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Abstract

Internal and external IT service providers increasingly use commercial-off-the-shelf software to

support business processes. As these applications are continuously monitored, emerging log data

follows a standardized format and, in its internal logic, is comparable across organizational bound-

aries. Resulting automation potential leads to cost savings and quality improvements in the context

of capacity management. These objectives are examined by the thesis at hand using the capac-

ity management method PPSS (Performance prediction supported service placement), which is

designed to address the automation potential for server consolidation scenarios.

For this purpose, a placement problem is formulated that meets the special requirements of

enterprise applications. The objective of the problem is to save operations costs by minimizing

the required capacity. Solution quality is further affected by the compliance with a variety of

constraints. Four heuristics, two metaheuristics, and two hybrid algorithms are evaluated in 12,384

field experiments with respect to their solution quality. As the number of constraints increases,

genetic algorithms tend to identify solutions of the highest relative quality. In all scenarios, more

than 20% of the original server capacity can be saved on average while complying with the given

constraints.

Too aggressive capacity reduction, however, increases the risk of violating performance-related

service level agreements and entails the payment of penalty costs. The prediction of transactional

response times that are expected from a solution candidate enables to estimate the amount of such

penalty costs. At the same time, solution credibility is increased. For this purpose, PPSS integrates

the use of black-box approaches, which are based on machine learning and keep personnel costs

low. In addition, the tested techniques benefit from the cross-organizational integration of log data

due to large volume and variety of the observations on which the learning process is based. Using

the example of a widespread standard transaction, both Random forests and Boosted trees prove

to be suitable methods for predicting the mean response times of dialog steps. Boosted trees show

mean absolute percent errors between 19% and 30% across additional test cases on frequently used

business transactions.

A case study demonstrates the utility of the method. Here, alternative solution candidates

of the placement problem are analyzed with regard to their total costs. These consist of opera-

tions costs and penalty costs. Using the predicted response times and an exemplary service level

agreement, the amount of expected penalty costs can be estimated for alternative load scenarios.

If future load probabilities are known, a single solution can be recommended to minimize the total

costs.

PPSS is technically enabled by a performance knowledge base consisting of three layers which

cover presentation, analysis, and data. The knowledge base is implemented to evaluate the research

artifact in a real environment. Selected process steps are supported on the presentation level by a

graphical user interface. This interface is offered to a group of test users from two different data

centers as part of a pilot operations phase. The user feedback proves the utility and indicates cost

savings of the method when compared to existing approaches.
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Abstract in German

Interne und externe IT-Dienstleister setzen vermehrt betriebliche Standardsoftware ein, um Ge-

schäftsprozesse abzudecken. Im Rahmen der kontinuierlichen Überwachung dieser Anwendungs-

systeme werden daher Logdaten generiert, die einem standardisierten Format entsprechen und in

ihrer internen Logik über Organisationsgrenzen hinweg vergleichbar sind. Hieraus leitet sich Auto-

matisierungspotenzial ab, welches im Rahmen des Kapazitätsmanagements zu Kostenersparnissen

und Qualitätsverbesserungen führt. Die vorliegende Arbeit untersucht diese Zielstellung anhand

der Kapazitätsmanagement-Methode PPSS (Performance prediction supported service placement),

die dieses Potenzial für den Anwendungsfall der Serverkonsolidierung addressiert.

Zu diesem Zwecke wird ein Platzierungsproblem formuliert, das den besonderen Anforderun-

gen betrieblicher Anwendungssysteme gerecht wird. Ziel des Problems ist es, Betriebskosten durch

Minimierung der Kapazität einzusparen, wobei die Konformität mit einer Vielzahl von Nebenbe-

dingungen die Lösungsqualität beeinflusst. Vier Heuristiken, zwei Metaheuristiken und zwei hybri-

de Algorithmen werden in insgesamt 12.384 Feldexperimenten hinsichtlich Ihrer Lösungsqualität

evaluiert. Mit steigendem Ausmaß der Nebenbedingungen identifizieren genetische Algorithmen

Lösungen von höchster, relativer Qualität. In allen Szenarien kann bei gleichzeitiger Konformität

mit den gegebenen Nebenbedingungen im Mittel mehr als 20% der ursprünglichen Serverkapazität

eingespart werden.

Eine zu starke Reduzierung der Kapazität erhöht jedoch das Risiko, Dienstgütevereinbarungen

zu verletzen, was zu Strafzahlungen führt. Eine Vorhersage der zu erwartenden, transaktionalen

Antwortzeiten eines Lösungskandidaten ermöglicht es, das Ausmaß der Strafzahlungen zu schätzen

und damit das Vertrauen in die Lösung zu erhöhen. PPSS integriert zu diesem Zweck den Einsatz so

genannter Black-Box-Ansätze, welche auf maschinellem Lernen basieren und damit die Personalkos-

ten gering halten. Die getesteten Verfahren profitieren zudem von der organisationsübergreifenden

Integration der Logdaten. Dies erhöht den Umfang und die Vielfalt der Beobachtungen, die dem

Lernprozess zugrunde gelegt werden. Am Beispiel einer weit verbreiteten Standardtransaktion er-

weisen sich sowohl Random Forests als auch Boosted Trees als geeignete Verfahren für die Vor-

hersage mittlerer Antwortzeiten von Dialogschritten. Letzteres führte auch bei weiteren Tests mit

häufig genutzten Geschäftstransaktionen zu Vorhersagen mit einer mittleren prozentualen Abwei-

chung zwischen 19% und 30%. Eine Fallstudie demonstriert die Nutzbarkeit der Methode. Hierbei

werden alternative Lö-sungskandidaten des Platzierungsproblems hinsichtlich ihrer Gesamtkos-

ten analysiert. Diese setzen sich aus Betriebskosten und Strafzahlungen zusammen. Anhand der

Modell-Vorhersagen und einer beispielhaften Dienstgütevereinbarung kann die Höhe der erwarte-

ten Strafzahlungen für alternative Lastszenarien geschätzt werden. Dies ermöglicht, bei Kenntnis

zukünftiger Lastwahrscheinlichkeiten, eine Lösungsempfehlung, die die Gesamtkosten minimiert.

PPSS wird technisch durch eine Performance-Wissensdatenbank ermöglicht, die aus den Ebe-

nen Präsentation, Analyse, und Datenhaltung besteht. Für die Evaluierung in einer realen Um-

gebung wird diese Wissensdatenbank implementiert. Ausgewählte Prozessschritte werden dabei

auf der Präsentationsebene durch eine grafische Oberfläche unterstützt. Diese wird im Rahmen ei-

nes Pilotbetriebes einer Gruppe von Testbenutzern aus zwei unterschiedlichen Rechenzentren zur

Verfügung gestellt. Das Benutzer-Feedback belegt die Nützlichkeit und weist auf Kostenersparnisse

hin, die im Vergleich zu bisherigen Ansätzen entstehen.
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1 Introduction

“We’re entering a new world in which data may be more important than software.”

Tim O’Reilly, CEO of O’Reilly Media

1.1 Motivation

The incredible growth of the world’s dependence on computers and on-line services (John-

son and Marker, 2009) will likely increase data center’s electricity demand in the future.

Both public organizations and private corporations face rapidly growing information pro-

cessing requirements in order to support digital services in various industrial sectors such

as manufacturing, finance, transportation, or housing (Goudarzi et al., 2012). Recent

trends in the worldwide labor market reflect this development under the term digital

transformation (Matt et al., 2015; Gimpel and Röglinger, 2015), which current hypes such

as big data, machine learning, and the internet of things contribute to. In 2017, Frey and

Osborne investigate the probability of job automation (which they refer to as computer-

ization) for 702 occupations and estimated impacts on the US labor market. According

to their study, 47% of total US employment is at high risk to be automated by 2033.

While “routine tasks involving explicit rule-based activities” show highest risk according

to related literature and common sense, they additionally identified domains that require

“non-routine cognitive tasks” to be entered by algorithms for big data in the future (Frey

and Osborne, 2017, p. 44). (Ironically, machine learning techniques were used to classify

occupations into groups of computerization risk.) The global consequences across whole

industries and related occupations are severe; many experts proclaim the fourth industrial

revolution which relies heavily on connected devices and data analytics (Lasi et al., 2014;

Lee et al., 2014; Rüßmann et al., 2015). In a local study, the Centre for Social Research

Halle (ZSH) in Saxony-Anhalt identified processes of the ICT (Information and commu-

nications technology) sector itself to be most affected by the ongoing digitization (Heyme

and Menge, 2017), resulting in some sort of digitization of IT (Information technology).

While this may sound paradoxical at first, the progress becomes historically reasonable:

basic principles such as continuous improvement and modularization were adapted from

the manufacturing sector in the course of the Industrialization of IT (Walter et al., 2007).

As manufacturing faces the next revolution under the term Industry 4.0, it may be reason-

able to apply the underlying principles of interconnection, automation, and data analysis

also to IT operations. Thinking ahead with respect to the ongoing transformation, IT

processes which strongly rely on human experts will become subject to higher degrees of



2 Multi-dimensional server consolidation

digitization in the future. A prominent example, central to IT operations, is the process of

managing IT capacity; it is known to be a complex task which involves high manual effort

(Cherkasova and Rolia, 2006) and, in many cases, large amounts of historical measure-

ment data. This creates an excellent scenario to leverage the potential of computational

intelligence and data analysis. In turn, the application area of the capacity management

process is highly business-critical: IT resources being managed are utilized by enterprise

applications (EA) which support corporate business functions and business tasks. The

fulfillment of non-functional software requirements such as availability and performance

for enterprise applications is crucial to the successful and effective execution of business

processes (Grinshpan, 2012; Beloglazov et al., 2012). In fact, the negative consequences

of performance failures may include damaged customer relations, lost income, increased

maintenance costs, delayed project schedules, and project failures (Tudenhöfner, 2011).

The process of managing capacity, redesigned in the course of the digital transforma-

tion, is expected to address optimization potential more effectively. Accompanying saving

potential must be exploited as information technology, on the other hand, represents a

major cost factor for enterprises. According to the worldwide IT spending forecast by

Gartner, the overall IT costs will grow by 3.2% to a total of 3.8 trillion dollars in 2019.

Particularly, costs for enterprise software will grow by 8.3% (Gartner, 2018b). The total

cost of ownership (TCO) for data centers is often dominated by energy costs, which have

dramatically increased in the recent decade (Johnson and Marker, 2009; Filani et al., 2008;

Orgerie et al., 2014). On a global scale, 1.3% of the worldwide electricity consumption

could be assigned to data centers in 2011 (Koomey, 2011). This estimation is consistent

with Speitkamp and Bichler (2010) who state that approximately 0.5% of global CO2

emissions can be assigned to running servers. In some cases, 40-50% of the total data

center operational budget is spent on energy costs for IT components (Filani et al., 2008).

Although the energy efficiency of certain hardware components has been improved in re-

cent years, at the same time, the overall energy consumption of data centers has increased

by 56% from 2005 to 2010 (Koomey, 2011; Splieth et al., 2015; Müller et al., 2016b).

Minas and Ellison (2009) state that energy expenses will soon equal hardware costs if

computed over a period of three years. This causes an “invisible crisis” in data centers

(Johnson and Marker, 2009; Brill, 2007), which, naturally, raises additional concerns about

pollution, carbon emissions, and environmental sustainability. Accordingly, the current

top three global risks, in terms of impact and likelihood, are environmental: “Extreme

weather events”, “natural disasters”, and the “failure of climate-change mitigation and

adaption” (Collins, 2018, Fig. 1). Hence, governmental institutions such as the U.S. EPA

and the European Commission have recognized the need to maximize data center’s energy

efficiency in order to extenuate resulting greenhouse gas emissions and keep disruptive

effects on electricity infrastructure under control (Johnson and Marker, 2009).

In short, enterprise applications and their performance are increasingly vital to busi-

ness continuity and, at the same time, cause rapidly growing expenses. Therefore, IT

Service Management (ITSM) frameworks such as the IT Infrastructure Library (ITIL)
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and International Organization for Standardization (ISO) 20000 embed the task of bal-

ancing performance and operational costs into the capacity management process. Since

EAs need to permanently adjust to individual, ever-changing business environments (Grin-

shpan, 2012) which they support, capacity management requires to continually optimize

resource provisioning in an as little as possible, as much as necessary-manner in order to be

competitive. Therefore, the provisioning of minimum hardware capacity that still ensures

cost-effective operations, aligned to given service levels and business constraints, is at the

heart of capacity management decisions. According to several studies, however, average

server utilization levels usually vary between 10 and 20 percent in practice (Müller et al.,

2016b; Beloglazov and Buyya, 2010a; Speitkamp and Bichler, 2010). In June 2016, the

United States Data Center Energy Usage Report forecasted the average utilization of active

volume servers to be approximately 15% for internal data centers and 25% for data cen-

ters of service providers in 2020 (Shehabi et al., 2016). Such low utilization rates severely

affect energy usage since servers do not run energy-proportional. In fact, idle resources

consume up to 70 percent of their peak power (Beloglazov and Buyya, 2010a; Shehabi

et al., 2016; Barroso and Hölzle, 2007). Therefore, raising utilization levels barely effects

power consumption of individual servers but minimizes the total number of servers needed.

On this matter, recent studies state that up to 30 percent of all servers operated in the US

were not used in 6 months or more and, thus, termed as comatose (Koomey and Taylor,

2015; Kaplan et al., 2008). Although several approaches exist to address existing consol-

idation potential, those appear to be limited in terms of effectiveness and applicability.

In practice, various dependencies and existing requirements related to, e.g., compatibil-

ity, fault tolerance, licensing, or security, limit degrees of freedom in service placement

and, therefore, reduce the addressable optimization potential (Shaw, 2004; Hyser et al.,

2007; Dang and Hermenier, 2013). Such constraints are widely disregarded by existing

consolidation algorithm implementations although known to be mandatory (Speitkamp

and Bichler, 2010; López-Pires and Báran, 2015; Pires and Barán, 2013). Furthermore,

the credibility of calculated solution candidates in many cases remains questionable and

is rather a matter of trust or additional expert consultation. Solution feasibility is usually

evaluated from a strong technical perspective with respect to capacity savings. As stated

by Stillwell et al., “in practice, however, resource management objectives are expressed

based on higher level metrics that are related to user concerns, such as service response

time or throughput”(Stillwell et al., 2010, p. 6). Likewise, service level agreements (SLA)

are typically expressed from a user perspective to ensure measurability at service consumer

site. Most server consolidation approaches consider those higher level metrics only indi-

rectly by mapping them to resource capacity values in a reasonable way (Stillwell et al.,

2010). Yet this high level of abstraction does not allow for quantifying response times

or other related user-level metrics and strongly limits solution evaluation with respect to

given SLAs.

Hence, to provide confident decision support as part of the capacity management

process, the performance of an EA needs to be predicted and evaluated considering dif-
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ferent design alternatives. As stated by Brunnert and Krcmar (2015), ideally, a system

which matches the final production environment would be desirable during capacity test-

ing. Yet this precondition is rarely fulfilled and smaller scale systems are hardly compa-

rable (Brunnert and Krcmar, 2015). “We cannot do anything about performance until

we have something running to measure” is a statement from practice that was identified

by Tudenhöfner (2011, p. 11) as a frequent argument for managing performance reac-

tively. However, one can argue that, due to the intensive use of commercial off-the-shelf

(COTS) software in the field of enterprise applications (Pollock et al., 2003; Somers and

Nelson, 2001), there is actually something running to measure, even though it is likely

not operated within the enterprise that applies capacity management. If widespread and

well-established standard software is utilized, there is a high likelihood that components

of the system whose capacity is being managed, are already in production in various en-

vironments. Moreover, those components may already produce performance-related log

data as part of application performance monitoring (APM) activities (Brunnert et al.,

2015; Rabl et al., 2012; Sydor et al., 2010; Gartner, 2017). Such data contain information

in terms of performance affecting patterns that need to be extracted and processed in

order to transfer the implicit knowledge to other environments. As confirmed in the ITIL

service design publication, “[...] it is beneficial to identify similar customers of the product

and to gain an understanding of the resource implications from them” (Hunnebeck et al.,

2011, p. 174). For this purpose, a digitized capacity management process may incorporate

machine learning techniques in order to design a pure black box approach that does not

require potentially expensive expert knowledge about the system structure and behavior.

This way, performance assessment is enabled already in the design or redesign phase of

planned or existing enterprise application environments and can be applied, e.g., as part

of server consolidation efforts. The resulting approach serves as another example for the

introduced era of digital transformation with the objective to increase efficiency and save

personnel expenses.

To account for the aspects outlined above, the data driven capacity management

method, presented in this work, is designed for the optimization of large environments

of heterogeneous servers and allows for the definition of typical constraints when placing

services on available servers. To reflect the QoS, a performance evaluation component

integrates machine learning techniques in order to predict response times on the level of

business transactions. This is enabled by the cross-environmental nature of the method,

which makes it applicable already in the design stage without the need to involve costly test

systems and expert knowledge. The method is termed Performance prediction supported

service placement (PPSS) and is expected to help transforming arguments from an expert-

and, therefore, sometimes opinion- or political driven manner to a more solid and less

questionable process. The approach complies with a recent Gartner report which identified

the improvement of process efficiency as the most expected application field to be addressed

by data and analytics, followed by the development of new products and the enhancement

of customer experience (Gartner, 2018a) as also intended by the present work.
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1.2 Research design

The term design may refer to both the process of design and its output ((Hevner et al.,

2004) cited from (Walls et al., 1992)). This section introduces the research design which

includes the overall research goal addressed by the thesis at hand and the process of

achieving the objective. In business informatics, two common research goals are to reduce

costs or to increase quality, usually enabled by the use of information technology. Since

the research artifact presented in this thesis was developed in the context of an industry-

funded research project, those two objectives hold true as initial impulses for the presented

work either. More specifically, the process followed to achieve the objective relies on a

hypothesis, which can be expressed as follows:

Hypothesis

The usage of off-the-shelf enterprise applications is dominated by built-in standard

business transactions over customized functionality. Therefore, capacity management

tasks can be supported by standardized algorithms and performance models that

were trained and tested on the basis of monitoring data from various operational

environments.

A validation of the hypothesis would enable to achieve the overall research goal.

Since machines learn faster than experts (seconds over years), concepts related to big

data and machine learning may have the potential to enable new capacity management

services. These services enable to leverage economies of scale and to reduce optimization

costs while ensuring satisfactory solution quality. As a consequence of the ongoing trend

to consume computing power as a service, the capacity planning of large environments

from scratch rarely occurs as opposed to the optimization and enlargement of existing

environments, which may result from changed or additional business requirements. Such

optimizations are usually carried out as part of server consolidation projects which aim

at the minimization of total resource capacity while ensuring sufficient performance for

any running service at any time. Therefore, the application area of the research artifact is

narrowed down to the central problem of service placement within an existing environment;

it is known to be a complex task that incorporates a number of challenges (Cherkasova

and Rolia, 2006; Müller et al., 2016b). Hence, the research goal of the presented work is

defined as follows.

Research goal

The research goal of this thesis is to evaluate the potential of cost reductions for en-

terprise application consolidation efforts while improving solution applicability. The

goal is pursued by applying standardized algorithms and prediction models to the

problem of service placement in a way which efficiently supports optimization deci-

sions. Solution applicability is subject to the compliance with given realities of the

solution’s application area. Therefore, decision support must consider total costs of

a solution, resulting from its operations costs on the one hand and compliance with
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performance-related service levels and constraints on the other hand.

The strategy to achieve the goal is to increase standardization and reduce man power

by centralizing parts of the capacity management process and supporting those parts us-

ing black-box techniques that do not require expensive expert knowledge. A successful

demonstration of the strategy validates the hypothesis and allows to achieve the research

goal. To achieve the objective, a useful artifact is to be designed. In contrast to behav-

ioral science whose goal is truth, this research is conducted by applying the design science

paradigm whose goal is utility (Hevner et al., 2004). Therefore, the design science research

framework was adapted for this research project as presented in Figure 1.1. Following this

methodology, the designed artifact (depicted in the center of Figure 1.1) is a method to

solve a problem which includes formal algorithms and machine learning techniques. As

pointed out by March and Smith (1995), methods solve problems by translating one model

into another model. In this context, models abstract a real world situation (Hevner et al.,

2004) using constructs which provide domain-specific vocabulary to describe a problem

and its solution space (March and Smith, 1995). The method, presented in this work,

aims at translating a model which represents the present design of an application environ-

ment into a new model, representing an optimized design of this environment. Constructs,

used by the models to represent designs, include capacity providing and capacity consum-

ing entities such as servers and services, their allocation, as well as individual placement

constraints. To demonstrate feasibility and suitability to the intended purpose, an instan-

tiation of this method is applied to a real-world problem from the targeted environment.

This concerns the service placement problem and involves a number of constraints and do-

main characteristics which represent business needs that are to be gathered and addressed

by the artifact. This way, research relevance is assured. To build and evaluate the artifact

rigorously, existing means from the scientific knowledge base are used. Finally, as utility

informs theory (Hevner et al., 2004), the artifact itself contributes to the knowledge base.

Therefore, a number of research questions (RQ) are raised in the following whose answers

help to achieve the research goal and may serve as groundwork for future efforts in the

field of capacity management.

The formulation of research questions helps to identify relevant measures for evalua-

tion and reveals contributions that are being made during build and evaluation iterations.

Therefore, the process of providing answers contributes to the scientific knowledge base

and, finally, produces an evaluated artifact which can be applied in an appropriate envi-

ronment (Hevner et al., 2004). In the following, each research question is introduced.

The hypothesis presumes that application performance monitoring data from differ-

ent operational environments can be integrated in order to serve as training data for

performance models. The fact that enterprise applications broadly utilize COTS software

(Somers and Nelson, 2001; Pollock et al., 2003; Pries-Heje and Dittrich, 2009; Dittrich

et al., 2009; Holland and Light, 1999; Hong and Kim, 2002) contributes to this assump-

tion. However, even standard software comprises both standard business transactions and
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Figure 1.1: Design Science framework used to achieve the research goal (based on Hevner
et al. (2004)).

customer-specific transactions. Standardized performance models, in turn, must be related

to an entity that is present across various measured instances of the same software. In the

domain of enterprise applications, business transactions represent objects which provide

functions for different processes within the enterprise such as the collection of information

or the interaction with business partners (SAP, 2018a). Hence, to ensure a vast amount of

training data, usage patterns of the EA must include business transactions that are avail-

able to many instances of the software. This would not hold true for customer-specific

transactions that are created to serve specific needs of individual environments. Therefore,

a certain utilization level of built-in functionality is required to support the hypothesis.

This is investigated using the example of a major COTS EA vendor.

Research question 1

How standardized is a widespread commercial off-the-shelf EA used in practice?

In addition to a sufficient standardization degree, it is important to investigate actual

server utilization levels in order to validate the practical relevance of the work. In general

terms, the lower utilized the resources, the larger the optimization potential that can be

addressed by consolidation approaches.

Research question 2

What are average server utilization levels in environments of widespread commercial

off-the-shelf EAs in practice?

EAs are of exceptional significance for business continuity (Müller and Turowski,

2015). Consequently, the application area of the artifact is characterized by various op-

erational constraints in order to guarantee reliable operations according to agreed service

levels. Such constraints may be related to, e.g., high availability, information security

or performance. It is therefore part of the research to identify and formulate existing

constraint types so that the same can be reflected during the optimization process.
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Research question 3

Which types of service placement constraints exist and how to formulate them in order

to enable effective consideration by optimization algorithms?

Solutions to the service placement problem are obtained by means of optimization

algorithms in order to achieve a high degree of automation. The algorithms must consider

aforementioned constraints and special characteristics of the problem which result from

the application area of EAs. It is to be investigated which type of algorithm addresses the

problem most suitably.

Research question 4

What are suitable algorithms to solve multi-dimensional server consolidation problems

in order to feasibly balance performance and costs within EA environments?

The hypothesis implies the application of machine learning techniques to predict per-

formance measures within the application area. Therefore, the accuracy of this approach is

to be investigated by means of model validation techniques from the data science domain.

Research question 5

How accurately do machine learning techniques predict the performance of a com-

monly used standard business transaction if they were trained on mass data from

different operational environments?

Answers to the research questions are gathered by different means. Real monitoring

data, provided by the project’s industry partner, serves as one major source of information.

The monitoring data was initially transformed into a relational database schema and

imported into an in-memory database for subsequent analysis and processing. The schema

forms the data layer of an application performance knowledge base that could be queried

throughout the entire research project in order to validate assumptions and to gather test

data for experiments. Further evidence results from expert interviews and reviews of the

scientific literature.

To carry out effective design science research, Hevner et al. (2004) define seven guide-

lines which they advise to address in a project-specific degree. Below, these guidelines are

aligned with the present research project in order to introduce scientific details of the work.

Guideline 1, “Design as an artifact”, defines the intended output of the research.

In this thesis, a method is designed which can be instantiated by capacity managers in

order to identify optimized designs for existing EA environments with respect to costs and

performance. The artifact includes algorithm types and model types which are instantiated

for the purpose of demonstration.

Guideline 2, “Problem relevance”, is investigated both practically and scientifi-

cally. The work at hand was conducted as part of an industrial research project with the

clear objective to make research results available in the market. Therefore, customers and
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experts of the author’s industry partner provide business needs which are addressed by the

artifact. Furthermore, instantiations of the artifact are offered as services to pilot users

who provide feedback with respect to the practical relevance and usefulness. At the time

of writing this dissertation, a business model is designed in order to integrate parts of the

research output into the service portfolio of the industry partner. On the other hand, the

research gap is elaborated by means of the scientific literature.

Guideline 3, “Design evaluation”, is demonstrated observational, experimental,

and descriptive. Sonnenberg and vom Brocke (2012) point out that evaluation should be

conducted continuously throughout the research project in order to assess the progress

of the evolving artifact. Therefore, the authors argue for a design-evaluate-construct-

evaluate pattern which may expand the well-known build-evaluate pattern. The work at

hand reflects this pattern as the design phase of the artifact relies on accurate performance

models which must be evaluated ex ante, that is, according to Sonnenberg and vom Brocke

(2012), before they are put into use. Additional ex post evaluation activities are carried

out after the construction of the artifact. Here, evaluated performance models are applied

as part of the artifact in a case study. Typical evaluation criteria for methods include their

efficiency, generality, operationality, quality and ease of use (Sonnenberg and vom Brocke,

2012; Hevner et al., 2004). As proposed by Sonnenberg and vom Brocke (2012), evaluation

of this work’s artifact was carried out on four levels, which are termed EVAL 1 to EVAL

4. Table 1.1 lists the evaluation criteria and applied methods for each evaluation level.

The last column of Table 1.1 points to chapters of this work that address the respective

activities.

Evaluation
level

Evaluation criteria Evaluation method Chapter

EVAL 1 Relevance, importance,
novelty, (economic) feasi-
bility

Literature review, focus
groups, expert interviews,
market analysis

State of the
art, Design

EVAL 2 Applicability, level of de-
tail

Descriptive analysis,
benchmarking

State of the
art, Design

EVAL 3 Solution quality, efficiency,
consistency, generality,
utility

Experimental field study,
demonstration in a case
study

Evaluation

EVAL 4
(partly)

Ease of use, operationality,
fidelity with real world
phenomena, impact on
artifact environment and
user

Productive use by pilot
customers in reality, sur-
vey, semi-structured inter-
view

Evaluation

Table 1.1: Applied evaluation levels in this work.

Evaluation activities on the level of EVAL 1 are intended to provide certainty about

the research relevance and novelty. Therefore, the state of the art is investigated, both



10 Multi-dimensional server consolidation

from a scientific and practical point of view. The classification of related artifacts helps

to identify a research gap. Certain aspects of the work were evaluated using focus groups

of industry experts who ensure practical relevance and importance, e.g., during the as-

sessment of placement constraint types in Section 3.2.3. Given a relevant research gap,

activities of EVAL 2 evaluate the applicability of a designed artifact. Here, characteristics

of the application area are to be considered as analyzed in Section 2.1.1 (standardiza-

tion degree of EAs) and Section 2.2.1 (utilization levels of EA servers). On the other

hand, design decisions of the artifact must be evaluated before actual construction, e.g.,

via benchmarking. This includes the validation of models as carried out in Section 3.3.2.

As the artifact comprises service placement algorithms and performance prediction tech-

niques, EVAL 3, for the sake of clarity and comprehensibility, is divided into EVAL 3.1

and 3.2. Service placement experiments of EVAL 3.1 belong to the class of experimen-

tal evaluation since the constructed artifact is executed in artificial use cases. However,

the data, in all investigated cases, comes from real business environments. Therefore,

characteristics of a field study are fulfilled either, resulting in an observational evaluation.

In that sense, EVAL 3.1 activities are referred to as field experiments. Results of the

field experiments are analyzed with respect to consistency, solution quality and efficiency

of algorithmic performance. Due to the number of experiments and the variety of used

data, generality is evaluated either. While EVAL 3.1 evaluates the artifact in a rather

quantitative manner, for EVAL 3.2, a qualitative approach is chosen as it is intended to

evaluate the utility of solutions. This may be carried out descriptively and scenario-based

by constructing detailed scenarios around the artifact (Hevner et al., 2004). Therefore, the

prediction component of the artifact is applied in a case study which was constructed to

study the artifact in-depth and to demonstrate utility. Finally, EVAL 4 requires to apply

the artifact in a business environment. Therefore, the two main components of the artifact

(placement and prediction) are technically implemented as back end engines of the method.

Furthermore, the artifact relies on the existence of an application performance knowledge

base whose implementation is described in Section 4.4, too. This way, it could be studied

how the artifact fits into the technical information system (IS) architecture (Hevner et al.,

2004). In addition, a user interface and a feature to import customer-specific data into the

application performance monitoring knowledge base (APM-KB) enable the usage of the

artifact by a group of pilot customers for their individual capacity management challenges.

User feedback was collected and analyzed as part of this ex post evaluation step. There-

fore, EVAL 4 is carried out observational and analytical. However, since only a subset

of the constructed components was offered to the pilot users, resulting user feedback and

drawn conclusions are limited. Therefore, activities on the level of EVAL 4 are referred to

as partly EVAL 4 evaluation.

Guideline 4, “Research contributions”, is addressed by answering the research

questions. As the work at hand describes an interdisciplinary research project, findings

contribute to the domains of business informatics, multi-dimensional optimization, and

data science.
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Guideline 5, “Research rigor”, is fulfilled by applying established methods from

the field of optimization and knowledge discovery. Consequently, the artifact is built upon

existing findings from the scientific knowledge base, including heuristics and metaheuristics

as well as prediction model types. Limitations of the method are clearly discussed.

Guideline 6, “Design as a search process”, requires to satisfy existing laws in the

application area when building the artifact. Due to the study of existing literature and the

continual consultation of industry experts, the artifact is aligned with characteristics of the

problem environment. Examples include the consideration of identified service placement

constraint types and existing server heterogeneity of the environments under study.

Guideline 7, “Communication of research”, is accomplished to both the scien-

tific community and practitioners who utilize the artifact. Resulting publications include

international conference papers, journal articles and practical guides. The subsequent

paragraph summarizes publications being made by the author to communicate the re-

search.

1.3 Publications of the author

The work at hand builds upon previous publications, evaluated by reviewers of interna-

tional conferences and journal committees. However, this thesis is intended to integrate

all parts to a coherent and value-adding artifact. In the following, previous publications

are summarized in chronological order and put into context of this work’s research goal.

While the problem relevance was unquestioned by the industry partner, a research

proposal was published with the intention to receive initial feedback regarding the research

relevance from the scientific community (Müller and Turowski, 2015). As part of the

compiled review, experts of the addressed field rated relevance with 20 and originality

with 18 on a scale from 1 (not relevant respectively poor) to 20 (very relevant respectively

very good). Given certainty of the planned artifact’s relevance, the data to be analyzed

was imported into a relational in-memory database. The import process of the dataset,

comprising around 230 million records, was investigated from a scientific perspective in

order to improve import performance, resulting in a publication regarding self-configuring

data imports for cloud environments (Müller et al., 2015b). In the same year, Bosse et al.

(2015) address the evaluation of design alternatives for IT service providers with respect

to availability, performance and costs by means of analytical prediction models.

In 2016, two major publications addressed the problem of service placement with the

objective to improve energy efficiency and reduce total cost of ownership (Müller et al.,

2016b; Müller and Bosse, 2016). In order to validate the relevance measurably, Müller

et al. (2016b) identify optimization potential by analyzing mean server utilization levels.

A study of related work resulted in a research gap that was addressed by formulating a

one-dimensional bin packing problem with the objective to minimize the number of servers.

To identify design alternatives, seven algorithms, including heuristics and metaheuristics

were developed and evaluated with respect to solution quality. In an experimental setting

of a multi-case study, four real EA environments of different sizes were optimized, reducing



12 Multi-dimensional server consolidation

the overall server capacity significantly. Subsequent iterations improved the approach as

published in (Müller and Bosse, 2016). An analysis of monitoring data revealed that both

CPU and memory demand must be considered in the problem formulation, resulting in

a dynamic multi-dimensional bin packing problem with two resource dimensions and one

time dimension. Eight algorithms were used to solve the problem, representing improved

versions of the algorithms presented in (Müller et al., 2016b) and one additional grouping

genetic algorithm. For evaluation, historical workload traces from four productively op-

erated data centers were used. A best-fit heuristic that uses a genetic algorithm revealed

best solutions, saving up to 53% of existing capacity while effectively reducing the risk of

resource overloads.

The energy consumption of IT services was further investigated in (Müller et al.,

2016c). The developed procedure model enables to assign monitored energy consump-

tion of hardware components to business transactions so that costs can be allocated to

overlaying IT products or organizations. By means of multiple linear regression, energy

consumption was predicted on the services layer using workload data from a performed

benchmark. Results are intended to attain more granular energy monitoring in order to

comply with a product-oriented information management and the ongoing use of cloud

offerings in business departments.

After it could be shown how to solve the service placement problem with respect

to the minimization of operational costs, an additional research stream focused on the

quality of service (QoS). To guarantee that the target design will comply with service

level agreements in practice, two fields were further investigated to be incorporated into

the problem: Performance prediction and service placement constraints.

In (Müller et al., 2017c), six different prediction techniques were investigated to be

applied on application performance monitoring data. Historical workloads from more

than 18,000 instances of COTS EAs were used to train and test models which predict the

mean response time of selected standard business transactions. Promising results enable

to enrich capacity management activities by performance predictions in order to analyze

what-if scenarios in the early design phase before actual service placement.

In (Müller et al., 2017a), the results are combined to a concept which enables to ap-

ply the adjusted artifact in its intended environment. Therefore, a BPMN process model

is introduced which enables to deliver capacity planning as a service to potential con-

sumers. The model is based on an established capacity planning process for web services

but was adapted to fit the characteristics of enterprise applications. Furthermore, tasks

from knowledge discovery and data science are incorporated to ensure accurate perfor-

mance predictions. In a scenario-based evaluation, published in (Müller et al., 2017b),

the approach is applied to evaluate alternative service placement solution candidates with

respect to resulting service performance. On the contrary, (Müller et al., 2017a) demon-

strates the usefulness of the developed approach in a capacity planning scenario where a

new EA is to be sized in alignment with alternative workload scenarios.

Further important aspects of service quality were investigated by incorporating op-
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erational requirements related to, e.g., high availability or information security, into the

problem formulation. Such requirements result in a number of service placement con-

straints which must not be disregarded during the optimization to ensure practical appli-

cability in the domain of EA. In the course of writing this dissertation, a journal article

is under review, analyzing the effect of eight placement constraint types on optimization

algorithm performance and solution quality (Bosse et al., 2019). Some of the algorithms

and experiment results were also used in this thesis during the design of the placement

component and its evaluation on level 3.1.

Finally, a number of publications, not directly related to the artifact presented in this

work, evolved over the project duration. As the research involved the use and admin-

istration of in-memory database technology, corresponding knowledge was shared in the

German SAP HANA administration book (Braasch et al., 2016). Furthermore, a paper

and a journal article, published in the beginning of the project, present a database mi-

gration method with the focus on performance and self-adaptiveness, contributing to the

general paradigm of data-driven software operations in accordance to existing capacity

limits (Müller et al., 2014, 2015a).

1.4 Thesis structure

The thesis is structured according to the design science research framework. Therefore,

the introduction finishes with this paragraph, leading over to the questioning of relevance

and a discussion of the state of the art. Based on the results, a research gap is identified

which dictates requirements the research artifact must comply with (EVAL 1).

The corresponding requirement engineering process represents the initial activity of

the subsequent design chapter. The artifact represents a capacity management supporting

method. Consequently, a process model introduces the designed method before diving into

the two back end modules of the process. These modules support the service placement

and a subsequent performance projection. The designed method is designed to be used

as a service and involves two actors: The capacity management provider and the capacity

management consumer.

As argued in the previous section, evaluation activities are incorporated into the

document structure following the extended research pattern of design-evaluate-construct-

evaluate (Sonnenberg and vom Brocke, 2012). Since the overall method’s applicability is

limited by the accuracy of the performance prediction module, an early ex ante evaluation

activity (EVAL 2) was carried out already in the design stage in order to validate perfor-

mance models. After successful model validation, the same can be released to production

and utilized by capacity management consumers. Their perspective is taken in the eval-

uation chapter. Here, designed models are applied by means of field experiments and a

case study with real data, in order to evaluate ex post criteria such as generality, utility

and efficiency (EVAL 3). The final evaluation phase describes the technical and proto-

typical implementation of the artifact into a productive service, offered by the project’s

industry partner to a group of selected pilot users. By means of a feedback survey and
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semi-structured interviews, additional ex post criteria such as operationality, ease of use

and the fidelity with real world phenomenon (EVAL 4) could be evaluated. To summarize,

the design chapter describes the artifact’s build rather from a provider perspective while

the evaluation chapter addresses concerns of the consumer perspective.

The final chapter summarizes the findings and scientific contributions. It discusses

the limitations of the work and, on this basis, proposes future research directions. The

work comprises three appendixes: Appendix A and B provide additional data and illus-

trations on the evaluation of performance models and solution algorithms. Appendix C

shows screenshots of the graphical user interface that was developed to support evaluation

activities on the level of EVAL 4.

Each Section ends with a short summary of its main claims. Throughout the whole

document, contributions to the research questions are being made. For the sake of conve-

nient reading, these are highlighted in light-gray boxes.
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2 State of the art

This section introduces basics that are related to the application area and to techniques

utilized by the research artifact. Furthermore, current approaches to address the research

problem are investigated and classified. Based on that, a research gap is identified.

2.1 Capacity management

Capacity Management is a process that aims at provisioning a cost-effective amount of

resource capacity to IT services that is aligned with current and future business needs.

As defined in ITIL, it is carried out in the service design stage but is also involved in all

other stages from service strategy to operation and improvement. Starting out with a brief

introduction of EA and data center characteristics, relevant to capacity management, this

section provides an overview of main activities and challenges when managing IT capacity.

2.1.1 Characteristics of enterprise applications

Various definitions for EAs exist. This work refers to the term EA as defined by Kusic

et al., whose definition builds upon Li and Bauer (2005):

“We broadly define an enterprise application as any software hosted on a server

which simultaneously provides services to a large number of users over a com-

puter network. These applications are typically hosted on distributed com-

puting systems comprising heterogeneous and networked servers housed in a

physical facility called a data center.” (Kusic et al., 2009, p. 2)

As further pointed out by Li and Bauer (2005, p. 1), an EA may comprise “one or more

corporate applications, such as financial, accounting, and human resource applications,

frequently providing critical business functionalities”. Therefore, the authors conclude

that business performance is directly depending on EA performance. Grinshpan (2012)

adds that EAs support an ever-changing business environment, to which they perma-

nently need to adjust. Due to the exceptional importance of EAs for business continuity

(Müller and Turowski, 2015), performance failures result in severe consequences. As an-

alyzed by Tudenhöfner (2011) and Cherkasova et al. (2009), those may include damaged

customer relations, lost income, increased maintenance costs, increased hardware costs,

delayed project schedules, and project failures. Managing EA performance is a contin-

uous challenge, due to the complex nature of EAs and their physically distributed and

co-dependent components. While individual component performance is well manageable,
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Figure 2.1: Logical EA layers build possible entities for performance measurement.

end-to-end performance from a user perspective involves all logical and physical layers

of the EA and, therefore, is hard to predict (Li and Bauer, 2005). From a hardware

perspective, those layers typically include a client PC, one or more application servers,

network components, and a database server. Accordingly, performance can be measured

at different points. Logical entities of an EA may be grouped into the layers illustrated by

Figure 2.1 using the example of an enterprise resource planning (ERP) system. Here, the

execution of business functions is grouped into transactions which are invoked by users by

entering a so called transaction code. After a user logged in to a system, he is dispatched

to one of the available application instances and remains there until his user session is

terminated. Transactions access data, stored in the database system, via select, insert,

update or delete statements. These can be generalized to database service units (Wilhelm,

2001).

The complexity of today’s business environments is rarely tackled by internally de-

veloped and maintained software, instead, companies implement standardized (out-of-the-

box) commercial systems, offered by software vendors such as, e.g., Oracle or SAP, to a

large number of customers (Li and Bauer, 2005; Pollock et al., 2003). Sample Identifiers

on the right in Figure 2.1 use the example of an EA which utilizes SAP software. Such

COTS EAs offer a large number of built-in business transaction types that support stan-

dard business processes. Although EA introduction projects seek to use as much standard

functionality as possible in order to save costs (Somers and Nelson, 2001), some attributes

may require to develop customized business transaction types within the COTS EA.

As Brunnert et al. (2015) point out, performance measurements are dependent on the

system and the workload and are not directly transferable to a different system. There-

fore, a certain level of similarity with respect to both system type and workload would

be needed in order to transfer observations and derive knowledge across different envi-

ronments, as intended by the research artifact. Consequently, the data basis for model

creation must be limited to standard transaction types, possibly used by a large number of

customers. For this reason, the hypothesis of this work relies on a widespread distribution

of COTS software for EAs and, furthermore, on the assumption that built-in functional-
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ity generally dominates the usage pattern over customer-specific code. Only if this holds

true, a sufficient amount of training data may be gathered for any cross-environmental

performance models.

