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Zusammenfassung

In dieser Arbeit sollen mathematische Studien hyperbolischer Systeme von
Erhaltungsgleichungen mit ausgewählten physikalischen Anwendungen ver-
bunden werden. Der Schwerpunkt liegt dabei in der mathematischen Ana-
lyse von Lorentz-invarianten Systemen der speziellen Relativitätstheorie wie
den Maxwell-Gleichungen und den relativistischen Euler Gleichungen. Aber
wir studieren auch die sogenannte Boltzmann-Peierls Gleichung (BPG), eine
kinetische Evolutionsgleichung, die den Wärmetransport in einem dielek-
trischen Kristall bei sehr tiefer Temperatur mit Hilfe eines Phonon-Bose
Gases beschreibt, sowie ein aus der BPG abgeleitetes hyperbolisches Mo-
mentensystem.

Die kinetische Behandlung der relativistischen Euler Gleichungen und die
kinetische Boltzmann-Peierls Theorie eines Phonon-Bose Gases beschreiben
zwar völlig verschiedene physikalische Vorgänge, zeigen aber trotzdem weit-
reichende mathematische Analogien.

Für die Untersuchung der relativistischen Euler Gleichungen entwickeln wir
die mathematischen Grundlagen der kinetischen Theorie im Rahmen der
speziellen Relativitätstheorie. Die von Jüttner angegebene Gleichgewichts-
Phasendichte wird mit Hilfe des Maximum Entropie Prinzips begründet. Sie
verallgemeinert die klassische Maxwellsche Phasendichte. Dies ermöglicht
uns die Entwicklung kinetischer Schemata zur Lösung der relativistischen
Euler Gleichungen. Dieser kinetische Zugang erweist sich vor allem bei den
ultra-relativistischen Euler Gleichungen als besonders nützlich. In diesem
Falle reduzieren sich die aus dem kinetischen Schema gewonnenen Momenten-
integrale über die Phasendichte auf einfache Oberflächenintegrale bezüglich
der Einheitssphäre, und es läßt sich eine besonders einfache reduzierte En-
tropiedichte angeben. Wir lösen das Riemannsche Anfangswertproblem für
eindimensionale Gasströmungen und vergleichen es mit numerischen Ver-
fahren, die auf dem kinetischen Ansatz beruhen.

Es gibt wichtige Unterschiede zwischen den kinetischen Verfahren für klas-
sische Euler Gleichungen auf der einen Seite und für relativistische Euler
Gleichungen bzw. für das Phonon-Bose Gas auf der anderen Seite, die ein de-
tailiertes Studium dieser beiden nichtklassischen Anwendungen rechtfertigt.
Der wichtigste Unterschied ist die Möglichkeit, reduzierte Phasendichten, re-
duzierte Momentenintegrale und reduzierte Entropien für die beiden zuletzt
genannten Anwendungen zu finden. Diese sind von wesentlich einfacherer
Gestalt als die ursprüglichen Grössen, enthalten aber dieselbe thermody-
namische Information und lassen sich ohne Verwendung von Approximatio-
nen rigoros herleiten. Die reduzierten Größen haben in beiden nichtklassis-
chen Anwendungen dieselbe Bauart und lassen sich insbesondere für eindi-
mensionale Strömungen weiter sehr stark in einer Weise vereinfachen, die
kein Analogon in der klassischen Theorie kennt.



Ein weiterer Unterschied zur klassischen Theorie ist dadurch gegeben, daß
sowohl in der relativistischen kinetischen Theorie als auch in der kinetischen
Theorie des Phonon-Bose Gases jede Signalgeschwindigkeit global begrenzt
ist, nämlich durch die Lichtgeschwindigkeit bzw. durch die sogenannte De-
bye Geschwindigkeit. Dies hat verschiedene Vorteile für die Analysis und
Numerik der kinetischen Schemata, die in dieser Arbeit ebenfalls genutzt
werden.
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“Ich kann es nun einmal nicht lassen, in diesem Drama von
Mathematik und Physik - die sich im Dunkeln befruchten, aber
von Angesicht zu Angesicht so gerne einander verkennen und
verleugnen - die Rolle des (wie ich genugsam erfuhr, oft uner-
wünschten) Boten zu spielen.”

(Hermann Weyl, Gruppentheorie und Quantenmechanik, 1928)
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Chapter 1

Preface and Introduction

We aim to combine a mathematical study of hyperbolic systems and conserva-
tion laws with specific applications in physics. The main part of this work will
consider applications to Lorentz-invariant systems, namely for the Maxwell
equations and the relativistic Euler equations. But we will also study the so
called Boltzmann-Peierls equation, a kinetic equation for a phonon-Bose gas
describing heat conduction in a dielectric solid at very low temperature, and
a hyperbolic system resulting from this kinetic equation as a special limiting
case. We will see that the latter system shows a very surprising mathemati-
cal relationship to the so called ultra-relativistic Euler equations, though the
physical applications are totally different in both cases.

Hyperbolic systems describe the propagation of waves with finite velocities,
which in special relativity are naturally bounded by the speed of light. This
fact is reflected in the beautiful mathematical structure of the equations
under consideration. Namely Maxwell’s equations and the relativistic Euler
equations are very typical representatives for those systems. Though the rela-
tivistic Euler equations considered here seem to look complicated, a detailed
study shows a simpler mathematical behaviour than the corresponding clas-
sical Euler equations. For example, even the solution of the standard shock
tube or Riemann problem for the classical Euler equations of gas dynamics
may lead to a vacuum region within the shock tube that complicates a rig-
orous mathematical analysis for the general initial value problem very much.
However, we will see that at least for the so called ultra-relativistic Euler
equations this behaviour will not occur.

We hope that there are also interested non specialists in relativity which enjoy
a short and self consistent elaboration of the electromagnetic theory in Chap-
ters 2 and 3. It is ranging from the mathematical study of the linear wave
equation, via the formulation of Maxwell’s theory, examples of nontrivial
solutions to Maxwell’s equations, via the derivation of the electromagnetic
balance laws to their formulation with the tensor calculus of special relativity,
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which is also presented here.

In Chapter 4 we turn our attention to the relativistic Euler equations. The
Euler equations (relativistic or classic) deal with a perfect gas, in which
mean free paths and collision free times are so short that perfect isotropy
is maintained about any point moving with the gas. In this case the local
equilibrium assumption gives a kinetic distribution function for the micro-
scopic velocities of the representative gas atoms, the so called (relativistic
or classic) Maxwellian phase density which depends on the five independent
macroscopic variables occuring in the Euler equations, namely the mass den-
sity, the velocity and the pressure. These quantities describe uniquely the
thermodynamical equilibrium state of the gas in any space-time point. The
equilibrium phase density for the relativistic Euler equations was first pub-
lished by Jüttner in [28] and can be derived like the classical Maxwellian from
the so called Maximum Entropy Principle.

Some of these basic ideas can be explained better for the well known classi-
cal Boltzmann gas. This will then serve as a useful guideline for the more
complicate applications to the relativistic Euler equations and the theory of
the phonon-Bose gas presented in this work.

For simplicity we use dimensionless quantitites. A kinetic phase density
f = f(t,x,q) depends on time t, position x ∈ R3 and on the microscopic
velocities q of the representative gas atoms. It describes the distribution of
the microscopic velocities in such a way that

f(t,x,q) d3x d3q (1.0.1)

gives the number of gas particles at time t and position x in the infinitesimal
phase space volume [x + dx,q + dq]. From any phase density f we can re-
cover all macroscopic quantitites which are of interest in thermodynamics by
forming integral moments from f with respect to the microscopic velocities.
For example, the first five moments denote the particle number density ρ,
the momentum density ρu ∈ R3 and the energy density 1

2
ρu2 + 3

2
p given by

ρ(t,x) =

∫

R3

f(t,x,q) d3q ,

(ρu)(t,x) =

∫

R3

q f(t,x,q) d3q , (1.0.2)

(
1

2
ρu2 +

3

2
p)(t,x) =

∫

R3

1

2
q2 f(t,x,q) d3q .

Here u, T and p = ρT denote the macroscopic velocity, the absolute tempe-
rature and the pressure of the gas, respectively. These formulas hold for the
classical monatomic Boltzmann gas, not necessary in local equilibrium.
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If the gas is in local equilibrium, then it is described by the classical Maxwellian
phase density

fM(ρ, T,u,q) =
ρ

(2πT )
3

2

exp

(

−(q − u)2

2T

)

. (1.0.3)

We conclude that in local equilibrium the microscopic velocities q of the
representative gas atoms are distributed according to a Gaussian density. If
we calculate the moments for mass- momentum and energy density with the
Maxwellian fM in (1.0.3), then we get indeed back the equations in (1.0.2).

Next we consider a simplified version of the classical Boltzmann equation, the
so called BGK-equation according to Bhatnagar, Gross and Krook, see [1],
which describes the evolution of the Boltzmann gas according to the following
kinetic equation

∂f

∂t
+

3
∑

k=1

qk
∂f

∂xk
=

1

τR
(PM [f ] − f) . (1.0.4)

The left hand side is the so called transport part of the kinetic equation and
the right hand side describes the collision of the particles with the relaxation
to the classical Maxwellian PM [f ] and a relaxation time τR. Exactly speaking,
the “projection” PM [f ] is the Maxwellian phase density which has the same
mass- momentum- and energy density as f according to (1.0.2).

A special case is given in the limit τR → ∞, where the collision term on
the right hand side in (1.0.4) is zero. Then the kinetic equation is called
a collision-free kinetic transport equation, and the solution can be given
explicitly in terms of the initial phase density by

ffree(t,x,q) = f(0,x − tq,q) . (1.0.5)

Solutions to collision-free kinetic transport equations constitute a basic build-
ing block for the formulation of kinetic schemes.

The opposite case is given by the limit τR → 0, where the gas is everywhere
described by the Maxwellian phase density in local equilibrium. Then the gas
is governed by the hyperbolic system of Euler equations, see the textbook of
Cercignani [3]. In this case the Euler equations result formally as a moment
system from the BGK-equation as follows, where we omit the arguments t,
x and q for simplicity.

Put q0 = 1, q4 = 1
2
q2 and define the moment weights Wα as well as the

corresponding fluxes Fα,k for α = 0, 1, 2, 3, 4 and k = 1, 2, 3 due to

Wα =

∫

R3

qα f d
3q , Fα,k =

∫

R3

qα qk f d
3q . (1.0.6)
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If we multiply the BGK-equation (1.0.4) by qα and integrate with respect to
q ∈ R3, then we obtain the “five-moment system”

∂Wα

∂t
+

3
∑

k=1

∂Fα,k
∂xk

= 0 . (1.0.7)

The right hands side is always zero for the “five-moment system”, not only
in the limit τR → 0, because the first five moments of PM [f ] and f are the
same by construction of PM [f ] and by regarding the generally valid equations
(1.0.2). Physically speaking, (1.0.7) guarantees the conservation laws for
mass, momentum and energy also for τR > 0. In order to pass from (1.0.7)
to the Euler equations, we just have to calculate the moments Wα and fluxes
Fα,k with the Maxwellian PM [f ] instead of f and obtain from (1.0.7) in the
limit τR → 0 the classical Euler equations

∂ρ

∂t
+

3
∑

k=1

∂(ρuk)

∂xk
= 0 ,

∂(ρui)

∂t
+

3
∑

k=1

∂

∂xk

(

ρ uiuk + p δik

)

= 0 , (1.0.8)

∂

∂t

(1

2
ρu2 +

3

2
p
)

+
3
∑

k=1

∂

∂xk

(ρ

2
u2uk +

5

2
p uk

)

= 0 .

The basic kinetic elements presented above serve as building blocks in order
to develop kinetic schemes for the classical Euler equations, but also as a
guideline for the treatment of the relativistic Euler equations and for the
theory of the phonon-Bose gas.

However, there are also important differences between the kinetic approaches
for the classical and relativistic Euler equations and for the phonon-Bose gas
which justify a detailed study of the non-classical applications! The most
important difference is the possibility to define reduced phase densities, re-
duced kinetic equations and reduced entropies for the latter two applications.
Even in three space dimensions the reduced quantitites have a much simpler
mathematical structure than the original kinetic quantities. Especially for
one-dimensional flow fields they enable a further simplification which has
no counterpart in the classical theory. Another difference comes from the
fact that in the relativistic kinetic theory as well as in the kinetic theory of
the phonon-Bose gas every signal speed is globally bounded by the velocity
of light and by the so called Debye velocity, respectively. This has several
advantages for the analysis and numerics of the kinetic schemes.

Kinetic approaches in order to solve the classical Euler equations of gas dy-
namics were applied to several initial- boundary value problems, see for ex-
ample Dreyer, Kunik and Herrmann [7], [8], [11] and Perthame [41], [42],
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[43]. In Dreyer & Kunik [9] the reader will find the kinetic scheme solv-
ing the initial-boundary value problem for a phonon Bose gas, which is also
presented here.

In [31, 32, 33, 35, 44] Kunik, Qamar and Warnecke have developed a new,
purely kinetic approach for the analysis and numerical computation of flows
described by the relativistic Euler equations.

There are three basic ingredients of the relativistic kinetic schemes. The first
one is the relativistic phase density developed by Jüttner which describes
the local equilibrium of the gas. The second one is the solution of a colli-
sion free kinetic transport equation, which can be given explicitly in terms
of a known initial phase density. For the formulation of the kinetic scheme
we prescribe a time step τM > 0, define the equidistant times tn = n τM
(n = 0, 1, 2, ...), called maximization times, and solve a collision free kinetic
transport equation for each time interval tn < t < tn+1, starting with a rela-
tivistic Maxwellian as the initial phase density at each maximization time tn.
The third component consists of the continuity conditions, which guarantee
that the conservation laws are also satisfied across the maximization times.

The resulting kinetic schemes including all physical important integral mo-
ments are formulated in a manifest Lorentz-invariant form. Kunik, Qamar
and Warnecke have especially formulated two types of kinetic schemes in or-
der to solve the ultra-relativistic Euler equations and a general form of special
relativistic Euler equations based on Jüttners constitutive relations presented
in [28]. The basic ingredients of the kinetic schemes are the phase density
in equilibrium and the free flight. The phase density generalizes the non-
relativistic Maxwellian for a gas in local equilibrium to Jüttner’s relativistic
phase density originally presented in [28]. Jüttner’s “relativistic Maxwellian”
covers the whole range from the classical to the ultra-relativistic limit. The
free flight is given by explicit solutions of a collision free kinetic transport
equation.

We are also concerned with the kinetic solutions for initial value problems of
the Boltzmann-Peierls equation (BPE), as well as with initial-boundary value
problems (IBVP) of the derived hyperbolic 4-field moment system. BPE is a
kinetic equation which describes the evolution of heat in crystalline solids at
very low temperatures. This equation determines the evolution of the phase
density of a phonon Bose-gas. The corresponding entropy density is given by
the entropy density of a Bose-gas.

We derive an equivalent reduced three-dimensional kinetic equation which
has a much simpler structure than the original BPE but the same ther-
modynamical content. Using a special integration technique for the one-
dimensional case, a further important simplification of the reduced kinetic
equation can be obtained, as for the first reduction without using any ap-
proximation. We develop and study kinetic schemes for the reduced BPE as
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well as for the hyperbolic 4-field moment system, based on the theory devel-
oped by Dreyer, Herrman, Kunik, Qamar and Warnecke in [9, 10, 12, 34].
Both topics, the relativistic Euler equations and the kinetic approach for the
reduced BPE, provide a very similar mathematical structure. We will show
a correspondence between the ultra-relativistic Euler equations, the reduced
Boltzmann-Peierls equation and between the kinetic schemes used to solve
these equations.

Concerning the kinetic solution of hyperbolic initial-boundary value prob-
lems, we mention a very successful new method first developed by Dreyer
and Kunik in [9, 10] for the four-field system of hyperbolic heat conduction.
It uses auxiliary fields and continuity conditions for the boundaries in the
free-transport phase of the kinetic scheme. The evaluation of the continuity-
and boundary conditions leads to interesting algebraic equations which de-
termine the auxiliary fields needed for the kinetic scheme in an adequate
way. Though this method was first applied to a special system with a special
boundary condition, it could be extended by Dreyer, Herrmann and Kunik
[11] to the classical Euler equations for moving boundary conditions repre-
senting an accelerated piston. Boundary conditions for nonlinear hyperbolic
systems pose difficult mathematical questions, and up to now the develop-
ment of appropriate numerical methods is only possible in special cases.

The simple models considered here for the relativistic gas dynamic are mainly
studied due to their interesting mathematical structure, though it is clear to
us that they must be modified for real physical applications. These modi-
fications should take care for electromagnetic radiation, which will lead to
a more complicated description. The Jüttner distribution for a relativistic
Boltzmann gas is not realized in nature. On the other hand, Jüttner also
derived the relativistic phase densities for a Fermi and Bose gas in [29], and
in the ultra relativistic limit the Euler equations for energy and momentum
in terms of the pressure and the velocity resulting from these phase densities
are the same for the Fermi, Bose and Boltzmann gas. Finally, the models
used in our study are fully consistent with the physical basic principles of
thermodynamics and the kinetic theory of gases. We namely mentione the
mathematical formulation of physical conservation laws and the concept of
entropy in these models and in their numerical solution based on the kinetic
schemes. The theory presented here may give useful impacts for the analyti-
cal as well as the numerical study of more realistic gasdynamical models in
relativity.
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Chapter 2

Linear Wave Equation

In this chapter we will provide the mathematical tools in order to solve the
wave equation for given initial- and boundary data. We consider only the
case of one and three space dimensions, which is sufficient for our purpose in
order to study the Maxwell equations in Chapter 3. We will mainly follow
here the elegant approach of Evans in his textbook [22].

2.1 Representation formula of d’Alembert in

one space dimension

We consider the following initial value problem for the linear wave equation

∂2u

∂t2
− ∂2u

∂x2
= 0 , u(0, x) = g(x) ,

∂u

∂t
(0, x) = h(x) . (2.1.1)

Here g and h are given initial data, where g : R → R is assumed to be in C2

and h : R → R is assumed to be in C1. The unknown solution u : R
+
0 ×R → R

is assumed to be in C2. Due to the factoring

(

∂

∂t
+

∂

∂x

)(

∂

∂t
− ∂

∂x

)

u(t, x) = 0 (2.1.2)

we apply the coordinate transformation

ξ = x− t , η = x+ t , û(ξ, η) = u(
η − ξ

2
,
η + ξ

2
) = u(t, x) (2.1.3)

with η − ξ > 0 in order to obtain

∂û

∂ξ
= −1

2

∂u

∂t
+

1

2

∂u

∂x
,

∂û

∂η
=

1

2

∂u

∂t
+

1

2

∂u

∂x
. (2.1.4)
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Equation (2.1.4) implies for the C2-function û:

∂2û

∂η∂ξ
= 0 . (2.1.5)

We obtain with an appropriate function a : R → R depending only on ξ:

∂û

∂ξ
= a(ξ) . (2.1.6)

Integration of (2.1.6) with respect to ξ yields for a function A : R → R with
A′(ξ) = a(ξ) for all ξ and with an appropriate function B : R → R depending
only on η:

û(ξ, η) = A(ξ) +B(η) . (2.1.7)

For u itself we obtain the general solution

u(t, x) = A(x− t) +B(x+ t) . (2.1.8)

The functions A and B may be determined easily from the given initial data
in (2.1.1). It follows from (2.1.8) at t = 0:

A(x) +B(x) = g(x) , −A′(x) +B′(x) = h(x) . (2.1.9)

We differentiate the first equation in (2.1.9), add the second equation for h
in order to solve for B ′ and integrate in order to obtain for B

B′(x) =
1

2
(h(x) + g′(x)) , B(x) = B(0) +

1

2
(g(x) − g(0)) +

1

2

x
∫

0

h(z) dz .

(2.1.10)

Equation (2.1.10)2 and (2.1.9)1 may be used in order to represent A in the
form

A(x) = −B(0) +
1

2
(g(x) + g(0)) − 1

2

x
∫

0

h(z) dz . (2.1.11)

We replace A and B in the general solution formula (2.1.8) by their expres-
sions derived here in order to obtain the solution of the initial value problem
in terms of the initial data g and h:

u(t, x) =
1

2
(g(x− t) + g(x+ t)) +

1

2

x+t
∫

x−t

h(z) dz . (2.1.12)

This is the representation formula of d’Alembert for the solution of the
initial value problem (2.1.1).
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2.2 Solution of an initial- and boundary value

problem by the reflection method

We consider the following initial- and boundary value problem for t ≥ 0 and
x ≥ 0 :

∂2u

∂t2
− ∂2u

∂x2
= 0, t > 0, x > 0,

u(0, x) = g(x),
∂u

∂t
(0, x) = h(x), x > 0,

u(t, 0) = 0, t > 0.

(2.2.1)

The given initial data g and h are restricted by the condition

g(0) = h(0) = 0 . (2.2.2)

We reduce the initial- and boundary value problem to a pure initial value
problem by the so called reflection method, which results if we extend the
functions u, g and h to the whole real axis by the definitions

û(t, x) = u(t, x), x ≥ 0, û(t, x) = −u(t,−x), x < 0 . (2.2.3)

ĝ(x) = g(x), x ≥ 0, ĝ(x) = −g(−x), x < 0. (2.2.4)

ĥ(x) = h(x), x ≥ 0, ĥ(x) = −h(−x), x < 0. (2.2.5)

Equations (2.2.1) may then be rewritten in the form

∂2û

∂t2
− ∂2û

∂x2
= 0 , û(0, x) = ĝ(x) ,

∂û

∂t
(0, x) = ĥ(x) . (2.2.6)

We obtain from d’Alemberts formula after replacing the quantities û, ĝ and
ĥ by u, g and h:

u (t, x) =























1
2
[g(x+ t) + g(x− t)] + 1

2

x+t
∫

x−t
h(y) dy , 0 ≤ t ≤ x

1
2
[g(x+ t) − g(−x+ t)] + 1

2

x+t
∫

−x+t
h(y) dy , 0 ≤ x ≤ t .

(2.2.7)

The solution of this initial- and boundary value problem in one space dimen-
sion is needed for the solution of the initial value problem of the homogeneous
wave equation in three space dimensions, which will be solved next.

13



2.3 Solution of the homogeneous wave equa-

tion in three space dimensions

Let u ∈ C2(R+
0 × R3,R) be a solution of the initial value problem

∂2u

∂t2
− ∆u = 0, t > 0, x ∈ R

3

(2.3.1)

u(0,x) = g(x),
∂u

∂t
(0,x) = h(x), x ∈ R

3 .

We solve this initial value problem in the three-dimensional space by taking
spherical means and reducing it to the initial-boundary value problem in one
space dimension solved in the last section.

In the sequel we assume for the initial data of (2.3.1) that g ∈ C3(R3,R) and
h ∈ C2(R3,R). B(r,x) = {y ∈ R3| |x − y| ≤ r} denotes the compact ball
with center x and radius r. Its boundary is the sphere ∂B(r,x).

We start with an important

Lemma 2.1. For ψ ∈ C2(R3,R), x ∈ R3 and r > 0 we define the spherical
mean

Ψ(r,x) =
1

4πr2

∮

∂B(r,x)

ψ(y) dS(y) .

Then Ψ ∈ C2(R+ × R3,R) has the following two radial derivatives:

(i)
∂Ψ

∂r
(r,x) =

1

4πr2

∫

B(r,x)

(∆ψ)(y) d3y .

(ii)
∂2Ψ

∂r2
(r,x) +

2

r

∂Ψ

∂r
(r,x) =

1

4πr2

∮

∂B(r,x)

(∆ψ)(y) dS(y) .

Proof: We first make use of the integral substitution y = x + ry′ → y′ in
order to conclude that

Ψ(r,x) =
1

4π

∮

∂B(1,0)

ψ(x + ry′) dS(y′) . (2.3.2)

For the calculation of ∂Ψ/∂r we apply the Gaussian integral formula with
the outer normal vectors y′ to the unit sphere ∂B(1, 0) and regard the chain

14



rule ∂/∂y′k = r ∂/∂yk,

∂Ψ

∂r
(r,x) =

1

4π

∮

∂B(1,0)

(∇ψ)(x + ry′) ·y′ dS(y′)

=
r

4π

∫

B(1,0)

(∆ψ)(x + ry′) d3y′ =
1

4πr2

∫

B(r,x)

(∆ψ)(y) d3y .

This is the first part of the Lemma.
If we change to spatial polar coordinates in the last integral we can rewrite
∂Ψ/∂r in the following way:

∂Ψ

∂r
(r,x) =

1

4πr2

∫ r

0

∮

∂B(ϑ,x)

(∆ψ)(y) dS(y) dϑ. (2.3.3)

Using this representation, we immediately obtain the second derivative

∂2Ψ

∂r2
(r,x) =

1

4πr2

∮

∂B(r,x)

(∆ψ)(y) dS(y) − 1

2πr3

∫

B(r,x)

(∆ψ)(y) d3y .

(2.3.4)
Thus we have shown the Lemma.

We first assume that u ∈ C2(R+
0 × R3,R).

In order to derive an integral representation formula for the solution u, we
define the following spherical means, where x ∈ R3, t > 0, r > 0.

(a)

U(t, r,x) =
1

4πr2

∮

∂B(r,x)

u(t,y) dS(y)

is the mean value of the solution (2.3.1) with respect to the sphere
∂B(r,x).

(b) The corresponding spherical means of the initial data are

G(r,x) =
1

4πr2

∮

∂B(r,x)

g(y) dS(y) ,

H(r,x) =
1

4πr2

∮

∂B(r,x)

h(y) dS(y) .

Let u = u(t,x) be a solution of the wave equation (2.3.1). Then for fixed
x ∈ R3 the mean value U is for t > 0 and r > 0 a solution of the so called

15



Euler-Poisson-Darboux equation:

∂2U

∂t2
− ∂2U

∂r2
− 2

r

∂U

∂r
= 0 ,

(2.3.5)

U(0, r,x) = G(r,x),
∂U

∂t
(0, r,x) = H(r,x) .

This is an immediate consequence of the second part (ii) of the Lemma,
because u = u(t,x) solves the homogeneous three-dimensional wave equation:

∂2U

∂r2
(t, r,x) +

2

r

∂U

∂r
(t, r,x) =

1

4πr2

∮

∂B(r,x)

(∆u)(t,y) dS(y)

=
1

4πr2

∮

∂B(r,x)

∂2u

∂t2
(t,y) dS(y) =

∂2

∂t2
U(t, r,x) .

Moreover, the initial data in (2.3.5) result from the corresponding initial
data in (2.3.1) by passing to the mean values. The Euler-Poisson-Darboux
equation has a remarkable consequence: For abbreviation we define

Ũ = r U , G̃ = r G , H̃ = r H , (2.3.6)

and conclude that Ũ satisfies the one-dimensional homogeneous wave equa-
tion:

∂2Ũ

∂r2
=

∂

∂r

(

r
∂U

∂r
+ U

)

= r
∂2U

∂r2
+ 2

∂U

∂r
= r

∂2U

∂t2
=
∂2Ũ

∂t2
. (2.3.7)

Therefore Ũ is a solution of the following initial- and boundary value problem
for t, r ≥ 0, where x may be regarded as a fixed parameter:

∂2Ũ

∂t2
− ∂2Ũ

∂r2
= 0, t > 0, r > 0,

Ũ(0, r,x) = G̃(r,x),
∂Ũ

∂t
(0, r,x) = H̃(r,x), r > 0,

Ũ(t, 0,x) = 0, t > 0.

(2.3.8)

The initial data G̃ and H̃ are restricted by the condition

G̃(0,x) = H̃(0,x) = 0 (2.3.9)

for every fixed parameter x ∈ R3. The solution results from equation (2.2.7),
where we replace x ≥ 0 by r and regard the condition 0 ≤ r ≤ t:

Ũ(t, r,x) =
1

2

[

G̃(t+ r,x) − G̃(t− r,x)
]

+
1

2

∫ t+r

t−r
H̃(y,x) dy . (2.3.10)
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The solution u = u(t,x) of (2.3.1) is given by the limit

u(t,x) = lim
r→0, r>0

U(t, r,x) = lim
r→0, r>0

Ũ(t, r,x)

r
. (2.3.11)

Now we use (2.3.11), (2.3.10) and (2.3.6) in order to conclude that

u(t,x) = lim
r→0, r>0

[

G̃(t + r,x) − G̃(t− r,x)

2r
+

1

2r

∫ t+r

t−r
H̃(y,x) dy

]

=
∂G̃(t, x)

∂t
+ H̃(t,x) =

∂

∂t

(

t

4πt2

∮

∂B(t,x)

g(y) dS(y)

)

+
t

4πt2

∮

∂B(t,x)

h(y) dS(y)

=
1

4πt2

∮

∂B(t,x)

(g(y) + t h(y)) dS(y) + t
∂

∂t

(

1

4πt2

∮

∂B(t,x)

g(y) dS(y)

)

.

Finally we apply the integral substitution y = x + ty′ and obtain

u(t,x) =
1

4πt2

∮

∂B(t,x)

(g(y) + t h(y)) dS(y) + t
∂

∂t

(

1

4π

∮

∂B(1,0)

g(x + ty′) dS(y′)

)

=
1

4πt2

∮

∂B(t,x)

(g(y) + t h(y)) , dS(y) +
t

4π

∮

∂B(1,0)

(∇g)(x + ty′)·y′ dS(y′)

=
1

4πt2

∮

∂B(t,x)

[ g(y) + t h(y) + (∇g)(y)·(y − x) ] dS(y) .

We may summarize our results in the famous

Representation formula of Kirchhoff:

u(t,x) =
1

4πt2

∮

∂B(t,x)

[ g(y) + t h(y) + (∇g)(y)·(y − x) ] dS(y)

=
1

4πt2

∮

∂B(t,x)

(g(y) + t h(y)) dS(y) + t
∂

∂t

(

1

4πt2

∮

∂B(t,x)

g(y) dS(y)

)

.

(2.3.12)

This formula was derived under the assumption that u is a given solution of
the initial value problem (2.3.1). To complete the study of the initial value
problem we define for given h the function v ∈ C2(R+ × R3,R) by

v(t,x) =
1

4πt2

∮

∂B(t,x)

t h(y) dS(y) = tH(t,x) . (2.3.13)

We obtain the initial data

lim
t→0

v(t,x) = 0 , lim
t→0

∂v

∂t
(t,x) = h(x) . (2.3.14)
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In order to show that v satisfies the wave equation, we first conclude that

∂2v

∂t2
(t,x) =

1

t

∂

∂t
{t2∂H

∂t
(t,x)} (2.3.15)

from the definition of v. On the other hand

∂H

∂t
(t,x) =

1

4πt2

∫

B(t,x)

(∆h)(y) d3y =
1

4πt2

∫ t

0

∮

∂B(ϑ,x)

(∆h)(y) dS(y) dϑ

(2.3.16)

holds due to the first part of the Lemma, and therefore

∂2v

∂t2
(t,x) =

1

4πt

∮

∂B(t,x)

(∆h)(y) dS(y) = (∆v)(t,x) . (2.3.17)

We obtain that v(t,x) = tH(t,x) as well as w(t,x) = tG(t,x) are both
solutions of the wave equation and that u(t,x) = v(t,x) + ∂w

∂t
(t,x) is the

desired Kirchhoff-solution of the initial value problem (2.3.1).

2.4 Solution of the inhomogeneous wave equa-

tion in three space dimensions, retarded

potentials

In this section we recall the so called principle of Duhamel in order to reduce
an inhomogeneous initial value problem for the wave equation to the homoge-
neous case that we have solved by Kirchhoff’s formula in the previous section.

Here we consider the initial value problem

∂2u

∂t2
(t,x) − (∆u)(t,x) = f(t,x), t > 0, x ∈ R

3

(2.4.1)

u(0, x) = 0,
∂u

∂t
(0,x) = 0, x ∈ R

3

for a given C1-function f : R
+
0 × R3 → R.

In order to describe the effects of retardation in time for the wave propagation
we choose a new initial time s ≥ 0 as a fixed parameter and solve the following
homogeneous initial value problem for t ≥ s instead of (2.4.1):

∂2v

∂t2
(s, t,x) − (∆v)(s, t,x) = 0, t > s, x ∈ R

3

(2.4.2)

v(s, s,x) = 0,
∂v

∂t
(s, s,x) = f(s,x), x ∈ R

3 .
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The solution v = v(s, t,x), which is defined for t ≥ s and x ∈ R3, is given by
Kirchhoff’s formula in the case t > s:

v(s, t,x) =
1

4π

∮

∂B(t−s,x)

f(s,y)

t− s
dS(y) . (2.4.3)

Then Duhamel’s principle says that the solution u = u(t,x) of the inhomo-
geneous problem is given by the integral

u(t,x) =

∫ t

0

v(s, t,x) ds . (2.4.4)

Here we check this statement, which has several generalizations to other
applications, by a simple straightforward calculation: Due to the first initial
condition v(t, t,x) = 0 in (2.4.2) we obtain from (2.4.4)

∂u

∂t
(t,x) =

∫ t

0

∂v

∂t
(s, t,x) ds (2.4.5)

and due to the second initial condition ∂v
∂t

(t, t,x) = f(t,x) in (2.4.2) there
results

∂2u

∂t2
(t,x) = f(t,x) +

∫ t

0

∂2v

∂t2
(s, t,x) ds . (2.4.6)

But v is a solution of the homogeneous wave equation, and therefore

∂2u

∂t2
(t,x) = f(t,x) + ∆

(
∫ t

0

v(s, t,x) ds

)

= f(t,x) + (∆u)(t,x) (2.4.7)

i.e. u solves the inhomogeneous wave equation in (2.4.1). From (2.4.4) and
(2.4.5) we may read off that also the initial conditions for u in (2.4.1) are
satisfied.

We summarize our results, apply the substitution ϑ = t − s in (2.4.3) and
obtain the following representation for the solution u = u(t,x) of the inho-
mogeneous problem (2.4.1):

u(t,x) =

∫ t

0

ϑ

{

1

4πϑ2

∮

∂B(ϑ,x)

f(t− ϑ,y) dS(y)

}

dϑ

=
1

4π

∫

B(t,x)

f(t− |y − x|,y)

|y − x| d3y . (2.4.8)

The last integral on the right-hand side is called a retarded potential. It will
be used in Section 3.6 for the calculation of the electromagnetic potentials of
a single charged particle.
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Chapter 3

Maxwell’s Equations

James Clark Maxwell (1831-1879) presented his theory of electromagnetism
in 1864. His equations are invariant with respect to Lorentz coordinate trans-
formations, which are linear coordinate transformations of time and space
that also leave the speed of light invariant. Maxwell’s theory finally gave
raise to the replacement of Newton’s classical mechanics by the Lorentz in-
variant mechanics of special relativity mainly published in Einstein’s famous
papers [20], [21] from 1905.

After we have introduced Maxwell’s equations in a simple form in Section
3.2 by using the physical units presented in Section 3.1, we rewrite them as
linear wave equations which can be solved using the methods of Chapter 2.
This is done in Section 3.3 in terms of the so called potential functions. In
the next three sections we present important examples, and in Section 3.7 we
derive the balance laws of electrodynamics directly from Maxwell’s equations.
Section 3.8 is reserved for a detailed study of Lorentz transformations. This
study is used in Section 3.9 in order to develop the tensor calculus of special
relativity and to write electromagnetism in a manifest Lorentz invariant form.

This chaper is of interest on its own, but it also provides the necessary tools
for the relativistic kinetic theory and the relativistic Euler equations pre-
sented in Chapter 4.

Important input for this chapter came from the textbooks of Weinberg [48],
Landau-Lifschitz [36] and Streater-Wightman [46], but also from Weyl’s book
[49]. The nice general introduction to Hermann Weyl’s scientific work in
[45] originates from a DMV seminar (Deutsche Mathematiker-Vereinigung)
at Schloss Reisensburg near Günzburg. I also mention useful and inspiring
lecture manuscripts of Wolfgang Dreyer (WIAS, Berlin) on special physical
basic topics held at the TU Berlin.
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3.1 Physical units and fundamental constants

We prescribe the following four standard basic units:

1) 1 m is the unit meter for the length,

2) 1 kg is the unit kilogram for the mass,

3) 1 s is the unit second for the time,

4) 1 A is the unit Ampere for the current strength.

The other units are formed by these basic units, for example

5) 1 N = kg m
s2

is the unit Newton for the force,

6) 1 J = kg m2

s2
= N m is the unit Joule for the energy,

7) 1 C = As is the unit Coulomb for the charge,

8) 1 V = kgm2

As3
= J

C
is the unit Volt for the voltage.

In the following we shall only use these units.

In order to formulate Maxwell’s equations and give an interpretation for these
equations we need the following physical constants:

c = 299792458
m

s
(3.1.1)

is the speed of light,
e = 1, 6021917 · 10−19 C (3.1.2)

the electronic charge.

ε0 = 8.854188 · 10−12 As

Vm
, µ0 = 4π · 10−7 V s

Am
(3.1.3)

are called electric permittivity and magnetic permeability, respectively, where
the index 0 indicates that both quantities are related to the vacuum. These
quantities are related by the following important equation:

ε0 · µ0 =
1

c2
. (3.1.4)
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3.2 Formulation of Maxwell’s equations,

electromagnetic forces

Maxwell’s equations for the electric and magnetic fields E, B produced by a
given charge density ρ and a given current density j may be written down in
the following form:

∇ · E = ρ , (3.2.1)

−1

c

∂E

∂t
+ ∇× B =

1

c
j , (3.2.2)

∇ · B = 0 , (3.2.3)

+
1

c

∂B

∂t
+ ∇× E = 0 . (3.2.4)

Here the charge density ρ = ρ(t,x) and the current density j = j(t,x) are
defined due to the usual technical conventions with the units C

m3 for ρ and
the units A

m2 for j.

However, we have redefined the electric field E = E(t,x) and the magnetic
field B = B(t,x) in such a way that the electromagnetic force F acting on a
particle with charge q and velocity v is given by

F =
q

ε0

(

E +
v

c
× B

)

. (3.2.5)

Then both fields are measured in the new units C
m2 . The advantage of this

notation is that now Maxwell’s equations are free from undesirable numbers
4π and constants ε0, µ0. For the conventional electrical field E′ and the
conventional magnetic field B′ the electromagnetic force F on the left hand
side in (3.2.5) takes the usual form

F = q (E′ + v × B′) . (3.2.6)

We compare (3.2.5) with (3.2.6) and use (3.1.4) in order to conclude that

E′ =
1

ε0
E , B′ =

1

cε0
B = cµ0 B . (3.2.7)

We note that ρ and 1
c
j on the right hand side of the first two inhomogeneous

Maxwell equations are measured in the same units. If we multiply these
quatities with the velocity c of light, we obtain the electromagnetic four-
vector (ρc , j), which is important in the theory of relativity.
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3.3 Potentials for Maxwell’s equations

In this section we rewrite Maxwell’s equations (3.2.1)-(3.2.4) as wave equa-
tions for the so called electromagnetic potential functions. First we take the
divergence of (3.2.2) in order to conclude with (3.2.3) that

−1

c

∂(∇ · E)

∂t
=

1

c
∇ · j . (3.3.1)

Taking into account (3.2.1) we obtain the continuity equation for the
charge- and current density:

∂ρ

∂t
+ ∇ · j = 0 . (3.3.2)

This conservation law is a consequence of (3.2.1)-(3.2.3), i.e. (3.3.2) is a
necessary condition in order to solve Maxwell’s equations. This means that
ρ and j may not be chosen independently.

