
the second hand, the extent to which the use of the blocking performed during the hashing
can contribute to improve the accuracy of a supervised entity resolution process.

The information regarding the research questions of focus for our thesis, and the prototypical
implementation carried out to address them is detailed in the subsequent sections.

3.1. Design Overview 51

Figure 3.1: High-level overview of the research area of this thesis16

52 3. Design Overview and Prototypical Implementation

3.2 Final Research Questions
Based on the systematic literature review, the initial research questions were re-structured
to become more concrete. Thus below are the carefully formulated �nal research questions
which serve as the focal points to be answered through this thesis:

• RQ1: What is the best possible coverage and block distribution, achievable using
a standard high-dimensional hashing technique, Locality Sensitive Hashing? How
well does the resulting data distribution contribute, as a blocking mechanism, to the
performance of supervised entity resolution?

• RQ2: How does Learning To Hash compare, with regards to blocking and coverage, to
the standard high-dimensional hashing technique, Locality Sensitive Hashing? How
does it compare in the task of supervised entity resolution?

• RQ3: What is the performance (execution time) speed-up achievable by hashing with
the best-observed technique, for top-k searches in a large scale processing framework?
To what extent can partitioning by the corresponding hash codes a�ect the overall
performance?

The detailed explanation regarding the evaluation metrics used in the research questions is
added in Section 3.4.4.

3.3 Proposed Approach
In order to address our research questions, we can use existing state-of-the-art implementa-
tions for data-independent LSH (e.g., java-LSH7). Speci�cally we select Super-Bit (SBLSH)
[8], due to its simplicity and its ability to provide unbiased estimates of angular similarity.
However, at the time of this research, in the case of data-dependent supervised L2H, we found
open-source implementations models tailored to image data, but no implementation easily
applicable for embedding data. Therefore, a core task for our research is the development of
a prototype for one general supervised hashing solution for embedding data. In this section,
we discuss the design of such a solution.

We develop a novel supervised hashing solution based on neural networks. This method
relies on a Deep Hash Neural Net (DHNN), as seen in Figure 3.2. This is in�uenced by the
work of Wang et al. [10], which exempli�es research on triplet label based supervised deep
learning. Triplet labels are a special form of ranking labels, for training purposes, containing
richer information than pairwise labels, and which can be naturally decomposed into three
pairwise labels. Further, the use of triplet labels in the learned hash code space facilitates the
learning of codes that keep proximity of positive inputs and far distance for negative inputs,
helping the notion of relative similarities among the inputs. Next, we describe our approach,
establishing the formal problem de�nition and the deep hashing technique towards learning
the hash function.

3.3. Proposed Approach 53

3.3.1 Problem De�nition

Given two embedded datasets, each consisting of input word embeddings related to a given
entity identi�ed by a key (ID), and a similarity ground truth consisting of the pairs of keys
(IDs) for similar entities, acting as the provider for the supervised label information. The
triplet labelled examples for the supervised training using this data can be de�ned as, T
= {(P10, P20, N0),....,(P1n, P2n, Nn)} where n denotes the training batch size, and within the
parenthesis we have the training examples, each formed by a random selection of two similar
items (one for each dataset) as P1 & P2 and one dissimilar item as N (from either dataset),
based on the labelled ground truth dataset. Based on these triplet labelled examples, the
corresponding embedded data is passed as an input to the network in the form of three
arrays of which the �rst two arrays contain the similar items and the third array contains the
dissimilar items. These arrays are �lled from positions 0 to n = training batch size, forming
a batch of points. The items in the corresponding positions of the three arrays conform a
triplet, for training purposes. Considering such information, our goal is to learn a hash code
bn for each input embedded item where b ∈ {-1, +1}L and L is the provided hash code length.
The generated hash codes B = {bn}batchSizen=0 should satisfy as much as possible all the triplet
labels T in the hamming space making the hamming distanceH(bP1n, bP2n) as small as possible
in comparison to the hamming distanceH(bP1n, bNn) and to the hamming distanceH(bP2n, bNn).
Consequently, the aim is to learn a hash functionH to map word embedding data to hash
codes, keeping close the similar items and keeping far the dissimilar items.

3.3.2 Learning the Hash Function

For this task, we prototype a Deep Hash Neural Net (DHNN) to learn the hash function. We
show an overview of our method in Figure 3.2. It consists of three key components, namely
the Embedded Data Input, the Hash Code Learning, and the Loss Function.

Embedded Data Input This component consists of the pre-embedded vectors supplied
as input, corresponding to the triplet labelled examples formed based on the ground truth
dataset. Thus the training input is in the form of two positive (similar items), and one
negative (dissimilar items) arrays �lled from 0 to n = training batch size and supplied to
the network (for training) one batch of examples at a time. Feature Learning improving the
hashing performance can be optionally incorporated as an end-to-end deep hashing method,
in order to slightly improve the embedding themselves throughout the training. Though
feature learning is commonly added to the proposed end-to-end hashing method [9, 10], we
do not study such improvement in our model. In our scenario, the embedding data input can
be visualized as an output of the feature learning using Facebook’s pre-trained neural model
fastText [25] on the raw input datasets.

Hash Code Learning This component is designed to learn the hash codes corresponding
to the input embeddings data. Speci�cally, we use a fully-connected neural architecture,
with an input layer as large as the intended input, a single hidden layer with a total number
of 5120 neurons, and an output layer with the size of the target hash code. We apply the
Recti�ed Linear Unit (ReLU) activation function in the hidden layer, but in the output layer,
there is no activation applied, but we clip the values to the range (-1, +1). After the training

54 3. Design Overview and Prototypical Implementation

is done, to create actual hash codes, we use the sign activation function, to map them to 0s
and 1s.

Loss Function This component is the key component for the training procedure. It
evaluates the likelihood of the learned hash codes to that of the triplet labelled input items.
The goal of this loss function is to guide the optimization of the neural network weights, such
that given an input example it leads to a hash code that minimizes the distance to the hash
code of the similar input example, and increases the distance to the dissimilar example. To
this end, the training proceeds batch-wise, with each batch consisting of the triplet examples.
As a �rst step, the hash codes for each item are calculated using the neural network in its
current state.

Based on the likelihood of the pairwise similarities through Latent Factor Hashing (LFH)
[110] and in�uenced from the work of Li et al. and Wang et al. [9, 10], we de�ne the loss
function as follows,

Given two hash codes bi and bj ∈ {-1,+1}L from the set of hash codes B and L as the provided
hash code length, Θij denotes half of the inner product between them,

Θij =
1

2
bTi bj (3.1)

The likelihood of pairwise labels S = {sij} can be de�ned as,

p(sij|B) =

{
σ(Θij), sij = 1

1− σ(Θij), sij = 0
(3.2)

where σ(Θij) = 1

1+e−Θij
is the sigmoid function and sij = 1 for similar labels and sij = 0 for

dissimilar labels.

Further, the loss function can be de�ned as the negative log of this likelihood of pairwise
labels,

L = − log p(S|B) = −
∑
sij∈S

log p(sij|B) = −
∑
sij∈S

(sijΘij − log(1 + eΘij)) (3.3)

The complete step by step derivation of this equation is given in Chapter 9.

Since in our design we consider triplet labels, Equation 3.3 for pairwise labels is modi�ed
to incorporate the triplet labels T = {(P10, P20, N0),....,(P1n, P2n, Nn)}. This is presented as
follows, in its expanded form:

L = −
∑
sij∈S

(sP1nP2nΘP1nP2n + sP1nNnΘP1nNn + sP2nNnΘP2nNn

− log(1 + eΘP1nP2n)− log(1 + eΘP1nNn)− log(1 + eΘP2nNn))

(3.4)

3.3. Proposed Approach 55

Since P1,P2 are the positive similar labels, we have sP1nP2n = 1 and P1,N & P2,N being the
dissimilar labels, we have sP1nNn = 0 & sP2nNn = 0. Substituting theses values in Equation 3.4
we have the loss function to be used as,

L = −
∑
sij∈S

(ΘP1nP2n − log(1 + eΘP1nP2n)− log(1 + eΘP1nNn)− log(1 + eΘP2nNn)) (3.5)

Minimizing Equation 3.5 is a hard to solve discrete optimization problem, hence we solve
this through relaxing the binary codes {bn} from discrete to continuous real vectors {un}
where {un} ∈ RL×1 as proposed in the work of Zhang et al. [110]. Therefore now Θij can be
re-de�ned as:

Θij =
1

2
uTi uj (3.6)

But this process induces a relaxation error which leads to reduced performance [24]. This is
also known as the quantization error induced in the process to quantize the learned optimal
real vectors {un} to binary codes {bn}. To reduce this impact on the performance, we propose
to balance the equation by multiplying the term ΘP1mP2m three times (since we consider
triplets) to the loss function and hence deriving the �nal loss function to minimize as:

L = −
∑
sij

(3×ΘP1mP2m − log(1 + eΘP1nP2n)− log(1 + eΘP1nNn)− log(1 + eΘP2nNn))

(3.7)

We should note that adding this multiplication, rather than a quanti�cation error was found
to be a solution that worked well empirically in our experiments. In spite of this, alternative
solutions could also be considered.

56 3. Design Overview and Prototypical Implementation

Figure 3.2: Overview of the Proposed Deep Hashing Method for Deep Hash Neural Net
(DHNN)

3.3.3 Model Learning

The Deep Hash Neural Net (DHNN) as depicted in Figure 3.3 is a fully-connected deep neural
network with three layers, the Input Layer, the Hidden Layer and the Output Layer. The size
of the input layer corresponds to the size of the embeddings, i.e., 300 in case of Single Feature
Hashing and 901 in case of All Features Hashing. The hidden layer is a fully-connected
layer of 5120 neurons and learns the optimal hash code corresponding to the input item.
Additionally, between these two layers, we use the widely used activation function Recti�ed
Linear Unit (ReLU), which exhibits the advantage of easy computation and fewer vanishing
gradients resulting in better training. Finally, the output layer outputs the hash code after
the loss function is minimized Equation 3.7. The size of the output layer corresponds to the
speci�ed hash code length, i.e., 12, 16, 24, 32, 48, 64, 128. Between the hidden and the output
layer, we specify no activation function to maintain a linear activation. Consequently, during
the network training it takes as an input array of embedded items (two positive and one
negative) �lled from 0 to n = training batch size one after the another and processing item by
item to output the corresponding hash codes arrays (for the two positive and one negative)
while minimizing the loss Equation 3.7 using the back-propagation algorithm8. Additionally,
Table 3.1 summarizes the important network and training parameters,

3.3. Proposed Approach 57

Figure 3.3: Deep Hash Neural Net (DHNN)

On each iteration, we select 50 batches and optimize for two epochs. After the completion of
the training, we have the hash codes corresponding to each of the embedded input mapped
to its key (ID), and then we apply the sign function on these hash codes which converts them
into the format of 1s and 0s.

In our evaluation, we generate a detailed report with metrics coverage, computation (see
Section 3.4.4), and coverage variations with neighboring hash matches at the end of each
iteration. Hence a total of 2000 reports are created per training. The last reported values
are considered for the experimental evaluation. The training converges approximately
around the 1000th iteration. After the last iteration, we also generate a report indicating the
coverage and computation values achieved through the Brute-Force9approach acting as a
baseline for the performance of the trained network to be evaluated upon. A brute-force
approach typically solves a given problem by exhaustively enumerating all the possibilities,
considering every possible outcome for a decision. We considered the brute-force approach
to perform hashing in such a way that it generates the maximum coverage and the minimum
computation value. In doing so, it exhaustively tries to assign similar items the similar hash
code values thus maximizing the coverage and minimizing the computation. Additionally, we

58 3. Design Overview and Prototypical Implementation

Parameter Values

Size of the input layer 300 or 901

Size of the hidden layer 5120

Size of the output layer 12 or 16 or 24 or 32 or 48 or 64 or 128

Activation function between the input and the hidden layer Recti�ed Linear Unit (ReLU)

Activation function between the hidden and the output layer None (Linear Activation)

Number of iterations 2000

Number of batches 50

Batch size 32

Number of epochs 2

Table 3.1: Deep Hash Neural Net (DHNN) Network and Training Parameters

also evaluate, for some cases, the trained network performance with the baseline Brute-Force
approach.

We include our reference implementation in Chapter 10.

3.4 Prototypical Implementation
This section presents an overview of the essential details as part of the prototypical imple-
mentation for this thesis: the experimental setup, the input datasets, their processing, and
evaluation metrics considered.

3.4.1 Experimental setup

We utilize the following con�gurations for our prototypical implementation:

Machine Con�guration

• Operating System Microsoft Windows 10 Home 64-bit (Version 10.0.17763, Build
17763)

• Processor Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 1992 Mhz, 4 Core(s), 8
Logical Processor(s)

3.4. Prototypical Implementation 59

• Memory 16,0 GB RAM

• Spark Cluster 10 Spark Clients with a total 84,0 GB cluster memory

Programming Framework

• Programming Languages JAVA SE (Version 11.0.2), Python (Version 3.7.2), R
(Version 3.5.2)

• Programming Tools Eclipse IDE 2018-12 (Version 4.10.0), PyDev - Python IDE for
Eclipse (Version 7.2.0), RStudio (Version 1.1.463)

• Libraries fastText [25], java-LSH7, Graph 3D - Playground10, tidyverse, ggplot2,
ggrepel, XGBoost11[220], TensorFlow12, Spark SQL13

3.4.2 Input Datasets

For our experimental study we primarily choose three publicly available structured dataset
pairs from di�erent domains with varying size and attributes as depicted in Table 3.2. These
datasets are for product data or citations.

Dataset Domain Embedded Size Features Used Features

Amazon-Google14[227] Software 16,000 KB 5 ID, Name, Description, Manufacturer, Price

DBLP-ACM14 [227] Citation 50,000 KB 5 ID, Title, Authors, Venue, Year

Walmart-Amazon [228] Electronics 240,000 KB 5 ID, Title, Description, Brand, Price

Table 3.2: Overview of Datasets

Additionally, each dataset pair is accompanied by a Ground Truth dataset which consists of
the mapping of the structured tuples (ID) from each of the dataset in the pair, acting as a
benchmark indicator for similarity detection tasks.

3.4.3 Pre-Processing and Vectorization of Input Datasets

For pre-processing and vectorization of the data, these dataset pairs were further embedded
for String only attributes except the ID �eld using Facebook’s pre-trained neural model
fastText [25], with each embedding being of 300 dimension and with the total length of the
input vector being 901. We embed each word in the attributes separately, and we include as
the embedded vector the sum of these embeddings, divided by the number of words in the
attribute. We do this for each string attribute in the evaluated datasets. The last entry in this
vector corresponds to a normalized value (either price or year, according to the dataset). For
the similarity calculation between pairs, supporting the supervised entity resolution task,

60 3. Design Overview and Prototypical Implementation

we calculate the cosine similarity between vectors of each attribute, and for the last feature
in the dataset, we use the absolute di�erence over the normalized values. As a result, the
features used for the supervised entity resolution task are the three cosine similarities (for
the embedded features), and one absolute di�erence (for the non-embedded features).

3.4.4 Evaluation Metrics

Below are the important evaluation metrics used accordingly as part of our experimental
evaluation:

1. Coverage User-de�ned metric which evaluates how many key-mappings in the
Ground Truth dataset actually match to the key-mappings carried out by the selected
hashing technique.

Coverage =

(
100 ∗Number of Hash Matches

Number of True Matches

)

2. Computation User-de�ned metric which evaluates how the sum of the Cartesian
product of the keys in each hashed bucket relate to the overall Cartesian product, thus
it captures the block distribution by the selected hashing technique.

Computation =

(
KeysDataset1HashedBucketn ×KeysDataset2HashedBucketn∑Bn

n=B1
(KeysDataset1HashedBucketn ×KeysDataset2HashedBucketn)

)

3. F1 score Metric used to measure the classi�cation accuracy of the selected hashing
technique. It is the harmonic mean of Precision (Fraction of relevant instances among
the retrieved instances) and Recall (Fraction of relevant instances retrieved among the
total relevant instances)15.

F1 Score = 2

(
Precision ∗Recall
Precision+Recall

)

4. Cosine Similarity Metric [217, 218] used to calculate the similarity between the
hashed vectors through measuring the cosine of the angle between them when pro-
jected in a multi-dimensional space.

Cosine Similarity (V ectorA, V ectorB) =

(
A ·B
|A||B|

)

3.5. Summary 61

3.5 Summary
Summarizing, in this chapter, we present the design of our thesis, which aims to map the
literature review carried out to the focus of this thesis research. Further, we also present
the �nal research questions formulated to be answered as part of this thesis. We presented
our proposed Deep Hashing approach, encompassing a Deep Hash Neural Net (DHNN),
and we highlight on its varied aspects. We also describe the important aspects related to
understanding the prototypical implementation and experimentation of this thesis research
area. Speci�cally, we present an overview related to the experimental setup, the input
datasets & their processing and the considered evaluation metrics. In the next chapters
Chapter 4, Chapter 5 and Chapter 6 we present and detail out our experimental evaluation
results.

