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A B S T R A C T

The liver is often the primary target of metastatic colorectal cancer
because of its filter function from the intestinal blood. The interstitial
high-dose rate brachytherapy is a minimally invasive therapy where
the tumors can be treated by internal radiation. This requires a per-
cutaneous placement of one or more flexible plastic catheters, called
applicators, within the tumors. To maximize the treatment outcome,
the optimal applicator configuration is pre-planned on magnetic reso-
nance images and then implemented via a magnetic resonance-guided
intervention. A computer-assisted transfer of the pre-planning infor-
mation onto the interventional images would support the radiologist
during the tumor puncture. However, such a transfer is challenging
because of the short calculation times and high accuracies which are
required for a clinical application.

In this thesis, existing state-of-the-art methods are investigated and
novel strategies developed to provide a solution which is suitable for
the interventions. A two-step approach is presented which comprises
a volume-to-volume as well as volume-to-slice registration of the
interventional images. Considering the volume-to-volume registration,
a novel joint deformable liver registration and bias field correction
approach is presented which is, to the best of my knowledge, the
first working solution for a magnetic resonance-guided, interventional
setting, where patient re-positioning, bias field artifacts, and extensive
noise levels are considered. It is demonstrated on a wide range of real
patient data sets that the proposed approach is robust, accurate, and
fast. With regard to the volume-to-slice registration, an appropriate
strategy is presented that is able to cope with the different breathing
states during the intervention. In this context, a visual feedback system
is proposed, which allows the radiologist to assess the quality of the
transformed pre-planning information during the tumor puncture in
real-time.
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A B S T R A C T

Die Leber ist aufgrund ihrer Filterfunktion oft das primäre Ziel von
metastasierendem Darmkrebs. Die interstitielle Brachytherapie ist
eine minimalinvasive Therapie, bei der die Lebertumore durch Be-
strahlung von innen behandelt werden können. Dies erfordert eine
perkutane Platzierung eines oder mehrerer flexibler Kunststoffka-
theter, genannt Applikatoren, innerhalb des Tumorzentrums. Um das
Behandlungsergebnis zu maximieren, wird die optimale Applika-
torkonfiguration auf Magnetresonanzbildern vorab geplant und durch
eine magnetresonanzgeführte Intervention umgesetzt. Eine comput-
ergestützte Übertragung der Vorplanungsinformationen auf die in-
terventionellen Bilder würde den Radiologen bei der Tumorpunktion
wesentlich unterstützen. Für die Übertragung der Informationen aus
den Vorplanungsdaten in die Intervention sind schnelle und präzise
3D-3D sowie 3D-2D Registrierungsalgorithmen erforderlich.

Um diese Herausforderungen bewältigen zu können, werden in
dieser Dissertation Methoden aus dem aktuellen Stand der Forschung
untersucht und mit neu entwickelten Strategien kombiniert. Bezüglich
der 3D-3D Registrierung wird eine Lösungsstrategie vorgestellt, die
eine elastische Leberregistrierung umfasst, bei der eine Umlagerung
des Patienten vor der Intervention, Bias-Feld-Artefakte und die niedrige
Bildqualität der interventionellen Bilder berücksichtigt werden. An-
hand einer Vielzahl von realen Patientendatensätzen wird demonstri-
ert, dass der vorgeschlagene Ansatz ausreichend präzise und schnell
für eine klinische Anwendbarkeit ist. Im Hinblick auf die 3D-2D Reg-
istrierung wird in dieser Dissertation eine geeignete Strategie präsen-
tiert, die in der Lage ist, die verschiedenen Atemzustände während
des Eingriffs zu berücksichtigen. In diesem Zusammenhang wurde
ein prototypisches System entwickelt, welches es dem Radiologen
während der Tumorpunktion ermöglicht, die transformierten Vor-
planungsinformationen in Echtzeit anzeigen zu lassen. Dabei wird
dem Radiologen bei jedem interventionellen Bild die Genauigkeit der
Registrierung als farbkodiertes Feedback visualisiert.
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1
I N T R O D U C T I O N

1.1 motivation

The liver is the largest abdominal organ in the human body. It has four
lobes and fills the upper right quadrant of the abdomen. The function
of the liver is, among other things, to filter harmful substances from
the blood so they can be released by the body, to produce bile in order
to better digest fat, and to store glycogen used by the human body to
produce energy. However, the liver can be affected by primary liver
cancer, which arises in the liver, or by liver metastases.

Recently, Ferlay et al. (2018) presented estimated numbers of new
cancer cases and deaths in Europe based on national incidence and
mortality rates. Their estimates showed 82.500 new cases and 77.400
deaths caused by primary liver cancer in 2018. The vast majority (75 –
90 %) of primary liver cancers are hepatocellular carcinomas (HCCs),
accounting for most of the other cancer subtypes (Center and Jemal,
2011).

Colorectal cancer (CRC) is the second most common tumor disease
in Europe with 500.000 new cases and 243.000 deaths in 2018 (Ferlay
et al., 2018) and about 15 - 25 % of the patients suffering from CRC
already have liver metastases at the time of diagnosis and about 20
- 40 % of the patients develop these throughout the course of the
disease (Garden et al., 2006; Manfredi et al., 2006). Because of its filter
function from the intestinal blood, the liver is often the primary site
of metastatic CRC spreading. Such liver metastases are much more
common than primary liver cancer and occur when cancer cells spread
from either the rectum or colon. Compared to 2012, the incidence of
CRC has already increased by about 12 % and the death rate by about
13 % and there is a clear trend towards an increased CRC incidence
for the coming years (Ferlay et al., 2013).

Complete surgical (R0) resection remains the accepted gold stan-
dard in the treatment of liver metastases of the CRC (Adams et al.,
2013; Van Cutsem et al., 2016). It yields a survival of more than five
years for over 50 % of the patients treated (de Jong et al., 2009; Hallet
et al., 2016). Primary resection with curative intention depends on
surgical-technical and prognostic-oncological factors and is possible
in only about 20 % of affected patients (Adam et al., 2004). Volume
reduction of liver metastases by neoadjuvant chemotherapy may allow
secondary resection with curative intent and significantly prolongs
overall survival (Adam et al., 2004). The challenge to achieve adequate
volume reduction is based on the genetic and biomolecular hetero-
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2 introduction

geneity of the CRC. The risk of incomplete resection (R1 situation)
varies considerably depending on the number and size of metastases,
uni- or bilobar spread, primary or secondary resection, as well as on
the surgical approach. The survival time is significantly reduced in an
R1 situation.

Multimodal therapy concepts in an interdisciplinary setting have
meanwhile become a standard for hepatic metastatic CRC (Van Cut-
sem et al., 2016). Minimally invasive radiological procedures com-
plement surgical or systemic procedures or, in the case of selected
patients with a low tumor burden, also extend the therapeutic spec-
trum of non-R0 resectable liver metastases as stand-alone therapy.
Interventional radiological procedures are appealing because of their
potential for precise tumor cell destruction with the greatest possible
protection of the functional liver tissue. The low invasive character
and the avoidance of systemic side effects increase patient tolerance
and the safety profile. Local anesthesia or analgosedation are usually
sufficient to perform an intervention, so patients whose comorbidities
would prevent general anesthesia can also be treated.

Common minimally invasive therapies are radiofrequency abla-
tion (RFA), high-dose rate brachytherapy (HDR BT), microwave ab-
lation, chemoembolization, high-intensity focused ultrasound, and
angiography based procedures, such as selective internal radiother-
apy (SIRT), or external beam radiation therapy. However, the most
widespread procedures are SIRT, RFA, and HDR BT.

Endovascular therapy concepts, such as SIRT, are based on the fact
that normal liver tissue is predominantly supplied via branches of the
portal vein, while liver metastases of the CRC are mainly supplied
by the arteries (Van den Eynden et al., 2013). This differential blood
supply offers the possibility of treating liver metastases selectively via
arterial vascular access and of largely omitting healthy liver tissue.
Conceptually, SIRT with Yttrium-90 microspheres is a hybrid proce-
dure of particle embolization and high-dose local radiotherapy in
which an activity of 1− 3 gigabecquerel (GBq) is applied depending
on the tumor load, the calculated liver volume, and the body surface
(Salem and Thurston, 2006).

Currently, RFA is still the most common interstitial thermal ablation
method. The functionality of RFA is based on inducted ion movements
within tumor tissue by the application of a high-frequency alternating
current of usually 375 - 480 kHz. Heating of the target tissue to cyto-
toxic temperatures of 60°- 100° C is followed by protein denaturation
with consecutive coagulative necrosis. The extent of tissue heating and
heat propagation depends on the specific tissue resistance, current
density and exposure time. Furthermore, the blood flow is decisive
for the heat convection. For complete (R0-) ablation, sufficient and
uniform heating of the target lesion must be ensured. Despite the pos-
sibility of achieving larger ablation zones through the use of cluster
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probes, a size limitation of the R0 ablatable metastases of less than
3 cm diameter is therefore generally accepted (Ayav et al., 2010). How-
ever, for colorectal liver metastases with a diameter smaller than 3 cm,
RFA can in principle achieve a comparable local control as surgical
resection (Lee et al., 2016).

Figure 1.1: Illustration of contrast-enhanced diagnostic images which show
colorectal liver metastasis of different sizes.

As part of the HDR BT and in analogy to RFA, one or more flexible,
biocompatible plastic catheters are placed through the skin (percuta-
neously) in the tumor tissue, guided by cross-sectional imaging. For
the actual irradiation, a 3.5 × 0.7 mm Iridium-192 radiation source
is inserted into the cavity of the applicators inside the tumor by re-
mote control in the afterloading procedure. The Iridium-192 radiation
source emits β- and γ- radiation with an average activity of 3.7 ×
109 Bq and a half-life of 74 days. It typically achieves a dose rate of
greater than 12 Gy/h and thus enables an effective irradiation of the
tumor tissue within a few minutes. The duration of the complete
irradiation depends on the number and size of the lesions treated, but
is usually about 1 hour. After the radiation has been completed, the
applicators are removed again and the puncture channels are closed
with a tissue adhesive. The steep dose gradient of the Iridium-192
radiation source and precise dosimetry based on 3D planning data
sets are prerequisites for the precise application of cytotoxic doses in
tumor tissue while simultaneously protecting the adjacent liver tissue.
The destruction of larger lesions (>3 cm diameter), as illustrated in Fig-
ure 1.1, and the use in the surroundings of thermosensitive structures,
such as the hepatic porta and bile ducts, are mostly unproblematic
(Collettini et al., 2012; Ricke et al., 2004).

In contrast to RFA, the effectiveness of HDR BT is not influenced
by perfusion-related cooling effects. The extraordinary regenerative
ability of the liver tissue enables the repetitive application of HDR BT
in disseminated tumors or interval metastases (Rühl et al., 2010). The
efficiency and safety of HDR BT has been demonstrated for primary
and secondary liver tumors (Fischbach et al., 2011; Mohnike et al., 2010;
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Ricke et al., 2010). Major complications, such as bleeding, bile duct
occlusions, or intrahepatic abscesses, are rare after HDR BT and occur
in less than 2 % of cases (Mohnike et al., 2016). However, the realization
of HDR BT requires an intensive cooperation between interventional
radiologists and radiation therapists, which could be a reason for
the concentration of this method on few specialized centers. Further
typical medical applications of HDR BT are treatment of prostate
(Gomez-Iturriaga et al., 2016; Prada et al., 2016), breast (Polgár et al.,
2004) or lung tumors (Peters et al., 2008).

The aforementioned safety and effectiveness of the percutaneous
interstitial interventions results from the precise positioning of the
instruments in the target area. Therefore, high performance and high
quality image guidance plays a decisive role. At present, the most
frequently used imaging modalities for intervention control are sonog-
raphy and computed tomography (CT). Although magnetic resonance
imaging (MRI) is predestined for the control of percutaneous interven-
tions due to its intrinsically high soft tissue contrast, the possibility
of image acquisition in multiplanar layer orientation, and the lack
of ionizing radiation, it has not yet clinically established itself as the
most widely used modality for controlling such interventions. This is
due to the fact that for a long time MRI-based interventional planning
was technically much more complex than with other modalities and
conventional closed MR scanners only allowed very limited access to
the patient. Further developments of the MR scanners, which enable
better access to the patient and the acquisition of single layer or vol-
ume images in the range of seconds, and the increasing availability of
MR-compatible instruments, will contribute to the establishment of in-
terventional MRI in the coming years. In principle, two different types
of MR scanners are currently available for carrying out MR-guided
interventions: MR scanners with an open design by two horizontal or
separate magnetic coils - "sandwich" or "double doughnut" design -
and MR scanners with conventional tunnel construction. In this thesis,
the focus will be on MRI-based treatments of liver tumors carried
out with MR scanners with "sandwich" design (see Figure 1.2(a)) as
performed at the Department of Radiology and Nuclear Medicine of
the University Hospital Magdeburg.

The ability to quickly acquire multiplanar, interventional sequences
with frame rates of 1/s increases the safety and effectiveness of the
HDR BT, especially in anatomically challenging regions such as the
hepatic hilum or in lesions prone to respiratory movements, e.g. in
the very deformable left liver lobe. The intravenous application of
Gadolinium (Gd)-containing, liver-specific contrast agents such as
Gd-EOB-DTPA (Primovist®, Bayer HealthCare) simplifies the exact po-
sitioning of the applicators even in small hepatic tumors (Fischbach et
al., 2011). Gd-EOB-DTPA is an liver-specific contrast agent for hepatic
MRI, yielding strong signal enhancement in normal liver parenchyma
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(a) (b)

(c) (d)

Figure 1.2: Pictures of a MRI-based treatment as performed at the Depart-
ment of Radiology and Nuclear Medicine of the University Hospi-
tal Magdeburg. (a) Philips 1.0 T Panorama HFO open MR scanner
with two horizontal magnet pole shoes. (b) The current orthog-
onal interventional image slices are shown at the monitor next
to the patient. (c) The tumor puncture is performed by the radi-
ologist, who has to lean into the scanner. (d) The desired slice
orientation is set with the help of Philips interventional MRI suite
by a MRI technician in the control room, who communicates by
radio with the radiologist.

and absence of signal for focal liver lesions not composed of hepa-
tocytes in delayed T1-weighted MR images. Hence, the detection of
liver metastases and other secondary malignant tumors is increased
(see Figure 1.1). The maximum tissue-metastasis contrast is shown in
the hepatobiliary phase 10 - 25 min after application of Gd-EOB-DTPA
(Thian et al., 2013). High-resolution, T1-weighted 3D gradient echo
(T1w-3D-GRE) sequences in combination with liver-specific contrast
agents have become an integral part of oncological image studies for
the detection, characterization, and surgical planning of colorectal
liver metastases (Choi et al., 2010). Signal enhancement of liver tissue
by Gd-EOB-DTPA lasts for several hours (Frydrychowicz et al., 2012),
ensuring consistently high image quality even during time-consuming
interventions. With regard to the definition and contouring of the
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target lesions during radiation planning, MRI offers clear advantages
over CT due to its high soft tissue contrast (Pech et al., 2008; Romero
et al., 2012). The reconstruction of the applicators in the MRI radiation
planning sequences can be performed with comparable accuracy as in
CT data sets (Wybranski et al., 2015).

Figure 1.3: Example of different MRI data sets used for HDR brachytherapy
of the liver: (a) 3D pre-planning eTHRIVE image acquired in
supine position; (b) 3D interventional THRIVE planning image; (c)
3D interventional T1-TFE planning image; (d) 2D interventional
T1-FFE slice; (e) 3D multiplanar reconstructed slice of the 3D
interventional planning image in (c) at the same location as the
2D interventional T1-FFE slice in (d); (f) 3D post-planning T1-TFE.

In the next sections, the current clinical workflow will be dis-
cussed in detail to identify improvement potentials by using computer-
assisted methods. In addition, remaining issues and open research
questions will be deduced.

1.2 clinical workflow analysis

In principle, the clinical workflow of HDR BT treatments can be di-
vided into three phases:

1. Pre-planning: During the diagnostic pre-planning stage, a T1-
weighted, 3D spoiled turbo gradient echo sequence is acquired a
few days before treatment, i. e., a contrast (Gd-EOB-DTPA) enhanced
T1-weighted high resolution isotropic volume excitation (eTHRIVE)
with spectrally adiabatic inversion recovery fat suppression and sensi-
tivity encoding acceleration from a Philips Intera 1.5 T machine. The
pre-planning image is usually acquired with the patient in supine
position (see Figure 1.3(a)). It is used to assess the extent of metastatic
spread to the liver (Elhawary et al., 2010), to extract information such
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Figure 1.4: Applicator placement is guided by ongoing image acquistion of
mutually orthogonal slices. A view of the interventional software
called iSuite (Philips Research) is shown, which allows for a quick
adjustment of slice orientations according to the trajectory of the
puncture needle.

as tumor location and size, and to derive the treatment plan, i. e. the
optimal number and trajectory of the applicators.

2. MRI-guided intervention: During the interventional stage, the nee-
dle insertion or applicator placement is guided by interventional MRI
using a Philips 1.0 T Panorama HFO open MR scanner. Some steps
of this stage are shown in Figure 1.2. At first, several T1-weighted
3D gradient-echo pulse sequences, called interventional planning
data sets, are acquired. These are either T1-weighted high resolu-
tion isotropic volume excitation (THRIVE) sequences, or T1-weighted
turbo field echo (T1-TFE) sequences before and in between applica-
tor placement, as well as after implantation of the last applicator
for the final radiation treatment planning (see Figure 1.3(b) and Fig-
ure 1.3(c)). During tumor puncture, according to treatment plan, each
time (1/s) a 2D interventional image slice, i. e., a T1-weighted fast field
echo (T1-FFE) sequence is acquired in mutually orthogonal, arbitrary
slice layers (see Figure 1.3(d)). The desired slice orientation is set with
the help of Philips interventional iSuite platform (see Figure 1.4) by a
MRI technician in the control room (see Figure 1.2(d)). During such in-
terventions, the patient may be placed in decubital position to achieve
better access to the tumor or ease the handling of the puncture needles
and applicators within the bore of the MRI machine.

3. Radiation planning and afterloading: After applicator placement,
a 3D post-planning image (either THRIVE or T1-TFE) is used for
the radiation planning, which is performed in the Department of
Radiotherapy (see Figure 1.3(f)). Brachytherapy radiation planning
is implemented within the commercial Oncentra Brachy Treatment
Planning System (Version 4.1, Elekta) and includes a contouring of the
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planning target volume and organs at risk, a manual reconstruction
of the implanted applicators, as well as a graphical or sometimes
manual calculation and optimization of the dose distribution. Its main
purpose is to cover the minimum required dose values within the
target volume and to not exceed maximum dose values in organs at
risk. Finally, the optimal treatment plan is validated by analyzing dose-
volume histograms and then transferred to the treatment machine,
which performs a computer-controlled insertion of an Iridium-192
source by means of an remote-afterloading machine (microSelectron®

Digital HDR-V3, Elekta) via several applicators (see Figure 1.5).

(a) (b)

(c) (d) (e)

Figure 1.5: Sequential steps of the HDR BT post-planning: (a) Manual ap-
plicator reconstruction, (b) 2D isocontour view during graphical
dose optimization, (c) 3D isosurface view during graphical dose
optimization, and (d) insertion of the radiation source through the
implanted applicators. Subfigure (e) shows a remote-afterloading
machine.

1.2.1 Limitations: Liver Intervention

The current workflow has some limitations, which could be strongly
improved by means of computer-assistance. A main issue so far is
the lack of a computer-assisted pre-planning, which could include
among others: a prior placement of virtual applicators, an (semi-)
automatic segmentation of target volumes and organs at risk as well
as a subsequent hybrid inverse planning optimization (Karabis et al.,
2005) on diagnostic images to maximize radiation exposure of the
target volumes while minimizing exposure of organs at risk and the
healthy liver parenchyma. Pre-planning would greatly reduce the
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time exposure to achieve a optimal dose distribution during the dose
planning stage (after the intervention). However, it is currently not
possible to provide (or transfer) pre-planning information into the
interventions.

Due to the poor visibility of the tumor during the puncture, the
interventional radiologist has to mentally map the location of the
tumor from the 3D diagnostic pre-planning eTHRIVE images to the
3D interventional THRIVE or T1-TFE planning images. This procedure
is inconvenient, potentially inaccurate, and time-consuming, because
the human ability to mentally map a 3D object into a 3D space is
limited (Kim et al., 2011). Moreover, after initial body puncture, 2D
interventional T1-FFE images are acquired with a limited time interval
of 1/s, to verify the needle position that is advanced to the tumor step
by step.

In summary, a computer-assisted transfer of pre-planning informa-
tion (virtual applicators, target volume contour, organ at risk contours)
from 3D pre-planning images onto the 3D interventional planning
images (see Figure 1.6), and in a next step onto the 2D interventional
slices, would greatly support the interventional radiologist during
tumor puncture by reducing the cognitive demands arising from the
mental mapping of the pre-planning information. It would also in-
crease the precision of the tumor puncture. First of all, such a transfer
would require an accurate volume-to-volume (V2V) registration and
secondly, an fast and sufficiently accurate volume-to-slice (V2S) regis-
tration. The challenges that arise from spatially aligning (registering)
the given 3D diagnostic pre-planning and 3D interventional planning
images are as follows:

1. Deformations: Often, rigid liver deformations occur because
of the different patient positioning between both scans (see
Figure 1.6). Due to the patient’s respiration and repositioning,
non-rigid deformations can also occur in parts of the liver and
in the surrounding tissue (e.g. air in the intestines, or differ-
ent gallbladder filling). The degree of the rigid and non-rigid
deformations also varies from patient to patient because the
planned applicator configuration, the resulting patient-specific
applicator trajectories, patient positioning, and the respiration
are individual for each patient.

