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A B S T R A C T

Global change and the continuously growing global population chal-
lenge scientists and political decision-makers. These challenges re-
quire efficient management tools for yield forecasting, estimation of
usable water resources or to administratively regulate crop cultiva-
tion via agricultural subsidies.

These tools require highly accurate and timely information about
current land use and land use change. Especially in agricultural areas,
these data can often be produced only with a large effort, because
ground surveys are very cost- and labour-intensive or limited by
political crises and inefficient administrative structures. Monitoring
initiatives based on remote sensing data, which classify crop types ac-
cording to their different spectral reflectance characteristics, provide
valuable contributions to such mapping tasks. The increasing tem-
poral density of available satellite data of rising geometrical and spec-
tral resolution can exceed computational limits for large-scale land
use classifications. Contrarily, persistent periods of cloud coverage
are an issue in many regions of the world, which can strongly re-
duce the amount of available and usable data sets. Inaccurate land
use data hamper the reliability and accuracy of the respective models
and hence decrease public acceptance of these tools.

As shown in recent studies, specifically adjusted vegetation indices
and plant phenological phases are effective indicators to address the
negative effects of temporal data gaps or to discriminate spectrally
highly similar crop types. Reflectance properties of crops are species-
specific, which results in temporal windows of different spectral separ-
ability. These temporal windows can be employed for the selection of
decisive acquisition dates and spectral regions to prevent computa-
tional problems.

In this study, a methodology to optimise spectral features auto-
mated and to detect stable patterns of their spectral separability was
developed. These patterns are systematically linked to phenological
phases which are understood as indicators for time frames of max-
imal spectral separability of crops. The thesis on hand shows that
the application of the phenological indicator time frames to select the
most suitable acquisition dates and the optimisation of vegetation in-
dices can increase land use classification accuracy. As a consequence,
ground surveying effort can be reduced. Phenological indicator time
frames could be derived for the dominating crop types in Germany.
Since the methodology is flexibly applicable to other crop types and
study regions, it can enhance national or other large-scale remote
sensing based monitoring initiatives.
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Z U S A M M E N FA S S U N G

Der globale Wandel und die stetig wachsende Weltbevölkerung stel-
len Akteure aus Wissenschaft und Politik vor neue Herausforderun-
gen. Dies erfordert effiziente Verfahren zur Prognose landwirtschaft-
licher Erträge und Wasserressourcen oder zur behördlichen Steue-
rung des Feldfruchtanbaus durch Agrarsubventionen.

Solche Werkzeuge benötigen genaue, hochaktuelle Landnutzungs-
daten. Diese sind oftmals nur schwer zu erhalten, da der Erhebungs-
aufwand kosten- und arbeitsintensiv ist oder durch politische Krisen
und ineffiziente Verwaltungen erhöht wird. Fernerkundungsbasiertes
Monitoring, welches unterschiedliche spektrale Reflexionseigenschaf-
ten zur Unterscheidung nutzt, leistet hier einen wichtigen Beitrag zur
Kartierung. Durch die zunehmende temporale Dichte von Satelliten-
daten immer höherer geometrischer und spektraler Auflösung kön-
nen Klassifikationen großer Flächen an Rechenkapazitätsgrenzen sto-
ßen. Zusätzlich wird die Verfügbarkeit nutzbarer Datensätze durch
längere Zeiträume starker Wolkenbedeckung limitiert. Unzureichend
genaue Landnutzungsdaten erschweren jedoch Aussagekraft, Modell-
güte und Akzeptanz der genannten Werkzeuge.

Aktuelle Forschungsergebnisse konnten zeigen, dass angepasste
spektrale Maße und pflanzenphänologische Phasen dabei Werkzeu-
ge sind, um die negativen Effekte von Datenlücken zu mindern oder
spektral ähnliche Fruchtarten zu unterscheiden. Fruchtarten weisen
phasenabhängige Reflexionseigenschaften auf, wodurch Zeitfenster
unterschiedlich hoher Trennbarkeit entstehen. Diese können zur Be-
stimmung entscheidender Aufnahmezeitpunkte oder Spektralberei-
che verwendet werden, um rechentechnischen Problemen vorzubeu-
gen. In dieser Arbeit wurde eine Methode entwickelt, um spektra-
le Maße automatisiert zu optimieren und dabei zeitlich stabile Mus-
ter spektraler Trennbarkeit zu detektieren. Die spektralen Trennbar-
keitsprofile werden systematisch phänologischen Phasen zugeordnet,
die anschließend als Indikatoren für Zeitfenster maximale Trennbar-
keit verschiedener Feldfrüchte betrachtet werden können.

Die vorliegende Arbeit zeigt, dass die Anwendung von phänolo-
gischen Indikatorphasen zur Auswahl der möglichst aussagekräfti-
gen Satellitendaten zusammen mit der Optimierung von Vegetations-
indizes die Genauigkeiten von Landnutzungsklassifikationen erhö-
hen kann. Dabei konnten Trennbarkeitszeitfenster für die dominie-
renden Feldfruchtarten in Deutschland ausgewiesen werden. Da die
Methode flexibel auf andere Fruchtarten und Untersuchungsgebiete
anwendbar ist, kann sie einen wertvollen Beitrag zu überregionalen
Monitoringinitiativen leisten.
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1
I N T R O D U C T I O N

The following sections briefly describe the outline of this thesis. The
motivation for this research (Section 1.1), which leads to the determ-
ines the overall aims and scope of this thesis (Section 1.2), is presented
along with its general structure (Section 1.3).

1.1 motivation

Accurate information on Land Use / Land Cover (LULC) gains increas-
ing importance in several contexts such as food and water security for
a growing global population or monitoring of phenomena related to
global and climate change (e. g. Feddema et al. 2005). The LULC is
traditionally assessed by ground surveys, that can naturally only fo-
cus on an area of limited spatial size or by reporting obligations that
are costly and error-prone. The analysis of remote sensing imagery
became a powerful tool to provide these information at moderate
costs and larger scales (Congalton et al. 2014) up to continental and
global products. The spectrum of applications that require these in-
formation ranges from catchment hydrological modelling, estimation
of carbon storage for climate change modelling to crop yield estima-
tion for food and biofuel security assessment and control mechanisms
for area-based subsidies (Blaes et al. 2005).

The suitability of remote sensing methods for these topics is primar-
ily due to its independence of administrative borders, continuous
data supply and (almost) global coverage. This is facilitated by the
continuously increasing number of satellites that have been launched
to provide image data of the Earth’s surface for analysing processes
related to these topics (Belward & Skøien 2015). Beside the increasing
temporal resolution, these new super-spectral sensors record spec-
tral information in more spectral regions than the established, multi-
spectral satellite sensors.
Effective strategies to deal with the unprecedented data amounts re-
quire the integration of additional data sources. Furthermore, meth-
ods are required that are robust against situations of persistent cloud
coverage, which can significantly limit the performance of land use
classifications. Phenological information is one of the most employed
types of data to improve classification results. However, due to vari-

1



1.2 aims and scope 2

ous environmental factors that influence the spectral signature of
crops, spatially explicit phenological information of high thematic
depth are required. Until now, no operational method is currently
available that efficiently provides this type of phenological informa-
tion and integrates phenology into classification frameworks.

1.2 aims and scope

This thesis aims on the development of methods to improve the ap-
plicability of remote sensing methods for detailed, accurate and fast
monitoring of cropland areas. These methods are intended to be uni-
versally applicable in various regions and for different satellite sensors
and application scenarios.

To achieve this, the established strategies of vegetation indices and
vegetation phenology as separability-determining variables are con-
solidated.

The goals of this thesis are therefore:

• to investigate how spectral indices and other spectral features
can be optimised to enable optimal feature selections;

• to employ volunteered geographic information for modelling
and to investigate how they can be coupled with spectral re-
flectance patterns;

• to develop a geostatistical model to generate spatially explicit
phenological information of high thematic depth;

• to detect of phenological time frames for optimal crop species
separability;

• to optimise data set selection for crop classification.

1.3 structure of this thesis

This thesis is based on three research papers, which have been pub-
lished in 2016 and 2018. The three papers follow the general aim that
was described in Section 1.2. Prior to the presentation of the papers,
an introduction is given to the thematic context of the research. This
includes a description of the primary investigation areas (Chapter
3.1), and the three components of the methodology, which are land
use classification (Section 2.1.1), vegetation phenology (Section 2.1.2)
and vegetation indices (Section: 2.1.3). Further, Section 2.1.1.2 outlines
the limitations of current land use classification schemes and presents
strategies to overcome them.



1.3 structure of this thesis 3

The three papers form the chapters 4 to 6. Each of the papers is
summarised briefly and the essence of its results and main findings
are combined to contribute to the overall research aims.

In Chapter 7, a synthesis of the results presented in the individual
chapters is given. This synthesis presents results of further applic-
ation and methodological enhancements regarding thematic depth
and usability of the demonstrated methods (Chapter 7). All presen-
ted methods and results are comprehensively discussed in Chapter 8

together with the outline of possible future research and final conclu-
sions derived from this thesis.



2
S C I E N T I F I C B A C K G R O U N D

This chapter outlines the scientific background of this study. It ad-
dresses the state of the art (Section 2.1) in remote sensing-based land
use classification and crop phenology, the definition of core terms and
the developed research hypothesis of this thesis. The investigation
areas and study sites are introduced in Section 3.1 and the data basis
for the conducted research is described in Section 3.2. The chapter
concludes in Section 2.2 in which the base workflow of developed
methodology is presented.

2.1 state of the art

The following sections describe the scientific background of the con-
ducted research. It includes a literature review that addresses remote
sensing methods for land use classification, crop phenology and cur-
rent trends to integrate these research areas. This literature review
leads to the formulation of the main research hypothesis, which are
formulated in Section 2.1.5.

The core terms plant phenology, phenological phases and phenological
time frames are central throughout this thesis and therefore differen-
tiated initially. First, plant phenology is defined as "annually and peri-
odically reappearing events (phases) in growth and development of
plants" (Schmidt et al. 2014) and their interrelation to phases of the
same or different species.

Consequently, a phenological phase is defined as the period between
two subsequent phenological events. Synonyms for phenological phases,
which appear in this thesis, are phenophases, phenological stages and
growing stages.

A phenological time frame or phenological (temporal) window is under-
stood as a temporal period, during which a single phenological phase
dominates all fields covered by the respective crop type within an
area, delimited by criteria such as landscape units, administrative di-
vision or data availability.

4



2.1 state of the art 5

2.1.1 Land use classification

Among the applications of remote sensing-based methods that mon-
itor the Earth’s land surface, land use classification is one of the
most frequently applied and consequently one of the applications
on which the largest research activities were focussed. In this context,
land cover describes the "biophysical cover of the Earth’s terrestrial
surface, identifying vegetation, inland water, bare soil or human in-
frastructure" (Gómez et al. 2016). Beyond this, land use describes the
subdivision of anthropogenic land cover types in more detailed them-
atic classes to capture how people use the Earth’s surface.

In principle, classification is the distinction of specific classes within
a remote sensing image. Classification uses a statistical or machine-
learning-based classifier that employs the class-specific reflectance
differences (Schowengerdt 2006) to distinguish between classes. Land
use classification uses material-specific reflectance properties of nat-
ural and artificial surfaces to find clusters of similar composition. The
level of detail of these classes depends on the scale of observation and
can range from aggregated classes such as built-up area, forests and
cropland to detailed classes such as individual tree or crop species,
vegetation communities or different roof materials in built-up areas
(Schowengerdt 2006).

Land use classification is mainly performed using optical remote
sensing data that describe the solar radiation that is reflected by the
Earth’s surface in wavelengths between 400 nm and 2500 nm. Optical
techniques show limitations because they only provide usable data
for classifications during daytime and cloud-free weather conditions
(Blaes et al. 2005). The probability, that enough cloud-free images for
a classification are available, varies between ecoregions (Whitcraft et
al. 2015). Additionally, the content of valuable information decreases
with decreasing sun inclination angles, because of high percentages
of the image are affected by shadows. Furthermore, Vegetation in-
dices (VIs) and especially the Normalized Difference Vegetation In-
dex (NDVI) tend to increase when sun inclination angle is low (Goodin
et al. 2004). As a consequence for mid-latitudes, images acquired dur-
ing winter only contain sparse amounts of valid information.

2.1.1.1 Types of land use classification

A huge scientific effort has been put successfully in the optimisation
of classification methods, including approaches that use images from
multiple acquisition dates (e. g. Guerschman et al. 2003; Lunetta et
al. 2006), incorporation of Synthetic Aperture Radar (SAR) data (e. g.
Blaes et al. 2005; Joshi et al. 2016) and other remote sensing data
sources. Further effort was made on the development, adaptation and
comparison of different classifiers (e. g. Löw et al. 2015; Tehrany et
al. 2014) in order to evaluate classification performance, robustness
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or flexibility. The following paragraphs describe different scientific
trends in classification optimisation regarding temporality of the ap-
proaches, supervision and geometric characteristics of the input data.

temporality The traditional way to classify remote sensing im-
ages is to consider an image acquired on one specific point in time,
usually around noon of a day. Depending on the application require-
ments in terms of level of detail, target classes, structure, location or
size of the site, the resulting classified image may be sufficient if the
acquisition date of the single image is timed well. If the application
includes a higher class number and is applied in regions of rapidly
changing or fragmented landscapes or over a large gradient of cli-
matic conditions, seasonality must be considered for accurate map-
ping (e. g. Blaes et al. 2005). To do so, images of multiple acquisition
dates provide the necessary classification information with usually
higher accuracy than mono-temporal classifications. Time series of
satellite imagery are also essential for image compositing techniques
that result in cloud-free image composites of persistently cloud-co-
vered study regions (e. g. Frantz et al. 2017; Griffiths et al. 2013).

supervision Land use mapping can be performed either incor-
porating ground information or without any ground references (e. g.
Mather & Tso 2016). The first case is denoted as supervised, the lat-
ter as unsupervised classification. Unsupervised classifications per-
form a class decision by only grouping pixels of similar reflectance
properties. Supervised methods extract the reflectance patterns of
areas which land cover is known and classify all pixels to the ground
truth class that is most similar. Support vector machines, artificial
neural networks, classification and regression trees, random forests
and maximum likelihood classifiers are the most frequently applied
supervised classifiers, while k-means and fuzzy clustering are pop-
ular examples for unsupervised classifiers (Rodriguez-Galiano et al.
2012).

geometric base Remote sensing sensors record the observed re-
flectance as mean value for an artificial rectangle (pixel) of edge lengths
constantly defined in meters or arc degrees. Naturally, the pixel is
often used as object for which a class decision is made, although
post-processing after the classification reduces the effects of irregu-
lar misclassification or intra-field variability of field crops. To avoid
these effects and to reduce the processing time, natural objects are
an alternative of increasing importance (e. g. Blaschke 2010). These
natural objects are formed of averaged pixel information for an area
of similar characteristics, such as elevation, aspect, slope or other ter-
rain attributes or vegetation patterns. These objects can be derived by
image segmentation as additional pre-processing step.
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2.1.1.2 Limiting factors for classification accuracy

Despite these immense efforts, factors of remote sensing methods still
persist that limit the classification accuracy. First, no satellite sensor
exists that provides data that reaches all requirements for accurate,
fast, and large scale application. These requirements are

• large swath widths to reduce the requirement for data mosaick-
ing that is related with systematic reflectance differences between
the parts of the mosaic due to differing conditions at the time
of image acquisition,

• high spectral resolution, i. e. the monitoring in a number of spec-
tral bands exceeding approximately 30 instead of a small num-
ber to capture all relevant parts of the electromagnetic spec-
trum,

• high radiometric resolution to capture small but significant re-
flectance differences between materials,

• high spatial resolution to minimise the influence of pixels that
contain spectral information of different materials, and

• continuous monitoring of regular repetition intervals.

All currently both freely and commercially available optical sensors
fail at least one of these requirements, due to their mission design that
must balance data amount and processing needs. The satellite sensors
of the Landsat family for instance fulfil regular repetition, large swath
widths and high radiometric resolution, but its 30 m× 30 m pixel sizes
limits the applicability in fragmented landscapes. Further, the spec-
tral bands do not record reflectance in the red edge region, which
is crucial for accurate vegetation monitoring (Schuster et al. 2012).
Contrarily, hyperspectral sensors like HyMap have high spatial and
spectral resolution but small swaths and no regular repetition inter-
val due to its airborne design. The upcoming hyperspectral EnMap
sensor, which also has a large number of spectral bands, only will
provide data of 20 m×2 0 m pixel size on demand.

2.1.1.3 Crop mapping as special case of land cover classification

Crop classification is a more challenging task than for example mon-
itoring of forest decline or flood detection due to often very similar
spectral response of the crops. Furthermore, in many regions of in-
tense agriculture, the cultivated crops change every season or even
within seasons due to crop rotation practices, which narrows the tem-
poral window for classification. Since accurate crop monitoring is re-
quired for food security, ecological monitoring and for policy makers
(Courault et al. 2016; Gómez et al. 2016), accurate methods must be
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developed that work operationally and produce results of sufficient
reliability during short acquisition periods. Thus, efforts focus on vari-
ous strategies to improve classification accuracies. These strategies in-
clude, among others, the incorporation of phenological parameters
(e. g. Haralick et al. 1980; Knight et al. 2006; Lloyd 1990; Son et al.
2013; Zhong et al. 2011), pre-classification stratification of the study
area (Franklin & Wulder 2002), incorporation of multi-sensor remote
sensing data such as combinations of multi-spectral, SAR and LIDAR
data (Chen et al. 2017; Joshi et al. 2016; Siachalou et al. 2015; Waldner
et al. 2015) or texture (Khatami et al. 2016) as additional criteria be-
sides reflectance or improved feature selection.
Two of these strategies, which have been identified as key methods in
land use mapping (Morain 1974), are investigated within this thesis.
Namely these are incorporation of plant phenology and improved fea-
ture selection. Two reasons determine the selection of the strategies:

1. The drivers of phenological development are mainly climatic
and the modelling of the plant physiological responses has been
studied intensively during the last decades. Consequently, find-
ings related to phenology are probably transferable and ad-
justable for wide range of different landscapes.

2. There is no doubt in the remote sensing community that ap-
propriate selection of spectral features such as vegetation in-
dices improve classification accuracies and most recent satellite
sensors allow the computation of much more sophisticated spec-
tral features.

2.1.2 Vegetation phenology

According to Lieth (2013), phenology is defined as "the study of the
timing of recurring biological events, the causes of their timing with
regard to biotic and abiotic forces, and the interrelation of phases of
the same or different species". Since this definition includes period-
ical events of all kinds of organisms (e. g. seasonal variations of bac-
terioplankton community composition, beginning of the rotting sea-
son of ruminants), the more specific term plant phenology is defined
as the examination of annually and periodically reappearing stages
in growth and development of plants, represented by clearly defined
events (Schmidt et al. 2014).

The main developmental phases of plants, that can be observed for
almost every species (emergence, growing, blooming, ripening and
senescence), can be subdivided into shorter, species-specific phases
for a more detailed description of the plant phenological cycle. These
sub-phases are of importance for several applications such as yield
prediction of cereal crops (Bolton & Friedl 2013), timing of fertil-
ising actions (Filella et al. 1995) or for monitoring pollen contamin-
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ation to define allergy risk time frames (Beggs 2004). For continuous
monitoring, uniquely defined standards for sub-phase definitions are
required to allow comparable observations, especially for volunteer-
based programmes. Different numeric schemes were developed over
the past decades. The development of these standards is described
in detail in Meier (2003). A globally accepted numeric code system
is the Biologische Bundesanstalt, Bundessortenamt und Chemische
Industrie (BBCH) scale (Bleiholder et al. 2001), that defines ten main
phases (Tab. 1) with up to ten sub-phases for each main phase.

Table 1: Main phases of the BBCH numerical code for plant phenological
phases (Bleiholder et al. 2001)

Codes Main phase

00...09 Germination / sprouting / bud development

10...19 Leaf development (main shoot)

20...29 Formation of side shoots / tillering

30...39 Stem elongation or rosette growth / shoot development (main shoot)

40...49 Development of harvestable vegetative plan

50...59 Inflorescence emergence (main shoot) / heading

60...69 Flowering (main shoot)

70...79 Development of fruit

80...89 Ripening or maturity of fruit and seed

90...99 Senescence, beginning of dormancy

An alternative phenological scale is used for the German Weather
Service / German: Deutscher Wetterdienst (DWD) phenological mon-
itoring programme, which also assigns numerical codes of one or
two digits to each phase. Since the Phenological model for Applica-
tion in Spatial and Environmental sciences (PHASE), that is developed
within this study and presented in Chapter 5, is based on the DWD

programme, the DWD scale (DWD 2015) is used for phase coding.
Most but not all of the phases have an exact equivalent in the BBCH

scale. The DWD and BBCH codes for the phases of agricultural crops
that are currently monitored by the DWD programme are listed in
Tab. 2.

Various applications benefit from plant phenological information,
both from spatially explicit models and point-based observations. Key
application fields for plant phenological information were identified
by Chuine et al. (2013):

• Agrometeorology: Cereal yield or primary production, timing
of agricultural management actions such as fertiliser or pesti-
cide applications;
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• Public health: Prediction of atmospheric pollen content for al-
lergy alerts, prediction of algal blooms;

• Environmental monitoring: Detection of trends in phenological
timings as consequence of climate change related variations of
growing conditions.

Table 2: Crop phenological phases that are observed by the DWD (DWD 2015)
phenological monitoring programme and the BBCH (Bleiholder et al.
2001) equivalents.

Phase DWD Code BBCH Code

Greenup 1 -

Beginning of flowering 5 61

Full flowering 6 -

End of flowering 7 69

Beginning of sowing 10 0

Emergence 12 10

Closed stand 13 35

4
th leaf unfolded 14 14

Beginning of shooting / stem elongation 15/67 31

Beginning of leaf formation 16 12

Beginning of bud formation 17 50

Beginning of heading / tassel emergence 18/66 51

Beginning of milk ripening 19 75

Early dough ripening 20 83

Beginning of yellow ripening 21 87

Beginning of full ripening 22 -

Harvest 24 -

1
st cut for hay 25 -

1
st cut for silage 26 -

Tip of tassel emergence 65 53

The basic assumption for the majority of the currently existing
phenological models is that variations of the phenological develop-
ment of crops and grapevine are determined by temperature differ-
ences. This dependency was already presented by Réaumur (1735).
With increasing computational capacities and knowledge of climate
change, phenological modelling became more important since the
1960s (Chuine et al. 2013).

While temperature is still understood as the main driving factor
for plant development, other variables such as soil moisture and day
length also influence plant phenology in different degrees of impact.
For example, it has been frequently proven that precipitation vari-
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ations have almost no effect on timing of the phenological phases in
temperate regions, while in semi-arid climates drought-induced plant
stress delays or advances their timing (Fu et al. 2014).

In this context, it must be emphasised, that although timing of
phases is not affected by precipitation patterns under temperate cli-
matic conditions, yield can significantly decline as consequence of
drought stress. Consequently, more advanced phenological models
have been developed for application in semi-arid and arid regions.
These models require a much more diverse set of input variables than
only elevation and temperature. Detailed overviews on phenological
models are given in Chapter 5 and e. g. by Chuine et al. (2013) and
Zhao et al. (2013).

2.1.3 Vegetation indices

Phenological stages are linked to seasonal fluctuations of plant vital-
ity or plant water as well as of chlorophyll and nitrogen contents.
Each of these parameters becomes manifest in individual parts of
the electromagnetic spectrum. Differences in chlorophyll and nitro-
gen content are most effective in the visible and near infrared (NIR)
spectrum parts (e. g. Hunt Jr. et al. 2013), while general plant vitality
is more obvious to describe between red and NIR spectral regions. Fi-
nally, plant water content can be best investigated using reflectance
from the NIR to mid- or short wave infrared (SWIR).

Vegetation indices can be formulated based on these described
effects, depending on the intended application. Vegetation indices
are vegetation-specific spectral indices computed by application of
more or less complex mathematical operations applied on the spec-
tral bands of a remote sensing sensor. As demonstrated in numerous
studies (e. g. Asrar et al. 1984; Löw et al. 2013), the usage of VIs in-
stead of the single spectral channels as variables for crop mapping
leads to higher classification accuracy, because VIs amplify the spec-
tral response of vegetation and reduce effects of soil and topography
without eliminating these effects (Hunt Jr. et al. 2013).

An almost unmanageable number of spectral indices for various
applications can be found in the literature. Beside vegetation (e. g.
Bannari et al. 1995), these applications include mineralogical and geo-
logical detection (Van der Meer et al. 2012), fire monitoring (Epting
et al. 2005; Harris et al. 2011) and others. Despite this huge number
of specific indices, it remains uncertain whether a proposed index
is really the best performing possible index for the specific purpose
(Rivera et al. 2014). The optimisation of spectral indices for a specific
application is therefore a very promising approach to achieve results
of maximum possible accuracy.
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2.1.4 Phenology as variable for crop classification

Phenology becomes increasingly integrated into classification frame-
works, since different vegetation communities or species show spe-
cific differences in their developmental phases timing. These pheno-
logy-based classification (PBC) approaches, which have been applied
since decades (Haralick et al. 1980; Lloyd 1990; Morain 1974; White
et al. 2014; Xu et al. 2017), traditionally extract phenological metrics
directly from multi-spectral reflectance data. Field-related differences
of reflectance patterns can be utilised to discriminate between crop
species, cultivation practices as well as between irrigated and non-
irrigated agricultural areas.
Various studies have demonstrated that classification of smaller num-
ber of data sets acquired during highly significant temporal periods
lead to higher classification accuracy than the classification of all avail-
able satellite images for a specific study region (e. g. Conrad et al.
2014; Murakami et al. 2001; Van Niel & McVicar 2004; Wardlow et
al. 2007). These temporal windows are a consequence of the inter-
relation of phase-specific reflectance characteristics that are represen-
ted by the satellite images. This was demonstrated e. g. by Murakami
et al. (2001), who investigated the optimal number of images to in-
clude into a land use classification of cereals, rice, soy, lotus and rush
in Japan via NDVI profiles and spectral separability indicators. The
four optimal dates, however, were only investigated without includ-
ing ground or satellite-derived phenological observations.

Van Niel & McVicar (2004) studied temporal windows intensively
for a study region in Australia by assessing the accuracy of several
single-date classifications and various multi-date combinations of im-
ages. However, they resulted in the definition of calendar months that
can be used as indicators for the highest separability and refrained to
interpret the time frames against a phenological background.

Wardlow et al. (2007) addressed exactly these questions with a de-
tailed investigation of the effects of agricultural management actions
(especially irrigation) and mapping performance of six major crop
types. They conducted their analysis on large-area crop classifica-
tion in Kansas (United States of America) using Moderate Resolution
Imaging Spectroradiometer (MODIS) data and concluded with stable
vegetation index profiles which can be explained by typical pheno-
logical behaviour of the monitored crops. Additionally, Wardlow et
al. (2007) investigated the pairwise spectral separability by calcula-
tion of the Jeffries-Matusita distance, concluding in time frames dur-
ing which the separability of one major crop from the other major
crop types is maximal. However, the temporal borders of the high
separability time frames were held constant across entire Kansas. Re-
gional phenological differences of up to one month thus stayed uncon-
sidered and further discussion of inter-annual variations was omitted.
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Förster et al. (2012) proposed a method, that uses annually updated
information on the current growing advance of crops for a "phenolo-
gical correction" of derived NDVI profiles. Phenological in-situ meas-
urements were used as data on which the phenological correction
process is based on. However, Förster et al. (2012) neither addressed
the limited reliability of citizen science monitoring networks nor any
kind of interpolation to estimate phenological stages in not-observed
regions.

The problems of accurate timing of image acquisition and the min-
imum number of required time steps for accurate separation of spec-
trally similar crop types have been investigated by Conrad et al. (2014)
and Schmidt et al. (2014). Conrad et al. (2014) concluded with a num-
ber of 5 images per season to achieve accuracies > 85 % for classifica-
tions of highly structured landscape in irrigated, agriculturally used
landscapes in Uzbekistan. These findings correspond relatively well
to those presented by Schmidt et al. (2014) for the classification of
grassland communities, which could be classified with accuracy ex-
ceeding 80 % when only 3 acquisition dates were used.

Zhong et al. (2014) presented a promising approach that uses dis-
tinctive phenological features for classification of maize, soy beans
and a mixed crop class under humid climate in Kansas, USA. Their
method applies a random forest classifier trained by, among others,
phenological metrics data derived in a single year and applied this
classifier on data sets acquired during other years. In doing so, Zhong
et al. (2014) could achieve classification accuracies of more than 80 %.
They concluded that phenology is the best performing source for
inter-annual transferability of separability patterns compared to spec-
tral features and accumulated temperatures.