1https://ai.googleblog.com/2019/06/innovations-in-graph-representation.html
2https://developers.google.com/machine-learning/crash-course/embeddings/
3http://www.robots.ox.ac.uk/~vgg/research/LearnablePins/
4https://towardsdatascience.com/�nding-similar-images-using-deep-learning-and-locality-sensitive-

hashing-9528afee02f5,
https://media.springernature.com/original/springer-static/image/prt%3A978-0-387-39940-9%2F9/
MediaObjects/978-0-387-39940-9_9_Part_Fig1-615_HTML.jpg,
http://www.seanjmoran.com/img/binary_search.png

5https://imense.com/
6https://advances.sciencemag.org/content/advances/1/11/e1501057/F7.large.jpg
7https://github.com/tdebatty/java-LSH.git
8To be precise, in our implementation with train with RMSProp, and a learning rate of 0.0001.
9https://en.wikipedia.org/wiki/Brute-force_search

10http://almende.github.io/chap-links-library/js/graph3d/playground/
11https://xgboost.readthedocs.io/en/latest/index.html
12https://www.tensor�ow.org/
13https://spark.apache.org/sql/
14https://dbs.uni-leipzig.de/de/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
15https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
16Documents free icon made by Freepik from www.�aticon.com, Network free icon made by Smashicons

from www.�aticon.com, Multimedia free icon made by Eucalyp from www.�aticon.com

https://ai.googleblog.com/2019/06/innovations-in-graph-representation.html
https://developers.google.com/machine-learning/crash-course/embeddings/
http://www.robots.ox.ac.uk/~vgg/research/LearnablePins/
https://towardsdatascience.com/finding-similar-images-using-deep-learning-and-locality-sensitive-hashing-9528afee02f5
https://towardsdatascience.com/finding-similar-images-using-deep-learning-and-locality-sensitive-hashing-9528afee02f5
https://media.springernature.com/original/springer-static/image/prt%3A978-0-387-39940-9%2F9/MediaObjects/978-0-387-39940-9_9_Part_Fig1-615_HTML.jpg
https://media.springernature.com/original/springer-static/image/prt%3A978-0-387-39940-9%2F9/MediaObjects/978-0-387-39940-9_9_Part_Fig1-615_HTML.jpg
http://www.seanjmoran.com/img/binary_search.png
https://imense.com/
https://advances.sciencemag.org/content/advances/1/11/e1501057/F7.large.jpg
https://github.com/tdebatty/java-LSH.git
https://en.wikipedia.org/wiki/Brute-force_search
http://almende.github.io/chap-links-library/js/graph3d/playground/
https://xgboost.readthedocs.io/en/latest/index.html
https://www.tensorflow.org/
https://spark.apache.org/sql/
https://dbs.uni-leipzig.de/de/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
www.flaticon.com
www.flaticon.com
www.flaticon.com

4. Locality Sensitive Hashing

In this chapter, we focus on a data-independent high-dimensional hashing technique, which
reduces the dimensions of the high-dimensional input data items converting them into
low-dimensional versions while preserving the relative distance between them. Speci�cally,
we focus on Locality Sensitive Hashing (LSH) and experimentally evaluate the performance
of Super-Bit, an improvement of Random Projection LSH.

This chapter is structured as follows:

• Section 4.1 recapitulates the research question of focus for this chapter.

• Section 4.2 presents an overview of our data pipeline for LSH.

• Section 4.3 discusses and presents our evaluation results for LSH.

• Section 4.4 presents an e�ective summarization of the important aspects of this chapter.

4.1 Research Question
Recapitulating the research questions we established for this work, in this chapter, we will
be addressing the following speci�c research question:

• RQ1: What is the best possible coverage and block distribution, achievable using
a standard high-dimensional hashing technique, Locality Sensitive Hashing? How
well does the resulting data distribution contribute, as a blocking mechanism, to the
performance of supervised entity resolution?
Relevance Measuring the Coverage determining the correct mappings and Block
Distribution determining the level of block distribution serve as simple base measures
to evaluate a hashing technique. They can serve as indicators for how well the data is

64 4. Locality Sensitive Hashing

split according to expectations, or of the amount of data needed to be scanned for top
k-similarity searches.
Description This research question deals with the experimental evaluation using
two user-de�ned metrics namely, Coverage, and Computation. Additionally, for the
task of supervised entity resolution we calculate an F1 score measuring this accu-
racy of classi�cation with the similarity measurement using Cosine Similarity. These
evaluation metrics are elaborated upon in Chapter 3 Section 3.4.4.

4.2 Data Pipeline
In our study on high-dimensional hashing using LSH, we primarily choose three publicly
available structured dataset pairs as elaborated upon in Chapter 3 Section 3.4.2.

4.2.1 Pre-Processing and Vectorization
The pre-processing and vectorization carried out on these input datasets is as described in
Chapter 3 Section 3.4.3.

4.2.2 Locality Sensitive Hashing Technique
A hash-based indexing algorithm for similarity search might be preferred in Natural Language
Processing, due to its simplicity and treatment of both sparse and dense vectors with ease
[229]. Consequently, with this area of focus for word embeddings, we utilize the Locality
Sensitive Hashing (LSH) Technique Super-Bit [8], as discussed in Chapter 2 Figure 2.9 for our
experimental evaluation. Figure 4.1 shows the high-level idea of LSH with Super-Bit hashing,
which �rst groups data points into batches (i.e., the N stages of the Super-Bit algorithm, also
called Super-Bit value or depth) and then into buckets (i.e., the L projections of the Super-Bit
algorithm assigned to each batch). The given example illustrates the process for 4 stages and
6 buckets. This data division attempts to minimize hash collisions in such a way that data
points near to each other are placed in the same bucket together with a high probability. In
the Super-Bit algorithm that we used for our experiment, both buckets and stages are related
to the code length in the following way: code_length = stages ∗ buckets/2.

Figure 4.1: Locality Sensitive Hashing (LSH) Schematic Representation

4.3. Results 65

4.2.3 Evaluation
The tuning parameters for LSH include, Stages denoting the number of computing iterations
of the LSH hashing and Buckets denoting the hash buckets. We test the performance of this
hashing technique utilizing Single Feature Hashing and All Features Hashing with 50 * 50
iterations for di�erent Stages and Buckets combinations on the datasets. The Single Feature
hashing attributes selected for the dataset include Product Name for Amazon-Google, Paper
Name for DBLP-ACM, and Title for Walmart-Amazon. For each of these two variations, the
optimal number of Stages and Buckets combination which output better hashing performance
is discovered based on two user-de�ned metrics Coverage and Computation and further
evaluated for classi�cation accuracy based on the metric F1 score (as discussed in Chapter 3
Section 3.4.4). Consequently, we focus on the trade-o� between these two values, and hence,
we measure this through a trade-o� analysis plot known as the Pareto Front. Furthermore, to
test for classi�cation accuracy for similarity search we utilize the popular Cosine Similarity
measure [217–219] between all the related features of the hashed vectors on a selected of
maximum four di�erent Stages and Buckets combination points from this Pareto Front plot.
We then utilize eXtreme Gradient Boosting or XGBoost1[220], with default parameters, over
a random train/test split of 66/33%, to test for the classi�cation accuracy evaluated with the
F1 score and eventually report these results.

Consequently, the evaluation criteria are as summarized below:

• Benchmark A benchmark indicator of similarity as the input Ground Truth dataset,
consisting of ID-ID pairs.

• Similarity Calculation Similarity calculation to calculate similarity scores between
the hashed vectors with Cosine Similarity.

• Evaluation Metrics Evaluation Metrics to assess the performance of LSH with
Coverage, Computation, F1 score.

• Tuning Parameters Tuning Parameters to achieve optimal performance for the
LSH technique with Stages, Buckets.

4.3 Results
In this section, we present the results of our experimental evaluation, answering to our
formulated RQ1. The results are categorized into two variations as Single Feature and All
Features with Single Feature depicting the hashing results with Single Feature Hashing (using
the �rst feature of each dataset) & its classi�cation results.

There are correspondingly three plots depicted for each dataset pair, Coverage plot, Com-
putation plot and Pareto Front plot. On analyzing these plots, we found out some generic
characteristics depicted by these plots for all the datasets:

• To achieve a good hashing performance Coverage needs to be maximized and Compu-
tation needs to be minimized.

66 4. Locality Sensitive Hashing

• Coverage and Computation both are high if the keys are mapped to the same bucket
by the hashing, as compared with the ground truth dataset. By default, they also have
a higher value when we decrease the number of buckets.

• Coverage plots have a wide spread as compared to the steep Computation plots.

• Coverage increases as we increase the number of features used for hashing in the
dataset and outputs a bigger spread of possible good choices for the stages & buckets
combination.

• The Coverage and Computation plots for Single Feature hashing are more stable as
compared to those with All Features hashing which depict more variations.

• To facilitate evaluation on these two metrics, the Pareto Front plot depicts a trade-o�
between these two values with the Pareto e�cient allocations for the optimum stages
& buckets combination lying on the Pareto frontier.

Further, evaluating on some of these Pareto frontier solutions for their classi�cation accuracy
based on F1 score (Refer Table 4.1), we found the best performing datasets for the hashing
technique ranked in increasing order to be Walmart-Amazon, Amazon-Google, DBLP-ACM
as depicted in Figure 4.26.

• Amazon-Google Dataset The evaluation results on Amazon-Google Dataset are
as below:

– Single Feature
Figure 4.2 and Figure 4.3 depict the Coverage and Computation for Single Feature
hashing on the Amazon-Google dataset. Figure 4.2 shows that it was not possible
to achieve a coverage of 100%, and that high coverage was only possible with
very small code lengths, of size less than 50. In terms of computation, we also
�nd similar results, as shown in Figure 4.3, with high computation overall.

4.3. Results 67

Figure 4.2: Coverage of Amazon-Google Dataset (Single Feature Hashing)

68 4. Locality Sensitive Hashing

Figure 4.3: Computation of Amazon-Google Dataset (Single Feature Hashing)

For our experimental evaluation, we consider the trade-o� between these Cov-
erage and Computation values and thus Figure 4.4 provides for this trade-o�
analysis in a Pareto Front plot. To analyse further, we selectively label the points
of interest with Computation and Coverage > = 50, as shown in Figure 4.5. Here
we �nd the top 3 solutions, with very small code lengths of 1 or 2.

4.3. Results 69

Figure 4.4: Pareto Front Plot of Amazon-Google Dataset (Single Feature Hashing)

Figure 4.5: Pareto Front Plot of Amazon-Google Dataset (Selective Labelling Single Feature
Hashing)

– All Features

70 4. Locality Sensitive Hashing

Figure 4.6 and Figure 4.7 depict the Coverage and Computation for All Features
hashing on Amazon-Google dataset. In contrast to the Single Feature hashing
results, we observe a great variability in the space of good solutions, with the
best solutions visibly located at a low value for either buckets or stages, and a
higher value for the other. We observe too that there was a solution able to �nd
100% coverage. Regarding computation, the plots are almost indistinguishable
from those of coverage, however, we can observe that computation is slightly
higher on some solutions than for the case of Single Feature hashing.

Figure 4.6: Coverage of Amazon-Google Dataset (All Features Hashing)

4.3. Results 71

Figure 4.7: Computation of Amazon-Google Dataset (All Features Hashing)

For our experimental evaluation, we consider the trade-o� between these Cov-
erage and Computation values and thus Figure 4.8 provides for this trade-o�
analysis in a Pareto Front plot. To analyse further, we selectively label the points
of interest with Computation and Coverage > = 50, as shown in Figure 4.9. These
plots show that the solutions with the highest coverage are still with code lengths
of 1 or 3 (and unfortunately with very high computation). However, plots also
show a large amount of trade-o� solutions that reduce the computation (improv-
ing data distribution) while keeping a relatively high coverage, while using larger
code lengths (e.g., 49).

72 4. Locality Sensitive Hashing

Figure 4.8: Pareto Front Plot of Amazon-Google Dataset (All Features Hashing)

Figure 4.9: Pareto Front Plot of Amazon-Google Dataset (Selective Labelling All Features
Hashing)

• DBLP-ACM Dataset The evaluation results on DBLP-ACM Dataset are as below:

4.3. Results 73

– Single Feature
Figure 4.10 and Figure 4.11 depict the Coverage and Computation for Single
Feature hashing on DBLP-ACM dataset. Results show that high coverage compu-
tation are only achievable with low bucket and stage values, which unfortunately
lead to high computation. We observe that 100% coverage was not achievable.
When compared to the Amazon-Google dataset, it is possible to note that there
is a slight improvement in the coverage, with more solutions being considered as
producing moderate coverage, in the space of 20/20 buckets/stages. In terms of
computation, it is possible to note that the values are moderate and only peak in
the 10/10 space.

Figure 4.10: Coverage of DBLP-ACM Dataset (Single Feature Hashing)

74 4. Locality Sensitive Hashing

Figure 4.11: Computation of DBLP-ACM Dataset (Single Feature Hashing)

For our experimental evaluation, we consider the trade-o� between these Cov-
erage and Computation values and thus Figure 4.12 provides for this trade-o�
analysis in a Pareto Front plot. To analyse further, we selectively label the
points of interest with Computation and Coverage > = 50, as shown in Fig-
ure 4.13. Results show, that when contrasted with the Single Feature hashing of
the Amazon-Google dataset, the DBLP-ACM reaches a wider scope of possible
trade-o� solutions with high coverage. Unfortunately, these solutions still incur
in a high computation, having code lengths between 1-4.

4.3. Results 75

Figure 4.12: Pareto Front Plot of DBLP-ACM Dataset (Single Feature Hashing)

Figure 4.13: Pareto Front Plot of DBLP-ACM Dataset (Selective Labelling Single Feature
Hashing)

– All Features

76 4. Locality Sensitive Hashing

Figure 4.14 and Figure 4.15 depict the Coverage and Computation for All Features
hashing on DBLP-ACM dataset. The upper �at layer demonstrates a large number
of stages & buckets combinations having coverage or computation to be 100%.
These observations suggest that the technique works well, in terms of maximizing
coverage for this dataset and All Features hashing. The plots also show a lot of
variability, suggesting trade-o� opportunities, though it is unclear if these will
be able to achieve high coverage and low computation. For that we defer to our
trade-o� analysis.

Figure 4.14: Coverage of DBLP-ACM Dataset (All Features Hashing)

4.3. Results 77

Figure 4.15: Computation of DBLP-ACM Dataset (All Features Hashing)

For our experimental evaluation, we consider the trade-o� between these Cov-
erage and Computation values and thus Figure 4.16 provides for this trade-o�
analysis in a Pareto Front plot. Due to a large number of points lying in the
normally selected Coverage and Computation > = 50 quadrant with a heavy
number of points having Coverage and Computation = 100, to analyse further
we selectively label the points of interest with Computation and Coverage values
lying in between 85 to 95, as shown in Figure 4.17. These results show the large
amount of trade-o� solutions. In addition, they show that the points having
100% coverage, unfortunately remain incurring in high computation costs, with
code lengths of around 1-4. The space of possible solutions in the Pareto frontier
shows a large variation in code lengths.

78 4. Locality Sensitive Hashing

Figure 4.16: Pareto Front Plot of DBLP-ACM Dataset (All Features Hashing)

Figure 4.17: Pareto Front Plot of DBLP-ACM Dataset (Selective Labelling All Features Hash-
ing)

• Walmart-Amazon Dataset The evaluation results on Walmart-Amazon Dataset
are as below:

– Single Feature

4.3. Results 79

Figure 4.18 and Figure 4.19 depict the Coverage and Computation for Single
Feature hashing on Walmart-Amazon dataset. The observed results are similar to
the Amazon-Google dataset for the Single Feature hashing. A coverage of 100%
is not reached, and the solutions with high coverage only seem to occur at cases
where the buckets and stages are small. Computation is overall low, but it peaks
for the cases where the coverage is high.

Figure 4.18: Coverage of Walmart-Amazon Dataset (Single Feature Hashing)

80 4. Locality Sensitive Hashing

Figure 4.19: Computation of Walmart-Amazon Dataset (Single Feature Hashing)

For our experimental evaluation, we consider the trade-o� between these Cov-
erage and Computation values and thus Figure 4.20 provides for this trade-o�
analysis in a Pareto Front plot. To analyse further, we selectively label the points
of interest with Computation and Coverage > = 50, as shown in Figure 4.21. We
can observe a moderate amount of solutions, with code lengths between 1-7.

4.3. Results 81

Figure 4.20: Pareto Front Plot of Walmart-Amazon Dataset (Single Feature Hashing)

Figure 4.21: Pareto Front Plot of Walmart-Amazon Dataset (Selective Labelling Single Feature
Hashing)

– All Features

82 4. Locality Sensitive Hashing

Figure 4.22 and Figure 4.23 depict the Coverage and Computation for All Features
hashing on Walmart-Amazon dataset. Results are similar to the Amazon-Google
dataset for the case of All Features hashing. We observe an increase in coverage,
with more trade-o� solutions present, when compared to the Single Feature
hashing. We also observe that a coverage close to 100% is reported. Computation
shows some variation, without a marked deterioration when contrasted to the
Single Feature hashing.

Figure 4.22: Coverage of Walmart-Amazon Dataset (All Features Hashing)

4.3. Results 83

Figure 4.23: Computation of Walmart-Amazon Dataset (All Features Hashing)

For our experimental evaluation, we consider the trade-o� between these Cover-
age and Computation values and thus Figure 4.24 provides for this the trade-o�
analysis between the Coverage and Computation values in a Pareto Front plot
for All Features hashing on Walmart-Amazon dataset. To analyse further, we
selectively label the points of interest with Computation and Coverage > = 50, as
shown in Figure 4.25. Results show a large amount of solutions being o�ered,
with code lengths between 1-45.

84 4. Locality Sensitive Hashing

Figure 4.24: Pareto Front Plot of Walmart-Amazon Dataset (All Features Hashing)

Figure 4.25: Pareto Front Plot of Walmart-Amazon Dataset (Selective Labelling All Features
Hashing)

• Classi�cation Accuracy for the Evaluation of the Task of Supervised Entity
Resolution

4.3. Results 85

Table 4.1 depicts the classi�cation accuracy in the form of F1 score on all datasets for
the Single Feature hashing on the Left and for All Features hashing on the Right on a
carefully selected sample of Stages & Buckets combinations from the corresponding
Pareto Frontier solutions being representative of the selected solution space. In doing
so, we evaluate the performance of LSH - Super-Bit for the task of supervised entity
resolution, using XGBoost as a classi�er, as described in Chapter 2 Section 2.5.2.3.
Further, the combinations marked in bold denote the best-performing ones from the set
for the respective datasets. Additionally, evaluating and comparing the classi�cation
performance of the datasets for Super-Bit hashing technique, results for DBLP-ACM
dataset outperform the two other datasets for both Single and All Features hashing
as depicted in Figure 4.26. These results for DBLP-ACM are achieved in cases where
the code lengths are large and where they are small, suggesting that there is a limited
impact of blocking on the accuracy. For the other datasets, we �nd the best results for
All Features hashing, without a clearly de�ned relation to the code length (i.e., though
the code length seems to help, not always the largest code length leads to the best
score).

86 4. Locality Sensitive Hashing

Stages Buckets F1 Score

Amazon-Google Dataset

1 2 0.304273

2 2 0.301369

1 4 0.333333

DBLP-ACM Dataset

1 3 0.947791

4 2 0.940098

1 4 0.941422

1 2 0.940677

Walmart-Amazon Dataset

2 2 0.177285

1 3 0.242424

2 4 0.165745

1 7 0.237196

Stages Buckets F1 Score

Amazon-Google Dataset

1 2 0.374367

1 3 0.309433

2 13 0.385297

5 9 0.347270

DBLP-ACM Dataset

1 2 0.932964

1 4 0.939808

37 34 0.935261

42 32 0.940267

Walmart-Amazon Dataset

1 4 0.235616

10 2 0.263440

4 3 0.258575

4 6 0.225250

Table 4.1: F1 Scores for all Datasets reported for Single Feature hashing on the Left and for
All Features hashing on the Right

4.4. Summary 87

Figure 4.26: Comparison of Classi�cation Accuracy on the Datasets

Answering RQ1, we determine and visualize the best possible values for Coverage and Block
Distribution (Computation) for each of the three input dataset pairs namely, Amazon-Google,
DBLP-ACM and Walmart-Amazon for Single Feature and All Features high-dimensional
hashing using LSH - Super-Bit. Furthermore building upon these base measures, we also
determine and visualize the trade-o� values for Coverage and Computation depicting the
optimal Pareto Frontier solutions for di�erent Stages & Buckets combinations for this hashing
technique. Additionally, we also measure the performance of LSH - Super-Bit for supervised
entity resolution in terms of classi�cation accuracy achieved after using the hashing technique
for blocking.

