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Summary

The subject of this thesis is Algebraic Systems Biology with focus on detecting
multistationarity in mass-action networks. The main contributions of this
thesis are divided into three parts. First, in Chapter 2 we develop the theory
of multistationarity for mass-action networks with toric positive steady
states and in Chapter 3 we apply this theory to sequential and distributive
phosphorylation networks. Second, in Chapter 4 we prove that dynamical
systems with the isolation property have toric positive steady states. Finally,
in Chapter 5 we introduce Sturm discriminants.

Zusammenfassung

Das Thema dieser Dissertation ist Algebraische Systembiologie mit dem Fokus
auf die Erkennung von Multistationarität in Massenwirkungsnetzwerken. Die
Hauptbeiträge dieser Arbeit sind in drei Teile gegliedert. Zuerst entwickeln
wir in Kapitel 2 die Theorie der Multistationarität für Massenwirkungsnet-
zwerke mit torische positive stationären Zuständen, und in Kapitel 3 wenden
wir diese Theorie auf sequentielle und distributive Phosphorylierungsnet-
zwerke an. Zweitens beweisen wir in Kapitel 4, dass dynamische Systeme
mit der Isolationseigenschaft torische positive stationären Zustände haben.
Schließlich führen wir in Kapitel 5 Sturm Diskriminanten ein.
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Introduction

Many mechanisms in Systems Biology can be modelled by chemical reaction
networks. The Theory of Chemical Reaction Networks started to develop early in
the 1970s, mainly by works of Feinberg, Horn, Jackson, and their collaborators
(see, for example, Dickenstein’s survey article [14]). When the dynamics of such a
network is of mass-action form it is called a mass-action network and it is described
by systems of ordinary differential equations (ODEs) with polynomial right hand
side. Often one does not try to solve these polynomial ODEs, but rather pick a
more modest objective. For example, the steady states of these polynomial ODEs
contain information about long time behaviour and equilibria points, and they
give clues about different modi operandi. In particular, one is frequently interested
in the existence of multiple steady states (that is, multistationarity) [7, 8]. As
steady states are described by polynomial equations, algebra plays a central role
in the study of multistationarity. In recent years, the Algebraic Systems Biology
Community presented many results on multistationarity. Particularly interesting
is the classification with respect to multistationarity of small chemical reaction
networks done in 2016 by Joshi and Shiu [29]. A similar classification with respect
to nondegenerate multistationarity was done in 2018 by Shiu and de Wolff [44].

Chemical reaction networks originating in Biology are usually large and mea-
surement data is often noisy. Hence this data can be encoded in a set of parameters.
As polynomial systems originating in biochemical reaction networks are sparse,
the study of their Newton polytopes may give insight about steady states. In
[4], Bihan, Dickenstein, and Giaroli use regular subdivisions of Newton polytopes
to find parameter values which lead to multiple positive roots and apply this
method to biochemical reaction networks. A more general, but computationally
more laborious, approach is through the discriminant variety. The discriminant
variety of a system of polynomial equations and inequalities is a hypersurface
which divides the parameter space into connected regions with constant number
of solutions. Discriminants of parametric systems have been implemented in the
Maple package RootFinding[Parametric], based on algorithms introduced in
2007 by Lazard and Rouillier [31], [34], and [23].

Realistic models tend to be large and even numerically determining which
parameter values lead to multistationarity can be challenging. However, biochem-
ical reaction networks usually have nice combinatorial properties. For instance,
in 2012, Conradi and Flockerzi defined the isolation and the bridging properties
[8, Definition 3], and introduced linear systems that test for multistationarity in
chemical reaction networks with these properties [8, Lemma 4 and Theorem 2].
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Along the same lines, in 2016, Millán and Dickenstein [38] defined MESSI biological
systems as a general framework for Modifications of type Enzyme-Substrate or
Swap with Intermediates. A notable property of many MESSI systems is that they
have toric steady states, in which case they describe combinatorial certificates for
monostationarity [38, Theorems 28, 32]. Such mass-action networks with toric
steady states were first studied in full generality in 2011 by Millán, Dickenstein,
Shiu, and Conradi [33] and they are of particular interest because their positive
steady states admit monomial parameterizations which can be used as a complex-
ity reduction step in larger computations [10]. For example, in Chapter 3 we
computationally prove that in the space of total concentrations of the two-site
phosphorylation network there is a full-dimensional convex cone in which multista-
tionarity is not attainable. The proof, which uses quantifier elimination, was only
feasible because this system has toric steady states. The algebraic framework for
systems with toric steady states is Binomial Ideals. Binomial ideals were studied
by Eisenbud and Surmfels in 1996 [17].

This thesis is divided into five chapters. In Chapter 1 we introduce the Theory of
Chemical Reaction Networks putting special emphasis on multistationarity. In
Chapter 2 we develop the theory of multistationarity for mass-action networks
with toric positive steady states (that is, mass-action networks whose positive
steady states admit monomial parameterizations). Systems with toric positive
steady states are generalizations of systems with toric steady states. This is of
particular interest as in many applications only the positive steady states are
relevant. For these systems we show that, in the space of total concentrations,
multistationarity is scale invariant (Theorems 2.18 and 2.19). Moreover, for these
systems we give semialgebraic conditions for multistationarity in terms of only
the total concentrations (Theorem 2.15 and Corollary 2.17). In Chapter 3 we
apply the results from Chapter 2 to the well-known sequential and distributive
phosphorylation of a protein. For the two-site phosphorylation we prove a relation
between multistationarity and the chamber decomposition of the cone of total
concentrations (Theorem 3.5 and Corollary 3.7). In Chapter 4 we analyze dynam-
ical systems with the isolation property. In particular, in Theorem 4.17 we show
that dynamical systems with the isolation property have toric positive steady
states. In general testing for toric positive steady states is a hard problem. As the
isolation property is easier to test, it can be used as a certificate for toric positive
steady states. Finally, in Chapter 5 we introduce Sturm discriminants. Sturm
discriminants use Sturm sequences for the computation of discriminants. While
these discriminants are in general not minimal, they are easily implementable in
open source computer algebra systems like Macaulay2.
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Notation

If S is a finite multiset, then |S| denotes the cardinality of S. If G is a graph, then
V (G) and E(G) denote the set of vertices and the set of edges of G, respectively.
If a is a sequence of real numbers, then Var(a) denotes the number of sign changes
in a after removing the 0 entries. For example Var(1, 0,−1) = Var(1,−1) = 1.

For any m× n-matrix A, we write im(A) = {Ax| x ∈ Rn} for the right image and
rowspace(A) = {yA| y ∈ Rm} for the rowspace (left image). If A and B are two
matrices of the same dimension, then A ? B denotes their Hadamard product, i.e.
(A ? B)ij = AijBij. Similarly, A

B
denotes the entry-wise division. If x is a vector

of length m and A is an m× n-matrix, then xA denotes the n-vector with entries

(xA)j =
m∏
i=1

x
Aij
i , j = 1, . . . , n.

Slightly deviating from the matrix-vector product notation, this operation is
possible independent of whether x is a row or column vector and returns the
same type of vector. We also apply scalar functions to vectors which means
coordinate-wise application. Using this, for example, one can check that

lnxA = (lnx)A, if x is a row vector,

and

lnxA = AT lnx, if x is a column vector.

If A1 and A2 are two matrices with the same number of rows, then the matrix
whose columns are the columns of A1 followed by the columns of A2 is denoted by
(A1|A2). A vector which has 1 in every entry is denoted by 1 and a matrix which
has 0 in every entry is denoted by 0. Let A be a matrix with columns A1, . . . , An
and let I = {i1, . . . , ip} be a multiset of elements of [n]; then AI = (Ai1| . . . |Aip).

Let R be an integral domain and let k be a field. By K(R) we denote the field
of fractions of R and by k we denote the algebraic closure of k. If p ∈ R[x], the
derivative of p with respect to x is denoted by p′. Let q ∈ k[x1, . . . , xn] and let
order be a monomial ordering on the set of monomials of k[x1, . . . , xn]. The
leading term and leading coefficient of q with respect to order are denoted by
LTorder(q) and LCorder(q), respectively, and the constant term of q is denoted by
CT(q). The Zariski closure of an affine set S is denoted by S. If I is a polynomial
ideal, its variety is denoted by V(I). The set of polynomials vanishing on an affine
set S is denoted by I(S). If I is a polynomial ideal that has only one generator g,
then the unique generator of Rad(I) is denoted by gred.
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Chapter 1

Chemical reaction networks

This chapter is based on Section 2 of the paper “Multistationarity in the space of
total concentrations for systems that admit a monomial parametrization” [10],
joint work with Carsten Conradi and Thomas Kahle.

A chemical reaction network is a finite directed graph whose vertices are labelled by
chemical complexes and whose edges are labelled either by positive real numbers, or
by parameters, called rate constants. The network Nph of Example 1.1 is a typical
biochemical reaction network. The digraph is denoted by N = ([m], E), with
vertex set [m] and edge set E. Each complex i ∈ [m] has the form

∑n
j=1(yi)jXj

for some yi ∈ Zn≥0, where X1, . . . , Xn are chemical species. The vectors yi are the
complex-species incidence vectors and they are gathered as the columns of the
complex-species incidence matrix Y = (y1, . . . , ym). Throughout this dissertation
the integers n, m, and r, unless otherwise stated, denote the number of species,
complexes, and reactions, respectively. A complex which is the source of a reaction
is an educt complex and a complex which is the sink of a reaction is a product
complex. Each complex can be the educt and product complex for several reactions.
For each reaction network one has two matrices Ye and Yp whose columns are
the complex-species incidence vectors corresponding to all educt and product
complexes, respectively. That is

Ye =(ỹ1, . . . , ỹr), where ỹi = yk when reaction i has educt complex k,

Yp =(ỹ1, . . . , ỹr), where ỹi = yk when reaction i has product complex k,

Example 1.1. The following reaction network is the 1-site phosphorylation
network and it models the phosphorylation of a protein at one site:

X1 +X2 X3 X1 +X4

X4 +X5 X6 X2 +X5.

k1

k2

k3

k4 k6

k5

(Nph)
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The chemical species are X1, X2, X3, X4, X5, and X6 and the complexes are
X1 +X2, X3, X1 +X4, X4 +X5, X6, and X2 +X5. The species X1 is a catalyst
for the phosphorylation of X2 which goes through an intermediate state X3 before
becoming the phosphorylated X4. Similarly, X5 catalyzes the dephosphorylation.
Here X1 and X2 play the roles of unphosphorylated and phosphorylated protein.
The network has 6 reactions, each one labelled by a rate constant k1, k2, k3, k4,
k5, or k6. The matrices Ye and Yp of this network are

Ye =


1 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1

 and Yp =


0 1 1 0 0 0
0 1 0 0 0 1
1 0 0 0 0 0
0 0 1 0 1 0
0 0 0 0 1 1
0 0 0 1 0 0

 .

1.1 Dynamical systems defined by mass-action

networks

Every chemical reaction network defines a dynamical system of the form

ẋ = Sν(k, x), (1.1)

where S = Yp − Ye is the stoichiometric matrix and ν(k, x) is the vector of
reaction rates. The vector space Lstoi spanned by the columns of S is called
the stoichiometric space. Here the vector of reaction rates is a function of the
concentrations x and of the vector of rate constants k. In this thesis we are
concerned with mass-action networks for which the kinetics is of mass-action form,
i.e. the rate of each reaction is proportional to the product of the concentrations
of its educt complex. Thus, for mass-action networks,

ν(k, x) = k ? φ(x),

where φ(x) = xYe , and k = (k1, . . . , kr)
T is the vector of rate constants. More

general kinetics exist (e.g. [37] and the references therein) and they have been
recently analyzed, partly motivated by the Global Atractor Conjecture [13].
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Example 1.2. The stoichiometric matrix of the network Nph is

S =


−1 1 1 0 0 0
−1 1 0 0 0 1

1 −1 −1 0 0 0
0 0 1 −1 1 0
0 0 0 −1 1 1
0 0 0 1 −1 −1

 .

As a mass-action network, Nph has the following reaction rates:

ν1 = k1x1x2, ν2 = k2x3, ν3 = k3x3, ν4 = k4x4x5, ν5 = k5x6, and ν6 = k6x6.

Consequently, the dynamics of Nph is given by the following system of ODEs:

ẋ1 = −k1x1x2 + (k2 + k3)x3,
ẋ2 = −k1x1x2 + k2x3 + k6x6,
ẋ3 = k1x1x2 − (k2 + k3)x3,

ẋ4 = k3x3 − k4x4x5 + k5x6,
ẋ5 = −k4x4x5 + (k5 + k6)x6,
ẋ6 = k4x4x5 − (k5 + k6)x6.

A natural question that arises is ‘Which polynomial ODEs describe the dynamics
of a mass-action network?’. This question was answered in [25] by Hárs and Tóth:

Lemma 1.3 ([25]). An ODE system ẋ1 = f1, . . . , ẋn = fn describes the dynamics
of a mass-action network on n species whose rate constants are fixed if and only
if fi ∈ R[x1, . . . , xn] and each negative term of fi is divisible by xi.

1.2 Steady states

If the rate constants k1, . . . , kr and the concentrations x1, . . . , xn are such that

Sν(k, x) = 0, (1.2)

then x is a steady state. As x is a vector of concentrations of chemical species,
only nonnegative x are meaningful. Consequently steady states are nonnegative
real solutions of equations (1.2). A steady state is positive if all its coordinates
are positive real numbers. It is a boundary steady state if all its coordinates are
nonnegative but it is not positive. The steady state ideal I is the polynomial ideal
generated by the entries of Sν(k, x). This ideal can be considered in different
polynomial rings. Thus, the parameters k can be part of the indeterminates,
i.e. I ⊂ R[k, x], or appear as variables in the rational functions that serve as
coefficients. In the second case I ⊂ R(k)[x]. In Chapter 4 yet another approach is
considered: rate constants are considered to be fixed positive real numbers and
whenever there is given a collection of them a family of ideals is considered. In all
these cases the steady state variety is the zero locus of the steady state ideal.
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Example 1.4. The equations ẋi = 0 define the steady state ideal of Nph:

I = 〈−k1x1x2 + (k2 + k3)x3,−k1x1x2 + k2x3 + k6x6, k1x1x2 − (k2 + k3)x3,
k3x3 − k4x4x5 + k5x6,−k4x4x5 + (k5 + k6)x6, k4x4x5 − (k5 + k6)x6〉

= 〈k1x1x2 − (k2 + k3)x3, k3x3 − k6x6, k4x4x5 − (k5 + k6)x6〉.

The second equality results from elementary simplification and omitting redundant
generators. While such simplifications are useful to understand the geometry of
steady states, any interpretation of the resulting polynomials is lost.

Definition 1.5. The positive steady state variety of N is

V + = {(k, x) ∈ Rr
>0 × Rn

>0| Sν(k, x) = 0} .

Example 1.6. According to Example 1.4, the steady state ideal of Nph is gener-
ated by 3 polynomials. Since we are only interested in positive xi, the equations
that describe the positive steady state variety can be rearranged as

x3

x6

=
k6

k3

,
x1x2

x3

=
k2 + k3

k1

,
x4x5

x6

=
k5 + k6

k4

. (1.3)

These equations can be solved as

x3 =
k1

k2 + k3

x1x2, x4 =
k1k3(k5 + k6)

(k2 + k3)k4k6

x1x2

x5

, x6 =
k1k3

(k2 + k3)k6

x1x2. (1.4)

This shows that the positive steady state variety of Nph can be parameterized by
x1, x2, and x5 together with k1, . . . , k6. This parameterization uses only products
(and divisions) of the xi, but no sums. This monomial parameterization is crucial
for the developments of Chapter 2.

As we saw in Lemma 1.3, ODE systems describing the dynamics of mass-action
networks are quite special. Hence it is natural to ask whether steady state ideals
are also that special. This question was answered by Dickenstein in 2016:

Proposition 1.7 ([14]). If I ⊆ R[x1, . . . , xn] is an ideal generated by at most n
polynomials, then there exists a mass-action network whose steady state ideal J
has the following property:

V(I) ∩ (R∗)n = V(J) ∩ (R∗)n.

