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Abstract

Change point analysis is concerned with the detection of changes in the underlying
model of a sequence of observations. There are two different approaches in the context
of change point analysis. In the classical a-posteriori approach, the completely observed
data set is available when starting the testing procedure. In sequential change point
analysis, data is monitored by testing for a structural break after each new observation.

In the first and more theoretical part of this thesis we propose a general framework
of sequential testing procedures based on U-statistics which, as an example, yields a
robust sequential change point procedure related to a Wilcoxon-type test statistic. The
critical values can be obtained from the derived limit distribution of the test statistic
under the null hypothesis and we show that the proposed tests have asymptotic power
one. Furthermore, we consider monitoring schemes that are adapted to late changes.
We derive the respective asymptotics under the null hypothesis as well as under the
alternative. Sequential change point procedures naturally involve a certain detection
delay as some data needs to be collected after the change to obtain statistical signi-
ficance. The speed of detection is of particular importance in sequential change point
analysis as, for example, monitoring patient or machine data requires an intervention as
soon as possible after a structural break occurred. Therefore, we derive the asymptotic
distribution of the stopping time. In a simulation study we assess the finite sample
performance of the testing procedures as well as the stopping time.

In the second part of this work we develop a-posteriori change point procedures for
the evaluation of covariance stationarity in functional data where the focus is on the
application to functional magnetic resonance imaging (fMRI) data. Such scans provide
a large amount of information for analyzing activities in the brain and in particular the
interactions between brain regions. Resting state fMRI data is widely used for infer-
ring connectivities in the brain which are not due to external factors. As such analyses
strongly rely on stationarity, change point procedures can be applied in order to detect
possible deviations from this crucial assumption. We model fMRI data as functional
time series and develop tools for the detection of deviations from covariance station-
arity via change point alternatives. We propose a nonparametric procedure which is
based on dimension reduction techniques. However, as the projection of the functional
time series onto a finite and rather low-dimensional subspace involves the risk of miss-
ing changes which are orthogonal to the projection space, we also consider two test
statistics which take the full functional structure into account. The proposed methods
are compared in a simulation study and applied to more than 100 resting state fMRI
data sets.



Zusammenfassung

Die Changepoint Analyse befasst sich mit der Erkennung von Änderungen in dem
Modell, welches einer Folge von Beobachtungen zugrunde liegt. In diesem Gebiet gibt
es zwei unterschiedliche Ansätze. Im klassischen a-posteriori Ansatz wird das Test-
verfahren auf den komplett beobachteten Datensatz angewandt. In der sequentiellen
Changepoint Analyse hingegen werden Daten dadurch überwacht, dass nach jeder neu-
en Beobachtung ein Test auf einen Strukturbruch durchgeführt wird.

Im ersten und eher theoretischen Teil dieser Arbeit führen wir eine allgemeine Klas-
se von sequentiellen Testverfahren ein, welche auf U-Statistiken basieren. Damit ist
es unter andem möglich, basierend auf einer Wilcoxon-Teststatistik ein robustes se-
quentielles Verfahren zur Erkennung von Strukturbrüchen zu erhalten. Die kritischen
Werte können mit Hilfe der hergeleiteten Grenzverteilung der Teststatistik unter der
Nullhypothese bestimmt werden und wir zeigen, dass die Testverfahren asymptotische
Güte eins besitzen. Außerdem betrachten wir alternative Teststatistiken, welche ins-
besondere auf die bessere Erkennung von späten Änderungen abzielen. Auch für diese
Verfahren leiten wir die Grenzverteilung unter der Nullhypothese her und zeigen, dass
sie asymptotische Güte eins haben. Sequentielle Testverfahren beinhalten immer eine
gewisse Verzögerung in der Erkennung eines Strukturbruches, da zunächst einige Beob-
achtungen nach der Änderung gesammelt werden müssen, um statistische Signifikanz
zu erhalten. Die Schnelligkeit der Strukturbrucherkennung ist von besonderer Rele-
vanz in der sequentiellen Changepoint Analyse, da beispielsweise die Überwachung von
Partienten- oder Maschinendaten einen unmittelbaren Eingriff erfordert, nachdem eine
Änderung eingetreten ist. Dazu leiten wir die asymptotische Verteilung der Stoppzeit
her. In einer Simulationsstudie betrachten wir das Verhalten der Testverfahren sowie
der Stoppzeiten für endlichen Stichprobenumfang.

Im zweiten Teil dieser Arbeit entwickeln wir a-posteriori Verfahren zur Evaluierung
der Kovarianzstationarität in funktionalen Daten. Dabei liegt der Fokus auf der An-
wendung auf Daten der funktionalen Magnetresonanztomographie (fMRT). Solche Auf-
nahmen liefern eine riesige Menge an Informationen zur Analyse von Gehirnaktivitäten
und insbesondere der Interaktionen zwischen verschiedenen Gehirnregionen. Im Ruhe-
zustand aufgenommene fMRT Daten werden häufig genutzt, um Konnektivitäten im
Gehirn abzuleiten, welche nicht durch externe Faktoren verursacht werden. Da sol-
che Analysen stark auf die Stationaritätsannahme angewiesen sind, können Verfahren
zur Strukturbrucherkennung eingesetzt werden, um mögliche Abweichungen von dieser
entscheidenden Annahme zu detektieren. Wir modellieren fMRT Daten als funktio-
nale Zeitreihen und enwickeln Methoden zur Erkennung einer Abweichung von der
Kovarianzstationarität mittels Changepoint Alternativen. Wir schlagen zunächst ein
Verfahren vor, welches auf Dimensionsreduktion basiert. Allerdings geht die Projek-
tion der funktionalen Zeitreihe auf einen niedrigdimensionalen Unterraum mit dem
Risiko einher, dass Änderungen, welche orthogonal zum Projektionsraum sind, nicht
erkannt werden. Daher betrachten wir zwei alternative Teststatistiken, welche die volle
funktionale Struktur der Daten berücksichtigen. Die vorgeschlagenen Methoden wer-
den in einer Simulationsstudie verglichen und auf mehr als 100 Ruhezustand fMRT
Datensätze angewandt.
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Introduction

Change Point Analysis

Change point analysis provides powerful statistical tools for evaluating structural sta-
bility of data which is a problem that first arose in the context of quality control and
is now of great interest in numerous and diverse fields such as economics, medicine,
technology and meteorology. More precisely, it deals with the detection of structural
breaks in time series which are sequences of observations that are ordered in time. A
structural break, which is called a change point, is a point in time at which the model of
the observed time series changes. In addition to the obvious practical relevance for the
detection of critical changes in data, change point procedures are also of great interest
for the validation of applicability of other statistical methods which are often based on
the assumption that the observed time series is stationary which means its behavior is
stable over time. Change point analysis is not only concerned with deciding whether
there is a change or not (hypothesis testing) but also with estimating the number and
the location of the change points if the null hypothesis of structural stability has been
rejected. In this work, we focus on the testing problem.

With roots dating back to the 1950’s (Page (1954), Page (1955a), Page (1955b)), change
point analysis is a well-established research area. In recent years, it has experienced a
boom due to increasing amounts of automatically collected data which simultaneously
become more and more complex and thus require new statistical methods. At most one
change (AMOC) in the mean of independent observations is the simplest and most ex-
tensively studied change point problem which has been and still is a good basis for the
development of change point procedures for various models and dependency structures
in order to tackle the challenges of modern data streams. Change point procedures
can be broadly divided into two main classes. On the one hand, a- posteriori (offline)
procedures use the completely observed data set to test for a change point. On the
other hand, sequential (online) procedures are applied to decide whether a change has
occurred while collecting the data. Sequential procedures are of great interest wherever
data needs to be monitored and changes need to be detected very fast after they have
occurred. For example, monitoring medical data of patients requires quick interven-
tions in case of critical changes. In finance, a steady control of accounting processes
enables a fast detection of fraudulent activities in order to avert further damage.

In the a-posteriori approach, the decision if there is a change or not is based on one
single hypothesis test where the test statistic is calculated using the whole observed
data set, whereas a sequential procedure tests for a structural break after each new
observation. The a-posteriori procedure detects a change if the test statistic exceeds a
critical value. In the sequential approach, the monitoring continues as long as no change
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is detected such that the monitoring horizon is random and even possibly infinite.
Therefore, sequential procedures use weighted critical values called critical curves. The
sequential testing procedure stops and detects a change as soon as a suitable monitoring
statistic exceeds the critical curve. For both approaches, critical values are typically
determined based on the limit distribution of the test statistic under the null hypothesis.
Other properties, such as the power of the procedure, are also obtained asymptotically.
For a-posteriori procedures, such results are established by letting the length of the
observed data set increase to infinity. This is not possible for sequential procedures as
the number of observations is not prespecified. Following the approach of Chu et al.
(1996) we assume that there exists a historic data set without a change. Asymptotic
considerations can be conducted with respect to the length of this data set increasing
to infinity. Due to the open-ended character, sequential procedures require different
asymptotic methods than a-posteriori procedures.

Contributions

This thesis provides both theoretical and practical contributions to change point ana-
lysis, in particular with a view to challenges that occur with increasingly large and
complex data. The growing desire to continuously monitor data and quickly detect
changes requires new developments in sequential testing which are achieved in the first
part of this thesis in a mainly theoretical way. In the second part, we develop a-
posteriori methods where we focus on the application to functional magnetic resonance
imaging (fMRI) data which is noisy, complex and of huge dimension and thus imposes
methodological as well as computational challenges that many other modern applica-
tions share. Throughout this work, we consider nonparametric approaches which means
we do not impose any assumptions on the distribution of the data. Furthermore, we
allow for time dependencies which is in most applications more realistic than assuming
the observations to be independent.

In the first part, we propose a general framework of sequential change point proced-
ures based on U-statistics. The sequential CUSUM (cumulative sum) procedure for
the detection of a change in the mean is very well studied but sensitive to outliers as
it is based on the arithmetic mean. As many other statistics, the CUSUM statistic
can be represented in the form of a U-statistic. Hence, the proposed framework covers
the sequential CUSUM procedure but also allows, for example, to construct a more
robust Wilcoxon-type testing procedure. However, as the respective monitoring stat-
istic takes all new observations into account, it shares one drawback of the classical
CUSUM monitoring scheme, namely a long detection delay for late changes. There-
fore, the modified MOSUM (moving sum) and the Page-CUSUM have been introduced
in the sequential literature. Those monitoring schemes are more stable with respect
to the time of the change and we extend them to the framework of sequential tests
based on U-statistics. The motivation of the modified MOSUM and the Page-CUSUM
indicates that the stopping time, i.e. the time when the procedure detects a change,
is of particular interest for sequential procedures. The asymptotic distribution of the
stopping time for the classical sequential CUSUM as well as for the Page-CUSUM has
been derived by Aue et al. (2009a) and Fremdt (2014) for relatively early changes. We
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generalize those results for the CUSUM monitoring scheme to the general framework
considered in this work. To the best of our knowledge, up to now, there are no results
on the stopping time of sequential procedures for late changes available and the results
for early changes cannot be extended straightforwardly. We extend the existing literat-
ure in this regard where we first identify the relevant issues that occur for late changes
but not for early ones and then find the necessary steps to handle them such than
we can finally assess the asymptotic behavior of the stopping time for late changes.
The finite sample performance of the testing procedures as well as the stopping time
is investigated in a simulation study.

In the second part, we develop a-posteriori change point procedures for the detection
of deviations from covariance stationarity with focus on the application to functional
magnetic resonance imaging (fMRI) data. An fMRI data set consists of a sequence
of three dimensional images of the brain that have been recorded every few seconds.
Such scans provide a huge amount of information for analyzing activities in the brain
and in particular the interactions between brain regions. In this work, we focus on
resting state fMRI data which is widely used to infer connectivities in the brain ex-
cluding external factors. As such analyses strongly rely on stationarity, change point
procedures can be applied in order to detect possible deviations from this crucial as-
sumption. In this context, Aston & Kirch (2012b) already considered the evaluation
of mean stationarity. However, not only deviations from mean stationarity but also
deviations from covariance stationarity can contaminate connectivity studies and this
may (and usually will) lead to wrong conclusions. To this end, we develop tools for the
detection of deviations from covariance stationarity via change point alternatives. We
will model fMRI data as functional time series which means we assume that each obser-
vation, in this case each image per point in time, can be represented as a function. The
statistical analysis of functional data is currently a rapidly progressing field of research
as an increasing number of applications provides data which can be modeled in such
a way. The nonparametric methodology developed in this work is widely applicable
beyond the considered application of fMRI data, hence also of independent interest
in functional data analysis in general. First, we introduce a multivariate procedure
which is based on dimension reduction techniques. In order to obtain a pivotal limit
distribution of the test statistic, which is needed to determine the asymptotic critical
values, the long-run covariance has to be estimated. This is statistically challenging
and usually leads to an unstable testing procedure but can be avoided by using res-
ampling procedures. We apply a circular block bootstrap to obtain the critical values
for an adapted test statistic where we only correct for the diagonal elements of the
long-run covariance. Furthermore, the projection of the functional time series on a
finite and rather low-dimensional subspace involves the risk of missing changes that
are orthogonal to the projection space. Inspired by the methods proposed in Bucchia
& Wendler (2017) and Aue et al. (2018) for the mean change problem we consider
a test statistic which takes the full functional structure into account but, in contrast
to the multivariate procedure, does not correct for different variances in the compon-
ents. Without such a correction, small changes in components with small variances are
hard to detect. Therefore, we propose a weighted version of the functional test stat-
istic which combines the advantages of the multivariate and the unweighted functional
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statistic and is thus a very promising approach for the detection of change points in
functional data analysis, not only for detecting changes in the covariance as considered
in this work but, in an analogous version, also for the mean change problem. The
proposed testing procedures are compared in a simulation study and applied to more
than 100 resting state fMRI data sets. In practice, the calculation of the functional
test statistics for fMRI data is computationally challenging. We develop an algorithm
which makes use of certain characteristics of the data in order to provide a way of
calculating the test statistics in a reasonable time.

The Appendix provides an overview of the most important assumptions of the first
part. Furthermore, it includes some theoretical results that have been useful in this
work.
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Part I.

Sequential Tests Based on
U-Statistics
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1. Introduction to Sequential
Testing

Sequential testing procedures have been introduced by Wald in 1943 (cf. for example
Wald (1947)). Based on the assumption that collecting data is costly, Wald’s aim was
to obtain a procedure which, on average, requires fewer observations than a procedure
which uses a predetermined number of observations and provides the same reliability
in terms of controlling the possible errors. After each new observation it is to be de-
cided whether the null hypothesis is kept, rejected, or the next observation should be
considered. The procedure stops as soon as one of the first two decisions is made. How-
ever, as nowadays data is collected steadily and at virtually no cost, there is no need to
stop monitoring as long as the system is stable or, to put it another way, a continuous
monitoring is even desired. Based on this argument, Chu et al. (1996) modified Wald’s
approach and allow for an infinite monitoring horizon. The main assumption is the ex-
istence of a stationary historic data set such that asymptotic results can be established
by letting the length of the historic data set tend to infinity. This approach allows
to construct sequential procedures with asymptotic power one where additionally the
asymptotic size is controlled. The work of Chu gave raise to many further develop-
ments in sequential testing such as Horváth et al. (2004) where sequential CUSUM
procedures based on ordinary and recursive residuals for linear models with independ-
ent and identically distributed errors are proposed followed by Aue et al. (2006) who
relaxed the assumptions on the innovations and added a new method based on the
squared prediction errors. A further extension can be found in Hušková & Koubková
(2005) where procedures based on quadratic forms of partial sums of weighted resid-
uals enable the detection of a larger class of changes. Kirch & Tadjuidje Kamgaing
(2015) introduced sequential change point procedures based on estimating functions
under very general regularity conditions. This framework unifies existing sequential
change point tests and provides monitoring procedures in time series that have not
been considered in the literature before such as non-linear autoregressive time series
and count time series. A further extension of this setup can be found in Kirch & Weber
(2018) where monitoring schemes adapted to late changes are considered. Instead of
controlling the type-1 error asymptotically, another branch of sequential procedures
is constructed based on optimizing the mean delay for detection and the mean time
between false alarms. Lorden et al. (1971) proposed appropriate optimality criteria
based on the average runlength. More details on corresponding methodologies can be
found in Tartakovsky et al. (2014).

In this work, we follow the sequential approach of Chu et al. (1996) which is based
on the so-called ‘non-contamination assumption’ which means we assume that there
exists a historic data set X1, . . . , Xm without a change. This assumption is realistic as
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usually some data has to be collected before any statistical inference can be made. As
the distribution of the observed time series is unknown, the historic observations can be
used to estimate unknown parameters consistently. Asymptotic results can be obtained
by letting the length of the historic data set increase to infinity. Subsequent to the
historic observations we start monitoring new incoming data by testing for a structural
break after each new observation Xm+k, k ≥ 1, where k denotes the monitoring time.
Those tests are based on a monitoring statistic Γ(m, k). Since the monitoring continues
as long as no change is detected, the monitoring horizon might be infinite such that
a weight function w(m, k) is required in order to control the asymptotic size of the
procedures. The null hypothesis is rejected as soon as

w(m, k) |Γ(m, k)| > cα,

where the critical value cα is chosen such that the testing procedure holds the level α
asymptotically. If w(m, k) 6= 0, an equivalent formulation is given by

|Γ(m, k)| > cα
w(m, k)

, (1.1)

where the weighted critical value cα
w(m,k)

is called critical curve. As long as

w(m, k) |Γ(m, k)| ≤ cα,

we continue monitoring. The stopping time τm is defined as follows:

τm =

{
inf{k ≥ 1 : w(m, k) |Γ(m, k)| > cα},
∞, if w(m, k) |Γ(m, k)| ≤ cα for all k.

(1.2)

It denotes the time when the absolute value of the weighted monitoring statistic exceeds
the critical value, i.e. the time when we reject the null hypothesis. If this never happens,
the stopping time is set to infinity. With this, we clearly see that the monitoring horizon
of the sequential testing procedure is random and even possibly infinite. For a given
level α, we aim at determining the critical value cα such that the testing procedure
has asymptotic size α with respect to the length of the historic data set increasing to
infinity. We test the null hypothesis of stationarity (H0) against the alternative (H1)
that there occurs a change at some point in the monitoring period. As a finite stopping
time means that we reject the null hypothesis at some point, the test has asymptotic
size α if

lim
m→∞

PH0(τm <∞) = α

and asymptotic power 1 if
lim
m→∞

PH1(τm <∞) = 1.

By the definition of the stopping time it holds that

PH0(τm <∞) = PH0

(
w(m, k) sup

k≥1
|Γ(m, k)| > cα

)
.

Hence, cα is actually an asymptotic critical value in the classical sense given by the 1−α
quantile of the limit distribution of supk≥1w(m, k) |Γ(m, k)|. Throughout this first part
of the thesis, we always call Γ(m, k) the monitoring statistic and supk≥1w(m, k) |Γ(m, k)|
the test statistic.
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Introduction to Sequential Testing

Sequential CUSUM procedure The classical sequential CUSUM test for mean changes
has been studied, among others, by Chu et al. (1996), Horváth et al. (2004), Aue
et al. (2006) and Hušková & Koubková (2005) for linear regression models. Consider
the problem of detecting a mean change by the following model:

Xi = Yi + 1{i>k∗+m}dm, i ≥ 1,

where {Yi}i∈Z is a stationary time series with mean µ and the change dm is allowed
to depend on m. In particular, this includes fixed mean changes (dm = d 6= 0 for
all m) as well as local mean changes (dm → 0 as m → ∞). The respective testing
problem is given by H0 : dm = 0 against H1 : dm 6= 0. The corresponding sequential
CUSUM procedure has been studied in Aue (2003) under weak invariance principles.
The CUSUM-type monitoring statistic has the following form

ΓC(m, k) =
m+k∑
j=m+1

(
Xm −Xj

)
= k

(
Xm −

1

k

m+k∑
j=m+1

Xj

)
. (1.3)

It is the cumulative sum of the deviations of the new observations from the mean of the
historic observations. The second representation shows that it compares the mean of
the new observations with the historic mean in order to detect a level shift. More pre-
cisely, after each new observation the arithmetic mean of the historic observations and
the arithmetic mean of the new observations up to the current monitoring time point
are compared. If the weighted difference of those means is too large, this indicates a
change and the null hypothesis is rejected. Due to the fact that this approach is based
on the arithmetic mean it is not robust against extreme observations caused by, for
example, outliers or heavy tailed distributions. This is also revealed by the simulation
study in Chapter 6.

1.1. Outline

In Chapter 2 we introduce a general framework of sequential procedures based on
U-statistics which allows us, for example, to derive a sequential procedure with a
Wilcoxon-type monitoring statistic which is more robust than the classical CUSUM
statistic. We study the asymptotic behavior of the proposed class of sequential proced-
ures in Chapter 3. The limit distribution under the null hypothesis, which is derived
in Section 3.2, allows us to determine the critical value such that the testing procedure
has asymptotic size α. Furthermore, in Section 3.3, we provide a condition on the type
and size of the change such that it is detected asymptotically with probability one. In
Chapter 4 we embed the idea of the modified MOSUM and the Page-CUSUM in the
framework of sequential change point procedures based on U-statistics and derive the
respective asymptotics. Chapter 5 deals with the asymptotic behavior of the stopping
time of the procedures introduced in Chapter 2. We generalize existing results on the
limit distribution of the stopping time of the sequential CUSUM procedure for early
changes in Section 5.1. Extensions to later changes are provided in Section 5.2 and
5.3. The behavior of the proposed procedures and the standardized stopping times for
finite historic data sets are assessed in a simulation study in Chapter 6.
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2. Sequential Tests Based on
U-Statistics

In this chapter, we propose a general framework of sequential change point procedures
based on U-statistics which allows us, for example, to construct a robust sequential
test based on a Wilcoxon-type monitoring statistic. Robust procedures in change point
analysis are of high importance in order to reliably detect structural changes even if
the data contains extreme observations. Such extreme observations can be caused, for
example, by skewed distributions, heavy tails or outliers. In particular for sequential
procedures robustness is very important as their application is mostly associated with
the need of quick interventions if there is evidence for a structural change. Monitoring
patient or machine data are examples for such applications. If the underlying procedure
is not robust, outliers in the data can easily cause false alarms and thus unnecessary
efforts and costs. A posteriori tests based on U-statistics have been studied by Csörgő
& Horváth (1988) for independent data and by Dehling et al. (2015b) for dependent
data.

2.1. Monitoring Statistic

In order to detect a structural break in the monitoring period we use two-sample U-
statistics with bivariate kernels.

Definition 2.1. Consider two samples X1, . . . , Xn1 and Y1, . . . , Yn2 and let h : R2 7→ R
be a measurable function . Then,

Un1,n2 =
1

n1n2

∑
1≤i≤n1

∑
1≤j≤n2

h(Xi, Yj)

is a two-sample U-statistic with kernel h.

For independent observations, a U-statistic constitutes an unbiased estimator for the
mean of the kernel function. We refer to Korolyuk & Borovskich (1994) for more details
on U-statistics. In order to compare the sample of historic observations X1, . . . , Xm

with the new observations Xm+1, . . . , Xm+k that have been collected up to the current
monitoring time point k we propose the following monitoring statistic:

Γ(m, k) =
1

m

m∑
i=1

m+k∑
j=m+1

(h(Xi, Xj)− θ), (2.1)

where the kernel h : R2 → R is a measurable function. Except for the scaling factor,

1

m

m∑
i=1

m+k∑
j=m+1

h(Xi, Xj)

9



Sequential Tests Based on U-Statistics

is a two-sample U-statistic. Under the null hypothesis, the new observations have the
same distribution as the historic ones. Therefore, we center the monitoring statistic
with θ = E(h(X, Y )), where X and Y are independent random variables with the same
distribution as X1. We will allow for dependency structures but only in such a way
that the observations are approximately independent if they are far enough from each
other. Hence, θ still approximates E(h(Xi, Xj)) with increasing lag j − i.

The monitoring statistic in (2.1) sums up the differences of the kernel function and
its expected value under the null hypothesis over all possible tuples of historic and
new observations. Thus, it takes rather small values under the null hypothesis of
stationarity and we expect it to increase under the alternative if the change in the new
observations yields a mean change in the kernel function.

Example 2.2. (i) Using the kernel function

hC(x1, x2) = x1 − x2

we can represent the classical CUSUM monitoring statistic from (1.3) in the form
of (2.1):

ΓC(m, k) =
1

m

m∑
i=1

m+k∑
j=m+1

(Xi −Xj) =
m+k∑
j=m+1

(
Xm −Xj

)
(2.2)

with

θC = EhC(X, X̃) = E
(
X − X̃

)
= EX − E X̃ = 0, (2.3)

where X̃ is an independent copy of X.

(ii) The kernel function
hW (x1, x2) = 1{x1<x2}

yields a Wilcoxon-type monitoring statistic. Let X have a continuous distribution
with density f and distribution function F . It holds

θW = EhW (X, X̃) = P (X < X̃)

=

∫ ∞
−∞

f(x)P (X < x)dx =

∫ ∞
−∞

f(x)F (x)dx = E(F (X)) =
1

2
(2.4)

as F (X) ∼ U(0, 1), where X̃ is an independent copy of X. Hence, we obtain the
monitoring statistic

ΓW (m, k) =
1

m

m∑
i=1

m+k∑
j=m+1

(
1{Xi<Xj} − 1/2

)
.
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2.2. Change Point Model

2.2. Change Point Model

The monitoring statistic in (2.1) is constructed such that it detects structural breaks
in the underlying time series which lead to a mean change in the kernel function h. We
assume that the underlying time series is stationary before and after the change which
is expressed by the following model:

Xi,m = 1{1≤i≤k∗+m}Yi + 1{i>k∗+m}Zi,m, i ≥ 1, (2.5)

where {Yi}i∈Z and {Zi,m}i∈Z are suitable stationary time series not necessarily with
mean 0 with certain properties that will be specified in the respective sections. The
distribution of the time series after the change and thus the change itself is allowed to
depend on m. Let Y D

= Y1 and Zm
D
= Z1,m. Before the change, the kernel function has

the same mean as under the null hypothesis which is given by

θ = Eh(Y, Ỹ ),

where Ỹ is an independent copy of Y . After the structural break, the mean of the
kernel function changes to

θ∗m = Eh(Y, Z̃m)

for a copy Z̃m of Zm which is independent of Y . The mean change in the kernel function
is thus given by

∆m := θ∗m − θ. (2.6)

A change in the observed time series is not visible for the proposed procedure if ∆m = 0.
As will be seen in Theorem 3.14, a change is asymptotically detected with probability
1 if √

m |∆m| → ∞. (2.7)

We consider the following change point model where X̃i,m is a copy of Xi,m and is
independent of Y D

= Y1:

H0 : Eh(Y, X̃i,m) = θ for all i ≥ 1.
H1 : There exists a k∗ ≥ 1 such that

Eh(Y, X̃i,m) = θ for 1 ≤ i ≤ k∗ +m;

Eh(Y, X̃i,m) = θ + ∆m =: θ∗m for i > k∗ +m.

As usual in change point problems, the parameter θ before the change, the size ∆m of
the change as well as the time of the change k∗ are unknown.

The above model covers a wide range of alternatives, namely any change in the observed
time series which implies a mean change in the kernel function. As we allow the time
series after the change to depend on m, this does not only include fixed alternatives
but also local ones where ∆m is allowed to decay to zero but not too fast in the sense
of restriction 2.7.
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Sequential Tests Based on U-Statistics

Example 2.3. Let us consider a mean change according to the model

Xi,m = Yi + 1{i>k∗+m}dm, dm 6= 0, (2.8)

where {Yi}i≥1 is a stationary time series with mean µ. The change in the mean is
given by dm and is allowed to depend on m. Note that in the general model (2.5) this
corresponds to Zi,m = Yi+dm. Recall the kernel functions of the CUSUM and Wilcoxon
statistic as given in Example 2.2. Let Z̃m = Ỹ + dm where Ỹ is an independent copy
of Y D

= Y1.

(i) For the CUSUM statistic we obtain

θ∗Cm = EhC(Y, Z̃m) = E
(
Y − Z̃m

)
= EY − E Z̃m = −dm 6= 0.

Hence, with (2.3), the change in the kernel function is given by

∆C
m = θ∗Cm − θC = −dm 6= 0. (2.9)

Consequently, fixed mean changes fulfill condition (2.7) and the decay of local
mean changes is restricted to satisfy

√
m|dm| → ∞ in order to be detected asymp-

totically with probability one.

(ii) For the Wilcoxon statistic it holds for dm > 0

θ∗Wm = EhW (Y, Z̃m) = P (Y < Ỹ + dm)

= P (Y < Ỹ + dm, Y < Ỹ ) + P (Y < Ỹ + dm, Y ≥ Ỹ )

= P (Y < Ỹ ) + P (Ỹ ≤ Y < Ỹ + dm) = θW + P (Ỹ ≤ Y < Ỹ + dm)

and thus, with (2.4),

∆W
m = θ∗Wm − θW = P (Ỹ ≤ Y < Ỹ + dm)

=

∫ ∞
−∞

fY (z)P (z ≤ Y < z + dm)dz =

∫ ∞
−∞

fY (z) (FY (z + dm)− FY (z)) dz.

(2.10)

There exist z1 ∈ R and 0 < δm < dm such that f(z) > 0 holds for all z ∈ [z1, z1 +
δm] as otherwise fY would be equal to zero except from countably many points
such that fY would integrate to zero instead of one. As FY (z+δm/2)−FY (z) > 0
holds for all z ∈ (z1, z1 + δm/2) it follows∫ ∞

−∞
fY (z) (FY (z + dm)− FY (z)) dz

≥
∫ z1+δm/2

z1

fY (z) (FY (z + δm/2)− FY (z)) dz > 0.

Hence, a fixed mean change satisfies condition (2.7) for the Wilcoxon-type testing
procedure as δm = δ is also fixed. For local mean changes condition (2.7) is ful-
filled if there exists a z1 ∈ R with

√
m
∫ z1+δm/2

z1
fY (z) (FY (z + δm/2)− FY (z)) dz →

∞. An analogous result is obtained for dm < 0.
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3. Asymptotics

In this chapter, we analyze the asymptotic behavior of the proposed sequential pro-
cedures with respect to the length of the historic data set increasing to infinity. First,
we introduce Hoeffding’s decomposition which is a very useful tool for studying U-
statistics. In Section 3.2 we derive the limit distribution of the test statistic under
the null hypothesis which allows us to determine the asymptotic critical values. We
continue with showing that the procedure has asymptotic power one in Section 3.3.

3.1. Hoeffding’s Decomposition

As proposed by Hoeffding (1948) we consider the following decomposition of the kernel
function

h(x1, x2) = θ + h1(x1) + h2(x2) + r(x1, x2), (3.1)

with

θ = E(h(X1, X2))

h1(x1) = E(h(x1, X2))− θ,
h2(x2) = E(h(X1, x2))− θ,

r(x1, x2) = h(x1, x2)− h1(x1)− h2(x2)− θ,

where X1 and X2 are independent random variables with distribution functions FX1

and FX2 . With Fubini’s Theorem it holds

E (h1(X1)) =

∫
h1(x1)dFX1(x1) =

∫ ∫
h(x1, x2)dFX2(x2)dFX1(x1)− θ

=

∫ ∫
h(x1, x2)dFX1(x1)dFX2(x2)− θ = E (h2(X2)) .

Hence, h1(X1) and h2(X2) are centered as

E (h1(X1)) = E (h2(X2)) =

∫ ∫
h(x1, x2)dFX1(x1)dFX2(x2)− θ

= E(h(X1, X2))− θ = 0 (3.2)

due to the independence of X1 and X2.
The kernel r(x1, x2) is degenerate which means

E (r(x1, X2)) = E (r(X1, x2)) = 0.
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Asymptotics

With (3.1) we obtain the following decomposition of the monitoring statistic:

Γ(m, k) =
1

m

m∑
i=1

m+k∑
j=m+1

r(Xi, Xj) +
m+k∑
j=m+1

h2(Xj) +
k

m

m∑
i=1

h1(Xi). (3.3)

Hence, Hoeffding’s decomposition allows us to decompose the monitoring statistic in
two linear and centered parts and a remainder term. The remainder term is not
necessarily centered if the observations are not independent as

E(r(Xi, Xj)) = E(h(Xi, Xj))− θ (3.4)

and θ is the expected value of the kernel function for independent random variables.
Asymptotic results related to U-statistic are usually obtained by first showing that the
remainder term is asymptotically negligible.

Example 3.1. We derive the explicit form of Hoeffding’s decomposition for the CUSUM
and the Wilcoxon kernel (see Example 2.2) under the null hypothesis, i.e. we observe
a stationary time series {Yi}i≥1. Let Y D

= Y1 and EY = µ.

(i) Hoeffding’s decomposition of the CUSUM kernel is given by

hC1 (y) = E (hC(y, Y )) = y − E(Y ) = y − µ
hC2 (y) = E (hC(Y, y)) = E(Y )− y = µ− y = −hC1 (y)

rC(y1, y2) = y1 − y2 − (y1 − µ)− (µ− y2) = 0.

(ii) Hoeffding’s decomposition of the Wilcoxon kernel for a continuous random vari-
able is given by

hW1 (y) = E (hW (y, Y ))− 1

2
= E(1{y<Y })−

1

2
= P (y < Y )− 1

2
=

1

2
− FY (y)

hW2 (y) = E (hW (Y, y))− 1

2
= E(1{Y <y})−

1

2
= P (Y < y)− 1

2
= FY (y)− 1

2
,

rW (y1, y2) = 1{y1<y2} −
(

1

2
− FY (y1)

)
−
(
FY (y2)− 1

2

)
− 1

2

= 1{y1<y2} + FY (y1)− FY (y2)− 1

2
.

3.2. Asymptotics under the Null Hypothesis

Our aim is to choose the critical value cα such that the testing procedure has asymp-
totic size alpha, i.e. we can control the type-1 error asymptotically. Therefore we need
to derive the limit distribution of the supremum over the weighted monitoring statistic
under the null hypothesis.

Kirch & Tadjuidje Kamgaing (2015) identified the necessary properties that the weight
function needs to possess such that the type-1 error can be controlled asymptotically.
We also derive the asymptotic results for this general class of weight functions with the
following regularity conditions:
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3.2. Asymptotics under the Null Hypothesis

Assumption 3.2. Let the weight function satisfy

(i) w(m, k) = m−1/2w̃(m, k), where w̃(m, k) = ρ
(
k
m

)
for k > lm with lm

m
→ 0 and

w̃(m, k) = 0 for k ≤ lm. The function ρ : [0,∞]→ R+ is positive and continuous.

(ii) limt→0 t
γρ(t) <∞ for some 0 ≤ γ < 1

2
.

(iii) limt→∞ tρ(t) <∞.

Part (i) allows to start the monitoring only after some observations have been collected
in order to avoid false alarms at the very beginning of the monitoring period which
can easily be caused as the first values of the monitoring statistic are quite volatile due
to the small monitoring sample. By (i) and (ii) the behavior of the weight function is
controlled at the beginning and the infinite end of the monitoring period. The weight
function

w(m, k) = m−1/2

(
1 +

k

m

)−1(
k

m+ k

)−γ
, 0 ≤ γ <

1

2
, (3.5)

i.e. ρ(t) = (1 + t)−1 ( t
1+t

)−γ fulfills the above assumptions and is often used in the
literature as it leads to nice limit distributions such as in Corollary 3.7.

All asymptotic results will be obtained based on Hoeffing’s decomposition such that
the regularity conditions on the time series and the kernel function are established with
respect to the terms resulting from this decomposition. Therefore, recall that under
the null hypothesis it holds with (3.3)

Γ(m, k) =
1

m

m∑
i=1

m+k∑
j=m+1

r(Yi, Yj) +
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi),

where {Yi}i≥1 is a stationary time series. The following regularity conditions are very
general such that the proposed procedures can be applied for various dependency struc-
tures and kernel functions as long as Assumption 3.3 is fulfilled. Furthermore, the
asymptotics for other monitoring schemes can be derived based on the same set of
regularity conditions as will be seen in Chaper 4.

Assumption 3.3. Let {Yi}i∈Z be a stationary time series that fulfills the following
assumptions for a given kernel function h.

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r(Yi, Yj)
∣∣∣2) ≤ u(m)(k2 − k1 + 1) for all m+ 1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.

(ii) The following functional central limit theorem holds for any T > 0 1√
m

[mt]∑
i=1

(h1(Yi), h2(Yi)) : 0 < t ≤ T

 D→
{(
W̃1(t), W̃2(t)

)
: 0 < t ≤ T

}
,
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Asymptotics

where
{(
W̃1(t), W̃2(t)

)
: 0 < t ≤ T

}
is a bivariate Wiener process with mean zero

and covariance matrix
Σ =

(
σ2

1 ρ
ρ σ2

2

)
with

σ2
1 =

∑
h∈Z

Cov(h1(Y0), h1(Yh)), σ2
2 =

∑
h∈Z

Cov(h2(Y0), h2(Yh)). (3.6)

(iii) For all 0 ≤ α < 1
2
the following Hájek-Rényi-type inequality holds

sup
1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣ = OP (1) as m→∞.

(iv) The following Hájek-Rényi-type inequality holds uniformly in m for any sequence
km > 0

sup
k≥km

1

k

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣ = OP

(
1√
km

)
as km →∞.

The asymptotic negligibility of the remainder term can be established based on (i)
where the second moment is equal to the variance for independent observations but
not necessarily for dependent ones due to (3.4) and the respective explanation. The
actual limit distribution is determined by the two linear terms. We assume that the
respective partial sum processes fulfill a joint functional central limit theorem as stated
in (ii). In addition, (iii) and (iv) are required to control the behavior at the beginning
and at the infinite end of the monitoring period. In Section 3.2.1 and 3.2.2 we examine
Assumption 3.3 for independent observations and functionals of mixing processes.

Under the above assumptions on the weight function, the time series and the kernel
function, we now derive the asymptotic distribution of the test statistic

sup
k≥1

w(m, k) |Γ(m, k)|

under the null hypothesis. We first show that the remainder term is uniformly asymp-
totically negligible. The following Lemma states the key implication of Assumption 3.3
(i) which will be useful for dealing with the remainder term throughout this work.

Lemma 3.4. Let {Yi}i≥1 and {Y ′i,m}i≥1 be sequences of random variables and gm :
R2 → R a function such that

E

∣∣∣∣∣
m∑
i=1

k2∑
j=k1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
2
 ≤ u(m)(k2 − k1 + 1) for all 1 ≤ k1 ≤ k2.

Then, it holds for any ε > 0

P

(
max

1≤k≤n

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ > ε

)
≤ 1

ε2
u(m)

m2
(log2(2n))2n.
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3.2. Asymptotics under the Null Hypothesis

Proof. Let the process {Gm(k) : 1 ≤ k ≤ m} be defined by

Gm(k) :=
1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m).

We consider the increments of the process Gm(k), k ≥ 1 as random variables

ξk = Gm(k)−Gm(k − 1), Gm(0) = 0.

Let Sl = ξ1 + ξ2 + . . .+ ξl such that Sl = Gm(l). It holds for 1 ≤ k1 ≤ k2

E
(
|Sk2 − Sk1+1|2

)
= E

(
|Gm(k2)−Gm(k1 + 1)|2

)
=

1

m2
E

∣∣∣∣∣
m∑
i=1

k2∑
j=k1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
2
 ≤ u(m)

m2
(k2 − k1). (3.7)

Hence, we obtain with Theorem C.6 and Markov’s inequality

P

(
max

1≤k≤n
|Gm(k)| ≥ ε

)
= P

(
max

1≤k≤n
|Sk| ≥ ε

)
≤ u(m)

ε2m2
(log2(2n))2n.

Lemma 3.5. Let {Yi}i≥1 and {Y ′i,m}i≥1 be sequences of random variables. Let As-
sumption 3.2 be fulfilled for the weight function. Assume that for gm : R2 → R it
holds

E

∣∣∣∣∣
m∑
i=1

k2∑
j=k1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
2
 ≤ u(m)(k2 − k1 + 1) for all 1 ≤ k1 ≤ k2 (3.8)

with u(m)
m2−2γ log(m)2 → 0 for all δ > 0. Then, it follows

sup
k≥1

w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1), as m→∞.

Proof. With Lemma 3.4 we get for all ε > 0

P

(√u(m)

m
log2(2m)

)−1

max
1≤k≤m

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ ≥ ε

 ≤ 1

ε2

and thus

max
1≤k≤m

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = OP

(√
u(m)

m
log2(2m)

)
= OP

(√
u(m)

m
log(m)

)
.

(3.9)
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Asymptotics

Furthermore, it holds

max
1≤k≤m

kγw(m, k)

√
u(m)

m
log(m)

= max
lm<k≤m

√
u(m)

m
log(m)kγρ

(
k

m

)
=

√
u(m)

m2−2γ
log(m)2 max

lm<k≤m

(
k

m

)γ
ρ

(
k

m

)
≤
√

u(m)

m2−2γ
log(m)2 sup

0<t≤1
tγρ (t) = oP (1) (3.10)

as tγρ (t) is bounded on (0, 1] by Assumption 3.2 (ii). Combining this with (3.9) we
obtain

max
1≤k≤m

kγw(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1) (3.11)

In particular, (3.11) implies

max
1≤k≤m

w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1). (3.12)

It remains to prove that

sup
k>m

w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1).

Let Sl1,l2 :=
∑l2

j=l1
ξj with ξj =

∑m
i=1 rm(Yi, Y

′
j,m). It holds with (3.8)

E |Sl1,l2|
2 = E

(
l2∑
j=l1

m∑
i=1

gm(Yi, Y
′
j,m)

)2

= E

(
m∑
i=1

l2∑
j=l1

gm(Yi, Y
′
j,m)

)2

≤ u(m)(l2 − l1 + 1).

We obtain with Corollary C.8 for ql ≥ 2pl − 2

E

(
max
pl≤k≤ql

1

k
√
m
|S1,k|

)2

≤ 1

p2
lm

E

(
max
pl≤k≤ql

|S1,k|
)2

≤4u(m)

p2
lm

(log2 (4(ql − pl + 1)))2 (ql − pl + 1). (3.13)
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3.2. Asymptotics under the Null Hypothesis

If we choose pl, ql such that ql ≥ 2pl − 2 and
∑

l≥0[pl, ql) = [m,∞), we get with (3.13)
and Markov’s inequality

P

(
sup
k>m

∣∣∣∣∣ 1

k
√
m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ > ε

)

=P

(
sup
k>m

∣∣∣∣∣ 1

k
√
m

k∑
j=1

m∑
i=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ > ε

)

=P

(
sup
k>m

1

k
√
m
|S1,k| > ε

)
≤P

(
sup
l≥0

max
pl≤k≤ql

1

k
√
m
|S1,k| > ε

)
≤
∑
l≥0

P

(
max
pl≤k≤ql

1

k
√
m
|S1,k| > ε

)
≤
∑
l≥0

4u(m)

p2
lmε

2
(log2 (4(ql − pl + 1)))2 (ql − pl + 1).

With pl = m2l, ql = pl+1 = m2l+1, we obtain with (3.8)

P

(
sup
k>m

∣∣∣∣∣ 1

k
√
m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ > ε

)

≤
∑
l≥0

4u(m)

p2
lmε

2
(log2 (4(ql − pl + 1)))2 (ql − pl + 1)

=
∑
l≥0

4u(m)

22lm3ε2
(
log2

(
4(m2l + 1)

))2
(m2l + 1)

≤
∑
l≥0

4u(m)

m2ε2
(log2(m2l+3))2

(
1

2l
+

1

m22l

)
≤8u(m)

m2ε2

∑
l≥0

(log2(m2l+3))2

2l

=
8u(m)

m2ε2

(∑
l≥0

log2(m)2

2l
+ 2

∑
l≥0

log2(m)(l + 3)

2l
+
∑
l≥0

(l + 3)2

2l

)

=
8

ε2
u(m)

m2−2γ
log(m)2 1

m2γ
O(1)→ 0 as m→∞,

as
∑

l≥0
1
2l
<∞, 2

∑
l≥0

l+3
2l
<∞ and C3 =

∑
l≥0

(l+3)2

2l
<∞. Hence, it holds

sup
k>m

∣∣∣∣∣ 1

k
√
m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1) as m→∞ (3.14)

and with

sup
k>m

w(m, k)
k√
m
≤ sup

k>m

k

m
ρ

(
k

m

)
≤ sup

t>1
tρ (t) = OP (1) as m→∞ (3.15)
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it follows

sup
k>m

w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1) as m→∞ (3.16)

Together with (3.12) we obtain

sup
k≥1

w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
≤ max

1≤k≤m
w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣+ sup
k>m

w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
=oP (1) as m→∞

and thus the assertion.

Having shown that the remainder term is uniformly asymptotically negligible, we can
now derive the limit distribution based on the linear parts.

Theorem 3.6. Let the regularity conditions given in Assumption 3.2 and 3.3 be ful-
filled. Then, it holds under H0, as m→∞,

sup
k≥1

w(m, k) |Γ(m, k)| D→ sup
t>0

ρ(t) |σ2W2(t) + tσ1W1(1)|

for two independent standard Wiener processes {W1(t) : t > 0} and {W2(t) : t > 0}.

