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Abstract
Interconnected systems, such as electrical grids, chemical process plants, CAN-bus sys-
tems in modern cars or social networks are becoming even more ubiquitous in our ev-
eryday lives. Due to their complexity and size it is often difficult to directly analyze,
influence or control their behaviour. For that reason, the complete system with all its
interconnections is often split into several interconnected subsystems, which can then
be treated in a decentralized or distributed way. A major challenge for the analysis and
control of decentralized and distributed systems is the consideration of possible destabi-
lization effects due to the interconnections. In addtion, potential control methods should
always handle both disturbance effects as well as physical or logical contraints.
Set-based control methods are modern control schemes, in which time invariant sets

are characterized in the state space of a system. Those invariant regions are especially
well suited for designing robust controllers subject to input or state contraints. So far
the existing invariance concepts are not tailored to interconnected systems. Due to the
previously mentioned advantages of set–based methods, it is therefore of great interest
to extend them to interconnected systems. In order to achieve this goal, we extend
the concept of an invariant set to the notion of an invariant family of sets. With this
extension, we can link the interconnections effects of several systems to the dynamics
of a collection of sets. Using set–dynamics we can indirectly characterize the system
theoretic behaviour of the interconnected system in a reduced state space. In particular,
we present a scheme for directly constructing this set–dynamics for linear systems, that
are connected either via linear or positively, homogeneous functions.
In addition, in this work a distributed and decentralized control approach exploiting

the notion of invariant family of sets is presented. For the distributed controller design,
we show how an iterative process based on the solutions of generalized Matrix-Riccati
equations leads to a flexible characterization of a family of invariant sets. This design
procedure is especially well suited for increasing the closed loop performance, whenever
information about the interconnections may be exchanged via the different subsystems.
For the decentralized controller, a procedure based on the solutions of LMI’s is presented.
During this decentralized operation no information is exchanged via the subystems and
hence a more generally conservative behaviour is achieved. In conclusion, the flexibility
and system theoretic properties of the proposed methods based on the notion of invariant
families of sets are presented via several simulation examples.
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Deutsche Kurzfassung
Vernetzte Systeme, wie z.B. Energienetzwerke, chemische Prozessanlagen, PKW CAN-
Bus Systeme aber auch soziale Netzwerke sind in unserer heutigen Welt nicht mehr
wegzudenken. Durch die Komplexität und Größe dieser Prozesse ist es oft schwierig
ihr Verhalten direkt zu analysieren und zu beinflussen. Aus diesem Grund wird meist
nicht das gesamte System inklusive der Vernetzungskopplungen zentral betrachtet, son-
dern deren Teilsysteme in einer dezentralen bzw. verteilten Art und Weise. Eine gene-
relle Herausforderung bei der dezentralen bzw. verteilten systemtheoretischen Analyse
und Regelung von verkoppelten Teilsystemen ist es etwaige Destabilisierungseffekte auf-
grund der Verkopplungen zu berücksichtigen. Zusätzlich gibt es bei diesen Systemen in
der Praxis meist Störeinflüße und physikalische Beschränkungen die kompensiert bzw.
eingehalten werden müssen.
Mengenbasierte Regelungsmethoden sind moderne Regelungsverfahren, in denen zei-

tinvariante Mengen im Zustandsraum eines Systems beschrieben werden. Diese invari-
anten Bereiche eignen sich besonders gut für den Entwurf von robusten Reglern unter
Beschränkungen der Systemvariablen verwendet werden. Allerdings sind bisher geläufige
Ansätze der Invarianz nicht auf verkoppelte Systeme ausgelegt. Aufgrund der Vorteile der
mengebasierten Regelung ist es von Interesse diese Methoden auf verkoppelte Systeme zu
erweitern. Hierzu wird in dieser Arbeit der Begriff der invarianten Menge erweitert und
das Konzept der invarianten Familie von Mengen eingeführt. Diese Erweiterung erlaubt
es die Verkopplungseigenschaften mehrer Teilsysteme auf eine Dynamik von Mengen ab-
zubilden. Durch diese Abbildung ist es möglich die anfänglich hohe Systemordnung der
vernetzten Teilsysteme zu reduzieren und deren systemtheoretisches Verhalten anhand
dieser Dynamik zu charakterisieren. Desweiteren wird gezeigt wie diese Dynamik von
Mengen für lineare und positiv, homogen verkoppelte Systeme konstruiert werden kann.
Weiterhin wird in in dieser Arbeit aufgezeigt wie die invarianten Familien von Mengen

für den verteilten und dezentralen Reglerentwurf verwendet werden können. Für den Ent-
wurf der verteilten Reglerstrategie wird ein iterativer Prozess basierend auf der entkop-
pelten Lösung von erweiterten Matrix-Riccati Gleichungen vorgestellt. Dieser Entwurf
bietet sich dann an, wenn es möglich ist Informationen über die Verkopplungen zwischen
den Systemen auszutauschen, um ein besseres Systemverhalten zu erzielen. Die dezen-
trale Regelungsstrategie basiert auf der Lösung von Linearen Matrixungleichungen und
bietet sich dann an, wenn es nicht möglich ist Informationen über die Verkopplungen
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auszutauschen. Daher führt dieses Verfahren zu einem eher konservativerem Systemver-
halten.
Anhand einer Simulationsstudie werden die vorgestellten Methoden abschließend prä-

sentiert und die Flexibilität der invarianten Familie von Mengen zur systemtheoretischen
Beschreibung von verkoppelten Systemen aufgezeigt.
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1 Introduction

The design of controllers for large–scale processes is of great theoretical and practical
interest. It is driven by many applications, spanning from power networks, chemical
plants, battery stacks up to autonomously driven car fleets and social networks. A
standard procedure for handling these large networks of connected systems is to divide
them into manageable subproblems that are handled independently. However, most of-
ten these subproblems are not independent, for instance physical couplings or additional
network infrastructure for the transmission of information and data need to be taken
into account. Physical interconnection are dominant in many applications, for instance
in chemical plants, where a specific amount of a product from one process is continuously
needed as an reactant in other processes. Also interconnections due to communication
are also relevant in many applications, for instance in the emerging field of autonomously
driven car fleets, in which different cars need to negotiate their position and speed in
order to avoid collisions.
It is clear that these interconnections can have a huge impact on important system–

theoretic properties. Hence, for the design of control strategies, they need to be taken
into account. Firstly, one needs to consider how to treat interconnections in general and,
secondly, how to distinguish the type of informations available during the design and the
operation of the process. A centralized structure, i.e. in which one decision maker has
process information of all subsystems and designs one global controller, see Figure 1.1 a),
is often not feasible due to the complexity of the global problem and limitations in the
network communication infrastructure. In order to circumvent these issues, two impor-
tant design concepts are usually considered for the control of interconnected systems;
decentralized and distributed structures. In decentralized structures the overall system
is decomposed into subsystems. Each subsystem has a decision maker and can only
utilize local information about the subsystem for the choice of the local controller, cf.
Figure 1.1 b). For this type of control structure, there is no additional negotiation of
information between the subsystems and hence the network communication load is low.
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1 Introduction

However, depending on the type of interconnections between the subsystems, the decen-
tralized operation of a plant often leads to a badly performing closed loop behaviour.
In distributed structures, there is also a decomposition of the overall system into differ-
ent subsystems. However, in contrast to the decentralized structure, the local decision
makers are allowed to utilize both local information of the subsystem as well as process
information of some or all other subsystems. In addition, they can also communicate
with the other decision makers, cf. Figure 1.1 c). Due to the additional exchange of
information, it is often possible to achieve superior performance in comparison to the
decentralized structure, however with an increased network load and often with a more
complex control structure.

(a) Centralized control structure.

(b) Decentralized control structure. (c) Distributed control structure.

Figure 1.1: Different control structures for interconnected subsystems; Di denotes the decision
maker, Σi the subsystem, solid lines the interconnections and dashed lines the information
exchange.

There are many approaches available for the synthesis of distributed and decentral-
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1.1 Analysis and Control of Large–Scale Processes

ized controllers. However, many of the existing approaches focus on stabilization of set
points/trajectories. While this is an appropriate design aspect in many applications, it
is not necessarily adequate for other specific tasks. For instance, it is often sufficient to
ensure that a chemical stirred reactor is operated in a certain pressure and temperature
region as opposed to specific temperatures and/or pressures. Set-based methods pro-
vide powerful tools, that allow to characterize such regions in a non conservative way.
In particular, these methods excel whenever issues such as handling hard constraints
on the process variables or guaranteed disturbance rejection, prevalent in all technical
applications, need to be addressed. Nevertheless, existing set–based approaches are so
far tailored to centralized structures and hence are suitable for systems that are not
interconnected with each other. It is therefore of great interest to extend the standard,
well established set–based methods to interconnected systems in order to enable new
design procedures for distributed and decentralized control.

1.1 Analysis and Control of Large–Scale Processes
The analysis and control of large–scale processes has been under active research since
the beginning of modern control. Very early results [Witsenhausen 1968a] already indi-
cate, that distributed algorithm need to be carefully evaluated, since seemingly simple
problems can lead to surprising and challenges and results. An important feature for
the control and analysis of large–scale systems is the fact that the applied methodolo-
gies need to take the distributed or decentralized structure explicitly into account. For
instance, global and complex solution can be avoided if the nature of the interconnec-
tion and the available information are properly understood: by applying distributed
algorithms [Bertsekas 1983] for the determination of fixed points; exploiting separable
structures [Bertsekas 2007] with distributed algorithm; properly understanding the net-
work structure for the state estimation and observer based control of distributed and
decentralized structures [Rantzer 2006; Necoara, Nedelcu, and Dumitrache 2011; Farina
et al. 2011], to name just a few of the relevant works. One important tool for the stability
analysis with respect to these considerations is the concept of Vector Lyapunov Func-
tions [Bellman 1962] and generalizations hereof, e.g. [Martynyuk 1998], which can be
explicitly exploited for the control synthesis [Nersesov and Haddad 2006; Lakshmikan-
tham, Matrosov, and Sivasundaram 1991]. For strongly coupled systems, it is necessary
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1 Introduction

to properly take destabilizing interconnection effects into account. A standard design
procedure for decentralized control is to find appropriate bounds for the interconnections
in order to solve them as convex LMI’s, [Stipanović and Šiljak 2001; Zečević, Nešković,
and Šiljak 2004; Stanković, Stipanović, and Šiljak 2007; Zečević and Šiljak 2004], which
in turn can be efficiently solved using standard semidefinite programming approaches,
[Boyd and Vandenberghe 2004]. Another alternative approach is to treat the inter-
connection as disturbances and use modified, robust control approaches, cf. [Shamma
2001]. Issues with time-delays and interconnections were investigated in [Mahmoud and
Bingulac 1998; Thanh and Phat 2012] and results for the decentralized an distributed
controller synthesis for overlapping decompositions, i.e. when common subsystems have
shared states in their dynamics, were provided in [Stanković and Šiljak 2000; Stanković,
Stanojević, and Šiljak 2000]. Decentralized controller with adapted controller topology
were discussed in [Schuler, Münz, and Allgöwer 2012] and basic properties of positive
systems were exploited for designing distributed control algorithms in [Rantzer 2011].
Characterization of invariant subspaces and stability regions for interconnected systems
were discussed in [Hayakawa and Šiljak 1988] and [Chiang and Fekih-Ahmed 1990]. In
addition, lumped approximations of partial differential equations, can be interpreted as
spatially interconnected systems, for which there also exist powerful control strategies,
cf. [Andrea and Dullerud 2003]. In order to even start evaluating distributed and decen-
tralized structures for solving interconnected control problems, it is crucial to understand
which type of structures lead to tractable problems. This important question was in-
vestigated for example in [Rotkowitz and Lall 2006], providing several useful design and
analysis tools. Other general design considerations for the decentralized and distributed
control of minimum phase system were highlighted in [Johansson and Rantzer 1999].
The discussed methods largely focus on stability issues and can only be used in special

cases to determine conditions that lead to explicit constraint satisfaction. Apart from
set–based methods, model predictive control schemes provide an attractive approach for
the distributed control of interacting and interconnected systems. Since this scheme is
based on the repeated solution of online optimal control problems, it can be used when-
ever constraint satisfactions as well as performance considerations need to be met, cf.
[Mayne, Rawlings, et al. 2000; Rawlings and Mayne 2009] for an introduction and general
overview of model predictive control. In [Borrelli and Balas 2004; Richards and J. How
2004; Keviczky, Borrelli, and Balas 2006; Richards and J. P. How 2007] several decen-
tralized model predictive control schemes were presented for decoupled systems, which
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are interconnected through constraints and the cost function. Distributed model pre-
dictive control schemes for decoupled systems, in which the controller cooperate [Franco
et al. 2008] and distribute informations during the online optimization [Camponogara
et al. 2002; Dunbar and Murray 2006] are also available. For coupled systems, there
exists distributed model predictive control schemes that exchange state trajectories at
each sampling step, cf. [Dunbar 2007], and provide plug and play operation with certain
invariance properties, cf. [Zeilinger et al. 2013] and utilizing game–theoretic consider-
ations in order to achieve stability and repeated online feasibility [Venkat, Rawlings,
and Wright 2005; Venkat, Hiskens, et al. 2008]. In contrast to the before mentioned
methods, it is also possible to achieve stability with a decentralized model predictive
control through the use of additional contractive constraints, cf. [Magni and Scattolini
2006].
General issues with model predictive control schemes are either complicated initializa-

tion (most of the schemes assume that the problem is feasible during the initialization)
as well as difficulties, when facing disturbances. Utilizing basic set–based concepts we
can alleviate some of the before mentioned problems, cf. [S. V. Raković 2009] for gen-
eral set–theoretic consideration in model predictive control. For instance, positively or
controlled positively invariant sets can be used to approximate the region of attraction
for the initialization of standard model predictive control schemes. Fortunately, there
exists several algorithms for testing and determining such sets, cf. [Bitsoris 1988b; Vidal
et al. 2000; Gilbert and Tan 1991; S. V. Raković, Kerrigan, et al. 2005; Kolmanovsky
and Gilbert 1998; Bitsoris and Athanasopoulos 2011]. Recent advancements were also
made in order to overcome the conservatism of several results [S. V. Raković 2007;
S. V. Raković and Fiacchini 2008; S. V. Raković and Barić 2009]. In general, the
analysis of set–iterates allows a better understanding of invariance properties in general
and is therefore a crucial tool in set–theoretic considerations, cf. [Artstein and S. V.
Raković 2008; Artstein and S. V. Raković 2011]. Based on the design of of min-max
feedback controllers, the determination of target tubes and analysis of reachable regions,
cf. [Bertsekas and Rhodes 1971; Bertsekas 1972; Bertsekas and Rhodes 1973; Witsen-
hausen 1968b], it was possible to circumvent one of the main shortcomings of standard
model predictive control schemes; namely the ability to handle disturbances while guar-
anteeing explicit input and state constraint satisfaction and feasibility during the online
optimization. By using tube–based model predictive control schemes these concerns
can be circumvented for quite general use scenarios, cf. [S. V. Raković, Kouvaritakis,
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Cannon, et al. 2012; S. V. Raković, Kouvaritakis, Findeisen, et al. 2012; S. V Raković,
Kouvaritakis, and Cannon 2013; Mayne et al. 2006; Mayne et al. 2009; Cannon et al.
2011].
Some results exists with a focus on determining invariant region for decentralized

control scenarios [Bitsoris 1988a], they nevertheless focus on the computation of global
invariant sets and hence neglect the decentralized or distributed structure of the prob-
lem. However, most set–based methods are tailored to the centralized use cases; hence
adaptation is necessary in order to use them for distributed and decentralized structures.
For additional information of classic feedback approaches for distributed and decen-

tralized control systems, we refer to [Bakule 2008; Bernussou and Titli 1982; Lunze
1992; Šiljak 1978; Singh and Titli 1978; Lunze 2014]. More considerations about model
predictive control and their use cases in decentralized and distributed structures are
discussed in [Rawlings and Stewart 2007; Scattolini 2009]. For an in–depth discussion
of general set–based methods, we refer to [Aubin 1991; Blanchini 1999; Blanchini and
Miani 2008].

1.2 Challenges
An important challenge for the analysis and control of dynamic systems in general is
the ability to specify conditions, that lead to explicit constraint satisfaction. For large–
scale systems, it is often necessary to divide the overall problem into interconnected
subproblems and avoid a centralized solution approach, due to the complexity or nature
of the problem. With respect to issues related to guaranteed constraint satisfaction,
most of the well established analysis methods are usually tailored to the centralized case
or are not explicitly taking the structure of the interconnection into account. For these
reasons, it is an important challenge to provide feasible and non conservative notions
for the constraint analysis of interconnected systems. Often, the operation of large
scale–systems benefits from the use of either decentralized or distributed controllers.
For this reason, the provided notions need to be well suited for designing controllers in
these use cases and need to fit naturally to the many already available distributed and
decentralized control schemes. Eventually, a prevalent challenge in all real applications is
the existence of disturbances, for instance due to unmodeled dynamics or measurement
uncertainties. Therefore the notions need to be flexible enough to handle these issues as
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well.
With respect to these challenges we achieve the following contributions which are

summarized in this thesis.

1.3 Contributions
We elaborate a mathematical, rigorous set–based framework for the analysis and control
of interconnected control systems subject to hard constraints. The methods are well
suited for the analysis of positively, homogeneous interconnected systems. Algorithms
are provided that allow to specify parametrized regions in which one can safely initial-
ize linear interconnected systems such that these constraints conditions are met. In
addition, these methods are flexible enough to handle additive, bounded disturbances.
Although a major focus was to provide a framework, which can be used to properly ana-
lyze, various forms of invariance properties of interconnected, autonomous systems, it is
easily possible to include control synthesis considerations. In particular, we outline two
control design methods, which are suitable for linear systems that are interconnected
by linear and positively homogeneous functions, respectively. The first method is well
suited for distributed control problems. By applying and modifying established results
from H∞ control, it is possible to obtain positively invariant family of sets based on the
iterative solutions of generalized Riccati equations. The second approach is tailored to
the synthesis of decentralized controller for positively homogeneous, interconnected lin-
ear systems. It is based on the independent, loosely coupled solution of LMI feasibility
problems. It can be implemented efficiently using semidefinite programming algorithms.
We show how the different proposed methods can be applied to an extended bench-
mark example in order to discuss various inherent system–theoretical features, such as
disturbance rejection and invariance properties.

1.4 Outline
The remainder of this work is structured as follows:
Chapter 2 provides a background for general set–based methods in control theory,

introduces the concept of invariance and its advantages and outlines methods and algo-
rithms for the determination of invariant sets for discrete time systems.

7
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Chapter 3 highlights the issues for the analysis of constraint satisfaction for intercon-
nected systems. In particular, we show that a naive extension of the given methodology
of invariant sets is not suitable for this specific task, due to the nature of the induced,
interconnected set–dynamics. We show, that a parametrized family of sets can be used
to properly analyze this problem setting. In addition, methods and algorithms are pro-
vided, which can be used to check and construct basic properties of positively invariant
family of sets. The results are mainly based on the works [S. V. Raković, Kern, and
Findeisen 2010; S. V. Raković, Kern, and Findeisen 2011].
Chapter 4 discusses extensions to the framework provided in Chapter 3. In partic-

ular, we highlight how the concept of positively invariant family of sets can be used for
the controller synthesis. To this end, a design procedure for a distributed controller,
which is based on a max–min/min–max H∞ forumlation, and a decentralized controller,
that is based on the independent solution of LMI’s, is presented. The results are based
on the works [S. V. Raković, Kern, and Findeisen 2010; Kern and Findeisen 2013].
Chapter 5 provides details for the synthesis of a distributed and decentralized con-

troller for a specific control application. We provide a model of an extended four tank
system and discuss several simulation results. We focus on specific system-theoretic
traits of the positively invariant family of sets, such as disturbance rejection properties
and regions of initial conditions in which the process will have guaranteed constraint
satisfaction.
Chapter 6 closes this work with a summary and outlines interesting, future research

directions.
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2 Set–Based Concepts in Control

The focus of this thesis is to provide an analysis and design framework for interconnected
control systems, subject to constraints and disturbances. Fortunately, set–based meth-
ods usually fit these types of problems well. They inherently include questions regarding
constraint satisfaction, while allowing to address uncertainties as well as design specifi-
cations. The purpose of this chapter is to introduce some well known standard concepts
of set–based methods for the analysis and control of discrete time systems, which will
be used and extended throughout the remainder of this thesis.

2.1 Nomenclature and Basic Definitions
Positive and non–negative integers are denoted by N+ and N, respectively, and non-
negative reals by R+. The index set of numbers consisting from 1 to N is defined as
N := {1, 2, . . . , N}. A set X is non–trivial, if it is not a singleton and a non–empty
subset of Rn. A set X ⊆ Rn is convex, if (1 − λ)x + λy ∈ X , whenever x ∈ X ,
y ∈ X and 0 < λ < 1. The closed Euclidean unit ball in Rn is given by Bn := {x ∈
Rn : xTx ≤ 1}. Given two sets X ⊆ Rn and Y ⊆ Rn, the Minkowski set addition
is defined by X ⊕ Y := {x + y : x ∈ X , y ∈ Y}. Moreover, for a collection of sets
(S1,S2, . . . ,SN) let ⊕i∈N Si := S1 ⊕ · · · ⊕ SN . A polyhedron is the set of solutions to
a finite system of linear inequalities and a polytope is a bounded polyhedron. Given a
set X ⊆ Rn and a function f : Rn → Rm we define the image and preimage of X
under f by f(X ) := {f(x) : x ∈ X} and f−1(X ) := {x : f(x) ∈ X}. Similarly
given a matrix or scalar M and a set X ⊆ Rn, we define the image and preimage of
X under M by MX := {Mx : x ∈ X} and M−1X := {x : Mx ∈ X}, respectively.
A set X is symmetric if −X = X . Given a set X , a function f : X → R is said to
be positive definite, if f(0) = 0 and f(x) > 0 for all x ∈ X , positive semidefinite, if
f(0) = 0 and f(x) ≥ 0 for all x ∈ X and negative (semi)definite, if −f(·) is positive
(semi)definite. A symmetric matrix M ∈ Rn×n is positive or negative (semi)definite, if

9



2 Set–Based Concepts in Control

f(x) = xTMx is positive or negative (semi)definite for all x ∈ Rn. Positive (negative)
definite and semi-definite matrices P,Q are denoted by P � (≺)0 and Q � (�)0,
respectively. A function f(·) whose domain is a subset X of Rn is a convex function, if
the set {(x, µ)T : x ∈ X , µ ∈ R, µ ≥ f(x)} is convex. The Hausdorff semi–distance and
the Hausdorff distance for two nonempty sets X ⊆ Rn and Y ⊆ Rn are defined by:

h(L,X ,Y) := min
α
{α : X ⊆ Y ⊕ αL, α ≥ 0} and

H(L,X ,Y) := max{h(L,X ,Y), h(L,Y ,X )},

where L is a given, symmetric, compact and convex set in Rn that contains the origin
in its interior. In addition, more used concepts are provided in the Appendix at the end
of this thesis.

2.2 Invariance
Informally, we speak of set–based methods/problems, whenever we deal with relations
to sets. In basic control problems, the objective is most of the time either to stabilize
specific set points or specific trajectories. However, sometimes this control objective is
unnatural. For instance, it is more natural to demand, that an autonomously driven car
should stay on a specific lane/street rather than on a predefined, specific trajectory. In
general, we can consider this as a problem of finding a region that allows us to safely
operate a process in certain bounds. In many cases this a more natural and adequate way
of specifying a control objective, compared to controlling specific operating set points
or trajectories. In an abstract way we can characterize this problem by stating that a
process, which is described by a dynamical system, needs to satisfy process constraints,
which are given by a set of allowable/admissible process conditions. In other words,
we can think of a system x(k + 1) = f(x(k)) and specify the constraints by a set
X . This analysis problem can then be interpreted as a set–based problem, namely in
characterizing a set X0 in X that satisfies the set–inclusion x(k) ∈ X for all k ≥ 0,
where x(k + 1) = f(x(k)), whenever x(0) ∈ X0. This classic set–based problem in the
analysis of dynamic processes can be easily extended by including control inputs and/or
disturbances, performance specification and so on. For more details, generalization and
in depth discussion of set–based considerations we refer to [Blanchini and Miani 2008;
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2.2 Invariance

Aubin 1991].
Motivated by the previous discussion, we consider in the remainder the following

formalized problem setting:

Problem 1. Find a set S ⊂ Rn, such that x(0) ∈ S implies x(k) ∈ X for all k ∈ N+,
for the discrete dynamical system x(k + 1) = f(x(k)).

