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Abstract  
 New process structures for the substitution of petrochemical feedstocks by renewables are 

required to cope with the upcoming scarcity of hydrocarbon resources and to decrease the 

anthropogenic impact on climate change. These challenges are triggered and increased by rising 

demands of a steadily growing world population and their increasing living standards. The 

development of therefore required innovative processes is a complex, interdisciplinary, multi-scale 

challenge including various fields of natural science and engineering. One of the main stimuli of and 

contributions to this endeavor are provided by computer-aided tools on every time and length scale of 

the process development procedure. With the Collaborative Research Center TR 63 “InPROMPT” a 

trans-regional project was founded (i) to investigate the utilization of innovative solvent systems for 

the functionalization of long chain substrates from renewable feedstocks and (ii) to develop the 

required tools for fast and efficient design of the corresponding process systems. As part of this 

project, the presented work had the goal to design an optimal reactor unit for the hydroformylation of 

1-dodecene in a thermomorphic multicomponent solvent system. This process is an example of the 

very important class of homogeneously catalyzed liquid multiphase processes, which is highly 

promising for the task of substitution of petrochemical feedstocks. In order to accomplish this task, 

methodical approaches for the synthesis and design of chemical reactors have been developed and a 

detailed reactor design study as well as technical realization have been carried out. 

 An approach for the qualitative synthesis of reactor-networks was created within the process 

design framework of the methodology of elementary process functions. The key notion of the 

underlying methodology is the dynamic optimization of mass and energy control fluxes manipulating 

a Lagrangian fluid element on its way through the process in order to make it follow the optimal route 

in the thermodynamic state space. By analyzing the optimal control fluxes resulting from this dynamic 

optimization, the developed flux profile analysis enables the derivation of reactor-network candidates 

of different synthesis levels. This includes functions of reaction, separation, and recycling, and allows 

for a rational selection of promising reactor-network candidates based on reaction engineering 

fundamentals. The applicability of this approach was proven by comparison to well-known literature 

examples, which used the attainable region approach and superstructure optimization. Moreover, its 

application on the hydroformylation process revealed highly performing process candidates and 

gained interesting insights into the reaction characteristics.  

 The second methodical development touches the design of reactors under uncertainty within 

the aforementioned process design framework. Since past process design studies within this 

framework neglected the impact of arising uncertainties in the process model and disturbances of the 

process operation, the aspired development of a probabilistic design approach was necessary and 

reasonable. In order to include uncertainties in the dynamic optimization of the fluid element, the 

unscented transformation was used. For the reactor design under uncertainty the arising types and 

sources of uncertainty have been identified and classified with respect to their static or dynamic nature 

of appearance, and the mathematical formulation of the probabilistic dynamic optimization problem 

has been derived. The approach was applied on the hydroformylation process example considering 

model parameter uncertainties on the one hand, and imperfect realization of optimal control profiles on 

the other hand. Furthermore, the first study was extended in order to identify the most sensitive model 

parameters by a global sensitivity analysis.  

 In the final step, both novel approaches were applied to design an optimal reactor for an 

existing miniplant of the hydroformylation process. This retrofit included the synthesis of an optimal 

reactor-recycle-network and its detailed technical design and realization under the constraints of the 

miniplant. The resulting in silico design indicated an increase of the yield with respect to the desired 
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product of 17 % and 23 % for the operation without and with closed side product recycle, 

respectively, whereby the first prediction was experimentally validated and confirmed.  

 Within this work it is demonstrated how computer-aided synthesis and design tools 

significantly improve and accelerate the development of chemical processes, even for a complex liquid 

multiphase process. The presented dynamic optimization based approaches for reactor synthesis and 

design under uncertainty have proven to be expedient extensions for the methodology of elementary 

process functions, and they still provide potentials for further improvements and application on other 

processes.  
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Zusammenfassung 
 Es bedarf der Entwicklung neuer verfahrenstechnischer Prozesse zur Substitution 

petrochemischer durch regenerative Rohstoffe, um der allmählichen Verknappung von 

Kohlenwasserstoffressourcen zu begegnen und den anthropogenen Einfluss auf den Klimawandel zu 

reduzieren. Diese Problemstellungen werden durch steigende Bedürfnisse einer stetig wachsenden 

Weltbevölkerung und deren Lebensstandards ausgelöst und verstärkt. Die Entwicklung dieser 

innovativen Prozesse ist eine komplexe, interdisziplinäre, mehrskalige Herausforderung, die 

verschiedenste Bereiche der Naturwissenschaften und Ingenieurswissenschaften einspannt. Einen 

großen Antrieb und Beitrag zu dieser Bestrebung leisten dabei computergestützte Werkzeuge, die auf 

jeder Zeit- und Größenskala der Prozessentwicklung eine wichtige Rolle spielen. Mit dem 

Sonderforschungsbereich TR 63 „InPROMPT“ wurde ein transregionales Projekt gegründet, das die 

Nutzung innovativer Lösungsmittelsysteme für die Funktionalisierung langkettiger Substrate aus 

erneuerbaren Rohstoffen untersucht und die benötigten Werkzeuge für einen schnellen und effizienten 

Entwurf der entsprechenden verfahrenstechnischen Prozesse entwickeln soll. Als Teil dieses Projektes 

hatte die vorliegende Arbeit zum Ziel, einen optimalen Reaktor für einen Prozess zu entwerfen, der zur 

sehr wichtigen Klasse der homogenkatalysierten flüssigen Mehrphasenprozessen gehört. Ein Prozess 

mit vielversprechendem Potential für die Bewältigung der zuvor genannten Substitution 

petrochemischer Rohstoffe ist die Hydroformylierung von 1-Dodecene in temperaturgesteuerten 

Mehrkomponenten-Lösungsmittelsystemen. Mit diesem Ziel vor Augen wurden methodische Ansätze 

für die Synthese und den Entwurf chemischer Reaktoren entwickelt und eine detaillierte 

Reaktorentwurfsstudie sowie deren technische Realisierung durchgeführt.  

 Im Rahmen der Methode der elementaren Prozessfunktionen wurde ein Ansatz für die 

qualitative Synthese von Prozessstrukturen geschaffen. Die Schlüsselvorstellung der 

zugrundeliegenden Methode ist die dynamische Optimierung von Masse- und Energieflüssen, die ein 

Lagranges Fluidelement auf seinem Weg durch den Prozess steuern, um es eine optimale Trajektorie 

im thermodynamischen Zustandsraum folgen zu lassen. Durch die Analyse der optimalen Steuerflüsse 

dieser dynamischen Optimierung ermöglicht die hier entwickelte Flussprofilanalyse die Herleitung 

von Prozessstrukturkandidaten auf verschiedenen Synthesestufen. Diese beinhalten Funktionen wie 

Reaktion, Trennung und Rückführung und ermöglicht eine rationale Auswahl vielversprechender 

Prozessstrukturkandidaten auf Basis reaktionstechnischer Grundlagen. Die Anwendbarkeit dieser 

Methodik wurde durch den Vergleich mit bekannten Literaturbeispielen, die den Attainable Region 

Ansatz und Superstrukturoptimierung nutzten, bewiesen. Darüber hinaus lieferte ihre Anwendung auf 

den Hydroformylierungsprozess leistungsfähige Prozesskandidaten und interessante Einsichten in die 

Reaktionscharakteristiken. 

  Die zweite methodische Entwicklung befasst sich mit dem Entwurf unter Unsicherheiten auf 

Basis der zuvor genannten Entwurfsmethodik. Da deren bisherige Anwendungen in Entwurfsstudien 

die Auswirkungen von Unsicherheiten im Prozessmodell und des Prozessbetriebs vernachlässigten, ist 

die angestrebte Entwicklung eines probabilistischen Entwurfsansatzes notwendig und folgerichtig. Um 

die Unsicherheiten in die dynamische Optimierung zu integrieren, wurde die Unscented 

Transformation herangezogen. Für die Reaktorentwurfsmethode unter Unsicherheiten wurden die 

auftretenden Arten und Quellen von Unsicherheiten identifiziert, bezüglich ihrer statischen respektive 

dynamischen Natur klassifiziert und die mathematische Formulierung der probabilistischen 

dynamischen Optimierung hergeleitet. Die Methodik wurde auf den Hydroformylierungsprozess unter 

Berücksichtigung sowohl von Modellparameterunsicherheiten als auch ungenauer Optimalsteuerungs-

realisierungen angewendet. Zusätzlich wurde erstere Studie erweitert, um die sensitivsten 

Modellparameter mit Hilfe einer globalen Sensitivitätsanalyse zu identifizieren.  
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 Im letzten Schritt wurden die beiden neuen Methoden zur Entwicklung eines optimalen 

Reaktors für eine bereits bestehende Miniplant-Anlage des zuvor genannten 

Hydroformylierungsprozesses genutzt. Dieser Retrofit beinhaltet die Synthese eines optimalen 

Reaktor-Rückführungs-Netzwerks und dessen detaillierten technischen Entwurf unter den 

Einschränkungen der Miniplant. Der resultierende In-silico-Entwurf wies eine Ausbeutesteigerung des 

gewünschten Produkts von 17 % bzw. 23 % für den Betrieb ohne bzw. mit geschlossener 

Nebenproduktrückführung auf, wobei das erstgenannte Ergebnis auch im experimentellen Versuch 

bestätigt werden konnte.  

 Die Ergebnisse dieser Arbeit demonstrieren, wie computergestützte Synthese- und 

Entwurfsmethoden die Entwicklung chemischer Prozesse deutlich verbessern und beschleunigen 

können, selbst für einen komplexen flüssigen Mehrphasenprozess. Die vorgestellten auf dynamischen 

Optimierungen basierten Methoden für die Prozesssynthese und den Entwurf unter Unsicherheiten 

haben sich als zweckmäßige Erweiterungen der Methode der elementaren Prozessfunktionen 

herausgestellt und bergen noch weitere Verbesserungspotentiale und Anwendungsmöglichkeiten für 

andere Prozesse. 
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Nomenclature 
 Within the following list symbols and abbreviations, which repeatedly occur within the text, 

are summarized. Notation, which is only locally relevant, is explained on the spot. Ambiguous 

notations can be concluded from the context.  

 

Latin symbols 

𝐴 Collocation matrix [−] 

𝐴𝑐 Cross sectional area [𝑚2] 

𝑎 Correlation coefficient [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝑎𝑚 Specific surface area [𝑚2 𝑚−3] 

𝐶𝑜𝑣 Covariance [−] 

𝑐 Concentration [𝑚𝑜𝑙 𝑚−3] 

𝐷 Design, sensitivity index [−] 

𝐷𝑎𝑥 Axial dispersion coefficient [𝑚2 𝑠−1] 

𝑑 Diameter [𝑚] 

𝐸 Expected value [−] 

𝐸𝐴 Activation energy [𝑘𝐽 𝑚𝑜𝑙−1] 

𝐺 Geometrical state [𝑚−3] 

𝑔 Equality constraint function [−] 

𝐻 Henry constant [𝑏𝑎𝑟 𝑚𝑙 𝑚𝑜𝑙−1] 

ℎ Inequality constraint function, mapping function [−] 

ℎ𝐴 Enthalpy flux [𝐽 𝑚𝑜𝑙−1𝑚−2] 

𝐼 Initial value function [−] 

𝑗 Diffusion flux density [𝑘𝑔 𝑠−1 𝑚−3] 

𝐾 Reaction rate parameter, equilibrium constant [−] 

𝑘 Reaction rate constant [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝑘𝐿𝑎 Volumetric mass transfer coefficient [𝑠−1] 

𝐿 Lagrangian type function [−] 

𝑙 Length [𝑚] 

𝑀 Molar mass [𝑔 𝑚𝑜𝑙−1] 

𝑚 (Component) mass [𝑘𝑔] 

𝑚𝐴 Mass flux [𝑘𝑔 𝑠−1 𝑚−2] 

𝑁 Stoichiometric matrix [−] 

𝑛 Amount of moles, dimensionality [𝑚𝑜𝑙], [−] 

𝑛/𝑖𝑠𝑜 Ratio of linear to branched molecules [−] 

𝑜 Objective [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝑃é Péclet number [−] 

𝑝 (Partial) pressure [𝑏𝑎𝑟] 

𝑞 Heat flux [𝐽 𝑠−1 𝑚−2] 
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𝑅 Universal gas constant [𝐽 𝑚𝑜𝑙−1𝐾−1] 

𝑟 Reaction rate, reaction flux [𝑚𝑜𝑙 𝑠−1𝑚−3] 

𝑆 Selectivity, section [−] 

𝑆𝑇𝐷 Standard deviation [−] 

𝑇 Temperature [𝐾] 

𝑡 Time [𝑠] 

𝑢 Control variable [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝑉 Volume [𝑚3] 

�̇� Volumetric flow rate [𝑚3 𝑠−1] 

𝑉𝑎𝑟 Variance [−] 

𝑣 Velocity [𝑚 𝑠−1] 

𝑊 Final value function [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝑤 Mass fraction [−] 

𝑤𝑡 Technical work [𝐽] 

𝑋 Conversion [−] 

𝑥 State variable [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝑦 Mass flux density [𝑘𝑔 𝑠−1 𝑚−3] 

𝑍 Number of separators [−] 

𝑧 Removal flux density [𝑘𝑔 𝑠−1 𝑚−3] 

 

Greek symbols 

𝛼, 𝛽, 𝜅 Tuning factors of UT [−] 

∆𝐺𝑖 Gibbs reaction enthalpy [𝐽] 

𝜀 Hold-up [−] 

𝜀𝑠𝑒𝑡 Set point for sigmoidal function [−] 

𝜃 Uncertain variable [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝜆 Decision variable for sigmoidal function [−] 

𝜈 Stoichiometric coefficient [−] 

𝜉 Process parameter [𝑣𝑎𝑟𝑖𝑜𝑢𝑠] 

𝜌 Density [𝑘𝑔 𝑚−3] 

𝜏 Residence time [𝑠] 

𝜙 Tuning factor for sigmoidal function [−] 

𝜑 Differential selectivity [−] 

𝜔 Sigmoidal function [−] 

 

Indices 

𝛼 Component index  

𝐵 Bottom stream  

𝑐𝑎𝑡 Catalyst  

𝐷 Distillate stream  
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𝑑𝑒𝑐 Decanter  

𝑒𝑓𝑓 Effective  

𝑒𝑞 Equilibrium  

𝑓 Final point  

𝑔𝑎𝑠 Gaseous  

𝑖𝑛 Inlet  

𝐿 Lower  

𝑙𝑖𝑞 Liquid  

𝑚 Molar  

𝑚𝑎𝑥 Maximum  

𝑚𝑖𝑛 Minimum  

𝑜𝑢𝑡 Outlet   

𝑅 Reaction, Reactor  

𝑟𝑒𝑓 Reference  

𝑆 Separation  

𝑠𝑒𝑡 Set point  

𝑠𝑡 Storage tank  

𝑡 Technical  

𝑡𝑜𝑡 Total  

𝑈 Upper  

𝑉 Volumetric flow included  

∗ Interphase  

0 Initial point, basic value  

 

Abbreviations 

AR Attainable region  

CAPE Computer aided process engineering  

CFR Continuous flow reactor  

CH Hydrocarbons  

CO Carbon monoxide  

COM All components  

COSMO-RS Conductor-like screening model for real solvents  

CP Collocation point  

CSBR Cyclic semi-batch reactor  

CSTR Continuous stirred tank reactor  

C10an n-decane  

const. Constant  

DMF Dimethylformamide  

DOP Dynamic optimization problem  

DR Distributed recycled  



XII 
 

 

DSR Differential sidestream reactor  

distr. Distributed  

dyn. Dynamic  

EPF Elementary process functions  

FE Finite element  

FPA Flux profile analysis  

GAS Gas components  

H2 Hydrogen  

HCTR Helically coiled tube reactor  

HJB Hamilton-Jacobi-Bellman  

IR Initial recycled  

iC12en Isomeric dodecenes  

iC13al 2-methyl-dodecanal  

init. Initial  

MC Monte Carlo  

MIDO Mixed integer dynamic optimization  

MINLP Mixed integer nonlinear programming  

MORDOP Multi-objective robust dynamic optimization problem  

NLP Nonlinear programming  

nC12an n-dodecane  

nC12en 1-dodecene  

nC13al n-tridecanal  

neg. Negative   

ODE Ordinary differential equation  

PDF Probability density function  

PFR Plug flow reactor  

PMP Pontryagin’s minimum principle  

pos. Positive  

RBO Reliability-based optimization  

RDO Robust design optimization  

RDOP Robust dynamic optimization problem  

RTD Residence time distribution  

SP Sigma points  

SOL Solvents  

scCO2 Supercritical carbon dioxide  

TMS Thermomorphic multicomponent solvent  

TP Temperature points  

TPP Triphenylphosphan  

TPPTS Tri-(natrium-meta-sulfonatophenyl)-phosphan  

UQ Uncertainty quantification  

UT 
Unscented transformation 
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WS Weighted sum method  

𝜀-CM Epsilon constraint method  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 



Introduction 1 

 

1 Introduction 
Research vision  

 Every century of humankind is characterized by challenges whose solutions decide about the 

future prospects of societies. Thereby, the development of technologies is often the stimulus for both 

the faced challenges and the therefore developed solutions. Today, humankind faces new challenges, 

which are often of anthropogenic kind since they are mainly caused by the unsustainable use of 

technologies and exploitation of natural goods. The exhaustion of fossil hydrocarbon resources, which 

today’s society is strongly dependent on, and the climate change, which is mainly caused by the 

unsustainable use of those resources, are the main global challenges we face in our century and, thus, 

the discussions about their impact and the seeking for solutions are omnipresent. Beside of that, there 

exist numerous other challenges which also seek for technological solutions, e.g. the supply of fresh 

water and healthy food for the increasing number of humans, the development of drugs for lethal 

diseases, satisfying the increasing energy demands around the world, etc. Most of these challenges 

have in common, that they require the efficient use of resources for production of consumer goods, 

food, pharmaceuticals, and energy. Hence, humankind aspires to dream processes, which allow for the 

optimal use of the resources and provide the basis for future generations to live a life without scarcity 

of vital supplies. All around the world scientists and engineers are working towards technological 

solutions in the fields of physics, chemistry, medical science, electrical engineering, etc. One of the 

most crucial building blocks for the development of dream processes is the field of process 

engineering, which utilizes the insights and knowledge of basic natural sciences to create process 

systems for the transformation of energy and material in chemical, biochemical, and electrochemical 

processes. The application areas of these process systems are numerous in industries of e.g. petroleum, 

pharmaceutical and health, environment, building materials, agriculture, food, water management, 

cosmetics, electronics, etc., since all of them require materials and energy of various kinds [1].  

 The major concerns of process engineering are on the one hand the analysis, understanding, 

and modeling of the physical, biological, and chemical phenomena, which are investigated in the 

corresponding natural sciences, and on the other hand the use of these mathematical models for the 

optimal design, control, and operation of process systems, which utilize these phenomena for material 

and energy conversion. A very crucial role for these purposes plays the computer-aided process 

engineering (CAPE) or process systems engineering which investigates the utilization and exploitation 

of computer-based methods in process engineering. Due to the continuously increasing computational 

power in the last decades their diversity, complexity, and sophistication increases as well. Their 

application covers all temporal and spatial scales. On the nano- and micro-scale they are used e.g. in 

computer-aided molecular design and quantum chemistry, on the meso- and macro-scale e.g. 

numerical solvers for simulation and optimization of process units and their control as well as 

computational fluid dynamics are employed, and on the industrial-scale entire processes and plants are 

simulated and even enterprise-wide decisions are based on mathematical programming results. Hence, 

the development of computer-aided tools as well as their expedient application in analysis and design 

frameworks provide a tremendous potential for the endeavor of creating efficient and maybe even 

dream processes. Vice versa, the current global challenges and requirements for improved computer 

tools invigorates the innovation in CAPE and paves the way to more sophisticated computer-based 

analysis, simulation, and optimization tools [2]. 

 Intending to seek for new process structures, which are supposed to substitute petrochemical 

feedstocks by renewables, and develop procedures and computer-based tools for integrated process 

design, the trans-regional Collaborative Research Center of the German Research Foundation TR63 

“InPROMPT” was founded. Within its structure it mirrors the interdisciplinary nature of the process 
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development task as it tackles the fundamental chemical and physical analysis of kinetics and 

thermodynamics, the design of optimal process units, and the systematic synthesis of overall process 

structures as well with regard to economic criteria. The main concern of this project is the utilization 

of innovative solvent systems for chemical processes, which intend to functionalize long chain 

molecules recovered from renewable feedstocks. The resulting liquid multiphase systems represent a 

complex and highly challenging process class including homogeneous transition metal catalysis, phase 

equilibria thermodynamics, and advanced process control strategies.  

 

Goals of this work 

 Within the “InPROMPT” project the subproject this thesis arises from was supposed to design 

an optimal reactor for the hydroformylation reaction of 1-dodecene in a thermomorphic 

multicomponent solvent system, which should be set up and experimentally tested in a miniplant. In 

order to accomplish this task, the methodology of elementary process functions (EPF) shall be used 

which allows for the dynamic optimization based design of chemical reactors. The EPF methodology, 

introduced by Freund and Sundmacher [3], bases on the notion of a Lagrangian fluid element 

travelling through the process and being manipulated by optimal mass and energy control fluxes which 

are a result of a dynamic optimization of the fluid element within the thermodynamic state space. In 

addition, this method provides a systematic mathematical framework for the description of chemical 

processes and the inclusion of process intensification options, e.g. for the design of multifunctional 

reactors. Although a reactor design approach based on the EPF method was introduced before [4] and 

its applicability had been shown in several design examples (e.g. [5], [6]), the EPF based design 

framework is supposed to be extended within this thesis to exploit further potentials for process 

development.  

The first aspect touches the synthesis of reactor-networks, i.e. the conceptual design of the 

optimal topology of the involved units. In contrast to the aforementioned design approach, which is 

located on the process unit level, the synthesis acts on the plant level and, thus, provides structural 

information about the process. Therefore, the results of the dynamic optimization of the EPF method, 

i.e. the optimal control fluxes of mass and energy, are supposed to be analyzed with respect to their 

features, subdivided in characteristic sections, and associated with generic idealized process units 

which can be combined to create candidates of optimal reactor-networks. The approach should be able 

to include different functions as they occur in process systems, i.e. reaction, separation, recycling etc., 

leading to process systems of different synthesis levels.  

The second focus lies on the development of a dynamic optimization based design under 

uncertainty approach within the EPF framework. As so far all EPF based process designs have been of 

deterministic nature neglecting uncertainties, which arise due to inaccurate models or disturbances in 

operation, the extension towards a probabilistic design with the EPF method is a reasonable and 

necessary step. Therefore, the unscented transformation is tailored to the design approach. For the 

reactor design under uncertainty via dynamic optimization combined with the unscented 

transformation the mathematical formulation has to be derived. Furthermore, the uncertainties and 

their sources have to be identified and classified with regard to their treatment within the dynamic 

optimization. 

Finally, an optimal reactor for the hydroformylation process is derived applying these novel 

synthesis and design under uncertainty approaches. Moreover, it is technically designed for the 

embedding in an existing miniplant setup to demonstrate its increased performance compared to the 

existing setup and, thus, the beneficial use of the model-based design approaches for the development 

of process systems.  
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Structure of the thesis 

 The thesis is separated into six chapters, whereby the first is satisfied with this introduction. In 

chapter 2 the methodical background of the EPF methodology is provided. Furthermore, state-of-the-

art approaches for reactor synthesis and design under uncertainty are discussed allowing the 

classification of the presented approaches, and fundamental knowledge about the hydroformylation 

example process are given together with the required model basis for the following design studies. In 

the following, chapter 3 covers the novel approach for qualitative reactor synthesis within the EPF 

methodology. After its principles are introduced, the qualitative synthesis approach is applied to two 

literature examples for comparison purposes and to the hydroformylation process example intending 

the synthesis of reactor-network, reactor-recycle-network, and reactor-separator-recycle-network 

candidates. It closes with a discussion of the novel approach and future prospects. In chapter 4 the 

design under uncertainty approach is introduced. This includes the identification of uncertainty types 

and their nature of appearance. The mathematical basics of the unscented transformation are 

presented, and the mathematical formulation of the probabilistic dynamic optimization problem is 

discussed. The design under uncertainty approach is applied on the hydroformylation process example 

for the case of model parameter uncertainties and imperfect realization of temperature control profiles. 

The first is used as well to quantify impacts of individual parameters on the overall performance 

uncertainty to identify the most sensitive parameters. Finally in this chapter, both uncertainties are 

combined and a discussion of the approach as well as promising future research aspects is conducted. 

In chapter 5 both the qualitative synthesis approach and the reactor design under uncertainty approach 

are used to derive an optimal reactor for the retrofit of an existing miniplant. Therefore, optimal 

reactor-(recycle)-network candidates are derived and compared with regard to their selectivity-

conversion behavior. The most promising candidate is designed in detail for technical realization. At 

the end of this chapter, the first experimental results of the optimal reactor embedded in the integrated 

overall process are briefly discussed and the successful performance improvement of the retrofit is 

indicated. Finally, chapter 6 summarizes the insights and achievements of the work and discusses 

interesting future prospects for model-based process design. 

  



4 
 

 

  



Background 5 

 

2 Background 
Within this background chapter the fundament of this work is built. At first, the methodical 

framework of elementary process functions, on which the methodical contributions of this work base 

on, is introduced, and the motivation of these new contributions and their placement with respect to 

existing works are outlined in subchapter 2.1. Subsequently, subchapter 2.2 provides an overview of 

existing methods for reactor synthesis and design under uncertainty in order to allow for a 

classification of the new contributions and their novelties. Finally, the example process, which the 

novel synthesis and design under uncertainty approaches are applied to, is presented in subchapter 2.3. 

This includes basic information about the reaction and its catalysis, and covers existing process 

concepts and innovative process alternatives for the class of processes the example process is a kind 

of. In addition, the fundamentals of the example process are derived from previous works and the 

model equations used in the remainder of the work are given.  

   

2.1 Methodical background 

2.1.1 Elementary process functions 

 Chemical processes and their products are as manifold as their design and analysis is complex. 

All chemical processes have in common that they intend to transform a certain (raw) material into a 

higher valuable product material. The complexity of this transformation originates from the different 

occurring physico-chemical phenomena, the corresponding time and length scales, which vary 

between 10−15 to 108 s and 10−9 to 106 m, respectively [7], and the numerous operations which are 

required to realize this transformation. On the smallest scale, the molecular scale, the molecules of 

different components interact, e.g. by association, adsorption, etc., and react often accompanied by the 

presence of catalyst species. These interactions take place in one or more phases and/or at their 

interphases e.g. caused by transport phenomena. The thermodynamic states of the phases have to be 

controlled by energy and material streams in order to adjust the optimal conditions with respect to 

chemical and thermodynamic equilibria or to steer occurring chemical reactions. The contacting and/or 

separation and the control of the thermodynamic states, realized by transport of energy, mass, and 

momentum, is conducted in process units, which are mostly designed for a specific operation. These 

process units are interconnected by material and energy streams allowing for sequencing and 

parallelization of operations, recycling of required material and heat integration, respectively. The 

resulting process structure or plant might additionally be embedded in an even larger so called 

composite process which integrates energy, material and waste streams and shares energy and material 

supplies in a closed network of several different production processes. In order to order and classify 

these different aspects of a process system, Freund and Sundmacher [8] developed a hierarchical 

concept which subdivides the process system into four main levels – the molecular level, the phase 

level, the process unit level, and the plant level, see Fig. 2.1. On each level the process can be analyzed 

by experiments to gain insights into the process characteristics. The obtained experimental data is used 

to derive and identify suitable models and their parameters, which serve as a basis for process design 

procedures. Within this description, the analysis, identification, and design of the process can be 

carried out either on each level individually or joint for several levels. 

Alternative concepts for systematic analysis and design of process systems chose other 

categories. For instance, Lerou and Ng [9] ordered crucial phenomena such as reaction or fluid 

dynamic and transport with respect to their time and length scales. Charpentier and McKenna [10] 

subdivided process systems into different organized levels of complexity, whereby on each level 

molecular processes are translated into phenomenological macroscopic laws. Other authors focused on 

https://www.sciencedirect.com/science/article/pii/S0098135408002408?via%3Dihub#bib15
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the task of process design and how it can be carried out hierarchically. For instance, Douglas [11] 

introduced a heuristic-based approach for synthesizing process flow sheets with different decision 

levels. Smith and Linnhoff [12] proposed the onion model putting the chemical reactor into the center 

of the process and extending the design problem step by step adding units such as separators, heat 

exchangers and auxiliary units. A phenomena-based modularization approach was introduced by 

Arizmendi-Sanchez and Sharratt [13], who subdivided the design procedure in the modules goal, 

function, structure, and behavior and included process intensification options. In a similar subdivision 

as shown in Fig. 2.1, Mangold et al. [14] suggest a structuring of models and model equations on 

different levels applying a network theoretical approach.  

 

 

Figure 2.1: Pyramid of process analysis and design (adapted from [8]) 

 

As mentioned above, the process units, which are composed to a plant and in which the phases 

interact, are classically associated with specific operations and characteristics. These are, for instance, 

units for contacting of phases (e.g. mixers), for separation of phases (e.g. distillation columns, 

membranes), for heat supply/removal (e.g. heat exchangers), or chemical reaction with defined mixing 

behavior (e.g. continuous stirred tank reactor). These so called unit operations are the basis of classical 

process design approaches which search (i) for the best structure of predefined units composing the 

overall production process (e.g. flow sheet optimization, superstructure optimization) or (ii) for the 

region of all attainable state configurations (e.g. attainable region approach), see subchapter 2.2.1. 

Main drawbacks of the flow sheet or superstructure optimization are that optimal solutions have to be 

included in the predefined set of possible configurations, and that it is hardly possible to derive new, 

integrated or intensified apparatuses what might lead to suboptimal solutions of the optimization. The 

attainable region approach requires at first a search of all possible state configurations and does not 

intend to directly find an optimal configuration. Furthermore, it is mostly used for design problems 

with small dimensions. For higher dimensional problems it suffers from the curse of dimensionality. 

To overcome these drawbacks in process design and allow for the systematic inclusion of process 

intensification options, Freund and Sundmacher [3] developed the methodology of elementary process 

functions. Therein, they propose a shift from the use of unit operations towards functional modules, 

which are independent of existing apparatuses and instead focus on the functionalities that are required 

at certain steps along the production process, see Fig. 2.2. Thereby, each functional module can 

include one or several functionalities, e.g. contacting and reaction, or separation and heat removal, 

etc., depending on the task of the module and the chosen concept for its accomplishment.   
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Figure 2.2: Paradigm shift for process design from unit operations towards functional modules (adapted from [3]) 

 

Optimal route of a fluid element in the thermodynamic state space  

 In contrast to state-of-the-art process design approaches, which either search for the best flow 

sheet configuration of unit operations from a predefined set or determine all attainable state 

configurations, the process design with the EPF methodology bases on a more intuitive notion. Its key 

idea is the Lagrangian tracking of a fluid element on its way through the chemical process. Starting 

from an initial point in the thermodynamic state space its states are manipulated by internal and 

external fluxes in order to follow an optimal path and aiming at the optimization of a given objective 

or attaining a predefined final point, see Fig. 2.3.   

 

 

Figure 2.3: Path of fluid element in thermodynamic state space from starting point 𝟎 to final point 𝒇 under manipulation of 

heat flux 𝒒𝑨, dosing fluxes 𝒋𝜶,𝑨, technical work 𝒘𝒕, and internal reaction flux 𝒓  
 

The manipulating or controlling fluxes and the corresponding evolution of states are determined by 

means of a dynamic optimization problem (DOP), which is solved for each functional module. The 
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evolution of states in the DOP is subject to equations of change, kinetic expressions, and 

thermodynamic relations, e.g. state equations.  

In order to achieve a systematic mathematical framework for the modeling of the states of the 

fluid element and its manipulating fluxes, Sundmacher and Freund [15] suggested a vector-matrix 

notation that allows to subdivide the equations of change, i.e. the balance equations of the states, into a 

matrix of elementary process functions 𝑬(𝒙) and a vector of internal and external fluxes 𝒔(𝒙, 𝒙𝒆𝒒). As 

illustrated in Fig. 2.4, the matrix of elementary process functions itself is a composition of a capacity 

matrix 𝑪(𝒙) and a flux weighting matrix 𝑭, whereas the flux vector decomposes to a kinetic matrix 

𝑲(𝒙) and a vector of driving forces 𝒇(𝒅(𝒙, 𝒙𝒆𝒒 )). This classification of the deciding modeling entities 

allows for a systematic analysis of process design and intensification potentials, whereby the entries in 

each column in Fig. 2.4 give a hint, which options exist. For instance, changing an inert component in 

the process affects the sensitivities of densities and enthalpies in the capacity matrix; downsizing unit 

dimensions enables a higher surface to volume ratio in the flux-weighting matrix; the use of an 

improved catalyst system, or at least providing conditions which increase the amount of active catalyst 

species, influences the kinetic matrix; or changing the pressure level increases the driving force of a 

mass transfer rate.  

 

Figure 2.4: Vector-matrix notation of the EPF methodology for systematic process design and intensification (adapted from  

[15]) 

 

Hierarchical and sequential reactor design based on the EPF method  

 The methodology of elementary process functions was already used as basis for two 

systematic process/reactor design approaches. Peschel et al. [4] proposed a three level reactor design 

approach which focuses on a step by step increase of model details and accompanying limitations and 

intended to include possible process intensification options on the way. The levels are defined as 

following: 

 

• Level 1: The dynamic optimization problem stated by the EPF method is solved for different 

enhancement concepts. Thereby, the fluxes are unlimited what gives rise to identifying the 

global optimal limit of the process performance. 

Elementary Process Functions Fluxes

Driving Force Vector:

Differences between
states x and
equilibrium states :
• temperature
• pressure
• chemical potentials
• velocity
• Gibbs enthalpies
• force potentials

Kinetic Matrix:

Main Coefficients:
• diffusivities
• thermal conductivity
• viscosity
• reactivities
• field coupling coeff.

Cross Coefficients:
• thermo-diffusivity
• thermo-electrical

Capacity Matrix:

Sensitivities of
Density :

•

•

•

Sensitivities of Enthalpy

•

•

•

Flux-weighting Matrix:

Geometrical Factors:
• surface areas
• volume or cross
sectional area

Reaction Network:
• species mass matrix
•stoichiometry matrix

Surface States:
• composition
• enthalpies

Route Direction
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• Level 2: Subsequently, the most promising enhancement concept is further investigated by 

choosing a set of suitable control variables to realize the fluxes. Therefore, transport kinetics 

are included, what requires knowledge about the specific dimensions of the system, and the 

fluxes are limited, what leads to a performance loss in comparison to the potential revealed in 

level 1. 

• Level 3: Finally, the optimal trajectories of the control variables are approximated in a 

technical realization of the process. This induces additional limitations by the technically 

feasible designs. At this point, real apparatuses are chosen for the technical realization and the 

process parameters are determined.  

 

Hentschel et al. (2014) carried out a process design study for a liquid multiphase process 

applying the first level of the 3-level reactor design approach of Peschel et al. (2010). In addition, they 

closed a global recycle of a separation section to the inlet of their optimal reactor. However, this was a 

case study, which was not accompanied by a systematic extension of the process design methodology. 

The separation section was predefined and a cost optimization of the overall process costs has been 

carried out in order to identify the reactor design which yields the best trade-off between utility costs, 

investment costs, and productivity.  

Another approach was introduced by Karst et al. [16] which bases on the hierarchical 

multiscale concept shown in Fig. 2.1. Starting from the molecular level ending in an integrated plant, 

they propose crucial decisions, which have to be made on each level, and include the optimal process 

route determined by the EPF based dynamic optimization on the phase level. The levels are defined as 

following: 

 

• Molecular level: The reaction is defined by choosing key components such as reactants, 

desired products and undesired side products, catalyst, solvents, and possible reaction routes. 

All following levels and design steps depend mainly on this definition of the reaction and its 

components. 

• Phase level: The optimal route of the fluid element travelling through the process is 

determined solving the dynamic optimization problem stated by the EPF methodology. Again, 

the optimization results in unlimited fluxes and, thus, yields the maximum potential of the 

process. 

• Process unit level: The translation of the optimal fluxes of the previous level into a control 

strategy of a technically realized apparatus is focused. Decisions about the operation mode, 

batch or continuous, are made. The translation concepts mainly corresponds to the second and 

third level of the approach of Peschel et al. [4]. 

• Plant level: Strategies for material and energy integration are considered around the optimal 

process unit of the previous level and the topology of the process structure is sought. 

 

2.1.2 Methodical contribution of the presented work  

The methodology of elementary process functions combines a very interesting intuitive notion 

of chemical processes and a solid mathematical basis for using it as framework for process design. 

Furthermore, the hierarchical concept of multiple levels differing with regard to time and length scales 

allows for a reasonable classification of occurring physico-chemical phenomena and modeling 

techniques. Although Peschel et al. [4] suggested a thoughtful and systematic approach for reactor 

design and intensification, which adopts the concept of optimizing the path of a fluid element in the 

thermodynamic state space from the EPF method, it tackles solely the phase level and the process unit 

level. Design information about the conceptual design of the plant, i.e. the topology or configuration 
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of the different process units, are not provided within their approach. Following this identification of 

missing aspects in the process design framework of the EPF methodology, the first main topic of the 

presented work is born: the synthesis or conceptual design of reactor-networks based on the 

methodology of elementary process functions. This endeavor contains the following aspects: 

 

• Identification of back-mixing benefits of reaction sections to derive reactor-networks 

containing reactors with different mixing characteristics; 

• Systematic investigation of recycling effects to identify reasonable recycle strategies; 

• Assessing the process potentials under consideration of intermediate separations to decide 

about required number and position of separation sections in the topology of the network. 

 

For this purpose, the optimal flux profiles resulting from the dynamic optimization of the fluid element 

are analyzed and process candidates of different complexity levels are derived, see chapter 3. For 

giving a better understanding of the methodical extension in the presented work, the breakdown of 

modeling entities and degrees of freedom for the synthesis and design in each hierarchical level are 

exemplarily illustrated in Fig. 2.5.  

 
Figure 2.5: Hierarchical breakdown of EPF based process design and placement of previous works and presented approaches 

 

The second main topic of the presented work and extension of the EPF based process design 

approach is independent of the hierarchical levels of the process. It refers to an inherent problem of all 

model-based design approaches: uncertainty quantification. Up to now, all design studies with the EPF 

method assumed deterministic models to predict optimal process conditions. However, mathematical 

models are always an approximate description of the real phenomena. They are subject to 

measurement errors of experiments, limitations of model and parameter accuracy, and simplifying 
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assumptions in the modeling itself. Due to the approximate nature of the model basis, the prediction of 

an optimal process will always deviate from the real behavior of the process. The uncertainty 

quantification aims at investigating the impact of those uncertainties to allow for a reliable or robust 

process design under uncertainty. The process design under uncertainty approach presented in this 

work includes the following aspects: 

 

• Classification of uncertainty types arising within the EPF based process design; 

• Selection of reasonable mathematical description of the uncertainty type; 

• Identification of process/reactor designs which are robust against the considered uncertainties; 

• Determining alternative process/reactor designs that provide higher predictive powers of the 

final process performance. 

 

2.2 State-of-the-art methods for reactor synthesis and design under 

uncertainty 

The two foci of this work – reactor synthesis and design under uncertainty – have been treated 

extensively in literature for process systems in the last decades and are still subject of ongoing 

research. In the following, an overview of the most important methods and corresponding publications 

is given, not striving for comprehensiveness, but allowing for a placement of the presented work 

inside the state-of-the-art knowledge.  
 

2.2.1 Reactor-network synthesis 

 Approaches for the synthesis of reactor-networks focus on the identification of networks of 

ideal reactor units which provide different mixing characteristics, i.e. (i) plug flow reactors (PFR), 

which have no back-mixing, (i) continuous stirred tank reactors (CSTR), which are totally back-

mixed, and (iii) distributed side stream reactors (DSR), which allow for a distributed dosing of 

reactant along the reaction coordinate and, thus, allow for the realization of mixing behavior between 

the PFR and the CSTR [17]. The state-of-the-art reactor-network synthesis approaches can be 

classified into heuristics, attainable region (AR) approaches, and rigorous optimization based 

approaches, see Fig. 2.6. 

 

 

Figure 2.6: Classification of reactor-network synthesis approaches (adapted from [4]) 

 

Heuristics  

In contrast to the other state-of-the-art methods, heuristical approaches do not base on 

simulation and optimization of mathematical models. They either derive reactor-network candidates 

based on experience, see e.g. [18] or [19], or use basic knowledge about the process to select and 
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Attainable RegionRigorous Optimization
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reduce the search space for rigorous methods [20]. The advantages of these methods are their simple 

applicability and fast usability, and in general one achieves appropriate results. However, their 

application on complex systems, especially of uncommon characteristics, is limited. The heuristics do 

not enable the derivation of innovative or intensified units, since they choose from a predefined set of 

standard units.  

 

Attainable region approaches  

The fundamental idea of an attainable region, which contains all points in the concentration 

space of a chemical process being attainable by reaction and mixing only starting from a predefined 

feed point, was introduced by Horn [21]. This approach had its revival in the 1980s, when the idea of 

attainable regions was taken up again. Glasser et al. [22] suggested an approach which allows for 

graphical construction and interpretation of the attainable region of a process. This approach was 

further developed and generalized by Feinberg and Hildebrandt [17] who stated universal properties of 

the attainable region and emphasized the special meaning of the boundary of the AR. As the attainable 

region approach bases on a graphical analysis, it can only be applied to problems, which can be 

reduced to at most three dimensions. In order to overcome this limitation, computational techniques 

have been developed by Rooney et al. [23] and Abraham and Feinberg [24] to apply the AR to higher 

dimensional systems. Since the initial conditions for the composition and the temperature has to be 

known a priori, an additional drawback of the AR approach is, that its embedding in an overall process 

design procedure is very complicated. In this case a recalculation of the AR is required for every time 

the initial conditions of the composition change. Balakrishna and Biegler [25,26] developed a 

framework which combines rigorous optimization techniques with the AR approach to allow for 

solving higher dimensional problems and an embedding in overall process design procedures. As for 

higher dimensional problems the size of the problem with respect to number of equations and 

variables grows strongly, several authors worked on methods based on linear programming for 

determining the AR of higher dimensional problems, see e.g. [27], [28], [29]. To bridge the gap from 

the design of continuous reactor-networks to the design of optimal batch processes, Ming et al. [30] 

introduced the AR approach also for batch processes and described how the AR of a continuous 

process can be realized by batch reactors.  

 

Rigorous optimization approaches  

 Optimization based approaches are subdivided into superstructure optimization and dynamic 

optimization. Superstructure optimization, originating from a work of Jackson [31], seeks the best 

reactor-network configuration within a pre-defined superstructure of possible units. The main 

advantages are that the objective function and the reactor-network are determined simultaneously, and 

that the formulation allows including constraints or changes in e.g. the objective function directly. 

Furthermore, the design problem can be extended easily by additional aspects of a process flow sheet 

simply adding the corresponding equations to the optimization problem, e.g. in case of additional units 

or streams. Main drawback is that the solution can only be part of the pre-defined superstructure. If the 

best process is not included in the candidate superstructure, it cannot be found. Moreover, the possible 

connections between the units must be specified a priori and the required connections of the optimal 

configuration are identified by the optimization what gives rise to integer decisions in the optimization 

problem. Due to nonlinear models in the optimization problem, e.g. reaction kinetics, mixed integer 

nonlinear programming (MINLP) problems arise that require powerful numerical tools still not 

guaranteeing to find global optimal solutions. Achenie and Biegler [32,33] used nonlinear 

programming (NLP) techniques, avoiding integer decisions, to optimize recycle reactors with indirect 

heat transfer options. Kokossis and Floudas [34] used general structures of PFRs and CSTRs, whereby 
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the PFRs were approximated by a cascade of CSTRs with same volumes, and enabled all possible 

recycling, (intermediate) feeding and by-passing strategies as well as intermediate cooling and heating 

what led to a large and complex MINLP problem. Further developments in this field are: incorporation 

of stochastic optimization, e.g. [35]; inclusion of differential side stream reactors [36]; use of optimal 

control techniques and optimization of cross flow reactors [37]; application of superstructures for 

attainable region construction using linear programming, e.g. [27]; and numerous applications of these 

methods for the design of different process examples. Although today’s numerical solvers can handle 

most superstructure optimization problems, the modeling effort and the complexity of the optimization 

problem increases with the number of units within the initial configuration what makes the 

optimization complex and its convergence slow or even infeasible. Due to that, superstructure 

optimization approaches always require a trade-off between the solvability of the problem, the number 

of combinations included in the superstructure, and the uniqueness of the solution. 

 First approaches for dynamic optimization based reactor design came up in the middle of the 

20th century. Bilous and Amundson [38,39] as well as Horn [40] and Aris [41] discussed the concept 

of optimizing the temperature and concentration profiles along the reaction coordinate. The latter 

already postulated the high potential of dynamic programming techniques as introduced by Bellman 

[42] for identifying optimal control scenarios for both batch reactors and continuous plug flow 

reactors. In the following decades several authors developed further approaches applying dynamic 

optimization techniques, especially for batch reactors. For instance, Soroush and Costas [43,44] 

created a framework taking into account aspects of flexibility, safety, and controllability, and applied 

their framework on a complex polymerization reaction. A similar reaction was tackled by Abel et al. 

[45] solving a problem on industrial scale under safety constraints. Other authors applied dynamic 

optimization techniques for designing optimal continuous reactors. For instance, Balakrishna and 

Biegler [25] introduced targeting strategies for optimizing side streams of so called cross flow 

reactors. Further approaches have been presented by Johannessen and Kjelstrup [46] and Hillestad 

[47,48]. Johannessen and Kjelstrup [46] used the minimum entropy production solving a dynamic 

optimization problem to identify optimal reactor designs, e.g. for the SO2 oxidation. Hillestad 

developed an optimal control based framework to synthesize reactor-networks of ideal reactors and 

ideal feed streams added along the reactor path. His approach is not limited with regard of the number 

and reactions and components and has been applied for isothermal [47] and non-isothermal problems 

[48]. 

 

2.2.2 Reactor-separator-network synthesis 

 The synthesis of processes including units for reaction and separation, often accompanied by 

recycles and heat integration, is an unlike more complex task than the synthesis of reactor-networks 

already is. The developed approaches tackle the complexity of conceptual design with different tools, 

again starting from heuristic based approaches and ending in large scale MINLP problems including 

all possible topological alternatives.  

  

Heuristics  

The classical heuristical way, which is mostly still industrial practice, create the flow sheet 

configuration based on experience and knowledge of similar problems. Heuristics mostly start with the 

synthesis of a reactor-network and extend the flow sheet stepwise by separator, recycle, and heat 

exchangers, see e.g. [49], [12], [50]. The optimal process conditions are then determined by repetitive 

calculation of e.g. the process costs. The operation points and unit specifications of feasible 

alternatives are often determined by spreadsheet calculations and rules of thumb [51]. Evidently, the 

decomposition of a complex task such as the overall process synthesis has its advantage in the 
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reduction of its complexity and hence a better solvability. However, it might lead to suboptimal 

solutions, since the optimum of a system with recycles and, thus, interdependencies between the 

optimal operation points of the units cannot be identified when each unit is optimized individually. 

Hence, an integrated overall process synthesis is required to ensure that all synergy effects are 

identified and the finding of suboptimal solutions is avoided.  

  

Optimization with generic units and short cut models  

In order to achieve a fast synthesis, the number of promising concepts should be reduced in an 

early phase of the design procedure. Therefore, knowledge about possible performance bounds is of 

interest. Feinberg [52] as well as Feinberg and Ellison [53] applied the equivalence principle of 

continuous flow stirred tank reactors and sharp separation splits to identify the productivity and 

selectivity bounds of steady-state reactor-separator systems. Alternatively, Linke and Kokossis [54] 

suggested a superstructure optimization of generic synthesis units, i.e. mass exchanger and separator 

task units, aiming at the determination of performance targets and the identification of design options. 

With determining species-dependent residence time distributions, Balakrishna and Biegler [26] 

introduced a targeting approach for integrated reaction-separation tasks which was already used before 

for the purpose of reactor-network synthesis. 

 Several methods employ short-cut models in order to simplify the modeling and reduce the 

computational effort for the synthesis of integrated reaction-separation processes. This allows as well 

for a fast screening of performances of a plenty of possible configurations. Using Gibbs reactor 

models coupled with a thermodynamical rectification model Kossack et al. [55] estimated lower 

bounds for operating costs. McBride et al. [56] combined a CSTR cascade model with the Fenske-

Underwood-Gilliland equations for distillation column modeling to determine plausible recycle 

conditions for a hydroformylation reaction including a Kriging model for the intermediate liquid-

liquid phase separation. Alternatively, Ryll et al. [57] coupled the ∞/∞-method for distillation with 

equilibrium and conversion reactors to identify operating points with minimal recycle flows for all 

possible flow sheets.  

  

Derivative-free and rigorous optimization  

In order to enable the use of rigorous process unit models in the flow sheet, several authors 

proposed approaches which use derivative-free optimization algorithms, e.g. evolutionary algorithms, 

coupled with process simulators, see e.g. [58], [59]. The advantage of such procedures is the reduction 

of the numerically complex solving of the underlying optimization problem. However, since the 

optimization algorithm cannot distinguish between simulator errors due to violated process constraints 

or convergence failures, these procedures is often limited by the reliability of the process simulators. 

Furthermore, derivative-free optimization algorithms are mostly unable to find optimal solutions when 

the number of degrees of freedom exceeds ten, even in the absence of constraints and integer variables 

[60]. To increase the applicability of simulation-based optimization tools to larger problems, the 

model complexity can be reduced by use of surrogate models or reduced order models which are 

trained by rigorous simulations, see e.g. [61]. 

 Superstructure optimization based approaches are also used for the synthesis of reactor-

separator-networks. These methods correspond to the case that all variables and units are optimized 

simultaneously in one large optimization problem which generally involves integer decisions and, 

hence, the solving of MINLP problems, see e.g. [62], [63]. The advantages and disadvantages are 

similar as in case of reactor-network synthesis. However, for conceptual design the number of units 

and variables is unlike higher and, thus, its solvability even more complex. As the representation of 

the design space, i.e. the definition of a starting configuration including all possible solutions, is quite 
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complex and the solving of the resulting MINLP problems as well [64], the practicability of these 

approaches depends on the facilitation of their use by means of systematic procedures. Recently, new 

interesting methods have been proposed either facilitating the use of large scale optimization problems 

by providing an equation oriented framework which avoids integer decisions and introduces 

mathematical models of higher practicability [65], or introducing a systematic procedure in which 

generated process variants are first screened by means of short cut models to identify promising 

candidates for rigorous modeling [66].  

 

Alternative perspectives on reactor synthesis  

 Further interesting approaches, which carry out reactor synthesis from other perspectives, are 

presented by Fox et al. [67] and  Lutze et al. [68]. Fox et al. [67] suggested the use of 𝐺𝐻-plots to 

facilitate the integrated design of reaction and separation. Enthalpy 𝐻 and Gibbs free energy 𝐺 

representing the heat flow and work flow, respectively, are determined for all units and depicted 

graphically as vectors in the 𝐺𝐻-space. This technique allows for determining the material, energy, 

and work balances of the units, which are rendered highly efficient, by manipulation of the vectors in 

the 𝐺𝐻-space. Lutze et al. [68] proposed a framework for phenomena-based synthesis of processes 

including process intensification options. Therefore, the relevant phenomena of all units are identified 

to generate intensified units. These units are recombined to generate sustainable and intensified 

process flow sheets.  

 

 A discussion of the approaches introduced and used in this work in comparison to state-of-the-

art methods will be carried out at the end of subchapters 3.2 and 3.3 for reactor-network synthesis and 

of subchapter 3.5 for reactor-separator-network synthesis.  

 

2.2.3 Design under uncertainty 

 The synthesis and design approaches summarized in the previous two subchapters have 

successfully been used in a vast amount of applications and processes. However, their basic character 

includes a simplification that neglects a very important aspect for the design of real processes – the 

natural uncertainty of models and process conditions. Predictions based on mathematical models are 

inherently uncertain since (i) measurements of physical and chemical phenomena are subject to 

randomness and variability, and (ii) the discrimination of models and the identification of model 

parameters are accompanied by selection and estimation errors, respectively. To account for those 

uncertainties in the design of process systems, several branches of techniques have evolved in the last 

decades of process systems engineering (PSE) research. However, the uncertainty quantification (UQ) 

of model-based predictions has as well a long history in other research areas, especially in mechanical 

engineering and operational research, see [69] and [70] for comprehensive and recent reviews, 

respectively. The approaches developed in PSE can be structured into three main areas (Fig. 2.7) – 

stochastic programming, fuzzy programming, and robust optimization – whereby the first and the 

latter got most attention. In the following, the methods evolved in these areas are briefly reviewed, 

examples for their application are given, and their differences are elucidated. A discussion of the 

design under uncertainty approach presented in this work with regard to the state-of-the-art approaches 

can be found in subchapter 4.4.  
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Figure 2.7: Classification of design under uncertainty approaches 

 

Despite of clear methodical differences, all methods for design under uncertainty have in 

common that uncertainties have to be classified according to their origin and inclusion into the design 

procedure. The most popular classifications are (i) the distinction of exogenous and endogenous 

uncertainties (see e.g. [71]) and (ii) epistemic and aleatoric uncertainties (see e.g. [72]). The first 

classification focuses on the origin of the uncertainties. Exogenous uncertainties are decision 

independent, i.e. they affect the process from outside and cannot be reduced or certainly predicted in 

the process environment (e.g. feed quality, demands), whereas endogenous uncertainties are decision 

dependent, i.e. the choice of decision variables can affect the size or the effect of these uncertainties 

(e.g. control actions, design aspects). The second classification considers the presence and 

quantifiability of uncertainties. Aleatoric uncertainties are truly random stochastic quantities and 

processes and are referred to as statistical uncertainties, whereas epistemic uncertainties are of 

systematic or structural nature, i.e. they arise due to non-accurate measurements, parameter estimation 

errors, or simplifications in the model.  

  

Stochastic programming 

 The first branch of design under uncertainty consists of stochastic programming approaches. 

These methods consider scenarios of uncertainty realizations and take recourse actions in two or 

multiple stages to impinge on uncertainty effects while optimizing a given design objective. The 

classical two-stage stochastic programming contains first-stage variables, which have to be optimized 

before the uncertainties are realized, and second-stage variables, so called recourses, which minimize 

at a certain cost the effect of uncertain events on the design or operation. The objective is, hence, to 

“choose the first-stage variables in a way that the sum of the first-stage costs and the expected value of 

the random second-stage costs is minimized” [73]. Due to the nature of the corrective recourse actions 

on the design optimization, stochastic programming approaches tend to be more appropriate for 

strategic design decisions and production planning, i.e. long-term decision-making, as the recourse 

decisions allow future (re-)actions to adapt in response of uncertainty effects [71]. Sahinidis [73] 

proposed a classification of stochastic programming approaches into the branches of recourse models, 

robust stochastic programming, and probabilistic programming.  