Proof. With Lemma 3.5 it holds

sup
k≥1

∣∣∣∣∣w(m, k)Γ(m, k)− w(m, k)
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣
= sup

k≥1
w(m, k)

1

m

∣∣∣∣∣
m∑
i=1

m+k∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣
= sup

k≥1
w(m, k)

1

m

∣∣∣∣∣
m∑
i=1

k∑
j=1

r(Yi, Ym+j)

∣∣∣∣∣ = oP (1), m→∞

due to Assumption 3.3 (i). According to Lemma B.1 it remains to be shown that

sup
k≥1

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣ D→ sup
t>0

ρ(t) |σ2W2(t) + tσ1W1(1)|

for two independent standard Wiener processes {W1(t) : t > 0} and {W2(t) : t > 0}.
With Assumptions 3.2 and 3.3 (ii) we get that for any fixed τ, T > 0 and m→∞

sup
t>τ

ρ(t)

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj) +
t√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>τ
ρ(t)

∣∣∣W̃2(1 + min(t, T ))− W̃2(1) + tW̃1(1)
∣∣∣ . (3.17)
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3.2. Asymptotics under the Null Hypothesis

As lm
m
→ 0, there exists an mτ such that lm

m
< τ for all m ≥ mτ . Hence, it holds for

m ≥ mτ∣∣∣∣∣∣sup
t>τ

ρ(t)

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj) +
t√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k>τm
w(m, k)

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣sup
k
m
>τ

sup
k
m
≤t< k+1

m

ρ(t)

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj) +
t√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k
m
>τ

ρ

(
k

m

) ∣∣∣∣∣∣ 1√
m

m+min(k,mT )∑
j=m+1

h2(Yj) +
k

m

1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ρ(t)

 1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj) +
t√
m

m∑
i=1

h1(Yi)


−ρ
(
k

m

) 1√
m

m+min(k,mT )∑
j=m+1

h2(Yj) +
k

m

1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
≤ sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣ sup
t>τ

∣∣∣∣∣∣1t 1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj) +
1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
+ sup

k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣
(
m

k
− 1

t

)
1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣ sup
k
m
>τ

∣∣∣∣∣∣1t 1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj) +
1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
+

1

mτ 2
sup
k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+1

h2(Yj)

∣∣∣∣∣∣
= sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣OP (1) + sup
k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
oP (1) as m→∞

with Assumption 3.3 (ii). Due to Assumption 3.2 (iii) it holds

sup
k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
< sup

t>τ
tρ(t) <∞. (3.18)

Let ε > 0. By Assumption 3.2 (iii) there exists a Tε ≥ τ such that
∣∣tρ(t)− k

m
ρ
(
k
m

)∣∣ < ε
for t, k

m
> Tε. Hence, we obtain

sup
k
m
>Tε

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣ < ε. (3.19)
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Furthermore, as tρ(t) is uniformly continuous on [τ, Tε], there exists a δ > 0 such that∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣ < ε for all t,
k

m
∈ [τ, Tε] with

∣∣∣∣t− k

m

∣∣∣∣ < δ.

With m0 := d1
δ
e it holds

∣∣t− k
m

∣∣ < 1
m
≤ δ for all m ≥ m0, t ∈

[
k
m
, k+1
m

)
. It follows

sup
k
m
∈[τ,Tε]

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣ < ε for all m ≥ m0

and consequently

sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣→ 0 as m→∞. (3.20)

It follows∣∣∣∣∣∣sup
t>τ

ρ(t)

∣∣∣∣∣∣ 1√
m

m+min([mt],mT )∑
j=m+1

h2(Yj) +
t√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k>τm
w(m, k)

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣ = oP (1) as m→∞

and with (3.17) we get

sup
k>τm

w(m, k)

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>τ
ρ(t)

∣∣∣W̃2(1 + min(t, T ))− W̃2(1) + tW̃1(1)
∣∣∣ . (3.21)

By Assumption 3.3 (iv) and the stationarity we obtain

sup
k>mT

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
= sup

k>mT

kw(m, k)√
mT

·
√
mT

k

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
D
= sup

k>max(mT,lm)

kρ
(
k
m

)
m
√
T
·
√
mT

k

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣
≤ 1√

T
sup
k>mT

k

m
ρ

(
k

m

)
sup
k>mT

√
mT

k

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣
≤ 1√

T
sup
k>mT

k

m
ρ

(
k

m

)
OP (1)

≤ 1√
T

sup
t>T

tρ(t)OP (1)

=
1√
T
OP (1)

P→ 0 as T →∞ uniformly in m (3.22)
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3.2. Asymptotics under the Null Hypothesis

as limt→∞ tρ(t) <∞. Hence, we get

sup
k>τm

∣∣∣∣∣∣w(m, k)

m+min(k,mT )∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)


−w(m, k)

(
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

)∣∣∣∣∣
= sup

k>τm

∣∣∣∣∣∣w(m, k)

m+min(k,mT )∑
j=m+1

h2(Yj)− w(m, k)
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

τm<k≤mT

∣∣∣∣∣w(m, k)
m+k∑
j=m+1

h2(Yj)− w(m, k)
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
+ sup

k>mT

∣∣∣∣∣w(m, k)
m+mT∑
j=m+1

h2(Yj)− w(m, k)
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
= sup

k>mT

∣∣∣∣∣w(m, k)
m+mT∑
j=m+1

h2(Yj)− w(m, k)
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
≤ sup

k>mT
w(m, k)

∣∣∣∣∣
m+mT∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
k>mT

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
≤ sup

k>mT

k

m
ρ

(
k

m

)√
m

k

1√
k

∣∣∣∣∣
m+mT∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
k>mT

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
≤
√

1

T
sup
t>T

tρ (t)OP (1) + oP (1) = oP (1) as T →∞ uniformly in m (3.23)

noting that Assumption 3.2 (iii) and the continuity of ρ yield that ρ(t) as well as tρ(t)
are bounded on (T,∞) for all T ≥ 1 such that

sup
t>T

ρ(t) = O(1) and sup
t>T

tρ(t) = O(1). (3.24)

For γ < α < 1
2
it holds

sup
1≤k≤τm

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

1≤k≤τm
w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
1≤k≤τm

w(m, k)

∣∣∣∣∣ km
m∑
i=1

h1(Yi)

∣∣∣∣∣
= sup

1≤k≤τm
m

1
2
−αkαw(m, k)

∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
+ sup

1≤k≤τm

k

m
w(m, k)

√
m

∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
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= sup
lm<k≤τm

(
k

m

)α
ρ

(
k

m

) ∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
lm<k≤τm

k

m
ρ

(
k

m

) ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

1≤k≤τm

(
k

m

)α
ρ

(
k

m

)
sup

1≤k≤τm

∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
+ sup

1≤k≤τm

k

m
ρ

(
k

m

) ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣ . (3.25)

Assumption 3.2 (ii) yields that tγρ(t) is bounded on (0, τ ] such that

sup
1≤k≤τm

(
k

m

)α
ρ

(
k

m

)
≤ sup

0<t≤τ
tαρ (t) ≤ τα−γ sup

0<t≤τ
tγρ (t)→ 0 as τ → 0 (3.26)

and

sup
1≤k≤τm

k

m
ρ

(
k

m

)
≤ sup

0<t≤τ
tρ (t) ≤ τ 1−γ sup

0<t≤τ
tγρ (t)→ 0 as τ → 0. (3.27)

With Assumption 3.3 (iii) and the stationarity it holds for τ < 1

sup
1≤k≤τm

∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣ ≤ sup
1≤k≤m

∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
D
= sup

1≤k≤m

∣∣∣∣∣ 1

m
1
2
−αkα

k∑
j=1

h2(Yj)

∣∣∣∣∣ = OP (1) as m→∞

and with (ii) it holds

1√
m

m∑
i=1

h1(Yi) = OP (1) as m→∞.

Hence, (3.25) yields

sup
1≤k≤τm

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣ = oP (1) as τ → 0 uniformly in m.

(3.28)

With the law of the iterated logarithm for Wiener Processes (see Csörgő & Révész
(1981)) it holds

sup
t>T

∣∣∣W̃2(1 + t)
∣∣∣

1 + t

= sup
t>T

√
(1 + t) log log(1 + t)

1 + t

∣∣∣W̃2(1 + t)
∣∣∣√

(1 + t) log log(1 + t)
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3.2. Asymptotics under the Null Hypothesis

≤ sup
t>T

√
(1 + t) log log(1 + t)

1 + t
sup
t>T

∣∣∣W̃2(1 + t)
∣∣∣√

(1 + t) log log(1 + t)

≤ sup
t>T

√
log log(1 + t)

1 + t
sup
t>T

∣∣∣W̃2(1 + t)
∣∣∣√

(1 + t) log log(1 + t)
= o(1) a.s as T →∞ (3.29)

and thus

sup
t>T

ρ(t)
∣∣∣W̃2(1 + t)

∣∣∣
= sup

t>T
(1 + t)ρ(t)

∣∣∣W̃2(1 + t)
∣∣∣

1 + t

≤ sup
t>T

(1 + t)ρ(t) sup
t>T

∣∣∣W̃2(1 + t)
∣∣∣

1 + t

≤(sup
t>T

ρ(t) + sup
t>T

tρ(t)) sup
t>T

∣∣∣W̃2(1 + t)
∣∣∣

1 + t
= o(1) a.s as T →∞. (3.30)

Furthermore, it holds

sup
t>T

∣∣∣ρ(t)W̃2(1 + T )
∣∣∣ (3.31)

≤ sup
t>T

tρ(t)

∣∣∣∣ 1

T
W̃2(1 + T )

∣∣∣∣ (3.32)

= sup
t>T

tρ(t)
1 + T

T

√
log log(1 + T )

1 + T

∣∣∣∣∣ W̃2(1 + T )√
(1 + T ) log log(1 + T )

∣∣∣∣∣ = o(1) a.s. as T →∞.

(3.33)

Hence, we obtain

sup
t>τ

∣∣∣ρ(t)
(
W̃2(1 + min(t, T ))− W̃2(1) + tW̃1(1)

)
− ρ(t)

(
W̃2(1 + t)− W̃2(1) + tW̃1(1)

)∣∣∣
= sup

t>τ

∣∣∣ρ(t)W̃2(1 + min(t, T ))− ρ(t)W̃2(1 + t)
∣∣∣

≤ sup
τ<t≤T

∣∣∣ρ(t)W̃2(1 + t)− ρ(t)W̃2(1 + t)
∣∣∣+ sup

t>T

∣∣∣ρ(t)W̃2(1 + T )− ρ(t)W̃2(1 + t)
∣∣∣

= sup
t>T

∣∣∣ρ(t)W̃2(1 + T )− ρ(t)W̃2(1 + t)
∣∣∣

≤ sup
t>T

∣∣∣ρ(t)W̃2(1 + T )
∣∣∣+ sup

t>T

∣∣∣ρ(t)W̃2(1 + t)
∣∣∣ = o(1) a.s. as T →∞. (3.34)

Let {W2(t) : 0 < t ≤ T} := { 1
σ2

(W̃2(1 + t) − W̃2(1)) : 0 < t ≤ T} and {W1(t) : 0 <

t ≤ T} := { 1
σ2
W̃1(t) : 0 < t ≤ T} which are independent standard Wiener Processes.

It holds

W̃2(1 + t)− W̃2(1) + tW̃1(1) = σ2W2(t) + tσ1W1(1), 0 < t ≤ T. (3.35)
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Note that

sup
0<t≤τ

ρ(t) |σ2W2(t) + tσ1W1(1)|

≤ sup
0<t≤τ

ρ(t) |σ2W2(t)|+ sup
0<t≤τ

tρ(t) |σ1W1(1)|

≤ sup
0<t≤τ

ρ(t) |σ2W2(t)|+ τ 1−γ sup
0<t≤τ

tγρ (t) |σ1W1(1)| .

With the self-similarity of the Wiener Process and the law of the iterated logarithm
we obtain

sup
0<t≤τ

ρ(t) |σ2W2(t)|

=σ2 sup
s≥ 1

τ

ρ

(
1

s

) ∣∣∣∣W2

(
1

s

)∣∣∣∣
D
=σ2 sup

s≥ 1
τ

|W2(s)| 1
s
ρ

(
1

s

)
=σ2 sup

s≥ 1
τ

√
s log log s

s
ρ

(
1

s

)
|W2(s)|√
s log log s

≤σ2 sup
s≥ 1

τ

√
log log s

s1−γ− 1
2

sup
s≥ 1

τ

(
1

s

)γ
ρ

(
1

s

)
sup
s≥ 1

τ

|W2(s)|√
s log log s

=oP (1) as τ → 0. (3.36)

Together with (3.35) it follows

sup
0<t≤τ

ρ(t)
∣∣∣W̃2(1 + t)− W̃2(1) + tW̃1(1)

∣∣∣ = oP (1) as τ → 0. (3.37)

Based on Lemma B.2 we can combine (3.21), (3.23), (3.28), (3.34), (3.35) and (3.37)
such that we obtain

sup
k≥1

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi)

∣∣∣∣∣ D→ sup
t>0

ρ(t) |σ2W2(t) + tσ1W1(1)| (3.38)

and thus the assertion.

However, the critical values cannot be determined based on the limit distribution in
Theorem 3.6 as it contains the unknown parameters σ1 and σ2. Nevertheless, this result
can be used to derive pivotal limit distributions as stated in the following Corollary.
The unknown parameters can be estimated consistently based on the historic data set.

Corollary 3.7. (i) If σ1 = σ2 =: σ the limit distribution in Theorem 3.6 reduces to
sup0<s<1 ρ

(
t

1−t

) |W (t)|
1−t , where {W (t) : t ≥ 0} is a standard Wiener Process, such

that
1

σ̂m
sup
k≥1

|Γ(m, k)|
g(m, k)

D→ sup
0<s<1

ρ

(
s

1− s

)
|W (s)|
1− s

if σ̂m
P→ σ. For w(m, k) = m−1/2

(
1 + k

m

)−1 ( k
m+k

)−γ
, i.e. ρ(t) = (1 + t)−1 ( t

1+t

)−γ,
the above limit even simplifies to sup0<t<1

|W (t)|
tγ

.
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3.2. Asymptotics under the Null Hypothesis

(ii) For σ1 6= σ2 consider w̃(m, k) = m−1/2σ1

(
σ2

2 + σ2
1
k
m

)−1. Then, it holds

sup
k≥1

w̃(m, k) |Γ(m, k)| D→ sup
0<t<1

|W (t)| ,

where {W (t) : t ≥ 0} is a standard Wiener Process, such that

sup
k≥1

σ̂2
1,m√

m
(
σ̂2

2,m + σ̂2
1,m

k
m

) |Γ(m, k)| D→ sup
0<t<1

|W (t)|

if σ̂1,m
P→ σ1 and σ̂2,m

P→ σ2.

Proof. (i) For σ1 = σ2 =: σ we obtain with Theorem 3.6

sup
k≥1

w(m, k) |Γ(m, k)| D→ sup
t>0

σρ(t) |W2(t) + tW1(1)| .

In order to get a simpler representation of the limit distribution we consider the
process {

(1 + t)W

(
t

1 + t

)
: t > 0

}
,

where {W (t) : t ≥ 0} is a standard Wiener Process. As {W2(t) + tW1(1) : t ≥ 0}
and

{
(1 + t)W

(
t

1+t

)
: t ≥ 0

}
are Gaussian Processes with almost sure continu-

ous sample paths, their distribution is determined by their mean and covariance
structure. Both of the processes have mean zero and it holds

Cov

(
(1 + t)W

(
t

1 + t

)
, (1 + s)W

(
s

1 + s

))
=(1 + t)(1 + s) min

(
t

1 + t
,

s

1 + s

)
= min(t(1 + s), s(1 + t)) = min(t, s) + ts = Cov (W2(t) + tW1(1),W2(s) + sW1(1)) .

Thus, we get

{W2(t) + tW1(1) : t ≥ 0} D=
{

(1 + t)W

(
t

1 + t

)
: t > 0

}
(3.39)

such that

sup
t>0

ρ(t) |W2(t) + tW1(1)| D= sup
t>0

ρ(t)(1+t)

∣∣∣∣W (
t

1 + t

)∣∣∣∣ D= sup
0<s<1

ρ

(
s

1− s

)
|W (s)|
1− s

.

Hence,

sup
k≥1

w(m, k) |Γ(m, k)| D→ σ sup
0<s<1

ρ

(
s

1− s

)
|W (s)|
1− s

.

As ∣∣∣∣ 1

σ̂m
− 1

σ

∣∣∣∣ =

∣∣∣∣ σ̂m − σσ̂mσ

∣∣∣∣ = oP (1),

it follows
1

σ̂m
sup
k≥1

w(m, k) |Γ(m, k)| D→ sup
0<s<1

ρ

(
s

1− s

)
|W (s)|
1− s

.
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(ii) With Theorem 3.6 it holds

sup
k≥1

w̃(m, k) |Γ(m, k)| D→ sup
t>0

|σ2
1(σ2W2(t) + tσ1W1(1))|

σ2
2 + σ2

1t
.

Comparing the covariance structures we get

{σ2
1 (σ2W2(t) + tσ1W1(1)) : t > 0} D=

{
(σ2

2 + σ2
1t)W

(
σ2

1t

σ2
2 + σ2

1t

)
: t > 0

}
.

as

Cov

(
(σ2

2 + σ2
1t)W

(
σ2

1t

σ2
2 + σ2

1t

)
, (σ2

2 + σ2
1s)W

(
σ2

1s

σ2
2 + σ2

1s

))
=(σ2

2 + σ2
1t)(σ

2
2 + σ2

1s) min

(
σ2

1t

σ2
2 + σ2

1t
,

σ2
1s

σ2
2 + σ2

1s

)
=σ2

1 min
(
t(σ2

2 + σ2
1s), s(σ

2
2 + σ2

1t)
)

= σ2
1 min

(
σ2

2t+ σ2
1st, σ

2
2s+ σ2

1st
)

=σ2
1

(
σ2

2 min(s, t) + σ2
1st
)

and

Cov (σ1 (σ2W2(t) + tσ1W1(1)) , σ1 (σ2W2(s) + sσ1W1(1)))

=σ2
1

(
σ2

2 min(s, t) + σ2
1st
)
.

Thus, it holds

sup
t>0

|σ1(σ2W2(t) + tσ1W1(1))|
σ2

2 + σ2
1t

D
= sup

t>0

∣∣∣∣W (
σ2

1t

σ2
2 + σ2

1t

)∣∣∣∣ = sup
0<s<1

|W (s)|.

If σ̂1,m
P→ σ1 and σ̂2,m

P→ σ2, we obtain∣∣∣∣∣∣sup
k≥1

σ2
2

σ1
+ σ1

k
m

σ̂2
m,2

σ̂m,1
+ σ̂1,m

k
m

− 1

∣∣∣∣∣∣
≤

∣∣∣σ2
2

σ1
− σ̂2

m,2

σ̂m,1

∣∣∣
σ̂2
m,2

σ̂m,1

+ sup
1≤k≤m

k
m
|σ1 − σ̂m,1|

σ̂2
2,m

σ̂m,1

+ sup
k>m

k
m

∣∣∣σ1 − σ1
σ̂2
m,1

∣∣∣
σ̂2
2,m

σ̂m,1
+ σ̂1,m

k
m

≤

∣∣∣σ2
2

σ1
− σ̂2

m,2

σ̂m,1

∣∣∣
σ̂2
m,2

σ̂m,1

+
|σ1 − σ̂m,1|

σ̂2
2,m

σ̂m,1

+

∣∣∣σ1 − σ1
σ̂2
m,1

∣∣∣
σ̂1,m

= oP (1)

and thus ∣∣∣∣∣sup
k≥1

σ̂m,1√
m
(
σ̂2
m,2 + σ̂2

m,1
k
m

) |Γ(m, k)| − sup
k≥1

σ1√
m
(
σ2

2 + σ2
1
k
m

) |Γ(m, k)|

∣∣∣∣∣
≤

∣∣∣∣∣∣sup
k≥1

σ2
2

σ1
+ σ1

k
m

σ̂2
m,2

σ̂m,1
+ σ̂1,m

k
m

− 1

∣∣∣∣∣∣ sup
k≥1

w̃(m, k) |Γ(m, k)| = oP (1).
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3.2. Asymptotics under the Null Hypothesis

Corollary 3.7 (i) holds obviously for all kernels with h2(y) = −h1(y) or h2(y) = h1(y)
which in particular includes symmetric or anti-symmetric kernels. According to Ex-
ample 3.1, the CUSUM kernel is antisymmetric and the Wilcoxon kernel fulfills h2(y) =
−h1(y).

3.2.1. Independent and Identically Distributed Random
Variables

Let Y1, Y2, . . . be i.i.d. random variables with distribution function F and let h : R2 → R
be a kernel with

Eh2(Y1, Y2) <∞. (3.40)

We assume there exists a ν > 2 such that

0 < E |h1(Y1)|ν <∞
0 < E |h2(Y1)|ν <∞. (3.41)

Then, Assumption 3.3 is fulfilled:

(i) For i1, i2 ∈ {1, . . . ,m}, i1 6= i2, j ∈ {m + 1, . . . ,m + k} it holds with Fubini’s
Theorem, (3.2) and the independence of Yi1 , Yi2 and Yj

E (h(Yi1 , Yj)h(Yi2 , Yj)) =

∫ ∫ ∫
h(yi1 , yj)h(yi2 , yj)dF (yi1)dF (yi2)dF (yj)

=

∫ ∫
h(yi1 , yj)

∫
h(yi2 , yj)dF (yi2)dF (yi1)dF (yj)

=

∫ ∫
h(yi1 , yj)(h2(yj) + θ)dF (yi1)dF (yj)

=

∫
(h2(yj) + θ)

∫
h(yi1 , yj)dF (yi1)dF (yj)

=

∫
(h2(yj) + θ)2dF (yj)

= E((h2(Yj) + θ)2) = E(h2(Yj)
2) + 2θE(h2(Yj)) + θ2

= E(h2(Yj)
2) + θ2,

E (h(Yi1 , Yj)h2(Yj)) =

∫ ∫
h(yi1 , yj)h2(yj)dF (yi1)dF (yj)

=

∫
h2(yj)

∫
h(yi1 , yj)dF (yi1)dF (yj)

=

∫
h2(yj)

2dF (yj) + θ

∫
h2(yj)dF (yj)

= E(h2(Yj)
2).
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It follows by the independence of Yi1 , Yi2 and Yj

Cov (r(Yi1 , Yj), r(Yi2 , Yj))

= Cov (h(Yi1 , Yj)− h1(Yi1)− h2(Yj)− θ, h(Yi2 , Yj)− h1(Yi2)− h2(Yj)− θ)
= Cov (h(Yi1 , Yj), h(Yi2 , Yj))− Cov (h(Yi1 , Yj), h2(Yj))− Cov (h2(Yj), h(Yi2 , Yj))

+ Var (h2(Yj))

= E (h(Yi1 , Yj)h(Yi2 , Yj))− θ2 − E (h(Yi1 , Yj)h2(Yj))− E (h2(Yj)h(Yi2 , Yj))

+ E
(
h2(Yj)

2
)

= E(h2(Yj)
2) + θ2 − θ2 − E(h2(Yj)

2)− E(h2(Yj)
2) + E(h2(Yj)

2) = 0.

For j1, j2 ∈ {m+1, . . . ,m+k}, j1 6= j2, i ∈ {1, . . . ,m} it follows analogously that
r(Yi, Yj1) and r(Yi, Yj2) are uncorrelated. In the case of i1 6= i2 6= j1 6= j2 r(Yi1 , Yj1)

and r(Yi2 , Yj2) are independent. Hence, the summands of
∑m

i=1

∑k2
j=k1

r(Yi, Yj) are
uncorrelated and centered for 0 ≤ k1 ≤ k2 such that we obtain

E

∣∣∣∣∣
m∑
i=1

k2∑
j=k1

r(Yi, Yj)

∣∣∣∣∣
2
 = Var

(
m∑
i=1

k2∑
j=k1

r(Yi, Yj)

)
= σ2

rm(k2 − k1 + 1)

with σ2
r = Var (r(Y1, Y2)) <∞ due to (3.40) and (3.41). Now, (i) follows as

log2(m)2

m1−2γ
→ 0 as m→∞ (3.42)

because log2(x)2

x
→ 0 for all a > 0.

(ii) Follows with the 2-dimensional version of Donsker’s Theorem (see Theorem 1.1.
in Einmahl (2009)).

(iii),(iv) With Theorem C.2 we obtain for every ε > 0

P

(
sup

1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣ > C

)
≤ σ2

2

C2
m2α−1

m∑
k=1

1

k2α

≤ σ
2
2

C2
m2α−1

∫ m

0

1

x2α
dx =

σ2
2

C2

1

1− 2α
= ε for all m ≥ 1

with C = C(ε) = σ2√
ε(1−2α)

and σ2
2 = Var(h2(Y1)). Furthermore, it holds

P

(
sup
k>km

√
km
k

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣ > C

)
≤ σ2

2

C2

(
1 + km

∞∑
k=km+1

1

k2

)

≤ σ
2
2

C2

(
1 + km

∫ ∞
km

1

x2
dx

)
= 2

σ2
2

C2
= ε

with C = C(ε) =
√

2 σ2√
ε
.
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3.2. Asymptotics under the Null Hypothesis

3.2.2. Functionals of Mixing Processes

In the following we consider weakly dependent observations in the form of functionals
of absolutely regular processes. The work of Borovkova et al. (2001) provides useful
limit theorems for functionals of mixing processes, in particular related to U-statistics.
Absolute regularity has been introduced by Volkonskii & Rozanov (1959).

Definition 3.8. Let Ai2i1 = σ(Zi1 , Zi1+1 . . . , Zi2). A stochastic process {Zi : i ∈ Z} is
called absolutely regular if

β(k) = sup
i≥1

{
E

(
sup

A∈A∞i+k
|P (A|Ai−∞)− P (A)|

)}

=
1

2
sup
i≥1

{
sup

J∑
j=1

L∑
l=1

|P (Aj ∩Bl)− P (Aj)P (Bl)|

}
→ 0 (k →∞)

where the inner supremum in the second representation is taken over all finite Ai−∞−
measurable partitions (A1, . . . , AJ) and all finite A∞i+k− measurable partitions
(B1, . . . , BL), J, L arbitrary. The equality between the two representations has been
shown in Volkonskii & Rozanov (1959) based on the product measure on Ai−∞ ⊗A∞i+k.

Other well-known concepts of weak dependence are related to the mixing coefficients

α(k) = sup
i

sup
A∈Ai−∞

sup
B∈A∞i+k

|P (A ∩B)− P (A)P (B)|,

ϕ(k) = sup
i

sup
A∈Ai−∞

sup
B∈A∞i+k

|P (B|A)− P (B)|,

Ψ(k) = sup
i

sup
A∈Ai−∞

sup
B∈A∞i+k

∣∣∣∣ P (A ∩B)

P (A)P (B)
− 1

∣∣∣∣ .
For an extensive introduction and overview on mixing conditions we refer to Bradely
(2007). It holds (see Proposition 3.11 in Bradely (2007)) 1

2
Ψ(k) ≥ ϕ(k) ≥ β(k) ≥

2α(k). Hence, absolute regularity implies the strong (α−)mixing condition. However,
there are popular processes that do not satisfy a mixing condition. A prominent ex-
ample given in Andrews (1984) is an AR(1) time series where the innovations follow
a discrete distribution. Many of such processes which are not mixing but fulfill the
classical central limit theorems can be represented as functionals of mixing processes.
This concept has already been studied in Billingsley (1999).

Definition 3.9. (Borovkova et al. , 2001, Definition 1.1. and 1.4.) Let {Zi : i ∈ Z}
be a stationary stochastic process.

(i) A sequence {Yi : i ≥ 1} is called a (two-sided) functional of {Zi : i ∈ Z} if there
exists a measurable function f : RZ → R such that

Yi = f((Zi+n)n∈Z).

In particular, {Yi : i ≥ 1} is also stationary.
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(ii) A sequence {Yi : i ≥ 1} is called an r-approximating functional with approximat-
ing constants {ak}k≥0 of {Zi : i ∈ Z} if

E |Y0 − E(Y0|Z−k, . . . , Zk)|r ≤ ak

with ak → 0 as k →∞.

We assume that the observed time series is a 1-approximating functional of an ab-
solutely regular process. The 1-approximating property is also called L1-near-epoch-
dependence. Additionally, we need to impose a continuity assumption on the kernel
such that the 1-approximating property is preserved when applying the kernel function
or the functions h1 and h2 of Hoeffdings decomposition.

Definition 3.10. Let {Yi : i ≥ 1} be a stationary stochastic process.

(i) A measurable function u : R→ R is called 1-continuous, if there exists a function
Φ : (0,∞)→ (0,∞) with Φ(ε)→ 0 as ε→ 0 such that for all ε > 0

E
(
|u(Y ′)− u(Y )|1{|Y−Y ′|<ε}

)
≤ Φ(ε)

for all random variables Y and Y ′ having the same distribution as Y1 (see Defin-
ition 2.10. in Borovkova et al. (2001)).

(ii) A kernel h : R2 → R is called 1-continuous, if there exists a function Φ : (0,∞)→
(0,∞) with Φ(ε)→ 0 as ε→ 0 such that for all ε > 0

E
(
|h(X ′, Y )− h(X, Y )|1{|X−X′|<ε}

)
≤ Φ(ε)

E
(
|h(X, Y ′)− h(X, Y )|1{|Y−Y ′|<ε}

)
≤ Φ(ε)

for all random variables X,X ′, Y and Y ′ having the same marginal distribution
as Y1, and such that X, Y are either independent or have joint distribution P(Y1,Yk)

for some integer k (see Definition 2 in Dehling et al. (2015b)).

The 1-continuity of the Wilcoxon-kernel hW (x, y) = 1{x<y} follows similarly to Example
2.2 in Borovkova et al. (2001) by first noting that

|1{X′<Y } − 1{X<Y }|1{|X−X′|<ε} ≤ 1{|X−Y |<ε}

with X,X ′, Y and Y ′ as in Definition 3.10 (ii). Hence, we obtain

E
(
|1{X′<Y } − 1{X<Y }|1{|X−X′|<ε}

)
≤ P (|X − Y | < ε) ≤ Φ(ε)

with Φ(ε) = max
(
supk≥1 P (|Y1 − Yk| < ε), P (|X − Y | < ε)

)
. Let Fk be the distribution

function of Y1−Yk and assume that the functions Fk, k ≥ 1, are equicontinuous in zero.
Then, it holds

sup
k≥1

P (|Y1 − Yk| < ε) = sup
k≥1

(Fk(ε)− Fk(−ε))→ 0 (ε→ 0).

Furthermore, we get with Lebesgue’s dominated convergence theorem

lim
ε→0

P (|X − Y | < ε) =

∫ ∞
−∞

fY1(y) lim
ε→0

(FY1(y + ε)− FY1(y − ε))dy = 0
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3.2. Asymptotics under the Null Hypothesis

if FY1 is continuous in zero. Consequently, we obtain Φ(ε)→ 0 as ε→ 0.

Let {Yi : i ≥ 1} be a 1-approximating functional with approximating constants {ak}k≥0

of an absolutely regular process with mixing coefficients {β(k)}k≥0 and let h(x, y) be a
bounded 1-continuous kernel. In the following we show that Assumption 3.3 is fulfilled
if ∑

k≥1

k2 (β(k) +
√
ak + Φ(

√
ak)) <∞. (3.43)

(i) Analogously to Lemma 1 in Dehling et al. (2015b) it can be shown that there
exists a constant C such that

E

∣∣∣∣∣
m∑
i=1

k2∑
j=k1

r(Yi, Yj)

∣∣∣∣∣
2
 ≤ Cm(k2 − k1 + 1).

The assumption now follows with (3.42).

(ii) Lemma D.3 yields that h1(·) and h2(·) are also 1-continuous functions. Further-
more, they are bounded and centered such that with (3.43) the functional central
limit theorem is obtained by Proposition D.4.

(iii),(iv) With Lemma D.2,{h2(Yi) : i ∈ Z} is also a 1-approximating functional of an
absolutely regular process with approximating constants

a′k = Φ(
√

2ak) + C
√

2ak.

Hence, by (3.43) the assumption a) of Lemma D.1 is fulfilled for {h2(Yi) : i ∈ Z}.
Consequently, it follows with Theorem B.3. in Kirch (2006) and the stationarity
that there exists a constant A ≥ 4 such that

E

 sup
1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
4
 = E

 sup
1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣
4


≤CA 1

m2−4α

m∑
k=1

k1−4α ≤ CA
1

m2−4α

∫ m

0

x1−4αdx =
1

2− 4α
CA

and with

bk =

{
1√
km
, k = 1, . . . , km√

km
k
, k > km

we get

E

 sup
k>km

√
km
k

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
4
 = E

 sup
k>km

√
km
k

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣
4


≤E

sup
k≥1

bk

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣
4
 ≤ CA

∑
k≥1

b4
kk = CA

(
km∑
k=1

k

k2
m

+
∞∑

k=km+1

k2
m

k3

)

≤CA
(

1 + k2
m

∫ ∞
km

x−3dx

)
=

3

2
CA.
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Asymptotics

The CUSUM-kernel hC(x, y) = x− y is not bounded but nevertheless Assumption 3.3
is fulfilled for many weak dependency concepts. First note that (i) can be omitted
as the remainder term is zero. Furthermore, it holds that h1(Yi) = Yi − µ = −h2(x)
such that in (3.17) in the proof of Theorem 3.6 we only need a functional central limit
theorem for the partial sum process 1√

m

∑[mt]
i=1 (Yi − µ). Such results have been shown

for a wide range of weakly dependent data, as for example in Billingsley (1999) for
functionals of mixing processes. Furthermore, weak invariance principles do not only
imply the functional central limit theorem but also the Hájek-Rényi-type inequalities
in (iii) and (iv). The latter is obtained by first applying the weak invariance principle
and then the standard Hájek-Rényi inequality in C.2 to the independent increments
of the Wiener process. Then, (iii) and (iv) follow as in Section 3.2.1. Examples for
processes that satisfy such weak invariance principles are given in Aue (2003).
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3.3. Asymptotics under the Alternative

3.3. Asymptotics under the Alternative

In the following we analyze the asymptotic behavior of the proposed procedures under
alternatives according to the change point model described in Section 2.2. More pre-
cisely, we will show that they have asymptotic power one which means that if there is a
change it will be detected at some point with probability tending to one as the length
m of the historic data set goes to infinity. First, note that it holds for k > k∗

Γ(m, k) =
1

m

m∑
i=1

m+k∗∑
j=m+1

(h(Yi, Yj)− θ) +
1

m

m∑
i=1

m+k∑
j=m+k∗+1

(h(Yi, Zj,m)− θ)

=Γ(m, k∗) +
1

m

m∑
i=1

m+k∑
j=m+k∗+1

(h(Yi, Zj,m)− θ∗m) + (k − k∗)∆m,

where 1
m

∑m
i=1

∑m+k
j=m+k∗+1 h(Yi, Zj,m) is a two-sample U-statistic for which the two

samples are no longer generated by the same distribution. Consider the following
version of Hoeffding’s decomposition:

h(x1, x2) = θ∗m + h∗1,m(x1) + h∗2,m(x2) + r∗m(x1, x2) (3.44)

with

θ∗m = E(h(Y, Zm))

h∗1,m(x1) = E(h(x1, Zm)− θ∗m)

h∗2,m(x2) = E(h(Y, x2)− θ∗m) = h2(x2)−∆m,

r∗m(x1, x2) = h(x1, x2)− h∗1,m(x1)− h∗2,m(x2)− θ∗m,
∆m = θ∗m − θ

for independent random variables Y D
= Y1 and Zm

D
= Zm,1. r∗m(x1, x2) is degenerate

and analogously to (3.2) E(h∗1,m(Y )) = E(h∗2,m(Zm)) = 0. Based on (3.44) we get the
following representation of the monitoring statistic under the alternative for k > k∗

Γ(m, k) =
1

m

m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj) +
m+k∗∑
j=m+1

h2(Yj) +
k∗

m

m∑
i=1

h1(Yi)

+
1

m

m∑
i=1

m+k∑
j=m+k∗+1

r∗m(Yi, Zj,m) +
m+k∑

j=m+k∗+1

h∗2,m(Zj,m)

+
k − k∗

m

m∑
i=1

h∗1,m(Yi) + (k − k∗)∆m. (3.45)

Example 3.11. We derive the explicit form of Hoeffding’s decomposition for the CUSUM
and the Wilcoxon kernel (see Example 2.2) for a mean change as given in (2.8). Let
Z̃m = Ỹ + dm where Ỹ is an independent copy of Y D

= Y1 and recall the results of
Example 2.3.
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Asymptotics

(i) Hoeffding’s decomposition of the CUSUM kernel is given by

h∗C1,m(y) = E
(
hC(y, Z̃m)

)
− θ∗Cm = E(y − (Ỹ + dm)) + dm = y − µ

h∗C2,m(z) = E (hC(Y, z))− θ∗Cm = E(Y − z) + dm = µ− z + dm

r∗C(y, z) = y − z − (y − µ)− (µ− z + dm) + dm = 0.

(ii) Hoeffding’s decomposition of the Wilcoxon kernel is given by

h∗W1,m(y) = E
(
hW (y, Z̃m)

)
− θ∗Wm = E(1{y<Ỹ+dm})−

(
∆W
m +

1

2

)
=

1

2
− FY (y − dm)−∆W

m

h∗W2,m(z) = E (hW (Y, z))− θ∗Wm = E(1{Y <z})−
(

∆W
m +

1

2

)
= FY (z)−∆W

m +
1

2

r∗W (y, z) = 1{y<z} −
(

1

2
− FY (y − dm)−∆W

m

)
−
(
FY (z)−∆W

m +
1

2

)
−
(

∆W
m +

1

2

)
= 1{y<z} + FY (y − dm)− FY (z) + ∆W

m −
3

2

Under the alternative, we need to impose some additional but still mild conditions on
the weight function:

Assumption 3.12. (i) If k∗

m
→∞, assume that lim inft→∞ tρ(t) > 0.

(ii) If k∗

m
= O(1), i.e. k∗

m
< ν for all m ≥ 1 for some ν > 0, assume that there exist

t0 > ν, ε > 0 such that ρ(t) > 0 for all t ∈ (t0 − ε, t0 + ε).

We assume that the time series before the change fulfills the regularity conditions under
the null hypothesis given in Assumption 3.3. Regarding the terms that additionally
appear in the above decomposition of the monitoring statistic after the change, we
impose the following regularity conditions:

Assumption 3.13. Let {Yi}i∈Z and {Zi,m}i∈Z be stationary time series that fulfill the
following assumptions for a given kernel function h.

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r∗m(Yi, Zj,m)
∣∣∣2) ≤ u(m)(k2−k1+1) for all m+k∗+1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.

(ii) 1√
m

∑m
i=1 h

∗
1,m(Yi) = Op(1) as m→∞

(iii) 1√
km

∑m+k∗+km
j=m+k∗+1 h

∗
2,m(Zj,m) = Op(1) as km →∞.
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3.3. Asymptotics under the Alternative

The following consistency result holds without any restriction on the time of the change.

Theorem 3.14. Let the regularity conditions given in Assumptions 3.2, 3.3, 3.12 and
3.13 be fulfilled. Furthermore assume that

√
m|∆m| → ∞. Then, it holds under the

alternative
sup
k≥1

w(m, k) |Γ(m, k)| P→∞.

Proof. For k̃ > k∗ it holds with (3.45)

Γ
(
m, k̃

)
= Γ(m, k∗) +

1

m

m∑
i=1

m+k̃∑
j=m+k∗+1

r∗m(Yi, Zj,m)

+
m+k̃∑

j=m+k∗+1

h∗2,m(Zj,m) +
k̃ − k∗

m

m∑
i=1

h∗1(Yi) + (k̃ − k∗)∆m. (3.46)

Let us first consider late changes with k∗

m
→∞. As ρ(t) = (1 + t)−1 fulfills Assumption

3.2, we obtain with Theorem 3.6
√
m

k∗
|Γ(m, k∗)| =

(m
k∗

+ 1
)
OP (1) = OP (1) as m→∞. (3.47)

Furthermore, Lemma 3.5 yields

√
m

k∗

∣∣∣∣∣∣ 1

m

m∑
i=1

m+k̃∑
j=m+k∗+1

r∗m(Yi, Zj,m)

∣∣∣∣∣∣
=
(m
k∗

+ 1
)
oP (1) = oP (1) as m→∞. (3.48)

Now, consider k̃ = 2k∗. With Assumption 3.13 (ii), (iii) we get

√
m

k∗

∣∣∣∣∣∣
m+k̃∑

j=m+k∗+1

h∗2,m(Zj,m) +
k̃ − k∗

m

m∑
i=1

h∗1(Yi)

∣∣∣∣∣∣
≤
√
m

k∗

√k̃

∣∣∣∣∣∣ 1√
k̃

m+k̃∑
j=m+k∗+1

h∗2,m(Zj,m)

∣∣∣∣∣∣+
k̃ − k∗√

m

∣∣∣∣∣ 1√
m

m∑
i=1

h∗1(Yi)

∣∣∣∣∣


=

√
m

k∗

(√
2k∗ +

k∗√
m

)
OP (1)

=

(√
2m

k∗
+ 1

)
OP (1) = OP (1) as m→∞. (3.49)

As lm
k∗

= m
k∗

lm
m
→ 0 as m → ∞ there exists an m0 ∈ N such that k̃ > k∗ > lm for all

m ≥ m0. Thus, for those m ≥ m0, based on the representation of Γ(m, k̃) as given in
(3.46) it follows with (3.48) and (3.49)

w(m, k̃)|Γ(m, k̃)− Γ(m, k∗)− (k̃ − k∗)∆m| = OP (1) (3.50)
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as
k∗√
m
w(m, 2k∗) =

1

2

(
2
k∗

m
ρ

(
2
k∗

m

))
= O(1)

with Assumption 3.2 (iii). Hence, (3.47) yields

w(m, k̃)Γ
(
m, k̃

)
= w(m, k̃)(k̃ − k∗)∆m +OP (1). (3.51)

Furthermore, it holds

w
(
m, k̃

)
(k̃ − k∗) |∆m|

=
k∗√
m
ρ

(
2
k∗

m

)
|∆m| =

1

2

(
2
k∗

m
ρ

(
2
k∗

m

))√
m |∆m| → ∞ as m→∞ (3.52)

with Assumption 4.4 (i) and
√
m|∆m| → ∞. Now, it follows

sup
k≥1

w(m, k) |Γ(m, k)| ≥ w
(
m, k̃

) ∣∣∣Γ(m, k̃)∣∣∣ P→∞ as m→∞. (3.53)

For k∗

m
= O(1), let us consider a weight function w̃ according to Assumption 3.2 with

l̃m = 0 and ρ ≡ 1 on [0, ν]. Then, it holds with Theorem 3.6 for k̃ = [t0m] with t0 as
in Assumption 3.12

w
(
m, k̃

)
|Γ(m, k∗)| ≤ ρ

(
k̃

m

)
|Γ(m, k∗)| = ρ

(
[t0m]

m

)
OP (1)

= ρ (t0 + o(1))OP (1) = OP (1) as m→∞ (3.54)

as ρ is bounded on any compact interval due to its continuity. Lemma 3.5 yields

w
(
m, k̃

) ∣∣∣∣∣∣ 1

m

m∑
i=1

m+k̃∑
j=m+k∗+1

r∗m(Yi, Zj,m)

∣∣∣∣∣∣ = w
(
m, k̃

) ∣∣∣∣∣∣ 1

m

m∑
i=1

k̃−k∗∑
j=1

r∗m(Yi, Zm+k∗+j,m)

∣∣∣∣∣∣
≤ρ
(

[t0m]

m

) ∣∣∣∣∣∣ 1

m

m∑
i=1

[t0m]−k∗∑
j=1

r∗m(Yi, Zm+k∗+j,m)

∣∣∣∣∣∣
=ρ (t0 + o(1)) oP (1) = oP (1) as m→∞. (3.55)

as ρ is bounded around t0. With Assumption 3.13 (ii), (iii) we get

w
(
m, k̃

) ∣∣∣∣∣
m+k∑

j=m+k∗+1

h∗2,m(Zj,m) +
k̃ − k∗

m

m∑
i=1

h∗1(Yi)

∣∣∣∣∣
≤w

(
m, k̃

)√k̃

∣∣∣∣∣∣ 1√
k̃

m+k̃∑
j=m+k∗+1

h∗2,m(Zj,m)

∣∣∣∣∣∣+
k̃ − k∗√

m

∣∣∣∣∣ 1√
m

m∑
i=1

h∗1(Yi)

∣∣∣∣∣


=w
(
m, k̃

)(√
k̃ +

k̃ − k∗√
m

)
OP (1)

≤
(√

t0 + t0
)
ρ (t0 + o(1))OP (1) = OP (1) as m→∞. (3.56)
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3.3. Asymptotics under the Alternative

Hence, for the representation of Γ(m, k̃) as given in (3.46) it follows with (3.55) and
(3.56)

w(m, k̃)
∣∣∣Γ(m, k̃)− Γ(m, k∗)− (k̃ − k∗)∆m

∣∣∣ = OP (1) (3.57)

such that we obtain with (3.54)

w(m, k̃)Γ
(
m, k̃

)
= w(m, k̃)(k̃ − k∗)|∆m|+OP (1). (3.58)

As lm
m
→ 0 for m→∞ there exists an m0 ∈ N such that m > lm for all m ≥ m0. For

those m ≥ m0 it holds

w
(
m, k̃

)
(k̃ − k∗)|∆m| = ρ

(
[mt0]

m

)
([mt0]− k∗)|∆m|

≥ρ (t0 + o(1))

(
[mt0]

m
− [mν]

m

)√
m|∆m|

≥ρ (t0 + o(1)) (t0 − ν + o(1))
√
m|∆m|

P→∞ as m→∞ (3.59)

as
√
m|∆m| → ∞ with Assumption 3.12 (ii). Now, it follows with (3.58) and (3.59)

sup
k≥1

w(m, k) |Γ(m, k)| ≥ w
(
m, k̃

) ∣∣∣Γ(m, k̃)∣∣∣ P→∞ as m→∞. (3.60)
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4. Modified MOSUM and
Page-CUSUM

In the previous chapters we have considered the monitoring statistic as given in (2.1)
which is a generalization of the classical sequential CUSUM procedure. However, as it
compares the historic data set with all observations that have been collected during the
monitoring period so far, it shares the drawback of the classical CUSUM monitoring
scheme that it takes a rather long time to detect changes that occur rather late in
the monitoring period. The reason behind that is quite obvious: the later the change
occurs the more data that follows the distribution under the null hypothesis is used in
the monitoring statistic for the CUSUM scheme such that correspondingly more obser-
vations need to be collected after the change before the monitoring statistic indicates
a significant difference to the historic data set. Therefore, several adaptations of the
monitoring scheme have been proposed in the literature. They all aim at being less
dependent on the time of the change by only taking the most recent observations into
account. The selection of the time window for which the observations are included
differs between the procedures. The standard MOSUM procedure has been considered
in Horváth et al. (2008) and Aue et al. (2012) for the mean change model. The
modified MOSUM has been proposed in Chen & Tian (2010) and the Page-CUSUM in
Fremdt (2015), both for the linear model. All of those monitoring schemes have been
considered in Kirch & Weber (2018) in the framework of sequential change point tests
based on estimating functions. Based on a simulation study they conclude that the
MOSUM procedure has noticeable problems with the detection of changes. Although
its detection delay is very small for those changes that are detected, we are interested
in a reliable testing procedure in the first place and thus only consider the modified
MOSUM and the Page-CUSUM. According to those monitoring schemes we obtain the
following monitoring statistics in our framework:

Modified MOSUM:

Γ2(m, k) =
1

m

m∑
i=1

m+k∑
j=m+[kh]+1

(h(Xi, Xj)− θ)

=
1

m

m∑
i=1

m+k∑
j=m+[kh]+1

r(Xi, Xj) +
m+k∑

j=m+[kh]+1

h2(Xj) +
k − [kh]

m

m∑
i=1

h1(Xi),

where h ∈ (0, 1) is a given tuning parameter.
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4.1. Asymptotics Under the Null Hypothesis

Page-CUSUM:

Γ3(m, k) = sup
1≤l≤k

|Γ(m, k)− Γ(m, l)|

= sup
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+l+1

(h(Xi, Xj)− θ)

∣∣∣∣∣
= sup

1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+l+1

r(Xi, Xj) +
m+k∑

j=m+l+1

h2(Xj) +
k − l
m

m∑
i=1

h1(Xi)

∣∣∣∣∣ .
The fixed parameter h in the modified MOSUM determines the percentage of the earlier
observations that are discarded, whereas the Page-CUSUM does not require an a priori
choice of a parameter.