Due to the third Maxwellian equation ∇·B = 0 we make the following ansatz:

B = ∇× A . (3.3.3)

The so called vector potential A = A(t,x) is in general a function de-
pending on time and space. Using this ansatz for B we rewrite (3.2.4) in the
following form:

∇× (E +
1

c

∂A

∂t
) = 0 . (3.3.4)

We conclude that E + 1
c
∂A
∂t

must be a gradient field. There results the so
called scalar potential ϕ = ϕ(t,x) which satisfies the following equation:

E = −∇ϕ− 1

c

∂A

∂t
. (3.3.5)

Now we replace the fields E and B in Maxwell’s equations by the derivatives
of the potentials (3.3.3), (3.3.5) and obtain by a straight forward calculation:

2ϕ− 1

c

∂

∂t
(
1

c

∂ϕ

∂t
+ ∇ · A) =ρ , (3.3.6)

2A + ∇(
1

c

∂ϕ

∂t
+ ∇ · A) =

1

c
j . (3.3.7)

Here 2 = 1
c2

∂2

∂t2
− ∆ is an abbreviation for d‘Alembert’s wave operator.

Next we use the following freedom to redefine the potentials ϕ and A: Let
λ = λ(t,x) be a smooth function of time and space and replace ϕ and A by
the new potentials via the “gauge transformation”

ϕ̃ = ϕ− 1

c

∂λ

∂t
, (3.3.8)

Ã = A + ∇λ . (3.3.9)
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Then the electromagnetic field given by (3.3.3) and (3.3.5) is independent of
λ. We solve the following inhomogeneous wave equation for λ:

2λ =
1

c

∂ϕ

∂t
+ ∇ · A (3.3.10)

with the initial conditions

λ(0,x) = λ0(x) ,
∂λ

∂t
(0,x) = 0 , (3.3.11)

where λ0 = λ0(x) is a pure space depending function. The new potentials
satisfy the constraint 1

c
∂ϕ̃
∂t

+∇·Ã = 0 and the initial condition Ã0 = A0+∇λ0.
Therefore we may require the so called constraint of Lorentz without loss of
generality

1

c

∂ϕ

∂t
+ ∇ · A = 0 (3.3.12)

as well as the following restriction of the initial condition:

∂ϕ

∂t
(0,x) = ∇ · A0(x) = 0 . (3.3.13)

This restriction may also be imposed without loss of generality due to the
theorem of Helmholtz, using the freedom to choose the function λ0 in (3.3.11)
in such a way that

A0 = ∇× F0 . (3.3.14)

with a vector field F0 = F0(x) depending only on x, so that ∇ · A0 = 0
and from the constraint of Lorentz ∂ϕ

∂t
(0,x) = 0. From (3.3.6), (3.3.7) and

(3.3.12) there finally result decoupled wave equations for ϕ and A:

2ϕ = ρ , 2A =
1

c
j . (3.3.15)

3.4 Planar light waves in the vacuum

In this section we consider planar wave solutions of Maxwell’s equations
for ρ = 0, j = 0, which describe the propagation of light in the vacuum.
Maxwell’s equations reduce to

∇ · E = 0 , ∇ · B = 0 , (3.4.1)

−1

c

∂E

∂t
+ ∇× B = 0 , +

1

c

∂B

∂t
+ ∇× E = 0 . (3.4.2)

For the scalar potential ϕ and the vector potential A we make the ansatz

ϕ(t,x) = 0 , A(t,x) = A0 cos(ωt− k · x) , (3.4.3)
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where the constant quantities ω ≥ 0, A0,k ∈ R3 \ {0} must be restricted by
simple geometric conditions in order to satisfy Maxwell’s equations (3.4.1)
and (3.4.2). First we determine these restrictions: Using equations (3.3.5)
and (3.3.3) in order to determine the electromagnetic field from the poten-
tials, Maxwell’s equations reduce to the constraint of Lorentz and the homo-
geneous wave equations for the potentials:

1

c

∂ϕ

∂t
+ ∇ · A = 0 (3.4.4)

2ϕ = 0 , 2A = 0 . (3.4.5)

Since the scalar potential vanishs identically, equations (3.4.4) and (3.4.5)
may be summarized in the form

∇ · A = 0 , 2A = 0 . (3.4.6)

We use the ansatz in order to evaluate

∇ · A = (A0 · k) sin(ωt− k · x) , 2A = −
(

ω2

c2
− k · k

)

A . (3.4.7)

We only look for solutions of the electromagnetic field which do not vanish
everywhere in time and space, and therefore we compare (3.4.6) with (3.4.7)
in order to obtain

A0 · k = 0 , |A0| > 0 , ω = c |k| > 0 . (3.4.8)

The corresponding electromagnetic field is given by

E(t,x) = |k|A0 sin(ωt− k · x) , (3.4.9)

B(t,x) = k × A0 sin(ωt− k · x) , (3.4.10)

where
|E| = |B| , E · B = 0 . (3.4.11)
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3.5 Electromagnetic resonance in a box and

the Helmholtz-equations

Since Maxwell’s equations are linear, we can make the following ansatz for a
complex electromagnetic potential describing a field which is changing perio-
dically in time with a constant frequency ω

ϕ(t,x) = 0 , A(t,x) = eiωtA0(x) . (3.5.1)

In order to get back the physical quantities one can split the resulting complex
solutions in its real- and imaginary part and then form linear combinations
with real coefficients. Then Maxwell’s equations reduce to the following
conditions between the frequency ω and the vector potential A0

∇ · A0 = 0 , −∆A0 = ω2A0 . (3.5.2)

These are the well known Helmholtz-equations for the monochromatic time-
periodic solutions of Maxwell’s equations in the vacuum. From the potential
A we obtain the complex electromagnetic field E and B according to (3.3.3),
(3.3.5), and for these quantities Maxwell’s equations reduce to

∇× E = −i ω
c

B , ∇× B = i
ω

c
E . (3.5.3)

It is important to note that for any solution with frequency ω there corres-
ponds a second solution with frequency −ω. We solve these equations with
real numbers a1, a2, a3 > 0 for a box Ω = [0, a1] × [0, a2] × [0, a3], where
the boundary ∂Ω is formed by ideal conducting walls, i.e. we prescribe the
boundary conditions

ν × E|∂Ω = 0 , ν · B|∂Ω = 0 . (3.5.4)

Here ν is the outer normal vector field on ∂Ω. Let n1, n2, n3 be non-negative
integer numbers such that at most one of them is zero and define the wave-
vector k = (kx, ky, kz)

T ∈ R3 and the frequency ω by

kx =
πn1

a1
, ky =

πn2

a2
, kz =

πn3

a3
, ω = ±c

√

k2
x + k2

y + k2
z . (3.5.5)

Then any complex vector C = (Cx, Cy, Cz)
T ∈ C

3 \ {0} orthogonal on k, i.e.
k ·C = 0, gives a solution for the vector-potential A according to

Ax(t, x, y, z) = Cx cos(kxx) sin(kyy) sin(kzz) e
iωt ,

Ay(t, x, y, z) = Cy sin(kxx) cos(kyy) sin(kzz) e
iωt , (3.5.6)

Az(t, x, y, z) = Cz sin(kxx) sin(kyy) cos(kzz) e
iωt .
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If we define the vector C′ = k×C, then the resulting complex electromagnetic
field is

E(t, x, y, z) = − i
ω

c
A(t, x, y, z) ,

Bx(t, x, y, z) =C ′
x sin(kxx) cos(kyy) cos(kzz) e

iωt ,

By(t, x, y, z) =C ′
y cos(kxx) sin(kyy) cos(kzz) e

iωt , (3.5.7)

Bz(t, x, y, z) =C ′
z cos(kxx) cos(kyy) sin(kzz) e

iωt .

It satisfies Maxwell’s equations in the vacuum as well as the boundary condi-
tions (3.5.4). In the case that all three wave-numbers n1, n2, n3 are positive
we obtain for a given frequency ω two linear independent complex solutions,
and thus the solution is twofold degenerate. If one of the wave numbers is
zero, then the solution is not degenerate and thus uniquely determined up to
a given nonzero complex factor. If more than one wave number is zero, then
the electromagnetic field vanishes.

We can also write down the real solutions for the electromagnetic field in a
completely symmetric way. In order to do this we first consider the degene-
rate case n1, n2, n3 ∈ N and choose instead of C two real polarization vectors
ε, ε̃ ∈ R3 satisfying the orthonormality conditions

|ε| = |ε̃| = 1 , ε · ε̃ = 0 , ε× ε̃ =
1

|k|k . (3.5.8)

Here k and ω are still fixed according to (3.5.5). Now we choose two real
parameters a, b with a2 + b2 > 0 which are multiplied with the physical unit
of the electromagnetic field, two angles ϕ, ψ ∈ [0, 2π) and define the two
three-vectors a(t) = (ax(t), ay(t), az(t))

T , b(t) = (bx(t), by(t), bz(t))
T with

a(t) = + a (cos(ϕ) ε− sin(ϕ) ε̃) cos(ωt) + b (cos(ψ) ε− sin(ψ) ε̃) sin(ωt) ,

b(t) = − a (sin(ϕ) ε+ cos(ϕ) ε̃) sin(ωt) + b (sin(ψ) ε+ cos(ψ) ε̃) cos(ωt) ,

1

c
ȧ(t) = − k × b(t) ,

1

c
ḃ(t) = −k × a(t) , k · a(t) = k · b(t) = 0 . (3.5.9)

We obtain the following degenerate solution, where we have omitted the time-
and spatial arguments of the functions E, B, a, b,

Ex =ax cos(kxx) sin(kyy) sin(kzz) , Bx =bx sin(kxx) cos(kyy) cos(kzz) ,

Ey =ay sin(kxx) cos(kyy) sin(kzz) , By =by cos(kxx) sin(kyy) cos(kzz) ,

Ez =az sin(kxx) sin(kyy) cos(kzz) , Bz =bz cos(kxx) cos(kyy) sin(kzz) .
(3.5.10)

It is interesting to note that a · b = 0 and therefore E · B = 0, as for the
planar light waves studied in the last section.
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For the nondegenerate case we consider only two real parameters a, b and
restrict ourselves to the case n3 = 0. Then we obtain a solution depending
only on t, x and y, namely

Ex = Ey = 0 , Ez = [a cos(ωt) − b sin(ωt)] sin(kxx) sin(kyy) , (3.5.11)

Bx = − ky
|k| [a sin(ωt) + b cos(ωt)] sin(kxx) cos(kyy) ,

By = +
kx
|k| [a sin(ωt) + b cos(ωt)] cos(kxx) sin(kyy) , (3.5.12)

Bz =0 .

For all real parametrizations it is sufficient to consider exclusively positive
frequencies ω > 0.

It is important for technical applications, for example for micro-waves, to
recover not only the explicit resonance solutions for a box, but also for some
other simple geometries. This is indeed possible for further geometries like
the sphere and the cylinder.

3.6 The electromagnetic field of a single

charged particle

Next we solve Maxwell’s equations for a single point-charge q with position

x = γ(t) (3.6.1)

at time t, where γ : R → R
3 is a given, three times differentiable curve which

satisfies

sup
t∈R

|γ̇(t)|
c

≤ η < 1 . (3.6.2)

Using the Dirac-Delta point measure, the charge- and current density are
often written in the distributional form

ρ(t,x) = q δ3(x − γ(t)) , j(t,x) = q γ̇(t) δ3(x − γ(t)) . (3.6.3)

In order to solve Maxwell’s equations for this example, we need the so called
retardation function ϑ̂ : R

4 → R, which is defined as follows: We first
note that for any fixed (t,x) ∈ R4 the expression F (t,x, ϑ) := t− 1

c
|x−γ(ϑ)|

is a contractive function with respect to ϑ, which is a simple consequence
of (3.6.2). Using Banach’s Fix Point Theorem, we conclude that there is a
unique solution ϑ = ϑ̂(t,x) of the equation

ϑ = t− 1

c
|x − γ(ϑ)| , (3.6.4)
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which just gives the function ϑ̂. It is called retardation function because
ϑ̂(t,x) < t denotes the time at which a light signal starts on the world-line of
the charged particle such that it reaches the space-point x at the later time
t. We present two important properties of the retardation function.

A) The parameter representation of the function ϑ̂:
Let be ϑ, d ∈ R with d ≥ 0 and n ∈ R3 with |n| = 1. Then

ϑ̂(ϑ + d, γ(ϑ) + c dn) = ϑ . (3.6.5)

B) Iterative scheme for the function ϑ̂:
Using the fix point equation (3.6.4) and the contractivity of F (t,x, ϑ) =
t− 1

c
|x − γ(ϑ)| with respect to ϑ, we obtain for any fixed (t,x) ∈ R4:

ϑ̂(t,x) = lim
n→∞

ϑn , (3.6.6)

where ϑ0 := t and ϑn+1 := t− 1
c
|γ(ϑn) − x|.

Next we use the Dirac-Delta expressions (3.6.3) for ρ and j and the rep-
resentation formula (2.4.8) in order to make the following ansatz for the
electromagnetic potentials of the radiating charge:

ϕ(t,x) =
q

4π

∫

R3

δ3(y − γ(t− 1
c
|y − x|))

|y − x| d3y , (3.6.7)

A(t,x) =
q

4πc

∫

R3

γ̇(t− 1

c
|y − x|)δ

3(y − γ(t− 1
c
|y − x|))

|y − x| d3y . (3.6.8)

The integration domain in (2.4.8) has to be replaced by the condition |y−x| ≤
c(t− t0) if the initial time is t0. In our case we have t0 = −∞, and therefore
the integration domain is R3.

In order to show that the integrals (3.6.7), (3.6.8) are well defined and ex-
plicitly solvable, we need the following two propositions:

Proposition 3.1. For every given t ∈ R, x, z ∈ R3 there is exactly one
solution y ∈ R

3 of the equation

z = y − γ(t− 1

c
|y − x|) ,

which is given by
y = z + γ(ϑ̂(t,x − z)) ,

where ϑ̂ is given by (3.6.6).
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Proof: For fixed t ∈ R, x, z ∈ R3 we define the function Ψ : R3 → R3 by

Ψ(y) := z + γ(t− 1

c
|y − x|) (3.6.9)

and show the contractivity of Ψ:

|Ψ(y1) − Ψ(y2)| =

∣

∣

∣

∣

γ(t− 1

c
|y1 − x|) − γ(t− 1

c
|y2 − x|)

∣

∣

∣

∣

≤ sup
t∈R

|γ̇(t)|
∣

∣

∣

∣

(t− 1

c
|y1 − x|) − (t− 1

c
|y2 − x|)

∣

∣

∣

∣

≤ sup
t∈R

|γ̇(t)|
c

∣

∣

∣
|y1 − x| − |y2 − x|

∣

∣

∣

≤η |y1 − y2| ,

where 0 ≤ η < 1 is given by (3.6.2). Banach’s Fix Point Theorem shows that
y = z + γ(t − 1

c
|y − x|) has exactly one solution y ∈ R3. In order to prove

the representation of this solution by the retardation function we now define
y := z + γ(ϑ̂(t,x − z)) and conclude that

ϑ̂(t,x − z) = t− 1

c
|γ(ϑ̂(t,x − z)) − (x − z)|

=t− 1

c
|(y − z) − (x − z)|

=t− 1

c
|y − x| ,

and therefore

y − z = γ(ϑ̂(t,x − z)) = γ(t− 1

c
|y − x|) ,

which proves the Proposition 3.1.

Proposition 3.2. (a) For t ∈ R and x ∈ R
3 we define

N(t,x) := c(t− ϑ̂(t,x)) − γ̇(ϑ̂(t,x))

c
· (x − γ(ϑ̂(t,x))) .

Then N(t,x) ≥ 0 and N(t,x) = 0 ⇔ x = γ(t) .

(b) The partial derivatives of ϑ̂ are given by

∂ϑ̂

∂t
(t,x) = c

t− ϑ̂(t,x)

N(t,x)
, ∇ϑ̂(t,x) = −1

c

x − γ(ϑ̂(t,x))

N(t,x)
.

(c) There the following equation holds

∂ϑ̂

∂t
+ ∇ · γ(ϑ̂) = 1 .
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(d) The transformation given for fixed t ∈ R, x ∈ R3 by

y(z) := z + γ(ϑ̂(t,x − z))

has the Jacobian determinant
∣

∣

∣

∣

∂y

∂z

∣

∣

∣

∣

(z) =
∂ϑ̂

∂t
(t,x − z) .

Proof: We first recall that

t− ϑ̂(t,x) =
1

c
|γ(ϑ̂(t,x)) − x| , (3.6.10)

which implies the inequality

ϑ̂(t,x) ≤ t . (3.6.11)

In order to show (a) we first consider the case ϑ̂(t,x) = t and conclude from
(3.6.10) that

x = γ(ϑ̂(t,x)) = γ(t) , N(t,x) = 0 .

Due to (3.6.11) there remains to study the case t − ϑ̂(t,x) > 0. Then we
obtain from the definition of N , (3.6.10), the Cauchy-Schwarz inequality and
(3.6.2):

N(t,x)

c(t− ϑ̂(t,x))
= 1+

γ̇(ϑ̂(t,x))

c
· γ(ϑ̂(t,x)) − x

|γ(ϑ̂(t,x)) − x|
≥ 1− |γ̇(ϑ̂(t,x)|

c
≥ 1−η > 0 .

We have thus confirmed (a).

(b) We differentiate (3.6.10) with respect to t and obtain

1 − ∂ϑ̂

∂t
(t,x) =

γ(ϑ̂(t,x)) − x

|γ(ϑ̂(t,x)) − x|
· γ̇(ϑ̂(t,x))

c

∂ϑ̂

∂t
(t,x)

=
γ(ϑ̂(t,x)) − x

t− ϑ̂(t,x)
· γ̇(ϑ̂(t,x))

c2
∂ϑ̂

∂t
(t,x) .

We solve this equation with respect to ∂ϑ̂
∂t

and obtain the first formula in

Proposition 3.2(b). The spatial derivatives of ϑ̂ are obtained by a quite simi-
lar calculation.

(c) is a simple consequence of (b):

∂ϑ̂

∂t
+ ∇ · γ(ϑ̂) =c

t− ϑ̂

N
− γ̇(ϑ̂) · x − γ(ϑ̂)

cN
= 1 .
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(d) In order to calculate the Jacobian matrix of the transformation

z → y(z) := z + γ(ϑ̂(t,x − z)) ,

we introduce the following notations for the components of the quantities

x = (x1, x2, x3)T , y = (y1, y2, y3)T , z = (z1, z2, z3)T , γ̇ = (γ̇1, γ̇2, γ̇3)T .

Moreover we introduce the abbreviations

ak := γ̇k(ϑ̂(t,x − z)) , bk := − ∂ϑ̂

∂xk
(t,x − z) , k = 1, 2, 3 .

Here the quantities ak, bk are not the spatial components of covariant and
contravariant Lorentz invariant four-vectors, which will be defined later. We
obtain for any fixed t ∈ R, x ∈ R3 due to the third part of Proposition 3.2:

∣

∣

∣

∣

∂y

∂z

∣

∣

∣

∣

(z) =

∣

∣

∣

∣

∣

∣

1 + a1b1 a1b2 a1b3
a2b1 1 + a2b2 a2b3
a3b1 a3b2 1 + a3b3

∣

∣

∣

∣

∣

∣

=1 +
3
∑

k=1

akbk = 1 −
3
∑

k=1

γ̇k(ϑ̂(t,x − z))
∂ϑ̂

∂xk
(t,x − z)

=
∂ϑ̂

∂t
(t,x − z) .

Thus we have proved Proposition 3.2.

Now we are able to evaluate the integral expressions (3.6.7) and (3.6.8) for
ϕ and A by applying the integral substitution

y → z = y − γ(t− 1

c
|y − x|) .

In order to evaluate the Dirac-Delta expressions we have to put z = 0, where
Proposition 3.1 leads to

y = γ(ϑ̂(t,x)) .

We also obtain due to (3.6.4) that

|x − γ(ϑ̂(t,x))| = c (t− ϑ̂(t,x)) ,

and therefore ϕ, A may be rewritten due to Proposition 3.2 in the form

ϕ(t,x) =
q

4π

1

N(t,x)
, A(t,x) =

q

4πc

γ̇(ϑ̂(t,x))

N(t,x)
. (3.6.12)

These are the famous Liénard-Wiechert potentials. We have obtained
them from the retarded potential formula (2.4.8) in Section 2.4 in a heuristic
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way, although we have not justified the validity of (2.4.8) for a Dirac-Delta
point measure under the integral. Thus it remains to show that ϕ and A
are the electromagnetic potentials for the field produced by the single point
charge. This is stated in the following

Proposition 3.3. We abbreviate d‘Alembert’s wave operator by
2 = 1

c2
∂2

∂t2
− ∆. The quantities ϕ and A defined for x 6= γ(t) in (3.6.12)

satisfy the following differential equations:

2ϕ = 0 , 2A = 0 ,
1

c

∂ϕ

∂t
+ ∇ · A = 0 .

They are electromagnetic potentials for the fields

E(t,x) =
q

4πc2
1

|x − γ|

[

γ̈ · n
(1 − n·γ̇

c
)3

(

n − γ̇

c

)

− γ̈

(1 − n·γ̇
c

)2

]

+

+
q

4π

1

|x − γ|2
1 − γ̇2

c2

(1 − n·γ̇
c

)3

(

n − γ̇

c

)

,

B(t,x) =
q

4πc2
1

|x − γ|

[

γ̈ · n
(1 − n·γ̇

c
)3

γ̇

c
× n +

γ̈ × n

(1 − n·γ̇
c

)2

]

+

+
q

4π

1

|x − γ|2
1 − γ̇2

c2

(1 − n·γ̇
c

)3

γ̇

c
× n ,

where the symbols n, γ, γ̇, γ̈ are abbreviations for

x − γ(ϑ̂(t,x))

|x − γ(ϑ̂(t,x))|
, γ(ϑ̂(t,x)) , γ̇(ϑ̂(t,x)) , γ̈(ϑ̂(t,x)) ∈ R

3 ,

respectively.

Remarks:

(i) If we consider a single point charge at rest with γ(t) = 0 for all t ∈ R,
then we immediately obtain the special electrostatic case

E(t,x) =
q

4π

x

|x|3 , B(t,x) = 0 . (3.6.13)

(ii) We can simply write the magnetic field in the form

B(t,x) = n × E(t,x) (3.6.14)

with the abbreviation n = n(t,x) given above.
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(iii) The first term for E and B involving the second derivative of γ is due to
the so called far-field, since it only decays with the factor 1/|x− γ|, in
contrast to the second term, which decays faster for increasing distance
due to the factor 1/|x− γ|2. We call them Efar, Bfar, respectively:

Efar(t,x) =
q

4πc2
1

|x − γ|

[

γ̈ · n
(1 − n·γ̇

c
)3

(

n − γ̇

c

)

− γ̈

(1 − n·γ̇
c

)2

]

,

(3.6.15)

Bfar(t,x) =
q

4πc2
1

|x − γ|

[

γ̈ · n
(1 − n·γ̇

c
)3

γ̇

c
× n +

γ̈ × n

(1 − n·γ̇
c

)2

]

.

(3.6.16)

Between Efar, Bfar and n there hold the nice relations

Bfar = +n × Efar , Efar = −n × Bfar , (3.6.17)

and Efar, Bfar are perpendicular to n:

Efar · n = 0 , B · n = Bfar · n = 0 . (3.6.18)

But it is important to note that Efar, Bfar itself will not satisfy
Maxwell’s equations. Nevertheless, Efar, Bfar form an antisymmetric
tensor field like E and B. The tensor calculus will be considered later.

Proof of Proposition 3.3: We first calculate the partial derivatives of N ,
where we make use of Proposition 3.2 and of the abbreviations defined above
for γ, γ̇, γ̈, and so on. The spatial components for the position are denoted
by x = (x1, x2, x3)T , which will be an appropriate notation for the tensor
calculus introduced later:

1

c

∂N

∂t
= 1 − |x − γ|

N

[

1 − γ̇2 − γ̈ · (x − γ)

c2

]

, (3.6.19)

∂N

∂xk
= − 1

c
γ̇k +

xk − γk

N

[

1 − γ̇2 − γ̈ · (x − γ)

c2

]

, k = 1, 2, 3 . (3.6.20)

In order to avoid the often occuring factor q
4π

in front of the electromagnetic
potentials we introduce the new quantities

ϕ̃ :=
1

N
, Ãi :=

γ̇i

cN
(3.6.21)

with the partial derivatives

∂ϕ̃

∂t
= − 1

N2

∂N

∂t
,
∂ϕ̃

∂xk
= − 1

N2

∂N

∂xk
, (3.6.22)
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∂Ãi

∂t
=
γ̈i|x − γ| − γ̇i ∂N

∂t

cN2
,
∂Ãi

∂xk
= − γ̈

i(xk − γk) + c γ̇i ∂N
∂xk

c2N2
, (3.6.23)

where we made use of Proposition 3.2 and c (t− ϑ̂) = |x − γ| . The Lorentz-
condition 1

c
∂ϕ
∂t

+ ∇ · A = 0 can now be checked by a straight forward cal-
culation, using the formulas (3.6.19)-(3.6.23). In the same way we can also
establish 2ϕ = 0, 2A = 0 without making any use of the retardation for-
mulas (3.6.7) and (3.6.8), but this requires more effort. Therefore ϕ, A are
electromagnetic potentials, and the corresponding electromagnetic fields re-
sult from (3.6.12), (3.3.3), (3.3.5).

3.7 Balance laws

The energy density W of the electromagnetic field is given by

W =
E2 + B2

2ε0

. (3.7.1)

We obtain from the second and the fourth Maxwellian equation:

∂W

∂t
=

c

ε0

(

E · 1

c

∂E

∂t
+ B · 1

c

∂B

∂t

)

=
c

ε0

(

E · (∇× B) − 1

c
E · j − B · (∇× E)

)

=
c

ε0

(

−∇ · (E × B) − 1

c
E · j

)

= −c2∇ ·
(

E × B

cε0

)

− 1

ε0
E · j .

There results the energy balance

∂W

∂t
+ c2∇ · P +

1

ε0
E · j = 0 . (3.7.2)

with the electromagnetic momentum density P given by

P =
E × B

cε0

. (3.7.3)

The quantity 1
ε0

E ·j is the energy density per time unit of the electromagnetic
field. Here only the electric field acts on the charged particles, because the
magnetic part of the force is perpendicular to j. In order to derive the
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momentum balance we need the following calculation, which does not make
use of Maxwell’s equations:

(∇× B) × B =





∂yBz − ∂zBy

∂zBx − ∂xBz

∂xBy − ∂yBx



×





Bx

By

Bz



 =

=





(∂zBx)Bz − (∂xBz)Bz − (∂xBy)By + (∂yBx)By

(∂xBy)Bx − (∂yBx)Bx − (∂yBz)Bz + (∂zBy)Bz

(∂yBz)By − (∂zBy)By − (∂zBx)Bx + (∂xBz)Bx



 =

=







∂x(
B2

x−B2
y−B2

z

2
) + ∂y(BxBy) + ∂z(BxBz)

∂x(ByBx) + ∂y(
−B2

x+B2
y−B2

z

2
) + ∂z(ByBz)

∂x(BzBx) + ∂y(BzBy) + ∂z(
−B2

x−B2
y+B2

z

2
)






−





(∂xBx)Bx + (∂yBy)Bx + (∂zBz)Bx

(∂xBx)By + (∂yBy)By + (∂zBz)By

(∂xBx)Bz + (∂yBy)Bz + (∂zBz)Bz



 .

An analogous result holds for (∇× E) × E. Now we obtain from Maxwell’s
equations:

∂

∂t

[E × B

cε0

]

=
1

ε0

[

1

c

∂E

∂t
× B + E× 1

c

∂B

∂t

]

=
1

ε0

[

(

∇× B − 1

c
j
)

× B + E× (−∇× E)

]

=
1

ε0

[

(∇× B) × B + (∇× E) × E

]

− 1

ε0

j

c
× B

= −





∂xT
11 + ∂yT

12 + ∂zT
13

∂xT
21 + ∂yT

22 + ∂zT
23

∂xT
31 + ∂yT

32 + ∂zT
33



− 1

ε0

(∇ · B)B− 1

ε0

(∇ · E)E− 1

ε0

j

c
× B

= −





∂xT
11 + ∂yT

12 + ∂zT
13

∂xT
21 + ∂yT

22 + ∂zT
23

∂xT
31 + ∂yT

32 + ∂zT
33



− 1

ε0

(

ρE +
j

c
× B

)

,

where Tmn denote the spatial components of the opposite Maxwellian stress

tensor T and E = (E1, E2, E3) = (Ex, Ey, Ez), B = (B1, B2, B3) = (Bx, By, Bz),

Tmn =
1

ε0

[

E2 + B2

2
δmn − EmEn − BmBn

]

. (3.7.4)

By m,n = 1, 2, 3 we denote exclusively spatial indices. The balance laws for
energy and momentum take the form

1

c

∂W

∂t
+ ∇ · (cP) +

1

ε0
E · j

c
= 0 , (3.7.5)

1

c

∂

∂t
(cP) + ∇ · T +

1

ε0

(

ρE +
j

c
× B

)

= 0 . (3.7.6)
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The momentum balance contains the force density 1
ε0

(

ρE+ j

c
×B

)

, which is

in perfect agreement with the formula (3.2.5) for the electromagnetic force.
The formula (3.2.5) was originally used in order to determine the electromag-
netic field. Actually, here the corresponding force density is mathematically
derived from Maxwell’s equations in the momentum balance! Recall that we
have redefined the electromagnetic field in such a way that it is connected to
the conventional electromagnetic field E′, B′ by equations (3.2.7). However,
the technical conventions for all the other physical quantities are untouched.

3.8 Lorentz transformations

One of the main feature of Maxwell’s equations is that they reduce to linear
wave equations for the electromagnetic potentials. In this section we deter-
mine the linear coordinate transformations of time and space which leave
the wave equation invariant and show that these are exactly the Lorentz
transformations which leave the Einstein-Minkowski pseudo-metric invari-
ant. Moreover, we study the Lorentz-transformations in detail and describe
how we can construct them in a very simple way.

The time-space coordinates may be rewritten in terms of a four-quantity
x̃ = (x0, x1, x2, x3)T according to

x0 = ct, x1 = x, x2 = y, x3 = z . (3.8.1)

x̃ describes an event in time and space. We may identify x̃ with this event.
We need the components of the four-matrix

G =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









, (3.8.2)

which will be denoted by

gµν = gµν =







+1 , µ = ν = 0 ,
−1 , µ = ν = 1, 2, 3 ,
0 , µ 6= ν .

(3.8.3)

We consider the d’Alembertian wave operator

2 =
1

c2
∂2

∂t2
− ∆ = gµν

∂2

∂xµ∂xν
, (3.8.4)

acting on a time and space depending field ψ(x̃).
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Here a Greek index like µ, ν will always run over the four numbers 0,1,2,3,
in contrast to the spatial indices, which will be denoted by a Latin letter
like m, n in (3.7.4). In this chapter we make use of Einstein’s summation
convention, i.e. any index, like µ, ν in (3.8.4), that appears twice, once as a
subscript and once as a superscript, is understood to be summed over, if not
otherwise noted.

We are looking for a linear time-space transformation, given by a four-matrix
Λ = (Λµ

ν)µ,ν=0,...,3 with

x̃′ = x̃′(x̃) = Λx̃ , x′µ = Λµ
ν x

ν , (3.8.5)

which leaves the wave operator invariant:

gµν
∂2ψ

∂xµxν
(x̃) = gκλ

∂2ψ̂

∂x′κx′λ
(x̃′) , (3.8.6)

where

ψ̂(x̃′(x̃)) = ψ(x̃) . (3.8.7)

We apply the chain rule on (3.8.7) and obtain due to (3.8.5):

∂ψ

∂xν
(x̃) = Λλ

ν

∂ψ̂

∂x′λ
(x̃′(x̃)) ,

∂2ψ

∂xµ∂xν
(x̃) = Λκ

µ Λλ
ν

∂2ψ̂

∂x′κ∂x′λ
(x̃′(x̃)) .

Now (3.8.6) may be rewritten in the form

gκλ
∂2ψ̂

∂x′κ∂x′λ
(x̃′(x̃)) = gµν Λκ

µ Λλ
ν

∂2ψ̂

∂x′κ∂x′λ
(x̃′(x̃)) .

For a general function ψ this condition is equivalent to the fundamental
matrix equation

G = ΛGΛT . (3.8.8)

Thus Λ leaves the wave operator invariant if and only if (3.8.8) is satisfied.
Next we have to show that this invariance is equivalent to the invariance of
the Einstein-Minkowski pseudo metric Q(x̃), which is given by the following
quadratic form in x̃ = (x0, x1, x2, x3):

Q(x̃) = x̃T G x̃ = (x0)2 − (x1)2 − (x2)2 − (x3)2 . (3.8.9)

Here we replace x̃ by x̃′ = Λ x̃ in (3.8.9) in order to obtain in the new reference
frame

Q′(x̃′) = Q(Λ x̃) = x̃T (ΛT GΛ) x̃ . (3.8.10)
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The pseudo metric is invariant with respect to the transformation Λ, i.e.
Q(Λ x̃) = Q(x̃) for all x̃, if and only if

G = ΛT GΛ . (3.8.11)

Now we prove the following proposition, which states that the conditions
(3.8.8) and (3.8.11) are indeed equivalent for any 4 × 4-matrix Λ.

Proposition 3.4. Define the Minkowskian matrix G as in (3.8.2). Then the
following statements are equivalent for any matrix Λ ∈ R4×4:

(a) G = ΛGΛT , i.e. the matrix Λ leaves the wave operator 2 invariant.

(b) Λ is regular and has the inverse matrix Λ−1 = GΛT G.

(c) G = ΛT GΛ , i.e. the matrix Λ leaves the Einstein-Minkowski pseudo
metric invariant.

Proof: Let 1 be the unit matrix in R4×4. We obtain

G = ΛGΛT ⇔
1 = G2 = Λ (GΛT G) ⇔

Λ−1 = GΛT G ⇔
1 = Λ−1 Λ = GΛT GΛ ⇔
G = G2 ΛT GΛ = ΛT GΛ .

Definition: A constant matrix Λ ∈ R4×4 which satisfies the equivalent condi-
tions (a), (b), (c) in Proposition 3.4 is called a Lorentz-matrix.
A Lorentz-matrix Λ and a constant four-quantity ã ∈ R4 describe a
Lorentz-transformation

x̃ → x̃′ = Λ x̃+ ã , x′µ = Λµ
νx

ν + aµ (3.8.12)

of the four time-space coordinates. The Lorentz-transformation is called
homogeneous if ã = 0.

A famous example is the homogeneous Lorentz-transformation

t′ =
t− v x

c2
√

1 − v2

c2

, x′ =
x− v t
√

1 − v2

c2

, y′ = y , z′ = z (3.8.13)

with velocity v = vx along the x-axis, which reduces for |v| << c to the
Galilean transformation

t′ = t , x′ = x− v t . (3.8.14)
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Later on we will discuss a generalization of this transformation in detail.

Now let us consider two events A and B, represented by

x̃ = (x0, x1, x2, x3) , x̃+ dx̃ = (x0 + dx0, x1 + dx1, x2 + dx2, x3 + dx3) ,

respectively. Note that dx̃ transforms linearly and homogeneously even in
the case of the inhomogeneous Lorentz-transformation (3.8.12) according to

dx′µ = Λµ
ν dx

ν , (3.8.15)

whereas x̃ does not.

The events A and B can only be connected by a light signal if

Q(dx̃) = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 = 0 . (3.8.16)

In this case dx̃ is called a light vector. If Q(dx̃) > 0 then dx̃ is called a
time-vector. Then A and B can be connected by a signal with speed less
then speed of light. If Q(dx̃) < 0 then dx̃ is called a space-vector. Then A
and B cannot be connected by any signal.

Now we may formulate the following

Proposition 3.5. Let Λ ∈ R4×4 be regular. For any light vector dx̃ let

dx′µ = Λµ
ν dx

ν

also be a light vector. Then there exists a constant γ ∈ R such that γ Λ is a
Lorentz-matrix.

Proof: Define the symmetric matrix L = ΛT GΛ with components

Lµν = Λκ
µ Λλ

ν gκλ . (3.8.17)

By dx̃ we denote any light vector. Then we obtain due to the assumption of
the proposition:

dx̃T Ldx̃ = 0 . (3.8.18)

In the following we will not make use of Einstein’s summation convention.
Then we may write, since dx̃ is a light vector:

(dx0)2 = −
3
∑

i,k=1

gik dx
i dxk . (3.8.19)

40



From (3.8.18) and (3.8.19) we obtain, keeping in mind that L is a symmetric
matrix:

dx̃T Ldx̃ =
3
∑

i,k=1

(Lik − L00 gik) dx
i dxk + 2 dx0

3
∑

i=1

Li0 dx
i = 0 . (3.8.20)

First we choose the six light vectors

(±1, 1, 0, 0)T , (±1, 0, 1, 0)T , (±1, 0, 0, 1)T

in order to conclude from (3.8.20) that

L11 = L22 = L33 = −L00 , L10 = L01 = L20 = L02 = L30 = L03 = 0 .

Then we insert these values in (3.8.20) and choose the three light vectors

(
√

2, 1, 1, 0)T , (
√

2, 1, 0, 1)T , (
√

2, 0, 1, 1)T

in order to conclude that

L12 = L21 = L13 = L31 = L23 = L32 = 0 .

We have thus proved

L = ΛT GΛ = L00 G , (3.8.21)

and it remains to prove that L00 > 0. This is an application of the well
known inertia law of Sylvester, which may be shown in this special case
as follows: From (3.8.21) we obtain due to the regularity of Λ

−Det (L) = Det (Λ)2 = L4
00 > 0 . (3.8.22)

Assume that L00 < 0 and define the regular matrix Λ̄ = 1√
|L00|

Λ. Then

Λ̄T G Λ̄ = −G , (3.8.23)

and it is possible to choose four real numbers x̃ = (x0, x1, x2, x3)T according
to

x0 = 0 , Λ̄0
1 x

1 + Λ̄0
2 x

2 + Λ̄0
3 x

3 = 0 , (x1)2 + (x2)2 + (x3)2 > 0 . (3.8.24)

Let be ỹ = Λ̄ x̃ = (y0, y1, y2, y3)T . Due to (3.8.23) and x0 = 0 we obtain

ỹT G ỹ = x̃T (Λ̄T G Λ̄) x̃T = −x̃T G x̃T = (x1)2 + (x2)2 + (x3)2 > 0 . (3.8.25)

On the other hand
y0 = 0 , ỹ 6= 0
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due to (3.8.24) and the regularity of Λ̄, and therefore

ỹT G ỹ = (y0)2 − (y1)2 − (y2)2 − (y3)2 =

−
(

(y1)2 + (y2)2 + (y3)2
)

< 0 , (3.8.26)

which contradicts (3.8.25).