Suramo et al. (1984) found out that the range of liver movement
in the cranio-caudal direction is about 5.5 cm during maximum,
2.5 cm during normal, and 0.9 cm during suspended respiration.
During brachytherapy treatments, the liver movement approx-
imately ranges between 1.0 cm during suspended and 2.5 cm
during normal respiration. However, it is unknown, how much
motion occurs in the bulk of the liver with shallow breathing
(Suramo et al., 1984). Hence, a main challenge will be to find a
transformation, which can model such non-rigid respiration de-



10 introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.6: Illustration of a typical V2V registration task. The patient is po-
sitioned differently during pre-planning and subsequent inter-
vention. A pre planning eTHRIVE image (a) needs to be rigidly
aligned (b) with the interventional THRIVE image (c). Non-rigid
deformations between both images need to be corrected by a
deformable registration, since rigidly transformed liver segmen-
tations only roughly match (d) and liver surfaces reveal large
discrepancies of the left liver lobe between pre-planning (e) and
interventional image (f).

formations. In the context of liver deformations, the terms rigid
and non-rigid are often used. Regarding the type of registration
transformation, there exist several terms in the literature having
the same meaning: non-rigid, elastic, and deformable. In this thesis,
the term deformable registration will be used to compensate for
non-rigid liver deformations.

2. Image quality: In contrast to the pre-planning eTHRIVE data,
the image quality of THRIVE and T1-TFE interventional plan-
ning images is restricted by the open MRI scanner, i. e. by the
low magnetic field strength, and by the limited acquisition time.
This results in strong noise, low contrast, a limited field of view,
and intensity inhomogeneities, also called partial bias field arti-
facts in the context of MRI. In the post-planning images, artifacts
from already implanted applicators are also present. Exemplary
images, which show some of the mentioned aspects, are shown
in Figure 1.7.

3. Validation: A correct selection of suitable reference structures is
essential for a meaningful validation of the accuracy of a registra-
tion method. A major issue with real clinical data sets in medical
image analysis is the precise identification of corresponding ref-
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(a) (b) (c)

(d) (e) (f)

Figure 1.7: Challenging examples of 3D interventional THRIVE (a-c) and
T1-TFE (d-f) planning images. Both types of images show a partly
strong noise in some regions, intensity inhomogeneities, and in
general a lower resolution than pre-planning images. Anatomical
planes from left to right are as follows: axial, sagittal, coronal.

erence structures in both data sets. Often, a medical field expert
is needed to perform this task. However, contouring of the liver
and tumors as well as setting anatomical landmarks is always a
time-consuming and error-prone task for 3D data sets.

If the listed challenges above would be addressed successfully, an
adequate transfer of the already transformed 3D pre-planning infor-
mation onto 2D interventional image slices could be considered in
a next step. This would further support the accuracy of the tumor
puncture during MRI-guidance, e. g., by overlaying virtually placed
applicators or displaying planned applicator trajectories, and contours
of the target volumes and organs at risk.

The challenges of spatially aligning 3D interventional planning
images and 2D interventional slices are as follows (see Figure 1.3 and
Figure 1.4):

1. Spatial and temporal resolution: In contrast to the 3D inter-
ventional THRIVE or T1-TFE planning images, interventional
T1-FFE images are only two-dimensional. This is caused by
the fact that a continuous, fast image acquisition is required
to perform a sufficiently precise tumor puncture. However, the
temporal resolution is only 1/s and not sufficient to create an
accurate respiratory model of the liver. Both limitations create
high degrees of freedom for a V2S registration task.
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2. Deformations: Both images – 3D interventional THRIVE or
T1-TFE planning images and 2D interventional T1-FFE image
slices – are acquired within the same open MRI scanner and
the patient is usually not repositioned. This means that both
scans also hold same scanner coordinates and that rigid liver
deformations are minimal. However, much of the deformation
of the liver in the interventional T1-FFE images occurs due to
continuous respiration and results in tumor displacements and
motion artifacts during the needle insertion. To compensate for
respiration, information about the strength and intervals would
be needed, e.g. by means of a breathing belt or a previous acqui-
sition of various 3D interventional planning images at different
respiratory moments. Such information would allow the creation
of a 4D respiratory model of the liver. Unfortunately, this infor-
mation is not recorded within the current clinical workflow and
cannot be used for the present registration task.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1.8: Illustration of 2D interventional T1-FFE images. Sub-figures (a-d)
show liver deformations at different respiration moments. Sub-
figures (e-h) show challenging examples including (e) tissue inho-
mogeneities, (f) strong bias field, (g) small deformations due to
finger (and needle) puncture, and (h) artifacts caused by already
implanted applicators.

3. Image quality: Challenges arise due to the poor image quality,
which is limited by the open MRI scanner and by the required
fast image acquisition. Among other things, this includes a small
field of view (FOV), low contrast (compared to pre-planning
images), partial bias field artifacts, and artifacts caused by al-
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ready implanted applicators and inserted needles. Some of the
challenges mentioned are exemplarily illustrated in Figure 1.8.

4. Validation: As with the V2V registration, reference structures are
also required for the V2S registration. To identify such structures
in the 2D interventional T1-FFE images is even more challenging,
because of the two-dimensionality and low contrast. Moreover it
is not possible to find structures in every single slice as the time
required for this would be enormous. The main challenge at this
point is the selection of a suitable number of criteria in order to
measure the accuracy of the V2S registration sufficiently.

If the challenges just mentioned would be addressed successfully,
an overlay of pre-planning information onto 2D interventional image
slices could be easily performed. This would greatly support the
accuracy of the tumor puncture during MRI-guidance and allows for
transferring pre-planning information to post-planning images as well.
Such information could be directly used for the radiation treatment
planning by the radiation therapist.

1.2.2 Limitations: Radiation Treatment Planning

The objectives of brachytherapy treatment planning are first of all
to protect the surrounding normal tissue and organs at risk from
excessive radiation and to deliver a sufficiently high dose in the tumor
tissue. During treatment planning, the challenges for the radiation
therapist are: to determine the number and location of implanted
applicators and source dwell points within the 3D post-planning
image as well as to find the optimal dwell times for each source dwell
point, so that the final dose distribution is as close as possible to the
desired dose distribution (see Figure 1.9).

(a) (b)

Figure 1.9: Illustration of an (a) optimal applicator placement including iso-
contours of the dose distribution and (b) of the corresponding
dwell time configuration for a given target volume. The radiation
therapist often has to manually optimize the dwell times (b) to
achieve an optimal and sufficient dose distribution (a).
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Moreover, a manual reconstruction of the implanted applicators and
a new contouring of the target volumes and organs at risk, which are
needed for the optimization task, are very time-intensive. It can be
seen in Figure 1.10 and Figure 1.3(d), that implanted applicators cause
broad, dark signal voids within the image. The width of the artifact is
heavily dependent on the direction of the needle or applicator relative
to the static magnetic field. Here, a fast (semi-)automatic applicator
reconstruction could further support the radiation therapist.

Figure 1.10: Exemplary axial slices of the 3D post-planning THRIVE (left) or
T1-TFE (right) images including implanted applicators. Appli-
cators are displayed as susceptibility artifacts, which result in
quasi linear signal voids. They must be manually reconstructed
by a radiation therapist, which can be very time-consuming
depending on the number and position of the applicators.

A main issue during the current clinical workflow is the fact that the
number, location, and orientation of applicators is already fixed during
the post-planning, which complicates a quick automatic optimization
of the treatment plan. As a result, a time-consuming manual (by
direct dwell point time manipulation) or graphical (by isocontour
manipulation) dose optimization must be performed, which often
includes a lot of trial and error. An early determination of an optimal
number of applicators, e. g. already during the pre-planning phase,
could strongly improve the optimization time and accuracy of the
treatment plan, as a reduction of the number of applicators as well as
more suitable locations of the applicators would simplify the treatment
plan in terms of time and complexity. As a result, the whole HDR BT
would be even less invasive for the patient and would reduce the
possibility of treatment errors.

Summarizing the last section shows that there is a lot of potential
to improve the current HDR BT workflow by means of computer-
assistance. Since this thesis cannot address all of these issues, I will
focus mainly on the registration parts. Before I define the aims and
objectives of this thesis, the related work and state-of-the-art will be
described in detail.
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In general, there exists no uniform or common classification or group-
ing of image registration procedures. The present thesis is mainly
oriented to the surveys of Holden (2008) and Sotiras et al. (2013).
According to their work, registration deformations can in principle
be divided into physics-based, interpolation-based, and knowledge-
based geometric transformations whereby some deformation models
can also be assigned to more than one group.

In accordance with the work of Modersitzki (2004), deformations
derived from physical models can be further subdivided into elastic
body models (Bajcsy and Kovačič, 1989; Broit, 1981), viscous fluid
models (Bro-Nielsen and Gramkow, 1996; Christensen et al., 1994), dif-
fusion models (Thirion, 1996, 1998), also called demons-based models,
curvature-based models (Fischer and Modersitzki, 2003), and flows of
diffeomorphisms (Dupuis et al., 1998; Trouvé, 1998), also called large
deformation diffeomorphic metric mappings (LDDMMs).

Interpolation-based deformations are based on the fact that trans-
formations smoothly approximate the known displacements rather
than taking the exact same values and thus having low degrees of
freedom. The most common types of interpolation-based deformations
are thin plate splines (TPSs) (Bookstein, 1989) based on radial basis
functions (RBFs) (Zagorchev and Goshtasby, 2006), elastic body splines
(Davis et al., 1997), and free-form deformations (FFDs) (Rueckert et al.,
1999). In the medical image analysis community, the term deformable
B-spline registration gained a wide acceptance and is often associated
with FFDs, where interpolation is performed by cubic B-splines over a
regular image grid.

Knowledge-based geometric deformations can be further classi-
fied into statistically-constrained geometric transformations, where a
high dimensional statistical deformation model (SDM) is learned and
biophysically-inspired deformations, which are using knowledge of
the deformability of target tissues to construct biophysical deforma-
tions. The former often use a principal components analysis (PCA) to
model the deformation (Wouters et al., 2006). The latter differ from
the physics-based models mainly in that they are closely related to
anatomy and physiology. Often, finite element methods (FEMs) are
used in this context to model such properties (Azar et al., 2001).

Regarding the matching criteria, also called similarity metrics or
similarity measures, there exist a couple of different classes depen-
dent on the image features used for the specific registration task.
Geometry-based methods are looking for the best possible transforma-

15



16 state-of-the-art

tion between corresponding feature points derived from the images.
Hence, these techniques always require additional preprocessing of
the images in order to enable the creation of surface points, edge
points, or landmarks from the target organ. On the other hand, voxel-
based or intensity-based methods, also called iconic methods, quantify
the alignment of the images by evaluating a similarity criterion over
the whole image domain. The best known similarity measures are
mean absolute difference (MAD), sum of squared differences (SSD),
normalized cross-correlation (NCC) (Brown, 1992), mutual informa-
tion (MI) (Collignon et al., 1995; Viola and Wells, 1997), normalized
mutual information (NMI) (Studholme et al., 1999), Mattes mutual
information (MMI) (Mattes et al., 2001), or gradient image-derived
measures such as normalized gradient fields (NGFs) (Haber and Mod-
ersitzki, 2006).

Optimization methods can be divided into two categories based
on the type of variables they attempt to derive: continuous and dis-
crete. The former class of methods solves optimization problems
where the variables assume real values. In this context, optimiza-
tion is often performed by (stochastic) gradient descent, conjugate
gradient methods, Quasi-Newton methods like limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (LBFGS), Gauss-Newton method,
Levenberg-Marquardt algorithm, or Powell’s conjugate directions
method. The latter class solves the problem that the variables take
values from a discrete set, which is often represented by a Markov
random field (MRF) (Tang and Chung, 2007). For a more detailed
overview of common registration deformations, similarity measures,
and optimizers please refer to the survey of Sotiras et al. (2013).

In the domain of MRI-based liver registration, previous works often
use a combination of rigid and deformable registration. Rigid reg-
istration is applicable if the difference between both images can be
expressed by translation and rotation. If local tissue movement is not
negligible, e.g., due to deformations caused by respiratory motion, dif-
ferent patient positioning, or liver mass changes over time, deformable
registration is needed.

First approaches were based on a simple manual alignment (Wilson
et al., 1998), which can however be cumbersome in 3D data sets.
Later, Carrillo et al. (2000) and Lee et al. (2005) used to formulate
rigid registration into an optimization problem that can be solved by
gradient descent.

To express the tissue deformation of the liver, related publications
most often used FFDs based on cubic B-splines (Elhawary et al., 2010;
Fernandez-de-Manuel et al., 2014; Lange et al., 2005; Rohlfing et al.,
2004; Tang and Wang, 2010; Tokuda et al., 2015), linear elastic FEMs
(Archip et al., 2007; Brock et al., 2006), geometric surface deformations
(Kadoury et al., 2012; Kaus et al., 2007; Liu et al., 2013), TPSs (Böttger
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et al., 2003; Foruzan and Motlagh, 2015), and MRFs (Mahapatra and
Sun, 2012). To judge the quality of the deformation, image similarity
measures such as MI (Elhawary et al., 2010; Lange et al., 2005), its
normalized variants (Archip et al., 2007; Brock et al., 2006; Rohlfing
et al., 2004; Tokuda et al., 2015) and gradient image-derived measures
(Liu et al., 2013; Mahapatra and Sun, 2012) were mainly used.

Since there exist only a few studies that register between pre-
planning MRI and interventional MRI liver data, papers that register
from pre-planning MRI to interventional CT or ultrasound (US) data
or vice versa are also included in the analysis. As a complement,
promising selected deformable registration approaches from other
medical application fields will be explained, which could be applied
(with some adaptation) to liver registration in MRI. In the following
sections, a more detailed description and comparison of related works
is provided. An overview and a classification of the papers described
can be found in Table 2.1 with the focus on pre-planning data of the
liver and in Table 2.2 with the focus on interventional liver data.

2.1 related work : liver registration of pre-planning

data

As presented by Carrillo et al. (2000), image-based registration is
superior in quality compared to manual registration for registering
different MRI-sequences (T1, T2, T1-weighted Gd-DTPA enhanced;
resolution: about 1.5 × 1.5 × 5 - 10 mm) during MRI-guided RFA of
liver cancer at different time points (pre-planning, interventional, and
several follow-up images), but it is also prone to failure if the initial
translation and rotation is not close enough to the anticipated trans-
form. In their cases, MI gave better results than entropy, correlation,
and variance of gray-scale ratio. A final registration accuracy of about
3 mm between anatomical landmarks was achieved with both, manual
and MI-based methods for cases where the registration did not fail.
MRI images were acquired using a clinical 0.2-T C-arm machine.

Later, multi-resolution approaches were introduced, which are less
prone to get stuck in the wrong local optima. In Lee et al. (2005), a
multi-resolution, voxel-similarity-based registration algorithm (from
the open-source Insight Segmentation and Registration Toolkit (ITK))
was selected as a baseline registration method. Evaluation was per-
formed on multiple T2-weighted, and pre- and post-contrast T1-
weighted images of the abdomen. Their results showed a target reg-
istration error (TRE) of 8.2 mm for MRI-MRI registration and 14.0 -
18.9 mm for MRI-CT registration between automatically selected land-
marks. They justify their high error rates with the very high slice
thickness of 5 - 10 mm of their MRI images.

Rohlfing et al. (2004) presented a technique for modeling liver
motion during the respiratory cycle using intensity-based nonrigid
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Table 2.1: Overview of related works in the domain of pre-planning MRI liver registration. For each reference, the table compares
(from left to right) the kind of image modality (CT, MRI), transformation type Ttype (rig.: rigid, deform.: deformable),
transformation model Tmodel (FFGD, TPSs, FEMs,FFSD), registration metric (MI, NMI, SSD, NCC, PD) as well as the
computation times tc(s), number of data sets, validation criteria (LMs: anatomical landmarks, SPs: surface points, EPs: edge
points), and TREs(mm). The symbol ’-’ indicates that no information has been provided by the reference.

Reference Modality Ttype Tmodel Metric tc [s] # Data Val. Crit. TRE [mm]

Carrillo et al. (2000) MRI-MRI rig. − MI, NCC − 17 LMs ∼ 3.0

Rohlfing et al. (2004) MRI-MRI deform. FFGD NMI − 4 SPs , LMs 2.5 to 5.1

Lee et al. (2005) MRI-CT rig. − MI, PD − − LMs ∼ 8.2

Lange et al. (2005) CT-MRI deform. FFGD NMI − 5 | 5 LMs 2.3 to 2.6

Brock et al. (2006) CT-MRI deform. FEM − 8 5 LMs 4.2± 1.4
Voroney et al. (2006) CT-MRI deform. FEM − − 17 LMs 4.2± 1.7
Kaus et al. (2007) CT-MRI deform. FFsD − 10 5 SPs , LMs 0.6± 4.3

Fernandez-de-Manuel et al. (2014) CT-MRI deform. FFGD OF-MI − 7
SPs 3.2± 0.2
LMs 7.1± 1.9
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registration of gated MRI images. Global motion was modeled by a
rigid transformation. Local motion was modeled by a FFD based on
B-splines. Their approach was tested on MRI images (1.5-T; resolu-
tion: about 1.5×1.5×5 mm) of four healthy patients and achieved a
TRE of about 3 mm, which was evaluated using different anatomical
landmarks as well as surface points from isocontours.

Another application of deformable image registration of the liver
in MRI was presented by Lange et al. (2005). Non-rigid deformations
were modeled by multilevel cubic B-splines to register pre-planning
CT and MRI data (resolution: 0.6×0.6×2.5 mm) for computer-assisted
preoperative planning of surgical procedures. Evaluation was per-
formed on MRI images of five patients using a closest point distance
measure between vessel centerlines, resulting in final TREs of 2.3 -
2.6 mm.

Brock et al. (2006) proposed a multiorgan deformable image registra-
tion technique based on FEMs. It was demonstrated on pre-planning
CT and MRI images (resolution about: 0.14×0.14×0.8 mm) of five liver
cancer patients and they achieved an average TRE of 4.2 ± 1.4 mm be-
tween CT and MRI, based on four to five vessel bifurcations identified
by an experienced radiation oncologist. The average time required
to perform the complete multiorgan deformable image registration
process was about 50 min, but single-organ deformable registration
can be completed in about 2 min.

Voroney et al. (2006) applied the proposed method of Brock et al.
(2006) to diagnostic pre-planning CT and MRI (contrast-enhanced T1-
weighted, dual-echo, and T1-weighted) images of 17 patients. Accuracy
measurement was performed using five pairs of anatomical landmarks
in both images. Finally, they achieved a TRE of 4.2 ± 1.7 mm, which
is similar to the results of Brock et al., 2006 and less than the slice
thickness of their MRI data (6 - 8 mm).

Kaus et al. (2007) deformably registered contrast-enhanced CT and
high-resolution MRI using a surface-based registration. They derived
a volumetric deformation field based on the surface deformations of
the liver as alternative to FEM-based methods. Evaluation was done
on five patients, between four to six corresponding vessel bifurcations.
They finally reported poorly interpretable TREs (because of very high
standard deviations) of 0.6 ± 4.3 mm and a computation time of about
10 s.

Recently, an organ focused extension of MI was proposed by
Fernandez-de-Manuel et al. (2014) to improve quality and robustness
of the registration by adding spatial information, benefiting from the
availability of expert liver segmentations in clinical protocols. Their
proposed organ-focused MI (OF-MI) criterion extended the joint his-
togram with an additional information channel, similar to the one
proposed in Studholme et al. (1996). Moreover, they extended its im-
plementation to a deformable, B-spline based, multimodal registration
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framework. Validation of their system was performed on 63 simu-
lated volumes as well as on seven real subjects, each comprising a
pre-planning contrast-enhanced portal-phase CT and pre-planning
eTHRIVE (resolution: about 1.0×1.0×2.0 mm). An improvement of the
registration accuracy for OF-MI as compared with MI was found for
both, simulated and real data sets. For real data sets, they observed a
landmark-based TRE of 7.55 ± 2.09 mm after MI registration and 7.07
± 1.88 mm after OF-MI registration as well as a surface-based TRE of
3.68 ± 1.00 mm after MI registration and 3.20 ± 0.2 mm after OF-MI
registration.

Further related work in the field of liver registration of pre-planning
MRI data is available with regard to respiratory motion correction in
dynamic contrast enhanced (DCE-)MRI. However, motion correction
is a slightly different task as it is usually only performed on the same
data set without changing the position or the MRI scanner. For this
reason, these papers will not be discussed.

2.2 related work : liver registration of interventional

data

Only some of the related works register onto 3D or 2D interventional
data of the liver, where the acquisition quality is typically limited com-
pared to non-interventional settings due to time and other constraints.
In particular, Archip et al. (2007), Böttger et al. (2003), Elhawary et al.
(2010), and Tokuda et al. (2015) apply deformable registration be-
tween 3D pre-planning MRI and 3D interventional CT images, while
Foruzan and Motlagh (2015), Liu et al. (2013), and Tang and Wang
(2010) investigate the opposite direction and register 3D pre-planning
CT and 3D interventional MRI images deformably. Other studies have
mainly investigated deformable registration of 3D pre-planning MRI
onto interventional 3D US data (Cha et al., 2017; Kadoury et al., 2012;
Lange et al., 2003; Mauri et al., 2015).

Warfield et al. (2000) first introduced a combined segmentation and
deformable registration for two intraoperative MRI liver data sets
during percutaneous cryotherapies of liver tumors. But the main focus
of their work was segmentation and they did not propose any quality
or accuracy values regarding their registration.

Lange et al. (2003) defined the need for a fast deformable registra-
tion procedure to display pre-planning information on intraoperative
data for liver surgery. They introduced a novel deformable registra-
tion method that combines an iterative closest point (ICP) algorithm
and multilevel B-splines based on semi-automatically extracted vessel
centerline points in contrast-enhanced MRI and CT as well as intra-
operative US. However, their approach was only evaluated on three
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Table 2.2: Overview of related works in the domain of interventional MRI liver registration. For each reference, the table compares (from left to
right) the kind of image modality (CT, MRI, US as well as interventional CT, MRI), transformation type Ttype (rig.: rigid, deform.:
deformable), transformation model Tmodel (FFGD, TPSs, FEMs, FFSD), registration metric (MI, NMI, SSD, NCC, PDs), computation
times tc [s], number of data sets, validation criteria (LMs: anatomical landmarks, EPs: edge points, SPs.: surface points), TRE and DSC
values. The symbol ’-’ indicates that no information has been provided by the reference.

