
Hardware Implementation of IP Packet Filtering in FPGA

Ana Cholakoska, Danijela Efnusheva and Marija Kalendar
Computer Science and Engineering Department, Faculty of Electrical Engineering and Information Technologies,

Ss. Cyril and Methodius University, Karpos II bb, PO Box 574, 1000 Skopje, Macedonia
{acholak, marijaka, danijela}@ feit.ukim.edu.mk

Keywords: FPGA, IP Header Fields Extracting, IP Packet Filtering, Network IDS Systems.

Abstract: In the present rapid expansion of the number of computers and devices connected to the Internet, one of the
top three issues that need to be addressed is the network security. The greater the number of connected users
and devices, the attempts to invade privacy and data of connected users becomes more and more tempting to
hostile users. Thus, network intrusion detection systems become more and more necessary and present in
any network enabling Internet connections. This paper addresses the network security issues by
implementing NIDS style hardware implementation for filtering network packets intended for faster packet
processing and filtering. The hardware is based on several NIDS rules that can be programmed in the
system's memory, thus enabling modularity and flexibility. The designed hardware modules are described in
VHDL and implemented in a Virtex7 VC709 FPGA board. The results are discussed and analyzed in the
paper and are presenting good foundation for further improvement.

1 INTRODUCTION

Many concepts of security measures for
computer communication networks have been
developed over the years. Consequently, it has been
shown that some of them are more effective when it
comes to the resilience to various network intrusions
and attacks in comparison to other known systems.
Network Intrusion Detection Systems (NIDS) allow
greater control over the traffic generated in the
network while applying several mechanisms and
rules for filtering known and sometimes predicting
unknown types of network attacks according to
anomalies detected in the monitored network traffic.

 Naturally, these kind of IDS systems are
generally software defined, and are still vulnerable
to unknown or novel types of attacks. Nevertheless,
the software defined NIDS systems are quite
flexible, modular and easily upgradeable. Despite
the flexibility, the main potential liability of these
software based NIDS systems is their inability to
handle and process the continuous and daily
increasing quantities of network traffic.

 Consequently, the concept of filtering
network packets in this paper has been based on an
existing software system for protection against
unauthorized intrusions. Namely, SNORT – a
network IDS system, is well known for its ever

evolving architecture and the vast collection of rules
for detecting unwanted network traffic. Precisely
those rules are taken as the basis for the hardware
implementation and the packet filtering tests.

 Despite the software solutions, several
specialized hardware solutions intended for packet
filtering have also been proposed, in order to bring
additional speed to the process of filtering.
Regarding hardware network packet processing, one
of the most popular and vastly used solutions are the
Network processors (NPs) [1]. In general, they
represent devices specially tailored to perform
various network processing operations: header
parsing, bit-field manipulation, pattern matching,
table look-ups, and data movement, [2]. Similarly,
one of the more renowned and studied architectures
of network packet processing is the NetFPGA
architecture [4]. NPs are usually used in different
types of network equipment, including routers,
switches, IDS or firewalls, [3]. Accordingly, NPs
spend significant part of processor cycles on packet
header parsing, especially when the packet header
fields are non byte- or word-aligned. Improving the
number of processor cycles needed for packet header
parsing has been addressed in our previous work [8],
enabling a single-cycle memory access to these non
byte- or word- aligned header fields. The simulation
results and the flexibility of the proposed solution

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

23

were investigated utilizing a reconfigurable
hardware platform Virtex7 VC709 FPGA.

Resuming this previous work and building on,
after the network packet headers have been parsed
and accessed in memory, this paper investigates the
possibilities for implementing software IDS packet
filters in hardware. Consequently, the primarily
goal of this paper is to augment software defined
IDS systems by implementing and simulating
network packet filtering modules in hardware, using
the faster hardware resources of an FPGA board
while retaining the flexibility of the software based
rules. Such hardware/software co-design would
bring speed, as well as flexibility while
implementing and applying the rules for network
packets filtering.

 The rest of this paper is organized as follows:
Section II gives an overview of the state of the art in
the area presenting different network processing and
filtering hardware solutions. Section III describes the
design of the rule filtering hardware intended for
increased security and layouts the benefits of the
hardware design and the flexibility due to the
programmability of the FPGA system. Section IV
presents the additional hardware module for
extracting/ writing ip header fields from/to memory
in a single-cycle access, especially for non byte- or
word- aligned packet header fields. Section IV
presents simulations and synthesis results from the
FPGA implementation of the IP packet filtering
hardware module in VHDL. Section V concludes the
paper, outlining the benefits of the proposed IP
packet filtering module.

