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Zusammenfassung

Wir sind interessiert an der konvexe Hülle von Vektoren (x, y) ∈ {0, 1}n,
bei denen y ein Monom in x ist. Diese Vektoren können als charakteris-
tische Vektoren höherer Ordnung kombinatorischer Strukturen betrachtet
werden. Wir nennen diese Polytope entsprechend Polytope höherer Ord-
nung.

Mit Hilfe von linearer Optimierung über diese Art von Polytopen
können polynomielle Optimierungsprobleme wie zum Beispiel das qua-
dratische minimale Spannbaumproblem (QMST-Problem) gelöst werden. Die-
se Probleme sind häufig NP-schwer und in der Regel sind keine voll-
ständigen Beschreibungen der zugehörigen Polytope höherer Ordnung
in Form von Gleichungen und Ungleichungen bekannt.

Es gibt Beschreibungen für Matroidpolytope höherer Ordnung, al-
lerdings nur für sehr spezielle Mengen von Monomen [15] [16]. Diese
Beschreibungen brauchen exponentiell (in der Größe der Grundmenge)
viele Ungleichungen.

In dieser Arbeit erforschen wir erweiterte Formulierungen. Um Mono-
me zu modellieren, nutzen wir kleine erweiterte Formulierungen des
Spannbaumpolytops. Mit klein meinen wir Formulierungen, welche nur
polynomiell (in der Anzahl der Graphknoten) viele Ungleichungen ha-
ben. Die erweiterten Formulierungen beinhalten zusätzliche strukturel-
le Informationen, mit deren Hilfe wir kleine erweiterte Formulierungen
der Waldpolytope höherer Ordnung mit verschachtelten Monomen, wel-
che Bäumen entsprechen, und mit verschachtelten Monomen vom maxi-
malen Grad 3 modellieren. Das beinhaltet den Fall von einem Monom
vom Grad 2 oder 3 und impliziert Formulierungen für die zugehörigen
Spannbaumpolytope höherer Ordnung.

Der Fall mit einem Monom vom Grad 2 ist durch seine Verbindung
zum QMST-Problem besonders interessant. Indem wir die Beschreibung
der Spannbaumpolytope mit einem Monom vom Grad 2 für alle mög-
lichen grad-2 Monome kombinieren, erhalten wir eine Relaxierung des
quadratischen Spannbaumpolytopes. Nutzen wir als Beschreibungen unsere
erweiterten Formulierungen, modellieren wir auf implizierte Weise ei-
ne zusätzliche Beziehung zwischen den Monomen und verbessern die
Relaxierung im Vergleich zu jener, welche wir mit den Beschreibungen
im Originalraum erhalten. Als Nebenresultat finden wir neue Facetten
des adjazenten quadratischen Waldpolytopes und des adjazenten qua-
dratischen Spannbaumpolytopes. Mit Hilfe von Computerexperimenten
veranschaulichen wir den Grad der Verbesserung in den Relaxierungen.

Bezüglich gerichteter Graphen wissen wir von keiner vollständigen
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Beschreibung für Arboreszenzpolytope höherer Ordnung, solange die
Monommenge nichtleer ist. Wir vergleichen zwei erweiterte Formulie-
rungen des Arboreszenzpolytopes bezüglich der Möglichkeiten einzelne
grad-2 Monome zu modellieren. Die erweiterten Formulierungen pro-
jizieren auf neue Relaxierungen der zugehörigen Arboreszenzpolytope
höherer Ordnung.
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Summary

We are interested in the convex hull of vectors (x, y) ∈ {0, 1}n, where
y is a monomial in x. Those vectors can be considered as higher order
characteristic vectors of combinatorial structures. Accordingly, we call
those polytopes higher order polytopes.

Linear optimization over those polytopes solves polynomial combi-
natorial optimization problems like for example the quadratic minimum
spanning tree problem (QMST-problem). Those problems are often NP-
hard and complete descriptions of the corresponding higher order poly-
topes in terms of equations and inequalities are usually unknown.

There are descriptions of higher order matroid polytopes, but only
for special sets of monomials [15] [16]. Those descriptions have expo-
nentially (in the size of the ground set) many inequalities.

In this work, we investigate extended formulations. To model mono-
mials, we use small extended formulations for the spanning tree poly-
tope. By small we mean formulations that do only have polynomially (in
the number of graph nodes) many inequalities. The extended formula-
tions provide additional structural information, which we use to model
small extended formulations for higher order forest polytopes with nest-
ed monomials that are trees and with nested monomials up to degree-
three. This includes the cases of one degree-two or degree-three mono-
mial and implies formulations for the corresponding higher order span-
ning tree polytopes.

The degree-two case is of special interest due to its relation to the
QMST-problem. Combining the descriptions of higher order spanning
tree polytopes with one degree-two monomial for all possible degree-
two monomials, we obtain a relaxation of the quadratic spanning tree
polytope. Doing this with our extended formulations for one degree-
two monomial we model in an implicit way a further relation between
the monomials and improve the relaxation compared to those we ob-
tain using the descriptions in the original space. As a side effect, we
find new facets of the adjacent quadratic forest polytope and the adja-
cent quadratic spanning tree polytope. Via computational experiments
we visualize the amount of improvement of the relaxations.

Considering directed graphs we do not know a complete description
of higher order arborescence polytopes for any nonempty set of monomi-
als. We compare two extended formulations for the arborescence poly-
tope regarding their ability to model degree-two monomials. The ex-
tended formulations project onto new relaxations of the corresponding
higher order arborescence polytopes.
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1 Introduction

In combinatorial optimization we optimize over a finite set of elements.
Such elements are often subsets of some basic set, like for example all
cycle free edge sets of a graph (known as forests). Let E be a finite basic
set and T ⊆ 2E be a set of combinatorial structures. For a setM ⊆ 2E

we define the higher order polytope

PT (M) := conv
{
(x, y) ∈ {0, 1}E × {0, 1}M

∣∣∣ x = χ(T), T ∈ T

yM = ∏
e∈M

xe, M ∈ M
}

,

where χ(T) ∈ {0, 1}E is the characteristic vector of T with χ (T) e = 1 if
and only if e ∈ T. The higher order polytope of the empty set PT (∅) is
the polytope PT = conv

{
χ(T)| T ∈ T

}
.

We observe that the y-variables are linearization variables for mono-
mials in x as well as characteristics for sets M ∈ M with yM = 1 if
and only if M ⊆ T. Due to this identification we call the sets M ∈ M
monomials and the vectors (x, y) higher order characteristic vectors.

Our investigations are motivated by the fact that for all c ∈ QE and
q ∈ QM we can solve the polynomial optimization problem

min

{
∑
e∈E

cexe + ∑
M∈M

qM ∏
e∈M

xe

∣∣∣∣∣ x = χ(T), T ∈ T
}

by linear optimization over PT (M).
Depending on M it might be hard to describe PT (M) directly and

much easier to describe PT (Mi) for subsets Mi ⊂ M for i ∈ [k],
where [k] := {1, . . . , k}. Using this we can create a relaxation of PT (M)
defined as

R
(
M1, . . . ,Mk

)
:=
{
(x, y) ∈ RE ×RM

∣∣∣ (x, y|Mi

)
∈ PT (Mi)

for all i ∈ [k]
}

.

(1.1)

A relaxation of an integer polytope P (i.e., P = conv X for some finite
set X ⊂ Zn) is a polytope R ⊇ P such that R ∩ Zn = P ∩ Zn.
Those relaxations are used to model optimization problems as (mixed)
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1. Introduction

integer programs (MIP or IP respectively). They can then be solved with
the popular branch and cut algorithm implemented in several optimization
solvers. (See Chapter 4 for a short introduction or [6] for a survey about
integer programming.)

The idea of building relaxations like in (1.1) is due to Buchheim and
Klein, who did this in the context of spanning trees and forests for sin-
gle degree-two monomials Mi = {Mi} with |Mi| = 2 [4]. They found
complete descriptions of the higher order forest polytope PF (Mi) and
its face the higher order spanning tree polytope PST (Mi). Furthermore,
they observed an improvement of the root gap compared to the relax-
ation given by a description of PF and McCormick’s linearization [30] in
computational experiments.

Their descriptions were independently shown to be complete by Fis-
cher and Fischer, who continued the work with McCormick and devel-
oped descriptions of higher order matroid polytopes with nested mo-
nomials (M1 ⊂ M2 ⊂ · · · ⊂ Mk) and with monotone monomials
(M = 2E for some set E ⊆ E) [14] [15] [16]. We use their description
for nested monomials in Chapter 2 to prove our extended formulations
for higher order forest polytopes with nested monomials.

In her dissertation Klein also studied higher order branching and ar-
borescence polytopes as well as higher order matching polytopes all re-
stricted to single degree-two monomials [24]. She had a conjecture for
a complete description of the higher order matching polytope with one
degree-two monomial in bipartite graphs, which leads to a relaxation of
the quadratic assignment polytope. Later her conjecture was proved by
Walter [35]. Hupp, Klein and Liers used facets of the higher order match-
ing polytope with one degree-two monomial in their implementations to
solve the quadratic matching problem [22].

In this work we investigate extended formulations for such polytopes.
An extension of a polytope P is a polytope Q in a higher dimension that
can be projected onto P. Instead of optimizing over P one can then opti-
mize over Q. A description of Q in terms of equations and inequalities is
called an extended formulation for P. We measure the size of an extended
formulation as the number of inequalities and denote by xc(P) the exten-
sion complexity, i.e., the size of a smallest possible extension of P.

Extended formulations were successfully used to decrease the size of
formulations in many cases. (See [5] and [23] for surveys.) We anal-
yse an additional effect. Using extended formulations for PT (Mi) of
sizes σi we can clearly combine them to an extended formulation for
R
(
M1, . . . ,Mk

)
of size σ1 + · · · + σk. In this combined formulation
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we can use linear relations between the additional variables, like identi-
fying some of them, to obtain an extended formulationR′

(
M1, . . . ,Mk

)
with

PT (M) ⊆ proj
(
R′
(
M1, . . . ,Mk

))
( R

(
M1, . . . ,Mk

)
,

where proj describes the projection onto RE × RM. Hence, the relax-
ation we obtain using extended formulations can improve the relaxation
build with the descriptions in the original space.

We show this effect in the (hopefully) prototypical example of span-
ning trees and forests with degree-two monomials in Chapter 3. More-
over, we analyse the practical impact of this result via computational ex-
periments in Chapter 4. Therefore, we generate random instances of the
quadratic minimum spanning tree problem (QMST-problem) and anal-
yse the root gap and other measurements for several IP formulations.
The formulations in the original space are based on Buchheim and Klein’s
description and the other formulations are build out of our new extended
formulations from Chapter 2.

The projection of our combined extended formulations lead to new
valid inequalities of the quadratic forest and the quadratic spanning tree
polytope. Those including only adjacent monomials are actually facets of
the adjacent quadratic forest polytope and the adjacent quadratic span-
ning tree polytope as we show in Chapter 3.

Considering rooted arborescences we are not aware of a description
of the higher order arborescence polytopes for any nonempty set of mo-
nomials. In Chapter 5 we compare two different extended formulations
regarding their capability to model degree-two monomials. Here, the
structural information given by the formulations helps to understand a
few facets of PT (M) that we can imply by our formulations. Contrary
to the polytopes that Klein studied in her dissertation [24], we consider
arborescences with a fixed root node.

A general upper bound for the extension complexity of higher order
polytopes arises from Balas’ disjunctive programming bound [3]. There-
fore, we consider monomialsMwith a constant width in the view of par-
tially ordered sets via inclusion and assume that we know an extended
formulation for PT .

Theorem 1. There exists an extended formulation for PT (M) of size (ζ + 1)ωσ
where ζ = maxM∈M |M|, ω is the width ofM viewed as a partially ordered
set (by inclusion) and σ is the size of some extended formulation for PT .
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1. Introduction

Proof. By Dilworth’s Theorem [11] there exist ω chains

Mi
1 ( Mi

2 ( · · · ( Mi
`i

for all i ∈ [ω] ,

withM =
{

Mi
j

∣∣ i ∈ [ω] , j ∈ [`i]
}

.
Since PT (M) is the (coordinate) projection of PT (M′) forM ⊆ M′,

we can assume (with Mi
0 := ∅)

Mi
j \ Mi

j−1 =
{

ei
j
}

for some unique ei
j ∈ E, for all i ∈ [ω] and for all j ∈ [`]. Let T ∈ T ,

we define the signature s(T) ∈ {0, . . . , ζ}ω by

si := max
{

j ∈ [`i]
∣∣ ei

j ∈ T
}

for all i ∈ [ω].

For each possible signature s ∈ {0, . . . , ζ}ω we consider the face PT (M)s

of PT (M) defined by

xei
j
= 1 for all i ∈ [ω] and j ∈ [si] (1.2)

xei
si+1

= 0 if si < `i (1.3)

yMi
j
= 1 for all i ∈ [ω] and j ∈ [si]

yMi
j
= 0 for all i ∈ [ω] and j ∈ [`i] \ [si] .

Due to the fact that yM is fixed for all M ∈ M the polytope PT (M)s is
isomorphic to the face of PT defined by equations (1.2) and (1.3). Conse-
quently, PT (M) is isomorphic to the convex hull of m faces of PT , where
m is the number of possible signatures s, which is at most (ζ + 1)ω.

Using Balas’s [3] extended formulation with the well known disjunc-
tive programming bound

xc
(

P1 ∪ P2 ∪ · · · ∪ Pm
)
≤

m

∑
i=1

max
{

xc
(

Pi
)
, 1
}

we can build an extended formulation for size (ζ + 1)ωσ.

Our aim was to find smaller formulations than those in Theorem 1.
Given an undirected graph G = (V, E) we build extended formulations
for the higher order forests polytope PF (M) and its face the higher or-
der spanning tree polytope PST (M) for some specific sets of monomials
M ⊆ 2E in Chapter 2. Therefore, we use an extended formulation for
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PST by Martin that has size Θ (|V||E|) [29, Section 3.1]. Our formulations
increase this formulation only by a summand of size O

(
|M|ζ2) instead

of a factor as in Theorem 1. The formulations can be used black box with
other descriptions of PF or PST respectively.

For planar graphs there exists a much smaller extended formulation
for PST by Williams of size Θ (|E|) [37]. Using this formulation with our
black box approach based on Martin’s formulation for one degree-two
monomial we got a formulation of size Θ (|E|), which is asymptotically
the same size as the formulation from Theorem 1, but smaller by a factor
of two. We discuss this and a further formulation for single adjacent
degree-two monomials directly based on Williams’ in Section 2.1.

Our formulations for higher order arborescence polytopes are not
complete descriptions and project onto relaxations of PT (M), but sim-
ilarly to the formulations for forests they are very small, since they only
add a small number of inequalities to the extended formulations for the
arborescence polytope that we build on.

Preliminaries In this work we assume basic knowledge about convex
geometry, polyhedra and mathematical optimization. Additionally we
introduce important notations and expressions on the first appearance
and provide a list of notations and a glossary at the end.
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2 Extended Formulations for Higher
Order Forest Polytopes

Let G = (V, E) be a graph. A forest in G is a cycle-free set F ⊆ E. If F
connects all nodes in V we call it a spanning tree. The forest polytope PF
of a graph G is the polytope PT as defined in Chapter 1 where T is the
set of all forests in G, i.e.,

PF := conv
{

χ (F)
∣∣ F is a forest in G

}
.

Analogously for connected graphs the spanning tree polytope PST is de-
fined as

PST := conv
{

χ (T)
∣∣ T is a spanning tree of G

}
.

We omit G from the notation, since the graph G should be clear from the
context.

For S ⊆ V we denote by E(S) all edges in E that have both end nodes
in S. Furthermore we define x(D) := ∑e∈D xe for all D ⊆ E.

Proposition 1 (Edmonds [13]). The forest polytope PF is described by

x (E(S)) ≤ |S| − 1 for all S ⊆ V with S 6= ∅ (2.1)
x ≥ 0 (2.2)

and for connected graphs the spanning tree polytope PST is its face defined by

x (E) = |V| − 1. (2.3)

Edmonds’ constraints (2.1) are also called rank inequalities in the con-
text of matroid theory or subtour elimination constraints in the context of
the traveling salesman problem.

As you can see Edmonds’ description has exponential size Θ
(

2|E|
)

,
although the minimum spanning tree problem can be solved in polyno-
mial time in |V|with algorithms like those of Prim and Kruskal [33] [26].

One very nice and small extended formulation for PST is due to Mar-
tin and has size Θ (|V||E|) [29]. It provides a lot of additional structural
information that we will use in order to design extended formulations
for PF(M) and PST(M) for some specific sets of monomialsM later.

For S ⊆ V we denote by δ (S) all edges adjacent to S, i.e.,

δ (S) :=
{
{v, w} ∈ E| v ∈ S and w /∈ S

}
.

7



2. Extended Formulations for Higher Order Forest Polytopes

We simply write δ (v) instead of δ ({v}) for a single node v ∈ V . When
dealing with directed graphs we denote the edges directed towards S by
δin (S) and the edge directed out of S by δout (S). An arborescence of a
directed graph is a cycle-free set of edges, such that δin (v) = 1 for all
nodes v except of one root node r where δin (r) = 0.

Proposition 2 (Martin [29]). Let G = (V, E) be a connected graph. The
following system together with the projection onto x is an extended formulation
for PST.

zu
v,w + zu

w,v = x{v,w} for all u ∈ V and {v, w} ∈ E (2.4)

zu
(

δin (v)
)
= 1 for all u, v ∈ V with u 6= v (2.5)

zu
(

δin (u)
)
= 0 for all u ∈ V (2.6)

z ≥ 0, (2.7)

where zu (δin (v)
)

:= ∑{v,w}∈δ(v) zu
w,v.

Figure 2.1: Two arborescences with the same underlying tree

The z-variables are related to arborescences in the following way: For
a given spanning tree T ⊆ E with the characteristic vector x we can de-
fine valid zu as the characteristic vectors of the corresponding u-arbores-
cence, i.e., the directed version of T with δin (v) = 1 for all v ∈ V \ {u}
and δin (u) = 0. In Figure 2.1 you can see two of these arborescences.

To build extended formulations for forests instead of trees we modify
Martin’s formulation by replacing equation (2.4) by

x{v,w} ≤ za
v,w + za

w,v for all {v, w} ∈ E. (2.4’)

Proposition 3 (Martin [29]). Let G = (V, E) be a connected graph. The
system (2.4’),(2.5)-(2.7) together with the projection onto x is an extended for-
mulation for PF.