We have proved that ΛT GΛ = L00 G with L00 > 0, so that 1√
L00

Λ is the
desired Lorentz-matrix.

Thus we have proved Propositon 3.5.

Proposition 3.6. (a) The Lorentz-matrices form a group, the so called
homogeneous Lorentz-group Lhom.

(b) If Λ is a Lorentz-matrix, then Det(Λ) = ±1 and |Λ0
0| ≥ 1. The set of

the so called proper Lorentz-matrices with Det(Λ) = +1 and Λ0
0 ≥ 1

form a subgroup L+
hom of the homogeneous Lorentz-group, the proper

homogeneous Lorentz-group.

(c) 1, G, −G, −1 ∈ R4×4 are Lorentz-matrices, which are called identity,
space-inversion, time-inversion and space-time-inversion, respectively.
For any Λ ∈ Lhom there is a matrix A ∈ L+

hom such that Λ has the
following representations

Λ = 1A = A 1 , if Λ0
0 ≥ +1 & Det(Λ) = +1 ,

Λ = GA = (GAG)G , if Λ0
0 ≥ +1 & Det(Λ) = −1 ,

Λ = (−G)A = (GAG) (−G) , if Λ0
0 ≤ −1 & Det(Λ) = −1 ,

Λ = (−1)A = A (−1) , if Λ0
0 ≤ −1 & Det(Λ) = +1 .

Finally, if A ∈ L+
hom, then also GAG ∈ L+

hom.

Proof: (a) The unit matrix 1 is a Lorentz-matrix. In the following we make
use of Proposition 3.4: Let Λ be a Lorentz-matrix. Then Λ is regular due
to ΛT GΛ = G, which implies Det(Λ) = ±1. Moreover, Q(Λx̃) = Q(x̃) for
every x̃ ∈ R4 implies Q(ỹ) = Q(Λ−1ỹ) for every ỹ = Λx̃ in R4, i.e. Λ−1 is a
Lorentz-matrix. Finally, if Λ1, Λ2 are Lorentz-matrices, then also Λ3 = Λ1 Λ2

due to
Q(Λ3x̃) = Q(Λ1(Λ2x̃)) = Q(Λ2x̃) = Q(x̃)

for every x̃ ∈ R4 .
(b) Let Λ be a Lorentz-matrix. We have already seen that Det(Λ) = ±1.
We evaluate the 00-component of the matrix equation ΛT GΛ = G in order
to conclude that

(Λ0
0)

2 = 1 + (Λ1
0)

2 + (Λ2
0)

2 + (Λ3
0)

2 ≥ 1 ,
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which shows that |Λ0
0| ≥ 1. Next we have to prove that L+

hom forms a
subgroup:
First we note that 1 ∈ L+

hom.
Assume that Λ0

0 ≥ 1 and Det(Λ) = +1 for a Lorentz-matrix Λ. We first
note that Det(Λ−1) = +1. Due to Proposition 3.4 we have Λ−1 = GΛT G,
and evaluating the 00-component of this matrix equation we obtain

(Λ−1)0
0 = Λ0

0 ≥ 1 ,

i.e. Λ−1 ∈ L+
hom. Let A, B be Lorentz-matrices with Det(A) = +1, A0

0 ≥ 1,
Det(B) = +1, B0

0 ≥ 1. Then Det(AB) = Det(A)Det(B) = +1, and we
obtain from the Cauchy-Schwarz inequality

(AB)0
0 = A0

0B
0
0 + A0

1B
1
0 + A0

2B
2
0 + A0

3B
3
0

≥ A0
0B

0
0 −

√

√

√

√

3
∑

k=1

(A0
k)

2

√

√

√

√

3
∑

k=1

(Bk
0)

2 .

But the last expression is ≥ 0, which can be seen from the evaluation

A0
0 ≥

√

√

√

√

3
∑

k=1

(A0
k)

2

of the 00-component of AGAT = G and from the evaluation

B0
0 ≥

√

√

√

√

3
∑

k=1

(Bk
0)

2

of the 00-component of BT GB = G. Thus AB ∈ L+
hom.

(c) may be proved by a very simple straight forward calculation.

The conditions Λ0
0 ≥ 1 and det Λ = +1 for the proper Lorentz-matrices

are necessary in order to exclude inversions in time and space. The (not
necessarily homogeneous) Lorentz-transformation (3.8.12) is called proper
if the Lorentz-matrix Λ is proper. Due to Proposition 3.6 it is sufficient to
construct the proper Lorentz-matrices Λ ∈ L+

hom in order to obtain any other
Lorentz-matrix. This will be done next:

We restrict to proper, homogeneous Lorentz-transformations and rewrite any
event x̃ ∈ R4 as a Hermitean 2 × 2 matrix X̃, see the textbook of Streater
and Wightman [46], according to

x̃ = (x0, x1, x2, x3)T → X̃ =

(

x0 + x3 x1 − i x2

x1 + i x2 x0 − x3

)

. (3.8.27)
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Then we choose any complex matrix M and their adjoint M+

M =

(

α β
γ δ

)

, M+ =

(

ᾱ γ̄
β̄ δ̄

)

with Det(M) = +1, which maps the Hermitean 2× 2 matrix X̃ into another
Hermitean 2 × 2 matrix X̃ ′ according to

X̃ ′ = M X̃ M+ . (3.8.28)

Afterwards we construct from the transformed Hermitean matrix X̃ ′ the cor-
responding event x̃′:

X̃ ′ =

(

x′0 + x′3 x′1 − i x′2

x′1 + i x′2 x′0 − x′3

)

→ x̃′ = (x′0, x′1, x′2, x′3)T . (3.8.29)

From (3.8.27), (3.8.28) and (3.8.29) we obtain that the transformation x̃→ x̃′

of the events is linear and homogeneous and leaves the Einstein-Minkowski
metric invariant:

Det(X̃ ′) = Q(x̃′) = Det(X̃) = Q(x̃) . (3.8.30)

By a straight forward calculation we identify the following components of the
Lorentz-matrix Λ, which maps x̃ on x̃′ = Λ x̃:

Λ0
0 =

1

2
(αᾱ + ββ̄ + γγ̄ + δδ̄) , Λ0

1 =
1

2
(αβ̄ + βᾱ+ γδ̄ + δγ̄) ,

Λ0
2 =

i

2
(βᾱ− αβ̄ + δγ̄ − γδ̄) , Λ0

3 =
1

2
(αᾱ− ββ̄ + γγ̄ − δδ̄) ,

Λ1
0 =

1

2
(γᾱ + αγ̄ + δβ̄ + βδ̄) , Λ1

1 =
1

2
(αδ̄ + δᾱ + βγ̄ + γβ̄) ,

Λ1
2 =

i

2
(δᾱ− αδ̄ + βγ̄ − γβ̄) , Λ1

3 =
1

2
(γᾱ + αγ̄ − δβ̄ − βδ̄) ,

Λ2
0 =

i

2
(βδ̄ − δβ̄ − γᾱ+ αγ̄) , Λ2

1 =
i

2
(βγ̄ − γβ̄ + αδ̄ − δᾱ) ,

Λ2
2 =

1

2
(αδ̄ + δᾱ− βγ̄ − γβ̄) , Λ2

3 =
i

2
(αγ̄ − γᾱ + δβ̄ − βδ̄) ,

Λ3
0 =

1

2
(αᾱ+ ββ̄ − γγ̄ − δδ̄) , Λ3

1 =
1

2
(βᾱ + αβ̄ − δγ̄ − γδ̄) ,

Λ3
2 =

i

2
(βᾱ− αβ̄ − δγ̄ + γδ̄) , Λ3

3 =
1

2
(αᾱ− ββ̄ − γγ̄ + δδ̄) .
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Since Λ0
0 ≥ 0 immediately implies Λ0

0 ≥ 1 for the Lorentz-matrix Λ, we
obtain from these representations

Λ0
0 =

1

2
(αᾱ+ ββ̄ + γγ̄ + δδ̄) ≥ 1 , (3.8.31)

which is also an immediate consequence of Det(M) = αδ − βγ = 1 and the
inequality (α − δ̄)(ᾱ − δ) + (β + γ̄)(β̄ + γ) ≥ 0. In order to show that in
addition Det(Λ) = +1, i.e. Λ = Λ(M) ∈ L+

hom, we apply the following con-
tinuity argument: Starting with the complex 2 × 2 unit matrix 1 in order
to generate Λ = 1 ∈ R

4×4 with determinant 1, we may continuously change
the components of M in order to reach any other complex 2× 2 matrix with
determinant 1. Then the corresponding Lorentz-matrix Λ(M) cannot jump
from Det(Λ(M)) = +1 to Det(Λ(M)) = −1.

The next proposition characterizes the spatial rotations, which form a sub-
group of L+

hom.

Proposition 3.7. (a) Let R ∈ R
3×3 be a spatial rotation, i.e.

RRT = 1 ∈ R
3×3 , Det(R) = +1 .

Let (ϕ1, ϕ2, ϕ3)
T be the vector in direction of the rotational axis of R

whose absolute value

ϕ =
√

ϕ2
1 + ϕ2

2 + ϕ2
3 > 0

is the positive oriented rotational angle of R, i.e. positive oriented with
respect to (ϕ1, ϕ2, ϕ3)

T . For the antisymmetric 3 × 3 matrix

A =





0 −ϕ3 +ϕ2

+ϕ3 0 −ϕ1

−ϕ2 +ϕ1 0



 ,

there results

A2 + ϕ2 1 =





ϕ1 ϕ1 ϕ1 ϕ2 ϕ1 ϕ3

ϕ2 ϕ1 ϕ2 ϕ2 ϕ2 ϕ3

ϕ3 ϕ1 ϕ3 ϕ2 ϕ3 ϕ3



 , A3 + ϕ2A = 0 ,

and the rotational matrix R has the following representation:

R = exp(A) = 1 +
sinϕ

ϕ
A+

1 − cosϕ

ϕ2
A2 .

For R = 1 we set A = 0 with R = exp(A).
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(b) Let be Λ ∈ L+
hom. Then ΛT Λ = 1 ⇔ Λ0

0 = 1. ΛT Λ = 1 is a necessary
and sufficient condition for Λ to describe a spatial rotation. Let us
assume that Λ satisfies this condition. Then there exists a purely spatial
rotation R = Rm

n ∈ R3×3 such that x̃′ = Λ x̃ is given by

x′0 = x0 , x′k =

3
∑

j=1

Rk
j x

j ,

and the Lorentz-matrix Λ itself is called a rotation. Let (ϕ1, ϕ2, ϕ3)
T be

the angle vector of R as described above. Then Λ is generated by the
following unitary 2 × 2 matrix with determinante 1:

M = cos(ϕ/2)

(

1 0
0 1

)

− i
sin(ϕ/2)

ϕ

(

ϕ3 ϕ1 − iϕ2

ϕ1 + iϕ2 −ϕ3

)

. (3.8.32)

Remark: The unitary matrix M in Proposition 3.7 b which generates the
rotation Λ may also be written in the exponential form

M = exp

(

−i/2
(

ϕ3 ϕ1 − iϕ2

ϕ1 + iϕ2 −ϕ3

))

. (3.8.33)

Proof of Proposition 3.7: By straight forward calculations.

The next proposition gives a representation for the generalization of the
Lorentz-transformation in (3.8.13).

Proposition 3.8. Let us consider v = (v1, v2, v3)
T ∈ R3 with absolute value

less then speed of light and put

λ = λ(v) =
1

√

1 − v2

c2

, u =
λ(v)

c
v = (u1, u2, u3)T .

Then we define the components Λµ
ν of the Lorentz-boost Λ = Λ(u) by

Λ0
0 =

√
1 + u2 = λ(v) , Λ0

j = Λj
0 = −uj ,

Λj
k = δj k +

ujuk

1 +
√

1 + u2
, j, k = 1, 2, 3 .

The matrix Λ = Λ(u) is generated by the Hermitean 2 × 2-matrix M

M =

(

1+(1−v3/c)λ√
2+2λ

λ√
2+2λ

−v1+i v2
c

λ√
2+2λ

−v1−i v2
c

1+(1+v3/c)λ√
2+2λ

)

with determinant 1 and has the inverse matrix Λ(u)−1 = Λ(−u).
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Remarks:

(i) For v = v1 and v2 = v3 = 0 we obtain the transformation (3.8.13).

(ii) The Hermitean 2 × 2 matrix M which generates the Lorentz-matrix
Λ(u) may also be written in the exponential form

M = exp

(

−κ
(

v3 v1 − iv2

v1 + iv2 −v3

))

(3.8.34)

for the constant κ =
1

c

λ√
λ2 − 1

ln

(
√

λ+ 1

2
+

√

λ− 1

2

)

.

It is also important to note that the set of all Lorentz-boosts Λ(u) with
u ∈ R3 does not form a subgroup of L+

hom like the rotations.

(iii) If |v| is very small compared to c, then Λ(u) reduces to the special
Galilean transformation

t′ = t , x′ = x − tv . (3.8.35)

We also omit the tedious proof of the straight forward calculations.

Proposition 3.9. Any Lorentz-matrix Λ ∈ L+
hom may be written in the form

Λ = ΛS ΛR , (3.8.36)

where ΛS ∈ L+
hom is the Lorentz-matrix ΛS = Λ(u) with the velocity

v = c
u√

1 + u2
= c

(

−Λ1
0

Λ0
0

,−Λ2
0

Λ0
0

,−Λ3
0

Λ0
0

)T

(3.8.37)

less then speed of light and ΛR ∈ L+
hom is a rotation. If MS and MR are the

corresponding complex 2×2 matrices which generate ΛS and ΛR, respectively,
then

M = MSMR

generates the Lorentz-matrix Λ. M has determinant 1.

Proof: The matrix ΛS with the velocity v less then speed of light given in
(3.8.37) is a member of L+

hom due to Proposition 3.8. Using Proposition 3.6(b)
we conclude that the matrix ΛR := Λ−1

S Λ is also a member of L+
hom. Due to

Proposition 3.7(b) it is sufficient to show that the 00-component of ΛR is
equal to 1, which is an easy task. The corresponding matrices MS and MR

may be constructed due to Propositions 3.7 and 3.8.

Remark: If we apply this representation theorem to Λ−1 instead of Λ and
take the inverse matrix, we conclude that Λ may also be written in the form

Λ = Λ′
R Λ(u′) (3.8.38)

with a new rotation Λ′
R and a new u′.
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“Es ist vielfach versucht worden, in unserem Gebiet eine solche
invariante, mit den Tensoren selbst und nicht mit ihren Kompo-
nenten arbeitende Bezeichnungsweise auszubilden, wie sie in der
Vektorrechnung besteht. Was aber dort am Platze ist, erweist
sich für den viel weiter gespannten Rahmen des Tensorkalküls
als äußerst unzweckmäßig. Es werden eine solche Fülle von Na-
men, Bezeichnungen und ein solcher Apparat von Rechenregeln
nötig (wenn man nicht doch immer wieder auf die Komponenten
zurückgreifen will), daß damit ein Gewinn von sehr erheblichem
negativem Betrag erreicht wird. Man muß gegen diese Orgien des
Formalismus, mit dem man heute sogar die Techniker zu belästi-
gen beginnt, nachdrücklich protestieren.”

(Hermann Weyl, Raum-Zeit-Materie, 1918)

3.9 Relativistic formulation of electrodynamics

In the last section we have studied the Lorentz-transformations which leave
the wave equation invariant. Now we develope the corresponding Lorentz-
invariant tensor calculus which enables us to recognize at a glance that an
equation is Lorentz-invariant. Then we will recover the four-vectors and four-
tensors that describe the electromagnetic phenomena. Using these quantities
the electromagnetic laws, namely Maxwell’s equations and the conservation
laws, may be written in a compact tensor notation.

The tensor calculus: In order to formulate the Lorentz-invariant tensor
calculus, we make use of the notations used in the textbook of Weinberg [48],
with only slight modifications.

A contravariant four-vector V µ is a quantity with a single upper index which
undergoes like dxµ in (3.8.15) the following linear and homogeneous trans-
formation with respect to a proper Lorentz-transformation (3.8.12):

V µ(x̃) → V ′µ(x̃′) = Λµ
ν V

ν(x̃) . (3.9.1)

Then we define the matrix Λ ν
µ by

Λ ν
µ = gµκ g

νλ Λκ
λ (3.9.2)

and state that Λ ν
µ is just the inverse of the matrix Λν

µ:

Λ α
µ Λµ

β = gµγ g
αδ Λγ

δ Λµ
β = gαδ gδβ = δαβ =

{

+1 , α = β = 0, 1, 2, 3 ,
0 , α 6= β .

(3.9.3)
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A covariant four-vector Uµ is a quantity with a single lower index which
undergoes the following linear and homogeneous transformation with respect
to a proper Lorentz transformation (3.8.12):

Uµ(x̃) → U ′
µ(x̃

′) = Λ κ
µ Uκ(x̃) . (3.9.4)

The scalar product of a contravariant vector V µ with a covariant vector Uµ
is invariant with respect to (3.8.12):

V µ Uµ → V ′µ U ′
µ = Λµ

ν Λ κ
µ V ν Uκ = δκν V

ν Uκ = V κ Uκ . (3.9.5)

A co- or contravariant vector is a tensor with one index, and a scalar (invari-
ant expression) is a tensor without indices.

In general a tensor has several upper contravariant and/or lower covariant
indices and transforms linear and homogeneous with respect to a proper
Lorentz-transformation (3.8.12), for example

T α γδ
β ε(x̃) → T ′α γδ

β ε(x̃
′) = Λα

κ Λ λ
β Λγ

µ Λδ
ν Λ ξ

ε T κ µν
λ ξ(x̃) . (3.9.6)

Important tensors are the

• zero tensor, whose components are zero in any reference frame for an
arbitrary but fixed combination of upper and lower indices,

• metric tensor, which transforms according to (3.8.11)

gµν → g′µν = Λ κ
µ Λ λ

ν gκλ = gµν , (3.9.7)

• Kronecker tensor introduced in (3.9.3)

δ′αβ = Λα
κ Λ λ

β δκλ = Λα
κ Λ κ

β = δαβ , (3.9.8)

• Levi-Civita tensor

εαβγδ =







+1 , αβγδ even permutation of 0123,
−1 , αβγδ odd permutation of 0123,
0 , otherwise.

For the Levi-Civita tensor the restriction to proper Lorentz-transformations
is necessary. Note that in the textbook of Weinberg [48] the Levi-Civita
tensor as well as the metric tensor both take the sign opposite to the
notation used here.
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The components of these tensors are the same in every reference frame.

The tensor calculus itself is very nice, since it consists of only four rules
in order to form new tensors from old ones. These rules may be combined
with each others under certain constraints to obtain every possible tensor.

Rule A: Linear combinations
A linear combination of two tensors R and S with the same upper and lower
indices is a new tensor T with these indices, for example let be

T β
α = aR β

α + b S β
α

with given tensors R β
α , S β

α . Then T β
α is also a tensor according to

T ′ β
α = aR′ β

α + b S ′ β
α

= aΛ κ
α Λβ

λR
λ
κ + bΛ κ

α Λβ
λ S

λ
κ

= Λ κ
α Λβ

λ T
λ

κ .

Rule B: Direct products
The product of two tensors R and S is a new tensor T whose upper and lower
indices consists of all the upper and lower indices of the original tensors, for
example let be

T α γ
β = R α S γ

β

with given tensors Rα, S γ
β . Then T α γ

β is also a tensor according to

T ′α γ
β = R′α S ′ γ

β

= Λα
κR

κ Λ λ
β Λγ

µ S
µ
λ

= Λα
κ Λ λ

β Λγ
µ T

κ µ
λ .

Rule C: Contractions
Setting an upper and lower index of a tensor equal and summing it over its
values 0,1,2,3 we obtain a new tensor without these two indices. For example,
let T αβγδ be a tensor. Then

Tβδ = T αβαδ

is also a tensor according to

T ′
βδ = T ′α

βαδ

= Λα
κ Λ λ

β Λ µ
α Λ ν

δ T κλµν

= δµκ Λ λ
β Λ ν

δ T κλµν

= Λ λ
β Λ ν

δ T µλµν

= Λ λ
β Λ ν

δ T λν .
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Rule D: Differentiation
Differentiation of a tensor with respect to xα yields a tensor with an additional
covariant index α. For example, let T βγ be a tensor and define

T β
α γ =

∂T βγ
∂xα

.

Then T β
α γ is also a tensor according to

T ′ β
α γ =

∂T ′β
γ

∂x′α

= Λ κ
α

∂

∂xκ

(

Λβ
λ Λ µ

γ T λµ

)

= Λ κ
α Λβ

λ Λ µ
γ

∂T λµ
∂xκ

.

Finally we mention some important combinations of these rules:

(a) Lowering of contravariant and raising of covariant indices
(contractions of direct products with the metric tensor),
for example the first index of a tensor T αβ may be lowered according to

Tαβ = gακ T
κ
β .

Raising the same index afterwards according to

T αβ = gακ Tκβ

gives back the original tensor. This also explaines the two original
notations for gµν = gµν .

(b) The scalar product V α Uα results from the contraction of the direct
product V α Uβ, which shows once again its Lorentz-invariance.

(c) The covariant divergence
∂V α

∂xα

of a contravariant vector V α (Rules C and D) is Lorentz- invariant.

(d) The wave operator (3.8.4), acting on an arbitrary tensor T , is Lorentz-
invariant (Rules B, C, D), in agreement with Proposition 3.4.

If we replace the time-space arguments (t,x) of the fields by the four-quantity
x̃ = (x0, x1, x2, x3)T according to (3.8.1), we can define the so called (electro-
magnetic) four-potential Aµ(x̃) according to

A0(x̃) = ϕ(
x0

c
,x) , A1(x̃) = Ax(

x0

c
,x) ,

(3.9.10)

A2(x̃) = Ay(
x0

c
,x) , A3(x̃) = Az(

x0

c
,x) ,
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where A(t,x) = (Ax(t,x), Ay(t,x), Az(t,x))T is the vector potential and
ϕ(t,x) the scalar potential, respectively, which are related to the electro-
magnetic field by the conditions (3.3.3) and (3.3.5). If we change from one
Lorentz-frame to another according to the Lorentz-transformation (3.8.12)
for a proper Lorentz-matrix Λ, then we require the following

First Postulate: The four-potential Aµ transforms like a contravariant
four-vector, i.e. we require for each proper Lorentz-transformation (3.8.12):

A′µ(x̃′) = Λµ
ν A

ν(x̃) . (3.9.11)

This postulate is compatible with the “gauge transformations” (3.3.8) and
(3.3.9), because we can rewrite (3.3.8) and (3.3.9) in the following Lorentz-
invariant form for a Lorentz-invariant scalar function λ = λ(x̃):

Ãµ(x̃) = Aµ(x̃) − gµν
∂λ

∂xν
(x̃) .

The advantadge of definition (3.9.10) and the First Postulate can be seen
when we calculate the antisymmetric tensor Fµν defined by

Fµν(x̃) =
∂Aν
∂xµ

(x̃) − ∂Aµ
∂xν

(x̃) . (3.9.12)

Recall that the covariant four-vector Aµ = gµνA
ν differs from Aµ only in its

spatial components, which have the opposite sign.

This tensor is called the electromagnetic field tensor because it comes
out that

(Fµν) =









0 Ex Ey Ez
−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0









. (3.9.13)

For the contravariant tensor F µν = gµκgνλFκλ we obtain the representation

(F µν) =









0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0









. (3.9.14)

If we change to another Lorentz frame according to (3.8.12) then the trans-
formation rules for these tensors are

F ′
µν(x̃

′) = Λ κ
µ Λ λ

ν Fκλ(x̃) , F ′µν(x̃′) = Λµ
κΛ

ν
λF

κλ(x̃) . (3.9.15)
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Now we recognize that definitions (3.9.10), (3.9.12) and equation (3.9.13)
have exactly the same meaning as the conditions (3.3.3) and (3.3.5) for the
vector potential and the scalar potential in Section 3.3. Therefore we know
that Maxwell’s equations for E and B are equivalent to the conditions (3.3.6),
(3.3.7) which now take the form

2Aµ − gµν
∂

∂xν

(

∂Aκ

∂xκ

)

=
1

c
jµ , (3.9.16)

where the so called electromagnetic four-density jµ is defined by

j0 = c ρ, (j1, j2, j3)T = j . (3.9.17)

The divergence of (3.9.16) again gives the conservation of charge,

∂jµ

∂xµ
= 0 . (3.9.18)

Since the left hand side in (3.9.16) is already a four-vector due to the First
Postulate, we see that Maxwell’s equations are Lorentz-invariant if and only
if we require the

Second Postulate: The electromagnetic four-density jµ transforms like a
four-vector with respect to proper Lorentz-transformations (3.8.12).

Recall that we have the freedom to impose additionally the Lorentz-condition
on the electromagnetic potentials in order to obtain decoupled wave equations
for the electromagnetic potential, i.e. we can replace (3.9.16) by

∂Aκ

∂xκ
= 0 , 2Aµ =

1

c
jµ . (3.9.19)

Here we should stop for a moment and develop an alternative way to ob-
tain the Lorentz invariance of Maxwell’s equations without making any use
of the electromagnetic four-potential. This is important, since the electro-
magnetic potential itself is not measurable and may change according to the
transformations (3.3.8) and (3.3.9).

Assume now that an electromagnetic field is given in terms of E = E(t,x)
and B = B(t,x), which satisfy Maxwell’s equations. Then we define the
matrix (F µν) by (3.9.14) and replace the First Postulate by the following

Alternative formulation of the First Postulate: The matrix (F µν) de-
fined in (3.9.14) (without electromagnetic potentials) is a tensor, i.e. there
holds the transformation law (3.9.15)2 for any proper Lorentz-transformation
(3.8.12).
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Of course, the requirement that F µν is a tensor is equivalent the requirement
that Fµν is a tensor. Then we will find that the inhomogeneous Maxwell
equations take the Lorentz-invariant form

∂F µν

∂xν
+

1

c
jµ = 0 . (3.9.20)

Also the homogeneous Maxwell equations may be written in a Lorentz-
invariant form by

∂Fβγ
∂xα

+
∂Fγα
∂xβ

+
∂Fαβ
∂xγ

= 0 . (3.9.21)

The new formulation (3.9.21) of the homogeneous Maxwell equations needs
some explanations: If at least two of the three indices α, β, γ are equal, then
both sides of this equation are identically zero since Fµν is an antisymmetric
tensor. On the other hand an odd permutation of the indices α, β, γ will
only change the sign on the left hand side of the equation, which is again
a consequence of the antisymmetry of Fµν . Finally there only result three
independent equations from (3.9.21) for the homogeneous Maxwell equations
which may also be written in the compact form

εαβγµ
∂Fαβ
∂xγ

= 0 . (3.9.22)

Therefore Maxwell’s equations (3.9.20) and (3.9.21) have again Lorentz-invariant
tensor form when we replace the original First Postulate by its alternative
version.

In the following we also rewrite the electromagnetic balance laws for energy
(3.7.5) and momentum (3.7.6) in Lorentz-invariant form by defining the ten-
sor quantities

T µν =
1

ε0

[

F µκFκλg
λν +

1

4
F λκFλκg

µν

]

, fµ =
1

cε0
F µνjν . (3.9.23)

By a straight forward calculation it comes out that

(T µν) =

(

W cP
cP T

)

, (fµ) =

(

j

ε0c
· E ,

1

ε0

(ρE +
j

c
× B)

)T

,

(3.9.24)

and therefore we can also rewrite the balance laws of Section 3.7 in the
Lorentz-invariant form

∂T µν

∂xν
+ fµ = 0 . (3.9.25)

In view of (3.9.25) the quantities T µν and fµ are called the energy-momentum
tensor of the electromagnetic field and the electromagnetic force den-
sity, respectively. Recall that T µν and fµ only take the special form (3.9.23)
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because we have redefined the units of the electromagnetic field according to
(3.2.7) in order to keep Maxwell’s equations free from the quantities ε0, µ0

and 4π.

Since the invariant balance laws (3.9.25) are only derived from Maxwell’s
equations, we conclude that the postulated Lorentz-invariance of the four-
potential Aµ and of the electromagnetic current four-density jµ are sufficient
in order to rewrite the electromagnetic theory in terms of the tensor calculus
developed in this section.

Up to here we have developed the mathematical structure of the classical
electromagnetic field theory. It is an important remaining task to derive from
these Lorentz-tensors all important physical quantities of electrodynamics
which can be measured in appropriate gedanken experiments with respect
to an arbitrary Lorentz frame. Then the two postulates formulated above
become physical statements about the validity of electrodynamical equations
in all Lorentz frames. This was done by Einstein in his famous article [20].
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Chapter 4

Relativistic Euler Equations

4.1 Introduction

In the kinetic theory of gases the phase density f = f(t,x,q) is a fun-
damental quantity. It is usually a function of time t, position x and of the
velocity or momentum q related to the single gas atoms. It usually results
from a kinetic equation like the Boltzmann- or BGK-equation, see Cercignani
[3] and Bhatnagar, Gross, Krook [1]. Then the macroscopic, thermodynamic
quantities like particle- and energy density, velocity and pressure are tensor-
algebraic combinations of some basic integral moments of the phase density
f , where the integration is performed with respect to the momentum q of
the gas atoms. Therefore the macroscopic quantities depend only on time
and space. They are all completely determined by the phase density f .

Kinetic approaches in order to solve the classical Euler equations of gas dy-
namics were applied to several initial- and boundary value problems, see for
example Dreyer, Kunik and Herrmann [7], [8], [11] or Perthame [41], [42],
[43]. In Dreyer and Kunik [9] the reader will also find a kinetic scheme in or-
der to solve an initial and boundary value problem for a phonon Bose gas. In
[31, 32, 33, 35, 44] Kunik, Qamar and Warnecke have formulated two types of
kinetic schemes in order to solve the initial and boundary value problems for
the ultra-relativistic Euler equations and a general form of special relativistic
Euler equations based on Jüttners constitutive relations presented in [28].

The hyperbolic systems that can be treated by the kinetic method are those
which may be generated from kinetic transfer equations and from the Max-
imum Entropy Principle. Since these systems lead to a convex entropy
function, they enable several rigorous mathematical results, see for exam-
ple Friedrichs and Lax [23], Godlewski & Raviart [24] as well as Dafermos
[6]. In the case of thermodynamical equilibrium the Maximum Entropy Prin-
ciple constitutes a successful method in order to obtain the Maxwellian phase
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density for the Boltzmann gas as well as the corresponding phase densities
for the Fermi- and Bose gas in equilibrium from the corresponding kinetic
entropy definitions. But the application of the Maximum Entropy Princi-
ple may lead to serious problems in non-equilibrium, for example for the
moment-systems of the Fokker-Planck equation and of the Boltzmann equa-
tion. These difficulties arise due to a singular behaviour of some integral
moments of the nonequilibrium phase density. This was shown explicitly for
Levermore’s five-momemt system in one space dimension by Junk in [30] and
for the Fokker-Planck equation by Dreyer, Junk and Kunik [14]. An excep-
tion is the phonon Bose gas considered in [9], where the singular behaviour
of the integral moments cannot occure.

A few years after Einstein’s famous paper [20] ”Zur Elektrodynamik bewegter
Körper”, Jüttner [28] extended the kinetic theory of gases which was devel-
oped by D. Bernoulli, Clausius, Maxwell and Boltzmann, to the domain
of relativity. He succeeded in deriving the relativistic generalization of the
Maxwellian equilibrium phase density. Later on this phase density and the
whole relativistic kinetic theory was structured in a well organized Lorentz
invariant form, see Chernikov [4], [5], Israel [26], Müller [38] and the textbook
of deGroot, van Leeuven and van Weert [25]. Jüttner [29] also established
the relativistic form of equilibrium phase densities and the corresponding
equations of state for the systems of bosons and fermions.

Euler’s equations (relativistic or classic) deal with a perfect gas, in which
mean free paths and collision free times are so short that perfect isotropy
is maintained about any point moving with the gas. In this case the local
equilibrium assumption is satisfied and the corresponding phase-densities are
obtained from the Maximum Entropy Principle in equilibrium. In the text-
book of Weinberg [48] one can find a short introduction to special relativity
and relativistic hydrodynamics with further literature also for the imperfect
fluid (gas), see for example the papers of Eckart [17], [18], [19] for the classical
and relativistic thermodynamics.

There are three basic ingredients of the relativistic kinetic schemes. The
first one is the relativistic phase density developed by Jüttner. The second
one is the solution of a collision free kinetic transport equation, which can
be given explicitly in terms of a known initial phase density. For the for-
mulation of the kinetic scheme we prescribe a time step τM > 0, define the
equidistant times tn = n τM ( n = 0, 1, 2, ... ), called maximization times,
and solve a collision free kinetic transport equation for each time interval
tn < t < tn+1, starting with a relativistic Maxwellian as the initial phase
density at each maximization time tn. The third component consists of the
continuity conditions, which guarantee that the conservation laws are also
satisfied across the maximization times. They also determine the new initial
data for the next free-flight period. Finally, it is also possible to incorpo-
rate adiabatic boundary conditions into the kinetic scheme in a quite natural
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way. By taking moments of the corresponding phase densities we obtain ev-
ery macroscopic quantity like particle density, energy density, pressure and
velocity four-vector. These macroscopic quantities will solve the relativistic
Euler equations in the limit τM → 0.

Now we give a short overview of this chapter:

In Section 4.2 we will present the basic definitions of the relativistic kinetic
theory, namely the macroscopic quantities considered in thermodynamics
which are obtained from a kinetic phase density. Moreover the relativistic
Maxwellian studied by Jüttner in [28] is introduced and two limiting cases
are considered, namely the classical Maxwellian for a cool, non-relativistic
gas and the ultra-relativistic Jüttner phase density.

In Section 4.3 we calculate the energy density, pressure and entropy density
from Jüttner’s phase density. Then we determine the macroscopic moments
of this relativistic Maxwellian, which gives the so called constitutive relations.
The conservation laws for the particle number, the momentum and energy
and these constitutive relations are representing the relativistic Euler equa-
tions. The Euler equations are written in differential form as well as in a weak
integral form, which takes care of the evolution of shock waves. There holds
an entropy inequality in terms of a specific entropy function which satisfies
Gibbs equation. In order to prove that the relativistic Maxwellian satisfies
the Maximum Entropy Principle we have first proved four lemmas which are
needed for this purpose. After this we formulate and prove the Maximum
Entropy Principle. In order to get the general formulation of the relativistic
Euler equations and the Maximum Entropy Principle, we use some relations
concerning the Bessel functions, which can be found in the hand book of
Jeffrey [27]. We have also evaluated the limiting cases for the energy den-
sity, pressure and entropy density for the non-relativistic limit as well as the
ultra-relativic limit. The eigenvalues from the differential form of the Euler
equations are also presented in this section. Moreover, the Rankine-Hugoniot
shock conditions and the entropy inequality are used in order to derive a sim-
ple parameter representation for the admissible single shock fronts.

In Section 4.4 we consider the ultra-relativistic limit and the correspond-
ing ultra-relativistic Euler equations. A very characteristic feature of these
equations is that the energy- and momentum balance law decouples from the
continuity equation and thus form a hyperbolic subsystem for the pressure
and velocity four-vector, the so called (p,u)-subsystem. In one space di-
mension this subsystem admits an extensive study and especially a complete
solution of the Riemannian initial value problem, which will be studied in
this section.

In Section 4.5 we first formulate the kinetic scheme in order to solve the
three-dimensional ultra-relativistic Euler equations. In contrast to the clas-
sical three-dimensional Euler equations for a non-relativistic gas we will show
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that the three-fold momentum integrals for the particle-density four-vector
and for the energy-momentum tensor reduce simply to surface integrals where
the integration is performed with respect to the unit sphere. A similar idea
was used by Dreyer, Herrmann and Kunik [12], [9] in order to solve the
Boltzmann-Peierls equation and their moment systems for a phonon Bose-
gas. Later on we will see by an appropriate transformation in phase space
that the kinetic formulation for both problems are so closely related that the
scheme for the phonon Bose-gas contains the kinetic scheme for the ultra-
relativistic Euler equations as a limiting case. We prove that the conservation
laws and the entropy inequality are satisfied for the ultra-relativistic scheme.
For this purpose the continuity conditions for the zero components of the mo-
ments play a crucial role, more precisely they constitute necessary conditions
in order to guarantee that the conservation laws and the entropy inequality
are also satisfied across the maximization times. The continuity conditions
are also required in order to initialize the kinetic scheme for the next time
step.

In Section 4.6 we are looking at the special case of spatially one-dimensional
solutions which are nevertheless solutions to the three-dimensional ultra-
relativistic Euler equations. In this case the surface integrals of the three-
dimensional kinetic scheme reduce again to single integrals which range from
−1 to +1. They indicate the finite domain of dependence on the preceeding
initial data, which is covered by the backward light cones. This property
does not hold for classical kinetic schemes.

In Section 4.7 we discuss the Eulerian limit τM → 0 of the kinetic scheme
where weak solutions are obtained from the initial value problems including
arbitrary complicated shock interactions.

In Section 4.8 we present an analysis of the kinetic scheme for the (p,u)-
subsystem. We derive a reduced kinetic phase density and an own reduced
kinetic entropy for this subsystem that are much easier than the original ones
and prove the corresponding Maximum Entropy Principle.

We close in Section 4.9 with the derivation of two completely discretized
numerical schemes for the ultra-relativistic Euler equations in one space di-
mension and test them for a known solution of the Riemann problem.

4.2 Moments of the relativistic kinetic phase

density

In this section we describe a relativistic gas consisting of many microscopic
structureless particles in terms of the relativistic kinetic phase density. From
this fundamental phase density we calculate tensorial moments which give the
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local macroscopic physical quantities of the gas such as the particle density,
the velocity, the pressure, the temperature and so on.

Recall the basic definitions and conventions from Sections 3.8 and 3.9 which
are necessary in order to formulate the tensor calculus.

First we take a microscopic look at the gas and start with the kinematics
of a representative gas atom with particle trajectory x = x(t), where the
time coordinate t and the space coordinate x are related to an arbitrary
Lorentz-frame. The invariant mass of all structureless particles is assumed
to be the same and is denoted by m0. The microscopic velocity of the gas
atom is dx(t)

dt
, and its microscopic velocity four-vector is given by c qµ, where

the dimensionless microscopic velocity four-vector qµ is defined by

(

q0,q
)T

, q0 = q0 =
√

1 + q2 , q =
1
c
dx
dt

√

1 −
(

1
c
dx
dt

)2
. (4.2.1)

The relativistic phase density f(t,x,q) > 0 is the basic quantity of the kinetic
theory. In the sequel we assume that f(t, x, ·) ∈ V , where

V = { f ∈ L∞(R3) | 0 < f(q) ≤ C

1 + |q|4+ε for some ε, C > 0 } . (4.2.2)

The following definitions of the macroscopic moments and the entropy four-
vector make use of the fact that the so called proper volume element d3q/q0
is invariant with respect to Lorentz-transformations. Note that f ∈ V gua-
rantees that all the three-fold integrals below can be formed with respect to
d3q
q0

due to q0 ≥ |q|. This can easily be seen by using spherical coordinates.