Another recently developed approach for multi-temporal classific-
ation is denoted as Time-weighted Dynamic Time Warping Analysis
(TWDTWA; Belgiu & Csillik 2018; Maus et al. 2016). This method is
especially designed for time series of high temporal density. It com-
putes a typical NDVI profile set for known crop types in a reference
study site and classifies an unknown site by comparison of the profile
patterns. To account for phenological differences, the reference pro-
files can be shifted, warped, stretched or compressed. However, also
in this approach, phenological stages are simply derived from the
VI profiles. Consequently, Maus et al. (2016) classified only aggreg-
ated classes such as "double cropping", "single cropping", "pasture"
and "forest". Belgiu & Csillik (2018) tested the approach based on
Sentinel-2 data and single-species crop classes, but did not conduct
the separation of different winter cereal crop types.
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2.1.5 Objectives and research hypothesis

The research initiatives described in the previous sections all show
shortcomings regarding the thematic depth of the investigated land
use classes. First, spectrally similar species are often aggregated to
classes of lower thematic depth (Belgiu & Csillik 2018; Wardlow et al.
2007). Spectrally highly similar species may possibly be cropped for
completely different purposes, which must be respected in ecological
modelling. Thus many applications require a more detailed cropping
information for individual species. For example, cereal species are
often aggregated to the thematic classes "winter-cropped cereals" and
"summer-cropped cereals", which disregards the fact that e. g. winter
wheat is mainly cropped for food and bio-ethanol production while
winter barley is predominantly used for fodder and only of minor
importance for human nutrition. Hence, methods are required that
allow the species-wise separation of crops over larger areas.

Second, phenology was found to be a key variable to improve the
accuracy of land use classifications and also allows to deal with data
gaps during cloud-covered conditions. It was repeatedly shown that
time frames of higher spectral separability are related to phenological
growth stages (Zhong et al. 2011). However, phenological informa-
tion is usually derived from remote sensing imagery, which can only
identify a small set of clearly visible phenological phases, or estim-
ated based on static crop calendars (Conrad et al. 2014; Wardlow et al.
2007). Phenological ground observations are an alternative (Förster et
al. 2012; Schmidt et al. 2014), but were not employed to systematically
model spatially explicit phenological phases. However, such a mod-
elling might reduce the uncertainty-evoking effects of volunteered
geographic information collections (Flanagin & Metzger 2008), even
though the DWD as data set provider applies several quality checks to
the raw observational data (Hense & Müller 2007).

Third, the development of novel VIs is still subject of remote sens-
ing research to further improve the capability of an index to map a
specific reflectance-represented ground phenomenon (e. g. Hede et al.
2015; Zhang et al. 2016). However, this procedure often results in an
index that is only valid under strict conditions and requires a lot of
data collection and modelling efforts (Rivera et al. 2014). Hence, for
classification tasks on larger scales, broader, less specifically sensitive
indices are usually preferred which limits the achievable classifica-
tion accuracy.
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These three shortcomings of current classification frameworks lead
to three hypotheses for this thesis, which are addressed in the three
papers presented in chapters 4, 5 and 6:

1. The automated selection of optimised spectral features acting
as predictor variables can improve classification accuracies com-
pared to a pre-defined set of standard vegetation indices;

2. Temporal patterns in spectral separability of crop types can be
explained by the site- and weather-specific phenological devel-
opment of the crops represented as phenological phases that
must be spatially explicitly available;

3. Multi-annually stable separability maxima can be understood
as phenological indicator phases for the data set selection to
reduce the number of required data sets and ground truth ob-
servations for land use classifications.

The regional focus of this research is on central Europe with its het-
erogeneous cropping patterns since it is characterised by favouring
climatic conditions and soils. Further, high prerequisites regarding
agricultural and ecological education of the farmers as well as on rel-
atively high technological infrastructure are fulfilled. Since for larger
scales the geometric resolution of satellite sensors represents the main
limiting factor for thematic depth (Wu & Li 2009, see Section 2.1.1.2),
the investigations focus on an ensemble of 12 major crop types that
are cultivated on significant percentage of the arable land in central
Europe (Tab. 3).

Table 3: Target crop species and its main usage purpose

Crop (trivial) Crop (scientific) Primary usage

Perennial grassland various Forage, biofuel

Winter wheat Triticum aestivum Forage, nutrition, biofuel

Winter barley Hordeum vulgare Forage, nutrition

Winter rye Secale cereale Nutrition, biofuel

Winter rapeseed Brassica napus Biofuel

Maize Zea mays Biofuel, forage, nutrition

Sugar beet Betula vulgaris subsp. vulgaris Nutrition, biofuel

Potatoes Solanum tuberosum Nutrition

Durum wheat Triticum durum Nutrition

Summer barley Hordeum vulgare Brewing, nutrition

Summer oats Avena sativa Forage

Summer wheat Triticum aestivum Brewing, nutrition
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The methods aim at contributing to the COPERNICUS Earth ob-
servation programme managed by the European Space Agency (ESA)
and the European Commission (EC). This initiative approaches an op-
erational crop monitoring programme for Europe.

The Sentinel-2 constellation (Drusch et al. 2012), that consists of two
identically constructed satellites launched in 2015 and 2017, today
provides optical imagery with 6 days repetition rate. Further, its com-
bination of spectral and spatial resolution exceeds the parameters of
the RapidEye constellation, that is classified as a "contributing mis-
sion" to be used for method development.

2.2 methodological overview

To assess the hypotheses that were formulated in Sections 1.2 and
2.1.5, the methodological sub-components, which are individually de-
scribed in Chapters 4 to 6, were integrated. A workflow that summar-
ises the three research papers is visualised in Fig. 1.
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Figure 1: Workflow for the derivation of phenological time frames. S repres-
ents spectral separability, t1 to t3 denote acquisition dates and Pn
represent phenological phases.
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First, a method was developed that systematically finds spectral
features that are most-suited for a specific land use classification
scenario. Considered over time, time frames of high class-specific
spectral separability are detected as an additional output. Further
it is investigated, whether these time frames are related to pheno-
logical phases of the target crop classes (Chapter 4). The relationship
between phenological development of crops and their spectral separ-
ability requires accurate phenological information. Volunteer-based
observation programmes can provide point information of valuable
input for these analysis, but show shortcomings due to small-scale cli-
matic variations and the subjectivity of the observations. Modelling
of plant-physiological responses to climate can address these limit-
ations. Consequently, a phenological model is developed based on
observations and the relationship between temperature and plant de-
velopment (Chapter 5) to model the timing of important phenolo-
gical phases during a growing season. These growing season-specific
timings of phenological phases and spectral separability of crops are
contemplated over different years. In doing so, the spatially explicit
phenological information are finally linked to the separability peaks.
So, phenological separability time frames and general statements on
the relation of spectral separability and plant phenology are derived
for the example species winter wheat, winter barley and winter rape-
seed (Chapter 6).



3
S T U D Y S I T E S A N D D ATA B A S E

This chapter consist of the geographic description of the two main
study sites in which the methods were developed and tested. It also
summarises the characteristics of the used data sets, including remote
sensing data as well as ground truth data.

3.1 description of the study sites

The investigations were performed in two study sites which repres-
ent different ecological regions of Germany (Fig. 2). Both sites, one
located in the Harz mountains and adjacent lowlands and the other
located in the Nort-Eastern German Lowlands, are intensively invest-
igated since they are also laboratory sites for the Terrestrial Envir-
onmental Observatories (TERENO) long-term research project (Bogena
2016)1. The following sections describe the two sites in detail.

3.1.1 Eastern Harz mountains and adjacent lowlands

administrative location The main study site is located in
the German federal state Saxony-Anhalt, approximately 70 km south-
west of the state capital Magdeburg and 30 km north-west of Halle (Saa-
le). The site spans 50 km in east-west direction and 25 km from its
northern to its southern border. The sites’ centre is located at 51.65 °N
and 11.42 °E of Greenwich (Fig. 3).

landscape and climatic situation The study site is part
of three natural landscape units as defined by Meynen (1959). Spe-
cifically, these units are the "Northern foothills of the Harz", "East-
ern foothills of the Harz and Börde regions" and "Harz". The climatic
situation is dominated by the lee effects of the Harz mountains, res-
ulting in comparatively low annual precipitation sums of 553 mm in
the westernmost parts and 486 mm in the easternmost parts (DWD
2018a). The annual mean temperatures decrease from 8.5 °C in the
west to 9.2 °C in the eastern parts of the study site (DWD 2018b).

1 http://teodoor.icg.kfa-juelich.de/overview-en

18



3.1 description of the study sites 19

Figure 2: Location of the study sites in Germany. Data Sources: SRTM (eleva-
tion), Federal authority for environmental protection / UBA (nat-
ural units), OpenStreetMap contributers (topographic data). Pro-
jection: WGS84 UTM Zone 32N

substrates and soils The eastern lowland parts are dominated
by aeolian loess substrates that have been deposited during the Weich-
selian glaciation under periglacial conditions. Further, holocene fluvi-
atile substrates can be found in the river valleys (BGR 2015a). The
bedrock in the western part of the study area is dominated by vari-
ous types of Devonian schist, greywacke, and quartzite conglomer-
ates, mainly deposited during the Devonian, Ordovician and Carbon-
iferous ages (BGR 2015b).

Due to its calcium carbonate-rich silty composition and its por-
iferous bedding, loess is often the primary material of highly fertile
chernozemic soils, which are also the dominating soil type in the low-
land parts of the study area. Fertile cambisols and regosols also cover
significant percentages of the study sites. In the river valleys, alluvial
gleyic soil types can be found. With increasing height to the western
mountainous parts of the study site, the percentage of chernozems
declines and cambisols are the most abundant soil types.
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Figure 3: Location of the Harz study site and elevation. Thin grey lines
represent the agricultural fields. Data sources: SRTM (elevation),
© GeoBasis-DE / BKG 2018 (topographic data). Projection: WGS84

Pseudo Mercator

land use The rural area is dominated by intensive agriculture
due to the favouring conditions regarding soil and climate. The high
fertility of the soils allows the cultivation of demanding crops in
higher percentages than the Germany-wide average (DESTATIS 2015,
see Tab. 4).

Table 4: Target crops, annual and average (∅) cropping area in percent (%)
of the total cropped area for 2010 to 2015 in the Harz test site and
for entire Germany in 2015 (DE2015)

Crop 2010 2011 2012 2013 2014 2015 ∅ DE2015

Winter wheat 42.2 42.6 40.6 42.2 41.7 40.4 41.6 19.2

Winter rapeseed 18.8 16.1 19.5 19.0 17.8 17.6 18.1 7.7

Perennial grassland 11.0 11.2 10.8 10.6 10.6 9.6 10.6 27.9

Winter barley 8.4 8.4 8.7 8.8 8.7 8.5 8.6 7.5

Maize 5.3 6.1 6.3 7.3 7.3 7.4 6.6 12.5

Sugar beet 5.3 5.3 6.0 5.8 6.1 4.3 5.5 1.9

Durum wheat 2.7 2.6 2.2 1.0 1.8 1.5 2.0 0.1

Winter rye 0.8 0.8 0.5 0.4 0.3 0.3 0.5 3.7

Summer barley 0.5 0.9 0.6 0.3 0.3 0.3 0.5 2.2

Oats 0.4 0.5 0.4 0.4 0.6 0.3 0.4 0.8

Summer wheat 0.3 0.6 0.1 0.1 0.4 0.2 0.3 0.3

Potatoes 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.4
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Winter wheat is cropped on more than 40 % of the total agricultur-
ally used area and is along with winter rapeseed, durum wheat and
sugar beet over-represented by a factor of 2 to 3, while the other crop
types are cropped on much less parts of the agriculturally used area
than in the country-wide averages.

3.1.2 North-Eastern German Lowlands

administrative location The second study site surrounds the
town of Demmin (see Fig. 4) in the federal state Mecklenburg – West
Pomerania, approximately 40 km south of the Baltic Sea and 200 km
north of Berlin. The site spans 35 km each from north to south and
from east to west, with its centre located at 53.93 °N and 13.15 °E of
Greenwich.

Figure 4: Location of the Northern German Lowlands test site and eleva-
tion. Thin grey lines represent the agricultural fields. Data Sources:
SRTM (elevation), © GeoBasis-DE / BKG 2018 (topographic data).
Projection: WGS84 Pseudo Mercator

landscape and climatic situation The site is completely
situated within the Northern German lowlands, intersecting the nat-
ural landscape units "North-eastern Lowlands of Mecklenburg and
Oder backwater area" and "Backland of the Mecklenburg-Branden-
burg lake plateau" (Meynen 1959). The topography is comparatively
homogeneous and planar. The climate is oceanic and cool, with an-
nual mean temperatures of 8.7 °C (DWD 2018b) and 590 mm average
annual precipitation (DWD 2018a).
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substrates and soils The bedrock is sand-, silt- and gravel-rich
and has been deposited during and after the Weichselian glaciation
(BGR 2015b). Consequently, the main bedrock substrates are boulder
clay and boulder till. In the depressions, also glacio-fluviatile deposits
and peat can be found. The soils are moderately fertile and mainly
loamy gleysols, cambisols or luvisols (BGR 2015a).

land use Agriculture is the dominating land use in the study area.
Due to the less fertile soils compared to the Harz study sites, the per-
centages of demanding crops such as winter wheat are significantly
reduced and less demanding crops like winter rye are cultivated more
frequently (see Tables 5 and 4).

Table 5: Target crops, annual and average (∅) cropping area in per cent(%)
of the total cropped area for 2010 to 2012 in the DEMMIN test site.
See Tab. 4 for Germany-wide averages.

Crop 2010 2011 2012 ∅

Winter wheat 30.70 29.80 32.50 31.00

Winter rapeseed 23.70 21.10 22.30 22.40

Perennial grassland 14.20 18.20 15.40 15.90

Winter barley 8.30 6.20 7.10 7.20

Maize 8.30 11.40 7.10 8.90

Sugar beet 5.80 6.40 6.50 6.24

Winter rye 4.40 2.90 6.70 4.60

Summer barley 0.1 0.01 0.1 0.09

Potatoes 2.00 1.90 1.80 1.90

the demmin test field The study site is part of the TERENO

long-term research project (Bogena 2016). As a part of the TERENO

North-Eastern German Lowlands Observatory, the remote sensing
test field is denoted as Durable Environmental Multidisciplinary Mon-
itoring Information Network (Durable Environmental Multidisciplin-
ary Monitoring Information Network (DEMMIN)), established and man-
aged by the German Aerospace Centre (DLR; German: Deutsches Zen-
trum für Luft- und Raumfahrt e.V.).

3.2 description of the data sets

The data base for this research consists of remote sensing data, volun-
teered geographic information regarding crop phenology and crop-
ping information per parcel for the two study sites. All these used
data sets are described in the following sections.
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3.2.1 Remote sensing data

rapideye data Optical, multi-spectral remote sensing data recor-
ded by the RapidEye satellite constellation are used for the spec-
tral similarity analyses of the crops. The constellation was initially
driven by the German RapidEye AG© and later acquired by Black-
bridge Inc.© and Planet Inc.©. Although it is hence a commercial
constellation, the data recorded by the satellites were usable free of
charge for Germany-based research projects via the RapidEye Sci-
ence Archive (RESA)2 managed by the Deutsches Zentrum für Luft-
und Raumfahrt e.V. (DLR). The RapidEye constellation consists of 5

individual satellites in a sun-synchronous orbit that are identically
constructed (Tyc et al. 2005). The satellites were launched in 2008

and started to provide data operationally in 2009. The sensor records
the reflected radiation in the 5 spectral bands blue, green, red, red
edge and NIR. The detailed band characteristics are summarised in
Tab. 6. The presence of a red edge band, covering the spectral region
that is most sensitive to differences in chlorophyll content and vital-
ity of plants (Schuster et al. 2012), was an unique feature when the
RapidEye satellites have been launched. The Sentinel-2 sensors also
include red edge bands, making RapidEye essential for the Sentinel
mission preparation (Drusch et al. 2012). The RapidEye constellation
is able to provide data from nadir view in revisiting times of 5 to days.
Since a user-specific tasking is also possible, the effective temporal
resolution of the operationally acquired images that are provided by
RESA is far less than 5 days, varying between 5 an 17 acquisitions per
year. The geometric resolution for the Level-1B product is 6.5 m and
5 m for the data of pre-processing Level-3A. The product of level 3A
is tiled in squares of 25 km edge length, of which the tiles with the
identifiers 3262921 and 3262922 correspond exactly to the Harz study
site. Due to the high geometric and temporal resolutions as well as
due to the presence of the red edge band, the sensor has been integ-
rated as a contributing mission into the COPERNICUS programme
driven by ESA and the EC to prepare the Sentinel missions.

Table 6: Spectral bands of the RapidEye satellites

Band Minimum wavelength [nm] Maximum wavelength [nm]

Blue 440 510

Green 520 590

Red 630 685

Red edge 690 730

Near infrared 760 850

2 www.resaweb.dlr.de, contract no: 653
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The performed preprocessing steps and the temporal availability of
data sets for the study sites are described and presented in detail in
the chapters 4 and 6.

elevation data The Shuttle Radar Topography Mission (SRTM),
performed in 2003, resulted in a Digital Elevation Model (DEM) for
all latitudes between 70 °N and 70 °S (USGS 2004). The original 3-arc-
seconds resolution product (Jarvis et al. 2008) was filtered and aggreg-
ated to 1 km resolution to respect the spatial uncertainty of the phen-
ological data on the one hand and to reduce processing requirements
on the other hand. The used DEM covers Germany in 358,320 raster
cells. The detailed preprocessing steps are described in Chapter 5.

3.2.2 Ground observation data

phenological data Plant phenology in Germany is monitored
nationwide by a volunteer-based observation programme managed
by the DWD. Since its launch in 1951, the set monitored crop types
and observed phases was only slightly modified. Approximately 1200

observers record 3 - 9 phenological stages per crop type (see Tables
1 and 2) that are meaningful for the different applications mentioned
in Section 2.1.2. The observations are recorded around a pre-defined
centre point enabling an estimation of their location. A detailed de-
scription of the programme and its characteristics is given in Chapter 5

and DWD (2015). The temporal consistency of the observation pro-
gramme and the relatively accurate estimation of spatial uncertainty
naturally defines Germany as ideal test country for phenology-related
research.

land use data To train the models and to validate the results,
highly accurate ground truth data is required. For this study, such
information on field parcel level-of-detail of different data providers
could be used. Those parcels are defined by three criteria (Inan et al.
2010):

1. homogeneous ownership by a single person, a company or a
cooperative,

2. homogeneity regarding cultivation of one single crop species
(e. g. winter wheat, sugar beet, etc.) or mixed species type (e. g.
perennial grassland, winter-grain-meslin, grain-legume-meslin,
etc.),

3. no interference by roads, farm tracks or other linear objects.

Eastern Harz mountain range and adjacent lowlands: For the entire
study period from 2010 to 2012, the cultivated crops were provided
for the Land Parcel Identification System (LPIS) parcels in the Harz
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study site. These data were provided by the Ministry of Environ-
ment, Agriculture and Energy of Saxony-Anhalt. This data set is an-
nually created to manage the payment of agricultural subsidies in
the European Union (EU) member states. It is based on submitted
forms by the farmers and interpreted orthophoto data, that represent
between 80 and 100 different crop classes for every year.

North-eastern German Lowlands: The crop parcel data for the test
site surrounding Demmin includes parcels of about 30 different crop
types and covers the study site only discontinuously. The cropping in-
formation was collected in context of the TERENO research projects for
the years 2010 to 2012. As consequence of the lower thematic depth,
the smaller site extent, differently favouring conditions and differing
project-specific requirements of the two study sites, summer barley,
summer wheat and durum wheat are not recorded.
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Paper 1 focusses on the selection of suitable spectral features or ve-
getation indices for land use classifications. A methodology is presen-
ted, which provides information regarding optimal spectral indices
to separate two land use classes of high spectral similarity on the
example of winter wheat and winter barley. The methodology tests
a huge number of vegetation indices that are calculated systematic-
ally following an established vegetation index rationale with different
parametrisation. To evaluate the performance of the tested indices,
the effect size measure η2 is introduced as novel indicator for spec-
tral similarity. The optimisation procedure is applied on each data
set of dense RapidEye multi-spectral time series. In doing so, spectral
separability profiles could be derived that reveal temporal windows
of high spectral separability. These detected time frames are inter-
preted against a phenological background by description of phenolo-
gical differences between the target species. The utilised phenological
observations reveal strong differences between closely located obser-
vation points.
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a  b  s  t  r  a c  t

Crop  monitoring  using  remotely  sensed  image  data provides  valuable  input  for  a large  variety  of  appli-
cations  in environmental  and agricultural  research.  However,  method  development  for  discrimination
between  spectrally  highly  similar  crop  species  remains  a challenge  in  remote  sensing.  Calculation  of veg-
etation  indices  is  a frequently  applied  option  to amplify  the  most  distinctive  parts  of  a  spectrum.  Since
no  vegetation  index  exist,  that  is universally  best-performing,  a method  is  presented  that  finds  an  index
that  is  optimized  for the  classification  of  a specific  satellite  data  set to separate  two  cereal  crop  types.  The
�2 (eta-squared)  measure  of association  –  presented  as  novel  spectral  separability  indicator  – was  used
for the  evaluation  of the  numerous  tested  indices.  The  approach  is  first  applied  on a  RapidEye  satellite
image  for  the separation  of  winter  wheat  and  winter  barley  in  a  Central  German  test  site.  The determined
optimized  index  allows  a more  accurate  classification  (97%)  than several  well-established  vegetation
indices  like  NDVI  and  EVI  (<87%).  Furthermore,  the approach  was  applied  on  a  RapidEye  multi-spectral
image  time  series  covering  the  years  2010–2014.  The  optimized  index  for the  spectral  separation  of win-
ter  barley  and  winter  wheat  for each  acquisition  date  was  calculated  and  its  ability  to distinct  the two
classes  was  assessed.  The  results  indicate  that  the  calculated  optimized  indices  perform  better  than  the
standard  indices  for most  seasonal  parts  of  the  time  series.  The  red  edge  spectral  region  proved  to be of
high significance  for crop  classification.  Additionally,  a time  frame  of  best  spectral  separability  of  wheat
and barley  could  be detected  in  early  to  mid-summer.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Crop classification using remote sensing data is becoming
increasingly important for land use/land cover analysis, for agri-
cultural and environmental research and management as well
as for administrative purposes on regional scale levels. However,
classification of crops, especially cereal species like wheat and
barley, is often restricted due to high spectral similarity of the
cropland classes (Guerschman et al., 2003) and sensor-specific lim-
itations regarding temporal, spectral and geometric resolution of
the currently available satellite sensors. The first limitation can be

∗ Corresponding author. Tel.: +49 34528303.
E-mail addresses: henning.gerstmann@geo.uni-halle.de

(H. Gerstmann), markus.moeller@landw.uni-halle.de (M.  Möller),
cornelia.glaesser@geo.uni-halle.de (C. Gläßer).

addressed using multi-temporal classification approaches which
usually lead to significantly higher accuracies (e.g., Murakami
et al., 2001; Van Niel and McVicar, 2004; Guerschman et al., 2003;
Prishchepov et al., 2012; Löw et al., 2015) while the latter limita-
tion will decline as consequence of the rapid increase of available
imagery of both high temporal and geometric resolution acquired
by modern sensors like Sentinel-2 or RapidEye (Simmons et al.,
2016).

High spectral similarity of classes can also be addressed by the
selection of the most significant parts of the reflectance spectrum
which is usually performed by computation of vegetation indices.
These indices are combinations of mostly two or three spectral
channels that amplify spectral information of high significance for a
distinction of different land cover classes. The most popular indices
are the Normalized Difference Vegetation Index (NDVI, Rouse et al.,
1974), the Soil-adjusted Vegetation Index (SAVI, Huete, 1988) and the
Enhanced Vegetation Index (EVI, Liu and Huete, 1995). The majority

http://dx.doi.org/10.1016/j.jag.2016.06.001
0303-2434/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Location of the study site (a) and training and validation parcels for the season 2014 laid over a RapidEye image acquired on 4th June 2014 (b). RGB  band combination
3-2-1. Spatial reference: EPSG 32632 (Spatialreference, 2016).

of vegetation indices focuses on the spectral region between red
and near infrared where reflectance of vital plants is characterized
by a strong increase. A few sensors (e.g., RapidEye, Sentinel-2) have
additional red edge channels between red and near infrared parts
of the spectrum, and several studies demonstrated the potential of
red edge reflectance information to increase land cover classifica-
tion accuracies (Ramoelo et al., 2012; Schuster et al., 2012; Eitel
et al., 2011).

Numerous vegetation indices have been developed over the past
40 years (see e.g., Dorigo et al., 2007; Bannari et al., 1995) for
mapping of different vegetation parameters. However, Rivera et al.
(2014) stated, that a specific index is not necessarily the best per-
forming index to address the studied parameter for which the index
is reported to be sensitive. Furthermore, vegetation index profiles
computed from index values of different acquisition dates reveal
differences in the separability of certain vegetation classes over
time. To select the most sensitive index for a specific application
and a specific time, Le Maire et al. (2008) proposed a brute-
force approach for the selection of the optimal vegetation index
to retrieve biophysical parameters of forests. Based on this idea,
Rivera et al. (2014) developed a tool (Automated Radiative Trans-
fer Models Operator – ARTMO) that calculates a huge number of
possible vegetation indices and band combinations within an iter-
ative loop and evaluates the performance of each tested index in
regression-based estimation of a biophysical parameter. However,
regression methods require the dependent variable to be at least
interval-scaled, which is not given for categorical scaled land cover
classes.

In this study, we first show how optimized indices can be cal-
culated in an automatic manner for a mono-temporal data set
selected out of a time series by phenological analysis. In this con-
text, we introduce the measure of association �2 (eta-squared) as
novel non-parametric indicator for spectral separability. Second,
we demonstrate how separability profiles can be computed using
the full time series to describe separability variations within one
year and different years applying spectral similarity measures. Con-
sequently, optimal times frames for classification can finally be
determined.

The approach is applied on a time series of RapidEye satel-
lite data with high temporal resolution for the separation of
winter wheat and winter barley in a Central German test
site.

2. Study site and data

2.1. Site description

The study site is located in Central Germany (Fig. 1a), approx-
imately 30 km north of the city of Halle (Saale). The site is
characterized by intensive agricultural land use due to its highly
fertile chernozemic soils and relatively warm climatic conditions.
Cultivation data on parcel scale were obtained from the Ministry of
Agriculture and Environment of Saxony-Anhalt and used as ground
truth information. The most frequently grown crop types within
the study site are winter wheat (≈45–48% of the total cropped area
between 2010 and 2014), winter oilseed rape (17–20%) and win-
ter barley (≈8–9%). Since oilseed rape can easily be separated from
wheat and barley during flowering, the two cereals winter wheat
and winter barley have been selected as target crops for this study
due to their close genetic relationship and similar spectral behavior.

2.2. Satellite data

RapidEye data was obtained from the RapidEye Science Archive1

which is funded by German Aerospace Center (Deutsches Zen-
trum für Luft- und Raumfahrt;  DLR) and gains restricted access to
RapidEye imagery. RapidEye is a commercial multi-spectral sensor
constellation which consists of five identically constructed satel-
lites (Tyc et al., 2005). The constellation provides imagery with
high repetition rate, a spatial resolution of 6.5 m × 6.5 m,  and five
multi-spectral bands which cover the blue (RB: 440–510 nm), green
(RG: 520–590 nm), red (RR: 630–685 nm)  and near infrared spec-
tral ranges (RNIR: 760–850 nm). In addition, a red edge band (RRE:
690–730 nm)  is available which is assumed to be sensitive to the
abrupt reflectance rise caused by vegetation’s chlorophyll status
(Schuster et al., 2012).

The time series used in this study covers five years and consists
of 43 images (Fig. 2). While the RapidEye constellation technically
allows a repetition rate of less then a week, far less appropriate
images are available mostly due to cloud cover and order prior-
itization. The temporal coverage of the time series is inconsistent

1 RESA www.resa.blackbridge.com, project ID: 653.
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Table  1
Well-established indices and required parameter configuration.