Quite naturally, this leads to the concept of positive invariance, because invariant
sets describe basically the regions in which a process in the presence of constraints and
disturbances can be operated safely for all time instances k ≥ 0:

Definition 1. A set S ⊆ X ⊆ Rn is said to be positively invariant for a system x(k+1) =
f(x(k)) if, for all x(k) ∈ S, the condition f(x(k)) ∈ S holds.

In other words, the evolution of the state x(k) is contained within a set S for future
time instants larger then k, once x(k) ∈ S. Note that if f(x) has a fixed point x̄,
such that x̄ = f(x̄), then a trivial positively invariant set is S = {x̄}. In addition,
if X is the whole state space Rn and f(·) is properly defined over all Rn then the
whole state space is a positively invariant set. From a practical point of view it makes
more sense to characterize non–trivial subsets of Rn in order to gain a flexible and
useful characterization of our safe operation region subject to constraints and not just
distinctive points.
Obviously the notion of positive invariance is closely related to the stability of a

system, and hence it makes sense to use the general concepts of Lyapunov’s stability
theory for the analysis. Depending on the structure of X and the properties of f(·),
proper candidate sets can be constructed with the help of Lyapunov functions. Note
that for simplicity we provide only a special version for such a characterization here,
which is sufficiently general for our purposes. For more general results we refer to
[Blanchini and Miani 2008].

Theorem 1. Given the system x(k+1) = f(x(k)), where f(·) : Rn → Rn is a continuous
function. Assume there exists a continuous positive definite function V (·) : Rn → R,
such that the difference V (f(x(k)))− V (x(k)) is negative semi–definite for all x(k) in a
set Ω ⊆ Rn, then the set S := {x : V (x) ≤ µ} is positively invariant for any µ > 0 as
long as S ⊆ Ω.

11
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Proof. Pick any k ≥ 0. For all x(k) ∈ Ω we have V (x(k)) ≥ V (f(x(k))) = V (x(k + 1)).
By definition of S, it follows that V (x(k)) ≤ µ for all x(k) ∈ S. Since V (·) is a non–
increasing function in Ω and S ⊆ Ω for any µ > 0, we have V (x(k + 1)) ≤ V (x(k)) ≤ µ

for all x(k) ∈ S and hence x(k + 1) ∈ S for all x(k) ∈ S.

Note, that in Theorem 1 it is not strictly necessary to use positive definite functions
V (·) as long as these functions are non–increasing over the set Ω. The main advantage
of using positive definite functions is to guarantee compactness of the level sets of V (·)
and to highlight the connection between positive invariance and the stability analysis
using Lyapunov’s second method. Hence, whenever it is possible to construct Lyapunov
functions for a certain systems class, we can also quite easily construct positively invari-
ant sets. Fortunately, we can construct in a straightforward way quadratic Lyapunov
functions for linear control systems.

Theorem 2. Given the system x(k + 1) = Ax(k), where A ∈ Rn×n. If there exists
a P � 0, such that ATPA − P � 0, then the set S := {x : xTPx ≤ µ} is positively
invariant for any µ > 0.

Proof. Let V (x(k)) := xT (k)Px(k). Note that V (·) is positive definite since P � 0 and
in addition V (x(k + 1))− V (x(k)) = xT (k)ATPAx(k)− xT (k)Px(k) = xT (k)(ATPA−
P )x(k) is negative semidefinite since ATPA − P � 0 for all x(k) ∈ Rn. Thus S is a
positively invariant set for all µ > 0 according to Theorem 1.

It is well known, that the existence of a positive definite matrix P that satisfies the
discrete Lyapunov inequality ATPA − P � 0, directly correlates to the stability of the
matrix A; i.e. whenever the spectral radius of the matrix A is less than one, then there
exists a P � 0, that satisfies the former conditions. Although quadratic Lyapunov
functions provide a lot of simplicity for the analysis of linear systems they still lack
flexibility, i.e. invariant sets are restricted to ellipsoidal shaped sets. In addition, if
we consider polytopic constraint set, we can increase the domain of attraction by using
polyhedral Lyapunov, cf. [Blanchini and Miani 2008]. Nevertheless, we restrict ourselves
solely to quadratic Lyapunov functions, since we will focus on properties of sets and not
on functions for the analysis of invariance properties.
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2.3 Characterization of Set Inclusions with Support Functions

2.2.1 Robust Invariance

The basic concepts related to positive invariance can be generalized easily to uncertain
systems. In this case we speak of robust positive invariance, cf. [Blanchini and Miani
2008].

Definition 2. A set S ⊆ X is said to be robust positively invariant for the system
x(k + 1) = f(x(k), w) if, for all x(k) ∈ S and disturbances w ∈ W, the condition
f(x(k), w) ∈ S holds.

In comparison to the disturbance free case, this simply means that the state x(k)
is contained in S for future time instants for all possible disturbance realization w ∈
W . The computation and characterization of robust positively invariant sets is more
challenging compared to determining positively invariant regions, however many results
and algorithms are available for such specific sets, see for instance [S. V. Raković,
Kerrigan, et al. 2005; S. V. Raković 2007; Artstein and S. V. Raković 2008; S. V.
Raković and Fiacchini 2008; Blanchini and Miani 2008].

2.3 Characterization of Set Inclusions with Support
Functions

So far we considered the unconstrained problem, i.e. X = Rn. Obviously, if X is a subset
of Rn, it is easily possible to characterize a positively invariant set within the constraint
set X using Theorem 1. As long as X is non–empty and/or not a singleton and contained
in the set Ω, we just need to choose µ > 0 a way that S ⊆ X . For these reasons, we need
a convenient way to ensure algorithmically that a set is contained within another set.
Note that for general sets this is a difficult task. Fortunately, we will mainly deal with
ellipsoidal and polyhedral convex sets and hence we are able to utilize basic properties
of the support function. We only present some basic results, for more details we refer to
[Rockafellar 1970; Kolmanovsky and Gilbert 1998].

Definition 3. The support function for a closed convex set X ⊆ Rn and y ∈ Rn is
defined as

s(X , y) := sup{yTx : x ∈ X}, (2.1)

where sup(·) denotes the supremum, i.e. the least upper bound.
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2 Set–Based Concepts in Control

The support function can be evaluated in a straightforward way for polyhedra and
ellipsoids. For instance, given an ellipsoidal set E := {x : xTPx ≤ 1} for some positive
definite matrix P ∈ Rn×n, then its support function is given by s(E , y) =

√
yTP−1y.

Similarly, for a polyhedral set P = {x : cTi x ≤ ri, i ∈ N}, for some x ∈ Rn the
support function can be determined by the optimal value of the linear program s(P , y) =
max{yTx : cTi x ≤ ri, i ∈ N}. With the help of the support function we can conveniently
express any closed convex set by a system of inequalities and their support function.

Theorem 3. Let X ⊆ Rn be a closed convex set. Then x ∈ X if and only if yTx ≤
s(X , y) for every y ∈ Rn.

Proof. The proof follows directly from the fact that any closed convex set X is the
intersection of the closed half–spaces which contain it, for more details cf. Theorem 11.5
and Theorem 13.1 in [Rockafellar 1970].

As a direct consequence we can describe in a dual way if a convex set is included in
another convex set using properties of the support function.

Theorem 4. Given closed and convex sets X ⊆ Rn and Y ⊆ Rn. X ⊆ Y if and only if
s(X , y) ≤ s(Y , y) for all y ∈ Rn.

Proof. Is a consequence of Theorem 3, cf. Chapter 13 on support functions in [Rockafellar
1970].

As an example, given ellipsoids E1 := {x : xTP1x ≤ 1} and E2 := {x : xTP2x ≤ 1}
for some P1 � 0 and P2 � 0, then according to Theorem 4, E1 ⊆ E2 if and only if√
yTP−1

1 y ≤
√
yTP−1

2 y for all y ∈ Rn, which is the same as the condition P2 � P1. In
a similar way, given a closed convex set X ⊆ Rn and a polyhedron P = {x : cTi x ≤
ri, i ∈ N}, then X ⊆ P if and only if s(X , ci) ≤ ri for all i ∈ N . Evidently, it is
very convenient to use polyhedra and ellipsoids when dealing with questions related to
set–inclusions.

2.4 Determination of Invariant Sets within Constraints
Utilizing the properties of the support function and the result from Theorem 2 and
Theorem 4 we can compute positively invariant sets subject to a polyhedral constraint
set:
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Theorem 5. Given the discrete–time linear system x(k+1) = Ax(k) and the constraint
set X := {x : cT

i x ≤ 1, i ∈ {1, 2, . . . , N}}. If the following feasibility problem

find P (2.2a) P PA

ATP P

 � 0, (2.2b)

PT = P � 0, (2.2c)

∀i ∈ {1, 2, . . . , N}
P ci

cTi 1

 � 0 (2.2d)

is feasible, then the ellipsoidal set E = {x : xTPx ≤ 1} is positively invariant and
E ⊆ X .

Proof. Assume that (2.2) is feasible, then by using the Schur Complement (see the Ap-
pendix for the definition) we know that (2.2b)–(2.2c) is equivalent to ATPA−P � 0, and
by Theorem 2, E is positively invariant. Furthermore, by using the Schur Complement
in (2.2d) we can see that for all i ∈ {1, 2, . . . , N}, cTi P−1ci ≤ 1. Eventually, subsequently
taking the square root and using Theorem 4 we can conclude that E ⊆ X .

Theorem 5 is the basis which we will use later for the determination of appropriate
invariant sets, for the synthesis of decentralized controllers. However, we need to still
adapt the LMI appropriately, in order to include the design of a stabilizing feedback
controller, that respects possible input constraints. Utilizing the basic properties of
the support functions, which was presented in the previous section, we can fortunately,
extend the approach from Theorem 5 to synthesize stabilizing feedback controller for
general, linear control systems, subject to input and state constraint sets.

Theorem 6. Given the discrete–time linear control system x(k + 1) = Ax(k) +Bu(k),
with A ∈ Rn×n, B ∈ Rn×m, the state constraint sets X := {x ∈ Rn : cT

i x ≤ 1, i ∈
{1, 2, . . . , N}}, the input constraint set U := {u ∈ Rm : dT

i u ≤ 1, i ∈ {1, 2, . . . ,M}}.
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Let 0 < µ ≤ 1. If the following feasibility problem

find Q,R (2.3a) Q AQ+BR

(AQ+BR)T µ2Q

 � 0, (2.3b)

QT = Q � 0, (2.3c)

∀i ∈ {1, 2, . . . , N}
 Q Qci

cTi Q 1

 � 0 (2.3d)

∀j ∈ {1, 2, . . . ,M}
 Q RTdj

dTj R 1

 � 0. (2.3e)

is feasible, then the ellipsoidal set E = {x : xTQ−1x ≤ 1}:

i) E is positively invariant for the closed loop system x(k + 1) = (A+BRQ−1)x(k),

ii) (A+BRQ−1)E ⊆ µE,

iii) E ⊆ X ,

iv) ∀x ∈ E , RQ−1x ∈ U .

Proof. i) Applying the Schur Complement we know that (2.3b)–(2.3c) is equivalent to
(AQ+BR)TQ−1(AQ+BR)−µ2Q � 0. Multiplying the former relation with Q−1 from
left and right we obtain

(A+BRQ−1)TQ−1(A+BRQ−1)− µ2Q−1 � 0, (2.4)

which implies (A + BRQ−1)TQ−1(A + BRQ−1) − Q−1 � 0 since 0 < µ ≤ 1 and hence
by Theorem 2, E is positively invariant for the closed loop system x(k + 1) = (A +
BRQ−1)x(k). ii) Follows immediately from (2.4). iii) Similarly to Theorem 5 we can
deduce from the constraint (2.3d), that E ⊆ X . iv) We know from (2.3e) that for all
j ∈ {1, 2, . . . ,M}, dTj RQ−1RTdj ≤ 1 or equivalently

√
dTj RQ

−1QQ−1RTdj ≤ 1. We have
s(E , (RQ−1)Tdj) ≤ 1 for all j ∈ {1, 2, . . . ,M}. Using basic properties of the support
function we can thus conclude that ∀x ∈ E , RQ−1x ∈ U .

The analysis and design approaches outlined in Theorem 5–6 are appealing since (2.2)–
(2.3) are simple LMI’s which can be efficiently solved via semidefinite programming
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algorithms. However, the resulting feasible sets are not necessarily optimal. In order to
improve the size of the resulting positively invariant set, we can change the feasibility
problems into an optimization problems, for instance maximizing the volume of the
ellipsoid subject to constraints. The downside of such a formulation is that we use the
level sets of a quadratic Lyapunov functions, i.e. ellipsoidal shaped sets, and try to fit
them into polyhedral sets. In general, such a fit will be conservative and the computed
set might be of comparatively small size, i.e. there might exist positively invariant sets
that are larger then the ellipsoidal sets and still included in X .
In order to improve the size of positively invariant sets, we can employ a different

approach similar to the computation of reachable sets via dynamic programming [Blan-
chini and Miani 2008]. The basic idea is to recursively compute the pre–image set of
a target set and their successive intersections. More precisely, given the discrete sys-
tem x(k + 1) = f(x(k)) and a set X ⊆ Rn with f : Rn → Rn and x(k) ∈ Rn for
all k ∈ N+. The definition of the pre–image is given in the Appendix and basically
implies that x(k) ∈ f−1(X ) implies x(k + 1) ∈ X for any k ≥ 0. Furthermore, it
can be easily seen that it is necessary and sufficient that a set Ω, with the property
x(k) ∈ Ω implies x(k + 1) ∈ X exists, if and only if f−1(X ) 6= ∅. If we intersect the
target set X with the preimage set f−1(X ), we can specify a set that guarantees state
constraint satisfaction for one time step, i.e. if x(k) ∈ f−1(X ) ∩ X , then x(k) ∈ X and
x(k+1) ∈ X , respectively. In order to characterize a set that guarantees state constraint
satisfaction for two time steps, we can take an additional recursion and see that when-
ever x(k) ∈ f−1(f−1(X ) ∩ X ) ∩ X then x(k) ∈ X , x(k + 1) ∈ X and x(k + 2) ∈ X , see
Figure 2.1. In general, a positively invariant set can be thus obtained by performing the
former recursion infinitely, for more general results and the relation to reachable sets,
see also [Witsenhausen 1968b; Bertsekas 1972].

Theorem 7. Given a compact set X ⊂ Rn and the discrete time system x(k + 1) =
f(x(k)), where f(·) is a continuous function. Let

Ωi+1 := f−1(Ωi) ∩ Ω0 with Ω0 = X , (2.5)

and assume the fixed point x̄ = f(x̄) is in X . Then the following holds:

i) Ωi is non–empty for all i ∈ N+,

ii) Ω∞ = ⋂∞
j=0 Ωj is the limit of the sequence of sets (2.5),
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Figure 2.1: Recursion for the construction of a positively invariant set.

iii) Ω∞ ⊆ X and all positively invariant sets included in the constraint set X for the
discrete time system x(k + 1) = f(x(k)) are subsets of Ω∞.

Proof. i) Follows by the fact that x̄ = f(x̄) ∈ Ω0.
ii) By construction, Ωj is a sequence of compact, non–empty nested sets, i.e. Ωj+1 ⊆

Ωj. A basic fact states, that such a sequence has the limit Ω∞ = ⋂∞
j=0 Ωj, see for instance

[Schneider 1993; Kelley 1955].
iii) Ω∞ ⊆ X follows trivially from (2.5) and is positively invariant by construction,

since it defines the set to which the states are confined to infinitely. Let S be a arbitrary
positively invariant set which is contained in X . By definition, Ω1 is the largest set such
that Ω1 ⊆ X and f(Ω1) ⊆ X , i.e. there exists no x ∈ X \ Ω1 such that f(x) ∈ X . Since
S is a positively invariant subset of X , we have f(S) ⊆ S ⊆ X and hence S ⊆ Ω1. In
addition, it also follows by positive invariance of S that f(S) ⊆ Ω1, and since Ω2 is by
definition the largest set such that f(Ω2) ⊆ Ω1 and Ω2 ⊆ X , we can deduce similarly
that S ⊆ Ω2 as well as f(S) ⊆ Ω2. Eventually, we can conclude by induction that
S ⊆ Ω∞.

Note, that Ω∞ is the largest positively invariant set inside the constraint set X , i.e.
all positively invariant sets inside X are subsets of Ω∞. As a consequence, we can im-
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2.4 Determination of Invariant Sets within Constraints

mediately see that whenever Ω∞ = ∅ then there exists no nontrivial positively invariant
set contained in the constraint set X .
In order to perform the set recursion (2.5), we need an efficient way to compute set

recursions and pre–images of sets. In addition, it is also necessary to determine an
appropriate stopping criteria, since it is obviously impossible to indefinitely perform the
recursion. Fortunately, if the sets are equal in two consecutive recursion steps for some
j > 0, i.e. Ωj = Ωj+1, then it is very easy to see that Ωj = Ω∞. A simple prototype
procedure using this fact is given by Algorithm 1: This algorithm can be implemented

Input: X , f(·)
Output: Ω∞
Ω0 ← X ;
Ωt ← Ω0;
while Ωt 6= f−1(Ωt) ∩ Ω0 do

Ωt ← f−1(Ωt) ∩ Ω0;
end
Ω∞ ← Ωt;

Algorithm 1: Computation of a maximal positively invariant set.

for linear, affine systems subject to polytopic constraint sets X in a straightforward way.
More precisely, for the affine system x(k+1) = faff (x(k)) = Ax(k)+g and a non empty
polytopic set X := {x : cTi x ≤ 1, i ∈ {1, 2, . . . N}}, the preimage set f−1

aff (X ) is the
polyhedron

f−1
aff (X ) = {x : cTi Ax ≤ 1− cTi g, i ∈ {1, 2, . . . , N}},

while the intersection of f−1
aff (X ) with the set X is specified by

f−1
aff (X ) ∩ X = {x : cTi Ax ≤ 1− cTi g, cTi x ≤ 1, i ∈ {1, 2, . . . , N}}.

Note that f−1
aff (X )∩X is characterized by the intersection of 2N half-spaces as opposed

to the intersection of N half-spaces in Ω. By applying Algorithm 1 directly to an
affine system, Ωt would consist in the worst case of the intersection of tN half-spaces
at recursion step t and thus might be too complex to handle conveniently. Fortunately,
the complexity can be reduced in a straightforward way by detecting and removing
redundant half-spaces from the polytope at each recursion step by using the following
corollary.
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Corollary 1. Let P1 = {x : Ax ≤ b, cTx ≤ d} and P2 = {x : Ax ≤ b}, where A ∈ Rm×n,
b ∈ Rm, c ∈ Rn, d ∈ R. If s(P2, c) ≤ d then P1 = P2.

Proof. Let H = {x : cTx ≤ d} and assume without loss of generality that Rn 6= P2 6= ∅.
If s(P2, c) ≤ d, then P2 ⊆ H and thus P2 ∩ H = P2. However, since P1 = P2 ∩ H, it
follows that P1 = P2.

Evidently, Corollary 1 shows that detecting and removing redundant constraints in
polytopes can be accomplished by a series of linear programs. Furthermore, by a simple
modification of Algorithm 1, we are able to compute the maximal positively invariant
set for linear systems subject to a polytopic constraint set. To that end, let

x(k + 1) = Ax(k), X = {x : cTi x ≤ 1, i ∈ {1, 2, . . . , N}}, (2.6)

where A ∈ Rn×n and ci ∈ Rn for all i ∈ {1, 2, . . . , N}. A modified algorithm for
the determination of the maximal positively invariant set for this use case is given by
Algorithm 2. Conceptually Algorithm 1 and Algorithm 2 are similar. The only difference

Input: A, c1, c2, . . . , cN
Output: Ω∞
t← 0;
Ωt ← {x : cTi x ≤ 1, i ∈ {1, 2, . . . , N}};
finished ← false;
while finished = false do

t← t+ 1;
finished ← true;
for i← 1 to N do

if maxx∈Ωt c
T
i A

tx ≤ 1 then
Ωt ← Ωt

⋂{x : cTi Atx ≤ 1};
finished ← false;

end
end

end
Ω∞ ← Ωt;
Algorithm 2: Computation of the maximal positively invariant set for a linear
system inside a polytopic constraint set.

is that we gradually check at each iteration t > 1 whether the preimage of the ith–half-
space Hi,t = {x : cTi At−1x ≤ 1} is redundant and thus not need to be added to Ωt. The
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algorithm terminates at t if the preimage of the half-spaces Hi,t are redundant for all
i = {1, 2, . . . , N} since then Ωt = Ωt+1. Furthermore, considering a linear asymptotically
stable system and a convex and compact constraint set X , that contains the origin in
its interior, we can ensure using a direct modification of standard results [Gilbert and
Tan 1991; Blanchini and Miani 2008], that Algorithm 1 terminates in a finite number of
steps. In other words, there exists a finite integer t∗, such that Ωt∗ = Ωt∗+1. In addition,
as indicated by Algorithm 2, if the set X is a non–trivial polytope, then the maximal
positively invariant set Ω∞ is also a non-trivial polytope, cf. [Blanchini and Miani 2008;
S. V. Raković and Fiacchini 2008].

2.5 Summary
We presented the concept of invariant sets and their usefulness for describing safe oper-
ation regions for dynamics processes, that need to respect hard constraints. Ellipsoidal,
shaped invariant sets have a strong relation to level sets of Lyapunov functions, and for
this reason we could exploit, standard semidefinite algorithms to construct them. In
order to guarantee constraint satisfaction, we had to modify these standard algorithms
utilizing the essential tool of the support functions. Eventually, since ellipsoidal shaped
positively invariant sets are often of very limited size, we presented an algorithm that
can be used determine maximal positively invariant sets, that are included in given
constraint sets.
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3 Invariance for Interconnected
Systems

The main focus of this chapter is it to analyze interconnected systems utilizing the
concepts presented in the previous chapter. We will focus in this chapter on systems
that are autonomous and physically interconnnected, see Figure 3.1. More precisely,

Figure 3.1: A part of an interconnected, autonomous system, where the solid lines denote the
physical interconnections.

consider for all i ∈ N the interconnected, autonomous systems

Σi : xi(k + 1) = fi(xi(k)) + gi(xj(k) : j ∈ N \ {i}), (3.1)

and constraint sets Xi ⊂ Rni , where xi(·) ∈ Rni , fi : Rni → Rni and gi : Rn−ni → Rni ,
with n = ∑

i∈N ni. Furthermore, we denote Σi as the i-th subsystem and the collection
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of all Σi as the overall system Σ. A generalized problem statement, complementary to
Problem 1 can be formulated in the following way.

Problem 2 (Interconnected constraint satisfaction). Find a collection of sets S = {Si ⊂
Rni , i ∈ N}, such that for all i ∈ N , xi(0) ∈ Si implies xi(k) ∈ Xi for all k ∈ N+, for
the system specified in (3.1).