Macroscopic moments and entropy four-vector:

(i) Particle-density four-vector

Nµ = Nµ(t,x) =

∫

R3

qµ f(t,x,q)
d3q

q0
, (4.2.3)

(ii) energy-momentum tensor

T µν = T µν(t,x) = m0c
2

∫

R3

qµqν f(t,x,q)
d3q

q0
, (4.2.4)

(iii) entropy four-vector

Sµ = Sµ(t,x) = −kB
∫

R3

qµ f(t,x,q) ln

(

f(t,x,q)

χ

)

d3q

q0
. (4.2.5)
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Here kB = 1.38062×10−23J/K is Boltzmann’s constant and χ = (m0c
~

)3 with
Planck’s constant ~ = 1.05459 × 10−34Jsec. Note that χ has the same di-
mension as f , namely 1/volume. We also state here that the entropy formula
(4.2.5) can be generalized easily in such a way, that the well known case of a
Fermi- or Bose gas is also included in this kinetic framework. Then formula
(4.2.5) reads in the general case

Sµ = −kB
∫

R3

qµ
[

f ln
f

χ
− ηχ

(

1 + η
f

χ

)

ln

(

1 + η
f

χ

)]

d3q

q0
. (4.2.6)

Here η = 0 reduces to (4.2.5), which is valid for the relativistic generalization
of Boltzmann’s statistic, whereas η > 0 is required for the Bose-Einstein
statistic and η < 0 for the Fermi statistic. Note that η is dimensionless, but
η may depend on the spin of the particles.

The spatial part q ∈ R3 of the dimensionless microscopic velocity four-vector
is used as an integration variable in the relativistic kinetic theory.
Now we may use the macroscopic moments Nµ, T µν and Sµ of the relativistic
phase density f in order to calculate the other macroscopic quantities of the
gas, which are

Tensor algebraic combinations of these moments:

(i) The proper particle density

n =
√

NµNµ , (4.2.7)

(ii) the dimensionless velocity four-vector

uµ =
1

n
Nµ , (4.2.8)

(iii) the proper energy density

e = uµuν T
µν , (4.2.9)

(iv) the proper pressure and temperature

p =
1

3
(uµuν − gµν)T

µν = kB nT , (4.2.10)

(v) the proper entropy density

σ = Sµuµ . (4.2.11)
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Remarks:

(i) Since f > 0, it can be seen by a simple Cauchy-Schwarz argumentation
that Nµ is a time-like vector, i.e. NµNµ > 0. It follows that the particle
density n is well defined and positive. In order to see that the energy
density is always positive we write it in the form

e = m0c
2

∫

R3

(uµq
µ)2 f(t,x,q)

d3q

q0
. (4.2.12)

(ii) The macroscopic velocity v of the gas can be obtained easily from the
spatial part u = (u1, u2, u3)T of the dimensionless velocity four-vector
by

v = c
u√

1 + u2
. (4.2.13)

From this formula we can immediately read off that |v| < c, i.e. the
absolute value of the velocity is bounded by the speed of light. Note
also that u0 =

√
1 + u2.

Let u = (u1, u2, u3)T ∈ R
3 be fixed. In order to present a short derivation of

the relativistic Euler equations, we will later use the relations for the Lorentz
boost Λα

β = Λα
β(u) presented in Section 3.8,

Λ0
0 =

√
1 + u2 , Λ0

j = Λj
0 = −uj ,

Λj
k = δj k +

ujuk

1 +
√

1 + u2
. (4.2.14)

where j, k ∈ {1, 2, 3} are spatial indices. Let G be the Minkowskian matrix
defined in (3.8.2). Recall that the above relations imply

(a) G = Λ(u)GΛ(u)T , Λ0
0(u) ≥ 1 and Det(Λ(u)) = 1, i.e. Λ(u) is a

proper Lorentz-matrix.

(b) Λ−1(u) = Λ(−u).

The attribute “proper” for n, e, p, T and σ denotes quantities, which are
invariant with respect to proper Lorentz-transformations. They take their
simplest form in the Lorentz rest frame. Since all quantities under consid-
eration are written down in Lorentz-invariant form, we may omit the word
“proper” in the following.
These definitions are valid for any relativistic phase-density f = f(t,x,q),
which has to be determined from a kinetic equation of the following form

qµ
∂f

∂xµ
= Q(f) . (4.2.15)
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As in the non-relativistic kinetic theory we have a corresponding transport
part on the left-hand side and a collision part Q(f) on the right-hand side.
In the simplest case Q(f) is determined in such a way that the following five
conservation laws hold for the particle number, the energy, and the momen-
tum

∂Nµ

∂xµ
= 0 ,

∂T µν

∂xν
= 0 . (4.2.16)

This simple case holds if the particles interact only during elastic collisions
without other forces and radiation. The case Q(f) = 0 leads to pure free
flight, without any collision of the gas particles. A detailed study of the rel-
ativistic Boltzmann-equation can be found in the textbook of de Groot, van
Leeuwen and van Weert [25].

Relativistic Jüttner Phase density:

Jüttner extended the classical velocity distribution of Maxwell for a gas
in equilibrium to the relativistic case. The resulting Jüttner distribution
fJ(n, T,u,q) depends on five constant parameters, which describe the state
of the gas in equilibrium, namely the particle density n, the absolute tem-
perature T and the spatial part u ∈ R3 of the dimensionless four-velocity. It
is given by

fJ(n, T,u,q) =
n

M(β)
exp (−β uµqµ)

=
n

M(β)
exp

(

−β
(

√

(1 + u2)(1 + q2) − u · q
))

, (4.2.17)

where β = m0c2

kBT
and

M(β) =

∫

R3

exp(−β
√

1 + q2)d3q

= 4π

∫ ∞

0

ϑ2 exp(−β
√

1 + ϑ2) dϑ . (4.2.18)

The function M(β) is chosen in such a way that

nuµ =

∫

R3

qµ fJ(n, T,u,q)
d3q

q0
(4.2.19)

holds for the spatial part u = (u1, u2, u3)T of the dimensionless macroscopic
velocity four-vector. This is equation (4.2.8), where u and n are in addition
parameters of Jüttner’s relativistic phase density. Using the Bessel functions
for the non-negative integer numbers j

Kj(β) =

∞
∫

0

cosh(js) exp(−β cosh(s)) ds , (4.2.20)
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and applying the integral substitution ϑ = sinh(s) we may also write M(β)
in the form

M(β) =
4π

β
K2(β) . (4.2.21)

We have in addition recursion relations for the modified Bessel functions,
which can be found in the hand book of Jeffrey [27],

Kj+1(β) =
2j

β
Kj(β) +Kj−1(β) , (4.2.22)

where j is the integer order of the modified Bessel functions. Using (4.2.20),
(4.2.21) and (4.2.22) we can write

M ′(β) = −4π

(

K1(β)

β
+

3K2(β)

β2

)

, (4.2.23)

η(β) = 4π

∞
∫

0

ϑ2

√
1 + ϑ2

exp(−β
√

1 + θ2)dϑ =
4π

β
K1(β) . (4.2.24)

Note that

η′(β) = M(β) . (4.2.25)

The equations (4.2.21) and (4.2.23) will be used in Section 4.3 in order to
find the constitutive relations for e, p, σ.

In order to formulate the Euler equations and other relations coming in next
sections in a nice form, we introduce the function

Ψ(β) =
3

β
+
K1(β)

K2(β)
. (4.2.26)

In Section 4.3 it turns out that Ψ(β) is just the specific energy e
n

for the gas
in equilibrium.

Limiting cases of the relativistic Jüttner Phase density:

Here we discuss two important special cases for this phase density, namely
the non-relativistic limit for a cool gas and the ultra-relativistic limit m0 → 0.

Case 1: The non-relativistic limit (small temperatures, small velocities)

For the first case we rewrite (4.2.17) in the form

fJ(n, T,u,q) =
n

M1(β)
exp

(

−β (q − u)2 + u2q2 − (u · q)2

1 +
√

(1 + u2)(1 + q2) + u · q

)

, (4.2.27)
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where

M1(β) = M(β) exp(β) . (4.2.28)

If we apply for ϑ > 0 the integral substitution

ξ =

√

2β(
√

1 + ϑ2 − 1) , (4.2.29)

then we can rewrite M1(β) in the form

M1(β) =

(

2π

β

)
3

2

· 2
∫ ∞

0

(

1 +
ξ2

2β

)

√

1 +
ξ2

4β

exp(− ξ2

2
)√

2π
dξ . (4.2.30)

For β very large compared to 1, i.e. for small temperature, we can conclude
from (4.2.30) that

M1(β) = (
2π

β
)

3

2 +O(β− 5

2 ) =

(

2πKBT

m0c2

)
3

2

+O(T
5

2 ) ,

and the representation (4.2.27) shows that the Jüttner phase density reduces
to the non-relativistic Maxwellian for |u|, |q| very small, namely

fc(n, T,u,q) = n

(

m0c
2

2πKBT

)
3

2

exp

(

−m0c
2(q − u)2

2KBT

)

. (4.2.31)

Case 2: The ultra-relativistic limit (zero rest mass of the particles)

For the ultra-relativistic limit m0 → 0 with fixed temperature we apply the
substitution q′ = m0.q in order to write (4.2.17) in the form

fJ(n, T,u,q) = m3
0

n

M2(β̃)
exp

(

−β̃
(

√

(1 + u2)(m2
0 + q′2) − u · q′

))

,

(4.2.32)

where

β̃ =
β

m0
=

c2

kBT
, M2(β̃) =

8π

β̃3

∫ ∞

0

ξ2

2
exp

(

−
√

m2
0β̃

2 + ξ2

)

dξ . (4.2.33)

In the following we do not use primes for the new integration variable q.

Now we are able to pass to the ultra-relativistic limit m0 → 0. In order to
do this we first have to replace the four-vector qµ defined in (4.2.1) by the
light vector

(

q0,q
)T

, q0 = q0 = |q| . (4.2.34)
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Next we will introduce dimensionless quantities by setting c = kB = ~ = 1.
Then the ultra-relativistic moments and entropy four-vector take a similar
form as given in (4.2.3), (4.2.4) and (4.2.5)

Nµ = Nµ(t,x) =

∫

R3

qµ f(t,x,q)
d3q

|q| , (4.2.35)

T µν = T µν(t,x) =

∫

R3

qµqν f(t,x,q)
d3q

|q| , (4.2.36)

and the macroscopic entropy four-vector

Sµ = Sµ(t,x) = −
∫

R3

qµ f(t,x,q) ln

(

f(t,x,q)

χ

)

d3q

|q| , (4.2.37)

where χ = (m0c
~

)3.
Here f is first taken as the ultra-relativistic Jüttner phase density (4.2.32) in
its dimensionless form as

f ∗
J(n, T,u,q) =

n

8πT 3
exp

(

−uµq
µ

T

)

=
n

8πT 3
exp

(

−|q|
T

(√
1 + u2 − u · q

|q|

))

. (4.2.38)

But we will also use equations (4.2.35), (4.2.36) and (4.2.37) in order to define
new moments for a general phase density f . In this case we will again call
(4.2.35), (4.2.36) and (4.2.37) the moments for the ultra-relativistic limit.
For that reason we have used the general symbol f for the new moments
instead of f ∗

J . These more general definitions will be important for the for-
mulation of kinetic schemes in order to solve the fluid dynamic equations in
the ultra-relativistic limit.

Finally it is important to note that all the definitions given for the particle
density n, velocity four-vector uµ, energy density e and for the pressure p,
which are tensor invariant algebraic combinations of the basic moments Nµ

and T µν, are still valid for an arbitrary phase density f in the ultra-relativistic
limit. Neverthless we can still simplify the generally valid formula (4.2.10)
for the pressure in the ultra-relativistic limit

p =
1

3
uµuνT

µν − 1

3
gµνT

µν

=
1

3
uµuνT

µν −
∫

R3

gµνq
µqν f

d3q

q0
. (4.2.39)

Since gµνq
µqν = qνq

ν = 0 holds due to (4.2.34), we immediately conclude
that

p =
e

3
=

1

3
T µνuµuν = nT (4.2.40)

in the ultra-relativistic case.
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4.3 Relativistic Euler equations

4.3.1 The constitutive relations, general case

Using the relativistic Jüttner distribution (4.2.17), the relations (4.2.21) and
(4.2.23), we calculate the originally given moments (4.2.3), (4.2.4) and (4.2.5)
with q0 =

√

1 + q2. In the global rest frame, where uµ has components
(1, 0, 0, 0)T , we first obtain

e = −nM
′(β)

M(β)
= nΨ(β) ,

p = − n

3M(β)
(M ′(β) + η(β)) = nT =

n

β
, (4.3.1)

σ = −n ln

(

nβ

K2(β)

)

+ βnΨ(β) + γn .

Here the choice of the entropy constant γ is not so important in general.
Since e, p and σ are Lorentz invariant, we see that (4.3.1) is already true in
any other Lorentz-frame, without the restriction that (uµ) = (1, 0, 0, 0)T .

Starting with the rest frame and then applying the inverse of the Lorentz
boost given by (4.2.14), we get the following relations for the general frame,
where u may or may not be zero,

Nµ = nuµ , T µν = −p gµν + (e+ p)uµuν , Sµ = σuµ . (4.3.2)

Moreover one can see by simple calculations that σ in (4.3.1)3 obeys the
Gibbs equation

Td
(σ

n

)

= p d

(

1

n

)

+ d
( e

n

)

. (4.3.3)

Since the relativistic moments (4.3.2) are valid in a special Lorentz frame and
since these equations are written in tensor invariant form, they are generally
valid in every Lorentz frame. This can also be seen directly without making
use of the Lorentz-boosts.

4.3.2 The constitutive relations, limiting cases

Case 1: The classical limit

In order to get the classical limit with β � 1, we first regard the asymptotic
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relations which hold for β → ∞ ,

K1(β) =

√

π

2β
exp(−β)

(

1 +
3

8β

)

+O

(

exp(−β)

β
5

2

)

,

K2(β) =

√

π

2β
exp(−β)

(

1 +
15

8β

)

+O

(

exp(−β)

β
5

2

)

, (4.3.4)

Ψ(β) = 1 +
3

2β
+O

(

exp(−β)

β
5

2

)

.

To obtain the non-relativistic values of the energy density, pressure and en-
tropy density, we substitute the asymptotic relations (4.3.4) for K2(β) and
Ψ(β) into the constitutive relations (4.3.1). There result the following ex-
pressions in the classical limit

e = n+
3

2
nT , p = nT , σ = n ln

p
3

2

n
5

2

+ γn . (4.3.5)

For the detailed study of the classical case the reader is refered to Dreyer
and Kunik [7]. In this paper the particle density n is replaced by the mass
density ρ and entropy density σ is denoted by h. The term n in (4.3.5)1 is
the energy density of the rest mass.

Case 2: The ultra-relativistic limit

In order to obtain the ultra-relativistic limit with β << 1, we first regard the
asymptotic relations which hold for β → 0 ,

K1(β) =
1

β
+O (β lnβ) ,

K2(β) =
2

β2
+O(1) , Ψ(β) =

3

β
+O(β). (4.3.6)

We substitute them into the constitutive relations (4.3.1) and (4.3.2) and get

e = 3nT , p = nT , σ = n ln
p3

n4
+ γn , (4.3.7)

Nµ = nuµ , T µν = −p gµν + 4puµuν ,

Sµ = Nµ ln
p3

n4
+ γNµ . (4.3.8)

A detailed study of the ultra-relativistic case including its kinetic solution
was first presented by Kunik, Qamar and Warnecke [31]. We extend this
study in the following sections.
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4.3.3 Formulation of Euler’s equations, general case

Now we use the constitutive relations (4.3.1), (4.3.2) and the conservation
laws (4.2.16) in order to get the general form of three-dimensional Euler
equations at regular points. For this purpose we introduce the abbreviation

χ(β) = Ψ(β) +
1

β
, (4.3.9)

and obtain for p = n
β

∂

∂t
(n
√

1 + u2) +
3
∑

k=1

∂(nuk)

∂xk
= 0 , (4.3.10)

∂

∂t

(

nχ(β)ui
√

1 + u2
)

+
3
∑

k=1

∂

∂xk
(

pδik + nχ(β)uiuk
)

= 0 , (4.3.11)

∂

∂t

(

−p+ nχ(β)(1 + u2)
)

+
3
∑

k=1

∂

∂xk

(

nχ(β)uk
√

1 + u2
)

= 0 . (4.3.12)

Remarks:

(i) These equations constitute a closed system in terms of the unknown
fields n, u, and β. Also note that β = 1

T
.

(ii) The classical Euler equations result using (4.3.4) in the following way:
From (4.3.10) we obtain the classical continuity equation by neglecting
the second order terms in u, whereas the classical momentum equations
are obtained from (4.3.11) by setting χ(β) equal to one and neglecting
the third order terms in u. Finally, the classical energy equation results
if we subtract (4.3.10) from (4.3.12) and then neglect the fourth order
terms in u and terms which contain pu2 as a factor.

(iii) The ultra-relativistic Euler equations result directly from (4.3.8) and
(4.2.16). We will discuss and study them in detail in the sequel.

4.3.4 Maximum Entropy Principle

The Jüttner distribution fJ (4.2.17) has some important properties. First
of all it generalizes the classical Maxwellian of a gas in equilibrium to the
relativistic case, and secondly fJ satisfies the so called Maximum Entropy
Principle in equilibrium, which will be formulated and proved below. For
this purpose we need the following lemmas.
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Lemma 4.1. Let be u, q ∈ R3. Also let be uµ = (
√

1 + u2,u)T and
qµ = (

√

1 + q2,q)T . Then the scalar product qµuµ satisfies the inequality
qµuµ ≥ 1, where qµuµ = 1 if and only if u = q.

Proof: We consider

qµuµ − 1 =
√

1 + q2
√

1 + u2 − q · u − 1

=
(q − u)2 + q2u2 − (q · u)2

√

1 + q2
√

1 + u2 + q · u + 1
. (4.3.13)

Due to the Cauchy-Schwarz inequality we know that

q2u2 − (q · u)2 ≥ 0. (4.3.14)

If q 6= u then from (4.3.13) we have

(q − u)2 + q2u2 − (q · u)2 > 0 , (4.3.15)

and this implies again from (4.3.13) that qµuµ − 1 > 0 or qµuµ > 1.

Lemma 4.2. The derivative Ψ′ : R+ → R has the representation

Ψ′(β) =
d

dβ

(

3

β
+
K1(β)

K2(β)

)

= − 3

β2
+

3

β
· K1(β)

K2(β)
+

(

K1(β)

K2(β)

)2

− 1 , (4.3.16)

and is negative for any β > 0. Moreover Ψ(β) satisfies the inequality

Ψ(β) > 1 , (4.3.17)

which indicates that the specific energy is larger than the rest mass energy of
a single atom.

Proof: We divide the proof of this lemma into two cases as follow.

Case 1 when 0 < β < 1: From the definition of the modified Bessel functions
we have 0 < K1(β) < K2(β). So we can write due to (4.3.16)

Ψ′(β) = − 3

β2
+

3

β
· K1(β)

K2(β)
+

(

K1(β)

K2(β)

)2

− 1

< − 3

β2
+

3

β
+ 1 − 1 =

3

β2
(β − 1) < 0. (4.3.18)

Thus we have proved for 0 < β < 1 that Ψ′(β) < 0.
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Case 2 when β ≥ 1: Recall the integral definition (4.2.20) for the modified
Bessel functions Kj(β). We also know that cosh(s) = 1+2 sinh2( s

2
) and make

the substitution α = sinh( s
2
) with ds = 2dα√

1+α2
in (4.2.20) in order to get

1

4
exp

(

β

4

)

K0

(

β

4

)

=
1

2

∫ ∞

0

exp
(

−βα2

2

)

√
1 + α2

dα , (4.3.19)

1

4
exp

(

β

4

)[

K0

(

β

4

)

+K1

(

β

4

)]

=

∫ ∞

0

√
1 + α2 exp

(−βα2

2

)

dα .

(4.3.20)

Also we have the following estimates

1√
1 + α2

≥ 1 − α2

2
,

√
1 + α2 ≤ 1 +

α2

2
. (4.3.21)

Keeping in view (4.3.19) and (4.3.20), we obtain from (4.3.21)

1

4
exp

(

β

4

)

K0

(

β

4

)

≥ 1

2

√

π

2β

(

1 − 1

2β

)

, (4.3.22)

1

4
exp

(

β

4

)[

K0

(

β

4

)

+K1

(

β

4

)]

≤
√

π

2β

(

1 +
1

2β

)

. (4.3.23)

Note that also the right hand side of (4.3.22) is positive due to β ≥ 1. We
take the inverse of (4.3.22) and multiply with (4.3.23) in order to get

1 +
K1

(

β
4

)

K0

(

β
4

) ≤ 2

(

1 +
1

2β

)

·
(

1 − 1

2β

)−1

. (4.3.24)

Using the recursion relation (4.2.22) for j = 1 and replacing β by β
4

we get

K2

(

β
4

)

K1

(

β
4

) − K0

(

β
4

)

K1

(

β
4

) =
8

β
. (4.3.25)

Now using (4.3.24) and (4.3.25) we get the following inequality after some
manipulations and replacing β

4
by β

K1(β)

K2(β)
≤

1 + 3
8β

1 + 15
8β

+ 3
4β2

. (4.3.26)

Substituting (4.3.26) in (4.3.16) for K1(β)
K2(β)

, we finally get after simplification

Ψ′(β) ≤ − 9

64β6
· 12 + 60β + 105β2 + 69β3 + 8β4

(

1 + 15
8β

+ 3
4β2

)2 < 0 . (4.3.27)
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It follows that Ψ′(β) < 0 for any β > 0.

Hence we have proved that Ψ(β) is a strictly monotonically decreasing func-
tion which satisfies due to (4.3.4)3 the asymptotic relation

lim
β→∞

Ψ(β) = 1 . (4.3.28)

Thus we conclude that Ψ(β) is strictly bounded below by one.

Lemma 4.3. (i) Let f ∈ V with V defined in (4.2.2) be any phase density
with its moments Nµ, T µν . Let n and e be the corresponding particle
density and energy density, respectively. Then there hold the inequali-
ties 0 < n < e.

(ii) Let 0 < n < e and u ∈ R3 be given parameters, corresponding to the
particle density, energy density and the spatial part of the macroscopic
four-velocity. Then there exists exactly one temperature T > 0 such
that the Jüttner phase density fJ(n, T,u,q) gives the prescribed energy
density e > n.

Proof: In order to prove (i) we use from Lemma 4.1 that qµuµ > 1 for q 6= u.
Therefore we can write

(qµuµ)(q
νuν) > qµuµ . (4.3.29)

This implies that
∫

R3

(qµuµ)(q
νuν)f

d3q

q0
>

∫

R3

qµuµf
d3q

q0
, (4.3.30)

Now using the definitions (4.2.35), (4.2.36) for Nµ and T µν, respectively, we
can write (4.3.30) in the following form

uµuνT
µν > uµN

µ . (4.3.31)

Now using the definitions (4.2.8) and (4.2.9) for n and e we finally conclude
that e > n.

Next we prove part (ii). We know from the part (i) of this lemma that the
restriction e > n > 0 is necessary. Moreover we know from Lemma 4.2 that
e
n

= Ψ(β) > 1 has exactly one solution for β > 0. Let T = 1
β
> 0 be the

corresponding temperature. Then we know from (4.3.1)1 that the Jüttner
phase density fJ(n, T,u,q) leads to the prescribed energy density e.

Remark: The restriction e > n is also natural from the physical point of
view since it states that the energy density is always larger then the rest-mass
energy due to non-zero temperature in the gas.
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Lemma 4.4. For u, v > 0 we have

v ln v − u lnu = [ln u+ 1](v − u) +R(u, v) , (4.3.32)

with R(u, v) ≥ 0.

Proof: Due to the Taylor formula there is a ξ > 0 between u, v > 0 such
that

v ln v = u lnu+ (ln u+ 1)(v − u) +
1

2ξ
(v − u)2. (4.3.33)

We conclude that R(u, v) = 1
2ξ

(v − u)2 ≥ 0.

Proposition 4.5. Let f ∈ V with V defined in (4.2.2) be any phase den-
sity with its moments Nµ, T µν. Let n, u, e be the values resulting from f
for the particle density, the spatial part of the velocity four-vector and the
energy density, respectively. Then there is exactly one temperature T > 0 for
which the Jüttner phase density fJ(n, T,u,q) leads to the prescribed energy
density e. Let σ and σJ be the entropy densities corresponding to f and fJ ,
respectively. Then there holds the Maximum Entropy Inequality σJ ≥ σ. In
the case σJ = σ we obtain the uniqueness result f = fJ a.e. on R3.

Proof: Due to Lemma 4.3 we have exactly one temperature T > 0 for which
the Jüttner phase density fJ(n, T,u,q) gives the prescribed energy density
e > n coming from the general phase density f(q). In the following proof we
will fix this temperature T and the corresponding phase density fJ(n, T,u,q).
Using the definition (4.2.37) and (4.2.11) we have due to the constraint on u

σJ − σ = SµJuµ − Sµuµ

= −uµ
∫

R3

qµ [(fJ ln fJ)(n, T,u,q) − (f ln f)(q)]
d3q

q0
. (4.3.34)

In the following we omit the arguments of f and fJ for the sake of simplicity,
which will not lead to confusion here. We use Lemma 4.4 for u = fJ , v = f
and get

f ln f − fJ ln fJ = (ln fJ + 1)(f − fJ) +R(fJ , f), (4.3.35)

Using equation (4.3.35) in (4.3.34) we have

σJ − σ =uµ

∫

R3

qµ ln fJ (f − fJ)
d3q

q0
+ uµ

∫

R3

qµ (f − fJ)
d3q

q0

+ uµ

∫

R3

qµR(fJ , f)
d3q

q0
. (4.3.36)
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The second integral in (4.3.36) is zero due to the constraints on n and u,

uµN
µ − uµN

µ
J = n− n = 0 , (4.3.37)

so we are left with

σJ − σ =uµ

∫

R3

qµ (f − fJ) ln fJ
d3q

q0

+ uµ

∫

R3

qµR(fJ , f)
d3q

q0
. (4.3.38)

From Jüttner’s phase density we have

ln fJ = ln

(

n

M(β)
exp

(

− 1

T
uνq

ν

))

= ln

(

n

M(β)

)

− 1

T
uνq

ν . (4.3.39)

Using (4.3.39) in (4.3.38) and the fact that n and T are independent of the
integration variable q we get

σJ − σ = ln

(

n

M(β)

)

uµ

∫

R3

qµ (f − fJ)
d3q

q0

− 1

T
uµuν

∫

R3

qµqν (f − fJ)
d3q

q0

+ uµ

∫

R3

qµR(fJ , f)
d3q

q0
. (4.3.40)

In (4.3.40) the first integral is zero due to (4.3.37). Also we know from (4.2.9)
and our constraints on the velocity and energy density that

e = uµuνT
µν = eJ = uµuνT

µν
J , (4.3.41)

where T µν and T µνJ are the energy momentum tensors for f and fJ , respec-
tively. Thus equation (4.3.40) finally reduces to

σJ − σ =

∫

R3

uµq
µR(fJ , f)

d3q

q0
≥ 0. (4.3.42)

The integral in (4.3.42) is non-negative because uµq
µ > 1 due to Lemma

4.1 and because R(fJ , f) is non-negative due to Lemma 4.4. Hence we have
proved that Jüttner’s phase density satisfies the Maximum Entropy Principle,
i.e. σJ ≥ σ. For the uniqueness proof we assume in addition that σJ = σ
and obtain from (4.3.42) with R(u, v) = 1

2ξ
(v − u)2 ≥ 0 for some ξ between

u, v > 0 that f = fJ a.e. on R
3.
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4.3.5 The one-dimensional relativistic Euler equations,
general case

Now we are looking for spatial one-dimensional solutions of the three-dimensional
Euler equations, which will not depend on x2, x3 but only on x = x1. More-
over we restrict to a one-dimensional flow fieldu = (u(t, x), 0, 0)T

(n
√

1 + u2)t + (nu)x = 0 ,

(nχ(β)u
√

1 + u2)t + (n
β

+ nχ(β)u2)x = 0 ,

(−n
β

+ nχ(β)(1 + u2))t + (nχ(β)u
√

1 + u2)x = 0 .

(4.3.43)

These differential equations constitute a strictly hyperbolic system with the
sound speed

λ∗ =

[

1 − 1/(β2Ψ′(β))

1 + βΨ(β)

]
1

2

, (4.3.44)

and the characteristic velocities

λ1 =
−λ∗

√
1 + u2 + u√

1 + u2 − λ∗u
, λ2 =

u√
1 + u2

,

λ3 =
λ∗
√

1 + u2 + u√
1 + u2 + λ∗u

. (4.3.45)

Note that Ψ′(β) < 0 was proved in Lemma 4.2.

These eigenvalues may first be obtained in the Lorentz zero rest frame where
u=0. Then using the additivity law for the velocities in the general Lorentz
frame we can easily obtain (4.3.45).

Note that one can easily get from (4.3.45), the eigenvalues for the classical and
ultra-relativistic cases by using the asymptotic relations (4.3.4) and (4.3.6)
respectively as given below.

Classical eigenvalues:

λ1 = v −
√

5

3
T , λ2 = v , λ3 = v +

√

5

3
T , (4.3.46)

with the velocity v = u√
1+u2

, the temperature T = 1
β

and the speed of sound

λ∗ =
√

5
3
T .

Ultra-relativistic eigenvalues:

λ1 =
2u

√
1 + u2 −

√
3

3 + 2u2
, λ2 =

u√
1 + u2

,

λ3 =
2u

√
1 + u2 +

√
3

3 + 2u2
. (4.3.47)
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Here we obtain the speed of sound λ∗ = 1√
3
.

The differential equations (4.3.43) are not sufficient if we take shock discon-
tinuities into account. Therefore we use a weak integral formulation of the
one-dimensional hyperbolic system for n, u, β : [0,∞]×R → R with n, β > 0,
which is given for piecewise C1-solutions n, u, β according to Oleinik [39] by

∮

∂Ω

n
√

1 + u2dx− nudt = 0 ,
∮

∂Ω

(nχ(β)u
√

1 + u2)dx− (n
β

+ nχ(β)u2)dt = 0 ,
∮

∂Ω

(−n
β

+ nχ(β)(1 + u2))dx− (nχ(β)u
√

1 + u2)dt = 0 .

(4.3.48)

Here Ω ⊂ R
+
0 ×R is a bounded and convex region in space-time with piecewise

smooth, positive oriented boundary. Note that this weak formulation takes
discontinuities into account, since there are no longer derivatives of the fields.
If we apply the Gauss Divergence Theorem in regular time-space regions to
the weak formulation (4.3.48) we come back to the differential form of Euler’s
equation (4.3.43).

Furthermore we require that the weak solution (4.3.48) must also satisfy the
one-dimensional entropy-inequality

∮

∂Ω

S0dx− S1dt ≥ 0 , (4.3.49)

where

S0 = −n
√

1 + u2
(

ln nβ
K2(β)

+ βΨ(β)
)

,

S1 = −nu
(

ln nβ
K2(β)

+ βΨ(β)
)

.
(4.3.50)

Now we consider bounded and integrable initial data for a positive particle
density n, transformed velocity u and absolute temperature T , which may
have jumps

n(0, x) = n0(x) > 0, u(0, x) = u0(x), T (0, x) = T0(x) > 0. (4.3.51)

Parametrizations of single shock solutions

If x = x(t) is a shock-discontinuity of the weak solution (4.3.48) with speed
vs = ẋ(t), W− = (n−, u−, p−) the state left to the shock andW+ = (n+, u+, p+)
the state to the right, then (4.3.48) leads to the Rankine-Hugoniot jump
conditions

vs(N
0
+ − N0

−) = N1
+ − N1

− ,

vs(T
01
+ − T 01

− ) = T 11
+ − T 11

− , (4.3.52)

vs(T
00
+ − T 00

− ) = T 01
+ − T 01

− ,
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where

N0
± = n±

√

1 + u2
± , N1

± = n±u± , T 01
± = n±χ(β±)u±

√

1 + u2
± ,

T 11
± = p± + n±χ(β±)u2

± , T 00
± = −p± + n±χ(β±)(1 + u2

±) .

Also in singular points the local form of (4.3.49) reads

−vs(S0
+ − S0

−) + (S1
+ − S1

−) ≥ 0, (4.3.53)

which must be satisfied at each shock curve of (4.3.48). The shock that
satisfies (4.3.52) and (4.3.53) is called entropy shock.

Now we give parameter representations for the single entropy shocks. For
this purpose we choose the initial data as follows:

Let be (n∗, u∗, β∗) ∈ R
+ × R × R

+ and define p∗ = n∗T∗ = n∗
β∗

. We use the
inverse temperature β as a shock-parameter, impose the restriction β > β∗
and obtain from (4.3.52) and (4.3.53) the following parametrization of the
particle density and the pressure

γ(β) = Ψ(β∗)χ(β∗) − Ψ(β)χ(β) ,

n(β) =
n∗β

2χ(β∗)

[
√

γ(β)2 + 4
χ(β∗)χ(β)

β∗β
− γ(β)

]

, (4.3.54)

p(β) =
n(β)

β
.

For the parametrization of the velocities we have

û(β) =

(

(p∗ − p(β)) · (n∗Ψ(β∗) − n(β) Ψ(β))

n(β)n∗χ(β)χ(β∗)

) 1

2

,

u(β) = u∗

√

1 + û(β)2 ± û(β)
√

1 + u2
∗ , (4.3.55)

ûs(β) =





(p∗ − p(β)) (p∗ + n(β)Ψ(β))

n∗ χ(β∗)
[

n∗(Ψ(β∗) − 1
β∗

) − n(β) (Ψ(β) − 1
β
)
]





1

2

,

us(β) = u∗

√

1 + ûs(β)2 ± ûs(β)
√

1 + u∗2 , (4.3.56)

vs =
us

√

1 + u2
s

, v =
u√

1 + u2
, v∗ =

u∗
√

1 + u2
∗
.

Remarks: All the expressions under the square roots are positive because
n(β), Ψ(β), Ψ(β) − 1

β
and p(β) are strictly monotonically decreasing and

positive functions.
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Now there results the following parametrization for the different kind of shock
waves:

The “+” sign in (4.3.55), (4.3.56) and β > β∗ gives the so called 3-shocks
with the constant state (n∗, u∗, β∗) on the left

(n−, u−, β−) = (n∗, u∗, β∗), (n+, u+, β+) = (n(β), u(β), β).

These 3-shocks satisfy both the Rankine-Hugoniot conditions (4.3.52) as
well as the entropy condition (4.3.53).

The “-” sign in (4.3.55), (4.3.56) and β > β∗ gives the so called 1-shocks with
the constant state (n∗, u∗, β∗) on the right:

(n−, u−, β−) = (n(β), u(β), β), (n+, u+, β+) = (n∗, u∗, β∗).

These 1-shocks satisfy both the Rankine-Hugoniot conditions (4.3.52) as
well as the entropy condition (4.3.53).

Now we define the 2-shocks, that turn out to be contact-discontinuities with-
out entropy-production:

Only for these we choose n > 0 instead of β as a shock parameter and set

(n−, u−, β−) = (n∗, u∗, β∗), (n+, u+, β+) =

(

n, u∗,
nβ∗
n∗

)

.

These shocks satisfy the Rankine-Hugoniot- and entropy conditions. Note
that velocity and pressure are constant across a 2-shock. Here the shock-
speed is vs = v∗ = u∗√

1+u2∗
.

Remark. One can prove that the only shocks satisfying (4.3.52) and (4.3.53)
are 1-, 2- and 3-shocks.

4.4 The ultra-relativistic Euler equations

Using the ultra-relativistic Jüttner distribution f ∗
J(n, T,u,q) in (4.2.38), we

obtain for the moments (4.2.35), (4.2.36) and (4.2.37)

Nµ = nuµ, T µν = −p gµν + 4puµuν , (4.4.1)

Sµ = −Nµ ln
n4

p3
+ γNµ, σ = −n ln

n4

p3
+ γn . (4.4.2)

Note that due to the mass conservation (4.2.16)1 the divergence of Sµ, which
will give rise to the H-theorem formulated later, will not change when we add
some multiple of Nµ to Sµ. Moreover σ obeys the Gibbs equation

Td
(σ

n

)

= p d

(

1

n

)

+ d
( e

n

)

. (4.4.3)
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These formulas can be easily checked for a special Lorentz frame where
u0 = 1, u1 = u2 = u3 = 0, i.e. where the gas is locally at rest. Since the
ultra-relativistic moments (4.4.1) are valid in a special Lorentz frame and
since these equations are written in tensor invariant form, they are generally
valid in every Lorentz frame. Using the moments (4.4.1) and the conservation
laws (4.2.16), we get at regular points the three-dimensional Euler equation
in differential form

∂

∂t
(n

√
1 + u2) + ∇ · (nu) = 0 , (4.4.4)

∂

∂t
(4pui

√
1 + u2) +

3
∑

k=1

∂

∂xk
(p δik + 4puiuk) = 0 , (4.4.5)

∂

∂t
(3p+ 4pu2) +

3
∑

k=1

∂

∂xk
(4puk

√
1 + u2) = 0 . (4.4.6)

The equations for the conservation of momentum and energy (4.4.5), (4.4.6)
form a closed 4 by 4 subsystem for p and u, the (p,u)-subsystem, where the
relativistic continuity equation (4.4.4) for n decouples from this subsystem.
This is an important feature of the ultra-relativistic Euler equations which
will be studied in the sequel.

Now we are looking for special solutions of the three-dimensional ultra-
relativistic Euler equations, which will not depend on x2, x3 but only on x =
x1. Moreover we restrict to a one-dimensional flow fieldu = (u(t, x), 0, 0)T

(n
√

1 + u2)t + (nu)x = 0 ,

(4pu
√

1 + u2)t + (p(1 + 4u2))x = 0 , (4.4.7)

(p(3 + 4u2))t + (4pu
√

1 + u2)x = 0 .

These differential equations constitute a strictly hyperbolic system with the
characteristic velocities

λ1 =
2u

√
1 + u2 −

√
3

3 + 2u2
< λ2 =

u√
1 + u2

< λ3 =
2u

√
1 + u2 +

√
3

3 + 2u2
. (4.4.8)

These eigenvalues may first be obtained in the Lorentz rest frame where
u = 0. Then using the relativistic additivity law for the velocities, we can
easily obtain (4.4.8) in the general Lorentz frame. In the Lorentz rest frame
we obtain the positive speed of sound λ = 1√

3
, which is independent of the

spatial direction.

