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List of Symbols and Abbreviations (general theory)

N natural numbers, i.e., N := {1, 2, 3, . . .},

l,m, n ∈ N three specific natural numbers,

R real numbers,

R+ nonnegative real numbers,

R++ positive real numbers,

∅ empty set,

(E, T ) real topological linear space E with underlying topology T ,

0E origin in E (however, in most cases we simply write 0),

dim E dimension of the linear space E,

Rn n-dimensional Euclidean space (for notational convenience, we use
the notation x = (x1, · · · , xn) for a vector x ∈ Rn),

Ω1,Ω2 nonempty sets in E,

(Ω1)c complement of Ω1 in E, i.e., (Ω1)c := E \ Ω1,

Ω1 ( Ω2 Ω1 is a proper subset of Ω2,

Ω1 ⊆ Ω2 Ω1 ( Ω2 or Ω1 = Ω2,

Ω1 * Ω2 Ω1 is not a subset of Ω2,

Ω1 ∪ Ω2 unification of the sets Ω1 and Ω2,

Ω1 ∩ Ω2 intersection of the sets Ω1 and Ω2,

Ω1 \ Ω2 set of all elements from Ω1 which do not belong to Ω2,

Ω1 + Ω2 algebraic sum of two sets Ω1 and Ω2, i.e.,
Ω1 + Ω2 := {x1 +x2 | x1 ∈ Ω1, x2 ∈ Ω2}, where Ω1 + ∅ = ∅+ Ω2 = ∅,

α · Ω1 multiplication of the set Ω1 with a scalar α ∈ R, i.e.,
α · Ω1 := {αx | x1 ∈ Ω1}, where α · ∅ = ∅,

R+ · Ω1 R+ · Ω1 :=
⋃
α∈R+

α · Ω1,

Ω1 − Ω2 Ω1 − Ω2 := Ω1 + (−Ω2) = {x1 − x2 | x1 ∈ Ω1, x2 ∈ Ω2},

x+ Ω1 x+ Ω1 := {x}+ Ω1 = {x+ x1| x1 ∈ Ω1}, x ∈ E,

Ω1 × Ω2 Cartesian product of the sets Ω1 and Ω2,

conv Ω1 convex hull of the set Ω1,

aff Ω1 affine hull of the set Ω1,

bd Ω1 topological boundary of the set Ω1,

int Ω1 topological interior of the set Ω1,

rint Ω1 relative topological interior of the set Ω1,



cl Ω1 topological closure of the set Ω1, cl Ω1 = (int Ω1) ∪ (bd Ω1),

cor Ω1 algebraic interior of the set Ω1, i.e.,
cor Ω1 := {x ∈ Ω1 | ∀ v ∈ E ∃ δ ∈ R++ : x+ [0, δ] · v ⊆ Ω1},

cone Ω1 cone generated by the set Ω1, i.e., cone Ω1 := R+ · Ω1,

card Ω1 cardinality of the set Ω1,

[x, x′] closed line segment between the points x, x′ ∈ E, i.e,
[x, x′] := {λx+ (1− λ)x′ | 0 ≤ λ ≤ 1},

]x, x′[ open line segment between the points x, x′ ∈ E, i.e.,
]x, x′[ := [x, x′] \ {x, x′},

[x, x′[, ]x, x′] half open line segments between the points x, x′ ∈ E, i.e.,
[x, x′[ := [x, x′] \ {x′} and ]x, x′] := [x, x′] \ {x},

d metric d : E×E→ R,

|| · || norm || · || : E→ R,

〈·, ·〉 inner product 〈·, ·〉 : E×E→ R,

|| · ||1 Manhattan norm || · ||1 : Rn → R (also known as l1 norm or
Lebesgue norm),

|| · ||2 Euclidean norm || · ||2 : Rn → R (also known as l2 norm),

|| · ||∞ Maximum norm || · ||∞ : Rn → R (also known as l∞ norm or
Chebyshev norm),

µΩ1 Minkowski gauge associated to the set Ω1,
µΩ1(·) = inf{λ ∈ R+ | · ∈ λ · Ω1},

dΩ1 Distance function with respect to the set Ω1,
dX(·) = inf{||x1 − ·|| | x1 ∈ Ω1},

4Ω1 signed distance function or Hiriart-Urruty function,
4Ω1 := dΩ1 − dE\Ω1 ,

ϕΩ1,k Tammer-Weidner scalarizing function,
ϕΩ1,k(·) := inf{s ∈ R | · ∈ sk + Ω1}, k ∈ E,

IΩ1 indicator function with respect to Ω1, i.e., IΩ1(x1) := 0 for x1 ∈ Ω1,
otherwise, IΩ1(x1) := +∞ for x1 ∈ E \ Ω1,

Proj
||·||
Ω1 (x) projection of x ∈ E onto Ω1 with respect to || · ||, i.e.,

Proj
||·||
Ω1 (x) := argmin{||x1 − x|| | x1 ∈ Ω1},

Proj
||·||
Ω1 (Ω2) projection of Ω2 onto Ω1 with respect to || · ||, i.e.,

Proj
||·||
Ω1 (Ω2) :=

⋃
x2∈Ω2 ProjΩ1(x2),

(E, d) metric space (E, d),

(E, || · ||) normed space (E, || · ||),

(E, 〈·, ·〉) inner product space / pre Hilbert space (E, 〈·, ·〉),

(Rn, 〈·, ·〉) Hilbert space (Rn, 〈·, ·〉) with 〈x, x′〉 :=
∑n
i=1 xix

′
i for

x := (x1, . . . , xn), x′ := (x′1, . . . , x
′
n) ∈ Rn,

V ⊆ E neighborhood of x ∈ E (relative to the topology T ), i.e.,
∃O ∈ T : x ∈ O ⊆ V ,

V(x) family of all neighborhoods of x ∈ E,

Bd(x, ε) open unit ball in (E, d) at x ∈ E of radius ε ∈ R++, i.e.,
Bd(x, ε) := {x′ ∈ E | d(x, x′) < ε},



Bd(x, ε) closed unit ball in (E, d) at x ∈ E of radius ε ∈ R++, i.e.,
B(x, ε) := {x′ ∈ E | d(x, x′) ≤ ε},

Im set of indices, Im := {1, 2, . . . ,m},
I subset of indices of the set Im, ∅ 6= I ⊆ Im,

D nonempty set in E,

Ω nonempty subset of D,

Y nonempty, convex subset of D,

X nonempty, closed set X ( Y ,

D1, · · · , Dl Di ( E, i ∈ Il, are closed, convex sets with nonempty interiors,

h extended real-valued objective function h : D → R ∪ {+∞},
domh effective domain of h, i.e., domh := {x ∈ D | h(x) < +∞},
epi(Ω, h) epigraph of h (with respect to the set Ω), i.e.,

epi(Ω, h) := {(x, r) ∈ Ω× R | h(x) ≤ r},
L≤ (Ω, h, s) lower-level set of h to the level s ∈ R, i.e.,

L≤ (Ω, h, s) := {x ∈ Ω | h(x) ≤ s)},
L< (Ω, h, s) strict lower-level set of h to the level s ∈ R, i.e.,

L< (Ω, h, s) := {x ∈ Ω | h(x) < s},
L= (Ω, h, s) level line of h to the level s ∈ R, i.e.,

L= (Ω, h, s) := {x ∈ Ω | h(x) = s},
L≥ (Ω, h, s) upper-level set of h to the level s ∈ R, i.e.,

L≥ (Ω, h, s) := {x ∈ Ω | h(x) ≥ s},
L> (Ω, h, s) strict upper-level set of h to the level s ∈ R, i.e.,

L> (Ω, h, s) := {x ∈ Ω | h(x) > s},
Sol(Ω | h) set of all minimal solutions of the problem h(x)→ minx∈Ω, i.e.,

Sol(Ω | h) := argminx∈Ω h(x),

Solu(Ω | h) if card(Sol(Ω | h)) = 1, then Solu(Ω | h) := Sol(Ω | h), otherwise
Solu(Ω | h) := ∅,

f vector-valued objective function f = (f1, . . . , fm) : D → Rm,

h ◦ f composition of the functions f = (f1, . . . , fm) : D → Rm and
h : Rm → R,

f [Ω] image of f over Ω, i.e., f [Ω] := {f(x) ∈ Rm | x ∈ Ω},
fi real-valued component function of f , i ∈ Im,

fI vector-valued objective function fI = (fi1 , . . . , fik) : D → Rk, where
I = {i1, . . . , ik} ⊆ Im with i1 < . . . < ik and k := |I|,

φ penalization function φ : D → R,

f⊕ penalized vector-valued objective function f⊕ = (f, φ) : D → Rm+1,

f⊕I penalized vector-valued objective function f⊕I = (fI , φ) : D → Rk+1,

S<(Ω, f, x) intersection of strict lower-level sets of the component functions of f
at x ∈ Ω, i.e., S<(Ω, f, x) :=

⋂
i∈Im

L<(Ω, fi, fi(x)),

S=(Ω, f, x) intersection of level lines of the component functions of f at x ∈ Ω,
i.e., S=(Ω, f, x) :=

⋂
i∈Im

L=(Ω, fi, fi(x)),

S≤(Ω, f, x) intersection of lower-level sets of the component functions of f at
x ∈ Ω, i.e., S≤(Ω, f, x) :=

⋂
i∈Im

L≤(Ω, fi, fi(x)),



(PΩ) constrained multi-objective optimization problem f(x)→ minx∈Ω,

(sλPΩ) scalar problem obtained by applying the Weighted Sum
Scalarization Method to the multi-objective optimization problem
(PΩ), λ ∈ Rm+ \ {0},

(PX) constrained multi-objective optimization problem f(x)→ minx∈X
with not necessarily convex feasible set X,

(PY ) multi-objective optimization problem f(x)→ minx∈Y with convex
feasible set Y ,

(P⊕Y ) penalized multi-objective optimization problem f⊕(x)→ minx∈Y
with convex feasible set Y ,

F nonempty subset of Rm,

K pointed, convex cone in Rm (pointedness, i.e., K ∩ (−K) = {0};
convexity, i.e., K +K = K; cone, i.e., R+ ·K = K),

� partial ordering induced by the cone K, i.e.,
�:= {(x, x′) ∈ Rm × Rm | x′ ∈ x+K},

Rm+ natural ordering cone (nonnegative orthant) in Rm, i.e.,
Rm+ := {x ∈ Rm | ∀i ∈ Im : xi ≥ 0},

(Rm,�) Euclidean space Rm endowed with the partial ordering �,

MIN(F,K) set of minimal elements of F with respect to the cone K, i.e.,
MIN(F,K) := {y ∈ F | (y −K) ∩ F = {y} },

WMIN(F,K) set of weakly minimal elements of F with respect to the cone K
(assume that K is solid, i.e., intK 6= ∅), i.e.,
WMIN(F,K) := {y ∈ F | (y − intK) ∩ F = ∅},

Eff (Ω | f) set of Pareto efficient solutions of (PΩ), i.e.,
Eff(Ω | f) := {x ∈ Ω | f [Ω] ∩ (f(x)− (Rm+ \ {0})) = ∅},

WEff (Ω | f) set of weakly Pareto efficient solutions of (PΩ), i.e.,
WEff(Ω | f) := {x ∈ Ω | f [Ω] ∩ (f(x)− intRm+ ) = ∅},

SEff (Ω | f) set of strictly Pareto efficient solutions of (PΩ), i.e.,
SEff(Ω | f) := {x ∈ Eff(Ω | f) | card({x′ ∈ Ω | f(x′) = f(x)}) = 1},

PEff (Ω | f) set of properly Pareto efficient solutions of (PΩ) (in the sense of
Geoffrion).



List of Symbols and Abbreviations (location theory)

k, l,m, p ∈ N four specific natural numbers,

a1, . . . , am ∈ E existing (attraction) facilities,

x ∈ E new facility,

A set of all existing facilities, A := {a1, . . . , am} ⊆ E,

N (A) rectangular hull of the set A ⊆ E = R2 w.r.t. Maximum norm,

B1, · · ·Bm Bi ( E, i ∈ Im, are closed, convex sets with 0 ∈ coreBi,

η1, · · · , ηm Minkowski gauges ηi(·) := µBi(·) = inf{λ ∈ R+ | · ∈ λ ·Bi}, i ∈ Im,

ηA ηA(·) := (η1(· − a1), · · · , ηm(· − am)),

h1, · · · , hp scalar (disutility) functions of the decision maker
h1, · · · , hp : Rm+ → R,

g1, · · · , gp gi := hi ◦ ηA : E→ R, i ∈ Ip,

gA vector-valued objective function gA = (g1, · · · , gp) : E→ Rp,

g⊕A penalized vector-valued objective function
g⊕A = (g1, · · · , gp, φ) : E→ Rp+1,

(LPX(A)) constrained multi-objective composite location problem
gA(x)→ minx∈X ,

(LPE(A)⊕) penalized unconstrained multi-objective composite location problem
g⊕A(x)→ minx∈E,

(POLPX(A)) constrained point-objective location problem,

(sλPOLPX(A)) generalized Fermat-Weber problem,

(POLPE(A)⊕) penalized unconstrained point-objective location problem,

(POLP1
E(A)) unconstrained planar point-objective location problem involving the

Manhattan norm,

(sλPOLP1
R2(A)) unconstrained generalized Fermat-Weber problem involving the

Manhattan norm,

(POLP1
X(A)) constrained planar point-objective location problem involving the

Manhattan norm,

(POLP1
E(A)⊕) penalized unconstrained planar point-objective location problem

involving the Manhattan norm,

(POLP2
X(A)) constrained point-objective location problem involving a norm

induced by a scalar product in a finite-dimensional Hilbert space,

(POLP2
E(A)⊕i), i ∈ Il penalized unconstrained point-objective location problems involving

a norm induced by a scalar product in a finite-dimensional Hilbert
space,

(MOMSLPX(A)) constrained multi-objective min-sum location problem,



(MOMSLPE(A)⊕) penalized unconstrained multi-objective min-sum location problem,

(MOMMLPX(A)) constrained multi-objective min-max location problem,

(MOMMLPE(A)⊕) penalized unconstrained multi-objective min-max location problem.

(MOOMLPX(A)) constrained multi-objective ordered median location problem,

(MOOMLPE(A)⊕) penalized unconstrained multi-objective ordered median location
problem,

b1, . . . , bk ∈ E existing repulsion facilities,

B set of all existing repulsion facilities, B := {b1, . . . , bk} ⊆ E,

(POLP2
X(A,B)) constrained point-objective location problem with attraction and

repulsion involving a norm induced by a scalar product in a
finite-dimensional Hilbert space,

(POLP2
E(A,B)⊕i), i ∈ Il penalized unconstrained point-objective location problems with

attraction and repulsion involving a norm induced by a scalar
product in a finite-dimensional Hilbert space.



Introduction

In multi-objective optimization, one considers an optimization problem that consists of minimizing
a vector-valued objective function

f = (f1, · · · , fm) : E→ Rm

over a nonempty feasible set X ⊆ E, where E is a real topological linear space and f1, · · · , fm :
E→ R, m ≥ 2, are the component functions of f . Usually one looks for so-called Pareto efficient
solutions. A feasible point x ∈ X of our initial multi-objective optimization problem{

f(x) = (f1(x), · · · , fm(x))→ min w.r.t. Rm+
x ∈ X

(PX)

is said to be a Pareto efficient solution in X if

@x′ ∈ X subject to

{
∀ i ∈ Im : fi(x

′) ≤ fi(x),

∃ j ∈ Im : fj(x
′) < fj(x),

where Im = {1, 2, . . . ,m} consists of all indices of the component functions of f . The set of
Pareto efficient solutions of the problem (PX) is denoted by Eff(X | f). The solution concept of
Pareto efficiency for multi-objective optimization problems is well-studied in the literature (see,
e.g., Ehrgott [29], Eichfelder and Jahn [33], Göpfert et al. [50], and Jahn [64]) and dates back to
the fundamental works by Edgeworth [28] (1881) and Pareto [96] (1896).

In this thesis, we are interested in computing the whole set of Pareto efficient solutions of our
initial constrained multi-objective optimization problem. Clearly, this is a difficult task in general.
In order to develop effective algorithms it is very important to use structural properties of the given
problems. For that reason, we mainly focus on problems where each of the objective functions
f1, · · · , fm : E → R is generalized-convex and the feasible set X is closed but not necessarily
convex.

Generalized-convexity in multi-objective optimization

Convexity plays a crucial role in optimization theory (see, e.g., the books of convex analysis by
Hiriart-Urruty and Lemaréchal [63], Rockafellar [111] and Zălinescu [131]). In the last decades,
several new classes of functions are obtained by preserving several fundamental properties of convex
functions. The first generalization is probably due to De Finetti [23] (1949) who introduced the
notion of quasi-convexity. Further generalizations of convexity are for instance due to Arrow and
Enthoven [6] (1961), Avriel et al. [7] (1988), Fenchel [39] (1953), Hanson [61] (1964), Karamardian
[70] (1967), Mangasarian [86] (1965) and Ponstein [101] (1967). An overview on generalized-
convexity and optimization can be found in Cambini and Martein [17] and Giorgi et al. [49].

In the present thesis, the following classes of generalized-convex functions fi : E→ R will be of
special interest:

• Quasi-convex functions: The level sets of fi are convex for each level (hence the set of minimal
solutions of fi on E is a convex set in E).

• Semi-strictly quasi-convex functions: Each local minimum point of fi on E is also a global
minimum point.

1



Introduction 2

• Explicitly quasi-convex functions: Each local maximum point of fi on E is actually a global
minimum point (see Bagdasar and Popovici [8]).

Of course, as generalization of convexity, every convex function is quasi-convex, semi-strictly quasi-
convex as well as explicitly quasi-convex. Generalized convexity assumptions appear in several
branches of applications, e.g., production theory, utility theory or location theory. Cambini and
Martein [17] pointed out important applications of generalized-convexity. For instance, there are
certain relationships between the field of generalized-convexity and fractional programming (see
[17, Th. 2.3.8, Ch. 6, Ch. 7]). Moreover, in [17, Sec. 2.4], examples of quasi-concave classes of
homogeneous functions that appear frequently in economics (e.g., in utility theory and production
theory) are provided. Since maximizing a generalized-concave function is equivalent to minimizing
the negative of this function (a generalized-convex function), such functions from Economics (e.g.,
the well-known Cobb-Douglas function) are important examples for our work.

The area of multi-objective optimization has gained more and more interest, some authors
studied the role of generalized-convexity in the framework of multi-objective optimization / vector
optimization (see, e.g., Bagdasar and Popovici [9, 10], Flores-Bazán [41], Jahn and Sachs [65], Luc
[81], Mäkelä, Eronen and Karmitsa [83, 84], Malivert and Boissard [85], Popovici [102, 103, 105],
and Puerto and Rodŕıguez-Ch́ıa [110]). For certain classes of multi-objective optimization problems
it is known how to compute the whole set of Pareto efficient solutions. In most cases, one considers
a problem where the goal is to minimize a vector-valued componentwise convex function f over a
nonempty, closed, convex feasible set X. In particular, the case when the feasible set is given by
the n-dimensional Euclidean space (i.e., X = E = Rn) is often considered in the literature since
unconstrained problems can more easily be handled in comparison to constrained ones. However,
depending on the application in practice, optimization problems often involve certain constraints.

A new penalization approach in constrained multi-objective optimization

In the literature, there exist techniques for solving different classes of constrained multi-objective
optimization problems by using corresponding unconstrained problems with an objective function
that involve certain penalization terms in the component functions (see, e.g., Apetrii, Durea and
Strugariu [4], and Ye [129]), and, respectively, additional penalization functions (see, e.g., Durea,
Strugariu and Tammer [25], and Klamroth and Tind [72]).

In this thesis, we derive a new penalization approach for (generalized-convex) multi-objective
optimization problems involving not necessarily convex constraints where the vector-valued objec-
tive function is acting between a real topological linear pre-image space and a finite-dimensional
image space. Given a certain scalar-valued penalization function φ : E → R (a penalty term
concerning the set X), our aim is to study the relationships between the initial multi-objective op-
timization problem (PX) with not necessarily convex feasible set X and a penalized multi-objective
optimization problem{

f⊕(x) = (f1(x), · · · , fm(x), φ(x))→ min w.r.t. Rm+1
+

x ∈ Y
(P⊕Y )

with a new feasible set Y ⊆ E that is a convex upper set of the original feasible set X. We show
that the set of Pareto efficient solutions of the multi-objective optimization problem (PX) involving
a nonempty, closed (not necessarily convex) feasible set X, can be computed completely by using
at most two corresponding multi-objective optimization problems (namely problem (PX) with Y
in the role of X as well as problem (P⊕Y )) with a new convex feasible set Y that fulfils X ⊆ Y . Our
approach relies on the fact that the original feasible set X can be described by using level sets of
the penalization function φ.

We characterize the set of Pareto efficient solutions of generalized-convex multi-objective opti-
mization problems involving certain types of nonconvex constraints. In particular, we will consider
a feasible set that is given by the whole pre-image space E excepting some forbidden regions that
are given by convex sets (i.e., the feasible set is an intersection of so-called reverse convex sets).
Such a feasible set is of nonconvex type and occurs often in (single-objective) optimization, for
instance, in the applied field of location theory (see, e.g., Hamacher and Nickel [58] and Nickel and
Puerto [90]).
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Multi-objective location theory

Multi-objective location problems, as well as their scalarizations, may be found in the literature in
many variants. Indeed, the objective functions and the constraints depend on the specific practical
applications, as for instance urban development planning, engineering, logistics or economics (see,
e.g., Hamacher [57], Nickel and Puerto [90], Nickel, Puerto and Rodŕıguez-Ch́ıa [92, 93], Klamroth
[71], and Schöbel [113]). Many authors considered unconstrained multi-objective problems (see,
e.g., Wendell et al. [128], Chalmet, Francis and Kolen [21], Gerth and Pöhler [47], Pelegŕın and
Fernández [97], Durier and Michelot [27], Puerto and Rodŕıguez-Ch́ıa [109], Nickel et al. [90], and
Alzorba, Günther and Popovici [2]). It is known that considering problems without any constraints
is a rather inaccurate approximation in many real world location problems (see, e.g., Carrizosa et
al. 1995). Constrained multi-objective location problems are considered for instance in the papers
Carrizosa et al. [18], Carrizosa and Plastria [20] and Ndiaye and Michelot [88] for special types of
convex objective functions and convex constraints. Jourani, Michelot and Ndiaye [67] considered
a multi-objective location problem with a nonconvex objective function and a convex feasible set.
Planar multi-objective location problems with nonconvex constraints are considered in the work
by Carrizosa et al. [19]. However, Puerto and Rodŕıguez-Ch́ıa [110] noted that there is a lack of
a common geometrical description of the solution sets for constrained versions of multi-objective
location problems. Since in practical location problems, there often exist regions where it is
forbidden to locate a new facility, it is interesting to study problems involving forbidden regions.

So, we emphasize the importance of our theoretical results derived in this thesis by applying
it to special multi-objective location problems. In particular, we are interested in the well-known
class of point-objective location problems.

Consider m a priori given facilities located at the points a1, · · · , am ∈ E. Our aim is to find a
point x ∈ X for a new facility such that the distances (induced by the norm || · || : E→ R) between
x and the given points a1, · · · , am are to be simultaneously minimized. More precisely, we consider
the multi-objective location problem{

gA(x) =
(
||x− a1||, · · · , ||x− am||

)
→ min w.r.t. Rm+

x ∈ X.
(POLPX(A))

Two particular cases of the problem (POLPX(A)) will be of special interest:

1◦: X = E = R2 and || · || : R2 → R represents the Manhattan norm;

2◦: E is a finite-dimensional Hilbert space, || · || : E → R is the norm induced by the scalar
product, X is the whole space E excepting some forbidden regions that are given by open
balls (defined with respect to || · ||).

Under the setting given in Case 1◦, the problem (POLPX(A)) is convex. In this thesis, we
characterize the nonessential objectives and, by eliminating them, we develop an effective algorithm
(the Rectangular Decomposition Algorithm) for generating the whole set of Pareto efficient solutions
as the union of a special family of rectangles and line segments.

Assuming that the setting given in Case 2◦ holds, for the nonconvex problem (POLPX(A)),
under the assumption that the forbidden regions are pairwise disjoint, we completely characterize
the set of Pareto efficient solutions by using our penalization approach as well as results derived
by Jourani, Michelot and Ndiaye [67].

Figure I.1 (see the next page) shows an example problem (POLPX(A)) where || · || is given by
the Euclidean norm defined on E = R2. One aim of this thesis is to construct the whole set of
Pareto efficient solutions for the nonconvex location problem illustrated in the right part of Figure
I.1. The construction will be given within Chapter 6.

Outline of the thesis

The thesis is structured as follows. In Chapter 1, we present preliminary facts about linear
topological spaces, semi-continuous and generalized-convex functions, and the class of Minkowski
gauge functions. Moreover, we recall solution concepts for the vector-valued minimization in our
initial constrained multi-objective optimization problem (PX).
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a1

a3 a2

a1

a2

Eff(R2 | gA) = conv {a1, a2, a3}

a3

Figure I.1: The figure shows an example problem (POLPX(A)) for the case E = R2, m = 3, and
|| · || is given by the Euclidean norm. In the left part, one can see that in the case X = E = R2 the
set of Pareto efficient solutions is given by the convex hull of the points a1, a2 and a3 (according to
Durier and Michelot [27, Prop. 1.3]). In the right part, we add two forbidden regions (illustrated
by two Euclidean balls that are red colored) such that the feasible set X ( R2 of the location
problem becomes a nonconvex one. So, the question arises: How to compute Eff(X | gA) for this
more complicated problem?

In the first part of the thesis (Chapters 2 and 3), we derive a new penalization approach
for constrained multi-objective optimization problems. In Chapter 2, we show relationships be-
tween the initial multi-objective optimization problem with generalized-convex objective functions
involving a not necessarily convex feasible set, and two corresponding multi-objective optimization
problems with a new feasible set that is a convex upper set of the original feasible set. In addition,
we point out some useful relationships between single-objective and bi-objective optimization.

As a consequence of our penalization approach, in Chapters 2 and 3, we derive character-
izations for the set of Pareto efficient solutions of special types of multi-objective optimization
problems with nonconvex feasible set in terms of the sets of Pareto efficient solutions of some
corresponding problems with convex feasible set. In particular, we analyze problem (PX) for the
cases that the objective funtions f1, · · · , fm are generalized-convex and

1◦: X is given by a system of inequalities with a finite number of constraint functions;

2◦: X is given by a finite union of closed, convex sets;

3◦: X is the whole space E excepting a finite number of forbidden regions that are given by
convex sets.

In the second part of the thesis (Chapters 4, 5 and 6), we emphasize the importance of
our results. In Chapter 4, we consider the general class of multi-objective composite location
problems which includes several well-known classes of multi-objective location problems, e.g., point-
objective location problems, multi-objective min-sum location problems, multi-objective min-max
location problems, and multi-objective ordered median location problems. We give an overview on
existing literature for each of the considered classes. In addition, we point out how the results
derived in this thesis contribute to the development of algorithms for multi-objective location
problems involving some constraints. Chapter 5 is devoted to the study of a special planar point-
objective location problem where the distances are defined by means of the Manhattan norm.
In Chapter 6, we consider a nonconvex point-objective location problem where the distances are
measured by a norm and the feasible set is given by the whole pre-image space (a finite-dimensional
Hilbert space) excepting some forbidden regions that are given by open balls (defined with respect
to the underlying norm).

We end the thesis with some conclusions and a summary of contributions.



Chapter 1

Preliminaries

In this chapter, we introduce some preliminary notions that will be used throughout the thesis.
After giving a short introduction of generalized-convexity and semi-continuity properties, we recall
solution concepts for the vector-valued minimization in our initial multi-objective optimization
problem, and further, we present some facts about Minkowski gauge functions.

1.1 Preliminaries in real topological linear spaces

We are going to recall definitions and important facts from the field of convex analysis. Our main
references in this section are the books by Barbu and Precupanu [11], Göpfert et al. [50], Jahn
[64], and Zălinescu [131].

Throughout this thesis, let N, R, R+ and R++ stand for the sets of positive integers, real
numbers, non-negative and positive real numbers, respectively. The m-dimensional Euclidean
space is denoted by Rm.

First, we recall the definition of a topological space.

Definition 1.1 ([64, Def. 1.29]) Let E be a nonempty set. A topology T on E is defined to be a
set of subsets of E which satisfy the following axioms:

(i) every union of sets of T belongs to T ;

(ii) every finite intersection of sets of T belongs to T ;

(iii) ∅ ∈ T and E ∈ T .

The pair (E, T ) is called a topological space and the elements of T are called open sets.

A subset Ω of E is a closed set if and only if its complement Ωc := E \ Ω is open.
An important class of topological spaces are so-called metric spaces, as given in the next defini-

tion.

Definition 1.2 ([64, Def. 1.30]) Let E be a nonempty set. A function d : E × E → R is called
metric on E if d fulfills the following assertions for all x, x′, x′′ ∈ E:

(i) d(x, x′) = 0 ⇐⇒ x = x′ (definiteness),

(ii) d(x, x′) = d(x′, x) (symmetry),

(iii) d(x, x′′) ≤ d(x, x′) + d(x′, x′′) (triangle inequality).

The pair (E, d) is called metric space.

Next, we define a special class of topological spaces, namely real topological linear spaces.

5
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Definition 1.3 ([64], Def. 1.31) Let E be a real linear space and let T be a topology on E. The
pair (E, T ) is called a real topological linear space if addition and multiplication with reals are
continuous, i.e,

(x, x′) 7→ x+ x′ with x, x′ ∈ E,

(α, x) 7→ αx with α ∈ R and x ∈ E

are continuous on E×E and R×E, respectively.

For notational convenience, we use E instead of (E, T ) for a real topological linear space.

Remark 1.4 Let E be a real linear space. Then, E can be seen as real topological linear space
by using the trivial topology T := {∅,E}. Moreover, using the core convex topology (generated by
the family of all semi-norms defined on E) the real linear space will be a locally convex space (see
Kahn, Tammer and Zălinescu [68, Prop 6.3.1]), which is in fact a real topological linear space.

Throughout this thesis, we assume that

E is a real topological linear space.

A very important class of metric spaces as well as of topological linear spaces is given by the
class of normed spaces.

Definition 1.5 ([64, Def. 1.35]) A function || · || : E → R is called norm on a linear space E if
|| · || fulfils the following assertions for all x, x′ ∈ E and for all α ∈ R:

(i) ||x|| = 0 ⇐⇒ x = 0E (definiteness),

(ii) ||αx|| = |α| ||x|| (positive homogeneity),

(iii) ||x+ x′|| ≤ ||x||+ ||x′|| (triangle inequality),

where 0E denotes the origin in the linear space E. The pair (E, || · ||) is called normed space.

Assuming that (E, || · ||) is complete (i.e., every Cauchy sequence in E converges to a well defined
limit point that belongs to E), then the space is called Banach space. One prominent example of
a Banach space is given by the Euclidean space (Rm, || · ||) with respect to a norm || · || : Rm → R.
Notice, in the case that E is a normed space, we assume that the topology T of E is generated by
the metric induced by the norm || · ||.

We call a norm ||·|| : E→ R strictly convex if, for any x′, x′′ ∈ Ω, x′ 6= x′′, with ||x′|| = ||x′′|| = 1,
it follows

]x′, x′′[⊆ {x ∈ E | ||x|| < 1}.

A normed space (E, || · ||) with underlying strictly convex norm || · || : E → R is called strictly
convex. In addition, the normed space (E, || · ||) is called reflexive if the canonical embedding of E
into its bidual space (E∗)∗ (where E∗ is the dual space of E), namely J : E → (E∗)∗, defined, for
any x ∈ E, by

J(x)(x∗) = x∗(x), x∗ ∈ E∗,

is surjective. Every reflexive normed space is a Banach space, while each finite-dimensional Banach
space is reflexive.

A significant class of strictly convex normed spaces are inner product spaces (in particular Hilbert
spaces).

Definition 1.6 ([64, Def. 1.37]) A function 〈·, ·〉 : E×E→ R is called inner product on E if 〈·, ·〉
fulfils the following assertions for all x, x′, x′′ ∈ E and for all α ∈ R:

(i) 〈x, x〉 > 0 for x 6= 0E (positivity),

(ii) 〈x, x′〉 = 〈x′, x〉 (symmetry),

(iii) 〈αx, x′〉 = α〈x, x′〉 (positive homogeneity),
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(iv) 〈x+ x′, x′′〉 = 〈x, x′′〉+ 〈x′, x′′〉 (additivity).

The pair (E, 〈·, ·〉) is called inner product space. Assuming that (E, 〈·, ·〉) is complete, the space is
called Hilbert space.

Notice that each inner product space is a normed space with underlying norm

|| · || :=
√
〈·, ·〉.

Moreover, each Hilbert space is an inner product space as well as a reflexive normed space. In
contrast, an inner product space (a normed space) must not be a Hilbert space (an inner product
space) in general. However, in the finite-dimensional case, each inner product space is a Hilbert
space. Hence, the space (Rm, 〈·, ·〉) with respect to an inner product defined by

〈x, x′〉 :=

m∑
i=1

xix
′
i

for all x = (x1, · · · , xm), x′ = (x′1, · · · , x′m) ∈ Rm, is a Hilbert space.
Considering a metric d : E×E→ R, we define the open ball around x ∈ E of radius ε ∈ R++ by

Bd(x, ε) := {x′ ∈ E | d(x, x′) < ε} = x+ ε ·Bd(0E, 1),

while the closed ball around x ∈ E of radius ε ∈ R++ is given by

Bd(x, ε) := {x′ ∈ E | d(x, x′) ≤ ε} = x+ ε ·Bd(0E, 1).

In the case that d is induced by a norm || · || (i.e., d(x, x′) = ||x − x′|| for any x, x′ ∈ E), we
simply write B||·||(x, ε) and B||·||(x, ε).

Example 1.7 Now, let us recall some well-known norms for the special case E = Rm:

x 7→ ||x||1 :=

m∑
i=1

|xi| (Manhattan norm),

x 7→ ||x||2 :=

(
m∑
i=1

|xi|2
) 1

2

=
√
〈x, x〉 (Euclidean norm),

x 7→ ||x||∞ := max{|xi| | i = 1, · · · ,m} (Maximum norm).

Figure 1.1 shows for the special case m = 2 the closed unit balls

B||·||i(0R2 , 1) := {x ∈ R2 | ||x||i ≤ 1}, i ∈ {1, 2,∞},

of the norms given in this example.

|| · ||1 || · ||2 || · ||∞

Figure 1.1: Unit balls of the norms || · ||1, || · ||2 and || · ||∞ on R2.
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In order to define some notions in the topological framework, we define, for any x ∈ E, the
family of all neighborhoods by V(x). Recall that V ⊆ E is a neighborhood of x ∈ E (relative to the
topology T ) if there exists an open set O ∈ T such that x ∈ O ⊆ V . A subset VB(x) of V(x) is
called a base of neighborhoods of x ∈ E (relative to the topology T ) if for every V ∈ V(x) there
exists V ′ ∈ VB(x) such that V ′ ⊆ V .

Definition 1.8 For any set Ω ⊆ E, we define the interior (in the topological sense) of Ω by

int Ω :=
⋃
{Ω′ ⊆ E | Ω′ ⊆ Ω,Ω′ is open}

= {x ∈ Ω | ∃V ∈ V(x) : V ⊆ Ω},

while the closure of Ω (in the topological sense) is

cl Ω :=
⋂
{Ω′ ⊆ E | Ω ⊆ Ω′,Ω′ is closed}.

In addition, we define the boundary of Ω (in the topological sense) by

bd Ω := (cl Ω) \ int Ω.

In the next two lemmata, we present some properties of the interior, closure, and boundary of a
set Ω ⊆ E.

Lemma 1.9 For any set Ω ⊆ E, the following assertions hold:

1◦. int Ω ⊆ Ω ⊆ int Ω ∪ bd Ω = cl Ω.

2◦. cl Ω = Ω if and only if Ω is closed.

3◦. int Ω = Ω if and only if Ω is open.

Remark 1.10 Considering a metric space (E, d) with metric d : E × E → R, then V ⊆ E is a
neighborhood of x ∈ E (relative to the topology T ) if there is some ε ∈ R++ such that

Bd(x, ε) ⊆ V.

Notice that Bd(x, ε) is an open set while Bd(x, ε) is a closed set.

Lemma 1.11 Let Ω ⊆ E be a set with ∅ 6= Ω 6= E. Then, we have bd Ω 6= ∅.

Proof. Since each real topological linear space is connected (i.e., the space can not be divided into
two disjoint nonempty open sets), the only subsets of E with empty boundary are E and ∅.

The class of convex sets will be of special interest in this thesis.

Definition 1.12 A set Ω ⊆ E is called convex if

λ · Ω + (1− λ) · Ω ⊆ Ω for all λ ∈ (0, 1).

Notice, for any x ∈ E and ε ∈ R++, the balls B||·||(x, ε) and B||·||(x, ε) are convex sets in the
normed space (E, || · ||).

The next lemma collects some important properties of convex sets.

Lemma 1.13 ([131, Th. 1.1.2]) Let Ω ⊆ E be a convex set. Then, the following assertions hold:

1◦. int Ω and cl Ω are convex.

2◦. If x ∈ int Ω and x′ ∈ cl Ω, then [x, x′[⊆ int Ω.

We are also interested in considering so-called reverse convex sets.

Definition 1.14 A set Ω ⊆ E is called reverse convex if the complement of Ω (i.e., the set
Ωc := E \ Ω) is a convex set in E.
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Clearly, the complements of the convex sets B||·||(x, ε) and B||·||(x, ε) are reverse convex sets for
every x ∈ E and ε ∈ R++.

In the following, we recall sufficient conditions which ensure that two convex sets can be strictly
separated by a hyperplane.

Proposition 1.15 ([11, Th. 1.44], Seperation Theorem for Convex Sets) Let E be a normed
space. Consider two disjoint, nonempty, closed, convex sets Ω,Ω′ ⊆ E such that at least one of
them is compact, then there exists a continuous linear functional ψ such that

sup{ψ(x) | x ∈ Ω} < inf{ψ(x) | x ∈ Ω′}.

So, the hyperplane {x ∈ E | ψ(x) = k} with

k ∈ ] sup{ψ(x) | x ∈ Ω}, inf{ψ(x) | x ∈ Ω′}[

strictly separates the convex sets Ω and Ω′.

Corollary 1.16 Let E be a normed space. Consider a nonempty, closed, convex set Ω and a point
x′ /∈ Ω. Then, there exists a continuous linear functional ψ such that

sup{ψ(x) | x ∈ Ω} < ψ(x′).

In the next definition, we recall two important types of hulls for a nonempty set in E.

Definition 1.17 ([131, Sec. 1.1]) The affine hull of a nonempty set Ω ⊆ E is the intersection of
all affine subspaces of E containing Ω, i.e.,

aff Ω :=
⋂
{Ω′ ⊆ E | Ω ⊆ Ω′, Ω′ is an affine space}.

The convex hull of a nonempty set Ω ⊆ E is the intersection of all convex sets containing Ω, i.e.,

conv Ω :=
⋂
{Ω′ ⊆ E | Ω ⊆ Ω′, Ω′ is a convex set}.

In certain results, we will deal with the algebraic interior cor Ω instead of the topological interior
int Ω of a set Ω ⊆ E. The definition of cor Ω is given below.

Definition 1.18 ([64, Def. 1.8]) Let Ω be a nonempty set in E. The algebraic interior of Ω (or
the core of Ω) is given by

cor Ω := {x ∈ Ω | ∀ v ∈ E ∃ δ ∈ R++ : x+ [0, δ] · v ⊆ Ω}.

Definition 1.19 A set Ω ⊆ E is called algebraically open if cor Ω = Ω.

The next lemma recalls known relationships between the topological interior and the algebraic
interior of a nonempty set in E.

Lemma 1.20 ([11, Sec. 1.1.2], [64, Lem. 1.3.2]) Let Ω be a nonempty set in E. Then, we have

int Ω ⊆ cor Ω ⊆ Ω.

Moreover, assuming that Ω is convex, we have

int Ω = cor Ω

if one of the following conditions is satisfied:

(i) int Ω 6= ∅;

(ii) E is a Banach space and Ω is closed;

(iii) E is a finite-dimensional normed space.
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It is an important fact that the topological interior can be a proper subset of the algebraic
interior, as shown in the next example.

Example 1.21 Consider E = R2 and the nonconvex set

Ω := {x = (x1, x2) ∈ R2 | x2 ≥ x2
1 ∨ x2 ≤ 0}.

Then, we have (0,−1) ∈ int Ω, i.e., int Ω 6= ∅. However, 0 ∈ cor Ω but 0 /∈ int Ω. So, we conclude
∅ 6= int Ω ( cor Ω in this example.

For two points x, x′ ∈ E, we define the closed, open, half-open line segments by

[x, x′] := {(1− λ)x+ λx′ | λ ∈ [0, 1]}, ]x, x′[ := [x, x′] \ {x, x′},
[x, x′[ := [x, x′] \ {x′}, ]x, x′] := [x, x′] \ {x}.

In the proofs of Lemma 1.56 and Theorem 2.51, we will use the following property for interior
points of a nonempty set Ω in a real normed space E.

Lemma 1.22 Let Ω be a set in a real normed space (E, || · ||) with int Ω 6= ∅. Consider x ∈ int Ω,
i.e., it exists ε > 0 such that B||·||(x, ε) ⊆ Ω. Then, for all v ∈ E with ||v|| = 1 and all δ ∈ (0, ε),
we have

[x− δv, x+ δv] ⊆ B||·||(x, ε) ⊆ Ω.

Proof. Noting that
||x± δv − x|| = δ||v|| = δ < ε,

we get the assertion by the convexity of B||·||(x, ε).

Remark 1.23 The assertions given in Lemmata 1.20 and 1.22 are not true in general metric
spaces. Consider the metric space (R2, d), where d : R2 × R2 → R represents the discrete metric
on R2 that is defined by d(x, x′) = 1 for all x, x′ ∈ R2 with x 6= x′ and d(x, x′) = 0 for x = x′. The
feasible set is given by Ω := [−1, 1] × [−1, 1]. Now, it is easily seen that x := (1, 1) ∈ int Ω, since

we have Bd(x, ε) = {x} ⊆ Ω for ε ∈ ]0, 1[. However, for v := x′−x
||x′−x|| with x′ := (2, 2) 6= x, we have

x+ δv ∈ R2 \ Ω for all δ ∈ R++.
It is important to mention that the metric space (R2, d) with the discrete metric d is a topological

space (considering the discrete metric topology associated with d) but not a topological linear space
as well as not a normed space (d is not derived from a norm).

If E is a real linear space and d is a metric on E that is invariant with respect to translation
and homogeneous, then d(·, 0) =:|| · ||: E→ R defines a norm on E.

In certain results, we need the relative interior of a set Ω ⊆ E that is given by

rint Ω := {x ∈ Ω | x is interior point of Ω w.r.t. the topology induced on aff Ω}.

If E is endowed with a metric d : E×E→ R, then we have

rint Ω = {x ∈ Ω | ∃ ε ∈ R++ : Bd(x, ε) ∩ aff Ω ⊆ Ω}.

The next lemma points out some important properties of the relative interior.

Lemma 1.24 ([11, Ch. 1]) Let Ω be a nonempty set in E. Then, the following assertions hold:

1◦. int Ω ⊆ rint Ω.

2◦. rint Ω = int Ω if aff Ω = E.

3◦. aff Ω = E if cor Ω 6= ∅ or int Ω 6= ∅.

4◦. If E is finite-dimensional and Ω is convex, then rint Ω is a nonempty, convex set.
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In preparation of the definition of the class of partially ordered linear spaces, it is convenient to
recall the notion of a cone and corresponding cone properties.

Definition 1.25 ([64, Ch. 1]) A nonempty set Ω ⊆ E is called a cone if R+ · Ω = Ω (i.e., a cone
contains the origin). The cone Ω ⊆ E is said to be

• nontrivial if {0} 6= Ω 6= E;

• pointed if Ω ∩ (−Ω) = {0};

• closed if cl Ω = Ω;

• convex if Ω = Ω + Ω;

• solid if int Ω 6= ∅.

Endowing the linear space E with a partial ordering “�” (i.e., a binary relation �⊆ E×E that
is reflexive, transitive and compatible with the linear structure of the space) induced by a convex
cone Ω ⊆ E (a so-called ordering cone), we call E a partially ordered linear space. Then, for any
x, x′ ∈ E, we define

x � x′ :⇐⇒ x′ ∈ x+ Ω.

If, in addition, Ω is pointed, then the partial ordering “�” is antisymmetric. For more details
about partially ordered linear spaces, we refer to the book by Jahn [64, Sec. 1.2].

Example 1.26 In Section 1.5, we will consider a multi-objective optimization problem where the
objective function is acting between a linear topological pre-image space E and the Euclidean space
Rm as image space. In this case, the partial ordering “�”of Rm can be induced by any pointed,
convex cone in Rm, for instance by the well-known natural ordering cone Rm+ that is given by

Rm+ := {x = (x1, · · · , xm) ∈ Rm | ∀ i ∈ Im : xi ∈ R+}.

For this example, “�” is called componentwise partial ordering of Rm since

x � x′ ⇐⇒ x′ ∈ x+ Rm+ ⇐⇒ ∀i ∈ Im : xi ≤ x′i

for any two points x = (x1, · · · , xm), x′ = (x′1, · · · , x′m) ∈ Rm.

In this thesis, we will mainly work with two particular cones, namely, the natural ordering cone
Rm+ in the Euclidean space Rm, and the cone generated by a set Ω ⊆ E, as given in the next
definition.

Definition 1.27 ([64], Def. 1.15) For any nonempty set Ω ⊆ E, the set

cone Ω :=
⋂
{Ω′ ⊆ E | Ω ⊆ Ω′, Ω′ is a cone}

= {λx ∈ E | (λ, x) ∈ R+ × Ω}

is called the cone generated by the set Ω.

Remark 1.28 For any point x of a nonempty, convex set Ω ⊆ E, the set cl (cone (Ω− x)) stands
for the contingent cone T (Ω, x) of Ω at the point x (see, e.g., Jahn [64, Ch. 3]).

In the next lemma, we recall characterizations for the (algebraic) interior and the affine hull of
any nonempty, convex set Ω ⊆ E in terms of cones generated by some sets Ω′ ⊆ E.

Lemma 1.29 ([131, Sec. 1.1]) Let Ω be a nonempty, convex set in E. Then, the following
assertions hold:

1◦. For any x ∈ Ω, it holds that

x ∈ core Ω ⇐⇒ cone(Ω− x) = E.
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2◦. Suppose, in addition, that E is finite-dimensional and normed. Then, for any x ∈ Ω, we have

x ∈ int Ω ⇐⇒ cone(Ω− x) = E.

3◦. For any x ∈ Ω, we have
aff Ω = x+ cone(Ω− Ω).

Proof. Follows by Lemma 1.24 and Zălinescu [131, Sec. 1.1]).

Consider a nonempty set Ω ⊆ E in a normed space (E, || · ||). Given a point x′ ∈ E, the set of
points in Ω closest to x′ with respect to the norm || · || : E→ R is defined by

Proj
||·||
Ω (x′) := argmin{||x− x′|| | x ∈ Ω}.

In addition, for a nonempty set Ω′ ⊆ E, we define the projection of Ω′ onto Ω with respect to
the norm || · || by

Proj
||·||
Ω (Ω′) :=

⋃
x′∈Ω′

Proj
||·||
Ω (x′).

We end this section by recalling some crucial facts about the projection operator Proj
||·||
Ω (·).

Lemma 1.30 ([11, Sec. 3.3.2]) Consider a nonempty, convex set Ω ⊆ E in a normed space (E, ||·||)
and assume that x′ ∈ E. Then, the following assertions hold:

1◦. Proj
||·||
Ω (x′) is a convex (possibly empty) set.

2◦. Let (E, || · ||) be reflexive, and let Ω be closed. Then, Proj
||·||
Ω (x′) is a nonempty, convex set.

3◦. Let (E, || · ||) be strictly convex. Then, Proj
||·||
Ω (x′) is a singleton set or the empty set.

4◦. Let (E, || · ||) be reflexive and strictly convex, and let Ω be closed. Then, Proj
||·||
Ω (x′) is a

singleton set.

5◦. Let E = Rm, || · || = || · ||2, and let Ω be closed. Then, Proj
||·||2
Ω (x′) is a singleton set.