Corollary 1.8. If L ⊂ Zn is a lattice and ρ : L→ R∗ is a partial character, then
there is a mass-action network with binomial steady state ideal J such that

V(I(ρ)) = V(J) ∩ (R∗)n .
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Proof. Let {m1, . . . ,ms} be a basis of L. It follows from [17, Theorem 2.1.b] that

I(ρ) = 〈xm1 − ρ(m1), . . . , xms − ρ(ms)〉.

Let fi = x1 . . . xn

(
xm

+
i − ρ(mi)x

m−i

)
, i ∈ [s] and choose fs+1, . . . , fn randomly

among f1, . . . , fs. Let J = 〈f1, . . . , fs〉. Then

V(I(ρ)) = V(J) ∩ (R∗)n .

As, for each i ∈ [n], the polynomial fi is divisible by the monomial x1 . . . xn, by
Lemma 1.3, the ODE system ẋ1 = f1, . . . , ẋn = fn describes the dynamics of some
mass-action network on n species.

Remark 1.9. Proposition 1.7 cannot be generalized to the case when I is an
ideal of R[k][x]. The main obstacle lies in choosing rate constants, as in most
applications rate constants, when considered as parameters, are algebraically
independent and, moreover, in mass-action networks, each parameter has a unique
monomial associated to it. For example, the ideal 〈kx− ky〉 ⊆ R[k][x, y] is the
steady state ideal of some network N if and only if N has two reactions with rate
constants k1 and k2 and k1 = k2 = k.

Remark 1.10. While Proposition 1.7 shows that ideals arising as steady state
ideals of chemical networks are quite general, biochemical networks tend to have
special combinatorial properties. For example, in 2016, Millán and Dickenstein [38]
introduced MESSI biological systems as a general framework for Modifications of
type Enzyme-Substrate or Swap with Intermediates. A notable property of many
MESSI systems is that they have toric steady states [38].

1.3 Conservation relations and total concentra-

tions

For many reaction networks there are linear dependencies among ẋ1, . . . , ẋn: they
are relations of the form zẋ = 0, where z is an element of the left kernel of S.
If zẋ = 0 for zT ∈ Rn then, by integrating with respect to time, zx is constant
along trajectories. These constants zx are the total concentrations or conserved
moieties. By (1.1), every zT ∈ Rn with zS = 0 yields zẋ = 0. The left kernel of
the stoichiometric matrix is called the conservation space Lcons. A matrix Z whose
rows are a basis of Lcons is a conservation matrix. In general, every conservation
matrix defines total concentrations via

c = Zx. (1.5)

9



As the coordinates of x denote concentrations of chemical species, x is a
nonnegative vector. Thus, only values of c corresponding to nonnegative x have
chemical meaning. The set of such c is denoted by im+(Z):

im+(Z) = {c ∈ Rn−s|∃x ∈ Rn
≥0 such that Zx = c}.

If x(0) ∈ Rn
>0 is a vector of initial concentrations, then, under mass-action

kinetics, the trajectory {x(t)| t > 0} is constrained to the polyhedron

Pc = {x ∈ Rn
≥0| Zx = c}. (1.6)

The set Pc is known as the invariant polyhedron with respect to x(0) [43, Sec-
tion 1.3.3], or the stoichiometric compatibility class of x(0) [19, 20].

Example 1.11. The conservation space Lcons ofNph is spanned by the row vectors

(1, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 1), and (0, 1, 1, 1, 0, 1).

Consequently, the network Nph has three linearly independent conservation rela-
tions and three total concentrations c1, c2, and c3:

x1 + x3 = c1,
x5 + x6 = c2,

x2 + x3 + x4 + x6 = c3.
(1.7)

The quantities c1, c2, and c3 can be interpreted as total amount of kinase, phos-
phatase and substrate, respectively.

Remark 1.12. If Lcons contains at least one positive point, then it is always
possible to choose a basis in which Z has positive entries. Mass-action networks
with this property are called conservative, and their stoichiometric compatibility
classes are bounded. Consequently, the trajectories of conservative mass-action
networks are also bounded.

1.4 Chamber decomposition of Pc
We now introduce the chamber decomposition, a natural subdivision of the set
of total concentrations c. In Chapter 3 we use it to partition the space of total
concentrations into chambers and test for multistationarity within these chambers.
The chamber decomposition requires that Z in (1.6) is a d× n matrix of full rank
and c is the parameter indexing the family. The decomposition is for cone(Z),
the cone of nonnegative combinations of columns of Z, because Pc is empty for
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all c /∈ cone(Z). To give the precise definition one more notion is necessary: a
basis of Z is a subset B of the columns of Z that is a basis of Rd. Each basis B
defines a basic cone cone(B) consisting of nonnegative linear combinations of the
columns in B.

Definition 1.13. The chamber complex of a matrix Z is the common refinement
of the basic cones of all its bases. More precisely, c1 and c2 are in the same
chamber of the chamber complex if and only if

c1 ∈ cone(B)⇔ c2 ∈ cone(B) for all bases B of Z.

Example 1.14. The chamber complex corresponding to the sequential and dis-
tributive multisite phosphorylation of a protein is examined in Section 3.4.

1.5 Multistationarity

Multistationarity refers to the capacity of a chemical reaction network to admit
multiple positive steady states in some stoichiometric compatibility class [8]:

Definition 1.15. A system admits multistationarity if there are k ∈ Rr
>0 and

a 6= b ∈ Rn
>0 such that (k, a) ∈ V +, (k, b) ∈ V +, and (b− a) ∈ im(S).

Example 1.16. It is well known that Nph has one steady state for each k ∈ R6
>0

and c ∈ R3
>0 (see for example [26] and [21] and the references therein).

Example 1.17. Let G denote the following chemical reaction network:

3X1 2X1 +X2 X1 +X2 2X2 X2 X1

k1

k2

k3 k4

(G)

The dynamics of this network is given by the following system of ODEs:

ẋ1 =− k1x
3
1 + k2x

2
1x2 − k3x1x2 + k4x2

ẋ2 = k1x
3
1 − k2x

2
1x2 + k3x1x2 − k4x2.

Consequently, the steady state ideal of G is

I = 〈−k1x
3
1 + k2x

2
1x2 − k3x1x2 + k4x2〉 ⊆ R[k1, k2, k3, k4][x1, x2].

There is also a conservation relation: x1 + x2 = c. Hence the study of the positive
steady states of G reduces to the study of the positive solutions of the system

k1x
3
1 − k2x

2
1x2 + k3x1x2 − k4x2 = 0

x1 + x2 = c,
(1.8)
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for positive parameters k1, k2, k3, k4, and c. If one eliminates the variable x2 from
(1.8), then one gets the following equation in the variable x1:

(k1 + k2)x3
1 − (k2c+ k3)x2

1 + (k3c+ k4)x1 − k4c = 0. (1.9)

The left hand side of this equation is a cubic polynomial in R[k1, . . . , k4, c][x1]. As
for all positive values of the parameters one has

Var(k1 + k2,−k2c− k3, k3c+ k4,−k4c) = 3,

by Descartes’ Law of signs [1, Theorem 2.33], (1.9) has either one or three positive
solutions counted with multiplicity. The values of the parameters for which (1.9)
has a double solution are given by the vanishing of its discriminant:

k2
2k

2
3c

4 − 4k3
2k4c

4 − 4k1k
3
3c

3 − 2k2k
3
3c

3 + 18k1k2k3k4c
3 + 8k2

2k3k4c
3+

k4
3c

2 + 6k1k
2
3k4c

2 − 2k2k
2
3k4c

2 − 27k2
1k

2
4c

2 − 36k1k2k
2
4c

2 − 8k2
2k

2
4c

2 −
2k3

3k4c+ 6k1k3k
2
4c+ 8k2k3k

2
4c+ k2

3k
2
4 − 4k1k

3
4 − 4k2k

3
4 = 0

(1.10)

In Figure 1.1 we fix the rate constants and we represent the intersection between
the positive steady state variety of G and several invariant polyhedra; in particular
this picture shows that network G admits multistationarity.

Remark 1.18. Definition 1.15 could in principle be extended to include boundary
steady states. However techniques from toric geometry cannot be directly applied
there, and these cases need to be dealt with separately. Consequently, in this
thesis multistationarity refers to the existence of multiple positive steady states.

1.6 Internal cycles

An internal cycle [45], of a chemical reaction networks is a minimal multiset C of
elements of [r] such that the two monomials arising as the product of the educt
complexes indexed by C and the product of the product complexes indexed by C
are equal. That is,

x(Ye)C1 = x(Yp)C1,

where 1 = {1}|C| is a column vector. We recall that if C = {i1, . . . , is} is a multiset
of elements of [r] with i1 ≤ i2 ≤ . . . ,≤ is, then (Y•)C denotes a matrix whose jth

column is the ithj columns of Y•, where • stands for e or p (see the Notation).
Internal cycles are encoded in the rays of the nonnegative kernel of the

stoichiometric matrix [45]. Let E1, . . . , Ee denote the generators of the cone
ker(S) ∩ Rr

≥0. The cone generator matrix of N is E = (E1| . . . |Ee) and the
coefficients cone is Λ(E) = {λ ∈ Re

≥0| Eλ > 0} [8, Section 3.1]. We observe that,

12



x1

x2

x1 + x2 = 3.3

x1 + x2 = 5.3

•

•

•

•

•
•

Figure 1.1: The intersection of the positive steady state variety of G and several
invariant polyhedra. For this picture we fixed the rate constants to the following
values: k1 = 0.1, k2 = 1, k3 = 3 and k4 = 2. By substituting these values in (1.10),
one gets up to multiplying by a rational number that the discriminant of (1.9) is
25c4 − 150c3 + 208c2 − 120c+ 20. This discriminant has two real roots. The first
one (approximately 0.3) corresponds to a negative double solution of (1.9) and
the second one (approximately 4.3) corresponds to a positive double solution of
(1.9). In particular, if the value of the total concentration x1 + x2 is larger than
the second value, then multistationarity is attained in G.
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if E has a zero row, then V + is empty. In Theorem 2.7, for fixed x, we show how
to compute values of k for which (k, x) ∈ V +. Note that the matrix E can always
be chosen so that its columns span ker(S) ∩ Zr≥0. Proposition 1.19 below relates
internal cycles to the matrix E and it was first stated in [42, Theorem 4.1].

Proposition 1.19 ([42]). Columns of the cone generator matrix E and internal
cycles of N are in one to one correspondence. The ith column of E corresponds
to the internal cycle in which the multiplicity of every j ∈ [r] is Eji.

Proof. Equation x(Ye)C1 = x(Yp)C1 is equivalent to x(S)C1 = 1, which is equivalent to
SC1 = 0. Let v ∈ Zr≥0 be a column vector such that vi is equal to the multiplicity
of i in C. Then SC1 = 0 if and only if Sv = 0. Now, C is minimal if and only
if the only C′ and C′′ such that C = C′ + C′′, SC′1 = 0, and SC′′1 = 0 are either
∅ and C or C and ∅. So C is minimal if and only if the only v′, v′′ ∈ Zr≥0 such
that v = v′ + v′′, Sv′ = 0, and Sv′′ = 0 are either v and 0 or 0 and v. Hence C is
minimal if and only if v is an extremal ray of ker(S) ∩ Zr≥0.

Remark 1.20. In the language of [42], Proposition 1.19 says that internal cycles
are nonnegative elementary flux modes.

Remark 1.21. As a consequence of Proposition 1.19, the cone generator matrix
can be computed by analyzing the reaction network. While for big networks this
might be computationally infeasible, for small examples this proposition offers
the possibility of fast computations by hand.

Example 1.22. Consider the following network

2X1 X1 +X2 2X2

k1

k2

k3
. (1.11)

The matrices Ye and Yp of this network are

Ye =

(
2 1 1
0 1 1

)
and Ye =

(
1 2 0
1 0 2

)
.

Hence the stoichiometric and the cone generator matrices of this network are

S =

(
−1 1 −1

1 −1 1

)
and E =

 1 0
1 1
0 1

 ,

respectively, and its internal cycles are {1, 2} and {2, 3}.
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Chapter 2

Multistationarity in the space of
total concentrations for systems
that admit a monomial
parameterization

The first 5 sections of this chapter are based on Section 3 of the paper “Multista-
tionarity in the space of total concentrations for systems that admit a monomial
parametrization” [10], joint work with Carsten Conradi and Thomas Kahle. Sec-
tion 2.6 is joint work with Thomas Kahle and Ruilong Zhuang.

2.1 Introduction

As total concentrations are experimentally more accessible than rate constants,
conditions directly including total concentrations are useful. In this chapter we
study such conditions with focus on systems whose positive steady states admit a
monomial parameterization (Definition 2.1). These systems are closely related to
systems with toric steady states described in [33], that is to systems whose steady
state ideal is binomial. For such systems that admit a monomial parameterization
we show that in the space of total concentrations multistationarity is scale invariant,
i.e. there is multistationarity for some value c of the total concentrations if and
only if, for any α > 0, there is multistationarity for αc (Theorems 2.18 and 2.19).
In Theorem 2.15 and Corollary 2.16 we provide semialgebraic conditions that use
only variables representing concentrations. Such conditions can be extended to
incorporate constraints on the total concentrations. Hence, for such systems it is
possible to decide about multistationarity without knowing the rate constants.
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2.2 Monomial parameterization of the positive

steady states

In this chapter N denotes a mass-action network on n species and r reactions,
with dimLcons 6= 0, and S and Z denote the stoichiometric and a conservation
matrix of N , respectively. The following definition was already used in [35]:

Definition 2.1. The positive steady state variety V + of N admits a monomial
parameterization if there are M ∈ Zn×d of rank p < n and a rational function

γ : K+
γ → Rd

k 7→ γ(k),

such that
(k, x) ∈ V + ⇔ xM = γ(k) ∀(k, x) ∈ K+

γ × Rn
>0,

where
K+
γ =

{
k ∈ Rr

>0| γ+
i (k) · γ−i (k) > 0, i ∈ [d]

}
and γ±i (k) ∈ R[k] are such that

γ±(k) =
(
γ±1 (k), . . . , γ±d (k)

)
, where γi(k) =

γ−i (k)

γ+
i (k)

for i ∈ [d].

Throughout this chapter M denotes the matrix of the monomial parameteriza-
tion from Definition 2.1.

Example 2.2. According to (1.3), the positive steady state variety of the net-
work Nph admits a monomial parameterization.

If M± ∈ Z≥0 denote the positive and negative part of M , then the system
xM = γ(k) of Definition 2.1 is equivalent to the following binomial system:

γ+(k) ? xM
+ − γ−(k) ? xM

−
= 0. (2.1)

The polynomials γ±(k) need not be monomials. Therefore, in general, the system
(2.1) is binomial only in the variables x. More generally, I(V +) ⊆ R(k)[x] is a
binomial ideal. By [17, Theorem 2.1], the ideal

〈
(
xM
)
i
− γi(k)| i ∈ [d]〉 ⊂ R(k)[x±] (2.2)

is a complete intersection and, consequently, it has a generating set for which
M has full rank, i.e. there is a γ such that M ∈ Zn×p. Subsequently, unless
otherwise stated, we assume that M and γ(k) are of this form. Observe that, as
the ideal from Equation (2.2) has several generating sets of binomials, neither the
polynomials γ±(k) nor the matrix M need be unique. In the next lemmata we
explicitly study the consequences of a monomial parameterization for V +.
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Lemma 2.3. If V + admits a monomial parameterization and there exists a matrix
A ∈ Qq×n of rank q < n such that AM = 0, then the following are equivalent:

a) (k, x) ∈ V +,

b) (k, x ? ξA) ∈ V + ∀ξ ∈ Rq
>0,

c) (k, x ? (eκ)A) ∈ V + ∀κ ∈ Rq.