But there is another useful derivation for the characteristic speeds. For this
purpose we rewrite the 2 × 2 subsystem for p and u in (4.4.7) in the form

(

pt
ut

)

+

(

2u
√

1+u2

3+2u2

4p√
1+u2(3+2u2)

3
√

1+u2

4p(3+2u2)
2u

√
1+u2

3+2u2

)

(

px
ux

)

= 0 . (4.4.9)
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Thus we obtain that also the 2 × 2 subsystem for p and u turns out to be
strictly hyperbolic with the characteristic velocities λ1 < λ3 in (4.4.8).

The differential equations (4.4.7) are not sufficient if we take shock discon-
tinuities into account. Therefore we use a weak integral formulation with
a piecewise C1-solution n, u, p : [0,∞] × R → R, n, p > 0, which is given
according to Oleinik [39] by

∮

∂Ω

n
√

1 + u2dx− nudt = 0 ,

∮

∂Ω

4pu
√

1 + u2dx− p(1 + 4u2)dt = 0 , (4.4.10)

∮

∂Ω

p(3 + 4u2)dx− 4pu
√

1 + u2dt = 0 .

Here Ω ⊂ R
+
0 × R is a bounded and convex region in space-time and with

a piecewise smooth, positively oriented boundary. If we apply the Gaussian
divergence theorem to the weak formulation (4.4.10) in time-space regions
where the solution is regular we come back to the differential equation form
of the Euler equations (4.4.7).

Furthermore we require that the weak solution (4.4.10) must also satisfy the
entropy-inequality

∮

∂Ω

S0dx− S1dt ≥ 0 (4.4.11)

where

S0 = −n
√

1 + u2 ln
n4

p3
, S1 = −nu ln

n4

p3
. (4.4.12)

The subsystem has an own entropy inequality, which reads in one space
dimension

∮

∂Ω

S̃0dx− S̃1dt ≥ 0 . (4.4.13)

Here the reduced thermodynamical entropy four-vector is defined in one space
dimension by

S̃0 = α p3/4
√

1 + u2 , S̃1 = α p3/4u , (4.4.14)
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where α > 0 is constant. This entropy four-vector is independent of n and
satisfies an additional conservation law in the points (t, x) of smoothness,
namely

∂S̃0

∂t
+
∂S̃1

∂x
= 0 , (4.4.15)

which can be obtained with the help of (4.4.9) . Formally this equation can
be obtained by putting n = αp3/4 in the continuity equation (4.4.7)1 of the
larger system. However, when shocks are involved in the weak solutions of
the subsystem, then the reduced entropy will increase. We will show that
(4.4.11) and (4.4.13) are indeed equivalent for piecewise smooth solutions.

Parametrizations of single shock solutions

If x = x(t) is a shock-discontinuity of the weak solution (4.4.10) with speed
vs = ẋ(t), W− = (n−, u−, p−) the state left to the shock andW+ = (n+, u+, p+)
the state to the right, then (4.4.10) leads to the Rankine-Hugoniot jump
conditions

vs[n+

√

1 + u2
+ − n−

√

1 + u2
−] = n+u+ − n−u− ,

vs[4p+u+

√

1 + u2
+ − 4p−u−

√

1 + u2
−] = (p+ + 4p+u

2
+) − (p− + 4p−u

2
−) ,

vs[(3p+ + 4p+u
2
+) − (3p− + 4p−u

2
−)] = 4p+u+

√

1 + u2
+ − 4p−u−

√

1 + u2
− .

(4.4.16)

Also in singular points the local form of (4.4.11) reads

−vs(S0
+ − S0

−) + (S1
+ − S1

−) ≥ 0, (4.4.17)

which must be satisfied on each shock curve of (4.4.10). A shock that satifies
(4.4.16) and (4.4.17) is called an entropy shock.

Now we give parameter representations for single entropy shocks. For this
purpose we choose the initial data as follows:

Let be (n∗, u∗, T∗) ∈ R+ × R × R+ and define p∗ = n∗T∗.

We use the pressure p as a parameter which determines the strength of an
entropy shock. Equations (4.4.16) and (4.4.17) are solved by
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n(p) = n∗

√

p

p∗

(

3p+ p∗
p+ 3p∗

)

, (4.4.18)

u(p) =
u∗
√
p∗ + 3p

√
p+ 3p∗ ±

√
3(p− p∗)

√

1 + u2
∗

4
√
pp∗

, (4.4.19)

T (p) =
p

n(p)
, (4.4.20)

us(p) =
u∗
√

3(p+ 3p∗) ±
√
p∗ + 3p

√

1 + u2
∗√

8p∗
, (4.4.21)

vs =
us

√

1 + u2
s

, v =
u√

1 + u2
, v∗ =

u∗
√

1 + u2
∗

(4.4.22)

in the following way:

• The“+”sign in (4.4.19), (4.4.21) and p < p∗ gives the so called 3-shocks
with the constant state (n∗, u∗, T∗) on the left

(n−, u−, T−) = (n∗, u∗, T∗), (n+, u+, T+) = (n(p), u(p), T (p)).

These 3-shocks satisfy both the Rankine-Hugoniot conditions (4.4.16)
as well as the entropy condition (4.4.17).

• The “-” sign in (4.4.19), (4.4.21) and p < p∗ gives the so called 1-shocks
with the constant state (n∗, u∗, T∗) on the right:

(n−, u−, T−) = (n(p), u(p), T (p)), (n+, u+, T+) = (n∗, u∗, T∗).

These 1-shocks satisfy both the Rankine-Hugoniot conditions (4.4.16)
as well as the entropy condition (4.4.17).

Now we define the 2-shocks, that turn out to be contact-discontinuities with-
out entropy-production:

Only for these we choose n > 0 instead of p as the parameter and set

(n−, u−, T−) = (n∗, u∗, T∗), (n+, u+, T+) =

(

n, u∗,
n∗T∗
n

)

.

These shocks satisfy the Rankine-Hugoniot- and entropy conditions.

Note that velocity and pressure are constant across a 2-shock. Here the
shock-speed is vs = v∗ = u∗√

1+u2∗
.

Remark. One can prove that the only shocks satisfying (4.4.16) and (4.4.17)
are 1-, 2- and 3-shocks.

82



The structure of these shock solutions is quite similar to the classical Euler
equations.

Since the subsystem in p and u has its own entropy, we obtain for the subsys-
tem the following local form for the increasing of the reduced entropy across
the shock front

−vs(S̃0
+ − S̃0

−) + (S̃1
+ − S̃1

−) ≥ 0 . (4.4.23)

It is important to note that both entropies, the original one given by (4.4.2)
and the reduced entropy for the subsystem given by (4.4.14), lead to the
same entropy shocks, i.e. they lead to equivalent shock selection criteria.
The equivalence of the local entropy inequalities (4.4.17) and (4.4.23) across
a single shock front can be checked without big effort by applying a proper
Lorentz-transformation which transforms u∗ to 0 in the shock parameter
representations above. The inverse Lorentz-transformation will then preserve
these inequalities. We will make essential use of this trick when we construct
the general Riemann solution for the (p,u)-subsystem.

In view of (4.4.15) and in view of the equivalence of the local shock conditions
(4.4.17) and (4.4.23) we thus conclude that (4.4.11) and (4.4.13) are indeed
equivalent. This equivalence holds at least for piecewise smooth solutions
due to standard arguments for the decomposition of curve integrals.

In the case of the classical Euler equations the so called fan-type shaped rar-
efaction waves play a key role as building blocks for the Riemann solutions
beside the shock waves. The same is also true for the relativistic Euler equa-
tions. Before we construct the Riemann solutions we need the

Parametrizations of rarefaction waves

A rarefaction wave with center at the origin t = 0, x = 0 is a smooth solution
of Euler’s equations which depends only on the characteristic speed s = x

t
. If

we define the 2 × 2-matrix in (4.4.9) by A = A(p, u) and assume that p and
u depend only on s = x

t
, then we immediately obtain from these equations

with the chain rule

A(p, u)

(

ṗ
u̇

)

= s

(

ṗ
u̇

)

. (4.4.24)

It follows that s is indeed a characteristic speed of the subsystem, i.e.

s =
2u

√
1 + u2 ±

√
3

3 + 2u2
, u =

√

3

2

s∓ 1√
3√

1 − s2
. (4.4.25)

Inserting (4.4.25)1 in (4.4.24) leads without any effort to the condition

ṗ

p
= ± 4√

3

u̇√
1 + u2

, (4.4.26)
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and the general primitive with respect to s on both sides of this equation is
with a constant C

ln p = C +
4√
3

ln(
√

1 + u2 ± u) . (4.4.27)

In the same way we obtain from the continuity equation for n with (4.4.25)

lnn = C ′ +
√

3 ln(
√

1 + u2 ± u) . (4.4.28)

We finally obtain for positive real numbers a, b the parametrization of the
rarefaction fans with respect to the characteristic speed s

u(s) =

√

3

2

s∓ 1√
3√

1 − s2
, (4.4.29)

p(s) = a
(

√

1 + u(s)2 ± u(s)
)

4√
3

= a

(

(2 −
√

3)
1 ± s

1 ∓ s

)
2√
3

, (4.4.30)

n(s) = b
(

√

1 + u(s)2 ± u(s)
)

√
3

= b

(

(2 −
√

3)
1 ± s

1 ∓ s

)

√
3

2

. (4.4.31)

Sometimes it is also useful to take the pressure p as a parameter for the
rarefaction waves and to rewrite (4.4.29)-(4.4.31) in the form

u(p) = ±
(

p
a

)

√
3

2 − 1

2
(

p
a

)

√
3

4

, (4.4.32)

n(p) = b
(p

a

)
3

4

, (4.4.33)

s(p) = ±
(

p
a

)

√
3

2 +
√

3 − 2
(

p
a

)

√
3

2 −
√

3 + 2
. (4.4.34)

In both parametrizations the upper sign represents the 3-waves and the lower
sign the 1-waves.

Solution of the Riemann problem

Now we solve the weak form of the hyperbolic 2 × 2 subsystem

(4pu
√

1 + u2)t + (p(1 + 4u2))x = 0 ,

(p(3 + 4u2))t + (4pu
√

1 + u2)x = 0
(4.4.35)
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for given Riemannian initial data

p0(x) =

{

p− , x ≤ 0 ,
p+ , x > 0 ,

, u0(x) =

{

u− , x ≤ 0 ,
u+ , x > 0 .

(4.4.36)

The basic ingredients for Riemann solutions are the parametrizations of
shocks and rarefaction waves studied before. Moreover, whenever the weak
solution for the subsystem is available, it is not difficult to extend it to a
weak solution of the one-dimensional 3 × 3 system (4.4.7). The continuity
equation can be solved afterwards by using the parametrizations of n across
the shocks and rarefaction waves. In Section 4.9 this is illustrated for an
explicit Riemann solution of the 3 × 3 system which serves as a numerical
test case. The correct entropy conditions are always satisfied, because we
only make use of the parameter representations for admissible shock fronts.

In order to prepare the construction of the Riemann solutions we start with
two important simplifications.

The first simplification is based on the fact that whenever (p, u) is a weak
solution of (4.4.35), then also (κp, u) for a positive constant κ, i.e. we can
apply a homogeneous scaling of the pressure with the scaling factor κ.

The second simplification is more interesting. It is based on the fact that
the weak solutions are invariant with respect to the following homogeneous
Lorentz-transformations in dimensionless form

t′ = at + bx , x′ = bt + ax , (4.4.37)

where a > 1 and b are real parameters which satisfy the condition a2−b2 = 1.
These are the Lorentz-boosts in x-directions studied in Section 3.8.

Lemma 4.6. The expression
√

1 + u2
+ − u+

√

1 + u2
− − u−

is invariant with respect to the Lorentz-boost (4.4.37), if applied to the rela-
tivistic velocity vectors from the initial data (4.4.36).

Proof: The relativistic velocity vectors from the initial data and their Lorentz-
transforms are (

√

1 + u2
±, u±)T and

( √

1 + u
′2
±

u′±

)

=

(

a
√

1 + u2
± + b u±

b
√

1 + u2
± + a u±

)

.

We obtain that
√

1 + u
′2
+ − u

′
+

√

1 + u
′2
− − u

′
−

=
(a
√

1 + u2
+ + b u+) − (b

√

1 + u2
+ + a u+)

(a
√

1 + u2
− + b u−) − (b

√

1 + u2
− + a u−)

=
(a− b)

√

1 + u2
+ − (a− b) u+

(a− b)
√

1 + u2
− − (a− b) u−

=

√

1 + u2
+ − u+

√

1 + u2
− − u−

,
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which is the statement of the Lemma.

We define the equivalence of two Riemann solutions if it is possible to map
them on each other by an appropriate scaling of the pressure and by apply-
ing an appropriate Lorentz-transformation (4.4.37). Then we can state that
equivalent Riemann solutions depend only on the two positive parameters

α =
p+

p−
, β =

√

1 + u2
+ − u+

√

1 + u2
− − u−

. (4.4.39)

This equivalence also allows us to simplify calculations with the single-shock
parametrizations (4.4.18)-(4.4.22) considerably by assuming first the special
case

p∗ = 1 , u∗ = 0 . (4.4.40)

Afterwards one can easily remove these restrictions by applying an appropri-
ate Lorentz-transformation (4.4.37) and an appropriate scaling of the pres-
sure.

Our next aim is to rewrite the parametrizations for single shocks and rar-
efaction waves in terms of the Lorentz-invariant quantities α and β. Then
we are also able to handle the Riemann problem in general.

For this purpose we first define two functions which turn out to be very useful
in order to perform these parametrizations in a completely unified way. For
α > 0 we put

KS(α) =

√
1 + 3α

√
3 + α +

√
3 (α− 1)

4
√
α

, KR(α) = α
√

3/4 . (4.4.41)

Then the following Lemma gives a simple characterization for the case that
the Riemannian initial data (4.4.36) can be connected by a single shock or
rarefaction wave, respectively.

Lemma 4.7. The functions KS(α) and KR(α) are strictly monotonically
increasing for α > 0 and they satisfy

KS(1/α) = 1/KS(α) , KR(1/α) = 1/KR(α) .

Moreover, α = 1 is a tangent point for both curves with

KS(1) = KR(1) = 1 , K ′
S(1) = K ′

R(1) =

√
3

4
, K ′′

S(1) = K ′′
R(1) =

3 − 4
√

3

16
.

Define α and β according to (4.4.39) with p± > 0.
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(i) For β KR(α) = 1 the two conditions α > 1 and β < KS(α) are equiva-
lent. If all these conditions are satisfied, then the initial data (4.4.36)
can be connected by a single 3-rarefaction wave.

(ii) For β KS(α) = 1 the two conditions α < 1 and β > KR(α) are equiva-
lent. If all these conditions are satisfied, then the initial data (4.4.36)
can be connected by a single 3-shock.

(iii) For β = KR(α) the two conditions α < 1 and β KS(α) < 1 are equiva-
lent. If all these conditions are satisfied, then the initial data (4.4.36)
can be connected by a single 1-rarefaction wave.

(iv) For β = KS(α) the two conditions α > 1 and β KR(α) > 1 are equiva-
lent. If all these conditions are satisfied, then the initial data (4.4.36)
can be connected by a single 1-shock.

Remark: The trivial case β = α = 1 means that p− = p+ and u− = u+.

Proof: The first part of the Lemma can be obtained by straight forward
calculations.

We first consider a single 1-shock. According to (4.4.40) we put p = p− <
p∗ = p+ = 1 with α > 1 and u∗ = u+ = 0 in (4.4.19) with the lower minus
sign and obtain that

u− = −
√

3

4

(p− − p+)
√
p− p+

=

√
3

4

(

√
α−

√

1

α

)

.

From this equation we obtain that

β =
√

1 + u2
− + u− = KS(α) > 1 ,

which is the proof of case (iv) of the lemma. The case (ii) for a single 3-shock
follows in the same way.

Next we consider a single 1-rarefaction wave. In this case we can directly
conclude from (4.4.30) with the lower minus sign that

p+

p−
= α = β

4√
3 ,

and this gives the desired statement β = KR(α) .

The case (i) for a single 3-rarefaction wave follows in the same way.

After we have studied the single shock and single wave Riemann solutions
we are now able to construct the general Riemann solutions by studying four
cases. These cases are illustrated in Figure 4.1, where the behaviour of the
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solution depends on the corresponding four regions depicted in this figure.
For each case we will employ monotonicity arguments as well as the Mean
Value Theorem in order to construct an intermediate state (p∗, u∗) in the
so called “star-region” which can be connected with a single shock or rar-
efaction wave to the prescribed left and right Riemannian initial data. The
boundaries of these four regions characterize the initial data for which the
Riemann solution consists only of a single shock or rarefaction wave in the
sense of Lemma 4.7.

Case 1: β < KS(α) and β KR(α) > 1.

Here we can construct a solution which is composed on a lower 1-shock and
an upper 3-rarefaction wave. Define the intermediate pressure and velocity
by the implicit equations

KS(
p∗
p−

)KR(
p∗
p+

) = β ,

√

1 + u2
∗ − u∗

√

1 + u2
− − u−

= KS(
p∗
p−

) . (4.4.42)

Since KS(
p∗
p−

)KR( p∗
p+

) is strictly monotonically increasing with

lim
p∗→0

KS(
p∗
p−

)KR(
p∗
p+

) = 0 , lim
p∗→∞

KS(
p∗
p−

)KR(
p∗
p+

) = ∞ ,

we conclude that the implicit equation for p∗ > 0 and hence for u∗ has a
unique solution. From 1 < βKR(α) < KS(α)KR(α) we obtain that α > 1
and hence p− < p+. Since

KS(
p−
p−

)KR(
p−
p+

) = 1/KR(α) < β , KS(
p+

p−
)KR(

p+

p+
) = KS(α) > β ,

we obtain from the mean value theorem that p− < p∗ < p+. This implies
KS(

p∗
p−

) > 1 and KS(
p∗
p+

) < 1. From the last two inequalities and (4.4.42) we

obtain u∗ < min(u−, u+).

We summarize these inequalities for the first case:

α > 1 , p− < p∗ < p+ and u∗ < min(u−, u+) . (4.4.43)

From (4.4.42), (4.4.43) and the preceeding Lemma we conclude that the
states (p−, u−) and (p∗, u∗) can be connected by a 1-shock and that the states
(p∗, u∗) and (p+, u+) can be connected by a 3-rarefaction wave.

In order to guarantee that the 1-shock with velocity vs and the 3-rarefaction
wave fit together to a complete Riemann solution of (4.4.35) and (4.4.36),
we only have to check that

vs < λ3(u∗) .

This inequality is valid in the special case p∗ = 1 and u∗ = 0 with

vs = − 1√
3

√

1+3p−
3+p−

< 0 , λ3(u∗) = λ3(0) = 1√
3
> 0 and hence valid in the

general case, because any ordering of propagation velocities is invariant with
respect to proper Lorentz-transformations (4.4.37).
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Case 2: β > KS(α) and β KS(α) > 1.

Here we can construct a solution which is composed on a lower 1-shock and an
upper 3-shock. Define the intermediate pressure and velocity by the implicit
equations

KS(
p∗
p−

)KS(
p∗
p+

) = β ,

√

1 + u2
∗ − u∗

√

1 + u2
− − u−

= KS(
p∗
p−

) . (4.4.44)

From β > KS(α) and β > 1/KS(α) = KS(1/α) we conclude that β > 1, be-
cause one of the two numbers α or 1/α is larger than 1. Since KS(

p∗
p−

)KS(
p∗
p+

)
is strictly monotonically increasing in p∗ with

lim
p∗→0

KS(
p∗
p−

)KS(
p∗
p+

) = 0 , lim
p∗→∞

KS(
p∗
p−

)KS(
p∗
p+

) = ∞ ,

we conclude that the implicit equation for p∗ > 0 and hence for u∗ has a
unique solution. Since

KS(
p−
p−

)KS(
p−
p+

) = 1/KS(α) < β , KS(
p+

p−
)KS(

p+

p+
) = KS(α) < β ,

we obtain from the monotonicity of KS(
p∗
p−

)KS(
p∗
p+

) with respect to p∗ that

p∗ > max(p−, p+). This implies KS(
p∗
p±

) > 1. From the last two inequalities

and (4.4.44) we obtain u− > u∗ > u+.

We summarize these inequalities for the second case:

β > 1 , p∗ > max(p−, p+) and u− > u∗ > u+ . (4.4.45)

From (4.4.44), (4.4.45) and the preceeding Lemma we conclude that the
states (p−, u−) and (p∗, u∗) can be connected by a 1-shock and that the states
(p∗, u∗) and (p+, u+) can be connected by a 3-shock.

In order to guarantee that the 1-shock with velocity v
(1)
s and the 3-shock

with velocity v
(3)
s fit together to a complete Riemann solution of (4.4.35) and

(4.4.36), we only have to check that

v(1)
s < v(3)

s .

This inequality is valid in the special case p∗ = 1 and u∗ = 0 with

v
(1)
s = − 1√

3

√

1+3p−
3+p−

< 0 , v
(3)
s = 1√

3

√

1+3p+
3+p+

> 0 , and hence valid in the

general case, because any ordering of propagation velocities is invariant with
respect to proper Lorentz-transformations (4.4.37).

Case 3: β > KR(α) and β KS(α) < 1.

Here we can construct a solution which is composed on a lower 1-rarefaction
wave and an upper 3-shock. Define the intermediate pressure and velocity
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by the implicit equations

KR(
p∗
p−

)KS(
p∗
p+

) = β ,

√

1 + u2
∗ − u∗

√

1 + u2
− − u−

= KR(
p∗
p−

) . (4.4.46)

Again the implicit equations have a unique solution for p∗ and u∗, and similar
to the first case we obtain in the third case the inequalities

α < 1 , p− > p∗ > p+ and u∗ > max(u−, u+) . (4.4.47)

From (4.4.46), (4.4.47) and the preceeding Lemma we conclude that the states
(p−, u−) and (p∗, u∗) can be connected by a 1-rarefaction wave and that the
states (p∗, u∗) and (p+, u+) can be connected by a 3-shock. They form a
complete Riemann solution because in the special case p∗ = 1 and u∗ = 0
the characteristic slopes of the 1-rarefaction wave are negative, whereas the
velocity of the upper 3-shock is positive.

Case 4: β < KR(α) and β KR(α) < 1.

Here we can construct a solution which is composed on a lower 1-rarefaction
and an upper 3-rarefaction wave. Define the intermediate pressure and ve-
locity by the implicit equations

KR(
p∗
p−

)KR(
p∗
p+

) = β ,

√

1 + u2
∗ − u∗

√

1 + u2
− − u−

= KR(
p∗
p−

) . (4.4.48)

In this case the intermediate fields can be solved explicitly by

p∗
p−

= α1/2 β 2/
√

3 ,

√

1 + u2
∗ − u∗

√

1 + u2
− − u−

= α
√

3/8 β1/2 . (4.4.49)

From β < KR(α) and β < 1/KR(α) = KR(1/α) we conclude that β < 1,
because one of the two numbers α or 1/α is less than 1. Similar to the second
case we obtain in the last case the inequalities

β < 1 , p∗ < min(p−, p+) and u− < u∗ < u+ . (4.4.50)

From (4.4.48), (4.4.50) and the preceeding Lemma we conclude that the states
(p−, u−) and (p∗, u∗) can be connected by a 1-rarefaction wave and that the
states (p∗, u∗) and (p+, u+) can be connected by a 3-rarefaction wave.

They form a complete Riemann solution because in the special case p∗ = 1
and u∗ = 0 the characteristic slopes of the 1-rarefaction wave are negative,
whereas the characteristic slopes of the 3-rarefaction wave are positive.

The following sketch describes the behaviour of the Riemann solutions in
each of the four cases.
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Figure 4.1: Classification of the Riemann solutions for the subsystem.

4.5 A kinetic scheme for the ultra-relativistic

Euler equations

We first formulate the scheme for the three-dimensional Euler equations.
After that we solve the one-dimensional Euler equations, using a special
integration technique. Recalling the ultra-relativistic Jüttner phase density
(4.2.38), we start with the given initial data

nI(x) = n(0,x) ≥ ε1, TI(x) = T (0,x) ≥ ε2, uI(x) = u(0,x) ∈ R
3

for sufficiently small ε1, ε2 > 0. We assume that at least nI , TI ,uI ∈ L∞(R3).
We prescribe a time step τM > 0 and let tn = n τM for n = 0, 1, 2, 3...
be the maximization times. Then we define the moments and the entropy
four-vector in the free flight for 0 < τ < τM as

Nµ(tn + τ,x) =

∫

R3

qµ fn(x − τ
q

|q| ,q)
d3q

|q| ,

T µν(tn + τ,x) =

∫

R3

qµqν fn(x − τ
q

|q| ,q)
d3q

|q| , (4.5.1)
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Sµ(tn + τ,x) = −
∫

R3

qµ (fn ln fn)(x − τ
q

|q| ,q)
d3q

|q| (4.5.2)

with the ultra-relativistic initial phase density at the maximization time tn
given as

fn(y,q) = f ∗
J(n(t+n ,y), T (t+n ,y),u(t+n ,y),q) . (4.5.3)

Moreover n, T, uµ are calculated from Nµ and T µν for the next time step from
the following generally valid definitions

n =
√

NµNµ, uµ =
1

n
Nµ , T =

1

3n
uµuν T

µν . (4.5.4)

In order to initialize the kinetic scheme for the next time step, we first require
the following continuity conditions for the zero-components of the moments
across the maximization time tn, n ≥ 1

N0(t+n ,x) = N0(t−n ,x) ,

T 0k(t+n ,x) = T 0k(t−n ,x), k = 1, 2, 3 , (4.5.5)

T 00(t+n ,x) = T 00(t−n ,x) .

Here we have used the following abbreviations for the one-sided limits across
the maximization time tn, n ≥ 1, where ε is a positive real number

Nµ(t±n ,x) = lim
ε→0

Nµ(tn ± ε,x) ,

T µν(t±n ,x) = lim
ε→0

T µν(tn ± ε,x) .

Later on we will see in Proposition 4.9 that these conditions are necessary
in order to guarantee the conservation laws for mass, momentum and energy
across the maximization time tn. Moreover we start again with a ultra-
relativistic Jüttner distribution for the next time step. Then we obtain, using
the constitutive relations (4.4.1), for the three-dimensional Euler equations
which are valid for the t+n side of the maximization time

N0(t+n ,x) = n(t+n ,x)
√

1 + u2(t+n ,x) ,

T 0k(t+n ,x) = 4 p(t+n ,x) uk(t+n ,x)
√

1 + u2(t+n ,x) , (4.5.6)

T 00(t+n ,x) = p(t+n ,x)
[

3 + 4u2(t+n ,x)
]

.

Here k = 1, 2, 3 again denote a spatial indices. Since these components of
the moments are continuous across the maximization time tn, we can replace
them by the free-flight moments for t−n and solve the equations (4.5.6) for
p,u, n in order to initialize the kinetic scheme for the next time step by the
following relations

92



p(t+n ,x) =
1

3



−T 00 +

√

√

√

√4(T 00)2 − 3
3
∑

k=1

(T 0k)2



 ,

uk(t+n ,x) =
T 0k

√

4p(t+n ,x)[p(t+n ,x) + T 00]
, (4.5.7)

n(t+n ,x) =
N0

√

1 +
∑3

k=1 [uk(t+n ,x)]2
.

In these formulas N 0, T 00 and T 0k are abbreviations for the free-flight mo-
ments N0(t±n ,x), T 00(t±n ,x) and T 0k(t±n ,x) respectively, which are continuous
across each maximization time.

Note that the quantities on the left hand side have to be calculated in the
prescribed order from the free-flight moments N 0, T 00 and T 0k. Since they
initialize the scheme for the next time step they conclude the formulation of
the kinetic scheme.

But, we can still apply an important simplification of the volume integrals
(4.5.1) and (4.5.2) for the free-flight moments. We can see with (4.5.3) that
the fields n(t,y), T (t,y) and u(t,y) are not depending on |q| but only on
the unit vector w = (w1, w2, w3)T = q

|q| . This fact enables us to reduce the
three-fold volume integrals to two-fold surface integrals over the unit sphere
by applying polar coordinates. Then the integration with respect to |q| can
be carried out explicitly. We introduce the abbreviations

Φ(y,w) =
1

4π

n(t+n ,y)

(
√

1 + u2(t+n ,y) − w · u(t+n ,y))3
,

(4.5.8)

Ψ(y,w) =
1

4π

3p(t+n ,y)

(
√

1 + u2(t+n ,y) − w · u(t+n ,y))4
.

Carrying out the integration with respect to |q| explicitly and defining the

quantity w0 = 1 in addition to wk = qk

|q| , we obtain the following reduced
surface integrals for the moments, where 0 < τ < τM

Nµ(tn + τ,x) =

∮

∂B(1,0)

wµ Φ(x − τw,w) dS(w) , (4.5.9)

T µν(tn + τ,x) =

∮

∂B(1,0)

wµwν Ψ(x − τw,w) dS(w) . (4.5.10)
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Here B(r,x0) denotes the ball with radius r and center x0, and its bound-
ary is the sphere ∂B(r,x0). These surface integrals with respect to the unit
sphere reflect the fact that in the ultra-relativistic case the particles are mov-
ing on the surface of the light cone. Using the Cauchy-Schwarz inequality
one can prove that n, p, e resulting from the moment integrals (4.5.9) and
(4.5.10) are well defined and positive quantities for all times and positions.

Proposition 4.8. Let 0 < τ < τM and n = 0, 1, 2, .... We consider the
moments in the free flight between the two maximization times tn and tn+1.
Within this free-flight zone the moments Nµ(tn + τ,x), T µν(tn + τ,x) and
the entropy four-vector Sµ(tn + τ,x) satisfy the following conservation laws
in weak integral form

∮

∂Ω

Nν(tn + τ,x)doν = 0,

∮

∂Ω

T µν(tn + τ,x)doν = 0,

∮

∂Ω

Sν(tn + τ,x)doν = 0 .

Here the covariant vector doν is a positively oriented surface element to the
boundary ∂Ω. It can be written in covariant form as

doκ = εκλµν

3
∑

i,j,m=1

∂xλ

∂ui
∂xµ

∂uj
∂xν

∂um
dui duj dum ,

where xα = xα(u1, u2, u3) is a positively oriented parameterization of the
boundary ∂Ω.

Remark. Note that these weak formulations correspond to the differential
equations

∂Nν

∂xν
(tn + τ,x) = 0,

∂T µν

∂xν
(tn + τ,x) = 0,

∂Sν

∂xν
(tn + τ,x) = 0. (4.5.11)

Proof: For 0 < τ < τM let be t = tn + τ . If we start with the relativis-
tic Maxwellian (4.5.3) as the initial phase density at the time tn then we
obtain within the time-region 0 < tn < t < tn + τM the free-flight density
f(t,x,q) = f(x − τ q

|q| ,q), which satisfies the following weak form of the
free-flight equation

∮

∂Ω

qν f(t,x,q)doν = qν
∮

∂Ω

f(t,x,q)doν = 0 . (4.5.12)

The equation (4.5.12) and its multiplication with qµ leads after integration
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with respect to q to the following equations

∫

R3





∮

∂Ω

qν f(t,x,q)doν





d3q

|q| = 0 ,

(4.5.13)

∫

R3





∮

∂Ω

qµ qν f(t,x,q)doν





d3q

|q| = 0 .

Since the volume integral with respect to q and the surface integral with
respect to t and x are interchangeable, we can rewrite equations (4.5.1) in
order to get the conservation laws

∮

∂Ω





∫

R3

qν f(t,x,q)
d3q

|q|



 doν =

∮

∂Ω

Nν(tn + τx,q)doν = 0 ,

(4.5.14)

∮

∂Ω





∫

R3

qµ qν f(t,x,q)
d3q

|q|



 doν =

∮

∂Ω

T µν(tn + τx,q)doν = 0 .

Next we define

ψ(t,x,q) = −(fn ln fn)(x − τ
q

|q| ,q) , (4.5.15)

and we conclude due to the chain rule that ψ satisfies the weak form of the
free-flight equation qν ∂ψ

∂xν = 0, namely

∮

∂Ω

qν ψ(t,x,q)doν = 0 . (4.5.16)

This is coming from the Gauss Divergence Theorem.

Integrating this equation with respect to q and interchanging the volume and
surface integrals, we finally get, using equation (4.5.2)

∮

∂Ω





∫

R3

qν ψ(t,x,q)
d3q

|q|



 doν =

∮

∂Ω

Sν(tn + τx,q)doν = 0 . (4.5.17)
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Proposition 4.9. Let Ω ⊂ R
+
0 ×R3 be any bounded convex region in time and

space. By doν we denote the positively oriented surface element of ∂Ω. Let
τM > 0 be a fixed time step. The moment representations (4.5.1) and (4.5.2)
calculated by the iterated scheme defined above have the following properties:

(i) The conservation laws for the particle number, the momentum and en-
ergy hold, i.e.

∮

∂Ω

Nνdoν = 0,

∮

∂Ω

T µνdoν = 0. (4.5.18)

(ii) The following entropy inequality is satisfied

∮

∂Ω

Sνdoν ≥ 0. (4.5.19)

Proof: Let be τM > 0. We first prove part (i) of the proposition. The time
axis is divided by the maximization times 0 = t0 < t1 < t2 < · · · , so that the
convex domain Ω can be decomposed into the subdomains

{

Ω0 =
{

(δ,x) ∈ Ω
∣

∣ 0 ≤ δ ≤ t0+t1
2

}

,

Ωn =
{

(δ,x) ∈ Ω
∣

∣

tn−1+tn
2

≤ δ ≤ tn+tn+1

2

}

n = 1, 2, 3, . . . .
(4.5.20)

Since
∮

∂Ω
Nνdoν =

∑

n≥0

∮

∂Ωn
Nνdoν and

∮

∂Ω
T µνdoν =

∑

n≥0

∮

∂Ωn
T µνdoν, it

is sufficient to assume without loss of generality that the time range

ΘΩ =
{

t ≥ 0
∣

∣ there exists an x ∈ R
3 such that (t,x) ∈ Ω

}

of Ω contains at most one maximization time t.

Then for ε in the range 0 < ε < 1
2
τM we define a further decomposition of

each Ωn, n ≥ 1, into three parts











Ωε
n,L =

{

(δ,x) ∈ Ωn

∣

∣ δ ≤ tn − ε
}

,

Ωε
n,M =

{

(δ,x) ∈ Ωn

∣

∣ tn − ε ≤ δ ≤ tn + ε
}

,

Ωε
n,R =

{

(δ,x) ∈ Ωn

∣

∣ δ ≥ tn + ε
}

.

(4.5.21)

The decompositions which are illustrated in the following figure, were also
applied in order to prove the conservation laws and the entropy inequality
for the classical Euler equations, see [7].

We obtain
∮

∂Ωn

Nνdoν =

∮

∂Ωε
n,L

Nνdoν +

∮

∂Ωε
n,R

Nνdoν +

∮

∂Ωε
n,M

Nνdoν,
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Figure 4.2: The decompositions of Ω and Ωn.

∮

∂Ωn

T µνdoν =

∮

∂Ωε
n,L

T µνdoν +

∮

∂Ωε
n,R

T µνdoν +

∮

∂Ωε
n,M

T µνdoν

since the first two integrals on the right hand side are in the free-flight zone,
so we conclude from equation (4.5.14) that these integrals vanish, i.e.,

∮

∂Ωε
n,L

Nνdoν =

∮

∂Ωε
n,R

Nνdoν = 0,

∮

∂Ωε
n,L

T µνdoν =

∮

∂Ωε
n,R

T µνdoν = 0.

This implies, using Ω∗
n = {x ∈ R3|(tn,x) ∈ Ω}

∮

∂Ωn

Nνdoν =

∮

∂Ωε
n,M

Nνdoν = lim
ε→0

∮

∂Ωε
n,M

Nνdoν

=

∫

Ω∗
n

{
∫

q0

[

fn(x,q) − fn−1(x − τM
q

|q|)
]

d3q

|q|

}

d3x

and
∮

∂Ωn

T µνdoν =

∮

∂Ωε
n,M

T µνdoν = lim
ε→0

∮

∂Ωε
n,M

T µνdoν

=

∫

Ω∗
n

{
∫

q0qµ
[

fn(x,q) − fn−1(x − τM
q

|q|)
]

d3q

|q|

}

d3x,

where tn−1 is the maximization time that preceedes the maximization time
tn. The phase density fn has to be taken to be the ultra-relativistic Jüttner
phase density (4.2.38).
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The last integral expression in these equations vanishes due to the continuity
conditions (4.5.5) across the maximization time tn, which yields

∫

R3

q0fn(x,q)
d3q

|q| =

∫

R3

q0fn−1(x − τM
q

|q| ,q)
d3q

|q| ,
∫

R3

q0qµfn(x,q)
d3q

|q| =

∫

R3

q0qµfn−1(x − τM
q

|q| ,q)
d3q

|q| . (4.5.22)

This expresses the constraints that were used for the maximization proce-
dure. We have thus established that the weak form (4.5.18) for an arbitrary
bounded convex domain Ω is implied by the representations (4.5.1).

Regarding the second part (ii) which states the existence of the entropy
inequality (4.5.19), we start the proof again with the decompositions (4.5.20)
and (4.5.21) of Ω. Since

∫

∂Ω
Sνdoν =

∑

n≥0

∫

∂Ωn
Sνdoν, it is sufficient to

prove
∫

∂Ωn
Sνdoν ≥ 0 for each n. We obtain

∮

∂Ωn

Sνdoν =

∮

∂Ωε
n,L

Sνdoν +

∮

∂Ωε
n,R

Sνdoν +

∮

∂Ωε
n,M

Sνdoν . (4.5.23)

Again the first two integrals lie in the free-flight zone. We can see from
equation (4.5.17) that these integrals vanishes i.e.,

∮

∂Ωε
n,R

Sνdoν = 0, and
∮

∂Ωε
n,L
Sνdoν = 0.

For every sufficiently small ε > 0 the following holds
∮

∂Ωn

Sνdoν = lim
ε→0

∮

∂Ωε
n,M

Sνdoν (4.5.24)

=

∫

Ω∗
n

{
∫

q0

[

−(fn ln fn)(x,q) + (fn−1 ln fn−1)(x − τM
q

|q| ,q)

]

d3q

|q|

}

d3x,

where Ω∗
n = {x ∈ R3|(tn,x) ∈ Ω}, and tn−1 < tn is the maximization time

that preceeds tn.

Next we shall show that the integral (4.5.24) is non-negative. To this end we
need the following

Lemma 4.10. For u, v > 0 we have

v ln v − u lnu = [ln u+ 1](v − u) +R(u, v) (4.5.25)

with a function R(u, v) ≥ 0.

Proof of the Lemma: Due to Taylors formula there is a ξ > 0 between
u, v > 0 such that

v ln v = u lnu+ (ln u+ 1)(v − u) +
1

2ξ
(v − u)2. (4.5.26)
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We conclude that R(u, v) = 1
2ξ

(v − u)2 ≥ 0.