4.4 Summary
Summarizing, we experimentally evaluate the performance of LSH using Super-Bit for word
embeddings on three dataset pairs namely, Amazon-Google, DBLP-ACM and Walmart-
Amazon for Single Feature and All Features hashing. We use three metrics including two
user-de�ned metrics namely Coverage measuring the number of correct similar mappings
to the same bucket by LSH - Super-Bit based on the Ground Truth dataset acting as a
benchmark for similarity & Computation capturing the block distribution by LSH - Super-Bit
and F1 score measuring the classi�cation accuracy for similarity search using LSH - Super-Bit.
Additionally, we depict the Coverage and Computation for each of the datasets through
intuitive 3D plots visualizing each of their relationship to the input Stages and Buckets for
LSH - Super-Bit. Furthermore, we consider the trade-o� between Coverage and Computation
for our experimental evaluation and visualize it through a Pareto Front plot depicting the
Pareto Frontier optimal solutions for di�erent Stages & Buckets combinations. We �nd that
All Features hashing provides more solutions in the trade-o� space, for all datasets, while

88 4. Locality Sensitive Hashing

Single Feature hashing seems to provide only solutions where high computation is required
for high coverage. We also �nd a notably high number of solutions for DBLP-ACM, which
are able to reach high coverage and let users decide on what amount of computation to
con�gure.

We further utilize four of these carefully selected combinations to test for their classi�cation
accuracy based on the similarity measure Cosine Similarity between all the related features
of the hashed vectors. In doing so, we evaluate the performance of LSH - Super-Bit for
the task of supervised entity resolution. Consequently, the performance of LSH - Super-
Bit can be tuned accordingly by adjusting the Stages & Buckets as suggested by the high
classi�cation accuracy, i.e., F1 score of a particular combination on the dataset. Furthermore
observing upon the classi�cation accuracy, DBLP-ACM dataset outputs the higher F1 score
being almost close to 1 for all the selected Pareto Frontier solutions irrespective of Single
Feature or All Features hashing; these results suggest a limited impact of blocking for this
dataset. Regarding the remaining two dataset pairs namely Amazon-Google and Walmart-
Amazon, the output F1 scores did not seem to perform signi�cantly well, but they increase
slightly when we utilize All Features hashing as compared to Single Feature hashing on the
datasets. To further e�ectively measure, compare and draw solid conclusions regarding the
performance of LSH - Super-Bit hashing technique on high-dimensional data, we consider
and evaluate another high-dimensional hashing technique Learning To Hash - Deep Hashing
being data-dependent utilizing the same input datasets in the next Chapter 5.

1https://xgboost.readthedocs.io/en/latest/index.html

https://xgboost.readthedocs.io/en/latest/index.html

5. Learning To Hash

In this chapter, we focus on a data-dependent high-dimensional hashing technique, which
reduces the dimensions of the high-dimensional input data items converting them into
low-dimensional versions while preserving the relative similarity between them. Speci�cally,
we focus on Learning To Hash (L2H) and experimentally evaluate the performance of a Deep
Hashing learning method, as described in Section 3.3.

This chapter is structured as follows:

• Section 5.1 recapitulates the research question of focus for this chapter.

• Section 5.2 presents an overview of our data pipeline for L2H.

• Section 5.3 discusses and presents our evaluation results for L2H technique.

• Section 5.4 presents an e�ective summarization of the important aspects of this chapter.

5.1 Research Question
Recapitulating the research questions we established for this work, in this chapter, we will
be addressing the following speci�c research question:

• RQ2: How does Learning To Hash compare, with regards to blocking and coverage, to
the standard high-dimensional hashing technique, Locality Sensitive Hashing? How
does it compare in the task of supervised entity resolution?
Relevance Measuring the performance of a L2H technique in comparison to a
representative LSH technique helps to evaluate the di�erence between data-dependent
and data-independent hashing techniques on embedded data, providing insights on
the strengths and weaknesses of the approaches.

90 5. Learning To Hash

Description This research question deals with the experimental evaluation of L2H
(Deep Hashing) using two user-de�ned metrics namely, Coverage, Computation. For
the task of supervised entity resolution, we also employ the F1 score. These evaluation
metrics are elaborated upon in Chapter 3 Section 3.4.4. We also depict the coverage
variations for neighboring matches demonstrating the number of bit changes required
in the original generated hash code to achieve the optimal coverage. Additionally, we
evaluate the reported coverage and computation values with a baseline Brute-Force
approach.

5.2 Data Pipeline
In our study on high-dimensional hashing using L2H, we primarily choose three publicly
available structured dataset pairs as elaborated upon in Chapter 3 Section 3.4.2.

5.2.1 Pre-Processing and Vectorization

The pre-processing and vectorization carried out on these input datasets is as elaborated in
Chapter 3 Section 3.4.3.

5.2.2 Learning To Hash Technique

Learning To Hash (L2H)1[18, 108] as discussed in Chapter 2 Section 2.5.2.2 are a set of data-
dependent hashing methods which aim to learn a compact and similarity-preserving bitwise
representation with shorter hash codes in such a way that similar inputs are mapped to
nearby binary hash codes. Prominently, deep hashing methods based on supervised learning
which are capable of performing feature learning and hash code learning simultaneously,
have demonstrated superior performance over traditional hashing methods with application
to image retrieval tasks [10]. Consequently, in our thesis, we study and evaluate deep
hashing on the word embedding data. The di�erent state-of-art in the area of deep hashing
are elaborated in Chapter 2 Section 2.5.2.2. Speci�cally, we experiment and evaluate with our
proposed Deep Hashing approach Deep Hash Neural Net (DHNN) as elaborated in Chapter 3
Section 3.3.

5.2.3 Evaluation

The pre-selected evaluation parameters for L2H include, Code Length denoting the bitcode
length of the generated hash code. We test the performance of this hashing technique
utilizing Single Feature Hashing and All Features Hashing which di�ers in the embedding
dimension given as an input to the deep hashing network i.e., 300 for Single Feature Hashing
and 901 for All Features Hashing. The Single Feature hashing attributes selected for the
dataset include Product Name for Amazon-Google, Paper Name for DBLP-ACM, and Title for
Walmart-Amazon. For each of these two variations, the optimal Code Length which output
better hashing performance is discovered based on two user-de�ned metrics Coverage and
Computation and further evaluated for classi�cation accuracy based on the metric F1 score

5.3. Results 91

(as discussed in Chapter 3 Section 3.4.4). Consequently, we focus on the trade-o� between
these two values, and hence, we measure this through a trade-o� analysis plot known as
the Pareto Front. Furthermore, to test for classi�cation accuracy for similarity search, we
utilize the popular Cosine Similarity measure [217–219] between all the related features of
the hashed vectors for di�erent Code Lengths. We then utilize eXtreme Gradient Boosting
or XGBoost2[220] to test for this classi�cation accuracy based on F1 score and eventually
report these results.

Consequently, the evaluation criteria are as summarized below:

• Benchmark A benchmark indicator of similarity as the input Ground Truth dataset
consisting of ID-ID pairs mapping providing the supervised label information.

• Baseline Brute-Force Approach which exhaustively maps the similar key pairs to
similar randomly-assigned hash codes attempting to achieve the highest coverage and
the lowest computation values.

• Similarity Calculation Similarity calculation to calculate similarity scores between
the hashed vectors with Cosine Similarity.

• Evaluation Metrics Evaluation Metrics to assess the performance of our deep
hashing technique with Coverage, Computation, F1 score.

• Tuning Parameters Code Length.

5.3 Results
In this section, we present and experimentally evaluate the results of our study on the
three dataset pairs, thus answering our formulated RQ2. The results are categorized into
two variations as Single Feature and All Features with Single Feature depicting the hash-
ing results with Single Feature Hashing & corresponding classi�cation results with Single
Feature Hashing-All Features Classi�cation and All Features depicting the hashing results
with All Features Hashing & classi�cation results with All Features Hashing-All Features
Classi�cation. Each category is experimentally evaluated with seven di�erent Code Lengths
being 12, 16, 24, 32, 48, 64, 128.

There are correspondingly four plots depicted for each dataset pair, Coverage plot, Computa-
tion plot, Pareto Front plot and Coverage Variation plot.

• Amazon-Google Dataset The evaluation results on Amazon-Google Dataset are
as below:

– Single Feature
Figure 5.1 and Figure 5.2 depict the Coverage and Computation for Single Feature
hashing on Amazon-Google dataset.

92 5. Learning To Hash

Figure 5.1: Coverage of Amazon-Google Dataset (Single Feature Hashing) for di�erent Code
Lengths

Figure 5.2: Computation of Amazon-Google Dataset (Single Feature Hashing) for di�erent
Code Lengths

These results show a marked di�erence when compared to the Single Feature
hashing with LSH. High coverage (although not 100%, all values are higher than
88%) and very low computation are simultaneously achieved. The reduction in
computation is especially noteworthy, since values are in less than 0.5% of what
the Cartesian product would have been. The maximum coverage is achieved
for the 24-bit code length; however, the minimum computation is achieved with
the 128-bit code length. Hence for our experimental evaluation, we consider the
trade-o� between these coverage and computation values and thus Figure 5.3
provides for this trade-o� analysis in a Pareto Front plot for the di�erent code
lengths. Consequently, these code lengths can be further evaluated based on their
classi�cation accuracy.

5.3. Results 93

Figure 5.3: Pareto Front Plot of Amazon-Google Dataset (Single Feature Hashing) for di�erent
Code Lengths

– All Features
Figure 5.4 and Figure 5.5 depict the Coverage and Computation for All Features
hashing on Amazon-Google dataset. Results for coverage show some di�erence
when compared to Single Feature hashing, reaching higher and lower values.
In terms of computation, we �nd too, some cases similar to the Single Feature
hashing, with very low computation, but we also �nd cases where learning does
not seem to have been successful, producing high computation values. These
results might be understandable since the input to the neural network is larger,
posing more challenges for the learning. In future research, we will consider
whether network improvements or studying training stability aspects might help
to better these results.

94 5. Learning To Hash

Figure 5.4: Coverage of Amazon-Google Dataset (All Features Hashing) for di�erent Code
Lengths

Figure 5.5: Computation of Amazon-Google Dataset (All Features Hashing) for di�erent
Code Lengths

The maximum coverage is achieved through the 64-bit code length; however,
its computation value is also higher. The minimum computation is achieved
through the 128-bit code length. Hence for our experimental evaluation, we
consider the trade-o� between these coverage and computation values and thus
Figure 5.6 provides for this trade-o� analysis in a Pareto Front plot for di�erent
code lengths. Consequently, these code lengths can be further evaluated based
on their classi�cation accuracy. In contrast to all results for the evaluated LSH,
we �nd that solutions cluster either at low or high computation values, with very
high coverage achieved at the cost of very high computation. Trade-o� solutions
reduce 10% from the optimal coverage but have a decrease in computation of
almost 100%.

5.3. Results 95

Figure 5.6: Pareto Front Plot of Amazon-Google Dataset (All Features Hashing) for di�erent
Code Lengths

• DBLP-ACM Dataset The evaluation results on DBLP-ACM Dataset are as below:

– Single Feature
Figure 5.7 and Figure 5.8 depict the Coverage and Computation for Single Feature
hashing on DBLP-ACM dataset for di�erent code lengths. Similar to the results
for L2H with Single Feature hashing for the Amazon-Google dataset, we observe
a high coverage, while having very low computation values across the board.

Figure 5.7: Coverage of DBLP-ACM Dataset (Single Feature Hashing) for di�erent Code
Lengths

96 5. Learning To Hash

Figure 5.8: Computation of DBLP-ACM Dataset (Single Feature Hashing) for di�erent Code
Lengths

The maximum coverage is achieved through the 24-bit code length; however, the
minimum computation is achieved through the 128-bit code length. Hence for
our experimental evaluation, we consider the trade-o� between these coverage
and computation values and thus Figure 5.9 provides for this trade-o� analysis in
a Pareto Front plot for di�erent code lengths. Consequently, these code lengths
can be further evaluated based on their classi�cation accuracy.

Figure 5.9: Pareto Front Plot of DBLP-ACM Dataset (Single Feature Hashing) for di�erent
Code Lengths

– All Features
Figure 5.10 and Figure 5.11 depict the Coverage and Computation for All Features
hashing on DBLP-ACM dataset for di�erent code lengths. These results are highly

5.3. Results 97

unsuccessful, displaying high coverage and high computation. They suggest the
need to carry-out further neural architecture and hyper-parameter tuning to
improve the learning for this dataset. However, such a solution was considered
to be beyond the scope of our current research.

Figure 5.10: Coverage of DBLP-ACM Dataset (All Features Hashing) for di�erent Code
Lengths

Figure 5.11: Computation of DBLP-ACM Dataset (All Features Hashing) for di�erent Code
Lengths

The maximum coverage and minimum computation is achieved through all the bit
code lengths. Hence these data points having the same coverage and computation
values overlap in the Pareto Front plot Figure 5.12, and thus trade-o� analysis for
them is not feasible. Thus, we simply pass them on, to evaluate them based on
their classi�cation accuracy.

98 5. Learning To Hash

Figure 5.12: Pareto Front Plot of DBLP-ACM Dataset (All Features Hashing) for di�erent
Code Lengths

• Walmart-Amazon Dataset The evaluation results on Walmart-Amazon Dataset
are as below:

– Single Feature
Figure 5.13 and Figure 5.14 depict the Coverage and Computation for Single
Feature hashing on Walmart-Amazon dataset for di�erent code lengths. These
results are similar to those of the Amazon-Google dataset for Single Feature
hashing with L2H, with high coverage (although not 100%) and low computation
values. However, we observe that in some cases, the computation raises higher
than 1%. Further studies are required to understand whether di�erent network
con�gurations can improve this, or it is a matter of the stability of the training
process.

5.3. Results 99

Figure 5.13: Coverage of Walmart-Amazon Dataset (Single Feature Hashing) for di�erent
Code Lengths

Figure 5.14: Computation of Walmart-Amazon Dataset (Single Feature Hashing) for di�erent
Code Lengths

The maximum coverage is achieved through the 24-bit code length; however, the
minimum computation is achieved through the 16-bit code length. Hence for our
experimental evaluation, we consider the trade-o� between these coverage and
computation values and thus Figure 5.15 provides for this trade-o� analysis in a
Pareto Front plot for di�erent code lengths. Consequently, these code lengths
can be further evaluated based on their classi�cation accuracy. Results show that
there are still several trade-o� cases with high coverage and low computation.

100 5. Learning To Hash

Figure 5.15: Pareto Front Plot of Walmart-Amazon Dataset (Single Feature Hashing) for
di�erent Code Lengths

– All Features
Figure 5.16 and Figure 5.17 depict the Coverage and Computation for All Features
hashing on Walmart-Amazon dataset for di�erent Code Lengths. These results
are better than those of All Features hashing with L2H on the Amazon-Google
dataset. Both a high coverage (although not 100%) and low computation values
are achieved across the board. It should be noted that higher coverage values
were reached for this dataset also through the Single Feature hashing.

Figure 5.16: Coverage of Walmart-Amazon Dataset (All Features Hashing) for di�erent Code
Lengths

5.3. Results 101

Figure 5.17: Computation of Walmart-Amazon Dataset (All Features Hashing) for di�erent
Code Lengths

The maximum coverage is achieved through the 24-bit code length; however, the
minimum computation is achieved through the 128-bit code length. Hence for our
experimental evaluation, we consider the trade-o� between these coverage and
computation values and thus Figure 5.18 provides for this the trade-o� analysis
between the coverage and computation values in a Pareto Front plot for di�erent
code lengths. Consequently, these code lengths can be further evaluated based
on their classi�cation accuracy.

Figure 5.18: Pareto Front Plot of Walmart-Amazon Dataset (All Features Hashing)

• Coverage Variations for Neighboring Hash Matches

102 5. Learning To Hash

The following plots depict the coverage variations for the reported neighboring hash
matches. 0-bit change interprets the coverage achieved by the generated hash codes.
For the remaining values not covered, 1-bit change indicates the coverage achieved
through the adjustment of one bit in the generated hash code in addition to the original
(0-bit coverage). Likewise, 2, 3....30+ bit changes follow a similar approach. Ideally,
this graph should ful�ll two properties, depict a constant downward trend and not
require too many bit changes to achieve the optimal coverage.

– Amazon-Google
Figure 5.19 depicts this plot for the Amazon-Google dataset on Single Feature
hashing and Figure 5.20 on All Features hashing. As seen in Figure 5.19, the two
properties are satis�ed by the code lengths 12, 16, 24, 32, 128 requiring up to 2-bit
changes. Code Lengths 48 and 64, however, do not show a constant downward
trend and spans up to 10+ bit changes. As seen in Figure 5.20, all the code lengths
exhibit a downward trend with code lengths 48, 64 requiring negligible or no bit
change with almost or exact 100% coverage. Remaining code lengths require up
to 2+ bit changes.

Figure 5.19: Coverage Variation for Neighboring Matches Amazon-Google (Single Feature
Hashing) for di�erent Code Lengths

5.3. Results 103

Figure 5.20: Coverage Variation for Neighboring Matches Amazon-Google (All Features
Hashing) for di�erent Code Lengths

– DBLP-ACM
Figure 5.21 depicts this plot for the DBLP-ACM dataset on Single Feature hashing
and Figure 5.22 on All Features hashing. As seen in Figure 5.21, the two properties
are satis�ed by the code lengths 12, 16, 24, 32, 128 requiring up to 3-bit changes.
Code Lengths 48 and 64, however, do not show a constant downward trend and
spans up to 12+ bit changes. As seen in Figure 5.22, all the code lengths exhibit a
downward trend and require no bit change with exact 100% coverage.