One basic difference to the previous problem statement is that we consider several sys-
tems Σi, which we could either analyze as a whole, a centralized approach, or separately,
as an decentralized approach. A fitting framework that works nicely for interconnected
systems both from an analytical and computational point of view, should be able to
handle both aspects. In addition, the number of subsystems N and ni might be large
numbers, i.e. many possible large dynamical systems need to be considered.
A possible solution to Problem 2 is a centralized approach, in which the subsystems

Σi are treated as one combined big system and not as separate entities. Concatenating
all systems Σi into one large system Σ, a positively invariant set contained in the con-
strained set X := X1 × X2 · · · × XN with the particular structure S1 × S2 · · · × SN can
be characterized.
For example, consider that fi(·) and gi(·) in (3.1) are linear and the constraints Xi

are non empty polytopes. In this case it is possible to describe the overall dynamics
by a linear system Σ : x(k + 1) = Ax(k), where A is the matrix composed of all fi(·)
and gi(·), respectively, x = (x1(k)T, x2(k)T, . . . , xN(k)T)T ∈ Rn and the concatenated
polytope X = X1 × · · · × XN (the Cartesian product of polytopes is again a polytope).
Hence, we can directly apply the concepts presented in the previous chapter. However,
several issues arise treating all subsystems as one large system. For instance, applying
this centralized approach can be difficult, even in the linear case, since the dimension n
of the overall process might be large. Applying Algorithm 1–2 can thus be challenging.
Upon closer inspection, it can be seen, that it is necessary to solve a linear program with
n variables and roughly tN constraints m times at recursion step t in the worst case.
Although we can slightly increase the efficiency for higher dimension if we use methods
based on Farkas Lemma, e.g. [Kerrigan 2000], in general the basic algorithms scale
not nicely with the dimension n of the system. In general, the number of half-spaces
in the polytope X is a basic factor in determining whether this particular approach is
computationally feasible for many interconnected and/or high dimensional subsystems
Σi.
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A more serious issue, for a combined analysis, is the fact that it is often not trivial
to decompose the set S into the collection of subsets {Si : i ∈ N} without a central
acknowledgment for the decision of the initial conditions xi(0).
As an example, consider a system Σ which consists of two linear, interconnected

systems Σ1 and Σ2, given by

Σ1 : x1(k + 1) = A1x1(k) +G1x2(k)

Σ2 : x2(k + 1) = A2x2(k) +G2x1(k),
(3.2)

with convex, polytopic constraint sets X1 and X2, respectively. Assume we use Al-
gorithm 2 to compute the maximal, positively invariant set S which is contained in
X1×X2 for the concatenated system Σ, with x1(k) ∈ Rn1 and x2(k) ∈ Rn2 . The set can
be represented as a convex polytope

S := {x : Cx ≤ d} =

(xT
1 , x

T
2 )T :

C1 C2

C3 C4

x1

x2

 ≤
d1

d2

 .
In order to decide on initial conditions x1(0) and x2(0) that will lead to constraint
satisfaction, it is necessary to guarantee that both C1x1(0)+C2x2(0) ≤ d1 and C3x1(0)+
C4x2(0) ≤ d2 are simultaneously satisfied. However, the choice of the initial condition
for Σ1 depends on the choice of the initial condition for Σ2, i.e. either C2x2(0) and
C4x2(0) or C1x1(0) and C3x1(0) are fixed. This requires communication between Σ1 and
Σ2, in which admissible initial conditions x1(0) and x2(0) are negotiated, thus either a
centralized or a distributed structure is necessary for the initialization. This negotiation
of course needs to be repeated whenever initial conditions are changed, making the whole
process inflexible. From a practical point of view it is often very challenging to distribute
the necessary information of all state informations to one entity, especially if a lot of
interconnected systems are considered.
In addition, if the structure of the interconnection G1x2(k) changes slightly for the

subsystem Σ1, then a precomputed invariant set for the whole concatenated system
Σ needs to be recomputed as Σ1 and Σ2 mutually depend on each other. Utilizing a
decentralized or distributed analysis this problem can be alleviated, since in the worst
case only a small part of the overall system needs to be adjusted. In addition, the problem
setting for specific applications might be inherently distributed or decentralized, i.e. we
are not always interested in finding one global solution for the whole system Σ, but
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3.1 Analysis of Interconnected Systems

instead we would like to find several local ones.
For these reasons, coming back to Problem 2, the sets Si should be characterized in

such a way that we can easily and in a modular way choose initial conditions xi(0) ∈
Si such that state constraint satisfaction for all k can be guaranteed. The focus of
this chapter is to provide such modularity and in particular to properly extend the
basic notion of positive invariance to interconnected systems. For further in depth
informations and various other challenges about the analysis and decentralized control
of large scale and/or interconnected systems, see for instance [Šiljak 1978; Lunze 1992;
Lunze 2014].

3.1 Analysis of Interconnected Systems
A possible solution approach for Problem 2 is to regard the interconnections as additive
disturbances and utilize the concept of robust positively invariant sets. More precisely
consider the following

Definition 4 (Invariant collection of sets). A collection of sets Ω := {Ωi : i ∈ N},
where Ωi ⊆ Xi ⊂ Rni is an invariant collection of sets for the system (3.1) if, for all
i ∈ N and all xi ∈ Ωi, the condition fi(xi) + gi(xj : j ∈ N \ {i}) ∈ Ωi hold.

Evidently, this property has similarities to the detection of robust positively sets, e.g.
by using Wi := gi(Ωj : j ∈ N \ {i}). Considering the connections, this is an attractive
approach, since the sets Si can be characterized locally for each system Σi. However,
the sets Ωi need to be simultaneously detected and not sequentially as Wi depend on
each other non trivially. For instance, consider again the linear, interconnected systems
specified in (3.2). Given the collections of sets (Ω1,Ω2), ifW1 := G1Ω2 andW2 := G2Ω1,
then it can be easily seen, that every variation of the set Ω2 has a direct effect onto the
set W1. Hence a possible set Ω1 needs to be adjusted, which in turn modifies the set
W2, and so on. In general, although it appears the sets Ωi can be computed locally, it
is very hard to guarantee that such a collection of sets exists or can be detected.
To better understand the properties of the interconnected systems, especially their

effects on the computation of invariant sets, it makes sense to more clearly analyze the
set–iterates induced by the dynamics (3.1). As indicated by Problem 2, we are inter-
ested in the behavior of not only one specific initial condition xi(0) and their resulting
trajectory xi(k), but instead we ultimately want to characterize all initial conditions in
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3 Invariance for Interconnected Systems

a specific set Si. This can be done by considering the set–iterates Xi,k, which are induced
by the independent set–dynamics for (3.1), given by

Xi,k+1 = fi(Xi,k)⊕ gi(Xj,k : j ∈ N \ {i}), (3.3)

where for all i ∈ N and k ∈ N+, Xi,k ⊆ Rni . For general results on set–dynamics and
various extensions we refer to [Artstein and S. V. Raković 2008; Artstein and S. V.
Raković 2011] and focus in the following on the interconnected dynamics.
Using set–dynamics, it is possible to present basic facts in a compact and a general

way. For instance, the state trajectories from (3.1) can be directly linked to the set–
dynamics (3.3), by considering singleton sets for the initial conditions , i.e. Xi,0 =
{xi(0)}. In addition, a collection of sets (S1,S2, . . . ,SN), where all Si are some subsets
of Rni , is a solution to Problem 2, if Xi,0 = Si implies Xi,k ⊆ Xi for all k ∈ N+ and
i ∈ N .
In order to specify a collection of sets that solves Problem 2, we need to properly

characterize the set–iterates Xi,k. Unfortunately, this analysis is in general challenging,
since it is necessary to determine the exact orientation, size and shape of the sets Xi,k.
In general, there is little to no hope to obtain meaningful yet computationally tractable
results. For these reasons, we assume in the remainder that all Si are convex, non–empty
subsets of Rni and are not singletons. Note that in practice this is often sufficiently
general.
One basic problem of the previous approach is that the interconnections should and

can not be treated as independent static disturbances, as the disturbance size depends
on the the neighbors. A proper way to address invariance for interconnected systems
needs to accommodate for this fact. Furthermore, it is also very important to provide
notions that are on one hand simple, on the other hand flexible enough. The main
challenges in exactly describing the set iterates induced by the set–dynamics (3.3) stem
from the fact, that even for convex and compact sets Xi,k, the successor sets might be
non–connected and non–convex, see Figure 3.2. However, convexity is important to
easily perform basic necessary set operations, such as answering questions regarding set
inclusions or analyzing properties of Minkowski sums of sets. In addition, it is also very
difficult to decide what type of effect the interconnection have on the set–iterates Xi,k.
Although, we can use convex hulls of the set–iterates for the analysis, from a practical
point of view, computing the convex hull for arbitrary sets is a very difficult task and
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3.2 Positively Invariant Family of Sets

may even be impossible in higher dimensions.

Figure 3.2: General set–iterates Xi,k.

3.2 Positively Invariant Family of Sets
An alternative way to analyze the general set–iterates Xi,k is to find a flexible and
dynamic approximation, which are easier to analyze. More precisely, consider sets Si,k
such that Xi,k ⊆ Si,k, whenever the set of initial conditions is Xi,0 = Si,0, cf. Figure 3.3.
If such sets have the property Si,k ⊆ Xi for all k ∈ N+, then the initial sets Si,0 provide
a solution to Problem 2.

Figure 3.3: Approximated set–iterates Xi,k via Si,k.

Obviously, it is desirable that the inclusion Xi,k ⊆ Si,k is tight, since otherwise one
might introduce a lot of conservatism. Another requirement is the ability to easily
adjust and change the “size” of the sets Si,k, such that it can be directly linked to the
dynamics of Xi,k. In particular, if a set Xi,k gets smaller, then Si,k should shrink similarly.
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3 Invariance for Interconnected Systems

Parametrized families of sets allow us to flexibly handle these type of requirements. In
particular, we focus on the following type of parametrization.

Definition 5 (Parametrized family of sets). A parametrized family of sets over Θ ⊆ RN

for the collection S = {Si ⊂ Rni : i ∈ N} is given by

S(S,Θ) := ((θ1S1, θ2S2, . . . , θNSN) : (θ1, θ2, . . . , θN) ∈ Θ). (3.4)

A parametrized family of sets over Θ is basically a family of set, which is constructed
by scaling the collection {Si : i ∈ N} over scalars (θ1, θ2, . . . , θN), that are picked from
the set Θ. If the cardinality of the set Θ and N is finite, we obtain a finite number of
scaled sets θiSi, as illustrated in Figure 3.4. If Θ has infinite members, we obtain infinite
numbers of scaled sets θiSi. The basic idea of this approach is to find shapes Si, that
have “nice” properties for the maps fi(·) and gi(·), ideally such that the set fi(θiSi) can
be easily characterized for different values of θi.
Note that different kind of parametrization for the sets Si are plausible, for instance

homothetic parametrization or general nonlinear parametrization. Depending on the
system structure different kind of parametrization might be more beneficial then others,
for instance see also [Gielen, Lazar, and Teel 2012; S. V. Raković, Gielen, and Lazar
2012] for parametrization of a family of sets for time–delay systems.
A main goal for using a specific parametrization is the intention to make the problem

more manageable. However, choosing general types of parametrization for Problem 2,
might further increase the degree of complexity for the analysis. For these reasons we
decided to restrict ourselves to the simple form of parametrized sets given in Definition 5.
Motivated by the concept of invariant collection of sets in Definition 4, we present now

an adapted notion that describes invariance for a collection of sets scaled over a set Θ.
Instead of keeping the collection {Si : i ∈ N} fixed, we allow the sets to vary over time.
We achieve these variations through a set of admissible scaling factors Θ. The basic
idea is to show that this admissible set of scaling factors has a property that relates to
positive invariance and can be used to upper approximate the exact set–dynamics (3.3).

Definition 6 (Invariance for a parametrized family of sets over Θ). Given a collection
of sets S = {Si ⊂ Rni : i ∈ N} and a set Θ ⊂ RN

+ . The parametrized family of sets
S(S,Θ), specified in (3.4) is a positively invariant family of sets for the system (3.1) if
for all θ = (θ1, θ2, . . . , θN)T ∈ Θ and all i ∈ N there exists θ+ = (θ+

1 , θ
+
2 , . . . , θ

+
N)T ∈ Θ,
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3.2 Positively Invariant Family of Sets

(a) Θ and sets S1 and S2.

(b) Two realizations of parametrized sets θiSi.

Figure 3.4: Parametrized family of sets.

such that xi(k) ∈ θiSi ⊆ Xi implies xi(k + 1) ∈ θ+
i Si ⊆ Xi.

Note, that Definition 6 is a generalization to the concept of positive invariance towards
a collection of sets. For instance, given a positively invariant collection of sets S, we
can easily construct a positively invariant family of sets S(S,Θ), by choosing Θ =
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3 Invariance for Interconnected Systems

{(1, 1, . . . , 1)T} ⊂ RN . Obviously, in that case S(S, {(1, 1, . . . , 1)T}) = S, and hence this
particular set Θ induces positive invariance for the family of sets. The basic difference
to the concept of positive invariance for a collection of sets can be easily exemplified if
we consider a set Θ, that has only a finite amount of members. As an example consider
two interconnected systems,

x1(k + 1) = f1(x1(k)) + g1(x2(k)) (3.5)

x2(k + 1) = f2(x2(k)) + g2(x1(k)), (3.6)

the collection of sets S = (S1,S2) and a set with two members Θ = {(θ̄1, θ̄2)T, (θ̂1, θ̂2)T}.
In order to show, that the collection of sets S is invariant, according to Definitions 4 we
need to ensure that f1(S1)⊕ g1(S2) ⊆ S1 and f2(S2)⊕ g2(S1) ⊆ S2. As explained before,
this leads to very restrictive conditions, i.e. basically the maps fi(·) need to strongly
contract the sets Si, i.e. fi(Si) ⊆ µiSi, such that roughly µ1S1 ⊕ g1(S2) ⊆ S1 and
µ2S2 ⊕ g2(S1) ⊆ S1, see Figure 3.5. Hence, the contraction factors 0 < µi < 1, need to
be generally small which restrict the applicable system classes. Also note that µi needs
to be smaller than one, otherwise the sets would not contract.
By using parametrized family of sets, we can gain a more flexible notion of invariance,

since we are not enforcing the successor sets to be static. As an example, consider
the parametrized set S(S,Θ) = {(S̄1, S̄2), (Ŝ1, Ŝ2)}, where θ̄iSi = S̄i and θ̂iSi = Ŝi for
i ∈ {1, 2}. In order to show that S(S,Θ) is a positively invariant family of sets, we need
to first ensure, according to Definition 6 that either

f1(S̄1)⊕ g1(S̄2) ⊆ S̄1, f2(S̄2)⊕ g2(S̄1) ⊆ S̄2 (3.7)

or

f1(S̄1)⊕ g1(S̄2) ⊆ Ŝ1, f2(S̄2)⊕ g2(S̄1) ⊆ Ŝ2 (3.8)

are satisfied and additionally either

f1(Ŝ1)⊕ g1(Ŝ2) ⊆ Ŝ1, f2(Ŝ2)⊕ g2(Ŝ1) ⊆ Ŝ2 (3.9)
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3.2 Positively Invariant Family of Sets

Figure 3.5: Using a collection of sets (S1,S2) for invariance. The images of the sets (S1,S2)
(on the left side) are taken over the functions f1(·), f2(·), g1(·) and g2(·) (depicted in the
middle). On the right site the Minkowski sum of those images are compared to the sets (S1,S2).

or

f1(Ŝ1)⊕ g1(Ŝ2) ⊆ S̄1, f2(Ŝ2)⊕ g2(Ŝ1) ⊆ S̄2 (3.10)

are satisfied. What makes the analysis for the invariance of parametrized family of
sets appealing, is the fact that we conceptually allow successor sets θ+

i Si to be larger
then the sets θiSi, or in other words for some values (θ1, θ2, . . . , θN)T ∈ Θ, we have
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3 Invariance for Interconnected Systems

θiSi ⊆ θ+
i Si, where (θ+

1 , θ
+
2 , . . . , θ

+
N)T ∈ Θ. As a result we have more degrees of freedom,

which allows us to easier capture the interplay of beneficial and non–beneficial effects
onto the subsystems.

3.2.1 Indirect Construction for Positively Homogeneous Systems

We intend to approximate the set–iterates Xi,k with approximated sets θiSi, cf. Fig-
ure 3.3. The basic idea is to capture dynamic properties of the induced set–dynamics by
changing the scalar values θi, i.e. Xi,k ⊆ θi(k)Si. In order to get a good approximation,
it is important to understand the mathematical properties involved in the construc-
tion of the sets Xi,k+1 based on the knowledge of the precursor sets Xi,k, such that
we can properly find at every time step k a good tight as possible scaling factor θi(k).
Nevertheless, we need to link the dynamic behavior of the interconnected system, appro-
priately to those scaling factors θi(k). Similar to using comparison functions for Vector
Lyapunov functions, cf. [Bellman 1962; Šiljak 1978; Lakshmikantham, Matrosov, and
Sivasundaram 1991], we can describe the transition from θ(k) to θ(k + 1) by a function
µ : RN

+ → RN
+ , such that θ(k+1) = µ(θ(k)). Motivated by Definition 6, a possible choice

for the function µ(·) is defined as follows:

µ(S, θ) =


µ1(S, θ)
µ2(S, θ)

...
µN(S, θ)

 :=


minµ1≥0 {f1(θ1S1)⊕ g1(θjSj : j ∈ N \ {1}) ⊆ µ1S1}
minµ2≥0 {f2(θ2S2)⊕ g2(θjSj : j ∈ N \ {2}) ⊆ µ2S2}

...
minµN≥0 {fN(θNSN)⊕ gN(θjSj : j ∈ N \ {N}) ⊆ µNSN}


(3.11)

where θ = (θ1, θ2, . . . , θN)T ∈ RN
+ and S = (S1,S2, . . . ,SN) with Si ⊆ Rni for all i ∈ N .

Essentially, we capture in equation (3.11) for every i–th subsystem the variation of sets
by a minimal dynamic scaling factor µi.
As we can see from Definition 6 is important to find the set of scaling factors Θ for a

given collection of sets S, that leads to a positively invariant family of sets. Using the
dynamics (3.11) we can specify such a set in a compact way. Furthermore, in order to
guarantee that the function µ(S, ·) is well defined, we demand the following:

Assumption 1. For all i ∈ N

• fi(·) and gi(·) are continuous,
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3.2 Positively Invariant Family of Sets

• fi(0) = 0 and gi(0) = 0,

• Xi is compact and contains the origin in its interior,

• Si is convex, compact and contains the origin in its interior. 1

We need the former assumption to guarantee that the functions defined in (3.11) are
continuous on its domain and can be easily utilized for the analysis.

Lemma 1. Suppose Assumption 1 is true, then µi(S, θ) as defined in (3.11) are contin-
uous functions for all θ ∈ RN

+ and all i ∈ N .

Proof. In order to prove continuity, we use its Definition in terms of the limits of
sequences. In particular, a function f(·) is continuous at x̄ if every converging se-
quence x(n) implies that the sequence of functions f(x(n)) converges to f(x̄), i.e.
limn→∞ x(n) = x̄ ⇒ limn→∞ f(x(n)) = f(x̄). Let θ(n) = (θ1(n), θ2(n), . . . , θN(n))T,
θ̄ = (θ̄1, θ̄2, . . . , θ̄N)T, and limn→∞ θ(n) = θ̄. Consider the following sets:

Ξn,i = {fi(θi(n)xi) + gi(θj(n)xj : j ∈ N \ {i}) : xi ∈ Si,∀i ∈ N},

Ξ̄i = {fi(θ̄ixi) + gi((θ̄jxj : j ∈ N \ {i}) : xi ∈ Si,∀i ∈ N}.

Continuity of fi(·) and gi(·) implies that for all fixed (x1, x2, . . . , xN)T ∈ S1×S2×. . .×SN

lim
n→∞

fi(θi(n)xi) + gi(θj(n)xj : j ∈ N \ {i}) = fi(θ̄ixi) + gi(θ̄jxj : j ∈ N \ {i}) ∈ Ξ̄i,

or in other words limn→∞ Ξn,i ⊆ Ξ̄i. On the other hand, pick any ξi ∈ Ξ̄i, then ξi =
fi(θ̄ixi) + gi((θ̄jxj : j ∈ N \ {i}) : xi ∈ Si, ∀i ∈ N ). Let (y1, y2, . . . , yN)T ∈ S1 × S2 ×
. . .× SN , then for all n ∈ N, we have fi(θi(n)yi) + gi(θj(n)yj : j ∈ N \ {i}) ∈ Ξn,i, and
consequently

lim
n→∞

fi(θi(n)yi) + gi(θj(n)yj : j ∈ N \ {i}) = fi(θ̄iyi) + gi(θ̄jyj : j ∈ N \ {i}) = ξi.

Thus, Ξ̄i ⊆ limn→∞ Ξn,i and as a result limn→∞ Ξn,i = Ξ̄i. In other words, for all ε > 0,
there exists n0, such that H(Bni ,Ξn,i, Ξ̄n) ≤ ε. In turn, the definition of the Hausdorff
distance implies, that for all n ≥ n0, Ξn,i ⊆ Ξ̄i⊕ εBni and Ξ̄i ⊆ Ξn,i⊕ εBni , respectively,

1Convexity and compactness are crucial properties; for instance if Si are compact, star–shaped sets it
is impossible to guarantee continuity for the functions defined in (3.11)

33



3 Invariance for Interconnected Systems

and hence
Ξn,i ⊆ Ξ̄i ⊕ εBni ⊆ µi(S, θ̄)Si ⊕ εBni ,

Ξ̄i ⊆ Ξn,i ⊕ εBni ⊆ µi(S, θ(n))Si ⊕ εBni

In addition, utilizing the properties of the set Si we can always find δ > 0 such that
εBni ⊆ δSi, which implies Ξn,i ⊆ (µi(S, θ̄) + δ)Si, and Ξ̄i ⊆ (µi(S, θ(n)) + δ)Si. How-
ever, optimality of µ(S, ·) and compactness of Ξ̄i and Ξn,i implies limn→∞ µi(S, θ(n)) ≤
µi(S, θ̄) and limn→∞ µi(S, θ(n)) ≥ µi(S, θ̄), respectively. Eventually we can conclude,
that limn→∞ µi(S, θ(n)) = µi(S, θ̄), proving continuity of the function µ(S, θ) for every
θ ∈ RN

+ .

Using continuity of the functions µ(S, ·) we can now check whether a set Θ induces a
positively invariant family of sets S(S,Θ).

Proposition 1. Suppose Assumption 1 is true and let Θ0 := {θ : ∀i ∈ N , θiSi ⊆ Xi}.
If there is a non empty set Θ ⊆ Θ0 such that µ(S,Θ) ⊆ Θ, then the parametrized family
of sets S(S,Θ) defined in (3.4) is positively invariant.

Proof. By construction, since Θ ⊆ Θ0, we know that Θ0 is non empty and for every
(θ1, θ2, . . . , θN)T ∈ Θ, we have θiSi ⊆ Xi for all i ∈ N . Take any θ = (θ1, θ2, . . . , θN)T ∈
Θ, then it follows by definition of µ(S, ·) in (3.11), that for all i ∈ N

fi(θiSi)⊕ gi(θjSj : j ∈ N \ {i}) ⊆ µ1(S, θ)Si. (3.12)

In addition, since µ(S,Θ) ⊆ Θ, we know that µi(S, θ)Si ⊆ Xi for all i ∈ N . To
summarize, let θ+ = (θ+

1 , θ
+
1 , . . . , θ

+
N)T = µ(S, θ). With equation (3.12) we can see that

for all θ ∈ Θ, there exists a θ+ ∈ Θ such that for all i ∈ N , xi(k) ∈ θiSi implies
xi(k + 1) ∈ θ+

i Si. Eventually, since Θ ⊆ Θ0, whenever θ ∈ Θ, we have θiSi ⊆ Xi and
θ+
i Si ⊆ Xi for all i ∈ N and thus S(S,Θ) is a positively invariant family of sets.

The basic idea to achieve positive invariance for a family of sets is conceptually simple.
With the set Θ0, we define the set of admissible scaling factor, i.e. all scaled sets θiSi
that lie within the constraint set Xi. Using the function µ(S, ·) we can approximate the
dynamics of the transition from one scaling factor θ(k) to the successor θ(k+1). If there
is however a set Θ inside the set of admissible scaling factors Θ0, which is positively
invariant for the dynamical systems θ(k+ 1) = µ(S, θ(k)), we can use this set to from a
positively invariant family of sets S(S,Θ).
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3.2 Positively Invariant Family of Sets

Although Proposition 1 is easier to handle from an analytical point of view, in order to
characterize positively invariant family of sets more constructive methods are necessary.
As outlined before, the basic idea is to find a positively invariant set Θ for the dynamics
of the scaling factors θ(k+1) = µ(S, θ(k)). In the last chapter, we have discussed possible
approaches for finding and analyzing positively invariant sets for general type of systems.
However, there are several challenges for directly utilizing these approaches. Directly
analyzing stability and invariance properties for the function µ(S, θ) is challenging, due
to its nonlinear behavior. This is one reason, why it is challenging to specify a set
Θ that satisfies the conditions in Proposition 1. Second of all it is still unclear, how
to properly choose the collection of set S. Thus, it is necessary to better understand
how the underlying set dynamics (3.3) behave, i.e. how the sets Xi,k+1 depend on their
predecessor sets Xi,k. They are formed by an initial transformation into the sets fi(Xi,k)
and gi(Xj,k : j ∈ N \ {i}), which are then linked together through the Minkowski
sum. If we consider the set fi(Xi,k) as the dominant set, i.e. gi(Xj,k : j ∈ N \ {i}) ⊆
θfi(Xi,k) where θ is a positive very small value, then it roughly means that Xi,k+1 can
be approximated by a slightly enlarged set fi(Xi,k). This type of dominance means, that
the effect of the interconnection g(·) is small, which can be justified by the fact that
often interconnections should not have a large destabilizing effect on the overall system.
Basically, we would like to exploit this type of dominant behaviour for the construction
of positively invariant family of sets. We note that this limits the applications but
significantly simplifies the calculation.
Since the family of sets are parametrized through scaling factors, we need to under-

stand how the maps fi(·) and gi(·) change the sets θiSi for different scaling factors θi.
Obviously, the shape and structure of the sets fi(Xi,k), gi(Xj,k : j ∈ N \ {i}) highly
depend on the nature of the maps fi(·) and gi(·). For instance, for convex and compact
sets Xi,k, the set fi(Xi,k) can have arbitrary properties and shapes. Even worse, if we
scale the sets by arbitrary scalars θ, it is not possible to predict the resulting image of
the scaled sets. For instance, given some sets Ω and assume there is a set Y , such that
fi(Ω) ⊆ Y , then it is not general true, that fi(θΩ) ⊆ θY for any θ > 0. Since we consider
parametrization through scalars in the definition of invariance for parametrized family of
sets, we need to be able to predict the properties of the fi(θiSi) and gi(θiSi : j ∈ N \{i}),
for different values (θ1, θ2, . . . , θN)T ∈ Θ. In particular, whenever we scale the collection
of sets S by scalar values, we expect that the image of those scaled sets by the maps
over f(·) and g(·) should scale similarly. For linear systems, this property is easily ver-
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ified through homogeneity. However, for nonlinear systems this is general not the case.
Fortunately, we can generalize this property to positively homogeneous functions.