Proof. As V + admits a monomial parameterization, a) is equivalent to xM =
γ(k) and b) is equivalent to (x ? ξA)M = γ(k). As AM = 0, we deduce that(
x ? ξA

)M
= xM . Hence a) is equivalent to b). By replacing ξ with eκ, we deduce

that b) is equivalent to c).

Lemma 2.4. If V + admits a monomial parameterization, then there are A ∈
Q(n−p)×n of rank n− p with AM = 0, a function ψ : K+

γ → Rn, and an exponent
η ∈ Z>0, such that ψη is a rational function and the following are equivalent:

a) (k, x) ∈ V +,

b) k ∈ K+
γ and there exist ξ ∈ Rn−p

>0 such that x = ψ(k) ? ξA.

Proof. According to Definition 2.1, (k, x) ∈ V + if and only if xM = γ(k) and
k ∈ K+

γ . As k ∈ K+
γ implies that γ(k) > 0, we can take logarithms on both sides

of the previous equation: MT · (lnx) = ln γ(k). By [17, Theorem 2.1], the ideal
〈xM − γ(k)〉 ⊂ R(k)[x±] is a complete intersection. Hence it has a generating
set in which M has full rank and format n × p for a suitable γ. Assume that
the chemical species are ordered such that the first p rows of M are linearly
independent. We deduce that there is an invertible matrix U ∈ Qp×p such that,
up to a permutations of rows,

MU =

[
Ip
−W

]
,

where W ∈ Q(n−p)×p. Hence, for k ∈ K+
γ ,

(k, x) ∈ V + ⇔ UTMT (lnx) = UT (ln γ(k)).

Decomposing x into x′ = (x1, . . . , xp)
T and ξ = (xp+1, . . . , xn)T , we deduce, for

k ∈ K+
γ , that

(k, x) ∈ V + ⇔ lnx′ −W T · (ln ξ) = UT · (ln γ(k))⇔ x′ = γ(k)U ? ξW .

Let A denote the matrix (W |In−p) and let ψ(k) = γ(k)(U |0p×n−p). As AMU = 0
and U is invertible, we deduce that AM = 0. Hence x = ψ(k) ? ξA. Let η denote
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the least common multiple of the denominators in U . As γ(k) is rational, the
coordinate-wise power ψη(k) is also rational. As there exist x ∈ Rn

>0 such that
(k, x) ∈ V + only if k ∈ K+

γ , we only need to consider k ∈ K+
γ . We conclude that

ψ(k) is well defined on K+
γ .

The matrix A from Lemma 2.4 is called the exponent matrix of the parameter-
ization. Next we exemplify the steps taken in the proof of Lemma 2.4.

Example 2.5. The monomial parameterization from (1.3) can be expressed as

xM = γ(k),

for M =

 0 0 1 0 0 −1
1 1 −1 0 0 0
0 0 0 1 1 −1

T

and γ(k) =

(
k6

k3

,
k2 + k3

k1

,
k5 + k6

k4

)T
.

The numerators and denominators of γ(k) are positive polynomials for all k ∈ R6
>0.

Hence K+
γ = R6

>0. Now, for the matrix

U =

 0 −1 −1
−1 −1 −1

0 0 1

 , we get MU =


−1 −1 −1
−1 −1 −1

1 0 0
0 0 1
0 0 1
0 1 0

 ,

which, for the ordering x3, x6, x4, x1, x2, x5, is equivalent to

(
I3

−W

)
with W =

 1 1 1
1 1 1
0 0 −1

 .

If ψ(k) = γ(k)(U | 03×3) =
(

k1
k2+k3

, k3
k6

k1
k2+k3

, k3
k6

k1
k2+k3

k5+k6
k4

, 1, 1, 1
)T

, then, for ξ =

(ξ1, ξ2, ξ3)T , we deduce that

(x3, x6, x4, x1, x2, x5)T = ψ(k) ? ξ(W |I3) = ψ(k) ? ξA

=

(
k1

k2 + k3

ξ1ξ2,
k1k3

(k2 + k3)k6

ξ1ξ2,
k1k3(k5 + k6)

(k2 + k3)k4k6

ξ1ξ2

ξ3

, ξ1, ξ2, ξ3

)T
.

Lemma 2.6. Assume V + admits a monomial parameterization with exponent
matrix A ∈ Q(n−p)×n and let k ∈ K+

γ and a 6= b ∈ Rn
>0 be such that (k, a) ∈ V +

and (k, b) ∈ V +. Then
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a) there exists ξ ∈ Rn−p
>0 \ {1} such that b = a ? ξA,

b) there exists µ ∈ rowspace(A) \ {0} such that b = a ? eµ.

Proof. For a) note that, by Lemma 2.4, there are ξ1, ξ2 ∈ Rn−p
>0 such that a =

ψ(k) ? ξA1 and b = ψ(k) ? ξA2 . Hence ψ(k) = a ? ξ−A1 and b = a ? ξ−A1 ? ξA2 = a ? ξA

with ξ = ξ2
ξ1

. For b) replace ξA with (eln(ξ))A in a).

Next Theorem shows, for a fixed value of x, how to compute values of k for
which (k, x) ∈ V +.

Theorem 2.7. Let x ∈ Rn
>0 and k ∈ Rr

>0. If E does not have any zero row, then
the following are equivalent:

a) (k, x) ∈ V +,

b) ∃λ ∈ Λ(E) such that k = φ (x−1) ? Eλ.

Proof. By Definition 1.5, (k, x) ∈ V + if and only if S(k ? φ(x)) = 0.
a) ⇒ b) Every element of ker(S) ∩ Rr

>0 is of the form Eλ for some λ ∈ Λ(E).
Then, if Sk ? φ(x) = 0, there is a λ ∈ Λ(E) such that k ? φ (x) = Eλ. Hence
k = φ (x−1) ? Eλ.
b)⇒ a) If k = φ (x−1)?Eλ for some λ ∈ Λ(E), then k?φ (x) = Eλ. As ∀λ ∈ Λ(E),
Eλ ∈ ker(S) ∩ Rr

>0, Sk ? φ(x) = 0. Hence (k, x) ∈ V +.

Next Corollary is very similar to Lemma [39, Lemma 2.5].

Corollary 2.8. If E does not have any zero row then, for every x ∈ Rn
>0, there

is a k ∈ K+
γ such that (k, x) ∈ V +.

Proof. If E does not have a zero row, then V + 6= ∅. Let λ ∈ Λ(E) and k =
φ(x−1)?Eλ. We have k ?φ(x) = Eλ which is equivalent to ν(k, x) ∈ ker(S)∩Rr

>0.
Hence (k, x) ∈ V +.

This final corollary summarizes the development so far.

Corollary 2.9. If V + admits a monomial parameterization with exponent matrix
A ∈ Q(n−p)×n, then for every positive x ∈ Rn

>0 there exists a vector k ∈ Rr
>0 such

that the following equivalent conditions hold:

a) (k, x) ∈ V +,

b) xM = γ(k) and k ∈ K+
γ ,

c) ∃ξ ∈ Rn−p
>0 such that x = ψ(k) ? ξA and k ∈ K+

γ .
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2.3 Multistationarity

This section collects results concerning multistationarity under the assumption
that V + admits a monomial parameterization. Some conditions involve sign
patterns similar to [8] and [35]. For a scalar x we use sign(x) to denote its sign,
for a vector v ∈ Rn we use sign(v) = (sign(v1), . . . , sign(vn)) to denote its sign
pattern. Theorem 2.13 appeared in a different formulation in [35].

Lemma 2.10. If V + admits a monomial parameterization with exponent matrix
A and cone generator matrix E, then the following are equivalent:

a) N admits multistationarity,

b) ∃ x ∈ Rn
>0 and ξ ∈ Rn−p

>0 \ {1}, such that Z(x− x ? ξA) = 0,

c) ∃ x ∈ Rn
>0 and κ ∈ Rn−p \ {0}, such that Z(x− x ? (eκ)A) = 0.

Proof. Items b) and c) are equivalent as for any ξ ∈ Rn−p
>0 there is a κ ∈ Rn−p

such that ξ = eκ. Now assume b) holds for some x and ξ. We prove that a)
holds. By Lemma 2.4, there exists a k ∈ K+

γ such that (k, x) ∈ V + and there is a

ξ′ ∈ Rn−p
>0 such that x = ψ(k) ? (ξ′)A. Hadamard multiplying that last equation

with ξA yields that x ? ξA = ψ(k) ? (ξ′ ? ξ)A and thus (k, x ? ξA) ∈ V +, again by
Lemma 2.4. Since (x − x ? ξA) ∈ ker(Z) = im(S), N admits multistationarity.
When a) holds, we have x 6= x′ and k such that Z(x− x′) = 0, and (k, x) ∈ V +

and (k, x′) ∈ V +. Now Lemma 2.6 implies x′ = x ? ξA and thus b).

Theorem 2.11. If V + admits a monomial parameterization with exponent ma-
trix A ∈ Q(n−p)×n and there are µ ∈ rowspace(A) and z ∈ im(S) such that
sign(µ) = sign(z), then N admits multistationarity. Specifically, for arbitrary
āi ∈ R>0, i ∈ [n], let a ∈ Rn

>0 denote the vector with entries

ai =

{
zi

eµi−1
if zi 6= 0,

āi else,
(2.3a)

and let

b = a ? eµ. (2.3b)

Then, for any λ ∈ Λ(E), setting

k = φ(a−1) ? Eλ, (2.3c)

N admits multistationarity as

(k, a) ∈ V +, (k, b) ∈ V +, and (b− a) ∈ im(S).
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Proof. The vector b is positive, whenever a is positive and the vector a is positive,
whenever sign(µ) = sign(z). By definition, (b−a) = z ∈ im(S). Then Theorem 2.7
shows (k, a) ∈ V + and Lemmata 2.3 and 2.4 also (k, b) ∈ V +.

Theorem 2.12. Assume V + admits a monomial parameterization with exponent
matrix A ∈ Q(n−p)×n and let k ∈ K+

γ and a, b ∈ Rn
>0, with a 6= b, be such that

(k, a) ∈ V +, (k, b) ∈ V +, and (b− a) ∈ im(S). Let z = b− a and µ = ln b− ln a.
Then

a) z ∈ im(S), µ ∈ rowspace(A), sign(z) = sign(µ),

b) k, a, and b together with z and µ satisfy (2.3a) – (2.3c).

Proof. For item a), z ∈ im(S) by assumption. As V + admits a monomial parame-
terization, by Lemma 2.4, there are κ1 and κ2 ∈ Rn−p such that a = ψ(k) ? (eκ1)A

and b = ψ(k) ? (eκ2)A. Hence µ = (κ2− κ1)A and, consequently, µ ∈ rowspace(A).
By construction b = eµ ? a, and thus z = (eµ − 1) ? a. As a is positive,
sign(eµ − 1) = sign(z) must hold. As sign(eµ − 1) = sign(µ), sign(µ) = sign(z).
For item b), (2.3b) holds by construction and (2.3a) follows from the equation
z = (eµ− 1) ? a. Now, (k, a) ∈ V + implies that k ? φ(a) = Eλ for some λ ∈ Λ(E);
hence (2.3c) also holds.

The following Theorem is similar to [35, Proposition 3.9 and Corollary 3.11]
and it employs sign patterns analysis to decide the existence of two positive real
solutions to the parameterized family of polynomials (1.2) such that both are
elements of the affine space {x| Zx = Za}.

Theorem 2.13. If V + admits a monomial parameterization with exponent ma-
trix A, then there are k ∈ K+

γ and a 6= b ∈ Rn
>0 such that (k, a) ∈ V +, (k, b) ∈ V +,

and Z(b− a) = 0 if and only if

sign(rowspace(A)) ∩ sign(im(S)) 6= {0}. (2.4)

Proof. This is the combination of Theorems 2.11 and 2.12.

We conclude this section with a result about conservative mass-action networks
that admit a monomial parameterization with only one parameter. Recall that a
mass-action network is conservative if the conservation space Lcons contains at
least one positive point (see Remark 1.12).

Theorem 2.14. Assume that N is a conservative mass-action network that admits
a monomial parameterization with only one parameter and dim(Lcons) = 1. Then:

a) For any k ∈ K+
γ , the network N admits at most two positive steady states

in each stoichiometric compatibility class.
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b) If the exponent matrix A is nonnegative, then N is not multistationary.

Proof. As the positive steady state variety V + admits a monomial parameteriza-
tion with only one parameter t ∈ R>0, we have A ∈ Z1×n.
a) By substituting the parameterization of V + in the unique (up to rescaling)
conservation relation of N , say z1x1 + . . . znxn − c = 0, one obtains a univariate
polynomial P (t) ∈ R(k)[t±] with constant term −c. If α denotes the smallest
entry of A, then t|α|P (t) is a polynomial of the ring R(k)[t]. As N is conservative,
the coefficients z1, . . . , zn are positive. Hence, the coefficients of t|α|P (t), when
ordered decreasingly by the degree of t|α|P (t), change sign at most twice. By
Descartes’ Law of Signs [1, Theorem 2.33], t|α|P (t) has at most two positive roots
for each k ∈ K+

γ , and so P (t) does. Hence, for any k ∈ K+
γ , there are at most two

distinct a1, a2 ∈ Rn
>0 such that (k, a1) ∈ V + and (k, a2) ∈ V +.

b) As A is nonnegative, by substituting the parameterization of V + in the unique
(up to rescaling) conservation relation of N , z1x1 + . . . znxn− c = 0, one obtains a
univariate polynomial P (t) ∈ R(k)[t] with constant term −c. As N is conservative,
the coefficients z1, . . . , zn are positive. Hence, the coefficients of P (t), when ordered
decreasingly by the degree of P (t), change sign exactly once. By Descartes’ Law
of Signs [1, Theorem 2.33], P (t) has at most one positive root for each k ∈ K+

γ .
Hence, for k ∈ K+

γ , there is at most one a ∈ Rn
>0 such that (k, a) ∈ V +.

2.4 Multistationarity in the space of total con-

centrations

In this section we study multistationarity in the space of total concentrations.

Theorem 2.15. If V + admits a monomial parameterization with exponent matrix
A ∈ Q(n−p)×n, then the following are equivalent:

a) ∃k ∈ K+
γ and a 6= b ∈ Rn

>0 such that (k, a), (k, b) ∈ V +, and (b− a) ∈ im(S),

b) ∃k ∈ K+
γ and c ∈ im+(Z) such that Z(ψ(k) ? ξA) = c has at least two

solutions ξ1 6= ξ2,

c) ∃a ∈ Rn
>0 and ξ ∈ Rn−p

>0 , ξ 6= 1, such that Z(a ? ξA − a) = 0.

Proof. a)⇒b): By Lemma 2.4, there are ξ1, ξ2 ∈ Rn−p
>0 such that a = ψ(k)?ξA1 and

b = ψ(k) ? ξA2 ; as a 6= b, also ξ1 6= ξ2. Since (b− a) ∈ im(S), Zb = Za. Therefore,
for c = Za, the equation Z(ψ(k) ? ξA) = c has at least the two positive solutions
ξ1 and ξ2.

b)⇒c): For a = ψ(k) ? ξA1 and b = ψ(k) ? ξA2 = a ?
(
ξ2
ξ1

)A
one has Za = Zb. Hence
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Z(a ? ξA − a) = 0 has the positive solution a = ψ(k) ? ξA1 and ξ = ξ2
ξ1

.

c)⇒a): Let λ ∈ Λ(E) and let k = φ(a−1) ? Eλ. By Theorem 2.7 (k, a) ∈ V +.
Let b = a ? ξA. By Lemma 2.3 also (k, b) ∈ V +. As Za = Zb, we have
(b− a) ∈ im(S).

The following two corollaries show that arbitrary semialgebraic constraints in
the total concentrations c can be added to the description of the multistationarity
locus and a variant of Theorem 2.15 still holds. A semialgebraic set is the set of
real solutions of a logical combination of finitely many polynomial equations and
inequalities in which some of the variables might be quantified by the quantifiers ∃
and ∀. For more details on semialgebraic sets we refer to [1, Sections 2.4 and 2.5].