8



2.1. Degree-Two Monomials

To construct the z-variables for a given forest F ⊆ E we extend F
to a spanning tree T with F ⊆ T and construct the z-variables as the
characteristic vectors of u-arborescence as before.

We will present extended formulations for PF(M) based on Martin’s
extended formulation for specific monomials M. They all imply ex-
tended formulations for the corresponding higher order spanning tree
polytope PST(M) using a formulation for PST instead of PF and equation
(2.4) instead of inequality (2.4’).

Our extended formulations as well as the descriptions of PF(M) that
we work with contain the following linearization constraints.

Proposition 4 (McCormick [30]). Let x ∈ {0, 1}E. For a set of nested mono-
mials ∅ = M0 ⊂ M1 ⊂ · · · ⊂ Mk ⊆ E and y ∈ {0, 1}k defined
by yi := ∏e∈Mi

xe for all i ∈ [k] the following linearization constraints are
valid.

yi ≤ xe for all i ∈ [k] and e ∈ Mi \Mi−1 (2.8)
yi ≤ yi−1 i ∈ [k] \ {1} (2.9)

y1 ≥ ∑
e∈M1

xe −
∣∣M1

∣∣+ 1 (2.10)

yi ≥ ∑
e∈Mi\Mi−1

xe + yi−1 −
∣∣Mi \Mi−1

∣∣ i ∈ [k] \ {1}. (2.11)

2.1 Degree-Two Monomials

We consider the case of one degree-two monomial M = {M} ⊂ 2E

with |M| = 2.
In the adjacent case, where M =

{
{a, b}, {b, c}

}
for pairwise distinct

{a, b, c} ⊆ V, we will find smaller descriptions than in the general case.
Additionally, they are, in our opinion, easier to understand. Therefore,
we consider this case separately.

In this section we write y instead of yM, since we only consider one
monomial at a time.

Proposition 5 (Buchheim and Klein [4]). Let G = (V, E) be a graph and
M = {M} ⊂ 2E and |M| = 2. A description of PF(M) is given by Ed-
monds’ subtour elimination constraints (2.1), McCormick’s linearization con-
straints (2.8) and (2.10) combined with

x ≥ 0 (2.2)
y ≥ 0 (2.12)

9



2. Extended Formulations for Higher Order Forest Polytopes

and the quadratic subtour elimination constraints

x (E(S)) + y ≤ |S| − 1 for all S ⊂ V with a, c ∈ S and b /∈ S
(2.13)

for the adjacent case M =
{
{a, b}, {b, c}

}
and

x (E (S1)) + x (E (S2)) + y ≤ |S1|+ |S2| − 2 (2.14)

for all S1, S2 ⊂ V with {a, b} and {c, d} both have one end node in S1 and one
in S2 for the general case M =

{
{a, b}, {c, d}

}
.

Regarding Martin’s z-variables we observe: If two adjacent edges
{a, b} and {b, c} are contained in a tree, the edge {b, c} is directed from
b to c in the corresponding a-arborescence as illustrated in Figure 2.2.
Thus, we can add

y ≤ za
b,c (2.15)

to our formulation.

a b

c

a b

c d

Figure 2.2: Direction of arcs in specific arborescences

In the general case let T ⊆ E be a spanning tree that contains both
edges {a, b} and {c, d}. Obviously the direction of the edge {c, d} is the
same in the corresponding a- and b-arborescences. Thus, if x and z are
the characteristic vectors of T and its arborescences, we know with (2.4’)

za
c,d + zb

d,c = za
c,d + za

d,c ≥ x{c,d}.

Using the linearization constraint (2.8) we can add

y ≤ za
c,d + zb

d,c (2.16a)

y ≤ za
d,c + zb

c,d (2.16b)

to our formulation.
When we consider spanning trees, where we have the projection con-

straint (2.4) instead of (2.4’), we observe that (2.15) and (2.4) imply

y ≤ za
b,c ≤ xb,c

10



2.1. Degree-Two Monomials

and (2.16) with (2.4) imply

y ≤ za
c,d + zb

d,c = xc,d + za
c,d − zb

c,d

y ≤ za
d,c + zb

c,d = xc,d − za
c,d + zb

c,d,

that we can combine to

y ≤ xc,d − |za
c,d − zb

c,d| ≤ xc,d.

Altogether, (2.15) or (2.16) respectively imply with (2.4) McCormick’s lin-
earization constraint (2.8). Accordingly, we call (2.15) and (2.16) extended
linearization constraints.

Remark 1. The constraints of the general case do imply the constraints for
the adjacent case: Setting b = d in (2.16b) leads to

y ≤ za
b,c + zb

c,b,

which is equal to (2.15) since zb
c,b = 0 by (2.6).

Theorem 2 (adjacent case). Let G = (V, E) be a connected graph and

M = {M} ⊂ 2E with M =
{
{a, b}, {b, c}

}
.

An extended formulation for PF(M) is given by Martin’s inequalities (2.4’),
(2.5) - (2.6) for u = a and McCormick’s linearization constraints (2.8) and
(2.10) together with

x ∈ PF

y ≤ za
b,c (2.15)

y ≥ 0 (2.12)

and the coordinate projection onto (x, y).

We will prove generalizations of Theorem 2 in the next theorem and
in Section 2.3.

Theorem 3 (general case). Let G = (V, E) be a connected graph and

M = {M} ⊂ 2E with M =
{
{a, b}, {c, d}

}
.

11



2. Extended Formulations for Higher Order Forest Polytopes

An extended formulation for PF(M) is given by Martin’s inequalities (2.4’),
(2.5) - (2.6) for all u ∈ {a, b} and McCormick’s linearization constraints (2.8)
and (2.10) together with

x ∈ PF

y ≤ za
c,d + zb

d,c (2.16a)

y ≤ za
d,c + zb

c,d (2.16b)

y ≥ 0 (2.12)

and the coordinate projection onto (x, y).

Proof. Let x = χ (F) for a forest F ⊆ E and y = xa,b xc,d. We extend F
to a spanning tree T ⊆ E with F ⊆ T and choose for all u ∈ {a, b} the
variable zu as the characteristic vector of the u-arborescence induced by
T. This choice is obviously valid for the formulation as discussed before.

To prove that PF(M) is contained in the projection it suffices to show
that the constraints in our formulation imply the quadratic subtour elim-
ination constraint (2.14). Using (2.4) and (2.7) from Martin’s formulation
we obtain for all i ∈ {1, 2} and u ∈ V

x (E (Si)) ≤ ∑
v∈Si

zu
(

δin (v)
)
− zu

(
δin (Si)

)
.

Choosing u such that u ∈ Si we receive with (2.5) and (2.6)

x (E (Si)) ≤ |Si| − 1− zu
(

δin (Si)
)

for all i ∈ {1, 2}.

Assuming without loss of generality a ∈ S1 and b ∈ S2 we can combine
it to

x (E (S1)) + x (E (S2)) ≤ |S1|+ |S2| − 2− za
(

δin (S1)
)
− zb

(
δin (S2)

)
.

If c ∈ S1 and d ∈ S2, we obtain

x (E (S1)) + x (E (S2)) ≤ |S1|+ |S2| − 2− za
d,c − zb

c,d

and if d ∈ S1 and c ∈ S2, we obtain

x (E (S1)) + x (E (S2)) ≤ |S1|+ |S2| − 2− za
c,d − zb

d,c,

which does with (2.16) imply (2.14).

12



2.1. Degree-Two Monomials

Relation to subgraph polytopes

Martin’s extended formulation is originally constructed as the dual of
a separation problem for Edmonds’ subtour elimination constraints.[29]
This approach was reviewed by Conforti et al. using non-empty sub-
graph polytopes.[7]

In this section we construct our new formulations analogously.
The subgraph polytope of a graph G = (V, E) is defined as

Qsub := conv
{(

χ (D) , χ (S)
)
∈ {0, 1}E × {0, 1}V

∣∣∣D ⊆ E(S), S ⊆ V
}

.

Proposition 6 (Conforti et al. [7]). The subgraph polytope Qsub is described
by

αe − βv ≤ 0 for all v ∈ V and e ∈ δ(v) (2.17)
β ≤ 1 (2.18)
α ≥ 0 (2.19)

For disjunct node sets A, B ⊆ V let QA,B be the face of Qsub that is
defined by

βv = 1 for all v ∈ A
βv = 0 for all v ∈ B.

Hence, in QA,B we restrict the node sets S ⊆ V in the definition of Qsub
to those sets, where we have A ⊆ S and B ∩ S = ∅.

Adjacent Case

In the adjacent case M =
{
{a, b}, {b, c}

}
we consider the superset of the

quadratic subtour elimination constraints (2.13)

x(D)− |S| ≤ −1− y for all D ⊆ E(S), S ⊂ V, a, c ∈ S and b /∈ S.
(2.20)

Those inequalities are all valid for PF(M) and can be separated by solv-
ing

max
{

∑
e∈E

αexe − ∑
v∈V

βv

∣∣∣∣ (α, β) ∈ Q{a,c},{b}

}
. (2.21)

If the solution of this optimization problem is less or equal to −1− y, all
constraints in (2.20) are fulfilled by x.

13



2. Extended Formulations for Higher Order Forest Polytopes

Let A be the set of directed arcs corresponding to E with both direc-
tions for each edge in E. Applying strong duality to the system (2.20) is
equivalent to the existence of σ ∈ RA and τ ∈ RV such that

τ
(
V \ {b}

)
≤ −1− y (2.22)

σv,w + σw,v ≥ x{v,w} for all {v, w} ∈ E (2.23)

−σ
(

δin(v)
)
+ τv = −1 for all v ∈ V (2.24)

σ ≥ 0 (2.25)
τv ≥ 0 for all v ∈ V \ {a, b, c}. (2.26)

To eliminate τ we insert (2.24) in (2.22) and (2.26) and obtain

∑
v∈V\{b}

σ
(

δin(v)
)
≤ |V| − 2− y (2.22’)

σ
(

δin(v)
)
≥ 1 for all v ∈ V \ {a, b, c}. (2.26’)

Now we replace σ by za (that will turn out to be the same variables that
we know from Martin’s extended formulation in Proposition 2) via the
following relations:

σb,c = 0
σc,b = za

b,c + za
c,b

σv,w = za
v,w for all {v, w} ∈ E \

{
{b, c}

}
This leads to

∑
v∈V\{b}

za
(

δin(v)
)
− za

b,c ≤ |V| − 2− y (2.22”)

za
v,w + za

w,v ≥ x{v,w} for all {v, w} ∈ E (2.23’)

za
(

δin(v)
)
≥ 1 for all v ∈ V \ {a, b, c} (2.26”)

za ≥ 0. (2.25’)

Using z-variables, which are characteristic vectors of arborescences as
described after Proposition 2, we can replace (2.26”) by equations and
insert za (δin (v)

)
= 1 for v ∈ V \ {a} and za (δin (a)

)
= 0 in (2.22”)

to obtain
y ≤ za

b,c, (2.22”’)

which is our extended linearization constraint (2.15).
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2.1. Degree-Two Monomials

General Case

In the general case M =
{
{a, b}, {c, d}

}
we regard the following super-

set of the quadratic subtour elimination constraint (2.14)

x (D1) + x (D2)− |S1| − |S2| ≤ −2− y (2.27)

for all Di ⊆ E (Si), S1, S2 ⊂ V, i = 1, 2 such that {a, b} and {c, d} have
one endpoint in S1 and one in S2.

This is valid for PF(M) and can be separated by the two optimization
problems

max
{

∑
e∈E

α1
e xe − ∑

v∈V
β1

v + ∑
e∈E

α2
e xe − ∑

v∈V
β2

v

∣∣∣∣(
α1, β1

)
∈ Q{a,c},{b,d},

(
α2, β2

)
∈ Q{b,d},{a,c}

}
and

max
{

∑
e∈E

α3
e xe − ∑

v∈V
β3

v + ∑
e∈E

α4
e xe − ∑

v∈V
β4

v

∣∣∣∣(
α3, β3

)
∈ Q{a,d},{b,c},

(
α4, β4

)
∈ Q{b,c},{a,d}

}
If the maxima of both problems are less or equal to −2− y all constraints
in (2.27) are fulfilled by x.

Thus, using strong duality system (2.27) is equivalent to the existence
of σk ∈ RA and τk ∈ RV , k ∈ [4] (A is the directed version of E as
before) with

τ1 (V \ {b, d}) + τ2 (V \ {a, c}) ≤ −2− y (2.28a)

τ3 (V \ {b, c}) + τ4 (V \ {a, d}) ≤ −2− y (2.28b)

σk
v,w + σk

w,v ≥ x{v,w} for all {v, w} ∈ E, k ∈ [4] (2.29)

−σk
(

δin(v)
)
+ τk

v = −1 for all v ∈ V, k ∈ [4] (2.30)

σk ≥ 0 for all k ∈ [4] (2.31)

τk
v ≥ 0 for all v ∈ V \ {a, b, c, d}, k ∈ [4]. (2.32)

We eliminate τ from the system by using equation (2.30) and obtain

∑
v∈V\{b,d}

σ1
(

δin(v)
)
+ ∑

v∈V\{a,c}
σ2
(

δin(v)
)
≤ 2|V| − 6− y (2.28a’)

∑
v∈V\{b,c}

σ3
(

δin(v)
)
+ ∑

v∈V\{a,d}
σ4
(

δin(v)
)
≤ 2|V| − 6− y (2.28b’)
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2. Extended Formulations for Higher Order Forest Polytopes

σk
(

δin(v)
)
≥ 1 for all v ∈ V \ {a, b, c, d}, k ∈ [4] . (2.32’)

Now we can replace

σ1
v,w = σ3

v,w = za
v,w for all {v, w} ∈ E \

{
{a, b}, {c, d}

}
σ1

c,d = σ3
d,c = za

c,d + za
d,c

σ1
d,c = σ3

c,d = 0

σ2
v,w = σ4

v,w = zb
v,w for all {v, w} ∈ E \

{
{a, b}, {c, d}

}
σ2

c,d = σ4
d,c = 0

σ2
d,c = σ4

c,d = zb
c,d + zb

d,c

and obtain

∑
v∈V\{b,d}

za
(

δin(v)
)
− za

d,c + ∑
v∈V\{a,c}

zb
(

δin(v)
)
− zb

c,d ≤ 2|V| − 6− y

(2.28a”)

∑
v∈V\{b,c}

za
(

δin(v)
)
− za

c,d + ∑
v∈V\{a,d}

zb
(

δin(v)
)
− zb

d,c ≤ 2|V| − 6− y.

(2.28b”)

Using zu (δin (v)
)
= 1 and zu (δin (u)

)
= 0 for all u, v ∈ V with u 6= v

we receive

y ≤ za
d,c + zb

c,d (2.28a”’)

y ≤ za
c,d + zb

d,c, (2.28b”’)

which is equal to our extended linearization constraints (2.16).

Formulations for planar graphs

Let G = (V, E) be a planar graph, i.e., there exists an embedding in the
plane such that no two edges cross each other. For such a plane repre-
sentation of G we can define the dual graph Gd := (Vd, Ed), where Vd are
the regions defined by E as boundaries and Ed are the dual edges. For
each primal edge in E there exists one crossing dual edge that connects
two regions. (See Figure 2.3 for an example.)

For the spanning tree polytope PST corresponding to a planar graph
there exists an extended formulation by Williams of size Θ (|E|) [37]. It
is significantly smaller than Martin’s formulation of size Θ (|V||E|).
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2.1. Degree-Two Monomials

Figure 2.3: Plane embedding of a planar graph and its dual graph

Williams’ formulation requires to know a planar embedding of the
graph G and thus the dual graph Gd.

We choose root nodes r ∈ V and R ∈ Vd such that r is on the
boundary of R. Furthermore, we consider directed arcs, where we have
both directions for each edge in E \ { δ (r) } and Ed \ {δ (R) } and the
arcs corresponding to the edges in δ (r) and δ (R) are directed out of r
and R respectively.

For all e ∈ E and v ∈ e we denote ze,v as the variable for the
directed arc corresponding to e and directed towards v. Furthermore,
let {I, J} ∈ Ed be the edge crossing e. We denote ωe,I as the variable
corresponding to the directed dual arc (J, I).

Proposition 7 (Williams [37]). Let G = (V, E) be a planar graph and
Gd = (Vd, Ed) be a dual graph of G corresponding to some embedding. Fur-
thermore let r ∈ V and R ∈ Vd, such that r is at the boundary of R. An
extended formulation for PST is given by the projection defined by

proj(z, ω)e :=

{
ze,v + ze,w if e = {v, w} ∈ E, w 6= r
ze,v if e = {r, v} ∈ E

for all e ∈ E,

ze,v + ze,w + ωe,I + ωe,J = 1 (2.33)
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2. Extended Formulations for Higher Order Forest Polytopes

for all e = {v, w} ∈ E with crossing dual edge {I, J} ∈ Ed and

z
(

δin (v)
)
= 1 for all v ∈ V \ {r} (2.34)

ω
(

δin (I)
)
= 1 for all I ∈ Vd \ {R} (2.35)

z ≥ 0 (2.36)
ω ≥ 0 (2.37)

where z
(
δin (v)

)
= ∑e∈δ(v) ze,v, ω

(
δin (I)

)
= ∑e∈δ(I) ze,I and δ(I) are the

primal edges in E that surround I.

Using our formulation based on Martin for the higher order spanning
tree polytope with one adjacent degree-two monomial from Theorem 2
with Williams’ formulation as the description of PST, we need to add one
set of directed arcs leading to 2|E| additional inequalities. For the general
degree-two case we need 4|E| additional inequalities. Balas’ formulation
in Theorem 1 with Williams’ formulation has size 12|E|. Hence, our for-
mulation based on the extended formulation by Martin leads to a smaller
extended formulation than disjunctive programming even in the planar
case, where we have this very small extended formulation by Williams.
(See also Table 2.1 for a summary of the sizes.)

Formulation based on adjacent general

Martin 6|E| 8|E|
Balas 12|E| 12|E|
Williams 4|E|+ 4|δ(Vd(b))| —

Table 2.1: Size of extended formulations for PST(M) with M = {M}
and |M| = 2 that use Williams’ formulation as the description of PST.