Definition 7. A function f : Rn → Rn is said to be positively homogeneous of degree k,
if f(λx) = λkf(x) for all x ∈ Rn and λ > 0.

Monomials form homogeneous functions of degree k, for example. Some nontrivial
positively homogeneous functions of degree k = 1, apart from linear functions, are for
instance f(x) = |x| and

f(x1, x2) =
√ax2

1 + bx2
2√

cx2
1 + dx2

2

 , a, b, c, d ∈ R+ and (x1, x2)T ∈ R2.

As a direct result we know that f(θΩ) = θf(Ω) for any positively homogeneous function
f : Rn → Rn of degree one, compact sets Ω ⊂ Rn and scalar values θ > 0. Utilizing this
property we are now able to state sufficient conditions, to check whether a collection
of sets S = (S1,S2, . . . ,SN) can be used to construct a nontrivial, positively invariant
family of sets, i.e. there exists a parametrization (3.4) with a non–empty and non–trivial
set Θ. The basic idea is to find a simpler to analyze approximation of the dynamical
systems θ(k + 1) = µ(S, θ(k)) induced by (3.11). If we restrict the class of applicable
systems and constraint sets to the following

Σi : xi(k + 1) = fi(xi(k)) +
∑

j∈N\{i}
gi,j(xj(k)), i ∈ N , (3.13)

we obtain the following type of dynamics that govern the transition of the scaling factors
from θ(k) to θ(k + 1):

µ(S, θ) =


µ1(S, θ)
µ2(S, θ)

...
µN(S, θ)

 :=



minµ1≥0

{
f1(θ1S1) ⊕

j∈N\{1}
g1,j(θjSj) ⊆ µ1S1

}

minµ2≥0

{
f2(θ2S2) ⊕

j∈N\{2}
g2,j(θjSj) ⊆ µ2S2

}
...

minµN≥0

{
fN(θNSN) ⊕

j∈N\{N}
gN,j(θjSj) ⊆ µNSN

}


(3.14)

where θ = (θ1, θ2, . . . , θN)T ∈ RN
+ and S = (S1,S2, . . . ,SN) with Si ⊆ Rni for all i ∈ N ,

which are easier to handle in the remainder, given the following additional assumption
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3.2 Positively Invariant Family of Sets

for the collection of sets (S1,S2, . . . ,SN) and constraints (X1,X2, . . . ,XN):

Assumption 2. For all i ∈ N

• Xi and Si are compact, convex sets that contain the origin in their interior.

Assumption 3. For all i ∈ N

• fi(·) and gi,j(·) in (3.13) are positively homogeneous and continuous functions of
degree 1, for all j ∈ N \ {i},

• fi(0) = 0 and gi,j(0) = 0, for all j ∈ N \ {i}.

Note, that convexity restrict the type of problems we might be able to analyze, however
for most applications it is still general enough, see e.g. Chapter 5 for an example. Using
the preceding discussion, it is possible to impose the following properties for the function
µ(S, ·) if we consider the structure (3.13) and Assumption 2.

Proposition 2. Suppose Assumptions 2–3 are satisfied. Then all µi(S, ·) defined in (3.14)
are positively homogeneous functions of degree 1 for all i ∈ N .

Proof. First note that under Assumption 2, fi(θiSi) and gi,j(θjSj) are compact sets that
contain the origin in their interior, for all θi > 0, θj > 0, i ∈ N and j ∈ N \{i}. Since the
origin is an interior point of Xi and Si we know that µi(S, θ) is well defined for all θ ∈ RN

+ ,
µi(S, ·) : RN

+ → R+ and µi(S, 0) = 0. For any λ > 0 and any θ = (θ1, θ2, . . . , θN)T ∈ RN
+

we have

fi(λθiSi)
⊕

j∈N\{i}
gi,j(λθjSj) = λfi(θiSi)

⊕
j∈N\{i}

λgi,j(θjSj) = λ

fi(θiSi) ⊕
j∈N\{i}

gi,j(θjSj)


due to positive homogeneity and basic rules of Minkowski set–addition. By definition
of (3.14) we have

fi(θiSi)
⊕

j∈N\{i}
gi,j(θjSj) ⊆ µi(S, θ)Si, (3.15)

and

λ

fi(θiSi) ⊕
j∈N\{i}

gi,j(θjSj)
 ⊆ µi(S, λθ)Si. (3.16)

Multiplying (3.15) on both side with λ > 0 and comparing the right hand sides with
(3.16), we can conclude by optimality that µ(S, λθ) = λµ(S, θ).
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3 Invariance for Interconnected Systems

We can see that positive homogeneity of the functions fi(·) and gi,j(·) is directly
transferred to µi(S, ·). Furthermore, since the dynamic system θ(k + 1) = µ(S, θ(k))
is defined on the positive orthant, a possible approach to analyze its system theoretical
properties is to find a positive linear system, i.e. a system in which the states are non–
negative for all times, that can be used as an upper approximation. A justification for
using linear systems can be reasoned by the fact that they are also homogeneous, easier
to analyze and if chosen properly they might exhibit a similar qualitative behaviour
compared to the transition from θ(k) to θ(k + 1) under the function µ(S, ·) defined
in (3.14).
This idea is used in the following Theorem to obtain a posteriori check to verify that

a given collection of sets S can be used to form a positively invariant family of sets. But
first we need to assert, that the set of admissible scaling factors behaves nicely.

Lemma 2. Suppose Assumptions 2–3 are satisfied, then the set Θ0 = {(θ1, θ2, . . . , θN)T ∈
RN

+ : ∀i ∈ N , θiSi ⊆ Xi} is a convex, compact and full-dimensional subset of RN
+ that

contains the origin.

Proof. First note, 0 ∈ Θ0 follows trivially. Pick any θ̂ ∈ Θ0 and θ̄ ∈ Θ0. We have
(1− λ)θ̂ + λθ̄ ∈ RN

+ for all 0 ≤ λ ≤ 1. By Assumption 2 it follows that

((1− λ)θ̂ + λθ̄)Si = (1− λ)θ̂Si ⊕ λθ̄Si ⊆ (1− λ)Xi ⊕ λXi = ((1− λ) + λ)Xi = Xi,

for all 0 ≤ λ ≤ 1, which makes Θ0 a convex subset of RN
+ . Furthermore, the set Θ0

is clearly closed and due to Assumption 2 bounded for all i ∈ N . Let Ω = {ηiei : i ∈
N}∪ {0}, where ei ∈ RN are the unit vectors of the N -dimensional canonical basis and
ηi := maxη≥0{η : ηSi ⊆ Xi}. Note, by convexity and compactness of the sets Xi and
Si, we have 0 < ηi <∞. By construction, we know that convh(Ω) is a full-dimensional
subset of RN

+ and since for every i ∈ N , ωi ∈ Θ0, we have convh(Ω) ⊆ Θ0 and can
conclude that Θ0 is a full-dimensional subset of RN

+ as well.

Theorem 8. Suppose Assumption 2–3 are satisfied. Let Θ0 = {(θ1, θ2, . . . , θN)T ∈ RN
+ :

∀i ∈ N , θiSi ⊆ Xi} and

M =


µ1,1 · · · µ1,N
... . . . ...

µN,1 · · · µN,N

 ,
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3.2 Positively Invariant Family of Sets

where fi(Si) ⊆ µi,iSi, gi,j(Sj) ⊆ µi,jSi, µi,j ≥ 0 and µi,i ≥ 0 for all i ∈ N and j ∈ N\{i}.
If the origin is in the interior of Θ0 and the matrix M is strictly stable, i.e. the spectral
radius ρ(M) is less than 1, then there exists a parametrized positively invariant family
of sets for the collection S.

Proof. The idea of the proof is to construct a non-trivial set Θ ⊆ Θ0 in such a way,
that for all θ ∈ Θ, µ(S, θ) ∈ Θ, similar to Proposition 1. We are not directly utilizing
the system induced by the function (3.14), but instead approximate the dynamics by a
linear, positive system.
Let

θ(k + 1) =


θ1(k + 1)

...
θN(k + 1)

 =


∑
i∈N µ1,iθi(k)

...∑
i∈N µN,iθi(k)

 = Mθ(k). (3.17)

From Lemma 1 we know that Θ0 is convex, compact and a full-dimensional subset of
RN and whenever θ(k) ∈ Θ0 then θi(k)Si ⊆ Xi. Thus, due to the fact that ρ(M) < 1,
we can infer that there exists some non–trivial positively invariant region Θ ⊆ Θ0, such
that θ(0) ∈ Θ implies θ(k) ∈ Θ ⊆ Θ0 for all k > 0. By construction, we know that all
entries of M are non–negative, and hence θ(0) ∈ RN

+ implies θ(k) ∈ RN
+ for all k > 0.

Hence, by positive homogeneity and the fact that θ(k) ∈ RN
+ , we know for all i ∈ N and

j ∈ N \ {i} and every θi(k) ≥ 0, θj(k) ≥ 0, that θi(k)fi(Si) = fi(θi(k)Si) ⊆ µi,iθi(k)Si
and θj(k)gi,j(Sj) = gi,j(θj(k)Sj) ⊆ µi,jθj(k)Si. Also note, that the former relations are
true if θi(k) = 0 and θj(k) = 0, since the origin is an interior point of Si. Taking the
sum over all j ∈ N \ {i} and i ∈ N , we have

fi(θi(k)Si)
⊕

j∈N\{i}
gi,j(θj(k)Sj) ⊆

µi,iθi(k)Si
⊕

j∈N\{i}
µi,jθj(k)Si =

∑
j∈N

µi,jθj(k)Si = θi(k + 1)Si.
(3.18)

It follows from Equation 3.18, that whenever xi(k) ∈ θi(k)Si ⊆ Xi, we have xi(k + 1) ∈
θi(k + 1)Si ⊆ Xi, for all i ∈ N and all θ(k) ∈ RN

+ . Take any θ(0) ∈ Θ ⊆ Θ0, where Θ
is positively invariant set for (3.17), then θ(k) ∈ Θ for all k > 0. Hence by construction
xi(k) ∈ θi(k)Si ⊆ Xi for all i ∈ N and k > 0 and as a result S(S,Θ) is a positively
invariant family of sets.

Note, that we need to find a relation for all the sets fi(Si) and gi,j(Sj) with respect to
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3 Invariance for Interconnected Systems

a scaled set Si. The idea is that all the functions need to exhibit a contracting behaviour
in order to guarantee the existence for a positively invariant family of sets. Furthermore,
the conditions in Theorem 8 are only sufficient for the existence of a positively invariant
family of sets for a given collection of sets S.
As also pointed out in the proof, we utilize a linear upper approximation of the

positively homogeneous function µ(S, ·) defined (3.14). As a result, the approach might
be conservative. Note, that linear systems are by default positive homogeneous and
can therefore be used as well to establish invariance for a parametrized family of sets.
Furthermore, in that case we can also see that the function µ(S, ·) defined in (3.14)
behaves like a sublinear function, and therefore the justification to use a linear system
to approximate the dynamical system θ(k+1) = µ(S, θ(k)) is even more apparent. Thus
we assume:

Assumption 4. For all i ∈ N and all j ∈ N \ {i}

• fi(·) and gi,j(·) are linear functions of compatible dimension.

Proposition 3. Suppose Assumptions 2 and 4 are satisfied. Then all µi(S, ·) defined
in (3.14) are sublinear for all i ∈ N .

Proof. Due to Assumption 4, we know that fi(·) and gi,j(·) are homogeneous and hence
using Proposition 2, we have µi(S, λθ) = λµi(S, θ) for all λ > 0 and θ ∈ RN

+ . In addition
take any θ̄ ∈ RN

+ and θ̂ ∈ RN
+ , then we have

fi((θ̄i + θ̂i)Si)
⊕

j∈N\{i}
gi,j((θ̄j + θ̂j)θjSj) =

fi(θ̄iSi)⊕ fi(θ̂iSi)⊕
⊕

j∈N\{i}
gi,j(θ̄jSj)⊕

⊕
j∈N\{i}

gi,j(θ̂jSj) ⊆ µi(S, θ̄)Si ⊕ µi(S, θ̂)Si,

and hence µi(S, θ̄ + θ̂) ≤ µi(S, θ̄) + µi(S, θ̂).

We can check for interconnected linear systems, if a positively invariant family of sets
for a collection of sets S exists, using Theorem 8.

3.2.2 Stability and Convergence

Although our focus is on guaranteed constraint satisfaction, i.e. issues related to invari-
ance, it is also interesting to see that whether it is possible to obtain conclusions related
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3.2 Positively Invariant Family of Sets

to stability. In particular we consider the following interconnected systems with given
structure and their induced set–dynamics

Xi,k+1 = fi(Xi,k)
⊕

j∈N\{i}
gi,j(Xj,k). (3.19)

Fortunately, for linear interconnected systems, it is possible to establish stability of
the family of sets with respect to the Hausdorff distance, which measures the distance
between sets.
Regarding the set–sequence induced by (3.19), it is possible to derive the following

result.

Theorem 9. Suppose Theorem 8 holds under Assumptions 2 and 4. Consider the
parametrized family of sets S(S,Θ) given by (3.4) and any set–sequence Xi,k generated
by (3.19) with (X1,0,X2,0, . . . ,XN,0) ∈ S(S,Θ) for all i ∈ N and some collection of non-
empty, convex, symmetric sets that contain the origin in their interior, (L1, L2, . . . , LN).
Then, for all k ∈ N+,

(i) (X1,k,X2,k, . . . ,XN,k) ∈ S(S,Θ),

(ii) ∑i∈N H(Li,Xi,k, {0}) ≤ akb
∑
i∈N H(Li,Xi,0, {0}) for some scalars a ∈ [0, 1) and

b ∈ (0,∞),

(iii) ∀i ∈ N , H(Li,Xi,k, {0})→ 0 as k →∞.

Proof. (i) First note, that under the given Assumptions, whenever Xi,k ⊆ θi(k)Si, we
know that

Xi,k+1 = fi(Xi,k)
⊕

j∈N\{i}
gi,j(Xj,k) ⊆ fi(θi(k)Si)

⊕
j∈N\{i}

gi,j(θj(k)Sj) ⊆ θi(k + 1)Si, ∀i ∈ N .

(3.20)
Since S(S,Θ) is a positively invariant family of sets it follows by construction, that
(X1,k,X2,k, . . . ,XN,k) ∈ S(S,Θ) implies (X1,k+1,X2,k+1, . . . ,XN,k+1) ∈ S(S,Θ). Hence,
by induction we can conclude (X1,k,X2,k, . . . ,XN,k) ∈ S(S,Θ) for all k ∈ N, since
(X1,0,X2,0, . . . ,XN,0) ∈ S(S,Θ).

(ii) Due to Assumption 2 there exists a pair of positive, real scalars η1 and η2 such that,
for all i ∈ N , η1Li ⊆ Si ⊆ η2Li, where Li are some non-empty, convex, symmetric sets
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3 Invariance for Interconnected Systems

that contain the origin in their interior. It follows, that for any θ = (θ1, θ2, . . . , θN)T ∈
RN

+ , we have
η1θiLi ⊆ θiSi ⊆ η2θiLi

and hence
η1
∑
i∈N

θi ≤
∑
i∈N

H(Li, θiSi, {0}) ≤ η2
∑
i∈N

θi. (3.21)

Similar to Theorem 8, we can form the dynamics of the scaling factors as defined in (3.17).
Since ρ(M) < 1, we know that there exists ã ∈ [0, 1) and b̃ ∈ (0,∞) such that, for all
k ∈ N,

|θ(k)|L ≤ ãkb̃|θ(0)|L, (3.22)

where |x|L := minµ≥0{x ∈ µL} is a induced vector norm and L is some non–empty,
convex, symmetric set that contains the origin in its interior.
In addition, (3.21) implies, that there exists an additional pair of positive scalars η3

and η4 such that η3|θ|L ≤
∑
i∈N H(Li, θiSi, {0}) ≤ η4|θ|L. Using (3.20) and (3.22), we

can conclude that there exists a pair of scalars a ∈ [0, 1) and b ∈ (0,∞) such that, for
all k ∈ N, ∑i∈N H(Li,Xi,k, {0}) ≤ akb

∑
i∈N H(Li,Xi,0, {0}).

(iii) By (ii), we have ∑
i∈N H(Li,Xi,k, {0}) → 0 as k → ∞ so that, ∀i ∈ N ,

H(Li,Xi,k, {0})→ 0 as k →∞.

Using the previous Theorem, we can state now actual convergence and stability proper-
ties of the interconnected subsystems. In particular, given a positively invariant family
of sets S(S,Θ), that satisfies the conditions in Theorem 8-9, we have for all k ∈ N+

and all i ∈ N , that xi(0) ∈ θi(0)Si ⊆ Xi implies xi(k) ∈ θi(k)Si ⊆ Xi for any
(θ1(0), θ2(0), . . . , θN(0))T ∈ Θ, where θi(k) is generated by (3.17). Furthermore, the
global state trajectory x(k) = (x1(k)T, x2(k)T, . . . , xN(k)T)T converges exponentially
fast, in a stable manner. Hence, Theorem 9 implies that the origin is an exponentially
stable attractor for the dynamics (3.13) subject to the state constraints Xi with the
basin of attraction induced by and depending on the set Θ. More importantly, the in-
dividual subsystems do not require the exact knowledge of the initial conditions of the
other subsystems but merely that they belong to appropriate sets; in other words the
only requirement for the safe and independent operation of the dynamics (3.13) is the
condition that for all i ∈ N , xi(0) ∈ θi(0)Si for some θ0 = (θ1(0), θ2(0), . . . , θN(0))T ∈ Θ.
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3.2.3 Direct Construction for Linear Systems

As shown in the previous section, we use an outer linear approximation for the dynam-
ics (3.11) in order to obtain a positively invariant family of sets for the positively homo-
geneous interconnected systems (3.13). For linear interconnected systems we could show
that the accompanying µ(S, ·) dynamics are linear subhomogeneous, cf. Proposition 3.
Thus, the conditions specified in Theorem 8 might lead to conservative conditions, i.e.
the there might exist a larger set Θ. In order to obtain stronger results, we will utilize
an approach similar to the recursive set–iteration approach exemplified in the previous
chapter. As a motivation consider, the following Corollary, where we utilize the com-
parison function µ(S, ·) defined in (3.14) in an analogous way to the approach outlined
in Theorem 7, to obtain a positively invariant family of sets S(S,Θ).

Corollary 2. Suppose Assumption 2 and 4 are satisfied. Let

Θi+1 := µ−1(S,Θi)
⋂

Θ0, (3.23)

where µi(S, ·) are defined in (3.14), µ−1(·) denotes the pre–image set and the initial
set Θ0 = {(θ1, θ2, . . . , θN)T ∈ RN

+ : ∀i ∈ N , θiSi ⊆ Xi}. Assume Θ∞ exists and is
non–empty, then S and Θ∞ form a positively invariant family of sets S(S,Θ∞).

Proof. According to Theorem 7, we know that µ(S,Θ∞) ⊆ Θ∞ ⊆ Θ0. Using Proposi-
tion 1 we can conclude that S(S,Θ∞) is a positively invariant family of sets.

In order to use the recursion outlined in Corollary 2, we need to be able to compute
the pre–image set µ−1(S,Θ) for a given set Θ. However, this is even in the linear case
with polytopic sets Θ nontrivial. In the remainder of this section we want to construct a
similar approach to Algorithm 1 motivated by the use of the recursion (3.23). But instead
of using the comparison function µ(S, ·), we intend to directly utilize the definition of
positively invariant family of sets as given by Definition 6. As a motivation, let us first
define the set of admissible scaling factors Θ,

Θ0 = {(θ1, θ2, . . . , θN)T ∈ RN
+ : ∀i ∈ N , θiSi ⊆ Xi}, (3.24)

and assume that Assumptions 2–3 hold, which in turn induces nice properties for Θ0

according to Lemma 2. For simplicity, let us consider the interconnected, positively
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homogeneous systems specified in (3.13) for a collection of sets S = (S1,S2, . . . ,SN) and
let for all i ∈ N ,

Fi(S, θ) := fi(θiSi)
⊕

j∈N\{i}
gi,j(θjSj), (3.25)

p(S,Y) := {θ ∈ RN
+ : ∃(θ+

1 , θ
+
2 , . . . , θ

+
N)T ∈ Y , s.t.∀i ∈ N , Fi(S, θ) ⊆ θ+

i Si}. (3.26)

The set p(S,Y) given by (3.26) has similar properties as the preimage set µ−1(S,Y). In
particular, note that for all θ̄ ∈ p(S,Ω0), there exists a θ̄+ ∈ Ω0 such that Fi(S, θ̄) ⊆
θ̄+
i Si ⊆ Xi for all i ∈ N . The basic idea we would like to exploit is to find some set

Θ ⊆ Θ0, such that p(S,Θ) ⊆ Θ. This set would induce a positively invariant family of
sets S(S,Θ), since for every θ ∈ p(S,Θ) ⊆ Θ there would exist another θ+ ∈ Θ, such
that Fi(S, θ) ⊆ θ+

i Si ⊆ Xi for all i ∈ N . In order to construct such a set, we can adapt
the iteration given in (3.23), but instead of using the preimage set µ−1(S, ·), we exploit
the some basic properties of p(S, ·). In particular, consider the following recursion

Ωi+1 := p(S,Ωi)
⋂

Ω0, Ω0 := Θ0. (3.27)

Note, that all the sets Ωi are either empty or included in Θ0 for all i ∈ N. Furthermore,
if we can find an index t∗ such that Ωt∗ = Ωt∗+1, we can stop the recursion given by
(3.26) and use the set Ωt∗ to form the positively invariant family of sets S(S,Ωt∗). For
the linear case and considering a collections of non–empty, convex polytopic sets S and
constraint sets Xi, we can easily construct an algorithm to compute the set p(S,Θ) for
any non–empty, convex and polytopic set Θ. In fact, the set p(S,Θ) is in that case also
a polytope. In order to highlight the method, we assume in the remainder of this section
the following:

Assumption 5. For all i ∈ N ,

i) Xi is non–empty, compact and a convex polytope given by

Xi := {x ∈ Rni : φTi,jx ≤ 1, j = {1, 2, . . . , si}},

ii) Si is non–empty, compact and a convex polytope given by

Si := {x ∈ Rni : ρTi,jx ≤ 1, j = {1, 2, . . . , ti}.
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First of we can show, that the set Θ0 is in that case a polytope.

Corollary 3. Suppose Assumption 5 holds. Then Θ0 given by (3.24) is a convex polytope.

Proof. Using Theorem 4, we know that θiSi ⊆ Xi implies s(θiSi, y) ≤ s(X , y) for all
y ∈ Rni and all i ∈ N . Since, Si are Xi are polytopes, this is equivalent to s(θiSi, φi,j) ≤
1, ∀j ∈ {1, 2, . . . , si}. Exploiting basic properties of the support function s(X , ·), we
know that this is the same as θis(Si, φi,j) ≤ 1, ∀j ∈ {1, 2, . . . , si}. Compactness and the
fact that Si is non–empty implies the existence and boundedness of s(Si, φi,j) for every
φi,j ∈ Rni , which implies that

Θ0 =
{
θ ∈ RN

+ : Cθ ≤ 1
}
,

where

C =



s(S1, φ1,1) 0 0 . . . 0
s(S1, φ1,2) 0 0 . . . 0

... ... ... . . .
...

s(S1, φ1,s1) 0 0 . . . 0
0 s(S2, φ2,1) 0 . . . 0
0 s(S2, φ2,2) 0 . . . 0
... ... ... . . .

...
0 s(S2, φ2,s2) 0 . . . 0
0 0 ... . . .

...
... ... ... . . .

...
0 0 0 . . . s(SN , φN,1)
0 0 0 . . . s(SN , φN,2)
... ... ... . . .