In a survey, involving 86 organizations who dealt with ERP implementations, Somers

and Nelson (2001) identify minimal customization as a critical success factor for ERP

implementations. The authors cite another survey by Davis and LaMonica (1998), ac-

cording to which 41% of the fortune 1000 companies re-engineer their business to fit the

application while only 5% customize the application to fit their business. Since this survey

is relatively old, an analysis of real monitoring data from productively used ERP systems

is carried out as part of this work, investigating their actual customization degree. The

analysis contributes to the evaluation of applicability of the research artifact, designed in

this work.

As the dataset is used in different stages of the present document, it is reasonable to

introduce, once in the beginning, a short characterization of the data on which any data-

driven design decisions of this thesis are based: Many applications come with integrated

software performance monitors (referred to as software instrumentation), which produce

log information including performance measures whenever certain code is executed (Brun-

nert et al., 2015). In the domain of SAP systems, those logs are termed statistical records.

The total dataset at hand comprises statistical records from more than 18.000 running

SAP application instances, each monitored up to three weeks over the last ten years as

part of a consultancy service. The total run-time equals more than 700.000 measured

hours of system performance whereas 1 exabyte of data was transferred between applica-

tion and database servers. In total, over 6 billion transaction calls were logged, resulting in

more than 16 billion dialog steps (cf. Figure 2.1). While run-time information is suitable

to identify workload profiles, the data holds additional information about the landscape

topology of each measured environment. More than 16.000 different hardware configura-

tions provide server capacity information, indicating possible performance patterns. Some

of the records such as those referring to non-productive systems or incomplete tuples were

excluded, depending on the scope of the respective analysis. In the following, the assump-

tion of standard transaction dominance is to be evaluated as addressed by RQ 1. The

customization degree of an EA may be computed in two alternative ways:

• On the basis of transaction calls: The customization degree equals the percent-

age of transaction calls which refer to customer-specific transactions.

• On the basis of CPU time: The customization degree equals the percentage of

CPU time that was spent on processing customer-specific transactions.

Accordingly, the standardization degree equals 100 minus customization degree. Due to

the nature of the data model (records are grouped by transaction code and time interval),

the transaction-based method disregards redundant calls of the same transaction type in

one hour. Therefore, the CPU-based method was designed. Both values can be computed

on the level of individual instances, systems or environments. In the domain of SAP
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Figure 2.2: Customization degree of investigated EA environments.

systems, customers are encouraged to use a specific namespace when developing own

transaction types. Accordingly, codes of customized transactions start with the letters Y

or Z. These transaction types are counted when applying the former method. Figure 2.2

shows histograms for the transaction-based and CPU-based customization degree of 1.230

investigated environments whose systems were filtered for productive systems that were

measured for more than one week.

With regard to the cumulative frequency, shown in the left of Figure 2.2, about 70%

of the investigated environments indicate a customization degree of less than 26% on the

basis of transaction calls. Considering CPU time, more than half of the environments

show customization degrees below 30% (cf. Figure 2.2 on the right). Mean values account

to 20.12% (on the basis of transaction calls) and 31.51% (on the basis of CPU time). It

was furthermore analyzed how the size of an environment (represented by the number of

running systems) affects the overall customization degree (cf. Figure 2.3). This way, the

application area of the artifact may be narrowed down to a certain size of environments.

Most of the data points in Figure 2.3 represent small and medium environments of

1-10 systems with customization degrees below 25%. While the plot does not show clear

correlation between the number of systems and the customization degree, it can be stated

that customization degrees above 40% are mainly caused by small environments with less

than 5 systems. On the contrary, no large environment (> 10 systems) utilizes a customer-

specific transaction share of more than 35%. Therefore, the artifact is not limited to but

presumably more effective in large environments. This result represents one aspect of

the evaluation criteria applicability of EVAL 2 (cf. Table 1.1) which is further addressed

throughout the thesis. Concrete applicability of the artifact, however, also depends on the
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Figure 2.3: Transaction-based customization degree in relation to environment size.

usage degree of transactions under study and must be individually assessed.

Furthermore, it must be stated that customization practice seems to have intensified

over the last decades when compared to the survey published in (Davis and LaMonica,

1998). While few statements with respect to customization in EAs could be made, the

analysis, however, cannot serve as a snapshot of current system usage patterns as investi-

gated environments may have evolved since the measurement and transaction mix changes

over time (Cherkasova et al., 2009; Zhang et al., 2007).

Contribution to research question 1

The vast majority of executed transactions represent standard business transactions.

With respect to the frequency of transaction calls, about three quarters of the environ-

ments invoke less than 26% custom transactions, resulting in a mean customization

degree of 20.12%. In more than half of the investigated environments, custom trans-

actions are accountable to less than 30% of the CPU time. The mean customization

degree on the basis of CPU time accounts to 31.51%. Large environments (> 10 sys-

tems) do typically not show high customization. In fact, custom transaction shares of

more than 35% are solely caused by medium and small environments.

In this work, performance models are built on the layer of transactions (cf. Figure

2.1) as whole instances or systems include too many uncertainties about executed work-

load due to the existing share of custom transactions. Furthermore, performance from a

user perspective is typically measured on a transactional basis and, as Cherkasova et al.

(2009) point out, can hardly be generalized to the system layer, since workload from dif-

ferent transactions is barely comparable. For this purpose, the previously determined
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customization degree is considered to be small enough as a sufficient amount of training

data which refers to standard transaction types, is present.

When measuring performance, two metrics dominate: Response time and throughput.

Associated objectives are usually defined by upper and/or lower bounds and related to

individual transactions (Brunnert et al., 2015). Objectives related to performance, avail-

ability or other non-functional requirements are termed service level agreements (SLA)

and are usually specified in a contract between the service provider and the service con-

sumer (Boloor et al., 2010a). In this sense, an IT service is defined by the ITIL publication

concerned with service strategy as a combination of information technology, people, and

processes (Cannon et al., 2011, p. 13). More specifically, an EA, as defined in this work,

can be made up of one ore more IT services such as application or database instances.

The service level agreements must be formulated measurably, precisely and understand-

ably (Appleby et al., 2001; Skene et al., 2010) as part of the Service level management

(SLM) process. Compensation payments are paid by the provider to the consumer in case

the service performs poorly according to the defined SLA (Skene et al., 2010). This is

referred to as violation or penalty costs. The extent of penalty costs, in turn, may depend

on the severity of the SLA violation (Gmach et al., 2008). As an example for an SLA

related to service availability, a service provider may invoke payments of one dollar for

every 15 minutes of downtime, possibly limited to a percentage of usage fees to make sure

that penalties do not exceed actual costs of service delivery (Baset, 2012). With respect to

performance, SLAs are often percentile-based (Boloor et al., 2010b,a; Gmach et al., 2008).

Accordingly, a percentage of requests must be processed within a defined time frame and

a penalty is invoked for every percentage point under fulfillment. It is the goal of the

capacity management process to ensure that defined SLAs are met at reasonable costs by

constantly aligning IT resources with the ever-changing business environment (Hunnebeck

et al., 2011; Grinshpan, 2012).

2.1.2 Sub-processes and activities

To manage the complexity of EA capacity, standards and best practices are followed.

A widely established collection of standards is provided by ITIL, according to which the

process of capacity management ensures the existence of sufficient resource capacity as part

of the service design stage. Sufficient, in this case, refers to the performance requirements

of every single IT service that is operated within the environment. Therefore, management

activities address capacity-related issues that concern both services and resources. When

aligning resource supply and demand, it is essential to consider current and future business

requirements. According to the service design publication of ITIL (Hunnebeck et al., 2011),

capacity management is structured into the following three sub-processes:

• Business capacity management: Business drives the underlying IT infrastruc-

ture. Therefore, existing business plans and the service portfolio, resulting from the

service strategy, can be used to translate data expressed in business terms into levels
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of service (LOS). As an example, the expected amount of order line items or sales

invoices may be translated into transaction throughput rates or complexity classes

of respective business transactions.

• Service capacity management: It is the goal of service capacity management to

manage, control and predict end-to-end performance of operational IT services. This

sub-process ensures that the performance of all services is constantly monitored and

resulting data, such as patterns, peaks and troughs in the service resource usage,

will be analyzed and reported, e.g., in the form of workload profiles. In order to

meet the targeted service performance as defined in the SLAs, cost-effective reactive

or proactive measures must be initiated. This often involves domain knowledge from

the component capacity management.

• Component capacity management: This sub-process is in charge of monitoring

all physical components such as servers, processors, network or storage devices with

respect to their finite capacity and current utilization levels. Recorded data is to

be analyzed and reported either. Activities are implemented in order to guarantee

a cost-effective component usage that enables to meet defined service levels, aiming

at an optimum alignment of hardware and software resources.

Hence, demand management is carried out mainly in a top down manner that ranges from

business processes over service processes to aligned capacity plans. The artifact, designed

in this work, involves all sub-processes with a focus on service and component capacity.

While ITIL describes a comprehensive overview of activities to carry out, little instruction

is provided about concrete instantiation of processes. With respect to capacity planning

and management, an example of a plausible process model was proposed by Almeida

(2002), with a focus on managing the capacity of web applications using workload models

and performance models. The same model was adapted by Menascé et al. (2004) to

describe a Model-based performance engineering methodology.

The steps are depicted in Figure 2.4. As in (Almeida, 2002), the terms capacity

management and capacity planning are often used synonymously, although the authors

of (Brunnert et al., 2015) point out that the capacity of existing environments is being

managed while for new services, capacity must be planned. As already stated, the process

in Figure 2.4 initially depends on input from business capacity management. The first

step (Understand service architecture) aims at profound understanding of the environ-

ment and architecture, that is topology information. Techniques to gather the required

information include user group meetings, audits, interviews and document reviews. The

subsequent step is to identify workload profiles for each running service, mainly from

transactions logs and performance monitors, here referred to as workload models. Those

models must contain information on the workload intensity and the resource demand. The

workload forecast bases on organizational and strategic information such as the number

of employees or the expected production demand. Almeida (2002) lists possible workload

patterns to be random, trend or seasonal. In the domain of EAs, workload usually fol-
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Figure 2.4: Capacity planning process, proposed by Almeida (2002).

lows seasonal patterns on a daily, weekly or monthly basis (Speitkamp and Bichler, 2010).

Performance models are developed to analyze so called what-if-scenarios, assuming that

service or component characteristics change. Almeida (2002) distinguishes analytical and

simulation models. Whereas analytical models utilize formulas to specify component in-

teractions, simulation models reproduce the system behavior in a simulation environment.

Both approaches allow for studying effects of parameter changes already in the design

stage before actual implementation. Input parameters include (hardware) characteristics

of components, workload classes, workload intensity and service demands. With respect

to EAs, two common workload classes are batch and dialog jobs. Jobs of both classes

can be further classified regarding their complexity as done, e.g., by Menascé et al. (2004)

or by Fujitsu (2012) as part of their SAP SystemInspection service. After performance

models have been developed, they must be validated (Model validation and calibration).

Almeida (2002) prescribes to compare predicted values of the model with actual measure-

ment data of the modeled system. Hence, a running instance of the system whose capacity

is being managed must have been implemented. In order to validate the model, thresholds

of acceptable errors must be defined. In case errors are unacceptable, models are to be

calibrated until they match actual performance measurements. By means of a validated

model, service performance can be predicted for various scenarios, e.g., changes in work-

load profiles or server configurations. Again, the observation of a real system serves as

a baseline for gathering valid input parameters. The last step (Cost performance anal-

ysis and actions) addresses the actual goal of the process which is to identify solution

candidates in terms of most cost-effective architectures for the environment under study.

Therefore, future scenarios are to be analyzed by considering workload profiles, operations

costs, and the QoS. Based on the analyzes, actions are recommended in the form of a ca-

pacity plan, which is the main output of the capacity management process (Hunnebeck

et al., 2011).
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2.1.3 Measures and triggers

The individual sub-process goals can be usually achieved by common measures (actions).

According to the capacity management process described in the ITIL publication dedicated

to service design (Hunnebeck et al., 2011), these measures are formulated as recommen-

dations within the capacity plan. Accordingly, possible recommendations that may lead

to a cost-efficient and SLA-reflecting resource usage, can be generally classified as follows:

• Planning and budgeting of hardware or software upgrades: By adding or

removing resources, the capacity supply can be adapted in order to fit current and fu-

ture business needs. Such infrastructure changes often cause a subsequent relocation

of services in order to optimize resource usage.

• Cost-effective balancing of services across existing resources: Depending

on current utilization levels, different allocations of services and servers may lead to

improved performance or reduced operations costs. Via the identification of com-

plementary workload profiles, allocations can be optimized, likewise resulting in the

relocation of services. This is often referred to as workload or server consolidation.

In order to construct a sufficient decision basis, capacity management should involve mon-

itoring patterns of business activity and performance of services as well as utilization of

infrastructure components. For this purpose, the monitoring activities carried out during

service operation can produce a sufficient basis of data to be analyzed. Based on these data,

information can be generated that decision makers may use to decide, e.g., which compo-

nents to upgrade to which extent so that over-provisioning and bottlenecks are avoided.

The capacity plan consolidates these information to appropriate recommendations. Be-

sides documenting current levels of utilization and performance, the capacity plan may

additionally include forecasts and assumptions, which should be clearly indicated. Any

recommendations made must be quantified with respect to their costs, benefits and impact.

Capacity plans are usually produced annually following the fiscal year since it may involve

investment recommendations. Aside from this cycle, a quarterly re-issue is conceivable

to account for the speed of technological development and occurring business changes.

Before the implementation of any measures, their validity must be tested and undergo

a structured change management process in order to reduce the risk of affecting current

service operation. While the validation of possible measures represents a key aspect of

this work, their actual implementation is out of scope. Besides the periodic revision of

current capacity and performance, the capacity management process can be triggered by

further different events, including

• changes of service composition, e.g. a new service is planned,

• revisions of business plans and strategies, and

• revisions of SLAs or other contracts.

The outcome from the capacity management sub-processes is recommended by ITIL

to be stored in a capacity management information system (CMIS). Through this single
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source of information, capacity and performance reports and the actual capacity plan,

including any forecasts and recommendations, can be made available. In the subsequent

section, the CMIS is discussed in more detail. Besides the capacity management process

itself, many other processes need to rely on the output:

• Change management to assess the effect of changes on currently available capacity.

• SLM process when new services are implemented to guarantee performance of new

service without affecting existing ones.

• Problem management to analyze root causes for incidents of poor performance.

• IT service continuity management to be provided with capacity requirements of the

key business processes.

As already stated, in the literature, capacity management is sometimes differentiated

from capacity planning, where planning refers to activities required to design and deploy

new services, usually involving to identify required hardware components. In ITIL, this

activity is referred to as application sizing. On the contrary, in this work, capacity man-

agement refers to the optimization of existing services and components that are already

in production, e.g., through server consolidation. It is a critical success factor to measure

the cost-effectiveness of capacity management activities. According to ITIL, valid metrics

to do so may be

• the amount of reduced over-capacity, or

• the accuracy of forecasts with respect to planned expenditures.

These metrics are used when evaluating the artifact, more specifically, as part of

EVAL 2 and EVAL 3.1 (cf. Table 1.1).

2.1.4 Information management and reporting

The capacity management process involves monitoring service workloads and transaction

usage. Information on resource utilization must be continuously collected via monitors

installed on hardware and software components. This is generally carried out through

monitoring and control facilities within service operation, also referred to application per-

formance monitoring. Aforementioned software instrumentation is a a good example of its

practical implementation. Resulting data must be collected, accumulated and stored over

a period of time (Hunnebeck et al., 2011). It is the basis for all further management activ-

ities and recommendations. Relevant capacity- and performance-related metrics include

the following:

• Processor utilization

• Memory utilization

• I/O rates and device utilization

• Database usage

• Concurrent users
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• Response time of dialog transactions

• Batch job durations

To classify the data, ITIL distinguishes component-based reports, service-based re-

ports, exception reports as well as predictive and forecast reports. In any case, data

should reflect the end-to-end user experience across the complete environment. According

to ITIL, different means exist for carrying out application performance monitoring. One

or a combination of the following techniques may be used:

• Software instrumentation: Special code with the intention to log activities is

incorporated into the application. This represents an efficient way to gather actual

user response times as done, e.g., in SAP applications in order to create statistical

records.

• Distributed agents: Software agents are installed at points of interest in order to

generate workload and measure resulting performance. Measurement data serves as

an indicator for actual user response times.

• Passive monitoring systems: External monitoring software measures, e.g., all

traffic passing a particular point in the network. Subsequent analysis of the measured

data may help to approximate actual user response times.

While intrusion techniques and distributed agents are sometimes classified as gray-box

monitoring, on the other hand, passive monitoring systems are referred to as black-box

monitoring since they do not have access to application-level logs (Wood et al., 2007).

As already stated, measurement data and the resulting capacity plan are to be stored

in the CMIS. Since the data also contains valuable information to many other processes

(cf. Section 2.1.3), it should be stored centrally in a consolidated way to be available by

anyone in charge of capacity- and performance-related decisions. According to ITIL, “only

when all of the information is integrated can ’end-to-end’ service reports be produced”

(Hunnebeck et al., 2011, p. 177).

Based on the collected data, capacity management activities can be defined and car-

ried out. Detailed workload profiles and utilization baselines may be derived for each

service or component from the collected data. Baselines are an important reference to

benchmark against, so that trends or anomalies can be detected. Component usage may

be analyzed on short (24 hours), medium (1-4 weeks) and long term (1 year). Workload

profiles are needed to design alternative allocation scenarios or to support effective job

scheduling. Finally, as stated earlier, capacity management involves to make predictions

and the collected data can be a valuable source to feed performance models.

In the domain of particular COTS EAs, domain-specific metrics such as SAPS are

commonly used. SAPS stands for SAP Application Performance Standard and is partic-

ularly interesting if a server’s CPU capacity must be mapped to throughput provided in

business terms. in this regard, 100 SAPS represent the capacity to either fully process

2,400 SAP transactions or 2,000 order line items per hour (SAP, 2017). Such metrics can
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be a useful reference, e.g., when carrying out application sizing activities. The authors of

Brunnert et al. (2015) claim a gap between the domains of application performance mon-

itoring (APM) and software performance engineering (SPE). Following their argument,

the usage of data collected by software monitors in order to derive valuable knowledge for

the design of new services contributes to closing this gap.

2.1.5 Summary

EAs comprise IT services such as application and database instances, typically distributed

over a number of heterogeneous servers. Hence, the execution of business transactions

involves many co-dependent components on multiple layers which makes performance hard

to predict. The vast majority of transactions executed in a COTS EA, represents built-in

standard functionality, offered by the software vendor to a large number of customers.

Performance is measured on a transactional basis and the fulfillment of related SLAs is

crucial to business success. It is the goal of the capacity management process, as defined by

ITIL, to balance performance and costs. The process settles the EA software on the layer

of service capacity management, which passes requirements from the business down to the

component capacity management sub-process. Planning and managing capacity typically

utilizes workload profiles and incorporates performance estimates. The outcome of the

process is formulated in a capacity plan which introduces recommended measures, e.g.,

the consolidation of services across existing servers, in order to increase utilization levels

and reduce operations costs. The cost-effectiveness of the actions taken can be measured by

quantifying the amount of reduced over-capacity or the accuracy of forecasts with respect

to planned expenditures. Capacity plans must be aligned with existing workload demands

that may be extracted from historical application performance monitoring data. Further

relevant metrics, possibly tracked by the application itself, should include the utilization of

resources and the response times of dialog transactions. Additional domain-specific metrics

such as SAPS can help to quantify both service demands and resource capabilities using a

system-specific formulation. Any measured data must be stored in a central information

system, as other related processes and their actors rely on the information, too.

2.2 Server consolidation

As part of the capacity management process, existing saving potential can be addressed by

consolidating orthogonal workloads. Therefore, this section outlines today’s data center

energy efficiency and reveals average utilization levels of servers. After the general opti-

mization potential was exposed, enabling virtualization techniques are introduced. Next,

the problem is formulated and effective means to compute solution candidates are intro-

duced. Solutions must reflect individual constrains of the environment, which are, on a

general level, identified in the final subsection.
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2.2.1 Server utilization and power consumption

EAs, as defined in Section 2.1.1, serve business requirements and utilize IT equipment

which is hosted in a data center and consumes power. While securing the power supply,

according to ITIL, is part of facility management in service operation, optimizing con-

sumption and overall efficiency is part of capacity management and thus service design. A

datacenter, as defined in the European code of conduct on data centres energy efficiency,

“[...] includes all buildings, facilities and rooms which contain enterprise servers, server

communication equipment, cooling equipment and power equipment, and provide some

form of data service [...]” (JRC, 2008, p. 5). A common classification, made in Bailey

et al. (2007) and used by the U.S. Environmental Protection Agency (EPA), distinguishes

five types of data centers according to their size: Server closets, server rooms, localized

data centers, mid-tier data centers, and enterprise-class data centers. While server closets

host only 1-2 servers, enterprise-class data centers are made up by hundreds to thousands

of servers (Brown et al., 2007; Johnson and Marker, 2009). As smaller data centers tend

to consolidate, large data centers continue to become prevailing (Carr, 2005; Ng et al.,

2018). The aforementioned European code of conduct on data centres energy efficiency

was initiated in 2008 as a response to the increasing energy consumption of data centers in

order to help reducing related environmental and economical impacts as well as threats for

secure energy supply. Today, the initiative counts 290 participating data centers (Bertoldi,

2018) which are requested to ensure, among others, the following principles:

• “Data centres are designed so as to minimise energy consumption whilst not impact-

ing business performance.

• Data centre equipment is designed to allow the optimisation of energy efficiency

while meeting the operational or service targets anticipated. [...]

• Data centres and their equipment are designed, specified and procured on the ba-

sis of optimising the TCO within the requirements for reliability, availability and

serviceability. [...]

• Data centres should be designed to minimise the energy used, if any, to remove heat

from the facility.” (JRC, 2008, p. 13)

Hence, energy consumption is to be minimized cost-effectively without interfacing the

business-critical operation (Bertoldi, 2018). In addition, the last item of the list indicates

that reduced energy consumption helps to reduce cooling efforts either. In short, energy-

efficient operation saves money, since energy costs represent a major share of the data

center’s TCO. The operation of IT equipment and its cooling facilities account for more

than 80% of the total energy consumption of a data center. Among the IT equipment,

servers are the greatest energy consumers with a share of more than 75%. Next most

significant consumers are storage devices with 10-15% of the IT equipment consumption

(Johnson and Marker, 2009). Within a typical server, in turn, the central processing
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units (CPU) are the greatest energy consumers (Fan et al., 2007). Enterprise servers are

commonly classified according to their prices into volume (<$25,000), mid-range ($25,000-

$250,000) and high-end servers (>$250,000). Volume servers, herein, represent by far the

majority (about 75% of the total server power consumption) and the fastest growing

segment of data center servers (Johnson and Marker, 2009; Shehabi et al., 2016). One

characteristic, significantly contributing to the power consumption, is the non-energy-

proportionality of volume servers. They consume, in average, about 50% (in some cases

up to 70%) of their maximum power usage already at low utilization levels around 10%

(Shehabi et al., 2016; Beloglazov and Buyya, 2010a; Barroso and Hölzle, 2007). According

to Shehabi et al., this dynamic range is expected to drop down to 40% by 2020, indicating

that energy-proportional operation is still not in sight. Therefore, idling servers are to

be avoided when managing IT capacity. In practice, however, about 30% of all running

servers are estimated to be “comatose/zombie servers”, thus, showing no CPU, memory,

network or other usage activity in a period of 6 months or more (Koomey and Taylor,

2017, p. 2), opening up the potential to optimize the overall utilization. A number of

other studies confirm relatively low average server utilization levels in today’s data centers

of around 10-15% (Beloglazov and Buyya, 2010a; Mi et al., 2010; Gartner, 2011; Müller

et al., 2016b) respectively not more than 20% (Van et al., 2009; Kusic et al., 2009).

To verify the conclusions of the mentioned studies in the sub-domain of a COTS EA,

monitoring data of more than 13,000 servers which predominantly operate different kinds

of SAP systems, was investigated. Since the CPU utilization can be used as an estimator

for the server utilization (Pelley et al., 2009; Fan et al., 2007; Splieth et al., 2015), the

consumed SAPS of running services were related to the maximum SAPS a server is capable

to serve in order to calculate utilization levels. For details on the used data set as well as

the metric SAPS, the reader may be referred to Section 2.1.1. The histogram, shown in

Figure 2.5, indicates the data distribution for the mean server utilization levels and can

be interpreted as follows.

Contribution to research question 2

According to several studies, enterprise servers run at average utilization levels below

20%. With respect to the domain of COTS EA, using the example of SAP software,

75% of the investigated 13,332 servers run with average utilization levels below 12%.

More than three quarters of the servers are, according to aforementioned definition,

comatose. Consequently, for all investigated servers, the mean utilization, across all

measured points in time, accounts to 8.28%.

In practice, however, mean server utilization levels around 65% should be targeted, refer-

ring to domain-specific sizing guidelines (Janssen and Marquard, 2007). Low rates can

be explained by a common provisioning practice which is based on peak demands and by

sizing exercises which are applied from scratch to dedicated servers. In many cases, new

services are introduced along with new servers (Kusic et al., 2009), resulting in resource

allocations best explained by history rather than efficiency.
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Figure 2.5: Mean server utilization levels across 13,332 investigated servers.

Existing optimization potential can be addressed by means of server consolidation

(Gao et al., 2013; Sun et al., 2013) which is a recommended measure to increase energy

efficiency in the 2018 Best practice guidelines for the European code of conduct on data

centre energy efficiency (Acton et al., 2018). It is the goal of this process to minimize

the total number of required servers by relocating services according to their capacity

demands. Due to the non-proportional energy consumption of servers, resulting designs

barely effect power consumption of remaining servers but enable to power off a significant

share of unused computing resources. According to a Gartner report, among any measures,

consolidation has the greatest impact on reducing costs for infrastructure and operation

as it affects many components of the cost structure (Gartner, 2009). Reducing the number

of servers results in significant cost savings (Petrucci et al., 2011; Xu and Fortes, 2010;

Beloglazov and Buyya, 2010b), mainly achieved by energy savings but additionally affect-

ing all related aspects such as cooling (Speitkamp and Bichler, 2010), maintenance and

personnel costs (Bobroff et al., 2007).

In June 2016, the United States data center energy usage report forecasted the average

utilization of active volume servers to be around 15% for on-premises, that is internal, data

centers and around 25% for off-premises environments in 2020 (Shehabi et al., 2016). On

the contrary, Shehabi et al. outline an alternative, rather positive scenario which relies on

the application of server consolidation best practices: In this scenario, utilization levels

can be raised from 10-15% to 45% for internal servers, from 20-25% to 55% for servers

operated by external service providers, and from 45-50% to 75% for servers of very large

and highly efficient data centers. This hypothetical scenario is limited by average upper

bounds of utilization which can be observed in well-optimized small and medium size data
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centers. Furthermore, it is based on the assumption that 80% of volume servers could be

consolidated using virtualization and containerization techniques.

2.2.2 Virtualization techniques

Virtualization is as a key technology to improve energy efficiency (Johnson and Marker,

2009; Koomey, 2011). Consequently, the best practice guidelines for the EU code of

conduct on data centre energy efficiency recommend to apply virtualization techniques

in order to minimize the amount of hardware that is dedicated to a specific purpose or

service (Acton et al., 2018). Likewise, virtualization is mentioned as an important factor

when managing IT capacity in the ITIL service design publication. Generally speaking,

virtualization refers to the decoupling of software components from hardware components

with the main objective to increase flexibility in maintenance and operation. As defined by

Wolf and Halter, it is “[...] the act of abstracting the physical boundaries of a technology”

(Wolf and Halter, 2005, p. 23). The concept of virtualization was developed by researchers

of the Massachusetts Institute of Technology (MIT) and IBM engineers in the 1960’s

(Daniels, 2009; Susanta and Chiueh, 2005; Bobroff et al., 2007; Goldberg, 1974). As

the consolidation of workloads relies on the flexibility provided by virtual environments

(Niehorster et al., 2011), a short overview of two main techniques is provided in the

following. On a high level, one can differentiate server virtualization and application

virtualization.

Server virtualization abstracts hardware to virtual machines so that the operating

system (OS) and all installed applications are decoupled from physical components (Bo-

broff et al., 2007; Müller et al., 2016b). This way, multiple virtual machines (VM or guest

system) can be started and operated on one physical server (PM or host system) whose

physical resources are allocated to the VMs by a so called hypervisor. Since multiple VMs

can be grouped on different hosts, those may be packed efficiently in terms of physical

resource utilization. Therefore, the concept of server virtualization enables to optimize re-

source utilization by consolidating existing servers. Server virtualization is widely used in

industry, common products are VMware ESXi or Oracle VirtualBox. A downside of server

virtualization results from performance degradations caused by the additional layer of the

architecture which the hypervisor introduces (Sahoo et al., 2010). In some cases, reloca-

tion of VMs can be carried out in running state, sometimes referred to as live migrations

or online migrations. However, live migrations are subject to a number of software and

hardware restrictions and further degrade performance by introducing additional network

and processing overhead (Ankit et al., 2013; Hyser et al., 2007).

Application virtualization decouples the application from the operating system

and, in turn, from the physical components. The operating system is shared across mul-

tiple physical servers within the environment that have access to a shared storage layer.

Therefore, the OS is made up by common parts (e.g., libraries), mounted to servers in

read-only mode and application-specific parts (e.g., database files), mounted in read-write
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mode. The concept usually relies on network attached storage (NAS) or a central storage

component connected over a storage area network (SAN). Since no additional virtualiza-

tion layer such as the hypervisor is introduced, applications run at so called bare metal

and performance degradations are avoided. Further advantage lies in stable operations

along with reduced maintenance effort since changes in the operating system image affect

all running servers in one sweep. This is, at the same time, the greatest downside since

installed OS patches or upgrades must be compatible with all applications that share the

same OS image. This fact makes the concept particularly interesting in highly standard-

ized environments where applications are built upon the same technology stack and have

similar or equal requirements concerning the OS. This holds also true for SAP EAs which

are built upon the SAP Netweaver technology stack (SAP, 2019b). As a drawback, live

migrations are not possible and services need to be stopped and started on a different

server when consolidating workloads. Therefore, the concept is applicable if workloads

follow seasonal patterns and must not be moved frequently in order to balance resource

usage. In such cases, allocations must be well-planned according to the workload profiles.

Industry examples for application virtualization in the domain of EA, are SAP Adaptive

computing (SAP, 2012) and Fujitsu PRIMEFLEX for SAP Landscapes (Fujitsu, 2018).

As applications are sometimes referred to as services, Gmach et al. (2008) also refers to

this concept as service virtualization.

To summarize, the type of employed virtualization technique determines multiple

important aspects in managing capacity:

• The layer on which workload relocations are supported: Server virtualization

enables to move VMs to another PM. This includes the operating system and all

applications installed within the VM. In contrast, application virtualization allows

for higher level of granularity when computing optimized designs as EAs can be

moved individually. This increases the addressable optimization potential as VM

(under)utilization barely affects power consumption of the hosting PM while the

number of hosted VMs does (Kusic et al., 2009).

• The state of the EA during relocation: In some cases, VMs may be migrated in

running state, allowing for online optimization of VM allocations. However, if work-

load profiles can be identified that follow seasonal patterns, online migrations and

their associated network overhead may not be desirable and well-planned downtimes

for offline relocations can be accepted.

• Potential performance degradation: Server virtualization obtains a significant

increase of flexibility at the cost of little performance degradations. For EAs, nev-

ertheless, performance is business-critical (cf. Section 2.1.1) and low response times

are a major requirement of ERP users (IT-Onlinemagazin, 2015). Therefore, many

EAs must be operated on bare metal due to the processing overhead introduced

by the hypervisor. In those scenarios, application virtualization can provide the

required means of abstraction in order to carry out server consolidation.
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The approach presented in this work is not restricted to a certain underlying virtu-

alization technique but is generally applicable in infrastructures that utilize both server

and/or application virtualization. In fact, the degrees of freedom when carrying out ser-

vice relocations depend on the definition of a service as the isolated entity that is to be

placed. Services can be (a set of) VMs or (a set of) applications that are placed on a

target location, that is a physical server. If VMs are to be placed on physical servers,

the cloud computing literature refers to the problem of virtual machine placement (VMP)

(López-Pires and Báran, 2015; Pires and Barán, 2013). This challenge is sometimes also

referred to as the virtual machine mapping problem (Hyser et al., 2007). Since this work

is not limited to the placement of VMs, a broader term, service placement, is used.

2.2.3 Problem characteristics

Capacity management must ensure an optimum use of hardware and software resources

while ensuring compliance with the agreed service levels. According to the ITIL service

design publication, this can be achieved by balancing services across existing resources

aiming at their most cost-effective usage (Hunnebeck et al., 2011). Since this concept is

technically enabled by virtualization techniques (cf. Section 2.2.2), the consolidation of

services is highly related to the problem of virtual machine placement (VMP), where VMs

are to be located on a given set of PMs (Pires and Barán, 2013). Hereby, VMP aims

at improving energy efficiency and resource utilization in cloud environments (Gao et al.,

2013). This work, however, is not limited to the placement of VMs. In fact, the entity

that is to be placed may be an application or database instance of an EA or an entire VM,

depending on the employed virtualization technique. This work therefore refers to the

service placement problem (SPP) which must be solved in order to consolidate workloads.

The mapping process requires two main pieces of information: The capacity of the

physical servers and the resource demands of the services (Hyser et al., 2007). All compo-

nents have a finite capacity that causes performance failures when approached or exceeded

(Hunnebeck et al., 2011). Consequently, inadequate placement decisions may lead to either

resource overloads and resulting performance degradations or to idling capacity, generat-

ing unnecessary operations costs, of which a major portion can be accounted to energy

costs (Filani et al., 2008; Orgerie et al., 2014).

Depending on the load fluctuation of running services and the capabilities of the

underlying virtualization technique, the problem may be solved online (continuously) or

offline (periodically). In the latter case, resource demands of the services can be derived

from historical workload data, e.g., stored in a CMIS (cf. Section 2.1.3). If the demand

is represented by a single value, e.g., the peak demand of a time interval, the problem is

classified as static. In case of dynamic problems, workload profiles represent a service’s

resource demand over time, reflecting one or multiple resource dimensions such as the

CPU or memory consumption. Here, the time dimension may cover maximum hourly,

daily or weekly consumption values across a measured time period, representing, e.g., a

day of peak values or a week of peak values of the running service. Alternatively, a certain
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Figure 2.6: Consolidation of application-virtualized services (Müller et al., 2016b).

percentile of those values may be used (Speitkamp and Bichler, 2010). Based on this

information, complementary workload profiles are to be identified and placed together on

the same server. As the CPU is known to be the greatest energy consumer and, at the

same time, the main bottleneck for EAs, it’s utilization can be used as the basis to trade-

off performance and energy (Splieth et al., 2015; Barroso and Hölzle, 2007; Fan et al.,

2007). Figure 2.6 illustrates this process on a high level using a simplified example of four

servers (PMs) and eleven services which utilize the concept of application virtualization.

In Figure 2.6, the size of the servers represent their individual CPU capacity while

services and their individual load profiles are represented by the differently shaped objects

on the application layer. The picture demonstrates the existing fact that some services are

more compatible to each other than others, when aiming at the most efficient use of the

server capacity. In this example, the services currently running on PM 4 could be moved

to PM 2 and PM 3 with the result of an increased mean utilization and a reduced number

of running servers. Mathematically, the server consolidation scenario can be formulated

as a combinatorial optimization problem, which is closely related to the well-known vector

bin packing (VBP) problem, in which the overall size of used bins is to be minimized

(Sun et al., 2013). Considering the complexity of today’s EA landscapes, the resulting

challenge opens up a solution space which makes manual handling of service placements

improbable or error-prone (Hyser et al., 2007; Speitkamp and Bichler, 2010). In fact, for

a given number of physical servers H and a number of running services I, the number of

possible solutions equals HI (Hyser et al., 2007).

Solution approaches typically formulate one- or multidimensional optimization prob-

lems having one or multiple resource dimensions and, optionally, one time dimension.

Depending on the optimization criteria, solution strategies may aim at one or more ob-

jectives which can be complementary or conflicting. As identified in a literature review

by López-Pires and Báran (2015), typical objective functions include the minimization

of energy or power consumption, the maximization of energy efficiency, the minimization

of network traffic, the maximization of one or more resource’s utilization, and thermal

management related objectives such as minimizing cooling efforts. While López-Pires and

Báran classify problem formulations as mono-objective approaches, multi-objective solved
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as mono-objective (MAM) and pure multi-objective (PMO) approaches, Helbig and En-

gelbrecht (2013) distinguish between single-objective (one objective), multi-objective (up

to 3 objectives), and many-objective (more than 3 objectives) approaches.

As server consolidation problems are known to be NP-hard (Bichler et al., 2006),

exact solution approaches are not efficient enough for practical use since solutions can-

not be found in polynomial time (Lewis, 2009). Instead, solution candidates are usually

calculated using mathematical programming, heuristics or metaheuristics (Jennings and

Stadler, 2015; Liu et al., 2008; Bosse, 2016; Soltani, 2014). An overview of instantiated

approaches from the literature along with a discussion on their advantages and disad-

vantages is provided in Section 2.4. Furthermore, additional classification attributes are

derived from related artifacts in this section. The deployment of computed solutions is out

of scope in this work, but may be technically enabled by various virtualization concepts

(cf. Section 2.2.2).

2.2.4 Approximation algorithms

Server consolidation is a challenging task that consumes significant time and other re-

sources (Gartner, 2009). In general, the addressed class of optimization problem occurs

in many fields of computer science, especially if it is required to make any kind of assign-

ments, e.g., for scheduling and load balancing (Lewis, 2009). Approximation algorithms

find appropriate solutions quickly and do not solve the problem exactly. As outlined in the

previous section, heuristics and metaheuristics are very efficient techniques to solve the

SPP; they have been applied successfully to bin packing problems in related approaches

and represent the commonly used state of the art. In fact, more than half of the ap-

proaches reviewed by López-Pires and Báran utilize heuristics while 15.5% of the solution

techniques involve metaheuristics. Within the class of heuristics, variants of the popular

best-fit and first-fit algorithms represent the majority of established techniques. On the

other hand, implementations of a genetic algorithm (GA) are among the most used tech-

niques in the class of metaheuristics. Mohamadi Bahram Abadi et al. (2018) confirm that

solution techniques for server consolidation are dominated by heuristics and metaheuris-

tics. Therefore, as the most popular representatives in the problem domain, the first-

respectively best-fit heuristics as well as the genetic algorithm are briefly introduced in

the following.

First- and best-fit decreasing algorithms

Both first- and best-fit decreasing algorithms (FFD and BFD), e.g., as used by Stillwell

et al. (2010), rely on the sorting of services according to their resource demands. As

services with high resource demands are supposed to be placed first, the list of services is

processed in descending order. The next service is then allocated to the first server which

provides sufficient remaining capacity. This procedure is depicted using the pseudo code

in Algorithm 1.
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Algorithm 1 First-Fit-Decreasing

1: procedure FFD(T,H, I)
2: a← ∅
3: Isorted ←SortDescendingByResourceDemand(I)
4: for i ∈ Isorted do
5: for h ∈ H do
6: fit← true
7: Ih ← {i ∈ I : a(i) = h}
8: for r ∈ R, t ∈ T do
9: if

∑
ih∈Ih ih(r, t) + i(r, t) > h(r) then

10: fit← false
11: end if
12: end for
13: if fit = true then
14: a(i) = h
15: break
16: end if
17: end for
18: end for
19: return a
20: end procedure

In contrast, the BFD does not rely on an arbitrary order of servers. Here, also the

list of servers is sorted before new allocations are made. Since servers with relatively

low residual capacity are to be preferred when placing the next service, the BFD sorts

servers in ascending order according to their remaining capacity. This procedure efficiently

increases load density especially in environments with homogeneous servers (i.e., servers

of equal capacity) as services are preferably placed on servers already in use. Algorithm 2

depicts the procedure.

In the case of dynamic problems (i.e., a problem formulation that incorporates varying

workload over time) and in case of multiple resource dimensions, the set of different demand

values must be resolved for each instance in order to sort the list of services according to

their resource demands. According to (Stillwell et al., 2010), the time dimension may be

transformed to either a single sum of all values or the peak demand across all values. The

resulting algorithms are referred to as FFDmax and FFDsum respectively BFDmax and

BFDsum. Those heuristics were effectively applied to both single- and multidimensional

server consolidation problems (Stillwell et al., 2010; Bichler et al., 2006). In contrast to

the described strategies, an increasing ordering of items was identified to be unsuitable

for most bin packing problems (Stillwell et al., 2010). However, a main disadvantage of

heuristics lies in their limited flexibility with respect to varying problem formulations.

Individual constraints which usually limit the degrees of freedom when placing services

cannot be considered by any of the introduced heuristics without major adaptations.
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Algorithm 2 Best-Fit-Decreasing

1: procedure BFD(T,H, I)
2: a← ∅
3: Isorted ←SortDescendingByResourceDemand(I)
4: for i ∈ Isorted do
5: Hsorted ←SortAscendingByRemainingCapacity(H,a)
6: for h ∈ Hsorted do
7: fit← true
8: Ih ← {i ∈ I : a(i) = h}
9: for r ∈ R, t ∈ T do

10: if
∑

ih∈Ih ih(r, t) + i(r, t) > h(r) then
11: fit← false
12: end if
13: end for
14: if fit = true then
15: a(i) = h
16: break
17: end if
18: end for
19: end for
20: return a
21: end procedure

Genetic algorithms

Genetic algorithms belong to the class of metaheuristics and represent a popular technique

for solving optimization problems (Bäck, 1996), e.g., in the domain of server consolidation

(Adamuthe et al., 2013; Xu and Fortes, 2010; Rolia et al., 2003; Stillwell et al., 2010)

or when it comes to scheduling problems (Brezulianu et al., 2009; Sapru et al., 2010;

Page and Naughton, 2005). Genetic algorithms are designed to proceed according to

the evolutionary process of natural selection which leads to the survival of the fittest.