1.2 Semi-continuity and generalized-convexity properties

In this section, we recall some definitions and facts about generalized-convex and semi-continuous
functions (see, e.g., Barbu and Precupanu [11, Ch. 2], Cambini and Martein [17], Giorgi, Guer-
raggio and Thierfelder [49], Löhne [76, Sec. 2.3], and Zălinescu[131]).

In order to operate with certain generalized-convexity and semi-continuity notions, we define,
for any (x, x′) ∈ E×E, the function lx,x′ : [0, 1]→ E,

lx,x′(λ) := (1− λ)x+ λx′ for all λ ∈ [0, 1].

Throughout this thesis, consider a nonempty set

D ⊆ E.

At first we will concentrate on the class of extended real-valued functions (i.e., functions that
take values in R ∪ {+∞}), later we will mainly work with the class of real-valued functions (i.e.,
functions that take values only in R). We use the convention (+∞) + (−∞) = +∞. Letting a
so-called extended real-valued function h : D → R∪{+∞} be given, we define the effective domain
of h by

domh := {x ∈ D | h(x) < +∞}.

In the next Definition 1.31, we recall some notions related to certain types of continuity.



1.2 Semi-continuity and generalized-convexity properties 13

Definition 1.31 ([131], [76, Sec. 2.3]) Consider a nonempty set Ω ⊆ D. An extended real-valued
function h : D → R ∪ {+∞} is called

• lower semi-continuous at x′ ∈ Ω, if we have

h(x′) ≤ sup
V ∈VB(x′)

inf
x∈V ∩Ω

h(x),

where VB(x′) is a base of neighborhoods of x′ in E.

• upper semi-continuous at x′ ∈ Ω, if we have

h(x′) ≥ inf
V ∈VB(x′)

sup
x∈V ∩Ω

h(x).

• upper (lower) semi-continuous on Ω, if h is upper (lower) semi-continuous at every x′ ∈ Ω.

• continuous on Ω, if h is both lower and upper semi-continuous on Ω.

• upper (lower) semi-continuous along line segments on Ω (assume that Ω is convex), if the
composition of h and lx,x′ ,

h ◦ lx,x′ : [0, 1]→ R ∪ {+∞},

is upper (lower) semi-continuous on [0, 1] for all x, x′ ∈ Ω.

• continuous along line segments on Ω (assume that Ω is convex), if h is both lower and upper
semi-continuous along line segments on Ω.

• Lipschitz continuous on Ω of rank Lh > 0 (assume that E is normed with norm || · ||), if h is
finite-valued on Ω and for all x, x′ ∈ Ω we have

|h(x)− h(x′)| ≤ Lh||x− x′||.

Now, let us recall the definition of (strictly) convex functions as often used in convex and extended
real-valued analysis.

Definition 1.32 ([11, Def. 2.1]) Consider a nonempty, convex set Ω ⊆ D. An extended real-
valued function h : D → R ∪ {+∞} is said to be

• convex on Ω, if for all x, x′ ∈ Ω ∩ domh and for all λ ∈ ]0, 1[ we have

h((1− λ)x+ λx′) ≤ (1− λ)h(x) + λh(x′).

• strictly convex on Ω, if for all x, x′ ∈ Ω ∩ domh, x 6= x′, and for all λ ∈ ]0, 1[ we have

h((1− λ)x+ λx′) < (1− λ)h(x) + λh(x′).

• concave (strictly concave) on Ω, if −h is convex (strictly convex) on Ω.

Strictly convex norms are strictly convex functions which are in fact convex as well. One promi-
nent example of an extended real-valued convex function is the so-called indicator function IΩ with
respect to a nonempty set Ω ⊆ E. In the next example, we recall the definition of IΩ and present
some useful properties.

Example 1.33 Let Ω be a nonempty set in E. The extended real-valued function IΩ : E →
R ∪ {+∞}, defined by

IΩ(x) :=

{
0 x ∈ Ω,

+∞ otherwise,

is called indicator function with respect to the set Ω and has the following properties:
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1◦. Assume that Ω is a closed set in E. Then, IΩ is lower semi-continuous on Ω (see Barbu and
Precupanu [11, Cor. 2.7]) and continuous on E \ Ω.

2◦. The indicator function IΩ is convex on E if and only if Ω is a convex set in E (see Barbu and
Precupanu [11, Prop. 2.2]).

Remark 1.34 In Example 1.33, we presented a well-known example of an extended real-valued
function. However, in this thesis, we will mainly focus on real-valued functions as often considered
in works related to generalized-convexity (see, e.g., Cambini and Martein [17], Mäkelä, Eronen and
Karmitsa [83, 84], Malivert and Boissard [85], and Popovici [103, 104]).

Important notions of generalized-convex functions are recalled in the next definition.

Definition 1.35 ([17, Ch. 2]) Consider a nonempty, convex set Ω ⊆ D. A real-valued function
h : D → R is said to be

• quasi-convex on Ω, if for all x, x′ ∈ Ω and for all λ ∈ ]0, 1[ we have

h((1− λ)x+ λx′) ≤ max
{
h(x), h(x′)

}
.

• strictly quasi-convex on Ω, if for all x, x′ ∈ Ω, x 6= x′, and for all λ ∈ ]0, 1[ we have

h((1− λ)x+ λx′) < max
{
h(x), h(x′)

}
.

• semi-strictly quasi-convex on Ω, if for all x, x′ ∈ Ω, h(x) 6= h(x′), and for all λ ∈ ]0, 1[ we
have

h((1− λ)x+ λx′) < max
{
h(x), h(x′)

}
.

• explicitly quasi-convex on Ω, if h is both quasi-convex and semi-strictly quasi-convex on Ω.

Moreover, a function h : D → R is called quasi-concave (respectively, strictly quasi-concave,
semi-strictly quasi-concave, explicitly quasi-concave) on Ω, if −h is quasi-convex (respectively,
strictly quasi-convex, semi-strictly quasi-convex, explicitly quasi-convex) on Ω.

We say that a vector-valued function f = (f1, · · · fm) : D → Rm is componentwise lower semi-
continuous along line segments (respectively, upper semi-continuous along line segments, contin-
uous along line segments, convex, quasi-convex, semi-strictly quasi-convex, explicitly quasi-convex,
semi-strictly quasi-convex or quasi-convex ) on Ω ⊆ D if fi is lower semi-continuous along line seg-
ments (respectively, upper semi-continuous along line segments, continuous along line segments,
convex, quasi-convex, semi-strictly quasi-convex, explicitly quasi-convex, semi-strictly quasi-convex
or quasi-convex) on Ω for all i ∈ Im.

Remark 1.36 Notice that each real-valued convex function is explicitly quasi-convex and upper
semi-continuous along line segments. Moreover, a semi-strictly quasi-convex function which is
lower semi-continuous along line segments is explicitly quasi-convex. Counter-examples for the
reverse implications are given in Example 1.37. The reader should pay attention to the differences
between the concepts of semi-strict quasi-convexity and strict quasi-convexity. Real-valued convex
functions are semi-strictly quasi-convex but not strictly quasi-convex in general. However, strict
quasi-convexity implies semi-strict quasi-convexity.

Example 1.37 Consider the set Ω := R. The function h : R → R defined by h(x) := x3 for all
x ∈ R is explicitly quasi-convex and continuous but not convex on Ω. Furthermore, the function
h : R→ R given by

h(x) :=


(x− 1)3 for all x > 1,

0 for all x ∈ [−1, 1],

(x+ 1)3 for all x < −1
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is quasi-convex and continuous but not semi-strictly quasi-convex on Ω. A semi-strictly quasi-
convex function which is upper semi-continuous along line segments must not be quasi-convex
(e.g., consider the function h1 : R→ R given in Example 1.48).

Next, we point out that the well-known Cobb-Douglas function, which is an important tool in
some economic fields such as production theory or utility theory (see Cambini and Martein [17]),
is in fact an example function that can be used in the framework of this thesis.

Example 1.38 ([17, Sec. 2.4.1]) The Cobb-Douglas function h : Rn+ → R is defined by

h(x) := δxα1
1 xα2

2 · . . . · xαnn for all x = (x1, . . . , xn) ∈ Rn+,

where α := (α1, · · · , αn) ∈ intRn+ and δ ∈ R++. In economics one often tries to maximize h
over a nonempty feasible region in Rn+. For doing this it is important to know that the following
properties hold (see Cambini and Martein [17, Sec. 2.4.1]):

• h is quasi-concave on Rn+.

• h is concave on Rn+ if and only if ||α||1 ≤ 1.

• h is strictly concave on Rn+ if and only if ||α||1 < 1.

It is an important fact that maximizing a generalized-concave function h is equivalent to minimizing
the negative of this function −h (a generalized-convex function).

In the sequel, we will see that generalized-convex functions can be characterized by certain
statements that involve notions of level sets and level lines. These notions will play a key role for
proving the main results related to our penalization approach in Chapter 2.

Definition 1.39 Let h : D → R∪{+∞} be an extended real-valued function, let Ω be a nonempty
subset of D, and let s ∈ R. We define the following notions:

L≤(Ω, h, s) := {x ∈ Ω | h(x) ≤ s} (lower-level set of h to the level s);

L=(Ω, h, s) := {x ∈ Ω | h(x) = s} (level line of h to the level s);

L<(Ω, h, s) := {x ∈ Ω | h(x) < s} (strict lower-level set of h to the level s);

L≥(Ω, h, s) := L≤(Ω,−h,−s) (upper-level set of h to the level s);

L>(Ω, h, s) := L<(Ω,−h,−s) (strict upper-level set of h to the level s).

Remark 1.40 Notice, for any set Ω′ with ∅ 6= Ω ⊆ Ω′ ⊆ D, we have

L∼(Ω, h, s) = L∼(Ω′, h, s) ∩ Ω for all ∼∈ {≤,=, <,≥, >}.

It is well-known that a function h : D → R∪{+∞} is convex on a convex set Ω ⊆ D if and only
if the epigraph of h (with respect to Ω), i.e., the set

epi(Ω, h) := {(x, r) ∈ Ω× R | h(x) ≤ r},

is a convex set in E×R (see, e.g., Barbu and Precupanu [11, Prop. 2.3]). Moreover, quasi-convex
functions are characterized by the convexity of its (strict) lower-level sets, as stated in the next
lemma.

Lemma 1.41 ([49]) Let h : D → R be a function and Ω be a convex subset of D. Then, the
following assertions are equivalent:

1◦. h is quasi-convex on Ω.

2◦. L≤(Ω, h, s) is convex for all s ∈ R.

3◦. L<(Ω, h, s) is convex for all s ∈ R.

Next, we present a useful equivalent characterization of semi-strictly quasi-convexity in terms of
strict lower-level sets and level lines.
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Lemma 1.42 Let h : D → R be a function and Ω be a convex subset of D. Then, the following
assertions are equivalent:

1◦. h is semi-strictly quasi-convex on Ω.

2◦. For all s ∈ R, x ∈ L=(Ω, h, s), x′ ∈ L<(Ω, h, s), we have [x′, x[⊆ L<(Ω, h, s).

Proof. To prove the implication “1◦ =⇒ 2◦”, let s ∈ R, x ∈ L=(Ω, h, s) and x′ ∈ L<(Ω, h, s). If h
is semi-strictly quasi-convex on Ω, then

h((1− λ)x+ λx′) < max
{
h(x), h(x′)

}
= h(x) = s,

since h(x) = s > h(x′). Consequently, it follows [x′, x[⊆ L<(Ω, h, s).
Now, we prove the reverse implication “2◦ =⇒ 1◦”. Let a, b ∈ Ω arbitrarily chosen and assume

without loss of generality h(b) < h(a). Define s := h(a). Then, for x := a and x′ := b, we have

h((1− λ)a+ λb) < s = h(a) = max{h(a), h(b)} for all λ ∈ ]0, 1[.

So, h is semi-strictly quasi-convex on Ω, which completes the proof.

In the forthcoming Chapters 2 and 3, we will see that the property for semi-strictly quasi-convex
function given in the next Lemma 1.43 (discovered by Popovici [102, Prop. 2], see also Popovici
[105, Prop. 2.1.2]) is essential for proving some of our main results.

Lemma 1.43 ([102, Prop. 2]) Let h : D → R be a semi-strictly quasi-convex function on a
nonempty, convex set Ω ⊆ D. Then, for every (x, x′) ∈ Ω× Ω, the set

L> (]x, x′[, h,max{h(x), h(x′)})

is either a singleton set or the empty set.

In Lemma 1.44, we recall useful equivalent characterizations of lower and upper semi-continuity
by using lower-level and upper-level sets (see, e.g., Barbu and Precupanu [11, Prop. 2.5] and Löhne
[76, Sec. 2.3]).

Lemma 1.44 ([11, Prop. 2.5], [76, Sec. 2.3]) Let h : E→ R ∪ {+∞} be an extended real-valued
function. The following assertions are equivalent:

1◦. h is upper (lower) semi-continuous on E.

2◦. L≥(E, h, s) (L≤(E, h, s)) is closed for all s ∈ R.

Upper (lower) semi-continuity of a real-valued function on a nonempty, closed subset of E can
be characterized as follows.

Lemma 1.45 Let h : D → R be a real-valued function, and let Ω be a nonempty, closed subset
of D. Then, the following assertions are equivalent:

1◦. h is upper (lower) semi-continuous on Ω.

2◦. L≥(Ω, h, s) (L≤(Ω, h, s)) is closed for all s ∈ R.

Proof. We are going to prove “1◦ ⇐⇒ 2◦” for lower semi-continuous functions. Notice that the
assertion concerning upper semi-continuity follows by the facts that h is upper semi-continuous on
Ω if and only if −h is lower semi-continuous on Ω, and L≤(Ω,−h, s) = L≥(Ω, h,−s) for all s ∈ R.

Let us consider the extended real-valued function

hΩ := h+ IΩ : E→ R ∪ {+∞},

where IΩ is the indicator function with respect to Ω (see Example 1.33). Notice that

∀x ∈ Ω : h(x) = hΩ(x) < +∞. (1.1)
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First, observe that h is lower semi-continuous on Ω if and only if hΩ is lower semi-continuous on
Ω. Indeed, consider any x′ ∈ Ω, then by Definition 1.31, the function h is lower semi-continuous
at x′ if

h(x′) ≤ sup
V ∈VB(x′)

inf
x∈V ∩Ω

h(x). (1.2)

The condition (1.2) is equivalent to

hΩ(x′) ≤ sup
V ∈VB(x′)

inf
x∈V ∩Ω

hΩ(x) = sup
V ∈VB(x′)

inf
x∈V

hΩ(x) (1.3)

in view of (1.1) and taking into account that hΩ(x) = +∞ for all x ∈ E \ Ω.
Now, we claim that hΩ is lower semi-continuous on the closed set Ω if and only if hΩ is lower

semi-continuous on E. The implication “=⇒” follows by the fact that hΩ is constant +∞ on the
open set Ωc = E \ Ω, hence continuous on Ωc. So, hΩ is lower semi-continuous on E. The reverse
implication is obvious since Ω ⊆ E.

Moreover, in view of the preceding Lemma 1.44, we get that hΩ is lower semi-continuous on E
if and only if L≤(E, hΩ, s) is a closed for all s ∈ R.

Of course, because of hΩ(x) = +∞ for all x /∈ Ω we have L≤(E, hΩ, s) = L≤(Ω, h, s) for every
s ∈ R, which ensures that L≤(E, hΩ, s) is closed for all s ∈ R if and only if L≤(Ω, h, s) is closed for
all s ∈ R.

This completes the proof of “1◦ ⇐⇒ 2◦”.

Remark 1.46 The assertion of Lemma 1.45 does not hold if Ω is not supposed to be closed.
Indeed, consider the continuous function f : R → R defined by f(x) := 1 for every x ∈ R, and
Ω := (0, 1), then the set L≤(Ω, f, 1) = Ω is not closed.

In Section 2.6, we are interested in considering the function defined by the maximum of a finite
number of scalar functions. In the next lemma, we recall some important properties of this function.

Lemma 1.47 Let a family of functions hi : D → R, i ∈ Il, l ∈ N, be given. Define the maximum
of hi, i ∈ Il, by

(max hi)(x) := max{h1(x), · · · , hl(x)} for all x ∈ D.

Suppose that Ω is a nonempty set in D. Then, the following assertions hold:

1◦. Let Ω be closed. If hi, i ∈ Il, are lower semi-continuous on Ω, then (max hi)(·) is lower
semi-continuous on Ω.

2◦. Let Ω be convex. If hi, i ∈ Il, are convex on Ω, then (max hi)(·) is convex on Ω.

3◦. Let Ω be convex. If hi, i ∈ Il, are quasi-convex on Ω, then (max hi)(·) is quasi-convex on Ω.

Proof. 1◦. Due to

L≤(Ω, (max hi)(·), s) = {x ∈ Ω | (max hi)(x) ≤ s} =
⋂
j∈Il

L≤(Ω, hj , s)

and the closedness of L≤(Ω, hj , s) for all j ∈ Il and all s ∈ R (compare Lemma 1.45), we obtain
the lower semi-continuity of (max hi)(·) on Ω.

2◦. Since convex functions are characterized by the convexity of their epigraphs, the assertion
follows immediately by

epi(Ω, (max hi)(·)) = {(x, r) ∈ Ω× R | (max hi)(x) ≤ r} =
⋂
j∈Il

epi(Ω, hj)

and the convexity of epi(Ω, hj) = {(x, r) ∈ Ω× R | hj(x) ≤ r} for all j ∈ Il.
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3◦. In view of Lemma 1.41, we get the assertion by

L≤(Ω, (max hi)(·), s) = {x ∈ Ω | (max hi)(x) ≤ s} =
⋂
j∈Il

L≤(Ω, hj , s)

and the convexity of L≤(Ω, hj , s) for all j ∈ Il and all s ∈ R.

In the next example, we show that an analogous assertion to 2◦ and 3◦ of Lemma 1.47 does not
hold for the concept of semi-strict quasi-convexity.

Example 1.48 Consider the set Ω := R and two functions hi : R → R, i ∈ I2, defined by
hi(x) := 0 for all x ∈ Ω, x 6= i, and hi(i) := 1. Notice that h1 and h2 are semi-strictly quasi-convex
on Ω. Then, (max hi)(·) : R→ R is given by

(max hi)(x) =

{
0 for all x ∈ R \ {1, 2},
1 for all x ∈ {1, 2}.

Since (max hi)(0) = 0 < 1 = (max hi)(1) = (max hi)(2), the function (max hi)(·) is not semi-
strictly quasi-convex on Ω.

Recall that a function g : S → R, defined on a nonempty set S ⊆ Rl, is Rl+-increasing on S, if
for any y, y′ ∈ S,

y′ ∈ y + Rl+ =⇒ g(y) ≤ g(y′). (1.4)

Lemma 1.49 Let h = (h1, · · · , hl) : D → Rl, l ∈ N, be componentwise convex on the nonempty,
convex set Ω in D. Consider a real-valued function g : S → R, defined on a set S ⊆ Rl with
h[Ω] ⊆ S, that is Rl+-increasing on S. Then, the following assertions hold:

1◦. If g is convex on S, then g ◦ h is convex on Ω.

2◦. If g is quasi-convex on S, then g ◦ h is quasi-convex on Ω.

3◦. If g is semi-strictly quasi-convex on S, then g ◦ h is semi-strictly quasi-convex on Ω.

Proof. Consider x, x′ ∈ Ω and λ ∈ [0, 1]. By the componentwise convexity of h on Ω, we have

λh(x) + (1− λ)h(x′) ∈ h(λx+ (1− λ)x′) + Rl+. (1.5)

So, assertion 1◦ follows by the fact that

(g ◦ h)(λx+ (1− λ)x′) ≤ g(λh(x) + (1− λ)h(x′)) (due to (1.4) and (1.5))

≤ λg(h(x)) + (1− λ)g(h(x′)) (convexity of g)

= λ(g ◦ h)(x) + (1− λ)(g ◦ h)(x′),

while assertion 2◦ holds since

(g ◦ h)(λx+ (1− λ)x′) ≤ g(λh(x) + (1− λ)h(x′)) (due to (1.4) and (1.5))

≤ max{g(h(x)), g(h(x′))} (quasi-convexity of g)

= max{(g ◦ h)(x), (g ◦ h)(x′)}.

To show assertion 3◦, assume (g ◦ h)(x) 6= (g ◦ h)(x′). Then, it holds that

(g ◦ h)(λx+ (1− λ)x′) ≤ g(λh(x) + (1− λ)h(x′)) (due to (1.4) and (1.5))

< max{g(h(x)), g(h(x′))} (semi-strictly quasi-convexity of g)

= max{(g ◦ h)(x), (g ◦ h)(x′)}.
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By Lemma 1.49 we immediately get the well-known fact that the weighted sum of a finite number
of convex functions is convex as well.

Corollary 1.50 Let h = (h1, · · · , hl) : D → Rl, l ∈ N, be componentwise convex on the nonempty,
convex set Ω in D. For any λ ∈ Rl+, the function 〈λ, h(·)〉 is convex on Ω.

It is known that the property given in Corollary 1.50 fails for quasi-convex functions. We
conclude this section by noting that the property given in Corollary 1.50 also fails for semi-strictly
quasi-convex functions, as to see in the next example.

Example 1.51 Consider the functions h1 and h2 as well as the set Ω as defined in Example 1.48.
Then, for λ := (1, 1) ∈ R2

+, we have

〈λ, h(x)〉 = h1(x) + h2(x) = (max hi)(x),

which shows that 〈λ, h(·)〉 is not semi-strictly quasi-convex on Ω, in view of Example 1.48.

1.3 Local versions of generalized-convexity

In classical definitions of generalized-convexity notions (see Definition 1.35), the involved set Ω ⊆ D
is always assumed to be convex. In order to use generalized-convexity notions also for nonconvex
sets, one could define corresponding local versions of generalized-convexity notions. Notice that
local concepts are already used in the literature of optimization theory for other notions (e.g.,
Lipschitz continuity).

In the next definition, for any normed space E equipped with the norm || · || : E → R, we
introduce local versions of semi-strict quasi-convexity and quasi-convexity for a real-valued function
h : D → R.

Definition 1.52 ([56]) Let (E, || · ||) be a normed space and let Ω ⊆ D be open. A real-valued
function h : D → R is called

• locally semi-strictly quasi-convex (locally quasi-convex ) at a point x ∈ Ω if there exists ε ∈ R++

such that h is semi-strictly quasi-convex (quasi-convex) on B||·||(x, ε).

• locally explicitly quasi-convex at x ∈ Ω if it is both locally semi-strictly quasi-convex and locally
quasi-convex at x ∈ Ω.

The local concepts of generalized-convexity given in Definition 1.52 will be used in Lemma 2.50
and Theorem 2.51.

Remark 1.53 Notice that the open ball B||·||(x, ε) is an open and convex set in a normed space
(E, || · ||). Clearly, in view of Remark 1.36, if h is locally semi-strictly quasi-convex at x ∈ Ω and
lower semi-continuous along line segments on B||·||(x, ε), then h is locally quasi-convex at x ∈ Ω.

In the following lemma, we present relationships between global and corresponding local versions
of generalized-convexity.

Lemma 1.54 ([56]) Let (E, || · ||) be a normed space and let Ω ⊆ D be open and convex. A
function h : D → R, which is semi-strictly quasi-convex (quasi-convex) on the set Ω, is locally
semi-strictly quasi-convex (locally quasi-convex) at every point x ∈ Ω.

The reverse implications are not true, as shown in the next example.

Example 1.55 For the function h = (max hi)(·) : R → R considered in Example 1.48, we know
that h is not semi-strictly quasi-convex on Ω := R. However, h is semi-strictly quasi-convex on
B||·||(x, ε) = ]x − ε, x + ε[ for every x ∈ Ω and for ε ∈ ]0, 1[. Moreover, the function h : R → R
defined by

h(x) :=


x+ 1 for all x < −1,

0 for all x ∈ [−1, 1],

1− x for all x > 1
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is not quasi-convex on Ω := R, but quasi-convex on B||·||(x, ε) = ]x− ε, x+ ε[ for every x ∈ Ω and
for ε ∈ ]0, 1[.

A further relationship between global and corresponding local versions of generalized-convexity
is given in the next lemma.

Lemma 1.56 ([56]) Let (E, || · ||) be a normed space, let Ω ⊆ D be open and convex, and let
h : D → R be upper semi-continuous along line segments on Ω. Then, h is semi-strictly quasi-
convex on the set Ω if both of the following assertions are fulfilled:

1◦. h is locally explicitly quasi-convex at each point x ∈ Ω.

2◦. Every local minimum of h is also global for each restriction on a line segment in Ω.

Proof. Under the validity of 1◦ and 2◦, we suppose that the contrary holds, i.e., h is not semi-strictly
quasi-convex on Ω. Due to Lemma 1.42, there exist s ∈ R, x0 ∈ L=(Ω, h, s) and x1 ∈ L<(Ω, h, s)
such that xλ := lx0,x1(λ) ∈ L≥(Ω, h, s) for some λ ∈ ]0, 1[. Since h(xλ) ≥ h(x0) > h(x1) and
h ◦ lx0,x1 : [0, 1]→ R is upper semi-continuous on [0, 1], we can choose

λmax ∈
{
λ ∈ ]0, 1[ | h(lx0,x1(λ)) = max

λ∈[0,1]
h(lx0,x1(λ))

}
by a well-known Weierstrass-type Existence Theorem (see, e.g., Aliprantis and Border [1, Th.
2.43]). Now, put x2 := xλmax . Consider ε ∈ R++ such that h is explicitly quasi-convex on Bε :=

B||·||(x
2, ε). Thanks to Lemma 1.22, we get that Bδ := [x2 − δv, x2 + δv] ⊆ Bε for v := x1−x0

||x1−x0||
(note that x1 6= x0) and δ ∈ ]0, ε[. Now, define

δ := min
{
δ, ||x2 − x0||, ||x2 − x1||

}
∈ ]0, δ]

and
Bδ := [x2 − δv, x2 + δv].

Consider δ′, δ′′ ∈ R++. It is easily seen that x2+δ′v = x1 implies δ′ = ||x2−x1||, while x2−δ′′v = x0

implies δ′′ = ||x2−x0||. Hence, we have Bδ ⊆ [x0, x1] and Bδ ⊆ Bδ ⊆ Bε. Since h(x1) < s ≤ h(x2),
in view of 2◦, we know that x2 ∈ ]x0, x1[ can not be a local minimum point of h on the line
segment [x0, x1]. So, there exists x3 ∈ Bδ \ {x2} with h(x3) < h(x2). Clearly, for the point
x4 := x2 + (x2 − x3) ∈ Bδ, we have h(x4) ≤ h(x2). Now, we consider three cases:

Case 1: If h(x3) = h(x4), then x2 ∈ ]x3, x4[⊆ L≤(Bε, h, h(x3)) by the quasi-convexity of h on
Bε, a contradiction to h(x3) < h(x2).

Case 2: If h(x3) < h(x4), then x2 ∈ ]x3, x4[⊆ L<(Bε, h, h(x4)) by the semi-strict quasi-convexity
of h on Bε, a contradiction to h(x4) ≤ h(x2).

Case 3: If h(x4) < h(x3), then x2 ∈ ]x3, x4[⊆ L<(Bε, h, h(x3)) by the semi-strict quasi-convexity
of h on Bε, a contradiction to h(x3) < h(x2).

In all cases we have a contradiction, which completes the proof.

In the next theorem, we present a new characterization of semi-strictly quasi-convex functions.

Theorem 1.57 ([56]) Let (E, || · ||) be a normed space, let Ω ⊆ D be open and convex, and let
h : D → R be continuous along line segments on Ω. Then, h is semi-strictly quasi-convex on Ω if
and only if both of the following assertions hold:

1◦. h is locally semi-strictly quasi-convex at each point x ∈ Ω.

2◦. Every local minimum of h is also global for each restriction on a line segment in Ω.

Proof. First, we show the implication “⇐=”. As mentioned in Remark 1.53, 1◦ together with the
lower semi-continuity along line segments of h on Ω imply the local explicit quasi-convexity of h
at every point x ∈ Ω. So, in view of Lemma 1.56, we get the semi-strict quasi-convexity of h on
Ω, taking into account 2◦ and the upper semi-continuity along line segments of h on Ω.
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Now, we prove the reverse implication “=⇒”. The validity of 1◦ follows by Lemma 1.54, while it
is easily seen that the semi-strict quasi-convexity of h on Ω ensures the validity of 2◦ (see Cambini
and Martein [17, Th. 2.3.4]).

The next corollary presents an analogous assertion as given in Theorem 1.58 for the concepts of
(local) explicit quasi-convexity.

Corollary 1.58 ([56]) Let (E, || · ||) be a normed space, let Ω ⊆ D be open and convex, and let
h : D → R be continuous along line segments on Ω. Then, h is explicitly quasi-convex on Ω if and
only if both of the following assertions hold:

1◦. h is locally explicitly quasi-convex at each point x ∈ Ω.

2◦. Every local minimum of h is also global for each restriction on a line segment in Ω.

Remark 1.59 To the best of our knowledge, the results related to local versions of generalized-
convexity notions presented in this section are novel. Later in Section 2.5 we will use these notions
in order to derive sufficient conditions for the validity of some level set / level line conditions in
our presented penalization approach (see Chapter 2, in particular Section 2.5).

It should be mentioned that there are some notions of convexity and generalized-convexity at
a point (say x′ ∈ Ω ⊆ D) known that can be seen as relaxations of the concept of generalized-
convexity (see Cambini and Martein [17, Sec. 3.5]). These relaxed generalized-convexity notions
also do not need the convexity of the set Ω, however it is assumed that certain conditions at x′ are
fulfilled for each point of the set Ω. In contrast, in Definition 1.52, one considers only points that
are belonging to a certain local ball around the point x′.

1.4 Minkowski gauges

In this section, we present some relationships between convex sets and Minkowski gauges. First,
let us recall the definition of a Minkowski gauge which is defined on a linear topological space E.

Definition 1.60 ([131, Sec. 1.1]) Let Ω be a subset of E with 0 ∈ core Ω (i.e., Ω is an absorbing
subset of E). A Minkowski gauge µΩ : E→ R associated to the set Ω is defined by

µΩ(x) := inf{λ ∈ R+ | x ∈ λ · Ω} for all x ∈ E.

Notice that µΩ is finite-valued for every x ∈ E since Ω is absorbing.
In the following lemma, we recall useful properties of the Minkowski gauge µΩ. In particular,

we point out some relationships between (strict) level sets / level lines of µΩ, and topological /
algebraic notions defined for the corresponding set Ω.

Lemma 1.61 ([131, Sec. 1.1], [68, Sec. 6.2], [112, Th. 1.35]) Let Ω be a subset of E with 0 ∈ cor Ω
and [0, 1] · Ω = Ω, where [0, 1] · Ω := {tx | t ∈ [0, 1], x ∈ Ω}. Then, the following assertions hold:

1◦. It holds that
L<(E, µΩ, 1) ⊆ Ω ⊆ L≤(E, µΩ, 1).

2◦. Assume that Ω is convex. Then, µΩ is convex (hence explicitly quasi-convex) on E,

core Ω = L<(E, µΩ, 1),

and
µcore Ω = µΩ = µL≤(E,µΩ,1).

3◦. If Ω is convex and 0 ∈ int Ω, then µΩ is continuous on E, and we have

L<(E, µΩ, 1) = int Ω = core Ω,

L≤(E, µΩ, 1) = cl Ω,

L=(E, µΩ, 1) = bd Ω.
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Remark 1.62 Assume that Ω is a closed, convex subset of E with 0 ∈ int Ω. Then, L≤(E, µΩ, 1) =
Ω, i.e., the set Ω can be described by using a level set of the Minkowski gauge µΩ.

Corollary 1.63 Let Ω be a closed, convex subset of E with x′ ∈ int Ω. Consider the function
h : E→ R that is defined by

h(x) := µΩ(x− x′)− 1 for all x ∈ E.

Then, h is convex (hence explicitly quasi-convex) and continuous on E, and we have

L<(E, h, 0) = x′ + L<(E, µ−x′+Ω, 1) = int Ω = core Ω,

L≤(E, h, 0) = x′ + L≤(E, µ−x′+Ω, 1) = Ω,

L=(E, h, 0) = x′ + L=(E, µ−x′+Ω, 1) = bd Ω.

Example 1.64 Figure 1.2 visualizes the process of determining function values of a Minkowski
gauge µΩ, where the set Ω ⊆ R2 is given by a polytope that is determined by the convex hull of
four points ei ∈ R2, i ∈ I4, i.e., Ω = conv{ei | i ∈ I4}. Notice that Ω is a closed, convex set with
0 ∈ core Ω = int Ω.

0

e1

e2

e3

e4

x

3 · Ω

µΩ(x) = 3

Ω

Figure 1.2: Determination of function values of a polyhedral Minkowski gauge.

Remark 1.65 Under the assumption that Ω is a convex, absorbing, symmetric (i.e., Ω = −Ω) set
in E, the Minkowski gauge µΩ is a semi-norm on E (i.e., (ii) and (iii) in Definition 1.5 hold) by
Rudin [112, Th. 1.35]. Conversely, each semi-norm ρ : E→ R can be represented by a Minkowski
gauge µΩ with corresponding convex, absorbing unit ball Ω := {x ∈ E | ρ(x) < 1} (see Rudin
[112, Th. 1.34]). By Lemma 1.61 (2◦), we actually have ρ = µΩ = µcore Ω = µL≤(E,µΩ,1). Notice
that each norm || · || : E→ R is a semi-norm as well. Further interesting properties of Minkowski
gauges can be found in Aliprantis and Border [1, Sec. 5.8].

A Minkowski gauge µΩ associated to a polyhedral set Ω ⊆ E (i.e., Ω is the intersection of
finitely many half spaces) is a so-called polyhedral Minkowski gauge (e.g., µΩ in Example 1.64). If
Ω is polyhedral and µΩ is a norm, then µΩ is called block norm. Well-known examples of block
norms (defined on the Euclidean space Rn) are the Manhattan norm and the Maximum norm, as
considered in Example 1.7. In the field of location theory, one often calls a strictly convex norm
(defined on E = R2) round since the unit ball of the norm has no flat spots on the boundary. An
example of a strictly convex norm is given by the well-known Euclidean norm (see Example 1.7).
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1.5 Multi-objective optimization

In the following section, we recall some basic facts from the field of multi-objective optimization
that will be used throughout the thesis.

Minimal elements of an arbitrarily nonempty set F ⊆ Rm with respect to a pointed, convex
cone K ⊆ Rm can be defined according to the next definition.

Definition 1.66 ([64, Ch. 4]) Let F ⊆ Rm be a nonempty set and let K ⊆ Rm be a pointed,
convex cone. The set of minimal elements of F with respect to K is defined by

MIN(F,K) := {y ∈ F | (y −K) ∩ F = {y}}
= {y ∈ F | (y −K) ∩ F\{y} = ∅}.

Moreover, assuming that K is solid, the set of weakly minimal elements of Y with respect to K is
defined by

WMIN(F,K) := {y ∈ F | (y − intK) ∩ F = ∅}.

By Definition 1.66, when K is solid, we obviously have

MIN(F,K) ⊆WMIN(F,K) ⊆ F ∩ bdF. (1.6)

Also, it is a simple exercise to check that

MIN(F,K) = MIN(F\{y},K) for all y ∈ F\MIN(F,K). (1.7)

In multi-objective optimization (see, e.g., Ehrgott [29], Eichfelder and Jahn [33], Göpfert et al.
[50], and Jahn [64]) one tries to minimize a vector-valued objective function

f = (f1, · · · , fm) : D → Rm,

where D is a nonempty subset of the linear topological space E, over a nonempty subset Ω of D.
This means we are going to study the multi-objective optimization problem{

f(x) := (f1(x), · · · , fm(x))→ min w.r.t. Rm+
x ∈ Ω,

(PΩ)

where Rm is partially ordered by the natural ordering cone Rm+ (highlighted by the notation: with
respect to (w. r. t. for short) Rm+ ).

In the next definition, we recall the concepts of (strict, weak) Pareto efficiency that will be used
for the vector-valued minimization in the problem (PΩ). Let us denote, for any set Ω′ ⊆ E, the
image of f over Ω′ by

f [Ω′] := {f(x) ∈ Rm | x ∈ Ω′},

and the cardinality of Ω′ by
card Ω′.

Definition 1.67 ([29, Ch. 2], [64, Ch. 11]) The set of Pareto efficient solutions of problem (PΩ)
is defined by

Eff(Ω | f) := {x ∈ Ω | f(x) ∈ MIN(f [Ω],Rm+ )}
= {x ∈ Ω | f [Ω] ∩ (f(x)− (Rm+ \ {0})) = ∅},

while that of weakly Pareto efficient solutions is given by

WEff(Ω | f) := {x ∈ Ω | f(x) ∈WMIN(f [Ω],Rm+ )}
= {x ∈ Ω | f [Ω] ∩ (f(x)− intRm+ ) = ∅}.
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The set of strictly Pareto efficient solutions of (PΩ) is defined by

SEff(Ω | f) := {x ∈ Eff(Ω | f) | card {x′ ∈ Ω | f(x′) = f(x)} = 1}.

It is easily seen that
SEff(Ω | f) ⊆ Eff(Ω | f) ⊆WEff(Ω | f).

Notice that the following characterizations of (strictly, weakly) Pareto efficient solutions

x ∈ Eff(Ω | f) ⇐⇒ @x′ ∈ Ω s.t.

{
∀ i ∈ Im : fi(x

′) ≤ fi(x),

∃ j ∈ Im : fj(x
′) < fj(x);

x ∈WEff(Ω | f) ⇐⇒ @x′ ∈ Ω s.t. ∀ i ∈ Im : fi(x
′) < fi(x);

x ∈ SEff(Ω | f) ⇐⇒ @x′ ∈ Ω \ {x} s.t. ∀ i ∈ Im : fi(x
′) ≤ fi(x)

are often used in the literature of multi-objective optimization.
Let us consider an example where we illustrate the above definitions of minimality and efficiency,

respectively.

Example 1.68 Figure 1.3 shows an example problem (PΩ) with m = 2. For the point f(x) ∈ f [Ω],
x ∈ Ω, given in Figure 1.3 we have f(x) ∈ MIN(f [Ω],Rm+ ), hence x ∈ Eff(Ω | f).

f1

f2

f(Ω]

f(x) ∈ MIN(f [Ω],R2
+) = f [Eff(Ω | f)]

f [Ω] ∩ (f(x)− (R2
+ \ {0})) = ∅

Figure 1.3: x is a Pareto efficient solution of an example problem (PΩ) with m = 2.

In the next lemma, we recall useful characterizations of (strictly, weakly) Pareto efficient solutions
by using certain level sets and level lines of the component functions of f : D → Rm. Before, for
any x ∈ Ω, we define the intersections of (strict) lower-level sets / level lines by

S<(Ω, f, x) :=
⋂
i∈Im

L<(Ω, fi, fi(x));

S≤(Ω, f, x) :=
⋂
i∈Im

L≤(Ω, fi, fi(x));

S=(Ω, f, x) :=
⋂
i∈Im

L=(Ω, fi, fi(x)).
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Lemma 1.69 ([29, Th. 2.30]) For any x ∈ Ω, we have

x ∈ Eff(Ω | f) ⇐⇒ S≤(Ω, f, x) ⊆ S=(Ω, f, x);

x ∈WEff(Ω | f) ⇐⇒ S<(Ω, f, x) = ∅;
x ∈ SEff(Ω | f) ⇐⇒ S≤(Ω, f, x) = {x}.

Remark 1.70 The equivalences given in Lemma 1.69 can be for instance found in Ehrgott [29,
Th. 2.30] and Nickel [89, Th. 1.4.2]. Notice that these geometrical characterizations given in
Lemma 1.69 were already used in the works by Durier and Michelot [27, Prop. 1.1] and Plastria
[98] in the context of location theory.

The next example shows how one can use the characterizations of (strictly, weakly) Pareto
efficient solutions from Lemma 1.69 that are given in terms of (strict) lower-level sets / level lines.

Example 1.71 Let us consider the scalar functions f1, f2, f3 : R2 → R defined by fi(x) :=
||x− ai||1 = |x1 − ai1|+ |x2 − ai2| for all x = (x1, x2) ∈ R2 and all i ∈ I3, where ai = (ai1, a

i
2) ∈ R2,

i ∈ I3, are three points in the plane as given in Figure 1.4. In the left part of Figure 1.4, the level
lines of f1 and f2 at the point x ∈ R2 are shown. Due to Lemma 1.69, we get

x ∈ Eff(R2 | (f1, f2)) \ SEff(R2 | (f1, f2)).

In the right part of Figure 1.4, by adding one additional function f3 to the problem, we can see
that the point x is not longer a Pareto efficient solution for the problem with objective function
(f1, f2, f3). However, we have

x ∈WEff(R2 | (f1, f2, f3)) \ Eff(R2 | (f1, f2, f3)).

a1

a2

x

L= (R2, f1, f1(x))

L= (R2, f2, f2(x))

L= (R2, f1, f1(x)) ∩ L= (R2, f2, f2(x))

a1

a2a3

L= (R2, f3, f3(x))

x

Figure 1.4: Geometric characterization of (weakly) Pareto efficient solutions.

A common approach in multi-objective optimization is the transformation of the initial prob-
lem (PΩ) into a scalar one and then to solve this scalarized problem by applying methods from
single-objective optimization theory. Such approaches are known in the literature as scalarization
methods. Probably the best known technique is the so-called Weighted-Sum Scalarization Method
which we recall below. However, notice that there are several other known scalarization meth-
ods, for instance the Tammer-Weidner Scalarization Method based on a nonlinear scalarization
functional (which includes as special cases the ε-Constraint Method, the Pascoletti-Serafini Scalar-
ization Method, or the Weighted Chebyshev Norm Approach), the Conic Scalarization Method by
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Kasimbeyli, or the Scalarization Method based on the signed distance function by Hiriart-Urruty
(for more details, see the books by Ehrgott [29], Eichfelder [31, 32], Göpfert et al. [50], Jahn [64],
and Khan, Tammer and Zălinescu [68]).

For any given λ := (λ1, · · · , λm) ∈ Rm+ \ {0}, consider the problem〈λ, f(x)〉 :=
m∑
i=1

λifi(x)→ min

x ∈ Ω.
(sλPΩ)

Before presenting relationships between the problems (PΩ) and (sλPΩ), we recall a well-known
definition of proper Pareto efficiency (in the sense of Geoffrion [44]).

Definition 1.72 ([44], [29, Def. 2.39], [64, Def. 11.8]) A point x ∈ Ω is called a properly Pareto
efficient solution of (PΩ) if x ∈ Eff(Ω | f) and there is some ρ ∈ R++ so that for every i ∈ Im and
every x′ ∈ Ω with fi(x

′) < fi(x) at least one j ∈ Im exists with fj(x
′) > fj(x) and

fi(x)− fi(x′)
fj(x′)− fj(x)

≤ ρ.

The set of all properly Pareto efficient solutions of (PΩ) is denoted by PEff(Ω | f).

Remark 1.73 There are also some other notions of proper Pareto efficiency known in the liter-
ature of vector optimization (for instance, concepts in the sense of Benson, Borwein, or Henig).
Some useful notes on the literature of proper Pareto efficiency (respectively, proper minimality) are
given by Jahn [64, p. 113-114]. Notice that properly efficient solutions, according to our Definition
1.72, are those efficient solutions that have bounded trade-offs between the objective functions
(see, e.g., Ehrgott [29, Sec. 2.4]).

It can easily be seen that the following inclusions hold:

PEff(Ω | f) ⊆ Eff(Ω | f) ⊆WEff(Ω | f).

In preparation of the next lemma, for any real-valued function h : D → R, let the set of minimal
solutions of the problem {

h(x)→ min

x ∈ Ω.

be denoted by
Sol(Ω | h) := argmin{h(x) | x ∈ Ω}.

Define Solu(Ω | h) := ∅. Under the assumption that Sol(Ω | h) is a singleton set, i.e., there exists
a solution x′ ∈ Ω such that {x′} = Sol(Ω | h), we put

Solu(Ω | h) := {x′}.

In the next lemma, we will see that a solution of the scalarized problem (sλPΩ) is a (weakly,
properly, strictly) Pareto efficient solution of the multi-objective optimization problem (PΩ) under
certain assumptions on the parameter λ.

Lemma 1.74 ([29, Prop. 3.9], [64, Sec. 11.2.1]) The following assertions hold:

1◦. If λ ∈ Rm+ \ {0}, then
Sol(Ω | 〈λ, f(·)〉) ⊆WEff(Ω | f).

2◦. If λ ∈ intRm+ , then
Sol(Ω | 〈λ, f(·)〉) ⊆ PEff(Ω | f).

3◦. If λ ∈ Rm+ \ {0}, then
Solu(Ω | 〈λ, f(·)〉) ⊆ SEff(Ω | f).
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Now, under convexity assumption on the problem (PΩ), we get important relationships between
the solutions of the scalar optimization problem (sλPΩ) and properly and weakly Pareto efficient
solutions of the multi-objective optimization problem (PΩ).

Lemma 1.75 ([29, Sec. 3.2], [64, Sec. 11.2.1]) Assume that f : D → Rm is componentwise convex
on the nonempty, convex set Ω ⊆ D. Then, the following equalities hold:

PEff(Ω | f) =
⋃

λ∈intRm+

Sol(Ω | 〈λ, f(·)〉);

WEff(Ω | f) =
⋃

λ∈Rm+ \{0}

Sol(Ω | 〈λ, f(·)〉).
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Chapter 2

A new penalization approach in constrained multi-objective
optimization

In this chapter, we derive a novel approach (a kind of vectorial penalization approach) for solv-
ing generalized-convex multi-objective optimization problems involving not necessarily convex con-
straints where the vector-valued objective function is acting between a topological linear pre-image
space E and a finite-dimensional image space Rm.

In scalar optimization theory, the famous Exact Penalty Principle (see Clarke [22, Prop. 2.4.3],
Eremin [35], and Zangwill [132]) is based on the idea to replace the initial constrained single-
objective optimization problem {

h(x)→ min

x ∈ Ω

with a nonempty feasible set Ω ⊆ E by a penalized unconstrained single-objective optimization
problem {

h(x) + ρφ(x)→ min,

x ∈ E,

where ρ ∈ R++ and φ : E→ R is a scalar-valued function satisfying

φ(x) = 0 ⇐⇒ x ∈ Ω;

φ(x) > 0 ⇐⇒ x ∈ E \ Ω.

Clarke’s Exact Penalty Principle (more precisely an improved version by Ye [129, Th. 1.2]) can
be stated as follows:

Proposition 2.1 ([22, Prop. 2.4.3], [129, Th. 1.2]) Let (E, || · ||) be a normed space, let h : E→ R
be a Lipschitz continuous function on E of rank Lh ∈ R++, and let Ω ⊆ E be a nonempty set.
Consider the function φ : E→ R defined by

φ(x) := inf{||x′ − x|| | x′ ∈ Ω} for all x ∈ E.

Then, for any L > Lh, we have

argminx∈Ω h(x) = argminx∈E h(x) + Lφ(x).

Some authors (see Apetrii, Durea and Strugariu [4] and Ye [129]) extended the above Exact
Penalty Principle to vector optimization. These approaches consists of adding a penalization term
in each component function of the objective function f : D → Rm given in (PΩ). Our approach
presented in this chapter is a kind of vectorial penalization and differs from the works by Ye [129]
and Apetrii, Durea and Strugariu [4]. Many of the results presented in this chapter are based on
Günther and Tammer [55, 56]. Further ideas for vectorial penalization can be found in Durea,
Strugariu and Tammer [25], and Klamroth and Tind [72] (see Section 2.8 for more details).
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2.1 Relationships between problem (PX) with nonconvex feasible set X
and problem (PY ) with convex feasible set Y

In this section, we suppose that the following assumptions hold:
Let E be a real topological linear space;
let D ⊆ E be a nonempty set;
let Y ⊆ D be a convex set;
let X ⊆ Y be a nonempty set with X 6= Y.

(2.1)

In what follows, under the validity of the assumption (2.1), we study some relationships between
two multi-objective optimization problems{

f(x) = (f1(x), · · · , fm(x))→ min w.r.t. Rm+
x ∈ X

(PX)

and {
f(x) = (f1(x), · · · , fm(x))→ min w.r.t. Rm+
x ∈ Y.

(PY )

Lemma 2.2 ([55, 56]) Assume that (2.1) is satisfied. Then, the following assertions hold:

1◦. We have

X ∩ Eff(Y | f) ⊆ Eff(X | f);

X ∩WEff(Y | f) ⊆WEff(X | f);

X ∩ SEff(Y | f) ⊆ SEff(X | f).