...
0 0 0 . . . s(SN , φN,sN

)



(3.28)

Furthermore, compactness of Xi implies that the set Θ0 is bounded. In conclusion, we
know that the set Θ0 is given by the intersection of a finite number of half-spaces and
hence a convex polytope.

As mentioned before, if we consider linear interconnected systems, we can show that
all Ωi given by the recursion (3.27) are convex polytopes in case of polytopic constraint
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sets Xi and sets Si

Corollary 4. Suppose Assumption 4–5 are satisfied. Then Ωi given by (3.27) is a convex
polytope for any i ∈ N.

Proof. First note, that the intersection of a polyhedron and a polytope is again a poly-
tope, since the intersection of a bounded and another arbitrary set in Rn is again
bounded. According to Corollary 3, we know that Ω0 = Θ0 is a polytope. Hence, if
p(S,Ω0) is a polyhedron, then it follows by induction, that Ωi is a polytope for all i ∈ N.
Without loss of generality, let Ω0 := {θ ∈ RN : Cθ ≤ θ̄}, where C ∈ Rm×N and θ̄ ∈ Rm.
In addition, for notational convenience (implied by linearity) we set

Ai,ixi := fi(xi) and Ai,jxj := gi,j(xj),

where Ai,i ∈ Rni×ni and Ai,j ∈ Rni×nj for all i ∈ N and j ∈ N \ {i}. Pick any
θ = (θ1, θ2, . . . , θN)T ∈ p(S,Ω0), then using (3.26), we know that for all i ∈ N there
exists θ+ = (θ+

1 , θ
+
2 , . . . , θ

+
N)T ∈ Ω0, such that ⊕j∈N θjAi,jSj ⊆ θ+

i Si. Using Theorem 4
and the fact that all Si are polytopes, we can exploit the properties of the support
function s(Sj, ·) to show that there exists θ+ ∈ Ω0, such that

∑
j∈N

θjs(Sj, AT
i,jρi,k) ≤ θ+

i , ∀k ∈ {1, 2, . . . , ti}. (3.29)

for all i ∈ N . By Assumption, all Sj are compact and non–empty, hence s(Sj, AT
i,jρi,k)

exists and is bounded. This in turn implies, that for all θ ∈ p(S,Ω0) there exists θ+ ∈ Ω0,
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3.2 Positively Invariant Family of Sets

such that

s(S1, A
T
1,1ρ1,1) s(S2, A

T
1,2ρ1,1) . . . s(SN , AT

1,Nρ1,1)
s(S1, A

T
1,1ρ1,2) s(S2, A

T
1,2ρ1,2) . . . s(SN , AT

1,Nρ1,2)
... ... . . .

...
s(S1, A

T
1,1ρ1,t1) s(S2, A

T
1,2ρ1,t1) . . . s(SN , AT

1,Nρ1,t1)
s(S1, A

T
2,1ρ2,1) s(S2, A

T
2,2ρ2,1) . . . s(SN , AT

2,Nρ2,1)
s(S1, A

T
2,1ρ2,2) s(S2, A

T
2,2ρ2,2) . . . s(SN , AT

2,Nρ2,2)
... ... . . .

...
s(S1, A

T
2,1ρ2,t2) s(S2, A

T
2,2ρ2,t2) . . . s(SN , AT

2,Nρ2,t2)
... ... ... ...
... ... ... ...

s(S1, A
T
N,1ρN,1) s(S2, A

T
N,2ρN,1) . . . s(SN , AT

N,NρN,1)
s(S1, A

T
N,1ρN,2) s(S2, A

T
N,2ρN,2) . . . s(SN , AT

N,NρN,2)
... ... ... ...

s(S1, A
T
N,1ρN,tN ) s(S2, A

T
N,2ρN,tN ) . . . s(SN , AT

N,NρN,tN )


︸ ︷︷ ︸

:=P

θ ≤



1 0 . . . 0
1 0 . . . 0
... ... ... ...
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
... ... ... ...
0 1 . . . 0
0 0 ... 0
... ... ... ...
0 0 . . . 1
0 0 . . . 1
... ... ... ...
0 0 . . . 1


︸ ︷︷ ︸

:=L

θ+.

(3.30)
Eventually, we can conclude that

p(S,Ω0) :=

θ ∈ RN : ∃θ+ ∈ RN , s.t.
P

0

 θ +
−L
C

 θ+ ≤

0
θ̄

 , (3.31)

is a convex polyhedron, since the projection of a polyhedron onto a subspace is again a
polyhedron.

Note, that under the given Assumptions, we can easily compute the set p(S,Ω0) for
some given polytopic set Ω0 and collection of polytopic sets S. In fact, we can see
from (3.31), that it only involves solving a series of linear programs and performing a
orthogonal projection onto a subspace of N coordinates, which in turn can be performed
by applying the well known Fourier-Motzkin elimination algorithm, cf. [Keerthi and
Gilbert 1987]. As explained before, we need an appropriate stopping criteria to stop the
recursion defined in (3.27). This can be performed similarly to Algorithm 2 in which we
check if there is an index t∗ in which the generated polytopes Ωi are not changing. An
example of this method can be found in Chapter 5.
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3 Invariance for Interconnected Systems

3.3 Robust Positively Invariant Family of Sets for Linear
Systems

Conceptually, we can analyze the robust, interconnected systems defined in (3.32) in the
same way as outlined in the previous section. As in most of the cases, this leads to simple
and basic extensions. Only the most practical and applicable results are provided in this
section, namely by considering linear systems and linear interconnections. In particular,
consider the set of N interconnected, autonomous systems given for all i ∈ N as

Σi : xi(k + 1) = Ai,ixi(k) +
∑

j∈N\{i}
Ai,jxj(k) + wi, (3.32)

with the disturbance sets wi ∈ Wi ⊂ Rni and the constraint sets Xi ⊂ Rni . Furthermore,
we have xi(·) ∈ Rni , Ai,i ∈ Rni×ni and Ai,j ∈ Rni×nj .
We can extend Definition 6 to handle the system class given by (3.32).

Definition 8. Given a collection of sets S = {Si ⊂ Rni : i ∈ N} and a set Θ ⊂ RN
+ .

The parametrized family of sets S(S,Θ), specified in (3.4) is a robust positively invariant
family of sets for the system (3.32) if for all θ = (θ1, θ2, . . . , θN)T ∈ Θ and all i ∈ N
there exists θ+ = (θ+

1 , θ
+
2 , . . . , θ

+
N)T ∈ Θ, such that xi(k) ∈ θiSi ⊆ Xi implies xi(k + 1) ∈

θ+
i Si ⊆ Xi for all wi ∈ Wi.

Note, that the notion of robust positively invariant family of sets, is similar to the
extension of robust positively invariant sets to positively invariant sets. As pointed
out previously, it is possible to gain additional advantages, depending on the choice of
parametrization of the family of sets as well as the choice of the collection of sets S.
Fortunately, with the simple parametrization given by (3.4), we can perform an adequate
and similar analysis of the problem.
In a similar fashion, as in the non–robust case, we can use an extended type of compar-

ison function defined in (3.11) to establish the existence of a robust positively invariant
family of sets. Obviously, it is necessary to slightly adjust the functions:
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3.3 Robust Positively Invariant Family of Sets for Linear Systems

µe(S, θ) =


µe1(S, θ)
µe2(S, θ)

...
µeN(S, θ)

 :=



min
µ1≥0

{
A1,1θ1S1 ⊕

⊕
j∈N\{1}

A1,jθjSj ⊕W1 ⊆ µ1S1

}

min
µ2≥0

{
A2,2θ2S2 ⊕

⊕
j∈N\{2}

A2,jθjSj ⊕W2 ⊆ µ2S2

}
...

min
µN≥0

{
AN,NθNSN ⊕

⊕
j∈N\{N}

AN,jθjSj ⊕WN ⊆ µNSN
}


(3.33)

In order to obtain, results that are easily verifiable and applicable, we need to assume
certain conditions on the disturbance sets Wi.

Assumption 6. The disturbance sets Wi are compact, convex sets that contain the
origin for all i ∈ N .

Fortunately, the properties of this extended type of comparison function defined
in (3.33) is again favorably, as summarized in the following Proposition.

Proposition 4. Suppose Assumptions 2 and 6 are true. Then all µei (S, ·) defined
in (3.33) are convex and continuous functions for all i ∈ N .

Proof. Pick any λ such that 0 ≤ λ ≤ 1 and any θ̄ ∈ RN
+ , θ̂ ∈ RN

+ . By properties of
Minkowski set addition and definition of µei (S, ·) the relations

⊕
j∈N

(λθ̄j + (1− λ)θ̂j)Ai,jSj ⊕Wi =

⊕
j∈N

λθ̄jAi,jSj ⊕
⊕
j∈N

(1− λ)θ̂jAi,jSj ⊕Wi ⊆ µei (S, λθ̄ + (1− λ)θ̂)Si
(3.34)

hold true and, similarly, we also have:

⊕
j∈N

λθ̄jAi,jSj ⊕ λWi = λ(
⊕
j∈N

θ̄jAi,jSj ⊕Wi) ⊆ λµei (S, θ̄)Si, (3.35)

and ⊕
j∈N

(1− λ)θ̂jAi,jSj ⊕ (1− λ)Wi ⊆ (1− λ)µei (S, θ̂)Si. (3.36)

By assumption the sets Wi are convex and compact and, hence, Wi = (1− λ)Wi⊕ λWi
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3 Invariance for Interconnected Systems

so that by utilizing (3.35) and (3.36) we obtain:

⊕
j∈N

λθ̄jAi,jSj ⊕
⊕
j∈N

(1− λ)θ̂jAi,jSj ⊕Wi ⊆

λµei (θ̄)Si ⊕ (1− λ)µei (θ̂)Si = ((1− λ)µei (S, θ̂) + λµei (S, θ̄))Si.
(3.37)

Hence, in view of (3.34) and (3.37), optimality of µei (S, λθ̄ + (1 − λ)θ̂) yields that
µei (S, λθ̄ + (1− λ)θ̂) ≤ λµei (S, θ̄) + (1− λ)µei (S, θ̂) verifying convexity of µei (S, ·). Con-
tinuity follows similar to the proof of continuity in Lemma 1.

Although convexity and continuity are certainly nice properties for the collection of
functions µei (S, ·), they are still bothersome to analyze from a system-theoretic point of
view. Henceforth, in order to establish nicely verifiable conditions, it makes sense to use
a collection of simpler functions to properly approximate the exact functions µei (S, ·)
defined in (3.33). In particular, a collection of affine functions is used to find an upper
approximation for the exact functions. Similar to Theorem 8, we can find conditions
that guarantee the existence of a robust positively invariant family of sets.

Theorem 10. Suppose Assumption 2 and 6 hold. Let Θ0 = {(θ1, θ2, . . . , θN)T ∈ RN
+ :

∀i ∈ N , θiSi ⊆ Xi},

M =


µ1,1 · · · µ1,N
... . . . ...

µN,1 · · · µN,N

 and α =


α1
...
αN

 ,

where Ai,jSj ⊆ µi,jSi, Wi ⊆ αiSi, αi ≥ 0, and µi,j ≥ 0 for all i ∈ N and j ∈ N . If
the matrix M is strictly stable, i.e. ρ(M) < 1 and θ̄ = (I −M)−1α is an interior point
of Θ0, then there exists a parametrized robust, positively invariant family of sets for the
collection S.

Proof. Conceptually, the proof is very similar to the proof of Theorem 8, i.e. we want
to construct a nontrivial set Θ ⊆ Θ0, such that θ ∈ Θ implies µe(S, θ) ∈ Θ. In fact,
consider the affine system

θ(k + 1) =


θ1(k + 1)

...
θN(k + 1)

 =


∑
i∈N µ1,iθi(k)

...∑
i∈N µN,iθi(k)

+


α1
...
αN

 = Mθ(k) + α, (3.38)
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3.3 Robust Positively Invariant Family of Sets for Linear Systems

then clearly by construction θ(k) ≥ 0 for all θ(0) ∈ RN
+ and θi(k + 1) ≥ µei (S, θ(k))

for every θ(k) ∈ RN
+ . Hence, if we can find a set Θ ⊆ Θ0 such that θ(k) ∈ Θ implies

Mθ(k) + α ∈ Θ, then we know that µe(S, θ(k)) ∈ Θ as well. According to Lemma 2,
Θ0 is a convex, compact and a full-dimensional subset of RN

+ . Since the fixed point θ̄
is an interior point of Θ0, we know that the set Θ0 ⊕ {−θ̄} has the origin is an interior
point, and is also convex, compact and a full-dimensional subset of RN

+ . Furthermore,
since M is strictly stable we can use the change of coordinates θ∗(k) = θ(k)− θ̄ to show
similarly to the proof of Theorem 8, that there exists a nontrivial, positively invariant
set Θ∗, such that θ∗(k) ∈ Θ∗ implies Mθ∗(k) ∈ Θ∗ ⊆ Θ0 ⊕ {−θ̄}. It follows, that

Mθ∗(k) + α = Mθ(k)−Mθ̄ + α ∈ Θ∗ ⊕ {α} ⊆ Θ0 ⊕ {−θ̄ + α},

and therefore

Mθ(k) + α ∈ Θ∗ ⊕ {Mθ̄ + α} = Θ∗ ⊕ {θ̄} ⊆ Θ0{−θ̄ +Mθ̄ + α} = Θ0.

Let, Θ := {θ̄} ⊕ Θ∗, then we know that Θ is nontrivial, Θ ⊆ Θ0 and θ(k) ∈ Θ implies
Mθ(k) + α ∈ Θ and as a result µe(S, θ(k)) ∈ Θ for every θ(k) ∈ Θ.
Using the fact, that Ai,jSj ⊆ µi,jSj, we can show that Ai,jθj(k)Sj ⊆ µi,jθj(k)Sj for

every θ(k) ∈ RN
+ and all i ∈ N and j ∈ N . Hence, by taking the sum over all j ∈ N we

have

⊕
i∈N

Ai,jθj(k)Sj ⊕Wi ⊆
⊕
j∈N

µi,jθj(k)Si ⊕ αiSi = (
∑
j∈N

µi,jθj(k) + αi)Si = θi(k + 1)Si.

Eventually, we can argue similar as in the proof of Theorem 8 and conclude that there
exists a robust positively invariant family of sets S(S,Θ).

Convergence and Stability

Similar to the non–robust case, we can characterize the qualitative behavior of the global
trajectories induced by the N interconnected systems defined in (3.32) subject to the
collection of state constraints (X1,X2, . . . ,XN). We will exploit the θ–dynamics induced
by the dynamics specified (3.33) and employ the Hausdorff distance as a measure. In
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3 Invariance for Interconnected Systems

particular, consider the set–dynamics for all i ∈ N

Xi,k+1 = Ai,iXi,k
⊕
j∈N

Ai,jXj,k ⊕Wi. (3.39)

induced by (3.32). We proceed to demonstrate how the stability properties of the θ–
dynamics in (3.33) can be utilized to obtain guaranteed robust stability properties of
the exact induced, independent set–dynamics in (3.39) as well as the original set of N
systems specified in (3.32). In particular, we have the following:

Theorem 11. Suppose Theorem 10 holds under Assumptions 2 and 6. Consider the
parametrized family of sets S(S,Θ) given by (3.4), the fixed point θ̄ = (I −M)−1α and
any set–sequence Xi,k generated by (3.39) with (X1,0,X2,0, . . . ,XN,0) ∈ S(S,Θ) for all
i ∈ N . Then, for all k ∈ N,

(i) (X1,k,X2,k, . . . ,XN,k) ∈ S(S,Θ),

(ii) ∑i∈N H(Li, θi(k)Si, θ̄iSi) ≤ akb
∑
i∈N H(Li, θi(0)Si, θ̄iSi) for some scalars a ∈ [0, 1)

and b ∈ (0,∞),

(iii) ∀i ∈ N , H(Li, θi(k)Si, θ̄iSi)→ 0 as k →∞.

(iv) ∀i ∈ N , h(Li,Xi,k, θ̄iSi)→ 0 as k →∞.

Proof. (i) Similarly, to the the non–robust case and under the given assumptions, Xi,k ⊆
θi(k)Si implies for all i ∈ N ,

Xi,k+1 = Ai,iXi,k
⊕

j∈N\{i}
Ai,jXj,k ⊕Wi ⊆ Ai,iθi(k)Si

⊕
j∈N\{i}

Ai,jθj(k)Sj ⊕Wi ⊆ θi(k + 1)Si.

(3.40)
Furthermore, S(S,Θ) is a robust positively invariant family of sets and therefore we have
that (X1,k,X2,k, . . . ,XN,k) ∈ S(S,Θ) implies (X1,k+1,X2,k+1, . . . ,XN,k+1) ∈ S(S,Θ). But,
(X1,0,X2,0, . . . ,XN,0) ∈ S(S,Θ) and hence the claim follows by induction.
(ii) By assumption, Si are compact and convex sets that contain the origin in their

interior for all i ∈ N . Thus, there exist scalars η1 ∈ (0,∞), η2 ∈ (0,∞), such that
η1Li ⊆ Si ⊆ η2Li, where Li are some compact, symmetric and convex sets that contain
the origin in their interior. If θ̄i ≤ θi, then trivially θ̄iSi ⊆ θiSi and

θ̄iSi ⊕ η1(θi − θ̄i)Li ⊆ θ̄iSi ⊕ (θi − θ̄i)Si = θiSi ⊆ θ̄iSi ⊕ η2(θi − θ̄i)Li.
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Similarly, if θi ≤ θ̄i then θiSi ⊆ θ̄iSi and

θiSi ⊕ η1(θi − θ̄i)Li = θiSi ⊕ η1(θ̄i − θi)Li ⊆ θiSi ⊕ (θ̄i − θi)Si = θ̄iSi ⊆

θiSi ⊕ η2(θ̄i − θi)Li = θiSi ⊕ η2(θi − θ̄i)Li.

By the definition of the Hausdorff distance it follows that:

η1|θi − θ̄i| ≤ H(Li, θiSi, θ̄iSi) ≤ η2|θi − θ̄i|.

Summing over i ∈ N we obtain:

η1
∑
i∈N
|θi − θ̄i| ≤

∑
i∈N

H(Li, θiSi, θ̄iSi) ≤ η2
∑
i∈N
|θi − θ̄i|.

Since ρ(M) < 1, there exist scalars ã ∈ [0, 1) and b̃ ∈ (0,∞) such that:

|θ(k)− θ̄|L ≤ ãkb̃|θ(0)− θ̄|L,

where |x|L := minµ≥0{x ∈ µL} is a induced vector norm and L is some non–empty,
convex, symmetric set that contains the origin in its interior. Furthermore, there exists
scalars η3 ∈ (0,∞) and η4 ∈ (0,∞) such that:

η3|θ − θ̄|L ≤
∑
i∈N

H(Li, θiSi, θ̄iSi) ≤ η4|θ − θ̄|L.

Eventually, by using the preceding relations, we can always find scalars a ∈ [0, 1) and
b ∈ (0,∞) such that

∑
i∈N

H(Li, θi(k)Si, θ̄iSi) ≤ akb
∑
i∈N

H(Li, θi(0)Si, θ̄iSi).

(iii) By (ii), we have ∑i∈N H(Li, θ(k,i)Si, θ̄iSi)→ 0 as k →∞ and therefore it follows
H(Li, θi(k)Si, θ̄iSi)→ 0 as k →∞ for all i ∈ N .
(iv) Convergence with respect to the Hausdorff upper semi-distance h(L, ·, ·) follows

immediately from (i), (iii) and (3.40).

The knowledge of a robust positively invariant family of sets S(S,Θ), satisfying the
conditions in Theorem 11, allow us to analyze the convergence properties of the state
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trajectories xi(k) given by (3.32) for all k ∈ N and i ∈ N . In fact, whenever xi(0) ∈
θi(0)Si, for some (θ1(0), θ2(0), . . . , θN(0))T ∈ Θ, we have xi(k) ∈ θi(k)Si, for all k ∈ N
and all wi ∈ Wi, where θi(k) is generated by (3.38). Since, the definition of a robust
positively invariant family of sets guarantees that θi(k) ∈ Xi for all k ∈ N, i.e. the
state constraints are respected for all times k > 0. In addition, Theorem 11 (iii)-(iv)
implies that the states xi(k) will converge to the set θ̄iSi exponentially fast. An example
application of this method can be found in Chapter 5.

3.4 Summary
We could show, that the concept of invariant regions benefits from the use of parametrized
family of sets, when the analysis of interconnected systems is concerned. By introducing
the concept of invariant family of sets, we provided a strong analytical tool, allowing us to
specify flexible regions in the state space, that lead to guaranteed constraint satisfaction,
even with respect to additive, bounded disturbances. In addition, we presented easily
verifiable conditions, guaranteeing existence of nontrivial, positively invariant family of
sets for nonlinear interconnected systems, that are positively homogeneous of degree one.
For linear interconnected systems, we also presented algorithms for the determination of
these family of sets. Furthermore we showed, that under specific circumstances strong
convergence properties can be guaranteed.
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4 Control Synthesis using Positively
Invariant Family of Sets

The main focus of this chapter is to extend the methodology we provided in the previ-
ous chapter, by incorporating contrained input controls and employing different control
strategies. We have outlined how to analyze autonomous and interconnected systems,
with the objective to achieve state constraint satisfaction and robust stability. Obvi-
ously, if we consider control systems with additional input constraints, this leads to
a more complicated setup. For instance, consider the set of N linear interconnected
discrete–time, time–invariant, systems given by:

Σi : xi(k + 1) = Aixi(k) +Biui(k) +
∑

j∈N\{i}
gi,j(xj(k)), (4.1)

where ∀i ∈ N , xi(·) ∈ Rni is the current state of the ith subsystem, ui(·) ∈ Rmi is the
current control of the ith subsystem, x(k) = (x(k)T

1 , x(k)T
2 , . . . , x(k)T

N)T ∈ Rn with n =∑
i∈N ni is the current state of the overall system, u(k) = (u(k)T

1 , u(k)T
2 , . . . , u(k)T

N)T ∈
Rm with m = ∑

i∈N mi is the current control of the overall system. In addition, we have
for each i ∈ N , Ai ∈ Rni×ni , Bi ∈ Rni×mi and the interconnections gi,j(·) : Rnj → Rni .
Furthermore, the subsystem variables xi(·) ∈ Rni and ui(·) ∈ Rmi are subject to hard

constraints, namely:
∀i ∈ N , xi(·) ∈ Xi and ui(·) ∈ Ui, (4.2)

where ∀i ∈ N , Xi ⊆ Rni and Ui ⊆ Rmi are the state and control constraint sets for
the ith subsystem. Similarly, to the autonomous case we could augment the subsystems
into one big global control system Σ and try to design a global controller and one
positively invariant set. For instance in the linear case, e.g. when gi,j(·) are linear
functions, we could use the approach summarized in Theorem 6 to analyze one linear
u(k) = Kx(k) to find one positively invariant set S subject to the dynamics of one large
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4 Control Synthesis using Positively Invariant Family of Sets

process Σ : x(k+1) = Ax(k)+Bu(k). Despite the complexity issues outlined, we have an
additional problem by applying this centralized approach. In fact, we obtain one global
control law, i.e. the matrix K is possible dense, and hence global state information needs
to be transmitted to a central entity for the stabilization of the complete process. This
is, however, often not desirable. For instance a decentralized operation might be more
robust against changes in the interconnection structure or losses in the other subsystems.
Enforcing a specific structure in the K matrix, i.e. exploiting that only certain in-

formations can be used in the local controllers, is, at least for the constrained case
challenging and can be obtained only in special cases, see for instance [Rotkowitz and
Lall 2006] for an in depth discussion. As outlined we would like to obtain a collection
of feedback controllers instead and a related modular design procedure, not requiring
to consider a overall description of the complete interconnected systems. Even though
we might not achieve the same performance as the global solution, we can gain more
flexibility from this modular design.
One of the main objectives in this chapter is to exemplify, how positively invariant

family of sets can provide a design tool for the given setup. In particular, as argued in
the autonomous case, besides state constraint satisfaction, we want to be able to easily
handle input constraint satisfaction in a decentralized or distributed way, i.e. with only
partial knowledge of the overall interconnected plant, avoiding a centralized solution.
This is done by introducing a trade–off between the local and global design aspects for
decentralized or distributed controllers of interconnected systems. As a result we gain
flexibility without introducing too much conservatism. To achieve this goal, we assume
for the constraint sets and the system dynamics of the non–interconnected systems the
following:

Assumption 7. For each i ∈ N ,

(i) the matrix pairs (Ai, Bi) are controllable, and,

(ii) Xi and Ui are polytopes given by

Xi := {x ∈ Rni : φT
i,jx ≤ 1, ∀j = {1, 2, . . . , si}},

Ui := {u ∈ Rmi : ψT
i,ju ≤ 1, ∀j = {1, 2, . . . , ti}}.

