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Zusammenfassung

Brain-Computer-Interfaces (BCI) stellen eine direkte Kommunikation zwischen demmensch-
lichen Gehirn und einem Computer her. Auf diese Weise ermöglichen sie die Steuerung
von Assistenzgeräten, wie z. B. Rollstühlen oder Prothesen, ausschließlich auf der Basis
von Hirnaktivität. Diese Technologie stellt einen enorm vielversprechenden Ansatz für die
Unterstützung von Patienten mit schweren körperlichen Beeinträchtigungen dar, wie sie
beispielsweise bei Querschnittslähmungen oder als Folge neurologischer Erkrankungen auf-
treten. Die zentralen Komponenten eines BCIs befassen sich dabei mit der Messung und
Verarbeitung der Hirnsignale. Sie verfolgen das Ziel, die Intention des Nutzers aus dessen
Hirnaktivität zu dekodieren um daraus ein Steuersignal für das gewünschte Assistenzsystem
zu generieren. Die konkrete Zuordnung einer Intention aus den Daten erfolgt mit Hilfe soge-
nannter Klassifikatoren, die in verschiedenen Bereichen des maschinellen Lernens eingesetzt
werden. Ein bekanntes Anwendungsbeispiel ist die automatische Spracherkennung (ASR),
die im Zuge der Verbreitung von Sprachsteuerung in modernen elektronischen Geräten in
den letzten Jahren weiter an Bedeutung gewonnen hat. Über die Jahre hat sich dort be-
sonders ein Klassifikationsverfahren als Gold-Standard etabliert: die sogenannten Hidden
Markov Modelle (HMM). Die exzellente Eignung von HMMs für die ASR begründet sich
vor allem durch ihre Eigenschaft, zeitliche Variationen der Signale korrekt beschreiben zu
können sowie ihren umfangreichen Möglichkeiten zur Einbeziehung von Vorwissen in die
Erkennung—zwei Aspekte, die auch für die Dekodierung von Hirnsignalen große Vorteile
versprechen. Dennoch finden sich in der Literatur bislang nur sehr wenige Studien, welche
HMM-basierte Ansätze im Kontext der BCI-Signalverarbeitung verfolgten.

Diese Arbeit widmet sich einer ausführlichen Analyse von HMM-basierten Dekodierungs-
verfahren für unterschiedliche Fragestellungen aus dem Themenfeld BCI. Zunächst wird
das Verfahren in sogenannten Single-Trial-Auswertungen evaluiert. Hierbei wird gezeigt,
dass die erzielbaren Erkennungsraten von HMM-Klassifikatoren auf das Niveau einer Gold-
Standard-Vergleichsmethode (Support-Vektor-Maschine) gebracht werden können und de-
ren Ergebnisse in einzelnen Fällen sogar signifikant übertreffen. Als entscheidende Faktoren
stellen sich neben der Wahl einer geeigneten Featureextraktion und -selektion vor allem die
optimale Anpassung der gewählten Modellkonfiguration heraus. In einer weiteren Untersu-
chung wird analysiert, welche Vorteile sich aus den Eigenschaften von HMMs als dynamische
Klassifikatoren ergeben. Hierfür wird eine Routine vorgestellt, mit deren Hilfe sich zusätz-
liche Informationen über die erkannten Ereignisse bei der Dekodierung ermitteln lassen,
ohne dass ein separates Training der Routine erforderlich wird. Ergänzend zum Typ eines
Ereignisses kann somit zeitgleich auch dessen Länge extrahiert werden kann.
Um ein realistischeres Einsatzszenario abzubilden, wird die Klassifikationsroutine für die

kontinuierliche Erkennung erweitert. Im Rahmen dieser Arbeit wurde ein umfangreiches
Software-Framework entwickelt, welches alle nötigen Anpassungen bereitstellt, um mit dem
“Hidden Markov Model Toolkit” (HTK) eines der bekanntesten Softwarepakete aus der
ASR auch für den Einsatz in BCIs nutzbar zu machen. Dem substanziell erhöhten Schwie-
rigkeitsgrad bei der kontinuierlichen Erkennung wird durch die gezielte Einbeziehung von
Vorwissen begegnet. Hierzu werden Informationen über häufig ausgeführte Aktionen ge-
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nutzt, die sich durch geschickte Einbindung sogenannter Language-Modelle bei der Deko-
dierung berücksichtigen lassen. Als Ergebnis kann eine deutliche Reduktion der Fehlerraten
bei der Klassifikation erzielt werden.

Zusammenfassend kommt diese Arbeit zu dem Schluss, dass HMMs eine äußerst vielver-
sprechende Methode zur Dekodierung von Hirnsignalen im Kontext von BCIs darstellen.
Es wird aufgezeigt, dass die Methodik, insbesondere durch die Möglichkeiten zur Vorwis-
sensintegration, großes Potential für robuste, praktische Lösungen sowie weiterführende
Entwicklungen bereithält.
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Abstract
Brain-computer-interfaces (BCI) provide direct control over assistive devices using only
brain activity. By that, BCI technology is a highly promising means for helping patients
with severe handicaps, such as tetraplegia or paralysis due to neurological disorders. The
crucial component in BCIs is processing of the acquired brain signals and identifying from
the data the intention of the user. This is done with so-called classifiers, which are used
in numerous topics of machine learning. A particularly prominent application example is
automated speech recognition (ASR), which underwent a substantial increase in attention
with the rise of voice control for electronic devices over the last years. For a long time, one
specific classifier has been established as gold-standard for ASR: the so-called hidden Markov
models (HMM). This dominance is mainly due to their ability to account for temporal
variation within the signals as well as various possibilities to incorporate prior knowledge
into the decoding—two features that promise great benefit also for decoding of brain signals.
In the literature, however, only a small number of studies can be found that considered using
HMMs in the context of BCI yet.
In this work, a comprehensive investigation of HMM-based decoding approaches is con-

ducted in a variety of BCI settings. First, the performance of HMM classifiers is evaluated
in so-called single trial decoding tasks. It is shown that decoding accuracies can be brought
to the level of gold-standard routines (here: support vector machines) and in some cases,
HMMs even outperformed the comparison method with significant performance advantages.
This can be achieved by appropriate adaptions to the central components of the entire signal
processing chain, most importantly by means of defining optimal model configurations, but
also by finding suitable feature extraction and selection strategies. Furthermore, a method
is developed to analyze model output (or more precisely, Viterbi paths), in order to assess
the duration of an event without the requirement for a dedicated training routine. This
approach takes advantage of the properties of HMMs that arise from the fact that they per-
form so-called dynamic decoding—a unique feature without equivalent in the widely-used
static classifiers. To better reproduce typical application settings, the routines are extended
to enable continuous decoding. For that purpose, the gold-standard speech decoding frame-
work ’hidden Markov model toolkit’ (HTK) is adapted for use in BCI decoding tasks and
being embedded into an extensive software framework, developed particularly to allow for
quick and convenient variation of all central decoding components. Continuous decoding
substantially raises the difficulty of the setting. It is shown how this issue can be addressed
by incorporation of a priori information into the decoding. By effective utilization of a
common ASR technique, so-called language models, available prior knowledge is exploited,
and substantial reduction in decoding errors is achieved.
In summary, this work provides evidence that the application of HMMs is a highly promis-

ing choice for decoding in the context of BCIs. It is shown that the routines—in particular
with respect to the possibilities of prior knowledge incorporation—offer great potential for
robust, practical solutions and future development.
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1. Introduction

What is a brain-computer-interface? A brain-computer-interface (BCI, often also brain-
machine-interface (BMI)) is a device that analyses brain signals to extract command signals
for external applications, intended to assist people in putting their intentions into practice
[1]. A common definition describes a BCI as “a communication system that does not depend
on the brain’s normal output pathways of peripheral nerves and muscles” [2]. By that, it
replaces the functionality of nerves and muscles as well as their induced movements by hard-
and software components that work based on the underlying electrophysiological signals [1].
To realize such a system, three central components are required: data acquisition, signal
processing and application implementation (Figure 1.1). A variety of approaches is used
to acquire brain signals from human subjects. Almost all techniques measure electric or
magnetic field components that go along with neural activity in the brain. The most
prominent means to pick up the electric field is electroencephalography (EEG), invented
by Hans Berger back in 1929 [3]. The acquired brain signals are then analyzed using a
broad variety of signal processing and machine learning techniques with the goal to extract
the user’s intention. The specific type of this intention (e.g. movement, speech) varies
between the actual application it is meant to control. Successfully extracted command
signals can be used to drive the actuator—the device that translates the user intention
into practice—which is realized either by means of hardware (e. g. wheelchairs or robotic
prostheses) or software (e. g. communication or spelling devices) components.

Applications (Who needs BCIs?) The BCI technology is primarily intended to support
disabled patients with everyday-life activities in order to increase their level of autonomy.
An important part of the patient collective consists of persons with motorical disabilities,
be it due to tetraplegia, loss of limbs (e. g. amputees or accident victims) or paralysis as
a consequence of stroke. The goal for these patients is restoration of mobility. To achieve
this goal, BCIs might be used to steer wheelchairs or even grant control over robotic pros-
theses. Another target group are patients with severe neurological disorders (e. g. locked-in
syndrome, amyotrophic lateral sclerosis, stroke) that have lost the ability to communicate.
In this case, BCI systems aim at providing a means of communication that relies only on
brain activity.
Besides restoration of mobility or ability to communicate, BCIs are also used for so-

called neuro-feedback purposes. The idea behind this is to monitor brain activity during the
performance of specific (mental) exercises and presenting to the user a feedback—usually
provided through a visual channel, e. g. a computer screen—about how well the task is
performed. This feedback is computed from the measured brain activity and can display
a variety of neuro-physiological parameters like level of mental focus or relaxedness of the
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1. Introduction

Data acquisition Signal processing

Feature extraction Classification

Actuator

Feedback

Figure 1.1: Schematic overview of the structure of a brain-computer-interface. A BCI consists of three
components. First, brain signals are acquired using appropriate acquisition techniques. Signal processing
methods are used to extract essential information from the recorded data and decode the user’s intention.
Based on this prediction, a command is sent to an actuator (e. g. a robotic prosthesis) that translates the
intention into practice.

subject. Due to the immediate feedback information, subjects are able to learn how to
self-regulate their mental state. Such systems are used to improve therapy of neurological
disorders, most prominently attention deficit hyperactivity disorder (ADHD) [4]. Similar
approaches can also be used to augment rehabilitation therapy for stroke patients [5]. Using
movement intentions decoded from the recorded brain signals to trigger the assistance
with the execution of the actual movement, a close coupling between neural activity and
perceived motion feedback is achieved. It has been shown that this supports regeneration
by increasing the effect of neural plasticity compared to conventional passive movement
therapy. Furthermore, BCI technology can also be used for patient home monitoring [6]
(e. g. epilepsy seizure prediction [7]). In addition to medical applications, BCI is also an
emerging trend in entertainment industry (esp. in video games [8, 9]).

BCI development overview The concept of BCI first appeared in the literature in a
paper from 1973 by Jacques Vidal [10]. At that time, possibilities for BCI solutions were
severely constrained by the limited computational power and lack of memory resources
of the available computer hardware. Due to the rapid development in this sector, BCI
technology became more feasible, so that by the end of the 1990s, first real BCI applications
could be implemented. In 1999, the group of Birbaumer et al. demonstrated a spelling
device that allowed patients suffering from the locked-in syndrome to communicate based
on interpreted brain signals [11]. Until the year of 2004, all documented BCI systems for
human subjects were based on non-invasively recorded signals (esp. EEG). Leuthardt et

2



al. were the first to present an approach based on electrocorticography1 (ECoG) signals in
human subjects [12]. The recorded signals were used to provide the user control over a one-
dimensional cursor. In this study, a significant advantage of ECoG data over non-invasive
recordings is taken advantage of—the substantially extended range of usable frequencies.
Whereas typical non-invasive brain signal recordings cannot provide useful information
for frequencies components above approximately 40Hz, ECoG opens up the possibility to
utilize signals all the way up to 200Hz and more. This promoted extensive investigation
of higher frequency components in the recorded brain signals. Especially the so-called high
gamma band turned out to yield particularly high information content. The properties of
high gamma signals were documented elaborately in the work of Miller et al. [13–16] and
used in a broad variety of scenarios since then. Their favorable signal-to-noise ratio and
high spatial resolution allowed for much more complex applications. Invasive BCI-systems
have been used to predict movements of individual fingers [17, 18], decode speech [19, 20],
and even to control robotic arm prostheses in paralyzed patients [21–23].
When it comes to decoding the brain signals, a broad variety of algorithms have been

studied. These cover different kinds of neural networks [24–26], decision trees [27, 28] and
support vector machines (SVM) [29–31]—just to name a few. Interestingly, most of these
approaches are so-called static classifiers, which disregard the temporal development of the
measured signals [32]. This is surprising considering the dynamic nature of brain signals.
In other fields of machine learning applications that deal with comparable data, dynamic
classifiers2 have established as gold-standard. This holds true particularly when it comes
to automated speech recognition (ASR). The broad variance found in articulation, even for
one and the same speaker, makes it necessary to use decoding approaches that consider this
circumstance appropriately. Hidden Markov models (HMM) are used in almost all state-of-
the-art ASR systems to tackle this problem [33,34]. In BCI research however, HMMs have
not been used that frequently to decode brain signals yet.

Related work As mentioned before, the amount of studies in which HMMs have been
used to decode brain signals in the context of BCIs is rather limited. Table 1.1 shows an
overview of studies with HMM-based decoders used for BCI classification tasks with human
subjects.

As one of the first, Obermaier et al. applied an HMM decoder for discrimination between
motor imagery of left and right hand movements from human EEG recordings in an offline
setting [35]. The approach has later been extended to an online setting [36]. Comparing
their results to a decoder based on linear discriminant analysis, they reported superiority
of the HMM classifier in 11 out of 12 cases. The advantage was particularly substantial for
online use, which the authors attribute to the better generalization of HMM decoding. The
group of Sitaram et al. [37] performed a similar experiment using near-infrared-spectroscopy

1Electrocorticography—sometimes also referred to as intracranial EEG—is an invasive recording technique
in which brain signals are recorded directly from the surface of the cortex. A more detailed description
of the method can be found in Section 2.1.1.

2A detailed description of the differences between static and dynamic classifiers can be found in Section
2.3.1.
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1. Introduction

Why to use HMMs for BCI?
Typical speech can be represented by a collection of about 30 phonemes and individual words
are constructed as well-defined concatenations of these phonemes. On the next higher level of
complexity, these words build the basis for a language that follows certain grammar rules and
allow for context sensitive interpretation. Speech underlies significant variances when it comes
to actual human speakers. Subject-individual pronunciation of words, personal preferences
towards specific phrasing and several other aspects increase complexity and complicate auto-
mated recognition. Despite all those difficulties, modern ASR systems provide highly accurate
decoding results with a minimum of required training. The key ingredient to make this possible
is the incorporation of prior knowledge into the recognition routines. By concept, probabilistic
classification routines are heavily favored when it comes to convenient integration of additional
knowledge in comparison to their non-probabilistic counterpart.
The challenges in many BCI-related problems are largely similar to typical difficulties that must
by dealt with in ASR solutions. People’s everyday life actions are composed of individual sub-
movements that are concatenated to form meaningful sequences depending on the context. This
concept has close resemblance to the structure of speech and language. Just like speech, brain
signals have dynamic nature and their appearance may not only vary substantially between
individuals but also even between different environmental conditions. As mentioned before,
HMMs are the primary candidate of choice in the field of speech recognition, in which one
faces closely similar issues. This suggests that HMMs potentially also provide a highly suitable
candidate for brain signal decoding and BCI applications.
In summary, compared to most gold-standard BCI classifiers, HMMs primarily offer two major
advantages:

1. Probabilistic classification,

2. Dynamic decoding with time-warping properties.

(NIRS, cf. Section 2.1.3). They also documented an advantage of HMM decoders, in this
case over support vector machines, which represent one of the gold-standard classifiers in
BCI (cf. Section 2.3.3). Chiappa and Bengio [38] investigated the advantage of using dy-
namical models. To do so, they compared HMM decoders with a static version (i. e. with
a single state, cf. Section 2.3.2) in a three-class decoding problem consisting of two types
of motor imagery (same as in the previously mentioned studies) and mental generation of
words. In their results, no significant advantage could be found for the dynamic approach.
Still, the authors showed that the HMM-based decoder achieves decoding accuracies sig-
nificantly above chance level even when trained on data that has been recorded several
days earlier. This is an important finding for potential real-life applicability of such a sys-
tem. The study by Lederman and Tabrikian [39] reports an interesting approach of using
HMMs as an ensemble classifier. For signals from each of the individual EEG electrodes,
they trained a separate pair of HMMs (i. e. one model for each class) and selected from the
entire set of models the one that fitted best for the test data. They tested their routine on
two publicly available EEG datasets and reported significant improvements with the HMM
approach compared to the results of various other groups.

A detailed comparison of various decoding algorithms has been published by Rezaei et al.
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[40]. The authors compare the performance of five common classifiers (including HMMs)
in discriminating five different mental tasks from human EEG recordings. Classification
has not been carried out for the full the five-class problem, but for the simplified case
of binary “duels” between all possible combinations of tasks (10 combinations in total).
The reported decoding accuracies were lowest for the HMM classifier, with substantially
lower performance than the other four routines (HMM: ~65%, others: ~86–90% correct
classifications).3 Similar findings have been reported in Cincotti et al. [42] in a comparison of
three classifiers (including HMM) for left and right hand motor imagery. In the work of Zhao
et al., HMMs have been used to decode joystick movements from human ECoG recordings
[41]. The quite challenging experimental task was to discriminate between eight different
target locations to which the subject had moved a cursor with a joystick. Potentially due
to the difficulty of the task, decoding accuracies reached only about 20%—a result that is
just slightly above chance level (12.5% for an eight-class problem). Nevertheless, the group
documented an interesting extension of coupling two HMMs into a single decoder, and that
work is one of the only studies demonstrating the use of HMM decoders for ECoG data.

In summary, several studies report promising results for the use of HMM classifiers in
BCI-context. However, there are also contradictory findings. Consequently, there is the
demand for further analysis. Three aspects are of particular interest: First, the majority of
studies focused offline or online single trial analysis (cf. Section 2.3.1). Continuous decoding
and prior knowledge incorporation are rarely found. This is an interesting observation, as
exactly for those features, HMMs have established as gold-standard in ASR. Second, HMMs
have been used almost exclusively for analysis of non-invasive data, with a distinct focus on
EEG recordings. With the exception of [41], none of the listed studies is based on ECoG
data. And finally, there is a strong dominance of motor imagery based experiments with
only few classes and rather long trial duration.
Much more frequently than for actual decoding, HMMs have been used as an additional

processing layer in BCI-based spelling devices. These systems are usually based on P300
[47] or steady-state-visually-evoked-potential (SSVEP) [48] paradigms that allow users to
sequentially select individual characters based on visual attention. Different algorithms are
applied to detect which of the letters is attended by the subject. In several approaches,
HMMs are then used to incorporate prior knowledge (PK) on the likelihood of spelled
words or phrases by means of language models. Almost all those studies report significant
performance improvements with the use of such techniques. Comprehensive reviews of the
use of language modeling in BCI speller applications are provided by Mora-Cortes et al.
[49] and Speier et al. [50].
Another interesting approach has been shown by Moses et al. [20]. The group uses

a phoneme-based Viterbi decoder—a method similar to single state HMMs—to decode
speech directly from neural signals (ECoG). In their study, the authors apply common
ASR techniques (i. e. n-grams, cf. Section 2.3.4) to improve the accuracy of their decoder,
again demonstrating the importance of PK incorporation for BCI applications.

When it comes to motor BCI tasks, the focus of interest more and more shifts towards PK
3Unfortunately, the authors do not provide a comprehensible interpretation of the poor HMM performance
(“This can be attributed to the special implementation of HMM in this work.”, [41]).
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1. Introduction

Table 1.1: Examples of BCI studies using HMM classification. K denotes the number of classes in the
investigated decoding problem and T the duration of individual trials.

Study Year Task Modality K T

Obermaier [36] 2001 left/right hand imagination EEG 2 5 s
Obermaier [43] 2001 5 mental tasks EEG 2-5 4 s
Cincotti* [42] 2003 left/right hand imagination EEG 2 N/A

Chiappa* [38] 2004
left/right hand imagination &

EEG 3 1-3 s
mental generation of words

Rezaei [40] 2006 5 mental tasks (10 binary problems) EEG 2 10 s

Sitaram [37] 2007
left/right hand imagination NIRS 2 10 s
left/right hand finger tapping NIRS 2 10 s

Lederman [39] 2012
left/right hand imagination

EEG
2 6 s

hand up-/downward imagination 2 5.5 s

Zhao* [41] 2014
Joystick movements

ECoG 8 1 s
(BCI2000 CursorTask protocol)

Wissel [44] 2013 finger tapping (4 fingers) ECoG 4 ~ 0.5 s
Pfeiffer [45] 2016 picture category decoding ECoG/MEG 3 2.1 s
Pfeiffer [46] 2018 finger tapping (4 fingers + rest) ECoG 4+1 cont.

* conference paper (no journal article available), cont. – continuous decoding

incorporation. Some studies reported promising results in using PK to improve the accuracy
of asynchronous4 prediction of finger movements. The group of Wang et al. [51] considered
biomechanical constraints of finger flexion to reduce the degree of freedom for decoding
of such movements. By incorporating these constraints into their switching non-linear dy-
namic system that is used for decoding, significant increases in decoding precision could be
achieved. Based on the same dataset, Flamary et al. [52] proposed an algorithm that uses
the information about which finger is moving to make predictions on the movements of the
other fingers. They could show that—with appropriate tuning of the algorithm—high cor-
relation between real and predicted movements can be achieved. In the study from Delgado
Saa et al. [53], typical change rates between movement and rest episodes are considered to
produce more realistic decoding output. Recent studies further apply techniques of PK
incorporation for reconstruction of movement trajectories from non-human primate ECoG
data (e. g. [54, 55]).

Although a variety of approaches documented the incorporation of PK in the context
of motor BCI scenarios, straightforward application of ASR (language models) methods
cannot be found. As a general observation, it appears that there exists a large gap between
simple approaches that are limited to select between different options and the attempt to

4In this context, ’asynchronous’ means that the decoder must identify when events happen in addition to
determining their type. More details on the difference between synchronous and asynchronous setting
are provided in Section 2.3.1.
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exactly predict entire movement trajectories with several degrees of freedom. The approach
of using PK incorporation to construct meaningful combinations from decoded elementary
components—a method that is already commonly used in spelling devices—is not investi-
gated thoroughly for motor BCI tasks.

Objective and structure With the aim of providing a comprehensive investigation of the
use of HMM classifiers in a variety of decoding scenarios, this work addresses the following
main objectives:

1. Evaluation of hidden Markov model decoders in single trial decoding problems,

2. Investigation of potential benefits of dynamic decoding for BCI-related tasks,

3. Demonstration of continuous brain signal decoding with HMM-based decoders, and

4. Incorporation of prior knowledge with HMM-based decoders.

The remainder of this thesis is structured as follows. Chapter 2 provides the essential the-
oretical background. In Chapter 3, all methods used for the investigations are introduced.
Additionally, relevant information on the experimental paradigms and the acquired data
are presented. As the central part, Chapter 4 contains all results along with the associated
discussion thereof. The main discussion Chapter 5 reviews the results in a broader context.
This includes comparison of the findings to related work as well as analysis of the limita-
tions. In the final content Chapter 6, potential future development is outlined. The thesis
closes with a list of references and an appendix with supplementary material.
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2. Theoretical Background

2.1. Data acquisition modalities

Signal transmission within the human brain is performed with the help of specialized cells,
so-called neurons. These cells typically consist of a cell body with membrane extensions for
excitation input (dendrites) and output pathways (axon). Electrical signals are transmitted
along the cell—directed from the dendrite to the axon—by changes in the membrane poten-
tial that are generated by in- and outflow of ions into or out of the intracellular space. Ion
flow rates are regulated by ion channels located in the cell membrane. Opening and closing
(so-called gating) of these channels is mediated either based on voltage or on the presence
of certain substances (ligands). Voltage-dependent channels play the key role in the gen-
eration of action potentials which represent the main mechanism of excitation transport.
The excitation signal is transported along the axon and transmitted to other neurons at
interconnections called synapses. Usually, these synapses connect the axon of the emitting
neuron with the dendrite of the receiver. The majority of neurons also has a large number
of synapses that collect signals from various inputs. From the dendrite, incoming signals are
transported along the neuron towards the axon hillock—the part of the neuron’s cell body
that connects to the axon—where all input is summated. If incoming signals accumulate
to a sufficiently high depolarization of the axon hillock for the voltage-dependent channels
to open, an action potential will be generated and propagate along the axon.
The transmission of a signal by a neuron generates an electromagnetic field that extends

to the space outside the neuronal cell itself. If larger collectives of neurons are aligned
with similar spatial orientation and fire in a more or less coherent pattern, the individ-
ual field contributions superpose constructively and result in potentials that can be picked
up on the human scalp using appropriate measurement techniques. The most common
method to record the electric component of the electromagnetic field is electroencephalog-
raphy (EEG)1. As electrodes are placed on the surface of the scalp, distance between signal
origin (i. e. cortical neurons) and the sensor is quite substantial, with typical values in the
order of 10–20mm [59,60]. This distance induces spacial blurring of the electric field and as
a consequence, signal quality deteriorates. Higher signal quality can be achieved with inva-
sive recordings such as electrocorticography (ECoG) or intracranial electrodes. Like every
other electric current, neuronal activity also induces a magnetic field. The magnetic field
distribution is less sensitive to disturbances by matter and hence, constitutes an interest-
ing alternative for sensing information on the signal generating neural processes. However,
measurement of this field component requires very sensitive instrumentation as the field
1Comprehensive reviews on EEG can be found e. g. in the articles [56, 57] or in the book by Niedermeyer
and da Silva [58].