Is B1 B2 B3 c1 c2 L G Reference

NDVI RNIR RR – 1 1 – 1 Rouse et al. (1974)
GNDVI RNIR RG – 1 1 – 1 Gitelson et al. (1996)
EVI RNIR RR RB 6 7.5 1 2.5 Huete et al. (1999)
EVI2 RNIR RR – 2.4 0 1 2.5 Jiang et al. (2008)
SAVI RNIR RR – 1 1 0.5 1.5 Huete (1988)
EVIRE RNIR RR RB 6 7.5 1 2.5 –
NDVIRE RNIR RRE – 1 1 – 1 Barnes et al. (2000)

Fig. 2. Available RapidEye images.

throughout the years, varying from four images in 2013 to 16 scenes
in 2011. No images from late spring and summer were available
for 2012, while in 2010 and 2013 no early and mid-spring scenes
could be used. All data sets were obtained at preprocessing level
3A, which means that radiometric, sensor, geometric corrections
and geo-referencing were applied by the data provider. Each image
covers 25 km × 25 km with orthorectified pixel size of 5 m × 5 m.

2.3. Selection of training fields

Twenty fields per year for each of the crop types winter wheat
and winter barley were selected, 10 for training and validation,
respectively (Fig. 1b). They were chosen under the premises that
they have no NoData parts during the vegetation periods, no clouds
and no snow coverage.

2.4. Phenological data

To characterize the typical growth cycle, phenological obser-
vations were analyzed. The date of entry of selected phenological
phases for a variety of tree and agricultural species including winter
wheat and winter barley are continuously recorded following stan-
dardized criteria by volunteer observers, managed by the German
Weather Service (Deutscher Wetterdienst, 2015). The observations
can be accessed via FTP2.

3. Methods

3.1. Index permutation

The computation for the most vegetation indices is based on a
normalized-difference rationale with only different spectral bands
included. Equation (1) represents the structure of the formula used
for the index permutation which is equivalent to the formula used
for the calculation of the EVI (Huete et al., 1999). Within Eq. (1), B1,
B2 and B3 can be any of the spectral bands; i represents all possible

2 ftp.dwd.de/pub/CDC/observations germany/phenology/.

combinations of B1, B2 and B3 and the empirical constants G, c1, c2
and L.

Iperm
i

= G × B1 − B2

B1 + c1 × B2 − c2 × B3 + L
c1 , c2 , L, G ∈ R  (1)

A set of well-established indices (Is) was  calculated for compar-
ison. Is contains vegetation indices and red-edge-modified variants
which are an element of Iperm

i
(see Table 1) as well as others which

are not included. The latter are the Wide Dynamic Range Vegetation
Index (WDRVI, Gitelson, 2004), which is computed similarly to NDVI
but with a scaling of the near infrared reflectance by 0.15, the Green
Chlorophyll Index (CIgreen, Wu et al., 2012), which is calculated by
subtraction of 1 of the NIR/blue ratio, and the simple NIR/Red edge
ratio (SRR; Ramoelo et al., 2012). Since spectrally very similar crop
types are expected to show significant but narrow differences in the
red edge region, the red edge variants of the established NDVI and
EVI are mainly addressed within this study. Furthermore, indices
calculated from the red and near infrared reflectance tend to show
higher saturation effects than indices were the red band is replaced
by the red edge reflectance information (e.g., Eitel et al., 2011).

3.2. Spectral similarity assessment

The indices calculated by permutation of Eq. (1) can be under-
stood as interval-scaled variable, while class information is of
nominal scale. Thus correlation coefficients like Pearson’s r and
Spearman’s � cannot be used for the assessment of the index per-
formance. However, the effect-size measure �2 can be understood
as correlation coefficient assessing the influence of class member-
ship and index value. The metric is calculated by �2 = SSB/SST, where
SSB is the sum of the squared differences of each index value to the
class-specific mean, and SST is the sum of the squared differences of
each index value to the overall mean. The values range from 0 to 1,
where values higher than 0.26 indicate a strong dependency of the
predicted variable on the predictor (Cohen’s rule of thumb,  Cohen,
1988). In the classification case, class membership is the predictor
variable on which the vegetation index value depends on.

The capability of �2 to quantify spectral similarity is compared
to the often applied Kolmogorov–Smirnov distance (dKS). These two
metrics were selected to address the fact that vegetation indices
and remote sensing data in general are not necessarily normally
distributed (Swain and Davis, 1978). Both metrics can be used to
compare distributions without requiring statistical preconditions
like normal distribution. Other often applied distances measures
like Jeffries–Matusita distance (Vaiphasa et al., 2005) and divergence
(Swain and Davis, 1978) are inappropriate since they are based on
the maximum-likelihood decision rule and thus require normally
distributed class samples (Richards, 2012).

The Kolmogorov–Smirnov distance dKS was proposed by
Kolmogorov (1933) and is defined as the maximal difference
between the empirical cumulative distribution functions (ECDF) of
two samples (Massey, 1951). Values of dKS � 1 indicate high separa-
bility while identical spectra are characterized by dKS close to 0. This
measure has been frequently applied in remote sensing for feature
selection, class separability assessment and multi-temporal change
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Table  2
Domains of parameters which are permuted for index calculation.

B1, B2, B3 c1, c2 L G

[RB , RG , RR , RRE , RNIR] [−1, 0, 1, 2.4, 6, 7.5] [−1, −0.5, 0, 0.5, 1] [1, 1.5, 2.5]

Table 3
Mean observed day of year (DOY) for selected phenological phases within the study site and range between earliest and latest observation between 2010 and 2014.

Phases

Year Sowing Shooting Heading Yellow ripening Harvest

Winter wheat 2010 262 ± 2 133 ± 13 159 ± 1 204 ± 5 218 ± 16
2011  263 ± 0 117 ± 2 148 ± 5 194 ± 6 203 ± 4
2012  263 ± 1 117 ± 4 141 ± 0 195 ± 2 207 ± 2
2013  258 ± 2 128 ± 4 150 ± 7 204 ± 4 216 ± 3
2014  259 ± 0 113 ± 1 137 ± 5 191 ± 5 205 ± 1

Winter  barley 2010 261 ± 0 119 ± 5 144 ± 2 180 ± 2 198 ± 2
2011  262 ± 4 120 ± 4 131 ± 1 167 ± 3 187 ± 7
2012  264 ± 1 115 ± 2 131 ± 1 171 ± 2 191 ± 1
2013  248 ± 16 126 ± 5 149 ± 9 177 ± 2 199 ± 1
2014  265 ± 0 108 ± 0 112 ± 0 167 ± 0 199 ± 0

detection applications or geometric accuracy assessment (Rounds,
1980; Möller et al., 2012; Tang et al., 2011; Möller et al., 2013).

A practical difference of the two calculated spectral separability
indicators is that �2 can potentially be used for a multi-class classi-
fication scenario, while the Kolmogorov–Smirnov distance can only
be used to evaluate spectral differences of two different classes.

3.3. Classification and validation

The optimized indices were calculated for training and vali-
dation fields. An unsupervised k-means clustering with five
iterations was applied to the indices and compared to the actual
class memberships of the pixels. A confusion matrix was  calculated
that contains the number of pixels which were classified correctly
and which pixels were assigned to a wrong class. The percentage of
correctly classified pixels to the total number of pixels represents
the overall classification accuracy A.

The classification accuracy corresponding to the highest separa-
bility metric value (A([�2 ∨ dKS]max) is compared to the maximum
classification accuracy (Amax) to evaluate the capability of the met-
ric to select the most significant parameter combination for a
classification problem.

3.4. Implementation

The satellite data were atmospherically corrected using the Fast
line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
algorithm (Anderson et al., 2002). The remote sensing software
package ENVI® 5.2 version (Exelis Visual Information Solutions Inc.,
Boulder, CO, USA) and its FLAASH® module were used for atmo-
spheric correction.

The actual methodology was implemented within the statistical
computing environment R (R Core Team, 2015). First, the satellite
data sets were cropped and masked to the extent of the training
sites for the respective harvesting season. In doing so, only the test
fields, on which winter wheat and winter barley were harvested in
2011, were extracted from all satellite data sets acquired later than
August 2010 and for the seasons 2012, 2013 and 2014 accordingly.

All combinations of the parameters described in Table 2 within
Eq. (1) were calculated. The domain of the parameters c1 and c2 was
chosen in a way that it includes the empirical values determined by
Huete et al. (1999) and Jiang et al. (2008). The similarity measure
�2 was computed using the function etasq() which is included in
the R package heplots (Fox et al., 2015).

The function kmeans() that was used for validation is included
in R’s base distribution, while the functions confusion.matrix() and
similarity.index() are included in the package clv (Nieweglowski,
2013).

4. Results

The first objective of this study was to develop a framework
for the detection of the optimal band and parameter combina-
tion for the index permutation approach (Section 4.1). The actual
optimization procedure is performed on a single data set, but this
data set has to be selected out of time series of satellite images
using comprehensible criteria, e.g., phenological aspects. The algo-
rithm is then applied to generate multi-annual separability profiles
(Section 4.2).

4.1. Mono-temporal index optimization

4.1.1. Phenological development
Winter wheat and winter barley show differences in their

phenological behavior. The phenotypes of the target species are
highly similar until heading, when grains and, especially for bar-
ley, awns are built. Hence, an acquisition date is probably best
suited for wheat and barley separation, on which at least one
of the target species already reached the phenological stage of
heading.

In Germany, winter barley is usually sown in mid-September,
shooting is observed in mid-April, heading in mid-May, yellow
ripening in late June and harvest in mid-July. Winter wheat is
sown between late September and mid-October and harvested in
early August. Shooting is usually observed in late April, heading in
late May  or early June, and yellow ripening in the second half of
July.

The phenological development of the selected field crops differs
between locations, years and species. Within the study site, three
phenological stations exist that observe phases for winter wheat.
For winter barley also information observed on three stations were
available, except for 2014, when only one station observed win-
ter barley phases. The mean observed day as well as the variation
within the site are listed in Table 3. In general, winter wheat reaches
a phenological stage approximately 10–20 days after winter barley
reached the same stage. The variations within the site are usually
smaller than 5 days, which indicates a homogeneous plant devel-
opment in the study region.
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Fig. 3. Per-class index distributions of NDVI (a) and Iperm
opt (b) on 4th June 2014.

4.1.2. Parameter determination for formulation of the optimized
index

Considering the phenological behavior of winter wheat and
winter barley, the RapidEye image acquired on 4th June 2014
(DOY = 184) is selected to demonstrate the optimization approach
derived by the index permutation, because on this date the two
crops are most likely at different growth stages (Table 3) and the
differences in their phenotypes (see Section 4.1.1) are expected to
be visible. According to Table 3, winter barley already reached the
phenological stage of heading on that date, while winter wheat did
not yet.

The resulting optimal vegetation index Iperm
opt (see Eq. (1)) is char-

acterized by �2 = 0.82 and calculated as following:

Iperm
opt = RRE − RB

RRE + 7.5 × RB + RNIR + 1
(2)

NDVIRE has been found to be the best standard vegetation index
Is
opt with �2 = 0.56. In contrast, the traditional NDVI only shows a

�2 value of 0.26. Finally, the comparison of Iperm
opt and NDVI distri-

butions illustrates the effect of index optimization (Fig. 3). While
the NDVI distributions of winter wheat and winter barley are char-
acterized by a high degree of overlap, the Iperm

opt distributions are
clearly distinguishable from each other.

4.1.3. Classification and validation
NDVI and Iperm

opt were calculated for all test and validation fields.
A k-means classification was  performed, and the classification

Fig. 4. K-means classifications based on Iperm
opt (a) and Is

opt (b) for 4th June 2014 and actually cultivated crops. The orange boxes indicate parcels where major differences are
visible  (b). Projection: EPSG 4258 (Spatialreference, 2016). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 5. Example fields for different classification results (see Fig. 4) between Iperm
opt (top row) and Iperm

s (bottom row).

accuracy was assessed (see Section 3.3). The classification results
are shown in Fig. 4.

The classification based on Iperm
opt reaches an accuracy A = 0.97,

while for Is
opt it is only A = 0.87. In Fig. 5, the differences between

the two index classification results are visualized on the example
of three subsets (see Fig. 4):

• Example 1 shows that the classification based on Iperm
opt leads to

more homogeneous parcel-specific classes. In contrast, the Is
opt

classification tends to a mixture of both crop types in one parcel
(Fig. 5, left).

• In the case of example 2 (Fig. 5, center), a clearly recogniz-
able river channel was false classified as winter wheat using
NDVIRE, while Iperm

opt is robust against phenomena associated with
riverbeds such as higher soil water content, less vegetation cov-
erage, etc. Almost the complete field was classified correctly as
winter barley.

• While the classified index Iperm
opt is almost exactly corresponding to

the ground truth data, some fields are nearly completely classified
wrong when NDVIRE was used. In example 3 (Fig. 5, right), the
pixels within the example winter barley field are false classified
as winter wheat by about 90%.

4.2. Multi-annual separability profiles

4.2.1. Parameter determination for optimized indices
After applying the workflow on the five-year time series, a

spectral separability profile has been computed which summarizes
the maximal �2 values for each acquisition date. Fig. 6 shows the
results of the similarity assessment for the complete time series.
The threshold of �2 > 0.26 (see Section 3.2) is exceeded on 20 of the
43 acquisition dates. Twelve of these dates are between May  and
August of the respective seasons, while eight are between October
and March. The summer maxima show significantly higher �2 val-
ues. An exception is the 2012 season, when no images between
mid-May and mid-August were available.

The configurations of Iperm
opt as well as Is

opt are listed in Table 4 for

all acquisition dates on which �2(Iperm
opt ) exceeds the 0.26 thresh-

old. The three scenes acquired on 16th July 2010, 22nd July 2013
and 26th July 2014 have been excluded since the phenological
observations (Table 3) indicate that barley is most likely already
harvested on these dates while winter wheat is still unharvested.
Visual inspections of the satellite images support these findings.

The results confirm the significance of the spectral region
between red and near infrared for the detection of differences in
vegetation status in general as well as for the classification of win-
ter wheat and winter barley in particular. Consequently, the vast
majority of Iperm

opt combinations include RNIR (16 occurrences), fol-
lowed by the RR and RRE (10 occurrences, respectively). Indices

computed only of two  spectral bands were selected on two dates.
Only on four dates, an Is

opt was  selected that does not include the red
edge band, which underlines the importance of the red edge spec-
tral region. The bands, that were selected most frequently are RNIR,
RRE and RB (five occurrences) and RNIR, RRE and RR with four occur-
rences, with different assignment to B1, B2 and B3 and different
scaling parameters.

The �2 differences between Iperm
opt and Is

opt vary throughout the
time series. Especially in 2014 the optimal band combinations out-
perform Is

opt , while in 2010 only small differences were observed.
On three dates, Is

opt is far below the separability threshold of 0.26

while Iperm
opt exceeds this threshold (1st May  2012, 10th and 29th

March 2014). On these days, Iperm
opt includes the green band which

indicates an specific importance of this spectral region for discrim-
ination of winter wheat and winter barley that is poorly addressed
by the most standard vegetation indices.

4.2.2. Classification and validation
All possible index combinations have been calculated and clus-

tered for the training and validation fields for all of the available
RapidEye images. Confusion matrices have been calculated and the
overall classification accuracy was  assessed. Here, A values close to
1 represent high accordance between the validation classes and the
k-means clusters. For each element of Iperm

i
, dKS was  also calculated.

In Table 5, the classification accuracies achieved by classification
of Iperm

opt and Is
opt as well as the classification accuracies using the

index with dKS
max are listed for the dates on which �2 exceeds the

significance threshold of 0.26.
For most of the acquisition dates, the accuracy derived by clas-

sification of the optimized index using �2 as separability metric is
higher than if other metrics or standard indices were used, except
for five acquisition dates:

• On two dates (4th June 2011 and 14th November 2012), the
A(�2

max) is lower than the classification accuracies of the best
standard indices and the optimized index using dKS

max. This dif-
ference is very small (1%) on 14th November 2012 but higher, 5%
compared to A(dKS

max) and 9% compared to Is
opt , on 4th June 2011.

• On 29th March 2014, dKS
max finds an index that leads to slightly

(2%) higher classification accuracy than �2
max.

• On 23th October 2010 and 2nd June 2011, the Is
opt outperforms

Iperm
opt by 2 and 3%.

Despite these exceptions, which are mostly characterized by
only very small accuracy differences, the results underline that �2

finds a better suited index with higher probability than dKS and the
optimized indices are usually better suited for the tested classifica-
tion scenario than the established standard indices.
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Fig. 6. Spectral separability profiles for the cropping seasons from 2010 to 2014. Points and triangles represent the acquisition dates of the RapidEye image. The bold vertical
line  indicates the threshold for a high association between class membership and index values, the dashed horizontal lines are the approximate sowing dates.

To underline these findings, the maximal classification accuracy
of all index variants (Amax) was compared to the accuracy of the
clustered Iperm

opt for both spectral separability measures, A(�2
max)

and A(dKS
max), as shown in Fig. 7. Amax ranges between 0.974 on 3rd

Jul 2010 and 0.61 on 9th September 2014. The accuracy of the

clustered Iperm
opt indicated by �2 (A(�2

max)), ranges from 0.974 again
on 3rd July 2010 and 0.435 on 3rd June 2010. Indices determined as
optimal using �2 show a significantly higher correlation (r = 0.90)
to the A(dKS

max) values (r = 0.77), which illustrated the capability of
�2 for index selection for a dichotomous classification problem.
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Table  4
Optimal bands and parameter values (Iperm

opt ), best standard vegetation indices (Is
opt) and corresponding �2(Iperm

opt ) and �2(Is
opt) values for acquisition dates of high separability.

Date B1 B2 B3 c1 c2 L G Is
opt �2(Iperm

opt ) �2(Is
opt)

24 June 2010 RRE RR RNIR 0 6 −1 1 SRR 0.67 0.56
3  July 2010 RB RRE RNIR −1 1 0 1 NDVIRE 0.79 0.77
23  October 2010 RR RNIR – −1 −1 −1 1 SAVI 0.32 0.29
2  June 2011 RB RNIR RRE 1 1 1 1 EVIRE 0.46 0.28
4  June 2011 RRE RB RNIR 7.5 −1 1 1 EVIRE 0.43 0.31
6  June 2011 RR RRE RNIR 2.4 6 −1 1 EVIRE 0.53 0.42
13  November 2011 RR RNIR – 0 −1 1 1 EVIRE 0.37 0.36
29  November 2011 RNIR RR RRE −1 6 −1 1 SRR 0.32 0.31
9  December 2011 RNIR RR RRE −1 6 −1 1 SRR 0.30 0.28
1  May  2012 RG RNIR RB 0 2.4 −1 1 SRR 0.26 0.18
14  November 2012 RNIR RR RG 2.4 1 1 1 SAVI 0.35 0.34
6  February 2013 RNIR RR RB 6 6 1 1 WDRVI 0.30 0.27
19  June 2013 RRE RB RNIR 6 −1 1 1 EVIRE 0.56 0.32
10  March 2014 RG RB RR 2.4 2.4 1 1 EVIRE 0.37 0.07
29  March 2014 RG RRE RNIR 1 −1 −1 1 EVIRE 0.32 0.07
4  June 2014 RRE RB RNIR 7.5 −1 1 1 NDVIRE 0.82 0.56
4  July 2014 RR RNIR RB 2.4 7.5 −1 1 SAVI 0.64 0.46

Table 5
K-means classification accuracies A for optimized indices Iperm

opt and standard indices Is
opt detected by using �2

max and dKS
max .

Date Iperm
opt Is

opt

�2
max A(�2

max) dKS
max A(dKS

max) �2
max A(�2

max) dKS
max A(dKS

max)

24 June 2010 0.67 0.94 0.87 0.93 0.56 0.92 0.85 0.93
3  July 2010 0.79 0.97 0.95 0.89 0.77 0.96 0.94 0.96
23  October 2010 0.32 0.72 0.62 0.72 0.29 0.75 0.55 0.75
2  June 2011 0.46 0.70 0.67 0.70 0.28 0.72 0.51 0.72
4  June 2011 0.43 0.66 0.65 0.71 0.31 0.74 0.55 0.74
6  June 2011 0.53 0.88 0.75 0.67 0.42 0.73 0.64 0.73
13  November 2011 0.37 0.83 0.57 0.70 0.36 0.82 0.50 0.79
29  November 2011 0.32 0.82 0.60 0.70 0.31 0.80 0.48 0.80
9  December 2011 0.30 0.81 0.59 0.71 0.28 0.78 0.50 0.80
1  May  2012 0.26 0.79 0.59 0.72 0.18 0.71 0.49 0.42
14  November 2012 0.35 0.85 0.57 0.86 0.34 0.86 0.57 0.86
6  February 2013 0.30 0.83 0.51 0.67 0.27 0.81 0.47 0.82
19  June 2013 0.56 0.90 0.80 0.89 0.32 0.86 0.77 0.86
10  March 2014 0.37 0.84 0.69 0.61 0.07 0.59 0.28 0.59
29  March 2014 0.32 0.73 0.54 0.75 0.07 0.58 0.23 0.43
4  June 2014 0.82 0.97 0.97 0.97 0.56 0.87 0.93 0.95
4  July 2014 0.64 0.87 0.81 0.77 0.46 0.74 0.80 0.69

Fig. 7. Pearson’s correlation coefficients and correlations between the maximum possible classification accuracy (Amax) and the accuracies using the Iperm
opt determined by �2

(A(�2
max), sub-figure a) and Kolmogorov–Smirnov distance (A(dKS

max), sub-figure b).
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5. Discussion

5.1. Index permutation

In principle, the presented spectral optimization procedure aims
at the automatic selection of a spectral index. In doing so, we
calculate numerous index variants of a EVI-based formulation.
This includes 2-band normalized difference indices but also more
complex formulations including three bands and empirical param-
eters that are reported to be effective in land cover classification
(Henebry et al., 2004; Viña et al., 2004). This is in contrast to the
approach by Rivera et al. (2014) which enables the analysis of much
more complex indices computed of up to 10 bands, but does not
allow the integration of empirical weighting parameters. For the
crop classifications based on multi-spectral imagery, we  consider
indices of higher complexity as inappropriate due to two practical
reasons:

1 The majority of multi-spectral satellite sensors only have less
than 10 bands, and those that have more, like Sentinel-2, contain
spectral bands that are not meaningful for vegetation analysis
(e.g., bands for coastal applications, aerosol, cirrus and water
vapour retrieval).

2 For the index optimization for classification purposes, much
larger sample sizes are required to balance intra-class varia-
tions due to growth status, soil properties, fractional vegetation
cover and others. In our case, we analyzed approximately
500,000 pixels/samples per data set compared to 108 ground
measurements used by Rivera et al. (2014). This leads to much
higher computational requirements.

5.2. Index optimization for a selected satellite image

The index optimization applied on the data set acquired on
4th June 2014 improved the classification accuracies compared
to NDVIRE. As expected, the formulation of the optimized index is
based on the red edge reflectance. The optimized index is calculated
using the same bands as the also tested EVIRE (see Table 1). How-
ever, the weighting parameter configuration is different, and the
NDVIRE was determined as best-suited standard index. Within the
optimized index, the blue reflectance is highly accentuated by the
weighting factor c1 = 7.5, and the near infrared reflectance is sup-
pressed compared to EVIRE. This indicates significant differences
in the blue band between barley and wheat that are most likely
determined by grain and awn  formation of barley as well as by
chlorophyll degradation during ripening (see Section 4.1).

For the presented data set and test field selection, the opti-
mization results in an index which is robust against within-field
reflectance differences due to variations e.g., in soil water content
and exposition. However, it has to be investigated in which extent
the optimized index is fitted to the test data or whether classifica-
tions of larger areas can also be improved using the same number of
test fields. If so, only a small number of test fields would be required
to optimize the index and classify for example the complete Rapid-
Eye tile or a composite of neighboring tiles.

5.3. Multi-annual separability profiles

5.3.1. Time frame detection
Although the minor separability maximum between November

and December was detected in all five years, this time frame is
more uncertain than the summer peak of separability. This is mainly
due to the low sun angles during this time and potentially due to
anthropogenic influences like the timing of tilling and sowing.

It is worth mentioning, that the blue band was  included within
the optimal band combination of nine acquisition dates (see

Table 4), mostly in early summer. As ripening of barley pro-
ceeded further during that time than ripening of wheat, chlorophyll
decomposition as consequence of ripening also proceeded. Conse-
quently, chlorophyll absorption in the blue spectral region is lower
for winter barley than for winter wheat which makes the blue band
significant for the index optimization. However, atmospheric scat-
tering is most relevant in the blue parts of the electromagnetic
spectrum. For RapidEye data of farmland in the US, Moufid (2014)
found that signal-to-noise ratio for the blue band is significantly
lower than for the other spectral bands. Similar to Green et al.
(1988) and Dwivedi and Rao (1992), we  have tested the replace-
ment of the blue band with other bands. To estimate the loss of
information by replacing the blue band with others, inter-band cor-
relations were computed. Pearson’s correlation coefficients within
the test fields computed for the data set from 4th June 2014 are
0.69 and 0.78 for RB vs. RG and RB vs. RR, respectively. Consequently,
clustering of the indices with band replacement leads to lowered
accuracies of 0.85 and 0.82 for green and red, respectively, while
the accuracy for the clustered Iperm

opt is 0.97. Taking these results into
account, a replacement appears to be not appropriate.

5.3.2. Influence of varying phenological development
Since differences in the timing of spring phenological phases

influence the plant’s reflectance profile (e.g., Förster et al., 2012;
Boschetti et al., 2009; Duveiller et al., 2012; White et al., 2009), phe-
nological variations are probably accounting for the inter-annual
shifts in the timing of the summer separability peaks. The optimiza-
tion for each data set instead of a single vegetation index allows
the usage of an index that is sensitive to specific reflectance char-
acteristics of crops during a specific growth stage. This becomes
obvious by comparison of years with almost identical acquisition
dates available, which is the case for 2010 (6th June and 3rd July)
and 2014 (4th June and 4th July).

In 2010, the July image provides the maximal �2, while in 2014
this is the case with the image acquired in June. This shift is also vis-
ible within the phenological observations data set (see Table 3). In
2014, beginning of heading of winter barley was observed 32 days
earlier than in 2010 (23rd April vs. 25th May). For winter wheat, this
difference is approximately 22 days. Yellow ripening was  observed
approximately 13 days earlier for both crops.

So the phase combinations are different between the years on
the acquisition date in June. On 6th June 2010, winter wheat did
not reach the stage of heading while for winter barley heading was
observed before the image acquisition. During the heading of bar-
ley, long awns are built which lead in a brighter appearance that
is also visible in the reflectance spectrum resulting most likely to
the separability maximum that was observed in 2010. On  4th June
2014, for both crops heading was already observed, so winter wheat
also shows a more yellowish color.

Yellow ripening of winter barley was  observed 17 days before
the image acquisition in 2014 but only four days before the
2010 image was acquired. This indicates, that ripening proceeded
much further in 2014. The proceeded ripening is effective for the
reflectance spectrum since it is characterized by declining chloro-
phyll and water content. Simultaneously, winter wheat did not
reach the stage of yellow ripening in both years on the image acqui-
sition dates. These two findings are probably accounting for the
observed higher separability in July 2014 compared to July 2010.

5.4. Classification and validation

The classification of the optimized index was  demonstrated to
be more accurate than for standard vegetation indices. For the
acquisition date of the highest spectral separability, the optimiza-
tion derives an index, which is fitted to a subset of the RapidEye tile,
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while the standard indices have been designed to be applicable on
up to continental scales.

The validation framework tends to indicate higher classification
accuracies than applied on natural scenarios of classification. This is
mainly due to the fact that within the presented dichotomous clas-
sification scenario the class number is known and no pixels exist
within the image data set which do not belong to one of the tar-
get classes. In more realistic classification scenarios the possible
class number is much higher or even unknown which most likely
increases classification uncertainty. However, for demonstration of
the algorithm the laboratory-like conditions are constructive for
the comparison of the permuted vegetation indices. The transfer-
ability of the approach to natural classification schemes has to be
evaluated separately.

6. Conclusions and outlook

In this study we presented a vegetation index optimization
methodology to find the best index for a dichotomous classifica-
tion scenario. The index, of which the class-specific histograms of
two crop types are as non-similar as possible, is detected out of a
huge number of systematically calculated vegetation indices. The
�2 metric was introduced as spectral separability measure which
is non-parametric and thus better suitable in selecting the optimal
spectral bands for species discrimination than other separability
measures which require normal distributions.

The �2 statistic was successfully applied for the detection
of the vegetation index that allows the most accurate separa-
tion of two crop types. Mathematically, �2 can also be used as
spectral separability indicator for a n-class classification scenario,
but its performance for such a scenario has to be tested in the
future.