2 STATE OF THE ART

Contemporary technology advances increase the
pace of rapid expansion of the number of computers
and devices connected to the Internet on daily basis.
As a result, one of the highest priority issues that
need to be considered in this enormous network is
the network security. The greater the number of
connected users and devices, the attempts to invade
privacy and data of connected users becomes more
and more tempting to hostile users. Thus, Network
Intrusion Detection Systems (NIDS) become more
and more necessary in any network connected to the
Internet, and are taking the lead in the battle against
intruders.

In order to enhance the security NIDS have to
inspect incoming network packets looking for
unwanted and hostile traffic. This is foremost done
via various software platforms (e.g. Snort), but the

major increase in daily network traffic imposes a
great challenge for software platforms. Therefore,
many researchers have already turned to hardware
designs for many network issues, including security.

One of the first topics for hardware designed
processing is aimed to network packets header
parsing, which is a prerequisite for the packet
filtering operations.

Many researchers have been working in both
areas since they are interconnected. Namely, the
process of identifying and extracting fields from a
packet header and doing it in hardware for faster
processing is being addressed in many works [7],
[9]. In most cases NPs are used to perform fast
packet processing where the IP header is being
processed, by analyzing, parsing and modifying its
content, [3]. NPs might include some specialized
hardware units to perform classification of packets,
lookup and pattern matching, queue management
and traffic control which on the other side can be
used for the purpose of packet filtering for security
reasons. In recent research, NP software is getting
closer to the NP hardware, such as in [10] where part
of the packet processing tasks such as classification
or security are offloaded to application-specific
coprocessors. Other proposals make big use of
FPGA technology for packet parsing, enabling
implementation of pipeline architectures and thus
achieving high-speed network stream processing,
[12]. Actually, the reconfigurable FPGA boards can
be used to design flexible multiprocessing systems
that adjust themselves to the current packet traffic
protocols, which in turn makes them very suitable
for packet filtering regarding security.

FPGA technology is widely used in combination
with NIDS and packet filtering for security
purposes. For example, the authors in [15] propose
a modular approach for grouping homogeneous
traffic, and then splitting it for filtering in different
specialized hardware blocks, each supporting a
(smaller) rule set tailored for the specific traffic
category. The rule sets are based on the well known
Snort NIDS. The paper concludes that the
exploitation of traffic classification and load
statistics may bring significant savings in the
design of HW NIDS. Similarly, [18] introduces a
packet pre-filtering approach, based on the
observation that very rarely a single incoming packet
fully or partially matches more than a few tens of
IDS rules. Finally, packet pre-filtering prevents
matching at least 99% of the SNORT rules per
packet, thus minimizing processing time and
improving the scalability of the system.

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

24

Other reconfigurable FPGA approaches include
[16] and [19] who propose modular and
programmable hardware accepting configuration
changes (for the rules) in real time, while processing
the important packet header fields and/or payload.

Finally, [20] investigate an approach suitable for
current and future high speed networks of 100 Gb/s
and more, by trimming the traffic that needs to be
filtered by using FPGA-based packet filters. The
goal is achieved by implementing a new "network
grammar" for specifying protocols and filtering rules
for continuous stream of data. The grammar
compiles directly to Verilog code for packet
filters. The new concept was tested on two proof-of-
concept designs: a DNS filter and a simple firewall.

3 RULE FILTERING
HARDWARE FOR INCREASED
SECURITY

Considering network IP packets processing,
usually the main operation is packet header parsing,
mostly for packet routing purposes. Nevertheless,
since the header fields of the packet have been
already extracted, further processing is possible and
very useful for the aim of traffic engineering, traffic
shaping, network security.

This paper is taking into account further packet
processing regarding security, i.e. applying specific
IDS software rules on received network packets for
the purpose of filtering unwanted packets from the
network. The IP header that is received at the input
of the previous module [8], is usually immediately
written in memory without previously going through
any inspection. Consequently, to be able to enforce
greater security, in this architecture, a block for
filtering IP headers is being implemented previous to
writing the packet into memory. The filtering block
uses rules previously defined by the system
administrator (in the considering case, predefined
rules from the Snort IDS for checking IP headers).
The corresponding rules have been programmed into
memory on a particular location.