9



2. Theoretical Background

strengths to be recorded are extremely low. The corresponding acquisition modality is
called magnetoencephalography (MEG) [61].

Investigations in this work are based on ECoG and MEG data. These two modalities are
briefly introduced in the following.

2.1.1. Electrocorticography
Electrocorticography (ECoG) is an invasive method to record brain signals directly from the
surface of the cortex. The procedure requires opening of the patient’s skull (craniotomy)
in order to place a grid of electrodes on the brain. Electrodes can be placed either on top
of the dura mater (epidural recording) or below it (subdural recording). Subdurally placed
electrodes are closer to the signal source and thus achieve higher spatial resolution [62]. This
method accounts for the majority of ECoG implantations. However, as subdural placement
involves opening of the dura mater, it goes along with additional risk of inflammation. After
the electrode grid has been put in place, the skull is reclosed. ECoG recordings are used
as a tool to localize epileptic foci in patients with intractable epilepsy—i. e. forms of the
disease that do not respond to conventional treatment with medication—in preparation of
surgical treatment. The measurement is also used to determine whether the affected regions
of the brain are related to vital functions (e. g. speech). If this is not the case, resection of
epileptogenic brain tissue is a viable treatment option. Typical ECoG recordings are carried
out over a period of several days during which some patients voluntarily participate in BCI
studies2. After successful identification of epileptic foci, or if no conclusive indication can
be found within reasonable time, electrode grids are explanted in an additional surgery.
Concerning data quality, ECoG signals have strong advantages over non-invasively record-

ed EEG data. ECoG provides spatial resolutions of up to 2.5mm (subdural) [62] with high
signal amplitudes of about 50–100 µV (compared to EEG: 10–20 µV) [12]. The excellent
time resolution of ECoG recordings allows for meaningful analysis of signals up to 500Hz.
Commonly, EEG recordings do not contain anymore useful information for signal compo-
nents above 40Hz. The main reason for these differences lays in the electrical capacities
and conductivities of the tissue in between the signal source and the measurement location.
These properties cause a low-pass filtering effect for the signal [1]. Since source-to-detector
distance is much smaller in ECoG recordings, the thickness of this in-between tissue is re-
duced to a minimum and consequently, low-pass filtering appears to a much lower extent.
Additionally, high frequency signals are typically generated by small cortical structures (re-
ferring to their spatial extent) and are therefore found more prominently in electrodes close
to their origin [1]. Besides providing higher signal quality, ECoG is also less susceptible
to typical artifacts found in EEG or MEG recordings [12]. This refers mainly to artifacts
caused by eye movements (EOG) or other muscle activity (EMG), for instance from face
or neck musculature. The insensitivity to these types of artifacts makes ECoG a promis-
ing means for real-life BCIs as those require usage under conditions that naturally involve
muscle activity and eye blinking.
2Except for the very rare case of patients (only a handful worldwide) who are solely volunteering for BCI
projects—i. e. there is no clinical need for ECoG implantation in these patients—epilepsy patients are
the only possibility to acquire invasively recorded data for BCI studies.

10



2.1. Data acquisition modalities

2.1.2. Magnetoencephalography

A major drawback of EEG measurements is the poor spatio-temporal resolution. Magne-
toencephalography (MEG) presents a compromise solution that trades off the mobility of
an EEG setup for higher signal quality. Contrary to the electric field, magnetic fields are
not disturbed to the same extent by tissue and bone. Hence, measurement of the magnetic
field distribution on scalp level allows for much more precise inference of the underlying
signal sources than what can be achieved based on the corresponding electric field [63].
Therefore, information on activity of spatially close cortical structures can be assessed with
high accuracy [64]. Typically, MEG recordings provide spatial resolution of up to 2–3mm
[65]. This can become crucial for a variety of BCI solutions that rely on information from
such areas. A prominent example is the motor BCI scenario, as typical motorical areas of
the brain (e. g. hand movement control) represent complex multi-dimensional information
on a highly confined space (typically no more than a few square centimeters). To achieve
these high spatial resolutions (0.5–2mm [64]), a technique called magnetic source imaging
is used [66]. Its goal is the reconstruction of the signal sources (i. e. neural activity) from the
measured surface signals. This inverse problem is very challenging and has been addressed
by a variety of approaches (e. g. equivalent current dipole models, beamforming). In addi-
tion to their high spatial resolution, MEG signals also provide good temporal resolution of
less than 1ms [65].

The magnetic field strengths to be measured are of extremely low amplitude. Typical
signals reach about 10 fT to 1 pT, which is roughly 8–9 orders of magnitude lower than the
earth magnetic field (∼ 50 µT). This circumstance raises high demands on the acquisition
setup. Such low field strength can only be measured with so-called superconducting quan-
tum interference devices (SQUID). This technique—introduced in the late 1960s by James
Zimmerman—is based on a quantum mechanical effect of flux quantization to achieve the
required level of sensitivity. SQUID sensors operate under extremely low temperatures that
are achieved with liquid helium cooling. This requires significant technical effort, especially
given the demand to have the sensors in close proximity to the head of a subject. Record-
ings are performed in electromagnetically shielded rooms to minimize effect of external noise
sources. Furthermore, special attention must be paid regarding all additional equipment
that shall be used. In particular, this means that no magnetic materials, moving metallic
(or otherwise conductive) objects and electric devices (e. g. electric engines) might be used
within the room as they would potentially disturb the recordings.

In summary, MEG is a means to assess brain activity in a fully non-invasive way that
provides good signal quality (esp. with respect to spatio-temporal resolution) in comparison
to other non-invasive techniques. Therefore, MEG comes with the advantage of non-invasive
acquisition to be able to gather data from larger groups of subjects while still supplying
sufficiently high data quality to study complex BCI-related problems. The high technical
effort and the immobility of the acquisition setup severely limits the usability of MEG for
use in everyday life BCIs; nevertheless, it is a highly useful tool for basic research and offers
great potential for clinical diagnostics or neural rehabilitation applications.
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Table 2.1: Comparison of different acquisition modalities for brain signal recording (from [67]).

Method Activity Measurement Resolution Risk Portability

measured (Dir./Indir.) temporal spatial

EEG Electrical Direct ~0.05s ~10mm Non-inv. Portable
MEG Magnetic Direct ~0.05s ~5mm Non-inv. Non-portable
ECoG Electrical Direct ~0.003s ~1mm Invasive Portable

Intracortical
Electrical Direct ~0.003s

~0.5mm (LFP)
Invasive Portableneuron ~0.1mm (MUA)

recording ~0.05mm (SUA)
fMRI Metabolic Indirect ~1s ~1mm Non-inv. Non-portable
NIRS Metabolic Indirect ~1s ~5mm Non-inv. Portable

Abbr.: LFP–local field potentials, MUA–multi-unit activity, SUA–single-unit activity

2.1.3. Other modalities

Besides ECoG, intracranial electrodes represent another invasive technique that is used
quite commonly. From all acquisition modalities, intracranial electrodes provide the highest
spatio-temporal resolution, allowing for measurement of signal spike activity down to the
level of individual neurons. These advantages go along with a series of downsides. Since the
electrodes penetrate cortex tissue, this method is even more invasive than ECoG. Besides
the increased risk of inflammation and permanent tissue damage, intracranial electrode
also have a tendency to be encapsulated after a certain period of time, which significantly
diminishes data quality.
As an alternative to measurement of electric or magnetic fields that go along with neural

signals, oxygen consumption in the brain can be used as an indicator for neural activity.
This is used in functional near-infrared spectroscopy (fNIRS) and blood-oxygen-level de-
pendent (BOLD)-contrast imaging in functional magnetic resonance imaging (fMRI). While
both methods are fully non-invasive, only fNIRS can be considered a suitable candidate for
real-life BCI applications due to the immobility of MRI setups. However, similar to MEG,
basic research using fMRI can provide useful insight into neural processes and may help to
understand specific mechanisms that are involved in typical BCI tasks (e. g. motor imagery).
A comparison of all modalities is shown in Table 2.1.

2.2. Signal processing
Usually, brain signals are acquired with a setup that contains multiple sensors (e. g. elec-
trodes, see Section 2.1). These record neural activity from various spatial locations. For
most cases, only a fraction of the acquired information is relevant for the specific decoding
problem. Appropriate signal processing routines play a crucial role in facilitating mean-
ingful decoding of the signals. The two essential steps in the processing chain are feature
extraction and feature selection.
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In combination, both steps have the goal of dramatic reduction in data dimensionality
without loosing the desired information. The following example illustrates the necessity to
compress information in a hypothetical BCI scenario. Assuming that the BCI is based on
brain signal data acquired from 100 sensors with a sampling rate of 1000Hz (typical values
for BCIs) and task-relevant neural processes are expected to be found in a two second
segment of data, this sums up to a total of

100 · 2 s · 1 000 Hz = 200 000

values that are recorded in that setup. In this example, the desired application shall be
control of a wheelchair by triggering one of the following five commands: forward, backward,
left, right, or stop. Hence, only 3 bits of information (23 = 8 possible values > 5 required
commands) are sufficient to encode all the possibilities. Under the assumption that the
measured signals are digitized with 16-bit precision, this results in

200 000 samples · 16 bit
sample = 3 200 000 bit

of acquired data. Consequently, six orders of magnitude lay between the amount of mea-
sured data and the actually required command information. Without appropriate dimen-
sionality reduction, it is outside the capabilities—even of powerful machine learning algo-
rithms—to robustly assign the correct command to such a data segment. This problem is
further compounded by the small amount of data that is available in typical BCI studies.

2.2.1. Feature extraction
Feature extraction routines play the central role in reducing the typically high dimensional
input data to the (task-)relevant information. This is done by extracting the essential data
properties that are of interest for a given problem. These techniques are broadly used in a
variety of application areas, such as image (and video) processing or speech recognition as
well as many other machine learning and pattern recognition topics. In case of brain signal
decoding, feature extraction mainly pursues the goal of filtering out neural signals that
are uncorrelated to the task under consideration and separating from them all task-related
activity. A broad variety of techniques have been applied in different contexts [68]. One
possible way of structuring these routines is to separate between three categories: temporal,
spectral and spatial features. Some exemplary routines from all three types are briefly
introduced in the following.

Temporal features Temporal features are processed versions of the recorded raw data
in the time domain. These features are suitable to identify phase-locked information in
the data. This refers to typical signal deflections—an example being prominent amplitude
peaks as a response to external stimulation, like the so-called P300—occurring reproducibly
at (almost) identical instants in the time series. To emphasize these signal characteristics,
several processing techniques can be applied. Usually, phase-locked signal characteristics
are restricted to low frequency components. Therefore, the majority of approaches focuses
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on low-pass filtering with subsequent downsampling of the time series to reduce data di-
mensionality. Among the most prominent methods to extract temporal features are finite
impulse response filter (FIR) [69], Wiener filter [70], Wavelet transform [71], as well as other
methods like template matching and autoregressive modeling approaches [72].

Spectral features Contrary to temporal features, with spectral features one tries to ex-
tract time-locked information, irrespective of signal phase. To do so, a common strategy
is computation of power spectral densities, representing the frequency composition of the
signal. This is often performed by means of Fourier transform [73] or, alternatively, using
band-pass filtering with subsequent computation of signal envelopes (e. g. based on Hilbert
transform [74]). Additionally, wavelet transforms can also be used to assess spectral infor-
mation [75].

While these approaches can in general be applied to all frequency bands, their most
important application is the analysis of high frequency components—often referred to as
asynchronous or broadband activity. This activity has been found to encode a variety of
different phenomenons which are of strong interest for potential BCI applications. The
majority of studies focuses on information from the so-called high gamma (HG) band.
Definitions vary slightly with respect to the exact frequency range that constitutes the HG
band. Usually, frequencies in the range of 60–200Hz (and above) are considered [76–78].
In the context of BCI, HG features have been successfully used to decode motor activity
[14,16,79], for speech reconstruction [19,20,80], and in visual perception tasks [81–83]—to
name just a few examples.

Spatial features As an extension of the methods described in the previous two paragraphs,
spatial features also take into consideration the spatial distribution of the signals on the
brain. This can be particularly helpful if signals exhibit characteristic distribution patterns
that allow for distinction between different classes. Given that most non-invasive recording
setups provide simultaneous data acquisition of large portions of the brain, spatial features
are a particularly promising analysis tool for these type of signals. The most frequently
used routine is called common spatial patterns (CSP). CSP is a supervised (data-driven)
statistical learning approach that aims at determining a spatial filter that maximizes the
variance of the signal of one class while at the same time minimizes the variance for the
other class [84]. It was originally designed for discrimination between two different classes.
However, due to its success in EEG analysis, multi-class extensions have been developed
[85]. Spatial features are less commonly used in the analysis of invasively recorded data
since data is usually acquired from a limited area only (e. g. typical ECoG grid dimensions
of 8 cm× 8 cm).

2.2.2. Feature selection

Feature selection routines are meant to determine the most informative features with respect
to the investigated task. As a result, a reduced subset of features is constructed that should
ideally contain all relevant information required for precise decoding while reducing data
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dimensionality as far as possible.
In the literature, various approaches have been studied for a broad variety of decod-

ing problems. Among the most prominent are principal component analysis [86], linear
discriminant analysis [87] and Bhattacharyya distance [88]. Besides these so-called filter
methods, which are independent from a specific classifier (see Section 2.3), another type of
routines—the so-called wrapper methods—works based on the idea of directly optimizing
decoding accuracy by varying the included features. To do so, certain subsets of features
are selected (e. g. using genetic algorithms or simple random selection) and the resulting
decoding accuracy is evaluated with the desired classifier. This is repeated until the ideal
set of features is determined (or after a pre-defined count of iterations).

Davies–Bouldin index A very prominent algorithm for feature selection is the so-called
Davies–Bouldin (DB) index [89]. The DB index represents a cluster separation approach
that measures the overlap of two clusters. Data points that shall be clustered may have
arbitrarily high dimension S. For a set of Nκ S-dimensional feature vectors v ∈ RS the
centroid µκ of the corresponding cluster κ is computed as follows:

µκ = 1
Nκ

∑
v∈κ

v.

The cluster κ has the within-cluster scatter

σκ =
(

1
Nκ

∑
v∈κ
|v− µκ|

2
) 1

2

.

Based on the centroids and within-cluster scatters, a measure of the quality of clustering
can be computed as follows:

Rij = σi + σj∥∥∥µi − µj∥∥∥2

, i, j = 1, ...,K, i 6= j.

For a total number of K clusters, the elements Rij of the matrix R = (Rij) ∈ RK describe
the ratio between the within-class and between-classes scatter for class combination ij.
Smaller values of Rij indicate that the two clusters have less overlap in the feature space.
This leads to two conclusions: First, for the same features, cluster pairs with low Rij are
easier to separate than those with higher values. Second, if different features (e. g. multiple
channels) are available, Rij can be computed for each individual feature; then the feature
that leads to the smallest Rij for a certain cluster pair yields most information to separate
these two clusters. In the context of BCI, the number of clusters usually equals the amount
of classes to be distinguished by the decoding routine.

2.3. Classification
An essential step in BCIs is to infer the intention of a user from their brain signal. As
mentioned before, brain signals are usually acquired with a setup that contains multiple
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sensors (see Section 2.1). Each of the C sensors (typically called channels) samples data
from a different spatial location with sampling rate fsamp. For a given measurement interval
T , this results in a total of S = T · fsamp data samples. Let a = (ac,s) ∈ RC×S denote
the acquired data. As described previously in Section 2.2.1, feature extraction (and selec-
tion) routines are applied to reduce the dimensionality of the data, which mostly means
a reduction in both the number of channels C̃ and samples S̃ (i. e. C̃ < C, S̃ < S). The
classification task then consists of assigning an estimated intention ys of the user for each
sampling point s = 1, ..., S̃ based on information that is contained in the resulting feature
vector x = (xc,s) ∈ RC̃×S̃ .
More generally, a classifier (or decoder) ∆ can be understood as a function that relates

data features x (element of feature space F) to labels y (element of label space L):

∆ : F→ L, x 7→ y.

Depending on the desired application and the specific realization of the routines, F and L
can differ accordingly (see Section 2.3.1). In general, all decoding routines work towards
the same overall goals:

• high accuracy (i. e. high true positive rate, small false positive rate),

• high robustness (across different users, against poor signal-to-noise-ratio etc.),

• small delay/lag between intention and detection,

• fast computation times (ideally real-time capable).

The specific realization can be divided into different types of decoding, which will be ex-
plained in the following.

2.3.1. Types of decoding
Continuous vs. single trial

In the case described above, the decoding routine provides a prediction of the user’s inten-
tion y = (ys) ∈ RS̃ for each time point. This scenario is referred to as continuous decoding
(cf. Figure 2.1). Formally, a continuous decoder can be expressed as

∆cont : RC̃×S̃ → RS̃ , x 7→ y.

Here, it is assumed that the user intention—and hence, the assigned label—is a continuous
parameter (e. g. degree of flexion of a certain finger or a target point in space). A broad
variety of BCI scenarios uses discrete labels instead (e. g. class 1, class 2,... or thumb, index
finger etc.). In this case, the label space changes to L = ΩS̃ , where Ω denotes the finite set
of label values (e. g. Ω = {1, 2, 3}).
The majority of BCI approaches documented in the literature however, make use of a

different strategy. Since brain signals typically have low signal-to-noise ratios, predicting
the intention for every individual sample point constitutes a challenging decoding task. To
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circumvent this issue, the full sequence of measured data is epoched into smaller segments
that typically contain a single event of interest (e. g. a single finger movement). These
segments are called trials. Usually, trials are aligned with respect to a particular time
point—like the presentation of a stimulus or the execution of a movement—and their length
S
′
< S̃ is chosen to contain all task-relevant brain responses. If the full data are epoched

into N trials, the resulting dataset can be denoted as

X = (xn) = (xc,s,n) ∈ RC̃×S
′×N .

In this scenario, the decoding task reduces to the prediction of a single intention yn for the
entire trial n. For the full set of trials, predictions can be written as

Y = (yn) ∈ ΩN ,

where Ω denotes the set of possible (discrete) labels. The routine—so-called single trial
decoding (cf. Figure 2.1)—can be summarized as

∆sngl.tr. : RC̃×S
′×N → ΩN , X 7→ Y.

Besides the requirement for a simplified decoding task, in many cases ground truth infor-
mation is also unavailable on the level of individual samples. This can be due to the lack
of corresponding measurements (e. g. movement tracking) or because the structure of the
underlying problem favors an interval-based evaluation. Such constellations are addressed
more conveniently with a single trial approach.
Single trial decoding is used primarily in post-hoc offline analysis. With appropriate

adaptions, the approaches can also be used to perform (pseudo-)continuous decoding. To
do so, a defined amount of incoming continuous data is cached and processed as if it
were a single trial. This procedure is performed repetitively at intervals of fixed length
(’sliding window’). Compared to an explicit continuous approach, single trial workarounds
go along with some disadvantages. As classification is conducted on data segments of a
certain length, decoding results are available only with a delay that is correlated to the
specified window length (cf. Figure 2.1). The longer the chosen window, the higher the
resulting delay between intention will become. On the other hand, long windows contain
more data and thus, might provide a higher information content that can increase decoding
precision. Consequently, a trade-off needs to be made between accuracy and immediacy
of the predictions. In addition to delayed availability of decoding results, sliding window
approaches are prone to introduce temporal blurring. Due to the fact that consecutive
windows usually have considerable overlap in order to allow for a high rate of predictions,
these windows share significant amount of mutual information. As a consequence, even
short-lived events will likely be decoded in an extended range of consecutive windows.
Especially in case of rapid events, this can become a severe limitation.

Static vs. dynamic Typically, brain signals as well as the features extracted from the ac-
quired data are time sequences that contain temporal development of certain characteristics
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Figure 2.1: Scheme of differences between continuous and single trial decoding as well as the sliding window
workaround for pseudo-continuous decoding with a single trial decoder.

like signal amplitude, spectral composition and so forth. Since data is further assessed from
a series of different spatial locations, input data for classification is usually two-dimensional
(feature/channel x time). The explanations below will be based on a single trial setting,
i. e. Ftrial = RC̃×S

′
for one individual trial and F = RC̃×S

′×N for all trials.
Static classifiers do not take into account the temporal component. Instead, all time

points of a feature sequence are concatenated into a single feature vector, in which all en-
tries are treated equally, i. e. Fstatic = R(C̃·S′ )×N . In doing so, the original time dimension
is converted into a “normal” feature dimension (Figure 2.2). Hence, temporal development
in the input data can no longer have immediate influence on the decoding result. The con-
structed single feature vector is classified to predict the class membership of the underlying
data:

∆static : R(C̃·S′ )×N → ΩN , X̃ 7→ Y.

Prominent examples of static classifiers are linear discriminant analysis (LDA), most of the
artificial neural network architectures (NN) and support vector machines (SVM). Over the
last years, especially SVMs have been used extensively in brain signal decoding and became
a gold-standard routine in the context of BCI (see Section 2.3.3).
Contrary to the static approaches, dynamic classifiers base their prediction on a sequence

of feature vectors. Therefore, temporal relations within the sequence can be considered for
classification [90, p. 28]. As it is likely that relevant neural processes are coded in the
temporal structure of the data, this can play an important role for appropriate decoding
of brain signals. Among the most prominent examples of dynamic classifiers is the hidden
Markov model (HMM) decoder. In the field of automated speech recognition (ASR), HMMs
constitute the gold-standard since the 1980s. Despite their large success in ASR, application
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Figure 2.2: Scheme of feature processing in static and dynamic classifier approaches. The example depicts
features from three channels (C̃ = 3) and eleven samples (S

′
= 11). The two-dimensional input data is

reshaped into a one-dimensional vector in which all time samples are concatenated for static routines.
Contrary, dynamic classifiers use the original time series as input.

of HMMs in the field of brain signal decoding is rather uncommon.

Synchronous vs. asynchronous Different from the previous comparisons, the distinction
between synchronous and asynchronous decoding describes the application setting rather
than technical aspects of the decoding routines itself. It is partially related to the continuous
vs. single trial context.
In a synchronous setting, events always appear at pre-defined time points. Usually,

this it realized by presentation of a stimulus to indicate when a subject shall perform
the corresponding action. Alternatively, the stimulus can tell the user when to decide
for a certain command that shall be executed. All data episodes in between stimuli are
defined as rest or pause periods. An illustrative interpretation of this setting would be
that the system is sensitive to commands only at well-defined time points. Consequently,
decoding in a synchronous setting cannot contain false positive detections. In addition,
since the expected time point of each event is known precisely, this information can be
utilized in the signal processing chain. This significantly simplifies the decoding task and
hence, typically results in higher decoding accuracies, simply as there is less room for errors.
By concept, synchronous problems can be treated conveniently with single trial decoding
approaches; this makes overall system design conceptually easier and in many cases, more
robust. However, such a setting has the substantial disadvantage of not granting the user
free control over the timing of the system, i. e. it is not entirely up to the user to decide
when an action shall be initiated.

An asynchronous setting on the other hand allows for the generation of commands at
arbitrary time points. To enable this, classification must be carried out continuously3. Since
3This can be done either by means of actual continuous decoding or using a single-trial workaround as
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the possible positions of actual events are no longer known a priori, rest (or pause) episodes
need to be identified correctly by the decoder in addition to determination of the type of a
detected event. This circumstance introduces two additional sources of potential decoding
errors: false positives and false negatives; with respect to ASR syntax, these will also be
referred to as insertions and deletions, respectively. Usually, a trade-off between these
error rates is inevitable. Most routines offer the option to control the balance between
insertions and deletions by means of a parameter that determines the sensitivity of the
decoder. Increasing decoder sensitivity lowers the false negative rate (i. e. it reduces the
amount of deletions). Thus, it is likely that the majority of actual events will be detected,
however, potentially at the cost of extensive amounts of insertions. Contrary, with too low
sensitivity settings, the decoder might miss a significant number of commands. Depending
on the intended application, different settings might be desired by the user. Besides the
obvious advantage of free control over command timings for the user, asynchronous concepts
can also operate without external stimulation, which may simplify the system setup in a
variety of cases. As discussed, these benefits go along with substantially increased difficulty
for robust decoding solutions.

2.3.2. Hidden Markov models
Hidden Markov models (HMM) are a specific type of stochastic signal model that describe
a two-stage stochastic process. The theory behind the approach goes back to the work of
Baum (e. g. [91]), Viterbi ([92]) and others. Since then it has been refined and summarized
by a broad variety of books [93–95] and articles [33,34,95–99]. Potentially the most famous
and influential work among them is the tutorial by Lawrence Rabiner from 1989 [100].

2.3.2.1. Theory

Definition As mentioned before, HMMs describe a two-stage stochastic process [95, p.
61]. First, the model represents a discrete stochastic process of transitions between so-
called states Si from a discrete, finite state space S = {S1, S2, ..., SN}. The system changes
states at regularly spaced, discrete time points t = 1, 2, ... and the state of the system at
time point t is denoted with qt. Here, a first order Markov chain is considered, i. e. the
process depends only on the current state and its immediate predecessor. That means the
probability to find the system in state Sj at time point t is given by:

P (qt = Sj |qt−1 = Si, qt−2 = Sk, ...) = P (qt = Sj |qt−1 = Si) .