Corollary 2.16. Assume V + admits a monomial parameterization with exponent
matrix A ∈ Q(n−p)×n, let g1, . . . , gl ∈ R[c], � ∈ {>,≥}l, and F(g(c) � 0) be any
logical combination of the inequalities g(c) � 0. Then there are k ∈ K+

γ and
c ∈ im+(Z) such that

Z(ψ(k) ? ξA) = c, F(g(c) � 0)

has at least two positive solutions ξ1 6= ξ2, if and only if the system

Z(a ? ξA − a) = 0, F(g(Za) � 0) (2.5)

has a solution a ∈ Rn
>0 and ξ ∈ R(n−p)

>0 with ξ 6= 1.

Proof. This is Theorem 2.15 b) and c) together with c = Za.

Now suppose that ∆ denotes the set of sign patterns satisfying condition (2.4).
By Theorem 2.12, there are a, b ∈ Rn

>0 with a 6= b and k ∈ K+
γ with (k, a) ∈ V +,

(k, b) ∈ V +, and (b− a) ∈ S. Hence, sign(b− a) ∈ ∆. Consequently, if V + admits
a monomial parameterization, then b = ξA ? a. Moreover, if δ ∈ ∆, then

sign(b− a) = δ ⇔ sign(ln b− ln a) = δ ⇔ sign(ξA − 1) = δ. (2.6)

The following is a natural question: ‘Is multistationarity possible for a given sign
pattern δ and some semialgebraic constraint on the total concentrations?’ The
following Corollary provides a way for answering this question.

Corollary 2.17. Assume V + admits a monomial parameterization with exponent
matrix A ∈ Q(n−p)×n, let δ be a sign pattern, let g1, . . . , gl ∈ R[c], � ∈ {>,≥}l,
and F(g(c) � 0) be any logical combination of the inequalities g(c) � 0. Then
there are k ∈ K+

γ , c ∈ im+(Z), and a, b ∈ Rn
>0 with a 6= b such that

(k, a) ∈ V +, (k, b) ∈ V +, sign(b− a) = δ and F(g(c) � 0)

if and only if there are a ∈ Rn
>0 and ξ 6= 1 ∈ Rn−p

>0 such that

Z((ξA − 1) ? a) = 0, sign(ξA − 1) = δ, F(g(Za) � 0).
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Proof. This is Corollary 2.16 with b− a = (ξA − 1) ? a and (2.6).

The next theorems show that there is multistationarity for some value of the
total concentrations c if and only if there is multistationarity for any rescaled αc.

Theorem 2.18. Assume V + is nonempty and admits a monomial parameteriza-
tion with exponent matrix A ∈ Q(n−p)×n. For fixed (k, a) ∈ V + let

ka : R>0 × Re
>0 → Rr

>0

(α, λ) 7→ φ ((αa)−1) ? Eλ
(2.7)

Then, for fixed c ∈ im+(Z),

Z(ψ(k) ? ξA) = c (2.8)

has at least two positive solutions ξ1 6= ξ2 if and only if ∃λ ∈ Λ(E) such that

Z(ψ (ka(α, λ)) ? ξA) = αc (2.9)

has at least two positive solutions ξ′1 6= ξ′2.

Proof. It suffices to show one direction as by Theorem 2.7, if (k, a) ∈ V +, then
there exists λ ∈ Λ(E) such that k = ka(1, λ). Assume (2.8) has two distinct
solutions. By Theorem 2.15, there are a, b ∈ Rn

>0 such that (k, a) ∈ V +, (k, b) ∈
V +, and (b − a) ∈ im(S). By Theorem 2.12, the vectors a, b, k, z = b − a,
and µ = ln b − ln a satisfy (2.3a)–(2.3c) for some λ ∈ Λ(E). In particular,
b = a ? eµ with µ ∈ rowspace(A). Let a′ = αa and b′ = a′ ? eµ = αb. Then,
for c′ = Za′ = αc and Zb′ = c′, we have that (b′ − a′) ∈ im(S). It holds that
ka(α, λ) ? φ(a′) = Eλ. Hence (ka(α, λ), a′) ∈ V +. Therefore also ka(α, λ) ∈ K+

γ ,
by Corollary 2.9. By Theorem 2.12, µ ∈ rowspace(A), and Lemma 2.3 then

yields (ka(α, λ), b′) ∈ V +. By Lemma 2.4, there are ξ′1, ξ
′
2 ∈ R(n−p)

>0 such that

a′ = ψ(ka(α, λ)) ? ξ′A1 , b′ = ψ(ka(α, λ)) ? ξ′2
A. Using Theorem 2.15 again it follows

that (2.9) has two distinct positive solutions.

Theorem 2.19. Assume V + admits a monomial parameterization with exponent
matrix A ∈ Q(n−p)×n and let c ∈ im+(Z). If the system

Z(a ? ξA) = c (2.10)

does not have a solution a ∈ Rn
>0, ξ 6= 1 ∈ R(n−p)

>0 , then there do not exist k ∈ K+
γ

and α ∈ R>0 such that the system

Z(ψ(k) ? ξA) = αc (2.11)

has at least two solutions ξ1 6= ξ2 ∈ Rp
>0.
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Proof. We prove the negation of the theorem. Equations (2.10) are equivalent to
Z(a?ξA−a) = 0, Za = c. Assume there are k ∈ K+

γ and α ∈ R>0 such that (2.11)
has two distinct positive solutions. By Theorem 2.18, Z(ψ(k(α−1)) ? ξA) = c has
two distinct positive solutions and by the implication b)⇒c) in Theorem 2.15,
(2.10) has a solution a ∈ Rn

>0, ξ ∈ Rn−p
>0 .

The scaling invariance in the previous results can be reformulated in terms of
cones. For this, let s = dimLstoi and denote by Sn−s−1 ⊂ Rn−s the unit sphere.

Let C = {c ∈ im+(Z) | ∃k ∈ K+
γ and a 6= b ∈ Rn

>0

such that (k, a), (k, b) ∈ V +, and Za = Zb = c}.

By the Tarski–Seidenberg Theorem [12, Theorem 2.3], C is a semialgebraic set
(cf. Remark 2.21). We have shown that (except the missing origin) it is a cone:

Corollary 2.20. If V + admits a monomial parameterization, then C is a cone
with the origin removed, i.e.

C =
(
C ∩ Sn−s−1

)
× R>0.

Proof. According to Theorem 2.18, given arbitrary k ∈ K+
γ , c ∈ im+(Z), and

α ∈ R>0, Z(ψ(k) ? ξA) = c has at least two solutions ξ1 6= ξ2 if and only if
Z(ψ(k(α)) ? ξA) = αc has at least two solutions ξ′1 6= ξ′2. By Theorem 2.18 C is a
cone missing the origin.

Remark 2.21. By Tarski–Seidenberg Theorem [12, Theorem 2.3], semialgebraic
sets are closed under projections (note that this is in general not true for algebraic
varieties). Another interesting feature of semialgebraic sets is that they can always
be described by a logical combination of finitely many polynomial equations and
inequalities without quantifiers [1, Theorem 2.77]. The process of converting a
formula with quantifiers into a quantifier free formula is called quantifier elimi-
nation. One of the methods used for quantifier elimination is called cylindrical
algebraic decomposition [1, Definitions 5.1 and 5.5 and Algorithm 11.16].

2.5 Toric versus positive toric steady states

By [17, Corollary 1.2], a binomial Gröbner basis of the steady state ideal is a
certificate for toric steady states and thus, by Proposition 2.24, for monomial
parameterizations of the positive steady states. However, as the steady state ideal
may possess primary components that are irrelevant to the positive real part, a
binomial steady state ideal, is not necessary for a monomial parameterization of
the steady states. Next examples illustrate this circumstance.
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Example 2.22. Let N1 be the following triangular network [33, Example 2.3]:

2X1

2X2 X1 +X2

1

1

1

1

1

1

(N1)

Let xi denote the concentration of Xi. The steady state ideal of N1 is

I1 = 〈x2
1 − x2

2〉 = 〈x1 − x2〉 ∩ 〈x1 + x2〉.

The Zariski closure of the positive steady states V +
N1

= V(x1− x2) has exactly one
irreducible component defined by one binomial and is thus a toric variety. It has
a monomial parameterization x1 = x2 = s, for s ∈ R. Restricting this monomial
parameterization to the interior of the positive orthant yields a parameterization
for V +

1 (see Fig. 2.1a). Let

I2 = I1 ∩ 〈x1 + x2 + 1〉 = 〈x1 − x2〉 ∩ 〈x1 + x2〉 ∩ 〈x1 + x2 + 1〉
= 〈−x3

1 − x2
1x2 + x1x

2
2 + x3

2 − x2
1 + x2

2〉.
(2.12)

Clearly, I2 is not binomial; I2 is the intersection of two prime binomial ideals
and a prime trinomial ideal. Geometrically, the intersection of ideals corresponds
to taking the union of the corresponding varieties as in Fig. 2.1b. Only the
component V(x1−x2) of V(I2) intersects the interior of the positive orthant. Still,
I2 can be the steady state ideal of some mass-action network. According to [18,
Section 4.7.1.1], a mass-action network is described by a system of ODEs of the
form ẋ = f , where f ∈ R[x]n, if and only if every negative term in fi is divisible
by the variable xi. This condition is fulfilled by the following system of ODEs:

ẋ1 = −ẋ2 = −x3
1 − x2

1x2 + x1x
2
2 + x3

2 − x2
1 + x2

2.

One network whose state ideal is equal to I2 is N2:

3X1 2X1 +X2

3X2 X1 + 2X2

2/3

1/9

1

21/9

2/3

1

2 2X1 2X2

1/2

1/2
(N2)

Summarizing, the steady state variety V(I2) has three irreducible components, but
only V(x1 − x2) intersects the interior of the positive orthant. Since V +

N1
= V +

N2
,

the positive steady state varieties of N1 and N2 share the parameterization
x1 = x2 = s, for s ∈ R>0.
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x1

x2

V(x1 − x2)V(x1 + x2)

(a) The variety V(x2
1−x2

2) = V(x1−
x2) ∪ V(x1 + x2) of N1 from Ex-
ample 2.22. N1 has toric steady
states as its steady state ideal is

binomial and V +
1 is nonempty and

irreducible (see [33, Definition 2.2]).
V +

1 is parameterized by s 7→ (s, s),
for s ∈ R>0.

x1

x2

V(x1 − x2)V(x1 + x2)

V(x1 + x2 + 1)

(b) The variety V((x2
1 − x2

2)(x1 +
x2 + 1)) = V(x1 − x2) ∪ V(x1 +
x2) ∪ V(x1 + x2 + 1) of N2 from
Example 2.22. N2 does not have
toric steady states according to [33,
Definition 2.2] because I2 is not bi-
nomial. Still, V(I2) ∩ Rn>0 is toric
and parameterized by s 7→ (s, s),
for s ∈ R>0.

Figure 2.1: The positive steady state varieties of N1 and N2 are equal. N1 has
binomial toric steady states while N2 has non-binomial toric steady states.
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Example 2.23. Consider the following binomial ideal:

I = 〈k1x− k2x〉 ∈ R[k1, k2, k3, k4][x, y].

If we intersect I with 〈k3x+ k4y〉, then we get the non-binomial ideal

J = 〈(k1x− k2y)(k3x+ k4y)〉 = 〈k1k3x
2 + (k1k4 − k2k3)xy − k2k4y

2〉.

For all specializations k ∈ R4
>0, the corresponding specialization of V(J) ∩ R2

>0

admits a monomial parameterization. Yet, in many applications, rate constants
are unknown, or they are known with big uncertainties, and the coefficients k1k3,
k1k4, k2k3, and k2k4 cannot play the role of rate constants because they are not
algebraically independent. One could argue that k1k3, k1k4 − k2k3, and k2k4

should play the role of rate constants. However, if this approach is taken, special
attention has to be paid, as the sign of k1k4 − k2k3 is not constant in R4

>0.

Next proposition is a reformulation of results from [17, Section 2] and it shows
why the term toric was used to describe systems with binomial steady state ideal.

Proposition 2.24. If I ⊆ R[x] is a binomial ideal, then at most one of the
irreducible components of its variety intersects Rn

>0.

In order to prove Proposition 2.24 we need to introduce a few notions. Let k
be a field, let k∗ denote the multiplicative group of k, and let k[x±] denote the
ring of Laurent polynomials in the variables x1, . . . , xn with coefficients in k:

k[x±] = k[x1, . . . , xn, x
−1
1 , . . . , x−1

n ].

The ring k[x±] can be expressed as the following quotient ring:

k[x1, . . . , xn, x̃1, . . . , x̃n]/〈xix̃i − 1| i ∈ [n]〉.

A Laurent binomial ideal is a proper binomial ideal of k[x±]. For a detailed study
of binomial ideals see [17]. Every Laurent binomial ideal is of the form

I(ρ) = 〈xm − ρ(m)| m ∈ Lρ〉,

for some partial character ρ of Zn and, if I(ρ1) = I(ρ2), then ρ1 = ρ2 [17,
Theorem 2.1.a]. A partial character ρ of Zn is a homomorphism from a sublattice
of Zn to k∗; the domain of ρ is denoted by Lρ. By [17, Theorem 2.1.b], if
m1, . . . ,ms form a basis for Lρ, then

I(ρ) = 〈xmi − ρ(mi)| i ∈ [s]〉.
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Proof of Proposition 2.24. Without loss of generality, we can assume that I =
I : (x1 . . . xn)∞ and I = IR[x±] ∩ R[x] as all other components are contained in
coordinate hyperplanes. By [17, Corollary 2.5],

I = I+(ρ) = 〈xm+ − ρ(m)xm− : m ∈ Lρ〉

for a unique lattice L ⊂ Zn and partial character ρ : L→ R∗. By [17, Corollary 2.2],
I+(ρ), seen as an ideal of C[x], is radical and it has a decomposition into prime
ideals as

I+(ρ) = ∩gj=1I+(ρj),

where {ρ1, . . . , ρg} is the set of extensions of ρ to the saturation Sat(L) of L and g
is the order of the group Sat(L)/L. A variety V(I+(ρk)) has positive points if and
only if ρk takes only positive real values. Fixing b1, . . . , br to be a basis of Sat(Lρ),
any basis c1, . . . , cr of L can be expressed in terms of the bi as ci =

∑
j aijbj where

A = (aij) ∈ Zr×r has determinant g. Let ρk be any of the extensions of ρ; since
ρ = ρk|L, we have

ρ(ci) = ρk

(∑
j

aijbj

)
=
∏
j

ρk(bj)
aij . (2.13)

These equations in the unknowns ρk(bj) determine the extensions of ρ and thus
the irreducible components of V(I). If ρk(bj) is not positive and real for some k
and j ∈ [r], then V(I+(ρk)) ∩ Rn

>0 = ∅. We only need to consider components for
which ρk(bj) > 0 for all j ∈ [r]. In this case we can take logarithms on both sides
of (2.13):

log(ρ(ci)) =
∑
j

aij log(ρk(bj)). (2.14)

The result is a linear equation for log(ρk(bj)) whose solutions yield characters
ρk such that V(I+(ρk)) has positive points. The matrix A can be inverted
over Q. Write log ρk(b) = (log ρk(b1), . . . , log ρk(br)) and similarly log ρ(c) =
(log ρ(c1), . . . , log ρ(cr)). So (2.14) has a unique solution: log ρk(b)=A−1 log ρ(c).
Hence there is a unique saturation ρ∗ : Sat(L)→ R∗ of ρ such that ρ∗(bi) > 0.

2.6 An algorithm for computing the monomial

parameterization of a toric variety

This section is joint work with Thomas Kahle and Ruilong Zhuang. In particular,
Algorithm 2.28 was implemented in the Macaulay2 package, Binomials [30].
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In this section we present an algorithm for finding the monomial parameterization
of a toric variety as the one from Example 2.5.