2◦. Let Y be convex. If f : D → Rm is componentwise semi-strictly quasi-convex on Y , then

(corX) \ Eff(Y | f) ⊆ (corX) \ Eff(X | f); (2.2)

(corX) \WEff(Y | f) ⊆ (corX) \WEff(X | f). (2.3)

3◦. Let Y be convex. If f : D → Rm is componentwise semi-strictly quasi-convex or quasi-convex
on Y , then

(corX) \ SEff(Y | f) ⊆ (corX) \ SEff(X | f).

Proof. 1◦. Follows easily by Lemma 1.69.

2◦. Let us show the first inclusion. Consider x0 ∈ (corX)\Eff(Y | f). Since x0 /∈ Eff(Y | f), there
exists x1 ∈ L<(Y, fj , fj(x

0))∩S≤(Y, f, x0) for some j ∈ Im. We define the following two index sets

I< := {j ∈ Im | x1 ∈ L<(Y, fj , fj(x
0))},

I= := {i ∈ Im | x1 ∈ L=(Y, fi, fi(x
0))}.

Of course, we know that I< 6= ∅ and I= ∪ I< = Im.

Clearly, for x1 ∈ X, we get immediately x0 ∈ (corX) \Eff(X | f). Now, assume x1 ∈ Y \X. Since
x0 ∈ corX, by Lemma 1.20, we get x0 + [0, δ] · v ⊆ X for v := x1 − x0 6= 0 and some δ ∈ R++.
Obviously, since x1 /∈ X, it follows δ ∈ ]0, 1[. Hence, for λ∗ := δ, we have xλ := lx0,x1(λ) ∈
X∩ ]x0, x1[ for all λ ∈ ]0, λ∗].

Now, for an arbitrarily i ∈ Im, we consider two cases:

Case 1: Consider i ∈ I<. The semi-strict quasi-convexity of fi on Y implies xλ ∈ L<(Y, fi, fi(x
0))

for all λ ∈ ]0, 1] by Lemma 1.42. Because of xλ ∈ X for all λ ∈ ]0, λ∗], we get xλ ∈ L<(X, fi, fi(x
0))

for all λ ∈ ]0, λ∗].
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Case 2: Consider i ∈ I=. This means that fi(x
1) = fi(x

0). By Lemma 1.43 (applied for Ω := Y ),
we infer

cardL>(]x0, x1[, fi, fi(x
0)) ≤ 1.

In the case that cardL>(]x0, x1[, fi, fi(x
0)) = 1, we get that there exists λi ∈ ]0, 1[ such that

fi(lx0,x1(λi)) > fi(x
0). Otherwise, we define λi := 2λ∗.

For λ := min{λ∗, 0.5 ·min{λi | i ∈ I=}}, it follows that xλ ∈ L≤(X, fi, fi(x
0)) for all i ∈ I= as well

as xλ ∈ L<(X, fi, fi(x
0)) for all i ∈ I<. So, we get x0 ∈ (corX) \ Eff(X | f) by Lemma 1.69.

The proof of the second inclusion is analogous to the proof of the first inclusion in 2◦. Notice that
I< = Im and I= = ∅.

3◦. Consider x0 ∈ (corX) \ SEff(Y | f). Since x0 /∈ SEff(Y | f), it exists x1 ∈ Y \ {x0} such that
x1 ∈ S≤(Y, f, x0). Of course, since x1 ∈ X, we get x0 ∈ (corX) \ SEff(X | f). Now, assume that
x1 ∈ Y \X. Analogously to the proof of assertion 2◦ in this lemma, there exists λ∗ ∈ ]0, 1[ such
that xλ := lx0,x1(λ) ∈ X∩ ]x0, x1[ for all λ ∈ ]0, λ∗].

Let i ∈ Im and consider two cases:

Case 1: Let fi be semi-strictly quasi-convex on Y . Similar to the proof of assertion 2◦ of this
lemma, there exists λi ∈ ]0, λ∗] with xλ ∈ L≤(X, fi, fi(x

0)) for all λ ∈ ]0, λi].

Case 2: Let fi be quasi-convex on Y . By the convexity of the level sets of fi, we conclude
[x0, x1] ⊆ L≤(Y, fi, fi(x

0)) for x0, x1 ∈ L≤(Y, fi, fi(x
0)) by Lemma 1.41. We put λi := λ∗.

Hence, for λ := min{λi | i ∈ Im}, it follows that xλ ∈ S≤(X, f, x0) \ {x0}. Finally, we get x0 ∈
(corX) \ SEff(X | f) by Lemma 1.69.

Remark 2.3 Assertions 2◦ and 3◦ in Lemma 2.2 also holds for the case that we remove the
convexity assumption on the set Y but, in addition, we assume that the set D is convex and f is
componentwise generalized-convex on D.

Remark 2.4 The inclusion

(intX) \WEff(E | f) ⊆ (intX) \WEff(X | f) (2.4)

(compare formula (2.3)) was already discussed in the proof of Theorem 3.1 in the paper by Puerto
and Rodŕıguez-Ch́ıa [110] for the particular case that Y = E = R2 and X is a nonempty, closed
convex set in R2. One argument in the proof of this theorem is the convexity of level sets. It is
important to mention that the inclusion given by (2.4) may fails for some componentwise quasi-
convex functions (see Example 2.5). Puerto and Rodŕıguez-Ch́ıa [110] supposed that the objective
function f is componentwise strictly quasi-convex on R2. However, it is well-known that strictly
quasi-convex functions (or convex functions) are semi-strictly quasi-convex too (see Remark 1.36).
Therefore, the inclusion (2.4) is true for the model discussed by Puerto and Rodŕıguez-Ch́ıa [110].

The semi-strict quasi-convexity assumption with respect to f can not be replaced by a quasi-
convexity assumption in 2◦ of Lemma 2.2, as shown in the next example.

Example 2.5 Let fi : R2 → R, for any i ∈ I2, be defined by

fi(x) :=

{
0 for ||x− (i− 1, 0)||∞ < 1,

1 for ||x− (i− 1, 0)||∞ ≥ 1

for all x ∈ R2. Then, f := (f1, f2) : R2 → R is componentwise quasi-convex on R2, since the set
L≤(R2, fi, s) is convex for all s ∈ R and all i ∈ I2. However, notice that f is not componentwise
semi-strictly quasi-convex on R2. Now, consider x′ := (0.5, 3) ∈ intX, and define X := {x ∈ R2 |
||x − x′||∞ ≤ 1}. By the definitions of f and X, we get Eff(X | f) = WEff(X | f) = X. For
the point x′′ := (0.5, 0) /∈ X, we have fi(x

′) = 1 > 0 = fi(x
′′) for all i ∈ I2. Consequently, it
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follows x′′ ∈ S<(R2, f, x′), but S<(R2, f, x′)∩X = ∅. This means that x′ ∈ (intX)\WEff(R2 | f),
hence x′ ∈ (intX) \ Eff(R2 | f), but x′ ∈ WEff(X | f) = Eff(X | f). So, we can not replace the
semi-strict quasi-convexity assumption with respect to f by a quasi-convexity assumption in 2◦ of
Lemma 2.2. The above example is illustrated in Figure 2.1.

X
x′

−2 −1 0 1 2 3

x′′

−1

0

1

2

3

4

x′′ ∈ S<(R2, f, x′)

Figure 2.1: Counter-example for the validity of (2.2) and (2.3) for a quasi-convex function.

The following corollary gives useful bounds for the sets of (strictly, weakly) Pareto efficient
solutions of the problem (PX) under generalized-convexity assumption on f with respect to the
set Y but without convexity assumption on the feasible set X.

Corollary 2.6 ([55, 56]) Assume that (2.1) is satisfied. Then, the following assertions hold:

1◦. If f : D → Rm is componentwise semi-strictly quasi-convex on Y , then

X ∩ Eff(Y | f) ⊆ Eff(X | f) ⊆ [X ∩ Eff(Y | f)] ∪ bdX;

X ∩ WEff(Y | f) ⊆WEff(X | f) ⊆ [X ∩ WEff(Y | f)] ∪ bdX.

2◦. If f : D → Rm is componentwise semi-strictly quasi-convex or quasi-convex on Y , then

X ∩ SEff(Y | f) ⊆ SEff(X | f) ⊆ [X ∩ SEff(Y | f)] ∪ bdX.

Corollary 2.7 ([56]) Assume that (2.1) is satisfied. In addition, suppose that the set X is open.
Then, the following assertions hold:

1◦. If f : D → Rm is componentwise semi-strictly quasi-convex on Y , then

X ∩ Eff(Y | f) = Eff(X | f);

X ∩ WEff(Y | f) = WEff(X | f).

2◦. If f : D → Rm is componentwise semi-strictly quasi-convex or quasi-convex on Y , then

X ∩ SEff(Y | f) = SEff(X | f).
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2.2 The penalized multi-objective optimization problem (P⊕
Y ) with

convex feasible set Y

In what follows, we suppose that the following standard assumptions are fulfilled:{
Let (2.1) be satisfied;
let X be closed.

(2.5)

Remark 2.8 Notice, under the assumptions given in (2.5), we have bdX 6= ∅ (see Lemma 1.11).
For the case bdX = ∅ (hence X is open), we refer to Corollary 2.7.

In our approach, under the validity of the assumption (2.5), we add a real-valued penalization
function φ : D → R to the original objective function f = (f1, · · · , fm) : D → Rm of the problem
(PY ) as a new component function fm+1 := φ. So, the new penalized multi-objective optimization
problem can be stated as{

f⊕(x) := (f1(x), · · · , fm(x), φ(x))→ min w.r.t. Rm+1
+

x ∈ Y.
(P⊕Y )

In the sequel, we will need in certain results some of the following assumptions concerning the
lower-level sets / level lines of the penalization function φ:

∀x′ ∈ bdX : L≤(Y, φ, φ(x′)) = X, (A1)

∀x′ ∈ bdX : L=(Y, φ, φ(x′)) = bdX, (A2)

∀x′ ∈ X : L=(Y, φ, φ(x′)) = L≤(Y, φ, φ(x′)) = X, (A3)

∀x′ ∈ X : L≤(Y, φ, φ(x′)) ⊆ X, (A4)

L≤(Y, φ, 0) = X, (A5)

L=(Y, φ, 0) = bdX. (A6)

In particular, Assumptions (A1) and (A2) (respectively, Assumption (A3)) will play a key role
for proving our main results within this chapter.

Remark 2.9 Notice, under both Assumptions (A1) and (A2), we have

∀x′ ∈ bdX : L<(Y, φ, φ(x′)) = intX,

while under Assumption (A3) it follows

∀x′ ∈ X : L<(Y, φ, φ(x′)) = ∅.

In the next two lemmata, we present some preliminary results related to the validity of the above
assumptions.

Lemma 2.10 Let (2.5) be satisfied. Then, we have:

1◦. (A3) =⇒ (A1).

2◦. If intX = ∅, then (A1) ∧ (A2)⇐⇒ (A3).

3◦. (A5) ∧ (A6) =⇒ (A1) ∧ (A2).

4◦. (A1) ∨ (A3) ∨ (A5) =⇒ (A4).

5◦. φ fulfils (A1) and (A2) if and only if φ̂ := h ◦ φ : D → R fulfils (A1) and (A2) (with φ̂ in the
role of φ), where h : R→ R is a strictly increasing function on the image set φ[D].

6◦. φ fulfils (A1) and (A2) if and only if φ̂ := φ − φ(x′), x′ ∈ bdX, fulfils (A1), (A2), (A5) and

(A6) (with φ̂ in the role of φ).
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We omit the proof of Lemma 2.10 since the assertions can easily be verified.

Lemma 2.11 Let (2.5) be satisfied. Assume that φ : D → R satisfies the Assumption (A∗) ∈
{(A1), (A2), · · · , (A6)} with D in the role of Y . Then, φ satisfies the Assumption (A∗) for the set
Y ⊆ D with X ⊆ Y .

Proof. Due to
L∼(Y, φ, s) = L∼(D, φ, s) ∩ Y

for all ∼∈ {<,≤,=} and all s ∈ R, and bdX ⊆ X ⊆ Y ⊆ D, the assertion follows immediately.

2.3 Examples for the penalization function φ

In this section, we will present some examples for the penalization function that can be used in
our vectorial penalization approach. Throughout this section, we suppose that φ is defined on the
whole space, i.e., D = E.

Example 2.12 Let X ⊆ E be a closed, convex set with x′ ∈ intX and X 6= E. Let a Minkowski
gauge µ := µB : E → R with corresponding unit ball B := −x′ + X be given. Recall, in view of
Section 1.4, we have

µ(x) = µB(x) = inf{λ ∈ R+ |x ∈ λ ·B} for all x ∈ E.

Then, the function
φ( · ) := µ( · − x′)

fulfils Assumptions (A1) and (A2) for Y = E. Indeed, the function

φ̂( · ) := µ( · − x′)− 1

fulfils (A5) and (A6) by Corollary 1.63, hence φ satisfies (A1) and (A2) by Lemma 2.10 (3◦, 6◦).

Example 2.13 Let X be a nonempty, closed set in a normed space (E, || · ||) and let the distance
function with respect to X, namely dX : E→ R, be given by

dX(x) := inf{||x− x′|| |x′ ∈ X} for all x ∈ E.

We recall some important properties of dX (see, e.g., Mordukhovich and Nam [87], and references
therein):

• dX is Lipschitz continuous on E of rank 1;

• dX is convex on E if and only if X is convex in E;

• L≤(E, dX , 0) = L=(E, dX , 0) = X.

Hence, the penalization function
φ := dX

fulfils Assumptions (A3) and (A5) for Y = E.

Example 2.14 Let X be a nonempty, closed set in a normed space (E, || · ||) with X 6= E. Based
on the distance function dX : E→ R (see Example 2.13), we consider a function 4X : E→ R that
is defined by

4X(x) := dX(x)− dE\X(x) =

{
dX(x) for x ∈ E \X,
−dE\X(x) for x ∈ X.

The function 4X was introduced by Hiriart-Urruty [62] and is known in the literature as signed
distance function or Hiriart-Urruty function. Next, we recall some well-known properties of 4X
(see Hiriart-Urruty [62], Liu, Ng and Yang [75], and Zaffaroni [130]):
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• 4X is Lipschitz continuous on E of rank 1;

• 4X is convex on E if and only if X is convex in E;

• L≤(E,4X , 0) = X and L=(E,4X , 0) = bdX.

It follows that the penalization function

φ := 4X

fulfils Assumptions (A1), (A2), (A5) and (A6) for Y = E.

Example 2.15 In this example, we consider a nonlinear function introduced as a scalarizing tool
(the so-called Gerstewitz function or Tammer-Weidner function) in multi-objective optimization
by Gerstewitz [45] (see also Gerstewitz and Iwanow [46], and Gerth and Weidner [48]). Let (E, ||·||)
be a normed space. Assume that C ⊆ E is a nontrivial, closed, convex cone, k ∈ intC, and X ( E
is a nonempty, closed set such that

X − (C \ {0}) = intX.

The function ϕX,k : E→ R defined, for any x ∈ E, by

ϕX,k(x) := inf{s ∈ R |x ∈ sk +X}

is finite-valued and fulfils the important properties (see Kahn, Tammer and Zălinescu [68, Sec.
5.2]):

• ϕX,k is Lipschitz continuous on E;

• ϕX,k is convex on E if and only if X is convex in E;

• L≤(E, ϕX,k, 0) = X and L=(E, ϕX,k, 0) = bdX.

This means that the penalization function

φ := ϕX,k

fulfils Assumptions (A1), (A2), (A5) and (A6) for Y = E.

Remark 2.16 Examples 2.13, 2.14 and 2.15 show that a nonconvex set X can be considered in
our approach. Let X be an arbitrarily closed set with ∅ 6= X 6= E. In any normed space (E, || · ||),
we know that the Hiriart-Urruty function 4X fulfils Assumptions (A1) and (A2), and moreover,
the distance function dX with respect to X fulfils Assumption (A3).

2.4 Relationships between the multi-objective optimization problems

(PX), (PY ) and (P⊕
Y )

In this section, under the assumptions given in (2.5), we study the relationships between the initial
problem (PX) with not necessarily convex feasible set X and two corresponding problems (PY )
and (P⊕Y ) with convex feasible set Y .

2.4.1 Sets of Pareto efficient solutions of (PX), (PY ) and (P⊕
Y )

Next, we present relationships between the sets of Pareto efficient solutions of the problems (PX),
(PY ) and (P⊕Y ). A first main result of this thesis is given in the next theorem where the penalization
function φ satisfies Assumptions (A1) and (A2).
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Theorem 2.17 ([55, 56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumptions (A1)
and (A2). Then, the following assertions hold:

1◦. We have
[X ∩ Eff(Y | f)] ∪

[
(bdX) ∩ Eff(Y | f⊕)

]
⊆ Eff(X | f).

2◦. In the case intX 6= ∅, suppose additionally that f : D → Rm is componentwise semi-strictly
quasi-convex on Y . Then, we have

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
⊇ Eff(X | f).

Proof. 1◦. The inclusion X ∩ Eff(Y | f) ⊆ Eff(X | f) follows by Lemma 2.2. Consider x ∈
(bdX) ∩ Eff(Y | f⊕). By Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)) and Assumptions (A1)
and (A2), it follows

S≤(X, f, x) = S≤(Y, f, x) ∩X
= S≤(Y, f, x) ∩ L≤(Y, φ, φ(x))

⊆ S=(Y, f, x) ∩ L=(Y, φ, φ(x))

= S=(Y, f, x) ∩ bdX

⊆ S=(Y, f, x) ∩X
= S=(X, f, x).

Hence, we get x ∈ Eff(X | f) by Lemma 1.69 (applied for (PX) instead of (PΩ)).

2◦. Let x ∈ Eff(X | f) ⊆ X. In the case x ∈ X ∩ Eff(Y | f), the inclusion holds. So, we consider
the case x ∈ X \ Eff(Y | f). If intX = ∅, then clearly we have x ∈ bdX. In the case intX 6= ∅,
we get x ∈ bdX from Corollary 2.6, taking into account the componentwise semi-strictly quasi-
convexity of f on Y . So, we have x ∈ (bdX) \ Eff(Y | f). By Lemma 1.69 (applied for (PX)
instead of (PΩ)) and Assumption (A1), we can conclude

S≤(Y, f, x) ∩ L≤(Y, φ, φ(x)) = S≤(Y, f, x) ∩X
= S≤(X, f, x)

⊆ S=(X, f, x)

= S=(Y, f, x) ∩X.

Now, we will prove the equation

S=(Y, f, x) ∩X = S=(Y, f, x) ∩ bdX. (2.6)

In the case that intX = ∅, (2.6) is obviously fulfilled. For the case intX 6= ∅, it is sufficient to
prove S=(Y, f, x)∩ intX = ∅ in order to get the validity of (2.6). Indeed, if we suppose that there
exists x′ ∈ intX with x′ ∈ S=(Y, f, x), then we have to discuss following two cases:

Case 1: If x′ ∈ (intX) \ Eff(Y | f), then we get x′ ∈ (intX) \ Eff(X | f) by Lemma 2.2
under the assumption that f is componentwise semi-strictly quasi-convex on Y . This implies
x ∈ X \ Eff(X | f) because of x′ ∈ S=(X, f, x), a contradiction to x ∈ Eff(X | f).

Case 2: If x′ ∈ Eff(Y | f), then we get x ∈ Eff(Y | f) by x′ ∈ S=(Y, f, x). This is a contradiction
to x ∈ X \ Eff(Y | f).

This means that (2.6) holds.

Furthermore, since x ∈ bdX and (A2) holds, we have

S=(Y, f, x) ∩ bdX = S=(Y, f, x) ∩ L=(Y, φ, φ(x)).

From Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)), we conclude x ∈ Eff(Y | f⊕). This means
that x ∈ (bdX) ∩ Eff(Y | f⊕), which completes the proof of assertion 2◦.
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Corollary 2.18 Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumptions (A1) and
(A2). In the case intX 6= ∅, suppose additionally that f : D → Rm is componentwise semi-strictly
quasi-convex on Y . Then, we have

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
= Eff(X | f).

Corollary 2.19 Assuming that the assumptions of Corollary 2.28 as well as the condition X ∩
Eff(Y | f) = ∅ are fulfilled, we have

Eff(X | f) = (bdX) ∩ Eff(Y | f⊕) ⊆ bdX.

Remark 2.20 The semi-strict quasi-convexity assumption with respect to f in 2◦ of Theorem
2.17 can not be replaced by a quasi-convexity assumption (see Example 2.5 and the Example 2.30
in the next section). Moreover, the following both inclusions

Eff(X | f) ⊆ X ∩ Eff(Y | f⊕); (2.7)

(bdX) ∩ Eff(Y | f) ⊆ (bdX) ∩ Eff(Y | f⊕) (2.8)

do not hold under the assumptions supposed in Theorem 2.17 in general, as shown in the next
Example 2.21.

Example 2.21 For three given points in the plane a1 := (5, 5), a2 := (2, 2.5), a3 := (3.5, 3.5) ∈
R2, we consider a constrained convex multi-objective location problem with objective function
f = (f1, f2, f3) : R2 → R3, where fi(x) := ||x − ai||1 for all x ∈ R2 and all i ∈ I3, and a feasible
set X := [2, 5]× [2.5, 5]. Let the penalization function be given by φ( · ) := µ( · − a3) with µ = µB ,
where B := −a3 + X (see Example 2.12). It is easily seen that all assumptions of Corollary 2.18
are fulfilled in this example. The left part of Figure 2.2 illustrates that the given point x′ ∈ bdX
is contained in both sets Eff(X | f) and Eff(R2 | f). Notice that

Eff(X | f) = Eff(R2 | f) = ([2, 3.5]× [2.5, 3.5]) ∪ ([3.5, 5]× [3.5, 5]),

as a result of our Rectangular Decomposition Algorithm formulated in Chapter 5. However, the
right part of Figure 2.2 shows that x′ /∈ Eff(R2 | f⊕), because x′′ ∈ (intX)∩ S=(R2, f, x′). Hence,
the inclusions (2.7) and (2.8) do not hold under the assumptions given in Corollary 2.18.

x′ ∈ Eff(R2 | f) ∩ Eff(X | f)

a3

X

a2

x′ /∈ Eff(R2 | f⊕)

x′
x′′

S=(R2, f, x′)

a1

a3

X

a2

a1

x′
a3

Figure 2.2: Counter-example for the inclusions (2.7) and (2.8) given in Remark 2.20
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Remark 2.22 Since the inclusion (2.8) is not true in general, we can not deduce the equality

[(intX) ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
= Eff(X | f) (2.9)

directly by applying Corollary 2.18. Notice that this is possible for the other solution concepts
discussed in this thesis (see Remarks 2.31 and 2.44). Indeed, Example 2.21 shows that under the
assumptions of Corollary 2.18 the equality in (2.9) does not hold (since x′ ∈ (bdX) ∩ Eff(X | f)
but x′ /∈ Eff(R2 | f⊕)). However, since intX ⊆ X and because of 1◦ in Theorem 2.17, the inclusion
“⊆” in (2.9) is true actually without assuming that f is a generalized convex function on Y .

Under the assumptions of Corollary 2.18, it is possible to check whether a point x ∈ X is efficient
for the constrained problem (PX) or not by using two problems with convex feasible set:

x ∈ intX : x ∈ Eff(Y | f) ⇐⇒ x ∈ Eff(X | f);

x ∈ bdX : x ∈ Eff(Y | f) ∨ x ∈ Eff(Y | f⊕) ⇐⇒ x ∈ Eff(X | f).

In the next lemma, we present sufficient conditions for the fact that a solution x ∈ Eff(X | f) is
belonging to Eff(Y | f⊕).

Lemma 2.23 ([55, 56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A4).
If x ∈ Eff(X | f) and S=(X, f, x) ⊆ L=(Y, φ, φ(x)), then x ∈ X ∩ Eff(Y | f⊕).

Proof. Consider x ∈ Eff(X | f). The following assertions are equivalent:

• S=(X, f, x) ⊆ L=(Y, φ, φ(x)).

• S=(Y, f, x) ∩X ⊆ L=(Y, φ, φ(x)).

• S=(Y, f, x) ∩X ⊆ S=(Y, f, x) ∩ L=(Y, φ, φ(x)).

Hence, by Lemma 1.69 (applied for (PX) instead of (PΩ)) and by Assumption (A4), it follows

S≤(Y, f, x) ∩ L≤(Y, φ, φ(x)) ⊆ S≤(Y, f, x) ∩X
= S≤(X, f, x)

⊆ S=(X, f, x)

= S=(Y, f, x) ∩X
⊆ S=(Y, f, x) ∩ L=(Y, φ, φ(x)).

Due to Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)), we infer x ∈ X ∩ Eff(Y | f⊕).

In the next theorem, we present a second main result that holds under the assumption that the
penalization function φ fulfils Assumption (A3).

Theorem 2.24 ([56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A3).
Then, the following assertions are true:

1◦. It holds that

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
⊆ Eff(X | f) = X ∩ Eff(Y | f⊕).

2◦. In the case intX 6= ∅, suppose additionally that f : D → Rm is componentwise semi-strictly
quasi-convex on Y . Then, we have

[X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
⊇ Eff(X | f).
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Proof. 1◦. We are going to show Eff(X | f) = X ∩ Eff(Y | f⊕).

Let us prove the inclusion “⊇”. Consider x ∈ X ∩ Eff(Y | f⊕). By Lemma 1.69 (applied for (P⊕Y )
instead of (PΩ)) and Assumption (A3), it follows

S≤(X, f, x) = S≤(Y, f, x) ∩X
= S≤(Y, f, x) ∩ L≤(Y, φ, φ(x))

⊆ S=(Y, f, x) ∩ L=(Y, φ, φ(x))

= S=(Y, f, x) ∩X
= S=(X, f, x).

By Lemma 1.69 (applied for (PX) instead of (PΩ)), we get x ∈ Eff(X | f).

Now, we prove the reverse inclusion “⊆”. Let x ∈ Eff(X | f). Due to

S=(X, f, x) = S=(Y, f, x) ∩X
= S=(Y, f, x) ∩ L=(Y, φ, φ(x))

⊆ L=(Y, φ, φ(x)),

it follows x ∈ X ∩Eff(Y | f⊕) by Lemma 2.23. Notice that (A3) implies (A4) by Lemma 2.10 (4◦).

Moreover, the inclusion X ∩ Eff(Y | f) ⊆ Eff(X | f) follows by Lemma 2.2, while the second
inclusion (bdX) ∩ Eff(Y | f⊕) ⊆ Eff(X | f) is a direct consequence of the equality Eff(X | f) =
X ∩ Eff(Y | f⊕) taking into account the closedness of X.

2◦. The proof is analogous to the first part of the proof of 2◦ in Theorem 2.17. Notice, due to
Assumption (A3), for any x ∈ bdX, we have

S=(Y, f, x) ∩X = S=(Y, f, x) ∩ L=(Y, φ, φ(x)).

2.4.2 Sets of weakly Pareto efficient solutions of (PX), (PY ) and (P⊕
Y )

In the first part of this section, we present some relationships between the sets of weakly Pareto
efficient solutions of the multi-objective optimization problems (PX), (PY ) and (P⊕Y ). The second
part of this section is devoted to the study of the concept of Pareto reducibility for multi-objective
optimizations problems that was introduced by Popovici [102, Def. 1].

2.4.2.1 Relationships between the sets of solutions

Some first relationships between the sets of weakly Pareto efficient solutions of the problems (PX),
(PY ) and (P⊕Y ) are given in the next theorem.

Theorem 2.25 ([55, 56]) Let (2.5) and Assumption (A4) be satisfied. Then, we have

X ∩WEff(Y | f) ⊆WEff(X | f) ⊆ X ∩WEff(Y | f⊕).

Proof. In view of Corollary 2.2, it follows X ∩WEff(Y | f) ⊆WEff(X | f). Now, let us prove the
second inclusion WEff(X | f) ⊆ X ∩WEff(Y | f⊕).

Consider x ∈ WEff(X | f) ⊆ X. By Lemma 1.69 (applied for (PX) instead of (PΩ)) and by
Assumption (A4), we get

∅ = S<(X, f, x)

= S<(Y, f, x) ∩X
⊇ S<(Y, f, x) ∩ L≤(Y, φ, φ(x))

⊇ S<(Y, f, x) ∩ L<(Y, φ, φ(x)).

In view of Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)), it follows x ∈ X ∩WEff(Y | f⊕).
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Remark 2.26 Let (2.5) be satisfied and assume that intX 6= ∅. Suppose that φ : D → R is
semi-strictly quasi-convex on Y and fulfils both Assumptions (A1) and (A2). Then, it follows

∀x′ ∈ bdX ∀x′′ ∈ intX : [x′′, x′[⊆ L<(Y, φ, φ(x1))

by Lemma 1.42. In particular, the function φ satisfies

∀x′ ∈ bdX ∃x′′ ∈ intX : [x′′, x′[⊆ L<(Y, φ, φ(x′)). (A7)

Taking into account Remark 2.9, for any x, x′ ∈ bdX, we have

L<(Y, φ, φ(x)) = L<(Y, φ, φ(x′)) = intX.

Notice that φ fulfils (A7) if and only if φ̂ := h ◦ φ : D → R fulfils (A7) (with φ̂ in the role of φ),
where h : R→ R is a strictly increasing function on the image set φ[D].

The result given in Theorem 2.27 presents important relationships between the sets of weakly
Pareto efficient solutions of the problems (PX), (PY ) and (P⊕Y ).

Theorem 2.27 ([55, 56]) Let (2.5) be satisfied. The following assertions are true:

1◦. Assume that intX 6= ∅. Let f : D → Rm be componentwise upper semi-continuous along line
segments on Y . Furthermore, we suppose that φ : D → R fulfils Assumptions (A1), (A2) and (A7).
Then, we have

[X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
⊆WEff(X | f).

2◦. Let Assumption (A4) be fulfilled. In the case intX 6= ∅, suppose additionally that f : D → Rm
is componentwise semi-strictly quasi-convex on Y . Then, we have

[X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
⊇WEff(X | f).

Proof. Consider i ∈ Im. Notice, in view Definition 1.31 and Lemma 1.45, the following assertions
are equivalent:

• fi is upper semi-continuous on line segments in Y .

• L≥ ([0, 1], (fi ◦ la,b), s) is closed for all s ∈ R and all a, b ∈ Y .

• L< ([0, 1], (fi ◦ la,b), s) ∪ (R \ [0, 1]) is open for all s ∈ R and all a, b ∈ Y .

Now, we are going to prove both assertions 1◦ and 2◦:

1◦. In view of Corollary 2.2, it follows X ∩WEff(Y | f) ⊆ WEff(X | f). Now, let us consider
x ∈ (bdX) ∩WEff(Y | f⊕). By Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)), it follows

∅ = S<(Y, f, x) ∩ L<(Y, φ, φ(x)). (2.10)

We are going to prove that

S<(Y, f, x) ∩ L<(Y, φ, φ(x)) = S<(Y, f, x) ∩X. (2.11)

Then, due to (2.10) and (2.11), we get S<(X, f, x) = ∅, hence x ∈ WEff(X | f) by Lemma 1.69
(applied for (PX) instead of (PΩ)).

By Assumption (A1), the inclusion “⊆” in (2.11) follows directly.

Let us prove the reverse inclusion “⊇” in (2.11). Assume the contrary holds, i.e., it exists x′ ∈
S<(Y, f, x) ∩ X such that x′ /∈ L<(Y, φ, φ(x)). So, we have x′ ∈ L=(Y, φ, φ(x)) = bdX by
Assumption (A1). By Assumption (A7) (see Remark 2.26), for the given points x, x′ ∈ bdX, there
exists x′′ ∈ intX such that

lx′,x′′(λ) ∈ L<(Y, φ, φ(x′)) = L<(Y, φ, φ(x)) for all λ ∈ ]0, 1].
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Consider any i ∈ Im. Since x′ ∈ L<(Y, fi, fi(x)), we get

0 ∈ L<([0, 1], (fi ◦ lx′,x′′), fi(x)) ∪ (R \ [0, 1]).

The openness of the set L<([0, 1], (fi ◦ lx′,x′′), fi(x)) ∪ (R \ [0, 1]) implies that there exists some
λi ∈ ]0, 1[ such that fi(lx′,x′′(λ)) < fi(x) for all λ ∈ ]0, λi].

So, we conclude that the point x := lx′,x′′(min{λi | i ∈ Im}) fulfils x ∈ S<(Y, f, x)∩L<(Y, φ, φ(x)),
a contradiction to (2.10).

Consequently, we infer that (2.11) holds.

2◦. Consider x ∈ WEff(X | f) ⊆ X. Of course, we can have x ∈ WEff(Y | f) and therefore
x ∈ X ∩WEff(Y | f). Let us assume that x ∈ X \WEff(Y | f). In view of Theorem 2.25, we know
that x ∈WEff(X | f) implies x ∈ X ∩WEff(Y | f⊕).

Now, consider two cases:

Case 1: Let intX 6= ∅. By Corollary 2.6, we get x ∈ bdX by the componentwise semi-strictly
quasi-convexity of f on Y .

Case 2: Let intX = ∅. Obviously, we have x ∈ X = bdX.

Finally, we get x ∈ (bdX) ∩WEff(Y | f⊕).

Corollary 2.28 Let (2.5) be satisfied and let intX 6= ∅. Suppose that φ : D → R fulfils Assump-
tions (A1), (A2) and (A7). Furthermore, suppose that f : D → Rm is componentwise semi-strictly
quasi-convex as well as upper semi-continuous along line segments on Y . Then, we have

WEff(X | f) = [X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
.

Corollary 2.29 Assuming that the assumptions of Corollary 2.28 as well as the condition (intX)∩
WEff(Y | f) = ∅ are fulfilled, we have

WEff(X | f) = (bdX) ∩WEff(Y | f⊕) ⊆ bdX.

The semi-strict quasi-convexity assumption with respect to f in 2◦ of Theorem 2.27 and Theorem
2.27 can not be replaced by a quasi-convexity assumption, as shown in the next Example 2.30.

Example 2.30 We consider the data given in Example 2.5. For the point x′ ∈ (intX) ∩ Eff(X |
f) ∩WEff(X | f) we know that x′ /∈ WEff(R2 | f) and x′ /∈ Eff(R2 | f). Hence, the inclusions
given in 2◦ of Theorem 2.17 and Theorem 2.27 are not fulfilled for the componentwise quasi-convex
but not componentwise semi-strictly quasi-convex function f .

Remark 2.31 Notice, in view of Theorem 2.25, we can also write

[(intX) ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
= WEff(X | f)

in Corollary 2.28, where the union in the above formula is disjoint. Consequently, under the
assumptions of Corollary 2.28, it is possible to check whether a point x ∈ X is weakly efficient for
the constrained problem (PX) or not by using two problems with convex feasible set:

x ∈ intX : x ∈WEff(Y | f) ⇐⇒ x ∈WEff(X | f);

x ∈ bdX : x ∈WEff(Y | f⊕) ⇐⇒ x ∈WEff(X | f).

Theorem 2.32 ([56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A3).
Then, we have

X ∩WEff(Y | f⊕) = X.
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Proof. The inclusion “⊆” is obvious. Let us prove the reverse inclusion “⊇”.
Let x ∈ X. By Assumption (A3), it follows L<(Y, φ, φ(x)) = ∅. So, we get

S<(Y, f, x) ∩ L<(Y, φ, φ(x)) = ∅,

hence we infer x ∈ X ∩WEff(Y | f⊕) by Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)).

Remark 2.33 Assume that φ : D → R fulfils Assumption (A3). By 2◦ of Theorem 2.27 and by
Theorem 2.32, we get

WEff(X | f) ⊆ [X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
= [(intX) ∩WEff(Y | f)] ∪ bdX.

However, the reverse inclusion

WEff(X | f) ⊇ [(intX) ∩WEff(Y | f)] ∪ bdX.

does not hold in general, since bdX ⊆ WEff(X | f) is not true in general (see Example 5.28
in Chapter 5). Hence, it seems to be more appropriate to work with a penalization function φ
that fulfils Assumptions (A1) and (A2) instead of Assumption (A3) in order to compute the set
WEff(X | f).

2.4.2.2 Pareto reducibility in multi-objective optimization

According to Popovici [102], the multi-objective optimization problem (PX) is called Pareto re-
ducible if the set of weakly Pareto efficient solutions of (PX) can be represented as the union of
the sets of Pareto efficient solutions of its subproblems.

Considering the objective function

fI = (fi1 , · · · , fik) : D → Rk,

for a selection of indices I = {i1, . . . , ik} ⊆ Im+1, i1 < · · · < ik, with cardinality card(I) = k ≥ 1,
we define the problem {

fI(x) = (fi1(x), · · · , fik(x))→ min w.r.t. Rk+
x ∈ X.

(2.12)

In fact, (2.12) is a single-objective optimization problem when I is a singleton set, otherwise being
a multi-objective one. Notice that fIm = f and fIm+1 = f⊕. If ∅ 6= I ⊆ Im, then (2.12) can be
seen as a subproblem of the initial problem (PX).

For any index set I with ∅ 6= I ⊆ Im, we consider the function

f⊕I := (fI , φ) : D → Rk+1

and the following subproblem of the penalized problem (P⊕Y ):{
f⊕I (x) = (fI(x), φ(x)) = (fi1(x), · · · , fik(x), φ(x))→ min w.r.t. Rk+1

+

x ∈ Y.

Next, we present sufficient conditions for Pareto reducibility by recalling results derived by
Popovici in [102, Prop. 4] and [104, Cor. 4.5]):
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Proposition 2.34 ([102, Prop. 4], [104, Cor. 4.5]) Assume that Ω is a nonempty, convex subset
of D ⊆ E, where E is a linear topological space. If f : D → Rm is componentwise semi-strictly
quasi-convex and upper semi-continuous along line segments on Ω, then

WEff(Ω | f) =
⋃

∅6=I⊆Im

Eff(Ω | fI).

In addition, if E is the n-dimensional Euclidean space Rn and f is componentwise lower semi-
continuous along line segments on Ω, then

WEff(Ω | f) =
⋃

∅6=I⊆Im;

card I≤n+1

Eff(Ω | fI).

In the next theorem, we present a result that is similar to the result given in Corollary 2.28,
however the proof is now based on Theorem 2.17 and Popovici’s Pareto reducibility result given
in Proposition 2.34.

Theorem 2.35 ([55]) Let (2.5) be satisfied, let X be convex, and let intX 6= ∅. Suppose that
φ : D → R fulfils Assumptions (A1) and (A2). Furthermore, assume that f⊕ : D → Rm+1 is
componentwise semi-strictly quasi-convex as well as upper semi-continuous along line segments on
Y . Then, we have

WEff(X | f) = [X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
.

Proof. By Theorem 2.17, we have

[X ∩ Eff(Y | fI)] ∪
[
(bdX) ∩ Eff(Y | f⊕I )

]
= Eff(X | fI) (2.13)

for all ∅ 6= I ⊆ Im. Consider x ∈ bdX and x′ ∈ intX. Then, under the Assumptions (A1) and
(A2), it follows

Eff(Y | φ) = argminx∈Y φ(x) ⊆ L≤(Y, φ, φ(x′)) ⊆ L<(Y, φ, φ(x)) = intX,

hence
(bdX) ∩ Eff(Y | φ) = ∅. (2.14)

By Proposition 2.34 (applied for the problems (PX) with Ω = X, (PY ) with Ω = Y , and (P⊕Y )
with Ω = Y and f⊕ in the role of f), the assertion of this theorem follows immediately:
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WEff(X | f) =
⋃

∅6=I⊆Im

Eff(X | fI)

(2.13)
=

X ∩ ⋃
∅6=I⊆Im

Eff(Y | fI)

 ∪
(bdX) ∩

⋃
∅6=I⊆Im

Eff(Y | f⊕I )


(2.14)

=

X ∩ ⋃
∅6=I⊆Im

Eff(Y | fI)

 ∪
(bdX) ∩

⋃
∅6=I⊆Im+1;

{m+1}⊆I

Eff(Y | fI)


=

X ∩ ⋃
∅6=I⊆Im

Eff(Y | fI)



∪

(bdX) ∩

 ⋃
∅6=I⊆Im+1;

{m+1}⊆I

Eff(Y | fI) ∪
⋃

∅6=I⊆Im

Eff(Y | fI)




=

X ∩ ⋃
∅6=I⊆Im

Eff(Y | fI)

 ∪
(bdX) ∩

⋃
∅6=I⊆Im+1

Eff(Y | fI)


= [X ∩WEff(Y | f)] ∪

[
(bdX) ∩WEff(Y | f⊕)

]
.

Now, we are able to present a Pareto reducibility type result for multi-objective optimization
problems.

Theorem 2.36 ([56]) Let (2.5) be satisfied and let intX 6= ∅. Suppose that φ : D → R fulfils
Assumptions (A1) and (A2). Moreover, assume that f⊕ : D → Rm+1 is componentwise semi-
strictly quasi-convex as well as upper semi-continuous along line segments on Y . Then, we have

WEff(X | f) =

X ∩ ⋃
∅6=I⊆Im

Eff(Y | fI)

 ∪
(bdX) ∩

⋃
∅6=I⊆Im+1

Eff(Y | fI)

 .
In addition, if E is the n-dimensional Euclidean space Rn and f⊕ is componentwise lower semi-
continuous along line segments on Y , then

WEff(X | f) =

X ∩ ⋃
∅6=I⊆Im;

card I≤n+1

Eff(Y | fI)

 ∪
(bdX) ∩

⋃
∅6=I⊆Im+1;

card I≤n+1

Eff(Y | fI)

 .
Proof. In view of Theorem 2.27 and Remark 2.26, we have

WEff(X | f) = [X ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
.

Due to Proposition 2.34 (applied for (PY ) with Ω = Y as well as for (P⊕Y ) with Ω = Y and f⊕ in
the role of f), we get the desired equalities given in this theorem.

Remark 2.37 Under the assumption Y = D = E, Theorem 2.36 provides a representation for
the set of weakly Pareto efficient solutions of the constrained problem (PX) in terms of the sets
of Pareto efficient solutions of families of unconstrained multi-objective optimization problems. In
Lemma 2.55, we will see that the set X given in Theorem 2.36 has to be a convex one if φ is
semi-strictly quasi-convex on X and satisfies the Assumption (A5) (i.e., X = L≤(Y, φ, 0)).
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Theorem 2.38 ([56]) Let (2.5) be satisfied and let X be convex. Suppose that φ : D → R fulfils
Assumption (A3). Moreover, assume that f : D → Rm is componentwise semi-strictly quasi-convex
as well as upper semi-continuous along line segments on Y . Then, we have

WEff(X | f) = X ∩
⋃

{m+1}⊆I⊆Im+1;

card I≥2

Eff(Y | fI).

Proof. Due to Theorem 2.24, we have

X ∩ Eff(Y | f⊕I ) = Eff(X | fI) for all ∅ 6= I ⊆ Im. (2.15)

By Proposition 2.34 (applied for (PX) with Ω = X), it follows

WEff(X | f) =
⋃

∅6=I⊆Im

Eff(X | fI)

(2.15)
= X ∩

⋃
∅6=I⊆Im

Eff(Y | f⊕I )

= X ∩
⋃

{m+1}⊆I⊆Im+1;

card I≥2

Eff(Y | fI).

The reader should pay attention to the fact that the restriction card I ≥ 2 concerning the index
set I in the assertion of Theorem 2.38 is essential. Indeed, since

Eff(Y | fm+1) = L=(Y, φ, φ(x)) = X, x ∈ X,

under the Assumption (A3), we have

X ∩
⋃

{m+1}⊆I⊆Im+1

Eff(Y | fI) = X.

2.4.3 Sets of strictly Pareto efficient solutions of (PX), (PY ) and (P⊕
Y )

Some first relationships between the sets of strictly Pareto efficient solutions of the problems (PX),
(PY ) and (P⊕Y ) are given in the next theorem.

Theorem 2.39 ([55, 56]) Let (2.5) and Assumption (A4) be satisfied. Then, we have

X ∩ SEff(Y | f) ⊆ SEff(X | f) ⊆ X ∩ SEff(Y | f⊕).

Proof. By Corollary 2.2, we get X∩SEff(Y | f) ⊆ SEff(X | f). We now show the second inclusion.
Consider x ∈ SEff(X | f) ⊆ X. In view of Lemma 1.69 (applied for (PX) instead of (PΩ)) and

the assumption (A4), we get

S≤(Y, f, x) ∩ L≤(Y, φ, φ(x)) ⊆ S≤(Y, f, x) ∩X
= S≤(X, f, x) = {x},

Therefore, it follows x ∈ X ∩ SEff(Y | f⊕) by Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)).

The following Theorem 2.40 presents important relationships between the sets of strictly Pareto
efficient solutions of the problems (PX), (PY ) and (P⊕Y ).
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Theorem 2.40 ([55, 56]) Let (2.5) be satisfied. The following assertions are true:

1◦. If Assumption (A1) holds, then we have

[X ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
⊆ SEff(X | f).

2◦. Assume that Assumption (A4) holds. In the case intX 6= ∅, suppose additionally that f : D →
Rm is componentwise semi-strictly quasi-convex or quasi-convex on Y . Then, we have

[X ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
⊇ SEff(X | f).

Proof. 1◦. By Corollary 2.2, we have X ∩ SEff(Y | f) ⊆ SEff(X | f). Consider x ∈ (bdX) ∩
SEff(Y | f⊕). In view of Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)) and Assumption (A1),
we have

S≤(X, f, x) = S≤(Y, f, x) ∩X
= S≤(Y, f, x) ∩ L≤(Y, φ, φ(x)) = {x}.

From Lemma 1.69 (applied for (PX) instead of (PΩ)), we get x ∈ SEff(X | f).

2◦. Consider x ∈ SEff(X | f) ⊆ X. If we have x ∈ SEff(Y | f), then x ∈ X ∩ SEff(Y | f). We now
suppose that x ∈ X \ SEff(Y | f). By Theorem 2.39, we immediately get x ∈ X ∩ SEff(Y | f⊕).

Let us consider two cases:

Case 1: If intX 6= ∅, then we conclude x ∈ bdX because of Corollary 2.6.

Case 2: If intX = ∅, then clearly it follows x ∈ bdX.

So, we infer that x ∈ (bdX) ∩ SEff(Y | f⊕).

Corollary 2.41 Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A1). In the
case intX 6= ∅, suppose additionally that f : D → Rm is componentwise semi-strictly quasi-convex
or quasi-convex on Y . Then, we have

SEff(X | f) = [X ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
= [(intX) ∩ SEff(Y | f)] ∪

[
(bdX) ∩ SEff(Y | f⊕)

]
.

Corollary 2.42 Assuming that the assumptions of Corollary 2.41 as well as the condition (intX)∩
SEff(Y | f) = ∅ are fulfilled, we have

SEff(X | f) = (bdX) ∩ SEff(Y | f⊕) ⊆ bdX.

Remark 2.43 In contrast to 1◦ in Theorem 2.17 (Theorem 2.24) as well as 1◦ in Theorem 2.27,
we only need the Assumption (A1) concerning the level sets of the function φ in 1◦ of Theorem
2.40. In accordance to 2◦ in Theorem 2.27, only Assumption (A4) concerning the level sets of φ
must be fulfilled in 2◦ of Theorem 2.40. In 2◦ of Theorem 2.17 (Theorem 2.24) Assumptions (A1)
and (A2) (Assumption (A3)) must be fulfilled.

Remark 2.44 Notice, in view of Theorem 2.39, we can also write

[(intX) ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
= SEff(X | f)

in Corollary 2.41, where the union in the above formula is disjoint. Consequently, under the
assumptions of Corollary 2.41, it is possible to check whether a point x ∈ X is strictly Pareto
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efficient for the constrained problem (PX) or not by using two problems with convex feasible set:

x ∈ intX : x ∈ SEff(Y | f) ⇐⇒ x ∈ SEff(X | f);

x ∈ bdX : x ∈ SEff(Y | f⊕) ⇐⇒ x ∈ SEff(X | f).

Next, we present a corresponding result to the equality given in 1◦ of Theorem 2.24 for the
concept of strict Pareto efficiency that holds under the assumption that the penalization function
φ fulfils (A3).

Theorem 2.45 ([56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A3).
Then, we have

SEff(X | f) = X ∩ SEff(Y | f⊕).

Proof. First, we show the inclusion “⊇”, therefore consider x ∈ X ∩ SEff(Y | f⊕). Because of
Lemma 1.69 (applied for (P⊕Y ) instead of (PΩ)) and Assumption (A3) it follows

S≤(X, f, x) = S≤(Y, f, x) ∩X
= S≤(Y, f, x) ∩ L≤(Y, φ, φ(x)) = {x}.

By Lemma 1.69 (applied for (PX) instead of (PΩ)), we have x ∈ SEff(X | f).
In view of assertion 1◦ in Theorem 2.39, we get immediately the reverse inclusion “⊆”. Notice

that (A3) implies (A4) by Lemma 2.10.