Only stationary processes shall be considered, which means the probabilities are inde-
pendent from the actual time point [100]. They can then be interpreted as a transition
probability aij for the model to change states from i to j at any arbitrary4 time point:

aij = P (qt = Sj |qt−1 = Si) , 1 ≤ i, j ≤ N.

described above (see ’Continuous vs. single trial’).
4It is important to note that transition probabilities are time-independent. This means in particular that
information on how long the model has already been in its current state cannot be considered.
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Figure 2.3: Structure of a fully-connected three-state hidden Markov model with emission probabilities bj

consisting of single Gaussians. Note that for means of simplicity, only one feature dimension is shown for
bj(x); feature spaces are usually multi-dimensional.

Transition probabilities have the properties

aij ≥ 0 and
N∑
j=1

aij = 1 ∀i = 1, ..., N.

For the second stochastic component in the modeling process, an output (or observation)
Ot is assigned to each time point with a certain probability. Outputs are strictly dependent
only on the current state qt, i. e.

P (Ot|Ot−1, Ot−2, ..., O1 , qt, ..., q1) = P (Ot|qt) .

This output sequenceO = O1, O2, . . . , OT is the only thing that can be observed; hence, it is
called observation sequence. The underlying state sequence Q = q1, q2, . . . , qT is not acces-
sible. In other words, the states are “hidden”, which is the background of the terminology
in “hidden Markov model”.
In summary, the full hidden Markov model (first order) is defined by the following set of

parameters:

• The set of states S = {S1, S2, ..., SN},

• transition probabilities aij , which can be represented by the transition matrix

A = (aij) ∈ [0, 1]N×N

with aij = P (qt = Sj |qt−1 = Si) , 1 ≤ i, j ≤ N,
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• a so-called prior vector that describes the start probabilities

π = (πi) ∈ [0, 1]N

with πi = P (q1 = Si) , i = 1, ..., N,

• and the output probability distributions for each of the states

bi = (b(ok)) ∈ [0, 1]M , for each state i = 1, ..., N.
with bi(ok) = P (Ot = ok|qt = Si) , k = 1, ...,M.

⇒ B := (bik) ∈ [0, 1]N×M

with bik = P (Ot = ok|qt = Si) .

This definition assumes discrete output variables, i. e. Ot ∈ {o1, o2, ..., oM}. Usually, these
outputs ok are interpreted as symbols. Hidden Markov models that are based on this type
of output are called discrete HMMs. However, in the context of most signal analysis tasks,
continuous output variables are required. To facilitate this, the emission probabilities b are
modified. Given (n-dimensional) real-valued output vectors x ∈ Rn, the probabilities can
be expressed as probability density functions

bj(x) = p (x|qt = Sj) .

These types of models are called continuous HMMs. Such a formulation makes it necessary
to find a way to describe the probability density functions. A common strategy is to
approximate the density functions by a linear combination of normal distributions5 [95, p.
64]

p (x) =
∞∑
m=1

cmN (x|µm,σ2
m) ≈

M∑
m=1

cmN (x|µm,σ2
m).

The approximation uses M so-called mixture components. For reasons of normalization of
the probability density, the coefficients cm must fulfill

cm ∈ [0, 1]∀m
M∑
m=1

cm = 1.

Using that definition, the emission probabilities of the HMM can be reformulated as

bj(x) =
Mj∑
m=1

cjmN (x|µjm,σ2
jm).

In this most general case, every state contains an individual number of mixture components
Mj . In addition to the parameters introduced above, this type of HMM also possesses
5The normal distribution is defined as: N (x|µ,Σ) := ((2π)n det Σ)−1/2 exp

(
− 1

2 (x− µ)T Σ−1 (x− µ)
)
.
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• for each state j = 1, ..., N and each mixture m = 1, ...,M
– a mean vector µjm ∈ Rn,
– the covariance matrix

Σjm := σ2
jm ∈ Rn×n,

• as well as a (global) mixture matrix

C := (cjm) ∈ RN×M .

Decoding The full (continuous) HMM is defined by λ =
{
A,π,C,

(
µjm

)
, (Σjm)

}
. Given

that all parameters of a model λ have been estimated based on a training6 set, the model
can be used to compute the probability for the production of an observed sequence O =
O1, O2, ..., OT , which will be denoted by P (λ|O). If there is a set of K HMMs λk that have
been trained for different classes, the production probabilities can be used as a decision
criterion for classification of the data O. Using Bayes’ theorem, the production probabilities
P (λk|O) compute as follows:

P (λk|O) = P (O|λk)P (λk)
P (O) , k = 1, ...,K.

To determine the class to which O most likely belongs, one searches the HMM that provides
the maximum posterior probability for the observation of O, i. e.

λ∗ = argmax
λk

P (λk|O) = argmax
λk

P (O|λk)P (λk)
P (O) = argmax

λk

P (O|λk)P (λk).

The last step uses that P (O) is independent of λk and hence, does not have any influence
on the maximization step. The probabilities P (λk) are called prior probabilities, as they
describe a priori knowledge on how likely certain models appear. If one assumes that these
prior probabilities are equal for all classes (or can be neglected), the classification problem
simplifies to

λ∗ = argmax
λk

P (O|λk). (2.1)

This routine can be used to perform isolated unit decoding (or single trial decoding, cf.
Section 2.3.1), i. e. classification of segmented data that each have a well-defined (single)
class membership. In case of continuous decoding, the output probability of the entire
data sequence alone hardly provides any useful information about individual events in the
data. It is of great use to assess the state sequence q = q1, q2, ..., qT that is associated with
P (O|λ). Assuming this state sequence is known, one can infer conclusions from it about
models that are involved and how the whole sequence segments into those different models.
As the approach is a stochastic method, all evidence is of probabilistic nature only. Hence,
there is not the state sequence that explains the data. Instead, one is interested in specific
6Details on the training algorithms are omitted here as they are not essential for the understanding in this
context. Comprehensive presentation of training procedures can be found in [100] or [95, pp. 76-90].
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sequences. A natural choice is to look for the most likely state sequence, i. e. the sequence
q∗that—for a given model λ and an observation O—provides the highest likelihood P :

q∗ = argmax
q

P (O, q|λ). (2.2)

This state sequence is known as the Viterbi path (see below).
Of central relevance for all findings presented so far is the computation of the pro-

duction probabilities P (O|λ). Assuming an observation sequence of length T , i. e. O =
O1, O2, ..., OT , the model goes through a corresponding state sequence q = q1, q2, ..., qT to
generate these observations. Consequently, the production probability is computed as the
product of all involved emission probabilities bqt along this sequence q:

P (O|q, λ) =
T∏
t=1

bqt(Ot). (2.3)

For Eq. (2.3) it is assumed that the model goes through the specific state sequence q. Hence,
to compute the probability for P (O, q|λ), one must consider the probability for the model
to use that particular sequence in the first place. This is computed as the product of the
prior probability πq1 to start in state q1 and all transition probabilities aij required to
generate the rest of the sequence:

P (q|λ) = πq1

T∏
t=2

aqt−1qt

(a0t:=πt)=
T∏
t=1

aqt−1qt . (2.4)

As a result, P (O, q|λ) can be computed as follows:

P (O, q|λ) = P (q|λ) · P (O|q, λ) (2.3),(2.4)=
T∏
t=1

aqt−1qtbqt(Ot).

By design, a (continuous) HMM can reproduce a given observation sequence O from any
arbitrary state sequence q.7 Consequently, to compute the total probability of producing
the observation O with a certain model λ, all possible state sequences must be taken into
account. The joint probability is a sum of all individual paths:

P (O|λ) =
∑
q

P (O, q|λ) =
∑
q

P (q|λ)P (O|q, λ). (2.5)

Calculation of P (O|λ) by means of Eq. (2.5) is computationally highly expensive (O(TNT ),
[95, p. 69]) as it requires considering all possible state sequences. Fortunately, computation
of P (O|λ) can be simplified significantly by an efficient algorithm that makes use of the
Markov property, the so-called forward algorithm.8 For that, one defines forward variables
7This is due to the fact that the assumed normal distributions do not vanish at any point, i. e. @x : bj(x) =

0. The resulting probabilities can of course become extremely small.
8A detailed description can be found in [95].
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αt (Si) describing the probability that the model λ produced the observation sequence
O1, O2, ..., Ot and is exactly in state Si at time point t.

αt (Si) := P (O1, O2, ..., Ot, qt = Si|λ)

A recursive algorithm can be formulated to compute all αt (Si):

α1 (Si) = πSibSi (O1)

αt+1 (Sj) =
N∑
i=1

αt (Si) aij · bj (Ot+1) . (2.6)

Using Eq. (2.6), the final production probability can be computed as the sum of the forward
probabilities for all states at the end of the sequence t = T :

P (O|λ) =
N∑
i=1

αT (Si) . (2.7)

Compared to the brute-force solution (Eq. (2.5)), computation of P (O|λ) by means of the
forward algorithm drastically reduces the complexity of the problem. Instead of O

(
TNT

)
,

the computational effort of Eq. (2.7) is only O
(
N2T

)
[100].

Another strategy to simplify the computation in Eq. (2.5) is constraining the sum from
running over all possible state sequences to a smaller subset. The rationale behind this
is that the majority of sequences—although theoretically able to produce the observa-
tion—have such a small probability that their contribution to the sum is negligible. In the
extreme case, only the sequence with the highest contribution is regarded. As mentioned
above, this sequence is called Viterbi path q∗ (cf. Eq. (2.2)). It can be computed using an
approach that is conceptually similar to the forward variables. To do so, one first defines
quantities

δt (Si) := max
q1,q2,...,qt−1

P (q1, q2, ..., qt−1, qt = Si, O1, O2, ..., Ot|λ)

that describe the highest probability for a certain path, which generates the observations
up to time point t and ends in state Si. In this setting, the HMM λ, the entire observation
sequence O1, O2, ..., Ot as well as the final state qt are fixed. Maximization is performed
with respect to the initial t − 1 states q1, q2, ..., qt−1. Consecutive values can be computed
by induction [100]

δt+1 (Sj) = max
Si

(δt (Si) · aij) · bj (Ot+1) .

To assess the entire state sequence q∗ that leads to the final optimal probability δT (Si),
the states need to be tracked for each recursion step , i. e.

ψt (Sj) = argmax
Si

δt−1 (Si) aij , t = 2, ..., T, j = 1, ..., N.

The final state can be determined as the maximum among δT (Si) and with the help of ψt,
the rest of the state sequence can be backtracked:

q∗T = argmax
Si

δT (Si)

q∗t = ψt+1
(
q∗t+1

)
, t = T − 1, T − 2, ..., 1.
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Figure 2.4: Scheme of two different HMM topologies: (a) fully-connected (ergodic) three-state model, (b)
four-state HMM with Bakis topology.

Coming back to the initial idea of simplifying the computation of the overall production
probability (Eq. (2.5)), one can now use the Viterbi path q∗ to compute an estimate

P (O|λ) =
∑
q

P (O, q|λ) ≈ P (O, q∗|λ) = max
Si

δT (Si) .

2.3.2.2. Specific requirements

As presented in the previous section, an HMM is defined by a set of parameters λ ={
A,π,C,

(
µjm

)
, (Σjm)

}
. For a topology with N states, M mixture components and n-

dimensional features, the parameter set has

N2︸︷︷︸
A

+ N︸︷︷︸
π

+NM︸ ︷︷ ︸
C

+NM · n︸ ︷︷ ︸
µ

+NM · n2︸ ︷︷ ︸
Σ

= N ·

N + 1 +M · (1 + n+ n2)︸ ︷︷ ︸
features

 (2.8)

values. This term is quadratic in both number of states and feature dimension. Hence, it can
easily accumulate to a tremendously high number9 of parameters. As these must all be de-
termined based on training data—which are rather limited in most BCI studies—reduction
of the parameter count is of high importance to ensure meaningful estimates and to avoid
overfitting. Lowering the total number parameters can be done in several ways, which can
more or less be separated in model constraints and feature selection approaches.

Model constraints aim at tailoring the properties and topology of the model to the desired
purpose. An unconstrained model allows for state transitions between all states. This is
called an ergodic10 model (cf. Figure 2.4 (a)). For situations in which a certain (causal)
chronological structure of the signal is assumed, it might be more reasonable to use a so-
called left-to-right topology. In that case, the transition matrix A is restricted to an upper

9In the exemplary case of N = 5, M = 3 and n = 64 (typical number of electrodes in ECoG recordings),
Eq. (2.8) yields a total of 62445 parameters.

10The term ergodic does not necessarily require connections between all states. It is sufficient if the topology
allows to reach any state of the model from any other state within a finite number of steps. Full transition
matrices are a special case for which this is fulfilled already with a single step.
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triangular shape, i. e.

A =


a1,1 a1,2 · · · a1,N

0 a2,2
. . . ...

... . . . . . . aN−1,N
0 · · · 0 aN,N

 ,
which implies that state changes always lead to higher state numbers. Additionally, forward
jumps are often restricted to a certain allowed range of ∆ steps:

aij = 0 ∀j : j > i+ ∆.

A frequently used choice is ∆ = 2, which is referred to as Bakis topology (cf. Figure 2.4 (b)).
Constraining state transitions reduces the number of non-zero elements in the transition
matrix, and by that decreases the model parameter count. The impact of constrained
transition topologies goes beyond mere reduction in the count of parameters though. As
it introduces restrictions on state changes, it also eliminates a significant number of state
sequences an ergodic model would be able to go through [95, p. 128].
Besides on state transitions, it is also possible to impose restrictions on the covariances

Σjm. A common strategy is to use a diagonal shape instead of full matrices [95, p. 140].
This implies that individual features are uncorrelated. Due to the quadratic growth of the
number of elements in Σjm with the feature dimension in full matrices, these account for
a large share of the total number of model parameters. Restrictions substantially limit
this contribution; instead of n2 parameters for each state (and mixture) in full covariance
matrices, only n values need to be estimated in case of diagonally shaped Σjm. However,
applicability of this constraint depends on how well the actual data fulfill the assumption of
being uncorrelated. Optionally, a variety of approaches (e. g. principal component analysis)
can be used to de-correlate input features if necessary.
As seen in Eq. (2.8), the number of features plays a crucial role (O

(
n2)) for the total

amount of parameters of HMM decoders. Most acquisition modalities record brain signals
from a rather high number of channels. Usually, only a subset of those channels provides
meaningful information for the decoding task, which is mainly due to the fact that the
neural ensembles involved in a particular task typically cover narrow brain areas. Hence,
selecting the relevant channels not only reduces the number of parameters substantially,
but also removes irrelevant information that could otherwise bias the model erroneously.
Some feature selection approaches are discussed in Section 2.2.2 and all modifications used
in this work are explained in Section 2.2.2.
After a suitable model topology has been specified, model parameters need to be initial-

ized before parameter refinement can be performed based on training data. Proper initial
values are fundamental to avoid poor local minima during optimization. Initialization
strategies used in this work will be presented in Section 3.3.

2.3.2.3. Benefits

HMMs are used to perform probabilistic dynamic classification. Hence, decoding results
are available in the form of true probabilities, representing how well the observation fits
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to the assumed model. This does not only facilitate easier result interpretation and allow
for discarding of uncertain predictions (e. g. by means of thresholding) to decrease false
positive detection rates, but also does it provide the opportunity to incorporate additional
information into the decoding process. Usually, prior knowledge on certain characteristics of
a system is available in the form of probabilities for the possible output realizations. These
can be considered conveniently in an HMM-based decoder by using them as an adjustment
for the computed production probabilities.

By design, HMMs are intended to model the temporal structure of signals. Due to
the possibility of state loops, models are able to account for variations in the temporal
extension of the underlying signal patterns.11 Such differences can hardly by captured by
static approaches and thus, easily lead to wrong decoding results. Compared to simple class
assignment approaches, direct signal modeling can also provide insight into signal processes
that might help to develop theoretical descriptions of underlying mechanisms; and it might
provide a means to understand properties of signal sources without having it available [100].
The combination of all above mentioned benefits makes HMMs the gold-standard choice

when it comes to automated speech recognition [33, 34, 93, 99, 101] as well as a frequently
used method for handwriting recognition [102], bioinformatics (e. g. analysis of biological
sequences, like DNA) [103,104] and various other topics of temporal pattern recognition.

2.3.2.4. Difficulties in the context of brain signal decoding

It has been mentioned before that HMMs are a thoroughly-studied and well-established
technique in the field of speech decoding. From feature extraction techniques, over specific
model topologies, up to sophisticated language models, almost every challenge could be
addressed appropriately when it comes to the application of HMMs in ASR. However,
much less profound results are available as far as brain signal decoding with HMMs is
concerned. Compared to the analysis of speech signals, BCI applications differ in numerous
aspects and consequently, pose a series of difficulties, a selection of which is listed in the
following:

Multiple sensors Speech recognition systems use input from a single audio channel (micro-
phone). Contrary, in a BCI scenario, data are typically acquired from several sensors
(e. g. electrodes).

Specific features Typical ASR features (e. g. cepstral coefficients) are not suited for brain
signals.

Fundamentals The processes involved in speech production are well-known (anatomy of
vocal tract, acoustics, typical sound of phonemes etc.). The underlying mechanisms
in the brain, on the other hand, are not entirely well-understood. So far, there is no
profound knowledge on sub-structure of brain signals (like the analogy to phonemes,
syllables and words).

11In the case of speech decoding this can e. g. refer to stretching or clipping of certain syllables.
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Training data For most BCI studies, there are substantial difficulties in acquiring large
training data bases (esp. for invasive data).

Cross-subject The comparability of data across subjects is much more complicated than
for speech signals. Many people speak the same language, but individual brains can
differ substantially with respect to differences in localization of involved brain areas
as well as the mechanisms of information processing themselves.12

Prior knowledge The construction of generalized prior knowledge is difficult compared to
the use of dictionaries or grammar models.

2.3.3. Support vector machines
The support vector machine (SVM) is a discriminative, static classifier that—without ex-
tensions—performs binary classification. By default, SVMs make no assumptions on the
distribution of the data. As typical for static classifiers (cf. Section 2.3.1), all feature values
are considered as a single high-dimensional input vector x ∈ RF . In particular, this has the
consequence that feature values from all time points end up in the same feature space that
does not distinguish between “time” and “feature” dimension. Each observation (e. g. each
trial) is described by its feature vector and represented in the feature space as one single
point. In the simplest case, observations are labeled to belong to one of two classes with
label values yn ∈ Ω = {−1, 1}. For the purpose of classification, the goal is to compute
the hyperplane that optimally separates the points of one class from those belonging to the
other class. The hyperplane is given by

w · x + b = 0,

where w is the weight vector that is oriented normal to the hyperplane and b is an offset term
[106]. The perpendicular distance between the hyperplane and the origin is b/ ‖w‖. Let d+
and d− denote the (perpendicular) distance from the hyperplane to the closest positive and
negative data point, respectively. The sum of these two distances m = d+ + d− is called
margin. With respect to finding “the hyperplane that optimally separates the points”, the
term “optimally” means maximization of this margin m. To formulate the optimization
task, the following constraints are introduced:

w · xn + b ≤ −1 for yn = −1
w · xn + b ≥ +1 for yn = +1.

These constraints suggest that the data is linearly separable, i. e. a hyperplane exists such
that all data points xn with label yn = −1 strictly lie on one side of the plane, whereas
all points belonging to the other class are on the opposite side. The above mentioned
constraints can be combined to:

yn (w · xn + b)− 1 ≥ 0, ∀n. (2.9)
12For specific types of BCI applications (e. g. motor imagery based), it is even known that some people are

fully unable to control these systems. This is referred to as BCI illiteracy [105].
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Without loss of generality13, it is assumed that data points (at least one) exist for which
the first/second constraint holds exactly, i. e. the points are on the hyperplane

H1/2 : w · xn + b = ∓1.

In this case, the distance between the hyperplane(s) and the origin is |∓1− b| / ‖w‖. The
resulting margin is

m = d+ + d− = 1/ ‖w‖+ 1/ ‖w‖ = 2/ ‖w‖ . (2.10)

Apparently, both hyperplanes are parallel since they have the same normal w. As enforced
by constraint (2.9), no data points lie within the margin area. Consequently, minimizing
the norm of the normal ‖w‖ with respect to constraint (2.9) yields the pair of optimal
hyperplanes H1 and H2 (as it maximizes the margin m, cf. Eq. (2.10)). The data points
that fulfill the equality in Eq. (2.9)—and thus, lie exactly on the hyperplanes H1/2—are
called support vectors. To determine the class membership of an unknown data point x∗,
one considers the plane halfway between H1 and H2

Hs : w · x + b = 0

and computes on which side of Hs the test sample x∗ lies. That means, the assigned label
will be y∗ = sign (w · x∗ + b).
As mentioned above, such separation can only be successful if data is linearly separable;

otherwise, constraint (2.9) is violated. To facilitate the use in situations in which the
demand for linear separability is not fulfilled, the routine can be extended by introduction
of so-called slack variables ξn. The constraints (2.9) are reformulated with respect to the
introduced slack variables:

yn (w · xn + b) ≥ (1− ξn) (2.11)
ξn ≥ 0, ∀n.

In this case, a data point can lie on the wrong side of the separation plane—which means it
is a decoding error—if its slack variable is ξn > 1. That means that the sum over all slacks∑
n ξn defines an upper bound for the number of such error points. It can be introduced

to the cost function (for optimization of the hyperplane HC
s ) as an additional term that

penalizes classification mistakes. The resulting optimization task can be expressed as [107]:

min
w,b

‖w‖2

2 + C ·
∑
n

ξn(w, b)

w.r.t. ξn ≥ 0.

The parameter C is used to control the influence of the slack term in order to adjust
the trade-off between the highest possible margin and the lowest possible number of mis-
classifications. In doing so, the generalizability of the routine can be controlled (Figure
2.5). Another extension of the approach allows for the use of non-linear separation bounds.
13The assumption can always be fulfilled by choosing an appropriate scale for w and b [106].
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Figure 2.5: Different SVM training results with varying slack parameter C. The plot shows the separating
hyperplane HC

s with three different choices for C, namely C = {0.01, 1, 100}. Data of two clusters are
simulated each with 30 individual (x, y)-tuples drawn from a normal distribution N (µ1/2, σ = 0.5); with
µ1 = 1, µ2 = 3. Apparently, the resulting clusters are linearly separable. Still, the three hyperplanes
provide insight into the different behavior of the routine when varying the slack term. The case C = 0.01
hardly considers the errors at all. This is reflected by the resulting plane H0.01

s (dashed line) that involves
one error (’x’ point at (1.59, 1.96)) and has a strong tendency to maximize the margin. Contrary, for
C = 100 a very strong focus lays on not having erroneous data points. Due to the linear separability in
this example, the plane H100

s (dotted line) separates both clusters without any mistakes. However, this
result is highly susceptible to outliers from Cluster 1 that may appear eventually in test data. Hence,
less training mistakes are achieved with the consequence of loss of generalization. As expected, H1

s (solid
line) represents a compromise between both extremes.

This is done using the so-called kernel trick. Instead of separating features directly in the
original feature space, feature vectors are transformed into a higher dimensional space using
a kernel function [108]. Details on this approach are omitted here, as only linear SVMs are
used in this work. Comprehensive overviews on the method can be found e. g. in references
[106,107,109].
As mentioned earlier, the straightforward SVM approach provides binary classification.

For multi-class problems, two different strategies are commonly used: the one-vs–one and
one-vs-all mode. In one-vs-one mode, individual binary classifications are carried out for
each of the possible “class duels”. This sums up to a total amount of K · (K − 1)/2
classification procedures to decide a K-class problem. The class with the highest number
of “wins” in these individual one-vs-one duels is selected as overall winner of the K-class
problem. The one-vs-all mode requires only K classification procedures to solve the K-class
problem. In this approach, data of a particular class are classified against data from all
remaining classes. This is done once for each of the classes. Finally, the class that ends
up with the highest output function value decides the classification problem in its favor.
Contrary to the one-vs-one mode, calibration of the output functions is required to achieve
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meaningful results in a one-vs-all setting [106].

2.3.4. Prior-knowledge incorporation

In most cases, lots of information is available on actions that are performed frequently
(or preferentially) by the user. This prior knowledge (PK) might be used to improve
decoding accuracies in BCI applications and thereby increase the robustness of such systems.
Besides mere improvements in accuracy, another important goal of PK incorporation is to
preserve full flexibility of possible decoding outcome. To be more specific, this means that
frequently appearing events—or events that the user wishes to appear more frequently than
others—shall be emphasized, but decoding output shall not be limited to a set of pre-defined
command sequences.14

Different strategies can be used to incorporate PK into the decoding, depending mainly
on the specific type of available PK. In this work, PK incorporation is investigated in a
setting that provides information on the frequency of certain event sequences.15 The usual
approach to consider this type of information is n-gram modeling. An n-gram is a sequence
of n consecutive elements (e. g. phonemes, words). The n-gram model is a probabilistic
model that uses the information on typical frequencies of appearance of the individual n-
grams to make a prediction of the next event. More specifically, based on the history of
the previous n− 1 elements, the likelihood of the n’th element is approximated. For n = 1,
this refers to the simple case of just considering how frequent individual elements are to
appear. Especially in speech decoding, the use of bi-grams (n = 2) and tri-grams (n = 3)
is very common, whereas higher order models are hardly used [95, p. 96].
To incorporate the information from an n-gram model into the decoding, one considers

the following setting: Assuming that the user wants to “perform” a certain sequence of
elements (or a chain of basic commands) ω = ω1, ω2, ..., ωN , the corresponding likelihood of
that particular sequence is encoded in the n-gram model as P n-gram := P (ω). To translate
this intention into practice, the sequence ω is transformed into a signal a. This would,
for example, correspond to brain activity in case of a BCI setting or to an acoustic signal
(i. e. speech) in speech decoding (Figure 2.6). This signal is then recorded and features
x are extracted from it. The likelihood of observing x, when the underlying sequence
was ω, is given by P (x|ω). This likelihood can be modeled, e. g. by means of HMMs
(PHMM := P (x|ω)). For decoding, one is interested in the event sequence ω∗ that is most
likely to explain the observed features, i. e.