The optimization approach was successfully applied on a Rapid-
Eye image for spectral separation of winter wheat and winter
barley. The values of the optimized index for the target crop types
are highly species-dependent, which was demonstrated on classifi-
cation results and histogram distribution of the index. We  have also
shown that the selected indices are more significant for discrimina-
tion of winter wheat and barley than widely used vegetation indices
like NDVI, EVI and SAVI. The most significant spectral features are
located between the red, red edge and near infrared parts of the
spectrum.

Furthermore, we applied this optimization procedure in order
to perform a multi-annual spectral separability analysis of winter
wheat and winter barley. We  detected two time frames, that lead
to highest classification accuracies. These time frames are located
in summer between June and July, and, with minor significance
and higher uncertainty, between November and December. Conse-
quently, a satellite image must be selected from the time series that
was acquired during early summer to allow a most accurate clas-
sification. For winter cereals, a point in time on which at least one
species already entered the phenological stage of heading is most
promising but these findings are to be validated in future studies
in areas of different climatic conditions. Further, the approach has
to be tested for classification of other crop species.

Since Sentinel-2 will provide data of three red edge channels
additional to the red and near infrared spectral regions, the appli-
cation of the optimal index selection algorithm on Sentinel-2 time
series has the capability to select sub-parts of the red edge region
that are most significant for accurate discrimination of field crops.

If accurate phenological information, either spatio-temporal
modeled using ground observations or derived from satellite data,
is used as auxiliary variable, shifts in separability peaks can be
explained exactly and typical growth stages, which allow most
accurate classifications, can be determined.
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4.2 conclusions from paper 1

In Paper 1, it could be demonstrated that spectral features, which are
employed as variables for classification, can be successfully optimised
regarding their intended application. The systematic optimisation de-
tects features that provide more species-specific separability informa-
tion than a set of vegetation indices defined prior to the experiment.

As one major outcome it could be shown, that temporal windows
of spectral separability rather depend on plant phenological phases
than on calendar dates. The interpretation was of limited thematic
depth due to shortcomings of the phenological observation design.
Significant phenological differences were observed between short spa-
tial differences, which reveals the need for more detailed phenolo-
gical information for the area between phenological stations. A phen-
ological model that is based on plant physiological responses to cli-
matic differences to estimate a growth stage for regions between phen-
ological stations is suggested to address these shortcomings.
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In Chapter 4, Paper 1 revealed the need for modelled phenolo-
gical information to explain temporal differences in spectral response
of spectrally similar land use classes. Consequently, a phenological
model was developed and is presented in Paper 2, that utilises the
dense data base of phenological information provided by the DWD.
The presented model, called Phenological model for Application in Spa-
tial and Environmental sciences (PHASE), is based on the established
growing-degree-days approach (Réaumur 1735). All daily mean tem-
peratures, that have been accumulated between the date of sowing
of the respective crop type until a phenological phase was observed,
are extracted from spatially interpolated observations. An indicator
temperature sum is calculated from the resulting distribution and the
Day of Year (DOY), on which this indicator sum is first exceeded dur-
ing a growing season, is calculated for each raster cell of an underly-
ing DEM. Here, the universal kriging geostatistical interpolation tech-
nique is used. The model results are compared to the simpler inter-
polation techniques ordinary kriging and inverse distance weighted
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interpolation. Finally, on the example of soil moisture, the capabil-
ity of the model to include additional explaining variables which also
influence the phenological development of plants, was demonstrated.
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a b s t r a c t

Detailed information on plant developmental stages, referred as phenological phases, can assist research,
applications and synergies e.g., in land use, climate science and remote sensing. Usually, detailed ground
information about phenological phases is only available as point observations. However, in most applica-
tion scenarios of spatially interpolated phenological information is required. In this article, we present an
approach for modeling and interpolation of crop phenological phases in temperate climates on the exam-
ple of the total area of Germany using statistical analysis and a Kriging prediction process. The presented
model consists of two major parts. First, daily temperature observations are spatially interpolated to
retrieve a countrywide temperature data set. Second, this temperature information is linked to the day
of year on which a phenological event was observed by a governmental observation network. The accu-
mulated temperature sum between sowing and observed phenological events is calculated. The day on
which the temperature sum on any location exceeds a phase-specific critical temperature sum, which
indicates the day of entry of the modeled phase, is finally interpolated to retrieve a countrywide data
set of a specific phenological phase. The model was applied on the example of eight agricultural species
including cereals, maize and root crops and 37 corresponding phases in 2011. The results for most of the
tested crops and phases show significantly lower root mean squared errors (RMSE) values and higher
goodness of fit (R2) values compared to results computed using Ordinary Kriging (OK) and Inverse
Distance Weighting (IDW). The modeling accuracy varies between 2.14 days and 11.45 days for heading
and emergence of winter wheat, respectively. The uncertainty of the majority of the modeled phases is
less than a week. The model is universally applicable due to automatic parametrization, but model accu-
racies depend on the crop type and increase during a growing season. The possibility to enhance the
model by additional explaining variables is demonstrated by consideration of soil moisture within an
extended model setting.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Phenology studies periodic events in plant development and
their dependence on shifting environmental factors such as tem-
perature, day length and precipitation (Kirby et al., 1987;
McMaster et al., 2009). Such events and phases are clearly visible
developmental stages like blossoming or ripening (Schwartz,
2006).

The main climatic drivers of plant phenology vary in different
ecoregions. Temperature is the main driving factor for intra-
seasonal timing of phenological events in temperate regions like
Central Europe (Chmielewski et al., 2004; Menzel, 2007). Many
studies observed that in temperate climates the timing of pheno-
logical events is relatively stable and independent of other envi-
ronmental factors than temperature (e.g., McMaster et al., 2009).
Other factors influencing plant phenological development are pho-
toperiod (Masle et al., 1989), daily temperature amplitude
(Solantie, 2004), water availability and soil moisture especially in
arid and semi-arid climates (McMaster and Wilhelm, 2003; Idso
et al., 1978), solar radiation, distance to coasts and settlements, soil
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properties (Zhao et al., 2013) and management factors like date of
planting or fertilization practices (Nellis et al., 2009).

Crop phenology in Germany follows several spatial trends. Due
to Germany’s temperate climatic conditions, phenology is predom-
inantly determined by temperature. Other factors influencing phe-
nology in temperate regions to a lesser extent are precipitation and
soil moisture, especially for autumn phases (Menzel, 2007), eleva-
tion, sea proximity and population density (Hense and Müller,
2007). Thus plant development in Germany is delayed in coastal
and mountainous regions compared to the favored regions in
south-western and central lowland regions (Siebert and Ewert,
2012).

Knowledge about plant phenological phases and their timing is
of interest for wide application scenarios. Since plants react to
changing temperatures and carbon dioxide content, long-term
phenological time series can be used to monitor responses of plant
phenology to global and regional warming (Estrella et al., 2007).
Prevailing phenological information is also required for the assess-
ment of famine risks and food production problems (Vrieling et al.,
2011).

Several studies have also shown the potential of phenological
information to support land cover classification of remote sensing
images, models for crop yield estimation and precision farming on
regional and continental scales (Van Niel and McVicar, 2004; van
Bussel et al., 2011; Möller et al., 2012; Foerster et al., 2012;
Prishchepov et al., 2012). Furthermore, phenology information
has the potential to provide valuable input to soil erosion monitor-
ing (Möller et al., 2015), mapping of biodiversity (Turner et al.,
2003) or monitoring of invasive plant species (Bradley and
Mustard, 2006; Huang and Asner, 2009).

Such support can be expected to continue to gain importance
since the temporal availability of medium or high spatial resolu-
tion satellite sensors will considerably increase once the
Sentinel-2 satellite constellation is working operational (Berger
et al., 2012; Drusch et al., 2012). This requires reliable algorithms
for data set selection in which phenology can play a major role
to detect the most significant data sets for an image classification
problem (Möller et al., 2012). In doing so, the required data amount
is reduced with minimal loss in accuracy and thus enables an
operational use of these data amounts both in environmental and
agricultural sciences as well as in policy and decision making.

Detailed phenological data are mostly available as point obser-
vations of irregular spatial distribution which represent phenolog-
ical phases in standardized numeric codes. Spatial information
about phenological phases of crops can be also extracted from
satellite images of high temporal resolution and corresponding
vegetation indices provided for instance by Meteosat (Sobrino
et al., 2013) and MODIS (e.g. Zhang et al., 2003; Lunetta et al.,
2006; Jönsson et al., 2010; Xiao et al., 2013). However, these meth-
ods are mostly applied on only a few clearly visible phases like
green-up or onset (Hird and McDermid, 2009).

The mentioned application scenarios require operationally
effective and detailed phenological information. To produce such
data, point observations have to be spatially interpolated using
phenological models. Menzel (2007) and Zhao et al. (2013) distin-
guish three main types of phenological models:

1. Statistical fitting models which relate climatic variables to phe-
nological development phases (e.g. McMaster and Wilhelm,
1997; Picard et al., 2005).

2. Mechanistic models that are based on cause-effect-
relationships (Jamieson et al., 1998; Kramer et al., 2000;
Ewert et al., 2002; Hänninen and Kramer, 2007).

3. Theoretical models which focus on plant physiological pro-
cesses (Kaduk and Heimann, 1996; Schaber and Badeck, 2003;
Peng et al., 2011).

Mechanistic and theoretical approaches require a large number
of parameters and experimental effort. Statistical fitting methods
only require a few input data sets, are of lower complexity and
thus more frequently applied. One of the most often applied statis-
tical fitting approach is based on the relation between the observa-
tion day of year of a phenological event (DOYobs) and the
corresponding accumulated effective temperature (Chuine et al.,
2003; Hänninen and Kramer, 2007). This phase- and plant-
specific temperature sum is usually referred as growing degree days
(GDD), heat units, or thermal time (Zhao et al., 2013).

The majority of studies focused on either a region of limited
extent or differences in plant parameters, mainly base temperature
(Holen and Dexter, 1996; McMaster and Wilhelm, 2003), for differ-
ent cultivars or cultivation sites of one crop type and between phe-
nological phases (e.g. Wang and Engel, 1998; Ewert et al., 2002;
Salazar-Gutierrez et al., 2013). A common problem is that the opti-
mal starting day for GDD summation is difficult to determine
(Wielgolaski, 1999). Furthermore, most of these studies do not
combine phenological models and spatial interpolation since they
often refer to pre-defined reference units (e.g. van Bussel et al.,
2011; Siebert and Ewert, 2012).

To address these disadvantages, we present a framework which
combines a geostatistical method and the GDD concept. In doing
so, all critical parameters are extracted automatically and dynam-
ically from the input data. After the geostatistical interpolation of
daily mean temperatures, temperature sums and observed pheno-
logical phases are empirically related in order to extract the entry
date of a specific phenological phase. These entry dates are again
geostatistically interpolated to obtain area-wide predictions. The
model has been designed to be easy-to-use, independent of expert
knowledge, extendable, and transferable to any region of temper-
ate climate where phenological observations and temperature
measurements are available. The framework consisting of the com-
bined model and the geostatistical interpolation was named PHASE
(PHenological model for Application in Spatial and Environmental
sciences).

In this article, we describe the model structure, its underlying
algorithms and methodological background (Section 3.2). We
demonstrate its application on a selection of frequently grown crop
types with special focus on winter wheat (Triticum aestivum L.) for
the entire area of Germany (Section 3.2.3) using temperature data
and phenological information provided on-demand for free by the
German Weather Service.1 The possibility to enhance the model by
additional explaining variables is demonstrated by consideration of
soil moisture within an extended model setting.

2. Materials and data

2.1. Phenological data

In Germany, the data base for phenological and meteorological
observations is of unique density and quality and thus well-suited
for model development. The German Weather Service (German:
Deutscher Wetterdienst – DWD) operates a phenological monitoring
network consisting of about 1200 active stations spread over
Germany which report the Julian day of entry (day of year –
DOY) for numerous phenological phases of agricultural crops, wine
and natural plants at the end of each year (Hense and Müller,
2007). Each plant is observed on a different number of stations,
depending on the abundance and agrometeorological relevance
of the respective crop type. The observations are recorded by vol-
unteers following standardized criteria, and a numeric code is
assigned for each phase (Table 1).

1 http://www.dwd.de.
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A certain degree of quality control is already applied to these
data, which is based on a multi-step cross validation procedure
using ±25 days observation error as first threshold and ±15 days
error in the second step (Hense and Müller, 2007). The most fre-
quently cultivated crops in Germany (Statistisches Bundesamt,
2011) and the related, continuously reported phases are listed in
Table 2. The annually collected phenological observations of these
predominantly grown crops can be obtained via FTP server
(Deutscher Wetterdienst, 2015a).

The distribution of the phenological stations is irregular both
between regions of different environmental conditions and within
regions of similar suitability for cultivation of a specific crop. For
instance, in regions where winter wheat is cultivated frequently
(Central Germany, and southern Germany apart from the moun-
tainous regions) the point density varies between 1.5 and 3 sta-
tions per 1000 km2, but no regional trend is visible. In
mountainous and coastal regions, demanding crops cannot or only
rarely be grown so that observation density is much lower. Addi-
tionally, the number and location of observations vary between
different years due to crop rotation practices. Since the observers
define the extent of their observation area according to the current

cultivation status, positional accuracy of the phenological stations
is approximately 2–5 km in position and 50 m in elevation
(Deutscher Wetterdienst, 2015b). This limits the applicability for
modeling phenology on medium spatial resolution, because it is
impossible to consider temperature differences on mesoclimatic
scale. Despite quality control is operationally applied to the data
by the DWD, there are still outliers in the final product. In this
study, a statistical filter is therefore applied which only considers
observations within an interval of 1.5 standard deviations around
the mean of the total data set. Exemplary, all stations that reported
the phenological phase beginning of yellow ripening in 2011 are
shown in Fig. 1b.

2.2. Temperature data

Daily mean temperatures were obtained for 503 stations per
day on which the DWD is running daily automatic quality control
procedures to detect and remove measurement errors. This error
removal results in slight daily differences of the actual number of
temperature observations per day. The positional uncertainty of
the stationary temperature stations is assumed to be not signifi-
cant. The temperature stations are not regularly distributed
(Fig. 1b). Population density determines the network density as
well as meteorological criteria. For instance, in mountainous areas
where more short-term weather changes occur, the density is
higher than in lowland areas of more constant weather conditions.

2.3. Elevation data

Since temperature is strongly dependent on elevation and
topography, a digital elevation model (DEM) is used as explanatory
variable for temperature interpolation. For this study, the SRTM
DEM (USGS, 2004, see Fig. 1a) was selected. The data set has been
produced by the space-borne STS-99 Shuttle Radar Topography
Mission (SRTM) sensor and is freely available outside the United
States at 90 m resolution with a vertical accuracy of 20 m and a
horizontal accuracy of 16 m (Rabus et al., 2003). The DEM has been
filtered following Lee (1980) to reduce signal noise. Elevations
below sea level were set to 0 m.
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Fig. 1. Germany-wide input data sets. 1 km digital elevation model (a); all phenological and meteorological DWD stations that observed the phase beginning of yellow ripening
for winter wheat in 2011 and all stations that provided daily temperature measurements on 1st January 2011 (b). Projection: EPSG code 25632 (Spatialreference, 2015). Data
sources: USGS (2004) and Deutscher Wetterdienst (2015a).

Table 1
Numeric codes for observed phenological phases of agricultural crops (Deutscher
Wetterdienst, 2015a).

Phenological phase Numeric code (phase ID)

Beginning of flowering 5
Full flowering 6
Beginning of sowing 10
Emergence 12
Closed stand 13
4th leaf unfolded 14
Beginning of shooting/stem elongation 15/67
Beginning of bud formation 17
Beginning of heading 18/66
Beginning of milk ripening 19
Early dough ripening 20
Beginning of yellow ripening 21
Beginning of full ripening 22
Harvest 24
Beginning of tassel emergence 65
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The DEM raster cells were aggregated to 1� 1 km pixel size
with a total number of 358,320 pixels. The 1 km2 resolution was
chosen to consider the uncertainty in position and altitude of the
phenological observations.

2.4. Soil moisture data

The DWD also provides daily raster data which represent the
soil moisture in per cent of accessible field capacity for grass
covering entire Germany (Deutscher Wetterdienst, 2015a). Spatial
resolution of the raster data sets is 1� 1 km. According to the data
set publisher (DWD Climate Data Center (CDC), 2016), the data set
is produced using observational data of approximately 280
synoptic climate stations. The soil moisture is calculated using a
modified Penman–Monteith rationale for determination of evapo-
transpiration (Löpmeier and Deutscher Wetterdienst, 1983). The
station-specific soil moisture values are interpolated using
multiple linear regression and triangulation. No quality assessment
routines are applied by the DWD, hence the data uncertainty can-
not be quantified. Apart of the algorithm-dependent uncertainty,
two further restrictions decrease the usability for the phenological
model. First, sandy loam is used as soil type for entire Germany
without taking regional differences into account. Second, the inter-
polated values for field capacity are only valid for unspecified grass
vegetation.

3. Methods

3.1. Methodological background

3.1.1. Phenological modeling
Numerous studies have shown that in temperate climates phe-

nological development correlates with accumulated heat sums
(Sitch et al., 2003; Miller et al., 2001; McMaster and Wilhelm,
1997; Russelle et al., 1984). They are calculated from the measured
daily mean temperatures above a base temperature TB, which is
the lower threshold for photosynthetic activity. The underlying
concept has been described by Réaumur (1735) and applied for
prediction of crop phenology for centuries. This relation is often
used for modeling plant phenology and is mostly referred as
growing degree day (GDD):

GDD ¼ 0:5� ðTmax � TminÞ � TB ð1Þ
According to Eq. (1), a GDD is the daily contribution to the accumu-
lated heat sum, Tmax and Tmin are the daily observed maximum and
minimum temperatures, and TB is the base temperature. TB can be
either species-specific or individual for each phase of a crop species
(Slafer and Savin, 1991). The daily GDD – beginning at a starting
point in time (DOYstart) – is then accumulated over a vegetation
cycle. Because winter crops are sown during autumn of the previous
year, the often-used 1st January is not necessarily the optimal start-
ing day. This day does not take environmental differences into
account which are expected to lead to inaccurate extraction of the
critical temperature sum. Station-specific starting days like the
day of sowing or the start of snow melt can be chosen instead to
respect topographic or climatic differences. Since other factors than
climate are also influencing the day of sowing, using snow melt as
starting point is also inappropriate. Hence we expect the reported
day of sowing (phase ID: 10, see Table 1) as most reliable starting
day.

On the day on which the accumulated temperature sum
exceeds a phase-specific threshold, the plant reaches the next
stage of its phenological cycle. However, this relation is only appli-
cable for phenological phases with a physiological background and
not for the phases sowing and tilling or harvest.

Photosynthetic activity can start even on days with a negative
contribution to GDD, if Tmax is higher than TB and Tmin is lower than
TB resulting in a mean temperature below 0 �C (McMaster and
Wilhelm, 1997). This can be especially the case during the early
months of a growing season. To determine the portion of the day
with temperatures higher than TB, hourly temperature measure-
ments are required. Since the use of hourly observations would
increase the amount of required data rapidly and we assume the
effect of on the modeling results to be negligible, we used observed
daily mean temperatures.

3.1.2. Kriging
Kriging is a widely-applied geostatistical method for interpola-

tion of spatial data that was first presented by Krige (1951) for
improving ore reserve estimations. It is an algorithm that uses
the decreasing autocorrelation between two sample points with
increasing spatial distance to predict intermediate values. The
algorithm is based on an empirical variogram and a fitted vari-
ogram model to predict a variable at a location where no sample
exist. Several theoretical variogram models exist, but the Matérn
(Matérn, 1960) model is strongly suggested for the interpolation
of spatial data (Stein, 1999) and can be used universally both for
short and long distance variation models (Hengl, 2009). This
variogram model includes a smoothing parameter kappa and a
Gaussian model as limiting case as well as an exponential model
as special case and thus is more flexible to local behavior of the
observations than other models.

Kriging allows the consideration of possible correlations of the
predicted variable with various explanatory variables (Hengl et al.,
2007). For instance, this is the case for air temperature, which shows
a dependency to elevation and surface topography. Kriging using
explanatory variables is referred as Universal Kriging, Kriging with
external drift or Regression Kriging. Other methods like Inverse
Distance Weighting interpolation, averaging values per polygon
and Ordinary Kriging can be understood as special cases of the
Regression Kriging method (Hengl, 2009), which hence is under-
stood as best linear unbiased predictor (Stein, 1999; Hengl, 2009).

3.1.3. Cross validation
Cross validation is an often applied method for accuracy

assessment for interpolations of environmental variables (Kuhn
and Johnson, 2013). It compares predicted values on a location
with the observed values on the same location. Leave-one-out
cross validation excludes one sample from the input data set
and predicts this sample using the surrounding observation
points. Afterwards, the difference between the predicted value
and the observed value is used as estimate of the prediction per-
formance. 10-fold cross validation is an alternative technique,
which is a variant of bootstrapping and is insensitive against out-
liers (Hengl, 2009). Here, the data set is split into 10 parts (folds)
of equal size and each fold is used for cross validation and calcu-
lation of the parameters Root Mean Squared Error (RMSE) and R2 as
metrics for the model’s goodness of fit. RMSE is a measure to
describe the difference between observed and modeled values
and is calculated according to Eq. (2).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyobs � ypredÞ2

Nobs

s
ð2Þ

Here, yobs and ypred represent observed and modeled values and Nobs

is the number of observations. Cross validation provides global
accuracy measures as well as the residuals for each observation
which can be used to detect observations of high uncertainty that
in turn can affect the entire prediction result negatively.
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3.2. Basic model conception

The core PHASE model follows the growing degree days
approach (see Eq. (1)) but includes day length as proxy for latitude
influences. It determines the number of required heat units to
reach a phenological phase, which is representative for the com-
plete study area. First, a station- and phase-specific threshold of
required heat units is determined (Eq. (3)).

Teff
sum½j� ¼

XDOYobs

i¼DOYstart

ðTi;j � TBÞ � DLi
24

� �
ð3Þ

Teff
sum½j� in heat units (HU) represents the accumulated effective tem-

peratures on a specific phenological station j between a fixed start-
ing day DOYstart and the observed phenological event DOYobs. T is the
daily mean temperature and DL the day length at the phenological
stations, TB is the base temperature.

Next, a critical HU value TP is determined as a quantile of the

distribution of all values of Teff
sum (Eq. (4)).

TP ¼ QoptðTeff
sumÞ ð4Þ

TP is the critical temperature sum required for a specific phase and

Qopt is the optimal quantile of Teff
sum of all phenological stations.

Finally, the first day DOYP on which the cummulated heat units
are equal or exceed the critical temperature sum TP is calculated
for each station.

The work flow in Fig. 2 can be distinguished in three parts:

1. Data pre-processing is performed which includes the interpola-
tion of daily temperature observations to retrieve a daily mean
temperature raster data set covering entire Germany (Ti;j in Eq.
(3); see Section 3.2.1) and the outlier detection of the phenolog-
ical observations,

2. Fitted values of the parameters of Eqs. (3) and (4) are estimated
by finding the configuration that leads to the lowest possible
RMSE, resulting in the calculation of accumulated daily effective

temperatures (Teff
sum).

3. DOYP is determined and interpolated to produce a raster data
set representing the day of entry of the target phenological
phase. Additionally, cross-validation is performed to assess
the prediction accuracy (Section 3.3).

Due to the automatic fitting procedures, the model is com-
pletely data-driven and no prior assumptions on the data distribu-
tion are required for modeling.

The model has been implemented within the statistical com-
puting environment R (R Core Team, 2015). All geodata are
imported using the R-packages rdgdal (Bivand et al., 2015) and
raster (Hijmans, 2015).

3.2.1. Temperature interpolation
The daily mean temperatures are interpolated using local

Universal Kriging (see Section 3.1.2) which is implemented within
the gstat package (Pebesma, 2004). Elevation is used as indepen-
dent variable to respect topography influences in the prediction.
A Matérn variogram model is automatically fitted to the empirical
semivariogram using the function fit.variogram() which is also
included in the gstat package. A crucial parameter is the number
of stations to include in the temperature prediction at a certain
location (nmax). In principle, the higher nmax the more accurate
predictions can be assumed. On the other hand, Kriging is based
on the assumption that more distant observations are almost inef-
fective for the prediction result (Hengl, 2009). Since computation
time increases strongly with increasing number of considered

stations, the number of the included stations should be reduced
to limit processing time.

3.2.2. Calculation of effective temperatures
The interpolated mean temperatures T are converted to station-

specific daily effective temperatures Teff (Eq. (3), comparable with
GDD in Eq. (1)). First, the base temperature is subtracted from the
mean temperature of each day. Next, the resulting temperatures
are adjusted to take the dependence of photosynthesis on available
sunlight (photoperiod) into account. Here, the observed mean tem-
perature are multiplied by the ratio of day length (DL [h]) to the
whole day.

DL is calculated using the R function daylength() that is included
in the package geosphere (Hijmans et al., 2014). TB is the base tem-
perature below which no growth occurs. Although different values
for TB exist, the most often applied default values which are used
independently of crop type and region are 0 �C, 5 �C or 10 �C. The
actual base temperature for a certain plant or cultivar and phase
can be also calculated by statistical formulas (Yang et al., 1995)
or selected using standard look-up-tables. In this study, a sequence
of TB values is tested ranging from 0 �C to 10 �C.

3.2.3. Extraction of DOYP

The plant- and station-specific critical temperature sum (Teff
sum)

for a phenological phase on a specific station is calculated by sum-
ming up all daily temperatures from a starting point DOYstart to the
day on which the phenological phase has been observed (DOYobs).
In this study, DOYstart is defined by the reported sowing day. All
negative effective temperatures are considered as not significant
for photosynthetic activity.

 

 

 

Fig. 2. Structure of the basic model including preprocessing, fitting and spatial
interpolation. SRTM DEM - SRTM digital elevation model; Teff

sum - accumulated
temperatures from DOYstart to observed day DOYobs; TP - required heat units;
Qopt - Quantile of Teff

sum distribution that leads to lowest RMSE values; DOYP - day on
which accumulated temperature sum exceeds TP .
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The day DOYP , on which the cumulative sum exceeds the indi-
cator temperature sum for the entry of a target phaseTP , that is
used as indicator for the entry of a target phase, is calculated for
each station. TP is automatically detected by testing 19 quantiles

(Q 2 ½0:05;0:95�) in steps of 5% of the Teff
sum distribution. The quan-

tile Qopt which leads to the lowest RMSE between observed and
estimated DOY is used for determination of TP .

3.2.4. Spatial interpolation of DOYP

The modeled days are passed to a Kriging interpolation with
elevation as independent variable using an automatically fitted
Matérn variogram model (see Section 3.2.1). The initial values for
fitting were set according to Hiemstra et al. (2009), the smoothing
parameter kappa was set to 1. Here, the optimal value for nmax is
determined using a 10-fold cross validation technique, and the
nmax value with the lowest RMSE is used for the final prediction.

3.3. Accuracy assessment

An estimate of uncertainty is provided as part of the Kriging
procedure. This estimate is referred as Kriging variance and repre-
sents the variance of the predicted result on each location in com-
parison to the optimum. The Kriging variance can be used to assess
spatial patterns in uncertainty of the prediction.

RMSE and R2 were computed using 10-fold cross validation (see
Section 3.1.3). For comparison,RMSE andR2 achievedby InverseDis-
tance Weighting interpolation (IDW) and Ordinary Kriging (OK)
applied on the raw phenological observation data using a Matérn
variogram model and the fit.variogram() function were computed.

3.4. Model extension using soil moisture

The model can be extended by further parameters that influ-
ence plant phenological development, e.g., soil moisture. Although
soil moisture is less effective for modeling plant development in
temperate climates than temperature (Fu et al., 2014), it is of spe-
cial importance for the model’s transferability to other, especially
arid and semi-arid climates where soil water availability more
influences plant development. Independently of the data limita-
tions mentioned in Section 2.4 and the, for the test site with its
temperate climate, expected low significance for the modeling
results, a second normalization of the daily effective temperatures

(Teff ) was tested (Eq. (5)).

Teff ¼ ðT � TBÞ � DL
24

� 1� cosðp� hfcÞ
2

ð5Þ

Here, Teff is the daily contribution of a day to Teff
sum. T and TB are the

mean and base temperature, DL is the length of daylight and hfc is
the field capacity representing the soil moisture accessible by
plants. The additional normalization term is formulated to equal 1
when the plant available field capacity is 100% and declines in con-
ditions of stress due to soil wetness and drought, so that water def-

icits and surplus reduce the daily contribution of Teff to Teff
sum. In

doing so, a 10% deficit as well as 10% surplus, for instance, result
in the weighting factor of 0.976. Consequently, warm days with
many day light hours and 100% plant available field capacity are
understood as the most effective days for plant development.