Reference Modality Ttype Tmodel Metric tc(s) # Data Val. Crit. TRE [mm] DSC(%)

Böttger et al. (2003) MRI - iCT deform. TPS MI − 2 LMs 15 −

Archip et al. (2007) MRI - iCT deform. FEM − ∼ 300 13 EPs 1.6 −

Elhawary et al. (2010) MRI - iCT deform. FFGD MI > 600 5
SPs 3.3 0.97

LMs 4.1 −

Tokuda et al. (2015) MRI - iCT deform. FFGD MI 88 14 SPs 13.1± 5.2 0.88± 0.03
Tang and Wang (2010) CT - iMRI deform. FFGD MI ∼ 1100 7 SPs − 0.87

Liu et al. (2013) CT - iMRI deform. FFSD PD − 20 LMs 4.3± 1.9 −

Foruzan and Motlagh (2015) CT - iMRI deform. TPS PD ∼ 540 18 LMs 12.0± 4.9 0.78± 0.07
Lange et al. (2003) MRI/CT - US deform. FFGD PD 6 900 3 LMs 1.7 −

Kadoury et al. (2012) MRI - US deform. FFSD PD 44 4 LMs 3.7± 0.69 −

Mauri et al. (2015) MRI/CT - US deform. − − > 300 215 SPs 6 5 −

Cha et al. (2017) MRI/CT - US deform. − − 29 22 SPs 3.75 −
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patients and reached a TRE of about 1.7 mm and a computation time
of about 15 min.

Böttger et al. (2003) indroduced a combined MI-based rigid and TPS-
based deformable registration approach to register two different pre-
planning MRI and interventional CT liver data sets during stereotactic
single-dose radiation therapy treatments. Their quality was measured
using distances between manually selected anatomical landmarks like
tumor centers and vessel bifurcations. Finally they achieved a TRE of
about 15 mm.

Archip et al. (2007) proposed a novel FEM-based method to fuse
3D pre-planning MRI images (1.5 T; resolution: 1.36×1.36×2.5 mm)
with 3D interventional CT images (resolution: 0.61×0.61×2.5 mm) of
the liver for improved targeting of tumors during liver RFAs. They
compared its performance with conventional rigid registration and
two deformable registration methods: B-spline and Demons on 13
subjects. In an initial step, a rigid registration was performed, based
on an ITK implementation of MI. They demonstrated TREs between
the edges of anatomical landmarks of the liver of 12.2 mm for rigid,
2.4 mm for B-spline, 3.0 mm for demons, and 1.64 mm for their FEM-
based deformable registration method. The average computation times
were 1 min for rigid, 10 min for B-spline, 6 min for demons, and 5 min
for their proposed technique.

Another deformable image registration procedure was presented
by Elhawary et al. (2010) to enhance tumor visualization and local-
ization during CT-guided liver tumor cryoablation procedures of five
patients between pre-planning, contrast enhanced MRI images (1.5 T;
resolution: 7.8×7.8×2.5 mm) and interventional unenhanced CT im-
ages (slice thickness: 3 mm). They used a staged approach of manual
rigid, affine, and deformable B-spline registration with MI as similarity
criterion. Their deformable registration took an average of 4 - 11 min,
depending on the images and they reached TREs of about 4.1 mm
between selected anatomical landmarks and a Dice similarity coeffi-
cients (DSCs) of 0.97. The final computation time of their approach
ranged between 9.4 - 43.9 min (including the whole liver segmentation
process).

Tang and Wang (2010) applied a two-step approach to six pre-
planning CT (resolution: 0.6×0.6×3 - 7 mm) and interventional MRI
(0.5 T, resolution: 1.17×1.17×5 mm) liver data sets. First, they used
a parametric active contour to segment liver boundaries in CT and
MRI data. Secondly, they applied an affine and FFD with B-splines
to their masked liver data sets. They achieved an average tumor DSC
of 0.87 and the average runtime of their combined segmentation and
registration was about 18 min.

Kadoury et al. (2012) presented a combined rigid and a deformable
surface-based registration approach for pre-planning MRI and inter-
ventional US images during RFA treatments of liver tumors. Their
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main contribution was the training of a shape-constrained deformable
model for an unsupervised liver segmentation in MRI images. They
presented registration results for only four patients and finally achieved
a TRE of 4.3 mm between manually selected anatomical landmarks on
hepatic bifurcations.

Liu et al. (2013) proposed a novel geometry-based deformable
registration approach for registering pre-planning CT (resolution:
0.74×0.74×2.0 mm) and MRI (resolution: 1.19×1.19×2.5 mm), inter-
ventional MRI (resolution: 1.13×1.13×5.0 mm), and several follow-up
MRI images. They used a 3D surface-based model as guidance and
up to four landmarks placed at vessel bifurcations in the liver were
used as a gold standard for evaluating registration results. Finally,
they compared their active-surface approach (TRE of 4.3 ± 1.9 mm)
with an affine MI-based registration (TRE of 3.2 ± 1.2 mm) on twenty
patients treated by routine brachytherapy. Their average TRE increased
to 11.9 ± 5.6 mm for follow-up registration cases. Finally, they con-
cluded that their approach has limitations in cases where internal liver
deformation is present.

A graphics processing unit (GPU)-based approach for the registra-
tion of pre-planning MRI and interventional CT for CT-guided tumor
ablations was proposed by Tokuda et al. (2015). They implemented a
plugin for the open source software 3D Slicer and compared their pro-
posed GPU-based B-spline method to the standard B-spline method
using NMI and a LBFGS optimizer with simple bounds. For evalu-
ation, they measured DSC and Hausdorff distances (95 %) between
liver surface points and finally achieved a DSC of 0.88 ± 0.03 and
mean Hausdorff distances of 13.1 ± 5.2 mm. However, they concluded
that in terms of computation time their approach reached little to no
improvement over standard B-splines with regard to the deformable
registration part.

An alternative to similarity-based registration was presented by
Foruzan and Motlagh (2015), who extracted meaningful points semi-
automatically from the images and matched the point sets deformably.
First, maximum intensity projections (MIPs) of 18 pre-planning CT
(resolution: 0.6×0.6×3-7 mm) and interventional MRI (0.5 T, resolution:
1.17×1.17×5 mm) data sets were registered in 2D, and the correspond-
ing rigid transformation parameters were used to align 3D images in
axial, coronal, and sagittal planes. Use of MIPs should compensate
for intensity inhomogeneities inherent in the interventional MRI data.
In a next step, they used a PCA to align 3D pre-planning CT and
3D interventional MRI data sets. Then, the corresponding translation
and rotation parameters were used to increase the global registration
accuracy. Finally, a modified deformable, TPS robust point matching
algorithm was developed to accommodate local liver deformations.
Manually extracted surface points on the liver and branching points of
the portal veins were used as input. They compared their automated
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registration algorithm with both rigid and deformable methods. Even-
tually, Hausdorff distances of 42.00 ± 20.7 mm and 22.5 ± 21.28 mm as
well as TREs of 12.02 ± 4.99 mm and 10.11 ± 8.75 mm were achieved
for the liver and tumor. The DSC of liver and tumor were increased
from 0.39 ± 0.18 and 0.00 to 0.78 ± 0.07 and 0.27 ± 0.14, respectively.
However, they stated that the combined runtime of their approach
was about 540 s, which is very high in a interventional setting and the
main drawback of this method.

One of the most recent studies (Mauri et al., 2015) showed that with
regard to US data, there is already commercial software available that
can register pre-planning MRI on interventional, real-time US during
RFAs. Drawback of the proposed method is the required manual ad-
justment of internal anatomic markers before the registration and the
long pre-registration time of 5 - 20 min which is required for the real-
time fusion. To evaluate their method, they performed a registration
on 215 cases with the exception that a large part (about 182 tumors) of
the data had to be excluded due to insufficient distinction in the tumor
echogenicity from the surrounding tissue or lack of detection because
tumors were located in areas which are not accessible to US. Unfortu-
nately, the paper does not reveal any further information regarding
the registration algorithm used (because it is commercial) or regarding
the accuracy of their method. They finally proposed a success rate of
about 90.2 % which includes all cases with a TREs smaller than 5 mm.
A very similar approach was used by Cha et al. (2017) who achieved a
mean TRE of about 3.75 mm (1 - 15.8 mm) with an average runtime of
28.5 s (18 - 47 s) on 22 patients who received RFA.

In contrast to V2V registration and to the best of my knowledge,
there is currently no related work for V2S registration on 2D inter-
ventional MRI liver data. Few related works proposed only rigid ap-
proaches for the V2S registration of 3D pre-planning CT and 2D inter-
ventional, fluoroscopic CT liver data (Birkfellner et al., 2007; Lasowski
et al., 2008; Micu et al., 2006), or for other target organs, e. g. prostate
cancer (Fei et al., 2003). Ferrante and Paragios (2017) presented a
detailed survey for slice-to-volume registration in medical image anal-
ysis, where several application areas and registration concepts are
described.

2.3 selected registration methods

Obviously, there also exist many deformable registration approaches
which did not focus on MRI-based liver registration. Since it would
clearly go beyond the scope of this thesis, the focus will be on some
selected, promising approaches.

Mahapatra and Sun (2012) proposed a method to exploit segmen-
tation information for deformable image registration using a MRF-
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based objective function. They used a multiscale graph-cut approach
to achieve subpixel registration and to reduce computation time (simi-
lar to Glocker et al. (2008)). Although they did not apply their method
to different MRI liver sequences, their method seems to be promising
in terms of computational efficiency. Their approach was tested on
3D liver perfusion data (110×80×28 slices, resolution: 1.6×1.6×4 mm)
and achieved an average DSC of 0.91 for simulated deformations.

Another promising approach was presented by Pace et al. (2013),
who developed a deformable image registration algorithm that uses
anisotropic smoothing for regularization to find correspondences be-
tween images of sliding organs, e. g., like the liver. In particular, their
algorithm uses locally adaptive diffusion tensors to determine the
direction and magnitude with which to smooth the components of
the displacement field that are normal and tangential to an expected
sliding boundary. They argued that conventional regularizers of de-
formable registration approaches enforce smooth transformations, and
therefore are inaccurate near the discontinuous motion that occurs
when multiple organs, like the liver and neighboring organs, move
independently. Furthermore, globally smoothing regularizations will
underestimate motion near such sliding boundaries by averaging dis-
continuous motions, and/or incorrectly smooth motion onto static
structures. Unfortunately, the approach needs a segmentation of the
sliding boundaries on the target/fixed images, which is not available
for the interventional data before the registration.

Papież et al. (2014) proposed an implicit sliding-motion preserving
regularization via bilateral filtering for deformable image registration,
which works similar to the approach of Pace et al. (2013). In contrast,
Papież et al. (2014) stated that their framework does not require any
explicit prior knowledge about the organ motion properties, e. g.,
segmentation. As the deformable registration algorithm, they used a
vector-valued demons approach which incorporates a NGF. Validation
was performed on synthetic and clinical 4D lung CT data sets.

Recently, Luu et al. (2016) presented a deformable registration for
CT-guided ablation of liver tumors. Although they concentrated on
CT-guided RF ablations, their application and existing problems are
similar to mine since they registered 3D diagnostic pre-planning im-
ages with 3D interventional images deformably. In their study, they
used Elastix, a free registration software package, to apply the de-
formable registration. In particular, a simple B-spline approach com-
bined with MI as similarity criterion was used. Finally, they achieved
a DSC of 0.91 ± 0.03 and a mean TRE of 4.6 ± 1.8 mm between liver
surfaces, and a TRE of 5.3 ± 2.5 mm between anatomical landmarks
placed into liver vessels for the remaining 16 CT scans. However, some
of the CT images were excluded for the quality measuring or had to
be manually post-processed.
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Recent publications focused mainly on short registration times, e. g.,
Peterlík et al. (2018), who proposed a geometry-based registration as
combination of linear elasticity and ICP for pre-interventional and
interventional CT data using a detailed 3D model of the liver and its
internal structure combined with liver surface information extracted
from the interventional CT. They presented their results on nine real
data sets and achieved a TRE of 4.5 mm. Computation time of their
registration was less than 1 min but semi-automatic segmentation of
the liver in the interventional CT took about 10 min.

As deep learning plays an increasingly important role in medi-
cal image analysis, there are also first studies in the field of image
registration of medical image data.

Wu et al. (2013) proposed an unsupervised deep learning method us-
ing an adopted stacked convolutional independent subspace analysis
method to directly learn hierarchical representations for image patches
from MRI brain images. They integrated their learned features into a
multi-channel demons and a geometrical registration method, then
compared hand-engineered features with their learned data-adaptive
features, and finally achieved promising registration results. Another
work of Cheng et al. (2015) introduced a novel deep similarity learn-
ing method that trains a simple binary classifier to learn the local
correspondence between 2D MRI and CT image patches of the head.
After training, the networks are fine-tuned using two prediction layers
to determine whether two patches are similar or dissimilar. A simi-
lar strategy is used by Simonovsky et al. (2016), who also estimated
a similarity between patches from differing modalities using deep
convolutional neural networks (CNNs). They additionally proposed a
way to incorporate this measure directly into first-order optimization
frameworks. On the task of intersubject MRI deformable registration,
they claim that they outperform MI by a significant margin.

A direct prediction of the transformation parameters using deep
learning methods was first introduced by Miao et al. (2016) and Yang
et al. (2016). Miao et al. (2016) presented a novel and real-time deep
learning regression approach for the task of rigid 3D to 2D X-ray
registration to overcome the small capture range as well as slow
computation time of current intensity-based methods. Yang et al.
(2016) proposed a patch-based deep encoder-decoder network which
learns the voxel-wise mapping between image registration parameters
and image appearance in the context of LDDMMs. They retain the
mathematical properties of LDDMMs, e. g., diffeomorphic transforms,
using the momentum parameterization and they finally achieved
huge speed-ups compared to a direct optimization method, while
maintaining high prediction accuracy on brain MRI images.

A more detailed overview of deep learning based registration is
provided by the work of Litjens et al. (2017). They summarize that “in
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contrast to classification and segmentation, the research community
seems not have yet settled on the best way to integrate deep learning
techniques in registration methods. Not many papers have yet ap-
peared on the subject and existing ones each have a distinctly different
approach. Thus, giving recommendations on what method is most
promising seems inappropriate. However, we expect to see many more
contributions of deep learning to medical image registration in the
near future.”

A reason why there are only a few works so far could be the
diversity of registration problems and applications in the medical
field combined with the huge number of degrees of freedom in 3D
deformable registration as well as the (in most cases) low number of
training data sets or corresponding ground truth data. In the domain
of deformable deformations of 3D medical data, it would be a very
time-consuming task to create exact deformations as an approximate
ground truth for a sufficient number of data sets.

2.4 validation

Validation is an important part for almost all medical deformable
registration tasks. Often, an expert radiologist or radiation therapist
has to manually identify a lot of anatomical landmarks or structures
within or on the boundary of the liver and tumor to compute a suitable
and significant evaluation measure. Even then, it cannot be guaranteed
that the quality of the deformable registration is precisely measured
over the whole liver volume. As can be seen in Table 2.1 and Table 2.2,
most of the related works used one or more of the following criteria
to measure the quality of their proposed methods:

1. Distances between landmarks:

• Vessel bifurcations or intersections (Böttger et al., 2003; Brock
et al., 2006; Carrillo et al., 2000; Fernandez-de-Manuel et al., 2014;
Kadoury et al., 2012; Kaus et al., 2007; Liu et al., 2013; Luu et al.,
2016; Rohlfing et al., 2004; Voroney et al., 2006)

• Vessel centerlines (Lange et al., 2005)

• Centroids of small tumors (Böttger et al., 2003; Fernandez-de-
Manuel et al., 2014)

• Automatically selected points (Lee et al., 2005)

• Closest surface points, i. e., by either computing

– Euclidean distances (Carrillo et al., 2000; Fernandez-de-Manuel
et al., 2014; Foruzan and Motlagh, 2015; Luu et al., 2016;
Rohlfing et al., 2004) or

– Hausdorff distances (Archip et al., 2007; Elhawary et al., 2010;
Foruzan and Motlagh, 2015; Tokuda et al., 2015)
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2. Volume overlap:

• DSCs between liver and/or tumor volumes (Elhawary et al., 2010;
Foruzan and Motlagh, 2015; Luu et al., 2016; Tokuda et al., 2015)

To ensure that this work will be comparable with the related work,
equal and similar quality measures will be used and defined later.

2.5 remaining issues in liver registration of mri data

In conclusion, there are still open questions in the domain of liver
registration in MRI, which are so far not covered by the state-of-the-
art. At first, the related work will be evaluated in order to derive
remaining issues and open research questions. Then, the requirements
and objectives of this thesis will be defined for each task and the
selected strategies to meet these will be discussed.

liver registration of pre-planning mri In pure MRI liver
registration, previous works are most of all either limited to rigid
registration (Carrillo et al., 2000; Lee et al., 2005) or limited to de-
formable registration of high quality diagnostic pre-planning images
as in Brock et al. (2006), Fernandez-de-Manuel et al. (2014), Lange et al.
(2005), Rohlfing et al. (2004), and Voroney et al. (2006). Many of them
would probably fail using real interventional images because of the
low image quality resulting from the open MRI device (as illustrated
in Figure 1.7). In addition there do not exist any time constraints in
this context, which allows the focus to be more on a better registration
quality. According to clinical experts in the field of HDR BT, TREs
smaller than 3 mm are very good, 3 - 5 mm are sufficient and larger
than >5 mm insufficient for any kind of computer-assisted support.
On average, the referenced works achieved TREs of about 4.3 mm
between liver surface points and selected anatomical landmark, which
would be sufficient for interventions. But the computation times are
often unknown and thus an evaluation with regard to its suitability
for interventional MRI liver data is difficult.

As can be seen in Table 2.1, a main flaw of many of the referenced
works is the low number (6 5) of real patient data sets used for
the evaluation. Only the study published by Voroney et al. (2006)
measured the quality of their approach on a sufficient number of 17
data sets. As already mentioned in the last chapter, the creation of
reference structures, which can be used as a gold standard for the
evaluation, is a time-consuming and difficult task. Nevertheless, the
question arises if quality indications, that have only been determined
on a few data sets, have a real significance or benefit for the medical
image analysis research community.
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liver registration of interventional mri There exist a
few approaches which register pre-planning liver images with in-
terventional liver images deformably (see Table 2.2) and there is no
comparable work that registered MRI and interventional MRI so far.
Hence a direct quality comparison with such approaches is rather
difficult. Tang and Wang (2010), Liu et al. (2013), and Foruzan and
Motlagh (2015) registered pre-planning CT data with interventional
MRI data and these works are still the most comparable as they faced
similar challenges in terms of the quality of interventional MRI data.

An evaluation of their approaches shows that some of them have
clear deficiencies in terms of accuracy and quality or computation time
attained. Tang and Wang (2010) did not quantify any results except
for some selected tumors (with a size >10 mm) and achieved a tumor
DSC of 0.87. But their study lacks in terms of a decent evaluation on a
sufficient number of data sets or additional validation criteria. More-
over, their combination of a semi-automatic pre-segmentation step
in both images and an affine and FFD-based deformable registration
leads to high computation times which would be inappropriate for a
clinical application.

Foruzan and Motlagh (2015) tackled the problem of bias artifacts
arising with interventional MRI data by using MIP projections and
a PCA as a basis for their landmark-based deformable registration.
They performed a decent evaluation on 18 patients and achieved a
DSC of 0.78 for the liver and 0.27 for the tumor and TREs of 12.0 ±
4.9 mm for the liver and 10.1 ± 8.7 mm for the tumor, which is too
imprecise for computer-assisted interventions. The runtime of their
proposed TPS-based robust point matching method was about 9 min,
which would be quite high in a real interventional setting. In addition,
it is unclear if they included the timings of surface point and landmark
point extraction which is required for their algorithm to work properly.

The approach of Liu et al. (2013) concluded with “unsatisfactory
results” with respect to the liver, because of varying liver deformations
of tissue near the surface and internal liver tissue. Their presented
results showed TREs of 4.3 ± 1.9 mm between selected landmarks but
they did not provide computation times to compare with.

selected registration methods Deep learning based ap-
proaches were not considered for a deformable registration as there
would not be enough ground truth available to create a sufficient
amount of training data.

Many of the geometry-based registration methods are unsuitable
because they need a preceding extraction of features, e. g. surfaces,
in both images. An automatic liver surface extraction cannot be per-
formed so easily automatically on interventional MRI because of the
bad image quality. Hence a semi-automatic or manual segmentation
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would be required which would take too much time within a clinical
setting. Peterlík et al. (2018) achieved a sufficient accuracy for CT liver
data but their surface-matching algorithm also requires a segmentation
of the liver in the interventional data set.

The sliding-motion based approach of Papież et al. (2014) seemed
to be promising since it does not require target organ segmentation
in both images and it can handle smooth deformations between and
within organs. However they indicate a substantial amount of com-
putational time due to their convolution based filtering methodology
applied to filter deformation fields at each iteration. Their proposed
NGF-based demons procedure using an isotropic bilateral filtering
took around 75 min for 4D lung data sets, which would be unsuitable
for a clinical application.

A suitable approach was the one presented by Glocker et al. (2008)
and later Mahapatra and Sun (2012). The idea of using a MRF-based
objective function combined with a fast multi-scale graph-cut approach
seems also promising for the tasks of this thesis.

Regarding V2S liver registration in MRI, there are currently no
related and comparable works available.
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T H E S I S O B J E C T I V E S

The overall aim of this thesis is to provide suitable V2V and V2S
registration approaches which are able to address some of the flaws
in the clinical workflow already discussed in Section 1.2 to support
the radiologists during current HDR BT interventions of the liver. To
achieve this aim, more specific objectives have to be defined for both
tasks.