Under the assumptions that f is componentwise semi-strictly quasi-convex or quasi-convex on
Y , and φ fulfils Assumption (A3), we easily infer that

(intX) ∩ SEff(Y | f) = (intX) ∩ SEff(Y | f⊕)

taking into account Theorems 2.40 and 2.45.

2.5 Sufficient conditions for the validity of the Assumptions (A1) and
(A2) based on (local) generalized-convexity concepts

As we have seen in Section 2.4, we need some additional assumptions concerning the level sets and
level lines of the penalization function φ in order to obtain the main results. In particular, the
Assumptions (A1) and (A2) play an important role in our penalization approach. We already know
that under certain assumptions the Minkowski gauge function given in Example 2.12, the Hiriart-
Urruty function given in Example 2.14, and the Tammer-Weidner function given in Example 2.15
fulfil these Assumptions (A1) and (A2). In this section, our aim is to identify further classes of
functions that satisfy both Assumptions (A1) and (A2).

Lemma 2.46 ([56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A5).
Assume that L<(Y, φ, 0) is a nonempty, open set. Then, X has a nonempty interior, since

∅ 6= L<(Y, φ, 0) ⊆ intX. (2.16)

Proof. In view of (A5), we have

∅ 6= L<(Y, φ, 0) ⊆ L≤(Y, φ, 0) = X,

hence we conclude (2.16).

Lemma 2.47 Let (2.5) be satisfied, let Y be open, and let D = E. Assume that φ : E → R is
upper semi-continuous on E. Then, the set L<(Y, φ, 0) is open.
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Proof. Since φ : E → R is upper semi-continuous on D = E, the set L≥(E, φ, 0) is closed, hence
L<(E, φ, 0) is open. By L<(Y, φ, 0) = L<(E, φ, 0) ∩ Y , we infer that L<(Y, φ, 0) is open.

However, the openness assumption concerning the set L<(Y, φ, 0) in Lemma 2.46 is essential, as
to see in Example 2.48.

Example 2.48 Consider E = R2 and define the function φ := || · ||∞ − 1, where || · ||∞ : R2 → R
represents the maximum norm. Notice that φ is convex on R2, hence explicitly quasi-convex as
well as continuous on R2. Moreover, put x := (0, 0), x′ := (1, 0) and Y := B||·||∞(x′, 1). Then. we
have

L≤(Y, φ, 0) = L≤(R2, || · ||∞, 1) ∩ Y
= B||·||∞(x, 1) ∩B||·||∞(x′, 1)

= [0, 1]× [−1, 1]

=: X.

In addition, it is easily seen that

L<(Y, φ, 0) = L<(R2, || · ||∞, 1) ∩ Y
= B||·||∞(x, 1) ∩B||·||∞(x′, 1)

= [(0, 1)× (−1, 1)] ∪ [{0} × (−1, 1)]

) (0, 1)× (−1, 1)

= intX,

which shows that the inclusion given in (2.16) of Lemma 2.46 does not hold in this example. Hence,
the openness assumption concerning the set L<(Y, φ, 0) can not be removed in Lemma 2.46.

In the following, we are looking for conditions such that Assumptions (A1) and (A2) are fulfilled
for the penalization function φ.

Lemma 2.49 ([56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A5).
Assume that L<(Y, φ, 0) is a nonempty, open set. Then, Assumption (A1) is fulfilled, and moreover,
for every x ∈ bdX, we have φ(x) = 0.

Proof. Let x ∈ bdX. We are going to show that φ(x) = 0, hence Assumption (A1) follows by the
fact that X = L≤(Y, φ, 0).

Assume the contrary, i.e., φ(x) < 0. By Lemma 2.46, we get x ∈ L<(Y, φ, 0) ⊆ intX, a
contradiction to x ∈ bdX.

The next lemma uses the definition of local explicit quasi-convexity of the function φ (see Defi-
nition 1.52) and presents an auxiliary result that will be used for deriving sufficient conditions for
the validity of the Assumptions (A1), (A2) and (A6) in Theorem 2.51.

Lemma 2.50 ([56]) Let (2.5) be satisfied and let (E, || · ||) be a normed space. Suppose that
φ : D → R fulfils Assumption (A5). Assume that L<(Y, φ, 0) is a nonempty, open set. Consider
two points x0 ∈ (intX) ∩ L=(Y, φ, 0) and x1 ∈ L<(Y, φ, 0). Let φ be explicitly quasi-convex on
B||·||(x

0, ε) for some ε ∈ R++. Then, there exists x2 ∈ intX such that condition

x2 ∈ B||·||(x0, ε) ∩ L<(Y, φ, 0). (2.17)

holds, if one of the following assertions is true:

1◦. Every local minimum point of φ on intX is also global.

2◦. Assume that X is convex. Every local minimum point of φ is also global for each restriction
on a line segment in intX.



2.5 Sufficient conditions for the validity of the Assumptions (A1) and (A2) 49

Proof. Let 1◦ be fulfilled. Assume the contrary, i.e., there is no x2 ∈ intX such that (2.17) holds.
Then, x0 is a local minimum point of φ on intX, hence under 1◦ also global on intX. This is a
contradiction because we have x1 ∈ L<(Y, φ, 0) ⊆ intX (see Lemma 2.46) and φ(x1) < 0 = φ(x0).

Now, let 2◦ be satisfied. By Lemma 1.20, we have x0 ∈ corX. For v := x0 − x1 6= 0 there
exists δ ∈ R++ such that x0 + [0, δ] · v ⊆ X. By x1 ∈ L<(Y, φ, 0) ⊆ intX (see Lemma 2.46),
x3 := x+δv ∈ X, and the convexity of X, we know that x0 ∈ ]x1, x3[⊆ intX by Lemma 1.13. Pick
any x4 ∈ ]x0, x3[. Assume the contrary, i.e., there is no x2 ∈ intX such that (2.17) holds, hence x0

is a local minimum point of φ on intX. Then, x0 ∈ ]x1, x4[ is also a local minimum point of φ on
the line segment [x1, x4] ⊆ intX. By 2◦ of this lemma, we infer that x0 is also a global minimum
point of φ on the line segment [x1, x4], a contradiction to φ(x1) < 0 = φ(x0).

In the following theorem, we identify a further class of functions that fulfils the Assumptions
(A1), (A2) and (A6).

Theorem 2.51 ([56]) Let (2.5) be satisfied and let (E, || · ||) be a normed space. Suppose that
φ : D → R fulfils Assumption (A5). Assume that L<(Y, φ, 0) is a nonempty, open set. Let φ be
locally explicitly quasi-convex on intX. Then, Assumptions (A1), (A2) and (A6) are fulfilled, if
one of the following assertions is true:

1◦. Every local minimum point of φ on intX is also global.

2◦. Assume that X is convex. Every local minimum of φ is also global for each restriction on a
line segment in intX.

Proof. The validity of Assumption (A1) follows by Lemma 2.49. We are going to prove that
Assumption (A6) holds.

For x0 ∈ bdX, we know that φ(x0) = 0 by Lemma 2.49, hence x0 ∈ L=(Y, φ, 0) is fulfilled. This
shows bdX ⊆ L=(Y, φ, 0).

Let us prove the reverse inclusion bdX ⊇ L=(Y, φ, 0). Consider some x0 ∈ L=(Y, φ, 0) ⊆ X.
Assume the contrary, i.e., x0 ∈ intX, hence there exists ε′ ∈ R++ such that Bε′ := B||·||(x

0, ε′) ⊆
X. Since φ be explicitly quasi-convex on Bε := B||·||(x

0, ε) for some ε ∈ R++, there exists

x1 ∈ Bε ∩ L<(Y, φ, 0)

by Lemma 2.50. Obviously, we have Bε′′ := B||·||(x
0, ε′′) ⊆ X for ε′′ := min{ε, ε′}. By Lemma

1.22, we know that
Bδ := [x0 − δv, x0 + δv] ⊆ Bε′′

for δ ∈ ]0, ε′′[ and v := x1−x0

||x1−x0|| (note that x1 6= x0). Due to the semi-strict quasi-convexity of φ

on Bε, and the fact that x0 ∈ L=(Y, φ, 0) and x1 ∈ L<(Y, φ, 0), we can choose x2 ∈ Bδ∩ ]x0, x1]
with x2 ∈ L<(Y, φ, 0). For x3 := x0 + (x0 − x2), we have x3 ∈ Bδ ⊆ Bε′′ ⊆ X and x0 ∈ ]x2, x3[.

Now, since we have x3 ∈ X = L≤(Y, φ, 0), we can consider two cases:
Case 1: Let x3 ∈ L=(Y, φ, 0). Under the semi-strict quasi-convexity of φ on Bε, we get

x0 ∈ ]x2, x3[⊆ L<(Bε, φ, 0). Since ]x2, x3[⊆ Bδ, it follows x0 ∈ L<(Bδ, φ, 0) ⊆ L<(Y, φ, 0), a
contradiction to x0 ∈ L=(Y, φ, 0).

Case 2: Let x3 ∈ L<(Y, φ, 0). Since x2, x3 ∈ L<(Bε, φ, 0), it follows x0 ∈ ]x2, x3[⊆ L<(Bε, φ, 0)
by the quasi-convexity of φ on Bε. Because of ]x2, x3[⊆ Bδ, we have x0 ∈ L<(Bδ, φ, 0) ⊆
L<(Y, φ, 0), again a contradiction to x0 ∈ L=(Y, φ, 0).

In both cases, we have a contradiction, which proves our claim x0 ∈ bdX.
We conclude that (A6) holds, which implies together with (A5) that (A1) and (A2) are true by

Lemma 2.10.

Notice that every local minimum point of a semi-strictly quasi-convex function on a convex set
is also global (see, e.g., Bagdasar and Popovici [8]).

Theorem 2.52 ([56]) Let (2.5) be satisfied. Suppose that φ : D → R fulfils Assumption (A5).
Assume that L<(Y, φ, 0) is a nonempty, open set. If φ is explicitly quasi-convex on Y , then
Assumptions (A1), (A2) and (A6) hold.
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Proof. If, in addition, E is normed, then we get the assertion of this corollary by Theorem 2.51.
Now, let us assume that E is not necessarily normed.

By Lemma 2.49, we know that Assumption (A1) is fulfilled. We are going to prove that As-
sumption (A2) holds. Similar to the proof of Theorem 2.51, we get bdX ⊆ L=(Y, φ, 0). In the
following, we show L=(Y, φ, 0) ∩ intX = ∅.

Assume the contrary, i.e., we have x0 ∈ L=(Y, φ, 0) ∩ intX. Consider x1 ∈ L<(Y, φ, 0). By
Lemma 1.20, there exists δ ∈ R++ such that x2 := x0 + δ(x0 − x1) ∈ X. Notice that x0 ∈ ]x1, x2[
and x2 ∈ X = L≤(Y, φ, 0). Now, we look at two cases:

Case 1: Let φ(x2) < 0. Then, the quasi-convexity of φ on Y implies x0 ∈ ]x1, x2[⊆ L<(Y, φ, 0)
by Lemma 1.41, a contradiction to φ(x0) = 0.

Case 2: Let φ(x2) = 0. By the semi-strict quasi-convexity of φ on Y , we get x0 ∈ ]x1, x2[⊆
L<(Y, φ, 0) by Lemma 1.42, again a contradiction to φ(x0) = 0.

In both cases we have a contradiction, hence L=(Y, φ, 0)∩ intX = ∅. The proof is complete.

The openness assumption concerning the set L<(Y, φ, 0) can not be removed in Lemma 2.49 and
Theorems 2.51 and 2.52, as shown in the next example.

Example 2.53 We consider again the problem in Example 2.48.
If we assume that Assumption (A1) holds, then we have x′ /∈ L≤(Y, φ, φ(x)) = X for the point

x′ ∈ bdX since φ(x) = −1 < 0 = φ(x′), a contradiction.
Suppose that the Assumption (A2) is fulfilled for the convex problem considered in Example

2.48. Then, we have L=(Y, φ, φ(x′)) = bdX for the point x′ ∈ bdX. So, due to φ(x′) = 0, we
must have φ(x′′) = 0 for all x′′ ∈ bdX. However, it is easily seen that φ(x) = −1 for the point
x ∈ bdX, a contradiction.

Consequently, the Assumptions (A1) and (A2) do not hold for the problem given in Example
2.48. This means that the openness assumption concerning the set L<(Y, φ, 0) can not be removed
in Lemma 2.49 and Theorems 2.51 and 2.52.

Corollary 2.54 ([56]) Let (2.5) be satisfied and let Y = D = E. Assume that φ : E→ R is semi-
strictly quasi-convex as well as continuous on E and fulfils Assumption (A5). Let L<(E, φ, 0) 6= ∅.
Then, Assumptions (A1), (A2) and (A6) hold.

Proof. Directly follows by Lemma 2.47 and Theorem 2.52.

The next lemma shows that under the validity of (A5) a (semi-strictly) quasi-convex function φ
on Y ensures that the feasible set X is convex. Hence, in order to describe a nonconvex feasible
set X by using the level set L≤(Y, φ, 0), it is necessary that φ is not a (semi-strictly) quasi-convex
function on Y .

Lemma 2.55 ([56]) Let (2.5) be satisfied. Assume that φ : D → R is quasi-convex or semi-strictly
quasi-convex on the convex set Y and fulfils Assumption (A5). Then, X is a convex set in E.

Proof. Since X = L≤(Y, φ, 0) by Assumption (A5), we know that the quasi-convexity of φ on Y
implies convexity of X.

Let φ be semi-strictly quasi-convex on Y . Assume the contrary, i.e., there exist x0, x1 ∈ X,
λ ∈ ]0, 1[ such that x2 := lx0,x1(λ) /∈ X. Consider the complement of X = L≤(Y, φ, 0), i.e, the set

Xc = E \X = L>(Y, φ, 0) ∪ (E \ Y ). (2.18)

The convexity of Y ensures x2 ∈ ]x0, x1[⊆ Y , and therefore,

x2 ∈ L>(Y, φ, 0). (2.19)

Since X is closed, the set Xc is open, hence by (2.18), (2.19) and Lemma 1.20, we get x2 ∈ corXc.
Therefore, for v := x0−x2 6= 0, it exists δ ∈ R++ such that x2 + [0, δ] · v ⊆ Xc. Moreover, we have
x2 + [0, 1] · v = [x2, x0] ⊆ Y . Hence, by (2.18), it follows

x2 + [0, δ] · v ⊆ L>(Y, φ, 0)∩ ]x0, x1[ (2.20)
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for δ := min{δ, 0.5} > 0. By Assumption (A5) and due to x0, x1 ∈ X, we have

max{φ(x0), φ(x1)} ≤ 0. (2.21)

In view of (2.20) and (2.21), we get

x2 + [0, δ] · v ⊆ L>
(
]x0, x1[, φ, 0

)
⊆ L>

(
]x0, x1[, φ,max{φ(x0), φ(x1)}

)
. (2.22)

Notice that
card

(
x2 + [0, δ] · v

)
> 1. (2.23)

However, under the semi-strict quasi-convexity of φ on the convex set Y , it follows

cardL>(]x0, x1[, φ,max{φ(x0), φ(x1)}) ≤ 1 (2.24)

by Lemma 1.43. In view of (2.22), (2.23) and (2.24), we get a contradiction, which completes the
proof.

2.6 Problems involving constraints given by a system of inequalities

In the preceding part of this chapter, the feasible set X ⊆ D ⊆ E was always represented by certain
level sets of a penalization function φ : D → R (see the Assumptions (A1), (A3), (A5)). However,
in many cases, the feasible set X is given by a system of inequalities, i.e., we have

X := {x ∈ Y | g1(x) ≤ 0, . . . , gq(x) ≤ 0} =
⋂
i∈Iq

L≤(Y, gi, 0) (2.25)

for some constraint functions g1, . . . , gq : D → R, q ∈ N, and a convex set Y ⊆ D. For notational
convenience, let us consider g := (g1, . . . , gq) : D → Rq as the vector-valued constraint function.

In order to apply results from Section 2.4, for the penalization function φ considered in (P⊕Y ),
we put

φ := max{g1, . . . , gq}.

Then, Assumption (A5) is satisfied, i.e., we have

X =
⋂
i∈Iq

L≤(Y, gi, 0) = L≤(Y, φ, 0). (2.26)

For the special approach considered in this section, the assumptions given in (2.5) read as
Let E be a real topological linear space;
let D ⊆ E be a nonempty set;
let Y ⊆ D be a convex set;
let X = L≤(Y, φ, 0) be nonempty and closed.

(2.27)

Notice that under the assumptions that Y is closed and φ is lower semi-continuous on Y , the
set X is closed too. In addition, due to Lemmata 1.45, 1.47 and 2.55, we get the following useful
implications.

Lemma 2.56 Let (2.27) be satisfied. Then, the following assertions hold:

1◦. If g : D → Rq is componentwise convex (quasi-convex) on Y , then φ is convex (quasi-convex)
on Y .

2◦. If φ is quasi-convex or semi-strictly quasi-convex on Y , then the set X is convex.

3◦. Assume that Y is closed. If g is componentwise lower semi-continuous on Y , then φ is lower
semi-continuous on Y .



2.6 Problems involving constraints given by a system of inequalities 52

In some results, we will need the well-known Slater condition that is given by⋂
i∈Iq

L<(Y, gi, 0) = L<(Y, φ, 0) 6= ∅. (2.28)

Next, we present relationships between the initial problem (PX) with feasible set X and the
objective function

f = (f1, . . . , fm),

and two related problems (PY ) and (P⊕Y ) with convex feasible set Y and the objective functions

f = (f1, . . . , fm),

and
f⊕ = (f1, . . . , fm, φ) = (f1, . . . , fm,max{g1, . . . , gq}),

respectively.

Theorem 2.57 ([56]) Let (2.27) and Slater’s condition (2.28) be satisfied, and let L<(Y, φ, 0) be
an open set. Then, the following assertions hold:

1◦. Let the Assumption (A2) be fulfilled. If f : D → Rm is componentwise semi-strictly quasi-
convex on Y , then

Eff(X | f) = [X ∩ Eff(Y | f)] ∪
[
(bdX) ∩ Eff(Y | f⊕)

]
. (2.29)

2◦. Assume that Assumptions (A2) and (A7) hold. If f : D → Rm is componentwise semi-strictly
quasi-convex as well as upper semi-continuous along line segments on Y , then

WEff(X | f) = [(intX) ∩WEff(Y | f)] ∪
[
(bdX) ∩WEff(Y | f⊕)

]
. (2.30)

3◦. If f : D → Rm is componentwise semi-strictly quasi-convex or quasi-convex on Y , then

SEff(X | f) = [(intX) ∩ SEff(Y | f)] ∪
[
(bdX) ∩ SEff(Y | f⊕)

]
. (2.31)

Proof. The validity of Assumption (A1) follows by Slater’s condition (2.28) and Lemma 2.49.
Moreover, we have intX 6= ∅ by Lemma 2.46. Hence, we get the assertion of this theorem by
Theorems 2.17, 2.27 and 2.40, taking into account that (2.26) (i.e., (A5) holds) implies (A4) by
Lemma 2.10.

Under the assumption that the penalization function φ is explicitly quasi-convex on Y , we
directly get the following result by Theorem 2.57.

Corollary 2.58 ([56]) Let (2.27) and Slater’s condition (2.28) be satisfied, and let L<(Y, φ, 0) be
an open set. Suppose that φ is explicitly quasi-convex on Y . Then, the following hold:

1◦. If f : D → Rm is componentwise semi-strictly quasi-convex on Y , then (2.29) holds.

2◦. If f : D → Rm is componentwise semi-strictly quasi-convex as well as upper semi-continuous
along line segments on Y , then (2.30) holds.

3◦. If f : D → Rm is componentwise semi-strictly quasi-convex or quasi-convex on Y , then (2.31)
holds.

Proof. The Assumptions (A1) and (A2) are fulfilled by Theorem 2.52, while, in view of Remark
2.26, the Assumption (A7) is satsified for the semi-strictly quasi-convex function φ on Y . So, the
assertion follows directly by Theorem 2.57.

We conclude, for the special case Y = D = E, the following result by Corollary 2.58 and Remark
1.36.
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Corollary 2.59 ([56]) Let (2.27) be satisfied and let Y = D = E. Suppose that φ is semi-strictly
quasi-convex and continuous on E. Assume that Slater’s condition (2.28) holds. Then, assertions
1◦, 2◦ and 3◦ of Corollary 2.58 are fulfilled.

2.7 Some relationships between single-objective and bi-objective
optimization

As a consequence of our results derived in Section 2.4, we present relationships between single-
objective optimization and bi-objective optimization in this section. Let us consider a single-valued
function h : D → R defined on a nonempty subset D of the linear topological space E. Under the
validity of our standard assumptions given in (2.5), we are interested in computing the solution set

Sol(X | h) = argmin
x∈X

h(x)

of the scalar constrained optimization problem{
h(x)→ min

x ∈ X.

The next results show that techniques from bi-objective optimization can be used in order to
solve single-objective optimization problems involving some constraints. As usual in this chapter,
φ : D → R represents the penalization function in our approach.

Theorem 2.60 Let (2.5) be satisfied. Then, the following assertions are true:

1◦. Assume that both (A1) and (A2) hold or (A3) is satisfied. Then,

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h, φ))] ⊆ Sol(X | h).

2◦. Assume that both (A1) and (A2) hold or (A3) is satisfied. In the case intX 6= ∅, suppose
additionally that h : D → R is semi-strictly quasi-convex on Y . Then, we have

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h, φ))] ⊇ Sol(X | h).

3◦. Under Assumption (A3), it follows

X ∩ Eff(Y | (h, φ)) = Sol(X | h).

4◦. Assume that (A1), (A2) and (A7) hold. Suppose that intX 6= ∅. Let h : D → R be upper
semi-continuous along line segments on Y . Then,

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩WEff(Y | (h, φ))] ⊆ Sol(X | h).

5◦. Assume that Assumption (A4) is fulfilled. In the case intX 6= ∅, suppose additionally that
h : D → R is semi-strictly quasi-convex on Y . Then, it holds that

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩WEff(Y | (h, φ))] ⊇ Sol(X | h).

6◦. By Assumption (A1), we get

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h, φ))] ⊆ Solu(X | h).

7◦. Assume that Assumption (A4) holds. In the case intX 6= ∅, suppose additionally that h : D →
R is semi-strictly quasi-convex or quasi-convex on Y . Then, we have

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h, φ))] ⊇ Solu(X | h).
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8◦. Assume that Assumption (A3) holds. Then, we have

X ∩ SEff(Y | (h, φ)) = Solu(X | h).

Proof. Follows directly by Theorems 2.17, 2.24, 2.27,2.40, and 2.45.

Assuming that the penalization function φ is given by the Hiriart-Urruty function (i.e., we have
φ := 4X ; see Example 2.14), we get the following result.

Corollary 2.61 Let (2.5) be satisfied. Suppose that E is a normed space and assume that
φ : D → R is given by the Hiriart-Urruty function, i.e., φ := 4X . Then, we have:

1◦. It holds that

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h,4X))] ⊆ Sol(X | h);

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h,4X))] ⊆ Solu(X | h).

2◦. In the case intX 6= ∅, suppose additionally that h : D → R is semi-strictly quasi-convex on Y .
Then, we have

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h,4X))] ⊇ Sol(X | h);

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩WEff(Y | (h,4X))] ⊇ Sol(X | h).

3◦. Suppose that intX 6= ∅. Assume that (A7) holds (e.g., if X is convex). Let h : D → R be
upper semi-continuous along line segments on Y . Then, it holds that

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩WEff(Y | (h,4X))] ⊆ Sol(X | h).

4◦. In the case intX 6= ∅, suppose additionally that h : D → R is semi-strictly quasi-convex or
quasi-convex on Y . Then, we have

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h,4X))] ⊇ Solu(X | h).

By taking the distance function dX with respect to X as penalization function (see Example
2.13), we can deduce the following relationships.

Corollary 2.62 Let (2.5) be satisfied. Suppose that E is a normed space and assume that
φ : D → R is given by the distance function, i.e., φ := dX . Then, we have:

1◦. It holds that

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h, dX))] ⊆ Sol(X | h);

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h, dX))] ⊆ Solu(X | h);

X ∩ Eff(Y | (h, dX)) = Sol(X | h);

X ∩ SEff(Y | (h, dX)) = Solu(X | h).

2◦. In the case intX 6= ∅, suppose additionally that h : D → R is semi-strictly quasi-convex on Y .
Then, we have

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h, dX))] ⊇ Sol(X | h);

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩WEff(Y | (h, dX))] ⊇ Sol(X | h).

3◦. In the case intX 6= ∅, suppose additionally that h : D → R is semi-strictly quasi-convex or
quasi-convex on Y . Then,

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h, dX))] ⊇ Solu(X | h).
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In the case that X is a closed, convex set with nonempty interior, we can use a penalization
function that involves a certain Minkowski gauge µ (see Example 2.12).

Corollary 2.63 Let (2.5) be satisfied. In addition, assume that X is convex and x′ ∈ intX.
Suppose that φ : D → R is defined by φ(x) := µ(x − x′) for all x ∈ D, where µ = µB with
B := −x′ +X. Then, the following assertions hold:

1◦. We have

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h, φ))] ⊆ Sol(X | h);

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h, φ))] ⊆ Solu(X | h).

2◦. Let h : D → R be upper semi-continuous along line segments on Y . Then,

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩WEff(Y | (h, φ))] ⊆ Sol(X | h).

3◦. Let h : D → R be semi-strictly quasi-convex on Y . Then, we have

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩ Eff(Y | (h, φ))] ⊇ Sol(X | h);

[X ∩ Sol(Y | h)] ∪ [(bdX) ∩WEff(Y | (h, φ))] ⊇ Sol(X | h).

4◦. If h : D → R is semi-strictly quasi-convex or quasi-convex on Y , then

[X ∩ Solu(Y | h)] ∪ [(bdX) ∩ SEff(Y | (h, φ))] ⊇ Solu(X | h).

2.8 Concluding remarks

In this chapter, we presented a new vectorial penalization approach for solving constrained multi-
objective optimization problems. The results are mainly based on two papers Günther and Tammer
[55, 56]. However, in this thesis, the objective function must not be defined on the whole space
E, but the objective function is defined on a nonempty subset D of E. Because of this fact, we
assume in several results of Section 2.5 that L<(Y, φ, 0) is an open set. In Günther and Tammer
[56] it is assumed that Y is an open set and φ is upper semi-continuous on E, hence the set
L<(Y, φ, 0) = L<(E, φ, 0) ∩ Y is open (compare Lemma 2.47).

By taking a look on the literature in single-objective optimization as well as multi-objective
optimization, one can see that most authors (see, e.g., Apetrii, Durea and Strugariu [4], Durea,
Strugariu and Tammer [25], Ye [129], and references therein) use a penalization function φ : E→
R ∪ {+∞} (penalty term concerning X) which fulfils Assumption (A3) for Y = D = E. This
means, for x′ ∈ E, we have

x′ ∈ X ⇐⇒ φ(x′) = 0

and
x′ ∈ E \X ⇐⇒ φ(x′) > 0.

Such a penalization function φ can also be used in our approach (see Example 2.13 with φ = dX).
Beside Clarke’s Exact Penalty Principle, as considered at the beginning of this chapter, there is
also the so-called Exact Infinite Penalty Principle known in the literature of convex analysis and
scalar optimization which uses a penalization function φ defined by the indicator function IX (see
Example 1.33).

It should be mentioned that there are relationships between Durea, Strugariu and Tammer [25,
Prop. 3.1] and our Theorem 2.24. In Theorem 2.24, we characterized the set of of global Pareto
efficient solutions,

Eff(X | f) = X ∩ Eff(Y | f⊕),

under the assumption that φ fulfils Assumption (A3). Durea, Strugariu and Tammer [25] considered
a general vector optimization problem with objective function f : E→ E and a nonempty, closed
feasible set X ⊆ E, where E is a normed space and E is a linear space partially ordered by a proper,
closed, convex, pointed cone K ⊆ E. Durea, Strugariu and Tammer [25] characterized local Pareto
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efficient solutions of the initial problem by local Pareto efficient solutions of the penalized problem
with objective function f⊕ = (f, φ) and feasible set Y = D = E. Notice that x ∈ X is local Pareto
efficient solutions for the problem (PX) if

f(x) ∈ MIN(f [X ∩B||·||(x, ε)],Rm+ ) for some ε > 0.

Moreover, Durea, Strugariu and Tammer [25] studied for the above problem (here simplified for
the case E = Rm and K = Rm+ ) the special case that the feasible set X is given by a system of
inequalities (as given in (2.25) with Y = D = E). In [25, Prop. 3.2], it is shown that any point
x′ ∈

⋂
i∈Iq L=(E, gi, 0) fulfils the following assertion: x′ is a local Pareto efficient solution for the

initial problem if and only if x′ is a local Pareto efficient solution for the penalized problem{
(f1(x), · · · , fm(x), g1(x), · · · , gq(x))→ min w.r.t. Rm+q

+

x ∈ E.
(2.32)

Notice that problem (2.32) is also discussed in Klamroth and Tind [72] for the single-objective case
m = 1. By our approach presented in Section 2.6, we can give characterizations for global Pareto
efficient solutions of the initial problem (without restriction to the set

⋂
i∈Iq L=(E, gi, 0)) by using

the penalized problem{
(f1(x), · · · , fm(x),max{g1(x), · · · , gq(x)})→ min w.r.t. Rm+1

+

x ∈ E.
(2.33)

In contrast to (2.32), with our approach in (2.33), the image space dimension is always increased
only by one.

We note that there is a field of research in multi-objective optimization where additional objective
functions are included in the formulation of the multi-objective optimization problem (see, e.g.,
Alzorba et al. [2], Fliege [40] and Mäkelä and Nikulin [82], and references therein).

At the end of this chapter, let us point out some important issues for further research:

• We aim to adapt the penalization approach for vector optimization problems involving general
types of ordering cones. In the literature there exist interesting results (see, e.g, Dempe,
Eichfelder and Fliege [24] and references therein) that point out relationships between vector
optimization problems with respect to an ordering induced by a polyhedral cone, and multi-
objective optimization problems with respect to the natural ordering.

• It is interesting to study corresponding relationships as presented in Section 2.4 for the
concept of proper Pareto efficiency in the sense of Geoffrion [44]. Of course, for any nonempty
set Ω ⊆ D, we know that

PEff(Ω | f) ⊆ Eff(Ω | f) ⊆WEff(Ω | f),

and, under certain additional assumptions on Ω and f , one has the following chain of inclu-
sions

PEff(Ω | f) ⊆ Eff(Ω | f) ⊆ cl(PEff(Ω | f)),

which is known in the literature as Arrow-Barankin-Blackwell-type Theorem (named after
the authors Arrow, Barankin and Blackwell of the famous article [5]). Under convexity
assumptions on f and Ω, in view of Lemma 1.75, we have

PEff(Ω | f) =
⋃

λ∈intRm+

Sol(Ω | 〈λ, f(·)〉).

However, for the proof of the relationships presented for the concepts of (strict, weak) Pareto
efficiency, we used the geometrical characterizations given in Lemma 1.69. Unfortunately,
we do not have such a characterization for the concept of proper Pareto efficiency (excepting
some special situations, e.g., Eff(Ω | f) = PEff(Ω | f); an example from the field of location
theory is given in Chapter 5).
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• The analysis of the relationships between single-objective and bi-objective optimization pre-
sented in Section 2.7 should be extended. May one can use our vectorial penalization ap-
proach as well as established techniques from the field of bi-objective optimization (see, e.g.,
Eichfelder [31]) in order to develop effective numerical procedures for solving single-objective
constrained optimization problems.

• In view of the discussion presented above, it is interesting to look at relationships between
local and corresponding global Pareto efficient solutions for multi-objective optimization
problems. We present some details below:

Consider a nonempty, open, convex set Y ⊆ D in a normed space (E, || · ||). Pick some
point x′ ∈ Y = intY . For any ε ∈ R++, define X(ε) := B||·||(x

′, ε). Clearly, there exists
ε′ ∈ R++ such that X(ε′) ⊆ Y . By our results derived in Chapter 2, we get relationships
between local and corresponding global Pareto efficient solutions. Of course, if x′ is a global
Pareto efficient solution of (PY ), then x′ is a local Pareto efficient solution of (PY ) as well.
Conversely, consider a local Pareto efficient solution x′ ∈ Eff(X(ε′′) | f) for some ε′′ ∈ R++.
Notice, since x′ ∈ intY , we can assume that X(ε′′) ⊆ Y . Due to the special structure of
X(ε′′), the penalization function φ : E→ R, defined by

φ(x) := ||x− x′|| for all x ∈ E,

fulfils Assumptions (A1), (A2) and (A7). Now, since x′ ∈ intX(ε′), we get x′ ∈ Eff(Y | f)
under the componentwise semi-strict quasi-convexity of the vector-valued objective function
f : D → Rm on Y by Theorem 2.17. In other words, x′ is global Pareto efficient solution of
the problem (PY ). Analogous observations can be done for the concepts of strictly / weakly
Pareto efficiency with the aid of Theorems 2.27 and 2.40.

The analysis of this topic will be extended in a forthcoming work taking into account in-
teresting results by Bagdasar and Popovici [8, 9, 10] and Durea, Strugariu and Tammer
[25].



Chapter 3

Special types of nonconvex multi-objective optimization
problems

In this section, we apply our vectorial penalization approach presented in the previous chapter to
special types of nonconvex multi-objective optimization problems. From the practical as well as
theoretical point of view, it is interesting to study problems where the feasible set is not necessarily
convex. In the following, we are interested in two particular types of feasible sets:

• X is given by a finite union of closed, convex sets in the real linear topological space E (see
Section 3.1);

• X is given by the whole space E excepting a finite number of forbidden regions that are given
by convex sets (see Section 3.2).

Throughout this chapter, let the objective function f = (f1, · · · , fm) : D → Rm of the multi-
objective optimization problem (PX) be defined on the whole space, i.e, D = E. Consider a finite
family of sets D1, · · · , Dl where we assume that

D1, · · · , Dl ( E are closed, convex sets with intDi 6= ∅, i ∈ Il, l ∈ N. (3.1)

Figure 3.1 shows an example where two sets D1 and D2 in E = R2 are shown that fulfil the
condition (3.1) for the case l = 2. In the left part of Figure 3.1, the feasible set X is given by a
union of two sets D1 and D2, while in the right part the feasible set X is given by the intersection
of two reverse convex sets R2 \ intD1 and R2 \ intD1.

intD2

intD1

intD2D2

D1
X = D1 ∪D2 X = R2 \ (intD1 ∪ intD2)

Figure 3.1: Nonconvex feasible sets.

58
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The sets Di, i ∈ Il, are said to be pairwise disjoint if

Di ∩Dj = ∅ for all i, j ∈ Il, i 6= j. (3.2)

Formula (3.2) implies that the sets intDi, i ∈ Il, are pairwise disjoint, i.e.,

(intDi) ∩ (intDj) = ∅ for all i, j ∈ Il, i 6= j. (3.3)

In the next corollary, we recall some important relationships between the constrained problem
(PX) and the corresponding unconstrained problems (PE) (defined as (PY ) with Y = E) and (P⊕E )
(defined as (P⊕Y ) with Y = E).

Corollary 3.1 Let X ( E be a nonempty, closed set with intX 6= ∅. Suppose that φ : E → R
fulfils Assumptions (A1) and (A2). Then, the following assertions hold:

1◦. It holds that

[X ∩ Eff(E | f)] ∪
[
(bdX) ∩ Eff(E | f⊕)

]
⊆ Eff(X | f);

[X ∩ SEff(E | f)] ∪
[
(bdX) ∩ SEff(E | f⊕)

]
⊆ SEff(X | f).

2◦. Let f : E→ Rm be componentwise upper semi-continuous along line segments on E. Assume
that φ : E→ R fulfils Assumption (A7). Then, we have

[X ∩WEff(E | f)] ∪
[
(bdX) ∩WEff(E | f⊕)

]
⊆WEffX | f).

3◦. If f : E→ Rm be componentwise semi-strictly quasi-convex on E, then

[X ∩ Eff(E | f)] ∪
[
(bdX) ∩ Eff(E | f⊕)

]
⊇ Eff(X | f);

[X ∩WEff(E | f)] ∪
[
(bdX) ∩WEff(E | f⊕)

]
⊇WEff(X | f).

4◦. If f : E→ Rm be componentwise semi-strictly quasi-convex or quasi-convex on E, then

[X ∩ SEff(E | f)] ∪
[
(bdX) ∩ SEff(E | f⊕)

]
⊇ SEff(X | f).

Proof. Directly follows by Theorems 2.17, 2.27 and 2.40.

Let us consider a finite number of nonempty, closed sets

X1, · · · , Xl ⊆ E

with Xi 6= E for all i ∈ Il. For each i ∈ Il, we consider a penalization function φi : E → R that
fulfils the Assumptions (A1) and (A2) (with φi in the role of φ, Xi in the role of X, and Y = E).
Then, for any i ∈ Il, we can define a new penalized multi-objective optimization problem by{

f⊕i(x) := (f1(x), · · · , fm(x), φi(x))→ min

x ∈ E.
(P⊕iE )

3.1 Problems with a feasible set given by a union of convex sets

In what follows, let the feasible set be given by a finite union of convex sets. More precisely, we
assume that

X :=
⋃
i∈Il

Xi with Xi := Di, i ∈ Il, where Di, i ∈ Il, satisfy (3.1). (3.4)

Notice that the set X given in (3.4) is a nonempty, closed set in E.
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Lemma 3.2 Let (3.4) and (3.2) be satisfied. Then, we have

bdX =
⋃
i∈Il

bdDi. (3.5)

Proof. First, we prove an auxiliary result

(bdDi) ∩ (intDj)
c = bdDi for all i, j ∈ Il, i 6= j. (3.6)

The inclusion “⊆” in (3.6) is obvious. To verify the opposite inclusion in (3.6), consider some
x ∈ bdDi. Assume the contrary holds, i.e., we have x ∈ intDj for some j ∈ Il \ {i}. Let
d ∈ intDi. Due to the convexity of Di, we infer [d, x[⊆ intDi by Lemma 1.13. By x ∈ intDj and
the convexity of Dj , there is some δ ∈ R++ such that x+[0, δ]·(d−x) ⊆ intDj , in view of Lemmata
1.13 and 1.20. Hence, the point x+ δ′ · (d− x) with δ′ := min{δ, 1} belongs to (intDi) ∩ (intDj),
a contradiction to (3.2). This shows (3.6).

Now, let us show a second auxiliary result,

intX = int
⋃
i∈Il

Di =
⋃
i∈Il

intDi. (3.7)

The inclusion “⊇” in (3.7) is easily seen. Now, let us prove the reverse inclusion “⊆”. Pick some
x ∈ intX, i.e., there is V ∈ V(x) such that V ⊆ X. Moreover, we have x ∈ Di for some i ∈ Il.
Taking into account our assumption (3.2), it follows x /∈ Dj for all j ∈ Il \ {i}, hence there is
V ′ ∈ V(x) such that V ′ ⊆ E \

⋃
j∈Il\{i}Dj . We conclude that V ′′ := V ∩ V ′ ⊆ Di, where it can

easily be seen that V ′′ ∈ V(x) (a consequence of (ii) in Definition 1.2). This implies x ∈ intDi,
hence (3.7) is true.

Finally, (3.5) follows from (3.6) and (3.7), since

bdX
(3.7)
=

(⋃
i∈Il

Di

)
\
⋃
j∈Il

intDj

=

(⋃
i∈Il

Di

)
∩
⋂
j∈Il

(intDj)
c

=
⋃
i∈Il

Di ∩ (intDi)
c ∩

⋂
j∈Il\{i}

(intDj)
c


=

⋃
i∈Il

(bdDi) ∩
⋂

j∈Il\{i}

(intDj)
c


(3.6)
=

⋃
i∈Il

bdDi.

Remark 3.3 The equation (3.5) does not hold under the weaker assumption (3.3). For instance,
consider the real intervals D1 = [0, 1] and D2 = [1, 2]. Then, we have

bdX = {0, 2} ( {0, 1} ∪ {1, 2} = (bdD1) ∪ (bdD2).

The next theorem provides outer and inner approximations (upper and lower bounds) for the
sets of (strictly, weakly) Pareto efficient solutions of the constrained multi-objective optimization
problem (PX) involving a not necessarily convex feasible set X.
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Theorem 3.4 Let (3.4) be satisfied. Suppose that each function φi, i ∈ Il, fulfils Assumptions
(A1) and (A2) (with φi in the role of φ and Xi in the role of X). Then, the following hold:

1◦. We have

X ∩ Eff(E | f) ⊆ Eff(X | f) ⊆
⋃
i∈Il

Eff(Xi | f);

X ∩WEff(E | f) ⊆WEff(X | f) ⊆
⋃
i∈Il

WEff(Xi | f);

X ∩ SEff(E | f) ⊆ SEff(X | f) ⊆
⋃
i∈Il

SEff(Xi | f).

2◦. If f : E→ Rm is componentwise semi-strictly quasi-convex on E, then

Eff(X | f) ⊆ [X ∩ Eff(E | f)] ∪

[
(bdX) ∩

⋃
i∈Il

(bdDi) ∩ Eff(E | f⊕i)

]
;

WEff(X | f) ⊆ [X ∩WEff(E | f)] ∪

[
(bdX) ∩

⋃
i∈Il

(bdDi) ∩WEff(E | f⊕i)

]
.

3◦. If f : E→ Rm is componentwise semi-strictly quasi-convex or quasi-convex on E, then

SEff(X | f) ⊆ [X ∩ SEff(E | f)] ∪

[
(bdX) ∩

⋃
i∈Il

(bdDi) ∩ SEff(E | f⊕i)

]
.

Notice, if (3.2) holds, then bdDi = (bdDi) ∩ (bdX) for every i ∈ Il.

Proof. 1◦. The inclusion X ∩ Eff(E | f) ⊆ Eff(X | f) is obvious. Consider x ∈ Eff(X | f). Since
X =

⋃
i∈Il Xi, there exist j ∈ Il such that x ∈ Xj ⊆ X. Due to x ∈ Xj ∩Eff(X | f) ⊆ Eff(Xj | f),

we infer x ∈ Eff(Xj | f) ⊆
⋃
i∈Il Eff(Xi | f).

The inclusions for the concepts of weak and strict Pareto efficiency follow analogously.

2◦. By Corollary 2.6 (with Y = D = E) and assertion 1◦ of this theorem, it follows

Eff(X | f) ⊆

[
X ∩ Eff(E | f) ∩

⋃
i∈Il

Eff(Xi | f)

]
∪

[
(bdX) ∩

⋃
i∈Il

Eff(Xi | f)

]

= [X ∩ Eff(E | f)] ∪

[
(bdX) ∩

⋃
i∈Il

Eff(Xi | f)

]
.

Recalling Corollary 3.1 (3◦), for any i ∈ Il, we have

Eff(Xi | f) ⊆ [Xi ∩ Eff(E | f)] ∪
[
(bdXi) ∩ Eff(E | f⊕i)

]
.

Combining the above two conditions, we conclude

Eff(X | f) ⊆ [X ∩ Eff(E | f)] ∪

[
(bdX) ∩

⋃
i∈Il

(bdXi) ∩ Eff(E | f⊕i)

]

taking into account that, for any i ∈ Il,

(bdX) ∩Xi ∩ Eff(E | f) ⊆ X ∩ Eff(E | f).

Similarly, one can show that the inclusion for the concept of weak Pareto efficiency holds.
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3◦. Analogously to 2◦ of this theorem with the aid of Corollary 3.1 (4◦).

Remark 3.5 Let (3.4) be satisfied. Consider i ∈ Il. By using a Minkowski gauge µi := µBi :
E → R associated to the set Bi := −di + Di with di ∈ intDi (see Example 2.12), we define the
penalization function φi : E→ R by

φ̂i(x) := µi(x− di)− 1 = inf{λ ∈ R+ | x− di ∈ λ ·Bi} − 1 for all x ∈ E.

Due to Corollary 1.63 (with φ̂i in the role of h and Bi in the role of Ω), the function φ̂i is convex
(hence explicitly quasi-convex) and continuous on E, and fulfils Assumptions (A5) and (A6). By

Remark 2.26, we know that (A7) (with φ̂i in the role of φ and Di in the role of X) is satisfied.
Thanks to Lemma 2.10 (6◦) and Remark (2.26), the function φi : E→ R, defined by

φi(x) := µi(x− di) for all x ∈ E,

fulfils Assumptions (A1), (A2) and (A7) (with φi in the role of φ and Di in the role of X).

In the next lemma, we present some properties related to the penalization function φ̂ : E → R
that is defined by

φ̂(x) := min{φ̂i(x) | i ∈ Il} = min{µi(x− di)− 1 | i ∈ Il} for all x ∈ E.

Remark 3.6 The penalization function φ̂ : E→ R is a minimum of a finite number of continuous
functions φ̂i(x), i ∈ Il, hence it is continuous as well. However, notice that φ̂ is not quasi-convex

(hence not convex) on E in general, as to see in Example 3.7. Moreover, φ̂ can not be semi-strictly

quasi-convex, since otherwise φ̂ would be quasi-convex in view of its continuity property.

Example 3.7 Consider the particular case E = R2 and l = 2. Define d1 := (0, 0), D1 :=
B||·||2(d1, 1), d2 := (0, 2), and D2 := B||·||2(d2, 1). So, we have µ1 = µ2 = || · ||2. Now, observe that

0 = φ̂(d1) = φ̂(d2), but for x′ := ld1,d2(0.5) = (0, 1) we have φ̂(x′) = φ̂1(x′) = φ̂2(x′) = 1. This

shows that φ̂ is not quasi-convex on R2.

Next, we study the validity of the Assumptions (A5) and (A6) for the penalization function φ̂.

Lemma 3.8 Let (3.4) be satisfied. The following assertions hold:

1◦. φ̂ fulfils Assumption (A5) (with φ̂ in the role of φ).

2◦. If (3.2) holds, then φ̂ fulfils Assumptions (A5) and (A6) (with φ̂ in the role of φ).

Proof. 1◦. We are going to show

L≤(E, φ̂, 0) =
⋃
i∈Il

L≤(E, φ̂i, 0) =
⋃
i∈Il

Di = X. (3.8)

According to Remark 3.5, for any i ∈ Il, we have L≤(E, φ̂i, 0) = Di. Now, we prove the first
equality in (3.8).

Let x ∈ L≤(E, φ̂, 0). Then, we have

0 ≥ φ̂(x) = min
{
φ̂i(x) | i ∈ Il

}
= φ̂j(x) for some j ∈ Il,

hence x ∈ L≤(E, φ̂j , 0).
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Conversely, let x ∈ L≤
(
E, φ̂k, 0

)
for some k ∈ Il. Then,

φ̂(x) = min
{
φ̂i(x) | i ∈ Il

}
≤ φ̂k(x) ≤ 0,

which shows x ∈ L≤(E, φ̂, 0). The proof of assertion 1◦ is complete.

2◦. Here we prove that

L=(E, φ̂, 0) =
⋃
i∈Il

L=(E, φ̂i, 0) =
⋃
i∈Il

bdDi = bdX. (3.9)

By Remark 3.5, for any i ∈ Il, we know that L=(E, φ̂i, 0) = bdDi, while
⋃
i∈Il bdDi = bdX

follows by Lemma 3.2. Let us prove the remaining equality (the first one) in (3.9).

Consider x ∈ L=(E, φ̂, 0). So, we have

0 = φ̂(x) = min
{
φ̂i(x) | i ∈ Il

}
= φ̂j(x) for some j ∈ Il,

hence x ∈ L=(E, φ̂j , 0).

Now, let x ∈ L=(E, φ̂k, 0) = bdDk for some k ∈ Il. Then, it follows

φ̂(x) = min
{
φ̂i(x) | i ∈ Il

}
≤ φ̂k(x) = 0. (3.10)

Due to (3.3) (follows by the assumption (3.2)), for any i ∈ Il \ {k}, we infer x /∈ intDi =

L<(E, φ̂i, 0), or in other words,

min
{
φ̂i(x) | i ∈ Il \ {k}

}
≥ 0. (3.11)

Combining (3.10) and (3.11), we get x ∈ L=(X, φ̂, 0), which completes the proof of assertion 2◦.

Consider the functions φi, i ∈ Il, as defined in Remark 3.5. Now, we turn our attention to the
penalization function φ : E→ R that is defined by

φ(x) := min{φi(x) | i ∈ Il} = min{µi(x− di) | i ∈ Il} for all x ∈ E.

The function φ satisfies the Assumptions (A1) and (A2), as to see in the next corollary.