ω∗ = argmax
ω

P (ω|x). (2.12)

Note that here—although it looks conceptually similar to the Viterbi path for HMMs (cf.
Section 2.3.2)—the sequence ω∗ does not refer to internal states within an HMM, but to
the series of events in the data.
14In speech decoding, the analogue thereof is to assign higher weights to phoneme constellations that form

meaningful words, while retaining the ability to spell individual letters or digits (e. g. for phone numbers).
15This is very similar to the situation in speech decoding, in which a priori knowledge on the frequency of

appearance of phoneme combinations is available.

32



2.3. Classification

  

Idea / Intention Encoding Measurement Decoding

Move

Retrieve

Grasp

Push

Release

Hold

Release

Move
. . .

Speech

Movement attempt

S
p

e
e
c
h

 d
e
c
o
d

in
g

B
ra

in
-c

o
m

p
u

te
r-

in
te

rf
a
c
e

Brain activity

Audio signal

Prior knowledge

I

Hi

Bye

things

drinks

rings

to neat

eat

meet

heat

want

walk

don’t

hunt

can

something

come

some

nothing

Figure 2.6: Scheme of a typical decoding setting with prior knowledge incorporation in speech de-
coding and brain-computer-interfaces. (Sub-figure “Speech” reproduced from emojione project
(https://github.com/emojione/emojione) [CC BY-SA 4.0], via Wikimedia Commons.)

Using Bayes’ theorem, Eq. (2.12) can be rewritten as

ω∗ = argmax
ω

P (ω)P (x|ω)
P (x) . (2.13)

This maximization does not depend on P (x), hence, Eq. (2.13) can be simplified to

ω∗ = argmax
ω

P (ω)P (x|ω) = argmax
ω

P total(x,ω).

The total probability P total required for computation of the likeliest sequence is a simple
product of the n-gram likelihood and the observation (or production) probability of the
HMMs

P total(x,ω) := P (ω) · P (x|ω) = P n-gram · PHMM.

In practice, however, it is typical that the dynamic range of both factors differs significantly
[95]. To avoid that the decoding is solely dominated by one of the components (n-gram or
HMM), a weighting constant ρ is introduced [94]:

P total = (P n-gram)ρ · PHMM.

In speech decoding, this constant is referred to as linguistic matching factor and needs to
be determined empirically for each specific context [95].
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In this chapter, all routines that are used repeatedly throughout the investigations in this
work are presented (Sections 3.1–3.6). Additionally, experimental paradigms and details
on data recording are introduced in Section 3.7. Detailed information on the data and all
methods that are specific to individual parts of the results are given in the corresponding
result sections.

3.1. Feature extraction routines
A broad variety of features is documented in the literature (cf. Section 2.2.1). Since the
focus of this work is on signal classification, two commonly used types of features are uti-
lized. These features have been selected to cover two different characteristics of the signal,
namely time and frequency domain features (or temporal and spectral features, respec-
tively). Time domain features are investigated as they immediately represent temporal
variation of signal amplitudes and are widely used in the analysis of neural phenomena
(e. g. event related potentials (ERP)). The main information of time domain features origi-
nates from the signal phase. Frequency domain features track power fluctuations in specific
frequency bands. Hence, they represent a signal property that is independent from explicit
phase information. As mentioned before (Section 2.2.1), a broad variety of studies demon-
strated a particularly substantial information value of the so-called high gamma band—this
refers to signal components from the frequency interval of approximately 60–200Hz—for
various decoding scenarios.
Both features are computed using simple and straightforward algorithms, which will be

presented in the following.

3.1.1. Low-frequency time domain features

Low-frequency time domain features (LFTD) represent a low-pass filtered version of the
original data. Filtering is performed by means of a simple approach based on fast Fourier
transform (FFT). Raw data a = (ac,s) ∈ RC×S are transformed into the Fourier-domain
and all coefficients âc(ωk) above a pre-defined threshold (ωk > ωcut-off) are set to zero:

âc(ωk) = F [ac,s] (ωk) · θ(ωcut-off − ωk), c = 1, ..., C.

Here, F denotes the (discrete) Fourier transform and θ the Heaviside step function. The
inverse Fourier transform is applied to transfer back the data to the time domain:

x̃c,s = F−1 [âc(ωk)] , c = 1, ..., C.
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Subsequently, the resulting sequence is downsampled by keeping every ds-th sample (down-
sampling factor ds ∈ N) and discarding the rest to compute the final feature values

xLFTD =
(
xLFTDc,n

)
=
{
x̃c,1+(n−1)·ds

}
c=1,...,C, n=1,...,

⌈
S
ds

⌉ .
In summary, LFTD feature calculation depends on two parameters: cut-off frequency ωcut-off
and downsampling factor ds.

3.1.2. High gamma features
Frequency domain features are extracted using a sliding window approach. Data a =
(ac,s) ∈ RC×S are divided into segments with a defined length (window size Sw). A shift
parameter ∆w is introduced to specify by how many samples data are shifted between
adjacent windows. This results in a total of Nw = b(S − Sw)/∆wc+ 1 windows.

All individual segments are multiplied with a window function w = (ws) ∈ RSw (Hann
window) to reduce sidelobes in the computed spectrum. The resulting signal of the n-th
window is given by

ãnc,s = anc,s · ws, c = 1, ..., C, s ∈ Sn,

whereby Sn denotes the set of data samples that belong to the n-th window.
The periodogram of the signal is estimated for each window—computed individually for

each channel—by means of Fourier transformation:

Pnc (ωk) w
∣∣∣F [ãnc,s] (ωk)

∣∣∣2 , c = 1, ..., C.

The final feature values are computed by summation of the square root of the periodogram
approximation within a specified frequency band (from ωlow to ωhigh):

xHGc,n =
ωhigh∑

ωk=ωlow
Pnc (ωk)

1
2 , c = 1, ..., C, n = 1, ..., Nw.

In summary, high gamma (HG) feature calculation depends on the following parameters:
window size Sw, shift parameter ∆w and frequency band (ωlow, ωhigh). Since the investiga-
tions will focus on frequencies from the high gamma (HG) band (approx. 60–200Hz), the
features will be referred to as HG features.

3.2. Channel selection: extended Davies–Bouldin index
Based on the classic DB index (Section 2.2.2), a routine is constructed that is better adapted
to the specific requirements for HMM decoding [44]. In a first step, all feature sequences
are separated into three equally long parts. The index matrices R are then computed
individually for each segment (and channel). The rationale behind that strategy is to
introduce a temporal component to the evaluation of class separability. As HMMs are
dynamic classifiers (cf. Section 2.3.1), it can already be sufficient for correct classification if a
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feature separates a certain class combination for a specific time period within the whole data
segment. Focusing on high separability across the entire sequence might be too superficial,
particularly due to the fact that the investigated time segments are usually rather long.
The computed matrices are averaged across the three time segments. Geometric mean is
used here in order to bias averaging towards smaller values—these correspond to higher
separability. From the resulting averages, the feature with the smallest element of R is
selected for the final subset. This feature provides the best separation of one class to at
least one other class, i. e. it provides information to optimally settle one class decision.
In the next steps, for each of the possible class combinations (i, j), the feature with the
minimal index Rij is added to the final subset. Each of these features optimally separates
one specific class combination. Additionally, for each class, the feature with the smallest
geometric mean of all Rij is selected. This sums up to a total of

1︸︷︷︸
lowest overall Rij

+ (K2 −K)︸ ︷︷ ︸
best class separation

+ K︸︷︷︸
best mean

= 1 +K2

features, provided that no feature appears in more than one of the stages (otherwise, only
one occurrence is used). If this amount is smaller than the requested number of features, all
remaining slots are filled up according to the average across all class combinations (lowest
is selected first). Should there already be more features in the subset than requested, the
last added features are removed until the count matches.

3.3. Model initialization
Before model parameters can be re-estimated using training samples, initial values are re-
quired for all parameters in the models. With respect to the initialization strategy, two
different types of parameters can be distinguished: a priori defined and data-driven initial-
ization. In principle, all parameters could be determined using some sort of approximation
based on the training data. However, for some model parameters it is usually more mean-
ingful to use a fixed initialization that is based on certain assumptions on the data.

3.3.1. Prior and transition matrix
Here, the prior π as well as the transition matrix A are initialized based on a priori
definitions. Two different strategies for the prior are used: equal likelihood for each state
(πequal, Section 4.1 only) and a prior that forces the model to start in the first state (πfirst,
all other sections):

π = (πi) ∈ [0, 1]Q

πequali := 1
Q
,∀i = 1, ..., Q

πfirsti :=
{

1 i = 1
0 i = 2, ..., Q

.
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For construction of the transition matrices, all non-restricted elements are filled with ones.
Additionally, the diagonal entries (i. e. state loop probabilities) are incremented by a term
that is related to the length of the feature sequences S and the number of hidden states
Q by c := S/Q. The rationale behind this specific design of the transition matrices is to
consider that (on average) the model needs to dwell in its states for a number of times
that is proportional to the sequence length in order to not end up in the final state too
early1. The rows of the resulting matrix are individually normalized to fulfill the condition∑
j aij = 1, ∀i = 1, ..., Q.
The following example shows the result for a four-state model that allows for single- and

two-step forward-jumps (Bakis topology) when using features with S = 28 sample points
(c = 28/4 = 7):

Ã =


1 + c 1 1 0

0 1 + c 1 1
0 0 1 + c 1
0 0 0 1 + c

 =


8 1 1 0
0 8 1 1
0 0 8 1
0 0 0 8



⇒ A =


0.80 0.10 0.10 0

0 0.80 0.10 0.10
0 0 0.88 0.11
0 0 0 1.00

 .

3.3.2. Mean and covariances
State mean vectors µ and covariance matrices Σ cannot reasonably be chosen based on a
priori assumptions as they directly depend on properties of the acquired data. Hence, they
are determined on the basis of a data-driven approach. The initialization technique used
here is based on the well-known k-means clustering algorithm [110].

k-means clustering This routine aims at clustering data samples into a set of k clusters
κi such that the total distance D of all J individual data samples xj to the cluster means
µi is minimized:

D =
k∑
i=1

∑
xj∈κi

‖xj − µi‖2 .

Computation of D requires an assignment of all data samples xj to one of the clusters
κi each. The usual procedure of finding the optimal clustering pattern to minimize D
is an iterative refinement strategy, known as Lloyd’s algorithm. This routine is a two-
step strategy that consists of an assignment step (re-assign xj to κi) and an update step
(recompute means µi). In the t-th iteration, the individual steps are as follows:

Assignment step All data points are assigned to the cluster from which they have the
smallest (squared Euclidean) distance:

1This is mainly true for left-to-right topologies, i. e. without backward jumps, and under the assumption
of a prior that forces a start in the first state (πfirsti ).
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κ
(t)
i =

{
xj :

∥∥∥xj − µ(t)
i

∥∥∥2
≤
∥∥∥xj − µ(t)

i∗

∥∥∥2
,∀i∗ = 1, ..., k

}
.

Update step Based on the new clustering, cluster means are recomputed:

µ
(t+1)
i = 1

N
(t)
i

∑
xj∈κ

(t)
i

xj ,

whereby N (t)
i denotes the number of data samples that currently (i. e. in iteration t)

belong to the cluster κi.

These steps are iteratively repeated until the assignments no longer change. Initial values
for the cluster means µ(1)

i need to be defined before the first iteration of the routine can be
performed. A common strategy is to randomly select a data point from the set for each of
the clusters to form its initial mean:

µ
(1)
i = xξ, ξ = randi(1, J),

with randi(a, b) denoting a pseudo-random number generator that returns an integer from
the interval [a, b]. A drawback of this is the rather strong influence of the random initial-
ization. This is due to the fact that different values for the initial cluster means can lead
to entirely different final clustering results (depending on the actual data).

After clustering is finished, model parameters can be computed from the results. For
initialization of a Q-state HMM, one sets k = Q. Each of the clusters serves as database
for one of the HMM states. Mean and covariance parameters can be computed from the
set of data samples that belongs to the clusters. Note that in such a setting, it is arbitrary
which of the clusters gets assigned to which HMM state, as there is no information that
could be used to decide this appropriately. This is addressed with the extensions presented
in the following section.

3.3.3. Time discriminative k-means

To better adapt the initialization routine to the requirements for appropriate model param-
eters in HMM decoding, it has been slightly extended. Since HMMs are dynamic classifiers,
ensuring a meaningful temporal structure within the model states can play an important
role. This objective is addressed here by appending the (scaled) feature sample index s as
an additional dimension to the feature vector x:

x = (xc,s) ∈ RC×S

xTDI :=
(

x1 x2 · · · xS
τ · 1 τ · 2 · · · τ · S

)
=


x1,1 x1,2 · · · x1,S
... . . . ...

xC,1 · · · xC,S
τ · 1 τ · 2 · · · τ · S

 ∈ R(C+1)×S .
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The time-coupling factor τ is used to control how strong the influence of the time dimension
on the clustering result shall be. The higher τ is chosen, the more emphasis is put on the
time point of a sample within the clustering process. Like in the conventional k-means
routine, the final cluster assignments are used to compute the initial parameters for the
HMMs. However, while clusters are arbitrarily assigned to a certain model state in the
conventional approach, the time dimension in the feature vectors can be used here to assess a
representative time point for the entire cluster. To do so, the average across the last feature
dimension (i. e. the scaled sample index) is computed for each of the clusters. Clusters
are then sorted with respect to increasing representative time point. Finally, the cluster
with the earliest average time is assigned to the first state in the HMM, followed by the
second earliest time point for state two and so on. That means that early HMM states
are initialized based on data that (on average) comes from early time points in the feature
sequence, whereas data from later parts of the sequence is used for the higher states. In
doing so, a reasonable temporal structure is ensured.2 After clustering, the appended time
dimension is removed again from the feature vectors.
An appropriate choice for the time-coupling factor τ is particularly important if identical

feature values can occur at different time points (which usually is the case). In case of
clustering without respect to the time component (i. e. τ = 0), those samples would all be
assigned to the same cluster (since they have the same distance to it). As a consequence,
they all end up in the data pool for initialization of the same Markov state for an HMM
(Figure 3.1, ’Standard k-means’). Given that dynamic classifiers shall model the time course
without any discontinuities, such a clustering would be irrational. This situation can be
prevented with higher time-coupling factors, i. e. τ � 0. However, arbitrarily high values of
τ can reverse the situation and lead to another undesired outcome. If too much emphasis is
put on the time dimension, the final clustering result corresponds only to the time domain,
i. e. a cluster is always formed by consecutive samples of a time segment. Should there
be substantial differences in the actual feature values within this segment, unrepresentative
parameter values (i. e. state mean and esp. covariance matrix) can be the result (cf. example
in Figure 3.1, ’TDI k-means (τ →∞)’).

3.4. n-gram models
Different strategies can be used to incorporate prior knowledge (PK) into the decoding,
depending mainly on the specific type of available PK. In this work, PK incorporation
is investigated in a setting that provides information on the frequency of certain event
sequences.3 The usual approach to consider this type of information is n-gram modeling.
An n-gram is a sequence of n consecutive elements (e. g. phonemes or words). The n-gram
model is a probabilistic model that uses the information on typical frequencies of appearance
of the individual n-grams to make a prediction of the next event.

Here, bi-gram models are used to integrate a priori information in the context of a finger
2Note that this assumes that a left-to-right topology is used to connect the states.
3This is very similar to the situation in speech decoding, in which a priori knowledge on the frequency of
appearance of phoneme combinations is available.

40



3.4. n-gram models

Time
[samples]F

ea
tu

re
va

lu
e

Input data

Cluster 1 Cluster 2 Cluster 3

Standard
k-means

Cluster 1 Cluster 2 Cluster 3

TDI k-means
(τ → ∞)

Cluster 3Cluster 1 Cluster 2

TDI k-means
(τ → 0)

Figure 3.1: Illustration of k-means clustering results with different settings. For means of simplicity, input
data of a single sequence with only one feature dimension is shown. The conventional k-means algorithm
(top row) clusters feature samples that have similar values irrespective of their temporal position within
the sequence. Contrary, the TDI k-means routine with very high time-coupling factor τ (bottom row)
does not take into account the feature value at all, but simply clusters consecutive segments of data. Note
that this leads to nearly identical mean values (indicated by black horizontal lines) for all three clusters,
which potentially impairs modeling quality severely. Applying the TDI algorithm with a time-coupling
close to zero (center row) leads to a similar clustering result as provided by the standard k-means routine.
However, the temporal information is still considered by means of sorting the resulting clusters by their
average time point of the contained data points. Any choice of 0 < τ < ∞ will result in some sort of
compromise between the two shown TDI outcomes for the extreme cases.
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movement experiment (Section 3.7.1). In the given experiment, prior knowledge is available
on frequencies of pairs of consecutive finger movements (interleaved by rest). Consequently,
bi-grams are used to represent these pairs of movements. A bi-gram model introduces
the information on how often these movement combinations have been performed by the
subjects. Full details on the routine can be found in Section 4.6.

3.5. Hidden Markov Model Toolkit / Software framework
The Hidden Markov Model Toolkit (HTK, [111]) counts to the most widely-used tools for
automated speech recognition. It provides a broad variety of HMM-based decoding ap-
proaches. By concept, HTK is designed to meet the requirements for decoding of speech
signals. Due to substantial structural differences between typical brain signals and audio
data used in speech recognition, extensive adaptions are required to facilitate the use of
HTK for a BCI context. This mainly refers to the following components:

• feature extraction routines,

• compatibility with multidimensional input,

• feature selection routines,

• model initialization.

Specification of all definitions and parameters required by HTK is quite tedious and can
slow down the analysis workflow substantially. To provide a solution that allows for con-
venient investigation of relevant BCI-related problems, an all-in-one software framework
has been developed as part of this work. The framework is implemented in C++ using
a modular design as shown in Figure 3.2. All required sub-routines—this includes fea-
ture selection (Section 2.2.2) as well as model initialization (Section 3.3) methods—have
also been implemented in this framework, except for feature extraction. Features are pre-
calculated using existing Matlab implementations [44, 112, 113] and stored for later use in
the HTK environment (imported by ’Data Browser’). To use these features in combination
with HTK routines, they are converted into an HTK compatible format. The entire frame-
work is connected to a graphical user interface (GUI) that has been developed to allow the
user to conveniently manage data and define the settings. The framework constructs all
files required by HTK and ultimately, runs the corresponding (pre-compiled) HTK tools.
Prediction results are analyzed (and visualized) by evaluation routines as described in the
following section. Examples of the usage of HTK routines, typical HTK files as well as
screenshots of the actual user interface can be found in the Appendix A.3.

3.6. Evaluation methods
3.6.1. Single trial analysis: cross-validation
For single trial analysis, data are prepared as individual data segments—the so-called trials.
Normally, each trial contains only a single event (e. g. a finger movement). The type of
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Figure 3.2: Structural overview of the developed software framework for HTK usage in BCI contexts.

the event determines the class the trial belongs to (e. g. index finger movements). The
mapping of trials to the classes is called labels. The decoding task in a single trial setting
is to determine the class membership of unknown trials using a trained classifier.
In many cases, data that shall be used for BCI studies are recorded and analyzed after-

wards (’offline’). This holds true especially for ECoG data, since closed-loop scenarios are
difficult to realize in the clinical environment, ECoG patients are in. For analysis, such
data need to be split in separate test and training sets. However, this causes the result to
be dependent on the actual assignment of trials to either be test or training data.
A very common method to perform single trial offline analysis in a well-structured manner

is the so-called cross-validation (CV). The CV routine starts with splitting all data equally
into a defined number of subsamples. The classifier is trained using data from all but one
subsample. Decoding accuracy is then assessed on the one remaining subsample. This
procedure is repeated such that each of the subsamples is used exactly once for evaluation
(these repetitions are usually called folds). In doing so, it is guaranteed that the performance
estimate is based on all available trials. To minimize the influence of the actual assignment
of trials to certain subsamples on the performance estimate, the whole procedure is repeated
multiple times with varying allocation of the trials. Finally, the average of all estimated
performance values is taken. A CV routine with K subsamples that is repeated n times is
usually referred to as n-times-K-fold CV.
It is not uncommon that the distribution of trials between the appearing classes in the

available data is unequal, i. e. some classes have significantly more trials than others. This
can be either due to inherent properties of the experimental paradigm (e. g. certain classes
are simply less common) or it can be consequence of artifact removal that (coincidentally)
affected some classes more than others. Straightforward application of the CV routine would
likely yield unbalanced subsamples. In particular, this can result in a classifier bias towards
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classes with more training samples. In the worst case, one (or more) class would have no
training samples at all, making it impossible to use such a subsample for training. Besides
an unbiased training, it is usually desirable to estimate decoding accuracy on balanced test
data; in doing so, the classifier needs to perform equally well on all appearing classes to
achieve high performance values. To consider these aspects within evaluation, individual
subsamples in the CV can be forced to contain equal numbers of trials from all classes
(so-called ’balancing’). The downside of balancing is that some trials need to be discarded
in each run in order to even out the class distribution. Hence, the total amount of training
data is reduced and inter-run variances might increase.

3.6.2. Continuous results: pseudo-performance
Although single trial analysis is an extremely helpful tool to study basics of classification
approaches and investigate various influences on accuracy of brain signal decoding, it is
a quite artificial approach and it appears more natural to analyze continuous time series
instead. This requires an individual prediction for each time sample in the data. Natu-
rally, this significantly increases the complexity and thereby difficulty of the decoding task.
While single trial decoding can be limited to just determine the type of an actual event,
continuous decoding makes it necessary to also detect episodes of inactivity. These are
commonly referred to as resting state.4 Adequate modeling and detection of rest episodes
in brain signals is highly non-trivial. The primary reason for that is: the human brain
never idles completely; background activity of a broad variety of neural processes is al-
ways superimposed to the task related data and therefore, also present during periods of
’inactivity’. Besides that, certain experimental setups can make it difficult to find a direct
interpretation of inactivity.5
Let Ω denote the set of possible label values. The decoded prediction y = (ys) ∈ ΩS

needs to be compared to the ground-truth labels l = (ls) ∈ ΩS to assess decoding accuracy
Acc(y|l) ∈ [0, 1]. A straightforward method is comparison on a sample-by-sample basis:

Acc(y|l) = 1
S

S∑
s=1

δysls . (3.1)

This approach evaluates every single decoded sample and accumulates all samples for which
the prediction matches the actual label. Equation (3.1) can be extended by an offset O to
compensate for time shifts between prediction and actual event:

Acc(y|l) = 1
S

S∑
s=1

δys+Ols . (3.2)

Apparently, it holds true that Acc(y|l) ∈ [0, 1] for any prediction y. Acc(y|l) = 1 refers
to the case that all predicted values are identical to the labels; fully erroneous predictions
4In speech decoding, the analogue thereof would be silence.
5As an example, consider a setting in which subjects look at (natural) pictures. Even during the absence of
a picture, subjects are observing their environment, which—a priori—is not categorically different from
pictures as is also contains objects, people etc.
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Figure 3.3: Evaluation of continuous data. Predictions are compared to ground truth labels within a certain
tolerance window and under consideration of an offset between prediction and actual event.

yield Acc(y|l) = 0.
Performance computation by means of Eq. (3.1) or (3.2) requires continuous label infor-

mation l ∈ ΩS . If this is unavailable, other approaches can be used to evaluate results based
on the available information. Exemplary, a method is presented that compares (continuous)
predictions to a set of labels containing only a time stamp (sn) and the type (ln) of each
of the N events, i. e.: l̃ = {(sn, ln)}n=1,...,N , ln ∈ Ω, sn ∈ {1, ..., S}. Instead of comparing
all individual samples to continuous label information, only the start samples of predicted
events are compared to the real labels.6 This eliminates the need for information on the
actual duration of the events. Generally, predictions are unlikely to match the actual event
at the exact sample point. To allow for small variations in timing, a tolerance window is
specified within which the comparison is performed. The tolerance parameter controls the
strictness of the evaluation. Higher values mean that an increased time window is consid-
ered to check for matching predictions. Naturally, this results in higher performance values.
At the same time, results become less meaningful, as an increasingly higher error in the
predicted time points of events is tolerated. Ideally, tolerance should be chosen as low as
possible but high enough to allow for small timing fluctuations, which naturally appear due
to variations in task execution and brain responses of different subjects.
As already introduced in the sample-by-sample method, an offset between prediction

and event is also considered here (cf. Figure 3.3). The offset parameter is intended to
compensate for potential delay between brain responses and actual events as well as for
shifts that may be introduced artificially by signal processing steps.
Under consideration of offset and tolerance values, predictions are compared to the real

labels with the following possible outcomes:

Match (M) Prediction matches real label within the tolerance time frame.

Substitution (σ) Prediction is at correct time point but with wrong class assignment.

Insertion (I) Prediction is at a time point without any actual event in the labels.

Deletion (D) Missing prediction at a time interval with an actual event in the labels.
6This is also referred to as an ’annotation task’.
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Let N be the overall count of events in the data. Considering all possible decoding mistakes
[98], the overall performance can be expressed as:

Perf = 1− σ + I +D

N
. (3.3)

Since every event in the data must be either classified correctly, substituted by another class
or missed by the decoder, the overall count of events can be expressed as: N = M +σ+D.
Equation (3.3) can then be rewritten as:

Perf = N − σ − I −D
N

= M − I
N

.