The first was briefly introduced before and was applied for several types of optimization 

problems. For linear problems, for instance, solution strategies based on decomposition of the 

uncertainty set (e.g. [74]), sampling-based decomposition for continuous distributions (e.g. [75]) and 

gradient-based approaches (e.g. [76]) have been introduced. In stochastic integer programming, the 

uncertainty set contains integer restrictions. First works on these problems used heuristical analyses 

for two-stage integer programming (e.g. [77]). In the following, the algorithmic approaches improved 

and extensions of the decomposition-based solution strategies for linear problems have been 

developed (e.g. [78]). Caroe and coworkers [79,80] introduced branch-and-bound methods to cope 
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with integer restrictions in two-stage stochastic programming. More recently, stochastic programming 

approaches are applied for usually more challenging non-linear problems. For instance, Sakalauskas 

[81] presented a stochastic non-linear programming framework based on Monte Carlo estimators. 

Dealing with probability distributions and discrete intervals, Li and Huang [82] presented a well 

noticed framework for two-stage stochastic nonlinear programming applied on a water resource 

management problem. Shastri and Diwekar [83] extended the traditional L-shaped method for 

application on non-linear problems by incorporating a reweighting scheme that reduces the 

computational load of the second-stage evaluations. An application on conceptual design problems 

utilizing two-stage stochastic non-linear programming has been proposed recently by Steimel and 

Engell [84].  

Robust stochastic programming extends the recourse model based approaches by an important 

aspect of design under uncertainty, the notion of risk. This allows weighting the objective and the risk 

to miss it, i.e. its predictive power. For instance, a sound application of robust stochastic programming 

for chemical process planning was published by Ahmed and Sahinidis [85], and quite recently, Guo et 

al. [86] presented the use of an interval two-stage robust stochastic programming approach for 

planning of carbon sink trading aiming at an improvement of the regional ecosystem sustainability.  

In contrast to the robust stochastic programming approach the probabilistic programming 

focuses not only on the minimization of the expected recourse costs and its risk. Instead, the reliability 

of complying with the constraints is emphasized by introducing probabilities for the constraints, so 

called chance constraints. A recent application on a recurring topic was presented by Liu et al. [87]. 

They employed a multi-stage stochastic programming approach with embedded chance constraints for 

a water resource management problem and indicated the superior use of probabilistic constraints in the 

stochastic programming problem. Both robust stochastic programming and probabilistic programming 

have a counterpart in the area of robust optimization that will be discussed later.  

 

Fuzzy programming  

 In contrast to stochastic programming and robust optimization, fuzzy programming is a non-

probabilistic way to handle uncertainties in model-based design approaches. Instead of using discrete 

or continuous probability functions to model uncertainties, in fuzzy programming random variables 

are considered as fuzzy numbers and constraints as fuzzy sets. Thereby, a certain degree of constraint 

violation is accepted and a membership function is used to describe the degree of satisfying a 

constraint. The fuzzy sets can be of arbitrary form, whereby typically linear membership functions are 

used indicating a very good approximation of more complex non-linear functions [88]. The objective 

function is translated into a membership function giving an upper and lower bound of the expected 

objective value. The two general types of fuzzy programming problems account for fuzziness in 

different parts of the optimization problem. Flexible programming considers uncertainty regarding the 

exact values of coefficients, e.g. in model equations, inequality constraints, objective coefficients, and 

denotes them as fuzzy [89]. In case the optimization problem involves uncertainty in the constraint 

coefficients, those are denoted in fuzzy sets and a possibilistic programming problem arises [90]. A 

seminal, ground-breaking work about fuzzy programming was presented by Bellman and Zadeh [91]. 

For process systems engineering applications, several authors applied fuzzy programming techniques. 

For instance, Liu and Sahinidis [92] carried out chemical process planning under uncertainty using 

stochastic and fuzzy programming approaches. They indicated that the stochastic programming yields 

better results even in the absence of probabilistic uncertainty sets. For the synthesis of robust water 

reuse networks Tan and Cruz [93] applied fuzzy linear programming including formulations for mass 

exchange units and source/sink problems. In contrast to the previously mentioned comparison, they 

highlighted the simplicity and the computational efficiency compared to stochastic programming 

algorithms. Park et al. [94] considered fuzzy nonlinear programming for the optimization of a gas 
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production system and combined it for the sake of solvability with a derivative-free genetic 

optimization algorithm. Due to the feature that fuzzy programs reformulate the objective as 

constraints, the consideration of multiple objectives is clearly simplified. Therefore, several authors 

used fuzzy programming for multi-objective optimization problems, e.g. for the synthesis of a 

sustainable integrated biorefinery [95] or the supply chain optimization of distribution centers [96].   

 

Robust optimization  

 The second branch of probabilistic approaches for design under uncertainty widely spread in 

PSE research is robust optimization. In contrast to the scenario-based procedure in stochastic 

programming, robust optimization seeks for an optimal objective value(s) guaranteeing feasibility over 

a specified set of uncertainties. This makes it more appropriate for short-term problems, either 

regarding operation, e.g. in scheduling problems, or for the design of processes under model 

uncertainties [71]. Since the optimal solution includes all possible realizations of an uncertainty set, 

the worst case scenario is included as well making it a highly conservative approach. To reduce the 

level of conservatism one can either include a reduced uncertainty set resulting in a feasibility of the 

solution of reduced probability, or introduce feasibility bounds for the constraint violations. Robust 

optimization approaches can be subdivided in classes of robust design optimization (RDO) and 

reliability-based optimization (RBO) [97]. The latter is strongly linked to flexibility analysis for 

chemical processes under uncertainty, which was earlier introduced by Grossmann and coworkers 

[98,99]. Recent insights on the relation between these two approaches are presented in [100]. 

 Robust design optimization extends the concept of robust optimization by finding optimal 

solutions which are not only guaranteeing feasibility for all uncertainty realizations but increase the 

relative invariance of the solution to the considered uncertainties and, thus, its robustness. Therefore, 

measures for quantifying the robustness have to be included into the optimization problem. This is 

mostly done by use of statistical moments of the probability function of the objective, i.e. its expected 

value and its variance, giving rise to multiple criteria decision problems and Pareto optimal solutions. 

Therefore, RDO is often linked to multi-objective optimization techniques. One of the earliest 

attempts for RDO was presented by Taguchi [101]. He introduced uncertainties as performance 

variations due to noise factors beyond the control of the designer. Depending on the design objective, 

so-called signal-to-noise measures are proposed which are to be maximized with regard to the design 

variables. Beside of that, applications of the classical RDO approach can be found in several 

publications in process engineering research. For instance, Suh and Lee [102] used RDO for design 

and planning of chemical processes considering the worst-case scenario as robustness measure in the 

cost minimization problem. Introducing a general framework for robust optimal control of (bio-

)chemical processes, Logist et al. [103] proposed approaches for robust design optimization using 

either scalarization based multi-objective optimization or solution techniques based on Lyapunov 

differential equations. In a recent work Majewski et al. [104] applied RDO for the sustainable design 

of distributed energy supply systems considering economic and ecologic objectives.  

 In contrast to robust design optimization, reliability-based optimization does not seek for 

higher robustness of optimal solutions. RBO intends to find the optimal solution under consideration 

of predefined reliability levels of constraints and, thus, identifies and quantifies trade-offs between 

profitability and reliability of a design [105]. By changing the confidence intervals of feasibilities of 

constraints, the RBO allows for adjusting the level of conservatism of an optimal solution. Due to the 

reliability setting of constraints, RBO is often used to incorporate exogenous uncertainties, i.e. 

variations of external variables such as feed composition or market conditions. In order to describe the 

reliability level of constraints, they are described by probability functions. Due to that they are often 

referred to as chance constraints. Different examples for the use of chance constraints in optimization 

can be found in PSE research. Li et al. [106] presented a model predictive control approach utilizing 
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chance constraints for the optimal control of a distillation column. Proposing an approach for 

translating chance constraints into deterministic constraints, Ostrovsky et al. [107] used chance 

constraints in a one-stage optimization approach. Leveraging this approach, an optimization 

framework for chemical processes with joint chance constraints was introduced recently, i.e. all or 

several probabilistic constraints of independent random parameters have to satisfy a joint pre-defined 

reliability level [108].  

 

2.3 Example process: Hydroformylation of 1-dodecene  

 The reactor synthesis and design under uncertainty approaches presented in this work are 

exemplarily applied on a complex chemical multiphase process that is a relevant subject of research – 

the hydroformylation of 1-dodecene in a thermomorphic multicomponent solvent (TMS) system. In 

the following, the research motivation for this reaction and solvent class is derived from the state-of-

the-art processes for hydroformylation and their drawbacks for the efficient use for long chain alkenes.  

 

2.3.1 Hydroformylation process 

 During his research on the Fischer-Tropsch synthesis, the German chemist Otto Roelen 

identified the hydroformylation reaction in 1938 and developed the eponymous process, which 

became the first and one of the most important homogeneously catalyzed industrial processes. In the 

hydroformylation reaction alkenes react with carbon monoxide (CO) and hydrogen (H2) to aldehydes. 

Thereby, hydrogen is added to one side of the double bond of the alkene and a formyl group to the 

other, see Fig. 2.8. Under atmospheric pressure, the aldehydes (>C3) are always liquid, whereas the 

alkenes are either gaseous (<C6) or liquid (>C5). Aldehydes are widely used in chemical processes, 

e.g. as intermediates for alcohols, carboxylic acids, and amines, and for the production of detergents, 

plasticizers, and surfactants. The aldehydes occur either in linear or branched form, in the following 

referred to as n- and iso-aldehydes, respectively. Linear aldehyde are desired as their higher 

biodegradability make them more valuable than the branched isomers [109]. The separation of linear 

and branched aldehydes is energetically highly demanding since their physical properties are very 

similar. Thus, due to the higher value of linear aldehydes and their demanding separation, the n/iso-

ratio of aldehydes is supposed to be high. 

 

 
Figure 2.8: General hydroformylation reaction scheme 
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 Beside the alkenes as substrate of the hydroformylation, other compounds with carbon double 

bonds are of interest, e.g. dienes, alkynes [110]. Moreover, the use of renewable and sustainable 

substrates such as terpenes and oleos are investigated as potential basis for alterative process structures 

allowing for the substitution of petrochemical feedstocks [111].  

 

Homogeneous catalysts 

 The hydroformylation reaction is in general catalyzed by every transition metal whose central 

atom is able to form carbonyl groups. In practice, only cobalt and rhodium are used due to their 

sufficiently high activity. However, although rhodium shows a significantly higher activity than cobalt 

and its use allows for milder reaction conditions, its wider industrial application is hindered by its high 

expense [112]. 

 Cobalt catalysts are almost completely substituted by rhodium catalysts for hydroformylation 

processes of short chain alkenes. For long chain alkene hydroformylation it is still mostly used since it 

is much cheaper than rhodium and, thus, more profitable. Main drawbacks of the cobalt-based 

processes are the high costs for product purification and catalyst regeneration as the catalyst is 

commonly destroyed in precipitation or distillation steps to remove it from the product phase [113]. 

The increased pressure and temperature conditions in comparison to the rhodium-based processes are 

required to compensate the low activity and prevent possible catalyst decomposition caused by low 

CO partial pressure.  

  In addition to the much higher activity, rhodium catalysts are more stable not requiring high 

CO partial pressure. Due to that, the rhodium-based processes have much lower catalyst 

concentrations and milder reaction conditions, still showing better selectivity than cobalt-based 

hydroformylation [112]. For short chain alkenes their low boiling point and high volatility allow for an 

efficient catalyst separation and recovery. For long chain alkenes these properties change unfavorably 

so that a separation of catalyst and products via distillation would destroy the catalyst. Thus, due to the 

high price of rhodium and its non-trivial recovery, still major research is necessary to develop 

economically profitable processes for rhodium-based hydroformylation of long chain alkenes (see 

subchapter 2.3.2).  

 In academia, alterative transition metals are investigated for the use as hydroformylation 

catalyst. For instance, a palladium based hydroformylation process showed high selectivity to the 

linear aldehyde when supported by low concentrations of acid [114], and van Duren et al. [115] used 

platinum-based catalysts with tin/diphosphine ligands for the hydroformylation of octene. For further 

insights about hydroformylation catalyzed by alternative transition metals, the interested reader is 

referred to [116]. 

 For a high selectivity, especially the regioselectivity with respect to linear and branched 

aldehydes, the transition metal complexes require support of well-designed ligands [117]. These 

ligands affect the reaction via their steric and electronic properties. The position of the reactant and 

product around the transition metal can be manipulated by the steric properties of the ligand, which 

represents its form and orientation. The electronic properties of the ligand affect the electron density 

on the transition metal (see e.g. [110]). The expedient design of the ligand and its properties can, 

therefore, significantly affect the reaction performance. However, beside of the increased activity and 

selectivity, the design of the ligand has to take into account as well its solubility in the non-product 

phase to enable an efficient recovery and possible effects on the solubility of the metal complex. This 

property is of special importance in case the ligand is similarly expensive as rhodium. In case of 

rhodium-based hydroformylation phosphine ligands indicated the highest levels of activity and 

selectivity with respect to the linear aldehyde, e.g. TPP, TPPTS. In order to further increase the 

regioselectivity with respect to the linear aldehyde without loss of conversion, the phosphite ligand 

Biphephos seems promising for hydroformylation [118]. 
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Existing process concepts  

 As mentioned before, for hydroformylation of long chain alkenes mainly cobalt-based 

processes are established. Most of them have been developed in large chemical companies, are well 

established, and used for decades. Famous processes are [112]: 

 

• Shell Process: This process is used for C7 to C14 alkenes. Using a cobalt catalyst with 

phosphine modification the aldehyde is formed and directly reacts further to fatty alcohols in a 

one-pot reaction. The reaction takes place at 40 to 80 bar and 150 to 190 °C and the 

subsequent separation of catalyst and product is carried out in a distillation column whose 

catalyst rich bottom stream is recycled to the reactor inlet.  

• Exxon/Kuhlmann Process: Here, C6 to C12 alkenes react under 300 bar and 160 to 180 °C 

catalyzed by an unmodified cobalt-carbonyl complex. The catalyst is extracted with fresh 

alkene and neutralized with sulfuric acid, as the product phase is beforehand mixed with 

caustic. Afterwards the catalyst is reformulated under high CO pressure, stripped with 

synthesis gas and recycled to the reactor. The reactor is designed as a vertical loop reactor or a 

series of loop reactors [119]. In the part of upwards moving liquid, the gas is injected and at 

the top both phases are partly withdrawn, whereby in the downwards part the heat of reaction 

is removed. 

• BASF Oxo Process: A claimed advantage of this process is its use for all types of alkenes. 

Again, an unmodified cobalt complex is used at similar severe conditions as in the 

Exxon/Kuhlmann process. The separation of the catalyst is realized by precipitation through 

addition of aqueous acid and atmospheric oxygen, whereby the catalyst phase is separated in 

an aqueous phase. For reuse of the catalyst it is activated again with syngas and fresh cobalt 

and recycled to the reactor. 

 

A critical disadvantage of the latter two processes is the formation of high boilers and alkanes due to 

high pressures and temperatures. To avoid this, the use of low pressure rhodium-based processes has 

been developed. For short chain alkenes the only industrially established processes are: 

 

• Low Pressure Oxo Process [120,121]: This process exists in two configurations, i.e. as a gas 

recycle process and a liquid recycle process, and is also known as UCC Process.  

The gas recycle process works at low reaction temperature around 90 to 100 °C to avoid 

catalyst degradation. Therefore, it is only applied for short chain alkenes (<C5), since larger 

alkenes would require higher temperatures. It utilizes a rhodium triphenyl phosphine 

complex, which is dissolved in the reaction products serving as catalyst solvent. Hence, no 

additional solvent is required. The gaseous reactants are fed as bubbles at the bottom of the 

reactor and react on their way to the top, whereby the product is stripped from the catalyst 

solution which remains in the liquid bulk phase in the reactor. Subsequently, the product 

vapor phase is condensed to separate the product from remaining reactants, which are then 

recompressed and recycled to the reactor. Therefore, it is not necessary to reach a 100 % 

conversion per pass, rather around 30 % [122]. Due to possible forming of rhodium clusters, 

the deactivation of the catalyst is prevented by regeneration using special equipment. This 

process is limited by its fixed phase behavior, which is adjusted by the synthesis gas flow rate 

and reactor temperature. These two values are used to balance the vapor outlet flow with the 

aldehyde production. The reactor is realized as a stripper-reactor, as the synthesis gas acts as 

reactant and stripping medium for the product simultaneously [123]. Designed as a packed 
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column with counter-current flow of liquid and gas phase, two sections are formed, i.e. an 

upper stripping section and a lower reaction section. 

In the liquid recycle process the liquid product phase and the catalyst leave the reactor and are 

separated outside the reactor. This decouples the reaction from the separation leading to a 

much smaller reactor volume and the possibility to optimize the reaction conditions. 

However, using the same catalyst a series of separation steps is required at whose end the 

catalyst is recycled to the reactor. This is avoided by a further development in the Mark IV 

Process, by use of a biphosphine-modified rhodium catalyst. Here, the reaction temperature is 

slightly decreased resulting in a better n/iso-ratio. This enables a single pass process either 

with a single CSTR or a cascade of CSTRs and a single flash separation of the product and 

the catalyst resulting in high conversions of 98.7 % [112].  

• Ruhrchemie/Rhône-Poulenc Process [124]: This process uses a rhodium-carbonyl complex 

modified with a TPPTS ligand. Due to its sulfonate groups, the catalyst complex is 

hydrophilic. Thus, it can easily be separated from the product, as the catalyst stays in an 

aqueous phase and the product builds an organic phase. In the aqueous phase the gaseous 

reactants are dispersed and the reaction takes place at 110 to 130 °C and 3 to 5 bar in a CSTR 

with multi-blade stirrer and co-current flow of gas and liquid reactants [113]. The organic, 

low density product phase is removed from the top of the reactor and stripped to separate 

remaining reactants which is then recycled to the reactor. This simple and efficient process 

can only be used for the hydroformylation of propene. Ethylene hydroformylation fails at the 

solubility of the propanal product in water, and in case of longer-chain alkenes the reactants 

are not sufficiently soluble in water. The high efficiency of this process is achieved on the one 

hand by using the synthesis gas as reactant and stripping medium for remaining reactant 

separation from the product mixture, and on the other hand by heat integration of reactor and 

reboiler of the final distillation column via falling film evaporator [125].  

 

A further process of this type is the new BASF Oxo Process. It has a similar structure as the Low 

Pressure Oxo Process with liquid recycle. Due to UCC patents, its reaction conditions are limited 

[124]. For long chain alkene (C6 – C14) hydroformylation using rhodium catalysts there exists only 

one commercial process, which is a further development of the UCC process.  

 

• Adapted Low Pressure UCC Process: In this process a rhodium catalyst is modified by a polar 

TTPTS ligand and provided to the reaction dissolved in water. Together with a specific 

amount of N-Methyl-2-pyrrolidon (NMP) as mid-polar solvent, which depends on the length 

of the alkene and the amount of water, and the reactant it builds a homogeneous phase under 

reaction conditions (110 to 120 °C and 7 bar). Subsequent to the reaction, the reaction 

mixture is cooled down to 25 °C and water is added such that a phase split is induced 

resulting in a NMP/water phase, which contains the catalyst, and an organic product phase. 

After additional separation of catalyst traces and water, the NMP/catalyst mixture is returned 

to the reactor. For an efficient process operation, the water separated from the NMP/catalyst 

mixture is reused for the phase split.  
 

Beside the industrially used processes, some research is conducted in academia seeking for interesting 

and intensified process or reactor concepts. For instance, Enache et al. [126] suggested a heat 

exchanger reactor for a solvent free hydroformylation of short chain alkenes. The heat exchanger 

reactor is chosen due to the required high mass and heat transfer rates caused by high catalyst loads. 

Although using this high amount of catalyst, no recovery strategy is provided. As well working with 

high catalyst loads, Wiese et al. [127] proposed the use of a long, thin tubular reactor with static 



Background 23 

 

mixers for the hydroformylation of C3 to C8 alkenes. Due to the high catalyst loadings, the residence 

time in the reactor is only about a few seconds. The catalyst is recovered using an aqueous biphasic 

solvent system, which is separated after the reaction in a liquid-liquid phase separation.  

 

2.3.2 Innovative concepts for homogeneously catalyzed multiphase 

processes 

 As the Adapted Low Pressure UCC process is currently the only industrially applied process 

for rhodium-based hydroformylation of long chain alkenes, academic and industrial research seeks for 

more profitable and flexible process alternatives. Several challenges are faced in course of this 

endeavor. In contrast to short chain alkenes, long chain alkenes are only barely miscible with water or 

other polar solvents, in which the catalyst is dissolved, due to their non-polarity what hinders the 

formation of a single phase under reaction conditions. Moreover, the biphasic separation fails due to 

the miscibility of the aldehyde products with their corresponding alkene reactants, as realized in the 

Ruhrchemie/Rhône-Poulenc Process. A separation via stripping or vaporization as in the Low Pressure 

Oxo Processes is as well not possible, since the high boiling points of the long chain alkenes would 

require high temperatures, which destroy the homogeneous catalyst. However, a quantitative recovery 

and recycle of the catalyst is indispensable due to the high expense of the rhodium metal and 

sophisticated ligands such as Biphephos. The most promising approaches for new process concepts 

utilizing innovative solvent systems are summarized in the following. Thereby, the focus is put on 

thermomorphic multicomponent solvent systems, as they are used in this work, and further concepts 

are briefly summarized.  

 

Thermomorphic multicomponent solvent systems  

 Following the concept of adding a mid-polar solvent to a biphasic system as used in the 

Adapted Low Pressure UCC Process, to enable homogeneous phase conditions during reaction and a 

temperature controlled phase split for the separation of the catalyst from the product phase, the 

principles of thermomorphic multicomponent solvent systems become evident. They combine the 

features of the two-phasic separation approach and thermo-regulated phase transfer catalysis. Note, 

that TMS systems do not intend to require additional extraction with polar solvent and several 

subsequent separation steps to finally being able to recycle the catalyst. Behr et al. [128] suggested the 

use of these temperature-dependent, or thermomorphic, solvent systems for homogeneously catalyzed 

processes and distinguished three types of TMS systems. The first two types consider a particular third 

solvent and distinguish the form of the miscibility gap. The third type indicates the use of the reactant 

and the product as mid-polar solvent, or solubilizer, avoiding an additional solvent in the mixture.  

The concept of this type III TMS system, illustrated in Fig. 2.9, is recapitulated as follows: 

Under reaction conditions, i.e. elevated temperature, the polar solvent, the nonpolar solvent, and the 

reactant form a homogeneous phase. Hence, the composition is located above the bimodal curve 

within the ternary triangle (left). After the reaction is terminated, cooling down the reaction mixture in 

a liquid-liquid phase separator induces a phase split. The miscibility gap in the ternary diagram of the 

polar solvent, the nonpolar solvent, and the product changes and the composition lies underneath the 

bimodal curve. The catalyst is dissolved in the polar solvent and recycled to the reactor, whereas the 

products and remaining reactant are located in the organic solvent and further processed downstream. 

The form of the miscibility gap is controlled by temperature and composition of the mixture. In case of 

type I or II TMS systems the mid-polar solvent affects it as well. 
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Figure 2.9: Scheme of TMS principle 

 

Following this procedure, a TMS system has to fulfill two crucial requirements: (i) it has to 

form a single homogeneous phase under reaction conditions to avoid mass transfer resistances; and (ii) 

it has to allow for liquid-liquid phase splitting of a catalyst rich phase and a product phase induced by 

temperature shift. The challenges for the design of TMS systems arising out of these requirements are: 

(i) the solvents have to be chosen such that occurring products and side products during reaction do 

not show a heterogeneous phase behavior in the reactor; (ii) reactants, products, and side products 

should not hinder a clear phase separation by cooling; (iii) the solubility of the catalyst should be very 

high for the polar solvent and very low for the nonpolar solvent; and (iv) the solubilities of the 

products and reactants require the opposite behavior.  

First, the selection of suitable solvents for TMS systems have been based on the phase 

separation behavior of two or three solvents [129], whereas their respective pure solvent parameters 

such as polarities are included using Hansen solubility parameters [130]. In a later work, Behr and 

Wintzer [131] proposed a comprehensive guide to solvent selection where the upper critical solution 

temperature of the solvent mixture and the solvents’ respective Hansen solubility parameters are 

identified as most critical attributes. In addition, environmental factors and the compatibility with 

other compounds formed during the process are mentioned as decisive aspects. Based on these works, 

McBride et al. [132] presented recently a systematic computer-aided design procedure for TMS 

systems that bases on property predictions with COSMO-RS and model-based liquid-liquid phase 

behaviors. It has successfully been applied and experimentally validated for the TMS design for the 

hydroformylation of 1-dodecene. 

 

Further promising process concepts  

 In most of the process concepts proposed in literature, the recovery of the homogeneous 

catalysts is emphasized. Additionally, some of the concepts intend to enhance the reaction potential. In 

the following, the innovative process concepts are classified within the areas of: (i) multiphase 

systems; (ii) immobilization techniques; (iii) phase enhancement; and (iv) filtration strategies. 

Thereby, the combination of concepts of different categories can indicate promising synergy effects. 

 The basic concept of multiphase systems is elucidated in the course of TMS systems and the 

bi-phasic industrial processes for hydroformylation. They differ mainly with respect to the handling of 

the catalyst phase and the liquid-liquid phase separation. Interesting multiphase concepts are: 

 

• Perfluorinated solvents: The underlying concept is that a catalyst/ligand is tagged with 

fluorinated sections such that it dissolves in a perfluorinated solvent whose miscibility with 
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organic and aqueous phases can be controlled via temperature, similar to TMS systems. 

Depending on the solvent system, the fluorinated catalyst/ligand may build an individual 

phase without addition of a fluorinated solvent. Horvath et al. [133] reported a successful 

application for the hydroformylation of 1-decene indicating a very small catalyst leaching. 

Drawbacks of this concept are the high costs of the fluorinated solvents and ligands. 

• Micellar solvent systems: Instead of mid-polar solvents surfactants are added leading to the 

formation of micelles, which increase the liquid-liquid surface area. Inside of the micelles one 

of the phases, mostly the catalyst and thus reaction phase, is enclosed. The solvent system, 

consisting of water, surfactant, and an organic phase, is composed such that a phase split is 

induced under lowered temperature conditions allowing for a recovery of the catalyst from the 

aqueous solvent phase. For the hydroformylation of 1-dodecene using a rhodium catalyst 

modified with a TPPTS ligand, Haumann et al. [134] developed an efficient micellar solvent 

system and indicated higher activities though less selectivity in the microemulsion in 

comparison to homogeneous systems.  

• Ionic liquids: Similar to perfluorinated solvents, the idea of the use of ionic liquids is to 

provide a phase in which catalysts/ligands with ionic properties can be dissolved and thereby 

recovered. After the reaction is terminated, the products and remaining reactants are separated 

with organic solvents from the ionic liquid, which is recycled with the therein dissolved 

catalyst to the reactor. The decisive properties of the ionic liquid, i.e. solubilities of reactants 

and products, and activity and selectivity of the catalyst, can be adjusted by the type of its 

anions and cations [135]. Tan et al. [136] reported the use of a thermo-regulated ionic liquid 

for the rhodium catalyzed hydroformylation of 1-dodecene yielding very high conversions 

and selectivities around 99 % and 97 %, respectively. The drawbacks of ionic liquids are on 

the one hand their impact on process materials and on the other hand their high prices 

compared to organic solvents [137]. 

• Pickering emulsions: Here, instead of surfactants amphiphilic nanoparticles are added to the 

system of immiscible fluids, which are thereby kinetically stabilized. Similar to the micellar 

solvent systems, the catalyst is enclosed by the particles and the reactants and products 

diffuse through the interphase. Their advantages are that high interphase areas are formed, 

fast diffusion of reactants and products through the interphase is enabled, and the materials 

are environmentally friendly [138]. For the hydroformylation of 1-octene, Zhao et al. [139] 

reported the successful application of Pickering emulsions showing stable conversions and 

selectivities for several reaction cycles. The catalyst was recovered by centrifuging the 

reaction mixture leading to a precipitation of the particles and a separation of the water and 

organic phase. 

 

With regard of immobilization techniques, the process concepts can be distinguished corresponding to 

the support phase containing or fixing the homogeneous catalyst. One can distinguish: 

 

• Membrane/polymer support: This concept immobilizes the catalyst in the reactor on a solid 

support structure, e.g. membranes or silica, to avoid the effort of subsequent separation and 

recovery. For instance, Song et al. [140] attached the rhodium complex on mesoporous silica 

in the hydroformylation of 1-octene. They reported of very low levels of catalyst leaching, 

however, accompanied by poor regioselectivity.   

• Aqueous support: Here, the catalyst is immobilized in a thin film of water on a solid surface 

such as silica or monoliths. Arhancet et al. [141] introduced this as a promising approach for 

hydroformylation reactions. However, this concept suffers from low solubilities of organic 

molecules and evaporation of water from the porous support.  
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• Ionic liquid support: An enhancement of the aforementioned concept is the use of ionic liquid 

instead of water, called supported ionic liquid phase (SILP) [142]. They outperform water due 

to their low vapor pressure and high viscosity. Riisager et al. [143] demonstrated successfully 

the use of SILP for the rhodium catalyzed gas and liquid phase hydroformylation of propene 

and 1-octene indicating no detectable catalyst leaching. An advantage of the use of SILP in 

comparison to the conventional bi-phasic process was the high dispersion of the ionic liquid 

catalyst solution, whereas an identified drawback was a poor solubility of synthesis gas 

probably caused by limited mass transfer. 

 

As mentioned before, some concepts rather intend to enhance the reaction conditions than the efficient 

recovery of the homogeneous catalyst. Famous examples are: 

 

• Supercritical fluids: By compressing gases above their critical temperature and pressure they 

become supercritical fluids, which have the ability to dissolve many organic molecules with 

low and medium polarity and gases [144]. By using them as solvents, mass transfer resistances 

are strongly decreased and reactions are enhanced. Koch and Leitner [145] showed how the 

choice of the right ligand enables hydroformylation catalysts to be dissolved in supercritical 

fluids such as scCO2.  

• Gas expanded liquids: The liquid volume of solvents is expanded using gases which show 

liquid like densities around their critical point. This leads to a change of phase properties of 

these so called gas expanded liquids, e.g. lower viscosity and higher diffusion coefficients 

[146]. Hence, they can be used to tune, e.g. the solubilities of gaseous reactants in the liquid 

reaction phase. Jin and Subramaniam [147] reported a significant increase of the turn over 

number for the hydroformylation of 1-octene using CO2 as expanding gas due to higher 

solubilities of the synthesis gas. 

 

In contrast to the use of solvent systems, a few approaches have been developed to recover the 

homogeneous catalyst by filtration methods. For instance, for the continuous hydroformylation of 1-

octene Fang et al. [148] designed polymer catalysts such that they can efficiently be recovered by 

membrane filtration due to a reduced permeability caused by their bulky form. For the same reaction, 

Xie et al. [149] modified a rhodium catalyst with polydimethylsiloxane making it an inexpensive, 

nano-filterable homogeneous catalyst, whose successful recovery was experimentally tested in a 120 h 

run. As mentioned before, several approaches combined strategies to use arising synergy effects. For 

instance, Webb et al. [150] combined the use of supercritical CO2 and an ionic liquid for the 

hydroformylation of 1-dodecene claiming that the solvent system can be operated continuously for 

several weeks without any catalyst degradation. Hintermair et al. [151] immobilized the catalyst in a 

supported ionic liquid phase and used CO2 to form a gas expanded liquid. They state that due to the 

formation of a gas expanded liquid at higher pressures, the reaction rates have been increased and the 

catalyst leaching reduced. Due to the lower viscosity the gas expanded liquid enabled better transport 

of synthesis gas to the catalyst, and its reduced polarity made it less soluble for the ionic liquid.  

 

2.3.3 Fundamentals of the example process 

 From the overview of potential homogeneous transition metal catalysts it became evident that 

rhodium catalysts are the most promising due to their very high activity. Moreover, the meaning of 

high performing ligands for the suitable control of chemo- and regioselectivity was pointed out. The 

indispensable requirement of a quantitative recovery of both metal complex and ligand for establishing 

an industrially applicable process was reasoned by their high prices. Several interesting process 

concepts for catalyst recovery and reaction enhancement indicate the high improvement potentials 
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which are still under research and high likely about to be exploited in the near future. Due to its 

similarities to the existing Adapted Low Pressure UCC Process, thermomorphic multicomponent 

solvent systems seem to be quite close to be used for a real process concept. In comparison to 

alternative concepts previously discussed, they do not require expensive solvents, surface active or 

solid additives, or energy demanding separation steps. Moreover, they provide a homogeneous 

reaction phase leading to reduced mass transfer resistances. Due to these features, the development of 

new process structures for the hydroformylation of long chain alkenes within the Collaborative 

Research Centre TR63 InPROMPT is carried out using TMS systems (beside others). The example 

process was chosen to be the hydroformylation of 1-dodecene aiming at the production of n-tridecanal. 

As indicated in literature [152], the use of a Rh(acac)(CO)2 catalyst modified with a Biphephos ligand 

provides very high activity, chemo- and regioselectivity, and was, thus, used for the investigated 

hydroformylation process. 

 Behr et al. [153] suggested the use of a TMS system consisting of n-decane as nonpolar 

solvent and N-,N-dimethylformamide as polar solvent. Schäfer et al. [154] carried out thorough 

studies about the phase behavior, reaction performance, and the catalyst recycling in this TMS system. 

Based on these studies, they suggested an overall solvent fraction of at least 80 % to ensure 

homogeneous phase conditions under reaction conditions and a phase split at room temperature. 

Thereby, the catalyst recovery increases with decreasing separation temperature.  

 Considering this TMS system and the aforementioned catalyst complex, Markert et al. [155] 

and Kiedorf et al. [156] carried out extensive studies on the kinetic mechanisms of the 

hydroformylation process and identified a reaction network and corresponding reaction rates. In a 

subsequent study, Hentschel et al. [157] refined this network based on new experimental results of 

perturbation experiments intending to better quantify the impact of gaseous reactants. This resulted in 

the addition of a sixth reaction, i.e. the direct conversion of 1-dodecene (nC12en) to branched 

aldehydes (iC13al), and a new estimation of kinetic coefficients. The resulting reaction network (Fig. 

2.10) consists of the hydroformylation of 1-dodecene to n-tridecanal (nC13al) 𝑟1, the isomerization of 

1-dodecene to its isomers (iC12en) 𝑟2, the hydrogenation of 1-dodecene and the iso-dodecenes to n-

dodecane (nC12an) 𝑟3 and 𝑟4, respectively, and the formation of branched aldehyde 2-methyl-

dodecanal (iC13al) from 1-dodecene and iso-dodecenes 𝑟5 and 𝑟6, respectively.  

 

 

Figure 2.10: Reaction network according to [157]  

 

Kiedorf et al. [156] suggested the inclusion of the side reactions to the catalytic cycle of the 

hydroformylation, as to their findings all reactions compete for the same active catalyst species. This 

active catalyst species is situated in a pre-equilibrium between the active resting state, its inactive 

states, and the precursor before the catalytic cycles start. The amount of active species, which is 

performing the catalytic cycle, depends on the amount of ligand, as well as the concentrations of 
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carbon monoxide and hydrogen. Therefore, they derived an equation to determine the amount of active 

catalyst species (Eq. (2.1)).  

 

𝑐𝑐𝑎𝑡 =
𝑐𝑐𝑎𝑡,𝑡𝑜𝑡

1+𝐾𝑐𝑎𝑡,1𝑐𝐶𝑂
𝐾𝑐𝑎𝑡,3+𝐾𝑐𝑎𝑡,2

𝑐
𝐶𝑂

𝐾𝑐𝑎𝑡,3

𝑐𝐻2

     (2.1) 

 

Based on these assumptions and the catalytic cycle including hydroformylation, isomerization, and 

hydrogenation reactions, they derived reaction rate equations (Eqs. (2.2)-(2.6)) for the reactions in the 

reaction network, which are valid for 10 bar ≤ 𝑝𝑡𝑜𝑡 ≤ 20 bar and 368.15 K ≤ 𝑇 ≤ 388.15 K. As 

mentioned before, a refinement study led to the addition of a sixth reaction and corresponding rate 

equation (Eq. (2.7)) not affecting the form of the other rates equations [157].  

 

𝑟1 =
𝑘1,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2𝑐𝐶𝑂

1+𝐾1,1𝑐𝑛𝐶12𝑒𝑛+𝐾1,2𝑐𝑛𝐶13𝑎𝑙+𝐾1,3𝑐𝐻2
     (2.2) 

𝑟2 =
𝑘2,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛−

𝑐𝑖𝐶12𝑒𝑛
𝐾𝑒𝑞,2

)

1+𝐾2,1𝑐𝑛𝐶12𝑒𝑛+𝐾2,2𝑐𝑖𝐶12𝑒𝑛
      (2.3) 

𝑟3 =
𝑘3,0(𝑇)(𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2−

𝑐𝑛𝐶12𝑎𝑛
𝐾𝑒𝑞,3

)

1+𝐾3,1𝑐𝑛𝐶12𝑒𝑛+𝐾3,2𝑐𝑛𝐶12𝑎𝑛+𝐾3,3𝑐𝐻2
     (2.4) 

𝑟4 = 𝑘4,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2        (2.5) 

𝑟5 = 𝑘5,0(𝑇)𝑐𝑖𝐶12𝑒𝑛𝑐𝐻2𝑐𝐶𝑂      (2.6) 

𝑟6 = 𝑘6,0(𝑇)𝑐𝑛𝐶12𝑒𝑛𝑐𝐻2𝑐𝐶𝑂      (2.7) 

 

The temperature dependencies of the reaction constants 𝑘𝑗,0 are modeled via an Arrhenius equation 

(Eq. (2.8)) with 𝑇𝑟𝑒𝑓 = 378.15 K.   

 

𝑘𝑗(𝑇) = 𝑘0,𝑗 𝑒𝑥𝑝(
−𝐸𝐴,𝑗

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
))   , 𝑗 ∈ 𝑅𝐶𝑇   (2.8) 

 

The equilibrium constants 𝐾𝑒𝑞,𝑗 in 𝑟2 and 𝑟3 and the required Gibbs energies of formation ∆𝑅𝐺𝑗 are 

determined via Eq. (2.9) and (2.10), respectively. 

 

𝐾𝑒𝑞,𝑗 = 𝑒𝑥𝑝 (
−∆𝑅𝐺𝑗

𝑅𝑇
),          (2.9) 

∆𝑅𝐺𝑗 = 𝑎0,𝑗 + 𝑎1,𝑗𝑇 + 𝑎2,𝑗𝑇
2, 𝑗 ∈  {2, 3}.    (2.10) 

 

The parameters of the reaction constants and the catalyst equilibrium as well as the equilibrium 

constants are listed in Tab. A.1 and Tab. A.2, respectively. 

Following the work of Hentschel et al. [157], the gas solubilities for carbon monoxide and 

hydrogen in the TMS system can be calculated via the use of Henry constants 𝐻𝛼 (Eq. (2.11)), 

whereby the effect of product formation on the solubilities are neglected due to the excess of solvents. 

The Henry constants are determined with Eq. (2.12) whose parameters are given in Tab. A.3. 

 

𝑐𝛼
∗ =

𝑝𝛼

𝐻𝛼
      , 𝛼 ∈ {𝐺𝐴𝑆}      (2.11) 

𝐻𝛼 = 𝐻𝛼
0 𝑒𝑥𝑝 (

−∆𝑆𝐻𝛼

𝑅𝑇
)     (2.12) 
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Note, that the reaction kinetics and gas solubilities are only valid for the applied mass fractions of 

solvents and molar amount of the catalyst, see Eq. (2.13) and Eq. (2.14), respectively. 

 

𝑤𝐷𝑀𝐹 = 𝑤𝐶10𝑎𝑛 = 0.42,𝑤𝑛𝐶12𝑒𝑛 = 0.16    (2.13) 

𝑐𝑐𝑎𝑡 = 𝑐𝑛𝐶12𝑒𝑛 ⋅ 2.5 ⋅ 10
−4     (2.14) 
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3 Qualitative reactor synthesis 
This chapter introduces the framework for the qualitative synthesis of chemical process 

networks, i.e. reactor-networks, reactor-recycle-networks, and reactor-separator-recycle-networks, 

based on the methodology of elementary process functions.  

In subchapter 3.1 the main aspects of chemical reactor synthesis are summarized, and the 

targets of the presented synthesis framework are discussed. Originating from that, the synthesis 

approach is derived from the conception and the mathematical description of the EPF methodology. 

The use of the Lagrangian description of the fluid element and the search for optimal fluxes 

controlling it, lead to the formulation of a dynamic optimization problem whose components are 

discussed in detail. Based on that, the qualitative reactor synthesis via flux profile analysis (FPA) is 

introduced, which allows for generating candidates of optimal process networks from the results of the 

dynamic optimization of the process. 

 The first FPA application scenario, i.e. the synthesis of reactor-networks, is covered in 

subchapter 3.2. The mathematical basis and the resulting DOP are adapted for this purpose and two 

application examples are elaborated. First, a literature example is considered allowing for a 

comparison of the synthesis results with the attainable region approach. Second, reactor-network 

candidates are derived for the hydroformylation process introduced in subchapter 2.3. Several 

candidates are derived and their performances are compared in the selectivity-conversion space. 

 In subchapter 3.3 the focus lies on the synthesis of reactor-recycle-networks via FPA. Again, 

the mathematical basis and the DOP are adapted accordingly, and two examples are chosen to 

showcase the applicability of the presented reactor synthesis approach. As in subchapter 3.2, the first 

example is taken from literature and enables a comparison with superstructure optimization 

approaches on this synthesis level, and again, the second process example is the aforementioned 

hydroformylation process. Reactor-recycle-network candidates are derived using different reduction 

scenarios, and the resulting candidates are compared among each other and with the results from 

subchapter 3.2. In addition to the synthesis of reactor-networks via FPA, a sensitivity analysis is 

carried out in this subchapter to quantify the impact of storage tank filling levels on the synthesis. 

 The last application level is the synthesis of reactor-separator-recycle-networks in subchapter 

3.4. After adapting the mathematical basis and the corresponding DOP, the FPA is carried out for the 

hydroformylation process and a promising reactor-network candidate is derived. Its performance is 

determined in the selectivity-conversion space and compared to selected results from the previous two 

synthesis levels. Additionally, a sensitivity analysis for the number of separations in the reactor-

network is conducted. 

 Finally, the presented qualitative reactor synthesis approach and the results of the applications 

on the three synthesis levels are discussed in subchapter 3.5.  

  

3.1 Methodical framework 

3.1.1 Aims of the presented qualitative reactor synthesis approach 

The synthesis of process networks, sometimes called conceptual design or flow sheet 

optimization, focuses on finding the optimal configuration of different process units within the overall 

structure of the process. In contrast to process design methods aiming at a detailed shaping of the units 

within the process, the abstraction level is higher and, hence, the level of detail of the considered 

models is lower for reactor synthesis purposes. Regarding the hierarchical classification introduced in 

the EPF concept, see subchapter 2.1, the synthesis is located on the plant level taking only major 

characteristic information about the units into account, whereby the more detailed process design acts 
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on the process unit level. Due to the broader view on the process on the plant level, multiple different 

aspects are considered in the overall structure of the process simultaneously, e.g. chemical reaction, 

recycling, separation, heat supply/removal, etc. Depending on the system bounds chosen for the 

synthesis, the functions that are considered become manifold and the resulting synthesis very complex. 

Therefore, every synthesis has to state in advance which main functions are supposed to be included 

and the approach used for the synthesis is classified according to the included process functions. 

Typical examples for different kinds of synthesis approaches in process engineering are discussed in 

chapter 2.2, see Fig. 2.6.  

The synthesis framework for chemical processes introduced in the following is built on the 

assumption that the core of a chemical process is the step of transformation of chemical components 

into higher valuable products. Although the complete process includes preliminary steps such as 

preprocessing of raw materials, contacting of phases, and activating of e.g. catalysts, and post 

processing steps such as heat supply/removal, separating, and product formulation, those steps have a 

supporting character for the chemical reaction step. In the preprocessing steps the (initial) conditions 

required for an optimal reaction are achieved. The postprocessing has two crucial aspects: (i) it 

separates, purifies, and formulates the desired product up to a desired quality for the market, and (ii) it 

makes the side and couple products coming along the reaction available for either further use in other 

processes or recycling, which might support again achieving the best (initial) conditions for the actual 

chemical reaction. Self-evidently, these different steps in a chemical process are not necessarily 

separated. There exist intensified and/or multifunctional units, which combine several steps such as 

reactive separations or heat-integrated reactors. In other cases, specific steps might even be simply 

unnecessary. Common to all cases is, that the reaction step is not negligible, which highlights its 

meaning as core of a chemical process. This assumption is included in several synthesis and design 

approaches, e.g. the onion model by Smith and Linnhoff [12] or the hierarchical decision procedure by 

Douglas [11]. Although the chemical reaction is treated as core of the process, other functions are 

included in the presented synthesis approach as well:  

 

• The contacting/mixing of components, which is realized by dosing along the reaction 

coordinate and which, moreover, includes the realization of the optimal compositions by 

back-mixing and recycling. 

• The heat supply/removal, which is adjusted already during reaction to steer the reactions 

within the thermodynamic state space. 

• The separation of either valuable products or useful side products, which are supposed to 

be used for dosing along the reaction coordinate, or useless components, which need to be 

removed to achieve a specified or improved product purity.  

 

The inclusion of these process functions takes place in the context of their effects on the optimal 

control of the chemical reaction. They are not analyzed individually. Furthermore, these aspects are 

only treated on an abstract, idealized level and require more detailed design in later steps of the 

process design procedure.  

In addition to the process functions, which are supposed to be included in the synthesized 

process, the question of operational mode comes into play. Generally, one can distinguish between 

discontinuous and continuous processes. The former are often associated with smaller scale 

productions like for pharmaceuticals and fine chemicals, while the latter with large-scale productions 

of bulk chemicals. Classical synthesis approaches are derived and used for continuous processes, 

whereby discontinuous processes are mostly a subject of scheduling or finding optimal recipes. The 

presented synthesis approach intends to synthesize the process independently of the operational mode 

of single units. The decision-making about it is treated as question of best technical realization and, 
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thus, of quantitative economic evaluation at a later stage of process design. The mainly qualitative 

information gathered by the presented reactor synthesis approach allow for generating also candidates 

of hybrid batch-continuous reactor-networks, since the dynamic control of reactor units, which might 

be replaced by batch reactors, is available from the dynamic optimization anyway. For possible 

separation steps this is valid as well, but out of the scope of this work. Note, that the resulting process 

can remain of continuous operation, since possible replacements by batch units are simply integrated 

in the continuous overall process. 

Main target of the presented reactor synthesis approach is the rational derivation of reactor-

network candidates by analyzing reaction, mixing, and separation functions accompanied by 

heating/cooling along the reaction coordinate. The analysis is based on fundamental reaction 

engineering knowledge. Its results are qualitative process structures. Due to the aspired simplicity of 

the underlying dynamic optimization, the framework can be used for fast synthesis of reactor-network 

candidates and shrinking of the potential search space for more detailed and, thus, time-consuming 

approaches. 

 

3.1.2 Placement of the qualitative reactor synthesis approach within the 

EPF framework 

The original EPF method was established for the purpose of shifting the consideration of a 

process in terms of unit operations towards the consideration of functional modules within process 

analysis and design, which allows for optimizing these modules individually and identifying process 

intensification potentials. The mathematical formulation of the EPF method intends to be 

comprehensive with regard to physico-chemical phenomena, which affect process design and its 

intensification and, thus, has to be included in a general framework. The formulation considers 

mechanical as well as thermodynamic states of the fluid element, volume-related and surface-related 

mass, momentum, and energy fluxes and the corresponding balance equations, as well as state-

dependent capacities and state-independent weights of acting fluxes, and unifies all within a matrix-

vector notation, see subchapter 2.1.1. The resulting general dynamic optimization problem of the EPF 

concept reads: 

 

 min
𝒖(𝑡),𝝃

(∫ 𝐿(𝑡)𝑑𝑡 + 𝐼(𝒙0) +𝑊(𝒙𝑓)
𝑡𝑓
0

)  (3.1) 

   s.t.     𝑪(𝒙) ∙
𝑑𝒙

𝑑𝑡
= 𝑭 ∙ 𝒋(𝒙) (3.2) 

 𝒈(𝒙) = 0, 𝒉(𝒙) ≤ 0  (3.3) 

 𝒖𝐿 ≤ 𝒖(𝑡) ≤ 𝒖𝑈  (3.4) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈 (3.5) 

 𝒙(𝑡0) = 𝒙0, 𝒙(𝑡𝑓) = 𝒙𝑓 (3.6) 

 

The objective function (Eq. (3.1)) consists of the stage cost 𝐿(𝑡), an initial cost 𝐼(𝒙0), and a final cost 

𝑊(𝒙𝑓). The first represents a Lagrangian type objective function, the two others are of Mayer type, 

and all together are called a Bolza type problem. The control vector 𝒖(𝑡) contains time-dependent 

decision variables, which are chosen to manipulate the fluid element along the reaction coordinate, 

both external fluxes, such as heat and mass flux, and internal properties such as the catalyst density. 

They are bounded by lower limits 𝒖𝐿 and upper limits 𝒖𝑈 (Eq. (3.4)). In addition, there are time-

independent decision variables collated in the parameter vector 𝝃 such as the final reaction time 𝑡𝑓. 

Again, accompanied by lower bounds 𝝃𝐿 and upper bounds 𝝃𝑈 (Eq. (3.5)). Within the general dynamic 

optimization problem the vector 𝒈 contains equality constraints and 𝒉 collates inequality constraints 
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(Eq. (3.3)). Finally, the initial state vector and the final state vector are defined by 𝒙0 and 𝒙𝑓, 

respectively (Eq. (3.6)). The EPF concept is a rigorous model-based approach and complies with the 

equations of change, i.e. the total mass balance (Eq. (A.1)), the component mass balance (Eq. (A.2)), 

the momentum balance (Eq. (A.3)), the total energy balance (Eq. (A.4)), and in addition an evolution 

equation for the geometry (Eq. (A.5)), which are collated in Eq. (3.2). From this notation follows the 

state vector [15]: 

 

𝒙T(𝑡) = (𝑇(𝑡), 𝑝(𝑡), 𝒘𝑇(𝑡), 𝑣(𝑡), 𝐺(𝑡)).    (3.7) 

 

According to Eq. (3.7) the state vector is defined by the temperature 𝑇, the pressure 𝑝, the mass 

fraction vector 𝒘𝑇, the velocity 𝑣, and the geometrical state 𝐺. Depending on the operational mode of 

the process, the geometrical state is the volume of the fluid element 𝐺 = 𝑉 in a batch process or the 

volumetric mass flux 𝐺 = 𝑣𝐴𝑐 in a continuous process, respectively, with 𝐴𝑐 being the cross sectional 

area of the matter element. The volume of the fluid element is assumed to be ideally mixed, i.e. no 

gradients with respect to mass, energy, or momentum occur inside the fluid element. The state 

dependent capacity matrix 𝑪 and the state independent matrix 𝑭 are derived from the aforementioned 

equations of state, see Eqs. (A.1)-(A.5). The matrix 𝑭 contains the weighting factors of the flux vector 

[15]: 

 

𝒋T(𝑡) = (𝑚𝐴, 𝑗𝐴
𝑇 , 𝑟𝑉

𝑇 , 𝜏𝐴, 𝑓𝑉, 𝑞𝐴, 𝑤, 𝑔).     (3.8) 

 

In Eq. (3.8), 𝑚𝐴 is the total mass flux density, 𝑗𝐴 ∈ ℝ
𝑁−1 corresponds to the diffusion flux densities of 

the chemical components, 𝑟𝑉 ∈ ℝ
𝑀 defines the rate vector of 𝑀 chemical reactions, 𝜏𝐴 stands for the 

surface stress, 𝑓𝑉 is the body force in direction of the main flow, 𝑞𝐴 is the heat flux, 𝑤 is the work, and 

𝑔 quantifies the rate of the geometry variation of the fluid element.  

Although this general formulation is reasonable for the purpose of comprehensive process 

design and inclusion of process intensification potentials, one can neglect several aspects within this 

formulation when focusing only on reactor synthesis. The main requirement of model-based reactor 

synthesis and design procedures is a fundamental knowledge about the underlying reaction network, 

the corresponding reaction rates, and/or the chemical equilibria of the attending reactions. As the 

reaction network included in Fig 3.1 exemplarily illustrates, a reaction network consists of chemical 

species and reactions transforming them into each other, either in single, parallel, or consecutive 

reaction steps.  

In terms of graph theory, one can imagine the chemical species to be the nodes and the 

reactions to be the edges. Thus, finding the optimal reaction route and designing a process for a given 

reaction network can be seen as optimally manipulating the edges and nodes of the corresponding 

reaction network. This is the fundamental idea the EPF framework bases on. The thermodynamic 

states, e.g. mass fractions of the chemical species, temperature, pressure, etc. of the fluid element are 

manipulated by external and internal fluxes while evolving over time, i.e. travelling through the 

process, see Fig. 3.1. The manipulation of these states leads to a change of the edges and nodes, i.e. the 

reaction rates and amount of chemical species, of the reaction network inside the fluid element. 

Following this train of thought, the main states of interest for reactor synthesis are the temperature 𝑇 

and the component masses 𝒎𝑇, which are controlled by external heat flux 𝑞𝐴 and mass flux 𝑚𝐴, 

respectively. They are used to steer the reaction rate fluxes 𝒓𝑉. This conception is corroborated by the 

state-of-the-art methods for reactor synthesis described in subchapter 2.2.1, according to which the 

reactor-network is found by analyzing only reaction and mixing. When generalizing the synthesis on 

processes including separations, this is extended by removal, i.e. negative mass fluxes.  
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Figure 3.1: Fluid element in thermodynamic state space containing reaction information of the process [158] 
 

To reduce the mathematical formulation of the EPF method aiming at the necessary equations for 

reactor synthesis, the following assumptions are made: 

 

• The total mass (Eq. (A.1)) is linearly dependent on the component masses (Eq. (A.2)) and, 

hence, does not have to be considered individually. Instead, the component mass balance and 

all corresponding fluxes and matrices are defined in ℝ𝑁 in the following.   

• The velocity 𝑣 is assumed not to affect the optimal reaction control and, hence, the momentum 

balance (Eq. (A.3)) is neglected, see e.g. [14].  