4.1. Asymptotics Under the Null Hypothesis

In order to obtain the critical values for the modified MOSUM and the Page-CUSUM
procedure we derive the limit distribution of the respective test statistic under the null
hypothesis. All asymptotic results can be established based on the regularity conditions
introduced in Chapter 3. As before we start with showing that the remainder term is
uniformly asymptotically negligible.

Lemma 4.1. Let {Yi}i∈Z and {Y ′i,m}i∈Z be sequences of random variables. Let As-
sumption 3.2 be fulfilled for the weight function. Assume that for gm : R2 → R it
holds

E

∣∣∣∣∣
m∑
i=1

k2∑
j=k1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
2
 ≤ u(m)(k2 − k1 + 1) for all 0 ≤ k1 ≤ k2 (4.1)

with u(m)
m2−2γ log(m)2 → 0 for all δ > 0 and γ as in Assumption 3.2. Then, it holds as

m→∞

(i) supk≥1w(m, k)
∣∣∣ 1
m

∑m
i=1

∑k
j=[kh]+1 gm(Yi, Y

′
j,m)
∣∣∣ = oP (1).

(ii) supk≥1w(m, k) sup1≤l≤k

∣∣∣ 1
m

∑m
i=1

∑k
j=l+1 gm(Yi, Y

′
j,m)
∣∣∣ = oP (1).

Proof. (i) By (3.9) and (3.10) we get

max
1≤k≤m

kγw(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤ max

1≤k≤m
kγw(m, k) max

1≤[kh]≤[mh]

∣∣∣∣∣∣ 1

m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤ max

1≤k≤m
kγw(m, k) max

1≤l≤m

∣∣∣∣∣ 1

m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1).
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In particular, this implies

max
1≤k≤m

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣ = oP (1).

Combining this with (3.12) we obtain

max
1≤k≤m

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=[kh]+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤ max

1≤k≤m
w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣+ max
1≤k≤m

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
=oP (1) as m→∞.

(4.2)

With (3.14) and (3.9) it holds

sup
k>m

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
= sup

k>max(m,lm)

1√
m
ρ

(
k

m

) ∣∣∣∣∣∣ 1

m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤ sup

k>m

[kh]

k

k

m
ρ

(
k

m

) ∣∣∣∣∣∣ 1

[kh]
√
m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤h sup

t>1
tρ (t) sup

k>m

∣∣∣∣∣∣ 1

[kh]
√
m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤h sup

t>1
tρ (t)

(
sup

[mh]≤l≤m

∣∣∣∣∣ 1

l
√
m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣+ sup
l>m

∣∣∣∣∣ 1

l
√
m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
)

≤h sup
t>1

tρ (t)

(
sup

1≤l≤m

∣∣∣∣∣ 1

[mh]
√
m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣+ oP (1)

)

=h sup
t>1

tρ (t)

(√
u(m)

m2−2γ
log(m)2m−γ

m

[mh]
oP (1) + oP (1)

)
= oP (1) as m→∞

as by Assumption 3.2 (iii) tρ(t) is bounded on (1,∞).

42



4.1. Asymptotics Under the Null Hypothesis

Hence, we get with (3.16)

sup
k>m

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=[kh]+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤ sup

k>m
w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

rgm(Yi, Y
′
j,m)

∣∣∣∣∣+ sup
k>m

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

[kh]∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
=oP (1) as m→∞.

Together with (4.2) it follows

sup
k≥1

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=[kh]+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
≤ max

1≤k≤m
w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=[kh]+1

r(Yi, Yj)

∣∣∣∣∣∣+ sup
k>m

w(m, k)

∣∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=[kh]+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣∣
=oP (1) as m→∞

and thus assertion (i).

(ii) With (3.9) and (3.10) we get

max
1≤k≤m

kγw(m, k) max
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1). (4.3)

In particular, this implies

max
1≤k≤m

w(m, k) max
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣ = oP (1).

Combining this with (3.12) we obtain

max
1≤k≤m

w(m, k) max
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=l+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
≤ max

1≤k≤m
w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
+ max

1≤k≤m
w(m, k) max

1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
=oP (1) as m→∞. (4.4)
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With (3.9), (3.14) and (3.15) and it holds

sup
k>m

w(m, k) max
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
≤ sup

k>m
w(m, k)

k√
m

sup
k>m

max
1≤l≤k

∣∣∣∣∣ 1

k
√
m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
≤ sup

k>m
w(m, k)

k√
m

(
max

1≤l≤m

∣∣∣∣∣ 1

m3/2

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
+ sup

l>m

∣∣∣∣∣ 1

l
√
m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
)

= oP (1) as m→∞.

Hence, we get with (3.16)

sup
k>m

w(m, k) max
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=l+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
≤ sup

k>m
w(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=1

r(Yi, Yj)

∣∣∣∣∣+ sup
k>m

w(m, k) max
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

l∑
j=1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
=oP (1) as m→∞.

Together with (4.4) it follows

sup
k≥1

w(m, k) max
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=l+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
≤ max

1≤k≤m
w(m, k) max

1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=l+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
+ sup

k>m
w(m, k) max

1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

k∑
j=l+1

gm(Yi, Y
′
j,m)

∣∣∣∣∣
=oP (1) as m→∞

and thus assertion (ii).

The following theorem states the limit distribution of the test statistic for the Page-
CUSUM as well as the modified MOSUM.

Theorem 4.2. Let the regularity conditions given in Assumption 3.2 and 3.3 be ful-
filled. Then, there exist two independent standard Wiener processes {W1(t)} and
{W2(t)} such that, as m→∞,

(i) supk≥1w(m, k) |Γ2(m, k)| D→ supt>0 ρ(t) |σ2(W2(t)−W2(th)) + t(1− h)σ1W1(1)|,
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4.1. Asymptotics Under the Null Hypothesis

(ii) supk≥1w(m, k) |Γ3(m, k)| D→ supt>0 ρ(t) sup0<s≤t |σ2(W2(t)−W2(s)) + (t− s)σ1W1(1)|,

where σ1 and σ2 are as in Assumption 3.3 (ii).

Proof. (i) With Lemma 4.1 it holds

sup
k≥1

∣∣∣∣∣∣w(m, k)Γ2(m, k)− w(m, k)

 m+k∑
j=m+[kh]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
≤ sup

k≥1
w(m, k)

1

m

∣∣∣∣∣∣
m∑
i=1

m+k∑
j=m+[kh]+1

r(Yi, Yj)

∣∣∣∣∣∣ = oP (1), m→∞

due to Assumption 3.3 (i). According to Lemma B.1 it remains to show that there
exist two independent standard Wiener processes {W1(t)} and {W2(t)} such that,
as m→∞,

sup
k≥1

w(m, k)

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>0
ρ(t) |σ2(W2(t)−W2(th)) + t(1− h)σ1W1(1)| .

With Assumption 3.3 (ii) we get that for any fixed τ, T > 0 and m→∞

sup
t>τ

ρ(t)

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj) +
t(1− h)√

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>τ
ρ(t)

∣∣∣W̃2(1 + min(t, T ))− W̃2(1 + min(t, T )h) + t(1− h)W̃1(1)
∣∣∣ . (4.5)

As lm
m
→ 0, there exists an mτ such that lm

m
< τ for all m ≥ mτ . Hence, it holds

for m ≥ mτ∣∣∣∣∣∣sup
t>τ

ρ(t)

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj) +
t(1− h)√

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k>τm
w(m, k)

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+[min(k,mT )h]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣sup
k
m
>τ

sup
k
m
≤t< k+1

m

ρ(t)

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj) +
t(1− h)√

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k
m
>τ

ρ

(
k

m

) ∣∣∣∣∣∣ 1√
m

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj) +
k − [kh]

m

1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣
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≤ sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ρ(t)

 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj) +
t(1− h)√

m

m∑
i=1

h1(Yi)


−ρ
(
k

m

) 1√
m

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj) +
k − [kh]

m

1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
≤ sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣
(
tρ(t)− k

m
ρ

(
k

m

))1

t

1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

+(1− h)
1√
m

m∑
i=1

h1(Yi)

)∣∣∣∣∣
+ sup

k
m
>τ

sup
k
m
≤t< k+1

m

ρ

(
k

m

) ∣∣∣∣∣∣ 1√
m

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj)

− k

mt

1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣
+ sup

k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

) ∣∣∣∣∣k − [kh]

k

1√
m

m∑
i=1

h1(Yi)−
1− h√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣
1

τ
sup
t>τ

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣
+(1− h)

∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
)

+ sup
k
m
>τ

ρ

(
k

m

)sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ 1√
m

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj)

− 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣
+ sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣1− k

mt

1

t

∣∣∣∣ sup
t>τ

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣


+ sup
k
m
>τ

k

m
ρ

(
k

m

)
sup
k
m
>τ

∣∣∣∣h− [kh]

k

∣∣∣∣
∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
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=oP (1)

1

τ
sup
t>τ

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣+ (1− h)

∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣


+O(1) sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ 1√
m

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj)−
1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣
+O(1) sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣1− k

mt

∣∣∣∣ sup
t>τ

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣


+O(1) sup
k
m
>τ

∣∣∣∣h− [kh]

k

∣∣∣∣
∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣ (4.6)

(4.7)

with (3.18), (3.20) and Assumption 3.2 (iii) as sup k
m
>τ

k
m
ρ
(
k
m

)
≤ supt>τ tρ(t) <

∞. Assumption 3.3 (ii) yields

1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj) = OP (1) (4.8)

as well as

1√
m

m∑
i=1

h1(Yi) = OP (1). (4.9)

Furthermore, it holds

sup
k
m
>τ

∣∣∣∣h− [kh]

k

∣∣∣∣ = sup
k
m
>τ

∣∣∣∣kh− [kh]

k

∣∣∣∣ ≤ 1

τm
= o(1) as m→∞ (4.10)

and

sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣1− k

mt

∣∣∣∣ ≤ sup
k
m
>τ

1

k + 1
≤ 1

τm
= o(1) as m→∞. (4.11)

Now, consider

sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ 1√
m

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj)−
1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣
= sup

τ< k
m
≤T

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ 1√
m

[mth]∑
j=1

h2(Yj)−
1√
m

[kh]∑
j=1

h2(Yj)

∣∣∣∣∣∣
≤ sup

τ<t≤T
|X(t)−X(t−)| , (4.12)

where X(t) := 1√
m

∑[mth]
j=1 h2(Yj) and X(t−) = limε→0X(t− ε). Let F : D[0, T ]→

R with x 7→ supt>τ |x(t)−x(t−)|, whereD[0, T ] denotes the set of càdlàg functions
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on [0, T ]. Let δ > 0. Then, it holds for all x, y ∈ D[0, T ] with supτ<t≤T |x(t) −
y(t)| < δ

2 ∣∣∣∣ sup
τ<t≤T

|x(t)− x(t−)| − sup
τ<t≤T

|y(t)− y(t−)|
∣∣∣∣

≤ sup
τ<t≤T

|(x(t)− y(t)− (x(t−)− y(t−))|

≤ sup
τ<t≤T

|(x(t)− y(t)|+ sup
τ<t≤T

|(x(t−)− y(t−))|

≤2 sup
τ<t≤T

|(x(t)− y(t)| < δ.

Hence, the functional F is continuous such that it follows with (4.12) and As-
sumption 3.2 (iii)

sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣mk 1√
m

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj)−
1

t

1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj)

∣∣∣∣∣∣ = oP (1).

(4.13)

Combining (4.6), (4.8), (4.9), (4.10), (4.11) and (4.13) we obtain∣∣∣∣∣∣sup
t>τ

ρ(t)

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(t,T )h]+1

h2(Yj) +
t(1− h)√

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k>τm
w(m, k)

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+[min(k,mT )h]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣ = oP (1) as m→∞

and with (4.5) we get

sup
k>τm

w(m, k)

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+[min(k,mT )h]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>τ
ρ(t)

∣∣∣W̃2(1 + min(t, T ))− W̃2(1 + min(t, T )h) + t(1− h)W̃1(1)
∣∣∣ . (4.14)

By Assumption 3.3 (iv) and the stationarity we obtain

sup
k>km

√
km
k

∣∣∣∣∣∣
m+[kh]∑
j=m+1

h2(Yj)

∣∣∣∣∣∣ ≤ sup
k>km

h
√
km

[kh]

∣∣∣∣∣∣
m+[kh]∑
j=m+1

h2(Yj)

∣∣∣∣∣∣
≤

√
h
kmh

[kmh]
sup

l>[kmh]

√
[kmh]

l

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
≤
√
h

1

1− 1
kmh

sup
l>[kmh]

√
[kmh]

l

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
D
=

√
h

1

1− 1
kmh

sup
l>[kmh]

√
[kmh]

l

∣∣∣∣∣
l∑

j=1

h2(Yj)

∣∣∣∣∣ = OP (1) as km →∞
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uniformly in m and thus

sup
k>km

√
km
k

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

k>km

√
km
k

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
k>km

√
km
k

∣∣∣∣∣∣
m+[kh]∑
j=m+1

h2(Yj)

∣∣∣∣∣∣ = OP (1) as km →∞

uniformly in m. This yields

sup
k>mT

w(m, k)

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
= sup

k>mT

kw(m, k)√
mT

·
√
mT

k

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
= sup

k>max(mT,lm)

kρ
(
k
m

)
m
√
T
·
√
mT

k

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
≤ 1√

T
sup
k>mT

k

m
ρ

(
k

m

)
sup
k>mT

√
mT

k

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
≤ 1√

T
sup
k>mT

k

m
ρ

(
k

m

)
OP (1)

≤ 1√
T

sup
t>T

tρ(t)OP (1)

=
1√
T
OP (1)

P→ 0 as T →∞ uniformly in m

and

sup
k>mT

w(m, k)

∣∣∣∣∣∣
m+mT∑

j=m+[mTh]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

k>mT

k

m
ρ

(
k

m

) ∣∣∣∣∣∣ 1

T
√
m

m+mT∑
j=m+[mTh]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

t>T
tρ(t)OP (1)

P→ 0 as T →∞ uniformly in m.

Hence, we get

sup
k>τm

∣∣∣∣∣∣w(m, k)

 m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)


−w(m, k)

 m+k∑
j=m+[kh]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
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= sup
k>τm

∣∣∣∣∣∣w(m, k)

m+min(k,mT )∑
j=m+[min(k,mT )h]+1

h2(Yj)− w(m, k)
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

τm<k≤mT

∣∣∣∣∣∣w(m, k)
m+k∑

j=m+[kh]+1

h2(Yj)− w(m, k)
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
+ sup

k>mT

∣∣∣∣∣∣w(m, k)
m+mT∑

j=m+[mTh]+1

h2(Yj)− w(m, k)
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
= sup

k>mT

∣∣∣∣∣∣w(m, k)
m+mT∑

j=m+[mTh]+1

h2(Yj)− w(m, k)
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

k>mT
w(m, k)

∣∣∣∣∣∣
m+mT∑

j=m+[mTh]+1

h2(Yj)

∣∣∣∣∣∣+ sup
k>mT

w(m, k)

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
=oP (1) as T →∞ uniformly in m. (4.15)

For γ < α < 1
2
it holds

sup
1≤k≤τm

w(m, k)

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
≤ sup

1≤k≤τm
w(m, k)

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣+ sup
1≤k≤τm

w(m, k)

∣∣∣∣∣k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣
= sup

1≤k≤τm
m

1
2
−αkαw(m, k)

∣∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
+ sup

1≤k≤τm

k − [kh]

m
w(m, k)

√
m

∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

lm<k≤τm

(
k

m

)α
ρ

(
k

m

) ∣∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
+ sup

lm<k≤τm

k

m
ρ

(
k

m

) ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

1≤k≤τm

(
k

m

)α
ρ

(
k

m

)
sup

1≤k≤τm

∣∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
+ sup

1≤k≤τm

k

m
ρ

(
k

m

) ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣ .
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With Assumption 3.3 (iii) and the stationarity it holds for all 0 < α < 1
2
, τ < 1

sup
1≤k≤τm

1

m
1
2
−αkα

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
1≤k≤m

hα

m
1
2
−α([kh])α

∣∣∣∣∣∣
m+[kh]∑
j=m+1

h2(Yj)

∣∣∣∣∣∣
D
= sup

1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣+ sup
1≤k≤m

hα

m
1
2
−α([kh])α

∣∣∣∣∣∣
[kh]∑
j=1

h2(Yj)

∣∣∣∣∣∣
=OP (1) as m→∞.

and ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣ = OP (1) as m→∞

holds by Assumption 3.3 (ii). With (3.26) and (3.27) we obtain

sup
1≤k≤τm

w(m, k)

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣ = oP (1) as τ → 0

(4.16)
uniformly in m. With (3.24) and (3.29) we obtain

sup
t>T

ρ(t)
∣∣∣W̃2(1 + th)

∣∣∣
= sup

t>T
(1 + th)ρ(t)

∣∣∣W̃2(1 + th)
∣∣∣

1 + th

≤ sup
t>T

(1 + th)ρ(t) sup
t>T

∣∣∣W̃2(1 + th)
∣∣∣

1 + th

≤(sup
t>T

ρ(t) + h sup
t>T

tρ(t)) sup
s>Th

∣∣∣W̃2(1 + s)
∣∣∣

1 + s
= o(1) a.s. as T →∞

such that it follows with (3.30)

sup
t>T

ρ(t)
∣∣∣W̃2(1 + t)− W̃2(1 + th)

∣∣∣
≤ sup

t>T
ρ(t)

∣∣∣W̃2(1 + t)
∣∣∣+ sup

t>T
ρ(t)

∣∣∣W̃2(1 + th)
∣∣∣ = o(1) a.s. as T →∞.
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Furthermore, it holds

sup
t>T

ρ(t)
∣∣∣W̃2(1 + Th)

∣∣∣
≤ sup

t>T
(1 + th)ρ(t)

∣∣∣W̃2(1 + Th)
∣∣∣

1 + Th

≤(sup
t>T

ρ(t) + h sup
t>T

tρ(t))

∣∣∣W̃2(1 + Th)
∣∣∣

1 + Th
= o(1) a.s. as T →∞

and with (3.31) it follows

sup
t>T

ρ(t)
∣∣∣W̃2(1 + T )− W̃2(1 + Th)

∣∣∣
≤ sup

t>T
ρ(t)

∣∣∣W̃2(1 + T )
∣∣∣+ sup

t>T
ρ(t)

∣∣∣W̃2(1 + Th)
∣∣∣ = o(1) a.s. as T →∞.

Consequently, we get

sup
t>τ

∣∣∣ρ(t)
(
W̃2(1 + min(t, T ))− W̃2(1 + min(t, T )h) + t(1− h)W̃1(1)

)
−ρ(t)

(
W̃2(1 + t)− W̃2(1 + th) + t(1− h)W̃1(1)

)∣∣∣
= sup

t>τ
ρ(t)

∣∣∣W̃2(1 + min(t, T ))− W̃2(1 + min(t, T )h)−
(
W̃2(1 + t)− W̃2(1 + th)

)∣∣∣
≤ sup

τ<t≤T
ρ(t)

∣∣∣W̃2(1 + t)− W̃2(1 + th)−
(
W̃2(1 + t)− W̃2(1 + th)

)∣∣∣
+ sup

t>T
ρ(t)

∣∣∣W̃2(1 + T )− W̃2(1 + Th)−
(
W̃2(1 + t)− W̃2(1 + th)

)∣∣∣
= sup

t>T
ρ(t)

∣∣∣W̃2(1 + T )− W̃2(1 + Th)−
(
W̃2(1 + t)− W̃2(1 + th)

)∣∣∣
≤ρ(t)

∣∣∣W̃2(1 + T )− W̃2(1 + Th)
∣∣∣+ sup

t>T
ρ(t)

∣∣∣W̃2(1 + t)− W̃2(1 + th)
∣∣∣

≤2 sup
t>T

ρ(t)
∣∣∣W̃2(1 + t)− W̃2(1 + th)

∣∣∣ = o(1) a.s. as T →∞. (4.17)

Let {W2(t) : 0 < t ≤ T} := { 1
σ2

(W̃2(1 + t) − W̃2(1)) : 0 < t ≤ T} and {W1(t) :

0 < t ≤ T} := { 1
σ2
W̃1(t) : 0 < t ≤ T} which are independent standard Wiener

Processes. Then, it holds for 0 < t ≤ T

W̃2(1 + t)− W̃2(1 + th) + t(1− h)W̃1(1) = σ2 (W2(t)−W2(th)) + t(1− h)σ1W1(1).
(4.18)

Hence, we obtain

sup
0<t≤τ

ρ(t)
∣∣∣W̃2(1 + t)− W̃2(1 + th) + t(1− h)W̃1(1)

∣∣∣
= sup

0<t≤τ
ρ(t) |σ2 (W2(t)−W2(th)) + t(1− h)σ1W1(1)|

≤ sup
0<t≤τ

ρ(t) |σ2W2(t)|+ sup
0<t≤τ

ρ(t) |σ2W2(th)|+ (1− h) sup
0<t≤τ

tρ(t) |σ1W1(1)|

≤ sup
0<t≤τ

ρ(t) |σ2W2(t)|+ sup
0<t≤τ

ρ(t) |σ2W2(th)|+ (1− h)τ 1−γ sup
0<t≤τ

tγρ (t) |σ1W1(1)| ,
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With the self-similarity of the Wiener Process and the law of the iterated logar-
ithm we obtain

sup
0<t≤τ

ρ(t) |σ2W2(th)|

=σ2 sup
s≥ 1

hτ

ρ

(
1

hs

) ∣∣∣∣W2

(
1

s

)∣∣∣∣
D
=σ2 sup

s≥h
τ

|W2(s)| 1
s
ρ

(
1

hs

)
=σ2 sup

s≥ 1
hτ

√
s log log s

s
ρ

(
1

hs

)
|W2(s)|√
s log log s

≤σ2h
γ sup
s≥ 1

hτ

√
log log s

s1−γ− 1
2

sup
s≥h

τ

(
1

hs

)γ
ρ

(
1

hs

)
sup
s≥h

τ

|W2(s)|√
s log log s

=oP (1) as τ → 0

and with (3.36) it follows

sup
0<t≤τ

ρ(t)
∣∣∣W̃2(1 + t)− W̃2(1 + th) + t(1− h)W̃1(1)

∣∣∣ = oP (1) as τ → 0. (4.19)

Based on Lemma B.2 we can combine (4.14), (4.15), (4.16), (4.17), (4.18) and
(4.19) such that we obtain

sup
k≥1

w(m, k)

∣∣∣∣∣∣
m+k∑

j=m+[kh]+1

h2(Yj) +
k − [kh]

m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>0
ρ(t) |σ2 (W2(t)−W2(th)) + t(1− h)σ1W1(1)|

and thus the assertion.

(ii) With Lemma 4.1 it holds

sup
k≥1

∣∣∣∣∣w(m, k)|Γ3(m, k)| − w(m, k) sup
1≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
∣∣∣∣∣

≤ sup
k≥1

w(m, k) sup
1≤l≤k

∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+l+1

r(Yi, Yj)

∣∣∣∣∣ = oP (1), m→∞

due to Assumption 3.3 (i). According to Lemma B.1 it remains to show that, as
m→∞,

sup
k≥1

w(m, k) sup
1≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
D→ sup

t>0
ρ(t) sup

0<s≤t
|σ2(W2(t)−W2(s)) + (t− s)σ1W1(1)| ,
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where {W1(t)} and {W2(t)} are wo independent standard Wiener processes. With
Assumption 3.3 (ii) we get that for any fixed τ, T > 0 and m→∞

sup
t>τ

ρ(t) sup
0<s≤t

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj) +
t− s√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>τ
ρ(t) sup

0<s≤t

∣∣∣W̃2(1 + min(t, T ))− W̃2(1 + min(s, T )) + (t− s)W̃1(1)
∣∣∣ .
(4.20)

As lm
m
→ 0, there exists an mτ such that lm

m
< τ for all m ≥ mτ . Hence, it holds

for m ≥ mτ∣∣∣∣∣∣sup
t>τ

ρ(t) sup
0<s≤t

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj) +
t− s√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k>τm
w(m, k) sup

1≤l≤k

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+min(l,mT )+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣∣sup
k
m
>τ

sup
k
m
≤t< k+1

m

ρ(t) sup
0<s≤t

∣∣∣∣∣∣ 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj) +
t− s√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
− sup

k
m
>τ

ρ

(
k

m

)
sup

1≤l≤k

∣∣∣∣∣∣ 1√
m

m+min(k,mT )∑
j=m+min(l,mT )+1

h2(Yj) +
k − l
m

1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣∣∣ρ(t) sup
0<s≤t

 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj) +
t− s√
m

m∑
i=1

h1(Yi)


−ρ
(
k

m

)
sup

1≤l≤k

 1√
m

m+min(k,mT )∑
j=m+min(l,mT )+1

h2(Yj) +
k − l
m

1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
≤ sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣ sup
t>τ

sup
0<s≤t

∣∣∣∣∣∣1t 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj)

+
(

1− s

t

) 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
+ sup

k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

) ∣∣∣∣∣∣ sup
1≤l≤k

m
k

1√
m

m+min(k,mT )∑
j=m+min(l,mT )+1

h2(Yj)

+

(
1− l

k

)
1√
m

m∑
i=1

h1(Yi)

)

− sup
0<s≤t

1

t

1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj) +
(

1− s

t

) 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
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≤ sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣ sup
t>τ

sup
0<s≤t

∣∣∣∣∣∣1t 1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj)

+
(

1− s

t

) 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
+ sup

k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
· sup
k
m
>τ

sup
k
m
≤t< k+1

m

sup
0< l

m
≤ k
m

sup
l
m
<s≤ l+1

m

∣∣∣∣∣
(
s

t
− l

k

)
1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
+ sup

k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
· sup
k
m
>τ

sup
k
m
≤t< k+1

m

sup
0<s≤t

∣∣∣∣∣∣
(
m

k
− 1

t

)
1√
m

m+[mmin(t,T )]∑
j=m+[mmin(s,T )]+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣OP (1)

+ sup
k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
· sup
k
m
>τ

sup
k
m
≤t< k+1

m

sup
0< l

m
≤ k
m

sup
l
m
<s≤ l+1

m

∣∣∣∣st − l

k

∣∣∣∣OP (1)

+ sup
k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)
· sup
k
m
>τ

sup
k
m
≤t< k+1

m

sup
0<s≤t

∣∣∣∣mk − 1

t

∣∣∣∣OP (1)

≤ sup
k
m
>τ

sup
k
m
≤t< k+1

m

∣∣∣∣tρ(t)− k

m
ρ

(
k

m

)∣∣∣∣OP (1)

+ sup
k
m
>τ

sup
k
m
≤t< k+1

m

k

m
ρ

(
k

m

)(
1

τm
OP (1) +

1

m
OP (1)

)
= oP (1) as m→∞

with Assumption 3.3 (ii) as well as (3.18) and (3.20). Together with (4.20) it
follows

sup
k>τm

w(m, k) sup
1≤l≤k

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+min(l,mT )+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

∣∣∣∣∣∣
D→ sup

t>τ
ρ(t) sup

0<s≤t

∣∣∣W̃2(1 + min(t, T ))− W̃2(1 + min(s, T )) + (t− s)W̃1(1)
∣∣∣ .
(4.21)

It holds

sup
k>mT

√
m

k
sup

1≤l≤k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
≤ sup

k>mT
sup

1≤l≤m

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+ sup
k>mT

sup
m≤l≤m

√
T

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
+ sup

k>mT
sup

m
√
T≤l≤mT

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+ sup
k>mT

sup
mT<l≤k

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
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≤ sup
1≤l≤m

√
m

Tm

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+ sup
m≤l≤m

√
T

√
m

Tm

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
+ sup

m
√
T≤l≤mT

√
m

Tm

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+ sup
l>mT

√
m

l

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
=

1

T
sup

1≤l≤m

1√
m

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+
1√
T

sup
m≤l≤m

√
T

√
m√
Tm

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
+

1

T 1/4
sup

m
√
T≤l≤mT

T 1/4
√
m

Tm

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+
1√
T

sup
l>mT

√
Tm

l

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
≤ 1

T
sup

1≤l≤m

1√
m

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+
1√
T

sup
l≥m

√
m

l

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
+

1

T 1/4
sup

l≥m
√
T

T 1/4
√
m

l

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣+
1√
T

sup
l>mT

√
Tm

l

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
D
=

1

T
sup

1≤l≤m

1√
m

∣∣∣∣∣
l∑

j=1

h2(Yj)

∣∣∣∣∣+
1√
T

sup
l≥m

√
m

l

∣∣∣∣∣
l∑

j=1

h2(Yj)

∣∣∣∣∣
+

1

T 1/4
sup

l≥m
√
T

T 1/4
√
m

l

∣∣∣∣∣
l∑

j=1

h2(Yj)

∣∣∣∣∣+
1√
T

sup
l>mT

√
Tm

l

∣∣∣∣∣
l∑

j=1

h2(Yj)

∣∣∣∣∣
=oP (1) as T →∞ uniformly in m,

where we consider Assumption 3.3 (ii) for the convergence of the first summand
and Assumption 3.3 (iv) for the remaining summands. It follows

sup
k>mT

w(m, k) sup
1≤l<k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
= sup

k>mT

kw(m, k)√
m

sup
1≤l<k

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
= sup

k>max(mT,lm)

kρ
(
k
m

)
m

sup
1≤l<k

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
≤ sup

k>mT

k

m
ρ

(
k

m

)
sup

1≤l<k

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
≤ sup

t>T
tρ(t) sup

1≤l<k

√
m

k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
=oP (1) as T →∞ uniformly in m
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as limt→∞ tρ(t) <∞. By Assumption 3.3 (iv) and the stationarity we obtain

sup
k>mT

w(m, k)

∣∣∣∣∣
m+mT∑
j=m+1

h2(Yj)

∣∣∣∣∣
≤ 1√

mT

∣∣∣∣∣∣
m+[mT ]∑
j=m+1

h2(Yj)

∣∣∣∣∣∣ sup
k>mT

k√
mT

w(m, k)

≤OP (1)
1√
T

sup
k>mT

k

m
ρ

(
k

m

)
≤OP (1)

1√
T

sup
t>T

tρ(t)

=
1√
T
OP (1)

P→ 0 as T →∞ uniformly in m

as limt→∞ tρ(t) <∞. Together with (3.22) we get

sup
k>τm

∣∣∣∣∣∣w(m, k) sup
1≤l≤k

 m+min(k,mT )∑
j=m+min(l,mT )+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)


−w(m, k) sup

1≤l≤k

(
m+k∑

j=m+l+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

)∣∣∣∣∣
≤ sup

k>τm
w(m, k) sup

1≤l≤k

∣∣∣∣∣∣
m+min(k,mT )∑

j=m+min(l,mT )+1

h2(Yj)−
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣∣
≤ sup

τm<k≤mT
w(m, k) sup

1≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)−
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
+ sup

k>mT
w(m, k) sup

1≤l<mT

∣∣∣∣∣
m+mT∑
j=m+l+1

h2(Yj)−
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
+ sup

k>mT
w(m, k) sup

mT≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
= sup

k>mT
w(m, k)

∣∣∣∣∣
m+mT∑

j=m+k+1

h2(Yj)

∣∣∣∣∣+ sup
k>mT

w(m, k) sup
mT≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
≤ sup

k>mT
w(m, k)

∣∣∣∣∣
m+mT∑

j=m+k+1

h2(Yj)

∣∣∣∣∣+ sup
k>mT

w(m, k) sup
mT≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
≤ sup

k>mT
w(m, k)

∣∣∣∣∣
m+mT∑
j=m+1

h2(Yj)

∣∣∣∣∣+ 2 sup
k>mT

w(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
+ sup

k>mT
w(m, k) sup

1≤l≤k

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣ = oP (1) as T →∞ uniformly in m.

(4.22)
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For γ < α < 1
2
it holds

sup
1≤k≤τm

w(m, k) sup
1≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

1≤k≤τm
w(m, k) sup

1≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣+ sup
1≤k≤τm

w(m, k) sup
1≤l≤k

∣∣∣∣∣k − lm

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

1≤k≤τm
m

1
2
−αkαw(m, k) sup

1≤l≤k

∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+l+1

h2(Yj)

∣∣∣∣∣
+ sup

1≤k≤τm

k

m
w(m, k)

√
m

∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
= sup

lm<k≤τm

(
k

m

)α
ρ

(
k

m

)
sup

1≤l≤k

∣∣∣∣∣ 1

m
1
2
−αkα

m+k∑
j=m+l+1

h2(Yj)

∣∣∣∣∣
+ sup

lm<k≤τm

k

m
ρ

(
k

m

) ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
≤ sup

1≤k≤τm

(
k

m

)α
ρ

(
k

m

)
sup

1≤k≤τm
sup

1≤l≤k

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
+ sup

1≤k≤τm

k

m
ρ

(
k

m

) ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣ .
With Assumption 3.3 (iii) and the stationarity it holds for all 0 < α < 1

2
, τ < 1

sup
1≤k≤τm

sup
1≤l≤k

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
≤ sup

1≤k≤m
sup

1≤l≤k

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj)

∣∣∣∣∣
≤ sup

1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
1≤k≤m

sup
1≤l≤k

1

m
1
2
−αlα

∣∣∣∣∣
m+l∑

j=m+1

h2(Yj)

∣∣∣∣∣
≤2 sup

1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣ D= 2 sup
1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣
=OP (1) (m→∞).

It holds ∣∣∣∣∣ 1√
m

m∑
i=1

h1(Yi)

∣∣∣∣∣ = OP (1)

as m→∞ by Assumption 3.3 (ii). With (3.26) und (3.27) we obtain

sup
1≤k≤τm

w(m, k) sup
1≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

∣∣∣∣∣ = oP (1) (4.23)
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as τ → 0 uniformly in m.

With (3.24) and (3.29) we obtain

sup
t>T

ρ(t)
∣∣∣W̃2(1 + T )

∣∣∣ ≤ sup
t>T

ρ(t)(1 + T )

∣∣∣W̃2(1 + T )
∣∣∣

1 + T

≤(sup
t>T

ρ(t) + sup
t>T

tρ(t)) sup
t>T

∣∣∣W̃2(1 + t)
∣∣∣

1 + t
= o(1) a.s as T →∞,

and

sup
t>T

ρ(t) sup
T<s≤t

∣∣∣W̃2(1 + s)
∣∣∣ ≤ sup

t>T
(1 + t)ρ(t) sup

s>T

∣∣∣W̃2(1 + s)
∣∣∣

1 + s

≤(sup
t>T

ρ(t) + sup
t>T

tρ(t))o(1) = o(1) a.s as T →∞.

It follows with (3.30)

sup
t>τ

∣∣∣∣ρ(t) sup
0<s≤t

∣∣∣W̃2(1 + min(t, T ))− W̃2(1 + min(s, T )) + (t− s)W̃1(1)
∣∣∣

−ρ(t) sup
0<s≤t

∣∣∣W̃2(1 + t)− W̃2(1 + s) + (t− s)W̃1(1)
∣∣∣∣∣∣∣

≤ sup
t>τ

ρ(t) sup
0<s≤t

∣∣∣W̃2(1 + min(t, T ))− W̃2(1 + min(s, T ))−
(
W̃2(1 + t)− W̃2(1 + s)

)∣∣∣
≤ sup

τ<t≤T
ρ(t) sup

0<s≤t

∣∣∣W̃2(1 + t)− W̃2(1 + s)−
(
W̃2(1 + t)− W̃2(1 + s)

)∣∣∣
+ sup

t>T
ρ(t) sup

0<s≤T

∣∣∣W̃2(1 + T )− W̃2(1 + s)−
(
W̃2(1 + t)− W̃2(1 + s)

)∣∣∣
+ sup

t>T
ρ(t) sup

T<s≤t

∣∣∣W̃2(1 + T )− W̃2(1 + T )−
(
W̃2(1 + t)− W̃2(1 + s)

)∣∣∣
= sup

t>T
ρ(t)

∣∣∣W̃2(1 + T )− W̃2(1 + t)
∣∣∣+ sup

t>T
ρ(t) sup

T<s≤t

∣∣∣W̃2(1 + t)− W̃2(1 + s)
∣∣∣

≤ sup
t>T

ρ(t)
∣∣∣W̃2(1 + T )

∣∣∣+ 2 sup
t>T

ρ(t)
∣∣∣W̃2(1 + t)

∣∣∣+ sup
t>T

ρ(t) sup
T<s≤t

∣∣∣W̃2(1 + s)
∣∣∣

=o(1) a.s. as T →∞.
(4.24)

Let {W2(t) : 0 < t ≤ T} := { 1
σ2

(W̃2(1 + t) − W̃2(1)) : 0 < t ≤ T} and {W1(t) :

0 < t ≤ T} := { 1
σ2
W̃1(t) : 0 < t ≤ T} which are again independent standard

Wiener Processes. Then, it holds for 0 < t ≤ T, 0 < s ≤ t

W̃2(1 + t)− W̃2(1 + s) + (t− s)W̃1(1)

=σ2 (W2(t)−W2(s)) + (t− s)σ1W1(1). (4.25)
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Hence, we obtain

sup
0<t≤τ

ρ(t) sup
0<s≤t

∣∣∣W̃2(1 + t)− W̃2(1 + s) + (t− s)W̃1(1)
∣∣∣

= sup
0<t≤τ

ρ(t) sup
0<s≤t

|σ2 (W2(t)−W2(s)) + (t− s)σ1W1(1)|

≤ sup
0<t≤τ

ρ(t) |σ2W2(t)|+ sup
0<t≤τ

ρ(t) sup
0<s≤t

|σ2W2(s)|

+ sup
0<t≤τ

tρ(t) |σ1W1(1)|

≤ sup
0<t≤τ

ρ(t) |σ2W2(t)|+ sup
0<t≤τ

ρ(t) sup
0<s≤t

|σ2W2(s)|+ sup
0<t≤τ

tρ(t) |σ1W1(1)|

≤ sup
0<t≤τ

ρ(t) |σ2W2(t)|+ sup
0<t≤τ

ρ(t) sup
0<s≤t

|σ2W2(s)|+ τ 1−γ sup
0<t≤τ

tγρ (t) |σ1W1(1)| ,

where {W2(t) : 0 < t ≤ T} := { 1
σ2
W̃2(1+t)−W̃2(1) : 0 < t ≤ T}, {W1(t) : 0 < t ≤

T} := { 1
σ2
W̃1(t) : 0 < t ≤ T} are independent standard Wiener Processes. With

the self-similarity of the Wiener Process and the law of the iterated logarithm we
obtain

sup
0<t≤τ

ρ(t) sup
0<s≤t

|σ2W2(s)|

=σ2 sup
0<t≤τ

ρ(t) sup
s̃≥ 1

t

∣∣∣∣W2

(
1

s̃

)∣∣∣∣
D
=σ2 sup

0<t≤τ
ρ(t) sup

s̃≥ 1
t

|W2 (s̃)|
s̃

=σ2 sup
0<t≤τ

ρ(t) sup
s̃≥ 1

t

√
s̃ log log s̃

s̃

|W2 (s̃)|√
s̃ log log s̃

≤σ2 sup
0<t≤τ

tγρ(t) sup
s̃≥ 1

t

√
log log s̃

s̃1−γ− 1
2

sup
s̃≥ 1

t

|W2 (s̃)|√
s̃ log log s̃

=oP (1) as τ → 0

and with (3.36) we get

sup
0<t≤τ

ρ(t) sup
0<s≤t

∣∣∣W̃2(1 + t)− W̃2(1 + s) + (t− s)W̃1(1)
∣∣∣ = oP (1) as τ → 0.

(4.26)
Due to Lemma B.2 we can combine (4.21), (4.22), (4.23), (4.24), (4.25) and (4.26)
such that we obtain

sup
k≥1

w(m, k) sup
1≤l≤k

∣∣∣∣∣
m+k∑

j=m+l+1

h2(Yj) +
k − l
m

m∑
i=1

h1(Yi)

∣∣∣∣∣
D→ sup

t>0
ρ(t) sup

0<s≤t
|σ2 (W2(t)−W2(s)) + (t− s)σ1W1(1)|

and thus the assertion.
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Corollary 4.3. a) If σ1 = σ2 =: σ the limit distributions in Theorem 4.2 reduce to

(i) supk≥1w(m, k) |Γ2(m, k)| D→ σ sup0<t<1 ρ
(

t
1−t

) ∣∣∣∣W (t)
1−t − (1− t(1− h))

W( th
1−t(1−h))
1−t

∣∣∣∣
(ii) supk≥1w(m, k) |Γ3(m, k)| D→ σ sup0<t<1 ρ

(
t

1−t

)
sup0<s≤t

∣∣∣W (t)
1−t −

W (s)
1−s

∣∣∣,
where {W (t) : t ≥ 0} is a standard Wiener Process.

b) In this case, we obtain for the weight function in (3.5)

(i) supk≥1w(m, k) |Γ2(m, k)| D→ σ sup0<t<1 t
−γ
∣∣∣W (t)− (1− t(1− h))W

(
th

1−t(1−h)

)∣∣∣
(ii) supk≥1w(m, k) |Γ3(m, k)| D→ σ sup0<t<1 t

−γ sup0<s≤t
∣∣W (t)− 1−t

1−sW (s)
∣∣

Proof. a) With (3.39) we obtain

sup
t>0

ρ(t) |W2(t)−W2(th) + t(1− h)W1(1)|

= sup
t>0

ρ(t) |W2(t) + tW1(1)− (W2(th) + thW1(1))|

D
= sup

t>0
ρ(t)

∣∣∣∣(1 + t)W

(
t

1 + t

)
− (1 + th)W

(
th

1 + th

)∣∣∣∣
= sup

0<s<1
ρ

(
s

1− s

) ∣∣∣∣∣∣W (s)

1− s
− (1− s(1− h))

W
(

sh
1−s(1−h)

)
1− s

∣∣∣∣∣∣
and

sup
t>0

ρ(t) sup
0<s≤t

|W2(t)−W2(s) + (t− s)W1(1)|

= sup
t>0

ρ(t) sup
0<s≤t

|W2(t) + tW1(1)− (W2(s) + sW1(1))|

D
= sup

t>0
ρ(t) sup

0<s≤t

∣∣∣∣(1 + t)W

(
t

1 + t

)
− (1 + s)W

(
s

1 + s

)∣∣∣∣
D
= sup

0<t̃<1

ρ

(
t̃

1− t̃

)
sup

0<s̃≤t̃

∣∣∣∣∣W
(
t̃
)

1− t̃
− W (s̃)

1− s̃

∣∣∣∣∣
For σ1 = σ2 =: σ the assertions now follow with Theorem 4.2.

b) The assertion is obtained with ρ(t) = (1 + t)−1 ( t
1+t

)−γ in a). Hence ρ
(

t
1−t

)
=

(1− t)t−γ.

4.2. Asymptotics Under the Alternative

In the following we will show that the Page-MOSUM as well as the modified MOSUM
procedure have asymptotic power one. For the Page-MOSUM we use the following
adapted assumption on the weight function.
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Assumption 4.4. (i) If k∗

m
→∞, assume that lim inft→∞ tρ(t) > 0.

(ii) If k∗

m
= O(1), i.e. k∗

m
< ν for all m ≥ 1 for some ν > 0, assume that there exist

t0 > ν, ε > 0 such that ρ(t) > 0 for all t ∈
(
t0
h
− ε, t0

h
+ ε
)
.

Theorem 4.5. Let the regularity conditions given in Assumption 3.2 , and 3.13 be
fulfilled. Furthermore assume that

√
m∆m →∞. Then it holds under the alternative

(i) supk≥1w(m, k) |Γ2(m, k)| P→∞ if Assumption 4.4 is fulfilled.

(ii) supk≥1w(m, k) |Γ3(m, k)| P→∞ if Assumption 3.12 is fulfilled.