Performance computed by means of Eq. (3.3) can have values from −∞ < β ≤ Perf ≤ 1,
with Perf = 1 representing flawless decoding. Results with Perf = 0 have approximately
the same amount of events being detected correctly and those being inserted spuriously. In
cases with a large number of insertions, performance values become negative. The lower
bound β is given by the maximum amount of insertions that can occur in the decoded
sequence. In the easiest case, this is simply the number of samples reduced by the count of
real events in the data. When using an HMM decoder, the amount is further restricted by
the topology of the model, as it may prohibit rapid changes between different models (and
therefore, event classes).
The final procedure is as follows:

1. Translate the start sample of the prediction by the offset.

2. Within the specified tolerance window, compare prediction with real labels.

3. Compute overall accuracy under consideration of all decoding errors (Eq. (3.3)).

3.6.3. PK information estimate: entropy measure
In BCI experiments, the specifications of the paradigm determine how much prior knowledge
(PK) is available that can be useful for decoding. To easily compare the benefit when
incorporating PK into the decoding, it is desirable to quantify the amount of available
PK by some sort of measure. Such a measure should ideally map information extent from
’none’ (lack of any usable PK, e. g. in fully randomized settings) to ’fully deterministic’ in
a monotonous way.
As described in Section 3.4, PK incorporation is performed by means of bi-gram models

in the context of this work. Hence, information content shall be quantified with respect
to the capabilities of bi-grams. The central component to define the bi-gram model is the
(relative) frequency of appearance f = (fij) of transitions from one class to another. Let
C denote the total number of classes. An entropy-based measure S can be computed from
the frequencies f as follows:

S(f) = −
C∑
i=1

Si = −
C∑
i=1

C∑
j=1

fij · ln fij . (3.4)
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In case of a sequence in which each subsequent event depends solely on the current one,
i. e.

fdetij = δjj∗i , ∀i, j = 1, ..., C, j∗i = 1, ..., C,

the resulting entropy value is S(fdet) = 0. Consequently, the bi-gram model fully explains
the entire sequence. For sequences containing higher degree of randomness, the entropy
values will be larger. The upper limit for S is given by the entropy of a sequence with equal
probabilities for all transitions, i. e.

f equalij = 1
C
, ∀i, j = 1, ...C.

In that case, the upper limit Smax = S(f equal) computes as

Smax(C) = −
C∑
i=1

Si = −
C∑
i=1

C∑
j=1

1
C
· ln 1

C
= −C2 · 1

C
· (− lnC) = C · lnC. (3.5)

It is important to note that this measure can only reflect the degree of determinism—and
by that the usable information for PK incorporation methods—that can be explained with
a bi-gram model structure. Sequences can be fully deterministic with respect to higher
order n-grams, but still have maximum entropy value (i. e. no usable information) when
interpreted as bi-grams.7

3.7. Experimental paradigms

3.7.1. Finger tapping

In the finger tapping study, patients performed a serial reaction time experiment. A number
was presented on a screen to indicate with which finger the patient should press a button on
the keyboard. The numbers 1, 2, 3 and 5 represented thumb, index finger, middle finger and
little finger, respectively. The ring finger was not included in the paradigm.8 Throughout
the experiment, patients’ fingers rested on the standard touch typing home keys, i. e. ’space
bar’ (thumb) and ’ASDF’ for left hand or ’JKL;’ for right hand fingers. All patients used the
hand on the contralateral side (i. e. on the opposite side) of the electrode grid location. Each
patient was asked to respond as rapidly and accurately as possible. After any button press
from the subject—whether correct or not—a new stimulus was automatically presented
after a brief randomized delay of approximately 330 to 400 ms. Consequently, patients’
response times controlled the overall finger tapping rate (i. e. number of button presses
within a certain time interval); with quick responses resulting in higher frequencies.
The experiment was structured in three sub-block, each of which with a slightly different

task:
7A simple three-class example can be found in the Appendix A.1.
8This is mainly due to many subjects having difficulties moving their ring finger individually from the
other fingers.
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Figure 3.4: Overview of the finger tapping experiment. (a) General structure of a recording session. The
three sub-blocks are interleaved with pause segments (gray color). (b) Structure of the fixed tapping
sequence used in SB1. (c) Relative frequencies of occurrence of pairs of consecutive finger movements in
SB1. (Figure reproduced from [46].)

Sub-block 1 (SB1) The first sub-block consists of a fixed sequence of stimuli that had been
repeated 20 to 30 times. The fixed sequence was identical across all patients
and sessions; it is illustrated in Figure 3.4 (b).

Sub-block 2 (SB2) In the second sub-block, random stimuli were presented to the patient.
Randomization had been constrained such that consecutive stimuli could not
have the same type. Consequently, out of the sixteen possible combinations of
two consecutive stimuli, four appeared with a probability of zero.

Sub-block 3 (SB3) Within in last sub-block, patients could perform an arbitrary button
press as response to the presentation of a stimulus. This freedom of choice
significantly increased response times for most of the patients and hence, average
tapping rates during SB3 were higher than in the other sub-blocks.

The finger tapping experiment provides data that are well-suited to study complex motor
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BCI problems. Although overt movements9 have been performed by the patients, high
action rates (above one movement per second) and very brief motions (button press on a
keyboard) present a challenging dataset. The different tasks across the sub-blocks offer
the opportunity to study the possibilities of prior knowledge incorporation with various
approaches.

ECoG data
Four patients—all of them received ECoG electrode implantation for pre-surgical planning
of epilepsy treatment at UC San Francisco—volunteered to participate in the finger tapping
experiment. All patients were right handed males and between 18 and 35 years old. Elec-
trode grids were placed based on clinical criteria only. The implanted arrays covered various
cortical areas, including pre-motor, motor, somatosensory, and temporal areas (electrode
maps can be found in Figure 4.7).
Three patients were implanted with standard 8 × 8 ECoG grids containing 64 plat-

inum–iridium electrodes with 1 cm center-to-center spacing. The electrodes in those grids
had a diameter of 4mm with 2.3mm exposed. For one patient, a higher density grid with a
total of 256 electrodes (16×16 array; 1.8mm exposed, 4mm spacing) was used. All electro-
corticograms were recorded with a sampling frequency of 3051.7Hz and down-sampled to
1017Hz for storage. Signals have been pre-processed using a high-pass filter with a cut-off
frequency at 0.5Hz and notch filter around the power line frequency (60Hz, USA). The
measured electric potentials have been re-referenced to the common average.
Keyboard button presses were recorded simultaneously to the ECoG with the same sam-

pling. There was no further monitoring of the patients’ finger movements (like video record-
ing, electromyography (EMG) or data gloves for position tracking). Therefore, detailed
information on when a patient did or did not move the fingers is unavailable except for the
time points at which a button is pressed.

3.7.2. Picture category task
This experiment consisted of a passive visual observation task. Patients looked at varying
pictures that were presented to them on a screen. The pictures were taken from four
different categories, namely objects, faces, watches and pieces of clothing. Stimuli were
shown either on a projection screen (MEG data) positioned 1m away from the subject or
on a notebook screen (ECoG data) that was placed within the patients’ reach. In order to
keep up patients’ attention throughout the experiment, they were asked to press a button
each time a piece of clothing was presented. These trials (target stimuli) accounted for
approximately 10% of the total count of stimuli. In this work, data from the picture
category task are intended for decoding of visual information only. As they include motor
responses, target trials have been omitted for analysis to ensure that decoding is not biased
by motor activity.
Measurements of brain activity were carried out in an ECoG study with two patients and

in a supplementary MEG study with six healthy volunteers. Additionally, data from two
of the MEG subjects had been re-recorded using a slightly modified paradigm (see below).
9Refer to Section 5.2 for a discussion on the relevance of overt movements.
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Figure 3.5: Scheme of the experimental paradigm in the picture category task. (Figure reproduced from
[114].)

ECoG data Stimuli in the paradigm used for the ECoG study were presented for five
different durations (300, 600, ..., 1500 ms). The inter-trial intervals also varied between five
durations (600, 750, ..., 1200 ms).
The ECoG has been recorded from two patients (both right-handed males) for pre-surgical

planning of epilepsy treatment at Stanford (CA, USA). Electrode grids of both patients had
coverage of lateral occipital and medial temporal areas (early visual and fusiform area).
Data have been sampled with 3051.7Hz. Pre-processing steps include high-pass filtering
with a cut-off at 0.5 Hz, application of a notch filter around the power line frequency of
60 Hz as well as re-referencing of all electrodes with respect to the common average.10 For
analysis, data were epoched into trials covering the interval from –100 to 2000ms with
respect to picture onset times (t = 0), totaling up to 2.1 s segment length.

MEG data Based on the identical experimental paradigm, MEG data have been recorded
fro m six healthy subjects (age 23–31, one female). Recordings have been carried out with a
sampling rate of 1017.25Hz using a whole-head BTi Magnes system (4D-Neuroimaging, San
Diego, CA, USA) equipped with 248 magnetometer sensors. For analysis, date were epoched
in the same way as their ECoG counterpart (i. e. interval of [-100 2000]ms). All sensor
signals were re-referenced in a bipolar manner, i. e. pair-wise differences were computed
between neighboring sensors.

“Multi-stimulus issue” The randomization of picture presentation durations and inter-
stimulus intervals resulted in combinations in which a new stimulus begins as early as 900ms
after the start of the previous one (duration 300ms + ISI 600ms). In order to ensure that
stimuli with longer durations (e. g. 1500ms) are fully covered, individual trials need to have
10The patients in this study have been implanted with several electrode grids (cf. example in Figure 4.14).

Common average referencing has been carried out individually for each of these grids.
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a correspondingly long segment length. As a consequence, some trials contain not only one
stimulus at the beginning (i. e. the primary stimulus) but eventually also additional ones
at the end (cf. Figure 3.5). This will be referred to as the multi stimulus issue (MSI).

MEG – modified paradigm In order to avoid the MSI, a slightly modified version of the
paradigm has been developed for re-recording of MEG from two subjects (Section 4.3).
Presentation durations have been extended in length such that the shortest duration is
500ms (instead of 300ms) and their selection has been reduced to three different values
(500, 1000, and 1500ms). Inter-stimulus intervals were prolonged significantly and have
values of 1500, 1650, ..., and 2100 ms. In this constellation, the combination of the shortest
presentation duration and ISI results in a time period of 2000ms from the beginning of
one stimulus to the beginning of the next one. Given that individual trials cover the time
interval up to two seconds after stimulus onset, this ensured that no MSI could occur.
Data were recorded from a subset of the original MEG experiment’s subject pool. This

subset consists of two healthy, male subjects (age 26–28). All recording parameters (incl.
acquisition setup, data epoching, and re-referencing) are identical to the original experi-
ment.
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4. Results

This chapter introduces all results of this work. The findings are structured in six sections,
each of which contains a presentation of specific methods along with the actual results and
a discussion of the approach. A detailed comparison of all results with related work and a
thorough discussion of the limitations of the findings will be given in an overarching context
in Chapter 5. The majority of results directly build up on each other, conceptually as well
as methodologically. An illustration of relations between the individual studies is shown in
Figure 4.1.
Sections 4.1–4.3 deal with the application of HMMs to single trial decoding tasks and

the investigation of potential benefits of dynamic decoding approaches in such cases. In
Sections 4.4 and 4.5, transition to continuous decoding is illustrated by the example of
two different decoding scenarios. The last part (Section 4.6) is focused entirely on prior
knowledge incorporation using HMMs in a continuous finger movement decoding problem.

Demonstration of beneficial 
properties of dynamic classifiers

Preparatory study
Database extension with 

non-invasive acquisition (MEG)

Prior knowledge incorporation

Semi-continuous
decoding

Continuous decoding

HTK

Single trial decoding

Figure 4.1: Overview of the result structure.
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4.1. HMMs for (single trial) BCI decoding

The first result section focuses on the general applicability of HMMs in the context of BCI
decoding and their comparison to gold-standard decoding routines. As mentioned earlier,
HMMs are well-known from their application in ASR. Typical speech signals have proper-
ties that differ widely from those of brain signals. This makes it necessary to appropriately
adapt the methods to the specific requirements of the measured signals. The most promi-
nent difference is the presence of multiple electrodes in BCI recordings compared to an
audio data stream, which is usually recorded by a single microphone. The count of elec-
trodes, often also called channels, usually ranges from several tens up to a few hundreds.
In most cases, only a fraction of these channels provide relevant information for a given
problem. Careful selection of informative channels is of high importance for HMM-based
decoding, as the count of free parameters that have to be estimated during training grows
rapidly (at least quadratically, cf. Section 2.3.2) with the number of channels. Besides fea-
ture selection, suitable model topologies and appropriate strategies for model initialization
need investigation. The ultimate goal of the investigations in this section is to demonstrate
a prove-of-concept for the applicability of HMM decoders with comparable results as gold-
standard static decoding routines in a single trial BCI classification context.

The central findings of this section have been published in [44].

Data ECoG data from the finger tapping experiment have been used in this study. Infor-
mation on the experimental paradigm and technical details on the recordings can be found
in Section 3.7.1.
Data were recorded from four subjects. Three of the subjects (S1, S3, and S4) partic-

ipated in two sessions of data recording; subject S2 took part in four sessions. Patients’
responses on the keyboard have been recorded simultaneously to the ECoG. The continuous
data have been epoched into individual trials with respect to the button press times, cov-
ering an interval of two seconds (one second before and after the button press). The data
were visually inspected for artifacts (e. g. epileptic spikes) and bad channels (e. g. improper
electrode contact); affected trials have been rejected. Detailed statistics on the number of
trials—including the count of rejected trials—are presented in Table 4.1.

Approach The performance of the HMM-based classifier shall be assessed for offline, single
trial decoding of finger movement types. More precisely, it shall be predicted which finger
was used to press a keyboard button. Each of the trials contains a single button press,
which determines the label of the trial. Trials representing a resting state—that means
blocks of data without any movements—are not considered here. This results in a four
class decoding task.
Decoding is performed with individual HMMs for each of the classes (i. e. fingers). The

models are constructed with five states and transition matrices are constrained to the Bakis
model topology. This means that the model is restricted to state looping and forward
jumps of one or two states (cf. Figure 2.4). The individual states are associated with a
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Table 4.1: Trial statistics of all ECoG datasets from the finger tapping task. The first block (’Nb. of
trials’) lists all trials that have been used for analysis. A full breakdown on the number of rejected trials
(identified by visual inspection) is shown in the second block (’Nb. of rejected trials’).

Subject Session
Nb. of trials Nb. of rejected trials

All THB IDX MID LIL All THB IDX MID LIL

S1 1 357 62 113 108 74 0 0 0 0 0
2 240 33 90 72 45 1 0 1 0 0

Total 587 95 203 180 119 1 0 1 0 0
S2 1 280 44 97 91 48 40 5 13 13 9

2 308 51 103 111 43 0 0 0 0 0
3 271 38 87 92 54 77 13 23 26 15
4 273 32 88 88 65 41 8 17 10 6

Total 1122 165 365 382 210 158 26 53 49 30
S3 1 234 54 70 70 40 114 16 40 36 22

2 249 47 70 83 49 104 15 31 38 20
Total 483 101 140 153 89 218 31 71 74 42

S4 1 359 57 113 116 73 6 2 2 1 1
2 328 63 104 106 55 33 6 11 11 5

Total 687 120 217 222 128 39 8 13 12 6

Abbr.: THB/IDX/MID/LIL – thumb/index finger/middle finger/little finger

single Gaussian mixture component and an unrestricted covariance matrix. To initialize
the models, a modified version of the k-means clustering algorithm is used (see Section
3.3.3). In addition to the HMM classifier, decoding is also done using a linear support
vector machine (SVM), as it represents a gold-standard reference routine in single trial BCI
decoding. The SVM is used in a one-vs.-one setup. The penalty constant C is fixed to
C = 1000. All routines (i. e. signal processing, decoding, analysis) are realized in Matlab
2012b.1 HMM functionality is provided by the HMM toolkit for Matlab published by Kevin
Murphy [115].2 For SVM decoding, the LIBSVM package for Matlab [116] is used.

All decoding is done using a five-fold cross-validation (CV) routine (Section 3.6.1). Thirty
repetitions of the CV routine are performed to minimize influence from the random assign-
ment of trials to the individual folds. As seen in Table 4.1, trial counts are unequally
distributed across the different classes. To avoid bias towards any of the classes that may
arise from differing amount of training material, training data is balanced with respect to
the count of trials of the classes, i. e. each CV set is guaranteed to contain equal amounts
of trials of all the classes.
Two different types of features are investigated, namely low frequency time domain

(LFTD) and high gamma (HG) features (see Section 3.1). All parameters that are re-
1MATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.
2The HMM toolkit for Matlab is used in Sections 4.1–4.3. Starting with Section 4.4, the HTK framework
is used instead (cf. Section 3.5).
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Table 4.2: Parameter combinations in two-dimensional exhaustive search. All parameters apart from the
parameter pair to optimize are fixed during optimization (Abbr.: ROI–region of interest).

Feature type Parameter pair

LFTD ROI (start & end)
Cut-off frequency & down-sampling rate

HG ROI (start & end)
Frequency band (start & end)
Window length & overlap

quired for extraction of the features are optimized using an exhaustive search approach
(so-called grid search). Since the full parameter space is extremely high-dimensional, pairs
of parameters have been optimized in separate two-dimensional grid searches with fixed
values for all remaining parameters, based on empirical estimates.
Channel selection is performed using an algorithm based on the Davies-Bouldin index as

described in Section 3.2. The ideal number of channels to be selected is determined using
(one-dimensional) exhaustive search on the training subset.

Results Optimal parameter sets for all datasets are determined based on the two-dimen-
sional grid-searches listed in Table 4.2. Throughout all optimizations, the number of chan-
nels is fixed to eight. The resulting optimal parameter values are shown in Figure 4.2. It
becomes apparent that optimal values vary strongly across subjects and in some cases even
across different sessions of the same subject. Particularly substantial variance is found for
the ROI of HG features. The optimal value for the cut-off frequency used in LFTD feature
extraction also varies strongly across subjects (11Hz ... 30Hz). However, within the same
subject, almost identical optima are found—except for subject S2, which plays a special
role (discussed later). Results for window size and offset of HG features are not shown, as
these parameters turn out to have almost no influence on decoding accuracy. Hence, fixed
values (across all datasets) are used instead. A window size of 260ms is used. The window
overlap is chosen such that the resulting number of feature samples in HG is equal to that
of the corresponding LFTD feature.3

Using the determined parameters, final features have been extracted. Subsequently,
the optimal number of channels is determined with one dimensional exhaustive search.
The result of this optimization is shown exemplarily in Figure 4.3 for dataset S1-B1 when
using HG features. To emphasize the effect of appropriate feature selection, corresponding
results using the same amount of randomly selected channels are also shown. It can be
clearly seen that decoding accuracy rises quickly to an optimum at around five channels.
Contrary, adding in random channels provides only marginal benefits. Decoding accuracy
with random channel selection raises slowly and reaches the decoding accuracy of the DB-
index based selection not until all the channels are used. The peak performance—reached
3This is done for technical reasons, as it allows to combine both feature types (not shown here).
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4.1. HMMs for (single trial) BCI decoding

Figure 4.2: Optimal parameter values for all datasets. The results have been determined using two-
dimensional exhaustive search with a fixed number of ten channels. (Figure reproduced from [44].)

when using the ideal number of channels—is about 6% higher than the performance with
all channels in use. This effect is even larger for LFTD features. Figure 4.4 exemplarily
shows this for dataset S3-B2. In that case, the performance difference between optimal
and full channel set is approximately 14%. The ideal number of channels that results from
optimization is listed in Table 4.3 for all subjects.
Figure 4.5 shows the decoding accuracies that are achieved with both classifiers for all

datasets and both types of features. All results are averages across 30 repetitions of the 5-
fold CV routine. The performance differences between all pairs of results have been analyzed
for significance by means of two-sample one-sided t-tests (Table 4.4). In particular for LFTD
features, SVM outperforms the HMM decoder in most of the cases (7 out of 10, all significant
at α = 0.001). Interestingly, the HMM decoder provides significantly better performance
for subject S4. This also holds true for HG features, albeit at a lower level of significance
(α = 0.05). Overall, the superiority of SVMs becomes much smaller when it comes to HG
features. Significantly better performances are mainly found for subject S2 (three sessions).
For the other three subjects, performances of both classifiers are closely comparable. This is
also reflected by the significance analysis (two non-significant differences; overall markedly
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Figure 4.3: Decoding accuracy in dependence of the number of selected channels (top). Results are shown
exemplarily for session 1 of subject S1 using HG features. Channel selection is carried out with an
extended DB-index routine (Section 2.2.2). For comparison, decoding accuracies are also shown when
channels are selected randomly (blue line). All decoding accuracies are assessed with 30-times-5-fold CV
routines. The error bars indicate standard error.
(bottom) Total number of free parameters in the HMMs in dependence of the number of channels. (Figure
reproduced from [44].)

Table 4.3: Average number of selected channels for all subjects. Channel counts are averaged across indi-
vidual sessions (standard deviation in brackets).

Subject LFTD HG

S1 10.0 (0.0) 6.0 (0.0)
S2 6.5 (1.9) 7.3 (2.1)
S3 10.0 (0.0) 8.0 (0.0)
S4 10.0 (0.0) 6.0 (1.4)
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Figure 4.4: Decoding accuracy in dependence of the number of selected channels for dataset S3-B2 using
LFTD features. Accuracy is shown for the decoder that is restricted to the Bakis topology (blue line) and
for the unconstrained model (red line). For details on the approach, see caption of Figure 4.3. (Figure
adapted from [44].)

higher p-values). In addition to the decoding accuracies, confusion matrices for all subjects
(averaged across individual sessions) are shown in Figure 4.7. The results show that—except
for subject S2—a pair of finger movements can be identified for each subject that is more
or less frequently mixed-up. For subject S1, this refers to index and little finger. In case
of HG features, decoding errors occur almost exclusively in form of mix-ups between these
two classes (5.2% avg. error rate; average across all other mix-ups: 0.9%). For subjects S3
and S4, a closely similar situation is observed for index and middle finger movements. Mix-
ups between these classes make up a considerable amount of the total decoding errors (S3:
42%/67%, S4: 37%/66% of all errors for LFTD/HG). Contrary, for subject S2, decoding
errors are distributed more equally, in particular for HG features.
In summary, it can be concluded that HMMs reach the performance level of SVM decoders

in case of HG features for three of the subjects. Subject S2 seems to play a special role
with respect to the achievable decoding accuracies as well as the distribution of decoding
errors. This will be investigated more closely in the following.
Based on the selected channels in all repetitions (and folds) of the CV routine, maps

can be created, showing precisely which electrodes on the grid provided the most useful
information. To do so, the count of how often a specific channels was selected has been
computed and normalized to the total number of times the selection routine was performed.
This results in relative selection rates for all channels (Figure 4.7). It becomes apparent
that for all subjects but subject S2, a ’cluster’ of electrodes can be found that is selected
almost always (i. e. selection rate ~100%). Comparison of the location of these channels
shows that they lay close to the central sulcus. However, for subject S2, hardly any of
the channels is selected with particularly high rates. When it comes to HG features, not
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Figure 4.5: Comparison of decoding accuracies between HMM and SVM decoder for all datasets. Results
are shown for LFTD (a) and HG features (b). Decoding accuracies are averages from 30-times-5-fold
CVs. The error bars indicate standard deviation across the 30 repetitions. Chance level for this four-class
decoding problem is 25%. Significance analysis has been carried out by means of two-sample one-sided
t-tests. Star symbols above the pairs of bars show the corresponding level of significance (*/**/***
for α = 0.05/0.01/0.001). Bars without indicator have non-significant difference (sub-figure (b) only).
All results shown in sub-figure (a) have statistically significant performance differences at α = 0.001
(***-symbols omitted).
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4.1. HMMs for (single trial) BCI decoding

Table 4.4: Detailed decoding accuracies (in %) of the HMM and SVM decoder for all datasets. All results
are averages from 30-times-5-fold CVs (standard deviation in brackets). Significance analysis has been
carried out by means of two-sample one-sided t-tests. The t-value of the test as well as the corresponding
p-value are shown in the last two columns. For cases in which performance differences are statistically
significant, the superior routine as well as the level of significance (*/**/*** for α = 0.05/0.01/0.001) is
listed.

Subject Session
LFTD features

HMM SVM superior t p

S1 1 80.7 (1.9) 85.8 (2.0) SVM (***) -10.258 6.00E-15
2 78.8 (3.4) 84.9 (3.0) SVM (***) -7.378 3.40E-10

S2 1 44.0 (5.5) 51.4 (4.4) SVM (***) -5.771 1.62E-07
2 45.7 (5.7) 55.5 (4.0) SVM (***) -7.754 7.93E-11
3 40.2 (3.7) 49.6 (3.8) SVM (***) -9.708 4.60E-14
4 28.8 (4.1) 39.1 (3.9) SVM (***) -10.034 1.37E-14

S3 1 64.6 (3.7) 61.2 (3.9) HMM (***) 3.454 5.19E-04
2 80.1 (2.7) 85.0 (2.5) SVM (***) -7.363 3.60E-10

S4 1 71.4 (2.8) 68.5 (3.4) HMM (***) 3.596 3.34E-04
2 69.7 (4.1) 64.3 (3.5) HMM (***) 5.519 4.17E-07

Average 60.4 (19.0) 64.53 (16.5) SVM (*)� -2.222� 0.027�

Subject Session
HG features

HMM SVM superior t p

S1 1 97.9 (0.6) 97.2 (0.9) HMM (***) 3.421 5.74E-04
2 92.4 (2.0) 93.4 (2.4) SVM (*) -1.778 0.040

S2 1 35.9 (3.8) 38.0 (4.3) SVM (*) -2.005 0.025
2 45.6 (3.9) 48.0 (3.5) SVM (**) -2.502 0.008
3 36.3 (4.3) 39.5 (5.1) SVM (**) -2.636 0.005
4 36.4 (4.7) 38.0 (5.6) none -1.197 0.118

S3 1 85.1 (2.2) 85.4 (2.9) none -0.458 0.324
2 90.5 (1.8) 91.4 (1.6) SVM (*) -2.082 0.021

S4 1 83.5 (2.7) 82.1 (2.0) HMM (*) 2.270 0.013
2 83.1 (1.9) 82.3 (1.5) HMM (*) 1.854 0.034

Average 68.7 (26.4) 69.5 (25.3) none� -1.799� 0.053�

Critical t-values: tc = ±1.672/± 2.392/± 3.237 for α = 0.05/0.01/0.001, respectively.
�Significance analysis for differences in the averages is carried out with one-sample one-sided t-tests on the

performance differences AccHMM −AccSVM (alternative hypothesis: AccHMM −AccSVM < 0) in the
individual datasets. The critical t-value for these tests (significance level α = 0.05) is tc = −1.812.
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Figure 4.6: Confusion matrices of HMM decoding for both feature types. The confusion matrices show
the relative distribution of decoding results. Rows correspond to the actual label and columns to the
prediction from the classifier. The matrix elements (color-coded) show the fraction of classifier decisions
that belong to the corresponding combination. Diagonal entries represent correct predictions (i. e. actual
class = predicted class). Hence, in case of perfect decoding the confusion matrix would by the identity
matrix. All shown results are averages across all individual sessions of a subject.

a single electrode is chosen by 100%. Only three electrodes have selection rates of about
75%, and all of those are located in the very corner of the grid. This strongly indicates that
the electrode grid did not sufficiently cover the brain area associated with finger movement
activity for that subject. Hence, data from this subject are not optimally suited for the
purpose of finger movement decoding.