1. V2V registration:

In cooperation with the a clinical partner, the following objectives
shall be met on average in the context of V2V liver registration:

• DSC > 92 % for the liver surfaces

• TRE < 5 mm for the tumor centroids and anatomical landmarks

• Computation time (tc) < 2 min on current consumer hardware

As none of the related work has already met all of these objectives,
new strategies must be developed. However, the focus of this thesis
is not to invent a new registration algorithm or type of deformation
but to adequately adapt and combine existing approaches so that the
defined objectives will be achieved.

Therefore, freely available state-of-the-art deformable registration
methods will be considered as part of a preliminary study on a subset
of the given data. This means in particular, an analysis of the methods
which are accessible via ITK (Yoo et al., 2002) and other libraries and
toolboxes like the Flexible Algorithms for Image Registration (FAIR)
toolbox (Modersitzki, 2009). The preliminary studies are primarily
intended to figure out aspects which have still potential for improve-
ment.

As a next step, already examined deformable registration approaches
will be adapted to obtain greater robustness to noise and intensity
inhomogeneities, which is present in most of the interventional MRI
planning images. In particular, it will be investigated how to supple-
ment necessary redundant information with model information, in
case solely used image information is not enough for a stable registra-
tion, e. g., as in some of the interventional planning images. During the
whole process, it will be mainly focused on fast computation times for
the complete registration procedure to meet the objectives. This will
be one of the main challenges, since most of the existing deformable
methods, e. g. , B-spline and FEM-based approaches, are computation-
ally intensive or require a kind of manual interaction beforehand, e. g. ,

31
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as many geometry-based methods. To achieve this objective, it will be
concentrated, among other things, on multi-threaded implementations
of optimizers and deformable transformations.

2. V2S registration:

Regarding V2S liver registration we defined the following objectives:

• DSC > 92 % for the liver surfaces

• TRE < 5 mm for the tumor centroids and anatomical landmarks

• Computation time (tc) < 1 s on current consumer hardware

Hence there does not exist related work that registered on 2D
interventional MRI, a new strategy must be developed to adequately
meet the defined objectives. In a first step, it will be investigated which
freely available state-of-the-art deformable registration methods (from
ITK and FAIR) are able to perform a V2S registration task. Depending
on the results of this study, new V2S registration approaches will be
developed and proposed.

In the end, a prototypical registration system for interstitial HDR BT
is intended. The prototype should contain V2V and V2S registration
methods to finally enable a stable and accurate transfer of clinical 3D
pre-planning information (eTHRIVE sequences), i. e., liver and tumor
segmentations as well as virtually planned applicator trajectories, onto
the 2D interventional image slices (T1-FFE slices) during needle inser-
tion. Since no externally acquired respiratory information is available,
an adequate strategy must be developed that is able to accurately
register both images at certain times in real time. This strategy will be
discussed later in Section 6.

The final liver registration framework including the main steps of
this thesis are outlined in Figure 3.1.
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Figure 3.1: Illustration of the proposed liver registration framework: (1) First,
a deformable volume-to-volume (V2V) registration transforms
pre-planning information to the 3D interventional MRI planning
images. (2) Second, a rigid volume-to-slice (V2S) registration
transforms 3D interventional MRI planning information to 2D
interventional slices which are acquired in real time (1/s). Finally,
the transformed pre-planning information can be used as guid-
ance for the interventional radiologist to improve the accuracy
and time spent during the tumor puncture.
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In order to evaluate the suitability of the results for a clinical appli-
cation, a sufficiently high number of data sets and ground truth is
required. In cooperation with the Department of Radiology and Nu-
clear Medicine of the University Hospital in Magdeburg, data from
64 patients, who have undergone a MRI-based HDR BT from 2014
to 2016, was retrospectively acquired. For each patient, a number of
pre-planning eTHRIVE, interventional planning THRIVE or T1-TFE
images, and interventional T1-FFE slice images are available.

The available data is differentiated into two subsets. On the one
hand, various preliminary studies were performed on the basis of a
small subset of eleven patients. On the other hand, a complete study
with another 53 patients was performed later. These data sets are
termed Data0 and Data1 respectively. For both data sets, the approval
of the responsible ethics committee of the Otto von Guericke University
at the Medical Faculty and at the University Hospital Magdeburg has
already been obtained. Based on the registration task (V2V or V2S),
both data sets were further subdivided in Data-V2V0 and Data-V2V1
as well as Data-V2S0 and Data-V2S1, respectively.

In addition, clinical experts have defined evaluation criteria, which
are used as approximate ground truth or gold standard, respectively,
including segmentations of the liver and tumor boundaries as well as
definitions of anatomical landmarks within the liver. In the following
sections, the data and gold standard is described for each part of my
thesis.

4.1 volume-to-volume registration

Data-V2V0 :

• 3D pre-planning images:

– MRI scanner: Philips Intera 1.5 T

– MRI sequence: eTHRIVE; repetition time (TR): 4.0 - 4.1 ms;
echo time (TE): 2.0 ms

– Voxel spacing: 0.98×0.98×3 mm

– FOV: 315×315×240 mm

– Number of images: 11

• 3D interventional planning images:

– MRI scanner: Philips 1.0 T Panorama HFO

35
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Illustration of the images and gold standard segmentation masks
of Data-V2V0. The first row shows exemplary slices of 3D (a) pre-
planning, (b) first interventional, and (c) last interventional images.
The second row (d-f) shows the corresponding gold standard
including segmentations of the liver and tumors, displayed with
different labels.

– MRI sequence: THRIVE; TR: 3.8 - 4.6 ms; TE: 1.8 - 2.3 ms

– Voxel spacing: 1.19×1.19×2.5 mm

– FOV: 285×285×210 mm

– Number of images: 22

• Gold standard data for both images:

– Segmentation masks of the liver

– Segmentation masks of several tumors

For each patient, gold standard annotation are available for the
pre-planning as well as the first and the last interventional image.
Gold standard annotations were created by an interventional radiol-
ogist with more than five years of experience. The gold standard of
Data-V2V0 comprises segmentations of the liver and tumors for each
of the data sets (see Figure 4.1). This enables an evaluation of the
quality of the V2V registration on the liver surfaces and within the
tumor regions.

Data-V2V1 :

• 3D pre-planning images:

– See Data-V2V0 above
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– Number of images: 53

• 3D interventional planning images:

– MRI scanner: Philips 1.0 T Panorama HFO

– MRI sequence: T1-TFE; TR: 11.2 ms; TE: 5.5 ms

– Voxel spacing: 1.27×1.27×2.5 mm

– FOV: 285×285×210 mm

– Number of images: 78

• Gold standard data for both images:

– Segmentation masks of the liver

– Segmentation masks of several tumors

– Anatomical landmarks at corresponding vessel bifurcations

In contrast to the preliminary data set Data-V2V0, Data-V2V1 com-
prises images of 53 patients and includes T1-TFE instead of THRIVE
interventional planning images. The MRI sequence of the V2V regis-
tration data was changed because T1-TFE images are more similar to
the T1-FFE images in terms of image properties and thus more suit-
able for the subsequent V2S registration. Moreover it can be evaluated
whether the proposed V2V registration is working for both sequences.
Figure 4.2 shows similarities and differences between the two planning
sequences.

For each patient, gold standard annotations for the pre-planning
as well as the first and the last interventional image are available,
which comprises segmentations of the liver and tumors. In addition
to Data-V2V0, an clinical expert and two field experts have selected
anatomical landmarks on vessel bifurcations within the liver. This
enables an evaluation of the quality of the V2V registration also within
the liver tissue. Hence the experts set their anatomical landmarks
independently on the same vessel bifurcations, the impact of the inter-
observer variability on the landmark quality measure can be measured,
too.

4.2 volume-to-slice registration

Data-V2S0 :

• 3D interventional planning images:

– MRI sequence: THRIVE

– Unchanged imaging parameters

– Number of images: 22

• 2D interventional image slices:

– MRI scanner: Philips 1.0 T Panorama HFO
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Comparison of T1-TFE (a-c) and THRIVE (d-f) interventional
planning images. The former are used within Data-V2V0 and the
latter within Data-V2V1. Anatomical views from left to right are:
axial, sagittal, coronal.

– MRI sequence: T1-FFE; TR = 10.4 ms; TE = 6.0 ms

– Voxel spacing: 1.1×1.1×8 mm

– FOV: 352×352×8 mm

– Number of images: 552

• Gold standard data for both images:

– Segmentation masks of the liver

Finally, Data-V2S0 comprises 23 interventional 3D planning images
which are registered with a total number of 552 interventional 2D
image slices. Each of the 2D image slices was taken at a different time.
Segmentation masks of the liver were given as gold standard data for
the evaluation.

Data-V2S1 :

• 3D multiplanar reconstructed subvolumes of interventional plan-
ning images:

– MRI sequence: T1-TFE

– Unchanged imaging parameters

– Number of images: 887

• 2D interventional image slices:

– MRI sequence: T1-FFE
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– Unchanged imaging parameters

– Number of images: 9738

• Gold standard data for both images:

– Segmentation masks of the liver

– Segmentation masks of the tumors

– Anatomical landmarks at corresponding vessel bifurcations

In contrast to Data-V2S0, multiplanar reconstructed subvolumes of
the 3D T1-TFE images have been created at each slice orientation in
the 2D T1-FFE images, which means at any time when the radiolo-
gist or the medical technical assistant has changed the current slice
orientation. This process is described in more detail in Chapter 6. In
addition to Data-V2S0, segmentation masks of the tumors and selected
anatomical landmarks are available as gold standard.

4.3 evaluation measures

To evaluate the proposed approaches, first, the resulting transforma-
tions have to be applied to the gold standard data (segmentation
masks, anatomical landmarks) of the template images. This enables a
comparison of the results with the gold standard data of the reference
images to estimate different kinds of TRE and DSC.

• The DSC as a measure of the segmentation volume overlap between
both liver segmentation masks is computed by:

DSC =
2|VT ∩ VR|

|VT ∪ VR|
, (4.1)

where VT and VR are segmentation mask volumes of the template and
reference image, respectively.

• The average Euclidean distance (ED) for N corresponding points
(tumor centroids, anatomical landmarks) pi and qi in the template
and reference image is computed by:

d =

∑N
i=1 d (pi, qi)

N
(4.2)

with

d(p, q) =

√√√√ 3∑
j=1

(
qj − pj

)2 (4.3)

where qj and pj are the components of the 3D vectors p and q.



40 material

• In addition, average ED as the averaged contour misalignment
between surface points of the liver are computed by:

ED =
EDTR + EDRT

2
(4.4)

with

EDTR =

∑
iminj

(
d(pjR, piT)

)
|kT|

EDRT =

∑
iminj

(
d(pjT, piR)

)
|kR|

where kR and kT are sets of surface points, piR ∈ kR and pjT ∈ kT are the
i-th and j-th 3D surface point of each set from the segmentation masks
of the template and of the reference image MR and MT, respectively.

• The average Hausdorff distance (HD) (Chalana and Kim, 1997) as
the worst-case contour misalignment between surface points of the
liver is computed by:

HD = max {HDTR,HDRT} (4.5)

with

HDTR = max
i

{
min
j

{
d
(

pjT, piR
)}}

HDRT = max
j

{
min
i

{
d
(

piR, pjT
)}}

Since there is no perfect ground truth to compare with, an approxi-
mate ground truth was generated manually by an expert radiologist
as a gold standard. However, such a manual generation is not always
completely error-free. For example, small changes in the contouring
already lead to different volume ratios of the liver segmentation masks.
When setting landmarks on vessel bifurcations in two slightly different
3D images of the liver, there does not always exist a clear correspon-
dence. Therefore, an inter-observer variability regarding the landmarks
for a subset of 10 data sets was calculated, which can be used to better
interpret the calculated error rates. An additional rigid and volume
preserving deformable registration of the gold standard liver and
tumor segmentation masks was performed in order to compare with.
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V O L U M E - T O - V O L U M E R E G I S T R AT I O N

In this chapter, standard V2V registration methods are first investi-
gated and afterwards, the developed V2V registration approaches are
discussed in detail. Parts of this chapter have already been published
in König et al. (2017) and Rak et al. (2017) and may therefore par-
tially contain similar or identical formulations and illustrations. The
publishers granted a non-exclusive, world-wide licence to reproduce
the material for the purpose of this thesis1. I separated the chapters
methods, results, and discussion according to each study, because the
discussion of the results of the preliminary studies influenced the
choice of methodology in the subsequent studies.

5.1 preliminary study a

In this preliminary work, a comprehensive investigation of rigid and
deformable intensity-based registration methods, that are freely avail-
able in ITK, was performed. The main objective was to find out if
standard state-of-the-art registration methods are feasible for the tasks
presented and if not, to figure out at which points is still need for
further research. ITK offers a multitude of different types of transfor-
mations, measures, and optimizers which are to be investigated in the
remainder of this section.

5.1.1 Material and Methods

All available combinations were applied on the preliminary data set
Data-V2V0, which includes 3D pre-planning eTHRIVE and 3D inter-
ventional THRIVE images of eleven patients. To simplify processing,
all images were downsampled to yield isotropic voxels of 2.5mm
extent. All experiments were carried out on consumer hardware com-
prising an AMD FX™-6300 @ 3.5 GHz and 8 GB RAM.

First, both images were initialized according to their geometrical
center. Second, rigid registration was applied to cope with the differ-
ences in patient positioning between the images. Given a reference
image IR, image registration tries to find the optimal transformation
of the spatially aligned and resampled template image IT with regard
to the similarity between both images, the quality of which can be as-

1 Reprinted by permission from Springer Nature Customer Service Centre GmbH:
Springer Nature, International Journal of Computer Assisted Radiology and Surgery,
Joint deformable liver registration and bias field correction for MR-guided HDR
brachytherapy, M. Rak, T. König, K. D. Tönnies et al, (2017)
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sessed by a measure S(IR, IT). The measure is calculated over all voxel
s ∈ P where P is the set of voxels shared by images IT and IR after
transformation, i. e. the intersection of the transformed pre-planning
and the interventional image. Hence template and reference images
are both MRI-based, monomodal similarity measures, which can be
applied in combination with appropriate preprocessing. Potential pre-
processing methods are evaluated in the context of this thesis too. ITK
offers the possibility to compute various intensity-based similarity
measures, the most promising of which are listed below::

SSSD =
1

|P|

∑
s∈P
‖IR(s) − IT(s)‖2 (5.1)

SMAD =
1

|P|

∑
s∈P

|IR(s) − IT(s)| (5.2)

SNCC =
1

|P|

∑
s∈P

(IR(s) − µR) (IT(s) − µT)

σRσT
(5.3)

where SSSD, SMAD, SNCC are the similarities defined by SSD, MAD, and
NCC, respectively. µR and µT are expected intensities and σR and σT

are standard intensity deviations of the reference and transformed
template images IR and IT(T), respectively.

MI-based similarity measures are defines as:

SMI = H(IR) +H(IT) −H(IR, IT) (5.4)

SNMI =
H(IR) +H(IT)

H(IR, IT)
(5.5)

with

H(IR) = −
∑
si∈IR

p(si) logp(si)

H(IT) = −
∑
sj∈IT

p(sj) logp(sj)

H(IR, IT) = −
∑
si∈IR

∑
si∈IT

p(si, sj) logp(si, sj)

where SMI and SNMI are the similarities defined by MI and NMI, respec-
tively. H(IR, IT) is the joint Shannon entropy and p(si, sj) is the joint
probability of the pixel pair intensities si and sj of the reference and
transformed template images IR and IT.

For the sake of completeness, a discrete version of the NGF-based
similarity as described by Tramnitzke et al. (2014) is already defined
at this point because it will be used in a subsequent study:
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SNGF =
1

2

∑
s∈P

(
1−

(
〈∇IT(s),∇IR(s)〉
‖∇IT(s)‖η‖∇IR(s)‖η

)2)
(5.6)

where ∇I is the gradient field of an image I?, 〈·, ·〉 computes the inner
product of two vectors and ‖ · ‖η = 〈·〉+ η2. The parameter η2 allows
to compensate for noise and should be choosen such that it reflects
the noise characteristics of the given modalities.

With the exception of NGF, all similarity measures were tested in
this study. Artifacts caused by implanted applicators were negligible
for the rigid registration, because they affected only small portions of
the interventional data. Bias field artifacts were only imposed on parts
of the interventional data and thus did not impede rigid registration
either. More problematic was the extensively varying signal-to-noise
ratio (SNR) in the interventional planning images already discussed
in Section 1.2.1 (Figure 1.7), possibly causing errors if the registration
process is not initialized close to the anticipated transformation. To
cope with this issue, a pyramidal multi-resolution registration scheme,
as illustrated in Figure 5.1, was employed. Starting with the initial
registration on a rather coarse image resolution, the transformation
was subsequently refined on smoothed images of increasing resolution
until full resolution was reached. Finally, downsampling factors of 1/6,
1/4, and 1/2 were used. This multi-resolution scheme proved to be
stable with respect to varying noise levels, because noise cancels out
on coarser resolutions, providing good initializations for registration
refinement at higher resolutions.

Next, an affine and deformable registration was applied subse-
quently on the best results after rigid registration to cope with local
liver deformations. However, deformable registration methods were
only applied to a single, coarser resolution. This decision is based
on preliminary experiments, which have shown that an application
on the full resolution is too computationally expensive and thus not
appropriate within a clinical setting. However, it was attempted to find
out which types of transformation and similarity measure could be
promising for further investigation or adaption. As a drawback of the
downsampling, the obtained results must be interpreted with caution
since evaluation was performed on the transformed, downsampled
segmentation masks and thus, small structures, such as tumors or
vessels, may almost vanish on coarser resolutions. Initial downsam-
pling factors of (1/6, 1/4, 1/2) were investigated in this regard to
find the best trade-off between registration quality and computation
time. Downsampling produced images with voxel spacings varying be-
tween 15×15×15 mm (1/6) and 5×5×5 mm (1/2) for the pre-planning
eTHRIVE and interventional THRIVE images. Overall, about 300 dif-
ferent registration combinations were examined for rigid, affine, and
deformable V2V registration.
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(a) 1/6 (b) 1/3 (c) 1/2 (d) 1/1

(e) 1/6 (f) 1/3 (g) 1/2 (h) 1/1

Figure 5.1: Multi-resolution image pyramid from coarse (left) to fine (right)
for a pre-planning eTHRIVE image (a-d) and interventional
THRIVE planning image (e-h). Gaussian smoothing with appro-
priate standard deviations was performed before the resampling
on each level.

5.1.2 Results and Discussion

Rigid registration worked best using a 3D Euler transformation in
combination with several similarity measures, e. g., NCC, NMI or
MMI, and a gradient descent optimizer achieving a DSC of 0.9 for
liver and 0.28 for tumor surfaces (see Table 5.1). In contrast, most of
the standard deformable registration methods were computationally
expensive and thus inappropriate for time-critical clinical applications.
For FFDs with B-splines, LBFGS optimizers worked best using an ini-
tial downsampling factor of 1/4 and a mesh grid size of 3×3×3 voxel
in combination with an Advanced Normalization Tools (ANTs) sim-
ilarity measure (Avants et al., 2011). ANTs computes NCCs using a
spatial neighborhood around each voxel. However, the average run-
times ranged from 56 s to more than 120 s for downsampling factors of
1/4 and 1/3, respectively. Overall, the fastest deformable registration
approaches involved a voxel displacement field based transformation
(termed as DispField) which additionally performs a Gaussian smooth-
ing of the displacement field after each optimization step. DispField
performed best in combination with ANTs and gradient descent opti-
mizer. Computation times for DispField based transformations ranged
from of 26 s to 144 s for a downsampling of 1/3 and 1/2, respectively
(see Table 5.1).

With regard to rigid registration, the best-perfoming combination
compared well to the upper bounds of the maximum achievable qual-
ity and also finished computation within a reasonable time. It can
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Table 5.1: Results of V2V registration on a single resolution level with
standard methods from ITK for the preliminary Data-V2V0.
Values in d e indicate the upper bounds on the result qual-
ity given optimal rigid (Rig. Mask) and volume-preserving
deformable (Def. Mask) registration of the gold standard
segmentation masks. Abbrev.: DSC - Dice coefficient; ED -
Euclidean distance.

V2V
Average Liver Tumor(s)

tc [s] DSC [%] ED [mm] DSC [%]

Initial - 44 ± 21 20.9 ± 8.6 1 ± 5

Rigid 4.4 90 ± 3 3.3 ± 0.8 28± 18

Affine 10.6 91 ± 3 3.0 ± 0.9 36± 22

Rig. Mask - d90 ± 2e - d41 ± 23e

B-spline
(
1/4
)

56.3 92 ± 2 -

B-spline
(
1/3
)

> 120 93 ± 5 -

DispField
(
1/3
)

26.4 94 ± 1 1.9 ± 0.4 55± 12

DispField
(
1/2
)

144.3 95 ± 1 1.6 ± 0.4 61± 13

Def. Mask - d97 ± 3e - d81 ± 14e

also be observed that an additional affine transformation after the
initial rigid registration did not improve the registration quality but
increased runtimes due to the additional degrees of freedom during
optimization. The rather low tumor DSCs and high liver DSCs need
to be interpreted with caution because of the coarse resolution level
and relatively small number of patients. Thus, small misalignments
together with likewise small gold standard imperfections may result
in large differences in the DSC solely because of the small tumor
sizes in the Data-V2V0 (1.71 ± 1.61 mL on average). Furthermore, an
upper bound DSC of 0.81 ± 0.14 of the volume-preserving deformable
registration of the tumor segmentation masks indicated, that a man-
ual segmentation of small tumors in different MRI sequences is a
challenging task, even for an expert radiologist.