• The temperature 𝑇 can be manipulated ideally due to the negligence of possible heat transport 

limitations. Hence, the total energy balance (Eq. (A.4)) is skipped and 𝑇 is treated directly as 

decision variable, see e.g. [37].  

• The geometrical state 𝐺 (Eq. (A.5)), i.e. the volume of the fluid element, is of minor 

importance and, thus, does not have to be balanced. In case of need the volume 𝑉 as well as 

the pressure 𝑝 can be determined by constitutive equations, see e.g. [159]. 

 

Taking these assumptions into account, only the component mass balance (Eq. (3.9)) has to be 

considered to describe the deciding state changes in the fluid element for reactor synthesis.   

 
𝑑𝝆

𝑑𝑡
= 𝑎𝑚 ⋅ (𝒋𝐴 +𝒘 ⋅ 𝑚𝐴) +𝑴 ⋅ 𝑵 ⋅ 𝒓𝑉     (3.9) 

 

The time evolution of the partial densities vector 𝝆 is defined by the specific surface area 𝑎𝑚 of the 

fluid element, the aforementioned diffusion flux densities of the species 𝒋𝐴 ∈ ℝ
𝑁, the component mass 

fraction vector 𝒘, the total mass flux density 𝑚𝐴, the diagonal matrix of molar masses of chemical 

components 𝑴 ∈ ℝ𝑁×𝑁, the stoichiometric coefficient matrix 𝑵 ∈ ℝ𝑁×𝑀, and the aforementioned 

reaction flux vector 𝒓𝑉 ∈ ℝ
𝑀. The diffusion flux densities 𝒋𝐴 are assumed to come into play only in 

case of multiphase processes in which species from other phases enter the fluid element. Since the 

fluid element is ideally mixed, the only case where concentration gradients lead to diffusion fluxes are 

mass transfer phenomena at interphases. For the sake of simplicity, the flux densities and the specific 

surface area are not optimized individually. Thus, they are lumped to a component diffusion flux 

density vector 𝒋 = 𝑎𝑚 ⋅ 𝒋𝐴 and a component mass flux density vector 𝒚 = 𝑎𝑚 ⋅ 𝒘 ⋅ 𝑚𝐴. The resulting 

component mass balance reads: 
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𝑑𝝆

𝑑𝑡
= 𝒋 + 𝒚 +𝑴 ⋅ 𝑵 ⋅ 𝒓𝑉.     (3.10) 

 

As discussed before, the remaining fluxes are the component mass flux densities 𝑦𝛼 into and out of the 

fluid element and the heat flux 𝑞𝐴 which is substituted by the temperature 𝑇 due to aforementioned 

assumptions. It affects the mass balance due to the temperature dependence of the reaction fluxes 𝒓𝑉. 

Depending on the sign of the component mass flux density vector it is either referred to as dosing flux 

density vector 𝒚 (positive) or removal flux density vector 𝒛 (negative).  

 

3.1.3 Flux profile analysis 

The presented approach for qualitative synthesis of reactor-networks bases on the analysis of 

the flux profiles of the mass fluxes and the temperature, which are a result of solving a dynamic 

optimization problem, and is named flux profile analysis. It aims at identifying sections of (i) benefits 

from either back-mixing or plug flow, (ii) distributed or constant heating/cooling strategies, (iii) initial 

or distributed reactant dosing, (iv) optimal reaction control by initial or distributed recycling of 

(by)products, and (v) the removal of components which are adverse to the reaction progress or the 

objective, respectively. The general procedure is subdivided in three steps that are discussed in detail 

below. 

 

Step 1: Dynamic optimization of mass and energy control fluxes 

Main target in step 1 is the formulation and solving of the dynamic optimization problem, 

which corresponds to the state evolution in time of the fluid element tracked on its way through the 

process. The reasonable formulation of the dynamic optimization problem, providing optimal dosing 

fluxes, removal fluxes, and temperature profile, depends on intrinsic limitations of the process, the 

suitable choice of decision variables, and the objective of the process design. The impact of the 

objective is discussed in more detail in subchapter 3.5. The decision variables have to be chosen 

according to the characteristics of the process. In a multiphase process, for instance, the compositions 

of the non-reactive phases, which can be treated as support phases, are additional degrees of freedom. 

This is further discussed in the subchapter 3.2. Depending on the type of process, it might also be 

possible to change the catalyst density along the reaction coordinate, e.g. in heterogeneous gas phase 

processes, in contrast to having a constant predefined catalyst density [4]. As elucidated in subchapter 

3.1.2, the dynamic optimization problem is constrained by equations of change, and additional 

inequality and equality constraints. The latter are model equations which are, beside of the balance 

equations, indispensable for a comprehensive physico-chemical model of the reaction progress, i.e. 

reaction kinetics and thermodynamic relationships e.g. in form of equations of state. The intrinsic 

bounds on the decision variables normally arise by the validity bounds of these models or material 

properties, e.g. maximum temperature in order to prevent catalyst damage. However, the limitations 

should be hold as small as possible, since all bounds or predefinitions reduce the search space and, 

thus, the possible maximum potential of the process, which is sought in this procedure.  

For the dynamic optimization in step 1 the system bounds for the striven synthesis, i.e. the 

process functions that are supposed to be included, have to be defined. Within the presented approach 

three types of synthesis are discussed: (i) the reactor-network synthesis, (ii) the reactor-recycle-

network synthesis, and (iii) the reactor-separator-recycle-network synthesis. In context of the 

optimization of the external fluxes of the fluid element along the reaction coordinate, they simply 

differ in the considered mass flux properties. In (i) only the dosing of reactant(s) is investigated; (ii) 

includes additionally the dosing of products, which are provided by the recycle streams from an ideal 
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separation subsequently to the reaction; in the last step (iii) the removal of all components along the 

reaction coordinate is included as well, which allows for positioning of separation steps. 

In addition to the external mass and energy fluxes, a measure for the analysis of the internal 

reaction fluxes - the differential selectivity – is introduced (Eq. (3.11)). It enables the identification of 

reaction sections of beneficial back-mixing without taking the product dosing necessarily into account.  

 

𝜑 =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑚𝑎𝑖𝑛 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑
       (3.11) 

It is a measure that brings the formation rate of the desired product in relation to the consumption rate 

of the reactant. This allows for identifying changes of the reaction orders of the deciding reactions for 

the formation of the desired product and, hence, its selectivity. The change of the differential 

selectivity over conversion of the main reactant or the reaction time indicates thereby whether back-

mixing is beneficial for the production of the desired product or not [160]. Within the EPF concept this 

measure can be seen as an analysis of the internal differential reaction flux 𝑟𝑉 of the fluid element. In 

case of recycling, sections of beneficial back-mixing might be also identifiable by product dosing and, 

thus, both indicators can be used and taken as validation.  

At the end of step 1, one has determined the optimal dosing and removal fluxes, an optimal 

temperature profile, the profile of the differential reaction flux, and the evolution of the chemical 

component concentrations along the reaction coordinate. 

 

Step 2: Sectioning of optimal flux profiles in characteristic sec tions 

Once the dynamic optimization is carried out and the aforementioned optimal fluxes are 

determined, one has to subdivide the reaction coordinate of the process into specific sections of 

characteristic behavior. The following rules have to be complied with: 

 

• The first section starts at 𝑡 = 𝑡0 and the last section ends at 𝑡 = 𝑡𝑓. The sectioning should be 

carried out sequentially along the reaction coordinate from 𝑡0 to 𝑡𝑓. 

• At the beginning of the reaction coordinate an initial dosing takes place to adjust the optimal 

initial concentrations; since no reaction can take place without any reactant, this 

initialization section always appears, dosing either a reactant or a reversible product. 

• Every new dosing of either reactant or product indicates a new section, both for initial 

dosing or distributed dosing.  

• Removal fluxes are treated identically to dosing fluxes regarding the sectioning. 

• A change of temperature between dynamic and constant behavior, and a discontinuity in the 

temperature profile indicate a new section. Temperature changes can indicate impacts of 

different phenomena, e.g. activation energies, chemical equilibria, solubilities, densities, etc.  

• The differential selectivity is analyzed in form of its gradient over the reaction coordinate 

and should be intersected only at points of changing sign of its gradient. 

• The concentration profiles of the chemical components are not subdivided individually. 

They should be used as assistance in case the other flux profiles are not unambiguous.  

• A new section can start without new dosing of any component. It simply implies, that the 

reaction mixture from the previous section is the inlet mixture for the next section. 

 

Following these rules for sectioning the flux profiles, one ends up with the maximum amount of 

possible reaction sections, since each characteristic change is considered. Translating these directly 

into a reactor-network might lead to very large network candidates. Thus, there is already a reduction 

potential in step two of the approach. By engineer’s knowledge a reasonable negligence or merger of 
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reaction sections should be conducted, which leads to additional reactor-network candidates of less 

complexity.  

 

 

Figure 3.2: Exemplary illustration of sectioning of the time horizon of flux profiles. 𝐲 – dosing flux density; 𝐳 – removal flux 

density; 𝛗 – differential selectivity (see Eq. (3.11)); 𝐑 – reactant (dark blue); 𝐏 – product (green); distr. – distributed; init. – 

initial; dyn. – dynamic; const. – constant; neg – negative; pos – positive; S – section; t – time; tf – final time. 

 

Those might later be compared to the largest candidate to identify the impacts of the reductions. 

Potentials for these reductions arise, for instance, from: 

• Simultaneous distributed dosing of different components, even when they are of different 

length or there starting points are slightly different, which can nevertheless be realized within 

one section of distributed dosing;  

• Initial dosing of different components and simultaneous distributed dosing of one or more 

components, which again can be realized in one section of distributed dosing including an 

initial dosing; 
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• Initial dosing and removal of components, which can be realized in one section; 

• Similar temperature control profiles of neighboring sections, which might be approximated by 

one control section; this is of special interest in case the differential selectivity change has the 

same sign in these sections; 

• Several sections having distributed control profiles only intersected by small sections of 

constant temperature control, which can as well be realized within a larger distributed 

temperature control section; 

• etc. 

 

Depending on the specific process example further reductions might occur, e.g. in case a multiphase 

process provides additional degrees of freedom by supporting phases. Due to analyzing several fluxes 

simultaneously, numerous cases are possible. Thereby, certain characteristics might occur more often 

because they represent typical features of a certain problem class. For instance, dosing of side products 

at the beginning of a reaction occurs in case of a selectivity problem with chemical equilibrium 

limitations, or an almost constant temperature profile is accompanied by a positive change of the 

differential selectivity pointing on a realization in a continuous stirred tank reactor. An example of the 

sectioning of flux profiles is illustrated in Fig. 3.2 for arbitrary trajectories. Therein, the notation for 

the flux profile analysis is introduced.  

 

Step 3: Association of characteristic flux profile s ections to ideal reactor types 

as well as recycling and separation strategies  

 The subdivided sections of step 2, either of one or several different sectionings, are analyzed 

in step 3 regarding their characteristics. Subsequently, they are associated to generic ideal reactor 

types, recycling strategies, and separation strategies.  

 

• Ideal reactor types: The dosing strategies of the reactants as well as the profile of the 

differential selectivity indicate the choice of a suitable ideal reactor type for a specific section. 

These are a plug flow reactor (PFR), a differential sidestream reactor (DSR), and a continuous 

stirred tank reactor (CSTR), which are discussed in detail in subchapter 3.2. The dosing of 

products gives additional hints on a possible benefit of back-mixing for the choice of an 

appropriate reactor. 

• Recycling strategies: The dosing strategies of products indicate the best recycling strategy of 

those components from the separation subsequent to the reaction. The aforementioned ideal 

reactor types are therefore augmented by the possibilities of either initial recycling or 

distributed recycling. For the qualitative analysis of the process potential and the derivation of 

possible reactor-network candidates, the separation at the end of the process is assumed to 

work ideally, i.e. it has ideal, sharp split factors. How this is realized and how the size of the 

recycle streams might affect the synthesis result is discussed in subchapter 3.3. 

• Separation strategies: The removal flux is analyzed to identify the best separation strategy. 

Again, ideal separations are assumed, which allow using any desired removal flux quality. The 

analysis of the removal flux includes two aspects: (i) the optimal number of removals within 

the reactor-network, and (ii) their location. How the removal streams are translated for the 

synthesis and how the number and the location of the removals are determined based on the 

dynamic optimization of the process is covered in subchapter 3.4. 

 

In addition to the analysis of the dosing and removal fluxes as well as the differential selectivity as 

reaction flux, the temperature profile indicates the match to either a distributed or concentrated reactor 
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type. The spatially distributed reactors, PFR and DSR, can realize both kinds of temperature profile, 

whereby the concentrated CSTR is only able to realize a constant temperature profile.  

Moreover, it has to be noted, that in case of reactant dosing the DSR can be approximated by a 

cascade of PFRs. In case of product recycling both the DSR and the PFR have the possibility to be 

approximated by a cascade of PFRs, and in addition by a cascade of CSTRs, which might enhance the 

beneficial impact of back-mixing. The decision-making depends strongly on the complexity of the 

dosing profiles of reactants and products. Anyway, these options should be included to generate 

additional reactor-network candidates. The actual decision can then be made depending on the final 

detailed process design and the corresponding objective.  

The qualitative reactor synthesis approach is described in three successive levels starting from 

the case of synthesizing only reactor-networks up to the case of additional consideration of recycling 

and separation. On each level the generic ideal reactor types are extended according to the additional 

degrees of freedom in the reactor synthesis.  

 

3.2 Reactor-network synthesis  

 In this subchapter the flux profile analysis approach is reduced for the application of reactor-

network synthesis. Therefore, the generic ideal reactor types are discussed, which are used as basis for 

the subsequent subchapters, and the dynamic optimization problem is adapted. Aiming at a clearer 

understanding of the fluid element travelling through the process in terms of process engineering, a 

batch process scheme is derived as more intuitive substitute. It is stepwise augmented for the 

subsequent reactor synthesis levels. After laying the fundamentals, the qualitative reactor-network 

synthesis approach is applied first on a well-known literature example aiming at an evaluation of the 

presented approach by comparison with the attainable region approach, and second on the 

hydroformylation of 1-dodecene, which acts as main process example in this thesis as introduced in 

subchapter 2.3. 

 

3.2.1 Fundamentals 

The most fundamental kind of conceptual design of a chemical process is the synthesis of 

reactor-networks, since, as stated in the previous subchapter, the chemical reaction is the core of a 

chemical process. The different types of reactors included and combined in classical reactor-network 

synthesis approaches, such as attainable region approach and superstructure optimization (compare 

subchapter 2.2.1), are ideal reactors of which each represents certain important characteristic of 

mixing, see Fig. 3.3.  

 

• Plug Flow Reactor (PFR): The PFR is free of back-mixing due to the plug flow characteristics. 

The reactants are fed only at the beginning of the reaction, i.e. the entry of the reactor, and no 

distributed reactant and product dosing is possible. The reaction progress takes place along the 

length of the PFR. Due to its spatial distribution the PFR is able to have a distributed control 

of e.g. temperature. A PFR is analogous to a standard batch reactor without dosing whereby 

the feed concentration of the PFR 𝒄𝑓𝑒𝑒𝑑
𝑃𝐹𝑅  corresponds to the initial concentration of the 

batch 𝒄𝑏𝑎𝑡𝑐ℎ(𝑡 = 0). Note, that the residence time 𝜏𝑓 in a PFR corresponds to the reaction 

time 𝑡𝑓 in a batch reactor.  

• Differential Sidestream Reactor (DSR): The DSR is similar to the PFR including the 

possibility to dose reactant along the reactor length, i.e. the reaction time in a batch process. 

• Continuous Stirred Tank Reactor (CSTR): As opposite to the spatially distributed PFR and 

DSR, the CSTR is a concentrated system with total back-mixing and, thus, the reactor states 

are equal to its output states. Since it operates in steady-state, it has no transient behavior and 
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constant control inputs. Regarding the analogous batch process concept, one can imagine a 

fed-batch process with constant feed composition corresponding to the feed composition of 

the CSTR 𝒄𝑓𝑒𝑒𝑑
𝐶𝑆𝑇𝑅. The initial batch composition has to be sufficiently close to the outlet 

concentration of the CSTR 𝒄𝑓𝑖𝑛𝑎𝑙
𝐶𝑆𝑇𝑅 . Depending on the volumetric feed rate 𝐹𝑏𝑎𝑡𝑐ℎ and the 

reactor volume 𝑉𝑏𝑎𝑡𝑐ℎ a certain equilibrium composition will result corresponding to the 

steady-state CSTR composition for a certain residence time 𝜏𝐶𝑆𝑇𝑅 [30].  

 

 

Figure 3.3: Generic ideal reactor types for reactor-network synthesis within the FPA approach 
 

 

 

Figure 3.4: Translation of EPF fluid element into analogous batch process scheme in case of reactor-network synthesis 
 

In reactor-network synthesis the CSTR has a special role due to its ability of back-mixing. On this 

level of synthesis, where no separating and recycling of products is considered, back-mixing is the 

only way to change the product amounts along the reaction coordinate. Albeit there exist numerous 

other special reactor types, the ideal reactors are sufficient to describe the main necessary reaction and 

mixing characteristics, which are important to identify the maximum potentials of a reaction in a 

continuous reactor-network. Other special reactor types either try to approximate their ideal features or 

focus with their special features on other phenomena, which are of minor importance for the 

conceptual process design and rather of interest for detailed design.  
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For a more intuitive understanding and as basis for the modeling of the fluid element and its 

fluxes, a process scheme is derived which collates all aforementioned features. The fluid element can 

be translated into a semi-batch reactor which is optimally controlled in time by (i) dosing of reactants 

and products, (ii) removal of chemical species, and (iii) a temperature profile. To realize the dosing 

streams, storage tanks for all chemical species are added to the process scheme. The removal streams, 

both intermediate and final, are realized in form of ideal separations, and the temperature control 

simply by adding a cooling/heating jacket to the semi-batch reactor unit. For reactor-network synthesis 

recycling or separating of products and side products are not considered and, thus, the aforementioned 

optimization framework is reduced by dosing fluxes of non-reactant components and by all removal 

fluxes. As a result, only the dosing of reactants and the temperature control are considered. The 

resulting batch process scheme for reactor-network synthesis is given in Fig. 3.4. 

For the purpose of reactor-network synthesis combining the three generic ideal reactor types 

PFR, DSR, and CSTR, the resulting dynamic optimization problem reads:   

 

 min
𝒖(𝑡),𝝃

(∫ 𝐿(𝑡)𝑑𝑡 + 𝐼(𝝆0) +𝑊(𝝆𝑓)
𝑡𝑓
0

)  (3.12) 

   s.t.     
𝑑𝝆

𝑑𝑡
= 𝒋 + 𝒚 +𝑴 ⋅ 𝑵 ⋅ 𝒓𝑉 (3.13) 

 𝑑𝝆𝑠𝑡

𝑑𝑡
= −𝒚   (3.14) 

 𝒈(𝝆) = 0, 𝒉(𝝆) ≤ 0 (3.15) 

 𝒖𝐿 ≤ 𝒖(𝑡) ≤ 𝒖𝑈  (3.16) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈  (3.17) 

 𝒖(𝑡) = [𝒋(𝑡), 𝒚(𝑡), 𝑇(𝑡)]  (3.18) 

 𝝃 = [𝑡𝑓] (3.19) 

 𝒚(𝑡) ≥ 0,     𝛼 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠} (3.20) 

 𝒚(𝑡) = 0,     𝛼 ∈ {𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠} (3.21) 

 𝝆(𝑡 = 0) = 𝝆0 = 𝟎, 𝝆(𝑡 = 𝑡𝑓) = 𝝆𝑓 , 𝝆𝑠𝑡(𝑡 = 𝑡𝑓) = 𝝆𝑠𝑡
𝑓

   (3.22) 

 
𝝆𝑠𝑡(𝑡 = 0) = 𝝆𝑠𝑡

0 = {
𝜌𝛼,𝑠𝑡
0 ,     𝛼 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠}

0,     𝛼 ∈ {𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠}
  (3.23) 

 ∫ 𝒚(𝑡)
𝑡𝑓
0

𝑑𝑡 ≥ 𝜌𝛼
𝑚𝑖𝑛,     𝛼 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠}. (3.24) 

  

The modeling of this batch process, which replaces the fluid element concept, requires a balancing of 

the storage tanks (Eq. (3.14)), initial conditions of the storage tanks (Eq. (3.23)), and a constraint in 

the resulting dynamic optimization problem to ensure that a minimum amount of main reactant is 

dosed (Eq. (3.24)). As a result of this dynamic optimization problem, one obtains the optimal 

temperature profile, the optimal dosing of reactants along the reaction coordinate, and the optimal final 

reaction time. The latter is always optimized in addition to the dosing fluxes and temperature. It is 

either bounded reasonably taking the general speed of reaction into account or bounded intrinsically 

by the objective, e.g. choosing the space-time yield.  

 

3.2.2 Comparison to attainable region approach for the modified van-de-

Vusse reaction 

 Following the previously described procedure, one obtains a rational selection of reactor-

network candidates for the investigated process. To evaluate the results gained by the presented 

qualitative reactor synthesis approach on the stage of reactor-network synthesis, a comparison with the 

results of the attainable region approach for a well-known literature example, namely the modified 
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van-de-Vusse reaction, is carried out. Therefore, the FPA is applied to generate optimal reactor-

network candidates and it is shown, how it can be used to construct the AR of the process. 

The classical van-de-Vusse reaction combines a parallel and a consecutive reaction in one 

scheme implying a selectivity problem for the intermediate species. The modified reaction contains an 

additional reverse reaction from this intermediate species back to the main reactant. The resulting 

reaction scheme is:  

 

Scheme 3.1: Modified van-de-Vusse reaction 

  

This process was considered for attainable region analysis in literature by e.g. Metzger et al. [161] and 

Burri et al. [162]. Metzger et al. [161] chose the classical way of simulating the ideal reactor types 

from the starting point to first compare the performances and then construct the AR step by step by 

further simulations from suitable chosen points of the best performing reactor type. This is closely 

related to the classical AR idea of graphical analysis and construction of the AR, which is, however, 

limited to low-dimensional examples. Burri et al. [162] applied the IDEAS framework using Linear 

Programming to determine the AR. Both achieved the same attainable region for the given process. 

For the sake of comparability, the same model equations and model parameter as given in the two 

aforementioned literature sources are used in the following analysis.  

 

Model formulation and optimization problem 

In light of the presented synthesis approach only the balance equations of the batch reactor are 

used corresponding to those of the PFR in the literature sources. The algebraic equations for the CSTR 

in the literature model are dispensable due to the consideration of a Lagrangian fluid element in the 

EPF framework. The generic formulation in the previous subchapter is reduced by the degree of 

freedom of distributed reactant dosing, as it is in the literature example. In AR construction the 

distributed dosing of components is not beneficial for 2-dimensional problems, i.e. the number of 

independent reactions is smaller than three [163]. Based on this reduction, the storage tanks are 

neglected. Furthermore, the amounts of moles and the reactor volume are combined to concentrations, 

because the example gives no option to calculate the volumetric changes from molar changes. The 

reaction kinetics is based on simple power laws. The model equations read: 

 
𝑑𝑐𝐴

𝑑𝑡
= −𝑘1𝑐𝐴 + 𝑘2𝑐𝐵 − 𝑘4𝑐𝐴

2     (3.25) 

𝑑𝑐𝐵

𝑑𝑡
= 𝑘1𝑐𝐴 − 𝑘2𝑐𝐵 − 𝑘3𝑐𝐵     (3.26) 

𝑑𝑐𝐶

𝑑𝑡
= 𝑘3𝑐𝐵       (3.27) 

𝑑𝑐𝐷

𝑑𝑡
= 𝑘4𝑐𝐴

2       (3.28) 

with 𝑘𝑖, 𝑖 ∈ {𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠} as reaction coefficients and 𝑐𝛼 , 𝛼 ∈ {𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠} are the component 

concentrations. Parameters and initial conditions are adopted from the aforementioned literature 
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sources with 𝑘1 = 0.01 s−1, 𝑘2 = 5 s−1, 𝑘3 = 10 s−1, 𝑘4 = 0.01 m3kmol−1s−1 and 𝑐𝐴
0 = 1, 𝑐𝐵

0 =

𝑐𝐶
0 = 𝑐𝐷

0 = 0, respectively [161,162]. The resulting optimization problem for the flux profile analysis 

is stated as follows: 

 

 max
 𝑡𝑓
  𝑐𝐵(𝑡𝑓) (3.29) 

   s.t.     Component mass balances: Eqs. (3.25)-(3.28) (3.30) 

 Path constraints: 𝒄(𝑡) ≥ 0 (3.31) 

 Initial conditions: 𝒄(0) = [1, 0, 0, 0] (3.32) 

 Differential selectivity: 𝜑 =
𝑟1−𝑟2−𝑟3

𝑟1+𝑟4
.  (3.33) 

   

Results of flux profile analysis 

 The dynamic optimization aims at maximizing the concentration of the intermediate 

component B. The example does not consider a temperature dependence and, thus, the temperature 

profile is not part of its analysis. As mentioned before, the distributed reactant dosing is neglected, too. 

Hence, the focus lies on the differential reaction flux 𝑑𝜑 𝑑𝑡⁄ . The result of the corresponding dynamic 

optimization (Eqs. (3.29)-(3.33)) is depicted in Fig. 3.5. 

 

 

Figure 3.5: Results of the dynamic optimization of the modified van-de-Vusse reaction: a) Reaction progress; b) Differential 

reaction flux 

 

The resulting flux profile is subdivided in two sections: 

 

• The first section 𝑆1,1 has a positive differential reaction flux indicating a back-mixing benefit 

and, thus, is associated with a CSTR. 

• The second section 𝑆1,2 has a negative differential reaction flux indicating a benefit by plug 

flow behavior. As there is no further dosing and temperature control, the best association for 

this section is a PFR.  
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The optimal concentration of B achieved in the optimization is 𝑐𝐵
∗ = 1.13 ⋅ 10−4 kmol/m³. Note, that 

this is the optimum using only a PFR, which corresponds to the Lagrangian description used for the 

optimization. The mixing benefit from the use of a CSTR in the first reaction section takes effect when 

optimizing the derived optimal reactor-network consisting of a CSTR and a PFR. This leads to an 

optimum at 𝑐𝐵
∗ = 1.24 ⋅ 10−4 kmol/m³, which is in accordance to literature [161,162]. 

In a second step, the same approach is used to construct the AR of the process. For this 

purpose, the differential reaction flux is included in the dynamic optimization to switch between the 

balance equation for the PFR and the CSTR, see Eq. (3.34). This is possible since a simultaneous 

optimization framework on a discretized time horizon is used (see subchapter A.7). Therein, the 

numerical solver can choose between the balance equation of the PFR and the back-mixed CSTR 

depending on the calculated differential reaction flux on every discretized element in each iteration of 

the dynamic optimization. This can be seen as a kind of automation of the analysis of the differential 

reaction flux, instead of the graphical analysis introduced before. The dosing, removal, and 

temperature control are independent of this. 

 

𝒄(𝑡𝑖) = {
𝒄(𝑡𝑖−1) +

𝑑𝒄

𝑑𝑡𝑖
 , 𝑖𝑓

𝑑𝜑

𝑑𝑡𝑖
< 0

𝒄(𝑡𝑖−1) + 𝜏 ⋅ 𝑵 ⋅ 𝒓(𝒄(𝑡𝑖)), 𝑖𝑓
𝑑𝜑

𝑑𝑡𝑖
> 0

  ∀𝑖 ∈ {𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑒𝑑 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠} (3.34) 

 

The AR of this example is constructed in the [𝑐𝐴, 𝑐𝐵]-space, such as introduced in literature [161,162]. 

To use the presented dynamic optimization framework for AR construction, the optimization aiming at 

maximum 𝑐𝐵 is carried out for different specified final values 𝑐𝐴
𝑓
. The resulting dynamic optimization 

problem is therefore extended by the terminal constraint 𝑐𝐴(𝑡𝑓) = 𝑐𝐴
𝑓
, and the switching condition (Eq. 

(3.34)). The results of several runs of this optimization for scanning 𝑐𝐴
𝑓
 from 0 to 1 are shown in Fig. 

3.6 (red, dashed line). The dynamic optimization based results indicate as shown before the use of a 

CSTR and a subsequent PFR as optimal reactor-network to reach the optimal point with highest 

concentration 𝑐𝐵
𝑓
. However, the hull of the AR is not convex in the range of 0.4 ≤ 𝑐𝐴 ≤ 1. In the 

classical AR approach those concave regions can be closed by mixing of streams from different points 

of the AR. In the here developed FPA approach it can be identified by optimal dosing of components, 

e.g. inlet stream along the reaction coordinate. Since this was neglected, the concept of dosing has to 

be reduced to bypassing only, to find at least benefits from mixing reactor inlet and outlet streams. 

This is realized by changing the definition of the final values of the concentrations in the dynamic 

optimization problem (Eqs. (3.35)-(3.36)). The objective function is changed to: 

 

max
   𝑡𝑓,𝜀

𝑐𝐵
𝑓
= 𝜀𝑐𝐵(𝑡𝑓) + (1 − 𝜀)𝑐𝐵(0),    (3.35) 

 

and the terminal constraint defining the final value of A is replaced by: 

 

𝑐𝐴
𝑓
= 𝜀𝑐𝐴(𝑡𝑓) + (1 − 𝜀)𝑐𝐴(0),     (3.36) 

 

whereby 𝜀 𝜖 [0,1] is a mixing factor deciding about the mixing fractions of inlet and outlet stream. The 

calculation of the AR, considering these modifications and the same procedure as stated before, leads 

to the blue, solid line in Fig. 3.6 which matches exactly the results from literature [161,162].  
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Figure 3.6: Attainable region constructed by the presented reactor-network synthesis approach without bypass mixing (red, 

dashed line) and with by-pass mixing (blue, solid line) 

 

Discussion 

 The comparison of the flux profile analysis and the attainable region approach for 

reactor-network synthesis revealed that the main difference and possible advantage of a dynamic 

optimization approach is the direct determining of an optimal process design. While the AR approach 

determines the whole region of attainable states, i.e. concentrations, the FPA seeks for a particular 

optimal design consisting of the optimal reactor-network and its control by heat and mass fluxes. This 

allows on the one hand for a direct translation into candidates for optimal continuous reactor-networks 

and on the other hand for a direct adaptation of the results for an optimal control strategy of a batch 

process. Since the FPA is not tailored to construct the AR of a process, several adaptations have to be 

made to use it for this purpose, e.g. the transformation to the concentration space. The construction of 

an attainable region with the flux profile analysis is possible by solving a series of dynamic 

optimizations to determine the convex hull of the corresponding AR. The simultaneous inclusion of 

the proposed bypass modification is used for the case that the concave part of the AR is already 

identified and is supposed to be closed. Theoretically, this degree of freedom can be included for all 

finite elements within the discretized dynamic optimization, but the computational cost increases 

significantly for high number of elements. It is rather recommended to conduct this part of the AR 

construction either when the knowledge of the concave regions is already available, or by reaching the 

points of the convex hull by mixing of available streams within the AR corresponding to the classical 

graphical construction. For higher dimensional problems (𝑛 ≥ 3), the computational effort for 

constructing the AR with the presented dynamic optimization based approach might be larger in 

comparison to state-of-the-art approaches, which are tailored for this purpose. For these cases, 

Feinberg [163] and Hillestad [47,48] demonstrated how the distributed dosing in a DSR can be 

introduced to the construction of an AR and a corresponding dynamic optimization problem, 

respectively.  

 The systematic generation approach of Hillestad [47,48] derives ideal reactor-networks as well 

from analyzing the results of optimal control calculations. The beneficial mixing for each reaction 

section is evaluated using a dimensionless dispersion coefficient, which is calculated along the 

reaction path, similar to the differential selectivity used in the presented approach. The differences of 

the FPA originate from the notion and description of the fluid element and the formulation within the 

EPF framework. Since the systematic generation approach of Hillestad [47,48] is derived within the 
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same clear mathematical description as the AR approach, it is assumed that the presented results 

would be in accordance with results achieved by applying this procedure. 

 

3.2.3 Reactor-network synthesis for hydroformylation of 1-dodecene 

 In the previous section it was demonstrated, how the flux profile analysis is linked to the 

attainable region approach, and it was successfully applied to a reaction network which stands 

exemplarily for numerous real processes. For the sake of comparability, no temperature control and 

distributed reactant dosing was enabled. In the following, the flux profile analysis is applied on the 

hydroformylation of 1-dodecene aiming at the synthesis of reactor-network candidates, whereby both 

the temperature control and the distributed dosing of reactant 1-dodecene are enabled. Furthermore, 

the optimal distributed control of syngas partial pressures is activated, since the hydroformylation is a 

gas-liquid multiphase process, which requires gaseous components for the desired reaction to take 

place.  

 

Model formulation and optimization problem 

The hydroformylation reaction network is illustrated in Fig. 2.10 and the corresponding 

reaction rates are given in Eqs. (2.1)-(2.7). It is assumed that the mass transfer from gas to liquid is not 

limiting and, thus, the gas concentrations in the liquid phase are always at their equilibrium 

concentrations, which are calculated based on the corresponding partial pressures of the gaseous 

reactants, H2 and CO, according to Eq. (2.11). Based on this assumption, the partial pressures of H2 

and CO are not balanced individually and instead directly optimized as decision variables. The 

component mass balance for the liquid phase components (Eq. (3.37)), i.e. the hydrocarbons (CH), is 

derived in terms of moles from the generic mass balance in Eq. (3.13). In such a case that the balanced 

states are extensive, e.g. amount of moles or masses, it is reasonable to directly optimize the 

corresponding flux instead of its flux density, because then the volumes can be determined 

independently. Therefore, the molar flux density vector 𝒚𝑚 is replaced by the molar flux vector 𝒚𝑉
𝑚 =

𝒚𝑚 ⋅ 𝑉𝑓𝑙𝑢𝑥. This adaptation will be used for all following modeling within the FPA approach 

throughout the work. The solvents (SOL) and gases (GAS) in the liquid phase are not balanced, since 

they are treated as inert for the reaction. 

 
𝑑𝑛𝛼
𝑑𝑡
= 𝑉𝑙𝑖𝑞 (𝑗𝛼

𝑚 + 𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡(∑ 𝜈𝛼,𝑚𝑟𝑚
𝑀
𝑚=1 )) + 𝑦𝑉,𝛼

𝑚 ,    𝛼 ∈ 𝐶𝐻   (3.37) 

 

The changes of amount of moles 𝑛𝛼 in Eq. (3.37) are defined by the volume of the liquid phase 𝑉𝑙𝑖𝑞 

calculated via Eq. (3.38), the molar diffusion fluxes 𝑗𝛼
𝑚 which are zero due to the assumption that no 

hydrocarbons can move across the border of the fluid element, the molar mass fluxes 𝑦𝛼
𝑚 which are 

degrees of freedom according to the chosen synthesis purpose, the stoichiometric coefficients 𝜈𝛼,𝑚 of 

the hydroformylation reaction, and the reaction rates 𝑟𝑚. Because the latter are defined in dimensions 

mol ml−1gcat
−1 , the reaction rates are multiplied with the concentration 𝑐𝑐𝑎𝑡 and molar mass 𝑀𝑐𝑎𝑡 of 

the homogeneous catalyst.  

 

𝑉𝑙𝑖𝑞 = ∑
𝑛𝛼𝑀𝛼

𝜌𝛼
𝛼 ∈ 𝐶𝑂𝑀        (3.38) 

For the calculation of 𝑉𝑙𝑖𝑞 in Eq. (3.38) the molar masses 𝑀𝛼 (Tab. A.4) and the mass densities 𝜌𝛼 

(Eq. (3.39)) of all chemical components (COM) are included. The coefficients in Eq. (3.39) are given 

in Tab. A.4. 
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𝜌𝛼 = 𝑎𝜌,0,𝛼 + 𝑎𝜌,1,𝛼𝑇,     𝛼 ∈ 𝐶𝑂𝑀     (3.39) 

 

In addition, the storage tanks introduced in Fig. 3.4 are balanced according to Eq. (3.40). 

 

𝑑𝑛𝑎,𝑠𝑡

𝑑𝑡
= {

−𝑦𝑉,𝑎
𝑚 (𝑡),    𝛼 ∈ {𝑛𝐶12𝑒𝑛}

0,    𝛼 ∈ {𝐶𝐻/𝑛𝐶12𝑒𝑛}
     (3.40) 

 

Based on this model formulation and the corresponding assumptions, the dynamic optimization 

problem can be derived. Because of the arising selectivity problem with respect to the desired linear 

aldehyde, the objective for the reactor-network synthesis is chosen to be the selectivity with respect to 

n-tridecanal (nC13al). The synthesis is exemplarily carried out for a predefined conversion of the main 

reactant 1-dodecene (nC12en) of 99 % (Eq. (3.54)) and a constraint is added which ensures a high 

ratio of linear to branched aldehydes (n/iso) (Eq. (3.56)). The first is chosen in order to find the best 

performance at high use of reactant and the latter to avoid high formation of branched aldehydes, 

which are very hard to separate from the preferred linear product. The final time is exemplarily set an 

upper limit of 100 min. Together with the aforementioned degrees of freedom, the resulting dynamic 

optimization problem reads: 

 

 max
 𝑇(𝑡),𝑦𝑉,𝑛𝐶12𝑒𝑛

𝑚 (𝑡),𝑝𝐶𝑂(𝑡),𝑝𝐻2(𝑡),𝑡𝑓
  𝑆𝑛𝐶13𝑎𝑙(𝑡𝑓) (3.41) 

   s.t.     Component mass balances: Eq. (3.37) (3.42) 

 Storage mass balances: Eq. (3.40) (3.43) 

 Reaction kinetics: Eqs. (2.2)-(2.7) (3.44) 

 Catalyst equilibrium: Eq. (2.1) (3.45) 

 Constitutive equations: Eqs. (3.38)-(3.39) (3.46) 

 Gas solubilities: Eq. (2.11)  (3.47) 

 Catalyst and solvent ratios: Eqs. (2.13)-(2.14) (3.48) 

 Dosing constraint: ∫ 𝑦𝑉,𝑛𝐶12𝑒𝑛
𝑚 (𝑡)

𝑡𝑓
0

𝑑𝑡 ≥ 𝑛𝑛𝐶12𝑒𝑛
𝑚𝑖𝑛   (3.49) 

 Path constraints: 𝒏(𝑡) ≥ 0, 𝒏𝑠𝑡(𝑡) ≥ 0 (3.50) 

  𝑦𝑉,𝛼
𝑚 (𝑡) = 0, 𝛼 ∈ {𝐶𝐻/𝑛𝐶12𝑒𝑛} (3.51) 

  𝑦𝑉,𝑛𝐶12𝑒𝑛
𝑚 (𝑡) ≥ 0 (3.52) 

  10 bar ≤ 𝑝𝑡𝑜𝑡(𝑡) = 𝑝𝐶𝑂(𝑡) + 𝑝𝐻2(𝑡) ≤ 20 bar (3.53) 

  363.15 K ≤ 𝑇(𝑡) ≤ 388.15 K   (3.54) 

 Terminal constraints: 𝑡𝑓 ≤ 100 min  (3.55) 

  𝑋𝑛𝐶12𝑒𝑛 =
𝑛𝑛𝐶12𝑒𝑛(0) − 𝑛𝑛𝐶12𝑒𝑛(𝑡𝑓)

𝑛𝑛𝐶12𝑒𝑛(0)
= 99 % (3.56) 

  𝑆𝑛𝐶13𝑎𝑙 =
𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)−𝑛𝑛𝐶13𝑎𝑙(0)

𝑛𝑛𝐶12𝑒𝑛(0)−𝑛𝑛𝐶12𝑒𝑛(𝑡𝑓)
   (3.57) 

  𝑛/𝑖𝑠𝑜 =
𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)

𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)+𝑛𝑖𝐶13𝑎𝑙(𝑡𝑓)
≥ 95 %  (3.58) 

 Initial conditions: 𝒏(𝑡 = 0) = 𝒏0 = 𝟎  (3.59) 

  𝒏𝑠𝑡(𝑡 = 0) = 𝒏𝑠𝑡,0 = 𝟏 (3.60) 

 Differential selectivity: 𝜑 =
𝑟1

𝑟1+𝑟2+𝑟3+𝑟6
. (3.61) 

 

Results of flux profile analysis 

The first step of the FPA is to solve the dynamic optimization problem above aiming at the 

flux profiles for the reactant dosing, the temperature, and the differential reaction flux. In addition, the 
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control of the gas partial pressures of H2 and CO arise, which are treated similar to the temperature as 

a control variable and not as an individual reactant dosing, because their characteristics are not 

informative regarding the beneficial mixing behavior but for decision-making about distributed, initial, 

or constant control of the corresponding reaction section.  

 

Figure 3.7: Results of the dynamic optimization of the hydroformylation of 1-dodecene for reactor-network synthesis: a) 

Reaction progress in moles; b) Reactant dosing flux profile; c) Control flux profiles; d) Differential reaction flux 

 

Therefore, the partial pressure profiles are drawn together with the temperature profile in one plot. The 

results of the dynamic optimization problem in Eqs. (3.41)-(3.61) are shown in Fig. 3.7. Analyzing the 

course of the flux profiles and subdividing them into characteristic sections is step two of the FPA. 

Following the rules introduced in subchapter 3.1.3, one obtains a maximum of three sections as 

illustrated in Fig. 3.7. They are analyzed and associated with appropriate reactor types in the 

following: 

 

• In the first section 𝑆2,1 an initial dosing of the reactant takes place, the temperature shows an 

increasing and, thus, dynamic characteristic, the partial pressure indicates a dynamic profile as 

well, and the differential reaction flux is negative. Due to its dynamic control and negative 
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differential reaction flux it is best realized with a PFR. Although the liquid reactant dosing is 

only initial, the dynamic partial pressures require a distributed dosing of gaseous reactants.  

• In the subsequent section 𝑆2,2 no dosing appears, the temperature profile is constant, the 

partial pressures are still dynamic, and the differential reaction flux has changed to positive. 

The latter indicates a benefit from back-mixing and, thus, a CSTR, in which also the constant 

temperature profile can be realized. But the dynamic partial pressure profiles need a 

distributed dosing or a cascade of reactors, which allows to approximate the dynamic profiles. 

Therefore, this section can be approximated by a cascade of CSTRs. 

• Finally, the last section 𝑆2,3 has no dosing, constant temperature and partial pressure profiles, 

and a positive differential reaction flux. With these characteristics it is predestined to be 

realized in a single CSTR. 

 

This leads to an optimal reactor-network of a PFR with distributed gas dosing followed by a cascade 

of CSTRs. As discussed in subchapter 3.1.3 it is worthwhile to analyze the network for possible 

reduction potentials. One can see, that the second section might also be merged either with the first 

section neglecting the back-mixing benefit, or with the third section neglecting its dynamic partial 

pressure profiles. Both mergers would lead to an alternative reactor-network of only two units, a PFR 

with distributed gas dosing and a CSTR. The maximal reactor-network, in which the number of 

CSTRs in the cascade is set to three, and the reduced reactor-network are illustrated in Fig. 3.8 c) and 

b), respectively. To quantify the potentials of both candidates, they are evaluated in the 

[𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-space. With this analysis, the potentials of the derived reactor-network candidates 

are quantified for other conversions, too. As reference case, a single DSR (Fig. 3.8 a)) is investigated, 

since it is the direct continuous analog to the underlying semi-batch reactor process and, thus, the EPF 

fluid element.  

 

 

Figure 3.8: Reactor-network candidates for the hydroformylation of 1-dodecene 

 

The results of the evaluation of the three derived reactor-network candidates in Fig. 3.9 indicate that 

the addition of a back-mixed reaction section in form of a CSTR to the PFR with distributed gas 

dosing is beneficial, especially for conversions between 90 % and 99 % (red line). At the conversion 

point chosen for the flux profile analysis (𝑋𝑛𝐶12𝑒𝑛 = 99 %) a selectivity enhancement of 3 % is 

achieved in comparison to the single DSR (blue line). The further addition of CSTRs in form of a 
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cascade (yellow line) has no significant benefit. The PFR+CSTR network is, thus, the most promising 

candidate for a further detailed design showing the best performance in the [𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-space. 

 

Figure 3.9: Evaluation of the reactor-network candidates from Fig. 3.8 in the [𝑺𝒏𝑪𝟏𝟑𝒂𝒍, 𝑿𝒏𝑪𝟏𝟐𝒆𝒏]-space 

 

3.3 Reactor-recycle-network synthesis  

 The next level of synthesis is the reactor-network synthesis with recycling. It corresponds to 

the flux profile analysis enabling the dosing of reactants and products, whereby recycling provides the 

latter. Therefore, a separation has to be assumed after the reaction takes place. To allow for recycling 

of pure species the separation has to have ideal splits. The fundamentals of the FPA in subchapter 

3.2.1 are extended for the case of additional product dosing with respect to the dynamic optimization 

problem, the underlying batch process scheme, and the ideal units, which are supposed to be 

associated to the characteristic flux profile sections. In the first step, the FPA for reactor-recycle-

network synthesis is applied again on a literature example. This time the focus lies on its comparison 

to typical superstructure optimization approaches as second state-of-the-art method for reactor 

synthesis. Subsequently, the hydroformylation process of 1-dodecene in a TMS system is considered 

and optimal candidates for reactor-recycle-networks are derived via FPA. 

 

3.3.1 Fundamentals 

The additionally considered recycling of components allows for including product dosing into 

the optimization and its corresponding batch process scheme. The previous scheme for reactor-

network synthesis (Fig. 3.4) is extended by an ideal separation and storage tanks for products, see Fig. 

3.10. The ideal separation is assumed to work instantaneously and refills the product storage tanks to 

the same level as they were before the reaction started. This extension intends to ensure, that the 

amounts of products that are considered to evaluate the process performance are not originated from 

the storage tanks but only from the reaction progress. Furthermore, it ensures that the amounts of 

products dosed to the process are collected after the process and are - virtually - available for the next 

batch run. Hence, the products are only added in order to analyze the reaction characteristics. The 

resulting dynamic optimization problem is stated in Eqs. (3.62)-(3.74).   
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Figure 3.10: Translation of EPF fluid element into analogous batch process scheme in case of reactor-recycle-network 

synthesis 

 

 min
𝒖(𝑡),𝝃

(∫ 𝐿(𝑡)𝑑𝑡 + 𝐼(𝝆0) + 𝐸(𝝆𝑓)
𝑡𝑓
0

)  (3.62) 

   s.t.     
𝑑𝝆

𝑑𝑡
= 𝒋 + 𝒚 +𝑴 ⋅ 𝑵 ⋅ 𝒓𝑉 (3.63) 

 𝑑𝝆𝑠𝑡

𝑑𝑡
= −𝒚   (3.64) 

 𝒈(𝝆) = 0, 𝒉(𝝆) ≤ 0 (3.65) 

 𝒖𝐿 ≤ 𝒖(𝑡) ≤ 𝒖𝑈  (3.66) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈 (3.67) 

 𝒖(𝑡) = [𝒋(𝑡), 𝒚(𝑡), 𝑇(𝑡)]  (3.68) 

 𝝃 = [𝑡𝑓] (3.69) 

 𝒚(𝑡) ≥ 0 (3.70) 

 𝝆(𝑡 = 0) = 𝝆0 = 𝟎 (3.71) 

 

𝝆𝑓 = {

𝜌𝛼(𝑡𝑓),     𝛼 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠}

𝜌𝛼(𝑡𝑓) − ∫ 𝑦𝛼(𝑡)
𝑡𝑓

0

𝑑𝑡,     𝛼 ∈ {𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠}
 (3.72) 

 𝝆𝑠𝑡(𝑡 = 0) = 𝝆𝑠𝑡
0 , 𝝆𝑠𝑡(𝑡 = 𝑡𝑓) = 𝝆𝑠𝑡

𝑓
  (3.73) 

 
∫ 𝒚(𝑡)
𝑡𝑓
0

𝑑𝑡 ≥ {
𝜌𝛼
𝑚𝑖𝑛,     𝛼 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠}

0,     𝛼 ∈ {𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠}
. (3.74) 

 

In comparison to the DOP in subchapter 3.2.1 it is augmented by constraints for handling the 

additional product streams. With Eq. (3.72) the correct product streams for performance evaluation are 

determined and Eq. (3.73) defines the filling levels of the product storage tanks. In addition, the dosing 

fluxes are enabled for products in Eq. (3.70) and Eq. (3.74) as well. The filling levels have an 

important role in carrying out the analysis, since depending on their predefined values the reactor 

synthesis obtains different results. Thereby, the resulting maximum possible ratios of particular 

products to the main reactant are crucial. They decide about the possible scale of the recycle streams 
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and the possible dilution of reactants. To evaluate the impact of these filling levels, a sensitivity 

analysis is recommended. Especially in the case that a component is completely dosed along the 

reaction coordinate and, thus, limited by its predefined filling level. In the following examples 

(subchapters 3.3.2 and 3.3.3) it is demonstrated exemplarily, how such an analysis might be 

conducted. 

 In contrast to the reactor-network synthesis, the additional product dosing on this level allows 

for attaining a significantly larger part of the composition space at each point along the reaction 

coordinate. On the former level only back-mixing as a form of internal recycling is available. On the 

level of reactor-recycle-network synthesis the recycling of products allows for adjusting the optimal 

composition along the reaction coordinate more accurately. Thereby, the recycling can be of two 

different kinds: (i) a recycle from the end of the reaction to the beginning of a section which is called 

initial recycling (IR) and (ii) an intermediate recycle along the reaction coordinate which is called 

distributed recycling (DR). In case scenario (i) occurs in the first reaction section it is called a global 

recycle. The set of ideal process units introduced in Fig. 3.3 in subchapter 3.2.1 is, therefore, 

augmented by generic ideal process units with recycling, see Fig. 3.11.  

 

 

Figure 3.11: Generic ideal process units for reactor-recycle-network synthesis within the FPA framework 

 

Due to the potential gained by the additional product dosing, the result of the dynamic optimization 

cannot be enhanced by sectioning in back-mixed and plug flow sections. It represents already the 

maximum potential of the reaction by dosing of reactants and products and can be realized in a DR-

DSR. The only limitation might arise by the amount of species provided for dosing, i.e. the filling 

levels of the product storage tanks. However, this is considered within a sensitivity analysis as 

mentioned above. The target of the FPA on the level of reactor-recycle-network synthesis is, thus, not 

to find a reactor-network which is better than a single unit with distributed control. Instead, the 

maximum potential of the optimal DR-DSR is identified and the corresponding fluxes are determined, 

in order to approximate it with reactor-recycle-network candidates of less complexity, i.e. less amount 

of required recycle streams, or simpler control trajectories. The distributed dosing of all chemical 

components, especially the products, of any arbitrary composition is only possible assuming ideal 

splits in the separation unit. In case of non-ideal splits, the realizability of these recycling fluxes is 

limited and it would be reasonable to find reactor-networks, which approximate the optimal solution 
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with fewer amount of different recycling fluxes. Therefore, the FPA provides the necessary tools. As 

introduced in the previous subchapters, the fluxes are determined and subdivided in characteristic 

sections. Analyzing these fluxes and their sections carefully allows for revealing reduction potentials. 

The main difference to the reactor-network synthesis is the target of the reduction process. Instead of 

reducing only the amount of sections and, thus, of corresponding reactor units, in addition the amount 

of required recycling fluxes is reduced, and sections of beneficial recycling are e.g. approximated by a 

back-mixed reactor or neglected when the section is of minor importance. A subsequent evaluation of 

the resulting candidates, e.g. in the selectivity-conversion-space, allows for quantifying the impact of 

the recycling fluxes and identifying the approximation with the best trade-off between recycling effort 

and reaction performance. A lucid way to illustrate the reduction steps and the corresponding is a tree 

diagram where every further branch leads to an additional reactor-recycle-network candidate. This will 

be demonstrated on the reactor-recycle-synthesis for the literature example in subchapter 3.3.2 and the 

hydroformylation process in subchapter 3.3.3. 

 

3.3.2 Comparison to superstructure optimization approaches for the van-

de-Vusse reaction 

 The synthesis of reactor-networks of any kind is often done by means of superstructure (SS) 

optimization. The available methods in literature and prominent application examples have been 

discussed in subchapter 2.2. One of these examples is the classical van-de-Vusse reaction combining a 

consecutive and a parallel reaction of different order while favoring the intermediate product. This 

process example is optimized using SS optimization in several publications, see e.g. [34], [37]. In 

contrast to the modified van-de-Vusse reaction introduced in subchapter 3.2.2, the classical reaction 

network has no reverse reaction. In addition, the temperature dependence is considered allowing for 

optimizing the temperature profile. The application on this process example and the comparison to the 

literature results intends to demonstrate, how the presented reactor synthesis is able to provide 

candidates for further detailed design and to reduce the search space for a subsequent use of SS 

optimization approaches. The reaction network for the classical van-de-Vusse process is illustrated in 

Scheme 3.2. 

 

Scheme 3.2: Classical van-de-Vusse reaction 

 

Model formulation and optimization problem 

The aforementioned temperature dependence is taken into account by adding a standard 

Arrhenius term to the reaction rates (Eq. (3.75)).  

 

𝑘𝑖 = 𝑘0,𝑖 𝑒𝑥𝑝 (
−𝐸𝐴,𝑖

𝑅𝑇
) , ∀𝑖 ∈ {𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠}   (3.75) 

 

The rate coefficients 𝑘𝑖 in Eq. (3.75) are defined by the rate constants 𝑘0,𝑖, the activation energies 𝐸𝐴,𝑖, 

the universal gas constant 𝑅, and the temperature 𝑇. According to literature, the rate constants are 

defined with 𝑘0,1 = 1.5 ∙ 10
6 s−1, 𝑘0,2 = 4.4 ∙ 10

8 s−1, and 𝑘0,3 = 100 L mol
−1 s−1, and the 

activation energies with 𝐸𝐴,1 = 6.6274 ∙ 10
4 J mol−1, 𝐸𝐴,2 = 9.9411 ∙ 10

5 J mol−1, and 𝐸𝐴,3 =

3.3137 ⋅ 104 J mol−1. The mass balances are derived in terms of moles (Eqs. (3.76)-(3.80)).  
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𝑑𝑛𝐴

𝑑𝑡
= 𝑉𝑅(−𝑘1𝑐𝐴 − 𝑘3𝑐𝐴

2) + 𝑦𝑉,𝐴
𝑚 ,    (3.76) 

𝑑𝑛𝐵

𝑑𝑡
= 𝑉𝑅(𝑘1𝑐𝐴 − 𝑘2𝑐𝐵) + 𝑦𝑉,𝐵

𝑚 ,    (3.77) 

𝑑𝑛𝐶

𝑑𝑡
= 𝑉𝑅(𝑘2𝑐𝐵) + 𝑦𝑉,𝐶

𝑚 ,     (3.78) 

𝑑𝑛𝐷

𝑑𝑡
= 𝑉𝑅(𝑘3𝑐𝐴

2) + 𝑦𝑉,𝐷
𝑚 ,     (3.79) 

 

𝑉𝑅 =
𝑛𝑡𝑜𝑡

𝑐𝑡𝑜𝑡
=

∑ 𝑛𝛼
𝑁
𝛼=1

∑ 𝑐𝛼
𝑁
𝛼=1

 ,      (3.80) 

 

The therein explicitly occurring reactor volume 𝑉𝑅 is determined via Eq. (3.80) assuming a constant 

total concentration of 𝑐𝑡𝑜𝑡 = 1 mol/L according to literature [34,37]. The initial filling level of 

reactant A in the storage tank is equal to the initial condition in the literature sources (𝑛𝐴,𝑠𝑡
0 = 1 mol), 

whereas the initial filling levels of the product tanks are not put to zero as the initial conditions in the 

literature sources. Instead, they are set to 𝑛𝐵,𝑠𝑡
0 = 𝑛𝐶,𝑠𝑡

0 = 𝑛𝐷,𝑠𝑡
0 = 1 mol to identify the benefits of 

product dosing, i.e. recycling of products. Due to the considered dosing of chemical components from 

the storage tanks, balances for storage tanks are added (Eq. (3.81)). 