Continuation of proof of Proposition 4.9: Now we apply Lemma 4.10 to
u = fn(x,q) and v = fn−1(x − τM

q

|q| ,q)

∫

R3

q0

[

−(fn ln fn)(x,q) + (fn−1 ln fn−1)(x − τM
q

|q| ,q)

]

d3q

|q|

= −
∫

R3

q0 [1 + ln fn(x,q)]

[

fn(x,q) − fn−1(x − τM
q

|q| ,q)

]

d3q

|q|

+

∫

R3

R

(

fn(x,q), fn−1(x − τM
q

|q| ,q)

)

d3q

|q| . (4.5.27)

The second integral is non-negative and the first one vanishes due to the
following reasons. Using Jüttner’s phase density for fn(x,q) we have

ln fn(x,q) = ln

[

n(x)

8πT 3(x)
exp

(−uνqν
T (x)

)]

= A(x) − B(x)uνq
ν , (4.5.28)

where A(x) = ln n(x)
8πT 3(x)

and B(x) = 1
T (x)

. We use the value (4.5.28) of

ln fn(x,q) in (4.5.27). Using the definitions (4.5.1) for Nµ, T µν and the
continuity conditions (4.5.5) for the zero components N 0, T 0ν , we can see
that the first integral in (4.5.27) is zero.

We have thus established the entropy inequality (4.5.19).

4.6 A kinetic scheme for the one-dimensional

ultra-relativistic equations

In the following we are looking for spatially one-dimensional solutions, which
are nevertheless solutions to the fully three-dimensional equations. We only
consider solutions which depend on t and x = x1 and satisfy n = n(t, x), u =
(u(t, x), 0, 0), p = p(t, x). We will use the generally valid equation p = nT
and go back to the fully three-dimensional scheme.

In order to calculate the surface integrals (4.5.9) and (4.5.10) we introduce
instead of the unit vector w the new variables −1 ≤ ξ ≤ 1 and 0 5 ϕ 5 2π by

w1 = ξ , w2 =
√

1 − ξ2 sinϕ , w3 =
√

1 − ξ2 cosϕ (4.6.1)

with the surface element dS(w) = dξdϕ.
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Note that the quantities n, p, u in the integrals (4.5.9) and (4.5.10) do not
depend on the variable ϕ. This fact enables us to carry out the integration
with respect to ϕ directly. Thus the two-fold surface integral reduces to a
simple ξ−integral. For abbreviation we introduce

φ(y, ξ) =
1

2

n(t+n , y)

(
√

1 + u2(t+n , y) − ξu(t+n , y))
3
,

ψ(y, ξ) =
3

2

p(t+n , y)

(
√

1 + u2(t+n , y) − ξu(t+n , y))
4
, (4.6.2)

then the reduced integrals for the moments can be written as

N0(tn + τ, x) =

1
∫

−1

φ(x− τξ, ξ) dξ , N 1(tn + τ, x) =

1
∫

−1

ξφ(x− τξ, ξ) dξ ,

(4.6.3)

T 00(tn + τ, x) =

1
∫

−1

ψ(x− τξ, ξ) dξ ,

T 01(tn + τ, x) =

1
∫

−1

ξψ(x− τξ, ξ) dξ , (4.6.4)

T 11(tn + τ, x) =

1
∫

−1

ξ2ψ(x− τξ, ξ) dξ .

As in (4.5.9) and (4.5.10), these finite integrals reflect the fact that in the
ultra-relativistic case the particles are moving on the surface of the light cone.
Moreover we obtain

N2(tn + τ, x) = N3(tn + τ, x) = 0 , T 10(tn + τ, x) = T 01(tn + τ, x) ,

T 22(tn + τ, x) = T 33(tn + τ, x) =
1

2
[T 00(tn + τ, x) − T 11(tn + τ, x)] ,

where all the other components of T µν are zero. So in the one-dimensional
case n, u, p and T can be found from the generally valid relations given in
Section 4.2 as follows

n(tn + τ, x) =
√

(N0(tn + τ, x))2 − (N1(tn + τ, x))2 , (4.6.5)

u(tn + τ, x) =
1

n
N1(tn + τ, x) , (4.6.6)

p(tn + τ, x) =
1

3
[{1 + u2(tn + τ, x)}T 00(tn + τ, x) − 2u

√

1 + u2(tn + τ, x)

· T 01(tn + τ, x) + u2(tn + τ, x)T 11(tn + τ, x)] . (4.6.7)
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We can now simplify the equations (4.5.7), which are used in order to initialize
the general three-dimensional scheme, and obtain for the one-dimensional
case

p(t+n ,x) =
1

3

[

−T 00 +
√

4(T 00)2 − 3(T 01)2
]

, (4.6.8)

u(t+n ,x) =
T 01

√

4p(t+n ,x)[p(t+n ,x) + T 00]
, (4.6.9)

n(t+n ,x) =
N0

√

1 + u(t+n ,x)2
. (4.6.10)

Here again N 0 = N0(t±n ,x), T 00 = T 00(t±n ,x) and T 01 = T 01(t±n ,x) are given
by the free-flight moments which are continuous across the maximization
times.

4.7 From the kinetic scheme to the Eulerian

limit (τM → 0)

In the previous sections we have shown how to calculate the solution of the
kinetic scheme in the three- and one-dimensional case, respectively. This was
done for the prescribed initial data of n, u and p for a given free-flight time
step τM > 0. If we calculate these solutions for τM → 0 then we get the
Eulerian limit

Nµ → nuµ, T µν → −p gµν + 4puµuν, Sµ → nuµ ln
n4

p3
. (4.7.1)

First we pass to the Eulerian limit (4.7.1) at the points of smoothness in the
following way using (4.2.15) with Q(f) = 0

lim
τ→0

∂

∂τ
N0(tn + τ,x) = lim

τ→0

∂

∂τ
(n(tn + τ,x)

√

1 + u2(tn + τ,x) )

= lim
τ→0

∂

∂τ

∫

R3

|q|fn(x − τ
q

|q| ,q)
d3q

|q|

= − lim
τ→0

∫

R3

|q|
3
∑

k=1

qk

|q|
∂

∂xk
fn(x − τ

q

|q| ,q)
d3q

|q|

= −
∫

R3

3
∑

k=1

qk
∂

∂xk
fn(x,q)

d3q

|q|

= −
3
∑

k=1

∂

∂xk
(uk(t+n ,x)n(t+n ,x))

= −∇ · (u(t+n ,x)n(t+n ,x)) .
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This implies

∂

∂t
(n(tn + τ,x)

√

1 + u2(t+n ,x) ) + ∇ · (u(t+n ,x)n(t+n ,x)) = 0 , (4.7.2)

which is the first ultra-relativistic Euler equation (4.4.4). Similarly we get
the other Euler equations (4.4.5) and (4.4.6) if we differentiate T 0k(tn + τ,x)
and T 00(tn + τ,x) with respect to τ and pass to the limit τ → 0.

Secondly, on the left hand sides of (4.7.1) there are the moments Nµ, T µν

and Sµ as calculated by the kinetic scheme see (4.5.1) and (4.5.2). Since we
have already established the conservation laws and the entropy inequality
for the solution of the kinetic scheme in Proposition 4.9, we conclude from
(4.7.1) that this also results for the weak entropy solution in the Eulerian
limit τM → 0. The weak entropy solution in the Eulerian limit in one space
dimension is given by (4.4.10), (4.4.11) and (4.4.12).

4.8 The kinetic scheme for the subsystem

Here we shall also use the kinetic scheme with the reduced surface integrals
(4.5.10) to solve the (p,u)-subsystem. In order to calculate p and u from
the previous scheme, the function Φ defined in (4.5.8)2 is not used, the same
with the equations involving Nµ or n in (4.5.5)1, (4.5.6)1, (4.5.7)3, (4.5.9).
These parts have to be replaced by a kinetic definition of a reduced entropy
four-vector exclusively defined for the subsystem.

In order to avoid confusions, we formulate the whole reduced scheme again,
even if there are some repetitions, but we will complement them by a kinetic
redefinition of the entropy four-vector.

We define the two functions

Ψ(y,w) =
1

4π

3p(t+n ,y)

(
√

1 + u2(t+n ,y) − w · u(t+n ,y))4
, Φ̃(y,w) = Ψ(y,w)3/4 ,

(4.8.1)

where the function Ψ is given as before, but we will call it now the reduced
phase density (for the subsystem). The new quantity Φ̃ = Ψ3/4 will be used
to define a much easier entropy equivalent to (4.5.2) for the kinetic scheme
of the subsystem.

The reduced surface integrals for the energy-momentum tensor in the sub-
system are the same as before, namely for 0 ≤ τ < τM

T µν(tn + τ,x) =

∮

∂B(1,0)

wµwν Ψ(x − τw,w) dS(w) . (4.8.2)

102



However, the kinetic definition of the following reduced entropy four-vector
S̃µ now overtakes the role of Nµ in (4.5.9) and of Sµ in (4.5.2), but with the
redefined function Φ̃ = Ψ3/4:

S̃µ(tn + τ,x) = α

∮

∂B(1,0)

wµ Ψ3/4(x − τw,w) dS(w) . (4.8.3)

Here α > 0 is an arbitrary positive constant.

We initialize the scheme as before, i.e. the equilibrium state is used to
calculate p and u in the next time step tn+1 = tn + τM :

p(t+n+1,x) =
1

3



−T 00 +

√

√

√

√4(T 00)2 − 3
3
∑

k=1

(T 0k)2



 ,

uk(t+n+1,x) =
T 0k

√

4p(t+n+1,x)[p(t+n+1,x) + T 00]

with T 00 = T 00(tn+1,x), T 0k = T 0k(tn+1,x) .

Recall that the tensor components T 0µ are continuous across the time steps!

The Maximum Entropy Principle for the reduced entropy of the
(p,u) subsystem

The following considerations do not depend on time-space arguments of the
fields and phase densities. We thus supress the time-space arguments in the
sequel. Here macroscopic fields like p, u, T 0µ are regarded as parameters.

Recall the definition of the zero-component of the reduced entropy four-vector
in terms of a general reduced phase density Ψ = Ψ(w) ∈ L∞(∂B(1, 0)),
Ψ ≥ η for some constant η > 0, where we have put α = 1 without loss of
generality:

S̃0[Ψ] =

∮

∂B(1,0)

Ψ3/4(w) dS(w) .

We want to maximize S̃0 under the following four constraints on the reduced
phase density Ψ(w):

T 00 =

∮

∂B(1,0)

Ψ(w) dS(w) ,

T 0k =

∮

∂B(1,0)

wk Ψ(w) dS(w) .
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Lemma 4.11. For Ψ1,Ψ2 > 0 we have

Ψ
3/4
1 = Ψ

3/4
2 − 3

4
Ψ

−1/4
1 (Ψ2 − Ψ1) + R̃(Ψ1,Ψ2)

with the function R̃(Ψ1,Ψ2) = Ψ
3/4
1 − Ψ

3/4
2 + 3

4
Ψ

−1/4
1 (Ψ2 − Ψ1) ≥ 0.

Proof of the Lemma: Due to Taylors formula there is a ξ > 0 between
Ψ1,Ψ2 > 0 such that

Ψ
3/4
2 = Ψ

3/4
1 +

3

4
Ψ

−1/4
1 (Ψ2 − Ψ1) −

3

32
ξ−5/4(Ψ2 − Ψ1)

2.

We conclude that R̃(Ψ1,Ψ2) = 3
32
ξ−5/4(Ψ2 − Ψ1)

2 ≥ 0.

Proposition 4.12. (Maximum Entropy Principle for the reduced entropy)

Define the reduced phase density in equilibrium Ψeq : ∂B(1, 0) → R depending
on the four given parameters p > 0,u ∈ R3 by

Ψeq(p,u,w) =
3

4π

p

(
√

1 + u2 − w · u)4
, w ∈ ∂B(1, 0) . (4.8.4)

Then there result the four constraints

T 00 :=

∮

∂B(1,0)

Ψeq(p,u,w) dS(w) = p(3 + 4u2) ,

T 0k :=

∮

∂B(1,0)

wk Ψeq(p,u,w) dS(w) = 4puk
√

1 + u2 with

p =
1

3



−T 00 +

√

√

√

√4(T 00)2 − 3

3
∑

k=1

(T 0k)2



 , uk =
T 0k

√

4p[p+ T 00]
.

Assume that Ψ : ∂B(1, 0) → R with Ψ ∈ L∞(∂B(1, 0)) and Ψ ≥ η for
some positive constant η is a second reduced phase density with the same
four constraints T 00, T 0k. Then Ψeq maximizes the entropy due to

S̃0[Ψeq] =

∮

∂B(1,0)

Ψ3/4
eq (p,u,w) dS(w) ≥ S̃0[Ψ] =

∮

∂B(1,0)

Ψ3/4(w) dS(w) .

Moreover, if the entropy inequality reduces to an equality, then Ψ = Ψeq a.e.
on ∂B(1, 0).
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Proof: The first part is a straight forward calculation of the integrals and
the tensor-algebraic relations. In order to show that Ψeq uniquely maximizes
the entropy we use the Lemma 4.11 and conclude that

S̃0[Ψeq] = S̃0[Ψ] − 3

4

∮

∂B(1,0)

Ψ−1/4
eq (Ψ − Ψeq)dS(w) +

∮

∂B(1,0)

R̃(Ψeq,Ψ)dS(w) .

The second integral is non-negative due to the Lemma and the first integral
vanishes because Ψeq, Ψ have the same constraints and

Ψ−1/4
eq =

(

4π

3p

)1/4
(√

1 + u2 − w · u
)

is a linear combination of the moment-weights 1 and wk, k = 1, 2, 3. Now we
assume that S̃0[Ψeq] = S̃0[Ψ] and conclude in this case that

∮

∂B(1,0)

R̃(Ψeq,Ψ)dS(w) = 0 .

But for all Ψ1,Ψ2 > 0 we have for an appropriate ξ between Ψ1, Ψ2

R̃(Ψ1,Ψ2) =
3

32
ξ−5/4(Ψ2 − Ψ1)

2 ,

and therefore Ψ = Ψeq a.e. on ∂B(1, 0).

Remark: In the preceeding Proposition we have solved the Maximum En-
tropy problem in a simple way without using Langrange-multipliers, and the
result presented here is also important for the theory of the phonon-Bose gas
developed in the last two Chapters. This will be explained in Section 6.5.

A closer look at the proof of Proposition 4.9(ii) shows that only the increase
of the entropy zero-component S0 across the maximization time is needed
in order to derive the entropy inequality for the kinetic scheme. Since the
same holds for the kinetic definition S̃0 for the reduced scheme and since the
moment definitions of T 0µ have not been changed, we conclude that also the
reduced entropy increases for the kinetic scheme of the subsystem. This is
stated in

Proposition 4.13. Let Ω ⊂ R
+
0 × R3 be any bounded convex region in time

and space. By doν we denote the positively oriented surface element of ∂Ω.
Let τM > 0 be a fixed time step. The moment representations for S̃µ in (4.8.3)
calculated by the reduced iterated scheme for the (p,u)-subsystem satisfies the
entropy inequality

∮

∂Ω

S̃νdoν ≥ 0. (4.8.5)
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Remark: If we calculate the reduced entropy defined in (4.8.3) for τ = 0 with
the reduced phase density (4.8.4) in equilibrium, then we get back the reduced
entropy for the subsystem of the ultra-relativistic Euler equations defined in
(4.4.14). We have thus used the tilde-symbol for expressions involved in the
reduced entropies.

4.9 First order numerical schemes for the ultra-

relativistic Euler equations

For numerical purposes the one-dimensional ultra-relativistic Euler equations
may be written down in the dimensionless “vector form”

∂W

∂t
+
∂FEul(W )

∂x
= 0 , (4.9.1)

where

W =





N0

T 01

T 00



 =





n
√

1 + u2

4pu
√

1 + u2

3p+ 4pu2



 ,

FEul(W ) =





N1

T 11

T 01



 =





nu
p+ 4pu2

4pu
√

1 + u2



 . (4.9.2)

Note that from each quantity W =





n
√

1 + u2

4pu
√

1 + u2

3p+ 4pu2



 we can easily get back

the values of p, u and n by using the formulas

p =
1

3

[

√

4(T 00)2 − 3(T 01)2 − T 00
]

, u =
T 01

√

4p(p+ T 00)
, n =

N0

√
1 + u2

,

(4.9.3)

which also justifies the notation FEul = FEul(W ). This will be used in the
sequel.

We also prescribe initial data for (n, u, p) at t = 0 which are only restricted
by the positivity-conditions n > 0, p > 0. It is sufficient for our purpose to
assume that this initial data is piecewise constant on some equidistant spatial
grid which will be fixed later.

In this section we develop two fully discretized numerical schemes for this
initial value problem. They are rigorously based on the integral conservation
laws in terms of curve integrals adapted to the choice of the numerical grid
for the discretization of time and space. Both schemes are of first order with
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respect to time and space, but they can be extended to second order with
limiters for accuracy by using a general standard method called the MUSCL-
type approach, which is important for very time consuming computations in
several space dimensions. For details we refer to the textbook of Toro [47]
and the papers of Kunik, Qamar and Warnecke [33, 35].

The first scheme is the so called central scheme. It is very simple and can
be obtained from the conservation laws on a light cone grid without making
use of the kinetic theory. The advantage of this scheme is that it can be
generalized very easily to some other systems of conservation laws.

The second scheme is the so called kinetic flux vector splitting (KFVS)
scheme and can be obtained from the conservation laws on a special rec-
tangular grid. It may also be regarded as a fully discretized version of the
semidiscrete scheme given by (4.5.7)-(4.5.10) in Section 4.5. Beside the in-
tegral conservation laws, the projection on the Maximum Entropy phase
density at the update times and a consistent discretization of the reduced
moment integrals in the free-flight phases play a key role for this method.

We conclude this section with an example where we compare an explicit
solution of a Riemann problem with the numerical results.

For both schemes we use some common notations in order to discretize time
and space. We prescribe a fixed time step ∆t > 0 and calculate the spa-
tial mesh size ∆x in terms of the natural Courant-Friedrichs-Lewy (CFL)
condition according to

∆x = 2∆t . (4.9.4)

Later on this condition will guarantee that neighbouring light cones will not
interact within the time step of the numerical scheme. Note that in the
theory of the classical Euler equations one has to assume a bound for the
characteristic speeds which depend on the choice of the initial data in order
to obtain a CFL-condition. This is not necessary in our case, since in the
relativistic theory every signal speed is bounded by the velocity of light,
which is set to c = 1 in dimensionless form.

For each integer number i ∈ Z we define the equidistant spatial values

xi = i∆x , xi+ 1

2

= (i +
1

2
)∆x . (4.9.5)

We also define the equidistant time steps tn = n∆t, n ≥ 0, which are also
called update times.
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Figure 4.3: Balance regions for the central scheme (light cone Ω on the left)
and for the KFVS-scheme (squares R± on the right)

The central scheme

For the central scheme we consider the Riemann solution of the ultra-rela-
tivistic Euler equations inside the light cone Ω depicted in Figure 4.3. At
the next update time tn+1 this Riemann solution has the integral mean value
W n+1

i+1/2 with respect to the spatial interval xi ≤ x ≤ xi+1. For the formulation

of the central scheme we calculate W n+1
i+1/2 by using the conservation laws with

respect to the domain Ω depicted in the left part of Figure 4.3, namely

∮

∂Ω

W (t, x) dx− FEul(W (t, x)) dt = 0 . (4.9.6)

There results immediately

W n+1
i+1/2 =

1

2

(

W n
i +W n

i+1

)

− 1

2

(

FEul(W
n
i+1) − FEul(W

n
i )
)

. (4.9.7)

Note that the update value W n+1
i+1/2 shows a half shift in the spatial index

because the central scheme is formulated on a light cone grid.

Recall that we can recover the values of (p, u, n) from W n+1
i+1/2 by using (4.9.3).

However, this requires that there hold the inequalities |T 01| < T 00 andN0 > 0
between the components N 0, T 01 and T 00 ofW n+1

i+1/2 in order to obtain positive
values for p and n. In order to prove these positivity properties we assume
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that W n
i+1 and W n

i are already well defined and put

W n
i+1 =





n+

√

1 + u2
+

4p+u+

√

1 + u2
+

p+(3 + 4u2
+)



 , W n
i =





n−
√

1 + u2
−

4p−u−
√

1 + u2
−

p−(3 + 4u2
−)



 ,

FEul(W
n
i+1) =





n+ u+

p+(1 + 4u2
+)

4p+u+

√

1 + u2
+



 , FEul(W
n
i ) =





n− u−
p−(1 + 4u2

−)

4p−u−
√

1 + u2
−



 .

It follows from (4.9.7) that

W n+1
i+1/2 =





n+

2
(
√

1 + u2
+ − u+) + n−

2
(
√

1 + u2
− + u−)

−p+
2

(1 + 4u2
+ − 4u+

√

1 + u2
+) + p−

2
(1 + 4u2

− + 4u−
√

1 + u2
−)

p+
2

(3 + 4u2
+ − 4u+

√

1 + u2
+) + p−

2
(3 + 4u2

− + 4u−
√

1 + u2
−)



 .

We can use the conservation laws satisfied by the Riemann solution
(N0(t, x), T 01(t, x), T 00(t, x)) of the ultra-relativistic Euler equations in the
compact domain Ω in order to rewrite the update value W n+1

i+1/2 in (4.9.7) as
the integral mean values

W n+1
i+1/2 =

1

∆x

xi+1
∫

xi





N0(tn+1, x)
T 01(tn+1, x)
T 00(tn+1, x)



 dx =





N̄0
i+1/2(tn+1)

T̄ 01
i+1/2(tn+1)

T̄ 00
i+1/2(tn+1)



 . (4.9.8)

We obtain that N̄0
i+1/2(tn+1) > 0 as well as

T̄ 00
i+1/2(tn+1) − T̄ 01

i+1/2(tn+1) = p− + 2p+(
√

1 + u2
+ − u+)2 > 0 ,

T̄ 00
i+1/2(tn+1) + T̄ 01

i+1/2(tn+1) = p+ + 2p−(
√

1 + u2
− + u−)2 > 0 .

Thus we conclude that the central scheme guarantees a positive pressure and
particle density for all later times, provided that these positivity properties
are satisfied for the initial data.

Now we finish the study of the central scheme with a proof of the discrete
entropy inequality for the (p, u)-subsystem with respect to the domain Ω in
Figure 4.3.

Let (p(t, x), u(t, x)) be the Riemann solution of the (p, u)-subsystem in the
compact domain Ω due to Section 4.4. Then the reduced one-dimensional
entropy four vector (S̃0, S̃1)T in (4.4.14) reads with α = 1:

S̃0(t, x) = p(t, x)3/4
√

1 + u(t, x)2 , S̃1(t, x) = p(t, x)3/4u(t, x) . (4.9.9)

Note that (t, x) must be chosen in (4.9.9) in the compact domain Ω. We
know that the Riemann solution in Ω satisfies the entropy inequality with
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the curve integral along ∂Ω, which can be rewritten in the form

1

∆x

xi+1
∫

xi

S̃0(tn+1, x)dx ≥ p
3/4
+

2

(

√

1 + u2
+ − u+

)

+
p

3/4
−
2

(

√

1 + u2
− + u−

)

.

(4.9.10)

The right hand side of this entropy inequality is already written in the desired
discrete form. In order to estimate the integral mean value on the left hand
side we rewrite S̃0 = p3/4

√
1 + u2 in terms of the so called “conservative

variables” T 01 = 4pu
√

1 + u2 and T 00 = p(3 + 4u2) under the time derivative
of the conservation laws for the (p, u)-subsystem and obtain from (4.9.3) that

S̃0 = p3/4
√

1 + u2 =
1

2
p1/4

(

T 00 + p
)1/2

=
1

2

(

1

3

)
3

4 [√

4(T 00)2 − 3(T 01)2 − T 00
]

1

4
[

√

4(T 00)2 − 3(T 01)2 + 2T 00
]

1

2

.

(4.9.11)

Now we put η = T 01

T 00 and consider for a moment S̃0 as a function S̃0
∗(T

00, T 01)
depending on T 00, T 01, restricted by the condition |η| < 1. We obtain that

Det





∂2S̃0
∗

∂T 00∂T 00

∂2S̃0
∗

∂T 00∂T 01

∂2S̃0
∗

∂T 00∂T 01

∂2S̃0
∗

∂T 01∂T 01



 =
1

48p
5

2

(

1 − 3
4
η2
)

3

2 + 1 − 9
8
η2

(4 − 3η2)
1

2

(

2 +
√

4 − 3η2
)2 . (4.9.12)

The function f : [−1, 1] → R with f(η) =
(

1 − 3
4
η2
)

3

2 + 1 − 9
8
η2 is even with

f(0) = 2 and f(1) = 0. Its derivative is negative on (0, 1) and f is strictly
monotonically decreasing on [0, 1]. It follows that f(η) > 0 for |η| < 1, and
the determinant in (4.9.12) is also positive for |η| < 1. However, the second
derivative

∂2S̃0
∗

∂T 00∂T 00
= − 1

96p
5

4

8 + 21η2 + 16+36η2√
4−3η2

(

√

4 − 3η2 − 1
)

1

2
(

2 +
√

4 − 3η2
)

3

2

(4.9.13)

is negative for |η| < 1. We conclude that S̃0
∗(T

00, T 01) is a stricly concave
function of T 00, T 01 whenever |η| < 1.

We obtain from Jensens inequality with the concavity of S̃0
∗(T

00, T 01) that

S̃0
∗(T̄

00
i+1/2(tn+1), T̄

01
i+1/2(tn+1)) ≥

1

∆x

xi+1
∫

xi

S̃0(tn+1, x)dx . (4.9.14)
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We finally get with (4.9.10) the desired discrete entropy inequality

S̃0
∗(T̄

00
i+1/2(tn+1), T̄

01
i+1/2(tn+1)) ≥

p
3/4
+

2

(

√

1 + u2
+ − u+

)

+

p
3/4
−
2

(

√

1 + u2
− + u−

)

. (4.9.15)

The KFVS scheme

At each time step tn we consider a discrete solution of the initial value prob-
lem which has the constant value W n

i in each cell Ii = [xi− 1

2

, xi+ 1

2

] with
midpoint xi. Thus we require that the piecewise constant solution of the
KFVS scheme has only jumps in the nodal points xi± 1

2

at each time step
tn. Inside each forward light cone starting in xi+1/2 at time tn we solve the
kinetic free-flight transport equation for tn ≤ t ≤ tn+1 and the corresponding
moments of the fluxes.

We start at tn = 0, i.e. n = 0, with the given piecewise constant initial data
W (0, x) over the numerical cells Ii which is represented by the numbers W 0

i

with i ∈ Z.

Next we assume that the values W n
i at time step tn are already known. Our

aim is to calculate the new quantitites
±
W

n+1

i at the next time step tn+1,
which are the integral mean values resulting from the conservation laws with
respect to the quadratic domains R± depicted in Figure 4.3.

In the time interval tn ≤ t ≤ tn+1 the one-dimensional free-flight moments
are given by

W (t, x) =





N0(t, x)
T 01(t, x)
T 00(t, x)



 =

1
∫

−1





Φ(x− tξ, ξ)
ξΨ(x− tξ, ξ)
Ψ(x− tξ, ξ)



 dξ, (4.9.16)

F (t, x) =





N1(t, x)
T 11(t, x)
T 01(t, x)



 =

1
∫

−1





ξ Φ(x− tξ, ξ)
ξ2 Ψ(x− tξ, ξ)
ξ Ψ(x− tξ, ξ)



 dξ , (4.9.17)

Φ(y, ξ) =
1

2

n(y)

(
√

1 + u2(y) − ξu(y))3
, Ψ(y, ξ) =

3

2

p(y)

(
√

1 + u2(y) − ξu(y))4
.

Note that the free-flight moments and fluxes defined in (4.9.16) and (4.9.17)
must not be mixed up with the corresponding Eulerian moments from the
solution of the Riemann problems, except in the backward light-cone region
with the constant value W n

i in the right part of Figure 4.3, where the Eulerian
quantities and the free-flight moments are the same.
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Due to Figure 4.3 we define the integral mean values

+

W
n+1

i =
2

∆x

xi+1/2
∫

xi

W (t, x) dx , (4.9.18)

−
W

n+1

i =
2

∆x

xi
∫

xi−1/2

W (t, x) dx . (4.9.19)

Then the evaluation of the free-flight conservation laws with respect to the
rectangles R± in Figure 4.3 leads to

+

W
n+1

i = W n
i − 1

∆t

tn+1
∫

tn

F (t, xi+1/2) dt+ FEul(W
n
i ) , (4.9.20)

−
W

n+1

i = W n
i +

1

∆t

tn+1
∫

tn

F (t, xi−1/2) dt− FEul(W
n
i ) . (4.9.21)

Then we apply the conservation law with respect to the rectangle R consisting
of the lower and upper parts R± in order to obtain the following integral mean
value with respect to the intervall Ii as “update values” at tn:

W n+1
i =

1

2

(

+

W
n+1

i +
−
W

n+1

i

)

= W n
i − 1

2
F n
i+1/2 +

1

2
F n
i−1/2 , (4.9.22)

F n
i+1/2 =

1

∆t

tn+1
∫

tn

F (t, xi+1/2) dt , F n
i−1/2 =

1

∆t

tn+1
∫

tn

F (t, xi−1/2) dt . (4.9.23)

In contrast to the central scheme there is no half-shift in the spatial index of
the new value W n+1

i , and we say that the KFVS scheme has upwind form.

In order to complete the formulation of the KFVS scheme the remains the
calculation of the fluxes F n

i±1/2 in (4.9.23). This can be done explicitly thanks
to the fact that the free-flight solutions in neighbouring light-cone regions
corresponding to the numerical cells are independent from each other. This
is not the case for the classical Euler equations, where the free-flight moments
have an infinite domain of dependence!

A straight forward calculation shows that F (t, xi±1/2) = F n
i±1/2 are indepen-

dent of t within the integration domain tn ≤ t ≤ tn+1. There results the
“upwind flux” from (4.9.17), where we have omitted for simplicity the time
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index n with respect to the piecewise constant initial data at t = tn:

F n
i+1/2 =















ni

4
√

1+u2
i

(

√

1 + u2
i + ui

)2

− ni+1

4
√

1+u2
i+1

(√

1 + u2
i+1 − ui+1

)2

pi

2
√

1+u2
i

(

√

1 + u2
i + ui

)3

+ pi+1

2
√

1+u2
i+1

(√

1 + u2
i+1 − ui+1

)3

pi

4(1+u2
i )

(3
√

1+u2
i −ui)

(
√

1+u2
i −ui)3

− pi+1

4(1+u2
i+1

)

(3
√

1+u2
i+1

+ui+1)

(
√

1+u2
i+1

+ui+1)3















,

(4.9.24)

F n
i−1/2 =















ni−1

4
√

1+u2
i−1

(√

1 + u2
i−1 + ui−1

)2 − ni

4
√

1+u2
i

(

√

1 + u2
i − ui

)2

pi−1

2
√

1+u2
i−1

(√

1 + u2
i−1 + ui−1

)3
+ pi

2
√

1+u2
i

(

√

1 + u2
i − ui

)3

pi−1

4(1+u2
i−1

)

(3
√

1+u2
i−1

−ui−1)

(
√

1+u2
i−1

−ui−1)3
− pi

4(1+u2
i )

(3
√

1+u2
i +ui)

(
√

1+u2
i +ui)3















.

(4.9.25)

This is exactly the kinetic flux vector splitting scheme for the initial value
problem of the ultra-relativistic Euler equations. It has a similar structure
as the first order Godunov scheme, which also results from (4.9.22), (4.9.23)
if we replace there the free-flight moment fluxes F (t, xi±1/2) by the Eulerian
fluxes FEul(W (t, xi±1/2)) resulting from the solution of the Riemann problems
in the forward light cones starting at t = tn and x = xi±1/2.

It is easy to prove the positivity of particle density and pressure for the
central, the KFVS- and the Godunov scheme in a unified way. To see this
we first define the state space

Ω = {W =





N0

T 01

T 00



 ∈ R
3 | N0 > 0 and |T 01| < T 00 } . (4.9.26)

If W1,W2 ∈ Ω and a > 0, then it is clear that aW1 ∈ Ω and W1 +W2 ∈ Ω. It
follows that a1W1 + ... + amWm ∈ Ω for W1, ...,Wm ∈ Ω and a1, ..., am > 0.
Moreover, in the limiting case any integral mean value of “W-state vectors”
is also a “W-state vector”. But we can write each “W-state vector” of the
conservative schemes at the new update time tn+1 in terms of such an integral
mean value due to the conservation laws for particle density, momentum-
and energy density. Thus the central scheme, the KFVS- and the Godunov
scheme preserve the positivity of particle density and pressure.

The derivation of the discrete entropy inequality for the Godunov scheme fol-
lows exactly the same line as for the central scheme, whereas the derivation
of a discrete entropy inequality for the KFVS scheme uses the entropy in-
equalities derived for the semidiscrete scheme. It is technically more difficult
but does not contain new ideas and will thus be omitted here.
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A numerical example for a Riemann solution

We solve the weak form of the one-dimensional system of Euler equations

(n
√

1 + u2)t + (nu)x = 0 ,

(4pu
√

1 + u2)t + (p(1 + 4u2))x = 0 ,

(p(3 + 4u2))t + (4pu
√

1 + u2)x = 0

(4.9.27)

for given Riemannian initial data at t = 0, namely

p0(x) =

{

4 , x ≤ 0 ,
1 , x > 0 ,

, u0(x) ≡ 0 , n0(x) =

{

1 , x ≤ 0 ,
3 , x > 0 .

(4.9.28)

We use the notation of Section 4.4 and obtain first that

α =
p+

p−
= 1/4 , β =

√

1 + u2
+ − u+

√

1 + u2
− − u−

= 1 . (4.9.29)

There holds β > KR(α) and βKS(α) < 1 due to Case 3 for the classification
of the Riemann solution, i.e. we have a lower 1-fan and an upper 3-shock.
For the intermediate “star region” we obtain approximately the values

p∗ = 1.996674 , u∗ = 0.305422 .

We define the slopes

s1 = −0.577350 , s2 = −0.343113 , s3 = 0.292102 , s4 = 0.682870

and the constants

δ1 = 0.874242 , δ2 = 0.319653 , n1 = 0.593862 , n2 = 5.013875 .

The slopes s1 and s2 are the bounds for the lower 1-rarefaction fan, s3 is the
slope of the contact discontinuity and s4 the slope of the upper 3-shock.

Then the Riemann solution at time t = 1 is given by

p(1, x) =



















4 , x ≤ s1 ,

δ1
(

1−x
1+x

)2/
√

3
, s1 < x ≤ s2 ,

p∗ , s2 < x ≤ s4 ,
1 , x > s4 ,

u(1, x) =



















0 , x ≤ s1 ,
√

3
2

x+ 1√
3√

1−x2
, s1 < x ≤ s2 ,

u∗ , s2 < x ≤ s4 ,
0 , x > s4 ,
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n(1, x) =



























1 , x ≤ s1 ,

δ2
(

1−x
1+x

)

√
3/2

, s1 < x ≤ s2 ,

n1 , s2 < x ≤ s3 ,
n2 , s3 < x ≤ s4 ,
3 , x > s4 .

In Figures 4.4-4.6 the exact Riemann solution is plotted at t = 1 together
with the numerical solution in the spatial range −0.75 ≤ x ≤ 0.75 of the
semidiscrete scheme in one space dimension described in Section 4.6 with
n = 1, n = 20 and n = 400 times steps, respectively.

In all these figures the contact discontinuity of the particle density n is not
resolved very well, because the free-flight intervals cause a large numerical
diffusion at the 2-shocks. This phenomenon is also very well known for the
classical Euler equations. However, the upper 3-shock in Figure 4.6 at posi-
tion s4 = 0.682870 is resolved much better.

For the ξ-integration from −1 to 1 we have used the trapezoidal rule with at
least 1000 nodal points. For the spatial meshsize of the interval [−0.75, 0.75]
we use at most ∆x ≤ 10−4, but under these restrictions the same pictures
could be created for different kinds of spatial meshsizes and different num-
bers of integration nodal points. Recall that in contrast to the fully dis-
cretized schemes there is no CFL condition for the semidiscrete scheme. But
of course also in this kinetic scheme each propagation velocity is bounded
by the speed of light, whereas the velocity domain for the corresponding
semidiscrete scheme of the classical Euler equations is unbounded even for
usual Riemannian initial data, see Dreyer and Kunik [7].

In Figure 4.7 the exact Riemann solution is plotted at t = 1 together with
the numerical solutions of the central- and KFVS scheme in the spatial range
−0.75 ≤ x ≤ 0.75. The meshsize is ∆x = 0.005 with 300 subdivisions of the
interval −0.75 ≤ x ≤ 0.75, and there are 400 time steps with the time step
size ∆t = 0.0025 = 1

400
, which is comparable with the semidiscrete solution

for n = 400 time steps in Figure 4.6. However, the resolutions of the central
scheme (dashed and dotted curve) and of the KFVS scheme (dashed curve)
are lower, which can be seen clearly near the position of the upper 3-shock.
In our example the results of the central- and KFVS scheme are very similar,
where the resolution of the central scheme is only slightly better than the
resolution of the KFVS scheme.
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 The semidiscrete scheme versus the Riemann solution at t=1

Figure 4.4: The semidiscrete scheme, 1 time step.
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Figure 4.5: The semidiscrete scheme, 20 time steps.
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Figure 4.6: The semidiscrete scheme, 400 time steps.
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Figure 4.7: The central scheme (dashed and dotted curve)
and the KFVS scheme (dashed curve), both with 400 time steps.
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Chapter 5

The Boltzmann-Peierls
Equation for a Phonon-Bose
Gas

5.1 Overview and introduction to the

Boltzmann-Peierls equation

In 1929, Peierls [40] proposed his celebrated theoretical model based on the
Boltzmann-Peierls equation. According to him the lattice vibrations respon-
sible for heat transport can be described as an interacting gas of phonons.
The Boltzmann-Peierls approach is one of the milestones of the theory of
thermal transport in crystalline solids at very low temperatures.

The Boltzmann-Peierls equation describes the evolution of the phase density
f(t,x,k), where f(t,x,k) d3x d3k is interpreted as the number of phonons
which are at time t in a small spatial volume element d3x at location x and
which have a momentum ~ k in the range d3k. Here k denotes the wave
vector and ~ is Planck’s constant. It is important to note that f as well as
d3x d3k are dimensionless quantities. The Boltzmann-Peierls equation reads

∂f

∂t
+

3
∑

j=1

∂ω(k)

∂kj

∂f

∂xj
= ζ(f) , where ω(k) = c|k| . (5.1.1)

Even a simplified version of the collision term ζ(f) on the right-hand side
given by Callaway [2] needs several explanations and will therefore be given
later. Like the classical Boltzmann equation, the Boltzmann-Peierls equation
is also a kinetic evolution equation. However, in contrast to the classical case
there is a physical constant, the so called Debye velocity c in the dispersion
relation (5.1.1)2, which is an upper bound for the sound speed of the actual
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crystal. There is no danger to confuse the Debye velocity with the speed of
light, which is also denoted by c but not considered in the sequel.