Regarding deformable registration methods, the best performing
combination comprised a DispField transformation, ANTs (Avants et
al., 2011) and the gradient descent optimizer. ANTs performed better
than most of the other available similarity measures in ITK because it
computes similarity values in a spatial neighborhood, which compen-
sates for some of the intensity inhomogeneities in the interventional
images. The DispField transformation is able to perform a voxel-wise,
dense transformation that enables appropriate transformations on
coarser resolution levels, but leads to high computation expenses
at finer resolution levels. Although first results are promising, there
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(a) Axial (b) Sagittal (c) Coronal

Figure 5.2: Challenging data set including strong bias field and noise. In such
cases standard deformable procedures failed.

is still room for improvement in deformable registration. Even the
best investigated combination in deformable V2V registration still has
limitations in cases with bias field artifacts (see Figure 5.2). Hence,
deformable V2V registration methods should be incorporated into a
multi-resolution approach, which however must still fulfill the time
constraints defined in Chapter 3 by using a reasonable kind of regular-
ization. This could be done by using more of the previously available
information such as segmentation masks of the liver of the available
pre-planning eTHRIVE data, which have to be created in the course of
a proper pre-planning phase anyway. In addition, one should consider
a more comprehensive pre-processing of the data, e. g., by cropping
the FOV.

In summary, the following findings were made and should be
considered in the subsequent studies:

• Rigid registration already works sufficiently precise and fast to
compensate for different patient positioning.

• Deformable registration still needs improvements in terms of
accuracy and computation time.

• Deformable registration should be integrated into a multi-resolution
scheme that compensates for bias field artifacts and locally vary-
ing noise.

• Segmentation masks of the pre-planning data should be used to
improve registration accuracy.

5.2 preliminary study b

In this study, selected registration methods from the literature were
adapted and improved to cope with the named issues. Next, a novel
approach is proposed that performs a deformable V2V registration
of 3D pre-planning and 3D interventional planning MRI images in a
sufficiently accurate and fast manner to be applicable for interventional
settings.
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5.2.1 Material and Methods

In order to show the suitability of the method presented next, Data-V2V0
was used, which includes one 3D pre-planning eTHRIVE image and
two 3D interventional THRIVE images for each of the eleven patients.
The interventional images were termed as R1 for images without appli-
cators and R2 for images including several applicators. In a subsequent
study (Section 5.3), a more detailed evaluation was performed on the
complete data set Data-V2V1. Again, all images were downsampled
to an isotropic voxel spacing of 2.5 mm. All experiments were carried
out on consumer hardware comprising an Intel® Core™ i7-3720QM
@ 3.4 GHz and 12 GB RAM.

5.2.1.1 Rigid Registration

Rigid registration was first applied to model the differences in patient
positioning in the pre-planning and interventional images. The results
of the preliminary study have shown that the choice of the similarity
measure has little influence on the quality of the results. Thus, the
focus was on the deformable registration part in this study. A normal-
ized version of the MAD as described in Equation 5.2 was used, which
should be more stable in cases where the intensity scaling strongly
differs between the images. To find the rigid transformation between
the transformed pre-planning image IT and the interventional image
IR, the following similarity measure had to be minimized

SNMAD =
1

|P|

∑
s∈P

∣∣∣∣IT(s)

µT
−
IR(s)

µR

∣∣∣∣ . (5.7)

where the expected intensities µR and µT need to be evaluated over
the set of shared voxels P to not skew the normalization by different
spatial domains. As already figured out, artifacts caused by implanted
applicators are negligible for the rigid registration because they affect
only a small portion of the interventional data sets and thus had little
influence on the used similarity measure (Equation 5.7). As previously
shown in Figure 1.7, bias field artifacts are only focused on parts of
the interventional data and thus pose no problem to rigid registration,
but to deformable registration. Standard pre-processing methods for
bias field correction such as N3 (Sled et al., 1998) and its extension
N4 (Tustison et al., 2010) struggled to improve tissue homogeneity
because these require that the bias field contains low frequency content
compared to the actual image signal, which may be violated for the
data used (see Figure 5.3(a-b)). Less stringent techniques such as
PABIC (Styner et al., 2000) took several minutes to process, which
is unacceptable in an interventional setting (see Figure 5.3(c)). To
cope with varying SNR within the interventional images, a similar
pyramidal multi-resolution registration scheme as stated in Section 5.1
was used.
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(a) Original (b) N4 (c) PABIC (d) MRF-BC

Figure 5.3: Challenging case with extensive, spatially varying noise and
strong tissue inhomogeneities in the interventional image. Stan-
dard pre-processing methods for bias field correction either strug-
gled to improve tissue homogeneity (N4 (Tustison et al., 2010)) or
took several minutes to process (PABIC (Styner et al., 2000)). The
presented approach yields good results at marginal computational
costs.

After rigid registration, the intensities of both images were rescaled
by IT/µT and IR/µR to ensure a common normalized intensity range.
Furthermore, registered images were cropped to an axis-aligned region
of interest (ROI), which was extracted automatically based on the
transformed pre-planning segmentation masks. ROI extraction was
used because large parts of the images are irrelevant for the task of
this thesis, i. e. they do not contain pre-planned applicators, tumor
tissue, the liver, or nearby organs at risk. The extracted ROIs were
then passed into the deformable registration.

5.2.1.2 MRF-based Deformable Registration

To identify the non-rigid changes, the findings of the previous study
were first evaluated and then combined with promising methods from
the state-of-the-art which were already figured out in Section 2.5. I
decided to use a deformable registration method based on MRF theory
in this thesis since it seemed promising for the presented registration
task in terms of computational efficiency (like demonstrated in Glocker
et al. (2008), Glocker (2010), or Mahapatra and Sun (2012)). Discrete
optimization methods have some advantages when compared with
continuous methods:

1. Most of the continuous methods require the objective function to
be differentiable while discrete methods are inherently gradient-
free.

2. For discrete methods, prior information can be easily introduced
by using the discrete label space to control its range and resolu-
tion.

3. With regards to the computational effort, parallel architectures
can be used to perform non-sequential tasks required by several
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discrete algorithms, which leads to more efficient implementa-
tions.

A main advantage for continuous methods compared to discrete
methods is the accuracy, which is not limited by the discretization.
However, Glocker (2010) already suggested intelligent refinement
strategies to achieve an accuracy similar to continuous approaches.

Within the MRF context, deformable registration is seen as a discrete
minimization problem, seeking to select the best displacement ∆s for
each voxel s from a pre-specified set of allowed displacements. Let ∆
be the anticipated displacement field, then the optimization problem
can be formulated as

E(∆) = λ
∑
s∈P

Ds(∆s) + (1− λ)
∑

(s,t)∈N

Vs,t(∆s,∆t), (5.8)

where P is the known set of voxels shared by both images after ROI ex-
traction and setN contains all pairs of spatially neighboring voxels.Ds
and Vs,t are data and smoothness terms defined over particular voxel
displacements, while parameter λ controls the relative importance of
both terms. This formulation enables smoothness on the deformation
field by means of the introduced graph edges, while the unary term is
able to encode the image support for a given deformation.

Given particular implementations of both terms (discussed later),
the α-expansion algorithm of Boykov et al. (2001) was applied to find
a near-optimal solution for Equation 5.8, which is guaranteed to stay
within a factor of two of the globally optimal solution. In particular,
the cache-efficient multi-core implementation of Jamriska et al. (2012)
was used, which is available as a part of the GridCut library2 and
seemed to be well suited for a clinical application. The presented
deformable registration approach was implemented in C++ and ITK.

Since a direct optimization of Equation 5.8 is costly if potential dis-
placements become large, i. e. several voxels in each direction, the de-
formable registration was integrated into a pyramidal multi-resolution
scheme to solve for large displacements on coarse image resolutions
and to add finer displacement field details with increasing image
resolution, until full resolution is reached. Such a scheme requires
an integration of the displacements known from coarser resolutions
into Equation 5.8 at the current resolution. To this end, the displace-
ment field ∆ was re-defined as the composition of the already known
displacement ∆k and the anticipated update field ∆u. Likewise, the
displacement ∆s of a voxel s was calculated as ∆ks +∆us , with ∆us being
variables of the MRF optimization task.

The scheme is illustrated in Figure 5.4 (left). Starting on the coarsest
resolution, Equation 5.8 was optimized and the resulting displacement
field was feeded into the next resolution level. For each subsequent

2 http://www.gridcut.com/



50
v

o
l

u
m

e-
t

o
-
v

o
l

u
m

e
r

e
g

i
s

t
r

a
t

i
o

n

Resolution Levels Deformable Registration Bias Field Correction

Fine

Coarse

Fine

Coarse

MRF
Equation 5.8

MRF
Equation 5.8

MRF
Equation 5.8

 IT a

 IR a

 IT a

 IR a

 IT a

 IR a  Δua

Upsampling

 Δa

Upsampling

Δk

 Δua

Δk

Median
Equation 5.9

 IR a

Upsampling

 B a

Median
Equation 5.10

 IT a

 IR a

 Bua

Upsampling

Bk

 IT a

Figure 5.4: Illustration of the pyramidal multi-resolution scheme used within the proposed MRF-BC deformable registration. The
visualization is separated into the deformable registration part (left) and the bias field correction part (right). The latter takes
place right before MRF optimization, which is indicated by the dashed horizontal lines. On each resolution level, IT and IR
represent the appropriately smoothed and downsampled pre-planning and interventional image. ∆k and ∆u denote the
displacement field known from the previous level and the currently anticipated update field, respectively. Bk and Bu denote
the bias field known from the previous level and the currently anticipated update field, respectively. On the first level, the
displacement and bias field are simply called ∆ and B, respectively. Inputs to the particular processing steps (rectangles) are
marked by arrows, while outputs are marked by dots. Mathematical operators ‘+’, ‘×’ and ‘÷’ combine inputs voxel-wise. 2D
grids were only used for illustration purposes.
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level, the known displacement field ∆k was upsampled to the current
resolution by linear interpolation, solved for the best update field ∆u,
and then the composed displacement field ∆k +∆u was incorporated
into the next level, if any.

Varying noise levels and applicator-related artifacts did not have a
significant impact on coarser resolutions due to smoothing, but they
certainly come into effect at higher resolutions, which was addressed
by an appropriate data term that is discussed later. Tissue inhomo-
geneities caused by the varying bias field were more problematic and
needed to be addressed explicitly for successful deformable registra-
tion. Otherwise, deformable registration would probably fail, as can
be seen in Figure 5.5.

(a) Interventional image (b) Deformable regis-
tered pre-planning
image with bias field
correction

(c) Deformable registered
pre-planning image
without bias field
correction

Figure 5.5: Registration results at the example from Figure 5.6, where the bias
field was (b) considered and (c) not considered during deformable
image registration. False deformations in (c) mostly occur in parts
of (a), which contain strong tissue inhomogeneities.

5.2.1.3 Bias Field Correction

A bias field in MRI is typically considered as smooth multiplicative
function, which scales tissue intensities differently in various parts
of the image, as seen in Figure 5.6. Factoring its influence is an ill-
posed problem unless restricting assumptions are made or additional
information is available. In the given case, additional information can
be obtained by the rigid alignment of both images, provided that
the rigid registration was successful. Hence, differential bias field
correction as proposed in Lewis and Fox (2004) was adopted. They
noticed that the voxel-wise intensity quotient of two perfectly aligned,
noise-free, images equals the quotient of their bias fields. Therefore,
knowing the bias field of either image is sufficient to estimate that of
the other image. This is exactly the case here because a constant bias
field was assumed for the pre-planning images.

According to Lewis and Fox (2004), even in case of noise and small
misalignments from prior registration, the differential bias field B can
still be approximated via
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B(s) ≈ median
{
IR(t)

IT(t)

∣∣∣∣t ∈Ms

}
, (5.9)

where Ms is a neighborhood around voxel s. The median filter cancels
noise and artifacts from misalignment as long as these are small
compared to the neighborhood.

(a) Original (b) Bias Field (c) Corrected

Figure 5.6: Bias field correction outlined at the example from Figure 5.3.
Tissue inhomogeneities can be corrected by factoring out a multi-
plicative bias field.

5.2.1.4 Pyramidal Integration of Bias Field Correction

Since interventional data shows bias field artifacts of different extents,
a correction on a single resolution would be difficult. To address
this issue, the correction was incorporated into the multi-resolution
scheme, adding finer bias field details with increasing image resolution.
For this purpose, the current bias field estimate B was redefined as
the voxel-wise composition Bk(s) · Bu(s) of the estimate Bk known
from the previous resolution and the update field Bu anticipated at
the current resolution. Using this notation, yielded

Bu(s) ≈ median
{

IR(t)

Bk(t) · IT(t)

∣∣∣∣t ∈Ms

}
, (5.10)

which essentially pre-corrects the current interventional image IR by
the known Bk and estimates the bias field update from the quotient
of the remainder.

The bias field correction can be integrated into the pyramidal reg-
istration as depicted in Figure 5.4 (right). On the coarsest resolution,
the bias field was estimated via Equation 5.9. Then, the interventional
image was corrected right before MRF optimization and the bias field
estimate was passed into the next resolution level. For each subse-
quent level, the known bias field Bk was upsampled to the current
resolution level by linear interpolation and the bias field update Bu

was estimated via Equation 5.10. Afterwards, the interventional image
was corrected before MRF optimization and the composed bias field
estimate Bk ·Bu was passed into the next resolution level, if any.
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5.2.1.5 Data and Smoothness

Due to the bias field correction discussed above, it was assumed
that tissue intensities are homogeneous in the 3D pre-planning and
3D interventional images from that moment. Moreover, any scaling
between the intensities of both images was corrected as byproduct of
the bias field correction. A correction for mean intensities is therefore
not required and thus, MAD can be used as data term3 directly via

Ds(∆s) =
1

|P| |Ms|

∑
t∈Ms

|IT(t+∆s) − IR(t)| . (5.11)

The data term is averaged over a sub-volume Ms around voxel s
because the previous study has shown that a local similarity measure
like ANTs achieved already promising results. The edge length of Ms

was set to 20 mm, which was sufficient to cancel out noise and to
guarantee that artifacts from crossing applicators skew at most 5% of
each local MAD estimate.

When different displacements produce similar data costs, e. g. inside
homogeneous tissues, a smooth displacement field should be preferred.
To this end, a smoothness term4 was used which penalized different
displacements of neighboring voxels via

Vs,t(∆s,∆t) =
1

|N|
||∆s −∆t||

2. (5.12)

Moreover, Vs,t was set to + inf if any component of the difference
vector |∆s −∆t| exceeded half the voxel extent in this direction. This
ensured that the result is self-intersection free. This property is con-
served between different resolution levels by linear interpolation of
the displacement fields.

5.2.1.6 Parametrization

Regarding the choice of resolution levels, one typically downsamples
the image grid recursively by a factor of two, like it was performed
in the previous study. Different factors were investigated and found
out that a factor of two is too aggressive for challenging cases. On the
other hand, factors close to one increased the computational effort
significantly. As a compromise, a factor of

√
2 was used, which is

half-way the downsampling that occurs for a factor of two.
The number of downsamplings was set to six, which equated to

an overall downsampling factor of eight between the coarsest and
the finest resolution. This was sufficient to guarantee that even large
tissue displacement were captured by a single voxel on the coarsest

3 The normalization by |P| in Equation 5.11 simplified the weighting of terms Ds and
Vs,t in Equation 5.8

4 The normalization by |N| in Equation 5.12 simplified the weighting of terms Ds and
Vs,t in Equation 5.8
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resolution level. Therefore, the registration targets sub-voxel misalign-
ments, which will be the case on any finer resolution level as well, if
the deformable registration performs adequate.

Consequently, the allowed voxel displacements (Equation 5.8) were
sampled at a rate of 0.25 voxels along each grid axis and the maximum
displacement ∆max

s was limited by a spherical region of one voxel
radius. The edge length of the median filter (Equation 5.9 and 5.10)
was set to five voxels, which is significantly larger than the remaining
misalignment at each level given an adequate deformable registration
on the previous levels.

Investigating the trade-off between data and smoothness terms
(Equation 5.8) confirmed that displacement fields are smooth, even
when the smoothness term is completely disabled (λ = 1). This is a
direct consequence of the + inf penalty on potentially self-intersecting
displacements. In this study, λ was set to 0.9, which should be a
sufficient penalty for the given data to prevent any overfitting in
homogeneous tissues. A more detailed evaluation of the parameters is
described later (in Section 5.3).

5.2.2 Results and Discussion

In addition to the proposed MRF-BC registration method, deformable
registration based on FFDs using cubic B-splines, as well as the SyN
method (Avants et al., 2008) in combination with ANTs (Avants et al.,
2011) was evaluated and incorporated into the multi-resolution ap-
proach for comparison purposes. These two approaches were chosen
because B-splines and deformations computed with ANTs achieved
the most promising results in the previous study (see Section 5.1) and
their source code is available via ITK. In contrast to the DispField-
based deformation, the SyN-deformation extends the Lagrangian
diffeomorphic registration technique described in Avants et al. (2006)
by a new formulation comprising symmetry properties required for
a geodesic connecting of two images in the space of diffeomorphic
transformations, which guarantees symmetry regardless of the chosen
similarity measure. To find the best setup for both reference meth-
ods, different similarity measures were investigated, ending up with
MMI (Mattes et al., 2003). The same pyramid scheme as for the pro-
posed method was used, except that the finest resolution level was
excluded for B-spline registration. This was necessary to keep its com-
putation tractable. B-spline knots were evenly distributed along each
grid axis, whereby a ratio of six voxels per knot was most adequate for
the given data. Internal parameters of both methods were optimized
to improve runtime where possible.

Aggregated results of the preliminary experiments for Data-V2V0
are given in Table 5.2. Again, tumor DSCs need to be interpreted with
caution because of small tumor volumes which are present in this data
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Table 5.2: Quality comparison of the proposed MRF-BC deformable registration method to the reference methods
B-spline and SyN for the preliminary Data-V2V0. Bold values mark the best approach in each category. Italic
values should be interpreted with caution due to small tumors. MRF-BC? is a faster version, which skips
the finest resolution level. Values in d e are upper bounds on the result quality given optimal rigid (Rig.
Mask) and volume-preserving deformable (Def. Mask) registration of the gold standard segmentation masks.
Abbrev.: DSC - Dice coefficient; ED/HD - Euclidean/Hausdorff distance.

DSC [%] ED [mm] HD [mm]

Method Liver Tumor(s) Liver Tumor(s) Liver Tumor(s)

Initial 44.2± 21.1 1.2± 5.1 20.86± 8.59 40.22± 20.34 58.67± 23.16 51.67± 22.18

Rigid 90.1± 5.3 33.7± 26.7 3.28± 1.79 4.35± 3.31 8.56± 5.22 8.92± 5.72

Rig. Mask d92.0± 2.0e d40.8± 23.4e

B-spline 91.4± 4.1 39.2± 19.5 2.86± 1.24 3.72± 1.91 8.92± 5.77 9.10± 5.38

SyN 92.6± 2.8 39.1± 22.8 2.47± 0.94 4.14± 3.02 7.29± 3.76 9.11± 4.68

MRF-BC 94.3± 3.3 47.1± 28.3 1.92± 1.14 3.20± 2.58 6.13± 4.68 7.23± 5.03

MRF-BC? 94.0± 2.7 40.9± 28.0 2.02± 0.87 3.55± 2.19 6.42± 3.83 7.66± 4.03

Def. Mask d96.7± 3.2e d80.9± 13.6e
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Table 5.3: Quality comparison of the proposed MRF-BC deformable registration method for Data-V2V0 between both
registration tasks: no/all applicator present (R1/R2). Italic values should be interpreted with caution due
to small tumors. MRF-BC? is a faster version, which skips the finest resolution level. Abbrev.: DSC - Dice
coefficient; ED/HD - Average Euclidean/Hausdorff distance.

DSC [%] ED [mm] HD [mm]

Task Method Liver Tumor(s) Liver Tumor(s) Liver Tumor(s)

R1

Rigid
90.8± 3.3 36.2± 28.0 3.04± 1.14 3.77± 2.60 7.79± 3.05 7.71± 4.67

R2 89.4± 6.9 31.2± 26.6 3.51± 2.30 4.94± 3.95 9.34± 6.82 10.13± 6.63

R1 ∪ R2 90.1± 5.3 33.7± 26.7 3.28± 1.79 4.35± 3.31 8.56± 5.22 8.92± 5.72

R1

MRF-BC
95.0± 1.8 51.7± 23.3 1.68± 0.59 2.36± 1.35 5.14± 2.37 5.75± 3.09

R2 93.6± 4.4 42.5± 33.2 2.17± 1.50 4.04± 3.27 7.11± 6.18 8.56± 4.44

R1 ∪ R2 94.3± 3.3 47.1± 28.3 1.92± 1.14 3.20± 2.58 6.13± 4.68 7.23± 5.03

R1

MRF-BC?

94.6± 1.8 43.9± 26.6 1.79± 0.57 3.02± 1.63 5.54± 2.38 6.77± 3.59

R2 93.3± 3.2 38.0± 19.9 2.25± 1.07 4.07± 2.61 7.30± 4.85 8.71± 6.25

R1 ∪ R2 94.0± 2.7 40.9± 28.0 2.02± 0.87 3.55± 2.19 6.42± 3.83 7.66± 4.03
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set. The average ED tumor values should be interpreted with caution
too, because the computation of an average ED would euphemize the
results for cases where the tumor segmentation masks do not overlap.
This results from the fact, that EDs are estimated by computing the
averaged distances from one tumor contour to the nearest contour
point of the other tumor contour (see Equation 4.4).

As far as the rigid transformation is concerned, the proposed multi-
resolution scheme improved all quality measures significantly com-
pared to the initial positioning based on scanner coordinates (see "Ini-
tial" in Table 5.2). For instance, the average DSCs more than doubled
and the EDs and HDs improved by several centimeters. Comparing
rigid results to the given upper bounds on the achievable result quality,
it was observed that differences are rather small, e. g. average liver
DSCs differed by 1.9 %, while it was 44.2 % initially. Therefore, it can
be concluded that rigid results are sufficiently close to the optimal
transformation, i. e. significant gains in quality cannot be expected
without additional degrees of freedom from deformation.