 
𝑑𝒏𝑠𝑡

𝑑𝑡
= −𝒚𝑉

𝑚     (3.81) 

 

The resulting optimization problem is stated as: 

 

 max
𝒚𝑉
𝑚(𝑡),𝑇(𝑡),𝑡𝑓

𝑛𝐵
𝑓
 (3.82) 

   s.t.     Component mass balances: Eqs. (3.76)-(3.79) (3.83) 

 Storage mass balances: Eq. (3.81) (3.84) 

 Constitutive equations: Eqs. (3.75), (3.80) (3.85) 

 Dosing constraints: ∫ 𝒚𝑉
𝑚(𝑡)

𝑡𝑓

0

𝑑𝑡 ≥ {
𝑛𝛼
𝑚𝑖𝑛,     𝛼 ∈ {𝐴}

0,     𝛼 ∈ {𝐵, 𝐶, 𝐷}
 (3.86) 

 Path constraints: 𝒚(𝑡) ≥ 0, 𝒏(𝑡) ≥ 0, 𝒏𝑠𝑡(𝑡) ≥ 0 (3.87) 

  300 K ≤ 𝑇(𝑡) ≤ 800 K (3.88) 

 Initial conditions: 𝒏0 = 0,  𝒏0,𝑠𝑡 = 1    (3.89) 

 Terminal constraints: 𝑡𝑓 ≤ 100 s (3.90) 

  𝒏𝑓 = {

𝑛𝛼(𝑡𝑓),     𝛼 ∈ {𝐴}

𝑛𝛼(𝑡𝑓) − ∫ 𝑦𝑉,𝛼
𝑚 (𝑡)

𝑡𝑓

0

𝑑𝑡,     𝛼 ∈ {𝐵, 𝐶, 𝐷}
 (3.91) 

  𝒏𝑠𝑡
𝑓
= 𝒏𝑠𝑡(𝑡 = 𝑡𝑓) (3.92) 

 Differential selectivity: 𝜑 =
𝑟1−𝑟2

𝑟1+𝑟3
.  (3.93) 

 

Results of flux profile analysis 

The results of the EPF optimization of the non-isothermal, classical van-de-Vusse reaction are 

shown in Fig. 3.12. The maximum objective is reached with  𝑛𝐵
𝑓
= 0.8134 mol. This value is in the 

same range as documented in literature [34,37]. The optimal dosing fluxes indicate that it is beneficial 

to dose reactant and side products at the very beginning of the process. The reason for the side product 

dosing is not the dilution of the reactant, instead the product B is supposed to be diluted. This is owed 

to the very high temperatures and corresponding high reaction rates at the beginning of the reaction. 

The solver chooses a trade-off between (i) high temperature at the beginning, which supports the 

undesired reaction 𝑟2 due to its high activation energy, and (ii) the best ratio of concentrations of 
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components A and B. In order to support the main reaction from A to B, reactant A is completely 

dosed at the beginning. Simultaneously, the consecutive reaction 𝑟2 is inhibited as well by diluting B 

via side product dosing. Subdividing the dosing flux, the temperature profile, and the differential 

reaction flux into characteristic sections, such as introduced in Section 3.1.3, one ends up with the 

following sections: 

 

Figure 3.12: Results of the dynamic optimization of the classical van-de-Vusse reaction: a) Reaction progress; b) Dosing 

flux profiles; c) Temperature control profile; d) Differential reaction flux  

 

• The first reaction section 𝑆3,1 has an initial dosing of reactant and side products, a dynamic 

temperature profile and a negative differential reaction flux. According to the generic ideal 

process units given in Fig. 3.11, an IR-PFR is most suitable allowing for realization of the 

global recycling.  

• The subsequent second reaction section 𝑆3,2 is much longer and indicates no individual 

dosing, an almost constant temperature profile and a positive differential reaction flux. Due to 

these characteristics, only an internal recycling in form of back-mixing is necessary in this 

section, which points to the use of a CSTR. In case the temperature profile is not 



56 
 

 

approximated to be constant, the CSTR might be replaced by a DR-PFR with a slightly 

dynamic temperature profile. 

 

The results indicate benefits from internal recycling (back-mixing) in the second reaction 

section and global recycling to the inlet of the reactor-network. A further important aspect is the 

realization of the sharp temperature profile in the first reaction section. A strict realization of these flux 

profiles ends up in a DR-DSR, as it was discussed in the previous subchapter. When the identified 

reaction sections from Fig. 3.12 are translated according to the FPA, the realization of an IR-PFR with 

either a subsequent CSTR or a DR-PFR is recommended. Depending whether the focus is put on the 

back-mixing benefit or the exact realization of the temperature profile in the second reaction zone, 

respectively. For a detailed quantitative analysis, it is reasonable to augment the set of reactor-network 

candidates by simpler reactor-networks neglecting e.g. the global recycle or approximating the sharp 

temperature control by a simpler profile. In this way the impact of these aspects on the performance 

can be identified and a better decision-making is possible, e.g. when it comes to an economic 

evaluation. Neglecting for instance the global recycling of side products, one obtains a simple 

PFR+CSTR network, which is in good accordance to the superstructure optimization results of 

Schweiger and Floudas [37] who proposed a network of a PFR with optimal temperature control and a 

subsequent CSTR. Note, that in their results the CSTR has a much higher residence time than the PFR 

and, thus, the back-mixing takes place almost over the entire reaction time, which might indicate also 

a benefit of a global recycling and is as well evident in the here determined residence times. An 

additional reduction option targets on the sharp temperature profile, which might be approximated by 

several small sections of constant temperature. Including the obvious benefit from side product 

recycling and the back-mixing benefit indicated by the differential reaction flux, a cascade of CSTRs 

seems to be a promising reduced reactor-network. The same result was achieved by Kokossis and 

Floudas [34], who optimized a PFR approximated by a cascade of CSTRs with intermediate cooling, 

indicating a similar temperature characteristic as shown in Fig. 3.12 b). Their results indicate a first 

section as well where no recycling takes place and a second section where recycling takes place. But 

these recycling streams are supposed to act as cooling medium, and a possible global recycle is again 

not included. The reduction scenarios and the resulting reactor-recycle-network candidates are 

summarized within a tree diagram (Fig. 3.13). 

 

 

Figure 3.13: Tree diagram for the synthesis of reactor-recycle-network candidates for the classical van-de-Vusse reaction 
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Sensitivity analysis for the storage tank filling levels 

 As mentioned in the fundamentals for the reactor-recycle-network synthesis via FPA 

(subchapter 3.3.1), the filling levels of the product storage tanks play a crucial role when evaluating 

the maximum potential of a process on this level of synthesis. Therefore, a sensitivity analysis is 

carried out to quantify their impact on the previous synthesis procedure. The dynamic optimization 

problem is solved for different 𝑛𝛼,𝑠𝑡
0 , 𝛼 ∈ {𝐵, 𝐶, 𝐷} in the range of 1. .50 mol. The resulting final 

values of component B are shown in Fig. 3.14.  

 

 

Figure 3.14: Sensitivity analysis of the final amount of product B for different storage tank filling levels within the dynamic 

optimization  

  

Evidently, the initial filling levels of the product storage tanks influence the optimization 

results significantly. Several percent of product B can be gained by increasing the recycled amount of 

products by factors of two to five. With further increase of the filling levels this effect reduces clearly. 

An interesting aspect of this process is revealed when analyzing the flux profiles of the cases of higher 

storage tank filling levels. In Fig. 3.15 the case of 𝑛𝛼,𝑠𝑡
0 = 5 mol, 𝛼 ∈ {𝐵, 𝐶, 𝐷} is illustrated. The 

characteristics of the dosing fluxes and the differential reaction flux are qualitatively the same as in the 

case of smaller filling levels, but the temperature profile is much less sharp at the beginning and the 

thereby arising maximum temperature is significantly smaller. Thus, the increase of the recycling 

streams is accompanied by a potentially simpler realizable temperature control. For a further detailed 

design, which might consider an economic evaluation, this aspect has to be paid attention. Moreover, 

it might be reasonable to carry out this sensitivity analysis first, in order to identify reasonable ranges 

for the filling levels, and afterwards conduct the FPA to derive suitable reactor-network candidates. 

Although the product dosing should be able to identify back-mixing benefits, this example 

reveals a possibly arising problem. When the product dosing at the beginning of the reaction has a 

clear benefit, it is not increased individually at a section of back-mixing benefit, since the increased 

product amounts are still present from the initial dosing of products. This makes the analysis of the 

differential reaction flux indispensable for the presented approach. 
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Figure 3.15: Results of the dynamic optimization of the classical van-de-Vusse reaction for storage tank filling levels at 

𝒏𝜶,𝒔𝒕
𝟎 = 𝟓 𝐦𝐨𝐥, 𝜶 ∈ {𝑩, 𝑪, 𝑫}: a) Reaction progress; b) Dosing flux profiles; c) Temperature control profile; d) Differential 

reaction flux   

  

Discussion 

Superstructure optimization is often used for process design purposes, especially for reactor-network 

synthesis. With nowadays computational power even very large-scale NLPs and MINLPs can be 

solved to find the optimal process configuration. Hence, the optimization of flow sheets of different 

kinds with superstructure optimization approaches is very powerful. However, as already Achenie and 

Biegler [32] stated in one of the fundamental articles about superstructure optimization, one of the 

main challenges for these approaches is the identification of suitable candidates. The flux profile 

analysis is a tool which is able to provide a rational selection procedure for promising reactor-network 

candidates, which are further designed and evaluated in detail. A special feature of the synthesis of 

candidates with the FPA approach is that it bases on reaction engineering fundamentals. The detailed 

process design based on the pre-selected reactor-networks with a superstructure optimization approach 

would result in exact values concerning residence times and the corresponding reactor volumes, the 

feed and recycle stream compositions, and the sizing of possible auxiliary units such as heat 

exchangers. This detailed process design is indispensable to compare different reactor-network 

candidates, their benefits in an overall process, and resulting costs. The pre-selection only provides 
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qualitative information. Note, that the presented synthesis procedure is able to provide quantitative 

information for the subsequent detailed process design. For instance, the initialization phase of the 

dosing policy indicates in which bounds the concentrations of different components in the recycle 

streams might be. In general, the values of states and controls of the dynamic optimization point out 

suitable bounds on states and controls of the detailed process design. This restricts the search space for 

optimization on a rational basis leading to reduced computational effort. 

 

3.3.3 Reactor-recycle-network synthesis for hydroformylation of 

1-dodecene 

The impact of product recycling on the process performance is as well investigated for the 

hydroformylation of 1-dodecene in a TMS system. The corresponding DOP is extended for product 

dosing and solved. The resulting fluxes are analyzed via FPA to obtain reactor-recycle-network 

candidates. In accordance to subchapter 3.2.3 the resulting candidates are again evaluated in the 

[𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-space and compared to the performance of the previous level without recycling 

options. Finally, the impacts of the storage tank filling levels are quantified in the previously 

established way. 

 

Model formulation and optimization problem 

 Since only the degree of freedom for the dosing of products is added in the dynamic 

optimization of the process, the model formulation is not changed and, thus, adopted completely from 

subchapter 3.2.3. The resulting DOP reads: 

 max
 𝑇(𝑡),𝒚𝑉

𝑚(𝑡),𝑝𝐶𝑂(𝑡),𝑝𝐻2(𝑡),𝑡𝑓
  𝑆𝑛𝐶13𝑎𝑙(𝑡𝑓) (3.94) 

   s.t.     Component mass balances: Eq. (3.37) (3.95) 

 Storage mass balances: Eq. (3.40) (3.96) 

 Reaction kinetics: Eqs. (2.2)-(2.7) (3.97) 

 Catalyst equilibrium: Eq. (2.1) (3.98) 

 Constitutive equations: Eqs. (3.38)-(3.39) (3.99) 

 Gas solubilities: Eq. (2.11)  (3.100) 

 Catalyst and solvent ratios: Eqs. (2.13)-(2.14) (3.101) 

 Dosing constraint: ∫ 𝑦𝑉,𝑛𝐶12𝑒𝑛
𝑚 (𝑡)

𝑡𝑓
0

𝑑𝑡 ≥ 𝑛𝑛𝐶12𝑒𝑛
𝑚𝑖𝑛   (3.102) 

 Path constraints: 𝒏(𝑡) ≥ 0, 𝒏𝑠𝑡(𝑡) ≥ 0 (3.103) 

  𝒚𝑉
𝑚(𝑡) ≥ 0 (3.104) 

  10 bar ≤ 𝑝𝑡(𝑡) = 𝑝𝐶𝑂(𝑡) + 𝑝𝐻2(𝑡) ≤ 20 bar (3.105) 

  363.15 K ≤ 𝑇(𝑡) ≤ 388.15 K   (3.106) 

 Terminal constraints: 𝑡𝑓 ≤ 100 min  (3.107) 

  𝑋𝑛𝐶12𝑒𝑛 =
𝑛𝑛𝐶12𝑒𝑛(0) − 𝑛𝑛𝐶12𝑒𝑛(𝑡𝑓)

𝑛𝑛𝐶12𝑒𝑛(0)
= 99 % (3.108) 

  𝑆𝑛𝐶13𝑎𝑙 =
𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)−𝑛𝑛𝐶13𝑎𝑙(0)

𝑛𝑛𝐶12𝑒𝑛(0)−𝑛𝑛𝐶12𝑒𝑛(𝑡𝑓)
   (3.109) 

  𝑛/𝑖𝑠𝑜 =
𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)

𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)+𝑛𝑖𝐶13𝑎𝑙(𝑡𝑓)
≥ 95 %  (3.110) 

  𝒏𝑓 = {
𝑛𝛼(𝑡𝑓) − ∫ 𝑦𝑉,𝛼

𝑚 (𝑡)
𝑡𝑓

0

𝑑𝑡,    𝛼 ∈ {𝐶𝐻/𝑛𝐶12𝑒𝑛}

𝑛𝛼(𝑡𝑓),    𝛼 ∈ {𝑛𝐶12𝑒𝑛}

 (3.111) 
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 Initial conditions: 𝒏(𝑡 = 0) = 𝒏0 = 𝟎  (3.112) 

  𝒏𝑠𝑡(𝑡 = 0) = 𝒏𝑠𝑡,0 = 𝟏 (3.113) 

 Differential selectivity: 𝜑 =
𝑟1

𝑟1+𝑟2+𝑟3+𝑟6
. (3.114) 

 

As introduced in the previous section, it is necessary to extend the dynamic optimization problem for 

the purpose of product dosing by constraints for the product storage tank filling levels (Eq. (3.113)) 

and the corrected determination of the final product amounts (Eq. (3.111)). Again, the synthesis is 

carried out for a predefined conversion (Eq. (3.108)).  

 

Results of flux profile analysis 

 In subchapter 3.2.3 it is already elucidated, how the control of the partial pressures as decision 

variables in this multiphase example are handled within the FPA. Together with the corresponding 

profiles of the amounts of moles, the temperature profile, the dosing fluxes for reactant and products, 

and the differential reaction flux they are shown in Fig. 3.16 as result of the dynamic optimization 

problem stated above (Eqs. (3.94)-(3.114)). The sectioning of these profiles leads to three 

characteristic reaction sections: 

 

• The first section 𝑆4,1 is defined by an initial dosing of the side products n-dodecane and iso-

dodecenes. The temperature profile and the partial pressures show a constant behavior and the 

differential reaction flux is positive. Following the table of possible generic ideal process units 

in this level of synthesis, an IR-CSTR turns out to be most suitable. Instead of the main 

reactant, the iso-dodecenes are reacting in this section to tridecanal. But this reaction is rather 

slow and, thus, this section is quite long and has no large impact on the reaction. Hence, it 

might be reasonable to neglect this section. Furthermore, the beneficial back-mixing effect 

might be already satisfied by the initially recycled side products. 

• The second section 𝑆4,2 shows a distributed dosing of reactants and an initial dosing of 

products. It indicates dynamic control profiles and a negative differential reaction flux. Due to 

the distributed dosing characteristics for the reactant and the initial dosing for the side product, 

an IR-DSR is the best choice, which is also capable to realize the dynamic control profiles. 

This section should not be reduced, since it shows the main reaction performance. The 

reactant is converted to tridecanal, iso-dodecenes, and 2-methyl-dodecanal.  

• In the subsequent third section 𝑆4,3 no dosing appears, the temperature and partial pressure 

profiles are almost constant, and a positive differential reaction flux indicate the use of a back-

mixed reactor unit, i.e. a CSTR. In contrast to the first section 𝑆4,1, the last section indicates a 

benefit from back-mixing, but no products are dosed. The reason might be, that the products 

are already on a sufficiently high level from the previous sections; or the limited amount of 

products in the storage tanks is preferably dosed at the beginning of the process and would 

only be dosed in this section additionally when more product amounts for dosing are available. 

 

The resulting reactor-recycle-network candidate is an IR-CSTR+IR-DSR+CSTR network (Fig. 3.17 

a)) containing the reduction assumption that the control in the last section can be approximated to be 

constant. Reducing the FPA result with respect to the number of recycle streams, it seems to be 

reasonable to neglect the first reaction section together with its recycle, since the reaction progress in 

this section is very small though it is rather long, and to add the initial side product recycle to the 

initial recycle of the second section. Adding this reduction to the previous assumption, the resulting 

network consist of an IR-DSR and a CSTR (Fig. 3.17 b)).  
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Figure 3.16: Results of the dynamic optimization of the hydroformylation of 1-dodecene for reactor-recycle-network 

synthesis: a) Reaction progress in moles; b) Dosing flux profiles; c) Control flux profiles; d) Differential reaction flux 

 

A further reduction of the number of recycles is not expedient as its result is similar to the result of the 

previous synthesis level in subchapter 3.2.3. Instead, the first assumption of constant control in the last 

reaction section can be substituted by the negligence of the positive differential reaction flux in this 

reaction section, since the side product concentration is already high from the recycling in the second 

section. This assumption together with the negligence of the first reaction section is the third reduction 

scenario and results in a single IR-DSR (Fig. 3.17 c)). Again, the DR-DSR realization (Fig. 3.17 d)) 

will serve as maximum reference. All scenarios are summarized in a tree diagram for clarity (Fig. 

3.18). Note, that the reactor units indicating a complex distributed control might also be realized 

technically with a semi-batch reactor, since the complex control profiles are easier to realize in a 

concentrated unit. However, those hybrid batch-continuous networks are not added as reactor-network 

candidates, since on this level of abstraction a substitution makes no difference for the achieved 

performance result.  
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Figure 3.17: Reactor-recycle-network candidates for the hydroformylation of 1-dodecene: a) IR-CSTR+IR-DSR+CSTR; b) 

IR-DSR+CSTR; c) IR-DSR; d) DR-DSR 

 

 

Figure 3.18: Tree diagram for the synthesis of reactor-recycle-network candidates for the hydroformylation of 1-dodecene 

 

For quantification of the potentials of these reactor-recycle-network candidates, their 

performance is analyzed once again in the [𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-space. The corresponding results are 

shown in Fig. 3.19. One can see that the DR-DSR (green) constitutes, in fact, the upper performance 

limit. However, the other reactor-recycle-network candidates show a very similar performance with 

Reactor-recycle-network synthesis for

Optimization

Reduction

Realization

Flux Profiles

Neglect and

IR-CSTR+IR-

DSR+CSTR
IR-DSR+CSTR DR-DSRIR-DSR

Neglect , 



Qualitative reactor synthesis 63 

 

only small deviations. This clearly indicates that the distributed product dosing and the additional 

effect of back-mixing units in the reduced networks have only a minor impact. This is demonstrated in 

more detail in the zoomed in figure for high conversions. Although the IR-DSR (red), which has 

neither distributed product dosing nor back-mixing sections, constitutes the lower performance limit, 

the other candidates show only a very slight better performance. Analyzing the fluctuations in the 

curves, these results might also suffer from numerical issues such as suboptimal local solutions. Note 

that, although the impact of distributed product dosing is negligible, the performance enhancement by 

the initial recycling is tremendously large. Compared to the reaction performance from the reactor-

network synthesis in subchapter 3.2.3 without recycle option (blue) the selectivity with respect to the 

linear aldehyde is increased by 20. .25 %. 

 

 

Figure 3.19: Evaluation of the reactor-recycle-network candidates from Fig. 3.17 in the [𝑺𝒏𝑪𝟏𝟑𝒂𝒍, 𝑿𝒏𝑪𝟏𝟐𝒆𝒏]-space and 

comparison to best result from the reactor-network synthesis in subchapter 3.2.3 

 

Sensitivity analysis for the storage tank filling levels 

Similar to the sensitivity analysis for the literature example in subchapter 3.3.2, the impact of 

the product storage tank filling levels on the optimization result is evaluated for the synthesis of an 

optimal reactor-recycle-network for the hydroformylation process. The initial product storage tank 

filling levels are varied from 0.5. .10. The results in Fig. 3.20 demonstrate the importance of this 

analysis. For filling levels smaller than the initially chosen 1 mol the selectivity with respect to the 

desired tridecanal decreases significantly. For higher filling levels the performance increases up to a 

maximum of 𝑆𝑛𝐶13𝑎𝑙 ≈ 98 %.  
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Figure 3.20: Sensitivity analysis of the final amount of product n-tridecanal for different storage tank filling levels within the 

dynamic optimization 

 

3.4 Reactor-separator-recycle-network synthesis 

 The third and last level of synthesis, which is considered in this work, is the synthesis of 

reactor-separator-recycle-networks. Separators along the reaction coordinate allow for simultaneous 

removal of pure species and, thus, it reveals, together with the optional distributed reactant and 

product dosing of the last two subchapters, the maximum potential of a process. At first the 

fundamentals of the substitute batch process scheme and the resulting dynamic optimization problem 

are adapted to this additional degree of freedom and the list of generic ideal process units is augmented 

accordingly. Secondly, the reactor-separator-recycle-network synthesis approach will be applied to the 

same hydroformylation process, which was already treated in the previous subchapters.  

 

3.4.1 Fundamentals 

 The addition of separators into the synthesis is mathematically simply realized by the 

permission of negative dosing fluxes, i.e. removal fluxes. Introducing this option to the batch process 

scheme leads to an extension by an ideal separator, which works intermediately to the batch reaction, 

and a product collector tank, see Fig. 3.21. A certain amount of reaction mixture is removed from the 

batch reactor and instantaneously split into two fractions. The first contains the pure species, which are 

supposed to be removed from the reaction mixture. They are led to the final product tank, to which at 

the end of the process also the final product stream from the ideal final separator is added. The second 

fraction is the remaining reaction mixture, which is directly returned to the batch reactor. This concept 

bases on the assumption that all these steps work instantaneously, such that the reaction is not lacking 

the removed and recycled reaction mixture. In contrast to the products, which are separated in the ideal 

final separator introduced in the subchapter of reactor-recycle-network synthesis, the products 

removed in the ideal intermediate separator are not fed to the product storage tanks. This is simply 

reasoned with their different meaning within this batch process concept. The products from the ideal 

final separator are only returned to their respective storage tanks up to the amount those storage tanks 

were filled with at the beginning of the process.  
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Figure 3.21: Translation of EPF fluid element into analogous batch process scheme in case of reactor-separator-recycle-

network synthesis 

 

This constraint intended to ensure, that no product is dosed just to improve the process performance 

and was used to analyze possible product dosing or back-mixing benefits. Whereas the products and 

also reactants, which are removed in the ideal intermediate separator, are clearly an output of the 

process and have to be counted at the very end of the process to evaluate its performance. For the sake 

of clear distinction of the removal streams and the dosing streams within the notation of the dynamic 

optimization problem and the graphical analysis, the removal streams are denoted in the following 

with 𝒛(𝑡). 

 The reactor-separator-recycle-network synthesis has in common with the reactor-recycle-

network synthesis that the optimal reactor for the realization of the optimal flux profiles will always be 

the distributed reactor unit with dosing and removal of all components of any arbitrary amount. In case 

of the reactor-recycle-network synthesis this unit, namely the DR-DSR, is realizable. However, in case 

of reactor-separator-recycle-network synthesis this not unequivocally possible. A removal of pure 

species simultaneous to reaction (and dosing) might be an option in some special cases, but normally 

this is accompanied by a lot of complications. Furthermore, this is rather a task for an advanced 

process intensification procedure and would not lead to a qualitative reactor-network. Hence, this is 

out of scope of this work. Instead, the removal is shifted outside the reaction or rather between the 

reaction sections using extra separation units. Thus, in every derived reaction section, which indicates 

a requirement for a removal of components, a separator is added, whose split mass fractions are led to 

the end of the process, where it is finally add to the output of the process, compare Fig. 3.21. The 

generic ideal process units resulting from this approach are simply all ideal process units from the 

previous two synthesis levels extended by a preceding separation unit (S), see Fig. 3.22. Finally, one 

has sixteen generic ideal process units out of which the optimal reactor-network can be constructed. 
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Figure 3.22: Generic ideal process units for reactor-separator-recycle-network synthesis within the FPA framework 

  

  The synthesis of reactor-network candidates from the flux profiles, which one obtains from 

solving the DOP (Eqs. (117)-(133)), is again a question of smart reduction of the maximum network 

based on reaction engineering knowledge. As described in subchapter 3.3.1 for the case of recycling, 

promising reactor-network candidates arise by reasonable reduction of the complexity of the 

maximum network resulting in different reduction cases, which are subsequently compared and 

analyzed. With regard to the separation effort within the network the task is similar, whereby the focus 

is put on the number of required separators 𝑍 instead of required recycles. In contrast to the previous 

level, the removal streams and the respective separators cannot be substituted by an alternative 

realization, as it was the case for the product recycling by internal back-mixing within a CSTR. Thus, 

it is only of interest to quantify the impact of the number of separators 𝑍 on the process performance. 

When 𝑍 is supposed to be reduced or set to a predefined value the solver still has to choose the size of 

the removal streams for each component and, even more challenging, their optimal position along the 

reaction coordinate. This optimal positioning is a kind of integer decision, which would change the 
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underlying optimization problem into mixed integer dynamic optimization (MIDO) problem. These 

systems are harder to solve and require special advanced solvers. To avoid the solving of a complex 

MIDO problem, an approach is used which intends to relax the integer decision by use of a sigmoidal 

function  

 

𝜔 =
𝜆𝜙

𝜀𝑠𝑒𝑡
𝜙
+𝜆𝜙

.     (3.115) 

 

In Eq. (3.115) the exponent 𝑛 decides about the steepness of the sigmoidal function and has to be 

defined in advance (e.g. 𝑛 ≈ 100). The parameter 𝜀𝑠𝑒𝑡 is predefined as well, reasonably in a range of 

𝜀𝑠𝑒𝑡 ≈ 1/𝑍𝑚𝑎𝑥, and 𝜆 is the decision variable which the solver can choose to switch the sigmoidal 

function to either 0 or 1. The conceptual use of this sigmoidal function is illustrated in Fig. 3.23.  

 

 

Figure 3.23: Scheme of the sigmoidal function and the decision variables for its shape 

 

Every removal stream 𝑧𝛼(𝑡) along the reaction coordinate is then multiplied by the corresponding 

sigmoidal function value 𝜔 = 𝜔(𝑡) to achieve the effective removal stream, see Eq. (3.116). 

 

𝒛𝑒𝑓𝑓(𝑡) = 𝒛(𝑡) ⋅ 𝜔(𝑡)     (3.116) 

 

Within the DOP these effective removal streams are added to the mass balance (Eq. (3.118)), and the 

sum of removal streams of each component is added as term for the calculations of the final output of 

the process (Eq. (3.128)). The control vector (Eq. (3.123)) is extended by the removal streams 𝒛(𝑡) 

and the decision variable 𝜆(𝑡) of the sigmoidal function, whereby the effective removal stream is 

defined by Eq. (3.131). Furthermore, a non-negativity constraint for the removal streams is defined 

(Eq. (3.126)). The sigmoidal function is added (Eq. (3.132)) and its sum over the entire reaction time 

is supposed to be equal to the defined number of effective removal streams (Eq. (3.133)). The 

remaining DOP is the same as solved for the reactor-recycle-network synthesis in the previous 

subchapter. 

 

 min
𝒖(𝑡),𝝃

(∫ 𝐿(𝑡)𝑑𝑡 + 𝐼(𝒙0) +𝑊(𝒙𝑓)
𝑡𝑓
0

)  (3.117) 

   s.t.     
𝑑𝝆

𝑑𝑡
= 𝒋 + 𝒚 − 𝒛𝑒𝑓𝑓 +𝑴 ⋅ 𝑵 ⋅ 𝒓𝑉 (3.118) 

 𝑑𝝆𝑠𝑡

𝑑𝑡
= −𝒚   (3.119) 

 𝒈(𝝆) = 0, 𝒉(𝝆) ≤ 0 (3.120) 

 𝒖𝐿 ≤ 𝒖(𝑡) ≤ 𝒖𝑈   (3.121) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈 (3.122) 
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 𝒖(𝑡) = [𝒋(𝑡), 𝒚(𝑡), 𝒛(𝑡), 𝑇(𝑡),𝜆(𝑡)]   (3.123) 

 𝝃 = [𝑡𝑓]  (3.124) 

 𝒚(𝑡) ≥ 0 (3.125) 

 𝒛(𝑡), 𝒛𝑒𝑓𝑓(𝑡) ≥ 0 (3.126) 

 𝝆(𝑡 = 0) = 𝝆0 = 𝟎 (3.127) 

 

𝝆𝑓 =

{
 
 

 
 𝜌𝛼(𝑡𝑓)+∫ 𝑧𝛼

𝑒𝑓𝑓(𝑡)
𝑡𝑓

0
𝑑𝑡,     𝛼 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠}

𝜌𝛼(𝑡𝑓) − ∫ 𝑦𝛼(𝑡)
𝑡𝑓

0

𝑑𝑡 +∫ 𝑧𝛼
𝑒𝑓𝑓(𝑡)

𝑡𝑓

0
𝑑𝑡,     𝛼 ∈ {𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠}

 (3.128) 

 𝝆𝑠𝑡(𝑡 = 0) = 𝝆𝑠𝑡
0 , 𝝆𝑠𝑡(𝑡 = 𝑡𝑓) = 𝝆𝑠𝑡

𝑓
  (3.129) 

 
∫ 𝒚(𝑡)
𝑡𝑓

0

𝑑𝑡 ≥ {
𝜌𝛼
𝑚𝑖𝑛,     𝛼 ∈ {𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠}

0,     𝛼 ∈ {𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠}
 (3.130) 

 𝒛𝑒𝑓𝑓(𝑡) = 𝒛(𝑡) ⋅ 𝜔(𝑡) (3.131) 

 
𝜔(𝑡) =

𝜆(𝑡)𝑛

𝜀𝑠𝑒𝑡
𝑛 + 𝜆(𝑡)𝑛

 (3.132) 

 ∫ 𝜔(𝑡)
𝑡𝑓
0

= 𝑍𝑠𝑒𝑡 . (3.133) 

 

This DOP has to be solved for every defined value of 𝑍𝑠𝑒𝑡, i.e. number of separators in the resulting 

reactor-network. Thus, the tree of reduction cases, introduced in subchapter 3.3.1, has to be created for 

every number of separators, since they have a clear impact on the other control or decision variables. It 

is hence recommended to carry out the analysis of the separator impact on the performance first and 

then decide about possible reduction cases for the realization of the optimal flux profiles.  

 

3.4.2 Reactor-separator-recycle-network synthesis for hydroformylation 

of 1-dodecene 

In the following the reactor-separator-recycle-network synthesis is carried out exemplarily for 

the hydroformylation process using the FPA. The optimal flux profiles are determined for a predefined 

number of separators and optimal reactor-network candidates are derived. Subsequently, the impact of 

the number of separators on the process performance is analyzed.  

 

Model formulation and optimization problem 

 The model formulation is only changed by adding the effective removal streams to the 

component mass balances (Eq. (3.134)) compared to the two previous synthesis levels, see subchapters 

3.2.3 and 3.3.3.  

 
𝑑𝑛𝛼
𝑑𝑡
= 𝑉𝑙𝑖𝑞 (𝑗𝛼

𝑚 + 𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡(∑ 𝜈𝛼,𝑚𝑟𝑚
𝑀
𝑚=1 )) + 𝑦𝑉,𝛼

𝑚 − 𝑧𝑉,𝛼
𝑚,𝑒𝑓𝑓

,    𝛼 ∈ 𝐶𝐻  (3.134) 

 

The changes within the resulting DOP refer to the abovementioned extension for the removal streams 

in Eqs. (3.135), (3.136), (3.146), (3.153) and the addition of side calculations for the sigmoidal 

function Eqs. (3.157), (3.158), (3.159). The final DOP reads: 

 

 max
 𝑇(𝑡),𝒚𝑉

𝑚(𝑡),𝒛𝑉
𝑚(𝑡),𝜆(𝑡),𝑝𝐶𝑂(𝑡),𝑝𝐻2(𝑡),𝑡𝑓

  𝑆𝑛𝐶13𝑎𝑙(𝑡𝑓) (3.135) 

s.t.     
Component mass 

balances: 
Eq. (3.130) (3.136) 
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Storage mass 

balances: 
Eq. (3.40) (3.137) 

 
Reaction 

kinetics: 
Eqs. (2.2)-(2.7) (3.138) 

 
Catalyst 

equilibrium: 
Eq. (2.1) (3.139) 

 
Constitutive 

equations: 
Eqs. (3.38)-(3.39) (3.140) 

 Gas solubilities: Eq. (2.11)  (3.141) 

 
Catalyst and 

solvent ratios: 
Eqs. (2.13)-(2.14) (3.142) 

 
Dosing 

constraint: 
∫ 𝑦𝑉,𝑛𝐶12𝑒𝑛

𝑚 (𝑡)
𝑡𝑓
0

𝑑𝑡 ≥ 𝑛𝑛𝐶12𝑒𝑛
𝑚𝑖𝑛   (3.143) 

 Path constraints: 𝒏(𝑡) ≥ 0, 𝒏𝑠𝑡(𝑡) ≥ 0 (3.144) 

  𝒚𝑉
𝑚(𝑡) ≥ 0 (3.145) 

  𝒛𝑉
𝑚(𝑡) ≥ 0, 𝒛𝑉

𝑚,𝑒𝑓𝑓(𝑡) ≥ 0 (3.146) 

  10 bar ≤ 𝑝𝑡(𝑡) = 𝑝𝐶𝑂(𝑡) + 𝑝𝐻2(𝑡) ≤ 20 bar (3.147) 

  363.15 K ≤ 𝑇(𝑡) ≤ 388.15 K   (3.148) 

 
Terminal 

constraints: 
𝑡𝑓 ≤ 100 min  (3.149) 

  𝑋𝑛𝐶12𝑒𝑛 =
𝑛𝑛𝐶12𝑒𝑛(0) − 𝑛𝑛𝐶12𝑒𝑛(𝑡𝑓)

𝑛𝑛𝐶12𝑒𝑛(0)
= 99 % (3.150) 

  𝑆𝑛𝐶13𝑎𝑙 =
𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)−𝑛𝑛𝐶13𝑎𝑙(0)

𝑛𝑛𝐶12𝑒𝑛(0)−𝑛𝑛𝐶12𝑒𝑛(𝑡𝑓)
   (3.151) 

  𝑛/𝑖𝑠𝑜 =
𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)

𝑛𝑛𝐶13𝑎𝑙(𝑡𝑓)+𝑛𝑖𝐶13𝑎𝑙(𝑡𝑓)
≥ 95 %  (3.152) 

  

𝒏𝑓

=

{
 
 

 
 𝑛𝛼(𝑡𝑓) − ∫ 𝑦𝑉,𝛼

𝑚 (𝑡)
𝑡𝑓

0

𝑑𝑡 +∫ 𝑧𝑉,𝛼
𝑚,𝑒𝑓𝑓(𝑡)

𝑡𝑓

0
𝑑𝑡,    𝛼 ∈ {𝐶𝐻/𝑛𝐶12𝑒𝑛}

𝑛𝛼(𝑡𝑓)+∫ 𝑧𝑉,𝛼
𝑚,𝑒𝑓𝑓(𝑡)

𝑡𝑓

0
𝑑𝑡,    𝛼 ∈ {𝑛𝐶12𝑒𝑛}

 
(3.153) 

 Initial conditions: 𝒏(𝑡 = 0) = 𝒏0 = 𝟎  (3.154) 

  𝒏𝑠𝑡(𝑡 = 0) = 𝒏𝑠𝑡,0 = 𝟏 (3.155) 

 
Differential 

selectivity: 
𝜑 =

𝑟1
𝑟1 + 𝑟2 + 𝑟3 + 𝑟6

 (3.156) 

 Side calculations: 𝒛𝑒𝑓𝑓(𝑡) = 𝒛(𝑡) ⋅ 𝜔(𝑡) (3.157) 

  𝜔(𝑡) =
𝜆(𝑡)𝑛

𝜀𝑠𝑒𝑡
𝑛 + 𝜆(𝑡)𝑛

 (3.158) 

  ∫ 𝜔(𝑡)
𝑡𝑓
0

= 𝑍𝑠𝑒𝑡 . (3.159) 

 

Results of flux profile analysis 

 The DOP is solved exemplarily for 𝑍𝑠𝑒𝑡 = 2 resulting in optimal flux profiles for a reactor-

separator-recycle-network with two separators. The dosing flux, the differential reaction flux, and the 

control variables, temperature and gas partial pressures, are analyzed the same way as on the previous 

two synthesis levels. The FPA figure is extended by a subplot of the additionally optimized removal 

fluxes indicating their characteristics, see Fig. 3.24.  
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Figure 3.24: Results of the dynamic optimization of the hydroformylation of 1-dodecene for reactor-separator-recycle-

network synthesis: a) Reaction progress in moles; b) Dosing flux profiles; c) Removal flux profiles/spots; d) Control flux 

profiles; e) Differential reaction flux 

 

The sectioning indicates seven characteristic reaction sections: 

 

• The first reaction section 𝑆5,1 is defined by a distributed dosing of reactant and side products. 

The temperature control is constant, but the partial pressures are not. This and the distributed 

dosing of reactant indicate a need of a distributed reactor with dosing of liquid and gaseous 

reactants, although the differential reaction flux is positive. The latter is neglected, since with 

the initial dosing of side products, pointing on a global recycle, the back-mixing effect, i.e. an 

increased product concentration, is already satisfied. Hence, the first section is best realized 

with a DR-DSR. 

• The second reaction section 𝑆5,2 starts with the removal of the main product, has no dosing 

profile, and both the same control characteristics and differential reaction flux as the first 

section. This leads either to a CSTR-S or a PFR-S depending on the realization focus on either 

the positive differential reaction flux or the dynamic control profiles, respectively.  
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• The subsequent third reaction section 𝑆5,3 is quite short, has neither dosing or removal 

streams, constant control profiles, and a negative differential reaction flux. The latter is the 

only indication for a PFR. 

• The fourth reaction section 𝑆5,4 has the same characteristics as the previous one, except of the 

again positive differential reaction flux. Thus, a CSTR seems appropriate. 

• The fifth reaction section 𝑆5,5 is very similar to the previous, except of a slightly dynamic 

partial pressure control. This section has an obvious reduction potential, since the 

approximation of the partial pressure controls with constant profiles allows for a merger with 

the previous reaction section. 

• Indicating a distributed dosing of reactant and a dynamic partial pressure control, the sixth 

reaction section 𝑆5,6 has to be realized with a DSR, although again the differential reaction 

flux is positive. With the same reasoning as for the first reaction section, this is neglected, 

since the product concentration is already high from initial side product dosing.  

• The seventh and last reaction section 𝑆5,7 shows an initial dosing of reactant and a removal of 

main product. The temperature control is constant, and the partial pressures can be 

approximated to be constant, too. The differential reaction flux is again positive and, thus, the 

optimal realization is chosen to be a CSTR-S.  

 

The initial side product dosing being at its bound and the differential reaction flux being positive in all 

sections except of the third allows for the conclusion, that larger streams of recycled side products are 

beneficial for the reaction performance, as the sensitivity analysis in subchapter 3.3.3 already revealed. 

The aforementioned seven reaction sections still show potential for reasonable reduction. For instance, 

the negative differential reaction flux in section 𝑆5,3 could be neglected and the slightly dynamic 

partial pressure profiles of section 𝑆5,5 could be approximated to be constant on the same level as in 

the preceding section. Thus, these two reaction sections can be merged with sections 𝑆5,2 and 𝑆5,4 to 

one CSTR-S. This leads to an optimal reactor-separator-recycle-network candidate consisting of a DR-

DSR, a CSTR-S, a DSR, and a CSTR-S (Fig. 3.25), which reflects the qualitative flux profiles 

characteristics very properly. As the reduction procedure and the corresponding derivation of several 

reactor-network candidates are already demonstrated in detail in subchapter 3.3.2 and 3.3.3, it is 

foregone here.  

 

 

Figure 3.25: Reactor-separator-recycle-network candidate for the hydroformylation of 1-dodecene 

 

To quantify the performance of this optimal reactor-network candidate, it is evaluated again in 

the [𝑆𝑛𝐶13𝑎𝑙, 𝑋𝑛𝐶12𝑒𝑛]-space and compared to the results of the two previous synthesis levels, see Fig. 

3.26. Evidently, the performance of the above process candidate (blue) is slightly better than the 

performance of the IR-DSR synthesized on the level of reactor-recycle-network synthesis (red). At the 

original design point 𝑋𝑛𝐶12𝑒𝑛 = 99 % the first provides a selectivity of 𝑆𝑛𝐶13𝑎𝑙 ≈ 98 % and the latter 

of 𝑆𝑛𝐶13𝑎𝑙 ≈ 95.9 %. Nevertheless, the comparison of the network candidates of all three synthesis 

levels indicate clearly that the main performance gain is based on the globally recycled side products. 

The optimal candidate derived on the level of reactor-network synthesis (yellow) harness the 

beneficial product recycling only by use of an internal back-mixing with a CSTR at the end of the 
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reactor-network. However, with the degree of freedom of recycling the performance is increased 

tremendously and can only be slightly enhanced by the inclusion of separators along the reaction 

coordinate.  

 

 

Figure 3.26: Evaluation of the reactor-separator-recycle-network candidate from Fig. 3.25 in the [𝑺𝒏𝑪𝟏𝟑𝒂𝒍, 𝑿𝒏𝑪𝟏𝟐𝒆𝒏]-space 

and comparison to results from the reactor-network synthesis in subchapter 3.2.3 and the reactor-recycle-network synthesis in 

subchapter 3.3.3  

 

Performance screening for different numbers of separators  

 As mentioned before, it is analyzed how the predefined number of effective removal streams 

affects the selectivity performance of the hydroformylation process when carrying out the reactor-

separator-recycle-network synthesis. Therefore, the DOP (Eqs. (3.135)-(3.159)) is solved for 𝑍𝑠𝑒𝑡 

between 0…30, whereby the largest number corresponds to the number of finite elements within the 

discretization of the DOP (see subchapter A.7 for details). The resulting relation of the maximum 

selectivity with respect to n-tridecanal and the number of separators is drawn in Fig. 3.27.  

 

 

Figure 3.27: The maximum selectivity with respect to n-tridecanal for different predefined numbers of ideal separators 

within the reactor-separator-recycle-network synthesis 
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With increasing number of separators, the selectivity of the process approximates almost 100 %. Note, 

that this would imply a realization with either numerous ideal separations along the reaction 

coordinate or even an integrated reactor with continuous, ideal withdrawal of pure product. As this is 

not a realistic scenario, one can use this analysis to quantify the gain of every ideal separator, which is 

added to the network. 

 

3.5 Discussion 

 Basing on a simple dynamic optimization problem only taking the chemical reaction into 

account, the flux profile analysis allows for a fast synthesis of reactor-network candidates on different 

synthesis levels. Since the analysis is based on fundamental reaction engineering knowledge it is not 

restricted to a certain kind of reaction and can be extended for different kind of processes, e.g. 

homogeneously catalyzed gas-liquid processes (as shown in the previous sections) or heterogeneously 

catalyzed reactions. It generates only qualitative candidates of possible conceptual designs, which 

serve as a basis for a further detailed process design, but reveals already the maximum potential of a 

reaction, since other phenomena such as mass or heat transfer resistances, flow fields, energy 

dissipation, etc. are neglected, keeping in mind that these non-idealities are decreasing the 

performance. Although the target of the FPA is the identification of an optimal reactor-network and 

not the determination of all attainable points in state space, the search space for the optimal 

configuration and, thus, the attainable region is rationally restricted.  

 For the synthesis of reactor-separator-recycle-networks the same advantages and disadvan-

tages in comparison to state-of-the-art methods hold, as for the other synthesis levels. The FPA does 

not intend to surpass the state-of-the-art methods for process design. It tries to augment their features 

by analysis of the reaction engineering characteristics of the process and overcomes typical 

weaknesses of AR approaches and SS optimization as discussed in Section 3.2.2 and 3.3.2, 

respectively. It can be seen as extension of the portfolio of synthesis methods providing information 

about the process potentials and promising reactor-network candidates. Moreover, the developed batch 

process scheme allows on all synthesis levels for optimization with every available or future 

optimization approach simply optimizing the fluxes in the schemes such as it is done by dynamic 

optimization in this work. Furthermore, it allows for the synthesis of optimal continuous reactor-

networks with discontinuous parts whose optimal control policy is provided directly by the results of 

the dynamic optimization. In this way, optimal hybrid batch-continuous reactor-networks can be 

derived. Parallel reactor structures are not required in an optimal reactor-network structure, since the 

optimal path of the fluid element in the thermodynamic state space is per definition not branched. 

Parallel structures are only one of several options to provide dosing streams of required compositions 

along the reaction coordinate.  

  

Influence of objective and process conditions on the synthesis results  

In the introduction of the FPA the functional module of chemical reaction is put in the focus of 

reactor synthesis and design, and the objective is chosen to be the selectivity of the desired product, 

accordingly. This does not dispute that every step in a chemical process can have a high impact on the 

reactor synthesis and design procedure, but only the step of chemical reaction. For instance, there exist 

processes in which the overall process costs are mainly affected by the quantitative separation and 

recycling, i.e. recovery, of expensive catalysts [164]. Other processes are mainly affected by the heat 

removal and its control, e.g. in start-up procedures of highly exothermic processes, maintaining a long-

term stability of a catalyst [165]. Crucial for the impact of the different process steps on the reactor 

synthesis and design is the choice of the objective. In the aforementioned very up-to-date examples, 

the objectives are the overall process costs and the long-term catalyst stability, respectively. The latter 
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might be chosen due to economic considerations, too. However, the process cost as economic 

objective is simply a scalar value combining several different objectives weighting them with prices. 

This might lead to trivial or hardly analyzable results, when certain part is overwhelming all others. 

Finally, any kind of process design has to be evaluated by this kind of objective to check for or 

improve the profitability of the process. Nevertheless, it is of primary interest of an engineer to 

understand the intrinsic nature of a process and to classify its characteristics in well-known categories, 

which allows using established models or available apparatuses in the further design procedure. 

Chemical engineers would, therefore, probably use objectives such as high selectivity of a desired 

product, space-time-yields, long-term catalyst stability, etc., whereas other engineers rather consider 

objectives such as minimal fuel consumption, energy efficiency, or simply smaller failure rates. 

Summarizing, the result of a design procedure is strongly driven by the choice of its objective. Since 

the presented framework is supposed to identify candidates for optimal process networks focusing on 

the chemical reaction as core of the process, the chosen objectives underlying the synthesis and design 

procedure aim at quantifying the quality of the chemical reaction. These objectives are hence 

selectivities, conversions, and space-time-yields.  

    In addition to the decision about a suitable objective function, the dynamic optimization is in 

need of a predefinition of process conditions for which an optimal process is sought, e.g. conversion 

point, purity levels, restricted inlet conditions, etc. The consideration and/or change of these 

conditions within the dynamic optimization is thereby straightforward. To quantify the sensitivity of 

the optimal performance with respect to those predefined conditions or limitations, one can either 

carry out a multi-objective optimization defining one or more of the conditions as additional objective 

or evaluate the optimal performance for different values of those conditions to figure out how the 

optimal reactor-network would change. These changed process conditions might have a significant 

impact on the resulting reactor-network. However, process conditions in a certain neighborhood show 

often only small quantitative changes in the result, whereby the qualitative character of the optimal 

control stays the same as the deciding phenomena stay the same, see e.g. subchapter 3.3.2.  

 

Hydroformylation process  

In this work the evaluation within the selectivity-conversion-space is chosen to compare the 

performance of different reactor-network candidates and to quantify their selectivity potential for 

different conversions. This evaluation gives rise to the most promising candidate for further detailed 

process design. Although the candidate, which is coming closest to the dream point of the reaction at 

full conversion and maximum selectivity, is obviously the highest performing, reactor-network 

candidates resulting from a rational reduction procedure might show a better trade-off between 

performance and realizability and, thus, might be more promising. The results of the reactor synthesis 

for the proposed hydroformylation process indicate that the highest gain of the selectivity with respect 

to the tridecanal is achieved with recycling of the reversible side products. Other changes within the 

reactor-network, e.g. addition of separators or realization of sections with back-mixed reactors, have 

only a minor effect and could be neglected. Especially the intermediate separation of pure species is 

almost impossible to realize in a technical process. On the one hand the process costs would suffer 

tremendously from the possible catalyst loss, and on the other hand the separation of pure product 

would require a complex and large structure of separators. Furthermore, the results have to be assessed 

carefully, since several process conditions are added for the proof of concept of the presented 

approach for this process, which might have a significant impact on the resulting process. For instance, 

higher reaction time, lower conversion points, or different n/iso ratios would certainly change the 

outcome of the synthesis and, thus, the presented results are not of general value.   
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Challenging open tasks 

Although the presented procedure of the FPA was successfully applied for several process 

examples and synthesis levels, it still points out improvement potentials with respect to its 

practicability. For instance, the graphical analysis suffers, obviously, from the illustration of the 

fluxes. In case the fluxes are not illustrated in a reasonable scale, the engineer might be misled in his 

decision-making. In course of the illustration and analysis of the fluxes, it might, moreover, be of 

advantage to consider the differential flux to be analyzed not only with regard to its sign, but also for 

its exact value. The size of its change at each point might give a hint about the sensitivity of the 

differential reaction flux for the choice of the best reactor. For future applications, it is recommended 

to investigate this deeper. A further aspect, which requires more attention, is the sensitivity of the 

control arcs of each flux. Since the decision-making strongly relies on the meaning of the control 

fluxes and their characteristic sections, the relevance of these characteristics for the final performance 

has to be quantified, which might lead to simpler control profiles and resulting reactor-networks.  

In subchapter 3.4 the addition of removal streams is introduced to the FPA allowing for the 

synthesis of reactor-networks including different numbers of separators. However, the result of the 

dynamic optimization within the EPF framework can also be used to design integrated reaction-

separation units. Therefore, a higher number of removal streams is activated or even a continuous 

removal flux profile is determined. The resulting simultaneous removal of chemical components 

during reaction is very complex and requires the consideration of additional phenomena within a 

sophisticated design and intensification framework, e.g. mass transfer, phase equilibria, etc. 

Nevertheless, it is an interesting task for the future to utilize this framework for this purpose. On the 

same level the FPA provides, so far, information about the qualitative process structure, the impact of 

position and number of recycle and removal streams, and possible sizes of those, which reduces the 

search space and the computational effort for further flow sheet optimization with e.g. SS 

optimization. The next step is the synthesis of integrated processes, in which dosing, recycling and 

removal streams within the flow sheet are connected. This is very challenging because the 

optimization of those streams would be interdependent and, furthermore, it would be necessary to 

consider more detailed separator models to ensure that the streams can be connected.  

As hinted already in subchapter 3.2.2, it might be possible to automate the synthesis via FPA 

by inclusion of certain features directly to the dynamic optimization problem, or by carrying out the 

optimization within a loop extended by decision algorithms which choose promising candidates based 

on predefined performance limits. Therefore, heuristics have to be implemented based on reaction 

engineering knowledge. However, this would counteract the clear benefit of the presented approach 

that the engineer can either analyze results on different synthesis levels to steer the synthesis procedure 

or intervene within the synthesis procedure to add options such as intensifications, realization with 

special units, further constraints, etc. A further interesting potential lies in the preliminary reduction of 

the possible reactor-network by e.g. parameterization of the control fluxes. A parsimonious 

parameterization of the control fluxes to predefined numbers of input actions would result in reactor-

networks of a maximum size equal to these numbers of input actions. In case, the forms of the control 

arcs are restricted as well, the procedure would be simplified significantly, and an automation of the 

synthesis is realistic as the requirement of engineering knowledge is reduced. 

Furthermore, it might reveal interesting synergy effects when including the systematic 

generation approach of Hillestad [47,48] for reactor-network synthesis within the FPA, since it as well 

based on optimal control calculations. In contrast to the first synthesis level of the FPA, where the 

analysis of dosing fluxes and differential selectivity leads to information about beneficial mixing 

characteristics, the decision about the latter is done by the solver and, thus, does not require additional 

action by a decision-maker. Therefore, a thorough comparison of these two methods is still required, 

which was out of scope of this work. 
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Last but not least, the entire approach bases on solving dynamic optimization problems that, in 

case of high complexity, suffer from finding local solutions or no solutions at all due to numerical 

issues. A simple example for such an issue is the size of the numerical grid for the discretization of the 

time horizon, i.e. the number of finite elements (see A.7 for details), which might influence the result. 

Thus, either the automated software or the design engineer has to take this into account when 

analyzing the flux profiles.  
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4 Reactor design under uncertainty 
In this chapter a systematic framework for the design of chemical reactors under uncertainty is 

introduced. Within the EPF methodology the dynamic optimization based reactor design approach is 

extended to account for the impact of different types of uncertainties, which arise during the design 

procedure, on the optimal reactor performance. This includes three aspects classifying this approach 

clearly within the branch of robust design optimization: 

 

• Finding a design which is feasible for all possible occurring uncertainty scenarios, i.e. 

identifying a robust design.  