Corollary 3.9 Let (3.4) be satisfied. The following assertions hold:

1◦. φ fulfils Assumption (A1).

2◦. If (3.2) holds, then φ fulfils Assumptions (A1) and (A2).

Proof. Noting that φ = φ̂+ 1, the assertion follows by Lemmata 3.8 and 2.10 (6◦).

The vector-valued objective function f⊕ of the penalized problem (P⊕E ) is then given by

f⊕(x) =
(
f1(x), · · · , fm(x),min{µi(x− di) | i ∈ Il}

)
for all x ∈ E.

In the next lemma, we show that the penalization function φ : E → R can be rewritten to a
so-called d.c function (i.e., a function that can written as a difference of two convex functions).

Lemma 3.10 Let (3.4) and (3.2) be satisfied. Then, the penalization function φ : E→ R admits
the following representation

φ(x) = min{µi(x− di) | i ∈ Il} = φ′(x)− φ′′(x) for all x ∈ E,
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where φ′, φ′′ : E→ R are convex functions, defined, for any x ∈ E, by

φ′(x) :=
∑
i∈Il

µi(x− di),

φ′′(x) := max
i∈Il

∑
j∈Il\{i}

µj(x− dj).

Proof. Let us prove the inequality φ ≥ φ′ − φ′′. Clearly, there exists k ∈ Il such that, for any
x ∈ E, we have

φ(x) = min{µi(x− di) | i ∈ Il} = µk(x− dk)

=
∑
i∈Il

µi(x− di) + µk(x− dk)−
∑
j∈Il

µj(x− dj)

=
∑
i∈Il

µi(x− di)−
∑

j∈Il\{k}

µi(x− dj)

≥
∑
i∈Il

µi(x− di)−max
i∈Il

∑
j∈Il\{i}

µj(x− dj) = φ′(x)− φ′′(x).

Now, we prove the reverse inequality φ′ − φ′′ ≥ φ. Consider any x ∈ E. It is easily seen that
there exists k ∈ Il such that

max
i∈Il

∑
j∈Il\{i}

µj(x− dj) =
∑

j∈Il\{k}

µj(x− dj).

Thus, we infer

φ′(x)− φ′′(x) =
∑
i∈Il

µi(x− di)−max
i∈Il

∑
j∈Il\{i}

µj(x− dj)

=
∑
i∈Il

µi(x− di)−
∑

j∈Il\{k}

µj(x− dj)

= µk(x− dk)

≥ min{µi(x− di) | i ∈ Il} = φ(x),

which completes the proof.

Remark 3.11 Thanks to Lemma 3.10, we have a representation of φ as a difference of two convex
functions φ′ and φ′′. So, φ is a so-called d.c. function. A comprehensive duality theory for d.c.
optimization problems was developed by Toland [118] and Singer [115]. Notice that Bozau [15]
solved a special scalar nonconvex unconstrained location problem via a reformulation of a scalar
function h(·) = min{|| · −di||2 | i ∈ Il}, l ∈ N, defined on Rn, to a similar d.c. function as given
in Lemma 3.10. Therefore, Lemma 3.10 is a simple generalization of the result by Bozau [15].
Further interesting works related to d.c. optimization and Toland-Singer duality theory are Löhne
and Wagner [77], Wagner, Martinez-Legaz and Tammer [121], and Wagner [120].

3.2 Problems involving multiple forbidden regions

In this section, we consider a feasible set X that is given by the whole pre-image space E excepting
some forbidden regions that are given by convex sets. More precisely, we suppose that the following
assumption is fulfilled:

Let X :=
⋂
i∈Il

Xi with Xi := E \ intDi, i ∈ Il, where Di, i ∈ Il, satisfy (3.1). (3.12)
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Under the assumption (3.12), the feasible set X is an intersection of closed, reverse convex sets
X1, · · · , Xl. So, X is a closed set too. We have bdDi = bdXi for all i ∈ Il. Notice that each of
the conditions (3.2) and (3.3) implies

X ∩ bdXi = bdXi = bdDi, (3.13)

which is a direct consequence of the next result.

Lemma 3.12 ([53]) Let (3.12) and (3.3) be satisfied. Then, we have

bdX =
⋃
i∈Il

bdDi.

Proof. Since Il is a finite index set, we can deduce that

int

(⋂
i∈Il

Xi

)
=
⋂
i∈Il

intXi =

(⋃
i∈Il

Di

)c
. (3.14)

Now, we are going to prove that

(intDj)
c ∩Di = Di for every i, j ∈ Il, i 6= j. (3.15)

Assume the contrary holds, i.e., there exists x ∈ Di \ (intDj)
c = Di ∩ (intDj) for some i, j ∈ Il,

i 6= j. Of course, in view of (3.3), we must have x ∈ (bdDi) ∩ (intDj). Consider some d ∈ intDi

(notice that d 6= x). Due to the convexity of Di, we infer that ]x, d] ⊆ intDi by Lemma 1.13. This
means, for every δ ∈]0, 1], we have x+]0, δ] · (d− x) ⊆ intDi. Moreover, since x ∈ intDj and Dj is
convex, we get x+]0, δ′] · (d− x) ⊆ intDj for some δ′ ∈ ]0, 1]. Hence, we have

∅ 6= x+]0, δ′] · (d− x) ⊆ (intDi) ∩ (intDj)

in contradiction to (3.3). So, (3.15) holds.
Consequently, we have

bdX = X \ intX =

⋂
j∈Il

Xj

 \ int

(⋂
i∈Il

Xi

)

(3.14)
=

⋂
j∈Il

Xj

 \(⋃
i∈Il

Di

)c

=

⋂
j∈Il

Xj

 ∩(⋃
i∈Il

Di

)

=
⋃
i∈Il

⋂
j∈Il

(intDj)
c ∩Di

=
⋃
i∈Il

(bdDi) ∩
⋂

j∈Il\{i}

(intDj)
c ∩Di

(3.15)
=

⋃
i∈Il

(bdDi) ∩Di =
⋃
i∈Il

bdDi.

3.2.1 Problems with one forbidden region (l = 1)

Let us analyze an important special case in which we have exactly one (i.e., l = 1) forbidden region.
For notational convenience, we assume that φ := φ1 and D := D1.
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In preparation of the next lemma, we define a new penalization function φ̂ : E→ R by

φ̂ := −φ.

Lemma 3.13 ([53]) Let (3.4) be satisfied. Then, the following assertions are equivalent:

1◦. φ fulfils the Assumptions (A5) and (A6).

2◦. φ̂ fulfils the Assumptions (A5) and (A6) with φ̂ in the role of φ and D in the role of X.

Proof. First, we are going to prove that

int(E \ intD) = E \D. (3.16)

Since D is closed, we infer that E \D is open. Then, then inclusion “⊇” in (3.16) follows by the
fact that E \D ⊆ E \ intD. Now, we prove the reverse inclusion “⊆”.

Assume that there is x ∈ int (E\ intD) with x /∈ E\D, i.e., x ∈ D. Of course, since x ∈ E\ intD
we must have x ∈ bdD. Consider d ∈ intD. Due to the convexity of D, we infer that ]x, d] ⊆ intD
by Lemma 1.13. This means, for every δ ∈ ]0, 1], we have x+ ]0, δ] · (d − x) ⊆ intD. Hence, x
is no algebraic interior point of E \ intD, which implies x /∈ int(E \ intD) by Lemma 1.20, a
contradiction. We conclude that (3.16) holds.

So, we have

L<(E, φ, 0) = intX (3.17)

⇐⇒ L≥(E, φ, 0) = E \ intX

⇐⇒ L≤(E, φ̂, 0) = E \ int (E \ intD)

(3.16)⇐⇒ L≤(E, φ̂, 0) = D (3.18)

and

L≤(E, φ, 0) = X (3.19)

⇐⇒ L>(E, φ, 0) = E \X

⇐⇒ L<(E, φ̂, 0) = E \ (E \ intD)

⇐⇒ L<(E, φ̂, 0) = intD. (3.20)

Notice that (3.17) follows by (3.19) and

L=(E, φ, 0) = bdX, (3.21)

while (3.17) and (3.19) imply (3.21). Analogously, (3.20) follows by (3.18) and

L=(E, φ̂, 0) = bdD, (3.22)

while (3.20) and (3.18) imply (3.22). The proof is complete.

Lemma 3.14 ([53]) Let (3.4) be satisfied. Assume that φ̂ = −φ is a semi-strictly quasi-convex

and continuous function on E which fulfils Assumption (A5) (with φ̂ in the role of φ and D in

the role of X) and suppose that L<(E, φ̂, 0) 6= ∅. Then, φ is a semi-strictly quasi-concave and
continuous function and fulfils the Assumptions (A1), (A2), (A5) and (A6).

Proof. Follows immediately by Lemma 2.10 (3◦) and Lemmata 2.54 and 3.13.

Example 3.15 By using a Minkowski gauge µ := µB : E→ R associated to the set B := −d+D
with d ∈ intD (see Example 2.12), we consider the function φ : E→ R defined by

φ̂(x) := µ(x− d)− 1 = inf{λ ∈ R+ | x− d ∈ λ ·B} − 1 for all x ∈ E,
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As we know from Corollary 1.63, φ̂ is semi-strictly quasi-convex and continuous on E and fulfils
Assumption (A5) (with φ̂ in the role of φ and D in the role of X). Moreover, we have d ∈
L<(E, φ̂, 0) 6= ∅. So, in view of Lemma 3.14, we get that

φ := −φ̂( · ) = −µ( · − d) + 1

satisfies the Assumptions (A1), (A2), (A5) and (A6). In our considerations, the function

φ( · ) := −µ( · − d),

which fulfils the Assumptions (A1) and (A2) (with φ in the role of φ) by Lemma 2.10 (6◦), will be
of special interest.

In assertion 1◦ of Proposition 2.27, we need that the function φ fulfils the Assumption (A6).
In the next lemma, we will show that the penalization function φ given in Example 2.12 satisfies
Assumption (A6) (with φ in the role of φ).

Lemma 3.16 ([53]) Let (3.4) be satisfied. Consider any x ∈ bdX and d ∈ intD and define
x′ := x+ (x− d) 6= x. Then, we have

[x′, x[⊆ L<(E, φ, φ(x)) = intX.

Thus, φ fulfils the Assumption (A6) (with φ in the role of φ).

Proof. First, notice that µ(x− d) = 1 > 0 since x ∈ bdX = bdD = L=(E, φ,−1). Hence, for any
λ ∈ ]0, 1], we have

φ((1− λ)x+ λx′) = −µ((1− λ)x+ λ(2x− d)− d)

= −µ((λ+ 1)(x− d))

= −(λ+ 1)µ(x− d)

< −µ(x− d)

= φ(x).

The equality L<(E, φ, φ(x)) = intX follows by Remark 2.9 and Example 3.15. This shows the
assertion in this lemma.

In view of Theorems 2.25 and 2.39, we have the inclusions

SEff(X | f) ⊆ SEff(E | f⊕1),

WEff(X | f) ⊆WEff(E | f⊕1),

but in Example 2.21 we presented a counter-example for the convex case which shows that

Eff(X | f) ⊆ Eff(E | f⊕1) (3.23)

does not hold in general. In the next example, we point out that inclusion (3.23) does not hold in
our class of problems.

Example 3.17 We consider a constrained convex multi-objective location problem with functions
f1, f2, f3 : R2 → R defined by fi(x) := ||x − ai||1 for all x ∈ R2 and all i ∈ I3, where a1 :=
(5, 5), a2 := (2, 2.5), a3 := (3.5, 3.5) ∈ R2. Consider the feasible set X := R2 \ intD with D :=
[2, 3.5] × [3.5, 5], and put d := (3, 4) ∈ intD. Let the penalization function φ1 be given by the
function φ considered in Example 3.15. In the left part of Figure 3.2 one can see that the point
x′ ∈ bdX = bdD is belonging to both sets Eff(X | f) and Eff(R2 | f). Notice that we have

Eff(X | f) = Eff(R2 | f) = ([2, 3.5]× [2.5, 3.5]) ∪ ([3.5, 5]× [3.5, 5])

by the Rectangular Decomposition Algorithm (see Chapter 5). However, the right part of Figure
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3.2 shows that x′ /∈ Eff(R2 | f⊕1) since x′′ ∈ (intX) ∩ S=(R2, f, x′). Consequently, the inclusion
in (3.23) does not hold in this example.

x′ ∈ Eff(R2 | f) ∩ Eff(X | f)

intD

a2

x′ /∈ Eff(R2 | f⊕)

x′
x′′

S=(R2, f, x′)

a1

a3

intD

x′

a2

a3

a1

d

Figure 3.2: Counter-example for the inclusion (3.23).

3.2.2 Problems with multiple forbidden regions (l > 1)

The next theorem is related to the concept of Pareto efficiency and presents relationships between
the initial constrained multi-objective optimization problem (PX) and a finite family of uncon-
strained multi-objective optimization problems (PE), (P⊕iE ), i ∈ Il.

Theorem 3.18 ([53]) Let (3.4) be satisfied. Suppose that each function φi, i ∈ Il, fulfils Assump-
tions (A1) and (A2) (with φi in the role of φ and Xi in the role of X). Then, we have:

1◦. It holds that

X ∩ Eff(E | f) ⊆ X ∩
⋃
i∈Il

Eff(Xi | f) ⊆ Eff(X | f). (3.24)

2◦. Assume that (3.2) holds. Let f : E→ Rm be componentwise semi-strictly quasi-convex on E.
Then, we have

X ∩
⋃
i∈Il

Eff(Xi | f) ⊇ Eff(X | f). (3.25)

3◦. Assume that (3.3) holds. Let f : E → Rm be componentwise explicitly quasi-convex on E.
Then, (3.25) is true.

4◦. We have

Eff(X | f) ⊇ [X ∩ Eff(E | f)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ Eff(E | f⊕i)

]
. (3.26)

Now, suppose that (3.2) holds. Let f : E → Rm be componentwise semi-strictly quasi-convex on
E. Then, we have

Eff(X | f) = [X ∩ Eff(E | f)] ∪

[⋃
i∈Il

(bdDi) ∩ Eff
(
E | f⊕i

)]
. (3.27)
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5◦. Assume that (3.3) holds. Let f : E → Rm be componentwise explicitly quasi-convex. Then,
(3.27) is true.

Proof. 1◦. Since X ⊆ Xi ⊆ E for all i ∈ Il, we get (3.24) directly by Lemma 2.2 (1◦).

2◦. Consider x ∈ Eff(X | f). On one hand, we can have x ∈ Eff(E | f), hence it follows
x ∈ Eff(Xi | f) for some i ∈ Il by 1◦ of this theorem. On the other hand, we can have x /∈ Eff(E | f).
Then, there exists x1 ∈ E \X =

⋃
i∈Il intDi with

x1 ∈ L<(E, fj , fj(x)) ∩ S≤(E, f, x) for some j ∈ Im. (3.28)

Without loss of generality, we assume x1 ∈ intDk for some k ∈ Il. We are going to show that[ ⋃
i∈Im

L<(E, fi, fi(x))

]
∩ S≤(E, f, x) ⊆ intDk,

which implies x ∈ Eff(Xk | f).

Suppose that the contrary holds, i.e., there exists x2 ∈ intDk with k ∈ Il \ {k} such that

x2 ∈ L<(E, fj , fj(x)) ∩ S≤(E, f, x) for some j ∈ Im.

By (3.2) and the closedness of Di, i ∈ Il, we infer that the set X ∩ ]x1, x2[ has an infinite number
of elements. In particular, we have

card
(
X ∩ ]x1, x2[

)
≥ m+ 2. (3.29)

We are going to prove that

∃x3 ∈ ]x1, x2[: x3 ∈ L<(X, fj , fj(x)) ∩ S≤(X, f, x), (3.30)

which implies x /∈ Eff(X | f), a contradiction.

Since max{fi(x1), fi(x
2)} ≤ fi(x) for every i ∈ Im, we infer that

card

( ⋃
i∈Im

L>
(

]x1, x2[ , fi , fi(x)
))
≤ m (3.31)

by Lemma 1.43. Now, for the specific index j given in (3.28), we consider two cases:

Case 1: If x2 ∈ L=(E, fj , fj(x)), then in view of Lemma 1.42 we get [x1, x2[⊆ L<(E, fj , fj(x)).
By (3.29), it follows

card
(
X ∩ L<

(
]x1, x2[ , fj , fj(x)

))
≥ m+ 1. (3.32)

Case 2: If x2 ∈ L<(E, fj , fj(x)), then we have

cardL>
(

]x1, x2[ , fj , s
)
≤ 1 (3.33)

with s := max{fj(x1), fj(x
2)} < fj(x) by Lemma 1.43. Due to (3.29) and (3.33), it follows (3.32).

So, in both cases (3.32) holds. Consequently, we get the validity of (3.30) by (3.31) and (3.32).
This completes the proof of assertion 2◦.

3◦. The proof is analogous to the proof of assertion 2◦. By (3.3), we get card
(
X∩ ]x1, x2[

)
≥ 1

instead of (3.29). Notice, for any i ∈ Im, the conditions x1, x2 ∈ L∼(E, fi, fi(x)) imply ]x1, x2[⊆
L∼(E, fi, fi(x)) for all ∼∈ {<,≤} by the quasi-convexity of fi on E. Consequently, it follows

∅ 6= X∩ ]x1, x2[⊆ L<(X, fj , fj(x)) ∩ S≤(X, f, x).

4◦. By Corollary 3.1 (1◦), for any i ∈ Il, we have

[Xi ∩ Eff(E | f)] ∪
[
(bdXi) ∩ Eff(E | f⊕i)

]
⊆ Eff(Xi | f). (3.34)
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Notice that intXi 6= ∅ by Lemma 3.16. Then, due to 1◦ of this theorem, we get

Eff(X | f)
(3.24)

⊇ X ∩
⋃
i∈Il

Eff(Xi | f)

(3.34)

⊇ X ∩
⋃
i∈Il

(
[Xi ∩ Eff(E | f)] ∪

[
(bdXi) ∩ Eff(E | f⊕i)

])
=

[⋃
i∈Il

X ∩Xi ∩ Eff(E | f)

]
∪

[⋃
i∈Il

X ∩ (bdXi) ∩ Eff(E | f⊕i)

]

= [X ∩ Eff(E | f)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ Eff(E | f⊕i)

]
,

where X ∩Xi = X for every i ∈ Il, which shows (3.26).

Assume that (3.2) holds. Let f be componentwise semi-strictly quasi-convex on E. By (3.25) and
by Corollary 3.1 (3◦), we get the reverse inclusion, which shows (3.27) in view of (3.13).

5◦. This assertion follows by 1◦ and 3◦ of this theorem as well as by the ideas given in the proof
of assertion 4◦.

Notice that the assumptions (3.2) in 4◦ and (3.3) in 5◦ of Theorem 3.18 are essential for the
validity of (3.27) (see Example 6.6 in Chapter 6).

In the next theorem, we derive relationships between the initial constrained multi-objective
optimization problem (PX) and the corresponding unconstrained problems (PE) and (P⊕iE ), i ∈ Il,
for the concept of weak Pareto efficiency.

Theorem 3.19 ([53]) Let (3.4) be satisfied. Suppose that each penalization function φi, i ∈ Il,
fulfils Assumptions (A1) and (A2) (with φi in the role of φ and Xi in the role of X). Then, the
following hold:

1◦. We have

X ∩WEff(E | f) ⊆ X ∩
⋃
i∈Il

WEff(Xi | f) ⊆WEff(X | f).

2◦. Assume that (3.2) holds. Let f : E → Rm be componentwise semi-strictly quasi-convex or
quasi-convex on E. Then, we have

X ∩
⋃
i∈Il

WEff(Xi | f) ⊇WEff(X | f). (3.35)

3◦. Assume that (3.3) holds. Let f : E→ Rm be componentwise quasi-convex on E. Then, (3.35)
is true.

4◦. Let f : E→ Rm be componentwise upper semi-continuous along line segments on E. Assume
that each function φi, i ∈ Il, fulfils Assumption (A6). Then, we have

WEff(X | f) ⊇ [X ∩WEff(E | f)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩WEff(E | f⊕i)

]
.

Now, suppose that (3.2) holds. In addition, assume that f : E → Rm is componentwise semi-
strictly quasi-convex on E. Then, we have

WEff(X | f) = [X ∩WEff(E | f)] ∪

[⋃
i∈Il

(bdDi) ∩WEff
(
E | f⊕i

)]
. (3.36)
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5◦. Suppose that (3.3) holds. Let f : E → Rm be componentwise explicitly quasi-convex and
upper semi-continuous along line segments on E. Assume that each function φi, i ∈ Il, fulfils
Assumption (A6). Then, (3.36) is true.

Proof. The proof uses similar ideas as given in the proof of Theorem 3.18.

1◦. Follows by Lemma 2.2 (1◦).

2◦. Let x ∈ WEff(X | f). If x ∈ WEff(E | f), then x ∈ X ∩WEff(Xj | f) for some j ∈ Il by
1◦ of this theorem. In what follows, we assume that x /∈ WEff(E | f). Consequently, there is
x1 ∈ S<(E, f, x) ∩ intDk for some k ∈ Il. We show that x ∈WEff(Xk | f).

Assume the contrary holds, i.e., x /∈ WEff(Xk | f). Then, there exists x2 ∈ S<(E, f, x) ∩ intDk

for some k ∈ Il \ {k}. Consider i ∈ Im. If fi is semi-strictly quasi-convex on E, then we get

cardL≥
(

]x1, x2[ , fi , fi(x)
)
≤ 1

by Lemma 1.43. If fi is quasi-convex on E, then it follows

cardL≥
(

]x1, x2[ , fi , fi(x)
)

= 0.

So, we conclude

card

( ⋃
i∈Im

L≥
(

]x1, x2[ , fi , fi(x)
))
≤ m. (3.37)

By (3.29) and (3.37), we infer that there exists x3 ∈ ]x1, x2[ such that x3 ∈ S<(X, f, x). This shows
x /∈WEff(X | f), a contradiction.

3◦. The proof is analogous to the proof of assertion 2◦. Notice that one has

∅ 6= X ∩ ]x1, x2[⊆ S<(X, f, x).

4◦. The proof uses Corollary 2.27, Theorem 3.19 (1◦, 2◦), formula (3.13), and the ideas given in
the proof of Theorem 3.18 (4◦).

5◦. This assertion follows by 1◦ and 3◦ of this theorem as well as by the ideas given in the proof
of assertion 4◦.

It is important to mention that the assumptions (3.2) in 4◦ and (3.3) in 5◦ of Theorem 3.19 are
essential for the validity of (3.36) (see Example 6.6 in Chapter 6).

We now present similar relationships for the concept of strict Pareto efficiency.

Theorem 3.20 ([53]) Let (3.4) be satisfied. Suppose that each function φi, i ∈ Il, fulfils As-
sumptions (A1) and (A2) (with φi in the role of φ and Xi in the role of X). Then, the following
hold:

1◦. We have

X ∩ SEff(E | f) ⊆ X ∩
⋃
i∈Il

SEff(Xi | f) ⊆ SEff(X | f).

2◦. Assume that (3.2) holds. Let f : E → Rm be componentwise semi-strictly quasi-convex or
quasi-convex on E. Then, we have

X ∩
⋃
i∈Il

SEff(Xi | f) ⊇ SEff(X | f). (3.38)
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3◦. We have

SEff(X | f) ⊇ [X ∩ SEff(E | f)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ SEff(E | f⊕i)

]
.

Now, suppose that (3.2) holds. In addition, assume that f : E → Rm is componentwise semi-
strictly quasi-convex or quasi-convex on E. Then, we have

SEff(X | f) = [X ∩ SEff(E | f)] ∪

[⋃
i∈Il

(bdDi) ∩ SEff
(
E | f⊕i

)]
. (3.39)

Proof. The proof uses similar ideas as given in the proof of Theorem 3.18.

1◦. Follows by Lemma 2.2 (1◦).

2◦. Consider x ∈ SEff(X | f). In the case that x ∈ SEff(E | f), we conclude x ∈ X ∩ SEff(Xj | f)
for some j ∈ Il by 1◦ of this theorem. In the second case, we can have x /∈ SEff(E | f), hence there
exists x1 ∈ S≤(E, f, x)∩ intDk for some k ∈ Il. Now, we are going to prove that x ∈ SEff(Xk | f).

Assume the contrary holds, i.e., x /∈ SEff(Xk | f). Then, there exists a point x2 ∈ S≤(E, f, x) ∩
intDk for some k ∈ Il \ {k}.
Let i ∈ Im. If fi is semi-strictly quasi-convex on E, then we get

cardL>
(

]x1, x2[ , fi , fi(x)
)
≤ 1

by Lemma 1.43. If fi is quasi-convex on E, then it follows

cardL>
(

]x1, x2[ , fi , fi(x)
)

= 0.

Hence, we infer

card

( ⋃
i∈Im

L>
(

]x1, x2[ , fi , fi(x)
))
≤ m. (3.40)

Taking into account (3.29) and (3.40), we get that there exists x3 ∈ ]x1, x2[ \{x} such that x3 ∈
S≤(X, f, x). This implies x /∈ SEff(X | f), a contradiction.

3◦. The proof uses Corollary 2.40, Theorem 3.20 (1◦, 2◦), formula (3.13), and the ideas given in
the proof of Theorem 3.18 (4◦).

Remark 3.21 Consider the points x, x1, x2 ∈ E as given in the proof of 2◦ in Theorem 3.20. Under
the weaker assumption (3.3) (in comparison to (3.2)) and the componentwise quasi-convexity of f ,
we get

∅ 6= X ∩ ]x1, x2[⊆ S≤(X, f, x).

We notice, however, that X∩ ]x1, x2[ can be a singleton set. Hence, in the proof of 2◦ in Theorem
3.20, we can not ensure that we have

X ∩ ]x1, x2[ 6= {x}. (3.41)

For the concepts of Pareto efficiency and weak Pareto efficiency, we know that there is x3 ∈
X ∩ ]x1, x2[ such that x3 ∈ L<(E, fj , fj(x)) ∩ S≤(E, f, x) for some j ∈ Im, hence (3.41) holds.

The assumption (3.2) in 3◦ of Theorem 3.20 is essential for the validity of (3.39), as shown in
Example 6.6 in Chapter 6.
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We end this section by considering a specific type of penalization functions φi, i ∈ Il, that fulfils
the Assumptions (A1), (A2) and (A6) (with φi in the role of φ and Xi in the role of X, see Example
3.15 and Lemma 3.16).

Corollary 3.22 ([53]) Assume that (3.4) holds. Let each penalization function φi, i ∈ Il, be
defined by

φi(x) := − inf{λ ∈ R+ | x− di ∈ λ · (−di +Di)} for all x ∈ E,

where di ∈ intDi. Then, the following hold:

1◦. We have

SEff(X | f) ⊇ [X ∩ SEff(E | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩ SEff(E | f⊕i)

]
;

Eff(X | f) ⊇ [X ∩ Eff(E | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩ Eff(E | f⊕i)

]
.

Suppose that f : E → Rm is componentwise upper semi-continuous along line segments on E.
Then, it follows

WEff(X | f) ⊇ [X ∩WEff(E | f)] ∪

[⋃
i∈Il

X ∩ (bdXi) ∩WEff(E | f⊕i)

]
.

Moreover, under the validity of (3.2) or (3.3), one can replace X∩(bdXi) by bdDi for every i ∈ Il.

2◦. If f is componentwise semi-strictly quasi-convex or quasi-convex on E, then we have

SEff(X | f) ⊆ [X ∩ SEff(E | f)] ∪ bdX.

3◦. If f : E→ Rm is componentwise semi-strictly quasi-convex on E, then

Eff(X | f) ⊆ [X ∩ Eff(E | f)] ∪ bdX;

WEff(X | f) ⊆ [X ∩WEff(E | f)] ∪ bdX.

4◦. Assume that (3.2) holds. Let f : E → Rm be componentwise semi-strictly quasi-convex or
quasi-convex on E. Then, we have

SEff(X | f) = [X ∩ SEff(E | f)] ∪

[⋃
i∈Il

(bdDi) ∩ SEff
(
E | f⊕i

)]
.

5◦. Assume that (3.3) holds. Let f : E → Rm be componentwise explicitly quasi-convex. Then,
we have

Eff(X | f) = [X ∩ Eff(E | f)] ∪

[⋃
i∈Il

(bdDi) ∩ Eff
(
E | f⊕i

)]
.

In addition, suppose that f : E→ Rm is componentwise upper semi-continuous along line segments
on E. Then, it follows

WEff(X | f) = [X ∩WEff(E | f)] ∪

[⋃
i∈Il

(bdDi) ∩WEff
(
E | f⊕i

)]
.

Proof. Follows by Corollary 2.6, Theorems 3.18, 3.19 and 3.20 and formula (3.13).



3.3 Concluding remarks 74

3.3 Concluding remarks

In Section 3.1, we considered the problem (PX) with a feasible set given by a union of a finite
number of pairwise disjoint, closed, convex sets with nonempty interiors. We succeded to find a
penalization function φ : E→ R, defined by

φ(x) := min{µi(x− di) | i ∈ Il} =
∑

i∈Il
µi(x− di)−max

i∈Il

∑
j∈Il\{i}

µj(x− dj)

for all x ∈ E. This function φ is a difference of two convex functions (a so-called d.c. function) and
fulfils the important Assumptions (A1) and (A2) (see Corollary 3.9, Lemma 3.10 and Remark 3.11).
In forthcoming works, we aim to extend the analysis of multi-objective optimization problems
where the feasible set is given by a finite union of convex sets. It seems to be attractive to use
the decomposition of φ as a d.c. function in order to characterize the sets of (strictly, weakly)
Pareto efficient solutions of certain multi-objective optimization problems. In Theorem 3.4, we
presented some outer approximations for the sets of (strictly, weakly) Pareto efficient solutions of
problem (PX) . It is an open question whether it is possible to find characterizations for these sets
of solutions that possibly involve at least a part of the sets of (strictly, weakly) Pareto efficient
solutions of the unconstrained problems (PE), (P⊕iE ), i ∈ Il.

It should be mentioned that the idea to use a closed, convex decomposition of the closed, non-
convex, feasible set X ( E (as considered in Section 3.1, see the assumption in (3.4)) is also
used by Carrizosa et al. [19] in order to generate the set of weakly Pareto efficient solutions of a
special class of constrained planar multi-objective location problems. Moreover, Hansen, Peeters,
Thisse [60] considered a scalar location problem involving a feasible set given by a union of convex
polygons.

The results given in Section 3.2 are based on the paper Günther [53]. It is interesting to study
the question whether it is possible to characterize the sets of (strictly, weakly) Pareto efficient
solutions of problem (PX), under similar assumptions as in Corollary 3.22), but without assuming
that (3.2) or (3.3) hold.

In Chapter 6, we apply our results from Section 3.2 to a special class of nonconvex multi-objective
location problems involving multiple forbidden regions.
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Application in Location Theory



Chapter 4

Multi-objective location theory

In this chapter, we demonstrate that the results derived in the previous chapters are very useful for
application to constrained multi-objective locational analysis. Consider m a priori given facilities
located at the points a1, · · · , am in a real linear topological space E. For notational convenience,
we define the set of all existing facilities by

A := {a1, · · · , am}.

To each existing facility ai, i ∈ Im, we associate a certain Minkowski gauge ηi : E → R. Recall
that a Minkowksi gauge is already introduced in Section 1.4, and now, for any i ∈ Im, we put

ηi(x) := µBi(x) = inf{λ > 0 |x ∈ λ ·Bi} for all x ∈ E,

where Bi ( E is a closed, convex unit ball with 0 ∈ coreBi. So, for any i ∈ Im, the distance
between the new facility x ∈ E and an existing facility ai is given by ηi(x− ai).

Let us define a vector-valued function ηA : E→ Rm associated to the set A by

ηA(x) := (η1(x− a1), · · · , ηm(x− am)) for all x ∈ E.

In order to describe the preferences of the decision maker, one could introduce additional scalar
functions h1, · · · , hp : Rm+ → R, p ∈ N. Under the assumption that h1, · · · , hp are Rm+ -increasing
on Rm+ , it is usual in economics to call them disutility functions. Then, the functions h1, · · · , hp
and ηA can be used to define a vector-valued objective function

gA = (g1, · · · , gp) : E→ Rp

associated to the set A, where its components are given by the composite functions gi := hi ◦ ηA,
i ∈ Ip. In what follows, our principal goal is to minimize gA over a nonempty, closed feasible set
X ⊆ E, i.e., we consider the multi-objective composite location problem{

gA(x) = ((h1 ◦ ηA)(x), · · · , (hp ◦ ηA)(x))→ min w.r.t. Rp+
x ∈ X.

(LPX(A))

Remark 4.1 Plastria [99] was probably the first author who considered this general location
model given in problem (LPX(A)) for the single-objective case (i.e., p = 1), where he assumed
that X = E = Rn, h1 is a lower semi-continuous and Rm+ -increasing function on Rm+ , and η1, · · · , ηm
are norms on Rn. In addition, the single-objective case is also considered by Gromicho [51], Nickel,
Puerto and Rodŕıguez-Ch́ıa [91], Puerto and Fernández [108], Schöbel [114, Sec. 7.2] and Wanka,
Boţ and Vargyas [124]. In fact (LPX(A)) can be seen as a special case of a multi-objective composite
optimization problem, studied, among others, by Boţ [13], Boţ, Vargyas and Wanka [14], Jeyakumar
and Yang [66], Vargyas [119], and Wanka, Boţ and Vargyas [123]. This observation justifies the
name “multi-objective composite location problem” for (LPX(A)).

76
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By imposing additional assumptions on the scalar functions hi, i ∈ Ip, we can ensure that gA is
a componentwise convex (quasi-convex, semi-strictly quasi-convex) function on E by Lemma 1.49.

Lemma 4.2 Assume that hi : Rm+ → R, i ∈ Ip, are Rm+ -increasing functions on Rm+ . Then, the
following assertions hold:

1◦. If hi, i ∈ Ip, are convex on Rm+ , then gA : E→ Rp is componentwise convex on E.

2◦. If hi, i ∈ Ip, are quasi-convex on Rm+ , then gA : E→ Rp is componentwise quasi-convex on E.

3◦. If hi, i ∈ Ip, are semi-strictly quasi-convex on Rm+ , then gA : E → Rp is componentwise
semi-strictly quasi-convex on E.

In what follows, we recall four well-known special cases of the multi-objective composite location
problem (LPX(A)) for locating a new facility with respect to a set of fixed facilities A, namely

(C1) the class of point-objective location problems (see Section 4.1) p = m,
∀i ∈ Im : λi := 0Rm and λii := 1,
∀i ∈ Im ∀y ∈ Rm+ : hi(y) := 〈λi, y〉;

(4.1)

(C2) the class of multi-objective min-sum location problems (see Section 4.2){
∀i ∈ Ip : λi = (λi1, · · · , λim) ∈ Rm+ \ {0Rm},
∀i ∈ Ip ∀y ∈ Rm+ : hi(y) := 〈λi, y〉; (4.2)

(C3) the class of multi-objective min-max location problems (see Section 4.3){
∀i ∈ Ip : λi = (λi1, · · · , λim) ∈ Rm+ \ {0Rm},
∀i ∈ Ip ∀y ∈ Rm+ : hi(y) := maxj∈Im λ

i
j · yj ;

(4.3)

(C4) the class of multi-objective ordered median location problems (see Section 4.4) ∀i ∈ Ip : λi = (λi1, · · · , λim) ∈ Rm,
∀i ∈ Ip : wi = (wi1, · · · , wim) ∈ Rm,
∀i ∈ Ip ∀y ∈ Rm+ : hi(y) := 〈λi, sortm(weightwi(y))〉,

(4.4)

where

– the function sortm : Rm → Rm is defined, for any x = (x1, · · · , xm) ∈ Rm, by

sortm(x) := (xj1 , · · · , xjm),

and xj1 , · · · , xjm is a enumeration of x1, · · · , xm such that xj1 ≤ · · · ≤ xjm ;

– the function weightw : Rm → Rm, w = (w1, · · · , wm) ∈ Rm, is defined, for any x =
(x1, · · · , xm) ∈ Rm, by

weightw(x) := (w1x1, · · · , wmxm).

Remark 4.3 Notice that the class (C1) is included in the classes (C2) and (C3), while (C2) and
(C3) are part of (C4). There are also some further classes of multi-objective location problems
that can be seen as subclasses of (C4) (see Nickel and Puerto [90]).

In preparation of the next lemma, for any any λ ∈ Rm, the function

OMFλ := 〈λ, sortm(·)〉 : Rm → R

stands for the so-called Ordered Median Function (see Nickel and Puerto [90, Sec. 1.3]). Hence,
for any i ∈ Ip, we have hi = OMFλi ◦ weightwi under the assumption (4.4) given for class (C4).



4 Multi-objective location theory 78

Lemma 4.4 The following assertions hold:

1◦. Consider a problem of class (C1), (C2) or (C3). Then, the function gA given in (LPX(A)) is
componentwise convex on E.

2◦. Consider a problem of class (C4). If λi = (λi1, · · · , λim) ∈ Rm+ , λi1 ≤ · · · ≤ λim and wi =
(wi1, · · · , wim) ∈ Rm+ for all i ∈ Ip, then gA is componentwise convex on E.

Proof. Assertion 1◦ follows by Lemma 4.2 since it can easily be verified that hi, i ∈ Ip, are convex
and Rm+ -increasing functions on Rm+ .

Now, let us prove assertion 2◦. Consider any i ∈ Ip. By Nickel and Puerto [90, Prop. 1.1], OMFλi
is convex on Rm if and only if 0 ≤ λi1 ≤ · · · ≤ λim. So, since OMFλi is convex and Rm+ -increasing
on Rm+ under our assumptions in assertion 2◦, and weightwi is componentwise convex on Rm+ , the
convexity of hi = OMFλi ◦weightwi on Rm+ follows by Lemma 1.49. Then, the functions hi, i ∈ Ip,
are convex and Rm+ -increasing on Rm+ under our assumptions in 2◦, hence gA is componentwise
convex on E by Lemma 4.2.

In order to apply our penalization approach from the previous chapters, we have to think about
an approriate penalization function φ : E → R. There are several possibilities, depending on the
structure of the feasible set:

• φ(·) := µ(· − d)

(assume that X is convex, d ∈ intX, and the unit ball of the Minkowski gauge µ = µB is
B := −d+X; see Example 2.12);

• φ(·) := dX(·)
(distance function with respect to X; see Example 2.13);

• φ(·) := 4X(·)
(Hiriart-Urruty function with respect to X; see Example 2.14);

• φ(·) := ϕX,k(·)
(Tammer-Weidner scalarizing function; see Example 2.15);

• φ(·) := −µ(· − d)

(assume that X := E \ intD for a closed, convex set D ⊆ E with d ∈ intD, and the unit ball
of the Minkowski gauge µ = µB is B := −d+X; see Example 3.15);

• φ(·) := min{µi(· − di) | i ∈ Il} =
∑
i∈Il µi(· − d

i)−maxi∈Il
∑
j∈Il\{i} µj(· − d

j)

(assume that X is given by a union of closed, convex, pairwise-disjoint sets D1, · · · , Dl ⊆ E
with di ∈ intDi, i ∈ Il, as used in (3.4); see Section 3.1).

So, we are able to introduce the following unconstrained multi-objective location problem:{
g⊕A(x) := ((h1 ◦ ηA)(x), · · · , (hp ◦ ηA)(x), φ(x))→ min w.r.t. Rp+1

+

x ∈ E.
(LPE(A)⊕)

In the following two propositions, we collect some relationships between the problems (LPX(A))
and (LPE(A)⊕) that follow from results derived in Section 2.4.

Proposition 4.5 Suppose that φ : E→ R fulfils Assumptions (A1) and (A2). Then, the following
assertions hold:

1◦. We have

[X ∩ Eff(E | gA)] ∪
[
(bdX) ∩ Eff(E | g⊕A)

]
⊆ Eff(X | gA);

[X ∩ SEff(E | gA)] ∪
[
(bdX) ∩ SEff(E | g⊕A)

]
⊆ SEff(X | gA).
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2◦. Suppose that intX 6= ∅. Let gA : E→ Rp be componentwise upper semi-continuous along line
segments on E. Assume that φ : E→ R fulfils Assumption (A6). Then, it holds that

[X ∩WEff(E | gA)] ∪
[
(bdX) ∩WEff(E | g⊕A)

]
⊆WEffX | gA).

3◦. In the case that intX 6= ∅, assume additionally that gA : E → Rp is componentwise semi-
strictly quasi-convex on E. Then, we have

[X ∩ Eff(E | gA)] ∪
[
(bdX) ∩ Eff(E | g⊕A)

]
⊇ Eff(X | gA);

[X ∩WEff(E | gA)] ∪
[
(bdX) ∩WEff(E | g⊕A)

]
⊇WEff(X | gA).

4◦. If gA : E→ Rp be componentwise semi-strictly quasi-convex or quasi-convex on E, then

[X ∩ SEff(E | gA)] ∪
[
(bdX) ∩ SEff(E | g⊕A)

]
⊇ SEff(X | gA).

Proposition 4.6 Suppose that φ : E→ R fulfils Assumption (A3). Then, the following hold:

1◦. It holds that

[X ∩ Eff(E | gA)] ∪
[
(bdX) ∩ Eff(E | g⊕A)

]
⊆ Eff(X | gA) = X ∩ Eff(E | g⊕A);

[X ∩ SEff(E | gA)] ∪
[
(bdX) ∩ SEff(E | g⊕A)

]
⊆ SEff(X | gA) = X ∩ SEff(E | g⊕A).

2◦. In the case that intX 6= ∅, assume additionally that gA : E → Rp is componentwise semi-
strictly quasi-convex on E. Then, we have

[X ∩ Eff(E | gA)] ∪
[
(bdX) ∩ Eff(E | g⊕A)

]
⊇ Eff(X | gA).

3◦. In the case that intX 6= ∅, assume additionally that gA : E → Rp is componentwise semi-
strictly quasi-convex or quasi-convex on E. Then, we have

[X ∩ SEff(E | gA)] ∪
[
(bdX) ∩ SEff(E | g⊕A)

]
⊇ SEff(X | gA).

Taking into account the literature in multi-objective location theory (see Sections 4.1, 4.2, 4.3,
4.4), one can see that most works concentrate on the case that the distances ηi(x−ai), i ∈ Im, are
induced by round norms or block norms (or more general polyhedral Minkowski gauges), and the
feasible set X is assumed to be closed and convex. In particular, the case X = E is well-studied
in the literature. In contrast to that, the nonconvex case is less studied.

Our above observations stand in accordance with important remarks from the literature:

1995: Carrizosa et al. [19]: “The planar point-objective location problem has attracted considerable
interest among Location Theory researchers. The result has been a number of papers giving
properties or algorithms for particular instances of the problem. However, most of these
results are only valid when the feasible region where the facility is to be located
is the whole space R2, which is a rather inaccurate approximation in many real
world location problem.”

1996: Carrizosa and Plastria [20]: “A number of papers have been devoted to the search of ef-
ficient points of the problem above, known in the literature as the pointobjective location
problem, but mostly in the unconstrained case, i.e., under the assumption that the
facility can be placed at any point in the plane. Although this assumption has been
widely questioned, only some partial results have been obtained in the presence
of constraints.”

2005: Nickel et al. [94]: “If only one objective has to be taken into account, a broad range of models
is available in the literature. In contrast to that, only a few papers have looked at more
realistic models for facility location, where multiple objectives are involved.”
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2007: Ohsawa et al. [95]: “Much attention has been given to ordered median location models, but
relatively little to multi-objective formulations, in particular, non-convex cases.”

2008: Puerto and Rodŕıguez-Ch́ıa [110]: “Scanning the literature, we can see that the multicriteria
location problem has received special attention in the last years. However, there is a lack
of a common geometrical description of the nondominated solution set for the
constrained version of these problems.”
(Notice that in [110] the nondominated solution set stands for the set of Pareto efficient
solutions.)

2009: Jourani, Michelot and Ndiaye [67]: “Only a limited number of papers deal with multi-
ple criteria in a continuous setting. Most of them addressed a bi-criteria problem which
is to locate a semi-obnoxious facility with the two objectives of maximizing a utility function
which measures the benefits provided by the facility and of minimizing the undesirable effects
induced, see [...].”

2010: Farahani, SteadieSeifi and Asgari [37]: “We saw the literature on multi-criteria facility loca-
tion problems has been growing increasingly. The growing attention and interest into these
problems, is due to the recognition of the need to consider more criteria in order to
achieve closer solutions to reality.”

4.1 The class of point-objective location problems

In this section, we study the constrained point-objective location problem involving mixed Minkowski
gauges that consists of minimizing the vector-valued function gA : E→ Rm (under the assumption
(4.1)) over the feasible set X:{

gA(x) =
(
η1(x− a1), · · · , ηm(x− am)

)
→ min w.r.t. Rm+

x ∈ X.
(POLPX(A))

Hence, our aim is to find a point x ∈ X for a new facility such that the distances between
x and the given points a1, · · · , am are minimized simultaneously (in the sense of multi-objective
optimization). By applying the Weighted-Sum Scalarization Method to the problem (POLPX(A))
(see the end of Section 1.5), for any λ := (λ1, · · · , λm) ∈ intRm+ , we infer that minimal solutions
of the generalized Fermat-Weber problem{

〈λ, gA(x)〉 =
∑m
i=1 λiηi(x− ai)→ min

x ∈ X
(sλPOLPX(A))

are actually Pareto efficient solutions for the problem (POLPX(A)), i.e., we have

argmin
x∈X

m∑
i=1

λiηi(x− ai) ⊆ Eff(X | gA).

In the original formulation of one of the most famous location problems, Pierre de Fermat (1607
- 1665) considered the problem (sλPOLPX(A)) and assumed that

X = E = R2,m = 3, λ = (1, 1, 1), and ηi = || · ||2 for all i ∈ I3.

The Fermat problem was first solved by Evangelista Torricelli (1608 - 1647) via a geometrical
approach. The solution of the Fermat problem is known as Fermat-Torricelli point. Later Alfred
Weber (1868 - 1958) [126] generalized the Fermat problem (by allowing m > 3 and by considering
weights not necessarily equal to one) and interpreted the model from an economical point of view.

4.1.1 Literature review

As the reader can see, the formulation of the classical point-objective location problem given in
(POLPX(A)) is easy to understand but it has received the attention of many researchers in the
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last half century. In the following, we give a brief overview on some results (ordered by the year
of publication) that are known for the problem (POLPX(A)):

1922: Fejer [38] proved WEff(R2 | gA) = convA
(X = E = R2, ηi = || · ||2 for all i ∈ Im).

1967: Kuhn [74] showed Eff(Rn | gA) = convA
(X = E = Rn and ηi = || · ||2 for all i ∈ Im).

1973: Wendell and Hurter [127] studied the characterization of (weakly) Pareto efficient solutions
(X = E = R2 and ηi = || · || for all i ∈ Im, where || · || denotes a norm).

1977: Wendell, Hurter and Lowe [128] proposed a geometric algorithm
(X = E = R2 and ηi = || · ||1 for all i ∈ Im).

1981: Chalmet, Francis and Kolen [21] proposed the Row Algorithm
(X = E = R2 and ηi = || · ||1 for all i ∈ Im).

1984: Thisse, Ward and Wendell [117] proved Eff(R2 | gA) = convA
(X = E = R2 and ηi = || · || for all i ∈ Im, where || · || is a round norm).

1984: Plastria [99] showed WEff(Rn | gA) = convA
(X = E = Rn and ηi = || · ||2 for all i ∈ Im, where || · ||2 can be replaced by any linearly
equivalent norm).

1986: Durier and Michelot [27, Prop. 1.3] showed

SEff(E | gA) = Eff(E | gA) = WEff(E | gA) = convA

((E, || · ||) is a Hilbert space, X = E, and ηi = || · || for all i ∈ Im; or (E,|| · ||) has dimension
two, || · || is strictly convex, X = E, and ηi = || · || for all i ∈ Im).
In addition, in [27, Th. 4.3], it is shown that the set of weakly Pareto efficient solutions
WEff(E | gA) coincides with an intersection of certain half spaces
((E,|| · ||) has dimension two, X = E, and ηi = || · || for all i ∈ Im).
Moreover, in [27, Sec. 3.3], Durier and Michelot characterized the sets of (strictly, weakly)
Pareto efficient solutions by using certain half spaces
(X = E = Rn and either ηi = || · ||1 for all i ∈ Im or ηi = || · ||∞ for all i ∈ Im).
In particular, Durier and Michelot [27, Rem. 3.1] showed that the set of strictly Pareto
efficient solutions SEff(R2 | gA) coincides with the rectangular hull of the set A ⊆ R2

considered by Love and Morris [78]
(X = E = R2 and ηi = || · ||1 for all i ∈ Im).