The proposed MRF-BC deformable registration clearly improved
upon rigid results most of the time, but not always. For instance,
FFDs registration with B-spline struggled to improve the HD of the
tumor(s) and the liver. The latter resulted from the number of cases
where artificial deformations occured at the liver surface, as can be
seen in Figure 5.7 and Figure 5.9. SyN did not improve the HD for the
tumor tissue; they occasionally even increased the misalignment of
the tumor, as seen in Figure 5.8. In contrast, the presented approach
always improved upon the rigid results and also scored best in each
category (bold values in Table 5.2). Comparing the results to the given
upper bounds of the achievable result quality (enclosed by d e in
Table 5.2), it can be observed that differences are rather small for the
liver tissue, i. e. average DSCs differed by only 2.4 %. Therefore, it can
be concluded that significant further gains may be expected only with
regard to the tumor alignment.

In Table 5.3, results were differentiated with regards to both regis-
tration tasks. As could be expected, task R1 (no applicator present) is
less challenging than task R2 (all applicators present). The difference is
most notably for the tumor-related measures and to a smaller degree
also for the liver-related measures. The rationale is that the tumors
in Data-V2V0 are rather small in size (1.71± 1.61 mL on average) and
are thus more easily affected by applicators placed nearby or inside.
The liver, on the other hand, is rather large in size (1.60± 0.33 L on
average), making the impact of implanted applicators less significant,
except for the HD, which might increase at the puncture site.

Although task R2 was more challenging than R1, the presented
MRF-BC registration managed to improve upon the rigid results in
each category. Moreover, the magnitude of the improvement was
consistent between both registration tasks. For instance, the average
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(a) Rigid (b) B-spline (c) SyN

(d) MRF-BC (e) MRF-BC on IR (f) Gold standard on IR

Figure 5.7: Exemplary liver registration results of rigid (a), B-spline (b), SyN
(c), and the proposed MRF-BC (d) registration. The matching with
gold standard (d) and the overlay on the interventional image
IR (e) are depicted in axial (left) and coronal slices (right). Rigid
registration (a) could not account for the liver deformations, while
FFDs with B-splines (b) produced artificial deformations on the
liver surface.

(a) Rigid (b) B-spline (c) SyN (d) MRF-BC

Figure 5.8: Exemplary tumor registration results of rigid (a), B-spline (b),
SyN (c), and the proposed MRF-BC (d) registration.

liver DSCs of R1 and R2 both improved by 4.2 %, while the average
EDs and HDs decreased by about 1.3 mm and 2.4 mm, respectively.
Also tumor-related measures improved consistently for R1 and R2. The
average tumor DSCs increased by around 13.4 %, while the average
EDs and HDs decreased by about 1.2 mm and 1.7 mm, respectively.
Due to the consistency, it can be concluded that the proposed MRF-BC
approach is suited for deformable registration irrespectively of the
presence of applicators.

However, the MRF-BC registration has limitations in exceptional
cases, where the noise is too strong and extensive in the interventional
images. An example is shown in Figure 5.10. In such rare cases, addi-
tional shape information would be needed for a successful registration.

5.2.2.1 Runtime Comparison

To assess the relevance of the approach for real clinical interventions,
the runtimes were also assessed. Comparing the results in Table 5.4,
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(a) Rigid (b) B-spline (c) SyN (d) MRF-BC (e) Interven-
tional
Image

Figure 5.9: Exemplary liver registration results of rigid (a), B-spline (b), SyN
(c), and the proposed MRF-BC (d) registration as surface render-
ings from two different viewpoints compared to the interven-
tional image (e). Rigid registration (a) cannot account for the liver
deformations, while B-spline registration (b) produced artificial
deformations on the liver surface in some cases.

(a) Interventional image (b) Pre-planning image (c) Deformable registered
pre-planning image

Figure 5.10: Imperfect registration result (c) of the pre-planning image (b)
due to strong and extensive noise in the interventional image
(a).

it can be observed that B-spline and SyN registration were slowest,
taking about six and ten minutes on average, respectively. Runtimes
of more than two to three minutes are hardly acceptable in a clinical
setting and do not meet the objectives defined in this thesis. The
proposed MRF-BC approach is sufficiently fast in this respect, taking
on average about 115 s seconds.

To further improve the runtime of the proposed MRF-BC method,
the finest resolution level of the pyramidal approach could be removed.
This faster version is marked with a " ?",in Table 5.2, Table 5.3 and
Table 5.4. As can be seen from the results, a significant speed-up was
gained by sacrificing only little quality. Resulting runtimes ranged
around 35 s with results still being better than rigid, B-splines and
SyN registration in all categories.
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Table 5.4: Comparison of the runtime of the proposed MRF-BC
deformable registration method to the reference meth-
ods B-spline and SyN as well as to rigid registration
for the preliminary Data-V2V0. Bold runtimes mark
the fastest deformable approach in each category. All
experiments were carried out on consumer hardware.
MRF-BC? is a faster version of the MRF-BC approach,
which skips the finest resolution level. Abbreviations:
R1/R2 - no/all applicators present.

tc [s]

Method R1 R2 R1 ∪ R2

Rigid 12.2± 3.5 15.0± 4.0 13.6± 3.9

B-spline 364.3± 87.6 354.8± 70.8 359.8± 78.2

SyN 647.1± 164.4 599.4± 222.8 624.4± 190.9

MRF-BC 117.9± 34.4 113.2± 53.8 115.7± 43.6

MRF-BC? 33.5± 8.3 38.1± 16.2 35.8± 12.8

5.2.2.2 Conclusion

An original approach to deformable liver registration based on mag-
netic resonance images was presented. Previous studies addressing
this problem are scarce (as figured out in Section 2.5) and the proposed
MRF-BC approach is the first working solution for an interventional
setting, where patient re-positioning, bias field artifacts of different
extent, and extensive noise levels as well as computation time pose
additional challenges. These issues were successfully addressed by a
multi-resolution framework, which combines bias field correction and
MRF deformable registration in a novel way.

The proposed deformable approach makes less strict assumptions
about the bias field than standard pre-processing methods like N3 and
N4, which enables a recovery of even very localized artifacts. Contrary
to general pre-correction techniques such as PABIC, the presented
multi-resolution scheme can recover the bias field artifacts at marginal
computational cost. The proposed approach is robust, accurate, and
fast, providing a good starting point for computer-assistance during
intervention.

However, the approach has limitations in exceptional cases, where
the noise is too strong and extensive in the interventional image.
Moreover, a more comprehensive evaluation should be performed
on a larger data set to investigate the clinical applicability. Especially
because the shape of the liver and the deformations vary considerably
from patient to patient.
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5.3 complete study : joint deformable liver registra-
tion and bias field correction for mr-guided hdr

brachytherapy

In order to investigate the clinical applicability of the joint deformable
liver registration and bias field correction (MRF-BC) method pre-
sented, Data-V2V1 was used as the basis for evaluation. In addition
to the Preliminary Studies A and B, a more detailed evaluation of
the method parameters as well as an analysis of different similarity
measures for the rigid as well as affine registration was performed. In
the Preliminary Study B, a normalized MAD was used for the rigid
registration. But in the following complete study, the interventional
images have changed and thus, a re-evaluation seems appropriate.
Precisely because the results of the proposed deformable MRF-BC
registration strongly depend on the rigidly pre-registrated results. If
the rigid registration fails, the proposed deformable approach cannot
compensate for the lack of rigid deformation and would fail, too.

5.3.1 Preprocessing

In this study, pre-planning and interventional images were downsam-
pled to 1× 1× 2.5 mm voxel spacing, which is close to the original
resolution as described in Chapter 4. Therefore some adjustments
had to be made to handle non-isotropic voxel. Both images were
additionally cropped to an axis-aligned ROI. For the pre-planning
images, these were extracted automatically from the segmentation
mask. For the interventional images, a manual rectangular ROI had to
be defined by the medical technical assistance after image acquisition.
These pre-processed images were used as input for the rigid and affine
registration.

5.3.2 Material and Methods

All experiments were carried out on consumer hardware comprising
an Intel® Core™ i7-7700K @ 4.2 GHz and 16 GB RAM. Data-V2V1
included 3D pre-planning eTHRIVE and several 3D interventional
T1-TFE images of 53 patients.

First, rigid and affine registration was performed using the similarity
measures defined in Section 5.1, including NGFs, which have not
been investigated before. Second, the proposed deformable MRF-BC
approach was applied to the best results of the rigid and affine pre-
registration with different, appropriate parameter combinations. Since
all similarity measures, parameters, methods, and data sets used in
this study were already described in detail in the previous studies, the
results for each part will directly presented and discussed.
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Most of the results are shown in boxplots or aggregated tables. Box-
plots are useful to study the distributional characteristics of a group
of scores as well as the level of the scores. On each box, the central
mark indicates the median, while the bottom and top edges of the
box indicate the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points not considered outliers, and
the outliers are plotted individually as ’◦’ symbols.

5.3.3 Rigid and Affine Registration

To investigate and compare different similarity measures for the rigid
and affine registrations, the FAIR toolbox was used. It enables the
investigation of several transformation, regularization, interpolation,
and similarity measure types and it can be used in MATLAB. In addi-
tion, parts of the source code are provided as parallelized C code. As
already stated above, the selection of an appropriate rigid or affine pre-
registration is required and assumed for the subsequent deformable
registration. Hence, MI, NCC, normalized MAD, and NGF were com-
pared with each other in terms of accuracy and computing time. Both
types of registration were incorporated into a multi-resolution scheme
similar to the already presented (see Section 5.1).

5.3.3.1 Similarity Measures

First, rigid and affine liver DSC values of the four similarity measures
were compared for registration task R1. The results are shown in Fig-
ure 5.11. In general, rigid registration performed better than affine
registration. An exception is MI where affine registration performed
slightly better. NCC performed on average worse than the other simi-
larity measures, especially using an affine transformation which failed
in most cases. Best results could be obtained with NGFs in combi-
nation with a rigid registration. This combination finally achieved a
median DSC of approx. 0.91. For all similarity measures, there seem
to be two to five outliers where the registration did not perform well.
Some of them will be discussed later in more detail.

The resulting TREs with respect to the tumor centroid distances
dTum for registration task R1 are shown in Figure 5.12. These results
seem to correlate with the DSCs, which means that NGFs in combina-
tion with a rigid registration performed best and achieved a TRE of
approximately 5 mm. Rigid registrations with MI and MAD achieved
almost identical results, which also matches to the findings of the
preliminary studies. Again, NCC could not achieve sufficient results
and performed worse than the other similarity measures.

Hence short computation times are important within a clinical
settings, a runtime comparison was performed. The runtimes for rigid
and affine registrations are shown in Figure 5.13. Rigid registration
finished in most cases in less than 10 s, except for NGF. In this case,
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Figure 5.11: Comparison of rigid and affine liver DSC values for different
similarity measures S.

Figure 5.12: Comparison of rigid and affine TRE between tumor centroids
(dTum) for different similarity measures S.

runtimes ranged between 15 s and 30 s for most data sets and in
about 60 s for exceptional data sets. Affine registration calculation
usually took more than twice as long as rigid registration because
of the larger parameter space. However, no quality improvements
could be observed. Affine registration often tended to fit onto the
body boundaries due to the lack of regularization, as can be seen in
Figure 5.14.

It can be summarized that the best results in terms of accuracy and
computation time could be achieved by using a rigid registration with
NGFs. The aggregated results for both registration tasks R1 and R2 are
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Figure 5.13: Comparison of the runtimes tc of rigid and affine registrations
for different similarity measures S.

compared to the upper bounds of the optimal rigid registration and
presented in Table 5.6. Finally, rigid registration achieved an average
liver DSC of 0.88 and tumor DSC of 0.39 for task R1. Compared to the
upper DSC bounds of 0.92 and 0.46, it can be seen that the registration
probably failed in rare cases. Regarding the quality of the tumor
registration, landmark-based and tumor centroid TREs of 7.9 mm and
8.6 mm could be achieved for task R1.

(a) Pre-planning image (b) Affine transformed
pre-planning image

(c) Interventional image

Figure 5.14: Exemplary case where the standard affine registration failed
because it tends to fit to the body boundaries due to the lack of
regularization.

A comparison of the landmark-based TRE to the variability between
different observers, who selected landmarks manually, is shown in
Table 5.5. The results indicate that for three different observer, who
selected about 60 landmarks in 20 data sets, an inter-observer variabil-
ity of 1.96 mm was reached. The landmarks were set by one clinical
expert with several years of experience and two field experts on the
same vessel bifurcations. For the landmark selection, the images were
isotropically resampled to 1 mm3 voxel spacing in order to enable a
more precise selection of the landmarks.
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Table 5.5: TRE between anatomical landmarks for the best rigid registration
using SNGF. In addition, inter-observer variabilities between three
different observers are shown.

TRE [mm] Inter-observer variability [mm]

Rigid 1 & 2 2 & 3 1 & 3 1 & 2 & 3

7.87± 8.0 1.55± 1.4 2.29± 1.2 2.04± 1.2 1.96± 1.3

In the last section, a detailed investigation of similarity measures
has shown that a rigid registration with NGFs performed best for
Data-V2V1. A reason for this could be that NGFs are based on image
gradients and that the liver is contrast enhanced in both, pre-planning
and interventional images. This leads to strong gradient magnitudes
at the liver boundaries compared to the surrounding tissue and thus
would enable a more precise alignment. Although it achieved the best
results compared to the other similarity measures, the objectives of
my thesis have not yet been met. In terms of accuracy, the results of
the rigid registration are still below a DSC of 0.94 and above a TRE of
5 mm. In contrast, runtimes of about 30 s would already meet the set
objectives.

But rigid registration failed in three registration cases. These cases
are already marked in Figure 5.11 and Figure 5.14 as outliers. Fig-
ure 5.15 shows the corresponding pre-planning and interventional
images of one case. It can be seen that the FOV was extremely cropped
so that the liver is no longer completely contained. Such cases cannot
be covered at present and are therefore excluded from the evalua-
tion of the deformable MRF-BC registration in the next section. To
enable a clinical application nevertheless, these special data sets would
have to be pre-registered manually by the MRI technician after image
acquisition or must be correctly acquired in advance.

5.3.4 Deformable Registration

For the best rigid registration, the proposed joint deformable regis-
tration and bias field correction approach (MRF-BC) was extensively
evaluated. First, different parameter combinations were investigated
and discussed (in more detail compared to the Preliminary Study B).
Second, the overall best results are presented for different tasks R1 and
R2. Finally, the clinical applicability of the proposed V2V registration
is discussed.

5.3.4.1 Parametrization

Parameter tests were only performed for task R1, where the interven-
tional image did not contain any applicators. The proposed MRF-BC
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(a) (b) (c)

(d) (e) (f)

Figure 5.15: Exemplary case where the rigid registration failed. It can be seen
that the FOV of the interventional image (a-c) did not contain
the whole liver and thus, the transformation of the pre-planning
image (d-f) failed. Anatomical view from left to right: axial,
sagittal, coronal

registration procedure has in principle only two parameters, which
influence the quality and the computing time: ∆max

s specifies the maxi-
mum displacement and λ defines the weighting of the data term in
Equation 5.8.

Figures 5.16 and 5.17 show deformable V2V registration results of
the liver and tumor for different parameter combinations of ∆max

s and λ.
Regarding λ it can be seen that values of 0.8, 0.9, and 1.0 achieved the
highest liver DSC, lowest tumor centroid (dTum ) TRE, and landmark
(dLM) TRE. However, the quality differences of the internal reference
structures (dTum or dLM) are rather small compared to the liver DSCs
with respect to varying λ values.

Additionally, the influence of ∆max
s on the registration quality was

investigated for λ=0.9 and λ=1.0. The results show that the median
DSC and TRE values differ only slightly. But for ∆max

s = 3 and ∆max
s = 4 ,

the values of the outliers have slightly improved. But the computation
time tc increased drastically for larger displacements ∆max

s = 3 and
∆max
s = 4 (as can be seen in Figure 5.18) from about 70 s up to 400 s and

more. Since there was no significant quality gain using higher values,
∆max
s was set to 2 for further evaluations.

5.3.4.2 Final Results and Discussion

A comparison of the tumor TREs for both registration tasks (R1/R2) is
illustrated in Figure 5.19. It shows that the median values of the tumor
centroid distances dTum were about 2.6 mm and 4.1 mm for the tasks
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Figure 5.16: Comparison of liver DSCs of the proposed MRF-BC registration
for combinations of λ and ∆max

s .

Figure 5.17: Comparison of tumor centroid distances (dTum) of the proposed
MRF-BC registration for combinations of λ and ∆max

s .
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Figure 5.18: Comparison of the runtimes (tc) of the proposed MRF-BC regis-
tration for different values of ∆max

s .

Figure 5.19: Comparison of TREs of the proposed MRF-BC registration be-
tween both registration tasks R1 and R2.
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Table 5.6: Quality specification of the proposed MRF-BC deformable registration method with the best parametrization (λ = 0.9;∆max
s = 2) for Data-V2V1

between both registration tasks: no/all applicator present (R1/R2). Italic values should be interpreted with caution due to small tumors. Values
in d e are upper bounds on the result quality given optimal rigid (Rig. Mask) and volume-preserving deformable (Def. Mask) registration of
the segmentation masks. Abbrev.: DSC - Dice similarity coefficient; ED/HD95 - Average Euclidean/Hausdorff distance; d - Euclidean distance
between landmarks (LMs) or tumor centroids (TCs).

DSC [%] ED [mm] HD95 [mm] d [mm]

Task Method Liver Tumor(s) Liver Liver Tumor(s) LMs TCs

R1

Rigid
87.6± 8.0 39.1± 24.6 4.02± 2.85 10.39± 7.32 9.12± 7.80 7.87± 8.05 8.61± 8.03

R2 83.8± 12.1 27.4± 23.3 5.36± 4.52 14.36± 12.31 14.75± 15.53 - 14.26± 15.96

R1 ∪ R2 86.5± 9.6 35.6± 24.7 4.42± 3.47 11.59± 9.22 10.74± 10.80 - 10.24± 11.09

dR1 ∪ R2e Rig.Mask d91.9 ± 2.9e d45.5 ± 22.5e d2.53 ± 0.91e d6.99 ± 3.16e d6.35 ± 3.20e - d5.61 ± 3.45e
R1

MRF-BC
94.0± 2.3 54.2± 18.8 1.87± 0.71 5.91± 3.08 5.20± 2.32 3.75± 2.18 3.70± 2.48

R2 92.4± 4.0 40.8± 23.7 2.36± 1.46 7.38± 4.90 8.19± 5.50 - 6.75± 5.87

R1 ∪ R2 93.6± 3.0 50.3± 21.1 2.01± 1.01 6.34± 3.73 6.10± 3.79 - 4.62± 4.03

dR1 ∪ R2e Def.Mask d96.5 ± 2.5e d85.1 ± 15.6e - - - - -
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(a) Rigid (b) MRF-BC

Figure 5.20: Illustration of an example where the tumor alignment after rigid
registration (a) could be considerably improved by a MRF-BC
deformable registration (b). The 3D visualization shows the
reference liver as well as the reference tumor (red) and the
transformed tumor surfaces (green).

R1 and R2, respectively. EDLiv) values of the liver differed only slightly
between 1.7 mm and 4.1 mm for the tasks R1 and R2.

Table 5.6 presents final aggregated quality values (mean and stan-
dard deviations) of the proposed MRF-BC deformable V2V registra-
tion with the best parametrization (λ= 0.9; ∆max

s = 2) as well as the
results of the rigid registration approach for Data-V2V1 for both reg-
istration tasks: no/all applicator present (R1/R2). In addition, the
complete quality specifications per patient are given in the Appendix
in Tables A.1 and A.2. It can be seen that the proposed method could
greatly improve the rigid results and that the liver DSC values are close
to the upper bounds of the volume-preserving deformable registra-
tion of the segmentation masks. Figure 5.20 and Figure 5.21 illustrate
examples where the tumor alignment after rigid registration could
be considerably improved by a MRF-BC deformable registration. For
task R1, average TREs of 3.7 mm and 3.75 mm could be achieved be-
tween tumor centroids (dTum) and anatomical landmarks (dLM). The
latter are additionally compared to the inter-observer variability in
Table 5.7. It can bee seen that the achieved TRE of 3.75 mm is already
quite well compared to the value of 1.96 ± 1.3 mm calculated for the
inter-observer variability.

In terms of computation time, it could be shown that the proposed
joint deformable liver registration and bias field correction (MRF-BC)
approach is sufficiently fast using the best parametrization (see Fig-
ure 5.18). In combination with a rigid pre-registration, the complete
V2V approach can be executed in less than 100 s on average, which
thus meets the objectives for this task.

The results achieved for the task R2 are slightly worse than for R1,
what was to be expected because of the artifacts from the implanted ap-
plicators which impaired the similarity computation in this areas. For
those images, a TRE of 6.75 mm combined with a high standard devi-
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(a) 3D interv. (b) Rigidly transf. 3D pre-
plan.

(c) Deformably transf. 3D
pre-plan.

(d) 3D interv. segm. (e) Rigidly transf. 3D pre-
plan. segm.

(f) Deformably transf. 3D
pre-plan. segm.