As introduced in the ’Approach’ paragraph, the model has been constrained to the Bakis
topology in order to increase performance by reducing the degrees of freedom. To inves-
tigate the benefit that results from these restrictions, decoding accuracies have also been
assessed with an unconstrained model. The results of this comparison are shown in Figure
4.8. Except for subject S2, use of the Bakis model leads to an increase in decoding accu-
racy for all datasets. In most cases, these differences are statistically significant (detailed
results—including significance test statistics—can be found in Appendix Table A.1). On av-
erage, the performance increase is higher for LFTD data (∆AccLFTD = 2.2 %vs.∆AccHG =
1.1 %). Significance analysis verifies that only the increase in the LFTD case is statis-
tically valid. This has been tested using one-sample one-sided (alternative hypothesis:
∆AccLFTD/HG > 0) t-tests performed on the accuracy differences:

tLFTD = 2.665 (tc,α=0.05 = 1.812)⇒ significant at α = 0.05 (p = 0.013)
tHG = 1.758 (tc,α=0.05 = 1.812)⇒ not significant at α = 0.05 (p = 0.056).

To provide further insight, Table 4.5 lists the number of free parameters of the Bakis model
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4.1. HMMs for (single trial) BCI decoding

Figure 4.7: Spatial distribution of dominantly selected channels (channel maps). The results show how often
(rate in %) channels have been selected throughout all runs and folds of the 30-times-5-fold CV routines.
All maps show average selection rates across all individual sessions of the subject. For comparison,
anatomical grid location for all subjects is shown above the corresponding channel maps. (Figure adapted
from [44].)
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Table 4.5: Number of free parameters in the unconstrained HMM and the model restricted to the Bakis
topology.

Model type Prior Transition matrix Mean Covariance Sum

unconstrained 5 25 (full) 5 · 10 = 50 5 · (10 · 10) = 500 580
Bakis 5 12 (restricted) 50 500 567
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Figure 4.8: Difference in decoding accuracy between Bakis model and the unconstrained HMM for both
feature types. Positive values indicate that the Bakis model provides higher decoding accuracy. All
differences have been tested for statistical significance by means of two-sample one-sided t-tests (star
symbols show the level of significance: */**/*** for α = 0.05/0.01/0.001).

and the corresponding unconstrained HMM. Interestingly, the Bakis model reduces the
amount of free parameters by only 13 values (roughly 2%) and still provides significant
performance benefits in a variety of cases. This indicates that restrictions to the possible
state sequences play an important role to increase stability of the decoding results.

Discussion Detailed investigations of the behavior of the HMM classifier mainly revealed
two important aspects. First, appropriate selection of features seems to play a crucial
role for reliable decoder performance. Particularly for the lower quality LFTD features,
substantial performance differences are found between the optimal and non-optimal chan-
nel counts. This can be attributed to the rapidly increasing number of free parameters
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4.1. HMMs for (single trial) BCI decoding

(quadratic increase with number of channels) for HMM classifiers and the introduction of
uninformative feature dimensions when channels are added that do not cover relevant brain
areas. Second, introduction of proper model constraints is of high importance to improve
the performance. Compared to a fully unconstrained setting, accuracy increases of up to
8.8% (absolute increase, S3-B2 LFTD features) are achieved with the applied Bakis model
topology. In that respect, it is particularly interesting that the constraints introduced by
the Bakis topology cause almost no reduction in the total number of free parameters (Table
4.5). Still, significant performance increase is observed in almost all cases (Figure 4.8).
This strongly suggests that the improvements cannot be simply attributed to a mere re-
duction in the overall number of parameters, but are also due to better compliance of the
model topology with the underlying temporal structure of the features. Further support for
this hypothesis comes from the fact that the performance benefit of the Bakis constraint is
markedly higher for LFTD features, which exhibit the more complex temporal structure.
The decoding results do not show clear superiority of either HMM or the (gold-standard)

SVM classifier for subjects S1 and S3. Both methods provide (significantly) higher per-
formances in individual cases. Clear dominance of the SVM decoder is found for data of
subject S2. Across all sessions and both feature types (except for S2-B4 HG), SVM results
are significantly higher than those of the HMM routine. However, as already indicated in
the results, subject S2 data play a special role. In all settings, decoding accuracies are
substantially worse than those of all other datasets. This becomes particularly obvious in
case of HG features, for which an average decoding accuracy of only ~40% is reached for
subject S2, while all other results have accuracies above 80%. Non-optimal grid placement
for the purpose of finger movement decoding has been identified as a likely explanation for
the poor decoding results in these datasets. Channel maps show unspecific distribution
of selected channels across the electrode grid of subject S2. For HG features, none of the
channels is selected in all cases. The complete opposite is observed for the three other
subjects. Distinct clusters of dominantly selected channels—with several channels selected
by 100%—can be identified for both feature types in all datasets. Moreover, subject S2
data is the only case in which decoding accuracies are higher for LFTD features than for
HG features. Since high gamma signals are known to be spatially more focused [117–119],
this strongly indicates that brain regions with relevant motor activity are located outside
the electrode grid for subject S2. Hence, actual grid coverage does not allow for meaningful
decoding of finger movements and thus, explains the fundamental differences in the results
compared to the datasets of the other subjects.
In case of subject S4, the HMM decoder outperforms SVMs. For both feature types

and data sessions, decoding accuracies of the HMM routine are significantly higher than
the SVM performance. This also holds true in case of LFTD features, for which the SVM
decoder is clearly superior in almost all other datasets. Interestingly, this subject has
been implanted with an electrode grid with higher resolution (cf. Figure 4.7). This is an
indication that HMM decoder might have higher benefit from increased spatial resolution
than SVMs.
In general, results show that the performance gap between HMM and SVM gets smaller

the higher the overall decoding accuracy becomes. Hence, findings suggest that for high
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quality data, both classifiers tend to perform equally well. Considering that HMMs—as
a representative of dynamic, probabilistic classifiers—offer several interesting features for
potential extensions that might turn the results in favor of HMMs, this is a promising ob-
servation. As exemplary advantages, the fact that HMMs directly model the time sequence
of the data, which might be used to assess additional information (dynamic classification,
investigated in Section 4.3), as well as the possibility to easily incorporate prior knowledge
into the decoding (due to probabilistic classification, investigated in Section 4.6), shall be
mentioned here.

Conclusion The findings of this section demonstrate that HMM decoders can reach the
performance of one of the gold-standard static classifiers—the SVMs. This holds true
especially for high quality data and high decoding accuracies. In summary, the results
strongly motivate further analysis of the possibilities of HMMs in more complex scenarios,
which better comply with the intended field of application for this type of decoder than
a straightforward single trial classification task. This will be addressed in the following
sections.
Comparison of the results of individual subjects showed that the data of one of the

subjects (S2) is unsuited for meaningful decoding of finger movements, most likely due to
unfitting electrode grid placement and the insufficient data quality that is caused by that.
Consequently, data from this subject will be left out for further investigations (Sections 4.5
and 4.6).
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4.2. Comparison MEG-ECoG

Typically, ECoG studies are conducted using data from only a few patients. This is an
inevitable consequence of the limited patient collective that undergoes grid implantation
solely for medical reasons. Furthermore, grid location is determined based on clinical needs
and hence, coverage of brain regions varies across patients. Consequently, not every subject
can participate in a particular experiment and the amount of available data is reduced even
further.
To conclusively investigate the generalizability of results, it is desirable to evaluate de-

coding algorithms on as many (suitable) datasets as possible. Non-invasive acquisition
modalities offer the possibility to record data from healthy subjects. However, significant
differences in data properties are to be expected. If such data shall be used to extend ECoG
databases, it is necessary to carefully investigate the data properties for their suitability for
the problem of interest.
This aspect plays an important role for the analysis of ECoG data from the picture

category task (Section 3.7.2) that will be presented in Section 4.3. Compared to the finger
tapping data with a total of ten datasets (four patients, multiple sessions each), the database
for the picture category task is particularly limited (two patients, only a single session each).
Meaningful analysis of brain signals from a visual task requires data recorded from brain
areas that play a central role in the processing of visual information (primarily occipital and
medial temporal lobe). Due to the rareness of epilepsy located in these areas of the cortex,
the corresponding patient collective is extremely limited. Hence, only very few datasets are
available for BCI studies. As mentioned before, non-invasive data acquisition constitutes
a potential candidate for database extension. This section deals with a brief comparison
of data properties, conducted to clarify if the non-invasively recorded data is suited for
database extension in the analysis of the picture category task.

Data In addition to the ECoG data, MEG data have been recorded using the same experi-
mental paradigm as in the ECoG picture category task (Section 3.7.2). Six healthy subjects
(age 23–31, one female) participated in the study. Data were recorded with a sampling rate
of 1017.25Hz using a whole-head BTi Magnes system (4D-Neuroimaging, San Diego, CA,
USA) equipped with 248 magnetometer sensors.

Approach In a first step, MEG and ECoG raw signals as well as extracted features are
inspected visually to compare essential properties. Both, LFTD and HG features (Sections
2.2.1 and 4.1) are considered. LFTD cutoff frequency is 30Hz for ECoG and 10Hz for
MEG data. HG features are computed with a window length of 250ms) in the frequency
band of 70–200Hz. Feature selection by means of the extended DB-index routine (Section
2.2.2) is performed to identify the most informative channels (ECoG: electrodes, MEG:
magnetometer sensors).
To obtain quantitative statements on the information content of the signals, decoding

accuracies are assessed for both data types.
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(a) ECoG (b) MEG

Figure 4.9: LFTD feature values of two representative channels from ECoG (a) and MEG (b) data. The plots
show the LFTD feature value (color-coded) for all individual trials sorted with respect to the stimulus
presentation duration (shortest duration on top). Sub-figure (a) shows the two top-ranked (w. r. t. feature
selection index from the extended DB-routine) channels from subject ECoG 2. In sub-figure (b), the top-
ranked channels from two MEG datasets—MEG4 (top) and MEG1 (bottom)—are shown for comparison.
(Parts of this figure are reproduced from [120].)

Decoding is conducted for both possible decoding tasks:

1. Identification of the type of a stimulus (i. e. picture category) and

2. determining the stimulus duration.

To obtain unbiased results, a gold-standard (linear) SVM approach is used to perform
classification. The feature selection routine is used to identify the twenty (MEG: ten) most
informative channels with respect to the decoding task (i. e. type or duration of stimulus) on
the training subset. The resulting selection of features is used as input for the SVM decoder
(LIBSVM for Matlab [116]). Classification is performed using a one-vs.-one strategy.

In addition to decoding accuracies, results of the applied feature selection routine are
used to compare the data with respect to the localization of channels that provide the most
useful information. To do so, feature selection outcome—this means, which channels are
selected—from all runs and folds of the CV routine is pooled to compute average selection
rates (i. e. how often a channels is selected). These are illustrated in spatial distribution
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Figure 4.10: Decoding accuracies of category and duration decoding for all ECoG (a) and MEG (b) datasets.
All results are averages across 50 repetitions of 5-fold CVs (error bars indicate standard deviation). Chance
levels are 20% for the duration task (five classes) and 33% for category decoding (three classes). (Parts
of this figure are reproduced from [120].)

maps, often called channel maps. For means of simplicity, interpretation of the channel
maps with respect to involved brain areas is done on sensor level only for MEG data (i. e.
no source analysis has been performed).

Results Figure 4.9 shows a comparison of LFTD features from two different channels of
ECoG and MEG datasets. The plot displays the top two channels from feature selection
on dataset ECoG 2 with respect to separability of different stimulus durations (task 2).
Additionally, the top ranked channel from two MEG datasets (MEG1 and 4) are shown for
comparison. Apparently, features extracted from ECoG have substantially higher signal-
to-noise ratio. Still, qualitative similarities are found between ECoG and MEG features.
In both cases, more or less prominent signal deflections mark stimulus onset (at the 0 ms
mark) and offset. In case of ECoG signals, the appearance of additional stimuli within the
trial segment of 2.1 seconds (’multi-stimulus-issue’, cf. Section 3.7.2) can be seen clearly
in form of distinct peaks that occur a certain time after stimulus offset—just like for the
original stimulus at 0ms. This effect is much less prominent in MEG, presumably because
it is masked by the low signal-to-noise ratio (SNR). Different from the LFTD features, no
usable HG features could be extracted from MEG recordings. As a consequence, these are
left out in all subsequent analysis.
Decoding accuracies are assessed for both decoding problems using 50-times-5-fold CVs.

For ECoG data, decoding is performed individually for both decoding problems and feature
types, yielding a total of four different settings. Results for all datasets are shown in Figure
4.10. Decoding accuracies are quite similar for both of the ECoG subjects. Contrary, strong
variation is found across the results for MEG datasets, especially for duration decoding.
Results from subjects MEG5 and MEG6 are particularly low in the duration decoding task.
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Figure 4.11: Average decoding accuracy in both decoding tasks for ECoG and MEG data. ECoG results are
shown for LFTD and HG features. As no usable HG features have been found for MEG data, only the
LFTD result is shown. Severe blink artifacts caused substantial performance issues for subjects MEG5
and MEG6 in duration decoding. Hence, a separate average is shown that does not take into account the
affected datasets (’MEG (w/o 5&6)’). (Figure adapted from [120].)

Closer (visual) inspection shows that the data from these two subjects are heavily affected
by blink artifacts (not shown here). These artifacts lead to improper feature selection and
classifier training for duration decoding. The category decoding task is not impaired as
severely.

Decoding accuracies have been averaged across subjects (Figure 4.11). With respect to
the blink artifact issue with subjects MEG5 and MEG6 (see above), a separate average has
been computed with the affected datasets left out (’MEG (w/o 5&6)’). Category decoding
accuracy is significantly higher for ECoG data (both feature types) than for MEG data
(pLFTD = 0.0057, pHG = 0.0012; difference t-test for AccECoG − AccMEG > 0, α = 0.05).
For duration decoding, ECoG results are still higher than with MEG on average. However,
differences between the results are smaller and have larger error bounds (non-significant
difference for all combinations p = 0.072 ... 0.145). More detailed information on decoding
outcome is available from the confusion matrices (CM, Figure 4.12). For the category task,
ECoG and MEG results show the same characteristics. They differ almost exclusively in
the absolute accuracy, which can be seen clearly when comparing the ECoG result (Figure
4.12 (a)) with the CM for MEG that has been rescaled to a min-max window (Figure
4.12 (c)). Decoding errors have nearly identical distribution. Face stimuli are decoded with
the highest accuracy and only marginal confusion with the other classes. The discrimination
between objects and watches seems to be more difficult for the decoder. Approximately
12% (MEG: ~18%) of these trials are mixed-up with the other class. As far as the duration
task is concerned, CMs also appear qualitatively similar. The difference plot between both
modalities (Figure 4.12 (f)) reveals that ECoG provides higher accuracy particularly for
longer duration stimuli. Furthermore, subdiagonal CM entries - which refer to confusion
between neighboring durations - are markedly smaller in the ECoG case.
Based on the selected channels in all runs and folds of the 50-times-5-fold CV routines,
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Figure 4.12: Confusion matrices (CM) of category (a-c) and duration decoding (d-f) results. The CMs are
averages across all datasets from the respective acquisition modality. Sub-figures (a) and (b) show the
results from category decoding with ECoG and MEG data, respectively. For sub-figure (c), the CM from
(b) has been windowed with respect to the minimal and maximal value, to facilitate easier comparison to
the ECoG results in (a). Sub-figures (d) and (e) depict the duration decoding results. To highlight the
differences between ECoG and MEG results, sub-figure (f) shows the corresponding difference matrix.

channel maps have been computed. Selection rates are shown exemplary for subject MEG1
in Figure 4.13. For comparison, electrode grid locations including the dominantly selected
electrodes from subject ECoG 2 are shown in Figure 4.14. In the duration decoding task,
a strong tendency towards channels from the posterior region (channels A136-137, A164,
A185-186, A203 and A220) can be seen in the MEG channel map. The location of these
sensors implies that the corresponding brain signals originate from the occipital cortex
(primary visual area, V1). Closely similar locations are found for selected electrodes in
the ECoG recordings (cf. Figure 4.14 (b)). In the category task, primarily selected MEG
channels are located more towards the sides, with a slight tendency towards the left hemi-
sphere (sensors A161, A182-183 and A199-200; right hemisphere: A166). These sensors
are likely to pick up signals from the temporal lobe. Dominantly selected electrodes in the
ECoG datasets are located in the ventral temporal region. This indicates that the relevant
information recorded with MEG comes from the same brain area. However, source analysis
would be required to assess more precise information.
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(a) Category (b) Duration

Figure 4.13: Spatial distribution of dominantly selected MEG channels in category (a) and duration decod-
ing (b) from subject MEG1. Selection rates refer to the number of cases within the 50-times-5-fold CV
that a certain channel has been selected. The maps show a two-dimensional mapping of MEG sensor
location. Anterior channels correspond to frontal brain areas, whereas posterior channels pick up signals
from the occipital cortex.

Discussion The results of this section indicate that MEG recordings have qualitatively
similar properties as ECoG data in the picture category experiment. Extracted LFTD
features show similarities with respect to signal deflections associated with picture onset
and offset. Unfortunately, MEG data seems to contain no usable high frequency informa-
tion, which is in accordance with previous observations in other MEG data from the same
acquisition setup [121]. This is most likely due to the low amplitude of these signals and
the rather low SNR of the MEG signals. Consequently, no meaningful HG features could
be extracted from the MEG recordings. However, the achievable decoding accuracies for
ECoG show that LFTD features provide almost the same level of accuracy as HG fea-
tures in both investigated tasks. Hence, being able to only use LFTD in MEG recordings
does not severely limit its usefulness. Overall, decoding accuracies are higher with ECoG
recordings (significant4 for category), which is expected due to the higher signal quality
of the invasive recordings. In the duration task, two of the datasets provide particularly
low accuracy. This has been identified to be caused by severe blink artifacts. These create
signals with extremely high amplitudes, misleading the feature extraction routine to select
the affected channels. For actual decoding, these channels do not provide information that
are consistent enough. To avoid any bias, these two datasets have been left out in further
analysis. Detailed information on individual decoding errors from the CMs (Figure 4.12)
is of particular interest to study the comparability of both modalities. In the duration

4It should be noted that significance analysis has very limited power in this study due to the extremely
low number of datasets (2 and 6).
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(a) Category

(b) Duration

Figure 4.14: Anatomical electrode grid location of subject ECoG 2. The pictures show a ventral (left
column) and posterior (right column) view of the right hemisphere. The patient has been implanted with
a variety of electrode grids and strip electrodes, covering large areas of the occipital cortex as well as
ventral temporal areas. Dominantly selected electrodes for category (a) and duration decoding (b) are
highlighted with red and pink (less dominant) circles. Images of electrode reconstructions courtesy of
Helen Wills Neuroscience Institute, UC Berkeley.

task, superiority of ECoG is found. Particularly for neighboring durations, a non-negligible
amount of mix-ups occurs in MEG decoding. As a consequence, it has been decided to
change the paradigm as far as the different presentation durations are concerned. Instead
of five different durations, in the altered paradigm this count is reduced to three classes
that are more spread out (see Section 3.7.2, ’MEG – modified paradigm’). The modified
paradigm is used to re-record MEG data for database extension for the next section.

Comparison of the CMs for the category task shows that both modalities behave closely
similar. In both cases, face trials are predicted correctly with high accuracy and almost no
confusion with the other stimuli types. Mix-ups between the other two categories have the
same ratio (w. r. t. the overall accuracy) in both modalities. In addition to the similarities
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in decoding error distribution, dominantly selected channels have been identified to roughly
correspond to the same areas of the cortex. Identified category-selective regions (mainly
ventral temporal regions) are in accordance with the literature (e. g. [122]). As mentioned
before, these statements have entirely qualitative character for the MEG datasets, which is
sufficient for the demands of this investigation. For applications that require accurate quan-
titative comparison (e. g. grid implantation planning), source analysis would be required to
allow for precise anatomical localization of signal origins.

Conclusion In summary, the findings strongly indicate that MEG recordings provide the
required signals from the brain regions of interest with sufficient quality for visual tasks.
This shall be used to add additional datasets for analysis in the next section, which will
deal with detailed analysis of the picture category task with HMM decoders and will focus
primarily on category decoding. In that particular decoding task, two of the MEG datasets
have shown markedly higher decoding accuracies (75% vs. 66%). To provide the best
possible comparability for analysis, these two subjects are chosen to extend the database.
As mentioned before, the paradigm has been slightly modified for technical reasons (MSI,
see Section 3.7.2, ’MEG - modified paradigm’) and to adjust the level of difficulty for
fairer comparison. Data has been re-recorded from the two mentioned subjects (MEG2 and
MEG4) with the modified paradigm for the following section.
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4.3. Extraction of additional information: Duration decoding

The findings from the first study (Section 4.1) have shown that HMMs can reach the per-
formance of the gold-standard static classifier SVM. In this section, investigations focus
on the use of beneficial properties of the dynamic nature of HMMs. By concept, dynamic
classifiers model the time sequence of the input signal. This circumstance shall be used to
decode additional information from the data without a dedicated training step. As there
is no direct analogue for this using static classifiers, it demonstrates the superiority of dy-
namic approaches in complex decoding tasks.

The central findings of this section have been published in [114].

Data Results presented in this section are based on data from the picture category task
(Section 3.7.2). ECoG data from two patients is available for this study. As mentioned in the
previous section, MEG data is used to extend the database for analysis. The investigations
from Section 4.2 suggest that data from two of the investigated subjects are best suited for
this purpose. A slightly modified paradigm (Section 3.7.2, ’MEG – modified paradigm’) is
used for MEG recordings to better meet the requirements for the analysis. In combination
with the ECoG recordings, a total of four datasets constitutes the database. Details on how
data are epoched into trials as well as information on pre-processing steps can be found
in Section 3.7.2. As usual, data were inspected visually for bad channels and artifacts.
Affected trials are removed from analysis (full breakdown in Table 4.6).

Approach Feature extraction is performed with the same settings as in the previous sec-
tion. Low frequency time domain (LFTD) features are computed according to the method
described in Section 3.1.1 with a cut-off frequency of 30Hz for ECoG data and 10Hz for
MEG. To reduce feature dimensions, the resulting time series are down-sampled to 98
sample points (corresponding re-sampling rate: ~48Hz). High gamma (HG) features are
extracted from the frequency band of 70–200Hz with a window length of 250ms. Feature

Table 4.6: Information on count of channels and full breakdown of recorded and rejected trials for all
subjects.

Trial breakdown

Subject
Acquisition
modality

Number of
channels

Recorded
trials

(objects/faces/watches)

rejected remaining

ECoG 1
ECoG

101 electrodes
312

6/4/3 98/100/101
ECoG 2 110 electrodes 18/19/19 86/85/85
MEG 1 (MEG2)*

MEG 248 sensors 225
6/1/11 69/74/64

MEG 2 (MEG4)* 10/5/6 65/70/69

* Subjects MEG2 and MEG4 from Section 4.2 have been renamed to MEG 1 and MEG 2, respectively.
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Figure 4.15: Examples of visually responsive channels for all four subjects. The graphs show raw signals
averaged across trials of all categories and durations. Data have been normalized (i. e. scaled to the
interval [0,1]) for better comparability. The dashed black line indicates the 150ms time point. Channels
with the highest average signal amplitude up until this time point are selected for decoding (up to a total
of seven ’duration channels’). (Figure reproduced from [114].)

values are computed for 100 equidistant time points. This corresponds to an overlap be-
tween adjacent windows of about 92.5%. As a consequence, HG features vary rather slowly
over time (cf. Figure 4.18). Investigations from the previous section showed that no usable
HG can be extracted from the available MEG data. For that reason, analysis of the MEG
datasets is limited to LFTD features.

