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Chapter 1

Introduction

Many real world problems can be formulated as vector- or set-valued optimization prob-

lems. This leads to an intensive development of vector as well as set optimization. In

this work, we consider set optimization problems with respect to (w.r.t.) variable domi-

nation structures. Precisely, we study optimization problems whose objective mappings

are set-valued and domination structures that induce certain set relations. Because the

notion of set-valued mappings includes single-valued mappings, set optimization can

be considered as an extension of vector optimization. Set-valued optimization prob-

lems are crucial and interesting not only from the mathematical but also from the

practical point of view since they have many applications in production theory, radio-

therapy treatment, game theory, welfare economics and uncertain optimization (see,

for instance, [7, 8, 30, 36, 63, 72]).

One application of variable domination structures in the theory of consumer demand

is illustrated in the following example:

Example 1.0.1. In order to explain consumer behavior, John [58, 59] and references

therein (compare [36]) studied two models of consumer preference: Local and global

theory. We assume that the consumer faces a nonempty set of feasible alternatives

Ω ⊆ Rn. By contrast with the global approach, a local preference only requires that the

consumer is able to rank alternatives in a small neighborhood of a given bundle relative

to that bundle. This idea can be represented by a continuous function g : Rn → Rn

such that y in the neighborhood of ȳ is consider to be better than ȳ if and only if

g(ȳ)T (y − ȳ) > 0. In this case, we call d := y − ȳ a preference direction from ȳ. As

illustrated in [59], the choice set for the consumer is determined by:

Sg(Ω) := {ȳ ∈ Ω| ∀y ∈ Ω : g(ȳ)T (y − ȳ) ≤ 0}.

This means that the consumer will choose alternatives ȳ such that for all y ∈ Ω, y is

not better than ȳ. This leads us to a mapping D : Ω⇒ Rn such that the image of each

bundle ȳ is its non-preference set, i.e., the variable domination structure D(·) is given

1
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by:

ȳ ∈ Ω, D(ȳ) := {d ∈ Rn| g(ȳ)Td ≤ 0}.

Now, we assume that the consumer is seeking for alternatives ȳ ∈ Ω such that for all

y ∈ Ω \ {ȳ}: g(ȳ)T (y − ȳ) < 0, i.e., g(ȳ)T (ȳ − y) > 0, which is equivalent to

∀y ∈ Ω \ {ȳ} : ȳ − y /∈ D(ȳ)

⇐⇒ 6 ∃y ∈ Ω \ {ȳ} : ȳ ∈ y +D(ȳ).

This means that the consumer is looking for minimal elements of the set Ω w.r.t. vari-

able domination structure D(·). For corresponding solution concepts, see Section 3.1,

especially Definition 3.1.1.

Another significant application of optimization w.r.t. variable domination struc-

tures is the intensity problem in radiotherapy treatment, see [36, Chapter 10]. In this

problem, the treatment seeks for the goal dose to deliver to the patient such that the

tumor is destroyed as much as possible while the normal organs are still protected. Eich-

felder [36, Chapter 10] explained that in order to obtain an improvement of a critical

organ, the doctor may accept a sacrifice in other critical organs. Therefore, the impor-

tance of each critical organ could be changed in a certain time. Furthermore, several

advantages of vector- and set-valued optimization w.r.t. domination structures in vector

variational inequality as well as behavior theory are discussed in [36, 41, 61, 63, 105].

There are three approaches to define solution concepts for a set-valued optimization

problem, namely the vector approach, the set approach and the lattice approach. For

the definitions of solution concepts and more details, we refer the reader to Khan,

Tammer and Zălinescu [63].

In this dissertation, we consider set-valued optimization problems w.r.t. variable

domination structures, where we use the vector approach and the set approach. Given

a set-valued objective map F : X ⇒ Y , where X and Y are Banach spaces. We study

the following set-valued optimization problem w.r.t. a domination structure given by

a set-valued mapping Q : X ⇒ Y :

Q−Min
x∈X

F (x), (PQ)

where the solution concept is given by the vector approach. This means that the so-

lution concept is defined on the graph of the mapping F : A point (x̄, ȳ) ∈ GrF is

called a nondominated solution of (PQ) if there is no point (x, y) ∈ GrF \{(x̄, ȳ)} such

that y ∈ ȳ −Q(x). Although the vector approach is interesting for the theoretical per-

spective in set-valued optimization, it may not useful enough in practical applications,

see [39, 56, 57, 63]. The reason is that a solution (x̄, ȳ) is defined based on only one

special point in the image set F (x̄) (ȳ ∈ F (x̄)) and one does not care how the other
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points in F (x̄) perform. Generally, one takes the ’best’ point ȳ of F (X) to imply the

’best’ set F (x̄) in the family of sets F(X) := {F (x)| x ∈ X} even F (x̄) contains many

inappropriate elements.

The set approach is a more natural way to define solutions of set-valued optimization

problems and has important applications. This approach is equipped with a mapping

K : Y ⇒ Y to study the following problem:

K −Min
x∈X

F (x). (PK)

Using a certain set relation �K, the solution concept of the problem (PK) is given by:

A point x̄ ∈ X is called a minimal solution of (PK) if

F (x) �K F (x̄) =⇒ F (x̄) �K F (x).

It is important to mention that Young [110] introduced the set less relation, see [110,

page 262]. Later on, other set relations have gained much attention of many researchers,

see [17, 38, 39, 40, 57, 75, 76, 77]. Suppose that Y is a linear space, A and B are two

nonempty subsets of Y, K ⊆ Y is a proper, closed, convex, pointed cone, the lower set

relation and upper set relation (see Kuroiwa [75, 76]; cf. Young [110]) are expressed

by:

A �Kl B :⇐⇒ B ⊆ A+K, (1.1)

and

A �Ku B :⇐⇒ A ⊆ B −K, respectively. (1.2)

This dissertation considers five aspects of set-valued optimization problems w.r.t.

variable domination structures. Our main results are listed as follows:

• New relationships between the solution concepts of (PK) and (PQ).

• Characterizations of solutions of (PK) by new scalarizing functionals.

• Necessary optimality conditions for solutions of (PK) in terms of Mordukhovich’s

coderivatives using the new relationships between the solution concepts of (PK)

and (PQ).

• Well-posedness property of (PK) based on new scalarizing functionals.

• Applications of set optimization problems w.r.t. variable domination structures in

radiotherapy treatment, image registration problems and uncertain optimization.

This thesis is organized as follows: Chapter 2 recalls relevant mathematical con-

cepts as well as several useful and important results. In particular, we present in detail
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the role of domin nation structures to compare vectors as well as sets, see Section

2.2. Chapter 3 concerns a special case of set-valued optimization, that is vector-valued

optimization. We recall the definitions of nondominated solutions and minimal solu-

tions for a vector-valued optimization problem w.r.t. variable domination structures.

In addition, we present necessary optimality conditions for solutions of general vector

optimization problems, especially vector-valued approximation problems.

Our main results will be presented in Chapters 4, 5, 6, 7 and 8. For the convenient

of the reader, we outline them and illustrate several comparisons with regards to the

literatures as follows:

In Chapter 4, we derive relationships between the solution concepts of (PK) and

(PQ), see Section 4.3. These relationships show a bridge between the vector approach

and the set approach in set-valued optimization. Using these results, it is possible to

apply results known for solutions based on vector approach for deriving corresponding

results for solutions based on set approach. To our best knowledge, there are only

four current papers that explicitly investigate relationships between solution concepts

based on these two approaches, see [39, 40, 57, 73]. It is important to note that

these relationships have been studied in [57, 73] when K(·) and Q(·) are two constant

mappings, and in [39] when both domination structures are set-valued mappings acting

from Y to Y . However, this thesis studies these relationships for the case K : Y ⇒ Y

and Q : X ⇒ Y . The results in this chapter will be used in Chapter 6 to derive

optimality conditions for solutions of (PK) based on the dual approach (where the

Mordukhovich’s coderivative of a set-valued map is used).

Chapter 5 follows the set approach to characterize solutions of a set-valued opti-

mization problem w.r.t. a general variable domination structure, i.e., it is not necessary

a cone-valued map as usual. For this aim, we utilize nonlinear scalarizing functionals

extended from the well-known Gerstewitz functional. This functional is introduced and

investigated in [42, 43, 44] and has been widely applied in publications, see, for instance,

[20, 45, 46, 64, 66, 67, 72]. The authors in [20, 66, 67] used the Gerstewitz functional to

characterize set relations, and the authors in [45, 46, 64] proposed nonlinear scalarizing

functionals to investigate well-posedness properties of set-valued optimization prob-

lems. Recently, Kuwano and Tanaka [80] have proved the continuity of cone-convex

set-valued maps by using nonconvex scalarization techniques for sets. In this chapter,

we introduce for each set relation an appropriate corresponding scalarizing functional.

This technique is beneficial for us to describe the comparison of given sets, see Section

5.1. Section 5.2 characterizes minimal elements of sets defined by set relations by means

of the newly introduced functionals. In order to study well-posedness property of set

optimization problems in Chapter 7, we introduce in Section 5.1 a new directional min-

imal time function, where the mapping K(·) is involved. This function performs many
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desired properties for the proof of the equivalence between Tykhonov well-posedness

of a scalar problem and well-posedness property of (PK), see Theorem 7.2.6. Section

5.4 presents a descent method for finding approximations of minimal solutions of a set-

valued optimization problem equipped with a variable domination structure without

convexity assumptions. In this numerical method, we use the scalarizing functional

introduced and discussed in Section 5.1.1.

Chapter 6 deals with the dual approach to derive necessary optimality conditions for

solutions of the set-valued optimization problem (PK). These conditions are derived in

terms of Mordukhovich’s coderivative for solutions of (PK) w.r.t. various set relations,

see Section 6.2. Note that these results have not been investigated before. Bao and

Mordukhovich [7] have shown necessary conditions for nondominated points of sets

and nondominated solutions of vector optimization problems with variable ordering

structures. Durea, Strugariu and Tammer [30] have investigated necessary conditions

for solutions of (PQ) where the solution concepts are based on the vector approach.

Khan, Soleimani and Tammer [62] considered weak solutions of (PQ) based on the

vector approach and derived second order optimality conditions for these solutions.

Recently, Eichfelder and Pilecka [40] have dealt with a primal approach (where the

Bouligand derivative of a set-valued map is used) to derive optimality conditions for

solutions of problem (PK). We take into account the paper [30] and apply the results

presented in Chapter 4 to derive optimality conditions for solutions of the problem (PK)

for the (possibly, certainly) lower less relation w.r.t. K(·). For the (certainly) upper

less relation w.r.t. K(·), we utilize the sufficient conditions in terms of coderivatives for

the openness of the composition of set-valued mappings (see [27, Theorem 4.2]).

Chapter 7 studies well-posedness properties for the problem (PK) by means of the

directional minimal time function introduced in Chapter 5. The well-posedness prop-

erties of both vector-valued and set-valued optimization problems w.r.t. fixed cones

have been studied intensively in the literature, see, for instance [31, 46, 64, 88, 89].

There are many publications investigating the parallelism between the well-posedness

property of a vector optimization problem and the Tykhonov well-posedness property

of a corresponding scalar problem; see, for example, [31, 89]. A similar result for set

optimization problems w.r.t. fixed cones was first introduced in [112] and recently stud-

ied in [46, 64] and the references therein. Chapter 7 studies the lower set less relation

which has been used widely in the literature and applied in many practical problems,

see [45, 46, 64, 112]. We prove the equivalence between Tykhonov well-posedness of

a scalar problem and well-posedness property of (PK), see Theorem 7.2.6. Based on

this equivalence and two classes of well-posed scalar optimization problems given by

Beer et al. [10] and Dontchev et al. [25], we derive two classes of well-posedness set

optimization problems w.r.t. variable domination structures, see Theorems 7.2.11 and
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7.2.14. Our approach can be considered as an extension of the results in [46] for fixed

cones to variable domination structures. In addition, the assumption that the image of

the objective mapping at the considered solution is cone-proper in [46] is relaxed since

we utilize the advantage of our scalarizing functional.

In Chapter 8, we present three interesting applications of set-valued optimization

w.r.t. variable domination structures in our real life. Section 8.1 concerns the inverse

beam intensity problem in radiotherapy treatment. This problem has attracted many

researchers in designing optimization models, methods, and theories concerning prob-

lems with fixed ordering structures. A detail survey on this field is presented in [32],

where the geometry problem (selecting of beam angles), the intensity problem (com-

puting of an intensity map for each selected beam angle), and the realization problem

(finding a sequence of configurations of a multi-leaf collimator to deliver the treatment)

are discussed. We also refer the reader to [15, 48, 81, 84] for more information about

radiotherapy treatment as well as [49, 94] for guides on toxicology. Recently, Eichfelder

[36, Chapter 10] has shown that it is more appropriate to consider the beam intensity

problem w.r.t. variable ordering structures than using the component-wise partial or-

dering used so far. However, a challenging question is: How should the variable ordering

structures be?. To answer this, we illustrate some dose respond curves for organs in lung

cancer treatment and construct an appropriate variable ordering structure depending

on the threshold doses. By using this structure, we formulate a beam intensity problem

as a special case of approximation problems, see Section 8.1.3. Furthermore, necessary

optimality conditions of this beam intensity problem are calculated in detail.

Section 8.2 investigates the image registration problem, where the decision maker

has to compare two sets of data (images), see [35, 105, 108]. We formulate this problem

as finding minimal solutions of a set-valued problem based on the set approach equipped

with a variable ordering structure proposed by Wacker [105]. By means of the lower

set relation w.r.t. K(·), we characterize solutions of this problem by using the results

derived in Section 5.1.1.

Section 8.3 shows characterizations of solutions of uncertain optimization prob-

lems. We explain the role of variable domination structures in studying these prob-

lems. Roughly speaking, because of the uncertainty of the data, it is likely that there

exist undesired elements which may not be handled by using fixed ordering structures

as usual. Therefore, variable dominations will help us to deal with these unexpected

elements. By using the results derived in Section 7.1, we characterize optimistic and

strictly optimistic solutions of uncertain optimization problems.



Chapter 2

Preliminaries

In this chapter, we present some necessary backgrounds and concepts which will be

used throughout this dissertation. First, we recall the well-known notions of linear

spaces, topological spaces, normed spaces and binary relations as well as cones defined

on linear spaces. Section 2.2 illustrates how variable domination structures are used

to compare vectors or sets. In particular, we recall several set relations, which are

recently studied in [39, 40], and their relationships. Section 2.3 presents the concepts

and properties of the Fenchel subdifferential, limiting normal cones, coderivatives, and

the limiting subdifferential. Finally, we recall some compactness requirements and the

openness, which play an important role in generating optimality conditions for solutions

of set-valued optimization problems in Chapters 6 and 8.

2.1 Binary Relations

2.1.1 Linear Spaces, Topological Vector Spaces and Normed Spaces

As usual, N, Z and R present the sets of natural numbers, integers and real numbers,

respectively. We denote the set of all nonnegative real numbers by R+, i.e., R+:={u ∈
R| u ≥ 0}. In addition, we define Rn+:= {v = (v1, . . . , vn) ∈ Rn| vi ≥ 0, i = 1, . . . , n}.
We consider only real linear spaces throughout this dissertation, so the term linear

space will refer to a linear space over the real field R.

Definition 2.1.1. Let X be a nonempty set. X is called to be a linear space if an

addition (that is, a mapping + : X ×X → X) and a multiplication by scalars (that is,

a mapping · : R×X → X) are defined satisfying the following conditions:

(i) ∀ x, y, z ∈ X : (x+ y) + z = x+ (y + z) (associativity),

(ii) ∀ x, y ∈ X : x+ y = y + x (commutativity),

(iii) ∃ 0 ∈ X, ∀ x ∈ X : x+ 0 = x (null element),

7



2.1. Binary Relations 8

(iv) ∀ x ∈ X, ∃ x′ ∈ X : x+ x′ = 0; we write x′ = −x,

(v) ∀ x, y ∈ X, ∀ λ ∈ R : λ · (x+ y) = λ · x+ λ · y,

(vi) ∀ x ∈ X, ∀ λ, µ ∈ R : (λ+ µ) · x = λ · x+ µ · x,

(vii) ∀ x ∈ X, ∀ λ, µ ∈ R : λ · (µ · x) = (λµ) · x,

(viii) ∀ x ∈ X : 1 · x = x (unity element).

From now on, for λ ∈ R, x ∈ X we write λx for the multiplication λ · x. We define

R:= R∪ {−∞}∪ {+∞} with conventions −∞+ a = −∞ for all a ∈ R, a(−∞) = −∞,

if a > 0 and (+∞) + (−∞) = +∞. The multiplication of a scalar λ ∈ R with a set

S ⊆ X is defined as λS:= {λs : s ∈ S}. In addition, we define algebraic sum of two

sets S and U as: S + U := {s + u : s ∈ S, u ∈ U}. When S is singleton, S = {s}, we

write s+ U instead of {s}+ U.

We recall some algebraic properties of a set S ⊆ X in a linear space as follows:

Definition 2.1.2. Let S be a nonempty subset of a linear space X.

(i) The algebraic interior of S is denoted by coreS and defined as

coreS := {x̄ ∈ S| ∀x ∈ X, ∃λ̄ > 0 : x̄+ λx ∈ S for all λ ∈ [0, λ̄]}.

(ii) S is called algebraically open if S = coreS.

(iii) An element x̄ ∈ X is called linear accessible from S if there is an x ∈ S \ {x̄}
such that

λx+ (1− λ)x̄ ∈ S for all λ ∈ (0, 1].

The union of S and the set of all linear accessible elements from S is called the

algebraic closure of S and it is denoted by linS.

(iv) S is called algebraically closed if S = linS.

(v) The set of all elements in X which do not belong to coreS and core(X \ S) is

called the algebraic boundary of S. We denoted this set by bdS.

We now consider the topological structure on the family of subsets of a nonempty

set X.

Definition 2.1.3. Let X be a nonempty set, and T be a family of subsets of X. We say

that (X, T ) (we write X, for short) is a topological space if T satisfies the following

conditions:

(i) every union of sets of T belongs to T ,
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(ii) every finite intersection of sets of T belongs to T ,

(iii) the empty set ∅ and the whole set X belong to T .

The elements of T are called open sets. A subset S of X is closed if and only if X \S
is open.

We consider the following topological notions:

Definition 2.1.4. Let S be a subset of a topological space X and let some x ∈ X be

given.

(i) The set S is called a neighborhood of x if there is an open set T with x ∈ T ⊂ S.

(ii) The point x is called an interior element of S if there is a neighborhood T of x

such that T ⊆ S. The set of all interior elements of S is called the interior of S

and it is denoted by intS.

(iii) The set of all elements of X for which every neighborhood meets the set S is called

closure of S and it is denoted by clS.

Some relationships between algebraic notions and the corresponding topological

notions are illustrated as follows:

Proposition 2.1.5. [50, p. 59] Let S be a nonempty convex set of a topological linear

space X. If intS 6= ∅ then the following assertions hold:

(i) intS = coreS;

(ii) clS = cl(intS) and intS = int(cl S);

(iii) clS = linS.

Now, we recall the definition of a normed space and many special normed spaces

which will be used in the next chapters.

Definition 2.1.6. Let X be a linear space. A norm on X is a function ‖ · ‖ : X → R
such that the following properties hold true for all x, y ∈ X and for all λ ∈ R:

(i) ‖x‖ = 0⇐⇒ x = 0 (definiteness);

(ii) ‖λx‖ = |λ|‖x‖ (positive homogeneity);

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality).

We call (X, ‖ · ‖) a normed space.
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We observe that a normed space is a metric space w.r.t. the metric d defined by

∀ x, y ∈ X : d(x, y) := ‖x− y‖. (2.1)

In addition, a normed space is a topological linear space, if the topology is generated

by the metric d in (2.1). The normed space (X, ‖ · ‖) is called a Banach space if every

Cauchy sequence {xn} ⊂ X is convergent to an element of X. For instance, Rn, l∞

, lp and C[0, 1] are Banach spaces. In a normed space (X, ‖ · ‖), the open ball and the

closed ball with the center x and the radius r > 0 are denoted by BX(x, r), BX [x, r]

and respectively defined as

BX(x, r) := {y ∈ X| ‖x− y‖ < r},

and

BX [x, r] := {y ∈ X| ‖x− y‖ ≤ r}.

In addition, we denote by BX the closed unit ball of X.

We introduce in the following some well-known norms in Rn.

Example 2.1.7. (a) The Euclidean norm of Rn presents the length of a vector x

in Rn in the form:

‖x‖2 :=
√
x2

1 + . . . x2
n.

(b) The Maximum norm is defined for all x ∈ Rn by:

‖x‖∞ := max{|x1|, . . . , |xn|}.

(c) The Manhattan (city block norm or rectangular) norm is defined for all

x ∈ Rn by:

‖x‖1 := |x1|+ . . .+ |xn|.

The relationships among three norms above are given by:

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1,

and

‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞.

These norms have been used in several practical problems related to location theory,

machine engineering, radiotherapy treatment, etc. For the theory and numerical meth-

ods, we refer to [32, 44, 81] and the references therein.

Definition 2.1.8. [97, Definition 1.22] Let X be a Banach space. We say that X

is Asplund if every continuous convex function defined on a nonempty open convex

subset U of X is Fréchet differentiable at each point of some dense subset G of U ; G

is called a dense subset of U if every point x ∈ U either belongs to G or is a limit point

of G.
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The advantage of Asplund spaces is that they ensure a full calculus of the basic

generalized differential constructions. It is known that the Banach spaces with separable

dual and a reflexive Banach spaces are Asplund spaces. Some examples of Asplund

spaces are c0 and `p, Lp[0, 1] for 1 < p < +∞, see [90] for more detail.

In Chapter 8, we will present an approximation problem where the objective function is

a vectorial norm. This kind of problem has several interesting applications, for example,

in health care, location problems as well as in inverse problems (see [44]). The concept

of vectorial norm is first introduced by Kantorovitch [60] who investigated the method

of successive approximations. We recall it as follows:

Definition 2.1.9. [54, Definition 1.35] Let X,Y be topological linear spaces and C ⊂ Y
be a proper, closed, convex cone. A function ||| · ||| : X → C is called vectorial norm if

for all x, x1, x2 ∈ X and λ ∈ R the following conditions hold:

(i) |||x||| = 0⇐⇒ x = 0;

(ii) |||λx||| = |λ| |||x|||;

(iii) |||x1 + x2||| ∈ |||x1|||+ |||x2||| − C.

Observe that if Y = R and C = R+ then ||| · ||| becomes the norm ‖ · ‖ in X. We will

study subdifferentials of vectorial norms and optimality conditions for approximation

problems, where vectorial norms are involved in the next parts.

2.1.2 Order Relations on Linear Spaces

We suppose in this section that X be a linear spaces. When X is equipped with

a topology we denote by X∗ the topological dual space of X and w∗ the weak star

topology on X∗. In the following, we present a classical concept of binary relations.

Definition 2.1.10. Let A ⊆ X and A 6= ∅, the set of ordered pairs of elements of A is

defined as

A×A := {(x1, x2)| x1, x2 ∈ A}.

A nonempty subset R of A×A is called a binary relation on A. We denote by x1Rx2

if (x1, x2) ∈ R.

Some important properties of binary relations are defined as follows:

Definition 2.1.11. Let R be a binary relation on A. We say that R is

(i) reflexive if ∀ x ∈ A: xRx;

(ii) transitive if ∀ x1, x2, x3 ∈ A: x1Rx2, x2Rx3 =⇒ x1Rx3;

(iii) symmetric if ∀ x1, x2 ∈ A : x1Rx2 =⇒ x2Rx1;
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(iv) antisymmetric if ∀ x1, x2 ∈ A : x1Rx2, x2Rx1 =⇒ x1 = x2.

Definition 2.1.12. A binary relation R on A is said to be

(i) a pre-order if it is reflexive and transitive;

(ii) a partial order if it is reflexive, transitive and antisymmetric;

(iii) an equivalence if it is reflexive, transitive and symmetric;

(iv) a linear or total order if R is a partial order and any two elements of A are

comparable, i.e., for all x1, x2 ∈ A either x1Rx2 or x2Rx1.

Example 2.1.13. (i) Let n ∈ N, n ≥ 2. Consider a binary relation R defined on Rn

by

R := {(x, y) ∈ Rn × Rn| y − x ∈ Rn+}.

Obviously, R is a partial order but it is neither an equivalence nor a linear order.

(ii) Let A := {(a, 2a)| a ∈ R+} and the binary relation R on A be defined by

R := {(u, v) ∈ A×A| v − u ∈ R2
+}.

Then, R is a linear order on A but not an equivalence.

When the relation R is a pre-order (or a partial order), we say that A is a pre-

ordered (partial ordered, respectively) set. In addition, a partially ordered linear space

is a linear space equipped with a partial order.

Definition 2.1.14. Let R be a binary relation on the linear space X; we say that R
is compatible with the linear structure of X if two following properties hold true:

∀λ ≥ 0,∀x1, x2 ∈ X : x1Rx2 =⇒ λx1Rλx2 (2.2)

∀x, x1, x2 ∈ X : x1Rx2 =⇒ (x+ x1)R(x+ x2) (2.3)

Now we define minimal (maximal) elements of a set A relative to relation R as

follows:

Definition 2.1.15. Suppose that R is a binary relation on A. Let S be a nonempty

subset of A. An element x̄ ∈ S is said to be

(i) a minimal element of S relative to R if for all x ∈ S : xRx̄ =⇒ x̄Rx.

(ii) a maximal element of S relative to R if for all x ∈ S : x̄Rx =⇒ xRx̄.

We denote by Min(S,R) and Min(S,R) the set of minimal and maximal elements of S

relative to R, respectively.
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Remark 2.1.16. (a) If the binary relation R is antisymmetric, then x̄ ∈ S is a

minimal (maximal) element if and only if

∀ x ∈ S : xRx̄⇒ x̄ = x (∀ x ∈ S : x̄Rx⇒ x = x̄).

(b) Assume that R is a binary relation on A and S is a nonempty subset of A,

then R := R ∩ (S × S) is a binary relation on S. In addition, if R is a pre-

order (partial order, linear order) on A, then R is a pre-order (partial order,

linear order) on S. Therefore, x̄ ∈ Min(A,R) (x̄ ∈ Max(A,R)) if and only if

x̄ ∈ Min(S,R) (x̄ ∈ Max(S,R), respectively).

(c) When R is a partial order on A, a nonempty subset S of A may have zero, one

or several maximal elements. However, if R is a linear order, then every subset

S of A has at most one minimal (maximal) element. For instance, the set A in

Example 2.1.13 has only one minimal element, that is (0, 0).

2.1.3 Cone Properties

In this part, we remind a class of relations determined by cones in a linear space. These

relations are compatible in the sense of Definition 2.1.14. We begin with the definition

of a cone as follows:

Definition 2.1.17. ([44, Definition 2.1.11]) Let Y be a linear space. A set C ⊂ Y is

called a cone if λc ∈ C for all c ∈ C and for all λ ∈ R+.

Of course, if C is a cone and C 6= ∅, then 0 ∈ C. Some important properties of C

are defined as follows:

Definition 2.1.18. ([44, Definition 2.1.11]) Let C be a cone in Y . We said that C is

(a) convex if ∀ x1, x2 ∈ C : x1 + x2 ∈ C;

(b) nontrivial or proper if C 6= ∅, C 6= {0Y } and C 6= Y ;

(c) pointed if C ∩ (−C) = {0};

(d) reproducing if C − C = Y.

Example 2.1.19. The sets

C1 := {(x1, x2) ∈ R2
+| 0 ≤ x1 ≤ x2},

and

C2 := {(x, y) ∈ R2| x1 ≤ 0, x1 ≤ x2}

are proper, convex, pointed cones but they are not reproducing. In addition, C1 ∪C2 is

a proper, pointed cone, but it is neither a convex cone nor a reproducing cone.
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It is stated in [54, Lemma 1.11] that a cone C in a linear space is convex if and only

if the following assertion holds

C + C ⊆ C.

Definition 2.1.20. ([54, Definition 1.10])

(a) Let C be a proper convex cone in a linear space Y. Suppose that U is a nonempty

convex subset of C. We said that U is a base for C if each c ∈ C \ {0Y } has a

unique representation of the form c = λu for some λ > 0 and some u ∈ U.

(b) Let S ⊂ Y be a nonempty set. We denote by cone(S) the cone generated by S

and defined by

cone(S) := {λs| λ ≥ 0, s ∈ S}.

Observe that if U is a base of a proper convex cone C then cone(U) = C. A cone

which admits a base is called based. In addition, a proper convex cone with a base is

pointed. It is stated in [115] that if S is convex then the following assertion holds true

coreS = {s ∈ S| cone(S − s) = Y }.

In addition, when S is a convex cone and coreS 6= ∅, it holds that coreS = S + coreS,

see [54, Lemma 1.12]. Therefore, taking into account Proposition 2.1.5(i), we get the

following result:

Proposition 2.1.21. Let C be a convex cone in a linear space Y with a nonempty

interior. Then, intC = C + intC.

The following theorem presents the relationships between binary relations and

cones. For the proof of this result, we refer the reader to [44, Theorem 2.1.13].

Theorem 2.1.22. [44, Theorem 2.1.13] Let Y be a linear space and let C be a cone

in Y . Then the binary relation ≤C given by

≤C := {(x, y) ∈ Y × Y | y − x ∈ C} (2.4)

is reflexive and satisfies (2.2) and (2.3). Moreover, C is convex if and only if ≤C is

transitive, and C is pointed if and only if ≤C is antisymmetric. Conversely, if R is a

reflexive relation on X satisfying (2.2) and (2.3), then the set

C := {y ∈ Y | 0YRy}

is a cone and R =≤C .

Observe from the above result that when ∅ 6= C ⊂ Y the relation ≤C defined by

(2.4) is a pre-order if and only if C is a convex cone. Furthermore, ≤C is a partial order

if and only if C is a pointed convex cone.
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Remark 2.1.23. The sets C1 and C2 in Example 2.1.19 are ordering cones in R2,

while the set C1 ∪ C2 is not an ordering cone.

When Y is equipped with the binary relation ≤C , where C is a proper, closed,

convex and pointed cone we have the following definition of Pareto efficient element of

a given set, see, e.g., the books [44, 54, 85] for more details.

Definition 2.1.24. Let ∅ 6= A ⊆ Y , C ⊂ Y be a proper, closed, convex and pointed

cone. We say that ȳ ∈ A is a Pareto efficient point of A w.r.t. the ordering cone C

if there is no other point y ∈ A \ {ȳ} such that y ≤C ȳ, which is equivalent to

A ∩ (ȳ − C) = {ȳ}.

The definition, existence and necessary optimality conditions for many kinds of

Pareto efficient points have been investigated in many publications, see for instance

[4, 5, 6]. In particular, [6] derived necessary optimality conditions for these efficient

points without pointedness assumption on ordering cones.

In the following, we recall concepts of a dual cone and the quasi-interior of the dual

cone.

Definition 2.1.25. Let Y be a topological linear space, C ⊂ Y and let Y ′, Y ∗ denote

the algebraic and topological dual space, respectively.

(a) The (algebraic) dual cone for C is denoted by C ′ and defined as:

C ′ :=
{
y′ ∈ Y ′| ∀c ∈ C : y′(c) ≥ 0

}
.

(b) The (algebraic) quasi-interior of the dual cone for C is denoted by C#
Y ′ and

determined as:

C#
Y ′ :=

{
y′ ∈ Y ′| ∀c ∈ C \ {0Y } : y′(c) > 0

}
.

(c) The (topological) dual cone for C is denoted by C+ and defined as:

C+ :=
{
y∗ ∈ Y ∗| ∀c ∈ C : y∗(c) ≥ 0

}
.

(c) The (topological) quasi-interior of the dual cone for C is denoted by C# and

defined as:

C# :=
{
y∗ ∈ Y ∗| ∀c ∈ C \ {0Y } : y∗(c) > 0

}
.

Observe that the dual cone C+ is always a convex cone, even if C is neither convex

nor a cone. In addition, if C# 6= ∅ then C is pointed. When Y is a finite-dimensional

space, this implication becomes an equivalent; for the proof and more detail, see [44].

The following proposition characterizes elements of a cone in a linear space by elements

of its dual cone. The proof of this result is given in [54, Lemmas 1.26 and 3.21] and is

therefore skipped here for the sake of shortness.
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Proposition 2.1.26. ([54])Let C be a convex cone in a linear space Y . Then, the

following assertions hold true:

(i) coreC ⊆
{
y ∈ Y | ∀c′ ∈ C ′ \ {0Y ′} : c′(y) > 0

}
.

(ii) If Y is locally convex and C is closed then,

C = {y ∈ Y | ∀c∗ ∈ C+ : c∗(y) ≥ 0}.

(iii) If Y is a topological linear space and intC 6= ∅ then,

intC =
{
y ∈ Y | ∀c∗ ∈ C+ \ {0Y ∗} : c∗(y) > 0

}
.

We end this section with the definition of a normal cone which shows a connection

between topology and order of the space Y.

Definition 2.1.27. (Normal cone, [44, Definition 2.1.21]) Let C be a proper convex

cone in a topological linear space Y. Then, C is called normal if the origin 0 ∈ Y

has a neighborhood base formed by full sets w.r.t. C; a set U ⊆ Y is full w.r.t. C if

U = (U + C)
⋂

(U − C).

Observe that if Y is a topological linear space then C is normal if and only if clC

is normal [44, Theorem 2.1.22]. In addition, a proper convex cone C ⊂ Rn is normal if

and only if clC is pointed, see [44, Corollary 2.2.11].

2.2 Variable Domination Structures

In this section, we illustrate how variable domination structures have been used to

compare vectors in a set and sets in a family of sets. These methods will be used in

order to define several solution concepts for set optimization problems w.r.t. variable

domination structures in Chapter 4.

2.2.1 Comparison of Vectors

In classical vector optimization, a special case of set optimization, one defines optimal-

ity concepts based on partial orderings. However, in many practical problems, it is

necessary to consider general concepts to compare an element y ∈ Y with some point

z ∈ Y w.r.t. a variable domination structure. We begin this section by recalling the

concept of domination structures. This concept was first introduced by Yu [111] to

investigate the decision-making problem where the objective function f : X → Y is a

vector-valued function. In this problem, X ⊂ Rn is a set of possible decisions, called

the decision space and Y ⊂ Rp. Given two outcomes y1 and y2 in Y , y1 6= y2, we

denote by y1 � y2 if y1 is preferred to y2.
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Definition 2.2.1. [111, Definition 5.1] A nonzero vector d ∈ Rp is a domination

factor for y ∈ Y if y′ = y+d implies that y � y′. The set of all domination factors for

y, together with the zero vector, will be denoted by D(y). The family {D(y)| y ∈ Y } is

called the domination structure of the decision-making problem. For simplicity, the

domination structure will be denoted by D(·).

In order to derive concepts of solutions for a vector optimization w.r.t. domination

structures, one needs methods to compare elements. There exist two methods which

are introduced by Chen et al. [18] and Yu[111] as follows: Let D : Y ⇒ Y be a set-

valued mapping such that for all y ∈ Y , D(y) is a nonempty set. We consider the two

following binary relations where D(·) is involved:

y �1 z ⇐⇒ z ∈ y +D(y), (2.5)

and

y �2 z ⇐⇒ z ∈ y +D(z). (2.6)

Yu [111] used the first one to find the so called nondominated elements of a certain set

A w.r.t. a cone-valued mapping D(·). In other words, the author looked for an element

ȳ ∈ A such that

6 ∃y 6= ȳ, y ∈ A : y �1 ȳ, i.e., A ∩ (ȳ −D(y) \ {0}) = ∅, (2.7)

see [111, Definition 5.2]. Few years later, Bergstresser, Charnes and Yu [13] investigated

these nondominated concepts for the case where the domination structure at each point

is not a convex cone but a convex set.

The second method is utilized by Chen, Huang and Yang [18] in order to find a

nondominated-like (minimal) element ȳ ∈ A under the following sense:

6 ∃y 6= ȳ, y ∈ A : y �2 ȳ, i.e., A ∩ (ȳ −D(ȳ) \ {0}) = ∅, (2.8)

see also [18, Definition 1.13]. In Chapter 3, we will study further properties and rela-

tionships between nondominated elements and minimal elements of a certain set.

Definition 2.2.2. ([36, Definition 1.8]) Let Y be a topological linear space, D : Y ⇒ Y

be a set-valued mapping such that D(y) is a proper, closed, convex cone for all y ∈ Y .

The cone-valued map D(·) is called an ordering map if elements in the space Y are

compared using the binary relation (2.5) or (2.6). We say that D(·) defines a variable

ordering (structure) on Y .

Remark 2.2.3. Observe that, if for all y ∈ Y , D(y) = C, where C is a convex cone,

then both the relations (2.5) and (2.6) reduce to the relation ≤C given by (2.4).
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Some relationships between properties of D(·) and the binary relations (2.5) and

(2.6) are given as follows. For the proof of this result and more details, we refer the

reader to [36].

Proposition 2.2.4. ([36, Lemma 1.10]) Let D : Y ⇒ Y be an ordering map on a

linear space Y .

(a) The binary relations (2.5) and (2.6) are reflexive.

(b) The binary relation (2.5) is transitive if

D(y + d) ⊆ D(y), for all y ∈ Y and for all d ∈ D(y).

(c) The binary relation (2.6) is transitive if

D(y − d) ⊆ D(y), for all y ∈ Y and for all d ∈ D(y).