Figure 5.21: Coverage Variation for Neighboring Matches DBLP-ACM (Single Feature Hash-
ing) for di�erent Code Lengths

104 5. Learning To Hash

Figure 5.22: Coverage Variation for Neighboring Matches DBLP-ACM (All Features Hashing)
for di�erent Code Lengths

– Walmart-Amazon
Figure 5.23 depicts this plot for the Walmart-Amazon dataset on Single Feature
hashing and Figure 5.24 on All Features hashing. As seen in Figure 5.23, the
two properties are satis�ed by the code lengths 12, 16, 24, 128 requiring up to
3-bit changes. Code Lengths 32, 48 and 64, however, do not show a constant
downward trend and spans up to 9+ bit changes. As seen in Figure 5.24, the two
properties are satis�ed by the code lengths 12, 16, 24, 32, 48, 64 requiring up to
2+ bit changes. Code length 128, however, does not show a constant downward
trend and spans up to 12-bit changes.

Figure 5.23: Coverage Variation for Neighboring Matches Walmart-Amazon (Single Feature
Hashing) for di�erent Code Lengths

5.3. Results 105

Figure 5.24: Coverage Variation for Neighboring Matches Walmart-Amazon (All Features
Hashing) for di�erent Code Lengths

• Comparison with the Baseline Brute-Force Approach

Table 5.1 depicts the maximum coverage and minimum computation achieved through
the brute-force approach in comparison to that achieved through L2H - Deep Hashing
on all datasets for Single Feature and All Features hashing. We can observe that the
brute-force approach always achieves the ideal coverage of 100% for single and all
features hashing. In comparison L2H - Deep Hashing achieves considerable maximum
coverage being 96%+, with few of them being 100% or almost 100%. The computation
values between the two approaches do not show a signi�cant di�erence and are
comparable except for a signi�cant di�erence observed between the computation
value shown by DBLP-ACM All Features hashing.

• Classi�cation Accuracy for the Evaluation of the Task of Supervised Entity
Resolution

Table 5.2 depicts the classi�cation accuracy in the form of F1 score on all datasets for the
Single Feature hashing at the Top and for All Features hashing at the Bottom for di�erent
Code Lengths. In doing so, we evaluate the performance of L2H - Deep Hashing for the
task of supervised entity resolution as described in Chapter 2 Section 2.5.2.3. Further,
the combinations marked in bold denote the best-performing ones from the set for
the respective datasets. Comparing the classi�cation performance of the datasets for
Deep Hashing technique, DBLP-ACM dataset outperforms the two for both Single and
All Features hashing as depicted in Figure 5.25. On the Single Feature hashing, we can
report a result for this dataset that improves by several percentage points over the
corresponding LSH evaluation; for the other case on this dataset, the result is similar
to the LSH evaluation. For the other two datasets, blocking with L2H brings great
improvements in the achieved F1 scores, with All Features hashing lagging behind

106 5. Learning To Hash

Parameter Amazon-Google DBLP-ACM Walmart-Amazon

Brute-Force Approach Single Feature Hashing

Coverage 100 100 100

Computation 0.029974 0.029974 0.029974

L2H - Deep Hashing Single Feature Hashing

Coverage 97.461538 97.461538 99.792099

Computation 0.042937 0.042937 0.046967

Brute-Force Approach All Features Hashing

Coverage 100 100 100

Computation 0.029974 0.037059 0.001732

L2H - Deep Hashing All Features Hashing

Coverage 100 100 96.257796

Computation 0.048782 100 0.009173

Table 5.1: Comparison of Brute-Force Approach and L2H - Deep Hashing Hashing Technique
with Single Feature Hashing and All Features Hashing

5.3. Results 107

the Single Feature hashing for the Amazon-Google dataset, in the overall trend and
in the best score achieved. For the Walmart-Amazon, it is more di�cult to determine
which con�guration leads to the best overall F1 scores (between Single Feature or All
Features hashing), however, Single Feature shows the precise best F1 score. Altogether,
the impact of code length is not clear.

Figure 5.25: Comparison of Classi�cation Accuracy on the Datasets

• Comparison of LSH - Super-Bit and L2H - Deep Hashing

Table 5.3 reports the comparison between LSH - Super-Bit and L2H - Deep Hashing
for Single Feature Hashing and All Features Hashing for di�erent parameters, namely,
highest coverage, minimum computation and highest F1 score reported during the
experimental evaluation. Comparing these values, it can be observed that L2H - Deep
Hashing clearly outperforms LSH - Super-Bit for a majority of the cases in terms of
all the three values of Coverage, Computation and F1 Score. Speci�cally, it achieves
desirable low computation values in comparison to that of LSH. It also signi�cantly
improvises on the low F1 scores (i.e., corresponding to the task of supervised entity
resolution) obtained by LSH on Amazon-Google and Walmart-Amazon datasets and
outputs F1 scores for all datasets with values of 0.8+. Considering the case of DBLP-
ACM All Features hashing, the di�erence between the values for the two techniques
where LSH - Super-Bit outperforms, it remains comparable. Same applies for the
coverage values for the case of Walmart-Amazon all features hashing. For all datasets,
the best F1 score was achieved for one con�guration of L2H with Single Feature
hashing.

Answering RQ2, we experimentally evaluate L2H - Deep Hashing on the same parameters
of Coverage, Computation and F1 Score as we evaluate LSH - Super-Bit in Chapter 4. Based

108 5. Learning To Hash

Code Length Amazon-Google DBLP-ACM Walmart-Amazon

12 0.846584 0.982410 0.549565

16 0.842352 0.990789 0.811447

24 0.873619 0.949928 0.575396

32 0.895281 0.988126 0.852807

48 0.732163 0.987215 0.246648

64 0.602977 0.985487 0.334883

128 0.893662 0.960784 0.851351

Code Length Amazon-Google DBLP-ACM Walmart-Amazon

12 0.285171 0.926128 0.470588

16 0.581267 0.928916 0.602189

24 0.687581 0.920612 0.667889

32 0.765799 0.927719 0.735593

48 0.298932 0.921885 0.787775

64 0.308219 0.931635 0.796084

128 0.878363 0.936288 0.846280

Table 5.2: F1 Scores for all Datasets reported for Single Feature hashing at the Top and for
All Features hashing at the Bottom

5.3. Results 109

Parameter Amazon-Google DBLP-ACM Walmart-Amazon

LSH - Super-Bit Single Feature Hashing

Coverage 87 94 94

Computation 66 50 26

F1 Score 0.333333 0.947791 0.242424

L2H - Deep Hashing Single Feature Hashing

Coverage 97.461538 97.461538 99.792099

Computation 0.042937 0.042937 0.046967

F1 Score 0.895281 0.990789 0.852807

LSH - Super-Bit All Features Hashing

Coverage 99 100 100

Computation 50 85 100

F1 Score 0.385297 0.940267 0.263440

L2H - Deep Hashing All Features Hashing

Coverage 100 100 96.257796

Computation 0.048782 100 0.009173

F1 Score 0.878363 0.936288 0.846280

Table 5.3: Comparison of LSH - Super-Bit and L2H - Deep Hashing Hashing Techniques with
Single Feature Hashing and All Features Hashing

110 5. Learning To Hash

on the experimental evaluation, we observe that L2H - Deep Hashing can outperform LSH -
Super-Bit with high F1 scores (i.e, corresponding to the task of supervised entity resolution),
maximum coverage and signi�cantly low computation values observed on all the three
dataset pairs, Amazon-Google, DBLP-ACM and Walmart-Amazon for a majority of the cases.
Thus it can be inferred that the data-dependent hashing technique can perform better than
that of our considered baseline of data-independent hashing technique LSH - Super-Bit.

5.4 Summary
Summarizing, similar to the LSH - Super-Bit evaluation, we demonstrate and experimentally
evaluate L2H - Deep Hashing for word embeddings on three dataset pairs namely, Amazon-
Google, DBLP-ACM and Walmart-Amazon for Single Feature and All Features hashing. In
doing so, we utilize our designed neural network Deep Hash Neural Net (DHNN), based on the
literature and generalized to work with embedding data. We measure the performance of L2H
- Deep Hashing through its evaluation on these datasets with three metrics including two
user-de�ned metrics namely Coverage measuring the number of correct similar mappings
to the same bucket by L2H - Deep Hashing based on the Ground Truth dataset acting as
a benchmark for similarity & Computation capturing the block distribution by L2H - Deep
Hashing and F1 score measuring the classi�cation accuracy for similarity search using L2H -
Deep Hashing. The evaluation compromised of seven di�erent bit code lengths, including
12, 16, 24, 32, 48, 64, 128. Additionally, we depict the Coverage and Computation for each of
the datasets through plots visualizing each of their relationship to the di�erent hash code
lengths. Furthermore, we consider the trade-o� between Coverage and Computation for our
experimental evaluation and visualize it through a Pareto Front plot depicting the Pareto
Frontier optimal solutions for di�erent hash code lengths.

We further utilize these hash code lengths to test for their classi�cation accuracy based
on the similarity measure Cosine Similarity between all the related features of the hashed
vectors. In doing so, we evaluate the performance of L2H - Deep Hashing for the task of
supervised entity resolution. Consequently, the performance of L2H - Deep Hashing can
be tuned accordingly by adjusting the code length as suggested by the high classi�cation
accuracy, i.e., F1 score of a particular code length on the dataset. Furthermore observing
upon the classi�cation accuracy, similar to LSH - Super-Bit, DBLP-ACM dataset outputs
the higher F1 score being almost close to 1 for all the selected Pareto Frontier solutions
irrespective of Single Feature or All Features hashing. Furthermore, we also visualize the
coverage variations for all the datasets for Single Feature as well as All Features hashing,
to depict the bit changes required in the original hash code length to achieve the optimal
coverage value. Additionally, we also compare the output Coverage and Computation values
of L2H - Deep Hashing with our baseline of Brute-Force approach and observe comparable
results for some of the cases.

Regarding performance comparison with LSH - Super-Bit, L2H - Deep Hashing shows a
signi�cant increase in the classi�cation accuracy (i.e., corresponding to the task of supervised
entity resolution) especially for the two dataset pairs Amazon-Google and Walmart-Amazon
with F1 scores of 0.8+ as compared to those below 0.4 as exhibited by LSH. DBLP-ACM

5.4. Summary 111

dataset shows no signi�cant di�erence in the F1 scores and for both techniques being in the
range of 0.9+. L2H - Deep Hashing shows signi�cantly reduced computation values, which
serves as an added advantage over LSH - Super-Bit. Additionally, L2H - Deep Hashing also
outputs high coverage values in comparison to LSH - Super-Bit for a majority of the cases.
Additionally, L2H - Deep Hashing, as a data-dependent hashing technique, also eliminates
the drawback of data-independent hashing techniques of requiring longer hash codes to
achieve a reasonable amount of performance. In contrast, it can achieve a considerable
performance with short similarity preserving hash codes as demonstrated by the L2H - Deep
Hashing experimental evaluation. Our current results suggest that important future work
should be considered, evaluating more thoroughly the impact of hyper-parameter tuning,
the role of aspects that might impact the robustness of our solution, and establishing the
e�ect of input size and code length on the performance of L2H.

To further e�ectively measure, compare and draw solid conclusions regarding the perfor-
mance of L2H - Deep Hashing, we consider and evaluate how much speed-up this technique
brings to real-time computations using top-k similarity search queries in Apache Spark in
the next Chapter 6.

1https://cs.nju.edu.cn/lwj/slides/L2H.pdf
2https://xgboost.readthedocs.io/en/latest/index.html

https://cs.nju.edu.cn/lwj/slides/L2H.pdf
https://xgboost.readthedocs.io/en/latest/index.html

6. Similarity Search Using Di�erent
File Formats in Apache Spark

In this chapter, we focus on the runtime-performance evaluation of Learning To Hash (L2H) -
Deep Hashing in the context of top-k similarity search queries. Speci�cally, we evaluate and
compare the execution-time bene�ts brought to top-k similarity search with hashed data
using this technique to that without hashing in Apache Spark using di�erent �le formats.

This chapter is structured as follows:

• Section 6.1 recapitulates the research question of focus for this chapter.

• Section 6.2 presents an overview of our data pipeline to evaluate our L2H technique
for similarity search using Apache Spark.

• Section 6.3 discusses and presents our evaluation results.

• Section 6.4 presents an e�ective summarization of the important aspects of this chapter.

6.1 Research Question
Recapitulating the research questions we established for this work, in this chapter, we will
be addressing the following speci�c research question:

• RQ3: What is the performance (execution time) speed-up achievable by hashing with
the best-observed technique, for top-k searches in a large-scale processing framework?
To what extent can partitioning by the corresponding hash codes a�ect the overall
performance?

114 6. Similarity Search Using Di�erent File Formats in Apache Spark

Relevance Measuring the similarity search query performance of the best-observed
hashing technique, i.e., Learning To Hash (L2H) - Deep Hashing on a large scale pro-
cessing framework, i.e., Apache Spark, helps to understand its real-time performance
through the comparison of execution-time bene�ts in the considered context of search
without hashing.
Description This research question deals with the experimental evaluation of the
runtime-performance of Learning To Hash (L2H) - Deep Hashing in the context of top-
k similarity search queries with its performance comparisons with the baseline search
approach without data hashing (search without hash code). This speci�cally aims to
evaluate how much execution time bene�ts are brought through searching based on
hash code blocking versus that without hashing. In doing so, we also evaluate the
performance improvements brought through the underlying data storage speci�cally
as CSV, Parquet without Partition and Parquet with Partition (on hash code).

6.2 Data Pipeline
In our study on the evaluation of similarity search performance of Learning To Hash (L2H) -
Deep Hashing, we primarily choose the data corresponding to the top two high F1 Score
con�gurations for All Features hashing for each of the three dataset pairs in our L2H
evaluation study in Chapter 5 (Refer Table 5.2). This results in the data corresponding to
the hash code lengths 32-bit, 128-bit for Amazon-Google, 64-bit, 128-bit for DBLP-ACM and
64-bit, 128-bit for Walmart-Amazon which accumulates to form six input dataset pairs for
our experimental study.

6.2.1 Data Storage
We highlighted on the di�erent storage formats and its characteristics for large-scale pro-
cessing in Chapter 2 Section 2.3.3.3. For our experimentation, we select to store the data on
HDFS in three di�erent �le formats, the tabular textual layout as CSV (Row-based storage)
and nested binary layout as Parquet (Columnar Storage) with and without partition. The
Parquet �les use the snappy compression technique, and the partitioned parquet �les are
partitioned based on hash code.

6.2.2 Evaluation
We want to experimentally evaluate the runtime query performance for top-k similarity
search for deep hashing with di�erent �le formats in Apache Spark. In doing so, we consider
for each of the layouts, benchmark evaluation on the baseline, i.e., top-k similarity search
without hash code requiring a complete data scan. Speci�cally, we consider k = 10, and 20
di�erent needles (items from one dataset, for searching on the other) separately for similarity
search with hashing (without baseline) on each of the dataset in the pair. Further, we measure
and record the average execution-time for the queries in seconds for the experimental
comparisons with 20 repetitions per query.

Consequently, the evaluation criteria are as summarized below:

6.3. Results 115

• Baseline Top-10 similarity search without hashing.

• Evaluation Metrics Average query execution time in seconds.

6.3 Results
In this section, we present and experimentally evaluate the results of our study on the six
dataset pairs with di�erent �le formats in Apache Spark, thus answering our formulated
RQ3. As an illustration of the similarity search results, Figure 6.1 and Figure 6.2 depicts an
example for the top-10 results retrieved through this query execution for baseline search
without hash code and search with hash code for the DBLP-ACM parquet �le format. The
baseline execution typically requires a complete data scan a�ecting the query performance.

Figure 6.1: Baseline (Search without Hash Code) Top-10 Similarity Search Results

Figure 6.2: Hashing (Search with Hash Code) Top-10 Similarity Search Results

116 6. Similarity Search Using Di�erent File Formats in Apache Spark

There are correspondingly three plots for each of the dataset pair corresponding to the three
layouts, CSV, Parquet without Partition and Parquet with Partition. Accordingly, these are
further depicted,

• Amazon-Google Dataset The evaluation results on Amazon-Google Dataset are
as below:

Figure 6.3: Execution Time for Amazon-Google Dataset with CSV Storage

Figure 6.4: Execution Time for Amazon-Google Dataset with Parquet without Partition
Storage

6.3. Results 117

Figure 6.5: Execution Time for Amazon-Google Dataset with Parquet with Partition Storage

As observed in Figure 6.3, the performance bene�ts of hashing in comparison to
that of non-hashing (baseline) is not depicted from the query execution time on CSV
storage. However, if we look at Figure 6.4, the execution time with hashing is less
than that of the baseline for parquet storage. Speci�cally, a hash code of 128-bit shows
lower execution times for both the datasets in the pair. Further in the case of parquet
partitioned storage, Figure 6.5 highlights on the e�cient performance of hashing
through the signi�cantly reduced execution times as compared to the baseline for both
the hash code lengths. If we compare the execution times with hashing across the
considered �le formats, its ranges from 1.17 - 1.28 sec for CSV, signi�cantly reduced
to 0.03 - 0.07 sec for parquet and reduced furthermore as 0.01 - 0.02 sec for parquet
partition, highlighting the e�ciency of parquet partitioned storage.

• DBLP-ACM Dataset The evaluation results on DBLP-ACM Dataset are as below:

118 6. Similarity Search Using Di�erent File Formats in Apache Spark

Figure 6.6: Execution Time for DBLP-ACM Dataset with CSV Storage

Figure 6.7: Execution Time for DBLP-ACM Dataset with Parquet without Partition Storage

6.3. Results 119

Figure 6.8: Execution Time for DBLP-ACM Dataset with Parquet with Partition Storage

As observed in Figure 6.6, the performance bene�ts of hashing in comparison to
that of non-hashing (baseline) is partially depicted from the query execution time
on CSV storage for 64-bit. The same case is re�ected in Figure 6.7, where we have
almost the same execution times with hashing and the baseline for parquet storage
in the case of 64-bit. Further, in the case of parquet partitioned storage, Figure 6.8
depicts lower execution times for 64-bit and comparable in the case of 128-bit. If
we compare the execution times with hashing across the considered �le formats, its
ranges from 1.13 - 1.24 sec for CSV, signi�cantly reduced to the range of 0.06 - 0.07
sec for parquet with and without partition. The output results can be given the fact
of the varied data distribution, DBLP-ACM in comparison to Amazon-Google and
Walmart-Amazon contains highly reduced number of partitioning keys and also thus
making no di�erence with the parquet with or without partition storage.