Let I(ρ) be as in the paragraph preceding the proof of Proposition 2.24. For each
i ∈ [s], we introduce an auxiliary variable ti and we consider the ring

k[y±] = k[y1, . . . , yn+s, y
−1
1 , . . . , y−1

n+s],

where y = (x1, . . . , xn, t1, . . . , ts). Similarly as for k[x±], the ring k[y±] can be
seen as the following quotient ring

k[y1, . . . , yn+s, ỹ1, . . . , ỹn+s]/〈yiỹi − 1|i ∈ [n+ s]〉.

Let M = (m1| . . . |ms) and let M ′ = (MT | − Is)T . By L′ we denote the sublattice
of Zn+s spanned by the columns of M ′ and by 1L′ we denote the identiy element
of Hom(L′, k∗). We have obtained the following ideal of k[x±]:

I(1L′) = 〈ym − 1L′(m)| m ∈ L′〉 = 〈xmi/ti − 1| i ∈ [s]〉.

Proposition 2.27 below shows that if k is algebraically closed and I(ρ) is prime, in
order to obtain a monomial parameterization for V(I(ρ)) it is enough to compute
a monomial parameterization for V(I(1L′)) and then specialize it to ti = ρ(mi).
Lemma 2.26 shows that in this case V(I(ρ)) admits a monomial parameterization
for which this substitution is well defined. As 1L′ is the unity of Hom(L′, k∗), the
variety V(I(1L′)) contains 1. Hence, to compute a monomial parameterization for
V(I(1L′)) it is enough to find the orthogonal complement of L′.

Remark 2.25. If I(ρ̃) ⊆ k[x±] is a geometrically prime Laurent binomial ideal
and a is a point on V(I(ρ̃)), then V(I(ρ̃)) is parameterized by the monomial map

(k∗)r → (k∗)n

ξ 7→ a ? ξA,

where A is a matrix of maximal rank whose rows span the saturated lattice
orthogonal to Lρ̃. The matrix A is easy to compute. Proposition 2.27 shows how
to find an a ∈ V(I(ρ̃)).

Lemma 2.26. Let k be an algebraically closed field. If I(ρ) ⊆ k[x±] is prime,
then there exists a rank n matrix C ∈ Zn×n such that the variety V(I(1L′)) is
parameterized by

φ : (k∗)n → (k∗)n+s

ξ 7→ ξ(C|(Is|0)T ),

where Is ∈ Zs×s is the identity matrix.
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Proof. As 1L′ is the unity of Hom(L′, k∗), the variety V(I(1L′)) contains 1, and
we only need to prove that there exists a rank n matrix C ∈ Zn×n such that the
rows of (C|(Is|0)T ) span the left kernel of M ′. As k is algebraically closed and
I(ρ) is prime, by [17, Theorem 2.1.c] there exists W ∈ Zn×(n−s) such that the
columns of (M |W ) span Zn. Hence (M |W ) has an inverse B in Zn×n and, if D
denotes the submatrix corresponding to the first s rows of B, then DM = Is. As
rank(M) = s, there is a rank n− s matrix E ∈ Z(n−s)×n such that EM = 0. Then(

D Is
E 0

)(
M
−Is

)
= 0. (2.15)

As rank(DT |ET ) = n, the matrix C can be chosen to be C =

(
D
E

)
.

Proposition 2.27. Let φ be as in Lemma 2.26 and let ψ and π denote

ψ : (k∗)n−s → (k∗)n

χ 7→ (ρ(m1), . . . , ρ(ms), χ1, . . . , χn−s)

and
π : (k∗)n+s → (k∗)n

ζ 7→ (ζ1, . . . , ζn).

If I(ρ) is geometrically prime, then π ◦ φ ◦ ψ parameterizes V(I(ρ)).

Proof. LetD and E be as in the proof of Lemma 2.26, let ρ(m) = (ρ(m1), . . . , ρ(ms)),
and let χ ∈ (k∗)n−s. Then

π ◦ φ ◦ ψ(χ) = ρ(m)D ? χE.

As, by Lemma 2.26, the rows of E span the left kernel of M , we only need to
prove that

π ◦ φ ◦ ψ(1) ∈ V(I(ρ)).

From (2.15), we deduce that (Dmi)j = δij. Hence
(π ◦ φ ◦ ψ(1))mk − ρ(mk) = ρ(m)Dmk − ρ(mk) = ρ(mk)− ρ(mk) = 0.

Proposition 2.27 motivates the following algorithm.

Algorithm 2.28.
Input: A geometrically prime Laurent binomial ideal I(ρ) ⊆ k[x±].
Output: A monomial parameterization for V(I(ρ)).
1) Let:

• {m1, . . . ,ms} be a basis for Lρ
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• I(1L′) = 〈xmi/ti − 1| i ∈ [s]〉 ⊆ k[x′].

• M = (m1| . . . |ms) and M ′ = (MT | − Is)T .

2) Compute a rank n matrix A ∈ Zn×(n+s) such that AM ′ = 0.
3) Find invertible matrices C,G ∈ Zn×n such that GA = (C|(Is|0)T ) and define

φ : (k∗)n → (k∗)n+s

ξ 7→ ξGA
,

ψ : (k∗)n−s → (k∗)n

χ 7→ (ρ(m1), . . . , ρ(ms), χ1, . . . , χn−s)

and
π : (k∗)n+s → (k∗)n

ζ 7→ (ζ1, . . . , ζn).

4) Output π ◦ φ ◦ ψ.

Proof of correctness. By Lemma 2.26 there is a rank n matrix C ∈ Zn×n such
that the rows of (C|(Is|0)T ) span the left kernel of M ′. If A is another matrix
whose rows span the left kernel of M ′, there exists an invertible matrix G ∈ Zn×n
such that GA = (C|(Is|0)T ). Hence Step 3 is correct. The correctness of Step 4
follows from Proposition 2.27.

Remark 2.29. In the Macaulay2 implementation of Algorithm 2.28 special care
was taken in order to avoid working in Laurent rings. This is because in Macaulay2
functions as “kernel” are not implemented for modules over Laurent rings.

Example 2.30. The Veronese surface.
The Veronese surface is defined as the image of the Veronese map ν2 of degree 2
(see for example [24, Examples 2.4–2.7]):

ν2 P2
k → P5

k

(x : y : z) 7→ (x2 : y2 : z2 : xy : xz : yz).
(2.16)

This surface can be seen as the set of points s ∈ P5
k such that the following matrix

has rank 1:

Y2 =

 s0 s3 s4

s3 s1 s5

s4 s5 s2

 .

This rank condition can be described as the ideal generated by the minors of
Y2. The following Macaulay2 code implements the computation of a monomial
Parameterization for the Veronese surface:

i1 : R = QQ[s_0..s_5];

i2 : Y_2 = matrix{{s_0,s_3,s_4},{s_3,s_1,s_5},{s_4,s_5,s_2}};

32



i3 : m = monomialParameterization minors (2,Y_2)

QQ[tt , tt , tt , ti , ti , ti ]

1 2 3 1 2 3

o3 = map(------------------------------------, R,

(tt ti - 1, tt ti - 1, tt ti - 1)

1 1 2 2 3 3

{tt tt ti , tt tt ti , tt tt ti , tt , tt , tt })

1 2 3 1 3 2 2 3 1 1 2 3

QQ[tt , tt , tt , ti , ti , ti ]

1 2 3 1 2 3

o3 : RingMap ------------------------------------ <--- R

(tt ti - 1, tt ti - 1, tt ti - 1)

1 1 2 2 3 3

The output o3 is given as a map from the ring R of I to the ring of parameters,
which we interpret as a map φ : (k∗)3 → (k∗)6: Here tt are interpreted as the
parameters of the monomial parameterization while ti are interpreted as auxiliary
variables such that ttktik − 1 = 0 (i.e. tik is the inverse of ttk). Hence, if tt is
denoted by t, the map φ can be interpreted as the following map:

φ : (k∗)3 → (k∗)6

t 7→ tA
, for A =

 1 1 −1 1 0 0
1 −1 1 0 1 0
−1 1 1 0 0 1

 .

Finally, for

G =

 1 1 0
1 0 1
0 1 1

 ,

the following map is the Veronese map of degree 2 from (2.16):

φ : P2 → P5

t 7→ tGA
.

Example 2.31. In this example we compute a monomial parameterization for the
positive state variety of network Nph from Example 1.4. The following Macaulay2
code encodes this computation:
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i1 : R = frac(QQ[k_1..k_6])[x_1..x_6];

i2 : I = ideal(k_1*x_1*x_2 - (k_2 + k_3)*x_3, k_3*x_3 - k_6*x_6,

k_4*x_4*x_5 - (k_5 + k_6)*x_6);

i3 : m = monomialParameterization I

o3 = map(

frac QQ[k , k , k , k , k , k ][tt , tt , tt , ti , ti , ti ]

1 2 3 4 5 6 1 2 3 1 2 3

-------------------------------------------------------------,

(tt ti - 1, tt ti - 1, tt ti - 1)

1 1 2 2 3 3

k k + k k k k + k

2 6 3 6 6 5 6

R,{-----------tt ti , tt , --tt , -------tt ti , tt , tt ,

k k 3 1 1 k 3 k 3 2 2 3

1 3 3 4

k , k , k , k , k , k })

1 2 3 4 5 6

frac QQ[k , k , k , k , k , k ][tt , tt , tt , ti ,

1 2 3 4 5 6 1 2 3 1

o3 : RingMap ----------------------------------------------------

(tt ti - 1, tt ti - 1, tt ti - 1)

1 1 2 2 3 3

ti , ti ]

2 3

--------- <--- R

In the output o3, the rate constants k1 . . . k6 are treated as parameters which are
mapped to themselves. To chek that this parameterization is the correct one can
do the following:

i4 : kernel monomialParameterization I == I

o4 = true

34



The output of this computation is just true, which means that the kernel of the
monomial parameterization is the ideal I.
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Chapter 3

Multistationarity conditions on
the total concentrations for
sequential and distributive
phosphorylations

This chapter is based on Section 4 of the paper “Multistationarity in the space of
total concentrations for systems that admit a monomial parametrization” [10],
joint work with Carsten Conradi and Thomas Kahle.

3.1 Introduction

In this chapter we apply the results from Chapter 2 to the well-known sequential
distributive phosphorylation of a protein at two binding sites. Phosphorylations are
among the best studied systems when it comes to multistationarity (e.g. [9], [26],
and [21]). Applying Corollary 2.16, in Corollaries 3.6 and 3.7 we show that
multistationarity is possible only if the total concentration of the substrate is
larger than either the concentration of the kinase or the phosphatase. To arrive
at this condition we make use of the chamber decomposition of the cone of total
concentrations. Thus, in Theorem 3.1 we show that, independent of the number
of phosphorylation sites, this cone consists of five full-dimensional sub-cones called
chambers. These chambers are determined by subsets of linearly independent
columns of a matrix defining the conservation relations. In Theorem 3.5 we show
that for two sites, multistationarity is only possible in four of these chambers.
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3.2 Sequential distributive phosphorylation of a

protein

The following chemical reaction network models the phosphorylation of a protein
at n binding sites in a sequential and distributive way:

A+ E1 AE1 Ap + E1

Ap + E2 ApE2 A+ E2

...

Ap(n−1) + E1 Ap(n−1)E1 Ap(n) + E1

Ap(n) + E2 Ap(n)E2 Ap(n−1) + E2

k1 k3

k2

l1 l3

l2

k3n−2 k3n

k3n−1

l3n−2 l3n

l3n−1

(Nph(n))

It is known that Nph(n) is multistationary if and only if n ≥ 2 [21, 26]. For n = 2
there are known sufficient conditions on the rate constants for the presence or
absence of multistationarity and it is known that the number of positive steady
states is 1, 2, or 3 [11]. For n > 2 there are bounds on the maximum number of
positive steady states that can be attained [21, 26, 46]. The aim of this chapter is
to describe the multistationarity locus in the space of total concentrations. The
strongest results are available for the n = 2, case which we consider first:

X1 +X2 X3 X4 +X2 X5 X6 +X2

X6 +X7 X8 X4 +X7 X9 X1 +X7

k1 k3

k2

k4 k6

k5

k7 k9

k8

k10 k12

k11

(Nph(2))

If all reactions of Nph(2) are of mass-action form, we obtain the following ODEs:

ẋ1 = f1(x1, . . . , x9) = −k1x1x2 + k2x3 + k12x9

ẋ2 = f2(x1, . . . , x9) = −k1x1x2 + (k2 + k3)x3 − k4x2x4 + (k5 + k6)x5

ẋ3 = f3(x1, . . . , x9) = k1x1x2 − (k2 + k3)x3

ẋ4 = f4(x1, . . . , x9) = k3x3 − k4x2x4 + k5x5 + k9x8 − k10x4x7 + k11x9

ẋ5 = f5(x1, . . . , x9) = k4x2x4 − (k5 + k6)x5

ẋ6 = f6(x1, . . . , x9) = k6x5 − k7x6x7 + k8x8

ẋ7 = f7(x1, . . . , x9) = −k7x6x7 + (k8 + k9)x8 − k10x4x7 + (k11 + k12)x9
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ẋ8 = f8(x1, . . . , x9) = k7x6x7 − (k8 + k9)x8

ẋ9 = f9(x1, . . . , x9) = k10x4x7 − (k11 + k12)x9.

There are three independent linear relations among f1, . . . , f9 and thus three
linearly independent conserved quantities under the dynamics of the network:

x2 + x3 + x5 = c1,

x7 + x8 + x9 = c2,

x1 + x3 + x4 + x5 + x6 + x8 + x9 = c3.

(3.1)

Relations (3.1) are the rays of the cone of conservation relations. According to
(3.1), we can choose the conservation matrix as

Z =

 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 1
1 0 1 1 1 1 0 1 1

 . (3.2)

The equations ẋi = 0 define the steady state ideal of Nph(2) :

I = 〈−k1x1x2 + k2x3 + k12x9,−k1x1x2 + (k2 + k3)x3 − k4x2x4 + (k5 + k6)x5,
k1x1x2 − (k2 + k3)x3, k3x3 − k4x2x4 + k5x5 + k9x8 − k10x4x7 + k11x9,
k4x2x4 − (k5 + k6)x5, k6x5 − k7x6x7 + k8x8,−k7x6x7 + (k8 + k9)x8

−k10x4x7 + (k11 + k12)x9, k7x6x7 − (k8 + k9)x8, k10x4x7 − (k11 + k12)x9〉.

The steady state ideal I = 〈f1, . . . , f9〉 is binomial as it can be seen from the
following Gröbner basis (Gröbner bases can be computed in Macaulay2):{
x5 −

k9

k6

x8, x3 −
k12

k3

x9, x7x8 −
k4k6(k11 + k12)

(k5 + k6)k9k10

x2x9, x4x8 −
k7(k11 + k12)

(k8 + k9)k10

x6x9,

x1x8 −
(k2 + k3)k4k6k12

k1k3(k5 + k6)k9

x4x9, x6x7 −
k8 + k9

k7

x8, x4x7 −
k11 + k12

k10

x9,

x2x4 −
(k5 + k6)k9

k4k6

x8, x1x2 −
(k2 + k3)k12

k1k3

x9, x2x6x9 −
(k5 + k6)(k8 + k9)k9k10

k4k6k7(k11 + k12)
x2

8,(
x2

4 −
k1k3(k5 + k6)k7k9(k11 + k12)

(k2 + k3)k4k6(k8 + k9)k10k12

x1x6

)
x9

}
.