In Chapter 4, we will define optimality concepts for set optimization problems

w.r.t. variable domination structures by using several set relations. The reflexivity and

transitivity of these set relations are ensured under some appropriate properties of the

general set-valued mappings. This will be illustrated in the following section.

2.2.2 Variable Set Relations

Let Y be a linear space and we denote the set of all nonempty subsets in Y by P(Y ). In

the following, we recall several set relations given in [39] under different names, where

a domination mapping K : Y ⇒ Y is involved. Notice that we do not require K(·) to

be a cone-valued map. These concepts will be used in Section 4.2 to define solutions

for set optimization problems w.r.t. variable domination structures based on the set

approach.

Definition 2.2.5. Let A,B ∈ P(Y ), K : Y ⇒ Y be a set-valued mapping such that for

all y ∈ Y , K(y) 6= ∅. We define the binary relations on P(Y ) w.r.t. K(·) as follows:

(i) The lower less relation w.r.t. K(·) �Kl is defined by

A �Kl B ⇐⇒ B ⊆
⋃
a∈A

(a+K(a)).

(ii) The upper less relation w.r.t. K(·) �Ku is defined by

A �Ku B ⇐⇒ A ⊆
⋃
b∈B

(b−K(b)).

(iii) The certainly lower less relation w.r.t. K(·) �Kcl is defined by

A �Kcl B ⇐⇒ B ⊆
⋂
a∈A

(a+K(a)).
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(iv) The certainly upper less relation w.r.t. K(·) �Kcu is defined by

A �Kcu B ⇐⇒ A ⊆
⋂
b∈B

(b−K(b)).

(v) The possibly lower less relation w.r.t. K(·) �Kpl is defined by

A �Kpl B ⇐⇒ B ∩
⋃
a∈A

(a+K(a)) 6= ∅.

(vi) The possibly upper less relation w.r.t. K(·) �Kpu is defined by

A �Kpu B ⇐⇒ A ∩
⋃
b∈B

(b−K(b)) 6= ∅.

Remark 2.2.6. Observe that if for all y ∈ Y , K(y) = K, where K is a convex pointed

cone in Y , then the relations �Kl and �Ku reduce to the classical set relations introduced

by (1.1) and (1.2).

We derive the following proposition by directly using Definition 2.2.5.

Proposition 2.2.7. Let A,B ∈ P(Y ) and consider the relations (i)-(vi) given by

Definition 2.2.5 . The following assertions hold true.

(i) A �Ku B ⇐⇒ B �−Kl A.

(ii) A �Kcu B ⇐⇒ B �−Kcl A.

(iii) A �Kpu B ⇐⇒ B �−Kpl A.

(iv) A �Kcl B =⇒ A �Kl B =⇒ A �Kpl B.

(v) A �Kcu B =⇒ A �Ku B =⇒ A �Kpu B.

Proof. We present the proofs of part (i) and (iv) since the other cases can be done

similarly.

(i) Suppose that A �Ku B. This means

A ⊆
⋃
b∈B

(b−K(b))

⇐⇒ A ⊆
⋃
b∈B

(b+ (−K)(b))

⇐⇒ B �−Kl A.
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(b−K(b))

B

A
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Figure 2.1: Set relations �Kt , t ∈ {l, u, pl, pu, cl, cu} in the sense of Definition 2.2.5.
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Thus, A �Ku B ⇐⇒ B �−Kl A.

(iv) Assume that A �Kcl B, i.e.,

B ⊆
⋂
a∈A

(a+K(a))

=⇒ B ⊆
⋃
a∈A

(a+K(a))

⇐⇒ A �Kl B.

Therefore, A �Kcl B ⇒ A �Kl B holds true.

In addition, since A �Kl B, i.e., B ⊆
⋃
a∈A

(a+K(a)) and B 6= ∅, it holds that

B ∩
⋃
a∈A

(a+K(a)) 6= ∅.

This relation is equivalent to A �Kpl B. The proof is complete. �

Remark 2.2.8. Each of the above relations has its own meaning in practical problems.

For example, in uncertain optimization problems �Kl is used by a decision maker who

is interested in minimizing the best case, and when the worst case is concerned, he will

choose the relation �Ku .

In order to derive some properties of the relations given in Definition 2.2.5, some of

the following properties of the domination structure K : Y ⇒ Y will be used:

∀y ∈ Y : 0 ∈ K(y); (2.9)

∀y ∈ Y : K(y) +K(y) ⊆ K(y); (2.10)

∀y ∈ Y, d ∈ K(y) : K(y + d) ⊆ K(y); (2.11)

∀y ∈ Y, d ∈ K(y) : K(y − d) ⊆ K(y); (2.12)

∀y ∈ Y : K(y) ∩ (−K(y)) = {0}. (2.13)

Obviously, if K(y) is a convex, pointed cone in Y , for all y ∈ Y then K satisfies the

properties (2.9), (2.10) and (2.13).

Remark 2.2.9. The assumptions (2.10) and (2.11) of K(·) can be fulfilled when K(y)

is not necessarily given by a cone for all y ∈ Y . For instance, the mapping K(·) given

by

K : Y ⇒ Y ; K(y) = Ny, for all y ∈ Y,

where Ny := {ny| n ∈ N} is not a cone.

The relations given in Definition 2.2.5 satisfy the following properties.

Proposition 2.2.10. The following statements hold true:
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(i) If K(·) satisfies property (2.9), then the binary relations �Kl and �Ku are reflexive.

(ii) If K(·) satisfies properties (2.10) and (2.11), then the binary relations �Kl and

�Kcl are transitive.

(iii) If K(·) satisfies properties (2.10) and (2.12), then the binary relations �Ku and

�Kcu are transitive.

(iv) If for all y, z ∈ Y , K(y)∩K(−z) = {0} then the binary relations �Kcl and �Kcu are

antisymmetric.

Proof.

(i) Let A ∈ P(Y ) arbitrary. Since for all a ∈ A, 0 ∈ K(a), it holds that

A ⊆
⋃
a∈A

(a+K(a)) and A ⊆
⋃
a∈A

(a−K(a)).

These two statements above are equivalent to A �Kl A and A �Ku A, respectively.

Therefore, �Kl and �Ku are reflexive.

(ii) Let A,B,C ∈ P(Y ) such that A �Kl B and B �Kl C. We will prove that A �Kl C.
Let b ∈ B arbitrary. Since A �Kl B, there exists ab ∈ A such that b = ab + d, where

d ∈ K(ab). Taking into account (2.11), we get that K(b) = K(ab + d) ⊆ K(ab). This

relation as well as d ∈ K(ab) and (2.10) imply that

b+K(b) = ab + d+K(ab + d) ⊆ ab +K(ab) +K(ab)

⊆ ab +K(ab).

Therefore, ⋃
b∈B

(b+K(b)) ⊆
⋃
a∈A

(a+K(a)).

This, together with B �Kl C, i.e., C ⊆ ∪
b∈B

(b + K(b)), shows that C ⊆ ∪
a∈A

(a + K(a)),

i.e., A �Kl C.

The case of the relation �Kcl we can prove similarly.

(iii) We follow the same argument as in the proof of part (ii).

(iv) We prove for the relation �Kcl and the relation �Kcu can be derived similarly.

Let A,B ∈ P(Y ) such that A �Kcl B and B �Kcl A. We will prove that A = B. Take

ā ∈ A and b̄ ∈ B arbitrary. Since A �Kcl B, it holds that for all a ∈ A, b̄ ∈ a + K(a).

This implies

b̄ ∈ ā+K(ā). (2.14)

Furthermore, because B �Kcl A, it holds that ā ∈ b + K(b) for all b ∈ B. Then, we get

that

ā ∈ b̄+K(b̄). (2.15)
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Since (2.14) and (2.15), it holds that

b̄− ā ∈ K(ā) ∩ (−K(b̄)) = {0}.

This implies ā = b̄ and thus A = B. The proof is complete. �

Remark 2.2.11. Proposition 2.2.10 extends [39, Lemma 2.1], where K is a cone-valued

map. Moreover, the necessary condition for the antisymmetry of the relation �Kcl and

�Kcu in [39, Lemma 2.1] is replaced by K(Y )∩(−K(Y )) = {0}, where K(Y ) :=
⋃
y∈Y
K(y).

Remark 2.2.12. From now on, we denote by �Kt one of the relations (i)− (vi) given

in Definition 2.2.5, t ∈ {l, u, cl, cu, pl, pu}. If A,B ∈ P(Y ) such that A �Kt B and

B �Kt A, we will write A ∼ B. In addition, the set of all elements B ∈ P(Y ) such that

B ∼ A is denoted by [A]. Obviously, if �Kt is reflexive, then A ∼ A and A ∈ [A].

2.3 Concepts of generalized Differentiation

2.3.1 Subdifferentials of Extended Real-valued Convex Functions

In this section, we recall some concepts on subdifferentials of convex functionals as well

as subdifferentials of cone-convex vector-valued functions. We suppose in this part that

X,Y are Banach spaces and denote the linear space of the continuous linear maps from

X to Y by L(X,Y ). Let F : X ⇒ Y be a set-valued mapping. As usual, we denote

the graph and the domain of F by GrF and DomF , respectively. They are defined as

follows:

DomF := {x ∈ X| F (x) 6= ∅},

and

GrF := {(x, y) ∈ X × Y | y ∈ F (x)}.

When Y is equipped with the binary relation ≤C , where C is a convex cone in Y we

define an element +∞Y such that for all y ∈ Y it holds that y ≤C +∞Y . For the

case of a vector-valued function f : X → Y ∪ {±∞Y }, we denote the domain of f by

dom f := {x ∈ X| f(x) ∈ Y ∪ {−∞Y }}. The function f is called proper if dom f 6= ∅
and f(x) ∈ Y ∪ {+∞Y } for all x ∈ X. Now we recall the definition of directional

derivative in order to define the subdifferential of convex functionals, especially of the

norm.

Definition 2.3.1. Consider a function f : X → R. For each x̄ ∈ X, the Gateaux

derivative of f in the direction h ∈ X is denoted by f ′(x̄, h) and defined as

f ′(x̄, h) := lim
t→0

1

t
(f(x̄+ th)− f(x̄)),
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when the limit exists in R.

If the limitation

f ′+(x̄, h) := lim
t→+0

1

t
(f(x̄+ th)− f(x̄)

exists, then f ′+(x̄, h) is called the right-hand side directional derivative of f in

the direction h. Similarly, when taking t → 0− in the limit, we have the definition of

the left-hand side directional derivative.

Obviously, if f is Gateaux differential, then it is right-hand side differential and

left-hand side differential and f ′(x̄, h) = f ′+(x̄, h) = f ′−(x̄, h). In addition, the function

f is left-hand side differentiable at x̄ in direction h, if and only if it is right-hand side

differentiable at x̄ in direction −h and the equality f ′−(x̄, h) = f ′+(x̄,−h) always holds.

The existence of right-hand side (left-hand side) directional derivative is given by

[97] as follows:

Proposition 2.3.2. [97, Lemma 1.2] Let X be a Banach space. If ϕ : X → R is a

convex function, then the right-hand side (left-hand side) directional derivative of ϕ

exists at every point x ∈ domϕ.

In the following, we consider the definition of subdifferential in the sense of convex

analysis (or Fenchel subdifferential) of a convex functional.

Definition 2.3.3. Let X be a Banach space, ϕ : X → R be a proper convex function

and x̄ ∈ X be such that ϕ(x̄) ∈ R. The subdifferential or Fenchel subdifferential of

ϕ at x̄ is denoted by ∂ϕ(x̄) and defined as

∂ϕ(x̄) := {x∗ ∈ X∗| ∀x ∈ X : ϕ(x)− ϕ(x̄) ≥ x∗(x− x̄)}.

If |ϕ(x̄)| = +∞ one puts ∂ϕ(x̄) = ∅. The function ϕ is said to be subdifferentiable at x̄

if the set ∂ϕ(x̄) is nonempty.

It follows from Definition 2.3.3 that ϕ′+(x̄, ·) ∈ ∂ϕ(x̄). Thus, since Proposition 2.3.2,

∂ϕ(x̄) 6= ∅ provided that ϕ is a proper convex functional and |ϕ(x̄)| < +∞.

Some calculus rules for subdifferentials of convex functions are presented as follows:

Proposition 2.3.4. [115, Theorem 2.4.2] Let ϕ, ξ : X → R be proper convex function-

als on X, x ∈ X. The following assertions hold true

(i) For any scalar λ, we have ∂(λϕ)(x) = λ∂ϕ(x).

(ii) ∂ϕ(x) + ∂ξ(x) ⊆ ∂(ϕ+ ξ)(x).

The equality holds if x ∈ domϕ ∩ dom ξ and one of the functionals is continuous.

We now recall the definition of a cone-convex function.
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Definition 2.3.5. Let X,Y be topological linear spaces and C ⊆ Y be a proper convex

cone. A function f : X → Y is said to be C-convex if for all λ ∈ [0, 1] and for all

x, y ∈ X it holds that

f(λx+ (1− λ)y) ∈ λf(x) + (1− λ)f(y)− C.

Now we define the subdifferential of a proper vector-valued function f : X → Y.

Definition 2.3.6. (Subdifferential of vector-valued function, [54]) Let X and Y be

Banach spaces, C ⊂ Y be a proper, pointed, convex cone in Y, and f : X → Y be a

C-convex function. For an arbitrary x̄ ∈ X and the binary relation ≤C given by (2.4),

the set

∂≤
C
f(x̄) := {T ∈ L(X,Y )| ∀h ∈ X : T (h) ≤C f(x̄+ h)− f(x̄)} (2.16)

is called the subdifferential of f at x̄.

It is obvious that ∂≤
C
f(x̄) is a convex subset of L(X,Y ). If C is pointed, and

f : X → Y is a sublinear operator, i.e, f(x1) + f(x2) ∈ f(x1 + x2) + C, f(0) = 0, and

f(αx) = αf(x) for all x1, x2, x ∈ X and α ∈ (0,∞), the following formula holds true

for all x0 ∈ dom f :

∂≤
C
f(x0) = {T ∈ ∂f(0)| T (x0) = f(x0)}.

In the case that Y = R, C = R+ and f is convex, (2.16) reduces to the Fenchel

subdifferential given in Definition 2.3.3.

The following result concerns the nonempty property of subdifferential in the sense

of Definition 2.16.

Proposition 2.3.7. [63, Corollary 6.1.10] Let f : X → Y be a proper C-convex

function, and x̄ be a given point in int(dom f). Then, ∂≤
C
f(x̄) is nonempty.

We recall in the following the subdifferential of some special kinds of vector-valued

functions.

Remark 2.3.8. Let X,Y be Banach spaces, C ⊆ Y be a pointed, closed, convex cone

and ≤C be given by (2.4).

(i) ([54, Example 2.22]) For the vector-valued norm function ||| · ||| : X → Y given in

Definition 2.1.9 and x̄ ∈ X, we have :

∂≤
C |||x̄||| = {T ∈ L(X,Y )| T (x̄) = |||x̄||| and for all x ∈ X : T (x) ≤C |||x̄|||},

where C is a proper, pointed, closed, convex cone in Y .
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(ii) ([44, Theorem 4.1.12]) Let A ∈ L(X,Y ) and A∗ denotes the adjoint operator to

A, a ∈ Y , x̄ ∈ X. Then,

∂‖A(·)− a‖(x̄) = {A∗T | T ∈ L(Y,R), T (Ax̄− a) = ‖Ax̄− a‖ and ‖T‖∗ ≤ 1},

where ‖ · ‖ is a norm in Y.

In Chapter 8, we will formulate a beam intensity problem as a vector problem whose

objective function is a vector-valued function. In addition, we will take into account

Remark 2.3.8(ii) to derive necessary optimality conditions for this problem.

2.3.2 Limiting Normal Cones, Coderivatives and Subdifferentials

In this section, let X,Y be Banach spaces. For x ∈ X, we denote the system of the

neighborhoods of x by V(x). Let F : X ⇒ Y be a set-valued mapping. If S ⊆ X, we

denote the image of S under F by F (S) :=
⋃
x∈S

F (x) and the inverse set-valued mapping

of F is F−1 : Y ⇒ X given by (y, x) ∈ GrF−1 if and only if (x, y) ∈ GrF. In what

follows, we introduce the definition of the lower semicontinuous property of a set-valued

mapping which is utilized in the sum rule of limiting subdifferential. Furthermore,

the lower semicontinuous property is also beneficial for Chapter 6 to find optimality

conditions for solutions of a set-valued problem.

Definition 2.3.9. (Lower semicontinuous mapping) The set-valued mapping F : X ⇒

Y is called lower semicontinuous (l.s.c., for short) at x̄ ∈ DomF if for every se-

quence {xn} → x̄ there exists a sequence {yn} → ȳ with yn ∈ F (xn) for every n. The

set-valued mapping F is called l.s.c. if it is l.s.c. at every point x̄ ∈ DomF .

Remark 2.3.10. As shown in [1, Pages 40 and 42], F is l.s.c. if and only if the

inverse image of any open subset is open. Moreover, if DomF is closed, then F is

l.s.c. if and only if the core of any closed subset is closed. We also have that F is l.s.c.

at x ∈ DomF if and only if F (x) ⊆ lim inf
x′→x

F (x′).

We recall in the following the definition of the Lipschitzianity of a vector-valued

mapping. This property ensures calculus rules for the limiting subdifferential of locally

Lipschitz functions on Asplund spaces. In addition, it will be used to derive the re-

lationship between coderivative of a vector-valued function and subdifferential of its

scalarization in the next part.

Definition 2.3.11. (Lipschitz and Strictly Lipschitz function, [90]) Let f : X → Y be

a vector-valued function between Banach spaces.

(i) f is Lipschitz on U ⊂ X if U ⊂ dom f and there exists l ≥ 0 such that

∀x, x′ ∈ U : ‖f(x)− f(x′)‖Y ≤ l‖x− x′‖X .
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(ii) f is said to be Lipschitz around x ∈ X if there is a neighbourhood Ux of x such

that f is Lipschitz on Ux.

(iii) f is said to be locally Lipschitz on a nonempty subset D of X, if f is Lipschitz

around every point x ∈ D.

(iv) Suppose that f is Lipschitz continuous around x̄ ∈ X, then f is strictly Lips-

chitz at x̄ if there is a neighborhood V of the origin in X such that the sequence

yk :=
f(xk + tkv)− f(xk)

tk
, k ∈ N,

contains a norm convergent subsequence whenever v ∈ V, xk → x̄ and tk → 0.

(v) Suppose that f is Lipschitz continuous around x̄, then f is f is ω∗-strictly Lips-

chitz at x̄ if there is a neighborhood V of the origin in X such that for any v ∈ X
and any sequences {xk} → x̄, tk ↓ 0, and {y∗k}

w∗−−→ 0 one has y∗k(yk) → 0 as

k →∞, where {yk} are defined in (iv).

It is shown in [90] that when Y is finite-dimensional, both (iv) and (v) of the

Definition 2.3.11 reduce to the class of locally Lipschitz function f : X → Rn. It is

known that every scalar, proper convex function in a finite-dimensional normed linear

space is Lipschitz around any interior point of its domain, see [98, Theorem 10.4] . In

addition, Tan et al. [86] proved that a convex vector function from a convex subset D

of Rm to Rn is locally Lipschitz on rintD. The following result shows the Lipschitz

property of a norm-vector function.

Proposition 2.3.12. ([104, Lemma 5]) We assume that C is a proper, normal cone.

If the vector-valued norm ||| · ||| : X → C is continuous around a given point x ∈ X, then

||| · ||| is Lipschitz.

Obviously, Rn+ is a closed and pointed cone, then Proposition 2.3.12 holds true for

C = Rn+.
In Chapter 6, we will derive necessary optimality conditions of set-valued optimiza-

tion problems by means of Mordukhovich’s coderivative (see the book [90] by Mor-

dukhovich for more details). Now, we present the main objects which will be used in

the sequel.

Definition 2.3.13. [90] Let Ω be a nonempty subset of a normed space X and let

x̄, x ∈ Ω, ε ≥ 0.

(i) The set of ε-normals to Ω at x is defined by

N̂ε(Ω, x) :=

{
x∗ ∈ X∗| lim sup

u
Ω−→x

x∗(u− x)

‖u− x‖
≤ ε
}
, (2.17)
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where u
Ω→ x means that u → x and u ∈ Ω. If ε = 0, we call elements of

(2.17) Fréchet normals and their collection, denoted by N̂(Ω, x), is the Fréchet

normal cone to Ω at x.

(ii) The basic (or limiting, or Mordukhovich) normal cone to Ω at x̄ is defined as

N(Ω, x̄) := {x∗ ∈ X∗| ∃ εn ↓ 0, xn
Ω−→ x̄, x∗n

w∗−−→ x∗, x∗n ∈ N̂εn(Ω, xn), ∀n ∈ N},

where x∗n
w∗−−→ x∗ means that for all x ∈ X we have that x∗n(x)→ x∗(x).

Remark 2.3.14. [90] If X is an Asplund space and Ω is closed around x̄ (i.e., there

is a neighborhood V of x̄ such that Ω∩ clV is closed), the formula for the basic normal

cone looks as follows:

N(Ω, x̄) = {x∗ ∈ X∗ | ∃ xn
Ω→ x̄, x∗n

w∗→ x∗, x∗n ∈ N̂(Ω, xn), ∀n ∈ N}.

The following definition presents concepts of coderivatives correspondingly to the

concepts of normal cones for set-valued mappings.

Definition 2.3.15. Let F : X ⇒ Y be a set-valued mapping and (x̄, ȳ) ∈ GrF .

(i) The Fréchet coderivative of F at (x̄, ȳ) is the set-valued mapping D̂∗F (x̄, ȳ):

Y ∗ ⇒ X∗ defined by

D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗| (x∗,−y∗) ∈ N̂(GrF, (x̄, ȳ)}.

(ii) The normal coderivative of F at (x̄, ȳ) is the set-valued mapping D∗F (x̄, ȳ):

Y ∗ ⇒ X∗ given by

D∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗| (x∗,−y∗) ∈ N(GrF, (x̄, ȳ)}.

In the following, we recall the definition of limiting subdifferential, which becomes

the subdifferential of convex analysis when the function is convex, see [90, Theorem

1.93].

Definition 2.3.16. [90, Definition 1.77] The (basic, limiting, Mordukhovich) subdif-

ferential for a given function ϕ : X → R at x̄ ∈ X with |ϕ(x̄)| < +∞ is defined

by

∂Lϕ(x̄) := {x∗ ∈ X∗| (x∗,−1) ∈ N((x̄, ϕ(x̄), epiϕ)};

where epiϕ := {(x, r) ∈ X × R : ϕ(x) ≤ r}. If |ϕ(x̄)| = +∞, we put ∂Lϕ(x̄) = ∅.

Now, we recall some calculus rules for the limiting subdifferential of locally Lipschitz

functions on Asplund spaces (see Section 2.1.1 ). For the proof, we refer the reader to

[90, Theorems 3.36, 3.41 and Corollary 3.43].
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Proposition 2.3.17. [90] Let X,Y be Asplund spaces.

(i) (sum rule) Let ϕi : X → R, i = 1, 2 . . . n, n ≥ 2 be l.s.c. around x̄ and let all but

one of these functions be locally Lipschitz around x̄. Then,

∂L(ϕ1 + ϕ2 + . . . ϕn)(x̄) ⊆ ∂Lϕ1(x̄) + . . .+ ∂Lϕn(x̄).

The equality holds if each ϕi is convex (or strictly differentiable).

(ii) (chain rule) Let ξ : X → Y be strictly Lipschitz at x̄, and ϕ : Y → R be locally

Lipschitz around ξ(ϕ(x̄)). Then, one has

∂L(ϕ ◦ ξ)(x̄) ⊆
⋃

y∗∈∂Lϕ(ξ(x̄))

∂L(y∗ ◦ ξ)(x̄).

When a vector-valued mapping is ω∗-strictly Lipschitz, we have the following rela-

tionship between its coderivative and the subdifferential of its scalarization.

Proposition 2.3.18. ([90, Theorem 3.28]) Let f be a mapping f : X → Y between an

Asplund space X and a Banach space Y. Then, for all y∗ ∈ Y ∗ it holds that

D∗f(x̄)(y∗) = ∂L(y∗ ◦ f)(x̄) 6= ∅

provided that f is ω∗−strictly Lipschitz at x̄.

In order to provide specific optimality conditions for solutions of a beam intensity

problem which will be studied in Chapter 8, we recall some results of normal cone to

some special sets in Rn. These results are given by Rockafelar and Wet in [99], so we

omit their proofs in this thesis.

Proposition 2.3.19. (Normal cones to product sets, [99, Theorem 6.41])

Let Ci be closed subset of Rni , i = 1, .., k and Rn = Rn1× ...×Rnk . If C = C1× ...×Ck,

then at any x̄ = (x̄1, ..., x̄k), x̄i ∈ Ci, it holds that

N(C, x̄) = N(C1, x̄1)× ...×N(Ck, x̄k).

Proposition 2.3.20. (Normal cones to boxes, [99, Example 6.10])

Assume that C = C1 × ... × Cn in which Ci is a closed interval in R. Then, at any

x̄ = (x̄1, x̄2, .., x̄n) ∈ C, one has

N(C, x̄) = N(C1, x̄1)× ...×N(Cn, x̄n),

where

N(Ci, x̄i) =



[0,∞) if x̄i is (only) the right end point of Ci,

(−∞, 0] if x̄i is (only) the left end point of Ci,

{0} if x̄i is an interior point of Ci,

(−∞,∞) if Ci is a one-point interval.
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2.3.3 Sequentially Normally Compactness and Openness

We begin this section by presenting two local properties of sets in Banach spaces and in

Asplund spaces which ensure the equivalence between the weak* and norm convergence

to zero of the ε-normals and the Fréchet normals introduced in Definition 2.3.13. These

properties are automatic in finite-dimensional spaces while they are unavoidably needed

in infinite dimensions because of the natural lack of compactness therein, see [6, 47,

113, 114]. In addition, they are included in the assumptions of calculus rules for various

operations on sets and mappings.

Definition 2.3.21. (i) Let X be a Banach space and Ω ⊆ X be a nonempty set.

Then, Ω is said to be sequentially normally compact (SNC) at x̄ ∈ Ω if for

any sequence {(εn, xn, x∗n)} :

[εi → 0+, xn
Ω−→ x̄, x∗n

w∗−−→ 0, x∗n ∈ N̂εn(Ω, xn)] =⇒ (x∗n → 0).

(ii) Let X be Asplund. A nonempty set Ω ⊆ X is said to be SNC at x̄ ∈ Ω, if for any

sequence {(xn, x∗n)}:

[xn
Ω−→ x̄, x∗n

w∗−−→ 0, x∗n ∈ N̂(Ω, xn)] =⇒ (x∗n → 0).

It follows from Definition 2.3.21 that Ω is SNC at x̄ if its closure is SNC at this

point. In addition, every closed and convex cone Q with nonempty interior is SNC at

0 and every nonempty set in a finite-dimensional space is SNC at each of its points,

see [90]. The corresponding property for a set-valued mapping F : X ⇒ Y is induced

naturally by the concepts of sequential normal compactness of a set, that is, F is said

to be sequentially normally compact (SNC) at (x̄, ȳ) if its graph is SNC at this point,

see [91]. However, the case of mappings allows us to consider also a weaker property

defined as follows:

Definition 2.3.22. [90] Let X, Y be Banach spaces, Q : X ⇒ Y be a set-valued

mapping and (x̄, ȳ) ∈ GrQ be given. The map Q is said to be partially sequentially

normally compact (PSNC) at (x̄, ȳ), if for any sequence {(xn, yn, x∗n, y∗n)}:

[(xn, yn)
GrQ−−−→ (x̄, ȳ), x∗n

w∗−−→ 0, y∗n → 0, (x∗n, y
∗
n) ∈ N̂(GrQ, (xn, yn))]⇒ (x∗n → 0).

It is stated in [30] that if a set-valued mapping Q : X ⇒ Y satisfying Q(x) = C

with C being a closed, convex cone for all x ∈ X is considered, then the (SNC) property

of C at 0 is the (PSNC) property of Q−1 at (0, x̄) ∈ GrQ−1. This could be obtained

for instance when intC 6= ∅ holds true. In addition, the PSNC property of a set-

valued mapping F : X ⇒ Y is implied when F is Lipschitz-like (or Aubin). Recall
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that F is Lipschitz-like around (x̄, ȳ) ∈ GrF with some modulus γ > 0 if there exist

neighborhoods U of x̄ and V of ȳ such that

F (x) ∩ V ⊆ F (x′) + γ‖x− x′‖BY , ∀x, x′ ∈ U.

The Lipschitz-like property is fundamental in Nonlinear Analysis and Variational

Analysis and it has some important relations with the linear openness which is defined

as follows:

Definition 2.3.23. F : X ⇒ Y is said to be open at linear rate L > 0 (or L−open)

around (x̄, ȳ) ∈ GrF if there exist two neighborhoods U ∈ V(x̄), V ∈ V(ȳ) and a positive

number ε > 0 such that, for every (x, y) ∈ GrF ∩ (U × V ) and every ρ ∈ (0, ε),

BY (y, ρL) ⊆ F (BX(x, ρ)).

It is necessary to mention that the openness at linear rate is a stronger property

than the openness. We say that F is open at (x̄, ȳ) ∈ GrF if the image through F of

every neighborhood of x̄ is a neighborhood of ȳ. The link between the Lipschitz-like

and linear openness is illustrated by the following theorem (see, e.g., [53, Chap. 1], [90,

Theorem 1.52] and [99, Theorem 9.43]).

Theorem 2.3.24. Let F : X ⇒ Y be a set-valued mapping and (x̄, ȳ) ∈ GrF . Then,

F is open at linear rate around (x̄, ȳ) if and only if F−1 is Lipschitz-like at (ȳ, x̄).

The incompatibility between openness and optimality is a main tool for the proof of

the necessary optimality conditions in terms of Mordukhovich’s coderivative. In [27],

the authors presented a new technique to obtain a proof of the openness at linear rate

of composite set-valued mappings. In order to show necessary optimality conditions in

terms of Mordukhovich’s coderivative in Chapter 6, we need certain assumptions on

the alliedness (or transversality) of sets, see [74, 83, 96] and the references therein for

more details. This property is essential for the validity of qualification conditions in

optimization as well as subdifferential, normal cone and coderivative calculus.

Definition 2.3.25. (Allied sets) Let S1, S2, ..., Sk be closed subsets of a normed vector

space Z, z̄ ∈
⋂k
i=1 Si. One says that they are allied at z̄ whenever {zin} ⊂ Si, {zin} →

z̄, z∗in ∈ N̂(Si, zin), the relation
∑k

i=1 z
∗
in → 0 implies {z∗in} → 0 for all i = 1, . . . , k.

Notice that Definition 2.3.25 is equivalent to the definition of η-regularity introduced

and characterized in [74, Definition 7, Proposition 10]: The sets S1, S2, . . . , Sk are η-

regular at z̄ ∈ S1 ∩ · · · ∩ Sk if there exist γ, δ > 0 such that

‖
k∑
i=1

z∗i ‖ ≥ γ
k∑
i=1

‖z∗i ‖,
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for every zi ∈ B(z̄, δ) ∩ Si, z∗i ∈ N̂(Si, zi), i = 1, . . . , k. In addition, these notions also

imply the metric inequality of (S1, . . . , Sk) at z̄ [27, Theorem 4.1], which is used as a

main tool to establish chain rules for the limiting Fréchet subdifferentials [93].

In order to derive optimality conditions for the set optimization problem (PQ), one

needs the alliedness property of the two following sets where the objective map F and

the domination Q in (PQ) are involved (see Theorem 6.1.3):

C1 := {(x, y, k)| (x, y) ∈ GrF, k ∈ Y },

and C2 := {(x, y, k)| (x, k) ∈ GrQ, y ∈ Y }.

2.4 Nonlinear Scalarizing Functionals

In this part, we recall the well known Gerstewitz functional and some important proper-

ties of this functional. This functional will be used in Chapters 5, 7 and 8 to characterize

solutions for set-optimization problems w.r.t. variable domination structures.

Let Y be a topological linear space. Let D ⊂ Y be a proper closed set, and

k ∈ Y \ {0} satisfying

D + [0,+∞)k ⊆ D. (2.18)

We introduce the functional zD,k : Y → R given by

zD,k(y) := inf{t ∈ R | y ∈ tk −D}, (2.19)

where we use the convention that inf ∅ = +∞. The functional zD,k assigns the smallest

value t such that the property y ∈ tk −D is fulfilled. The scalarizing functional zD,k

was introduced by Gerstewitz (1983) [42] and used in [43] to prove separation theorems

for not necessarily convex sets. This functional is intensively used in the so-called ε-

constraint method, see [24, 34, 87]. In addition, Pascoletti-Serafini scalarization, where

two parameters are allowed to vary arbitrarily, is a special case of this functional, see

[34, 95]. Properties of zD,k were studied in [43, 44, 107]. First, let us recall the definition

of C-monotonicity of a functional.

Definition 2.4.1. Let Y be a topological linear space, C ⊂ Y, C 6= ∅. A functional

z : Y → R is C-monotone, if the following implication holds

∀y1, y2 ∈ Y : y1 ∈ y2 − C =⇒ z(y1) ≤ z(y2) .

Below we provide some properties of the functional zD,k introduced in (2.19).

Theorem 2.4.2. [43, 44] Let Y be a topological linear space, C ⊂ Y , D ⊂ Y be

a proper closed set, and let k ∈ Y \ {0} be such that (2.18) is fulfilled. Then, the

following properties hold for z = zD,k:
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(a) z is l.s.c.

In addition, if k ∈ Y \ {0} such that D+ (0,+∞)k ⊆ intD, then z is continuous.

(b) z is convex ⇐⇒ D is convex,

(c) z is proper ⇐⇒ D does not contain lines parallel to k, i.e., ∀ y ∈ Y, ∃ r ∈
R : y + rk /∈ D.

(d) z is C-monotone ⇐⇒ D + C ⊂ D.

(e) ∀ y ∈ Y, ∀ r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk −D.

(f) z is finite-valued ⇐⇒ D does not contain lines parallel to k and Rk −D = Y .

For the proof of Theorem 2.4.2, see [44, Theorem 2.3.1]. In the following, we recall

the exact subdifferential formulas for the functional zD,k. The first one is given in

[31] where the authors computed the classical Fenchel sundifferential of zD,k under the

assumption that D is a proper, closed, convex set. In addition, [31] also derived fuzzy

optimality conditions for vectorial location problems and discussed an application of

the function zD,k in stochastic finance.

Proposition 2.4.3. [31, Theorem 2.2] Let D ⊂ Y be a closed, convex set and k ∈
Y \ {0} satisfying (2.18) and for every y ∈ Y , there is t ∈ R such that y + tk /∈ D.
Consider the functional zD,k given by (2.19) and let ȳ ∈ dom zD,k. Then,

∂zD,k(ȳ) = {y∗ ∈ Y ∗| y∗(k) = 1 and ∀d ∈ D : y∗(d) + y∗(ȳ)− zD,k(ȳ) ≥ 0}.

Further more, in the case that D does not enjoy conical or convex properties, [3]

obtained the following result.

Proposition 2.4.4. [3, Proposition 3.1] Let Y be Asplund space, D ⊂ Y be a closed

set and k ∈ Y \ {0} sastisfying

D + (0,+∞)k ⊆ intD

and y ∈ dom zD,k = Rk −D. Then, we have:

∂Lz
D,k(y) = {y∗ ∈ Y ∗| y∗(k) = 1 and − y∗ ∈ N(bdD, zD,k(y)k − y)}.

There are several papers generating the functional zD,k for set optimization w.r.t.

a fixed cone and for vector optimization equipped with variable domination structures.

For more detail and further discussions, we refer the reader to [3, 16, 19, 45, 46, 72].

In Chapter 5, we will introduce some appropriated functionals based on zD,k in order

to characterize minimizers of a family of set as well as minimal solutions of problem

(PK).



Chapter 3

Vector Optimization w.r.t.

Variable Domination Structures

Recently, vector optimization problems with variable ordering structures are studied

intensively in the literature, see for instance, [7, 19, 35, 36, 37, 101] and references

therein. This chapter studies the following vector optimization problem:

K −min
x∈Ω

f(x), (P vecK )

where f : X → Y is a continuous mapping between two Banach spaces, Ω ⊆ X is

a nonempty closed set and K : Y ⇒ Y is a cone-valued ordering map. We recall

solution concepts for (P vecK ) where two assertions (2.7) and (2.8) are involved. Section

3.2 presents an optimality condition for nondominated solutions of (P vecK ) given by [7].

Using this result, we derive optimality conditions for an approximation problem w.r.t.

a cone-valued mapping K : Y ⇒ Y . This will be used in Section 8.1 to derive optimality

conditions for solutions of the beam intensity problem in radiotherapy treatment.

3.1 Solution Concepts

We begin this section with the definition of nondominated elements and minimal ele-

ments of a set in Banach spaces, which are introduced by Yu[111] and Chen et al. [18].

Note that this definition takes into account two assertions (2.7) and (2.8).

Definition 3.1.1. [18, 111] Let A be a nonempty subset of a Banach space Y, ā ∈ A,

K : Y ⇒ Y be a cone-valued mapping. We say that:

(i) ā is a nondominated element of A w.r.t. K(·) if there is no a ∈ A \ {ā} such

that ā ∈ a + K(a) or equivalently ā /∈
⋃
a∈A

({a} + K(a) \ {0Y }). The set of all

nondominated elements of A w.r.t. K(·) is denoted by ND(A,K(·)).