Assuming controllability allows us to present the remaining results in a more straight-
forward way. The advantage of using polytopic constraint sets Xi and Ui allows us to
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4.1 Distributed Linear Control Systems subject to Linear Interconnections

flexibly approximate general compact and convex sets sufficiently, cf. [Schneider 1993].
For the subsequent analysis we will mainly consider the cases, where the interconnections
are either linear or positively homogeneous functions.

4.1 Distributed Linear Control Systems subject to
Linear Interconnections

For the distributed case, we restrict our attention to linear interconnected systems. We
assume that (4.1) can be written in the following way:

Σi : xi(k + 1) = Aix(k) +Biui(k) +
∑

j∈N\{i}
Gi,jxj(k), (4.3)

where for all i ∈ N and j ∈ N \ {i}, Gi,j ∈ Rni×nj .
The main objective of this section, is to 1) examine practical set invariance and sta-

bility notions for the set of discrete–time, time–invariant, linear control systems of (4.3),
and 2) obtain a local controller design, that renders the overall system stable. In par-
ticular we want to show how the concept of positively invariant family of sets can be
properly extended and applied. Mainly, we want to analyze two types of structures for
the employed controllers. In the first case we assume that each of the subsystems Σi

has only partial knowledge of the overall plant for the synthesis of the local controllers.
More precisely, for any i ∈ N and at any time instance k ∈ N, the current state xi(k)
of the subsystem Σi and the value of the total sum ∑

j∈N\{i}Gi,jxj(k) is know to the ith

decision maker for the synthesis of the control action ui(·). In particular, the decision
maker of subsystem Σi has no knowledge of the exact state information xj(k) of the
other subsystems Σj or the individual summands Gi,jxj(k). In the second case we want
to assume, that for any i ∈ N and at any time instance k, the individual summands
Gi,jxj(k) are known to the decision maker of the subsystem Σi, when deciding on the
control action ui(·).
Note, that this is a reasonable scenario, since complete knowledge of individual state

information for the ith subsystem would imply, that all the state information need to be
transmitted at every instance k. Often this is not feasible or desirable, as explained in the
previous chapters, and therefore we focus on a decentralized or distributed operations.
Also note, that the decision maker for each of the subsystem Σi has no knowledge of

57



4 Control Synthesis using Positively Invariant Family of Sets

the exact state information of the other subsystems Σj. This also implies, that it is in
general not possible to reconstruct xj(k) from either Gi,jxj(k) or ∑j∈N\{i}Gi,jxj(k).
Due to linearity of the overall interconnected system, we restrict ourselves to linear

feedbacks. Furthermore, as mentioned previously, the decision maker of the subsystem
Σi has either knowledge of the individual interconnection effects or of the cumulative
interconnection effects. Under these consideration it makes sense to employ linear feed-
backs that counteracts these effects by either employing one or several additional gains.
In particular, we consider two types of control structures. The first one is given by,

ui(k) = Kixi(k) + Li
∑

j∈N\{i}
Gi,jxj(k), ∀i ∈ N (4.4)

with Ki ∈ Rni×ni , Li ∈ Rni×ni and the second one is given by

ui(k) = Kixi(k) +
∑

j∈N\{i}
Li,jGi,jxj(k), ∀i ∈ N (4.5)

with Ki ∈ Rni×ni and Li,j ∈ Rni×ni for all j ∈ N \{i}. Note, that in (4.4) we are looking
for a pair of gains (Ki, Li) as compared to several gains (Ki, (Li,j : j ∈ N \{i})) in (4.5).
As mentioned, we want to investigate how the concept of positively invariant family of

sets can be properly applied to the interconnected control system specified in (4.3) with
the control structures given by (4.4) and (4.5), respectively. In particular, we consider
the closed loop form given by

xi(k + 1) = Ai,ixi(k) +
∑

j∈N\{i}
Ai,jxj(k), (4.6)

where for all i ∈ N , Ai,i := Ai+BiKi, ∀j ∈ N \{i}, in the case of control structure (4.4),
Ai,j := (I + BiLi)Gi,j, while in case of control structure (4.5), Ai,j := (I + BiLi,j)Gi,j.
With these definitions, we utilize the form (4.6) for the analysis throughout the remainder
of this section.
We considered so far only autonomous systems, that are subject to state constraints

only. Recall from Proposition 1, that we used Θ0 to form a set of admissible θ that
obey the state constraints. In other words, whenever we pick a θ from this set, we know
that the scaled set θiSi is within the state constraint Xi. By employing the µ(S, ·)–
dynamics, see Lemma 1, and determining a positively invariant set Θ within this set Θ0,

58



4.1 Distributed Linear Control Systems subject to Linear Interconnections

i.e µ(S,Θ) ⊆ Θ ⊆ Θ0, we can simply guarantee that Θ together with the collection of
sets S form a positively invariant family of sets. Clearly, in order to enforce additional
input constraint satisfaction, we simply need to adjust the set Θ0 in such a way, that
it defines the set of all valid θ that obey the state and input constraints. In that case,
we can use the same argumentation to provide a parametrized collection of sets S(S,Θ)
that satisfies both input and state constraint satisfaction. This set can be characterized,
if we consider the control input structures induced by (4.4)–(4.5):

Θ0 = {(θ1, θ2, . . . , θN)T ∈ RN
+ :, ∀i ∈ N , θiSi ⊆ Xi, KiθiSi ⊕

⊕
j∈N\{i}

Ki,jθjSj ⊆ Ui},

(4.7)
where Ki,j := LiGi,j in case of control structure (4.5) and Ki,j := Li,jGi,j in case
of control structure (4.6), respectively. Similarly, to the previous chapter, convexity
and compactness of the set Θ0 simplifies the subsequent characterization of positively
invariant family of sets.

Lemma 3. Suppose Assumption 2 and 7 are satisfied, then the set Θ0 as defined in (4.7)
is a convex, compact and full-dimensional, proper subset of RN

+ that contains the origin.

Proof. The proof follows the lines of the proof of Lemma 2 and therefore only a sketch
is given here. Trivially, we have 0 ∈ Θ0. Pick any θ̂ ∈ Θ0 and θ̄ ∈ Θ0. We have
(1− λ)θ̂ + λθ̄ ∈ RN

+ for all 0 ≤ λ ≤ 1. By Assumption 2 it follows that for all i ∈ N ,

((1− λ)θ̂i + λθ̄i)Si = (1− λ)θ̂iSi ⊕ λθ̄iSi ⊆ (1− λ)Xi ⊕ λXi = ((1− λ) + λ)Xi = Xi,

and

Ki((1− λ)θ̂i + λθ̄i)Si ⊕
⊕

j∈N\{i}
Ki,j((1− λ)θ̂j + λθ̄j)Sj =

(1− λ)(Kiθ̂iSi ⊕
⊕

j∈N\{i}
Ki,j θ̂jSj)⊕ λ(Kiθ̄iSi ⊕

⊕
j∈N\{i}

Ki,j θ̄jSj) ⊆ (1− λ)Ui ⊕ λUi = Ui

for all 0 ≤ λ ≤ 1, which makes Θ0 a convex subset of RN
+ . The fact that Θ0 is compact

and a full-dimensional subset of RN
+ follows analogously to the proof of Lemma 2.

For the linear case, we can now easily extend the results presented in Theorem 8.
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Corollary 5. Suppose Assumption 2 and 7 are satisfied. Consider the set Θ0 defined in
(4.7) and let

M =


µ1,1 · · · µ1,N
... . . . ...

µN,1 · · · µN,N

 , (4.8)

where Ai,iSi ⊆ µi,iSi, Ai,jSj ⊆ µi,jSi, µi,j ≥ 0 and µi,i ≥ 0 for all i ∈ N and
j ∈ N \ {i}. If the origin is in the interior of Θ0 and the matrix M is strictly stable,
then there exists a parametrized positively invariant family of sets S(S,Θ). In particu-
lar, (θ1, θ2, . . . , θN)T ∈ Θ implies that whenever xi(0) ∈ θiSi, we have xi(k) ∈ Xi and
Kixi(k) +∑

j∈N\{i}Ki,jxj(k) ∈ Ui for all i ∈ N and all k ∈ N.

Proof. Follows directly from Theorem 9, the definition of positively invariant family of
sets and construction of the set Θ0 defined in (4.7).

Corollary 5 provides a guideline to design distributed controller that induce a positively
invariant family of sets. In particular, the basic idea is to design the gains Ki and Ki,j

in such a way that the matrix M given by (4.8) is asymptotically stable. In addition,
upon closer inspection, we can see that the diagonal values of the matrix M can be
directly linked to the stability properties of the corresponding local subsystems, while
the off–diagonal elements characterize the physical interconnection effects. Hence, an
approach for the design of local controllers for the subsystem Σi needs to incorporate
these effects directly. For instance, if the off–diagonal values of the matrix M in the ith

row are relatively large, then the local controller for the subsystem Σi needs to better
accommodate for these destabilizing effect.
A possible approach for the determination of the different gains is to treat the inter-

connections as disturbances and design controllers with certain robustness properties.
Furthermore, the controller structure specified in (4.4) and (4.5) implies that we can
measure this disturbance at each instance k. For these reasons and due to the fact
that static and linear feedbacks should be used, it is possible to apply a well established
approach from H∞ optimal control and use a Minimax design procedure. In the remain-
der, we will briefly outline only the basic and to our approach relevant ideas. For more
details, generalizations and an in depth discussion of the concepts, we refer to [Başar
and Bernhard 1995]. As a motivation, consider the following system

x(k + 1) = Ax(k) +Bu(k) +Dw(k), (4.9)
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4.1 Distributed Linear Control Systems subject to Linear Interconnections

where x(·) ∈ Rn is the state, u(·) ∈ Rm is the control input, w(·) ∈ W ⊂ Rn is
a measurable disturbance within a compact set W and A, B and D are matrices of
compatible dimension. With respect to stabilization of the system, we can interpret the
whole setting as a two player game in which the objective of the input u(·) is to stabilize
the plant, while the objective of the disturbance w(·) is to destabilize the plant. Since
the disturbances can be measured, it makes sense for the controller to leverage from this
information, i.e. the control strategy should depend on both the state as well as the
disturbance. A well known approach to find a solution to this problem is to consider the
following max–min/min–max control problem:

V (x) = max
w

min
u
{xTQx+ uTu− γ2wTw + V (Ax+Bu+ w)}, ∀x ∈ Rn, (4.10)

where Q � 0 and γ > 0 and V (·) is unknown. It is well known, cf. [Başar and Bernhard
1995], that if (A,B) is controllable and (A,D) is observable we can find a solution
V (x) = xTPx, with a positive definite matrix P and a stabilizing feedback u = u(x,w).
To be more precise, let

Ṽ (x, u, w) = xTQx+ uTu− γ2wTw + (Ax+Bu+Dw)TP (Ax+Bu+Dw).

Upon closer inspection, we can see that if γ2I −DTPD � 0, then Ṽ (x, u, w) is convex
in x and u for all w ∈ Rn and concave in w for all u ∈ Rm, since Q + ATPA � 0
and I + BTPB � 0 due to P � 0. Using these properties we can solve (4.10) by first
computing

V̄ (x,w) = min
u
Ṽ (x, u, w), ū(x,w) = argmin

u
Ṽ (x, u, w)

and
V ∗(x) = max

w
V̄ (x,w), w̄∗(x) = argmax

w
V̄ (x,w).

By simply setting xTPx = V ∗(x) and some algebraic reformulations using the Matrix
Inversion Lemma, we obtain as a solution to (4.10) the generalized algebraic Riccati
equation

P = Q+ ATP (I + (BBT − 1
γ2DD

T)P )−1A. (4.11)

We have as a feedback ū(x,w)

ū(x,w) = Kx+ Lw = −(I +BTPB)−1BTP (Ax+Dw) (4.12)
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and the H∞ optimal feedback, after some algebraic reformulations, becomes

u∗(x) = ū(x,w∗(x)) = K∗x = −BTP (I + (BBT − 1
γ2DD

T)P )−1Ax. (4.13)

Equation (4.11) can be solved by investigating the limit of the following sequence of
matrices

Pk+1 = Q+ ATPk(I + (BBT − 1
γ2DD

T)Pk)−1A, P0 = Q. (4.14)

Note that under the given conditions, we can ensure that Pk � 0 for all k, cf. [Başar
and Bernhard 1995] where more general properties for (4.11) and (4.14) can be found.
Furthermore, we can also assert by construction that for a given γ > 0 and a solution
P that satisfies (4.11) and γ2I −DTPD � 0, we have

Ṽ (x, ū(x,w), w) ≤ xTPx, and Ṽ (x, ū∗(x), w) ≤ xTPx, ∀w ∈ W,

which means that we can use V (x) = xTPx as a Lyapunov function and both controllers
ū(x,w) and u∗(x) for stabilization purposes. In addition, we can also guarantee that the
following performance index is satisfied if we apply the controller u∗(x) to the system
(4.9)

min
u

max
w

(xTQx+ uTu− γ2wTw + V (Ax+Bu+Dw)) =

max
w

min
u

(xTQx+ uTu− γ2wTw + V (Ax+Bu+Dw)),

which implies that by utilizing ū(x,w) we cannot achieve a performance that is worse
than with u∗(x). For more details, see [Başar and Bernhard 1995].
Returning to our setting in (4.3), the main advantage of using the max–min frame-

work, in particular for designing distributed controllers to obtain positively invariant
family of sets, is the ability to tune the disturbance attenuation. In particular we can
modify the disturbance rejection conveniently by changing the scalar value γ. As shown
in Corollary 5, we need to be able to design the controllers in such a way that the matrix
M in (4.8) is asymptotically stable. As also mentioned before, the off diagonal elements
correspond to the interconnection effects of the other systems, hence they can be under-
stood as a disturbance trying to destabilize the plant. Hence, by tuning the value γ it
is easier to obtain a stable matrix M and thus also a positively invariant family of sets.
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As motivated, it is reasonable for the ith controller to consider the uncertain system:

xi(k + 1) = Aixi(k) +Biui(k) +Diwi(k), (4.15)

where the disturbance wi(k) and matrix Di are specified accordingly to our differ-
ent control structures (4.4) and (4.5). In the first case we would have Di = I and
wi(k) = ∑

j∈N\{i}Gi,jxj(k), while in the second case Di = (I I . . . I) and wi(k) =
(Gi,1x1(k), . . . , Gi,j−1xj−1(k), Gi,j+1xj+1(k), . . . Gi,NxN(k)). Within this framework, the
ith decision maker can construct the linear control rules specified in (4.4) or (4.5) by
solving the local version of the max–min infinite–horizon control problem, specified
in (4.10), where the matrices A, B, D, Q and the scalar γ are replaced by Ai, Bi,
Di, Qi, γi, respectively. Under the before mentioned assumptions, for the solution of
the local max–min infinite–horizon control problem, we would obtain for all i ∈ N the
collection of value functions

Vi(xi) = xT
i Pixi, (4.16)

where Pi satisfied the local generalized Riccati equation specified in (4.11). In addition,
the gains Ki, Li and Li,j for the different control structures specified in (4.4) and (4.5)
are then computed according to (4.12).
Now in order to properly apply the results from Corollary 5, we can use the collection

of value functions specified in (4.16) to form the collection of ellipsoidal sets S, given by

Si := {xi : xT
i Pixi ≤ 1}, ∀i ∈ N . (4.17)

Furthermore, in this case, the matrix M specified in (4.8) can be easily constructed for
all i ∈ N exploiting the properties of the support function, cf. Theorem 4, by evaluating
the smallest non–negative scalars µi,j satisfying

AT
i,iPiAi,i � µ2

i,iPi, (4.18)

where Ai,i := (Ai +BiKi), and

AT
(i,j)PjA(i,j) � µ2

(i,j)Pi, j ∈ N \ {i} (4.19)

where either Ai,j := (I +BiLi)Gi,j in case of (4.4) or A(i,j) := (I +BiLi,j)Gi,j in case of
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(4.5).
Now in order to properly apply the results from Corollary 5, we only need to construct

the set (4.7). Under Assumption 7, this set is given by

Θ0 := {θ ∈ RN
+ : Cθ ≤ 1}, (4.20)
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where

C =



s(S1, φ1,1) 0 . . . 0
s(S1, φ1,2) 0 . . . 0

... ... . . .
...

s(S1, φ1,s1) 0 . . . 0
0 s(S2, φ2,1) . . . 0
0 s(S2, φ2,2) . . . 0
... ... . . .

...
0 s(S2, φ2,s2) . . . 0
0 0 . . .

...
... ... . . . s(SN , φN−1,sN−1)
0 0 . . . s(SN , φN,1)
0 0 . . . s(SN , φN,2)
... ... . . .

...
0 0 . . . s(SN , φN,sN

)
s(S1, K

T
1 ψ1,1) s(S2, K

T
1,2ψ1,1) . . . s(SN , KT

1,Nψ1,1)
s(S1, K

T
1 ψ1,2) s(S2, K

T
1,2ψ1,2) . . . s(SN , KT

1,Nψ1,2)
... ... . . .

...
s(S1, K

T
1 ψ1,t1) s(S2, K

T
1,2ψ1,t1) . . . s(SN , KT

1,Nψ1,t1)
s(S1, K

T
2,1ψ2,1) s(S2, K

T
2 ψ2,1) . . . s(SN , KT

2,Nψ2,1)
s(S1, K

T
2,2ψ2,2) s(S2, K

T
2 ψ2,2) . . . s(SN , KT

2,Nψ2,2)
... ... . . .

...
s(S1, K

T
2,t2ψ2,2) s(S2, K

T
2 ψ2,t2) . . . s(SN , KT

2,Nψ2,t2)
... ... ... ...
... ... ... ...

s(S1, K
T
N,1ψN,1) s(S2, K

T
N,2ψN,1) . . . s(SN , KT

NψN,1)
s(S1, K

T
N,1ψN,2) s(S2, K

T
N,2ψN,2) . . . s(SN , KT

NψN,2)
... ... ... ...

s(S1, K
T
N,1ψN,tN ) s(S2, K

T
N,2ψN,tN ) . . . s(SN , KT

NψN,tN )



. (4.21)

Note that in this case, we can analytically evaluate the support function in the following
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way
s(Si, KTx) :=

√
xTKP−1

i KTx.

In conclusion, we can apply directly the approach from Corollary 5 using the set Θ0

defined in (4.20), using the scalar values from (4.18) and (4.19) to form the matrix M
to design the distributed controllers given by (4.4) and (4.5), that induce a positively
invariant family of sets and eventually stabilize the system, while respecting state and
input constraints. Once we have found candidate feedback gains Ki and matrices Pi
determining a set Θ0 according to (4.20) involves only algebraic manipulations in a re-
duced space. Thus the complexity of the overall distrubuted control problem is noticably
reduced. An example application of this method can be found in Chapter 5.

4.2 Decentralized Linear Control Systems with
Nonlinear Interconnections

A disadvantage of the before mentioned approach is the fact that by tuning the controller
parameters, we change the structure of the set Θ0 as well as the matrix M specified
in Corollary 5. This leads to nontrivial couplings, that need to be satisfied during
the controller synthesis. Furthermore, in a fully distributed case it is also difficult to
enforce conditions that lead to an asymptotically stable matrix M . Fortunately, in the
decentralized setting, i.e. in which the controllers only use the local information for the
state feedback, we can alleviate these problems. In particular, it is possible to derive
feedback controllers ui(k) = Kixi(k) inducing a positively invariant family of sets by
utilizing LMI’s. In this section, we consider the interconnected control system specified
in (4.1) and assume the following:

Assumption 8. For all i ∈ N and j ∈ N \ {i}

(i) gi,j(·) in (4.1) are continuous, positive homogeneous functions of degree one.

As a way to synthesize the collection of controllers in a decentralized way, we need to be
able to find an worst case approximation of the possible, destabilizing interconnection
effects. As explained in the previous section, we can again think of it as a type of
disturbance. One way to accomplish this is to look at the map gi,j(Xj), where Xj is the
constraint set of the jth subsystem. Since, the objective is to enforce state constraint
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satisfaction for each of the subsystems Σi, we know that each state trajectory should
be ultimately part of Xj. Hence, if we know how to bound the set gi,j(Xj), we get an
conservative but reasonable bound on the possible destabilizing interconnection effects.
In particular we assume the following:

Assumption 9. For all i ∈ N there exists ηi,j such that gi,j(Xj) ⊆ ηi,jBi for all j ∈
N \ {i}, where Bni := {x ∈ Rni×ni :

√
xTx ≤ 1}.

This means, we can bound the set gi,j(Xj) by a scaled Euclidean ball ηi,jBi. Note,
that compactness of Xi and continuity of gi,j(·) essentially implies that we can always
find a finite ηi,j. Small values of ηi,j imply, that the interconnection effects from the jth

subsystem to the ith subsystem are small as well. Hence, the off–diagonal elements in
the matrix M given in Corollary 5 will also have smaller values. Furthermore, to obtain
valid ηi,j, we can use outer approximation approaches, for instance [Borchers et al. 2009].
The restriction given by Assumption 9, are similiar to the conditions assumed in [Šiljak
and Zečević 2005] that allow us to design the controllers in a modular way.
For the synthesis of the decentralized controllers and the positively invariant family of

sets we will utilize ideas similiar to Corollary 5 and Theorem 8. We choose the controller
for the i-th subsystem in such a way that an ellipsoidal set Si exhibits a contraction with
the rate of µi for the closed loop local system xi(k+ 1) = (Ai +BiKi)xi(k). This can be
done by a simple adaptation of the controller design discussed in Theorem 6. As a result,
we obtain sets Si which upper bound separately the interconnection effects with a rate
of µi. In order to compensate for the effects appropriately the rate of contraction needs
to dominate the effects of interconnections. Once we can assert that the contraction
of the control system is large enough, we can use the contraction factors µi and µj to
approximate the evolution of sets Si with respect to the whole interconnected system
and then easily describe a positively invariant family of sets. These values µi and µj

correspond to the entries of the matrix M specified in Corollary 5. Enforcing stability
of the matrix M is achieved by adding an additional constraint. This can be achieved
by a simple test of feasibility for a optimization problem. However, we first need to
provide some necessary intermediate results, allowing us to provide an approach that is
computational tractable.

Lemma 4. f(x) := ∑
i∈N x

−0.5
i is convex function for positive x = (x1, x2, . . . , xN)T ∈

RN .

67



4 Control Synthesis using Positively Invariant Family of Sets

Proof. The Hessian of f(x) is obviously positive semidefinite whenever xi > 0 and hence
f(·) is convex on the positive orthant.

Theorem 12. The feasible region of the following problem

find Q,R, α, ξ2, ξ3, . . . , ξN (4.22a) Q (AQ+BR)
(AQ+BR)T ξQ

 � 0 (4.22b)

QT = Q � 0 (4.22c)

∀j = {2, 3, . . . , N}, Q � η2
j ξjI, ξj > 1 (4.22d)

∀k = {1, 2, . . . , s},
 Q Qφk

(Qφk)T α

 � 0 (4.22e)

∀l = {1, 2, . . . , t},
 Q RTψl

(RTψl)T α

 � 0 (4.22f)

1 ≥ α > 0 (4.22g)∑
j∈N\{1}

ξ−0.5
j < 1−

√
ξ, (4.22h)

is convex for given 0 < ξ < 1, ηj ≥ 0, A ∈ Rn×n, B ∈ Rn×m, φk and ψl of compatible
dimension.

Proof. Convexity of the feasible region is implied by Lemma 4 and the fact that the
constraints are composed of either LMI’s, simple algebraic expressions or convex func-
tions.

Note, that (4.22) has a very similar structure to the controller determined in Theo-
rem 6. As a consequence, we obtain a ellipsoidal set with the following properties:

Corollary 6. Assume (4.22) is feasible for given 0 < ξ < 1, ηj ≥ 0, A ∈ Rn×n,
B ∈ Rn×m, gk and hl of compatible dimension. Let, S := {x : xTQ−1x ≤ 1}, X := {x :
φT
k x ≤ 1, k = {1, 2, . . . , s}} and U := {u : ψT

l u ≤ 1, l = {1, 2, . . . , t}}, then

i) (A+BRQ−1)S ⊆
√
ξS,

ii) α−0.5S ⊆ X ,

iii) RQ−1α−0.5S ⊆ U ,
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4.2 Decentralized Linear Control Systems with Nonlinear Interconnections

iv) ηjBn ⊆ ξ−0.5
j S.

Proof. i)–iii) follow immediately from Theorem 6. iv) follows from (4.22d).