Therefore, an initial, randomly chosen set of solution candidates (in this context, referred

to as individuals) forms a population which evolves over a number of generations. In

order to direct the algorithm in exploring the search space, genetic operators are applied

to the individuals. Those operators are inspired by biological operations; more specifically,

individuals may be recombined, mutated, and selected. To support the selection process,

a function evaluates individuals regarding their solution quality (in this context, referred

to as fitness). This function is termed fitness function. The pseudo code in Algorithm 3

describes the general process as also used in Bosse (2016).

Recombination combines at least two parent individuals in order to create λ new

child individuals. Parent individuals are typically chosen to be recombined with a fitness-

proportional probability. The resulting subset of individuals (offspring) may fully replace

the parent population as depicted in Algorithm 3 or complement it. The former approach

is termed comma-selection and the latter is referred to as plus-selection.

Some individuals of the population are further selected to be modified with a certain
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Algorithm 3 Genetic Algorithm

1: procedure GA(µ, λ,maxGen)
2: gen← 0
3: pop← initialize(µ)
4: evaluate(pop,0 )
5: while gen < maxGen do
6: pop← pop∪recombine(pop, λ)
7: pop← mutate(pop)
8: evaluate(pop,gen)
9: pop← select(pop, µ)

10: gen← gen+ 1
11: end while
12: return pop
13: end procedure

mutation probability pmut. In contrast to recombination, mutation changes solution can-

didates individually and, therefore, has little effect on the search direction, thus, depicting

some form of neighborhood search.

Finally, all individuals of the resulting subset are evaluated with respect to their fit-

ness. Based on this evaluation, most fittest individuals are selected to build the population

(with the size pop, also called µ) of the next generation. To implement the selection pro-

cess, several approaches exist in the literature (Kruse et al., 2016). A very simple form

is the rank based selection where candidates are sorted in descending order and the top n

candidates are selected. Here, most fittest solutions always dominate the selection process

which entails the risk of converging to a local optimum without exploring the full search

space. In contrast, tournament selection uses a rang-proportional selection. Depending

on the tournament size t, a number of individuals are selected and sorted by fitness in

descending order. In this tournament, each individual is selected with a probability pt

proportional to its rang. The procedure is repeated until pop is reached. Therefore, selec-

tion is not directly fitness-proportional and the problem of dominance is coped to some

extent. Selection pressure can be controlled over the tournament size (Miller et al., 1995).

In contrast to the rang-proportional probability of selection, a fitness-proportional

probability is used by the roulette wheel selection. For each individual, therefore, it is

computed the relative fitness, that is the share of fitness with respect to the accumulated

fitness of all individuals (Gerdes et al., 2013). Using this information, a pie chart could be

built, similar to the one on the left in Figure 2.7 with, in this example, eight individuals s

per population. The position of the pointer is defined randomly. Yet individuals of greatest

relative fitness are pointed at with highest probability. Those individuals are selected for

the next population and the process is repeated until pop is reached. Although there

is no guarantee for constantly selecting individuals of greatest fitness, the problem of

dominance still exists. A variation of the roulette wheel selection, the stochastic universal

sampling approach, introduces a mechanism that ensures to additionally select individuals

of lower fitness. Here, multiple pointers are used as illustrated in Figure 2.7; in fact, the
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Figure 2.7: Roulette wheel selection (left) and stochastic universal sampling (right), based
on Kruse et al. (2016).

number of pointers is determined by pop. The pointers are distributed with equal distance

around the wheel while the starting position is chosen randomly. All individuals pointed

at are selected to build the new population. This usually includes superior individuals but

additionally considers individuals of lower relative fitness so that diversity is increased and

the search space is efficiently exploited (Baker, 1987). Finally, to ensure that most fittest

individuals are not damaged by genetic operators such as mutation, those may be kept and

passed over to the next generation without modification. This strategy introduces a so

called elitism. However, individuals which build the elite can still additionally be selected

for genetic operators and, this way, be further improved (Kruse et al., 2016). The genetic

algorithm terminates after a defined number of iterations (maxGen) or when achieving

a defined fitness objective. To summarize, the following numerical parameters affect the

behavior of the GA:

• λ: The total number of children produced during recombination

• maxGen: The number of generations the GA iterates over

• µ (pop): The number of individuals in every generation

• pmut: The probability of mutation for each individual

As pointed out by Stillwell et al. (2010) and confirmed by the review of López-Pires

and Báran (2015), dynamic resource allocation problems are predominantly solved by

simple heuristics due to their complexity, even if only a single resource dimension is con-

sidered. However, if the optimization potential is addressed insufficiently, solutions were

proposed that may not legitimate the cost overhead introduced by capacity management

efforts. Therefore, it can be reasonable to compare different algorithms with respect to

objective values as proposed by Mills et al. (2011).
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2.2.5 Placement constraints

In practice, various dependencies and existing requirements related to, e.g., compatibility,

fault tolerance, licensing, or security, limit degrees of freedom in service placement and,

therefore, reduce the addressable optimization potential (Shaw, 2004; Hyser et al., 2007;

Dang and Hermenier, 2013). As an example, a service may have to be located on a certain

type of hardware to ensure compatibility or must not be co-located with its backup service

to ensure high availability (HA) in case of hardware failures. Another example of Hyser

et al. (2007) draws attention to the increasing use of application service providers (ASP):

It may be specified in the SLA of an EA that certain services of a customer must never

run together with services of a competitor on the same PM or in the same network.

Such limitations are inherent to many practical problems since they usually represent

sub-components of a larger environment with various dependencies (Shaw, 2004). With

respect to the VMP, Dang and Hermenier (2013) define a placement constraint as follows:

“A VM placement constraint restricts the placement of a VM or a set of VMs.

[...] In a virtualized datacenter, customers express their SLAs through place-

ment constraints. A VM placement algorithm is then in charge of placing the

VMs on the nodes according to the constraints stated in the customer SLAs.”

(Dang and Hermenier, 2013, p. 9, 31)

When replacing the term “VM” by the broader term “service”, above definition fits the

perception of this work well. Therefore, to fulfill SLAs and avoid violation penalties,

individual placement constraints must be incorporated into the respective instantiation

of the SPP. Contributing to research question 3, it is the goal of this subsection, to

identify existing placement constraints from the scientific literature. The consolidated

result (cf. Table 2.1) serves as a basis for additional practical evaluation of relevance

together with industry experts and to align the artifact’s design. Parts of this study on

existing placement constraints was previously published in a Master thesis (Akhras, 2017)

supervised by the author of this work.

Although placement constraints practically reduce the search space, additional com-

plexity is added to the problem formulation. Many publications address the problem of

consolidating workloads but only few consider placement constraints and even fewer ac-

tually implement means to reflect a set of constraints in conducted experiments. In a

literature review on the VMP, López-Pires and Báran (2015) identify three types of con-

straints which were proposed for the problem formulation: anti-location, anti-colocation

and resources constraints. The latter can be, e.g., a defined maximum utilization for a

specific resource dimension as also proposed in (Pires and Barán, 2013) as a resource

capacity constraint. Anti-location prevents a service to be placed on a specific server,

e.g., due to known incompatibility issues with certain hardware components. In contrast,

anti-colocation refers to the restriction of not allowing two or more services to be placed

together on the same server. In other works, this is called isolation (Calcavecchia et al.,

2012) or separation (Speitkamp and Bichler, 2010). This constraint type is driven by

security or performance concerns.



40 Multi-dimensional server consolidation

Speitkamp and Bichler (2010) additionally propose the following four constraint types,

where the first two can be seen as representatives of the mentioned anti-location and anti-

colocation constraint types: (1) Preassignment : a service must be located on a specific

server. This is referred to by Pires and Barán (2013) as unique placement constraint.

(2) Combination: two or more services must be co-located on the same server, e.g., to

support inter-service communication. (3) Maximum number of services: An upper bound

for the number of services that must not be exceeded on a specific server, e.g., in order

to reduce administration effort in the event of a server failure. (4) Maximum number of

re-allocations: Particularly for online consolidation approaches, it is necessary to reduce

the migration overhead which could be achieved with a defined limit of re-allocations.

However, it must be noted that the authors of (Speitkamp and Bichler, 2010) propose the

mentioned constraint set but did not incorporate the same into their solution algorithms.

Instead, it is assumed that placement constraints would have an effect on solution quality

and computing time.

Dang and Hermenier (2013) propose a location constraint which equals the preas-

signment of Speitkamp and Bichler (2010). In addition, the authors differentiate discrete

constraints and continuous constraints. While the former refer to the final design, the

latter are intended to prevent SLA violations during the reconfiguration phase of online

approaches. The authors of Pires and Barán (2013) add a service level agreement provi-

sion constraint, which defines whether a service is critical or not. While a classification of

services with respect to their importance seems to be beneficial, e.g., in order to prioritize

demands, a single Boolean parameter may, however, not satisfy measurable requirements

which result from given SLAs.

Jammal et al. (2015) propose a placement solution with a strong focus on high avail-

ability of components. This is achieved through the satisfaction of the following four

constraint types: A (1) network delay constraint defines whether communicating compo-

nents should be hosted on the same server, rack, data center or within the same cloud

offering. While the levels of granularity are reasonable, this constraint type seems to be

highly related to the co-location constraint where the location may refer to the proposed

levels. Furthermore, a (2) redundancy constraint is defined for services that must be

placed separately. This requirement, in turn, is identical to the anti-colocation constraint.

A subject attainable by the location-constraint is outsourced to a special (3) failure rate

constraint, requiring to find a server with maximum mean time to failure (MTTF) and

minimum mean time to recovery (MTTR). Finally, the proposed (4) capacity constraint

ensures to avoid overflows. It is sometimes referred to as resource constraint (Yusoh and

Tang, 2012; Bin et al., 2011) and, in most problem formulations, represents the main

restriction.

Aforementioned anti-loaction and anti-colocation constraints are also proposed by the

authors of (Bin et al., 2011), whose main objective is to guaranty levels of HA. Therefore,

an availability constraint was designed which guarantees that VMs always have a secondary

PM where they can be moved to in case the primary PM fails. The resulting state must
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Constraint
type

Alternative
labels

Drivers Literature examples

Resource
constraint

Capacity constraint Performance,
availability

(Jammal et al., 2015; Yusoh and
Tang, 2012; Bin et al., 2011)

Specific
location
constraint

Preassignment,
unique placement
constraint, failure
rate constraint,
availability
constraint, among

Compatibility,
licensing

(Jammal et al., 2015; Speitkamp
and Bichler, 2010; Bin et al.,
2011; Hermenier et al., 2013)

Anti-
location
constraint

Ban Incompatibility (Jammal et al., 2015; Yusoh and
Tang, 2012; Bin et al., 2011; Her-
menier et al., 2013)

Colocation
constraint

Network delay
constraint,
combination
constraint, security
placement
constraint, gather

Performance,
intercommuni-
cation,
licensing,
security

(Jammal et al., 2015; Speitkamp
and Bichler, 2010; Shi et al., 2012;
Hermenier et al., 2013)

Anti-
colocation
constraint

Redundancy
constraint,
separation
constraint,
isolation
constraint, spread

Redundancy,
fault tolerance,
performance,
security

(Jammal et al., 2015; Speitkamp
and Bichler, 2010; Yusoh and
Tang, 2012; Bin et al., 2011; Cal-
cavecchia et al., 2012; Dang and
Hermenier, 2013; Shi et al., 2012;
Hermenier et al., 2013)

Maximum
number of
services
constraint

N/A Administration
effort, business
continuity

(Speitkamp and Bichler, 2010)

No
neighbors
constraint

lonely Performance,
administration
effort, isolation,
security

(Hermenier et al., 2013)

Maximum
utilization
constraint

Resource capacity
constraint, preserve

Performance,
availability,
optimization
degree, risk
attitude

(Pires and Barán, 2013)

Extra
resource
constraint

Preserve Performance,
availability, risk
attitude

(Hermenier et al., 2013)

Table 2.1: Placement constraint types as derived from the literature.
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still fulfill all other constraints which were defined for the original placement problem.

The most comprehensive portfolio of placement constraints was found in (Hermenier

et al., 2013). Their proposed VM placement solution supports the following constraint

types: Besides the well-known anti-location, co-location, anti-colocation and location con-

straints (here referred to as Ban, Gather, Spread and Among), seven additional constraint

types are of interest: Preserve supports to define a minimum amount of resource demand

for a VM. Analogue, Oversubscription reduces the demands of a VM in percent. Offline

allows to ignore a specified server when placing VMs, since the same must be offline in the

optimized design. Capacity is designed to limit the maximum number of VMs. And Lonely

isolates a specified (set of) VM(s) from all remaining VMs. Finally, two of the proposed

constraint types are only relevant for online approaches: NoIdles turns off servers in case

they do not host a VM and Quarantine creates a zone in which no VMs are allowed to be

migrated in case servers were compromised.

Table 2.1 consolidates the identified constraint types. While the first column defines

labels for each constraint type as used in the present work, the second column provides

alternative labels under which the constraint types may be found in the provided literature

examples. The listed drivers describe the general motivation and reasons to incorporate

respective constraints.

Contribution to research question 3

Consolidation approaches, found in the scientific literature, mention typical place-

ment constraints as listed in Table 2.1. However, most related artifacts consider

well-selected constraints and non of the studied approaches is capable to support the

entire set of identified constraint types. Furthermore, the effect of constraints on the

performance of implemented algorithms and on solution quality was not investigated

quantitatively. An additional contribution to RQ 3, carried out as part of the artifacts

design, complements the set of constraint types from a practical perspective.

With particular regard to the extensive use of cloud offerings, capacity management

affects a growing amount of services and servers operated in a decreasing number of en-

vironments. According to Gartner analysts, 90% of Infrastructure as a service (IaaS)

providers that existed in April 2017, will have to pass over their business to the prevail-

ing offerings Amazon AWS or Microsoft Azure which host many times more computing

power then all other providers. With the ongoing centralization of computing resources,

infrastructure is becoming increasingly complex and operational constraints gain more im-

portance than ever before (Ng et al., 2018). Consequently, constraint fulfillment must be

an integral part of the solution fitness evaluation in order to ensure practical applicability.

2.2.6 Summary

Du to the non-energy-proportionality of servers, even idle resources consume significant

amounts of energy. In practice, server utilization levels typically vary between 10 and

15% which also holds true for the domain of COTS EA. The consolidation of workloads
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on a reduced number of servers helps to improve average utilization levels and, therefore,

represents a widely acknowledged mean to improve energy efficiency of data centers and

to save costs. The deployment of optimized designs is technically enabled by the concept

of virtualization, which abstracts running services from physical servers. Those services

are to be placed with the objective to minimize required resource capacity. To solve the

service placement problem in accordance to available server capacity, orthogonal workload

profiles are to be identified. Depending on the state of the services during the relocation

phase, one may distinguish between online and offline approaches. In contrast to static

approaches, dynamic approaches involve a time dimension that goes beyond a single value.

In addition, one or more resource dimensions form the problem, which is known to be NP-

hard. Simple heuristics and metaheuristics dominate the portfolio of applied solution

algorithms. So called placement constraints are only selectively considered in related

approaches although known to be mandatory for consolidation efforts that are aligned with

given SLAs. This fact limits practical applicability of proposed approaches. Furthermore,

the effect of placement constraints on the algorithm performance was not investigated in

the studied literature.

2.3 Performance projection

Predicting the behavior of IT services under a given workload is a main challenge of the

capacity management process (Hunnebeck et al., 2011). Therefore, this section introduces

common means of performance prediction for EAs with a special focus on machine learning

methods. A classification scheme is developed with the intention to compare relevant

selection criteria for modeling techniques. Most related prediction approaches to the one

designed as part of this work are classified accordingly and compared to a new approach

which aims at combining advantages of existing techniques.

2.3.1 Projection objectives and strategies

As carved out in Section 2.1.1, EAs are required to answer timely and performance failures

lead to business failures. Therefore, the anticipation of performance characteristics prior

to the actual task execution is at the heart of several important decisions in the field of

workload management, system sizing and capacity planning (Ganapathi et al., 2009). In

particular, anticipations are valuable to schedule jobs, to estimate wait times in queued

systems, and to analyze what-if scenarios (Matsunaga and Fortes, 2010). According to

ITIL, examples of such what-if scenarios may reflect hardware and/or workload changes:

“What if the throughput of service A doubles? What if service B is moved from the

current server onto a new server? What will be the effect on the response times of the

two services?” (Hunnebeck et al., 2011, p. 173) Especially the latter example points at

aforementioned server consolidation exercises. While energy consumption is reduced, con-

solidated designs may imply the risk of performance degradations, if servers are overloaded

(Beloglazov et al., 2012; Jin et al., 2013). In order to not violate given SLAs and avoid
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the payment of penalty costs, it is essential to evaluate planned designs with respect to

the resulting performance before actual deployment (Chen et al., 2002).

Before deepening the specific problem of EA performance evaluation, general distinc-

tions are to be defined. With respect to the anticipation of future states, according to

(Bray and von Storch, 2009), one can distinguish predictions, projections and forecasts,

as originating from climate science:

• Prediction: Anticipation of a target value under current conditions, e.g., through

extrapolation.

• Projection: Anticipation of a target value under defined conditions in order to answer

what-if questions.

• Forecast: Anticipation of a time series in the future, considering the initial state.

Thus, in the domain of capacity management, predictions are helpful, e.g., when the load

of a managed system is to be anticipated. In this respect, particularly online approaches

may benefit from prediction capabilities. On the other hand, if design alternatives are to

be evaluated, performance projections are carried out, e.g., in order to compute response

times which result from a solution candidate that incorporates a number of assumptions.

Prediction, however, is also used as a general term for any kind of the above listed antici-

pations.

A major challenge when projecting performance of EAs lies in the complexity of

their component-based architecture. While all components of an EA may be implemented

using different technologies (e.g., different database management systems), they are tightly

coupled and cannot be assessed individually. Understanding the eventual performance of

an EA before its deployment is therefore challenging (Chen et al., 2002; Williams and

Smith, 1998; Chen et al., 2005). In this context, performance refers to the throughput

or the response time associated with a service or a component. Research mainly applies

monitoring based systems and performance models in order to assess the performance of an

EA prior to the operations phase (Gmach et al., 2008; Menascé, 2003). Accordingly, both

Becker et al. (2006) and Brunnert et al. (2015) distinguish the following two quantitative

strategies on a high level:

• Measurement-based performance evaluation refers to setting up a real system

or its prototype and running scripts that simulate user interaction with the system

in order to create load, also referred to as benchmarking. A prominent benchmark in

the domain of SAP systems is the sales and distribution (SD) benchmark which simu-

lates a defined number of end-users who concurrently log in, execute a sequence of SD

transactions and log off (SAP, 2019a). During this process, relevant metrics must be

measured in order to allow detailed performance analysis of the system under study

(Yoo et al., 2012). Those metrics are also referred to as performance counters or

hardware events. Performance counters, in this work, refer to relevant performance

metrics on any layer of the system architecture. In ITIL, the measurement-based

strategy is termed simulation modeling (Hunnebeck et al., 2011).
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• Model-based performance evaluation refers to the creation of numerical or

analytical models that allow to simulate or to calculate the behavior of a real system.

This way, performance metrics can be projected under different conditions such as

varying load factors or server capacity levels. Hence, this strategy principally does

not require a running system to be set up. However, the crucial task here is to

calibrate the model which may still involve measured data.

To conclude, well-designed prototypes may provide suitable performance assurance as

part of measurement-based approaches but their setup is expensive and time-consuming

(Chen et al., 2005). Particularly for EAs, tests must run across a variety of interdependent

configuration options until a system is satisfactorily tuned (Chen et al., 2002). As a result,

model-based techniques evolved to assess future system performance and traditional pre-

diction literature heavily relies on queuing networks and discrete event simulation (Bichler

et al., 2006). As pointed out by Becker et al. (2006), a combination of both strategies is

conceivable too. For example, measurement data can be used to to validate performance

models as done by Liu et al. (2004).

2.3.2 Classification of techniques

Either of the strategies outlined in Section 2.3.1 takes time and effort to prepare and

execute. Hence, a number of aspects need to be considered when selecting an appropriate

strategy for a given scenario. Those aspects include costs of modeling, ease of use, accuracy,

flexibility, scalability, analyzability, and applicability (Becker et al., 2006).

Many concepts and methods related to model-based performance evaluation (cf. Sec-

tion 2.3.1) are largely unknown to most IT practitioners (Menascé and Ngo, 2009) and,

thus, are rarely applied in industry (Becker et al., 2009). Main reasons include a generally

high time effort in construction and analysis of analytical models (Brosig et al., 2014) as

well as essential expert knowledge about the model itself, the system to be implemented

and its dependencies which may not be available (Westermann et al., 2010). Such mod-

eling approaches obtain results through simulation or, if models can be formulated in

a closed form, analytically. Due to the high amount of required domain expertise, re-

spective techniques may be referred to as white-box and grey-box approaches. Although

they can principally be applied already in the design stage of the software development

life-cycle (SDLC), the credibility of derived insights sometimes remains questionable until

their validation in later life-cycle phases. A prominent example for white-box modeling

is the Palladio component model (PCM), proposed by Becker et al. (2009), which allows

software engineers to model and analyze a component-based software architecture with

respect to performance aspects before full implementation. Since PCM instances describe

a full system architecture, they contain different models to cover aspects of the software

implementation, its assembly context (system architecture), the deployment context (ex-

ecution environment), and the usage profile (Becker et al., 2009; Krogmann et al., 2010).

After these models were constructed and combined, the PCM instance can be transformed,

e.g., to a an analytical solver or to a simulation model in order to make performance pre-
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dictions. The method was also used by Brunnert and Krcmar (2015) for predicting the

performance of EAs. Another example for white-box modeling, addressing the domain of

SAP EAs, was proposed by Wilhelm (2003), who uses queueing networks to make perfor-

mance predictions. The method relies on measurement data which is generated as part

of benchmarks within running applications. A domain expert, who is familiar with the

proposed approach, however, stated that modeling planned systems along with subsequent

calibration of the model is simply too expensive to design a commercial offering on the ba-

sis of suchlike methods.1 An example for a gray-box approach to predict average response

times of transactions was published by Chen et al. (2002) and further elaborated in (Chen

et al., 2005). Similarly to the work at hand, the authors particularly target EAs that uti-

lize COTS. They build a non-linear mathematical model, whose coefficients are obtained

during model calibration using real measurement data from a prototype. The approach

requires the prototype to be as similar as possible to the system under analysis when ap-

plying the model. However, the authors state that the approach may be impractical unless

application-specific characteristics will be incorporated into the model which are currently

decoupled from the modeled infrastructure components. Furthermore, model validation

was carried out using actual training data which diverges from the usual procedure. The

idea to automate the construction of performance models for reusable components of an

EA was also pursued by Kappler et al. (2008). The authors propose a method to build a

PCM instance from JAVA code on the basis of a static code analysis. However, the deter-

mination of resource demands and execution times is still subject to subsequent dynamic

analysis which must be carried out manually. Furthermore, the application’s source code

may not always be available. To overcome these drawbacks, Krogmann et al. (2010) pro-

pose a two-folded approach which was priorly described in Kuperberg et al. (2008): First,

application bytecode is instrumented and, under different usage contexts, executed on a

reference platform in order to count the number of instructions. The monitored data is

used to feed a genetic algorithm which estimates bytecode counts on the basis of different

input data. Based on the GA estimations, a platform-independent behavioral model is

constructed. If combined with a platform-dependent performance model which is to be

constructed in a second step, the models can be used to predict execution times. The

approach effectively reduces the required domain expertise in the performance model con-

struction phase. However, it covers platform-specific software behavior only to a limited

extent as the two model types are created separately and actual execution times are not

measured with the application under study. Furthermore, the approach requires access

to the application bytecode and the integration of both models is still subject to manual

effort. Hence, the approach may be classified as gray-box modeling. Another example of

gray-box modeling was proposed by Cherkasova et al. (2009) who use a regression-based

analytical approach to model CPU demands of application transactions on a given server

configuration. The approach supports in detecting performance anomalies and CPU con-

sumption changes but does not allow to predict actual response times.

1Expert interview with an SAP performance engineer at June 15, 2018
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Measurement-based approaches, on the other hand, are more frequently used in prac-

tice than model-based approaches due to their effectiveness (Westermann et al., 2010) and

straightforwardness. This rather practical strategy requires (parts) of the planned system

(e.g., a prototype) to be implemented and measured. Measurements can be carried out

during regular operations or as part of stress tests or performance unit tests inside quality

assurance systems (Horkỳ et al., 2015). As introduced in Section 2.1.4, different means

exist to monitor application performance. Obtained results can be analyzed easily and

their credibility is unquestioned. Multiple iterations allow for testing various levels of

workload and all executional dependencies are considered which model-based approaches

cannot guarantee (Venkataraman et al., 2016). On the other hand, correction costs, in

case of insufficient performance, are high and degrees of freedom with respect to alterna-

tive configurations are low (Brosig et al., 2014). As a costly consequence, performance

requirements are often considered lately and performance testing is done when an imple-

mented or relocated system is about to go live (Balsamo et al., 2004; Menascé, 2004).

This practice was originally termed by Smith (1981) as “fix it later approach” but can be

observed in today’s projects either (Tudenhöfner, 2011). The correction of performance

failures at that last stage is inefficient, expensive, delaying and professionally irresponsible

(Menascé, 2004; Tertilt and Krcmar, 2011).

In contrast to white-box and gray-box modeling, black-box approaches significantly

reduce the amount of domain expertise. Instead, models can be constructed by means of

machine learning techniques. During the training phase, existing patterns and interrela-

tions are learned from measurement data and fed into a performance model. The appli-

cability of the model is limited by the variety of training data. Therefore, large amounts

of performance counters are beneficial in order to obtain a suitable model. The data basis

may be generated by running differently configured benchmarks against a prototype of

the planned system. Hence, (parts of) real systems are required prior to model creation,

adding implementation costs. Once the model was trained, it can be applied to project

performance under varying conditions by passing different input features. Although mod-

els are supposed to generalize to unseen data (Mohri et al., 2012), configurations (e.g., a

specific type of server) which heavily diverge from what was found in the training data

cannot be used since their effect on resulting performance is unknown. Another downside

is given by the limited analyzability of obtained results due to the black-box nature of

the technique. This downside exponentially intensifies with a growing number of input

features. For this reason, model validation is an important step in order to assess the

credibility of gained insights. As an example for machine learning-based techniques, Duan

et al. (2009) use a hybrid Bayesian-neural network in order to improve the effectiveness of

scheduling systems by dynamically model and predict execution times. A similar approach

was taken by Huang et al. (2010) who predict execution times using a non-linear regression

model to be used by job schedulers. In 2011, Niehorster et al. use support vector machines

(SVM) to predict the resource requirements of an application. They design a multi-agent

system where every agent handles user requests and shares measurement data of the re-
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quest in a global knowledge base for subsequent modeling. Gupta et al. (2008) predict

time ranges for query executions in order to manage database workloads. In contrast,

the authors of (Yoo et al., 2012) demonstrate that machine learning-based techniques can

also be utilized to detect performance anomalies. Their system feeds Random forests

with hardware counters in order to identify bottlenecks without providing architectural

knowledge. As another example for performance projection, Venkataraman et al. (2016,

p. 365) design a “performance counter based approach” in order to predict run-times of

analytics jobs. The authors state that such approaches typically utilize advanced machine

learning techniques such as Random forests and SVM to train prediction models. Finally,

Matsunaga and Fortes (2010) test several machine learning techniques for their suitability

to predict application performance and their resource usage. One key insight of the exper-

iments performed by the authors is that the accuracy of machine learning techniques can

be improved by including application-specific parameters besides plain hardware counters.

To summarize, the applicability of machine learning-based techniques is strongly lim-

ited by the variety of training data. Furthermore, time and costs associated with the

collection of historical data represent major drawbacks. According to Venkataraman et al.

(2016), the main challenge of this approach is to minimize the time spent on collecting and

preparing training data in order to achieve a satisfying accuracy. Both of the mentioned

limitations can be mitigated if measurement data was shared within a domain, e.g, the

domain of customers of a specific COTS EA product. This way, models could benefit

from increased variety of training data spanning a potentially large amount of design al-

ternatives. Consequently, the search space that can be exploited by what-if questions is

extended to scenarios that were not implemented by the respective performance engineer.

Performance projection techniques which leverage the outlined potential, in this work, are

classified as machine-leaning based techniques using shared performance counters (cf. Ta-

ble 2.2 on the right). The most related approach was proposed by Ganapathi et al. (2009)

who predict execution times of database queries in order to support workload manage-

ment. They conclude with a long-term-vision of domain-specific performance models in

order to support answering a variety of what-if-scenarios in the context of workload man-

agement, capacity planning and capacity management. This research gap is addressed by

the thesis at hand for the domain of EAs. While the approach outlined by Ganapathi

et al. is limited to the layer of database queries, a holistic projection of business trans-

action performance, covering all layers of the EA, was proposed in (Müller et al., 2017b)

on the basis of experimental results published in (Müller et al., 2017c). Both publications

represent preliminary works to this thesis. Early experiment results were also published

in a master thesis, which was supervised by the author of this thesis, representing promis-

ing groundwork (Wirth, 2015). While the outlined technique may be applied in various

use cases that require performance projections, in the context of this work, it is used to

evaluate solution candidates of the SPP with respect to performance-related SLAs. Ta-

ble 2.2 summarizes the preceding classification and discussion on performance projection

techniques with respect to the outlined dimensions.
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Technique Measure-
ment-
based

Model-
based
using
simulation
engines

Model-
based
using
analytical
solvers

Machine
learning-
based using
isolated
perfor-
mance
counters

Machine
learning-
based using
shared per-
formance
counters

Model type
examples

None Queueing
networks,
petri nets,
markov
chains

Closed-form
expressions
such as
(non)linear
models

Random
forests,
support
vector
machines

Random
forests,
support
vector
machines

Real system
required

Yes No No Yes No

Domain
expertise

High High
(white-box
modeling)

Medium
(gray-box
modeling)

Low
(black-box
modeling)

Low
(blackbox
modeling)

Earliest
phase in
SDLC

Implemen-
tation

Design Design Implemen-
tation

Design

Required
training data

No model
training

None or low
amount to
calibrate
models

Few user-
generated or
measured
top level
parameters

Large
amount of
low level
counters

Massive
amount of
low level
counters

Degrees of
freedom

Low High Medium Medium High

Number of
testable
design
alternatives

Limited to
imple-
mented
designs

Limited to
modeled
designs

Limited to
modeled
designs

Limited to
implemented
designs

Limited to
shared
designs

Analyzability High High Medium Low Low

Literature
examples

(Menascé
and
Almeida,
2002;
Menascé,
2004;
Lilja,
2005;
SAP,
2019a)

(Wilhelm,
2003;
Bertolino
and
Mirandola,
2004;
Bondarev
et al., 2005;
Becker
et al., 2009)

(Chaudhuri
et al., 2004;
Chen et al.,
2005;
Cherkasova
et al., 2009)

(Gupta
et al., 2008;
Duan et al.,
2009; Huang
et al., 2010;
Niehorster
et al., 2011;
Yoo et al.,
2012;
Venkatara-
man et al.,
2016)

(Ganapathi
et al., 2009;
Müller et al.,
2017b,c)

Table 2.2: Classification of techniques for EA performance projection.



50 Multi-dimensional server consolidation

2.3.3 Supervised learning techniques

Supervised learning techniques, according to the classification provided in Section 2.3.2,

belong to the class of machine learning-based black-box approaches. In the case of perfor-

mance prediction, usually the mean response time or the throughput may be predicted.

This information indicates the application of supervised learning techniques as opposed

to unsupervised learning where the attribute of interest is not given.

In supervised learning, modeling refers to the creation of a function which maps a set

of input features to an output value. Due to the high complexity of real-world phenomena,

this function in many scenarios cannot be created manually. Instead, machines are used

to learn patterns from the input data. Depending on the type of output, two classes can

be distinguished: Classification techniques assume the output to be a discrete label such

as fast or slow. On the other hand, regression techniques deal with a continuous output

such as any real value between 100 or 500 milliseconds (ms) (Mohri et al., 2012). In the

course of this work, response times are to be predicted. Therefore, few relevant machine

learning techniques are introduced in the following, with a focus on regression.

Linear regression

A very simple example is linear regression. It provides a good basis of knowledge in order

to understand more sophisticated techniques and therefore serves as a starting point on

this occasion. In addition, many real world phenomena can be approximated using a linear

model and even if they are not applicable for the global model, they may still be used as

a sub-component of larger systems (Shalizi, 2006; Freitas, 2015).

In order to learn, input data is required during the training phase. The input data

is also referred to as training data and comprises a data set of n observations x, here

expressed as x1:n = [x1, x2, ..., xn]. Each observation consists of a number of attributes d,

also called dimensions, which form the input. An additional dependent variable y builds

the output that is to be described by the model. The input is also referred to as predictors,

covariates or independent variables. The output is also referred to as target or dependent

variable. After the model was trained, it is supposed to compute y for a new input xn+1

which was unknown during the training phase. In other words, the model must generalize

to unseen data (Mohri et al., 2012) and the predicted output ŷ is a function ŷ(xn+1) of the

new input. To achieve this, the influence of each input feature on the dependent variable is

to be computed. This influence is expressed by the parameters β1 to βn and the resulting

model, in its simplest form, would predict the output ŷ as follows:

ŷ(x) = β0 + β1x (2.1)

The form of equation 2.1 indicates a simple line where β0 defines the intercept with the

y-axis and β1 describes the slope of the line. An example is given in Figure 2.8. Here,

the red data points represent 4 observations x1−4, each having one input feature and the

respective output y1−4. The only parameter of a linear model that is not associated to
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Figure 2.8: Linear regression sample using four observations, based on Freitas (2015).

any of the input features, β0, represents a baseline that cannot be explained by a single

feature. As an example, if the power consumption of a server is to be predicted, β0 could

be a portion of, e.g., 100 Watt that is always consumed in addition to the load-dependent

portion. In Figure 2.8, the model fits the data points (purple red bullets) using the red

line. In order to determine how well the model performs, an objective function is required.

In linear regression, it is the goal to find a line which has minimized distance to the data

points. This distance (also referred to as error) is highlighted in Figure 2.8 by the black

lines and can be expressed by the depicted formula. Simply put, the error between the

output in the training set and the predicted output should be as low as possible. In order

to tolerate small distances (<1) and to penalize large distances (>1), it is a good practice

to square the error. Hence, across n data points, the objective function is to minimize the

sum of the squared errors as depicted in Equation 2.2 which utilizes ŷ from Equation 2.1:

J(β) =

n∑
i=1

(yi − ŷi)2 =

n∑
i=1

(yi − β0 − xiβ1)2 (2.2)

The illustrated example uses only one feature per observation. If multiple features d1

to dn are to be considered, the modeling process is termed multiple linear regression; the

resulting model is depicted in Equation 2.3.

ŷ(xi) = β0 + β1d1i + β2d2i + ...+ βndni (2.3)
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Figure 2.9: Regression tree sample with two input features, based on Shalizi (2006).

Regression tree

Scenarios which show a large number of input features that have complex non-linear

relations with the dependent variable, can hardly be handled by simple linear models.

A suitable way to handle the high-dimensional input space is to partition the data into

sub-partitions. If this is performed iteratively, one can refer to recursive partitioning. The

idea behind regression trees is that, while it is not possible to fit a global linear model, the

same may perform well on a limited subset of the input data (Shalizi, 2006). Therefore,

the data is split iteratively depending on individual criteria, resulting in a tree structure

where the mentioned sub-partitions are represented by the terminal nodes, also referred

to as leafs of the tree. A sample tree is depicted in Figure 2.9 with two input features

describing the number of database requests and the number of active users in a system.

The output, in this example, is a continuous value of the system’s response time, measured

in milliseconds (ms). The training data in this example may include the input matrix x

and the output vector y from Equation 2.4:

X =

[
3.0 4.1 5.2 3.5 4.2

3.2 3.6 5.5 4.0 6.1

]
y = [130, 170, 280, 210, 235] (2.4)

The tree is grown until an additional split does not provide a sufficient amount of

additional information. The so called information gain may be defined in different ways

and is to be maximized when deciding how to perform the next split. Therefore, each

split tries to separate the remaining observations as much as possible with respect to the

target variable. One way, used in the original version of regression trees, is to minimize the

sum S of squared errors of the target variable from their respective average value in the

two resulting nodes. The feature whose split minimizes S is chosen to separate the data

into two additional nodes, according to individual conditions as indicated in Figure 2.9 by

the branch annotations. These conditions represent the borders of a partition; they are

illustrated in Figure 2.10 by the gray lines that split the input space into 6 sub-partitions
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Figure 2.10: Recursive partitioning of a regression tree, based on Shalizi (2006).

which, in turn, represent the leafs of the tree in Figure 2.9. The input features of matrix

X in Equation 2.4 are shown in Figure 2.10 on the x- and y-axis. A third dimension, the

output variable y, is indicated by the color scheme. The total area represents the data in

the root node. As the tree grows, the differently colored data points are to be separated.

A local splitting decision, once it was taken, is never questioned even though it may not

have been optimal from a global point of view. Due to this behavior, regression trees

belong to the class of greedy algorithms. According to Shalizi (2006), the fulfillment of

one of the following criteria stops the tree from growing:

• All data points in a node show the same value for all input features

• The sum of squared errors cannot be further decreased beyond a defined threshold

• The number of data points in one of the resulting nodes falls below a defined thresh-

old

Additionally, some implementations include a parameter which controls the maximum

depth of a tree. If a node is not split any further, it becomes a leaf. Finally, on each leaf,

a regression technique such as a linear model is applied in order to perform the prediction.

In the original version of regression trees, a constant estimate of the target variable is

made by averaging across the observations within the leaf. It is to be noted that a model

is only valid inside the associated partition.
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Random Forests

Models that show high variance in terms of the predicted output may have been overfitted

to the training data. This risk is also entailed by regression trees, especially if trained with

a high depth. Therefore, regression trees do not tend to generalize well to unseen data.

A common strategy to decrease the variance and therefore to avoid overfitting is bagging.

Here, multiple learners of the same type are trained on randomly selected subsets of the

input data and the prediction result is simply the averaged result of all learners. The

added randomness reduces the variance and creates a more stable model. This strategy

was leveraged by Breiman who proposed the concept of Random forests (RF) in 2001. RF

combine a defined number of regression or classification trees which were trained using

a subset of input features, randomly selected (with replacement) for each split decision.

This is sometimes called feature bagging and reduces the correlation of the trees. The

type of model belongs to the class of ensemble learning techniques. RF are known to be

one of the most powerful classifiers; they are used in many real-world applications such

as, e.g., in Microsoft Kinect to determine the position of the hand (Freitas, 2013). In

general, a Random forest where each of the trees uses a random subset of features shows

higher accuracy than a single tree using the full set of features (Criminisi et al., 2012). An

advantage of the bagging strategy lies in the ability to parallelize the training phase of the

individual learners since their results do not depend on each other. Just like regression

trees, RF can deal with complex nonlinear relations by splitting the problem into smaller

sub-problems (cf. Figure 2.10) that can be solved more simply (Criminisi et al., 2012).

Therefore, the general procedure is to select a subset of features, perform a split that

maximizes information gain and, in each of the created partitions, select a new feature

subset to proceed with. This is performed for each tree until one of the stop criteria, listed

earlier in this section, takes effect. On the terminal nodes, different predictors can be used

such as constant or linear models (Criminisi et al., 2012). Finally, the prediction result y

is computed as the average of all trees t (cf. Equation 2.5).

y =
1

T

T∑
t=1

yt (2.5)

Important model parameters include the outlined stop criteria as well as the number of

randomly selected features which are tested in order to decide for a split. In the case of

regression with p features, p3 represents a size of subset which usually performs well (Liaw

and Wiener, 2018).

Support vector machines

The idea of partitioning the input data is forged ahead with the concept of Support

vector machines. The theoretical foundation was originally built by Cortes and Vapnik

under the term Support-vector networks and demonstrated for pattern recognition (Cortes

and Vapnik, 1995). However, two years later, Drucker et al. (1997) clarified how the
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Figure 2.11: Kernel trick using a polynomial function in SVM, based on Jordan (2004).

concept can be utilized for regression. The basic concept relies on the idea to transform

input features into a high-dimensional feature space in a way that data points become

separable. Depending on the number of dimensions, splitting entities can be imagined

as a simple line (two dimensions), a plane (three dimensions), or a hyperplane (more

than three dimensions). As opposed to Regression trees and Random forests, splits are

performed by maximizing the margin between the hyperplane and closest points which are

termed support vectors. This can be formulated as a constrained optimization problem

and solved by means of Lagrange multipliers (Burges, 1998). However, the mathematical

formulation is out of scope in this work; it can be studied in more detail in (Rockafellar,

1993) and, in the context of SVM, in (Suykens and Vandewalle, 1999).