Proof. (i) For k̃ > k∗

h
Hoeffding’s decomposition in (3.44) yields

Γ2(m, k) =
1

m

m∑
i=1

m+k̃∑
j=m+[k̃h]+1

(h(Yi, Zj,m)− θ)

=
1

m

m∑
i=1

m+k∑
j=m+[k̃h]+1

r∗m(Yi, Zj,m) +
m+k̃∑

j=m+[k̃h]+1

h∗2,m(Zj,m)

+
k̃ − [k̃h]

m

m∑
i=1

h∗1,m(Yi) + (k̃ − [k̃h])∆m.

We first consider late changes with k∗

m
→∞ and k̃ =

[
2k
∗

h

]
. Let k′ = k̃ − k∗ and

h′ = k̃h−k∗
k̃−k∗ ∈ (0, 1). As ρ(t) = (1 + t)−1 fulfills Assumption 3.2, we obtain with

Lemma 4.1

√
m

k∗

∣∣∣∣∣∣ 1

m

m∑
i=1

m+k̃∑
j=m+[k̃h]+1

r∗m(Yi, Zj,m)

∣∣∣∣∣∣ =

√
m

k∗

∣∣∣∣∣∣ 1

m

m∑
i=1

k′∑
j=[k′h′]+1

r∗m(Yi, Zm+k∗+j,m)

∣∣∣∣∣∣
=

(
m

k∗
+
k′

k∗

)
oP (1) ≤

(
m

k∗
+

2

h
− 1

)
oP (1) = oP (1) m→∞.

With Assumption 3.13 (iii) we get∣∣∣∣∣∣
m+k̃∑

j=m+[k̃h]+1

h∗2,m(Zj,m) +
k̃ − [k̃h]

m

m∑
i=1

h∗1,m(Yi)

∣∣∣∣∣∣
≤
√

[k̃h]

∣∣∣∣∣∣ 1√
[k′h]

m+k∗+[k′h]∑
j=m+k∗+1

h∗2,m(Zj,m)

∣∣∣∣∣∣+
√
k̃

∣∣∣∣∣ 1√
k′

m+k∗+k′∑
j=m+k∗+1

h∗2,m(Zj,m)

∣∣∣∣∣
+
k̃ − [k̃h]√

m

∣∣∣∣∣ 1√
m

m∑
i=1

h∗1,m(Yi)

∣∣∣∣∣
=

√
[k̃h] +

√
k̃ +

k̃ − [k̃h]√
m

OP (1). (4.27)
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Hence, it follows

√
m

k∗

∣∣∣∣∣∣
m+k̃∑

j=m+[k̃h]+1

h∗2,m(Zj,m) +
k − [k̃h]

m

m∑
i=1

h∗1,m(Yi)

∣∣∣∣∣∣
≤
√
m

k∗

(√
[k̃h] +

√
k̃ +

k̃ − [k̃h]√
m

)
OP (1)

=
k̃

k∗

√m

k̃

√
[k̃h]

k̃
+

√
m

k̃
+
k̃ − [k̃h]

k̃

OP (1)

=

(
2

h
+ o(1)

)√m

k̃

√
[k̃h]

k̃
+

√
m

k̃
+ 1− [k̃h]

k̃

OP (1) = OP (1) (4.28)

as m
k̃
< hm

k∗
→ 0. Due to lm

k̃
≤ lm

k∗
= m

k∗
lm
m
→ 0 there exists an m0 ∈ N such that

k̃ > k∗ > lm for all m ≥ m0. Hence, it holds for m ≥ m0

sup
k≥1

w(m, k) |Γ2(m, k)| ≥ w(m, k̃)
∣∣∣Γ2(m, k̃)

∣∣∣
=
k∗√
m
w(m, k̃)

((
k̃ − [k̃h]

k∗

)
√
m∆m +OP (1)

)

=
k∗

k̃

k̃

m
ρ

(
k̃

m

)((
k̃

k∗
− [k̃h]

k∗

)
√
m|∆m|+OP (1)

)

≥
(

2

h
+ o(1)

)
k̃

m
ρ

(
k̃

m

)(
(1− h)

(
2

h
+ o(1)

)√
m|∆m|+OP (1)

)
→∞

with Assumption 3.12 (i) and
√
m|∆m| → ∞.

For k∗

m
= O(1) we choose k̃ =

[
m t0

h

]
with t0 as in Assumption 4.4. Let k′ =

k̃ − k∗ and h′ = k̃h−k∗
k̃−k∗ ∈ (0, 1). We consider a weight function w̃ according to

Assumption 3.2 with l̃m = 0 and ρ ≡ 1 on [0, ν]. Lemma 4.1 yields

w(m, k̃)

∣∣∣∣∣∣ 1

m

m∑
i=1

m+k̃∑
j=m+[k̃h]+1

r∗m(Yi, Zj,m)

∣∣∣∣∣∣ = w(m, k̃)

∣∣∣∣∣∣ 1

m

m∑
i=1

k′∑
j=[k′h′]+1

r∗m(Yi, Zm+k∗+j,m)

∣∣∣∣∣∣
≤ρ
(

[m t0
h

]

m

)
oP (1) = ρ

(
t0
h

+ o(1)

)
OP (1) = oP (1) m→∞.
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as ρ is bounded around t0
h
. Furthermore, we obtain with (4.27)

w(m, k̃)

∣∣∣∣∣∣
m+k̃∑

j=m+[k̃h]+1

h∗2,m(Zj,m) +
k̃ − [k̃h]

m

m∑
i=1

h∗1,m(Yi)

∣∣∣∣∣∣
≤w(m, k̃)

(√
[k̃h] +

√
k̃ +

k̃ − [k̃h]√
m

)
OP (1)

≤ρ

([
m t0

h

]
m

)(
√
t0 +

√
t0
h

+ t0
(
h−1 − t

)
+
h+ 1

m

)
OP (1)

=ρ

(
t0
h

+ o(1)

)
OP (1) = OP (1).

It holds lm
k̃

= lm
m
O(1) → 0 as m → ∞. Hence, there exists an m0 ∈ N such that

k̃ > lm for all m ≥ m0. For such m we obtain

sup
k≥1

w(m, k) |Γ2(m, k)| ≥ w(m, k̃)
∣∣∣Γ2(m, k̃)

∣∣∣
=

1√
m
ρ

(
k̃

m

)
(k̃ − [k̃h])|∆m|+OP (1)

≥ρ
(
t0
h

+ o(1)

)
x0 (1− h)

√
m|∆m|+OP (1)

P→∞

with
√
m|∆m| → ∞ and Assumption 4.4 (ii).

(ii) For k̃ > k∗ it holds

∣∣∣Γ3(m, k̃)
∣∣∣ = sup

1≤i≤k̃

∣∣∣∣∣∣ 1

m

m∑
i=1

m+k̃∑
j=m+i+1

(h(Xi, Xj)− θ)

∣∣∣∣∣∣
≥

∣∣∣∣∣∣ 1

m

m∑
i=1

m+k̃∑
j=m+k∗+1

(h(Yi, Zj,m)− θ)

∣∣∣∣∣∣ =
∣∣∣Γ(m, k̃)− Γ(m, k∗)

∣∣∣ .
Hence, we obtain

sup
k≥1

w(m, k) |Γ3(m, k)| ≥ w
(
m, k̃

) ∣∣∣Γ(m, k̃)− Γ(m, k∗)
∣∣∣ P→∞ as m→∞

for k∗

m
→ ∞ with k̃ = 2k∗ and (3.50) as well as (3.52) and for k∗

m
= O(1) with

k̃ = [x0m] and (3.57) as well as (3.59).
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5. Stopping Time

Sequential procedures naturally involve a detection delay as some data has to be col-
lected after the change to obtain a significant difference to the historic data set. Hence,
the behavior of the stopping time of sequential procedures is of great interest, in partic-
ular for the comparison of different sequential procedures. In the literature, the speed
of detection of sequential tests is mostly evaluated based on the average run length
which is the expected value of the stopping time. Particularly such procedures that, in
contrast to the approach adopted in this work, stop asymptotically with probability one
even under structural stability are constructed referring to the mean detection delay
and the mean time between false alarms as optimality criteria. For more details on
such procedures and the analysis of the respective average run length see, for example,
Lorden et al. (1971), Basseville et al. (1993) and Siegmund & Venkatraman (1995).
In the framework of sequential testing as introduced in Chu et al. (1996), however, it
is possible to derive the precise limit distribution of the stopping time which obviously
provides more information than the average run length. This has first been achieved in
Aue & Horváth (2004) for the CUSUM test for local mean changes that occur very early
after the monitoring period has started. Fremdt (2014) extended those results to the
larger class of bounded changes and relaxed the assumption on the time of the change
which is, however, still restricted to growing slower than m. Furthermore, this work
also provides the asymptotic distribution of the stopping time for the Page CUSUM
procedure which allows the comparison with the ordinary CUSUM monitoring scheme
and shows that the Page CUSUM is indeed superior for later changes as intended by
construction. In Aue et al. (2009b), the limit distribution of the stopping time is
derived for a CUSUM procedure when testing for a parameter change in a multiple
time series regression model. The asymptotic behavior of the stopping time related to
the procedure proposed in Hušková & Koubková (2005) for the detection of changes in
linear models is analyzed in Černíková et al. (2013).

In Section 5.1 we generalize the results provided in Aue & Horváth (2004) and Fremdt
(2014) for the CUSUM procedure to the class of sequential tests based on U-statistics
for bounded changes assuming that the time of the change is sublinear in m. However,
by the latter assumption, this result is still restricted to relatively early changes in the
sense that the time of the change grows slower than m. To the best of our knowledge,
even for the CUSUM kernel, the asymptotic behavior of the stopping time for later
changes has not been assessed so far. We extend the existing literature by deriving
the limit distribution of the stopping time for change points that are superlinear in m
in Section 5.2 followed by linear changes in Section 5.3. In both cases, the analysis
of the asymptotic behavior of the stopping time involves difficulties that do not occur
for early changes but can be handled by conditioning on functionals of the historic
observations and by letting the critical value increase to infinity.
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Stopping Time

In order to assess the asymptotic behavior of the stopping time τm we need to find
normalizing sequences am and bm such that we can derive the limit distribution of

τm − am
bm

.

We follow the main idea of Aue & Horváth (2004) which is to establish a duality
between the standardized stopping time and the monitoring statistic. This can be
obtained by finding an appropriate sequence N := N(m,x) such that

lim
m→∞

P

(
τm − am
bm

≤ x

)
= 1− lim

m→∞
P (τm > N) (5.1)

as the definition of τm in (1.2) implies

P (τm > N) = P

(
sup

1≤k≤N
w(m, k) |Γ(m, k)| ≤ c

)
,

where c is the critical value. It follows

lim
m→∞

P

(
τm − am
bm

≤ x

)
= 1− lim

m→∞
P

(
sup

1≤k≤N
w(m, k) |Γ(m, k)| ≤ c

)
. (5.2)

Hence, this duality enables us to derive the limit distribution of interest if N = N(m,x)
is chosen such that

1− lim
m→∞

P

(
sup

1≤k≤N
w(m, k) |Γ(m, k)| ≤ c

)
(5.3)

defines a distribution function in x. To this end, it is often useful to center and scale
sup1≤k≤N w(m, k) |Γ(m, k)| in the following way:

P

(
sup

1≤k≤N
w(m, k) |Γ(m, k)| ≤ c

)
=P

(
em

(
sup

1≤k≤N
w(m, k) |Γ(m, k)| − dm

)
≤ em (c− dm)

)
, em > 0.

The centering sequence dm should capture the diverging part of the test statistic and
em is needed to expand the centered test statistic in such a way that it converges in
distribution. Let

Ψ(z) := lim
m→∞

P

(
em

(
sup

1≤k≤N
w(m, k) |Γ(m, k)| − dm

)
≤ z

)
.

Then, we get

lim
m→∞

P

(
τm − am
bm

≤ x

)
= 1−Ψ(−x)

if
em (c− dm)→ −x as m→∞. (5.4)
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5.1. Sublinear Changes

An obvious choice of N fulfilling (5.1) is

N := N(m,x) = xbm + am (5.5)

as this yields

P

(
τm − am
bm

≤ x

)
= P (τm ≤ xbm + am)

=1− P (τm > xbm + am) = 1− P (τm > N) . (5.6)

However, based on this choice we do not necessarily obtain a distribution function in
x in (5.3). In the following we consider the weight function as in (3.5). For sublinear
changes in Section 5.1 we can build on existing literature and allow for arbitrary γ ∈
[0, 1

2
). In this case, N will not be chosen as in (5.5). As we are not aware of any results

on later changes, we start with deriving the asymptotic distribution of the respective
stopping times for γ = 0 which anyway mostly provides the best performance as can
be seen in the simulation study in Chapter 6. An extension to γ ∈ [0, 1

2
) is probably

possible using similar methods but beyond the scope of this work.

5.1. Sublinear Changes

In the following we derive the limit distribution of sequential change point procedures
based on U-statistics for change-points that grow slower than m building on the work
of Aue & Horváth (2004) and Fremdt (2014).

We consider the change-point model as described in Section 2.2 and the weight function
as in (3.5). For ease of notation we use g(m, k) := w(m, k)−1. We impose the following
conditions on the time and the size of the change:

Assumption 5.1.

(i) ∆m = O(1).

(ii)
√
m|∆m| → ∞.

(iii) There exists a λ > 0 such that k∗ = [λmβ], 0 ≤ β < 1. This can be divided into
the following cases:

(I) mβ(1−γ)−1/2+γ|∆m| → 0,

(II) mβ(1−γ)−1/2+γ|∆m| → C1λ
γ−1 ∈ (0,∞),

(III) mβ(1−γ)−1/2+γ|∆m| → ∞.

By Assumption 5.1 (i) and (ii) we allow for fixed as well as local alternatives where
the size of the change is allowed to decay to zero but slower than

√
m such that it is

detected with probability tending to one by Theorem 3.14. The division in part (iii)
relates to how early the change appears in relation to the size of the change. We will
see that the limit distribution depends on that. For the time series before the change
we require Assumption 3.3 to be fulfilled. We impose the following conditions on the
time series after the change:
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Stopping Time

Assumption 5.2. Let {Yi}i∈Z and {Zi,m}i∈Z be stationary time series that fulfill the
following assumptions for a given kernel function h.

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r∗m(Yi, Zj,m)
∣∣∣2) ≤ u(m)(k2−k1+1) for all m+k∗+1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.

(ii)
∣∣∣ 1√

m

∑m
i=1 h

∗
1,m(Yi)

∣∣∣ = OP (1).

(iii) For all 0 ≤ α < 1
2
the following Hajek-Renyi-type inequality holds

sup
1≤l≤lm

1

m
1
2
−αlα

∣∣∣∣∣
m+k∗+l∑

j=m+k∗+1

h∗2,m(Zj,m)

∣∣∣∣∣ = OP (1) as lm →∞.

(iv) The following functional central limit theorem is satisfied for km →∞ 1√
km

[kmt]∑
j=1

(h2(Ym+j), h
∗
2,m(Zm+k∗+j,m)) : 0 < t ≤ 1

 D→ {(W (t),W ∗(t)) : 0 < t ≤ 1} ,

where {(W (t),W ∗(t)) : 0 < t ≤ T} is a bivariate Wiener process with mean zero
and covariance matrix

Σ =

(
σ2 ρ̃
ρ̃ σ∗2

)
with σ2 =

∑
h∈ZCov(h2(Y0), h2(Yh)), σ

∗2 =
∑

h∈ZCov(h∗2,m(Z0,m), h∗2,m(Zh,m)).

The joint functional central limit theorem in (iv) is only needed for case (I) and (II)
of Assumption 5.1 (iii), whereas for case (III) a central limit theorem for h2(Yj) and
assuming the supremum over the partial sum process of h∗2,m(Zj,m) to be stochastically
bounded as in Assumption 5.15 (ii) and(iii) would be sufficient.

Recall the main approach that has been described at the beginning of this chapter.
Based on the work of Aue & Horváth (2004) and Fremdt (2014), am and bm will be
chosen such that

lim
m→∞

P

(
aγm

1− γ
· τ

1−γ
m − a1−γ

m

bm
≤ x

)
= lim

m→∞
P

(
τm − am
bm

≤ x

)
. (5.7)

Hence,

N := N(m,x) =

(
a1−γ
m + x

bm
aγm

(1− γ)

) 1
1−γ

(5.8)

satisfies (5.1). The diverging part of the monitoring statistic as given in (3.45) comes
from the signal |∆m| and can be captured by (N − k∗)|∆m|. Taking an asymptotic
simplification of the weight function into account, dm is defined by

dm =
(N − k∗)|∆m|√

m
(
N
m

)γ . (5.9)
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The scaling sequence is chosen such that it cancels out the asymptotic simplification of
the weight function and induces the factor 1√

N
for the functional central limit theorem:

em =

(
N

m

)γ− 1
2

.

Having defined the centering and the scaling sequences, am and bm are derived such
that, with N as in (5.8), condition (5.4) is fulfilled. Fremdt (2014) showed that this
is the case for the sequences that are used in the following theorem which states the
asymptotic normality of the standardized stopping time. The variance of the limit
distribution depends on the scenarios in Assumption 5.1 (iii).

Theorem 5.3. Let Assumptions 3.3,5.1 and 5.2 be satisfied. Then, it holds under the
alternative for all x ∈ R

lim
m→∞

P

(
τm − am
bm

≤ x

)
= Ψ(x),

where Ψ is the distribution function of

Z ∼


N(0, σ∗2) under (I)

N(0, δ1σ
2 + (1− δ1)σ∗2) under (II) with δ1 = 1− c

C1
δ1−γ

1

N(0, σ2) under (III),

where σ2 =
∑

h∈ZCov(h2(Y0), h2(Yh)), σ
∗2 =

∑
h∈ZCov(h∗2,m(Z0,m), h∗2,m(Zh,m)). The

standardizing sequences are given as follows: am is the solution of

am =

(
cm

1
2
−γ

|∆m|
+
k∗

aγm

) 1
1−γ

, (5.10)

where c := cα is the asymptotic critical value which is given by the 1 − α quantile of
the limit distribution in Theorem 3.6,

bm =
√
am|∆m|−1

(
1− γ

(
1− k∗

am

))−1

. (5.11)

As indicated by the variances of the limit distribution for the different cases, the be-
havior of the stopping time is asymptotically dominated by the observations after the
change in case (I) as the change occurs immediately after the monitoring has started.
In case (III), the change occurs sufficiently late such that the observations before the
change dominate asymptotically. Case (II) is the transition between those two states.
Using the CUSUM kernel in the mean change model as in (2.8), we obtain

hC2 (Yi) = h∗C2,m(Zi,m) = µ− Yi (5.12)

with hC2 and h∗C2,m given in Example 3.1 and 3.11. Hence, the limit distribution is the
same in all three cases wich conforms to Theorem 2.1 b) in Fremdt (2014).
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In the following, we prove Theorem 5.3 stepwise. First, we consider the crucial rela-
tions between the sequences am and N and the size as well as the time of the change.
According to (5.8) we obtain with am and bm as in (5.10) and (5.11)

N = N(m,x) =

(
cm

1
2
−γ

|∆m|
+
k∗

aγm
+ x

a
1
2
−γ

m (1− γ)

|∆m|(1− γ(1− k∗

am
))

) 1
1−γ

, x ∈ R. (5.13)

Lemma 5.4. (cf. Fremdt (2014)[Lemma A.2]) Under Assumption 5.1 it holds

a) (i) am
m
→ 0

(ii)
√
am|∆m| → ∞

(iii) k∗

m
→ 0

(iv) k∗

am
→


0 under (I),

δ1 ∈ (0, 1) under (II) with δ1 = 1− c
C1
δ1−γ

1

1 under (III).

for all x ∈ R as m→∞. In particular it holds for all cases that k∗

am
= O(1).

b) N
am
→ 1 such that part a) is still valid when replacing am by N .

c) limm→∞
(
N
m

)γ− 1
2

(
c− (N−k∗)|∆m|√

m(Nm)
γ

)
= −x for all x ∈ R.

Proof. The following proof is very similar to the proof of Lemma A.2 in Fremdt (2014).
First, note that the definition of am is equivalent to

am =
cm

1
2
−γ

|∆m|
aγm + k∗ (5.14)

and similarly to Proposition A.1 in Fremdt (2014) it holds

am = (1 + o(1))


(
cm

1
2−γ

|∆m|

) 1
1−γ

under (I),

δ2k
∗ under (II) with δ2 =

(
c
C1

+ δγ1

) 1
1−γ

,

k∗ under (III)

(5.15)

which can be proven based on (5.14) as follows. Under (I), we obtain

am =
cm

1
2
−γ

|∆m|
aγm

(
1 +
|∆m|k∗

1−γ

cm
1
2
−γ

(
k∗

am

)γ)
=
cm

1
2
−γ

|∆m|
aγm(1 + o(1))

as am ≥ k∗ and thus

am =

(
cm

1
2
−γ

|∆m|

) 1
1−γ

(1 + o(1)).
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Under (II), note that it holds

am
k∗

=
cm

1
2
−γ

|∆m|k∗1−γ
(am
k∗

)γ
+ 1 =

c

C1

(am
k∗

)γ
+ 1 + o(1).

Consider the function f(x) = x − c
C1
xγ − 1 which satisfies f(1) = − c

C1
< 0 and

limx→∞ f(x) = limx→∞ x(1 − c
C1
xγ−1 − x−1) = ∞. Furthermore, the derivative shows

that f takes its minimum at
(
C1

γc

) 1
1−γ

> 0 and is strictly decreasing before that point and
strictly increasing after. Hence, as f is continuous, there exists a unique δ−1

1 ∈ (1,∞)
such that f(δ−1

1 ) = 0. We conclude that limm→∞
am
k∗

= δ−1
1 and thus

lim
m→∞

k∗

am
= δ1 ∈ (0, 1), (5.16)

where δ1 is the unique solution of δ1 = 1− c
C1
δ1−γ

1 . Now, with (5.14), we obtain

am = k∗
(
c|∆m|−1m

1
2
−γk∗

γ−1

+

(
k∗

am

)γ) 1
1−γ

= k∗
(
c

C1

+ δγ1

) 1
1−γ

(1 + o(1))

= δ2k
∗(1 + o(1))

with δ2 =
(

c
C1

+ δγ1

) 1
1−γ . Under (III), (5.10) yields

am
k∗

=

((
k∗

am

)γ
+ c|∆m|−1m

1
2
−γk∗

γ−1

) 1
1−γ

= O(1)

which implies

a1−γ
m =

k∗

aγm

(
1 +

cm
1
2
−γ

|∆m|k∗1−γ
(
k∗

am

)γ)
=
k∗

aγm
(1 + o(1)).

a) First, it is to mention that (iii) follows directly with β < 1 in Assumption 5.1
(iii).

(i) Under (I), we get with Assumption 5.1 (ii) and (5.15)

am
m

=

(
c√

m|∆m|

) 1
1−γ

(1 + o(1))→ 0.

For (II) and (III), the assertion follows with (iii) and (5.15) as

am
m

= (1 + o(1))

{
δ2

k∗

m
, under (II),

k∗

m
, under (III).

(ii) As am ≥
(
c|∆m|−1m

1
2
−γ
) 1

1−γ Assumption 5.1 (ii) yields

√
am|∆m| ≥

(
c|∆m|−1m

1
2
−γ|∆m|2(1−γ)

) 1
2(1−γ)

= c
1

2(1−γ) (
√
m|∆m|)

1
2−γ

2(1−γ) →∞.
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(iv) Under (I) we obtain with (5.15)

am
k∗

= (1 + o(1))
(
cm

1
2
−γk∗

γ−1|∆m|−1
) 1

1−γ →∞.

For (II) the assertion follows directly with (5.15) and for (III) it is obtained
by (5.16).

b) With (5.8) and (5.11) we obtain

N1−γ

a1−γ
m

= 1 + x
bm
am

(1− γ) = 1 + x
1− γ

√
am|∆m|(1− γ(1− k∗

am
))
. (5.17)

It holds

1− γ
(

1− k∗

am

)
→


1− γ > 0 under (I),

1− γ(1− δ1) > 0 under (II),

1 under (III)

(5.18)

such that it follows with a) (ii)

x
1− γ

√
am|∆m|(1− γ(1− k∗

am
))
→ 0 as m→∞. (5.19)

Hence, we get
(
N
am

)1−γ
→ 1 which implies N

am
→ 1.

c)

cm
1
2
−γ

|∆m|
+
k∗

aγm
+ x

a
1
2
−γ

m (1− γ)

|∆m|(1− γ(1− k∗

am
))

First, we replace N in N1−γ by (5.13) such that we obtain

(
N

m

)γ− 1
2

(
c− (N − k∗)|∆m|√

m
(
N
m

)γ
)

=

(
N

m

)γ− 1
2
(
c− |∆m|mγ− 1

2

(
N1−γ − k∗

Nγ

))
=

(
N

m

)γ− 1
2

(
|∆m|mγ− 1

2

(
k∗

Nγ
− k∗

aγm

)
− x

(am
m

) 1
2
−γ 1− γ

1− γ(1− k∗

am
)

)

=
|∆m|k∗√

N

(
1−

(
N

am

)γ)
− x

(am
N

) 1
2
−γ 1− γ

1− γ(1− k∗

am
)

=
|∆m|k∗√

N

1
γ

1−γ −

((
N

am

)1−γ
) γ

1−γ
− x(am

N

) 1
2
−γ 1− γ

1− γ(1− k∗

am
)
. (5.20)
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By the mean value theorem there exists a ξm ∈ (1, N
am

1−γ
) with ξm → 1 due to b)

such that

1
γ

1−γ −

((
N

am

)1−γ
)

γ

1− γ
=

γ

1− γ
ξ

2γ−1
1−γ
m

(
1−

(
N

am

)1−γ
)

=− γ

1− γ
ξ

2γ−1
1−γ
m x

bm
am

(1− γ)

=− ξ
2γ−1
1−γ
m x

1
√
am|∆m|

1− γ
1− γ(1− k∗

am
)

by (5.8). Hence, with (5.20), we get

(
N

m

)γ− 1
2

(
c− (N − k∗)|∆m|√

m
(
N
m

)γ
)

=− x
(am
N

) 1
2
−γ
(

1 +
γ

1− γ
k∗

am

aγm
Nγ

ξ
2γ−1
1−γ
m

)
1− γ

1− γ(1− k∗

am
)

=− x
(am
N

) 1
2
−γ
(

1 +
γ

1− γ
k∗

am

aγm
Nγ

ξ
2γ−1
1−γ
m

)(
1− γ

1− γ
k∗

am

)−1

→ −x as m→∞.

The following Lemma shows that the behavior of the monitoring statistic before the
change is negligible for the asymptotic distribution of the stopping time. In Section
5.2 we will see that this is not the case for later changes which is one of the reasons
why the analysis of the stopping time for β < 1 cannot be extended straightforwardly
to β ≥ 1.

Lemma 5.5. Let Assumption 3.3 and 5.1 be fulfilled. Then, it holds

(
N

m

)γ− 1
2

(
sup

1≤k≤k∗

|Γ(m, k)|
g(m, k)

− (N − k∗)|∆m|√
m
(
N
m

)γ
)

P→ −∞ as m→∞.

Proof. For k < k∗ it holds with (3.3)

Γ(m, k) =
1

m

m∑
i=1

m+k∑
j=m+1

r(Yi, Yj) +
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi). (5.21)

With Lemma 3.5 we get

sup
1≤k≤k∗

1

g(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣ ≤ sup
k≥1

1

g(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣ = oP (1)

(5.22)
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as m → ∞. With Lemma 5.4 a) (iii) and Assumption 3.3 (iii) it holds for γ < α < 1
2

and m large enough such that k∗ ≤ m

sup
1≤k≤k∗

1

g(m, k)

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
≤ sup

1≤k≤k∗

m
1
2
−αkα

g(m, k)
sup

1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
= sup

1≤k≤k∗

m
1
2
−αkα

√
m
(
1 + k

m

) (
k

m+k

)γOP (1)

= sup
1≤k≤k∗

(
k

m

)α−γ (
k
m

)γ(
1 + k

m

) (
k

m+k

)γOP (1)

= sup
1≤k≤k∗

(
k

m

)α−γ (
1 +

k

m

)γ−1

OP (1)

≤ sup
1≤k≤k∗

(
k

m

)α−γ
OP (1)

=

(
k∗

m

)α−γ
OP (1) = oP (1) as m→∞. (5.23)

Assumption 3.3 (ii) yields

sup
1≤k≤k∗

1

g(m, k)

∣∣∣∣∣ km
m∑
i=1

h1(Yi)

∣∣∣∣∣
= sup

1≤k<k∗

√
m k

m

g(m, k)
OP (1)

= sup
1≤k<k∗

(
k

m

)1−γ (
k
m

)γ(
1 + k

m

) (
k

m+k

)γOP (1)

= sup
1≤k<k∗

(
k

m

)1−γ (
1 +

k

m

)γ−1

OP (1)

=

(
k∗

m

)1−γ

OP (1) = oP (1) as m→∞ (5.24)

with Lemma 5.4 a) (iii). By combining (5.21),(5.22),(5.23) and (5.24) we obtain

sup
1≤k≤k∗

|Γ(m, k)|
g(m, k)

= oP (1) as m→∞. (5.25)

As shown in the proof of Lemma A.3 in Fremdt (2014) the deterministic part diverges,
i.e. (

N

m

)γ− 1
2 |∆m|(N − k∗)√

m
(
N
m

)γ →∞ as m→∞ (5.26)

such that the assertion follows together with (5.25).
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The parts of the monitoring statistic which are asymptotically relevant are identified
in the following. It should be noted that, in this context, not only the remainder
term but also the terms which involve the historic observations are asymptotically
negligible which is, again, different for later changes and requires further adaption of
the approach.
Lemma 5.6. Let Assumption 5.1 be satisfied as well as Assumption 5.2 (i) and (ii).
Then, it holds(
N

m

)γ− 1
2

sup
k∗<k≤N

∣∣∣Γ(m, k)−
(∑m+k∗

j=m+1 h2(Yj) +
∑m+k

j=m+k∗+1 h
∗
2,m(Zj,m) + (k − k∗)∆m

)∣∣∣
g(m, k)

= oP (1) as m→∞.
Proof. Using the representation of the test statistic as given in (3.45) we obtain(

N

m

)γ− 1
2

sup
k∗<k≤N

∣∣∣Γ(m, k)−
(∑m+k∗

j=m+1 h2(Yj) +
∑m+k

j=m+k∗+1 h
∗
2,m(Zj,m) + (k − k∗)∆m

)∣∣∣
g(m, k)

≤
(
N

m

)γ− 1
2

sup
k∗<k≤N

1

g(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣
+

(
N

m

)γ− 1
2

sup
k∗<k≤N

1

g(m, k)

∣∣∣∣∣k∗m
m∑
i=1

h1(Yi)

∣∣∣∣∣
+

(
N

m

)γ− 1
2

sup
k∗<k≤N

1

g(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+k∗+1

r∗m(Yi, Zj,m)

∣∣∣∣∣
+

(
N

m

)γ− 1
2

sup
k∗<k≤N

1

g(m, k)

∣∣∣∣∣k − k∗m

m∑
i=1

h∗1,m(Yi)

∣∣∣∣∣ . (5.27)

It holds

sup
k∗<k≤N

(
k
m

)γ
g(m, k)

=
1√
m

sup
k∗<k≤N

(
k
m

)γ(
1 + k

m

) (
k

m+k

)γ
=

1√
m

sup
k∗<k≤N

(
1 +

k

m

)γ−1

=
1√
m

(
1 +

k∗

m

)γ−1

= O

(
1√
m

)
as m→∞ (5.28)

with Lemma 5.4 a) (iii). In particular, this implies

sup
k∗<k≤N

1

g(m, k)
≤
(
k∗

m

)−γ
sup

k∗<k≤N

(
k
m

)γ
g(m, k)

≤ 1√
m

(
k∗

m

)−γ
O(1) as m→∞. (5.29)

With Assumption 3.3 (i) and Markov’s inequality we obtain

P

(
1√
k∗m

∣∣∣∣∣
m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣ ≥ ε

)
= P

(∣∣∣∣∣
m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣ ≥ √k∗mε
)

≤u(m)k∗

k∗m2ε2
=

1

ε2
u(m)

m2−2γ
log(m)2 1

m2γ log(m)2
→ 0 as m→∞
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for all ε > 0 and thus∣∣∣∣∣ 1

m

m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣ = oP

(√
k∗
)

as m→∞. (5.30)

This yields

(
N

m

)γ− 1
2

sup
k∗<k≤N

1

g(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣
=

(
N

m

)γ− 1
2

sup
k∗<k≤N

√
k∗

g(m, k)
oP (1)

=

(
N

m

)γ− 1
2
(
k∗

m

) 1
2
−γ

oP (1)

=

(
k∗

N

) 1
2
−γ

oP (1) = oP (1) as m→∞ (5.31)

with Lemma 5.4 a) (iv) and b). Due to Assumption 3.3 (ii) it holds

1√
m

m∑
i=1

h1(Yi) = OP (1).

Hence, we get

(
N

m

)γ− 1
2

sup
k∗<k≤N

1

g(m, k)

∣∣∣∣∣k∗m
m∑
i=1

h1(Yi)

∣∣∣∣∣ =

(
N

m

)γ− 1
2

sup
k∗<k≤N

k∗√
mg(m, k)

OP (1)

≤
(
N

m

)γ− 1
2
(
k∗

m

)1−γ

OP (1)

=OP

(√
k∗

m

(
k∗

N

) 1
2
−γ
)

= oP (1) as m→∞

with (5.29) and Lemma 5.4 a) (iii), (iv) and b). We obtain with Lemma 3.4 for m large
enough such that N ≤ m

P

(
1

m−γN
1
2

sup
k∗<k≤N

1

m

∣∣∣∣∣
m∑
i=1

m+k∑
j=m+k∗+1

r∗m(Yi, Zj,m)

∣∣∣∣∣ > ε

)

≤P

(
1

m−γN
1
2

sup
1≤k≤N

1

m

∣∣∣∣∣
m∑
i=1

k∑
j=1

r∗m(Yi, Zm+k∗+j,m)

∣∣∣∣∣ > ε

)

≤ 1

ε2
u(m)

m2−2γ
(log2(2N))2 =

1

ε2
u(m)

m2−2γ
log(m)2O(1) = o(1) as m→∞ (5.32)
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for any ε > 0. Hence, it follows

(
N

m

)γ− 1
2

sup
k∗<k≤N

1

g(m, k)

∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+k∗+1

r∗m(Yi, Zj,m)

∣∣∣∣∣
≤
(
N

m

)γ− 1
2

N
1
2m−γm−

1
2

(
k∗

m

)−γ
oP (1)

=

(
N

m

)γ
1

k∗γ
oP (1) = oP (1) as m→∞. (5.33)
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with (5.28), (5.29) and Lemma 5.4 a) (i),(iii), (iv) and b). The assertion now follows as
we showed that all the summands in (5.27) converge to zero in probability as m tends
to infinity.

The following Lemma shows that for the remaining considerations the weight function
can asymptotically be replaced by a simpler term.

Lemma 5.7. Given that Assumption 5.1 and 5.2 (iii) and (iv) are fulfilled, it holds
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Proof. The reverse triangle inequality yields∣∣∣∣∣
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For the first summand it holds(
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Note that with (5.26) we get

|∆m|N−
1
2 (N − k∗)→∞ as m→∞. (5.36)

As ∆m = O(1), this implies

N − k∗ →∞ as m→∞. (5.37)
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Assumption 5.2 (iii) and (iv) as well as Lemma 5.4 a) (iv) and b) yield
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Hence, with (5.35), we get
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as k−k∗
kγ

is strictly increasing in k. Consider the function f with f(x) = (1 + x)γ−1. By
the mean value theorem, there exists a zm ∈ (0, N
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) such that
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Furthermore, the definition of N given in (5.13) yields
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by Lemma 5.4 b), (5.17) and (5.18). Hence, (5.40) yields
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with Lemma 5.4 a) (i) and b) and (5.18). Now, combining (5.38), (5.39) and (5.41) we
obtain (
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The assertion follows as both summands in (5.34) converge to zero as m tends to
infinity.

In order to assess the supremum over k on {k∗ < k ≤ N} we shift the index and
consider the supremum over l on {1 < l ≤ N − k∗} which we split at (1− δ)(N − k∗)
for a fixed δ ∈ (0, 1).
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Lemma 5.8. Let Assumption 5.1 and 5.2 (iii) be satisfied. Then, for δ ∈ (0, 1) fixed,
it holds
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Proof. We get with Assumption 5.2 (iv) that
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2
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Now, by combining (5.42), (5.43), (5.44) we obtain
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which is smaller than 1 in all cases, such that the assertion follows with (5.36).

Lemma 5.9. Let Assumption 5.1 and 5.2 (iii), (iv) be fulfilled. Then, it holds for all
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Proof of Lemma 5.9. It holds for any z ∈ R, δ > 0
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We get with Assumption 5.2 (iv) that
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2 (N − k∗)|∆m|

= o(1) as m→∞.

Additionally, (5.36) implies

|∆m|
√
N − k∗ = N−

1
2 (N − k∗)|∆m|

√
N

N − k∗

≥ N−
1
2 (N − k∗)|∆m| → ∞ as m→∞.

Consequently, (5.46) yields

sup
(1−δ)(N−k∗)≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

∣∣∣
l|∆m|

= oP (1) as m→∞.

This shows that the absolute value of the deterministic part exceeds the absolute value
of the stochastic part for m large enough and thus determines the sign. Hence, it
follows limm→∞ P(Bm) = 1 where Bm is the event that

inf
(1−δ)(N−k∗)≤l≤N−k∗

sign(∆m)

∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m) + l∆m

√
m
(
l+k∗

m

)γ ≥ 0.

Let

zm := z

(
N

m

) 1
2
−γ

+
(N − k∗)|∆m|√

m
(
N
m

)γ .

By Lemma B.3 (i) it follows

P

(N
m

)γ− 1
2

 sup
(1−δ)(N−k∗)≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m) + l∆m

∣∣∣
√
m
(
l+k∗

m

)γ
−(N − k∗)|∆m|√

m
(
N
m

)γ
)
≤ z

)
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= P

 sup
(1−δ)(N−k∗)≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m) + l∆m

∣∣∣
√
m
(
l+k∗

m

)γ ≤ zm


= P

 sup
(1−δ)(N−k∗)≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m) + l∆m

∣∣∣
√
m
(
l+k∗

m

)γ ≤ zm, Bm


+ o(1)

= P

(
sup

(1−δ)(N−k∗)≤l≤N−k∗
sign(∆m)

∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m) + l∆m

√
m
(
l+k∗

m

)γ ≤ zm, Bm

)
+ o(1)

= P

((
N

m

)γ− 1
2

(
sup

(1−δ)(N−k∗)≤l≤N−k∗
sign(∆m)

∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m) + l∆m

√
m
(
l+k∗

m

)γ
−(N − k∗)|∆m|√

m
(
N
m

)γ
)
≤ z

)
+ o(1) as m→∞, (5.47)

It holds with Assumption 5.1 (i)(
N

m

)γ− 1
2

(
sup

(1−δ)(N−k∗)≤l≤N−k∗

(
sign(∆m)

∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
l+k∗

m

)γ
+

l|∆m|√
m
(
l+k∗

m

)γ
)
− (N − k∗)|∆m|√

m
(
N
m

)γ
)

≥
(
N

m

)γ− 1
2

sign(∆m)

∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+bN−k∗c

j=m+k∗+1 h∗2,m(Zj,m)
√
m
(
bN−k∗c+k∗

m

)γ
+
bN − k∗c |∆m|
√
m
(
bN−k∗c+k∗

m

)γ − (N − k∗)|∆m|√
m
(
N
m

)γ


=

(
N

bN − k∗c+ k∗

)γ
sign(∆m)

 1√
N

m+k∗∑
j=m+1

h2(Yj) +
1√
N

m+bNc∑
j=m+k∗+1

h∗2,m(Zj,m)


+

((
N

bN − k∗c+ k∗

)γ bN − k∗c√
N

− N − k∗√
N

)
|∆m|

= (1 + o(1)) sign(∆m)

 1√
N

m+k∗∑
j=m+1

h2(Yj) +
1√
N

m+bNc∑
j=m+k∗+1

h∗2,m(Zj,m)

+ o(1)

as m→∞ noting that the mean value theorem yields∣∣∣∣( N

bN − k∗c+ k∗

)γ
− 1

∣∣∣∣ ≤ ( N

N − 1

)γ
− 1 =

Nγ − (N − 1)γ

(N − 1)γ
≤ γ(N − 1)γ−1

(N − 1)γ

=γ
1

N − 1
= O

(
1

N

)
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such that

∣∣∣∣( N

bN − k∗c+ k∗

)γ bN − k∗c√
N

− N − k∗√
N

∣∣∣∣
≤
∣∣∣∣( N

bN − k∗c+ k∗

)γ bN − k∗c√
N

−
(

N

bN − k∗c+ k∗

)γ
N − k∗√

N

∣∣∣∣
+

∣∣∣∣( N

bN − k∗c+ k∗

)γ
N − k∗√

N
− N − k∗√

N

∣∣∣∣
≤O

(
1

N

)
N − k∗√

N
+

(
N

bN − k∗c+ k∗

)γ
1√
N

≤O
(

1√
N

)(
1− k∗

N

)
+

(
N

N − 1

)γ
1√
N

= O

(
1√
N

)
= o(1)

as
(
1− k∗

N

)
= O(1) for all cases in Lemma 5.4 a) (iv). Because of the stationarity we

get with Assumption 5.2 (iv)

1√
N

m+k∗∑
j=m+1

h2(Yj) +
1√
N

m+bNc∑
j=m+k∗+1

h∗2,m(Zj,m)

D
=

1√
N

k∗∑
j=1

h2(Yj) +
1√
N

bNc∑
j=k∗+1

h∗2,m(Zj,m)

=
1√
N

k∗∑
j=1

h2(Yj) +
1√
N

bNc∑
j=1

h∗2,m(Zj,m)− 1√
N

k∗∑
j=1

h∗2,m(Zj,m)

D→Z :=


W (0) +W ∗(1)−W ∗(0) = W ∗(1) under (I)

W (δ1) +W ∗(1)−W ∗(δ1) under (II)

W (1) under (III)

by Lemma 5.4 a) (iv). It holds

Z ∼


N(0, σ∗2) under (I)

N(0, δ1σ
2 + (1− δ1)σ∗2) under (II)

N(0, σ2) under (III)

as W ∗(1) − W ∗(δ1) ∼ N (0, σ∗2(1− δ1)) and W (δ1) ∼ N(0, σ2) are independent in-
crements of the two dimensional Wiener Process in Assumption 5.2 (iv). Due to
the symmetry of the Gaussian distribution, the above limit distribution still holds
when multiplying with sign(∆m) ∈ {−1, 1}. For limm→∞ sign(∆m) = s∆ ∈ {−1, 1}
this is obvious. Otherwise, {∆m}m≥1 can be decomposed in two subsequences with
limn→∞ sign(∆mn) = −1 and limn→∞ sign(∆m′n) = 1 which both lead to the above
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limit distribution. Hence, we get with Slutsky’s theorem

lim
m→∞

P

((
N

m

)γ− 1
2

(
sup

(1−δ)(N−k∗)≤l≤N−k∗
sign(∆m)
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j=m+1 h2(Yj)
√
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(
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m

)γ
+

∑m+k∗+l
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∗
2,m(Zj,m) + l∆m

√
m
(
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m

)γ
)
− (N − k∗)|∆m|√

m
(
N
m

)γ
)
≤ z

)
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sign(∆m)

 1√
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m+k∗∑
j=m+1

h2(Yj) +
1√
N

m+bNc∑
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h∗2,m(Zj,m)

 ≤ z


=P (Z ≤ z). (5.48)

In addition, it holds(
N
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)γ− 1
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(
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(
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(
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√
m
(
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)γ
as l

(l+k∗)γ
= l1−γ

(
1

1+ k∗
l

)γ
is increasing in l. Assumption 5.2 (iv) yields(

N

m

)γ− 1
2

sup
(1−δ)(N−k∗)≤l≤N−k∗
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j=m+k∗+1 h
∗
2,m(Zj,m)

√
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(
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D
=

(
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∗
2,m(Zj,m)

√
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(
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=

(
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√
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(
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j=1 h∗2,m(Zj,m)− 1√

N
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j=1 h
∗
2,m(Zj,m)(
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N

)γ
= sup

(1−δ)+δ k∗
N
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N
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1√
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∑k∗

j=1 h2(Yj) + 1√
N

∑l
j=1 h

∗
2,m(Zj,m)− 1√

N

∑k∗

j=1 h
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2,m(Zj,m)(

l
N

)γ
D→


sup(1−δ)≤t≤1

W ∗(t)
tγ

under (I)

sup(1−δ(1−δ1))≤t≤1
W (δ1)+W ∗(t)−W ∗(δ1)

tγ
under (II)

W (1) under (III)

as m→∞.
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As {(−W (t),−W ∗(t))} is again a Wiener processes with mean zero and the same
covariance structure as {(W (t),W ∗(t))}, we obtain the same limit distribution for

(
N

m

)γ− 1
2

sup
(1−δ)(N−k∗)≤l≤N−k∗

sign(∆m)

∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
l+k∗

m

)γ .

Due to the almost sure continuity of the Wiener process we get for δ → 0∣∣∣∣ sup
1−δ≤t≤1

W ∗(t)

tγ
−W ∗(1)

∣∣∣∣
≤
∣∣∣∣ sup
1−δ≤t≤1

(
W ∗(t)

tγ
−W ∗(t)
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(1− δ)γ
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We conclude that
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)

≥ lim
m→∞

P
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)
=P (Z ≤ z) + aδ, (5.49)

where aδ → 0 for δ → 0.
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Combining (5.48)and (5.49) we get∣∣∣∣∣ lim
m→∞

P
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N

m
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2
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hence by (5.45) and (5.47)∣∣∣∣∣ lim
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The assertion now follows as the left-hand side does not depend on δ and δ was arbitrary.