1988: Pelegrin and Fernández [97] developed an algorithm for solving the problem (POLPX(A))
(X = E = R2 and ηi = || · || for all i ∈ Im, where || · || is a polyhedral norm).

1988: Gerth and Pöhler [47] succeeded to derive (by applying duality theory) a geometrical de-
scription for the set of Pareto efficient solutions of problem (POLPX(A))
(X = E = R2 and either ηi = || · ||∞ for all i ∈ Im or ηi = || · ||1 for all i ∈ Im).

1990: Durier [26] presented ideas for solving the problem (POLPX(A))
(X = E = Rn and ηi represents a polyhedral Minkowski gauge with bounded unit ball for
every i ∈ Im).

1991: Tammer and Tammer [116] derived duality results for a more general convex vector approx-
imation problem with linear restrictions
(E is a Banach space, X ⊆ E is defined by a system of linear inequalities, ηi is a general
Minkowski gauge with convex unit ball for every i ∈ Im).

1993: Carrizosa et al. [18, Th. 2, Th. 3] showed that

Eff(X | gA) = WEff(X | gA) = Proj
||·||2
X (convA)
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and
PEff(X | gA) = (A ∩X) ∪ Proj

||·||2
X (rint(convA))

(E = Rn, X ⊆ E is a nonempty, closed, convex set, and ηi = || · ||2 for all i ∈ Im).

1995: Carrizosa et al. [19] considered the problem (POLPX(A)) and used a geometrical construc-
tion based on the concept of a closed and convex decomposition of the not necessarily convex
feasible set (representation as a finite union of polytopes) in order to obtain a characteriza-
tion for the set of weakly Pareto efficient solutions
(E = R2, X ⊆ E is a nonempty, closed set, and ηi = || · ||2 for all i ∈ Im).

1995: Nickel [89] presented an algorithm for computing the set WEff(R2 | gA) based on results in
Durier and Michelot [27]
(X = E = R2, and ηi represents a polyhedral Minkowski gauge for every i ∈ Im).

1996: Carrizosa and Plastria [20, Th. 1] showed that

Eff(X | gA) = WEff(X | gA) = Proj
||·||
X (convA)

(E = R2, X ⊆ E is a nonempty, closed, convex set, and ηi = || · || for all i ∈ Im, where || · ||
is a strictly convex norm).

1997: Benker, Hamel and Tammer [12] derived a proximal point algorithm for vectorial control
approximation problems, where the problem (POLPX(A)) is a special case of this model
((E, || · ||) is a Hilbert space or E = Rn, X ⊆ E is a nonempty, closed, convex set, and
ηi = || · || for all i ∈ Im).

1998: Ndiaye and Michelot [88, Prop. 3.5, Cor. 4.2] proved

SEff(X | gA) = Eff(X | gA) = WEff(X | gA)

((E, || · ||) is a strictly convex normed space, X ⊆ E is a nonempty, closed, convex set, and
ηi = || · || for all i ∈ Im),
while under the additional assumption that E is a Hilbert space one gets

SEff(X | gA) = Eff(X | gA) = WEff(X | gA) = Proj
||·||
X (convA)

((E, || · ||) is a Hilbert space, X ⊆ E is a nonempty, closed, convex set, and ηi = || · || for all
i ∈ Im).
By [88, Prop 4.3] one has

WEff(X | gA) ⊇ Proj
||·||
X (WEff(E | gA))

((E, || · ||) is a normed space, X is a nonempty, closed, convex set, and ηi = || · || for all
i ∈ Im).
Moreover, Ndiaye and Michelot [88, Th. 4.2] showed

WEff(X | gA) = Proj
||·||
X (WEff(E | gA))

((E, || · ||) is a two-dimensional normed space, X is a nonempty, closed, convex set, and
ηi = || · || for all i ∈ Im).
Ndiaye and Michelot [88] observed that this projection property concerning the set of weakly
Pareto efficient solutions fails for the other concepts of Pareto efficiency and strict Pareto
efficiency under the assumption that || · || is not strictly convex. Moreover, the projection
property concerning the set of weakly Pareto efficient solutions does not hold for dimension
of E three or higher in general.

2000: Wanka [122] showed duality statements for a control approximation problem, where the
problem (POLPX(A)) is a special case of the model
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((E, ||·||) is a normed space, X ⊆ E is defined by a system of linear inequalities, and ηi = ||·||
for all i ∈ Im).

2002: Puerto and Rodŕıguez-Ch́ıa [109] considered a more general problem with convex objective
functions (the problem (POLPX(A)) is a special case of this model) and presented a char-
acterization for the set of weakly Pareto efficient solutions
(X = E = R2).

2008: Puerto and Rodŕıguez-Ch́ıa [110] considered a more general problem with strictly quasi-
convex / convex objective functions (the problem (POLPX(A)) is a special case) and pre-
sented a characterization for the set of weakly Pareto efficient solutions
(E = R2 and X is given by a nonempty, closed, convex set in R2).

2009: Jourani, Michelot and Ndiaye [67] extended the problem (POLPX(A)) to a problem with
attraction and repulsion demand points (a nonconvex problem) and derived geometrical char-
acterizations for the sets of (strictly, weakly) Pareto efficient solutions of the unconstrained
problem. For the problem with closed, convex constraints, Jourani, Michelot and Ndiaye [67]
proved a sufficient condition for weak Pareto efficiency
((E, || · ||) is a finite-dimensional Hilbert space, X is a nonempty, closed, convex feasible set
in E, and ηi = || · || for all i ∈ Im).

2015: Kaiser [69] proposed an algorithm for solving the problem (POLPX(A))
(X = E = R2 and ηi represents a polyhedral Minkowski gauge with bounded unit ball for
every i ∈ Im).

4.1.2 Contributions of this thesis

In the following, we emphasize the fact that our penalization approach derived in Chapter 2 can
be used for the computation of the sets of (strictly, weakly) Pareto efficient solutions in situations
in which the projection property (i.e., Eff(X | gA) can be obtained by projecting Eff(E | gA) onto
X; analogous for the sets SEff(X | gA) and WEff(X | gA)) for these sets do not hold.

In the next remark, we discuss the validity of the projection property for the sets of (strictly,
weakly) Pareto efficient solutions of problem (POLPX(A)).

Remark 4.7 Let (E, || · ||) be a normed space, let X ( E be a nonempty, closed, convex set, and
let ηi = || · || for all i ∈ Im. By Ndiaye and Michelot [88], Carrizosa et al. [18], and Carrizosa and
Plastria [20], we get the following results:

• If E is a Hilbert space, then

SEff(X | gA) = Eff(X | gA) = WEff(X | gA) = Proj
||·||
X (Eff(E | gA)) = Proj

||·||
X (convA).

(4.5)

• We have
WEff(X | gA) ⊇ Proj

||·||
X (WEff(E | gA)),

and if E has dimension two, then

WEff(X | gA) = Proj
||·||
X (WEff(E | gA)).

• The projection property concerning the set of weakly Pareto efficient solutions does not hold
for dimension of E greater or equal to three in general.

• If E = R2 is strictly convex, then (4.5) holds.

• The projection property fails for the sets of strictly Pareto efficient solutions and Pareto
efficient solutions in general if the norm || · || is not strictly convex.

• If E = Rn and || · || = || · ||2, then

PEff(X | gA) = (A ∩X) ∪ Proj
||·||2
X (rint(convA)).
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Let us consider a nonempty, closed, convex feasible set X in a linear topological space E with
d ∈ intX. In the case that the penalization function is given by φ(·) := µ(·−d) (where B := −d+X
is the unit ball of µ = µB), the problem (LPE(A)⊕) is given by an unconstrained multi-objective
location problem

{
g⊕A(x) =

(
η1(x− a1), · · · , ηm(x− am), µ(x− d)

)
→ min w.r.t. Rm+1

+

x ∈ E.
(POLPE(A)⊕)

Notice that (POLPE(A)⊕) is equivalent to the unconstrained point-objective location problem
involving mixed Minkowski gauges given by{

gA′(x) =
(
η1(x− a1), · · · , ηm+1(x− am+1)

)
→ min w.r.t. Rm+1

+

x ∈ E,
(POLPE(A′))

where

am+1 := d,

A′ := A ∪ {am+1},
ηm+1 := µ.

This means that we have to solve at most two unconstrained point-objective location problems
(POLPE(A)) and (POLPE(A′)) in order to solve the initial constrained (convex) point-objective
location problem (POLPX(A)) taking into account Proposition 4.5.

In the next example, we show how to compute the whole set of Pareto efficient solutions of
problem (POLPX(A)) involving a strictly convex norm || · || but without using the projection
property.

Example 4.8 Let us consider a planar point-objective location problem involving the Euclidean
norm (i.e., we put ηi(·) = || · ||2 for all i ∈ Im) with three given points a1, a2, a3 ∈ R2 and a
feasible set X represented by a closed Euclidean ball centered at x′ ∈ R2 with positive radius,
as shown in Figure 4.1. Furthermore, Fig. 4.1 illustrates the location problem and shows the
procedure for computing the set Eff(X | gA). Notice that Eff(R2 | gA) = conv{a1, a2, a3} and
Eff(R2 | g⊕A) = conv{a1, a2, a3, x′} (see Thisse, Ward and Wendell [117]). Moreover, the example
shows that

Eff(X | gA) =
[
X ∩ Eff(R2 | gA)

]
∪
[
(bdX) ∩ Eff(R2 | g⊕A)

]
= Proj

||·||2
X (Eff(R2 | gA)),

where the equality Eff(X | gA) = ProjX(Eff(R2 | gA)) is known for the constrained point-objective
location problem involving the Euclidean norm (see Remark 4.7).

In Chapter 5, we will study a planar point-objective location problem involving the Manhattan
norm in detail. Notice that the Manhattan norm is not strictly convex. So, in view of Remark
4.7, the projection property concerning the set of Pareto efficient solutions does not hold for the
problem in general. Furthermore, in Chapter 6, we consider nonconvex multi-objective location
problems. To the best of our knowledge, it is unknown how to compute the set of (strictly, weakly)
Pareto efficient solutions of the problem (POLPX(A)) (e.g., for E = Rn and ηi = || · ||2 for all
i ∈ Im) involving forbidden regions. Since in practical problems, there often exist regions where it
is forbidden to locate a new facility, it is interesting to study the classical problem (POLPX(A))
in the presence of forbidden regions. For single-objective location problems involving forbidden
regions, we refer the reader to the works by Brimberg and Juel [16], Hamacher [57], Hamacher and
Nickel [58], Nickel [89], and Nickel and Puerto [90].
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Eff(R2 | gA)

a1
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Eff(R2 | g⊕A)

X
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a1
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Figure 4.1: Construction of the set of Pareto efficient solutions of the problem (POLPX(A)), where
E = R2, X ⊆ R2 is given by an Euclidean ball, and ηi(·) = || · ||2 for all i ∈ Im.

The list of literature given in Section 4.1.1 can be extended by our results as follows:

2016: Günther and Tammer [55] derived relationships between constrained and unconstrained
multi-objective optimization
(E = Rn and X ⊆ E is given by a closed, convex set with nonempty interior).

2017: Alzorba et al. [3] proposed the Rectangular Decomposition Algorithm
(X = E = R2 and ηi = || · ||1 for all i ∈ Im).

2017: Günther and Tammer [56] extended the results in [55] to a more general framework
(E is a linear topological space and X ⊆ E is given by a nonempty, closed set).

2018: Günther [53] characterized the sets of (strictly, weakly) Pareto efficient solutions of the prob-
lem (POLPX(A)) involving multiple forbidden regions
((E, || · ||) is a finite-dimensional Hilbert space, X ⊆ E is given by the whole space E except-
ing some forbidden regions that are given by open balls with respect to || · ||, and ηi = || · ||
for all i ∈ Im).
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4.2 The class of multi-objective min-sum location problems

Another important class is given by multi-objective min-sum location problems involving mixed
Minkowski gauges. The aim is to minimize the vector-valued function gA : E → Rm (under the
assumption (4.2)) over a nonempty, closed feasible set X ⊆ E:

{
gA(x) =

(∑
i∈Im λ

1
i ηi(x− ai), · · · ,

∑
i∈Im λ

p
i ηi(x− ai)

)
→ min w.r.t. Rp+

x ∈ X.
(MOMSLPX(A))

4.2.1 Literature review

In what follows, we give a short overview on some results (ordered by the year of publication) that
are known for the multi-objective min-sum location problem (MOMSLPX(A)):

1995: Nickel [89] proposed an algorithm for finding Eff(R2 | gA)
(X = E = R2 and ηi = µP for every i ∈ Im, where µP represents a polyhedral Minkowski
gauge with bounded unit ball P ⊆ R2).

1996: Hamacher and Nickel [59] characterized Eff(R2 | gA)
(X = E = R2 and ηi is given by the square of the Euclidean norm || · ||22 for every i ∈ Im).
Moreover, Hamacher and Nickel [59] proposed an algorithm for finding Eff(R2 | gA)
(X = E = R2, p = 2, and ηi = || · ||1 for every i ∈ Im).

1998: Puerto and Fernández [106] approximated the set Eff(R2 | gA) by using sequences of sets of
Pareto efficient solutions of a similar problem with polyhedral norms
(X = E = R2 and ηi = || · || for every i ∈ Im, where || · || is a strictly convex norm).

1999: Puerto and Fernández [107] proposed an algorithm for computing Eff(R2 | gA)
(X = E = R2 and ηi = || · || for every i ∈ Im, where || · || is a polyhedral norm).

2002: Puerto and Rodŕıguez-Ch́ıa [109] considered a more general problem with convex objective
functions (the problem (MOMSLPX(A)) is a special case of this model) and presented a
characterization for the set of weakly Pareto efficient solutions
(X = E = R2).

2002: Klamroth and Wiecek [73] considered (MOMSLPX(A)) with a line barrier and decomposed
the problem to a family of multi-objective componentwise convex subproblems
(X = E = R2, p = 2, and ηi = || · || for every i ∈ Im, where || · || is a norm).

2003: Wanka, Boţ and Vargyas [123] analyzed a more general problem (the problem (MOMSLPX(A))
is a special case of the model) from a duality theory point of view
(E is a normed space, X = E, and ηi is a norm on E for every i ∈ Im).

2005: Nickel et al. [94] considered the general class of multi-objective planar ordered median
problems (the problem (MOMSLPX(A)) is a special case of the model) and succeeded to
characterize the set of Pareto efficient solutions
(X = E = R2 and ηi represents a polyhedral Minkowski gauge with bounded unit ball for
every i ∈ Im).

2007: Ohsawa et al. [95] developed an algorithm for solving quadratic ordered median location
problems (the problem (MOMSLPX(A)) is a special case of this model)
(E = R2, X ⊆ E is a nonempty, closed, convex set, and ηi is given by the square of the
Euclidean norm || · ||22 for every i ∈ Im).

2008: Puerto and Rodŕıguez-Ch́ıa [110] considered a more general problem with strictly quasi-
convex / convex objective functions (the problem (MOMSLPX(A)) is a special case of this
model) and presented a characterization for the set of weakly Pareto efficient solutions
(E = R2 and X is given by a closed, convex set in R2).
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4.2.2 Contributions of this thesis

The vectorial penalization approach derived in Chapter 2 can be used to solve multi-objective
min-sum location problems involving some constraints. In particular, for the case that X is a
closed, convex set with d ∈ intX 6= ∅, and µ = µB is the Minkowski gauge associated to the set
B := −d+X, we can reformulate the penalized multi-objective optimization problem

g
⊕
A(x) =

( ∑
i∈Im

λ1
i ηi(x− ai), · · · ,

∑
i∈Im

λpi ηi(x− ai), µ(x− d)

)
→ min w.r.t. Rp+1

+

x ∈ E

(MOMSLPE(A)⊕)
to an unconstrained multi-objective min-sum location problemgA′(x) =

( ∑
i∈Im+1

λ1
i ηi(x− ai), · · · ,

∑
i∈Im+1

λp+1
i ηi(x− ai)

)
→ min w.r.t. Rp+1

+

x ∈ E

(MOMSLPE(A′))
by defining

am+1 := d,

A′ := A ∪ {am+1},
ηm+1 := µ,

λp+1
m+1 := 1,

λp+1
i := 0 for all i ∈ Im,

λjm+1 := 0 for all j ∈ Ip.

Hence, in view of Proposition 4.5, one has to solve at most two unconstrained multi-objective
min-sum location problems (MOMSLPE(A)) and (MOMSLPE(A′)) in order to solve the initial
constrained (convex) multi-objective min-sum location problem (MOMSLPX(A)).

The list of literature can be extended by our results as follows:

2016: Günther and Tammer [55] derived relationships between constrained and unconstrained
multi-objective optimization
(E = Rn and X ⊆ E is given by a closed, convex set with nonempty interior).

2017: Günther and Tammer [56] extended the results in [55] to a more general framework
(E is a linear topological space and X ⊆ E is given by a nonempty, closed set).

2018: Günther [53] derived useful results for computing solutions of (MOMSLPX(A)) involving
multiple forbidden regions
(E is a linear topological space, X ⊆ E is given by the whole space E excepting some
forbidden regions that are given by convex sets).

4.3 The class of multi-objective min-max location problems

In this section, we apply our approach to the class of multi-objective min-max location problems
involving mixed Minkowski gauges. Under the assumption (4.3), we consider the problemgA(x) =

(
max
i∈Im

λ1
i ηi(x− ai), · · · ,max

i∈Im
λpi ηi(x− ai)

)
→ min w.r.t. Rp+

x ∈ X,
(MOMMLPX(A))

where X ⊆ E is a nonempty, closed set.
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4.3.1 Literature review

In what follows, we give a brief overview on some results (ordered by the year of publication) that
are known for the multi-objective min-max location problem (MOMMLPX(A)):

1995: Nickel [89] proposed an algorithm for finding Eff(R2 | gA)
(X = E = R2, p = 2, and ηi = µP for every i ∈ Im, where µP represents a polyhedral
Minkowski gauge with bounded unit ball P ⊆ R2).

1996: Hamacher and Nickel [59] presented ideas for computing Eff(R2 | gA)
(X = E = R2 and ηi = || · ||∞ for every i ∈ Im).

2002: Puerto and Rodŕıguez-Ch́ıa [109] considered a more general problem with convex objective
functions (the problem (MOMMLPX(A)) is a special case of this model) and presented a
characterization for the set of weakly Pareto efficient solutions
(X = E = R2).

2003: Wanka, Boţ and Vargyas [123] analyzed a more general problem (the problem (MOMMLPX(A))
is a special case of the model) from a duality theory point of view
(E is a normed space, X = E, and ηi is a norm on E for every i ∈ Im).

2005: Nickel et al. [94] considered the general class of multi-objective planar ordered median
problems (the problem (MOMMLPX(A)) is a special case of the model) and succeeded to
characterize the set of Pareto efficient solutions
(X = E = R2 and ηi represents a polyhedral Minkowski gauge with bounded unit ball for
every i ∈ Im).

2007: Ohsawa et al. [95] developed an algorithm for solving quadratic ordered median location
problems (the problem (MOMMLPX(A)) is a special case of this model)
(E = R2, X ⊆ E is a nonempty, closed, convex set, and ηi is given by the square of the
Euclidean norm || · ||22 for every i ∈ Im).

2008: Puerto and Rodŕıguez-Ch́ıa [110] considered a more general problem with strictly quasi-
convex / convex objective functions (the problem (MOMMLPX(A)) is a special case of this
model) and presented a characterization for the set of weakly Pareto efficient solutions
(E = R2 and X is given by a closed, convex set in R2).

4.3.2 Contributions of this thesis

In order to solve the constrained multi-objective min-max location problem (MOMMLPX(A)), we
can use our penalization approach derived in Chapter 2. Consider the particular case that X is a
closed, convex set with d ∈ intX 6= ∅, and µ = µB is the Minkowski gauge associated to the set
B := −d+X. Then, we can consider the penalized multi-objective optimization problem

g⊕A(x) =

(
max
i∈Im

λ1
i ηi(x− ai), · · · ,max

i∈Im
λpi ηi(x− ai), µ(x− d)

)
→ min w.r.t. Rp+1

+

x ∈ E.

(MOMMLPE(A)⊕)
Similar to Section 4.2.2, we can reformulate the problem (MOOMLPE(A)⊕) to an unconstrained
multi-objective min-max location problemgA′(x) =

(
max
i∈Im+1

λ1
i ηi(x− ai), · · · , max

i∈Im+1

λp+1
i ηi(x− ai)

)
→ min w.r.t. Rp+1

+

x ∈ E

(MOMMLPE(A′))
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by defining

am+1 := d,

A′ := A ∪ {am+1},
ηm+1 := µ,

λp+1
m+1 := 1,

λp+1
i := 0 for all i ∈ Im,

λjm+1 := 0 for all j ∈ Ip.

So, by Proposition 4.5 we have to solve at most two unconstrained multi-objective min-max
location problems (MOMMLPE(A)) and (MOMMLPE(A′)) in order to solve the initial constrained
(convex) multi-objective min-max location problem (MOMMLPX(A)).

The list of literature can be extended by our results as follows:

2016: Günther and Tammer [55] derived relationships between constrained and unconstrained
multi-objective optimization
(E = Rn and X ⊆ E is given by a closed, convex set with nonempty interior).

2017: Günther and Tammer [56] extended the results in [55] to a more general framework
(E is a linear topological space and X ⊆ E is given by a nonempty, closed set).

2018: Günther [53] derived useful results for computing solutions of (MOMMLPX(A)) involving
multiple forbidden regions
(E is a linear topological space, X ⊆ E is given by the whole space E excepting some
forbidden regions that are given by convex sets).

4.4 The class of multi-objective ordered median location problems

Let us consider multi-objective ordered median location problems involving mixed Minkowski gauges.
So, the aim is to minimize the vector-valued function gA : E→ Rm (under the assumptions (4.4))
over a nonempty, closed feasible set X ⊆ E:

{
gA(x) = ((OMFλ1 ◦ weightw1 ◦ ηA)(x), · · · , (OMFλp ◦ weightwp ◦ ηA)(x))→ min w.r.t. Rp+
x ∈ X.

(MOOMLPX(A))

4.4.1 Literature review

A comprehensive overview on ordered median location problems can be found in Nickel and Puerto
[90]. Now, we give a brief overview on some results (ordered by the year of publication) that are
known for the multi-objective ordered median location problem (MOOMLPX(A)):

2002: Puerto and Rodŕıguez-Ch́ıa [109] considered a more general problem with convex objective
functions and presented a characterization for the set of weakly Pareto efficient solutions
(X = E = R2).

2005: Nickel et al. [94] considered convex multi-objective planar ordered median problems and
succeeded to characterize the set of Pareto efficient solutions
(X = E = R2 and ηi represents a polyhedral Minkowski gauge with bounded unit ball for
every i ∈ Im).

2007: Ohsawa et al. [95] developed an algorithm for solving quadratic ordered median location
problems
(E = R2, X ⊆ E is a nonempty, closed, convex set, and ηi is given by the square of the
Euclidean norm || · ||22 for every i ∈ Im).
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2008: Puerto and Rodŕıguez-Ch́ıa [110] considered a more general problem with strictly quasi-
convex / convex objective functions and presented a characterization for the set of weakly
Pareto efficient solutions
(E = R2 and X is given by a closed, convex set in R2).

4.4.2 Contributions of this thesis

Our aim is to apply the penalization approach derived in Chapter 2 to constrained convex multi-
objective ordered median location problem (MOOMLPX(A)). Assume that λi, wi ∈ Rm+ \ {0},
λi1 ≤ · · · ≤ λim, for all i ∈ Ip. Consider the particular case that X is a closed, convex set with
d ∈ intX, and µ = µB is the gauge associated to the set B := −d+X. Then, we can consider the
penalized multi-objective optimization problem

{
g⊕A(x) = ((OMFλ1 ◦ weightw1 ◦ ηA)(x), · · · , (OMFλp ◦ weightwp ◦ ηA)(x), µ(x− d))→ min w.r.t. Rp+1

+

x ∈ E.

(MOOMLPE(A)⊕)

Analogously to Section 4.2.2, we can reformulate the problem (MOOMLPE(A)⊕) to an uncon-
strained multi-objective ordered median location problem

{
gA′(x) =

(
(OMF(λ′)1 ◦ weight(w′)1 ◦ ηA′)(x), · · · , (OMF(λ′)p+1 ◦ weight(w′)p+1 ◦ ηA′)(x)

)
→ min w.r.t. Rp+1

+

x ∈ E

(MOOMLPE(A′))

by defining

am+1 := d,

ηm+1 := µ,

A′ := A ∪ {am+1},
ηA′(·) := (ηA(·), ηm+1(· − am+1)),

(λ′)i := (0, λi) for all i ∈ Ip,
(w′)i := (wj , 0) for all i ∈ Ip,

(λ′)p+1 := (0Rm , 1),

(w′)p+1 := (0Rm , 1).

Due to Proposition 4.5, we have to solve at most two unconstrained multi-objective ordered
median location problems (MOOMLPE(A)) and (MOOMLPE(A′)) in order to solve the initial
constrained (convex) multi-objective ordered median location problem (MOOMLPX(A)).

The list of literature given in Section 4.4.1 can be extended as follows:

2016: Günther and Tammer [55] derived relationships between constrained and unconstrained
multi-objective optimization
(E = Rn and X ⊆ E is given by a closed, convex set with nonempty interior).

2017: Günther and Tammer [56] extended the results in [55] to a more general framework
(E is a linear topological space and X ⊆ E is given by a nonempty, closed set).

2018: Günther [53] derived useful results for computing solutions of (MOOMLPX(A)) involving
multiple forbidden regions
(E is a linear topological space, X ⊆ E is given by the whole space E excepting some
forbidden regions that are given by convex sets).
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4.5 Concluding remarks

As we have seen in this chapter, it is possible to solve general classes of multi-objective location
problems (e.g., point-objective location problems, multi-objective min-sum location problems, multi-
objective min-max location problems, or multi-objective ordered median location problems) with
convex constraints by using our results derived in Chapter 2 and corresponding algorithms for the
unconstrained case. So, it is an important task to design effective procedures for computing the set
of (strictly, weakly) Pareto efficient solutions of unconstrained multi-objective location problems
involving mixed Minkowski gauges. Clearly, our penalization approach presented in Chapter 2 can
also be very useful for location problems with nonconvex constraints.

For further information about location theory, the reader should take a look on books by Farahani
and Hekmatfar [36], Hamacher [57], Klamroth [71] and Schöbel [113]. In particular, for further
overviews on literature in multi-objective location theory we refer to Farahani, SteadieSeifi and
Asgari [37], Nickel and Puerto [90, Ch. 11], Nickel, Puerto and Rodŕıguez-Ch́ıa [92, 93].

At the end of this chapter, we note that there is MATLAB-based software tool

Facility Location Optimizer (FLO)

developed by Günther et al. [54] that can be used for solving special types of single- as well as multi-
objective location problems involving different distances measures. The tool can be downloaded
for free. For more information, see

http://www.project-flo.de.

Figure 4.2 shows a screen capture of the Software Facility Location Optimizer (FLO).

Figure 4.2: Screenshot of the Software Facility Location Optimizer (FLO).

http://www.project-flo.de


Chapter 5

Point-objective location problems in the plane

In this chapter, we consider planar point-objective location problems involving the Manhattan norm.
Let us consider a finite family A = {a1, . . . , am} of points in the plane E = R2,

ai := (ai1, a
i
2) for all i ∈ Im,

representing some a priori given facilities. Throughout this chapter we assume that cardA =
m ≥ 2, i.e., a1, . . . , am are pairwise distinct. The multi-objective location problem associated to A
consists in finding new facilities, i.e., points of R2, which minimize (simultaneously) the distances
to all given points of A. We assume that the distances are induced by the Manhattan norm ‖ · ‖1.
We start by studying the unconstrained point-objective location problem associated to A that is
formulated as {

gA(x) =
(
‖x− a1‖1, · · · , ‖x− am‖1

)
→ min

x ∈ R2.
(POLP1

R2(A))

Remark 5.1 Notice that (POLP1
R2(A)) is a special case of the problem (POLPX(A)) considered

in Section 4.1 (put X = E = R2 and ηi(·) = || · ||1 for all i ∈ Im). Later on, in Section 5.5, we will
study corresponding constrained problems, i.e., we minimize the vector-valued objective function
gA : R2 → Rm in the presence of some constraints X ( R2.

Two main types of algorithms are known in the literature for solving the problem (POLP1
R2(A)):

• Type (T1): algorithms that compute the boundary of the set of all Pareto efficient solutions
(e.g., Pelegrin and Fernández [97] and Wendell, Hurter and Lowe [128]);

• Type (T2): algorithms that generate the whole set of Pareto efficient solutions as a union
of rectangles and line segments, whose extreme points are adjacent intersection points of the
grid composed by horizontal and vertical lines passing through each of the given location
points a1, . . . , am (e.g., Chalmet, Francis and Kolen [21], Nickel et al. [90], and Puerto and
Fernández [107]).

The aim of this chapter is twofold: first, to characterize the nonessential objectives (i.e., the
objective associated to those points among a1, . . . , am which can be removed without changing the
set of Pareto efficient solutions) and second, to develop an effective algorithm, which generates the
whole set of Pareto efficient solutions as the union of a special family of axis-parallel rectangles
and line segments. Our algorithm is neither of type (T1) nor of type (T2), since it does not require
the computation of the boundary of the efficient solutions’ set and it decomposes the whole set
of Pareto efficient solutions into a reduced number of rectangles and line segments (each of our
rectangles containing in general several “boxes” considered by Chalmet, Francis and Kolen [21]).
This special feature of our approach is important for further practical applications, as for instance
the maximization of certain quasi-convex functions (e.g., distances to some obnoxious additional
location points) over the set of all Pareto efficient solutions of the original location problem (see,
e.g., Alzorba, Günther and Popovici [2]).

92
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In what follows, we will apply the classical Weighted-Sum Scalarization Method for generating
Pareto efficient solutions of (POLP1

R2(A)) (see Section 1.5). For every “weight” vector λ :=
(λ1, . . . , λm) ∈ intRm+ let us consider the scalar optimization problem

〈λ, gA(x)〉 =

m∑
i=1

λi‖x− ai‖1 → min
x∈R2

. (sλPOLP1
R2(A))

In view of Lemma 1.74, any minimal solution of (sλPOLP1
R2(A)) is a properly Pareto efficient

solution of (POLP1
R2(A)), i.e., we have

Sol(R2 | 〈λ, gA(·)〉) ⊆ PEff(R2 | gA) ⊆ Eff(R2 | gA). (5.1)

In preparation for the next lemma, for each k ∈ I2, we introduce the set

Ak := πk(A) = {a1
k, . . . , a

m
k },

i.e., the canonical projection of the set A on the k-th coordinate. Denoting mk := cardAk ≤
cardA = m for each k ∈ I2, there exist uniquely determined numbers u1 < · · · < um1

and
v1 < · · · < vm2

such that

A1 = {u1, . . . , um1
} and A2 = {v1, . . . , vm2

}. (5.2)

Then, the Cartesian product A1 × A2 := {(ui, vj) | i ∈ Im1
and j ∈ Im2

} can be seen as a set of
grid points in R2, such that

A ⊆ A1 ×A2. (5.3)

The following result (see Hamacher [57, Satz 2.3]) plays an important role for deriving properties
of the set of properly/weakly Pareto efficient solutions of the problem (POLP1

R2(A)) (see Corollary
5.7) and for the proof of the correctness of the proposed algorithm formulated in Section 5.3.

Lemma 5.2 For every weight vector λ ∈ intRm+ , the set Sol(R2 | 〈λ, gA(·)〉) is an axis-parallel
rectangle, whose vertices are adjacent grid points, which may be degenerated into a line segment
or a singleton. More precisely, Sol(R2 | 〈λ, gA(·)〉) has one of the following four forms:

1◦. {(ui, vj)} for some (i, j) ∈ Im1
× Im2

;

2◦. [ui, ui+1]× {vj} for some (i, j) ∈ Im1−1 × Im2 (m1 ≥ 2);

3◦. {ui} × [vj , vj+1] for some (i, j) ∈ Im1
× Im2−1 (m2 ≥ 2);

4◦. [ui, ui+1]× [vj , vj+1] for some (i, j) ∈ Im1−1 × Im2−1 (m1,m2 ≥ 2).

5.1 Structure of the sets of (weakly, properly) Pareto efficient solutions

The geometrical and topological structure of the sets of weakly and (properly) Pareto efficient so-
lutions of certain multi-objective convex optimization problems–including multi-objective location
problems, has been intensively studied (see, e.g., Durier and Michelot [27], Lowe et al. [79], Luc
[80] or Popovici [102], and references therein). Characterizations of weakly and (properly) Pareto
efficient solutions of multi-objective location problems can be found for instance in the papers by
Chalmet, Francis and Kolen [21], Gerth and Pöhler [47], Lowe et al. [79], or Wendell, Hurter
and Lowe [128]. In order to characterize the sets WEff(R2 | gA) and Eff(R2 | gA), we will follow
the approach proposed in [47], which is based on the dual of the Manhattan norm, namely the
Maximum norm.

Definition 5.3 Let D ⊆ R2 be a nonempty, bounded set. The set

N (D) :=
⋂{

B||·||∞(x, r)
∣∣x ∈ R2, r ∈ R++, D ⊆ B||·||∞(x, r)

}
is called the rectangular hull of D (w.r.t. Maximum norm).
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The following two results are counterparts of similar results obtained by Alzorba, Günther and
Popovici [2, Lemma 4.2 and Theorem 4.3] (where the authors considered the rectangular hull w.r.t.
Manhattan norm instead of Maximum norm).

Lemma 5.4 ([3]) If D ⊆ R2 is nonempty and compact, then we have

N (D) =
⋃

x′,x′′∈D
N ({x′, x′′}).

Theorem 5.5 ([3]) The set of all weakly Pareto efficient solutions of the multi-objective location
problem (POLP1

R2(A)) is given by

WEff(R2 | gA) = N (A).

In order to adapt the approach proposed by Gerth and Pöhler [47] for characterizing the set
Eff(R2 | gA), we define certain sets related to the structure of the subdifferential of the Manhattan
norm. For each i ∈ Im, let

s1(ai) := {x ∈ R2 | x = (x1, x2), x1 < ai1, x2 < ai2},
s2(ai) := {x ∈ R2 | x = (x1, x2), x1 > ai1, x2 > ai2},
s3(ai) := {x ∈ R2 | x = (x1, x2), x1 > ai1, x2 < ai2},
s4(ai) := {x ∈ R2 | x = (x1, x2), x1 < ai1, x2 > ai2},

and then, for every r ∈ I4, consider the (possibly empty) set

Sr := {x ∈ N (A) | ∃ k ∈ Im : x ∈ sr(ak)} = N (A) ∩
⋃
k∈Im

sr(a
k). (5.4)

The next result is a counterpart of the characterization of Pareto efficient solutions obtained by
Gerth and Pöhler [47] (where the authors considered multi-objective location problems defined by
the Maximum norm instead of the Manhattan norm).

Theorem 5.6 ([47]) The set of Pareto efficient solutions of the multi-objective location problem
(POLP1

R2(A)) is given by

Eff(R2 | gA) =
[
(clS1) ∩ (clS2)) ∪

(
(N (A)\S1) ∩ (N (A)\S2)

)]
∩
[
((clS3) ∩ (clS4)) ∪

(
(N (A)\S3) ∩ (N (A)\S4)

)]
.

We conclude this section by highlighting some useful properties of the solution sets Eff(R2 | gA)
and WEff(R2 | gA).

Corollary 5.7 ([3]) The following assertions hold:

1◦. A ⊆ Eff(R2 | gA), i.e., the given facilities are Pareto efficient solutions of (POLP1
R2(A)).

2◦. Eff(R2 | gA) =
⋃
λ∈intRm+

Sol(R2 | 〈λ, gA(·)〉), hence every efficient solution of (POLP1
R2(A)) is

properly efficient.

3◦. Eff(R2 | gA) can be represented as a finite union of (possibly degenerated) axis-parallel rect-
angles.

4◦. WEff(R2 | gA) = N (A) = [u1, up1
] × [v1, vp2

] with u1, um1
, v1, vm2

given by (5.2), where the
intervals may degenerate into singletons when m1 = 1 or m2 = 1.

Proof. Assertion 1◦ follows from Definition 1.67, taking into account that {ai} = argminx∈R2 ||x−
ai||1 for all i ∈ Im.

The equality stated at 2◦ is a classical result. Actually, the inclusion “⊇” follows from (5.1),
while the inclusion “⊆” holds since the Manhattan norm is polyhedral, as pointed out by Wendell,
Hurter and Lowe [128].
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Assertion 3◦ is a straightforward consequence of Lemma 5.2, which shows actually that the set
Eff(R2 | gA) can be represented as a union of (at most) (m1− 1)(m2− 1) + (m1− 1)m2 +m1(m2−
1) +m1m2 axis-parallel rectangles.

By Definition 5.3 and (5.3) we can easily deduce that

N (A) = [u1, um1
]× [v1, vm2

],

hence assertion 4◦ follows from Theorem 5.5.

5.2 Reducing the number of objectives

In certain real-life applications the number m of objectives is very large. In order to develop an
effective algorithm for solving such location problems, we will first identify the nonessential objec-
tives. Recall that an objective is said to be nonessential (or redundant) if the set of Pareto efficient
solutions does not change when it is removed from the multi-objective optimization problem (see,
e.g., the recent paper by Gal and Hanne [42] or the pioneering paper by Gal and Leberling [43]).

In this section, we will characterize the largest set of points which can be eliminated from A
without altering the set Eff(R2 | gA) of all Pareto efficient solutions of the multi-objective location
problem (POLP1

R2(A)). By removing all nonessential objectives we obtain a reduced location
problem, which can be seen as a subproblem of (POLP1

R2(A)). Therefore, the results presented
by us in this section may open the way for further investigations, concerning the decomposition of
multi-objective problems into subproblems (see, e.g., Ehrgott and Nickel [30], Engau and Wiecek
[34], Popovici [102], Ward [125], or Wendell et al. [128]).

Lemma 5.8 ([3]) If ai ∈ A (i ∈ Im) satisfies the relation

ai ∈
⋂
r∈I4

cl sr(a
jr )

for some aj1 , . . . , aj4 ∈ A\{ai} (j1, . . . , j4 ∈ Im\{i}), then the following hold:

1◦. WEff(R2 | gA) = WEff(R2 | gA\{ai}).

2◦. Eff(R2 | gA) = Eff(R2 | gA\{ai}).

Proof. In order to prove 1◦ observe that, according to Theorem 5.5, we have

WEff(R2 | gA) = N (A) and N (A\{ai}) = WEff(R2 | gA\{ai}).

Thus, it suffices to prove that N (A) = N (A\{ai}).
The inclusion N (A) ⊇ N (A\{ai}) holds by Lemma 5.4, since A\{ai} ⊆ A.
In order to prove the inclusion N (A) ⊆ N (A\{ai}) consider an arbitrary x ∈ N (A). Thanks to

Lemma 5.4, there exist two points at1 , at2 ∈ A, i.e., t1, t2 ∈ Im, such that x ∈ N ({at1 , at2}). We
distinguish four possible cases:

Case 1 : If at1 6= ai 6= at2 , then we have {at1 , at2} ⊆ A\{ai}, hence x ∈ N ({at1 , at2}) ⊆
N (A\{ai}) by Lemma 5.4.

Case 2 : If at1 = ai = at2 , then we have x ∈ N ({at1 , at2}) = {ai}, i.e., x = ai. Since x =
ai ∈ cl s1(aj1) ∩ cl s2(aj2) = N ({aj1 , aj2}) and {aj1 , aj2} ⊆ A\{ai}, we get x ∈ N ({aj1 , aj2}) ⊆
N (A\{ai}) by Lemma 5.4.

Case 3 : If at1 6= ai = at2 , then we have x ∈ N ({at1 , ai}) and there exists r ∈ I4 such that
ai ∈ cl sr(a

t1). Without loss of generality, we can suppose that r = 1. By hypothesis, there exists
a point aj2 ∈ A\{ai} such that ai ∈ cl s2(aj2). We observe that ai ∈ cl s1(at1) ∩ cl s2(aj2), and
therefore the inclusion N ({at1 , ai}) ⊆ N ({at1 , aj2}) holds. Recalling that at1 , aj2 ∈ A\{ai}, it
follows that N ({at1 , aj2}) ⊆ N (A\{ai}) by Lemma 5.4. Consequently, we have x ∈ N (A\{ai}).

Case 4 : If at1 = ai 6= at2 , then we deduce that x ∈ N (A\{ai}) similarly to the previous case.
Thus, in all cases we have x ∈ N (A\{ai}), hence N (A) ⊆ N (A\{ai}).
In order to prove 2◦ we will apply Theorem 5.6 twice, for A and for A\{ai}. Actually, since

N (A) = N (A\{ai}) (as already seen in the proof of 1◦), it suffices to show that Sr = Ŝr for all
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r ∈ I4, where Sr is given by (5.4) while

Ŝr := N (A\{ai}) ∩
⋃

k∈Im\{i}

sr(a
k). (5.5)

Let r ∈ I4 be arbitrarily chosen. The inclusion Ŝr ⊆ Sr is obvious.
For proving the inclusion Sr ⊆ Ŝr, consider any x ∈ Sr. By (5.4) there exists j ∈ Im such that

x ∈ sr(aj). If j 6= i, then we obviously have x ∈ Ŝr by (5.5). In what follows assume that j = i.
By hypothesis there exists some jr ∈ Im\{i} such that ai ∈ cl sr(a

jr ). Recalling the construction
of the sets sr(·), we deduce x ∈ sr(ai) ⊆ cl sr(a

jr ). Since the set sr(a
i) is open, it follows that

x ∈ sr(ai) ⊆ int cl sr(a
jr ) = sr(a

jr ). Thus, we have Sr ⊆ Ŝr.

Consider now four pointed, convex cones of R2, namely the quadrants of the usual coordinate
system, labelled as follows:

K1 := R+ × R+ ; K2 := R− × R− ;

K3 := R− × R+ ; K4 := R+ × R− .

Notice that K2 = −K1 and K4 = −K3. Thus, it will be convenient to introduce the permutation
ψ : I4 → I4, defined by(

1 2 3 4
ψ(1) ψ(2) ψ(3) ψ(4)

)
=

(
1 2 3 4
2 1 4 3

)
.

It is easy to see that, for all i ∈ Im and r ∈ I4, the following hold:

sr(a
i) = ai − intKr = ai + intKψ(r); (5.6)

cl sr(a
i) = ai −Kr = ai +Kψ(r). (5.7)

In what follows, we will consider the minimal elements of A = {a1, . . . , am} with respect to
the ordering cones K1, . . . ,K4. Notice that MIN(A,Kr) is nonempty for every r ∈ I4, since A is
nonempty and finite.

Lemma 5.9 ([3]) Let i ∈ Im. The following assertions are equivalent:

1◦. There exist j1, . . . , j4 ∈ Im\{i} such that

ai ∈
⋂
r∈I4

cl sr(a
jr ).

2◦. There exist k1, . . . , k4 ∈ Im\{i} such that akr ∈ cl sr(a
i) for all r ∈ I4.

3◦. There is no r ∈ I4 such that ai ∈ MIN(A,Kr), i.e.,

ai ∈ A \
⋃
r∈I4

MIN(A,Kr).

Proof. We will prove the chain of implications 1◦ =⇒ 2◦ =⇒ 3◦ =⇒ 1◦.
First, assume that 1◦ holds and consider any j1, . . . , j4 ∈ Im\{i} such that ai ∈

⋂
r∈I4 cl sr(a

jr ).

Then, by (5.6) we have ai ∈ cl sr(a
jr ) = ajr −Kr, hence ajr ∈ ai +Kr = ai −Kψ(r) = cl sψ(r)(a

i),
for any r ∈ I4. Since ψ is a permutation on I4, we infer that ajψ(r) ∈ cl sψ(ψ(r))(a

i) for any r ∈ I4.

Taking into account that ψ−1 = ψ, i.e., ψ(ψ(r)) = r for all r ∈ I4, it follows that akr ∈ cl sr(a
i),

where kr := jψ(r) ∈ Im\{i}, for any r ∈ I4. Thus 2◦ holds.
Now, assume that 2◦ holds and suppose to the contrary that 3◦ does not hold. Then, there

exists some r ∈ I4 such that ai ∈ MIN(A,Kr). By 2◦ we can choose an index kr ∈ Im\{i} (i.e.,
akr ∈ A\{ai}), such that akr ∈ cl sr(a

i). By (5.6), we infer that akr ∈ (ai −Kr) ∩ (A\{ai}). In
view of Definition 1.66, it follows that ai /∈ MIN(A,Kr), a contradiction.
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Finally, assume that 3◦ holds. Then, for every index r ∈ I4 we have ai /∈ MIN(A,Kr), hence
(ai − Kr) ∩ (A\{ai}) 6= ∅. In other words, for each r ∈ I4 there is jr ∈ Im\{i} such that
ajr ∈ (ai−Kr)∩ (A\{ai}), which shows that ai ∈ ajr +Kr = ajr −Kψ(r) = cl sψ(r)(a

jr ), according
to (5.6). Therefore we have ai ∈

⋂
r∈I4 cl sψ(r)(a

jr ). Taking into account that ψ is a permutation
on I4, we infer 1◦.

Example 5.10 Consider the set A = {a1, . . . , a8} ⊆ R2, where

a1 = (14, 12); a2 = (10, 9); a3 = (18, 10); a4 = (12, 4);
a5 = (6, 2); a6 = (4, 8); a7 = (2, 6); a8 = (8, 7).

By using Definition 1.66 for F := A and each cone K ∈ {K1, . . . ,K4}, it is a simple exercise to
check that

MIN(A,K1) = {a5, a7}; MIN(A,K2) = {a1, a3};
MIN(A,K3) = {a3, a4, a5}; MIN(A,K4) = {a1, a2, a6, a7}.

Therefore we have

A \
⋃
r∈I4

MIN(A,Kr) = {a8}. (5.8)

By (5.8) and Lemma 5.9 (3◦ =⇒ 1◦) there exist j1, . . . , j4 ∈ I7 such that

a8 ∈
⋂
r∈I4

cl sr(a
jr ). (5.9)

Indeed, as we can see in Figure 5.1, we can choose the indices j1 = 1, j2 = 7, j3 = 6 and j4 = 4,
which satisfy (5.9). Therefore, by the proof of Lemma 5.9 (1◦ =⇒ 2◦) it follows that akr ∈ cl sr(a

i)
for all r ∈ I4, where k1 := j2 = 7, k2 := j1 = 1, k3 := j4 = 4 and k4 := j3 = 6. This property is
illustrated in Figure 5.2. On the other hand, by Corollary 5.7 (4◦) and Lemma 5.8 (1◦), we have

WEff(R2 | gA) = WEff(R2 | gA\{a8}) = [2, 18]× [2, 12].

Moreover, by Lemma 5.8 (2◦) we have Eff(R2 | gA) = Eff(R2 | gA\{a8}). This set will be computed
later on in Example 5.26 (see also Figure 5.6).

Theorem 5.11 ([3]) Let i ∈ Im. Then the following equivalence is true:

ai ∈ A \
⋃
r∈I4

MIN(A,Kr) ⇐⇒ Eff(R2 | gA) = Eff(R2 | gA\{ai}).

Proof. The implication “=⇒” follows from Lemma 5.8 and Lemma 5.9.
In order to prove the implication “⇐=”, define the sets Sr and Ŝr for all r ∈ I4 by (5.4) and

(5.5), respectively. Assume that Eff(R2 | gA) = Eff(R2 | gA\{ai}) and suppose to the contrary that
there exists r ∈ I4 such that ai ∈ MIN(A,Kr). Without loss of generality, we can consider r = 1,
hence ai ∈ MIN(A,K1). In view of Definition 1.66 and (5.6), it follows that

(ai −K1) ∩ (A\{ai}) = (cl s1(ai)) ∩ (A\{ai}) = ∅. (5.10)

Consider the following two index sets (associated to ai ∈ A):

J1 := {j ∈ Im | aj1 > ai1} and J2 := {j ∈ Im | aj2 > ai2}.

Notice that these sets are nonempty. Indeed, suppose to the contrary that J1 = ∅. Then, we should
have A ⊆ ]−∞, ai1]× R, which together with (5.10) yields A\{ai} ⊆ ]−∞, ai1]× ]ai2,+∞[. Since
A\{ai} is a finite set, we infer that N (A\{ai}) ⊆ ] −∞, ai1]× ]ai2,+∞[, hence ai /∈ N (A\{ai}).
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Figure 5.1: Illustration of Lemma 5.9 (1◦) for the set A defined in Example 5.10.