Figure 5.21: Illustration of an exemplary good result of the presented de-
formable MRF-BC registration approach. (a) shows the 3D in-
terventional image, (b) the rigidly transformed 3D pre-planning
image, (c) the deformably transformed 3D pre-planning image,
(d) the 3D interventional segmentation mask, (e) the rigidly
transformed 3D pre-planning segmentation mask, and (f) the de-
formably transformed 3D pre-planning segmentation mask. Blue:
liver segmentation mask, Yellow: tumor segmentation mask.

ation of 5.87 mm was achieved between the evaluated tumor centroids.
Comparing these values with the median scores from Figure 5.19
shows that there exist rare cases with a high TRE. An exemplary case
is illustrated in Figure 5.22. In this case, the presented deformable
registration approach was not able to compensate for the liver defor-
mation (see Figure 5.22(c,f)) because of the high misalignment after
rigid registration (see Figure 5.22(b,e)). This case could also explain
the slight improvements of the outlier cases for higher values of ∆max

s

that could be observed in Figure 5.16. To compensate for such cases,
a more precise rigid pre-registration is needed. This could include a
manual correction step performed by the MRI technician immediately

Table 5.7: TRE between anatomical landmarks for the best parametrization
of the MRF-BC deformable registration. In addition, inter-observer
variabilities between three different observers are shown.

TRE [mm] Inter-observer variability [mm]

Rigid MRF-BC 1 & 2 2 & 3 1 & 3 1 & 2 & 3

7.87± 8.0 3.75± 2.1 1.55± 1.4 2.29± 1.2 2.04± 1.2 1.96± 1.3
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(a) 3D interv. (b) Rigidly transf. 3D pre-
plan.

(c) Deformably transf. 3D
pre-plan.

(d) 3D interv. segm. (e) Rigidly transf. 3D pre-
plan. segm.

(f) Deformably transf. 3D
pre-plan. segm.

Figure 5.22: Illustration of an exemplary case where the presented de-
formable MRF-BC registration approach was not able to compen-
sate for the liver deformation (c,f) because of the high misalign-
ment after rigid registration (b,e). (a) shows the 3D interventional
image, (b) the rigidly transformed 3D pre-planning image, (c)
the deformably transformed 3D pre-planning image, (d) the 3D
interventional segmentation mask, (e) the rigidly transformed
3D pre-planning segmentation mask, and (f) the deformably
transformed 3D pre-planning segmentation mask. Blue: liver
segmentation mask, Yellow: tumor segmentation mask.

after the rigid registration.

In summary, an novel approach to deformable liver registration
based on interventional magnetic resonance images was presented in
Section 5.2 and extensively evaluated on a wide range of real patient
data sets. It could be shown, that the approach can cope with most
of the challenges which were named in Section 1.2.1. The proposed
strategy meets all of the objectives set in Section 3 and is robust against
minor parameter changes. This means in particular, it achieves final
DSC of 0.94 for the liver as well as TREs of 3.75 mm and 3.7 mm for the
tumor centroids and anatomical landmarks, respectively. In addition,
it can also be applied to post-interventional data sets (task R2) but
with a compromise on accuracy. Despite the high accuracy achieved
for task R1, the runtimes of the presented approach were sufficiently
short for a clinical application.
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V O L U M E - T O - S L I C E R E G I S T R AT I O N

6.1 preliminary study

Parts of the results of the following preliminary study have already
been published at CURAC 2017 as a full paper (König et al., 2017).
Therein, an investigation of rigid and deformable intensity-based reg-
istration methods from ITK was performed to find out the suitability
of such methods for a V2S registration.

In this study, Data-V2S0 was used which comprises 22 3D interven-
tional THRIVE images and 552 2D interventional T1-FFE slices. Since
the T1-FFE images have slightly different intensity characteristics, a
square root filter was used to normalize intensities and to deal with
intensity peaks. After pre-processing, the 2D interventional images
were initialized according to their scanner coordinates which provides
a good starting point for further registration.

Liver deformation and tumor displacement in the 2D interventional
images are mainly caused by different states of breathing during image
acquisition. Such deformations caused by the breathing have already
been illustrated in Figure 1.8. Consequently, the evaluation focuses
on available rigid, affine, or deformable registration approaches that
are able to compensate for these deformations. Overall, about 90
different combinations of transformations, similarity measures, and
optimizers were evaluated, which results in a total number of 49.680
V2S registration tasks.

6.1.1 Rigid Registration

Table 6.1 briefly summarizes the results of the best combinations. For
rigid and affine registration, several combinations perform equally
well, i.e. a 3D Euler, a 3D versor, and a quaternion-based transform
in combination with MI or ANTs and LBFGS or gradient descent.
All registrations yielded comparable DSC and ED values and could
not improve the initial values (see Table 6.1). In a few cases, rigid
registration was able to improve the initial overlap (see Figure 6.1)
but there was no substantial improvement in the majority of cases,
because of a huge number of failed registrations.

6.1.2 Deformable Registration

With regards to deformable registration, most of the methods (e.g.
FEM, DispField) were not applicable to V2S registration without ex-

73
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Table 6.1: Quality and runtime comparison of V2S registration methods that
are available in ITK for Data-V2S0. Abbrev.: DSC - Dice coefficient;
ED/HD - Euclidean/Hausdorff distance.

V2S
Average Liver

tc [s] DSC [%] ED [mm]

Initial - 83 ± 13 7.9 ± 4.5

Rigid 1 83 ± 13 6.8 ± 4.6

Affine 1 82 ± 17 7.2 ± 4.9

B-spline 1 84 ± 12 6.7 ± 4.3

DispField - failure

FEM - failure

tensive modifications of the ITK codebase. FFDs with B-splines proved
to be the most suitable. In this context, the ANTs and MI similarity
measures performed best. However the resulting liver DSC and ED
values indicated that the improvement of the initialization was rather
significant.

6.1.3 Discussion

In terms of V2S registration, it can be concluded that the evaluated
registration approaches from ITK did not significantly improve the
registration accuracy compared to an initialization of the 2D interven-
tional images according to their scanner coordinates. Furthermore,
the results were not precise enough for a clinical setting. The high
standard deviations indicated that there are many cases, where rigid
or deformable registration methods worsened the results of the initial-
ization and could not compensate the liver deformations caused by
breathing.

One reason could be the lack of information in the 2D interventional
images and the many degrees of freedom during the registration
process. The lack of information means in particular that the correct
deformation of the liver was not known for certain breathing states.
For the 3D interventional images, only the deformation at acquisition
time is known. So there might be some cases, where it is impossible
to perform an accurate registration without additional information.

On the other hand, the used square root filter might not have been
sufficient in all cases to compensate for the extensive intensity inhomo-
geneities in the 2D interventional images. As a direct consequence and
in combination with the high degrees of freedom, many local optima
could arise in the area surrounding the initialization.
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(a) Initial 2D (b) Initial 3D (c) Rigidly transf. 3D

(d) Preproc. 2D (e) Inital masks (f) Rigidly transf. masks

Figure 6.1: Exemplary V2S registration results between the preprocessed
2D interventional image (d) and the 3D interventional image.
Sub-figures (b) and (e) show the results after an initialization
according to the scanner coordinates. Sub-figures (c) and (f) show
the results after rigid registration.

In summary, the following findings can be made and should be
considered in the approach to be developed afterwards:

• A scanner coordinate-based initialization already provides a
good initial matching.

• Available rigid and deformable registration approaches are not
able to improve the result quality without additional information
about the breathing.

• Intensity inhomogeneities in the 2D interventional images should
be adequately compensated.

Hence, a registration framework would be needed that can provide
an appropriate workaround for the missing breathing information.
Such a framework will be introduced, evaluated, and discussed in the
next section.

6.2 complete study

In this study, a new registration framework will be presented which
can cope with the limitations outlined above. Such a V2S registra-
tion should be able to correctly transfer the already transformed
pre-planning information (from the V2V registration) on the 2D in-
terventional images to finally improve the tumor puncture in terms



76 volume-to-slice registration

of accuracy and time. It is assumed that the 3D pre-planning images
were already correctly registered to the 3D interventional images and
that the patient was not repositioned during the intervention. This
assumption is important for the approach because the initial scanner
coordinates of the 2D interventional images will be used as guideline
for further computations.

6.2.1 Material and Methods

The approach was developed and evaluated on the basis of Data-V2S1,
which comprises 54 3D interventional images and 9738 corresponding
2D interventional T1-FFE image slices at different time points. All
experiments were carried out on consumer hardware comprising an
Intel® Core™ i7-7700K @ 4.2 GHz and 16 GB RAM.

The idea of the approach to be developed is that the radiologist does
not necessarily need a perfect deformable registration for each 2D
image slice acquired at different breathing states, but only for those
where the pre-planning information could be transformed accurately
enough. Hence, a registration framework will be presented that is able
to transform pre-planning information to the 2D interventional images
and additionally shows the degree of the matching quality. The degree
of the matching quality can be estimated by the similarity between the
3D interventional image and those 2D images which have the same
or a very similar breathing time. It is assumed that such cases show a
high similarity and that other cases, where the breathing state strongly
differs between both images, show a rather low similarity. In the next
sections, the presented steps are described in more detail.

6.2.1.1 Preprocessing

In the preliminary study, it was outlined that the intensity inhomo-
geneities in the 2D interventional images should be adequately com-
pensated before or within the registration. For this reason, the already
proposed bias field correction from the MRF-BC V2V registration was
adapted and applied to the 2D interventional images. But it has to be
assumed that the 3D interventional images were already properly bias
field-corrected and that the initial overlap of the liver in both images
is large enough. Figure 6.2 illustrates a result of the bias field correc-
tion for the 2D interventional T1-FFE images. The correction could be
performed in a few milliseconds per image within a multi-resolution
pyramid.

6.2.1.2 Multiplanar Reconstruction

In a next step, it was investigated how to reduce the degrees of
freedom of the V2S registration by using multiplanar reconstruction
(MPR) volumes of the 3D interventional images instead of the images
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(a) Bias-corr. 3D interv. im-
age

(b) Initial 2D interv. image (c) Bias-corr. 2D interv. im-
age

Figure 6.2: Illustration of the bias field correction that was applied to the
2D interventional images (c). The bias corrected 3D interven-
tional image (a) was used as a basis for the correction of the 2D
interventional images (b).

themself. Given a current 2D interventional image slice, the following
steps were performed sequentially:

1. The position and orientation of the current 2D interventional
slice was obtained from their scanner coordinates.

2. These scanner coordinates were used to find the corresponding
multiplanar reconstructed slice within the 3D interventional
planning image holding the same scanner coordinates.

3. For each different orientation of the 2D images, a multiplanar
reconstructed slice was computed from the 3D image by linear
interpolation of the adjacent grid points.

4. For each multiplanar reconstructed slice, a sub-volume within
the 3D interventional planning image was resampled orthogonal
to the image plane in both directions. The resampling was per-
formed with increments of 1 mm and a range of 1.5 cm in each
direction in order to compensate for smaller liver deformation.

5. Finally, MPR volumes with a size of 352×335×30 mm were cre-
ated and used for the subsequent matching strategy with the 2D
interventional images.

The essential steps of the proposed V2S registration are illustrated
in Figure 6.3.

6.2.1.3 Similarity Matching

Next, the matching quality between each 2D interventional image and
corresponding 3D MPR image needs to be estimated. Therefore, it
is first necessary that the interventional radiologist acquires a brief
sequence of images over one breathing cycle. Then, the similarity
matching was performed as follows:
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Figure 6.3: Illustration of the essential steps of the proposed V2S registration approach. (1) 2D interventional image slices are acquired
according to the planned applicator trajectory. (2) A multiplanar reconstructed image slice is computed from the 3D image
according to the scanner coordinates of the current 2D image slice. (3) A MPR volume is constructed and used for the
similarity matching with the stack of 2D interventional images (4).
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1. For each 2D interventional image of the acquired stack, a rigid
registration with the 3D MPR image and a similarity computa-
tion between both images was performed.

2. Similarities and associated images were sorted in a descending
order and the best and worst matches were selected. It is as-
sumed that the best match corresponds best and that the worst
match corresponds worst to the breathing state of the 3D MPR.

3. Next, the matching quality was estimated for each new 2D
interventional image with the same orientation and position by
using the already calculated maximum and minimum similaritiy
values.

4. Depending on the quality of the matching, the pre-planning
information could be color-coded and overlayed on the 2D inter-
ventional image giving the interventional radiologist feedback
on how well the transformed planning information fits the cur-
rent 2D image. For example, by using a color scale from green
(best match) to red (worst match), as illustrated in Figure 6.4.

(a) (b) (c) (d) (e)

Figure 6.4: Illustration of an exemplary color-coding depending on the sim-
ilarity between 2D interventional images (a-b, d-e) with same
orientations and the 3D MPR image (c) as a feedback system for
the interventional radiologist during the tumor puncture. Green
overlay means high similarity and red overlay low similarity.

MI was selected as a similarity measure for the matching procedure
within the presented V2S registration approach because other mea-
sures did not seem appropriate for the given Data-V2S1. NGFs did
not perform well because of the low gradient information within the
2D interventional images in contrast to the 3D MPR. Other measures
like MAD, SSD, or its normalized versions were inappropriate since
image intensity properties of the T1-TFE and T1-FFE images do not
match perfectly within the liver, i. e. vessel structures are brighter in
the T1-FFE images.
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6.2.2 Results and Discussion

All of the presented steps could be performed in less than 1 s on
the used consumer hardware, allowing clinical applicability in this
regard. The suitability in terms of accuracy is now being evaluated
and discussed. This evaluation was performed by a comparison of
segmentation masks of the 3D MPR image with the rigidly registered
segmentation masks of the best matches from each 2D interventional
image stack. Overall, a number of 1024 best matching 2D interventional
images was examined. Since the proposed V2S registration approach
is parameter-free and data set Data-V2S1 does not contain different
image sequences, the mean values and standard deviations of the
results can be aggregated and are presented in Table 6.2.

Table 6.2: Quality specifications of the proposed V2S approach. Italic values
should be interpreted with caution due to small tumors. Values
in d e are upper bounds on the result quality given optimal
volume-preserving deformable (Def. Mask) registration of the gold
standard segmentation masks. Abbrev.: DSC - Dice coefficient;
ED/HD - Euclidean/Hausdorff distance; d - Euclidean distance
between landmarks (LMs) or tumor centroids (TCs).

DSC [%] ED [mm]

Method Liver Tumor Liver Tumor

V2S 92.6 ± 4.2 55.2± 25.6 3.10 ± 1.56 3.13± 3.47

Def. Mask d 97.1 ± 2.5 e d 92.7 ± 5.7 e - -

HD [mm] d [mm]

Method Liver Tumor LMs TCs

V2S 8.10 ± 4.13 6.05 ± 4.50 4.77 ± 2.14 4.51 ± 2.29

On average, the proposed V2S registration method achieved a liver
DSC of 0.93, a tumor centroid distance dTum of 4.51 mm and a anatom-
ical landmark distance dLM of 4.77 mm. DSCs of an optimal volume-
preserving deformable registration of the gold standard segmentation
masks are also presented in order to figure out upper bounds for
the registration and to show that even clinical experts are not able to
create a perfect ground truth on the given data.

Figure 6.5 shows the DSCs and ED values of the liver and tumor
in more detail. For the liver, the median DSC was about 0.94 and the
median ED was 2.78 mm. The presented tumor DSCTum and average
surface-to-surface distances EDTum should be interpreted with caution
due to the small tumor sizes. It can be seen that there are cases where
the tumors did not overlap at all. This occurred in cases where tumor
sizes are small but it does not necessarily imply that the registration
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(a) (b)

Figure 6.5: Comparison of liver and tumor DSC (a) and ED (b) values of the
proposed V2S registration.

accuracy is low. A more meaningful evaluation measure with respect
to the tumors is the distance between the tumor centroids, which is
presented in Figure 6.6(a).

(a) (b)

Figure 6.6: Comparison of TREs (a) between tumor centroids as well as
anatomical landmarks and of liver and tumor HD95 (b) of the
proposed V2S registration.

It can be seen that the overall median and mean TREs of the pre-
sented approach are in the range between 4.4 mm (dTum) and 4.67 mm
(dLM) as well as 4.5 mm (dTum) and 4.77 mm (dLM), respectively, which
would be sufficient in terms of the accuracy. Figure 6.7 illustrates an
exemplary case where a good tumor alignment could be achieved.

The plots show that there were some outliers with a TRE higher than
12 mm. An exemplary case, where the alignment of the best matching
2D interventional image with 3D MPR image was imprecise, is shown
in Figure 6.8. Either, the similarity matching simply failed because of
strong artifacts or many local optima. It could also occur that none
of the 2D interventional images from the current stack had the same
breathing state as the corresponding 3D interventional image. The
proposed method cannot cope with such cases at this time because
an estimation or classification of the "best" similarity is not possible.
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(a) (b) (c) (d)

Figure 6.7: Illustration of an exemplary good result of the proposed V2S reg-
istration approach. In this case, a high tumor and liver alignment
was achieved. (a) shows the interventional 2D image slice, (b) the
corresponding 3D MPR slice, (c) the gold standard segmentation
mask of the interventional 2D image, and (d) the overlay of the
transformed 3D MPR segmentation mask on the segmentation
mask of the interventional 2D image.

(a) (b) (c) (d)

Figure 6.8: Illustration of an exemplary bad result of the proposed V2S
registration approach. In this case, a low tumor alignment was
achieved because of deformations that could not be compensated
by the rigid registration. (a) shows the interventional 2D image
slice, (b) the corresponding 3D MPR slice, (c) the gold standard
segmentation mask of the interventional 2D image, and (d) the
overlay of the transformed 3D MPR segmentation mask on the
segmentation mask of the interventional 2D image.

To work around this problem, more information about the current
breathing state is necessary, e. g., by using a MRI compatible breathing
belt or a tracking system like the Moiré Phase Tracking (Gumus et al.,
2015). In this context, it was investigated whether the deformations
can be compensated with a deformable registration like the MRF-BC
approach presented early. However, the application of the procedure
had no impact on the results and thus was neglected from further
evaluations. Another possibility would be a preliminary acquisition
of the 3D pre-planning image at different breathing states to create a
patient specific 4D liver breathing model. Additionally, images could
be acquired in the same decubital position which is used during
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the intervention. Such small changes to the clinical workflow could
significantly simplify and improve computer-assisted registration.

Figure 6.9: Illustration of the limitations of the V2S registration approach.
The similarity matching step failed in cases where two ore more
applicators were present in a 2D interventional slice near the liver
boundary.

Other cases that cannot be covered by the presented procedure in-
clude images that were acquired at the exact moment when the needle
is pierced through the skin. In these images the tissue is strongly
deformed and thus the similarity measure can become imprecise.
Other limitations occur in cases where two ore more applicators were
present in a 2D interventional slice near the liver boundary. Figure 6.9
illustrates an exemplary case.

In summary, a V2S registration framework was proposed that is able
to transfer diagnostic information from the 3D interventional image on
the 2D interventional image slices. The system achieved a sufficiently
high accuracy with regard to the tumor TRE, which was on average
lower than the accuracy set as one of the objectives in this thesis. In
addition, the presented system is fast enough to transfer information
on each temporal 2D interventional slice that is acquired during the
tumor puncture using current available consumer hardware. Since no
information is available regarding the current breathing state, which
also influences the liver deformations, an appropriate strategy was
presented that is able to cope with this. The presented method has
limitations in rare cases, when image slices near the liver boundary
contain several applicators.





7
C O N C L U S I O N

The overall goal of this thesis was to improve MRI-based high-dose
rate brachytherapy interventions by means of computer-assistance. At
first, the clinical workflow was analyzed to figure out limitations that
could possibly be solved using suitable computer-assisted methods. It
was found out, that the main flaw is the lack of an adequate transfer
of pre-planning information onto the interventional images to support
the radiologist during the tumor puncture. The contributions of the
thesis are the investigation of exististing and - in case necessary - the
developement of novel strategies to provide a solution suitable for
challenges faced in interventional settings seen in the clinical routine.
Hence, meaningful objectives were set in cooperation with a clinical
partner.

To achieve the objectives, a two-step approach was presented which
comprised a fast and accurate volume-to-volume as well as a subse-
quent volume-to-slice registration. For both tasks, separate challenges
were defined depending on the available data sets of each task. Next,
a comprehensive investigation and evaluation of the related works
and of state-of-the-art registration methods was performed in sev-
eral preliminary studies. With regard to the related work, it could be
demonstrated that there is still a need for further research because
the few comparable works did not meet the defined objectives. In
addition, most of the investigated, freely available rigid, affine, and
deformable registration methods did not work well without further
adjustments either. Based on findings from the preliminary studies
discussed in this thesis, new strategies were derived for both tasks
which have addressed the problems identified in a meaningful way.

Considering the volume-to-volume registration, a novel joint de-
formable liver registration and bias field correction (MRF-BC) method
was presented which is, to the best of my knowledge, the first working
solution for an interventional setting, where patient re-positioning,
bias field artifacts of different extent, and extensive noise levels as
well as limited time pose additional challenges. These issues were suc-
cessfully addressed by a multi-resolution framework, which combines
bias field correction and MRF deformable registration in a novel way.
It could be demonstrated on a wide range of real patient data sets
that the proposed approach is robust, accurate, and fast, providing
a good starting point for computer-assistance during intervention.
The presented MRF-BC was able to meet all of the defined objectives
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and it was robust against minor parameter changes. It achieved final
Dice similarity coefficient values of 0.94 for the liver as well as target
registration errors of 3.75 mm and 3.7 mm for the tumor centroids
and anatomical landmarks, respectively. In addition, the presented
method can also be applied to post-interventional data sets but with a
compromise on accuracy. The average runtime of the presented rigid
and deformable approach was about 100 s, which is sufficiently short
for a usage within a clinical setting.

With regard to volume-to-slice registration, a framework was pro-
posed that is able to transfer diagnostic information on the interven-
tional image slices to guide the radiologists during the puncture of the
tumors. The main challenge was to cope with the different breathing
states during the intervention because breathing has a influence on the
deformation of the liver and thus, on the accuracy of the registration.
Since no additional information are available, an appropriate strategy
was presented that is able to achieve a sufficiently high accuracy for
those 2D interventional images that matched best to the breathing
state of the corresponding 3D data set. In this context, a visual feed-
back system was proposed, which allows the radiologist to assess the
quality of the transformed information during the puncture in real-
time. The presented volume-to-slice registration approach achieved
median and mean target registration errors of 4.4 mm and 4.67 mm be-
tween corresponding tumor centroids as well as 4.5 mm and 4.77 mm,
between corresponding landmarks on vessel bifurcations, respectively.
Thus, it was shown that the system was able to meet the objectives on
average but holding relatively high standard deviations.