4. Results and discussion

The model has been applied for all crop types and correspond-
ing phenological phases with a plant physiological background (see
Table 2) that were observed in 2011. This includes the spring and
summer phases of crops that were harvested in 2011, and the

autumn phases of the next vegetation cycle that was terminated
in 2012. The results are discussed with special focus on the phases
beginning of shooting and beginning of yellow ripening of winter
wheat, which is the most frequently grown crop type in Germany,
with the exception of perennial grasslands. In 2011, winter wheat
was grown on 19% of the total area under cultivation (Statistisches
Bundesamt, 2011), followed bymaize (13%), winter barley (9%) and
winter oilseed rape (8%). Fig. 3 shows the corresponding DOY dis-
tributions for the total area of Germany whose outliers were
removed by statistical filtering (see Section 2.1).

4.1. Temperature interpolation

Daily temperatures between 2010 and 2011 were interpolated
covering all days for which observations exist. According to
Hengl (2009), 30–60 included observations result in sufficient
accuracy of the final prediction, while Webster and Oliver (2007)
stated that 100–150 stations are required at least. A 10-fold cross
validation has been applied on all days to determine the number
of stations to include in the temperature prediction at a certain
location (nmax) by subsequent testing of values from 10 to 20,
25, 30, 40, 50, 60, 100 and 200 (Section 3.2.1). The processing times
for the predictions of one single day are displayed in Fig. 4. In order
to balance prediction accuracy and computation time, the nmax

Table 2
Reported phenological phases for the eight typical field crops in Germany (DWD,
2015). See Table 1 for full phase names.

Crop Crop (scientific name) Reported phases

Winter wheat Triticum aestivum L. 10, 12, 15, 18,19, 21, 24
Winter rye Secale cereale L. 10, 12, 15, 5, 6, 18, 21, 24
Winter barley Hordeum vulgare L. 10, 12, 15, 18, 21, 24
Oilseed rape Brassica napus L. 10, 12, 14, 67, 17, 5, 22, 24
Oat Avena sativa L. 10, 12, 15, 66, 19, 21, 24
Maize Zea mays L. 10, 12, 67, 5, 65, 19, 20, 21, 24
Potato Solanum tuberosum L. 10, 12, 5, 24
Sugar beet Beta vulgaris subsp. vulgaris 10, 12, 13, 24
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Fig. 3. Boxplots of the observation days for winter wheat phases beginning of
shooting and beginning of yellow ripening in 2011 for the total area of Germany.
DOY ¼ 111 represents 21st April and DOY ¼ 195 corresponds to 14th July 2011.
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value was set to 30 for all daily interpolations which provides only
slightly higher RMSE values than the optimum in most of the test
cases while it needs significantly less processing time of about
134 s on a standard PC (4 GB RAM, 2.7 GHz, Microsoft Windows
7OS 64bit). The calculated RMSE values for different values for
nmax vary about 0.06 �C with a decreasing trend to higher nmax
values. The RMSE values for all temperature interpolations are
below 1 �C on 89% of the days.

4.2. Extraction of DOYP and model calibration

4.2.1. Base temperature

Daily temperatures for 2011 were transformed to Teff by nor-
malization regarding photoperiod and subtraction of the base tem-
peratures that have been determined iteratively by testing all
values between 0 �C and 10 �C. As Slafer and Rawson (1995) stated
for winter wheat, both base temperature as well as sensitivity to
photoperiod can vary between different cultivars of a species.
The base temperature that leads to the lowest errors in the final
prediction was used. Despite TB ¼ 0 �C was used in most of the
cases (see Table 3), significant differences exist between both crops
and also phases of an individual crop. According to e.g. Salazar-
Gutierrez et al. (2013), TB can vary between 1.6 and 8.4 �C for dif-
ferent winter wheat cultivars. Nevertheless, TB can be considered
as a statistical variable in this study which enables the optimiza-
tion of model results.

In Fig. 5, the mean errors of the predictions are plotted in rela-
tion to the tested base temperatures. The errors for shooting clearly
exceed the errors for yellow ripening. For yellow ripening, the base
temperature is less decisive for values between 0 �C and 6 �C than
for shooting, for which the errors increase almost linearly with
increasing base temperatures. The stable errors for yellow ripening
for TB between 0 �C and 6 �C correspond to the most often reported
TB values for winter wheat, which are between 0 �C and 5.5 �C
(McMaster and Wilhelm, 2003; Barrett, 2013). The almost linear
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Fig. 4. Mean RMSE values of all temperature interpolations derived by 10-fold cross
validation using different values for nmax (solid line) and processing time of
corresponding Kriging interpolation (dashed line).

Table 3
Optimal model parameters and accuracy metrics for crop phenological phases observed in 2011.

Plant Phase TB [�C] Qopt TP [HU] nmax RMSE R2

Mod Raw IDW Mod Raw IDW

Winter wheat Emergence 0 0.35 58 60 11.45 9.33 9.60 0.89 0.15 0.11
Shooting 0 0.50 423 40 5.75 8.87 9.07 0.65 0.01 0.02
Heading 10 0.50 118 40 2.14 4.96 5.05 0.72 0.21 0.18
Milk ripening 5 0.45 588 50 3.57 8.80 8.92 0.65 0.03 0.04
Yellow ripening 0 0.45 1265 14 3.83 7.11 7.04 0.70 0.08 0.10

Winter rye Emergence 0 0.40 55 60 8.58 8.24 8.28 0.82 0.03 0.04
Shooting 0 0.55 413 18 5.92 6.98 7.14 0.79 0.01 0.02
Beg. of flowering 10 0.50 116 30 2.75 5.53 5.61 0.69 0.18 0.16
Full flowering 10 0.50 135 60 3.09 6.63 6.88 0.62 0.09 0.05
Heading 8 0.55 141 50 3.66 5.05 5.10 0.70 0.14 0.13
Yellow ripening 0 0.45 1283 50 4.51 8.47 8.64 0.61 0.11 0.08

Winter barley Emergence 0 0.45 73 40 5.04 5.64 5.87 0.81 0.09 0.05
Shooting 0 0.55 451 50 5.19 7.36 7.45 0.70 0.05 0.05
Heading 0 0.50 632 60 3.59 4.45 4.66 0.68 0.25 0.18
Yellow ripening 6 0.50 1064 50 3.88 7.79 7.96 0.70 0.03 0.02

Oilseed rape Emergence 0 0.45 107 60 7.16 7.10 7.30 0.81 0.04 0.02
4th leaf unfolded 0 0.40 260 60 7.98 8.88 9.15 0.67 0.01 0.01
Shooting 0 0.75 603 25 4.90 5.16 5.46 0.72 0.22 0.10
Bud formation 0 0.70 633 60 5.90 5.45 5.56 0.71 0.19 0.16
Full flowering 0 0.55 694 50 4.06 4.23 4.30 0.67 0.37 0.35
Full ripening 0 0.45 1484 20 4.90 8.01 8.33 0.64 0.12 0.07

Oats Emergence 0 0.40 66 60 5.04 6.00 6.14 0.81 0.15 0.13
Shooting 1 0.50 284 60 4.12 8.66 9.11 0.63 0.02 0.00
Heading 0 0.45 541 50 3.23 6.24 6.57 0.66 0.03 0.01
Milk ripening 0 0.45 855 18 3.29 8.78 9.26 0.57 0.02 0.01
Yellow ripening 0 0.45 1059 25 3.43 8.31 8.62 0.65 0.08 0.04

Maize Emergence 3 0.45 79 30 5.06 5.14 5.25 0.82 0.18 0.14
Shooting 8 0.45 160 40 3.24 9.19 9.54 0.40 0.01 0.00
Tassel emergence 3 0.45 625 60 3.20 5.72 5.86 0.65 0.16 0.12
Beg. of flowering 0 0.45 902 60 3.68 7.10 7.18 0.63 0.11 0.10
Milk ripening 0 0.45 1211 60 3.96 7.64 7.81 0.67 0.09 0.06
Early dough ripening 0 0.45 1364 30 4.30 8.24 8.59 0.68 0.13 0.07
Yellow ripening 0 0.40 1468 19 5.32 8.33 8.55 0.70 0.05 0.04

Potato Emergence 0 0.45 172 30 5.75 7.35 7.23 0.73 0.07 0.09
Closed stand 4 0.45 295 20 3.88 7.05 7.15 0.64 0.10 0.08

Sugar beet Emergence 3 0.45 73 30 5.35 10.63 7.61 0.71 0.00 0.02
Closed stand 3 0.50 421 40 3.21 7.43 7.94 0.47 0.06 0.01
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increase of the mean error for shooting is probably caused by the
exclusion of days with a mean temperature below TB but photo-
synthetically effective hours (McMaster and Wilhelm, 1997). This
effect decreases for summer phases like yellow ripening, but is vis-
ible in all further modeling steps (Table 3).

4.2.2. Temperature sums and optimal quantiles

For each phenological station and day, Teff for shooting and
yellow ripening of winter wheat were calculated to retrieve the

accumulated temperature sum Teff
sum between DOYstart and DOYobs

by using TB ¼ 0 �C. According to Fig. 6, the median of Teff
sum for

shooting and yellow ripening are 423 HU and 1273 HU with stan-
dard deviations of 84.12 and 102.07, respectively.

The DOYP value on which the temperature sum exceeds each of
the tested quantiles was determined. The mean errors of the
observed and modeled values and corresponding Q values are
shown in Fig. 7. Accordingly, Qopt is equal to the expected median
for shooting and slightly below for yellow ripening where Qopt

equals the 45%-quantile.
All data points where the residual of DOYP and DOYobs is larger

than the standard deviation r of DOYobs were excluded from the
data set. This filtering process reduces the considered stations by
about 49% and 41% respectively (see Fig. 8). As a result, the model
fitting increases significantly. R2 and RMSE for the filtered point
data set are 0.65 and 5.75 for shooting and 0.70 and 3.83 for yellow
ripening. Point scattering is higher for shooting than for yellow

ripening, which indicates a better model performance for the
prediction of summer phases than on spring phases due to less

uncertainty in the calculation of Teff mentioned in Section 4.2.
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Fig. 8. Density plot of DOYP and DOYobs for shooting (left) and yellow ripening (right)
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DOYobs-DOYP-combinations. All data points within the standard deviation r are
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the reader is referred to the web version of this article.)
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For all other phases and plants, the optimal quantiles as well as TB

and RMSE values are listed in Table 3.

4.3. Interpolation of DOYP

The model results and Kriging uncertainties for the phenologi-
cal phases shooting and yellow ripening of winter wheat are shown
in Fig. 9. To retrieve an uncertainty measure in days, the square
root of the Kriging variance (Kriging standard deviation) is plotted.
Relatively early dates were modeled for the Rhine valley and the
favored regions in eastern Germany, while in mountainous and
coastal regions the plant development is delayed. In some regions,
the distribution of the observations is relatively coarse (see Fig. 1
and Section 2.1), which causes higher uncertainties (>6 days) com-
pared to regions of dense observations (�4 days). The prediction in
mountainous regions is of high uncertainty (>8 days) for both
phases.

The prediction is performed even in areas where a particular
crop cannot be grown due to unsuitable environmental conditions.
For instance, winter wheat can only be grown in regions with suf-
ficient precipitation, mild winters and warm summers as well as

on fertile soils which are not present in entire Germany. However,
the model produces information independently of these require-
ments. This problem is particularly obvious in north-eastern
Germany. There, the soils are very sandy and thus not very fertile,
and winter wheat is consequently only rarely cultivated and
almost no observations exist from this area. However, the Kriging
algorithm predicts the phase using the closest locations, in this
case from the very fertile regions in Central Germany.
Consequently, regions of actually poor environmental conditions
appear to be favored for wheat cultivation. The integration of a
mask derived from soil types or detailed land use information that
margins the prediction on potential cultivation areas could solve
this problem in the future.

4.4. Optimal parametrization and model accuracy

The results of the applied 10-fold cross validation (see
Section 3.3) are listed in Table 3, where the determined optimal
model parameters nmax; Qopt and TP and the accuracy metrics

RMSEmod and R2
mod of the interpolated model output for all tested

crops and phases are combined. The metrics RMSEraw and R2
raw,
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Fig. 9. Interpolated modeling results for the phenological phases beginning of shooting (a) and yellow ripening (b) of winter wheat in 2011 and corresponding Kriging standard
deviations (c and d). Projection: EPSG code 25632 (Spatialreference, 2015).
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derived by Ordinary Kriging of the raw phenological observations
and RMSEIDW and R2

IDW , calculated using the widely applied Inverse
Distance Weighting interpolation for the original and unfiltered
observations, are added for comparison.

Qopt is mostly �5% around the median, with the exceptions of
emergence of winter wheat, winter rye and oats. In case that TB is
differing between two subsequent phases, TP can be lower for
the later than for earlier phase. This is the case for the phases
shooting and emergence of winter wheat, for which TB differs by
10 �C. However, the determined TP in general correlates to GDD
values published in the literature (e.g., Miller et al., 2001). The
modeling of the early phases shows higher RMSEmod values and
smaller differences to RMSEraw values compared to later phases,
while no declining trend is visible for RMSEraw values. Since emer-
gence occurs only a few days after sowing, this phase depends
highly on management practices and less on temperature, and
the model accuracy is consequently reduced for this phase.
RMSEmod is higher than RMSEraw for some phases e.g., for emergence
of winter wheat, winter rye, oilseed rape and potatoes, which indi-
cates deficits of the model for early phases.

Oilseed rape phases are modeled with lower accuracy than
other crops. For two phases, shooting and bud formation, the opti-
mal quantile is significantly above the median (75% and 70%,
respectively). Additionally, RMSEmod for bud formation is higher
than RMSEraw and RMSEIDW . This higher uncertainty indicates a
stronger dependency of their phenological development on factors
which are not considered within the model like comparatively high
requirements to nitrogen, potassium and sulfur nutrition (Grant
and Bailey, 1993) or fertilization.

4.5. Integration of soil moisture

For each of the 1� 1 km DEM and temperature raster cell, the
corresponding soil moisture value was extracted for every day
and used for calculation of the modified effective temperature term
(see Eq. (5)). The consideration of the soil moisture normalization

term for the calculation of Teff resulted in reduced RMSE for 18 of
the modeled phases, while the remaining 19 showed no effect or
slightly increased RMSE. The improvement is highest for emergence
of winter rye, with RMSE decreasing by more than 4 days. The

improvement for early dough ripening of maize is close to one day,
while the other performance gains are less than 0.5 days. In general,
the effect of incorporation of soil moisture on the model accuracy is
low, only for two phases it is close to one day or higher (see Table 4).

4.6. Correlation between date of sowing and phenological events

The date on which a plant was sown is an additional, anthro-
pogenic influencing factor on plant phenological development
and modeling. To quantify this influence, Pearson’s correlation
coefficients r were calculated between the date of sowing and
the DOYP variants, with and without consideration of soil moisture,
as well as between the date of sowing and DOYobs (Table 5).

As expected, DOYobs and the date of sowing are almost linear
correlated for emergence and show high significance. For shooting,
r is moderate with very high significance, while for all later phases
r is low. For heading, all r values are close to zero and not signifi-
cant, while for the two ripening phases they are slightly higher.
In general, correlation between the raw observations is lower than
the correlation of the modeled phases and the observed day of
sowing. Incorporation of soil moisture slightly increases the corre-
lation coefficient.

4.7. Error sources

Volunteered Geographic Information in general are of limited
reliability (Flanagin and Metzger, 2008). Here, for the phenological
observations data set, this concerns especially locational uncer-
tainties, cultivar differences and the lack of information regarding
fertilization and other management practices (see Sections 2.1 and
4.4) which is one source for model uncertainties.

Due to the spatial interpolation of the observations, uncertain-
ties of the used temperatures are unavoidable. The average uncer-
tainty and an approach to balance accuracy and processing time
were discussed in Section 4.1. Other sources for mean tempera-
tures are satellite data, which provide spatially explicit values.
However, these values are only valid under cloud-free conditions.

The resolution of the underlying DEM suppresses small-scale
variations in elevation and thus reduces interpolation accuracies.
The usage of a higher resolution DEM from satellite data e.g. native
the SRTM DEM,WorldDEM (90 m and 12 m resolution, respectively)

Table 4
Difference of RMSE between modeling results with and without consideration of soil moisture. Negative values indicate accuracy improvement when soil moisture is considered.

W. wheat W. rye W. barley Oil. rape Oats Maize Potato Sug. beet

Emergence 0.55 �4.38 0.49 0.22 0.02 �0.01 �0.18 �0.12
Shooting �0.03 �0.05 0.03 0.12 0.00 �0.05 – –
Heading 0.27 0.23 0.02 – �0.11 – – –
Milk ripening 0.09 – – – �0.01 �0.05 – –
Yellow ripening 0.07 0.1 0.27 – 0.08 �0.35 – –
Beg. of flowering – 0.03 – 0.09 – �0.05 – –
Full flowering – �0.09 – – – – – –
4th leaf unfolded – – – 0.88 – – – –
Bud formation – – – �0.04 – – – –
Full ripening – – – �0.08 – – – –
Early dough ripening – – – – – �0.94 – –
Tassel emergence – – – – – 0.04 – –
Closed stand – – – – – – �0.45 0.14

Table 5
Correlation coefficients r and p-values for DOYh

P ;DOYP and DOYobs against the observed date of sowing for winter wheat.

Emergence Shooting Heading Milk ripening Yellow ripening

r p r p r p r p r p

DOYP 0.98 <2.2e�16 0.49 <2.2e�16 �0.04 0.38 0.28 7.1e�7 0.25 2.8e�6

DOYh
P

0.98 <2.2e�16 0.50 <2.2e�16 �0.03 0.56 0.29 1.9e�7 0.26 1.4e�6

DOYobs 0.94 <2.2e�16 0.31 8.6e�8 �0.05 0.30 0.21 1.3e�4 0.15 4.1e�3
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or DEM derived from airborne laser scanning with resolutions
down to a few centimeters could increase interpolation accuracy,
but due to computational limitations study site size and DEM res-
olution must be balanced.

Further model uncertainties are consequences of the model’s
intended simplicity. A more sophisticated model that includes
parameters like other cardinal temperatures (e.g., upper
thresholds, optimum temperatures), which can be freely obtained
for many WMO-listed weather stations worldwide, could increase
the model accuracy. However, the higher the input data
requirements are, the smaller are the application scenarios for
the model due to different data availability between regions, coun-
tries, phenological observations, etc.

4.8. Comparison with other models

The PHASE model is based on only free and operationally avail-
able Germany-wide information on temperature, phenological
events and elevation in order to create on-demand maps of up-
to-date or past phenological conditions at any location in Germany.
On the one hand, the resulting phenological maps represent spa-
tially explicit interpolation results of a specific and adaptable geo-
metric resolution (here: 1� 1 km2). This is in contrast to
comparable GDD approaches applied in Germany which aggregate
phenological observation values to reference units like eco-regions
(Siebert and Ewert, 2012) or large-scaled grid cells of 50� 50 or
100� 100 km2 (van Bussel et al., 2011). On the other hand, the the-
matic depth of the PHASE interpolation results is superior and
more crop-specific compared to spatially explicit and satellite-
based parameters (e.g. Hird and McDermid, 2009).

Unlike other statistical phenological models, PHASE does not
include features and capabilities which might lead to more accu-
rate predictions. Some statistical phenological models include
species-specific chilling requirements during the period of dor-
mancy (Luedeling et al., 2009). Consideration of chilling require-
ments could further improve modeling accuracies for some
species, since chilling effects are mostly effective for winter crops
but less for summer cultivars.

Furthermore, other models allow the prediction of phenological
responses to climate projections into the future (Schröder et al.,
2014). This is a very useful capability for a large variety of
climate-related sciences, but it is beyond the scope of the PHASE
model. One example is the Promotor Inhibitor Model (PIM;
Schaber and Badeck, 2003) which has recently been applied to
investigate the impact of future climate(s) on tree phenology
(Lange et al., 2016). PIM is a generalized physiology-based model
and fitted on long-term phenological observations, e.g. DWD
observational network. Consequently, PIM can assess and explain
the importance of underlying drivers like temperature in the sense
of chilling requirements or day length which may potentially vary
between phenological phases and species. Once robustly fitted, it
can also be used for comparable climates or species even when
no phenological observations are available. If the underlying mech-
anism – as exhibited in the long-term observational set – changes,
PIM’s transferability can be substantially restricted. PHASE, in con-
trast, uses (geo-) statistics of a single phenological cycle. This
ensures for a single year and phase a better predictive performance
(2–3 days less MAE compared to PIM).

5. Conclusions and outlook

In this article, we presented the geo-statistical model PHASE
which makes the automatic, Germany-wide and spatially explicit
prediction of phenological phases possible. The model uses pub-
licly available input data and is characterized by the following
features:

� PHASE enables an automatic optimization of all critical param-
eters which makes the model independent of user-specific
parametrization. Thus, the model allows the spatial interpola-
tion of any phase for which phenological observations exist.
Each modeling result is characterized by accuracy metrics.

� Only three types of input data are needed including daily pro-
vided point data on temperature and phenological events and
digital elevation model.

� As demonstrated for the example of soil moisture, additional
explaining variables can be integrated in the model to possibly
increase the results’ accuracy.

� The predictions’ geometric resolution is free adaptable. In the
presented model setting, the spatial resolution of the resulting
phenological raster data set is 1� 1 km. Currently, no publicly
available phenological model of equivalent performance
regarding spatial and thematic resolution as well as processing
time is known.

Although the introduced workflow refers to German data situa-
tion, the approach is, however, transferable to other temperate
regions where a sufficient data base of phenological observations
and daily temperature measurements exist or are continuously
reported. These requirements are fulfilled in some other European
countries, e.g. the Netherlands, Belgium and Great Britain
(Rodriguez-Galiano et al., 2015) and the US (Rosemartin et al.,
2014). Apart from networks driven by state authorities, the
amount of volunteered geographic information including pheno-
logical observations has increased in recent years due to the
improvement in online communication and positional tracking
techniques (Mehdipoor et al., 2015). In addition to human-based
observations, stationary near-surface cameras (phenocams) will
increasingly provide a permanent visual record of phenological
developments (Richardson et al., 2013).

A model transferability is also to be expected to other crop
types like soybeans whose growth and development is influenced
by heat units and by photoperiod (Setiyono et al., 2007), but which
are rarely or almost not cultivated in Central Europe. Depending on
the region-specific availability of relevant open-source input data
sets, the model can be extended or modified accordingly.

The modeling results are of interest for remote sensing applica-
tions, especially for crop classification which has been one of the
key applications for remote sensing data over decades. However,
the number of distinct cultivated crops that can be discriminated
accurately is mostly limited on a few and partly aggregated classes.
Class separation on species level is often hampered by high spec-
tral similarity of closely related species e.g., cereal species like
wheat, rye and barley. Phenological information can work as indi-
cators for the selection of optimal satellite images to achieve more
accurate classification results on species level (Gerstmann et al.,
2016).

A further information gain by the usage of PHASE outputs could
be achieved in mapping of invasive species. Within the study by
Bradley and Mustard (2006), invasive cheatgrass was mapped in
northern Nevada, USA, using phenology as indicator for
classification and for derivation of invasion risk. For this purpose,
Landsat images were selected arbitrary under the knowledge, that
cheatgrass has its highest greenness in mid-May, slightly earlier
than the grass species which are native in northern Nevada
steppes. This arbitrary selection can be assisted and potentially
improved by modeled phenology as provided by PHASE.

Turner et al. (2003) stated, that remote sensing based informa-
tion on plant phenological development are important variables
for mapping of biodiversity and determination of vegetation pat-
terns down to species levels. However, remote sensing methods
provide a less detailed thematic resolution than phenological
information modeled using ground observations. Adapted to the
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specific application, PHASE thus has the potential to improve
results of biodiversity studies using remote sensing data.

In addition, the coupling of up-to-date phenological predictions
with corresponding remotely sensed imagery or simulated times
series opens up opportunities for the monitoring of ecosystem ser-
vices like soil erosion control (Guerra et al., 2014). In doing so, tem-
poral windows and specific reference units like parcels can be
detected where soils are potentially covered by sparse or dense
vegetation, crop residues or are free of coverage, which enables
dynamic soil erosion modeling (Möller et al., 2015).

It is planned to enable public access of operationally produced
modeling results within a WebGIS environment. Therefore, for
time-consuming parts of the PHASE model, like the prediction of
daily temperatures or the optimization of base temperatures
(Section 3.2.1) and accumulated effective temperatures
(Section 3.2.3), appropriate parallelization techniques (Schiele
et al., 2012) are currently tested to enable computational efficient
processing.
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5.2 conclusions from paper 2

Paper 2 demonstrated, that a concise phenological model based on
only three types of input data provides more accurate phenological
information for regions without observation data than simple geos-
tatistical interpolation methods.

Another finding is, that volunteered geographic information is of
enough quality to achieve results of sufficient accuracy, but also is a
source of uncertainty that cannot be definitely quantified.

It could also be proven that the flexibility of the model design
allows the consideration of additional auxiliary input data sets but
demonstrates the strong dependence of plant phenology on temper-
ature as main driver in temperate climates. The developed phenolo-
gical model addresses exactly the conclusions of Paper 1, enabling
the combination of both methods to relate separability patterns to
accurate, spatially explicit phenological data.
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In Paper 3, the conclusions of the findings of Chapter 4 are ad-
dressed by the developed phenological model PHASE that was de-
scribed in Chapter 5. The shortcomings of raw observational phen-
ological data to explain spatial and temporal differences in spectral
separability of cereal crops are approached by utilisation of the oper-
ationally applied PHASE model.
Furthermore, it could be again demonstrated that a single vegetation
index cannot be used alone for spectral separation, since during differ-
ent growth stages the different plant physiological processes result in
varying spectral response. The approach was applied on established
variants of NDVI and single-band spectral reflectances. For demon-
strative purpose, the separability analyses were performed for the
three dominating crop types winter wheat, winter barley and winter
rapeseed.
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The resulting separability profiles are linked to phenological phases
modelled using PHASE. The phenological stage that was most fre-
quently present during the separability peak is understood as indic-
ator phase that can be used for the selection of the best-suited data
sets of a satellite image time series. The indicator phases were defined
for the Harz study sites (see Section 3.1.1) and applied for transferab-
ility assessment to the DEMMIN site (see Section 3.1.2). The pheno-
logical modelling procedure is automatised to be updated daily. An
infrastructure is presented to distribute the modelled phases to the
public for free.
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Abstract Agricultural monitoring and assessment based on
satellite data increasingly gains importance due to the grow-
ing number of available satellite sensors with high geometric
and temporal resolution. Such tasks often require multiple
images acquired on specific dates that among others account
for inter-annual phenological variations to provide accurate
results. This contribution presents an approach that links
peaks of spectral separability profiles to crop phenological
phases. The phases are spatially interpolated using a phe-
nological model and ground observations. The profiles show
the respective temporal development of the F-measurewhich
is used as indicator for class-wise separability. It originates
from binary classifications of vegetation indices computed
for each set of a satellite data archive covering multiple
years. Acquisition dates, which repeatedly show a separabil-
ity maximum define phenological indicator phases. Potential
alternative phases can be also defined. Experiments based on
multi-temporal RapidEye satellite imagery were performed
for three crops at two German test sites under different envi-
ronmental conditions. The results showed that the phases
yellow ripeness, heading and flowering can function as indi-
cator phases for high spectral separability of winter barley,
winter wheat and winter rapeseed. We could identify at least
two identical, stable indicator phases per crop type for both
test sites, which suggests the transferability and robustness
of the presented approach.
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Zusammenfassung Detektion von phänologisch definierten
Datenaufnahmezeiträumen für die Klassifikation von Feld-
früchten
Auf Satellitendaten basierendes landwirtschaftliches Moni-
toring gewinnt durch die wachsende Anzahl verfügbarer
Sensoren mit hoher zeitlicher und geometrischer Auflösung
zunehmend an Bedeutung. Für solcheAnwendungenwerden
oftmals Satellitendaten von verschiedenen Aufnahmetagen
benötigt, deren Auswahl inter-annuelle phänologische Vari-
ationen berücksichtigen muss, um exakte Ergebnisse zu
liefern. Dieser Beitrag präsentiert einen Ansatz, umMaxima
von spektralen Trennbarkeitsprofilen mit phänologischen
Phasen von Feldfrüchten zu verbinden. Diese Phasen werden
unter Nutzung eines phänologischenModelles undBeobach-
tungsdaten räumlich interpoliert. Die Trennbarkeitsprofile
zeigen den zeitlichen Verlauf des F-Maß, das als Indika-
tor für klassenspezifische Trennbarkeit genutzt wird. Dieses
stammt von binär klassifizierten Vegetationsindizes, die
für jeden Datensatz einer mehrjährigen, multi-temporalen
Zeitserie von Satellitenbilddatensätzen berechnet wurden.
Zeitpunkte, während denen wiederholt das Trennbarkeits-
maximum beobachtet werden konnte, weisen die Indika-
torphasen aus. Potentielle Alternativphasen können ebenso
bestimmt werden. Die Untersuchungen wurden für drei
Fruchtarten in zwei Untersuchungsgebieten in Deutsch-
land unter verschiedenen Umweltbedingungen auf Basis
von RapidEye-Satellitendaten durchgeführt. Die Ergebnisse
zeigen, dass die Phasen Gelbreife, Ährenschieben und Blüte
als Indikatoren für hohe spektrale Trennbarkeit von Winter-
gerste, Winterweizen und Winterraps dienen können. Für
jede untersuchte Fruchtart konnten wenigstens zwei, für
beideUntersuchungsgebiete übereinstimmende, stabile Indi-
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katorphasen ausgewiesen werden, was die Übertragbarkeit
und Robustheit des gezeigten Verfahrens belegt.