34
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(ii) ā is a minimal element of A w.r.t. K(·) if there is no a ∈ A \ {ā} such that

ā ∈ a + K(ā), or equivalently ({ā} − K(ā))
⋂
A = {ā}. The set of all minimal

elements of A w.r.t. K(·) is denoted by Min(A,K(·)).

Remark 3.1.2. (i) Equivalently, we can define nondominated (minimal) elements

of a set A by using two binary relations ≤1 and ≤2 given by (2.5) and (2.6) as:

ā ∈ ND(A,K(·))⇐⇒6 ∃a ∈ A \ {ā} : a ≤1 ā,

and

ā ∈ Min(A,K(·))⇐⇒6 ∃a ∈ A \ {ā} : a ≤2 ā.

(ii) Observe that if ā ∈ Min(A,K(·)) then K(ā) is pointed. Indeed, suppose that there

is b ∈ K(ā)
⋂

(−K(ā)) and b 6= 0. Let a′ = ā + b. This implies a′ ∈ ā − K(ā)

and a′ 6= ā. This contradicts ā ∈ Min(A,K(·)). The pointedness of K(ā) does not

always hold if ā ∈ ND(A,K(·)).

(iii) If K(·) = C, where C is a proper, closed, convex, pointed cone of Y , the concepts of

nondominated elements and minimal elements are identical, i.e., they are Pareto

efficient points of the set A in the sense of Definition 2.1.24.

(iv) Supppose that ā ∈ A and K(ā) is a proper, closed, convex, pointed cone. Then,

ā is a minimal element of A w.r.t. K(·) if and only if it is a Pareto efficient

element of A w.r.t. the cone K(ā), see also [36, Lemma 2.15].

In addition, [36] shows a result concerning some relationships between the notions of

nondominated elements and minimal elements. We present it in the following without

proof.

Proposition 3.1.3. [36, Lemma 2.11] Let Y be a linear space, A ∈ P(Y ) and the

set-valued mapping K : Y ⇒ Y such that for all y ∈ Y , K(y) is a convex cone. The

following assertions hold true:

(i) If ȳ is a minimal element of A w.r.t. K(·) and K(y) ⊆ K(ȳ) for all y ∈ A, then

ȳ is a nondominated element of A w.r.t. K(·).

(ii) If ȳ is a nondominated element of A w.r.t. K(·) and K(ȳ) ⊆ K(y) for all y ∈ A,

then ȳ is a minimal element of A w.r.t. K(·).

The following proposition presents some characterizations of minimal elements and

nondominated elements. For the proof, we refer the reader to Lemmas 2.34, 2.38, 2.46

and 2.48 in [36].
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Proposition 3.1.4. [36] Let Y be a linear space, A ∈ P(Y ) and the cone-valued

mapping K : Y ⇒ Y be given. Let

AK :=
⋃
y∈A

(y +K(y)).

Then, the following assertions hold true:

(i) If ȳ is a nondominated element of A w.r.t. K(·) and
⋂
y∈A
K(y) 6= 0Y , then ȳ ∈ bdA.

(ii) If ȳ is a minimal element of A w.r.t. K(·) and K(ȳ) 6= 0Y , then ȳ ∈ bdA.

(iii) If ȳ ∈ AK is a nondominated element of AK w.r.t. K(·), then ȳ ∈ A and ȳ is also

a nondominated element of A w.r.t. K(·).

(iv) If ȳ is a nondominated element of A w.r.t. K(·), and if

∀y ∈ A,∀d ∈ K(y) : K(y + d) ⊆ K(y)

then ȳ is also a nondominated element of AK w.r.t. K(·).

(v) If ȳ ∈ A is a minimal element of AK w.r.t. K(·), then it is also a minimal element

of A w.r.t. K(·).

(vi) If ȳ is a minimal element of A w.r.t. K(·)and if K(y) ⊆ K(ȳ) for all y ∈ Y then

ȳ is also a minimal element of AK w.r.t K(·).

In addition, there are several references characterizing nondominated elements and

minimal elements of a set by using scalarization techniques. For the sake of the short-

ness, we omit presenting them in this work. We refer the reader to [16, 19, 36] and

references therein for further discussions.

Now, we consider problem (P vecK ) and define its corresponding solution concepts in the

pre-image space by taking into account Definition 3.1.1 for A = f(Ω) in the image

space.

Definition 3.1.5. (Nondominated solutions and minimal solutions of a vector opti-

mization problem w.r.t. a variable ordering structure)

Consider the vector optimization problem (P vecK ) and x̄ ∈ Ω. Then, x̄ is said to be:

(i) a nondominated solution of problem (P vecK ) if f(x̄) is a nondominated element

of the set f(Ω) w.r.t. K(·).

(ii) a minimal solution of problem (P vecK ) if f(x̄) is a minimal element of the set

f(Ω) w.r.t. K(·).
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Remark 3.1.6. (i) When K(·) = C where C is a proper, closed, convex and pointed

cone of Y , the concepts of nondominated solutions and minimal solutions are

identical. In this case, we called them Pareto efficient solutions of the problem

C −Min
x∈Ω

f(x).

(ii) If x̄ ∈ Ω is a minimal solution of problem (P vecK ), then it is also a Pareto efficient

solution of the problem K(f(x̄))−Min
x∈Ω

f(x).

3.2 Necessary Optimality Conditions for Nondominated

Solutions

This section presents optimality conditions for solutions of a vector optimization prob-

lem w.r.t. a cone-valued mapping. Recently, Eichfelder and Ha [37] have introduced

scalarizing functionals and derived necessary and sufficient optimality conditions for

solutions of (P vecK ) in the form of Fermat rule and Lagrange multiplier rule. Bao et

al. [3] studied optimality conditions for minimal solutions of some nonconvex multiob-

jective location problems. Bao et al. [2] derived necessary conditions for approximate

solutions and nondominated solutions of (P vecK ) using variational principles and the

subdifferential calculus by Mordukhovich. The following result is shown by Bao and

Mordukhovich [7], where the authors utilized the extremal principle as the main tool.

We will adapt it to provide necessary conditions for beam intensity problems in Chapter

8.

Theorem 3.2.1. ([7, Theorem 4.12]) Let X,Y be Asplund spaces, f : X → Y , K :

Y ⇒ Y and a nonempty closed subset Ω ⊆ X. Let x̄ be a nondominated solution of

problem (P vecK ). Set ȳ := f(x̄) and suppose that K(·) satisfies the following conditions:

(a) For all y ∈ Y , K(y) is a nonempty convex cone;

(b) There exists e ∈ Y, e 6= 0 such that e ∈
⋂
y∈Y
K(y) \ (−K(ȳ);

(c) There is a unique point y∗ satisfying −y∗ ∈ D∗K(ȳ, 0)(y∗).

Moreover, assume:

(i) K is SNC at (ȳ, 0),

(ii) Either Ω is SNC at x̄ or f is PSNC at x̄,

(iii) D∗f(x̄)(0) ∩ (−N(Ω, x̄)) = {0}.

Then, there is y∗ ∈ Y ∗ \ {0} such that

0 ∈ D∗f(x̄)(y∗ +D∗K(f(x̄); 0)(y∗)) +N(Ω, x̄).
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Next, we utilize Theorem 3.2.1 to calculate optimality conditions for nondominated

solutions of approximation problems equipped w.r.t. an ordering structure. This result

will be applied in Section 8.1 to derive necessary conditions for solutions of beam

intensity problems.

Let Ai be linear functions from Rm to Rmi , ai ∈ Rmi , i = 1, 2, ...n, ‖ · ‖i be norms

in Rmi . Given a nonempty closed set Ω ⊆ Rm and a set-valued map K : Rn ⇒ Rn

satisfying K(y) is a closed, convex cone for each y ∈ Rn. We consider the following

problem:

Minimize f(x) subject to x ∈ Ω w.r.t. K(·), (P appK )

where

f : Rm → Rn,

f(x) :=


‖A1x− a1‖1
‖A2x− a2‖2

...

‖Anx− an‖n

 .

Now, we present necessary conditions for nondominated solutions of the vector

approximation problem (P appK ). In Section 8.1.2, we will discuss the problem (P appK ) with

a special ordering map based on threshold doses of organs in radiotherapy treatment.

Theorem 3.2.2. We consider the problem (P appK ) w.r.t. a closed, convex, cone-valued

mapping K : Rn ⇒ Rn. Suppose that x̄ ∈ Ω is a nondominated solution of (P appK ) and

let ȳ := f(x̄). We assume that the following conditions hold:

(i) K(y) is a nonempty convex cone, for all y ∈ Rn.

(ii) There exists e ∈ Rn, e 6= 0 with e ∈
⋂

y∈Rn
K(y) \ (−K(ȳ)).

(iii) There is a unique point y∗ satisfying −y∗ ∈ D∗K(ȳ, 0)(y∗).

Then, there are y∗ ∈ Rn \ {0} and corresponding z∗ ∈ (y∗ + D∗K(ȳ; 0)(y∗)) and

Ti ∈ L(Rmi ,R) satisfying Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1 such that

0 ∈
n∑
i=1

A∗i z
∗Ti +N(Ω, x̄). (3.1)

Proof. Since f is Lipschitz and by using the relationship between coderivative of a

vector function with subdiferential of its scalarization (Proposition 2.3.18), we get the

following assertion

∀ y∗ ∈ Rn, ∀ x̄ ∈ Ω : D∗f(x̄)(y∗) = ∂(y∗ ◦ f)(x̄).
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This implies that D∗f(x̄)(0) = {0} and thus D∗f(x̄)(0) ∩ (−N(Ω, x̄)) = {0}.
Applying Theorem 3.2.1, there exists y∗ ∈ Rn \ {0} such that

0 ∈ D∗f(x̄)(y∗ +D∗K(ȳ, 0)(y∗)) +N(Ω, x̄).

This means that there is z∗ ∈ (y∗ +D∗K(ȳ, 0)(y∗)) satisfying

0 ∈ D∗f(x̄)(z∗) +N(Ω, x̄)

⇐⇒ 0 ∈ ∂(z∗ ◦ f)(x̄) +N(Ω, x̄).

Taking into account the formulation of coderivative of a vector-valued norm function

in Remark 2.3.8 we have that

∃ Ti ∈ L(Rmi ,R), Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i

and ‖Ti‖i∗ ≤ 1, (i = 1, . . . , n)

such that (3.1) holds, which completes the proof. �

In the following, we suppose that K(·) ≡ K, K is a proper, closed, convex and

pointed cone in Rn. This implies that K \ (−K) = K \ {0}. In this case, the problem

(P appK ) will be denoted by (P appK ). We present a corollary of Theorem 3.2.2 for optimality

condition for Pareto efficient solutions of (P appK ). Note that this result can be also

implied by Bao et al. [9] and Durea et al. [26]. We will use this in Section 8.1 in

order to derive necessary optimality conditions for minimal solutions of a mathematical

formula of beam intensity problem.

Corollary 3.2.3. Suppose that x̄ ∈ Ω is a Pareto efficient solution of (P appK ), where K

is a proper, closed, convex and pointed cone in Rn, and let ȳ := f(x̄). Then, there are

y∗ ∈ −N(K, 0) \ {0} and Ti ∈ L(Rmi ,R) satisfying Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and

‖Ti‖i∗ ≤ 1 such that (3.1) is fulfilled.

Proof. The proof follows immediately by taking into account Theorem 3.2.2. �



Chapter 4

Set Optimization w.r.t. Variable

Domination Structures

In this chapter, let X and Y be Banach spaces and a set-valued mapping F : X ⇒ Y be

given. We follow the vector approach to define solution concepts based on Q : X ⇒ Y

for the problem

Q−Min
x∈X

F (x). (PQ)

Furthermore, let K : Y ⇒ Y be a set-valued mapping. The set approach will use this

domination structure to define solution concepts for the problem

K −Min
x∈X

F (x). (PK)

The aim of this chapter is investigating relationships between the solution concepts

given by these two approaches. It is important to mention that, these relationships

for the case the dominations K(·) and Q(·) are constant mappings have been studied

in [57, 73]. Eichfelder and Pilecka [40] derive one connection between strictly minimal

solutions of (PK) w.r.t the relation �Kpl and nondominated solutions of (PQ). In addi-

tion, Eichfelder and Pilecka [39] study some of these relationships in which the vector

approach is equipped with a variable domination structure acting onto the image space

of the objective mapping F . However, the present frame work investigates relationships

between the solution concepts of (PK) and (PQ), where the domination Q(·) has the

same preimage space and image space as the mapping F . In particular, Section 4.1 in-

troduces solution concepts for the problem (PQ). Section 4.2 defines minimal elements

for a family of sets and properties of the sets of these elements. These concepts are

related to set relations introduced in Section 2.2.2. Then, we follow the set approach

to define solutions for the problem (PK). Section 4.3 illustrates relationships between

solution concepts of (PK) and (PQ). These relationships will be used in Chapter 6 to

derive necessary optimality conditions for solutions of the problem (PK) by taking into

40
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account corresponding results for solutions of the problem (PQ) (see [30]). The results

presented within this chapter are based on Köbis, Le, Tammer and Yao [70].

4.1 Solution Concepts for Set Optimization Problems based

on the Vector Approach

In Chapter 3, we have already defined the concepts of nondominated (minimal) solu-

tions for problem (P vecK ) by using the relations ≤1 and ≤2 given in Chapter 2. Now, we

consider problem (PQ), where the domination map Q : X ⇒ Y is acting between the

same spaces as the set-valued objective map F : X ⇒ Y . We assume that F (x) 6= ∅,
for all x ∈ X. The concept of solutions of (PQ) is defined as follows:

Definition 4.1.1. Let F : X ⇒ Y , Q : X ⇒ Y such that for all y ∈ Y, Q(y) is a

proper, closed, convex set. We say that a point (x̄, ȳ) ∈ GrF is:

(i) a nondominated solution of the problem (PQ) w.r.t. Q(·) if

ȳ /∈
⋃
x∈X

(
F (x) +Q(x) \ {0}

)
.

The set of all nondominated solutions of (PQ) w.r.t. Q(·) is denoted by ND(F (X),Q).

(ii) a minimal solution of the problem (PQ) w.r.t. Q(·) if

ȳ /∈ F (X) + (Q(x̄) \ {0}).

We denote by Min(F (X),Q) the set of all minimal solutions of (PQ) w.r.t. Q(·).

Obviously, if ∀x ∈ X, Q(x) = Q, where Q is a proper, convex, pointed cone, the

concepts of nondominated solutions and minimal solutions are identical. In this case,

we call them minimizers of F w.r.t. the cone Q. Observe also that a minimal solution

x̄ of (PQ) is a minimizer of F w.r.t. Q(x̄).

In the literature, there exist also solution concepts for set-valued optimization prob-

lems equipped with a domination mapping Q̃ : Y ⇒ Y , see [39]. In this case, we denote

by (PQ̃) the problem Q̃ −Min
x∈X

F (x). For the purpose of completeness, we recall them

as follows:

Definition 4.1.2. [39, Definition 5.4] Let F : X ⇒ Y and Q̃ : Y ⇒ Y be given, such

that for all y ∈ Y, Q̃(y) is a proper, closed, convex cone. Let (x̄, ȳ) ∈ GrF and consider

the binary relations (2.5) and (2.6) introduced in Chapter 2.

(i) (x̄, ȳ) ∈ GrF is called a nondominated solution (in the sense of Eichfelder

and Pilecka)of the problem (PQ̃) w.r.t. Q̃ if there is no y ∈ F (X) \ {ȳ} such

that

y ≤1 ȳ =⇒ y ∈ ȳ − Q̃(y).
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(ii) (x̄, ȳ) ∈ GrF is called a minimal solution (in the sense of Eichfelder and

Pilecka) of the problem (PQ̃) w.r.t. Q̃ if there is no y ∈ F (X) \ {ȳ} such that

y ≤2 ȳ =⇒ y ∈ ȳ − Q̃(ȳ).

Eichfelder and Pilecka [39] investigated relationships between solutions of problem

(PQ̃) (in the sense of Definition 4.1.2) and solutions of (PK) defined based on set

approach, see [39, Theorem 5.1]. However, from now on we only study the vector

approach for problem (PQ) with solution concepts given by Definition 4.1.1.

4.2 Solution Concepts for Set Optimization Problems based

on the Set Approach

This section introduces different concepts for minimal elements of a family of sets and

solution concepts for the problem (PK) introduced at the beginning of this chapter.

These concepts are defined based on set relations introduced in Section 2.2.2. In addi-

tion, we will present relationships between the sets of different minimal elements.

Let A be a family of sets in P(Y ) and �Kt , t ∈ {l, u, cl, cu, pl, pu} be one of six set

relations introduced in Definition 2.2.5. Some minimality notions of A w.r.t. �Kt are

determined as follows:

Definition 4.2.1. Let A be a family of nonempty subsets of Y , K : Y ⇒ Y be a

set-valued mapping, and t ∈ {l, u, cl, cu, pl, pu}.

(a) A set Ā ∈ A is called a minimal element of A w.r.t. �Kt if

A ∈ A, A �Kt Ā =⇒ Ā �Kt A.

(b) A set Ā ∈ A is called a strongly minimal element of A w.r.t. �Kt if

∀ A ∈ A \ {Ā} : Ā �Kt A.

(c) A set Ā ∈ A is called a strictly minimal element of A w.r.t. �Kt if

A ∈ A, A �Kt Ā =⇒ Ā = A.

We denote respectively by MinY (A,�Kt ), SoMinY (A,�Kt ) and SiMinY (A,�Kt ) the sets

of all minimal, strongly minimal and strictly minimal elements of A w.r.t. �Kt , t ∈
{l, u, cl, cu, pl, pu}. The index ”Y ” in MinY , SoMinY , SiMinY is used to mark that

we consider concepts of minimality in the image space Y . In Definition 4.2.6, we will

introduce additionally corresponding concepts in the pre-image space X.
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The following remark shows some relationships between the above definition and

the definition of nondominated elements and minimal elements of a set in the sense of

Definition 3.1.1.

Remark 4.2.2. Let A be a family of singleton sets and K(y) be a closed, convex,

pointed cone for each y ∈ Y . Then, the definition of strictly minimal elements of A
w.r.t. �Kl reduces to the definition of nondominated elements of A w.r.t. K(·), see

Definition 3.1.1 (i). Moreover, the definition of strictly minimal elements of A w.r.t.

�Ku reduces to the definition of minimal elements of A w.r.t. K(·), see Definition 3.1.1

(ii).

In the following, we illustrate some properties concerning the sets of (strictly,

strongly) minimal elements of a family of sets. Note that some of them are derived by

using Proposition 2.2.7.

Remark 4.2.3. Let t ∈ {l, u, cl, cu, pl, pu}. We note the following properties by using

the definitions of the sets MinY (A,�Kt ), SoMinY (A,�Kt ) and SiMinY (A,�Kt ).

(i) It is clear that if �Kt is transitive and Ā ∈ MinY (A,�Kt ), then for all B such that

B ∼ Ā, it holds that B ∈ MinY (A,�Kt ).

(ii) Obviously, we have the inclusions

SoMinY (A,�Kt ) ⊆ MinY (A,�Kt ),

and

SiMinY (A,�Kt ) ⊆ MinY (A,�Kt ).

(iii) We have that

Ā ∈ SoMinY (A,�Kcl)⇐⇒ ∀ A ∈ A \ {Ā} : Ā �Kcl A
Proposition 2.2.7

=⇒ ∀ A ∈ A \ {Ā} : Ā �Kl A

=⇒ Ā ∈ SoMinY (A,�Kl ).

Therefore, we get that SoMinY (A,�Kcl) ⊆ SoMinY (A,�Kl ). Similarly, we obtain

that SoMinY (A,�Kl ) ⊆ SoMinY (A,�Kpl).
Furthermore, it yields from Definition 4.2.1(c) that

Ā ∈ SiMinY (A,�Kpl)⇐⇒ ∀ A 6= Ā : A 6�Kpl Ā
Proposition 2.2.7

=⇒ ∀ A 6= Ā : A 6�Kl Ā

⇐⇒ Ā ∈ SiMinY (A,�Kl ).
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Thus, SiMinY (A,�Kpl) ⊆ SiMinY (A,�Kl ).

Similarly, we have that SiMinY (A,�Kl ) ⊆ SiMinY (A,�Kcl).
For the relations �Ku , �Kcu, and �Kpu the following assertions also hold true:

SoMinY (A,�Kcu) ⊆ SoMinY (A,�Ku ) ⊆ SoMinY (A,�Kpu)

and

SiMinY (A,�Kpu) ⊆ SiMinY (A,�Ku ) ⊆ SiMinY (A,�Kcu).

The following example illustrates that neither SiMinY (A,�Kt ) ⊆ SoMinY (A,�Kt )

nor SiMinY (A,�Kt ) ⊆ SoMinY (A,�Kt ) always holds true.

Example 4.2.4. Consider the four following sets:

A1 := {(y1, y2) ∈ R2| 2 ≤ y1, y2 ≤ 3, y1 + y2 ≤ 5},
A2 := {(2, y2) ∈ R2| 2 ≤ y2 ≤ 3}

⋃
{(y1, 2) ∈ R2| 2 ≤ y1 ≤ 3},

A3 := {(5, 5)},
A4 := {(y1, y2) ∈ R2| 3 ≤ y1 ≤ 5, 0 ≤ y2 ≤ 1}.
We define a set-valued mapping K : R2 ⇒ R2 by:

K(y) :=

{(d1, d2)| 0 ≤ d1 ≤ 2 d2} if y ∈ R2 \ {(1, 3)},

R2
+ if y = (1, 3).

It follows from the definition of �Kl given in Definition 2.2.5 that:

A1 �Kl A2, A1 �Kl A3, A1 6�Kl A4,

A2 �Kl A1, A2 �Kl A3, A2 6�Kl A4,

A3 6�Kl A1, A3 6�Kl A2, A3 6�Kl A4,

A4 6�Kl A1, A4 6�Kl A2, A4 �Kl A3.

Let A := {A1, A2, A3}. We have that

MinY (A,�Kl ) = {A1, A2}, SoMinY (A,�Kl ) = {A1, A2}, SiMinY (A,�Kl ) = ∅.

Let A′ := {A1, A2, A3, A4}. We get that

MinY (A′,�Kl ) = {A1, A2, A4}, SoMinY (A′,�Kl ) = ∅, SiMinY (A,�Kl ) = {A4}.

Let A′′ := {A3, A4}. It holds that

MinY (A′′,�Kl ) = SoMinY (A′′,�Kl ) = SiMinY (A′′,�Kl ) = {A4}.

For an illustration of this example, see Figure 4.1.

In addition, the sets SoMinY (A,�Kt ) and SiMinY (A,�Kt ) have the following prop-

erties.
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y1

y2

A3

A1

A4

∪
a1∈A1

{a1 +K(a1)}
= ∪
a2∈A2

{a2 +K(a2)}

∪
a3∈A3

{a3 +K(a3)}

∪
a4∈A4

{a4 +K(a4)}

−1 0 1 2 3 4 5

1

2

3

4

5

Figure 4.1: Illustration for Example 4.2.4.

Proposition 4.2.5. [69, Proposition 2] Let A be a family of sets in P(Y ), S ∈ P(Y )

and let |S| denote the number of elements of S. Then, for t ∈ {l, u, cl, cu, pl, pu}, it

holds that

(a) If | SoMinY (A,�Kt )| > 1 then SiMinY (A,�Kt ) = ∅.

(b) If | SiMinY (A,�Kt )| > 1 then SoMinY (A,�Kt ) = ∅.

(c) If SiMinY (A,�Kt )
⋂

SoMinY (A,�Kt ) 6= ∅ then| SoMinY (A,�Kt )| = | SiMinY (A,�Kt )| = 1

SoMinY (A,�Kt ) = SiMinY (A,�Kt ).

Proof. (a) Suppose that A1, A2 ∈ SoMinY (A,�Kt ), A1 6= A2, and SiMinY (A,�Kt ) 6= ∅.
Let B ∈ SiMinY (A,�Kt ). If B = A1 we have that A2 �Kt B. This implies A2 = B = A1

since B ∈ SiMin(A,�Kt ). This contradicts A1 6= A2. The case B = A2 is proved

similarly.

Now, we assume that B 6= A1 and B 6= A2. It holds thatA1 �Kt B,B ∈ SiMinY (A,�Kt )⇒ A1 = B,

A2 �Kt B,B ∈ SiMinY (A,�Kt )⇒ A2 = B.

Therefore A1 = A2, that is a contradiction.

(b) Let B1, B2 ∈ SiMinY (A,�Kt ), B1 6= B2 and suppose that SoMinY (A,�Kt ) 6= ∅. Let
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A ∈ SoMinY (A,�Kt ). If A = B1, we have that A �Kt B2. This implies A = B2 since

B2 ∈ SiMin(A,�Kt ). Therefore, B1 = B2, that is a contradiction. The case A = B2 is

proved similarly.

Now, suppose that A 6= B1 and A 6= B2. We have thatA ∈ SoMinY (A,�Kt )⇒ A �Kt B1 ⇒ A = B1,

A ∈ SoMinY (A,�Kt )⇒ A �Kt B2 ⇒ A = B2.

Thus, B1 = B2, a contradiction.

(c) Part (a) and part (b) yield |SiMinY (A,�Kt ) ∩ SoMinY (A,�Kt )| ≤ 1. Therefore, if

SiMinY (A,�Kt ) ∩ SoMinY (A,�Kt ) 6= ∅,

then

| SoMinY (A,�Kt )| = | SiMinY (A,�Kt )| = 1.

The proof is complete. �

Now, we follow the set approach to define solutions of (PK), K : Y ⇒ Y , w.r.t. the

relation �Kt introduced in Definition 2.2.5, where t ∈ {u, l, cu, cl, pu, pl}. Note that

the solution concepts in the following definition are given in the preimage space X,

whereas the solution concepts in Definition 4.2.1 are formulated in the image space Y .

Definition 4.2.6. [39, 57] Let F : X ⇒ Y , K : Y ⇒ Y be two set-valued mappings

such that F (x) and K(y) are nonempty sets for all x ∈ X, y ∈ Y . Let �Kt be given in

Definition 2.2.5, t ∈ {u, l, cu, cl, pu, pl}.

(a) A point x̄ ∈ X is called a minimal solution of (PK) w.r.t. �Kt if

x ∈ X, F (x) �Kt F (x̄) =⇒ F (x̄) �Kt F (x).

We denote by Min(F (X),�Kt ) the set of all minimal solutions of (PK) w.r.t. �Kt .

(b) A point x̄ ∈ X is called a strongly minimal solution of (PK) w.r.t. �Kt if

∀ x ∈ X \ {x̄} : F (x̄) �Kt F (x).

We denote by SoMin(F (X),�Kt ) the set of all strongly minimal solutions of (PK)

w.r.t. �Kt .

(c) A point x̄ ∈ X is called a strictly minimal solution of (PK) w.r.t. �Kt if

x ∈ X, F (x) �Kt F (x̄) or F (x) = F (x̄) =⇒ x = x̄.

We denote by SiMin(F (X),�Kt ) the set of all strictly minimal solutions of (PK)

w.r.t. �Kt .
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Remark 4.2.7. Let t ∈ {l, u, cl, cu, pl, pu}.

(i) Observe that if �Kt is transitive and x̄ ∈ Min(F (X),�Kt ), then it also holds true

for all x ∈ X satisfying F (x) ∼ F (x̄). If the relation �Kt is reflexive, the definition

of strictly solutions of (PK) is equivalent to

x ∈ X,F (x) �Kt F (x̄) =⇒ x = x̄.

If for all x 6= x′, F (x) 6= F (x′) holds true, then the Definition 4.2.6(b) and (c)

are equivalent to F (x̄) ∈ SoMinY (F (X),�Kt ) and F (x̄) ∈ SiMinY (F (X),�Kt ),

respectively.

Let [F (x̄)] := {F (x) ∈ F (X)| F (x) ∼ F (x̄)}. Then, it holds that

x̄ ∈ SiMin(F (X),�Kt ) =⇒ [F (x̄)] = {F (x̄)}.

(ii) Definition 4.2.6 implies that SiMin(F (X),�Kt ) and SoMin(F (X),�Kt ) are subsets

of Min(F (X),�Kt ). Furthermore, by using the same lines as in Remark 4.2.3(iii)

the following relationships for the sets of minimal solutions of (PK) w.r.t the

lower relations �Kl , �Kcl, and �Kpl hold true:

SoMin(F (X),�Kcl) ⊆ SoMin(F (X),�Kl ) ⊆ SoMin(F (X),�Kpl)

and

SiMin(F (X),�Kpl) ⊆ SiMin(F (X),�Kl ) ⊆ SiMin(F (X),�Kcl).

Similarly, we have the following relationships for the sets of minimal solutions of

(PK) w.r.t the upper relations �Ku , �Kcu and �Kpu:

SoMin(F (X),�Kcu) ⊆ SoMin(F (X),�Ku ) ⊆ SoMin(F (X),�Kpu)

and

SiMin(F (X),�Kpu) ⊆ SiMin(F (X),�Ku ) ⊆ SiMin(F (X),�Kcu).

4.3 Relationships between Solution Concepts based on

the Set Approach and the Vector Approach

In this section, we derive relationships between solution concepts of (PK), K : Y ⇒ Y ,

and (PQ), Q : X ⇒ Y given in Definitions 4.1.1 and 4.2.6. In the following theorems,

we will utilize two set-valued mappings Q̂ : X ⇒ Y and Q̂′ : X ⇒ Y respectively

determined by:

∀x ∈ X : Q̂(x) :=
⋂

y∈F (x)

K(y), (4.1)
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and

∀x ∈ X : Q̂′(x) :=
⋃

y∈F (x)

K(y). (4.2)

Let us recall a result given by Eichfelder and Pilecka [40] about the relationships

between strictly minimal solutions of (PK) w.r.t. the possibly lower less relation w.r.t.

K(·) (4Kpl) introduced in Definition 2.2.5(v), and nondominated solutions of the set-

valued optimization problem introduced in Definition 4.1.1(i).

Theorem 4.3.1. ([40, Lemma 5.1]) Consider problem (PK) w.r.t. �Kpl, K : Y ⇒

Y which satisfies that K(y) is a proper, convex cone for all y ∈ Y , and let some x̄ ∈
SiMin(F (X),�Kpl). Let Q̂ : X ⇒ Y be given by (4.1). If there exists ȳ ∈ F (x̄) such that

ȳ /∈ F (x̄) + Q̂(x̄) \ {0}, then (x̄, ȳ) ∈ ND(F (X), Q̂).

The following theorem derives a corresponding result for strongly minimal solutions

of (PK) w.r.t. the lower less relation w.r.t. K(·), i.e., �Kl , introduced in Definition

2.2.5(i), and nondominated solutions of the set-valued optimization problem introduced

in Definition 4.1.1 (i).

Theorem 4.3.2. Consider problem (PK) w.r.t. �Kl and x̄ ∈ SoMin(F (X),�Kl ). Sup-

pose that there is ȳ ∈ F (x̄) such that

∀ y ∈ F (x̄) \ {ȳ} : ȳ /∈ y +K(y). (4.3)

Assume that K : Y ⇒ Y satisfies properties (2.9)- (2.11) and K(ȳ) ∩ (−K(ȳ)) = {0}.
Let Q̂ : X ⇒ Y be given by (4.1). Then, (x̄, ȳ) ∈ ND(F (X), Q̂).

Proof. Since x̄ ∈ SoMin(F (X),�Kl ), it holds that

∀ x ∈ X \ {x̄} : F (x̄) �Kl F (x).

Furthermore, it holds that

F (x̄) �Kl F (x̄),

since 0 ∈ K(y) for all y ∈ Y . Thus, we obtain

∀ x ∈ X : F (x̄) �Kl F (x),

which is equivalent to

∀ x ∈ X : F (x) ⊆
⋃

y∈F (x̄)

(y +K(y)). (4.4)

Suppose by contradiction that (x̄, ȳ) /∈ ND(F (X), Q̂). This means that

∃x ∈ X : ȳ ∈ F (x) + Q̂(x) \ {0}.
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This implies that

∃ x ∈ X, y ∈ F (x) \ {ȳ} : ȳ ∈ y + Q̂(x) ⊆ y +K(y).

From (4.4), taking into account that K(·) satisfies (2.11), we have that

∃ ŷ ∈ F (x̄) : y ∈ ŷ +K(ŷ) =⇒ K(y) ⊆ K(ŷ). (4.5)

Therefore, we can conclude

ȳ ∈ y +K(y) ⊆ ŷ +K(ŷ) +K(y) ⊆ ŷ +K(ŷ) +K(ŷ) ⊆ ŷ +K(ŷ)

=⇒ ȳ ∈ y +K(y) ⊆ ŷ +K(ŷ). (4.6)

Taking into account (4.3) we obtain that ȳ = ŷ . By (4.6), we get

y +K(y) ⊆ ŷ +K(ŷ) = ȳ +K(ȳ).

Furthermore,

ȳ ∈ y +K(y) =⇒ K(ȳ) ⊆ K(y). (4.7)

Since (4.5) and (4.7), it holds that K(y) ⊆ K(ŷ) = K(ȳ) ⊆ K(y).

Thus,

K(ȳ) = K(y).

Taking into account (4.5), (4.7) and ȳ = ŷ, we have that

y − ȳ ∈ K(ȳ) ∩ (−K(ȳ)).

Since K(ȳ)∩(−K(ȳ)) = {0}, y = ȳ. This is a contradiction to y ∈ F (x)\{ȳ}. Therefore,

(x̄, ȳ) ∈ ND(F (X), Q̂). �

Observe from Remark 4.2.7(ii) that SoMin(F (X),�Kcl) ⊆ SoMin(F (X),�Kl ), i.e.,

if x̄ ∈ SoMin(F (X),�Kcl), then x̄ ∈ SoMin(F (X),�Kl ). Therefore, we present the fol-

lowing corollary describing the relationships between strong minimal solutions of (PK)

w.r.t. the certainly lower less relation w.r.t. K(·), i.e., 4Kcl, introduced in Definition

2.2.5 (iii), and nondominated solutions of the set-valued optimization problem intro-

duced in Definition 4.1.1 (i). We omit the proof of this result since it can be proved by

using the same arguments as that one of Theorem 4.3.2.

Corollary 4.3.3. Consider problem (PK) w.r.t. �Kcl, and x̄ ∈ SoMin(F (X),�Kcl).
Suppose that there is ȳ ∈ F (x̄) satisfying condition (4.3). Furthermore, assume that

K : Y ⇒ Y satisfies properties (2.9)- (2.11) and K(ȳ)∩(−K(ȳ)) = {0}. Let Q̂ : X ⇒ Y

be given by (4.1). Then, (x̄, ȳ) ∈ ND(F (X), Q̂).
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Remark 4.3.4. Observe that in [70, Theorem 4.2 and Corollary 4.3] the domination

K(·) is assumed to be such that (2.13) is fulfilled. Whilst, Theorem 4.3.2 and Corollary

4.3.3 show that this condition can be replaced by a weaker assumption, that is the

pointedness of only the set K(ȳ).

On the other hand, under some assumptions we can derive a stronger result. The

next theorem is given in [70], where the domination Q̂′(·) is supposed to be pointed

at every point x ∈ X (compare [70, Theorem 4.4]). However, we can weaken this

assumption as follows:

Theorem 4.3.5. Consider problem (PK) w.r.t. �Kcl, K : Y ⇒ Y , where K(·) satisfies

properties (2.10) and (2.11), and x̄ ∈ SoMin(F (X),�Kcl). Assume that there exists

ȳ ∈ F (x̄) satisfying F (x̄) ⊆ ȳ +K(ȳ). Let Q̂′ : X ⇒ Y given by (4.2) such that

Q̂′(x̄) ∩ (−Q̂′(x̄)) = {0}.

Then, (x̄, ȳ) ∈ Min(F (X), Q̂′).

Proof. Since x̄ ∈ SoMin(F (X),�Kcl), it holds that

∀ x ∈ X \ {x̄} : F (x̄) �Kcl F (x)

⇐⇒ ∀ x ∈ X \ {x̄} : F (x) ⊆
⋂

y∈F (x̄)

(y +K(y))

⇐⇒ ∀ x ∈ X \ {x̄}, ∀ y ∈ F (x̄) : F (x) ⊆ y +K(y). (4.8)

From the assumption F (x̄) ⊆ ȳ+K(ȳ) and taking into account that K(·) satisfies (2.11),

it holds that

∀ y ∈ F (x̄) : y ∈ ȳ +K(ȳ) =⇒ K(y) ⊆ K(ȳ).

This implies

y +K(y) ⊆ ȳ +K(ȳ) +K(ȳ) ⊆ ȳ +K(ȳ),

since K(·) satisfies (2.10). Taking into account (4.8), we get

∀x ∈ X \ {x̄}, ∀ y ∈ F (x̄) : F (x) ⊆ y +K(y) ⊆ ȳ +K(ȳ).

Moreover, because of F (x̄) ⊆ ȳ +K(ȳ), we obtain

F (X) ⊆ ȳ +K(ȳ) ⊆ ȳ + Q̂′(x̄).