It is important to mention that Fourier theory of heat flow fails to describe
heat conduction processes in a crystal at low temperatures, see for exam-
ple the review article of Dreyer and Struchtrup [16] as well as the literature
therein. Heat conduction processes are usually described by a parabolic sys-
tem. It results from a diffusion law, where the heat flux is proportional to
the temperature gradient.

However, Dreyer and Struchtrup report in [16] on special circumstances that
are met in quite pure crystals at not too low temperature, where the state
of a crystal is sufficiently described by only four thermodynamic fields as the
basic variables. These are the energy density e, or the temperature T , and
the heat flux Q = (Qi)i=1,2,3. In this case the heat conduction is described by
the four fields which obey a nonlinear hyperbolic system of field equations.

Independent of the necessary restrictions for the physical applicability of the
hyperbolic four-field system, these equations have been studied in their own
right, because they exhibit several interesting and important mathematical
aspects of the initial-boundary value problem.

The four-field system of hyperbolic heat conduction was studied and solved
by Dreyer and Kunik in [9, 10]. They consider this system in one space
dimension and solved its pure initial value problem as well as the initial-
boundary value problem by using kinetic representations for the unknown
fields. The system consists of a conservation law for the energy density e and
of a balance law for the heat flux Q , and it is derived as a moment system
from the Boltzmann-Peierls equation by averaging with respect to the wave
vector k. The closure problem is solved by the Maximum Entropy Principle,
see [15].

Dreyer, Herrmann and Kunik [12] have introduced a reduced kinetic equa-
tion which has a much simpler structure than the original Boltzmann-Peierls
equation, but leads to the same physical moments for energy density, heat
flux and so on. They performed the reduction in the microscopically two-
dimensional case and thus could construct a kinetic scheme in order to solve
the initial value problem for the reduced Boltzmann-Peierls equation.

Kunik, Qamar and Warnecke [34] have extended this approach to the usual
microscopically three-dimensional Boltzmann-Peierls equation (BPE) given
by (5.1.1), which is very important from the physical point of view. The
schemes presented in [34] can be used for the solution of the reduced BPE
as well as for the four-field system of hyperbolic heat conduction. Regarding
the solution of the reduced BPE they have also developed a kinetic scheme
which is fully discretized in the whole phase space and thus more efficient
and faster than the scheme used in [12], because the kinetic scheme used
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there is discrete in time but continuous in space, so that an interpolation
polynomial was needed in order to calculate the free-flight phase density.
The fully discretized scheme for the reduced BPE in [34] uses the idea of
the kinetic flux vector splitting. Kinetic flux vector splitting was already
successfully applied to the ultra-relativistic Euler equations in [33]. In both
cases the schemes use a natural CFL condition, in the relativistic application
given by the speed of light and in the theory of the phonon-Bose gas by the
Debye-velocity, the upper bounds for the velocity of propagating waves. For
a short overview see also the report [13].

The moments of the phase density f reflect the kinetic processes on the scale
of continuum physics. The most important moments are

e(t,x) = ~c

∫

R3

|k| f(t,x,k) d3k , (5.1.2)

Qi(t,x) = ~c2
∫

R3

kif(t,x,k) d3k , (5.1.3)

Nij(t,x) = ~c

∫

R3

kikj
|k| f(t,x,k) d3k , i, j = 1, 2, 3 . (5.1.4)

The fields e, Q = (Q1, Q2, Q3) and the Matrix N = (Nij) are the energy
density, heat flux and momentum flux, respectively.

Phonons are classified as Bose particles due to their statistic distribution, see
[40, 15]. The entropy density h and the entropy flux Φk of the phonon-Bose
gas are given according to the kinetic theory [16] as

h = −kB
∫

R3

[

f ln(
f

y
) − y(1 +

f

y
) ln(1 +

f

y
)

]

d3k ,

(5.1.5)

Φk = −kB
∫

R3

c
kk
|k|

[

f ln(
f

y
) − y(1 +

f

y
) ln(1 +

f

y
)

]

d3k .

Here kB = 1, 38062 · 10−23J/K is Boltzmann’s constant and y = 3/8π3. Re-
call that f and hence y are dimensionless.

In contrast to the ordinary gas atoms, the phonons may interact by two
different collision processes, called R- and N-processes. R-processes include
interactions of phonons with lattice impurities which destroy the periodicity
of the crystal, while N-processes can be interpreted as phonon-phonon in-
teractions which are due to the deviations from harmonicity of the crystal
forces. N-processes conserve both, energy and momentum, while R-processes
only conserve energy. The Callaway approximation of the collision operator
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[2, 15] is a suitable simplification of the actual interaction processes. The
Callaway collision operator is written as the sum of two relaxation operators
modelling the R- and N-processes seperately. We write

ζ(f) = ζR(f) + ζN(f) , ζα(f) =
1

τα
(Pαf − f) , α ∈ {R,N} . (5.1.6)

The positive constants τR and τN are the relaxation times, while PR and PN
are two nonlinear projectors. Here PRf and PNf represent the phase densities
in the limiting case when the relaxation time tends to zero. Explicitly, we
define PRf and PNf as the solutions of two optimization problems, namely

h(PRf) = max
f ′

{h(f) : e(f ′) = e(f)} , (5.1.7)

h(PNf) = max
f ′

{h(f) : e(f ′) = e(f), Q(f ′) = Q(f)} , (5.1.8)

where e(f), Q(f) are given by (5.1.2),(5.1.3).

The maximization problems can be solved by means of Lagrange multipliers
Λ0
R and Λ0

N , Λ1
N , Λ2

N , Λ3
N . We get

PRf(k) =
y

exp(ΣR) − 1
, PNf(k) =

y

exp(ΣN) − 1
, (5.1.9)

where

ΣR(t,x,k) = ~c |k|Λ0
R , (5.1.10)

ΣN (t,x,k) = ~c |k|Λ0
N(t,x) +

3
∑

i=1

~ ki Λ
i
N(t,x) . (5.1.11)

From (5.1.7) and (5.1.8) the Lagrange multipliers can be calculated explicitly.
They are given by, see [9], [12],

Λ0
R = γ

(

3

e

)
1

4

, Λ0
N = γ

(

F
e

)
1

4

(4 − F )
3

4

, Λi
N = −γ

4

(

F
e

)
5

4

(4 − F )
3

4

Qi , (5.1.12)

F =
6

1 +

√

1 − 3
4

(

|Q|
ce

)2
, γ =

(

π2

30~3c3

)
1

4

. (5.1.13)

For experimental purposes it is sometimes useful to use the absolute tempe-
rature T instead of the energy density e. Both quantities are related to each
other so that the Stefan-Boltzmann law for phonons is established, viz.

T =
1

kB

(

10~3c3

π2
e

)
1

4

=
1

γkB

(e

3

)
1

4

. (5.1.14)
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Now we have explained the collision term of the BPE (5.1.1) in detail. The
special form of the collision term enables the derivation of an entropy in-
equality for the entropy-density entropy-flux pair given in (5.1.5), i.e. any
solution f of (5.1.1) satisfies

∂h(f)

∂t
+

3
∑

k=1

∂Φk(f)

∂xk
≥ 0 . (5.1.15)

This inequality has a counterpart for the classical Boltzmann-equation and
is well known as the so called H-theorem. In Section 5.3 we will give a short
proof of the H-Theorem for the reduced phase density which is sufficient for
our purposes.

Now we give a short overview of this chapter.

In Section 5.2 we obtain the four-field system of hyperbolic heat conduction
from the moments for e and Qi of the BPE (5.1.1) in the limit τN → 0.

In Section 5.3 we derive a kinetic equation for a reduced kinetic phase density.
Moreover, we present the corresponding kinetic definition of the equivalent
reduced entropy density-entropy flux pair. All physical moments of ther-
modynamics with respect to the reduced kinetic phase density are simple
surface integrals with respect to the unit sphere in R3. Like in the theory
of the ultra-relativistic Euler equations, these simplified integrals result from
the exact evaluation of the corresponding three-fold integral moments with
respect to the phase density f , where f satisfies the original BPE.

The time integral form of the reduced kinetic equations is obtained by using
Duhamel’s principle. We replace the time integral by finite Riemann sums in
order to obtain a time discrete kinetic scheme which solves the initial value
problem for the reduced kinetic phase density. This scheme is still continuous
in space and was already used by Dreyer, Herrmann and Kunik in [12].

In Section 5.4 we further simplify the already reduced kinetic equation by
using a special integral coordinate transformation adapted to the spatially
one-dimensional flow-field. In three lemmas we show that this reduction is
valid for all times. Like in the first reduction, this additional simplification
of the surface integrals is exact, without any approximation.

We also apply a complete discretization in phase space in order to solve the
reduced kinetic equation in terms of a KFVS scheme. The initial data for
the scheme are the average values of the phase density on phase-space cells,
and we obtain the average values of the phase density at the next time step
for a spatial one-dimensional flow field.

In Section 5.5 we use the same KFVS-scheme for the reduced BPE in order
to compute several initial value problems in one space dimension for both,
the reduced BPE as well as for the hyperbolic four-field system. Some of
these numerical results will directly be compared with explicit solutions.
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This chapter has three main contributions to the theory of kinetic solutions
of the BPE and its four-field moment system. The first one is the kinetic
solution of the reduced microscopic three-dimensional BPE. The second con-
tribution is the use of a special integration technique in order to calculate
the moments of a macroscopic one-dimensional flow field. We show by three
lemmas that this reduction is valid for all times. This second reduction for a
one-dimensional flow field enables the third contribution, the use of a kinetic
flux-vector splitting scheme as a numerical approximation for the reduced
phase density which is fully discretized in the phase space. This is a new
aspect in our work which has no counterpart in the classical theory.

5.2 The hyperbolic four-field system as a

limiting case

Taking the integral-moments of the BPE, one can generate an infinite number
of further balance equations, because there follows for any vector m(n) of
moment weights

∂u

∂t
+

3
∑

i=1

∂Fi

∂xi
= Γ . (5.2.1)

Here, u and Fi are the vectors of densities and fluxes, respectively, and Γ is
the production. They are defined as

u =

∫

R3

m(k)f(k) d3k , Fi =

∫

R3

cki
|k| m(k)f(k) d3k , Γ =

∫

R3

m(k)ζ(f)(k) d3k .

(5.2.2)

When the thermodynamic state is described by four fields e and Qi only,
then we can derive the following balance equations from the Boltzmann-
Peierls equation obtained by multiplication of (5.1.1) with ~c|k| and ~c2 ki
and integration over k. There results the equations of balance for the energy
density e and the heat flux Qi

∂e

∂t
+

3
∑

k=1

∂Qk

∂xk
= ~ c

∫

R3

|k| ζ d3k ,

(5.2.3)
∂Qi

∂t
+

3
∑

k=1

∂(c2 Nik)

∂xk
= ~ c2

∫

R3

ki ζ d
3k .

When we consider e and Qi as the (macroscopic) basic variables for which
initial-boundary value problems have to be solved, we must close the system
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(5.2.3) so that the flux Nik and the production terms on the right hand
sides are related to the variables. This objective is achieved by applying the
Maximum Entropy Principle. We first define the phase density
w(4) = PNw

(4), see (5.1.9)2, with the quantities y and ΣN = ΣN(e,Q,k)
defined in (5.1.11)-(5.1.13) according to

w(4)(e,Q,k) =
y

exp(ΣN) − 1
. (5.2.4)

It satisfies the Maximum Entropy Principle for the given constraints on e
and Q. These are the four parameters of w(4), like the parameters n, u
and p of Jüttner’s relativistic Maxwellian. Next we replace these parameters
by dynamical fields e = e(t,x) and Q = Q(t,x) and the Boltzmann-Peierls
phase density f in the moment system (5.2.3) by the new“Maximum Entropy
phase-density” f (4) given by

f (4)(t,x,k) = w(4)(e(t,x),Q(t,x),k) . (5.2.5)

By forming the integral moments for e, Qi and Nij with respect to f (4) we
finally obtain the following hyperbolic four-field system, which will be studied
in detail in Chapter 6

∂e

∂t
+

3
∑

i=1

∂Qi

∂xi
= 0 , (5.2.6)

∂Qi

∂t
+

3
∑

j=1

∂ (c2Nij)

∂xj
= − 1

τR
Qi , i, j = 1, 2, 3, (5.2.7)

Nij =
1

3
e δij +

1

2
e(3χ− 1)

(

QiQj

|Q|2 − 1

3
δij

)

. (5.2.8)

Here χ is the so called Eddington-factor

χ =
5

3
− 4

3

√

1 − 3

4

( |Q|
ce

)2

. (5.2.9)

Note that in above equations the τN term does not appear on the right hand
side. Indeed, the solutions of the Boltzmann-Peierls equation will only lead
to a solution of the four-field system in the limit τN → 0.

By use of f (4) we may also calculate the entropy density h, the entropy flux
φk and the entropy production σ as local functions of e and Q , which turn

126



out to be, see [15] and [37],

h =

(

2a

3

)
1

4

e
3

4 (3 − χ)
1

2 (1 − χ)
1

4 ,

φk = 2

(

2a

3

)
1

4

e−
1

4 (3 − χ)−
1

2 (1 − χ)
1

4 Qk, (5.2.10)

σ = −kB
τR

3
∑

i=1

ΛiQi , a :=
π2

10
k4
B/(~

3c3) .

Entropy density, entropy flux and entropy production are related to each
other by an additional balance law, viz.

∂h

∂t
+

3
∑

k=1

∂φk
∂xk

= σ ≥ 0 . (5.2.11)

Furthermore, it follows that the entropy production is zero in equilibrium
and otherwise positive.

5.3 Reduced Boltzmann-Peierls equation

In the following two sections we extend the study of Dreyer, Herrmann and
Kunik in [12], where a reduced kinetic equation for a reduced phase den-
sity was derived. We will present the solution for the microscopic three-
dimensional equation. Also in this case the reduced kinetic equation simpli-
fies considerably for a macroscopic one-dimensional flow field, which will be
shown in Section 5.4 by three lemmata. In [12] we have mainly considered
the microscopic two-dimensional case.

The procedure relies on the fact that for any solution f of (5.1.1) there
exists a corresponding solution of a reduced equation that determines exactly
the same moments as the original phase density. It uses the specific form
of the transport term and the collision-operator in (5.1.1) and thus has no
counterpart for the classical Boltzmann-equation.

The moments of the reduced phase density have a much simpler structure,
because they are surface integrals over the unit ball with respect to the
reduced phase density. We will also present the expression for the reduced
kinetic entropy density-entropy flux pair.

The phase density f in (5.1.1) depends on the wave vector k ∈ R3. We
define the reduced phase density Ψ according to the radial integration in
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polar-coordinates by

Ψ(n) = ~c

∞
∫

0

|k|3 f(|k|n) d|k| . (5.3.1)

Note that Ψ only depends on the unit vector n = (n1, n2, n2) =
k

|k| .

Let m be a homogeneous moment weight of degree one, i.e. m(λk) = λm(k)
for all λ > 0, and recall the definition of the unit sphere in R3, namely
∂B(1, 0) = {n ∈ R3 | |n| = 1} in R3. Also let u be the corresponding
moment function

u = ~c

∫

R3

m(k)f(k) d3k

= ~c

∮

∂B(1,0)

∞
∫

0

|k|3m(n)f(|k|n) d|k| dS(n)

=

∮

∂B(1,0)

m(n)Ψ(n) dS(n) . (5.3.2)

The moment u of f is thus given by the corresponding moments of Ψ. All the
moments with physical interpretation are formed by homogeneous moment
weights of degree one. In particular, we conclude for the moments defined in
(5.1.2), (5.1.3), (5.1.4)

e = e(Ψ) , Qi = Qi(Ψ) , Nij = Nij(Ψ) , (5.3.3)

where

e(Ψ) =

∮

∂B(1,0)

Ψ(n) dS(n) , Qi(Ψ) = c

∮

∂B(1,0)

niΨ(n) dS(n) , (5.3.4)

Nij(Ψ) =

∮

∂B(1,0)

ninjΨ(n) dS(n) . (5.3.5)

Thanks to the fact that only these moments with a homogeneous weight of
degree one enter the collision operators defined in (5.1.6) and (5.1.9)-(5.1.13),
we can also obtain the following reduced collision operators Φ, ΦR and ΦN

Φα =
1

τα
(ΘαΨ − Ψ) , α ∈ {R,N} , Φ = ΦR + ΦN , (5.3.6)

where

ΘRΨ =
e

4π
, ΘNΨ =

3

4π

e(4 − F )3

F
(

1 − F n·Q
4 c e

)4 , F =
6

1 +

√

1 − 3
4

(

|Q|
c e

)2

(5.3.7)
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and

Φα(n) = ~c

∞
∫

0

|k|3 Pαf(|k|n) d|k|, α ∈ {R,N} . (5.3.8)

We finally conclude that any solution f(t,x,k) of (5.1.1) induces a solution
Ψ(t, x,n) of the following reduced Boltzmann-Peierls equation

∂Ψ

∂t
(t,x,n) +

3
∑

k=1

c nk
∂Ψ

∂xk
(t,x,n) = Φ(t,x,n) . (5.3.9)

This reduced kinetic equation is again an evolution equation for Ψ. It can
be rewritten as a time integral by using Duhamel’s principle

Ψ(t+ τ,x,n) = Ψ(t,x − cτn,n) +
∑

α∈{R,N}

τ
∫

0

Φα(t+ s,x − c(τ − s)n,n) ds ,

(5.3.10)

where Ψ(t,x− cτn,n) is the solution at time t+ τ of the collisionless kinetic
equation

∂Ψ

∂t
(t,x,n) +

3
∑

k=1

c nk
∂Ψ

∂xk
(t,x,n) = 0 . (5.3.11)

In particular, Ψ0(t,x− cτn,n) is the free-flight solution of (5.3.11) for initial
data Ψ0.

Finally we introduce an entropy density-entropy flux pair for the reduced
equation (5.3.9). The definition is not so straight forward as before, because
in general the entropy density h formed with respect to the original phase
density f cannot be determined from the reduced phase density Ψ. The
following definition is proposed in [12]

h̃(Ψ) = µ

∮

∂B(1,0)

Ψ
3

4 (n) dS(n) ,

Φ̃k(Ψ) = µ c

∮

∂B(1,0)

nk Ψ
3

4 (n) dS(n) , µ =
4π

3

( y

15

)
1

4

, y =
3

8π3
. (5.3.12)

It was shown in [12] that in view of the hyperbolic moment systems this new
kinetic entropy definition for the reduced BPE leads to the same results as
the original kinetic entropy definition (5.1.5) for the BPE (5.1.1).

In order to establish this result, we present here a new and short proof of the
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Theorem 5.1. H-Theorem

Assume that Ψ : R
+
0 ×R3 × ∂B(1, 0) → R+ is a solution of the reduced BPE

(5.3.9) and that (h̃, Φ̃1, Φ̃2, Φ̃3, ) is the corresponding reduced entropy density-
entropy flux pair given in (5.3.12). Then there holds the entropy inequality

∂h̃

∂t
+

3
∑

k=1

∂Φ̃k

∂xk
≥ 0 .

Proof:

Multiplication of the reduced BPE with 3
4
Ψ−1/4 gives

∂Ψ3/4

∂t
+ c

3
∑

k=1

nk
∂Ψ3/4

∂xk
=

3Ψ−1/4

4τN
(ΘNΨ − Ψ) +

3Ψ−1/4

4τR
(ΘRΨ − Ψ)

=
3

4τN

[

(Ψ−1/4 − (ΘNΨ)−1/4)(ΘNΨ − Ψ)
]

+

3

4τR

[

(Ψ−1/4 − (ΘRΨ)−1/4)(ΘRΨ − Ψ)
]

+

3

4τN

[

(ΘNΨ)−1/4(ΘNΨ − Ψ)
]

+
3

4τR

[

(ΘRΨ)−1/4(ΘRΨ − Ψ)
]

.

We perform from this the surface integral with respect to n. The first two

brackets
[

...
]

are non-negative and the surface integrals with respect to n

over the last two brackets vanish because Ψ, ΘNΨ and ΘRΨ have the same
moment for the energy density e and Ψ, ΘNΨ have the same moments for
the heat flux Q .

Time discretization of the reduced kinetic equation

Now we replace the time integrals in (5.3.10) by finite Riemann sums at the
update times tn = nτ , where τ > 0 is a fixed time step. We will choose τ in
such a way that there holds the inequality

0 <
τ

τR
+

τ

τN
≤ 1 (5.3.13)

with the fixed relaxation times τR, τN > 0 and will also include the important
limiting case that τR = ∞. Then we obtain the first kinetic scheme which is
discrete in time but continuous in the phase space

Ψ(tn+1,x,n) =
∑

α∈{R,N}

τ

τα
(ΘαΨ)(tn,x − cτn,n)

+

(

1 − τ

τR
− τ

τN

)

Ψ(tn,x − cτn,n) . (5.3.14)
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In order to get the first term on the right hand side of (5.3.14), we first
calculate the moments of energy and heat flux at the update-time tn, namely

e(tn,y) =

∮

∂B(1,0)

Ψ(tn,y,n) dS(n) ,

Qi(tn,y) = c

∮

∂B(1,0)

niΨ(tn,y,n) dS(n) . (5.3.15)

Next we perform the projections ΘRΨ and ΘNΨ from these moments on
the reduced Maximum Entropy phase densities given in (5.3.7) at time tn.
Finally we use Ψ and these projections as initial phase densities at time t in
order to solve the collisionless reduced kinetic transport equation in the time
interval [t, t+τ ]. There results the convex-combination of free-flight solutions
given in (5.3.14) for the phase-density at the next update-time tn+1.

Since the scheme (5.3.14) is only first order in time and space, we can
simplify it in such a way that we just replace τ

τα
(ΘαΨ)(tn,x − cτn,n) by

τ
τα

(ΘαΨ)(tn,x,n). The modified scheme may now be written as

Ψ(tn+1,x,n) = Ψ(tn,x − cτn,n) +
∑

α∈{R,N}

τ

τα

(

(ΘαΨ)(tn,x,n) − Ψ(tn,x,n)
)

.

(5.3.16)

5.4 Reduced kinetic equation in one space di-

mension

Here we are interested in reducing the already reduced Boltzmann-Peierls
equation (5.3.9) further. Later on we show by three lemmas that this re-
duced phase density describes a spatially one-dimensional flow.

In the one-dimensional case we put x = (x, 0, 0), Q = (Q(t, x), 0, 0) and
e = e(t, x). We introduce the new variables −1 ≤ ξ ≤ 1, 0 ≤ ϑ ≤ 2π by

n1 = ξ , n2 =
√

1 − ξ2 sin ϑ , n3 =
√

1 − ξ2 cosϑ , (5.4.1)

and the surface element is dS(n) = dξdϑ. Since in the one-dimensional case
the macroscopic fields inside the phase density Ψ(t, x,n) will not depend on
the angle ϑ, we can further reduce Ψ to

ψ(t, x, ξ) =

∫ 2π

0

Ψ(t, x, 0, 0,n) dϑ = 2πΨ(t, x, ξ). (5.4.2)
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The reduced Boltzmann-Peierls equation(5.3.9) then further simplifies to

∂ψ

∂t
(t, x, ξ) + c ξ

∂ψ

∂x
(t, x, ξ) =

∑

α∈{R,N}

1

τα
(Θαψ − ψ) (t, x, ξ) , (5.4.3)

where

ΘRψ =
e

2
, ΘNψ =

3

2

e(4 − F )3

F
(

1 − ξ F Q
4 c e

)4 , F =
6

1 +

√

1 − 3
4

(

Q
ce

)2
. (5.4.4)

We have used the same notation for the projection as in (5.3.7), but this will
not lead to confusion within the context. Also the reduced moments integrals
are given by

e(t, x) =

1
∫

−1

ψ(t, x, ξ) dξ, Q(t, x) = c

1
∫

−1

ξψ(t, x, ξ) dξ , (5.4.5)

N(t, x) = N11(t, x) =

1
∫

−1

ξ2ψ(t, x, ξ) dξ. (5.4.6)

In the following three lemmas we are going to show that the above reduction
is valid for all later times.

Definition: Any function g : R
3 × ∂B(1, 0) → R has property 1D if and

only if g(x,n) depends only on x = x1 and ξ = n1, x = (x1, x2, x3) ∈ R3 and
n = (n1, n2, n3) ∈ ∂B(1, 0).

Assumption
For the next three lemmas we assume that the initial C1-phase density
Ψ(t0, ·, ·) : R3 × ∂B(1, 0) → R+ at fixed initial time t0 has property 1D.

Lemma 1: Under the above assumption ΘN (Ψ(t0, ·, ·)) and ΘR (Ψ(t0, ·, ·))
have also property 1D, furthermore the energy density and heat flux moment
vector of Ψ(t0, ·, ·) are of the form

e(t0,x) = e(t0, x) , Q(t0,x) = (Q1(t0, x), 0, 0) , where x = x1 .

Proof: Due to the property 1D we can write Ψ(t0, x, ξ) instead of Ψ(t0,x,n).
We rewrite the surface integrals in (5.3.4) in terms of the new integration
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variables ξ, ϑ. Using (5.4.2) we have

e(t0, x) =

1
∫

−1

2π
∫

0

Ψ(t0, x, ξ)dϑdξ

=

1
∫

−1

2πΨ(t0, x, ξ)dξ =

1
∫

−1

ψ(t0, x, ξ)dξ , (5.4.7)

Q(t0, x) = Q1(t0, x) = c

1
∫

−1

2π
∫

0

ξΨ(t0, x, ξ)dϑdξ

= c

1
∫

−1

ξ 2πΨ(t0, x, ξ)dξ = c

1
∫

−1

ξψ(t0, x, ξ)dξ , (5.4.8)

Q2(t0, x) = c

1
∫

−1

2π
∫

0

sinϑ
√

1 − ξ2 Ψ(t0, x, ξ)dϑdξ = 0 , (5.4.9)

similarly Q3(t0, x) = 0.

Keeping in view (5.4.7),(5.4.8) and (5.4.9) we can see from the definitions
(5.3.7) of ΘR(Ψ) and ΘN(Ψ) that they are only depending on e(t0, x), Q1(t0, x)
and ξ = n1. Therefore they also satisfy property 1D.

Lemma 2: The time derivative
∂Ψ

∂t
(t0, ·, ·) has property 1D, if Ψ satisfies

the reduced Boltzmann-Peierls equation (BPE) (5.3.9).

Proof: The reduced BPE (5.3.9) can be rewritten as

∂Ψ

∂t
(t,x,n) = Φ(t,x,n) − c

3
∑

k=1

nk
∂Ψ

∂xk
(t,x,n). (5.4.10)

The first term Φ(t,x,n) on the right hand side of (5.4.10) has property 1D

for t = t0 due to the assumption and Lemma 1. Also since
∂Ψ

∂x2
=
∂Ψ

∂x3
= 0,

the second term on the right hand side of (5.4.10) also satisfies property 1D.
This implies that the left hand side of (5.4.10) satisfies the property 1D.

Lemma 3: The free-flight phase density Ψfree(t0 +τ,x,n) = Ψ(t0,x−τn,n)
also satisfies the property 1D for all later times t0 + τ , τ > 0.
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Proof: The proof of this lemma is obvious from Ψfree(t0 + τ,x,n), since due
to the assumption that Ψ is only depending on x = x1, therefore Ψfree will
maintain this property for all later times.

5.4.1 Discrete kinetic solution in the one-dimensional
case

We present a kinetic solution of the one-dimensional reduced kinetic equation
(5.3.10) for the fully discretized phase space. In the one-dimensional case the
semidiscrete scheme (5.3.16) with the time steps tn = nτ can be written in
terms of the fully reduced phase density ψ as

ψ(tn+1, x, ξ) = ψ(tn,x − cτξ, ξ) +
∑

α∈{R,N}

τ

τα

(

(Θαψ)(tn, x, ξ) − ψ(tn, x, ξ)
)

.

(5.4.11)

This equation is discrete in time but continuous in the reduced x, ξ phase
space. In order to get a fully discretized piecewise constant solution, we first
define a grid in the reduced phase space consisting of the cells

Ci,j =

{

(x, ξ) ∈ R
2 | |x− xi| <

1

2
∆x , ξj ≤ ξ < ξj+1

}

,

where xi = i∆x, xi± 1

2

= i± 1
2
∆x and ξj = j/Nξ with the integers i, j, Nξ

and |j| ≤ Nξ, Nξ > 0. The cell-average of ψ at time t = tn is given by the
following integral mean value, where ∆ξ = 1/(2Nξ)

ψi,j(t) =
1

∆x∆ξ

x
i+1

2
∫

x
i− 1

2

ξj+1
∫

ξj

ψ(t, x, ξ) dξdx . (5.4.12)

With the characteristic function χi,j(x, ξ) of the cell Ci,j we can write the fully
discretized piecewise constant phase density in the form

∑

ψi,j(tn)χi,j(x, ξ).
Due to the upwind approach we will choose the time step according to the
natural CFL-condition

τ = ∆t =
∆x

2c
. (5.4.13)

Note that for the semidiscrete case there is no such CFL-condition, but we
will assume in the sequel that τ = ∆t still satisfies the inequality (5.3.13).

The heart-piece of the scheme for the fully discretized phase space is the
integral mean value ψfreei,j (tn+1) of the free-flight phase density over the cell
Ci,j at the next time step tn+1, provided the initial data of the phase density
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at the actual time step tn is assumed to be piecewise constant and thus
determined by the coefficients ψi,j(tn). Then the integration can be performed
explicitly and gives the fully discretized free-flight solution in upwind form

ψfreei,j (tn+1) =







−1
2
ξj+ 1

2

ψi+1,j(tn) + (1 + 1
2
ξj+ 1

2

)ψi,j(tn) , ξj < 0 ,

1
2
ξj+ 1

2

ψi−1,j(tn) + (1 − 1
2
ξj+ 1

2

)ψi,j(tn) , ξj ≥ 0 ,

(5.4.14)

where ξj+ 1

2

= ξj +
1
2
∆ξ. Integrating (5.4.11) over

[

xi− 1

2

, xi+ 1

2

]

× [ξj, ξj+1] and

dividing by ∆x∆ξ, we get with (5.4.14) the fully discretized phase density at
the next time step tn+1 in terms of its coefficients

ψi,j(tn+1) = ψfreei,j (tn+1) +
∑

α∈{R,N}

τ

τα

(

(Θαψ)i,j(tn) − ψi,j(tn)
)

. (5.4.15)

The right-hand side in (5.4.15) needs some explanations. We first note that
the discretized moments are given at each time step tn in the spatial interval
[xi− 1

2

, xi+ 1

2

] by the constant values

ei(tn) = ∆ξ

Nξ−1
∑

j=−Nξ

ψi,j(tn) , Qi(tn) = ∆ξ

Nξ−1
∑

j=−Nξ

ξj+ 1

2

ψi,j(tn) . (5.4.16)

Then we need the integral mean values of the Maximum Entropy phase den-
sities Θαψ formed by the moments ei(tn) and Qi(tn) over the small intervals
[ξj, ξj+1], namely

(Θαψ)i,j(tn) =
1

∆ξ

ξj+1
∫

ξj

(Θαψ)(ei(tn), Qi(tn), ξ) dξ , (5.4.17)

which may be approximated by the trapezoidal rule with only the two nodal
points ξj and ξj+1 or by the midpoint rule with the single nodal point ξj+ 1

2

.

5.5 Numerical examples

Now we present some numerical test cases, where we use the kinetic scheme
for the reduced BPE in order to compute several initial value problems in
one space dimension for both, the reduced BPE as well as for the hyperbolic
four-field system. Some of these numerical results will directly be compared
with explicit solutions. The numerical implementations were carried out by
Shamsul Qamar.
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5.5.1 Energy pulse

In this example we assume that τR = ∞, so that from the physical point
of view, we study a phonon gas in a pure crystal at low temperature. Since
there are no lattice impurities, diffusion cannot appear. In particular, the
propagation of heat behaves like a wave phenomenon. Further we assume that
the phase density only depends on x = x1. In order to simulate the problem,
we consider the following macroscopic initial data for energy density e and
the momentum density Q:

e(0, x) =

{

1.5 if 0.99 ≤ x ≤ 1.01
1.0 otherwise

, Q(0, x) = 0.0 . (5.5.1)

Furthermore, the Debye speed c is set to 0.5.

Figures 5.1 shows the spatial dependence of the energy density, heat flux and
momentum flux at different times for the relaxation time τN = 0.5. While
Figures 5.2 gives the distribution functions ψ and ΘNψ at time t=1.2.

5.5.2 Two interacting heat pulses

This test problem demonstrates the interaction of two heat pulses, which
leads to a large increase of the energy density at the collision point during a
short time interval. The initial data are

e(0, x) =























1 , x ≤ 0.3,
2 , 0.3 ≤ x ≤ 0.4
1 , 0.4 ≤ x ≤ 0.6
2 , 0.6 ≤ x ≤ 0.7
1 , x ≤ 1.0

, Q(0, x) =























0 , x ≤ 0.3,
1 , 0.3 ≤ x ≤ 0.4
0 , 0.4 ≤ x ≤ 0.6
−1 , 0.6 ≤ x ≤ 0.7
0 , x ≤ 1.0 .

(5.5.2)

We solve the above problem at time t = 0.2 for two values of τN , i.e., τN = 1
and τN = 0.1, while τR = 1.0. Figure 5.3 shows the results. From the
comparison of the initial and final curves of energy density, we observe a
large increase of the energy density e at the collision point x = 0.5.

5.5.3 Initial phase density independent of space

Here we consider an initial phase density which is independent of the x-
coordinate, i.e., ψ0 = ψ0(ξ). Furthermore we assume that τR = ∞, this
implies that the Boltzmann-Peierls equation (5.4.3) will only contain τN and
ΘN . Therefore we have to solve the following simplified Boltzmann-Peierls
equation with unit Debye constant, i.e, c = 1.

∂ψ

∂t
(t, ξ) + ξ

∂ψ

∂x
(t, ξ) =

1

τN
(ΘNψ − ψ) (t, ξ) . (5.5.3)
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The energy density e and the heat flux Q are constant with respect to the
time, which is clear from the following conservation laws

∂e

∂t
(t) =

1
∫

−1

∂ψ

∂t
dξ =

1
∫

−1

ΘNψ − ψ

τN
dξ =

1

τN
(eN − e) = 0 ,

∂Q

∂t
(t) = c

1
∫

−1

ξ
∂ψ

∂t
dξ = c

1
∫

−1

ξ
ΘNψ − ψ

τN
dξ =

c

τN
(QN −Q) = 0 .

Both of the above integrals are zero because of the constraints eN = e and
QN = Q. Therefore equation (5.5.3) is simply an ordinary differential equa-
tion with initial data
ψ0 = ψ(ξ). The explicit solution of this equation is given by

ψexact(t, ξ) = ψ0(ξ) exp

(

− t

τN

)

+

(

1 − exp

(

− t

τN

))

ΘNψ0(ξ) . (5.5.4)

Now we consider two examples in which the inital phase density ψ0 only de-
pend on ξ.

Example 1: Here we consider the initial phase density as a linear function,

ψ0 =
1 + ξ

2
. Figure 5.41,2 gives the numerical value of phase density ψ at

t = 0.0 and t = 1.0, while Figure 5.43 gives the difference between the exact
and numerical solutions.

Example 2: The initial phase density is a shifted hat function

ψ0(ξ) =

{

4
7
(ξ + 1) , −1 ≤ ξ ≤ 3

4
,

4 (−ξ + 1) , 3
4
≤ ξ ≤ 1 ,

. (5.5.5)

Figure 5.51,2 gives the numerical value of phase density ψ at t = 0.0 and t =
1.0, while Figure 5.53 gives the difference between the exact and numerical
solutions.

5.5.4 A single shock solution

We consider now a single shock solution of the hyperbolic four-field system.
The initial data are

(e, Q)(0, x) =

{ (

2, 1√
3

√

3
√

2−1√
2+1

)

, x ≤ 0.5,

(1, 0) , x ≥ 0.5.
(5.5.6)
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Figure 5.1: Evolution of energy, heat flux and momentum flux pulses at
τN = 0.5.

This problem was considered by [9] using Rankine-Hugoniot conditions which
were derived in [15] for the hyperbolic four-field moment system. We will
consider it in detail in Section 6.3, however the explanations which are given
here are sufficient to perform this numerical test.

The computational domain is 0 ≤ x ≤ 1. In this example τR = ∞, while
τ
τN

= 1, where τ is a small numerical time step. Then the Boltzmann-
Peierls equation (5.4.3) approximates the solution of the hyperbolic four-field
moments system with right-hand side zero. The x, ξ reduced phase-space is
divided by 1000 × 1000 mesh points. The results are shown in Figure 5.6.

138



Figure 5.2: Representation of the phase densities at τN = 0.5 and t=1.2.
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Figure 5.3: Evolution of energy and heat flux.
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Figure 5.4: Phase densities and the error difference between exact the nu-
merical values.
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Figure 5.5: Phase densities and the error difference between exact the nu-
merical values.
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Figure 5.6: Evolution of a single shock at different times.
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Chapter 6

Kinetic Solution of the
Hyperbolic Four-Field System

6.1 Motivation

One may wonder why we present an additional chapter for the numerical
solution of the four-field system, because the kinetic approach for the reduced
Boltzmann-Peierls equation developed in Chapter 5 has already captured this
hyperbolic four-field system as a limiting case.

However, for the initial value problem of the four-field system we will present
an alternative scheme which is discrete in time and continuous in space. It
uses a modified transport part which reproduces the special production term
on the right-hand side of the momentum-balance law of the four-field system.
Moreover, we will extend the modified scheme in order to solve an interesting
initial-boundary value problem for this system which is not covered by the
schemes presented in Chapter 5.

Finally, we will also show by an appropriate transformation in the state-
space that the four-field system and its kinetic solution contains the ultra-
relativistic Euler equations and their kinetic solution as a special case. The
work reported in this chapter is joint work with Wolfgang Dreyer (WIAS,
Berlin), see [9, 10].

The four-field system was introduced in Section 5.2. Especially in the one-
dimensional case we can write down its weak formulation with a bounded
convex region Ω in space and time as

∫

∂Ω

(e dx − Qdt) = 0 ,
∫

∂Ω

(Qdx − c2 eχ dt) = − 1
τR

∫

Ω

∫

Q dt dx ,

χ = 5
3
− 4

3

√

1 − 3
4

(

Q
ce

)2
.

(6.1.1)
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We will also include the important limiting case that the relaxation time
τR > 0 is infinite. Here e : R

+
0 ×R → R

+
0 and Q : R

+
0 ×R → R is a piecewise

C1-solution of the hyperbolic system which may contain a finite number of
C1-shock curves. We will prescribe appropriate initial- and boundary data
for e and Q.