Figure 1 presents a proposed scheme for an
implementation of such IP packets filter that enables
applying appropriate rules, therefore filtering the

network packets. Following the packet parsing
module, a selected IP header field is being input in
this proposed module (whether a TTL, protocol etc.)
and is subsequently compared to the rule in memory.
If these two fields match, then the Alert signal
outputs a high level signal, which in turn allows the
appropriate field to be written in memory. The
appropriate location is calculated through the
BaseAddress and MemoryOffset information. On
the contrary, if these fields do not match, the
package is rejected and not written in memory. This
is signalled again through the Alert signal that
outputs a low level signal.

Initially, the Alert signal may not be present,
however this kind of signalling proves very useful to
the previous module keeping the headers (or the
entire) IP package. The value of the Alert line would
signal the IP packet parser module that in fact there
is at least one field of the header that has not passed
the filter, enabling it to make a rejection of the entire
packet header and delete all packet fields.
Figure 2 presents a simulation conducted with the
HDL programming package VIVADO showing the
signal layout for an unsuccessful rule matching
procedure. If the incoming IP packet header field
does not match the expected value in the filter field,
the Alert signal outputs a low level signal value (0
value), indicating the incoming packet field is
invalid.
Figure 3 presents the contrary situation where the
incoming IP packet header field matches the rule,
and the Alert signal outputs a high level signal value
(1 value) , thus indicating that the IP packet header
field passes the security check and can be saved in
memory.

The presented hardware solution enables faster
hardware comparison of the IP packet headers
against the programmed rules compared to the
software approach. Moreover, programming the
filtering rules in memory imposes great flexibility
and possibility for implementing and testing new
future rules for new and emerging threats. The
presented hardware module is a proof of concept
solution requiring further investigation in the area of
hardware rule optimization, as well as field
comparison optimization.

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

25

Figure 1: Scheme of the implementation of an IP filter.

Figure 2: Field filtering - non matching. Figure 3: Field filtering – matching.

4 HARDWARE FOR WRITING
IP HEADER FIELDS IN MEMORY

Besides the concept of IP header fields filtering,
this paper details and proposes specialized hardware
modules for IP packet header fields extraction before
processing, and subsequently IP packet header fields
rewriting after processing. These modules help the
direct extraction of the needed IP packet field in a
single memory access operation, further improving
the speed for information transfer from/to the
processor as proposed in our previous work [8]. The
IP packet fields extracted to the processor are then
used in all other processing (filtering) operations. In
order to return the corresponding field to the proper
memory location (proper location in the), several
reversed operations have to be performed. This
section details these operations.

After the processing/filtering of the specified IP
header field, the field should be returned to the
correct position in the complete IP packet header in
memory. The signals lines augmenting this process
are BaseRegister, MemoryOffset and DataWord, as
well as the IpHeaderField containing the shifted
address to the processed IP header field. The

BaseRegister carries the initial IP packet address
into the memory, MemoryOffset tells which header
field is being considered (order number). Than this
value goes through a Look-up table where the order
numbers of the fields are paired with one of the six
words on the from the IP header. Every header field
is mapped with the word that it is contained in. For
example the field “Time to Live” is field 7 (it starts
with 0) and it is mapped with the word 2 represented
in 32 bits (it starts again with a count of 0). The
values from BaseRegister and MemoryOffset are
summarized and thus the address where the new
value should be written is calculated.

The order number of the word containing the IP
header field under consideration, arrives to the
decoder, which in turn decides which of the
FieldLogic fields to activate. IpHeaderField and
DataWord are also present enabling the assembly of
the IP header word with the selected order number.
At this point, having the needed data and the address
in memory, the content of the IP header word
containing the processed IP header field is written in
memory.

To illustrate the process a selected example will
be explained taking into account the “Time to Live”
field. “Time to Live” field is the seventh header field
in order and it is contained in the second word
(counting from 0). Let the value of this second word

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

26

be DataWord = 12345678 (hexadecimal). The
hardware would extract only the TTL field and shift
its value to the left, resulting in IpHeaderField =
78000000. "BaseRegister" represents the first
address of the IP packet header in memory, and for
ease of the example calculation it can be freely
chosen. So let's assume BaseRegister = 00000000.
The initial value of MemoryOffset = 00000007.
Then, by searching through the Look-up table, the
value 00000002 will be output and stored in the
MemoryOffset field (the seventh field is in the
second word of the header). Now let's assume that
the FieldLogic module initiates some change in the
IpHeaderField resulting in a new field value
IpHeaderField=77000000. The correct memory
address where this new value has to be rewritten is
calculated from the existing values:

 BaseRegister + MemoryOffset =
= 00000000 + 00000002 = 00000002
thus marking that the field should be rewritten in

the second word of the header. Finally, the correct
data from the DataWord and the new IpHeaderField
need to be combined and written back to the correct
place.