Lemma 5.10. Let Assumption 3.3, 5.1 and 5.2 be satisfied. Then, it holds
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Proof. With Lemma 5.5 and B.3 it holds for any z ∈ R
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Together with the reverse triangle inequality, Lemma 5.6 implies(
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as m→∞ with Lemma 5.7. Hence, Slutsky’s Theorem and Lemma 5.9 yield

lim
m→∞
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}
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Proof of Theorem 5.3. As Ψ is continuous it holds with Lemma 5.4 c) and Lemma 5.10

lim
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for all real x. Furthermore, it holds by (5.13)
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as the definitions of am and bm in (5.10) and (5.11) imply
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With (5.17) it holds

N1−γ = a1−γ
m

(
1 + x

1− γ
√
am|∆m|(1− γ(1− k∗

am
))

)
= a1−γ

m (1 + δm)

with 0 < δm = x 1−γ
√
am|∆m|(1−γ(1− k∗

am
))
→ 0 by (5.19) as m → ∞. Hence, we get for any

ε > 0 and m large enough

P (τm > N) = P
(
τ 1−γ
m > N1−γ) = P

(
τ 1−γ
m > a1−γ

m (1 + δm)
)

= P

((
τm
am

)1−γ

− 1 > δm

)
≥ P

((
τm
am

)1−γ

− 1 > ε

)
.

Using (5.50) this yields

lim
m→∞

P

((
τm
am

)1−γ

− 1 > ε

)
≤ Ψ(−x) for all x ∈ R

such that, letting x tend to ∞, we get

lim
m→∞

P

((
τm
am

)1−γ

− 1 > ε

)
= 0.

Analogously, it holds

P (τm ≤ N) = P
(
τ 1−γ
m ≤ N1−γ) = P

(
τ 1−γ
m ≤ a1−γ

m (1 + δm)
)

= P

((
τm
am

)1−γ

− 1 ≤ δm

)
≥ P

((
τm
am

)1−γ

− 1 < −ε

)
for m large enough and thus

lim
m→∞

P

((
τm
am

)1−γ

− 1 < −ε

)
≤ 1−Ψ(−x) for all x ∈ R.

Now, letting x tend to −∞, we obtain

lim
m→∞

P

((
τm
am

)1−γ

− 1 < −ε

)
= 0.

In total, those considerations show that(
τm
am

)1−γ
P→ 1 as m→∞. (5.52)

With the mean value theorem it holds

τm − am
bm

=
(τ 1−γ
m )

1
1−γ − (a1−γ

m )
1

1−γ

bm

=
1

1− γ
z

1
1−γ−1
m

τ 1−γ
m − a1−γ

m

bm
,
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where zm lies between a1−γ
m and τ 1−γ

m . Considering (5.52) it also has to hold that
zm = a1−γ

m (1 + oP (1)). Hence, we get

τm − am
bm

=
1

1− γ
(
a1−γ
m (1 + oP (1))

) 1
1−γ−1 τ 1−γ

m − a1−γ
m

bm

=
aγm

1− γ
τ 1−γ
m − a1−γ

m

bm
(1 + oP (1))

=
aγm

1− γ
τ 1−γ
m − a1−γ

m

bm
+ oP (1)

as aγm
1−γ

τ1−γm −a1−γm

bm
= OP (1) by (5.51). Now, Slutzky’s lemma yields that

τm − am
bm

and
aγm

1− γ
τ 1−γ
m − a1−γ

m

bm

have the same limit distribution such that (5.7) is satisfied. Combining this with (5.51),
we obtain (5.1). Now, it follows with (5.50)

lim
m→∞

P

(
τm − am
bm

)
= 1−Ψ(−x) = Ψ(x)

as Ψ is symmetric.

5.1.1. Comparison of CUSUM and Wilcoxon procedure

Based on Theorem 5.3 we are now able to compare the expected stopping time of the
CUSUM and Wilcoxon procedure which can be approximated by aCm resp. aWm . By
(5.10) it holds for γ = 0

aW/Cm =
c
W/C
α
√
m

∆
W/C
m

+ k∗, (5.53)

where cW/Cα is the 1− α quantile of sup0<t<1 σW/C |W (t)| with

σ2
W/C =

∑
h∈Z

Cov(h
W/C
2 (Y0), h

W/C
2 (Yh))

as Corollary 3.7 (i) holds for the CUSUM as well as for the Wilcoxon kernel. Let c̃α
be the 1− α-quantile of sup0<t<1 |W (t)| such that cW/Cα = σW/C c̃α. Then, it holds

aWm − aCm =
(

σW
|∆W
m |
− σC
|∆C
m|

)
c̃α
√
m.

Hence, depending on the size of change and the distribution of the underlying time
series in terms of |∆m| and σ, the factor

(
σW
|∆W
m |
− σC
|∆C
m|

)
determines whether the CUSUM

or the Wilcoxon procedure is expected to be faster. In the following, we examine this
factor exemplarily for a fixed mean change in i.i.d. data. Therefore, consider Example

92



5.2. Superlinear Changes

N(0,1) Laplace(0,1) t(3)
aWm−aCm
c̃α
√
m

0.109 -0.126 -0.379

Table 5.1.: Scaled differences of expected stopping times.

2.3 with {Yi}i≥1 i.i.d. with a continuous distribution and dm = 1. With hC1 and hW1 as
in Example 3.1 we obtain

σ2
C = Var(hC2 (Y1)) = Var(Y1), (5.54)

σ2
W = Var(hW2 (Y1)) = Var (FY (Y1)) =

1

12
. (5.55)

The change in the CUSUM kernel is given by ∆C = −1 as derived in (2.9). According
to (2.10) it holds ∆W = P (Y ′1 ≤ Y1 < Y ′1 + 1).

Table 5.1 shows the scaled differences of the approximations of the expected stopping
times for particular distributions. It can be observed that the CUSUM procedure is
expected to detect a change faster than the Wilcoxon procedure for normally distrib-
uted random variables, while the Wilcoxon procedure is expected to have a shorter
detection delay for heavy tailed distributions such as the Laplace distribution or the t
distribution with 3 degrees of freedom. This is not surprising as the Wilcoxon kernel
can better deal with extreme observations due to its robustness.

5.2. Superlinear Changes

In this section, we analyze the asymptotic behavior of the stopping time for superlinear
changes in the sense that k∗ = [λmβ] with β > 1. We consider the change point model
as described in Section 2.2 and the weight function as in (3.5) for γ = 0.

The stopping time for change points that are linear in m, i.e. for β = 1, is con-
sidered in Section 5.3 below where the main approach is the same as in this section
but the proofs differ in some details. To the best of our knowledge, up to now, there
does not even exist a counterpart of Theorem 5.3 for β ≥ 1 for the CUSUM proced-
ure. The analysis of the stopping time for late changes requires a different approach
for the following reasons: the probability of rejecting the null hypothesis before the
change occurs is not negligible when using a fixed critical value and the behavior of the
stopping time strongly depends on what we have observed until we start monitoring.
The positive probability of an early rejection would contaminate the limit distribution
of the stopping time. However, it is not clear how this limit distribution, which one
would expect to be bimodal, could be derived and furthermore we are mainly interested
in investigating the detection delay related to the actual change rather than stopping
times due to false positives. Lemma 5.11 shows that, for late changes, we can obtain
a procedure for which the probability of falsely rejecting the null hypothesis before
the change occurs tends to zero by letting the critical value increase to infinity. The
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same Lemma also reveals that this is not necessary for early changes as the respective
probability of rejecting too early is already negligible for any fixed critical value. This
relates to the assertion of Lemma 5.5.

Lemma 5.11. Let Assumptions 3.3 and 5.2 be satisfied and let k∗ = [λmβ] and
S1,m := 1√

m

∑m
i=1 h1(Yi).

(i) For β < 1 and 1
cm

= O(1) it holds

P

(
sup

1≤k≤k∗

|Γ(m, k)|
√
m
(
1 + k

m

) > cm

)
→ 0. (5.56)

(ii) For β = 1, (5.56) holds if cm →∞ and lim supm→∞
|S1,m|
cm

< 1 + 1
λ
a.s..

(iii) For β > 1 (5.56) holds if cm →∞ and lim supm→∞
|S1,m|
cm

< 1 a.s..

Proof. For 1 ≤ k ≤ k∗ consider the representation of the monitoring statistic as given
in (3.3):

Γ(m, k) =
1

m

m∑
i=1

m+k∑
j=m+1

r(Yi, Yj) +
m+k∑
j=m+1

h2(Yj) +
k

m

m∑
i=1

h1(Yi).

With Lemma 3.5 it holds

sup
1≤k≤k∗

∣∣∣∣∣ Γ(m, k)
√
m
(
1 + k

m

) − ∑m+k
j=m+1 h2(Yj) + k

m

∑m
i=1 h1(Yi)

√
m
(
1 + k

m

) ∣∣∣∣∣
≤ sup

k≥1

1
m

∣∣∣∑m
i=1

∑m+k
j=m+1 r(Yi, Yj)

∣∣∣
√
m
(
1 + k

m

) = oP (1), m→∞.

Now, observe that

sup
1≤k≤k∗

∣∣∣∣∣
∑m+k

j=m+1 h2(Yj) + k
m

∑m
i=1 h1(Yi)

√
m
(
1 + k

m

) ∣∣∣∣∣ = sup
1≤k≤k∗

∣∣∣∣∣
∑m+k

j=m+1 h2(Yj) + k√
m
S1,m

√
m
(
1 + k

m

) ∣∣∣∣∣
≤ sup

1≤k≤k∗

∣∣∣∑m+k
j=m+1 h2(Yj)

∣∣∣
√
m
(
1 + k

m

) + sup
1≤k≤k∗

∣∣∣ k√
m
S1,m

∣∣∣
√
m
(
1 + k

m

)
≤ sup

1≤k≤k∗

∣∣∣∑m+k
j=m+1 h2(Yj)

∣∣∣
√
m
(
1 + k

m

) + sup
1≤k≤k∗

k
m

1 + k
m

|S1,m|

≤ sup
1≤k≤k∗

∣∣∣∑m+k
j=m+1 h2(Yj)

∣∣∣
√
m
(
1 + k

m

) +
k∗

m

1 + k∗

m

|S1,m| (5.57)

with Assumption 3.3 (ii). For β < 1, there exists an m0 ∈ N such that k∗

m
< 1 for all

m ≥ m0. Hence, (5.57) implies for m large enough

sup
1≤k≤k∗

|Γ(m, k)|
√
m
(
1 + k

m

) ≤
√

k∗

m

1 + k∗

m

OP (1) +
k∗

m

1 + k∗

m

|S1,m|+ oP (1) = oP (1)
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as k∗

m
→ 0. For β > 1, we obtain with (5.57) and Assumption 3.3 (iv) as well as the

stationarity

1

cm
sup

1≤k≤k∗

|Γ(m, k)|
√
m
(
1 + k

m

)
≤ 1

cm

 sup
1≤k≤m

∣∣∣∑m+k
j=m+1 h2(Yj)

∣∣∣
√
m
(
1 + k

m

) + sup
m<k≤k∗

∣∣∣∑m+k
j=m+1 h2(Yj)

∣∣∣
√
m
(
1 + k

m

) + |S1,m|+ oP (1)


=

1

cm

(
sup

1≤k≤m

1

1 + k
m

∣∣∣∣∣ 1√
m

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
m<k≤k∗

k
m

1 + k
m

∣∣∣∣∣
√
m

k

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣
+ |S1,m|+ oP (1)

)
≤ 1

cm

(
sup

1≤k≤m

∣∣∣∣∣ 1√
m

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ sup
m<k≤k∗

∣∣∣∣∣
√
m

k

m+k∑
j=m+1

h2(Yj)

∣∣∣∣∣+ |S1,m|+ oP (1)

)

D
=

1

cm

(
sup

1≤k≤m

∣∣∣∣∣ 1√
m

k∑
j=1

h2(Yj)

∣∣∣∣∣+ sup
m<k≤k∗

∣∣∣∣∣
√
m

k

k∑
j=1

h2(Yj)

∣∣∣∣∣+ |S1,m|+ oP (1)

)

=OP

(
1

cm

)
+
|S1,m|
cm

+ oP

(
1

cm

)
.

For β = 1 it holds

1

cm
sup

1≤k≤k∗

|Γ(m, k)|
√
m
(
1 + k

m

) ≤
√

k∗

m

1 + k∗

m

OP

(
1

cm

)
+

k∗

m

1 + k∗

m

|S1,m|
cm

+ oP

(
1

cm

)
= OP

(
1

cm

)
+

k∗

m

1 + k∗

m

|S1,m|
cm

+ oP

(
1

cm

)
with k∗

m
→ λ.

In the following, we choose the critical value according to Lemma 5.11 such that the
stopping time asymptotically coincides with

τ̃m := inf

{
k > k∗ :

|Γ(m, k)|
g(m, k)

> cm

}
. (5.58)

We solve the issue of the stopping time depending on the situation at the beginning of
the monitoring period by conditioning on S1,m = s1,m and S∗1,m = s∗1,m with

S1,m =
1√
m

m∑
i=1

h1(Yi) and S∗1,m =
1√
m

m∑
i=1

h∗1,m(Yi).

The conditioning random variables only involve the historic data set which has been
observed before the monitoring starts. However, it should be mentioned that the func-
tions h1 and h∗1,m are not necessarily known as they depend on the unknown distribution
of the time series before and after the change.
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Example 5.12. Based on Hoeffding’s decomposition in Example 3.11 for a mean
change, we obtain the following conditioning random variables for the CUSUM and
the Wilcoxon kernel:

SC1,m = S∗C1,m =
1√
m

m∑
i=1

(Yi − µ),

SW1,m =
1√
m

m∑
i=1

(
1

2
− F (Yi)

)
,

S∗W1,m =
1√
m

m∑
i=1

(
1

2
− F (Yi − dm)−∆W

m

)
.

We impose the following assumptions on the time and the size of the change.

Assumption 5.13.

(i) There exists a λ > 0 such that k∗ = [λmβ] with some β > 1.

(ii) ∆m = O(1).

(iii) limm→∞
cm√
m|∆m| = 0.

As we let the critical value cm increase to infinity, (iii) is needed for the detectability
of the change. With (3.50)-(3.53) we can see that the procedure has asymptotic power
one under this condition. Furthermore, we require the conditioning sequences to fulfill
Assumption 5.14. Part (iii) is derived from Lemma 5.11 and ensures that the probab-
ility of rejecting too early tends to zero. In Remark 5.19 we will see that if S1,m and
S∗1,m fulfill the law of the iterated logarithm, cm can be chosen such that almost all
realizations of the conditioning random variables satisfy the following assumptions.

Assumption 5.14.

(i) cm →∞ and lim supm→∞

∣∣∣ s1,mcm ∣∣∣ < 1.

(ii) s∗1,m
s1,m

= O(1) and 1
s1,m

= O(1).

(iii) limm→∞
|s1,m|√
m|∆m| = limm→∞

|s∗1,m|√
m|∆m| = 0.

Regarding the stochastic terms we get by with weaker assumptions than in the sublin-
ear case.

Assumption 5.15. Let {Yi}i∈Z and {Zi,m}i∈Z be stationary time series that fulfill the
following assumptions for a given kernel function h.

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r∗m(Yi, Zj,m)
∣∣∣2) ≤ u(m)(k2−k1+1) for all m+k∗+1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.
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(ii) sup1≤l≤lm
1√
lm

∑m+k∗+l
j=m+k∗+1 h

∗
2,m(Zj,m) = OP (1) as lm →∞.

(iii) 1√
km

∑km
j=1 h2(Yj)

D→ N(0, σ2) as km →∞.

Part (ii) is very general and can be obtained, for example, by a functional central limit
theorem or by Kolmogorov’s inequality.

In order to assess the asymptotic behavior of the stopping time we need to find normal-
izing sequences am and bm such that we can derive the conditional limit distribution
of

τ̃m − am
bm

.

In contrast to the sublinear case in the previous section, due to the conditioning, am
and bm can and will depend on s1,m and s∗1,m. We follow the general approach that
has been described at the beginning of this chapter where the respective probabilities
now appear with the condition on {S1,m = s1,m, S

∗
1,m = s∗1,m} and by the definition

of τ̃m we consider the supremum only over k∗ < k ≤ N. Consequently, we need to
find a centering sequence dm and a scaling sequence em such that we can derive the
conditional limit distribution

Ψ(z) := lim
m→∞

P

(
em

(
sup

k∗<k≤N

|Γ(m, k)|
g(m, k)

− dm
)
< x

∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
.

Then, we get

lim
m→∞

P

(
τ̃m − am
bm

≤ x

∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
= 1−Ψ(−x)

if
em (cm − dm)→ −x as m→∞. (5.59)

In the following we consider the weight function as in (3.5) with γ = 0. In order to
determine dm, we consider the representation of the monitoring statistic as given in
(3.45). For sublinear changes, it is sufficient to subtract the signal part (see (5.9)) as
k∗

m

∑m
i=1 h1(Yi) = k∗√

m
S1,m and k−k∗

m

∑m
i=1 h

∗
1,m(Yi) = N−k∗√

m
S∗1,m are asymptotically negli-

gible. However, this is not the case for late changes such that we need to additionally
subtract those terms as follows:

dm =
(N − k∗)|∆m|+ k∗√

m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
m
(
1 + N

m

) . (5.60)

The different signs are needed in order to take into account whether s1,m and s∗1,m go in
the same or opposite direction of the change. With the central limit theorem in mind
we suggest to scale with

em =

√
m

N

(
1 +

N

m

)
(5.61)
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which basically cancels out the weight function and induces the factor 1√
N

for the
central limit theorem. With N as in (5.5) it holds

em (cm − dm)

=cm

√
m

N

(
1 +

N

m

)
−

(N − k∗)|∆m|+ k∗√
m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
N

=cm

√
m

N

(
1 +

N

m

)
− xbm|∆m|√

N

−
(am − k∗)|∆m|+ k∗√

m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
N

. (5.62)

Hence, we obtain (5.59) if we choose am and bm such that

bm
|∆m|√
N

= 1 + o(1) as m→∞ (5.63)

and

cm

√
m

N

(
1 +

N

m

)
−

(am − k∗)|∆m|+ k∗√
m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
N

= o(1).

(5.64)

The latter is satisfied if

am − k∗ =
cm
√
m

|∆m|

(
1 +

N

m

)
− k∗√

m∆m

s1,m −
N − k∗√
m∆m

s∗1,m + o

( √
N

|∆m|

)
. (5.65)

For N as in (5.5) and bm fulfilling (5.63), this is satisfied by the solution am of

am =
cm
√
m

|∆m|
+

am√
m |∆m|

(
cm − s∗1,m sign(∆m)

)
+ k∗ +

k∗√
m∆m

(s∗1,m − s1,m) (5.66)

by Assumption 5.13 (iii). In particular, it holds for this solution and k∗ = [λmβ], β ≥ 1

am(1 + o(1)) = k∗(1 + o(1)) +
cm√
m|∆m|

·m = λmβ(1 + o(1)) (5.67)

by Assumption 5.13 (iii) and Assumption 5.14 (iii). As cm →∞, Assumption 5.13 (iii)
implies in particular that

√
m|∆m| → ∞ (5.68)

such that it follows with (5.67)
√
am|∆m| → ∞ as m→∞. (5.69)

From this we see that the choice

bm =

√
am
|∆m|

(5.70)
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satisfies (5.63) as it holds

N

am
= 1 + x

bm
am

= 1 + x
1

√
am|∆m|

→ 1 as m→∞. (5.71)

Having defined the standardizing sequences am and bm we get with (5.5)

N =

√
am
|∆m|

x+
cm
√
m

|∆m|
+

am√
m |∆m|

(
cm − s∗1,m sign(∆m)

)
+

k∗√
m∆m

(s∗1,m − s1,m) + k∗.

(5.72)

We start with analyzing the asymptotic behavior of the deterministic sequences am
and N where, in particular, their interplay with the time and the size of the change is
important.

Lemma 5.16. Under Assumption 5.13 and Assumption 5.14 (iii) it holds

a) (i) k∗

m
→∞

(ii)
√
am |∆m| → ∞

(iii) am
m
→∞

(iv) k∗

am
→ 1

b) N
am
→ 1 such that part a) is still valid when replacing am by N .

c) limm→∞ em (cm − dm) = −x for all x ∈ R.

Proof. Assertion a) (i) follows immediately from Assumption 5.13 (i). The remaining
assertions in a) are direct implications of (5.67), where (ii) is already given in (5.69).
Furthermore, b) is given in (5.71) and c) holds by (5.62), (5.63) and (5.64).

By the following Theorem we obtain asymptotic normality of the standardized stopping
time of the CUSUM kernel (see Example 2.2 (i)) given the realizations s1,m and s∗1,m.
Let

τ̃Cm := inf

{
k > k∗ :

|ΓC(m, k)|
g(m, k)

cm

}
with ΓC as in (2.2).

Theorem 5.17. Let Assumptions 3.3 (ii), 5.13 and 5.15 be satisfied. Furthermore,
assume that {X1, . . . , Xm} are independent of {Xm+j : j ≥ 1}. Then, for all sequences
s1,m and s∗1,m that satisfy Assumption 5.14 it holds under the alternative for the CUSUM
kernel

lim
m→∞

P

(
τ̃Cm − aCm
bCm

≤ x

∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
= Φ

(x
σ

)
for all x ∈ R,

where Φ is the distribution function of the standard Gaussian distribution,
σ2 =

∑
h∈ZCov(Y0, Yh), aCm = aCm(s1,m, s

∗
1,m) is the unique solution of (5.66) and bCm =

bCm(s1,m, s
∗
1,m) as in (5.70).
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More generally, the proof of Theorem 5.17 holds for any monitoring statistic obtained
by a kernel function for which the remainder term in Hoeffding’s decomposition is
equal to zero. Assuming that the remainder term is equal to zero means that the
representation of the monitoring statistic in (3.45) for k > k∗ reduces to

Γ̃(m, k) :=
m+k∗∑
j=m+1

h2(Yj) +
m+k∑

j=m+k∗+1

h∗2,m(Zj,m) + (k − k∗)∆m

+
k∗

m

m∑
i=1

h1(Yi) +
k − k∗

m

m∑
i=1

h∗1,m(Yi). (5.73)

In Example 3.1 we have seen that this is true for the CUSUM kernel but not for the
Wilcoxon kernel. Hence, Theorem 5.17 excludes the Wilcoxon kernel such as many
others. Nevertheless, it provides the essential basis for Theorem 5.20 which is not
restricted to kernels without remainder term. The assumption of independence between
the new observations and the historic data is only needed to obtain unconditional
probabilities as in Lemma 5.18. This can probably be relaxed to the usual concepts of
asymptotic independence but goes beyond the scope of this work.

Lemma 5.18. Assume that {X1, . . . , Xm} are independent of {Xm+j : j ≥ 1}. Then,
it holds for k > k∗

P

em
 sup
pm≤k<qm

∣∣∣Γ̃(m, k)
∣∣∣

√
m
(
1 + k

m

) − dm
 ≤ z

∣∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m


= P

em
 sup
pm≤k<qm

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k

m

)
+

(k − k∗)∆m + k∗√
m
s1,m + k−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k

m

) − dm

 ≤ z


for any deterministic sequences em, dm, pm, qm with pm < qm and Γ̃ as in (5.73).

Proof. With (5.73) it holds

P

em
 sup
pm≤k<qm

∣∣∣Γ̃(m, k)
∣∣∣

√
m
(
1 + k

m

) − dm
 ≤ z

∣∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m


= P

em
 sup
pm≤k<qm

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k

m

)
+

(k − k∗)∆m + k∗√
m
s1,m + k−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k

m

) − dm

 ≤ z

∣∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

 .

As S1,m and S∗1,m only involve the historic observations {X1, . . . , Xm} which are as-
sumed to be independent of {Xm+j : j ≥ 1}, the assertion now follows with Corollary
2 in Section 7.1. in Chow & Teicher (1997).
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Remark 5.19. Under Assumption 5.13 (iii), Assumption 5.14 is satisfied if for some
ρ, ρ∗ > 0

lim sup
m→∞

s1,m√
2%2 log logm

=
s∗1,m√

2%∗2 log logm
= 1 (5.74)

and

cm =
(√

2 max(%2, %∗2) + ε
)√

log logm. (5.75)

The above remark indicates that, based on Theorem 5.17, we can obtain almost sure
convergence when conditioning on the random variables S1,m and S∗1,m which fulfill the
law of the iterated logarithm such that almost every realization satisfies the assump-
tions of Theorem 5.17. In this case, we can even handle the remainder term such that
the following result is not restricted to the CUSUM kernel.

Theorem 5.20. Let Assumptions 3.3 (i) and (ii), 5.13 as well as 5.15 be satisfied.
Furthermore assume that {X1, . . . , Xm} are independent of {Xm+j : j ≥ 1} and that
S1,m as well as S∗1,m fulfill the law of the iterated logarithm, i.e.

lim sup
m→∞

|S1,m|√
2%2 log logm

= 1 and lim sup
m→∞

∣∣S∗1,m∣∣√
2%∗2 log logm

= 1 a.s., (5.76)

with %2 =
∑

h∈ZCov(h1(Y0), h1(Yh)) and %∗2 =
∑

h∈ZCov(h∗1,m(Z0,m), h∗1,m(Zh,m)).
Then, if cm is chosen as in (5.75), it holds under the alternative

P

(
τ̃m − am(S1,m, S

∗
1,m)

bm(S1,m, S∗1,m)
≤ x

∣∣∣∣S1,m, S
∗
1,m

)
→ Φ

(x
σ

)
a.s.,

where Φ is the distribution function of the standard Gaussian distribution,
σ2 =

∑
h∈ZCov(h2(Y0), h2(Yh)), am = am(s1,m, s

∗
1,m) is the unique solution of (5.66)

and bm = bm(s1,m, s
∗
1,m) as in (5.70).

Corollary 5.21. (i) If S1,m and S∗1,m fulfill a weak invariance principle with the
usual rates, (5.76) is satisfied in a P-stochastic sense. By the subsequence prin-
ciple this gives the result of Theorem 5.20 but with convergence in probability.

(ii) With Lebesgue’s dominated convergence theorem we obtain an unconditional result
by

P

(
τ̃m − am(S1,m, S

∗
1,m)

bm(S1,m, S∗1,m)
≤ x

)
= E

(
P

(
τ̃m − am(S1,m, S

∗
1,m)

bm(S1,m, S∗1,m)
≤ x

∣∣∣∣S1,m, S
∗
1,m

))
→ Φ

(x
σ

)
.

The proofs of Theorem 5.17 and 5.20 are divided into several lemmas. In order to
assess the supremum over k on {k∗ < k ≤ N} we shift the index and consider the
supremum over l on {1 < l ≤ N − k∗} which we split at (1 − δ)(N − k∗) for a fixed
δ ∈ (0, 1).
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Lemma 5.22. Let the assumptions of Theorem 5.17 be satisfied. Then, for δ ∈ (0, 1
2
)

fixed, it holds for all z ∈ R, as m→∞,

lim
m→∞

P

em
 sup

1≤l<(1−δ)(N−k∗)

∣∣∣Γ̃(m, k∗ + l)
∣∣∣

√
m
(
1 + k∗+l

m

) − dm
 ≤ z

∣∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

 = 1

with dm and em as in (5.60) and (5.61) and Γ̃ as in (5.73).

Proof. As {X1, . . . , Xm} are independent of {Xm+j : j ≥ 1} we obtain with Lemma
5.18 and dm and em as in (5.60) and (5.61)

P

(
em

(
sup

1≤l<(1−δ)(N−k∗)

|Γ(m, k∗ + l)|
√
m
(
1 + k∗+l

m

) − dm) ≤ z

∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)

= P

√m

N

(
1 +

N

m

) sup
1≤l<(1−δ)(N−k∗)

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k∗+l

m

)
+
l∆m + k∗√

m
s1,m + l√

m
s∗1,m

∣∣∣
√
m
(
1 + k∗+l

m

)
−

(N − k∗)|∆m|+ k∗√
m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
m
(
1 + N

m

) )
≤ z

)
. (5.77)

The proof of this Lemma is based on showing that the above random variable is domin-
ated by −(N−k∗)|∆m| which diverges to −∞ as stated by the following considerations.
With (5.72) we obtain

N − k∗

=

√
am
|∆m|

x+
cm
√
m

|∆m|
+

am√
m |∆m|

(
cm − s∗1,m sign(∆m)

)
+

k∗√
m∆m

(s∗1,m − s1,m)

=
cm
√
m

|∆m|

(
1 +

am
m

)(
1 +

x
√
am

cm
√
m
(
1 + am

m

) − s∗1,m sign(∆m)

cm

am
m

1 + am
m

+
sign(∆m)(s∗1,m − s1,m)

cm

k∗

m

1 + am
m

)

=
cm
√
m

|∆m|

(
1 +

am
m

)(
1 +

x

cm

√
m

am

am
m

1 + am
m

+
s∗1,m sign(∆m)

cm

am
m

1 + am
m

(
k∗

am
− 1

)
−sign(∆m)s1,m

cm

k∗

am

am
m

1 + am
m

)
(5.78)

It follows with Lemma 5.16 a) (iii) and (iv) as well as Assumption 5.14 (i) and (ii) that

N − k∗ =
cm
√
m

|∆m|

(
1 +

am
m

)(
1− s1,m

cm
sign(∆m) + o(1)

)
(5.79)
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as
am
m

1+am
m

= 1
m
am

+1
→ 1. Hence, with Assumption 5.13 (ii) and Assumption 5.14 (i), it

holds in particular

N − k∗ →∞ (5.80)

and

(N − k∗)|∆m| = cm
√
m
(

1 +
am
m

)(
1− s1,m

cm
sign(∆m) + o(1)

)
→∞ (5.81)

and with Assumption 5.13 (iii)

√
N − k∗ |∆m| =

√
cm
√
m |∆m|

(
1 +

am
m

)√
1− s1,m

cm
sign(∆m) + o(1)→∞ (5.82)

as m→∞. Furthermore, it holds with Assumption 5.14 (i) and (5.79)

N−
1
2 (N − k∗) |∆m| = cm

√
m

N

(
1 +

am
m

)(
1− s1,m

cm
sign(∆m) + o(1)

)
=cm

(√
m

N
+

√
N

m

am
N

)(
1− s1,m

cm
sign(∆m) + o(1)

)
→∞ as m→∞. (5.83)

With (5.81), Assumption 5.14 (i) and Lemma 5.16 a) (iii) and b) we obtain
√
m
(
1 + N

m

)
(N − k∗)|∆m|

=
1

cm

1 + N
m

1 + am
m

(
1− s1,m

cm
sign(∆m) + o(1)

)−1

= O

(
1

cm

)
(5.84)

such that it holds

√
m
(
1 + N

m

)
(N − k∗)|∆m|

sup
1≤l<(1−δ)(N−k∗)

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

∣∣∣
√
m
(
1 + k∗+l

m

) = oP (1)

(5.85)

if

sup
1≤l<(1−δ)(N−k∗)

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

∣∣∣
√
m
(
1 + k∗+l

m

) = OP (1). (5.86)

Assumption 5.15 (ii) with km = N − k∗ → ∞ by (5.80) as well as Lemma 5.16 a) (i),
(iii), (iv) and b) yield

sup
1≤l≤N−k∗

∣∣∣∑m+k∗+l
j=m+k∗+1 h

∗
2,m(Zj,m)

∣∣∣
√
m
(
1 + k∗+l

m

)
≤
√
N − k∗
m

1

1 + k∗

m

OP (1) ≤

√
N
m

1 + k∗

m

OP (1) =

√
N

k∗

√
k∗

m

1 + k∗

m

OP (1) = oP (1). (5.87)
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Furthermore, we get with Assumption 5.15 (iii), Lemma 5.16 (i) and the stationarity
of {Yj}

sup
1≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj)
∣∣∣

√
m
(
1 + k∗+l

m

) D
= sup

1≤l≤N−k∗

∣∣∣∑k∗

j=1 h2(Yj)
∣∣∣

√
m
(
1 + k∗+l

m

)
=

√
k∗

m

1 + k∗

m

OP (1) =

√
m

k∗

k∗

m

1 + k∗

m

OP (1) = oP (1). (5.88)

Combining (5.87) and (5.88) yields (5.86), where we even obtain oP (1), and thus we
get (5.85) as mentioned above. Furthermore, it holds with (5.72), Assumption 5.14 (ii)
and Lemma 5.16 a) (i) and (iv)

(N − k∗)
√
m|∆m|

s1,mk∗ sign(∆m)

=
x

s1,m

√
am
k∗

√
m

k∗
sign(∆m) +

cm
s1,m

sign(∆m)
(m
k∗

+
am
k∗

)
+
s∗1,m
s1,m

(
1− am

k∗

)
− 1

=
cm
s1,m

sign(∆m)
(m
k∗

+
am
k∗

)
− 1 + o(1) = qm − 1 + o(1), (5.89)

where

qm :=
cm
s1,m

sign(∆m)
(m
k∗

+
am
k∗

)
. (5.90)

With Lemma 5.16 a) (i), (iv) and Assumption 5.14 (i) it holds

lim inf
m→∞

|qm| > 1 (5.91)

and thus

lim inf
m→∞

(qm − 1)−1 > −1

2
(5.92)

as well as

lim inf
m→∞

|qm − 1| > 0. (5.93)

Hence, (5.89) implies

s1,mk
∗ sign(∆m)

(N − k∗)
√
m|∆m|

= (qm − 1)−1 + o(1) (5.94)

such that we obtain with Assumption 5.14 (iii)

(N − k∗)|∆m|+
k∗√
m
s1,m sign(∆m) +

N − k∗√
m

s∗1,m sign(∆m)

=(N − k∗)|∆m|
(

1 +
s1,mk

∗ sign(∆m)

(N − k∗)
√
m|∆m|

+
s∗1,m sign(∆m)
√
m|∆m|

)
=(N − k∗)|∆m|

(
1 + (qm − 1)−1 + o(1)

)
(5.95)
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and

sup
1≤l<(1−δ)(N−k∗)

∣∣∣∣l∆m +
k∗√
m
s1,m +

l√
m
s∗1,m

∣∣∣∣
=(N − k∗) |∆m| sup

1≤l<(1−δ)(N−k∗)

∣∣∣∣ l

N − k∗
+

s1,mk
∗

(N − k∗)
√
m∆m

+
l

N − k∗
s∗1,m√
m∆m

∣∣∣∣
=(N − k∗) |∆m|

(
sup

1≤l<(1−δ)(N−k∗)

∣∣∣∣ l

N − k∗
+ (qm − 1)−1

∣∣∣∣+ o(1)

)
. (5.96)

The latter implies

√
m
(
1 + N

m

)
(N − k∗)|∆m|

sup
1≤l<(1−δ)(N−k∗)

∣∣∣l∆m + k∗√
m
s1,m + l√

m
s∗1,m

∣∣∣
√
m
(
1 + k∗+l

m

)
≤

1 + N
m

1 + k∗+1
m

sup
1≤l<(1−δ)(N−k∗)

∣∣∣l∆m + k∗√
m
s1,m + l√

m
s∗1,m

∣∣∣
(N − k∗)|∆m|

≤
m
N

+ 1
m
N

+ k∗

N

(
sup

1≤l<(1−δ)(N−k∗)

∣∣∣∣ l

N − k∗
+ (qm − 1)−1

∣∣∣∣+ o(1)

)

=(1 + o(1))

(
sup

1≤l<(1−δ)(N−k∗)

∣∣∣∣ l

N − k∗
+ (qm − 1)−1

∣∣∣∣+ o(1)

)

=(1 + o(1))

(
max

{
1− δ + (qm − 1)−1,− 1

N − k∗
− (qm − 1)−1

}
+ o(1)

)
= max

{
1− δ + (qm − 1)−1,− 1

N − k∗
− (qm − 1)−1

}
+ o(1) (5.97)

as
m
N

+ 1
m
N

+ k∗

N

→ 1 as m→∞ (5.98)

with Lemma 5.16 a) (iii), (iv) and b) as well as

max

{
1− δ + (qm − 1)−1,− 1

N − k∗
− (qm − 1)−1

}
= O(1)

by (5.80) and (5.92). Now, we obtain with (5.85), (5.95) and (5.97)

√
m

N

(
1 +

N

m

) sup
1≤l<(1−δ)(N−k∗)

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k∗+l

m

)
+
l∆m + k∗√

m
s1,m + N−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k∗+l

m

)
−

(N − k∗)|∆m|+ k∗√
m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
m
(
1 + N

m

) )
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≤N−
1
2 (N − k∗)|∆m|

(
max

{
1− δ + (qm − 1)−1,− 1

N − k∗
− (qm − 1)−1

}
− 1− (qm − 1)−1 + oP (1)

)
=N−

1
2 (N − k∗)|∆m|

(
max

{
−δ,−1− 2(qm − 1)−1

}
+ oP (1)

)
. (5.99)

As

lim sup
m→∞

(
−1− 2(qm − 1)−1

)
< 0

by (5.92), the assertion follows with (5.99) and (5.83).

Lemma 5.23. Under the assumptions of Theorem 5.17 it holds for all z ∈ R

lim
m→∞

P

em
 sup
k∗<k<N

∣∣∣Γ̃(m, k)
∣∣∣

√
m
(
1 + k

m

) − dm
 ≤ z

∣∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

 = Φ
( z
σ

)

with dm and em as in (5.60) and (5.61) and Γ̃ as in (5.73).

Proof. We obtain with the Lemmas B.3 (i), 5.18 and 5.22

P

em
 sup
k∗<k≤N

∣∣∣Γ̃(m, k)
∣∣∣

√
m
(
1 + k

m

) − dm
 ≤ z

∣∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m


= P

em
 sup
k∗<k≤N

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k

m

)
+

(k − k∗)∆m + k∗√
m
s1,m + k−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k

m

) − dm

 ≤ z


= P

em
 sup

1≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k∗+l

m

)
+

(k − k∗)∆m + k∗√
m
s1,m + k−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k

m

) − dm

 ≤ z
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= P

em
 sup

1≤l<(1−δ)(N−k∗)

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k∗+l

m

)
+

(k − k∗)∆m + k∗√
m
s1,m + k−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k

m

) − dm

 ≤ z,

em

 sup
(1−δ)(N−k∗)≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k∗+l

m

)
+

(k − k∗)∆m + k∗√
m
s1,m + k−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k

m

) − dm

 ≤ z,


=P

√m

N

(
1 +

N

m

) sup
(1−δ)(N−k∗)≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj) +
∑m+k∗+l

j=m+k∗+1 h
∗
2,m(Zj,m)

√
m
(
1 + k∗+l

m

)
+
l∆m + k∗√

m
s1,m + N−k∗√

m
s∗1,m

∣∣∣
√
m
(
1 + k∗+l

m

)
−

(N − k∗)|∆m|+ k∗√
m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
m
(
1 + N

m

) )
≤ z

)
+ o(1).

(5.100)

We continue with showing that, for m large enough, the sign of
∑m+k∗

j=m+1 h2(Yj) +∑m+k∗+l
j=m+k∗+1 h

∗
2,m(Zj,m) + l∆m + k∗√

m
s1,m + N−k∗√

m
s∗1,m is determined by the sign of ∆m for

all (1 − δ)(N − k∗) ≤ l ≤ N − k∗. We get with Assumption 5.15, Lemma 5.16 a) (iv)
and b) as well as (5.80), (5.68), (5.82) and (5.83) that

sup
(1−δ)(N−k∗)≤l≤N−k∗

∣∣∣∣∣
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1
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It holds with Assumption 5.14 (iii) and (5.94)

inf
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>− 1
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for m ≥ m0 with (5.92). Together with (5.101) and Lemma B.3 (ii) we obtain for
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(
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(5.103)

as m→∞. Let Bm be the event that
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With (5.103) it holds

P (Bm)→ 1.
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Let

zm := z
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In the following we will prove that

∣∣∣∣∣
√
m

N

(
1 +

N

m

)(
sup

(1−δ)(N−k∗)≤l≤N−k∗
sign(∆m)

∑m+k∗

j=m+1 h2(Yj) +
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Therefore, we find upper bounds D1,m and D2,m such that
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and
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We obtain (5.106) as there exists an m0 ∈ N such that√
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√
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is obtained for l = N − k∗ as the following considerations show:

For q1,m = k∗√
m
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represented by
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By Assumption 5.14 (iii) and Lemma 5.16 a) (i), (iv) and b), there exists an m0 ∈ N
such that
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Hence, (5.109) is increasing in l for m large enough and thus
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We continue with showing (5.107). First, observe that
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with Assumption 5.15 (iii) and (iv), (5.98) and Lemma 5.16 a) (i), (iii), (iv) and b)
noting that
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Hence, we obtain with Assumption 5.14 (iii) and Assumption 5.15 (ii) and (iii) by
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replacing the second supremum with the value at l = [N − k∗]
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1 + bN−k∗c+k∗
m

∣∣∣∣∣OP (1) +

∣∣∣∣∣ 1 + N
m

1 + bN−k∗c+k∗
m

∣∣∣∣∣
√

1− k∗

N
OP (1)

+
|∆m|√
N

∣∣∣∣∣ 1 + N
m

1 + bN−k∗c+k∗
m

∣∣∣∣∣+
|∆m|√
N
N

∣∣∣∣∣1− 1 + N
m

1 + bN−k∗c+k∗
m

∣∣∣∣∣O(1) = oP (1)
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with Lemma 5.16 a) (iii), (iv) and b) noting that∣∣∣∣∣ 1 + N
m

1 + bN−k∗c+k∗
m

∣∣∣∣∣ ≤ 1 + N
m

1 + N
m
− 1

m

=
m
N

+ 1
m
N

+ 1− 1
N

= O(1)

and ∣∣∣∣∣1− 1 + N
m

1 + bN−k∗c+k∗
m

∣∣∣∣∣ =
1 + N

m

1 + bN−k∗c+k∗
m

− 1

≤
1 + N

m

1 + N
m
− 1

m

− 1 =
1
m

1 + N
m
− 1

m

=
1

N

1
m
N

+ 1− 1
N

= O

(
1

N

)
= o(1).

Having shown that (5.105) holds, it follows with (5.111)

lim
m→∞

P

(√
m

N

(
1 +

N

m

)(
sup

(1−δ)(N−k∗)≤l≤N−k∗
sign(∆m)

(∑m+k∗

j=m+1 h2(Yj)
√
m
(
1 + k∗+l

m

)
+

∑m+k∗+l
j=m+k∗+1 h

∗
2,m(Zj,m) + l∆m + k∗√

m
s1,m + N−k∗√

m
s∗1,m√

m
(
1 + k∗+l

m

) )

−
(N − k∗)|∆m|+ k∗√

m
s1,m sign(∆m) + N−k∗√

m
s∗1,m sign(∆m)

√
m
(
1 + N

m

) )
≤ z

)

= lim
m→∞

P

(
sign(∆m)

(
1√
N

m+k∗∑
j=m+1

h2(Yj)

)
≤ z

)
.

With Assumption 5.15 (iii) and the stationarity as well as Lemma 5.13 a) (iv) and b)
we get

1√
N

m+k∗∑
j=m+1

h2(Yj)
D
=

√
k∗

N

1√
k∗

m+k∗∑
j=m+1

h2(Yj)
D→ N(0, σ2).

Due to the symmetry of the Gaussian distribution, this still holds when multiplying
with sign(∆m) ∈ {−1, 1}. For limm→∞ sign(∆m) = s∆ ∈ {−1, 1} this is obvious. Oth-
erwise, {∆m}m≥1 can be decomposed in two subsequences with limn→∞ sign(∆mn) = −1
and limn→∞ sign(∆m′n) = 1 which both lead to the above limit distribution. Now, the
assertion follows with (5.100) as

lim
m→∞

P

(
sign(∆m)

(
1√
N

m+k∗∑
j=m+1

h2(Yj)

)
≤ z

)
= Φ

(x
σ

)
.

Proof of Theorem 5.17. In Example 3.1 we have seen that the remainder term of the
CUSUM kernel is equal to zero such that the monitoring statistic can be represented
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as in (5.73). Hence, it holds for Γ = ΓC , τ̃m = τ̃Cm, am = aCm and bm = bCm

lim
m→∞

P

(
τ̃m − am
bm

≤ x
∣∣S1,m = s1,m, S

∗
1,m = s∗1,m

)
= lim

m→∞
P
(
τ̃m ≤ xbm + am

∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
=1− lim

m→∞
P
(
τ̃m > xbm + am

∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
=1− lim

m→∞
P
(
τ̃m > N

∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
=1− lim

m→∞
P

(
sup

k∗<k≤N

|Γ(m, k)|
√
m
(
1 + k

m

) ≤ cm
∣∣S1,m = s1,m, S

∗
1,m = s∗1,m

)

=1− lim
m→∞

P

(
em

(
sup

k∗<k≤N

|Γ(m, k)|
√
m
(
1 + k

m

) − dm) < em (cm − dm)

∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
=1− Φ

(
−x
σ

)
= Φ

(x
σ

)
(5.112)

with Lemma 5.23 and Lemma 5.16 c), where dm and em are given by

For the proof of Theorem 5.20 we additionally need the following result on the negli-
gibility of the remainer term.

Lemma 5.24. Let Assumption 3.3 (i), 5.15 (i) as well as 5.13 be satisfied. Then it
holds, as m→∞,√

m

N

(
1 +

N

m

)
sup

k∗<k≤N

1
√
m
(
1 + k

m

) ∣∣∣∣∣ 1

m

m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣ = oP (1),

√
m

N

(
1 +

N

m

)
sup

k∗<k≤N

1
√
m
(
1 + k

m

) ∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+k∗+1

r∗m(Yi, Zj,m)

∣∣∣∣∣ = oP (1).