By setting the polynomials of this Gröbner basis to zero, rearranging terms such
that the xi are on one side and the ki on the other we obtain
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x5

x8

=
k9

k6

,

x3

x9

=
k12

k3

,

x7x8

x2x9

=
k4k6(k11 + k12)

(k5 + k6)k9k10

,

x4x8

x6x9

=
k7(k11 + k12)

(k8 + k9)k10

,

x1x8

x4x9

=
(k2 + k3)k4k6k12

k1k3(k5 + k6)k9

,

x6x7

x8

=
k8 + k9

k7

,

x4x7

x9

=
k11 + k12

k10

,

x2x4

x8

=
(k5 + k6)k9

k4k6

,

x1x2

x9

=
(k2 + k3)k12

k1k3

,

x2x6x9

x2
8

=
(k5 + k6)(k8 + k9)k9k10

k4k6k7(k11 + k12)
,

x2
4

x1x6

=
k1k3(k5 + k6)k7k9(k11 + k12)

(k2 + k3)k4k6(k8 + k9)k10k12

.

After removing redundant relations and rearranging terms one can show that the
positive steady state variety V + admits a monomial parameterization of the form

x = ψ(k) ? ξA with k ∈ R12
>0 and ξ ∈ R3

>0 free, where

ψ(k) =

(
(k2 + k3)k4k6(k11 + k12)k12

k1k3(k5 + k6)k9k10

,

(k5 + k6)k9k10

k4k6(k11 + k12)
,
k12

k3

,
k11 + k12

k10

,
k9

k6

,
k8 + k9

k7

, 1, 1, 1

)T
and

A =

 2 −1 1 1 0 0 0 0 1
−1 1 0 0 1 1 0 1 0
−1 1 0 −1 0 −1 1 0 0

 . (3.3)
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(a) Numerical computation with
Paramotopy. We consider a grid
of 106 points in the space of total
concentrations and represent every
point which leads to multistationarity.
The boundary of the corresponding
multistationarity region is represented
in grey and the interior in black. This
cone shaped region is semialgebraic and
its boundary is part of the discriminant
in Fig. 3.1b.

(b) The discriminant has seven Q-irre-
ducible components which can be found
with Maple. Three of them are coor-
dinate hyperplanes and two others are
sums of squares. We show only the two
components which intersect the interior
of the positive orthant. The boundary
of the numerical approximation of the
multistationarity region from Fig. 3.1a
is a subset of this discriminant surface.

Figure 3.1: Representation of multistationarity in the space of total concentrations
for Nph(2) . For both figures all rate constants have been fixed to the values given
in [11, Figure 3].
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3.3 A numerical study of multistationarity in

the space of total concentrations

We did a numerical study of multistationarity in the space of total concentrations
which is depicted in Figure 3.1a. For this computation the rate constants have
been numerically fixed to the values in [11, Figure 3]. The computation was
done using Paramotopy [6] which builds on Bertini [2] and allows to efficiently
analyze the solutions of a parametric polynomial system. We computed the
isolated solutions for each point in the grid [0, 1000]3 ∩ (10Z)3 and plotted those
which yield multistationarity. An alternative approach is through the discriminant
which in this case can be found with Maple [32]. A discriminant of a parametric
semialgebraic system Σ is a polynomial which vanishes in those points of the
parameter space where the solution behaviour of Σ can change. For an extensive
discussion of discriminants with a special emphasis on computation we refer to [31].
Two relevant irreducible components of the discriminant of the parametric system
are visualized in Figure 3.1b. The algebraic boundary of the region from Fig. 3.1a
is a subvariety of the discriminant from Fig. 3.1b. Specifically, the cone shaped
region in Fig. 3.1a is also visible in the top centre of Fig. 3.1b. Both figures indicate
that, for the values of the rate constants chosen in [11, Figure 3], multistationarity
does not occur for all values of the total concentrations. In the next section we
employ the results of Section 2.4 together with the chamber decomposition of
Section 1.3 to elucidate conditions on the total concentrations for the presence or
absence of multistationarity.

3.4 The chamber decomposition for N
ph(n)

The polyhedron Pc corresponding to Network Nph(2) is defined by the matrix Z

from (3.2). The cone over the columns of Z is R3
≥0. There are eight basic cones

generated by the following eight sets of columns of Z:

{1, 2, 7}, {1, 2, 8}, {1, 3, 7}, {1, 3, 8}, {2, 3, 7}, {2, 3, 8}, {2, 7, 8}, {3, 7, 8}.

Any of the basic cones is the intersection of three linear half-spaces of R3 and these
half-spaces are spanned by exactly two of the three columns (see [47, Section 1.1]
for more details on polyhedra). For example, the cone generated by the columns
of {1, 2, 7} of Z is R3

≥0 and equals the intersection of the half-spaces c1 ≥ 0, c2 ≥ 0,
and c3 ≥ 0. There are six distinct planes occurring among the defining hyperplanes
of all cones: c1 = 0, c2 = 0, c3 = 0, c1 = c3, c2 = c3, and c1 + c2 = c3. These
planes divide R3

≥0 into five full-dimensional cones. The interiors of these cones
are the full-dimensional chambers of R3

≥0. See Figure 3.2 for a two dimensional
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representation of this chamber decomposition. There are also smaller dimensional
chambers: the interiors of the faces of the full-dimensional chambers. As it turns
out, the whole above analysis extends beyond Nph(2) and is valid for any Nph(n) .

Theorem 3.1. The cone of conservation relations of Nph(n) is R3
≥0 and it has five

full-dimensional chambers:

Ω(1) :


c3 > 0

c2 > c3

c1 > c3,

Ω(2) :


c1 > 0

c2 > c3

c1 < c3,

Ω(3) :


c2 > 0

c2 < c3

c1 > c3,

Ω(4) :


c1 < c3

c2 < c3

c1 + c2 > c3,

Ω(5) :


c1 > 0

c2 > 0

c1 + c2 < c3.

Proof. As described in [26, Section 3], the conservation matrix of Nph(n) , for

the ordering of the concentrations defined in [26, Table 1], has the form Z(n) =
(Z0|Z1| . . . |Z1) ∈ R3×(3n+3), where Z1 is repeated n times and

Z0 =

 1 0 0
0 0 1
0 1 0

 , Z1 =

 1 0 0
0 0 1
1 1 1

 .

As Z(n) has the same set of columns for every n ≥ 1, it follows that all chamber
decomposition of all Nph(n) are equal.

Remark 3.2. Although the ordering of variables defined in [26, Table 1] is
different from the ordering of variables we use with Nph(2) , a reordering of the

variables corresponds to a reordering of the columns of Z(n) and thus, it leaves
the chamber decomposition invariant.

Remark 3.3. Although Nph(n) has the same chamber complex for each n, the
constants c express nonnegative linear combinations of the concentrations specific
to each network.

3.5 Multistationarity conditions in the space of

total concentrations

Now we employ Corollary 2.17 to decide whether multistationarity is possible for
total concentrations in the chambers Ω(i). The linear inequality conditions c ∈ Ω(i)
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c1 c2

c3

c1 + c3 c2 + c3

Ω(1)

Ω(2)Ω(3)

Ω(4)

Ω(5)

Figure 3.2: The intersection of the chamber complex associated to Nph(n) with the

plane c1 + c2 + c3 = 1. Labelled vertices correspond to different columns in Z(n).

become the conditions F(•) in Corollary 2.17. We also integrate the information
in the sign patterns in the intersection (2.4). These have been computed in [9]
and are encoded as rows of the following matrix ∆ (or their negatives):

∆ =



−1 −1 −1 1 1 1 −1 1 −1
1 0 1 −1 −1 −1 1 −1 1
1 −1 1 1 −1 −1 1 −1 1
1 −1 1 1 −1 −1 0 −1 1
1 −1 1 1 −1 −1 −1 −1 1
1 −1 1 0 −1 −1 1 −1 1
1 −1 1 −1 −1 −1 1 −1 1


. (3.4)

The rows δi of ∆ define the conditions sign(ξA − 1) = δi, i = 1, . . . , 7 of Corol-
lary 2.17. Using the matrix A from (3.3), this condition reads

sign

(
ξ2

1

ξ2ξ3

− 1,
ξ2ξ3

ξ1

− 1, ξ1 − 1,
ξ1

ξ3

− 1, ξ2 − 1,
ξ2

ξ3

− 1, ξ3 − 1, ξ2 − 1, ξ1 − 1

)
= δ

(3.5)
To check multistationarity for c in all of the chambers Ω(i) we use Math-

ematica [27]. For each chamber and each row δi we set up the conditions of
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Corollary 2.17 and use the command Reduce to decide the existence of solutions.
In the following example we show how to set up the Mathematica code to check
multistationarity in Ω(1) for the sign pattern −δ1.

Example 3.4. After adding the constraints ξ1 > 0, ξ2 > 0, ξ3 > 0 and removing
redundant inequalities, (3.5) reduces to 1 < ξ1 < ξ2ξ3 < ξ2

1 and 0 < ξ2 < 1. We
combine this with the linear description of Ω(1) in Theorem 3.1. In the condition
Z((ξA − 1) ? a) = 0 we use the matrix

Z ′ =

 0 1 1 0 1 0 0 0 0
1 0 1 1 1 1 −1 0 0
1 −1 0 1 0 1 0 1 1

 , (3.6)

obtained from (3.2) by elementary row operations. To obtain polynomial conditions
(ξA is rational) we write this condition as Z(ξA ? a) = Za and clear denominators.
The following Mathematica code implements this (after renaming the variables
ξ1, ξ2, ξ3 to x1,x2,x3):

Reduce[Exists[{a1,a2,a3,a4,a5,a6,a7,a8,a9},

a1>0 && a2>0 && a3>0 && a4>0 && a5>0 && a6>0 && a7>0 && a8>0 &&

a9>0 && x2*x3*a2 + x1^2*a3 + x1*x2*a5 == x1*(a2+a3+a5) &&

x1^2*a1 + x1*x2*x3*a3 + x1*x2*a4 + x2^2*x3*a5

+ x2^2*a6 - x2*x3^2*a7 == x2*x3*(a1+a3+a4+a5+a6-a7) &&

x1^3*a1 - x2^2*x3^2*a2 + x1^2*x2*a4 + x1*x2^2*a6 + x1*x2^2*x3*a8

+ x1^2*x2*x3*a9 == x1*x2*x3*(a1-a2+a4+a6+a8+a9) &&

a1+a3+a4+a5+a6-a7<0 &&

a1-a2+a4+a6+a8+a9<0 &&

x2*x3<x1^2 && x1<x2*x3 &&

1<x1 && 1>x2 && x2>0]]

The result of this computation is False. This means that there do not exist
a1, . . . , a9 satisfying the constraints, no matter what the values of ξ1, ξ2, ξ3 are
and, consequently, in the chamber Ω(1) there is no multistationarity coming from
−δ1. Theorem 3.5 below shows that there is no multistationarity in Ω(1) at all.

Theorem 3.5 spells out for which chambers and which signs there is multista-
tionarity. For a pair (Ω(i), δj), we write + if there is multistationarity in Ω(i) for
all values of ξ compatible with (3.5). We write ++ if there is multistationarity in
Ω(i) with extra conditions for ξ stronger than (3.5). We write − if there is no
multistationarity. If we have no conclusion, we leave the cell empty.
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δ1 δ2 δ3 δ4 δ5 δ6 δ7

Ω(1) – – – – – – –
Ω(2) – – + + ++ + ++
Ω(3) ++ + ++ – – + +
Ω(4) ++ + + ++
Ω(5) ++ + + + + + +

Table 3.1: The chamber-signs incidence table of Nph(2) . In particular, multista-
tionarity is not possible in Ω(1).

Theorem 3.5. Up to the three empty cells, the chambers-signs incidence table of
Nph(2) is Table 3.1. For the ++ entries the following additional constraints on the
variables ξ1, ξ2, and ξ3 are derived:

(Ω(2), δ7) : 0 < ξ3 < ξ1 < 1 ∧ ξ2 >
ξ2

1

ξ2
3

,

(Ω(2), δ5) : ξ3 > 1 ∧ 0 < ξ1 < 1 ∧ ξ2 > ξ2
3 ,

(Ω(4), δ5) : ξ3 > 1 ∧ 0 < ξ1 < 1 ∧ ξ2 > ξ2
3 ,

(Ω(3), δ3) : ξ2
3 < ξ1 < ξ3 < 1 ∧ ξ2 > 1,

(Ω(3), δ1) : ξ3 > 1 ∧((
1 < ξ1 < ξ

2/3
3 ∧ ξ1

ξ3

< ξ2 <
ξ

3/2
1

ξ3

)
∨
(
ξ

2/3
3 < ξ1 < ξ3 ∧

ξ1

ξ3

< ξ2 < 1

))
,

(Ω(4), δ1) : ξ3 > 1 ∧((
1 < ξ1 < ξ

2/3
3 ∧ ξ1

ξ3

< ξ2 <
ξ

3/2
1

ξ3

)
∨
(
ξ

2/3
3 < ξ1 < ξ3 ∧

ξ1

ξ3

< ξ2 < 1

))
,

(Ω(5), δ1) : ξ3 > 1 ∧((
1 < ξ1 < ξ

1/2
3 ∧ ξ1

ξ3

< ξ2 <
ξ2

1

ξ3

)
∨
(
ξ

1/2
3 < ξ1 < ξ3 ∧

ξ1

ξ3

< ξ2 < 1

))
.

Computational Proof. The quantifier elimination problems were set up similarly
to Example 3.4 and solved using Mathematica.

Table 3.1 shows that multistationarity is only possible if c /∈ Ω(1):

Corollary 3.6. For Nph(2), if c ∈ Ω(1), then there is no k ∈ R12
>0 such that the

following equations have at least two positive solutions:

Sv(k, x) = 0, Zx = c.
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Corollary 3.7. For Nph(2), multistationarity can only occur if the total concen-
tration of substrate is bigger than the total concentration of either kinase or
phosphatase, i.e. c3 > c2 or c3 > c1.

3.6 Challenging QE problems from mass-action

networks

To obtain Table 3.1, some of the computations were made indirectly. For example,
we checked that for δ1 multistationarity doesn’t take place in Ω(1) but we couldn’t
check directly that it doesn’t take place in Ω(2), so we checked that it does not
take place in Ω(1) ∪ Ω(2) ∪ Ω(1, 2). Here Ω(1, 2) denotes the boundary between
Ω(1) and Ω(2). This computation was feasible. The run times of our computations
seem to be sensitive to the formulation of the input. We experimented with
different equivalent semialgebraic systems in Mathematica. One knob to turn is
the system Z((ξA− 1) ? a) = 0 in Corollary 2.17. As in Corollary 2.17 we are only
interested in the positive solutions of the system Z((ξA − 1) ? x) = 0, clearing
denominators does not add any new solutions. Let ς(Z, ξA, δ, x) denote the system
obtained from Z((ξA − 1) ? x) = 0 and δ, by clearing denominators. If Z ′ and
A′ are matrices obtained by performing elementary row operations on Z and A
respectively, then ς(Z, ξA, δ, x) and ς(Z ′, ξA

′
, δ, x) have the same set of positive

solutions (they are equivalent systems), yet they are not linearly equivalent
systems. Different bases for the row space of Z lead to different run times.
Consider the pair (Ω(4), δ4) and let R1, R2, and R3 be the rows of Z from (3.2).

Let Z1 =
(
(R1 +R2 +R3)T |(R2 +R3)T |RT

3

)T
, Z2 =

(
RT

1 |RT
2 |(R3 −R1 −R2)T

)T
,

and Z3 =
(
RT

1 |(R3 −R2)T |(R3 −R1)T
)T

. Using in Corollary 2.17 the matrix Z
from (3.2), the computation takes about seven seconds while with either of Z1, Z2,
and Z3 the computation did not finish within 24 hours. It is tempting to think
that the computations with the matrix Z are faster because it is in row echelon
form, but this is not the case: for the pair (Ω(1), δ1) the computation with Z did
not finish in several days while the computation with Z3 finished in a few hours.
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Chapter 4

Dynamical systems with the
isolation property

This chapter is joint work with with Carsten Conradi and Thomas Kahle.