From i), we can see that the controller K = RQ−1 contract the set S with a ratio of
√
ξ. Furthermore, the scaled set ξ−0.5

j S is a upper bound for the scaled ball ηjBn. In
addition, ii) and iii) imply that θS ⊆ X and KθS ⊆ U for all 0 ≤ θ ≤ α−0.5. Combining
the results, we can use (4.22) as a basic tool to construct LMI’s that induce a positively
invariant family of sets.

Theorem 13. Suppose Assumption 7–9 are satisfied. Let 0 < ξi < 1 for all i ∈ N and
assume that the problem

find Qi, Ri, αi, (ξi,j : j ∈ N \ {i}) (4.23a) Qi (AiQi +BiRi)
(AiQi +BiRi)T ξiQi

 � 0 (4.23b)

QT
i = Qi � 0 (4.23c)

∀j ∈ N \ {i}, Qi � η2
i,jξi,jI, ξi,j > 1 (4.23d)

∀k = {1, 2, . . . , si},
 Qi Qiφi,k

Qiφ
T
i,k αi

 � 0 (4.23e)

∀l = {1, 2, . . . , ti},
 Qi RT

i ψi,l

(RT
i ψi,l)T αi

 � 0 (4.23f)

1 ≥ αi > 0 (4.23g)∑
j∈N\{i}

ξ−0.5
i,j < 1−

√
ξi (4.23h)

has a solution for all i ∈ N , then there exists a non–trivial set Θ and a collection of
ellipsoids Si := {x : xTQ−1

i x ≤ 1} forming a positively invariant family of sets S(S,Θ).
In particular, (θ1, θ2, . . . , θN)T ∈ Θ implies that whenever xi(0) ∈ θiSi we have xi(k) ∈ Xi
and RiQ

−1
i xi(k) ∈ Ui for all i ∈ N and k ∈ N.

Proof. Note, that the proof is similar to the proof of Theorem 8. Recall from the
definition of positively invariant families of sets, that we need to find a non–trivial set
Θ̂, such that that for all θ(k) ∈ Θ̂, we have I) θi(k)Si ∈ Xi , II) Kiθi(k)Si ∈ Ui and III)
∀xi(k) ∈ θi(k)Si ⇒ ∃θ(k + 1) ∈ Θ̂, such that xi(k + 1) ∈ θi(k + 1)Si. This relationship
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4 Control Synthesis using Positively Invariant Family of Sets

between θ(k), θ(k + 1) will be again constructed by an auxiliary scaling set Θ̄ and an
auxiliary dynamical system θ(k + 1) = Mθ(k).
For all i ∈ N and j ∈ N \ {i}, Ki = RiQ

−1
i , µi,j = ξ−0.5

i,j , µi,i =
√
ξi and θ̄i = α−0.5.

Given the set of admissible Θ̄ := {θ ∈ RN
+ : θi ≤ θ̄i, i ∈ N}, we can clearly see, that for

every θ ∈ Θ̄ condition I) and II) are satisfied as a result of ii) and iii) from Corollary 6.
Given the auxiliary system θ(k + 1) = Mθ(k), where M = (µi,j)i∈N ,j∈N , we know that
M is non–negative matrix and hence θ(0) ∈ RN

+ implies θ(k) ∈ RN
+ for all k ∈ N.

Relation (4.23h) implies that for every i ∈ N , ∑j∈N µi,j < 1. Using the Gershgorin
Circle Theorem we can infer that auxiliary system is asymptotically stable, since the
maximum row–sum of M is less then one. As result there exists a non–trivial region
Θ̂, that includes the origin and is a subset of Θ̄, which is positively invariant for the
auxiliary system. We can infer from the structure of the feasibility problem (4.23) using
Corollary 6 that for every i ∈ N , (Ai +BiKi)Si ⊆ µi,iSi ηi,jBnj ⊆ µi,jSi, Si ⊆ Xi. With
Assumption 9 we get gi,j(Xj) ⊆ ηi,jBnj ⊆ µi,jSi for all j ∈ N \ {i} and by continuity of
gi,j(·), we have gi,j(Sj) ⊆ gi,j(Xj) since Sj ⊆ Xj. Due to positive homogeneity of gi,j(·),
we have for every θj > 0, θjgi,j(Sj) = gi,j(θjSj) ⊆ µi,jθjSi, and additionally for every
θi(k) > 0, (Ai + BiKi)θi(k)Si ⊆ µi,iθi(k)Si. Taking the sum over all j ∈ N \ {i} and
using the two former relations we obtain

(Ai +BiKi)θi(k)Si ⊕
⊕

j∈N\{i}
gi,j(θjSj) ⊆

µi,iθi(k)Si ⊕
⊕

j∈N\{i}
µi,jθj(k)Si =

∑
j∈N

µi,jθj(k)
Si = θi(k + 1)Si.

. (4.24)

To summarize, it follows from Equation (4.24) that whenever xi(k) ∈ θi(k)Si we have
xi(k + 1) ∈ θi(k + 1)Si, for all i ∈ N and all θ ∈ RN

+ . Since θ(0) ∈ Θ̂ ⊂ Θ̄ implies by
construction θ(k) ∈ Θ̂, θi(k)Si ⊆ Xi and Kiθi(k)Si ⊆ Ui for all k ∈ N we can eventually
assert that Θ̂ satisfies the conditions I)–III).

Using Theorem 13 we can design a collection of decentralized controllers ui(k) =
Kix(k) that keep the interconnected systems (4.1) within the state constraints Xi for
all times k ∈ N, while obeying the input constraints Ui. The strict inequalities given in
(4.23d) and (4.23h) are unfortunately problematic from an algorithmic point of view.
However by introducing artificial, positive, sufficiently small slack variables, we can relax
this conditions. Note, that the constraint (4.23h) can be further approximated in order
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to transform (4.23) to simple LMI’s.

Lemma 5. Given f(x) := ∑
i∈N x

−0.5
i , where x = (x1, x2, . . . , xN)T ∈ RN , xi > 1 and

some 0 < k < 1. Let x̄ = (x̄1, x̄2, . . . , x̄N)T ∈ RN , where x̄i >
(
N

k

)2
for all i ∈ N , then

f(x̄) < k.

Proof. Let x̄i = N2k−2 + αi with αi ≥ 0. Hence f(x̄) := ∑
i∈N x̄

−0.5
i = ∑

i∈N (N2k−2 +
αi)−0.5 ≤ ∑i∈N (N2k−2)−0.5 = k

Hence, one way to transform (4.23) into simple LMI’s is to replace the constraint
(4.23h) by

ξi,j >

(
N − 1

1−
√
ξi

)2

for all i ∈ N and j ∈ N \ {i}. However, note that this approximation used is not
optimal, i.e. the resulting positively invariant family of sets might have a smaller set of
admissible scaling factors Θ. In that case the decentralized controller can only guarantee
in a smaller region, that the input and state constraints for the closed loop systems are
satisfied. In general, the complexity of the design process is reduced since in that case,
only LMI’s and not a nonlinear problem need be solved.

4.3 Summary
We could show, that the concept of positively invariant family of sets can be extended
to a class of interconnected control systems. Based on this fact, we exemplified how to
design decentralized and distributed controllers for positively homogeneous and linear
interconnected systems, respectively. For the distributed controller, we presented an it-
erative design procedure exploiting generalized Riccati equation, which can be tuned to
determine positively invariant family of sets. Eventually, we presented a decentralized
control synthesis, based on feasibility conditions of LMI’s, which can be solved indepen-
dently for each of the subsystems and hence leading to a modular design procedure.
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5 Control Applications

We begin by presenting the considered problem and its basic features. We utilize a
distributed and decentralized control methodology in order to compute the maximal
tolerable disturbances this system can exhibit with respect to state and input constraints.

5.1 Multiple Tank System
The four tank system is a classical benchmark example for evaluating decentralized and
distributed control schemes. The basic scheme is depicted in Figure 5.1. The system

Figure 5.1: Quadruple tank system.
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5.1 Multiple Tank System

consists of four tanks and the objective is to control the water level for each of the
tanks. The control variables are in this case two pumps, that transfer water from a
common basin to the four overhead tanks. Through a special piping system, we can
adjust the influence and the ratio of water that is pumped from one pump to these
two tanks and hence modify the interaction between the pumps and water levels, cf.
[Johansson 2000] for more details. In order to achieve a more challenging control task
we use a modified model of the quadruple tank system, adapted from [Mercangöz and
Doyle 2007]. In contrast to the standard system described in [Johansson 2000], there are
additional pumps that can withdraw water from two of the tanks but are not directly
controlled and the pump dynamics are modelled via a first order lag. Using Bernoulli’s
law we obtain as a model for the system depicted in Figure (5.1) the following equations:

dh1

dt = −a1

S

√
2gh1 + a3

S

√
2gh3 + γ1k1

S
v1,

dh2

dt = −a2

S

√
2gh2 + a4

S

√
2gh4 + γ2k2

S
v2,

dh3

dt = −a3

S

√
2gh3 + (1− γ2)k2

S
v2 −

d1

S
,

dh4

dt = −a4

S

√
2gh4 + (1− γ1)k1

S
v1 −

d2

S
,

dv1

dt = −v1

τ1
− 1
τ1
u1,

dv2

dt = −v2

τ2
− 1
τ2
u2,

(5.1)

where hi and ai refer to the water level and the cross section of the outlet hole of
tank i, S is cross section for all the tanks and g is the gravitational constant. The
control signal and flow speed of tank i is denoted by ui and vi, respectively, τi is the
time constant for pump i and ki is the corresponding gain. γi is the proportion of flow
that goes to the upper tank from pump i and we have non–minimum phase behavior
whenever 0 < γ1 + γ2 < 1 with respect to the water level of the first and the second
tank. di are possible disturbances that additionally modify the liquid level of tank 3
and 4, respectively. The overall goal of our simulation study is to synthesize distributed
and decentralized control schemes and characterize a set of tolerable disturbance rates
subject to hard state and input constraints.
For our analysis, we linearize the model (5.1) around the nominal steady states u0

i , v0
i

and h0
i with di = 0 and use a Euler-forward discretization with sampling time τ = 11

s
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Table 5.1: Parameters.

h0
1 [cm] 3.48 h0

2 [cm] 3.09
h0

3 [cm] 4.4 h0
4 [cm] 3.1

v0
1 [V] 19.44 v0

2 [V] 27.41
u0

1 [V] 19.44 u0
2 [V] 27.41

k1 [cm3 / Vs] 7.45 k2 [cm3 / Vs] 7.3
a1 [cm2] 2.1 a2 [cm2] 2.2
a3 [cm2] 1.4 a4 [cm2] 1.3
τ1 [s] 2.0 τ2 [s] 2.1
S [cm2] 730 g [cm/s2] 981
γ1 0.3 γ2 0.35

using the parameters given in Table 5.1. In this case we obtain the following, linear
discrete time model:

Σ : x(k + 1) =



0.966 0 0.003 0 0.02 0
0 0.978 0.007 0 0 0
0 0 0.5 0 0 0
0 0.022 0 0.962 0 0.004
0 0 0 0 0.98 0.007
0 0 0 0 0 0.5


x(k) +



0 0
0 0

0.5 0
0 0
0 0
0 0.476


u(k)

(5.2)
where x = (h1−h0

1, h4−h0
4, v1−v0

1, h2−h0
2, h3−h0

3, v2−v0
2)T ∈ R6, u = (u1−u0

1, u2−u0
2)T ∈

R2.
Due to the symmetry of the given structure, we decided to partition the overall system

given by (5.2) into two interconnected systems of the following form:

Σ1 : x1(k+1) =


0.966 0 0.003

0 0.978 0.007
0 0 0.5


︸ ︷︷ ︸

:=A1

x1(k)+


0
0

0.5


︸ ︷︷ ︸

:=B1

u1(k)+


0 0.02 0
0 0 0
0 0 0


︸ ︷︷ ︸

:=G1

x2(k)+w1,

(5.3)
where x1 = (x1,1, x1,2, x1,3)T = (h1−h0

1, h4−h0
4, v1−v0

1)T, u1 = (u1−u0
1)T, w1 ∈ W1 ⊂ R3
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5.2 Decentralized Control of the Tank System

and

Σ2 : x2(k+1) =


0.962 0 0.004

0 0.98 0.007
0 0 0.5


︸ ︷︷ ︸

:=A2

x2(k)+


0
0

0.476


︸ ︷︷ ︸

:=B2

u2(k)+


0 0.022 0
0 0 0
0 0 0


︸ ︷︷ ︸

:=G2

x1(k)+w2,

(5.4)
where x2 = (x2,1, x2,2, x2,3)T = (h2−h0

2, h3−h0
3, v2−v0

2)T, u1 = (u2−u0
2)T, w2 ∈ W2 ⊂ R3.

In order to compute tolerable flow disturbances d1 and d2, we introduced additional
disturbance terms wi in (5.3) and (5.4). Hence, specifying the sets Wi allows us to
properly characterize a set of tolerable disturbances di.
We furthermore impose the following constraints for the states

X1 =

x1 :


−1
−1
−5

 ≤ x1 ≤


1
1
5


 , X2 =

x2 :


−1
−1
−5

 ≤ x2 ≤


1
1
5


 ,

and the following constraints for the control variables

U1 = {u1 : −2 ≤ u1 ≤ 2}, U2 = {u2 : −2 ≤ u2 ≤ 2}.

In the following sections, we want to design different collection of controllers and posi-
tively invariant family of sets, by utilizing the concepts that have been introduced in the
previous chapters. In addition, we want to show how these family of sets can be used to
easily specify the setsWi, which in turn can be directly related to the region of tolerable
leakage flows di. This is done by synthesizing the controllers for the disturbance free
case and later on inspecting their robustness properties.

5.2 Decentralized Control of the Tank System
As mentioned before, we consider the disturbance free case for the synthesis, i.e. Wi =
{0} for all i ∈ {1, 2}. Upon closer inspection, we can immediately see, that the approach
presented in Theorem 13 is directly applicable, since (A1, B1), (A2, B2) are both con-
trollable, G1x2(k) and G2x1(k) are linear functions and the input and state constraints
are simple polytopes. Due to the linear structure of the interconnection terms, it is
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fortunately very easy to find in this special case η1 and η2, such that G1X2 ⊆ η1B3 and
G2X1 ⊆ η1B3, respectively. In particular, η1,2 = 0.0202 and η2,1 = 0.0224 are suitable
and fulfill Assumption 9. Since we only have two interconnected systems, we can di-
rectly solve the LMI’s in (4.23) using semidefinite programming algorithms, since the
constraint (4.23h) can be transformed for all i ∈ {1, 2} into the simple algebraic expres-
sion ξ1,2 > (1 −

√
ξ1)−2 and ξ2,1 > (1 −

√
ξ2)−2, respectively. We used SEDUMI and

YALMIP, see [Sturm 1999] and [Löfberg 2004], to solve the LMI’s given by (4.23) for
the interconnected systems (5.3) and (5.4). As a feasible solution we obtain

Q1 =


0.993 0.609 −0.549
0.609 0.965 −1.914
−0.549 −1.914 24.403

 , R1 =
(
−0.518 −1.765 3.498

)
,

α1 = 0.996, ξ1,2 = 789.02

for ξ1 = 0.93 and

Q2 =


0.888 0.068 0.399
0.068 0.53 −1.475
0.399 −1.475 21.776

 , R2 =
(
0.421 −1.31 2.958

)
,

α2 = 0.957, ξ2,1 = 798.14

for ξ2 = 0.93. Thus, according to Theorem 13, we can use the collection of ellipsoids
S = (S1,S2), where

S1 = {x : xTQ−1
1 x ≤ 1} =

x : xT


1.703 −1.183 −0.055
−1.183 2.049 0.134
−0.055 0.134 0.05

xT ≤ 1

 ,

and

S2 = {x : xTQ−1
2 x ≤ 1} =

x : xT


1.1629 −0.256 −0.039
−0.256 2.379 0.166
−0.039 0.166 0.058

xT ≤ 1

 ,

to form a positively invariant family of sets S(S,Θ) for the interconnected systems
(5.3) and (5.4). Existence for a non–trivial set of scaling factors Θ is also implied by

76



5.2 Decentralized Control of the Tank System

Theorem 13. In order to compute the actual set, we utilize the dynamics of the scaling
factors (see proof of Theorem 13)

θ(k + 1) = Mθ(k) =
0.964 0.021

0.021 0.964

 θ(k), (5.5)

where the elements of the matrix M can be obtained similarly as presented in (4.17)
and (4.18) and the set of admissible scaling factors

Θ0 = {(θ1, θ2)T : 0 ≤ θ1 ≤ 1.003, 0 ≤ θ2 ≤ 1.061} (5.6)

which is computed according to (4.20) using the gains K1 = R1Q
−1
1 , K2 = R2Q

−1
2

and K1,2 = K2,1 = 0 and after removing all redundant half-spaces using the approach
outlined in Corollary 1. In order to form the positively invariant family of sets, we need
to determine a set Θ ⊆ Θ0, such that MΘ ⊆ Θ ⊆ Θ0. We have several options to
compute such a set, for instance by solving the LMI from Theorem 5 or by applying
Algorithm 2. However, to determine the maximal possible set Θ of scaling factors we
decided to use Algorithm 2. As result, we can verify that the whole set Θ0 is in fact
positively invariant for the dynamical system θ(k+ 1) = Mθ(k), i.e. MΘ0 ⊆ Θ0. Hence
this set induces a positively invariant family of sets S(S,Θ0). As a consequence we know
from Theorem 13, that we can pick any (θ∗1, θ∗2)T ∈ Θ0 to guarantee that θ∗1S1 ⊆ X1

and θ∗2S2 ⊆ X2, respectively. In addition, whenever x1(0) ∈ θ∗1S1 and x2(0) ∈ θ∗2S2,
we have x1(k) ∈ X1, x2(k) ∈ X2, K1x1(k) ∈ U1 and K2x2(k) ∈ U2 for all k ∈ N+, cf.
Figure 5.2. For an illustration we picked the largest possible scaling factors θ∗1 = 1.003
and θ∗2 = 1.006.

5.2.1 Robustness Properties of the Decentralized controller

Note, that one of our initial goals was to investigate the robustness properties of the
collection of decentralized controllers, which we computed for the disturbance free case,
i.e. W1 = {0} and W2 = {0}, respectively. Using the results from Theorem 10, we can
quite easily determine sets W1 and W2 that lead to a robust positively invariant family
of sets. Note, that we considered in Theorem 10 the autonomous case without input
constraints. However, in an analogous way to Corollary 5, the results from Theorem 10
can be extended to include input constraints by a simple and direct adjustment of the set
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5 Control Applications

(a) State and input trajectories for subsystem Σ1.

(b) State and input trajectories for subsystem Σ2.

Figure 5.2: Simulation of input and state trajectories for the decentralized controller u1(k) =
K1x1(k) and u2(k) = K2x2(k) with x1(0) = (−0.99,−0.633, 0)T ∈ θ∗1S1 and x2(0) =
(0.5,−0.541, 0)T ∈ θ∗2S2.
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5.2 Decentralized Control of the Tank System

of scaling factors Θ0, which directly corresponds to the set Θ0 given by (5.4) in this case.
The simplest way to determine a collection of valid sets (W1,W2) is to directly relate
them to the collection of sets (S1,S2) that form a robust positively invariant family of
sets. First note, that the matrix M from (5.5) directly corresponds to the matrix M
from Theorem 10 and is by construction asymptotically stable. In addition to the former
theorem, whenever α = (α1, α2)T ∈ R2

+ is chosen such that θ̄ = (I −M)−1α is in the
interior of Θ0 then the collection of sets (S1,S2) can be used to form a robust positively
invariant family of sets if the collection of disturbance sets (W1,W2) satisfy W1 ⊆ α1S1

and W2 ⊆ α2S2. Hence, if we consider disturbance sets W1 = α1S1 and W2 = α2S2, we
simply need to adjust α1 and α2, accordingly. In fact, the set Ω which defines valid α
can be easily constructed if Θ0 has the structure Θ0 = {θ : Cθ ≤ f}. In that case

Ω := {α : (I −M)−1α ∈ intΘ0} = {α : C(I −M)−1α < f}. (5.7)

For our particular example, using the set Θ0 given by (5.4), we have

Ω :=


α ∈ R2 :


30.832 22.173
26.155 36.322
−1.0 0

0 −1.0

α ≤


1
1
0
0




,

which is also depicted in Figure 5.3. Note, that a larger αi corresponds to a larger
tolerable disturbance set Wi. By inspection of Figure 5.3, we can also see the level of
interplay between α1 and α2, i.e. we can increase the size of the set W1 = α1S1 as long
as we decrease the set of the other disturbance set W2 = α2S2 accordingly. As a result,
the set Ω gives us more flexibility in the analysis for the tolerable disturbance flows d1

and d2, respectively. For instance, if we can assert that d2 ≈ 0 in our example, then the
set of tolerable disturbance flows W2 for the flow d1 has a larger size.
In order to characterize a robust positively invariant family of sets for the collection

of sets (S1,S2), it is still necessary to adjust the set of admissible scaling factors Θ.
As explained in the proof of Theorem 10, this set needs to have the property that
MΘ ⊕ {α} ⊆ Θ ⊆ Θ0. As pointed out we can compute a set Θ∗, such that MΘ∗ ⊆
Θ∗ ⊆ Θ0⊕{−θ̄}, then we can ensure that Θ = Θ∗⊕{θ̄}, where θ̄ = (I−M)−1α. Hence,
we can again apply the procedures from Theorem 5 or Algorithm 2, however with the
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Figure 5.3: Set of valid α1 and α2 for the decentralized controller.

modified constraint set Θ0⊕{−θ̄}. As a specific example, we assume that the dominant
disturbance set is W2 and that W1 is very small. As a first step we need to pick an
appropriate α = (α1, α2)T out of the set Ω, say α = (0.001, 0.023)T, which corresponds
to a large tolerable set W2 and a smaller tolerable set W1. For this specific α, we have
θ̄ = (0.647, 1.029)T. In the next step, we again choose Algorithm 2 to compute the
maximal positively invariant set Θ∗, such that MΘ∗ ⊆ Θ∗ ⊆ Θ0 ⊕ {−θ̄} to eventually
obtain the set Θ = Θ∗ ⊕ {θ̄} that induces a robust positively invariant family of sets
for the collection of sets (S1,S2). This set is depicted in Figure 5.4. Also note, that
in contrast to the disturbance free setting, we cannot guarantee that the whole set Θ0

induces a robust positively invariant family of sets and hence we have only a smaller
set of admissible scaling factors Θ. Using this set Θ, whenever (θ1, θ2)T ∈ Θ, we know
that x1(0) ∈ θ1S1 and x2(0) ∈ θ2S2 implies x1(k) ∈ X1, x2(k) ∈ X2, K1x1(k) ∈ U1 and
K2x2(k) ∈ U2 for all k ∈ N+ and all w1 ∈ α1S1 and w1 ∈ α2S2, respectively.
A depiction of this fact can be seen in Figure 5.5, where we simulated the state and

input trajectories using the previously synthesized decentralized controller and initial
conditions x1(0) ∈ θ∗1S1 and x2(0) ∈ θ∗2S2 with (θ∗1, θ∗2)T = (0.704, 1.061)T ∈ Θ. For
this simulation we set w1 = w2 = 0 for the first 80 time steps. At time step 81 we set
w1 = 0 and w2 = (0,−0.0137, 0)T ∈ 0.023S2, which roughly translates to d1 = 10 cm3

s
.
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Figure 5.4: Set of admissible scaling factors Θ that induces a robust positively invariant family
of sets for the decentralized controller with disturbance sets W1 := 0.001S1 and W2 := 0.023S2.

Note, that we highlighted only the first and second coordinate of the state constraints in
Figure 5.5 to improve the visibility of the trajectories. We can conclude from Figure 5.5,
that the decentralized controller keeps the states and the inputs within the constraints
even for this type of disturbances. The results are quite conservative, since the tolerable
disturbance sets are comparatively small and the region of initial conditions within
the robust positively family of sets is also much smaller compared to the disturbance
free case. However, note that during our design process our focus was purely on the
guaranteed constraint satisfaction. In order to improve the performance, it is therefore
still necessary to adjust the procedure for the synthesis of the controllers.

5.3 Distributed Control of the Tank System
Although, we could find a pair of decentralized controller for the interconnected tank
system, subject to the state constraints X1, X2 and input constraints U1, U2, the per-
formance from the closed loop system was not optimal, since we derived rather large
feedback gains (K1, K2) for the open loop stable interconnected systems Σ1 and Σ2.
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(a) State and input trajectories for subsystem Σ1.

(b) State and input trajectories for subsystem Σ2.