The transformation of input features is performed by a kernel function which can take

different forms. A simple example is to add an additional dimension by squaring the input

dimensions so that data points on the new axis become positive. The respective kernel

function is formulated in Equation 2.6.

y(x1, x2) = y(x1, x2, x
2
1 + x22) (2.6)

While the example uses a polynomial kernel (as also originally applied in (Cortes

and Vapnik, 1995)), alternative options are, e.g., a linear kernel, a radial basis function,

or a sigmoid kernel. The transformation of the input space is referred to as kernel trick

as it allows to separate data points by increasing the dimensionality. A visualization of

Equation 2.6 is given in Figure 2.11, where a function which considers two input features

(x1 and x2) is transformed into a function of three features. As opposed to the original

representation of data points (Figure 2.11 on the left), the transformed feature space allows

to build a plane that separates the data points (Figure 2.11 on the right).

Depending on the data, strict separations as illustrated in Figure 2.11 may not be

possible. In this case, misclassifications must be allowed up to a defined threshold. The

threshold can be controlled over a parameter C which defaults to 1. A higher value
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fosters hard margins which may result in overfitting. In contrast, low values lead to soft

margins that allow misclassifications in favor of improved generalizability. Therefore, the

optimization of hyperparameters, when applying SVM, includes the parameter C and the

selection of a suitable kernel version.

Boosted trees

Boosting is another ensemble technique which combines a number of learners as also done

by bagging techniques such as RF. Boosting, however, relies on a rather evolutionary

approach where the overall learning process is guided on the basis of preceding results.

This way, subsequent learners are forced to focus on records of the training data on which

previous learners struggled to achieve low errors. According to Schapire (2013), the first

practical boosting algorithm is AdaBoost. In its original algorithm formulation, Freund

and Schapire (1997) use a function WeakLearn that refers to any learner which can be used

in conjunction with AdaBoost. As the name suggests, weak learners are expected to be

only slightly better than random guessing. An example of a weak learner is a regression

tree with a limited depth which is therefore also called stump. They are added to the

learning process successively and trained on the data which was weighted according to

previous errors. While, initially, each record is equally weighted, the weightings are scaled

after each learning iteration using an exponential error function (cf. Equation 2.8).

The process terminates after T learning iterations. In contrast to Bagging, when used

for regression, the overall prediction output is a weighted median of all weak learners,

depending on their total error (Drucker, 1997). The weighting is carried out using a

logarithmic function which grants learners with low errors a high influence on the result

while weakest learners receive negative influence. Accordingly, the weight α of a learner

in iteration t is calculated as depicted in Equation 2.7.

αt =
1

2
ln

(
1− et
et

)
(2.7)

These weights are computed within each iteration and are then used to guide the

subsequent learners. Each record i of the training set is weighted according to a function

which Equation 2.8 depicts in a simplified way for classification problems.

wt+1(i) = wt(i) · eαt·et (2.8)

In this example, the error e within an iteration t is 0 if the prediction was correct.

In all other cases, it accounts to 1. Hence, if a good learner (high αt) causes high errors

on particular records, increased weights will cause subsequent learners to focus on those

records. If, on the other hand, the error was 0, weights will remain with no change

(Brownlee, 2016). Depending on the specific AdaBoost implementation, variations of

Equation 2.8 are used. Similar to RF and different from SVM, when using AdaBoost in

conjunction with decision trees or regression trees of a limited depth, most relevant features

are to be selected to split the data set as described in Section 2.3.3. Hence, AdaBoost
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deals well with the curse of dimensionality and is known to work well without much tuning

when compared to other ML algorithms (Kégl, 2013; Caruana and Niculescu-Mizil, 2006).

Since Boosting is designed to explore shares of the training data which are particularly

hard to explain, AdaBoost is sensitive to outliers which are to be excluded beforehand.

As opposed to RF, the learners cannot be trained in parallel (Friedman et al., 2017, p. 343

et seqq.).

2.3.4 Model validation

According to ITIL, the accuracy of a model depends “[...] on the skill of the person

constructing the model and on the information used to create it” (Hunnebeck et al., 2011,

p. 92). Good quality with respect to both aspects can be ensured by following processes in

the domain of data mining. Widely established examples are the Cross-industry standard

process for data mining (CRISP-DM) and the Analytics solutions unified method for data

mining (ASUM-DM). The steps of CRISP-DM are depicted in Figure 2.12. ASUM-DM,

in contrast, incorporates additional steps, required to build solutions that incorporate

models as well as their operation and maintenance in an agile manner (IBM, 2016). Since

any data mining process must fulfill a given purpose, it is the first step to define business

objectives along with data mining goals. Subsequently, data sources are to be identified

and initial data must be collected, described and explored. Additionally, the data quality

is to be assessed. The third step, data preparation, incorporates techniques to select, clean

and format relevant data (Chapman et al., 2000). The data builds the input space which

comprises features to feed models with, as described in Section 2.3.3.

An essential part of any data mining process is the model validation (cf. step five

in Figure 2.12) (Shaeffer, 1980). In here, it must be tested how well the model performs

when applied to new scenarios. Since models are supposed to generalize to unseen data,

validation must be carried out using a data set different from the training set. This data

set is referred to as test data or validation data and ensures that a given model does not

overfit to the training set. In addition, so called cross-validation implies that multiple

validations are carried out using different subsets of training and test data. Typically an

average value across the resulting errors represents the overall accuracy of the validated

model. While cross-validation in most cases is beneficial to obtain an unbiased error from

the test set, some model types fulfill this task internally during the training phase. As an
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Figure 2.12: The CRISP-DM methodology, based on Chapman et al. (2000).
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example, in Random forests, each tree is already built using a different bootstrap sample

of input data where usually around one third of the data is not used (Breiman and Cutler,

2019). To measure model accuracy, various metrics exist. The simplest error metric is the

mean error (ME) which represents the mean difference between predicted values ŷ and

measured values y across the test set ntest as given in Equation 2.9. Similarly, the mean

absolute error (MAE) refers to the modulus of the error as given in Equation 2.10.

ME =
1

ntest

ntest∑
i=1

(ŷi − yi) (2.9)

MAE =
1

ntest

ntest∑
i=1

|ŷi − yi| (2.10)

To indicate model accuracy, often a percentage value is used since the same are easy

to interpret and comparable across models of different magnitudes (Mayer and Butler,

1993). Accordingly, the mean absolute percent error (MAPE) expresses the mean dis-

tance between measured and predicted values in relation to the measured values (cf.

Equation 2.11). Particularly in business context, the MAPE is a frequently used error

metric (Gneiting, 2011).

MAPE =
1

ntest

ntest∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (2.11)

Another metric, more frequently used in the domain of statistics, is the root mean squared

error (RMSE) which represents the root of the mean squared errors (cf. Equation 2.12).

As pointed out in Section 2.3.3, squaring of errors is beneficial in order to penalize large

errors while tolerating low errors and, here, causes the RMSE to be always positive. The

lower the value the better and an RMSE which amounts to 0 indicates a model with highest

possible accuracy. The RMSE is comparable only across data of the same magnitude as

it is based on the ME which scales depending on the data.

RMSE =

√√√√ 1

ntest

ntest∑
i=1

(ŷi − yi)2 (2.12)

The RMSE of a model may be compared to the standard deviation of the data in order

to evaluate whether a model performed better than a simple guess on the basis of the

average value across all observations. A similar purpose is pursued by the coefficient of

determination which is also termed R2. Here, variation is put into ratio with the sum of

the squared errors. According to Equation 2.13, R2 approaches 1 if the distance between

predicted values and measured value is lower than the distance between the measured

values and their average value. Hence, models with higher R2 (closer to 1) are to be

preferred.

R2 = 1−
∑ntest

i=1 (yi − ŷi)2∑ntest
i=1 (yi − ȳi)2

(2.13)

In general, thresholds of acceptable values must be defined by the modeler in accordance
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to requirements inherent to the application area of the model (Almeida, 2002). If results

are not satisfying, tuning activities require to iterate the process once again (cf. Figure

2.12). As an example, input data may be filtered or enriched or a different set of features

may be selected. Depending on characteristics of the data, hyperparameters of the model

could be optimized or the type of model may have to be changed. If, on the other hand,

acceptable errors are computed, trained models are ready for deployment.

2.3.5 Summary

The performance of an EA is to be projected before entering the operations phase in

order to avoid SLA penalties and expensive correction costs. As part of the capacity man-

agement, various what-if scenarios form the input to model-based, measurement-based

or machine learning-based techniques. If applicable, machine learning-based techniques

that utilize shared performance counters combine the main advantages of model-based

techniques (applicable in the design phase with high degrees of freedom) while avoiding

main disadvantages of measurement-based techniques, since the amount of testable design

alternatives is not limited to implemented but to shared designs. Here, techniques from

the field of supervised machine learning are employed. Random forests, Support vector

machines, and Boosted trees represent commonly used learners that deal well with nonlin-

ear interrelations in a high-dimensional feature space. Required activities to prepare the

data and train models are specified, e.g., in the Cross-industry standard process for data

mining. This process incorporates the model validation as a crucial task to assess the cred-

ibility of obtained results. A widely used error metric that is comparable across varying

data and model types is the mean absolute percent error which relates distances between

predicted and measured values to measured values. Acceptable error ranges are strongly

domain-specific and models may be tuned in multiple iterations until their deployment.

2.4 Related research artifacts

Existing server consolidation and service placement approaches represent excellent exam-

ples of interdisciplinary research as various mathematical or algorithmic solution tech-

niques are applied to optimization problems in order to address cost saving objectives in

the domain of business informatics. This section analyzes and classifies related approaches

which address the research goal of this thesis.

2.4.1 Overview of related approaches

With the increasing spread of cloud computing, the problem of placing virtual entities on

physical servers became a widely studied field. While, initially, server consolidation used

to be a manual task, first approaches evolved to automate the steps of placing services on

available servers in 2001. A comprehensive basis of related work was investigated by López-

Pires and Báran in a literature review on virtual machine placement. In total, the authors

identified 446 research articles using Google scholar; those were subsequently filtered and



60 Multi-dimensional server consolidation

grouped by the publishers IEEE, Springer, Elsevier and ACM. The remaining 172 articles

were further filtered through abstract reading with respect to a clear VMP focus. In

addition, short papers with less than six pages were excluded, resulting in a remainder of 84

relevant articles. Finally, López-Pires and Báran classify the publications with respect to

the optimization approach, the objective function, the solution technique and the problem

formulation. The latter determines whether the problem is solved online or offline. Other

classifications refer to this aspect as the time of decision making (Varasteh and Goudarzi,

2017) which highly depends on the technical architecture of the solution environment along

with the employed virtualization technique (cf. Section 2.2.2). Regarding the objective

function, consolidation approaches most commonly address one or more of the following

objectives (López-Pires and Báran, 2015):

• Group 1: minimization of energy consumption (50%)

• Group 2: maximization of network traffic (30.9%)

• Group 3: maximization of economical revenue (22.6%)

• Group 4: maximization of performance (16.7%)

• Group 5: maximization of resource utilization (15.5%)

According to this classification, the thesis at hand addresses the two least studied

groups, since the artifact is designed to maximize resource utilization while maximizing

resulting performance. Therefore, approaches that are formulated as offline problems and

classified into objective function groups 4 and 5 are considered to be most related. As the

qualitative review of López-Pires and Báran provides a valuable basis of related literature

for the present work, all articles classified as offline problems were studied. Additionally,

those articles were filtered with respect to the targeted objective functions; the result

served as a baseline for forward-backward-search in order to sprawl the search space and

to cover the chronological gap between 2015 and today. While herein the focus again was

put on offline problem formulations, online approaches were additionally studied if they

deal with impacts on the service performance. The forward-backward search revealed

an additional literature review, conducted by Mohamadi Bahram Abadi et al. (2018),

covering only recent articles that were published after 2012. As the authors also provide

a classification regarding the problem formulation, their studied articles could be filtered

for offline problems (here termed “static consolidation techniques”). The resulting set of

publications was included into the search process of this work too. The overall process, as

depicted in Figure 2.13, gained a sufficient overview of the state of the art in the domain

of service placement. In the following, most related artifacts are briefly introduced in

chronological order with a focus on strengths to be built upon and weaknesses to be

obliterated.

In 2001, Pinheiro et al. propose a new research direction that considers a systematic

load consolidation in order to reduce energy consumption within clusters. The publication

represents one of the first works in this field as pointed out by Beloglazov et al. (2012). In

the article, a trade-off between power and performance is introduced. The authors state
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Figure 2.13: Literature review process, based on López-Pires and Báran (2015).

that power consumption decreases with the number of running nodes in a cluster while per-

formance suffers when nodes are over-utilized. Two metrics for performance measurement

are distinguished: throughput and execution time. The former is used by their solution

algorithm which predicts expected performance degradations for consolidation decisions

based on portions of historical resource demands of the workload that is to be moved. The

level of acceptable performance degradation must be specified by the cluster administrator

in advance and the solution approach is limited to homogeneous machines. The algorithm

makes decisions to turn off cluster nodes (to save power) or to turn on additional nodes

(to handle load) and handles subsequent load redistribution. While percentage-based per-

formance degradations are predicted with respect to throughput and execution time, the

prediction strategy relies on a rather rudimentary calculation. For example, if one cluster

node demands for 40% of the total bandwidth and an additional node claims 80% at the

same time, execution time degradation of 20% is predicted. In this regard, Pinheiro et al.

assess their execution time predictions to be inaccurate.

In 2005, Rolia et al. propose a capacity management service for EA clusters. The

considered daily workload patterns lead to a two-dimensional bin packing problem with one

time dimension and one resource dimension. The authors use a GA to optimize the service

allocation; it is evaluated by performing a case study with 26 servers where the number of

CPUs (16, 32, 64, or 128) represent the capacity limit in relation to a static reference CPU

speed. While heterogeneous CPUs were assumed, other resource demands, such as main

memory, were considered in the problem definition but were not included in the evaluation.

Instead, sufficient main memory capacity of the servers was principally assumed. With

respect to the service performance in the target design, the authors distinguish two service

classes to represent production and non-production workloads. Furthermore, they define

that interactive and batch workloads can have differing resource access probabilities. The

overall objective is to prevent degraded resource access from causing increased application

response times. Therefore, during evaluation, a spare CPU capacity of 50% in relation to

the targeted utilization was introduced for all interactive workloads. While the strategy of

spare capacity may keep response times low, a rather large portion of saving potential is
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left unaddressed. The approach is based on groundwork presented by Rolia et al. (2003).

Here, too, a soft assurance for quality of service was proposed by introducing additional

portions of spare capacity amounting to either 50% or 20% per CPU or server.

One year later, Bichler et al. (2006) formulate two related problems for server consol-

idation which particularly address the domain of COTS EA: The Static server allocation

problem (SSAP) and the Static server allocation problem with variable workload (SSAPv).

Average CPU utilization in a 5-minute interval, measured over one month, was aggregated

to 24 hourly demands of a typical day for each service. The resulting sequences serve as

workload input to the formulated problem. The applicability is limited to homogeneous

data centers with servers having identical capacities. Depending on the problem size, the

used algorithm takes 5 minutes to several hours to solve the problem. For evaluation, data

of 30 servers from a data center provider was used. The authors mention one placement

constraint of a service that must be placed on a particular server. However, the fulfillment

of the constraint must be accomplished as part of a manual pre-processing task that in-

volves decreasing the capacity of the chosen server’s capacity. The performance of services

in the resulting design was not discussed.

Similarly to the proposed approach by Rolia et al., Cherkasova and Rolia (2006)

develop a GA to optimize existing allocations. Evaluation was performed using data from

26 applications. To apply the approach, the server’s CPUs are required to be homogeneous

but their number can vary for each server. In order to reflect service performance, product

owners of an EA are requested to manually define utilization ranges, resulting in acceptable

and degraded performance, for a defined percentage of measurements in the historical

workload trace. This way, the amount of spare capacity can be adjusted for specific services

and time intervals, which, however, is a critical manual task whose success depends on the

experience of the actor. In 2009, Cherkasova et al. proposed a component that predicts

CPU demands by means of a regression method and fed the result into a queueing model

with the objective to predict the maximum achievable throughput of a system.

Hyser et al. (2007) develop the prototype of a system which controls the mapping of

VMs to PMs. The system carries out VM live migrations in accordance to load balancing

policies within a domain of homogeneous physical servers. In order to make placement

decisions, an automatic controller considers resource demands of VMs in terms of CPU,

memory, network input/output (I/O) bandwidth and disk I/O bandwidth. The opti-

mization problem is formulated as an online problem and solved using a version of the

Simulated annealing algorithm which belong to the class of metaheuristics. The authors

evaluate their prototype with experiments on four identical PMs. Placement constraints

are not mentioned in the experiments, but their importance for future work is emphasized

in order to meet existing SLAs which result from higher level business requirements.

In the same year, Wood et al. (2007) state that VM migration decisions are (at that

time) predominantly made manually. Therefore, the authors develop a method, termed

Sandpiper, that monitors resource usage and detects so called workload hot spots. In

this case, VM migrations are initiated according to a newly calculated mapping of VMs
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and PMs. In this sense, hot spots occur whenever the utilization of monitored resource

dimensions exceeds a threshold for a defined time period. They are detected by means

of a queueing model which estimates peak demands with respect to CPU and network

bandwidth. The authors distinguish black-box and gray-box monitoring techniques as

also referred to in this thesis in Section 2.1.4.

Bobroff et al. (2007) apply a first-fit heuristic to a bin packing problem which describes

the mapping of VMs to PMs. They define static server consolidation problems to utilize a

single average value per resource on the basis of which offline migrations are carried out.

In the thesis at hand, this definition is followed with respect to the workload. However,

online migrations may also rely on static workloads. Dynamic workloads, in this sense,

must be defined as a sequence of resource demands over time, in contrast to a single static

value. While some publications agree with this, others use the term dynamic to describe

a flexible target design that can be adopted online. The authors furthermore state that

performance-related SLAs are typically expressed as response time guarantees. However,

their approach translates response time SLAs for business processes into CPU guarantees

of each VM so that the resource demand exceeds the capacity in, e.g., no more than 5%

of measurement intervals. The approach involves a prediction model which forecasts the

resource demands for CPU and memory on the basis of historical workloads. While the

evaluation of the algorithm is carried out using workload traces from real applications, only

a single resource (CPU) is considered in a homogeneous and rather small environment using

three IBM blade servers as PMs and 5 virtual machines. The integration of additional

resource dimensions is declared as future work. The authors mention different reasons for

isolation of services such as security, resource contention, and a co-sensitivity to patches

and versions.

In 2008, Kusic et al. propose a resource provisioning framework that performs se-

quential optimization using a look-ahead control scheme. The objective is to maximize

profit that is generated by trading services. Relevant parameters are formed by the num-

ber of VMs for each application, the total number of physical servers, and the CPU share

for each VM. Those parameters are dynamically tuned and placement decisions are based

on the revenue generated by the trading service to be placed. For this purpose, a pricing

scheme is maintained and achieved response times are mapped to a dollar value, which

the client is willing to pay. The approach is carried out online in the sense that the

formulated placement problem is solved periodically. Herein, costs for starting and stop-

ping machines are considered and SLAs represent response times which are modeled as

a function of workload intensity. This function is obtained via simulation-based learning

from measured response times on different CPU capacities. The number of SLA viola-

tions depends on a risk-preference function of the controller. While violated SLAs lead

to refunds, satisfied SLAs yield rewards. The authors test their approach in a two-tier

EA environment comprising an application and a database tier with heterogeneous servers,

using a stock trading software. On average, 22% energy savings were achieved in their test

environment. While service placement strongly depends on the revenue of each service,
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additional constraints were not considered.

In a three-tier-approach called AutoGlobe, Gmach et al. (2008) calculate resource

allocations based on complementary load characteristics. In a first step, the authors use

a Lloyd-Max quantizer to cluster the services into periodic and nonperiodic workloads.

While periodic workloads can be placed offline, an additional online resource management

controls the response time at run-time and reacts to exceptional situations such as un-

foreseen usage fluctuations or hardware failures. Appropriate actions are identified online

by a fuzzy controller and include the addition of service instances or the movement of

services to more powerful servers. A parameter that controls the allocation limit can be

defined manually using an upper utilization bound, e.g., in percentage of processor load. If

the parameter is exceeded, an overload situation is proclaimed. For the initial placement,

low-level technical metrics such as CPU and memory demands are used; user-level SLAs

are not considered. Instead, SLA control is enforced as part of the subsequent operations

phase through request scheduling within the limits of the chosen design. The authors

suggest to complement their rule based controller (fuzzy logic) with a performance model

to predict the quality of service which would improve the decision quality with respect to

various what-if-scenarios.

In 2009, Van et al. propose the concept for a resource manager that optimizes the

degree of SLA fulfillment and operations costs. The components of the online approach

are part of an autonomic control loop. A local decision module controls the mapping of

applications to VMs and a global decision module handles mapping of VMs to PMs by

communicating with the hypervisor. A performance model was obtained from experimen-

tal data; the model provides response times for given workload intensity and CPU capacity.

However, the model is represented by a simple table that maps a discrete number of ar-

rival rates for different CPU capacities to resulting response times. If those values are not

matched by real-world continuous workload data, the response time is calculated as the

average of the two nearest tuples. Other application-level metrics or HW characteristics

of the server are not considered although, as stated by Pinheiro et al. (2001), execution

time depends heavily on application characteristics. VMs are required to follow classes

of predefined sizes in terms of CPU and memory capacity. The evaluation is carried out

using only VM classes where CPU capacities equal memory capacities, effectively resulting

in a problem with one resource dimension. The mapping of VMs to PMs is carried out

by a packing module that utilizes a constraint programming approach. The authors argue

that, in contrast, heuristics would not be suitable since placement criteria may change and

entailing adaptions of the heuristics are to be avoided.

A multi-objective optimization problem which simultaneously minimizes the total re-

source wastage, the power consumption, and the thermal dissipation costs was formulated

by Xu and Fortes (2010). The authors claim the objectives to be conflicting although

minimization of resource wastage and power consumption are, to some extent, mutually

supportive. A grouping GA is used to solve the problem and both CPU and main memory

are considered as resource dimensions. However, the workload is static and in the con-
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ducted experiments, CPU capacity in GHz equals memory capacity in GB for all cases.

Neither service performance nor placement constraints were considered.

In the same year, Boloor et al. (2010a,b) deal with request scheduling in geographically

distributed data centers. The authors introduce a response time constraint to ensure SLA

conformance. Request allocation is handled by means of a lookup table and a rank-based

scheme which favors servers that are pre-loaded with required context data. While the

formulation of a percentile response time SLA represents valuable related work, the concept

rather addresses research gaps in the domain of online load balancing and, therefore, may

complement an offline server consolidation approach during the operations phase.

Stillwell et al. (2010) define a resource allocation problem with a static but multidi-

mensional workload. The authors develop several approximate solution approaches such

as greedy heuristics and a GA in order to solve the problem. Higher level user metrics

such as the response time are mapped to resource fractions assigned to a service by means

of a linking metric. The metric is called yield and quantifies for each service how much of

the resource demand is actually satisfied. In the allocation problem, the minimum yield

over all services is maximized with the idea to consider performance in a fair manner.

However, the yield does not quantify actual response time estimates.

Another publication of the year 2010 propose a linear programming (LP)-relaxion-

based heuristic to solve the aforementioned SSAP and SSAPv (Speitkamp and Bichler,

2010) which was formulated by Bichler et al. (2006). After an LP-relaxed solution is

found in the first step, fractional assignments are combined greedily as a second step. The

authors use real workload data from 259 ERP servers and 160 web servers to evaluate the

approach. The components were monitored for a period of three months in intervals of

5 minutes; resulting traces were aggregated to daily workload profiles which contain 24

hours, each represented by the 0.95-quantile. Thus, the authors decided to exclude peak

demands due to their rare occurrences. They argue that overload situations would result

in increased response times but do not quantify this statement; for decision makers, it

remains unclear to which extent response times are affected. Both workload demands of

running services and server capacity limits were measured in SAPS (cf. Section 2.1.1).

Additional resource dimensions such as the usage of main memory were disregarded. The

computational complexity appears to be worse than exponential and depends heavily on

the problem size. The approach is therefore limited to an upper bound of about 700

servers. However, as stated in Section 2.2.1, enterprise-class data centers are formed by

hundreds to thousands of servers (Brown et al., 2007; Johnson and Marker, 2009; Jennings

and Stadler, 2015) and continue to become the prevailing hosting facility (Carr, 2005;

Ng et al., 2018). Possible placement constraints were listed but not considered in the

experimental evaluation.

Feller et al. (2011) formulate a multidimensional bin packing problem to minimize

energy consumption of data centers and develop a metaheuristic, based on ant colony

optimization (ACO), to solve it. As part of the simulation-based experimental evaluation,

multiple types of resource are considered and the used workload is dynamic, thus, includes
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a sequence of time intervals. However, the approach requires all considered servers to be

homogeneous. Service performance and placement constraints were not considered.

In 2012, Beloglazov et al. developed an online VM consolidation approach which takes

SLA violations into account. The VM placement is carried out by means of a modified

BFD algorithm (cf. Section 2.2.4). Herein, the approach considers solely the CPU as

the main energy consumer. However, the authors emphasize the need to consider main

memory as the next largest power consumer as an essential open challenge. SLAs are

reflected by utilization thresholds and policies whereby the provider is requested to define

allowed performance degradation levels in percent.

One year later, another multi-objective optimization problem was formulated by

Adamuthe et al. (2013). The objectives are to maximize profit, to maximize load bal-

ance and to minimize recourse wastage. The problem is solved using variants of a genetic

algorithm and considered resource dimensions are CPU, memory and network bandwidth.

For their experiments, the authors generate data and tested the approach for up to 60

VMs that are to be placed on homogeneous PMs. The formulated placement constraints

are limited to the ones which are inherent to the problem: A capacity constraint and a

placement guarantee constraint define that every VM must be placed while servers must

not be overloaded with respect to any resource.

In contrast, Sun et al. (2013) aim at minimizing the number of PMs while achieving

an optimal resource utilization across the occupied PMs. The solution technique is based

on a matrix transformation algorithm and the considered resource dimensions include

CPU, main memory and disk. The authors show initial configurations of VMs and PMs

before repeating experiments over an increasing number of VMs but it remains unclear

which configurations were used in the experiments and if the PMs are allowed to be

heterogeneous. The problem formulation comprises three constraints which, however,

simply require the considered resources to be not overloaded.

Gao et al. (2013) minimize power consumption and resource wastage at the same time.

Similarly to the work proposed by Feller et al. (2011), an ACO metaheuristic was applied

to a test set comprising 200 VMs and 200 PMs. It uses a multidimensional resource vector

containing static CPU and memory demands. Although the authors claim to support

heterogeneous servers, the 200 PMs used in the experimental evaluation are homogeneous.

The evaluation shows that the solution performance achieved by the algorithm is similar

to a grouping GA. The performance of the placed services is not explicitly considered but

a threshold value ensures that an upper bound of server capacity is not exceeded in order

to avoid severe performance degradations.

Also in 2013, Hong et al. develop a VM placement approach that aims at maximizing

the profit of cloud gaming providers while minimizing the response time which they call

quality of experience (QoE). Accordingly, the utilized best-fit heuristic is termed quality-

driven heuristic (QDH) and places a VM on the first suitable server of a list that is sorted

by network latency in ascending order. While the approach scales with a large number

of servers (solutions are calculated within less than 7.15 seconds for a system with more
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than 3000 servers), it is limited to homogeneous machines.

Ankit et al. (2013) optimize virtual machine placement while supporting performance-

related SLAs. The authors follow an online approach and quantify the overhead of live

migrations using relative weights of different resource requirements. The resulting ob-

jective function requires to minimize the number of hosts for the final allocation and to

minimize the migration overhead at the same time. This way, application performance is

not affected significantly during relocations. Since only the number of hosts in the target

design is pivotal, a homogeneous bin composition is assumed. The authors use an integer

linear programming formulation for small problem instances and an FFD to solve cases

with larger problem sizes. Placement constraints as listed in Section 2.2.5 were not consid-

ered. While the authors study the impact of the virtualization overhead on performance

related SLAs, the effect entailed by the identified solutions during their operations phase

was not measured and therefore considered only indirectly.

SLAs are also considered by Pires and Barán (2013) who propose a multi-objective

VM placement approach. Therefor the authors define a service level agreement provision

constraint with rather simple implications: services are classified to be critical or not by

means of an additional parameter SLA which is either 1 or 0. Critical VMs must be placed

on a host while non-critical VMs may not be placed on any host. A memetic algorithm is

used to solve the problem. Although the formulation allows for servers with varying CPU,

memory and storage capacities, only homogeneous servers were used in the experimental

evaluation. While the multi-objective problem formulation is capable of considering three

objective functions simultaneously, it is impractical to map SLAs which must be expressed

in a clear and measurable way (cf. Section 2.1.1) to a single boolean parameter. Hence,

the approach surely is mathematically meaningful but practically inappropriate.

Another VM placement solution, termed BtrPlace, was proposed by Hermenier et al.

(2013). The approach relies on the concept of constraint programming which guarantees

to find, if present, a globally optimal solution. The approach is tested in multiple cases,

each time using homogeneous servers. The considered workload is static and implies

CPU and memory demands. With respect to placement constraints, BtrPlace supports

a comprehensive list of 14 constraint types as studied in Section 2.2.5. On the contrary,

the implementation does not allow to define soft constraints which can be violated against

some penalty factor (PF), e.g., in favor of overall savings. SLAs that are related to service

performance are not discussed in the publication.

Finally, Hallawi et al. (2017) formulate a multi-dimensional vector bin packing prob-

lem in order to improve resource allocations in cloud environments. The authors developed

two hybrid algorithms which combine a GA with a first-fit respectively next-fit heuristic.

During evaluation, the hybrid algorithms outperformed pure heuristics found in the latest

literature. Since the approach reduces the number of servers, the same are required to be

homogeneous. Furthermore, multi-dimensionality concerns only the resource dimensions

of items to be packed. Varying workload over time is not supported. The problem is

subject to rather basic constraints: A service must be allocated to a single server and the
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capacity requirements must not exceed the capacity limits of a server for any dimension.

The consideration of performance was declared as future work.

2.4.2 Classification of the service placement problem

The related work, summarized in Section 2.4.1, spawns several variations of the SPP with

different problem characteristics. In order to identify publications that are most closely

related to the problem addressed in the thesis at hand, classification criteria were derived

as part of the study. The respective scheme is depicted in Figure 2.14.

A fundamental characteristic concerns the state of services while solutions are de-

ployed. In this regard, one can distinguish flexible environments which support frequent

online relocations (live migrations) and those which benefit from rather stable designs

which are optimized periodically in an offline manner. Online approaches are to be fa-

vored if load characteristics change frequently. Those approaches represent the interface

to the research domain of load balancing. Processing time and network load, caused by

the live migration (Hyser et al., 2007; Ankit et al., 2013) as well as the required number of

migrations to reach the final state (Calcavecchia et al., 2012) are to be considered. Since

high costs incurred by VM migrations prohibit an unlimited usage of this mechanism (Xu

and Fortes, 2010), many of the online approaches formulate optimization problems which

include to minimize the migration overhead. As pointed out by Hyser et al. (2007), online

approaches sometimes require intermediate states that are worse than the initial state.

The authors refer to this problem as iterative rearrangement problem. On the other hand,

services whose load characteristics follow predictable patterns do not need to be rearranged

continuously. Therefore, offline approaches benefit from a stable design that supports reli-

able operation on a long-term basis. Furthermore, performance degradations which result

from the virtualization overhead, occurring, e.g., during live migrations, are not acceptable

in certain domains. Offline approaches can start bin packing from scratch, i.e., calculating

an optimal allocation that is to be deployed without considering the current or interme-

diate states. As a notable drawback, offline approaches require service downtimes which

are to be planned in advance. Whether solutions to the SPP are deployed online or offline

is generally limited by given infrastructure capabilities and, in turn, affects the type of

applicable solution techniques.

While some of the studied publications use a sequence of demand values over time

which forms the workload profile, others aggregate demands to a single average or peak

value with no time dimension. The former is referred to as dynamic workload and the

latter is classified as static workload, following the definition by Stillwell et al. (2010)

and Feller et al. (2011). While the complexity of implemented algorithms is reduced

significantly when eliminating the time dimension, static profiles do not allow to identify

patterns, thus, parts of the optimization potential remains unexploited.

Beside the time dimension, additional dimensions of the problem are represented by

the considered resource types. Many of the studied approaches use the CPU consumption

as the major energy consumer to formulate problems with a single resource dimension.
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Figure 2.14: Classification of service placement problems.

If, in contrast, multiple resource types are considered by the solution technique, problem

formulations are referred to as multidimensional.

Further restrictions to the application area are entailed by the assumed bin compo-

sition which can be either homogeneous or heterogeneous. If the formulated bin packing

problem requires available servers to be equal, the approach is limited to homogeneous

environments. In some case, servers are assumed to have equal types of CPUs but differ-

ent numbers. These approaches must still be classified as homogeneous approaches since

they hardly depict the reality of heterogeneous data centers with servers of different CPU

architecture and frequencies (Petrucci et al., 2011).

As outlined in Section 2.2.5, placement constraints are inherent to many real-world

problems, resulting from, e.g., compatibility issues, availability targets, or security policies.

However, many publications disregard the existence of such restrictions and do not support

to formulate individual constraints for a particular instantiation of the problem. The

scheme in Figure 2.14 classifies problems according to this aspect.

Finally, the performance of relocated services within the computed design may be

considered implicitly or explicitly. The majority of the studied publications carries out

capacity management in a resource-centric manner as opposed to a user-centric manner.

Therefore, SLAs which are related to performance are translated to technical metrics such

as server utilization levels. Defined thresholds of these metrics are then supposed to ensure

sufficient levels of performance. Approaches which employ this or similar strategies con-

sider performance only implicitly since estimated levels of performance, typically expressed

as throughput or response times, are not quantified.

Depending on the problem characteristics depicted in Figure 2.14, different techniques

can be employed to solve the SPP. As pointed out by Stillwell et al. (2010), even in the

case of a single resource dimension, several authors utilize heuristics to deal with the

complexity of the problem. Heuristics efficiently address the bin packing problem and

scale well with growing problem sizes. However, their flexibility is limited with respect

to varying instantiations of the problem. For example, if placement constraints are to

be considered, heuristics require to be adapted accordingly (Van et al., 2009). Entailing
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implementations of pre- and/or post-processing steps may be costly if constraint types are

subject to change.

2.4.3 Derivation of the research gap

In the following, each classification criteria of the SPP (cf. Figure 2.14) is discussed with

respect to the related work and the application area of the thesis. As a result, a research

gap is derived that is to be addressed by the designed artifact. The research gap serves as

a basis for requirement elicitation in the subsequent chapter.

The state of services during solution deployment depends on service characteristics

and technical capabilities of the environment in which the artifact is applied. The thesis

at hand discusses an application areas in which services typically follow seasonal patterns

(Speitkamp and Bichler, 2010; Bichler et al., 2006; Rolia et al., 2005; Setzer and Stage,

2010) and, therefore, do not need to be relocated frequently (Gmach et al., 2008). Using

a maritime metaphor, frequent load changes are inherent to sport boats, e.g., services for

data analyses which may be instantiated and distributed over existing resources on the

basis of a frequently changing demand. In contrast, EAs represent heavy tanker vessels

with a fixed but stable route. Their flexibility is limited in favor of reliability. In case

of concurrency events, according to the marine law, sport boats are expected to dodge

commercial tankers. Furthermore, as outlined in Section 2.1.1, performance degradations

which result from live migrations and their technical overhead are to be avoided in the

domain of EAs so that the existing infrastructure, in many cases, is geared towards the

concept of application virtualization (cf. Section 2.2.2) and therefore limited to offline

relocations.

The outlined seasonality, furthermore, allows to identify recurring workload profiles

on a daily or weekly basis (Setzer and Stage, 2010). Many publications, in contrast,

formulate a static variation of the SPP. According to ITIL, “the right level of capacity at

the right time is critical [for successful capacity management]” (Hunnebeck et al., 2011,

p. 159). Static approaches do not have a time dimension and provide always the same level

of capacity. In contrast, dynamic variations of the SPP leverage existing saving potential

by identifying complementary workload profiles.

Capacity, in many of the studied publications, refers to the CPU as the main energy

consumer. Varasteh and Goudarzi (2017) identify a lack of applicability and efficiency in

related approaches which, according to the authors, can be addressed by considering mul-

tiple system resources. Therefore, some approaches take further resource dimensions into

account. According to a preliminary analysis of this thesis, CPU and memory demands

do not correlate in the case of an EA (Müller and Bosse, 2016) and, therefore, must be

considered independently. Otherwise, resource overloads may degrade performance and

interfere successful execution of business functions in the computed design.

In addition, a major part (63%) of the studied solution strategies is limited to envi-

ronments of homogeneous servers. According to the service design publication of ITIL,

capacity management should include all kinds of technology for all IT components and
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environments (Hunnebeck et al., 2011). In the domain of EAs, as defined in Section 2.1.1,

applications typically comprise heterogeneous servers. Likewise, Petrucci et al. (2011)

states that large clusters are formed by many heterogeneous machines with different ca-

pacities, number of CPU cores, frequencies, and specific devices. Therefore, homogeneous

approaches can only be used to a limited extent.

Placement constraints are widely disregarded in the scientific literature although

known to be mandatory for consolidation efforts (Speitkamp and Bichler, 2010; López-

Pires and Báran, 2015; Pires and Barán, 2013). Similarly, Varasteh and Goudarzi (2017)

conclude that constraints related to high availability of services are largely neglected by

today’s server consolidation techniques. Often, the requirement not to overload existing

servers is formulated as the only constraint of the bin packing problem. Across the stud-

ied publications, few articles mention the importance to incorporate additional, selected

constraints into the problem formulation but do not include the same into their evalua-

tion activities. Only one of the proposed artifacts supports to define individual placement

criteria on the basis of a number of supported constraint types (Hermenier et al., 2013).

Some of the studied approaches claim to be SLA-aware with respect to the service

performance. However, it must be stated that non of the articles provides performance

estimates in terms of response times although they are known to be the greatest issue

from a user perspective. The vast majority of server consolidation approaches considers

those higher level metrics only indirectly by mapping them to resource capacity values in

a reasonable way (Stillwell et al., 2010). For example, Kusic et al. (2009) discuss response

times resulting from SLAs but the authors only distinguish violated from satisfied SLAs.

In fact, response times are not quantified and computed penalties do not depend on the

degree of violation. Some approaches consider service performance implicitly by provid-

ing means to add spare capacity of up to 50% per service in order to ensure acceptable

response times (Rolia et al., 2003, 2005). This strategy, in turn, lowers the addressable

optimization potential to an extent that causes the entire consolidation effect to become

questionable. The introduction of spare capacity is certainly a valid instrument to catch

unpredictable load peaks but should not be overused to compensate uncertainty of ser-

vice performance. Therefore, current approaches lack an explicit evaluation of identified

solutions with respect to expected response times or throughput.

To summarize, if multiple resources are considered by the related work, their workload

profiles are often static. On the other hand, approaches that support dynamic workload

profiles in most cases consider only one resource dimension. Only exceptions to this rule

represent the publications of Wood et al. (2007), Gmach et al. (2008), and Feller et al.

(2011). However, the latter two approaches are limited to homogeneous servers and non

of the three supports placement constraints. Only one of the proposed solution techniques

allows to define placement constraints (Hermenier et al., 2013) as part of the problem

instantiation (cf. Section 2.2.5). The authors, however, formulate a static SPP which is

limited to a homogenous composition of bins. In addition, in the studied articles, service

performance is either disregarded or implicitly considered by mapping performance metrics
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to certain levels of resource utilization. Expected levels of response times or throughput

are not quantified in any of the articles although required to map the quality and costs of

solutions to the targeted quality of service performance as defined in the SLAs.

Therefore, a multidimensional SPP which leverages dynamic workload profiles while

considering individual sets of placement constraints is desirable. Additionally, the SPP

must explicitly provide expected levels of performance for the computed solution candi-

dates in order to allow for their evaluation with respect to given SLAs. Suitable solution

techniques to solve the SPP in an offline manner are to be identified on the basis of the

outlined problem characteristics.

2.4.4 Summary

Related work was identified on the basis of the VMP literature review carried out by

López-Pires and Báran (2015) which was complemented by a subsequent forward-backward

search. While the problem of VMP has been worked on by a variety of publications, the

maximization of resource utilization and the maximization of performance represent the

least studied objective functions. The problem, in this thesis, is formulated broadly as

a service placement problem which may be classified according to the service state dur-

ing solution deployment (online or offline), characteristics of the workload profile (static

or dynamic), the number of resource dimensions (single- or multidimensional), the bin

composition (homogeneous or heterogeneous), and finally, the consideration of placement

constraints (supported or not supported) and service performance (implicitly or explic-

itly considered). To the best of the author’s knowledge, no related article satisfies all

classification criteria with respect to requirements of the targeted domain of enterprise

applications.

2.5 Summary of the state of the art

Enterprise applications have exceptional requirements on performance due to their in-

dispensability for successful business execution. The process of capacity management is

carried out with the objective to satisfy targeted levels of performance in alignment with

given service level agreements. Since, on the other hand, costs are to be minimized as part

of the process, data center operators seek to increase energy efficiency, e.g., by avoiding

idle resources. However, according to several recent studies, mean server utilization typi-

cally varies between 10-20%. Resulting optimization potential can be addressed by means

of server consolidation. The respective problem is NP-hard and formulations vary across

related work. Solution algorithms include exact approaches, heuristics and metaheuristics.