• Identifying reactor designs with small deviation from the expected performance, i.e. 

maximizing its predictive power. 

• Quantifying the impact of uncertain variables on the reactor performance, i.e. its sensitivity 

with respect to the uncertainties. 

 

At first, the crucial types of uncertainties are identified and their role within the design 

procedure is analyzed. To include the uncertainties into the dynamic optimization problem, the 

unscented transformation (UT) is used allowing a rapid and easy to implement propagation of the 

moments of probability density functions (PDF), which describe the uncertainties, through the 

nonlinear process model. Therefore, the theory of the sigma point approach is elucidated and the 

mathematical formulation of the dynamic optimization problem with embedded sigma point approach 

is shown. Subsequently, the framework is applied to the hydroformylation process example introduced 

in subchapter 2.3.  

The first application of this approach is demonstrated in subchapter 4.2, where a robust reactor 

design is determined accounting for model parameter uncertainties in the kinetic model and the gas-

liquid solubilities. The result is then used to identify the most relevant model parameters via a global 

sensitivity analysis with Sobol indices. For the sake of validation, the results of the uncertainty 

quantification of the model parameters are compared to Monte-Carlo simulations applying the same 

optimal control profiles to the process. 

 In a second step, imperfect realizations of the distributed control profiles are treated as a kind 

of process noise influencing the performance of the process in subchapter 4.3. As an example, the 

impact of deviations from the optimal temperature control on the hydroformylation reaction 

performance is quantified. Subsequently, the interdependencies between temperature control 

deviations and model parameter uncertainties are identified by consideration of both types of 

uncertainties simultaneously. This is carried out for two different possible reactor realizations for the 

hydroformylation reaction to analyze and compare their robustness properties. 

Finally, the advantages and disadvantages of the presented framework are discussed in 

subchapter 4.4, and it is classified within existing state-of-the-art methods. In addition, an outlook for 

future scientific work in this area is given. 

   

4.1 Methodical framework 

 In subchapter 2.2 it was already discussed, how uncertainties are classified typically in 

literature and which different kind of strategies exist to cope with uncertainties within process design 

approaches. The presented framework for reactor design under uncertainty does not follow these 

classical ways. Instead, it is derived from the basic concept of the EPF methodology, namely the 

travelling fluid element. Starting from this notion it is discussed: (i) which types of uncertainty arise in 

the design procedure and in which step they might be included (4.1.1); (ii) how the uncertainties can 
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be propagated through the chemical process and which information about their distribution 

characteristics have to exist, e.g. real data is available, a standard distribution is a reasonable 

assumption, or only upper and lower bounds are known (4.1.2); and (iii) how the dynamic 

optimization problem is extended including the uncertainties intending to create an approach for 

reactor design under uncertainty, both considering static or dynamic uncertainties.   

   

4.1.1 Types of uncertainty within the EPF reactor design procedure  

A reactor design approach within the EPF framework was already developed by Peschel et al. 

[4], see subchapter 2.1.1. Their 3-level procedure aims at a stepwise design starting from the dynamic 

optimization of the fluid element and its control fluxes, continuing by translation into a distributed 

reactor and choosing suitable control variables, and finalizing by deriving a technical realization of the 

optimal control profiles in an intensified reactor unit. Both this approach and the design of optimal 

reactor networks via flux profile analysis, see chapter 3, base in the first step on the dynamic 

optimization of external and internal fluxes, which manipulate the ideally mixed fluid element on its 

way through the process, only taking into account fundamental phenomena, i.e. chemical reaction and, 

in case of multiphase processes, phase equilibria, which provide information about bounds of 

corresponding state variables. Although the presented approach for reactor design under uncertainty is 

not following the same 3-level route and, moreover, does not intend to put an emphasis on process 

intensification, the following identified types of uncertainties are associated with these three design 

levels. This allows for a straightforward extension of the 3-level design approach by uncertainties and 

enables the analysis of critical uncertain phenomena at different stages of the design procedure. Three 

essential types of uncertainties are identified and their occurrence during the design procedure is 

discussed: 

• Model uncertainties: The first type of uncertainty affecting the design procedure is 

uncertainty of the underlying model basis. In literature it is treated quite often and 

classified as internal or endogenous uncertainties [71]. The mathematical models used for 

e.g. reaction kinetics can naturally not perfectly match the real behavior due to e.g. 

insufficient data for the parameter estimation or an 

inaccurate model structure or measurement noise. 

Thus, the result of a deterministic dynamic 

optimization not taking these uncertainties into 

account will deviate from the real behavior with 

high probability. For instance, uncertain reaction 

kinetics changes the actual rates within the network 

and, thus, the performance of the process. In Fig. 

4.1 it is exemplarily illustrated, where this type of 

uncertainty affects the fluid element. Accounting 

for an inaccurate model structure within the design 

process is hardly possible and has to be done by suitable model discrimination during the 

model identification. Whereas model parameter uncertainties originating from insufficient 

data and the resulting lack of identifiability of the parameters can be considered more 

easily during the design process. Therefore, the knowledge about their nominal values has 

to be augmented during the parameter estimation by information about their probability 

distributions or at least their confidence intervals. In the latter case, at least a reasonable 

assumption with respect to probability distributions within the confidence intervals can be 

made. Since this type of uncertainty affects the entire design procedure, it is reasonable to 

Figure 4.1: Fluid element with model 

uncertainties 
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associate it with the first design level of the reactor design approach of Peschel et al. [4] 

where the maximum potential of the process is identified, which is thereby extended by 

information about the risk to miss it. 

Model parameter uncertainties are normally treated as static uncertainty as the model 

parameters do not change along the reaction coordinate. 

   

• Non-ideal reactor characteristics: The second identified type of uncertainty during process 

design within the EPF framework is rather a consideration of non-ideality in the reactor 

behavior than a classical uncertainty. Originally, the 

fluid element is assumed to be ideally mixed. 

However, in a real reactor gradients arise either axial 

or radial, e.g. inside the flow field leading to a non-

uniform residence time distribution (RTD), or in any 

other field such as pressure or temperature. This leads 

to a heterogeneous field in the notion of the fluid 

element (Fig. 4.2). Accounting for these phenomena 

within a reactor design procedure requires rigorous 

modeling resulting in higher computational effort. 

Moreover, the actual characteristic of the reactor is not known at this stage of the design 

procedure. Thus, it is reasonable to first analyze the impact of these phenomena on the 

reaction performance in order to assess whether a rigorous modeling of certain phenomena 

is crucial or the initial ideality assumption is sufficient. These phenomena come into play 

when transferring the fluid element into a distributed reactor, i.e. from batch to continuous 

operation where typically axial and radial gradients may arise, or a scale-up where a 

homogeneous mixing is complicated. Therefore it is associated with the second level 

within the reactor design approach of Peschel et al. [4]. Note, that the information of 

required modeling steps or impact of certain reactor characteristics are also very useful for 

the subsequent level of technical realization. 

Non-idealities in the reactor behavior can either be static or dynamic. In the former case 

they can be treated as parametric uncertainty, whereas in the latter case it becomes more 

complex to account for them, see discussion in subchapter 4.4. 

 

• Imperfect control realizations: The third class of uncertainty corresponds to another 

characteristic feature of the EPF based reactor design, namely the realization of the 

optimal control profiles along the reaction coordinate. This uncertainty can be interpreted 

as a kind of noise on the realization of the control 

profiles and is a typical kind of disturbance treated 

in control of chemical processes. The origins of 

these disturbances are e.g. imperfectly working 

controllers or actuators. However, since the 

presented approach targets the design of a new 

reactor and not the control of an operating reactor, 

one can think additionally of inaccurate 

construction of the reactor unit, e.g. leading to a 

varying wall thickness or membrane permeability. 

To cope with those effects during the reactor 

design procedure, the control profiles are assumed to be deviating from the nominal 

optimal values at each point of the reaction coordinate (Fig. 4.3). As this type of 

uncertainty treats the imperfect realization of the optimal control profiles, it is associated 

Figure 4.2: Fluid element with non-ideal 

field characteristics 

Figure 4.3: Fluid element with imperfect 

control realization 



Reactor design under uncertainty 81 

 

with the third level of the reactor design approach of Peschel et al. [4] where the technical 

realization is conducted. It allows to quantify the impact of control deviations on the 

possible realization options and the selection of more robust and, thus, easier controllable 

reactor realizations.  

Due to the distributed nature of these imperfect control realizations, they are treated as 

dynamic uncertainty. In subchapter 4.1.3 it is elucidated how dynamic uncertainties are 

included within the dynamic optimization formulation in contrast to static uncertainties.  

 

It has to be mentioned, that these types of uncertainty do not have to be treated separately. In 

practice it is rather likely that they affect the process simultaneously and, thus, a combined analysis is 

reasonable. This will be demonstrated in subchapter 4.3.3 for the hydroformylation process example. 

Moreover, although the previous association of the different types of uncertainties to the levels of the 

reactor design approach of Peschel et al. [4] is suitable and allows for uncertainty quantification of 

different kind on each level, latter can be carried out independently of these three design levels. 

Staying with the dynamic optimization formulation on level one, which corresponds to the basic 

dynamic optimization of the EPF methodology, the uncertainty quantification of the different types of 

uncertainty can be carried out each by each or in different combinations of interest without changing 

the model basis as done from level to level in the 3-level reactor design approach, see [166].  

 

4.1.2 Propagation of uncertainties through the chemical process  

 The dynamic optimization problem of the EPF methodology has to be extended to include the 

aforementioned uncertainties. How to do this strongly depends on the available information about the 

uncertainty distributions. In process design studies under uncertainty it is widespread to consider lower 

and upper bounds of the uncertain variables or investigate a kind of worst and/or best case estimation. 

Therefore, mostly scenario based approaches, e.g. two-step stochastic programming [84], or Monte 

Carlo based approaches [81] are used. In case sufficient information about the distributions of the 

uncertainties is available, the same methods can be used and the scenarios are chosen to approximate 

these distributions as good as possible. Obviously, the accuracy of this procedure increases with the 

number of scenarios, i.e. samples from the distribution function, approximating the original 

distribution function and, thus, suffers from increasing computational effort. For the optimal reactor 

design within the EPF framework based on dynamic optimization, the approach of considering 

numerous scenarios is barely applicable. A smart way to overcome this problem is based on the 

assumption, that the main impacts of the uncertainties on the process performance can sufficiently be 

determined by taking characteristic information about the distributions of the uncertainties, i.e. the first 

two statistical moments, to describe the underlying PDF. A nonlinear transformation method, called 

unscented transformation, developed by Julier and Uhlmann [167] can be used to propagate these 

statistical moments of the uncertainty PDF through a nonlinear system such as a chemical process. 

 

Unscented transformation  

 The basic idea of the unscented transformation (UT) is the representation of the moments of a 

PDF via so-called sigma points which, in case of appropriate choice, allow to describe the first and 

second statistical moments, i.e. the mean and the variance, of the output of a nonlinear system. The 

intuition of this idea is that “with a fixed number of parameters it should be easier to approximate a 

Gaussian distribution than it is to approximate an arbitrary nonlinear function” [167]. It can be seen as 

a minimalistic Monte Carlo method due to its superficial resemblance. However, instead of randomly 

drawing samples, the samples are deterministically chosen so that they capture specific information 

about the original distribution function. The procedure starts with generating 2𝑛𝜽 sigma points 𝜽𝑖 (Eq. 
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(4.2)) around the mean value 𝜽0 (Eq. (4.1)) describing precisely the variance matrix 𝐶𝑜𝑣(𝜽) and the 

mean value 𝐸(𝜽) of the symmetric, unimodal input density function 𝜌𝜣(𝜽) of the 𝑛𝜽-dimensional 

random variable vector 𝜣. 

𝜽0 = 𝐸(𝜽)      (4.1) 

𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽) 𝑖,           𝑖 = 1. .2𝑛𝜽  (4.2) 

 

In Eq. (4.2) √𝐶𝑜𝑣(𝜽) 
𝑖
 is the ith row or column of the matrix square root of 𝐶𝑜𝑣(𝜽) and 𝑠𝑔𝑛 is the 

signum function. The sigma points 𝜽𝒊 with 𝑖 = 0, 1…2𝑛𝜽 are transformed via the nonlinear 

transformation 𝒉(𝜽𝒊) = 𝒐𝒊 to yield the set of transformed sigma points in the range ℝ𝑛𝒉=𝑛𝒐 of 𝒉. With 

this set, mean and covariance in the range of 𝒉 can be calculated via  

 

𝐸(𝒐) = ∑ 𝑤𝑖
2𝑛
𝑖=0 𝒐𝑖,     (4.3) 

 

𝐶𝑜𝑣(𝒐)  = (1 − 𝛼2 + 𝛽){𝒐0 − 𝐸(𝒐)}{𝒐0 − 𝐸(𝒐)}
T + ∑ 𝑤𝑖 {𝒐𝑖 − 𝐸(𝒐)}{𝒐𝑖 − 𝐸(𝒐)}

T2𝑛
𝑖=1 . (4.4) 

 

The weighting factors are 

 

𝑤0 =
𝜆

𝑛𝜽+𝜆
 ,   𝑤𝑖 =

1

2(𝑛𝜽+𝜆)
, 𝑖 = 1…2𝑛𝜽.    (4.5) 

 

The tuning parameter 𝜆, with 𝜆 𝜖 ℝ, is calculated via 𝜆 = 𝛼2(𝑛𝜽 + 𝜅) − 𝑛𝜽. For selecting the tuning 

parameters 𝛼, 𝛽 and 𝜅 Julier and coworkers suggested some rules of thumb depending on knowledge 

of the parameter distribution functions of the random variables. The tuning parameters 𝛽 and 𝜅 are 

considered to include prior knowledge about the fourth and higher order moments of the input 

distribution function. The fourth statistical moment, i.e. the kurtosis 𝑘, can be accounted for by 

complying with the restriction 𝑘 = 𝜅 + 𝑛𝜽. For a Gaussian input PDF 𝜌𝜣(𝜽)~𝒩(𝐸(𝜽),𝐶𝑜𝑣(𝜽)) the 

kurtosis is hence best matching for 3 = 𝜅 + 𝑛𝜽 [167]. Although there is no restriction for the sign of 𝜅, 

a negative value might lead to a non-positive semi-definite 𝐶𝑜𝑣(𝒐). In this case, it is suggested to 

neglect the first part of Eq. (4.4), i.e. vanishing the impact of the zeroth sigma point on the 𝐶𝑜𝑣(𝒐) 

[168]. The parameter 𝛽 is also a function of the kurtosis, but it only influences the weighting of the 

output variances and not, as 𝜅, the choice of the sigma points. For Gaussian distributions it is 

recommended to use 𝛽 = 2 [169]. In case |𝜅 + 𝑛𝜽| becomes very small, the sigma points are very 

close to the mean values and the approximation merge to a Taylor approximation of second order, 

which requires the determination of the Jacobian and Hessian [168]. The parameter 𝛼 is a scaling 

factor, which controls the spread of the sigma points. This spread increases with the number of random 

variables 𝑛𝜽, though the spread in their PDFs do not change. This might lead to infeasible solutions for 

sigma points far away from the mean value in case of unscaled use of the UT. It should lie within 0 ≤

𝛼 ≤ 1. In case of 𝛼 = 0 the modified UT is achieved, whereas 𝛼 = 1 leads to the original formulation 

without scaling [170]. The suitable choice of the tuning parameters 𝛼, 𝛽, 𝜅 always depends on the 

specific problem and, thus, there exist no global optimal tuning or generic tuning rules [171]. The UT 

with sigma points has several advantages: 

 

• The errors of the expectation estimate is of fourth and higher order, whereas the variance–

covariance estimates have an error of fourth and higher order, too [167]. This only holds 

for scalars, (𝑛𝜽 = 1), as elucidated by Gustafsson and Hendeby [172]. For higher numbers 

of 𝑛𝜽 the tuning factors have to be adapted appropriately.  

• There is no need for calculating the derivatives, i.e. Jacobian or even Hessian, which 

makes it a robust and efficient approach. Although additional function evaluations on the 
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sigma points are available, the computational cost is comparable to the gradient-based 

calculation of first order [173].   

• Due to the deterministic sampling the computational effort scales linearly (2𝑛𝜽 + 1) with 

the number of random variables 𝑛𝜽 [167]. 

• Compared to linearization methods, the UT uses second and even higher order 

information, e.g. kurtosis, of the PDFs describing the random variables [167]. 

• Parallelization can easily be applied to speed up estimate calculation of the transformed 

expectation and variance–covariance, because each sigma point is independently 

propagated [174]. 

• Every kind of input PDF can be mapped via UT through a non-linear system by describing 

the PDF with Gaussian mixed distributions [173]. 

 

The UT was used for several applications in literature: Julier and Uhlmann applied it for 

filtering stochastic systems by incorporating noise to the nonlinear transformation [175]; the same 

authors used the UT for filtering of non-linear systems overcoming drawbacks of the extended Kalman 

filter [176]; Heine et al. [177] employed it for the design of robust model predictive controllers; the 

design of robust optimal process trajectories using the UT was introduced by Rossner et al. [178]; and 

other authors incorporated it in frameworks for optimal design of experiments ([179], [174]). By 

developing a generalized selection procedure of the sigma points, Julier and Uhlmann enable an 

approximation accuracy of fourth order using 2𝑛𝜽
2 + 1 sigma points [180] or a minimalized 

formulation using 𝑛𝜽 + 1 sigma points within a 𝑛𝜽-dimensional simplex [181]. Furthermore, Julier 

[182] extended the UT for the use of skewed input distribution functions.  

 

Robust reactor design framework using unscented tran sformation 

Embedding the unscented transformation within the dynamic optimization of the fluid element 

allows creating a framework for reactor design under uncertainty in which the different types of 

uncertainty, see subchapter 4.1.1, can be included and their impact on the reactor performance can be 

quantified or minimized. At first, the PDF of the uncertain variable is defined by its first two statistical 

moments, i.e. the mean and the variance. This information is used to create the sigma points with Eqs. 

(4.1)-(4.2) to approximate the PDF.  

 

 

Figure 4.4: Nonlinear uncertainty propagation with unscented transformation on sigma points 

 

Subsequently, the nonlinear transformation 𝒉(𝜽, 𝐷) = 𝒈(𝒇(𝜽, 𝐷)) is carried out, whereby an optimal 

control of the process and optimal design parameters combined in the reactor design 𝐷 are determined 

by the dynamic optimization under influence of the random variables 𝜽. Note, that 𝒉(𝜽, 𝐷) is 

decomposed into a function 𝒇, which maps random variables onto the model states, and a function 𝒈, 

which maps the process state variables onto the space of design objectives. By changing the reactor 

Non-linear transformation via 

process model function 

Approximation via 

sigma points

Mapping onto the 

design objective via 

function 
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design 𝐷, the nonlinear transformation 𝑶 =  𝒉(𝜽, 𝐷) is varied and mean and variance of the objective 

are changed. The entire uncertainty propagation is illustrated in Fig. 4.4. 

 

4.1.3 Mathematical formulation of dynamic optimization under 

uncertainty 

The generic dynamic optimization problem formulated within the EPF methodology is 

introduced in subchapter 3.1 (Eqs. (3.1)-(3.6)). The extension of its formulation for inclusion of 

uncertainties depends on the type of uncertainty, especially whether it is of static or dynamic nature.  

 

Static uncertainty  

Static uncertainty indicates a parametric randomness, which does not change along the 

reaction coordinate, e.g. model parameter uncertainty. Their consideration requires an individual 

solving of all model equations on each sigma point and a final summation of the crucial states for 

determination of the objective, or rather its statistical moments. Therefore, the aforementioned generic, 

deterministic dynamic optimization problem is extended by: (i) the calculation of the sigma points 

from the moments of the uncertainty PDFs (Eqs. (4.12)-(4.13)); (ii) the parallelization of model 

equations evaluations on all sigma points (Eqs. (4.7)-(4.8)); and (iii) the final calculation of the 

statistical moments of the objective from the dependent states, which are distributed on the sigma 

points (Eqs. (4.14)-(4.16)). Moreover, the objective is changed to its expected value (Eq. (4.6)). The 

resulting robust dynamic optimization problem (RDOP) is stated as: 

 

 min
𝒖(𝑡),𝝃

−𝐸(𝒐) (4.6) 

   s.t.     𝑪(𝒙𝑖(𝑡, 𝜽𝑖)) ∙
𝑑𝒙𝑖(𝑡, 𝜽𝑖)

𝑑𝑡
= 𝑭 ∙ 𝒋(𝒙𝑖(𝑡, 𝜽𝑖)), 𝑖 ∈ 𝑆𝑃 (4.7) 

 𝒈(𝒙𝑖(𝑡, 𝜽𝑖)) = 𝟎, 𝒉(𝒙𝑖(𝑡, 𝜽𝑖)) ≤ 𝟎, 𝑖 ∈ 𝑆𝑃   (4.8) 

 𝒖𝐿 ≤ 𝒖(𝑡) ≤ 𝒖𝑈  (4.9) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈  (4.10) 

 𝒙𝑖(𝑡0, 𝜽𝑖) = 𝒙0,𝑖(𝜽𝑖), 𝒙(𝑡𝑓 , 𝜽𝑖) = 𝒙𝑓,𝑖(𝜽𝑖), 𝑖 ∈ 𝑆𝑃 (4.11) 

 𝜽0 = 𝐸(𝜽) (4.12) 

 𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽)𝑖, 𝑖 = 1. .2𝑛𝜽 (4.13) 

 

𝐸(𝒐) =∑𝑤𝑖

2𝑛

𝑖=0

𝒐𝑖 , 𝑖 ∈ 𝑆𝑃 (4.14) 

 𝐶𝑜𝑣(𝒐) = (1 − 𝛼2 + 𝛽){𝒐0 − 𝐸(𝒐)}{𝒐0 − 𝐸(𝒐)}
T

+∑𝑤𝑖 {𝒐𝑖 − 𝐸(𝒐)}{𝒐𝑖 − 𝐸(𝒐)}
T

2𝑛

𝑖=1

, 𝑖 ∈ 𝑆𝑃 
(4.15) 

 
𝑤0 =

𝜆

𝑛𝜽 + 𝜆
 ,   𝑤𝑖 =

1

2(𝑛𝜽 + 𝜆)
, 𝑖 = 1…2𝑛𝜽 (4.16) 

 𝒐𝑖 = ∫ 𝐿(𝒙𝑖(𝑡, 𝜽𝑖))𝑑𝑡 + 𝐼 (𝒙0,𝑖(𝜽𝑖)) +𝑊 (𝒙𝑓,𝑖(𝜽𝑖))
𝑡𝑓
0

, 𝑖 ∈ 𝑆𝑃. (4.17) 

 

Dynamic uncertainty  

In case of dynamic uncertainty, its influence is distributed along the reaction coordinate and 

has to be incorporated in each time evaluation of the model equations independently. Again, the 

objective is changed to its expected value (Eq. (4.18)) and the sigma points of the random variable(s) 
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are calculated according to the rules introduced in the previous subchapter (Eqs. (4.24)-(4.25)). 

However, due to the distributed influence of the uncertainty, the states do not evolve deterministically 

over time. Instead, the evaluation of the statistical moments is carried out for the states at every time 

step and the resulting expected value is propagated further over time, see Eqs. (4.19), (4.20) and 

(4.30). The resulting RDOP is stated as: 

 

 min
𝒖(𝑡),𝝃

−𝐸(𝒐) (4.18) 

   s.t.     𝑪(𝐸(𝒙𝑖(𝑡, 𝜽𝑖))) ∙
𝑑𝐸(𝒙𝑖(𝑡, 𝜽𝑖))

𝑑𝑡
= 𝑭 ∙ 𝒋(𝐸(𝒙𝑖(𝑡, 𝜽𝑖))), 𝑖 ∈ 𝑆𝑃 (4.19) 

 𝒈(𝐸(𝒙𝑖(𝑡, 𝜽𝑖))) = 𝟎, 𝒉 (𝐸(𝒙𝑖(𝑡, 𝜽𝑖))) ≤ 𝟎, 𝑖 ∈ 𝑆𝑃   (4.20) 

 𝒖𝐿 ≤ 𝒖(𝑡) ≤ 𝒖𝑈  (4.21) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈 (4.22) 

 𝒙𝑖(𝑡0, 𝜽𝑖) = 𝒙0,𝑖(𝜽𝑖), 𝒙(𝑡𝑓 , 𝜽𝑖) = 𝒙𝑓,𝑖(𝜽𝑖), 𝑖 ∈ 𝑆𝑃 (4.23) 

 𝜽0 = 𝐸(𝜽) (4.24) 

 𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽)𝑖, 𝑖 = 1. .2𝑛𝜽 (4.25) 

 

𝐸(𝒐) =∑𝑤𝑖

2𝑛

𝑖=0

𝒐𝑖 , 𝑖 ∈ 𝑆𝑃 (4.26) 

 𝐶𝑜𝑣(𝒐)  = (1 − 𝛼2 + 𝛽){𝒐0 − 𝐸(𝒐)}{𝒐0 − 𝐸(𝒐)}
T

+∑𝑤𝑖 {𝒐𝑖 − 𝐸(𝒐)}{𝒐𝑖 − 𝐸(𝒐)}
T

2𝑛

𝑖=1

, 𝑖 ∈ 𝑆𝑃 
(4.27) 

 
𝑤0 =

𝜆

𝑛𝜽 + 𝜆
 ,   𝑤𝑖 =

1

2(𝑛𝜽 + 𝜆)
, 𝑖 = 1…2𝑛𝜽 (4.28) 

 
𝒐𝑖 = ∫ 𝐿(𝒙𝑖(𝑡, 𝜽𝑖))𝑑𝑡 + 𝐼 (𝒙0,𝑖(𝜽𝑖)) +𝑊 (𝒙𝑓,𝑖(𝜽𝑖)) , 𝑖 ∈ 𝑆𝑃

𝑡𝑓

0

 (4.29) 

 𝐸(𝒙𝑖(𝑡, 𝜽𝑖)) = ∑ 𝑤𝑖
2𝑛
𝑖=0 𝒙𝑖(𝑡, 𝜽𝑖), 𝑖 ∈ 𝑆𝑃. (4.30) 

 

Classically, process noise is considered as additive term in the balance equations. Thereby, at 

each time point of the process the states experience a certain simulated disturbance. Using the above 

presented formulation approximates this classical approach by describing the noise PDF with sigma 

points and only propagating the expected value of the states over time. That means, at every evaluated 

time step the expected values of the states of the previous time step is evaluated on the sigma point of 

the disturbed (random) variable and by applying the unscented transformation the expected values of 

the states at the current time step are determined. However, the objective evaluation is thereby not 

changed, see Eq. (4.26).   

 For solving these RDOP again a full discretization of the states and inputs using orthogonal 

collocation on finite elements is applied. The resulting discretized RDOPs both for the cases of static 

and dynamic uncertainty are given in the appendix (A.3) in detail, allowing the interested reader to 

comprehend the final implementation. 

 

Multi-objective optimization  

Both dynamic optimization problems for static and dynamic uncertainties are formulated for a 

robust optimization, i.e. the objective is optimized under the condition that all constraints are feasible 

for the considered uncertainty set. As outlined in the introduction of this chapter, a second important 

target of the design under uncertainty is the minimization of the uncertainty impact on the performance 

of the process. Therefore, the deviation from the predicted expected value has to be minimized 
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meaning a reduction of the corresponding variance. This can be understood as a minimization of risk 

to miss the predicted performance leading to a higher predictive power of the process. To include this 

risk measure, the variance of the objective, which is determined with the unscented transformation, is 

added to the objective of the RDOP stated above (Eq. (4.31)).  

 

𝑂𝑏𝑗 = [−𝐸(𝒐), 𝑉𝑎𝑟(𝒐)]    (4.31) 

 

The resulting multi-objective optimization problem (MOOP) faces additional challenges. An excellent 

review on these in the field of process design can be found in 183 [183]. The major challenge is the 

simultaneous consideration of different objectives 𝐽𝑖 ∈ ℝ
𝑚 within the dynamic optimization leading to 

trade-offs between the 𝑚 objectives. Therefore, the concept of Pareto optimality holds, which has the 

following definition: An optimal point of the decision variables 𝑢∗ ∈ 𝑈, where 𝑈 is the set of all 

feasible solutions, is Pareto optimal if and only if there does not exist another point 𝑢 ∈ 𝑈 such that 

𝐽𝑖(𝑢) ≤ 𝐽𝑖(𝑢
∗) for all 𝑖 and 𝐽𝑖(𝑢) < 𝐽𝑖(𝑢

∗) for at least one objective [184]. Following this definition, 

not only one unique optimal design exists. Instead, a bunch of Pareto optimal designs exist which form 

the Pareto set. The existing approaches for identifying the Pareto optimal solutions can be separated 

into vectorial methods and scalar methods. In the former case, the multi-objective optimization is 

directly solved with a vector-valued objective function, whereas in the latter case several objectives 

are transformed into a scalar function. These scalarization methods reformulate the underlying MOOP 

into a series of parametric single objective dynamic optimization problems. An approximation of the 

Pareto set is obtained by consistently varying the scalarization parameters. Several scalarization 

methods are reported in literature varying in complexity and accuracy, e.g. the Method of Weighted 

Sum (WS), the ε-constraint Method (ε-CM), Normal Boundary Intersection and Enhanced Normalized 

Normal Constraint, etc. For the sake of brevity not all available methods are discussed. Details can be 

found e.g. in [185], where a comprehensive survey is given. In the present work the Method of 

Weighted Sum and the ε-constraint Method are used. The WS associates the different objectives with 

weights allowing for an approximation of the Pareto set by varying the weights consistently. In case of 

the objectives stated in Eq. (4.31), the resulting scalar objective reads: 

 

𝑂𝑏𝑗 = −𝛼𝐸(𝒐) + (1 − 𝛼)𝑉𝑎𝑟(𝒐),    (4.32) 

 

whereby 𝛼 defines the scalarization parameter which can be varied between 0…1. Consequently, for 

𝛼 = 0 the variance is minimized and the most robust design is identified, and for 𝛼 = 1 the highest 

performing design is determined corresponding to the result of the RDOPs with a single objective. In 

contrast to this method, the ε-constraint Method does not augment the original objective. Instead, it 

adds a constraint for the additional objectives forcing them to satisfy certain predefined bounds ε. For 

the objectives stated in Eq. (4.31), the objective and the additional constraint can have either the form: 

 

𝑂𝑏𝑗 = −𝐸(𝒐)      (4.33) 

s.t. 𝑉𝑎𝑟(𝒐) ≤ 𝜀      (4.34) 

 

or the form: 

 

𝑂𝑏𝑗 = 𝑉𝑎𝑟(𝒐)      (4.35) 

s.t. 𝐸(𝒐) ≥ 𝜀      (4.36) 

 

whereby 𝜀 is varied to scan the desired range of the respective objective. The WS is suitable to find the 

extreme points of the Pareto set and to provide a first insight into the possible shape of the Pareto set. 
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Its drawback is, that one cannot identify concave regions and a suitable variation of the weighting 

parameter strongly depends on the specific problem. This might lead to kinks in the Pareto set. If the 

region of the Pareto set is roughly known, the ε-CM can be used to scan the Pareto set more precisely, 

whereby the values of 𝜀 can be chosen appropriately to the presumed shape of the Pareto set. 

Furthermore, it allows identifying concave regions by changing the optimized and constrained 

objectives, see Eqs. (4.33)-(4.34) and Eqs. (4.35)-(4.36). Due to these properties the Pareto sets in the 

presented work are determined by first using the WS to find reasonable ranges of the two objectives, 

where Pareto optimal solutions might exist, and subsequently calculate a more precise approximation 

of the Pareto set within these ranges via the ε-CM.  

 

 

Figure 4.5: Scheme of the multi-objective robust dynamic optimization concept 
 

The robust dynamic optimization problems introduced before (Eqs. (4.6)-(4.17) and Eqs. 

(4.18)-(4.30)) extended by the multi-objective optimization framework results in a multi-objective 

robust dynamic optimization problem (MORDOP). Its fundamental intention is schematically 

illustrated in Fig. 4.5. The considered uncertainty is introduced to the process design by its PDF 

𝜌𝜣(𝜽), which is approximately described by sigma points 𝜽𝑖. Via the nonlinear transformation 

function 𝒉(𝜽, 𝐷), which combines the process model and the objective evaluation, the uncertainty is 

mapped to the objective yielding information about its expected value 𝐸(𝒐|𝐷) and its variance 

𝑉𝑎𝑟(𝒐|𝐷). This corresponds to a particular point in the Pareto set, see right side of Fig. 4.5. By 

varying the design 𝐷 of the process, the nonlinear mapping changes, and another Pareto optimal point 

is found. With this approach one can find several process designs with different trade-offs between the 

performance of the process, i.e. the expected value, and the predictive power of the process 

performance, i.e. the variance, under influence of uncertainties.  

 

4.2 Reactor design under model parameter uncertainties  

 In a first scenario the reactor design under uncertainty framework is applied for the case of 

uncertain model parameters. As example process the hydroformylation of 1-dodecene in a TMS 

system introduced in subchapter 2.3 is considered. Aiming at reactor designs, which are robust with 

respect to model parameter uncertainties, the respective parameters and their confidence intervals are 

introduced, and the MORDOP shown in the previous subchapter is derived and solved in subchapter 

4.2.1. The Pareto set is determined, and a validation of the results is carried out using Monte Carlo 

simulations to achieve a qualitative and quantitative evaluation of the presented reactor design under 

uncertainty approach. Based on the validation results suitable tuning factors and modifications of the 

unscented transformation are identified and the determination of the Pareto set is repeated. Afterwards 

it is demonstrated, how the interdependency between two crucial performance measures, i.e. the 
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selectivity with respect to the desired product and the conversion of the main reactant, look like. In a 

subsequent step, the reactor design under uncertainty approach is extended by a global sensitivity 

analysis in order to identify the most sensitive model parameters of the process in subchapter 4.2.2.  

 

4.2.1 Robust reactor design for the hydroformylation of 1-dodecene  

Uncertain model parameters  

For the uncertainty quantification of the model parameters in the process model equations 

additional knowledge about their uncertainty distributions is required. Hentschel et al. [157] provided 

confidence intervals for the estimated parameters in the reaction kinetics, which can be used to 

approximate their PDFs. In addition to these identified model parameters of the reaction kinetics, 

uncertainties in the equilibrium constants ∆𝐺2,  ∆𝐺3 of the reactions 𝑟2, 𝑟3, respectively, and the Henry 

coefficients for the solubilities of the gaseous reactants 𝐻𝐶𝑂
0 , 𝐻𝐻2

0 , 𝐸𝐴,𝐻𝐶𝑂 , 𝐸𝐴,𝐻𝐻2 are considered. The 

confidence intervals for the reaction rate parameters are adopted from Hentschel et al. [157] and given 

in Tab. 4.1. For the remaining uncertain model parameters no reference for confidence intervals is 

available. Thus, reasonable confidence intervals in a range of ±10 % are assumed, see Tab. 4.2. To 

calculate the variances of the density functions of the uncertain model parameters the confidence 

intervals given in Tab. 4.1 and 4.2 are taken as two times the standard deviation 

 

𝜎𝜽𝑖
2 = (

𝐸(𝜽𝑖)𝜀𝑖
2

)

2

 ,                                               (4.37) 

 

where 𝐸(𝜽𝑖) are the expected values of the uncertain parameters, i.e. their deterministic values 

introduced in Tab. A.1, and 𝜀𝑖 are the confidence intervals from Tab. 4.1-4.2. Due to missing 

information about possible correlations, all covariances are assumed to be zero leading to a diagonal 

covariance matrix  

 

   𝐶𝑜𝑣(𝜽) = 𝑑𝑖𝑎𝑔(𝜎𝜽
2).     (4.38) 

 
Table 4.1: Confidence intervals of kinetic parameters and catalyst equilibrium 

Variable Eq. EA [
kJ

mol
] k0 Unit K1 [

ml

mol
] K2 [

ml

mol
] K3 [

ml

mol
] 

r1 (2.2) ±33.0 % ±13.9 % 
ml3

gminmol2
 ±355.0 % ±270.0 % ±1.0 % 

r2 (2.3) ±29.0 % ±9.7 % 
ml

g min
 ±252.1 % ±21.0 % - 

r3 (2.4) ±26.0 % ±8.5 % 
ml2

gminmol
 ±139.1 % ±97.2 % ±117.2 % 

r4 (2.5) ±13.0 % ±6832.3 % 
ml2

gminmol
 - - - 

r5 (2.6) ±408.0 % ±5.1 % 
ml3

gminmol2
 - - - 

r6 (2.7) - ±10.9 % 
ml3

gminmol2
 - - - 

ccat (2.1) - - - ±84.1% - ±12.4% 

 
Table 4.2: Assumed confidence intervals for solubility constants and equilibrium constants 

Variable  ∆𝐺2 ∆𝐺3 𝐻𝐶𝑂
0  𝐻𝐻2

0  𝐸𝐴,𝐻𝐶𝑂  𝐸𝐴,𝐻𝐻2  

 ±10.0% ±10.0% ±10.0% ±10.0% ±10.0% ±10.0% 
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Robust dynamic optimization problem  

The required model equations for the hydroformylation process are given in subchapter 2.3 

and subchapter 3.2.3. The dynamic optimization problem, which was formulated in the course of the 

reactor-network synthesis in subchapter 3.2.3 (Eqs. (3.41)-(3.61)), is adopted and augmented by the 

model parameter uncertainties (Tab. 4.1 and 4.2, Eqs. (4.37)-(4.38)) and the unscented transformation 

equations according to subchapter 4.1.2 (Eqs. (4.1)-(4.5)). In contrast to the formulation in subchapter 

3.2.3, the degree of freedom of distributed dosing of reactant is neglected and its initial value is 

predefined. Furthermore, the balancing of the storage tanks, the dosing constraints, and the differential 

selectivity calculation are removed. Following the adopted dynamic optimization problem, again the 

selectivity with respect to the desired linear aldehyde tridecanal 𝑆𝑛𝐶13𝑎𝑙 is maximized subject to a 

preset conversion 𝑋𝑛𝐶12𝑒𝑛 and a minimum constraint for the regio-selectivity 𝑛/𝑖𝑠𝑜. As elucidated in 

subchapter 4.1.3 the resulting MORDOP has to be solved several times for varying scalarization 

parameters both for the WS and the ε-CM to determine an adequate approximation of the Pareto set of 

the two opposite objectives, i.e. maximizing the expected value of 𝐸(𝑆𝑛𝐶13𝑎𝑙) and minimizing the 

variance 𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙). In the following the MORDOP using the ε-CM is given (Eqs. (4.39)-(4.59)), 

whereas the formulation using the WS can be simply achieved according to the explanation in 

subchapter 4.1.3. 

  

 max
 𝑇(𝑡),𝑝𝐶𝑂(𝑡),𝑝𝐻2(𝑡),𝑡𝑓

  𝑆𝑛𝐶13𝑎𝑙(𝑡𝑓) (4.39) 

   s.t.     Component mass balances: 
𝑑𝑛𝛼,𝑖
𝑑𝑡

= 𝑉𝑙𝑖𝑞 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 (∑ 𝜈𝛼,𝑚𝑟𝑚

𝑀

𝑚=1

)) , 𝛼 ∈ 𝐶𝐻, 𝑖 ∈ 𝑆𝑃 (4.40) 

 Reaction kinetics: Eqs. (2.2)-(2.7), with 𝑟𝑚 = 𝑟𝑚(𝜽𝑖), 𝑚 ∈ {1…𝑀}, 𝑖 ∈ 𝑆𝑃 (4.41) 

 Catalyst equilibrium: Eq. (2.1), with 𝑐𝑐𝑎𝑡 = 𝑐𝑐𝑎𝑡(𝜽𝑖), 𝑖 ∈ 𝑆𝑃 (4.42) 

 Constitutive equations: Eqs. (3.38)-(3.39) (4.43) 

 Gas solubilities: Eq. (2.11), with 𝐻𝑗 = 𝐻𝑗(𝜽𝑖), 𝑗 ∈ {𝐶𝑂,𝐻2}, 𝑖 ∈ 𝑆𝑃 (4.44) 

 Catalyst and solvent ratios: Eqs. (2.13)-(2.14) (4.45) 

 Path constraints: 𝒏𝑖(𝑡) ≥ 0, 𝑖 ∈ 𝑆𝑃 (4.46) 

  10 bar ≤ 𝑝𝑡(𝑡) = 𝑝𝐶𝑂(𝑡) + 𝑝𝐻2(𝑡) ≤ 20 bar (4.47) 

  363.15 K ≤ 𝑇(𝑡) ≤ 388.15 K   (4.48) 

 Terminal constraints: 𝑡𝑓 ≤ 100 min  (4.49) 

  𝑋𝑛𝐶12𝑒𝑛,𝑖 =
𝑛𝑛𝐶12𝑒𝑛,𝑖(0) − 𝑛𝑛𝐶12𝑒𝑛,𝑖(𝑡𝑓)

𝑛𝑛𝐶12𝑒𝑛,𝑖(0)
= 99 %, 𝑖 ∈ 𝑆𝑃 (4.50) 

  𝑆𝑛𝐶13𝑎𝑙,𝑖 =
𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓)−𝑛𝑛𝐶13𝑎𝑙,𝑖(0)

𝑛𝑛𝐶12𝑒𝑛,𝑖(0)−𝑛𝑛𝐶12𝑒𝑛,𝑖(𝑡𝑓)
, 𝑖 ∈ 𝑆𝑃   (4.51) 

  𝑛/𝑖𝑠𝑜𝑖 =
𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓)

𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓) + 𝑛𝑖𝐶13𝑎𝑙,𝑖(𝑡𝑓)
≥ 95 %, 𝑖 ∈ 𝑆𝑃 (4.52) 

 Initial conditions: 𝒏𝑖(𝑡 = 0) = 𝒏0,𝑖 = {
1, 𝑙 ∈ {𝑛𝐶12𝑒𝑛}

0, 𝑙 ∈ {𝐶𝐻/𝑛𝐶12𝑒𝑛} 
, 𝑖 ∈ 𝑆𝑃  (4.53) 

 
Uncertain model 

parameters: 
𝜽 =

[𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝐾𝑐𝑎𝑡,1, 𝐾𝑐𝑎𝑡,2, …

∆𝐺𝑟2 , ∆𝐺𝑟3 ,𝐻𝐶𝑂
0 , 𝐻𝐻2

0 , 𝐸𝐴,𝐻𝐶𝑂 , 𝐸𝐴,𝐻𝐻2]
T 

 (4.54) 

  Unscented transformation: 𝜽0 = 𝐸(𝜽) (4.55) 

  𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽)𝑖, 𝑖 ∈ 𝑆𝑃 (4.56) 

  𝐸(𝑆𝑛𝐶13𝑎𝑙) =∑𝑤𝑖

2𝑛

𝑖=0

𝑆𝑛𝐶13𝑎𝑙𝑖, 𝑖 ∈ 𝑆𝑃 (4.57) 
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𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙)  = (1 − 𝛼
2 + 𝛽){𝑆𝑛𝐶13𝑎𝑙0 −

𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙0 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
+ ∑ 𝑤𝑖 {𝑆𝑛𝐶13𝑎𝑙𝑖 −

2𝑛
𝑖=1

𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙𝑖 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
, 𝑖 ∈ 𝑆𝑃  

(4.58) 

 ε-CM constraint: 𝑉𝑎𝑟(𝒐) ≤ 𝜀   (4.59) 

 

The set of uncertain parameters is defined in Eq. (4.54). For those the sigma points (SP) are 

determined and the corresponding equality constraints, i.e. the reaction kinetics, the catalyst 

equilibrium, and the gas solubilities (Eqs. (4.41), (4.42), and (4.44)), are defined as function of the SP. 

The evaluation of the component mass balances and all state dependent constraints are conducted on 

the SP as well (Eqs. (4.40), (4.46), (4.50)-(4.53)).  

 

Pareto set of optimal designs under model parameter uncertainties  

For the different RDOPs solved to determine the set of Pareto optimal solutions, the tuning 

parameters of the UT are selected to be 𝛼 = 1, 𝛽 = 2 and 𝜅 = −11. As elucidated in subchapter 4.1.2, 

𝛼 = 1 yields the unscaled UT which seems to be a reasonable first choice since no heuristic 

knowledge about a suitable scaling is available. 𝛽 = 2 is recommended for Gaussian distributions 

[169] and 𝜅 = −11 results from the heuristic rule that 𝑛𝜃 + 𝜅 = 3 [167]. The Pareto set is constructed 

by optimization results for varying 𝜀 in bounds which are determined by a preliminary run with the 

WS method. The resulting Pareto set is depicted in Fig. 4.6 and shows the maximum expected values 

of the selectivity with respect to tridecanal,  𝐸(𝑆𝑛𝐶13𝑎𝑙), over the variance of the same measure, 

𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙). Evidently, the set is convex implying that the first objective, 𝑚𝑎𝑥𝐸(𝑆𝑛𝐶13𝑎𝑙), cannot 

be improved without downgrading the second objective, 𝑚𝑖𝑛 𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙).  

 

Figure 4.6: Set of Pareto optimal solutions resulting from the MORDOP for robust reactor design in Eqs. (4.39)-(4.59) 

 

The highest performance is reached at 𝐸(𝑆𝑛𝐶13𝑎𝑙) = 65.95 % with a predicted variance of 

𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙) = 14 %. Thus, with a 95 % likelihood the selectivity would lie in the range of 

58.47 % ≤ 𝑆𝑛𝐶13𝑎𝑙
2𝜎 ≤ 73.43 %, which means a very low predictive power of the reactor performance. 

This is highest when choosing the very left point at 𝐸(𝑆𝑛𝐶13𝑎𝑙) = 62.86 % with a variance 

𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙) = 2.247 % which corresponds of a 2𝜎 range of 59.88 % ≤ 𝑆𝑛𝐶13𝑎𝑙
2𝜎 ≤ 65.84 %. Since 

all points are optimal, or rather Pareto optimal, the decision-making about the best design is about 
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selecting the most acceptable trade-off. This decision requires either a clear bound for one of the 

objectives or more knowledge about their impacts on the overall process.  

 

Validation via Monte Carlo simulations and tuning of UT parameters  

 Due to the approximate nature of the UT, the accuracy of the results of the MORDOP has to 

be quantified. Therefore, the predicted expected values and variances of the Pareto optimal designs are 

evaluated using Monte Carlo (MC) simulations. For #𝑀𝐶 = 10000 samples of the Gaussian 

distributed model parameter uncertainties each design is simulated using the same model as employed 

for the MORDOP, see Eqs. (4.39)-(4.59). As result pairs  [𝐸(𝑆𝑛𝐶13𝑎𝑙), 𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙)] are achieved for 

each of the Pareto optimal designs, forming themselves a Pareto set. A comparison of the original 

solutions of the MORDOP and their corresponding MC results is shown in Fig. 4.7 a). 

 

 

Figure 4.7: Comparison of the results achieved by solving a Monte Carlo simulation and the MORDOP for robust reactor 

design (Eqs. (4.39)-(4.59)) for: a) the original tuning factors and modification of the UT, and b) the refined tuning factors and 

modification of the UT 

 

Although the values lie in a similar range, their matching is not very accurate, which means the Pareto 

optimal reactor designs determined with the UT are not highly reliable. To improve the accuracy of the 

approximation with the UT, several modifications and tuning factor configurations have been checked. 

The analysis revealed that due to the negative value of 𝜅 the approximation with the UT is improved 

using its modified version, which is recommended by Julier and Uhlmann [168] in this case. 

Following the formulation in Eqs. (4.56)-(4.58), 𝛼 = 1 and 𝜅 = −11 stay the same and 𝛽 is set to 0 

leading to (1 − 𝛼2 + 𝛽) = 0, which corresponds to the condition of the modified UT. The results of 

the RDOPs with this modification and their corresponding MC validations are illustrated in Fig. 4.7 b). 

Evidently, the matching has been improved significantly. Both the expected value and the variance of 

the objective are still slightly underestimated using the UT, but the quantitative and qualitative match 

allows a further use of the UT as a reliable approximation method for the dynamic optimization under 

uncertainty.  

 

Interdependence of selectivity and conversion  

 So far, the quantification of the model parameter uncertainty impact is carried out only for the 

selectivity with respect to tridecanal for a predefined conversion. Following the analysis of the process 

potential, as it was introduced in chapter 3, it is expedient to seek for the robust optimal reactor design 

of the hydroformylation process as well investigating the impact of model parameter uncertainties on 

the conversion of 1-dodecene and carrying out the analysis in the [𝑆𝑛𝐶13𝑎𝑙, 𝑋𝑛𝐶12𝑒𝑛]-space. Therefore, 

the MORDOP in Eqs. (4.39)-(4.59) is solved for several expected values of the conversion, 
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𝐸(𝑋𝑛𝐶12𝑒𝑛), still optimizing 𝐸(𝑆𝑛𝐶13𝑎𝑙), and analyzing the variance of both the selectivity, 

𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙), and the conversion, 𝑉𝑎𝑟(𝑋𝑛𝐶12𝑒𝑛). The results are shown in the bar diagram in Fig. 

4.8. The Pareto set for each 𝐸(𝑋𝑛𝐶12𝑒𝑛) is illustrated with three grouped bars corresponding to 

characteristic points of the Pareto set, i.e. the point of maximum 𝐸(𝑆𝑛𝐶13𝑎𝑙), medium 𝐸(𝑆𝑛𝐶13𝑎𝑙), and 

minimum 𝐸(𝑆𝑛𝐶13𝑎𝑙). The predictive powers are depicted in form of error bars using the standard 

deviation (STD) for both the selectivity and the conversion. To reach higher conversions the bound for 

the final time is changed to 𝑡𝑓 ≤ 300 min. 

 

Figure 4.8: Bar diagram showing expected value of selectivity over the expected value of conversion, whereby the latter is 

depicted in grouped bars. Each bar corresponds to a characteristic point in the corresponding Pareto set, see scheme in the 

upper left corner. The error bars indicate the STD of conversion (yellow) and selectivity (orange), respectively. 

 

For expected conversions 𝐸(𝑋𝑛𝐶12𝑒𝑛) ≤ 96 % the expected selectivities and the standard deviations of 

both the selectivity and the conversion are almost not changing. The Pareto sets are flat and, thus, the 

potential for robustification is small. Moreover, the STD of the selectivity stays constant, whereas the 

STD of the conversion decreases slightly with increasing 𝐸(𝑋𝑛𝐶12𝑒𝑛). These characteristics 

significantly change for 𝐸(𝑋𝑛𝐶12𝑒𝑛) ≥ 99 %.  The 𝐸(𝑆𝑛𝐶13𝑎𝑙) and 𝑆𝑇𝐷(𝑆𝑛𝐶13𝑎𝑙) increases with 

𝐸(𝑋𝑛𝐶12𝑒𝑛) as its STD decreases to almost zero. The spread of the bars is increased implying a very 

noteworthy change of the designs from the point of the highest performance to the point of best 

predictive power. 

 The identification of a unique robust optimal reactor design requires again knowledge about 

the targeted bounds of the different objectives, either empirically predefined or imposed by the overall 

process requirements. Since the latter is not available for this design problem, the best design is chosen 

in order to achieve highest possible selectivity and conversion complying the condition 𝑆𝑛𝐶13𝑎𝑙
2𝜎 ≤

5 %. The resulting optimal control trajectories of the robust optimal reactor design are shown in Fig. 

4.9 a).The reaction time, 𝑡𝑓, is at its maximum at 300 min. The control of the temperature indicates 

three sections, i.e. a first section with lowest possible temperature, a second section of increasing 

temperature, and a third section with highest possible temperature. The partial pressures behave 

similarly, whereas their trajectories are contrary to each other, always maintaining the maximum 

overall pressure. The peaks in all control trajectories at 𝑡 = 0 min might be negligible as they are 

present only for a few seconds and, thus, point to a numerical artifact.  
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Figure 4.9: Optimal control trajectories for the hydroformylation reaction for: a) the best robust reactor design complying 

with the condition 𝑆𝑛𝐶13𝑎𝑙
2𝜎 ≤ 5 %; and b) for the deterministic case not considering model parameter uncertainties 

 

The expected selectivity reaches 67.45 % at an expected conversion of 99.5 %. The 2𝜎 

condition stated above is satisfied and the STD of the conversion is almost zero. In case the model 

parameter uncertainties are not considered during the design procedure, the optimal control trajectories 

show a somehow similar behavior, see Fig. 4.9 b). The temperature starts at a lower point and directly 

increase to its maximum level, and the partial pressures start at similar points as in the robust design 

and switch their ratio when maximum temperature is set. Subsequently, they stay constant for more 

than 250 min until the final reaction time of 300 min is reached. Comparing these two designs, the 

deterministic design simply neglects the first section of the robust design, shrinks the transition 

section, and considerably increases the duration of the third section. Its performance is as well 

significantly increased reaching a selectivity of 82.43 % at a conversion of 99.5 %. However, this 

increased selectivity is accompanied by an indefinite uncertainty and both a design of a single reactor 

unit and, especially, the embedding of this unit in an integrated overall process are, thus, of indefinite 

risk.  

 The comparison of the robust optimal reactor design and the deterministic design indicates that 

the qualitative characteristics of different designs, especially of different robust designs within the 

same Pareto set, might be quite similar and, thus, allow to design a reactor unit, which is able to 

realize several of these designs by only shifting e.g. transition points. The knowledge about the 

unifying characteristics allows for determining the required flexibility of the reactor unit and its 

control and, therefore, supports the decision-making about the optimal reactor unit and/or operation, 

and necessary controller properties.  

  

4.2.2 Identification of most sensitive model parameters via global 

sensitivity analysis 

 The introduced framework for reactor design under model parameter uncertainty has, in 

addition to the demonstrated determining of Pareto optimal reactor designs as function of one or more 

crucial performance measures, the potential to be used as basis for a sensitivity analysis with respect to 

the parameters of uncertainty. The sensitivity analysis aims at quantifying the contribution of each 

uncertain parameter to the predicted overall variance of the performance of a design. It will be 

demonstrated and discussed how this knowledge about the particular parameter impact on the 

performance can be applied. Furthermore, it will be illustrated how those parameter contributions 

change for the different designs of a Pareto set and, thus, identify which parameter uncertainty impacts 

are decreased by robustification.  
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Global sensitivity analysis via Sobol indices  

 In a fundamental work about global sensitivity analysis Sobol [186] introduced indices, further 

referred to as Sobol indices, which can be computed by Monte Carlo or quasi-Monte Carlo methods. 