Now, we claim that (x̄, ȳ) ∈ Min(F(X), Q̂′). Indeed, suppose that there is x ∈ X

satisfying

ȳ ∈ F (x) + Q̂′(x̄) \ {0}

=⇒ ∃ y ∈ F (x), t ∈ Q̂′(x̄) \ {0} : ȳ = y + t. (4.9)
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Since F (X) ⊆ ȳ + Q̂′(x̄), it holds that

∃ t′ ∈ Q̂′(x̄) : y = ȳ + t′. (4.10)

From (4.9) and (4.10), we get that

t = −t′ ∈ Q̂′(x̄) \ {0} ∩ (−Q̂′(x̄)) = ∅,

which is a contradiction. The proof is complete. �

We illustrate the previous results by Figure 4.2.

x̄ ∈ SoMin(F (X),4Kl )x̄ ∈ SoMin(F (X),4Kcl)
Remark 4.2.7

x̄ ∈ SiMin(F (X),4Kpl)

Q̂′ defined by (4.2)

(x̄, ȳ) ∈ Min(F (X), Q̂′)

Q̂ defined by (4.1)

(x̄, ȳ) ∈ ND(F (X), Q̂)

Theorem 4.3.5 Theorem 4.3.2 Theorem 4.3.1

Figure 4.2: Illustration for Theorems 4.3.1, 4.3.2 and 4.3.5.

In order to derive some relationships between the solution concepts from Definitions

4.2.6 and 4.1.1 in the converse direction, it is necessary to introduce the following

concepts of domination property of a family of sets A ⊆ P(Y ). Note that Luc [85]

introduced the concept of domination property for a set A in a topological vector space

equipped with a proper convex cone, see [85, Definition 4.1]. The following concepts are

utilized in [39] in order to study relationships between optimal solutions according to

the set approach and those ones according to the vector approach, where the solution

concepts of the vector approach is given by Definition 4.1.2.

Definition 4.3.6. [39, 57] Let a family A ⊆ P(Y ) and a relation �Kt , t ∈ {u, l, cu, cl, pu, pl}
be given. We say that

(i) A has the weak domination property w.r.t. �Kt if for each set A ∈ A there

exists a family of sets ΓAA ⊆ A such that ΓAA ⊆ MinY (A,�Kt ) and⋃
{B| B ∈ ΓAA} �Kt A.
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(ii) Ā ⊆ A has the domination property w.r.t. �Kt if MinY (Ā,�Kt ) 6= ∅ and for

each set A ∈ A there exists a set B ∈ MinY (Ā,�Kt ) such that B �Kt A.

Observe that Definition 4.3.6(i) is weaker than Definition 4.3.6(ii) which is first

introduced in [57, Definition 4.9] for constant ordering cones.

In the next theorem, we discuss the relationships between nondominated solutions of

(PQ) (see Definition 4.1.1) and minimal solutions of a set-valued optimization problem

where the solution concept is governed by the relation �Kl (see Definition 2.2.5(i)).

Theorem 4.3.7. Consider problem (PQ), Q : X ⇒ Y , and (x̄, ȳ) ∈ ND(F (X),Q). Let

K : Y ⇒ Y be given by

K(y) :=


⋂

x∈X:y∈F (x)

Q(x) if y ∈ F (X),

{0} if y 6∈ F (X).

(4.11)

Suppose that Min(F (X),�Kl ) 6= ∅ and F(X) := {F (x)| x ∈ X} has the weak domination

property w.r.t. �Kl . Then, there exists x′ ∈ Min(F (X),�Kl ) provided that ȳ ∈ F (x′).

Proof. Since (x̄, ȳ) ∈ ND(F (X),Q), it holds that

ȳ /∈
⋃
x∈X

(F (x) + (Q(x) \ {0})). (4.12)

Taking into account the weak domination property of F(X), it follows that there exists

a family of set F̃(X) ⊆ F(X), F̃(X) ⊆ MinY (F(X),�Kl ) such that⋃
{B| B ∈ F̃(X)} �Kl F (x̄). (4.13)

Let B ∈ F̃(X). Then, there is x∗ ∈ X satisfying B = F (x∗) and x∗ ∈ Min(F (X),�Kl ).

We assume that S̄ is a collection of such x∗. Therefore, S̄ ⊆ Min(F (X),�Kl ) ⊆ X. Let

F (S̄) :=
⋃
{B| B ∈ F̃(X)}. Taking into account (4.13), it holds that F (S̄) �Kl F (x̄).

This is equivalent to

F (x̄) ⊆
⋃

y∈F (S̄)

(y +K(y)).

Since ȳ ∈ F (x̄), there is y ∈ F (x′), x′ ∈ S̄ such that

ȳ ∈ y +K(y) = y +
⋂

{x∈X: y∈F (x)}

Q(x) ⊆ y +Q(x′). (4.14)

(4.12) and (4.14) imply that y = ȳ ∈ F (x′).

In addition, F (x′) ∈ MinY (F (X),�Kl ), i.e., x′ ∈ Min(F (X),�Kl ), and the proof is

complete. �

Note that the idea in the proof of Theorem 4.3.7 is similar to that one of [39,

Theorem 5.1] where the authors used the solution concepts in the sense of Definition
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4.1.2. To this end, we explain the relationships between nondominated solutions of

(PQ) (see Definition 4.1.1) and minimal solutions of a set-valued optimization problem

where the solution concept is governed by the relation �Kcl (see Definition 2.2.5, (iii)).

Theorem 4.3.8. Assume that (x̄, ȳ) ∈ ND(F (X),Q), Q : X ⇒ Y . Suppose that

Min(F (X),�Kcl) 6= ∅ and F(X) has the weak domination property w.r.t. �Kcl with

K : Y ⇒ Y given by (4.11). Then, there is S̄ ⊆ X such that for all x ∈ S̄ : F (x) = {ȳ}
and x ∈ Min(F (X),�Kcl).

Proof. By using the same arguments as in Theorem 4.3.7, it holds that there is

S̄ ⊆ Min((F (X),�Kcl) such that F (S̄) �Kcl F (x̄). Taking into account the definition of

the relation �Kcl, we get

F (x̄) ⊆
⋂

y∈F (S̄)

(y +K(y)).

This yields

∀x ∈ S̄,∀ y ∈ F (x) : ȳ ∈ y +K(y) ⊆ y +Q(x).

Taking into account (x̄, ȳ) ∈ ND(F (X),Q), it holds that ȳ = y. Since this conclusion

holds true for all y ∈ F (x), we obtain for all x ∈ S̄ : F (x) = {ȳ}. �

The following figure illustrates Theorems 4.3.7 and 4.3.8.

∃ x′ : ȳ ∈ F (x′)

x′ ∈ Min((F (X),�Kl )

(x̄, ȳ) ∈ ND(F (X),Q)

∃S̄ ⊆ X : ∀x ∈ S̄ : F (x) = {ȳ}
x ∈ Min(F (X),�Kcl)

K : Y ⇒ Y given by (4.11)

F(X) satisfies weak domination propertyTheorem 4.3.7 Theorem 4.3.8

Figure 4.3: Illustration for Theorems 4.3.7 and 4.3.8.



Chapter 5

Characterizations of Solutions of

Set Optimization Problems by

means of Scalarization

In set optimization w.r.t. fixed cone-valued mappings, both linear and nonlinear scalar-

izing functionals have been used to characterize many set relations, see [40, 45, 46, 56,

65, 72]. It is also interesting to extend these methods to set-valued optimization prob-

lems equipped with variable domination structures. For vector optimization as well as

set-valued optimization equipped with a Bishop-Phelp cone-valued mapping, Eichfelder

[36] and Eichfelder and Pilecka [40] have characterized solutions of these problems by

using nonlinear scalarizing functionals. In addition, Bouza and Tammer [16] have in-

troduced a nonlinear scalarizing functional to characterize and compute minimal points

of a set w.r.t. a variable domination structure.

This chapter presents characterizations of solutions of a set-valued optimization

problem w.r.t. general variable domination structures via scalarization. For this aim,

Section 5.1 introduces corresponding nonlinear scalarizing functionals for six certain set

relations introduced in Definition 2.2.5. In this section, we utilize the proposed func-

tionals to characterize these six relations. Section 5.2 uses the nonlinear functionals

introduced in Section 5.1 to characterize minimal elements of a set in the sense of Defi-

nition 4.2.1. Section 5.3 introduces a minimal time function w.r.t. variable domination

structures, which will be used for the main goal of Chapter 7. Section 5.4 derives a

descent method to find approximate minimal solutions of a set-valued problem w.r.t.

variable domination structures. The results presented within this chapter are based on

[69] and [71].

54
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5.1 Characterizations of Set Relations via Scalarization

Let Y be a linear topological space and K : Y ⇒ Y be a given set-valued map. In

the following, we introduce different kinds of nonlinear scalarizing functionals. These

functionals are used to describe the set relations given in Definition 2.2.5 as well as to

characterize minimal elements of a family of sets in the sense of Definition 4.2.1. Taking

into account the assumptions in Theorem 2.4.2, we suppose in the whole chapter the

following assumption:

(H1) Let A,B ∈ P(Y ),K : Y ⇒ Y and k0 ∈ Y \ {0} such that K(y) is closed for all

y ∈ Y and

∀y ∈ Y : K(y) + (0,+∞)k0 ⊆ K(y).

5.1.1 Characterization of the Lower Set Less Relation

This part introduces appropriate scalarizing functionals generalizing the functional

(2.19) for the relation �Kl given in Definition 4.2.1. Furthermore, we show how these

functionals describe this set relation. For the following results, we define the following

sets for a certain nonempty subset A ⊆ Y

K̃(A) :=
⋃
a∈A
K(a) ⊂ Y, (5.1)

and K(A) :=
⋂
a∈A
K(a) ⊂ Y. (5.2)

In addition, we will use two assumptions concerning the set-valued domination mapping

K : Y ⇒ Y (consequently for K̃(A) and K(A)) and k0 ∈ Y \ {0} as follows:

(H2) Assume that for all A ∈ P(Y ), K̃(A) is a proper closed set and

∀A ∈ P(Y ) : K̃(A) + (0,+∞)k0 ⊆ K̃(A).

(H3) Assume that for all A ∈ P(Y ), K(A) is a proper closed set and

∀A ∈ P(Y ) : K(A) + (0,+∞)k0 ⊆ K(A).

In the next theorem, we give a characterization of �Kl by means of the functional

(2.19) with D = K̃(A) and k = k0, i.e., we consider the functional

zK̃(A),k0
(y) := inf{t ∈ R | y ∈ tk0 − K̃(A)}.

Theorem 5.1.1. [69, Theorem 2] Let A,B ∈ P(Y ), K̃(A) ⊂ Y be given by (5.1) and

k0 ∈ Y \ {0} such that (H2) holds. Assume that K̃(A) + K̃(A) ⊆ K̃(A). Then, it holds

that

A �Kl B =⇒ inf
a∈A

zK̃(A),k0
(a) ≤ inf

b∈B
zK̃(A),k0

(b) .
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Proof. Suppose that A �Kl B holds, i.e.,

∀ b ∈ B ∃ ab ∈ A : b ∈ ab +K(ab).

This implies that

∀ b ∈ B ∃ ab ∈ A : b ∈ ab + K̃(A).

Under the assumption K̃(A) + K̃(A) ⊆ K̃(A), the functional zK̃(A),k0
is K̃(A)-monotone

because of Theorem 2.4.2 (d). Therefore,

∀ b ∈ B ∃ ab ∈ A : zK̃(A),k0
(ab) ≤ zK̃(A),k0

(b),

which yields the assertion

inf
a∈A

zK̃(A),k0
(a) ≤ inf

b∈B
zK̃(A),k0

(b).

�

Remark 5.1.2. Note that the property K̃(A)+ K̃(A) ⊆ K̃(A) does not imply that K̃(A)

is a convex cone. Consider, for instance, the case K̃(A) := N. Then, K̃(A) + K̃(A) ⊆
K̃(A) is fulfilled, but K̃(A) is neither a cone nor a convex set.

Now, we give a characterization of �Kl by means of the functional (2.19) with

D = a+ K̃(A) or D = a+K(A), where A,B ∈ P(Y ) and a ∈ A are given and k = k0.

In other words, we are using the following functionals:

za+K̃(A),k0
(y) := inf{t ∈ R | y ∈ tk0 − (a+ K̃(A))},

and

za+K(A),k0
(y) := inf{t ∈ R | y ∈ tk0 − (a+K(A))}.

Theorem 5.1.3. [69, Theorem 3] Let A,B ∈ P(Y ), K̃(A) and K(A) are given by

(5.1) and (5.2), respectively. In addition, let k0 ∈ Y \ {0} such that (H2) and (H3) are

fulfilled. Then, it holds that

(i) A �Kl B =⇒ sup
b∈B

inf
a∈A

za+K̃(A),k0
(−b) ≤ 0.

(ii) Suppose that infa∈A z
a+K(A),k0

(−b) is attained for all b ∈ B. Then,

sup
b∈B

inf
a∈A

za+K(A),k0
(−b) ≤ 0 =⇒ A �Kl B.

Proof. (i) Suppose that A �Kl B, i.e.,

∀ b ∈ B ∃ ab ∈ A : b ∈ ab +K(ab).



5.1. Characterizations of Set Relations via Scalarization 57

This leads to

∀ b ∈ B ∃ ab ∈ A : ab − b ∈ −K̃(A) .

Because of Theorem 2.4.2 (e), we get

∀ b ∈ B ∃ ab ∈ A : zab+K̃(A),k0
(−b) ≤ 0

and this implies

sup
b∈B

inf
a∈A

za+K̃(A),k0
(−b) ≤ 0 .

(ii) Now, let k0 ∈ K(A) \ {0} be given such that

sup
b∈B

inf
a∈A

za+K(A),k0
(−b) ≤ 0.

That is,

∀ b ∈ B : inf
a∈A

za+K(A),k0
(−b) ≤ 0 .

Because for all b ∈ B, infa∈A z
a+K(A),k0

(−b) is attained, we obtain

∀ b ∈ B ∃ ab ∈ A : zab+K(A),k0
(−b) = inf

a∈A
za+K(A),k0

(−b) ≤ 0 .

By Theorem 2.4.2 (e), we conclude

∀ b ∈ B ∃ ab ∈ A : ab − b ∈ −K(A) ⊆ −K(āb),

which implies that

∀ b ∈ B ∃ āb ∈ A : b ∈ āb +K(āb),

and this means that A �Kl B. �

Remark 5.1.4. Let us note that the property K̃(A) + K̃(A) ⊆ K̃(A) is not needed in

Theorem 5.1.3.

Remark 5.1.5. It is obvious that

∀B ∈ P(Y ) : K̃(B) ⊆ K̃(Y ) and K(Y ) ⊆ K(B).

Then, under the assumptions given by Theorem 5.1.3, we have that

(i)

A �Kl B =⇒ sup
b∈B

inf
a∈A

za+K̃(Y ),k0
(−b) ≤ 0.

(ii) Suppose that inf
a∈A

za+K(Y ),k0
(−b) is attained for all b ∈ B. Then,

sup
b∈B

inf
a∈A

za+K(Y ),k0
(−b) ≤ 0 =⇒ A �Kl B.



5.1. Characterizations of Set Relations via Scalarization 58

We introduce in the following a different scalarizing functional to obtain an equiv-

alence between the set relation �Kl and properties of this functional mentioned in

Theorem 5.1.3. Let A,B ∈ P(Y ), K : Y ⇒ Y , k0 ∈ Y \ {0} such that (H1) holds true.

A new scalarizing functional is defined as follows:

g�
K
l : P(Y )× P(Y )→ R,

g�
K
l (A,B) := sup

b∈B
inf
a∈A

za+K(a),k0
(−b). (5.3)

In (5.3), we are using the functional (2.19) with D = a + K(a), a ∈ A fixed, k = k0,

such that, for b ∈ B, the functional (2.19) has the form

za+K(a),k0
(−b) = inf{t ∈ R| − b ∈ tk0 − (a+K(a))}.

In the following theorem, we show the relationships between the value of this new

functional (5.3) for A,B ∈ P(Y ) and a comparison of sets where A and B are involved

w.r.t. the relation �Kl . We also suppose that assumption (H1) introduced at the

beginning of this chapter holds true.

Theorem 5.1.6. [69, Theorem 4] Consider A,B ∈ P(Y ), a set-valued map K : Y ⇒ Y

and k0 ∈ Y \ {0} such that (H1) holds. Then, the following assertions hold true for all

r ∈ R :

(a) g�
K
l (A,B) ≤ r =⇒

⋃
t>r

(tk0 +B) ⊆
⋃
a∈A

(a+K(a)), i.e., A �Kl
⋃
t>r

(tk0 +B).

(b) rk0 +B ⊆
⋃
a∈A

(a+K(a)) =⇒ g�
K
l (A,B) ≤ r.

Proof. (a) Suppose that g�
K
l (A,B) ≤ r holds true. Consider ε > 0, arbitrarily, but

fixed. We are using the functional g�
K
l (·, ·) given by (5.3). Then, we have that

∀ b ∈ B : inf
a∈A

za+K(a),k0
(−b) < r + ε

⇐⇒ ∀ b ∈ B : inf
a∈A

inf{t ∈ R : b+ tk0 ∈ a+K(a)} < r + ε

⇐⇒ ∀ b ∈ B : ∃ a ∈ A, ∃ l < r + ε : b+ lk0 ∈ a+K(a).

This means that for all b ∈ B there exist an element a ∈ A and an element l < r + ε

such that

b+ (r + ε)k0 = b+ lk0 + (r + ε− l)k0 ∈ a+K(a) + (r + ε− l)k0.

Taking into account the implication

r + ε− l > 0⇒ (r + ε− l)k0 +K(a) ⊆ K(a),
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we get that

b+ (r + ε)k0 ∈ a+K(a).

Thus, ∀ ε > 0,∀ b ∈ B, there is a ∈ A such that b+ (r + ε)k0 ∈ a+K(a), i.e.,⋃
t>r

(tk0 +B) ⊆
⋃
a∈A

(a+K(a)).

(b) Let rk0 +B ⊆
⋃
a∈A

(a+K(a)). It holds

∀ b ∈ B : rk0 + b ∈
⋃
a∈A

(a+K(a))

⇐⇒ ∀ b ∈ B, ∃ ab ∈ A : rk0 + b ∈ ab +K(ab)

=⇒ ∀ b ∈ B : inf
a∈A

inf{t ∈ R : tk0 + b ∈ a+K(a)} ≤ r

=⇒ sup
b∈B

inf
a∈A

inf{t ∈ R : a− b ∈ tk0 −K(a)} ≤ r

⇐⇒ sup
b∈B

inf
a∈A

za+K(a),k0
(−b) ≤ r

The last relation is also equivalent to g�
K
l (A,B) ≤ r. �

Example 5.1.7. [69, Example 2] Let us consider two sets in R2 given by

A := {(y1, y2) ∈ R2| 1 ≤ y1, y2 ≤ 2} and B :=

{
(y1, y2) ∈ R2| 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤

1

2

}
.

Furthermore, a set-valued map K : R2 ⇒ R2 is given by

K(y) :=

R2
+ if y ∈ R2 \ {(2, 2)},

{(d1, d2)| d1 ∈ R, d2 ≥ 0} if y = (2, 2).

We choose k0 := (1, 1) and it satisfies (H1). Obviously, we have that

1 · k0 +B =

{
(y1, y2) ∈ R2| 1 ≤ y1 ≤ 2, 1 ≤ y2 ≤

3

2

}
⊆
⋃
a∈A

(a+K(a)).

Taking into account Theorem 5.1.6 (b), it holds that

g�
K
l (A,B) ≤ 1.

Moreover, from Theorem 5.1.6 (a) we get
⋃
t>1

(tk0 + B) ⊆
⋃
a∈A

(a + K(a)). See Figure

5.1 for an illustration of this example.

Remark 5.1.8. Theorem 5.1.6 states that, if the functional g�
K
l given by (5.3) takes

values that do not exceed r at (A,B), then the set A is smaller (w.r.t. �Kl ) than the

union of all sets which are the movements of B along the direction tk0, where t > r.

However, the conversion is not always true.
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y1

y2

A

B

−1 1 2

1

2

k0

k0 +B

Figure 5.1: Illustration for Example 5.1.7.

In the following, we give an equivalence of the comparison A �Kl B, where A,B ∈
P(Y ) by means of the functional g�

K
l given by (5.3). Note that we again use the

condition (H1) introduced at the beginning of this chapter.

Theorem 5.1.9. [69, Theorem 5] Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0} such

that (H1) holds true. Suppose that
⋃
a∈A

(a+K(a)) is closed. Then,

A �Kl B ⇐⇒ g�
K
l (A,B) ≤ 0.

Proof. Obviously,

A �Kl B ⇐⇒ 0k0 +B ⊆
⋃
a∈A

(a+K(a)).

By Theorem 5.1.6 (b), it holds that

g�
K
l (A,B) ≤ 0.

Now, we prove the sufficient condition. By Theorem 5.1.6 (a), we get that⋃
t>0

(tk0 +B) ⊆
⋃
a∈A

(a+K(a)).

This means the following assertion holds for all n > 0

1

n
k0 +B ⊆

⋃
a∈A

(a+K(a)).

Taking the limit for n→ +∞, we obtain

B ⊆ cl
(⋃
a∈A

(a+K(a))
)

=
⋃
a∈A

(a+K(a)).

Therefore,

B ⊆
⋃
a∈A

(a+K(a)),

i.e., A �Kl B. The proof is complete. �

The following example indicates that even if B = A, g�
K
l (A,B) < 0 can happen.
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Example 5.1.10. [69, Example 3]

Let B := {(y1, y2) ∈ R2| − 1 ≤ y1, y2 ≤ 0 and y1 + y2 ≥ −1} and a set-valued mapping

K : R2 ⇒ R2 be determined as

∀y ∈ R2 : K(y) :=

R2
+ if (y1, y2) ∈ R2 \B,

{(d1, d2) ∈ R2| 0 ≤ d1} if (y1, y2) ∈ B.

Choose k0 := (0, 1). Then, for all b ∈ B, b − tk0 ∈ b + K(b) holds true for all t ∈ R.

Therefore, g�
K
l (B,B) = −∞ since

g�
K
l (B,B) = sup

b∈B
inf
a∈B

inf{t ∈ R| a− b ∈ tk0 −K(a)} = −∞.

See Figure 5.2 for an illustration of this example.

y1

y2

B
b

b+K(b)

k0

Figure 5.2: Illustration for Example 5.1.10.

In addition, if B ∼ A, g�
K
l (A,B) < 0 can hold. This is be illustrated by the

following example.

Example 5.1.11. [69, Example 4] Let A := {(y1, y2) ∈ R2| 1 ≤ y1, y2 ≤ 2 and y1+y2 ≤
3} and B := {(2, y2)| 2 ≤ y2 ≤ 3}

⋃
{(y1, 2)| 2 ≤ y1 ≤ 3}. Let K : R2 ⇒ R2 be

determined as

∀y ∈ R2 : K(y) :=

R2
+ if (y1, y2) ∈ R2 \B,

{(d1, d2) ∈ R2| − 1 ≤ d1,−1 ≤ d2} if (y1, y2) ∈ B.
(5.4)

It is clear that A ∼ B, since A and B are both subsets of the following set⋃
a∈A

(a+K(a)) =
⋃
b∈B

(b+K(b)) = {(d1, d2) ∈ R2| d1 ≥ 1, d2 ≥ 1}.
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Let k0 := (1, 1). Then,

g�
K
l (A,B) = g�

K
l (B,B) = −1 < 0.

For an illustration, see Figure 5.3.

y1

y2

A

B

k0

0−1

−1

1 2

1

2

Figure 5.3: Illustration for Example 5.1.11.

5.1.2 Characterization of the Upper Set Less Relation

In the following theorem, we are using the functional (2.19) with D = −b + K̃(B) or

D = −b + K(B), where A,B ∈ P(Y ) and b ∈ B are given and k = k0. In addition,

we again utilize conditions (H2) and (H3) introduced at the beginning of Section 5.1.1.

The proof is similar to the one given for Theorem 5.1.3 and is therefore skipped.

Theorem 5.1.12. [69, Theorem 6] Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0}
such that (H2) and (H3) hold true. Then,

(i) A �Ku B =⇒ sup
a∈A

inf
b∈B

z−b+K̃(B),k0
(a) ≤ 0.

(ii) Suppose that inf
b∈B

z−b+K(B),k0
(a) is attained for all a ∈ A. Then,

sup
a∈A

inf
b∈B

z−b+K(B),k0
(a) ≤ 0 =⇒ A �Ku B.

Remark 5.1.13. It is obvious that

∀B ∈ P(Y ) : K̃(B) ⊆ K̃(Y ) and K(Y ) ⊆ K(B).

Then, under the assumptions given by Theorem 5.1.12, we have that



5.1. Characterizations of Set Relations via Scalarization 63

(i)

A �Ku B =⇒ sup
a∈A

inf
b∈B

z−b+K̃(Y ),k0
(a) ≤ 0.

(ii) If inf
b∈B

z−b+K(Y ),k0
(a) is attained for all a ∈ A then,

sup
a∈A

inf
b∈B

z−b+K(Y ),k0
(a) ≤ 0 =⇒ A �Ku B.

Observe that we cannot get an equivalent statement in Theorem 5.1.12. Therefore,

we introduce in the following a different scalarizing functional to obtain an equivalence

between the set relation �Ku and properties of this functional.

Now, let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0} such that (H1) holds. We

consider the following functional:

g�
K
u : P(Y )× P(Y )→ R,

defined as

g�
K
u (A,B) := sup

a∈A
inf
b∈B

z−b+K(b),k0
(a). (5.5)

In (5.5), we are using the functional (2.19) with D = −b + K(b), b ∈ B fixed, and

k = k0 such that, for a ∈ A, (2.19) has the form

z−b+K(b),k0
(a) = inf{t ∈ R| a ∈ tk0 − (K(b)− b)}.

Similarly to Theorem 5.1.6, we have the following relationships between the value

of the function g�
K
u given by (5.5) at (A,B), where A,B ∈ P(Y ) and a comparison of

sets in which A and B are involved w.r.t. the relation �Ku . Note that we again utilize

condition (H1) introduced at the beginning of this chapter.

Theorem 5.1.14. [69, Theorem 7] Consider A,B ∈ P(Y ) and let K : Y ⇒ Y and

k0 ∈ Y \{0} such that (H1) holds. Then, the following characterizations of the relation

�Ku by means of the functional g�
K
u given by (5.5) hold true

(a) g�
K
u (A,B) ≤ r =⇒

⋃
t>r

(A− tk0) ⊆
⋃
b∈B

(b−K(b)), i.e.,
⋃
t>r

(A− tk0) �Ku B.

(b) A− rk0 ⊆
⋃
b∈B

(b−K(b)) =⇒ g�
K
u (A,B) ≤ r.

Proof. (a) Let g�
K
u (A,B) ≤ r, and ε > 0 be arbitrary. We are using the functional

g�
K
u (·, ·) given by (5.5). It holds that

∀ a ∈ A : inf
b∈B

z−b+K(b),k0
(a) < r + ε

⇐⇒ ∀ a ∈ A : inf
b∈B

inf{t ∈ R : a− b ∈ tk0 −K(b)} < r + ε

⇐⇒ ∀ a ∈ A,∃ b ∈ B, ∃ l < r + ε : a− lk0 ∈ b−K(b).
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This means that for all a ∈ A there exist elements b ∈ B and l < r + ε such that

a− (r + ε)k0 = a− lk0 − (r + ε− l)k0

∈ b− (K(b) + (r + ε− l)k0)

⊆ b−K(b).

Therefore,

∀ ε > 0, ∀ a ∈ A, ∃ b ∈ B : a− (r + ε)k0 ∈ b−K(b)

⇐⇒
⋃
t>r

(A− tk0) ⊆
⋃
b∈B

(b−K(b)).

(b) Let A− rk0 ⊆
⋃
b∈B

(b−K(b)). It holds that

∀ a ∈ A : a− rk0 ∈
⋃
b∈B

(b−K(b))

⇐⇒ ∀ a ∈ A, ∃ ba ∈ B : a− rk0 ∈ ba −K(ba)

=⇒ ∀ a ∈ A, inf
b∈B

inf{t ∈ R : a− tk0 ∈ b−K(b)} ≤ r

=⇒ sup
a∈A

inf
b∈B

inf{t ∈ R : a− b ∈ tk0 −K(b)} ≤ r

⇐⇒ g�
K
u (A,B) ≤ r.

The proof is complete. �

The following example depicts the above result for the case r = 2.

Example 5.1.15. [69, Example 5] Let A,B ∈ P(R2) be determined by

A := {(y1, y2) ∈ R2| (y1 − 6)2 + (y2 − 1)2 ≤ 1},

and

B := {(y1, y2) ∈ R2| 3 ≤ y1 ≤ 5, 3 ≤ y2 ≤ 4}.

Let a set-valued mapping K : R2 ⇒ R2 be given by

K(y) =

{(d1, d2) ∈ R2| 0 ≤ d1 ≤ d2} if y 6= (5, 3),

R2
+ if y = (5, 3).

Choose k0 = (1, 1). Obviously,

∀y ∈ R2, ∀t ∈ [0,+∞) : tk0 +K(y) ⊆ K(y).

We have that A − 2k0 ⊆
⋃
b∈B

(b − K(b)). By Theorem 5.1.14(b), g�
K
u (A,B) ≤ 2. Fur-

thermore, the following assertion also holds true⋃
t>2

(A− tk0) ⊆
⋃
b∈B

(b−K(b)).

For an illustration of this example, see Figure 5.4.
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y1

y2

A

B

−2k0 +A
−2k0

∪
b∈B
{b−K(b)}

0

Figure 5.4: Illustration for Example 5.1.15.

The comparison A �Ku B can be described by an equivalent assertion by means of

the functional g�
K
u given by (5.5) as follows:

Theorem 5.1.16. [69, Theorem 8] Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0}
such that (H1) holds. Suppose that

⋃
b∈B

(b−K(b)) is closed. Then, it holds that

A �Ku B ⇐⇒ g�
K
u (A,B) ≤ 0.

Proof. The necessary condition is a consequence of Theorem 5.1.14(b) with r := 0.

Now, we prove the sufficient condition. Let g�
K
u (A,B) ≤ 0. By Theorem 5.1.14(a), it

holds that ⋃
t>0

(A− tk0) ⊆
⋃
b∈B

(b−K(b)).

This means that for all n > 0, we have

(A− 1

n
k0) ⊆

⋃
b∈B

(b−K(b)).

Taking the limit when n→ +∞ we obtain

A ⊆ cl
(⋃
b∈B

(b−K(b))
)

=
⋃
b∈B

(b−K(b)).

Therefore, A ⊆
⋃
b∈A

(b−K(b)), i.e., A �Ku B. The proof is complete.

�

5.1.3 Characterization of the Certainly Lower Less Relation

Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0} such that (H1) introduced at the

beginning of this chapter holds. We consider a scalarizing functional

g�
K
cl : P(Y )× P(Y )→ R,
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defined as

g�
K
cl(A,B) := sup

(a,b)∈A×B
za+K(a),k0

(−b). (5.6)

In (5.6), we are using the functional (2.19) with D = a+K(a), a ∈ A fixed, and k = k0.

The following result describes the relationships between the value of the functional g�
K
cl

given by (5.6) at (A,B), where A,B ∈ P(Y ) and the comparison of sets where A,B

are involved w.r.t. the relation �Kcl.

Theorem 5.1.17. [69, Theorem 9] Consider A,B ∈ P(Y ) and let K : Y ⇒ Y and

k0 ∈ Y \{0} such that (H1) holds. Then, the following characterizations of the relation

�Kcl by means of the functional g�
K
cl given by (5.6) hold true

(a) g�
K
cl(A,B) ≤ r =⇒

⋃
t>r

(tk0 +B) ⊆
⋂
a∈A

(a+K(a)), i.e., A �Kcl
⋃
t>r

(tk0 +B).

(b) rk0 +B ⊆
⋂
a∈A

(a+K(a)) =⇒ g�
K
cl(A,B) ≤ r.

Proof. (a) Let g�
K
cl(A,B) ≤ r and ε > 0, arbitrary. It holds that

∀ b ∈ B : sup
a∈A

za+K(a),k0
(−b) < r + ε

⇐⇒ ∀ b ∈ B : sup
a∈A

inf{t ∈ R : b+ tk0 ∈ a+K(a)} < r + ε

⇐⇒ ∀ b ∈ B : ∀a ∈ A,∃ l < r + ε : b+ lk0 ∈ a+K(a).

We have that

b+ (r + ε)k0 = b+ lk0 + (r + ε− l)k0 ∈ a+K(a) + (r + ε− l)k0.

Taking into account the implication

r + ε− l > 0 =⇒ (r + ε− l)k0) +K(a) ⊆ K(a),

we get that

b+ (r + ε)k0 ∈ a+K(a).

Thus, ∀ ε > 0,∀ b ∈ B, ∀a ∈ A it holds that b+ (r + ε)k0 ∈ a+K(a), i.e.,⋃
t>r

(tk0 +B) ⊆
⋂
a∈A

(a+K(a)).
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(b) Let rk0 +B ⊆
⋂
a∈A

(a+K(a)). We have that

∀ b ∈ B : rk0 + b ∈
⋂
a∈A

(a+K(a))

⇐⇒ ∀ b ∈ B, ∀a ∈ A : rk0 + b ∈ a+K(a)

=⇒ ∀ b ∈ B, sup
a∈A

inf{t ∈ R : tk0 + b ∈ a+K(a)} ≤ r

=⇒ sup
(a,b)∈A×B

inf{t ∈ R : a− b ∈ tk0 −K(a)} ≤ r

⇐⇒ sup
(a,b)∈A×B

za+K(a),k0
(−b) ≤ r.

Obviously, the last relation is equivalent to g�
K
cl(A,B) ≤ r. �

We also get a similar result for the comparison A �Kcl B by means of the functional

g�
K
cl given by (5.6) as follows:

Theorem 5.1.18. [69, Theorem 10] Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0}
such that (H1) holds. Then, it holds that

A �Kcl B ⇐⇒ g�
K
cl(A,B) ≤ 0.

Proof. Since for all a ∈ A, K(a) is closed,
⋂
a∈A

(a+K(a)) is closed. Therefore, we apply

Theorem 5.1.17 and use the same arguments as in the proof of Theorem 5.1.9 to get

the desired conclusion. �

5.1.4 Characterization of the Certainly Upper Less Relation

Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0} such that (H1) introduced at the

beginning of this chapter holds. We consider a scalarizing functional

g�
K
cu : P(Y )× P(Y )→ R,

defined as

g�
K
cu(A,B) := sup

(a,b)∈A×B
z−b+K(b),k0

(a). (5.7)

In (5.7), we are using the functional (2.19) with D = −b+K(b), b ∈ B fixed, and k = k0.

Similary to Theorem 5.1.17 and Theorem 5.1.18, we get the following relationships

between the value of the function g�
K
cu given by (5.7) at (A,B), where A,B ∈ P(Y )

and a comparison of sets where A and B are involved w.r.t. the relation �Kcu.

Theorem 5.1.19. [69, Theorems 11 and 12] Consider A,B ∈ P(Y ) and let K : Y ⇒ Y ,

k0 ∈ Y \ {0} be given such that (H1) holds. Then, the following characterizations of

the relation �Kcu by means of the functional g�
K
cu given by (5.7) hold true
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(a) g�
K
cu(A,B) ≤ r =⇒

⋃
t>r

(A− tk0) ⊆
⋂
b∈B

(b−K(b)), i.e.,
⋃
t>r

(A− tk0) �Kcu B.

(b) A− rk0 ⊆
⋂
b∈B

(b−K(b)) =⇒ g�
K
cu(A,B) ≤ r.

(c) A �Kcu B ⇐⇒ g�
K
cu(A,B) ≤ 0.

5.1.5 Characterization of the Possibly Lower Less Relation

Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0} such that (H1) introduced at the

beginning of this chapter is fulfilled. In this section, we consider the following scalarizing

functional

g�
K
pl : P(Y )× P(Y )→ R,

defined as

g�
K
pl(A,B) := inf

(a,b)∈A×B
za+K(a),k0

(−b). (5.8)

In (5.8), we are using the functional (2.19) with D = a + K(a), a ∈ A fixed, and

k = k0.

The following theorem illustrates the relationships between the value of the functional

g�
K
pl given by (5.8) at (A,B), where A,B ∈ P(Y ) and a comparison of sets where A

and B are involved w.r.t. the relation �Kpl.

Theorem 5.1.20. [69, Theorem 13] Consider A,B ∈ P(Y ) and let K : Y ⇒ Y and

k0 ∈ Y \ {0} such that (H1) holds. Then, the following assertions hold true

(a) g�
K
pl(A,B) ≤ r =⇒

⋃
t>r
{tk0} ⊆

⋃
(a,b)∈A×B

(a+K(a)− b).

(b) rk0 ∈
⋃

(a,b)∈A×B
(a+K(a)− b) =⇒ g�

K
pl(A,B) ≤ r.

Proof. (a) Let g�
K
pl(A,B) ≤ r and ε > 0, arbitrary. It yields

∃ b ∈ B : inf
a∈A

za+K(a),k0
(−b) < r + ε

⇐⇒ ∃ b ∈ B : inf
a∈A

inf{t ∈ R| b+ tk0 ∈ a+K(a)} < r + ε

⇐⇒ ∃ b ∈ B, ∃a ∈ A,∃ l < r + ε : b+ lk0 ∈ a+K(a).

Taking into account the implication r + ε − l > 0 ⇒ (r + ε − l)k0 + K(a) ⊆ K(a), we

get

b+ (r + ε)k0 = b+ lk0 + (r + ε− l)k0 ∈ a+K(a) + (r + ε− l)k0

=⇒ b+ (r + ε)k0 ∈ a+K(a).
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Thus, ∀ ε > 0,∃ b ∈ B, ∃ a ∈ A it holds that b+ (r + ε)k0 ∈ a+K(a), i.e.,⋃
t>r

{tk0} ⊆
⋃

(a,b)∈A×B

(a+K(a)− b).