Schlagwörter Spektrale Trennbarkeit · Phänologische
Phasen · Multitemporal · RapidEye · Deutschland

1 Introduction

The accuracy and efficiency of remote sensing applications
in agriculture based on optical satellite imagery is strongly
affected by the variability of crop type phenology. The phe-
nology of crops, describing the timing and the sequence
of developmental stages, varies significantly between crop
types as well as under different agronomic practices and
climates. This has to be considered when remote sensing
methods are applied for crop and land use mapping (e.g.,
Schmidt et al. 2014), in-season yield estimations for food
security assessment (e.g., Meroni et al. 2014) or efficient
image compositing (Frantz et al. 2017). All these applica-
tions require an exactly timed data set selection to provide
the most accurate results.

Crop type mapping is one key application in agricul-
tural remote sensing. To derive accurate land use maps that
are essential for many purposes, crop types can be effi-
ciently distinguished during specific phenological phases.
These phenological windows require dynamic adjustments
for annual variability in crop development, which has been
continuously studied during the last few decades (Murakami
et al. 2001; van Niel and McVicar 2004; Förster et al. 2012;
Conrad et al. 2014; Schmidt et al. 2014; Azar et al. 2016;
Möller et al. 2017).

The phenology-aided selection of the time steps based
on expert knowledge is widely studied (Guerschman et al.
2003; Peña-Barragàn et al. 2011; Conrad et al. 2014; Schmidt
et al. 2014). However, these studies are often based on
static crop calendars that do not reflect weather-induced
annual shifts in phenology (Meroni et al. 2014).Crop-specific
responses to such variations account for inter-annual differ-
ences between the times of highest separability among crop
types (Nitze et al. 2015), which points at the necessity for a
dynamic derivation of spatial phenological information. For
this purpose, the analysis of temporal profiles that consist
of satellite-based vegetation indices (e.g., Frantz et al. 2017)
proved to be a successful strategy. For instance, phenolog-
ical metrics like maximum and minimum vitality derived
from such temporal profiles enabled the direct extraction of
a small number of key growth stages such as green up, head-
ing and senescence (Xu et al. 2017). Phenological in situ
observations,whichusually provide amuchhigher number of
individual stages, can be alternatively used to interpret vari-
ations of separability profiles of crops (Förster et al. 2012).
Furthermore, they can be used to validate phenological stages

derived from vegetation index profiles (Xu et al. 2017) which
are often highly affected by noise. The spatial modelling of
point observations of the crops’ growth status (Gerstmann
et al. 2016a) combines the advantages of spatially explicit
and in situ phenological data sets and can thus improve the
knowledge about critical days for crop type classification.

Currently, the majority of modelling and classification
approaches aggregates crop types of similar spectral and phe-
nological behaviour towider classes such aswinter cereals or
root crops. While these aggregations are sufficient for most
applications, information on crop species level is essential
for detailed yield predictions (Nitze et al. 2015), water man-
agement (Conrad et al. 2013), or subsidy control. However,
this class aggregation is often unavoidable, since data gaps
caused by cloud coverage or sensor-specific characteristics
limit the capability to separate spectrally similar species.

These data gaps are globally an issue for almost all appli-
cations based on optical remote sensing imagery. Hence, the
consideration of broader time frames increases the chance of
having usable data available during high separability periods.
Narrow alternative time frames can also be found by inter-
annual analyses of species-specific phenological behaviour,
but these time frames have only limited relevance due to the
mentioned high probability of data gaps.

The main objective of this study is to identify phe-
nological phases that suit for optimal class separation in
crop mapping. Therefore, a framework was developed that
systematically combines interpolated phenological ground
observations with satellite image acquisition dates and spec-
tral separability patterns. In doing so, phenological phases
are analysed in terms of their suitability as indicators for
optimal acquisition time frames.

The approach is applied to multi-temporal RapidEye data
acquired for an agriculturally used test site in Central Ger-
many. At this site, indicator phases are defined based on
separability profile and phenological phases. The transfer-
ability of these indicator phases is evaluated on a validation
site characterised by different growing conditions.

Finally, a web-based tool is presented that provides almost
real-time phenological raster data coveringGermany to apply
the framework in practise.

2 Study Sites and Data

2.1 Site Descriptions

The two study sites have been intensively investigated
by the Terrestrial Environmental Observatories (TERENO)
research network that focuses on observations of long-term
climate change impacts on regional scales (Bogena 2016).
They were used for method development and testing, respec-
tively.
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The training site is located in Central Germany (Fig. 1),
approximately 30km north of the city of Halle (Saale), with
the town Hettstedt being its centre (Fig. 2, left). The site con-
sists of two sub-sites: a western sub-site covering the eastern
parts of the Harz mountain range (HM) and an eastern sub-
site representing the adjacent lowlands (HL). Both sub-sites

Fig. 1 Locations of the study sites in Germany and annual mean tem-
perature (DWDClimate Data Center 2017b). Projection:WGS84/UTM
Zone 33N

cover an area of 25km×25km each. Annual mean temper-
atures and precipitation are 8.5 ◦C and 630mm for HM and
9.2 ◦C and 540mm for HL, respectively. The area is dom-
inated by agricultural land use on fertile chernozemic soils
that allow the cultivation of demanding species. The domi-
nating crop types are winter wheat, cropped on ≈ 45% of
the agricultural area, winter rapeseed (≈ 20%), perennial
grassland (≈ 10%) and winter barley (≈ 10%).

The second site used for the transferability study is located
in the federal state of Mecklenburg-West Pomerania, in the
surrounding of the city Demmin (DM, Fig. 2, right). The site
covers an area of 35km×35km. Annual mean temperature
and precipitation in DM are 8.7 ◦C and 590mm, respec-
tively. Here, sandy soils of reduced fertility require more
frequent cultivation of less demanding crops, which is repre-
sented by the lower percentage of winter wheat (≈ 30%) and
higher percentages of the area covered by perennial grass-
land (≈ 15%) and by less-demanding winter rye (≈ 5%).
Gradients between comparatively warm temperatures in the
HL and relatively cool temperatures in HM are apparent
in Fig. 1. Contrary to this strong gradient, the DM site is
characterized by a homogeneous annual mean temperature
which ranges between the two extremes of the Harz sub-
sites.

Two aspects determined the selection of the study sites.
First, natural conditions, e.g., soil fertility, should differ
among the regions to assess the robustness of the presented
framework. For instance, precipitation sums also varied
between the sites, especially in the strong easterly gradi-
ent of decreasing precipitation between the Harz sub-sites
(>700mm in the west and <500mm in the east). Second,
crop types of the training and validation sites should show

Fig. 2 RapidEye images of the study sites Harz (left) and Demmin (right) acquired on June 6, 2011 (HL), June 2, 2011 (HM) and July 3, 2010
(DM). Band combination RGB 3-2-1 (true colour). Fields with crop cultivation data are accentuated. Projection: WGS84/UTM Zone 33N
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some similarities to sustain the comparability of the results.
So, the field sizes should ensure that a sufficient number of
pure (not mixed) pixels is available for the calculation of the
reflectance means per field. Both study sites fulfilled these
requirements.

2.2 Satellite Data

Multi-temporal RapidEye data sets covering the HM and HL
sites between 2010 and 2015 were made available through
the RapidEye Science Archive (RESA; Borg et al. 2013,
grant no: 653). The RapidEye satellite constellation col-
lects imagery of the Earth’s surface in five spectral bands
(blue: 440–510nm, green: 520–590nm, red: 530–685nm,
red edge: 690–730nm, near infra-red/NIR: 760–850nm, Tyc
et al. 2005). The data were obtained at processing level 3A
with a spatial resolution of 5m×5m. Atmospheric correc-
tion and cloud masking were performed using the software
ATCOR2©(Richter and Schläpfer 2015). For the DM site,
RapidEye data sets for the years 2010–2012 were avail-
able at processing level 1B with 6.5m×6.5m resolution.
Preprocessing of these data sets was performed using the
software CATENA©(Krauß et al. 2013) that also includes
ATCOR2©. The effects of differing sensor viewing angles
(Nagol et al. 2015) on vegetation reflectance are eliminated
by application of the ATCOR processing chain. The tem-
poral distribution of the data sets is displayed in Fig. 3 and
highlights inter-annual differences in temporal coverage and
density, which are typical for optical imagery of high tem-
poral and geometric resolution (Whitcraft et al. 2015).

2.3 Auxiliary Data

Parcel-based cropping information for 2010–2015 for the
Harz sites were provided by the Ministry of Agriculture and
Environment of Saxony-Anhalt and forDMvia theTERENO
long-term research programme. As part of the European

Fig. 3 Temporal distribution of the RapidEye data sets

Table 1 Observed phenological phases for winter wheat (WW), winter
barley (WB) and winter rapeseed (WR) and corresponding phase IDs

Name ID Crop

Sowing 10 WW, WB, WR

Emergence 12 WW, WB, WR

Fourth leaf unfolded 14 WR

Shooting 15 WW, WB

Heading 18 WW, WB

Stem elongation 67 WR

Bud formation 17 WR

Beginning of flowering 5 WR

End of flowering 7 WR

Milk ripening 19 WW, WB

Yellow ripening 21 WR

Full ripening 22 WR

Harvest 24 WW, WB, WR

Commission’s Land Parcel Identification System (LPIS), the
parcels are determined by ownership structure and homo-
geneity regarding the cultivated crop type (Inan et al. 2010).
Germany-wide volunteer-based phenological point observa-
tions and meteorological measurements were obtained from
the German Weather Service (DWD Climate Data Center
2017a, c) via FTP.1 The names of the available phenolog-
ical phases for winter wheat, winter rapeseed and winter
barley are listed in Table 1 along with their numeric code
according to the DWDobservation programme (Kaspar et al.
2014).

Furthermore, a digital elevationmodel of 1km×1km res-
olution was generated from the Shuttle Radar Topography
Mission (SRTM)Digital ElevationModel (DEM,Rabus et al.
2003).

3 Methods

The approach is based on crop-specific spectral separability
profiles for six subsequent years. These profiles were com-
puted from the RapidEye data sets by applying separability
analysis on spectral features (Gerstmann et al. 2016b) calcu-
lated from parcel averages of reflectances. The profiles were,
analogous toMöller et al. (2017), coupledwithmodelled phe-
nological phases. The separability maxima over time exhibit
the indicator phases, i.e., phenological phases that optimally
suit for crop separation. However, before finally assigning
the indicator phases, a reliability check was included, which
among others targets at the question, if the maxima of sepa-
rability occur at the same position over several years (here:

1 ftp://ftp-cdc.dwd.de/pub/CDC/observations_germany.
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Fig. 4 Workflow for the detection of indicator phases for the optimal
separability of the crop types winter wheat (WW), winter barley (WB)
and winter rapeseed (WR)

2010–2015). The workflow is summarized in Fig. 4. The
components of the framework are described in detail in the
following sections.

3.1 Modelling of Phenological Phases

Phenological modelling was performed using the PHASE
model according to Gerstmann et al. (2016a). PHASE is a
statisticalmodel based on the growing-degree-days approach
that relates phenological events to accumulated temperatures
from a defined starting point. The model sums up accumu-
lated dailymean temperatures between the day of sowing and
the observation of the phenological phase. The temperatures
have been interpolated from meteorological measurements
on the 1km×1km DEM, for the period between sowing
of the crop and the observed date of a phenological event
on a phenological station. The temperatures are adjusted for
photoperiod on the specific location, which is dependent on
latitude anddayof year.A specific temperature sum is defined
as the 45% quantile of the distribution of the temperature
sums for all phenological stations in Germany that reported
the target phase. Finally, the day on which this temperature
sum is exceeded at each station is determined and interpo-
lated on the Germany-wide grid.

The PHASE model as implemented in the PHASE Anal-
yser2 web application was utilized to extract all DWD-
observed phenological phases of winter wheat, winter bar-
ley and winter rapeseed (see Table 1). This service is
a GeoServer3-based open source map server application
that provides daily updated phenological raster data. These
data sets were created using the PHASE model that was
implemented as a daily modelling routine. The results are
distributed under strict application of Open Geospatial Con-
sortium (OGC) standards via aDrupal4-based web interface.
In Fig. 5, the subsequent processing steps are displayed,
beginning with the automatic modelling, followed by the
creation of the web services and visualisation. The under-
lying infrastructure utilises php-based parser applications to
integrate the required input data automatically into a Post-
greSQL/PostGIS database. These back-end procedures are
required to call the PHASE model at a daily temporal inter-
val (“Cronjob”).

3.2 Spectral Separability Assessment

The separability analysis was exemplarily implemented for
the three crop types winter wheat, winter barley and winter
rapeseed, which dominate the Harz study site. These species
are most relevant for regional modelling approaches or yield
estimations, as they cover around60%of the total agricultural
areas in the study sites. The high number of available classes
(> 60) would lead to inaccurate results, because they include
numerous crop types that are only cultivated on a small num-
ber of fields. Thus, the analyseswere performedonly onfields
thatwere covered by the target crops and other crop types cul-
tivated at least on 25 fields on average over the study period,
which includes summer-croppedwheat, durumwheat, barley
and oats, as well as winter rye, maize, sugar beet, potatoes
and perennial grassland. Consequently, the used fields cov-
ered more than 75% of all fields in the study area, but the
number of classes was reduced by more than 80%.

Vegetation index profiles show specific (inter-) annual
patterns that can be traced back to plant phenological
phases (Förster et al. 2012) and are, along with single band
reflectance values, powerful features for crop classification
(Löw et al. 2013). Thus, a setting similar to the configu-
ration presented by Löw et al. (2013) was implemented. It
combined single-band reflectances and four well-established
vegetation indices as spectral features (see Table 2). TheNor-
malized Difference Vegetation Index (NDVI, Rouse et al.
1974), which is the most frequently applied vegetation index
for agricultural remote sensing applications, shows a variety
of issues that can be solved by including of other spectral

2 http://phase.geo.uni-halle.de/phase-wms-dienste.
3 http://www.geoserver.org.
4 http://www.drupal.org.
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Fig. 5 Workflow of the
automatic generation of
modelled phenological phases

Table 2 Vegetation indices and
other spectral features used for
the calculation of separability
profiles

Index Abbreviation Formula References

Normalized Difference Vegetation Index NDVI ρNIR−ρred
ρNIR+ρred Rouse et al. (1974)

Green NDVI GNDVI ρNIR−ρgreen
ρNIR+ρgreen Buschmann and Nagel (1993)

Red edge NDVI RE_NDVI ρNIR−ρred edge
ρNIR+ρred edge Gitelson and Merzlyak (1994)

Wide-Dynamic Range Vegetation Index WDRVI 0.15×ρNIR−ρred
0.15×ρNIR+ρred Gitelson (2004)

Blue band B1 ρblue Tyc et al. (2005)

Green band B2 ρgreen

Red band B3 ρred

Red edge band B4 ρred edge

Near infrared band B5 ρNIR

ρregion reflectance in the specified spectral region

bands or mathematical modifications. Three of these modi-
fications (Table 2) were incorporated into the classification
scheme. Each of the modifications is more sensitive to a spe-
cific shortcoming of the NDVI, specifically the Red Edge
NDVI (RE_NDVI) for the red edge region as a vitality indica-
tor, the Green NDVI (GNDVI) for green chlorophyll content
and the Wide-Dynamic Range Vegetation Index (WDRVI)
for saturation of the band reflectances.

Classifications were applied at the field level, because
object-based classifications are reported to be superior to
pixel-based approacheswhen high resolution imagery is used

(De Wit and Clevers 2004; Blaschke 2010). A single-date
classification approach was chosen to reflect the high proba-
bility that in some parts of the world, e.g., cloud cover limits
the availability of multiple data sets useful for classification
(Nitze et al. 2015; Frantz et al. 2017). For each acquisition
date and parcel, mean values of the spectral bands and indices
extracted from the RapidEye data were calculated.

Next, a classification scheme was set up that performs
the widely used supervised random forest classification
(Breiman 2001) implemented by Liaw and Wiener (2002) in
the statistical computing environmentR (RCoreTeam2016).
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The critical parameters node size and number of trees was
set to 2 and 1000, respectively. This ensures stable results
and reduces the chance of building over-fitted trees (Kuhn
and Johnson 2013).

Three feature evaluations were performed per acquisi-
tion date, to find the best-suited feature for the separation
of each target crop. Here, each spectral feature was classified
sequentially. Evaluations were performed as binary classifi-
cations, i.e., features of fields covered by one out of the three
target crops, winter wheat, winter barley and winter rape-
seed, were classified against those from all other fields (see
right box in Fig. 4). Finally, the F1- or F-measure, intro-
duced by van Rijsbergen (1979), was calculated as a metric
for the assessment of the class-wise classification accuracy.
The F-measure is defined as the harmonic mean of the pos-
itive predictive value (precision) and the true positive rate
(recall) of the classification confusion matrix. This statistic
is especially meaningful for non-parametric classifiers and
proved to be a good accuracy measure for random forest-
based crop classifications (Löw et al. 2015). Precision, recall
and F-measure were calculated based on the contingency
table produced by the random forest implementation.

The specific optimal index per crop and acquisition date
was then defined as the spectral feature with the highest F-
measure. Based on the F-measure of all acquisition dates, a
temporal profile of separabilitywas computed (see Sect. 3.3).

3.3 Phenological Indexing of Inter-Annual Separability
Patterns

All available modelled phases (see Table 1) for the three
target crops for the years 2010–2015 were processed. Fol-
lowing Möller et al. (2017), a test site-specific phenological
phase was considered as the period between the crop-specific
medians of two subsequently beginning phases. The period
between the first DOY and the first observed phase of a
year was named after the last observed phase of the previous
year.

The phenological indexing of separability patterns was
started with the coupling of the separability profiles and the
corresponding phenological phases. The duration of the last
observed phase before harvest was prolonged by 1 week to
address the stronger small-scale variations in harvesting due
to the sequence of operations within farming cooperatives.
The shift of the modelled harvesting ensured that the major-
ity of all fields were actually harvested on the acquisition
date. Furthermore, since the phases were linked to spectral
response of the crops, the prolongation also addressed the fact
that freshly harvested fields are often hard to distinguish from
fields with fully ripened cereals using the spectral regions
recorded by RapidEye. This similarity is due to the fact that

crop residues remaining on the fields spectrally resemble
ripened crops before harvest.

A score value R P was calculated to assess the reliability
of a phase to be optimal for separation of the corresponding
crop type according to the following equation.

R P = N P
obs × (F P

max + F P
mean) (1)

N P
obs describes how often a phase has been identified as

optimal for a year and study site. For these observations,
F P
mean and F P

max represent the maximum and mean of the
F-measures. This score valuewas required to account for dif-
ferences of the temporal distribution of the satellite images.
Such temporal gaps might possibly lead to undetected peri-
ods of high separability (see Fig. 3 and Sects. 1 and 2.2).

4 Results

4.1 Phenological Development

The phenological differences for all phases of the target crops
between 2010 and 2015 vary among the sites, which is exem-
plarily shown for winter wheat in Fig. 6. For winter barley
and winter rapeseed, these patterns are similar. In general,
it could be observed that the growing season in DM starts
with a delay of 1–4 days compared to HM and 5–12 days
compared to HL, with the exception of 2015 when shooting
started earliest inDM. The end of the growing season showed
an opposite tendency, because the model predicted the start
of the harvest period in DM 3–12 days earlier than in HL.

4.2 Spectral Separability Profiles

For each test site and each of the three investigated crop
types, spectral separability profiles were computed from the

Fig. 6 Modelled phenological phases ofwinterwheat in the three study
sites for the years 2010 to 2015. The beginning of a phase is defined
by the modelled average day of year of phenological event in the study
site
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Fig. 7 Spectral separability
profiles based on RapidEye data
and modelled phenological
phases for winter wheat, winter
barley and winter rapeseed for
the HL (a) and the HM (b) sites
between 2010 and 2015. The
spectral feature with the highest
F-measure per season is noted
above the respective peak in the
profiles. Valid acquisitions are
timed between sowing and
harvest. NDVI Normalised
Difference Vegetation Index,
WDRVI Wide-dynamic Range
Vegetation Index, RE_NDVI
Red Edge NDVI, GNDVI Green
NDVI

highest F-measure of all classified spectral features per ran-
dom forest classification. The profiles are displayed as black
lines in Fig. 7 separately for the two Harz sub-sites. Intra-
annual patterns are visible that are characterized by peaks
and depressions of the calculated F-measure profiles. For
instance, winter wheat and winter rapeseed showed higher
F-measures at their annual maximum and less intra-annual
variations than winter barley.

4.3 Phenological Indexing of High Separability Time
Frames

TheRapidEye imagery of theHLandHMtest sites, forwhich
the annual F-measure wasmaximal, were coupled to the cor-
responding phenological phases (Fig. 7). The phase with the
highest reliability value R P (Eq. 1) value is considered as
the optimal phenological indicator phase. All other phases,
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Table 3 Indicator phases

Crop Phase N P
obs DOYmin DOYmax F P

max F P
mean R P Spectral feature

Winter wheat Heading 7 153 175 0.89 0.81 11.94 Band 4

Shooting 4 122 130 0.82 0.80 6.48 Band 4

Yellow ripening 3 200 213 0.73 0.66 4.16 GNDVI

Winter barley Yellow ripening 8 173 207 0.73 0.63 10.80 WDRVI

Shooting 3 111 125 0.28 0.20 1.44 NDVI

Winter rapeseed Beginning of flowering 6 123 143 0.91 0.81 10.31 Band 4

Stem elongation 2 88 88 0.88 0.88 3.50 Band 5

Bud formation 2 88 88 0.81 0.78 3.19 Band 5

Fourth leaf unfolded 3 274 37 0.64 0.33 2.90 Band 5

End of flowering 2 153 157 0.75 0.66 2.81 Band 5

Number of observations (N P
obs), earliest (DOYmin) and latest (DOYmax) observation, maximum (F P

max) and average F-measure (F P
mean), reliability

(R P ) and spectral variable with highest F-measure (phases: see Table 1). The phases are ordered decreasingly according to their R P value

during which the annual separability reaches its maximum at
least twice, are referred to as alternative phenological indica-
tor phases. Table 3 summarizes the resulting indicator phases
and corresponding separability metrics.

For winter barley, only the phases “yellow ripening” and
“shooting”were detected to beoptimal at least twice. “Yellow
ripening” showed the highest R P value, since it was consid-
ered as optimal a total of eight times. In addition, both F P

max
and F P

mean are significantly higher than for “shooting”, which
was selected three times. TheWDRVI reached the highest F-
measure during “yellow ripening”, while during “shooting”,
the NDVI outperformed all other spectral features.

Three indicator phases could be found for winter wheat.
“Heading” (N P

obs = 7) outperformed “yellow ripening”
(N P

obs = 3) and “shooting” (N P
obs = 4). F P

max and F P
mean are

comparable for “shooting” and “heading”, while for “yellow
ripening”, the F-measure metrics were significantly lower.
The red edge band was the best-performing spectral feature
both for “heading” and “shooting”.

The phases usable as indicators for rapeseed classification
are, as expected, dominated by “beginning of flowering”,
with a R P value of 10.30. During flowering, the NIR
reflectanceof rapeseed starts to decreasewhile the reflectance
measured by the green spectral band, that is nearest to the
yellow wavelength region, increases as a consequence of
the intense yellow colour. These changes are visible in the
reflectance spectrum and unique during that temporal period
compared to the other crops that are still highly vital. Further-
more, four time frames are potential alternatives, namely the
phases “stem elongation”, “bud formation”, “end of flower-
ing” and “fourth leaf unfolded”, which are characterized by
very low reliabilities. The F P

max of 0.88 and 0.81 for “stem
elongation” and “bud formation” almost reach the values for
“beginning of flowering” (0.91). It is also noteworthy that
“stem elongation” showed a higher F P

mean value than “begin-
ning of flowering”, but is observed as optimal much rarer.

4.4 Regional Transferability and Validation of Indicator
Phases

The F-measure separability profiles of the DM study site, for
which both environmental conditions and temporal distribu-
tion of the data sets are different compared to the two Harz
sites (see Sect. 2), were also calculated and are visualised in
Fig. 8.

The profiles clearly show a dependency on data availabil-
ity, since not all indicator phases are represented at least by
one data set in every year. Accordingly, the separability max-
imum for winter wheat was observed during “heading” in
2010 and 2011, which was found to be the optimal indicator
phase for winter wheat separation based on the Harz sites
analyses. Also, the annual maxima of the F-measure sep-
arability profiles for winter barley in 2010 and for winter
rapeseed in 2012 exactly correspond to the detected optimal
phases.

In 2012, no data set was available that represented “head-
ing” for winter wheat. There, the separability maximum
was observed during the alternative phase “shooting”. How-
ever, this maximum is found six days before the optimal
phase “heading” starts, which corresponds to the uncertainty
causedbymodelling, observation and small-scale differences
between parcels (Gerstmann et al. 2016a).

The maximum separability for winter barley in 2011 was
found during the alternative phase “shooting”. In 2012, no
data set was available during “yellow ripening” or “shoot-
ing”. In general, the F-measures for winter barley are low
(< 0.5) due to relatively small sample sizes (< 20) and thus
the findings are only of limited reliability.

No data set was available during the optimal phase of
winter rapeseed (“beginning of flowering”) for 2010. The
detected separability maximum occurred during the alter-
native phase “end of flowering”. “End of flowering” was
also detected as optimal for 2011, although a data set rep-
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Fig. 8 F-measure separability profiles for winter wheat, winter barley and winter rapeseed for the DM site and the phenological indicator phases
detected through the analysis of the HL and HM test sites (see Fig. 7; Table 3). The numbers represent the phenological phases (see Table1)

resenting the indicator phase “beginning of flowering” was
available.

In summary, the separability maxima coincide with the
defined phenological indicator phases (optimal or alterna-
tive) in eight out of nine crop-year-combinations. For three
crop-year-combinations, no data set was available represent-
ing the optimal phase, which underlines the necessity for
definition of alternative phases.

5 Discussion

5.1 Phenological Uncertainty

As the results showed, phenological phases can be used as
indicators for acquisition time frames suitable for spectral
discrimination of crops. However, as described in Sect. 4.4,
sources of potential inaccuracy have to be considered when
interpreting the results. In this study, this especially concerns
the phenological interpolation results of the PHASE model,
which also provides the kriging standard deviation as spatial
inaccuracy metric (Gerstmann et al. 2016a). This metric can
be used for additional interpretation of the separability pro-
files. Accordingly, the model uncertainty is expected to be
between 3 and 8 days (Möller et al. 2017), with the majority
of phases less than 5 days. Based on data of 2011 Gerstmann
et al. (2016a) reported accuracies for winter wheat between
< 4 and 11 days, forwinter barley between 3.8 and 5 days and
for winter rapeseed between 5 and 7 days. Modelling earlier
phases was associated with higher uncertainty than that of

the later phases. Due to small-scale variations in plant phe-
nology, the period of phase transitionmust be understood as a
gradient rather than a sharp turnover. Phenological variations
in turn are caused by management or cultivar-specific differ-
ences that cannot be observed by the monitoring network.
Additionally, the reliability of volunteer-based observations
is complicated to assess due to the subjectiveness of the obser-
vation design (Flanagin and Metzger 2008; Mehdipoor et al.
2015).