To sum up, the presented methods were able to achieve the defined
objectives to a sufficient extent. The suitability of the methods was
proven on a high number of real data sets comprising gold standard
annotations from a clinical expert with several years of experience
which were used for the evaluation. However, they also have limita-
tions in rare cases for which the accuracy decreases. These cases either
included strong artifacts from many implanted applicators, unusually
high deformations of the liver, or a limited field of view cropping parts
of the liver volume. Future work should mainly focus on the adaption
of the clinical workflow to ease the registration tasks, which means in
particular, an acquisition of the liver with different patient positioning
and at different breathing states, e. g., inhale, exhale, and intermediate,
during the diagnostic stage prior to intervention. This would enable
the creation of a patient-specific liver breathing model which could be
used within the volume-to-slice registration to allow a highly accurate
registration at any point in time and for any 2D interventional image.
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Table A.1: Complete quality specifications of the proposed MRF-BC de-
formable registration of Data-V2V1 per patient (Part 1 of 2).

data DSC [%] ED [mm] HD95 [mm] d [mm]

Liver Tumor Liver Liver Tumor TCs

1 96,20 63,40 1,20 3,20 3,17 1,54

2 93,87 63,37 1,87 6,27 3,88 2,72

3 94,20 53,59 1,65 5,00 4,42 2,41

4 95,34 88,03 1,63 4,72 3,85 2,44

5 95,79 40,75 1,51 4,22 6,72 5,86

6 93,54 46,91 2,21 8,38 7,64 6,64

7 96,52 70,86 1,24 3,72 3,30 2,06

8 87,82 45,59 4,13 15,24 14,03 11,00

9 93,28 15,51 2,37 7,50 7,13 5,51

10 92,58 0,00 2,23 7,37 - -

11 94,33 9,57 1,64 5,10 7,82 6,61

12 96,23 53,79 1,10 2,97 5,91 3,72

13 92,96 64,19 2,12 6,27 5,60 4,79

14 93,42 79,92 2,23 7,54 2,44 1,32

15 94,34 70,66 1,38 3,78 3,43 1,75

16 93,87 42,10 1,88 5,12 5,75 4,16

17 94,80 54,67 1,53 5,00 3,85 2,19

18 94,38 49,72 1,82 5,08 7,21 5,57

19 95,96 71,65 1,34 3,44 4,34 3,26

20 96,89 55,86 0,98 2,69 4,89 2,13

21 96,14 83,27 1,20 3,29 2,50 1,01

22 94,65 43,85 1,73 5,00 4,69 2,65

23 92,37 50,92 2,42 7,14 5,85 5,42

24 93,49 62,61 2,07 5,59 5,74 5,04

25 93,48 39,86 2,24 6,16 8,43 7,45

26 96,89 32,45 1,09 2,97 4,24 2,48

27 94,83 62,70 1,58 5,00 4,22 3,24

28 93,71 36,50 1,94 5,83 - -

29 89,90 35,80 3,05 9,94 11,04 11,13

30 94,10 32,69 1,69 5,00 6,37 5,28

31 91,23 33,10 2,20 7,16 - -

32 95,70 88,46 1,22 4,03 2,69 0,96

33 94,68 61,10 1,82 6,71 3,87 2,78

34 94,93 64,49 1,62 5,00 3,92 2,30
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Table A.2: Complete quality specifications of the proposed MRF-BC de-
formable registration of Data-V2V1 per patient (Part 2 of 2).

data DSC [%] ED [mm] HD95 [mm] d [mm]

Liver Tumor Liver Liver Tumor TCs

35 92,84 48,86 2,24 6,71 5,77 2,83

36 88,63 26,07 3,27 12,30 7,97 7,74

37 96,18 72,81 1,23 3,16 3,88 1,95

38 94,11 62,73 1,99 5,94 5,64 2,12

39 93,13 77,39 2,52 8,60 2,97 1,18

40 89,29 72,49 2,73 9,85 2,80 2,27

41 95,26 80,72 1,28 3,77 3,72 0,60

42 86,84 32,77 4,33 18,20 2,99 1,32

43 94,95 0,00 1,60 5,13 - -

44 95,72 53,48 1,34 4,10 5,18 3,78

45 96,30 0,00 1,34 3,78 - -

46 96,57 34,69 1,13 2,80 4,09 4,06

47 95,23 68,17 1,52 4,00 4,79 2,42

48 96,04 42,59 1,41 4,03 - -

49 96,25 49,09 1,12 2,97 6,22 3,87

50 93,46 47,51 1,91 6,27 6,82 3,86

51 95,12 28,64 1,82 5,10 8,27 7,59

52 87,43 0,00 3,56 11,31 - -

53 91,37 3,49 2,36 7,50 12,42 11,13

54 87,22 11,89 3,30 11,15 8,64 8,39

55 93,33 72,85 2,18 7,07 3,28 2,26

56 94,36 41,96 1,40 4,10 12,99 9,97

57 95,41 49,70 1,32 3,72 4,81 2,89

58 95,76 47,53 1,28 3,77 5,39 3,70

59 95,06 44,16 1,61 5,00 4,28 2,40

60 92,19 49,63 2,43 7,63 6,90 5,81

61 94,38 70,45 1,86 5,00 4,57 2,44

62 80,83 0,00 7,51 24,65 26,46 26,20

63 92,27 41,92 2,35 8,17 8,89 8,21

64 85,98 24,68 4,42 13,24 13,17 12,94

65 93,67 53,19 1,92 5,94 4,72 3,12

66 95,50 61,28 1,44 4,88 4,05 3,06

67 95,01 0,00 1,56 4,67 - -

68 94,51 78,27 1,99 5,55 5,71 3,75
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Bajcsy, R. and Kovačič, S. (1989). “Multiresolution elastic matching.”
In: Computer Vision, Graphics, and Image Processing 46.1, pp. 1–21.

Birkfellner, W., Figl, M., Kettenbach, J., Hummel, J., Homolka, P.,
Schernthaner, R., Nau, T., and Bergmann, H. (2007). “Rigid 2D/3D
slice-to-volume registration and its application on fluoroscopic CT
images.” In: Medical Physics 34.1, pp. 246–255.

91



92 references

Bookstein, F. L. (1989). “Principal warps: Thin-plate splines and the
decomposition of deformations.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 11.6, pp. 567–585.

Böttger, T., Ruiter, N. V., Stotzka, R., Bendl, R., and Herfarth, K. K.
(2003). “Registration of CT and MRI volume data of the liver.” In:
International Congress Series. Vol. 1256. Elsevier, pp. 118–123.

Boykov, Y., Veksler, O., and Zabih, R. (2001). “Fast approximate energy
minimization via graph cuts.” In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 23.11, pp. 1222–1239.

Bro-Nielsen, M. and Gramkow, C. (1996). “Fast fluid registration of
medical images.” In: Visualization in Biomedical Computing. Springer,
pp. 265–276.

Brock, K. K., Dawson, L. A., Sharpe, M. B., Moseley, D. J., and Jaffray,
D. A. (2006). “Feasibility of a novel deformable image registration
technique to facilitate classification, targeting, and monitoring of
tumor and normal tissue.” In: International Journal of Radiation
Oncology* Biology* Physics 64.4, pp. 1245–1254.

Broit, C. (1981). “Optimal registration of deformed images.”
Brown, L. G. (1992). “A survey of image registration techniques.” In:

ACM Computing Surveys (CSUR) 24.4, pp. 325–376.
Carrillo, A., Duerk, J. L., Lewin, J. S., and Wilson, D. L. (2000). “Semi-

automatic 3-d image registration as applied to interventional MRI
liver cancer treatment.” In: IEEE Transactions on Medical Imaging
19, pp. 175–185.

Center, M. M. and Jemal, A. (2011). “International trends in liver cancer
incidence rates.” In: Cancer Epidemiology and Prevention Biomarkers
20.11, pp. 2362–2368.

Cha, D. I., Lee, M. W., Song, K. D., Oh, Y.-T., Jeong, J.-Y., et al. (2017). “A
prospective comparison between auto-registration and manual reg-
istration of real-time ultrasound with MR images for percutaneous
ablation or biopsy of hepatic lesions.” In: Abdominal Radiology 42.6,
pp. 1799–1808.

Chalana, V. and Kim, Y. (1997). “A methodology for evaluation of
boundary detection algorithms on medical images.” In: IEEE Trans-
actions on Medical Imaging 16.5, pp. 642–652.

Cheng, X., Zhang, L., and Zheng, Y. (2015). “Deep similarity learn-
ing for multimodal medical images.” In: Computer Methods in
Biomechanics and Biomedical Engineering: Imaging & Visualization 6.3,
pp. 248–252.

Choi, J.-Y., Choi, J.-S., Kim, M.-J., Lim, J. S., Park, M. S., Kim, J. H., and
Chung, Y. E. (2010). “Detection of hepatic hypovascular metastases:
3D gradient echo MRI using a hepatobiliary contrast agent.” In:
Journal of Magnetic Resonance Imaging 31.3, pp. 571–578.

Christensen, G. E., Miller, M. I., and Vannier, M. (1994). “A 3d de-
formable magnetic resonance textbook based on elasticity.” In:



references 93

AAAI Spring Symposium Series: Applications of Computer Vision in
Medical Image Processing, pp. 153–156.

Collettini, F., Schnapauff, D., Poellinger, A., Denecke, T., Schott, E.,
et al. (2012). “Hepatocellular carcinoma: computed-tomography-
guided high-dose-rate brachytherapy (CT-HDRBT) ablation of
large (5–7 cm) and very large (> 7 cm) tumours.” In: European
Radiology 22.5, pp. 1101–1109.

Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., and
Marchal, G. (1995). “Automated multi-modality image registration
based on information theory.” In: Information Processing in Medical
Imaging. Vol. 3. 6, pp. 263–274.

Davis, M. H., Khotanzad, A., Flamig, D. P., and Harms, S. E. (1997). “A
physics-based coordinate transformation for 3-D image matching.”
In: IEEE Transactions on Medical Imaging 16.3, pp. 317–328.

De Jong, M. C., Pulitano, C., Ribero, D., Strub, J., Mentha, G., et al.
(2009). “Rates and patterns of recurrence following curative intent
surgery for colorectal liver metastasis: an international multi-
institutional analysis of 1669 patients.” In: Annals of Surgery 250.3,
pp. 440–448.

Dupuis, P., Grenander, U., and Miller, M. I. (1998). “Variational prob-
lems on flows of diffeomorphisms for image matching.” In: Quar-
terly of Applied Mathematics 56.3, pp. 587–600.

Elhawary, H., Oguro, S., Tuncali, K., Morrison, P. R., Tatli, S., Shyn, P. B.,
Silverman, S. G., and Hata, N. (2010). “Multimodality non-rigid
image registration for planning, targeting and monitoring during
CT-guided percutaneous liver tumor cryoablation.” In: Academic
Radiology 17.11, pp. 1334–1344.

Fei, B., Duerk, J. L., Boll, D. T., Lewin, J. S., and Wilson, D. L. (2003).
“Slice-to-volume registration and its potential application to in-
terventional MRI-guided radio-frequency thermal ablation of
prostate cancer.” In: IEEE Transactions on Medical Imaging 22.4,
pp. 515–525.

Ferlay, J., Colombet, M., Soerjomataram, I., Dyba, T., Randi, G., et
al. (2018). “Cancer incidence and mortality patterns in Europe:
Estimates for 40 countries and 25 major cancers in 2018.” In:
European Journal of Cancer 103, pp. 356–387.

Ferlay, J., Steliarova-Foucher, E., Lortet-Tieulent, J., Rosso, S., Coebergh,
J.-W. W., Comber, H., Forman, D., and Bray, F. (2013). “Cancer inci-
dence and mortality patterns in Europe: estimates for 40 countries
in 2012.” In: European Journal of Cancer 49.6, pp. 1374–1403.

Fernandez-de-Manuel, L., Wollny, G., Kybic, J., Jimenez-Carretero, D.,
Tellado, J. M., et al. (2014). “Organ-focused mutual information
for nonrigid multimodal registration of liver CT and Gd-EOB-
DTPA-enhanced MRI.” In: Medical Image Analysis 18.1, pp. 22–
35.



94 references

Ferrante, E. and Paragios, N. (2017). “Slice-to-volume medical image
registration: A survey.” In: Medical Image Analysis 39, pp. 101–123.

Fischbach, F., Thormann, M., Seidensticker, M., Kropf, S., Pech, M.,
and Ricke, J. (2011). “Assessment of fast dynamic imaging and
the use of Gd-EOB-DTPA for MR-guided liver interventions.” In:
Journal of Magnetic Resonance Imaging 34.4, pp. 874–879.

Fischer, B. and Modersitzki, J. (2003). “Curvature based image regis-
tration.” In: Journal of Mathematical Imaging and Vision 18.1, pp. 81–
85.

Foruzan, A. H. and Motlagh, H. R. (2015). “Multimodality liver reg-
istration of Open-MR and CT scans.” In: International Journal of
Computer Assisted Radiology and Surgery 10.8, pp. 1253–1267.

Frydrychowicz, A., Lubner, M. G., Brown, J. J., Merkle, E. M., Nagle,
S. K., Rofsky, N. M., and Reeder, S. B. (2012). “Hepatobiliary MR
imaging with gadolinium-based contrast agents.” In: Journal of
Magnetic Resonance Imaging 35.3, pp. 492–511.

Garden, O. J., Rees, M., Poston, G., Mirza, D., Saunders, M., Led-
ermann, J., Primrose, J., and Parks, R. (2006). “Guidelines for
resection of colorectal cancer liver metastases.” In: Gut 55.suppl 3,
pp. iii1–iii8.

Glocker, B. (2010). “Random Fields for Image Registration.”
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., and Paragios,

N. (2008). “Dense image registration through MRFs and efficient
linear programming.” In: Medical Image Analysis 12.6, pp. 731–741.

Gomez-Iturriaga, A., Casquero, F., Urresola, A., Ezquerro, A., Lopez,
J. I., et al. (2016). “Dose escalation to dominant intraprostatic
lesions with MRI-transrectal ultrasound fusion High-Dose-Rate
prostate brachytherapy. Prospective phase II trial.” In: Radiotherapy
and Oncology 119.1, pp. 91–96.

Gumus, K., Keating, B., White, N., Andrews-Shigaki, B., Armstrong,
B., et al. (2015). “Comparison of optical and MR-based tracking.”
In: Magnetic Resonance in Medicine 74.3, pp. 894–902.

Haber, E. and Modersitzki, J. (2006). “Intensity gradient based regis-
tration and fusion of multi-modal images.” In: International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention
(MICCAI). Springer, pp. 726–733.

Hallet, J., Sa Cunha, A., Adam, R., Goéré, D., Bachellier, P., et al. (2016).
“Factors influencing recurrence following initial hepatectomy for
colorectal liver metastases.” In: British Journal of Surgery 103.10,
pp. 1366–1376.

Holden, M. (2008). “A review of geometric transformations for non-
rigid body registration.” In: IEEE Transactions on Medical Imaging
27.1, p. 111.

Jamriska, O., Sykora, D., and Hornung, A. (2012). “Cache-efficient
graph cuts on structured grids.” In: IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, pp. 3673–3680.



references 95

Kadoury, S., Zagorchev, L., Wood, B. J., Venkatesan, A., Weese, J., Jago,
J., and Kruecker, J. (2012). “A model-based registration approach
of preoperative MRI with 3D ultrasound of the liver for Interven-
tional guidance procedures.” In: IEEE International Symposium on
Biomedical Imaging (ISBI). IEEE, pp. 952–955.

Karabis, A., Giannouli, S., and Baltas, D. (2005). “40 HIPO: A hy-
brid inverse treatment planning optimization algorithm in HDR
brachytherapy.” In: Radiotherapy and Oncology 76, p. 29.

Kaus, M. R., Brock, K. K., Pekar, V., Dawson, L. A., Nichol, A. M., and
Jaffray, D. A. (2007). “Assessment of a model-based deformable
image registration approach for radiation therapy planning.” In:
International Journal of Radiation Oncology* Biology* Physics 68.2,
pp. 572–580.

Kim, K. W., Lee, J. M., Klotz, E., Kim, S. J., Kim, S. H., Kim, J. Y.,
Han, J. K., and Choi, B. I. (2011). “Safety margin assessment
after radiofrequency ablation of the liver using registration of
preprocedure and postprocedure CT images.” In: American Journal
of Roentgenology 196.5, pp. 565–572.

König, T., Rak, M., Fensky, S., Held, F., Tönnies, K. D., and Wybranski,
C. (2017). “Feasibility of rigid and deformable liver registration
for MRI-guided HDR brachytherapy.” In: 16. Jahrestagung der
Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie
(CURAC), pp. 17–23.

Lange, T., Eulenstein, S., Hünerbein, M., and Schlag, P.-M. (2003).
“Vessel-based non-rigid registration of MR/CT and 3D ultrasound
for navigation in liver surgery.” In: Computer Aided Surgery 8.5,
pp. 228–240.

Lange, T., Wenckebach, T. H., Lamecker, H., Seebass, M., Hünerbein,
M., Eulenstein, S., Gebauer, B., and Schlag, P. M. (2005). “Regis-
tration of different phases of contrast-enhanced CT/MRI data for
computer-assisted liver surgery planning: Evaluation of state-of-
the-art methods.” In: The International Journal of Medical Robotics
and Computer Assisted Surgery 1.3, pp. 6–20.

Lasowski, R., Benhimane, S., Vogel, J., Jakobs, T. F., Zech, C. J., Trumm,
C., Clason, C., and Navab, N. (2008). “Adaptive visualization for
needle guidance in RF liver ablation: taking organ deformation
into account.” In: Medical Imaging 2008: Visualization, Image-Guided
Procedures, and Modeling. Vol. 6918. International Society for Optics
and Photonics.

Lee, B. C., Lee, H. G., Park, I. J., Kim, S. Y., Kim, K.-H., et al. (2016).
“The role of radiofrequency ablation for treatment of metachronous
isolated hepatic metastasis from colorectal cancer.” In: Medicine
95.39.

Lee, W.-C. C., Tublin, M. E., and Chapman, B. E. (2005). “Registration
of MR and CT images of the liver: comparison of voxel similarity



96 references

and surface based registration algorithms.” In: Computer Methods
and Programs in Biomedicine 78.2, pp. 101–114.

Lewis, E. B. and Fox, N. C. (2004). “Correction of differential intensity
inhomogeneity in longitudinal MR images.” In: NeuroImage 23.1,
pp. 75–83.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., et al.
(2017). “A survey on deep learning in medical image analysis.” In:
Medical Image Analysis 42, pp. 60–88.

Liu, P., Eberhardt, B., Wybranski, C., Ricke, J., and Lüdemann, L. (2013).
“Nonrigid 3D medical image registration and fusion based on
deformable models.” In: Computational and Mathematical Methods
in Medicine 2013, pp. 1–10.

Luu, H. M., Klink, C., Niessen, W., Moelker, A., and Van Walsum, T.
(2016). “Non-rigid registration of liver CT images for CT-guided
ablation of liver tumors.” In: PLoS ONE 11.9.

Mahapatra, D. and Sun, Y. (2012). “Integrating segmentation informa-
tion for improved MRF-based elastic image registration.” In: IEEE
Transactions on Image Processing 21.1, pp. 170–183.

Manfredi, S., Lepage, C., Hatem, C., Coatmeur, O., Faivre, J., and
Bouvier, A.-M. (2006). “Epidemiology and management of liver
metastases from colorectal cancer.” In: Annals of Surgery 244.2,
p. 254.

Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K., and Eubank, W.
(2001). “Nonrigid multimodality image registration.” In: Medical
Imaging 2001: Image Processing. Vol. 4322. International Society for
Optics and Photonics, pp. 1609–1621.

Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K., and Eubank,
W. (2003). “PET-CT image registration in the chest using free-
form deformations.” In: IEEE Transactions on Medical Imaging 22.1,
pp. 120–128.

Mauri, G., Cova, L., De Beni, S., Ierace, T., Tondolo, T., Cerri, A.,
Goldberg, S. N., and Solbiati, L. (2015). “Real-time US-CT/MRI
image fusion for guidance of thermal ablation of liver tumors
undetectable with US: results in 295 cases.” In: CardioVascular and
Interventional Radiology 38.1, pp. 143–151.

Miao, S., Wang, Z. J., and Liao, R. (2016). “A CNN regression approach
for real-rime 2D/3D registration.” In: IEEE Transactions on Medical
Imaging 35.5, pp. 1352–1363.

Micu, R., Jakobs, T. F., Urschler, M., and Navab, N. (2006). “A new
registration/visualization paradigm for CT-fluoroscopy guided
RF liver ablation.” In: International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI). Springer,
pp. 882–890.

Modersitzki, J. (2004). Numerical methods for image registration. Oxford
University Press on Demand.



references 97

Modersitzki, J. (2009). FAIR: Flexible Algorithms for Image Registration.
Philadelphia: SIAM.

Mohnike, K., Wieners, G., Schwartz, F., Seidensticker, M., Pech, M., et
al. (2010). “Computed tomography–guided high-dose-rate brachyther-
apy in hepatocellular carcinoma: safety, efficacy, and effect on
survival.” In: International Journal of Radiation Oncology* Biology*
Physics 78.1, pp. 172–179.

Mohnike, K., Wolf, S., Damm, R., Seidensticker, M., Seidensticker, R.,
et al. (2016). “Radioablation of liver malignancies with interstitial
high-dose-rate brachytherapy.” In: Strahlentherapie und Onkologie
192.5, pp. 288–296.

Pace, D. F., Aylward, S. R., and Niethammer, M. (2013). “A locally adap-
tive regularization based on anisotropic fiffusion for deformable
image registration of sliding organs.” In: IEEE Transactions on
Medical Imaging 32.11, pp. 2114–2126.
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