Now we will construct a third formulation that is purely based on
Williams and that is smaller than those based on Martin in most cases.

This formulation only works for the adjacent case, where we have
M =

{
{a, b}, {b, c}

}
for pairwise distinct {a, b, c} ⊆ V and we assume

r /∈ {a, b, c}.
Consider the graph G :=

(
V \ {b} , E

)
that we build by removing

the node b from G and adding a new edge eM = {a, c} instead as illus-
trated in Figure 2.4. Hence, E :=

(
E \ δ (b)

)
∪ eM. It is possible that

the edge {a, c} is contained in G twice. We join the regions in G adjacent
to b to A on the one side of the path

{
{a, b}, {b, c}

}
and B on the other

18



2.1. Degree-Two Monomials

a

b

c

→

a c

A

B

Figure 2.4: Transformation from G to G

side. We refer to A or B simultaneously as regions in G and sets of re-
gions in G. For v ∈ V we denote by Vd(v) all regions touching v, e.g.,
A ∪ B = Vd(b).

Each tree T ⊆ E in G naturally implies a forest F ⊂ E with
E ∩ T ⊂ F and eM ∈ F if and only if M ⊆ T. To apply Williams’
formulation for this setup, we extend F to a spanning tree T ⊂ E using
the following lemma.

Lemma 1. For each spanning tree T ⊆ E with characteristic vector x and
y = xa,b xb,c we can construct a spanning tree T ⊆ E with characteristic
vector x such that

xe = xe for all e ∈ E \
(

δ (Vd(b)) ∪ {eM}
)

(2.38)

xeM = y (2.39)

xe ≥ xe for all e ∈ δ (Vd(b)) . (2.40)

For the characteristic vectors ω and ω of the corresponding dual R-arborescence
it holds furthermore

ωe,I = ωe,I for all I /∈ Vd(b) (2.41)

ωe,I ≤ ωe,I for e ∈ δ (Vd(b)) and I ∈ Vd(b). (2.42)

As before δ (Vd(b)) are the primal edges surrounding Vd(b).

Proof. Let T ⊆ E be a spanning tree in G.

Case 1: If |δ (b) ∩ T| ≤ 1, we choose T = T ∩ E.

Case 2: If δ (b) ∩ T = M, we choose T =
(
T ∩ E

)
∪ {eM}.

Case 3: Otherwise, we first transform T and construct T afterwards. Let
T0 = T. As long as we have |δ (b) ∩ Ti| ≥ 2 and δ (b) ∩ Ti 6= M
construct Ti+1 as illustrated in Figure 2.5:

Choose one edge ei ∈ δ (b) ∩ T, ei /∈ M with the crossing dual
edge {Ii , Ji}. We know that Ii and Ji are connected in the dual tree
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2. Extended Formulations for Higher Order Forest Polytopes

b

Ii Ji
ei e′i

→

b

Ii Ji

e′iei

Figure 2.5: Transformation from Ti to Ti+1

of Ti. The path between Ji and Ii enters Vd(b)with some edge, due to
|δ (b) ∩ Ti| ≥ 2. We call the crossing primal edge e′i and obtain Ti+1 by
replacing ei with e′i, i.e., Ti+1 =

(
Ti \ {ei}

)
∪ {e′i}.

After at most |δ (b)− 1| steps we obtain Tk with
∣∣δ (b) ∩ Tk

∣∣ ≤ 1 or
δ (b) ∩ Tk = M and can transform it to T as in Case 1 or 2.

Our construction affects only edges in δ (b) and δ (Vd(b)). In δ (Vd(b))
it increase primal edges and decrease dual edges. Furthermore we add
eM to T if and only if M ⊆ T. Thus, the constraints (2.38)-(2.42) are
fulfilled.

To obtain an extended formulation for PST(M) we combine Williams’
extended formulation from Proposition 7 for G and G.

Theorem 4. Let G = (V, E) be a planar graph, M = {M} ⊆ 2E with
M =

{
{a, b}, {b, c}

}
and G = (V \ {b}, E) as described before. An extended

formulation for PST(M) is given by Williams’ formulation in Proposition 7 for
G and G with the corresponding variables z, z, ω and ω together with

xe =

{
ze,v + ze,w if e = {v, w} ∈ E, w 6= r
ze,v if e = {r, v} ∈ E

for all e ∈ E,

the constraints (2.38)-(2.42) from Lemma 1, McCormick’s linearization con-
straints (2.8) and (2.10) and the coordinate projection onto (x, y).

Proof. For each spanning tree in T we find a spanning tree T with the
properties from Lemma 1. We can choose z, z, w and w as the character-
istic vectors of the corresponding r- and R-arborescences.

To verify that the formulation is complete we only have to check,
whether the quadratic subtour elimination constraints (2.13) are fulfilled.
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2.2. Degree-Three Monomials

If a, c ∈ S we have eM ∈ E(S). Using Lemma 1 we obtain for all S ⊂ V
with a, c ∈ S and b /∈ S

x (E(S)) + y ≤ x
(
E(S)

)
and due to the fact that x ∈ PST for the graph G we know that Edmonds’
rank constraints (2.1) are fulfilled. Hence, we have

x (E(S)) + y ≤ x
(
E(S)

)
≤ |S| − 1.

Remark 2. One can rewrite the formulation in Theorem 4 such that it
increases Williams’ formulation only by 4

∣∣δ (Vd(b))
∣∣ inequalities using

equations (2.33) and (2.36).

2.2 Degree-Three Monomials
Let again G = (V, E) be an undirected connected graph and let now
M = {M} ⊂ 2E with M =

{
{ai, bi}| i ∈ [3]

}
. As before we write y

instead of yM.

a1

b1

b3 a3

a2

b2

Figure 2.6: Illustration for inequality (2.43)

Consider a tree T ⊆ E in G. If M ⊆ T the edges {ai, bi} for i ∈ [3]
must be connected. Regarding Figure 2.6 this means exactly two of the
possible connections illustrated as dashed lines are part of T.

We consider the sum of the z-variables corresponding to edges in
M with both directions for each edge and the root node defined as the
source of the dashed arrows in Figure 2.6, e.g., the root node correspond-
ing to (a3, b3) is a1.

Choosing zu as the characteristic vectors of the u-arborescences in-
duced by T, the z-variable corresponding to a dashed arrow is 1 if there
is a path in T connecting the end nodes of this arrow and the correspond-
ing edge ei is contained in T.
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2. Extended Formulations for Higher Order Forest Polytopes

If M ⊆ T, two connections are part of the tree T and the sum of
z-variables is at least two. Hence, we can add the following inequality to
our formulation.

2y ≤ za2
a1,b1

+ zb3
b1,a1

+ za3
a2,b2

+ zb1
b2,a2

+ za1
a3,b3

+ zb2
b3,a3

. (2.43)

To build a complete description of PF(M) we need several constraints
of this type. Let

τ : [3]→
{

ai
∣∣ i ∈ [3]

}
∪
{

bi
∣∣ i ∈ [3]

}
such that τ(i) ∈ {ai, bi} for all i ∈ [3] and

τ(i) :=

{
ai if τ(i) = bi

bi if τ(i) = ai

For all such τ we rewrite (2.43) as

2y ≤ zτ(2)
τ(1),τ(1) + zτ(3)

τ(1),τ(1) + zτ(3)
τ(2),τ(2) + zτ(1)

τ(2),τ(2)

+ zτ(1)
τ(3),τ(3) + zτ(2)

τ(3),τ(3),
(2.44)

which leads to 23 inequalities.

Proposition 8. Let M =
{
{ai, bi}

∣∣ i ∈ [3]
}

and let zu be the characteristic
vector of u-arborescences with the same underlying undirected tree T ⊆ E for
all u ∈ V, then inequality (2.44) is valid for

y =

{
1 if M ⊆ T
0 otherwise

.

Proof. The case y = 0 is evident, since z ≥ 0.
In case y = 1, we know that the edges ei ∈ M ⊆ T for i ∈ [3] are

connected in T.
Regarding the minimal subtree of T contains M we see that at least

two of the end nodes of the edges in M are leafs. For each such leaf `
exists an i ∈ [3] such that we have either ` = τ(i) or ` = τ(i) for all τ
that fulfill the requirements of (2.44). Hence, either

zτ(j)
τ(i),τ(i) = 1 or zτ(j)

τ(i),τ(i) = 1 for all j ∈ [3] \ {i}.

This sums up to the right-hand side of (2.44) being at least two.
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To obtain a complete description of PF(M) we have to add the con-
straints we know from one degree-two monomial for all degree-two sub-
monomials of M.

Theorem 5. Let G = (V, E) be a connected graph and M = {M} with
M =

{
{ai, bi}

∣∣ i ∈ [3]
}

. An extended formulation for PF(M) is given by
Martin’s inequalities (2.4’), (2.5) - (2.6) for u ∈ M, McCormick’s linearization
constraints (2.8) and (2.10) together with

x ∈ PF

y ≤ zai
aj,bj

+ zbi
bj,aj

for all i ∈ [2] , j ∈ [3] \ [i] (2.16a)

y ≤ zai
bj,aj

+ zbi
aj,bj

for all i ∈ [2] , j ∈ [3] \ [i] (2.16b)

2y ≤ zτ(2)
τ(1),τ(1) + zτ(3)

τ(1),τ(1) + zτ(3)
τ(2),τ(2) + zτ(1)

τ(2),τ(2)

+zτ(1)
τ(3),τ(3) + zτ(2)

τ(3),τ(3) for all τ, τ as described above
(2.44)

y ≥ 0 (2.12)

and the coordinate projection onto (x, y).

The proof of Theorem 5 is analog to the proof of Theorem 7 in the next
section. We just have to replace y1 and y2 by y and use the observation
that the coefficient α1,3 related to y in the extended rank inequalities (2.45)
is α1,2 + α3,3.

2.3 Nested Monomials
We consider the case thatM consists of several monomials M1, . . . , Mk.
The corresponding polynomial forest problem is hard in general, but if
the monomials are nested, i.e., M1 ⊂ M2 ⊂ . . . ⊂ Mk, it is solvable
in polynomial time in |V|. We can see this for example by using Theo-
rem 1 with the extended formulation by Martin to bound the extension
complexity of PF(M) by

xc
(

PF(M)
)
≤
(∣∣Mk

∣∣− 1
)

xc
(

PF
)
∈ O

(
|V|2|E|

)
.

We do only consider monomials that are cycle-free and thus it holds∣∣Mk
∣∣ ≤ |V| − 1.

Fischer et al. provided a complete description not only of PF(M) but
more general of the higher order matroid polytope with nested monomi-
alsM.[15] For this formulation we need an order of the elements in Mk
such that Mi =

{
e1, . . . , e|Mi|

}
for all i ∈ [k].
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2. Extended Formulations for Higher Order Forest Polytopes

S2S1

Mi−1

Mi

↓

D = E (S1) ∪ E (S2)∣∣Ai(D)
∣∣ = 1

Figure 2.7: An example illustrating Ai(D). The edges that belong to ele-
ments in Ai(D) are marked with ↓.

Throughout the whole section we write yi instead of yMi .

Proposition 9 (Fischer, Fischer, McCormick [16]). The matroid polytope
with nested monomials M1 ⊂ M2 ⊂ · · · ⊂ Mk is described by McCormick’s
linearization (2.8)-(2.11) and

x(D) +
k

∑
i=1

αki−1+1,ki(D)yi ≤ r(D) for all D ⊆ E with cl(D) = D (2.45)

x ≥ 0 (2.2)
y ≥ 0, (2.12)

where

k0 := 0, ki := |Mi| for all i ∈ [k] (2.46)

Eki
:= Mi =

{
e1, . . . , eki

}
for all i ∈ [k] (2.47)

Em :=
{

e1, . . . , em
}

for all m ∈ [|Mk|] (2.48)

αi,j(D) :=
j

∑
m=i

αm(D) for all j ∈ [|Mk|] , i ∈ [j− 1] , D ⊆ E (2.49)

αm(D) :=
∣∣{em} \ D

∣∣+ r
(

D ∪ Em−1
)
− r
(

D ∪ Em
)

for all m ∈ [|Mk|]
(2.50)

cl(D) := D ∪
{

e ∈ E
∣∣∣ r(D) = r

(
D ∪ {e}

)}
(2.51)

and r(D) describes the rank of D.

The constraints (2.45) are called extended rank constraints due to their
relation to Edmonds’ rank constraints (2.1). If we consider forests and
single degree-two monomials, the inequalities (2.45) are equal to the qua-
dratic subtour elmination constraints (2.13) and (2.14).
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2.3. Nested Monomials

To understand (2.45) in general imagine that we add the elements{
e1, . . . , e|Mk|

}
successively to D. Now the coeffiencts αi,j are equal to

the number of elements em with em /∈ D and i < m ≤ j that do not
increase the rank, i.e.,

r
(

D ∪ Em−1
)
= r
(

D ∪ Em
)
.

In the context of forests we have

r(D) = ∑
S⊆V

S component of D

(
|S| − 1

)

and find

αki−1+1,ki(D) =
∣∣Ai(D)

∣∣ (2.52)

with

Ai(D) :=
{

m ∈ [ki] \ [ki−1]
∣∣∣ em /∈ D and both end nodes of em

are in the same component of
(
V, D ∪ Em−1

)}
.

(2.53)

An example on how to count the elements in Ai(D) is given in Figure 2.7.

Nested trees

Figure 2.8: Three nested trees

We consider the case that the monomials M1, . . . , Mk are trees like in
Figure 2.8. This is a generalization of the adjacent case in Section 2.1.

For D ⊆ E we denote by V (D) the nodes in D, i.e.,

V (D) :=
{

v ∈ V
∣∣ v ∈ e for some e ∈ D

}
.
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2. Extended Formulations for Higher Order Forest Polytopes

For all i ∈ [k] and for each node u ∈ V (Mi) and each edge
{v, w} ∈ Mi the direction of {v, w} in the u-arborescence with under-
lying undirected tree Mi is defined by the unique u-w-path (or u-v-path
respectively) in Mi. If all edges of Mi are contained in a forest we know
for the corresponding z-variables that zu

v,w = 1 if and only if v lays on
the path from u to w in Mi. This leads to a generalized form of inequality
(2.15) and furthermore to an extended formulation for PF(M).

Theorem 6. Let G = (V, E) be a connected graph andM =
{

M1, . . . , Mk
}

with M1 ⊂ M2 ⊂ . . . ⊂ Mk ⊆ E and Mi are trees for all i ∈ [k]. An
extended formulation for PF(M) is given by Martin’s inequalities (2.4’), (2.5)-
(2.6) for u ∈ V (Mk) and McCormick’s inequalities (2.8)-(2.11) together with

x ∈ PF

y ≥ 0 (2.12)
yi ≤ zu

v,w (2.15’)

for all i ∈ [k], u ∈ V (Mi) and {v, w} ∈ Mi where v is on the path from u
to w in Mi.

To prove Theorem 6 we will use the complete description by Fischer
et al. in Proposition 9.

Without loss of generality we consider the order of the edges in Mk
such that each subset Em for m ∈ [|Mk|] is connected. This order of
edges implies an order of the nodes in V (Mk) =: {0, . . . , |Mk|} defined
by e1 = {0, 1} and em = {s(m), m}, where s(m) ∈ V

(
Em−1

)
is the

source and m is the target of em for all m ∈ [|Mk|].
We observe that in our context of forests cl(D) = D for D ⊆ E is

equivalent to the existence of pairwise disjunct S1, . . . , S` with Sj ⊆ V
for j ∈ [`] such that D = ∪̇`j=1E

(
Sj
)
. Lets assume that the Sj are

ordered such that S1, . . . , S`′ intersect with V (Mk) and S`′+1, . . . , S` and
V (Mk) are disjunct.

For all j ∈ [`′] we define the first node in V (Mk) that intersects with
Sj as

f j := min
{

v ∈ V (Mk)
∣∣ v ∈ Sj

}
.

To obtain a more visual impression imagine em to be the first edge that
enters Sj. Then, we have f j = m. The only exception to this is the case
0 ∈ Sj where we have f j = 0.

In the next lemma we count the edges in Mi \ Mi−1 entering any
Sj after the first one to receive an alternative description of Ai(D). An
illustrative example can be found in Figure 2.9.
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2.3. Nested Monomials

f2

S1 S2

MiMi−1

→ → → →

f1

D = E (S1) ∪ E (S2)∣∣Ki
∣∣ = ∣∣Ai(D)

∣∣ = 4

Figure 2.9: An example illustrating Ki. The edges that belong to elements
in Ki are marked with→.

Recall ki = |Mi|.

Lemma 2. Let D = ∪̇`j=1E
(
Sj
)

for each i ∈ [k] we have Ai(D) = Ki with
Ai(D) as defined in (2.53) and

Ki :=
{

m ∈ [ki] \ [ki−1]
∣∣∣ there exist a j ∈

[
`′
]

with

m ∈ Sj \
{

f j
}

and s(m) /∈ Sj

}
.

Proof. For each m ∈ [|Mk|] we define the component of
(
V, D∪ Em

)
that

includes V
(
Em
)

as

Um = V
(
Em
)
∪

⋃
j∈[`′], f j≤m

Sj.

In order to show the inclusion Ai(D) ⊆ Ki let m be in Ai(D). Hence,
the end nodes of em = {s(m), m} are in the same component of the sub-
graph

(
V, D ∪ Em−1

)
, which is Um−1. Since em /∈ D and m /∈ V

(
Em−1

)
,

there exists j ∈ [`′] such that m ∈ Sj. Furthermore, f j ≤ m− 1 and
thus m 6= f j. With em /∈ D we see that s(m) /∈ Sj and thus m ∈ Ki.

To establish the reverse inclusion Ki ⊆ Ai(D) choose now m ∈ Ki
and j ∈ [`′] such that m ∈ Sj \

{
f j
}

. Clearly we have s(m) ∈ Um−1.
Due to m 6= f j (with m ∈ Sj this implies m > f j) we also have
Sj ⊆ Um−1 and thus m ∈ Um−1. This means both end nodes of em are
in the same component of

(
V, D ∪ Em−1

)
and thus m ∈ Ai(D).

Lemma 3. The constraints in Theorem 6 imply

x(D) +
k

∑
i=1

∣∣Ki
∣∣yi ≤ r(D) for all D ⊆ E with cl(D) = D
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2. Extended Formulations for Higher Order Forest Polytopes

with Ki as defined in Lemma 2.