• Walmart-Amazon Dataset The evaluation results on Walmart-Amazon Dataset
are as below:

120 6. Similarity Search Using Di�erent File Formats in Apache Spark

Figure 6.9: Execution Time for Walmart-Amazon Dataset with CSV Storage

Figure 6.10: Execution Time for Walmart-Amazon Dataset with Parquet without Partition
Storage

6.3. Results 121

Figure 6.11: Execution Time for Walmart-Amazon Dataset with Parquet with Partition
Storage

As observed in Figure 6.9, the performance bene�ts of hashing in comparison to that
of non-hashing (baseline) is partially depicted from the query execution time on CSV
storage for 64-bit. The same case is re�ected in Figure 6.10, where we have almost the
same execution times with hashing and the baseline for parquet storage in the case
of 64-bit. However, in the case of parquet partitioned storage, Figure 6.11 highlights
on the e�cient performance of hashing through the signi�cantly reduced execution
times as compared to the baseline for both the hash code lengths. If we compare the
execution times with hashing across the considered �le formats, its ranges from 1.11
- 1.23 sec for CSV, signi�cantly reduced to 0.05 - 0.08 sec for parquet and reduced
furthermore as 0.02 - 0.03 for parquet partition, highlighting the e�ciency of parquet
partitioned storage.

• Comparison of Runtime Performance for all Datasets Figure 6.12 depicts the
combined top-10 query execution time of each of the dataset in the pair. The depicted
execution times are the least-recorded ones for the data layout for search based on
the hash code. On observation of Figure 6.12, we see that for all the three dataset
pairs, parquet with and without partition storage shows a notable reduction for the
query execution time in comparison to that on CSV storage. Speci�cally, parquet with
partition outputs the least query execution time depicting the increase in the search
e�ciency when the parquet �le is partitioned based on the column to which the data
is more likely to be queried against, i.e., hash code for our case. Consequently, this
leads to high runtime-performance. On analysing further, we also �nd out that the
distribution of the data also plays a major role in a�ecting the query execution time
given the di�erent �le formats, i.e., parquet partition outputs reduced execution times in
comparison to parquet without partition when we have a large number of partitioning
keys as in case with Amazon-Google and Walmart-Amazon; else the performance is

122 6. Similarity Search Using Di�erent File Formats in Apache Spark

comparable as in case of DBLP-ACM. Consequently comparing our datasets, from
Figure 6.12, the order of e�cient query execution time corresponding to high runtime
performance for parquet partitioned can be determined as Amazon-Google, Walmart-
Amazon and DBLP-ACM. Hence this time is correlated to the computation time metric
we evaluated previously.

Figure 6.12: Comparison of Execution Time for all Datasets

Answering RQ3, we experimentally evaluate L2H - Deep Hashing for its performance
with top-10 similarity search queries as compared to the search without hashing approach
(baseline) in Apache Spark with data stored in three di�erent �le formats on HDFS namely,
CSV, Parquet, Parquet Partitioned. Based on the experimental evaluation, we observe that
L2H - Deep Hashing reports signi�cantly reduced execution times with the parquet storage
in comparison to that of CSV. Speci�cally, L2H - Deep Hashing outputs signi�cantly reduced
execution times as compared to the baseline for both the considered high-performing (in
terms F1 score) hash code lengths in the parquet partitioned layout. Thus it can be inferred
that, L2H - Deep Hashing does signi�cantly reduce the search time (as observed in the case
of Amazon-Google and Walmart Amazon datasets) in the context of top-k similarity search
as compared to the search without hashing when we have an underlying optimal data layout
i.e., in our case, parquet partitioned through partitioning the data based on the search key
(hash code). Additionally, in the same context, for DBLP-ACM dataset, this runtime was
comparable to the baseline as DBLP-ACM contains very less number of partitioning keys
when compared to that of Amazon-Google or Walmart-Amazon. However, this highlights the
e�ciency of L2H - Deep Hashing with parquet partition in case of real-time application data
search and processing where we usually have high-dimensional varied data resulting in a
high number of partitioning keys. Additionally, for this task, using the large-scale distributed
cluster computing framework Apache Spark, allows for fast and without overhead query
processing on Hadoop data through Spark SQL and additional performance bene�ts as
highlighted in Chapter 2.

6.4. Summary 123

6.4 Summary
Summarizing, through our experimental evaluation, we demonstrate the real-time perfor-
mance improvements brought by Learning To Hash - Deep Hashing on similarity search
queries using Apache Spark. Speci�cally, we consider the hashed data corresponding to
the top two F1 scores for All Features Hashing on the datasets. This resulted in the data
corresponding to the hash code lengths 32-bit, 128-bit for Amazon-Google, 64-bit, 128-bit
for DBLP-ACM and 64-bit, 128-bit for Walmart-Amazon. We further consider 20 top-10
similarity search queries on each of the datasets in the pair and evaluated its average runtime
against that of search without hashing as a baseline. Additionally, we also consider data
stored in three di�erent �le formats on HDFS to access their impact on query performance.

Consequently, we observe that in comparison to CSV storage, parquet with and without
partitioned storage outputs signi�cantly reduced runtime o�ering better query performance.
Speci�cally, for the parquet partitioned storage, datasets Amazon-Google and Walmart-
Amazon demonstrate signi�cantly reduced runtimes in comparison to the baseline for both
the hash code lengths and comparable runtimes were reported for the DBLP-ACM dataset.
This highlights the e�ciency of the deep hashing technique with the parquet partitioned
storage. This infers the fact that parquet �les o�er data skipping thus scanning fewer relations
in the case of conditional query execution and provide for runtime performance bene�ts
especially when the data is partitioned based on the search key, i.e., in our case with the hash
code. Thus as we demonstrate on the e�ciency of L2H - Deep Hashing in comparison to LSH
- Super-Bit resulting in the generation of e�ective hash codes in Chapter 5, this experiment
further evaluates on the performance of Deep Hashing, highlighting its e�ectiveness with
the parquet partitioned storage with signi�cant reduced execution times as compared to the
baseline without hashing search.

7. Related Work

In this chapter, we consider related work in light of the research work carried out in our
thesis.

We structure this chapter into three brief sections, as follows:

• We begin by considering work in the area of blocking techniques for entity resolution,
in Section 7.1.

• Subsequently we consider work that studies supervised deep hashing, in Section 7.2.

• We conclude the chapter by considering work on high-dimensional similarity search,
in Section 7.3.

7.1 Blocking Techniques for Entity Resolution
Blocking methods partition the data into blocks mainly based on the similarity attributes,
making it feasible for data skipping leading to a less number of record comparisons for the
task of entity resolution. Relevantly, Baxter et al. [230] highlight, compare and evaluate
the di�erent types of blocking methods namely, Bigram Indexing, Canopy Clustering with
TF-IDF, Standard Traditional Blocking, and Sorted Neighbourhood Blocking in the context of
record linkage systems. Further, Knopke et al. [227] are among the �rst authors to carry
out entity resolution with the use of classi�ers. Their approach is based on the blocking of
keys with experimental evaluation on two domains, namely, Bibliographic and E-commerce.
The authors of this paper are also the creators of the datasets DBLP-ACM and Amazon-
Google, which we used in our thesis research experiments. Saeedi et al. [231] give an
example of another research work highlighting the approach of blocking of keys and the
use of classi�ers mainly in the form of scalable clustering for entity resolution. Further,
the experimental evaluation is carried out on three domains, namely, Geographical, Music,

126 7. Related Work

and Persons. Ebraheem et al. [232] propose a deep learning based approach to entity
resolution and is the one closely related to our thesis work. This work also utilizes the
datasets that we used in our thesis, but with varying attributes and with a di�erent approach
to embedding these attributes. Moreover, the proposed approach also utilizes a Locality
Sensitive Hashing technique for blocking. Relevantly, the majority of the tasks covered by
this work are similar to our thesis research work, though there is no study of the impact
of locality-sensitive hashing con�gurations. Mugdal et al. [233] author a state-of-the-art
paper for entity resolution using deep learning methods, however, there is little focus given
to the blocking approach. More recently, Chen et al. [234] propose and experimentally
evaluate a hybrid approach for entity resolution using embeddings (from the pre-trained
fastText models as well) and traditional hand-curated similarity measures. This research
also proposes to consider blocking in this hybrid approach as a future direction. In sum,
research in blocking for entity resolution has not studied in depth the impact of locality
sensitive hashing. Furthermore, though there is progress in the use of deep neural networks
for the supervised entity resolution task ([232][233]), or for embedding data ([234]), there is
no consideration to date on using deep neural networks to support the blocking process, as
like we evaluate in our work.

7.2 Supervised Deep Hashing
In the context of supervised deep hashing methods, Li et al. [9] propose a novel Deep
Pairwise-Supervised Hashing (DPSH), utilizing pairwise labels to simultaneously perform
feature and hash code learning in an end-to-end architecture based on a feedback mechanism
to learn better hash codes. Subsequently, Wang et al. [10] propose a novel triplet based
deep hashing method, utilizing triplet labels to simultaneously performs image feature and
hash code learning in an end-to-end manner, aiming to maximize the likelihood of the input
triplet labels. Consequently, the design of our Deep Hash Neural Net (DHNN) utilizing triplet
labels is in�uenced directly by this work [10]. The mentioned related works are designed
for large-scale image retrieval tasks; however, we have designed a generalized deep hashing
neural network to work with embedding data. As a result, our evaluation is also di�erent,
and we consider the execution time aspects of data skipping.

7.3 E�cient Techniques for High-Dimensional Similar-
ity Search

Faiss1[235] is a library from Facebook, Inc.2that supports high-dimensional similarity search.
The library consists of algorithms which utilize GPU’s for similarity search that achieve
near-optimal performance. Additionally, SciDB [27, 29] as a column-oriented database
management system is designed to support and analyse multi-dimensional arrays with
any number of dimensions. To our knowledge, the SciDB research has not proposed any
specialized approach for similarity-sensitive data distribution, nor has the Faiss library been
used to study the use of neural networks for similarity-preserving hashing.

1https://github.com/facebookresearch/faiss
2https://research.fb.com/category/facebook-ai-research/

https://github.com/facebookresearch/faiss
https://research.fb.com/category/facebook-ai-research/

8. Conclusion and Future Directions

In this chapter, we present the core conclusions derived from this thesis work. We also
propose some future directions for this thesis research.

This chapter is structured as follows:

• Section 8.1 presents the key conclusions derived from our thesis work.

• Section 8.2 discusses possible future work in our thesis area of research.

8.1 Conclusion
The research of this thesis seeks to contribute towards the e�cient management of large-
scale dense high-dimensional data, supporting similarity search. Speci�cally, we aim to help
improve the data analytics pipeline for the utilization and e�ective management of embedding
data, by analyzing Learning To Hash (L2H) as a solution to overcome the challenges (e.g.,
high class imbalance and the need for data skipping) posed by Big Data for Machine Learning
applications. Accordingly, we design and implement a data-dependent Deep Hashing solution,
Deep Hash Neural Net (DHNN) in�uenced from the literature. We evaluate comparatively our
solution alongside a data-independent Locality Sensitive Hashing (LSH) alternative, Super-
Bit, for the tasks of accelerating high-dimensional top-k similarity search on embedded
data, and for the blocking step of supervised entity resolution. We employ three entity
resolution dataset pairs, from two di�erent domains, namely, Bibliographic and E-commerce
with varying attributes, including, Amazon-Google, DBLP-ACM, and Walmart-Amazon, and
embedded using fastText neural model. We evaluate the two hashing techniques for their
performance based on two user-de�ned metrics, Coverage and Computation, and further
measure its classi�cation performance using F1 score (i.e., corresponding to the task of
supervised entity resolution).

128 8. Conclusion and Future Directions

We report that L2H is able to help in the data distribution and achieve higher F1 scores
than the LSH baseline, for a �xed competitive supervised learning process. We further
conclude our experimental evaluation study of Learning To Hash - Deep Hashing with
the measurement of its runtime performance in Apache Spark, validating its potential for
speeding up the computation for top-k similarity search queries using di�erent �le formats.

8.2 Future Directions
Based on the literature, research involving e�cient techniques for large-scale high-dimensional
similarity search can be considered as a prominent area of research, and hence this leaves
our thesis with a lot of scope for future work.

Neural network aspects: Future directions for this thesis work include, experimentation and
evaluation of the proposed deep hashing method utilizing Deep Hash Neural Net (DHNN)
with datasets from di�erent domains with varying attributes. In this task, the adaptation
of the network architecture and hyper-parameters to the dataset requires detailed study.
Reports on the robustness, the ability to replicate the exact same results from di�erent
training sessions with the same architecture, are important. In our work, given the variety of
datasets and training con�gurations, we trained the network once per case. Relevant future
work can include to train this network several times to test the robustness of the learning
process. Additionally, further improvisation through experimentation to �ne-tune the loss
function for our study also constitutes a relevant future work.

Similarity-search aspects: Detailed accuracy comparisons of deep hashing with the considered
baseline of without data hashing similarity search can be included as future work. In addition,
comparing against LSH is also an important direction. Furthermore, measurement of changes
in the runtime performance of deep hashing through the experimentation with Apache Spark
di�erent performance tuning parameters can also be a future direction in this research.
Finally, a comparative evaluation of the deep hashing method with Faiss1[235] with regards
to time required for the high-dimensional similarity search tasks can be considered in the
future as a baseline experimental evaluation.

Supervised entity resolution aspects: Follow-up work should evaluate the entity resolution
task while using more datasets, a di�erent assortment of classi�ers and train/test con�gura-
tions. Additionally, a network-oriented perspective on the data, including network-related
features, could be studied, perhaps extending our research to applications in graph-processing
frameworks or using graph embeddings.

Large-scale processing aspects: In our work, we studied the di�erent hashing methods for
improving applications in a data�ow engine. Future work might also bring insights into the
bene�ts of these methods in alternative processing frameworks, such as streaming engines.
The adoption of hybrid engines like Weld or Musketeer could contribute to a common
implementation being evaluated over diverse frameworks. Additionally, the integration with
storage engine internals seems like a potentially worthwhile area of research, since it would

8.2. Future Directions 129

leverage better the similarity-preserving hashing, helping researchers in exploring how to
leverage automated data skipping for this kind of data and application.

1https://github.com/facebookresearch/faiss

https://github.com/facebookresearch/faiss

9. Appendix 1: Derivation of Loss
Function

In this section we present the step by step derivation of the loss function used in our model,
as presented in Equation 3.3, in Chapter 3 Section 3.3.2.

We start, by recollecting the de�nition of the target likelihood of pairwise labels S = {sij}:

p(sij|B) =

{
σ(Θij), sij = 1

1− σ(Θij), sij = 0
(9.1)

This de�nition encapsulates the goal of having highly similar hash codes (where the inner
product is high), with a probability tending to 1, and highly di�erent hash codes, with a
probability tending to 0.

The following equation de�nes a loss function, such that the learnable parameters (the neural
network, in charge of assigning the hash codes) can be tuned. The intention of this loss
function is to help maximize the likelihood of similar items having a high probability, if
applying logarithms to it, this is the log-likelihood. Maximizing this likelihood is the same
as minimizing the negative loss likelihood, which is the core of the following equation:

L = − log p(S|B) (9.2)

Replacing Equation 9.2 by how it is applied for each item in a batch:

L = −
∑
sij∈S

log p(sij|B) (9.3)

132 9. Appendix 1: Derivation of Loss Function

By substituting each item for the sigmoid function de�nition (σ(Θij) = 1

1+e−Θij
), we obtain the

following single equation, which captures the di�erent ways of calculating the probability,
according to the similarities (as de�ned in Equation 9.1):

L = −
∑
sij∈S

log((
1

1 + e−Θij
)s(1− 1

1 + e−Θij
)1−s) (9.4)

Applying log arithmetic rules, to change the exponentiation into a product, and a product
into a sum, we obtain:

L = −
∑
sij∈S

s log(
1

1 + e−Θij
) + (1− s) log(1− 1

1 + e−Θij
) (9.5)

With further arithmetic changes, to transform the divisions into subtractions, and aggregating
the rightmost item into a fraction, we obtain:

L = −
∑
sij∈S

s log(1)− s log(1 + e−Θij) + (1− s) log(
e−Θij

1 + e−Θij
) (9.6)

Canceling out the leftmost item (as it evaluates to 0), and solving the multiplication in the
rightmost item:

L = −
∑
sij∈S

−s log(1 + e−Θij) + log(
e−Θij

1 + e−Θij
)− s log(

e−Θij

1 + e−Θij
) (9.7)

Expanding the rightmost item with the arithmetic rule for logs of divisions:

L = −
∑
sij∈S

−s log(1 + e−Θij) + log(
e−Θij

1 + e−Θij
)− s log(e−Θij) + s log(1 + e−Θij) (9.8)

Canceling out the leftmost and rightmost elements, we obtain:

L = −
∑
sij∈S

log(
e−Θij

1 + e−Θij
)− s log(e−Θij) = −

∑
sij∈S

log(
e−Θij

1 + e−Θij
) + sΘij (9.9)

Considering that the leftmost item is an alternative expression for the sigmoid function
(σ(Θij) = 1

1+e−Θij
= eΘij

1+eΘij
), we can replace such expression, as follows:

L = −
∑
sij∈S

log(
1

1 + eΘij
) + sΘij (9.10)

133

Finally, by applying arithmetic rules for logarithms, and removing items that evaluate to
zero, we obtain the following equation, which is the same as Equation 3.3:

L = −
∑
sij∈S

sΘij − log(1 + eΘij) (9.11)

10. Appendix 2: Prototypical
Implementation of a Deep Hash
Network

Code Listing 10.1: De�nition of our Deep Hash Network
import tensorflow as tf
slim = tf.contrib.slim

def deep_hash_network(code_length, network_type, input):
net = slim.fully_connected(input, 5120, activation_fn=tf.nn.relu)
hash_code = slim.fully_connected(net, code_length, activation_fn=None)
return network_type(hash_code)

Code Listing 10.2: De�nition of the forward pass function
def _network_template(state):
return our_net(code_length, collections.namedtuple(’DQH_network’, [’hash_values’]),

state)
batch_outputs1=[]
batch_outputs2=[]
batch_outputs3=[]

def _build_network():
global batch_outputs1, batch_outputs2, batch_outputs3
net= tf.make_template(’network’, _network_template)
"""
Note that instead of applying sign to the values of the output,
we clip here by -1 and 1.
"""
batch_outputs1=tf.clip_by_value(net(states1_ph),-1.,1.)
batch_outputs2=tf.clip_by_value(net(states2_ph),-1.,1.)
batch_outputs3=tf.clip_by_value(net(states3_ph),-1.,1.)