4.1 Introduction

Chemical reaction networks originating in Biology are usually large, but they
tend to have nice combinatorial properties. In 2012 Conradi and Flockerzi [8]
defined the isolation and the bridging properties, and found linear systems that test
multistationarity in mass-action networks with these properties. In Theorem 4.17
we show that systems with the isolation property have toric positive steady states
(that is their positive steady state variety admits a monomial parameterization).
This theorem should be regarded in the context of Chapter 2, where the theory of
multistationarity for systems with toric positive steady states is developed.

4.2 The isolation property

In this chapter chemical complexes are denoted by their corresponding monomials,
rate constants are fixed, and the positive steady state variety is defined as

V + = {x ∈ Rn
>0| Sν(k, x) = 0} .

This is a local picture of the positive steady state variety defined in Chapter 2.
There is also a local version of the property “admits a monomial parameterization”
(cf. Definition 2.1 and Lemma 2.4). Thus, in this chapter, V + admits a monomial
parameterization when there exist A ∈ Qd×n, rank(A) = d < n, and γ ∈ Rn

>0,
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such that V + is the image of the following map

Rd
>0 → Rn

>0

t 7→ γ ? tA.

If i, j ∈ [r] are such that i 6= j and ki and kj have the same source, then {i, j}
is called a doubling set (see Example 4.1). Let D denote the set of all doubling
sets. The doubling graph is G = ([r], D). Let e1, . . . , er denote the canonical
basis of Rr and let Udoub be a matrix which has one column ej − ei ∈ Rr for each

doubling set {i, j}, with i < j. Let Ũ be a matrix such that ker(Ye) is spanned by

the columns of U = (Udoub|Ũ) and let E be the cone generator matrix. Rows of
E are denoted by n1, . . . , nr.

Example 4.1. Let k1, k2, k3 ∈ R>0, with k2 > k3, and let N3 denote the network

x2 xy y2
k1

k2

k3
, (N3)

The only doubling set of this network is {2, 3}, so D = {{2, 3}}, G = ([3], {{2, 3}}),
and Udoub = (0,−1, 1)T . The steady state ideal of this network is 〈k1x

2 − (k2 −
k3)xy〉 and the stoichiometric and the E matrices are

S =

(
−1 1 −1

1 −1 1

)
and E =

 1 0
1 1
0 1

 , respectively.

Now suppose that E has p columns and let Λ(E) =
{
λ ∈ Rp

≥0| Eλ > 0
}

. As

V + 6= ∅, by [8, Section 3.1] the set Λ(E) is nonempty. Let ΛD = {λ ∈ Λ(E)| Eλ
k
∈

ker
(
Udoub

)T}, let {i, j} ∈ D, and fix ν, λ ∈ ΛD and 0 6= n ∈ span(ni, nj). Then

niν

niλ
=
njν

njλ
=
nν

nλ
.

Example 4.2. For N3 we have Λ(E) = R2
>0. Hence

ΛD(E) = {λ ∈ R2
>0| (0,−1, 1)

Eλ

k
= 0} = {λ ∈ R2

>0|
λ1 + λ2

k2

=
λ2

k3

}.

Definition 4.3. The preclustering graph P is the output of Algorithm 4.4. A
precluster is a connected component of P.

The following algorithm is very similar to [8, Algorithm 1].
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Algorithm 4.4.
Input: The doubling graph G.
Output: A graph.
1) Let P = G.
2) While ∃ {i, j} ∈ E(P) and ∃ s ∈ [r], with s not in the same connected compo-
nent as i and j, such that ns ∈ span{ni, nj}, adjoin {i, s} and {j, s} to E(P).
3) Output P.

Example 4.5. For N3 we have n1 ∈ span(n2, n3), so the indices 1, 2, 3 are
contained in the same precluster. As there are no other reaction indices, N3 has
exactly one precluster, given by [3]. Hence

P = ([3], {{1, 2}, {1, 3}, {2, 3}}).

Definition 4.6. We call J = ([r], E(J)) the clustering graph, where

E(J) = {{i, j}| niν
niλ

=
njν

njλ
∀ν, λ ∈ ΛD}.

A cluster is a connected component of J.

Example 4.7. The network N3 has only 3 reaction indices and [3] is a precluster,
so [3] is a cluster. Hence

J = P = ([3], {{1, 2}, {1, 3}, {2, 3}}).

Suppose that N has γ clusters J1, . . . , Jγ and let ψ denote

ψ : Λ2
D → Rγ

(ν, λ) 7→
(
ψJ1(ν, λ), . . . , ψJγ (ν, λ)

)T
,

where ψJi(ν, λ) = ln
njν

njλ
for all j ∈ Ji and i ∈ [γ]. Let Π ∈ {0, 1}r×γ be such that

supp(Πi) = Ji. Throughout this chapter γ ∈ Z≥0 denotes the number of clusters.
Let us now define the main property of this chapter:

Definition 4.8. A mass-action network has the isolation property if V + 6= ∅ and
any two rows of E indexed by different clusters have disjoint supports.

Remark 4.9. The isolation property was first defined by Conradi and Flockerzi
in 2011 for parametric families of mass-action networks [8]. Our definition differs
from the one of Conradi and Flockerzi in that we numerically fixed rate constants.

Example 4.10. The positive steady state variety of N3 is nonempty if and only
if k2 > k3. Hence N3 has the isolation property if and only if k2 > k3.
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Not all clusters are preclusters (see Example 4.12). However, by definition any
precluster is contained in a cluster. This motivates the following definition:

Definition 4.11. A mass-action network has the strong isolation property if
V + 6= ∅, its preclusters partition [r], and any two rows of E indexed by different
preclusters have disjoint supports.

The following example shows that the isolation and the strong isolation property
are not equivalent properties.

Example 4.12. Consider the following chemical reaction network:

x2 xy
k1

k2

As this network does not have doubling sets, according to Definition 4.3 it has
two preclusters: {1} and {2}. As its stoichiometric and E matrices are

S =

(
−1 1

1 −1

)
and E =

(
1
1

)
, respectively,

this network does not have the strong isolation property. However, by Definition 4.8
this network has only one cluster: {1, 2}. Hence it has the isolation property.

Remark 4.13. If a mass-action network has the strong isolation property then it
has the isolation property.

Example 4.14. Clusters and preclusters are identical for N3, so this network has
the strong isolation property if and only if k2 > k3.

Remark 4.15. Preclusters need not be computed in order to decide the isolation
property. However, clusters are defined by bilinear equations in ν, λ ∈ ΛD(E)
(see Definition 4.6), which might be hard to solve. As preclusters are purely
combinatorial objects, they might simplify this problem. In particular, knowledge
about the preclusters is enough for systems with the strong isolation property.

Remark 4.16. In biochemical reaction networks rate constants are usually either
not known, or they are known with big uncertainties. In such situations it is
convenient to treat them as parameters. If {N (k)| k ∈ Rr

≥0} denotes a parametric
family of mass-action networks, then for each k ∈ Rr

>0, the symbol V +(k) denotes
the positive steady state variety of N (k). As the matrix E, doubling sets, and
preclusters do not depend on k, and the only object which could change with k is
V +(k), if there is a k ∈ Rr

>0 such that N (k) has the strong isolation property, then
for all k ∈ Rr

>0 such that V +(k) 6= ∅, the network N (k) has the strong isolation
property. Note that the same might not be true for the isolation property, as
clusters depend on ΛD, which depends on k. This justifies the adjective strong in
strong isolation property.
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Now we have all ingredients to state the main result:

Theorem 4.17. If N has the isolation property, then the positive steady state
variety V + of N admits a monomial parameterization.

We split the proof of Theorem 4.17 into the following six lemmata.

Lemma 4.18. For any a ∈ Rn
>0, one has a ∈ V + if and only if there exists

λ ∈ ΛD such that k ? aYe = Eλ.

Proof. Fix a ∈ Rn
>0. Then a ∈ V + if and only if k ? aYe ∈ ker(S) ∩ Rn

>0 if and
only if there exists λ ∈ Λ(E) such that k ? aYe = Eλ. As aYe ∈ ker((Udoub)T ), we
conclude that λ ∈ ΛD.

Lemma 4.19. If the clusters partition [r] and a, b ∈ V +, then there exists κ ∈
imψ ∩ ker(UTΠ) such that aYe = e(Πκ)T ? bYe.

Proof. If a, b ∈ V + then, by Lemma 4.18, there exist λ, ν ∈ ΛD such that

k ? aYe = Eλ and k ? bYe = Eν. Hence Eν
Eλ

=
(
b
a

)Ye
, and ln Eν

Eλ
= Y T

e
a
b
. As

YeU = 0, we deduce that UT ln Eν
Eλ

= 0. As the clusters partition [r], we deduce
that ln Eν

Eλ
= Πψ(ν, λ). Hence ψ(ν, λ) ∈ ker(UTΠ). Consequently, for κ = ψ(ν, λ),

we have aYe = e(Πκ)T ? bYe .

Lemma 4.20. If the clusters partition [r] and κ ∈ imψ ∩ ker(UTΠ), then there
exists t ∈ Rn

>0 such that tYe = e(Πκ)T .

Proof. If κ ∈ imψ, then there exist ν, λ ∈ ΛD such that Πκ = ln Eν
Eλ

. If additionally

κ ∈ ker(UTΠ), then we also have UTΠκ = 0, and we deduce that
(
Eν
Eλ

)U
= 1.

As the rows of Ye span the left kernel of U , there exists t ∈ Rn
>0 such that

tYe = Eν
Eλ

= e(Πκ)T .

Lemma 4.21. If N has the isolation property, κ ∈ imψ, and v ∈ ker(S) ∩ Rr
>0,

then e(Πκ)T ? v ∈ ker(S) ∩ Rr
>0.

Proof. Fix κ ∈ imψ and v ∈ ker(S) ∩Rr
>0. Then there exists λ ∈ Λ(E) such that

v = Eλ. Let ν = (eκ1λTsupp(J1)| . . . |eκγλTsupp(Jγ))
T . As the clusters partition [r], we

deduce that e(Πκ)T ? (Eλ) = Eν. As sign(ν) = sign(λ), we conclude that ν ∈ Λ(E)
[8, Remark 4.(3)]. Hence Eν ∈ ker(S) ∩ Rr

>0.

Lemma 4.22. If N has the isolation property, a ∈ V +, κ ∈ imψ ∩ ker(UTΠ),
and t ∈ Rn

>0 is such that tYe = e(Πκ)T , then a ? t ∈ V +.

Proof. By Lemma 4.18 there is a λ ∈ ΛD such that k ? aYe = Eλ. By Lemma 4.20
there is a t ∈ Rn

>0 such that tYe = e(Πκ)T . After multiplying k ? aYe = Eλ

with tYe = e(Πκ)T we deduce that k ? (a ? t)Ye = e(Πκ)T ? (Eλ). By Lemma 4.21
e(Πκ)T ? (Eλ) ∈ ker(S) ∩ Rr

>0. Hence k ? (a ? t)Ye ∈ ker(S), and a ? t ∈ V +.
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The following Lemma was first stated in [8].

Lemma 4.23. If N has the isolation property, then imψ = Rγ.

Proof. Fix κ ∈ Rγ and λ ∈ ΛD and let ν = (eκ1λTsupp(J1)| . . . |eκγλTsupp(Jγ))
T . As

the clusters partition [r] and sign(λ) = sign(ν), by [8, Remark 4.(3)], we have
ν ∈ Λ(E). As niν

νiλ
=

njν

νjλ
whenever i, j are elements of the same cluster, we

conclude that ν ∈ ΛD. Hence κ ∈ imψ.

Proof of Theorem 4.17. By Lemma 4.23 imψ = Rγ. By Lemma 4.19 there is a
κ ∈ Rγ ∩ ker(UTΠ) such that aYe = e(Πκ)T ? bYe and, by Lemma 4.20, eκ can be
chosen to partially parameterize the solution set of this equation. Hence there are
d ∈ Z≥0 and A ∈ Zd×n such that, for arbitrary a, b ∈ V +, there exists s ∈ Rd

>0

with b = sA ? a. Finally, by Lemma 4.22, for arbitrary a ∈ V + and s ∈ Rd
>0,

a ? sA ∈ V +.

Corollary 4.24. If N has the strong isolation property, then the positive steady
state variety V + of N admits a monomial parameterization.

Example 4.25. The set of positive steady states of N3 can be parameterized as

R>0 → R2
>0

s 7→ (s, k1
k2−k3 s).

The following example shows that there exist distinct mass-action networks
with the same dynamics, one of which has the strong isolation property, while the
other one does not.

Example 4.26. Let k1, k2, k3 ∈ R>0, with k2 > k3, and let N4 denote

x2 xy
k1

k2−k3
. (N4)

The dynamics of both networks N3 and N4 are defined by the same system of
ODEs. However, N4 has no doubling sets, so it doesn’t have the strong isolation
property. In particular, this example shows that a binomial steady state does not
imply the strong isolation property.

Remark 4.27. In [8] the isolation property was defined under the assumption
that there is at least one doubling set [8, Assumption 2]. For the purpose of this
chapter, this requirement is not necessary. However, if we add this assumption to
the definition of isolation property, network N4 not only does not have the strong
isolation property, but it also doesn’t have the isolation property.
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Remark 4.28. In general it was very difficult to find reaction networks with the
isolation property starting from a fixed E matrix. We couldn’t find examples of
systems with the isolation property without binomial steady state ideal.

Question 4.29. Given a mass-action network N without the (strong) isolation
property, is there an algorithm which decides whether the dynamical systems
defined by N can be represented by another mass-action network with the (strong)
isolation property?

Question 4.30. Do all mass-action networks with the isolation or the strong
isolation property have binomial steady state ideals?

Remark 4.31. Another class of nice chemical reaction networks is formed by
mass-action networks with the bridging property. The bridging property is defined
similarly to the isolation property [8, Definition 3]. In [8, Theorem 2] the authors
give necessary and sufficient conditions for the existence of multistationarity in
systems with the isolation or the bridging properties, very similar to those given
for systems with the isolation property [8, Lemma 4]. However, it is not clear
that Theorem 4.17 can be generalized to systems with the bridging property. The
main difficulty is that Lemmata 4.21, 4.22, and 4.23 fail to be true for systems
with the bridging property, as for these systems rows of E indexed by different
clusters do not have disjoint supports.
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Chapter 5

Sturm discriminants

5.1 Introduction

Up to date, discriminants of parametric systems of semialgebraic systems have
only been implemented in the RootFinding[Parametric] subpackage of Maple
and this implementation is based on algorithms introduced in 2007 by Lazard and
Rouillier [31], [34], and [23]. While at the present moment these algorithms seem
to be the most efficient ones, they are not easily implementable in free computer
algebra systems as Macaulay2. In this chapter we offer an easier alternative, via
Sturm sequences, for the computation of discriminants of systems with positive
roots. Discriminants computed this way are in general not minimal.

Given a univariate polynomial p, its Sturm sequence s(p) is a list of at most
degree of p other polynomials containing information about the real roots of p.
In many applications, only the positive roots of a polynomials are meaningful
(e.g. when variables denote concentrations of chemical species). The number of
distinct positive roots of p is encoded in the signs of the leading coefficients and
the constant terms of the elements of s(p). Sturm sequences can also be associated
to zero dimensional ideals: if I ⊆ R[x1, . . . xn] defines a zero dimensional variety
then, for i ∈ [n], a Sturm sequence can be assigned to the unique generator of the
elimination ideal I ∩R[xi]. In this chapter we compute Sturm sequences of certain
parametric families of zero dimensional ideals and we show that they can be used
to compute discriminants. For a more detailed treatment of Sturm sequences, we
refer to [1, Chapters 1 and 2] and [3, Chapter 1].
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5.2 Sturm sequences and discriminants

Let R = R[t1, . . . , tm] and K = R(t1, . . . , tm). If p ∈ R[x] is any univariate
polynomial, then the Sturm sequence s(p) of p is the sequence of signed remainders
of p and p′, i.e.

s(p) = (s0(p), . . . , sr(p)) ∈ Kr+1,

where s0(p) = p, s1(p) = p′, si = −Rem(si−2(p), si−1(p)) for 2 ≤ i ≤ r, and r is
such that sr(p) 6= 0 and Rem (sr−1(p), sr(p)) = 0.