Proof. With Martin’s constraints (2.4) and (2.5) we obtain

x
(
E
(
Sj
))

= ∑
v∈Sj

z f j
(

δin (v)
)

︸ ︷︷ ︸
=
∣∣Sj|−1

−z f j
(

δin (Sj
))

for all j ∈
[
`′
]

and due to x ∈ PF we have

x
(
E
(
Sj
))
≤
∣∣Sj
∣∣− 1 for all j ∈ [`] \

[
`′
]

.

Combining this we obtain

x (D) =
`′

∑
j=1

x
(
E
(
Sj
))

+
`

∑
j=`′+1

x
(
E
(
Sj
))

= r(D)−
`′

∑
j=1

z f j
(

δin (Sj
))

.

We observe
⋃k

i=1 Ki ⊆
⋃`′

j=1 Sj and for all m ∈ Ki exists j(m) ∈ [`′]

with m ∈ Sj(m). Furthermore, we have {s(m), m} ∈ δin
(

Sj(m)

)
and

s(m) lays on the path from f j(m) to m in Mk. Hence, we can apply in-
equality (2.15’) to obtain

k

∑
i=1

∣∣Ki
∣∣yi =

k

∑
i=1

∑
m∈Ki

yi ≤
k

∑
i=1

∑
m∈Ki

z
f j(m)

s(m),m ≤
`′

∑
j=1

z f j
(

δin (Sj
))

.

To complete the proof of Theorem 6 let P be the projection of the poly-
tope described by Theorem 6 onto (x, y).

For each forest F we can construct the vectors z as characteristic vec-
tors of arborescences induced by a spanning tree including F. Those
vectors together with x = χ (F) and yi = ∏e∈Mi

xi for i ∈ [k] ful-
fill the constraints in Theorem 6 as described before and thus we have
PF(M) ⊆ P.

The inverse inclusion P ⊆ PF(M) follows directly from Lemma 2
and Lemma 3 with the description by Fischer et al. in Proposition 9.
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2.3. Nested Monomials

Nested monomials up to degree-three

In the case of general nested monomials, we restrict to monomials of
degree less or equal to 3, i.e., M = {M1, M2} with M1 ⊂ M2 and
|M2| ≤ 3. The cases with M1 = ∅ are covered in the former sections,
where we consider single degree-two monomials (Section 2.1) and sin-
gle degree-three monomials (Section 2.2). Hence, the remaining case is
|M1| = 2 and |M2| = 3.

Theorem 7. Let G = (V, E) be a connected graph,M = {M1, M2} ⊂ 2E

with M1 = {e1, e2}, M2 = {e1, e2, e3} and ei = {ai, bi} for i ∈ [3]. An
extended formulation for PF(M) is given by Martin’s constraints (2.4’),(2.5)-
(2.7), McCormick’s linearization (2.8)-(2.11) and

x ∈ PF

yk ≤ zai
aj,bj

+ zbi
bj,aj

(2.16a)

yk ≤ zai
bj,aj

+ zbi
aj,bj

(2.16b)

for all (k, i, j) ∈
{
(1, 1, 2), (2, 1, 3), (2, 2, 3)

}
2y2 ≤ zτ(2)

τ(1),τ(1) + zτ(3)
τ(1),τ(1) + zτ(3)

τ(2),τ(2) + zτ(1)
τ(2),τ(2)

+ zτ(1)
τ(3),τ(3) + zτ(2)

τ(3),τ(3)

(2.44)

for all τ and τ as introduced before Theorem 5 and

y ≥ 0. (2.12)

To apply the formulation by Fischer et.al in Proposition 9 we need to
understand the cases where the coefficients αki−1+1,ki of yi in (2.45) are
nonzero. In the current setting we have k1 = 2 and k2 = 3 and are
interested in the coefficient α1,2 and α3,3.

As before cl(D) = D is equivalent to the existence of pairwise disjunct
S1, . . . , S` such that D = ∪̇`j=1 E

(
Sj
)
.

Using the correlation αki−1+1,ki =
∣∣Ai(D)

∣∣ in (2.52) we have α1,2 6= 0
if and only if e2 /∈ D and the end nodes of e2 are in the same component
in
(
V, D ∪ {e1}

)
as in Figure 2.10 (i) and (ii) for i = 1 and j = 2. Fur-

thermore, α3,3 6= 0 if and only if e3 /∈ D and the end nodes of e3 are
in the same component of

(
V, D ∪ {e1, e2}

)
as in Figure 2.10 (i), (ii) (for

i ∈ {1, 2} and j = 3) and (iii).
All in all, we can combine it to the three cases illustrated in Fig-

ure 2.10:
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2. Extended Formulations for Higher Order Forest Polytopes

S1 S2

e1

e2

e3

(i) α1,2 = 1 and α3,3 = 1

S1 S2

ei

ej

(ii) α1,2 + α3,3 = 1

S1

S3 S2

e1

e3

e2

(iii) α1,2 = 0 and α3,3 = 1

Figure 2.10: The three cases where α1,2 or α3,3 are nonzero

(i) In this case we have {e1, e2, e3} ∩ D = ∅ and the end nodes of
all three edges are in two of the sets Sj. Here we have α1,2 = 1 and
α3,3 = 1.

(ii) Consider only two edges {ei, ej} ∩ D = ∅ for i ∈ {1, 2},
j ∈ {2, 3} and i < j. The end nodes of those edges are in two
of the set Sj. The remaining edge should be somewhere else, such
that we do not have Case (i). Here we have either α1,2 = 1 (if
j = 2) or α3,3 = 1 (if j = 3).

(iii) As in Case (i) we have {e1, e2, e3} ∩ D = ∅. Now e1, e2, e3 are
included in one cycle in D ∪ {e1, e2, e3} and we have α1,2 = 0 and
α3,3 = 1.

Lemma 4. The formulation in Theorem 7 implies the extended rank inequalities
(2.45).

Proof. If α1,2(D) = α3,3(D) = 0 inequality (2.45) is a combination of Ed-
mond’s rank constraints (2.1) and thus fulfilled by x ∈ PF.

If on the other hand α1,2(D) or α3,3(D) are nonzero we have one of
the three cases discussed before.

Case (i): Let

D = E (S1) ∪̇E (S2)

and without loss of generality

ai = ei ∩ S1 bi = ei ∩ S2.
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2.3. Nested Monomials

Using Martin’s constraints (2.4),(2.5),(2.7) together with our extended lin-
earization constraints (2.16b) we obtain

x(D) ≤

=
∣∣S1

∣∣−1︷ ︸︸ ︷
∑

v∈S1

za1
(

δin (v)
)
+

=
∣∣S2

∣∣−1︷ ︸︸ ︷
∑

v∈S2

zb1
(

δin (v)
)

−za1
b2,a2
− zb1

a2,b2︸ ︷︷ ︸
≤−y1

−za1
b3,a3
− zb1

a3,b3︸ ︷︷ ︸
≤−y2

.

Due to r(D) = ∑`
j=1

(∣∣Sj
∣∣− 1

)
and x(D) = x(D \ D) + x(D) this

combines to
x(D) + y1 + y2 ≤ r(D).

Case (ii): The proof is analog to the proof for single degree-two monomi-
als in Theorem 3.

Case (iii): Let
D = ∪̇3

j=1E
(
Sj
)

.

We choose τ such that

τ(i) := ei ∩ Si for i ∈ {1, 2, 3}.

Using Martin’s constraints (2.4), (2.5) and (2.7) we obtain

x(D) ≤ +
1
2

3

∑
j=1

=2
(∣∣Sj

∣∣−1
)

︷ ︸︸ ︷
∑

v∈Sj

(
zτ(j)

(
δin (v)

)
+ zτ(j+1 mod 3)

(
δin (v)

))

− 1
2

(
zτ(2)

τ(1),τ(1) + zτ(3)
τ(1),τ(1) + zτ(3)

τ(2),τ(2) + zτ(1)
τ(2),τ(2)

+zτ(1)
τ(3),τ(3) + zτ(2)

τ(3),τ(3)

)
.

Now with r(D) = ∑`
j=1

(∣∣Sj
∣∣− 1

)
, x(D) = x(D \ D) + x(D) and

inequality (2.44) we receive

x(D) + y2 ≤ r(D)
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2. Extended Formulations for Higher Order Forest Polytopes

In order to complete the proof of Theorem 7 let P be the projection of
the polytope described by Theorem 7 onto (x, y).

For each forest F we can construct the vectors z as characteristic vec-
tors of arborescences induced by a spanning tree including F. Those
vectors together with x = χ (F) and yi = ∏e∈Mi

xi for i ∈ [k] ful-
fill the constraints in Theorem 7 as described before and thus we have
PF(M) ⊆ P.

The inverse inclusion P ⊆ PF(M) follows directly from Lemma 4
with the description by Fischer et al. in Proposition 9.
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3 Relaxations and Facets of Quadratic
Forest Polytopes

We investigate our formulations for higher order forest polytopes with
one degree-two monomial (Theorem 2 and 3) to point out further prop-
erties and correlations.

3.1 Improving the One Quadratic Term
Technique

Part of our motivation to investigate higher order polytopes was the
QMST-problem and the related polytopes.

Let
M =

{
M ∈ 2E

∣∣∣ |M| = 2
}

. (3.1)

The polytope PQF := PF(M) is called the quadratic forest polytope.
Buchheim and Klein used their description of PF ({M}) for M ∈ M

to build a relaxation of PQF defined by

R(M) :=
{
(x, y) ∈ RE ×RM

∣∣∣ (x, yM
)
∈ PF ({M}) , M ∈ M

}
. (3.2)

[4]
For all M ∈ M let Q(M) be the extension of PF({M}) defined as in

Theorem 2 and 3. For simplicity we use Martin’s extended formulation
(Proposition 3) as description of PF. We define

R′(M) :=
{
(x, y, z) ∈ Rn

∣∣∣ (x, yM, z
)
∈ Q(M), M ∈ M

}
(3.3)

where n = |E| + |M| + 2|V||E|. By identifying the z-variables used
in our descriptions of Q(M) we model a new relation between the mo-
nomials inM that improves the relaxation in the following way.

Theorem 8. Let M, R(M) and R′(M) be defined as before in (3.1), (3.2)
and (3.3). Furthermore, let proj be the coordinate projection onto (x, y). Then

proj
(
R′(M)

)
( R(M)

holds for some graphs G = (V, E).

33



3. Relaxations and Facets of Quadratic Forest Polytopes

To prove Theorem 8 we will present new inequalities that we obtain
by projecting R′(M) onto (x, y). Using simple examples we will show
that those are not valid forR(M).

The first inequalities that we introduce only use adjacent monomials
and describe facets of the adjacent quadratic forest polytope, i.e. the higher
order forest polytope with the monomial set consisting of all adjacent
degree-two monomials. We will prove it in Section 3.2.

v

u

(i) Edge case S = V \ {v}

u w

(ii) Edge case S = {u, w}

Figure 3.1: Edge pairs that appear in Inequality (3.4)

For an adjacent monomial M =
{
{a, b}, {b, c}

}
we define the feet of

M as f (M) := {a, c}.
Let S ( V, u ∈ S and

Mu
S :=

{
M ∈ M

∣∣∣M is adjacent, f (M) = S ∩V (M) and u ∈ f (M)
}

.

We observe

Mu
S =

{{
{u, j}, {j, i}

}
∈ M

∣∣∣ i ∈ S and j ∈ V \ S
}

.

Using Martin’s constraint (2.4’), (2.5), (2.6) for all i ∈ S and our extended
linearization constraints (2.15) we obtain

x(E(S)) + ∑
M∈Mu

S

yM

= ∑
i∈S

(
zu
(

δin (i)
)

︸ ︷︷ ︸
=1 for i 6=u and 0 for i=u

+ ∑
j∈V\S

{{u,j},{j,i}}∈Mu
S

(
−zu

j,i + y{{u,j},{j,i}}︸ ︷︷ ︸
≤0

))

≤ |S| − 1
(3.4)

The edge pairs for the edge cases |S| = |V| − 1 and |S| = 2 are
illustrated in Figure 3.1.

The following two examples show that (3.4) ist not among the de-
scription ofR(M).
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3.1. Improving the One Quadratic Term Technique

1
2

v

us1 s2

+1
2

v

us1 s2

= 1
2

v

us1 s2

+1
2

v

us1 s2

Figure 3.2: Illustration of the convex combinations in Example 1

Example 1. Consider x as the vector corresponding to the convex combi-
nations of spanning trees in Figure 3.2. Let Mi =

{
{u, v}, {v, si}

}
for

i ∈ [2]. Regarding the convex combinations in Figure 3.2 it is obvi-
ous that (x, 1

2) ∈ P
(
{Mi}

)
for i ∈ [2]. Hence, (x, y) ∈ R(M) for

y1 = y2 = 1
2 , but inserting the same values in (3.4) for S = {u, s1, s2}

we obtain
x (E (S)) + y1 + y2 = 2

1
2
> 2 = |S| − 1.

1
2

u w

t1 t2

+1
2

u w

t1 t2

= 1
2

u w

t1 t2

+1
2

u w

t1 t2

Figure 3.3: Illustration of the convex combinations in Example 2

Example 2. Consider x as the vector corresponding to the convex com-
binations of spanning trees in Figure 3.3. Let Mi =

{
{u, ti}, {w, ti}

}
for i ∈ [2]. Regarding the convex combinations in Figure 3.3 it is ob-
vious that (x, 1

2) ∈ P
(
{Mi}

)
for i ∈ [2]. Hence, (x, y) ∈ R(M) for

y1 = y2 = 1
2 , but inserting the same values in (3.4) for S = {u, w} we

obtain
x (E (S)) + y1 + y2 = 1

1
2
> 1 = |S| − 1.

The derivation of (3.4) works the same if we consider spanning trees
instead of forests. The next constraint only arises form our formulation
for spanning trees, although it is also valid for forests. In this case we use
(2.4) from Martin’s formulation for spanning trees in Proposition 2.

For pairwise different u, v, w ∈ V we add (2.15) for the monomials{
{u, v}, {v, w}

}
and

{
{u, v}, {u, w}

}
(illustrated in Figure 3.4) and use

(2.6) and (2.4) to obtain

y{{u,v},{v,w}} + y{{u,v},{u,w}} ≤ zw
v,u + zw

u,v = x{u,v} (3.5)

The following example shows that (3.5) is not among the description of
R(M).
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3. Relaxations and Facets of Quadratic Forest Polytopes

u

v

w

Figure 3.4: Edge pairs appearing in Inequality (3.5)

1
2

u

v

w

+1
2

u

v

w

= 1
2

u

v

w

+1
2

u

v

w

Figure 3.5: Illustration of the convex combinations in Example 3

Example 3. Consider x as the vector corresponding to the convex com-
binations of spanning trees in Figure 3.5. Let M1 =

{
{u, v}, {v, w}

}
and M2 =

{
{u, v}, {u, w}

}
. Regarding the convex combinations in

Figure 3.5 it is obvious that (x, 1
2) ∈ P

(
{Mi}

)
for i ∈ [2]. Hence,

(x, y) ∈ R(M) for y1 = y2 = 1
2 , but inserting the same values in (3.5)

we obtain

y1 + y2 = 1 >
1
2
= x{u,v}.

u v

S1 S2

Figure 3.6: Edge pairs appearing in Inequality (3.6)

In order to derive an inequality using also nonadjacent monomials,
let S1, S2 ⊂ V with S1 ∩ S2 = ∅ and u ∈ S1, v ∈ S2 with {u, v} ∈ E.
Combining (2.4’),(2.5)-(2.7) and (2.16) for edge pairs consisting of {u, v}
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3.2. The Adjacent Quadratic Forest Polytope

and any other edge between S1 and S2 like in Figure 3.6 we obtain

x(E(S1)) + x(E(S2)) + ∑
i∈S1\{u}, j∈S2\{v}

with {i,j}∈E

y{{u,v},{i,j}}

≤ ∑
i∈S1

zu
(

δin (i)
)

︸ ︷︷ ︸
=1 for i 6=u and 0 for i=u

+ ∑
j∈S2

zv
(

δin (j)
)

︸ ︷︷ ︸
=1 for i 6=v and 0 for i=v

+ ∑
i∈S1\{u}, j∈S2\{v}

with {i,j}∈E

(
y{{u,v},{i,j}} − zu

j,i − zv
i,j︸ ︷︷ ︸

≤0

)
≤ |S1|+ |S2| − 2.

(3.6)

The following example shows that (3.6) is not among the description of
R(M).

1
2

u v

s t1

t2

+1
2

u v

s t1

t2

= 1
2

u v

s t1

t2

+1
2

u v

s t1

t2

Figure 3.7: Illustration of the convex combinations in Example 4

Example 4. Consider x as the vector corresponding to the convex com-
binations of spanning trees in Figure 3.7. Let Mi =

{
{u, v}, {s, ti}

}
for

i ∈ [2]. Regarding the convex combinations in Figure 3.7 it is obvious that
(x, 1

2) ∈ P
(
{Mi}

)
for i ∈ [2]. Hence, (x, y) ∈ R(M) for y1 = y2 = 1

2 .
Inserting the values in (3.6) with S1 = {u, s} and S2 = {v, t1, t2} we
obtain

x
(
E(S1)

)
+ x
(
E(S2)

)
+ y1 + y2 = 3

1
2
> 3 = |S1|+ |S2| − 2.

Altogether, we see that the combination of our extended formulations
with the one quadratic term technique leads to a better relaxation.

3.2 The Adjacent Quadratic Forest Polytope
Let G = (V, E) be a complete graph and

M =
{

M ∈ 2E
∣∣∣ |M| = 2 and the edges in M are adjacent

}
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3. Relaxations and Facets of Quadratic Forest Polytopes

be the set of all adjacent degree-two monomials. We investigate the adja-
cent quadratic forest polytope PAQF := PF(M) and its face the adjacent
quadratic spanning tree polytope PAQST := PST(M).

In contrast to the quadratic spanning tree polytope (including also
nonadjacent monomials) the dimension of PAQST is n− 1 (where n is the
full dimension) and the affine hull is described by x (E) = |V| − 1. (See
[28, Proposition 11] and [32, Corollary 1].)

Recently, Pereira and da Cunha showed that the inequalities (3.4) for
|S| = 2 as well as the inequalities (3.5) induce facets of PAQST (for
|V| ≥ 6) [32]. Inequality (3.5) also describes a facet of the quadratic
forest polytope PQF as proved by Lee and Leung before [28].