136 10. Appendix 2: Prototypical Implementation of a Deep Hash Network

Code Listing 10.3: De�nition of the training function, following our design for the loss
calculation
optimizer=tf.train.RMSPropOptimizer(learning_rate=0.0001)

"""
This defines our training operation, based on: Li, Wu-Jun, Sheng Wang, and Wang-
Cheng Kang. "Feature learning based deep supervised hashing with pairwise labels."
arXiv preprint arXiv:1511.03855 (2015).
However we extend it to a triple, because we observed it empirically to accelerate
training.
"""

def _build_train_op():
theta=tf.divide(tf.reduce_sum(tf.multiply(batch_outputs1[0],batch_outputs2[0]),1),2)
theta2=tf.divide(tf.reduce_sum(tf.multiply(batch_outputs1[0],batch_outputs3[0]),1),2)
theta3=tf.divide(tf.reduce_sum(tf.multiply(batch_outputs2[0],batch_outputs3[0]),1),2)

sim_loss=-tf.reduce_sum(-tf.math.log(1+tf.math.exp(theta))+3*theta , 0)
disim_loss1=-tf.reduce_sum(-tf.math.log(1+tf.math.exp(theta2)), 0)
disim_loss2=-tf.reduce_sum(-tf.math.log(1+tf.math.exp(theta3)), 0)
loss=sim_loss+disim_loss1+disim_loss2

with tf.control_dependencies([]):
gvs = optimizer.compute_gradients(loss)
capped_gvs = [(tf.clip_by_value(grad, -10., 10.), var) for grad, var in gvs]
#We clip by value to avoid exploding gradients
return optimizer.apply_gradients(capped_gvs)

Code Listing 10.4: Example use for training
with tf.device(tf_device):
batch_outputs1=tf.placeholder(tf.float32, name=’bo1_ph’)
batch_outputs2=tf.placeholder(tf.float32, name=’bo2_ph’)
batch_outputs3=tf.placeholder(tf.float32, name=’bo3_ph’)
states1_ph = tf.placeholder(tf.float32, (None,size_of_embedding), name=’state1_ph’)
states2_ph = tf.placeholder(tf.float32, (None,size_of_embedding), name=’state2_ph’)
states3_ph = tf.placeholder(tf.float32, (None,size_of_embedding), name=’state3_ph’)
net= _build_network()
_train_op = _build_train_op()

for epoch in range(0,num_epochs):
[result]=_sess.run([_train_op], feed_dict={states1_ph: np.array(amazon_p1,dtype=np.

float64), states2_ph: np.array(google_p2,
dtype=np.float64), states3_ph: np.array(
disim_n,dtype=np.float64)})

Code Listing 10.5: Example use for generating hash codes
batch= np.sign(_sess.run(batch_outputs1, {states1_ph: np.array(amazon_keys,dtype=np.

float64), states2_ph:None, states3_ph: None
})[0])

Bibliography

[1] A. L’heureux, K. Grolinger, H. F. Elyamany, and M. A. Capretz, “Machine learning
with big data: Challenges and approaches,” IEEE Access, vol. 5, pp. 7776–7797, 2017.
(cited on Page 5, 1, 3, and 10)

[2] N. W. Grady, “Kdd meets big data,” in 2016 IEEE International Conference on Big Data
(Big Data), pp. 1603–1608, IEEE, 2016. (cited on Page 5 and 4)

[3] S. Pal, SQL on Big Data: Technology, Architecture, and Innovation. Apress, 2016. (cited
on Page 5, 10, 16, and 18)

[4] C. Doulkeridis and K. NØrvåg, “A survey of large-scale analytical query processing in
mapreduce,” The VLDB Journal—The International Journal on Very Large Data Bases,
vol. 23, no. 3, pp. 355–380, 2014. (cited on Page 5, 10, and 20)

[5] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data analytics
on apache spark,” International Journal of Data Science and Analytics, vol. 1, no. 3-4,
pp. 145–164, 2016. (cited on Page 5, 10, 20, and 21)

[6] M. Hausenblas, “Notes on physical & logical data layouts,” arXiv preprint
arXiv:1305.6506, 2013. (cited on Page 5, 10, 28, and 29)

[7] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,
M. Amde, S. Owen, et al., “Mllib: Machine learning in apache spark,” The Journal of
Machine Learning Research, vol. 17, no. 1, pp. 1235–1241, 2016. (cited on Page 5, 10, 20,
35, and 36)

[8] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian, “Super-bit locality-sensitive hashing,” in
Advances in Neural Information Processing Systems, pp. 108–116, 2012. (cited on Page 5,
10, 39, 40, 52, and 64)

[9] W.-J. Li, S. Wang, and W.-C. Kang, “Feature learning based deep supervised hashing
with pairwise labels,” arXiv preprint arXiv:1511.03855, 2015. (cited on Page 5, 10, 41, 42,
53, 54, and 126)

[10] X. Wang, Y. Shi, and K. M. Kitani, “Deep supervised hashing with triplet labels,” in
Asian conference on computer vision, pp. 70–84, Springer, 2016. (cited on Page 5, 10, 41,
42, 52, 53, 54, 90, and 126)

138 Bibliography

[11] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for e�cient similarity
retrieval,” in Thirtieth AAAI Conference on Arti�cial Intelligence, 2016. (cited on Page 5,
10, 41, and 42)

[12] X. Chen, E. Schallehn, and G. Saake, “Cloud-scale entity resolution: current state and
open challenges,” Open Journal of Big Data (OJBD), vol. 4, no. 1, pp. 30–51, 2018. (cited
on Page 5, 10, 43, and 44)

[13] P. Christen, Datamatching: concepts and techniques for record linkage, entity resolution,
and duplicate detection. Springer Science & Business Media, 2012. (cited on Page 5, 10,
43, and 44)

[14] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with big data,” Pro-
ceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2032–2033, 2012. (cited on Page 1
and 11)

[15] O. Shahmirzadi, A. Lugowski, and K. A. Younge, “Text similarity in vector space models:
A comparative study,” Available at SSRN 3259971, 2018. (cited on Page 2, 9, 10, 34, and 50)

[16] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image
search.,” in ICCV, vol. 9, pp. 2130–2137, 2009. (cited on Page 2 and 38)

[17] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantization: A procrustean
approach to learning binary codes for large-scale image retrieval,” IEEE transactions on
pattern analysis and machine intelligence, vol. 35, no. 12, pp. 2916–2929, 2012. (cited
on Page 38 and 40)

[18] W. Kong and W.-J. Li, “Isotropic hashing,” in Advances in neural information processing
systems, pp. 1646–1654, 2012. (cited on Page 10, 38, 40, 50, and 90)

[19] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hashing with kernels,”
in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2074–2081,
IEEE, 2012. (cited on Page 40)

[20] M. Rastegari, J. Choi, S. Fakhraei, D. Hal, and L. Davis, “Predictable dual-view hashing,”
in International Conference on Machine Learning, pp. 1328–1336, 2013. (cited on Page)

[21] K. He, F. Wen, and J. Sun, “K-means hashing: An a�nity-preserving quantization
method for learning binary compact codes,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2938–2945, 2013. (cited on Page)

[22] G. Lin, C. Shen, Q. Shi, A. Van den Hengel, and D. Suter, “Fast supervised hashing
with decision trees for high-dimensional data,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1963–1970, 2014. (cited on Page 40)

[23] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete hashing,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 37–45, 2015. (cited
on Page 40)

Bibliography 139

[24] W.-C. Kang, W.-J. Li, and Z.-H. Zhou, “Column sampling based discrete supervised
hashing,” in Thirtieth AAAI conference on arti�cial intelligence, 2016. (cited on Page 2,
38, 40, 41, and 55)

[25] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the Association for Computational Linguistics,
vol. 5, pp. 135–146, 2017. (cited on Page 2, 50, 53, and 59)

[26] L. Sun, Skipping-oriented Data Design for Large-Scale Analytics. PhD thesis, UC Berke-
ley, 2017. (cited on Page 3)

[27] M. Stonebraker, P. Brown, A. Poliakov, and S. Raman, “The architecture of scidb,” in
International Conference on Scienti�c and Statistical Database Management, pp. 1–16,
Springer, 2011. (cited on Page 3, 4, 10, 11, 37, and 126)

[28] G. Planthaber, M. Stonebraker, and J. Frew, “Earthdb: scalable analysis of modis data
using scidb,” in Proceedings of the 1st ACM SIGSPATIAL International Workshop on
Analytics for Big Geospatial Data, pp. 11–19, ACM, 2012. (cited on Page 4)

[29] M. Stonebraker, J. Duggan, L. Battle, and O. Papaemmanouil, “Scidb dbms research
at mit,” IEEE Data Eng. Bull., vol. 36, no. 4, pp. 21–30, 2013. (cited on Page 4, 9, 10, 11, 37,
and 126)

[30] S. Sakr, Big data 2.0 processing systems: a survey. Springer, 2016. (cited on Page 9, 10,
and 12)

[31] B. Köse, S. Eken, and A. Sayar, “Playlist generation via vector representation of songs,”
in INNS Conference on Big Data, pp. 179–185, Springer, 2016. (cited on Page 10 and 11)

[32] A. Svyatkovskiy, K. Imai, M. Kroeger, and Y. Shiraito, “Large-scale text processing
pipeline with apache spark,” in 2016 IEEE International Conference on Big Data (Big
Data), pp. 3928–3935, IEEE, 2016. (cited on Page 10 and 11)

[33] F. Hu, C. Yang, Y. Jiang, Y. Li, W. Song, D. Q. Du�y, J. L. Schnase, and T. Lee, “A
hierarchical indexing strategy for optimizing apache spark with hdfs to e�ciently
query big geospatial raster data,” International Journal of Digital Earth, pp. 1–19, 2018.
(cited on Page 10 and 11)

[34] A. G. Pablos, M. Cuadros, and G. Rigau, “A comparison of domain-based word polarity
estimation using di�erent word embeddings,” in Proceedings of the tenth international
conference on language resources and evaluation (LREC 2016), pp. 54–60, 2016. (cited
on Page 10 and 11)

[35] M. Appel, F. Lahn, W. Buytaert, and E. Pebesma, “Open and scalable analytics of large
earth observation datasets: From scenes to multidimensional arrays using scidb and
gdal,” ISPRS journal of photogrammetry and remote sensing, vol. 138, pp. 47–56, 2018.
(cited on Page 10 and 11)

140 Bibliography

[36] R. Guerraoui, E. L. Merrer, R. Patra, and J.-R. Vigouroux, “Sequences, items and latent
links: Recommendation with consumed item packs,” arXiv preprint arXiv:1711.06100,
2017. (cited on Page 10 and 11)

[37] A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, “Big data technologies: A
survey,” Journal of King Saud University-Computer and Information Sciences, vol. 30,
no. 4, pp. 431–448, 2018. (cited on Page 10 and 12)

[38] F. Bajaber, R. Elshawi, O. Batar�, A. Altalhi, A. Barnawi, and S. Sakr, “Big data 2.0
processing systems: Taxonomy and open challenges,” Journal of Grid Computing,
vol. 14, no. 3, pp. 379–405, 2016. (cited on Page 10 and 12)

[39] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, “Apache
�ink: Stream and batch processing in a single engine,” Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, vol. 36, no. 4, 2015. (cited on Page 10,
15, and 32)

[40] T. M. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, “Project adam: Building
an e�cient and scalable deep learning training system.,” in OSDI, vol. 14, pp. 571–582,
2014. (cited on Page 10 and 19)

[41] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi, “Naiad:
a timely data�ow system,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pp. 439–455, ACM, 2013. (cited on Page 10 and 14)

[42] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski, “Pregel: a system for large-scale graph processing,” in Proceedings of the 2010
ACM SIGMOD International Conference on Management of data, pp. 135–146, ACM,
2010. (cited on Page 10, 13, 14, and 19)

[43] L. G. Valiant, “A bridging model for parallel computation,” Communications of the
ACM, vol. 33, no. 8, pp. 103–111, 1990. (cited on Page 10 and 12)

[44] J. Dean and S. Ghemawat, “Mapreduce: simpli�ed data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008. (cited on Page 10, 13,
and 20)

[45] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing,” in Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pp. 2–2, USENIX Association, 2012.
(cited on Page 10, 13, and 32)

[46] A. Gounaris and J. Torres, “A methodology for spark parameter tuning,” Big data
research, vol. 11, pp. 22–32, 2018. (cited on Page 10 and 14)

Bibliography 141

[47] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 requirements of real-time stream
processing,” ACM Sigmod Record, vol. 34, no. 4, pp. 42–47, 2005. (cited on Page 10 and 15)

[48] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,
and J. Widom, “Stream: The stanford data stream management system,” in Data Stream
Management, pp. 317–336, Springer, 2016. (cited on Page 10 and 15)

[49] A. Arasu, S. Babu, and J. Widom, “The cql continuous query language: semantic
foundations and query execution,” The VLDB Journal, vol. 15, no. 2, pp. 121–142, 2006.
(cited on Page 10 and 15)

[50] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson,
K. Gade, M. Fu, J. Donham, et al., “Storm@ twitter,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pp. 147–156, ACM, 2014.
(cited on Page 10 and 15)

[51] J. Kreps, N. Narkhede, J. Rao, et al., “Kafka: A distributed messaging system for log
processing,” in Proceedings of the NetDB, pp. 1–7, 2011. (cited on Page 10 and 15)

[52] M. Rodrigues, M. Y. Santos, and J. Bernardino, “Describing and comparing big data
querying tools,” in World Conference on Information Systems and Technologies, pp. 115–
124, Springer, 2017. (cited on Page 10 and 17)

[53] M. Rodrigues, M. Y. Santos, and J. Bernardino, “Big data processing tools: An exper-
imental performance evaluation,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 9, no. 2, p. e1297, 2019. (cited on Page 10 and 17)

[54] M. Rodrigues, M. Y. Santos, and J. Bernardino, “Experimental evaluation of big data
analytical tools,” in European, Mediterranean, and Middle Eastern Conference on Infor-
mation Systems, pp. 121–127, Springer, 2018. (cited on Page 10 and 17)

[55] V. Aluko and S. Sakr, “Big sql systems: an experimental evaluation,” Cluster Computing,
pp. 1–31. (cited on Page 10 and 17)

[56] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu, “Distributed data management using mapreduce,”
ACM Computing Surveys (CSUR), vol. 46, no. 3, p. 31, 2014. (cited on Page 10 and 17)

[57] T. Lipcon, D. Alves, D. Burkert, J.-D. Cryans, A. Dembo, M. Percy, S. Rus, D. Wang,
M. Bertozzi, C. P. McCabe, et al., “Kudu: storage for fast analytics on fast data,” Retrieved
June from http://getkudu. io/kudu. pdf. Pages„ and, 2015. (cited on Page 10 and 18)

[58] A. Floratou, U. F. Minhas, and F. Özcan, “Sql-on-hadoop: full circle back to shared-
nothing database architectures,” Proceedings of the VLDB Endowment, vol. 7, no. 12,
pp. 1295–1306, 2014. (cited on Page 10, 17, and 18)

[59] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: a not-so-foreign
language for data processing,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 1099–1110, ACM, 2008. (cited on Page 10 and 17)

142 Bibliography

[60] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wycko�, and
R. Murthy, “Hive: a warehousing solution over a map-reduce framework,” Proceedings
of the VLDB Endowment, vol. 2, no. 2, pp. 1626–1629, 2009. (cited on Page 10 and 17)

[61] R. Yadav, Spark Cookbook. Packt Publishing Ltd, 2015. (cited on Page 10 and 21)

[62] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,
M. J. Franklin, A. Ghodsi, et al., “Spark sql: Relational data processing in spark,” in
Proceedings of the 2015 ACM SIGMOD international conference on management of data,
pp. 1383–1394, ACM, 2015. (cited on Page 10, 20, 21, 22, and 23)

[63] E. Begoli, J. Camacho-Rodríguez, J. Hyde, M. J. Mior, and D. Lemire, “Apache calcite:
A foundational framework for optimized query processing over heterogeneous data
sources,” in Proceedings of the 2018 International Conference on Management of Data,
pp. 221–230, ACM, 2018. (cited on Page 10 and 22)

[64] Y. Li, M. Li, L. Ding, and M. Interlandi, “Rios: Runtime integrated optimizer for spark,”
in Proceedings of the ACM Symposium on Cloud Computing, pp. 275–287, ACM, 2018.
(cited on Page 10 and 22)

[65] G. M. Essertel, R. Y. Tahboub, J. M. Decker, K. J. Brown, K. Olukotun, and T. Rompf,
“Flare: Native compilation for heterogeneous workloads in apache spark,” arXiv
preprint arXiv:1703.08219, 2017. (cited on Page 10 and 22)

[66] Y. Zhou, “Large scale distributed �le system survey,” Indiana University Bloomington,
2013. (cited on Page 10 and 23)

[67] S. Ghemawat, H. Gobio�, and S.-T. Leung, “The google �le system,” 2003. (cited on
Page 10, 23, and 24)

[68] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage system for structured data,”
ACM Transactions on Computer Systems (TOCS), vol. 26, no. 2, p. 4, 2008. (cited on
Page 10, 23, and 26)

[69] C. Jia and H. Li, Virtual Distributed File System: Alluxio, pp. 1–6. Cham: Springer
International Publishing, 2018. (cited on Page 10, 20, 26, and 27)

[70] G. Pang and H. Li, Caching for SQL-on-Hadoop, pp. 1–5. Cham: Springer International
Publishing, 2018. (cited on Page 10, 26, and 27)

[71] D. Barberis, G. Dimitrov, M. Mineev, L. Canali, E. Alexandrov, E. Gallas, J. Sánchez,
F. Prokoshin, A. Iakovlev, C. Garcia Montoro, et al., “The atlas eventindex and its
evolution based on apache kudu storage,” tech. rep., ATL-COM-SOFT-2018-115, 2018.
(cited on Page 10, 26, and 28)

Bibliography 143

[72] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra,
A. Narayanan, G. Parulkar, M. Rosenblum, et al., “The case for ramclouds: scalable
high-performance storage entirely in dram,” ACM SIGOPS Operating Systems Review,
vol. 43, no. 4, pp. 92–105, 2010. (cited on Page 10, 27, and 28)

[73] D. Plase, L. Niedrite, and R. Taranovs, “A comparison of hdfs compact data formats:
Avro versus parquet/hdfs glaustųjų duomenų formatų palyginimas: Avro prieš parquet,”
Mokslas–Lietuvos ateitis/Science–Future of Lithuania, vol. 9, no. 3, pp. 267–276, 2017.
(cited on Page 10 and 29)

[74] A. Floratou, Columnar Storage Formats, pp. 1–6. Cham: Springer International Pub-
lishing, 2018. (cited on Page 10 and 31)