5.2 Sensor-borne Uncertainty

The defined phenological patterns also depend on the tempo-
ral composition of the satellite data sets. Time frames of high
separability may remain undetected in situations of reduced
image availability. Since the image acquisitions for the Harz
data set are almost synchronous for both sub-sites, this factor
is assumed to be negligible for this site. However, it becomes
more important, e.g., for winter rapeseed at the Demmin site,
for which the first acquisition in 2010 was available in the
“end of flowering” phase only. In other words, this data set
was acquired after the detected optimal phase “beginning of
flowering”, which underlines the necessity of having alter-
native indicator phases (see Sect. 5.4).

5.3 Separability Profiles

The separability profiles are based on a small set of spectral
features which are well-established for a large variety of crop
types. Other sensors such as Sentinel-2 provide additional
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bands especially in the red edge and short-wave infra-red
wavelength ranges useful for crop mapping (e.g., Immitzer
et al. 2016). As the separability profiles are partly charac-
terized by strong variations, optimized spectral indices, as
proposed by Rivera et al. (2014) or Gerstmann et al. (2016b),
could lead to more stable profiles.

The accuracies achieved by application of machine learn-
ing algorithms such as random forest generally tend to
increase with the number of included predictor variables.
Hence, this would be the preferred strategy instead of clas-
sifying each feature separately if the approach is applied
in practise. The performance analysis of the spectral fea-
tures could then be assessed by their variable importance,
a parameter that ranks the predictor variables according to
their contribution to the prediction accuracy. In doing so,
both classification results and time frame reliability should
increase. As a side-effect, the probability to produce an over-
fitted model would be reduced, although Breiman (2001)
reported that random forest classifiers are relatively robust
against overfitting to the training data compared to other clas-
sification approaches. However, in this study, we refrained
from this option and applied a single-variable random forest
approach instead to reduce the complexity for the demonstra-
tion of the approach and the results. Nevertheless, overfitting
might be an issue when only one predictor variable is used
as it is the case in this study, but several variations of the
parametrisation (tree size, number of trees, number of ter-
minal nodes) of the random forest classifier only slightly
affected the results.

5.4 Alternative Indicator Phases

Alternative phases, that have been detected as optimal at
least twice, can be valuable indicators for data set selec-
tion when no satellite data are available during the optimal
phenological time frame. However, alternative phases can
produce additional inaccuracies. For instance, the alternative
phases “bud formation” and “stem elongation” for winter
rapeseed showed comparably low R P values, since they rep-
resent short phases only. Thereby, exact start and end dates
are complicated to define due to the modelling uncertainty of
the beginning phenological phases (see Sects. 4.1 and 5.1).

From the botanical perspective, “bud formation” and
“stem elongation” are actually more reliable than indicated
by R P . The selection of these early spring phases is due
to shorter winter dormancy of rapeseed compared to the
dormancy of cereal crops. This difference is measurable
by vegetation indices as an earlier increase of photosyn-
thetic activity. The alternative indicator phase “fourth leaf
unfolded” occurs before winter dormancy and is charac-
terized by significantly higher green vegetation coverage
compared to winter cereals, which is alsomeasurable by veg-
etation indices.

5.5 Validation and Regional Transferability

The regional transferability was proven for most of the inves-
tigated crops and years. However, as mentioned earlier in
Sects. 4.4 and 5.2, no data set was available during the opti-
mal phase for some crop-year combinations, which means
that the expected separability maximum could not be found.

The bad performance (F < 0.5) forwinter barley could be
due to the fact that barleywas cultivated onbetween20 and40
fields only. This number is remarkably lower than for winter
wheat and winter rapeseed. Consequently, data gaps due to
clouds or other factors had a stronger influence on statistical
analysis than for wheat and barley, since sample sizes can
easily fall below the lower threshold of approximately 30
samples for reliable statistical analyses.

5.6 Application Strategies

Both mono- and multi-temporal approaches can benefit from
the presented methodology, once time frames have been
defined also for other relevant crop types. Formono-temporal
classification, a single data set should be selected for a point
in time when the growth status of all target crops is within
an optimal or alternative phenological indicator phase.

Multi-temporal classification should include at least one
data set acquired during the optimal phase for all relevant
crops at the study site. Thus, if the modelled indicator phases
are available in the PHASE Analyser distribution system (see
Sect. 3.1), they can be obtained and used for the user-specific
applicationwithout the necessity of having a continuous tem-
poral coverage of the satellite data over the complete growing
cycle.

For multi-temporal classification, the approach would
most likely lead to some congruent acquisition dates that are
optimal for most of the crop types. For instance, the alterna-
tive phase “shooting” of winter wheat and winter barley is
congruently timedwith the optimal phase “beginningof flow-
ering” for winter rapeseed. This supports the findings by, for
instance, Schmidt et al. (2014) and Murakami et al. (2001).
In their studies, a total of three to four images was found to
be necessary to achieve a sufficient classification accuracy.
However, the proof if the identified indicator phases are also
valid in multi-temporal classifications is still an outstanding
task.

The presented approach combined with the described web
interface can assist data-intensive classification approaches
based on satellite data of high spatial, spectral and temporal
resolution like Landsat 8, Sentinel-2 or HJ-1, since it repre-
sents an effective strategy to reduce the calculation effort.
This reduction is due to the focus on the most significant
spectral features instead of all spectral bands provided by
these sensors and on the reduction of acquisition dates to
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be included in the classification during the most distinctive
temporal periods.

Other applications whichmight benefit from phenological
indicator phases and pre-assessment are hierarchical classi-
fication frameworks (e.g., Förster et al. 2012; Forkuor et al.
2015) and phenology-adaptive algorithms for compositing
(Frantz et al. 2017). In the latter approach, the sub-images
that are merged into phenology-adaptive, pixel-based image
composites have to be selected to preferably represent an
identical growth status of the land use classes. Especially
in regions of persistent cloud coverage like Zambia, which
Frantz et al. (2017) investigated in their study, the approach
presented in this study can improve the timing of such target
dates. Lastly, crop yield estimations for food security espe-
cially in regions of large inter-annual phenological variations
(Meroni et al. 2014) might also be improved by the applica-
tion of phenological indicator phases.

All these applications focus on the retrospective selection
of already acquired remote sensing data. Beyond this, the
spatially explicit knowledge of the phenological indicator
phases can be applied to accurately schedule airborne flight
campaigns or tasked satellite image acquisitions.

6 Conclusions and Outlook

This study presented a methodology that combines multi-
annual crop separability profiles and automatically modelled
phenological phases to derive indicator phases. These phases
represent periods of time within a growing season during
which spectral separability of a crop type is maximal, at least
for the selected classification approach.

We tested the methodology for three frequently cultivated
crops in Germany at two study sites under different environ-
mental conditions and different data characteristics in terms
of pre-processing and satellite image acquisition dates. The
results showed that for each of the investigated crop types a
minimum of two stable indicator phases exist.

The approach is currently spatially limited due to Ger-
many’s unique phenological observation network. However,
the promising results suggest to put further research on its
transferability to other regions of similar natural conditions.

Apart from crop mapping, the general framework of
linking systematically collected phenological ground truth
observations to vegetation reflectance patterns is ready to be
tested for a large variety of other possible applications within
an agricultural context. Thereby, the web interface providing
phenological raster data for entire Germany enables various
user groups to apply this approach of using phenological
indicator phases to their own specific study regions.
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6.2 conclusions from paper 3

Paper 3 revealed typical phenologically defined temporal patterns of
separability for the three tested crop types. These patterns are stable
for differently favoured ecological regions.
It also provides evidence that the uncertainty of the underlying phen-
ological model is the key driver for inaccuracies within the time frame
detection procedure.

The application of the presented methodology was limited to the
three main single-species crop types in the study sites, namely winter
wheat, winter rapeseed and winter barley, but analogue applications
to other crop types are possible.



7
S Y N T H E S I S

The two strategies to improve land use classifications that have been
investigated in this thesis (see Section 1.2), have been proven to be
successful within particular classification scenarios. The dynamic op-
timisation of spectral indices increased the classification accuracies
(Chapter 4). The determined separability patterns could be interpreted
successfully by utilisation of a phenological model (Chapter 5) to link
the separability profiles to modelled phenophases (Chapter 6).

7.1 methodological enhancements

The following sections present continuations and applications of the
principle methodology. Particularly, the continuation of the method
to detect phenological time frames for the remaining target crops (Sec-
tion 7.1.1) is described. Second, an application-oriented example clas-
sification is presented. There, the data set selection process is demon-
strated and the actual set-up of the example classification is described
(Section 7.1.2).

7.1.1 Derivation of phenological time frames for all target crops

The principle methodology is further used to determine the phen-
ological indicator time frames for those target crops that were not
considered within the research papers (see Tab. 3) and to recalculate
the time frames for winter barley, winter rapeseed and winter wheat
using a different parametrisation of the approach.

In each of the Chapters 4 and 6 simplifications were applied to the
methodology. For the index optimisation approach (Chapter 4), that
was applied to a subset of the Harz study site, the classification was
performed for a binary scenario. Each of the classes was represented
by a single crop type, namely winter barley and winter wheat.

The process of coupling the separability peaks to phenological pha-
ses (Chapter 6) was limited to the three target species winter wheat,
winter barley and winter rapeseed and to a small number of NDVI
variants instead of the full index optimisation approach for the defini-
tion of the optimal VIs. Furthermore, band ratios were not considered.

71
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These restrictions are finally resolved and all options of methodo-
logy were used here:

1. the analyses are performed for both study sites,

2. the optimal index is allowed to be selected from individual spec-
tral bands, standard indices, simple band ratios and optimised
indices, and

3. all crops are analysed.

The basic rationale for the index optimisation, that was permuted
in Chapter 4 (Paper 1), is identical to a parametrised formulation
of the Enhanced Vegetation Index (EVI) formula (Eq. 1, Huete et al.
1999):

I = G × B1 − B2

B1 + c1 × B2 + c2 × B3 + L
(1)

In Eq. 1, I denotes a VI, B1,B2 and B3 represent spectral bands and L,
G, c1 and c2 are empirical weighting parameters. For computational
issues and the finding in Paper 1 that G is not distinctive for the index
optimisation, the domains of the parameters L and G are reduced here
to [0.0, 0.5] and [1], respectively.

The F1-measure, which describes class-wise classification accuracy
and thus spectral separability, is used for selection of the optimised
indices. This metric was defined as the harmonic mean of precision
and recall by Van Rijsbergen (1979). It is calculated according to Eq. 2:

F1 = 2 × precision × recall
precision + recall

(2)

Precision for a specific class is defined as the number of correctly
classified fields (true positives) divided by the sum of correctly clas-
sified fields and the fields that are falsely assigned to the class ("false
positives"). Recall is calculated similarly, but the number of false pos-
itives in the denominator is replaced by the number of fields of the
target class that have been assigned to another class ("false negat-
ives").

Subsequently, the time frame reliability for each observed phenolo-
gical phase and crop type is computed according to Eq. 3:

RP = NP
Obs × (FP

max + FP
mean) (3)
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In Eq. 3, NP
Obs represents how often a phase was found to be op-

timal, and FP
max and FP

mean represent the maximum and mean F1-mea-
sure for these phases. Since the detected time frames for the Harz site
are also valid for the North-Eastern German Lowlands site (Chapter 6),
the optimisation results for both study sites are combined.

Ideally, a crop type was cultivated and reported on a sufficient num-
ber of fields in the North-Eastern German Lowlands site, as well as
in the western and the eastern part of the Harz site. Sufficient in this
context means that a crop was cultivated on at least 6 fields during a
season.

This ideal case was given for winter wheat, maize, winter rapeseed
and winter barley for the complete study period. The resulting data
pool consequently consists of 15 observations per crop type from:

• 3 years for the North-Eastern German Lowlands, and

• 6 years and each RapidEye tile in the Harz site.

7.1.2 Application-oriented example classification

On the example of the eastern tile of the Harz study site (tile ID:
3262922), an exemplary classification is performed to demonstrate
the application of the detected phenological time frames for all crops.

From the complete time series spanning the 2015 growing season, 3

data sets are selected. The selection ensures that the chosen data sets
reflect at least one indicator phase, optimal or alternative, for each
of the target crop types. All other crop types are aggregated to an
additional "other" class.

Next, several VIs are calculated from the selected data sets. These
VIs include the indices used in Chapter 6: NDVI, WDRVI (Wide-dynamic
range vegetation index; Gitelson 2004), Green NDVI and Red edge
NDVI. Further, optimised indices per crop type are also calculated for
the individual data set that captures a respective indicator phase.

A multi-temporal classification is then conducted based on all of
these calculated indices. The ground truth data is randomly split
up in 1/3 (1,129 fields) and 2/3 (2,273 fields) fractions for training
and validation, respectively. The training fraction shows approxim-
ately the class distribution of the full tile. A random forest classifier
(Breiman 2001), implemented by Liaw & Wiener (2002) in the stat-
istical computing environment R (R Core Team 2017) is trained and
applied for classification. A general analysis of the classification per-
formance is performed by the calculation of overall accuracy. Further,
class-wise performance based on the F1-measures (see Eq. 2) per class
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is assessed. The accuracy assessment and the related discussions are
conducted in front of a practical rather than a detailed theoretical
background.

To compare the optimised classification to established multi-tempo-
ral classifications, the same workflow is performed based on input
data that consists of the NDVI stack of all 11 available data sets ac-
quired in 2015.

7.2 results of the enhanced methodology

This section presents the phenological indicator time frames of all
target crop and discusses the findings with regard to botanical and
management characteristics. Furthermore, it presents the results of
the application-oriented example classification and results of the com-
parison with a traditional multi-temporal classification approach.

7.2.1 Derived phenological time frames for all target crops

The derived phenological time frames are displayed in Fig. 5 includ-
ing their reliability score and their earliest and latest phase-specific
optimal observation DOY.

A cluster is apparent between DOYs 120 to 180, during which the
most of the species show at least an alternative maximum. Except for
the late harvested crops sugar beet and maize as well as for the ever-
green perennial grassland, all maxima detected on DOYs later than 230

might actually represent the reflectance of catch crops, crop residues
or bare soil. Consequently, these maxima should be interpreted care-
fully.

For all time steps, sites and crops, the optimised indices outper-
formed the established indices, band ratios and single spectral bands.
The frequency of occurrence of a spectral band in the best-performing
index on the optimal acquisition day is summarised in Tab. 7. There,
also the reliability measure RP (see Eq. 3 and Chapter 6) is given for
all relevant phenological windows.

The spectral band frequencies can function as guidelines in which
spectral region a further optimisation might be useful to achieve more
accurate results when satellite data of higher spectral resolution is
used, such as provided by the Sentinel-2 sensors. The blue and the
red bands are included mostly during early stages such as "heading"
and "first cut for silage". Green is most relevant for the separation
of rapeseed. The red edge and NIR bands are included in the optim-
ised index most frequently, especially for cereal species, rapeseed and
perennial grassland.



7.2 results of the enhanced methodology 75

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210 225 240 255 270 285 300 315

Perennial grassland

Durum wheat

Winter wheat

Summer wheat

Winter rye

Winter barley

Summer barley

Oats

Winter rapeseed

Maize

Potatoes

Sugar beet

 2.0 26.5 3.6

1.3

12.5  5.1  2.6 4.9

2.5 1.1 1.6 2.7

9.0 1.6 9.00.8 1.50.5

5.8 9.0 5.87.3

1.5 5.3 1.3 3.9

5.8 2.5 1.1 2.6

11.4 11.1  7.5 7.5

7.15.7 4.0 2.05.0 1.7

2.9 6.4

15.8  9.3

DOY

Emergence and Dormancy
Closed stand
Shooting
Beginning of tassel emergence
Stem elongation
Tip of tassel emergence

Heading
Fourth leaf unfolded
Beginning of flowering
Full flowering
End of flowering
Dough ripeness

Yellow ripeness
Green−up
First cut for hay
First cut for silage
Not observed

Figure 5: Detected phenological time frames for all target crops. The colour
of the boxes corresponds to the phenological phases; red boxes
represent species that are not part of the DWD phenological ob-
servation programme. Mixed colours indicate transitions between
subsequent phases. The numbers printed in the phenological time
frame boxes represent the time frame reliability RP (Eq. 3).

Interpretation of the detected time frames

Each of the target crops shows a distinct pattern of high separability
time frames, during which the index composition and the separability
can be interpreted according to the crop-specific cultivation practices.

perennial grassland The separation of perennial grassland is
best possible from June to the end of the growing season, since in June
all other major crop types start to mature and reach ripening phases.
This is related to a decrease of chlorophyll content and plant vitality.
Due to its composition of different species and the multiple cutting
and re-emerging, perennial grassland shows repeated vitality peaks
during its full growing season. Furthermore, perennial grassland is
harvested using scythes, so vital vegetation coverage remains on the
fields during the entire season. Since all other crops are annual spe-
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Table 7: Phenological indicator phases, time frame reliability (RP, Eq. 3), fre-
quency of a phase classified as optimal (N) and frequency of ap-
pearance of each spectral band in the optimised indices for all tar-
get crops that are monitored by the phenological observation pro-
gramme

Crop Phase N RP B G R RE NIR

Perennial grassland First cut for silage 14 26.5 5 4 8 12 13

Winter wheat Heading 7 12.5 3 2 4 5 7

Yellow ripening 3 5.1 3 1 3 1 1

Shooting 3 4.9 0 3 1 1 3

Winter rye Emergence and dormancy 6 9.0 4 2 3 5 4

Winter barley Yellow ripening 5 9.0 3 3 5 1 2

Heading 5 7.3 4 4 1 5 1

Emergence and dormancy 5 5.8 2 5 1 5 2

Oats Emergence 5 5.8 5 2 4 2 2

Yellow ripening 2 2.6 1 2 1 1 1

Winter rapeseed Beginning of flowering 6 11.4 5 6 1 6 0

End of flowering 6 11.1 1 4 5 2 5

Fourth leaf unfolded 5 7.5 2 3 3 3 4

Maize Beginning of flowering 4 7.1 1 0 3 4 4

Emergence 3 5.7 0 1 3 3 2

Stem elongation 3 5.0 1 3 2 1 2

Dough ripening 3 4.0 1 1 2 3 2

Potatoes Closed stand 8 6.4 2 3 4 1 6

Emergence 3 2.9 3 1 2 2 1

Sugar beet Emergence 9 15.8 6 5 8 4 4

Closed stand 6 9.3 2 1 3 2 4

cies, they are removed completely from the fields or only dead crop
residues are left on the field. The domination of red edge (12 appear-
ances) and the NIR (13 appearances) channels in the optimised indices
further confirms this high vitality during the whole growing season.

winter wheat The separability maximum of winter wheat, char-
acterised by an RP of 12.5, is related to "heading" (7 observations),
since the heads and awns that are formed during that phase are of
brighter reflectance than the green parts of the plant. Here, also the
red and red edge bands are included most frequently in the optim-
ised indices. The two alternative phases (3 observations, respectively),
characterised by considerably less RP values of around 5.0, are "yel-
low ripening" and "shooting". During "yellow ripening", the blue and
red channels are important for the optimised index, since the overall
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reflectance increases during "heading". This leads to a brighter signal
that is best detected using the visible bands. The green channel is con-
sequently important for winter wheat separation during "shooting",
when the plants turn green rapidly.

winter rye Winter rye is only of minor importance regarding its
cultivation fraction in the two study sites. Consequently, when all ag-
ricultural fields are cultivated in summer, the rye-specific reflectance
vanishes among the reflectance of the other crops. Hence, the best
period to separate rye fields is after "emergence" in autumn or early
spring with a fairly high RP of 9.0, until the summer crops start to
emerge. Also no clear tendency is visible of which spectral regions
are most important for rye detection, since bare soil, that domin-
ates reflectance on the summer crop fields during the dormancy of
rye, is characterised by overall low reflectance in the spectral regions
covered by the RapidEye sensor and all visible bands are useful to
separate vegetation from these soil-dominated fields.

winter barley A total of 3 phenological phases have been ob-
served optimal on 5 times for winter barley separation. Of these
phases, "yellow ripening" shows the highest maximum and mean
F1-measure, leading to the highest RP measure. The very bright ap-
pearance is represented best by the visible channels. Consequently,
blue, green and red are more frequently included in the optimised
index than red edge and NIR. The red edge channel becomes more
important during the alternative phases "heading" and "emergence
/ dormancy", which are the phases characterised by very high plant
vitality.

oats The summer-cropped oats show their separability maximum
during "emergence" (5 observations). This is typical for summer cer-
eal species, since they are the only crop types that are vital in late
March and April. Winter crops are still dormant during that time
and the other relevant summer crops such as maize and sugar beet
are planted and sowed later than summer cereals. The F1-measure
for oats is comparatively low, leading to a fairly high RP value of 5.8.

winter rapeseed The typical yellow flowers determine the separ-
ability peak of winter rapeseed. Both flowering phases are character-
ised by a high RP value exceeding 11.0. It can be assumed that this
separability maximum includes "beginning of flowering", "full flower-
ing" and "end of flowering", unless only "beginning of flowering" and
"end of flowering" are detected as optimal. The temporal gap between
these two phases is a result of data gaps in the analysed time series
and the lack of "full flowering" in the DWD observation programme
for rapeseed. Interestingly, the NIR channel is never included in the
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optimised index during "beginning of flowering", while red edge and
green appear most frequently. This can be explained by decreasing
photosynthetic activity of rapeseed during flowering that also de-
termines a decreased green reflectance compared to the prior phases.
However, during rapeseed flowering, all other crops are highly vital.
Thus, the differences of green reflectance can be utilized to separ-
ate rapeseed from the other crops. As alternative phase, "Fourth leaf
unfolded" has been detected 5 times as being also a period of high
separability. This can be explained by the higher fractional vegetation
coverage of the rapeseed rosettes compared to dormant winter cereal
fields and the absence of vegetation on all fields that are not covered
by winter crops or perennial grassland.

maize Since it is sown last during a growing season, the separabil-
ity maxima of maize are located later than those of the other crops. In
total, the phase "beginning of flowering" outperformed "emergence"
and the other phenophases. Since three alternative phases have been
detected at least three times, it can be stated, that the separation of
maize from the other crops is possible with high accuracies during
the full growing cycle of maize due to its delayed phenological cycle
compared to the other crops.

potatoes The findings for the separation of potatoes are of fairly
low reliability. This is, first, due to the high variety of the potato grow-
ing cycle. Harvesting of potatoes can be between June and Septem-
ber, depending on the respective cultivar. Further, potatoes are only
cropped on small percentage of the study sites, which further reduces
the potato separability. However, the optimal time frame is repres-
ented by the phase "closed stand", which can persist from May un-
til September. Later-harvested cultivars can possibly be separated in
late August and September, when the cereal crops and rapeseed are
already harvested and only maize and sugar beet remained on the
field. Contrarily, early harvested cultivars are hardly to separate from
the other crops.

sugar beet Sugar beet can be separated with high accuracy dur-
ing "emergence" and after all cereal species are harvested. "Emer-
gence" of sugar beet, that occurs simultaneously with "emergence"
of potato and maize, is the most suited time frame. This is due to
the highly different seeding morphology. Sugar beet forms rosettes
of leafs while potatoes and maize built a stem with several leafs. Con-
sequently, fractional vegetation cover on sugar beet-planted fields in-
creases faster than vegetation cover on fields cultivated with potatoes
or maize. This difference is present in the reflectance signal, repres-
ented by a high frequency of visible spectral bands in the optimised
indices.
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durum wheat, summer wheat and summer barley These
three species are not covered by the DWD phenological observation
programme, or were, in case of summer barley, only included into
the programme in 2014 so that not enough observations are available
for valid detection of phenological time frames. However, since they
cover only a small percentage of the agriculturally used area, the de-
tected separability maxima (independently of the plant-specific phen-
ological behaviour), are randomly distributed along the growing sea-
son. Thus, no generally valid time frames could be detected for these
summer cereal species.

7.2.2 Application-oriented example classification

The individual steps of the optimised classification are presented in
detail in this section. Then, the selection of the optimal data sets is
demonstrated practically. Second, the resulting classification is presen-
ted and discussed.

Data set selection

The example classification is based on the detected optimal temporal
windows (Fig. 5) and the temporal distribution of the RapidEye data
sets for the Harz lowlands sub-test site in 2015 (see Fig. 2 in Paper 3

/ Section 6.1). The aggregated time frames that are understood as the
temporal borders for data set selection should ensure that phenolo-
gical indicator phases of as much crop types as possible are captured
by the selected images.

A highly significant period for crop separation ranges from DOYs

120 to 160 when the distribution of the species-specific optimal time
frames (Fig. 5) is considered. The optimal time frames for winter
wheat and rye as well as for oats and winter rapeseed are enclosed
in this period. For winter barley, the alternative phase "heading" is
captured instead of the optimal phase "yellow ripening", but the dif-
ference of the RP value between these two phases is moderate. Fur-
thermore, RP for "heading" is comparatively high. To classify the root
crops, maize and perennial grassland, another aggregated time frame
can be localized between DOYs 210 to 270. The highest inaccuracies
during that time frame must be expected for the classification of pota-
toes, since their harvesting dates can vary significantly between cul-
tivars.

The three data sets that have been selected are listed in Tab. 8. As
most distinctive data set 2 August was selected, representing the op-
timal time frames for the spectral separation of maize, potatoes and
perennial grassland. For sugar beet, oats and winter wheat, this data
set was acquired during alternative time frames.
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Table 8: RapidEye acquisitions from 2015 of tile 3262922 included in the
classification experiment and the corresponding phenological time
frames for the target crops

Time

frame

Acquisition

date

DOY Optimal time

frame for

Alternative time

frame for

1 2 August 214 Potatoes
Maize
Perennial grassland

Sugar beet
Oats
Winter wheat

2 10 May 130 Sugar beet
Winter rapeseed

Winter wheat
Winter rye
Summer barley

3 1 July 182 Potato
Perennial grassland

Winter barley
Winter rye
Winter rapeseed

As the second-most distinctive data set, 10 May 2015 was selected,
since it represents the optimal time frames for sugar beet and winter
rapeseed and alternative time frames for winter wheat, winter rye
and winter barley.

The inclusion of 1 July as third data set again displays optimal time
frames for potatoes and perennial grassland. Alternative time frames
for maize and summer barley are also captured by this data set.

Thus, after selecting three time frames, at least one data set cap-
tured the optimal indicator phase for seven out of nine phenologic-
ally observed target crops. Despite no data set was available that was
acquired during the optimal time frames of winter wheat and winter
barley, accurate separation of these two crop types is still possible
since alternative time frames, two for winter wheat and one for winter
barley, are captured by the three selected images.

Classification results

The results of the optimised and the traditional classifications are
presented in Fig. 6. The false classified fields are highlighted for each
of the classifications individually. Overall classification accuracies are
87.38 % for the optimised and 85.97 % for the traditional classification,
respectively.

This overall gain in accuracy is not equally represented in every
class (Fig. 7). For most of the classes, the F1-measures for the op-
timised classification are higher than for the traditional classification.
The classifications of perennial grassland and summer barley repres-
ent two exceptions of this general tendency. For perennial grassland,
this might be due to the long-lasting optimal time frame, which res-
ults in a high number of very significant data sets for this crop type.
Regarding summer wheat, neither an optimal nor an alternative time
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frame was captured by the selected images for the optimised classi-
fication, which results in the lowered classification accuracy for this
class.

Figure 6: Classification result of the eastern Harz study site in 2015. Col-
oured fields represent the actually cultivated crops. Non-hatched
fields without frame are classified correctly. Fields with black
frames are false classified by the optimised classification, hatched
fields are classified false by the NDVI classification. A hillshade of
30 × 30 m resolution derived from the DEM is used as background.
Topographic information: © GeoBasis-DE / BKG 2018 and Open-
StreetMap contributors. Projection: WGS84, Pseudo Mercator

No significant difference could be observed for maize and the "other"
class. The highest improvements could be observed for winter rye,
winter barley and summer barley. The crop types with the highest
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F1-measures are winter wheat, winter barley and winter rapeseed,
which are the most frequently cultivated single-species crop types.
Perennial grassland and maize, which also cover more than 5 % of
the agricultural fields, are less accurately classified. For maize, the
classification might be more accurate if a fourth data set is included
that captures the periods when maize is almost the only vital plant on
the fields. However, the effect of catch crops during that later periods
of the season must be considered here.
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Figure 7: Class-wise F1-measure for traditional and optimised classification
of the eastern sub-site of the Harz study site.

The overall number of falsely classified fields could be reduced.
This reduction indicates the positive effect of the classification op-
timisation on overall accuracy, which can be traced back to most of
the crop classes. With the traditional approach, 479 fields could not
be correctly classified. For the optimised classification, their number
decreased by 10% to 430 fields. A fraction of 279 fields was falsely
classified by both classifications.