Our inequalities (3.4) are generalizations of one facet class described
by Pereira and da Cunha as well as of the quadratic subtour elimination
constraints (2.13). Hence, the question arises how far we can generalize
this type of constraint.

Question 1. Which inequalities of the form

x (E (S)) + ∑
M∈M(S)

yM ≤ |S| − 1 for S ⊆ V andM(S) ⊆M

are valid for PAQF?

Let f (M) := {a, c} be the foots of M =
{
{a, b}, {b, c}

}
and h(M) := b

the head. Since x (E (S)) = |S| − 1 as soon as the corresponding forest
is connected in S we do only considerM(S) with:

• f (M) ⊆ S for all M ∈ M(S) and

• h(M) /∈ S for all M ∈ M(S).

This way, the monomials play the role of one edge in E (S), such that if
a monomial is part of a forest F ⊆ E, the foots must lay in different
components of

(
S, F ∩ E (S)

)
and thus x (E (S)) ≤ |S| − 2.

Furthermore, we have to fulfill ∑M∈M(S) yM ≤ |S| − 1 for all forests
F ⊆ E. Therefore, we define the graph GM(S) :=

(
S, EM(S)

)
with

EM(S) :=
{

f (M)
∣∣∣M ∈ M(S)

}
.

For all forests F ⊆ E we define

EM(S)(F) :=
{

f (M) ∈ EM(S)

∣∣∣M ⊆ F
}

.
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3.2. The Adjacent Quadratic Forest Polytope

Now, we see that yM = 1 if and only if f (M) ∈ EM(S)(F) for the
corresponding forest F ⊆ E. Hence, ∑M∈M(S) yM ≤ |S| − 1 if and
only if EM(S)(F) is cycle free.

All in all, we can answer our question above with the following result.

Proposition 10. Let G = (V, E) be a graph, S ⊂ V andM(S) be a set of ad-
jacent degree-two monomials with f (M) = S ∩ V (M) for all M ∈ M(S),
such that EM(S)(F) as defined before is cycle-free for all forests F ⊆ E, then

x (E (S)) + ∑
M∈M(S)

yM ≤ |S| − 1

is valid for PAQF.

To find new facets of PAQF we are interested in setsM(S), which are
maximal in the sense that adding any further monomial would hurt the
discussed properties. One class of those sets was given by the definition
ofMu

S in Section 3.1. (See also Theorem 9.)
There we have f (M) = S ∩ V (M) for all monomials M ∈ Mu

S by
definition. Assume now that we have a cycle in

EMu
S
⊆
{
{u, v}

∣∣ v ∈ S
}

.

Since all monomials inMu
S have u as one of their foots, the monomials

corresponding to the cycle have the same two foots and build a cycle in
E. Thus, they can not be part of the same forest and EMu

S
(F) is cycle free

for all forests F ⊆ E.
We leave the classification of furtherM(S) with the discussed prop-

erties open for further research.

New facets

We will show that (3.4) for any S ⊂ V with 2 ≤ |S| ≤ |V| − 1
describes a facet of PAQST and PAQF.

Theorem 9. Let G = (V, E) be a complete graph with |V| ≥ 5 and let
S ( V with |S| ≥ 2. The face F of PAQST given by

x (E (S)) + ∑
M∈Mu

S

yM = |S| − 1, (3.7)

where Mu
S :=

{
M ∈ M

∣∣ f (M) = S ∩V(M) and u ∈ f (M)
}

is a facet for all
u ∈ S.
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3. Relaxations and Facets of Quadratic Forest Polytopes

To prove Theorem 9 let

ax + by = c (3.8)

be valid for all (x, y) that lay in F . Our strategy is to add and subtract
equation (3.8) for higher order characteristic vectors (x, y) ∈ F of trees,
which are equal except for a few edges. This way, we obtain step by step
more information about a and b.

Lemma 5.
bM = 0 for all M ∈ M\Mu

S (3.9)

Proof. We distinguish three cases.

Case 1: In the case f (M) * S, we consider two monomials {e1, e2} and
{e3, e4} with the same foots, where at least one foot is not contained in S.
We want to add and subtract (3.8) for trees that differ only in the edges
e1, e2, e3 and e5 like in Figure 3.8.

* S

e1 e2

+

* S

e3
e4

−

* S

e1 e4
−

* S

e3e2

Figure 3.8

If u ∈ e1 and e1 ∈ E (S), we choose the trees such that they are con-
nected in S and we have x (E (S)) = |S| − 1 for the first and third tree
and such that they have two components belonging to the end nodes
of e1 in S leading to x (E (S)) = |S| − 2 for the second and fourth
tree. In the other cases we can choose the trees connected in S with
x (E (S)) = |S| − 1 for all four trees. This way, we can choose the
trees such that (x, y) ∈ F if:

• Both foots are not in S.

• Only the foot belonging to e1 is in S and:

– Both heads are in S.

– None of the heads is in S.

– The node u is in e1.
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3.2. The Adjacent Quadratic Forest Polytope

In all this cases we obtain

b{e1,e2} + b{e3,e4} = 0.

Since we consider a complete graph with |V| ≥ 5 we can find for any
pair of foots that are not both in S three monomials M1,M2 and M3 of
that kind and obtain

bM1 = −bM2 = bM3 = −bM1

which implies

bM = 0 for all M ∈ M with f (M) * S.

Case 2: In the case f (M) ⊂ S and u /∈ f (M) the addition and subtrac-
tion of (3.8) for trees like in Figure 3.9 leads to

b{e1,e2} + b{e3,e4} = 0.

Using trees like in Figure 3.10 we obtain

b{e1,e2} + b{e5,e6} = 0 and analog b{e3,e4} + b{e5,e6} = 0,

u

e1 e2

⊆ S

+

u

e3 e4

⊆ S

−

u

e1 e4

⊆ S

−

u

e2 e3

⊆ S

Figure 3.9

u

e1 e2

⊆ S

+

u

e5 e6
⊆ S

−

u

e1

e6
⊆ S

−

u

e5

e2

⊆ S

Figure 3.10
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3. Relaxations and Facets of Quadratic Forest Polytopes

which we combine to

b{e1,e2} = −b{e3,e4} = b{e5,e6} = −b{e1,e2}.

This implies

bM = 0 for all M ∈ M with f (M) ⊂ S and u /∈ f (M).

u

e1
e2
⊆ S

+

u

e3 e4

⊆ S

−

u

e2

e4

⊆ S

−

u

e1

e3

⊆ S

Figure 3.11

Case 3: In the case M ⊂ E (S) with u ∈ f (M) we consider trees like in
Figure 3.11 and see

b{e1,e2} + b{e3,e4} = 0,

which does with Case 2 lead to

bM = 0 for all M ∈ M with M ⊂ E (S) .

Lemma 6. It exist constants α ∈ R and β ∈ R such that

ae = α for all e ∈ E \ E (S) (3.10)
ae = β for all e ∈ E (S) (3.11)

Proof. We subtract (3.8) for two trees that differ only in one edge as in
Figure 3.12

e1 − e2

Figure 3.12
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3.2. The Adjacent Quadratic Forest Polytope

Case 1: In the case {e1, e2} ⊂ E (V \ S) the exchange of e1 and e2 does not
affect any monomial inMu

S and we obtain

ae1 − ae2 = 0.

Hence, we can find α ∈ R such that

ae = α for all e ∈ E (V \ S) .

Case 2: In the case {e1, e2} ⊂ δ (S) we choose the rest of the spanning
trees such that x (E (S)) = |S| − 1, which means there is no monomial
M ∈ Mu

S that is also contained in one of the trees. Hence, we obtain for
some γ ∈ R

ae = γ for all e ∈ δ (S) .

Case 3: In the case e1 ∈ δ (S) and e2 ∈ E (V \ S) we can choose the span-
ning trees, such that no monomial M ∈ Mu

S is contained in one of the
trees. Hence, we have

α = γ

and can combine the former two cases to (3.10)

Case 4: Consider the case {e1, e2} ⊂ E (S). As in Case 1 the exchange of e1
and e2 does not affect any monomial inMu

S and we can find β ∈ R such
that

ae = β for all e ∈ E (S) .

Lemma 7. It exists a constant δ ∈ R such that

bM = δ for all M ∈ Mu
S. (3.12)

Proof. In order to prove this lemma we distinguish two cases:

u

⊆ V \ S

⊆ S

e1 e2 −

u

⊆ V \ S

⊆ S

e3 e4

Figure 3.13
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u

e1 e2

⊆ S

V \ S

−

u

e3e2

⊆ S

V \ S

Figure 3.14

Case 1: If |V \ S| ≥ 2, we consider two trees as in Figure 3.13 and obtain

ae1 + ae2 + b{e1,e2} − ae3 − ae4 − b{e3,e4} = 0.

Hence, with Lemma 6 we can find a δ ∈ R such that (3.12) holds.

Case 2: If |V \ S| = 1 and |S| ≥ 3, we consider two trees like in Figure 3.14
and obtain

ae1 + b{e1,e2} − ae3 − b{e2,e3} = 0.

Thus, with Lemma 6 we can find δ ∈ R such that (3.12) holds.

u
⊆ S

e1

e3

−
u
⊆ S

e1 e2

Figure 3.15

To build a relation between α,β and δ we consider trees like in Fig-
ure 3.15 and obtain

ae3 − ae2 − b{e1,e2} = 0.,

which due to Lemma 6 and Lemma 7 implies

β = α + δ.

Altogether each valid equation for F can be written as

α
(

x(E)
)
+ δ
(

x (E (S)) + ∑
M∈Mu

S

yM

)
= c = α

(
|V| − 1

)
+ δ
(
|S| − 1

)
for some α ∈ R and δ ∈ R. This completes the proof of Theorem 9.
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3.2. The Adjacent Quadratic Forest Polytope

Proposition 11. Let G = (V, E) be a complete graph with |V| ≥ 5 and let
S ( V with |S| ≥ 2. The face F of PAQF defined by

x (E (S)) + ∑
M∈Mu

S

yM ≤ |S| − 1 for all u ∈ S, (3.7)

where Mu
S :=

{
M ∈ M

∣∣ f (M) = S ∩V(M) and u ∈ f (M)
}

is a facet.

Proof. Consider a forest F1 ⊆ E (S) that is connected in S. As a second
forest we choose F2 = F1 ∪ {e} for some e ∈ δ (S). It is easy to see that
the corresponding higher order characteristic vectors of F1 and F2 both
lay in F .

From the proof of Theorem 9 we know that each valid inequality for
F can be written as

α
(

x(E)
)
+ δ
(

x (E (S)) + ∑
M∈Mu

S

yM

)
= α

(
|V| − 1

)
+ δ
(
|S| − 1

)
for some α ∈ R and δ ∈ R.

The difference of this equation for the higher order characteristic vec-
tors of F1 and F2 leads to

α = 0,

which means that all equations valid for F are multiples of (3.7).
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4 Solving the QMST-Problem with
Integer Programming

For a graph G = (V, E) we consider the set of all degree-two monomials

M =
{

M ∈ 2E∣∣ |M| = 2
}

.

Optimization over PQST := PST(M) solves the QMST-problem, which is
known to be NP-hard even for accordion graphs (special class of planar
graphs) [9]. For an earlier and general hardness result see [1].

In Section 3.1 we used our extended formulations for PST ({M}) for
M ∈ M to improve the one quadratic term technique by strengthen-
ing the relaxation R(M) of PQST. To get a better idea of the amount of
improvement we will compare those relaxations with computational ex-
periments. Our main interest lays in the relative gap between the integer
solution and the solution of the LP relaxation called root gap.

Another benefit of the extended formulations was the reduced size.
The original descriptions of PQST had Θ

(
2|E|
)

many inequalities whereas
the size of the extended formulations is polynomial in |E|.

Separation routines decide for a given point x∗ whether x∗ is in a poly-
tope and if not provide a violated constraint. Instead of adding all con-
straints at the start of the optimization, we can use separation routines to
find and add only those constraints that are needed during the optimiza-
tion process.

Due to the size, the inequalities of the extended formulations can be
separated simply by enumeration in polynomial time in |E|. For the for-
mulations in the original space enumeration would be very slow, but
there exist other separation routines running in polynomial time in |E|.
Hence, it is not clear which approach performs better in practice, the
small extended formulations or the large formulations in the original
space with fast separation routines. In our experiments we will mea-
sure different values to discuss this question. Therefore, the author im-
plemented the separation routines and routines to build the extended
formulations in Gurobi’s Python API [20][17].

4.1 Introduction to Branch and Cut Solver
Before we discuss our implementation and experiments regarding the
QMST-problem we will introduce the branch and cut algorithm and the
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4. Solving the QMST-Problem with Integer Programming

Algorithm 1 Branch and bound (minimization)
1: γu ← inf
2: L ← {∅} . set of branch and bound nodes
3: while L 6= ∅ do
4: Select N ∈ L . select branch and bound node
5: L ← L \ {N}
6: Solve LP relaxation of N
7: if LP relaxation of N is feasible then
8: x∗ ← solution of LP relaxation
9: if x∗ ∈ Zn and γu > 〈c, x∗〉 then

10: γu ← 〈c, x∗〉 . new upper bound
11: xI ← x∗ . new MIP incumbent
12: else if γu > 〈c, x∗〉 then . continue branching
13: choose i with x∗i /∈ Z

14: L ← L∪
{
N ∪ {xi ≤ bx∗i c}

}
15: L ← L∪

{
N ∪ {xi ≥ dx∗i e}

}
16: end if
17: end if
18: end while
19: if γu < inf then
20: return xI

21: else
22: return no integer solution found
23: end if

general concepts of modern solvers that use it.
An integer program (IP) has the canonical form

min
{
〈c, x〉

∣∣∣ Ax ≤ b, x ≥ 0, x ∈ Zn
}

for c ∈ Qn and 〈c, x〉 := ∑n
i=1 cixi. If only some of the variables are

constrained to be integral we call it a mixed integer program (MIP). The LP
relaxation of it is the corresponding linear program (LP) were we drop all
integrality constraints.

In 1958 Ralph Gomory proposed a cutting plane method to solve MIPs
[19]. It first solves the LP relaxation and then adds constraints to cut of
non-integer points. Shortly afterwards in 1960 Land and Doig proposed
a branch and bound algorithm [27]. A simple version can be found in Algo-
rithm 1.
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For a minimization problem it finds upper bounds by solving LP re-
laxations. There are different branching strategies to build the tree of
branch and bound nodes. One popular strategy is to choose an index i
were the entry x∗i of the solution in the current node is not integral. Now
we know that each integer solution is either less or equal to x∗i rounded
down (bx∗oc) or greater or equal to x∗i rounded up (dx∗i e). Hence, we add
the node with the constraint xi ≤ bx∗i c and the node with the constraint
xi ≥ dx∗i e to the branch and bound tree as we can see in Algorithm 1
line 13-15.

If a branch and bound node has an integer solution this provides an
upper bound to the optimization problem and there is no need for further
branching in this node. Nodes with a larger solution than the best known
upper bound or where the LP relaxation is infeasible can also be pruned.

To find better upper bounds and thus reduce the number of branch
and bound nodes one can use cutting planes to solve the LP relaxations.
This combination of the cutting plane method and branch and bound
is called branch and cut. Modern branch and cut solvers additionally use
heuristics to find further integer solutions that improve the upper bound.

At each time point the best known mixed integer solution xI is called
MIP incumbent and additionally to the upper bound γu =

〈
c, xI〉 we

have a lower bound defined as the minimum of the objectives 〈c, x〉 over
all current leaf nodes.

For a more detailed introduction into integer programming and the
branch and cut algorithm we refer to [6].

By now branch and cut is the most popular algorithm in mixed inte-
ger programming and implemented in several solvers like CPLEX, Gurobi
and SCIP.

The author decided to use Gurobi, due to its clear documentation and
the easy to use Python API. According to Gurobi’s benchmarks, it is the
fastest available MIP-solver [21].

Most modern branch and cut solvers allow to intervene in the be-
haviour of the algorithm via callback functions. A callback is a routine
that is called by the solver at specific points during the branch and cut
algorithm. In the following we explain the most important callbacks as
they are defined in Gurobi [20]. The names and usages in other solvers
are very similar.

Lazy constraints are used if the number of constraints is very large. In-
stead of adding all constraints a-priori, one adds only
the violated ones during the optimization process. The
separation can be done in a callback. To verify that the
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solution is correct one should check the constraints ev-
ery time a new MIP incumbent is found. Additionally it
is possible to add them also for continuous solutions.

User cuts are used to strengthen the LP relaxation by cutting of
non-integer points. Contrary to lazy constraints they are
not allowed to cut of integer solutions. User cuts are add
when a continuous solution is found.

Heuristics can be used to find a starting MIP incumbent or to im-
prove the current best incumbent.

4.2 Implementation

Formulations

The author implemented a python module that provides routines that
can be used to build different MIP formulations for the QMST-problem
using Gurobi. The formulations that we will compare are:

martin Martin’s extended formulation (Proposition 2 with lineariza-
tion constraints (2.8)-(2.10)).

aq-m Martin’s extended formulation and our extended linearization
constraints for all adjacent degree-two monomials (Proposition 2
with (2.15) and (2.10) for adjacent monomials and (2.8),(2.10) for
nonadjacent monomials).

q-m Martin’s extended formulation and our extended linearization
constraints for all degree-two monomials (Proposition 2 with
(2.15) for all adjacent monomials, (2.16) for all nonadjacent mo-
nomials and (2.10) for all monomials ).

sub Subtour elimination constraints (Proposition 1 with lineariza-
tion constraints (2.8) and (2.10)).

aq-sub Subtour elimination constraints with the quadratic ones for ad-
jacent monomials (Proposition 1 with (2.13), (2.8) and (2.10)).

q-sub Subtour elimination constraints with the quadratic ones for all
monomials (Proposition 1 with (2.13)-(2.14), (2.8) and (2.10).
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4.2. Implementation

Furthermore, we add

∑
M∈M

yM =

(
|V| − 1

2

)
for those test instances that contain all possible monomials as Buchheim
and Klein did in [4]. They observed a "positive impact on bounds".

Laziness

To build the extended formulations (martin, aq-m and q-m) the author
wrote several routines to add different sets of inequalities that can be
combined to build the formulations. We distinguish four sets of con-
straints:

lin McCormick’s linearization constraints (2.8) and (2.10).

ef Martin’s extended formulation (Proposition 2).

adj Our extended linearization constraints for adjacent degree-two
monomials (2.15).

nonadj Our extended linearization constraints for general degree-two
monomials (2.16) that we use for nonadjacent monomials here.