Definition 5.1. The Sturm discriminant ∆S(p) of p ∈ R[x] is the polynomial ob-
tained by multiplying the numerators and denominators of the leading coefficients
and nonzero constant terms of elements of s(p). The reduced Sturm discriminant
is (∆S(p))red. Connected components of Rm \V(∆S(p)) or Rm \V((∆S(p))red) are
called cells of the discriminant.

Remark 5.2. There might be values of the parameters t for which the corre-
sponding specialization of the Sturm sequence is not well defined. However,
a specialization of the Sturm sequence is always well defined for values of the
parameters lying in Rm \ V((∆S(p))red).

In order to have nice formulas for ∆S(p), the polynomial p should be generic
enough. The following definition makes this precise in our setting.

Definition 5.3. A degree d polynomial p ∈ R[x] is Sturm generic if its Sturm
sequence has d+ 1 elements and, for i ∈ {0, . . . , d}, si(p) has d− i+ 1 terms.

Remark 5.4. The discriminant ∆(p) of the univariate polynomial p is a poly-
nomial in the coefficients of p which vanishes whenever p has a double root in
C [22, Equation (1.23)]. If p is Sturm generic, then, by [1, Corollary 8.33], ∆(p)
is not identically zero. The converse of this fact fails to be true. For example,
the discriminant of the polynomial x2 − 1 has nonzero discriminant, yet it is not
Sturm generic. For a review of classical results about discriminants of univariate
polynomials we refer to [22, Chapter 12].

Lemma 5.5. Sturm generic polynomials exist in any degree.

Proof. Let ε1, ε2 ∈ R>0, with ε1 > 1, and let d ∈ Z>0. Let p0 = 1, p1 = x+ 1, and
for 2 ≤ i ≤ d − 1, let pi = (x + 1 + ε1)pi−1 − pi−2. If pd denotes a polynomial
with constant term ε2 such that p′d = pd−1, then pd is Sturm generic with Sturm
sequence (pd, . . . , p0).

The computation of Sturm sequences is in general slow, so ready to use formulas
are always useful. Proposition 5.6 below shows that this is possible whenever the
coefficients of p are algebraically independent.
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Proposition 5.6. If the coefficients of p are all nonzero and algebraically inde-
pendent, then p is a Sturm generic polynomial.

Proof. Suppose that there is a p ∈ R[x] for which the proposition is false and let
d = deg(p). Then there are natural numbers i, j such that the jth coefficient of
si(p) is zero. As the coefficients of p are algebraically independent, there is no
degree d polynomial q ∈ R[x] such that the jth coefficient of si(q) is nonzero. But
this is in contradiction with Lemma 5.5.

Example 5.7. The Sturm sequence of p1 = s1+s2x+s3x
2+s4x

3 ∈ R[s1, s2, s3, s4][x]
consists of 4 polynomials, the last of which is

s3(p1) =
9s4(s2

2s
2
3 − 4s1s

3
3 − 4s3

2s4 + 18s1s2s3s4 − 27s2
1s

2
4)

4(s2
3 − 3s2s4)2

.

As the zero locus of the denominator of s4(p1) is the image of

R3 → R4

(ξ1, ξ2, ξ3) 7→ (ξ1, ξ2, ξ2ξ3,
1
3
ξ2ξ

2
3),

the Sturm sequence of the polynomial p2 = ξ1 + ξ2x + ξ2ξ3x
2 + 1

3
ξ2ξ

2
3x

3 ∈
R[ξ1, ξ2, ξ3][x] cannot be obtained by substituting s1 with ξ1, s2 with ξ2, s3 with
ξ2ξ3, and s4 with 1

3
ξ2ξ

2
3 in s(p1).

For a ∈ Rm, let pa denote the specialization of p to t = a.

Theorem 5.8. If p(0) 6= 0 and a and b are contained in a common cell of
V(∆S(p)), then pa and pb have the same number of distinct positive roots.

Proof. By Sturm’s Theorem [1, Theorem 2.62], for any specialization a ∈ Rm \
V(∆s(p)), the number of distinct positive roots of pa is

Var(s0(pa(0)), . . . , sd(pa(0)))− Var(s0(pa(∞)), . . . , sd(pa(∞))).

As sign si(pa(0)) = sign CT(si(pa)) and sign si(pa(∞)) = sign LC(si(pa)), the
number of positive roots of pa is equal to

Var(CT(s0(pa)), . . . ,CT(sd(pa)))− Var(LC(s0(pa)), . . . ,LC(sd(pa))).

But the signs of CT(si(pa)) and LC(sj(pa)) can change at most when a crosses
the variety V(∆S(p)).
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Example 5.9. The Sturm discriminant of p1 = t1 + t2x+ t3x
2 ∈ R[t1, t2, t3][x] is

(∆S(p1))red = t1t2t3∆(p1) = t1t2t3(t22 − 4t1t3).

Let p2 = s1s2 + s3x + s4x
2 ∈ R[s1, s2, s3, s4][x]. As both p1 and p2 are Sturm

generic of the same degree, ∆S(p2) can be computed by substituting t1 with s1s2,
t2 with s3, and t3 with s4 in ∆S(p1):

(∆S(p2))red = s1s2s3s4∆(p2) = s1s2s3s4(s2
3 − 4s1s2s4).

The polynomial p3 = s1 + s3x
2 is not Sturm generic, and if one substitutes its

coefficients in (∆S(p1))red, then one gets 0. This is due to the fact that in p3 the
coefficient of x is 0 and, consequently, the constant term of p′3 is zero. However,
according to Definition 5.1, zero constant terms don’t play any role in ∆S(p3).
Hence, for p3 a new Sturm sequence has to be computed in order to get its Sturm
discriminant. By doing so, one gets that

(∆S(p3))red = s1s3.

Positive or negative factors of (∆S(p))red do not play any role in the discriminant
as they cannot vanish. The following definition takes care of this situation.

Definition 5.10. The minimal Sturm discriminant (∆S(p))min of p is the poly-
nomial obtained by removing from the reduced Sturm discriminant (∆S(p))red its
positive and its negative irreducible components.

Example 5.11. The Sturm discriminant of p = t21 + t22 + 1 + t2x+ t3x
2 is

(∆S(p))red = t2t3(t21 + t22 + 1)(t22 − 4(t21 + t22 + 1)t3).

As the only positive or negative factor of (∆s(p))red is t21 + t22 + 1, we get

(∆S(p))min = t2t3(t22 − 4(t21 + t22 + 1)t3).

Remark 5.12. A polynomial is positive if it can be written as the sum of
a nonnegative polynomial and a positive constant. The classical method for
certifying the nonnegativity of a multivariate polynomial is writing it as a sum
of squares. However, in 1888 Hilbert proved that every nonnegative degree d
polynomial P ∈ R[y1, . . . , yn] is a sum of squares only if n = 1, or n = 2 and d = 4,
or d = 2 (e.g. [5] and the references therein). Another certificate of nonnegativity,
based on circuit polynomials, was introduced in [15] and [16]. Recently, the authors
of [36] introduced yet another certificate of nonnegativity, based on signomials.
Moreover, in [36, Theorem 20], the authors provide a computationally tractable
formulation for the corresponding cone of nonnegative polynomials.
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5.3 Zero dimensional ideals

If Σ is a parametric family of multivariate zero dimensional systems of equations,
a Sturm sequence can be associated to the univariate polynomial resulting from
eliminating all variables of Σ except one, whenever there is a unique such polyno-
mial. Let I ⊆ R[x1, . . . , xn] denote the ideal generated by the polynomials of Σ
and suppose that I is such that, for all i ∈ [n], the elimination ideal Ii = I ∩R[xi]
is principal and nonzero (see Section 5.4 for an instance of this phenomenon). Let
pi ∈ R[xi] denote the generator of Ii.

Definition 5.13. The ideal I is called Sturm generic if all pi are Sturm generic.

For any g ∈ R, let

∆S(I, g) = (g
m∏
i=1

∆S(pi))red.

Remark 5.14. For all i ∈ [n], pi is zero if and only if all its coefficients are
zero. Hence there is an algebraic variety V 6= Rm such that, for all a ∈ Rm \ V ,
dim Ia = 0. Here Ia denotes the specialization of I at t = a. Then there exists
0 6= h ∈ R such that for all a ∈ Rm \ V(h), we have dim Ia = 0.

Definition 5.15. The Sturm discriminant of I is ∆S(I) = ∆S(I, 1) and the Sturm
discriminant variety of I is V(∆S(I)). Connected components of Rm \ V(∆S(I))
are called cells of the discriminant.

Theorem 5.16. If, for all i ∈ [n], pi(0) 6= 0 and a and b are contained in a
common cell of V(∆S(I)), then the sets V(Ia) ∩ Rm

>0 and V(Ib) ∩ Rm
>0 have the

same number of points.

Proof. This is a consequence of Proposition 5.8.

5.4 The discriminant of the 1-site phosphoryla-

tion

After substituting the parameterization (1.4) in the conservation laws (1.7) we
get the following parametric family of semialgebraic systems:

x1 + a1x1x2 − c1 = 0,
x5 + a3x1x2 − c2 = 0,
x2x5 + a1x1x2x5 + a2x1x2 + a3x1x2x5 − c3x5 = 0,
x1 > 0, x2 > 0, x3 > 0,

(5.1)
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where

a1 =
k1

k2 + k3

, a2 =
k1k3(k5 + k6)

(k2 + k3)k4k6

, and a3 =
k1k2

(k2 + k3)k6

.

The discriminant can be computed with RootFinding[Parametric], which is a
Maple package. The following code implements this computation for (5.1):

with(RootFinding[Parametric]):

DiscriminantVariety([x1+a1*x1*x2-c1=0, x5+a3*x1*x2-c2=0,

x2*x5+a1*x1*x2*x5+a2*x1*x2+a3*x1*x2*x5-c3*x5=0,

a1>0,a2>0,a3>0,c1>0,c2>0,c3>0,x1>0,x2>0,x5>0],[x1,x2,x5]);

The result of this computation is a list of 9 polynomials in the variables a and c with
degrees between 1 and 12 (cf. Table 5.1). They represent Q-irreducible components
of the discriminant. As it turns out, the previous computation can be done via
Sturm sequences, albeit the resulting discriminant is not minimal. We wrote a
Macaulay2 package which has one main function called SturmDiscriminants [28].
The following Macaulay2 code computes the Sturm discriminant of (5.1):

R = QQ[a1,a2,a3,c1,c2,c3][x1,x2,x5];

SturmDiscriminant ideal(x1+a1*x1*x2-c1, x5+a3*x1*x2-c2,

x2*x5+a1*x1*x2*x5+a2*x1*x2+a3*x1*x2*x5-c3*x5)

The result of this computation is a list of 17 polynomials in the variables a and c
with degrees between 1 and 12. In Table 5.1 we compare the degrees of the Q-
irreducible components of the discriminants computed with Maple and Macaulay2.
In particular, the highest degree of any irreducible component of both the Sturm
and the Maple discriminant is 12.

Degree 1 2 3 4 6 7 8 12 Total degree

Maple discriminant 7 1 0 0 0 0 0 1 21
(∆S)red 7 1 1 2 1 3 1 1 67

Table 5.1: The component-degrees incidence table. The first row represents the
possible degrees of the Q-irreducible components of the discriminants and the
other rows represent the number of components in each degree that the Maple

and the Sturm discriminant have.

Remark 5.17. It is well known that the 1-site phosphorylation is monostationary
for all values of the parameters [26]. We used it nevertheless because it has the
right size to compare the Maple and the Sturm discriminants.
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Appendix 5.1. Discriminants as analytic covers

In [31], the authors propose an efficient algorithm for the computation of discrimi-
nant varieties of basic parametric constructible sets of the form

C = {(t, x) ∈ Cm+n| fi 6= 0, gj = 0, i ∈ [l], j ∈ [s]},

where fi, gj ∈ Q[t, x] and t are interpreted as parameters. If π denotes the
canonical projection onto the parameter space, then the minimal discriminant of
C is defined as the complement in π(C) of the union of all open sets U ⊆ π(C) for
which π : C → U is an analytic cover. In [31, Proposition 6] the authors show
that, whenever the discriminant of C is not equal to π(C), it can be turned into a
real discriminant for the basic parametric semialgebraic set

S = {(t, x) ∈ Rm+n| fi > 0, gj = 0, i ∈ [l], j ∈ [s]}.

The complement of the real discriminant variety consists, in general, of more
than one connected component [31]. For algorithms to compute one point in each
connected component of a semialgebraic set, we refer to [40] and [41].
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[40] Mohab Safey El Din and Éric Schost. Polar varieties and computation of
one point in each connected component of a smooth real algebraic set. In
Proceedings of the 2003 international symposium on Symbolic and algebraic
computation, pages 224–231. ACM, 2003.

[41] Mohab Safey El Din and Éric Schost. Properness defects of projections and
computation of at least one point in each connected component of a real
algebraic set. Discrete & Comp. Geom., 32(3):417–430, 2004.

[42] Stefan Schuster and Claus Hilgetag. On elementary flux modes in biochemical
reaction systems at steady state. Journal of Biological Systems, 2(02):165–182,
1994.

[43] Anne Shiu. Algebraic methods for biochemical reaction network theory. PhD
thesis, University of California, Berkeley, 2010.

[44] Anne Shiu and Timo de Wolff. Nondegenerate multistationarity in small
reaction networks. preprint, arXiv:1802.00306, 2018.

[45] Artur Wachtel, Riccardo Rao, and Massimiliano Esposito. Thermodynam-
ically consistent coarse graining of biocatalysts beyond Michaelis–Menten.
preprint, arXiv:1709.06045, 2017.

[46] Liming Wang and Eduardo Sontag. On the number of steady states in a
multiple futile cycle. Journal of Mathematical Biology, 57:29–52, 2008.

[47] Günter M. Ziegler. Lectures on polytopes, volume 152. Springer Science &
Business Media, 2012.

68



Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe
Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefer-
tigt habe; verwendete fremde und eigene Quellen sind als solche kenntlich gemacht.

Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
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veröffentlicht.

Magdeburg, 30 Januar 2019

Unterschrift:



Declaration of Honor

I hereby declare that I produced this thesis without prohibited assistance and
that all sources of information that were used in producing this thesis, including
my own publications, have been clearly marked and referenced.

In particular I have not wilfully:

• Fabricated data or ignored or removed undesired results.

• Misused statistical methods with the aim of drawing other conclusions than
those warranted by the available data.

• Plagiarised data or publications or presented them in a distorted way.

I know that violations of copyright may lead to injunction and damage claims
from the author or prosecution by the law enforcement authorities.

This work has not previously been submitted as a doctoral thesis in the same or
a similar form in Germany or in any other country. It has not previously been
published as a whole.

Magdeburg, 30 January 2019

Signature:


	Introduction
	Chemical reaction networks
	Dynamical systems defined by mass-action networks
	Steady states
	Conservation relations and total concentrations
	Chamber decomposition of Pc
	Multistationarity
	Internal cycles

	Multistationarity in the space of total concentrations for systems that admit a monomial parameterization
	Introduction
	Monomial parameterization of the positive steady states
	Multistationarity
	Multistationarity in the space of total concentrations
	Toric versus positive toric steady states
	An algorithm for computing the monomial parameterization of a toric variety

	Multistationarity conditions on the total concentrations for sequential and distributive phosphorylations
	Introduction
	Sequential distributive phosphorylation of a protein
	A numerical study of multistationarity in the space of total concentrations
	The chamber decomposition for Nph(n)
	Multistationarity conditions in the space of total concentrations
	Challenging QE problems from mass-action networks

	Dynamical systems with the isolation property
	Introduction
	The isolation property

	Sturm discriminants
	Introduction
	Sturm sequences and discriminants
	Zero dimensional ideals
	The discriminant of the 1-site phosphorylation
	Appendix 5.1. Discriminants as analytic covers

	Bibliography