(b) Let rk0 ∈ ∪
(a,b)∈A×B

(a+K(a)− b). It holds that

∃ (a, b) ∈ A×B : rk0 ∈ (a+K(a)− b)

⇐⇒ ∃ (a, b) ∈ A×B : tk0 + b ∈ a+K(a)

=⇒ inf
(a,b)∈A×B

inf{t ∈ R : a− b ∈ tk0 −K(a)} ≤ r

⇐⇒ inf
(a,b)∈A×B

za+K(a),k0
(−b) ≤ r.

The last relation is equivalent to g�
K
pl(A,B) ≤ r. �

Furthermore, the comparison A �Kpl B, where A,B ∈ P(Y ) can be described by an

equivalent statement as follows:

Theorem 5.1.21. [69, Theorem 14] Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0}
such that (H1) holds. Suppose that for all A,B ∈ P(Y ),

⋃
(a,b)∈A×B

(a + K(a) − b) is

closed. Then, we have the following characterization of the relation �Kpl be means of

the functional g�
K
pl given by (5.8)

A �Kpl B ⇐⇒ g�
K
pl(A,B) ≤ 0.

Proof. Suppose that A �Kpl B. Then, we get that

∃ (a, b) ∈ A×B : b ∈ a+K(a).

This is equivalent to 0k0 ∈
⋃

a∈A×B
(a+K(a)− b). Applying Theorem 5.1.20 (b), we have

that

inf
(a,b)∈A×B

za+K(a),k0
(−b) ≤ 0.

Conversely, assume that inf
(a,b)∈A×B

za+K(a),k0
(−b) ≤ 0. Taking into account Theorem

5.1.20 (a), we get that ⋃
t>0

{tk0} ⊆
⋃

(a,b)∈A×B

(a+K(a)− b).

Therefore, for all t = 1
n , n > 0 it holds that

1

n
k0 ∈

⋃
(a,b)∈A×B

(a+K(a)− b).
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Let n→ +∞, we have that

0 ∈ cl
( ⋃

(a,b)∈A×B

(a+K(a)− b)
)
.

Taking into account
⋃

(a,b)∈A×B
(a+K(a)− b) is closed, it holds that

0 ∈
⋃

(a,b)∈A×B

(a+K(a)− b), i.e., A �Kpl B.

The proof is complete. �

5.1.6 Characterization of the Possibly Upper Less Relation

Consiser A,B ∈ P(Y ), K : Y ⇒ Y , k0 ∈ Y \ {0} such that (H1) introduced at the

beginning of this chapter holds and set

g�
K
pu : P(Y )× P(Y )→ R,

defined as

g�
K
pu(A,B) := inf

(a,b)∈A×B
z−b+K(b),k0

(a). (5.9)

In (5.9), we are using the functional (2.19) with D = −b + K(b), b ∈ B fixed, and

k = k0.

The following results illustrate some relationships between the value of the function

g�
K
pu given by (5.9) at (A,B), where A,B ∈ P(Y ) and a comparison of sets where A

and B are involved w.r.t. the relation �Kpu. Since their proofs are similar to that of

Theorems 5.1.20 and 5.1.21, we skip them in this part.

Theorem 5.1.22. [69, Theorems 15]Consider A,B ∈ P(Y ) and let K : Y ⇒ Y and

k0 ∈ Y \ {0} such that (H1) holds. Then, the following assertions hold true

(a) g�
K
pu(A,B) ≤ r =⇒

⋃
t>r
{tk0} ⊆

⋃
(a,b)∈A×B

(a− b+K(b)).

(b) rk0 ∈
⋃

(a,b)∈A×B
(a− b+K(b)) =⇒ g�

K
pu(A,B) ≤ r.

In addition, we obtain the equivalent condition for the assertion A �Kpu B by means

of the functional g�
K
pu given in (5.9) as follows:

Theorem 5.1.23. [69, Theorem 16] Let A,B ∈ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0}
such that (H1) holds. Suppose

⋃
(a,b)∈A×B

(a − b + K(b)) is closed. Then, we have the

following characterization of the relation �Kpu be means of the functional g�
K
pu given by

(5.9):

A �Kpu B ⇐⇒ g�
K
pu(A,B) ≤ 0.
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5.2 Characterizations of Minimal Elements defined by Set

Relations

The preceding section shows how we characterize set relations using different nonlinear

functionals of type (2.19). Since these relations are used to define minimal elements of

a family of sets in the sense of Definition 4.2.1, in the following we characterize these

minimal elements by means of the corresponding nonlinear functionals. In this part, we

again utilize condition (H1) introduced at the beginning of this chapter and consider

the relation �Kt being reflexive and transitive, where t ∈ {l, u, cl, cu, pl, pu}.

Theorem 5.2.1. [69, Theorem 17] Let A ⊆ P(Y ), K : Y ⇒ Y and k0 ∈ Y \ {0} such

that (H1) holds true. Assume that for A ∈ A,
⋃
a∈A

(a+K(a)) is closed. Then,

(a) Ā ∈ MinY (A,�Kl ) if and only if

∀A ∈ A, A 6∼ Ā : g�
K
l (A, Ā) > 0.

(b) Ā ∈ SoMinY (A,�Kl ) if and only if

∀A ∈ A : g�
K
l (Ā, A) ≤ 0.

(c) Ā ∈ SiMinY (A,�Kl ) if and only if

∀A ∈ A, A ∈ A \ Ā : g�
K
l (A, Ā) > 0.

Proof. (a) Let Ā ∈ MinY (A,�Kl ). We are using the definition of g�
K
l given by (5.3).

Suppose by contradiction that

∃ A ∈ A, A 6∼ Ā : g�
K
l (A, Ā) ≤ 0,

i.e., ∃ A ∈ A, A 6∼ Ā : sup
d∈Ā

inf
a∈A

za+K(a),k0
(−d) ≤ 0.

By Theorem 5.1.9, it holds that

sup
d∈Ā

inf
a∈A

za+K(a),k0
(−d) ≤ 0 =⇒ A �Kl Ā.

Since Ā ∈ MinY (A,�Kl ), Ā �Kl A. Thus, A ∼ Ā, a contradiction.

Conversely, assume that

∀ A ∈ A, A 6∼ Ā : g�
K
l (A, Ā) > 0 and Ā /∈ MinY (A,�Kl ),

i.e., ∀ A ∈ A, A 6∼ Ā : sup
d∈Ā

inf
a∈A

za+K(a),k0
(−d) > 0 and Ā /∈ MinY (A,�Kl ).

We have the following implication

Ā /∈ MinY (A,�Kl ) =⇒ ∃ A ∈ A, A �Kl Ā and Ā 6�Kl A.
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A ∈ MinY (A,�Kt ) A ∈ SoMinY (A,�Kt ) A ∈ SiMinY (A,�Kt )

t = l,

∀A 6∼ Ā :

g�
K
t (A, Ā) > 0

∀A ∈ A :

g�
K
t (Ā, A) ≤ 0

∀A ∈ A \ {Ā} :

g�
K
t (A, Ā) > 0

∪
a∈A

(a+K(a)) is closed

t = u,

∪
b∈B

(b−K(b)) is closed

t = cl

t = cu

t = pl,

∪
a∈A

(a+K(a)− b) is closed

t = pu,
∪

(a,b)∈A×B
(a− b+K(b))

is closed

Table 5.1: Characterizations of minimal elements defined by set relations w.r.t. variable

domination structures [69, Table 1 ].

By Theorem 5.1.9, it holds that

A �Kl Ā =⇒ sup
d∈Ā

inf
a∈A

za+K(a),k0
(−d) ≤ 0, a contradiction.

(b) It implies directly from the definition of �Kl and Theorem 5.1.9.

(c) This part is proved analogously to part (a). �

As for �Kt , where t ∈ {u, cl, cu, pl, pu} we can also obtain similar results as Theorem

5.2.1. We illustrate them by the following table, which describes characterizations

for elements in MinY (A,�Kt ), SoMinY (A,�Kt ) and SiMinY (A,�Kt ) by means of the

corresponding scalarizing functionals. We again utilize condition (H1) introduced at

the beginning of this chapter.

Proposition 5.2.2. [69, Proposition 3] Let Y be a linear topological space and A be a

nonempty subset of P(Y ). Suppose that K : Y ⇒ Y and k0 are given such that (H1) is

fulfilled. Assume Ā ∈ SiMinY (A,�Kt ), �Kt is reflexive, t ∈ {l, u, cl, cu, pl, pu} and the

corresponding closedness assumptions given in Table 5.1 are satisfied, then

g�
K
t (Ā, Ā) = Min

V ∈A
g�
K
t (V, Ā).

Proof. Since Ā ∈ SiMinY (A,�Kt ), t ∈ {l, u, cl, cu, pl, pu}, we have that for all A 6= Ā

the following assertion holds true:

g�Kt (A, Ā) > 0.

On the other hand, because �Kt is reflexive, we have that Ā �Kt Ā and therefore

g�
K
t (Ā, Ā) ≤ 0. Thus,

g�
K
t (Ā, Ā) = Min

V ∈A
g�
K
t (V, Ā).
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�

Note that in vector optimization w.r.t. variable ordering structure, Tammer and Bouza

in [16] have introduced a nonlinear scalarization which gets zero value at the minimal

points of a given set. We also obtain this result by using our scalarizing functional for

the relations �Kl and �Ku as follows:

Proposition 5.2.3. [69, Proposition 4] Let Y be a linear topological space, A ⊂ Y be

a nonempty set, K : Y ⇒ Y and k0 ∈ Y \ {0} such that for all y ∈ Y, K(y) is a closed

convex pointed cone and (H1) holds. Then,

(a) If ȳ is a minimal element of A and k0 ∈ K(ȳ) \ {0}, then

g�
K
u ({ȳ}, {ȳ}) = 0.

(b) If ȳ is a nondominated element of A and k0 ∈ K(ȳ) \ {0}, then

g�
K
l ({ȳ}, {ȳ}) = 0.

Proof. We consider A is a family of singleton sets and we only prove part (a) since

part (b) can be done by similar lines. By Remark 4.2.2, {ȳ} ∈ SiMinY (A,�Ku ). Taking

into account Theorem 5.1.16 and {ȳ} �Ku {ȳ}, it hold that g�
K
u ({ȳ}, {ȳ}) ≤ 0. Now, we

assume that g�
K
u ({ȳ}, {ȳ}) < 0. Then, there exists t < 0 such that ȳ − ȳ ∈ tk0 −K(ȳ).

This implies that tk0 ∈ K(ȳ). On the other hand, since K(ȳ) is a cone, k0 ∈ K(ȳ)

and −t > 0, we get that −tk0 ∈ K(ȳ). Therefore, tk0 ∈ K(ȳ) ∩ (−K(ȳ)). Taking into

account K(ȳ) is pointed, it holds that k0 = 0, a contradiction. �

Recently, [46, 64] have introduced some useful scalarizing functionals in order to

investigate well-posedness properties for set optimization problems equipped with fixed

cones. This will be further discussed in the next section as well as in Chapter 7.

5.3 A Directional Minimal Time Function w.r.t. Variable

Domination Structures

This section introduces an other useful scalarizing functional and investigates several

properties of this functional. We will show that this functional has an important

property that the scalarizing functionals given in the previous parts do not have, that

is, the value of this functional at a minimal point is zero. This property beneficial for

us to derive the equivalence between well-posedness property of set-valued optimization

problems and that of scalar optimization problems in Section 7.2. For the purpose of

the shortness and the main goal in Chapter 7, we only concern the set relation �Kl in

this part. The content of this section is based on Köbis, Le, Tammer and Yao [71].
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Let A,B ∈ P(Y ) and k0 ∈ Y \ {0} such that (H1) introduced at the beginning of

this chapter holds true. We consider a scalarizing map

ϕk0 : P(Y )× P(Y )→ R ∪ {+∞}

given by

ϕk0(A,B) = inf{t≥ 0| A �Kl tk0 +B}, (5.10)

where inf(∅) = +∞.
If there is no confusion, from now, for k0 satisfying (H1) and B ∈ P(Y ) fixed, we

write

ϕk0,B(A) := ϕk0(A,B) = inf{t ≥ 0| A �Kl tk0 +B}. (5.11)

Remark 5.3.1. Obviously, when A = {y}, B = {0} and for all z ∈ Y, K(z) = Q, where

Q is a proper closed set in Y instead of taking the infimum over t ∈ R+ in (5.11), we

take the infimum over t ∈ R of the set {A �Kl tk0 + B} to receive the value zQ,k
0
(y)

determined by (2.19).

It is important to mention that, if A ∈ P(Y ), B = {y}, and for every z ∈ Y,

K(z) = {0}, then the scalarizing functional given by (5.10) becomes the directional

minimal time function

Tk0(A, y) := ϕk0(A, y) = inf{t ≥ 0| tk0 + y ∈ A}, (5.12)

which is introduced by Nam and Zălinescu in [92]. The functional (5.12) is called di-

rectional minimal time function. Moreover, the functional (5.12) has an interesting

application in locational analysis, see [92] for more details. Recently, Durea, Pantiruc

and Strugariu [28] have generalized the functional (5.12) to the case of a set of direc-

tions. As for the functional (5.10), we illustrate in the following another application in

location problems of the functional ϕk0,B(A), where B is a fixed singleton set, B = {y},
and some uncertain conditions are involved.

Suppose that A1, ..., An are n concerned destinations. In addition, we denote by vector

y ∈ Y the producer who wants to deliver some products (clothes, food, furniture,...)

to these destinations. Each destination Ai has its direction ki, where i ∈ {1, 2, ..., n}.
Assume that K : Y ⇒ Y is a set-valued mapping which describes the changes acting

on each point z ∈ Y during the considered time. These changes often appear in many

practical problems, for instance, traffic jams, renovation plans, weather conditions and

so on. We suppose that the relation y + tki ∈
⋃
a∈Ai

(a + K(a)), i.e., Ai �Kl y + tki,

means that the producer y delivers the products to the target Ai successfully, where

i ∈ {1, 2, ..., n}. Then, the problem of finding the point y ∈ Ω such that the total time
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for the vector y to deliver products to the target sets {A1, .., An} can be modeled as

follows:

Minimize
∑

i=1,...,n

ϕki(Ai, y) subject to y ∈ Ω.

Figure 5.5 depicts this model of location optimization for the case n = 5. We call that

A2

∪
a2∈A2

(a2 +K(a2))

A1

∪
a1∈A1

(a1 +K(a1))

k1

k2

k3

k4

k5

y Ω

A4

∪
a4∈A4

(a4 +K(a4))

A5

∪
a5∈A5

(a5 +K(a5))

∪
a3∈A3

(a3 +K(a3))A3

Figure 5.5: A model of location optimization w.r.t. variable domination structures.

ϕk0,B is �Kl -monotone if

A1, A2 ∈ P(Y ), A1 �Kl A2 =⇒ ϕk0,B(A1) ≤ ϕk0,B(A2).

In the following theorem, we use condition (H1) introduced at the beginning of this

chapter and present several properties of the functional ϕk0,B given by (5.11).

Theorem 5.3.2. [71, Theorem 3.8] Let A,A1, A2, B ∈ P(Y ) and the set-valued map

K : Y ⇒ Y be given. Suppose that k0 ∈ Y \ {0} such that (H1) holds. Then, the

following properties of the functional ϕk0,B are satisfied.
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(a) If K(·) satisfies the conditions (2.10) and (2.11), then

ϕk0,B is �Kl -monotone.

In addition,

A1 ∼ A2 =⇒ ϕk0,B(A1) = ϕk0,B(A2).

(b) If K(y+ tk0) = K(y) for all y ∈ Y and t ∈ R, then ϕk0,B(A+ rk0) = ϕk0,B(A)+ r

for all r ∈ R+.

(c) For all r ∈ R+, it holds that

ϕk0,B(A) ≤ r ⇐⇒
⋃
t>r

(tk0 +B) ⊆
⋃
a∈A

(a+K(a)).

(d) If K(·) satisfies (2.9), then ϕk0,B(B)=0.

(e) Suppose that for all A ∈ P(Y ) the set
⋃
a∈A(a+K(a)) is closed and K(·) satisfies

(2.9), (2.10) and (2.11). Then,

ϕk0,B(A)=0 ⇐⇒ A �Kl B.

(f) Let A,B ∈ K(Y ). Suppose that K(·) satisfies (2.9), (2.10) and (2.11). Then,

A ∼ B ⇐⇒
⋃
a∈A

(a+K(a)) =
⋃
b∈B

(b+K(b)).

(g) If B is K(A)-bounded and for all r > 0, it holds that r intK(A) +K(A) ⊆ K(A),

then ϕk0,B(A) < +∞ for all k0 ∈ intK(A).

Proof. (a) Let A1, A2 ∈ P(Y ) such that A1 �Kl A2. It is sufficient to prove that

{t ∈ R+| A1 �Kl tk0 +B} ⊇ {t ∈ R+| A2 �Kl tk0 +B}.

The above assertion is obvious if {t ∈ R+| A2 �Kl tk0 + B} = ∅. Now, we consider the

case {t ∈ R+| A2 �Kl tk0 +B} 6= ∅. Let t ∈ R+ such that A2 �Kl tk0 +B. This implies

tk0 + B ⊆
⋃
a∈A2

(a + K(a)), i.e., for arbitrary b ∈ B, there exists a2
b ∈ A2 satisfying

tk0 + b ∈ a2
b + K(a2

b). Since A1 �Kl A2 and a2
b ∈ A2, we obtain ∃ a1

b ∈ A1 such that

a2
b ∈ a1

b +K(a1
b), i.e., ∃ d1 ∈ K(a1

b) satisfies a2
b = a1

b + d1. We have that

tk0 + b ∈ a1
b + d1 +K(a1

b + d1) ⊆ a1
b +K(a1

b) +K(a1
b + d1)

⊆ a1
b +K(a1

b) ⊆
⋃
a∈A1

(a+K(a)).
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Therefore,

tk0 +B ⊆
⋃
a∈A1

(a+K(a))

=⇒ A1 �Kl tk0 +B

⇐⇒ t ∈ {t ∈ R+| A1 �Kl tk0 +B}.

Taking into account that t be arbitrarily chosen in R+ and A2 �Kl tk0 + B, it holds

that

{t ∈ R+| A1 �Kl tk0 +B} ⊇ {t ∈ R+| A2 �Kl tk0 +B}

=⇒ inf{t ∈ R+| A1 �Kl tk0 +B} ≤ inf{t ∈ R+| A2 �Kl tk0 +B}

⇐⇒ ϕk0,B(A1) ≤ ϕk0,B(A2), i.e., ϕk0,Bis �Kl -monotone.

Now, we prove the second assertion. Suppose that A1 ∼ A2, by the observation that

A1 ∼ A2 ⇐⇒ A1 �Kl A2 and A2 �Kl A1,

and taking into account the �Kl −monotonicity of ϕk0,B, it holds that

ϕk0,B(A1) ≤ ϕk0,B(A2) and ϕk0,B(A2) ≤ ϕk0,B(A1), respectively.

Hence, ϕk0,B(A1) = ϕk0,B(A2).

(b) Let t̂ ∈ R+ such that A �Kl t̂k0 +B. It holds that

t̂k0 +B ⊆
⋃
a∈A

(a+K(a))

⇐⇒ (t̂+ r)k0 +B ⊆
⋃
a∈A

(a+ rk0 +K(a))

⇐⇒ (t̂+ r)k0 +B ⊆
⋃
a∈A

(a+ rk0 +K(a+ rk0))

⇐⇒ (t̂+ r) ∈ {t ∈ R+| A+ rk0 �Kl tk0 +B}.

Therefore, {t ∈ R+| A �Kl tk0 +B}+ r = {t ∈ R+| A+ rk0 �Kl tk0 +B}.
Taking the infimum over t ∈ R+, we get

inf{{t ∈ R+| A �Kl tk0 +B}+ r} = inf{t ∈ R+| A+ rk0 �Kl tk0 +B}.

This yields ϕk0,B(A) + r = ϕk0,B(A+ rk0).

(c) Suppose that ϕk0,B(A) = u and r ∈ R+ such that u ≤ r.
We prove that the following assertion holds true for all t > u:

tk0 +B ⊆
⋃
a∈A

(a+K(a)).
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By the definition of infimum and ϕk0,B(A), there is t̄, u ≤ t̄ < t such that

A �Kl t̄k0 +B, i.e., t̄k0 +B ⊆
⋃
a∈A

(a+K(a)).

Therefore,

tk0 +B = t̄k0 +B + (t− t̄)k0 ⊆
⋃
a∈A

(a+K(a)) + (t− t̄)k0.

Taking into account (H1) we get that⋃
a∈A

(a+K(a)) + (t− t̄)k0 ⊆
⋃
a∈A

(a+K(a)).

This implies

tk0 +B ⊆
⋃
a∈A

(a+K(a)), i.e., A �Kl tk0 +B.

Now, let t > r arbitrary. Since r ≥ u, t > u and thus tk0 + B ⊆
⋃
a∈A

(a + K(a)).

This implies
⋃
t>r

(tk0 + B) ⊆
⋃
a∈A

(a + K(a)), which finishes the proof of the necessary

condition.

Now, we prove the sufficient condition. Assume by contradiction that⋃
t>r

(tk0 +B) ⊆
⋃
a∈A

(a+K(a)) and ϕk0,B(A) = v > r.

Let ε := v − r > 0 and v′ := r + ε
2 . We have that

v > v′ > r and v′k0 +B ⊆
⋃
a∈A

(a+K(a)), i.e., A �Kl v′k0 +B.

Taking into account the definition of �Kl , it holds that

ϕk0,B(A) = inf{t ∈ R+ | A �Kl tk0 +B} ≤ v′.

Therefore, ϕk0,B(A) ≤ v′ < v, a contradiction, and the proof of the sufficient condition

is complete.

(d) Obviously, the following relations hold true for all t > 0

tk0 +B =
⋃
b∈B

(b+ 0 + tk0) ⊆
⋃
b∈B

(b+K(b) + tk0)

⊆
⋃
b∈B

(b+K(b)).

Then, ⋃
t>0

(tk0 +B) ⊆
⋃
b∈B

(b+K(b)).

Taking into account part (c), we get that ϕk0,B(B) ≤ 0. In addition, since the definition

of ϕk0,B(B), ϕk0,B(B) ≥ 0. Therefore, ϕk0,B(B) = 0.
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(e) The sufficient condition is a consequence of part (a) and part (d).

Conversely, if ϕk0,B(A)=0, by part (c) it holds that⋃
t>0

(tk0 +B) ⊆
⋃
a∈A

(a+K(a)).

Take b ∈ B arbitrary, it is clear that for all n > 0 we have

1

n
k0 + b ⊆

⋃
a∈A

(a+K(a)).

Therefore, taking the limit when n→ +∞ we obtain

b ∈ cl
( ⋃
a∈A

(a+K(a))
)

=
⋃
a∈A

(a+K(a)).

Thus, B ⊆
⋃
a∈A

(a+K(a)), i.e., A �Kl B.

(f) A ∼ B implies that A �Kl B, i.e., B ⊆
⋃
a∈A

(a + K(a)). Let b ∈ B arbitrary.

There exist ab ∈ A and db ∈ K(ab) such that b = ab + db. Since K satisfies (2.11),

K(b) = K(ab + db) ⊆ K(ab). Taking into account that K satisfies (2.10), we have

b+K(b) = ab + db +K(b)

⊆ ab +K(ab) +K(ab)

⊆ ab +K(ab).

Therefore, b+K(b) ⊆
⋃
a∈A

(a+K(a)). Because b is taken arbitrarily, it holds that

⋃
b∈B

(b+K(b)) ⊆
⋃
a∈A

(a+K(a)).

Similarly, we get ⋃
a∈A

(a+K(a)) ⊆
⋃
b∈B

(b+K(b)).

Therefore, ⋃
a∈A

(a+K(a)) =
⋃
b∈B

(b+K(b)).

Conversely, suppose that
⋃
a∈A

(a + K(a)) =
⋃
b∈B

(b + K(b)). We will prove that A ∼ B.

Since 0 ∈ K(y) for all y ∈ Y, we have that

A ⊆
⋃
a∈A

(a+K(a)) =
⋃
b∈B

(b+K(b))

=⇒ A ⊆
⋃
b∈B

(b+K(b))

=⇒ B �Kl A.
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Similarly, A �Kl B, and thus A ∼ B.
(g) Since B is K(A)-bounded and int(A) − k0 is a neighborhood of 0, there is r > 0

such that

B ⊆ r(intK(A)− k0) +K(A) ⊆ −rk0 +K(A)

=⇒ B + rk0 ⊆ K(A) =
⋃
a∈A

(a+K(a))

=⇒ B + rk0 ⊆
⋃
a∈A

(a+K(a))

=⇒ ϕk0,B(A) ≤ r, i.e., ϕk0,B(A) < +∞.

The proof is complete. �

Remark 5.3.3. (i) Theorem 5.3.2 (a)-(f) extends [46, Theorem 4.2], where K(y)

is a constant convex cone K ⊂ Y for all y ∈ Y . Note that even if B is not a

K-proper set, i.e., B+K = Y, the assertion (d) holds true. However, B+K 6= Y

is needed in the proof of [46, Theorem 4.2] to obtain ϕk0,B(B) = 0.

(ii) Let A,B ∈ P(Y ) such that A ∼ B,
⋃
a∈A

(a+K(a)) is closed and K(·) satisfies (2.9)

-(2.11). Then, it holds from Theorem 5.3.2(e) that ϕk0,B(A)= 0.

Furthermore, by using the same lines in the proof of Theorem 5.3.2(e), we get

the following assertion for all γ ≥ 0 and A,B ∈ P(Y ) under the assumption that⋃
a∈A

(a+K(a)) is closed:

ϕk0,B(A) ≤ γ ⇐⇒ γk0 +B ⊆
⋃
a∈A

(a+K(a)), i.e., A �Kl γk0 +B.

(iii) If K(y) = K, where K is a convex cone with nonempty interior, ϕk0,B(A) < +∞
for all K- bounded set B and k0 ∈ intK, see [64, Proposition 3.2].

Example 5.3.4. An example for a set-valued map satisfying the condition in Theorem

5.3.2 (b), which is neither a constant map nor a cone-valued map, can be given as

K : Y ⇒ Y ; K(y) = Zy + Rk0, for all y ∈ Y.

Indeed, we have that

∀ t ∈ R : K(y + tk0) = Z(y + tk0) + Rk0 = Zy + Rk0 = K(y).

Therefore, K(y + tk0) = K(y) for all y ∈ Y, t ∈ R.

Now, we briefly make a comparison between the scalarizing functional (5.11) and

the scalarizing functional g�
K
l given by (5.3) for set optimization equipped with the

relation �Kl . Recall that the functional g�
K
l : P(Y )× P(Y )→ R is defined as:

A,B ∈ P(Y ), g�
K
l (A,B) := sup

b∈B
inf
a∈A

za+K(a),k0
(−b),
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where k0 ∈ Y \ {0} is taken such that (H1) introduced at the beginning of this chapter

is fulfilled. The following proposition shows the relationship between ϕk0,B(A) and

g�
K
l (A,B), where A,B ∈ P(Y ).

Proposition 5.3.5. [71, Proposition 3.11] Let A, B ∈ P(Y ), K : Y ⇒ Y such that

g�
K
l (A,B) ∈ R+. Then, we have that: ϕk0,B(A) = g�

K
l (A,B).

Proof. Suppose that g�
K
l (A,B) = u ∈ R+. By Theorem 5.1.6(a), it holds that⋃

t>u

(tk0 +B) ⊆
⋃
a∈A

(a+K(a)).

Taking into account Theorem 5.3.2 (c), ϕk0,B(A) ≤ u. Assume by contradiction that

0 ≤ ϕk0,B(A) = v < u. Therefore, there exists w ∈ R such that v < w < u. By

Theorem 5.3.2 (c), it holds that

wk0 +B ⊆
⋃
a∈A

(a+K(a), i.e., A �Kl wk0 +B.

Taking into account Theorem 5.1.6(b), we get that g�
K
l (A,B) ≤ w < u, a contradiction.

Therefore, ϕk0,B(A) = u = g�
K
l (A,B). �

By using the functional ϕk0,B(·), we can obtain characterizations for minimal ele-

ments of a family of sets as well as solutions of set-valued optimization problems. Since

these results will be directly used in proving well-posedness property for set optimiza-

tion, we will present them in Chapter 7, see Theorems 7.1.1 and 7.1.3.

5.4 A Descent Method for solving Set Optimization Prob-

lems w.r.t. Variable Domination Structures

This section presents a descent method for finding approximations of minimal solutions

of a set-valued optimization problem equipped with a variable domination structure.

For this aim, we utilize the scalarizing functional g�
K
l given by (5.3) in Section 5.1.1.

In the literature, this method has been used in order to solve set-valued optimization

problems w.r.t. fixed cones. Jahn [55] proposes a descent method that generates ap-

proximations of minimal elements of set-valued optimization problems under convexity

assumptions on the considered sets. In [55], the set less order relation is characterized

by means of linear functionals. More recently, in [66], the authors propose a similar

descent method for obtaining approximations of minimal elements of set-valued opti-

mization problems with a fixed domination structure. In this section, we consider this

method for set optimization problems without any convexity assumptions and consider

a domination structure which is variable. In addition to providing a numerical method,
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we show a convergence result. The results presented in this section are based on Köbis,

Le and Tammer [69].

Now, we consider a set-valued optimization problem

Min
x∈S

F (x), (P̃K)

in the following setting: Let Y = Rm, F : Rn ⇒ Rm be a set-valued map, S ⊆ Rn,

K : Rm ⇒ Rm such that K(y) is a proper closed set for each y ∈ Y .

From now on, let k0 ∈ Y \ {0} be given such that

∀y ∈ Y : y+K(y) + (0,+∞)k0 ⊆ int (y +K(y)). (5.13)

This section provides a descent method to find approximations of minimal solutions

of the problem (P̃K) equipped with the relation �Kl . Note that we can modify this

method in order to obtain approximate minimal solutions of (P̃K) w.r.t. �Kt , where

t ∈ {u,cl, cu, pl, pu}. However, we restrict ourselves to the relation �Kl for the sake of

brevity.

In the following, we will use the minimality notion of (P̃K) in the sense of Definition

4.2.6 and we assume that the relation �Kl is reflexive and transitive. In addition,

suppose that for all x ∈ S,
⋃

y∈F (x)

(y + K(y)) is closed. Now, we define a functional

p : S × S → R as:

p(z, x) := sup
b∈F (x)

inf
a∈F (z)

za+K(a),k0
(−b) = g�

K
l (F (z), F (x)),

where again k0 ∈ Y \ {0} such that (5.13) holds true.

Notice that the functional za+K(a),k0
(·) is well-defined, as a+K(a) is a closed set.

Furthermore, since k0 ∈ Y \ {0} and the condition (5.13) holds true, for each a ∈ Y,
za+K(a),k0

(·) is continuous (see, Theorem 2.4.2 (a)).

Obviously, it follows from Theorem 5.1.9 that:

p(z, x) ≤ 0⇐⇒ F (z) �Kl F (x).

In the following, we present a descent method for computing approximate minimal

solutions of (P̃K) w.r.t. �Kl , where S = Rn. For one given starting point x0 neighboring

points x are tested whether the assertion F (x) �Kl F (x0) holds. This can be done by

evaluated the extremal term p(x, x0). Algorithm 1 approximates one minimal solution

of problem (P̃K) w.r.t. �Kl . To find more than one approximation of minimal solutions,

one needs to vary the input parameters, such as choosing a different starting point

x0 ∈ Rn, or modifying the vector k0. Note that this algorithm is similar to [68,

Algorithm 1] where the authors have dealt with set optimization problems w.r.t. a

fixed cone.
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Algorithm 1 (A descent method for finding an approximation of a minimal solution

of the set-valued problem (P̃K))

1: Input: F : Rn ⇒ Rm, S = Rn, K : Rm ⇒ Rm, set relation �Kl ,

2: starting point x0 ∈ Rn, k ∈ Rm \ {0}) satisfies (5.13), maximal number imax of

iterations, number of search directions ns,

3: maximal number jmax of iterations for the determination of the step size,

4: initial step size h0 and minimum step size hmin, {λ1, . . . , λN} ⊂ [0, 1]

5: for p = 1 : 1 : N do

6: % initialization for the descent method

7: i := 0, h := h0

8: choose ns points x̃1, x̃2, . . . , x̃ns on the unit sphere around 0Rn

9: % iteration loop

10: while i ≤ imax do

11: check F (xi + hx̃j) �Kl F (xi) for every j ∈ {1, . . . , ns} by evaluating

extremalterm (e. g. p(xi + hx̃j , xi) = g�
K
l (F (xi + hx̃j), F (xi)).

12: Choose the index n0 := j with the smallest function value extremalterm.

13: if extremalterm ≤ 0 then

14: xi+1 := xi + hx̃n0 % new iteration point

15: j := 1

16: while F (xi + (j + 1)hx̃n0) �Kl F (xi + jhx̃n0) and j ≤ jmax do

17: j := j + 1

18: xi+1 := xi+1 + hx̃n0 % new iteration point

19: end while

20: else

21: h := h/2

22: if h ≤ hmin then

23: STOP. Output: x := xi

24: end if

25: end if

26: i := i+ 1

27: end while

28: end for

29: Output: A set of approximations x of minimal solutions of the set-valued problem

(P̃K) w.r.t. �Kl .
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We now set N0 := N ∪ {0}. In order to show a convergence result for Algorithm 1,

we need the following modifications in the algorithm:

(A) Assume that the pattern contains at least one direction of descent whenever a set

F (xi) (i ∈ N0) can be improved.

(B) Let some β ∈ (0, 1) and an arbitrary null sequence (εi)i∈N0 with εi < 0 for all

i ∈ N0 be given. While p(xi+1, xi) ≥ εi, set h := βqh for q := 0, 1, 2, . . . after line

26 of Algorithm 1.

Remark 5.4.1. It is shown in [55] and [66] that the continuity of the function p(·, ·) is

a sufficient condition such that assumption (A) holds true. However, we can utilize a

weaker condition that ensures the fulfillment of the assumption (A), that is: If for every

given element a ∈ Rn, p(·, a) is continuous, then the assumption (A) also holds true.

Indeed, when xi is not the final iteration point, then there is a descent direction and a

point x̄ ∈ Rn such that p(x̄, xi) < 0. By the continuity of p(·, xi), it follows that there

is some ball B(x̄, δ) around x̄ with radius δ such that for all x ∈ B(x̄, δ), p(x, xi) < 0.

Therefore, we can get a descent direction by refining the grid, and the assumption (A)

is fulfilled. It is also an interesting topic for further research to find other sufficient

conditions for this assumption.

Theorem 5.4.2. [71, Theorem 18] Let F : Rn ⇒ Rm be a nonempty and compact-

valued map. Let Algorithm 1 with the additional specifications (A) and (B) generate

an iteration sequence (xi)i∈N, where x0 ∈ Rn denotes the initial iteration point. In

addition, assume that zy+K(y),k0
is finite-valued for all y ∈ Y and k0 satisfying (5.13).

Then, lim sup
i→+∞

p(xi+1, xi) = 0.

Proof. Observe that for all i ∈ N, F (xi) �Kl F (x0) since the relation �Kl is transitive.

Because F (xi) is compact for all xi ∈ Rn, there is ai+1 ∈ F (xi+1), bi ∈ F (xi)

such that p(xi+1, xi) = za
i+1+K(ai+1),k0

(−bi). Thus, {p(xi+1, xi)}, i ∈ N0 is bounded.

Consequently, there exists α := lim sup
i→+∞

p(xi+1, xi). We now assume that α 6= 0. By

specification (A), it holds that p(xi+1, xi) ≤ 0. Therefore,

∀i ∈ N0 : p(xi+1, xi) ≤ 0.

Taking into account lim sup
i→+∞

p(xi+1, xi) = α 6= 0, we get that α < 0 and

∃ n1 ∈ N : ∀r > n1, p(x
ir+1, xir) ≤ α

2
< 0.

Let {εi}i∈N0 be a null sequence. Then, there is n2 ∈ N such that

∀r ≥ n2 :
α

2
≤ εir < 0.

Therefore, let n = max{n1, n2} it holds that: ∀r ≥ n : p(xir+1, xir) ≤ α
2 ≤ ε

ir .

This is a contradiction to specification (B). �



Chapter 6

Necessary Optimality Conditions

for Set Optimization w.r.t.

Variable Domination Structures

This chapter is devoted to derive necessary optimality conditions for solutions of set

optimization problems w.r.t. variable domination structures. In the literature, nec-

essary optimality conditions for solutions of set optimization problems based on the

vector approach are derived by different methods (see, [7, 30] and references therein).

Following the set approach, Eichfelder and Pilecka [40, Theorem 5.1] have presented

necessary optimality conditions working on a primal approach where certain derivative

concepts for set-valued maps are used. Moreover, necessary optimality conditions for

solutions of set-valued optimization problems w.r.t. fixed ordering cones are shown by

Dempe and Pilecka in [22, 23] by using special set differences, the so-called `-difference

and modified Demyanov difference. It is important to mention that all these given re-

sults are concerned with set optimization problems w.r.t. domination structures whose

values are cones. We begin this chapter by recalling a result given by Durea, Strugariu

and Tammer [30]. In this paper, the authors follow the vector approach to derive op-

timality conditions for solutions of (PQ) based on Mordukhovich coderivative. Section

6.2 studies necessary optimality conditions for solutions of set optimization problems

defined by the set approach. For this aim, we utilize the relationships between solution

concepts of (PK) and (PQ), which are derived in Chapter 4 to derive optimality condi-

tions for solutions of (PK) w.r.t. the relations �Kl ,�Kcl, and �Kpl. For solutions of (PK)

w.r.t. the relations �Ku and �Kcu, we prove the sufficient conditions for the openness of

a composition multifunctions where the objective mapping F and the domination K(·)
are involved. These conditions are derived in terms of Mordukhovich’s coderivative and

have been recently studied for general mappings in [27]. The following results with the

exception of the first section are based on Köbis, Le, Tammer and Yao [70].