[75] A. Trivedi, P. Stuedi, J. Pfe�erle, A. Schuepbach, and B. Metzler, “Albis: High-
performance �le format for big data systems,” in 2018 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 18), pp. 615–630, 2018. (cited on Page 10, 29, and 30)

[76] D. Oleś and Z. Nowak, “The performance analysis of distributed storage systems used in
scalable web systems,” in International Conference on Information Systems Architecture
and Technology, pp. 287–298, Springer, 2018. (cited on Page 10 and 31)

[77] P. Pirzadeh, M. Carey, and T. Westmann, “A performance study of big data analytics
platforms,” in 2017 IEEE International Conference on Big Data (Big Data), pp. 2911–2920,
IEEE, 2017. (cited on Page 10 and 31)

[78] Z. Baranowski, L. Canali, R. Toebbicke, J. Hrivnac, and D. Barberis, “A study of data
representation in hadoop to optimize data storage and search performance for the atlas
eventindex,” in Journal of Physics: Conference Series, vol. 898, p. 062020, IOP Publishing,
2017. (cited on Page 10 and 31)

[79] B. Vaddeman, Data Formats, pp. 201–208. Berkeley, CA: Apress, 2016. (cited on Page 10
and 29)

[80] S. Bisoyi, P. Mishra, and S. N. Mishra, “Relational query optimization technique using
space e�cient �le formats of hadoop for the big data warehouse system,” Indian
Journal of Science and Technology, vol. 10, pp. 1–7, 02 2017. (cited on Page 10 and 29)

[81] T. Ivanov, T. Rabl, M. Poess, A. Queralt, J. Poelman, N. Poggi, and J. Buell, “Big data
benchmark compendium,” in Technology Conference on Performance Evaluation and
Benchmarking, pp. 135–155, Springer, 2015. (cited on Page 10 and 32)

[82] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl, “Benchmarking big data
systems and the bigdata top100 list,” Big Data, vol. 1, no. 1, pp. 60–64, 2013. (cited on
Page 10 and 32)

[83] S. Wang, I. Pandis, I. Emam, D. Johnson, F. Guitton, A. Oehmichen, and Y. Guo,
“Dsimbench: A benchmark for microarray data using r,” in Workshop on Big Data

144 Bibliography

Benchmarks, Performance Optimization, and Emerging Hardware, pp. 47–56, Springer,
2014. (cited on Page 10 and 33)

[84] R. Taft, M. Vartak, N. R. Satish, N. Sundaram, S. Madden, and M. Stonebraker, “Genbase:
A complex analytics genomics benchmark,” in Proceedings of the 2014 ACM SIGMOD
international conference on Management of data, pp. 177–188, ACM, 2014. (cited on
Page 10 and 33)

[85] T. Ivanov and S. Izberovic, “Evaluating hadoop clusters with tpcx-hs,” arXiv preprint
arXiv:1509.03486, 2015. (cited on Page 10 and 47)

[86] C. Baru, M. Bhandarkar, C. Curino, M. Danisch, M. Frank, B. Gowda, H.-A. Jacobsen,
H. Jie, D. Kumar, R. Nambiar, et al., “Discussion of bigbench: a proposed industry stan-
dard performance benchmark for big data,” in Technology Conference on Performance
Evaluation and Benchmarking, pp. 44–63, Springer, 2014. (cited on Page 10 and 47)

[87] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade, “Architectural impact on per-
formance of in-memory data analytics: Apache spark case study,” arXiv preprint
arXiv:1604.08484, 2016. (cited on Page 10 and 33)

[88] D. García-Gil, S. Ramírez-Gallego, S. García, and F. Herrera, “A comparison on scalabil-
ity for batch big data processing on apache spark and apache �ink,” Big Data Analytics,
vol. 2, no. 1, p. 1, 2017. (cited on Page 10 and 32)

[89] A. Fernández, S. García, M. Galar, R. C. Prati, B. Krawczyk, and F. Herrera, Imbalanced
Classi�cation for Big Data, pp. 327–349. Cham: Springer International Publishing,
2018. (cited on Page 10 and 35)

[90] R. Bordawekar and O. Shmueli, “Exploiting latent information in relational databases
via word embedding and application to degrees of disclosure,” 2019. (cited on Page 10
and 34)

[91] J. L. Neves and R. Bordawekar, “Demonstrating ai-enabled sql queries over relational
data using a cognitive database,” Knowledge Discovery and Data Mining, 2018. (cited
on Page 10 and 34)

[92] R. Bordawekar and O. Shmueli, “Using word embedding to enable semantic queries
in relational databases,” in Proceedings of the 1st Workshop on Data Management for
End-to-End Machine Learning, p. 5, ACM, 2017. (cited on Page 10 and 34)

[93] M. Günther, “Freddy: Fast word embeddings in database systems,” in Proceedings of
the 2018 International Conference on Management of Data, pp. 1817–1819, ACM, 2018.
(cited on Page 10 and 34)

[94] M. Hamilton, S. Raghunathan, I. Matiach, A. Schonho�er, A. Raman, E. Barzilay,
M. Thigpen, K. Rajendran, J. S. Mahajan, C. Cochrane, et al., “Mmlspark: Unifying
machine learning ecosystems at massive scales,” arXiv preprint arXiv:1810.08744, 2018.
(cited on Page 10 and 34)

Bibliography 145

[95] H. Luu, Machine Learning with Spark, pp. 327–383. Berkeley, CA: Apress, 2018. (cited
on Page 10 and 35)

[96] D. Agrawal, A. Butt, K. Doshi, J.-L. Larriba-Pey, M. Li, F. R. Reiss, F. Raab, B. Schiefer,
T. Suzumura, and Y. Xia, “Sparkbench–a spark performance testing suite,” in Technology
Conference on Performance Evaluation and Benchmarking, pp. 26–44, Springer, 2015.
(cited on Page 10 and 36)

[97] J. G. Shanahan and L. Dai, “Large scale distributed data science using apache spark,” in
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery
and data mining, pp. 2323–2324, ACM, 2015. (cited on Page 10)

[98] J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Touri�o, “Performance evalu-
ation of big data frameworks for large-scale data analytics,” in 2016 IEEE International
Conference on Big Data (Big Data), pp. 424–431, IEEE, 2016. (cited on Page 10 and 36)

[99] P. Svensson, P. Boncz, M. Ivanova, M. Kersten, N. Nes, and D. Rotem, “Emerging
database systems in support of scienti�c data,” Scienti�c Data Management: Challenges
Technology and Deployment, pp. 235–277, 2010. (cited on Page 10 and 37)

[100] S. Papadopoulos, K. Datta, S. Madden, and T. Mattson, “The tiledb array data storage
manager,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp. 349–360, 2016. (cited
on Page 10 and 37)

[101] L. Argerich, J. T. Za�aroni, and M. J. Cano, “Hash2vec, feature hashing for word
embeddings,” arXiv preprint arXiv:1608.08940, 2016. (cited on Page 10)

[102] R. F. Munir, A. Abelló, O. Romero, M. Thiele, and W. Lehner, “Atun-hl: Auto tuning of
hybrid layouts using workload and data characteristics,” in European Conference on
Advances in Databases and Information Systems, pp. 200–215, Springer, 2018. (cited on
Page 10 and 38)

[103] M. Tang, Y. Yu, W. G. Aref, Q. M. Malluhi, and M. Ouzzani, “E�cient parallel skyline
query processing for high-dimensional data,” IEEE Transactions on Knowledge and
Data Engineering, vol. 30, no. 10, pp. 1838–1851, 2018. (cited on Page 10 and 37)

[104] B. Braams, Predicate Pushdown in Parquet and Apache Spark. PhD thesis, Universiteit
van Amsterdam, 2018. (cited on Page 10 and 38)

[105] X. Yao and G. Li, “Big spatial vector data management: a review,” Big Earth Data, vol. 2,
no. 1, pp. 108–129, 2018. (cited on Page 10 and 37)

[106] A. Gionis, P. Indyk, R. Motwani, et al., “Similarity search in high dimensions via
hashing,” in Vldb, vol. 99, pp. 518–529, 1999. (cited on Page 10, 38, 39, and 50)

[107] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions,” Communications of the ACM, vol. 51, no. 1, p. 117, 2008.
(cited on Page 10, 38, 39, and 50)

146 Bibliography

[108] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for indexing big data—a
survey,” Proceedings of the IEEE, vol. 104, no. 1, pp. 34–57, 2015. (cited on Page 10, 38, 40,
50, and 90)

[109] Q. Li, Z. Sun, R. He, and T. Tan, “Deep supervised discrete hashing,” in Advances in
neural information processing systems, pp. 2482–2491, 2017. (cited on Page 10 and 42)

[110] P. Zhang, W. Zhang, W.-J. Li, and M. Guo, “Supervised hashing with latent factor
models,” in Proceedings of the 37th international ACM SIGIR conference on Research &
development in information retrieval, pp. 173–182, ACM, 2014. (cited on Page 10, 40, 41,
54, and 55)

[111] Y. Li and T. Yang, “Word embedding for understanding natural language: a survey,” in
Guide to Big Data Applications, pp. 83–104, Springer, 2018. (cited on Page 10)

[112] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance:
A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018. (cited on Page 10)

[113] O. Barkan and N. Koenigstein, “Item2vec: neural item embedding for collaborative
�ltering,” in 2016 IEEE 26th International Workshop on Machine Learning for Signal
Processing (MLSP), pp. 1–6, IEEE, 2016. (cited on Page 11)

[114] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “E�cient estimation of word repre-
sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013. (cited on Page 11)

[115] B. Furht and F. Villanustre, “Introduction to big data,” in Big data technologies and
applications, pp. 3–11, Springer, 2016. (cited on Page 12)

[116] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: e�cient iterative data
processing on large clusters,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2,
pp. 285–296, 2010. (cited on Page 14)

[117] M. Garofalakis, J. Gehrke, and R. Rastogi, Data Stream Management: Processing High-
Speed Data Streams. Springer, 2016. (cited on Page 15)

[118] S. Babu and J. Widom, “Streamon: an adaptive engine for stream query processing,”
in Proceedings of the 2004 ACM SIGMOD international conference on Management of
data, pp. 931–932, ACM, 2004. (cited on Page 15)

[119] I. Gog, M. Schwarzkopf, N. Crooks, M. P. Grosvenor, A. Clement, and S. Hand, “Mus-
keteer: all for one, one for all in data processing systems,” in Proceedings of the Tenth
European Conference on Computer Systems, p. 2, ACM, 2015. (cited on Page 16)

[120] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk, M. Schwarzkopf, S. Ama-
rasinghe, M. Zaharia, and S. InfoLab, “Weld: A common runtime for high performance
data analytics,” in Conference on Innovative Data Systems Research (CIDR), 2017. (cited
on Page 16)

Bibliography 147

[121] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in Proceedings of the 32nd inter-
national conference on Very large data bases, pp. 1049–1058, VLDB Endowment, 2006.
(cited on Page 17)

[122] P. Cao, B. Gowda, S. Lakshmi, C. Narasimhadevara, P. Nguyen, J. Poelman, M. Poess,
and T. Rabl, “From bigbench to tpcx-bb: Standardization of a big data benchmark,”
in Technology Conference on Performance Evaluation and Benchmarking, pp. 24–44,
Springer, 2016. (cited on Page 17)

[123] L. A. Barroso, J. Dean, and U. Hölzle, “Web search for a planet: The google cluster
architecture,” IEEE micro, no. 2, pp. 22–28, 2003. (cited on Page 19)

[124] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,
J. Lowe, H. Shah, S. Seth, et al., “Apache hadoop yarn: Yet another resource negotiator,”
in Proceedings of the 4th annual Symposium on Cloud Computing, p. 5, ACM, 2013.
(cited on Page 20)

[125] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker,
and I. Stoica, “Mesos: A platform for �ne-grained resource sharing in the data center.,”
in NSDI, vol. 11, pp. 22–22, 2011. (cited on Page 20)

[126] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized streams:
Fault-tolerant streaming computation at scale,” in Proceedings of the twenty-fourth
ACM symposium on operating systems principles, pp. 423–438, ACM, 2013. (cited on
Page 20)

[127] J. E. Gonzalez, “From graphs to tables the design of scalable systems for graph analytics,”
in Proceedings of the 23rd International Conference on World Wide Web, pp. 1149–1150,
ACM, 2014. (cited on Page 20)

[128] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A resilient distributed
graph system on spark,” in First International Workshop on Graph Data Management
Experiences and Systems, p. 2, ACM, 2013. (cited on Page 20)

[129] S. Venkataraman, Z. Yang, D. Liu, E. Liang, H. Falaki, X. Meng, R. Xin, A. Ghodsi,
M. Franklin, I. Stoica, et al., “Sparkr: Scaling r programs with spark,” in Proceedings of
the 2016 International Conference on Management of Data, pp. 1099–1104, ACM, 2016.
(cited on Page 20)

[130] H. Lee, K. Brown, A. Sujeeth, H. Cha�, T. Rompf, M. Odersky, and K. Olukotun,
“Implementing domain-speci�c languages for heterogeneous parallel computing,” Ieee
Micro, vol. 31, no. 5, pp. 42–53, 2011. (cited on Page 22)

[131] D. Borthakur, “The hadoop distributed �le system: Architecture and design,” Hadoop
Project Website, vol. 11, no. 2007, p. 21, 2007. (cited on Page 24)

[132] A. Verma and S. Venkataraman, “E�cient metadata management for cloud computing
applications,” tech. rep., 2010. (cited on Page 24)

148 Bibliography

[133] D. Fesehaye, R. Malik, and K. Nahrstedt, “Edfs: a semi-centralized e�cient distributed
�le system,” in Proceedings of the 10th ACM/IFIP/USENIX International Conference on
Middleware, p. 28, Springer-Verlag, 2009. (cited on Page 24)

[134] R. T. Kaushik and M. Bhandarkar, “Greenhdfs: towards an energy-conserving, storage-
e�cient, hybrid hadoop compute cluster,” in Proceedings of the USENIX annual techni-
cal conference, vol. 109, p. 34, 2010. (cited on Page 24)

[135] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk �le system for large computing
clusters.,” in FAST, vol. 2, 2002. (cited on Page 25)

[136] S. R. Soltis, T. M. Ruwart, and M. T. OKeefe, “The global �le system,” 1996. (cited on
Page 25)

[137] Y. Gu and R. L. Grossman, “Sector and sphere: the design and implementation of
a high-performance data cloud,” Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 367, no. 1897, pp. 2429–2445,
2009. (cited on Page 25)

[138] M. Burrows, “The chubby lock service for loosely-coupled distributed systems,” in
Proceedings of the 7th symposium on Operating systems design and implementation,
pp. 335–350, USENIX Association, 2006. (cited on Page 26)

[139] B. H. Bloom, “Space/time trade-o�s in hash coding with allowable errors,” Communi-
cations of the ACM, vol. 13, no. 7, pp. 422–426, 1970. (cited on Page 26)

[140] A. Floratou, N. Megiddo, N. Potti, F. Özcan, U. Kale, and J. Schmitz-Hermes, “Adaptive
caching in big sql using the hdfs cache,” in Proceedings of the Seventh ACM Symposium
on Cloud Computing, pp. 321–333, ACM, 2016. (cited on Page 27)

[141] D. Barberis, S. C. Zárate, J. Cranshaw, A. Favareto, Á. F. Casaní, E. Gallas, C. Glasman,
S. G. De La Hoz, J. Hřivnáč, D. Malon, et al., “The atlas eventindex: architecture, design
choices, deployment and �rst operation experience,” in Journal of Physics: Conference
Series, vol. 664, p. 042003, IOP Publishing, 2015. (cited on Page 27)

[142] A. Collaboration, “The atlas experiment at the cern large hadron collider jinst 3,”
S08003, pp. 1–437, 2008. (cited on Page 28)

[143] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rc�le: A fast and space-
e�cient data placement structure in mapreduce-based warehouse systems,” in 2011
IEEE 27th International Conference on Data Engineering, pp. 1199–1208, IEEE, 2011.
(cited on Page 30)

[144] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata, “Column-oriented storage techniques
for mapreduce,” Proceedings of the VLDB Endowment, vol. 4, no. 7, pp. 419–429, 2011.
(cited on Page 30)

Bibliography 149

[145] S. Alsubaiee, Y. Altowim, H. Altwaijry, A. Behm, V. Borkar, Y. Bu, M. Carey, I. Cetindil,
M. Cheelangi, K. Faraaz, et al., “Asterixdb: A scalable, open source bdms,” Proceedings
of the VLDB Endowment, vol. 7, no. 14, pp. 1905–1916, 2014. (cited on Page 32)

[146] C. Baru, M. Bhandarkar, R. Nambiar, M. Poess, and T. Rabl, “Setting the direction for
big data benchmark standards,” in Technology Conference on Performance Evaluation
and Benchmarking, pp. 197–208, Springer, 2012. (cited on Page 47)

[147] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen, “Bigbench:
towards an industry standard benchmark for big data analytics,” in Proceedings of the
2013 ACM SIGMOD international conference on Management of data, pp. 1197–1208,
ACM, 2013. (cited on Page 47)

[148] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, et al.,
“Bigdatabench: A big data benchmark suite from internet services,” in 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA), pp. 488–
499, IEEE, 2014. (cited on Page 33 and 47)

[149] M. Kunjir, P. Kalmegh, and S. Babu, “Thoth: Towards managing a multi-system cluster,”
Proceedings of the VLDB Endowment, vol. 7, no. 13, pp. 1689–1692, 2014. (cited on
Page 47)

[150] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C.-Z. Xu, and N. Sun, “Cloudrank-d:
benchmarking and ranking cloud computing systems for data processing applications,”
Frontiers of Computer Science, vol. 6, no. 4, pp. 347–362, 2012. (cited on Page 47)

[151] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsa�, “Clearing the clouds: a study of emerging
scale-out workloads on modern hardware,” in ACM SIGPLANNotices, vol. 47, pp. 37–48,
ACM, 2012. (cited on Page 47)

[152] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench benchmark suite:
Characterization of the mapreduce-based data analysis,” in 2010 IEEE 26th International
Conference on Data EngineeringWorkshops (ICDEW 2010), pp. 41–51, IEEE, 2010. (cited
on Page 33 and 47)

[153] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Y. Yeom, “Mrbench: A benchmark
for mapreduce framework,” in 2008 14th IEEE International Conference on Parallel and
Distributed Systems, pp. 11–18, IEEE, 2008. (cited on Page 47)