The FieldLogic module is responsible for
correctly combining the DataWord and the
IpHeaderField using the order number of the IP
header field (7 in the example). Consequently, the
seventh part of the FieldLogic module would be
activated, enabling shifting and adding logic to
finally calculate the new value of the DataWord
(incorporating the IpHeaderField at the last two
"digits"). Finally the new and correct DataWord
exiting the FieldLogic module can be written at the
correct address calculated previously.

Since the finest details regarding the IP header
fields extraction and rewriting are "hidden" in the
FieldLogic module, Figure 4 and Figure 5 give
details regarding the hardware realization of the
FieldLogic parts designed for the Version IP header
field and the Header Checksum IP header field, just
for the purpose of illustration. As it can be seen from
these figures, the number and position of the bits in
the IP packet header influences the complexity of
the hardware intended for IP header field
extraction/writing. Version IP header field is 4 bits
long, and positioned at the end of word 1. Hence,
several operations of shifting, multiplexing and
additions are needed for the operations. On the other
hand, the Header Checksum IP header field is 16
bits long and is byte aligned in word 3 of the IP
packet header. Consequently, the needed hardware is
less complex. This is true for all the other IP packet
fields with similar observations.

Figure 4: Field_logic_ipv4 Version design.

Figure 5: Field_logic_ipv4_HeaderChecksum design.

The last field of the IPv4 header is the
SourceAddress field (the sender of the packet). In
this case, the field has a size of a one word, or 32
bits. Therefore, since this field can be transferred
completely to memory, and on the right position, no
additional selection is performed for certain bits.

As presented, specialized hardware is needed for
each IP packet header field, and special FieldLogic
parts have been designed for all IP packet header
fields for the IPv4 and IPv6 packet headers.

Regarding IPv6 packet header, the fields:
Version, Traffic Class, Flow Label, Payload Length,
Next Header, Hop Limit are mapped similarly as the
IPv4 fields. Interesting cases with IPv6 are the
Source and Destination Address fields taking 128
bits each.

5 USE OF RESOURCES

completing the functional simulation of the filter
and parser of the IP headers, comes the FPGA
synthesis and the implementation of the device
itself.

The results of the synthesis presented in Figure 6
indicate that the proposed filter for IP network
packets can be implemented on in Virtex7 VC709
evaluation platform by utilizing less than 0.01% of
the slice registers and 0.16% of the slice LUT
resources, which represents less than 1% of the
possible FPGA resources. As it is obvious from the

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

27

low FPGA resource's utilization, the initial IP header
filtering logic design can be further extended and
then implemented in the same Virtex 7 VC 709
FPGA board.

This means that as further research, the proposed
IP packet filter can be expanded by incorporating
more packet header fields and/or packet payloads, as
well as additional and more complex packet header
filters, all implemented on the same FPGA platform.
From the ability to reconfigure the FPGA device, it
can be concluded that this kind of module can be
very easily adapted to work with other protocols,
which in turn indicates great flexibility and low cost.

Figure 6: Used resources of Virtex 7.

6 CONCLUSIONS

This paper addressed a very current and vastly
spread issue of network security that affects more
and more large institutions and companies every
day. Nowadays, this topic of research is placed on
the top three priority places and great efforts are
being made for it to be improved. Building from
here, the idea for a combined software/hardware
solution for better network protection from
unauthorized intrusions.

Firstly, the concept of filtering network packets
has been based on some of the existing software
systems for protection against unauthorized
intrusions. As the basic software solution, one of the
widely used open source systems has been chosen.
Namely, SNORT – a network IDS system, is well
known for its ever evolving architecture and the vast
collection of rules for detecting unwanted network
traffic. Exactly those rules are input as the basis for
hardware implementation.

In order to be able to offer a complete hardware
and software solution, building on top of Snort, a
VHDL hardware design was implemented and
tested. The hardware design encompasses a packet

filter based on hardware implementation of Snort
rules, as well as a hardware accelerator for IP packet
header fields extraction and rewriting.

The hardware design was implemented on the
Virtex 7 VC709 FPGA board, thus proving the
functionality and envisioning the future possibilities
for improvement. The realization of the module for
network packet filtering, presented solid results
showing that the proof of concept filter can be
implemented by using only <0.01% of the slice
registers and as little as 0.16% from slice LUT
resources, which represents less than 1% of the
possible FPGA resources in total.

The results obtained in this manner indicate the
great flexibility and low cost of the module, as well
as the possibility for its expansion towards filtering
different types of packages, protocols, packet
behaviour, as well as adding additional selection
filters.