With respect to realities of the given domain, existing artifacts lack to consider multiple

resource dimensions of heterogeneous servers, dynamic workload profiles, placement con-

straints and service performance at the same time. The latter may be estimated by means

of model-based, measurement-based or machine learning-based techniques on a transac-

tional basis. Existing limitations of either technique may be overcome if a vast amount of
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performance counters was shared within the domain of an enterprise application type and

used to train machine learning models. This idea is abetted by the fact that the major-

ity of enterprise applications implement customized versions of a commercial-off-the-shelf

software whose usage is largely dominated by standard business transactions. Model types

which are known to deal well with high dimensionality and non-linear relations are, for

example, Random forests, Support vector machines, and Boosted trees. The described

prediction technique enables to evaluate performance of managed applications already in

the design phase without the need to implement a running prototype. Therefore, it may

be applicable in order to evaluate solution candidates to the service placement problem

with respect to the expected SLA compliance.
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3 Design of the performance prediction
supported service placement (PPSS)

This chapter covers the design of the research artifact which represents a method, termed

Performance prediction supported service placement (PPSS). Design requirements are

elicited and a variation of the SPP is formulated accordingly. Since the designed method

includes an evaluation of solution candidates to the SPP with respect to performance-

related SLAs, one section is dedicated to corresponding prediction techniques and their

validation. This chapter therefore takes the perspective of a capacity management provider

who maintains solution algorithms and validates prediction models before the same can

be put into use. Usability from the perspective of a capacity management consumer, in

contrast, is demonstrated as part of the subsequent evaluation.

3.1 Conceptual design

Following the initial requirement elicitation, the conceptual design is demonstrated by

means of a process model which depicts the designed method. A central component of the

process model is a knowledge base for application performance monitoring data, which is

introduced at the end of this section.

3.1.1 Design requirements

The design science research guidelines (cf. Section 1.2) require to satisfy laws of the prob-

lem domain which cannot be controlled. On the one hand, these laws were identified from

the literature by the study of related approaches and the application area. The result

culminated in the research gap (cf. Section 2.4.3). On the other hand, industry represen-

tatives contribute practical requirements that must be considered in the artifact’s design

in order to ensure practical usability. Accordingly, requirements engineering processes are

often modeled as variants of the main activities elicitation, specification, and validation

while both the problem domain and the users represent sources of relevant input (cf. Fig-

ure 3.1). Hence, the following requirement specification builds upon characteristics of the

problem domain as introduced in Chapter 2 and upon user input from a number of expert

interviews with representatives of an industry partner who plans to apply the artifact.

First, functional requirements F1 to F9 are introduced. Quality requirements follow and

are labeled Q1 to Q4. By the end of this subsection, all requirements are summarized in

Table 3.1.
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Figure 3.1: Requirements engineering process, based on Ebert (2014).

The artifact minimizes required server capacity (F1). It is the goal of the capacity

management process to balance costs and performance. Cost savings can be achieved by

means of server consolidation techniques as outlined, e.g., in Section 2.2.1. The extent of

savings depends on the amount of capacity that can be eliminated along with associated

energy costs, power and cooling costs, as well as personnel costs. Therefore, it is the main

requirement of the artifact to minimize server capacity.

The artifact minimizes SLA violations (F2). Server consolidation implies the risk

to overload single servers if utilization levels were raised too ambitiously. In this case,

performance may be degraded and related SLAs are violated. Therefore, besides above

listed types of operations costs, another portion of expenses is caused by penalties which

are invoked on SLA violation. The number and degree of SLA violations is to be minimized

in order to keep the total costs of the computed design low (Hyser et al., 2007). While

SLAs which restrict the placement (such as availability or security agreements) may be

modeled as placement constraints, compliance with performance-related SLAs is assessed

by means of techniques covered in function requirement F8.

The artifact follows an offline optimization approach (F3). As carved out in Sec-

tion 2.4.3 on the research gap, EA workload profiles follow seasonal patterns and, therefore,

allow to be optimized periodically instead of continuously. Many data centers employ ap-

plication virtualization techniques respectively which support to relocate services in a way

that the application is stopped on a source server and started on a target server. This

offline approach requires to plan a downtime for the services under optimization. Online

approaches, on the other hand, must consider given SLAs and placement constraints also

during the relocation phase. If the added complexity is left unaddressed by the problem

formulation, temporary but unplanned violations may interfere business operations. Con-

sidering the characteristics of the problem domain, the artifact is therefore designed to

optimize service allocation in an offline state.
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The artifact utilizes dynamic workload profiles (F4). Static workload profiles

do not allow to identify existing load patterns (e.g., daily or weekly recurrences), thus,

optimization potential is left unaddressed (cf. Section 2.4.2 and Section 2.4.3). Hence, the

optimization problem formulation must incorporate a time dimension which represents

dynamic workload profiles.

The artifact supports heterogeneous server environments (F5). According to the

definition of EAs (cf. Section 2.1.1), applications are typically hosted on heterogeneous

servers. To comply with the target domain, the artifact must support to consolidate

servers of any type and capacity.

The artifact considers CPU and memory resources (F6). As outlined in Section

2.4.3, multiple resource dimensions are to be considered in order to avoid overloads of

neglected resource types. For example, a preparatory analysis of workload profiles from

364 running EA services revealed no linear correlation between their CPU and memory

demands over time (Müller and Bosse, 2016). Hence, the artifact must allow to formulate

and solve problems with multiple resource types. To pay tribute to the increasing impor-

tance of in-memory computing in the domain of EA, CPU and main memory are used as

the two most important resource dimensions for the sake of demonstration.

The artifact considers placement constraints (F7). In ITIL, it is excessively empha-

sized that capacity management needs to be aligned with business needs and, therefore,

must comply with resulting requirements on availability, security, or licensing. A list of

constraints was identified from the literature and provided in Section 2.2.5. As part of

the artifact’s design, this collection is to be checked for completeness with respect to the

practical applicability. Resulting types of constraints must be considered by the artifact

when supporting placement decisions.

The artifact predicts transactional performance using machine learning (F8).

In the domain of EAs, performance is of exceptional significance (cf. Section 2.1.1). As

a consequence, solution candidates must undergo a performance evaluation which takes

expected response times on a transactional basis into account. Different means exist to

estimate performance. According to ITIL, a key success factor for managing capacity is

its earliest possible application, that is already during the design stage. Any quality of

service which is added in later stages is associated with higher correction costs (Hunnebeck

et al., 2011). As stated in Section 2.3.2, machine learning-based techniques can leverage

the potential of shared performance counters and, this way, generalize well to unseen data

already in the design stage. The concept relies on a massive amount of performance metrics

which are comparable within a defined domain. Since EAs are mainly based on COTS

functionality (cf. Section 2.1.1) and utilize instrumentation techniques for continuous

monitoring (cf. Section 2.1.4), the concept may be applied to the APM output of various
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EAs within the domain of a particular type of COTS software. In fact, ITIL recommends to

identify customers of the same product in order to learn about resource implications from

them (Hunnebeck et al., 2011, p. 174). This recommendation is addressed by the artifact

while the time-consuming process of knowledge engineering is automated through machine

learning. Since performance, from an end-user perspective, is expressed as response time

and accordingly formulated in SLAs, prediction models must estimate response times

of a business transaction. Predicted values, in turn, are used to meet the functional

requirement F2.

The artifact provides its function as a service (F9). Performance counters hold

valuable information about the measured application and expose ways for improvement

(Browne et al., 2000). Consequentially, the simplification of hardware counter collection

was addressed by Browne et al. who propose a cross-platform infrastructure which stan-

dardizes the names for the metrics. However, subsequent data analysis still remains the

greatest challenge and the use of artificial intelligence is often blocked by organizational

barriers. In a recent Gartner survey, 196 organizations were asked to rate their matu-

rity with respect to data and analytics. Out of six levels, 60% of the organizations rated

themselves in the lowest three levels which range from basic ad hoc data analysis to a

systematic analysis of data from exogenous sources. In general, traditional forms of data

analysis dominate machine learning techniques which is not expected to change in the

near future. Greatest barriers include the generation of value from the analysis (Gartner,

2018a). Therefore, the process of n-n cross-organizational learning in the field of capacity

management is centralized in order to simplify both the sharing of performance coun-

ters and the subsequent learning phase. This way, challenging tasks of data analysis are

outsourced to a capacity management provider who releases domain-specific performance

models that have been trained on the basis of performance counters from all environments

attached to the service. Such models are used to evaluate solution candidates to the SPP.

Its solution process is offered as a service to a capacity management consumer who, on

the other hand, stays focused on his core business.

The artifact employs capacity savings which are of economical relevance (Q1).

The amount of savings that can be achieved depends on the current utilization levels and

workload characteristics. The authors of Speitkamp and Bichler (2010) formulated a re-

lated problem which, similar to this thesis, considers dynamic workload profiles and was

evaluated using services from the SAP domain. The authors achieved average savings of

up to 31% server capacity when they consolidated services on the basis of daily workload

patterns using a single resource dimension and no placement constraints. Therefore, the

artifact is expected to reveal, in average, not less than 30% savings in unconstrained sce-

narios. For constrained scenarios, no related measures could be found in the literature

since the combination of modeled constraints is highly individual for each problem in-

stantiation. However, the existence of constraints is expected to lower the savings, hence,
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average savings of at least 20% are to be achieved across any scenario so that the practical

application of the artifact is economically noteworthy.

The prediction error is within an acceptable range (Q2). Boundaries of accept-

able errors depend highly on the problem domain and must be defined by the modeler

(Almeida, 2002). In the domain of capacity management, accuracies from 10 to 30% are

typically acceptable (Almeida and Menascé, 2002; Menascé et al., 2004). This range is

consistent with published results on software performance modeling, e.g., in Rathfelder

et al. (2014) and Bontempi and Kruijtzer (2002). Therefore, the mean absolute percent

error is expected to be below 30% when predicting the performance of a business trans-

action. Furthermore, the RMSE of a model must fall below the standard deviation of

the target value in order to justify modeling effort as opposed to simply computing the

average value of the measured target.

The artifact must be well scalable for very large environments (Q3). As stated

in Section 2.2.1 and further documented in Section 2.4.1, today’s data centers may be

formed by hundreds and thousands of servers. Such large problem sizes, depending on

the solution technique, may increase computation time to the magnitude of minutes and

hours (e.g., in Speitkamp and Bichler (2010)). However, due to the form of service delivery,

determined by functional requirement F9, solution candidates are to be identified within

seconds. This way, the capacity management consumer is able to interact with a user

interface and perform multiple solution iterations with varying parameters, e.g., refined

constraints.

Label Specification summary

Functional requirements
F1 The artifact minimizes required server capacity.
F2 The artifact minimizes SLA violations.
F3 The artifact follows an offline optimization approach.
F4 The artifact utilizes dynamic workload profiles.
F5 The artifact supports heterogeneous server environments.
F6 The artifact considers CPU and memory resources.
F7 The artifact considers placement constraints.
F8 The artifact predicts transactional performance using machine learning.
F9 The artifact provides its function as a service.

Quality requirements
Q1 The artifact employs capacity savings which are of economical relevance.
Q2 The artifact predicts within acceptable error ranges.
Q3 The artifact must be well scalable for very large environments.
Q4 The artifact must be well maintainable and customizable.

Table 3.1: Requirement specification.
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The artifact must be well maintainable and customizable (Q4). The individ-

ual business input in the form of workload profiles and individual constraints is hardly

generalizable. Furthermore, new environments potentially entail additional requirements

which were not considered in previous problem formulations. For example, Hermenier

et al. (2013) state that new uses of data centers continuously trigger new placement con-

straints to arise. Therefore, the artifact must be designed to be flexible and extendable

with respect to individual constraint types.

Requirement validation requires to get feedback from the problem domain and from

the potential users. While the former was collected as part of scientific reviews and

conference attendances, the latter was discussed in a number of workshops with domain

experts which guided the process to the evaluated requirement specification. Table 3.1

summarizes the functional and quality requirements. Based on this specification, design

decisions are made throughout the subsequent sections. Furthermore, the requirements

serve as a baseline during the evaluation of the artifact.

3.1.2 Process model

The artifact designed in this work represents a method for capacity management. There-

fore, a process model helps to illustrate the artifact and its sequence of tasks. The process

was modeled on the basis of preliminary work by Almeida (2002) (cf. Figure 2.4) but,

according to the requirement specification and the hypothesis of this work, incorporates

tasks from the domain of data mining. Therefore, data mining steps, given by the CRISP-

DM process (cf. Figure 2.12), are used within the method in order to ensure the accurate

application of machine learning modules. Furthermore, while Almeida focuses on the ca-

pacity management of web services, modifications were made in order to comply with the

special characteristics of the EA domain. Figure 3.2 illustrates the designed method using

the Business process modeling notation (BPMN) in its current specification.

A previous version of the process was published and evaluated in Müller et al. (2017b).

As required by F9, the artifact must provide its function as a service. Accordingly, the

concept of BPMN swimlanes is used to distinguish tasks of n capacity management con-

sumers from tasks of one capacity management provider. Data exchange is realized by

means of interfaces to an application performance monitoring knowledge base (APM-KB)

which is hosted by the provider. The concept of a central knowledge base is inspired by the

MAPE-K (Monitor-Analyze-Plan-Execute-Knowledge) feedback loop, published by IBM

in 2005, where a monitored system is to be improved in a number of iterations (IBM, 2005).

The APM-KB stores measured data, including performance counters, which is used by the

provider to train performance models and by the consumer to extract workload profiles

and server capacity values that form the input to the SPP. Section 3.1.3 is dedicated to

the structure of the APM-KB. Measurement data results from APM activities which may

be carried out continuously or periodically for a given EA environment at consumer site.

A capacity change request triggers subsequent steps to manage capacity; it may arise in

the context of upper-level business changes or, e.g., as part of consolidation projects. The
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Figure 3.2: Capacity management according to the PPSS method.

process steps, introduced in the following, are supported by (graphical) user interfaces

which are hosted as part of the APM-KB.

The first task in both traditional capacity management processes and data mining

processes is always to gain a business understanding. Therefore, the step Understand

the environment entails a descriptive analysis of running services and servers. Here,

current server utilization levels are analyzed in order to obtain the optimization potential.

Furthermore, given constraints and SLAs that limit the degrees of freedom for optimization

are to be identified.

The next task, Characterize workloads involves to build workload profiles for

each running service from the monitored data. As argued in F4, the seasonality of EA

load patterns allows to group values on a daily or weekly basis. Typically, peak values

of a given time interval are to be used here, e.g., the maximum resource demands per

hour. Alternatively, Speitkamp and Bichler (2010) demonstrate that the usage of the 95th

percentile for each workload profile increases the optimization potential. However, alike

strategies may foster overloads and are, as a last resort, subject to the risk attitude of the

decision maker. Another outcome of this task is to identify frequently used transactions

which are of interest for later performance evaluation.

Having workload profiles and capacity limits in place, an SPP can be instantiated

and solution candidates which consider identified placement constraints are to be found.

The step Solve service placement problem utilizes solution algorithms, maintained

by the capacity management provider, and feeds the algorithms with the individual data

of the consumer’s environment. The solution process may be iterated using different

parameters (that is varying placement constraints or algorithm parameters) until suitable

solution candidates have been identified. This process step is designed in-depths in Section

3.2 along with the problem formulation, the solution fitness definition and the algorithm

instantiation. Solution candidates are stored in the APM-KB for further analysis.

The subsequent challenge is to evaluate solution candidates with respect to their
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total costs. Particularly, the method seeks to minimize the operations costs and the

SLA penalty costs which are invoked when performance levels are violated for a business

transaction of interest. For this purpose, performance models are used to estimate mean

transactional response times, expected from each solution candidate. For example, one

solution candidate may increase mean server utilization up to a level which eliminates a

significant share of servers but, on the other hand, causes response times to exceed defined

service levels in the majority of observations. This solution would be favored if performance

was neglected although it may turn out to be a rather expensive option. In Section 2.1.1, it

was documented that standard functionality dominates custom transactions. Therefore,

in the majority of cases, performance models can be applied that were constructed by

the capacity management provider on the basis of APM data which is shared in the

knowledge base. The process of training the standard models is covered by the lower

swimlane and is going to be explained later in this section. However, in case custom

transaction performance is to be evaluated, individual models must be constructed. This

task is covered by the subprocess Develop models for custom software components.

It is out of scope in this work and therefore collapsed in Figure 3.2. However, model-based

techniques using simulation engines or analytical solvers, as summarized in Table 2.2, may

be applied.

As a basis for performance estimation, historical load, as found in the workload pro-

files, could be assumed in the future. Nevertheless, capacity management must consider

future business plans and requirements as indicated by the service portfolio (Hunnebeck

et al., 2011). Hence, alternative scenarios may result from the business strategy, e.g., a

pending product release which is expected to increase load in the near future by a certain

factor. Alike forecasts are subjcet to the step Forecast workload evolution and involve

communication with business units in order to assess their impact on load related metrics

(Cherkasova and Rolia, 2006). As a result, different load scenarios represent alternative

business developments in whose regard solution candidates are to be evaluated.

The actual performance projection is carried out as part of the subsequent task Pre-

dict service performance . Here, the identified load scenarios are applied on each solu-

tion candidate, resulting in a number of different input features which contain varying load

and hardware characteristics. Performance models, either standard or custom ones, are

used to estimate expected response times of business transactions. The result are future

scenarios, each representing a combination of load scenario and solution candidate along

with predicted levels of transactional performance. Besides the configured load factor, an

important parameter to control the number of SLA violations is the maximum allowed

server utilization level which was defined as a placement constraint. In general, solution

candidates which allow higher server utilization come with increased risk of performance

degradations (Beloglazov et al., 2012).

The identified future scenarios, in the final step, are to be analyzed with respect to

their total costs while Service level agreements and IT budget must be considered. As

argued by Hyser et al. (2007), a system that understands both power costs and penalty
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costs may choose to violate service levels if the financial loss was less than expenses required

to meet the service level. This trade-off is to be solved as part of the step Analyze future

scenarios which leads to decision support, formulated in a capacity plan. The capacity

plan, according to ITIL, outlines scenarios and forecasts for the future capacity demands;

furthermore, it recommends actions to address those demands. Recommended actions

must be associated with cost estimates (Hunnebeck et al., 2011). As this plan serves as

the basis for subsequent decision making, it represents the end of the designed capacity

management process.

Whenever one of the capacity management consumers piles a certain amount of new

APM data, it is uploaded to the APM-KB via a defined interface. The data is then used by

the capacity management provider to update existing performance models or to construct

new models. Therefore, a sub-process on the basis of the CRISP-DM methodology is

followed, modeled in the lower swimlane of Figure 3.2. Here, as part of the steps Under-

stand data and Prepare data , cleaning and filtering techniques are applied. Depending

on the type of the model, features are to be normalized and selected. The task Train

prediction model utilizes machine learning techniques on the basis of shared perfor-

mance counters as introduced in Section 2.3.2. This way, models learn from observations

which are not limited to a single consumer environment but cover a massive number of

different hardware, software and workload characteristics. Consequently, from a consumer

perspective, the number of applicable what-if simulations is extended to unseen scenarios.

If, as part of the step Evaluate performance model , acceptable error metrics were

computed, trained models can be released for application. The range of acceptance is

defined by quality requirement Q2. In the contrary case, model accuracy may be tuned

in further iterations of the sub-process.

As ITIL recommends to store outcome from capacity management sub-processes in

a CMIS (cf. Section 2.1.3), all artifacts which arise in the course of the process (that

is optimization algorithms, placement constraints, solution candidates, load scenarios,

performance models, and future scenarios) are stored in the APM-KB. This way, compre-

hensibility and repeatability is ensured. Furthermore, results and their complete solution

path is transparent in case further analysis is desired.

3.1.3 Application performance monitoring knowledge base

A central component of the designed method is the APM-KB, as illustrated in the process

model of Figure 3.2. As pointed out by Matsunaga and Fortes (2010), the collection of as

many run-time attributes as available can be beneficial to feat learning algorithms and,

this way, to make predictions. As a matter of fact, the integration of data is the basis for

a data-driven capacity management. In this regard, the APM-KB takes the role of the

CMIS and, according to ITIL, holds the following types of data:

• Service data: Measured data, including workload volumes, transaction rates, and

performance metrics are to be stored in the APM-KB. The data is used for model

training and to identify workload profiles as input to the SPP.
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• Component utilization data: This data type refers to current utilization levels

for each resource type and their capacity limits. For example, each server may have

a capacity limit for its CPU and for its main memory.

• Business data: Here, load scenarios which result from the business strategy are to

be stored. The actual business strategy, of course, is subject to data privacy and

must not be shared with the capacity management provider.

• Financial data: In the final capacity plan, each solution candidate is associated

with costs. Therefore, operations costs and SLAs with their respective penalties are

to be stored in the APM-KB.

ITIL further documents that access to the CMIS is often provided by a web inter-

face which offers different views on the data. To accomplish all tasks, introduced in the

preceding Section, the APM-KB is formed by the following layers:

• Presentation: A web interface supports tasks of the process and visualizes data.

• Analysis: A statistics server provides machine learning and optimization functions.

• Data: A relational database ensures consistency and access control.

Since the name and the format of relevant metrics varies for each type of COTS

EA (Chen et al., 2002), different schemata may be maintained on the data layer. In the

present work, e.g., a schema was created to hold statistical records of SAP EAs. The

data layer may be further filled with publicly available information. In the domain of

SAP EAs, aggregated measurement results are published by performance analysts, e.g., in

Kowarschick (2019). Here, results of the SD benchmark were used to compute the CPU

capacity of different server types in SAPS (cf. Section 2.1.1). Those values may be used

to update the APM-KB with server capacity values and, in turn, update models with

newest configurations without the need to implement respective configurations for each

organization individually.

3.1.4 Summary

The artifact, designed in this work, involves two types of actors: One capacity manage-

ment provider offers standard performance models and solution techniques for the SPP

to multiple capacity management consumers. The concept enables consumers to learn

from characteristics of other environments and apply the extracted knowledge during own

capacity management exercises. This way, cost-effective performance evaluation of solu-

tion candidates is enabled, with the objective to minimize the sum of expected operations

costs and SLA penalty costs. To apply the method successfully, it is linked to a number

of functional and non-functional requirements that are to be fulfilled.
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3.2 Multi-dimensional service placement

The SPP is to be formulated and solved according to the specified requirements. Therefore,

this section deals with techniques to identify solution candidates while the subsequent

section introduces means to evaluate their performance.

3.2.1 Problem formulation

According to the classification provided by López-Pires and Báran (2015), the functional

requirements allow to formulate a mono-objective optimization problem with multiple

resource dimensions and one time-dimension. The objective is to minimize needed server

capacity or, in other words, to maximize unneeded server capacity. As stated in Section

2.2.3, the problem is closely related to combinatorial bin packing. The most related

formulation was provided by Speitkamp and Bichler (2010). On this basis, the SPP is

formulated as SPP = (T,H, I, C, co, csla) with

• T ∈ N+ the number of intervals which form the time dimension, e.g. T = 24 for a

daily season;

• H = {h1, . . . , hn} the set of servers or hosts with hj : R → R+, 1 ≤ j ≤ n defining

the capacities for R = {1, . . . , k}, k ∈ N+ resource types;

• I = {i1, . . . , im} the set of services or items with ij : R × T → R+, 1 ≤ j ≤ m

defining the resource demands (workload) for R resource types in T time intervals

of the season;

• C = {C1, . . . , Ck} a set of k placement constraints, comprising the main resource

constraint Cres, the maximum server utilization constraint Cutil, and an arbitrary

number of further constraints;

• co : (I → H) → R+ a cost function indicating the operations costs, in terms of

required server capacity, for a season for an allocation from services to servers; and

• csla : (I → H) → R+ a cost function indicating the penalty costs, issued from SLA

violations, for a season for an allocation from services to servers.

In a first step, it is the objective to identify an allocation a : I → H that minimizes

the cost function co subject to the constraints of C. Here, Cutil defines the optimiza-

tion pressure (also referred to as consolidation pressure), depending on the risk attitude

of the decision maker. While many of the related approaches pack servers up to their

limit of 100%, some cases may require to manage capacity more conservatively. In the

domain of SAP, e.g., mean server utilization levels around 65% are generally considered to

fairly balance the trade-off between costs and performance (Janssen and Marquard, 2007).

Therefore, different values for Cutil yield alternative solution candidates which represent

different risk attitudes. Among this set s of solution candidates, it is the objective of a

secondary problem to identify an allocation that minimizes the sum of the cost functions
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co and csla in order to identify a Pareto-optimal solution with respect to the total costs.

For this purpose, solution candidates must undergo performance projections as will be

explained in Section 3.3. The primary problem is addressed in the following.

3.2.2 Solution fitness

The quality of a solution is evaluated using a fitness function which incorporates the

operations costs co for an allocation a. Costs are expressed by the amount of used server

capacity and, accordingly, can be measured in SAPS. For simplicity, the sign is converted,

thus, −co(a) is to be maximized. Since constraint violations lower the solution quality,

fitness is to be reduced, or penalized, depending on the degree of constraint violation.

The main constraint Cres of the SPP is to avoid resource overloads. Therefore, a penalty

factor pres(a) for resource overloads is introduced. Another penalty factor pc(a) represents

violations of additional placement constraints C. Hence, the fitness function f(a) for an

allocation, as expressed in Equation 3.1, is to be maximized:

f(a) = −co(a)− pres(a)− pc(a) (3.1)

If the sum of all instances’ resource demand, placed on one server, exceeds the provided

server capacity at a time, resource constraint penalization is invoked. Since the SPP sup-

ports the consideration of multiple resource types, those must be normalized when the

penalty factor pres(a) is computed. For this reason, scaling factors sr for each resource

type ensure that any kind of resource overflow penalizes the fitness equally. Furthermore,

the degree of overflow is critical. While minor overflows may be acceptable, large over-

flows entail severe consequences such as significant performance degradations or service

unavailability. In order to tolerate little overflows and penalize large ones, penalty factors

are scaled according to a near-feasibility threshold (NFT) and subsequently squared, as

proposed by Kulturel-Konak et al. (2003). For each resource type, the NFT must be set

to a threshold that is barely acceptable. In simple terms, subsequent squaring entails that

penalty factors below the NFT are reduced while values above the NFT are increased.

Alternatively, exponentiation greater than quadratic reinforces the effect. The outlined

aspects are expressed in Equation 3.2:

pres(a) =
∑
r∈R

sr ·
∑
t∈T

∑
h∈H

max
(

0,
(∑

i∈I,a(i)=h i(r, t)
)
− h(r)

)
NFTr

2

(3.2)

If resource overflows are present, the numerator of Equation 3.2 becomes positive and

penalization is invoked. In all other cases, the numerator equals 0 and, divided by any

NFT, remains 0. Penalization for the violation of all additional placement constraints

is realized by means of pc(a) which is defined by the sum of all penalty factors for each

constraint type:

pc(a) =
∑
co∈C

pf(co) (3.3)
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According to Coit and Smith (1996), it is important to define the degree of penalty de-

pending on the severity of the violation. Therefore, penalty factors must be defined for

each constraint type individually and may vary across different SPP instantiations de-

pending on individual weightings provided by the capacity management consumer. For

example, a consumer may define that the central production service must never be placed

together with its backup service as obligatory condition while some development services

should preferably but not necessarily run isolated from each other. The types of placement

constraints, currently designed in the SPP, are introduced in the following section.

3.2.3 Placement constraints

“A design artifact is complete and effective when it satisfies the requirements and con-

straints of the problem it was meant to solve” (Hevner et al., 2004, p. 85). Here, besides

the resource constraint, introduced in the preceding section, a number of individual place-

ment constraints limit the solution space of the SPP. In particular, the ongoing trend to

reduce costs by outsourcing service operations to large-scale data centers (Boloor et al.,

2010a) emphasizes the need to incorporate placement constraints, e.g., in order to isolate

services of different customers from each other. A review of placement constraints as ex-

isting in the related literature was conducted in Section 2.2.5. To evaluate the relevance

of placement constraints within the SPP also from a practical point of view, two types

of semi-structured expert interviews were conducted with industry representatives. This

method was chosen as experts are known to take positions which may differ from research

and to provide aspects which become relevant if artifacts are to be applied in practice.

The first interview1 was held together with a focus group of a global IT company

who plans to become a capacity management provider, according to the process model in

Figure 3.2. It was the goal of this focus group to evaluate the practical utility of each

placement constraint found in the literature. The focus group comprised three business and

IT consultants of the service provider, each having more than 20 years of experiences with

customer concerns, mainly in the domain of SAP application and database operations.

In addition, the author of this work and a co-researcher, who presented parts of the

interview results in his master thesis (Akhras, 2017), participated. As a result of the

interview, practical utility for each constraint type was rated. Another outcome is that,

depending on the individual preferences of the consumer, some constraints may represent

hard conditions while others may represent rather soft requests which are nice to have.

Finally, experts concluded that constraints may apply to single services or servers or, in

contrast, to a group of services or servers of the same type. Therefore, all participants

confirmed that a classification of services and servers may ease constraint modeling effort.

The second type of interview2 was held twice together with two different pilot users

who took the role of capacity management consumers. This type of interview aimed at

evaluating the feasibility and completeness of the designed set of placement constraint

1Expert interview at September 20, 2016
2Expert interviews at February 07, 2018 and February 14, 2018
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ID Placement
contraint type

Default penalty factor

1 Resource
constraint

Sum of relative overflows for all resource types, referring to
the server capacity limits (cf. Section 3.2.2)

2 Specific location
constraint

Ratio between the number of incorrectly located services and
the number of services to be located

3 Anti-location
constraint

Ratio between the number of incorrectly located services and
the number of services to be anti-located

4 Colocation
constraint

Ratio between the number of not colocated services and the
number of services to be colocated minus 1

5 Anti-colocation
constraint

Ratio between the number of falsely colocated services and
the number of services to be anti-colocated minus 1

6 Maximum
number of
services
constraint

Ratio between the number of servers for which maximum
service number is exceeded and the number of servers in the
constraint

7 No neighbors
constraint

Ratio between the number of non-isolated services and the
number of services to be isolated

8 Maximum
utilization
constraint

Sum of relative overflows for all resource types, referring to
the maximum utilization limits

9 Extra resource
constraint

Sum of relative overflows for all resource types, using the
redefined resource demands

10 Component
exclusion
constraint

Components are excluded before problem instantiation,
hence, penalization is not needed

Table 3.2: Designed placement constraint types.

types. Here, two workshops were conducted together with five respectively three rep-

resentatives of two companies who participated in a pilot phase as part of the artifact’s

evaluation: A large German retail company, operating more than 10.000 points of sale with

a yearly revenue of more than 40 billion Euro, and, secondly, a large German insurance

company with a yearly revenue of more than 700 million Euro. Both companies operate

their IT infrastructure fully on-premises and, therefore, continuously seek to optimize cost-

effectiveness. In both cases, COTS EAs of SAP are operated in an application-virtualized

environment. The participants tested parts of the designed process for six weeks prior

to the workshop. The main focus was put onto the task Solve service placement problem

(cf. Figure 3.2). Results are presented in more detail as part of EVAL 4 in chapter 4,

however, two of the questions are relevant already during the design stage of the artifact.

First, participants were generally asked to rate the usefulness of the possibility to define

placement constraints for the optimization task. Each participant rated on a scale from 0
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(irrelavant) to 10 (essential). Results, grouped by organization, account to 9 respectively

10. Second, participants were asked if any placement restrictions could not be modeled

using the provided types of placement constraints. As a result, the retail company claimed

an additional constraint type which allows to specify a set of services that can be relocated

at the same time. The requirement was explained by the fact that each service has defined

time slots in which a downtime, required to deploy solutions, can be realized. These slots

may not overlap for all services so that it would be desirable to limit the SPP to a de-

fined set of services. As a consequence, an additional constraint type was designed which

is termed Component exclusion constraint. It allows to specify services and servers that

must be excluded from the automated problem instantiation in order to limit the problem

to services which can be relocated in parallel.

To summarize the results of the literature review and the expert interviews, Table

3.2 lists all constraint types which are supported by the SPP. The constraint types are

sorted by utility in decreasing order on the basis of the ratings provided in the first expert

interview. For each constraint type, individual penalty factors can be defined (cf. Section

3.2.2) in order to model hard and soft constraints as requested by the interviewed industry

experts. Therefore, Table 3.2 lists default penalty factors which were derived during

sensitivity analysis but may be subject to individual parametrization by the consumer.

3.2.4 Solution algorithms

To solve variants of the SPP, heuristics and metaheuristics dominate the literature (López-

Pires and Báran, 2015; Varasteh and Goudarzi, 2017). Exact solution techniques, in

contrast, are rarely applied due to their lack of scalability with increasing problem sizes.

To comply with quality requirement Q3, exact solution techniques were not considered in

the present work either. While heuristics are known to solve bin packing problems highly

efficient, metaheuristics are more flexible because they do not require specific problem

knowledge. In order to evaluate different solution techniques with respect to their handling

of the problem characteristics, the following eight algorithms were selected to solve the

SPP:

• First-fit decreasing (FFDmax and FFDsum): A heuristic which sorts the list of ser-

vices by their resource demands in descending order before each placement. FFDsum

sorts on the basis of accumulated demands over time while FFDmax sorts on the

basis of peak demands.

• Best-fit decreasing (BFDmax and BFDsum): A heuristic which sorts the list of ser-

vices by their resource demands in descending order before each placement. BFDsum

sorts on the basis of accumulated demands over time while BFDmax sorts on the

basis of peak demands. Additionally, the list of servers is sorted in ascending order

by their remaining capacity each time a service is allocated.

• Genetic algorithm (GA): A metaheuristic which explores the search space in a num-

ber of generations, guided by the solution fitness function. Individuals are encoded
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service-centric.

• Grouping genetic algorithm (GGA): A metaheuristic which explores the search space

in a number of generations, guided by the solution fitness function. Individuals are

encoded server-centric.

• Genetic algorithm with first-fit (GA FF): A hybrid algorithm where the input se-

quence to the FFD is optimized using the GA.

• Genetic algorithm with best-fit (GA BF): A hybrid algorithm where the input se-

quence to the BFD is optimized using the GA.

The algorithms are implemented in a standard manner according to the pseudo code and

explanations given in Section 2.2.4. In the following, the idea behind each algorithm is

briefly introduced.

Heuristics

The FFD and the BFD are popular heuristics to solve bin packing problems (Stillwell

et al., 2010). In general, both algorithms attempt to allocate services with highest resource

demands first. In the case of FFD, the first server on which sufficient capacity remains is

chosen for allocation. In contrast, the BFD, chooses the best server, that is, a server on

which smallest possible capacity remains. For the sorting of services, multiple dimensions

are to be normalized. As stated in Section 2.2.4, the time dimension is normalized by

taking the maximum or the sum of the demands across all time intervals. The resource

dimensions, on the other hand, are normalized by means of scaling factors which scale

all additional resource dimensions according to their ratio to the first resource dimension.

Hence, the scaling factor s1 equals 1 while the remaining scaling factors sr are calculated

case-dependent on the basis of the capacity limits of all servers (cf. Equation 3.4).

s1 = 1, sr =

∑
h∈H h(1)∑
h∈H h(r)

, 1 < r ≤ k (3.4)

By means of the scaling factors, service demands for additional resource dimensions can

be transformed into their equivalents on the basis of the first resource dimension. These

values are summed up in order to allow for sorting a list of services by their demands as

required by the heuristics before each allocation.

Constraints can be incorporated by means of pre- and postprocessing of the input

data. For example, a maximum utilization constraint reduces the server capacity by a

defined percentage before running the heuristics on the preprocessed data. Alike strategies

to incorporate constraints were tested in a dedicated study and turned out to be inefficient,

particularly with respect to quality requirement Q4 (Bosse et al., 2019). New constraint

types may arise in the future and the respective processing logic to reach the desired

state is to be designed manually for each type. As a result, heuristics are to be preferred

for unconstrained problem instantiations. Further conclusions, however, are subject to

evaluation.
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Metaheuristics

In order to test the suitability of metaheuristics for the SPP, the popular genetic algorithm

is used. It represents a well-established algorithm to solve optimization problems (Bäck,

1996; Yusoh and Tang, 2012); its general principle was introduced in Section 2.2.4. A main

difference between the genetic algorithm and the grouping genetic algorithm lies in the

way individuals are encoded. The following strings exemplify the encoding of a solution

candidate which holds five services that were allocated on three servers as used by the GA

and the GGA. In this example, services 1 and 4 were placed on server 1, services 3 and 5

were placed on server 2, and service 2 was placed on server 3:

GA: [1,3,2,1,2] GGA: [{1,4},{3,5},{2}]

Encoding used by the GA was presented, e.g., in Stillwell et al. (2010) and Rolia et al.

(2003). The GGA encoding was applied, e.g., in Falkenauer and Delchambre (1992) and Xu

and Fortes (2010). As shown in the example, the encoding of the GGA seems to depict the

problem more naturally as bin packing generally represents a grouping problem (Xu and

Fortes, 2010). The mutation operator, in both cases, assigns a service to a different server.

Hence, the GA encoding requires to change a single integer value to represent another

server while the GGA shifts a random service number to another group of services, i.e.,

to another sever. For recombination, uniform crossover is applied in both the GA and

the GGA. Accordingly, each service will either remain on a server as defined by the first

parent or by the second parent; the decision is made randomly. While this procedure

generates a consistent child in the GA, the GGA encoding may result in children which

show duplicate or missing services as either a group of services from one parent or from

the other parent is selected. For this reason, the GGA applies the following three steps as

part of recombination:

1. Uniform crossover: Groups of services (i.e., sets of servers) are exchanged between

two parent candidates, producing one child.

2. Deletion: In the child, duplicate services are eliminated by deleting their second

appearances.

3. Reinsertion: In the child, missing services are inserted on servers with sufficient

remaining capacity according to a first-fit heuristic.

Selection is performed on the basis of the fitness function, presented in Section 3.2.2.

If constraints limit the solution space, penalty factors or repair mechanisms are well known

means to guide the search process into areas of feasible solutions. As pointed out by Coit

and Smith (1996), penalization is to be preferred since repair mechanisms would prevent

infeasible solutions from being passed into the next generation and, therefore, introduce a

bias into the search process. Accordingly, the fitness function was designed to incorporate

penalty factors for constraint violations as defined in Section 3.2.3. Furthermore, all

penalty factors are multiplied by a generation-dependent temperature factor gen
maxGen . This
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way, violations are tolerated in the beginning (to exploit a great fraction of the search

space) but increasingly penalized when approaching the end of the optimization process

(Coit and Smith, 1996).

Contribution to research question 3

Industry experts confirmed placement constraints to be essential for successful resolu-

tion of the SPP. Therefore, ten different types of placement constraints were derived

from both the scientific and the practical community (cf. Table 3.2). Metaheuristics

represent flexible and well-extendable solution algorithms for constrained instantia-

tions of the SPP since they do not require to implement respective ways for achieving

constraint compliance manually. Instead, simple checks are performed as part of the

fitness evaluation where violations of constraints are penalized depending on the vi-

olation degree and the optimization progress. This way, infeasible solutions are less

probable to be included into subsequent populations. Furthermore, individual penalty

factors allow to weight placement constraints based on the consumers individual pref-

erences.

The GA performs a tournament selection, as described in Section 2.2.4, where t

solution candidates are chosen randomly to build a tournament. Those individuals are

ranked using the fitness function. From this subset, each individual is selected with a

probability pt proportional to its rank i, as expressed in Equation 3.5.

pt(1− pt)i−1 (3.5)

This selection was chosen to cope with the problem of dominance since the fitness value

does not directly influence the selection probability (Miller et al., 1995). As an example, if

the selection probability pt was set to 0.9, the most fittest individual (i=1) is selected with

a probability of 90% while the second-fittest individual (i=2) is selected with a probability

of 9% and so forth. This process is repeated until the configured population size pop was

reached. The GGA, in contrast, uses stochastic universal sampling as proposed by Baker

(1987) and described in Section 2.2.4.

Hybrid algorithms

Greedy heuristics depend heavily on the ordering of items when packing the bins. As

pointed out by Lewis (2009), at least one ordering of items exist which allows a greedy

heuristic to identify an optimal allocation. However, this optimal ordering may not be

found by sorting the list of items by their demands in a descending order. Instead, a

genetic algorithm may be able to identify suitable input sequences to the first- and best-fit

heuristics, resulting in two variations of an hybrid algorithm (Liu et al., 2008; Stillwell

et al., 2010; Hallawi et al., 2017). Here, a list of services, sorted in a specific order,

i.e., a string of size m, represents a solution candidate. Those services are then passed

to a first- (GA FF) or best-fit (GA BF) heuristic which gains an allocation of services

to servers that will be subject to fitness evaluation as described for the GA. For the
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recombination operator, edge recombination is used as proposed by Whitley et al. (1989)

and further described in Larrañaga et al. (1999). This recombination can be used to

recombine permutations as required by the hybrid algorithms which pass a simple list of

services to the heuristic. In contrast, the GA and the GGA must recombine full allocations.

The mutation operator is implemented by swapping two services, resulting in a change of

the ordering. For selection, similar to the GA, tournament selection is applied.

3.2.5 Summary

The problem formulation, which represents the SPP, may be addressed by heuristics or

metaheuristics. In order to ensure practical applicability it is essential to allow the repre-

sentation of placement constraints which may exist in the application environment. Ten

types of constraints were identified on the basis of scientific and practical input. While

heuristics have been studied to efficiently solve problem instantiations which solely include

a single resource constraint, metaheuristics are expected to deal well with problems that

are subject to varying types and numbers of constraints. Here, penalization of constraint

violations (as part of the fitness evaluation) is generally the preferred way to produce

feasible solution candidates as opposed to repair mechanisms. In order to compare and

evaluate the solution quality of the most commonly used algorithms, four heuristics, two

variations of a genetic algorithm and two hybrid algorithms were selected to solve the

SPP.

3.3 Service performance prediction

The algorithms introduced in the preceding section generate solution candidates to the

SPP which minimize operations costs co. According to functional requirement F2, these

candidates must be evaluated with respect to the performance of a business transaction in

order to obtain the costs csla which are associated to SLA violations. This task requires

performance models whose construction and validation is carried out by a capacity man-

agement provider. Therefore, the structure of this section is formed by the lower swimlane

of the process model depicted in Figure 3.2. Since the provider applies domain knowledge

when constructing models, a number of expert interviews were conducted along with the

data preparation phase in order to interpret given metrics and to design filters. These are

referenced at the corresponding steps within the process. A subsequent analysis of future

scenarios closes the section.