85
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6.1 Necessary Optimality Conditions for Solutions based

on the Vector Approach

In this part, we will recall a theorem about necessary optimality conditions for nondom-

inated solutions of set-valued optimization problems given in [30]. We use the following

assumption on the domination structure Q : X ⇒ Y by which the original problem

(PQ) is equipped:

∀x ∈ X : Q(x) is a closed, convex, pointed, proper cone.

Chapter 4 has derived relationships between solution concepts of (PK) and (PQ) where

two mappings Q̂(·) and Q̂′(·) given respectively by (4.1) and (4.2) are involved. There-

fore, it is necessary to discuss this assumption concerning Q̂(·) and Q̂′(·). We show in

the following that when K(y) is not necessarily a cone-valued map for all y ∈ Y , the

above requirement can be fulfilled, cf. [70, Examples 5.4 and 5.5].

Example 6.1.1. Let F : R2 ⇒ R2 be given as

∀(x1, x2) ∈ R2 : F (x1, x2) := {(d1, d2)| 0 ≤ d1 ≤ |x1|, 0 ≤ d2 ≤ |x2|}

and K : R2 ⇒ R2 be determined by

∀(d1, d2) ∈ R2 : K(d1, d2) :=

{(y1, y2)| y2 ≥ d2
d1
y1} ∪ {(d1, 0)} if d1 6= 0,

{(y1, y2)| y1 ≤ 0, y2 ≥ 0} if d1 = 0.

Then, for all (x1, x2) ∈ R2 it holds

Q̂(x1, x2) =
⋂

(d1,d2)∈F (x)

K(d1, d2) = {(y1, y2)| y1 ≤ 0, y2 ≥ 0}.

It is obvious that for all (x1, x2) ∈ R2 we have that Q̂(x1, x2) is a closed, convex pointed

cone. However, K(y1, y2) is not a cone for all (y1, y2) ∈ R2 \{0}. See Figure 6.1 for the

illustration of this example, where the image spaces of F (·), K(·) and Q̂(·) are combined.

Example 6.1.2. Let F : R⇒ R2 be defined as

∀x ∈ R : F (x) = {(d1, d2) ∈ R2| d2 = |x|d1}

and K : R2 ⇒ R2 be determined by

∀(d1, d2) ∈ R2 : K(d1, d2) :=

{(y1, y2)| |d2| ≤ y2 ≤ |d2|
|d1|y1}, if d1 6= 0

{(y1, y2)| y1 ≥ 0, y2 = 0} if d1 = 0.

Then, it holds:

∀x ∈ R : Q̂′(x) =
⋃

(d1,d2)∈F (x)

K(d1, d2) = {(y1, y2)| 0 ≤ y2 ≤ |x|y1}.
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y2 =
|d2|
|d1|

y1

|x1|

|x2|

F (x1, x2)

d1

d2

0

y2

y1

K(d1, d2)

Q̂(x1, x2)

Figure 6.1: Illustration for Example 6.1.1.

This is a closed, convex and pointed cone. However, K(d1, d2) is not a cone for all

(d1, d2) ∈ F (x) \ {0}. For an illustration, see Figure 6.2, where the image spaces of

F (·), K(·) and Q̂′(·) are combined.

Thus, from now on, we consider the solution concepts of problem (PQ) based on

the vector approach with the assumption that for all x ∈ X, Q(x) (Q(x) := Q̂(x) or

Q(x) := Q̂′(x)) is a closed, convex, pointed, proper cone in Y .

Recently, Khan et al. [62] have followed the vector approach to derive second-

order optimality conditions solutions of set-valued optimization problems w.r.t. variable

domination structures using a second order tangential derivative. Eichfelder and Pilecka

[40] also worked on primal approach to derive optimality conditions for minimal points

of a set optimization problem w.r.t. the relation �Kpl. In this part, we recall a necessary

condition for nondominated solutions of (PQ) (see Definition 4.1.1) given by Durea,

Strugariu and Tammer in [30, Theorem 4.10]. The main idea in the proof of the

necessary condition in [30, Theorem 4.10] is the incompatibility between openness and

optimality (previously developed in [29]). It is interesting to mention that for the proof

of [30, Theorem 4.10] Ekeland’s Variational Principle is involved by the application

of sufficient conditions in terms of coderivatives for the openness of the composition

of multifunctions in [27, Theorem 4.2]). Observe that the method utilized in [30] is

different from the method used in [7] to derive necessary optimality conditions for

problem (P vecK ) given in Section 3.2.

Theorem 6.1.3. ([30, Theorem 4.10]) Let X, Y be Asplund spaces, F, Q : X ⇒ Y

be two set-valued maps such that for all x ∈ X, F (x) 6= ∅. Consider the set-valued

optimization problem (PQ) and (x̄, ȳ) ∈ ND(F (X),Q). Furthermore, assume that GrF

and GrQ are closed around (x̄, ȳ) and (x̄, 0), respectively. In addition, suppose that the

following assumptions hold:
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d2 = |x|d1

d1

d2

K(d1, d2)

Q̂′(x)

0

y2

y1

Figure 6.2: Illustration for Example 6.1.2.

(a) The two following sets are allied at (x̄, ȳ, 0):

C1 = {(x, y, k)| (x, y) ∈ GrF, k ∈ Y },

and

C2 = {(x, y, k)| (x, k) ∈ GrQ, y ∈ Y }.

(b)
⋂
x∈X
Q(x) 6= {0};

(c) Q is lower semicontinuous at x̄;

(d) F−1 is (PSNC) at (ȳ, x̄) or Q−1 is (PSNC) at (0, x̄).

Then, there exists y∗ ∈ Q(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q(x̄, 0)(y∗).

The above result will be used in the next section in order to derive optimality con-

ditions for solutions of problem (PQ) w.r.t. the relations �Kt , t ∈ {l, pl, cl} introduced

in Definition 2.2.5.

6.2 Necessary Optimality Conditions for Solutions based

on the Set Approach

This section is devoted to necessary optimality conditions for solutions of problem (PK)

based on the set approach in the sense of Definition 4.2.6. These necessary optimality
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conditions are derived in terms of Mordukhovich’s coderivative for optimal solutions of

set-valued problems w.r.t. various set relations introduced in Definition 2.2.5.

First, we show a necessary optimality condition for strong minimal solutions of (PK)

w.r.t. the lower less relation w.r.t. K(·) �Kl , introduced in Definition 2.2.5, (i). The

following result is given in [70, Theorem 5.7] with a stronger assumption on K(·), that

is for all y ∈ Y, K(y) is pointed.

Theorem 6.2.1. Consider problem (PK) w.r.t. the relation �Kl , K : Y ⇒ Y , and

x̄ ∈ SoMin(F (X),�Kl ). Assume that there is an element ȳ ∈ F (x̄) satisfying

∀y ∈ F (x̄) \ {ȳ} : ȳ /∈ y +K(y).

Furthermore, suppose that K(·) satisfies (2.9) -(2.11) and K(ȳ) ∩ (−K(ȳ)) = {0}. Let

Q̂ : X ⇒ Y be given by (4.1) and assume that the assumptions in Theorem 6.1.3 hold

true for the two multifunctions F, Q̂. Then, there exists y∗ ∈ Q̂(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).

Proof. Consider x̄ ∈ SoMin(F (X),�Kl ). Theorem 4.3.2 implies that (x̄, ȳ) ∈ ND(F (X), Q̂)

for x̄ and ȳ ∈ F (x̄) satisfying ∀y ∈ F (x̄) \ {ȳ} : ȳ /∈ y +K(y). Since all assumptions in

Theorem 6.1.3 hold true for F and Q̂, it holds that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).

The proof is complete. �

Remark 6.2.2. When K(·) ≡ K, where K is a closed, pointed, convex cone in Y we

have that Q̂(·) ≡ K and D∗Q̂(x̄, 0)(y∗) = {0}. In this case, the optimality condition for

a strong minimal solution x̄ of (PK) in Theorem 6.2.1 reduces to: 0 ∈ D∗F (x̄, ȳ)(y∗).

This is also the optimality condition for nondominated solutions of problem (PQ) when

Q̂(·) ≡ K, which is given in [30, Corollary 4.13].

The following result is an assertion about a necessary optimality condition for strict

minimal solutions of (PK) w.r.t. the relation �Kpl, introduced in Definition 2.2.5, (v).

Theorem 6.2.3. Consider problem (PK) w.r.t. the relation �Kpl, K : Y ⇒ Y , which

satisfies that K(y) is a proper convex cone for all y ∈ Y , and x̄ ∈ SiMin(F (X),�Kpl).
Let Q̂ : X ⇒ Y be determined by (4.1). Suppose that there is ȳ ∈ F (x̄) satisfying

ȳ 6∈ F (x̄)+Q̂(x̄)\{0}. Assume that the two multifunctions F, Q̂ satisfy the assumptions

given in Theorem 6.1.3. Then, there exists y∗ ∈ Q̂(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).
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Proof. We follow the line of the proof of Theorem 6.2.1. �

Now, we show a necessary optimality condition for strong minimal solutions of (PK)

w.r.t. the relation �Kcl, introduced in Definition 2.2.5 (iii).

The following theorem is a consequence of Theorem 6.2.1. It is proved by directly

applying Corollary 4.3.3 and Theorem 6.1.3 and therefore, the proof is skipped.

Theorem 6.2.4. Consider problem (PK) w.r.t. the relation �Kcl, K : Y ⇒ Y , and

x̄ ∈ SoMin(F (X),�Kcl). Assume that there is an element ȳ ∈ F (x̄) satisfying

∀y ∈ F (x̄) \ {ȳ} : ȳ /∈ y +K(y).

Suppose that K : Y ⇒ Y satisfies properties (2.9) -(2.11) and K(ȳ) ∩ (−K(ȳ)) = {0}.
Let Q̂ : X ⇒ Y given by (4.1) and assume that the assumptions in Theorem 6.1.3 hold

true for the two multifunctions F, Q̂. Then, there exists y∗ ∈ Q̂(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂(x̄, 0)(y∗).

In addition, we obtain a stronger necessary optimality condition for strong minimal

solutions of (PK) w.r.t. �Kcl. The following result is given in [70, Theorem 5.10] with a

stronger assumption on Q̂′(·), that is for all x ∈ X, Q̂′(x) is pointed.

Theorem 6.2.5. Consider problem (PK) w.r.t. the relation �Kcl, K : Y ⇒ Y , and x̄ ∈
SoMin(F (X),�Kcl), where K : Y ⇒ Y satisfies properties (2.10) and (2.11). Suppose

that there exists ȳ ∈ F (x̄) satisfying F (x̄) ⊆ ȳ + K(ȳ). Let Q̂′ : X ⇒ Y be given by

(4.2) such that

Q̂′(x̄) ∩ (−Q̂′(x̄)) = {0}.

Assume in addition that the following assumptions are fulfilled

(i) Q̂′(x̄) 6= {0} and Q̂′(x̄) closed ;

(ii) F−1 is (PSNC) at (ȳ, x̄) or Q̂′−1
is (PSNC) at (0, x̄).

Then, there exists y∗ ∈ Q̂′(x̄)+ \ {0} such that

0 ∈ D∗F (x̄, ȳ)(y∗).

Proof. By Theorem 4.3.5 it holds that (x̄, ȳ) ∈ Min(F (X), Q̂′). Thus, (x̄, ȳ) ∈
ND(F (X), Q̂′∗), where Q̂′∗ : X ⇒ Y is defined by

∀x ∈ X : Q̂′∗(x) := Q̂′(x̄).

Now, we will prove that F and Q̂′∗ satisfy all assumptions supposed in Theorem 6.1.3.

D̂∗Q̂′∗(u, k)(k∗) = {x∗ ∈ X∗| (x∗,−k∗) ∈ N̂(Gr Q̂′∗, (u, k))}

= {x∗ ∈ X∗| (x∗,−k∗) ∈ N̂(X × Q̂′(x̄), (u, k)}

= {x∗ ∈ X∗| (x∗,−k∗) ∈ N̂(X,u)× N̂(Q̂′(x̄), k)}

= {0}. (6.1)
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The last equation is obtained by using [99, Proposition 6.41] and N̂(X,u) = {0}.
Therefore, the alliedness property of (C1, C2) trivially holds (see [30]).

We have that
⋂
x∈X
Q̂′∗(x) = Q̂′(x̄) 6= {0}, i.e., assumption (b) in Theorem 6.1.3 is fulfilled.

Since Q̂′∗(x̄) = lim inf
x′→x̄

Q̂′∗(x′) = Q̂′(x̄) it holds that Q̂′∗ is l.s.c. at x̄ (Remark 2.3.10).

Now, we apply Theorem 6.1.3 and get that there exists y∗ ∈ Q̂′∗(x̄)+\{0} = Q̂′(x̄)+\{0}
such that

0 ∈ D∗F (x̄, ȳ)(y∗) +D∗Q̂′∗(x̄, 0)(y∗).

By using the same lines to obtain (6.1), it also holds that D∗Q̂′∗(x̄, 0)(y∗) = {0} and

thus we get the desired conclusion as follows:

∃ y∗ ∈ Q̂′(x̄)+ \ {0} such that 0 ∈ D∗F (x̄, ȳ)(y∗).

�

We are going to derive necessary optimality conditions for the minimal solutions of

problem (PK) w.r.t. the upper set less relations (4Ku and 4Kcu ). Observe that we can

not analogously obtain corresponding results by using the previous results. The reason

is that the definitions of nondominated and minimal solutions of (PQ) are given similarly

when we concern to the “best case”, whereas the upper set less relations (4Ku ,4
K
cu and

4Kpu) are related to the “worst case”. Therefore, we utilize another approach to obtain

necessary optimality conditions for solutions of problem (PK) w.r.t. (4Ku and 4Kcu ). It

is necessary to mention that in [30] the authors derive optimality conditions for solutions

of problem (PQ) by means of the sufficient conditions for the openness of a sum valued-

mappings, that is F + Q. However, we are concerning the set-valued problem (PK),

where F : X ⇒ Y and K : Y ⇒ Y , i.e., F (·) and K(·) have different pre-image spaces.

Furthermore, the definitions of solutions of (P̃K) w.r.t. the relations 4Ku and 4Kcu are

related to composition of multifunctions F (·) and K(·). For that reason, we study the

sufficient conditions for the openness of a composition multifunctions contributed from

these two mappings.

Now, we recall a result for general mappings which is invectigated by Durea, Huynh,

Nguyen and Strugariu in [27].

Let F1 : X ⇒ Y1, F2 : X ⇒ Y2 and G : Y1 × Y2 ⇒ Z be set-valued mappings, where

X,Y1, Y2, Z are Asplund spaces. Consider the following composition multifunctions

H : X ⇒ Z defined as

H(x) :=
⋃

y2∈F2(x)

y1∈F1(x)

G(y1, y2). (6.2)

The next statement gives sufficient conditions in terms of coderivatives for the

openness of the composition of set-valued mappings (see [27, Theorem 4.2]), where

Ekeland’s Variational Principle is the main tool in the proof.
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Theorem 6.2.6. ([27, Theorem 4.2]) Let X,Y1, Y2, Z be Asplund spaces. Suppose that

F1 : X ⇒ Y1, F2 : X ⇒ Y2 and G : Y1 × Y2 ⇒ Z are closed-graph multifunctions and

(x̄, ȳ1, ȳ2, z̄) ∈ X × Y1 × Y2 × Z be such that z̄ ∈ G(ȳ1, ȳ2), (ȳ1, ȳ2) ∈ F1(x̄) × F2(x̄).

Assume that the following sets are allied at (x̄, ȳ1, ȳ2, z̄):

Ĉ1 := {(x, y1, y2, z) ∈ X × Y1 × Y2 × Z : y1 ∈ F1(x)},

Ĉ2 := {(x, y1, y2, z) ∈ X × Y1 × Y2 × Z : y2 ∈ F2(x)},

Ĉ3 := {(x, y1, y2, z) ∈ X × Y1 × Y2 × Z : z ∈ G(y1, y2)}. (6.3)

Suppose that there exists c > 0 such that

c < lim inf

(t1,t2,w)
GrG−−−→(ȳ1,ȳ2,z̄),δ↓0

(u1,v1)
GrF1−−−→(x̄,ȳ1), (u2,v2)

GrF2−−−→(x̄,ȳ2)

{
‖x∗1 + x∗2‖ :



x∗1 ∈ D̂∗F1(u1, v1)(t∗1)

x∗2 ∈ D̂∗F2(u2, v2)(t∗2)

(z∗1 + t∗1, z
∗
2 + t∗2) ∈ D̂∗G(t1, t2, w)(w∗)

‖w∗‖ = 1, ‖z∗1‖ < δ, ‖z∗2‖ < δ

}
.

(6.4)

Then, for every L ∈ (0, c), H (given by (6.2)) is L-open at (x̄, z̄).

In order to apply the Theorem 6.2.6 to our problem (PK), it is necessary to determine

appropriate set-valued maps as follows:

Let Y1, Y2 and Z be equal to the space Y , and suppose that the set-valued mappings

F1, F2 : X ⇒ Y and G : Y × Y ⇒ Y are respectively determined by

∀x ∈ X : F1(x) := F (x),

∀ x ∈ X : F2(x) := {0},

∀ (y1, y2) ∈ Y × Y : G(y1, y2) := (I −K)(y1) = y1 −K(y1).

Because G only depends on y1, instead of studying G, we invest the following set-

valued map:

Ĝ : Y ⇒ Y,

such that

∀ y ∈ Y : Ĝ(y) := (I −K)(y) = y −K(y).

Let Ĥ : X ⇒ Y defined by

Ĥ(x) :=
⋃

y∈F (x)

Ĝ(y) =
⋃

y∈F (x)

(y −K(y)).

From the setting of F1, F2, Ĝ, the allied property of (Ĉ1, Ĉ2, Ĉ3) in (6.3) becomes

the allied property of (E1, E2) given as

E1 := {(x, y, z) ∈ X × Y × Y : y ∈ F (x)},

E2 := {(x, y, z) ∈ X × Y × Y : z ∈ Ĝ(y)}.
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Proposition 6.2.7. [70, Proposition 5.12] Consider problem (PK) w.r.t. the relation

�Ku , K : Y ⇒ Y satisfying (2.9), x̄ ∈ SoMin(F (X),�Ku ) and (x̄, ȳ) ∈ GrF. Suppose

that there is a neighborhood U of x̄ such that Ĥ(U)−
⋂
x∈U

Ĥ(x) is a proper cone. Then,

Ĥ is not open at (x̄, ȳ).

Proof. Since for all y ∈ Y, 0 ∈ K(y), we get that F (x̄) 4Ku F (x̄). Taking into account

that x̄ ∈ SoMin(F (X),�Ku ), it holds

∀x ∈ X : F (x̄) 4Ku F (x) ⇐⇒ F (x̄) ⊆
⋃

y∈F (x)

(y −K(y)). (6.5)

Let ȳ ∈ F (x̄) be arbitrarily given. Then, (6.5) implies that

∀x ∈ X : ȳ ∈
⋃

y∈F (x)

(y −K(y)) = Ĥ(x).

Suppose, by contradiction, that Ĥ is open at (x̄, ȳ). Then, for the given neighborhood

U of x̄ there is an open set V (ȳ ∈ V ) such that V ⊆ Ĥ(U), which is equivalent to

V ⊆
⋃

y∈F (U)

(y −K(y)).

Let us choose y ∈ V arbitrarily. Then, there is x ∈ U such that

y ∈
⋃

y∈F (x)

(y −K(y)) = Ĥ(x).

Therefore,

y − ȳ ∈ Ĥ(x)− ȳ ⊆ Ĥ(x)−
⋂
x∈U

Ĥ(x)

⊆ Ĥ(U)−
⋂
x∈U

Ĥ(x).

This implies

V − ȳ ⊆ Ĥ(U)−
⋂
x∈U

Ĥ(x).

Since the first set is absorbing and the second one is a cone, it follows that

Y ⊆ Ĥ(U)−
⋂
x∈U

Ĥ(x),

contradicting the fact that Ĥ(U)−
⋂
x∈U

Ĥ(x) is proper. �

Now, we show a necessary optimality condition for strong minimal solutions of (PK)

w.r.t. the relation �Ku , introduced in Definition 2.2.5, (ii).
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Theorem 6.2.8. [70, Theorem 5.13] Let X,Y be Asplund spaces. Consider problem

(PK) w.r.t. the relation �Ku , K : Y ⇒ Y , and x̄ ∈ SoMin(F (X),�Ku ). Assume that

(x̄, ȳ) ∈ GrF, F and Ĝ := I − K be closed graph multifunctions. Suppose in addition

that the following assertions hold true

(i) ∀y ∈ Y : 0 ∈ K(y);

(ii) there is a neighborhood U of x̄ such that Ĥ(U)−
⋂
x∈U

Ĥ(x) is a proper cone;

(iii) {E1, E2} are allied at (x̄, ȳ, ȳ);

(iv) F−1 is (PSNC) at (ȳ, x̄) and Ĝ−1 is (PSNC) at (ȳ, ȳ);

(v) D∗Ĝ(ȳ, ȳ)(0) = {0}.

Then, for all ȳ ∈ F (x̄) there exist w∗ ∈ Y ∗ \ {0} and t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗) such that

0 ∈ D∗F (x̄, ȳ)(t∗).

Proof. We have from Proposition 6.2.7 that Ĥ is not open at (x̄, ȳ), hence it is

not linearly open at this point. Since the other conditions from Theorem 6.2.6 are

satisfied, the condition (6.4) does not hold true. Consequently, there exist sequences

(un, vn)
GrF−−−→ (x̄, ȳ), (tn, wn)

Gr Ĝ−−−→ (ȳ, ȳ), (w∗n) ⊂ SY ∗ , (x∗n) ∈ X∗, z∗n → 0 such that

∀ n : x∗n ∈ D̂∗F (un, vn)(t∗n), z∗n + t∗n ∈ D̂∗Ĝ(tn, wn)(w∗n) and ‖x∗n‖ → 0. (6.6)

Now, we prove that (t∗n) is bounded. Suppose the contradiction and by z∗n → 0 we get

that for every n ∈ N, there exists kn ∈ N sufficiently large such that

n < ‖t∗kn‖+ ‖z∗kn‖. (6.7)

For the reason of keeping the notation simple, we denote the subsequences (t∗kn), (z∗kn)

by (t∗n ), (z∗n), respectively. Because of the positive homogeneity of the Fréchet coderiva-

tives, we have that
x∗n
n
∈ D̂∗F (un, vn)(

t∗n
n

),

and
1

n
(z∗n + t∗n) ∈ D̂∗Ĝ(tn, wn)(

w∗n
n

).

It yields

(
x∗n
n
,
−t∗n
n

) ∈ N̂(GrF, (un, vn)) and (
z∗n + t∗n
n

,
−w∗n
n

) ∈ N̂(Gr Ĝ, (tn, wn)).

Thus,

(
x∗n
n
,
−t∗n
n
, 0) ∈ N̂(E1, (un, vn, ȳ)) and (0,

z∗n + t∗n
n

,
−w∗n
n

) ∈ N̂(E2, (x̄, tn, wn)).
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Since w∗n ∈ SY ∗ , z∗n → 0 and ‖x∗n‖ → 0, it holds

(
x∗n
n
,
−t∗n
n
, 0) + (0,

z∗n + t∗n
n

,
−w∗n
n

) = (
x∗n
n
,
z∗n
n
,
−w∗n
n

)→ 0.

Then, the alliedness of the sets (E1, E2) implies 1
n(z∗n + t∗n)→ 0, which is impossible in

virtue of relation (6.7).

Consequently, since Y is Asplund and (t∗n) is bounded, we get that there is a subsequence

of (t∗n) which weak* converges to t∗ ∈ Y ∗. Also, since (w∗n) ⊂ SY ∗ , (w∗n) contains a weak*

convergent subsequence to an element w∗. For simplicity, we denote this subsequence

also by (w∗n).

We claim that t∗ = w∗ = 0 does not hold true. Indeed, suppose that t∗ = w∗ = 0, i.e.,

t∗n
w∗−−→ 0 and w∗n

w∗−−→ 0. Taking into account F−1 is (PSNC) at (ȳ, x̄), and x∗n → 0 it

holds t∗n → 0. From z∗n → 0 we get (t∗n + z∗n) → 0. In addition, w∗n
w∗−−→ 0 and Ĝ−1 is

(PSNC) at (ȳ, ȳ), it holds w∗n → 0, which contradicts the fact that (w∗n) ⊂ SY ∗ .
Moreover, taking into account (6.6), there exist some w∗ ∈ Y ∗ and t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗)

satisfying 0 ∈ D∗F (x̄, ȳ)(t∗).

It is obvious from the assumption D∗Ĝ(ȳ, ȳ)(0) = {0} that if w∗ = 0, then t∗ = 0, a

contradiction. Then, w∗ 6= 0. The proof is complete. �

Now, we consider the certainly upper less relation w.r.t. K(·)�Kcu. It holds from Remark

4.2.7(ii) that if x̄ ∈ SoMin(F (X),�Kcu), then we also have that x̄ ∈ SoMin(F (X),�Ku ).

Therefore, from Theorem 6.2.8 we have the following result.

Theorem 6.2.9. [70, Theorem 5.14] Let X,Y be Asplund spaces. Consider problem

(PK) w.r.t. the relation �Kcu, K : Y ⇒ Y , and x̄ ∈ SoMin(F (X),�Kcu). Assume that

(x̄, ȳ) ∈ GrF, F and Ĝ := I −K are closed graph multifunctions. Suppose in addition

that the assumptions (i) − (v) in Theorem 6.2.8 are fulfilled. Then, for all ȳ ∈ F (x̄)

there exist w∗ ∈ Y ∗ \ {0} and t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗) such that

0 ∈ D∗F (x̄, ȳ)(t∗).

Proof. Since x̄ ∈ SoMin(F (X),�Kcu), we get x̄ ∈ SoMin(F (X),�Ku ). Since all assump-

tions given in Theorem 6.2.8 hold true, we follow the same line of its proof to obtain

that: for all ȳ ∈ F (x̄) there exist w∗ ∈ Y ∗ \ {0} and t∗ ∈ D∗Ĝ(ȳ, ȳ)(w∗) such that

0 ∈ D∗F (x̄, ȳ)(t∗).

�



Chapter 7

Pointwise Well-posed Set

Optimization Problems w.r.t.

Variable Domination Structures

This chapter is devoted to the well-posedness property of a set-valued optimization

problem with constraints

K −Min
x∈S

F (x), (P̄K)

where F : X ⇒ Y is a set-valued mapping acting between two linear topological spaces,

S ⊆ X is the feasible set andK : Y ⇒ Y . As shown in [31, 89], linear scalarization is not

useful in deriving the equivalence between vector and scalar well-posedness notions even

in the convex case. Therefore, many authors have used nonlinear scalarizing functionals

to investigate well-posedness property of vector optimization and set optimization, see

[31, 46, 64, 89, 88]. This chapter will use the directional minimal time function (5.11)

given in Chapter 5 as the main tool. By means of this functional, we characterize

minimal solutions for a family of sets and solutions of problem (PK) in Section 7.1.

Section 7.2 proves the parallelism between the well-posedness property of a set-valued

optimization problem and the Tykhonov well-posedness property of a scalar problems

in which the objective map of the original problem is involved. Moreover, two classes of

pointwise well-posed set optimization problems w.r.t. a cone-valued ordering structure

are also identified. The results presented within this chapter are based on Kobis, Le,

Tammer and Yao [71].

96
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7.1 Characterizations for Solutions of Set Optimization

w.r.t. Variable Domination Structures via the Direc-

tional Minimal Time Function

This section presents characterizations of minimal and strictly minimal solutions of

problem (P̄K) by using the scalarizing functional given by (5.11). Recall that this

function has the following formula:

ϕk0,B(A) = inf{t≥ 0| A �Kl tk0 +B},

where A,B ⊂ Y , k0 ∈ Y \ {0} satisfies (H1), i.e.,

∀y ∈ Y : K(y) + (0,+∞)k0 ⊆ K(y).

We assume in this part that K(·) satisfies the condition (2.9)-(2.11). As having

promised at the end of Section 5.3, we now characterize (strictly) minimal elements of

a family of sets in the sense of Definition 4.2.1. Let A be a nonempty subset of P(Y ).

In the following theorem, we are using the function (5.11) with B = Ā, and k0 ∈ Y \{0}
such that the assumption (H1) given at the beginning of Chapter 5 holds true.

Theorem 7.1.1. [71, Theorem 4.1] The following assertions are satisfied.

(a) Assume that
⋃
a∈A

(a + K(a)) is closed for all A ∈ A. Then, Ā ∈ MinY (A,�Kl ) if

and only if ϕk0,Ā(A) > 0 for all A ∈ A, A 6∼ Ā.

(b) Assume that
⋃
a∈A

(a+K(a)) is closed for all A ∈ A. Then, Ā ∈ SiMinY (A,�Kl ) if

and only if ϕk0,Ā(A) > 0 for all A ∈ A \ {Ā}.

Proof. (a) Consider Ā ∈ MinY (A,�Kl ) and suppose that there exists A ∈ A, A 6∼ Ā

satisfying ϕk0,Ā(A) = 0. Taking into account Theorem 5.3.2(e), it holds that A �Kl Ā.

Since Ā ∈ MinY (A,�Kl ), Ā �Kl A and thus A ∼ Ā. This is a contradiction.

Conversely, assume that ϕk0,Ā(A) > 0 for all A ∈ A, A 6∼ Ā and Ā is not a minimal

element of A. Then, from the definition of minimal elements of A there exists a set A ∈
A, A �Kl Ā and Ā 6�Kl A. Using Theorem 5.3.2(a), it holds that ϕk0,Ā(A) ≤ ϕk0,Ā(Ā).

In addition, by Theorem 5.3.2(d) we get ϕk0,Ā(Ā)=0. Therefore, ϕk0,Ā(A) ≤ 0, a

contradiction. Thus, the assumption Ā /∈ MinY (A,�Kl ) is false and the proof of the

sufficient condition is complete.

(b) Suppose that Ā ∈ SiMinY (A,�Kl ) and there is A ∈ A\{Ā} such that ϕk0,Ā(A) =

0. By Theorem 5.3.2(e), we have that A �Kl Ā. Since Ā ∈ SiMinY (A,�Kl ), it yields

A = Ā, which is a contradiction.

Let us prove the sufficient condition. By contradiction, assume that ϕk0,Ā(A) > 0 for

all A ∈ A \ {Ā} and Ā /∈ SiMinY(A,�Kl ) . Using the definition of strictly minimal



7.1. Characterizations for Solutions of Set Optimization w.r.t. Variable Domination Structures

via the Directional Minimal Time Function 98

elements of A, there exists A ∈ A such that A �Kl Ā and A 6= Ā. Taking into account

parts (d) and (e) of Theorem 5.3.2, it holds that

ϕk0,Ā(A) ≤ ϕk0,Ā(Ā)=0.

This implies ϕk0,Ā(A)=0, which is a contradiction. �

Remark 7.1.2. A similar result as Theorem 7.1.1 is generated in Chapter 5, where

the scalarizing functional g�
K
l is used. If for all y ∈ Y, K(y) = K, where K is a convex

cone in Y , Theorem 7.1.1 reduces to [46, Theorem 4.3].

In the following, we utilize the functional given by (5.11) to characterize (strictly)

minimal solutions of problem (P̄K) with assumptions that F (x) 6= ∅ for all x ∈ S and

K : Y ⇒ Y such that the relation �Kl is reflexive. Remind that the descent method in

Section 5.4 has used the functional g�
K
l , given by (5.3), to find approximation solutions

of this problem for the case S = X = Rn and Y = Rm.

Theorem 7.1.3. [71, Theorem 4.3] Let F : X ⇒ Y and K : Y ⇒ Y be set-valued maps

such that
⋃

y∈F (x)

(y+K(y)) is closed for each x ∈ X and the conditions (2.9)- (2.11) are

fulfilled. Consider problem (P̄K) and x̄ ∈ X. Then, the following assertions hold true.

(a) x̄ is a minimal solution of (P̄K) if and only if there is a functional

G : ImF → R+
⋃
{+∞} being �Kl -monotone such that

x ∈ S, F (x) ∼ F (x̄) ⇐⇒ G(F (x))=0. (7.1)

(b) x̄ is a strictly minimal solution of (P̄K) if and only if there is a functional G :

ImF → R+
⋃
{+∞} being �Kl -monotone such that

x ∈ S, G(F (x))=0 ⇐⇒ x = x̄. (7.2)

Proof. The idea of this proof is as similar as that in [46, Theorem 4.4], where K(·) =

K, K is a convex cone in Y . We illustrate in the following for the case the domination

structure is variable and the scalarizing functional is given by (5.11).

(a) Suppose that x̄ is a minimal solution of (P̄K). Let k0 ∈ Y such that (H1) holds

and define the following functional as:

G : ImF → R ∪ {+∞}

G(F (x)) := ϕk0,F (x̄)(F (x)),
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where ϕk0,F (x̄) given by (5.11) with B = F (x̄) is involved.

From Theorem 5.3.2(a), we get that G is �Kl -monotone. Let us now prove that

x ∈ S, F (x) ∼ F (x̄) ⇐⇒ G(F (x))=0.

Taking into account Theorem 5.3.2(a) and (d), it holds that

F (x) ∼ F (x̄) =⇒ F (x) �Kl F (x̄)

=⇒ G(F (x)) ≤ G(F (x̄)) = ϕF (x̄)F (x̄)=0

=⇒ G(F (x))=0.

Now, if we suppose that F (x) 6∼ F (x̄), by Theorem 7.1.1 (b), it holds that G(F (x)) > 0.

Therefore, if G(F (x))=0, we have that F (x) ∼ F (x̄).

Reciprocally, suppose that there exists a functional G : ImF → R+ ∪ {+∞} satisfying

(7.1) and G is �Kl -monotone. Let x ∈ S such that F (x) �Kl F (x̄). It is sufficient

to prove that F (x̄) �Kl F (x). Since K satisfies (2.9), the relation �Kl is reflexive and

thus F (x̄) ∼ F (x̄). Taking into account (7.1), we get that G(F (x̄))=0. Since G is �Kl
monotone and F (x) �Kl F (x̄), it yields

0 ≤G(F (x)) ≤ G(F (x̄))=0

=⇒ G(F (x))=0

Taking into account (7.1) we get that F (x) ∼ F (x̄) ⇒ F (x̄) �Kl F (x), which is the

desired conclusion.

(b) Let x̄ be a strictly minimal solution of problem (P̄K) and the functional G

defined as in part (a), that is G(F (x)) = ϕk0,F (x̄)(F (x)). Because x̄ is a strictly

minimal solution of (P̄K), it yields that

∀ x 6= x̄ : F (x) 6�Kl F (x̄).

Now, we suppose that G(F (x))=0. Taking into account Theorem 5.3.2(e), it holds that

F (x) �Kl F (x̄). This implies x = x̄. Therefore, if G(F (x))=0, then x = x̄. On the

other hand,

x = x̄ =⇒ G(F (x)) = G(F (x̄)) = ϕk0,F (x̄)F (x̄)=0.

Thus, the conclusion (7.2) holds true.

Now, we prove the sufficient condition. Suppose that there exists a functional G :

ImF → R+ ∪ {+∞} satisfying (7.2) and G is �Kl -monotone. Let x ∈ S such that

F (x) �Kl F (x̄). Since (7.2) holds true, it yields

F (x) �Kl F (x̄) =⇒ 0 ≤G(F (x)) ≤ G(F (x̄)) ≤ 0

=⇒ G(F (x))=0

=⇒ x = x̄.
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The last equation states that x̄ is a strictly minimal solution of (P̄K). �

Remark 7.1.4. (i) Since G : X → R+ ∪ {+∞}, we can rewrite (7.1) and (7.2)

respectively by

argmin(G ◦ F, S) = {x ∈ S| F (x) ∼ F (x̄)},

and

argmin(G ◦ F, S) = {x̄}.

(ii) If for all y ∈ Y, K(y) = K, where K is a convex cone in Y , F (x)+K is closed for

all x ∈ S and F (x̄) is K-proper, i.e., F (x̄) +K 6= Y then Theorem 7.1.3 reduces

to [46, Theorem 4.4]

7.2 Pointwise Well-posedness for Set Optimization w.r.t.

Variable Domination Structures

This section presents some results concerning well-posedness properties for set optimiza-

tion problems w.r.t. variable domination structures. For the case of fixed domination

structures, this problem has attracted many authors in the literature not only on vector

but also on set optimization. Usually, one proves the equivalence between the well-

posedness property of the concerned problem and the Tykhonov well-posedness prop-

erty of a corresponding scalar problem. Then, by using many classical results related

to this property of the scalar problem, one can derive some classes of well-posed vector

(set) optimization problems for the concerned problem, see [31, 46, 64, 88, 89, 112].

In this section, we will show that under some appropriate conditions, we also obtain

this equivalence for a set-valued optimization w.r.t. a variable domination structure.