As for the future development of this module,
one of the possibilities is to design an additional
module for separating the header from the packet,
and enabling parallel processing of both, regarding
network processing and filtering for increased
security reasons.

REFERENCES

[1] B. Wheeler, "A new era of network processing,"
LinleyGroup Bob Wheeler's White paper, 2013.

[2] P.C. Lekkas, "Network Processors: Architectures,
Protocols and Platforms," McGraw-Hill Professional,
2013.

[3] R. Giladi, "Network Processors - Architecture,
Programming and Implementation", Ben-Gurion
University of the Negev and EZchip Technologies
Ltd., 2008.

[4] J. Naous, G. Gibb, S. Bolouki, N. McKeown,
"NetFPGA: reusable router architecture for
experimental research", in Sigcomm Presto
Workshop, 2008.

[5] B. Doud, "Accelerating the data plane with the Tile-
mx manycore processor", in Linley Data Center
Conference, 2015.

[6] J. M. P. Cardoso, M. Hubner, "Reconfigurable
Computing: From FPGAs to Hardware/Software
Codesign", Springer-Verlag, 2011.

[7] G. Gibb, G. Varghese, M. Horowitz, N. McKeown,
"Design principles for packet parsers", In ACM/IEEE
Symposium on Architectures for Networking and
Communications Systems, 2013, pp. 13–24.

[8] D. Efnusheva, A. Tentov, A. Cholakoska, M.
Kalendar, "FPGA Implementation of IP Packet
Header Parsing Hardware", In Proc. of the 5th
International Conference on Applied Innovations in
IT, (ICAIIT), 2017, pp. 33-41.

[9] J. Kořenek, "Hardware acceleration in computer
networks". In 16th International Symposium on

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

28

Design and Diagnostics of Electronic Circuits
Systems, 2013.

[10] L. Kekely, V. Puš, J. Kořenek, "Software Defined
Monitoring of application protocols", In IEEE
Conference on Computer Communications, 2014,
pp. 1725–1733.

[11] R. Bolla, R. Bruschi, C. Lombardo, F. Podda,
"OpenFlow in the Small: A Flexible and Efficient
Network Acceleration Framework for Multi-Core
System", In IEEE Transactions on Network and
Service Management, 2014, pp. 390-404.

[12] V. Puš, L. Kekely, J. Kořenek, "Design methodology
of configurable high performance packet parser for
FPGA", In 17th International Symposium on Design
and Diagnostics of Electronic Circuits Systems, 2014,
pp. 189-194.

[13] M. Attig, G. Brebner, "400 Gb/s Programmable
Packet Parsing on a Single FPGA", In Seventh
ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, 2011,
pp. 12-23.

[14] G. Brebner, W. Jiang, "High-Speed Packet
Processing using Reconfigurable Computing", In
IEEE Micro, vol. 34, no. 1, 2014, pp. 8-18.

[15] S. Pontarelli, G. Bianchi, S. Teofil, "Traffic-aware
Design of a High Speed FPGA Network Intrusion
Detection System". In IEEE Transactions on
Computers, Vol. 62, Issue: 11, 2013, pp. 2322 - 2334.

[16] R. Ajami, A. Dinh, "Embedded Network Firewall on
FPGA", In Proc. of 8th 2011 International
Conference on Information Technology: New
Generations, 2011.

[17] S. Yusuf, W. Luk, M.K.N. Szeto, W. Osborne,
"UNITE: Uniform hardware-based Network Intrusion
deTection EngineS". In Proc. of ARC 2006:
Reconfigurable Computing: Architectures and
Applications, 2006, pp 389-400.

[18] I. Sourdis, V. Dimopoulos, D. Pnevmatikatos, S.
Vassiliadis, "Packet Pre-filtering for Network
Intrusion Detection". In Proc. of ANCS’06, 2006.

[19] A. Wicaksana, A. Sasongko, "Fast and
Reconfigurable Packet Classification Engine in
FPGA-Based Firewall", In Proc. of 2011
International Conference on Electrical Engineering
and Informatics, 2011.

[20] J.F. Zazo, S. Lopez-Buedo, G. Sutter, J. Aracil,
"Automated synthesis of FPGA-based packet filters
for 100 Gbps network monitoring applications", In
Proc. of 2016 International Conference on
ReConFigurable Computing and FPGAs (ReConFig),
2016.

Proc. of the 7th International Conference on Applied Innovations in IT, (ICAIIT), March 2019

29