Figure 5.2: Illustration of Lemma 5.9 (2◦) for the set A defined in Example 5.10.

However, by Corollary 5.7 (1◦) and Theorem 5.6 (applied for A\{ai} in the role of A) we deduce
that ai ∈ Eff(R2 | gA) = Eff(R2 | gA\{ai}) ⊆ N (A\{ai}), a contradiction. Similarly we can prove
that J2 is nonempty.

Since both J1 and J2 are nonempty and finite, we can define the point

x̃ = (x̃1, x̃2) :=

(
δ1 + ai1

2
,
δ2 + ai2

2

)
∈ R2

by means of the real numbers

δ1 := min{aj1 | j ∈ J1} = min{aj1 | aj ∈ A, a
j
1 > ai1};

δ2 := min{aj2 | j ∈ J2} = min{aj2 | aj ∈ A, a
j
2 > ai2}.
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By the construction of x̃ and recalling (5.10), we can easy deduce that:

x̃ ∈ s2(ai); (5.11)

(x̃−K1) ∩ (A\{ai}) = ∅. (5.12)

In particular, (5.12) shows that there is no point ak ∈ A\{ai} (i.e., k ∈ Im\{i}) such that x̃ ∈
ak +K1 = ak −K2 = cl s2(ak). Consequently, we have

x̃ /∈ cl Ŝ2. (5.13)

The following cases may occur:
Case 1 : If s2(ai) ∩ (A\{ai}) 6= ∅, then there is j ∈ Im\{i} (i.e., aj ∈ A\{ai}) such that

aj ∈ s2(ai). In this case, by the definition of x̃, we have

x̃ ∈ s1(aj). (5.14)

Now, we distinguish two subcases:
Subcase 1.1 : If there exist ah, ak ∈ A\{ai} (i.e., h, k ∈ Im\{i}) such that ah ∈ cl s3(ai) and

ak ∈ cl s4(ai), then (5.10) yields ah, ak /∈ cl s1(ai). Moreover, by definition of x̃ it follows that
x̃1 < ah1 and x̃2 > ah2 as well as x̃1 > ak1 and x̃2 < ak2 . By Lemma 5.4 and relations (5.11)
and (5.14), we deduce that x̃ ∈ N ({ah, ak}) ⊆ N (A) and x̃ ∈ s4(ah) ∩ s3(ak) ∩ s2(ai) ∩ s1(aj).
Therefore we have x̃ ∈ S1 ∩ S2 ∩ S3 ∩ S4. By Theorem 5.6 we conclude that x̃ ∈ Eff(R2 | gA).
On the other hand, since ah, ak ∈ A\{ai}, we also have x̃ ∈ N ({ah, ak}) ⊆ N (A\{ai}) according

to Lemma 5.4 (applied for A\{ai}). Since aj ∈ A\{ai}, we infer from (5.14) that x̃ ∈ Ŝ1. The
latter relation together with (5.13) allows us to deduce by Theorem 5.6 (applied for A\{ai}) that
x̃ /∈ Eff(R2 | gA\{ai}). We conclude that Eff(R2 | gA) 6= Eff(R2 | gA\{ai}), a contradiction.

Subcase 1.2 : If (cl s3(ai)) ∩ (A\{ai}) = ∅ or (cl s4(ai)) ∩ (A\{ai}) = ∅, then we can suppose
without any loss of generality that (cl s4(ai)) ∩ (A\{ai}) = ∅. Then, by relation (5.10) we deduce
that ((cl s1(ai))∪ (cl s4(ai)))∩ (A\{ai}) = ∅. It follows that A\{ai} ⊆ ]ai1,+∞[×R, hence ai1 < ak1
for all k ∈ Im\{i}. In particular, we have ai1 < aj1. Consequently, we have ai /∈ N (A\{ai}). By
Theorem 5.6 (applied for A\{ai}), we conclude that ai /∈ Eff(R2 | gA\{ai}). However, by assertion
1◦ of Corollary 5.7, we infer ai ∈ Eff(R2 | gA), contradicting the hypothesis that Eff(R2 | gA) =
Eff(R2 | gA\{ai}).

Case 2 : If s2(ai) ∩ (A\{ai}) = ∅, then we consider two subcases:
Subcase 2.1 : If there exist ah, ak ∈ A\{ai} (i.e., h, k ∈ Im\{i}) such that ah ∈ cl s3(ai) and

ak ∈ cl s4(ai), then ah, ak /∈ cl s1(ai) by (5.10). Also, we have x̃ ∈ N ({ah, ak}) ⊆ N (A). In view
of (5.11), it follows that x̃ ∈ N (A) ∩ s2(ai), hence x̃ ∈ S2. Also, since s2(ai) ∩ (A\{ai}) = ∅,
we have x̃ /∈ S1. Therefore, we can conclude by Theorem 5.6 that x̃ /∈ Eff(R2 | gA). On the
other hand, since ah, ak ∈ A\{ai}, we have x̃ ∈ N ({ah, ak}) ⊆ N (A\{ai}). Thus, x̃ /∈ S1 entails

x̃ /∈ Ŝ1. Furthermore, similarly to Subcase 1.1, it is easy to check that x̃ ∈ s3(ah) ∩ s4(ak).

Hence, the relation x̃ ∈ Ŝ3 ∩ Ŝ4 holds. Recalling (5.13), we deduce that x̃ ∈ (N (A\{ai})\Ŝ1) ∩
(N (A\{ai})\Ŝ2)∩ Ŝ3∩ Ŝ4. By Theorem 5.6 we infer x̃ ∈ Eff(R2 | gA\{ai}), which contradicts again
the hypothesis that Eff(R2 | gA) = Eff(R2 | gA\{ai}).

Subcase 2.2 : If (cl s3(ai)) ∩ (A\{ai}) = ∅ or (cl s4(ai)) ∩ (A\{ai}) = ∅, then observe that one
of the sets (cl s3(ai)) ∩ (A\{ai}) and (cl s4(ai)) ∩ (A\{ai}) should be nonempty, because of the
assumption of Case 2 and the fact that cardA ≥ 2. Without loss of generality, we can suppose
that (cl s4(ai)) ∩ (A\{ai}) = ∅, hence there exists a point ah ∈ cl s3(ai) ∩ (A\{ai}). It is easy to
check that ai1 < ah1 and ai /∈ N (A\{ai}). Therefore, following the same lines as in Subcase 1.2, we
arrive to a contradiction.

Remark 5.12 In contrast to Theorem 5.11, the equivalence

ai ∈ A \
⋃
r∈I4

MIN(A,Kr) ⇐⇒ WEff(R2 | gA) = WEff(R2 | gA\{ai})
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may be false for some i ∈ Im, although the implication “=⇒” is always true by Lemma 5.8 and
Lemma 5.9. As a counterexample for the implication “⇐=”, consider the set A := {a1, a2, a3} ⊆
R2, where

a1 := (0, 0), a2 := (0, 1) and a3 := (1, 1).

We have WEff(R2 | gA) = [0, 1]× [0, 1] = WEff(R2 | gA\{a2}), but a2 ∈ MIN(A,K4).

In what follows, we consider the reduced multi-objective location problem (POLP1
R2(A)), associ-

ated to the following nonempty subset of the initial set A:

Ã :=
⋃
r∈I4

MIN(A,Kr). (5.15)

Corollary 5.13 ([3]) The multi-objective location problems (POLP1
R2(A)) and (POLP1

R2(Ã))
have the same Pareto efficient solutions, i.e.,

Eff(R2 | gA) = Eff(R2 | gÃ). (5.16)

Proof. Since (5.16) trivially holds when A = Ã, we just have to study the case when A\Ã 6= ∅.
Assume that A\Ã =: {ai1 , . . . , ain} with i1, . . . , in ∈ Im and card(A\Ã) = n ≥ 1 (i.e., ai1 , . . . , ain

are pairwise distinct).

We will apply Theorem 5.11 recursively. First note that ai1 ∈ A\Ã means

ai1 ∈ Ã \
⋃
r∈I4

MIN(A,Kr), (5.17)

according to (5.15). By applying Theorem 5.11 for i := i1, we deduce that

Eff(R2 | gA) = Eff(R2 | gA\{ai1}). (5.18)

If n = 1, then (5.18) becomes the desired relation (5.16). Otherwise, if n ≥ 2, then consider the

point ai2 ∈ (A\{ai1})\Ã = (A\{ai1}) \
⋃
r∈I4 MIN(A,Kr). Relation (5.17) shows that, for all

r ∈ I4, we have ai1 ∈ A\MIN(A,Kr), hence MIN(A,Kr) = MIN(A\{ai1},Kr), in view of (1.7).
Therefore we have

ai2 ∈ (A\{ai1}) \
⋃
r∈I4

MIN(A\{ai1},Kr).

By applying Theorem 5.11 again, this time for A\{ai1} in the role of A and i := i2 ∈ Im\{i1}, we
deduce that

Eff(R2 | gA\{ai1}) = Eff(R2 | gA\{ai1 ,ai2}). (5.19)

If n = 2, then (5.16) follows from (5.18) and (5.19). Otherwise, by a similar argument as above we
deduce that

Eff(R2 | gA\{ai1 ,...,aim−1}) = Eff(R2 | gA\{ai1 ,...,aim}}) (5.20)

for every m ∈ {3, . . . , n}. Finally, we conclude (5.16) from (5.18)–(5.20).

Remark 5.14 In the proof of Corollary 5.13, we have used the implication “=⇒” of Theorem
5.11. Similarly, by using Lemmas 5.8 and 5.9, we can prove that the sets of weakly Pareto efficient
solutions of problems (POLP1

R2(A)) and (POLP1
R2(Ã)) coincide, i.e.,

WEff(R2 | gA) = WEff(R2 | gÃ).
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On the other hand, the implication “⇐=” of Theorem 5.11 shows that a further reduction of
(POLP1

R2(Ã)) is not possible, since the points of A that can be eliminated without altering the

set of Pareto efficient solutions should belong to Ã. Moreover, Theorem 5.11 will play a key role
in Section 5.3, for proving that the Rectangular Decomposition Algorithm generates all Pareto
efficient solutions of (POLP1

R2(A)) (see Theorem 5.25).

In Section 5.3, we will develop a new algorithm for computing the set of all Pareto efficient solu-
tions of the multi-objective location problem (POLP1

R2(A)) via the reduced problem (POLP1
R2(Ã)).

As a part of the algorithm, we need an effective procedure for checking whether a given point x ∈ R2

is efficient for the reduced problem (POLP1
R2(Ã)) or not. In the following, we will derive equiva-

lent characterizations for the statement x ∈ Eff(R2 | gA) = Eff(R2 | gÃ) using the characterization
given in Theorem 5.6.

For notational convenience, let

Tr := MIN(A,Kr) (5.21)

be the set of all minimal elements of the finite set A = {a1, . . . , am} with respect to the cone Kr,

for every r ∈ I4. Hence, the set of all existing facilities Ã of the reduced problem (POLP1
R2(Ã))

can be represented by

Ã = {ã1, . . . , ãq} :=
⋃
r∈I4

Tr, (5.22)

where ã1 = (ã1
1, ã

1
2), . . . , ãq = (ãq1, ã

q
2) and q := card(

⋃
r∈I4 Tr).

For every k ∈ I2 let

Ãk = πk(Ã) = {ã1
k, . . . , ã

q
k} (5.23)

be the canonical projection of Ã on the k-th coordinate.
We define the (possibly empty) set

T̃r := Tψ(r) ∩ (er + intKr) (5.24)

for every r ∈ I4, where

e1 := (min Ã1,min Ã2); e2 := (max Ã1,max Ã2);

e3 := (max Ã1,min Ã2); e4 := (min Ã1,max Ã1).

In order to derive a practical test of efficiency (i.e., x ∈ Eff(R2 | gÃ)), we describe the set

Eff(R2 | gÃ) by using Theorem 5.6 (for Ã in the role of A) as

Eff(R2 | gÃ) =
[
((cl S̃1) ∩ (cl S̃2)) ∪

(
N (Ã)\(S̃1 ∪ S̃2)

)]
∩
[
((cl S̃3) ∩ (cl S̃4)) ∪

(
N (Ã)\(S̃3 ∪ S̃4)

)]
,

(5.25)

where, for every r ∈ I4,

S̃r := N (Ã) ∩
⋃
i∈Iq

sr(ã
i) =

⋃
i∈Iq

(N (Ã) ∩ sr(ãi)). (5.26)

The next lemma allows us to interpret (5.25) in terms of the sets T̃1, . . . , T̃4 introduced in (5.24).
In preparation of this result, observe that

Tr = MIN(A,Kr) = MIN(Ã,Kr) for all r ∈ I4, (5.27)
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as a consequence of (1.7). Also, note that all points of Ã are grid points, i.e.,

Ã ⊆ Ã1 × Ã2 (5.28)

while the particular grid points e1, . . . , e4 are the vertices of the rectangular hull N (Ã) and we
have

N (Ã) =
⋂
r∈I4

(er +Kr) = conv{e1, . . . , e4}. (5.29)

Lemma 5.15 ([3]) For every r ∈ I4 the following relations hold:

S̃r = N (Ã) ∩ (T̃r − intKr); (5.30)

cl S̃r = N (Ã) ∩ (T̃r −Kr). (5.31)

Proof. For any r ∈ I4 define the (possibly empty) set

Ĩr := {i ∈ Iq | ãi ∈ T̃r}. (5.32)

By definition of sr(·), we have T̃r − intKr =
⋃
i∈Ĩr (ã

i − intKr) =
⋃
i∈Ĩr sr(ã

i) and T̃r − Kr =⋃
i∈Ĩr (ã

i −Kr) =
⋃
i∈Ĩr cl sr(ã

i). Therefore, in order to prove (5.30) and (5.31), we just have to
show that the following relations hold:

S̃r =
⋃
i∈Ĩr

(N (Ã) ∩ sr(ãi)); (5.33)

cl S̃r =
⋃
i∈Ĩr

(N (Ã) ∩ cl sr(ã
i)). (5.34)

In view of (5.26), relation (5.33) can be rewritten as⋃
i∈Iq

(N (Ã) ∩ sr(ãi)) =
⋃
i∈Ĩr

(N (Ã) ∩ sr(ãi)). (5.35)

Since Iq ⊇ Ĩr, the inclusion “⊇” in (5.35) holds trivially. In order to prove the reverse inclusion

“⊆”, consider any point x ∈
⋃
i∈Iq (N (Ã)∩ sr(ãi)). Then x ∈ N (Ã)∩ sr(ãj) for some index j ∈ Iq.

Since the set Ã = {ãi | i ∈ Iq} is nonempty and compact, it satisfies the domination property with
respect to the ordering cone Kψ(r) (see, e.g., Göpfert et al. [50]):

Ã ⊆ MIN(Ã,Kψ(r)) +Kψ(r). (5.36)

From (5.27) and (5.36) it follows that there is k ∈ Iq such that

ãj ∈ ãk +Kψ(r) and ãk ∈ MIN(Ã,Kψ(r)) = Tψ(r). (5.37)

In view of (5.6), it follows that sr(ã
j) = ãj − intKr ⊆ ãk +Kψ(r) − intKr = ãk −Kr − intKr =

ãk − intKr = sr(ã
k), hence

x ∈ N (Ã) ∩ sr(ãj) ⊆ N (Ã) ∩ sr(ãk). (5.38)

By (5.29) and (5.38) we get x ∈ N (Ã) ⊆ er + Kr and x ∈ sr(ã
k) = ãk − intKr, hence ãk ∈

x + intKr ⊆ er + Kr + intKr = er + intKr. By the second part of (5.37) we infer that ãk ∈
Tψ(r) ∩ (er + intKr) = T̃r, which means that k ∈ Ĩr according to (5.32). Therefore (5.38) ensures

that x ∈
⋃
j∈Ĩr (N (Ã) ∩ sr(ãj)). We conclude that inclusion “⊆” in (5.35) holds, which ends the

proof of (5.33).
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Now, let us prove (5.34). The set Ĩr being finite, relation (5.33) entails

cl S̃r =
⋃
i∈Ĩr

cl(N (Ã) ∩ sr(ãi)). (5.39)

Without loss of generality, we can assume that Ĩr 6= ∅. Then, for any i ∈ Ĩr we have ãi ∈ T̃ r =
Tψ(r) ∩ (er + intKr) = MIN(Ã,Kψ(r)) ∩ (er + intKr) ⊆ Ã ∩ (er + intKr) in view of (5.27). Since

{er, ãi} ⊆ N (Ã) and ãi ∈ er + intKr, it follows that 1
2 (er + ãi) ∈ (er + intKr) ∩ (ãi − intKr) =

intN ({er, ãi}) ⊆ (intN (Ã)) ∩ (int sr(ã
i)), which shows that

(intN (Ã)) ∩ (int sr(ã
i)) 6= ∅.

Taking into account that N (Ã) and sr(ã
i) are convex, we infer by a classical argument in convex

analysis (see, e.g., Rockafellar [111, Theorem 6.5]) that

cl(N (Ã) ∩ sr(ãi)) = (clN (Ã)) ∩ (cl sr(ã
i)). (5.40)

The desired relation (5.34) follows by (5.39) and (5.40), since N (Ã) is closed.

We conclude this section by presenting a new characterization of the Pareto efficient solutions
to problem (POLP1

R2(Ã)) in terms of the sets T̃r, r ∈ I4.

Theorem 5.16 ([3]) For any x ∈ N (Ã), the following assertions are equivalent:

1◦. x ∈ Eff(R2 | gÃ).

2◦. x satisfies both conditions below:

x ∈ (T̃1 −K1) ∩ (T̃2 −K2) or x /∈ (T̃1 − intK1) ∪ (T̃2 − intK2); (5.41)

x ∈ (T̃3 −K3) ∩ (T̃4 −K4) or x /∈ (T̃3 − intK3) ∪ (T̃4 − intK4). (5.42)

Proof. Directly follows by (5.25) and Lemma 5.15.

As we shall see in the next section, Theorem 5.16 plays a key role in constructing the set of
Pareto efficient solutions (Step 5 of the proposed algorithm).

5.3 Rectangular Decomposition Algorithm

In this section, we present a new algorithm for computing the set Eff(R2 | gA) of all Pareto efficient
solutions to problem (POLP1

R2(A)). It eliminates the nonessential objectives in a first phase and
thereafter generates the set Eff(R2 | gA) as the union of a special family of axis-parallel rectangles
and line segments. As far as we know, the first phase of our algorithm is a novel approach in
location theory and could be used as a pre-phase for improving other algorithms known in the
literature (see, e.g., Chalmet et al. [21], Gerth and Pöhler [47] or Wendell et al. [128]). On the
other hand, the rectangular type decomposition of the set Eff(R2 | gA) provided by our algorithm
differs from other known approaches, since it involves only a reduced number of rectangles (each of
them containing in general several “boxes” considered in [21]). Therefore, it can be used as input
for other algorithms, as for instance to minimize/maximize an additional cost function over the
set of Pareto efficient solutions of the multi-objective location problem (POLP1

R2(A)) (see Alzorba,
Günther and Popovici [2]).

The correctness of this algorithm and detailed explanations of its steps are shown in Subsections
5.3.2 – 5.3.5.
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5.3.1 Formulation of the Rectangular Decomposition Algorithm

Input: The set A := {a1, . . . , am} (representing the a priori given facilities).

Step 1. For every r ∈ I4 compute the set Tr given by (5.21).

Step 2. Construct the reduced set Ã given by (5.22).

Step 3. For every k ∈ I2 compute the set Ãk given by (5.23) and sort its elements in ascending

order deleting the duplicate values, i.e., determine qk := card Ãk and the numbers u1 < · · · < uq1
and v1 < · · · < vq2 such that Ã1 = {u1, . . . , uq1} and Ã2 = {v1, . . . , vq2}.

Step 4. For every r ∈ I4 compute the set T̃r given by (5.24).

Step 5. For every i ∈ Iq1 define the set

Ci :=
⋃
j∈Iq2

{vj | x := (ui, vj) satisfies (5.41) and (5.42)}.

Step 6. For every i ∈ Iq1 define the numbers

ci := minCi and ci := maxCi.

If q1 = 1, then define

R∗1 := {u1} × [c1, c1];

R∗2 := ∅

and go to Output.

If q1 ≥ 2, then define

R∗1 :=
⋃
i∈Iq1

({ui} × [ci, ci]);

R∗2 :=
⋃
i∈Iq1−1

conv{(ui, c′i), (ui, c
′′
i ), (ui+1, c

′′
i ), (ui+1, c

′
i)},

where the numbers c′i and c′′i are defined for all i ∈ Iq1−1 by

c′i := max{ci, ci+1} and c′′i := min{ci, ci+1}.

Output: The set Eff(R2 | gA) = Eff(R2 | gÃ) := R∗1 ∪ R∗2 of all Pareto efficient solutions of the

initial multi-objective location problem (POLP1
R2(A)).

In Subsections 5.3.2 – 5.3.5, we will explain each step of this algorithm. We just mention here
that, according to Step 6, the set R∗1 is a union of vertical line segments while the set R∗2 is a
union of axis parallel rectangles (which may degenerate into horizontal line segments) unless it is
empty (if q1 = 1). Consequently, the algorithm provides an explicit decomposition of the solution
set Eff(R2 | gA) = R∗1∪R∗2 into a family of (possibly degenerated) rectangles. This feature justifies
the name of our algorithm.

5.3.2 Analysis and implementation of Steps 1 and 2

Within the first two steps of our algorithm we construct the reduced set Ã, which corresponds to
the essential objectives of the location problem (POLP1

R2(A)), as show in Section 5.2.
More precisely, at Step 1 we compute for every r ∈ I4 the set Tr of all minimal elements of
A = {a1, . . . , am} with respect to Kr, by adapting the Jahn-Graef-Younes Method. Thereafter, at

Step 2 we construct the reduced set Ã according to (5.22).
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Next, we present the pseudocode of Steps 1 and 2.

/* Step 1 */

for r ← 1 to 4 do
/* Forward iteration */

i← 1;
bi ← ai;
B ← {bi};
for j ← 2 to m do

if aj /∈ B +Kr then
i← i+ 1;
bi ← aj ;
B ← B ∪ {bi};

end

end
/* Backward iteration */

T ← {bi};
for j ← 1 to i− 1 do

if bi−j /∈ T +Kr then
T ← T ∪ {bi−j};

end

end
Tr ← T ;

end
/* Step 2 */

Ã ← ∅;
for r ← 1 to 4 do

Ã ← Ã ∪ Tr;
end

5.3.3 Analysis and implementation of Steps 3 and 4

At Step 3 we generate the sets Ã1 and Ã2 according to (5.23). Moreover, we sort the elements of

Ã1 and Ã2 in ascending order and delete duplicated values. Consequently, we have

Ã1 = {u1, . . . , uq1} and Ã2 = {v1, . . . , vq2} (5.43)

for numbers u1 < · · · < uq1 and v1 < · · · < vq2 . Notice that these numbers are not the same as
those involved in formula (5.2) although we use the same symbols u and v for simplicity.

At Step 4 we generate the sets T̃r, r ∈ I4, given by (5.24).
The pseudocode for Steps 3 and 4 is given below.
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/* Step 3 */

for k ← 1 to 2 do

Ãk ← πk(Ã) ; // canonical projection of Ã on the k-th coordinate

Ãk ← sort(Ãk) ; // sorting of Ãk in ascending order

qk ← card Ãk;

end
for i← 1 to q1 do

ui ← Ã1(i) ; // Ã1(i) gives the i-th element of Ã1

end
for j ← 1 to q2 do

vj ← Ã2(j) ; // Ã2(j) gives the j-th element of Ã2

end
/* Step 4 */

T̃1 ← T2 ∩ ((u1, v1) + intK1);

T̃2 ← T1 ∩ ((uq1 , vq2) + intK2);

T̃3 ← T4 ∩ ((uq1 , v1) + intK3);

T̃4 ← T3 ∩ ((u1, vq2) + intK4).

5.3.4 Analysis and implementation of Step 5

Our next result shows that the sets C1, . . . , Cq1 , generated at Step 5, can be used to determine

those efficient solutions of the reduced location problem (POLP1
R2(Ã)), which are also grid points

(i.e., belong to Ã1 × Ã2). To this aim, we introduce the so-called construction set

C :=
⋃

(i,j)∈Iq1×Iq2

{(ui, vj) | vj ∈ Ci} =
⋃
i∈Iq1

({ui} × Ci). (5.44)

Theorem 5.17 ([3]) For every i ∈ Iq1 we have

Ci =
⋃
j∈Iq2

{vj | (ui, vj) ∈ Eff(R2 | gÃ)}. (5.45)

Consequently, the construction set contains those Pareto efficient solutions of the reduced location
problem, which are also grid points, i.e., we have

C = (Ã1 × Ã2) ∩ Eff(R2 | gÃ). (5.46)

Proof. For every i ∈ Iq1 , the set Ci has been defined within Step 5 as

Ci :=
⋃
j∈Iq2

{vj | x := (ui, vj) satisfies (5.41) and (5.42)}. (5.47)

Since {(ui, vj) | (i, j) ∈ Iq1 × Iq2} = Ã1 × Ã2 ⊆ N (Ã), relation (5.45) follows from (5.47) in view
of Theorem 5.16. Consequently, (5.46) holds.

Remark 5.18 By applying Corollary 5.7 (1◦) for Ã in the role of A we infer that Ã ⊆ Eff(R2 | gÃ).

Therefore, (5.28) and (5.46) show that Ã ⊆ C. Consequently, for every i ∈ Iq1 the set Ci is
nonempty, hence ci := minCi and ci := maxCi are well defined at Step 6.

Example 5.19 Consider the set A = {a1, . . . , a8} defined in Example 5.10. We have already
computed the sets MIN(A,Kr) for all r ∈ I4, so by applying the pseudocode given in Subsection
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5.3.2 we recover

T1 = {a5, a7}, T2 = {a1, a3}, T3 = {a3, a4, a5} and T4 = {a1, a2, a6, a7}.

At Steps 2 and 3 we obtain Ã = A\{a8} = {ãi | i ∈ I7} with ãi := ai for all i ∈ I7, then

Ã1 = {ui | i ∈ I7} and Ã2 = {vj | j ∈ I7}, where

u1 = 2, u2 = 4, u3 = 6, u4 = 10, u5 = 12, u6 = 14, u7 = 18,

v1 = 2, v2 = 4, v3 = 6, v4 = 8, v5 = 9, v6 = 10, v7 = 12.

Here we have e1 = (2, 2), e2 = (18, 12), e3 = (18, 2) and e4 = (2, 12). Thus, at Step 4 we find

T̃1 = T2, T̃2 = T1, T̃3 = T4 and T̃4 = T3. By means of these sets, at Step 5 we obtain C1 = {v3},
C2 = {v3, v4}, C3 = {v1, v2, v3, v4}, C4 = {v2, v3, v4, v5}, C5 = {v2, v3, v4, v5, v6}, C6 = {v5, v6, v7}
and C7 = {v6}. By (5.46) we deduce that the set of those Pareto efficient solutions of the reduced

location problem (POLP1
R2(Ã)), which are also grid points, is C =

⋃
i∈I7({ui} × Ci) (see Figure

5.3, where Ã ⊆ C in view of Remark 5.18).

v1

v2

v3

v4

v6

v7

v5

u1 u2 u3 u4 u5 u6 u7

ã7

ã6

ã5

ã4

ã2

ã1

ã3

Figure 5.3: The construction set for the set A in Example 5.19.

Next, we present the pseudocode of Step 5.

/* Step 5 */

for i← 1 to q1 do
Ci ← ∅;

end
for i← 1 to q1 do

for j ← 1 to q2 do

if (ui, vj) ∈ (T̃1 −K1) ∩ (T̃2 −K2) ∨ (ui, vj) /∈ (T̃1 − intK1) ∪ (T̃2 − intK2) then

if (ui, vj) ∈ (T̃3−K3)∩ (T̃4−K4)∨ (ui, vj) /∈ (T̃3− intK3)∪ (T̃4− intK4) then
Ci ← Ci ∪ {vj};

end

end

end

end
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5.3.5 Analysis and implementation of Step 6

In order to explain the procedure used in Step 6 for generating the whole set Eff(R2 | gÃ), we need
four preliminary results.

Lemma 5.20 ([3]) Let R be an axis-parallel (possibly degenerated) rectangle. If all vertices
(extreme points) of R belong to Eff(R2 | gÃ), then R ⊆ Eff(R2 | gÃ).

Proof. Without loss of generality, we can assume that R is not a singleton. When R is degenerated
into a (horizontal or vertical) line segment, the conclusion follows from a known result by Wendell
et al. [128, Corollary 1]. Consequently, when R is a non-degenerated rectangle, then its horizontal
edges are subsets of Eff(R2 | gÃ). Moreover, since any point x of R belongs to a vertical line segment
whose extreme points are located on the horizontal edges of R, it follows that x ∈ Eff(R2 | gÃ).

Lemma 5.21 ([3]) Assume that q1, q2 > 1. If (ui, vj), (ui+1, vk) ∈ C for some i ∈ Iq1−1, j ∈ Iq2
and k ∈ Iq2\{j} (i.e., vk 6= vj), then we have (ui+1, vj) ∈ C or (ui, vl) ∈ C for some l ∈ Iq2\{j}
such that min{j, k} ≤ l ≤ max{j, k} (i.e., vj < vl ≤ vk or vk ≤ vl < vj , depending on the values of
the given indices, j < k or k < j, respectively).

Proof. Follows by a known result by Wendell et al. [128, Corollary 3].

If q1 > 1, then we consider the following elements for all i ∈ Iq1−1:

c′i := max{ci, ci+1} and c′′i := min{ci, ci+1}.

Lemma 5.22 ([3]) Assume that q1 > 1. For every i ∈ Iq1−1, we have

(ui, c
′
i), (ui, c

′′
i ), (ui+1, c

′′
i ), (ui+1, c

′
i) ∈ C. (5.48)

Proof. We first note that (5.44) and (5.46) yield

(ui, ci), (ui, ci) ∈ {ui} × Ci ⊆ C ⊆ Eff(R2 | gÃ); (5.49)

(ui+1, ci+1), (ui+1, ci+1) ∈ {ui+1} × Ci+1 ⊆ C ⊆ Eff(R2 | gÃ). (5.50)

Without any loss of generality, we suppose in what follows that

max{ci, ci+1} = ci, i.e., c′i = ci ≥ ci+1;

min {ci, ci+1} = ci, i.e., c′′i = ci ≤ ci+1.

Under these assumptions, we can easily deduce by (5.49) that

(ui, c
′
i) = (ui, ci) ∈ C and (ui, c

′′
i ) = (ui, ci) ∈ C. (5.51)

In order to show that (ui+1, c
′′
i ) ∈ Eff(R2 | gÃ), we distinguish two situations. If ci = ci+1, then

we have (ui+1, c
′′
i ) = (ui+1, ci+1) ∈ Eff(R2 | gÃ) by (5.50). Otherwise, if ci < ci+1, then q2 > 1 and

there exist j, k ∈ Iq2 , j < k, such that ci = vj and ci+1 = vk. Thus we have (ui, vj) = (ui, ci) ∈ C
by (5.49) and (ui+1, vk) = (ui+1, ci+1) ∈ C by (5.50). Moreover, since ci = maxCi, there is no
l ∈ Iq2 such that vl > ci = vj and (ui, vl) ∈ C. By Lemma 5.21 we infer

(ui+1, c
′′
i ) = (ui+1, ci) = (ui+1, vj) ∈ C. (5.52)

Similarly, for proving that (ui+1, c
′
i) ∈ Eff(R2 | gÃ), we should analyze two possible situations.

If ci = ci+1, then (ui+1, c
′
i) = (ui+1, ci+1) ∈ Eff(R2 | gÃ) by (5.50). If ci > ci+1, then ci = vj

and ci+1 = vk for some j, k ∈ Iq2 such that j > k. By (5.49) and (5.50) it follows that (ui, vj) =
(ui, ci) ∈ C and (ui+1, vk) = (ui+1, ci+1) ∈ C. On the other hand, since ci = minCi, there is no
l ∈ Iq2 such that vl < ci = vj and (ui, vl) ∈ C. Lemma 5.21 yields

(ui+1, c
′
i) = (ui+1, ci) = (ui+1, vj) ∈ C. (5.53)



5.3 Rectangular Decomposition Algorithm 109

By (5.51), (5.52) and (5.53) we infer (5.48).

Lemma 5.23 ([3]) Assume that q1 > 1. For every i ∈ Iq1−1, we have

max{ci, ci+1} = c′i ≤ c′′i = min{ci, ci+1}.

Proof. For any i ∈ Iq1−1 it holds (ui, c
′
i), (ui+1, c

′
i) ∈ C by Lemma 5.22, hence c′i ≤ ci and c′i ≤ ci+1.

Thus we have c′i ≤ min{ci, ci+1} = c′′i .

Remark 5.24 According to Lemma 5.23, if q1 > 1, then at Step 6 we have

R∗2 =
⋃

i∈Iq1−1

([ui, ui+1]× [c′i, c
′′
i ]).

In preparation for the next results, we introduce the set

R∗1 :=
⋃
i∈Iq1

({ui} × [ci, ci]). (5.54)

We are now ready to show that the whole set of Pareto efficient solutions of problem (POLP1
R2(A))

can be recovered by means of the sets R∗1 and R∗2 generated at Step 6 of the algorithm.

Theorem 5.25 ([3]) The following representation holds:

Eff(R2 | gA) = Eff(R2 | gÃ) = R∗1 ∪R∗2.

Proof. In view of Corollary 5.13, it suffices to prove that

Eff(R2 | gÃ) = R∗1 ∪R∗2. (5.55)

For proving inclusion “⊇” in (5.55), let x∗ ∈ R∗1 ∪R∗2 be arbitrarily chosen.
Case 1 : If x∗ ∈ R∗1, then there exists i ∈ Iq1 such that

x∗ ∈ {ui} × [ci, ci]. (5.56)

Observe that (ui, ci), (ui, ci) ∈ {ui} × Ci ⊆ C ⊆ Eff(R2 | gÃ), according to (5.44) and (5.46).
Therefore, by Lemma 5.20 we have {ui}× [ci, ci] ⊆ Eff(R2 | gÃ), hence x∗ ∈ Eff(R2 | gÃ) by (5.56).

Case 2 : If x∗ ∈ R∗2, then q1 > 1 and we can find i ∈ Iq1−1 such that

x∗ ∈ [ui, ui+1]× [c′i, c
′′
i ] (5.57)

in view of Remark 5.24. Due to Lemma 5.22 and (5.46), we know that

(ui, c
′
i), (ui, c

′′
i ), (ui+1, c

′′
i ), (ui+1, c

′
i) ∈ Eff(R2 | gÃ). (5.58)

Hence, by (5.57), (5.58) and Lemma 5.20 we deduce that x∗ ∈ Eff(R2 | gÃ).
Consequently inclusion “⊇” in (5.55) holds.
In order to prove the reverse inclusion “⊆” in (5.55), we observe first that, according to Corollary

5.7 (2◦) applied for Ã in the role of A, we have Eff(R2 | gÃ) =
⋃
λ∈ intRq+

Sol(R2 | 〈λ, gÃ(·)〉).
Therefore, it suffices to prove that for any λ ∈ intRq+ the following inclusion holds:

Sol(R2 | 〈λ, gÃ(·)〉) ⊆ R∗1 ∪R∗2. (5.59)

To this aim we distinguish the following four cases, according to Lemma 5.2 (1◦ – 4◦) applied for

Ã in the role of A:
Case 1 : If Sol(R2 | 〈λ, gÃ(·)〉) is a singleton, then there is (i, j) ∈ Iq1 × Iq2 with Sol(R2 |

〈λ, gÃ(·)〉) = {(ui, vj)} ⊆ Ã1 × Ã2. Since we have also Sol(R2 | 〈λ, gÃ(·)〉) ⊆ Eff(R2 | gÃ), we infer
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by (5.46) and (5.54) that Sol(R2 | 〈λ, gÃ(·)〉) ⊆ C ⊆ R∗1.
Case 2 : If Sol(R2 | 〈λ, gÃ(·)〉) is a horizontal line segment, then q1 > 1 and there is (i, j) ∈

Iq1−1 × Iq2 such that Sol(R2 | 〈λ, gÃ(·)〉) = [ui, ui+1]× {vj}. Since c′i ≤ vj ≤ c′′i , we conclude that
Sol(R2 | 〈λ, gÃ(·)〉) ⊆ [ui, ui+1]× [c′i, c

′′
i ] ⊆ R∗2.

Case 3 : If Sol(R2 | 〈λ, gÃ(·)〉) is a vertical line segment, then q2 > 1 and there is (i, j) ∈ Iq1×Iq2−1

with Sol(R2 | 〈λ, gÃ(·)〉) = {ui} × [vj , vj+1] ⊆ {ui} × [ci, ci] ⊆ R∗1.
Case 4 : If Sol(R2 | 〈λ, gÃ(·)〉) is a non-degenerated rectangle, then q1, q2 > 1 and there is (i, j) ∈

Iq1−1 × Iq2−1 such that Sol(R2 | 〈λ, gÃ(·)〉) = [ui, ui+1]× [vj , vj+1]. Since c′i ≤ vj < vj+1 ≤ c′′i , we
infer that Sol(R2 | 〈λ, gÃ(·)〉) ⊆ [ui, ui+1]× [c′i, c

′′
i ] ⊆ R∗2.

Thus (5.59) holds in all cases.

The pseudocode of Step 6 is given below.

/* Step 6 */

for i← 1 to q1 do
ci ← minCi;
ci ← maxCi;

end
if q1 = 1 then
R∗1 ← {u1} × [c1, c1];
R∗2 ← ∅;

end
if q1 ≥ 2 then

for i← 1 to q1 − 1 do
c′i ← max{ci, ci+1};
c′′i ← min{ci, ci+1};

end
R∗1 ← ∅;
R∗2 ← ∅;
for i← 1 to q1 do
R∗1 ← {ui} × [ci, ci];

end
for i← 1 to q1 − 1 do
R∗2 ← R∗2 ∪ conv{(ui, c′i), (ui, c

′′
i ), (ui+1, c

′′
i ), (ui+1, c

′
i)};

end

end

Example 5.26 Consider once again the set A = {a1, . . . , a8} introduced in Example 5.10. By
means of the sets C1, . . . , C7 constructed within Example 5.19, we apply the procedure described
at Step 6 to generate the sets

R∗1 ={(u1, v3)} ∪
(
{u2} × [v3, v4]

)
∪
(
{u3} × [v1, v4]

)
∪
(
{u4} × [v2, v5]

)
∪
(
{u5} × [v2, v6]

)
∪
(
{u6} × [v5, v7]

)
∪ {(u7, v6)};

R∗2 =
(
[u1, u2]× {v3}) ∪

(
[u2, u3]× [v3, v4]

)
∪
(
[u3, u4]× [v2, v4]

)
∪
(
[u4, u5]× [v2, v5]

)
∪
(
[u5, u6]× [v5, v6]

)
∪
(
[u6, u7]× {v6}

)
.

The sets R∗1 and R∗2 can be visualized in Figures 5.4 and 5.5, respectively. Finally, we obtain the
representation of the set of all Pareto efficient solutions

Eff(R2 | gA) = Eff(R2 | gÃ) = R∗1 ∪R∗2

as the union of eight rectangles, among which four are degenerated into line segments (see Figure
5.6).
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Figure 5.4: The set R∗1 of Example 5.26.
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ã3

N (Ã)
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Figure 5.5: The set R∗2 of Example 5.26.
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ã6

ã2

Figure 5.6: Output of the algorithm for the set A considered in Example 5.26.

5.4 Computational analysis of the algorithm

5.4.1 Complexity analysis

Based on the pseudocodes given in Subsections 5.3.2 – 5.3.5 one can see that the Rectangular
Decomposition Algorithm constructs the set Eff(R2 | gA) with a worst case complexity of

O( m2︸︷︷︸
Step 1

+ q · log q︸ ︷︷ ︸
Steps 2-4

+ q1 · q2 · q︸ ︷︷ ︸
Step 5

+ q1 · q2︸ ︷︷ ︸
Step 6

)

where, according to (5.22) and (5.23), we have

m = cardA ≥ q = card Ã ≥ qk = card Ãk for all k ∈ I2.

Notice that, among other algorithms for solving location problems, the classical Row Algorithm
proposed by Chalmet, Francis and Kolen computes the set of Pareto efficient solutions with com-
plexity O(m · logm) and indeed there is no algorithm with a smaller complexity (see [21, Theorem
1]). However, our algorithm is more appropriate for decomposing the set of Pareto efficient so-
lutions in a small number of rectangles and line segments, as we will see in the next subsection.
On the other hand, the early algorithm proposed by Wendell et al. [128] computes the periphery
of the set of Pareto efficient solutions with complexity O(m2), but does not contain an explicit
procedure for decomposing the set of Pareto efficient solutions in rectangles and line segments.

5.4.2 Numerical tests

The Rectangular Decomposition Algorithm is conceived to solve general multi-objective location
problems of type (POLP1

R2(A)) in absence of any (a priori given) information about the exis-
tence/number of nonessential objectives. Therefore we have implemented two variants of this
algorithm, namely:

Variant I, obtained from the implicit form of the algorithm (formulated in Subsection 5.3.1),
and

Variant II, obtained from the Variant I by bypassing the procedure described at Steps 1 and
2 (identification of all essential objectives and elimination of the nonessential ones) and letting

Ã := A in Step 3.
Both variants have been implemented in MATLAB and tested on various location problems of
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type (POLP1
R2(A)). Our computational experiments show that Variant I is highly effective when

the number of nonessential objectives, i.e., m − q, is large. In what follows, we present some
numerical results obtained by solving several location problems with m ∈ {24, 26, 28, 210, 212, 214}
on a Core i5 4570 4x 3.20GHz CPU computer. For every m we have considered 15 test problems of
type (POLP1

R2(A)) where the coordinates of the location points of A were generated as uniformly
distributed random numbers in the interval [0, 1] (using the MATLAB function “rand”). The
averaged running times (in seconds) for both variants I and II are listed in Table 5.1. Moreover,
by Variant I we have also determined the number of essential objectives for each of these test
problems, i.e., the cardinality of the reduced set Ã generated at Step 2. The averaged values of q
are also listed in Table 5.1.

m 16 64 256 1024 4096 16384
q 8 14 22 26 33 37

Variant I 0.005 0.018 0.049 0.098 0.226 0.505
Variant II 0.017 0.292 5.554 99.951 1415.953 35379.250

Table 5.1: Running times in seconds.

Figures 5.7 and 5.8 contain screen captures obtained in MATLAB for a test problem (POLP1
R2(A))

with m = 64, illustrating the rectangular decompositions of Eff(R2 | gA) obtained by Variant I
(14 rectangles and 2 segments) and by Variant II (40 rectangles and 2 segments). In contrast to
our algorithm, the number of “boxes” involved in the approach proposed by Chalmet, Francis and
Kolen [21] (obtained by splitting the 40 rectangles in Figure 5.8 by horizontal lines through the
location points) is very large, namely 2858.

Figure 5.7: Rectangular decomposition of Eff(R2 | gA) by Variant I.
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Figure 5.8: Rectangular decomposition of Eff(R2 | gA) by Variant II.

5.5 Extension to constrained problems

Let us consider a constrained version of our initial point-objective location problem (POLP1
R2(A)):{

gA(x) =
(
‖x− a1‖1, · · · , ‖x− am‖1

)
→ min

x ∈ X,
(POLP1

X(A))

where X is a nonempty closed, convex set in R2. We are going to emphasize how to generate
the set of Pareto efficient solutions of problem (POLP1

X(A)) by using our penalization approach
derived in Chapter 2 and by applying the Rectangular Decomposition Algorithm proposed in the
preceding sections. Notice that the projection property fails for the set of Pareto efficient solutions,
i.e., the projection of Eff(R2 | gA) onto X does not coincide with Eff(X | gA) in general, since the
Manhattan norm || · ||1 is not strictly convex (see Remark 4.7). However, the projection property
holds for the set of weakly Pareto efficient solutions, as stated in the next theorem.

Theorem 5.27 We have
WEff(X | gA) = Proj

||·||1
X (N (A)). (5.60)

Proof. Since in the space (R2, || · ||1) the projection property concerning the set of weakly Pareto
efficient solutions holds (see Remark 4.7), we get (5.60) by the fact that WEff(R2 | gA) = N (A)
in view of Theorem 5.5.

Now, according to our penalization approach in Chapter 2, let us introduce the penalized problem{
g⊕A(x) =

(
‖x− a1‖1, · · · , ‖x− am‖1, φ(x)

)
→ min

x ∈ R2,
(POLP1

R2(A)⊕)

where φ : R2 → R represents the penalization function.
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Example 5.28 We consider the problem (POLP1
X(A)) with three given points a1, a2, a3 ∈ R2

(i.e., m = 3) and a feasible set X represented by a closed Manhattan ball centered at x′ ∈ R2 with
positive radius, as shown in Figure 5.9. Due to the structure of the set X, it is possible to compute
the sets Eff(R2 | gA) and Eff(R2 | g⊕A) by using the Rectangular Decomposition Algorithm, where
g⊕A is defined as in problem (POLP1

R2(A)⊕) with φ(·) := || · −x′||1. Figure 5.9 shows the procedure
for computing the set

Eff(X | gA) =
[
X ∩ Eff(R2 | gA)

]
∪
[
(bdX) ∩ Eff(R2 | g⊕A)

]
.

In the left part of Figure 5.10, the sets of (strictly, weakly) Pareto efficient solutions for the
unconstrained case (X = E = R2) are shown, while in the right part, the sets of (strictly, weakly)
Pareto efficient solutions for the constrained case are illustrated.

Eff(R2 | gA)

X

a1

Eff(R2 | g⊕A)

X

x′

X

a2

a3

a1

a3

a2

X

a1

X

a2

a3

Eff(X | gA)

X

a1

X

a2

a3

Figure 5.9: Construction of the set of Pareto efficient solutions of the problem (POLP1
X(A)), where

X is given by a closed Manhattan ball in E = R2 with center point x′ ∈ R2.

Due to Theorem 5.5, Theorem 5.60 and Proposition 4.5, we have

WEff(X | gA) =
[
X ∩WEff(R2 | gA)

]
∪
[
(bdX) ∩WEff(R2 | g⊕A)

]
= Proj

||·||1
X (WEff(R2 | gA))

= Proj
||·||1
X (N (A)).
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According to Ndiaye and Michelot [88], the projection property does not hold for the sets of (strictly)
Pareto efficient solutions of problem (POLP1

X(A)) involving the Manhattan norm || · ||1 (that is
not strictly convex) in general. However, due to our vectorial penalization approach derived in
Chapter 2, we can construct these sets of (strictly) Pareto efficient solutions. Figure 5.10 shows
the sets of (strictly, weakly) Pareto effient solutions for the unconstrained case (left part) as well
as for the constrained case (right part). Notice, in view of Durier and Michelot [27, Rem. 3.1],
SEff(R2 | gA) coincides with the rectangular hull (in the sense of Love and Morris [78]) of A ⊆ R2

SEff(X | gA)

X

a1

X

a2

a3

Eff(X | gA)
WEff(X | gA)

a1

a3

a2

SEff(R2 | gA)
Eff(R2 | gA)

WEff(R2 | gA)

Figure 5.10: The figure shows the sets of (strictly, weakly) Pareto efficient solutions of the problems
(POLP1

R2(A)) and (POLP1
X(A)). In the left part of the figure, the unconstrained case

(i.e, X = R2) is illustrated, while in the right part, the feasible set X ( R2 is given
by a certain closed Manhattan ball (grey colored region).

The reader should pay attention to the fact that

SEff(X | gA) ( Proj
||·||1
X (SEff(R2 | gA));

Eff(X | gA) ( Proj
||·||1
X (Eff(R2 | gA));

WEff(X | gA) = Proj
||·||1
X (WEff(R2 | gA)).