Proof. It holds√
m

N

(
1 +

N

m

)
sup

k∗<k≤N

1
√
m
(
1 + k

m

) =
1√
N

1 + N
m

1 + k∗

m

=
1√
N

m
N

+ 1
m
N

+ k∗

N

= O

(
1√
N

)
(5.113)

as m→∞ with Lemma 5.16 a) (iii),(iv) and b). Hence, we obtain with (5.30)

√
m

N

(
1 +

N

m

)
sup

k∗<k≤N

1
√
m
(
1 + k

m

) ∣∣∣∣∣ 1

m

m∑
i=1

m+k∗∑
j=m+1

r(Yi, Yj)

∣∣∣∣∣ =

√
k∗

N
oP (1) = oP (1)

(5.114)

as m→∞ with Lemma 5.16 a) (iv). Using (5.32), we obtain with Lemma 5.16 a) (i),
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(iv) and b)√
m

N

(
1 +

N

m

)
sup

k∗<k≤N

1
√
m
(
1 + k

m

) ∣∣∣∣∣ 1

m

m∑
i=1

m+k∑
j=m+k∗+1

r∗m(Yi, Zj,m)
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=

1√
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(
1 +

N

m

)
m−γN

1
2

1

1 + k∗

m

oP (1)

=

(
m

k∗
+
N

k∗

)
m−γoP (1) = oP (1) as m→∞. (5.115)

Proof of Theorem 5.20. Consider Γ̃ as in (5.73). We obtain with Lemma 5.23 and
(5.76) for all z ∈ R

lim
m→∞

P

em
 sup
k∗<k<N

∣∣∣Γ̃(m, k)
∣∣∣

√
m
(
1 + k

m

) − dm
 ≤ z

∣∣∣∣∣∣S1,m, S
∗
1,m

 = Φ
( z
σ

)
a.s.. (5.116)

With the reverse triangle inequality and (3.45) it holds∣∣∣∣∣∣em
(
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k∗<k≤N

|Γ(m, k)|
√
m
(
1 + k

m
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 sup
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∣∣∣
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√
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(
1 + k
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) ∣∣∣∣∣ . (5.117)

We obtain with Lemma 5.24 and the law of iterated expectations that

E

(
P

(√
m

N

(
1 +

N

m

)
sup

k∗<k≤N

∣∣∣∣∣ 1
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m

) ∣∣∣∣∣ > ε

∣∣∣∣∣S1,m, S
∗
1,m

))

=P

(√
m

N

(
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N
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∑m
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j=m+1 r(Yi, Yj)√
m
(
1 + k

m

) ∣∣∣∣∣ > ε

)
→ 0 as m→∞

for all ε > 0 such that it follows with Markov’s inequality

0 ≤ P

(√
m

N

(
1 +

N

m

)
sup

k∗<k≤N

∣∣∣∣∣ 1
m

∑m
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j=m+1 r(Yi, Yj)√
m
(
1 + k
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) ∣∣∣∣∣ > ε
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∗
1,m

)
P→ 0
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as m→∞ and analogously

P

(√
m

N

(
1 +

N

m

)
sup

k∗<k≤N

∣∣∣∣∣ 1
m

∑m
i=1

∑m+k
j=m+k∗+1 r

∗
m(Yi, Zj,m)

√
m
(
1 + k

m

) ∣∣∣∣∣ > ε

∣∣∣∣∣S1,m, S
∗
1,m

)
P→ 0.

Hence, we get with (5.117) for all ε > 0

P

∣∣∣∣∣∣em
(

sup
k∗<k≤N

|Γ(m, k)|
√
m
(
1 + k

m

) − dm)− em
 sup
k∗<k≤N

∣∣∣Γ̃(m, k)
∣∣∣

√
m
(
1 + k

m

) − dm
∣∣∣∣∣∣ > ε

∣∣∣∣∣∣S1,m, S
∗
1,m


P→ 0 as m→∞. (5.118)

Combining (5.116) and (5.118) we obtain with Slutsky’s theorem and the subsequence
principle that

P

(
em

(
sup

k∗<k<N

|Γ(m, k)|
√
m
(
1 + k

m

) − dm) ≤ z

∣∣∣∣∣S1,m, S
∗
1,m

)
P→ Φ

( z
σ

)
as m→∞.

(5.119)

Now, the assertion follows analogously to (5.112).

5.3. Linear Changes

In this section we consider the asymptotic behavior of the delay time for change points
that are linear in m where the approach is the same as in the previous section. We
refer to the change point model as described in Section 2.2 and use the weight function
in (3.5) for γ = 0.

Assumption 5.25.

(i) There exists a λ > 0 such that k∗ = [λm].

(ii) ∆m = O(1).

(iii) limm→∞
cm√
m|∆m| = 0.

Assumption 5.26.

(i) cm →∞ and lim supm→∞

∣∣∣ s1,mcm ∣∣∣ < 1 + 1
λ
.

(ii) s∗1,m
s1,m

= O(1) and 1
s1,m

= O(1).

(iii) limm→∞
|s1,m|√
m|∆m| = limm→∞

|s∗1,m|√
m|∆m| = 0.
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Theorem 5.27. Let Assumptions 3.3 (ii), 5.15 and 5.25 be satisfied. Furthermore
assume that {X1, . . . , Xm} are independent of {Xm+j : j ≥ 1}. Then, for all sequences
s1,m and s∗1,m that fulfill Assumption 5.26 it holds under the alternative for the CUSUM
kernel

lim
m→∞

P

(
τ̃Cm − aCm
bCm

≤ x

∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
= Φ

(x
σ

)
for all x ∈ R,

where Φ is the distribution function of the standard Gaussian distribution,
σ2 =

∑
h∈ZCov(Y0, Yh), aCm = aCm(s1,m, s

∗
1,m) is the unique solution of (5.66) and bCm =

bCm(s1,m, s
∗
1,m) as in (5.70).

Remark 5.28. Assumption 5.26 is satisfied if

lim sup
m→∞

s1,m√
2τ 2 log logm

=
s∗1,m√

2τ̃ 2 log logm
= 1 (5.120)

cm =

(√
2 max(τ 2, τ̃ 2)

λ

λ+ 1
+ ε

)√
log logm (5.121)

As the asymptotic negligibility of the remainder term in Lemma 5.24 follows analog-
ously for linear changes, Theorem 5.20 and Corollary 5.21 also hold for linear changes
if cm is chosen as in (5.121). In the following we refer to the deterministic sequences
as defined in the previous Section.

Lemma 5.29. Under Assumption 5.1 with β = 1 it holds

a) (i) k∗

m
→ λ

(ii)
√
am |∆m| → ∞

(iii) am
m
→ λ

(iv) k∗

am
→ 1

b) N
am
→ 1 such that part a) is still valid when replacing am by N .

c) limm→∞ em (cm − dm) = −x for all x ∈ R.

Proof. Part a) (i) follows directly with Assumption 5.25 (i). Furthermore, note that
(5.67)-(5.72) also hold for β = 1 and immediately imply the remaining assertions in a),
where (ii) is already given in (5.69). Furthermore, b) is given in (5.71) and c) holds as
the sequences are derived under exactly this condition.

Lemma 5.30. Let the assumptions of Theorem 5.27 be satisfied. Then, for δ ∈ (0, 1
2
)

fixed, it holds for all z ∈ R, as m→∞,

lim
m→∞

P

(
em

(
sup

1≤l<(1−δ)(N−k∗)

|Γ(m, k∗ + l)|
√
m
(
1 + k∗+l

m

) − dm) ≤ z

∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
= 1.

118



5.3. Linear Changes

Proof. Most of this proof is analogous to the proof of Lemma 5.22. In the following we
will point out the relevant differences. First, we obtain with (5.78), Assumption 5.26
(i) and (ii) as well as Lemma 5.29 a) (iii) and (iv)

N − k∗

=
cm
√
m

|∆m|

(
1 +

am
m

)(
1 +

x

cm

√
m

am

am
m

1 + am
m

+
s∗1,m sign(∆m)

cm

am
m

1 + am
m

(
k∗

am
− 1

)
−sign(∆m)s1,m

cm

k∗

am

am
m

1 + am
m

)
=
cm
√
m

|∆m|
(1 + λ+ o(1))

(
1− s1,m

cm

λ

1 + λ
sign(∆m) + o(1)

)
(5.122)

such that it follows with Assumption 5.26 (i), as m→∞,
√
N − k∗ |∆m| → ∞ (5.123)

and

N−
1
2 (N − k∗) |∆m| → ∞. (5.124)

Furthermore, note that for qm as in (5.90) it holds

|qm| =
∣∣∣∣ cms1,m

∣∣∣∣ (1 +
1

λ
+ o(1)

)
.

With Assumption 5.14 (i) there exist C < 1,m0 ∈ N such that

|qm|−1 ≤ C < 1 for all m ≥ m0

and thus
|qm| ≥

1

C
> 1 for all m ≥ m0.

Now, (5.92) follows as before. As (5.84) holds with Assumption 5.14 (i) and Lemma
5.29 a) (iii) and b), the stochastic terms need to be controlled in terms of (5.86) which
is obtained as follows. Assumption 5.15 (ii) with km = N − k∗ →∞ by (5.80) as well
as Lemma 5.29 a) (i), (iv) and b) yield

sup
1≤l≤N−k∗

∣∣∣∑m+k∗+l
j=m+k∗+1 h

∗
2,m(Zj,m)

∣∣∣
√
m
(
1 + k∗+l

m

)
≤
√
N − k∗
m

1

1 + k∗

m

OP (1) =

√
N

m
− k∗

m

1

1 + λ+ o(1)
OP (1) = oP (1). (5.125)

Furthermore, we get with Assumption 5.15 (iii), Lemma 5.29 (i) and the stationarity
of {Yj}

sup
1≤l≤N−k∗

∣∣∣∑m+k∗

j=m+1 h2(Yj)
∣∣∣

√
m
(
1 + k∗+l
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) D
= sup
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∣∣∣∑k∗
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√
m
(
1 + k∗+l

m

) =

√
k∗

m

1 + k∗

m

OP (1) = OP (1).

(5.126)
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Lemma 5.31. Under the assumptions of Theorem 5.27 it holds for all z ∈ R

lim
m→∞

P

(
em

(
sup

k∗<k<N

|Γ(m, k)|
√
m
(
1 + k

m

) − dm) ≤ z

∣∣∣∣∣S1,m = s1,m, S
∗
1,m = s∗1,m

)
= Φ

( z
σ

)
.

Proof. This proof is analogous to the proof of Lemma 5.23. In the following we give
some remarks on those steps that have to be checked for the linear case. (5.101) follows
with Lemma 5.29 a) (iv) and b) as well as (5.123), (5.124). (5.102) is obtained by (5.92)
which also holds in the linear case as shown in the proof of Lemma 5.30. (5.110) holds
with Assumption 5.26 (iii) and Lemma 5.29 a) (i), (iv) and b). Now, (5.105) and finally
the assertion are obtained in the same way as in the proof of Lemma 5.23 by using
Assumption 5.15 (i) and (ii) as well as Lemma 5.29.

Proof of Theorem 5.27. With Lemma 5.31 and Lemma 5.29 c) the assertion follows
analogously to (5.112).
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6. Simulation Study

In this chapter, we assess the finite sample behavior of the proposed sequential proced-
ures for the CUSUM and the Wilcoxon kernel. The empirical size, power and stopping
time are analyzed in Section 6.1 for all monitoring schemes that have been considered in
this work. The theoretical results on the asymptotic behavior of the stopping time are
validated empirically in Section 6.2. Throughout this chapter we consider the mean
change model as in (2.8) where the size of the change is fixed. More precisely, we
generate time series of length m+Nm by

Xi = Yi + 1{i>k∗+m}d, , i = 1, . . . ,m+Nm, (6.1)

where {Yi}i≥1 is stationary with mean zero. Under the alternative, we insert a mean
change at k∗ < Nm, whereas k∗ = Nm under the null hypothesis. As historic data
set we use X1, . . . , Xm. The remaining observations Xm+1, . . . , Xm+Nm are used for
monitoring. In particular, this means that we stop monitoring after Nm observations
even if no change has been detected. Hence, the supremum in the test statistics is
approximated by a maximum over Nm observations. We consider the weight function
in (3.5).

6.1. Comparison of Monitoring Schemes and Kernels

In the following, we compare the performance of the sequential procedures for different
monitoring schemes as well as for different kernels via their empirical size, power and
stopping time. For the CUSUM kernel, the monitoring schemes have already been com-
pared in a simulation study in Kirch & Weber (2018). The present simulation study
does not only add the comparison of the monitoring schemes for the Wilcoxon kernel
but also allows to compare the CUSUM and the Wilcoxon kernel in various scenarios,
in particular with respect to their robustness.

The results in this section are based on simulations of independent observations {Yi}i≥1.
We use historic data sets of length m = 100 and a monitoring horizon of 2000,
i.e. N = 20. For the simulations of the alternative we add a mean change of size
d = 0.5 at k∗ = mβ, β = 0.5, 1, 1.4. The asymptotic critical values are obtained based
on 50 000 realizations of the limit distributions in Corollary 3.7 (i) and Corollary 4.3
b) where the Wiener processes are approximated on a grid of 10 000 points. σ2

C and
σ2
W for independent data are given in (5.54) and (5.55). For the Wilcoxon kernel, the

variance σ2
W = V ar(FY1(Y1)) is known to be 1

12
for any continuous distribution. In

order to obtain a fair comparison we also use the true variance σ2
C = Var(Y1). The

empirical results are obtained based on 10 000 replications for each scenario. The sim-
ulations in Kirch & Weber (2018) have shown that in particular the modified MOSUM
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Monitoring CUSUM kernel Wilcoxon kernel
scheme γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45

CUSUM 4.50 4.54 3.24 4.26 4.40 3.13
Page-CUSUM 4.40 4.27 2.59 4.25 4.18 2.52
mMOSUM

h = 0.1 4.46 4.55 3.19 4.35 4.48 2.91
h = 0.4 4.44 4.34 2.61 4.84 4.31 2.25
h = 0.9 3.46 3.81 2.88 2.09 0.86 0.03

Table 6.1.: Empirical size (in %) for a nominal level of α = 5% for independent
N(0, 1)-distributed observations.

with large h and γ 6= 0 raises a lot of false alarms at the beginning of the monitoring
period. The reason for that is that the first values of monitoring statistic are based
on very few observations (even only one for the first 10 monitoring time points with
h = 0.9) and, additionally, those values are heavily weighted for γ 6= 0. In order to
avoid this effect, we wait for am observations before we start monitoring which is al-
lowed by Assumption 3.2 (i). Although false alarms at the beginning of the monitoring
period occur less often for the other monitoring schemes and γ = 0, it is still beneficial
to discard the first values of the monitoring statistic in order to obtain a more stable
procedure. Hence, we choose am =

√
m = 10 in all settings. As the empirical size

usually differs from the nominal level, comparing different procedures based on their
empirical power and stopping time obtained for a given nominal level is inappropriate.
For example, the empirical power is underestimated if the empirical size is smaller than
the nominal level. Hence, we consider the size-corrected power and the size-corrected
stopping time which are obtained by fixing the empirical level instead of the nominal
level. Additionally, we correct the estimated density plots of the stopping time in such
a way that the superiority of procedures with higher empirical power is visible. Such
a correction is obtained by scaling the estimated density such that it integrates to the
size-corrected power instead of one which corresponds to accounting for those changes
that are not detected by setting the respective stopping time to infinity.

Table 6.1 shows the empirical size for independent standard normally distributed ob-
servations for the CUSUM as well as for the Wilcoxon kernel using different monitoring
schemes and γ = 0, 0.25, 0.45 in the weight function. It is first of all apparent that
the nominal level of 5% is maintained by all procedures. Except for the modified
MOSUM (mMOSUM) with h = 0.9, the empirical size obtained with γ = 0 is close to
the nominal level. In most of the cases, the empirical size decreases and in particular
moves away from the nominal level for increasing γ. In this regard, recall that the
null hypothesis is rejected as soon as the monitoring statistic exceeds the critical curve
(see (1.1)). The critical curves are illustrated in Figure 6.1 for the CUSUM monit-
oring scheme but look similar for the others as only the critical values differ. Taking
into account that we consider a monitoring horizon of 2000, the critical curves cross
relatively early and afterwards the critical curve for γ = 0 is always below the others
which leads to more rejections in the long term but still in a conservative way under
the null hypothesis. The critical curve for γ = 0.45 clearly exceeds the others already
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Monitoring CUSUM kernel Wilcoxon kernel
scheme γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45

CUSUM 4.37 4.65 4.18 4.39 4.36 3.12
Page-CUSUM 4.29 4.64 3.68 4.27 4.09 2.37
mMOSUM

h = 0.1 4.55 5.02 4.13 4.51 4.34 2.78
h = 0.4 5.45 5.77 4.46 4.46 3.80 1.94
h = 0.9 18.47 20.99 16.78 2.30 0.98 0.03

Table 6.2.: Empirical size (in %) for a nominal level of α = 5% for independent
t(3)-distributed observations.
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Figure 6.1.: Critical curve for the CUSUM monitoring scheme at a level of α = 5%.

at the beginning of the monitoring period and thus yields the smallest empirical size.
For γ = 0.25, the critical curve crosses somewhat later such that the empirical size
is closer to the one for γ = 0 and even slightly higher in a few cases. The empirical
size of the modified MOSUM is decreasing in h in most of the settings. As we wait
for am = 10 observations, high rejection rates for h = 0.9 are avoided. The Wilcoxon
kernel yields a more conservative testing procedure than the CUSUM kernel in almost
all considered cases. The modified MOSUM in combination with the Wilcoxon kernel
has an extremely low empirical size for h = 0.9 and γ 6= 0. In this context, it should
be mentioned that a larger monitoring horizon might be needed for large h in order
to exploit the full size. Using the CUSUM kernel when the observations follow a t(3)
distribution (see table 6.2, the empirical size of the mMOSUM exceeds the nominal
level slightly in some situations for h = 0.1 and h = 0.4 and drastically for h = 0.9.
However, the Wilcoxon kernel still yields conservative procedures.
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CUSUM kernel

Monitoring β = 0.25 (k∗ = 3) β = 1 (k∗ = 100) β = 1.4 (k∗ = 630)
scheme γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45

CUSUM 99.82 99.71 99.37 99.37 99.16 98.33 88.45 85.61 78.04
Page-CUSUM 99.80 99.74 99.34 99.58 99.43 98.83 96.33 93.81 85.77
mMOSUM

h = 0.1 99.77 99.68 99.16 99.64 99.55 99.00 93.64 91.24 83.53
h = 0.4 99.71 99.46 98.18 99.65 99.30 97.72 99.58 98.87 95.08
h = 0.9 93.49 79.20 41.65 92.47 72.70 20.65 78.84 38.11 5.81

Wilcoxon kernel

Monitoring β = 0.25 (k∗ = 3) β = 1 (k∗ = 100) β = 1.4 (k∗ = 630)
scheme γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45

CUSUM 99.68 99.59 99.00 99.10 98.84 97.79 86.52 83.59 74.78
Page-CUSUM 99.66 99.55 99.02 99.39 99.13 98.20 94.68 91.65 82.25
mMOSUM

h = 0.1 99.64 99.52 98.86 99.54 99.33 98.48 92.40 89.30 80.67
h = 0.4 99.45 99.10 97.62 99.39 98.92 96.80 99.21 98.16 93.47
h = 0.9 91.58 80.55 52.72 91.00 76.98 38.45 76.50 44.73 9.57

Table 6.3.: Size corrected power (in %) for independent N(0, 1)-distributed
observations.

The size-corrected power for independent standard normally observations is reported
in Table 6.3. β = 0.25, i.e. k∗ = 3 indicates an extremely early change. Recall that we
start monitoring with a delay of 10 observations such that this change occurs so early
that the monitoring sample does not even contain null observations.
First of all, we would like to point out that γ = 0 performs best in all situations. This
can again be explained by the interplay of the weight functions as presented in Figure
6.1. The superiority of γ = 0 is particularly strong for late changes (β = 1.4) which is
not surprising as the respective critical curve is already considerably below the others
when the change occurs. More surprisingly, it also has the best power for early changes
which occur at a time where the critical curve for γ = 0 is still above the others. This
indicates that early changes are detected either very quickly or not at all for γ 6= 0,
whereas for γ = 0 it might take a bit longer but the change will be detected at some
point with a very high reliability. The modified MOSUM with h = 0.9 has a very poor
power when using γ = 0.45, in particular for late changes. The modified MOSUM
with h = 0.4 has the most stable power with respect to the time of the change for
both kernels. In most cases, the Wilcoxon kernel yields a slightly smaller power than
the CUSUM kernel which is nevertheless close to one except for the just mentioned
problems of the modified MOSUM for large h and γ. However, the Wilcoxon kernel is
advantageous if the observations are generated by a heavy-tailed distribution. This can
clearly be seen in Table 6.4 which shows the size corrected power for t(3)-distributed
observations. Whereas the Wilcoxon kernel has size corrected power close to one in
most of the situations, the CUSUM kernel yields a rather poor power.
As for sequential procedures not only the power but also the speed of detection is of
interest, we additionally consider the size-corrected stopping time which is presented
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CUSUM kernel

Monitoring β = 0.25 (k∗ = 3) β = 1 (k∗ = 100) β = 1.4 (k∗ = 630)
scheme γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45

CUSUM 86.75 81.59 64.35 79.74 71.96 50.17 30.47 22.18 9.30
Page-CUSUM 86.28 79.53 61.40 80.68 70.94 48.32 30.82 20.52 8.22
mMOSUM

h = 0.1 84.46 76.66 55.25 83.84 74.88 51.12 38.47 26.57 10.47
h = 0.4 69.41 50.54 19.00 69.19 49.75 17.53 61.78 40.25 11.02
h = 0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Wilcoxon kernel

Monitoring β = 0.25 (k∗ = 3) β = 1 (k∗ = 100) β = 1.4 (k∗ = 630)
scheme γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45

CUSUM 99.67 99.61 99.02 99.07 98.87 97.81 86.39 83.73 75.00
Page-CUSUM 99.66 99.55 99.09 99.39 99.13 98.36 94.61 91.63 83.24
mMOSUM

h = 0.1 99.64 99.54 98.94 99.54 99.35 98.59 91.76 89.44 81.38
h = 0.4 99.49 99.20 97.77 99.43 99.05 97.02 99.26 98.46 93.84
h = 0.9 91.60 80.98 53.06 91.01 77.43 38.74 76.53 45.20 9.71

Table 6.4.: Size corrected power (in %) for independent t(3)-distributed observations.

in Figure 6.2 for independent standard normally distributed observations. We have
seen that γ = 0 leads to the best size-corrected power in all situations. The estimated
density plots show the only advantage of γ = 0.45 namely the shorter detection delay
for extremely early changes (β = 0.25). However, the speed of detection for γ = 0 is
also entirely reasonable in this case and already for β = 0.75, which is still a rather
early change, it is only slightly slower than for γ = 0.45, in particular for the modified
MOSUM with h = 0.4. For later changes, γ = 0 yields shorter detection delays and
γ = 0.45 causes a higher amount of false alarms before the actual change occurs. We
will now have a closer look at the stopping times for γ = 0. For both kernels, as intended
by construction, the Page-CUSUM and the modified MOSUM outperform the CUSUM
monitoring scheme for late changes (β = 1 and β = 1.4), the Page-CUSUM and the
modified MOSUM even for earlier changes (β = 0.75). Regarding the parameters of the
modified MOSUM, small values of h yield a shorter detection delay for early changes
and large values of h for late changes. Hence, if one has a rough expectation on the time
of the change, the parameter h can be chosen accordingly. However, it should be noted
that using large h for a quicker detection of late changes comes with a considerable
loss of power. In all situations, h = 0.4 yields good results and seems to be a good
compromise. Using the Wilcoxon kernel, changes are detected somewhat slower than
using the CUSUM kernel which is, however, due to the Gaussian distribution. For t(3)-
distributed random variables, the Wilcoxon kernel is clearly superior to the CUSUM
kernel as can be seen in Figure E.1.

6.1.1. Robustness

In order to assess the robustness of the testing procedures we randomly replaced 1% of
the simulated observations by independent realizations of a gamma distribution with
shape parameter 5 and scale parameter 10. Table 6.5 reports the resulting empirical
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Monitoring CUSUM kernel Wilcoxon kernel
scheme γ = 0 γ = 0.25 γ = 0.45 γ = 0 γ = 0.25 γ = 0.45

CUSUM 99.92 99.88 99.76 4.44 4.49 3.38
Page-CUSUM 99.99 99.97 99.94 4.36 4.32 2.72

h = 0.1 99.95 99.94 99.82 4.32 4.55 3.28
h = 0.4 100.00 100.00 99.97 4.91 4.52 2.45
h = 0.9 100.00 100.00 100.00 2.48 1.03 0.03

Table 6.5.: Empirical size (in %) for a nominal level of α = 5% with outliers.

size for all considered monitoring schemes and kernels. The superiority of the Wil-
coxon kernel in terms of its robustness against outliers is clearly visible here. The
null hypothesis is rejected for almost all realizations when using the CUSUM kernel
whereas the Wilcoxon kernel keeps the nominal level in all situations and is even still
conservative. This is also reflected in the density estimates of the stopping times which
is shown in Figure 6.3. Even if the change occurs at the beginning of the monitoring
period (β = 0.75), the procedures based on the CUSUM kernel reject the null hypo-
thesis in many cases before the change occurs and only the second and, except for the
modified MOSUM with h = 0.4, smaller bump of the density estimates relates to the
actual change. For later changes, the null hypothesis is rejected in most of the cases
before the change even occurs when using the CUSUM kernel. In contrast to that, the
stopping times for the Wilcoxon kernel are not significantly affected by the outliers.

6.2. Stopping Time

In Chapter 5, we have shown that the stopping time converges to a Gaussian distri-
bution if standardized appropriately. In the following, we consider the standardized
stopping times for finite historic data sets for the CUSUM as well as the Wilcoxon ker-
nel. Therefore, we simulate a mean change as in (6.1) with d = 1. We use the weight
function in (3.5) with γ = 0 which turned out to be the best choice in the previous
Section.

6.2.1. Sublinear Changes

First, we consider sublinear changes for β = 0.25, 0.5, 0.75 which cover all three cases
of the limit distribution in Theorem 5.3. We use historic data sets of length m =
100, 1000, 10000 and a monitoring horizon of 20m. The stopping times are centered
with aW/Cm as in (5.53). Due to Corollary 3.7 (i), the critical value can by obtained by
c
W/C
α = σW/C c̃α, where c̃α is the (1−α)-quantile of sup0<t<1 |W (t)| which is determined
in the same way as in the previous section. In order to obtain a basis for comparing
different kernels as well as different distributions of the underlying time series, we scale
the stopping time with

b̃W/Cm =


σ∗b

W/C
m under (I)

(δ1σ + (1− δ1)σ∗)b
W/C
m under (II)

σb
W/C
m under (III),
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b
W/C
m as in (5.11), such that the limit distribution is standard Gaussian in all situations.
With (5.12) it holds (

σC
)2

=
(
σ∗C
)2

=
∑
h∈Z

Cov(Y0, Yh).

For the Wilcoxon kernel we obtain with Example 3.1 and 3.11(
σW
)2

=
∑
h∈Z

Cov(FY (Y0), FY (Yh)),(
σ∗W

)2
=
∑
h∈Z

Cov(FY (Y0 + d), FY (Yh + d)).

∆C and ∆W are given by (2.9) and (2.10), where the latter is determined numerically.
For the simulations of independent data, we use the true variances σC = σ∗C = Var(Y1)
and σW = Var(FY1(Y1)) = 1

12
. The variance σ∗W = Var(FY1(Y1 +1)) is estimated based

on the empirical distribution function of the historic data set. We also simulate de-
pendent data in form of AR(1) time series with coefficient a = 0.2 and independent
standard normally distributed errors. For the estimation of the long run covariance
matrix we use a Bartlett kernel estimator.

Figure 6.4 shows the estimated densities of the standardized stopping times for different
lengths of the historic data sets for independent standard normally distributed obser-
vations as well as for independent observations with a t distribution with 3 degrees of
freedom. In all cases considered, the estimated densities converge from the right to the
limit distribution with increasing length of the historic data set. Hence, the empirical
stopping times tend to be larger than predicted by the asymptotic distribution. For
both kernels, the convergence is somewhat slower for the t distribution. In particular
for small historic data sets it turns out that for normally distributed observations the
convergence is slightly faster when using the CUSUM kernel, whereas the Wilcoxon
kernel yields a slightly faster convergence for the t distribution. With respect to the
time of the change it can be observed that the estimated density drifts away from
the limit distribution for increasing β which indicates that the asymptotic distribution
does not hold for β ≥ 1. The standardized stopping times for AR(1) time series with
normally distributed errors (see Figure 6.5) behave very similar to those obtained for
independent normally distributed observations.

In Section 5.1.1 we have calculated the scaled differences of the approximations of the
expected stopping times

aWm − aCm
c̃α
√
m

for independent observations of certain distributions. Figure 6.6 shows the estimated
densities based on the realizations of τWm −τCm

c̃α
√
m
, i.e. the scaled differences of the stopping

times, for independent and identically distributed data. For the standard normal dis-
tribution, the estimated densities are well concentrated around the theoretical value in
Table 5.1 which is positive and thus indicates that with the CUSUM kernel changes
are detected more quickly than with the Wilcoxon kernel. Opposite behavior can be
observed for the heavy-tailed t distribution as predicted by the negative value in Table
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5.1. The estimated densities are less concentrated around this theoretical value but are
still maximal around this point and most of the mass is on the left of zero which means
the Wilcoxon-type procedure is faster. The respective plots for AR(1) time series (see
Figure 6.7) with normally distributed errors conform again with the observations for
independent and normally distributed data. We did not calculate a theoretical value in
this case. However, it can be seen that the CUSUM kernel leads to a faster detection
of the change as most of the mass of the estimated densities is right of zero.

6.2.2. Linear and Superlinear Changes

We conclude the simulation study with empirical results related to the asymptotic dis-
tribution of the stopping time for superlinear and linear changes. We consider β = 1 as
linear change and β = 1.4 as superlinear change. The monitoring horizon is extended
to 30m. The simulations refer to Corollary 5.21 (ii). For each realization we calculate
s1,m and s∗1,m. Based on their values we standardize the respective stopping time using
am = am(s1,m, s

∗
1,m) given in (5.66) and b̃m = σW/Cbm(s1,m, s

∗
1,m) with bm(s1,m, s

∗
1,m) as

in (5.70) such that the limit distribution is standard normal for both kernels. σW/C
are determined in the same way as described in the previous section. We consider
independent and standard normally distributed observations as well as AR(1) time
series with coefficient a = 0.2. Figures 6.8 and 6.9 show that, in contrast to the sublin-
ear case, the estimated densities converge in a centered way to the limit distribution.
The approximation via the limit distribution seems to be reasonable already for small
historic data sets (m = 100) and quite good for larger historic data sets.
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Figure 6.2.: Estimated densities of the stopping time for the CUSUM kernel (solid
lines) and the Wilcoxon kernel (dashed lines) for independent N(0, 1)-distributed

observations.
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with outliers
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0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Monitoring Time

CUSUM
Page CUSUM
mMOSUM
h = 0.1
h = 0.4
h = 0.9

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Monitoring time

CUSUM
Page CUSUM
mMOSUM
h = 0.1
h = 0.4
h = 0.9

β = 1

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Monitoring Time

CUSUM
Page CUSUM
mMOSUM
h = 0.1
h = 0.4
h = 0.9

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Monitoring time

CUSUM
Page CUSUM
mMOSUM
h = 0.1
h = 0.4
h = 0.9

β = 1.4

0 500 1000 1500 2000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Monitoring Time

CUSUM
Page CUSUM
mMOSUM
h = 0.1
h = 0.4
h = 0.9

0 500 1000 1500 2000

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Monitoring time

CUSUM
Page CUSUM
mMOSUM
h = 0.1
h = 0.4
h = 0.9

Figure 6.3.: Estimated densities of the stopping time with outliers for the CUSUM
kernel (solid lines) and the Wilcoxon kernel (dashed lines) for independent

observations with Y1 ∼ N(0, 1).
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Figure 6.4.: Estimated densities of the standardized stopping time for i.i.d. data for
early changes.
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Figure 6.5.: Estimated densities of the standardized stopping time for AR(1) time
series with i.i.d. standard Gaussian errors and coefficient a = 0.2 for early changes.
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Figure 6.6.: Estimated densities of the scaled differences for i.i.d. data for early
changes. The dashed line indicates the theoretical value from Table 5.1.
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Figure 6.7.: Estimated densities of the scaled differences for AR(1) time series with
i.i.d. standard Gaussian errors and coefficient a = 0.2 for early changes.
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Figure 6.8.: Estimated densities of the standardized stopping time for linear and
superlinear changes for independent observations.
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Figure 6.9.: Estimated densities of the standardized stopping time for AR(1) time
series with i.i.d. standard Gaussian errors and coefficient a = 0.2 for linear and

superlinear changes.
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7. Conclusions

In the first part of this thesis we have provided a general framework of sequential test-
ing procedures based on U-statistics. The asymptotic results under the null hypothesis
as well as under the alternative are obtained based on very general assumptions and
allow to derive sequential testing procedures for various kernel functions and depend-
ency structures. For example, we obtain a robust sequential procedure when using a
Wilcoxon-type kernel. The expected advantages of the Wilcoxon kernel for heavy tailed
distributions and even more for data which contains strong outliers have been verified
in the simulation study. Furthermore, we extended the proposed class of procedures to
monitoring schemes adapted to late changes. The speed of detection is of particular in-
terest in sequential testing. Therefore, we derived the limit distribution of the stopping
time with appropriate standardization for the weight function in (3.5). The results for
early changes, ie. where the time of the change is sublinear in m, are generalizations
of existing results for the classical sequential CUSUM procedure. Furthermore, we de-
rived the limit distribution of the stopping time for linear and superlinear changes by
conditioning on functionals of the historic observations. To the best of our knowledge,
even for the classical sequential CUSUM procedure, the stopping time for such late
changes has not been considered before. The stopping time for late changes has only
been provided for γ = 0 as the simulation study in Section 6 has shown that this is
the best choice in the vast majority of situations. It would be of future interest to
also derive the limit distribution for γ 6= 0 in order to prove the superiority of γ = 0
theoretically. The simulation study has also revealed that the Page-CUSUM and the
modified MOSUM outperform the CUSUM monitoring scheme for both kernels under
consideration if the change does not occur at the beginning of the monitoring period.
For the CUSUM kernel, the superiority of the Page-CUSUM over the CUSUM mon-
itoring scheme has been shown in Fremdt (2014) for sublinear changes that do not
occur immediately after the monitoring starts. This could be extended by deriving the
limit distribution of the stopping time for the Page-CUSUM as well as the modified
MOSUM for the framework considered in this thesis. The superiority of the adapted
monitoring schemes is expected to be even stronger for later changes such that the
respective limit distributions of the stopping times for linear and superlinear changes
would be of particular interest.
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Part II.

Detecting Changes in the
Covariance Structure of Functional
Time Series With FMRI Data in

View
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8. Motivation

Functional Magnetic Resonance Imaging (fMRI) is a widely used technique to capture
brain activity. The blood flow and thus the demand of oxygen increases in the activated
areas of the brain. This results in an increasing ratio of blood oxygenation and deoxy-
genated hemoglobin in the respective areas which can can be measured based on the
blood oxygenation level-dependent (BOLD) contrast Ogawa et al. (1990). An fMRI
data set consists of a sequence of three-dimensional images that have been recorded
every few seconds. fMRI facilitates a noninvasive real time functional brain mapping
with a high spatial resolution and thus yields large amounts of data requiring the devel-
opment of appropriate statistical methodologies. Such scans can be obtained related
to a task or in a resting state where the person is told to go through the scanning
procedure without thinking of anything while not falling asleep. Resting state data is
used to analyze brain activities excluding external factors where the examination of
the covariance structure between brain regions is of particular interest as it is asso-
ciated with neural connectivity. Such analyses strongly rely on the assumption that
resting state data is first and second order stationary. This assumption is by no means
guaranteed as it might happen, for example, that during the scan the person suddenly
remembers something such that the mean activities deviate from their resting state
baseline in some areas of the brain. If such a scan is then used for analyzing connectiv-
ities without taking a possible change into account, the results will be contaminated
by the mean change leading to wrong conclusions. Therefore, Aston & Kirch (2012b)
developed testing procedures to detect deviations from mean stationarity. However,
it is not only deviations from mean stationarity but also deviations from covariance
stationarity that will contaminate the analysis and ultimately the conclusions. There-
fore, in this part of the thesis, we develop tools to test for deviations from covariance
stationarity in fMRI data which will be modeled as functional time series. This means
that each observation of the time series, in this case each 3-d image of the brain, can
be viewed as a function. Indeed, taking into consideration that the brain works as a
single unit with spatial dependencies, it is a natural approach to model each image as
a discretized observation of a functional response. In contrast, a voxelwise approach
requires a difficult adaption for multiple testing and may miss signals that are very
small in any voxel but considerably large if information across voxels is used. Depend-
encies in time, i.e. between subsequent images, which are also present in fMRI data,
can be captured by a time series structure. Lifting the multivariate observations to a
functional space makes them mathematically easier to handle as one can exploit func-
tional properties, such as smoothness, making use of many well established statistical
techniques.

We adapt a nonparametric approach where we tackle the problem by means of a change
point procedure without assuming any parametric spatial or temporal correlation struc-
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ture. Such nonparametric methods become more and more refined in the analysis of
functional data (cf. Ferraty & Vieu (2000) and Horváth & Kokoszka (2012)). Nonpara-
metric tests for at most one change (AMOC) in the mean function have been considered
for independent observations in Aue et al. (2009c) and Berkes et al. (2009) as well
as for weakly dependent data in Hörmann & Kokoszka (2010). Aston & Kirch (2012a)
extend these results to a more general class of dependency structures and also consider
epidemic changes where the mean function returns to its original state after some time.
The analysis of functional connectivity data is a very active field of research in neuroima-
ging. The detection of change points in the observed data without assuming the spe-
cifications of the experiment to be known is of particular interest. In this context, Crib-
ben et al. (2012) propose a data-driven approach, the so called Dynamic Connectivity
Regression (DCR), for detecting changes in the functional connectivity between a set
of brain regions and estimate a connectivity graph for each temporal interval between
the change points. They use resampling methods in order to decide whether a change
is significant. With a view to single-subject data, DCR is further developed in Crib-
ben et al. (2013). In this part of the thesis, we develop statistical procedures for the
detection of deviations from covariance stationarity in functional time series that can
be applied to fMRI data without being restricted to predefined regions of interest.

8.1. Outline

In Chapter 9 we propose a procedure based on dimension reduction techniques such as
principal component analysis, to detect deviations from covariance stationarity. The
test statistics and their asymptotic behavior are investigated in Chapter 10. The pro-
posed procedures require the estimation of the long-run covariance which is statistically
unstable. Using a missspecified estimator is a possible solution but leads to an un-
known limit distribution such that resampling procedures, as described in Chapter11,
are unavoidable. Alternative test statistics which take the full functional structure
into account without reducing the dimension are discussed in Chapter 12. The differ-
ent procedures proposed in this work are compared in a simulation study in Chapter
13. The application to fMRI data is presented in Chapter 14.
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9. Testing for Changes in the
Covariance Structure of
Functional Data

We assume that the observations are obtained from a functional time series with the
respective mean function being constant over time, i.e.

Xt(s) = µ(s) + Yt(s), 1 ≤ t ≤ n,

where t denotes the time point and s a spatial coordinate in a compact set Z. The
constant mean function is given by µ(·) while the random fluctuations are represented
by Yt(·) with E(Yt(s)) = 0 which is not necessarily stationary but can have a time-
dependent covariance structure as detailed in Chapter 9.1. µ(·) as well as all elements
of {Yt(·) : 1 ≤ t ≤ n} are assumed to be square integrable on Z. The mean stationarity
can be checked previously as described in Aston & Kirch (2012b).

The covariance structure of a functional time series is determined by the covariance
operator respectively the covariance kernel as given in the following definition.

Definition 9.1. Let {Xt(·) : 1 ≤ t ≤ n} ∈ L2(Z) be a functional time series, where
Z is a compact set. The square integrable covariance operator Ct : L2(Z) 7→ L2(Z) is
defined by

Ct(z) =

∫
ct(·, s)z(s)ds,

where ct(u, s) = Cov (Xt(u), Xt(s)) is the covariance kernel of Xt(·).

9.1. Change Point Model

First consider the at most one change (AMOC) alternative given by

Yt(s) = Y
(1)
t (s)1{1≤t≤θn} + Y

(2)
t (s)1{θn<t≤n}, 1 ≤ t ≤ n (9.1)

with Cov
(
Y

(1)
t (u), Y

(1)
t (s)

)
= c(u, s) and Cov

(
Y

(2)
t (u), Y

(2)
t (s)

)
= c(u, s) + δ(u, s)

for some 0 < θ < 1 and c(u, s), δ(u, s) ∈ L2(Z × Z). According to this model, the
covariance change occurs at the unknown time point [θn]. The covariance kernel c(u, s)
before the change as well as the change in covariance δ(u, s) 6= 0 are both unknown.

Definition 9.2. (Hörmann & Kokoszka, 2010, Definition 2.1) Let {Yt(·) : t ≥ 1} ∈
L2(Z) be a functional time series with E ‖Yt(·)‖4 =

∫
E
[
(Yt(s))

4] ds < ∞ which can
be represented by

Yt = f(εt, εt−1, . . .),

139



Testing for Changes in the Covariance Structure of Functional Data

where {εi : i ∈ Z} are i.i.d. random variables with values in a measurable space S and
f is a measurable function f : S∞ → H. Then, {Yt(·)} is called L4

m−approximable if

∞∑
m=1

E‖Yt(·)‖4 =

∫
E

[(
Yt(s)− Y (m)

t (s)
)4
]
ds <∞

with Y (m)
t = f(εt, εt−1, . . . , εt−m+1, ε

′
t−m, ε

′
t−m−1, . . .), where ε′i is an independent copy of

εi.

L4
m−approximability is a nonparametric concept of dependence which provides the

necessary mathematical tools for the proofs and is satisfied for a large class of time
series. Full details can be found in Hörmann & Kokoszka (2010).

Assumption 9.3. Assume that for {Yt(·)} as in (9.1) it holds

(i) {Y (1)
t (·)} ∈ L2(Z) with

EY
(1)

1 (s) = 0 and E ‖Y (1)
1 (·)‖4 =

∫
E

[(
Y

(1)
1 (s)

)4
]
ds <∞

is L4
m−approximable and hence, in particular, stationary and ergodic.

(ii) {Y (2)
t (·)} ∈ L2(Z) is ergodic with

EY
(2)

1 (s) = 0 and E ‖Y (2)
1 (·)‖2 =

∫
E

[(
Y

(2)
1 (s)

)2
]
ds <∞.

As we do not assume Y (2)
t to be stationary, the time series after the change is allowed

to have starting values from a different distribution.

Testing for covariance stationarity against the AMOC alternative can be described by
the following hypotheses:

H0 : θ = 1 against H1 : 0 < θ < 1.

In order to obtain a test for more general alternatives of nonstationarities in the cov-
ariance, we consider the following epidemic alternative:

Yt(s) = Y
(1)
t (s)1{1≤t≤θ1n} + Y

(2)
t (s)1{θ1n<t≤θ2n} + Y

(1)
t (s)1{θ2n<t≤n}, 1 ≤ t ≤ n

with Cov
(
Y

(1)
t (u), Y

(1)
t (s)

)
= c(u, s) and Cov

(
Y

(2)
t (u), Y

(2)
t (s)

)
= c(u, s) + δ(u, s) for

some 0 < θ1 < θ2 < 1. It would also be possible to allow for contaminated starting
values in the time series after the change. This alternative can be viewed as a better
approximation to the expected kind of deviation from covariance stationarity.
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9.2. Dimension Reduction Techniques

9.2. Dimension Reduction Techniques

A common approach in functional data analysis is the transition to a multivariate
setting by projecting the data into a d-dimensional space spanned by an orthonormal
basis {vk(·) : k = 1, . . . , d}. In this case, the projection scores are obtained by

〈Xt, vl〉 =

∫
Xt(s)vl(s)ds, t = 1, . . . , n, l = 1, . . . , d. (9.2)

As we aim at assessing the above functional testing problem by applying a multivariate
testing procedure to the projection scores we first need to verify if a change in the
covariance structure of the observed functional time series implies a change in the
covariance of the scores. To this end, we observe

Cov(〈Xt, vl1〉, 〈Xt, vl2〉)

=

∫ ∫
c(u, s)vl1(u)vl2(s)du ds+ 1{θn<t≤n}

∫ ∫
δ(u, s)vl1(u)vl2(s)du ds.

Thus, a necessary condition for the covariance change to be visible in the projection
scores is ∫ ∫

δ(u, s)vl1(u)vl2(s)du ds 6= 0 for some l1, l2 = 1, . . . , d. (9.3)

In contrast to other applications we do not require the dimension reduction technique
to explain a large amount of the variation of the data but to yield a good signal-to-noise
ratio where the signal is determined by

∫ ∫
δ(u, s)vl1(u)vl2(s)du ds.

9.2.1. Principal component analysis

Principal component analysis (PCA) is a widely used data driven dimension reduction
technique which projects the functional data on the subspace spanned by the first
d principal components explaining the most variance of any subspace of size d. Let
{λl : l ≥ 1} be the non-negative decreasing sequence of eigenvalues of the covariance
operator and {vl(·) : l ≥ 1} a set of corresponding orthonormal eigenfunctions defined
by ∫

c(u, s)vl(s)ds = λlvl(u), l = 1, 2, . . . ;u ∈ Z.