(10, 25) (10, 50) (10, 75) (15, 25) (15, 50)
nodes, density

10−2

10−1

100
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102
runtime

(15, 50) (15, 75)
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0.4

0.6

0.8

1.0

gap

0
1
2
3

Figure 4.1: Test results for different lazy parameters for lin using the
model martin with the lazy parameter 0 for ef

Since we only have polynomially many inequalities in all four mod-
els, we can separate them by enumeration. Anyway it might be advanta-
geous to treat them as lazy constraints instead of adding them all a priori
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Model martin with different lazy parameters for ef
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Model aq-m with different lazy parameters for adj
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Model q-m with different lazy parameters for nonadj
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Figure 4.2: Test results for different lazy parameters (the remaining con-
straints use the default parameters see Table 4.1)
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to the model. Gurobi offers the possibility to set a lazy parameter to a
constraint. One can choose between 0 (not lazy) and 1-3 (lazy). A higher
value refers to a more aggressive pulling in of the constraint. This way,
we do not have to implement the enumeration ourself, but leave it to
Gurobi.

To choose the default value we consider some little experiments us-
ing our random test instances with all possible monomials, which we
will describe later. Each instance was run twice with a time limit of 180s
and the plots refer to the run with the minimal runtime. This was done
because the author observed peeks in the runtime on the same instances,
that occur rarely and could affect the results considering those small val-
ues. The results presented in the next figures show the mean over ten
instances for the gap and over those of the ten instances that were solved
with all parameters in the time limit for the runtime.

The first test used the formulation martin with lazy parameter 0 for
ef and variable lazy parameter for lin to find the best value regarding
the linearization constraints. (Figure 4.1) Since the parameter 0 provides
the best results for the larger instances it was chosen as the default for
lin.

The next tests used this value and varied the lazy parameter for ef
in the model martin. (Figure 4.2) Here the best results were obtained
with the parameter 2, which was then chosen as the default one for the
remaining tests.

Continuing this workflow aq-mwas run to find the best lazy parame-
ter for adj and q-m to obtain the lazy parameter for nonadj. (Figure 4.2)

You can find a summary of the default lazy parameters that were fi-
nally chosen in Table 4.1.

constraints lazy parameter

lin (2.8) and (2.10) 0
ef (2.4)-(2.7) 2
adj (2.15) 0
nonadj (2.16) 1

Table 4.1: Default values of the lazy parameter

Separation strategies

The subtour elimination constraints (2.1) can be separated by solving spe-
cific max flow problems. This method is based on the work of Dantzig et
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4. Solving the QMST-Problem with Integer Programming

al. [10] (See also [34, Section 58.2].) Buchheim and Klein proposed simi-
lar separation routines for the quadratic subtour elimination constraints
[4].

To implement those routines the author used the powerful python
modul graph-tool [31], which includes implementations of max flow and
min cut algorithms.

Since all routines work on the same network graph, this graph was
added as an attribute to the Gurobi model. This way, we only have to
create the separation graph once before we start the optimization. In the
callbacks it remains to set the capacities as described in [4].

To separate the (linear) subtour elimination constraints (2.1) the al-
gorithm enumerates over all nodes in V to assure that the resulting sets
S ⊂ V are not empty. For each node the max flow routine finds the set
S ⊂ V with v ∈ S that provides the most violated inequality among
(2.1). We have to decide between several possibilities on how to han-
dle the number of added constraints in our callback routine. Therefore,
different strategies were tested, namely:

node Add all violated constraints that were found. (There are at most
|V|.)

one Add only the first violated constraint that was found and stop
looking for further constraints.

ord Add only the first violated constraint and move the node to the
end of the list of nodes to start the search using the other nodes
in the next call.

most Enumerate over all nodes and add only the most violated con-
straint.

To make sure that we fulfill all constraints we have to add the in-
equalities every time we found a new MIP incumbent. Additionally, it
is possibly to add them also for continues solutions as in the following
strategy.

ip-cut Add constraints also for continuous solutions. (We only add
one per call as in strategy one.)

Figure 4.3 presents the mean of the runtime and gap over the ten in-
stances from our test set with all possible degree-two monomials; for the
runtime we calculated the mean only over the solved instances. You can
see in the first plot (Model sub) that adding the constraints too often as
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Figure 4.3: Comparison of different separation strategies
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in ip-cut increases the runtime and gap significantly. Furthermore, it
seems to be better to stop the enumeration, when we found a constraint
as we did in one and ord. Those two have nearly the same runtime and
gap. The author decided to use the more simple method one, where we
do not modify the iteration list.

Regarding the quadratic subtour elimination constraints (2.13) and
(2.14) we have the option to only add the constraints for adjacent mo-
nomials. First we decide on our strategy for only adjacent monomials
and then for adjacent and nonadjacent monomials together. The callback
searches for violated quadratic subtour elimination constraints first and
calls the callback for the linear constraints afterwards. To find violated
constraints the algorithm enumerates over all monomials. For the case of
only adjacent monomials as well as the case including all monomials we
compare the different strategies:

prod Add violated constraints for each product.

one Add only the first violated constraint that was found and
stop the enumeration.

oneone Do not look for (linear) subtour elimination constraints,
if a quadratic one was found.

ip-cut-only Use the quadratic subtour elimination constraints only
as cutting planes where we add one per call (this is pos-
sible since sub alone is already a complete MIP formula-
tion).

ip-cut Use the constraints as lazy constraints and also as cutting
planes. (We only add one per call as in strategy one.)

As you can see in Figure 4.3 it turned out to only add the first violated
quadratic subtour elimination constraint and look for violated subtour
elimination constraints afterwards every time a new MIP incumbent is
found (one) is prevailing the fastest method. So we use this method in
the following experiments.

Test instances

Former computational experiments regarding the QMST-problem usu-
ally use random generated instances. (See, e.g., [1],[4], [32].) We used the

56



4.3. Experiments and Results

instances by Cordone and Passeri [8]. 1 They are generated randomly
and are split into two sets. The smaller one has between 10 and 30 nodes
and the bigger one has between 35 and 50 nodes. There are instances for
edge density 33%, 67% and 100% with different ranges for the linear and
quadratic cost. The cost functions are all positive. The following tests run
on the instances with less or equal to 20 nodes. Even the small instances
needed quite a long time in our tests and there are only 4 instances per
node density pair.

To get more comparable results using more instances, the author gen-
erated her own set. Therefore, 10 random connected graphs per node-
density pair using 10,15 and 20 as number of nodes and edge densities
of 25%,50% and 75% were created. For each graph two instances with
random objective on the edges and edge pairs were generated. One in-
stance includes all edge pairs and the other only adjacent edge pairs. The
objective was chosen as random integers between -100 and 100.

4.3 Experiments and Results

Test setup

All test were done on a Intel R© CoreTMi7-2600 CPU running at 3.4GHz on
4 cores and 8 threads.

To compare the different formulations different values were measured
and calculated:

root gap The root gap (for solved instances) calculated as

|MIP∗ − LP∗|
|MIP∗| ,

where MIP∗ is the optimal solution of the MIP and LP∗ is
the optimal solution of the LP relaxation. To calculate this we
solved the LP relaxation separately.

node count The number of branch and cut nodes as reported by Gurobi.

runtime The runtime in seconds reported by Gurobi (wall-clock time).

1Cordone and Passeri’s instances be downloaded from https://homes.di.
unimi.it/cordone/research/qmst.html
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gap The current relative MIP optimality gap reported by Gurobi.
It is computed as

|γu − γ`|
|γ`|

,

where γu is the upper bound given by the objective of the
current best MIP incumbent and γ` is the lower bound given
by the minimum of the objective of all actual leaf nodes in the
branch and cut tree.

In all following tests the time limit was 3600s.

Results

sub aq-sub q-sub martin aq-m q-m
nodes density

10 25 10 10 10 10 10 10
50 10 10 10 10 10 10
75 10 10 10 10 10 10

15 25 10 10 10 10 10 10
50 10 10 10 10 10 9
75 10 9 9 6 6 0

20 25 10 10 10 10 10 10
50 0 0 0 0 0 0
75 0 0 0 0 0 0

Table 4.2: Number of solved instances form our test set with all possible
monomials using the different IP-formulations

Considering our instances with all possible degree-two monomials we
see in Table 4.2 that one could solve more instance with the formulations
in the original space than with the extended formulations. Including the
quadratic subtour elimination constraints however has a negative impact
regarding the number of solved instances (aq-sub, q-sub compared
to sub). We can not observe any impact of the extended linearization
constraints for adjacent monomials considering the number of solved in-
stances (aq-m compared to martin), but using also the extended lin-
earization constraints for nonadjacent monomials (q-m) decreased this
number significantly.
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sub aq-sub martin aq-m
nodes density

10 25 10 10 10 10
50 10 10 10 10
75 10 10 10 10

15 25 10 10 10 10
50 10 10 10 10
75 10 10 10 10

20 25 10 10 10 10
50 10 10 10 10
75 1 1 5 6

Table 4.3: Number of solved instances form our test set with all adjacent
monomials using the different IP-formulations

Considering instances with only adjacent monomials (Table 4.3) one
could solve more instances using extended formulations than using for-
mulations in the original space with separation routines(sub,aq-sub).
This time we can observe a positive impact of the extended linearization
constraint for adjacent monomials. So our first guess is that the extended
formulations lead to better performances in the case of only adjacent mo-
nomials and we will confirm this considering the more detailed plots in
Figure 4.5.

In Figure 4.4 and 4.5 you can see the average measurements. We were
able to calculate the LP relaxation for all instances. Accordingly, the plot
of the root gap is the mean over those instances, where we could solve
the problem with at least one of our formulations. The plots of the node
count and the runtime present the mean over those instances that were
solved with all formulations. The gap refers to the mean over all ten
instances and we plotted only those, where this value is greater than 0.

Considering the results for the instances with all possible monomi-
als in Figure 4.4, we observe that the quadratic subtour elimination con-
straints in aq-sub and q-sub provide only a small improvement of the
root gap compared to the improvement in the extended formulations
aq-m and q-m. Especially the difference between aq-sub and q-sub is
very small, whereas q-m provides a significant improvement compared
to aq-m.

Although q-m provides such a good root gap it performs much worse
than the other formulations in practice regarding the node count, the run-
time and the gap. Hence, we obtain the impression that for some reason
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Figure 4.4: The mean of different measured values over our test instances
with all possible monomials

60



4.3. Experiments and Results

(10, 25) (10, 50) (10, 75) (15, 25) (15, 50) (15, 75) (20, 25) (20, 50) (20, 75)
0.0

0.2

0.4

0.6

root gap

(10, 25) (10, 50) (10, 75) (15, 25) (15, 50) (15, 75) (20, 25) (20, 50) (20, 75)

100

102

104

106

node count

(10, 25) (10, 50) (10, 75) (15, 25) (15, 50) (15, 75) (20, 25) (20, 50) (20, 75)

10−1

101

103

runtime

(20, 75)
nodes, density

0.00

0.05

0.10

0.15

gap

sub
aq-sub
martin
aq-m

Figure 4.5: The mean of different measured values over our test instances
with all adjacent monomials
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(which would need further investigations) Gurobi can not handle this
formulation as well as the others.

The other two extended formulations martin and aq-m have slightly
better node counts and runtimes than the separation based formulations,
but regarding the gap we guess that sub,aq-sub and q-sub might per-
form better for large and dense instances. This fits perfectly with our
observation regarding the number of solved instances.

This tendency is not that obvious regarding the instances with only
adjacent monomials (Figure 4.5). Here the extended formulations lead
to better results than the formulations using separation routines in all
measured values, like guessed before regarding the number of solved
instances. Especially the improvement of the root gap in aq-m compared
to aq-sub is remarkable.

Figure 4.6: Boxplot for 10 example points

To get an impression of the dispersion of the data we consider some
box plots for a subset of the values. The whiskers mark the minimum and
maximum value, the grey line is the middle quantile (i.e., the median)
and the box spans the region of the middle 50% of data. In our case we
only have 10 data point and thus we have 6 points inside the box and 4
points outside the box, 2 above and 2 below as illustrated in Figure 4.6.

We consider the instance set with 15 nodes and the edge density of
50% from the instances including all possible monomials and the instance
set with 20 nodes and the edge density of 50% from the instances with
only adjacent monomials in Figure 4.7 and Figure 4.8.

In both cases we have similar dispersions for all formulations regard-
ing the root gap. Considering the fact that one formulation implies an-
other as we proved in Chapter 2, we expect the root gap to decrease cor-
responding to this implications. The box plots suggest that this improve-
ment is fairly evenly for all instances.
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Figure 4.7: Box plots for the instances with all possible monomials and
n = 15, d = 50

The other measurements vary more. Keeping in mind that the box
plots refer to only 10 instances and Gurobi is a huge solver with a lot of
heuristics, cutting planes and other routines that handles each instance
differently good, it is not very surprising that the dispersion varies. Since
the formulation q-m resulted in much worse performance than the other
formulations we plotted the node count and the runtime with a different
scale. Considering the instances with only adjacent monomials, there is
one noticeable outlier considering the formulation aq-sub.

All in all, the box plots go well to what one should expect.
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Figure 4.8: Box plots for the instances with all adjacent monomials and
n = 20, d = 50

Considering the instances provided by Cordone and Passeri we ob-
tain similar results as with our instances including all possible monomi-
als. (See Table 4.4 and Figure 4.9.) Using the formulations with the sub-
tour elimination constraints one could solve more instances than with
our extended formulations in the time limit of one hour. This time, the
quadratic subtour elimination constraint for nonadjacent monomials im-
proved the number of solved instances, whereas the extended lineariza-
tion constraints for nonadjacent monomials still has a negative impact on
this number.

In Figure 4.9 we see that for large and dense instances q-sub leads to
the best results regarding runtime, node count and gap. This is different
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sub aq-sub q-sub martin aq-m q-m
n d

10 33 4 4 4 4 4 4
67 4 4 4 4 4 4
100 4 4 4 4 4 4

15 33 4 4 4 4 4 4
67 3 3 4 1 1 1
100 1 1 1 1 1 0

20 33 1 1 1 1 1 0
67 0 0 0 0 0 0
100 0 0 0 0 0 0

Table 4.4: Number of solved instances from Cordone and Passeri’s test
set

to what we observed before. The reason for this could be that we allow
the objective also to be negative or that our instances are smaller and less
dense.

Our conjecture that the formulations sub,aq-sub and q-sub can
be solved faster than the extended formulations for large and dense in-
stances got confirmed here.

The improvement of the root gap however is as before significantly
better using extended formulations.

All in all, it is not easy to say which approach performs better. Consid-
ering only adjacent monomials extended formulations can lead to better
performance, whereas the large and dense instances with all monomials
can be solved faster using the separation based approach. Considering
the root gap we could observe an evenly improvement by the extended
formulations.
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Figure 4.9: Testinstances of Cordone and Passeri

66



5 Higher Order Arborescence
Polytopes

In Chapter 2 we modeled extended formulations for higher order forest
polytopes in undirected graphs. In this chapter we investigate directed
graphs and arborescences, which are the counterparts to spanning trees
in undirected graphs.

Martin’s extended formulation for the spanning tree polytope PST is
based on arborescences in the sense that for each spanning tree we obtain
valid zu- variables by choosing the characteristic vector of the induced u-
arborescence.

Let G = (V, E) be a directed graph. We recall that for a root node
r ∈ V an r-arborescence A ⊆ E is a cycle free set of edges, such that r has
no ingoing edge in A and all other nodes have exactly one ingoing edge
in A. The r-arborescence polytope of G is defined by

Parb := conv
{

χ(A)
∣∣ A is an r-arborescence in G

}
and a complete description was given by to Edmonds [12]. You can find
it for example in [34, Section 51.4] and [25, Corollar 6.15].

Proposition 12 (Edmonds [12]). The r-arborescence polytope Parb is described
by

x
(

δin (S)
)
≥ 1 for all S ⊆ V \ {r} with S 6= ∅ (5.1)

x
(

δin (v)
)
= 1 for all v ∈ V \ {r} (5.2)

x
(

δin (r)
)
= 0 (5.3)

x ≥ 0 (2.2)

It is possible to exchange (5.1) by Edmonds’ rank constraints, which
we know from the spanning tree polytope, to obtain the following alter-
native description. (See, e.g., [25, Chapter 6, Exercise 23].)
Remark 3. The description in Proposition 12 is equivalent to

x (E (S)) ≤ |S| − 1 for all S ⊂ V with S 6= ∅ (2.1)

x
(

δin (v)
)
= 1 for all v ∈ V \ {r} (5.2)

x
(

δin (r)
)
= 0 (5.3)

x ≥ 0. (2.2)
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ForM ⊆ 2E the polytopes Parb(M) are called higher order r-arbores-
cence polytopes. In this work we only consider single degree-two mono-
mials M = {M} with |M| = 2 and we distinguish the three cases

a

b

c

head-tail
M =

{
(a, b), (b, c)

}
a

b

c

tail-tail
M =

{
(b, a), (b, c)

}

a b

c d

nonadjacent
M =

{
(a, b), (c, d)

}
Figure 5.1: Possible degree-two monomials in directed graphs

illustrated in Figure 5.1 where a, b, c and d are pairwise distinct. We as-
sume r /∈ {a, b, c, d}. In the next two sections we analyze two extended
formulations for Parb and compare their capability to model extended
formulations for Parb(M).

5.1 Extended Formulation Based on R. Kipp
Martin

Martin’s extended formulation for PST in Proposition 2 can be easily
adapted for directed graphs:

zu
v,w + zu

w,v = xv,w for all u ∈ V, (v, w) ∈ E (2.4”)

zu
(

δin (v)
)
= 1 for all u, v ∈ V, u 6= v (2.5)

zu
(

δin (u)
)
= 0 for all u ∈ V (2.6)

z ≥ 0 (2.7)

where for all (v, w) ∈ E

xv,w :=

{
xv,w + xw,v if (w, v) ∈ E
xv,w if (w, v) /∈ E.

Proposition 13. Let G = (V, E) be a connected directed graph. The projection
of (2.4”),(2.5)-(2.7) onto zr is the r-arborescence polytope Parb.