With respect to the objective of decoding both category and duration information from
the data, a two-stage approach for channel selection is applied.5 In a first step, channels are
identified that carry relevant information for the category decoding task. This is done using
the routine based on the DB-index (Section 3.2) that has also been used in the previous
sections. Additionally, a second set of channels is sought-for that brings in information on
the stimulus duration. To keep the overall strategy of predicting the duration training-free,
an unsupervised approach is used to determine suitable ’duration channels’ as follows: Raw
signals of all trials are averaged separately for each channel; this results in a mean signal
amplitude time course for each of the channels. Channels for which this mean amplitude
exceeds a defined threshold value within the first 250ms of the time series (i. e. up to 150ms
after picture onset) are selected for the set of duration channels. This specific time frame
is considered, as it turns out to match the typical interval that contains the brain response
to the appearance of a visual stimulus for both types of data (Figure 4.15). Hence, if
the mean amplitude of a certain channel exceeds the threshold within that interval, this
indicates that it represents neural ensembles that take part in the processing of early visual
information. In case the number of channels fulfilling the threshold condition is higher (or
lower) than the requested number, the threshold value is increased (or decreased) until the
5Section 4.2 showed evidence that information on category and duration are encoded in different brain
areas (cf. Figures 4.13 and 4.14). Hence, separate selection of suitable channels is indicated.
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(a) ECoG (b) MEG

Figure 4.16: HMM topology used for (a) ECoG decoding and (b) MEG decoding. Besides state looping,
the ECoG model allows transitions from a state to its predecessor and successor. In the MEG model,
only single-stepped forward jumps are allowed (in addition to loops). The prior is set to force models to
start with the first state in both cases. (Figure reproduced from [114], rearranged.)

target count is reached. It should be noted again that this routine is independent from
any labels. Motivated by previous findings (Section 4.1, Table 4.3), a total number of ten
channels is selected. The actual ratio between category and duration channels constitutes
a trade-off between optimal category decoding performance and a sufficiently substantial
incorporation of information on the stimulus duration. As a compromise, three channels are
dedicated to category decoding. This is loosely motivated by the fact that there are three
category classes.6 The remaining seven channel slots are filled with ’duration channels’.
Due to fundamental structural differences between the two feature types, specific model

topologies are used for each purpose (Figure 4.16, detailed discussion later). Generally,
topologies are oriented towards findings from Section 4.1. The model used for MEG data
(LFTD features) consists of five states, each containing a single mixture component. Find-
ings from Section 4.1 further suggest that strict constraints are of high importance for time
domain features (cf. Figure 4.8). Therefore, the MEG model allows only single-stepped for-
ward jumps (in addition to state looping). Contrary, for the ECoG model (HG features7)
a single-step backward jump is introduced. This was found to compensate for the multi-
stimulus issue (see discussion). The backward jump allows the model to re-use earlier states
for later segments within the time series. As a consequence, the total amount of states has
been reduced to four. The different feature properties also imply specific requirements for
model initialization. The time discriminative clustering routine (Section 3.3.3) takes into
account the temporal structure of the input data by introducing the time point of a feature
sample as an additional feature dimension. LFTD features display a rather complex tem-
poral structure compared to HG features. Consequently, different values have been used
for the time coupling constant τ in the clustering routine: τLFTD = 25 and τHG = 0.

Individual HMMs are trained for each of the category classes. This results in a total of
three HMMs (objects, faces, and watches). HMM functionality is provided by the HMM
toolbox for Matlab from Kevin Murphy [115]. The Baum-Welch algorithm is used for esti-
mation of all model parameters (i. e. state means, covariance matrices, and state transition
probabilities). Classification of picture category is performed with a straightforward maxi-
mum likelihood approach; the model with the highest probability determines the assigned
6Note that this is an entirely empirical choice that cannot be justified theoretically.
7As it turns out, LFTD features do not allow for meaningful duration analysis in case of ECoG data. This
aspect is elaborated on in the results (Figure 4.19) and discussion paragraph. Consequently, results for
the ECoG datasets are presented for HG features only.
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label. The full procedure is illustrated in Figure 4.17.
After category classification, the Viterbi path Vt of the “winning HMM” is calculated.

This is then used to extract information on the duration of the stimulus as follows: First, a
threshold value θ needs to be defined. The choice of θ will be discussed later. Based on the
chosen threshold, the Viterbi paths are scanned for the first sample point s that reaches
the threshold:

s = min
t
t, s. t.Vt ≥ θ. (4.1)

Using a linear relation
d = m · s+ n, (4.2)

the stimulus duration d is predicted from the sampling point s. Equation (4.2) requires
a slope m and the offset n. The slope is known a priori, as is corresponds to the time
increment from one feature sample to the following. If τ denotes the length of a trial in
seconds8 and S is the number of samples in the extracted feature vector, the slope is given
by m = τ/(S−1). The offset n is introduced to compensate for eventual delays between the
end of stimulus presentation and the according state changes of the corresponding HMM.
Additionally, the offset can also account for delays between event and brain response. Unlike
the slope, the offset n is not simply an inherent value of the signal processing chain. To
determine an appropriate value for it, a calibration step is necessary. This is done using
the (duration) labels of a single duration class cal (e. g. all 300ms trials). For these trials,
the threshold crossing samples si are computed using Eq. (4.1). From all these points, a
representative (mean) sampling point s(cal)

rep is calculated with a histogram-based method.
First, a rough histogram is computed by dividing the data into ten equally sized sample
boxes bj . From these, the box with the highest count is selected (bmax). In the second
step, the median of all samples in the proximity (±10 sample points) of the center c of the
selected box bmax is calculated:

s(cal)
rep = median

si∈[c−10,c+10]
(si) .

Using the duration d(cal) of the class that has been used for calibration (e. g. 300ms),
Eq. (4.2) can be used to estimate the offset parameter n(cal). Ideally, the offset parameter
would be equal, irrespective of the calibration data. However, in practice, the result does
depend on the actual choice of the calibration class cal. Consequently, the presented routine
is applied once for each of the duration classes—almost in a cross-validation-like manner—to
provide objective results.

n(cal) = d(cal) −m · s(cal)
rep , cal =

{
1, ..., 5 ECoG
1, 2, 3 MEG

(4.3)

It is important to note that this strategy cannot be interpreted as a classifier training, as
labels from only a single class are made available to the decoder. Moreover, postulating
8Note that for HG features, the window length lw (in seconds) of the power spectrum computation must
be taken into account. Hence, τ needs to be reduced by that length: τHG = τ − lw.
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Figure 4.17: Schematic illustration of the decoding routine. The trained HMMs are used to model the fea-
ture sequence that has been extracted from the unknown trial. Each of the models provides a likelihood
for generating that particular feature sequence. Category classification is decided by means of a straight-
forward maximum-likelihood approach, i. e. the model with the highest (log-)likelihood determines the
assigned label. The Viterbi path (i. e. state sequence that is most likely to explain the given feature
sequence) of this model is extracted and used for duration decoding. (Figure reproduced from [114].)
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Figure 4.18: Average feature values (red) and corresponding signal-to-noise ratios (SNR, black) for HG and
LFTD features. Mean µ and standard deviation σ across all trials with a presentation duration of 300ms
from subject ECoG 2 are computed for all ten selected channels. SNR is computed for each individual
channel as the quotient of |µ| /σ and averaged afterwards. Brain response to picture offset ends around
600 ms. At this point, SNR of LFTD (dashed black line) nearly drops to noise level and consequently
appropriate modeling of these time segments becomes nearly impossible. Contrary, HG features show
high SNR (solid black line) throughout the entire duration. Additionally, the period of increased SNR
extends over a longer duration than for LFTD (approximately until 900ms). (Figure reproduced from
[114].)

the offset as a priori knowledge—for example based on findings from other subjects—could
also be a conceivable solution. Such a routine would allow for fully unsupervised decoding
of duration information. This aspect will be discussed later.

Results As mentioned before (cf. Sections 3.7.2 and 4.2), the paradigm used for ECoG
subjects contains the multi-stimulus-issue (MSI), i. e. additional stimuli can appear within
the time series of trials with briefer presentation durations. The time domain features
(LFTD) have a quite complex structure along with rather low SNR (Figure 4.18). In
combination with the limited amount of training data, this poses substantial difficulties for
the HMM decoder, which is therefore not capable of distinguishing the differences between
actual stimulus offsets and ‘ghost’ events resulting from the MSI. To prove that hypothesis,
a data subset has been created, in which the MSI is eliminated by narrowing the investigated
time interval to [-100, 1200]ms (and removing the few remaining MSI trials9). The resulting
dataset allows to compare model outputs of a decoder that is trained on MSI-spoiled data
(full dataset) or on an MSI-free training set. Figure 4.19 shows that the decoder trained on
full length data outputs results with indistinguishable Viterbi paths. Contrary, the model

9These can still occur for combinations with 300ms stimulus duration and 600 ms inter-stimulus-interval.
However, their count is low enough to simple exclude them from the dataset without losing too much
data.
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Figure 4.19: Comparison of mean Viterbi paths with and without trials containing multiple stimuli (multi-

stimulus-issue, MSI). The graph on the top shows Viterbi paths for full length ECoG trials (subject
ECoG 2) using LFTD features. These trials can contain additional stimuli in the second half of the
segment (cf. Section 3.7.2, Figure 3.5). Viterbi paths have been averaged separately for trials of different
duration. It is clearly visible that the paths of all durations are almost identical in the relevant time
interval (solid lines), which makes duration decoding impossible. To assess whether this is caused by
the MSI, decoding has also been performed with a decoder that is trained on shortened versions of the
trials. In this setting, trials are truncated at 1200ms and are free of additional stimuli. Corresponding
Viterbi paths (bottom left) show clear differences between stimuli of different duration. For comparison,
mean feature values are illustrated in the bottom right plot. The graph shows LFTD features from a
typical ’duration channel’ for trials with a stimulus duration of 900ms. Averaging has been performed
separately for trials that do not contain additional stimuli (dashed black line) and for those trials in which
an additional stimulus occurs at 1500ms (solid red line). (Figure reproduced from [114].)

that has been trained on the MSI-free data produces Viterbi paths with the expected
characteristics.10 As a consequence, LFTD features are not considered in the analysis of
the ECoG datasets. Instead, full focus is laid upon HG features, which do not suffer from
this problem (see discussion).
In the category decoding task (three-class problem), decoding accuracies up to 80% can

be achieved with the HMM decoder for the ECoG datasets (Figure 4.20). For means of
comparison, the same decoding has also been performed using gold-standard SVM classifiers
(LIBSVM for Matlab [116], one-vs.-one). The highest accuracy reached with SVM is 85%.
For MEG data, decoding results are worse for both classifiers. HMMs provide about 20%
and SVMs about 15% less accuracy (absolute differences). Hence, the performance gap

10Note that these aspects might be significantly easier to understand after going through the main results
of this section.
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Figure 4.20: Category decoding accuracies of HMM and SVM decoding for all four datasets. The shown
results are average performances from 20-times-5-fold CV procedures (error bars indicate standard devi-
ations). All performance differences are statistically significant (two-sample one-sided t-test, α = 0.001).
Chance level for this three class problem is 33.3̄ %. Tabulated results are provided in the Appendix, Table
A.5. (Figure reproduced from [114], recolored.)

between SVM and HMM is about 12–15% for MEG data, whereas for ECoG, HMMs nearly
reach the SVM performance (about 3–6% difference). This correlates well with findings
from Section 4.1 showing that differences in the accuracy of both decoders get smaller for
higher overall accuracy (resulting from higher quality data). More detailed information of
decoding performances can be taken from the confusion matrices (Figure 4.21). These show
consistent behavior across all datasets. By far, faces are detected best, whereas there are
frequent mix-ups between object and watch trials. This holds true for ECoG as well as
MEG data.
To assess duration information, Viterbi paths have been analyzed according to the routine

described in paragraph ’Approach’. The extracted Viterbi paths for all single trials are
illustrated in Figure 4.22. Apparently, the paths of trials with the same stimulus duration
show similar behavior. The offset of stimulus presentation is indicated by the red triangle
in Figure 4.22 to facilitate interpretation. It becomes apparent that there is a consistent
state change across single trials that is (temporally) correlated with the end of stimulus
presentation. This appears like a flank in the plot in Figure 4.22.
The mean over all Viterbi paths belonging to stimuli of a certain duration has been com-

puted (Figure 4.23). It can be clearly seen that the average paths of different presentation
durations are distinguishable. In particular, a tendency is observed that the time points
at which the paths start to deviate from each other correlate with stimulus presentation
duration. In the following, it will be assessed whether these observations also hold true on
a single-trial level, and hence, can be used to decode duration information.
As described in the ’Approach’ paragraph, calibration is required to determine the thresh-

old parameter for duration estimation. To do so, every duration class has been used once
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Figure 4.21: Confusion matrices of the category decoding task for all four data sets. (a) HMM decoder,
(b) SVM decoder. For an explanation of confusion matrices, refer to the caption of Figure 4.6. (Figure
reproduced from [114], re-arranged.)

Figure 4.22: Single trial Viterbi paths for all datasets (top row: subjects ECoG 1 and 2, bottom row: MEG
1 and 2). Trials are grouped with respect to the presentation durations. The red triangles indicate the
end of stimulus presentation. (Figure reproduced from [114].)
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Figure 4.23: Mean Viterbi paths for all datasets (top row: subjects ECoG 1 and 2, bottom row: MEG 1
and 2). Single trial Viterbi paths have been averaged individually for the different presentation durations
(irrespective of category). (Figure reproduced from [114].)

for computation of the threshold (cf. Eq. (4.3)). The determined value is then used to pre-
dict stimulus duration for all remaining trials using Eq. (4.2). Results for all calibration
sets (five/three in ECoG/MEG, respectively) are documented in Table 4.7. Accuracy is
evaluated by means of root mean square errors (RMSE) of predicted durations compared
to actual durations. A final performance measure is assigned by averaging the results from
all calibration cases (individually for each dataset).

For comparison, chance values are quantified by performing the same evaluation routine
but instead of predicting durations using relation (4.2), random durations from the interval
[0, 2000]ms have been assigned to each trial. To simplify interpretation of the results, all
predicted durations have been mapped to the appearing discrete classes (i. e. 300ms, 600ms,
etc. for ECoG and 500ms, 1000ms, 1500ms for MEG) by means of simple assignment to
the closest value. This allows for computation of conventional decoding accuracies that
document how many predictions have been correct. Additionally, confusion matrices can
be analyzed to shed light on the error distribution; these are shown in Figure 4.25. Frequent
mix-ups are found for the shortest durations, i. e. between 300ms and 600ms in ECoG and
between 500ms and 1000ms for MEG. Except for that, decoding accuracy tends to decrease
for longer presentation durations.

84
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Table 4.7: Estimated offset parameter n(cal) in ms for all calibration sets and subjects.

Calibration set cal

Subject 1 2 3 4 5 Mean

ECoG 1 -148 -110 -90 -89 -107 -108.8
ECoG 2 -148 -147 -165 -164 -163 -157.4
MEG 1 -421 -350 -236 -335.7
MEG 2 -293 -286 -257 -278.7

Table 4.8: Number of states Q used in the HMMs, threshold state θ for duration decoding and corresponding
accuracies (chance levels in brackets) for all data sets. For comparison, accuracies of supervised decoding
(HMM classifier) of duration classes are shown in the last column.

Duration

Subject Q θ RMSE (ms) discrete (%) supervised (%)

ECoG 1 4 4 279 (600) 53.3 (20.0) 30.8
ECoG 2 4 4 123 (600) 82.8 (20.0) 37.2
MEG 1 5 4 232 (585) 68.5 (33.3) 65.9
MEG 2 5 4 187 (585) 76.5 (33.3) 71.9
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Figure 4.24: Histograms of duration decoding errors for all datasets (top row: subjects ECoG 1 and 2,
bottom row: MEG 1 and 2). For means of better comparability, relative occurrence rates are shown
instead of actual counts (i. e. histograms are normalized by the highest appearing value). This allows to
better inspect the shape of the histograms. Negative error values indicate that the predicted duration is
shorter than the actual. (Figure reproduced from [114].)
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Figure 4.25: Confusion matrices for duration decoding (top row: subjects ECoG 1 and 2, bottom row: MEG
1 and 2). (Figure reproduced from [114].)

Discussion All results show consistent behavior for both acquisition modalities and all
datasets. In category decoding, frequent mix-ups appear between watches and objects.
This is expected due to the close similarity of these image types; in fact, watches are usually
considered to be a sub-category of objects. From the three occurring picture categories,
faces are decoded with the highest accuracy. This is in accordance with other studies
reporting similar findings [123–125]. With respect to the overall decoding accuracy, the
SVM decoder provides superior results for MEG data. Since feature quality is lower for
MEG datasets, this observation is consistent with the findings from Section 4.1. For ECoG
data, which provide higher signal quality, the performance gap is markedly smaller.

As mentioned in the ’Approach’ paragraph, the differences in the properties of the two
investigated feature types (i. e. LFTD and HG) made it necessary to adapt the model struc-
ture and decoding strategy accordingly. In case of LFTD features, task-related information
is masked by the ongoing brain background activity. This is superimposed to the signal with
amplitudes in similar ranges as the actual response to the image on- and offset. Therefore,
time segments succeeding the offset of a picture (i. e. during inter-stimulus-intervals) do
not contain reproducible LFTD feature sequences. As a consequence, these segments can
only be modeled appropriately using very simple HMM topologies. This is addressed here
by using a pure left-to-right model that restricts model transitions to looping and single-
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4.3. Extraction of additional information: Duration decoding

stepped forward jumps. HG features have different characteristics, which allow for a more
complex approach. The overall SNR for HG features (Figure 4.18) is substantially higher,
and additionally, SNR does not degrade as much as for LFTD in periods of picture absence.
This circumstance ensures that consistent information on these episodes is available to the
model and hence, this can be utilized in model structure. Consequently, HMMs used for HG
decoding are defined with a topology that also allows for a single-stepped backward jump
in addition to the left-to-right structure for LFTD features. Due to the backward jump,
earlier states are reused for modeling of a given time sequence. As a result, less states are
required to appropriately represent the incoming signals. The differences in model topology
are clearly reflected by the corresponding Viterbi paths. Since Viterbi paths represent the
state sequence that is most likely to reproduce the given feature sequence, they indicate how
the HMM models the signal. For LFTD features (MEG datasets), mean paths typically
show the following structure (cf. Figure 4.26 (a)):

I Dwell in initial state for approx. 200ms.

II Steady increase up to approximately state three.

III Sharp bend, followed by segment with steep slope.

IV Segment with slight slope, ascent to highest state.

The first segment can be interpreted as the pre-stimulus period (i. e. time interval before
picture onset). Segment II has variable length—depending on the stimulus duration—with
longer duration stimuli leading to a longer segment II. The paths continue with segment
III after a sharp bend. Typically, the Viterbi path crosses the threshold state θ within this
segment. Hence, segment III can be associated with the picture offset.
The model used for ECoG datasets results in Viterbi paths with different properties (cf.

Figure 4.26 (b)):

I Early jump to state 2.

II Segment with very shallow slope.

III Sharp bend, followed by segment with steep slope.

IV Marked plateau, dwell in highest state.

V Descent to earlier states (approx. to state 2).

The early jump to the second state in segment I is present in paths of all stimulus dura-
tions. Hence, it can be associated with the picture onset. Segments II and III have similar
properties as their counterparts from the LFTD setting. For longer duration stimuli, seg-
ment II extends over a longer period. As in the LFTD case, segment III consists of a
steep-sloped part; at its end, most paths reach the highest state (in this case: state 4).
Note that Figure 4.26 depicts mean paths (averaged across all trials of a certain duration)
and hence, the shown curve does not reach state 4 at this point, although the majority of
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Figure 4.26: Structure of mean Viterbi paths for MEG (a) and ECoG data (b). The structure is illustrated
exemplary for mean paths of 1000ms trials of subject MEG 2 (a) and 600ms trials of subject ECoG 2
(cf. Figure 4.23).

single trial paths have (cf. Figure 4.22). Within this segment, approximately 1.5 to 2 states
are passed through. This is about twice as much as in the LFTD datasets, even though
the total amount of states is smaller (4 instead of 5). Such a rapid state change leads to
higher robustness when using a threshold-based approach, as it narrows the time window
within which the threshold is usually crossed. Consequently, a higher level of accuracy for
duration decoding can be achieved on such data. After reaching the highest state, models
dwell there for about 400ms. Subsequently, a return to earlier states takes place. The
average paths decrease approximately down to state 2, which can be interpreted as a return
to the starting situation (segment I and II). This period is eventually followed by additional
increases (like segment III). These correspond to further stimuli appearing within the trial
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4.3. Extraction of additional information: Duration decoding

segment due to the multi stimulus issue (Section 3.7.2: ’Multi-stimulus issue’).
The duration decoding results reflect the expected outcome of these observations. Due to

the robust Viterbi paths, highest duration decoding accuracy is achieved on dataset ECoG 2.
Stimulus length is predicted with an RMSE of 123ms, translating into a discrete accuracy
of more than 82%. Mean Viterbi paths of dataset ECoG 1 have the same qualitative
behavior; individual structures however, are less marked. This is caused by less consistent
single trial paths (cf. Figure 4.22). Differences become particularly prominent for segment
III, which is less steep and covers a smaller state span (approx. 1 to 1.5 states). As a
consequence, some paths reach the last state somewhere within segment IV. This decreases
precision and is reflected by the significantly higher RMSE of 279ms for that dataset. In
comparison, results for the MEG datasets lay in between ECoG 1 and 2. However, since the
MEG setting contains only three different durations—and these are also more widely spaced
(500ms instead of 300ms)—the decoding task becomes simpler. In addition, the calibration
step to determine the offset n uses all trials of one specific duration; this accounts for one
third of the data in the MEG setting and only for one fifth in ECoG. Consequently, a more
robust approximation of n can be achieved for MEG datasets, which likely also contributes
to the increased accuracy of the estimation of duration in comparison to ECoG.
More detailed information on the decoding results can be taken from the error histograms

(Figure 4.24) and confusion matrices (Figure 4.25). The histograms clearly show that the
majority of classifications lead to a duration error of 0ms for all four datasets. With the
exception of ECoG 1, errors become less frequent with increasing error value. For dataset
ECoG 1, several small peaks can be found in the histogram. These appear at positions
with constant distance of 300ms to each other, which indicates that they originate from
predictions with a fixed erroneous duration. The fact that these errors range up to high
values of about 1400ms leads to the conclusion that this can be attributed to trials for
which the Viterbi path never reaches the threshold. In those cases, duration prediction
yields approximately11 1700ms; the resulting errors are 1400ms, 1100ms, ..., 200ms, which
match the peak positions.
The confusion matrices (Figure 4.25) provide information on the distribution of decoding

errors for discrete duration classes. Especially for the ECoG results, it becomes apparent
that decoding accuracy decreases with increasing presentation duration. This is expected
considering that the applied decoding strategy is based on the first time point at which
the threshold state is reached. Hence, later picture offsets leave more room for premature
detections than shorter ones.12 For the two datasets with the lowest duration decoding
accuracies (i. e. ECoG 1 and MEG 1), frequent mix-ups between the shortest duration
classes can be found. Approximately 35-40% of the corresponding trials are misclassified.
This is most likely due to the use of a constant threshold for all time points and the issue
might be addressed with more sophisticated routines for the analysis of the Viterbi paths.

11This results from Eq. (4.2) with s = 100 (last sample of Viterbi path) and an average offset of n̄ = −157.4
(cf. Table 4.7).

12One could expect that a similar effect appears in case of short presentation durations and delayed detec-
tions. However, this does not appear since only the first threshold crossing is considered. If the initial
(early) picture offset is decoded correctly, later threshold crossings are ignored.
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Such routines might contain linearly increasing thresholds for increasing duration.13
In case of ECoG data, Viterbi paths return to their initial state after picture offset,

enabling the decoder to detect further events. This can be observed in Figure 4.22 for trials
with short stimulus duration. It is expectable that the same structure would be present
when using longer data segments or continuous feature streaming. Therefore, the approach
is promising for a potential continuous decoding scenario.
With the presented method, calibration of the offset parameter is required. This has

been done based on a single calibration class using each of the classes once for calibration
in a CV-like manner. For the same feature type, calibration results show similar results
across all calibration classes (cf. Table 4.7). Hence, it might be feasible to define a global
offset value that can be used across different subjects without severe impact on decoding
accuracy. This would provide a fully unsupervised method. However, conclusive proof of the
feasibility would require evaluation on a significantly larger database, which is unavailable
in this study.

Conclusion The results of this section demonstrate the use of the beneficial properties
of HMM decoders to extract additional (temporal) information about a stimulus in the
context of a BCI decoding problem. This is done by utilizing the features of dynamic
classifiers, emphasizing their advantage over conventional static classifiers in more complex
settings. The approach allows for simultaneous decoding of both a quality (category) and
a quantity (duration) of an event without an additional training step for the latter. With
respect to potential application, this approach might be transferred to typical BCI tasks,
such as movements, e. g. by detection of desired movement direction (quality) and distance
(quantity).
The approach has been demonstrated for single-trial decoding. However, for practical

use of a BCI, continuous decoding output is essential. This demand can be addressed
conveniently with HMM-based routines, which will be investigated more closely in the
remaining result sections.

13Note that a rough linear trend of the position of kinks in the paths can be observed in Figure 4.23.
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4.4. Semi-continuous decoding
In Section 4.3, the properties of HMMs as a dynamic classifier have been used successfully
to extract additional information without a dedicated training step. There is no direct
analogue to this approach using static classifiers. However, classification accuracies for the
primary decoding task (i. e. picture category) turn out to be slightly lower than those of a
gold-standard SVM decoder. In Section 4.3, HMMs have been applied in a straightforward
single-trial decoding setting; hence, full potential of dynamic classification might not be
used. This chapter focuses on the extension of the routine to a semi-continuous approach
to further exploit the possibilities of HMM decoding.

Data All investigations are performed on the ECoG 1 and ECoG 2 datasets14 from the
picture category task (Sections 3.7.2 and 4.3). Trial structure, feature extraction and
channel selection remain unchanged compared to Section 4.3.