They allow for estimating the influence of single or multiple variables on the output of a nonlinear 

mathematical model. This approach bases on the ANOVA (analysis of variances) representation which 

enables the decomposition of a model output variance 𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟1 + 𝑉𝑎𝑟2 +⋯+ 𝑉𝑎𝑟𝑘 + 𝑅, 

where 𝑉𝑎𝑟𝑖 are parts, which can be attributed to the different uncertain inputs 𝜃𝑖 individually, 𝑘 is the 

number of uncertain inputs, and 𝑅 is a residual. In a similar way, the FAST (Fourier amplitude 

sensitivity test) method decomposes the model output variance by use of spectral analysis instead of 

Monte Carlo methods [187]. Both approaches provide a framework for global sensitivity analysis and 

allow determining corresponding sensitivity indices. In chemical design one can more often find the 

use of local sensitivities analysis by calculating derivative based sensitivity indices, e.g. 𝑆𝑖 = 𝛿𝑌/𝛿𝑋𝑖, 

for each uncertain input individually. They are determined usually using one-factor-at-a-time methods, 

which vary the 𝑖th input while fixing all others. However, these methods are only effective for 

determining the relative importance of the inputs when the model is linear in all inputs, which is not 

the case for nonlinear chemical reaction models [188]. Thus, the use of global sensitivity methods 

such as FAST and the ANOVA-based Sobol indices is necessary. As the representation introduced by 

Sobol (2001) bases on Monte Carlo or quasi-Monte Carlo methods and the unscented transformation 

used within the presented design framework under uncertainty can be associated as an approximate 

Monte Carlo method, Sobol indices are used for the following global sensitivity analysis. For a sound 

overview about these and further methods it is referred to [188].  

 The individual variance contributions of first order are determined via  

 

𝑉𝑎𝑟𝑖 = 𝑉𝑎𝑟𝜃𝑖 (𝐸𝜃−𝑖(𝑌|𝜃𝑖)),    (4.60) 

 

where 𝐸𝜃−𝑖 is the expected value in case all inputs are of variation except of input 𝑖, and 𝑉𝑎𝑟𝜃𝑖 defines 

the variance over 𝜃𝑖. Thus, the expected value 𝐸𝜃−𝑖 has to be determined for several 𝜃𝑖 sampled from 

its specific PDF, so that the variance of these expected values can be calculated. The overall variance 

of the output is defined by 

 

𝑉𝑎𝑟(𝑌) = 𝐸𝜃𝑖 (𝑉𝑎𝑟𝜃−𝑖(𝑌|𝜃𝑖)) + 𝑉𝑎𝑟𝜃𝑖 (𝐸𝜃−𝑖(𝑌|𝜃𝑖)),   (4.61) 

 

whereby 𝑉𝑎𝑟𝜃−𝑖  is, according to the aforementioned definition, the variance of the output in case all 

inputs are of variation except of input 𝑖. The quotient of Eq. (4.60) and Eq. (4.61) yields the input 

specific variance 

 

𝐷𝑖 = 𝑉𝑎𝑟𝑖/𝑉𝑎𝑟(𝑌).     (4.62) 

 

This procedure can further be carried out for higher-order terms, i.e. 𝑉𝑎𝑟𝑖𝑗, 𝑉𝑎𝑟𝑖𝑗𝑙, etc., which quantify 

the influence of combined inputs, see [188]. In practice these terms of higher order are often neglected, 

because the computational effort strongly increases, as long as the sum of the input specific variances 

𝐷𝑖 is close to 1, i.e. the contribution of combined inputs is negligible.  

Finally, the global sensitivity indices are determined by 

 

𝑆𝑖 = 𝐷𝑖/∑𝐷𝑖.      (4.63) 
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Identification and analysis of  Sobol indices for Pareto optimal designs of t he 

Hydroformylation process  

 The global sensitivity analysis is carried out for the Pareto optimal designs of the 

hydroformylation process determined for an expected conversion of 𝐸(𝑋𝑛𝐶12𝑒𝑛) = 99.5 % using the 

adapted UT parameters. The Sobol indices are determined for the selectivity and the conversion, to 

compare the changes induced by the robustification along the Pareto set. Aiming at a clear analysis, 

the previously introduced characteristic points along the Pareto set, see Fig. 4.8, are selected again and 

the corresponding Sobol indices are illustrated in pie diagrams Fig. 10 a)-f). The subfigures a)-c) show 

the Sobol indices for the selectivity at its highest expected value, medium expected value, and lowest 

expected value, respectively. The same holds for the conversion in the subfigures d)-f). The sum of 𝐷𝑖 

is close to one for all cases. Evidently, the highest impact on the overall variance of the selectivity and 

the conversion in case of maximum 𝐸(𝑆𝑛𝐶13𝑎𝑙) originates from the catalyst equilibrium parameters 

𝐾𝑐𝑎𝑡,1 and 𝐾𝑐𝑎𝑡,2, summing up to more than 90 %. In case of medium 𝐸(𝑆𝑛𝐶13𝑎𝑙), i.e. a trade-off 

between good performance and good predictive power, the impact of these catalyst equilibrium 

parameters is significantly reduced, whereby their influence on the conversion is still higher. In the 

last case of minimum performance and maximum predictive power the catalyst equilibrium parameter 

impacts are further reduced and other parameter impacts become more substantial. For the selectivity 

those are especially the rate constants of reaction one and two, 𝑘0,1 and 𝑘0,2. Inasmuch as the objective 

of the robust dynamic optimization problems has been the reduction of the variance of the selectivity 

and not of the conversion, the analysis of the Sobol indices for the conversion is not so meaningful and 

serve only as comparing entity. However, the Sobol indices of the selectivity clearly indicate, that the 

main impact on the overall variance of the selectivity stems from the uncertainty of the catalyst 

equilibrium parameters and, thus, a more accurate identification of those is highly recommendable and 

would improve the predictive power of the process design significantly.   
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Figure 4.10: Pie diagrams illustrating the Sobol indices for the Pareto optimal designs at 𝐸(𝑋𝑛𝐶12𝑒𝑛) = 99.5 %. Pie 

diagrams a)-c) for the variance of the selectivity correspond to the characteristic points in the Pareto set for maximum, 

medium and minimum 𝐸(𝑆𝑛𝐶13𝑎𝑙), respectively. In the same way pie diagrams d)-f) correspond to the variance of the 

conversion. 

   

< 1%< 1%
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4.3 Reactor design under imperfect control realizations  

 After introducing the use of the reactor design under uncertainty framework for model 

parameter uncertainties, it is now applied for analyzing the impact of imperfect realization of the 

optimal control trajectories on the predicted performance of the process. In contrast to the previously 

treated static model parameter uncertainties, the imperfect control realization effects the reaction as a 

distributed disturbance along the reaction coordinate and is, thus, a dynamic uncertainty. Again, the 

application and analysis of this type of uncertainty is demonstrated on the hydroformylation process. 

First, the concept of imperfect control realization of the EPF based design is elucidated in more detail 

in subchapter 4.3.1. In a second step the resulting robust dynamic optimization problem is derived and 

solved for different assumed standard deviations of the temperature control in subchapter 4.3.2. In a 

last step, the presented approach is used to compare the robustness properties of two different reactor 

realizations including both model parameter uncertainties and imperfect control realizations in 

subchapter 4.3.3. The results impressively indicate that this approach allows for a fast assessment of 

reactor realizations already in an early step of the design procedure using a rather simple model.  

 

4.3.1 Imperfect control realizations as dynamic uncertainty along the 

reaction coordinate 

 The optimal state trajectories of the EPF fluid 

element along its way through the process are controlled 

by inputs of mass and energy, which are typically realized 

by dosing and temperature control, respectively (see 

subchapter 3.1). Independent of the kind of input it is, in 

contrast to the assumption of ideal control inputs within 

most design procedures, hardly possible to realize control 

inputs in a technical process perfectly. The main origins 

of these deviations are: (i) the controller and actuator 

accuracies, which are within an overall process design 

also a matter of cost; and (ii) the mass and energy 

transport limitations which, although considered in the 

model formulation, might still deviate from the assumed 

behavior e.g. due to model inaccuracy or time-variant 

process conditions such as degradation. However, a 

comprehensive analysis of these phenomena and their 

impact on the process requires a rigorous modeling and, 

thus, much more preliminary experimental and/or 

numerical effort to gather data and describe these 

phenomena appropriately. As an alternative way, the 

presented approach intends to neglect the distinct origin of the deviations and simply aims at 

quantifying the impact of possible deviations of the optimal control inputs on the process performance. 

The results are, therefore, independent of whether the deviation is based on e.g. varying wall 

thicknesses of a tube reactor, calibration errors of mass flow controllers, or non-homogeneous flow 

fields of a cooling medium. It intends to find robust reactor designs for a predefined overall deviation, 

which lumps all possible sources of randomness together. This lumped quantity can be compared to a 

kind of process noise 𝜀(𝑡) which influences the process along the reaction coordinate with changing 

intensity. 

Figure 4.11: Uncertainty band caused by 

deviations of the optimal control 
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 In the same way, as it is introduced for the model parameter uncertainties, the consideration of 

these imperfect control realization is based on the assumption that the imposed deviations can be 

characterized by a certain distribution function, which allows to simulate the aforementioned varying 

intensity of the deviations. Starting from the assumption of normally distributed deviations, the UT as 

introduced in subchapter 4.1.2 is used to sample the PDF 𝜌𝑈(𝑢) of the imperfect control 𝑢 at 

characteristics points 𝑢𝑖, 𝑖 ∈ ℝ
𝑛. These samples are imposed on the process at each point along the 

reaction coordinate resulting in an uncertainty band around the nominal optimal solution 𝑢(𝑡)∗, see 

Fig. 4.11. To ensure that the optimal control input is still complying with its constraints, the minimum 

and maximum bounds are shifted by ±2𝜎, respectively. In this way, roughly 95 % of the possible 

scenarios covered within the resulting RDOP are feasible within the original control bounds. Of 

course, one may select other uncertainty ranges. As the general RDOP in Eqs. (4.18)-(4.30) already 

indicates, the structure of the dynamic optimization and the use of the samples of the control PDF is 

changed in comparison to the static uncertainties. This also changes the operation of the optimizer. 

Instead of finding an optimal control trajectory which optimizes the given objective for all points 

within the uncertainty set, the optimizer seeks for the best control action at each point along the 

reaction coordinate considering the predicted result for different control actions represented by the 

samples of the control PDF. Hence the procedure is as following: At each point along the reaction 

coordinate, the solver evaluates all model equations for the samples of the imperfect control and the 

states of the previous step. The resulting states are taken to determine their expected values which are 

on the one hand transferred to the next step and on the other hand used by the optimizer to find the 

expected value of the imperfect control input which is, together with its corresponding samples of the 

control PDF, imposed on the process optimizing the given objective. This procedure is illustrated in 

Fig. 4.12 for an arbitrary step 𝑖 along the reaction coordinate. Due to the simultaneous optimization 

framework, this procedure is carried out simultaneously for all points along the reaction coordinate 

resulting in a robust optimal trajectory of expected control values.  

 

4.3.2 Impact of temperature control deviations on hydroformylation 

reaction 

 In the following, the optimal design of a chemical reactor for the hydroformylation of 1-

dodecene in a TMS system is supposed to be analyzed with respect to the impact of deviations within 

the optimal temperature control. The temperature is preferred to be the subject of analysis over the 

partial pressures, since on the one hand it is expected to have a higher sensitivity with respect to the 

process performance, and on the other hand it is probably the most general type of control found in 

almost every chemical reaction. In order to identify the particular impact of the temperature deviation, 

the model parameter uncertainties are not considered simultaneously in this step but treated in an 

additional analysis in subchapter 4.3.3. 

Robust dynamic optimization problem  

 The robust dynamic optimization problem is constructed by adapting the RDOP in Eqs. 

(4.39)-(4.59) of the model parameter uncertainty quantification of the hydroformylation process for 

dynamic uncertainties as elucidated in subchapter 4.1.3, see Eqs. (4.64)-(4.83). As mentioned above, 

the model parameter uncertainties are neglected and the time dependent expected values of the states, 

i.e. the molar amounts of the hydrocarbons, with respect to the samples of the temperature deviation 

are determined (Eq. (4.65)) and used within the balance equations. Moreover, the model equations are 

evaluated for all temperatures 𝑇𝑖, 𝑖 ∈ 𝑇𝑃, with 𝑇𝑃 being the set of temperature samples of the UT.  
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Figure 4.12: Scheme of optimal control action on the EPF fluid element for consideration of imperfect control realization 

following the discretized solution scheme of the orthogonal collocation on finite elements 

 

 max
 𝐸(𝑇(𝑡)),𝑝𝐶𝑂(𝑡),𝑝𝐻2(𝑡),𝑡𝑓

  𝐸 (𝑆𝑛𝐶13𝑎𝑙(𝑡𝑓)) (4.64) 

   s.t.     Component mass balances: 
𝑑𝑛𝛼,𝑖
𝑑𝑡

= 𝑉𝑙𝑖𝑞 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 (∑ 𝜈𝛼,𝑚𝑟𝑚

𝑀

𝑚=1

)) ,    𝛼 ∈ 𝐶𝐻, 𝑖 ∈ 𝑇𝑃 (4.65) 

 Reaction kinetics: Eqs. (2.2)-(2.7), with 𝑟𝑚 = 𝑟𝑚(𝑇𝑖), 𝑚 ∈ {1…𝑀}, 𝑖 ∈ 𝑇𝑃 (4.66) 

 Catalyst equilibrium: Eq. (2.1) (4.67) 

 Constitutive equations: Eqs. (3.38)-(3.39), with 𝝆 = 𝝆(𝑇𝑖) , 𝑖 ∈ 𝑇𝑃   (4.68) 

 Gas solubilities: Eq. (2.11), with 𝐻𝑗 = 𝐻𝑗(𝑇𝑖), 𝑗 ∈ {𝐶𝑂,𝐻2}, 𝑖 ∈ 𝑇𝑃 (4.69) 

 Catalyst and solvent ratios: Eqs. (2.13)-(2.14) (4.70) 

 Path constraints: 𝒏𝑖(𝑡) ≥ 0, 𝑖 ∈ 𝑇𝑃  (4.71) 

  10 bar ≤ 𝑝𝑡(𝑡) = 𝑝𝐶𝑂(𝑡) + 𝑝𝐻2(𝑡) ≤ 20 bar (4.72) 

  
363.15 K + 2 ⋅ 𝑆𝑇𝐷(𝑇(𝑡)) ≤ 𝑇(𝑡) ≤ 388.15 K − 2 ⋅

𝑆𝑇𝐷(𝑇(𝑡))    
(4.73) 

 Terminal constraints: 𝑡𝑓 ≤ 300 min  (4.74) 

  𝑋𝑛𝐶12𝑒𝑛,𝑖 =
𝑛𝑛𝐶12𝑒𝑛,𝑖(0) − 𝑛𝑛𝐶12𝑒𝑛,𝑖(𝑡𝑓)

𝑛𝑛𝐶12𝑒𝑛,𝑖(0)
= 99.5 %, 𝑖 ∈ 𝑇𝑃 (4.75) 

  𝑆𝑛𝐶13𝑎𝑙,𝑖 =
𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓)−𝑛𝑛𝐶13𝑎𝑙,𝑖(0)

𝑛𝑛𝐶12𝑒𝑛,𝑖(0)−𝑛𝑛𝐶12𝑒𝑛,𝑖(𝑡𝑓)
, 𝑖 ∈ 𝑇𝑃   (4.76) 

  𝑛/𝑖𝑠𝑜𝑖 =
𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓)

𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓) + 𝑛𝑖𝐶13𝑎𝑙,𝑖(𝑡𝑓)
≥ 95 %, 𝑖 ∈ 𝑇𝑃 (4.77) 
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 Initial conditions: 𝒏𝑖(𝑡 = 0) = 𝒏0,𝑖 = {
1, 𝑙 ∈ {𝑛𝐶12𝑒𝑛}

0, 𝑙 ∈ {𝐶𝐻/𝑛𝐶12𝑒𝑛} 
, 𝑖 ∈ 𝑇𝑃  (4.78) 

  Unscented transformation: 𝑇0 = 𝐸(𝑇(𝑡)) (4.79) 

  𝑇𝑖 = 𝑇0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝑉𝑎𝑟(𝑇)𝑖, 𝑖 ∈ 𝑇𝑃 (4.80) 

  𝐸(𝑆𝑛𝐶13𝑎𝑙) =∑𝑤𝑖

2𝑛

𝑖=0

𝑆𝑛𝐶13𝑎𝑙𝑖, 𝑖 ∈ 𝑇𝑃 (4.81) 

  

𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙)  = (1 − 𝛼
2 + 𝛽){𝑆𝑛𝐶13𝑎𝑙0 −

𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙0 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
+ ∑ 𝑤𝑖 {𝑆𝑛𝐶13𝑎𝑙𝑖 −

2𝑛
𝑖=1

𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙𝑖 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
, 𝑖 ∈ 𝑇𝑃  

(4.82) 

  𝐸(𝒏𝑖(𝑡)) =∑𝑤𝑖

2𝑛

𝑖=0

𝒏𝑖(𝑡, 𝑇𝑖) (4.83) 

 

Pareto optimal solutions for different temperature deviations  

The RDOP in Eqs. (4.64)-(4.83) is solved for different standard deviations of the temperature 

control PDF, 𝑆𝑇𝐷(𝑇). To present the results compactly, the final expected values are illustrated within 

an uncertainty band indicating 2 ⋅ 𝑆𝑇𝐷(𝑆𝑛𝐶13𝑎𝑙), i.e. 95 % confidence interval. The result on the left 

for 𝑆𝑇𝐷(𝑇) = 0 K corresponds to the deterministic solution without an uncertainty influence and has, 

thus, no variation of the objective. As expected, with increasing temperature deviation a clear tendency 

of decreasing expected selectivity values and increasing selectivity deviation is indicated, which is on 

the one hand caused by the shift of the temperature bounds within the optimization problem 

formulation and on the other hand by the impact of noisy temperature realization. However, the impact 

is fairly small compared to the impact of the previously investigated model parameter uncertainties, 

and the standard deviations can only be analyzed in relation to each other, since their absolute sizes 

might depend on the discretization scheme. 

 

Figure 4.13: Expected value of selectivity for different deviations of the optimal temperature control. The grey uncertainty 

band indicates 2 ⋅ 𝑆𝑇𝐷(𝑆𝑛𝐶13𝑎𝑙).   

 

A closer look to the formulated robust dynamic optimization problem reveals that the main 

target of this type of analysis is the identification of a control trajectory which ensures feasibility under 

consideration of possible control deviations. The results of this analysis quantify the impact of 
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different control deviations and indicate which performance can be expected and how large the risk is 

to miss it. In light of a robust design optimization, it is more reasonable to investigate the impact of the 

temperature deviation on an already uncertain process, e.g. originated from model parameter 

uncertainties, and analyze the arising interdependencies; see the following subchapter.  

 

4.3.3 Comparison of robustness properties of two reactor realizations  

 As the previous result indicated, the imperfect realization of the temperature control of the 

hydroformylation reaction has an obvious effect on the optimal design and its expected reaction 

performance. However, in the real application the model parameter uncertainties and their effect on 

the optimal design procedure should not be neglected, and in the course of the analysis of the impact 

of control deviations on the optimal design they should be included. This allows for an identification 

of combined effects. As the classification of the different types of uncertainties within the 3-level 

design procedure of Peschel et al. [4] in subchapter 4.1.1 indicated, the imperfect control realizations 

arise in the third level, when the focus lies on the technical realization of the optimal control 

trajectories. Therefore, the presented approach is in the following used to compare the robustness 

properties of two different technical realizations of an optimal design under consideration of both 

model parameter uncertainties and temperature control deviations. Without conducting a detailed 

reactor-network synthesis, as introduced in chapter 3, two possible reactor realizations are chosen 

which differ regarding particular benefits:  

• PFR with side dosing of gas components: This reactor realizations corresponds to the 

assumptions underlying the RDOP in Eqs. (4.39)-(4.59) and allows for an exact realization of 

the control trajectories shown in Fig. 4.9 (a). 

• Cascade of four CSTRs: The realization with a CSTR cascade requires an approximation of 

the continuous control trajectories with discrete reaction zones, which is simpler to realize in a 

real application. In addition, this realization includes possible back-mixing benefits. 

 

Robust dynamic optimization problem  

For the derivation of the robust dynamic optimization problem for this analysis, the RDOP in 

Eqs. (4.64)-(4.83)  is augmented by the model parameter uncertainties as shown in Eqs. (4.39)-(4.59). 

Consequently, the model equations have to be evaluated on the sigma points of both the uncertain 

model parameter set and the set of temperature samples, see Eqs. (4.85), (4.86), (4.89), (4.91), (4.98). 

The target of the following analysis is the quantification of the uncertainty impact when optimizing the 

expected objective and not the identification of more robust design alternatives by reducing the 

objective deviation. Hence, the RDOP in Eqs. (4.84)-(4.107) is solved once for both reactor 

realizations and no MORDOP arises.  

 

 max
 𝐸(𝑇(𝑡)),𝑝𝐶𝑂(𝑡),𝑝𝐻2(𝑡),𝑡𝑓

  𝐸 (𝑆𝑛𝐶13𝑎𝑙(𝑡𝑓)) (4.84) 

   s.t.     Component mass balances: 

𝑑𝑛𝛼,𝑖,𝑗

𝑑𝑡
= 𝑉𝑙𝑖𝑞 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 (∑ 𝜈𝛼,𝑚𝑟𝑚

𝑀

𝑚=1

)) ,    𝛼 ∈ 𝐶𝐻,

𝑖 ∈ 𝑆𝑃, 𝑗 ∈ 𝑇𝑃 

(4.85) 

 Reaction kinetics: 
Eqs. (2.2)-(2.7),with 𝑟𝑚 = 𝑟𝑚(𝜽𝑖, 𝑇𝑗), 𝑚 ∈ {1…𝑀}, 𝑖 ∈

𝑆𝑃, 𝑗 ∈ 𝑇𝑃 
(4.86) 

 Catalyst equilibrium: Eq. (2.1), with 𝑐𝑐𝑎𝑡 = 𝑐𝑐𝑎𝑡(𝜽𝑖), 𝑖 ∈ 𝑆𝑃 (4.87) 

 Constitutive equations: Eqs. (3.38)-(3.39), with 𝝆 = 𝝆(𝑇𝑗) , 𝑗 ∈ 𝑇𝑃   (4.88) 
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 Gas solubilities: 
Eq. (2.11), with 𝐻𝑗 = 𝐻𝑗(𝜽𝑖, 𝑇𝑗), 𝑗 ∈ {𝐶𝑂,𝐻2}, 𝑖 ∈ 𝑆𝑃, 𝑗 ∈

𝑇𝑃 
(4.89) 

 Catalyst and solvent ratios: Eqs. (2.13)-(2.14) (4.90) 

 Path constraints: 𝒏𝑖,𝑗(𝑡) ≥ 0, 𝑖 ∈ 𝑆𝑃, 𝑗 ∈ 𝑇𝑃   (4.91) 

  10 bar ≤ 𝑝𝑡(𝑡) = 𝑝𝐶𝑂(𝑡) + 𝑝𝐻2(𝑡) ≤ 20 bar (4.92) 

  
363.15 K + 2 ⋅ 𝑆𝑇𝐷(𝑇(𝑡)) ≤ 𝑇(𝑡) ≤ 388.15 K − 2 ⋅

𝑆𝑇𝐷(𝑇(𝑡))    
(4.93) 

 Terminal constraints: 𝑡𝑓 ≤ 300 min  (4.94) 

  𝑋𝑛𝐶12𝑛,𝑖 =
𝑛𝑛𝐶12𝑒𝑛,𝑖(0) − 𝑛𝑛𝐶12𝑒𝑛,𝑖(𝑡𝑓)

𝑛𝑛𝐶12𝑒𝑛,𝑖(0)
, 𝑖 ∈ 𝑆𝑃 (4.95) 

  𝑆𝑛𝐶13𝑎𝑙,𝑖 =
𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓)−𝑛𝑛𝐶13𝑎𝑙,𝑖(0)

𝑛𝑛𝐶12𝑒𝑛,𝑖(0)−𝑛𝑛𝐶12𝑒𝑛,𝑖(𝑡𝑓)
, 𝑖 ∈ 𝑆𝑃   (4.96) 

  𝑛/𝑖𝑠𝑜𝑖 =
𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓)

𝑛𝑛𝐶13𝑎𝑙,𝑖(𝑡𝑓) + 𝑛𝑖𝐶13𝑎𝑙,𝑖(𝑡𝑓)
≥ 95 %, 𝑖 ∈ 𝑆𝑃 (4.97) 

 Initial conditions: 
𝒏𝑖,𝑗(𝑡 = 0) = 𝒏0,𝑖,𝑗 = {

1, 𝑙 ∈ {𝑛𝐶12𝑒𝑛}

𝟎, 𝑙 ∈ {𝐶𝐻/𝑛𝐶12𝑒𝑛} 
, 𝑖 ∈ 𝑆𝑃, 𝑗

∈ 𝑇𝑃  

(4.98) 

 
Uncertain model 

parameters: 
𝜽 =

[𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6, 𝐾𝑐𝑎𝑡,1, 𝐾𝑐𝑎𝑡,2, …

∆𝐺𝑟2 , ∆𝐺𝑟3 ,𝐻𝐶𝑂
0 , 𝐻𝐻2

0 , 𝐸𝐴,𝐻𝐶𝑂 , 𝐸𝐴,𝐻𝐻2]
T 

 (4.99) 

   Unscented transformation: 𝑇0 = 𝐸(𝑇(𝑡)) (4.100) 

  𝑇𝑗 = 𝑇0 + 𝑠𝑔𝑛(𝑛𝑇 − 𝑗)√(𝑛𝜽 + 𝜆)√𝑉𝑎𝑟(𝑇)𝑗, 𝑗 ∈ 𝑇𝑃 (4.101) 

  𝐸 (𝒏𝑗(𝑡)) = ∑ 𝑤𝑗
2𝑛
𝑗=0 𝒏𝑗(𝑡, 𝑇𝑗), 𝑗 ∈ 𝑇𝑃 (4.102) 

  𝜽0 = 𝐸(𝜽) (4.103) 

  𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽)𝑖, 𝑖 ∈ 𝑆𝑃 (4.104) 

  𝐸(𝑆𝑛𝐶13𝑎𝑙) =∑𝑤𝑖

2𝑛

𝑖=0

𝑆𝑛𝐶13𝑎𝑙𝑖, 𝑖 ∈ 𝑆𝑃 (4.105) 

  

𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙)  = (1 − 𝛼
2 + 𝛽){𝑆𝑛𝐶13𝑎𝑙0 −

𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙0 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
+

∑ 𝑤𝑖 {𝑆𝑛𝐶13𝑎𝑙𝑖 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙𝑖 −
2𝑛
𝑖=1

𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
, 𝑖 ∈ 𝑆𝑃  

(4.106) 

 

For the optimization of the CSTR cascade the balance equation is replaced by 

 

𝑛𝛼,𝑖,𝑗,𝑘 = 𝑛𝛼,𝑖,𝑗,𝑘
0 + 𝜏𝑘𝑉𝑙𝑖𝑞,𝑘 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 (∑ 𝜈𝛼,𝑚𝑟𝑚,𝑘

𝑀

𝑚=1

)) ,    𝛼 ∈ 𝐶𝐻, 𝑖 ∈ 𝑆𝑃, 𝑗 ∈ 𝑇𝑃,

𝑘 ∈ 𝑛𝐶𝑆𝑇𝑅 

(4.107) 

 

where 𝑛𝐶𝑆𝑇𝑅 is the number of CSTRs in the cascade. The initial conditions for 𝑘 = 1 are equal to the 

initial conditions in Eq. (4.98). The control variables are not continuous anymore and instead defined 

on discrete points 𝑘. 
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Optimization results for reactor realization comparison  

 The comparison of the optimization results under model parameter uncertainties and 

temperature control deviations for both reactor realization, the PFR with gas side dosing and the CSTR 

cascade, are carried out for different expected conversions 𝐸(𝑋𝑛𝐶12𝑒𝑛). The results are again depicted 

in the [𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-space allowing for a compact illustration, see Fig. 4.14.  To reveal the impact 

of the temperature control deviation, which was set to 𝑆𝑇𝐷(𝑇) = 1 K, on the uncertain process, the 

RDOP in Eqs. (4.84)-(4.107) was solved as well for the case without imposed disturbance on the 

temperature control. The analysis indicates: 

• The expected selectivity is slightly decreased by the temperature control deviation for both 

reactor realizations, see Fig. 4.14 a). The CSTR cascade approximates the PFR quite close and 

even exceeds its performance in a particular range of expected conversions (0.94 ≤

𝐸(𝑋𝑛𝐶12𝑒𝑛) ≤ 0.99). This finding matches the results in subchapter 3.2.3 that the second 

reaction zone benefits from back-mixing. However, the decreasing effect of the temperature 

control deviation on the performance becomes high for the CSTR cascade at high expected 

conversions. Evidently, the CSTR cascade suffers more from the imposed temperature control 

deviation, because it is harder to approximate the more complex temperature profile at high 

expected conversions with small amount of disturbed temperature control inputs. For very 

high expected conversions the CSTR cascade with temperature control disturbance finally 

collapses. 

• The predicted standard deviations of the selectivity are as well very close for expected 

conversions smaller 90 %, see Fig. 4.14 b). In the subsequent region, in which the CSTR 

cascade outperforms the PFR, also its standard deviations of the selectivity increase. 

Interestingly, the temperature control deviations reduce this effect. For very high expected 

conversions (≤ 99 %) the CSTR cascade indicates again smaller variations of the objective 

than the PFR. 

• The standard deviations of the conversion of the CSTR cascade are smaller than those of the 

PFR for all expected conversions, see Fig. 4.14 c). The imposed temperature control 

deviations show almost no effect for both realizations. Hence, the observed characteristics of 

these curves are similar to what was found in subchapter 4.2.1. 

 

It becomes obvious, that the decision making about the better reactor realization is again a question of 

the most desirable trade-off since more than one objective is of interest. The performance benefit at 

high conversions of the PFR is accompanied by a very high increase of the corresponding standard 

deviation, whereas the more moderate selectivity deviations of the CSTR cascade for high expected 

conversions is to the detriment of smaller expected selectivities. The standard deviations of the 

conversion are only of interest for medium expected conversions as they overlap at high expected 

values where the real performance differences occur. Nevertheless, the analysis revealed advantages 

and disadvantages of both reactor realizations and allows for determining the more suitable one in case 

more knowledge about the requirements or bounds of the overall process is available. A similar 

analysis, which in addition considers non-ideal residence time distributions in the reactor realizations, 

is carried out in Kaiser et al. [166].  
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Figure 4.14: Results of robust optimization of the PFR with gas side dosing (solid lines) and the cascade of four CSTRs 

(dashed lines) for the cases of model parameter uncertainties (blue lines) and additional temperature deviation of 𝑆𝑇𝐷(𝑇) =
1 K (orange lines): The expected value of the selectivity a), the standard deviation of the selectivity b), and the standard 

deviation of the conversion c), are all illustrated over the expected value of the conversion. 
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4.4 Discussion 

 In this chapter a probabilistic reactor design framework is introduced, which allows for 

considering static and dynamic types of uncertainties within the reactor design procedure of the EPF 

methodology. Three general types of uncertainty are classified: (i) model parameter uncertainties; (ii) 

non-ideal reactor characteristics; and (iii) imperfect control realizations. On the hydroformylation of 1-

dodecene in a TMS system as example process it is demonstrated how these uncertainties are 

embedded within the dynamic optimization problem for reactor design using the unscented 

transformation for nonlinear propagation of statistical moments of the uncertainty’s probability 

density functions. For the solution of the resulting robust dynamic optimization problems a full 

probabilistic orthogonal collocation approach is developed for both random and stochastic variables 

(see A.3). As the results of the reactor design under uncertainty for the hydroformylation process are 

already discussed in the corresponding subchapters, the following discussion focuses on the 

methodological aspects of the probabilistic reactor design approach, debate its advantages and 

disadvantages, and points out interesting future perspectives.  

 

Model parameter uncertainties 

 The design of chemical reactors, and in the next step of entire chemical processes, under 

consideration of model parameter uncertainties is generally of vital importance. This is remarkably 

confirmed by the results for the hydroformylation reaction indicating a significant impact of the model 

parameter uncertainties on the optimal design of the reactor and its predicted performance. The 

unscented transformation for nonlinear propagation of statistical moments of the uncertainties through 

the process model proves to be a powerful and efficient way to include model parameter uncertainties 

into a dynamic optimization based design procedure. Nevertheless, it became obvious that a validation 

of the therewith yielded approximate results with a more accurate method such as Monte Carlo 

simulations is necessary to identify the accuracy of the UT based approximation and, in case of 

unacceptable deviation, initiate an expedient adjustment of the UT tuning parameters. However, a 

consecutive procedure of optimization and simulation based validation is still more efficient than an 

optimization with integrated Monte Carlo simulation. In this work the validation and subsequent 

improvement of the UT tuning factors or rather selection of suitable modification of the method was 

carried out manually. An automated, iterative implementation would be desirable, but is not trivial to 

create, since there exists no heuristic for suitable selection of the tuning factor or modification of the 

UT [171]. A drawback of the use of sigma points for robust reactor design is the fact that the upper 

and lower bound of the parameter uncertainty ranges are not checked for feasibility. Feasibility is 

rather ensured for the chosen sigma points, which lie, depending on the chosen scaling and the number 

of random variables, not on the bound of the PDF. If the robust optimization targets to higher 

feasibility ranges, the sigma points have to be selected accordingly. In contrast to methods including 

the best and worst case scenario, this approach is hence less conservative.  

 For the purpose of reactor design the use of a robust optimization approach instead of a 

stochastic programming approach is recommended [71], since no recourse actions over a long term 

operation are required. As the target of the presented design under uncertainty approach, stated in the 

introduction of chapter 4, considers the identification of robust designs and designs of increased 

predictive power, it is expedient to pursuit a robust design optimization instead of a reliability-based 

optimization. The use of the unscented transformation with sigma points has been reported in 

literature before and their application on problems of this kind was successful, see e.g. [174], [189]. 

Alternatively, one can apply other approaches for the approximate description of uncertainty 

probability density functions and their nonlinear transformation, e.g. cubature rules. They numerically 

approximate the multi-dimensional integrals of the means and variances of the output function, see 
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e.g. [190]. It is out of the scope of the present work to compare different approximation approaches for 

probabilistic design. The interested reader is referred to a recent and thorough comparison study found 

in [191]. 

The objective of the design procedure was again the selectivity with respect to tridecanal, and 

the varied constraint for identifying different process windows was the conversion of 1-dodecene. 

However, the presented approach is not restricted to those measures and hence can as well be used for 

other objectives simply adapting the objective and the relevant constraints within the MORDOP. 

Moreover, the design procedure allows for including multiple objectives which are not statistical 

moments of a single focused measure. The resulting multi-objective optimization follows the same 

rules as introduced in subchapter 4.1.3. It is out of scope of this work to carry out the design procedure 

analyzing multiple objectives and their interdependencies. Furthermore, the presented approach does 

not intend to be a new framework for multi-objective optimization. It is only used as tool to quantify 

the statistical moments of a single objective and analyze their trade-offs.  

 The analysis of the global sensitivity indices led to interesting insights about the crucial model 

parameters of the process indicating an evident need of a more accurate identification of the catalyst 

activity model parameters. However, the use of sigma point based UT for this purpose is accompanied 

by possible approximation errors, which e.g. result in ∑𝐷𝑖 > 1. Hence, for a more accurate 

determination of the Sobol indices the use of e.g. Monte Carlo simulations is recommended, although 

implying unequally higher computational effort. 

  A very promising way to utilize the knowledge about the relative importance of each 

uncertain model parameter with respect to the predictive power of the process performance might 

further be to improve the parameter identification procedure of the underlying model. More precisely, 

the additionally gained knowledge is used to identify experimental conditions, which increase the 

identifiability of the highly sensitive model parameters. After conducting these experiments, either 

numerically or physically, the additional results are used to repeat the parameter identification and, 

thus, refine the model aiming at an increased predictive power of the resulting process design. This 

procedure is schematically illustrated in Fig. 4.15. It can be repeated iteratively until the improvement 

reaches a predefined threshold value. For lack of time, this approach has not been applied for the 

hydroformylation process and is hence only discussed briefly in the following. The main purpose of 

this approach is the improvement of the prediction quality for the optimal process design. Normally, 

an optimal experimental design (OED) is carried out to decrease the amount of necessary experiments 

ensuring a certain level of identifiability of a model and its parameters. The suggested approach 

intends to feed additional information about the most crucial parameters for the design procedure to 

the OED, and include the OED into an iterative procedure instead of carrying it out only for kinetic 

measurements. However, this gained information is only valid for the design, which results from the 

dynamic optimization, and might be different for designs obtained for other process conditions. Thus, 

the integrated process design and parameter identification has to be carried out for specific constraints 

or requirements of the design procedure, which are not changed from iteration to iteration. For 

changing conditions, the results of the global sensitivity analysis still have a qualitative value to get a 

rough understanding of the relative importance of the model parameters, but cannot be quantitatively 

used for a reliable next iteration. Furthermore, it can hardly be assessed whether the resulting process 

design changes significantly from iteration to iteration, since the optimization of the nonlinear reaction 

models with new parameters is not predictable.  
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Figure 4.15: Schematic workflow for an integrated process design and parameter identification procedure 

 

Imperfect control deviations  

 In contrast to the model parameter uncertainties, the deviation of the optimal control 

trajectories is of dynamic nature along the reaction coordinate leading to a different notion of their 

influence and resulting embedding within the DOP. Imagining the fluid element on its way through the 

process it is at every point along the reaction coordinate manipulated by an optimized control input, 

e.g. the temperature. In case this control input is randomly varying around the optimal input value at 

each point, the process becomes stochastic. To obtain a solution of a dynamic process with stochastic 

input, a stochastic differential equation has to be solved, which is unlikely more complex than solving 

an ODE as for the pure deterministic problem. A superposed optimization of this stochastic input 

makes it even more complex and could be solved by applying the Hamilton-Jacobi-Bellman equation 

for stochastic differential equations using the Ito formula [192]. To reduce the complexity and to stay 

within the deterministic formulation, the presented approach simplifies the problem by assuming that 

the impact of the stochastic input around its nominal optimal value on the process can be 

approximated again by the UT. Hence, the PDF describing the set of possible state variables at each 

point induced by the corresponding stochastic input is described by characteristic sigma points. 

Furthermore, instead of propagating all characteristic sigma points of the arising PDF for each state 

variable to the next step along the reaction coordinate, which would lead to a tremendously large 

problem suffering from the curse of dimensionality, only the expected values of the state variables are 

passed. Of course, this procedure only approximates the real stochastic process, but in enables the 

quantification of these control deviations within a dynamic optimization with a reasonable 

computational effort.  

 The knowledge about the impact of certain control deviations on the process performance is 

valuable and can be used on different ways, e.g. comparing the sensitivity of different control 

variables, or quantifying the effect of various deviation sizes on the performance as demonstrated in 

subchapter 4.3.2. However, to use that information for decision-making regarding the final process 

design, additional information about the cost and complexity of the realization of a particular control 

accuracy is required. This leads to trade-offs between accuracy and costs and allows to make profound 

decisions or to create a cost-optimizing design procedure. 

 An interesting aspect for further investigations is, how the presented approach can be used to 

reduce the control burdens of the final reactor or process. The robust designs resulting from the design 

under uncertainty compensate uncertainty influences and, thus, possibly reduce the range or the 

amount of necessary controller actions in the operating process. Hence, it could be reasonable to 

include the arising control burdens as an additional objective, e.g. in form of controllability indices, 

within the robust design optimization and create an alternative framework for simultaneous design and 

control. In contrast to classical approaches in this field, it would rather try to check for controllability 

and reduce the required amount and range of control actions instead of designing the particular 

controller simultaneously to the process. 
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Non-ideal reactor characteristics  

 The second type of uncertainty arising during the reactor design procedure introduced in 

subchapter 4.1.1 are non-ideal reactor characteristics. For the lack of time it is not demonstrated in 

detail in this work, but was published partly in Kaiser et al. [166] for the case of non-uniform 

residence time distribution (RTD) as deviation of the ideal plug flow assumption, which is used in the 

3-level reactor design approach of Peschel et al. [4]. In the following it is discussed for the case of the 

RTD how this type of uncertainty can be treated.  

 First of all one can distinguish between three cases: (i) the nominal residence time is fixed as 

the mean of the assumed RTD aiming at a RDOP which investigates the impact of different deviations 

from this nominal value; or (ii) the mean residence time is a decision variable as well as its variance 

and the approach intends to find the best RTD optimizing the given objective; and (iii) the intention 

lies in quantifying the impact on the reaction performance of a particular RTD, e.g. of a given reactor 

setup, which is known in advance. In case this RTD is not normally distributed one could use 

Gaussian mixed distributions to realize more complex distributions with the UT [178]. 

 For this type of uncertainty it is very important to discuss the role of the distributed character 

of the underlying reactor unit and its state of mixing. A concentrated system or a system of ideal 

mixing such as e.g. a batch reactor or an ideally mixed CSTR, respectively, are not subject of interest 

for this type of uncertainty quantification. Strictly speaking, it is only valid for distributed reactor 

systems, in which gradients can lead to axial or radial distribution of a certain measure of interest. The 

residence time is such a measure and its axial gradients emerge by the flow field. A second important 

aspect of this type of uncertainty, which decides about its treatment within the dynamic optimization, 

can be well elucidated on the example of the RTD. It is the question about the degree of diffusion or 

mixing along the radial coordinate. There exist two extreme cases, which are well known in reaction 

engineering. The first case is the complete segregation, which describes a degree of no radial mixing. 

Parallel streams, which exchange no material, flow with different velocities through the process and, 

thus, experience the optimal control with various degrees of distortion. The fast fluid elements 

experience the optimal control in shrunk manner and the slow fluid elements in an expanded manner. 

Due to the absence of radial mixing, the parallel streams can be treated as parallel reactors [193]. The 

RTD is approximated by characteristic points, the sigma points, and each stream is associated with one 

of these residence times leading to a certain flow velocity. For the optimization, all streams are 

evaluated individually but with the same optimal control, and finally the streams, containing the fluid 

elements of different ages, are mixed and the reactor output is determined using the UT. In this way 

Kaiser et al. [166,194] investigated the impact of the RTD as deviation from the optimal residence 

time on the hydroformylation reaction example. Note, that this approach neglects the forming of the 

flow field and assumes, that the flow field is stable along the reaction coordinate. The second case, 

which describes the other extreme, is the total mixedness, i.e. the radial mixing is so fast, that even 

when the fluid elements have different velocities, their concentrations are instantaneously mixed and 

cannot be distinguished anymore. Thus, they do not experience the optimal control differently. 

Between these two extreme cases, the fluid elements experience the optimal control with different ages 

and exchange their material with different transfer rates.  

As a future perspective it might be interesting to describe the latter case with the help of the 

probabilistic reactor design approach for dynamic uncertainties. For a clear validation of its feasibility 

it should be validated using state-of-the-art models for RTD such as the axial dispersion model or the 

CSTR cascade approach. In contrast to the first it does not require the solving of a partial differential 

equation, which can lead to numerical problems in the context of dynamic optimization. In addition, it 

is promising in comparison to the second, since the degree of mixing is not accompanied by a 

limitation of control inputs due to a small number of units in the cascade. 
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Conclusion 

Since almost every kind of uncertainty can be associated within the here presented 

classification, they can as well be included in the reactor design procedure. One can think of uncertain 

compositions of recycle streams, gradients in the radial temperature field, uncertain mass transfer 

rates, or catalyst degradation. Furthermore, the presented approach is not limited to chemical reactors. 

The underlying DAE system can also describe other units in a chemical process, e.g. distillation 

columns, or other kind of processes, e.g. mechanical or fluid mechanical problems. In any case, the 

uncertainty quantification and the associated robustification of the process, as introduced in this 

chapter, opens new vistas for a process designer and still reserves interesting potential for 

improvement and extension. 
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5 Optimal reactor design for the retrofit 

of an integrated hydroformylation 

miniplant  
 

The final subject of this work is the application of the qualitative reactor synthesis approach 

and the reactor design under uncertainty framework, presented in chapter 3 and 4, respectively, on a 

real process design problem. For an existing miniplant setup of the hydroformylation of 1-dodecene in 

a TMS system an optimal reactor is sought complying with the given restrictions for residence time, 

recycle conditions, and control options. Since the methodical details and the discussion of the 

introduced approaches are already carried out in the previous chapters, the focus in this chapter lies on 

a straightforward application aiming at a technical realization of the optimal reactor design, which is 

embedded in the existing miniplant and experimentally tested. As far as the process conditions and the 

main structure of the miniplant is not changed, and only the reaction step is improved by replacing or 

extending reaction sections and control actions, this endeavor is called a retrofit. 

 In a first step the existing miniplant setup and the corresponding process conditions are 

presented and based on these the retrofit problem definition is derived in subchapter 5.1. Following 

this problem definition and the knowledge about the given process, a dynamic optimization problem 

for the synthesis is derived in subchapter 5.2 considering the restrictions and limitations of the 

miniplant process. By applying the flux profile analysis on the results of the dynamic optimization 

promising reactor-(recycle)-networks are derived and compared with regard to their 

[𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-behavior. Subsequently, the most promising reactor-(recycle)-network is 

technically designed in detail in subchapter 5.3. To evaluate the predicted performance of the technical 

design in comparison to the existing setup, both are optimized within the integrated overall process in 

subchapter 5.4. Thereby, model parameter uncertainties are included to ensure the final design to be 

robust against those and, furthermore, to identify designs with higher predictive power of the 

performance. In subchapter 5.5 a brief comparison of first experimental results of the retrofitted 

miniplant process with the in silico predicted results are presented. And finally, the design procedure 

and the results are discussed in subchapter 5.6. 

 

5.1 Existing hydroformylation process in miniplant-scale 

The miniplant for the hydroformylation of 1-dodecene in a TMS system consisting of n-

decane and N-,N-dimethylformamide was constructed and operated as part of the CRC/TR63 

“InPROMPT” project introduced in chapter 1. The experiments in miniplant-scale allow for 

investigation of recycle effects, effects by continuous operation and scale-up effects. In contrast to a 

pilot-scale, it is not a downsized copy of the later production plant, but a highly flexible, experimental 

setup including various possible scenarios of the future process [195]. The first setup of the 

hydroformylation miniplant consisted of a CSTR unit and a decanter unit for liquid-liquid phase 

separation of the polar and nonpolar solvents containing the catalyst and the products, respectively 

(see subchapter 2.3.2), whereby the polar phase was recycled to the reactor and the nonpolar phase 

further treated in a flash unit for gas separation [196,197]. In a subsequent step, a distillation column 

was added to the downstream path of the nonpolar phase allowing for a separation and a recycling of 

the nonpolar solvent, side products, and remaining reactant [198]. These two cases serve as reference 

for the derivation of the presented retrofit problem and are, thus, introduced in more detail. 
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5.1.1 Process conditions and experimental setup 

 The technical flow sheet of the complete process is illustrated in Fig. 5.1, wherein the gray box 

highlights the reduced process. A special property of the miniplant is the pressure level connection 

between the CSTR and the decanter maintaining a total pressure of 20 bar in both units. Before 

entering the distillation column, the nonpolar phase is unpressurized in a flash unit to the level of the 

distillation column. The distillate stream of the distillation column is treated in an additional liquid-

liquid separation due to the formation of an azeotrope in the distillation column. The subsequent tank 

in the second recycle is installed to mix the recycle stream with required make-up stream of the 

nonpolar solvent and enables a controlled feed to the reactor.  

 

 

Figure 5.1: Technical flow sheet of the hydroformylation miniplant [198] 

 
Table 5.1: Operational conditions of hydroformylation miniplant [197] 

𝑇𝑅 90°C 
𝑤1−𝑑𝑜𝑑𝑒𝑐𝑒𝑛𝑒 0.16 
𝑤𝑛−𝑑𝑒𝑐𝑎𝑛𝑒 0.42 
𝑤𝐷𝑀𝐹 0.42 
𝑝𝑡𝑜𝑡𝑎𝑙 20 bar 
𝐶𝑂/𝐻2 1: 1 

𝑛𝑑𝑜𝑑𝑒𝑐𝑒𝑛𝑒/𝑛𝑅ℎ 4000/1 
𝑛𝑏𝑖𝑝ℎ𝑒𝑝ℎ𝑜𝑠/𝑛𝑅ℎ 5/1 

𝑇𝑆 5°C 
�̇�1−𝑑𝑜𝑑𝑒𝑐𝑒𝑛𝑒 12.2 g/h 
�̇�𝑛−𝑑𝑒𝑐𝑎𝑛𝑒 32.1 g/h 
�̇�𝑚𝑎𝑘𝑒−𝑢𝑝 4.28125 g/h 

𝑤𝐷𝑀𝐹
𝑚𝑎𝑘𝑒−𝑢𝑝

 0.9927 

𝑤𝑅ℎ(𝑎𝑐𝑎𝑐)(𝐶𝑂)2
𝑚𝑎𝑘𝑒−𝑢𝑝

 0.0584 ⋅ 10−3 

𝑤𝐵𝑖𝑝ℎ𝑒𝑝ℎ𝑜𝑠
𝑚𝑎𝑘𝑒−𝑢𝑝

 0.0072 

𝑉𝑅 1000 ml 

𝜀𝑅
𝑙𝑖𝑞

 0.32 

𝑚𝑅
𝑙𝑖𝑞
  244.3 g 

 

The process conditions are summarized in Tab. 5.1. The reaction is not optimally controlled and the 

reaction conditions have been determined manually during operation. The same holds for the make-up 
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streams. The catalyst and solvent ratios have been identified in preliminary investigations in lab-scale 

experiments [199].  

 

5.1.2 Retrofit problem definition 

 The miniplant process indicates specific properties, which lead to certain restrictions for the 

synthesis and design procedure of an optimal reactor unit or network. In addition, several requirements 

are set intending a proper comparison of the existing setup and the targeted retrofit. The following 

conditions and restrictions have to be complied with: 

• The separation unit structure is fixed and no additional separators are supposed to be added. 

• The envisaged reactor-network should be optimal for both realizations of the flow sheet, i.e. 

for the case of the complete operation scheme with a distillation column and resulting side 

product recycle, and the case of the reduced operation scheme considering only the recycle of 

the polar catalyst solvent phase.  

• The residence time within the reaction section of the retrofitted process should not be higher 

than the residence time in the CSTR of the existing process.  

• The catalyst amount and ratio, and the solvent composition have to be the same as used in the 

miniplant experiments. 

• The amount of control inputs and reactor units should be kept as small as possible to avoid 

high construction effort and costs.  

• The operating conditions of the separation units are fixed to ensure that possible performance 

improvements are not originated from better separation performance.  

• The objective of the optimization is the maximization of the yield of tridecanal. It combines 

the selectivity and the conversion, which both are supposed to be improved by the retrofit.  

 

Following the first two aspects, the synthesis will aim at an optimal reactor-recycle-network, which is 

as well highly performing without the recycle. The third point is taken into account by adding a 

residence time constraint and simultaneously setting the volume and the inlet streams of the optimal 

reactor-network as a degree of freedom in the design procedure. The fourth aspect was already 

considered in the previous design optimizations in chapter 3 and 4, and is taken into consideration 

easily as well for the upcoming optimizations. The fifth condition is part of the decision-making 

regarding the final choice of the best suitable reactor-network candidate and will be discussed in 

subchapters 5.2 and 5.3. The last aspect is taken into account when evaluating the optimal reactor-

network within the integrated overall process in subchapter 5.4.  

 Considering the liquid mass inside the reactor, 𝑚𝑅
𝑙𝑖𝑞

, and the mass flow rates given in Tab. 5.1, 

the residence time in the CSTR is 192 min. Note, that the total mass inlet flow has to contain the same 

amount of DMF as of n-decane to keep the solvent ratios constant. Hence, the maximum residence 

time of the retrofit optimization is set to 𝜏𝑠𝑒𝑡
𝑚𝑎𝑥 = 192 min. 

 

5.2 Synthesis of optimal reactor-(recycle)-networks  

Following the aforementioned restrictions and requirements of the retrofit problem, two 

dynamic optimization problems arise, i.e. one for the case of reactor-network synthesis and a second 

for the case of reactor-recycle-network synthesis for the reduced and the complete operation scheme, 

respectively. As the model formulation does not change in comparison to the reactor synthesis steps in 

chapter 3, the dynamic optimization problems formulated in Eqs. (41)-(61) and Eqs. (94)-(114) are 

adopted for the RNS and RRNS, respectively. However, the results cannot be adopted as well, because 

the residence time and the objective are changed. Hence, within both DOPs the constraint for the final 
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time, Eq. (55) and Eq. (107), is adjusted to set its maximum bound to the predefined value introduced 

before, i.e. 𝑡𝑓 ≤ 192 min. The objective is changed to the yield of tridecanal, 𝑌𝑛𝐶13𝑎𝑙, and the 

conversion in both DOPs is unfixed. 

 

5.2.1 Flux profile analysis for reactor-network synthesis and reactor-

recycle-network synthesis 

Results of reactor-network synthesis  

 

Figure 5.2: Flux profile analysis results of the RNS for the retrofit of the hydroformylation miniplant 

 

The results of the dynamic optimization for RNS are illustrated in Fig. 5.2. Evidently, the 

reaction progress and the control fluxes are the same as shown in Fig. 3.7, at least up to 𝑡 = 100 min. 

From there on, the temperature and partial pressure controls are kept constant until the end of the 

reaction at 𝑡𝑓 = 192 min. However, the differential selectivity indicates a change in this last section. 

Due to the similarities to the results in subchapter 3.2.3, the sections 𝑆6,1 - 𝑆6,3 are not discussed in 

detail again. The fourth section, 𝑆6,4, is supposed to be realized in an additional PFR, since no reactant 

dosing takes place and the gradient of the differential selectivity is negative. However, the control 

profiles are equal to the previous section and, thus, a merger of the last two sections in one unit seems 
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promising. Taking the knowledge from the discussion in subchapter 3.2.3 additionally into account, 

the realization of the second section, 𝑆6,2, with a cascade of CSTRs is not beneficial. Hence, the 

resulting reactor-network candidates for further investigation are a PFR+CSTR network and a 

PFR+CSTR+PFR network.  