By Mercer’s Lemma, see Lemma 1.3 in Bosq (2006), the covariance kernel can be
expressed as

c(u, s) =
∞∑
l=1

λkvl(u)vl(s)

and the Karhunen-Loève expansion, see Theorem 1.5 in Bosq (2006), yields

Xt(s)− µ(s) =
∞∑
l=1

ηt,lvl(s), (9.4)
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where the scores {ηt,l : l = 1, 2, . . .} given by ηt,l =
∫

(Xt(s)− µ(s)) vl(s)ds are uncor-
related and centered with variance λl. As the covariance kernel is unknown, PCA is
usually conducted based on the empirical covariance function

ĉn(u, s) =
1

n

n∑
t=1

(
Xt(u)−Xn(u)

) (
Xt(s)−Xn(s)

)
,

where Xn(s) = 1
n

∑n
t=1Xt(s). Under the null hypothesis, the empirical covariance

function estimates the actual covariance kernel c(u, s) whereas under the alternative it
often converges to a contaminated limit k(u, s) as stated in (10.8) below. As projection
basis we determine the eigenfunctions {v̂l(·) : l = 1, . . . , d} of ĉn belonging to the d
largest eigenvalues and obtain the projection scores by

η̂t,l =

∫ (
Xt(s)−Xn(s)

)
v̂l(s)ds = 〈Xt, v̂l〉 − 〈X, v̂l〉n, t = 1, . . . , n, l = 1, . . . , d

with 〈X, v̂l〉n = 1
n

∑n
t=1〈Xt, v̂l〉. For more details on functional principal component

analysis, in particular for the consistency of the empirical eigenvalues and eigenfunc-
tions, see, for example, Horváth & Kokoszka (2012).

Lemma 9.4. Let v̂l(·) be orthonormal eigenfunctions of ĉn(u, s) and ṽl(·) be orthonor-
mal eigenfunctions of c̃(u, s), where both sets of eigenfunctions are arranged according
to the respective eigenvalues in decreasing order. Furthermore, assume that the eigen-
values of c̃(u, s) are separated, i.e. λ̃1 > λ̃2 > . . . > λ̃d > λ̃d+1.

a) If
∫ ∫

(ĉn(u, s)− c̃(u, s))2du ds = oP (1), it holds for l1, l2 = 1, . . . , d∫ ∫
(g̃l1 g̃l2 v̂l1(u)v̂l2(s)− ṽl1(u)ṽl2(s))

2 du ds = oP (1),

where g̃l = sgn
(∫

ṽl(s)v̂l(s)ds
)
.

b) If
∫ ∫

(ĉn(u, s)− c̃(u, s))2du ds = OP (n−1), it holds for l1, l2 = 1, . . . , d∫ ∫
(g̃l1 g̃l2 v̂l1(u)v̂l2(s)− ṽl1(u)ṽl2(s))

2 du ds = OP (n−1).

Proof. Observing that∫ ∫
(g̃l1 g̃l2 v̂l1(u)v̂l2(s)− ṽl1(u)ṽl2(s))

2 du ds

=

∫ ∫
((g̃l1 v̂l1(u)− ṽl1(u))(g̃l2 v̂l2(s)− ṽl2(s)) + ṽl1(u)(g̃l2 v̂l2(s)− ṽl2(s))

+ṽl2(s)(g̃l1 v̂l1(u)− ṽl1(u)))2 du ds

≤C
(∫

(g̃l1 v̂l1(u)− ṽl1(u))2du

∫
(g̃l2 v̂l2(s)− ṽl2(s))2ds+

∫
ṽ2
l1

(u)du

∫
(g̃l2 v̂l2(s)− ṽl2(s))2ds

+

∫
ṽl2(s)

2ds

∫
(g̃l1 v̂l1(u)− ṽl1(u))2du

)
=C

(∫
(g̃l1 v̂l1(u)− ṽl1(u))2du

∫
(g̃l2 v̂l2(s)− ṽl2(s))2ds+

∫
(g̃l2 v̂l2(s)− ṽl2(s))2ds

+

∫
(g̃l1 v̂l1(u)− ṽl1(u))2du

)
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the assertions follow with Theorem 2.1 in Aston & Kirch (2012a).

Separable covariance structure

As fMRI data is collected voxelwise (∼ M := 105 voxels), using the empirical covari-
ance function requires the calculation and storage of an M ×M -dimensional matrix
in addition to the respective eigenanalysis. While this is computationally infeasible,
one can show that there is a one-to-one correspondence between the eigenvalues and
eigenvectors of the spatial covariance matrix (M ×M) and that of the time domain
(n× n). As M � n the eigenanalysis in the time domain requires less computational
effort. However, this relationship also reveals that the number of nonzero eigenvalues
is limited by the sample size and hence indicates a considerable loss of precision when
using the nonparametric covariance estimator. Based on those considerations, Aston
& Kirch (2012b) suggest to use a separable covariance structure in the estimation
procedure given by

c ((u1, u2, u3), (s1, s2, s3)) = c1 (u1, s1) c2 (u2, s2) c3 (u3, s3) .

In this work, we adopt this approach of estimating the covariance matrix separately
in each direction (64 × 64 resp. 64 × 64 resp. 33 × 33) and calculate the respective
eigenvalues and eigenfunctions. The projection basis can then be obtained by the tensor
product of the first d eigenfunctions of each direction. Even if the actual covariance
structure is not separable we obtain a valid projection such that the proposed dimension
reduction can be applied for our purposes. While this is an obvious simplification, most
smoothing techniques in fMRI make use of tensor based formulations leading to very
similar implicit assumptions.
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10. Test Statistic and Statistical
Properties

We assess the functional testing problem by testing for a change in the covariance
structure of the d-dimensional estimated score vectors. As proposed by Aue et al.
(2009a) we construct the test statistics based on the following version of the traditional
CUSUM-statistic for the AMOC alternative:

Sk =
1√
n

(
k∑
t=1

vech[η̂tη̂
T
t ]− k

n

n∑
t=1

vech[η̂tη̂
T
t ]

)
. (10.1)

We consider the following sum-type and max-type test statistics:

Ωn =
1

n

n∑
k=1

STk Σ̂−1
n Sk and Λn = max

1≤k≤n
STk Σ̂−1

n Sk

where Σ̂n is an estimator for the long-run covariance

Σ0 =
∑
t∈Z

Cov
(
vech[η0η

T
0 ], vech[ηtη

T
t ]
)

under H0. We assume that Σ̂n is consistent under the null hypothesis and

|Σ̂n − Σ1| = op(1) under H1,

where Σ1 is some positive-definite matrix which can differ from Σ0. For the epidemic
change point alternative we propose the test statistics

Ωep
n =

1

n

∑
1≤k1<k2≤n

STk1,k2Σ̂
−1
n Sk1,k2 and Λep

n = max
1≤k1<k2≤n

STk1,k2Σ̂
−1
n Sk1,k2

with Sk1,k2 = Sk2 − Sk1 .

As large values of the weighted partial sum process indicate a change, the point where
this process takes it maximum is usually a good estimator for the location of the change.
More precisely, we estimate the change point by

k̂∗ = argmax1≤k≤n S
T
k Σ̂−1

n Sk

(see (2.12) in Aue et al. (2009a)) respectively

(k̂∗1, k̂
∗
2) = argmax

(
STk1,k2Σ̂

−1
n Sk1,k2 : 1 ≤ k1 < k2 ≤ n

)
,

where (x̂, ŷ) = argmax((Z(x, y) : 1 ≤ x < y ≤ n) if and only if x̂ = min(1 ≤ x < n :
Z(x, y) = max1≤k1<k2≤n Z(k1, k2) for some y) and ŷ = max(x̂ < y ≤ n : Z(x̂, y) =
max1≤k1<k2≤n Z(k1, k2)) (see (4.4) in Aston & Kirch (2012b)).
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10.1. Behavior Under the Null Hypothesis

We allow for a weak dependency structure by assuming the observed functional time
series to be L4

m−approximable. Effectively, this means the time series can be well
approximated (in an L4

m−sense) by anm-dependent one (see Definition 2.1 in Hörmann
& Kokoszka (2010)) - a property that many of the usual time series models possess.
The following Theorem provides the limit distributions of the proposed test statistics.
Choosing the critical value as the (1 − α)-quantile of the respective limit distribution
yields a procedure with asymptotic size α.

Theorem 10.1. Let Assumption 9.3 (i) be satisfied. Additionally, we assume that the
first d + 1 eigenvalues of c(u, s) are separated, i.e. λ1 > λ2 > . . . > λd > λd+1. Then,
the following asymptotics hold under the null hypothesis if Σ̂ is a consistent estimator
for the long-run covariance Σ.

Ωn
D→

d∑
l=1

∫ 1

0

B2
l (x)dx and Ωep

n
D→

d∑
l=1

∫ 1

0

∫ y

0

(Bl(y)−Bl(x))2 dx dy

as well as

Λn
D→ sup

0≤x≤1

d∑
l=1

B2
l (x) and Λep

n
D→ sup

0≤x<y≤1

d∑
l=1

(Bl(y)−Bl(x))2 ,

where d = d(d + 1)/2 and (Bl(x) : x ∈ [0, 1], 1 ≤ l ≤ d) are independent standard
Brownian bridges.

Proof. We first show that the Lpm−approximability is passed on to the projection scores.
Let Y (m)

t be them-approximations for an Lpm−approximable sequence Yt. The sequence
η

(m)
t with components η(m)

t,l =
∫
Y

(m)
t (s)vl(s)ds is m-dependent as Y (m)

t is m-dependent.
Furthermore, it holds with the Cauchy-Schwarz inequality, similarly to the proof of
Theorem 5.1 in Hörmann & Kokoszka (2010),

∑
m≥1

(
E
[∣∣∣ηt − η(m)

t

∣∣∣p])1/p

=
∑
m≥1

E

( d∑
l=1

(
ηt,l − η(m)

t,l

)2
)p/2

1/p

=
∑
m≥1

E

( d∑
l=1

(∫ (
Yt(s)− Y (m)

t (s)
)
vl(s)ds

)2
)p/2

1/p

≤
∑
m≥1

E

( d∑
l=1

∫ (
Yt(s)− Y (m)

t (s)
)2

ds

∫
v2
l (s)ds

)p/2
1/p

=
√
d
∑
m≥1

(
E

[(∫ (
Yt(s)− Y (m)

t (s)
)2

ds

)p/2])1/p

=
√
d
∑
m≥1

(
E
[∥∥∥Yt − Y (m)

t

∥∥∥p])1/p

<∞,
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where | · | denotes the Euclidean norm. Thus, the score vectors {ηt}with ηt,l =∫
Yt(s)vl(s)ds are L4

m−approximable and it holds with Theorem A.2 in Aue et al.
(2009a) and the continuous mapping theorem

1√
n

 [nx]∑
t=1

vech[ηtη
T
t ]− [nx]

n

n∑
t=1

vech[ηtη
T
t ]

 Dd[0,1]−→ BΣ(x), (10.2)

where {BΣ(x) : 0 ≤ x ≤ 1} is a d-dimensional centered Gaussian process with covari-
ance function Cov (BΣ(x), BΣ(y)) = Σ(min{x, y}−xy). The convergence in (10.2) still
holds true if the projection basis is obtained based on the empirical covariance kernel.
More precisely, it holds for η̌t,l =

∫
Yt(s)v̂l(s)ds and gl = sgn

(∫
vl(s)v̂l(s)ds

)
with the

Cauchy-Schwarz inequality

sup
0≤x≤1

∣∣∣∣∣∣ 1√
n

[nx]∑
t=1

gl1gl2
(
η̌t,l1 η̌t,l2 − η̌l1 η̌l2

)
− 1√

n

[nx]∑
t=1

(ηt,l1ηt,l2 − ηl1ηl2)

∣∣∣∣∣∣
= sup

0≤x≤1

∣∣∣∣∣∣
∫ ∫  1

n

[nx]∑
t=1

(
Yt(u)Yt(s)− Y (u)Y (s)

)√n (gl1gl2 v̂l1(u)v̂l2(s)− vl1(u)vl2(s)) du ds

∣∣∣∣∣∣
≤ sup

0≤x≤1

∫ ∫  1

n

[nx]∑
t=1

(
Yt(u)Yt(s)− Y (u)Y (s)

)2

du ds


1
2

·
(
n

∫ ∫
(gl1gl2 v̂l1(u)v̂l2(s)− vl1(u)vl2(s))

2 du ds

) 1
2

. (10.3)

By Lemma 2.3 b) in Aston & Kirch (2012a) and the separation of the eigenvalues of
c(u, s) the assumptions of Theorem 9.4 b) are fulfilled such that we obtain

(
n

∫ ∫
(gl1gl2 v̂l1(u)v̂l2(s)− vl1(u)vl2(s))

2 du ds

) 1
2

= OP (1).

Lemma 2.1 in Hörmann & Kokoszka (2010) yields that Zt(u, s) = Yt(u)Yt(s) is L4
m−approximable

and with the invariance principle in Berkes et al. (2013) we obtain

sup
0≤x≤1

∫ ∫  1

n

[nx]∑
t=1

[Yt(u)Yt(s)− E(Y1(u)Y1(s))]

2

du ds = OP

(
n−1
)

= oP (1). (10.4)
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It follows that

sup
0≤x≤1

∫ ∫  1

n

[nx]∑
t=1

(
Yt(u)Yt(s)− Y (u)Y (s)

)2

du ds

= sup
0≤x≤1

∫ ∫  1

n

[nx]∑
t=1

[Yt(u)Yt(s)− E (Y1(u)Y1(s))]


− [nx]

n

(
1

n

n∑
t=1

[Yt(u)Yt(s)− E (Y1(u)Y1(s))]

))2

du ds

≤C sup
0≤x≤1

∫ ∫  1

n

[nx]∑
t=1

[Yt(u)Yt(s)− E (Y1(u)Y1(s))]

2

du ds

+ C

∫ ∫ (
1

n

n∑
t=1

[Yt(u)Yt(s)− E (Y1(u)Y1(s))]

)2

du ds

≤ 2C sup
0≤x≤1

∫ ∫  1

n

[nx]∑
t=1

[Yt(u)Yt(s)− E (Y1(u)Y1(s))]

2

du ds = oP (1).

Hence, (10.3) yields

sup
0≤x≤1

∣∣∣∣∣∣ 1√
n

[nx]∑
t=1

gl1gl2
(
η̌t,l1 η̌t,l2 − η̌l1 η̌l2

)
− 1√

n

[nx]∑
t=1

(ηt,l1ηt,l2 − ηl1ηl2)

∣∣∣∣∣∣ = oP (1). (10.5)

We obtain the same limit distribution if we replace η̌t,l by η̂t,l =
∫ (

Xt(s)−Xn(s)
)
v̂l(s)ds

as in our statistics. Indeed, with the notations Ỹt := Yt−Y n, Ỹ (u)Ỹ (s) = 1
n

∑n
t=1 Ỹt(u)Ỹt(s),

Y k(u) = 1
n

∑k
t=1 Yt(u) we obtain

sup
0≤x≤1

∣∣∣∣∣∣ 1√
n

[nx]∑
t=1

(
η̌t,l1 η̌t,l2 − η̌l1 η̌l2

)
− 1√

n

[nx]∑
t=1

(
η̂t,l1 η̂t,l2 − η̂l1 η̂l2

)∣∣∣∣∣∣
= sup

0≤x≤1

∣∣∣∣∣∣ 1√
n

[nx]∑
t=1

∫ ∫ (
Yt(u)Yt(s)− Y (u)Y (s)

)
v̂l1(u)v̂l2(s)du ds

− 1√
n

[nx]∑
t=1

∫ ∫ (
Ỹt(u)Ỹt(s)− Ỹ (u)Ỹ (s)

)
v̂l1(u)v̂l2(s)du ds

∣∣∣∣∣∣
= sup

0≤x≤1

∣∣∣∣∣∣
∫ ∫  1√

n

[nx]∑
t=1

(
Yt(u)Y n(s) + Y n(u)Yt(s)− 2Y n(u)Y n(s)

) v̂l1(u)v̂l2(s)du ds

∣∣∣∣∣∣
= sup

0≤x≤1

∣∣∣∣∫ Y [nx](u)v̂l1(u)du

∫ √
nY n(s)v̂l2(s)ds+

∫ √
nY n(u)v̂l1(u)du

∫
Y [nx](s)v̂l2(s)ds

−2
[nx]

n

∫ √
nY n(u)v̂l1(u)du

∫
Y n(s)v̂l2(s)ds

∣∣∣∣
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≤ sup
0≤x≤1

(∣∣∣∣∫ Y [nx](u)v̂l1(u)du

∫ √
nY n(s)v̂l2(s)ds

∣∣∣∣+

∣∣∣∣∫ √nY n(u)v̂l1(u)du

∫
Y [nx](s)v̂l2(s)ds

∣∣∣∣
+

∣∣∣∣2[nx]

n

∫ √
nY n(u)v̂l1(u)du

∫
Y n(s)v̂l2(s)ds

∣∣∣∣)
≤ sup

0≤x≤1

[(∫
Y

2

[nx](u)du

) 1
2
(∫

v̂2
l1

(u)du

) 1
2
(∫ (√

nY n(s)
)2
ds

) 1
2
(∫

v̂2
l2

(s)ds

) 1
2

+

(∫ (√
nY n(u)

)2
du

) 1
2
(∫

v̂2
l1

(u)du

) 1
2
(∫

Y
2

[nx](s)ds

) 1
2
(∫

v̂2
l2

(s)ds

) 1
2

+2
[nx]

n

(∫ (√
nY n(u)

)2
du

) 1
2
(∫

v̂2
l1

(u)du

) 1
2
(∫

Y
2

n(s)ds

) 1
2
(∫

v̂2
l2

(s)ds

) 1
2

]

= sup
0≤x≤1

2

(∫
Y

2

[nx](u)du

) 1
2
(∫ (√

nY n(s)
)2
ds

) 1
2

+ 2 sup
0≤x≤1

[nx]

n

(∫ (√
nY n(u)

)2
du

) 1
2
(∫

Y
2

n(s)ds

) 1
2

≤2

(∫ (√
nY n(s)

)2
ds

) 1
2

((
sup

0≤x≤1

∫
Y

2

[nx](s)ds

) 1
2

+

(∫
Y

2

n(s)ds

) 1
2

)
= oP (1)

(10.6)

as it holds with the ergodic theorem (see, for example, Ranga Rao (1962))∫
Y

2

n(s)ds = oP (1). (10.7)

Combining (10.2), (10.5) and (10.6) we obtain

S[nx]
Dd[0,1]→ BΣ(x).

and the assertions follow by the continuous mapping theorem.

Based on this result we can now determine the critical value as (1 − α)-quantile of
the respective limit distribution. This can be done by using Monte Carlo simulations.
However, it is notoriously difficult to estimate the long-run covariance (see discussion
in Aston & Kirch (2012b)). In this case, i.e. if Σ̂ is not consistent or the convergence
too slow to be appropriate for small samples, the limit distributions in Theorem 10.1
are no longer good approximations.

10.2. Behavior Under the Alternative

Condition (9.3) is examined for two exemplary alternatives, where the projection basis
is determined based on principal component analysis. The following Lemma states that,
under the alternative, the empirical covariance function converges to a contaminated
limit k(u, s).
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Lemma 10.2. Under Assumption 9.3 it holds∫ ∫
(ĉn(u, s)− k(u, s))2 du ds = oP (1),

where k(u, s) = c(u, s) + (1− θ)δ(u, s).

Proof. We split the empirical covariance as follows:

ĉn(u, s) =
1

n

n∑
t=1

(
Xt(u)−Xn(u)

) (
Xt(s)−Xn(s)

)
=

1

n

n∑
t=1

(
Yt(u)− Y n(u)

) (
Yt(s)− Y n(s)

)
=

1

n

[θn]∑
t=1

(
Y

(1)
t (u)− Y n(u)

)(
Y

(1)
t (s)− Y n(s)

)
+

1

n

n∑
t=[θn]+1

(
Y

(2)
t (u)− Y n(u)

)(
Y

(2)
t (s)− Y n(s)

)
.

Now, observe that

∫ ∫  1

n

[θn]∑
t=1

[(
Y

(1)
t (u)− Y n(u)

)(
Y

(1)
t (s)− Y n(s)

)
− c(u, s)

]2

du ds

≤C
∫ ∫  1

n

[θn]∑
t=1

(
Y

(1)
t (u)Y

(1)
t (s)− E(Y1(u)Y1(s))

)2

du ds

+ C

∫ ∫ (
(θ + o(1))Y n(u)Y n(s)− Y [θn](u)Y n(s)− Y n(u)Y [θn](s)

)2
du ds.

Furthermore, it holds∫ ∫ (
(θ + o(1))Y n(u)Y n(s)− Y [θn](u)Y n(s)− Y n(u)Y [θn](s)

)2
du ds

≤C
(

(θ + o(1))

∫
Y

2

n(u)du

∫
Y

2

n(s)ds+

∫
Y

2

[θn](u)du

∫
Y

2

n(s)ds

+

∫
Y

2

n(u)du

∫
Y

2

[θn](s)ds

)
= oP (1)

by (10.7), where one needs to note that this assertion remains true under the alternative
which can easily be seen by splitting the time series at the change point. By the ergodic
theorem it holds∫ ∫  1

n

[θn]∑
t=1

(
Y

(1)
t (u)Y

(1)
t (s)− E(Y1(u)Y1(s))

)2

du ds

=

(
[θn]

n

)2 ∫ ∫  1

[θn]

[θn]∑
t=1

(
Y

(1)
t (u)Y

(1)
t (s)− E(Y1(u)Y1(s))

)2

du ds = oP (1).
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Hence, we obtain

∫ ∫  1

n

[θn]∑
t=1

[(
Y

(1)
t (u)− Y n(u)

)(
Y

(1)
t (s)− Y n(s)

)
− c(u, s)

]2

du ds = oP (1)

and analogously

∫ ∫  1

n

n∑
t=[θn]+1

[(
Y

(2)
t (u)− Y n(u)

)(
Y

(2)
t (s)− Y n(s)

)
− (c(u, s) + δ(u, s))

]2

du ds = oP (1).

As ∫ ∫ (
[θn]

n
c(u, s) +

n− [θn]

n
(c(u, s) + δ(u, s))− k(u, s)

)2

du ds = oP (1),

where k(u, s) = θc(u, s) + (1− θ) (c(u, s) + δ(u, s)) = c(u, s) + (1− θ)δ(u, s), it follows
that ∫ ∫

(ĉn(u, s)− k(u, s))2 du ds = oP (1). (10.8)

Example 10.3 (Change does not affect eigenfunctions). We consider a covariance
change that does not affect the eigenfunctions, i.e. the covariance kernel after the change
has the same eigenfunctions vl(·) as the covariance kernel before the change:∫

(c(u, s) + δ(u, s)) vl(s)ds = λ̃lvl(u),

where vl(·) and λl are the eigenfunctions and eigenvalues of c(u, s) and λ̃l = λl + δl
with δl 6= 0 for some l = 1, . . . , d.

Condition (9.3) is fulfilled as it holds∫
δ(u, s)vl(s)ds =

∫
(c(u, s) + δ(u, s)) vl(s)ds−

∫
c(u, s)vl(s)ds = δlvl(u) (10.9)

and thus∫ ∫
δ(u, s)vl1(u)vl2(s)du ds = δl1

∫
vl1(u)vl2(s)du =

{
0, l1 6= l2

δl1 , l1 = l2.
(10.10)

Assuming that the eigenvalues of k(u, s) are separated, the change is still detectable if
the eigendirections are estimated based on the empirical covariance function as shown
in the following.
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By (10.9) each vl is an eigenfunction of k(u, s) with eigenvalue λl + θδl. It follows with
the Cauchy-Schwarz inequality∣∣∣∣gl1gl2 ∫ ∫ δ(u, s)vl1(u)vl2(s)du ds−

∫ ∫
δ(u, s)v̂l1(u)v̂l2(s)du ds

∣∣∣∣
=

∣∣∣∣∫ ∫ δ(u, s) (gl1gl2vl1(u)vl2(s)− v̂l1(u)v̂l2(s)) du ds

∣∣∣∣
≤
(∫ ∫

δ2(u, s)du ds

) 1
2
(∫ ∫

(gl1gl2vl1(u)vl2(s)− v̂l1(u)v̂l2(s))
2 du ds

) 1
2

= op(1)

(10.11)

with Theorem 9.4 a) and δ(u, s) ∈ L2(Z). Hence, we get

∫ ∫
δ(u, s)v̂l1(u)v̂l2(s)du ds

=gl1gl2δl1

∫
vl1(u)vl2(u)du+ oP (1) =

{
oP (1), l1 6= l2

gl1gl2δl1 + oP (1), l1 = l2.
(10.12)

Example 10.4 (Additive noise term). In this example, a covariance change in the
functional time series occurs due to an additive noise term in the scores of the first m
leading eigendirections. More precisely, it holds Xt(s)− µ(s) =

∑∞
l=1 η̃t,lvl(s) with

η̃t,l = ηt,l + 1{θn<t≤n,1≤l≤m}εt,l,

where ε1, . . . , εn with εt = (εt,1, . . . , εt,m) are independent and identically distributed with
mean 0 and Cov (εt,l1 , εt,l2) = σl1,l2 and independent of η. In this setting, it holds

∫ ∫
δ(u, s)vl1(u)vl2(s)du ds = σl1,l2

for l1, l2 ∈ {1, . . . ,m}. Hence, condition (9.3) is fulfilled if σl1,l2 6= 0 for some l1, l2 ∈
{1, . . . ,m}. According to (10.14) the change can be detected by projecting on the
subspace spanned by the first d eigendirections of the empirical covariance kernel if∑m

k,l=1 σk,l
(∫

vk(u)ṽl1(u)du
∫
vl(s)ṽl2(s)ds

)
6= 0 for at least one pair l1, l2 ∈ {1, . . . ,min{d,m}},

where {ṽl(·) : l ≥ 1} are the eigenfunctions of k(u, s).

Proof. First observe that, as εt,l is independent of ηt,l and as the score components are
uncorrelated,

Cov(ηt,k + εt,k, ηt,l + εt,l) = Cov(ηt,k, ηt,l) + Cov(εt,k, εt,l) =

{
λk + σk,k, k = l,

σk,l, k 6= l.
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Hence, it holds with (9.4) for t > θn

Cov(Xt(u), Xt(s)) =
∞∑

k,l=1

vk(u)vl(s) Cov(η̃t,k, η̃t,l)

=
∞∑

l=m+1

λlvl(u)vl(s) +
m∑

k,l=1

vk(u)vl(s) Cov(ηt,k + εt,k, ηt,l + εt,l)

=
∞∑

l=m+1

λlvl(u)vl(s) +
m∑
l=1

(λl + σl,l)vl(u)vl(s) +
m∑

k,l=1,k 6=l

σk,lvk(u)vl(s)

=
∞∑
l=1

λlvl(u)vl(s) + σk,l

m∑
k,l=1

vk(u)vl(s)

=c(u, s) + 1{θn<t≤n}

m∑
k,l=1

σk,lvk(u)vl(s)

such that the change in the covariance kernel is given by

δ(u, s) =
m∑

k,l=1

σk,lvk(u)vl(s). (10.13)

For l1, l2 ∈ {1, . . . ,m} it holds∫ ∫
δ(u, s)vl1(u)vl2(s)du ds =

m∑
k,l=1

σk,l

∫ ∫
vk(u)vl(s)vl1(u)vl2(s)du ds

=
m∑

l,k=1

σk,l

(∫
vk(u)vl1(u)du

∫
vl(s)vl2(s)ds

)
= σl1,l2 .

Hence, condition (9.3) is fufilled. Analogously to (10.11) we obtain∫ ∫
δ(u, s)v̂l1(u)v̂l2(s)du ds = g̃lg̃k

m∑
k,l=1

σk,l

(∫
vk(u)ṽl1(u)du

∫
vl(s)ṽl2(s)ds

)
+ oP (1),

(10.14)

showing that the change is detectable if the eigendirections are estimated based on the
empirical covariance function if

∑m
k,l=1 σk,l

(∫
vk(u)ṽl1(u)du

∫
vl(s)ṽl2(s)ds

)
6= 0 for at

least one pair l1, l2 ∈ {1, . . . ,min{d,m}}.

10.3. Estimation of the Long-Run Covariance

The estimation of the long-run covariance matrix is a challenging issue in change point
analysis. In the case where Yj are independent under H0 the long-run covariance
reduces to the covariance, i.e.

Σ0 = Cov
(
vech[η0η

T
0 ]
)

= E
(
vech[η0η

T
0 ] vech[η0η

T
0 ]T
)
− E

(
vech[η0η

T
0 ]
)

E
(
vech[η0η

T
0 ]
)T
.
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The components of the scores are known to be uncorrelated. However, this does not
necessarily imply a diagonal long-run covariance as, in general, the squared components
are not uncorrelated. By additionally assuming that the scores are Gaussian we get
a diagonal long-run covariance depending only on the eigenvalues of the covariance
kernel which can be estimated by the eigenvalues of the estimated covariance kernel.
More precisely, it holds

Σ0 = Cov
(
vech[η0η

T
0 ]
)

= diag(2λ2
1, λ1λ2, . . . , 2λ

2
2, λ2λ3, . . . , 2λ

2
d). (10.15)

Proof. Assuming a normal distribution, the components {ηt,l : l = 1, . . . , d} of the
score vectors are independent. This leads to

Cov(ηt,l1ηt,l2 , ηt,l3ηt,l4) =



E(η4
t,l1

)− E(η2
t,l1

)2, l1 = l2 = l3 = l4

E(η2
t,l1

) E(η2
t,l3

)− E(η2
t,l1

) E(η2
t,l3

), l1 = l2 6= l3 = l4,

E(η2
t,l1

) E(η2
t,l2

), l1 = l3 6= l2 = l4,

E(η2
t,l1

) E(η2
t,l2

), l1 = l4 6= l2 = l3,

0, otherwise,

=


3λ2

l1
− λ2

l1
, l1 = l2 = l3 = l4

λl1λl2 , l1 = l3 6= l2 = l4,

λl1λl2 , l1 = l4 6= l2 = l3,

0, otherwise.

With vech[η0η
T
0 ] = (η2

0,1, η0,1η0,2, . . . , η
2
0,2, η0,2η0,3, . . . , η

2
0,d), we obtain

Σ0 = Cov
(
vech[η0η

T
0 ]
)

= diag(2λ2
1, λ1λ2, . . . , 2λ

2
2, λ2λ3, . . . , 2λ

2
d).

However, when dealing with a time series structure and non-Gaussian structure one
has to estimate the full long-run covariance. Usual estimators, such as the Bartlett
estimator, lead to problems, in particular if the dimension is large compared to the
sample size (see Aston & Kirch (2012b)). Aston & Kirch (2012b) conclude that the
change point procedure becomes more stable and conservative if one only corrects for
the long-run variance, i.e. the diagonal of the long-run covariance matrix. In our case,
this approach leads to the following test statistic:

Ω̃n =
1

n

n∑
k=1

STk D̂
−1
n Sk, (10.16)

where D̂−1
n is an estimator for the inverse of the diagonal matrix given by the diagonal

elements of Σ. The respective versions for the max-type statistic and the test statistics
adapted to epidemic changes are obtained analogously. The test statistic in (10.16)
is not pivotal in the sense that the asymptotic critical value depends on the unknown
correlation structure. As a consequence, this approach requires resampling procedures.
As detailed in the next chapter we apply a circular block bootstrap where we estimate
the long-run variance of the bootstrap samples by the block sample variance given in
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(11.3). The estimator D̂n for the test statistic has to be chosen carefully with respect
to its interaction with the estimator used for the bootstrap statistic. We decide to
estimate the long-run variance for the test statistic with the block estimator in (11.2)
as, based on simulations, this seems to yield the most stable size in comparison to,
for example, the flat-top kernel estimator introduced in Politis (2011) with automatic
bandwidth selection.
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11. Resampling Procedures

The critical values of change point procedures are usually chosen based on the limit
distribution of the test statistic under the null hypothesis. Resampling methods can
be applied to get a better small sample performance but cannot be avoided if the limit
distribution is non-pivotal and cannot be estimated otherwise, as is the case in our
example. Previous work on resampling procedures for functional time series include
McMurry & Politis (2011) for independent data and Politis & Romano (1994) as well
as Dehling et al. (2015a) for dependent Hilbert space-valued random variables. Re-
cently, Paparoditis (2018) introduced a sieve-type bootstrap procedure for functional
time series based on a vector autoregressive representation of the scores.

In order to prove the validity of a bootstrap procedure it has to be shown that, given the
observations, the bootstrap test statistic has the same limit distribution as the actual
test statistic under the null hypothesis and thus leads to the same asymptotic critical
values. For a good power behavior under alternatives, it is important to take into
account that the underlying observations may contain a change. Ideally, the respective
limit distribution holds under the null hypothesis as well as under the alternative
showing that the bootstrap test is asymptotically equivalent to the asymptotic test.
Theoretical justifications for the bootstrap procedure providing better small sample
behavior are mainly available for simple test statistics such as the mean (see for example
Singh (1981)). Therefore, simulation studies are usually performed in order to assess
the size and power of a bootstrap procedure. In this work, we apply the bootstrap to
the projections as resampling the functional observations would require the estimation
of the covariance kernel for each bootstrap sample which is computationally infeasible.
Whether this leads to theoretically justifiable bootstrap procedures remains to be seen
in future work.

11.1. Circular Block Bootstrap

As discussed above, due to the non-pivotal limit distribution, resampling procedures
are required to obtain critical values for our test. Aston & Kirch (2012b) obtained
reasonable results by applying multivariate block bootstrap procedures for the cor-
responding mean change procedure. We apply a circular block bootstrap to the
d := d(d + 1)/2−dimensional sequence of the score products. In order to correct
the data for a possible change we first estimate the change point in each component
i = 1, . . . , d as follows:

k̂∗i = argmax1≤k≤n

(
k∑
t=1

q̂i(t)−
k

n

n∑
t=1

q̂i(t)

)
, where q̂(t) := vech[η̂tη̂

T
t ].
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Resampling Procedures

Thus, we can estimate the uncontaminated data by

q̃i(t) = q̂i(t)−

{
q̂0
i , 1 ≤ t ≤ k̂∗i ,

q̂1
i , t > k̂∗i ,

(11.1)

where q̂0
i = 1

k̂∗i

∑k̂∗i
t=1 q̂i(t) and q̂1

i = 1

n−k̂∗i

∑n
t=k̂∗i +1 q̂i(t). We estimate the long-run vari-

ance of the original test statistic by

D̂n(i, i) =
1

n

L−1∑
j=0

(
K∑
k=1

q̃i(Kj + k)

)2

, D̂n(i, j) = 0 for i 6= j, (11.2)

where we use the same blocklength K as in the following bootstrap procedure. We split
the whole sequence of length n circularly into overlapping subsequences of lengthK and
repeat the following steps B times to obtain the bootstrap statistics Ω̃

∗(b)
n , b = 1, . . . , B:

(1) Draw the starting points of the blocks as realizations of

U(0), . . . , U(L)
i.i.d.∼ U({0, . . . , n− 1})

with L :=
⌊
n
K

⌋
.

(2) Generate a bootstrap sample by

q∗i (Kj + k) := q̃i(U(j) + k), j = 0, . . . , L, k = 1, . . . , K, i = 1, . . . , d,

where q̃i(t) = q̃i(t− n) if t > n.

(3) Calculate residuals q̃∗i (t) of the bootstrap sample of length n analogously to (11.1).

(4) Calculate D∗n by

D∗n(i, i) =
1

n

L−1∑
j=0

(
K∑
k=1

q̃∗i (Kj + k)

)2

, D∗n(i, j) = 0 for i 6= j. (11.3)

(5) Calculate the bootstrap statistic by

Ω̃∗n =
1

n

n∑
k=1

S∗Tk D∗−1
n S∗k ,

with S∗k = (S∗k(1), . . . , S∗Tk (d)), S∗k(i) = 1√
n

(∑k
t=1(q∗i (t)− q∗n,i)

)
, q∗n,i = 1

n

∑n
t=1 q

∗
i (t).

We obtain the critical values as the upper α-quantiles of the B realizations Ω̃
∗(b)
n ,

b = 1, . . . , B. Step (3) might seem surprising at first glance as the bootstrap sample
is obtained based on the residuals q̃i and thus there is no need to correct for a pos-
sible change. However, it is important to note that (11.1) does not only estimate the
uncontaminated data but also leads to a reduced variance estimate even if it does not
contain a change. Let us clarify this comment with the simple example of the empirical
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11.1. Circular Block Bootstrap

variance, i.e. K = 1 in (11.3). Consider a sample x1, . . . , xk, k ∈ N. The arithmetic
mean 1

k

∑k
i=1 xi minimizes the function

f(c) =
k∑
t=1

(xt − c)2

such that it follows

1

n

n∑
t=1

(
xt −

1

n

n∑
i=1

xi

)2

=
1

n

k∑
t=1

(
xt −

1

n

n∑
i=1

xi

)2

+
1

n

n∑
t=k+1

(
xt −

1

n

n∑
i=1

xi

)2

≥ 1

n

k∑
t=1

(
xt −

1

k

k∑
i=1

xi

)2

+
1

n

n∑
t=k+1

(
xt −

1

n− k

n∑
i=k+1

xi

)2

=
1

n

n∑
t=1

x̃2
t

with

x̃t = xt −

{
1
k

∑k
i=1 xi, 1 ≤ t ≤ k

1
n−k

∑n
i=k+1 xi, t > k

for any 1 ≤ k ≤ n. The last term is equal to the empirical variance of the sample
x̃1, . . . , x̃n as 1

n

∑n
t=1 x̃t = 0. Hence, if we split a sample at any point k and center each

of the two subsamples with the respective mean as in (11.1), the empirical variance of
the resulting sample is less or equal to the empirical variance of the original sample.
For the test statistic, the variance is always estimated based on the residuals in order
to prevent a contamination by a possible change. If a sample is obtained under the null
hypothesis, this step leads to a reduced variance estimation. The bootstrap sample of
the residuals is just another sample under the null hypothesis such that without step
(3) the bootstrap statistic would be corrected by systematically larger variances than
the test statistic. This would lead to size problems which have been seen in simulations.

The validity of the corresponding multivariate block bootstrap has been shown in
Weber (2017) Part 2 taking possible changes into account. In the functional setting
this should carry over as long as the eigenvalues are well separated but a detailed
theoretic analysis is beyond the scope of this work.
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12. Some Alternative Test
Statistics

The main drawback of change point procedures based on dimension reduction tech-
niques is their inability to detect changes which are orthogonal to the projection space
as given by condition (9.3) for the covariance change. Furthermore, the asymptotic
distributions do not yield reasonable small sample approximations if the dimension of
the projection space is chosen too large. This is particularly problematic when testing
for a covariance change as the procedure is based on the d(d+1)/2-dimensional product
vector when projecting on a d-dimensional subspace. Even if we only use the first two
leading eigenfunctions of each direction in the separable dimension reduction and thus
risk missing possible changes which do not occur in this very limited number of eigen-
directions we project on a 8-dimensional subspace and obtain 36-dimensional product
vectors. Taking 3 eigenfunctions in each direction results in a 378-dimensional product
vector which is considerably larger than the sample size and thus problematic for the
multivariate procedure. This motivates us to consider fully functional test statistics.
Recall that after reducing the dimension, the test statistic as given in (10.16) is based
on

Tk = STkD
−1
n Sk =

1

n

d∑
l1=1

d∑
l2=l1

1

γ̂2
l1,l2

(
k∑
t=1

(
η̂t,l1 η̂t,l2 − η̂l1 η̂l2

))2

(12.1)

with Sk as given in (10.1), η̂l1 η̂l2 = 1
n

∑n
t=1 η̂t,l1 η̂t,l2 and γ̂2

l1,l2
is an estimator for γ2

l1,l2
=∑

t∈Z Cov (η̂0,l1 η̂0,l2 , η̂t,l1 η̂t,l2). The weight 1
γ̂2l1,l2

corrects for different variances in the
time series of the score products making smaller changes in components with smaller
variances better visible for the test statistic. This approach is related to the likelihood
ratio statistic in the multivariate case. However, the price to pay is that changes - even
big ones - in score components other than the first d will not be detected at all. This
seems quite unnatural. Therefore, we consider alternative test statistics related to the
procedures proposed in Bucchia & Wendler (2017) and Aue et al. (2018) for the mean
change problem which take the full functional structure into account. An obvious and
well defined alternative to reducing the dimension is

T Fk =
1

n

∞∑
l1=1

∞∑
l2=l1

(
k∑
t=1

(ηt,l1ηt,l2 − ηl1ηl2)

)2

(12.2)

which takes all scores of the basis expansion into account but without correcting for
different variances as the multivariate test statistic does. Due to the squared summab-
ility of the eigenvalues, this infinite sum is well defined. In order to keep the advantage
of Tk in terms of the weights improving the visibility of changes in components with
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smaller variances while not risking to miss a change due to dimension reduction we
suggest the following weighting

TWk =
1

n

∞∑
l1=1

∞∑
l2=l1

1

s2
1,1 + γ̂2

l1,l2

(
k∑
t=1

(η̂t,l1 η̂t,l2 − η̂l1 η̂l2)

)2

, (12.3)

where s2
1,1 is the estimated variance of the first squared score component. This additive

constant is needed for bounding the denominator of the weights away from zero and is
chosen such that the test statistic is scale invariant. By (10.15) for independent Gaus-
sian scores the variance of the first squared score component is given by 2λ2

1 which is
the largest element in the long-run covariance matrix.

We calculate the critical values analogously to the bootstrap procedure described in
Section 11. For the weighted functional procedure the long-run variances are estimated
for each bootstrap sample with the block estimator as in step (4) whereas we keep the
variance of the first squared score component fixed. Analogously to the multivariate
procedure we also use the block estimator (11.3) for estimating the long-run covariance
for the test statistics.

Remark 12.1. T Fk is related to the statistic ‖SFk ‖2, where

SFk (u, s) =
1√
n

k∑
t=1

(
Xt(u)Xt(s)−X(u)X(s)

)
,

with X(u)X(s) = 1
n

∑n
t=1 Xt(u)Xt(s). More precisely, it holds

‖SFk ‖2

=
1

n

∫ ∫ k∑
t1,t2=1

((
Xt1(u)Xt1(s)−X(u)X(s)

))(
Xt2(u)Xt2(s)−X(u)X(s)

)
du ds

=
1

n

k∑
t1,t2=1

∞∑
l1,l2,l3,l4=1

(ηt1,l1ηt1,l2 − ηl1ηl2)(ηt2,l3ηt2,l4 − ηl3ηl4)
∫
vl1(u)vl3(u)du

∫
vl2(s)vl4(s) ds

=
1

n

k∑
t1,t2=1

∞∑
l1,l2=1

(ηt1,l1ηt1,l2 − ηl1ηl2)(ηt2,l1ηt2,l2 − ηl1ηl2) =
1

n

∞∑
l1,l2=1

(
k∑
t=1

(ηt,l1ηt,l2 − ηl1ηl2)

)2

.

(12.4)

In contrast to T Fk , this statistic contains all combinations of l1 6= l2 twice such that the
cross-covariances have double weights compared to the variances. This is an artefact
when dealing with a bivariate symmetric function which does not occur in the mean
change problem. In accordance with Tk we construct the functional statistic T Fk such
that each combination is only contained once.
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13. Simulation Study

In the following simulation study we assess the empirical size and power of the proposed
procedures. As there are no mathematical justifications for the bootstrap procedures
for the functional test statistics available yet, the simulation study is of particular in-
terest to evaluate their performance. Independent innovations et(s) =

∑D
l=1 ηt,lvl(s), t =

1, . . . , n, of length n = 200 are generated using a Fourier basis with D = 55 basis func-
tions {v1, . . . , v55} on [0, 1], where v1(s) ≡ 1 followed by pairs of sin(i · s) and cos(i · s)
for i = 2, . . . , 27. The scores {ηt,l : l = 1, . . . , 55} are independent and normally dis-
tributed with standard deviations {σl : l = 1, . . . , 55}. Following the simulation study
in Aue et al. (2018) we consider the following settings:

Setting 1 (small number of nonzero eigenvalues): σl = 1 for l = 1, . . . , 8 and
σl = 0 for l = 9, . . . , 55.

Setting 2 (fast decay of eigenvalues using): σl = 3−l, l = 1, . . . , 55.

Setting 3 (slow decay of eigenvalues using): σ = l−1, l = 1, . . . , 55.

Functional autoregressive time series Xt = Ψ(Xt−i) + et are simulated where the linear
operator Ψ can be represented as a D × D-matrix that is applied to the coefficients
of the basis representation via {v1, . . . , v55} (for further details see Aue et al. (2015)).
In this simulation study we use the operator with 0.4 on the diagonal and 0.1 on the
superdiagonal and the subdiagonal which has infinity norm 0.6 such that the resulting
functional autoregressive time series is stationary. A covariance change at the time
point 0.5n is inserted in the first m leading eigendirections for m = 2, 25, 50 by adding
a common additive noise term εt,l = εt with variance σl1,l2 = σ2

ε

m
according to Example

10.4. The variance of the noise term is chosen such that
∫ ∫

δ2(u, s)du ds = 1 for all
m. In view of the application to fMRI data in Chapter 14 the multivariate procedure
is applied to the projections on the subspace spanned by the first 8 eigendirections of
the empirical covariance function. The empirical results are obtained based on 1000
repetitions with 1000 bootstrap iterations each.
The plots in Figure 13.1 show the empirical size and the size corrected power for the
different procedures. The multivariate procedure is very conservative in all settings
whereas the size of the functional procedures is mostly larger but closer to the nominal
level except for setting 1. However, it should be mentioned that for independent data
(see Figure 13.1), using Efron’s Bootstrap to obtain the critical values, all procedures
keep the level very well in all settings. As expected by construction, the procedure
based on PCA fails to detect the change in setting 1 for increasing m as most of the
change is orthogonal to the first 8 eigendirections which are still dominating the con-
taminated covariance kernel. The advantage of the procedures which take the full
functional structure into account is clearly visible here. The opposite power behavior
can be observed for the fast decay of eigenvalues in setting 2, where the procedure
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based on PCA is superior to the functional procedures. In particular the unweighted
functional procedure has problems to detect the change in this setting. In setting 3,
the functional procedures have good power for all choices of m. In applications where
one aims to explain a large amount of the variability of the data via PCA, a slow
decay of eigenvalues as in setting 3 usually leads to a bad performance. However, this
is not true when PCA is applied for change point detection if the change leads to an
increased variability in the affected directions which is true for the alternative in this
simulation study. Hence, directions which are affected by the change but orthogonal to
the uncontaminated subspace are more likely to be chosen by PCA if the eigenvalues
are flat. This effect can be observed when comparing the power of the multivariate
procedure for m = 50 in setting 2 and 3. For m = 2 the power of the multivariate
procedure is slightly better in setting 2 than in setting 3 as for the fast decay of ei-
genvalues the change occurs in those eigendirections which already clearly dominate in
the uncontaminated subspace. Across all situations considered in this simulation study
except for setting 1 with m = 2 the weighted functional procedure outperforms the un-
weighted functional procedure. Hence, the weighted functional procedure behaves not
only as a compromise between the other two procedures but even more as a promising
improvement of the unweighted functional approach.