Proof. For a given r-arborescence A let zr = x be the characteristic vector
of A and zu be the characteristic vectors of the induced u-arborescences

68



5.1. Extended Formulation Based on R. Kipp Martin

that have the same underlying undirected tree. This choice is valid for
the system (2.4”),(2.5)-(2.7).

On the other hand, let (x, z) be valid for the system. We will show
that (2.4”),(2.5)-(2.7) imply the description of Parb from Remark 3. It is
easy to see that (2.5)-(2.7) directly imply (5.2),(5.3) and (2.2) for x = zr. To
obtain Edmond’s rank inequalities (2.1) we use (2.4”) to observe

zr (E (S)) = zu (E (S)) for all S ⊆ V and u ∈ V

and with (2.5) and (2.6) we receive

zu (E (S)) ≤ ∑
v∈S

zu
(

δin (v)
)
= |S| − 1 for all S ⊆ V and u ∈ S. (2.1)

For the ease of notation we can simply add

x = zr. (5.4)

To extend the formulation for a degree-two monomial, we can use the
extended linearization constraints from Chapter 2. Those are

y ≤ zc
b,a (2.15a)

y ≤ za
b,c (2.15b)

for the adjacent cases (head-tail and tail-tail) and

y ≤ za
c,d + zb

d,c (2.16a)

y ≤ za
d,c + zb

c,d (2.16b)

y ≤ zc
a,b + zd

b,a (2.16c)

y ≤ zc
b,a + zd

a,b. (2.16d)

for the nonadjacent case. Again, we need McCormick’s linearization con-
straints

y ≤ xei for i ∈ {1, 2} (2.8)
y ≥ xe1 + xe2 − 1 (2.10)

where {e1, e2} := M [30]. The following propositions illustrate a strong
relationship to the quadratic subtour elmination constraints (2.13) and
(2.14).

69



5. Higher Order Arborescence Polytopes

Proposition 14 (nonadjacent case). Let G = (V, E) be a connected directed
graph and let Q be the polytope described by Martin’s constraints (2.4”),(2.5)-
(2.7) for u ∈ {a, b, c, d}, McCormick’s linearization (2.8)-(2.10), our extended
linearization constraints (2.16a)-(2.16d) and

x ∈ Parb

y ≥ 0. (2.12)

The projection of Q onto (x, y) is the polytope P described by McCormick’s
linearization (2.8)-(2.10) and

x ∈ Parb

x (E (S1)) + x (E (S2)) + y ≤ |S1|+ |S2| − 2 for S1, S2 ⊂ V
with (a, b), (c, d) each have one endnode in S1 and one in S2

(2.14)

y ≥ 0. (2.12)

Proof. To show that the projection of Q is contained in P we combine
constraints (2.4”),(2.5)-(2.7) from Martin’s formulation with our extended
linearization constraints (2.16a)-(2.16d) the same way as in the proof of
Theorem 3 to imply the quadratic subtour elimination constraint (2.14).

For the reverse inclusion we have to show that for each (x, y) ∈ P
we can find a vector z such that (x, y, z) is valid for Martin’s formulation
(2.4”),(2.5)-(2.7) and our additional constraints (2.16a)-(2.16d). Let for all
(v, w) ∈ E

x{v,w} :=

{
xv,w + xw,v if (w, v) ∈ E
xv,w if (w, v) /∈ E

.

Since x ∈ PST of the corresponding undirected graph we can choose y
maximal such that

(
x, y
)
∈ PST(M) for the monomialM = {M} with

M =
{
{a, b}, {c, d}

}
.

Now we have y ≤ y, because otherwise we would have

y > y ≥ xa,b + xc,d − 1

and due to (2.8) and the definition of x

y ≤ xa,b ≤ xa,b

y ≤ xc,d ≤ xc,d.

Using Buchheim and Klein’s formulation in Proposition 5 together with
x (E (S)) = x (E (S)) this implies

(
x, y
)
∈ PST(M), which is a contra-

diction to the maximality of y.
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Due to
(
x, y
)
∈ PST(M) there exists a convex combination of trees

x = ∑
i∈I

λiχ (Ti)

for some index set I, such that

y = ∑
i∈I with M⊆Ti

λi.

Each tree Ti and each v ∈ V \ {r} induce a unique v-arborescence Av
i as

v

Ti

v

Av
i

Figure 5.2: A tree and its induced v-arborescence

illustrated in Figure 5.2. This way, we can define

zv := ∑
i∈I

λiχ (Av
i ) .

Additionally, we set zr = x. This choice of z is valid for Martin’s formu-
lation. For each tree Ti with M ⊆ Ti we have either (c, d) ∈ Aa

i or
(d, c) ∈ Ab

i and thus

za
c,d + zb

d,c ≥ ∑
i∈I with M⊆Ti

λi = y ≥ y. (2.16a)

The proof works analogously for inequalities (2.16b)-(2.16d).

Proposition 15 (adjacent cases). Let G = (V, E) be a connected directed
graph and let Q be the polytope described by Martin’s constraints (2.4”),(2.5)-
(2.7) for u ∈ {a, c}, McCormick’s linearization (2.8),(2.10), our additional
constraints (2.15a),(2.15b) and

x ∈ Parb

y ≥ 0. (2.12)
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5. Higher Order Arborescence Polytopes

The projection of Q onto (x, y) is the polytope P described by (2.8), (2.10) and

x ∈ Parb

x (E (S)) + y ≤ |S| − 1 for all S ⊂ V with {a, c} ⊆ S, b /∈ S (2.13)
y ≥ 0. (2.12)

Proof. To show that the projection of Q is contained in P we use (2.4”) to
obtain

x (E (S)) = ∑
v∈S

za
(

δin (v)
)
− za

(
δin (S)

)
for all S ⊆ V with {a, c} ⊆ S, b /∈ S. We combine it with (2.5)-(2.7) to

x (E (S)) ≤ |S| − 1− za
b,c

and use (2.15a) to imply (2.13).
For the inverse inclusion we use analog argumentations and notation

as in the proof of Proposition 14. Now with M =
{
(a, b), (b, c)

}
or

M =
{
(b, a), (b, c)

}
this leads to

x = ∑
i∈I

λiχ (Ti)

and

y = ∑
i∈I with M⊆Ti

λi.

For all Ti with M ⊂ Ti we have (b, a) ∈ Ac
i and (b, c) ∈ Aa

i and thus

zc
b,a ≥ ∑

i∈I with M⊆Ti

λi = y ≥ y (2.15a)

za
b,c ≥ ∑

i∈I with M⊆Ti

λi = y ≥ y. (2.15b)

Proposition 16. Let M = {M} ⊆ 2E with |M| = 2. There exists a
connected directed graph G = (V, E) such that the formulations in Proposi-
tions 14 and 15 do not describe Parb(M) completely.

Proof. We will provide three counter examples, one for each of the three
cases presented before in Figure 5.1. They all use the observation that

72



5.1. Extended Formulation Based on R. Kipp Martin

the quadratic subtour elimination constraints (2.14) and (2.13) in Propo-
sition 5 are fulfilled by x and y as soon as the are fulfilled in the under-
lying undirected graph. Let x be a convex combination of characteristic
vectors of r-arborescences

x = ∑
i∈I

λiχ (Ai) ,

then the formulations only enforce

y ≤ min
{

xe1 , xe2 , ∑
i∈I with {e1,e2}⊂Ti

λi

}
,

where {e1, e2} := M, Ti is the spanning tree corresponding to Ai in the
underlying undirected graph and ej is the undirected version of ej for
j ∈ {1, 2}.
Head-tail case: Let x be as in Figure 5.3 and y = 1

2 . This is valid for the
formulation in Proposition 15 using the former argumentation with the
convex combination shown in the figure, but it is impossible to express
x as a convex combination of r-arborescences where one arborescence
includes (a, b) and (b, c), since the only edges in δin (a) are (b, a) and
(c, a) and each of them would combined with the edges (a, b) and (b, c)
induce a cycle. This means, y must be 0.

a b

cr

=

a b

cr

+

a b

cr

Figure 5.3: Convex combination of r-arborescences. All edge weights in
this figure are 1

2 .

Tail-tail case: Let x be as in Figure 5.4 and y = 1
2 . This is valid for the

formulation in Proposition 15 using the former argumentation with the
convex combination shown in the figure, but it is impossible to express
x as a convex combination of r-arborescences where one arborescence
includes (b, a) and (b, c), since the only edges is δin (b) are (a, b) and (c, b).
Hence, y must be 0.

Nonadjacent case: Let x be as in Figure 5.5 and y = 1
2 . This is valid for the

formulation in Proposition 14 using the former argumentation with the
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5. Higher Order Arborescence Polytopes

a b

cr

=

a b

cr

+

a b

cr

Figure 5.4: Convex combination of r-arborescences. All edge weights in
this figure are 1

2 .

a b

c d

r =

a b

c d

r +

a b

c d

r

Figure 5.5: Convex combination of r-arborescences. All edge weights in
this figure are 1

2 .

convex combination shown in the figure, but it is not possible to express
x as a convex combination of r-arborescences where one arborescence in-
cludes (a, b) and (c, d), since the only edges in δout (r) are (r, b) and (r, d)
and this would lead to x

(
δin (b)

)
> 1 or x

(
δin (d)

)
> 1 respectively.

Therefore, y must be 0.

5.2 Extended Formulation Based on Richard T.
Wong

In the former section we were not able to build a complete description of
Parb(M) forM = {M} and |M| = 2 using Martin’s formulation with
our additional constraints. The problem is that the information about the
direction of the edges in the arborescence is hidden in the interaction of
the z-variables and can not be used directly in the additional constraints
for the monomial. This is different in another extended formulation in-
troduced by Richard T. Wong originally for the traveling salesman prob-
lem [39], but often also mentioned for spanning trees [38].

Each r-arborescence contains unique directed paths from r to each
node v ∈ V \ {r}. Such r-v-paths can be regarded as r-v-flows of capac-
ity 1. Those flows are expressed by the variables wv for v ∈ V \ {r} in
Wong’s formulation.
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5.2. Extended Formulation Based on Richard T. Wong

Proposition 17 (Wong [39]). The following constraints provide an extended
formulation for Parb.

x (E) = |V| − 1 (2.3)
wu

e ≤ xe for all e ∈ E and u ∈ V \ {r} (5.5)

wu
(

δin (v)
)
= wu (δout (v)

)
for all u, v ∈ V \ {r} with v 6= u (5.6)

wu
(

δin (u)
)
= 1 for all u ∈ V \ {r} (5.7)

wu (δout (r)
)
= 1 for all u ∈ V \ {r} (5.8)

w ≥ 0. (5.9)

Proof. For a given r-arborescence A we define wu as the characteristic
vector of the unique r-u path in A. This choice is obviously valid for the
formulation (2.3),(5.5)-(5.9) and thus Parb is contained in the projection of
the polytope defined by Wong’s formulation.

Let now (x, w) be valid for (2.3),(5.5)-(5.9). We will show that (x, w)
fulfills all constraints of the description of Parb in Proposition 12. Inequal-
ity (5.5) with (5.9) lead to

xe ≥ 0 (2.2)

and (5.5) with (5.7) to

x
(

δin (v)
)
≥ wv

(
δin (v)

)
= 1 for all v ∈ V \ {r}.

Together with

x (E) = ∑
v∈V

x
(

δin (v)
)
= |V| − 1, (2.3)

this implies

x
(

δin (v)
)
= 1 for all v ∈ V \ {r}. (5.2)

Since wv describes a flow we see with (5.5)

x
(

δin (r)
)
≥ wv

(
δin (r)

)
= 0. (5.3)

To complete the proof we observe that wu is an r-u flow of capacity 1
and δin (S) is an r-u cut for each u ∈ S if r /∈ S. Thus, using weak duality
between flows and cuts we have

x
(

δin (S)
)
≥ wu

(
δin (S)

)
≥ 1 for all S ⊆ V \ {r} and u ∈ S. (5.1)
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5. Higher Order Arborescence Polytopes

Head-tail case

LetM = {M}with M =
{
(a, b), (b, c)

}
. An evident idea to extend the

formulation in this case is the inequality

y ≤ wc
a,b. (5.10)

Let x be a characteristic vector of some r-arborescence A, then M ⊆ A
implies that the unique r-c-path in A includes the edges (a, b) and (b, c)
that leads to wc

a,b = 1, where wc is the characteristic vector of the r-c-path
in A. Hence, (5.10) is valid for PArb(M).

The following proposition shows that Wong’s formulation with (5.10)
is at least as good as the formulation in the former section based on Mar-
tin in the sense that the projection of the formulation based on Wong is
contained in the projection of the formulation based on Martin.

Proposition 18. Wong’s formulation (2.3),(5.5)-(5.9) with (5.10) implies

x (E (S)) + y ≤ |S| − 1 for all S ⊂ V with a, c ∈ S, b /∈ S. (2.13)

Proof. We use the observation that for all S ⊆ V we have

wu (E (S)) = ∑
v∈S\{r}

wu
(

δin (v)
)
− wu

(
δin (S)

)
= ∑

v∈S
wu (δout (v)

)
− wu (δout (S)

)
.

This implies for all S ⊆ V \ {r} and u ∈ S

wu
(

δin (S)
)
= wu (δout (S)

)
− ∑

v∈S\{u}

(
wu (δout (v)

)
− wu

(
δin (v)

) )
+ wu

(
δin (u)

)
= wu (δout (S)

)
+ 1

and for all S ⊆ V with r, u ∈ S and u 6= r we obtain

wu
(

δin (S)
)
= wu (δout (S)

)
− ∑

v∈S\{r,u}

(
wu (δout (v)

)
− wu

(
δin (v)

) )
− wu (δout (r)

)
+ wu

(
δin (u)

)
= wu (δout (S)

)
.
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5.2. Extended Formulation Based on Richard T. Wong

Altogether we combine it with (5.2) and (5.5) to

x (E (S)) = ∑
v∈S\{r}

x
(

δin (v)
)
− x

(
δin (S)

)
≤
{
|S| − wc (δin (S)

)
if r /∈ S

|S| − 1− wc (δin (S)
)

if r ∈ S

= |S| − 1− wc (δout (S)
)

≤ |S| − 1− wc
a,b,

which does with (5.10) imply

x (E (S)) ≤ |S| − 1− y. (2.13)

Unfortunately, the formulation in Proposition 18 does also not lead
to a complete formulation for Parb(M) as the author verified using poly-
make [18][2] for the complete graph with four and five nodes, i.e., the
graph G = (V, E) with E =

{
(u, v)

∣∣ u ∈ V, v ∈ V \ {r}
}

. The calcu-
lated vertices of the projection showed that we need further constraints
bounding y from the upper and lower side.

Next the author calculated the facets of Parb(M) for the complete
graphs with four and five nodes. The new upper bounds on y are

x
(

δin (Sa) \
(
δout (Sb) ∪ δout (Sc)

))
+ x

(
δin (Sb)

)
+ x

(
δin (Sc)

)
≥ 2 + y

(5.11)
for all Si ⊆ V \ {r} pairwise disjunct with i ∈ Si for i ∈ {a, b, c} and
the new lower bounds are

x
(

δin (S ∪ {b})
)
+ x

(
δin(S) ∩ δout(b)

)
+ y ≥ xa,b + xb,c + 1 (5.12)

for all S ⊆ V \ {r, a, b} with c ∈ S and

xr,b + xr,d + xa,d + y ≥ xb,c (5.13)
xr,a + xr,b + xr,d + xc,a + xd,a + y ≥ xa,b + xb,c (5.14)

for V = {r, a, b, c, d}.
To model the new upper bounds (5.11) we add a new variable σ. It

refers to a sub flow of wa with capacity y that does not flow through b
or c. For integral values with y = 1 this σ is equal to wa and we have
σ
(
δout (r)

)
= σ

(
δin (a)

)
= 1.
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5. Higher Order Arborescence Polytopes

Proposition 19. Wong’s formulation (5.5)-(5.9) together with

σv,w ≤ wa
v,w for all (v, w) ∈ E (5.15)

σ
(

δin (v)
)
= σ

(
δout (v)

)
for all v ∈ V \ {r, a} (5.16)

σ
(
δout (r)

)
= y (5.17)

σ
(

δin (a)
)
= y (5.18)

σ
(

δin (b)
)
= 0 (5.19)

σ
(

δin (c)
)
= 0 (5.20)

σ ≥ 0 (5.21)

implies (5.11).

Proof. Using constraints (5.5),(5.16),(5.21) and σ
(
δin (Si)

)
= σ(δout (Si)

)
for i ∈ {b, c} we obtain

x
(

δin (Sa) \
(
δout (Sb) ∪ δout (Sc)

))
+ x

(
δin (Sb)

)
+ x

(
δin (Sc)

)
≥ σ

(
δin (Sa)

)
− σ

(
δin (Sb)

)
− σ

(
δin (Sc)

)
+ wb

(
δin (Sb)

)
+ wc

(
δin (Sc)

)
.

Considering the flow decomposition of wi for i ∈ {b, c}we observe that
those path that are also contained in σ

(
δin (Si)

)
have to leave Si again

before they enter i, since the flow corresponding to σ does not include i.
Thus, we have

wi
(

δin (Si)
)
− σ

(
δin (Si)

)
≥ wi

(
δin (i)

)
for i ∈ {b, c}

and with (5.18) and (5.7) we obtain (5.11)

x
(

δin(Sa) \
(
δout(Sb) ∪ δout(Sc)

))
+ x

(
δin (Sb)

)
+ x

(
δin (Sc)

)
≥ σ

(
δin (a)

)
+ wb

(
δin (b)

)
+ wc

(
δin (c)

)
≥ 2 + y.

To model the lower bound (5.12) we can directly use Wong’s variables
and only need one additional constraint that is similar to the last of Mc-
Cormick’s constraints (2.10) but not directly related.
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Proposition 20. Let G = (V, E) be a connected directed graph, r ∈ V and
A be an r-arborescence in G. Furthermore, let x = χ (A) and for u ∈ V
let wu be the characteristic vectors of the r-u-paths in A. For y = xa,bxb,c the
inequality

y ≥ wc
a,b + wc

b,c − wc
(

δin (b)
)

. (5.22)

is fulfilled by w and y.

Proof. In the case y = 1 we have

wc
a,b = wc

b,c = wc
(

δin (b)
)
= 1

and (5.22) is fulfilled.
For the case y = 0 observe

wc
(

δin (b)
)
≥ wc

a,b

and

wc
(

δin (b)
)
= wc (δout (b)

)
≥ wc

b,c

and thus we have

wc
a,b + wc

b,c − wc
(

δin (b)
)
≤ min

{
wc

a,b, wc
b,c
}
= 0

due to y = 0.