3.3.1 Data understanding and preparation

As concluded in the ITIL service design publication, “Many SLAs have user response times

as one of the targets to be measured, but equally many organizations have great difficulty in

supporting this requirement.” (Hunnebeck et al., 2011, p. 170) With respect to this issue,

Gmach et al. (2008) states that performance models help to identify resource capacities

that are required to satisfy service level objectives under a given extent of service usage.
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Expected response times may be estimated before solution deployment and possible SLA

violations can be avoided or, in some cases, willfully accepted. Consequently, performance

models are assumed to be a useful instrument for evaluating solution candidates with

respect to the minimization of operations costs co and SLA violation costs csla. According

to the classification given in Section 2.3.2, machine learning-based techniques which utilize

shared performance counters were selected as part of functional requirement F8. Using

this technique, it is the goal of this section to construct a validated performance model.

With respect to the scope of a model, Cherkasova et al. (2009) points out that predic-

tions need to be made on a transactional basis and can hardly be generalized to the system

layer. This holds also true for the cross-environmental approach taken in this work since

a considerable share of custom business transactions represent components of a COTS

EA which are not comparable across implementations (cf. Section 2.1.1). Therefore, the

data basis used for model training must be limited to specific standard transaction types,

preferably used by a large number of users. Validated models can be applied to evaluate

solution candidates with respect to particular business transaction performance. In order

to generate input data for model application, the historical workload of running services

must be linked to the newly allocated servers. Prediction output represents the result-

ing performance effect and, therefore, can be used to compute the expected number and

degree of SLA violations for each solution candidate. For example, different maximum

server utilization levels may have been configured as placement constraints when solving

the SPP; those result in a set of alternative solution candidates whose total cost analysis

is enabled by the predicted information.

As the application area of the resulting performance model is generally limited by

the variety of used training data, a broad and heterogeneous spectrum of environments

ensures a sufficient training data basis. As argued in Section 2.1.4, today’s monitoring tools

provide useful insights into transaction activity across different components in multitier

systems (Cherkasova et al., 2009). Hence, workload traces hold great potential to bridge

the gap between software performance engineering and capacity management (Rolia et al.,

2005). As a consequence, the amount of available data sources is increasingly shifting the

focus from the model selection phase to the data preparation phase. Russell and Norvig

therefore conclude that “it makes more sense to worry about the data and be less picky

about what algorithm to apply.” (Russell and Norvig, 2010, p. 27).

The training data, in the present work, is formed by hourly performance records for

a business transaction. Performance of EAs can be expressed by means of throughput

or response time metrics. While batch applications are throughput-sensitive, dialog ap-

plications are rather response time-sensitive (Goudarzi et al., 2012). As SLAs typically

refer to services with user interactions (Gmach et al., 2008), response times are assumed

to be most most relevant for the end user experience. Therefore, the outcome y (target)

represents the hourly mean response time per dialog step where a dialog step represents

any kind of user activity within a business transaction. The target is a function of a set
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of n hours (observations), each having m attributes a which characterize the observation:

y = f(a1, a2, . . . , am) (3.6)

The attributes must integrate metrics from all layers involved in transaction execution.

Pinheiro et al. (2001) points out that execution time is hard to predict and depends

heavily on application characteristics. Despite the application server, transaction latency

comprises CPU and queue times from the database server (Cherkasova et al., 2009). While

current approaches rarely take both hardware and application characteristics into account,

(Matsunaga and Fortes, 2010) argues for a large attributes space which should take detailed

application-specific characteristics into account while also considering the heterogeneity of

systems. After testing and comparing several ML algorithms to predict the execution time

of applications, the authors generally advice to include as many attributes as available in

order to enable the algorithm to decide on their individual importance. Hence, monitoring

data from three different performance dimensions, often considered separately, were joined

in order to create the attribute space.

• Workload characteristics refer to transaction usage indicators and associated re-

source demands. Metrics include data traffic sent between the client, the application,

and the database server in order to serve transaction execution. Furthermore, user

activity and dialog steps are covered.

• Resource capacity refers to the CPU and memory capacity of involved servers.

Furthermore, the year of data collection may represent basic server generation clas-

sification.

• Meta data refers to additional information which describes the measurement itself,

the type of involved systems and the topology. Therefore, this dimension also refers

to the mapping of physical to logical components, e.g., which application instance is

running on which server.

The selection process of attributes from the three dimensions was guided by three perfor-

mance experts of the target domain in multiple focus group discussions. Table 3.3 lists

the consolidated result across all dimensions which represents the feature space for model

training. While some of the attributes originate from direct measures of the EA, others

result from an automated preprocessing of these measures as described in Wilhelm (2001)

and Wilhelm (2003). However, unfiltered use of these attributes may lead to the risk of

inaccurate models as outliers are often present in productive monitoring data. In that

case, performance-related decisions in capacity management would be made on the basis

of erroneous data and possibly provoke serious damage. In this regard, data-cleansing

procedures help to exclude records which correspond to abnormal application behavior

(Cherkasova et al., 2009).

An example for atypical observations are time intervals in which system manage-

ment activities interfere normal operations. Cherkasova et al. compare the accuracy of a
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Attribute Short description

Target value
RESPTI Mean response time per dialog step in ms.

Workload characteristics

DSCNT Number of dialog steps
DBSU Number of database service units (select, insert, update, delete).
DBKB Data written and read by the DBMS in KB.
CLBY Data written and read by the client in bytes.
OTHERKB Data written or read by other Services.
DBSU OTHER Number of database service units executed by other services.
DSCNT OTHER Number of dialog steps executed by other services.
TACOUNT Frequency of transaction execution.
USERLOW Number of low activity users.
USERMEDIUM Number of medium activity users.
USERHIGH Number of high activity users.
INST MEM Memory demand in mb.
APP SAPS CPU demand of the application service in SAPS.
DB SAPS CPU demand of the database service in SAPS.

Resource capacity

APP MAXSAPS CPU capacity of the application server in SAPS.
APP MEM Memory capacity of the application server in MB.
APP CPUNUM Number of CPUs in the application server.
DB MAXSAPS CPU capacity of the database server in SAPS.
DB MEM Memory capacity of the database server in MB
DB CPUNUM Number of CPUs in the database server.
YEAR(TS) Year of the measurement.

Metadata

MEAS DAYS Number of days the environment was monitored.
TYPE EA type (can be PROD, QA, or DEV).
INST COUNT Number of services, running on the application server.
APP VMINFO Virtualization details of the application server.
DB VMINFO Virtualization details of the database server.
TS Time stamp of the observation.

Table 3.3: Attribute space.
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Figure 3.3: Distribution of CPU acticity for dialog tasks across the day.

model that predicts CPU demands and observed a doubled error if time frames of system

management were included into the training data basis. Such activities are usually sched-

uled orthogonal to transaction processing activities, i.e., on the weekend or at nighttime.

Hence, observations were first filtered to include time periods of typical dialog activity

only. To obtain hours of regular dialog activity, an analysis of the task type distribution

was performed across all measurement points. The bar chart in Figure 3.3 illustrates the

result according to which least dialog activity occurs at night between 11pm and 4am.

Therefore, as an initial data preparation task, data was limited to observations made on

weekdays between 5am and 10pm. Next, data is to be grouped by business transactions

in order to build performance models according to functional requirement F8. Of course,

business transactions of interest depend on the individual SLAs given by the capacity

management consumer. However, model accuracy is influenced by the amount of training

data and, therefore, by the frequency of transaction usage. In order to exemplify the model

creation and evaluation process, a business transaction was chosen whose performance is

business-critical on the one hand. On the other hand, sufficient training data must be en-

sured. Therefore, consulted domain experts limited the space of transactions to the SAP

module which covers sales and distribution processes as most customers would consider

those processes to be performance-critical. Within this module, a data-driven approach

was taken in order to identify the transaction type of most frequent use. Figure 3.4 reveals

the business transaction type Change sales order (SAP transaction code VA02) to be the

most frequently executed transaction within the considered module. Across all executions

of VA02, different complexity classes can be distinguished on the basis of the number of

database service units (Wilhelm, 2001). The classification of transactions regarding their

complexity is also described, e.g., by Menascé et al. (2004) for model-based performance

prediction. As confirmed by the preliminary work of Wirth (2015), prediction accuracy

increases significantly if models are limited a priori to a particular complexity class. In

accordance with the author’s results, a class of medium complexity (3 out of 5) was chosen

to proceed with. The target value across all observations associated to VA02 of complex-

ity class 3 ranges between 36ms and 60,078ms and the average response time accounts

to 598.95ms. In general, the classification of observations into groups of desired and un-
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Figure 3.5: Histogram of the target value before and after outlier removal.

desired outliers can hardly be automated. Therefore, histograms were built to show the

distribution of response times (cf. Figure 3.5). On this basis, domain experts were con-

sulted in order to find a threshold which splits data into two classes. As a result, response

times above 5,000ms were classified as undesired outliers. The resulting distribution of

the target value is shown by the lower histogram in Figure 3.5. Likewise, additional filters

were applied as part of the data preparation phase with the objective to keep as much ob-

servations as possible. Table 3.4 summarizes the resulting value ranges for each attribute

that has been filtered along with a short description of the filtering intention. The last

column indicates the percentage of data that was excluded by the respective filter.

Besides the filters listed in Table 3.4, additional data quality filters were used to

exclude erroneous data, i.e., servers with 0 capacity in one of the resource dimensions,

possibly resulting from corrupt configurations. As a result, data is prepared to represent

valid observations only. The final data set comprises 21 features and 1 target variable. The
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Attribute Range Intention of filtering Perc.

RESPTI <5000 Cut response time outliers 0.31
APP SAPS >80 Ensure min. CPU activity on application server 10.13
DB SAPS >80 Ensure min. CPU activity on database server 10.52
DSCNT >10 Ensure min. dialog activity 26.61
MEAS DAYS >2 Exclude test measurements 1.30
TYPE PROD Limit to productively running EAs 3.03
APP VMINFO NULL Exclude virtual machines 6.58
DB VMINFO NULL Exclude virtual machines 3.99
WEEKDAY(TS) 0-4 Exclude maintenance time frames (Mo. to Fr.) 2.67
HOUR(TS) 5-22 Exclude maintenance time frames (nighttime) 4.08
USERS >2 Ensure min. user activity 1.67

Table 3.4: Attribute filters.

mean target value accounts to 571.87ms with a standard deviation of 465.28. In addition

to filtering, some models require normalized data, i.e., numeric features which are scaled

to be on the same magnitude. For example, Support vector machines are known to be

sensitive to the scale of input feature while Regression trees and Random forests do not

require normalization (Müller et al., 2016a, p. 98ff.). Likewise, feature selection may be

inherent to model training (e.g., in the case of Random forests) or, alternatively, carried

out in advance. Therefore, techniques for normalization and feature selection are applied

if appropriate as mentioned in the following subsection.

3.3.2 Model training and evaluation

The goal of this task is to construct a model which fulfills the domain-specific accuracy

requirements. Here, model training refers to the learning phase which ML algorithms pass

through in order to learn a concept from historical data and transfer the dependencies into

a model (Matsunaga and Fortes, 2010). Therefore, a suitable prediction model type must

be selected from an individual range of considered models (Bishop, 2006). Many solutions

were published where ML was applied to different scenarios of application performance

prediction (Gupta et al., 2008; Duan et al., 2009; Huang et al., 2010; Matsunaga and

Fortes, 2010; Niehorster et al., 2011; Venkataraman et al., 2016). However, application

types, attributes and target metrics widely vary and hinder to compare evaluation results

with respect to a general recommendation of a suitable model type (Matsunaga and Fortes,

2010). As stated by Niehorster et al. (2011), complex applications often show a non-

linear behavior which limits the space of applicable models to more complex techniques,

e.g., those which perform recursive partitioning before the actual regression (cf. Section

2.3.3). Consequently, both Matsunaga and Fortes (2010) and Niehorster et al. (2011)

obtain good results in the targeted domain with SVMs. An empirical comparison of

supervised learning algorithms was published by Caruana and Niculescu-Mizil (2006).

Here, remarkable results across different data sets were obtained by Random forests as

an example of a bagging algorithm. However, a boosting technique (Boosted trees) is
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also among the top algorithms. In contrast, worst results were obtained, among others,

by decision trees. The work performed by Wirth (2015) confirms these findings for the

domain of SAP EAs. Simple linear regression and regression trees were not able to achieve

suitable levels of accuracy (MAPE >30%). Random forests, meanwhile, reached a MAPE

around 25%. To identify suitable model types for predicting response times in the domain

of a COTS EA, different ML models were trained and validated in a preliminary work,

using real monitoring data of a structure similar to the one described in the preceding

section. Results were published in (Müller et al., 2017c) and revealed lowest errors when

applying a Random forest.

Thus, based on the mentioned preliminary work, Random forests and Support vector

machines were chosen to build performance models. Furthermore, following the results

of Caruana and Niculescu-Mizil (2006), Regression trees that are boosted using the ML

meta-algorithm AdaBoost are tested too. For every model type, 5-fold cross validation

with 20% test data was applied as also done by Caruana and Niculescu-Mizil. Respective

models and their function were introduced in Section 2.3.3. In the following, error metrics

and respective hyperparameter configurations are briefly introduced for each model type

before an overall comparison of model results is provided.

Random forests

Random forests do not require to normalize input features and feature selection is per-

formed implicitly at each split as introduced in Section 2.3.3. Therefore, in the initial

run, neither feature selection nor normalization was applied. The number of trees to learn

(parameter ntree) depends on the data volume. In general, large numbers produce more

stable models but require more memory while small values lead to the risk that single input

records are used rarely for predictions (Liaw and Wiener, 2018). Hence, for small data sets

a number of trees around 50 is proposed while large data sets may require to grow more

than 500 trees (MGET, 2019). Wirth (2015) addressed a similar business problem and

observed a decreasing error with an increasing number of trees up to a threshold of around

200 trees. However, the volume of data used by Wirth is about 30% smaller than the one

used in this thesis. Furthermore, memory and computing time is not a great concern in

the given context of offline optimization. Therefore, Random forests were trained with a

number of 500 trees in favor of accuracy. At each split, seven variables were randomly

sampled to be considered for the splitting. This corresponds to the default value of the

parameter mtry for regression trees which is defined as the number of variables divided by

3 (Liaw and Wiener, 2018). The minimum size of a terminal node (parameter nodesize)

defaults to 5 and was left unchanged. Model validation resulted in an averaged MAPE of

26.08% across the 5 folds. The RMSE accounts to 303.88 and R2 equals 0.57. In subse-

quent test runs, neither feature selection nor normalization efforts improved the accuracy

since Random forests generally require very little tuning (Friedman et al., 2017).



Hendrik Müller, M. Sc. 101

Support vector machines

In SVMs, the kernel function maps the input space into a linear separable feature space

as introduced in Section 2.3.3. The selection of an appropriate kernel function depends on

the input space and is generally carried out by means of experiments (Hofmann, 2006).

In many cases, however, accuracy of models using a linear kernel falls below Radial basis

function (RBF) kernels (Keerthi and Lin, 2003). For this reason, a Polynomial kernel

(PK) and an RBF kernel are tested. The PK, with default settings (cost = 8, gamma

= 1/number of attributes, degree = 3), resulted in a MAPE of 39.30%. Hyperparameter

optimization (HPO) efforts with costs varying over the string [2, 4, 8, 16, 32, 64, 128, 512,

1024] and gamma varying over the string [0.1, 0.5, 1, 2, 2.5, 3, 3.5, 5, 8, 10] did not improve

the error so that further attempts were not carried forward, given the clear superiority of

the Random forests’ error metrics. For the RBF, best results were achieved using Z-score

normalization and without feature selection, resulting in a MAPE of 25.90%. Similar

errors were achieved when additionally selecting features on the basis of a Regression

tree (method Rpart1SE ) and using Recursive feature elimination (RFE) as provided by

the R package Caret while keeping the Z-score normalization. Appropriate values for

the hyperparameters costs and gamma were explored in a sensitivity analysis where best

accuracy was reached by costs = 1.5 and gamma = 0.5. However, the optimization did

not improve the error significantly.

Boosted trees

The ML meta-algorithm AdaBoost was used in conjunction with 200 regression trees as

weak learners. Details of the algorithm implementation are described in Drucker (1997). In

order to avoid over-fitting, the minimum number of samples required to perform additional

splits was raised from its default 2 to 4 and the maximum depth of a tree was limited

to 16. Without any feature selection or normalization, AdaBoost could improve results

achieved by the bagging technique of the Random forests significantly. While the RMSE

goes slightly down from 303.88 to 294.72, the MAPE accounts to 19.57%. Accordingly,

R2 improved to 0.6.

Model selection

At first glance, all model types achieved suitable errors as the MAPE falls below the

threshold of 30% defined in quality requirement Q2. Nevertheless, error metrics of the

trained models are to be compared in order to select an appropriate model for release.

One of the simplest forms of visual evaluation is to ablate measured and predicted values

in a two-dimensional space as illustrated in Figure 3.6. Here, results of the best fold for

each model type are used. An optimal model would indicate a straight line through the

origin. In this sense, closest to optimum are the Boosted trees while RF and SVM with

RBF kernel show similar results. In contrast, the SVM with PK predict negative response

times in some cases and, therefore, fail to minimize the distance to the original line. As
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Figure 3.6: Fitted line of measured and predicted values.
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another way to visualize accuracy, box plots of the absolute errors may help to illustrate

their distribution. Figure 3.7 shows that predictions (except for the SVM with PK) range

from 0 ms to 4561.76 ms where the maximum error was produced by the Random forest.

SVM with PK predict with errors up to 18,563.05 ms which is surely not acceptable with

respect to the given domain and the average response time of 571.87 ms. The absolute

errors of the Random forest and the SVM with RBF kernel show median values between

72.9 ms and 74.8 ms while their interquartiles (50% of the data) range between 29.4 ms and

166 ms. Here, Boosting trees stand out with a median error of 59 ms and an interquartile

range between 22 ms and 135 ms.

In 2003, Bi and Bennett proposed the Regression error characteristics curve (REC)

on the basis of the Receiver operating characteristic (ROC) curves known from the field of

classification. The instrument is intended to compare regression errors of different models

and was also used by Matsunaga and Fortes (2010). REC curves plot a threshold of error

tolerance on the x-axis against the percentage of records that were predicted with errors

below this threshold. Figure 3.8 shows the REC curve for the tested four model types.

To interpret the REC curve, first, an error tolerance level is to be defined on the x-axis.

Next, the percentage of records that was predicted within this level can be taken from

the y-axis for each type of model. Therefore, in almost 100% of the cases the error is

below 100%. In a small number of cases, however, absolute percent errors accounted to

more than 100%. According to quality requirement Q4, the mean absolute percent error

must fall below 30% in order to be accepted. The REC curve additionally shows that, in

almost 80% of the cases, the error did not exceeded this threshold when using Boosted

trees. Likewise, Random forests undercut this value in around 70% of the cases while

SVM with PK show worst error characteristics with around half of the cases exceeding the

tolerance level of 30%. As an additional analysis, density plots indicate if predictions show

a similar distribution when compared to the measured values. Density lines are given in

Appendix A for each model. Finally, information on feature importance was computed

in order to provide insights regarding the influence of particular workload or hardware

characteristics on the execution time. Results are also meaningful for practitioners who

work in the field of capacity planning, e.g., when sizing servers according to given service

level objectives. In the present case, feature importance levels were shared within a group

of performance engineers who confirmed the practical utility of the results which could

be applied in current consulting projects, e.g., as part of bottleneck analyses. Many

regression techniques allow to calculate variable importance during model training. Here,

percentages for each feature, representing its influence on the result, are provided. A

model-independent procedure to compute variable importance is to exchange the value

of a feature by a random value within the range found in the training data. A high

distance between the two regression results (original value and replacement) indicates a

strong influence of the modified feature. However, various model-dependent ways exist

to determine feature importance. For example, in regression trees, features which were

chosen to split the tree early, have stronger influence on the prediction result while lower
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Figure 3.8: Regression error characteristics curve.

features only affect the respective branch. Details on the exact computation method are

out of scope in this work, however, results across a variety of feature selection techniques

are given by the box plots in Figure A.4 of Appendix A. To summarize the results, no

feature was considered to be unimportant in every case. The high variance of the box plots

shows that different feature selection techniques vary greatly in their results. However, a

high median and small interquartile range are good indicators for an important feature,

thus, tendencies are recognizable. Examples are the number of CPUs of the database and

application server. Most important feature represents the volume of data written and

send to the database (DBKB) with a median importance of 100% and a mean importance

of 65.64%. This feature was also rated by the AdaBoost feature importance function

to be among the top three features. Here, most important features are the number of

dialog steps, followed by the number of database service units (cf. Figure A.3). Such meta

information may be provided by the capacity management provider as additional reference

material.

To conclude, Random forests and SVMs perform similarly well although SVMs require

some additional efforts to identify a suitable kernel function and to optimize hyperparam-

eters. However, for the tested models using the given data set, HPO did not improve the

result significantly. In this regard, Random forests and Boosted trees produce acceptable

results out of the box when growing a sufficient number of trees. Across all tests, Boosted

trees using AdaBoost achieved best error metrics with a MAPE that is 10 percent points

under the defined level of tolerance (quality requirement Q4). Therefore, based on the

findings, Random forests and Boosted trees are applicable model types where the former

allows to train trees in parallel and the latter provides best accuracy. The best achieved



Hendrik Müller, M. Sc. 105

RMSE accounts to 294.72. When comparing the RMSE to the standard deviation of the

measured target value (465.28) it becomes clear that mean distances between predictions

and measured values are lower than distances between measured values and their aver-

age. Therefore, modeling effort turned out to be useful in comparison to a rather naive

estimation on the basis of the average value.

Finally, in order to analyze the generality of the results, the two model types AdaBoost

and Random forests were used to train and validate performance models for the most used

transactions of medium complexity as listed in Figure 3.4. The resulting REC curves are

illustrated in Figure A.2 of Appendix A. Mean absolute percent errors are provided in

Table A.1. In the case of AdaBoost, all tested models show a MAPE below 30%.

Contribution to research question 5

Non-linear ensemble models which apply bagging or boosting techniques are suitable

instruments to predict the response times of a business transaction. In the tested

example of the frequently used SAP transaction to change sales orders, mean response

times could be predicted with a mean absolute percent error of 26% when using

Random forests and 19% when applying Boosted trees in conjunction with AdaBoost.

Feature space was formed by application-specific workload characteristics, resource

capacity limits, and meta data which explains the data origin.

The results are consistent with the work of Drucker (1997) who compare boosting and

bagging techniques utilizing Regression trees. The authors state that boosting revealed

either equal or lower errors than bagging across all tests. In general, ensemble methods

which combine a number of trees perform well without much tuning (Friedman et al., 2017;

Carr, 2005). Therefore, means to improve the accuracy lie mainly in the data acquisition

and preparation phase. Here, a trade-off between the number of features and the data

volume was faced. While, for some observations, additional features would have been avail-

able, the total amount of observations decreases when considering those features for model

training. For example, a detailed composition of consumed main memory is available for

a particular type of services only. Therefore, it is subject to future research activities to

test models that were trained on a smaller subset of data comprising a higher number

of available attributes. Additional research directions with respect to the prediction of

performance are given in Section 5.3.

3.3.3 Model release and application

As defined in the capacity management process (cf. Figure 3.2), if the accuracy of a

tested model is acceptable, it is released by the capacity management provider. Breiman

and Cutler (2019) point out that models do not produce single truth but a “computer

generated guess” which support in comprehending a given problem. Therefore, the model

is to be stored in the APM-KB along with accuracy metrics which enable interpretation of

results obtained when applying the model. Moreover, the capacity plan which accumulates

the process output, according to ITIL, must contain information on used methods for any
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forecasts in order to assess the results’ credibility (Hunnebeck et al., 2011).

Released models are applied by the capacity management consumer in order to predict

the execution times of particular business transactions for a number of alternative solution

candidates, each representing a design of services-to-server allocations. This way, solution

candidates can be evaluated with respect to their expected fulfillment level of performance-

related SLAs. In order to generate the model input data, hourly transactional workload

metrics of each running service are linked to the capacity limits associated with the server

it was placed on. The resulting records represent a fictional allocation whose mean hourly

performance is to be estimated. Therefore, the number of predictions being made equals

the number of hours in which the transaction under study was executed by any service.

However, as the degree of SLA violations depend on the workload extent, alternative load

scenarios may be considered in addition to the scenario which is based on the measured

historical workload. Hence, measured workload metrics may be scaled according to a load

factor which represents alternative business scenarios.

With respect to the level of detail, i.e., the application area of the model, it must be

stated that each model can only be applied to predict execution times of the respective

transaction type it was trained with. If multiple business transactions are to be investi-

gated, individual models are to be used. In this case, predictions for the n most critical

transactions could be made before summing up the resulting SLA violation costs on the

basis of all predicted values. At last, total costs are to be minimized so that the gener-

alization of transaction-specific performance to an overall service performance metric is

not mandatory. Model construction on upper layers, e.g., on the level of an instance or

a system (cf. Figure 2.1), however, was additionally tested using the two most promising

model types Random forests and Boosted trees. Here, error metrics, according to the qual-

ity requirement Q4, were not acceptable (MAPE >50%) so that the designed approach,

based on the tested data, is not applicable to estimate overall system performance directly.

Instead, Mi et al. (2008) proposes to use a mean value analysis (MVA) across different

predictions of the individual transaction mix, if harmonization of results is desired. Alter-

natively, for the model-based prediction of performance metrics on the level of complete

instances or systems, white-box approaches as listed in Table 2.2 may be taken.

To summarize, models are applied to predict transactional response times for each

load scenario within each solution candidate. On this basis, SLA violation costs can be

estimated for each future scenario. A subsequent Future scenario analysis aims to identify

most cost-effective solution candidates.

3.3.4 Future scenario analysis

Capacity management involves to evaluate alternatives. According to the Intelligent-

design-choice decision model formulated by Barnard and Simon (1947), three fundamental

phases are required to support decision making:

• Intelligence phase: understand the problem.
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• Design phase: generate and evaluate alternatives.

• Choice phase: compare alternatives and decide.

As the heuristics and metaheuristics, designed in Section 3.2, converge to a single solu-

tion (Adamuthe et al., 2013), the SPP may be instantiated with different optimization

degrees, producing alternative solution candidates as part of the design phase. The step

described in this subsection aims to support the choice phase where the effects of decision

alternatives should be estimated with a suitable accuracy. Here, the use of previously

constructed prediction models allows to map decision variables to objective values. The

alternative optimization degrees can be defined by varying target utilization levels as also

done by Gmach et al. (2008). For this purpose, the maximum utilization constraint type

(cf. Section 3.2.3) provides suitable controls. An additional parameter, as stated in the

preceding section, is expressed by different load factors in order to cover alternative busi-

ness scenarios which may be conceivable for the period of time the capacity plan refers to.

Hence, a load scenario which is linked to a solution candidate indicates a possible future

scenario, as exemplified in Table 3.5. Each future scenario generates costs that are to be

computed as part of the future scenario analysis.

The overall objective is to identify solution candidates which minimize the total costs

for a given load scenario. In order to consider the full solution space, load scenarios may

be associated with probabilities. Total costs, as argued in the problem formulation of

the SPP (cf. Section 3.2.1), comprise operations costs co and penalty costs csla which

result from SLA violations. In this regard, Cao and Dong (2014) describe an energy-

performance tradeoff since service providers seek to reduce energy costs as part of the

operations costs while keeping SLA violations on a low level. The prediction component of

this work addresses performance-related SLAs only; other categories such as availability or

security can be addressed by modeling respective constraints as described in Section 3.2.3.

According to the energy-performance tradeoff, aggressive optimization reduces operations

costs but increases the risk of peak loads which cannot be served in accordance to defined

service levels. The effect on respective cost types leads to the dilemma delineated in Figure

3.9, which, due to its characteristic shape, is termed Bow tie dilemma of total costs. The

consolidation pressure can be adjusted over Cutil. As each solution candidate imposes a

different Cutil, it is the goal to find a solution among the candidate set s which minimizes

Solution Candidate Load Scenario Future Scenario

A (e.g., high utilization levels)
1 (e.g., historical load) 1
2 (e.g., doubled load) 2

B (e.g., mean utilization levels)
1 (e.g., historical load) 3
2 (e.g., doubled load) 4

C (e.g., low utilization levels)
1 (e.g., historical load) 5
2 (e.g., doubled load) 6

Table 3.5: Solution candidates and load scenarios form future scenarios.
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Figure 3.9: Bow tie dilemma of total costs resulting from the energy-performance-tradeoff.

the total costs ctotal. According to Equation 3.7, the total costs are computed by the sum

of operations costs across all n servers h and the SLA penalties.

ctotal =

hn∑
j=1

coj + csla (3.7)

In the exemplified cost behavior, depicted in Figure 3.9, the point of minimized total

costs is represented by the intercept of the two cost lines. Therefore, as pointed out by

Hyser et al., a control mechanism may decide to “violate a service level agreement if the

financial penalty for doing so was less than the cost of the power required to meet the

agreement” (Hyser et al., 2007, p. 8). While SLA penalties are typically derived from

monetary metrics, operations costs, as defined in Section 3.2.1, are represented by the

required server capacity in SAPS. To enable accumulation and minimization, both cost

types are to be normalized on a regular basis such as monthly costs in Dollar. With

respect to the operations costs, server capacity limits (e.g., in SAPS) may be translated

to monetary costs (e.g., in Dollar) according to a mapping function. The function can be

either continuous or discrete where the latter may utilize server classes (e.g., S, M, and

L) that are associated with average costs as proposed by Janssen and Marquard (2007).

Alike T-shirt sizes are also used in the sizing tool SAP Quick sizer (Loibl, 2015). Server

capacity limits for all required servers are outputted as part of a solution candidate to the

SPP. Furthermore, operations costs may include a share of additional cost types such as

personnel costs in order to represent maintenance effort (Bobroff et al., 2007).

When it comes to SLA violations, Appleby et al. (2001) distinguish between require-

ments and goals where goal violations do not trigger penalties. Hence, the following refers

to requirement violations. In general, SLAs are required to be expressed in a measur-

able way, which makes the quantification of penalties rather simple. Gmach et al. (2008)

point out that fixed step-percentile SLAs are increasingly adapted in the domain of EAs.
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Here, a certain fraction of requests is required to show a defined response time where

the non-conforming requests entail penalties (Boloor et al., 2010a). This principle is also

used in the sample SLA for the average response time of a service in the ITIL Service

design publication (Hunnebeck et al., 2011). Hence, on the basis of the predicted response

times, requests can be classified into a class of violated SLAs and a class of fulfilled SLAs.

Subsequently, the fulfillment percentage and the violation percentage are computable.

Percentile-based SLAs require r% of requests to be processed within a defined time frame,

e.g., within x milliseconds. A penalty p is invoked for every m percentage points under

fulfillment. Thus, SLA penalties are computed according to Equation 3.8 with v being the

number of violated requests, n being the total number of requests, and p being the the

defined penalty for each percent point under fulfillment. Requests are defined as periods

of execution for a particular business transaction.

csla =

⌊
v ∗ 100

n

⌋
∗ p (3.8)

In some cases, an additional deadline constraint d2 is defined which refers to a threshold

of response times whose exceedance is generally unacceptable. In this case, if any request

exceeds d2, the complete design is not considerable.

With the computed cost types, Equation 3.7 yields different total costs for each solu-

tion candidate which are to be minimized. If probabilities for the alternative load scenarios

are known, these can be used in an a priori optimization approach. By means of the in-

put, weighted load scenarios can be aggregated to a story line, representing the most likely

series of future events. On this basis, a single solution candidate can be recommended

as the cost-optimal design for a story line. If probabilities are not available, unweighted

cost estimations provide valuable input to the decision maker when analyzing the future

scenarios.

3.3.5 Capacity plan

The results of the capacity management process, in accordance with ITIL, are documented

in the capacity plan which represents the output of the designed process. It holds sce-

narios and forecasts regarding the capacity demand from a business perspective as well

as alternative actions to satisfy the demands where alternatives must be associated with

costs (Hunnebeck et al., 2011). Accordingly, the capacity plan comprises the following

elements:

• Management summary: Recommended actions such as the deployment of a par-

ticular solution candidate are to be given as part of a short executive summary.

Furthermore, total costs for each solution candidate are to be listed in order to

make recommendations comprehensible.

• Future scenarios: More details on solution alternatives and a cost breakdown are

to be provided. As the capacity plan must reflect the business strategy and potential
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growth, all forecasts must be denoted and any assumptions made must be clearly

mentioned. If, e.g., a scenario of doubled load, as given in Table 3.5, was assumed,

it is to be reasoned which component of the business strategy induced this choice. If

applied, different probabilities for the alternative load scenarios are to be provided

as well. Finally, both SLA costs and operations costs are to be listed for each future

scenario.

• Summary of services and resources: This section provides information relevant

to decision making in more detail. Workload profiles for each service with respect to

the considered resource dimensions must be provided. Furthermore, server capacity

values are to be listed. For each server, target utilization levels which result from

each solution candidate are to be given in the form of peak and average values for

each hour of the day. An allocation table summarizes which service would run on

which server for each design. Finally, modeled constraints are to be documented.

• Application area: The application area targeted by the capacity plan must be

indicated, e.g., a specific data center of the organization or a sub-problem (zone)

within a specific data center. The latter may apply if the component exclusion

constraint (cf. Section 3.2.3) was utilized.

• Used methods: To interpret the information, it is necessary to mention how it was

obtained. Therefore, forecasts should be documented along with accuracy details of

the applied models.

The capacity plan is to be created by the capacity management consumer, using infor-

mation provided by the provider. The major share of information can be extracted from

the APM-KB in an automated way. An exception to this rule are sensitive information

regarding the business strategy which is not stored in the APM-KB. The capacity plan

may be provided online as an interactive web page or in the form of a report file to decision

makers.

3.3.6 Summary

Information on hardware resources and workload characteristics, monitored at a variety

of implementations of a COTS EA, form an attribute space that is made up by shared

performance counters. It could be shown that alike data can be prepared and used to train

machine learning techniques for the prediction of response times with acceptable errors.

Most promising techniques for the investigated domain are non-linear ensemble techniques

that utilize the concepts of boosting (Boosted trees with AdaBoost) and bagging (Random

forests). The capacity management consumer applies validated models to evaluate alter-

native designs represented by solution candidates to the SPP. On the basis of predicted

response times, SLA violations become calculable and resulting future scenarios can be

analyzed with respect to their total costs, composed of operations costs and SLA penalties.

Solution candidates which minimize the total costs are proposed in the capacity plan. It
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summarizes the outcome of the PPSS method and provides executives with information

required to make informed decisions.

3.4 Summary of the artifact’s design

Passing through a requirements engineering process, functional and quality requirements

compose the basis on which a new capacity management method for EAs was designed in

order to address the identified research gap. The method is termed performance prediction

supported service placement (PPSS) and involves two acteurs: One capacity management

provider who maintains constructs and n capacity management consumers who apply

the constructs. Main constructs of the process include placement algorithms, prediction

models, and an application performance knowledge base. The former are used to solve a

variation of the service placement problem which was formulated in accordance with the

requirement specification. Here, four heuristics, two metaheuristics and two hybrid algo-

rithms were instantiated. As part of the design phase, ten types of placement constraints

were identified to possibly limit the individual solution space. While heuristics entail a

considerable manual effort to reflect such constraints, metaheuristics can effectively incor-

porate them into the fitness function. The algorithm output describes optimized designs in

the form of solution candidates. These are passed to prediction models for further evalua-

tion. Here, the compliance with performance-related SLAs is estimated in order to enable

computation of potential penalties. Having both operations and penalty costs available, a

future scenario analysis allows to select most cost-effective solution candidates, depending

on anticipated workload trends. As part of an ex ante evaluation step, performance models

were validated during the design phase before they are put into use during ex post evalua-

tion. Therefore, the role of the capacity management provider was taken in order to train

models on the basis of shared performance counters from different implementations of a

COTS EA. Data preparation, modeling, and model evaluation was exemplified using the

most frequently used business transaction type of the SAP sales and distribution module.

Here, mean response times per dialog step are predictable with a mean absolute percent

error below 20%. Trained models, however, are limited to a particular transaction type as

the prediction of transaction-independent service performance could not be accomplished

by means of the tested machine learning techniques. Successfully evaluated models and

algorithms are to be stored in a central knowledge base, hosted by the capacity manage-

ment provider. It integrates all relevant data, algorithms, and models, required to carry

out the descriptive and predictive analyses as part of the PPSS method.
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4 Evaluation of the performance prediction
supported service placement

This chapter describes ex post evaluation, carried out to investigate the designed artifact

in use (Sonnenberg and vom Brocke, 2012). Therefore, the PPSS method is applied with

a focus on the two main components: Service placement and performance prediction.

First, field experiments are used to evaluate solution consistency, solution quality and

efficiency of service placement algorithms across a variety of SPP cases, formed by real

data (EVAL 3.1). For the prediction component, a qualitative approach is followed in

order to study the artifact in-depth and evaluate the utility of the performance models.

Hence, on the basis of real data, a case study is constructed around the artifact to allow

for a scenario-based evaluation as proposed by Hevner et al. (2004). Here, in alignment

with the overall research goal, results are further analyzed with respect to cost savings

(EVAL 3.2). Finally, a prototypical implementation of the components, including the

APM-KB, allows to apply parts of the artifact in a real business environment. Here, pilot

users take the role of capacity management consumers and provide user feedback which

helps to evaluate operationality and ease of use of the PPSS method along with its fidelity

with real world phenomena (EVAL 4). First, however, ex ante evaluation steps, addressed

throughout chapter 2 and 3, are summarized in the opening section of this chapter (EVAL

1 and EVAL 2).

4.1 Summary of EVAL 1 and EVAL 2

Evaluation activities on level 1 and 2 (cf. Table 1.1) are described throughout the chapters

2 and 3 in an order that follows the logical document structure.

With respect to the relevance and importance as part of EVAL 1, challenges and

chances in the domain of capacity management for COTS EA were outlined from both

scientific and practical perspectives. Optimization potential was derived from mean server

utilization levels which typically account to not more than 10-20%. To address the re-

sulting lack of energy efficiency, server consolidation was introduced to be an effective

instrument. Novelty of the artifact, as discussed during the research gap analysis, lies

in the extent to which specific EA characteristics are supported and utilized in order to

design a cost-effective method for their capacity management. Particularly, the common

usage of COTS software allows to leverage economies of scale by means of standardized

performance models. Therefore, one applicability aspect of the artifact’s design (part of
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EVAL 2) was evaluated by means of a descriptive analysis across various implementations

of a COTS EA with respect to the transaction usage. Dominating usage of standard

functions foster the idea behind the designed method. Another applicability aspect was

evaluated using benchmarking as part of performance model evaluation. As acceptable

errors could be achieved, results contribute to the evaluation of the design’s applicability.

Finally, (economical) feasibility was ensured steadily through the intense involvement of

industry representatives, i.e., during requirement elicitation, during the identification of

suitable placement constraint types, or during the data preparation phase when construct-

ing the performance models. The ex ante evaluation activities 1 & 2 embrace the design

phase. After construction of the artifact, ex post evaluation activities on level 3 & 4 are

to be conducted. These are described in the following.

4.2 Field experiments on multi-dimensional service placement
(EVAL 3.1)

According to Hevner et al. (2004), mathematical problem formulations, as used in Section

3.2.1, allow to utilize optimization proofs as means to evaluate IT artifacts. Input to

evaluation activities on level 3 are instantiated (constructed) artifacts. As this section is

concerned with the evaluation of designed placement algorithms, these are to be instan-

tiated to solve the SPP in a way that is consistent with the artifact’s specification. In

particular, the algorithms are expected to “ [...] behave according to [their] purpose and

scope” (Sonnenberg and vom Brocke, 2012, p. 395) as defined in the requirement spec-

ification (cf. Section 3.1.1). The quality of an algorithm is indicated by the quality of

solutions the algorithm generates. Hence, solution quality, as defined in Section 3.2.2, is

to be measured and compared across different algorithm instantiations. Furthermore, ca-

pacity savings and the compliance with placement constraints are important metrics to be

measured according to the requirement specification. Efficiency, on the other hand, refers

to the effort required to achieve a result. Hence, an additional metric which describes

the run-time of each algorithm is given. In order to take also implementation effort into

account, maintainability of algorithms is discussed either. Finally, to evaluate generality,

algorithm performance is to be compared across a large number of cases. In order to reflect

the aforementioned criteria, evaluation on level 3.1 is conducted experimentally using real

data from a variety of environments. For this reason, the evaluation method is referred to

as field experiments. Besides ex post evaluation, this section answers the research question

RQ4, which aims to identify algorithms that are most suitable to solve multi-dimensional

service placement problems within EA environments.

4.2.1 Descriptive analysis of field data

The field experiments are performed on 516 unique use cases. Each case represents a data

center, operating a number of services on a number of servers, either on-premise or off-

premise. A service is defined as an instance of a COTS EA, which may be an application
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or a database instance that is to be placed on a physical server. One service cannot be

distributed across multiple servers but different services may belong to a distributed EA

comprising, e.g., a database instance and one or more application instances, each running

on different servers. To summarize, six types of instances can be distinguished on the basis

of the data:

• Productive application instance,

• Quality assurance (QA) application instance,

• Development application instance,

• Database of a productive application instance,

• Database of a QA application instance, and

• Database of a development application instance.

All data was collected using built-in software instrumentation facilities of the EA itself

(cf. Section 2.1.4). Hence, any execution of a business transaction is being logged and

associated with performance and workload metrics, which are stored in the file system.