Moreover, we will find two sets of points at which a set-valued optimization problem is

well-posed. Throughout this part, we suppose that the following assumption is fulfilled.

Assumption (P):

• K : Y ⇒ Y is a set-valued map such that for all y ∈ Y, K(y) is a proper, closed,

convex cone in Y and int
⋂
y∈Y
K(y) 6= ∅.

• F : X ⇒ Y is a set-valued map between two real topological vector spaces, S ⊆ X
and for all x ∈ S,

⋃
y∈F (x)

(y +K(y)) is closed.

• k0 is taken in Y such that k0 ∈ int
⋂
y∈Y
K(y).

We begin this section by recalling the notion of well-posedness property of an extended

real-valued function (see [25]).
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Definition 7.2.1. Let f : X → R be an extended real-valued function and consider

problem

Min
x∈S

f(x). (P ′)

We say that problem (P ′) is:

(i) Tykhonov well-posed if it has a unique solution x̄ ∈ S and

{xn} ⊂ S, f(xn)→ f(x̄) implies {xn} → x̄.

(ii) generalized well-posed if arg min(f, S) 6= ∅ and

{xn} ⊂ S, f(xn)→ f(x̄) implies ∃ {xnk} ⊆ {xn} : {xnk} → x̄.

Remark 7.2.2. Observe that (P ′) is Tykhonov well-posed if and only if it is generalized

well-posed and the set arg min(f, S) is a singleton.

The following definition introduces some notions in order to investigate well-posedness

property for the set-valued problem (P̄K). Observe that this definition extends [46, Def-

inition 5.1] where the authors investigated set-valued problems w.r.t. fixed domination

structures.

Definition 7.2.3. Let k0 ∈ int
⋂
y∈Y
K(y) and x̄ be a minimal solution of problem (P̄K).

(a) A sequence {xn} ⊂ S is said to be k0-minimizing for (P̄K) at x̄ if

∃ {εn} ⊂ R+ \ {0}, {εn} → 0 : F (xn) �Kl F (x̄) + εnk
0,∀n.

(b) (P̄K) is said to be k0-well-posed at x̄ if every k0-minimizing sequence at x̄ con-

verges to x̄.

(c) {xn} ⊂ S is said to be minimizing at x̄ if

∃{dn} ⊂
⋂
y∈Y
K(y) \ {0}, {dn} → 0 : F (xn) �Kl F (x̄) + dn, ∀n.

(d) (P̄K) is said to be well-posed at x̄ if x̄ is a strictly minimal solution and for all

minimizing {xn} at x̄ it holds that {xn} → x̄.

The following lemma, given by Durea [31], will be used in the next proposition

which states that Definitions 7.2.3(a) and (c) are equivalent.

Lemma 7.2.4. [31, Lemma 2.2] Let K ⊆ Y be a proper, closed, convex cone with

nonempty interior and {kn} be a sequence of elements from Y that converges to 0.

Then, for every k ∈ intK there exists a sequence {αn} of positive real numbers such

that {αn} → 0 and αnk − kn ∈ intK for every natural number n.
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Proposition 7.2.5. [71, Proposition 5.5] Let {xn} ⊂ S, k0 ∈ int ∩
y∈Y
K(y) and x̄ be a

minimal solution of problem (P̄K). Then, the two following assertions are equivalent:

(i) {xn} is k0-minimizing for (P̄K) at x̄.

(ii) {xn} is minimizing for (P̄K) at x̄.

Proof.

[(i)→ (ii)] Since {xn} is k0-minimizing for (P̄K) at x̄, we have that

∃ {εn} ⊂ R+ \ {0}, {εn} → 0 : F (xn) �Kl F (x̄) + εnk
0,∀n.

Let dn := εnk
0, ∀n. It holds that

{dn} ⊂
⋂
y∈Y
K(y) \ {0}, {dn} → 0 and F (xn) �Kl F (x̄) + dn.

Taking into account the definition of minimizing property, we get that {xn} is mini-

mizing for (P̄K) at x̄, i.e., (ii) holds true.

[(ii)→ (i)] Suppose that {xn} is minimizing for (P̄K) at x̄, i.e.,

∃ {dn} ⊂
⋂
y∈Y
K(y) \ {0}, {dn} → 0 : F (xn) �Kl F (x̄) + dn, ∀n.

We have that

F (xn) �Kl F (x̄) + dn ⇐⇒ F (x̄) + dn ⊆
⋃

yn∈F (xn)

(yn +K(yn))

⇐⇒ F (x̄) ⊆
⋃

yn∈F (xn)

(yn +K(yn)) + (−dn). (7.3)

Let K :=
⋂
y∈Y
K(y). Since for all y ∈ Y , K(y) is a conex cone, K(y) + K ⊆ K(y).

Therefore, for all n ∈ N, it holds that⋃
yn∈F (xn)

(yn +K(yn)) + intK ⊆
⋃

yn∈F (xn)

(yn +K(yn)) +K

⊆
⋃

yn∈F (xn)

(yn +K(yn)). (7.4)

By Assumption (P), K is a proper, closed, convex cone with intK 6= ∅. Taking into

account k0 ∈ intK, {dn}
Y−→ 0 and applying Lemma 7.2.4, we obtain that

∃ {αn} ⊆ R+ \ {0}, {αn} → 0 : αnk
0 − dn ∈ intK, ∀n ∈ N.

This implies that −dn ∈ −αnk0 +intK. Taking into account (7.3), it holds for all n ∈ N
that

F (x̄) ⊆
⋃

yn∈F (xn)

(yn +K(yn))− αnk0 + intK

⇐⇒ F (x̄) + αnk
0 ⊆

⋃
yn∈F (xn)

(yn +K(yn)) + intK.
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Taking into account (7.4), we get that

F (x̄) + αnk
0 ⊆

⋃
yn∈F (xn)

(yn +K(yn)), ∀n ∈ N

⇐⇒ F (xn) �Kl F (x̄) + αnk
0, ∀n ∈ N. (7.5)

The relation (7.5) ensures that {xn} is k0-minimizing for the problem (P̄K) at x̄. The

proof is complete. �

Now, we present an important result of this chapter, that is, we prove that there

exists a class of scalar problems whose the Tykhonov well-posedness property is equiv-

alent to the well-posedness of the original set optimization problem (P̄K). Observe that

[46, 64] have investigated this for the case the domination structures are fixed. How-

ever, it is not easy to directly extend these results for problem (P̄K). The reason is that

we need to choose an appropriate scalarizing functional and some additional properties

on the mapping K(·). The following result takes into account Theorem 7.1.3, where we

use the directional time function given by (5.11).

Theorem 7.2.6. [71, Theorem 5.6] Suppose that K : Y ⇒ Y satisfies (2.11) and x̄ is

a strictly minimal solution of problem (P̄K). Consider the scalar problem

Min{ϕk0,F (x̄)(F (x)) | x ∈ S}, (Pϕk0,F (x̄)
)

where the functional ϕk0,F (x̄) given by (5.11) with B = F (x̄). Then, the following state-

ments are equivalent:

(a) Problem (P̄K) is well-posed at x̄.

(b) For every k0 ∈ int
⋂
y∈Y
K(y), problem (Pϕk0,F (x̄)

) is Tykhonov well-posed.

(c) There is k0 ∈ int
⋂
y∈Y
K(y) such that problem (Pϕk0,F (x̄)

) is Tykhonov well-posed.

Proof. [(a) ⇒ (b)]: Let k0 ∈ int
⋂
y∈Y
K(y) arbitrary. Taking into account Theorem

7.1.3(b), we have that

ϕk0,F (x̄)(F (x̄))=0 and for all x 6= x̄ : ϕk0,F (x̄)(F (x)) > 0.

Thus argminx∈S ϕk0,F (x̄)(F (x)) = {x̄}, i.e, x̄ is a unique solution of (Pϕk0,F (x̄)
). Now,

we take {xn} ⊆ S such that ϕk0,F (x̄)(F (xn))→ ϕk0,F (x̄)(F (x̄)). It is sufficient to prove

that {xn} → x̄.

Let t̄n := ϕk0,F (x̄)(F (xn)), and εn := ϕk0,F (x̄)(F (xn)) + 1
n . It holds that

{εn} → 0, εn > t̄n and F (xn) �Kl F (x̄) + εnk
0.
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By the last relation, we get that {xn} is k0-minimizing and thus, a minimizing sequence

for (P̄K). Since (P̄K) is well-posed, {xn} → x̄.

[(b)⇒ (c)] This implication is obvious.

[(c) ⇒ (a)] Suppose that (c) holds true, we will prove that (a) is fulfilled. Let {xn} is

a minimal solution sequence for problem (P̄K) at x̄. By Proposition 7.2.5, there is a

sequence {εn} → 0+ and

∀ n : F (xn) �Kl F (x̄) + εnk
0 =⇒ ϕk0,F (x̄)(F (xn)) ≤ εn.

Taking into account x̄ is a strictly minimal solution of (P̄K), it holds that

∀xn 6= x̄ : ϕk0,F (x̄)(F (xn)) > 0.

Thus, we get that

{ϕk0,F (x̄)(F (xn))} → 0 = ϕk0,F (x̄)(F (x̄)).

Since (Pϕk0,F (x̄)
) is Tykhonov well-posed, it holds that {xn} → x̄, i.e., problem (P̄K) is

well-posed at x̄.

�

Remark 7.2.7. Observe that Theorem 7.1.3 supposes that (2.9) and (2.10) hold true

for the mapping K(·). However, these conditions are automatically fulfilled when we

use Assumption (P) introduced at the beginning of this section. That is why we omit

these conditions in Theorem 7.2.6 and later on.

Now, we are finding some classes of well-posed set optimization problems. We recall

the two following classical results of well-posed scalar optimization problems, which will

be utilized in the sequel.

Theorem 7.2.8. [10, Theorem 2.1] Let X be a locally compact metric space. Suppose

f : X → R is a proper lower semicontinuous and quasiconvex function on X. The

following conditions are equivalent:

(a) Problem (P ′) is generalized well-posed;

(b) argmin(f,X) is nonempty and compact.

Proposition 7.2.9. [25, Example 6 ] Let X be a normed vector space, S ⊂ X be

a compact set and f : X → R be a proper and lower semicontinuous function on

X. Suppose that argmin(f, S) has a unique element. Then, problem (P ′) is Tykhonov

well-posed.

In the following proposition, we show the sufficient conditions which ensure the

lower-semicontinuous property of the function ϕk0,B ◦ F , where k0 ∈ int
⋂
y∈Y
K(y) and

B ∈ P(Y ).
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Proposition 7.2.10. [71, Proposition 5.9] Suppose that F : X ⇒ Y satisfies that

S(F,�Kl , rk0 +A) := {x ∈ X| F (x) �Kl rk0 +A} is closed for all A ∈ P(Y ) and r ≥ 0.

In addition, assume that K(·) satisfies (2.11). Then, ϕk0,B ◦ F : X → R+
⋃
{+∞} is

lower semicontinuous on S for all k0 ∈ int
⋂
y∈Y
K(y).

Proof. We prove that for all γ ∈ R, the set S(ϕk0,B ◦ F, γ) is closed. This holds true

when γ < 0 since S(ϕk0,B◦F, γ) = ∅. We prove that S(ϕk0,B◦F, γ) = S(F,�Kl , γk0+B)

if γ ≥ 0.

Let x ∈ S(ϕk0,B ◦ F, γ). Taking into account Remark 5.3.3 (ii), we have that

ϕk0,BF (x) ≤ γ =⇒ F (x) �Kl γk0 +B

=⇒ x ∈ S(F,�Kl , γk0 +B).

Therefore,

S(ϕk0,B ◦ F, γ) ⊆ S(F,�Kl , γk0 +B). (7.6)

Conversely, let x ∈ S(F,�Kl , γk0 +B), i.e., F (x) �Kl γk0 +B. By the definition (5.11),

it holds that ϕk0,BF (x) ≤ γ =⇒ x ∈ S(ϕk0,B ◦ F, γ).Therefore,

S(F,�Kl , γk0 +B) ⊆ S(ϕk0,B ◦ F, γ), (7.7)

(7.6) together with (7.7) imply that S(ϕk0,B ◦ F, γ) = S(F,�Kl , γk0 +B). �

Now, we present the first class of well-posed set-valued optimization problems w.r.t.

variable domination structures.

Theorem 7.2.11. [71, Theorem 5.10] Let X be a normed vector space and Y be a

linear topological space. Consider problem (P̄K) with the mappings F : X ⇒ Y and

K : Y ⇒ Y satisfy all the assumptions given in Proposition 7.2.10. Let x̄ be a strictly

minimal solution of problem (P̄K) and S be a compact subset of X. Then, (P̄K) is

well-posed at x̄.

Proof. Let k0 ∈ int
⋂
y∈Y
K(y). By Proposition 7.2.10, ϕk0,F (x̄)◦F is lower semicontin-

uous. Furthermore, by Theorem 7.1.3 (b), it holds that argmin(ϕk0,F (x̄) ◦ F, S) = {x̄}.
Therefore, according to Proposition 7.2.9, problem (Pϕk0,F (x̄)

) is Tykhonov well-posed.

Applying Theorem 7.2.6, we have that problem (P̄K) is well-posed at x̄. �

Before deriving the second class of well-posed set optimization problems w.r.t. variable

domination structures, we introduce a K-quasiconvex mapping.

Definition 7.2.12. The set-valued mapping F : X ⇒ Y is said to be K-quasiconvex

w.r.t. �Kl on a nonempty, convex set S ⊆ X if for all x1, x2 ∈ S and λ ∈ [0, 1] it holds

that

F (λx1 + (1− λ)x2) �Kl
⋃

y∈F (x1)

(y +K(y)) ∩
⋃

y∈F (x2)

(y +K(y)). (7.8)
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Note that Definition 7.2.12 reduces to the classical definition of a quasiconvex real

valued-function if F is single-valued and K(·) = R+. In addition, if K(·) = K, and K is

a convex cone in Y with nonempty interior, Definition 7.2.12 becomes the definition of

K-quasiconvex set-valued mapping, see [12, 46, 64, 79]. In the following, we show that

the K-quasiconvex property can be inherited via scalarizing functional given by (5.11).

Proposition 7.2.13. [71, Proposition 5.12] If F : X ⇒ Y is K-quasiconvex w.r.t. �Kl
on a nonempty convex set S ⊆ X, then ϕk0,B ◦F is a quasiconvex function on S for all

k0 ∈ int
⋂
y∈Y
K(y) and B ∈ P(Y ). Furthermore, the converse statement is true if K(·)

satisfies (2.11).

Proof. Let x1, x2 ∈ S be two arbitrary elements. We have to show that for all λ ∈ [0, 1]

it holds that

ϕk0,B ◦ F (λx1 + (1− λ)x2) ≤ max{ϕk0,B ◦ F (x1), ϕk0,B ◦ F (x2)}.

Obviously, this holds for either ϕk0,B ◦ F (x1) = +∞ or ϕk0,B ◦ F (x2) = +∞. We now

suppose that both ϕk0,B ◦F (x1) and ϕk0,B ◦F (x2) are real numbers. We will prove that

the set S(ϕk0,B ◦F, γ) is convex for all γ ∈ R. This assertion is trivial when γ < 0 since

S(ϕk0,B ◦F, γ) = ∅. Now, we suppose that γ ≥ 0, ϕk0,BF (x1) ≤ γ and ϕk0,BF (x2) ≤ γ.
Let α1 := ϕk0,BF (x1) and α2 := ϕk0,BF (x2). Take ᾱ := max{α1, α2} ≤ γ and ε > 0

arbitrary.

Since Theorem 5.3.2 (c), it holds that

F (x1) �Kl (ᾱ+ ε)k0 +B

and

F (x2) �Kl (ᾱ+ ε)k0 +B.

Therefore,

(ᾱ+ ε)k0 +B ⊆
⋃

y∈F (x1)

(y +K(y)) ∩
⋃

y∈F (x2)

(y +K(y)).

Taking into account Definition 7.2.12, we get that

(ᾱ+ ε)k0 +B ⊆
⋃

y∈F (λx1+(1−λ)x2)

(y +K(y)).

Therefore,

ϕk0,BF (λx1 + (1− λ)x2) ≤ ᾱ+ ε, for allε > 0.

Thus,

ϕk0,BF (λx1 + (1− λ)x2) ≤ ᾱ ≤ γ,

i.e.,

λx1 + (1− λ)x2 ∈ S(ϕk0,B ◦ F, γ),
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or S(ϕk0,B ◦ F, γ) is convex.

Conversely, suppose that ϕk0,B ◦ F is quasiconvex, we prove that (7.8) is fulfilled

for all x1, x2 ∈ S and λ ∈ [0, 1].

Take z ∈
⋃

y∈F (x1)

(y+K(y))∩
⋃

y∈F (x2)

(y+K(y)), arbitrarily. This is equivalent to F (xi) �Kl

{z}, for i = 1, 2.

Therefore, by Theorem (5.3.2)(e), ϕk0,{z}(F (xi)) = 0. Since ϕk0,{z} ◦ F is quasiconvex,

ϕk0,{z} ◦ F (λx1 + (1− λ)x2) ≤ 0.

By Theorem (5.3.2)(e), F (λx1 + (1− λ)x2) �Kl {z}, that is,

z ∈
⋃

y∈F (λx1+(1−λ)x2)

(y +K(y)) for all z ∈
⋃

y∈F (x1)

(y +K(y)) ∩
⋃

y∈F (x2)

(y +K(y)),

which completes the proof. �

Observe that when K(·) = K, where K is a proper, convex cone with intK 6= ∅ the

first statement of Proposition 7.2.13 becomes [64, Proposition 3.4] and [46, Proposition

6.3]. In addition, [46, Proposition 6.3] assumed that B is a K-proper set.

Now, we are ready to present the second class of well-posed set optimization prob-

lems where the objective map F : X ⇒ Y is K-quasiconvex.

Theorem 7.2.14. [71, Theorem 5.13] Let X be a locally compact metric space and S

be a convex subset of X. Suppose that F : X ⇒ Y and K : Y ⇒ Y satisfy all the

assumptions given in Proposition 7.2.10 and F is K-quasiconvex w.r.t. �Kl on S. Let

x̄ be a strictly minimal solution of problem (P̄K). Then, (P̄K) is well-posed at x̄.

Proof. Let k0 ∈ int
⋂
y∈Y
K(y). By Propositions 7.2.10 and 7.2.13, ϕk0,F (x̄) ◦ F is lower

semicontinuous and quasiconvex. Taking into account argmin(ϕk0,F (x̄)◦F, S) = {x̄} and

Theorem 7.2.8, the problem (Pϕk0,F (x̄)
) is generalized well-posed and also is Tykhonov

well-posed. Applying Theorem 7.2.6, we have that the problem (P̄K) is well-posed at

x̄. The proof is complete. �

Remark 7.2.15. Theorems 7.2.11 and 7.2.14 respectively extend [64, Theorem 4.5 ]

and [64, Theorem 4.6 ], in which the authors used the domination K(y) ≡ C, where

C ⊆ Y is a convex cone such that intC 6= ∅. Note that in this case (2.11) holds true

and thus one can get [64, Theorem 4.5 ] and [64, Theorem 4.6 ] without the fulfillment

of this condition.



Chapter 8

Applications in Radiotherapy

Treatment, Medical Image

Registration and Uncertain

Optimization

This chapter presents applications of our results given in the previous parts. In Section

8.1, we propose a variable ordering structure which is satisfied many conflict goals in

radiotherapy treatment based on the threshold doses of many organs. After proving

several important properties of this ordering structure, we derive necessary conditions

for the goal dose of the beam intensity problem. This desired dose is concerned as a

minimal (or nondominated) solution of a vector approximation optimization problem,

which is studied in Section 3.2. Section 8.2 characterizes solutions of an Image Regis-

tration Problems, where the decision maker wants to compare two sets of data (images).

Applying the results given in Chapter 5, we calculate this characterization in detail for

the domination structure K : R2 ⇒ R2. Section 8.3 presents an application of results

given in Chapter 7 for uncertain optimization. We introduce a concept of optimistic

solutions of an uncertain multiobjective optimization problem, where the domination

structure is equipped with a variable ordering. Then, we characterize (strictly) opti-

mistic solutions of multiobjective problems that are contaminated with uncertain data

in general setting. The results presented within this chapter are based on [69, 71, 82].

8.1 An Application in Radiotherapy Treatment

We begin this part by illustrating the importance of studying Intensity Modulated

Radiotherapy Treatment (IMRT) w.r.t. variable domination structures. This treatment

108
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is an advancement in radiotherapy that allows modulating radiation intensity across

a beam. Currently, it is being used to treat cancers of the prostate, head and neck,

breast, lung as well as certain types of sarcomas. The basic idea of IMRT is to reduce the

intensity of rays going through particularly sensitive critical structures and to increase

the intensity of those rays seeing primarily the target volume.

The problem of calculating those intensities based on dose prescription in the target

volume and the surrounding critical structures is called inverse planning. This prob-

lem is modeled as a multiobjective optimization problem with an objective function

depending on the specific goal that the treatment planner wants to achieve. In general,

a level dose of radiation in the cancer organ should be closed to desired dose but at

the same time the surrounding organs are still protected. This inverse problem w.r.t.

a constant cone is studied by several authors and can be divided into two categories,

namely the multiobjective nonlinear programming and the multiobjective linear pro-

gramming. For more detail, we refer the reader to [32] and the references therein.

However, by illustrating a treatment of a prostate cancer tumor, Eichfelder [36] showed

that it may seem more appropriate to concern this inverse problem as a multiobjective

optimization problem w.r.t. a variable ordering structure. Similarly, we explain the

role of variable domination structures by presenting a special problem in radiotherapy

treatment in the following.

We consider the treatment of a lung cancer, where lung is the most sensitive organ

to radiotherapy damage. The dose delivered to lung is limited by spinal cord and heart

(critical organs). Thus, to reduce side effects, the doses delivered to spinal cord and

heart have to be minimized. A dose response curve describes the change in effect on

an organ caused by differing levels of doses delivered to it. We suppose that the dose

response curves for lung, spinal cord and heart in lung cancer treatment are illustrated

in Fig1.

These curves can be used to estimate a threshold dose for each organ. The threshold

dose is defined as the dose of radiation, below which the organism does not suffer from

any effect. In mathematical point of view, it is the dose, below which the response

is zero and above which it is nonzero, see [49, 94]. In this case, we assume that θ1,

θ2 and θ3 are respectively the threshold doses of lung, spinal cord and heart. We now

have a look at three treatment plans (A1, B1, C1), (A2, B2, C2), and (A3, B3, C3), where

Ai, Bi, Ci are the doses delivered to lung, spinal cord and heart respectively, i = 1, 2, 3.

From a practical point of view, if the variations of dose imply a small effect on a

certain organ, a rise of the dose delivered to that organ in order to improve the value

for another organ is preferred, see [36, Chapter 10]. In more detail, beside the goal

of an improvement on the dose level in lung, spinal cord and heart, we also prefer the

changing of dose delivered to spinal cord from B1 to B2 for reducing the dose amount
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(a) Dose response curve for lung. (b) Dose response curve for spinal cord.

(c) Dose response curve for heart.

Figure 8.1: Dose response curves in lung cancer treatment.

in heart, for instance, from C1 to C2. The reason is that a large improvement in the

respond on heart is reached by changing the dose to C2 while the effects on lung and

spinal cord are changed mildly.

We assume that all treatment plans is a subset of R3 and consider a closed convex

cone C ⊂ R3. Suppose that we derive a mathematical model for this problem w.r.t C.
We denote (A2, B2, C2) ≤C (A1, B1, C1) if d := (A1, B1, C1) − (A2, B2, C2) ∈ C. Since

C is a cone, λd ∈ C for all λ > 0 and therefore if (A3, B3, C3) satisfies (A2, B2, C2) −
(A3, B3, C3) = βd with β > 0 we have (A3, B3, C3) ≤C (A2, B2, C2) i.e., (A3, B3, C3) is

“better”than (A2, B2, C2).

On the other hand, having a look at the dose response curve of spinal cord, the

increase in the effect for spinal cord is large by changing the dose from B2 to B3.

Therefore, (A3, B3, C3) might not be a preferred solution from a practical point of

view. Thus, the choice of variable ordering cone depending on the actual doses in this

circumstance seems to be more appropriate.
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8.1.1 A Variable Ordering Cone relevant to Radiotherapy Treatment

This part introduces an appropriate variable ordering structure for the beam intensity

problem as well as its properties. At first, we find out how to derive a mathematical

model for the beam intensity optimization problem. As illustrated in [32], the beam

is discretized into p bixels or beamlets. The 3D volume of patient is divided into l

voxels which included lT tumor voxels, lC critical organ voxels (l = lT + lC) in which

T represents the tumor, C represents critical organs. The dose deposited in voxel i at

unit intensity for bixel j is denoted by aij ∈ R. We assume that the dose deposition

matrix A = (aij) ∈ Rl×p is given. We denote the beam intensity by x ∈ Rp. The

relationship between the beam intensity and the dose is illustrated as follows:

d = Ax,

where d ∈ Rl is a dose vector and its element di correspond to the dose deposited in voxel

i. We assume that A can be partitioned and reordered into sub-matrices AT ∈ RlT×p

and AC ∈ RlN×p whose rows corresponding to tumor and normal voxels (Figure 8.1.1).

Moreover, AC can be divided into AC1 , ..., ACk according to the doses deposited in k

different critical organs C1, ..., Ck.

radiation

volume elements (voxels)

source
beam elements (bixels)

Figure 8.2: Discretization of patient into voxels and of beam into bixels, [32].

It is obvious that the dose delivered to tumor and critical organ voxels are ATx,

AC1x,. . . ,ACkx, respectively. Because different tissues can tolerate different amounts

of radiation, the radiation oncologist need to determine a “prescription dose” which

consists of the target dose for the tumor TG ∈ RlT , the lower bounds and upper

bounds on the dose to tumor voxels TLB, TUB ∈ RlT , the upper bounds on the dose
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to different critical organs C1UB,C2UB, ...., CkUB. In radiation treatment, threshold

dose is defined as the amount of radiation that is required to cause a specific tissue

effect.

As has been outlined before, a vector optimization w.r.t. a variable ordering cone

models for radiotherapy treatment is more appropriate than that one w.r.t. a constant

cone. Therefore, it is necessary to construct a suitable ordering structure in order to

find the desired dose for our beam intensity problem. From a practical perspective, a

dose delivered to a critical organ should be reduced when it exceeds the threshold dose

of that organ. Otherwise, we can increase this dose in favor of an improvement in the

value of another critical organ. This leads to a variable ordering structure in the space

Rn determined as follows:

Given θ ∈ Rn, for every y = (y1, y2, ..., yn) ∈ Rn we set

I>(y) := {i ∈ {1, 2, ..., n}| yi > θi},

and

I≤(y) := {i ∈ {1, 2, ..., n}| yi ≤ θi}.

Obviously, for each y ∈ Rn, it holds that I>(y) ∪ I≤(y) = {1, 2, ..., n}.
We define the variable ordering map K : Rn ⇒ Rn as follows:

∀ y ∈ Rn, K(y) :=

{d ∈ Rn| di ≥ 0 for i ∈ I>(y)} if I>(y) 6= ∅,

Rn if I>(y) = ∅.
(8.1)

This set-valued mapping will be used Section 8.1.3 to construct an intensity problem

in radiotherapy treatment when θ is chosen appropriately. In the following, we present

some properties of the proposed variable ordering cone K(·) given by (8.1).

Proposition 8.1.1. [82, Proposition 3.4] Let θ ∈ Rn, Ω ⊆ Rn be given and the variable

ordering structure K : Rn ⇒ Rn be determined by (8.1). Then, the following assertions

hold true:

(i) For each y ∈ Rn, K(y) is a closed and convex cone and Rn+ ⊆ K(y). In addition,

K(y) is pointed if and only if yi > θi, ∀ i = 1, 2, . . . , n.

(ii) For all y1, y2 ∈ Rn, we have that

y1 − y2 ∈ Rn+ =⇒ K(y1) ⊆ K(y2).

(iii) If ȳ ∈ Ω satifies I>(ȳ) 6= ∅, then there exists e 6= 0 such that

e ∈
⋂
y∈Ω

K(y) \ (−K(ȳ)).
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(iv) GrK is a closed subset of Rn × Rn.

Proof. (i) Obviously, for all y ∈ Rn we have that K(y) is a closed and convex cone.

K(y) is pointed if and only if K(y)∩ (−K(y)) = {0}. By the definition of K(·), it holds

that

K(y) ∩ (−K(y)) = {d ∈ Rn| di = 0 with i ∈ I>(y)}.

Thus, K(y) is pointed if and only if I>(y) = {1, 2, . . . , n}. This condition also means

that yi > θi, ∀ i = 1, 2, . . . , n.

(ii) It follows from y1 − y2 ∈ Rn+ that y1
i ≥ y2

i for all i = 1, 2, . . . , n. Therefore, for all

i ∈ I>(y2) we have y1
i ≥ y2

i > θi, i.e., i ∈ I>(y1). Thus, I>(y2) ⊆ I>(y1) and we obtain

that K(y1) ⊆ K(y2).

(iii) Assume that i0 ∈ I>(ȳ), i.e., ȳi0 > θi0 . It follows from the definition of K(·) that

if d = (d1, . . . , dn) ∈ (−K(ȳ)) then di0 ≤ 0. Take e := (e1, . . . , en), where ei > 0 for all

i = 1, 2, . . . , n. This implies that e ∈ Rn+. Taking into account Rn+ ⊆
⋂
y∈Ω

K(y), it yields

e ∈
⋂
y∈Ω

K(y). Since ei0 > 0, e 6∈ (−K(ȳ)) and thus e ∈
⋂
y∈Ω

K(y) \ (−K(ȳ)).

(iv) Consider a consequence {(yk, dk)} ⊂ GrK which convergences to (y, d) when

k →∞. We need to show that (y, d) ∈ GrK.

Suppose that

(yk, dk) = (yk1 , y
k
2 , . . . , y

k
n, d

k
1, d

k
2, . . . , d

k
n)

and

(y, d) = (y1, y2, . . . , yn, d1, d2, . . . , dn).

To proceed, we consider the following cases.

Case 1: I>(y) 6= ∅. Let i ∈ I>(y) be arbitrary.

Since

yi > θi and {yki } → yi when k →∞,

it holds that

∃ k0 ∈ N such that for all k ≥ k0 : yki > θi.

Taking into account (yk1 , y
k
2 , . . . , y

k
n, d

k
1, . . . , d

k
n) ∈ GrK, we get that

dki ≥ 0, ∀ k ≥ k0.

Since dki → di when k →∞, it yields di ≥ 0. Thus, (y, d) ∈ GrK.
Case 2: I>(y) = ∅, i.e., yi ≤ θi, ∀ i = 1, 2, . . . , n. It follows directly from the

definition of K(·) that (y, d) ∈ GrK. The proof is complete. �

Observer that properties (i) and (iii) of Theorem 8.1.1 ensure the fulfillment of con-

ditions (i) − (ii) in Theorem 3.2.2. This is beneficial for us to apply the necessary

optimality condition for nondominated solutions of problem (P vecK ) in Theorem 3.2.2

for a vector approximation problem equipped with K(·) given by (8.1). This will be

illustrated in the following section.
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8.1.2 Optimality Conditions for Vector Approximation Problems w.r.t.

Variable Ordering Structures

In this part, we investigate necessary optimality conditions for solutions of problem

(P appK ) equipped with K(·) given by (8.1). This means that we consider a special

cone-valued mapping useful in radiotherapy treatment. We again assume that Ai are

linear functions from Rm to Rmi , ai ∈ Rmi , ‖ · ‖i be norms in Rmi , i = 1, 2, . . . , n. For

convenient of the reader, we rewrite and denote it as follows:

K −Minf(x) (P̃ appK )

where

f : Rm → Rn

f(x) :=


‖A1x− a1‖1
‖A2x− a2‖2

. . .

‖Anx− an‖n

 ,

and K(·) is determined by (8.1).

Observe that Section 3.2 has already derived optimality conditions for nondomi-

nated solutions of (P appK ), which is a general formula of (P̃ appK ). Now, we calculate a

necessary optimality condition for nondominated solutions of problem (P̃ appK ). Suppose

that x̄ is a nondominated solution of (P̃ appK ), ȳ = f(x̄). We determine D∗K(ȳ, 0)(y∗)

by calculating the normal cone N(GrK, (ȳ, 0)). Suppose that W is a subset of Rn and

x ∈ Rn. We consider the associated distance function

dist(x,W ) := inf
u∈W
‖x− u‖,

and define the Euclidean projector of x to W by

P (x,W ) := {ω ∈W | ‖x−W‖ = dist(x,W )}, (8.2)

where ‖·‖ is the Euclidean norm in Rn. The following theorem describes the formulation

of the basic normal cone to a subset W ⊆ Rn which is locally closed around x̄ ∈W .

Theorem 8.1.2. [90, Theorem 1.6] Let W ⊆ Rn be locally closed around x̄ ∈ W .

Then, it holds that

N(W, x̄) = lim sup
x→x̄

N̂(W,x),

and

N(W, x̄) = lim sup
x→x̄

[cone(x− P (x;W ))].
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In order to compute N(GrK, (ȳ, 0)), we rewrite the graph of mapping K(·) as fol-

lows: For each I ⊆ {1, 2, . . . , n} we set:

UI := {y ∈ Rn| I>(y) = I},

and

RnI := {d ∈ Rn| di ≥ 0, ∀ i ∈ I}.

Obviously, if y ∈ UI then K(y) = RnI . Therefore, we obtain

GrK =
⋃

I⊆{1,2,...,n}

UI × RnI .

Since GrK is closed (Proposition 8.1.1) and taking into account Theorem 8.1.2, we

have that

N(GrK, (ȳ, 0)) = lim sup
(y,d)→(ȳ,0)

[
cone((y, d)− P ((y, d);

⋃
I⊆{1,2,...,n}

UI × RnI ))
]
.

This analysis leads to the question if we can provide the results of Euclidean pro-

jector to graph of K(·) which gives the formulation of the normal cone to its graph by

using Theorem 8.1.2. This is discussed in the following theorem.

Theorem 8.1.3. [82, Theorem 4.4] Given a point θ = (θ1, . . . , θn) ∈ Rn and the set-

valued mapping K : Rn ⇒ Rn determined by (8.1). For each element (y, d) ∈ Rn × Rn

we set

J≥(d) := {i ∈ {1, 2, . . . , n}| di ≥ 0},

and

I>(y) := {i ∈ {1, 2, . . . , n}| yi > θi}.

Then, it holds for the Euclidean projector given by (8.2) that

(i) If I 6⊆ I>(y) then P ((y, d);UI × RnI ) = ∅.

(ii) If I ⊆ I>(y) then

(a)

P ((y, d);UI × RnI ) ={(yI , dI) ∈ UI × RnI },

where (yI , dI) := (yI1 , . . . , y
I
n, d

I
1, . . . , d

I
n) determined by:

dIi =di, ∀ i ∈ ({1, 2, . . . , n} \ I) ∪ J≥(d),

dI =0, ∀ i ∈ I \ J≥(d),

yIi =θi, ∀ i ∈ I>(y) \ I,

yIi =yi, ∀ i ∈ ({1, 2, . . . , n} \ I>(y)) ∪ I.
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(b) dist((y, d), UI × RnI ) =
√ ∑
i∈I>(y)\I

(yi − θi)2 +
∑

i∈I\J≥(d)

(di)2.

(iii) P ((y, d); GrK) =
⋃
I

P ((y, d);UI × RnI ), where

I = argminI⊆I>(y) dist((y, d), UI × RnI ).

Proof. Let I and I ′ be two arbitrary subsets of {1, 2, . . . , n}. We have that

(UI × RnI ) ∩ (UI′ × RnI′) = ∅ with I 6= I ′.

Therefore,

P
(
(y, d);

⋃
I⊆{1,2,...,n}

UI × RnI ) = argmin(yI ,dI)∈UI×RnI (‖(y, d)− (yI , dI)‖2
)
.

Thus, for each I ⊂ {1, 2, . . . , n}, we need to find P ((y, d);UI × RnI ).

(i) Suppose by contradiction that P ((y, d);UI×RnI ) 6= ∅, i.e., there is (yI , dI) ∈ UI×RnI
such that

‖(yI , dI)− (y, d)‖2 = inf(ω,γ)∈UI×RnI ‖(ω, γ)− (y, d)‖2.

Since I 6⊆ I>(y), ∃ i0 ∈ I but i0 /∈ I>(y). We assume that

(yI , dI) = (yI1 , y
I
2 , . . . , y

I
n, d

I
1, d

I
2, . . . , d

I
n),

and yIi0 = θi0 + ε with ε > 0 (because yI ∈ UI and i0 ∈ I).