6.2 A modified kinetic transport equation for

the four-field system

We have already seen that solutions of collisionless kinetic transport equa-
tions constitutes a basic building block for the development of kinetic schemes
which are solving special hyperbolic systems and special kinetic equations.
Now we go one step further into this direction and develop a modified kinetic
transport equation which is able to reproduce the specific relaxation terms on
the right-hand side of the four-field system (5.2.6)-(5.2.9). This also includes
a useful modification of the moments which will again be given in terms of
surface integrals with respect to the reduced phase density Ψ = Ψ(t,x,n).

This section is a motivation for the kinetic schemes which will be considered
next and introduces a modified collisionless kinetic transport equation as a
basic ingredient for these schemes.

We start with a reduced initial phase density Ψ0(x,n) = Ψ(0,x,n) at some
initial time t0. For t > t0 we define the modification of the reduced free-flight
phase density Ψ according to

Ψ(t0 + τ,x,n) = Ψ(t0,x − c γ(τ)n) , (6.2.1)

where the function γ(τ) is defined for τ ≥ 0 as

γ(τ) = τR (1 − exp(− τ

τR
)) < τR . (6.2.2)

We conclude that the phase density (6.2.1) satisfies the new kinetic transport
equation

∂Ψ

∂τ
+

3
∑

i=1

γ̇(τ) c ni
∂Ψ

∂xi
= 0 . (6.2.3)

According to this transport equation we also redefine the moments (5.3.4).
While the energy density e will be defined as before, but with the phase
density (6.2.1), the heat flux Qi and its flux Nik involve in addition the
functions γ̇(τ) and γ̇2(τ) as new time-dependent factors:
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e(t0 + τ,x) =

∮

∂B(1,0)

Ψ(t0 + τ,x,n) dS(n) ,

Qi(t0 + τ,x) = cγ̇(τ)

∮

∂B(1,0)

niΨ(t0 + τ,x,n) dS(n) , (6.2.4)

Nik(t0 + τ,x) = γ̇2(τ)

∮

∂B(1,0)

ninkΨ(t0 + τ,x,n) dS(n).

These definitions imply equations of balance that have the same structure as
the corresponding hyperbolic four-field system (5.2.6)-(5.2.9), namely

∂e

∂τ
+

3
∑

k=1

∂Qk

∂xk
= 0,

(6.2.5)
∂Qi

∂τ
+

3
∑

k=1

∂(c2 Nik)

∂xk
= − 1

τR
Qi.

It is important to note that in contrast to the local hyperbolic system (5.2.6)-
(5.2.9) these moment system is non-local in time and space. In the next
sections we will show how the modified kinetic representations can be used in
order to solve the initial-boundary value problem for the hyperbolic system.

6.3 The pure initial value problem (IVP)

6.3.1 Kinetic solution of the IVP

In order to solve the initial value problem for the nonlinear four- field system
(5.2.6)-(5.2.9), we start at a fixed time t0 with given initial data e0 for the
energy density and Q0 for the heat flux. With e0, Q0 we form the four-field
Maximum Entropy phase density Ψeq at time t0 as the initial phase density
in order to solve the modified kinetic transport equation (6.2.3) in the finite
time interval t0 ≤ t ≤ t0 + τM for a given time step τM . Then we put t0 + τM
as a new initial time and proceed as before, and so on.

To initialize the scheme we start with

• Bounded and integrable initial data for x ∈ IR3 at time t = 0,
e(0,x) = e0(x) ≥ ε > 0, Q(0,x) = Q0(x) with |Q| < c e.
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• A fixed time step τM > 0, so that the maximization of entropy is carried
out at the equidistant times tn = nτM , n = 0, 1, 2, .... The four-field
Maximum Entropy phase density is then used as an initial phase density
in order to solve the modified kinetic transport equation within each
subsequent time interval [tn, tn+1].

Due to this description there hold the following moment representations for
each index n ≥ 0 and for all τ ∈ [0, τM ]

e(tn + τ,x) = c

∫

∂B(1,0)

Ψn(x − cγ(τ)n,n) dS(n)

(6.3.1)

Qi(tn + τ,x) = c γ̇(τ)

∫

∂B(1,0)

ni Ψn(x − cγ(τ)n,n) dS(n) .

Here the phase-density Ψn at the maximization time tn reads

Ψn(y,n) =
3

4π

e(4 − F )3

F
(

1 − F n·Q
4 c e

)4 , F =
6

1 +

√

1 − 3
4

(

|Q|
c e

)2
, (6.3.2)

where we have set for abbreviation e = e(tn,y), Qi = Qi(tn,y) and where
γ(τ) is defined in (6.2.2).

In the following we are especially interested in one-dimensional solutions,
which do not depend on x2 and x3. In this case we can also use the integration
variables given in (4.6.1) for the one-dimensional evaluation of the surface
integrals for the ultra-relativistic Euler equations. Then the moments reduce
to one-dimensional integrals over the interval [−1, 1] with

e(tn + τ, x) =
3

2

∫ +1

−1

e (4 − F )3

F (1 − F
4
Qξ
c e

)4
(tn, x− c γ(τ) ξ) d ξ ,

(6.3.3)

Q(tn + τ, x) =
3

2
c γ̇(τ)

∫ +1

−1

e (4 − F )3 ξ

F (1 − F
4
Qξ
c e

)4
(tn, x− c γ(τ) ξ) d ξ .

6.3.2 Riemannian initial data and shock condition

We consider now a single shock front which propagates into a region of ther-
mal equilibrium. The Rankine-Hugoniot conditions for this case were already
solved by Dreyer & Seelecke in [15] and will be sufficient for our purpose.
However, we will prove a correspondence between the four-field system and
the ultra-relativistic Euler equations which allows us to solve the complete
Riemann problem of the four-field system in the limit τR → ∞.

145



In this section we will compare our numerical results with their analytical
predictions from the Rankine-Hugoniot conditions for a large relaxation time
τR. But we will also study the influence of a small relaxation time τR, which
leads to a fast relaxation of the heat flux, and especially the smoothing of a
single shock front under the influence of this fast relaxation.

We restrict ourselves to the one-dimensional case and recall the weak formu-
lation of the four-field system in (6.1.1) with a convex region Ω in space and
time:

∫

∂Ω

(e dx − Qdt) = 0 ,
∫

∂Ω

(Qdx − c2 eχ dt) = − 1
τR

∫

Ω

∫

Q dt dx ,

χ = 5
3
− 4

3

√

1 − 3
4

(

Q
ce

)2
.

(6.3.4)

We prescribe Riemannian initial data

e0(x) =

{

e− , x ≤ 0
e+ , x > 0

, Q0(x) =

{

Q− , x ≤ 0
Q+ , x > 0

. (6.3.5)

In order to guarantee that only a single shock solution occurs, we introduce
the shock-parameter X = e−/e+ > 1, which determines the strength of the
shock. Then we choose the equilibrium state e+ > 0, Q+ = 0 to the right of
the shock and calculate the state e−, Q− to the left of the shock according to
the Dreyer-Seelecke condition

e− = Xe+ , Q− = (X − 1)e+
c√
3

√

3
√
X − 1√
X + 1

. (6.3.6)

The shock speed Vs > 0 is also taken from [15] and reads

Vs =
c√
3

√

3
√
X − 1√
X + 1

. (6.3.7)

The condition X > 1 and the representations (6.3.6) select a single shock
solution which corresponds to a 3-shock in the parametrizations given for the
ultra-relativistic Euler equations. These conditions also imply that always
Vs > c/

√
3.

Sometimes it is useful to define another shock parameter via the shock speed.
The new shock parameter gives the deviation from the Deby velocity c and
is defined as

α =
Vs
c

=
1√
3

√

3
√
X − 1√
X + 1

. (6.3.8)
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Note that Vs is restricted to the range c/
√

3 < Vs < c. Using α, with
1/
√

3 < α < 1, instead of X, the Dreyer-Seelecke condition reads

e− =
1

9
e+

(3α2 + 1)2

(1 − α)2
, Q− =

8

9
ce+α

3α2 − 1

1 − α2
. (6.3.9)

In the following we put c = 1 for simplicity.

Figure 6.1 shows for Riemannian initial data of type (6.3.5) three initial
value problems for the two fields energy density e and heat flux Q. The
space region is −0.5 ≤ x ≤ 0.5 and the time is restricted to 0 ≤ t ≤ 0.5.
The first row displays a single shock solution resulting from the initial data
e+ = 1, Q+ = 0, X = 2 for large relaxation time τR = 8. The light and
dark colours correspond to small and large values of the fields, respectively,
ranging from emin = 1, Qmin = 0 (light colour) to emax = 2, Qmax = 0.67
(dark colour).

The second row displays the same initial value problem but for small relax-
ation time τR = 0.2. This value corresponds to a dominant right-hand side
and causes a strong diffusion of the original shock front. The extreme values
of e and Q are the same as before.

The third row displays the development of initial conditions that violate the
Dreyer-Seelecke shock condition X > 1. Here the initial data result from
e+ = 1, Q+ = 0, X = 0.3 for a large relaxation time τR = 8. The extreme
values of the fields range from emin = 0.3, Qmin = −0.26 (light colour) to
emax = 1, Qmax = 0 (dark colour).
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Figure 6.1: Fields of energy density and heat flux
for various inital conditions and relaxation times
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6.4 The initial-boundary value problem (IBVP)

6.4.1 Kinetic solution of the IBVP

Boundary value problems that are solved by integral representations of an
underlying kinetic model confront us with a serious problem. For a discus-
sion we consider a half space problem of a one-dimensional crystal with a
boundary at x = 0. We will solve the inital-boundary value problem with
prescribed boundary data for the energy density e by a suitable extension of
the kinetic scheme developed for the initial value problem in Section 6.3.

Our objective is the calculation of the fields of energy density and heat flux
at location x̄ and at time 0 < t̄ ≤ τM . To this end we rely on an extension
of the representations (6.3.3). For every value of the integration variable
ξ ∈ [−1, 1] there is a micro trajectory

x(t) = x̄− cξ (γ(t̄) − γ(t)) (6.4.1)

through the point (t̄, x̄) which starts for ξ < ξ0 from the initial line t = 0 and
for ξ > ξ0 from the boundary x = 0. The critical value

ξ0 =
x̄

cγ(t̄)
> 0 (6.4.2)

corresponds to the micro trajectory that originates at the point (0, 0).

•

•

•

•

e 0 (x
) ,

 
 Q

0 (x
) 

 x  x 

 t 

e
W

 (t) 0

ξ < ξ
0

ξ = ξ
0

ξ > ξ
0

t
W

( t , x , ξ) t

x(t)=x− cξ(γ( t )−γ(t))

x
0
( t , x , ξ)

( t , x )− −

−
− −

− −

− −

Figure 6.2: Micro trajectories relating (t̄,x̄) to the initial
and boundary line
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Figure 6.2 illustrates three selected micro trajectories and the functions

x0(t̄, x̄, ξ) = x̄− cγ(t̄)ξ, tW (t̄, x̄, ξ) = −τR ln

[

exp

(

− t̄

τR

)

+
x̄

c τRξ

]

,

(6.4.3)
which denote the intersections of the micro trajectories with the initial axes
t = 0 and with the boundary x = 0, respectively. These play an important
role for the following representation formulas. Note that micro trajectories
are given by a purely formal definition and that there are neither physical
particles nor phonons corresponding to them.

We introduce the abbreviation

U(e, Q, ξ) =
3

2

e (4 − F )3

F
(

1 − F
4
Q
ce
ξ
)4 with F =

6

1 +

√

1 − 3
4

(

Q
c e

)2
, (6.4.4)

and form the representation formula of the initial-boundary value problem
(in the following abbreviated as IBVP) by means of two auxiliary functions
eH(t) and QH(t) which will be determined later on. To calculate the fields
e(t̄, x̄) and Q(t̄, x̄) we write

e(t̄, x̄) =

ξ0
∫

−1

U(e0(x0(t̄, x̄, ξ)), Q0(x0(t̄, x̄, ξ)), ξ) dξ

(6.4.5)

+

1
∫

ξ0

U(eH(tW (t̄, x̄, ξ)), QH(tW (t̄, x̄, ξ)), ξ) dξ,

Q(t̄, x̄) = c exp
(

− t̄
τR

)





ξ0
∫

−1

U(e0(x0(t̄, x̄, ξ)), Q0(x0(t̄, x̄, ξ)), ξ) ξ dξ

(6.4.6)

+

1
∫

ξ0

U(eH(tW (t̄, x̄, ξ)), QH(tW (t̄, x̄, ξ)), ξ) ξ dξ



 .

The initial and boundary data are denoted by

e(0, x) = e0(x), Q(0, x) = Q0(x), e(t, 0) = eW (t), Q(t, 0) = QW (t).
(6.4.7)

Note that either (6.7)3 or (6.7)4 can be prescribed as independent boundary
data, but not both. This restriction is also very well known from the reflection
problem in the linear limit, which will be studied in detail in Section 6.4.3.
Here we will discuss the dependencies of the boundary values for e and Q on
the corresponding kinetic level.
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The solution of the IBVP, i.e. the representations (6.4.5) and (6.4.6), must
satisfy the following two continuity conditions at the boundary

lim
x̄→0

e(t̄, x̄) = eW (t̄), lim
x̄→0

Q(t̄, x̄) = QW (t̄). (6.4.8)

These read explicitly at any time t

eW (t) =

0
∫

−1

U(e0(x0(t, 0, ξ)), Q0(x0(t, 0, ξ)), ξ) dξ +

1
∫

0

U(eH(t), QH(t), ξ) dξ,

(6.4.9)

QW (t) = c exp
(

− t
τR

)





0
∫

−1

U(e0(x0(t, 0, ξ)), Q0(x0(t, 0, ξ)), ξ) ξ dξ

(6.4.10)

+

1
∫

0

U(eH(t), QH(t), ξ) ξ dξ



 .

Here the auxiliary functions eH and QH do no longer depend on the integra-
tion variable ξ. Thus the integrals that contain eH and QH can be carried out
and the continuity conditions (6.4.9) and (6.4.10) turn out to be algebraic
equations for eH and QH .

We introduce the abbreviations

a =
FH
4

QH

c eH
, f(a) =

1

2

a2 − 3a+ 3

a2 + 3
(1+a)3, g(a) =

1

4

3 − a

a2 + 3
(1+a)3,

(6.4.11)
and obtain from (6.4.9) and (6.4.10)

eW (t) = eH(t)f(a(t)) +

0
∫

−1

U(e0(x0(t, 0, ξ)), Q0(x0(t, 0, ξ)), ξ) dξ, (6.4.12)

QW (t)
exp

(

t
τR

)

c
= eH(t)g(a(t)) +

0
∫

−1

U(e0(x0(t, 0, ξ)), Q0(x0(t, 0, ξ)), ξ) ξ dξ.

(6.4.13)
We conclude that the auxiliary functions eH(t) and QH(t) must satisfy two
non-linear algebraic equations at the boundary!

Now we assume for the moment that eW (t) and QW (t) are prescribed in-
dependently of each other. Under this assumption we consider two cases in
order to demonstrate that they lead to a contradiction. The reason for this
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failure comes from the fact that a consistent kinetic approximation to the so-
lution of the hyperbolic system in the limit τM → 0 must also take care of the
fact that the boundary data for e and Q cannot be prescribed independently.

In the first case we additionally assume that we could choose the auxiliary
functions such that they coincide with the boundary data, i.e. eH = eW and
QH = QW . Then it follows that the algebraic equations (6.4.12) and (6.4.13)
are not satisfied in general, i.e.

lim
x̄→0

e(t̄, x̄) 6= eW (t̄), lim
x̄→0

Q(t̄, x̄) 6= QW (t̄). (6.4.14)

In the second case we assume that eH and QH follow from the algebraic sys-
tem (6.4.12) and (6.4.13) for given eW and QW . Here another contradiction
appears because the quantity a is restricted to the range [−1,+1] according
to its definition (6.4.11). However, the corresponding solution of the nec-
essary continuity conditions (6.4.12) and (6.4.13) leads even for very simple
examples with constant initial- and boundary data to values of a out of that
range. In these cases we cannot prescribe eW (t) and QW (t) independently.

To proceed the discussion we consider now exclusively the case that eW (t)
but not QW (t) is prescribed. Consequently, the function QW (t) must also be
calculated. We need one further condition that allows the determination of
the auxiliary functions eH(t) and QH(t) and of QW (t). In addition to the
two algebraic conditions (6.4.12) and (6.4.13) we found that it is necessary
to require a third continuity condition for 0 < t ≤ τM , namely

eH(t) = eW (t) , (6.4.15)

which guarantees that the continuity conditions (6.4.8) are also satisfied in
the limit τM → 0. For the evaluation we use Newtons method in order to
solve the resulting equation for a(t), which is a combination of (6.4.12) and
the third continuity condition (6.4.15)

1 − f(a(t)) =
1

eW (t)

0
∫

−1

U(e0(x0(t, 0, ξ)), Q0(x0(t, 0, ξ)), ξ) dξ . (6.4.16)

Since f(a) is monotonically increasing from f(−1) = 0 to f(1) = 1, a unique
solution a = a(t) of (6.4.16) exists whenever the right-hand side of (6.4.16) is
in the range [0, 1], which is the case for all interesting examples of practical
importance considered here.

We may now determine the auxiliary field QH(t) according to the definition
of a = a(t) by

QH(t) =
4c a(t)

a(t)2 + 3
eH(t) . (6.4.17)

Finally we obtain the dependent boundary data QW (t) from (6.4.13).
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The next two examples exhibit a surprising consequence of condition (6.4.15):
Immediately after the initial time and after a sufficient number of maximiza-
tions of entropy were carried out, the boundary values eW and QW are related
to the initial data according to the Rankine-Hugoniot conditions!

6.4.2 Two explicit examples for IBVPs

The following numerical results serve to illustrate this observation and addi-
tionally record three nonlinear phenomena: a) the formation and steepening
of shock fronts,
b) the speed of shock fronts is apparently larger then c/

√
3,

c) the broadening of initial heat pulses at later times.

Figures 6.3 and 6.4 display the propagation of the heat pulse

eW (t) =







1 , t ≤ 0
3 , 0 < t ≤ 0.5
1 , t > 0.5

, (6.4.18)

created at the lower boundary. The initial data are e0 = 1 and Q0 = 0.

In Figure 6.3 we consider the undamped case. The first row of Figure 6.3
shows the boundary data. Note that only eW (t) is prescribed but QW (t) is
calculated according to (6.4.15)-(6.4.17). The second and third row show the
solution at times t = 0.5 and t = 1.5, respectively, for 0 ≤ x ≤ 1.5.

We observe that the pulse front remains a shock moving with the speed 0.72 c,
which is confirmed by the Dreyer-Seelecke condition (6.3.6). The rear side of
the pulse changes into a rarefaction wave. Thereby it comes to a broadening,
even if there is no damping.

Figure 6.4 illustrates the effect of large damping due to the relaxation time
τR = 0.5. In contrast to the undamped case, the heat flux may become
negative here. The last row of Figure 6.4 shows the fields e and Q at time
t = 1.5 exhibiting a large broadening of the rear side of the initial pulse. Note
that this phenomenon cannot be observed in the undamped case, although a
rarefaction wave appears at the rear side of the pulse here. Furthermore the
solution decays rapidly to an equilibrium state.

In the last example which is represented in Figure 6.5 we create the periodic
heat signal

eW (t) = 2 − cos(8π t) (6.4.19)

at the lower boundary. The initial data are again e0 = 1 and Q0 = 0.
The left and right columns show the effect of zero damping (τR → ∞) and
high damping (τR = 0.5), respectively. The first two rows of Figure 6.5
depict the boundary data. Note again that only eW (t) is prescribed but
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QW (t) is calculated according to (6.4.15)-(6.4.17). Surprisingly even in this
example QW (t) meets the value Q that we obtain by the Dreyer-Seelecke
condition with e+(t) = e0 = 1, Q+(t) = Q0 = 0 and e−(t) = eW (t), at least
in the undamped case. The damped case requires a more detailed study.
The last two rows illustrate the solution at time t = 1.5 for 0 ≤ x ≤ 1.5.
The formation and steepening of shock fronts is clearly visible. As before,
we observe regions in space with a negative heat flux which is due to the
damping.
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Figure 6.3: Creation of a heat pulse for τR → ∞. First row: boundary data
for the energy density and the resulting heat flux, second and third row:
energy density and heat flux at time t = 0.5 and at t = 1.5, respectively.
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Figure 6.4: Creation of a heat pulse for τR = 0.5. First row: boundary data
for the energy density and the resulting heat flux, second and third row:
energy density and heat flux at time t = 0.5 and at t = 1.5, respectively.
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Figure 6.5: A periodic boundary condition. Left and right column: τR → +∞
and τR = 0.5, respectively.
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6.4.3 The linear limit

In this section we choose initial- and boundary data so that the solution of
the non-linear system (6.1.1) agrees approximately with the solution of the
linear limit. The latter is obtained from the full system by neclegting terms
of the order Q2. For simplicity we set c =

√
3 and consider the case τR → ∞.

The initial data are

e0(x) =







1 , 0.0 < x ≤ 0.4
1 + ε , 0.4 < x ≤ 0.8
1 , x > 0.8

, Q0(x) =







0 , 0.0 < x ≤ 0.4
−ε , 0.4 < x ≤ 0.8
0 , x > 0.8

.

(6.4.20)
Here ε > 0 is a fixed positive constant; in particular we choose ε = 0.01. At
the boundary we prescribe the energy density to be

eW (t) = 1 . (6.4.21)

The solution of this problem according to the representation formulas (6.4.5)
and (6.4.6) can be read off from Figure 6.6 for 0 ≤ t ≤ 1 and 0 ≤ x ≤ 1.

Figure 6.6: The nonlinear solution of the IBVP for ε = 0.01

The Figure reveals the well known behaviour of a linear wave equation be-
cause ε was chosen so that terms of order Q2 show no influence. Furthermore
we observe that the prescribed constant boundary data eW = 1 causes a
reflection of the incoming wave from the initial line.

In order to establish agreement with the linear theory we will compare the
solution of the non-linear system (6.1.1) in Figure 6.6 with the solution of its
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linearized form that we study now. The linearized version of (6.1.1) reads

∫

∂Ω

(e dx − Qdt) = 0 ,

∫

∂Ω

(Qdx − e dt) = 0 . (6.4.22)

(6.4.22) leads to the following system of wave equations:

∂e

∂t
+

∂Q

∂x
= 0 ,

∂Q

∂t
+

∂e

∂x
= 0 . (6.4.23)

Across a shock with velocity Vs we obtain from (6.4.22) the jump conditions

Vs (e+ − e−) = Q+ −Q− , Vs (Q+ −Q−) = e+ − e− , (6.4.24)

These equations immediately imply Vs = +1 or Vs = −1, which is a well
known result. In the following we use the jump conditions (6.4.24) in order
to construct the analytical solution of the IBVP from above.

Figure 6.7 shows the piecewise constant analytical solution of the linear prob-
lem. The various regions with constant states (e, Q) are bounded by jumps
with slopes +1 and −1 or by the t- and x-axis, respectively.

Figure 6.7: The analytical linear solution of the IBVP for ε = 0.01

Due to the small variation of the initial data there is good agreement between
the nonlinear numerical solution of Figure 6.6 and the linear analytical so-
lution of Figure 6.7. Note that the light colors in Figure 6.6 correspond to
small values of the fields while large values are indicated by dark colors.
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6.4.4 The stationary boundary value problem

Finally we study the analytical solution of the stationary boundary value
problem. As before we consider the one-dimensional case. We reduce the lo-
cal three-dimensional system (5.2.6)-(5.2.9) to the stationary one-dimensional
case and obtain

d

dx
Q = 0 ,

d

dx
(c2N) = − 1

τR
Q , N =

5

3
e− 4 e

3

√

1 − 3

4

(

Q

c e

)2

,

(6.4.25)

where e = e(x), Q = Q(x) for 0 ≤ x ≤ L. We prescribe values for e at the
upper and lower boundary, viz.

e− = e(0) , e+ = e(L). (6.4.26)

The constant Debye velocity is again c = 1. (6.4.25)1 implies thatQ =constant,
whereas (6.4.25)2 leads to the algebraic equation

5

3
e− 4

3

√

e2 − 3

4
Q2 = γ − x

τR
Q. (6.4.27)

The boundary conditions at x = 0 and at x = L are used for the determina-
tion of the integration constants γ and Q

5

3
e− − 4

3

√

e2− − 3

4
Q2 = γ,

5

3
e+ − 4

3

√

e2+ − 3

4
Q2 = γ − L

τR
Q. (6.4.28)

Subtracting these equations leads to a single equation for Q, namely

5

3
(e− − e+) − 4

3

(

√

e2− − 3

4
Q2 −

√

e2+ − 3

4
Q2

)

− LQ

τR
= 0 , (6.4.29)

which may be solved by Newtons method.

The other constant γ results then immediately from (6.4.28)1. With known
values for Q and γ we may solve the equation for the energy density e in
(6.4.27). It turns out that the solution only admits the ”+” sign and reads

e(x) = − 5

3

(

Qx

τR
− γ

)

+

√

16

9

(

Qx

τR
− γ

)2

− 4

3
Q2. (6.4.30)

The same representation can be used in order to solve the mixed boundary
value problem for given e− and Q = Q+. In this case γ can be read off from
the equation (6.4.28)1 .
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6.5 The correspondence with the ultra-relativistic

Euler equations

Now we are able to explain a correspondence with the (p,u)-subsystem of
the ultra-relativistic Euler equations for both, for the hyperbolic systems as
well as for the kinetic schemes in order to solve them.

We first compare the conservation laws of momentum- and energy for the
ultra-relativistic Euler equations given by (4.4.5),(4.4.6) with the hyperbolic
four-field system in (5.2.6)-(5.2.9). It is sufficient to assume that the field
equations are written down in dimensionless form with c = 1 for the velocity
of light as well as for the Debye velocity. The relaxation term in the mo-
mentum balance (5.2.7) of the four-field system has no counterpart in the
(p,u)-subsystem of the ultra-relativistic Euler equations. Thus we will only
consider the limit τR → ∞ without production term on the right-hand side.
The natural domains Ωrel and Ωphon for the (p,u)- and the (e,Q) state space
are given by

Ωrel = { (p,u) ∈ R × R
3 | p > 0} ,

Ωphon = { (e,Q) ∈ R × R
3 | |Q| < e} , (6.5.1)

respectively. Then we compare the (p,u)-subsystem with the four-field sys-
tem and make the following ansatz for a transformation between the (p,u)-
and the (e,Q)-state space:

e = p(3 + 4u2) , Q = 4pu
√

1 + u2 . (6.5.2)

The inverse transformation is given by

p =
1

3

[

√

4e2 − 3Q2 − e
]

, u =
Q

√

4p(p+ e)
. (6.5.3)

These transformations were already used in (4.5.6) and (4.5.7) in order to
initialize the kinetic scheme of the ultra-relativistic Euler equations for the
next time step. We conclude that the mapping Γ : Ωrel → Ωphon with

Γ(p,u) =

(

p(3 + 4u2)

4pu
√

1 + u2

)

(6.5.4)

is one-to-one. We can also use (6.5.3) and replace e and Q by p and u in the
flux Nij of the four-field system in (5.2.8). There results with c = 1 for all
i, j = 1, 2, 3 the momentum-flux of the ultra-relativistic Euler equations

Nij = pδij + 4puiuj . (6.5.5)

Note that u = (u1, u2, u3)T = −(u1, u2, u3)
T , and therefore Nij = N ij.
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However, there is a deeper reasoning for this analogy. This will be explained
next and will also give a relationship between the kinetic schemes for the
relativistic Euler equations and for the phonon-Bose gas.

First we note that the kinetic schemes in both theories have the same colli-
sionless kinetic transport equations in the free-flight phases. Next we consider
the entropies defined for the reduced phase densities Ψrel(w) and Ψphon(n),
which are also of the same mathematical form in both theories, namely the
zero-component

S̃0[Ψrel] =

∮

∂B(1,0)

Ψ
3/4
rel (w) dS(w)

of the reduced entropy four-vector of the relativistic (p,u)-subsystem and

h̃(Ψphon) = µ

∮

∂B(1,0)

Ψ
3/4
phon(n) dS(n) , µ =

4π

3

(

1

40π3

)
1

4

for the reduced entropy density of the phonon-Bose gas, where w,n ∈ ∂B(1, 0)
denotes the unit vector field in both cases. In order to maximize the entropy
with four constraints, we also prescribe integral moments of the same mathe-
matical form in both theories, namely the integral moments T 0µ given by
(4.2.36) in the ultra-relativistic theory and the integral moments for e and Q
given by (5.3.4) in the theory of the phonon-Bose gas, both with respect to
the unit sphere ∂B(1, 0). But due to Proposition 4.12 the Maximum Entropy
problem for the given four constraints leads to a unique Maximum Entropy
phase density. We conclude that the reduced four-field phase densities which
maximize the entropy are the same in both theories up to a transformation
of the state spaces. This transformation is given by (6.5.2). For the kinetic
schemes we obtain

• If τR → ∞ and τN = τM , then the kinetic scheme for the Boltzmann-
Peierls equation given by (5.3.14), (5.3.15) in Section 5.3 reduces to the
scheme for the (p,u)-subsystem of the ultra-relativistic Euler equations
given in Section 4.8 in view of the transformation (6.5.2).

• If τR → ∞ and τN = τM , then the kinetic scheme for the hyperbolic
four-field system given in Section 6.3.1 reduces to the scheme for the
(p,u)-subsystem of the ultra-relativistic Euler equations given in Sec-
tion 4.8 in view of the transformation (6.5.2).

• The analogous results follows for the spatial one-dimensional versions
of the kinetic schemes described above, since in both theories the same
integral substitution (4.6.1) could be used in the one-dimensional case.

However, these are only purely mathematical analogies between two totally
different physical applications.
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Thesen zur Habilitationsschrift

Ausgewählte Anfangs-Randwertprobleme
für hyperbolische Systeme und kinetische Gleichungen

1. Die vorliegende Arbeit schlägt in den Kapiteln 2 und 3 eine Brücke
von den mathematischen Grundlagen zur Behandlung der Wellenglei-
chungen zu den Maxwellschen Gleichungen inklusive wichtiger Anwen-
dungsbeispiele. Die Maxwellschen Gleichungen werden sowohl klassisch
als auch im Rahmen der speziellen Relativitätstheorie mathematisch
beleuchtet, wobei der mitentwickelte Tensorkalkül auch die Grundlage
für die Behandlung der relativistischen Eulergleichungen im folgenden
Kapitel 4 bildet. Obwohl die wesentlichen Einzelresultate der Kapi-
tel 2 und 3 schon in der mathematischen bzw. physikalischen Lite-
ratur behandelt worden sind, hoffen wir doch, mit dieser bündigen und
selbsterklärenden Einführung der Elektrodynamik von der mathema-
tischen Analysis bis hin zu konkreten physikalischen Anwendungen der
Maxwellschen Gleichungen eine wichtige Lücke geschlossen zu haben.

2. Während der kinetische Zugang zu den klassischen Eulergleichungen
vom analytischen und numerischen Standpunkt aus in der bestehen-
den Literatur umfangreich untersucht worden ist, stellt die kinetische
Behandlung der relativistischen Eulergleichungen noch weitgehendes
Neuland dar. Im Kapitel 4 dieser Arbeit wird hierzu ein wesentlicher
Beitrag geliefert. Die hier dargestellten Eulergleichungen erlauben zwei
Grenzfälle, den Übergang zu den klassischen Eulergleichungen wie auch
den Übergang zu den sogenannten ultra-relativistischen Eulergleichun-
gen. Die letzteren nehmen eine besonders einfache mathematische
Gestalt an, da die Gleichungen für Impuls und Energie ein eigenes Sub-
system bilden, was sich von der Kontinuitätsgleichung abkoppelt. In
einer Raumdimension lösen wir für die ultra-relativistischen Eulerglei-
chungen das Riemannsche Anfangswertproblem komplett und verglei-
chen es mit verschiedenen numerischen Verfahren. Die hier entwickel-
ten Verfahren erfüllen die diskreten Formulierungen der physikalischen
Erhaltungssätze und liefern insbesondere immer einen positiven Druck
und eine positive Dichte, was auch in der Arbeit gezeigt wird.

3. In den Kapiteln 3 und 4 haben wir Lorentz-invariante Systeme der
speziellen Relativitätstheorie mathematisch untersucht. In den Kapiteln
5 und 6 wird die sogenannte Boltzmann-Peierls Gleichung (BPG) stu-
diert, eine kinetische Evolutionsgleichung, die den Wärmetransport in
einem dielektrischen Kristall bei sehr tiefer Temperatur mit Hilfe eines
Phonon-Bose Gases beschreibt, sowie ein aus der BPG abgeleitetes
hyperbolisches Momentensystem.



Die kinetische Theorie der relativistischen Euler Gleichungen und die
kinetische Boltzmann-Peierls Theorie eines Phonon-Bose Gases beschrei-
ben zwar völlig verschiedene physikalische Vorgänge, zeigen aber trotz-
dem weitreichende mathematische Analogien. Diese Analogien werden
in der vorliegenden Schrift schrittweise herausgearbeitet.

4. Sowohl das kinetische Verfahren für die ultra-relativistischen Euler Glei-
chungen als auch für das Phonon-Bose Gas erlauben die Möglichkeit, re-
duzierte Phasendichten, reduzierte Momentenintegrale und reduzierte
Entropien zu finden. Die reduzierten Momentenintegrale sind Integrale
über die kompakte Einheitssphäre und damit von wesentlich einfacherer
mathematischer Gestalt als die ursprünglichen 3-fach Momenteninte-
grale, enthalten aber dieselbe thermodynamische Information und las-
sen sich ohne Verwendung von Approximationen rigoros herleiten. Hier-
zu werden die 3-fach Momentenintegrale der kinetischen Phasendichte
in Polarkoordinaten umgeschrieben. Die mathematische Struktur dieser
Integrale erlaubt sodann die explizite Integration des radialen Anteils.
Dabei haben die reduzierten Größen für beide Anwendungen dieselbe
Bauart und lassen sich insbesondere für eindimensionale Strömungen
weiter sehr stark vereinfachen. Dieser Zugang kennt kein Analogon in
der klassischen Theorie, d.h. weder die klassische Boltzmann-Gleichung
noch die sogenannte kinetische BGK-Gleichung, eine vereinfachte Vari-
ante der Boltzmann-Gleichung, lassen sich in dieser oder ähnlicher Form
vereinfachen, aber auch nicht die kinetischen Schemata der klassischen
Euler Gleichungen.

5. In der relativistischen kinetischen Theorie sowie in der kinetischen The-
orie der Boltzmann-Peierls Gleichung hat man es nur mit Signalgeschwindigkeiten
zu tun, die jeweils durch die Geschwindigkeit des Lichtes bzw. die so-
genannte Debye-Geschwindigkeit global begrenzt sind. Dies hat ver-
schiedene Vorteile für die Analysis und Numerik der entsprechenden
kinetischen Schemata, die in der vorliegenden Arbeit ebenfalls genutzt
werden. Die unter den Thesen 4 und 5 genannten Punkte nennen
signifikante Unterschiede zur klassischen Theorie, die ein detailiertes
Studium der hier behandelten nichtklassischen Anwendungen rechtfer-
tigen.

6. Die von Jüttner aus physikalischen Überlegungen gewonnene relativis-
tische Verallgemeinerung der klassischen Maxwellverteilung für ein idea-
les Gas wird mathematisch mit Hilfe des Maximum Entropie Prinzips
begründet. Der von uns gewählte Zugang zum Maximum Entropie
Prinzip kommt ohne Lagrange-Multiplikatoren aus. Er zeigt nicht
nur das Erfülltsein der Entropieungleichung, sondern auch die Ein-
deutigkeit der Phasendichte, die dem Maximum Entropie Prinzip mit
den vorgegebenen Nebenbedingungen genügt.



Mit diesem Prinzip begründen wir auch die reduzierten Phasendichten
für die ultra-relativistischen Eulergleichungen bzw. für das Phonon-
Bose Gas. Wir zeigen, daß bis auf eine Transformation im Zustands-
raum die reduzierten Phasendichten für das Subsystem der ultra-rela-
tivistischen Eulergleichungen bzw. für das hyperbolische 4-Feld Mo-
mentensystem der Boltzmann-Peierls Gleichung übereinstimmen. Die
Grundlage hierfür ist eine vereinfachte Entropie der reduzierten Größen,
die sich in beiden Anwendungen als äquivalent zu den ursprünglich
gegebenen Entropien herausstellt.

7. In den Kapiteln 5 und 6 werden kinetische Verfahren für die reduzierte
Boltzmann-Peierls Gleichung und das hyperbolische 4-Feld Momenten-
system der Boltzmann-Peierls Gleichung entwickelt und mit verschiede-
nen analytisch bekannten Testfällen numerisch verglichen. Dabei zeigt
sich eine sehr gute Übereinstimmung auch für die nichttrivialen Test-
fälle, die teilweise selbst einer umfangreichen Analysis der entsprechen-
den Erhaltungsgleichungen entspringen. Die Verfahren werden zunächst
semidiskret bzgl. der Zeit in drei Raumdimensionen formuliert. Deren
weitere Reduktion auf eindimensionale Strömungen führt auf einfache
Momentenintegrale über das Intervall [−1, 1] sowie auf ein im gesamten
Phasenraum konsistent diskretisiertes kinetisches Verfahren.

8. Das oben erwähnte hyperbolische 4-Feld Momentensystem der Boltz-
mann-Peierls Gleichung weist einen Relaxationsterm in der Impulsbi-
lanz auf. Im Kapitel 6 entwicklen wir in einer Raumdimension ein
kinetisches Schema, das mit diesem Produktionsterm ein vorgegebenes
Anfangs- Randwertproblem erfolgreich löst. Die Produktionsterme las-
sen sich durch eine geschickte Modifikation der reduzierten Freiflug-
Phasendichte im kinetische Schema berücksichtigen. Die Behandlung
der weniger einfachen Randbedingung erfolgt durch Einführung ge-
eigneter Hilfsfelder in der modifizierten Freiflugphase des kinetischen
Schemas. Die Auswertung von Stetigkeits- und Randbedingungen führt
sodann auf interessante algebraische Gleichungen zur Bestimmung der
Hilfsfelder. Randbedingungen für nichtlineare hyperbolische Erhaltungs-
gleichungen stellen uns vor schwierige mathematische Aufgaben, und
bis jetzt ist die mathematische Analysis sowie die Entwicklung geeigneter
numerischer Verfahren für Anfangs-Randwertprobleme nur in Spezial-
fällen möglich. Die vom Autor dieser Arbeit entwickelte kinetische Hil-
fsfeldmethode ist nun nicht nur für die oben genannte Anwendung gut
geeignet, sondern konnte inzwischen auch von Dreyer, Herrmann et al.
zur Lösung der klassischen Eulergleichungen mit den Randbedingungen
für einen beschleunigten Kolben erfolgreich erweitert werden.

(Dr. rer. nat. Matthias Kunik)