After a monitoring period of 7 to 65 days for each use case, the collected data was archived,

cleaned and transferred to a relational database schema. This schema represents the data

layer of an APM-KB which was constructed according to the design, specified in Section

3.1.3. This way, resource demands at a time (in terms of CPU and main memory) could

be mapped to running services, enabling to derive workload profiles for each service on

a weekly or daily basis from the historical data. In the following, statistical insights are

provided as part of a descriptive analysis. This way, the cases used for experimental

evaluation of the solution algorithms are introduced. Furthermore, the analysis helps to

asses the volume and the variety of cases, needed to draw conclusions on the generality of

the artifact.

As shown in Figure 4.1, the use cases vary from very small environments with a

minimum of two services being operated on two servers to large-scale landscapes with the

largest use case comprising 130 services on 59 servers. On average, 12.6 services are to be

allocated to 7.9 servers and, in total, 6,885 services are to be allocated to 4,074 servers.

As indicated by the lower bound in Figure 4.1, the number of services to allocate is

higher than the number of available servers in every use case. However, across all analyzed

servers, a mean CPU utilization of only 18.72% can be computed based on theoretical peak

demands. Those demands would be achieved if all hosted services concurrently claimed

their peak workload found for a given time interval in the historical data on the server

under study. Since the targeted design must prevent all servers from being overloaded at

any point in time, these theoretical peak demands are used to build workload profiles for

the running services and, therefore, can be used when comparing mean server utilization

before and after the optimization procedure. In practice, however, such constellations

rarely occur, hence, the actual mean server utilization across all measured points in time

amounts to only 7.91%. This value roughly corresponds to the mean utilization level

of 8.28%, which was gathered in Section 2.2.1 from an investigation of 13,332 servers.
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Figure 4.1: Number of servers and instances for the 516 investigated use cases.

However, it must be noted that the cases used for evaluation represent a subset of the

data basis used in the referred investigation. In contrast to the Figure in Section 2.2.1,

the histogram presented in Figure 4.2 shows the mean server utilization across all 516

cases on the basis of theoretical peak demands.
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Figure 4.2: Histogram of mean server utilization using theoretical peak demands.

According to Figure 4.2, 75% of the cases show a mean server utilization of less than

28%. In half of the cases, the mean server utilization accounts to less than 19%. Actual

(not theoretical) server utilization, as stated earlier, is even lower. In economic terms, the

optimization goal is to avoid idling resources. Therefore, as stated in Section 2.2.1, mean

actual server utilization levels around 65% should be targeted as a general rule of thumb,
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Figure 4.3: Mean values and standard deviations of service demands and server capacity.

subject to individual adjustment on the basis of business requirements. With respect to

the variety of the cases, Figure 4.3 presents mean values and standard deviations of CPU

and memory values for both service demands and server capacity. While main memory

is measured in Megabytes, CPU capacity and demand can be measured in SAPS (cf.

Section 2.1.1). In Figure 4.3, indicators for the complexity of the use cases are mean

capacity demands and total capacity extents. On the y-axis, their respective standard

deviation is provided. As illustrated on the left of Figure 4.3, cases with larger CPU

workloads tend to be more heterogeneous than smaller ones while memory usage does not

vary significantly with higher demands. On the other hand, the total capacity limit of a

use case does not seem to be an indicator for server heterogeneity with respect to both

resource dimensions.

The distribution of capacity limits and demands as well as the number of servers and

services is illustrated in Figure 4.4. Herein, all box plots show a large scale and generally

a high spread outside the interquartile range. The large number of outliers indicates a

high variety within the tested application area of the solution algorithms. As an example,

server types range from small-scale volume servers to high-end servers, according to the

definition provided in Section 2.2.1. The mean CPU server capacity per use case shows

an interquartile range of 3,364 to 10,356 SAPS with a median accounting to 5,987 SAPS.

Across all use cases, the smallest server provides a CPU capacity of only 154 SAPS while

the largest server can serve up to 178,524 SAPS. Therefore, the maximum throughput of
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Figure 4.4: Descriptive metrics for the 516 investigated use cases.

the analyzed servers largely varies between a minimum of 3,080 and a maximum of up to

3.5 million order line items that can be processed per hour. Main memory for 50% of the

servers ranges from 16.38 to 73.72 GB. The greatest outlier in the upper right chart of

Figure 4.4 represents an in-memory database server providing 2 TB of main memory and

123,790 SAPS.

As further illustrated by Figure 4.4, idling services produce minimum demands of 0

SAPS respectively 0 MB. While the maximum CPU demand of a single service at a time

accounts to 66,755 SAPS, a maximum memory amount of 124,798 MB was assigned to

another service at a different time. The interquartile range of mean resource demands

per case varies between 115 and 571 SAPS as well as 816 and 2,152 MB respectively. A

summary of the described information, grouped by use case, can be found in Table 4.1.

Measure CPU capacity
in SAPS

Mem. capacity
in MB

CPU demand
in SAPS

Mem. demand
in MB

Min 1,450 4,861 0 0
Max 957,086 222,728,412 66,755 124,798
Median 33,214 131,072 162 802
Mean 75,806 784,506 1,014 2,738

Table 4.1: Total case capacity and service demand across all investigated use cases.
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4.2.2 Experiment setup

To cover a large variety of possible optimization scenarios, for each of the introduced

use cases (cf. Section 4.2.1), three scenarios with different consolidation pressure are

defined. It was argued in Section 3.3.4 that consolidation pressure can be adjusted over the

maximum server utilization constraint type Cutil. Therefore, the following three scenarios

were designed:

• Scenario UC: Unconstrained scenario,

• Scenario C85: Constrained scenario with Cutil = 85,

• Scenario C65: Constrained scenario with Cutil = 65.

In the unconstrained scenario, the maximum server utilization translates to 100%. This

scenario therefore represents a high risk attitude of the decision maker with respect to the

probability of server overloads. Scenario C65 represents the generic yet domain-specific

recommendation, provided by Janssen and Marquard (2007) and therefore a rather low

risk attitude which is based on prevalent sizing guidelines. Finally, a medium risk attitude

is covered in Scenario C85 whose maximum server utilization lies between the recommen-

dation and scenario UC, which aims at maximum savings. As the scenarios C85 and C65

invoke constrained instantiations of the SPP, a set of realistic placement constraints was

defined in addition to the maximum server utilization. It was designed with the objective

to cover real-world restrictions of consolidation efforts on the one hand, and to allow for

comparability of algorithms on the other hand. The following list summarizes the set of

constraints for C65 and C85:

• For all databases of productive instances, an isolation constraint Ciso is defined.

• For the largest 20% or the largest two (higher value) productive application instances,

in terms of their peak CPU demand over a day, an anti-colocation constraint Cantico

is defined.

• For each productive application instance, an extra resource constraint Cextrares is

defined which demands 10% extra CPU capacity.

• For all servers, a maximum server utilization constraint Cutil is defined with either

85% or 65% of the servers’ total capacity that should not be exceeded.

To compare algorithmic performance, each of the eight solution algorithms (FFDmax,

FFDsum, BFDmax, BFDsum, GA, GGA, GA FF, GA BF) is used to solve each scenario,

applied on each of the 516 use cases. In other words, every use case is solved 24 times

(3 scenarios and 8 algorithms). In total, 12,384 experiments are conducted. All solution

algorithms are implemented and executed using the JAVA development kit (JDK) in ver-

sion 8. The heuristics do not require any parameters to be obtained. Suitable parameters

for metaheuristics were derived from sensitivity analyses using a subset of four exemplary

cases. These parameters, which are explained in Section 2.2.4, are presented in Table
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Algorithm maxGen Selection µ λ Elitism pmut t pt

GA 200 comma 100 200 1 0.1 4 0.9
GGA 75 comma 50 100 1 0.1 N/A N/A
GA FF/BF 50 plus 25 25 no 1 4 0.9

Table 4.2: Algorithm parameter set used for evaluation experiments.

4.2. As the GA and the GA FF/BF apply tournament selection, tournament size t and

selection probability pt are provided in these cases. In contrast, the GGA uses stochastic

universal sampling, where the number of pointers equals µ (cf. Section 2.2.4). Due to the

randomness inherent to genetic algorithms, all metaheuristic and hybrid algorithms were

executed in ten iterations and mean values are provided as experiment results. As stated

earlier, it is the goal of the experiments to evaluate algorithms with respect to utility, effi-

ciency, and generality. Therefore, the following metrics are captured for each experiment:

• Total capacity (CPU and memory) required by the computed design,

• Solution fitness (quality) of the computed design,

• Resource overflows (CPU and memory),

• Penalty factors for each placement constraint violation,

• Mean server utilization within the computed design, and

• Algorithm run-time.

On the basis of these metrics, additional evaluation metrics such as mean capacity savings

or the distance to best performing algorithms can be computed and grouped by algorithm

type. Furthermore, optimized designs may be compared to existing designs in order to

evaluate economical feasibility as also done by Gmach et al. (2008). This way, algorithms

and their suitability with respect to different variations of the SPP are evaluated in the

subsequent section.

4.2.3 Experiment results

As IT artifacts are to be evaluated using relevant quality attributes (Hevner et al., 2004),

solution fitness is used as the main quality metric for evaluation. As described in Section

3.2.4, solution fitness initially corresponds to −TOTALSAPS and should therefore be

maximized by the algorithms. The value is then subtracted (penalized) by all resource

overflows, measured in SAPS, and by constraint penalty factors. Hence, aspects which

reflect the applicability of solutions are already inherent to the solution fitness. In order

to make this case-dependent metric comparable across all experiments, first, the best

fitness value fitbest, achieved by any of the algorithms, was identified for each use case

and scenario. Second, the relative distance fitdiff to this value was computed for each

algorithm, as expressed in equation 4.1.
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Figure 4.5: Distance to best fitness value for each algorithm and scenario.

fitdiff (alg) =
fit(alg)− fitbest

fitbest
(4.1)

If fitdiff of a particular algorithm accounts to 0, this algorithm computed a solution

with the best quality compared to all other algorithms for this case and scenario. In

general, the lower the value of fitdiff , the better the algorithm with respect to the defined

solution quality. When grouping the results by algorithm, mean values of fitdiff indicate

algorithm suitability. Furthermore, the 95% confidence interval was computed, referring to

the lower and upper bounds which encompass the true value in 95% of the cases. Across

all cases, results for the mean fitdiff and its confidence intervals are shown in Figure

4.5 for each scenario and algorithm. In general, heuristics perform well in unconstrained

scenarios while they fail to reflect placement constraints. In fact, mean values of fitdiff for

pure heuristics differ between 174.73% and 552.46% across the constrained scenarios and,

therefore, were not included at the bottom of Figure 4.5. In the unconstrained scenario,

best-fit heuristics generally deliver solutions of higher fitness than first-fit ones while the

reference value for sorting (max or sum) does not seem to make a significant difference.

Best suitable algorithms for unconstrained scenarios are the GA BF (11.08%) and the

GGA (14.32%). A pure GA, however, shows a mean difference to the best fitness value

of 317.48% with a confidence interval ranging from 277.67% to 357.23%. This behavior

is assumed to result from the different encoding strategies of the GA and the GGA. In

general, any kind of genetic algorithm performs well if small changes in a generation
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Figure 4.6: Distance to best fitness value for each algorithm in the unconstrained scenario.

result in small changes of the fitness so that the search process is guided on the basis of

the fitness function. The GGA uses a grouping representation which fits the problem of

grouped services on servers very well while the GA, due to its unnatural representation, too

often seems to fail in improving the solution fitness iteratively. In the scenarios C85 and

C65, heuristics perform poorly due to their lack of intentional constraint consideration.

Here, hybrid approaches (GA FF and GA BF) perform much better with mean values of

79.03-84.44% (C85) and 266.07-242.06% (C65) where the BF always performs better than

the FF. Hybrid approaches, however, are limited to the power of heuristics which employ

the actual allocation. The GA-parts, in these cases, are designed to find a new ordering

of the input sequence but cannot benefit from improvements over generations since they

depend on what the FF or BF allocate which implies the risk of irrational changes of the

fitness. In this sense, the algorithms try to find randomly an ordering that fulfills the

constraints. Solutions to constrained scenarios found by the GA and the GGA are better

by magnitudes: The GA achieves mean value of 2.29% in C85 and 0.63% in C65. The

GGA achieves mean value of 5.61% in C85 and 18.89% in C65. Hence, the scenario C65

reveals an increasing superiority of the GA with harder constraints when compared to the

GGA. Finally, the confidence intervals are generally greater with worse fitdiff . Confidence

intervals, however, do not show the actual data distribution, e.g., how frequently which

algorithm performed well. The box plots in Figure 4.6 allow for more specific interpretation

of the experiment results. As illustrated in Figure 4.6, every algorithm performed best in at

least one case since the extreme of the lower whisker accounts to 0 for every algorithm. Also

the lower hinge (representing the first quartile of the data), except for the GA, accounts

to 0 for each algorithm, saying that every algorithm was able to achieve best values in at
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Figure 4.7: Distance to best fitness value for each algorithm in constrained scenario C85.

least 25% of the cases. Furthermore, the best-fit heuristics, the hybrid algorithms and the

GGA performed best in at least 50% of the cases as represented by their median. By far,

the pure GA performs worst in the unconstrained scenario with a median of the distance

to the best fitness value accounting to 143.72% and the extreme of the upper whisker

accounting to 1032% which reaches out of the scale in Figure 4.6. In the constrained

scenario C85 (cf. Figure 4.7), similarly, every algorithm performs best in at least one case.

This comes as a surprise as heuristics consider constraints only randomly. More reliable

constraint compliance, however, is provided by the GA and the GGA which achieve best

fitness values in at least 50% of the cases. Here, the GA outperforms the GGA significantly

and achieves best values even in three quarters of the cases as represented by the upper

hinge accounting to 0. According to Figure 4.6, experiments in which the GA does not

achieve the best result can be considered as outliers. The greatest outlier is represented

by a maximum fitness difference of 65.05% to the best algorithm. The GGA, in contrast,

achieves a maximum fitness distance of 4.11% in 75% of the cases which represents a

considerable result too. Figure 4.8 reveals a similar tendency for the constrained scenario

C65. Here, as indicated by the different scales of the two charts, differences between the

algorithms roughly doubled. Again, all algorithms achieved best values in at least one case.

Solutions of highest quality are produced by the GA and the GGA. The GA performs best

in at least 75% of the cases and fails only in exceptional cases as even its upper whisker

accounts to 0. The GGA achieves best values in at least 25% of the cases. Its median

accounts to 1.21%, telling that for half of the cases, the difference to the best value is lower

than 1.21%. In three quarters of the cases, the percentage difference to best fitness values

is below 14.93%. Further data on the solution fitness are given in Table B.2 (Appendix



124 Multi-dimensional server consolidation

BFDmax BFDsum FFDmax FFDsum GA    GABF GAFF GGA   

0

50

100

150

200

250
D

is
ta

nc
e 

to
 b

es
t f

itn
es

s 
in

 %

Figure 4.8: Distance to best fitness value for each algorithm in constrained scenario C65.

B). Here, mean values and the confidence intervals for fitdiff are provided. In order to

investigate the differences between the GA and the GGA in more detail, the components

of the solution fitness must be analyzed individually. As stated in Section 3.2.2, the fitness

value compasses the required server capacity and all constraint penalty factors. Therefore,

after investigation of difffit it remains unclear, whether the GGA suffers from unsaved

capacity or from constraint violations when compared to the GA. To address this issue,

Figure 4.9 shows, for scenario C85, the two fitness components separately. Similarly to

the fitness evaluation, distances to best achieved values are shown. As can be seen on

the left hand side, the distribution of savings is very similar when comparing the GA

(median of 0.75%) and the GGA (median of 0.74%). In terms of constraint compliance,
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Figure 4.9: Relative savings and constraint penalty factors in constrained scenario C85.
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Figure 4.10: Relative savings and constraint penalty factors in constrained scenario C65.

however, the GA outperforms the GGA. Here, only the GA shows a median of 0. The

upper hinge indicates that the GA achieves a maximum difference of 0.16% to the best

penalty factor in 75% of the cases. This distance results to 0.25% for the GGA. In scenario

C65, this relation becomes even more clear (cf. Figure 4.10). Hence, the GGA fails to

consider certain types of constraints when compared to solutions found by the GA. In

particular, the isolation constraint which was defined for productive database services,

and the maximum utilization constraint are violated significantly more frequently by the

GGA when compared to the GA. An explanation to this can be found in the alternative

ways of encoding a solution (cf. Section 3.2.4). While the mutation operator produces

equal results for the GA and the GGA, recombination is performed differently. If, in case of

the GA, two parents which fulfill the isolation constraint for an instance, are recombined,

the child will also fulfill this constraint. In contrast, the recombination procedure of the

GGA (as explained in Section 3.2.4) may lead initially to interim states of lost instances or

instances which are allocated twice. The subsequent repair mechanisms delete duplicate

instances and insert lost instances. This way, instances which were already isolated in

both parents, may get a new neighbor due to the injection. Furthermore, the injections

may introduce overflows and, thus, violate targeted utilization levels as defined by the

maximum utilization constraint. Further details on the constraint compliance are given

in Table B.1 (Appendix B) which presents mean penalty factors for each algorithm.

To conclude the fitness evaluation, a rather straightforward quality measure is shown

by Figure 4.11. Here, it is counted how often an algorithm achieved the best fitness value

within the same scenario and use case. If multiple algorithms achieved this value, all

of them are counted. Therefore, within each scenario, the total frequency sums up to

more than the 516 investigated cases. Figure 4.11 confirms the “No-free-Lunch-Theorem”

of Wolpert et al. (1997) according to which an optimization algorithm that performs

well for one problem class must fail in another one. For example, while the GA solves

constrained scenarios extraordinary well, this algorithm is to be declined for unconstrained

scenarios. The GGA, however, shows relatively reliable behavior across all scenarios and is
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Figure 4.11: Frequency of best-solved experiments for each algorithm and scenario.

the recommended algorithm of choice if an all-purpose solution is needed. More granularly,

unconstrained problem classes may be solved preferably by the hybrid algorithm GA BF

and constrained scenarios are well suitable for a pure GA. Heuristics are only applicable in

unconstrained scenarios. Here, best-fit heuristics generally outperform first-fit heuristics

and, interestingly, the GA and the GGA.

In the targeted domain, run-time is not a prevailing issue, since solution candidates

are computed and evaluated offline. Nevertheless, algorithm run-time was measured since

results may also be of interest for approaches which optimize resource allocations online.

Mean results for each scenario are provided in Table 4.3. Associated confidence intervals

are given in table B.2 in Appendix B. Clearly, results are subject to hardware and soft-

ware characteristics of the machine running the experiments. However, values provide a

rough magnitude and allow to compare algorithm performance. In the chosen experiment

setting, no algorithm ran longer than 2.3 seconds. Therefore, all algorithms meet quality

requirement Q3, according to which, due to the form of service delivery, solutions must be

found within seconds. Heuristics compute solutions highly efficiently and are well suitable

for unconstrained online approaches. With respect to metaheuristics, the GGA consumes

Algorithm Scenario UC Scenario U85 Scenario U65

FFDmax 0.258 0.225 0.218
FFDsum 0.130 0.215 0.203
BFDmax 0.076 0.285 0.269
BFDsum 0.072 0.215 0.233
GA 860.207 2,219.821 2,206.973
GGA 244.264 500.506 494.452
GA FF 265.151 369.195 363.513
GA BF 276.130 376.931 381.080

Table 4.3: Mean run-time per algorithm in ms.
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Figure 4.12: Capacity savings across best solutions for each use case and scenario.

not more than 25% of the time needed by the GA and, therefore, may also be suitable to

complement online optimization approaches. In general, constraints limit the search space

as the number of possible solutions is reduced. On the other hand, constraints increase

the complexity of the solving process as the fitness function is extended by constraint

evaluation. For this reason, a decelerating effect on the run-time can be observed when

constraints were modeled.

Contribution to research question 4

Unconstrained scenarios can be solved efficiently by heuristics, hybrid approaches,

and a grouping genetic algorithm in less than one second. Constrained scenarios, on

the other hand, benefit from a guided search process on the basis of a fitness function

which penalizes resource overflows and constraint violations. Here, a genetic algorithm

achieved best solution quality, followed by a grouping genetic algorithm. The latter

serves as a suitable all-purpose technique, if a single algorithm is to be selected for

unknown problem instantiations.

Finally, independent of the algorithm type, economical feasibility is to be evaluated in

accordance to quality requirement Q1. Therefore, mean savings and mean utilization

levels are analyzed in the following. In order to evaluate saving potential, solutions of best

fitness were analyzed for each use case. In this regard, Figure 4.12 shows the capacity

requirements for each use case and scenario. Here, 100% refers to the original capacity

and, therefore, represents the reference value to any saving potential. After optimization,

the red hatched area can be saved in any scenario, including C65. In scenario C85,

the red hatched and the green area are to be eliminated. The blue area represents the
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Figure 4.13: Mean distance of CPU utilization from original to optimized design.

percentage of original capacity that is needed if no constraint applies, resulting in the

highest saving degree. The use cases in Figure 4.12 are sorted by complexity (given

by the number of possible solutions) in ascending order. Complexity varies from 4 to

1,62465635425464E+230. This way, it becomes clear that more complex cases provide

higher relative saving potential than small cases. This coherence can be explained by

economies of scale or simply by the fact that small environments are still manageable

in a traditional manual manner while capacity management becomes more complex with

larger environments. Hence, use cases of low complexity may already represent optimized

designs. For the analysis, only solutions with best possible constraint fulfillment were

considered as fitdiff accounts to 0. In the rare cases of solutions in scenario C65 requiring

less capacity than in C85, C85 values were adapted to the value of C65 since a solution

which fulfills C65 also fulfills C85 in any case. To summarize, the following savings are

achievable for the investigated use cases:

• Scenario UC, in average, requires 44% of the original server capacity.

• Scenario C85, in average, requires 72% of the original server capacity.

• Scenario C65, in average, requires 78% of the original server capacity.

Hence, mean savings of at least 22% are achievable for any scenario, including C65 which

complies with the recommended level of server utilization in the target domain. If the

avoidance of overflows is the only objective and no additional constraints are modeled, as

done in the majority of the studied related work, 56% of the original server capacity can

be eliminated. Further details on mean savings per algorithm and scenario are provided

in Table B.2 in Appendix B. To conclude, the approach meets quality requirement Q1

according to which the artifact is relevant economically if at least 30% of the original

capacity can be saved in unconstrained scenarios and not less than 20% if constraints

apply. Self-evidently, mean server utilization increases if a portion of capacity is removed.

In order to compare utilization levels before and after the optimization process, as stated

earlier, theoretical peak demands are used. On this basis, the mean CPU utilization across

all observed cases amounted to 18.72% before optimization. Figure 4.13 shows the mean

CPU utilization distance from the original design to the solution of highest fitness across

all cases and all algorithms. For the unconstrained scenario, best performing algorithms
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identified solutions of averagely 22.66% higher CPU utilization when compared to the

original design. As expected, realistic constraint sets reduce the addressable optimization

potential significantly, mainly determined by the maximum utilization constraint. Conse-

quently, in scenario C85 respectively C65, mean utilization growth of 7.85% and 5.14% was

obtained. However, even in constrained scenarios, considerable optimization results could

be achieved with a maximum utilization growths of 50.37% and 29.72% respectively. In

general, due to the non-proportional energy consumption of today’s server architectures,

even small changes in the levels of utilization increase overall efficiently and contribute to

the economical relevance of the results.

4.2.4 Summary of EVAL 3.1

The implemented heuristics, genetic algorithms, and hybrid approaches were evaluated

on the bases of three scenarios, using real monitoring data from 516 environments. In

unconstrained scenarios, heuristics provide feasible solutions within short time (less than

0.3 ms). Here, the GA is outperformed by any other algorithm. If, however, a GA is used

to optimize the input sequence to a best-fit heuristic (GA BF), this algorithm performs

best in terms of solution fitness if no constraints apply. Fitness was calculated on the basis

of the required capacity, the avoidance of overflows, and constraint compliance. In contrast

to the unconstrained scenarios, the GA achieves best results with increasing restrictions.

Accordingly, the GA is the preferred algorithm if the solution space is limited by a number

of constraints. In these cases, heuristics fail to compute solutions of sufficient fitness as

their ability to consider constraints is limited to chance hits. Costly repair mechanisms, in

terms of data pre-processing and solution post-processing, would be required in order to

achieve acceptable levels of constraint compliance. Moreover, individual adaptions are to

be implemented for each type of constraint which, according to Hermenier et al. (2013), are

subject to change. Hence, due to their limited maintainability, heuristics do not comply

with quality requirement Q4. The optimization potential generally increases with growing

problem complexity. This fact suits the artifact’s design well as large environments, at

the same time, show lower customization degrees (cf. Section 2.1.1). If an all-purpose

technique is desired, the GGA is to be recommended as it provides feasible solutions

across all scenarios.

4.3 Case study on solution candidate performance prediction
(EVAL 3.2)

This section addresses the secondary objective of PPSS. Here, solution candidates to the

SPP are to be evaluated with respect to their total costs. Total costs comprise operations

costs co and penalty costs csla. While the former is to be obtained on the basis of known

capacity requirements, the latter implies performance estimations. Required performance

models were evaluated quantitatively in Section 3.3. In the following, their utility in a

particular business context is evaluated by means of a scenario-based demonstration.
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4.3.1 Case description and prediction input

The case study is based on real data which comes from the same data set that was used to

generate the field experiment data in Section 4.2.1. The application context is based on

input provided by one of the pilot users of the method 1. The input, however, was modified

to protect sensitive business data and to support the demonstration purpose. Therefore,

realities, as suggested by Sonnenberg and vom Brocke (2012) for EVAL 3 activities, are

given. The studied case describes a large retail company whose IT resources are grouped

in multiple German data centers, each hosting COTS EAs. One of the data centers is

facing a centralization project which entails the integration of additional markets into

the existing EA system landscape. According to the project plan, the number of served

markets increases successively. For example, on the way from the current state to the
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1Telephone interview at March 13, 2017
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first milestone, the number of markets will have doubled. In the future, however, the

business strategy prescribes to add about 125% of the current number of markets. Hence,

workloads are planned to increase in the future and the decision maker is interested to

estimate the respective effects on the design. In its current state, the data center hosts

ten services. Due to the prevailing provisioning practice, which involves to procure new

hardware for new services, ten servers are available in total although two of them show

extra-ordinary low utilization. The workload profiles for the running services and the

utilization levels for the servers are depicted in Figure 4.14 and 4.15. The actual mean

CPU utilization across the whole environment accounts to 14.30% and all servers provide

a total CPU capacity of 68,369 SAPS.

The data shown in Figures 4.14 and 4.15 is used as input to the SPP. As outlined

in Section 3.3.4, three different target values were defined as maximum utilization levels

in order to control the consolidation pressure. For this purpose, the maximum utilization

constraint was utilized. As a result, three design alternatives represent three solution

candidates of different risk attitudes. In accordance with the evaluation results presented

in Section 4.2.3, the GGA was used to produce solution candidates. These are presented

in Table 4.4.

In order to evaluate the solution candidates with respect to their performance in

varying load situations, load factors were defined in accordance with the business strategy.

Hence, load factors from 1 to 2.25 scale the existing values of the workload metrics for

each time interval. As a result, six variations of the workload profiles, depicted in Figure

4.14, are used to feed the performance model, resulting in a total number of 18 future

scenarios (six for each design). If probabilities for the alternative load factors are available,

design recommendations, with the objective to minimize the total costs, can be provided.

Otherwise, results are to be discussed together with decision makers. For the 18 future

scenarios, mean response times per dialog step for the business transaction to change

sales orders (transaction code: VA02) of medium complexity are estimated. Here, one

of the model types evaluated in Section 3.3.2 such as Random forests, SVM with RBF

kernel, or AdaBoost can be applied. To demonstrate the given use case, Random forests

were used due to their existing integration with the analysis layer of the APM-KB at

the time of model selection. In the case under study, 587 measured hours show at least

one execution of the investigated business transaction. Response times were estimated

as part of the step Predict service performance of the PPSS method. In the following,

Design A Design B Design C

Maximum utilization level 100% 65% 45%
Number of servers 5 7 8
Total CPU capacity in SAPS 30,846 51,182 59,126
Hardware savings high medium low
Risk attitude high medium low

Table 4.4: Computed solution candidates.
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prediction results are analyzed for the introduced use case in order to demonstrate the

utility of the method. Therefore, the following activities are carried out as part of the step

Analyze future scenarios and, finally, lead to decision support in terms of recommended

designs. These findings contribute to the Capacity plan which represents the outcome of

the process.

4.3.2 Prediction results and operations costs

All prediction results were archived together with the input data in order to allow for

subsequent analysis. The initial yet unsurprising assumption of higher loads causing higher

response times is generally confirmed by the results. As shown by the box plots in Figure

4.16, response times can be improved by lowering utilization rates. This measure, however,

typically requires greater capacity. As indicated by the value distribution in Design C,
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Figure 4.16: Distribution of mean response times per dialog step for each future scenario.

capacity buffers seem to effectively catch load peaks, resulting in a smaller interquartile

range and a closer bound for outliers. Hence, this design reduces the variance and tend

to be the most stable option in terms of performance. If deadline constraints require the

response times to be always below a certain threshold, the illustration in Figure 4.16 allows

to draw a respective line and limit the solution space to scenarios which do not exceed

this line.

Having both performance estimations and capacity requirements in place, total costs

can be calculated. One component of the total costs is represented by the operations

costs co. This item is subject to a number of aspects which vary for each organization.

However, for the sake of demonstration, the computed designs were translated into costs

in US Dollar using the “AWS Simple Monthly Calculator”(Amazon, 2019). This tool

distinguishes server classes which can be associated to domain-specific metrics such as
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Server
class

SAPS range Operations
costs in $

Used in
Design A

Used in
Design B

Used in
Design C

1 1 – 2,379 146.4 - - -
2 2,380 – 4,758 218.87 - 1 1
3 4,759 – 9,515 364.54 5 4 5
4 9,516 – 19,030 655.88 - 2 2
5 19,031 – 37,950 1237.82 - - -

Operations costs: 1,822.7 $ 2,988.79 $ 3,353.33 $

Table 4.5: Operations costs for the computed solution candidates.

SAPS. For this purpose, a mapping table, provided by Amazon in Alvarez (2015), was

used. Table 4.5 shows the resulting costs for each server class and indicates how often

each server type was used by a design. The resulting total operations costs are calculated

for each design. This exemplary cost calculation leads to the operations costs co in USD.

In the following, penalty costs csla are to be estimated in order to obtain the total costs

per design.

4.3.3 Service level violations

The second component of the total costs is formed by penalty costs that are invoked if

response times suffer from resource bottlenecks and exceed given SLAs. This can be a

result of too aggressive consolidation attempts as described in Section 3.3.4. These costs

are to be identified on the basis of the prediction results. For the sake of demonstration,

a sample SLA is designed, as also used by Gmach et al. (2008). According to the SLA,

99% of the requests to change sales orders must be processed within a deadline d1 of one

second (also referred to as deadline constraint d1). For each percent point under fulfillment,

penalty costs of 150$ are invoked using a continuous scale. As defined in Section 3.3.4,

requests may be aggregated to hours of (non-)fulfillment. In Equation 4.2, n represents

the total number of considered hours and v represents the number of hours in which the

SLA is violated.

csla =

{
v∗100
n ∗ 150 if v∗100

n ≥ 1

0 if v∗100
n ≤ 1

(4.2)

Optionally, an additional deadline constraint d2 defines a threshold of 1,500 milliseconds.

Accordingly, designs which induce response times higher than d2 are unacceptable even

if they minimize the total costs, e.g., due to user satisfaction. In the described use case,

the total number of considered hours n accounts to 587 in the measured time frame. On

the basis of the predicted mean response times for each hour, load scenario, and solution

candidate, the 18 future scenarios are associated with SLA violation degrees. According

to Equation 4.2, resulting penalty costs are calculated as presented in Table 4.6. The

outcome may serve as decision support for capacity management already in the presented

form. For example, if deadline constraint d2 is strictly active and load factors up to 2 are

conceivable in the near future, Design A is to be excluded from the solution space, since
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Design Load
factor

Violated
hours (d1)

Violated
hours (d2)

Fulfillment
degree

Violation
degree

Penalty
costs

A 1 4 0 99.32 0.68 0
A 1.25 9 0 98.47 1.53 229.5
A 1.5 35 0 94.04 5.96 894
A 1.75 153 0 73.94 26.06 3,909
A 2 337 1 42.59 57.41 8,611.5
A 2.25 439 2 25.21 74.79 11,218.5
B 1 0 0 100 0 0
B 1.25 1 0 99.83 0.17 0
B 1.5 17 0 97.1 2.9 435
B 1.75 138 0 76.49 23.51 3,526.5
B 2 276 0 52.98 47.02 7,053
B 2.25 366 3 37.65 62.35 9,352.5
C 1 0 0 100 0 0
C 1.25 0 0 100 0 0
C 1.5 6 0 98.98 1.02 153
C 1.75 50 0 91.48 8.52 1,278
C 2 189 0 67.8 32.2 4,830
C 2.25 355 0 39.52 60.48 9,072

Table 4.6: Penalty costs for the 18 future scenarios.

violations are to be expected. If any load scenario may appear, the deadline d2 allows

for the deployment of Design C only. In Table 4.6, the future scenarios which violate

d2 are grayed out. If, on the other hand, d2 was not defined, all future scenarios are to

be analyzed with respect to the their total costs. In this regard, the assumed relation

between operations costs and SLA violation probability is confirmed by the plot in Figure

4.17. Here, the six lines are formed by three points, each representing the three designs A,

B, and C. The y-axis refers to the number of violated hours with respect to the deadline

d1. Especially in a scenario of doubled load, Design C is able to reduce the number of

violation hours significantly when compared to Design A and B. Any workload above this

factor is hardly manageable for any of the Designs. In contrast, lower load factors around

the current workload may also be handled by designs which highly utilize a minimized

amount of capacity such as Design A. In general, additional capacity reduces the risk of

SLA violations but increases operations costs. Therefore, cost minimization is subject to

the subsequent total cost analysis.

4.3.4 Total cost analysis

In the preceding steps, operations costs and penalty costs were computed for each future

scenario. Furthermore, designs which do not fulfill the deadline constraint d2 of a given

SLA may have been excluded. Therefore, the final activity of the future scenario analysis

is to identify a design that minimizes the total costs across the remaining solution space.

First, total costs are to be computed for each future scenario on the basis of Equation
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3.7. Exemplary results for the studied case are illustrated in Figure 4.18. As stated in

Section 3.3.5, the illustration of total costs is part of the capacity plan executive summary.

Depending on the deadline d2, however, certain designs may be grayed out. The final

design recommendation depends on the expected workload. If, for example, the current

level of workload was also forecasted for the near future, Design A would sufficiently

minimize the total costs. In case of mainly doubled load, Design C performs most cost-

effectively. In order to resolve the given dependencies, probabilities may be obtained for

each load scenario on the basis of the business strategy. Respective input describes how

often each load extend is expected to occur and, in turn, enables to weight the total costs

per design. In order to demonstrate design recommendations, three alternative story lines

are considered for the studied case of a large retail company:

• Storyline 1: The capacity manager expects business as usual. This storyline covers

an alternative option to the introduced centralization project and gets activated in

case the planned changes are canceled.

• Storyline 2: About 125% of additional markets are to be integrated into the existing

system landscape in the near future. Significantly increased load is expected to

dominate the EA usage.

• Storyline 3: The capacity manager expects mainly business as usual. However,

few additional load peaks may result from the integration of a small number of test

markets before major changes are planned.

The story lines exemplify expected changes that are to be considered when managing IT

capacity. Therefore, each storyline leads to different decision support as part of total costs

minimization. Resulting design recommendations are given in Table 4.7 for the studied

case. Consequently, the derivation of load probabilities from alternative story lines allows

to provide a single recommendation. In these cases, the decision support process can be

automated by minimizing the weighted total costs. However, as described in Section 3.3.5,

recommendations must be justified and underlying assumptions must be described in the

capacity plan. Therefore, presented illustrations and discussed dependencies (cf. Section

4.3.3) represent input to the capacity plan.

Load factor Probability
(storyline 1)

Probability
(storyline 2)

Probability
(storyline 3)

1 1 0.1 0.8
1.25 0 0 0
1.5 0 0 0
1.75 0 0 0
2 0 0 0.2
2.25 0 0.9 0

Recommendation: Design A Design C Design B

Table 4.7: Design recommendations on the basis of load probabilities.
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To conclude, the demonstrated future scenario analysis effectively utilizes performance

models in order to address the secondary objective of the PPSS method. The obtained

estimations of SLA violations enable to identify solution candidates which minimize the

total costs. Hence, the utility of a machine learning-based prediction technique which uses

shared performance counters could be demonstrated.

4.3.5 Summary of EVAL 3.2

Utility was demonstrated scenario-based using a case study with real data. Since capacity

management becomes challenging and particularly relevant whenever changes are planned,

a large retail company was introduced to face IT integration plans. As part of the case

study, three solutions to the SPP were computed, representing alternative designs that are

to be evaluated with respect to their violations of performance SLAs and their total costs.

Therefore, solution candidates serve as input to the step Predict service performance. The

subsequent Future scenario analysis confirmed that greater amount of capacity gener-

ally reduces response times and their variance in the investigated case. On the basis of

the predicted values, a sample SLA was applied and resulting violation degrees could be

computed for alternative load scenarios. As a result, 18 future scenarios (combination of

load scenario and solution candidate) were associated with penalty costs. Operations and

penalty costs form total costs. Depending on the probability of expected load factors, total

costs could be minimized and design recommendations were derived. Hence, performance

models which were trained on a cross-organizational basis could effectively be utilized to

evaluate solution candidates to the SPP regarding selected performance characteristics.

4.4 Technical implementation and field usage (EVAL 4)

This section evaluates the application of the artifact in the environment (cf. Figure 1.1 on

the left). Relevant evaluation criteria of EVAL 4 are the ease of use, the operationality, the

fidelity with real world phenomena, as well as the impact on the artifact environment and

user. Therefore, in a first step, the technical implementation of the artifact is described.

This way, a prototype of the artifact could be offered to a group of pilot users who were

then surveyed to provide feedback from the productive usage in the field. The feedback is

limited to the implemented features. Hence, it must be noted that some of the evaluation

criteria refer to individual components of the artifact, so that EVAL 4 is carried out only

partly. The described technical implementation serves as a sample setup to proof the

above mentioned criteria, however, the selection of appropriate software and hardware

is up to the capacity management provider as the designed artifact is independent of a

particular technology.

4.4.1 System architecture and workflow

The PPSS method relies technically on a central knowledge base. Three layers of this

APM-KB were introduced in Section 3.1.3. While the data layer integrates APM data
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Figure 4.19: Layers of the APM knowledge base and their interplay.

from participating environments, the analysis layer offers computational intelligence, that

is optimization algorithms and prediction models. Finally, on presentation layer, a web

interface supports the tasks of the designed process. Figure 4.19 illustrates the inter-

connection of these layers using an excerpt of the workflow from a capacity management

consumer perspective. On the data layer, a relational database schema is created which

holds all attributes relevant to optimization and performance prediction. This includes

meta data regarding the landscape topology, workload characteristics, and resource ca-

pacity limits. Workload characteristics are grouped by hour and associated with a time

stamp. Data is generally aggregated to the layers, presented in Figure 2.1. Topology

tables link these layers to each other, i.e., providing which service is running on which

server. For each server, capacity limits in terms of CPU and memory are present. All

data is grouped by a measurement ID which identifies a monitoring season of a data cen-

ter. The ID also enables role-based access control. In the instantiated artifact, the data

layer is implemented using the in-memory database platform SAP HANA. At this point,

all monitoring data is loaded into main memory in order to support a service delivery in

accordance with functional requirement F9 and quality requirement Q3. However, least

accessed measurement IDs may be unloaded for the sake of scalability. An identical spare

server ensures to fail-over the complete APM-KB in case of hardware issues. The concept

is enabled by the underlying application virtualization technique (cf. 2.2.2).

The optimization engine holds the heuristics, metaheuristics, and hybrid algorithms

and, if executed by the user, solves the SPP. For this purpose, the data layer is queried

for the present design, including relevant data which forms the workload profiles and the

server capacity limits. Solution candidates represent alternative topologies and, therefore,

are stored in the topology-related tables. Results of the subsequent step Forecast workload
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evolution (cf. Presentation layer in Figure 4.19), represent alternative workload profiles

and are stored in the workload tables respectively. The combination of workload profiles,

optimized topology, and associated capacity limits is passed to the prediction engine which

estimates the resulting performance. Prediction results, i.e., mean response times, are

saved together with workload characteristics in the respective tables. A solution candidate

that was supplemented by a load scenario and resulting response times forms a possible

future scenario. These scenarios are subject to further analysis, e.g., with respect to their

weighted total costs, in the last step of the process.

The presentation layer is technically implemented on the basis of an integrated web

server which is part of the SAP HANA platform. Therefore, the graphical user interface

was implemented using the software development toolkit (SDK) SAPUI5, which provides

libraries on the basis of HTML5 and supports user interface development according to the

Model-view-controller pattern (Leff and Rayfield, 2001). However, alternative SDKs are

just as conceivable for the purpose of data visualization. Data is retrieved from the data

layer using JavaScript. The subsequent section describes the analysis layer in more detail.

4.4.2 Back end engines

The analysis layer holds two back end components: The optimization engine and the

prediction engine.

The optimization engine is implemented as a JAVA servlet which provides optimiza-

tion as a web service. This way, the service is available over the internet and can be

integrated into the APM-KB user interface or directly invoked using the respective URL.

The algorithms are initiated by passing workload profiles and server capacity limits in the

JSON format. Output, in the same format, is written to a database table where it may

be processed further, e.g., by the prediction engine. Although the user interface allows

to select the appropriate algorithm type for a particular problem, the GGA is, according

to the results of EVAL 3.1, the default choice. The servlet is deployed on a separate

virtual machine which runs the open-source web server Apache tomcat. The reference

architecture for the algorithm implementation is described in Akhras (2017).