[154] A. Sangroya, D. Serrano, and S. Bouchenak, “Mrbs: A comprehensive mapreduce
benchmark suite,” LIG, Grenoble, France, Research Report RR-LIG-024, 2012. (cited on
Page 47)

[155] A. Sangroya, D. Serrano, and S. Bouchenak, “Mrbs: Towards dependability benchmark-
ing for hadoop mapreduce,” in European Conference on Parallel Processing, pp. 3–12,
Springer, 2012. (cited on Page 47)

150 Bibliography

[156] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker,
“A comparison of approaches to large-scale data analysis,” in Proceedings of the 2009
ACM SIGMOD International Conference on Management of data, pp. 165–178, ACM,
2009. (cited on Page 47)

[157] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and A. Rasin,
“Mapreduce and parallel dbmss: friends or foes?,” Communications of the ACM, vol. 53,
no. 1, pp. 64–71, 2010. (cited on Page 47)

[158] J. Ferrarons, M. Adhana, C. Colmenares, S. Pietrowska, F. Bentayeb, and J. Darmont,
“Primeball: A parallel processing framework benchmark for big data applications in
the cloud,” in Technology Conference on Performance Evaluation and Benchmarking,
pp. 109–124, Springer, 2013. (cited on Page 47)

[159] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a comprehensive
benchmarking suite for in memory data analytic platform spark,” in Proceedings of the
12th ACM International Conference on Computing Frontiers, p. 53, ACM, 2015. (cited
on Page 47)

[160] Y. Chen, A. Ganapathi, R. Gri�th, and R. Katz, “The case for evaluating mapreduce
performance using workload suites,” in 2011 IEEE 19th annual international symposium
on modelling, analysis, and simulation of computer and telecommunication systems,
pp. 390–399, IEEE, 2011. (cited on Page 47)

[161] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing in big data systems:
A cross-industry study of mapreduce workloads,” Proceedings of the VLDB Endowment,
vol. 5, no. 12, pp. 1802–1813, 2012. (cited on Page 47)

[162] R. Nambiar, M. Poess, A. Dey, P. Cao, T. Magdon-Ismail, A. Bond, et al., “Introducing
tpcx-hs: the �rst industry standard for benchmarking big data systems,” in Technology
Conference on Performance Evaluation and Benchmarking, pp. 1–12, Springer, 2014.
(cited on Page 47)

[163] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking
cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud
computing, pp. 143–154, ACM, 2010. (cited on Page 47)

[164] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. López, G. Gibson, A. Fuchs, and
B. Rinaldi, “Ycsb++: benchmarking and performance debugging advanced features in
scalable table stores,” in Proceedings of the 2nd ACM Symposium on Cloud Computing,
p. 9, ACM, 2011. (cited on Page 47)

[165] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood maximisation:
a unifying framework for information theoretic feature selection,” Journal of machine
learning research, vol. 13, no. Jan, pp. 27–66, 2012. (cited on Page 33)

Bibliography 151

[166] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking modern
distributed stream computing frameworks,” in 2014 IEEE/ACM 7th International Con-
ference on Utility and Cloud Computing, pp. 69–78, IEEE, 2014. (cited on Page 33)

[167] S. Perera and S. Suhothayan, “Solution patterns for realtime streaming analytics,” in
Proceedings of the 9th ACM International Conference on Distributed Event-Based Sys-
tems, pp. 247–255, ACM, 2015. (cited on Page 33)

[168] T.-W. Chang, “Binding of cells to matrixes of distinct antibodies coated on solid surface,”
Journal of immunological methods, vol. 65, no. 1-2, pp. 217–223, 1983. (cited on Page 33)

[169] O. Alter, P. O. Brown, and D. Botstein, “Singular value decomposition for genome-wide
expression data processing and modeling,” Proceedings of the National Academy of
Sciences, vol. 97, no. 18, pp. 10101–10106, 2000. (cited on Page 33)

[170] R. Bordawekar, B. Bandyopadhyay, and O. Shmueli, “Cognitive database: A step
towards endowing relational databases with arti�cial intelligence capabilities,” arXiv
preprint arXiv:1712.07199, 2017. (cited on Page 34)

[171] O. Levy and Y. Goldberg, “Linguistic regularities in sparse and explicit word represen-
tations,” in Proceedings of the eighteenth conference on computational natural language
learning, pp. 171–180, 2014. (cited on Page 34)

[172] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among languages for
machine translation,” arXiv preprint arXiv:1309.4168, 2013. (cited on Page)

[173] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Advances in neural
information processing systems, pp. 3111–3119, 2013. (cited on Page 34)

[174] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word represen-
tation,” in Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014. (cited on Page 34)

[175] A. Fernández, S. del Río, N. V. Chawla, and F. Herrera, “An insight into imbalanced big
data classi�cation: outcomes and challenges,” Complex & Intelligent Systems, vol. 3,
pp. 105–120, Jun 2017. (cited on Page 35)

[176] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski, S. Murching,
T. Nykodym, P. Ogilvie, M. Parkhe, et al., “Accelerating the machine learning lifecycle
with ml�ow,” Data Engineering, p. 39, 2018. (cited on Page 36)

[177] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline operator,” in Proceedings 17th
international conference on data engineering, pp. 421–430, IEEE, 2001. (cited on Page 37)

152 Bibliography

[178] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline computation in database
systems,” ACM Transactions on Database Systems (TODS), vol. 30, no. 1, pp. 41–82,
2005. (cited on Page)

[179] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with presorting,” in ICDE, vol. 3,
pp. 717–719, 2003. (cited on Page)

[180] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An online algorithm
for skyline queries,” in Proceedings of the 28th international conference on Very Large
Data Bases, pp. 275–286, VLDB Endowment, 2002. (cited on Page)

[181] K. C. Lee, B. Zheng, H. Li, and W.-C. Lee, “Approaching the skyline in z order,” in
Proceedings of the 33rd international conference on Very large data bases, pp. 279–290,
VLDB Endowment, 2007. (cited on Page 37)

[182] S. Shekhar, M. R. Evans, V. Gunturi, K. Yang, and D. C. Cugler, “Benchmarking spatial
big data,” in Specifying Big Data Benchmarks, pp. 81–93, Springer, 2012. (cited on
Page 37)

[183] X. Tong, J. Ben, Y. Liu, and Y. Zhang, “Modeling and expression of vector data in the
hexagonal discrete global grid system,” International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, vol. 4, p. W2, 2013. (cited on Page 37)

[184] A. S. Das, M. Datar, A. Garg, and S. Rajaram, “Google news personalization: scalable
online collaborative �ltering,” in Proceedings of the 16th international conference on
World Wide Web, pp. 271–280, ACM, 2007. (cited on Page 39)

[185] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical clustering al-
gorithm using locality-sensitive hashing,” Knowledge and Information Systems, vol. 12,
no. 1, pp. 25–53, 2007. (cited on Page 39)

[186] D. Brinza, M. Schultz, G. Tesler, and V. Bafna, “Rapid detection of gene–gene interac-
tions in genome-wide association studies,” Bioinformatics, vol. 26, no. 22, pp. 2856–2862,
2010. (cited on Page 39)

[187] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 380–
388, ACM, 2002. (cited on Page 39)

[188] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image
retrieval,” 2010. (cited on Page 40)

[189] M. Norouzi and D. M. Blei, “Minimal loss hashing for compact binary codes,” in
Proceedings of the 28th international conference onmachine learning (ICML-11), pp. 353–
360, Citeseer, 2011. (cited on Page 40)

[190] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Improved matching with
smaller descriptors,” IEEE transactions on pattern analysis and machine intelligence,
vol. 34, no. 1, pp. 66–78, 2011. (cited on Page 40)

Bibliography 153

[191] H. Hotelling, “Analysis of a complex of statistical variables into principal components.,”
Journal of educational psychology, vol. 24, no. 6, p. 417, 1933. (cited on Page 40)

[192] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances in neural infor-
mation processing systems, pp. 1753–1760, 2009. (cited on Page 40)

[193] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast similarity search,”
in Proceedings of the 33rd international ACM SIGIR conference on Research and devel-
opment in information retrieval, pp. 18–25, ACM, 2010. (cited on Page 40)

[194] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” 2011. (cited on
Page 40)

[195] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,” in Advances in
neural information processing systems, pp. 3419–3427, 2014. (cited on Page 40)

[196] Q.-Y. Jiang and W.-J. Li, “Scalable graph hashing with feature transformation,” in
Twenty-Fourth International Joint Conference on Arti�cial Intelligence, 2015. (cited on
Page 40)

[197] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong, “Multiple feature hashing for
real-time large scale near-duplicate video retrieval,” in Proceedings of the 19th ACM
international conference on Multimedia, pp. 423–432, ACM, 2011. (cited on Page 40)

[198] D. Zhang, F. Wang, and L. Si, “Composite hashing with multiple information sources,”
in Proceedings of the 34th international ACM SIGIR conference on Research and devel-
opment in Information Retrieval, pp. 225–234, ACM, 2011. (cited on Page 40)

[199] S. Kumar and R. Udupa, “Learning hash functions for cross-view similarity search,” in
Twenty-Second International Joint Conference on Arti�cial Intelligence, 2011. (cited on
Page 40)

[200] Y. Zhen and D.-Y. Yeung, “A probabilistic model for multimodal hash function learn-
ing,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 940–948, ACM, 2012. (cited on Page 40)

[201] Y. Zhen and D.-Y. Yeung, “Co-regularized hashing for multimodal data,” in Advances
in neural information processing systems, pp. 1376–1384, 2012. (cited on Page 40)

[202] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen, “Inter-media hashing for large-scale
retrieval from heterogeneous data sources,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp. 785–796, ACM, 2013. (cited on
Page 40)

[203] M. Ou, P. Cui, F. Wang, J. Wang, W. Zhu, and S. Yang, “Comparing apples to oranges: a
scalable solution with heterogeneous hashing,” in Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 230–238, ACM,
2013. (cited on Page 40)

154 Bibliography

[204] D. Zhang and W.-J. Li, “Large-scale supervised multimodal hashing with semantic
correlation maximization,” in Twenty-Eighth AAAI Conference on Arti�cial Intelligence,
2014. (cited on Page 40)

[205] G. Ding, Y. Guo, and J. Zhou, “Collective matrix factorization hashing for multimodal
data,” in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2075–2082, 2014. (cited on Page 40)

[206] B. Wu, Q. Yang, W.-S. Zheng, Y. Wang, and J. Wang, “Quantized correlation hashing for
fast cross-modal search,” in Twenty-Fourth International Joint Conference on Arti�cial
Intelligence, 2015. (cited on Page 40)

[207] Z. Lin, G. Ding, M. Hu, and J. Wang, “Semantics-preserving hashing for cross-view
retrieval,” in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 3864–3872, 2015. (cited on Page 40)

[208] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance metric learning,”
in Advances in neural information processing systems, pp. 1061–1069, 2012. (cited on
Page 40)

[209] J. Wang, J. Wang, N. Yu, and S. Li, “Order preserving hashing for approximate nearest
neighbor search,” in Proceedings of the 21st ACM international conference on Multime-
dia, pp. 133–142, ACM, 2013. (cited on Page 40)

[210] J. Wang, W. Liu, A. X. Sun, and Y.-G. Jiang, “Learning hash codes with listwise su-
pervision,” in Proceedings of the IEEE International Conference on Computer Vision,
pp. 3032–3039, 2013. (cited on Page 40)

[211] Q. Wang, Z. Zhang, and L. Si, “Ranking preserving hashing for fast similarity search,”
in Twenty-Fourth International Joint Conference on Arti�cial Intelligence, 2015. (cited
on Page 40)

[212] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for image retrieval
via image representation learning,” in Twenty-Eighth AAAI Conference on Arti�cial
Intelligence, 2014. (cited on Page 41)

[213] H. Lai, Y. Pan, Y. Liu, and S. Yan, “Simultaneous feature learning and hash coding with
deep neural networks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 3270–3278, 2015. (cited on Page 41)

[214] F. Zhao, Y. Huang, L. Wang, and T. Tan, “Deep semantic ranking based hashing for
multi-label image retrieval,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1556–1564, 2015. (cited on Page 41)

[215] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable deep hashing with
regularized similarity learning for image retrieval and person re-identi�cation,” IEEE
Transactions on Image Processing, vol. 24, no. 12, pp. 4766–4779, 2015. (cited on Page 41)

Bibliography 155

[216] V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing for compact
binary codes learning,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2475–2483, 2015. (cited on Page 41)

[217] M.-M. Deza and E. Deza, Dictionary of distances. Elsevier, 2006. (cited on Page 43, 60, 65,
and 91)

[218] F. Gorunescu, Data Mining: Concepts, models and techniques, vol. 12. Springer Science
& Business Media, 2011. (cited on Page 60)

[219] A. Huang, “Similarity measures for text document clustering,” in Proceedings of
the sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, vol. 4, pp. 9–56, 2008. (cited on Page 43, 65, and 91)

[220] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of
the 22nd acm sigkdd international conference on knowledge discovery and data mining,
pp. 785–794, ACM, 2016. (cited on Page 43, 59, 65, and 91)

[221] A. Nagrani, S. Albanie, and A. Zisserman, “Learnable pins: Cross-modal embeddings
for person identity,” in Proceedings of the European Conference on Computer Vision
(ECCV), pp. 71–88, 2018. (cited on Page 50)

[222] S. J. Moran, “Learning to hash for large scale image retrieval,” 2016. (cited on Page 50)

[223] M. Vlachos, Indexing and Similarity Search, pp. 1438–1442. Boston, MA: Springer US,
2009. (cited on Page 50)

[224] D. Xu, T. J. Cham, S. Yan, L. Duan, and S.-F. Chang, “Near duplicate identi�cation
with spatially aligned pyramid matching,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 20, no. 8, pp. 1068–1079, 2010. (cited on Page 50)

[225] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros, “What makes paris look like
paris?,” Communications of the ACM, vol. 58, no. 12, pp. 103–110, 2015. (cited on Page 50)

[226] C. E. Yoon, O. O’Reilly, K. J. Bergen, and G. C. Beroza, “Earthquake detection through
computationally e�cient similarity search,” Science Advances, vol. 1, no. 11, 2015. (cited
on Page 50)

[227] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution approaches on real-
world match problems,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 484–
493, 2010. (cited on Page 59 and 125)

[228] S. Das, A. Doan, P. S. G. C., C. Gokhale, and P. Konda, “The magellan data repository.”
https://sites.google.com/site/anhaidgroup/projects/data. (cited on Page 59)

https://sites.google.com/site/anhaidgroup/projects/data

156 Bibliography

[229] K. Sugawara, H. Kobayashi, and M. Iwasaki, “On approximately searching for similar
word embeddings,” in Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 2265–2275, 2016. (cited
on Page 64)

[230] L. R. Baxter, R. Baxter, P. Christen, et al., “A comparison of fast blocking methods for
record,” 2003. (cited on Page 125)

[231] A. Saeedi, E. Peukert, and E. Rahm, “Comparative evaluation of distributed clustering
schemes for multi-source entity resolution,” in European Conference on Advances in
Databases and Information Systems, pp. 278–293, Springer, 2017. (cited on Page 125)

[232] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang, “Distributed
representations of tuples for entity resolution,” Proceedings of the VLDB Endowment,
vol. 11, no. 11, pp. 1454–1467, 2018. (cited on Page 126)

[233] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute,
and V. Raghavendra, “Deep learning for entity matching: A design space exploration,”
in Proceedings of the 2018 International Conference on Management of Data, pp. 19–34,
ACM, 2018. (cited on Page 126)

[234] X. Chen, G. Campero Durand, R. Zoun, D. Broneske, Y. Li, and G. Saake, “The best of
both worlds: Combining hand-tuned and word-embedding-based similarity measures
for entity resolution,” BTW 2019, 2019. (cited on Page 126)

[235] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” IEEE
Transactions on Big Data, 2019. (cited on Page 126 and 128)

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Previous Work
	1.3 Initial Research Questions
	1.4 Research Methodology
	1.5 Thesis Structure

	2 Background
	2.1 Systematic Literature Review
	2.1.1 Literature Search Process
	2.1.2 Overview of Selected Papers

	2.2 Overview on Embeddings
	2.3 Large-Scale Data Processing
	2.3.1 Examples of Large-Scale Data Processing Systems
	2.3.2 Optimizers for Dataflow Large-Scale Data Processing
	2.3.3 Storage for Large-Scale Data Processing
	2.3.3.1 Distributed File System (HDD)
	2.3.3.2 Distributed In-Memory Storage
	2.3.3.3 Storage Formats

	2.3.4 Benchmarks

	2.4 Machine Learning and Data Management Interfaces in the Context of Embeddings
	2.5 Optimizations for Embeddings and Array Data
	2.5.1 Optimized Management of Embeddings
	2.5.2 High-Dimensional Hashing
	2.5.2.1 Locality Sensitive Hashing
	2.5.2.2 Learning To Hash
	2.5.2.3 Supervised Entity Resolution

	2.6 Summary

	3 Design Overview and Prototypical Implementation
	3.1 Design Overview
	3.2 Final Research Questions
	3.3 Proposed Approach
	3.3.1 Problem Definition
	3.3.2 Learning the Hash Function
	3.3.3 Model Learning

	3.4 Prototypical Implementation
	3.4.1 Experimental setup
	3.4.2 Input Datasets
	3.4.3 Pre-Processing and Vectorization of Input Datasets
	3.4.4 Evaluation Metrics

	3.5 Summary

	4 Locality Sensitive Hashing
	4.1 Research Question
	4.2 Data Pipeline
	4.2.1 Pre-Processing and Vectorization
	4.2.2 Locality Sensitive Hashing Technique
	4.2.3 Evaluation

	4.3 Results
	4.4 Summary

	5 Learning To Hash
	5.1 Research Question
	5.2 Data Pipeline
	5.2.1 Pre-Processing and Vectorization
	5.2.2 Learning To Hash Technique
	5.2.3 Evaluation

	5.3 Results
	5.4 Summary

	6 Similarity Search Using Different File Formats in Apache Spark
	6.1 Research Question
	6.2 Data Pipeline
	6.2.1 Data Storage
	6.2.2 Evaluation

	6.3 Results
	6.4 Summary

	7 Related Work
	7.1 Blocking Techniques for Entity Resolution
	7.2 Supervised Deep Hashing
	7.3 Efficient Techniques for High-Dimensional Similarity Search

	8 Conclusion and Future Directions
	8.1 Conclusion
	8.2 Future Directions

	9 Appendix 1: Derivation of Loss Function
	10 Appendix 2: Prototypical Implementation of a Deep Hash Network
	Bibliography