 

Results of reactor-recycle-network synthesis  

 

Figure 5.3: Flux profile analysis results of the RRNS for the retrofit of the hydroformylation miniplant 

 

In the second step the product dosing is enabled in order to identify optimal candidates of 

reactor-recycle-networks. The results of the corresponding dynamic optimization are shown in Fig. 5.3 

and indicates once more clear similarities to the optimization results discussed in subchapter 3.3.3, see 

Fig. 3.16. A first long reaction section 𝑆7,1 with small progress and almost constant control profiles 

indicates again a benefit from recycling of the two reversible side products, n-dodecane and iso-

dodecenes. Although the gradient of the differential selectivity is here of different sign, the character 

and hence the impact of this section is expected to be comparably low, as the results of subchapter 

3.3.3 point out. Therefore, it is neglected with respect to the derivation of optimal reactor-recycle-

network candidates. The second section 𝑆7,2 is very small and only arises due to a change in the 

gradient of the differential selectivity. Although it might be a numerical artefact, it is considered 
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within one of the further investigated candidates, to check for its influence on the reaction 

performance. The third reaction section 𝑆7,3 clearly indicates the realization with a DSR and the fourth 

section 𝑆7,4 is supposed to be approximated with a CSTR. The final reaction time is again at its 

maximum. Thus, the RRNS results in two promising candidates, namely an IR-CSTR+DSR+CSTR 

network and an IR-DSR+CSTR network. Together with the candidates obtained from the RNS, the 

four reactor-(recycle)-network candidates, which are supposed to be compared to identify the final 

most promising network for technical realization, are depicted in Fig. 5.4. 

 

 

Figure 5.4: Optimal reactor-network candidates a) and b), and optimal reactor-recycle-network candidates c) and d) 

considered for the further design procedure  

 

5.2.2 Comparison of reactor-(recycle)-network candidates  

 The derived reactor-(recycle)-network candidates are once again compared with respect to 

their performance in the [𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-space. Since the final reactor-network is supposed to be 

operated in a scenario with and a scenario without recycling of side products, the target of this 

comparison is to identify the candidate which performs well in both cases. Hence, the candidates a) 

and b) in Fig. 5.4 are as well investigated with closed global recycle and the candidates c) and d) 

without closed global recycle. In addition, the performance of the single PFR with gas dosing, which 

was suggested in Hentschel et al. [159] as optimal choice, is determined as reference.  

To determine the characteristic [𝑆𝑛𝐶13𝑎𝑙 , 𝑋𝑛𝐶12𝑒𝑛]-curves, a dynamic optimization of each 

candidate is carried out maximizing the selectivity for varying predefined conversions. The results for 

the case without closed global recycle given in Fig. 5.5 indicate that the two candidates with the DSR 

(purple and green line) perform best for all conversions. However, a closer look to the dosing and 

control fluxes for different conversions reveals that these high selectivities at all conversions is 

reasoned by a global bypass effect. This means, that the degree of freedom to dose reactant 

everywhere along the reaction coordinate leads to a dosing strategy that initially doses the amount of 
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reactant, which is almost completely converted, and add a final dosing required to achieve the 

predefined conversion. The optimal control of temperature and partial pressures is thereby similar to 

those obtained for the high conversion of the initially dosed reactant, without the final addition of 

remaining reactant. This behavior is exemplarily illustrated in Fig. 5.6 for the DSR+CSTR network at 

a conversion of 𝑋𝑛𝐶12𝑒𝑛 = 50%. The increase of selectivity with decreasing conversion originates 

from the slightly improved ratio of reactant to formed side products which supports the reaction. 

Comparing the remaining three candidates, it becomes obvious that the PFR+CSTR (red line) shows 

again the increased selectivity in the conversion range between 90 % and 99 % in comparison to the 

single PFR (blue line), which was already discovered in subchapter 3.2.3. An added PFR to this 

network does not improve the performance noticeably (yellow line).  

 

 

Figure 5.5: Selectivity with respect to tridecanal over conversion of 1-dodecene for optimal reactor-network candidates 

 

The same procedure is carried out for the same network candidates for the case of closed 

global recycle. The corresponding results are depicted in Fig. 5.7. Evidently, the qualitative 

characteristics of the performance of the network candidates are the same. The two candidates 

containing a DSR show once more the high selectivity for all conversions due to the global bypass 

effect, and the IR-PFR+CSTR outperforms the single IR-PFR, whereas its performance is not 

increased by addition of an initial CSTR. As already shown in subchapter 3.3.3, the initially recycled 

side products increase the selectivity significantly for all candidates and all conversions. Since the 

target of this retrofit is the maximization of the yield of tridecanal, including the conversion of reactant 

and the selectivity with respect to tridecanal, the benefit of the network candidates containing a DSR 

for medium to high conversions is not useful. Moreover, their performance gain for high conversions 

in comparison to the candidates without distributed reactant dosing is rather small. Hence, the 

additional effort of realizing a distributed reactant dosing is not reasonable. Following the previous 

discussions about the remaining three network candidates, the (IR-)PFR+CSTR seems to be most 

promising.  
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Figure 5.6: Optimal fluxes of the DSR+CSTR network at XnC12en = 50% indicating the global bypass effect 

 

 

Figure 5.7: Selectivity with respect to tridecanal over conversion of 1-dodecene for optimal reactor-recycle-network 

candidates 

 

The broader range of conversions with high selectivity and its smoother transition into this region in 

comparison to the (IR-)PFR indicate a higher potential for finding a robust design in the next step 

when considering model parameter uncertainties, since the investigations in subchapter 4.2.1 have 
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shown that the predictive power of the performance is strongly decreasing at very high conversions. In 

addition, the constant control profiles in the second reaction section are easier to realize in a CSTR 

than in a PFR. Thus, the (IR-)PFR+CSTR is chosen for further detailed design and embedding in the 

integrated miniplant process. Note, that the total residence times at the desired high conversions are 

always at the maximum bound and, thus, the technical design is carried out for the targeted residence 

time of 𝜏𝑓 = 192 min. 

 

5.3 Technical realization 

 In order to design the (IR-)PFR+CSTR network, identified as most suitable for the retrofit of 

the integrated miniplant process, in detail aiming at its technical realization, several aspects have to be 

investigated. At first it is discussed in subchapter 5.3.1 how the selected reactor-(recycle)-network 

might basically be realized with respect to its operational mode and its embedding in the existing 

miniplant process. Secondly, the main control variables, i.e. partial pressures and temperature, are 

analyzed with regard to the required number of control inputs for a sufficient approximation of the 

optimal control profiles in subchapter 5.3.2. As a result of these first steps, a rough realization of the 

optimal reactor-(recycle)-network is obtained. In subchapter 5.3.3 aspects of dimensioning of the 

individual units are considered, what includes mainly the investigation of flow patterns of the first 

unit.  

 

5.3.1 Design options for embedding in miniplant process  

The design of the synthesized reactor-(recycle)-network starts with deriving basic realization 

options. The first reaction section is supposed to be realized in a PFR since it indicates a dynamic 

control of the partial pressures and temperature and has no benefit from back-mixing. The initial 

recycling of side products does, thereby, not influence the possible realization options. Following 

these requirements, this reaction section can either be realized in a continuous flow reactor with 

distributed control or a discontinuous, i.e. batch wise, operated semi-batch reactor, see Fig. 5.8. The 

latter has the advantage that it is inherently free of back-mixing and, thus, has an analogous residence 

time behavior than a PFR. Furthermore, the dynamic control trajectories of the first reaction section 

can be realized accurately over time in the semi-batch reactor instead of approximating them discretely 

along the length of a continuous flow reactor. However, the integration of a discontinuously operated 

unit within a continuous process comes along with additional challenges, e.g. complex cyclic 

operation. A short overview of advantages and disadvantages of both realization options is given in 

Tab. 5.2, not striving for comprehensiveness. The second reaction section is supposed to be realized in 

a CSTR with constant control values. Since this is already the simplest way to realize this section in 

one unit, it is not sought for more complex alternatives. 

In order to keep the construction effort small, the existing CSTR in the miniplant can be used to 

realize the second reaction section. Following the flow sheet in Fig. 5.1, the CSTR has a temperature 

control and equipment for maintaining a predefined partial pressure level and, thus, fulfills the given 

requirements of the optimal reactor-(recycle)-network. Although the size of the CSTR is fixed, when 

adopting the existing unit, the possible performance loss is expected to be acceptable in comparison to 

the reduction of realization effort. Its mass transfer rates are assumed to be sufficiently high as the 

hydroformylation was already operated in this vessel. Moreover, the required mass transfer rates in the 

second reaction section, which will be realized in the CSTR, are rather small as the reaction therein is 

slow. Hence, the CSTR does not require an individual technical design and the design procedure 

focuses mainly on the first reaction section. 
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Table 5.2: Advantages and disadvantages of realizations with cyclic semi-batch reactor and continuous flow reactor 

Cyclic semi-batch reactor 

+ - 

Continuous realization of control trajectories 

over time 

Require buffer tanks for embedding in 

continuous overall process 

Inherently free of back-mixing 
Cyclic operation is more complex than steady-

state operation 

Accurate mass transfer controlled by stirring 
Preparation time of each batch has to be 

considered leading to loss of reaction time 

 Easier to control as only one input has to be 

controlled for a concentrated system 

Preparation has to be carried out very properly 

to avoid residues or oxygen input 

Continuous flow reactor 

+ - 

Less units to control since no additional buffer 

tanks are required  

Requires suitable flow regime to approximate 

PFR characteristics 

Simple embedding in continuous overall process 

Control trajectories have to be approximated 

discretely along the reactor length with several 

control inputs 

Steady-state operation, no preparation time 

needed 
Pressure losses 

Mass transfer can be increased by advanced 

flow regimes 

Mass transfer is dependent and limited by 

possible flow regimes 

 

 

Figure 5.8: Realization options for (IR-)PFR+CSTR network: a) Continuous flow reactor with CSTR; b) Cyclic semi-batch 

reactor with CSTR and buffer tanks for embedding in overall process 

 

Within this work the detailed design will be carried out only for the purely continuous 

realization option in which the first reaction section is realized in a continuous flow reactor (CFR). 

Recycle

Recycle discontinuous

continuous

gas dosing

heating
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Although the hybrid batch-continuous realization in a cyclic semi-batch reactor (CSBR) has promising 

potential, it is also accompanied by several challenges which require a comprehensive and detailed 

investigation. For the lack of time this research is not included in this thesis. The interested reader is 

referred to the work of Kaiser et al. [200] and Raetze et al. [201], who investigated this realization of 

the CSBR with model-based optimizations, and Jokiel et al. [202] who carried out the experimental 

validation of the CSBR both stand-alone and embedded in the integrated miniplant setup. Their work 

is complementary to this work and part of the same collaborative research center project introduced in 

chapter 1.  

 

5.3.2 Sensitivity analysis with respect to number of control inputs  

The technical realization of the (IR-)PFR+CSTR network requires exact knowledge about the 

number of control inputs which have to be realized. Within the previous synthesis and design steps the 

number of control inputs was assumed to be infinite resulting in continuous control trajectories. For 

the technical realization with a CFR these trajectories have to be approximated with discrete control 

inputs along the reactor length. In the following it is investigated, how many control inputs are 

required for the partial pressure control and the temperature control in order to keep the performance 

loss caused by the spatial approximation small. These investigations focus mainly on the (IR-)PFR 

unit, since the CSTR unit has only one control input for the temperature and one constant partial 

pressure level. 

 

Realization of partial pressure profiles 

 As the partial pressures are directly linked to the amount of gas and its holdup, the controls of 

the partial pressures require a control of those measures. The holdup is assumed to evolve due to the 

reaction along the reactor length and is not controlled individually. However, the amount of gas can be 

controlled via dosing streams and in this way the holdup is somehow indirectly changed wherever a 

dosing is realized. The inclusion of dosing streams of gas components requires the modeling of the gas 

phase, the mass transfer from gas phase to liquid phase, and the balancing of the gaseous components 

within the liquid phase. The gas phase is balanced via  

 

𝑑𝑛𝛼
𝑔𝑎𝑠

𝑑𝑡
= 𝑦𝑉,𝛼

𝑚 − 𝑘𝐿𝑎 𝑉𝑙𝑖𝑞(𝑐𝛼
∗ − 𝑐𝛼),    𝛼 ∈ 𝐺𝐴𝑆 ,    (5.1) 

 

with 𝑘𝐿𝑎 being the volumetric mass transfer coefficient and 𝑐𝛼
∗  corresponding to the liquid 

concentration of the gas components at the interphase, see Eq. (2.11). Thereby it is assumed, that the 

mass transfer is modelled with a stagnant film model and the mass transfer resistance is completely 

located in the liquid phase. In addition, the molar balance for the gas components in the liquid phase is 

stated as 

 

𝑑𝑛𝛼
𝑙𝑖𝑞

𝑑𝑡
= 𝑉𝑙𝑖𝑞 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡(∑ 𝜈𝛼,𝑚𝑟𝑚

𝑀
𝑚=1 )) + 𝑘𝐿𝑎 𝑉𝑙𝑖𝑞(𝑐𝛼

∗ − 𝑐𝛼),    𝛼 ∈ 𝐺𝐴𝑆.  (5.2) 

 

Within the dynamic optimization problem the partial pressures as control variable are replaced by the 

molar dosing streams of gas components 𝑦𝑉,𝛼
𝑚 , 𝛼 ∈ 𝐺𝐴𝑆 and the partial pressures within the model are 

determined via the ideal gas law. Within the following investigations the 𝑘𝐿𝑎 value is set to a very 

high value to avoid an influence of mass transfer resistance on the sensitivity analysis. This influence 

is later investigated individually. To approximate the optimal partial pressure profiles, four scenarios 

are investigated: 
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• Approximation case 1: Only one initial dosing of gas at the inlet of the (IR-)PFR is realized. 

• Approximation case 2: An initial gas dosing for the first reactor and a gas dosing stream for 

the second reactor are considered. 

• Approximation case 3: The (IR-)PFR has and initial and an intermediate gas dosing stream 

and the CSTR is controlled individually.  

• Reference case: All results are compared with the ideal case of optimal dynamic partial 

pressure control, as determined in subchapter 5.2.2 and illustrated in Fig. 5.5 and Fig. 5.7 for 

the operation scenarios without and with side product recycling, respectively.  

 

The results of the dynamic optimizations for the reference case and the three approximation cases are 

depicted in the [𝑆𝑛𝐶13𝑎𝑙, 𝑋𝑛𝐶12𝑒𝑛]-space in Fig. 5.9.  

 

Figure 5.9: Sensitivity analysis for number of control inputs realizing the optimal partial pressure profiles of the 

(IR-)PFR+CSTR network for: a) the operation scenario with closed side product recycle; and b) without closed side product 

recycle.   

 

Evidently, the realization with only one initial gas dosing stream in approximation case 1 is 

accompanied with an unacceptable performance loss. Approximation case 2 and 3 come quite close to 

the performance of the reference case and indicate only at high conversions a significant gap. The 

slightly higher performance of approximation case 3 in comparison to case 2 does not justify its 

additional constructional effort and, thus, the initial gas dosing in the (IR-)PFR and the individual gas 

dosing for the CSTR suffice for an accurate approximation of the optimal partial pressure control.  

 

Realization of temperature profile  

 In the same way as the sensitivity of the number of control inputs for the partial pressures are 

investigated, the realization of the temperature profile is tested for different scenarios. However, in 

contrast to the partial pressures the temperature is not assumed to be controlled by discrete 

heating/cooling streams. Instead it is assumed that the temperature is controlled within sections of 

constant temperature. On the miniplant scale this is simply realizable and avoids the laborious 

inclusion of an energy balance, which describes the heat absorption and release along the reactor 

length of the (IR-)PFR and the vessel wall of the CSTR. This negligence bases moreover on the 

assumption that the required heating fluxes are rather small as the reaction is only slightly endothermic 

and the operation range of the temperature encloses only 20 K. Again, four scenarios are tested which 

are inspired by the previous approximation cases: 
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• Approximation case 1: Only one temperature level along the entire reaction coordinate, i.e. for 

both reactor units. 

• Approximation case 2: Individual temperature levels for both reactor units. 

• Approximation case 3: The (IR-)PFR has two temperature levels and the CSTR one.  

• Reference case: All results are again compared with the ideal case of optimal dynamic 

temperature control, as determined in subchapter 5.2.2 and illustrated in Fig. 5.5 and Fig. 5.7 

for the operation scenarios without and with side product recycling, respectively.  

 

 

Figure 5.10: Sensitivity analysis for number of control inputs realizing the optimal temperature profile of the 

(IR-)PFR+CSTR network for: a) the operation scenario with closed side product recycle; and b) without closed side product 

recycle.   

 

The results in Fig. 5.10 indicate that the performances of all approximation cases are almost equal to 

the reference case for conversions ≤ 93 %. For higher conversion the approximation improves with 

every additional temperature section. The gap for approximation case 1 at high conversions is of 

several percent and, thus, its realization is neglected. Since approximation case 3 is almost exactly 

matching the reference performance, a further increase of temperature sections is not necessary. Hence 

the optimal temperature profile is approximated with two constant temperature sections along the (IR-

)PFR and one in the CSTR.  

 Following the previously discussed results, the technical realization of the optimal 

(IR-)PFR+CSTR network is conducted with an initial gas dosing for the (IR-)PFR and an individual 

gas dosing for the CSTR, and the temperature is realized with two temperature sections for the first 

and one for the second reactor unit.  

 

5.3.3 Designing the continuous flow reactor  

In this step the detailed design of the continuous flow reactor is carried out. Therefore, two 

aspects are emphasized whose accurate consideration decide about the performance of the continuous 

flow reactor.  

• Mass transfer: Since the hydroformylation is a gas-liquid multiphase process, it is important to 

investigate the mass transfer requirements in order to ensure that sufficient gas reactant is 

supplied as the reaction progresses. 
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• Back-mixing: The continuous flow reactor is supposed to approximate the residence time 

behavior of the ideal plug flow reactor as good as possible, i.e. minimizing the axial 

dispersion.  

 

Both properties mainly depend on the mixing characteristics of the continuous flow reactor and, thus 

on its flow regime. First, sensitivity studies are carried out to identify the minimum required mass 

transfer rates and the maximum allowed deviation from the plug flow behavior. Based on that a 

suitable flow regime is chosen and corresponding reactor dimensions are determined. 

 

Mass transfer 

 In order to investigate the impact of the mass transfer rates on the performance of the optimal 

(IR-)PFR+CSTR network, its dynamic optimization is carried out for varying volumetric mass transfer 

coefficients 𝑘𝐿𝑎. In this way a minimum required 𝑘𝐿𝑎 value is identified.  

 

 

Figure 5.11: Sensitivity analysis quantifying the impact of the volumetric mass transfer coefficient on reaction performance 

 

As can be seen in Fig. 5.11, the mass transfer limits the performance noticeably for small 𝑘𝐿𝑎 values. 

In both operation scenarios, i.e. without and with side product recycle, the performance loss for 𝑘𝐿𝑎 ≤

6 1/min increases to more than 1 %. Hence, this value is chosen as minimum required 𝑘𝐿𝑎 value for 

the technical design of the continuous flow reactor.  

 

Back-mixing 

 The impact of back-mixing on the reactor performance is supposed to be treated as deviation 

from optimal plug flow reactor and, thus, the concept of axial dispersion is considered. Since the final 

dimensions of the continuous flow reactor are not yet known, a dimensionless number is used, namely 

the Péclet number (𝑃é), to describe the axial dispersion coefficient 𝐷𝑎𝑥 in dependence of the reactor 

length 𝑙 and the fluid velocity 𝑣 (Eq. (5.3)). 

 

𝑃é =
𝑙∗𝑣

𝐷𝑎𝑥
       (5.3) 

 

Hence, for a given length the 𝑃é number increases with decreasing axial dispersion. In order to 

investigate the impact of varying 𝑃é numbers on the reactor performance, a cascade model of equally 

sized CSTRs is used as kind of surrogate model for the PFR [193]. With a known heuristic the number 

of CSTRs 𝑁 in this cascade is linked with the 𝑃é number (Eq. (5.4)). 

 
𝑃é

2
= 𝑁       (5.4) 
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The equally sized CSTRs are modeled via the mass balances for the liquid phase components 

(Eq. (A.37)), the dissolved gas components in the liquid phase (Eq. (A.38)), and the gas phase 

components (Eq. (A.39)). In addition, continuity conditions are formulated connecting the CSTRs 

(Eqs. (A.40)-(A.41)). Based on this model, the dynamic optimizations are carried out for varying 

number of CSTRs approximating the (IR-)PFR for different 𝑃é numbers. 

 

 

Figure 5.12: Sensitivity analysis quantifying impact of axial dispersion on reaction performance using the dimensionless 𝑷é 
number 

 

The results in Fig. 5.12 indicate that the impact of axial dispersion on the selectivity with respect to 

tridecanal is moderately high. For 𝑃é ≤ 10 the performance loss is again higher than 1 % and, thus, 

this is the minimum allowed 𝑃é number for the technical design of the continuous flow reactor.  

 

Identifying suitable flow regime 

The search for a suitable flow regime in the CFR that satisfies the above derived requirements 

is strongly dependent on the available range of dimensions, in particular the tube diameter. According 

to Tab. 5.1 the volumetric inlet flow is determined to �̇�𝐶𝑆𝑇𝑅,𝑖𝑛
𝑙𝑖𝑞

≈ 100 ml/h. Since the residence time is 

supposed to be maintained, but an additional reactor unit is added to the existing CSTR, the volumetric 

flow rate has to be increased. The corresponding decision-making depends on the length the first 

reaction section is supposed to have. Based on the knowledge about the reaction sections indicated by 

the FPA and the insights of the shift of the reaction sections when searching for a robust design under 

model parameter uncertainties in subchapter 4.2.1, see Fig. 4.9, it seems reasonable to assume the first 

reaction section to be half as long as the second. Thus, the volumetric inlet flow rate is set to �̇�𝐶𝐹𝑅,𝑖𝑛
𝑙𝑖𝑞

≈

150 ml/h. Together with an assumed liquid hold-up of 𝜀𝑙𝑖𝑞
𝐶𝐹𝑅 = 0.33, the overall volumetric flow rate 

is considered around �̇�𝐶𝐹𝑅,𝑖𝑛
𝑡𝑜𝑡 ≈ 450 ml/h. Considering further the overall residence time of 𝜏𝑡𝑜𝑡 =

192 min, and the volume and liquid hold-up of the existing CSTR, 𝑉𝐶𝑆𝑇𝑅
𝑡𝑜𝑡 = 1 l and 𝜀𝑙𝑖𝑞

𝐶𝑆𝑇𝑅 = 0.32, 

respectively, the overall volume of the CFR can be determined to 𝑉𝐶𝐹𝑅
𝑡𝑜𝑡 ≈ 0.49 l.  

To achieve high mass transfer rates and a small axial dispersion in a tube reactor of ≈ 0.5 l, 

the flow regime has to provide a large specific surface of the gas-liquid interphase and high radial 

mixing, respectively. This can be induced by e.g. turbulent flow or static mixers. However, the 

volumetric flow rates are very small, e.g. for tube diameters between 1 mm ≤ 𝑑𝑡𝑢𝑏𝑒 ≤ 10 mm the 

superficial fluid velocity is in the range of 7.08 ⋅ 10−4 m/s ≤ 𝑣𝑠 ≤ 0.0708 m/s. The latter do not 

enable the use of static mixers or the generation of turbulent flows and, hence, both are not practical. 

According to Coleman and Garimella [203] the flow patterns being formed in such small diameter 

tubes are stratified flow, intermittent flow, dispersed flow, or annular flow. These in turn can be 

subdivided again into different special flow patterns. For similarly small gas and liquid superficial 

velocities the only flow pattern of interest is the intermittent flow pattern, also known as Taylor flow, 

due to the following advantageous properties: (i) the axial dispersion within the phases is reduced 
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significantly by the separation of the liquid bulk [204] and (ii) an internal recirculation within the 

liquid bulks is induced by the friction forces at the wall, which strongly enhances the mass transfer 

[205]. These are the two properties which were found to be important for the technical realization of 

the (IR-)PFR reactor section. According to literature, the volumetric mass transfer coefficients for the 

superficial velocities stated above are around 0.05. .1.5 s−1 [206], and the Péclet numbers for the 

aforementioned liquid hold-up are higher than 100 [207]. Hence, the intermittent flow pattern is 

selected as most promising for the further design of the CFR.  

In order to allow for the formation of intermittent flow, the tube diameters have to fulfill the 

condition 𝑑𝑡𝑢𝑏𝑒 ≤ 6 mm [203], and to limit the length of the tube reactor for the sake of a manageable 

construction effort concerning the tube length, the tube diameter should be not smaller than 1.5 mm. 

Hence, the tube length will be in the range of 17.33 m ≤ 𝑙𝐶𝐹𝑅 ≤ 277.28 m. These tube lengths cannot 

be realized in form of a straight tube within the miniplant setup. Therefore, a bending of the tube to 

helices is favored. In addition to its compact construction such a reactor configuration has the 

additional advantage of a uniform pressure loss due to the regular bending [208]. 

Albeit the previously mentioned literature results already suggest the desired flow regime for 

these reactor dimensions, they were determined for species with different surface tensions and for 

higher superficial velocities. To ensure the formation of the desired flow regime for the used solvent 

system and volumetric flow rates of the hydroformylation miniplant, experiments are carried out under 

the corresponding conditions. A small setup was built to investigate the flow regime formed for 

volumetric flow rates in the range of 66 ml/h ≤ �̇�𝐶𝐹𝑅,𝑖𝑛
𝑙𝑖𝑞

≤ 200 ml/h and tube diameters between 

1.6 mm ≤ 𝑑𝑡𝑢𝑏𝑒 ≤ 3.2 mm. The enable a visual observation a transparent tube material was used and, 

in addition, the pressure loss within this tube was determined in order to estimate the pressure loss of 

the intermittent flow inside the CFR. Details about the setup and the experimental results are given in 

the appendix (A.5). The results indicate that for a volumetric flow rate �̇�𝐶𝐹𝑅,𝑖𝑛
𝑙𝑖𝑞

= 200 ml/h the 

intermittent flow shows a slight decomposition into a stratified flow and re-composition to an 

intermittent flow for 𝑑𝑡𝑢𝑏𝑒 = 3.2 mm, and stable intermittent flow for smaller tube diameters 

(1.6 mm, 2 mm). Due to this finding, no further experiments for larger tube diameters were conducted. 

For smaller volumetric flow rates (66 ml/h, 102 ml/h), the intermittent flow was stable in all of the 

tested tubes and, hence, as well for the volumetric flow rate of interest, �̇�𝐶𝐹𝑅,𝑖𝑛
𝑙𝑖𝑞

= 150 ml/h. As 

expected, the pressure loss ∆𝑝/𝑙 increases with decreasing tube diameter and increasing volumetric 

flow rate. Thus, a trade-off has to be found between a small tube diameter, which ensures intermittent 

flow but leads to a longer tube, and a small pressure drop. For the technical design of the CFR, a 

maximum tube diameter of 𝑑𝑡𝑢𝑏𝑒
𝑚𝑎𝑥 = 3 mm is chosen to ensure the formation of an intermittent flow. 

On the one hand, the pressure drop for this configuration was measured as ∆𝑝 ≈ 0.0017 bar/m which 

results in a negligible overall pressure drop in the CFR around ∆𝑝 ≈ 0.12 bar. And on the other hand, 

the length of the reactor stays with 𝑙𝐶𝐹𝑅 ≈ 70 m in a manageable range. 

   

Final technical design of the optimal reactor -(recycle)-network 

Summarizing all findings with regard to the number of the required control inputs for an 

appropriate approximation of the optimal control profiles and the dimensioning of the PFR unit aiming 

at an intermittent flow regime providing sufficiently high mass transfer rates and only small axial 

dispersion, the final technical design is illustrated in Fig. 5.13. The helically coiled tube is oriented 

vertically, since preliminary studies about the characteristic flow patterns of a helically coiled tube 

have shown that for low volumetric flow rates a horizontal orientation suffers more from gravitational 

forces than a vertical orientation [209].   
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Figure 5.13: Technical design of the optimal reactor-(recycle)-network 

 

5.4 Performance assessment of the technical reactor design in the 

overall process 

 The intention of retrofitting the miniplant setup by improving the reactor performance requires 

inherently the investigation of the optimal reactor-network embedded in the integrated overall process 

to reveal possible drawbacks and quantify the according performance losses. Moreover, the control 

inputs for achieving highest performance under real separation conditions are determined.  Therefore, 

the technically designed reactor-network consisting of the helically coiled tube reactor (HCTR) and 

the CSTR derived in the previous subchapter is embedded in the process flow sheet of the integrated 

overall process. The flow sheet and the modeling of its units are introduced in subchapter 5.4.1. 

Subsequently, the dynamic optimization problem of the overall process optimization is derived and 

solved in subchapter 5.4.2. Therein, model parameter uncertainties for the reactor modeling as 

introduced in subchapter 4.2 are considered to allow for identifying robust control inputs. In addition, 

the overall process optimization is carried out for the single CSTR of the original miniplant setup to 

allow for an appropriate comparison. 

 

5.4.1 Overall process modeling 

 In contrast to the flow sheet of the miniplant setup given in Fig. 5.1, the process flow sheet for 

the overall process optimization in Fig. 5.14 is slightly reduced. The second decanter at the distillate 

stream of the distillation column and the additional buffer tank for the subsequent nonpolar solvent 

recycle are neglected. The modeling includes the inlet streams, the reactor units, the decanter with its 

polar solvent recycle, and the distillation column with its nonpolar solvent recycle. The pumps and the 

flash unit are not modeled individually. The latter is only considered for pressure release and, thus, the 

molar flow rates of the liquid components fed from the decanter into the distillation column do not 

change. 

 

Recycle

Feed
Gas

Gas
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Figure 5.14: Flow sheet for the optimization of the integrated overall process 

 

Inlet streams 

 The reactor section inlet streams are determined in dependence of the solvent system and 

catalyst conditions of the miniplant, see Tab. 5.1, and the volumetric inlet flow rates are defined in 

course of the technical design of the reactor-network in subchapter 5.3.3. In the process flow sheet it 

corresponds to �̇�𝑖𝑛
𝐻𝐶𝑇𝑅, which is calculated according to Eq. (5.5). 

 

�̇�𝑖𝑛
𝐻𝐶𝑇𝑅 = �̇�𝑚𝑎𝑘𝑒𝑢𝑝

𝐻𝐶𝑇𝑅 + �̇�𝑜𝑢𝑡,𝑝𝑜𝑙𝑎𝑟
𝑑𝑒𝑐 + �̇�𝑜𝑢𝑡,𝐷

𝑐𝑜𝑙     (5.5) 

 

The calculation of the volumetric flow rate of the makeup stream (Eq. (5.6)) contains the 

corresponding molar flow rates of the reactant and solvents. 

 

�̇�𝑚𝑎𝑘𝑒𝑢𝑝
𝐻𝐶𝑇𝑅 =

∑ (�̇�𝛼,𝑚𝑎𝑘𝑒𝑢𝑝
𝐻𝐶𝑇𝑅 𝑀𝛼)𝛼

𝜌𝛼
, 𝛼 ∈ {𝑛𝐶12𝑒𝑛, 𝐷𝑀𝐹, 𝐶10𝑎𝑛}   (5.6) 

 

These makeup streams are dependent of the recycled amounts of the components and the required 

reactor section inlet flow rates �̇�𝛼,𝑖𝑛
𝐻𝐶𝑇𝑅 of the reactant and the solvents (Eq. (5.7)). 

 

�̇�𝛼,𝑚𝑎𝑘𝑒𝑢𝑝
𝐻𝐶𝑇𝑅 = �̇�𝛼,𝑖𝑛

𝐻𝐶𝑇𝑅 − �̇�𝛼,𝑜𝑢𝑡,𝑝𝑜𝑙𝑎𝑟
𝑑𝑒𝑐 − 𝜉𝛼�̇�𝛼,𝑜𝑢𝑡,𝐷

𝑐𝑜𝑙 , 𝛼 ∈ {𝑛𝐶12𝑒𝑛, 𝐷𝑀𝐹, 𝐶10𝑎𝑛}  (5.7) 

 

Here, a purge factor 𝜉𝛼 is added to the distillate stream for each species, see subchapter 5.6. To ensure 

the desired ratio of reactant and solvents, the solvent streams are determined as function of the reactant 

inlet flow rate �̇�𝑛𝐶12𝑒𝑛,𝑖𝑛
𝐻𝐶𝑇𝑅  (Eq. (5.8)). 

 

�̇�𝛼,𝑖𝑛
𝐻𝐶𝑇𝑅 = �̇�𝑛𝐶12𝑒𝑛,𝑖𝑛

𝐻𝐶𝑇𝑅 𝑀𝑛𝐶12𝑒𝑛

𝑀𝛼

𝑤𝛼

𝑤𝑛𝐶12𝑒𝑛
 , 𝛼 ∈ {𝐷𝑀𝐹, 𝐶10𝑎𝑛}   (5.8) 

 

The latter is thereby a degree of freedom for the dynamic optimization problem. By including the 

constraint of the volumetric liquid inlet flow rate �̇�𝑖𝑛,𝑙𝑖𝑞
𝐻𝐶𝑇𝑅 = 150 ml/h, all streams are properly defined 

by the aforementioned equations. However, the catalyst makeup stream is, due to its negligible 

volumetric size, not included in this calculation procedure. Instead, it is calculated independently via 

Eq. (5.9). 

Catalyst/polar solvent recycle

Reactant/byproduct/apolar solvent recycle
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�̇�𝑐𝑎𝑡,𝑚𝑎𝑘𝑒𝑢𝑝
𝐻𝐶𝑇𝑅 = �̇�𝑛𝐶12𝑒𝑛,𝑖𝑛

𝐻𝐶𝑇𝑅 𝑥𝑐𝑎𝑡 − 𝜃𝐵𝑃𝑃
𝑝𝑜𝑙𝑎𝑟

𝑐𝑐𝑎𝑡
𝑡𝑜𝑡�̇�𝑖𝑛

𝐻𝐶𝑇𝑅   (5.9) 

 

Reactors 

 The HCTR model considers the balancing of the liquid phase (Eq. (5.10)), of the gas phase 

(Eq. (5.11)), and of the gas components in the liquid phase (Eq. (5.12)), whereby the latter two include 

the mass transfer between the phases. 

 

𝑑�̇�𝛼,𝑙𝑖𝑞
𝐻𝐶𝑇𝑅

𝑑𝑡
= �̇�𝑙𝑖𝑞

𝐻𝐶𝑇𝑅 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡(∑ 𝜈𝛼,𝑚𝑟𝑚
𝐻𝐶𝑇𝑅𝑀

𝑚=1 )) ,    𝛼 ∈ 𝐶𝐻   (5.10) 

 

𝑑�̇�𝛼,𝑔𝑎𝑠
𝐻𝐶𝑇𝑅

𝑑𝑡
= 𝑘𝐿𝑎 �̇�𝑙𝑖𝑞

𝐻𝐶𝑇𝑅(𝑐𝛼
∗,𝐻𝐶𝑇𝑅 − 𝑐𝛼

𝐻𝐶𝑇𝑅),    𝛼 ∈ 𝐺𝐴𝑆    (5.11) 

 

𝑑�̇�𝛼,𝑙𝑖𝑞
𝐻𝐶𝑇𝑅

𝑑𝑡
= �̇�𝑙𝑖𝑞

𝐻𝐶𝑇𝑅 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡(∑ 𝜈𝛼,𝑚𝑟𝑚
𝐻𝐶𝑇𝑅𝑀

𝑚=1 )) + 𝑘𝐿𝑎 �̇�𝑙𝑖𝑞
𝐻𝐶𝑇𝑅(𝑐𝛼

∗,𝐻𝐶𝑇𝑅 − 𝑐𝛼
𝐻𝐶𝑇𝑅),    𝛼 ∈ 𝐺𝐴𝑆  (5.12) 

 

 The CSTR model does not consider the mass transfer in detail since it is assumed that the 

reaction in the second reaction section taking place in the CSTR is rather slow and, thus, the amounts 

of gases in the liquid phase corresponds to its maximum solubility given by Eq. (2.11). Due to the 

assumption that the partial pressures in the CSTR are controlled by the pressure valve and the syngas 

ratio of the inlet gas stream, the gas phase is not balanced. Hence, the only remaining equation is the 

liquid phase balance (Eq. (5.13)). 

 

�̇�𝛼,𝑙𝑖𝑞
𝐶𝑆𝑇𝑅 = �̇�𝛼,𝑖𝑛

𝐶𝑆𝑇𝑅 + 𝜏𝐶𝑆𝑇𝑅 �̇�𝑙𝑖𝑞
𝐶𝑆𝑇𝑅 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 (∑ 𝜈𝛼,𝑚

𝑀
𝑚=1

𝐶𝑆𝑇𝑅
)) ,    𝛼 ∈ 𝐶𝐻  (5.13) 

 

Decanter 

For determining the liquid-liquid phase equilibria (LLE) in the decanter unit a Kriging model, 

introduced in McBride et al. [56], is considered. It makes use of a second order polynomial regression 

model with Gaussian correlation. As indicated in Eq. (5.14), the output variables 𝜃𝛼
𝑝𝑜𝑙𝑎𝑟

 of the Kriging 

model, 𝐾𝑅, are the molar fractions of N-,N-dimethylformamide, n-decane, 1-dodecene, tridecanal and 

Biphephos in the polar solvent phase. The input variables 𝑥𝛽 are N-,N-dimethylformamide, n-decane 

and tridecanal. Note, that 2-methyl-dodecanal is added to the tridecanal fraction, n-dodecane to n-

decane, and the iso-dodecenes to 1-dodecene for the input and output molar fractions. The latter can be 

calculated from the summation rule of the mole fractions to unity and is hence not given as particular 

input.  

 

𝜃𝛼
𝑝𝑜𝑙𝑎𝑟

= 𝐾𝑅(𝑥𝛽 , 𝑇),        

 𝛼 𝜖 {𝐷𝑀𝐹, 𝐶10𝑎𝑛, 𝑛𝐶12𝑒𝑛, 𝑛𝐶13𝑎𝑙, 𝐵𝑃𝑃}    (5.14) 

𝛽 𝜖 {𝐷𝑀𝐹, 𝐶10𝑎𝑛 𝑛𝐶13𝑎𝑙}                            

 

The Kriging model is valid for temperatures between −25° and +25°𝐶. It shows very good accuracy 

in comparison to the LLE data calculated by a specially parameterized modified UNIFAC Dortmund 

model. The resulting output streams of the decanter unit are calculated via Eqs. (5.15)-(5.16). 
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�̇�𝛼,𝑜𝑢𝑡,𝑝𝑜𝑙𝑎𝑟
𝑑𝑒𝑐 = 𝜃𝛼

𝑝𝑜𝑙𝑎𝑟
�̇�𝛼,𝑖𝑛
𝑑𝑒𝑐  ,  𝜖 {𝐶𝐻, 𝑆𝑂𝐿, 𝐵𝑃𝑃}     (5.15) 

�̇�𝛼,𝑜𝑢𝑡,𝑎𝑝𝑜𝑙𝑎𝑟
𝑑𝑒𝑐 = (1 − 𝜃𝛼

𝑝𝑜𝑙𝑎𝑟
)�̇�𝛼,𝑖𝑛

𝑑𝑒𝑐  , 𝛼 𝜖 {𝐶𝐻, 𝑆𝑂𝐿, 𝐵𝑃𝑃}  (5.16) 

 

Distillation column 

The Fenske-Underwood correlations are used to determine the composition of the distillate 

and bottom streams, and the number of trays. Since the products degrade at temperatures higher than 

180 °C, the distillation column is operated at vacuum pressure. For the sake of simplicity, no pressure 

loss is considered. Aiming at a quantitative separation of the iso-dodecenes and the desired product 

tridecanal, the first is defined as light key (LK) and the latter as heavy key (HK) with split fractions of 

𝜁𝐿𝐾
𝐷 = 0.99 and 𝜁𝐻𝐾

𝐷 = 0.01, respectively. For the calculation of relative volatilities with Eq. (A.43), 

vapor pressure correlations were used given in Yaws [210] (see Eq. (A.41)). For the iso-dodecenes as 

well as the iso-aldehydes, fitted correlations from Hentschel et al. [159] are used (Eq. (A.42)). The 

corresponding parameters for Eqs. (A.41)-(A.42) are provided in Tab. A.5. A mean relative volatility 

is determined with Eq. (A.44) and used for the calculation of the minimum number of stages with 

Eq. (A.45). The resulting bottom stream is finally computed by Eq. (5.17), whereby the distillate can 

be determined using the summation condition in Eq. (5.18). 

 

�̇�𝛼,𝑜𝑢𝑡,𝐵
𝑐𝑜𝑙 =

�̇�𝛼,𝑖𝑛
𝑐𝑜𝑙

1+
𝜁𝐻𝐾
𝐷 ∗�̇�𝐻𝐾

𝑖𝑛

(1−𝜁𝐻𝐾
𝐷 )∗�̇�𝐻𝐾

𝑖𝑛

      (5.17) 

�̇�𝛼,𝑖𝑛
𝑐𝑜𝑙 = �̇�𝛼,𝑜𝑢𝑡,𝐷

𝑐𝑜𝑙 + �̇�𝛼,𝑜𝑢𝑡,𝐵
𝑐𝑜𝑙      (5.18) 

 

Flow sheet 

The units within the flow sheets are interconnected with the conditions: 

 

�̇�𝛼,𝑖𝑛
𝐻𝐶𝑇𝑅 = {

�̇�𝛼,𝑚𝑎𝑘𝑒𝑢𝑝
𝐻𝐶𝑇𝑅 + �̇�𝛼,𝑜𝑢𝑡,𝑝𝑜𝑙𝑎𝑟

𝑑𝑒𝑐 + 𝜉𝛼�̇�𝛼,𝑜𝑢𝑡,𝐷
𝑐𝑜𝑙 , 𝛼 ∈ {𝑛𝐶12𝑒𝑛, 𝐷𝑀𝐹, 𝐶10𝑎𝑛}

�̇�𝛼,𝑜𝑢𝑡,𝑝𝑜𝑙𝑎𝑟
𝑑𝑒𝑐 + 𝜉𝛼�̇�𝛼,𝑜𝑢𝑡,𝐷

𝑐𝑜𝑙 , 𝛼 ∈ {𝑖𝐶12𝑒𝑛, 𝑛𝐶13𝑎𝑙, 𝑖𝐶13𝑎𝑙, 𝑛𝐶12𝑎𝑛}
,  (5.19) 

 

�̇�𝛼,𝑜𝑢𝑡
𝐻𝐶𝑇𝑅 = �̇�𝛼,𝑖𝑛

𝐶𝑆𝑇𝑅 , 𝛼 ∈ {𝐶𝐻, 𝑆𝑂𝐿},    (5.20) 

 

�̇�𝛼,𝑜𝑢𝑡
𝐶𝑆𝑇𝑅 = �̇�𝛼,𝑜𝑢𝑡,𝑝𝑜𝑙𝑎𝑟

𝑑𝑒𝑐 , 𝛼 ∈ {𝐶𝑂𝑀},    (5.21) 

 

�̇�𝛼,𝑜𝑢𝑡,𝑎𝑝𝑜𝑙𝑎𝑟
𝑑𝑒𝑐 = �̇�𝛼,𝑖𝑛

𝑐𝑜𝑙 , 𝛼 ∈ {𝐶𝐻, 𝑆𝑂𝐿}.    (5.22) 

 

5.4.2 Optimization of optimal reactor-network within the integrated 

overall process 

 The robust dynamic optimization problem for the optimization of the technically designed 

reactor-network considers not all model parameter uncertain, which have been considered in chapter 

4.2.1. Instead, the insights of the global sensitivity analysis in subchapter 4.2.2 about the impact of the 

individual model parameters on the final reactor performance uncertainty are taken into account and, 

consequently, only the five most sensitive model parameters are considered uncertain. These are the 

kinetic constants 𝑘0,1 and 𝑘0,2, the catalyst equation parameters 𝐾𝑐𝑎𝑡,1 and 𝐾𝑐𝑎𝑡,2, and the Gibbs 
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energy of the chemical equilibrium of reaction two ∆𝐺𝑟2. Their expected values, confidence intervals, 

and the calculation of the corresponding variances are given in Tab. A.2.1, Tab. 4.1, and Eq. (4.37), 

respectively. 

  

Robust dynamic optimization problem 

The resulting RDOP for the overall process optimization under model parameter uncertainties 

is given in Eqs. (5.23)-(5.57). 

 max
 𝑇𝐻𝐶𝑇𝑅(𝑡),�̇�𝐶𝑂,𝑖𝑛

𝐻𝐶𝑇𝑅,�̇�𝐻2,𝑖𝑛
𝐻𝐶𝑇𝑅,𝑇𝐶𝑆𝑇𝑅,𝑝𝐶𝑂

𝐶𝑆𝑇𝑅,𝑝𝐻2
𝐶𝑆𝑇𝑅,�̇�𝑛𝐶12𝑒𝑛,𝑖𝑛

𝐻𝐶𝑇𝑅
  {𝐸 (𝑆𝑛𝐶13𝑎𝑙(𝜏𝑓)) ∗ 𝐸(𝑋𝑛𝐶12𝑒𝑛(𝜏𝑓))} (5.23) 

   s.t.     
Component mass balances 

of HCTR: 
Eqs. (5.10)-(5.12), with �̇�𝛼

𝐻𝐶𝑇𝑅 = �̇�𝛼,𝑖
𝐻𝐶𝑇𝑅 , 𝑖 ∈ 𝑆𝑃 (5.24) 

 
Component mass balances 

of CSTR: 
Eq. (5.13), with �̇�𝛼

𝐶𝑆𝑇𝑅 = �̇�𝛼,𝑖
𝐶𝑆𝑇𝑅 , 𝑖 ∈ 𝑆𝑃 (5.25) 

 Reaction kinetics: Eqs. (2.2)-(2.7), with 𝑟𝑚 = 𝑟𝑚(𝜽𝑖), 𝑚 ∈ {1,2}, 𝑖 ∈ 𝑆𝑃 (5.26) 

 Catalyst equilibrium: Eq. (2.1), with 𝑐𝑐𝑎𝑡 = 𝑐𝑐𝑎𝑡(𝜽𝑖), 𝑖 ∈ 𝑆𝑃  (5.27) 

 Catalyst and solvent ratios: Eqs. (2.13)-(2.14), Tab. 5.1 (5.28) 

 Constitutive equations: Eqs. (3.38)-(3.39) (5.29) 

 Gas solubilities: Eq. (2.11) (5.30) 

 Path constraints: �̇�𝑖(𝑡) ≥ 0, 𝑖 ∈ 𝑆𝑃 (5.31) 

  10 bar ≤ 𝑝𝑡
𝐻𝐶𝑇𝑅(𝑡) = 𝑝𝐶𝑂

𝐻𝐶𝑇𝑅(𝑡) + 𝑝𝐻2
𝐻𝐶𝑇𝑅(𝑡) ≤ 20 bar (5.32) 

  363.15 K ≤ 𝑇𝐻𝐶𝑇𝑅(𝑡) ≤ 388.15 K   (5.33) 

  10 bar ≤ 𝑝𝑡
𝐶𝑆𝑇𝑅 = 𝑝𝐶𝑂

𝐶𝑆𝑇𝑅 + 𝑝𝐻2
𝐶𝑆𝑇𝑅 ≤ 20 bar (5.34) 

  363.15 K ≤ 𝑇𝐶𝑆𝑇𝑅 ≤ 388.15 K   (5.35) 

 Terminal constraints: 𝜏𝑓 = 𝜏
𝐻𝐶𝑇𝑅 + 𝜏𝐶𝑆𝑇𝑅 = 192 min  (5.36) 

  𝜏𝐻𝐶𝑇𝑅 = 𝑉𝐻𝐶𝑇𝑅/�̇�𝐻𝐶𝑇𝑅, 𝜏𝐶𝑆𝑇𝑅 = 𝑉𝐶𝑆𝑇𝑅/�̇�𝐶𝑆𝑇𝑅 (5.37) 

  𝑋𝑛𝐶12𝑒𝑛,𝑖 =
�̇�𝑛𝐶12𝑒𝑛,𝑖𝑛,𝑖
𝐻𝐶𝑇𝑅 − �̇�𝑛𝐶12𝑒𝑛,𝑖

𝐶𝑆𝑇𝑅

�̇�𝑛𝐶12𝑒𝑛,𝑖𝑛,𝑖
𝐻𝐶𝑇𝑅 = 99 %, 𝑖 ∈ 𝑆𝑃 (5.38) 

  𝑆𝑛𝐶13𝑎𝑙,𝑖 =
�̇�𝑛𝐶13𝑎𝑙,𝑖
𝐶𝑆𝑇𝑅 − �̇�𝑛𝐶13𝑎𝑙,𝑖𝑛,𝑖

𝐻𝐶𝑇𝑅

�̇�𝑛𝐶12𝑒𝑛,𝑖𝑛,𝑖
𝐻𝐶𝑇𝑅 − �̇�𝑛𝐶12𝑒𝑛,𝑖

𝐶𝑆𝑇𝑅 , 𝑖 ∈ 𝑆𝑃 (5.39) 

  𝑛/𝑖𝑠𝑜𝑖 =
�̇�𝑛𝐶13𝑎𝑙,𝑖
𝐶𝑆𝑇𝑅

�̇�𝑛𝐶13𝑎𝑙,𝑖
𝐶𝑆𝑇𝑅 + �̇�𝑖𝐶13𝑎𝑙,𝑖

𝐶𝑆𝑇𝑅 ≥ 95 %, 𝑖 ∈ 𝑆𝑃 (5.40) 

 Initial conditions: 
Eq. (5.19), with �̇�𝛼,𝑙𝑖𝑞

𝐻𝐶𝑇𝑅(𝜏 = 0) = �̇�𝛼,𝑙𝑖𝑞,𝑖𝑛
𝐻𝐶𝑇𝑅 = �̇�𝛼,𝑙𝑖𝑞,𝑖𝑛,𝑖

𝐻𝐶𝑇𝑅 ,𝛼 ∈

𝐶𝐻, 𝑖 ∈ 𝑆𝑃  
(5.41) 

  �̇�𝛼,𝑔𝑎𝑠
𝐻𝐶𝑇𝑅(𝜏 = 0) = �̇�𝛼,𝑔𝑎𝑠,𝑖𝑛,𝑖

𝐻𝐶𝑇𝑅 = �̇�𝛼,𝑖𝑛
𝐻𝐶𝑇𝑅 ,𝛼 ∈ 𝐶𝐻, 𝑖 ∈ 𝑆𝑃 (5.42) 

  �̇�𝛼,𝑙𝑖𝑞
𝐻𝐶𝑇𝑅(𝜏 = 0) = �̇�𝛼,𝑙𝑖𝑞,𝑖𝑛,𝑖

𝐻𝐶𝑇𝑅 = 0,𝛼 ∈ 𝐺𝐴𝑆, 𝑖 ∈ 𝑆𝑃  (5.43) 

 
Uncertain model 

parameters: 
𝜽 = [𝑘1, 𝑘2, , 𝐾𝑐𝑎𝑡,1, 𝐾𝑐𝑎𝑡,2,∆𝐺𝑟2]

T
  (5.44) 

  Unscented transformation: 𝜽0 = 𝐸(𝜽) (5.45) 

  𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽)𝑖, 𝑖 ∈ 𝑆𝑃 (5.46) 

  𝐸(𝑆𝑛𝐶13𝑎𝑙) =∑𝑤𝑖

2𝑛

𝑖=0

𝑆𝑛𝐶13𝑎𝑙𝑖, 𝑖 ∈ 𝑆𝑃 (5.47) 

  𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙)  = (1 − 𝛼
2 + 𝛽){𝑆𝑛𝐶13𝑎𝑙0 − (5.48) 
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𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙0 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
+ ∑ 𝑤𝑖 {𝑆𝑛𝐶13𝑎𝑙𝑖 −

2𝑛
𝑖=1

𝐸(𝑆𝑛𝐶13𝑎𝑙)}{𝑆𝑛𝐶13𝑎𝑙𝑖 − 𝐸(𝑆𝑛𝐶13𝑎𝑙)}
T
, 𝑖 ∈ 𝑆𝑃  

  𝐸(𝑋𝑛𝐶12𝑒𝑛) =∑𝑤𝑖

2𝑛

𝑖=0

𝑋𝑛𝐶12𝑒𝑛𝑖, 𝑖 ∈ 𝑆𝑃 (5.49) 

  

𝑉𝑎𝑟(𝑋𝑛𝐶12𝑒𝑛)  = (1 − 𝛼
2 + 𝛽){𝑋𝑛𝐶12𝑒𝑛0 −

𝐸(𝑋𝑛𝐶12𝑒𝑛)}{𝑋𝑛𝐶12𝑒𝑛0 − 𝐸(𝑋𝑛𝐶12𝑒𝑛)}
T
+

∑ 𝑤𝑖 {𝑋𝑛𝐶12𝑒𝑛𝑖 − 𝐸(𝑋𝑛𝐶12𝑒𝑛)}{𝑋𝑛𝐶12𝑒𝑛𝑖 −
2𝑛
𝑖=1

𝐸(𝑋𝑛𝐶12𝑒𝑛)}
T
, 𝑖 ∈ 𝑆𝑃  

(5.50) 

 ε-CM constraint: 𝑉𝑎𝑟(𝒐) ≤ 𝜀  (5.51) 

 Inlet conditions: Eqs. (5.5)-(5.9) (5.52) 

  �̇�𝑖𝑛,𝑙𝑖𝑞
𝐻𝐶𝑇𝑅 = 150 ml/h (5.53) 

 Decanter: Eqs. (5.14)-(5.16) (5.54) 

 Distillation column: Eqs. (5.17)-(5.18), Eqs. (A.42)-(A.46) (5.55) 

 Purge condition: 𝜉𝛼 = {
∈ {0. .1}
1  

, 𝛼 ∈ {𝑛𝐶13𝑎𝑙, 𝑖𝐶13𝑎𝑙}

 , 𝛼 ∈ {𝐶𝐻, 𝑆𝑂𝐿}/{𝑛𝐶13𝑎𝑙, 𝑖𝐶13𝑎𝑙}
 (5.56) 

 
Interconnection 

conditions: 
Eqs. (5.19)-(5.22) (5.57) 

 

In the RDOP for the operation of the single CSTR in the integrated overall process the balance and 

model equations for the HCTR are neglected and the inlet condition for the volumetric liquid flow rate 

is set to �̇�𝑖𝑛,𝑙𝑖𝑞
𝐶𝑆𝑇𝑅 = 100 ml/h. This value corresponds to the experimental conditions in the original 

miniplant setup [197]. As the retrofit initially intended to improve the process performance for the 

operation with and without distillation column, the single CSTR and the HCTR+CSTR-network are 

optimized as well for the reduced operation scheme without the distillation column and the 

corresponding side product recycle. Therefore, the molar recycle flow rates of the distillate stream in 

Eq. (5.19) are set to zero, �̇�𝛼,𝑜𝑢𝑡,𝐷
𝑐𝑜𝑙 = 0, 𝛼 ∈ {𝐶𝐻, 𝑆𝑂𝐿}. 

 

Results 

 For varying scalarization parameter 𝜀 the RDOP in Eqs. (5.23) – (5.57) is solved, resulting in 

the Pareto sets in Fig. 5.15 a) and b) for the reduced and the complete operation scheme, respectively. 

These Pareto sets indicate all Pareto optimal performance points [𝐸(𝑆𝑛𝐶13𝑎𝑙), 𝑉𝑎𝑟(𝑆𝑛𝐶13𝑎𝑙)] the 

HCTR+CSTR-network can reach when operating in the integrated overall process given in Fig. 5.14. 