Figure 5.5: Simulation of input and state trajectories for the decentralized controller
u1(k) = K1x1(k) and u2(k) = K2x2(k) with x1(0) = (0.695, 0.439, 0)T ∈ θ∗1S1, x2(0) =
(0.601, 0.613, 0)T ∈ θ∗2S2 and constant w2 = (0,−0.0137, 0)T at time step 80.

The main focus of this section is to derive a pair of controllers that achieves better
closed loop performance.
In this section we assume that each subsystem Σi can utilize local state information

xi(·) as well as the cumulative value Gixj(·) of the other subsystem Σj. In particular,
we want to derive the pair of distributed controller

u1(k) = K1x1(k) + L1G1x2(k)

u2(k) = K2x2(k) + L2G2x1(k)

for the interconnected linear model of the multiple tank system given by the equation
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(5.3) and (5.4) with the same input (U1,U2) and state constraint sets (X1,X2) as in the
decentralized case.
In order to obtain these controllers, we utilize the min–max/ max–min approach from

Section 4.1. Similarly, to the synthesis of the decentralized controller in the previous
section, we consider again for the design of the controller the disturbance free case in
which the disturbance sets Wi consist only of the element {0}. In addition, due to
controllability of the matrix pairs (Ai, Bi) and the fact that the constraint sets are
polytopes, we can directly apply the approach from Section 4.1. Note, that in contrast
to the LMI approach from Section 4.2, we cannot easily guarantee that there exists
a distributed controller that fulfills all the conditions of Corollary 5. In particular,
we need to iteratively adjust the parameters (Q1, γ1) and (Q2, γ2) for each generalized
Riccati equation (4.11) and check after each step if the corresponding matrix M from
(4.8) is strictly stable. Fortunately, we could show in the previous section that there
exists a decentralized controller for this specific task and for this reason there should
also exist a pair of parameters (Q1, γ1) and (Q2, γ2) that leads to a distributed controller
that satisfies the conditions from Corollary 5.
We can see from the prototype infinite horizon control problem (4.10), that the optimal

value V ∗(·) depends on both terms xTQx and uTu. With the intention of obtaining less
aggressive controllers, we therefore decided to decrease the penalty for state deviations
and chose the following weighting matrices for the states of the subsystem Σ1 and Σ2,
respectively:

Q1 = Q2 =


0.5 0 0
0 0.5 0
0 0 0.5

 .
By following the approach presented in Section 4.1, we are able to solve the generalized
Riccati equation utilizing the sequence of matrices given by (4.14) with using γ1 = γ2 =
24. We have as a solution to the generalized Riccati equation the following matrices for
the subsystems Σ1 and Σ2, respectively:

P1 =


8.692 −0.028 0.045
−0.028 14.343 0.176
0.045 0.176 0.64

 , P2 =


7.667 −0.256 0.045
−0.256 16.202 0.183
0.045 0.183 0.642

 .

Using (4.12) and the solution of the generalized Riccati equation we can easily compute
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the corresponding gain pairs (K1, L1) and (K2, L2) of the distributed controllers:

K1 =
(
−0.019 −0.074 −0.139

)
, L1 =

(
−0.019 −0.076 −0.276

)
K2 =

(
−0.018 −0.075 −0.134

)
, L2 =

(
−0.019 −0.076 −0.267

)
.

In the next step we need to compute the transition matrixM from (4.8), which described
the dynamics of the scaling factors θ(k + 1) = Mθ(k). According to (4.18) and (4.19),
we can use the collection of sets (S1,S2), where S1 = {x : xTP1x ≤ 1} and S2 = {x :
xTP2x ≤ 1} to directly compute the entries of the matrix M :

θ(k + 1) = Mθ(k) =
0.977 0.015

0.016 0.979

 θ(k). (5.8)

Since the matrix M is strictly stable, i.e. ρ(M) < 1, we can directly apply the results
from Corollary 5 and use the collection of sets (S1,S2) and the previously computed
distributed controller to specify a positively invariant family of sets S((S1,S2),Θ) for
the interconnected systems Σ1 and Σ2. For the actual computation of a valid set of
scaling factors Θ, we need to first specify the set of admissible scaling factors Θ0 for the
distributed controller and the collection of sets (S1,S2), which is computed according to
(4.20). After removing all redundant half-spaces from Θ0, using the approach outlined
in Corollary 1, we have

Θ0 = {(θ1, θ2)T : 0 ≤ θ1 ≤ 2.948, 0 ≤ θ2 ≤ 2.769}. (5.9)

As already explained in the previous section, in order to obtain the actual set of scaling
factors Θ, that induces a positively invariant family of sets, we need to first find a
positively invariant set Θ for the scaling dynamics, that is included in Θ0, i.e. MΘ ⊆
Θ ⊆ Θ0. Similarly to the decentralized synthesis, we again decided to apply Algorithm 2
to determine the maximal possible set Θ in order to increase the region of admissible
initial conditions for the interconnected closed loop system. Eventually, after applying
Algorithm 2 we can again verify that the whole set Θ0 specified in (5.9) is positively
invariant for the dynamics of the scaling factors, i.e. MΘ0 ⊆ Θ0. Thus, S(S,Θ0)
is a positively invariant family of sets, so according to Theorem 13, we can pick any
(θ∗1, θ∗2)T ∈ Θ0 to guarantee that θ∗1S1 ⊆ X1 and θ∗2S2 ⊆ X2, respectively and whenever
x1(0) ∈ θ∗1S1 and x2(0) ∈ θ∗2S2, we have x1(k) ∈ X1, x2(k) ∈ X2, K1x1(k) ∈ U1 and
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(a) State and input trajectories for subsystem Σ1.

(b) State and input trajectories for subsystem Σ2.

Figure 5.6: Simulation of input and state trajectories for the distributed controller u1(k) =
K1x1(k) + L1G1x2(k) and u2(k) = K2x2(k) + L2G2x1(k) with x1(0) = (−0.55,−0.6, 1.0)T ∈
θ∗1S1 and x2(0) = (0.63,−0.51,−1.0)T ∈ θ∗2S2.
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K2x2(k) ∈ U2 for all k ∈ N+, cf. Figure 5.6 for a illustration where we picked the
largest possible scaling factors θ∗1 = 2.948 and θ∗2 = 2.769 for a depiction of this fact. In
comparison to the decentralized controller, we can see from Figure 5.6 that the inputs
of the distributed controller are much smaller. However, the region of admissible initial
conditions is so far larger and the closed loop system converges faster to the origin for
the aggressive decentralized controller, cf. Figure 5.2.

5.3.1 Robustness Properties of the Distributed Controller

As shown previously, we utilize the concept of robust positively invariant family of sets to
specify guaranteed robustness properties for the distributed controller. The first step is
to parametrize the tolerable collection of disturbance sets (W1,W2) using the collection of
sets (S1,S2) and α = (α1, α2)T ∈ R2

+ such thatW1 ⊆ α1S1 andW2 ⊆ α2S2, respectively.
As explained in the previous section, we can guarantee in this case, that the collection
of sets (S1,S2) form a robust positively invariant family of sets, if θ̄ = (I −M)−1α is in
the interior of Θ0. The set of α that satisfies the former relation is specified according
to (5.7). Using the set Θ0 from (5.9) and M from (5.8), we have the following set Ω of
tolerable scaling factors α for the disturbances:

Ω :=


α ∈ R2 :


30.832 22.173
26.155 36.322
−1.0 0

0 −1.0

α ≤


1
1
0
0




,

which we depicted in Figure 5.7 as well. Thus whenever we pick α ∈ Ω, we can ensure
that there is robust positively invariant family of sets S((S1,S2),Θ) with a nontrivial set
of scaling factors Θ.
In comparison to decentralized controller, we can only ensure guaranteed robustness

properties for relatively small disturbance sets if we use the previously designed dis-
tributed controller, since the basic shape sets (S1, S2) for the distributed controller are
much smaller than the shape sets for the decentralized controller, while the set of tolera-
ble scaling factors for the disturbances has a roughly similar size. For the determination
of an actual robust positively invariant family of sets, we use the same rationale as in
decentralized case, where we tried to maximize the level of uncertainty of the distur-
bance set W2, which later on implies that the tolerable disturbance flow d2 is small
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Figure 5.7: Set of valid α1 and α2 for the distributed controller.

compared to the flow d1. For this specific example, we picked α = (0.001, 0.026)T. As
explained in the previous section, to determine a robust positively invariant family of sets
S((S1,S2),Θ), we simply need to find a set Θ = Θ∗⊕{θ̄}, with MΘ∗ ⊆ Θ∗ ⊆ Θ0⊕{−θ̄}
and θ̄ = (I −M)−1α = (1.79, 2.687)T, see the previous section for more details. For
the determination of this specific set, we utilized again Algorithm 2 to compute the
maximal positively invariant set Θ∗ to later on determine the set Θ, which is depicted in
Figure 5.8. Also note here, that the set of scaling factors Θ that induce the robust pos-
itively invariant family of sets is again smaller than the set of admissible scaling factors
Θ0. As a consequence, we can only guarantee in a smaller region, that the input and
state constraints will be satisfied whenever we apply our distributed controller to the
interconnected system for this specific disturbance scenario. Nevertheless, we have that
x1(0) ∈ θ1S1 and x2(0) ∈ θ2S2 implies x1(k) ∈ X1, x2(k) ∈ X2, K1x1(k)+L1G1x2(k) ∈ U1

and K2x2(k) +L2G2x1(k) ∈ U2 for all k ∈ N+ and all w1 ∈ α1S1 and w1 ∈ α2S2, respec-
tively.
In Figure 5.9, we can see the closed loop behaviour of the interconnected system with

the distributed controller. For the simulation, we picked initial conditions x1(0) ∈ θ∗1S1

and x2(0) ∈ θ∗2S2 with (θ∗1, θ∗2)T = (1.9, 2.75)T ∈ Θ. We again set w1 = w2 = 0 for
the first 80 time steps, while starting with time step 81 we changed the value of the

87



5 Control Applications

Figure 5.8: Set of admissible scaling factors Θ that induces a robust positively invariant family
of sets for the distributed controller with disturbance sets W1 := 0.001S1 and W2 := 0.026S2.

second disturbance to w2 = (0,−0.0064, 0)T ∈ 0.026S2, which roughly translates to
d1 = 4.67 cm3

s
. Clearly, the state and input constraints are satisfied for this simulation

examples, as we can see from Figure 5.9 and hence this type of disturbance scenario
can be easily handled. Note that, we can only guarantee state and input constraint
satisfaction for a relatively small disturbance set. Furthermore, the initial conditions
in which we can assert this fact is also relatively small compared to the disturbance
free case. However, we can argue similarly to the decentralized control case, that the
objective of the controller was to characterize a region in which we can guarantee state
and input constraint satisfaction. Hence, in order to improve the performance of the
controller several disturbance cases, it is still necessary to adapt the synthesis of the
distributed controller appropriately.

5.4 Polytopic Sets
We noted so far, that the region of admissible initial conditions for the decentralized
controller might be larger compared to the distributed controller. In addition, we used
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(a) State and input trajectories for subsystem Σ1.

(b) State and input trajectories for subsystem Σ2.

Figure 5.9: Simulation of input and state trajectories for the distributed controller u1(k) =
K1x1(k)+L1G1x2(k) and u2(k) = K2x2(k)+L2G2x1(k) with x1(0) = (−0.35, 0.4, 0.5)T ∈ θ∗1S1,
x2(0) = (0.6, 0.52,−1.0)T ∈ θ∗2S2 and constant w2 = (0,−0.0064, 0)T at time step 80.

in both cases, family of ellipsoidal shaped sets to characterize the positively invariant
family of sets. Restricting ourselves to this type of sets might produce conservative
results, since the constraint sets X1 and X2 can only be badly approximated by ellipsoidal
sets. In this section, we want to check, if we can enlarge this region for both control
cases, by using differently shaped, polytopic family of sets S((S∗1 ,S∗2 ),Θ). In particular,
we want to see if it is possible to initialize the system on the boundary of the constraint
sets X1, X2 or both of them, without fear of violating the constraint sets. Furthermore,
in order to reduce the complexity for the characterization of the shape sets (S1,S2) we
restrict them to be simple rectangular sets.
The approach highlighted in Section 3.2.3 allows us to properly analyze this specific
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task, although it was motivated for the autonomous case only. Nevertheless, we can
easily extend it to include input constraints, by adjusting the set of admissible scaling
factors Θ0 given by (3.24). This adjustment was highlighted also in Corollary 5 and we
computed this set Θ0 in the distributed control case using ellipsoidal shaped sets via the
use of the support function in (4.7). In order to compute this set for our case, i.e. for the
case of polytopic shaped sets (S∗1 ,S∗2 ), we simply need to evaluate the support function
for polytopic sets in (4.22). However, extending the approach of Section 3.2.3 to include
additive disturbances is unfortunately not–trivial and for this reason we assume that
W1 =W2 = {0} in the remainder of this section.
As outlined in Section 3.2.3, we need basic shape sets (S∗1 ,S∗2 ) to perform the recursion

defined in (3.27). Furthermore, we intend to maximize the size of the sets in order to
check if we can initialize the interconnected system properly on the boundaries of the
constraint sets (X1,X2). In the first step, we tried to use the whole constraint sets as
basic shape sets to perform the recursion, i.e. S∗1 = X1 and S∗2 = X2. In that case,
considering the discussion from before, we have Θ0 = {x : |x|∞ ≤ 1}. However, for
both the decentralized as well as the distributed controller we got as Θ∞ = {0} after
performing several recursion steps utilizing (3.27). This also implies that we cannot
initialize the interconnected systems in the corners of the constraint sets X1,X2, which
can be easily verified by a simple simulation using appropriate initial conditions, which
we decided to not to include here due to its triviality.
In our second step, we decided to analyze if it is possible to maximize the basic shape

sets (S∗1 ,S∗2 ) with the intention of achieving a large region of admissible initial conditions
for the water levels of the tanks. Note, that the first two states of the interconnected
systems Σ1 and Σ2 describe the water level of the tanks while the third state describes the
flow speed of the first and second pump, cf. (5.3) and (5.4). A reasonable way to choose
appropriate shape sets for this task is therefore to consider the following parametrized
polytopes:

S∗1 = S∗2 = {(x1, x2, x3)T : −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1,−a ≤ x3 ≤ a}. (5.10)

A possible way to check, if we can use the parametrized polytopes given in (5.10) to form
a positively invariant family of sets S((S∗1 ,S∗2 ,Θ), is to perform the recursion defined in
(3.27) for different parameters a until we obtain a non–trivial and non–empty set Θ∞.
Therefore, we can use a simple bisection algorithm for the parameter a in order to check
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when the result of the recursion (3.27) is non–empty and non–trivial. Fortunately, for
the distributed controller we were able to obtain a non–trivial solution of the recursion
(3.27) for the value a = 2.1912. In that case, we have Θ0 = {x : |x|∞ ≤ 1} and the set of
admissible scaling factors Θ = Θ∞, which is depicted in Figure 5.10. By construction,

Figure 5.10: Set of admissible scaling factors Θ that induce a positively invariant family of
sets for the distributed controller and the collection of sets (S∗1 ,S∗2 ).

we therefore know that S(S,Θ) is a positively invariant family of sets. Which allows
us to easily constructs regions of initial conditions, in which we can guarantee that
state and input constraint satisfaction are guaranteed. As an example, we depicted the
state and input trajectories in Figure 5.11 and choose the θ∗1 = 1 and θ∗2 = 0.9995 as
admissible scaling factors. In comparison to the results from the previous section, we
were able to greatly increase the region of admissible initial conditions for the distributed
controller. Unfortunately, for the decentralized controller, we were not able to obtain a
set of non–trivial scaling factors Θ∞ for any parameter a.

5.5 Summary
We applied several methodologies highlighting the basic concepts and flexibility of posi-
tively invariant family of sets for the controller synthesis and analysis of a multiple tank
system. We exemplified the synthesis of the distributed and decentralized controller
based on invariant family of sets, which was highlighted in Section 4.1 and 4.2, respec-
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(a) State and input trajectories for subsystem Σ1.

(b) State and input trajectories for subsystem Σ2.

Figure 5.11: Simulation of input and state trajectories for the distributed controller u1(k) =
K1x1(k) + L1G1x2(k) and u2(k) = K2x2(k) + L2G2x1(k) with x1(0) = (1,−1, 2.192)T ∈ θ∗1S∗1
and x2(0) = (0.999, 0.999, 2.191)T ∈ θ∗2S∗2 .

tively. For both of the controllers, we could successfully determine, flexible regions of
admissible initial conditions that achieve explicit state and input constraint satisfac-
tion. We could also show, that on the one hand the distributed controller has a better
performance in the disturbance free case. On the other hand, we highlighted the fact,
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that the synthesis is non–trivial, due to its iterative procedure. In contrast to this, the
decentralized controller is simpler to synthesize, due to its one shot procedure, i.e. it is
only necessary to check feasibility of a LMI for each of the subsystem.
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The main intention of this thesis was to present an appropriate analysis design tool for
interconnected systems subject to constraints. We showed that the standard concepts
of invariance should not be naively extended, since otherwise the synthesis and analysis
for these types of problems might lead to conservative results. By using parametrized
family of sets, we could show that interconnected systems can be analyzed in a flexible
and appropriate way. We presented the concept of positive invariance for a family of sets
and provided several methods, that can be either used to check for existence or used to
construct such family of sets. Furthermore, we presented flexible and easily applicable
tools for the distributed and decentralized controller synthesis exploiting the concepts
of positively invariant family of sets and exemplified in a standard benchmark example
for decentralized and distributed control problems, their applicability and effectiveness.
Set–based frameworks are very well–suited for the characterization of safe process

regions with respect to constraints. In particular, the concept of invariance is a beneficial
tool for the analysis and computation of such regions and is very well established for
centralized use cases. Nevertheless, as argued in Chapter 1, due to complexity of the
plant and/or informational constraints, it is often not possible to employ a centralized
methodology and therefore it was necessary to adapt the concept of invariance in order
to make them more useful for distributed and decentralized control tasks. By analyzing
the induced set–dynamics (3.3) in Chapter 2, we could reveal the interplay of the specific
set–iterates Xi,k and hence gain additional insight for an adapted notion of invariance.
The main idea was to capture the dynamic interplay of the set iterates Xi,k, with a
flexible parametrization in form of family of sets S(S,Θ) given by (3.4). With this
family of sets, we could capture possible shrinking and increasing effects of the set–
iterates Xi,k and hence arrive to a more suitable notion of invariance for interconnected
systems. Using this type of parametrization it was possible to provide strong and easily
verifiable results on invariance, convergence and extensions to additive disturbances for
positively homogeneous and linear interconnected systems, exemplified in Section 3.2.1
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and Section 3.3, respectively. The analysis was made possible by relating the set–iterates
Xi,k to a auxiliary system θ(k+1) = Mθ(k), which describes the dynamics of admissible
scaling factors θ(k). Motivated by the recursion (2.5) for the direct determination of
maximal positively invariant sets, we provided an adapted approach, that allowed us to
investigate invariance properties for a given collection of polytopic sets (S1,S2, . . . ,SN),
subject to a collections of polytopic constraint sets (X1,X2, . . . ,XN) in Section 3.2.3. For
interconnected linear systems, we could show that this approach is based on the repeated
solution of linear programs and can therefore be easily implemented using standard
numerical software tools. We exploited for the distributed and decentralized controller
synthesis based on positively invariant family of sets the dynamic properties of the helper
system θ(k + 1) = Mθ(k). In order to construct an appropriate, positively invariant
family of sets, we needed to guarantee asymptotic stability of this helper system by
tuning the different controller parameters. Fortunately, the entries of the matrixM have
a direct relation to the interconnection effects and stability properties of the different
subsystems. In the linear case, we can think of the control setting as a class of systems
that are interconnected through artificial outputs. As a result we showed that for the
distributed controller synthesis an H∞ max–min approach is a suitable design tool, since
it allows us to easily tune input–output properties and hence influence in an iterative
way the stability properties of the matrixM . An alternative approach, which is suitable
for the decentralized controller design of linear systems, that are interconnected through
positively homogeneous functions, utilizes the same, basic idea. However instead of
employing an iterative procedure, we showed that a modular, LMI approach can be used,
whenever it is possible to appropriately bound the interconnections. We highlighted in
the benchmark example, considering a four tank systems, the different invariance and
performance properties of the previously explained concepts. In particular, although the
performance and robustness properties of the synthesized controllers have still potential
of improvement, we exemplified the strong invariance properties and the flexibility to
adapt to different disturbance scenarios.

6.1 Outlook and Future Directions
As highlighted in Chapter 3, we restricted our attention to specific parametrization of
family of sets, since our focus was mainly on positively homogeneous and linear in-
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6 Conclusions

terconnected systems. An interesting future research direction is to investigate more
general parametrization and their connection to specific classes of interconnected pro-
cesses, such as bilinear or polynomial systems. In many cases we have interconnected
systems that have shared state variables stemming from an overlapping decomposition
of a large, complex processes. Further work should be focused on extending the concept
of invariance of family of sets to this type of problem setting. In Section 3.2.3, we high-
lighted an algorithm for the determination of a possible large or maximal sets of scaling
factors Θ for a given collection of sets S. An interesting question is to investigate gen-
eralization of this algorithm, for instance by including additive disturbances or inputs.
Furthermore, by relating it to the approach highlighted in (3.23), it might be possible
rigorously analyze its properties with respect to convergence and maximality of the set
Θ. Robust invariant sets are extensively used in modern, tube based model predictive
control schemes. Robust positively invariant family of sets might be beneficial, if these
predictive control methods are extended to interconnected systems. In Chapter 5, we
presented some controller design procedures exploiting positively invariant family of sets.
The focus for the synthesis of these controllers was solely on describing regions, that lead
to a safe operation of the plants with respect to constraints. Although we could see in
Chapter 6 that the methods work as intended, the overall performance was often not
satisfactory. Hence, an interesting research questions is to improve the general perfor-
mance of these methods, for instance by including an appropriate objective function in
the LMI’s of Theorem 13 or by employing a distributed algorithm in which the γi are
exchanged and negotiated in the max–min/min–max approach of Section 4.1. A major
focus of this work was to provide strong and rigorous theoretical framework, however it
is still necessary to evaluate these methods for real plants in a realistic and challenging
setting.
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7 Appendix

Topological, Algebraic and Convex Concepts
In order to provide a self–contained thesis, we provide some additional useful facts related
to convexity and topology, which were used throughout this thesis. For more details on
these topics, we refer to standard textbooks such as [Kelley 1955; Schneider 1993; Boyd
and Vandenberghe 2004].

Lemma 6. f(X ) is compact, if X ⊂ Rn is compact and f(·) : Rn → Rn is continuous.

Proof. Elementary.

Lemma 7. If X ⊂ Rn and Y ⊂ Rn are compact sets, then X ⊕ Y is a compact set.

Proof. The Minkowski sum is a continuous operation, and hence the image X ⊕ Y of
the compact set X × Y is compact.

Lemma 8.
f−1(

⋂
i∈I
Xi) =

⋂
i∈I

f−1(Xi),

where I is some index set.

Proof. By definition x ∈ f−1(⋂i∈I Xi) implies f(x) ∈ ⋂i∈I Xi and hence f(x) ∈ Xi for
every i ∈ I. This is the same as f−1(x) ∈ Xi for every i ∈ I or x ∈ ⋂

i∈I f
−1(Xi).

Conversely, if x ∈ ⋂i∈I f−1(Xi), then x ∈ f−1(⋂i∈I Xi) by a similar argument.

Lemma 9. Matrix Inversion Lemma:

(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1
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Proof.

(A−1 − A−1U(C−1 + V A−1U)−1V A−1)(A+ UCV ) =

I + A−1UCV − A−1U(C−1 + V A−1U)−1V − A−1U(C−1 + V A−1U)−1V A−1UCV =

I + A−1U(C−1 + V A−1U)−1(I + V A−1UC − I − V A−1UC)V = I

Lemma 10. Given a convex set X and Y, we have

i) s(GX , y) = s(X , GTy),

ii) s(X ⊕ Y , y) = s(X , y) + s(Y , y),

iii) s(αX , y) = αs(X , y),

for any matrix G of compatible dimension and any scalar α.

Proof. i)–iii) follows directly from the definition of the support function s(·, ·).

Lemma 11. Schur Complement: Let

S =
 A B

BT C

 ,
where A = AT � 0, C = CT and S = ST. S is positive semidefinite if and only if
C −BTA−1B is positive semidefinite.

Proof. First note that for any nonsingular matrix M , MSMT is positive semidefinite iff
S is positive semidefinite. We have

 I 0
−BTA−1 I

 A B

BT C

 I 0
−BTA−1 I

T

=
A 0

0 C −BTA−1B


and since A � 0, in order for S to be positive semidefinite, C − BTA−1B needs to be
positive semidefinite.
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