We consider the point (y∗, d∗) := (y∗1, y
∗
2, . . . , y

∗
n, d
∗
1, d
∗
2, . . . , d

∗
n), determined by

y∗i0 = θi0 +
ε

2
, y∗i = yIi for i ∈ {1, 2, . . . , n} \ {i0},

and d∗k = dIk, k = 1, 2, . . . , n. Obviously, (y∗, d∗) ∈ UI × RnI . Now, we get

‖(y∗, d∗)− (y, d)‖2 =

n∑
i=1

((y∗i − yi)2 + (d∗i − di)2)

=
∑

i∈{1,2,...,n}\{i0}

(y∗i − yi)2 + (y∗i0 − yi0)2 +

n∑
i=1

(d∗i − di)2

=
∑

i∈{1,2,...,n}\{i0}

(yIi − yi)2 + (θi0 +
ε

2
− yi0)2 +

n∑
i=1

(dIi − di)2

<
∑

i∈{1,2,...,n}\{i0}

(yIi − yi)2 + (θi0 + ε− yi0)2 +

n∑
i=1

(dIi − di)2

( because yIi0 = θi0 + ε)

=
∑

i∈{1,2,...,n}\{i0}

(yIi − yi)2 + (yIi0 − yi0)2 +
n∑
i=1

(dIi − di)2

=
n∑
i=1

((yIi − yi)2 + (dIi − di)2)

= ‖(yI , dI)− (y, d)‖2.
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Thus, (y∗, d∗) ∈ UI × RnI and ‖(y∗, d∗) − (y, d)‖2 < ‖(yI , dI) − (y, d)‖2, this is a

contradiction with the definition of (yI , dI):

‖(yI , dI)− (y, d)‖2 = inf(ω,γ)∈UI×RnI ‖(ω, γ)− (y, d)‖2.

(ii) (a) Let I ⊆ I>(y) and take an arbitrary element (yI , dI) ∈ UI × RnI . It holds that

‖(yI , dI)− (y, d)‖2 =
n∑
i=1

(yIi − yi)2 +
n∑
i=1

(dIi − di)2

=
∑
i∈I

(yIi − yi)2 +
∑

i∈I>(y)\I

(yIi − yi)2 +
∑

i∈{1,2,...,n}\I>(y)

(yIi − yi)2

+
∑

i∈({1,2,...,n}\{I∪J≥(d)})

(dIi − di)2 +
∑

i∈I\J≥(d)

(dIi − di)2

+
∑

i∈J≥(d)\I

(dIi − di)2 +
∑

I∩J≥(d)

(dIi − di)2

≥
∑

i∈I>(y)\I

(yIi − yi)2 +
∑

i∈I\J≥(d)

(0− di)2

≥
∑

i∈I>(y)\I

(θi − yi)2 +
∑

i∈I\J≥(d)

(0− di)2.

The last conclusion is obtained since:

∀ i ∈ I>(y) \ I : yi > θi and yIi ≤ θi,

∀ i ∈ I \ J≥(d) : dIi ≥ 0 and di < 0.

Therefore,

‖(yI , dI)− (y, d)‖2 ≥
∑

i∈I>(y)\I

(θi − yi)2 +
∑

i∈I\J≥(d)

(0− di)2,

and the equation holds true if we choose

dIi =di, ∀ i ∈ ({1, 2, . . . , n} \ I) ∪ J≥(d),

dI =0, ∀ i ∈ I \ J≥(d),

yIi =θi, ∀ i ∈ I>(y) \ I,

yIi =yi, ∀ i ∈ ({1, 2, . . . , n} \ I>(y)) ∪ I.

(b) It is obviously that if I ⊆ I>(y) then

dist((y, d), UI × RnI ) =

√ ∑
i∈I>(y)\I

(yi − θi)2 +
∑

i∈I\J≥(d)

(di)2.

(iii) Since GrK is a closed set, P ((y, d),GrK) 6= ∅, see [99, Example 1.20]. Suppose

that

(ŷ, d̂) ∈ P ((y, d),GrK),

then

∃ J ⊂ {1, 2, . . . , n} such that (ŷ, d̂) ∈ UJ × RnJ .
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It holds that

d((y, d), (ŷ, d̂) = d((y, d),GrK)

≤ d((y, d), UJ × RnJ)

≤ d((y, d), (ŷ, d̂)).

The equation holds true if (ŷ, d̂) = P ((y, d), UJ ×RnJ). Taking into account (i) and (ii),

we get J ⊆ I>(y) and this completes the proof. �

The following remark shows how one obtains the Euclidean projector of an arbitrary

point in Rn × Rn to the graph of the mapping K(·), the normal cone to its graph as

well as its coderivative, cf. [82, Remark 4.4].

Remark 8.1.4. (i) We get the projection of (y, d) to GrK through these following

steps:

Step 1: Determine I>(y).

Step 2: For each I ⊆ I>(y), calculate d((y, d), UI × RnI ) = σI and

P ((y, d);UI × RnI ) = {(yI , dI) ∈ UI × RI : d((yI , dI), UI × RnI ) = σI}.

Step 3: Find σ := minI⊆{1,2,...,n}{σI} and

P ((y, d),GrK) =
⋃
I

P ((y, d);UI × RnI ),

where I satisfies I ⊆ I>(y) and d((y, d), UI × RnI ) = σ.

(ii) From the Theorem 8.1.3 above we obtain that

N(GrK, (ȳ, 0)) = lim sup
(y,d)→(ȳ,0)

cone((y, d)− P ((y, d),GrK), (8.3)

where P ((y, d),GrK) is determined in Theorem 8.1.3 (iii). In addition, it holds

that

D∗K(ȳ, 0)(y∗) = {x∗ ∈ Rn| (x∗,−y∗) ∈ N(GrK, (ȳ, 0))}, (8.4)

where N(GrK, (ȳ, 0)) given by (8.3).

Now, we utilize the result above and Theorem 3.2.2 to derive a necessary optimality

condition for nondominated solutions of the problem (P̃ appK ).

Theorem 8.1.5. [82, Theorem 4.5] Let K : Rn ⇒ Rn be a set-valued map given by

(8.1). Suppose that x̄ ∈ Ω is a nondominated solution of the problem (P̃ appK ), ȳ := f(x̄)

and the following assertions hold true:

(i) I>(ȳ) 6= ∅.
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(ii) There is a unique point y∗ such that −y∗ ∈ D∗K(ȳ, 0)(y∗).

Then, there exist y∗ ∈ Rn \ {0} and corresponding z∗ ∈ (y∗ + D∗K(ȳ; 0)(y∗)) and

Ti ∈ L(Rmi ,R) satisfying

Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1(i = 1, 2, . . . , n) such that

0 ∈
n∑
i=1

A∗i z
∗Ti +N(Ω, x̄),

where D∗K(ȳ, 0)(y∗) is determined by (8.3).

Proof. For every y ∈ Rn, K(y) is a closed convex cone (Proposition 8.1.1 (i)). Taking

into account I>(ȳ) 6= ∅ and Proposition 8.1.1(iii), it holds that

∃ e ∈ Rn, e 6= 0 : e ∈
⋂
y∈Rn
K(y) \ (−K(ȳ)).

Applying directly Theorem 3.2.2 and the formulation of D∗K(ȳ, 0)(y∗) given in

Remark 8.1.4(ii), we obtain the desired conclusion. �

The following result provides specific optimality conditions for minimal solutions of

(P̃ appK ), cf. [82, Theorem 4.6]. Note that in the proof we utilize Propositions 2.3.19 and

2.3.20 given in Chapter 2.

Theorem 8.1.6. Let K : Rn ⇒ Rn be a set-valued map given by (8.1).

(i) Let x̄ ∈ Ω and ȳ := f(x̄). Then, the normal cone to K(ȳ) at 0 is given by:

N(K(ȳ), 0) = N1 × . . .×Nn,

where for i = 1, 2, . . . , n,Ni := (−∞, 0] with i ∈ I>(ȳ),

Ni := {0} with i 6∈ I>(ȳ).
(8.5)

(ii) Suppose that x̄ is a minimal solution of (P̃ appK ) w.r.t. K(·). Then, there exist

y∗ ∈ Rn+ \ {0} and Ti ∈ L(Rmi ,R) satisfying

Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1 such that

0 ∈
n∑
i=1

A∗i y
∗Ti +N(Ω, x̄).

Proof. (i) By the definition of K(·), we get that K(ȳ) = K1 × . . . × Kn, where for

i = 1, 2, . . . , n, Ki := [0,+∞) with i ∈ I>(ȳ),

Ki := R with i 6∈ I>(ȳ).
(8.6)
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Taking into account Proposition 2.3.20 and the formula of Ki in (8.6), it holds that

N(K(ȳ), 0) = N(K1, 0)×N(K2, 0)× . . .×N(Kn, 0) = N1 × . . .×Nn,

where for i = 1, 2, . . . , n, Ni := (−∞, 0] if Ki = [0,+∞),

Ni := {0} if Ki = R.
(8.7)

Thus, from (8.6) and (8.7) it yields that (8.5) is fulfilled.

(ii) Suppose that x̄ is a minimal solution of the problem (P̃ appK ), then, x̄ is a Pareto

efficient solution of (P̃ appK(ȳ)). This implies that K(ȳ) is pointed. Since Theorem 8.1.1,

K(ȳ) = Rn+. Taking into account Corollary 3.2.3 and (8.7), we have that there exist

y∗ ∈ Rn+ \ {0} and Ti ∈ L(Rmi ,R) satisfying

Ti(Ai(x̄)− ai) = ‖Ai(x̄)− ai‖i and ‖Ti‖i∗ ≤ 1(i = 1, 2, . . . , n) such that

0 ∈
n∑
i=1

A∗i y
∗Ti +N(Ω, x̄).

�

8.1.3 Necessary Optimality Conditions for the Beam Intensity Prob-

lem

We begin this part by deriving a mathematical formulation of beam intensity opti-

mization problem. As mentioned in Section 8.1.1, AT , AC1 , . . . , ACk denote the dose

depositions corresponding to tumor T and critical organs C1, . . . , Ck. Assume that θCi

is given threshold dose of critical organ i, where i ∈ {1, . . . , k}. Since the deviation

from the dose delivered to tumor organ to the target dose is always nonnegative and

should be minimized, we set θ := (0, θC1 , . . . , θCk) ∈ Rk+1. The set of bound conditions

for beam intensity is given by

Ω := {x ∈ Rp| 0 ≤ x, TLB ≤ ATx ≤ TUB,ACix ≤ CiUB for i = 1, . . . , k}.

The problem of finding beam intensity in radiotherapy treatment is denoted by (P imrtK )

and formulated as follows:

Minimize f(x) subject to x ∈ Ω w.r.t. K(·), (P imrtK )

where

f : Rp → Rk+1

f(x) :=


‖ATx− TG‖∞
‖AC1x‖∞

. . .

‖ACkx‖∞

 ,
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where the variable ordering mapping K(·) given by (8.1) and ‖ · ‖∞ is maximum norm.

The first criterion can be interpreted as the deviation from the prescribed dose to the

tumor. ‖ACix‖∞ is the dose to the critical organ i (i = 1, . . . , k). The objective function

can be constructed by using Euclidean norm. However, this norm allows the averaging

out of large deviations on a small tissue by small or no deviation on a large tissue, see

[81]. Therefore, it seems to be more reasonable to use the maximum norm. Observe

that (P imrtK ) is a special case of (P̃ appK ). To be precise, (P̃ appK ) reduces to (P imrtK ) when

we choose: θ = (0, θC1 , . . . , θCk); m = p;n = k+ 1;A1 = AT , Aj+1 = ACj ; j = 1, . . . , k;

a1 = TG, a2 = . . . = ak+1 = 0 and ‖ · ‖i = ‖ · ‖∞, ∀ i = 1, . . . , n.

Now, we explain how the decision maker could use our proposed ordering structure

K(·) given by (8.1) in radiotherapy treatment. Assume that we are at a present beam

intensity x̄, ȳ = f(x̄) and ȳi > θi, i ∈ I>(ȳ). The doctor can seek for a “better”element

x′, y′ = f(x′) in the sense that he/she increases the amount of dose delivered to the

tumor organ and decreases the quantity of dose delivered to critical organ Ci, i ∈ I>(ȳ).

In this case, we have that y′ ∈ ȳ−K(ȳ). We call x̄ a desired beam intensity type I if it

does not exist another beam intensity being better than x̄, i.e., there is no y ∈ f(Ω)\{ȳ}
such that y ∈ ȳ−K(ȳ). This means that x̄ is a minimal solution of the problem (P imrtK )

w.r.t. K(·) in the sense of Definition 3.1.5.

On the other hand, we consider that x̄ is “worse”than a beam intensity x̃ if the

change of dose determined by x̄ compared to that determined by x̃ is described as: the

dose delivered to tumor organ is decreased and the critical organ Ci, i ∈ I>(ỹ) will

receive a larger amount of dose. In this case, we get that ȳ ∈ ỹ+K(ỹ), where ỹ = f(x̃).

We call x̄ a desired beam intensity type II if it is not worse than every other beam

intensity x ∈ Ω \ {x̄}, i.e., there is no y ∈ f(Ω) \ {ȳ} such that ȳ ∈ y + K(y). This

implies that x̄ is a nondominated solution of the problem (P imrtK ) w.r.t. K(·) in the

sense of Definition 3.1.5.

The following remark shows a property of the desired beam intensity type I and II,

cf. [82, Remark 5.5].

Remark 8.1.7. From the practical point of view, we can see that if x̄ is a desired beam

intensity type I (or II) and ȳ := f(x̄) then I>(ȳ) 6= ∅. Indeed, suppose that I>(ȳ) = ∅,
i.e., ȳ1 ≤ 0 and ȳi ≤ θCi , ∀ i = 1, 2, . . . , k. Since ȳ1 = ‖AT x̄ − TG‖ ≥ 0, it yields

ȳ1 = 0. This condition means that the dose AT x̄ delivered to the tumor is equal to the

target dose TG. Because of this large dose, some other critical organs will suffer from

some effects. From this circumstance, there exists i ∈ {1, 2, . . . , k} such that ȳi > θCi .

Thus, we arrive at a contradiction to I>(ȳ) = ∅.

To this end, we present a corollary about the conditions for the desired beam in-

tensity type I and II which we search when dealing with the inverse problem in IMRT.

This result is concerned as a direct consequence of Theorems 8.1.5 and 8.1.6 (ii). Since
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the proof is mostly similar to that of these two results with the only exception being

the condition I>(ȳ) 6= ∅ is relaxed, we omit it in this thesis.

Corollary 8.1.8. Consider the beam intensity problem (P imrtK ) with θCi is the threshold

dose of critical organ Ci, i = 1 . . . k. Let x̄ ∈ Ω be given, ȳ = f(x̄).

(i) If x̄ is a desired beam intensity type I then there are y∗ ∈ Rn+\{0}, Z1 ∈ L(RlT ,R),

and Zi ∈ L(RlCi−1 ,R), i = 2, . . . , k + 1 satisfying

Z1(AT x̄− TG) = ‖AT x̄− TG‖∞, Zi(ACi−1 x̄) = ‖ACi−1 x̄‖∞, i = 2, . . . , k + 1

(8.8)

and

‖Zj‖∞ ≤ 1 for all j = 1, . . . , k + 1 (8.9)

such that

0 ∈
k+1∑
j=1

A∗jy
∗Zj +N(Ω, x̄).

(ii) If x̄ is a desired beam intensity type II and there is a unique point y∗ such that

−y∗ ∈ D∗K(ȳ, 0)(y∗) then there are y∗ ∈ Rn \ {0}, z∗ ∈ (y∗ + D∗K(ȳ; 0)(y∗)),

Z1 ∈ L(RlT ,R), and Zi ∈ L(RlCi−1 ,R), i = 2, . . . , k+ 1 satisfying (8.8) and (8.9)

such that

0 ∈
k+1∑
j=1

A∗jz
∗Zj +N(Ω, x̄).

8.2 An Application in Medical Image Registration

In this part, we characterize solutions of a medical image registration problem by using

the results given in Chapter 5. Medical image registration has been used widely in med-

ical treatment, for instance in radiotherapy (treatment verification, treatment planning,

treatment guidance), orthopaedic surgery and surgical microscope. The problem of im-

age registration is finding a transformation matching two given sets of data (images).

Suppose that T is a subset of transformations. H and K are two images obtained by X-

Ray or Angiography (2D image) or Computed Tomography (CT), Magnetic Resonance

Tomography (MRT) and PET (Positron Emission Tomography)(3D image). Assume

that H,K ⊆ Y , where Y = R2 or Y = R3. For each t ∈ T , a set of comparison

mappings {fi(t,H,K) ⊂ R, i = 1, ...,m} is calculated, where fi : (T,H,K)⇒ R. Note

that fi can be different distance functions used to compare H and K, i = 1, ..,m.

Wacker [105] proposed a multiobjective problem for this by consider an objective func-

tion f := (f1, . . . , fi). However, we choose the set-valued mappings fi : (T,H,K)⇒ R,
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i = 1, ...,m, since the fact that there may exist some movements of the patient dur-

ing the time his images are taken, which can lead to perturbed data. For each point

y ∈ Rm, we attach a weight ω(y) := (ω1(y), ω2(y), ..., ωm(y)) ∈ Rm+ , which is chosen by

the decision maker, see [35, 105] for more detail. To formulate our Image registration

problem w.r.t. a variable ordering structure, we utilize a set-valued map K : Rm ⇒ Rm

introduced in [35] and given as

K : Rm ⇒ Rm,

∀ y ∈ Rm,K(y) : = {d ∈ Rm|
m∑
i=1

sign(di)ωi(y) ≥ 0}, (8.10)

where

sign(di) :=


1 if di > 0,

0 if di = 0,

−1 if di < 0.

Obviously, for each y ∈ Rm, K(y) is a cone satisfying Rm+ ⊆ K(y). We denote by (PmirK )

a mathematical model of Medical Image Registration and it is defined as:

K −Min
t∈T

(f1(t,H,K), ..., fm(t,H,K)). (PmirK )

Here, we use the set relation �Kl since this relation is often used when the decision

maker concerns the best case. Observe that if we set

Â := {(f1(t,H,K), ..., fm(t,H,K)), t ∈ T},

then each element of Â is a set A ⊆ Rm. We are looking for a transformation t̄ ∈ T
such that

Ā := (f1(t̄, H,K), ..., fm(t̄, H,K)) ∈ Min(Â,�Kl ).

Motivated by Theorem 5.2.1, we obtain the following corollary. Since its proof

is similar to that of Theorem 5.2.1, we omit it in this part. We again suppose that

k0 ∈ Y \ {0} satisfies (H1) determined in Section 2.4.

Corollary 8.2.1. Let Â ⊂ P(Rm), K : Rm ⇒ Rm and k0 ∈ Rm \ {0} such that (H1) is

satisfied. Assume that for all A ∈ Â,
⋃
a∈A

(a+K(a)) is closed. Then, t̄ ∈ T is a solution

of the problem (PmirK ) if Ā := (f1(t̄, H,K), ..., fm(t̄, H,K))) is a minimal element of Â
w.r.t. �Kl , i.e

∀A ∈ Â, A 6∼ Ā : g�
K
l (A, Ā) > 0. (8.11)
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Observe that g�
K
l (A, Ā) = sup

d∈Ā
inf
a∈A

za+K(a),k0
(−d), where za+K(a),k0

is given by (2.19)

with D = a+K(a). It holds for all a ∈ A and d ∈ Ā that

za+K(a),k0
(−d) = inf{r ∈ R| a− d ∈ rk0 −K(a)}

= inf{r ∈ R| d+ rk0 − a ∈ K(a)}

= inf{r ∈ R|
m∑
i=1

sign(d+ rk0 − a)iωi(a) ≥ 0}. (8.12)

Now, we apply the characterization of minimal elements of Â which is derived in

Corollary 8.2.1 to the image registration problem (PmirK ) when m = 2. The following

proposition calculates za+K(a),k0
(−d) in detail.

Proposition 8.2.2. [69, Proposition 5] Let Â ⊂ P(R2), K : R2 ⇒ R2 and k0 ∈ R2\{0}
such that (H1) is satisfied. Assume that for all A ∈ Â,

⋃
a∈A

(a+K(a)) is closed. Then,

t̄ ∈ T is a solution of the problem (PmirK ) if Ā := (f1(t̄, H,K), f2(t̄, H,K))) is a minimal

element of Â w.r.t. �Kl , i.e.,

∀A ∈ Â, A 6∼ Ā : g�
K
l (A, Ā) > 0,

where

g�
K
l (A, Ā) = sup

d∈Ā
inf
a∈A

za+K(a),k0
(−d),

in which za+K(a),k0
(−d), a ∈ A, d̄ ∈ Ā is determined by

za+K(a),k0
(−d) =


a1−d1

k0
1

if ω1(a) > 0, ω2(a) = 0 or ω1(a) ≥ ω2(a) > 0,

a2−d2

k0
2

if ω1(a) = 0, ω2(a) > 0 or ω2(a) ≥ ω1(a) > 0.

Proof. As shown in [35], for each ω = (ω1, ω2) ∈ Rm+ one has for each a ∈ A,

K(a) =



{d ∈ R2| d1 ≥ 0, d2 ∈ R} if ω1(a) > 0, ω2(a) = 0,

{d ∈ R2| d1 ∈ R, d2 ≥ 0} if ω1(a) = 0, ω2(a) > 0,

{d ∈ R2| (d1 ≥ 0, d2 ≥ 0) or (d1 < 0, d2 > 0)} if ω2(a) ≥ ω1(a) > 0,

{d ∈ R2| (d1 ≥ 0, d2 ≥ 0) or (d1 > 0, d2 < 0)} if ω1(a) ≥ ω2(a) > 0.

In the following, we illustrate the formulation of za+K(a),k0
(−d), a ∈ A, d ∈ Ā in case

m=2 for all possible weight ω(a) := (ω1(a), ω2(a)).

(a) ω1(a) > 0, ω2(a) = 0. We have that K(a) = {d ∈ R2| d1 ≥ 0, d2 ∈ R}. Now, (8.12)

becomes

za+K(a),k0
(−d) = inf{r ∈ R| rk0 − (a− d) ∈ K(a)}

= inf{r ∈ R| (d1 + rk0
1 − a1) ≥ 0}. (8.13)



8.2. An Application in Medical Image Registration 125

Since ∀γ > 0 : γk0 +K(a) ⊆ K(a) and 0 ∈ K(a), we get that

∀γ > 0 : γk0 ∈ K(a)⇐⇒ γk0
1 ≥ 0,∀γ > 0.

Therefore, k0
1 ≥ 0. We choose k0 such that k0

1 > 0. By (8.13), it holds that

za+K(a),k0
(−d) = inf{r ∈ R| r ≥ a1 − d1

k0
1

} =
a1 − d1

k0
1

.

(b) ω1 = 0, ω2(a) > 0. We can prove this part analogously to part (a) and obtain:

za+K(a),k0
(−d) =

a2 − d2

k0
2

.

(c) ω2(a) ≥ ω1(a) > 0. Then,

K(a) = {d ∈ R2| (d1 ≥ 0, d2 ≥ 0) or (d1 < 0, d2 > 0)}.

Now, (8.12) becomes

za+K(a),k0
(−d) = inf{r ∈ R| ((d1 + rk0

1 − a1) ≥ 0, (d2 + rk0
2 − a2) ≥ 0)

or ((d1 + rk0
1 − a1) < 0, (d2 + rk0

2 − a2) > 0)}. (8.14)

Since

∀ t > 0 : tk0 +K(a) ⊆ K(a) and 0 ∈ K(a),

it holds that

(tk0
1 ≥ 0, tk0

2 ≥ 0) or (tk0
1 < 0, tk0

2 > 0)

⇐⇒ (k0
1 ≥ 0, k0

2 ≥ 0) or (k0
1 < 0, k0

2 > 0).

Now, we consider two cases:

Case 1: (k0
1 ≥ 0, k0

2 ≥ 0), we choose k0
1 > 0 and k0

2 > 0, then (8.14) becomes:

za+K(a),k0
(−d) = inf{r ∈ R| (r ≥ a1 − d1

k0
1

, r ≥ a2 − d2

k0
2

)

or (r <
a1 − d1

k0
1

, r >
a2 − d2

k0
2

)}.

If a1−d1

k0
1
≤ a2−d2

k0
2

, then

za+K(a),k0
(−d) = inf{r ∈ R| r ≥ a2 − d2

k0
2

} =
a2 − d2

k0
2

.

If a1−d1

k0
1

> a2−d2

k0
2

, then

za+K(a),k0
(−d) = inf{r ∈ R| r ≥ a1 − d1

k0
1

or r >
a2 − d2

k0
2

}

=
a2 − d2

k0
2

.
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Case 2: (k0
1 < 0, k0

2 > 0), then (8.14) becomes:

za+K(a),k0
(−d) = inf{r ∈ R| (r ≤ a1 − d1

k0
1

, r ≥ a2 − d2

k0
2

)

or (r >
a1 − d1

k0
1

, r >
a2 − d2

k0
2

)}.

If a1−d1

k0
1

< a2−d2

k0
2

, then

za+K(a),k0
(−d) = inf{r ∈ R| r > a2 − d2

k0
2

} =
a2 − d2

k0
2

.

If a1−d1

k0
1
≥ a2−d2

k0
2

then,

za+K(a),k0
(−d) = inf{r ∈ R| a2 − d2

k0
2

≤ r ≤ a1 − d1

k0
1

or r >
a1 − d1

k0
1

}

=
a2 − d2

k0
2

.

From the two above cases, we conclude that

za+K(a),k0
(−d) =

a2 − d2

k0
2

.

(d) ω1(a) ≥ ω2(a) > 0. Then,

K(a) = {d ∈ R2| (d1 ≥ 0, d2 ≥ 0) or (d1 > 0, d2 < 0)}.

Now, (8.12) becomes

za+K(a),k0
(−d) = inf{r ∈ R| ((d1 + rk0

1 − a1) ≥ 0, (d2 + rk0
2 − a2) ≥ 0)

or ((d1 + rk0
1 − a1) > 0, (d2 + rk0

2 − a2) < 0)}. (8.15)

By using the same arguments like in part (c), we obtain:

za+K(a),k0
(−d) =

a1 − d1

k0
1

.

The proof is complete.

�

Remark 8.2.3. Analogously, it is possible to characterize solutions of problem (PmirK )

by taking into account Theorem 7.1.1 and the functional given by (5.11). We are going

to utilize them in the next section for uncertain multiobjective optimization problems.
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8.3 An Application in Uncertain Optimization

In this section, we will introduce a concept of optimistic solutions for an uncertain

multiobjective optimization problem, where the domination structure is equipped with

a variable ordering. Moreover, we characterize these optimistic solutions based on the

results derived in Chapter 7. Uncertain data contaminate most optimization problems

in various applications ranging from science and engineering to industry and thus rep-

resent an essential component in optimization. From a mathematical point of view,

many problems can be modeled as optimization problems and be solved, but in real

life, having exact data is very rare and seems almost impossible. Due to a lack of

complete information, uncertain data can highly affect solutions and thus influence the

decision making process. Hence, it is crucial to address this important issue in opti-

mization theory. Many examples for uncertain data in optimization problems can be

found in the field of market analysis, share prices, transportation science, timetabling

and location theory.

Since the data of uncertainty is not usually completed known before the optimiza-

tion problem with uncertainty is solved, it is very important to estimate the effects

of this uncertainty on optimal solutions. There are many methods to deal with this

question such as sensitivity analysis, stochastic programming and robust optimization

techniques, see [14, 33, 51, 52, 63, 78, 100] and references therein. In this section, we

concern robust multiobjective optimization, which is recently observed in [51, 52] as

an important application of set optimization. Different approaches to robust multi-

objective optimization with a fixed domination structure were examined in [51, 52].

Recently, Khan et al. [63] have illustrated in detail the relationships between robust

counterparts of uncertain vector-valued optimization problems and set optimization

based on the set approach. The field of robust optimization dates back to the 1940ies,

where Wald [106] investigated worst case analysis in decision theory. Since the ground-

breaking work by Ben-Tal, El Ghaoui, and Nemirovski in the 1990ies (see, for instance,

[11]) robust optimization has been of great interest in the optimization community.

The first robust counterpart concepts for uncertain vector-valued optimization prob-

lems was introduced by Deb and Gupta [21]. The authors define robustness as some

sensitivity against disturbances in the decision space. They call a solution to a problem

robust if small perturbations in the decision space result in only small disturbances in

the objective space. Kuroiwa and Lee [78] presented the first scenario-based approach

by directly transferring the main idea of robust scalar optimization to multiobjective

optimization. This concept was generalized by Ehrgott et al. [33] who implicitly used

a set-order relation to define robust solutions for uncertain multiobjective optimization

problems.

Now, we recall some notation of uncertain multiobjective optimization introduced
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in Ehrgott et al. [33] (see also [52]) which will be used throughout this section. Let

Y be a linear topological space, X be a linear space, S ⊆ X be a nonempty set, and

let ∅ 6= U ⊆ RN be an uncertainty set. The uncertainty set U contains all possible

parameter values that the uncertain parameter may attain. Let f : S × U → Y be the

function that is to be minimized. Our goal is to obtain solutions that are optimistic,

i.e., that perform well in the best-case scenario. For the scalar case Y = R, this would

mean to minimize the functional infξ∈U f(x, ξ) on S. Of course, if f is vector-valued,

this scalar approach cannot be easily transferred to vector optimization. Due to the

absence of a total order on Y , we need to define the meaning of an optimal solution.

We define for x ∈ S the outcome set

fU (x) := {f(x, ξ)| ξ ∈ U},

i.e., the image of f under U . For a fixed ξ ∈ U , the vector optimization problem is

denoted by

min
x∈S

f(x, ξ). (P (ξ))

The family of all problems
⋃
ξ∈U (P (ξ)), is called uncertain optimization problem,

and is denoted by P (U). Furthermore, the family of all sets fU (x), x ∈ S, is denoted by

A. In contrast to the original robustness concepts, our “optimistic” concept uses the

lower set less order relation equipped with a variable domination structure according

to Definition 4.2.6. This kind of optimality focuses on the lower bound of a set fU (x).

Contrary to the traditional robustness approach, we are therefore not interested in

a worst-case concept but a best-case concept. Thus, this approach is suitable for a

decision maker who is not considered to be risk averse but rather risk affine and has

positive expectations about the future.

Definition 8.3.1. Let P (U) be an uncertain optimization problem and let K : Y ⇒ Y

be a set-valued map satisfying (2.9).

(i) x̄ ∈ S is called an optimistic solution of problem P (U) if fU (x̄) is a minimal

element of A in terms of Definition 4.2.6 (a).

(ii) x̄ is called a strictly optimistic solution of problem P (U) if fU (x̄) is a strictly

minimal element of A in terms of Definition 4.2.6 (b).

Now, we discuss the role of the variable domination structure. For simplicity, we

consider the case Y = R2, i.e., we consider an uncertain bicriteria optimization problem.

Assume that the data of a vector a ∈ R2 is perturbed by uncertain data and only an

approximation A ⊂ R2 is known (see Figure 8.3 (a)). Similarly, the data of a vector b̃

is disturbed and only an estimated set B̃ can be generated. In order to compare the

set A to the set B̃, the lower set less order relation �Ql with the fixed ordering cone
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Q = R2
+ shall be used, such that B̃ ⊆ A+Q⇐⇒ A �Ql B̃. This relation ensures that

the lower bounds of B̃ are not “worse” than those of A. Since the data are uncertain, it

seems likely that there exist undesired elements located far from where most uncertain

data is found. If there exists such an element b̄ /∈ B̃ which is located far away from

B̃, then the relation A �Ql B, where B := B̃ ∪ {b̄}, may not hold anymore (see Figure

8.3 (b)). In order to still include b̄ in the analysis but to obtain the result that the set

A is, for the most part, preferred to B, a planner can introduce a variable domination

structure in the following way: Let a ∈ A and K : Y ⇒ Y with

K(y) :=

{
K if y = a,

R2
+ else,

where K is a cone which fulfills b̄ ∈ {a}+K (K := K(a)), see Figure 8.3, (b)). Then,

we have A �Kl B. This ensures that all estimated elements are taken into account, as

undesired elements can be handled by using variable domination structures.

(a)

A

B̃

(b)

A

B̃

{b̄}

{a}
{a}+K(a)

Figure 8.3: Visualization of two outcome sets A, B̃ ⊂ R2 of a uncertain bicriteria

optimization problem with undesired elements.

Now, we are ready to apply the characterizations of solutions of set optimization

problems w.r.t. variable domination structures, which were derived in Section 7.1, to

the uncertain optimization problem P (U).

Corollary 8.3.2. [71, Corollary 6.2] Let k0 ∈ Y \ {0} be given such that the inclusion

(H1) is satisfied. Then, the following assertions hold.

(a) Assume that
⋃

y∈fU (x)

(y + K(y)) is closed for all fU (x) ∈ A. Then, x̄ ∈ S is an

optimistic solution of problem P (U) if and only if ϕk0,fU (x̄)(fU (x)) > 0 for all

fU (x) ∈ A, fU (x) 6∼ fU (x̄).
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(b) Assume that
⋃

y∈fU (x)

(y + K(y)) is closed for all fU (x) ∈ A. Then, x̄ ∈ S is a

strictly optimistic solution of problem P (U) if and only if ϕk0,fU (x̄)(fU (x)) > 0 for

all fU (x) ∈ A \ {fU (x̄)}.

In the next corollary, we denote Im fU := {fU (x) | x ∈ S and fU (x) 6= ∅}.

Corollary 8.3.3. [71, Corollary 6.3] Let k0 ∈ Y \ {0} be given such that the inclusion

(H1) is satisfied and let K : Y ⇒ Y be a set-valued map such that
⋃

y∈F (x)

(y + K(y))

is closed for each x ∈ S and the conditions (2.9)-(2.11) are fulfilled. Consider x̄ ∈ S.

The following assertions hold true.

(a) x̄ is an optimistic solution of problem P (U) if and only if there is a functional

G : Im fU → R+
⋃
{+∞} being �Kl -monotone such that

x ∈ S, fU (x) ∼ fU (x̄) ⇐⇒ G(fU (x)) = 0.

(b) x̄ is a strictly optimistic solution of problem P (U) if and only if there is a func-

tional G : Im fU → R+
⋃
{+∞} being �Kl -monotone such that

x ∈ S, G(fU (x)) = 0 ⇐⇒ x = x̄.



Chapter 9

Conclusion and Out Look

In this dissertation, we derived new results concerning set-valued optimization problems

w.r.t. variable domination structures. For an overview, we highlight some of the new

results in the following:

1. We equipped each set relation �Kt , t ∈ {l, u, cl, cu, pl, pu} defined in Chapter

2 with a suitable scalarizing functional to characterize these relations, see Sections

5.1 and 5.3. In addition, we characterized minimal elements of a family of sets as

well as minimal solutions of problem (PK) by means of different nonlinear scalarizing

functionals, see Sections 5.2 and 7.1.

2. We investigated important relationships between solution concepts of set-valued

optimization problems w.r.t. variable domination structures based on the vector ap-

proach and on the set approach, see Theorems 4.3.2, 4.3.5, 4.3.7 and 4.3.8. Based

on these connections, it is possible to apply known results on optimality conditions

for solutions based on the vector approach in order to derive corresponding results for

solutions based on the set approach.

3. Using the dual approach and the results presented in Section 4.3, we derived

necessary optimality conditions for solutions of set-valued optimization problems w.r.t.

the set relations �Kl , �Kpl and �Kcl, see Theorems 6.2.1, 6.2.3, 6.2.4 and 6.2.5.

Moreover, we proved some results related to the openness of a composition of set-

valued functions in which the domination structure K(·) and objective mapping F (·)
are involved. Furthermore, we derived optimality conditions for solutions of set-valued

optimization where we used the set relations �Ku and �Kcu, see Theorems 6.2.8 and 6.2.9.

4. We investigated the relationships between the well-posedness property of a set-

valued problem and the Tykhonov well-posedness property of the scalarized problem.

To do that, we utilized the directional time functional introduced in Section 5.3. Fur-

thermore, we identified two classes of well-posed set optimization problems w.r.t. vari-

able domination structures, see Theorems 7.2.11 and 7.2.14.

5. Section 8.1 constructed an appropriate ordering structure which is suitable to
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many goals in radiotherapy treatment for beam intensity problem. We formulated

this problem as an approximation problem (P imrtK ) w.r.t. the proposed ordering. In

addition, we calculated in detail necessary optimality conditions for the goal dose, which

is concerned as minimal (nondominated) solutions of problem (P imrtK ). Moreover, we

investigated applications in dealing with Medical Image Registration problems and

Uncertain Optimization, see Sections 8.2 and 8.3.

During this present work, we have discovered many interesting topics for future

investigations. Some of these topics are listed as follow:

1. It is of interest to derive existence results for set-valued optimization problems

with variable domination structures. This is an interesting problem ensuring the va-

lidity of some results related to minimizers of set optimization problems given in this

thesis. For this aim, we could follow the same approach given in [57], where the au-

thors investigated a set-valued problem equipped with a general set relation. Another

possibility is adapting results given for minimizers defined based on the lower (upper)

set less relations of set optimization problems in [76].

2. The descent method we derived in Chapter 5 can be analogously performed for

the set relations �Kt , t ∈ {u, pl, pu, cl, cu}. Furthermore, this method can be applied

to real-world applications, for example taking into account uncertainties in economic,

radiotherapy treatment and behavioral sciences.

3. The well-known Jahn-Graef-Younes method, which was introduced in the disser-

tation by Younes [109] (see also Jahn [54, Section 12.4]), determines minimal elements

in the vector-valued case, where Y = Rn. This method is also used by Eichfelder [36] to

formulate corresponding algorithms for vector-valued problems with a variable ordering

structure. In addition, [68] extends this method to set optimization, where algorithms

that deal with minimal solutions of a family of sets F(S) are proposed. Therefore,

this approach can be performed for solutions of set-valued optimization problems w.r.t.

variable domination structures.

4. Since the notion of well-posedness is closely related to the stability of an optimiza-

tion problem, we can use our proposed scalarizing functionals to investigate stability

results for vector-valued optimization w.r.t. variable domination structures. One pos-

sibility is extending the stability results for the case of vector optimization problems

equipped with fixed cones given by Sterna-Karwat [102] and Tammer [103].
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Fréchet normal, 28
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