The prediction engine, on the other hand, is implemented by means of a server which

hosts the server component of the software environment R for statistical computing. The

R server was integrated with the SAP HANA database as described in SAP (2018b).

Accordingly, database stored procedures of the language R were implemented to query

the input data, pass it to the R server, and store the prediction result in an output

table. As part of the process, the actual R functions are executed on the separate R

server. This way, resource intensive operations like model training do not interfere with

daily operations of the APM-KB. In order to maintain the performance models and to

track hyperparameters and error metrics, the data model, depicted in the UML class

diagram of Figure 4.20, was created. Using the table MODELPARAM, hyperparameters

for model training can be configured as a key-value-store. The ID PARAMETERSET

refers to a particular setting. In the table MODEL, where accuracy results are stored
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OA_KB.MODELPARAM

PARAMETERSET INT
KEY VARCHAR(255)
VALUE VARCHAR(255)

OA_KB.MODEL

MODEL_ID INT
PARAMETERSET INT
TS TIMESTAMP
VIEWNAME VARCHAR(255)
N_DATA INT
N_DATA_TRAIN INT
N_DATA_TEST INT
TRAIN_PERC DOUBLE
SAVE_DIR VARCHAR(255)
FILENAME VARCHAR(255)
TRAIN_TIME DOUBLE
ME DOUBLE
MAE DOUBLE
MAPE DOUBLE
RMSE DOUBLE

n1     trained with

Figure 4.20: Data model for performance model meta data.

for each model, the PARAMETERSET is used as a foreign key to associate models with

their hyperparameters. Trained models are stored in the file system of the R server and

the respective destination is stored in the table MODEL too. In order to construct and

apply models, the stored procedures train and predict were implemented. When executing

train, a database view which holds the training data and a parameter set must be passed.

Training data is split by the procedure to allow for cross-validation. After model training,

the procedure stores all results in the table MODEL. Similarly, when executing predict,

a database view is to be passed, holding all input records for which the response time is

to be estimated. On the basis of the provided database view, the procedure queries the

table MODEL for a suitable model which provides the lowest mean absolute percent error.

Prediction results are typically computed within seconds and stored in an output table of

the same schema. This way, the future scenario analysis is enabled.

4.4.3 User interface

A graphical user interface (GUI) was developed to interact with the optimization engine

as part of the task Solve service placement problem. Furthermore, the tasks Understand

the environment and Characterize workloads are supported by the GUI, as these are main

steps to precede any kind of further analysis. A landing page, to which any user of the

APM-KB is forwarded, allows to navigate to a particular interface which supports one of

the PPSS tasks.

As part of the initial descriptive tasks, the GUI allows to analyze a number of metrics

from both services and server perspective, using line charts, bar charts, and stacked bar

charts. The selectable metrics correspond to the attributes, listed in Table 3.3. Observa-

tions may be filtered on the basis of the time stamp and, if desired, grouped by weekday,

day, or hour of the day. In Appendix C, screenshots of the user interface exemplify the
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implementation. The example in Figure C.4 allows to identify peak usage periods which,

according to Almeida (2002), is an important step when understanding the environment.

If, e.g., the heat map in figure C.5 reveals low peak utilization levels, the GUI allows to

instantiate an SPP by retrieving server capacity limits and workload profiles for all running

services in an automated way. As the optimization engine allows to model individual

constraints, an interface component was designed to support this process. As shown

in Figure C.6, a drop down menu allows to select constraint types. Depending on the

selection, servers or services can be chosen to which the constraint applies. As described

in the conceptual design (cf. Section 3.1), a feature was implemented to save modeled sets

of constraints in the APM-KB for future reuse. If appropriate, an algorithm which differs

from the default GGA may be chosen and results of the optimization run are presented to

the user by means of a simple allocation table and a bar chart which visualizes resulting

server utilization levels. The individual characteristics of the SPP may be refined in

multiple iterations until a number of feasible solution candidates were computed.

The prediction engine, in contrast, is currently invoked over an SQL interface. There-

fore, the tasks which intend to predict service performance and to analyze future scenarios

are carried out on a command-line level and, in this form, were not offered to the pilot

user group. The implementation of a suitable GUI is planned as future research and devel-

opment. In this regard, the landing page, shown in Figure C.1, indicates some interfaces

of the APM-KB that are not directly related to the PPSS method. These interfaces result

from additional research streams in which the extendability of the APM-KB with respect

to further types of data analysis was explored. Respective research streams, however, are

out of the scope of this thesis.

4.4.4 User feedback

User feedback helps to evaluate characteristics of the artifact which become relevant when

being applied in its intended environment. Consequently, the presented GUI was offered

to two data centers whose employees participated in a pilot phase of six weeks. As the

artifact is planned to be offered by a commercial capacity management provider, this phase

was also part of the go-to-market strategy. From a research perspective, the pilot phase

aimed at two main objectives:

• Evaluation of the PPSS components which are currently available through the graph-

ical user interface on the presentation layer of the APM-KB. In particular, the pilot

phase seeks to evaluate the operationality of the method, the efficiency of the method

with respect to cost savings, the ease of use, and the impact on the artifact environ-

ment.

• Prioritization of future research and development efforts. The pilot phase is ex-

pected to reveal possible improvements and missing features, thus, contributing to

the evaluation of completeness.
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Data center A Data center B

Company industry retail insurance
Company category large large
Number of services 69 20
Number of servers 53 7

Table 4.8: Profiles of the two participating data centers.

To enable the individual instantiation of the service placement problem, an initial measure-

ment phase has preceded the actual pilot phase. During that, all running services and

servers were monitored at each data center for a period of three weeks. Measurement

data was collected and imported into the data layer of the APM-KB. Subsequently, pilot

users were provided with accounts which allow to authenticate at the APM-KB and to

solve individual instantiations of the SPP. Furthermore, descriptive analyses were offered

to support the tasks Understand the environment and Characterize workload (cf. Section

4.4.3). All features were offered free of charge but the intention to charge prices in the

future was communicated. Details on the two participating data centers are provided in

Table 4.8. User feedback was collected two-fold. On the one hand, an online survey was

available from within the service (cf. Figure C.1) throughout the whole pilot phase. On

the other hand, a face-to-face expert interview was hold with each data center individually

in order to obtain unbiased feedback. Here, five users from data center A and three users

from data center B participated. The questionnaire of the online survey, at the same time,

served as an agenda which guided through the meeting. This way, participants were able

to explain their given answers in more detail. Answers to the questionnaire were grouped

by data center and, in this form, are highlighted in Table 4.9. Here, the term landscape

optimizer refers to the GUI component which executes the optimization engine when sup-

porting the process step Solve service placement problem. The answers, presented in Table

4.9, are discussed in the following.

The first two questions address the research goal that is to develop a method which

reduces costs in capacity management. In this regards, both data centers are convinced to

save time and to reduce manual effort, compared to their current approach (cf. Question

7). Naturally, savings affect exercises which were simply outsourced to the capacity man-

agement provider. However, algorithms and models, once constructed by the provider, are

designed to be offered to a great number of consumers within the domain of a COTS EA.

Therefore, economies of scale are expected to reduce overall costs too.

Question 3 and 9 refer to placement constraints, contributing to the artifact’s fidelity

with real world phenomena. First, the general usefulness was questioned. Answers were

analyzed in Section 2.2.5 and Section 3.2.3 and, therefore, are not discussed in further

detail. As stated in Section 3.2.3, the constraint type, requested by one of the data

centers, results from given downtime restrictions during the deployment of a solution

candidate. To summarize, particular services must be available if others go down. These

dependencies could be addressed by limiting the initiated SPP to a subset of services or
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more time no effect less time

1. Compared to your current capacity manage-
ment approach, how does the offered service
affect the overall amount of required time to
get to desired answers and solutions to ca-
pacity management challenges?

1 2 3 4 5 6 7 8 9 10

more effort no effect less effort

2. Compared to your current capacity manage-
ment approach, how does the offered service
affect the overall amount of manual effort to
manage your infrastructure capacity?

1 2 3 4 5 6 7 8 9 10

not useful essential

3. How useful do you rate the possibiltiy of
defining placement constraints for the opti-
mization task?

1 2 3 4 5 6 7 8 9 10

unrealistic not sure realistic

4. Do you consider the result of the landscape
optimizer as realistic in terms of expected
quality of service, e.g., with respect to tar-
geted service response times?

1 2 3 4 5 6 7 8 9 10

never yearly monthly

5. How frequently would you use the final ver-
sion of the landscape optimizer in the future? 1 2 3 4 5 6 7 8 9 10

never yearly monthly

6. How frequently would you use the descrip-
tive analysis features which support to un-
derstand the environment?

1 2 3 4 5 6 7 8 9 10

7. How do you currently optimize your landscape with respect to server utilization?

A. Automated, by means of optimization algorithms.
B. Manually, by estimating service demands and mapping them to server capacities.
C. We do not relocate existing services in order to optimize server utilization.
D. Other.

8. How frequently do you optimize your landscape?

A. In real-time.
B. Approximately six-monthly.
C. Approximately yearly.
D. Rarer then yearly.
E. Never.

9. Is there a placement restriction that you cannot model using the provided constraint
types? Which placement constraint is missing?

Partial optimization.

10.Which additional functionality are you missing?

Workload trend analysis; Reporting templates; Direct connection to the database.

Table 4.9: Aggregated user feedback as part of the online survey.
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servers, thus, performing a partial optimization. The request was addressed by the design

and implementation of a Component exclusion constraint which is also available in the

current GUI version (cf. Figure C.6).

Question 4 intends to obtain an impression with respect to trust. As the prediction

engine was not provided to the pilot users, the questioned result of the landscape optimizer

refers to solution candidates which did not undergo a performance evaluation. The answers

indicate that means to improve the credibility of results, e.g., predictions of resulting

response times, will most likely be appreciated by the users.

Answers to questions 5 and 6 emphasize the utility and the relevance of the artifact

as both data centers intend to purchase the offered services in the future on a regular

basis. In both data centers, capacity is currently managed with significant manual effort.

Resource demands are estimated and mapped to servers of appropriate capacity manually.

Alike procedures are carried out approximately every year respectively every six months

in order to optimize the current landscape.

Finally, participants were asked to request additional functionality in order to guide

future research and development directions. With respect to the descriptive analysis, both

data centers requested features which bring the presented results in a format that is easily

interpretable by the management. This way, participants expect to simplify reporting

and decision preparation. On the other hand, a direct SQL connection to the data layer

of the APM-KB was requested to allow for additional in-depth performance analysis by

application and database administrators. One of the data centers, furthermore, requested

a feature to analyze workload trends over a longer period of time. This way, the currently

manual task Forecast workload evolution would be supported by an additional component

on the analyses layer of the APM-KB.

During the expert interviews, all of the participants stated that the developed arti-

fact allows to manage the capacity with increased efficiency when compared to the current

approach. According to the users, the provided analyses bridge the existing gap between

application and infrastructure teams as capacity bottlenecks for particular business tasks

are getting revealed. A user of data center A stated that, in the current practice, ca-

pacity is increased in situations of performance bottlenecks. However, if idling resources

are identified, a lack of courage prevents from decreasing capacity in the same manner.

The user expects the data-driven approach to increase acceptance of capacity decreasing

decisions. With respect to the ease of use, intuitive usability was generally emphasized

although minor layout and color changes were suggested. For example, the color scheme

to visualize server utilization may follow traffic light colors to quickly indicate under- and

overloads.

4.4.5 Summary of EVAL 4

Evaluation on level 4 involves to put the artifact into use. Central backbone of the PPSS

is a knowledge base which holds APM data. In order to evaluate operationality, the three

layers of the APM-KB were implemented by means of a database system which integrates a
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web server for the presentation layer. The analysis layer is served by an optimization engine

and a prediction engine. While the former was implemented as a JAVA servlet, the latter

utilizes an integrated R server. Results of the optimization engine are written to tables on

the data layer of the APM-KB. These are passed to the prediction engine for performance

evaluation of solution candidates. Meta data of performance models, including parameter

sets, are stored in the APM-KB too. This way, model selection was automated on the basis

of input data (type of business transaction) and accuracy metrics. The tasks Solve service

placement problem, Understand the environment and Characterize workloads of the PPSS

are supported by a graphical user interface which allows to interact with the APM-KB on

the presentation layer. The GUI was offered to a group of pilot users from two different

data centers who took the role of capacity management consumers with the objective to

evaluate the ease of use, the fidelity with real world phenomena and the impact on the

artifact environment. User feedback was collected by means of an online survey and two

semi-structured interviews. Results indicate cost savings for the participating data centers

in the supported capacity management exercises. Results further confirm the necessity to

support placement constraints and solution performance prediction. Finally, the ease of

use was emphasized and led to the will to consume the offered service on a half-yearly to

yearly basis.

4.5 Summary of the artifact’s evaluation

Evaluation on the levels EVAL 1 and EVAL 2 concerns the relevance, importance, novelty,

and the general applicability of the research artifact. Therefore, chapter 2 outlines the

state of the art in the domain of capacity management along with existing challenges with

respect to the data center efficiency. Applicability of the research artifact was theoretically

analyzed on the basis of a usage analysis of COTS EAs. As a result, standardization

degrees are sufficiently high in order to follow the targeted strategy of cross-organizational

learning from shared performance counters. Practical applicability was evaluated as part

of the design phase by means of a data mining process which led to performance models

for predicting mean response times of business transactions. As these were trained and

cross-validated on the basis of APM data from different environments, applicability of

the approach was further confirmed. Here, machine learning models which were trained

using Random forests and Boosted trees revealed acceptable results that meet the quality

requirement Q2. Having confidence about the applicability, the designed artifact was

evaluated against the requirement specification (cf. Table 3.1) and the evaluation criteria

(cf. Table 1.1) in Chapter 4. For this purpose, two evaluation methods were applied on the

level of EVAL 3: First, an experimental field study was conducted to evaluate the service

placement approach with respect to solution quality and consistency as well as algorithm

efficiency. Second, a case study demonstrated the utility of the performance prediction

approach using the previously validated models.

The field experiments utilized APM data from 516 real data centers of which each

was monitored for a period up to three weeks. A descriptive analysis of the data re-
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vealed a large variety of the environments under study with respect to, e.g., the server

sizes, the number of running services, and the extent of workloads. Hence, generality of

the approach could be confirmed within the boarders of the defined application area. The

designed service placement approach involved eight different algorithm types to solve prob-

lem instantiations. These were tested in three different scenarios for each of the 516 data

centers. The scenarios involve varying extents of constraint pressure. The setup resulted in

a total number of 12,384 experiments which allowed to analyze solution quality in relation

to the algorithm type and the problem class. A solution represents an optimized design

which imposes a certain allocation of services to servers. Solution quality was defined by

a fitness value which considers the amount of capacity savings. To foster high solution ap-

plicability, the fitness values was penalized by resource overflows and constraint violations.

Since the problem is known to be NP-hard, optimal solutions could not be computed as a

reference value. Instead, solution fitness was compared to best values across all algorithms

within a problem class. Therefore, the mean distance to best fitness served as one of the

evaluation metrics. However, relative savings and constraint violations were also analyzed

in a separate step in order to investigate the strengths and weaknesses of the algorithms

in more detail. For evaluation of the economic relevance, mean server utilization levels

for the original and the optimized designs were compared. Finally, algorithm run-time

was provided. With respect to the fitness difference, heuristics provided high-quality so-

lutions in unconstrained scenarios. A pure genetic algorithm identified best solutions in

constrained scenarios and worst solutions in unconstrained scenarios. Interestingly, the

grouping genetic algorithm outperforms the GA by far in the unconstrained scenarios with

solutions whose quality is on the level of the heuristics. Best constraint compliance was

achieved by the GA, followed by the GGA which seems to suffer slightly from repair mech-

anisms to ensure solution feasibility after recombination. In terms of capacity savings, the

two metaheuristics perform equally well. In unconstrained scenarios, solutions require in

average only 44% of the original server capacity. Across all scenarios, mean savings of

at least 22% were achievable. In general, saving potential increases with the complexity

of a case. If the problem class is unknown at the time of algorithm selection, the GGA

provides suitable solutions with highest probability. Run-time accounted to less then 2.3

seconds in every experiment and, therefore, does not limit the set of applicable algorithms

in the domain of offline consolidation. Regarding the requirement specification, the com-

pliance with the functional requirements F1 and F3-F7 as well as quality requirement Q4

could be confirmed by solving respective instantiations of the SPP in a variety of cases.

In turn, quality requirements Q1 and Q3 are met by the analyzed solution quality and the

algorithm run-time.

The second part of EVAL 3 addressed the evaluation of the PPSS tasks to predict

performance and to analyze future scenarios. Therefore, a case was designed on the basis of

real data and the SPP was initiated for this case with three different maximum utilization

constraints. Accordingly, three solution candidates represent optimized designs of different

risk attitudes. The workload and capacity values associated to these solution candidates
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formed input to the performance model. The prediction results, in turn, provide the

basis for the future scenario analysis. Results confirm that response times decrease with

increasing capacity. Required servers could be associated with operations costs depending

on their size. Using a sample SLA, predicted response times were used to calculate SLA

violation degrees under certain load situations. On this basis, expected SLA penalty costs

were computed and added to the operations costs in order to obtain the total costs for

each future scenario. Finally, it was demonstrated that, depending on the expected future

load, alternative designs must be recommended to minimize the total costs. Therefore,

functional requirements F1, F2 and F8 are met. In the designed case study, the PPSS

helped to identify cost-effective design alternatives and, in conclusion, was of utility for

the artifact’s environment.

Finally, it was the goal of EVAL 4 to implement the artifact for productive usage

and observe its operationality and its impact on a real environment. Accordingly, the

central component of the PPSS, the APM knowledge base, was implemented on all three

layers, utilizing an in-memory database system, an R server (as prediction engine), and

a JAVA servlet that was deployed on a Tomcat web server (as optimization engine).

On the presentation layer, a GUI was implemented to offer functions of the PPSS in

accordance with functional requirement F9. These were offered to a group of test users

from two different data centers. By means of the resulting feedback, further criteria on

the level of EVAL 4 could be evaluated. In particular, ease of use was confirmed by both

organizations. As the users initiated problem instances of the SPP on the basis of their

individual APM data, the fidelity with real world phenomena is provided. Furthermore,

the confirmed reduction of time and effort, compared to their current way of managing

capacity, indicates an impact on the artifact environment which allows to save costs.
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5 Conclusion

Research involves to communicate both the benefits and the drawbacks of its results. It is

the goal if this final chapter to summarize the work and its scientific contributions. At the

same time, existing limitations are discussed. These serve as baselines for future research.

5.1 Summary of the work

The thesis explores a method for enterprise application consolidation exercises with the

objective to reduce costs and to improve solution applicability. According to the formu-

lated hypothesis, EA usage profiles are dominated by standard functionality. Therefore,

the potential to reduce costs resides in increase of standardization and decrease of expert

knowledge. The strategy to address this potential envisages to leverage black-box tech-

niques with existing monitoring data. The thesis follows the design science methodology

and applies the extended design-evaluate-construct-evaluate pattern according to which

evaluation is carried out on four levels throughout the work.

As the concept relies on the hypothesis, first, the customization degree of a COTS

EA was analyzed, contributing to the evaluation of relevance and feasibility on level one.

Results indicate a mean customization degree below 20.12% on the basis of the invoked

number of transaction calls. Furthermore, large environments tend to show higher stan-

dardization as opposed to small and medium environments. This finding complements

well with the optimization potential of server consolidation efforts which also improves

with an increasing number of running services and servers. In the targeted domain, mean

server utilization levels were analyzed to be around 8%. Consequently, server consolida-

tion was introduced to be an effective tool to reduce idling capacity and improve efficiency.

The problem characteristics correspond to a combinatorial optimization problem which is

known to be NP-hard. Related problems are typically solved by means of heuristics and

metaheuristics. However, solution strategies vary in terms of solution applicability. None

of the studied approaches supports heterogeneous servers, multiple resource dimensions,

dynamic workload profiles and placement constraints at the same time. Furthermore,

existing SLAs which are related to response times were considered only indirectly. This

research gap was addressed by the thesis at hand. In accordance with the hypothesis, the

outlined strategy to achieve the research goal was followed when specifying requirements

for the research artifact. The designed research artifact represents a method for managing

EA capacity.

The method addresses the research goal by outsourcing capacity management tasks
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which typically require costly expertise to a capacity management provider. This approach

has multiple benefits: The provider follows a structured data mining process. Therefore,

performance models, once evaluated, can be applied by a large number of capacity man-

agement consumers within the domain of the EA vendor, leveraging economies of scale.

Second, central retention of monitoring data increases the variety of training data with

respect to alternative workload and hardware characteristics for all participants. Capacity

management consumers are enabled to simulate change effects on the basis of real obser-

vations from other environments with well-known accuracy metrics. These changes may

result, e.g., from server consolidation activities whose effect on the transaction perfor-

mance is worth knowing in advance. Finally, the consumers can concentrate on the core

competencies of their daily operations without the need to gain knowledge in the domains

of machine learning and combinatorial optimization.

The method was modeled using the business process modeling notation. The essen-

tial tasks of the process are Solve service placement problem, Predict service performance,

and Analyze future scenarios. Required constructs to manage these tasks were designed

form a capacity management provider perspective. Hence, optimization algorithms and

performance models were built. The former address an offline optimization problem which

aims to identify design alternatives that reduce operations costs. This service placement

problem was formulated in a way which allows to consider dynamic workload profiles of

the running services in multiple resource dimensions. Furthermore, heterogeneous servers

with different capacity limits and ten placement constraint types are supported. These

types result from both the scientific literature and from expert interviews with practition-

ers. To solve individual problem instantiations, four heuristics, two metaheuristics, and

two hybrid algorithms were selected. While the heuristics are suitable for unconstrained

scenarios, metaheuristics are designed to evaluate placement constraint compliance as

part of their fitness function. The hybrid algorithms use a metaheuristic which optimizes

the input sequence to the placement heuristic. As part of the designed method, optimiza-

tion algorithms compute solution candidates which are subject to subsequent performance

evaluation.

For this purpose, the Cross-industry standard process for data mining, as incorpo-

rated into the PPSS method, was gone through. Using the example of the SAP business

transaction to change sales orders, performance models were constructed and evaluated

on the basis of real monitoring data. Bagging (Random forest) and boosting (AdaBoost)

techniques revealed accuracy values which are considered to be acceptable in the domain

of capacity management. The results contribute to the evaluation of applicability on level

two. Across the ten most frequently used transaction types within the sales and distri-

bution module, the boosting algorithm AdaBoost, in conjunction with regression trees,

achieved constantly best model accuracy with a mean absolute percent error between

19.57% and 29.34%. Evaluated performance models may be applied by the capacity man-

agement consumer to predict any change effects. However, PPSS suggests to use the

models for evaluating the performance of solution candidates to the SPP in order to allow
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for the minimization of SLA violations. Total costs of a solution candidate are defined

as the sum of their operations costs and their SLA penalty costs. The future scenario

analysis aims at the minimization of total costs within a possible future scenario. De-

pending on how well future workloads are known a priori, this step leads into a single

design recommendation or recommendations for each load scenario. Both variants serve

as decision support in order to minimize costs.

Evaluation on level three was carried out by applying the designed constructs from

a capacity management consumer perspective. Therefore, the eight algorithms were used

to solve realistic optimization problems on the basis of measurement data from 516 real

data centers. To test algorithm suitability for different requirements, one unconstrained

scenario and two constrained scenarios were built for each of the data centers, resulting

in a total number of 12,384 field experiments. In the constrained scenarios, a set of four

realistic placement constraints was defined where a maximum utilization constraint limits

server utilization levels to an upper bound of 85% respectively 65%. Solution applica-

bility is determined by the compliance with given realities and constraints. Therefore,

solution quality is defined by the amount of resource savings which is penalized by re-

source overflows and constraint violations. With respect to these targets, a grouping

genetic algorithm performed well across all experiments. While a pure genetic algorithm

failed to compute solutions of competitive quality in unconstrained scenarios, it performed

best with increasing constraint pressure and surpassed the solution quality of the GGA.

Heuristics solved unconstrained problem instantiations with sufficient solution quality in

shortest time (below 0.3 ms). However, mean execution time accounted to less then 2.3

seconds for all experiments and, in this magnitude, is not an issue in offline consolidation

approaches. In unconstrained scenarios, average resource savings accounted to 56% of the

original capacity. Across any scenario, mean savings of at least 22% were achievable.

To evaluate the performance prediction task, a case study was designed. Three solu-

tion candidates, computed by the GGA, represent design alternatives of different capacity

requirements and risk attitudes. Using the evaluated performance model, mean response

times per dialog step could be predicted for the medium-complex standard business trans-

action to change sales orders. Predictions were made for both the historical workload and

alternative future workloads which result from the business strategy. Results were inves-

tigated as part of the future scenario analysis. According to the results, mean response

times and their variance reduce with increasing capacity. Hence, solution candidates of

higher total capacity provide more stable designs with better performance. To enable

design recommendations, prediction results were used to determine violation degrees with

respect to a sample SLA. According to this SLA, penalty costs were computed for each

solution candidate under each workload factor. Furthermore, capacity requirements were

translated into operations costs. This way, designs which minimize the sum of penalty

costs and operations costs, were identified. In order to demonstrate total cost minimiza-

tion in an a priori approach, sample probabilities for certain load factors were aggregated

to three story lines. On the basis of this input, the total cost minimization for each story



152 Multi-dimensional server consolidation

line led to a different solution recommendation.

Evaluation on level four required to put the artifact into use. To evaluate operational-

ity, the three layers of the APM knowledge base were implemented using an in-memory

database management system. The data layer integrates measurement data from more

than 6 billion transaction calls, invoked on over 18.000 running SAP application instances.

The analysis layer holds optimization algorithms and techniques to train and evaluate per-

formance models. Finally, a web server provides a user interface which supports different

tasks of the PPSS process on the presentation layer. In its current implementation, the

tasks to understand the environment, to characterize workloads, and to solve the service

placement problem could be made available as part of a pilot phase in which eight em-

ployees from two data centers took the role of capacity management consumers. In order

to evaluate the ease of use, the fidelity with real world phenomena, and the impact on

the artifact environment, user feedback was collected in an online survey and discussed

in two feedback workshops. Results indicate significant savings in time and effort when

comparing the PPSS capacity management approach to the approach which is currently

applied in the participating data centers. The possibility of defining placement constraints

was rated to be essential. A lack of confidence with respect to the quality of service of

computed solutions confirms the need to predict their performance. Finally, pilot users of

both data centers emphasized their will to use the offered functions half-yearly to yearly.

5.2 Scientific contributions

In accordance with the research questions, raised in Section 1.2, the thesis makes the

following contributions to the scientific knowledge base:

• Descriptive analysis of the utilization rate of standard transactions: Although COTS

EAs offer standard business functions to a group of customers, products allow to

develop additional business transactions to serve customer-specific purposes. In the

domain of SAP EAs, the mean usage degree of these custom transactions lies around

20%, when considering the frequency of executions. Therefore, custom transactions

are accountable for around 31.51% of the total CPU time. In general, large en-

vironments tend to show higher standardization degrees than small and medium

environments. Results of this analysis are valuable for the design of any future

research artifacts which follow the idea of collaboration in the domain of capacity

management. From a practitioners perspective, information about standardization

may serve as a baseline to estimate efforts of EA transformation projects.

• Descriptive analysis of server utilization levels in the domain of COTS EA: According

to several studies, enterprise servers run at average utilization levels between 10%

and 20%. However, in the domain of COTS EAs from SAP, mean utilization levels

turn out to be lower. In fact, mean server utilization was measured to be around

8% over the last decade. This is the effect of a provisioning practice that is based

on peak demands and the procurement of new servers for additional applications.
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Results emphasize the relevance of future research artifacts which address the lack

of data center efficiency along with its global climate consequences.

• Review and definition of placement constraint types: When placing services on

servers, a number of individual constraints typically limit the solution space. This

work analysis existing types of placement constraints using both the scientific litera-

ture and expert input from practitioners. As a result, ten placement constraint types

were defined which allow to model individual realities as part of a service placement

problem instantiation.

• Definition of criteria to classify service placement problems: Related approaches

were classified in order to identify a research gap. Service placement problems,

including VM placement problems, may be classified regarding the service state

during solution deployment, the nature of workload profiles, the number of resource

dimensions, the bin composition, and the consideration of placement constraints and

service performance. Using these criteria, related consolidation approaches can be

analyzed with special regard to their applicability in the domain of EAs.

• Review of existing performance prediction techniques: The work summarizes se-

lection criteria for performance prediction techniques, which can be measurement-

based, model-based or machine learning-based. Requirements, advantages, and

drawbacks for each method help to select appropriate means for different predic-

tion use cases in the domain of EA capacity management.

• Evaluation of machine learning-based prediction techniques which utilize shared per-

formance counters for the domain of EAs: Black-box techniques require low amounts

of domain expertise but are limited to observations included in the training data.

The concept of sharing performance counters increases the volume and the variety

of training data and makes alike techniques applicable already in the design phase.

This work evaluates the applicability of machine learning techniques and proves

bagging and boosting strategies to be sufficient ensemble learning methods in the

tested scenario. In particular, Random forests and Boosted trees provide results with

acceptable accuracy in the domain of capacity management. Accordingly, the per-

formance of frequently used standard transactions could be predicted with a mean

absolute percent error below 30%, using AdaBoost.

• Formulation of a multi-dimensional SPP: This work contributes a problem formula-

tion for offline server consolidation efforts which supports multiple resource types,

dynamic workload profiles, heterogeneous servers, and placement constraints.

• Evaluation of algorithms to solve the SPP: Four heuristics, two metaheuristics, and

two hybrid algorithms were used to solve 12,384 realistic problem instances. If

constraints exist, genetic algorithms perform significantly better than any other of

the tested algorithms. A grouping genetic algorithm turned out to be sufficient for
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unknown problem classes of the SPP as it depicts the problem of grouping services

on available servers in the most natural way. Heuristics are highly efficient but lack

to consider placement constraints. Experiment results contribute also to the related

research fields of online server consolidation and load balancing.

• Design of a process model for EA capacity management: The research artifact of this

work represents a method whose tasks are arranged in a process model which may

be applied by practitioners and further adjusted by the scientific community. The

method, termed PPSS, is based on a central knowledge base which holds monitoring

data from the domain of a COTS EA and provides typical capacity management

functions as a service. Therefore, it integrates a structured data mining process in

order to build performance models. An integral part of PPSS is to balance operations

costs and SLA compliance. It could be demonstrated how performance prediction re-

sults affect design recommendations with the objective to minimize the total costs of

a data center. Therefore, the research artifact contributes to the claimed integration

of activities from the field of APM and SPE.

With respect to the research goal, the designed artifact was evaluated to reduce costs

of server consolidation efforts while increasing solution applicability. Both criteria are

enabled by the centralization of core capacity management components and their mainte-

nance, including monitoring data, algorithms, and performance models. Cost reductions

result from automation and economies of scale. The centralization of performance models

additionally enables to increase both volume and variety of training data which allows to

apply black-box machine learning methods. This way, solution applicability benefits from

performance evaluation while costly expert knowledge is avoided.

5.3 Limitations and future work

Enterprise applications utilize COTS software in order to save costs. The research artifact,

described in this thesis, depends on a sufficient amount of training data which is formed

by the APM output of these COTS EA. Therefore, the method is generally limited to

widespread COTS EAs with high usage degrees of standard transactions. This requirement

tends to be fulfilled predominantly in large data centers. Small and highly customized

environments may not benefit enough from the designed functions. Furthermore, the

method was evaluated using the example of SAP software. The application of machine

learning-based techniques which utilize performance counters of alternative COTS EAs is

subject to future research. With respect to the process model, a variant may evolve for

native cloud applications. Here, the role of the capacity management provider may be

taken by the software vendor itself, in order to minimize hosting costs.

The application area of the performance prediction, in its current design, is limited

to the SPP solution candidates. Theses solution candidates were computed beforehand

on the basis of historical workload profiles. As a benefit of this modular design, both the

optimization and the prediction engine can be used separately. On the other hand, the
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degrees of freedom for defining alternative load factors are limited. A tighter integration of

performance predictions as part of the SPP could help to explore the solution space more

effectively. Future research efforts could formulate a multi-objective optimization problem

with the objective to minimize costs and maximize performance at the same time. Machine

learning-based techniques, designed in this work, were proven to estimate transactional

performance with acceptable accuracy in a matter of milliseconds. Hence, these may be

integrated into the fitness function of a metaheuristic in order to make predictions for each

population during the search phase. Related changes in the design would require to adjust

the PPSS process model as load factors must be defined during the SPP instantiation.

Evaluation of the artifact is limited to a mathematical solution quality computation

(SPP) and cross-validation using real test data (ML models). The actual deployment of a

solution in a real data center could not be tested due to the organizational complexity of EA

consolidation projects which typically affect the complete system landscape. Although the

described approach represents the dominant evaluation strategy in the studied literature, it

would be desirable to deploy a solution and measure its transactional performance in order

to further evaluate practical applicability. In this regard, an interface of the PPSS to the

subsequent service operations phase is to be explored in the future. The current method

envisages results to be documented in the capacity plan so that recommended actions

are technology-independent. However, real autonomous operations require to integrate

solution deployment and monitor subsequent operations, resulting in a MAPE-K feedback

loop for self-adaptive service operations.

Finally, evaluation on the level of EVAL 4 is limited to components of the PPSS for

which a GUI was constructed. Therefore, the analyzed user feedback cannot be gener-

alized to the tasks of performance prediction. Further development effort is required to

complement the presentation layer for the remaining PPSS tasks and offer an extended

interface to a group of test users. These efforts are planned for the near future of the

ongoing research project.

With respect to the prediction accuracy, several improvements are conceivable. In

this work, machine learning techniques were trained on the basis of hourly aggregates.

Decreases of error metrics are expected if raw data for each dialog step was used. Due

to data unavailability, this could not be tested in the course of this work but may be

accomplished in a future research project. Furthermore, additional features which describe

the workload and the resource capacity could be integrated in order to cover also the

network and the storage layer of an EA. Finally, training data may be clustered, e.g., on

the basis of their age or the software release. Then, specific models could be trained for

each cluster with the objective to increase overall accuracy.

Hyperparameters of both machine learning models and metaheuristics were chosen

on the basis of related work and sensitivity analyses. Hyperparameter optimization using

a meta learning approach could help to further explore well-performing parameter sets for

specific problem classes. For example, it was concluded that the GGA represents the best

default choice for service placement problems with any set of placement constraints. A
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meta learning system, however, could decide on the basis of case-specific input data, which

algorithm is expected to provide highest solution quality in shortest time. Alike strategies

become particularly relevant in online consolidation and load balancing problems where

computation time must be kept low. The task to forecast workload evolution implicates

further automation potential. In the current design of the PPSS, forecasts are made

manually on the basis of the business strategy. If, however, major strategy-dependent

workload changes are not expected in the future, forecasts could be made on the basis of

expected workload patterns which result from trend analyses.

Further research is required on the matter of how to deal with infeasible constraint

sets when solving the SPP. While few self-evident inconsistencies may be revealed by

means of simple feasibility checks, full constraint compliance cannot always be guaranteed

in advance. Therefore, individual weightings of the placement constraints could represent

user priorities and help to direct the search process into favored areas. Such weights are

supported by the design as they can be translated into varying penalty factors. In the

evaluated implementation, constraint violations are penalized on the basis of the degree of

violation. However, weights may further modify penalty factors and, thus, resolve states

of conflicting constraints. Additional research is desired to reflect constraint priorities in

penalization.

Finally, the main idea of the PPSS relies on the centralization of monitoring data in

order to learn from observations made by similar customers. The PPSS could be extended

by additional use cases which also benefit from this principle. For example, capacity plan-

ning (as opposed to capacity management) involves the challenge of sizing new resource

components for expected workloads. Here, artifact components of this work would allow

to optimize the SLA fulfillment, e.g., by identifying cost-efficient servers. Furthermore,

benchmarking of EA performance requires to compare defined metrics against a norm.

According to the ITIL publication on Continual service improvement, this norm may be

defined on the basis of industry data from external organizations (Lloyd, 2011, p. 81).

Therefore, the APM-KB could be extended to provide benchmarking functions and, if ap-

propriate, to recommend actions to improve performance. For the latter, designed models

may be utilized with varying load and capacity features in the future.

In its current state, the research artifact addresses the objective to evaluate cost saving

potential of server consolidation efforts while increasing solution applicability. Therefore,

the artifact was designed to fit the characteristics of EA environments along with their

existing constraints, heterogeneity, seasonality, and SLAs. According to the research goal,

the exceptional requirements on performance were addressed by cost-effective techniques.

The research findings, presented throughout the thesis, are expected to push forward the

use of computational intelligence in the domain of EA capacity management. Accom-

panying energy savings are required to contribute to the global climate protection. In

the long term, balancing of costs and performance are to evolve from academic science

to practical commodity in order to comply with the increasing complexity of the digital

transformation.
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A Performance model evaluation
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Figure A.1: Density plot for the transaction to change sales orders.

Business transaction Random
forest

Boosted
trees

Create sales order 32.30 25.26
Change sales order 26.08 19.57
Display sales order 28.19 22.93
List of Sales Orders 26.44 21.95
Create Billing Document 39.04 28.66
Change Billing Document 38.97 29.34
Display Billing Document 33.74 25.75
Create Outbound Dlv. with Order Ref. 35.59 26.45
Change Outbound Delivery 36.25 27.01
Display Outbound Delivery 36.53 27.38

Table A.1: Mean absolute percent errors for the 10 most frequently used transactions.
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Figure A.2: REC curves for ten frequently used transaction types.
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B Solution algorithm evaluation
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Table B.1: Algorithm performance metrics w.r.t. constraint compliance.
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Table B.2: Algorithm performance metrics w.r.t. solution fitness and run-time.
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C Graphical user interface

Figure C.1: Landing page of the APM-KB presentation layer.

Figure C.2: Workload analysis from a service perspective.
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Figure C.3: Workload analysis from a server perspective.

Figure C.4: Server utilization analysis.
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Figure C.5: Analysis of peak server utilization levels and capacity limits.

Figure C.6: Constraint modeling prior to optimization run.
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Larrañaga, P., Kuijpers, C. M. H., Murga, R. H., Inza, I., and Dizdarevic, S. (1999).

Genetic algorithms for the travelling salesman problem: A review of representations

and operators. Artificial Intelligence Review, 13(2):129–170. (Cited on page 93.)

Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., and Hoffmann, M. (2014). Industry 4.0.

Business & Information Systems Engineering, 6(4):239–242. (Cited on page 1.)

Lee, J., Kao, H.-A., and Yang, S. (2014). Service innovation and smart analytics for

industry 4.0 and big data environment. Procedia Cirp, 16:3–8. (Cited on page 1.)

Leff, A. and Rayfield, J. T. (2001). Web-application development using the model/view/-

controller design pattern. In Proceedings fifth ieee international enterprise distributed

object computing conference, pages 118–127. (Cited on page 139.)

Lewis, R. (2009). A general-purpose hill-climbing method for order independent minimum

grouping problems: A case study in graph colouring and bin packing. Computers &

Operations Research, 36:2295–2310. (Cited on pages 34 and 92.)

Li, Q. and Bauer, M. (2005). Understanding the performance of enterprise applications. In

https://www.xware-gmbh.de/benchmark.html
https://www.xware-gmbh.de/benchmark.html


Hendrik Müller, M. Sc. 179

Systems, Man and Cybernetics, 2005 IEEE International Conference on, pages 2825–

2829. (Cited on pages 15 and 16.)

Liaw, A. and Wiener, M. (2018). Breiman and cutler’s random forests for classifica-

tion and regression - version 4.6-14. URL https://cran.r-project.org/web/packages/

randomForest/randomForest.pdf. Last accessed: February 16, 2019. (Cited on pages 54

and 100.)

Lilja, D. J. (2005). Measuring computer performance: a practitioner’s guide. Cambridge

university press. (Cited on page 49.)

Liu, D. S., Tan, K. C., Huang, S. Y., Goh, C. K., and Ho, W. K. (2008). On solving

multiobjective bin packing problems using evolutionary particle swarm optimization.

European Journal of Operational Research, 190:357–382. (Cited on pages 34 and 92.)

Liu, Y., Fekete, A., and Gorton, I. (2004). Predicting the performance of middleware-

based applications at the design level. In ACM SIGSOFT Software Engineering Notes,

pages 166–170. (Cited on page 45.)

Lloyd, V. (2011). Itil continual service improvement. The Stationery Office (TSO). (Cited

on page 156.)

Loibl, A. (2015). Sap sizing tool erklärt. URL https://dafrk-blog.com/de/
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Menascé, D. A. (2003). Automatic qos control. IEEE Internet Computing, 7(1):92–95.

(Cited on page 44.)

https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://dafrk-blog.com/de/sap-sizing-tool-erklaert/
https://dafrk-blog.com/de/sap-sizing-tool-erklaert/


180 Multi-dimensional server consolidation
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merkmale und ausprägungen eines trends. HMD Praxis der Wirtschaftsinformatik,

44(4):6–16. (Cited on page 1.)

Westermann, D., Happe, J., Hauck, M., and Heupel, C. (2010). The performance cockpit

approach: A framework for systematic performance evaluations. In Software Engineer-

ing and Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on, pages

31–38. (Cited on pages 45 and 47.)

Whitley, L. D., Starkweather, T., and Fuquay, D. (1989). Scheduling problems and trav-

eling salesmen: The genetic edge recombination operator. In ICGA, pages 133–40.

(Cited on page 93.)

Wilhelm, K. (2001). Capacity planning for sap-concepts and tools for performance mon-

itoring and modelling. CMG Journal of Computer Resource Management. (Cited on

pages 16, 95, and 97.)

Wilhelm, K. (2003). Messung und modellierung von sap r/3-und storage-systemen für die
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