Proposition 21. Wong’s formulation (5.5)-(5.9) for u = c together with (5.22)
implies (5.12).

Proof. With (a, b) ∈ δin (S ∪ {b}) and (b, c) ∈ δin (S) ∩ δout (b) and
(5.5) we obtain

x
(

δin (S ∪ {b})
)
+ x

(
δin(S) ∩ δout(b)

)
− xa,b − xb,c + y

≥ wc
(

δin (S ∪ {b}) \ {(a, b)}
)
+ wc

((
δin(S) ∩ δout(b)

)
\ {(b, c)}

)
+ y

and with (5.22)

x
(

δin (S ∪ {b})
)
+ x

(
δin(S) ∩ δout(b)

)
− xa,b − xb,c + y

≥ wc
(

δin (S ∪ {b})
)
+ wc

(
δin(S) ∩ δout(b)

)
− wc

(
δin (b)

)
= ∑

v∈S∪{b}
wc
(

δin (v)
)
− wc (E(S ∪ {b}))+ wc

(
δin(S) ∩ δout(b)

)
− wc

(
δin (b)

)
.
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We now use (5.6),(5.7) and wc (δout (c)
)
= 0 to transform it to

x
(

δin (S ∪ {b})
)
+ x

(
δin(S) ∩ δout(b)

)
− xa,b − xb,c + y

≥ 1 + ∑
v∈S

wc (δout (v)
)
− wc (E(S ∪ {b}))+ wc

(
δin(S) ∩ δout(b)

)
= 1 + wc (δout (S)

)
− wc

(
δin(b) ∩ δout(S)

)
.

With the observation that δin (b) ∩ δout (S) ⊆ δout (S) and (5.9) this
shows

x
(

δin (S ∪ {b})
)
+ x

(
δin(S) ∩ δout(b)

)
− xa,b − xb,c + y ≥ 1.

Unfortunately, constraint (5.22) does not imply the remaining lower
bounds (5.13) and (5.14) as the following two examples show.

a b

d c

r

x

a b

d c

r

wc

Figure 5.6: Illustration of one x ∈ Parb and one possible corresponding
variable wc. All edge weights in this figure are 1

2 .

Example 5. Inserting the values from Figure 5.6 in (5.13) we obtain

y ≥ 1
2

,

whereas the values inserted in McCormick’s constraint (2.10) and the
new constraint (5.22) only enforce

y ≥ 1
2
+

1
2
− 1 = 0.

Example 6. Inserting the values from Figure 5.7 in (5.14) we obtain

1
2
+ y ≥ 1,

whereas the values inserted in McCormick’s constraint (2.10) and the
new constraint (5.22) only enforce

y ≥ 1
2
+

1
2
− 1 = 0 and y ≥ 1

2
− 1

2
= 0.
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a b

d c

r

x

a b

d c

r

wc

Figure 5.7: Illustration of one x ∈ Parb and one possible corresponding
variable wc. All edge weights in this figure are 1

2 .

Tail-tail case

Our studies focus on the head-tail case and we will regard only one idea
for the tail-tail case and one for the nonadjacent case. They both result
from studying Wong’s variables related to the end nodes of the edges in
the monomial to obtain upper bounds for y.

Given an r-arborescence A the corresponding wa and wc variables are
the characteristic vectors for the r-a-and r-c-paths. If wa (δin (c)

)
= 1

the arborescence A contains an r-c-a-path that would build a cycle with{
(b, a), (b, c)

}
or any r-a-c-path thus y = 0 and wc (δin (a)

)
= 0. Analog

wc (δin (a)
)
= 1 implies y = 0 and wa (δin (a)

)
= 0. Hence, we can add

y ≤ 1− wa
(

δin (c)
)
− wc

(
δin (a)

)
. (5.23)

to Wong’s formulation.
Regarding the example from the proof of Proposition 16 in the former

section (Figure 5.4) we can see in Figure 5.8 that (5.23) enforces y ≤ 0.
The following proposition shows how we can build an extended formu-

a b

cr

x

a b

cr

wa

a b

cr

wc

Figure 5.8: Illustration of one x ∈ Parb and the corresponding variables
wa and wc. All edge weights in this figure are 1

2 .

lation base on Wong that is stronger than the formulation based on Mar-
tin in the sense that the projection of the first is contained in the projection
of the second.
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Proposition 22. Wong’s extended formulation (5.5)-(5.9) together with (5.23)
and McCormick’s linearization constraint (2.8) implies the quadratic subtour
elimination constraints

x (E (S)) + y ≤ |S| − 1 for all S ⊂ V with a, c ∈ S, b /∈ S. (2.13)

Proof. If r ∈ S we simply combine (5.2) and (2.8) to

x (E (S)) = ∑
v∈S

x
(

δin (v)
)
− x

(
δin (S)

)
≤ |S| − 1− xb,a

≤ |S| − 1− y.

Otherwise if r /∈ S, we use the fact that wa and wc are flows of capacity
1 and can be decomposed into paths. Since S is an r-a cut and an r-c cut
we observe with (5.5) that x

(
δin (S)

)
is at least the capacity of wa without

the paths including c plus the capacity of wc without the paths including
a. This leads to

x
(

δin (S)
)
≥ 1− wa

(
δin (c)

)
+ 1− wc

(
δin (a)

)
and with (5.2) and (5.23)

x (E (S)) = ∑
v∈S

x
(

δin (v)
)
− x

(
δin (S)

)
≤ |S| − 1− (1− wa

(
δin (c)

)
− wc

(
δin (a)

)
≤ |S| − 1− y.

Nonadjacent case

We consider the case M = {(a, b), (c, d)} for pairwise distinct a,b,c and
d. Let A be an r-arborescence with the corresponding characteristic vec-
tors of the r-b- and r-d-path wb and wd. If wb (δin (d) \ {(c, d)}

)
= 1,

we know (c, d) /∈ A and wd (δin (b) \ {(a, b)}
)

= 0. Analogously,
if wd (δin (b) \ {(a, b)}

)
= 0, it holds wb (δin (d) \ {(c, d)}

)
= 0 and

(a, b) /∈ A.
Hence, we can add

y ≤ 1− wb
(

δin (d) \ {(c, d)}
)
− wd

(
δin (b) \ {(a, b)}

)
(5.24)

to Wong’s formulation.
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Regarding the example from the proof of Proposition 16 in the former
section we see in Figure 5.9

wb
(

δin (d) \ {(c, d)}
)
= wd

(
δin (b) \ {(a, b)}

)
=

1
2

.

Inserting this into (5.24) we got y ≤ 0. Hence, this example lays in the

a b

c d

r

x

a b

c d

r

wb

a b

c d

r

wd

Figure 5.9: Illustration of one x ∈ Parb and the corresponding variables
wa and wb. All edge weights in this figure are 1

2 .

projection of the formulation based on Martin but not in the projection of
the formulation here. Unfortunately, we found an example the other way
around, such that we can not say which formulation is better regarding
the projection.

Proposition 23. Wong’s formulation (5.5)-(5.9) together with (5.24) does not
imply the quadratic subtour elimination constraints

x (E (S1)) + x (E (S2)) + y ≤ |S1|+ |S2| − 2 (2.14)

for all S1, S2 ⊂ V where (a, b) and (b, c) have one end node in S1 and the other
in S2.

Proof. We regard the example in Figure 5.10 and observe

wb
(

δin (d) \ {(c, d)}
)
= wd

(
δin (b) \ {(a, b)}

)
= 0.

a b

c d

r

x

a b

c d

r

wb

a b

c d

r

wd

Figure 5.10: Illustration of one x ∈ Parb and the corresponding variables
wb and wd. All edge weights in this figure are 1

2 .
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Hence, Wong’s formulation with (5.24) only implies y ≤ 1, whereas
(2.14) for S1 = {r, a, c} and S2 = {b, d} enforces

y ≤ 0.
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6 Conclusion and Outlook

We investigated higher order polytopes related to combinatorial opti-
mization problems with polynomials as objective functions. Our main
focus laid in forest and spanning tree problems.

In Chapter 2 we presented extended formulations for higher order
forest polytopes that are based on known extended formulations for the
spanning tree polytope. Those formulations imply extended formula-
tions for higher order spanning tree polytopes. To model the monomials
we used the structural information provided by the known formulations
and constructed new constraints. For the polytopes with one degree-two
monomial we only needed two new inequalities. Hence, we got very
small and easy formulations.

In Section 2.2 we generalized the constraints for degree-three mono-
mials. To build a complete description we also needed the constraints for
all degree-two submonomials leading to 14 additional inequalities, six
for the degree-two submonomials and eight degree-three specific ones.

One might wonder whether we can generalize this for monomials of
higher degree. The author did indeed generalize inequality (2.44) for
degree-four monomials, but did not prove, whether this also leads to
a complete description of the corresponding higher order forest poly-
topes. We guess that in this case one would again need the constraints
for all degree-two and degree-three submonomials leading to 12+ 32 ad-
ditional inequalities only for the submonomials. Hence, the formulation
becomes rather large.

Considering the unexpected bad performance of Gurobi on our ex-
tended formulation with degree-two monomials including the general
form of the extended linearization constraints in Chapter 4, we question,
whether investigations in generalizations of this formulation for mono-
mials of higher degree are worth the effort. Before discussing more com-
plicated formulations, we would prefer to understand why the perfor-
mance of Gurobi using the formulation q-m including nonadjacent mo-
nomials was that much worse than the other formulations, although the
root gap was better.

In Section 3.1 we showed that the combination of our small extended
formulations for higher order forest polytopes with only one degree-two
monomial for all degree-two monomials leads to a better relaxation of
the quadratic forest polytope than the combination of the descriptions in
the original space. This effect is due to the natural identification of the
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additional variables in our extended formulations. Thus, we modeled a
relation between the monomials in an implicit and automatic way.

To obtain a feeling of the amount of improvement in the relaxations
we measured the root gap of random QMST instances in Chapter 4. We
observed that the improvement arising from that relation we build in the
extension variables is clearly stronger than the improvement obtained
in the original space by adding the quadratic subtour elimination con-
straints to the relaxation that only uses McCormick’s linearization con-
straints and a description of the spanning tree polytope.

Considering the measurements related to the performance in Gurobi
(node count, runtime and gap) we observed that a smaller root gap does
not necessarily imply a better performance. The performance using our
small extended formulations was in many cases worse than the perfor-
mance on the larger formulations in the original space using fast sep-
aration routines. On the instances including only adjacent monomials
the performance on our extended formulations was slightly better than
on the other formulations, but this might be due to the fact that the in-
stances are smaller (since they include less monomials) than the instance
including all monomials. Overall, we have to keep in mind that we ran
Gurobi with standard parameters. Although one might improve the per-
formance adjusting them, there always remains a lot of randomness in
the performance and we should be very careful in judging a formulation
based on such restricted tests. It might be that on different solvers or with
different parameters we would observe very different performances.

The projection of our combined extended formulations led to new
valid inequalities for the quadratic forest polytope as described in Sec-
tion 3.1. Those inequalities can be considered as strengthening of Buch-
heim and Klein’s quadratic subtour elimination constraints [4]. In the
adjacent case both have the form

x (E (S)) + ∑
M∈M(S)

yM ≤ |S| − 1 (6.1)

for some node sets S and for specific sets of adjacent monomialsM(S).
For general monomials they have the form

x (E (S1)) + x (E (S2)) + ∑
M∈M(S1,S2)

yM ≤ |S1|+ |S2| − 2 (6.2)

for some node sets S1, S2 and for specific sets of monomialsM(S1, S2).
In Section 3.2 we asked for which setsM(S) the inequalities (6.1) are

valid for the adjacent quadratic forest polytope. We elaborated properties
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M(S) should fulfill. One class of such sets arises from the projection of
our combined extended formulations in Section 3.1. An open question is
how we can describe further sets of monomials that are maximal in the
sense that adding a monomial would hurt the desired properties. Such
sets could lead to new facets of the adjacent quadratic forest polytope
and the adjacent quadratic spanning tree polytope as it does for those we
described in this work.

One might wonder whether the inequalities (6.2) in the general case
imply facets of the quadratic forest polytope or the quadratic spanning
tree polytope, too. The author used IPO [36] to calculate random facets of
those polytopes for the complete graphs with four, five and six nodes and
could not find any facet of the form described above. Hence, our guess
is that in the general case, where we also have nonadjacent monomials,
there are no inequalities of the form in (6.2) that describe facets of the
quadratic forest polytope or the quadratic spanning tree polytope.

In Chapter 5 we compared two extended formulations for the arbores-
cence polytope with respect to their potential to model degree-two mo-
nomials. We build extended formulations that project onto relaxations of
the higher order arborescence polytopes with one degree-two monomial
(Parb ({M})). In the case of adjacent monomials our formulations based
on Wong’s extended formulation is stronger than our formulation based
on Martin’s formulation. In the nonadjacent case neither the projection
of the formulation based on Martin is contained in the projection of the
formulation based on Wong nor the other way around. To improve the
relaxation in the nonadjacent case one might combine both formulations
or improve the formulation based on Wong in the future.

All in all, Wong’s variables contain more information regarding the
direction of the edges in the monomials and we were able to model more
relations. In the head-tail case we illustrated this by implying further
facets of Parb ({M}). Although we were not able to build complete de-
scriptions we could observe that Wong’s formulation contains a lot of
structural information, which can be used to model extended formula-
tions of relaxations of Parb ({M}). This can help to find or understand
facets of Parb(M) where we do not know a complete description for any
nonempty set of monomials yet.

Generally, we hope that this work motivates to use extended formula-
tions and especially the structural information they provide in modelling
further structures or relations. We did this for monomials and relations
between them. Those relations became clear in the extended space using
the provided structural information of known extended formulations.
This can be seen for example in the head-tail case in Section 5.2, where
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we calculated facets in the original space, which are hard to understand
with respect to their combinatorial meaning, but we could imply those
facets by easy to understand relations in the extended space.
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2E The power set of E. 1, 2, 9, 11, 20, 21, 29, 33, 37, 47, 68, 72, 96

[k] The set {1, . . . , k}. 1, 4, 9, 15, 16, 21–28, 32

Vectors

χ(T) The characeristic vector of T with χ(T) ∈ {0, 1}n and χ(T)e = 1
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Complexity theory

O(g) The big o-notation defined as: f ∈ O(g) if and only if f is bounded
above by g asymptotically. 5, 23

Θ(g) The big theta notation defined as: f ∈ Θ(g) if and only if f is
bounded above and below by g asymptotically. 5, 7, 16, 47

Rounding operators

dxe The smallest integer x with x ≥ x. 48, 49

bxc The biggest integer x with x ≤ x. 48, 49
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arborescence A cycle free edge set such that each node v 6= r has ex-
actly one ingoing edge and the root node r has no ingoing edge. To
explicitly name the root node we call it also r-arborescence. 3, 8–10,
12, 14, 19–22, 26, 28, 32, 67, 68, 71, 73–76, 79, 81, 82

characteristic vector The 0-1 vector χ(T). 1, 8–10, 12, 14, 19–22, 28, 32,
67, 68, 73, 75, 76, 79, 81, 82, see χ(T)

extended formulation A description of an extension in terms of equa-
tions and inequalities. iii, 2–5, 7–9, 11–14, 16–18, 20, 23, 26, 29, 33,
37, 47, 50, 51, 58, 59, 62, 64, 65, 67, 68, 74, 75, 81, 82, 85–87, see exten-
sion

extension An extension of a polytope P is a polytope in a higher dimen-
sion that can be projected onto P. 2, 33

extension complexity The extension complexity of a polytope is the size
of the smallest possible extension. 2, 3, 23, see xc(P), extension &
size

forest A cycle free edge set. 1–3, 5, 7–9, 12, 19, 24–26, 28, 32, 35, 38, 39, 45

higher order characteristic vector A vector (x, y), where x is a charac-
teristic vector and the entries in y are monomials in x. iii, 1, 40, 45,
see characteristic vector & χ(T)

higher order polytope The convex hull of higher order characteristic
vectors. iii, 1–5, 9, 18, 23, 33, 34, 67, 68, 85, 87, see higher order
characteristic vector & PT (M)

integer program (IP) A linear program together with the integrality con-
straint for all variables. 2, 3, 48, 58, 59, 96, see LP

linear program (LP) An optimization problem formulated with a linear
objective and linear constraints in terms of equations and inequali-
ties. 48

LP relaxation The linear program arising from a (mixed) integer pro-
gram by dropping the integrality constraint. 47–50, 57, 59, see LP,
IP & MIP
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mixed integer program (MIP) Like IP but only some variables are con-
strainted to by integral. 1, 2, 48–50, 54, 56–58, 96, see IP

monomial In this work we call a set M ∈ 2E monomial due to its rela-
tion to ∏e∈M xe. iii, 1–5, 7, 9, 18, 23–25, 29, 31, 33–36, 38–41, 43, 47,
50, 51, 53, 54, 56, 58–65, 68–70, 74, 81, 85–87

planar graph A graph that has an embedding in the plane such that no
two edges crosses each other. 5, 16, 17, 20

QMST-problem The quadratic minimum spanning tree problem. iii, 3,
33, 47, 50, 56, 86

relaxation A relaxation of an (integer) polytope P is a polytope R ⊇ P
such that R ∩ Zn = P ∩ Zn. iii, 1–3, 5, 33, 37, 47, 85–87

root gap The relative gap between the (mixed) integer solution and the
solution of the LP relaxation of a MIP or IP. 2, 3, 47, 57, 59, 62, 65,
86, see LP relaxation, MIP & IP

separation Given a polytope P ⊂ Rn and some point x∗ ∈ Rn a
separation solves the problem to decide whether x∗ ∈ P and if
x∗ /∈ P it provides a violated constraint. 13, 47, 49, 54, 55, 59, 62,
65, 86

size In the context of extended formulations the size is the number of
inequalities. 2–5, 7, 16, 18, 47, see extended formulation

spanning tree A tree that spans all nodes of a graph. 2, 3, 7–10, 12, 19,
20, 28, 32, 35–37, 43, 67, 73, 74, see tree

tree A forest that is connected. iii, 8, 10, 19, 21, 22, 25, 26, 40–44, 69, 71,
see forest
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