Discussion of the classification experiment

The classification and its inputs are not completely independent from
the phenological time frame detection. Both the detection of the time
frames as well as the classification were performed partly in the same
area, which might lead to tendencies of overfitting. However, it can
be assumed that spectral variations of the available reference objects
and objects to classify are sufficiently high for the training of the clas-
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sifier due to the large number of samples. This especially applies to
frequently represented crops like winter wheat, winter barley, peren-
nial grassland, maize and sugar beet. The classification uncertainties
for the other crops (potatoes, winter rye, summer cereal species) are
somewhat higher due to their relatively rare occurrence in the study
site.

The findings of the classification experiment could be strengthened
by further optimisation of sample sizes and the sampling design. For
the tested splitting fractions of the fields, the improvement of the op-
timised classification compared to the traditional classification design
could be demonstrated. Future research should address the verifica-
tion of the results for smaller sample sizes. In doing so, the universal
applicability of the approach could be substantiated. The sampling
design is completely random, leading to congruent representation
percentages of each crop type both in the training and the validation
fractions. Consequently, the data base for highly represented crops
like winter wheat is significantly larger than for other classes, lead-
ing to much less classification uncertainties for those classes. To prove
the stability of the approach for other study regions, the crop types
should be equally distributed in the training data set. However, this
was not possible for the study site, since some crops, that are highly
relevant for entire Germany, are significantly under-represented in
the Harz region.

From the spatial perspective, the false classified fields are irregu-
larly distributed without any obvious clusters. However, hidden de-
pendencies on other factors like terrain, irrigation, fertilisation, soil
types or differences between conventional and organic farming might
be undetected.

Despite for the spectrally highly diverse 62 "other" fields which are
false classified by both classifications, the class membership of the
falsely classified fields can be used for further method refinement.
For the remaining fields, various analysis can be applied to refine
the optimised classification and to address potentially undetected de-
pendencies to other variables. These analyses could, among others,
investigate:

• the class distribution of the fields that are falsely classified once
to detect class-specific method weaknesses of the optimised clas-
sification;

• the class distribution of fields that are falsely classified by both
classifications to detect general difficulties for the classification
of certain crop classes;

• the enrichment of the spectral information by additional vari-
ables such as terrain attributes or soil types to define variables
that can be used as criteria for stratified sampling.



8
C O M P R E H E N S I V E D I S C U S S I O N A N D O U T L O O K

In Chapters 4 to 6 and Section 7.2.1 it could be demonstrated, that
land use and land cover classification still is hampered by several
shortcomings that can be addressed by consideration of additional
data sources and technical effort. When these increased processing
complexity is accepted by the user, the integration of the pre-proces-
sing results can result in land use classification of improved accuracy.
In addition to the individual discussions about the components of the
methodology addressed in each of the research papers and in Section
7.2.2, overall considerations regarding the interconnection of the com-
ponents and possible subjects of future research are given here.

8.1 optimisation of vegetation indices

The automated selection procedure of spectral indices can contribute
to increased LULC classification accuracy, when the optimised indices
are passed to the classifier as independent variables. The optimisa-
tion leads to significant improvements in classification accuracy com-
pared to traditional multi-temporal classification approaches based
on VIs such as NDVI, which could be proven both in Chapter 4 and
Section 7.2.2. However, it was not assessed, at what extent the two
optimisations, data set selection and index optimisation, individually
contribute to the overall gain in classification performance.

8.1.1 Computational effort

The high computational effort of the index optimisation must still be
evaluated to assess the efficiency of the approach compared to tra-
ditional techniques. Hence it must be evaluated whether the gain in
accuracy justifies index optimisation as an additional pre-processing
chain for operational classification frameworks or whether if other
strategies are more effective. For a region of limited spatial size the
effort might be inefficient, especially when the ground truth data
base can be sufficiently large by applying traditional ground truth
sampling methods.

84
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8.1.2 Natural conditions

Additional uncertainty remains due to different natural conditions
between training and application areas. The more the region differs
regarding its internal ecological characteristics, the more uncertain
is the reliability of the optimisation results. Influences of soil types,
highly differing annual precipitation sums as well as irrigation prac-
tises reduce the universal applicability of the optimised indices even
if the same crop types are investigated. So, if applied on large scale
areas such as countries or on supra-national scale, separate optim-
isations should be performed to optimise indices suitable for spe-
cific natural regions, soil types, climatic regions or other stratification
strategies based on additional environmental or management vari-
ables (Franklin & Wulder 2002; Metzger et al. 2005).

8.1.3 Spectral separability indicators

In Paper 1 (Chapter 4) the effect size measure η2 was proposed as
spectral similarity indicator since, as a non-parametric statistic, it
is insensitive against non-normally distributed data sets. The met-
ric is best-performing on very large sample sizes, which is given
for raster data of moderate or high geometric resolution such as
provided by RapidEye, Landsat or Sentinel-2 satellite sensors. For the
time frame derivation, the raster-based classification approach was re-
placed by an object-based classification, which was found or referred
to be superior for crop classifications in several studies (Blaschke
2010; Löw et al. 2013, 2015). For this purpose and to allow cross-
comparison with these studies and the results presented here, the η2

metric was replaced by the F1-measure as separability indicator in
Paper 3 (Chapter 6) and the derivation of the time frames for the
remaining target crops as well as for the classification experiment.
However, the comparison of the actual effects of the two metrics can
be subject of future research.

8.1.4 Atmospheric effects optimised indices

Atmospheric effects such as aerosol content are also effective on most
VIs (Huete & Liu 1994). Correction algorithms can remove the most
influencing atmospheric disturbances on reflectance. However, every
model is based on assumptions and generalisations that prevent it to
reach 100% accuracy. Hence atmospheric correction algorithms can
only aspire to transform the recorded top-of-atmosphere reflectance
as close as possible to actual bottom-of-atmosphere reflectance. So,
when optimised indices are computed for a certain year or location,
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it might be that these indices are not necessarily the best-performing
indices in another year or another site, even when the phenological
situation is exactly equal.

8.1.5 Complexity of the optimisation implementation

The optimisation can be performed in different complexity settings
and still has potentials to be further improved. The domain of the
weighting parameters, through which the algorithm iterates, can be
theoretically extended without restrictions, but with the consequence
of rapidly rising computational effort. In Paper 1 (Chapter 4), this
complexity was set relatively high (see Table 2 of Paper 1 / Chapter
4). For computational reasons, the weighting parameter domains are
diminished for the derivation of the phenological time frames, which
decreases the possible number of indices that are compared. However,
according to Paper 1 (Chapter 4), this effect is expected to be negli-
gible for the absolute factor G (see Eq. 1), since G simply stretches the
range of the resulting index. The influence of the domain reduction
of L was not assessed in this study.

Further, only the Enhanced Vegetation Index (EVI, Huete et al. 1999)
rationale and band ratios function as mathematical framework for the
iteration procedure. Implementation of alternative types of indices ac-
cording to Rivera et al. (2014) can further improve the algorithm per-
formance, although the EVI rationale is the base for the vast majority
of established VIs.

RapidEye data, which were used as data base for method devel-
opment, are of relatively low spectral resolution. Other, more recent
multi- and super-spectral sensors such as Landsat-8 or Sentinel-2, col-
lect reflectance in additional spectral regions (Drusch et al. 2012) or
with finer spectral resolution. Especially the three red edge bands
of the Sentinel-2 sensor and the SWIR of Landsat-8 and Sentinel-2
proved to provide highly significant information for crop separation
(Immitzer et al. 2016). If the optimisation is applied on these sensors,
the computational effort increases exponentially with the number of
bands that are used to find the optimised indices.

As presented in Chapter 4, the optimisation is implemented in a
binary design, to optimise an index for the separation of one land
cover class from another. Other optimisation strategies could employ
multi-class optimisation, to detect an index that is optimised for the
classification of larger set of land cover classes. For instance, an index
might be found which is optimised for the classification of winter
wheat, winter barley and winter rye during the same classification
run.
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8.2 inter-relation of phenology and spectral separ-
ability

Phenology derived from ground observations was proven to be a
stable indicator for crop separability in various studies (e. g. Haralick
et al. 1980; Maus et al. 2016; Wardlow et al. 2007, see Section 2.1.4).
This was verified in Chapter 4, where spectral-temporal separabil-
ity patterns could be clearly explained by phenological information
based on ground observation data. The phenological model PHASE

could be implemented to reduce the uncertainty-evoking factors of
volunteered geographic information collections (Flanagin & Metzger
2008; Mehdipoor et al. 2015) by substantiating the visually collected
point observations with a plant physiological background.

Förster et al. (2012) and Schmidt et al. (2014) already proved that
the data derived by the DWD observations programme is of suitable
quality to can be employed as variables for crop or grassland clas-
sifications. Their implications, that the phenological observations are
linked to spectral-temporal profiles and separability patterns could be
verified by the successful transferability assessment, which is presen-
ted in Chapter 6. The vegetation period starts later and ends earlier
in regions of cooler climate and less fertile soils compared to highly
favoured, warmer regions. The spectral separability profiles corres-
pond to these differences, showing their maxima rather during the
same phenological phase than during the same calendar period.

8.2.0.1 Uncertainties in phenological modelling

The spatially explicit phenological data produced by the model PHASE

still is affected by uncertainty. Geostatistical interpolation and a strong
generalisation of the growing-degree-days approach to one single in-
dicator temperature sum account for these uncertainties. Similar to
the index optimisation, also the calculation of the indicator temperat-
ure sum for stratified regions (Siebert & Ewert 2012) can have positive
effects on the model performance and accuracy.

8.2.1 Input variable selection

Day length was included as proxy for latitude, but other factors that
might be affecting plant phenology are not considered. This regards
factors such as cloud coverage, global radiation, sea proximity and
population density (Hense & Müller 2007).

Although precipitation was proved to be not significantly efficient
for most of the phenological growing stages, it possibly has stronger
influence in semi-arid climates of Southern Europe. Under semi-arid
conditions it was reported that precipitation and water availability are
often the limiting factor for phenological development and not only
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for crop yield (Fu et al. 2014). Also, climate projections performed by
the Intergovernmental Panel on Climate Change predict that in parts
of Central Europe water could also become less available. This applies
mainly for the regions in Eastern Germany (Kovats et al. 2014), includ-
ing the eastern parts of the Harz study site. Thus, the PHASE model
must be adjusted in the future in order to respect this increasing prob-
ability of water becoming the limiting resource for agricultural land
use.

8.2.2 Requirements for a supra-national observation programme

Although it provides phenological data of unique density and them-
atic depth, deriving phenological information from remote sensing
data instead of ground surveys is currently more promising than
the establishment of a comparable observation programme on supra-
national scale. Recent studies report a gain in accuracy and reliability
of phenological information from satellite data (White et al. 2014; Xu
et al. 2017), but criticise the lack of links to ground observations. Al-
though volunteered geographic information become more and more
a source of scientific data and have the potential to close the gap
between space- and ground-borne data, a pan-European monitoring
network of spatially stable quality would be complicated to establish
due to high demands in perspective of administration and harmon-
isation (Senaratne et al. 2017).

However, if such a network is approached, the spectrum of the
observed species should be extended when the observation scale is
planned to be enlarged. The proportion of cultivated crop types is not
only determined by natural conditions, but also by socio-economic
factors. For instance, triticale (x Triticosecale) plays a much larger role
in southern-European and Polish agricultural production than in Ger-
many but the natural conditions of Northern Poland are relatively
similar to those of North-Eastern Germany. However, Poland is the
greatest triticale producer worldwide and triticale is cultivated on lar-
ger percentages of the arable land than barley and rye (Rozkrut 2017).
This would justify the integration of triticale to the monitored crops
in a pan-national programme. Other examples are durum wheat in
southern Europe and soy in France, Romania and Italy, where such
considerations should be made accordingly.

8.3 phenological indicator phases

For all target crops, multi-annually stable phenological time frames
of high separability could be defined. The selection of the data set
to include into the sample classification experiment verified findings
of Conrad et al. (2014), Murakami et al. (2001), Schmidt et al. (2014)
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and Wardlow et al. (2007), that a small number of highly signific-
ant acquisition dates provide sufficient information for accurate LULC

classifications. This is of high relevance in regions that are affected
by cloud coverage during significant parts of the year. The findings
presented in this thesis demonstrate that sophisticated data set se-
lections reduce the required number of images and thus make oper-
ational and non-operational applications more robust against unfa-
voured weather conditions.

8.3.1 Sample size of the ground truth data

Phenology-based classifications have, as demonstrated by Zhong et al.
(2011), the potential to decrease ground data sampling requirements
significantly, when the methodology is applied on larger scales. How-
ever, the still necessary ground surveys must be designed well, so
that they include reference fields for each target crop. The number
of reference fields must be oriented on the estimated class fraction
to capture the intra-class reflectance differences by management, ter-
rain, soil, and other factors. But, to ensure that enough fields for rarer
classes are available to train the classifier, these classes must be rep-
resented disproportionally high. For the demonstrated example clas-
sification, the used sample size for training is relatively high. So, to
verify the prescribed assumptions, comparable classifications must be
performed and assess in detail for different size of the training set of
fields.

The required ground sampling effort is reduced further, as the
samples, optimised indices and phenological time frames are also
applicable in subsequent growing seasons. Such cross-annual applica-
tions of PBC have been investigated by Zhong et al. (2014). This study
could verify these findings, since the time frames are computed based
on a multi-annual pool of separability analyses and phenological
coupling. Specifically, this implicates that a sampling strategy for a
large scale monitoring initiative would be most effective when it col-
lects ground truth information for the relevant ecological regions and
the regionally dependent dominating crop types for a few number
of subsequent years. Once this ground truth data pool is sufficiently
large, it can be used for classification of any growing season, both ret-
rospective or of subsequent seasons. Analogue to Maus et al. (2016)
and Belgiu & Csillik (2018), the data set selection based on phenolo-
gical time frames can be also transferred to regions other than the
training site.
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8.3.2 Number of optimal time frames

The incorporation of the fourth and fifth time frame does not provide
information to further increase classification accuracies. This supports
findings that additional variables can obliterate distinctive spectral
features capable for accurate crop discrimination, which results in
(almost) constant accuracy (Conrad et al. 2014) or declining classific-
ation accuracies with increasing number of scenes (Murakami et al.
2001).

The number of 3 images, that has been assumed to be optimal in
this study, probably applies only in landscapes dominated by single-
cropping agriculture such as Germany. The investigations of Conrad
et al. (2014), for example, were performed in landscapes in Uzbek-
istan in which double-cropping of major crop types, e. g. wheat fol-
lowed by rice or mixed-crop cultivation, is much more common. To
ensure that both crop types of the double cropping systems can be
classified, the number of optimal time frames must probably higher
since two phenological seasons expire parallel to one phenological
season of single-cropping farming systems.

8.3.3 Impact of data gaps on classification accuracy

Data gaps caused by clouds are an issue for remote sensing world-
wide (Whitcraft et al. 2015). However, the higher the temporal distri-
bution of optical satellite data is, the better classification algorithms
and data set selection approaches can perform. Assuming a combin-
ation of the Sentinel-2, RapidEye and Landsat-8 imagery and the the-
oretical temporal resolution lower than 5 days, persisting cloudy con-
ditions can still have the effect that for parts of the areas under invest-
igation data sets are lacking. Furthermore, multi-sensor monitoring
approaches are affected by other issues such as different spatial, spec-
tral or radiometric resolution.

To overcome the limitations by cloudy conditions that might af-
fect optical remote sensing data, other strategies can get valuable
input from accurate phenological time frames are possible helpful
that aim on increasing the temporal resolution of satellite image time
series. For instance, image compositing approaches can mosaic cloud-
free parts of different satellite images which are acquired during a
single time frame to one cloud-free data set per relevant phenological
time frame (Frantz et al. 2017). Other recently tested methods include
multi-sensor merging such as optical and RADAR sensors, which are
insensitive to clouds but also can be utilised to map crop types and
growth stages (Joshi et al. 2016). Finally, simulation of dense time
series from vegetation indices using daily acquiring, coarse resolu-
tion sensors (MODIS) and less frequently acquiring, high resolution
sensors (Landsat, RapidEye, Sentinel-2) is another strategy. Möller et
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al. (2017) published promising results from a simulation experiment
of Landsat-8 and MODIS with the STAR-FM algorithm (Gao et al.
2006). They could show that the simulation accuracy is controlled by
the ability of the actual Landsat image to properly represent the phen-
ological phase of the Landsat image simulated by MODIS.

8.3.4 Socioeconomic sources of uncertainties

In Germany, typical catch crops such as grass species, trefoil or rape-
seed are cultivated during the autumn and winter months and are
harvested before ripening to ensure an ideal sowing date for sub-
sequently grown main crop. The main purpose of growing catch
crops is to improve the nitrogen content of the soil or to form a pro-
tective layer against soil erosion. Mainly the harvested catch crops are
used for animal feed. Thus they are often harvested before reaching
the ripening growing stages.

The unclear composition and land use of the parcels covered by
catch crops is somehow random. This determines that no data set ac-
quired later than 2 August and earlier than 10 May could be selected
as optimal. Furthermore, a catch crop like rapeseed is cultivated after
harvest of the main crop during that season. Afterwards it emerges
and reaches the phenological stages of highest vitality. This phase
possibly overlaps to the vitality maxima of the latest sown main crop
types, maize and sugar beet, and hence results in a decrease of separ-
ability for these two main crops.

The regionally predominating intended use of the grown crops also
influences the applicability of the phenological time frames. Barley
grown for forage is usually harvested before yellow ripening. How-
ever, yellow ripening was detected as optimal phase for the separa-
tion of winter barley. So, if one selects an acquisition date for which
the PHASE model predicted yellow ripening to be present, winter bar-
ley might be already harvested and hence cannot be classified cor-
rectly. Consequently, regional predominating usage of the crops must
be considered when the phenological time frames are used for data
set selection. Also, alternative phenological time frames are poten-
tially to be preferred over the optimal time frame.

The phenological time frames are defined and tested for regions
of relatively large field sizes, which thus provide a high number of
pixels for averaging the reflectance value per field parcel. In agricul-
tural regions with very fragmented landscapes such as large parts
of Southern Germany, Austria, Romania, Poland, Greece and Italy,
this number of pixels is much less and thus the fraction of mixed
pixels increases. Consequently, the spectral similarity and thus classi-
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fication results decrease in accuracy. Contrarily, small and medium-
sized fields have less intra-field reflectance variations due to a more
homogeneous terrain. This could possibly lead to the contrary effect,
an increase of classification accuracy in such areas. The dimensions
of these effects have to be assessed in the future.

8.4 application scenarios

The determined phenological time frames for crop separation can be
utilised in multiple ways, e. g., to improve hydrological models, to
estimate effects of changes in cropping patterns and structures on
carbon capture and storage or other usage scenarios in regions of low
density regarding crop phenological observations. Four exemplary
scenarios are briefly described in the following subsections 8.4.1, 8.4.2,
8.4.3 and 8.4.4.

8.4.1 Scenario 1: Changes in cropping area of oats

From a historical perspective, oats, barley and rye have been the most
important cereal species in Northern Europe until the twentieth cen-
tury. The production of these species declined rapidly during the last
decades because of (bio-) technical proceedings that allow more fre-
quent cultivation of more demanding crops with higher yields under
the same climatic conditions. However, recent diet trends and increas-
ing awareness of health-related benefits of oats can possibly stimulate
a renaissance leading to a future increase in oats production (Tiwari
2010). To estimate the trend of acreage of oats, an accurate classifica-
tion scheme should be based on 2-3 satellite images per season. The
first acquisition date can be used for separation of winter and sum-
mer crops, of which the latter are characterised by bare soil approx-
imately until April. The second and most important data set should
be acquired during the first two thirds of April, when oats usually
emerge. During that time, no other crop shows a comparably high
growing activity and parcels of high activity that have been covered
by bare soil in the first time step are probably covered by emerging
oats. To further increase the oats classification accuracy, one image ac-
quired during "yellow ripening" between late July and early August
can be additionally used, on which oats should appear very dry with
a light brown colour.

8.4.2 Scenario 2: Modelling water balance of transnational river catch-
ments

Hydrological modelling of large river catchments, that span multiple
countries, is often hampered by country-specific limitations regarding
the possibility to access cropping information on parcel scale due to
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political and administrative differences (Conrad et al. 2013; Courault
et al. 2016). For trans-national catchments that are completely con-
tained by member states of the EU, such as the rivers Elbe, Oder or
Tejo, these information are collected by the member states according
to standardised criteria that have been defined as consequence of the
EU’s common agricultural policy (Pérez 2005). However, accessibility
of these data is dependant on country-specific legal situations.

Other catchments that are of high interest for ecosystem modelling
span several countries for which land use data on field scale is not
collected or the access is restricted due to political conflicts between
these countries. An example for this situation are the Amu Darya and
Syr Darya catchments in central Asia (Chemin et al. 2004). In such
areas, the presented methodology, applied on the regionally domin-
ating crop types, can potentially reduce the associated hydrological
model uncertainties.

8.4.3 Scenario 3: Crop classification in inaccessible study sites

As demonstrated by Zhong et al. (2011), especially phenology-based
mapping approaches are suited for crop mapping for food supply
assessment and water resources management in regions of limited
ground truth availability. Foreign aid or famine relief require accur-
ate crop maps of the affected countries that can assist these actions.
However, some required data of these countries are hardly to access
or to observe due to political isolation, such as North Korea, or due
to security reasons e. g. in Somalia. To achieve accurate crop map
products anyhow, one strategy is to train the methodology in adja-
cent countries of similar environmental conditions (e. g. South Korea
or the Chinese province Jilin as well as Ethiopia or Kenya, respect-
ively) but better data or field work situations. In doing so, phenolo-
gical observations can be recorded in these alternative study sites and
the time frames can be subsequently transferred to the isolated target
countries.

8.4.4 Scenario 4: Spatial and temporal identification of extreme weather
events and conditions

The monitoring of extreme weather conditions and events is crucial
to adapt measures for farmers, support decision making and refin-
ing soil policies. This is especially relevant in the context of climate
change. A precondition for an effective monitoring is the availabil-
ity of indices representing the spatio-temporal dynamics of influen-
cing factors like precipitation, temperature or fractional soil cover-
age. First, the monitoring of such erosion pattern requires up-to-date
phase-specific soil coverage information on field scale. As shown by
Möller et al. (2017), such dynamic data sets can be obtained by data
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fusion of satellite imagery of different temporal and geometric res-
olution in combination with the phenological spatial data introduced
in this thesis. Furthermore, designing agricultural weather indices for
farmers’ insurances is challenging, since complex and dynamic crop-
climate relationships have to be considered. The modelling results of
the PHASE model have been proven as suitable for the dynamic de-
termination of phenological windows, which are sensitive to weather
conditions of winter wheat (Möller et al. 2018).

8.5 conclusions

This thesis addressed two strategies to improve land use classifica-
tions in heterogeneous agricultural regions. It presents evidence that
vegetation indices can be optimised for a specific problem in an auto-
mated manner to support the selection of spectral features for land
use classifications. Furthermore, phenological volunteer-based ground
observation data were successfully modelled to spatially-explicit phen-
ological raster data sets and could be employed to couple spectral
separability to plant growth stages.

This coupling procedure leads to the derivation of phenological
indicator phases, which can function as proxy for the detection of
temporal windows of maximal spectral separability.
Finally, it could be demonstrated that both index optimisation as well
as phenological indicator phases increase land use classification ac-
curacy and can decrease the effort that is required for appropriate
ground truth data collection campaigns.

The presented methodology is designed flexible regarding the crop
types and application regions, as long as appropriate input data sets
are available. Since large-scale remote sensing-based monitoring of
agricultural landscapes increasingly gains importance in various con-
texts, the methods presented here can contribute to such initiatives
facing problems relating to climate change and food security.
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MNOPQRSOI\WZV]YSOIMSOcPdSI\SQVOSIeYfgIhV_SÌPdSQZ]Oi�����!������ ���)*����)�%�A.0*��1���")�0,%"�,��0�.��.�� )���-�),*.�� ��

�� ����0���,�/)�� ���-*�-)�����,���8*������ ���-�.�/��,���� ����  �.��,�.)-��)/��)*��)�,���/)������,�/)���)�) ����*�����*!j�. � )� ��

.)�,� �)���!�0)"E

�#�	�����.���)��"����� �� �� �� ������ )� ���!�� �)/�� ��<�)"0�,���� ������� �� )�0�.�������*���)/� ������ ����0#�$)"�1�����)*���)*0,

���*��� �� � ����� ����0��)*�������8*�� �������)������0� )� �����.���)����,�,)����) �.����� ���.)-����� �)/���) ������ � ��&��

.��,� �,���� ���-*!0����,�1����)�+#
��

�/� ���.��,� �0����)������-�� �)/� ����� ����0��)*���1����8*�� �,���,�.� ��� �� �� �"�����-��� �,�)���,�- �,�"� ��-�������)��/�)�

��) �����)*�.��� �����)*���)*0,��0�)����<�-�������)��/�)�� �� ��)*�.�� )���*��� ����� ����0#
��

�#�>�����NOPQVI]Qkl�-�������)������!�������� �,�/)����/������-��� ��-�������)���*� �!��)! ����,�/)�������,,� �)��0��0�. �)��.���%

*��#�
��

appendix 109

Springer Nature



�����������	
����

�������������������	����
�������
����

�������	������������

����	���
������
�	
��������	
�	��
��
� 	�!"���	�����


��
�
�����
����������
����

���
	��	��� 	�!������ �	����
��
��
�
�������
�	
��������	
��������

�������#������

�
	"�	����$�
�
�
��

�	�"�
������

������	
�
��

%��&�����
����	��'�	�
�	
��� �$��
�'�����������	��()��	

�����	��
�������
�����
���*��������
����	���
	
��	��������	�������
�+
���
�����

	
� �$��
���
��

,��-�����.��/0��12���3100��4�41�254��010.�����$��
������
���
����	��	 �
��
����������6����

�����
���	�����
	�(77��	����"�����
�	
��

����
���	������	
���	
�������	
��� �$��
��	���
�
�
�
�	
������	��
	����������
���$��
���8�������������
�

9   ������������!:�	��	:;�
��

<����������	
����

����	��$		!���
��=	��
����������

����	��
�������
����	��
�������
����
�	
��
���	���
	
�������
	����	
���
�

��$��#��

����
�	
��9�+���
� �����
�������
����
�	
���������	
� ������

��������	���������	���	�����
�
	�����
	�
���8*>

��������	
��?������
����

�6::   ��
�@���	��	��:�	������
@�����@�������:��������	
�:��������	
�@�������
��:;"��
���	���
	


�������	�����
�	
���
�	
������
��������
���������
�	
���
��
���
�	
�����
�������$��
����

���������
�����
�
�������
���
��

A��B���
���	������
�	
����	��	
�

�������������
	�����
�	
���
��������
�������#���������
�	
�����������	
��
������$����$=��
�
	

�
�����
�	
���������������������
	�C	��
����������	
�D����
���
�
�����	�:$		!��������	
�D����
���
�
�����	���	��
����

����
��
��

E��*���F���
�	�'����������	
����
�$����!
	 �������
�+
�
	�
�������
������
�������
����

��G
�����
�	
����	��"�
���

��!
	 �������

����
�$������$����
�
��������
�������
����������:
�$���:�����
��
�	
��	���$�
���
"��
�����
�$���������
!���
	�
��

=	��
��:$		!'���	��������H�����#��������!
	 �������

��	���
�����
�
���&���
��+�$��	 �
��

I��J���	��
�����
�������	���
����

�����	�	
�	
������"���
	�����
�
�������������9
�����	���
	
��
��������	���
�"�����
�
�"�	��

�
�

��
������	���
��	
�������
����
��
������
�
������
�
�"��

�

�	
�	���	��������
��	��
�����
�	�;��
���	������	��
�������$�������

�����

����
����
��������
���
��

(7��>�
	������
�
�	
��	����
������������9���
����	���	���
"��	�	����
���
���;��	�
	
���#�����
���F���
�	�'������	�����K	 ����"�
��

����
�
�	
���	����$�������
��������	 
��
�&���
��+�$��	 �
��

�

LMM�231N�O�L�P2�QR�3��S�240T
�

U���V�/�2�R�W�24�24T
�B����

���$����������	
���	��X4���Y1��20��Z6�XV�/�2�R�[/\R10����9�����]�
���:8���
���:��������;Z�XV̂ _̀ aLY�aLbcZ

X̀cUc̀ caWc�WdeLed̂a�9&�
�����
���"�&�
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