Evidently, the recycle of side products and the according optimal process control lead to a higher 

predictive power of the process performance than the operation with the reduced scheme. In both cases 

a clear potential is revealed to decrease the performance uncertainty by means of the optimal control. 

Thereby, the improvement of predictive power of the performance is higher for the reduced operation 

scheme than for the complete operation scheme, what emphasizes the potential of the robust design 

optimization to find designs of increased robustness, since their finding is, evidently, highly non-

intuitive.  
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Figure 5.15: Sets of Pareto optimal solutions of the HCTR+CSTR-network for a) the reduced operation scheme without 

distillation column, and b) the complete operation scheme 

 

All of the solutions are robust against the considered model parameter uncertainties and, thus, lead to a 

feasible realization within the integrated overall process. Since the main target of the retrofit is the 

maximization of the product yield, the designs with the highest expected yields, rightmost in the 

Pareto sets in Fig. 5.15, are chosen for the following performance comparison and subsequent 

experimental validation. The reaction progress and the control variables of these optimal performance 

points for the complete operation scheme and the reduced operation scheme are depicted in Fig. 5.16 

and Fig. 5.17, respectively.  

 

 

Figure 5.16: Reaction progress a) and control variables b) of the optimal performance point of the HCTR+CSTR-network in 

the integrated overall process in case of the complete operation scheme 
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Figure 5.17: Reaction progress a) and control variables b) of the optimal performance point of the HCTR+CSTR-network in 

the integrated overall process in case of the reduced operation scheme 

 

 The optimal control and the reaction progress of the reduced operation scheme indicates 

qualitatively the same characteristics as the FPA results for this case in Fig. 5.2, especially regarding 

the temperature levels and partial pressure ratios. Hence, in this case the integration in the overall 

process and the limitations by the technical design had only a minor effect. In contrast, the control 

variables of the complete operation scheme look different in comparison to the FPA results in Fig. 5.3, 

in particular the temperature levels change. Within the limitations of the integrated overall process, the 

best performance is achieved by setting the temperature of the second reaction section to the minimum 

value. However, this does not change the course of the reaction progress significantly and, thus, does 

not lead to a contradiction to the predicted optimal fluxes of the FPA.  

In order to assess how the retrofitted process performs in comparison to the existing miniplant 

setup, the results of the previous optimizations are compared to the simulation results of the existing 

miniplant on the one hand, and the best possible performance of the existing miniplant determined by 

means of the dynamic optimization tool on the other hand. This comparison is carried out for both the 

complete and the reduced operation scheme. The results are given in Fig. 5.18 a) and b), respectively. 

In case of the complete operation scheme a), i.e. with distillation column and closed side product 

recycle, the optimal yield of the HCTR+CSTR-network (blue diamond) is reached at 𝐸(𝑆𝑛𝐶13𝑎𝑙) =

91.2 % and 𝐸(𝑋𝑛𝐶12𝑒𝑛) = 98.3 % and is, thus, significantly higher than the maximum yield of the 

single CSTR (orange diamond) at 𝐸(𝑆𝑛𝐶13𝑎𝑙) = 88.3 % and 𝐸(𝑋𝑛𝐶12𝑒𝑛) = 93.3 %. For both reactor 

realizations, their maximum potentials within the given integrated overall process (solid lines) 

indicate, that performance losses arise due to the considerations of model parameter uncertainties and 

the approximation of optimal control profiles. However, the comparison of the optimized CSTR 

performance (orange diamond) and the simulated performance of 𝐸(𝑆𝑛𝐶13𝑎𝑙) = 89.6 % and 

𝐸(𝑋𝑛𝐶12𝑒𝑛) = 74.5 % under the heuristically adjusted experimental conditions (orange plus) show a 

significant increase using model-based optimization tools even for the heuristically chosen CSTR unit. 

The same characteristics of the results are indicated in case of the reduced operation scheme b). The 

HCTR+CSTR-network has the best performance at 𝐸(𝑆𝑛𝐶13𝑎𝑙) = 69.6 % and 𝐸(𝑋𝑛𝐶12𝑒𝑛) = 99.5 %, 

although the optimized CSTR comes with 𝐸(𝑆𝑛𝐶13𝑎𝑙) = 66.6 % and 𝐸(𝑋𝑛𝐶12𝑒𝑛) = 98.0 % much 

closer to the retrofit performance. Again, both optimized cases show a significant improvement in 

comparison to the simulated performance of 𝐸(𝑆𝑛𝐶13𝑎𝑙) = 61.9 % and 𝐸(𝑋𝑛𝐶12𝑒𝑛) = 84.1 % under 

the heuristically chosen experimental conditions. This leads to the conclusion, that the optimization 
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based framework is a powerful tool to derive new promising reactor-networks on the one hand, and on 

the other hand allows improving the performance of the existing miniplant without changing the 

technical setup.  

 

 

Figure 5.18: Optimal performances (diamonds), maximum potentials (solid lines), and performance under experimental 

conditions (pluses) of the HCTR+CSTR-network (blue) and the CSTR (orange) embedded in the integrated overall process 

for the cases a) of the complete operation scheme and b) of the reduced operation scheme 

 

5.5 Experimental validation 

In the experimental rig, the HCTR is, finally, built of a 3/16" stainless steel tube, whose 

diameter is with 𝑑𝑡𝑢𝑏𝑒 = 2.98 mm slightly smaller than the previously determined maximum, due to 

availability reasons. Because of the bending of the helices in a diameter of 𝑑𝑏𝑒𝑛𝑑 ≤ 30.6 cm and a 

narrow arrangement of the helices the HCTR has a height of ≈ 2 m. For an appropriate sampling 

along the reactor length, eight sampling spots are arranged in a logarithmic grid from the inlet. The 

temperature control of the HCTR is realized by two heating sleeves and the pressure inside the tube is 

maintained by a backpressure regulator at the outlet of the HCTR. Two mass flow controllers, one for 

each gas, feed the optimal gas amount to the tube inlet via a T-junction. The temperature in the CSTR 

is controlled by a thermostat by means of a cooling medium in the tank jacket. Its pressure control is 

realized by a pressure valve, realizing a constant pressure of 𝑝𝐶𝑆𝑇𝑅
𝑡𝑜𝑡 = 20 bar. Thereby, two mass flow 

controllers adjust the gas inlet streams of H2 and CO into the CSTR in the ratio of the optimal partial 

pressures. A sufficient gas-liquid contacting in the CSTR is ensured by the use of a gassing stirrer 

operated at 650 rpm. 

The experimental setup is supposed to investigate the optimal reactor-network in the reduced 

operation scheme, i.e. without distillation column and side product recycle. Hence, only the decanter is 

operated and the nonpolar, product rich solvent recycle is closed. The reaction mixture from the CSTR 

is led to the decanter by a mass flow controller. Again, temperature and partial pressures in the vessel 

are controlled by a thermostat and two mass flow controllers, respectively. The polar solvent phase is 

continuously pumped to the inlet of the HCTR and the nonpolar product rich phase is removed into a 

storage tank using a relief valve. In order to obtain a single phasic TMS mixture in the HCTR inlet, the 

inlet pipe is heated up to 95°C.  
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Figure 5.19: Simplified flow sheet of the experimental setup of the retrofitted process for the reduced operation scheme 

 

The entire process, illustrated in a simplified form in Fig. 5.19, has been monitored by a 

process control system (Siemens PCS7 V.8.1) and samples have been taken from inlet and outlet 

streams of all process units. To prevent undesired phase splitting at room temperature, the samples 

have been diluted with 2-propanol. They have been analyzed in a gas-chromatograph with a connected 

mass spectrometer for a better distinction of terminal and internal dodecenes. For detailed information 

about the experimental setup and conditions, it is referred to the original publication [202].  

 
Table 5.3: Comparison of experimental and simulation results of the conversion of 1-dodecene and the selectivity with 

respect to tridecanal for the existing miniplant setup with a single CSTR unit and the retrofitted miniplant with the optimal 

HCTR+CSTR-network for both the reduced and the complete operation scheme 

Reduced operation scheme  Complete operation scheme 

𝑋𝑛𝐶12𝑒𝑛 𝑆𝑛𝐶13𝑎𝑙   𝑋𝑛𝐶12𝑒𝑛 𝑆𝑛𝐶13𝑎𝑙 

80 % 62.5 % CSTR experimental 75 % 86.7 % 

84.1 % 61.9 % CSTR simulation 74.5 % 89.6 % 

      

100 % 70 % HCTR experimental - - 

99.5 % 69.6 % HCTR simulation 98.3 % 91.2 % 

 

For the experimental investigations the continuous process has been operated for ≈ 110 h and 

regularly samples have been drawn and analyzed. For the last 8 h a stable process under optimal 

reaction conditions was established indicating a conversion of 𝑋𝑛𝐶12𝑒𝑛 ≈ 100 % and a selectivity with 

respect to tridecanal of 𝑆𝑛𝐶13𝑎𝑙 ≈ 70 %. As Tab. 5.3 shows, this is in very good agreement with the 
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predicted results of the dynamic optimization. In addition, the experimental results of the existing 

miniplant, i.e. with a single CSTR unit, published in Dreimann et al. [197,198] are given and 

compared to the model-based simulations which are made in subchapter 5.4 for the according 

experimental conditions. The latter are shown for both operation schemes, whereas the experimental 

results for the retrofitted process are only available for the reduced scheme. The experimental 

investigation of the retrofitted process in the complete operation scheme is subject of future work. 

 

5.6 Discussion 

 The final results indicate a significant performance improvement by the retrofit for both 

operation schemes and the match of the experimental results to the model-based optimizations are very 

good. The retrofitted integrated process including the HCTR+CSTR-network showed a yield increase 

of 17 % in case of the reduced operation scheme and of 23 % in case of the complete operation 

scheme compared to the heuristically chosen reactor and reaction conditions used in literature 

[197,198]. Moreover, it was shown that the performance of the existing setup has as well the potential 

of a clear improvement without changing the technical setup by choosing optimal reaction conditions 

based on optimization calculations. This led to a yield increase of 13 % in case of the reduced 

operation scheme and of 16 % in case of the complete operation scheme. Both results emphasize the 

large potential of model-based optimization calculations for designing chemical processes, especially 

in contrast to classical heuristical approaches.  

However, the entire synthesis and design procedure is established in a way that allows the 

engineer as decision-maker analyzing intermediate results and steering the remaining steps in a desired 

manner. For instance, the definition of the retrofit problem could have been stated differently, taking 

into account e.g. further separation options, optimization of the existing separation units, optimization 

of the space-time-yield independent of the original residence time, etc., leading to a different dynamic 

optimization problem for the FPA. Moreover, the flux profile analysis resulted in reactor-(recycle)-

network candidates due to specific assumptions or negligence of certain characteristics. A different 

sectioning or focus on other characteristic features might have led to other candidates. Therefore, it is 

indispensable to be aware of the non-uniqueness of the derived results and, thus, to carry out a 

comparison of the candidates’ performances aiming at a clear assessment of those. After the synthesis 

is finished, the detailed technical design has to be carried out. Herein, the decision-maker analyzes the 

results of sensitivity analyses regarding control input numbers and required reactor characteristics. 

Again, it is up to his expertise to decide which trade-off between approximation accuracy and 

construction effort is reasonable or not. Summarizing, the final result is a consequence of a plenty of 

decisions making it a complex task for which expertise is required. The major alternative is a 

simultaneous synthesis and design procedure, which tries to identify the best technical process 

including all decisions in one large optimization problem. The drawbacks of this simultaneous 

approach in comparison to the chosen step-by-step procedure are: 

 

• The resulting optimization problem is large, including nevertheless detailed models, and has a 

lot of degrees of freedom at once. 

• It is hardly possible to understand the final solution with regard to every individual aspect, 

since the solver chooses its own trade-offs. This is, in turn, strongly dependent on the 

weighting of the different aspects, which cannot be controlled properly when the solver 

decides about it. 

• In case the designer wants to identify alternatives, the entire synthesis and design problem has 

to be solved again, even for small changes. One cannot go only one or two steps backwards. 
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• The numerical effort of such a large optimization problem is tremendous and it is, due to lack 

of knowledge about appropriate initial conditions and the size of the problem, not guaranteed 

that a feasible solution is found.  

The computational costs and numerical complexity are also the reason, why the model 

parameter uncertainties are not all considered in the robust design optimization within the integrated 

overall process. The convergence of the dynamic optimization problem was complicated and resulted 

in a plenty of infeasible solutions. Hence, the amount of uncertain model parameters was reduced to 

the five most sensitive. In case of a large optimization problem within a simultaneous synthesis and 

design procedure, it would have been much harder to identify the uncertain model parameters as origin 

of the convergence problems. As an alternative to the consideration of the model parameter 

uncertainties at the final optimization within the integrated overall process, one could have taken them 

into account as well in previous steps, and even in the FPA, which might have led to interesting 

additional possible reactor-network candidates. However, it does not avoid the consideration of the 

model parameter uncertainties in the remaining steps, especially when determining the final technical 

design. Hence, to decrease the model complexity and ensure feasible results of the FPA, the model 

parameter uncertainties have been considered only in the final overall process optimizations.  

Although presented in subchapter 4.3.2, the imperfect control realization was not considered in 

the final design study for the optimal hydroformylation process for two reasons. On the one hand, the 

complexity of the realization of the required temperature profile is low, since the profiles indicate only 

a few changes, which can easily be realized, as the reaction is rather slow. On the other hand, the 

accuracy of the thermostats on this miniplant-scale is very high and, thus, the expected deviations 

negligible. 

The model quality of the reaction and the liquid-liquid phase separation is high using an 

experimentally validated kinetic model with confidence intervals for the model parameters and a 

Kriging model, which was trained on experimental data and compared to state-of-the-art database 

approaches, respectively. However, the model for the distillation column in the complete operation 

scheme is a short-cut model with limited accuracy and, thus, validity. This became obvious when 

carrying out the dynamic optimization for the complete operation scheme. The nonpolar solvent 

recycle, i.e. the distillate stream of the distillation column, could not been closed completely, because 

it contained too much aldehydes. The predicted distillate stream composition has been compared to the 

measured compositions in Dreimann et al. [198] indicating, that the real distillation column separates 

the aldehydes almost completely. Hence, an additional purge factor 𝜉𝛼 ∈ {0. .1}, 𝛼 ∈

{𝑛𝐶13𝑎𝑙, 𝑖𝐶13𝑎𝑙} was added for each species to allow the solver to control the recycle of aldehydes 

aiming at a convergence of the overall process. For all other species the purge was not activated. As a 

result, the recycled distillate stream contained only very small amounts of aldehydes which matched to 

the experimental results shown in Dreimann et al. [198]. Since all model-based predictions are only as 

good as their least accurate parts, the distillation column has to be modeled rigorously, e.g. using the 

MESH equations (material balance - equilibrium conditions - summation conditions - heat balance), to 

overcome the makeshift with the adjusted purge factors and to increase the optimization accuracy.  
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6 Conclusion 
6.1 Summary 

 Within the scope of this work the methodology of elementary process functions for process 

design has been extended with respect to two crucial aspects: (i) the possibility to synthesize reactor-

network candidates from the optimal control profiles of the EPF based dynamic optimization; and (ii) 

the consideration of different types of uncertainty within the design procedure intending to find robust 

process designs. Furthermore, both approaches have been used successfully for the retrofit of the 

reactor of an integrated miniplant process for a complex multiphase reaction.  

 

Qualitative reactor synthesis 

 In order to synthesize reactor-network candidates, i.e. finding promising structures of crucial 

functions such as reaction, separation, mixing, and recycling, the flux profile analysis was developed, 

which stands out by: 

 

• Serving as tool for rational selection of promising conceptual designs based on reaction 

engineering fundamentals allowing to derive reactor-networks, reactor-recycle-networks, or 

reactor-separator-recycle-networks depending on the frame of the synthesis and the 

operations, which are supposed to be included.  

• A clear and straightforward three step procedure including (i) the fundamental dynamic 

optimization of the EPF methodology, which optimizes the external and internal mass and 

energy fluxes of an idealized fluid element; (ii) the subdivision of the obtained flux profiles 

into characteristic sections of dosing, removal, and heating/cooling; and (iii) the association of 

these characteristic sections with generic ideal reactors, which include different recycling and 

separation options.  

• The derivation of several promising candidates of network structures, which on the one hand 

provide case-dependent reduction potentials, and on the other hand allow for comprehensive 

comparison studies and sensitivity analyses to identify the most promising candidate and to 

gain further insight into the reaction characteristics.   

 

Since the final outcome of this analysis provides only structural information and rough estimations 

about quantitative relations, the FPA is introduced as qualitative reactor synthesis approach. In order 

to demonstrate its potentials and applicability, it was successfully applied on: 

 

• The modified van-de-Vusse reaction indicating (i) that the FPA can be used to construct the 

attainable region of a simple two dimensional process example achieving the same results as 

given in literature, and (ii) that this approach is competitive to the AR approach with respect 

to the fast and direct identification of the optimal network configuration.  

• The classical van-de-Vusse reaction aiming at a comparison with superstructure optimization 

literature results clearly indicating (i) that the FPA identifies the same and even additional 

promising reactor-network candidates, and (ii) that it can be used as sound basis for other 

rigorous optimization tools providing highly valuable knowledge about possible process 

structures, ranges for residence times, and bounds for control and state variables.  

• The multiphase hydroformylation reaction of 1-dodecene in a thermomorphic solvent system 

yielding promising candidates for all synthesis levels, allowing for a systematic analysis of 
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benefits from back-mixing, recycling, and separation, partly confirming former results and 

partly outperforming them.  

 

In course of the applications on the process examples, it was demonstrated and discussed in detail 

which kind of sensitivity analyses are required to reasonably asses the achieved results.  

 

Reactor design under uncertainty 

 The second methodical achievement is the systematic inclusion of uncertainties into the design 

procedure with the EPF methodology resulting in a probabilistic reactor design framework which 

provides: 

 

• The identification of (i) model uncertainties, which arise due to naturally not error-free 

description of real phenomena with mathematical models, (ii) non-ideal reactor characteristics, 

which consider deviations from the ideality assumptions often made in design procedures, and 

(iii) imperfect realization of the control profiles, which have their origin e.g. in limited 

actuator accuracy or manufacturing quality, as sources of uncertainty and randomness within 

the EPF design procedure and their classification with respect to their static or dynamic 

appearance. 

• The inclusion of the unscented transformation with sigma points, which allows for the 

propagation of statistical moments of probability density functions in non-linear systems such 

as process system models, in order to account for the uncertainties within the dynamic 

optimization problem stated in the EPF method.  

• The possibility to (i) find robust optimal designs, (ii) identify different designs of increased 

certainty, i.e. lower risk to miss the expected performance, and (iii) quantify the impact of 

uncertain variables on the overall process uncertainty and, thus, identify the most sensitive 

parameters.  

 

It is demonstrated and discussed, that a design within such a probabilistic framework yields not one 

unique optimal solution, but a set of Pareto optimal solutions with different values for the two 

objectives, i.e. the expected value of the criterion on the one hand and its predictive power, e.g. 

quantified by its variance, on the other hand. The design under uncertainty approach was applied on 

the hydroformylation of 1-dodecene in a TMS system providing the following key features and results: 

 

• The UT with sigma points was validated carrying out comparative Monte Carlo simulations 

for several designs within the Pareto set of robust optimal solutions under model parameter 

uncertainties. Thereby, the tuning factors and modifications have been chosen in a way such 

that the matching to the MC simulation results were improved significantly, what enabled a 

reliable further use of the UT.  

• In order to demonstrate the possibility to analyze the interdependencies of several objectives, 

the reactor design under model parameter uncertainty study was carried out for two objectives, 

namely the selectivity to the desired product and the conversion of the main reactant, revealing 

clear robustification potentials for the selectivity at high conversions.  

• The probabilistic design framework was used to determine global sensitivity indices, which 

quantify the impact of each individual uncertain variable or parameter on the uncertainty of 

the reactor performance. This study revealed the catalyst equilibrium parameters and the 

kinetic rate constants of the hydroformylation reaction and the isomerization reaction of 1-

dodecene as most sensitive with respect to their impact on the variance of the selectivity of the 

desired aldehyde. Hence, the estimation of these model parameters should be improved to 
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increase the robustness of the predicted reactor performance. This is a very promising tool for 

further use in context of optimal experimental design since it provides information about 

parameters of high impact for improving the certain design of processes.  

• In addition to the model parameter uncertainties, the imperfect control realization for the 

optimal reactor design of the hydroformylation process was treated. Therefore, the 

temperature control was impinged with different deviations from its nominal value indicating 

a clear impact on the expected value of the objective.  

• In a last step both aforementioned uncertainty types, i.e. model parameter uncertainties and 

imperfect temperature control realization, have been considered simultaneously in a 

comparison study of two possible reactor realizations. Based on these results the benefits, each 

realization has, and suitable trade-offs, between high expected performance and high 

predictive power the realizations provide in different conversion ranges, have been identified.  

 

Optimal reactor design for retrofit of an integrated miniplant process  

Finally, the synthesis and design of an optimal reactor-network for the retrofit of an integrated 

miniplant for the hydroformylation of 1-dodecene in a thermomorphic solvent system was successfully 

conducted using the flux profile analysis. In addition, the probabilistic design framework using the 

unscented transformation was applied to consider model parameter uncertainties and their impact on 

the optimal reactor-network within the integrated overall process. The results indicate, that: 

  

• A network of a PFR and a CSTR shows the highest performance and can be best technically 

designed by a helically coiled tube reactor and the already existing CSTR of the miniplant, 

respectively.  

• This optimal reactor-network fulfills the requirement to show an optimized performance for 

both the reduced operation scheme, without distillation column and side product recycle, and 

the complete operation scheme. 

• The technical design of the reactor-network is robust against the most sensitive model 

parameters and the determined Pareto sets provide promising trade-offs between the expected 

performance of the process and its predictive power.  

• The performance (conversion, selectivity, yield) of the retrofitted overall process is 

significantly improved for both operation schemes, i.e. (i) in case of the reduced operation 

scheme, the retrofitted process with the HCTR+CSTR-network showed a yield increase of 

17 % compared to the heuristically chosen reactor and reaction conditions used in literature 

[198], and (ii) in case of the complete operation scheme, even a yield improvement of 23 % is 

achieved compared to the reaction conditions and miniplant setup from literature [197]. 

• Even without changing the technical setup only using the dynamic optimization framework to 

optimize the reaction conditions of the existing miniplant, the yield could be improved by 

13 % for the reduced operation scheme and by 16 % for the complete operation scheme.  

 

These results impressively demonstrate, how model-based optimization calculations allow for finding 

non-intuitive process designs providing the potential to outperform classical heuristics significantly.  

 

6.2 Outlook 

 In course of the presented work it has been debated in several discussion which challenges still 

remain and which potentials are worth it to be exploited. In the following, these remarks are 

summarized and classified within three main topics of challenging and promising future prospects.  
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Methodical extensions  

 Within this work the process design methodology of elementary process functions has been 

extended for the qualitative synthesis of reactor-networks based on optimal control profile analysis 

and for the design under uncertainty including different uncertainty types and appearances. The 

benefits of these methodical extensions have been demonstrated and their drawbacks and challenges 

for further improvement have been discussed. However, beside of these extensions the dynamic 

optimization based design within the framework of elementary process functions has still dormant 

potentials.  

Up to now, the considered design problems had only one reactive phase and, in some cases, a 

support phase. The next step is the development of a comprehensive model basis that allows for the 

consideration of an arbitrary number of phases, which are either reactive or non-reactive. This includes 

the challenging consideration of appearing and disappearing phases inside the dynamic optimization 

problem, the modeling and inclusion of mass and heat interchange fluxes along the reaction 

coordinate, and the simultaneous balancing of states of different phases. This would, for instance, 

allow for the simultaneous reaction and separation within multiphase processes such as the 

hydroformylation reaction presented in this work. Therefore, e.g. a solvent is chosen in a way that 

enables a controllable phase split, a stripping, or precipitation during reaction to remove certain 

species. This suggestion leads directly to the next interesting methodical extension for the EPF based 

design procedure, namely the design of integrated reaction-separation units. For sure, the first step 

should be to use the methodology for the design of functional modules including separation tasks. 

When the dynamic optimization problem is reliably extended for multiple reactive and non-reactive 

phases, the main challenge is the inclusion of phase equilibria and/or heat balances to appropriately 

describe separation tasks. Then the subsequent step of integration of both reaction and separation tasks 

is highly promising with respect to process intensification purposes.  

The main limitations for the presented and future methodical extensions are numerical issues 

of feasibility and convergence of the derived dynamic optimization problems. Available state-of-the-

art NLP solvers provide already highly performing environments for local optimization using interior 

point or active set approaches. However, the successful solving of these DOPs requires well-chosen 

initial guesses for states and controls especially for the cases of increased problem size e.g. when 

considering uncertainties in the design procedure. As this complexity would increase unlikely in case 

of integer decisions, the problem formulation should avoid the inclusion of those. Hence, an 

experienced engineer is still indispensable. For a systematic improvement of feasibility and 

convergence, possibilities of model reduction and surrogate modeling play a crucial role as well as the 

suitable extension of the solver capacities. This requires an expedient collaboration of engineers and 

mathematicians and makes it a highly complex interdisciplinary challenge.  

 

Development of practical tools  

 The fundamental research in process systems engineering is supposed to develop tools that 

enable the efficient design of process systems from the scratch to the plant. In the last decades this 

research field gained popularity and with increasing computational power more and more approaches 

have been presented. Unfortunately, although providing sound methods and promising frameworks, 

most of the approaches have not yet been used outside of academia or even their home institutions 

since they are not embedded in practical tools, e.g. software environments. As the EPF methodology 

celebrates its 10th birthday this year and several interesting advances are made in its use for different 

process types, it might be a reasonable step to focus on the development of a practical tool.  

One way to provide a practical framework for the EPF based reactor synthesis approach might 

be the derivation of heuristics for fast synthesis and design of process systems. These heuristics would 
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base on thorough analyses of the reaction engineering characteristics of various classes of reactions, 

e.g. with respect to the reaction order, the topology of the reaction network, the temperature 

dependencies, the supply of reactants with support phases, etc. Examples of such typical reaction 

characteristics have been provided within this work, i.e. the benefit of recycled reversible side 

products to control the chemical equilibrium within the hydroformylation reaction, or the sharp 

temperature profile exploiting the activation energy relations of the van-de-Vusse reaction. A 

comprehensive analysis of these characteristics would result in a pool of typically arising optimal 

control profiles and corresponding reactor-networks which provide the heuristical basis. For the 

described analysis no real processes have to be analyzed. Instead, one could fall back on the use of e.g. 

dimensionless numbers to describe the reaction characteristics and vary them. 

A second way could be the development of a software tool, which provides an environment 

for model-based reactor synthesis. Basic reaction information such as reaction network topology, 

reaction rates, and basic thermodynamic data are entered, and suggestions for reactor-networks as a 

result of numerical optimizations are provided to the engineer. The required automation of the EPF 

based synthesis procedure is mainly hindered by the intermediate steps which require the decision-

making of an expert. To avoid these, either the aforementioned heuristics are included, or the 

emergence of ambiguous cases are prevented by presetting certain decision rules or by restricting the 

number of possible units by use of e.g. parsimonious parameterization of the control vectors. The 

resulting reactor synthesis procedure should consider only the most crucial phenomena which are 

identified by suitable use of sensitivity analyses.  

 

Interdisciplinary, multi-scale process development  

 The trans-regional project (InPROMPT), this work was a part of, intended to develop new 

process structures for the production of long chain alkenes, which allow for the substitution of 

petrochemical feedstocks. Thereby, natural scientists and engineers from various research fields have 

been involved and had to collaborate and exchange numerical, experimental, and model data. This was 

accompanied by a plenty of challenges, e.g. coordination of data transfer, definition of reaction and 

process fundamentals, creation of an expedient and efficient working plan etc. However, due to the 

various scales on which the involved parties worked, the different scientific languages they spoke 

including definitions of measures etc., and the diverse ways of data repository they used especially 

with respect to the form the data is defined and stored, the efficiency of the process development 

procedure was strongly decreased. The experiences from the tedious interactions in this project as well 

as other projects should be used to create an interdisciplinary, multi-scale process development 

procedure which defines clearly (i) in which order working steps are conducted, (ii) how data of any 

kind is edited and which interphases are used for their provision for other project partners, (iii) which 

experimental conditions, analytics, and numerical solvers are supposed to be used, (iv) which 

milestones of achievements are crucial at which time of the project, and (v) how and when the 

resulting data and knowledge has to be provided to collaborators. The preliminary defined working 

procedure is supposed to include iterative exchange of knowledge of different detailedness at different 

time points ensuring that every subproject has always the amount of data and knowledge it requires to 

continue its tasks. For instance, the model-based synthesis and design presented in this work requires 

reaction kinetics. At the very beginning of the overall project these data are not yet available since 

other subprojects are currently investigating it. Hence, for an efficient workflow it is necessary to 

consider this lack of detailed models at the beginning and create a model-based synthesis and design 

procedure that is able to start working with less detailed models, such as stoichiometric knowledge 

about the reaction, and available data from other sources. The experimental data for kinetic and 

thermodynamic investigations should, furthermore, be provided directly to the dependent subprojects 

even when the mechanistic investigations and model discrimination for a detailed and reliable kinetic 
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and thermodynamic model is not finished. The raw data can already be used to create data-driven 

models and their use can support the progress towards a better understanding of e.g. time constants 

and control bounds for the synthesis and design procedure. An example for that has been shown in this 

work with the global sensitivity analysis of the model parameter impacts on the reaction performance. 

Summarizing, one has to be aware that, beside of the development of improved experimental 

analytics, more efficient numerical solvers, and flexible and expedient process design frameworks, the 

collaboration strategies of scientists and engineers from different disciplines working on various scales 

and investigating diverse phenomena have to be improved to identify synergy effects and efficiently 

use the available development time. 
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A Appendix 
A.1     Model parameters of hydroformylation reaction  

Table A.1: Parameters for rate equations and catalyst equilibrium (Eqs. (2.1)-(2.7)) 

Variable Eq. EA [
kJ

mol
] k0 Unit K1 [

ml

mol
] K2 [

ml

mol
] K3 [

ml

mol
] 

𝑟1 (2.2) 113.08 4.904  1016 
ml3

gminmol2
 574876 3020413 11732838 

𝑟2 (2.3) 136.89 4.878  106 
ml

g min
 38632 223214 - 

𝑟3 (2.4) 76.11 2.724  108 
ml2

gminmol
 2661.2 7100 1280 

𝑟4 (2.5) 102.26 2.958  104 
ml2

gminmol
 - - - 

𝑟5 (2.6) 120.84 3.702  1010 
ml3

gminmol2
 - - - 

𝑟6 (2.7) 113.08 3.951  1011 
ml3

gminmol2
 - - - 

𝑐𝑐𝑎𝑡 (2.1) - - - 3.041  104 0 0.644 

 
Table A.2: Parameters for equilibrium constants (Eqs. (2.9)-(2.10)) 

Variable a0 [
kJ

mol
] a1 [

kJ

mol K
] a2 [

kJ

mol K2
] 

∆𝐺2 -11.0034 0 0 

∆𝐺3 -126.275 0.1266 6.803  10-6 

 
Table A.3: Parameters for the solubility coefficient calculation in Eq. (2.12) 

Component H0 [
bar ml

mol
] ∆𝑆𝐻 [

kJ

mol
] 

𝐻2 66400 -3.06 

𝐶𝑂 73900 -0.84 

 
Table A.4: Parameters for density correlation and molar masses (Eqs. (3.38)-(3.39)) 

Component 𝑎0  [
kg

m3] 𝑎1  [
kg

m3K
] 𝑀 [

g

mol
] 

C10an 981.60 -8.3536  10-1 142.2817 

DMF 1256.52 -1.0306 73.0938 

nC12en 993.89 -7.8875  10-1 168.3190 

nC12an 977.04 -7.6743  10-1 170.3348 

nC13al 1068.12 -8.0180  10-1 198.3449 

iC12en 993.89 -7.8875  10-1 168.3190 

iC13al 1068.12 -8.0180  10-1 198.3449 
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A.2     Fundamental balance equations 

 According to Sundmacher and Freund [15] the state evolution of the fluid element within the 

EPF methodology is described by the fundamental balance equations: 

 

Total mass balance: 
1

𝑉

𝑑

𝑑𝑡
(𝜌𝑉) = 𝑎𝑚 ⋅ 𝑚𝐴 (A.1) 

Component mass balance: 
1

𝑉

𝑑

𝑑𝑡
(𝜌𝒘𝑉) = 𝑎𝑚 ⋅ (𝒋𝐴 +𝒘𝐴𝑚𝐴) +𝑴 ⋅ 𝑵 ⋅ 𝒓𝑉 (A.2) 

z-Momentum balance: 
1

𝑉

𝑑

𝑑𝑡
((𝜌𝑣2 + 𝒑)

𝑉

𝑣
) = 𝑎𝜏 ⋅ 𝜏𝐴 + 𝑓𝑉 (A.3) 

Total energy balance: 
1

𝑉

𝑑

𝑑𝑡
(𝜌ℎ𝑡𝑜𝑡𝑉) = 𝑎𝑚 ⋅ (𝒉𝐴

𝑇 ⋅ 𝒋𝐴 + ℎ𝐴,𝑡𝑚𝐴) + 𝑎𝑞 ⋅ 𝑞𝐴 +𝑤𝑡 (A.4) 

Evolution of geometry: 
1

𝑉

𝑑𝑉

𝑑𝑡
= 𝑔 (A.5) 

 

A.3     Discretized dynamic optimization problem under uncertainty 

 The reactor design under uncertainty bases on a dynamic optimization problem, which is 

solved by means of orthogonal collocation on finite elements (see. subchapter A.7). In the following 

the dynamic optimization problem under uncertainty using sigma points is fully discretized resulting 

in a full probabilistic orthogonal collocation approach for both static and dynamic uncertainties, 

compare Eqs. (4.6)-(4.17) and Eqs. (4.18)-(4.30), respectively. 

 

Static uncertainty  

 min
𝒖𝑙=1…𝑛𝐹𝐸 ,𝝃

−𝐸(𝒐) (A.6) 

   s.t.     𝑪(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖)) ∙
𝑑𝒙𝑖𝑙𝑘(𝑡𝑖𝑙 , 𝜽𝑖)

𝑑𝑡𝑖𝑙
= 𝑭 ∙ 𝒋(𝒙𝑖𝑙𝑘(𝑡𝑖𝑙 , 𝜽𝑖)), 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸, 𝑘 ∈ 𝐶𝑃 (A.7) 

 𝒙𝑖𝑙𝑘 = 𝒙𝑖𝑙0 + 𝑑𝑡𝑖𝑙 ∑ 𝑨𝑘𝑗𝒇(𝒙𝑖𝑙𝑗 , 𝜽𝑖, 𝒖𝑙 , 𝝃)

𝑛𝐶𝑃−1

𝑗=0

 , 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸, 𝑘 ∈ 𝐶𝑃 (A.8) 

  𝒈(𝒙𝑖𝑙𝑘(𝑡𝑖𝑙, 𝜽𝑖)) = 𝟎,𝒉(𝒙𝑖𝑙𝑘(𝑡𝑖𝑙, 𝜽𝑖)) ≤ 𝟎, 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸, 𝑘 ∈ 𝐶𝑃   (A.9) 

 𝒖𝐿 ≤ 𝒖𝑙(𝑡) ≤ 𝒖
𝑈, 𝑙 ∈ 𝐹𝐸  (A.10) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈  (A.11) 

 𝒙𝑖,𝑙=1,𝑘=0 = 𝒙0,𝑖(𝜽𝑖), 𝒙𝑖,𝑙=𝑛𝐹𝐸,𝑘=𝑛𝐶𝑃 = 𝒙𝑓,𝑖(𝜽𝑖), 𝑖 ∈ 𝑆𝑃 (A.12) 

 𝒙𝑖,𝑙−1,𝑘=𝑛𝐶𝑃 = 𝒙𝑖,𝑙,0, 𝑖 ∈ 𝑆𝑃, 𝑙 = 2…𝑛𝐹𝐸 (A.13) 

 𝑑𝑡𝑖𝑙 =
𝜏𝑖
𝑛𝐹𝐸

, 𝑙 ∈ 𝐹𝐸 (A.14) 

 𝜽0 = 𝐸(𝜽) (A.15) 

 𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽)𝑖, 𝑖 = 1. .2𝑛𝜽 (A.16) 

 

𝐸(𝒐) =∑𝑤𝑖

2𝑛

𝑖=0

𝒐𝑖 , 𝑖 ∈ 𝑆𝑃 (A.17) 

 𝐶𝑜𝑣(𝒐) = (1 − 𝛼2 + 𝛽){𝒐0 − 𝐸(𝒐)}{𝒐0 − 𝐸(𝒐)}
T

+∑𝑤𝑖 {𝒐𝑖 − 𝐸(𝒐)}{𝒐𝑖 − 𝐸(𝒐)}
T

2𝑛

𝑖=1

, 𝑖 ∈ 𝑆𝑃 
(A.18) 

 
𝑤0 =

𝜆

𝑛𝜽 + 𝜆
 ,   𝑤𝑖 =

1

2(𝑛𝜽 + 𝜆)
, 𝑖 = 1…2𝑛𝜽 (A.19) 

 𝒐𝑖 = ∫ 𝐿(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖))𝑑𝑡𝑖𝑙 + 𝐼 (𝒙0,𝑖(𝜽𝑖)) +𝑊 (𝒙𝑓,𝑖(𝜽𝑖))
𝑡𝑓
0

, 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸,

𝑘 ∈ 𝐶𝑃. 
(A.20) 
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Dynamic uncertainty  

 min
𝒖𝑙=1…𝑛𝐹𝐸 ,𝝃

−𝐸(𝒐) (A.21) 

   s.t.     
𝑪(𝐸(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖))) ∙

𝑑𝐸(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖))

𝑑𝑡𝑖𝑙
= 𝑭 ∙ 𝒋 (𝐸(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖))) , 𝑖 ∈ 𝑆𝑃,

𝑙 ∈ 𝐹𝐸, 𝑘 ∈ 𝐶𝑃 

(A.22) 

 𝒙𝑖𝑙𝑘 = 𝐸(𝒙𝑖𝑙0) + 𝑑𝑡𝑖𝑙 ∑ 𝑨𝑘𝑗𝒇(𝐸(𝒙𝑙𝑗), 𝜽𝑖 , 𝒖𝑙 , 𝝃)

𝑛𝐶𝑃−1

𝑗=0

 , 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸, 𝑘 ∈ 𝐶𝑃 (A.23) 

  𝒈(𝐸(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖))) = 𝟎, 𝒉 (𝐸(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖))) ≤ 𝟎, 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸, 𝑘 ∈ 𝐶𝑃   (A.24) 

 𝒖𝐿 ≤ 𝒖𝑙(𝑡) ≤ 𝒖
𝑈, 𝑙 ∈ 𝐹𝐸   (A.25) 

 𝝃𝐿 ≤ 𝝃 ≤ 𝝃𝑈   (A.26) 

 𝒙𝑖,𝑙=1,𝑘=0 = 𝒙𝑖,0(𝜽𝑖), 𝒙𝑖,𝑙=𝑛𝐹𝐸,𝑘=𝑛𝐶𝑃 = 𝒙𝑓,𝑖(𝜽𝑖), 𝑖 ∈ 𝑆𝑃 (A.27) 

 𝐸(𝒙𝑖,𝑙−1,𝑘=𝑛𝐶𝑃) = 𝒙𝑖,𝑙,0, 𝑖 ∈ 𝑆𝑃, 𝑙 = 2…𝑛𝐹𝐸 (A.28) 

 𝑑𝑡𝑖𝑙 =
𝜏𝑖
𝑛𝐹𝐸

, 𝑙 ∈ 𝐹𝐸 (A.29) 

 𝜽0 = 𝐸(𝜽) (A.30) 

 𝜽𝑖 = 𝜽0 + 𝑠𝑔𝑛(𝑛𝜽 − 𝑖)√(𝑛𝜽 + 𝜆)√𝐶𝑜𝑣(𝜽)𝑖, 𝑖 = 1. .2𝑛𝜽 (A.31) 

 

𝐸(𝒐) =∑𝑤𝑖

2𝑛

𝑖=0

𝒐𝑖 , 𝑖 ∈ 𝑆𝑃 (A.32) 

 𝐶𝑜𝑣(𝒐) = (1 − 𝛼2 + 𝛽){𝒐0 − 𝐸(𝒐)}{𝒐0 − 𝐸(𝒐)}
T

+∑𝑤𝑖 {𝒐𝑖 − 𝐸(𝒐)}{𝒐𝑖 − 𝐸(𝒐)}
T

2𝑛

𝑖=1

, 𝑖 ∈ 𝑆𝑃 
(A.33) 

 𝐸(𝒙𝑖𝑙𝑘(𝑡𝑖𝑙 , 𝜽𝑖)) = ∑ 𝑤𝑖
2𝑛𝜃
𝑖=0 𝒙𝑖𝑙𝑘 (𝑡𝑖𝑙 , 𝜽𝑖), 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸,𝑘 ∈ 𝐶𝑃   (A.34) 

 
𝑤0 =

𝜆

𝑛𝜽 + 𝜆
 ,   𝑤𝑖 =

1

2(𝑛𝜽 + 𝜆)
, 𝑖 = 1…2𝑛𝜽 (A.35) 

 𝒐𝑖 = ∫ 𝐿(𝒙𝑖𝑙𝑘(𝑡, 𝜽𝑖))𝑑𝑡𝑖𝑙 + 𝐼 (𝒙0,𝑖(𝜽𝑖)) +𝑊 (𝒙𝑓,𝑖(𝜽𝑖))
𝑡𝑓
0

, 𝑖 ∈ 𝑆𝑃, 𝑙 ∈ 𝐹𝐸,

𝑘 ∈ 𝐶𝑃. 
(A.36) 

 

A.4     Balance equations for CSTR cascade 

 The sensitivity analysis for the axial dispersion by means of varying Péclet numbers is carried 

out employing a CSTR cascade model, see subchapter 5.3.3. The corresponding balance equations for 

the liquid phase, the gas components in the liquid phase, and the gas phase are given in Eqs. (A.37), 

(A.38), and (A.39), respectively. The connectivity conditions are shown in Eqs. (A.40)-(A.41). 

 

𝑛𝛼,𝑖
𝑙𝑖𝑞
= 𝑛𝛼,𝑖

0,𝑙𝑖𝑞
+ 𝜏𝐶𝑆𝑇𝑅,𝑖 𝑉𝑙𝑖𝑞,𝑖 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡(∑ 𝜈𝛼,𝑚𝑟𝑚,𝑖

𝑀
𝑚=1 )) ,    𝛼 ∈ 𝐶𝐻, 𝑖 ∈ 1. . 𝑁  (A.37) 

𝑛𝛼,𝑖
𝑔𝑎𝑠

= 𝑛𝛼,𝑖
0,𝑔𝑎𝑠

+ 𝑦𝑉,𝛼
𝑚 − 𝑘𝐿𝑎 𝑉𝑙𝑖𝑞(𝑐𝛼

∗ − 𝑐𝛼),    𝛼 ∈ 𝐺𝐴𝑆, 𝑖 ∈ 1. . 𝑁   (A.38) 

𝑛𝛼,𝑖
𝑙𝑖𝑞
= 𝑛𝛼,𝑖

0,𝑙𝑖𝑞
+ 𝜏𝐶𝑆𝑇𝑅,𝑖 𝑉𝑙𝑖𝑞,𝑖 (𝑐𝑐𝑎𝑡𝑀𝑐𝑎𝑡 (∑ 𝜈𝛼,𝑚𝑟𝑚,𝑖

𝑀

𝑚=1

)) + 𝑘𝐿𝑎 𝑉𝑙𝑖𝑞(𝑐𝛼
∗ − 𝑐𝛼), 𝛼

∈ 𝐺𝐴𝑆, 𝑖 ∈ 1. . 𝑁 

(A.39) 
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𝑛𝛼,𝑖−1
𝑙𝑖𝑞

= 𝑛𝛼,𝑖
0,𝑙𝑖𝑞

, 𝛼 ∈ {𝐶𝐻, 𝐺𝐴𝑆} (A.40) 

𝑛𝛼,𝑖−1
𝑔𝑎𝑠

= 𝑛𝛼,𝑖
0,𝑔𝑎𝑠

, 𝛼 ∈ 𝐺𝐴𝑆 (A.41) 

 

A.5     Preliminary experiments for flow regime testing  

The experimental setup consists of a helically coiled tube made of silicon, PFA or PTFE, to 

enable visual observation of the flow patterns, with diameters of 𝑑𝑡𝑢𝑏𝑒 =

1.6 mm, 2.0 mm and 3.0 mm and a length between 2 m ≤ 𝑙 ≤ 6 m. The coils have a diameter of 

𝑑𝑐𝑜𝑖𝑙 = 10 cm and are coiled around a yellow PVC cylinder. The liquid phase is fed to the helically 

coiled tube by a pump (Smartline 1050, KNAUER Wissenschaftliche Geräte GmbH) and the gas 

phase is fed using a rotameter (DK800, Krohne Messtechnik GmbH). For determining the pressure 

loss two pressure transducers (CPT6200, Wika Alexander Wiegand SE & Co. KG) are installed at the 

tube inlet and outlet. The pressure inside the tube is maintained on a level which ensures the desired 

liquid hold-up of 𝜀𝑙𝑖𝑞
𝑃𝐹𝑅 = 0.33. This is managed using a needle valve at the outlet and the 

measurements obtained by the transducers. A scheme of the setup is shown in Fig. A.1. For a 

simplified handling, the flow investigation experiments were carried out with the substitute species 2-

propanol, which has a lower surface tension than the original solvent system (DMF, n-decane). Thus, 

if the desired intermittent flow regime is stable for 2-propanol, it will a fortiori be stable for the 

original solvent system. The synthesis gas was replaced with air. The experimental results are shown 

in Fig. A.2.  

 

 

Figure A.1: Scheme of the experimental setup consisting of a helically coiled tube of different radii and a storage tank for the 

mixture of water and 2-propanol; air is dosed via rotameter to the helix and liquid phase via pump from the storage tank; 

pressure transducers are installed at the inlet and outlet for pressure drop registration 
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Figure A.2: Photographs of the flow regimes within the test setup (Fig. A.1) for different flow regimes �̇�𝑃𝐹𝑅,𝑖𝑛
𝑙𝑖𝑞

 and tube 

diameters 𝒅; the transparent tubes are coiled around the yellow PVC cylinder and fixed with the green cable tie. 

 

A.6     Modeling of distillation column 

 The modeling of the distillation column with the Fenske-Underwood equations requires 

information about the relative volatilities of the liquid components. Therefore, the vapor pressures of 

all components are determined using the correlations in Eqs. (A.42)-(A.43). The corresponding 

parameter are given in Tab. A.5.         

𝑝𝛼
𝑣𝑎𝑝

= 10(𝑎0 +
𝑎1
𝑇
+ 𝑎2 log10(𝑇) + 𝑎3𝑇 + 𝑎4𝑇

2) ⋅ 133.322 ⋅ 10−6,

𝛼 𝜖 {𝑛𝐶12𝑒𝑛, 𝑛𝐶13𝑎𝑙, 𝑛𝐶12𝑎𝑛, 𝐷𝑀𝐹, 𝐶10𝑎𝑛} 
(A.42) 

𝑝𝛼
𝑣𝑎𝑝

= 𝑒𝑥𝑝 (𝑎0 +
𝑎1
𝑇
+ 𝑎2 ln(𝑇) + 𝑎3𝑇

𝑎4) ⋅ 0.1,     𝛼 𝜖 {𝑖𝐶12𝑒𝑛, 𝑖𝐶13𝑎𝑙} (A.43) 

𝜅𝛼,𝛽 =
𝑝𝛼
𝑣𝑎𝑝

(𝑇)

𝑝𝛽
𝑣𝑎𝑝

(𝑇)
 (A.44) 

�̅�𝛼,𝛽 = √𝜅𝛼,𝛽(𝑇𝐷)𝜅𝛼,𝛽(𝑇𝐵) (A.45) 

𝑁𝑚𝑖𝑛 =

log (
�̇�𝐿𝐾
𝐷 �̇�𝐻𝐾

𝐵

�̇�𝐿𝐾
𝐵 �̇�𝐻𝐾

𝐷 )

log(�̅�𝐿𝐾,𝐻𝐾)
 

(A.46) 



Appendix 149 

 

 

Table A.5: Coefficients for vapour pressure correlations (Eqs. (A.42)-(A.43)) 

Components Eq. 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 

DMF (A.42) −47.99 −2385 28.80 −5.86 ∙ 10−2 3.139 ∙ 10−5 

C10an (A.42) 26.51 −3358 −6.12 −3.32 ∙ 10−10 4.855 ∙ 10−7 

nC12en (A.42) −8.59 −3524 10.81 −2.82 ∙ 10−2 1.427 ∙ 10−5 

nC12an (A.42) −5.65 −3470 9.03 −2.32 ∙ 10−2 1.124 ∙ 10−5 

nC13al (A.42) 161.50 −9766 −55.59 2.10 ∙ 10−2 5.550 ∙ 10−13 

iC12en (A.43) 75.79 −9964 −8.97 4.94 ∙ 10−18 6 

iC13al (A.43) 10.42 −6149 0.20 −2 ∙ 10−4 1 

 

A.7     Numerical solution method 

 The dynamic optimization problems derived within this work are transformed into nonlinear 

programming problems by full discretization of states and controls via orthogonal collocation. The 

basic principle of collocation is the expansion of the unknown exact solution of the differential 

equations into a series of known functions, typically polynomials [211] 

 

𝑦(𝑥) = ∑ 𝑎𝑖𝑦𝑖(𝑥)
𝑁+2
𝑖=1 .      (A.47) 

 

The more terms are included in the series the better its approximation of the exact solution is. This 

expansion is substituted in the original differential equation as a residual which is set to zero at a set of 

points called collocation points 

 

𝐹[∑ 𝑎𝑖𝑦𝑖(𝑥𝑗)
𝑁+2
𝑖=1 ] = 0,     𝑗 = 2,… ,𝑁 + 1     (A.48) 

 

with 𝐹 being the differential equation and 𝑁 the amount of collocation points. In addition to these 𝑁 

equations, two equations arise from the boundary conditions. This procedure is improved when the 

solution process is carried out in terms of the solution at the collocation points instead of the 

coefficients in the expansion. The coefficients in terms of the solution of the collocation points result 

in 

 

𝑎𝑖 = ∑ [𝑦𝑖(𝑥𝑗)]
−1
𝑦(𝑥𝑗),

𝑁+2
𝑗=1        𝑗 = 1,… ,𝑁 + 2.   (A.49) 

 

By differentiation of Eq. (A.47) at all collocation points one can write the first derivative in terms of 

the values at the collocation points 

 
𝑑𝑦

𝑑𝑥
(𝑥𝑗) = ∑ 𝑎𝑖

𝑑𝑦𝑖

𝑑𝑥
(𝑥𝑗) = ∑ 𝐴𝑗𝑘𝑦(𝑥𝑘)

𝑁+2
𝑖,𝑘=1 ,𝑁+2

𝑖=1        𝑗 = 1,… ,𝑁 + 2.  (A.50) 

 

In the same way the second derivative can be obtained. Hence, ordinary and partial differential 

equations can be transformed into a set of algebraic equations to approximate their solution via 

collocation.  
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 In case of orthogonal collocation, orthogonal polynomial functions are used and the 

collocation points are the root to one of the orthogonal polynomials, e.g. Legendre polynomials. The 

solution horizon is therefore normalized between 0. .1 and the collocation points are ordered such that 

the boundary points are included. Knowing the exact position of the collocation points, since they are 

roots of the polynomials, the expressions in Eq. (A.49) can be evaluated on the collocation points. In 

terms of this solution, again, the derivative at any collocation points can be determined. For the use of 

the orthogonal collocation methods, one requires the collocation matrix 𝐴. Depending on the chosen 

roots or polynomials and the resulting number of collocation points 𝑁, they differ in size and values. 

In the present work the Legendre roots for an initial value problem with three collocation points (Eq. 

(A.51)) are used. 

𝜁 = (0.155051025721682 0.644948974278318 1.0)   (A.51) 

 

The resulting collocation matrix is defined as 

𝐴 = (
0.196815477223661 −0.065535425850198 0.023770974348220
0.394424314739087 0.292073411665228 −0.041548752125998
0.376403062700467 0.512485826188421 0.111111111111111

). (A.52) 

 

 The solution procedure and the practicability of the approach are further improved, when the 

domain is preliminary subdivided into finite elements of either the same lengths or varying lengths. 

The orthogonal collocation is then carried out on each finite element and the elements are connected 

via connectivity conditions to ensure a feasible overall solution [212]. Depending on the number of 

finite elements 𝑛𝐹𝐸 and the number of collocation points 𝑛𝐶𝑃 the system needs to be evaluated at 

𝑛𝐹𝐸 ∗ (𝑛𝐶𝑃 + 1) + 1 points.  

 This approach is classified as direct simultaneous approach since the solution on all points is 

determined simultaneously and the Karush-Kuhn-Tucker optimality conditions are directly complied 

with. Its advantage is the applicability for a wide range of problems, especially large-sparse problems 

often arising in engineering, and the availability of powerful NLP solvers. The main drawback is the 

trade-off one has to make between the feasibility of the program and the accuracy of the underlying 

approximation of the exact solution, since the constraints are only satisfied on the collocation points 

and the controls are discretized and, thus, approximated.  

 Alternative methods are direct sequential methods such as single shooting, and indirect 

methods such as Pontryagin’s Minimum Principle (PMP) or the Hamilton-Jacobi-Bellman (HJB) 

equation. Direct sequential methods only discretize the control vector and solve the evolution of the 

states via ODE solvers. They have the advantage, that the balance equations and constraints are not 

approximated and, hence, strictly satisfied. However, the evaluation of the ODEs might be very 

computationally expensive and the convergence of these approaches is low in case of several 

distributed control vectors and the inclusion of complex algebraic constraints. The indirect methods 

transform the dynamic optimization problem using the Hamiltonian function and define the constraints 

as a part of it including co-states. A recent, thorough study about the use of PMP for dynamic 

optimization of chemical processes can be found in [213]. The application of the HJB equation results 

in a formulation of a partial differential equation, which is often even harder to solve than the DAE 

systems described above. It is of special interest for optimal control calculations providing both 

information for feed forward and feedback control, see e.g. [214]. 

 All NLPs in this work are solved with the interior-point optimizer IPOPT 3.11.9 including the 

linear solver ma27. The solver is a local optimizer, which cannot guarantee global optimal solutions. 

To ensure, that no suboptimal local optima were found, all optimizations were carried out for different 

initial values. The results presented in this work were the only local optima found within the studies. 
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