Discussion

The above simulation study reveals that the functional test statistics with critical values
obtained by the block bootstrap described in Chapter 11 can be liberal for dependent
data. This is mostly a small sample effect which did not occur in simulations of longer
time series (T=500). However, even for the sample size in the present simulations, the
size is reasonable up to a nominal level of 5% and the procedures seem to be suitable
for the purpose of the application in this work. We do not expect them to cause too
many false rejections and we are in particular interested in a good power behavior in
order to avoid nonstationarities to contaminate subsequent analyses. For future work,
it would be of great interest to investigate the mathematical validity of this bootstrap
approach as well as develop procedures that improve the behavior of the functional
procedures for dependent data and can also deal with stronger dependency structures.
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Simulation Study
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σε = 0.2,m = 2, 25, 50
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(c) Setting 3,
σε = 0.8,m = 2, 25, 50
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Figure 13.1.: Empirical size (solid lines) and size corrected power (dashed lines) of the
proposed procedures for independent data using the multivariate procedure after

dimension reduction based on (12.1) (green), the fully functional procedure based on
(12.2) (red) and the weighted functional procedure based on (12.3) (blue).
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σε = 0.2,m = 2, 25, 50
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(c) Setting 3,
σε = 0.8,m = 2, 25, 50
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Figure 13.2.: Empirical size (solid lines) and size corrected power (dashed lines) of the
proposed procedures with K = 6 for functional autoregressive time series using the
multivariate procedure after dimension reduction based on (12.1) (green), the fully
functional procedure based on (12.2) (red) and the weighted functional procedure

based on (12.3) (blue).
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14. Application to Resting State
FMRI Data

We consider the publicly available 1000 Connectome Resting State Data which consists
of 1200 resting state data sets. In Aston & Kirch (2012b) a subset of 198 scans which
have all been recorded at the same location (Beijing, China) are tested for an epidemic
mean change. We test for deviations from covariance stationarity in those 118 data
sets among these where no epidemic mean change was detected at a level of 5% in
the previously mentioned work. Each scan consists of a three-dimensional image of
size 64 × 64 × 33 (∼ 105 voxels) recorded every 2 seconds at 225 time points. Each
data set is preprocessed by voxelwise removing a polynomial trend of order 3 to correct
for technical effects as for example scanner drift. We apply the separable covariance
estimation and for the multivariate procedure we reduce the dimension by projecting
on the 8-dimensional subspace obtained by taking the first two eigenfunctions in each
direction.

14.1. Implementation of the Functional Procedures

In practice, the sums in (12.2) and (12.3) are finite as we cut after the number N of
strictly positive eigenvalues obtained by principal component analysis. In the above
simulation study we obtained N ≈ 100 but for the fMRI data sets the separable cov-
ariance estimation yields N ≈ 105. For the functional test statistics all combinations
of the score components have to be taken into account. As the number of those com-
binations is of order 1010 this is computationally infeasible, in particular with regard
to the fact that the test statistic also has to be calculated for every single bootstrap
sample. However, as the variances of the score products rapidly decrease, most of
the score products only have a negligible influence on the value of the test statistic in
comparison to those with large variances and can thus be omitted. Figure 14.1 shows
the 200 largest variances of the score products after correcting for a possible change in
decreasing order exemplarily for one subject. The variance of the first squared score
component is approximately 10 times larger than the second one and is thus omitted
in this plot for a better visibility. It can clearly be seen that the variances strongly
decrease and quickly level off at a magnitude which is only a small fraction of the
larger variances. We make use of this observation to solve the computational prob-
lem discussed above where the main idea is to only consider those score products that
have a sufficiently large variance compared to the variance of the first squared score
component. However, estimating this ratio by calculating the empirical variance of the
residuals for each of the 1010 combinations is still very time consuming. Therefore, we
use a preselection step where we predict which combinations could possibly exceed a
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14.1. Implementation of the Functional Procedures

0 100 200 300 400

0
30

00
0

60
00

0
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Figure 14.2.: sub06880: 2nd to 200
largest variance of score products

ordered according to their
approximations given by the products of
the variances of the single components.

certain threshold based on the variances of the single score components. More precisely,
we proceed as follows:

(1) For each l1, l2 = 1, . . . , N calculate

r̂l1,l2 =


sl1sl2

2s21
, l1 6= l2,

s2l1
s21
, l1 = l2

with s2
l =

1

n− 1

n∑
t=1

η̃l(t)
2,

where η̃l(t) is the estimated residual of η̂t,l obtained as in (11.1). Determine for
ε1 = 0.0005

P := {(l1, l2) : l1, l2 = 1, . . . , N, r̂l1,l2 ≥ ε1}.

The above estimation of the ratio is based on the Gaussian approximation as
given in (10.15). While this is only correct in the Gaussian case and if the separ-
ability assumption is correct, according to some preliminary analysis (see Figure
14.2) it at least approximates the order of magnitude in the misspecified case.
Figure 14.2 shows the variances of the score products ordered according to their
approximations given by the products of the variances of the single components.

(2) Perform the following steps for each (l1, l2) ∈ P :
(2.1) Estimate the ratio nonparametrically (without relying on Gaussanity or the

separability assumption) by

rl1,l2 =
s2
l1,l2

s2
1,1

with s2
l1,l2

=
1

n− 1

n∑
t=1

(
η̃l1ηl2(t)

)2
,

where η̃l1ηl2(t) is the estimated residual of the product η̂t,l1 η̂t,l2 obtained
analogously to (11.1).
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Application to Resting State FMRI Data

(2.2) If rl1,l2 ≥ ε2 = 0.0025 continue with step (2.3), else skip this combination
and continue with step (2.1) for the next combination.

(2.3) Update

TWk = TWk +
1

s2
1,1 + γ̂2

l1,l2

(
k∑
t=1

(η̂t,l1 η̂t,l2 − η̂l1 η̂l2)

)2

, k = 1, . . . , n

T Fk = T Fk +

(
k∑
t=1

(η̂t,l1 η̂t,l2 − η̂l1 η̂l2)

)2

, k = 1, . . . , n.

with γ̂2
l1,l2

= 1
n

∑L−1
j=0

(∑K
k=1 η̃l1ηl2(Kj + k)

)2

, where K is the block length

of the respective bootstrap procedure and L :=
⌊
n
K

⌋
.

(3) Calculate the test statistics: ΩW
n = 1

n

∑n
k=1 T

W
k and ΩF

n = 1
n

∑n
k=1 T

F
k .

We additionally applied the procedure with ε2 = 0.005 to the resting state fMRI data
and the results are similar to those obtained for ε2 = 0.0025. Hence, there is no need to
further reduce the threshold as there is already no considerable loss of information when
reducing it from 0.005 to 0.0025. In the preselection step we find those combinations for
which r̂l1,l2 ≥ ε1 with a very conservative threshold ε1 = 0.0005. In the above example
the predicted ratio r̂l1,l2 is at most 1.2 times larger than the actual ratio such than
ε1 = 0.0005 is indeed very conservative. We calculate the critical values analogously
to the bootstrap procedure described in Chapter 11. For the weighted procedure the
long-run variances are estimated for each bootstrap sample with the block estimator
as in step (4) whereas we keep the variance of the first squared score component fixed.

14.2. Results

In this section, we describe the results of the analysis of the 1000 Connectome Resting
State Data. We refer to the p-values obtained for ε2 = 0.0025 and a blocklength of
K = 3

√
225 ≈ 6. The results of the data analysis are illustrated exemplary by the score

products of certain subjects as a change in the covariance structure is visible as a mean
change in the products which is indicated by the black line in the plots. However,
as the functional procedures are, on average, based on around 10000 score products,
the plots are limited to the 64 most significant products in the sense of having the
smallest p-values which are obtained by componentwise calculating the p-values for
the weighted functional statistic based on the respective bootstrap components. The
main findings of the data analysis can be summarized as follows:

• When testing for the AMOC alternative at a level of 5%, the null hypothesis
of covariance stationarity is rejected for 43% of the data sets by the multivari-
ate procedure, for 39% by the unweighted functional procedure and for 36% by
the weighted functional procedure. As an example, in sub12220 a covariance
change is detected by all considered procedures with p-values of at most 0.001.
Figure 14.3 shows the 64 most significant components of the score products for
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the weighted functional procedure. The estimated global change point is k̂∗ = 57.

The p-values obtained by the two functional procedures are consistent meaning
that in most of the cases they imply the same test decision and if they lead to
different test decisions at a certain level α the p-values are nevertheless of the
same magnitude, i.e. for one procedure the p-value is slightly below α and for
the other procedure it slightly exceeds α. In some cases, the test decision based
on the multivariate procedure differs from test decisions based on the functional
procedures. Those deviations occur in both directions. On the one hand, the
multivariate procedure is not able to detect changes which are orthogonal to the
projection subspace. On the other hand, false alarms can occur as the few com-
ponents which are considered after reducing the dimension might contain some
irregularities which lead to a rejection of the null hypothesis but are not significant
when considering the full functional structure. This can be observed, for example,
when analyzing sub34943. The multivariate procedure detects a deviation from
covariance stationarity in the 8-dimensional time series of the scores but the null
hypothesis is not rejected by the functional procedures. Figure 14.4 shows the 36
score products which are considered in the multivariate procedure. Calculating
the componentwise p-values of the weighted functional procedure which includes
1083 score products it turns out that more than one third of the 36 components
considered in the multivariate procedure belong to the 100 smallest p-values of
the weighted functional procedure.

• There are some data sets with epidemic changes. For example, sub08816 is not
significant when testing for the AMOC alternative with a p-value of 0.11 for the
multivariate procedure and at least 0.36 for the functional procedures whereas the
test for the epidemic alternative yields p-values which are smaller than 0.04 for
the functional procedures. Figure 14.5 shows the 64 most significant components
of the score products for the epidemic alternative. The respective plots for the
AMOC alternative can be found in Figure 14.6. A visual inspection of those
two figures suggests that the epidemic model is indeed more suitable in this
case. Furthermore, the small p-values are reasoned by the fact that the epidemic
changes in the single components tend to be aligned.

• Some data sets contain outliers which cause the rejection of the null hypothesis.
For example, testing for an epidemic change in sub08992 yields p-values smaller
than 0.05 for all considered procedures. Figure 14.7 reveals that the procedure
picks the outlier as epidemic change in form of a very small interval. The mean of
this interval is obviously much larger than the mean of the remaining observations
and additionally always at the same position determined by the outlier such
that the test for an epidemic change is significant. Although, in this case, the
rejection of the null hypothesis is not due to an actual change in the covariance
structure, an outlier constitutes a deviation from stationarity which contaminates
the subsequent analyses if they are not robust. On the other hand, if the data
is only involved in analyses which require stationarity but are robust against
outliers, it would be of interest to have robust change point procedures such
as in Dehling et al. (2015c) for the univariate mean change problem. At this
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point it should be mentioned that even though for the AMOC alternative the
null hypothesis is not rejected for sub08992 (see Figure 14.8) the procedures
proposed in this work are not robust against outliers as all of them are based on
the empirical covariance. For another setting, for example if the outlier occurs
rather at the beginning of the observations, the null hypothesis of stationarity
might also be rejected for the AMOC alternative which is the case for sub08455
(see Figure 14.9).
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Figure 14.3.: sub12220: 64 score products with the smallest p-values for the weighted
functional statistic when testing for the AMOC alternative. The global estimated

change is k̂∗ = 57 (dashed line).
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Figure 14.4.: sub34943: All 36 score products obtained by dimension reduction.
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Figure 14.5.: sub08816: 64 score products with the smallest p-values for the weighted
functional statistic when testing for the epidemic alternative.
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Figure 14.6.: sub08816: 64 score products with the smallest p-values for the weighted
functional statistic when testing for the AMOC alternative.
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Figure 14.7.: sub08992: 64 score products with the smallest p-values for the weighted
functional statistic when testing for the epidemic alternative.
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14.2. Results
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Figure 14.8.: sub08992: 64 score products with the smallest p-values for the weighted
functional statistic when testing for the AMOC alternative.
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Figure 14.9.: sub08455: 64 score products with the smallest p-values for the weighted
functional statistic when testing for the AMOC alternative.
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15. Conclusions

In this part, different methods for detecting deviations from covariance stationarity in
functional time series have been introduced and investigated with the main focus on
applications to fMRI data. Dimension reduction via projections is a very common ap-
proach in functional time series analysis and enables the application of a multivariate
change point procedure. We derived the asymptotic distribution of the test statistic
based on the projection scores for the AMOC alternative as well as for the epidemic
alternative. This asymptotic procedure requires the estimation of the long-run covari-
ance which is statistically unstable but can be avoided by using resampling procedures.
We applied a circular block bootstrap to obtain the critical values for an adapted test
statistic where we only correct for the diagonal elements of the long-run covariance.
This gave us a reasonable approach for detecting changes in the covariance structure
of fMRI data which, however, comes with the risk of missing changes that are ortho-
gonal to the projection subspace. As alternative solution we provided two test statistics
which both take the full functional structure into account and differ with respect to the
weighting. The unweighted functional test statistic has been derived from the L2-norm
of the functional partial sum process without additional weights. In contrast to that,
the weights in the multivariate procedure correct for different variances of the compon-
ents. We incorporate this idea into the functional approach by proposing the weighted
functional test statistic. Simulations confirmed that this statistic indeed improves the
unweighted functional procedure in different situations and is thus a very promising
approach for the detection of change points in functional data analysis, not only for
detecting changes in the covariance as considered in this work but, in an analogous
version, also for the mean change problem. A mathematical investigation of this test
statistic, as for example deriving the asymptotic distribution, will be of future interest.
While the validity of the multivariate block bootstrap has been proven in Weber (2017),
it still has to be shown for the functional procedures. However, the simulation study
already indicates their reasonable performance. The application of the proposed meth-
ods to resting state fMRI data has shown that taking possible nonstationarities in the
covariance structure into account is crucial. Although we only considered data sets
where no mean change was detected the null hypothesis of covariance stationarity was
still rejected in more than one third of the cases. Many of those nonstationarities have
been detected when testing for the AMOC alternative while in some cases the epidemic
alternative seemed to be more appropriate. For some data sets, the null hypothesis was
rejected due to outliers, so that the development of more robust methods is of future
interest.
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A. Assumptions

A.1. Asymptotics Under H0 and H1

Assumption 3.2. Let the weight function satisfy

(i) w(m, k) = m−1/2w̃(m, k), where w̃(m, k) = ρ
(
k
m

)
for k > lm with lm

m
→ 0 and

w̃(m, k) = 0 for k ≤ lm. The function ρ : [0,∞]→ R+ is positive and continuous.

(ii) limt→0 t
γρ(t) <∞ for some 0 ≤ γ < 1

2
.

(iii) limt→∞ tρ(t) <∞.

Assumption 3.3. Let {Yi}i∈Z be a stationary time series that fulfills the following
assumptions for a given kernel function h.

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r(Yi, Yj)
∣∣∣2) ≤ u(m)(k2 − k1 + 1) for all m+ 1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.

(ii) The following functional central limit theorem holds for any T > 0 1√
m

[mt]∑
i=1

(h1(Yi), h2(Yi)) : 0 < t ≤ T

 D→
{(
W̃1(t), W̃2(t)

)
: 0 < t ≤ T

}
,

where
{(
W̃1(t), W̃2(t)

)
: 0 < t ≤ T

}
is a bivariate Wiener process with mean zero

and covariance matrix

Σ =

(
σ2

1 ρ
ρ σ2

2

)
with

σ2
1 =

∑
h∈Z

Cov(h1(Y0), h1(Yh)), σ2
2 =

∑
h∈Z

Cov(h2(Y0), h2(Yh)). (3.6)

(iii) For all 0 ≤ α < 1
2
the following Hájek-Rényi-type inequality holds

sup
1≤k≤m

1

m
1
2
−αkα

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣ = OP (1) as m→∞.
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(iv) The following Hájek-Rényi-type inequality holds uniformly in m for any sequence
km > 0

sup
k≥km

1

k

∣∣∣∣∣
k∑
j=1

h2(Yj)

∣∣∣∣∣ = OP

(
1√
km

)
as km →∞.

Assumption 3.12. (i) If k∗

m
→∞, assume that lim inft→∞ tρ(t) > 0.

(ii) If k∗

m
= O(1), i.e. k∗

m
< ν for all m ≥ 1 for some ν > 0, assume that there exist

t0 > ν, ε > 0 such that ρ(t) > 0 for all t ∈ (t0 − ε, t0 + ε).

Assumption 3.13. Let {Yi}i∈Z and {Zi,m}i∈Z be stationary time series that fulfill the
following assumptions for a given kernel function h.

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r∗m(Yi, Zj,m)
∣∣∣2) ≤ u(m)(k2−k1+1) for all m+k∗+1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.

(ii) 1√
m

∑m
i=1 h

∗
1,m(Yi) = Op(1) as m→∞

(iii) 1√
km

∑m+k∗+km
j=m+k∗+1 h

∗
2,m(Zj,m) = Op(1) as km →∞.

Assumption 4.4. (i) If k∗

m
→∞, assume that lim inft→∞ tρ(t) > 0.

(ii) If k∗

m
= O(1), i.e. k∗

m
< ν for all m ≥ 1 for some ν > 0, assume that there exist

t0 > ν, ε > 0 such that ρ(t) > 0 for all t ∈
(
t0
h
− ε, t0

h
+ ε
)
.

A.2. Stopping Time

Assumption 5.1.

(i) ∆m = O(1).

(ii)
√
m|∆m| → ∞.

(iii) There exists a λ > 0 such that k∗ = [λmβ], 0 ≤ β < 1. This can be divided into
the following cases:

(I) mβ(1−γ)−1/2+γ|∆m| → 0,

(II) mβ(1−γ)−1/2+γ|∆m| → C1λ
γ−1 ∈ (0,∞),

(III) mβ(1−γ)−1/2+γ|∆m| → ∞.

Assumption 5.2. Let {Yi}i∈Z and {Zi,m}i∈Z be stationary time series that fulfill the
following assumptions for a given kernel function h.
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A.2. Stopping Time

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r∗m(Yi, Zj,m)
∣∣∣2) ≤ u(m)(k2−k1+1) for all m+k∗+1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.

(ii)
∣∣∣ 1√

m

∑m
i=1 h

∗
1,m(Yi)

∣∣∣ = OP (1).

(iii) For all 0 ≤ α < 1
2
the following Hajek-Renyi-type inequality holds

sup
1≤l≤lm

1

m
1
2
−αlα

∣∣∣∣∣
m+k∗+l∑

j=m+k∗+1

h∗2,m(Zj,m)

∣∣∣∣∣ = OP (1) as lm →∞.

(iv) The following functional central limit theorem is satisfied for km →∞ 1√
km

[kmt]∑
j=1

(h2(Ym+j), h
∗
2,m(Zm+k∗+j,m)) : 0 < t ≤ 1

 D→ {(W (t),W ∗(t)) : 0 < t ≤ 1} ,

where {(W (t),W ∗(t)) : 0 < t ≤ T} is a bivariate Wiener process with mean zero
and covariance matrix

Σ =

(
σ2 ρ̃
ρ̃ σ∗2

)
with σ2 =

∑
h∈ZCov(h2(Y0), h2(Yh)), σ

∗2 =
∑

h∈ZCov(h∗2,m(Z0,m), h∗2,m(Zh,m)).

Assumption 5.13.

(i) There exists a λ > 0 such that k∗ = [λmβ] with some β > 1.

(ii) ∆m = O(1).

(iii) limm→∞
cm√
m|∆m| = 0.

Assumption 5.14.

(i) cm →∞ and lim supm→∞

∣∣∣ s1,mcm ∣∣∣ < 1.

(ii) s∗1,m
s1,m

= O(1) and 1
s1,m

= O(1).

(iii) limm→∞
|s1,m|√
m|∆m| = limm→∞

|s∗1,m|√
m|∆m| = 0.

Assumption 5.15. Let {Yi}i∈Z and {Zi,m}i∈Z be stationary time series that fulfill the
following assumptions for a given kernel function h.

(i) E

(∣∣∣∑m
i=1

∑k2
j=k1

r∗m(Yi, Zj,m)
∣∣∣2) ≤ u(m)(k2−k1+1) for all m+k∗+1 ≤ k1 ≤ k2

with u(m)
m2−2γ log(m)2 → 0 and γ as in Assumption 3.2.
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Assumptions

(ii) sup1≤l≤lm
1√
lm

∑m+k∗+l
j=m+k∗+1 h

∗
2,m(Zj,m) = OP (1) as lm →∞.

(iii) 1√
km

∑km
j=1 h2(Yj)

D→ N(0, σ2) as km →∞.

Assumption 5.25.

(i) There exists a λ > 0 such that k∗ = [λm].

(ii) ∆m = O(1).

(iii) limm→∞
cm√
m|∆m| = 0.

Assumption 5.26.

(i) cm →∞ and lim supm→∞

∣∣∣ s1,mcm ∣∣∣ < 1 + 1
λ
.

(ii) s∗1,m
s1,m

= O(1) and 1
s1,m

= O(1).

(iii) limm→∞
|s1,m|√
m|∆m| = limm→∞

|s∗1,m|√
m|∆m| = 0.
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B. Results from Probability Theory

Lemma B.1. Let {X(m, k)} and {Y (m, k)} be sequences of random variables with

sup
k≥1
|X(m, k)− Y (m, k)| P→ 0

and
sup
k≥1
|Y (m, k)| D→ Y

as m→∞ for a random variable Y. Then, it holds

sup
k≥1
|X(m, k)| D→ Y as m→∞

Proof. With the reverse triangle inequality it holds∣∣∣∣sup
k≥1
|X(m, k)| − sup

k≥1
|Y (m, k)|

∣∣∣∣ ≤ sup
k≥1
|X(m, k)− Y (m, k)| = oP (1).

The assertion follows with Slutsky’s Theorem.

Lemma B.2. Assume that it holds for any τ > 0

(i) supk>τm

∣∣∣X̃(m,T, k)−X(m, k)
∣∣∣ = oP (1) as T →∞ uniformly in m,

(ii) supt>τ

∣∣∣Ỹ (t, T )− Y (t)
∣∣∣ = oP (1) as T →∞,

(iii) supk>τm X̃(m,T, k)
D→ supt>τ Ỹ (t, T ) as m→∞ for T fixed

as well as

(iv) sup1≤k≤τmX(m, k) = oP (1) as τ → 0 uniformly in m,

(v) sup0<t≤τ Y (t) = oP (1) as τ → 0,

where Y (t) and X(m, k) are positive. Given that the distribution function of supt>τ Ỹ (t, T )
is continuous for all T ∈ N, τ > 0 it holds under the above assumptions that

sup
k≥1

X(m, k)
D→ sup

t>0
Y (t) as m→∞.
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Results from Probability Theory

Proof. Consider ε > 0 arbitrary but fixed.
By (i) and (ii) we get that for fixed τ, δ > 0 there exist T1 = T1(ε, δ, τ), T2 = T2(ε, δ, τ) ∈
N such that

P

(∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
≤P

(
sup
k>τm

∣∣∣X̃(m,T, k)−X(m, k)
∣∣∣ > δ

)
< ε for all T ≥ T1,m ∈ N,

(B.1)

P

(∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

)
≤P

(
sup
t>τ

∣∣∣Ỹ (t, T )− Y (t)
∣∣∣ > δ

)
< ε for all T ≥ T2,m ∈ N.

(B.2)

By (iii) and the continuity of the distribution function of supt>τ Ỹ (t, T ) we get that for
fixed T ∈ N, τ > 0 there exists an M0 = M0(T, ε, τ) ∈ N

sup
z∈R

∣∣∣∣P ( sup
k>τm

X̃(m,T, k) ≤ z

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z

)∣∣∣∣ < ε for all m ≥M0. (B.3)

If we now choose T ≥ max(T1, T2), (B.1) and (B.2) hold for all m ∈ N. Given that the
distribution function of supt>τ Ỹ (t, T ) is continuous, there exists a δ0 > 0 with∣∣∣∣P (sup

t>τ
Ỹ (t, T ) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣ < ε for all δ ≤ δ0, z ∈ R.

(B.4)
We choose a δ ≤ δ0. According to (B.3), for the chosen T there exists an M0 ∈ N such
that it holds ∣∣∣∣P ( sup

k>τm
X̃(m,T, k) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

≤
∣∣∣∣P ( sup

k>τm
X̃(m,T, k) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z + δ

)∣∣∣∣
+

∣∣∣∣P (sup
t>τ

Ỹ (t, T ) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

<2ε for all m ≥M0,

(B.5)

∣∣∣∣P ( sup
k>τm

X̃(m,T, k) ≤ z − δ
)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z + δ

)∣∣∣∣
≤
∣∣∣∣P ( sup

k>τm
X̃(m,T, k) ≤ z − δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

+

∣∣∣∣P (sup
t>τ

Ỹ (t, T ) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)∣∣∣∣

<2ε for all m ≥M0.

(B.6)
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Moreover, it holds

P

(
sup
k>τm

X(m, k) ≤ z

)
=P

(
sup
k>τm

X(m, k) ≤ z,

∣∣∣∣ sup
k>τm

X(m, k)− sup
k>τm

X̃(m,T, k)

∣∣∣∣ ≤ δ

)
+ P

(
sup
k>τm

X(m, k) ≤ z,

∣∣∣∣ sup
k>τm

X(m, k)− sup
k>τm

X̃(m,T, k)

∣∣∣∣ > δ

)
≤P

(
sup
k>τm

X̃(m,T, k) ≤ z + δ

)
+ P

(∣∣∣∣ sup
k>τm

X(m, k)− sup
k>τm

X̃(m,T, k)

∣∣∣∣ > δ

)
.

Switching the roles of supk>τmX(m, k) and supk>τm X̃(m,T, k) we get

P

(
sup
k>τm

X(m, k) ≤ z

)
≥P

(
sup
k>τm

X̃(m,T, k) ≤ z − δ
)
− P

(∣∣∣∣ sup
k>τm

X(m, k)− sup
k>τm

X̃(m,T, k)

∣∣∣∣ > δ

)
.

Lower and upper bounds for P (supt>τ Y (t) ≤ z) with respect to Ỹ (t, T ) can be ob-
tained analogously. Together with (B.4),(B.5) and (B.6), this leads to

P

(
sup
k>τm

X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z

)
≤P

(
sup
k>τm

X̃(m,T, k) ≤ z + δ

)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z − δ
)

+ P

(∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
+ P

(∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

)
<4ε for all m ≥M0

(B.7)

and

P

(
sup
k>τm

X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z

)
≥P

(
sup
k>τm

X̃(m,T, k) ≤ z − δ
)
− P

(
sup
t>τ

Ỹ (t, T ) ≤ z + δ

)
− P

(∣∣∣∣ sup
k>τm

X̃(m,T, k)− sup
k>τm

X(m, k)

∣∣∣∣ > δ

)
− P

(∣∣∣∣sup
t>τ

Ỹ (t, T )− sup
t>τ

Y (t)

∣∣∣∣ > δ

)
>− 4ε for all m ≥M0.

(B.8)

Hence, we get∣∣∣∣P ( sup
k>τm

X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z

)∣∣∣∣ < 4ε for all m ≥M0 (B.9)
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By (iv) and (v) there exist τ1(z, ε), τ2(z, ε) ∈ Q such that

P

(
sup

1≤k≤τm
X(m, k) > z

)
< ε for all τ ≤ τ1,m ∈ N, (B.10)

P

(
sup

0<t≤τ
Y (t) > z

)
< ε for all τ ≤ τ2,m ∈ N, (B.11)

We choose a τ ≤ min(τ1, τ2). Equation (B.10) and (B.11) are fulfilled for this fixed τ
and all m ∈ N. For this chosen τ we can find an M0 ∈ N as described above such that
(B.9) holds. Hence, we obtain∣∣∣∣P (sup

k≥1
X(m, k) ≤ z

)
− P

(
sup
t>0

Y (t) ≤ z

)∣∣∣∣
=

∣∣∣∣P (max

(
sup

1≤k≤τm
X(m, k), sup

k>τm
X(m, k)

)
≤ z

)
− P

(
max

(
sup

0<t≤τ
Y (t), sup

t>τ
Y (t)

)
≤ z

)∣∣∣∣
=

∣∣∣∣P ( sup
1≤k≤τm

X(m, k) ≤ z, sup
k>τm

X(m, k) ≤ z

)
− P

(
sup

0<t≤τ
Y (t) ≤ z, sup

t>τ
Y (t) ≤ z

)∣∣∣∣
=

∣∣∣∣P ( sup
k>τm

X(m, k) ≤ z

)
− P

(
sup

1≤k≤τm
X(m, k) > z, sup

k>τm
X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z

)
+ P

(
sup

0<t≤τ
Y (t) > z, sup

t>τ
Y (t) ≤ z

)∣∣∣∣
≤
∣∣∣∣P ( sup

k>τm
X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z

)∣∣∣∣
+ P

(
sup

1≤k≤τm
X(m, k) > z, sup

k>τm
X(m, k) ≤ z

)
+ P

(
sup

0<t≤τ
Y (t) > z, sup

t>τ
Y (t) ≤ z

)
≤
∣∣∣∣P ( sup

k>τm
X(m, k) ≤ z

)
− P

(
sup
t>τ

Y (t) ≤ z

)∣∣∣∣
+ P

(
sup

1≤k≤τm
X(m, k) > z

)
+ P

(
sup

0<t≤τ
Y (t) > z

)
< 6ε for all m ≥M0

(B.12)

and thus the assertion.

Lemma B.3. For two sequences of events Am and Bm with P (Bm)→ 1 it holds

(i) P (Am) = P (Am ∩Bm) + o(1).

(ii) P (Am) = P (Am|Bm) + o(1)

Proof. It holds with the rule of total probability

P (Am) = P (Am ∩Bm) + P (Am ∩Bm).

(i) With P (Bm) → 0 as m → ∞ it follows P (Am ∩ Bm) ≤ P (Bm) → 0 as m → ∞
and thus the assertion.

(ii ) The assertion follows with (i) and P (Am∩Bm) = P (Am|Bm)P (Bm) = P (Am|Bm)(1+
o(1)) = P (Am|Bm) + o(1).
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C. Useful Inequalities

Theorem C.1. (Billingsley, 1999, Theorem 10.2)
Let Y1, . . . , Yn be random variables and Sk = Y1 + . . . + Yk with S0 = 0. Suppose that
α > 1

2
and β ≥ 0 and that u1, . . . , un are nonnegative numbers such that

P (|Sj − Si| ≥ ε) ≤ 1

ε4β

(∑
i<l≤j

ul

)2α

, 0 ≤ i ≤ j ≤ n,

for ε > 0. Then

P

(
max

0≤k≤n
|Sk| ≥ ε

)
≤ K

ε4β

(∑
0<l≤n

ul

)2α

for ε > 0, where K = K(α, β) depends only on α and β.

Theorem C.2. Hájek & Rényi (1955)
Let {Yj : j ≥ 1} be a sequence of mutually independent random variables with E(Yk) = 0
and finite variances E(Y 2

k ) = σ2
k for k = 1, 2, . . . and Sk = Y1 + . . .+Yk. Then, it holds

for a positive and non-increasing sequence {ck}k=1≥1 that for any ε > 0 and any positive
integers n1 and n2, n1 < n2,

P

(
max

n1≤k≤n2

ck|Sk| ≥ ε

)
≤ 1

ε2

(
c2
n1

n1∑
k=1

σ2
k +

n2∑
k=n1+1

c2
kσ

2
k

)
.

The following theorems are generalizations of the results in Appendix B in Kirch (2006).

Theorem C.3. Let {Yj : j ≥ 1} be a sequence of random variables such that for all
l1, l2 ≥ 1, l1 ≤ l2,

E |Sl1,l2|γ ≤ C|l2 − l1 + 1|ϕ

for some γ ≥ 1, ϕ > 1 and some constant C>0, where Sl1,l2 =
∑l2

j=l1
Yj. Then, for any

positive and non-decreasing sequence 0 < bp ≤ bp+1 ≤ . . . ≤ bq where p, q ≥ 1, q ≥ p,
there exists a constant with A(ϕ, γ) ≥ 1 with

E

(
max
p≤k≤q

|S1,k|
bk

)γ
≤ CA(ϕ, γ)

(
p− 1

q − p+ 1
(p− 1)ϕ−1 + (q − p+ 1)ϕ−1

) q∑
k=p

b−γk .

Proof. For p ≤ k ≤ q we consider the following decomposition

S1,k = S1,p−1 + Sp,k
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and with Minkowski’s inequality we get(
E

(
max
p≤k≤q

|S1,k|
bk

)γ) 1
γ

≤
(

E

((
|S1,p−1|
bp

)γ)) 1
γ

+

(
E

(
max
p≤k≤q

|Sp,k|
bk

)γ) 1
γ

(C.1)

It holds
E

(
|S1,p−1|
bp

)γ
≤ Cb−γp (p− 1)ϕ. (C.2)

Theorem B.1. in Kirch (2006) and the stationarity yield

E

(
max
p≤k≤q

|Sp,k|
bk

)γ
= E

(
max

1≤l≤q−p+1

|Sp,p+l−1|

bp+l−1

)γ
= E

(
max

1≤l≤q−p+1

|S1,l|
bp+l−1

)γ
≤CA(ϕ, γ)(q − p+ 1)ϕ−1

q−p+1∑
l=1

b−γp+l−1 = CA(ϕ, γ)(q − p+ 1)ϕ−1

q∑
k=p

b−γk . (C.3)

with a constant A(ϕ, γ) ≥ 1. Combining (C.1) with (C.2) and (C.3) we obtain(
E

(
max
p≤k≤q

|S1,k|
)γ) 1

γ

≤
(
Cb−γp (p− 1)ϕ

) 1
γ +

(
CA(ϕ, γ)(q − p+ 1)ϕ−1

q∑
k=p

b−γk

) 1
γ

≤

(
C(p− 1)ϕ−1 p− 1

q − p+ 1

q∑
k=p

b−γk

) 1
γ

+

(
CA(ϕ, γ)(q − p+ 1)ϕ−1

q∑
k=p

b−γk

) 1
γ

≤2

(
CA(ϕ, γ)

(
p− 1

q − p+ 1
(p− 1)ϕ−1 + (q − p+ 1)ϕ−1

) q∑
k=p

b−γk

) 1
γ

and thus the assertion.

Theorem C.4. Let {Yj : j ≥ 1} be a sequence of random variables. Assume that there
exist non-negative numbers ap, . . . , aq and a fixed γ > 0 such that for all p ≤ q̃ ≤ q

E

(
max
p≤k≤q̃

|Sk|
)γ
≤

q̃∑
k=p

ak.

Then it holds for any positive and non-decreasing sequence 0 < bp ≤ bp+1 ≤ . . . ≤ bq

E

(
max
p≤k≤q

|Sk|
bk

)γ
≤ 4

q∑
k=p

ak
bγk
.

Proof. This proof is similar to the proof of Fazekas & Klesov (2000)[Theorem 1.1].
Without loss of generality we can assume that bp = 1. For c = 2

1
γ consider the sets

Ai =
{
k : ci ≤ bk < ci+1

}
, i = 0, 1, 2, . . . .
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The index of the last nonempty Ai is given by i(q) = max{i : Ai 6= ∅}. For i = 0, 1, 2, . . .
we define

k(i) =

{
max{k : k ∈ Ai}, if Ai 6= ∅,
k(i− 1) if Ai = ∅

and set k(−1) = 0. Let

δl =

{∑k(l)
j=k(l−1)+1 aj, if Ai 6= ∅,

0, if Ai = ∅

for i = 0, 1, 2, . . .. Hence, we get

E

(
max
p≤k≤q

|Sk|
bk

)γ
≤

i(q)∑
i=0

E

(
max
l∈Ai

|Sl|
bl

)γ
≤

i(q)∑
i=0

c−iγ E

(
max
l∈Ai
|Sl|
)γ

≤
i(q)∑
i=0

c−iγ E

(
max

p≤k≤k(i)
|Sk|

)γ
≤

i(q)∑
i=0

c−iγ
k(i)∑
k=p

ak

=

i(q)∑
i=0

c−iγ
i∑
l=0

δl =

i(q)∑
l=0

δl

i(q)∑
i=l

c−iγ ≤
i(q)∑
l=0

δl

∞∑
i=l

c−iγ

=

i(q)∑
l=0

δl

∞∑
i=0

c−(i+l)γ =
1

1− c−γ

i(q)∑
l=0

δlc
−lγ

=
1

1− c−γ

i(q)∑
l=0

c−lγ
k(l)∑

k=k(l−1)+1

ak

≤ cγ

1− c−γ

i(q)∑
l=0

k(l)∑
k=k(l−1)+1

ak
bγk

= 4

q∑
k=p

ak
bγk
.

Theorem C.5. Let {Yj : j ≥ 1} be a sequence of random variables such that for all
l1, l2 ≥ 1, l1 ≤ l2,

E |Sl1,l2|γ ≤ C|l2 − l1 + 1|ϕ

for some γ ≥ 1, ϕ > 1 and some constant C>0, where Sl1,l2 =
∑l2

j=l1
Yj. Then,

for any positive and and non-decreasing sequence 0 < bp ≤ bp+1 ≤ . . . ≤ bq where
p, q ≥ 1, q ≥ p, there exists a constant with A(ϕ, γ) ≥ 4 with

E

(
max
p≤k≤q

|S1,k|
bk

)γ
≤ CA(ϕ, γ)

q∑
k=p

(p− 1)ϕ + (k − p+ 1)ϕ−1

bk
.

Proof. With bk ≡ 1 in Theorem C.3 we obtain

E

(
max
p≤k≤q̃

|S1,k|
)γ
≤ CÃ(ϕ, γ) ((p− 1)ϕ + (q̃ − p+ 1)ϕ)

≤CϕÃ(ϕ, γ)

q̃−p+1∑
k=1

(
(p− 1)ϕ + kϕ−1

)
= CϕÃ(ϕ, γ)

q̃∑
l=p

(
(p− 1)ϕ + (l − p+ 1)ϕ−1

)
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Useful Inequalities

as
∑q̃−p+1

k=1 kϕ−1 ≥
∫ q̃−p+1

0
xϕ−1dx = 1

ϕ
(q̃−p+1)ϕ and (p−1)ϕ ≤

∑q̃−p+1
k=1 (p−1)ϕ. Now,

we get with Theorem C.4

E

(
max
p≤k≤q

|S1,k|
bk

)γ
≤ 4CϕÃ(ϕ, γ)

q∑
k=p

(p− 1)ϕ + (k − p+ 1)ϕ−1

bk
.

Theorem C.6. Let {Yj : j ≥ 1} be a sequence of random variables such that for all
l1, l2 ≥ 1, l1 ≤ l2,

E |Sl1,l2|γ ≤ C(l2 − l1 + 1)

for some γ > 1 and some constant C>0, where Sl1,l2 =
∑l2

j=l1
Yj. Then it holds for all

p, q ≥ 1, p ≤ q,

E

(
max
p≤k≤q

|S1,k|
)γ
≤ C

(
log2

(
2( p−1

q−p+1)
γ

+1(q − p+ 1)
))γ

(q − p+ 1).

Proof. It holds
E |S1,p−1|γ ≤ C(p− 1). (C.4)

Theorem 3 in Móricz (1976) yields

E

(
max
p≤k≤q

|Sp,k|
)γ

= E

(
max

1≤l≤q−p+1
|Sp,p−1+l|

)γ
≤ C(log2(2(q−p+1)))γ(q−p+1) (C.5)

Combining (C.1) with (C.4) and (C.5) we obtain(
E

(
max
p≤k≤q

|S1,k|
)γ) 1

γ

≤ (C(p− 1))
1
γ + log2(2(q − p+ 1)) (C(q − p+ 1))

1
γ

=

((
p− 1

q − p+ 1

) 1
γ

+ log2(2(q − p+ 1))

)
(C(q − p+ 1))

1
γ

= log2

(
2( p−1

q−p+1)
γ

+1(q − p+ 1)
)

(C(q − p+ 1))
1
γ

and thus the assertion.

Theorem C.7. Let {Yj : j ≥ 1} be a sequence of random variables such that for all
l1, l2 ≥ 1, l1 ≤ l2,

E |Sl1,l2|γ ≤ C(l2 − l1 + 1)

for some γ ≥ 1 and some constant C>0, where Sl1,l2 =
∑l2

j=l1
Yj. Then for any positive

and non-increasing sequence bp ≥ bp+1 ≥ . . . ≥ bq > 0 where p, q ≥ 1, q ≥ p, it holds

E

(
max
p≤k≤q

|S1,k|
bk

)γ
≤ 4C

(
log2

(
2( p−1

q−p+1)
γ

+1(q − p+ 1)
))γ q∑

j=p

b−γj .

Proof. The assertion follows by first applying Theorem C.6 and then Theorem C.4 with
ak = C

(
log2

(
2( p−1

q−p+1)
γ

+1(q − p+ 1)
))γ

, k = p, . . . , q.

Corollary C.8. If q ≥ 2p− 2 Theorem C.7 implies

E

(
max
p≤k≤q

|S1,k|
bk

)γ
≤ 4C (log2 (4(q − p+ 1)))γ

q∑
j=p

b−γj .
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D. Functionals of Mixing Processes

Lemma D.1. (Borovkova et al. , 2001, Lemma 2.24) Let {Yi}i∈Z be a centered 1-
approximating functional with approximating constants {ak}k≥0 of an absolutely regu-
lar process with mixing coefficients {β(k)}k≥0. Suppose that one of the following two
conditions holds:

a) Y0 is bounded a.s. and
∑∞

k=0 k
2(ak + β(k)) <∞

b) E|Y0|4+δ <∞ and
∑∞

k=0 k
2

(
a

δ
3+δ

k + β
δ

4+δ (k)

)
<∞.

Then, there exists a constant C such that it holds for Sk = Y1 + . . .+ Yk

E(S4
k) ≤ Ck2.

Proposition D.2. (Borovkova et al. , 2001, Proposition 2.11.) Let {Yi}i∈Z be a
centered 1-approximating functional of {Zi}i∈Z with approximating constants {ak}k≥0.
Then {u(Yi)}i∈Z is also a 1-approximating functional of {Zi}i∈Z with approximating
constants

a′k = Φ(
√

2ak) + 2‖u(Y0)‖2+δ(2ak)
1+δ
4+2δ ,

if ‖u(Y0)‖2+δ <∞, for some δ > 0. If u is bounded, the same holds with

a′k = Φ(
√

2ak) + 2‖u(Y0)‖2+δ

√
2ak.

Lemma D.3. (Borovkova et al. , 2001, Lemma 2.15.) Let h be a p-continuous kernel
and define

h1(x) =

∫
R
h(x, y)dF (y).

Then, h1 is also p-continuous.

Proposition D.4. Let {Yi : i ≥ 1} be a 1-approximating functional with approximating
constants {ak}k≥0 of an absolutely regular process with mixing coefficients {β(k)}k≥0.
Furthermore, let h1(·), h2(·) be bounded 1-continuous functions with

E(h1(Y1)) = E(h2(Y1)) = 0

such that ∑
k≥1

k2 (β(k) +
√
ak + φ(

√
ak)) <∞. (D.1)

Then, the functional central limit theorem in Assumption 3.3 (ii) holds.
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Functionals of Mixing Processes

Proof. Proposition 2 in Dehling et al. (2015b) can be obtained in the same way for
{0 ≤ t ≤ T}, T > 0. Regarding the summability condition it should be noted that in the
proof of Proposition 2 in Dehling et al. (2015b) Lemma D.1 a) is applied to {h(Yi) : i ≥
1} which, with Proposition D.2, has approximation constants a′k = Φ(

√
2ak) + C

√
ak.

Hence, a stronger assumption than (53) in Dehling et al. (2015b) is needed which is
given in (D.1).
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E. Further Simulations
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Further Simulations
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Figure E.1.: Estimated densities of the stopping time for the CUSUM kernel (solid
lines) and the Wilcoxon kernel (dashed lines) for independent t(3)-distributed

observations.
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Notation
Probability Theory
a.s. almost surely
i.i.d. independent and identically distributed
D→ convergence in distribution
Dd[0,1]−→ weak convergence in the d-dimensional Skorohod space Dd[0, 1]
P→ convergence in probability
oP , OP Landau symbolds (see Van der Vaart (2000))

Sequential Testing
m length of the historic data set
k monitoring time
k∗ change point
Γ(m, k) monitoring statistic
w(m, k) weight function
supk≥1w(m, k) |Γ(m, k)| test statistic
τm stopping time
c, cα, cm critical value
h kernel function
h1, h2 (h∗1, h

∗
2,m) functions of Hoeffding’s decomposition under H0

(after the change)
r (r∗m) remainder in Hoeffding’s decomposition under H0

(after the change)
θ (θ∗m) expected value of the kernel under H0

(after the change)
∆m change in the kernel function

Functional Data
n sample size
Z compact set∫

integral on Z
L2(Z) set of square integrable functions on Z
‖·‖2 norm of L2(Z)
< ·, · > inner product of L2(Z)
| · | Euclidean norm
Ct covariance operator
ct covariance kernel
ĉn empirical covariance function
δ change in the covariance kernel
Ωn,Λn test statistics
Σ0 long-run covariance matrix under H0
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