In the concluding remarks given by Ndiaye and Michelot [88], the question about the validity of the
above first two (not necessarily strict) inclusions for point-objective location problems involving a
polyhedral norm arises. Since

X ∩ SEff(R2 | gA) ⊆ Proj
||·||1
X (SEff(R2 | gA));

X ∩ Eff(R2 | gA) ⊆ Proj
||·||1
X (Eff(R2 | gA)),

it remains to check whether the inclusions

(bdX) ∩ SEff(R2 | g⊕A) ⊆ Proj
||·||1
X (SEff(R2 | gA));

(bdX) ∩ Eff(R2 | g⊕A) ⊆ Proj
||·||1
X (Eff(R2 | gA))

holds true in general. In this thesis, we do not give an answer to this question, however it is worth
enough to investigate it, since these projections help to localize (strictly) Pareto efficient solutions.
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5.6 Concluding remarks

The Rectangular Decomposition Algorithm is a new effective numerical method for solving multi-
objective location problems of type (POLP1

R2(A)), where A is a finite set of points in R2 repre-
senting a priori given facilities, while the distance-type objective functions are defined by means
of the Manhattan norm. Its mathematical background mainly relies on a dual characterization
of Pareto efficient solutions of (POLP1

R2(A)) given by Gerth and Pöhler [47], several structural
properties of the set Eff(R2 | gA) established by Wendell, Hurter and Lowe [128], and a new char-
acterization of this set in terms of the minimal elements of A with respect to four ordering cones of
R2. The latter characterization leads to an implementable procedure, embedded in the first phase
of the Rectangular Decomposition Algorithm, based on the Jahn-Graef-Younes Method for solving
discrete vector optimization problems.

In comparison with other known algorithms for solving problems of type (POLP1
R2(A)), our

algorithm has several special features. First of all it identifies all nonessential objectives, hence
the running time needed to generate Eff(R2 | gA) can be reduced drastically, by eliminating these
objectives. Actually, our reduction procedure can be used as a pre-phase for other algorithms
known in the literature. On the other hand, in contrast to certain algorithms which produce one
Pareto efficient solution or a part of the set Eff(R2 | gA) corresponding to a particular choice of
weights or other scalarization parameters, our algorithm provides a well structured representation
of the whole set Eff(R2 | gA) as a finite union of line segments and rectangles. This representation
can be used as input for further applications, as for instance to minimize/maximize an additional
cost function over the set of Pareto efficient solutions (see Alzorba, Günther and Popovici [2]).

The construction procedure described at Step 5 of our algorithm is based on the characterization
of efficient grid points. However, it can be easily adapted to other known algorithms that compute
the periphery/grid efficient points (e.g, the algorithms by Chalmet, Francis and Kolen [21], Pelegrin
and Fernández [97], or Wendell, Hurter and Lowe [128]).

In order to develop effective algorithms for computing the sets of (strictly, weakly) Pareto effi-
cient solutions to problem (POLP1

X(A)) involving a nonempty, closed, convex set X ( R2, it is
important to analyze the penalized problem (POLP1

R2(A)⊕) in detail. In the case that X is given
by a polytope with nonempty interior (i.e, the penalization function φ can be chosen as a polyhe-
dral Minkowski gauge), one could use ideas that are known for point-objective location problems
involving mixed polyhedral Minkowski gauges (see, e.g., Durier [26] and Kaiser [69]) and corre-
sponding generalizations of these problems (see, e.g., Nickel et al. [90]). So, we are able to compute
the sets of (strictly, weakly) Pareto efficient of the unconstrained problem (POLP1

R2(A)⊕), hence
we can also generate the sets of (strictly, weakly) Pareto efficient solutions of the initial constrained
problem (POLP1

X(A)) taking into account results that are known for the unconstrained problem
(POLP1

R2(A)) (see the preceding sections of this chapter) as well as our new penalization approach
(see Chapter 2).



Chapter 6

Point-objective location problems in a finite-dimensional
Hilbert space

Throughout this chapter, we assume that (E, || · ||) is a real finite-dimensional Hilbert space.
Consider m a priori given facilities located at the points a1, · · · , am ∈ E. Again, for notational
convenience, we consider the set of all existing facilities by

A = {a1, · · · , am}.

Let X ⊆ E be a nonempty, closed set. Our aim is to find a point x ∈ X for a new facility such
that the distances (associated with the norm || · ||) between x and the given points a1, · · · , am are
to be simultaneously minimized. Such a problem can be modeled as follows:{

gA(x) :=
(
||x− a1||, · · · , ||x− am||

)
→ min

x ∈ X.
(POLP2

X(A))

Now, let the feasible set X of problem (POLP2
X(A)) be given by the whole pre-image space E

excepting some forbidden regions that are defined by open balls with respect to the norm || · ||.
More precisely, throughout this chapter, we assume that the following assumptions are fulfilled:

Let (E, || · ||) be a real finite-dimensional Hilbert space;
let Di := B||·||(d

i, ri) with di ∈ E, ri ∈ R++, i ∈ Il, l ∈ N;
let X :=

⋂
i∈Il Xi with Xi := E \ intDi, i ∈ Il.

(6.1)

As one can see in (6.1), the feasible set X is given by an intersection of reverse convex sets
X1, · · · , Xl. For convenience, the reader may assume that E = Rn and that || · || is given by the
Euclidean norm.

Notice that the Hilbert space (E, || · ||) is strictly convex. Hence, for any i ∈ Il, we have

]x1, x2[⊆ intDi for all x1, x2 ∈ bdDi, x
1 6= x2.

Moreover, we have
||di − dj || > ri + rj for all i, j ∈ Il, i 6= j, (6.2)

if and only if the balls D1, · · · , Dl are pairwise disjoint. Furthermore, we have

||di − dj || ≥ ri + rj for all i, j ∈ Il, i 6= j, (6.3)

if and only if the interiors intD1, · · · , intDl of the balls D1, · · · , Dl are pairwise disjoint. Obviously,
(6.3) follows by (6.2).

In general, we have bdX ⊆
⋃
i∈Il bdDi. Under the assumption (6.3), in view of Lemma 3.12,

we actually have

bdX =
⋃
i∈Il

bdDi

118
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For every i ∈ Il, we consider a penalized point-objective location problem by

{
g⊕iA (x) := (gA, φi) =

(
||x− a1||, · · · , ||x− am||,−||x− di||

)
→ min

x ∈ E,
(POLP2

E(A)⊕i)

where we define the penalization function φi : E→ R by

φi(x) := −||x− di|| for all x ∈ E.

Notice that (POLP2
X(A)) involves a convex objective function gA and a nonconvex feasible set

X. In contrast to that, (POLP2
E(A)⊕i) involves a nonconvex objective function g⊕iA (x) and a

convex feasible set E for every i ∈ Il. According to Jourani, Michelot and Ndiaye [67], the problem
(POLP2

E(A)⊕i) can be seen as the problem of locating a new facility x ∈ E in presence of attracting
points a1, · · · , am and a repulsive demand point di in a continuous location space E.

Remark 6.1 By Example 3.15 and Lemma 3.16, we know that the function φ̂i : E→ R, defined
for every x ∈ E by

φ̂i(x) := − 1

ri
||x− di|| = − inf{λ ∈ R+ | x− di ∈ λ · (−di +Di)},

fulfils Assumptions (A1), (A2) and (A6) (with φ̂i in the role of φ and Xi in the role of X) for every
i ∈ Il. In view of Lemma 2.10 (5◦, 6◦), we actually get that φi( · ) = −|| · −di|| fulfils Assumptions
(A1), (A2) and (A6) (with φi in the role of φ and Xi in the role of X) for every i ∈ Il.

6.1 Structure of the sets of (strictly, weakly) Pareto efficient solutions

By Durier and Michelot [27, Prop. 1.3], we know that one can determine completely the set of
(strictly, weakly) Pareto efficient solutions for the problem POLP2

E(A) (defined as (POLP2
X(A))

with E in the role of X) as stated in the next lemma.

Lemma 6.2 Assume that (6.1) holds. Then, we have

SEff(E | gA) = Eff(E | gA) = WEff(E | gA) = convA.

By Jourani, Michelot and Ndiaye [67] we get the following characterizations for the sets of
(strictly, weakly) Pareto efficient solutions of the nonconvex location problem (POLP2

E(A)⊕i).

Lemma 6.3 Assume that (6.1) holds. For every i ∈ Il, the following assertions hold:

1◦. SEff(E | g⊕iA ) = convA+ cone
(
convA− di

)
.

2◦. di ∈ int(convA) if and only if SEff(E | g⊕iA ) = E.

3◦. If di /∈ convA, then SEff(E | g⊕iA ) = Eff(E | g⊕iA ) = WEff(E | g⊕iA ) 6= E.

4◦. di ∈ convA if and only if WEff(E | g⊕iA ) = E.

5◦. di /∈ rint(convA) if and only if Eff(E | g⊕iA ) = SEff(E | g⊕iA ) 6= E.

6◦. di ∈ rint(convA) if and only if Eff(E | g⊕iA ) = E.

7◦. WEff(E | g⊕iA ) = {x ∈ E | (convA) ∩ conv {x, di} 6= ∅}.

8◦. rint(SEff(E | g⊕iA )) = {x ∈ E | rint(convA) ∩ rint(conv {x, di}) 6= ∅}.

Proof. First, recalling Lemma 1.29 (2◦), we have cone
(
convA− di

)
= E if and only if di ∈

int(convA). Now, 1◦ follows by [67, Cor. 4.1]; 2◦ follows by 1◦; 3◦ follows by [67, Th. 4.5] and
by 2◦; 4◦ follows by [67, Prop. 4.2]; 5◦ follows by [67, Th. 4.3]; 6◦ follows by [67, Prop. 4.1]; 7◦

follows by [67, Th. 4.4]; 8◦ follows by [67, Th. 4.2].
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Remark 6.4 Notice that Lemma 6.2 is actually true for infinite-dimensional Hilbert spaces (see
Durier and Michelot [27, Prop. 1.3]) taking into account that convA is compact for the finite set
A (see Aliprantis and Border [1, Cor. 5.30]). According to Jourani, Michelot and Ndiaye [67],
the results given in Lemma 6.3 are valid for finite-dimensional inner product spaces (hence finite-
dimensional Hilbert spaces). For that reason, we assume in our main assumption (6.1) that E is a
finite-dimensional Hilbert space.

Since A is finite, the set convA is a polytope. In the case di /∈ int(convA), for any i ∈ Il, the
set cone

(
convA− di

)
is a (closed and convex) polyhedral cone and convA+ cone

(
convA− di

)
is

a polyhedral set. Otherwise, if di ∈ int(convA), then both sets are equal to E. In addition, for
any di ∈ convA, we have

T (convA, di) = cl
(
cone

(
convA− di

))
= cone

(
convA− di

)
,

where T (convA, di) stands for the contingent cone of convA at the point di (see Remark 1.28).

As mentioned by Jourani, Michelot and Ndiaye [67], these complete geometrical descriptions of
the sets of (strictly, weakly) Pareto efficient solutions given in Lemma 6.3 are surprising due to the
nonconvexity of the objective function g⊕iA , i ∈ Il.

In the next lemma, we will see that Lemmata 6.2 and 6.3 are very important results in order to
obtain complete geometrical descriptions for the sets of (strictly, weakly) Pareto efficient solutions
(under the validity of (6.2) and (6.3), respectively) of the nonconvex problem (POLP2

X(A)).

Lemma 6.5 ([53]) Let (6.1) be fulfilled. Then, the following assertions are satisfied:

1◦. We have

SEff(X | gA) ⊇ [X ∩ convA] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ SEff(E | g⊕iA )

]
;

Eff(X | gA) ⊇ [X ∩ convA] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ Eff(E | g⊕iA )

]
;

WEff(X | gA) ⊇ [X ∩ convA] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩WEff(E | g⊕iA )

]

and
SEff(X | gA) ⊆ Eff(X | gA) ⊆WEff(X | gA) ⊆ [X ∩ convA] ∪ bdX.

2◦. Assume that (6.2) holds. Then, we have

SEff(X | gA) = [X ∩ convA] ∪

[⋃
i∈Il

(bdDi) ∩ SEff(E | g⊕iA )

]
.

3◦. Assume that (6.3) holds. Then, we have

Eff(X | gA) = [X ∩ convA] ∪

[⋃
i∈Il

(bdDi) ∩ Eff(E | g⊕iA )

]
;

WEff(X | gA) = [X ∩ convA] ∪

[⋃
i∈Il

(bdDi) ∩WEff(E | g⊕iA )

]
.

Proof. Follows by Corollary 3.22 and Lemma 6.2.



6.1 Structure of the sets of (strictly, weakly) Pareto efficient solutions 121

The reverse inclusions in 1◦ of Lemma 6.5 do not hold in general, as shown in the next example.

Example 6.6 Consider the space E = R2, the set A = {a1} = {(0, 0)}, and three Euclidean balls
in R2, namely

D1 with center d1 = (−2, 0) and radius r1 = 3,

D2 with center d2 = (2, 0) and radius r2 = 3,

D3 with center d3 = (0, 2) and radius r3 = 3.

For the problem (POLP2
X(A)) (with m = 1), we suppose that X = X1 ∩ X2 ∩ X3 with Xi =

R2 \ intDi for every i ∈ I3. Then, we have convA = {(0, 0)}, hence

X ∩ convA = ∅.

Moreover, we get for d1, d2, d3 /∈ convA,

Eff(R2 | g⊕1

A ) = −cone {d1} = [0,∞)× {0},
Eff(R2 | g⊕2

A ) = −cone {d2} = (−∞, 0]× {0},
Eff(R2 | g⊕3

A ) = −cone {d3} = {0} × (−∞, 0]

by Lemma 6.3. We thus infer

X ∩ (bdD1) ∩ Eff(R2 | g⊕1

A ) = X ∩ {(1, 0)} = ∅,
X ∩ (bdD2) ∩ Eff(R2 | g⊕2

A ) = X ∩ {(−1, 0)} = ∅,
X ∩ (bdD3) ∩ Eff(R2 | g⊕3

A ) = X ∩ {(0,−1)} = ∅.

Notice, in view of Lemma 6.3, we have

SEff(R2 | g⊕iA ) = Eff(R2 | g⊕iA ) = WEff(R2 | g⊕iA ) for all i ∈ I3.

However, it can easily be checked that

∅ 6= {(0,−
√

5)} = argminx∈X ||x||2 = SEff(X | gA) = Eff(X | gA) = WEff(X | gA).

This means that the reverse inclusions in 1◦ of Lemma 6.5 do not hold for this example problem.
Notice that neither (6.2) nor (6.3) is fulfilled in this example.

In preparation of the next theorem, we define the following three sets of indices:

Iconv := {i ∈ Il | di ∈ convA};
Ii−conv := {i ∈ Il | di ∈ int(convA)};
Iri−conv := {i ∈ Il | di ∈ rint(convA)}.

We now present the main theorem of this section where we give complete geometrical descriptions
for the sets of (strictly, weakly) Pareto efficient solutions of (POLP2

X(A)) that are valid under the
assumptions (6.1) and (6.2) (respectively, (6.3)).
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Theorem 6.7 ([53]) Let (6.1) be fulfilled. Then, the following assertions hold:

1◦. Assume that (6.2) holds. Then, we have

SEff(X | gA) = X ∩ convA

∪

 ⋃
i∈Il\Ii−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Ii−conv

bdDi

]
⊇ X ∩ convA

∪

 ⋃
i∈Il\Ii−conv

{
x ∈ bdDi | rint(convA) ∩ rint(conv {x, di}) 6= ∅

}
∪

[ ⋃
i∈Ii−conv

bdDi

]
.

2◦. Assume that (6.3) holds. Then, we have

Eff(X | gA) = X ∩ convA

∪

 ⋃
i∈Il\Iri−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Iri−conv

bdDi

]
;

WEff(X | gA) = X ∩ convA

∪

 ⋃
i∈Il\Iconv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Iconv

bdDi

]
= X ∩ convA

∪

 ⋃
i∈Il\Iconv

{
x ∈ bdDi | (convA) ∩ conv {x, di} 6= ∅

}
∪

[ ⋃
i∈Iconv

bdDi

]
.

Proof. Follows by Lemmata 6.3 and 6.5.

Corollary 6.8 ([53]) Let (6.1) be fulfilled. Then, the following assertions hold:

1◦. Assume that (6.2) holds. Then, SEff(X | gA) is a compact set.

2◦. Assume that (6.3) holds. Then, Eff(X | gA) and WEff(X | gA) are compact sets.

Proof. The sets Di, i ∈ Il, and convA are compact sets. Moreover, notice that the sets X and
cone

(
convA− di

)
, i ∈ Il, are closed. Hence, we easily obtain that SEff(X | gA), Eff(X | gA) and

WEff(X | gA) are closed and bounded sets by Theorem 6.7. Notice that the sum of a compact set
and a closed set in E is closed (see, e.g., Jahn [64, Lem. 1.34]). Since E is a finite-dimensional
normed space, both assertions of this corollary follow immediately.
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Next, we present two examples in order to illustrate (for the case l = 1 as well as for the case
l = 2) the geometrical descriptions given for the sets of (strictly, weakly) Pareto efficient solutions
of the problem (POLP2

X(A)) in Theorem 6.7.

Example 6.9 We consider a planar point-objective location problem (POLP2
X(A)) involving the

Euclidean norm || · ||2 where the set of existing facilities is given by

A = {a1, a2, a3} ⊆ R2 = E

and the feasible set is given by X = X1 = R2 \ intD1. Figure 6.1 shows the location problem as
well as the procedure for computing the set Eff(X | gA). Notice that d1 ∈ (convA) \ int(convA).
Due to Lemma 6.2 and Theorem 6.7, we have

SEff(R2 | gA) = Eff(R2 | gA) = WEff(R2 | gA) = convA

and

SEff(X | gA) = [X ∩ convA] ∪
[
(bdD1) ∩

(
convA+ cone

(
convA− d1

))]
;

Eff(X | gA) = SEff(X | gA);

WEff(X | gA) = [X ∩ convA] ∪ bdD1.

Eff(R2 | gA)

a1

a3

Eff(R2 | g⊕A)

intD

a2 d

a3

a1

a2

intD

a1

a3

intD

a2

a1

a3

intD

Eff(X | gA)

a2

Figure 6.1: Construction of the set of Pareto efficient solutions of the problem (POLP2
X(A)) with

m = 3 and l = 1.
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Example 6.10 Again, let us consider a planar point-objective location problem (POLP2
X(A))

involving the Euclidean norm || · ||2 where the set of existing facilities is given by

A = {a1, a2, a3} ⊆ R2 = E.

We assume that X is an intersection of two reverse convex sets, i.e., we have

X = X1 ∩X2 = (R2 \ intD1) ∩ (R2 \ intD2).

Figure 6.2 illustrates this problem and shows how the set Eff(X | gA) can be computed. Notice
that d1 ∈ int(convA) and d2 /∈ convA. In view of Lemma 6.2 and Theorem 6.7, we infer

SEff(R2 | gA) = Eff(R2 | gA) = WEff(R2 | gA) = convA

and

SEff(X | gA) = [X ∩ convA] ∪ bdD1

∪
[
(bdD2) ∩ (convA+ cone

(
convA− d2

)
)
]

;

Eff(X | gA) = WEff(X | gA) = SEff(X | gA).

d2

intD2

Eff(R2 | g⊕2

A )

a3

a1

a2

intD2

a1

a3
a2

Eff(R2 | g⊕1

A )

d1

a3

a1

a2

intD1

d2

d1

intD2

a1

a3
a2

intD1 intD1

Eff(X1 ∩X2 | gA)

Figure 6.2: Construction of the set of Pareto efficient solutions of the problem (POLP2
X(A)) with

m = 3 and l = 2.
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In Proposition 6.11, we present some characterizations related to the sets of (strictly, weakly)
Pareto efficient solutions.

Proposition 6.11 ([53]) Let (6.1) and (6.3) be fulfilled. Then, the following assertions are true:

1◦. Assume that (6.2) holds. Then, we have

Ii−conv = Il ⇐⇒ SEff(X | gA) = [X ∩ convA] ∪ bdX.

2◦. Assume that (6.2) or dim E ≥ 2 holds. Then, we have

Iri−conv = Il ⇐⇒ Eff(X | gA) = [X ∩ convA] ∪ bdX.

3◦. Assume that (6.2) or dim E ≥ 2 holds. Then, we have

Iconv = Il ⇐⇒ WEff(X | gA) = [X ∩ convA] ∪ bdX.

4◦. Assume that (6.2) holds. Then, we have

Iri−conv = Ii−conv ⇐⇒ SEff(X | gA) = Eff(X | gA),

or, equivalently, we have

int(convA) 6= ∅ ∨ Iri−conv = ∅ ⇐⇒ SEff(X | gA) = Eff(X | gA).

5◦. Assume that (6.2) or dim E ≥ 2 holds. Then, we have

Iconv = Iri−conv ⇐⇒ Eff(X | gA) = WEff(X | gA).

6◦. Assume that (6.2) holds. Then, we have

Iconv = Ii−conv ⇐⇒ SEff(X | gA) = Eff(X | gA) = WEff(X | gA).

7◦. Assume that (6.2) holds. Then, we have

∅ = Ii−conv ( Iri−conv ( Iconv ⇐⇒ SEff(X | gA) ( Eff(X | gA) ( WEff(X | gA).

To prove Proposition 6.11, we need the following key lemma.

Lemma 6.12 ([53]) Let (6.1) be fulfilled. The following assertions hold:

1◦. For any j ∈ Il, we have

j ∈ Ii−conv ⇐⇒ (bdDj) ∩
(
convA+ cone

(
convA− dj

))
= bdDj .

2◦. Let j ∈ Il \ Ii−conv. Then, we have

(bdDj) ∩ (convA) ⊆ (bdDj) ∩
(
convA+ cone

(
convA− dj

))
( bdDj .

Hence, the set
(bdDj) \

(
convA+ cone

(
convA− dj

))
is nonempty, and if dim E ≥ 2, has an infinite number of elements.

3◦. Assume that (6.3) holds. For any i, j ∈ Il, i 6= j, the set (bdDi)∩ (bdDj) is a singleton set or
the empty set. Hence, for any j ∈ Il, the set (bdDj)∩

⋃
i∈Il\{j} bdDi has at most l− 1 elements.

4◦. Assume that (6.2) holds. For any i, j ∈ Il, i 6= j, the set (bdDi) ∩ (bdDj) is the empty set.

Proof. For notational convenience, we define Cj := cone
(
convA− dj

)
for all j ∈ Il.
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1◦. Since for j ∈ Ii−conv we have Cj = E by Lemma 1.29, the implication “=⇒” follows immedi-
ately. Now, let us establish the reverse implication “⇐=”.

Let j ∈ Il. Since bdDj ⊆ convA+ Cj and convA+ Cj is a convex set, we get

dj ∈ intDj ⊆ Dj ⊆ convA+ Cj ,

hence
dj ∈ int(convA+ Cj). (6.4)

Assume that the contrary holds, i.e., j ∈ Il \ Ii−conv, hence dj /∈ int(convA). First, we show that

∃ v ∈ E \ {0} ∀ δ ∈ R++ : dj + δv /∈ convA (6.5)

by considering two cases:

Case 1: Assume that dj /∈ convA. By the Seperation Theorem for Convex Sets in Corollary 1.16,
we infer that there exists a linear functional ψ : E→ R such that

sup
a∈convA

ψ(a) < ψ(dj). (6.6)

Assume that the contrary of (6.5) holds. Then, for v := dj − a with a ∈ convA, there exists
δ ∈ R++ such that dj + δv ∈ convA. So, we have

ψ(dj)
(6.6)
> ψ(dj + δv)

= ψ(dj) + δψ(dj − a)

= ψ(dj) + δψ(dj)− δψ(a),

which implies ψ(a) > ψ(dj), a contradiction to (6.6). Thus, (6.5) holds.

Case 2: Assume that dj ∈ bd(convA). Since dj ∈ convA is not an interior point of convA, it
follows

∃ v ∈ E \ {0} ∀ δ ∈ R++ ∃ θ ∈ ]0, δ] : dj + θv /∈ convA (6.7)

in the finite-dimensional normed space (E, || · ||) (see Lemma 1.20). If we suppose that dj + δv ∈
convA for some δ ∈ R++, then

dj + [0, δ] · v ⊆ convA

by the convexity of convA, a contradiction to (6.7). This shows (6.5) with v := v.

In both cases (6.5) holds.

In view of (6.4), for v ∈ E \ {0} given in (6.5), we get that there exists δ̂ ∈ R++ such that

dj + δ̂v ∈ convA+Cj . So, there exist k ∈ R+, a′, a′′ ∈ convA, such that dj + δ̂v = a′+ k(a′′− dj).
This means that

dj +
δ̂

1 + k
v =

1

1 + k
a′ +

k

1 + k
a′′ =

(
1− k

1 + k

)
a′ +

k

1 + k
a′′ ∈ convA,

a contradiction to (6.5).

The proof of assertion 1◦ is complete.

2◦. We have 0 ∈ Cj , hence convA ⊆ convA+Cj , which shows the first inclusion in assertion 2◦. By
1◦ of this lemma, we get the second strict inclusion. Hence, we infer that (bdDj)\(convA+Cj) 6= ∅.
Now, we show that (bdDj) \ (convA + Cj) has an infinite number of elements. Let us consider
two cases:

Case 1: Assume that dj /∈ convA. Then, we get dj /∈ convA+ Cj . Indeed, if there exist k ∈ R+,
a′, a′′ ∈ convA, such that dj = a′ + k(a′′ − dj), then

dj =
1

1 + k
a′ +

k

1 + k
a′′ =

(
1− k

1 + k

)
a′ +

k

1 + k
a′′ ∈ convA,
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a contradiction.

Since convA + Cj is closed and convex, we infer that there exists a linear functional ψ : E → R
such that

sup
c∈convA+Cj

ψ(c) < ψ(dj) (6.8)

by the Seperation Theorem for Convex Sets in Corollary 1.16. Without loss of generality, assume
that E has dimension n ≥ 2. By the well-known Dimension Theorem, we know that the sum of
the dimensions of the kernel of ψ (denoted by kerψ := {x ∈ E | ψ(x) = 0}) and the image of ψ
(denoted by imgψ := {ψ(x) | x ∈ E}) is equal to n. More precisely, we have dim kerψ = n−1 and
dim imgψ = 1. Consider x ∈ (kerψ) \ {0}. Since dj ∈ intDj and Dj is convex, it exists δ ∈ R++

such that S := dj + [0, δ] · x ⊆ intDj by Lemmata 1.13 and 1.20. Notice that S has an infinite
number of elements. Define v := dj − c for some c ∈ convA + Cj . For any y ∈ S, we define a
function hy : R→ R by

hy(t) := ||y + tv − dj || for all t ∈ R. (6.9)

Consider y ∈ S. Since Dj is bounded and v 6= 0, there exists ty ∈ R++ such that y + tyv /∈ Dj .
By the continuity of hy and by hy(0) < rj < hy(ty), we get some t∗y ∈ ]0, ty[⊆ R++ such that
hy(t∗y) = rj by the well-known Intermediate Value Theorem, hence xy := y + t∗yv ∈ bdDj . Since

y ∈ S we know that y = dj + δx for some δ ∈ [0, δ]. Then, due to x ∈ kerψ and (6.8), we infer

ψ(xy) = ψ(dj) + δψ(x) + t∗y(ψ(dj)− ψ(c)) > ψ(dj),

which implies xy /∈ convA+ Cj in view of (6.8). We conclude that

xy ∈ (bdDj) \ (convA+ Cj).

Moreover, the map y 7→ xy is injective. Assume the contrary holds, i.e., there exist y′, y′′ ∈ S,
y′ 6= y′′, such that

xy′ = y′ + t∗y′v = y′′ + t∗y′′v = xy′′ .

Of course, t∗y′ = t∗y′′ implies y′ = y′′, a contradiction. Without loss of generality, assume that
t∗y′ > t∗y′′ . We get y′ − y′′ = (t∗y′ − t∗y′′)v, hence

0 = ψ(y′ − y′′) = (t∗y′ − t∗y′′)ψ(v) = (t∗y′ − t∗y′′)(ψ(dj)− ψ(c)) > 0

taking into account the definition of S and formula (6.8), a contradiction.

This completes the proof in the first case.

Case 2: Assume that dj ∈ bd(convA). We must have dj /∈ int(convA + Cj), otherwise dj ∈
int(convA) by the ideas given in the proof of assertion 1◦ in this lemma. Notice that the case
dj /∈ convA+ Cj is considered in Case 1 (assertion 2◦). Now, assume that dj ∈ bd(convA+ Cj).
Then, similar to the proof given in 1◦ of this lemma, there exists v ∈ E \ {0} such that dj + δv /∈
convA + Cj for all δ ∈ R++. Since dj ∈ intDj and Dj is a convex set, there is δ ∈ R++ such
that x0 := dj + δv ∈ intDj by Lemmata 1.13 and 1.20. So, we get x0 ∈ (intDj) \ (convA + Cj).
Now, the proof is analogous to the proof given in Case 1 (assertion 2◦) where x0 is in the role of
dj (except in the definition of the function hy given in (6.9)).

The proof of assertion 2◦ is complete.

3◦, 4◦. Directly follow by the assumptions (6.3) and (6.2), respectively.

Now, we are going to show Proposition 6.11.
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Proof. 1◦. In view of assertion 1◦ in Theorem 6.7, the implication “=⇒” is obvious. Let us prove
the reverse implication “⇐=”. Let

SEff(X | gA) = [X ∩ convA] ∪ bdX. (6.10)

Assume that the contrary holds, i.e, there exists j ∈ Il \ I i−conv. Then, due to Theorem 6.7 (1◦)
and formula (6.10), we must have

bdDj ⊆
⋃

i∈Il\{j}

bdDi

∪ (bdDj) ∩ convA
∪
(
(bdDj) ∩ (convA+ cone(convA− dj))

)
=

⋃
i∈Il\{j}

bdDi

∪
(
(bdDj) ∩ (convA+ cone(convA− dj))

)
.

Then, it can easily be seen that we get a contradiction by Lemma 6.12 (2◦, 4◦). So, 1◦ holds.

2◦, 3◦. Analogous to the proof of 1◦ in this proposition by using Theorem 6.7 (2◦) and Lemma
6.12 (2◦, 3◦, 4◦).

4◦. By Theorem 6.7 (1◦, 2◦), the implication “=⇒” holds. Now, we prove the reverse implication
“⇐=”. Assume that the contrary holds, i.e, there exists j ∈ Iri−conv \ I i−conv. Then, in view of
Theorem 6.7 (1◦, 2◦) and because of the assumption SEff(X | gA) = Eff(X | gA), we obtain a
contradiction by Lemma 6.12 (2◦, 4◦) and by the ideas given in the proof of 1◦ of this proposition.

5◦. Analogous to the proof of 4◦ in this proposition by using Theorem 6.7 (2◦) and Lemma 6.12
(2◦, 3◦, 4◦).

6◦, 7◦. Follow by assertions 4◦ and 5◦ of this proposition.

6.2 The special case di = ai, i ∈ Im

Usually, the new facility x ∈ E should be located as close a possible to the existing facilities ai,
i ∈ Im. In our model, each existing facility is located at exactly one point ai in E and has no
expansion around this point. In particular, in the field of town planning, a given facility has a
certain expansion. Hence, it is convenient to consider a forbidden region around ai defined by a
certain open ball centered at ai with positive radius. So, it is possible to include information about
the sizes of the existing facilities in the model. This means we are going to study the special case

l = m and di = ai for all i ∈ Il = Im. (6.11)

Corollary 6.13 ([53]) Let (6.1), (6.3) and (6.11) be fulfilled. Then, the following assertions hold:

1◦. Assume that (6.2) holds. Then, we have

SEff(X | gA) = X ∩ convA

∪

 ⋃
i∈Im\Ii−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Ii−conv

bdDi

]
.
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2◦. Assume that (6.2) or dim E ≥ 2 holds. Then, we have

Eff(X | gA) = X ∩ convA

∪

 ⋃
i∈Im\Iri−conv

(bdDi) ∩
(
convA+ cone

(
convA− di

))
∪

[ ⋃
i∈Iri−conv

bdDi

]
;

WEff(X | gA) = [X ∩ convA] ∪ bdX.

Proof. Follows by Theorem 6.7.

Corollary 6.14 ([53]) Let (6.1), (6.3) and (6.11) be fulfilled. Then, the following assertions hold:

1◦. Assume that (6.2) holds. Then, we have

int(convA) 6= ∅ ∨ Iri−conv = ∅ ⇐⇒ SEff(X | gA) = Eff(X | gA).

2◦. Assume that (6.2) or dim E ≥ 2 holds. Then, we have

card A = 1 ⇐⇒ Eff(X | gA) = WEff(X | gA).

Proof. Directly follows by 4◦ and 5◦ in Proposition 6.11.

Next, we present an applied example of a location problem of type (POLP2
X(A)) in which the

conditions (6.2), (6.3) and (6.11) are fulfilled.

Example 6.15 A new central taxi station should be located in the district around La Habana on
Cuba. We assume that the new location will be located as close as possible to each center of the
cities La Habana, Guanabo, San José de las Lajas, Santiago de las Vegas, and Playa Baracoa. Due
to the high car traffic in the centers of the cities we want to avoid to place the new facility in the
near of the city centers. This means that we consider some forbidden regions around the given city
centers. Figure 6.3 illustrates this example and shows the whole set of Pareto efficient solutions of
the nonconvex location problem (POLP2

X(A)).

6.3 Extension to problems with attraction and repulsion

Under the assumptions given in (6.1), we consider the problem of locating a new facility in presence
of attraction points a1, · · · , am ∈ E, m ∈ N, and repulsion points (i.e. undesirable facilities, such
as polluting factories or nuclear plants) b1, · · · , bk ∈ E, k ∈ N. For notational convenience, we put

A := {a1, · · · , am} and B := {b1, · · · , bk}.

This nonconvex class of location problems is discussed by Jourani, Michelot and Ndiaye [67] and
can be modeled as follows:{

ĝA,B(x) :=
(
||x− a1||, · · · , ||x− am||,−||x− b1||, · · · ,−||x− bk||

)
→ min

x ∈ X
(POLP2

X(A,B))

Then, for any i ∈ Il, the penalized multi-objective location problem is given by{
ĝ⊕iA,B(x) :=

(
ĝA,B(x),−||x− di||

)
→ min

x ∈ E,
(POLP2

E(A,B)⊕i)

where Bi := B ∪ {di} consists of all repulsion points belonging to B and one additional point
di ∈ intDi. In fact, (POLP2

E(A,B)⊕i) can be seen as the problem (POLP2
E(A,Bi)).
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Figure 6.3: The set of Pareto efficient solutions (black colored region) of the problem (POLP2
X(A))

for Example 6.15 illustrated on a map (from OpenStreetMap) of La Habana in Cuba.

It is important to mention that ĝA,B is neither componentwise semi-strictly quasi-convex nor
componentwise quasi-convex. The sets of (strictly, weakly) Pareto efficient solutions of the un-
constrained problems (POLP2

E(A,B)) (defined as (POLP2
X(A,B)) with E in the role of X) and

(POLP2
E(A,B)⊕i) can be completely characterized by using results in Jourani, Michelot and Ndiaye

[67], as to see in the next lemma.

Lemma 6.16 ([67]) Assume that (6.1) holds. Let B ⊆ E be a nonempty finite set. Then, the
following assertions hold for the problem POLP2

E(A, B) (defined as (POLP2
X(A,B)) with B in the

role of B and E in the role of X):

1◦. SEff(E | ĝA,B) = convA+ cone (convA− convB)) .

2◦. If (convA) ∩ (convB) = ∅, then SEff(E | ĝA,B) = Eff(E | ĝA,B) = WEff(E | ĝA,B) 6= E.

3◦. (convA) ∩ (convB) 6= ∅ if and only if WEff(E | ĝA,B) = E.

4◦. rint(convA) ∩ rint(convB) = ∅ if and only if Eff(E | ĝA,B) = SEff(E | ĝA,B) 6= E.

5◦. rint(convA) ∩ rint(convB) 6= ∅ if and only if Eff(E | ĝA,B) = E.

6◦. WEff(E | ĝA,B) = {x ∈ E | (convA) ∩ conv({x} ∪B) 6= ∅}.

7◦. rint(SEff(E | ĝA,B)) = {x ∈ E | rint(convA) ∩ rint(conv({x} ∪B)) 6= ∅}.

Remark 6.17 Notice that SEff(E | ĝA,B), Eff(E | ĝA,B) and Eff(E | ĝA,B) are closed, convex
sets.

By the next Corollary 6.18 and by Lemma 6.16 (applied for the set B := B as well as for each of
the sets B := Bi, i ∈ Il), we obtain useful inner approximations (lower bounds) for sets of (strictly,
weakly) Pareto efficient solutions of (POLP2

X(A,B)).
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Corollary 6.18 ([53]) The following assertions hold:

SEff(X | ĝA,B) ⊇ [X ∩ SEff(E | ĝA,B)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ SEff
(
E | ĝ⊕iA,B

)]
;

Eff(X | ĝA,B) ⊇ [X ∩ Eff(E | ĝA,B)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩ Eff
(
E | ĝ⊕iA,B

)]
;

WEff(X | ĝA,B) ⊇ [X ∩WEff(E | ĝA,B)] ∪

[⋃
i∈Il

X ∩ (bdDi) ∩WEff
(
E | ĝ⊕iA,B

)]
.

Under the assumption (6.3), we actually have X ∩ (bdDi) = bdDi for every i ∈ Il.

Proof. Directly follows by Corollary 3.22.

Example 6.19 In Example 6.10, we studied a planar constrained point-objective location problem
(POLP2

X(A)) involving the Euclidean norm || · ||2, three given facilities

a1, a2, a3 ∈ R2 = E,

and a feasible set
X = X1 ∩X2 = (R2 \ intD1) ∩ (R2 \ intD2).

Now, we extend Example 6.10. We consider one additional attraction demand point a4 := d1 (i.e.,
A = {a1, · · · , a4}) and we introduce one repulsion point b1 := d2 (i.e., B = {b1}). So, our location
problem is of type (POLP2

X(A,B)) with m = 4, k = 1, and l = 2.
In our model, we assume that a certain minimum safe distance between the new facility x ∈ R2

and the undesirable facility b1 (e.g., polluting factory) is maintained. This is ensured in our model
by considering a forbidden region intD2 around the point b1. Moreover, in our example, the new
facility x ∈ R2 can not be located in a region around the attraction facility a4 (e.g., due to certain
territorial circumstances), again modeled by a certain forbidden region intD1 around the point a4.

Now, we are interested in computing Pareto efficient solutions for the problem (POLP2
X(A,B)).

The objective functions considered in our approach are given by

ĝA,B(x) =
(
||x− a1||2, · · · , ||x− a4||2,−||x− b1||

)
;

ĝ⊕1

A,B(x) =
(
||x− a1||2, · · · , ||x− a4||2,−||x− b1||,−||x− a4||

)
;

ĝ⊕2

A,B(x) =
(
||x− a1||2, · · · , ||x− a4||2,−||x− b1||,−||x− b1||

)
.

Due to b1 /∈ convA, in view of Lemma 6.16 (1◦, 2◦), we get

Eff(R2 | ĝA,B) = convA+ cone
(
convA− b1

)
.

Moreover, since int(convA) ∩ rint(conv{b1, a4}) 6= ∅, it follows

Eff
(
R2 | ĝ⊕1

A,B

)
= R2

by Lemma 6.16 (4◦). It is easily seen that

Eff
(
R2 | ĝ⊕2

A,B

)
= Eff(R2 | ĝA,B).

We conclude that

Eff iapp :=
[
X ∩ Eff(R2 | ĝA,B)

]
∪ [bdD1] ∪

[
(bdD2) ∩ Eff

(
R2 | ĝ⊕2

A,B

)]
is an inner approximation for the set Eff(X | ĝA,B), taking into account Corollary 6.18.
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Figure 6.4 shows the sets Eff
(
R2 | ĝ⊕1

A,B

)
(upper left image), Eff

(
R2 | ĝ⊕2

A,B

)
(upper right image),

Eff(R2 | ĝA,B) (lower left image), and Eff iapp (lower right image).

Eff
(
R2 | ĝ⊕2

A,B

)

a3

a1

a2

Eff
(
R2 | ĝ⊕1

A,B

)
a4

a3

a1

a2

intD1

b1

intD2

a1

a3
a2

intD1

Eff iapp

a4

b1

intD2

b1

Eff(R2 | ĝA,B)

a3

a1

a2

b1

a4

b1b1

a4

Figure 6.4: Computation of Pareto efficient solutions for the nonconvex location problem
(POLP2

X(A,B)) with m = 4, k = 1 and l = 2.

6.4 Concluding remarks

In this chapter, we applied our results to a special multi-objective location problem (known as
point-objective location problem) that consists of locating a new facility in a continuous location
space (a finite-dimensional Hilbert space) in the presence of a finite number of demand points. For
the choice of the new location point, we took into consideration some forbidden regions that are
given by open balls (defined with respect to the underlying norm). For such a nonconvex location
problem, under the assumption that the forbidden regions are pairwise disjoint, we characterized
completely the set of (strictly, weakly) Pareto efficient solutions by using our penalization approach
from Chapters 2 and 3, and results obtained by Jourani, Michelot and Ndiaye [67].

It is important to mention that our approach relies essentially on the fact that the objective
function in (POLP2

X(A)) as well as the unit balls D1, · · · , Dl (see the assumptions given in (6.1))
are defined with respect to a norm induced by a scalar product. This ensures that we can apply
the results derived by Jourani, Michelot and Ndiaye [67].
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It would be interesting to study other types of balls D1, · · · , Dl, for instance balls defined with
respect to a polyhedral norm µ : E → R. Therefore, in a forthcoming work, we will analyze
a planar point-objective location problem involving a polyhedral norm η : R2 → R. It is known
that such a problem without considering constraints can be solved completely. In order to solve a
corresponding constrained problem with a feasible set that is given by the complement of a finite
union of open balls with respect to a polyhedral norm µ : R2 → R, we have to compute the set of
(strictly, weakly) Pareto efficient solutions of the problem{(

η(x− a1), · · · , η(x− am),−µ(x− di)
)
→ min

x ∈ E = R2.

Notice that this problem includes only one repulsive demand point, namely the point di. Hence, as
mentioned by Jourani, Michelot and Ndiaye [67] in their conclusion, some results for the polyhedral
case in presence of only one repulsive demand point could be expected.

Since constrained point-objective location problems involving attraction points and repulsion
points are of great practical relevance, the analysis given in Section 6.4 could be extended with
the aim to find representations (not only inner or outer approximations) for the sets of (strictly,
weakly) Pareto efficient solutions of the nonconvex location problem (POLP2

X(A,B)).



Conclusions

This thesis studies constrained multi-objective optimization problems involving componentwise
generalized-convex (semi-strictly quasi-convex, quasi-convex, or explicitly quasi-convex) vector-
valued objective functions that are acting between a real linear topological pre-image space and
a finite-dimensional image space. In particular, the case of nonconvex constraints is analyzed in
detail. Solutions of the multi-objective optimization problems are defined with respect to the
well-known concepts of (strict, weak, proper) Pareto efficiency.

In the following, we highlight some of our new results:

• We derived a new vectorial penalization approach for multi-objective optimization problems
with generalized-convexity assumptions on the objective functions. We showed that the
set of (strictly, weakly) Pareto efficient solutions of such a problem with a not necessarily
convex feasible set can be computed completely by using the sets of (strictly, weakly) Pareto
efficient solutions of at most two corresponding multi-objective optimization problems with
a new feasible set that is a convex upper set of the original feasible set (see Chapter 2). Our
approach relies on the fact that the original feasible set can be described by using level sets
of a certain scalar penalization function.

• In particular, we obtained useful relationships between constrained and unconstrained multi-
objective optimization. Our results show that constrained generalized-convex multi-objective
optimization (involving convex constraints) is in a certain sense equivalent to unconstrained
generalized-convex multi-objective optimization.

• By the application of our penalization approach, we succeeded to characterize solutions sets
for two classes of nonconvex constrained multi-objective optimization problems (the feasible
set is given by a finite union of convex sets or by the whole pre-image space excepting some
forbidden regions that are given by convex sets; see Chapter 3) in terms of the solutions sets
of corresponding unconstrained multi-objective optimzation problems.

• For special classes of multi-objective location problems, it is known that the so-called pro-
jection property holds, i.e., the set of Pareto efficient solutions of the constrained problem
with a closed, convex feasible set X can be obtained by projecting the set of Pareto efficient
solutions of the corresponding unconstrained problem onto X (see Chapter 4). We pointed
out that our penalization approach is in particular very useful in the case that the projection
property does not hold (e.g., for the class of point-objective location problems if the distances
are induced by a not strictly convex norm; see Remark 4.7). Of course, our approach can
also be used for problems involving nonconvex constraints, hence it opens the way for devel-
oping algorithms for such problems (as illustrated for a particular nonconvex multi-objective
location problem in Chapter 6).

• We showed that the set of (strictly, weakly) Pareto efficient solutions of a problem with
closed, convex constraints that belongs to a well-known class of multi-objective location
problems (e.g., point-objective location problems, multi-objective min-sum location problems,
multi-objective min-max location problems, convex multi-objective ordered median problems)
can be completely characterized in terms of the sets of (strictly, weakly) Pareto efficient
solutions of at most two corresponding unconstrained multi-objective location problems of
the same class (see Chapter 4).
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• In Chapter 5, we studied unconstrained planar point-objective location problems where the
distances between points are defined by means of the Manhattan norm. By characterizing the
nonessential objectives of such location problems and, by eliminating them, we developed an
effective algorithm (the Rectangular Decomposition Algorithm) for generating the whole set
of Pareto efficient solutions as the union of a special family of rectangles and line segments.

• We analyzed point-objective location problems in finite-dimensional Hilbert spaces involving
multiple forbidden regions (see Chapter 6). For the choice of the new location point, we
are taking into consideration a finite number of forbidden regions that are given by open
balls (defined with respect to the underlying norm). For such a nonconvex multi-objective
location problem, under the assumption that the forbidden regions are pairwise disjoint, we
succeeded to give complete geometrical descriptions for the sets of (strictly, weakly) Pareto
efficient solutions.

The results of this thesis are useful for deriving solution procedures for different classes of non-
convex multi-objective optimization problems. This will be the main topic for future research.
Some further ideas for extending the results of this thesis are given in the concluding remarks of
the preceding chapters.



Summary of Contributions

This thesis is mainly based on four articles that are published in peer-reviewed international jour-
nals:

• [3] Alzorba S, Günther C, Popovici N, Tammer C (2017) A new algorithm for solving pla-
nar multi-objective location problems involving the Manhattan norm. European Journal of
Operational Research 258(1):35–46;

• [53] Günther C (2018) Pareto efficient solutions in multi-objective optimization involving
forbidden regions. Revista de Investigacion Operacional (to appear);

• [55] Günther C, Tammer C (2016) Relationships between constrained and unconstrained
multi-objective optimization and application in location theory. Mathematical Methods of
Operations Research 84(2):359–387;

• [56] Günther C, Tammer C (2018) On generalized-convex constrained multi-objective opti-
mization. Pure and Applied Functional Analysis (accepted).

Let us outline the author’s contributions to each chapter:

• A part of the facts that are given in the Introduction were already mentioned in [3, 55, 56, 53].

• Chapter 1 contains some basic facts that were also given in [3, 55, 56, 53]. However, in
this thesis, we take an extended view on the theories of convex analysis, generalized-convex
analysis, and multi-objective optimization. Section 1.3 is based on a joint work [56] with
Christiane Tammer.

• Chapter 2 is based on joint works [55, 56] with Christiane Tammer. However, in this thesis,
we consider functions that are defined on a nonempty subset D of the linear topological
space E. In [56], the case D = E is considered, while in [55] it is assumed that D = E = Rn.
Section 2.7 contains some new observations.

• In Chapter 3, Section 3.1 is new, while Section 3.2 is part of [53] which is the sole work of
the author.

• Chapter 4 is new, however within this chapter we use some ideas that were presented in the
articles [3, 55, 56, 53].

• Chapter 5 (except of Section 5.5) is based on the joint work [3] with Shaghaf Alzorba, Nicolae
Popovici and Christiane Tammer. Section 5.5 contains an example from [55].

• Chapter 6 is based on [53] which is the sole work of the author. Example 6.19 is new.
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[84] Mäkelä MM, Eronen V-P, Karmitsa N (2014) On nonsmooth optimality conditions with gen-
eralized convexities. Optimization in Science and Engineering 333-357

[85] Malivert C, Boissard N (1994) Structure of efficient sets for strictly quasi-convex objectives.
Journal of Convex Analysis 1(2):143–150

[86] Mangasarian OL (1965) Pseudo-convex functions. Journal of the Society for Industrial and
Applied Mathematics Series A Control 3(2):281–290

[87] Mordukhovich SB, Nguyen Mau Nam (2006) Subgradients of distance functions at out-of-set
points. Taiwanese Journal of Mathematics 10(2):299–326

[88] Ndiaye M, Michelot C (1998) Efficiency in constrained continuous location. European Journal
of Operational Research 104(2):288–298

[89] Nickel S (1995) Discretization of Planar Location Problems. Shaker, Aachen

[90] Nickel S, Puerto J (2005) Location Theory: A Unified Approach. Springer, Berlin Heidelberg
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