Approach While the investigations is Sections 4.1–4.3 are based on the HMM toolkit for
MATLAB by Kevin Murphy [115], starting from this section, the gold-standard speech
recognition framework HTK (Hidden Markov Model Toolkit, [111]) is used to provide de-
coding functionality (cf. Section 3.5).
Instead of restricting the decoder to use only a single model to describe an entire trial,

compositions of multiple models are allowed in the semi-continuous (SC) setting. Techni-
cally, SC decoding is realized with the word network functionality of HTK using a fully-
connected word network with equal transition probabilities between all models (Figure
4.27). Different from isolated unit decoding, predictions from SC decoding can be com-
posed of multiple different classes within an individual trial, which is illustrated schemati-
cally in Figure 4.28. Consequently, a decision needs to be made which of the predictions is
considered for evaluation in order to assess decoding accuracy.
The naïve approach is to chose the model that spans the longest consecutive interval,

as it best explains the most data samples. This approach will be considered as default
setting for the SC scenarios (SC default). Using more problem-adapted strategies instead
offers the option to include prior knowledge. This will be explained in the following. As
described in Section 3.7.2, multiple stimuli could occur within the data segment of a single
trial due to the design of the experimental paradigm (cf. top part of Figure 4.28). If
such an additional stimulus is contained in a trial, it is assured that this happens towards
the end of the data segment. The original stimulus is guaranteed to occur first.15 In
the SC first word setting, this information is incorporated by selecting the first model
appearing in the prediction as the decoded label for the trial. In addition to that, it is also
known that the shortest stimuli in the paradigm have a duration of 300ms. Hence, another
setting (SC minimum length) is investigated to analyze the potential of incorporating this
14The MEG datasets have not been considered here. The appearance of the multi-stimulus-issue (MSI)

makes the ECoG datasets a highly interesting basis to study the possibilities of dynamic decoding, while
the MEG paradigm has been designed to not contain the MSI by concept.

15This is more or less true by definition, since the label that is assigned to the trial is based on the category
of the picture that is presented at the beginning of the data epoch (i. e. at time point 0ms).
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Figure 4.27: Scheme of isolated unit decoding (a) and a semi-continuous setting using a simple word network
(b).

Table 4.9: Overview of the different decoding settings.

Setting Type Strategy

Vanilla HMM isolated-unit select HMM with maximum likelihood

SC default
semi-continuous

select model of longest interval

SC first word select model of first interval

SC minimum length first interval with more than 20 samples

information. To do so, intervals that span less than 20 samples (corresponding to 375ms) are
not considered for selection of the first interval.16 For comparison, results are also assessed
with an isolated unit decoder (Vanilla HMM ). All decoding settings are summarized in
Table 4.9 and illustrated schematically in Figure 4.28.

Results Figure 4.29 shows the resulting decoding accuracies in all investigated settings
(10-times-5-fold CVs). SVM performances are taken from Section 4.3 (cf. Figure 4.20).
The use of a semi-continuous approach without incorporation of any PK (’SC default’ case)
leads to small decreases in decoding accuracy compared to the isolated unit decoder (’Vanilla
HMM’). This observation will be discussed later. All settings with PK incorporation provide
substantial increases in accuracy. On average, 7.7% more decoding accuracy (absolute
increase) is achieved with the ’SC minimum length’ approach with respect to ’Vanilla HMM’
decoding. In both PK settings, accuracies get close to or even exceed SVM results.
To provide more insight into the results, decoding errors are studied separately for the

different stimulus durations. Figure 4.30 provides a detailed overview of the decoding errors
for both investigated datasets and all duration variants. It becomes apparent that errors for
longer duration stimuli (i. e. 900ms and above) increase when using the ’SC default’ setting
(41.9% more errors). These errors are eliminated with the ’SC first word’ setting, bringing
back the error count for longer duration stimuli approximately to the level of the ’Vanilla
HMM’ decoder (3.7% less errors). Shorter stimuli benefit heavily from the incorporation
16Note that in the unlikely event of a prediction that is composed entirely of intervals shorter than 20

samples, this routine would not yield any meaningful result.
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Figure 4.28: Schematic overview of the different investigated decoding settings. The Vanilla HMM repre-
sents an isolated unit decoder as it assigns a single label to the entire trial. In all semi-continuous (SC)
settings, multiple models can occur in the most likely sequence. The presented approaches differ in the
strategy on how to chose the final label for the trial when multiple models occur. In the SC default
setting, the longest sequence determines the label, whereas the first model is chosen in the SC first word
case. The SC min. length approach is based on ’SC first word’ but rejects model segments that span less
than 20 samples. In the given example (i. e. an object trial), only the ’SC min. length’ strategy provides
the correct result.
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Figure 4.30: Count of category decoding errors for both datasets and all decoding strategies. Error counts
are summed up over all ten repetitions of the 10-times-5-fold CV routine and have been grouped by
stimulus duration. Total count of evaluated trials in the 10-times-5-fold CV routine is 2940 (ECoG 1)
and 2550 (ECoG 2). (Figure adapted from [45].)

Table 4.10: Relative change in count of decoding errors with the semi-continuous approaches compared
to ’Vanilla HMM’. Results have been averaged across both datasets and across the following durations:
’Short stimuli’ := {300 ms, 600 ms}; ’Long stimuli’ := {900 ms, 1200 ms, 1500 ms}.

No PK With PK

SC default SC first word SC min. length

Short stimuli -5.3% -42.2% -47.2%

Long stimuli +41.9% -3.7% -18.2%

(Positive values indicate increased error rate)

of PK. On average across both datasets, decoding errors of 300ms and 600ms trials are
reduced by more than 42% and 47% with the ’SC first word’ and ’SC min. length’ approach,
respectively. Table 4.10 summarizes the performance changes in the various settings.

Discussion The error distribution (Figure 4.30) shows that most of the decoding errors
appear for short stimuli when using the isolated unit decoder (’Vanilla HMM’, routine
analogue to Section 4.3). This is likely due to the multi-stimulus-issue (MSI, cf. Section
3.7.2). In case of a short original stimuli that is followed by a longer additional stimulus,
the HMM corresponding to the additional stimulus provides the higher likelihood for the
entire trial, simply as it explains a higher number of samples more accurately. This is not
addressed with semi-continuous (SC) decoding without PK incorporation (’SC default’). On
the contrary, the influence of this effect on the decoding accuracy can even be intensified, as
decision is always based on the longest sequence in ’SC default’.17 Introduction of PK can
compensate this and leads to substantial rises in decoding accuracies. The ’SC first word’
strategy solves the problem with decoding errors that originate from the MSI (as described
above) by choosing the first model in the prediction. In doing so, other models that might

17An example is provided in the Appendix (Section A.1) to illustrate this issue.
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describe additional stimuli in later segments of the trial are ignored, no matter how high
their contribution to the total probability might be. Since MSI mainly affects trials with
short stimulus durations, the highest gain in decoding accuracy is expected for 300ms and
600ms trials. This is clearly reflected by the results.
Interestingly, use of a PK-free SC strategy (’SC default’) introduces a relatively large

amount of errors for longer duration stimuli. This might be attributed to the increased
complexity of the decoding routine and could potentially be mitigated by introducing a
model transition penalty (not investigated here). PK incorporation helps reduce these
errors markedly. For the affected longer duration trials, ’SC first word’ provides similar
accuracy as a ’Vanilla HMM’ decoder. In total, the ’SC first word’ setting nearly achieves
the same decoding accuracy as the SVM decoder. Performance is further improved by the
introduction of the minimum length restriction. This constraint compensates for decoding
errors that appear immediately in the beginning of a trial segment. Since the trials used
for the study cover a time interval that already begins 100ms before the stimulus appears,
there is a possibility that the very first samples in a trial are better described by the model
representing the previous stimulus. This might be interpreted as some sort of “mental
afterglow” of the previous stimulus and affects trials of all durations almost equally, which
can also be seen in the results. The ’SC min. length’ applies the length restriction, and by
that achieves an additional performance gain of 1.9% (absolute increase, avg. across both
subjects) compared to ’SC first word’.

Conclusion By combining the benefits of two components of PK incorporation, the ’SC
min. length’ approach provides decoding accuracies at the same level of an SVM-based
decoder while still preserving the benefits of dynamic decoding. The use of semi-continuous
approaches facilitates convenient incorporation of prior knowledge, providing significant in-
creases in decoding accuracy. While the investigated setting might not represent a typical
application scenario, it still provides essential insight into the possibilities of dynamic de-
coding of brain signals. The results strongly indicate that the approach has high potential,
especially with respect to continuous decoding and more specific PK incorporation. These
two aspects will be investigated in the following sections.
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4.5. Continuous decoding of finger movements
The previous sections demonstrated the application of HMM-based decoding approaches for
single trial classification tasks. In real-life BCI applications, however, continuous decoding
output is desirable.18 As discussed in Section 2.3.1, dynamic approaches are well-suited for
this purpose. This section covers the application of an HMM-based routine for continuous
decoding of finger movements.

The central findings of this section have been published in [46].

Data Data from the finger tapping experiment (Section 3.7.1)—these have been investi-
gated on a single trial basis in Section 4.1—are reused here. This allows to build upon the
findings from the previous investigations and provides a basis for comparisons. The results
from Section 4.1 showed that the data from one subject (S2) is unsuited for adequate de-
coding of individual finger movements. As discussed, this is most likely due to insufficient
coverage of corresponding motor cortex areas by the electrode grid. As a consequence, the
affected datasets (i. e. S2-B1 to S2-B4) are not considered here.
Contrary to single trial decoding in Section 4.1 that was focused on separate cross-

validation evaluations for each recording session, cross-session analysis shall be carried out
here. In this setting, training and testing are performed on data from different sessions.
Data were pre-examined to prove whether they are consistent across sessions, which is a
requirement to meaningfully perform decoding across different sessions. To analyze this
aspect, high gamma (HG, see Section 3.1.2 and 4.1) feature values fc,s have been averaged
across all samples s of each recording session, individually for all channels c:

HGSession 1/2
c = 1

S

S∑
s=1

fSession 1/2
c,s , c = 1, ..., C.

Values of both sessions are compared by computing their ratio

rc = HGSession 1
c

HGSession 2
c

, c = 1, ..., C.

This ratio is expected to have a value around 1.0 if data are consistent across sessions.
Figure 4.31 shows rc for all C channels in the datasets. Apparently, data from subject S3
are inconsistent as they show highly varying HG ratios of 1 > rc < 2.5. To compensate for
this—and thereby, condition the data for use in cross-session analysis—channels of session
1 have been rescaled individually to match the average value of session 2:

f̃Session 1
c,s = 1

rc
· fSession 1
c,s , ∀c, s.

18This is due to the fact that single trial settings are artificial. User intentions typically do not occur at
well-defined (or even equidistant) time points. Instead, it is likely that individual trials will contain
multiple events (or overlaps) in practice due to varying speed of execution. Consequently, single trial
approaches limit the possible dynamics of such systems, and can pose severe problems for decoding.
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Figure 4.31: HG feature ratio between session 1 and session 2 for all three subjects (upper row). Markers
show the ratio for all individual channels (error bars indicate standard error). In case of consistency
across sessions, data are expected to have a ratio around 1.0 (indicated by dashed red line). The count of
channels with particular HG ratios are illustrated with histograms (bottom row). A Gaussian distribution
(typical noise characteristics) in the histogram would be expected for consistent data. Apparently, data
from subject S3 are inconsistent across the two recorded sessions. Since HG ratio is different for all
channels (top row, middle chart), compensation of the inconsistencies by multiplication with a common
factor is not possible. Hence, channels need to be rescaled individually. (Figure reproduced from [46].)

Approach The HMM decoder is realized with the gold-standard speech decoding frame-
work Hidden Markov Model Toolkit (HTK). A C++ wrapper has been implemented (Section
3.5) to manage the data and convert it into HTK compatible format. Furthermore, model
initialization routines and wrapper methods for all required HTK sub-routines have been
implemented. The following HTK routines are used:

HRest basic Baum-Welch re-estimation of the parameters of a single HMM using a set
of observation sequences (model training) [126].

HVite general-purpose Viterbi word recognizer, which matches a given feature se-
quence against a set of HMMs and outputs a prediction [126].

In addition to the single trial case, resting state is also decoded in the continuous setting.
Hence, a total of five HMMs are trained: four for the finger movements (thumb, index
finger, middle finger, and little finger) and one HMM for the resting condition (Figure
4.32). The finger movement models are defined to have three states in a left-to-right topol-
ogy. This means that model transitions are restricted to loops and single-stepped forward
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1 2 3 … … 1 2 … … 

thb idx mid lil rest 

Individual HMMs 

Topology 1 Topology 2 

Decoding example 

idx mid lil rest mid rest rest thb idx 

Figure 4.32: Topology of HMMs associated with finger movements (’Topology 1’, left) and resting condition
(’Topology 2’, right). The dashed rectangles represent the interconnection from/to the previous/following
HMM, respectively. (Figure adapted from [46].)

jumps. Neither backward jumps nor state skips are permitted. All states have emission
probability distributions modeled with a single Gaussian mixture component and diagonal
covariance matrices. For the resting condition, a two-state fully-connected topology with
full covariance matrices is used. Note that this topology is equivalent to an HMM with
a single state using two Gaussian mixture components. However, the two-state variant is
chosen instead for technical reasons, as it allows to process all HMMs in a structurally equal
manner within the framework.

The use of an alternative model structure for the resting condition is motivated by the
specific properties that are assumed for this data. It is to be expected that rest episodes do
not contain any reproducible dynamics, contrary to actual movements that may potentially
follow a certain temporal pattern (e. g. planning, execution, and “cool-down” phase). Hence,
modeling the temporal structure of resting periods is expected to be less meaningful. This is
reflected by the reduced state count and a more fuzzy connectivity setting (fully-connected
states). In the absence of movements, no profound assumptions on the correlations between
neural activity from different spatial locations can be made. Thus, full covariance matrices
are used to model emission probabilities for the rest HMM. It should be noted that in ASR,
it is usually sufficient to use a single state HMM for silence modeling. However, empirical
findings reveal that the two-state model generalizes better across sessions and subjects (not
shown here).
As indicated above, evaluation is done in cross-session structure (Figure 4.33). This

means that one session is used to train the decoder and determine all required parameters;
the trained model is then used to decode the remaining session. This is done in both
directions, i. e. using session 1 for training and session 2 for testing (referred to as ’B1B2’)
and the other way around (’B2B1’).
Using the training set, individual training segments are prepared following the same

principle as in the single trial analysis. Data are epoched into time segments that cover
the interval of [-100, 400]ms around a button press. Pause episodes in the data are used
to construct training segments for the rest model. All consecutive intervals of more than

98



4.5. Continuous decoding of finger movements

Session 1 

Training data 

… 

thb 

idx 

mid 

lil 

rest 

…
 

…
 

…
 

…
 

…
 

Test data 

Session 2 

… 

… 

B1B2 

B2B1 

B1B2 

Figure 4.33: Scheme of the cross-session evaluation structure. Data from one session are used to train the
decoder which is then evaluated on data from the other session. Settings in which session 1 is used
for training and session 2 for testing are denoted with the suffix ’-B1B2’ (other direction analogously
’-B2B1’). The small rectangles symbolize individual data samples. (Figure reproduced from [46].)

ten seconds without any button press are considered as pauses. These data are epoched
into non-overlapping segments with a length of 500ms (identical to movement segments).
In advance, all raw data have been reviewed manually for artifacts (mainly due to epileptic
activity). The affected time intervals are not considered for training. Table 4.11 shows a
breakdown of the total duration and the accumulated length of the contained pause and
artifact intervals for all datasets as well as the total count of events (per movement type)
that occur in the dataset.

The experiment was structured in three sub-blocks (SB) with varying task for the subject
(cf. Section 3.7.1). Table 4.12 provides an overview over the number of button presses in
each of the sub-blocks. As mentioned in Section 3.7.1, the average frequency of button
presses differs across the sub-blocks. In particular for SB3, a significant increase in tapping
speed is expected. To provide evidence for this assumption, the average19 time intervals
between consecutive button presses have been assessed (Table 4.12). On average, tapping
speed in SB3 is approximately 25% higher than in the other two sub-blocks. For indi-
vidual datasets (esp. S1-B1, S4-B2), this increase is even more dramatic. To ensure equal
conditions for all evaluations, data from SB3 are not used for decoder training. Table 4.13
summarizes the resulting count of training segments for movements and rest for all datasets.
Models are initialized with the time-discriminative k-means clustering routine that has

also been used in single trial decoding of this data (see Section 4.1). The time coupling
parameter has been set to τ = 5. As described in Section 3.3.2, the clustering step requires
19The median has been computed instead of simple arithmetic average to compensate for outliers.
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Table 4.11: Duration of measured ECoG data, pauses and artifact episodes as well as a breakdown on all
button press events in the recordings.

Duration [s] Count of events

Subject Session Total Pauses Artifacts THB IDX MID LIL Sum

S1
B1 490 94 0 61 116 107 75 359
B2 299 34.75 0 35 92 71 45 243

S3
B1 703 151 173 51 77 72 49 249
B2 591 107.75 65 51 80 96 59 286

S4
B1 442 86 0 56 112 114 74 356
B2 421 85 49.5 61 102 105 51 319

Table 4.12: Number of movement segments (trials) after artifact rejection and median of the time interval
between consecutive button presses (pause episodes left out) for all three subjects and sub-blocks. Dataset
notation S1-B2 means session 2 of subject 1.

Number of segments Time between events [ms]
Sub-block Sub-block

Sequence type

Dataset
SB1 SB2 SB3

SB1 SB2 SB3
fixed random free choice

S1-B1 179 60 120 1182 1100 613
S1-B2 120 123 - 941 1071 -
S3-B1 88 124 37 1468 1323 1418
S3-B2 87 149 50 1088 1264 994
S4-B1 117 180 59 863 1026 668
S4-B2 107 154 58 919 984 406

Mean 1076.8 1128.0 820.0

Table 4.13: Count of training segments for all datasets. The count of movement segments is the sum of all
four types of finger movements (i. e. thumb, index, middle and little finger).

Subject Session Movement Rest Ratio Rest/Mov. [%]

S1
B1 239 183 76.6
B2 243 59 24.3

S3
B1 212 108 50.9
B2 236 136 57.6

S4
B1 297 144 48.5
B2 261 98 37.5
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an initialization that is based on a routine involving (pseudo-)random values. In order to
reduce the influence of the initialization on the final results, all evaluations are repeated ten
times with different seeds for the random number generator and results are averaged across
all ten runs. Channel selection has also been performed using the same routines as in the
single trial analysis. For all datasets, the ten most informative channels have been selected
based on the training set. After initialization, HMM parameters have been re-estimated
using ten iterations of a Baum–Welch routine, as provided by the HTK sub-routine ’HRest’.
Continuous recognition of finger movements is performed with a Viterbi-based algorithm

using the HTK tool ’HVite’. The sensitivity of the decoder can be controlled with a penalty
term that diminishes the likelihood for a sequence each time a new detection starts (i. e.
with every transition between models). Due to its origin in ASR, this term will be referred
to as word insertion penalty p. Its effect on the decoding output is that the word insertion
penalty controls the balance between false positives and false negatives. Low values of p
typically result in high false positive rates, while too high penalties lead to extensive false
negative rates. The optimal value for p is determined by exhaustive search on the training
set.
In order to evaluate the accuracy of the decoding output, a comparison routine to match

the predictions against the ground-truth as well as a performance measure are required.
These components are explained in detail in Section 3.6.2.

Results By definition, the applied evaluation routine has two parameters: offset and
tolerance (cf. Section 3.6.2). Both parameters influence the performance score of a given
prediction. Since this is crucial for all subsequent analysis, their influence is investigated
first. The offset is introduced to compensate for shifts between the prediction and the
actual events. Generally, the training set could be used to determine the offset value that
maximizes performance. This value is likely to constitute an estimate that is suitable for
evaluation of the test set. Figure 4.34 (a) shows the performance for all dataset with varying
offset parameter. It becomes apparent that decoding performances reach a distinct peak
at a certain offset value. The peak position is similar for all datasets20, indicating that a
common value could be used instead. The average across all datasets has its peak at 40
samples. Hence, this value is used across all datasets.
Different from the offset parameter that explicitly describes an underlying effect of the

data (i. e. temporal shift), the tolerance parameter is entirely a technical instrument used to
assess meaningful results. As described in Section 3.6.2, an optimal value for the tolerance
parameter should provide a compromise between strictness of evaluation (i. e. tolerance as
low as possible) and coverage of fluctuations in the results. This is important to allow
fair comparisons between different datasets. Figure 4.34 (b) shows the relationship between
tolerance and resulting decoding performance. It can be clearly seen that all curves have
identical qualitative trend. For all datasets, performance reaches an approximately constant

20The only outlier is S4-B2B2 (light blue curve in Figure 4.34 (a)). However, a closer look reveals that the
peak performance for this dataset forms an extended plateau. Therefore, the performance difference
between the peak point at offset 32 samples and, for example, an offset of 39 samples is less than 0.6%.
This brings that dataset in line with all other datasets.
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Figure 4.34: Influence of offset (a) and tolerance (b) parameter on the decoding accuracy. To compute results
for the offset dependency (a), a fixed value of 30 samples tolerance has been used (tolerance results (b):
40 samples offset). Graphs are shown for all individual datasets (top row). Since this procedure is used
to determine the optimal settings for decoding, training and testing are performed on same dataset. The
optimal offset value (i. e. performance peak) is highlighted with a circle marker. In addition to individual
results, mean across all datasets is shown in the bottom row (shaded area indicates standard deviation).
Here, the circle marker indicates the final choice of both parameters that is used throughout all further
analysis. (Sub-figures in the bottom row are adapted from [46].)

level for tolerance values of 30 samples and above. This can also be taken from the averaged
curve in the bottom of Figure 4.34 (b). Consequently, a tolerance of 30 samples is used for
evaluation.

As mentioned before, decoder sensitivity can be controlled with a penalty term. Ex-
emplary, this will be discussed based on decoding scenario S4-B2B1. Figure 4.35 shows
the dependency of matching predictions and all types of decoding errors on the word in-
sertion penalty p. All results have been averaged across ten repetitions with varying seed
for model initialization. As expected, increasing penalties lead to a reduction in the total
amount of detections, which is reflected by a reduced count of matches, substitutions, and
insertions along with a corresponding increase in the count of deletions. Using Eq. (3.3),
pseudo-performance values (simply referred to as performance in the following) have been
computed from each of the results. The evaluation shows that—in this example—the per-
formance P is highest for a penalty value of p = 22.4. In all real cross-session decoding
settings, the penalty parameter is chosen based on training data only. For the presented
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Figure 4.35: Influence of word insertion penalty on decoder sensitivity: (top) Count of matches and de-
coding errors (substitutions, insertions, and deletions) with varying word insertion penalty for decoding
of S4-B2B1. Results have been averaged across ten runs with varying seed for the random number
generation used in model initialization (error bars indicate standard deviation). (bottom) Resulting
pseudo-performance values. The shaded area indicates standard deviation. The red circle shows the
penalty value that is chosen based on optimization on training data.

case of S4-B2B1, exhaustive search on the training data (i. e. S4-B1B1) yields an optimal
value of p = 30 (indicated as red circle in Figure 4.35, bottom chart). Note that the result-
ing performance with p = 30 is only about 1.3% lower than with p = 22.4, which would be
the result of optimization on test data.
Optimal penalty values are assessed individually for all datasets using the corresponding

training set. Penalty values and the resulting decoding performances for all datasets are
documented in Table 4.14. The average performance across all datasets is P̄ = 53.5 %.
Figure 4.36 (a) shows an example of a full prediction output of the HMM decoder from S1-
B2B1 decoding (i. e. training on session B2 and evaluation on B1). To facilitate visibility of
details, Figure 4.36 (b) additionally provides a zoomed view of the first 70 seconds of these
results. For computation of decoding accuracies, all predictions that fall within pauses
during the experiment or episodes of epileptic activity have been discarded (indicated with
gray color in Figure 4.36).
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Table 4.14: Continuous decoding performance P and word insertion penalties p for all datasets. Performance
values have been computed by means of Eq. (3.3) as the average across ten runs with differing seeds for
model initialization. Corresponding standard deviations are listed in brackets.

Errors

Subject Session p P [%] (std.) Matches / Events Subst. Ins. Del.

S1
B1B2 41 66.96 (1.48) 179.6 / 243 10.4 18.9 50.0
B2B1 56 73.41 (1.05) 309.2 / 359 9.0 45.0 41.7

S3
B1B2 35 40.65 (1.59) 211.7 / 286 46.5 79.2 67.7
B2B1 30 36.18 (1.39) 198.6 / 249 66.3 88.5 39.4

S4
B1B2 22 43.68 (1.37) 206.1 / 319 63.3 53.0 81.1
B2B1 30 60.25 (0.60) 249.7 / 356 54.4 32.2 56.9

Discussion The investigation of the influence of the offset shows that almost the same
value turns out to be optimal for all datasets (cf. Figure 4.34 (a)). This is an expected
result, due to the fact that a significant contribution to the shift between prediction and
ground truth is introduced artificially by the properties of the applied feature extraction
and model training routines, which will be explained in the following: The computation
of HG features uses a window length of 250ms. In all analysis documented here, the
starting point of such a window is associated with the current time point of the feature.
Note that this is an arbitrary choice and it might also be reasonable to use the center
or the end of the window instead. Selecting the starting point means that the resulting
HG features “look into the future”. Hence, this causes the decoder output to precede
the actual event by approximately the length of the window used for computation of the
feature value. In this particular case, this translates to an expected offset of 25 samples
(250 ms , 25 samples · 10 ms shift/sample). It is important to recognize that this does not
mean that the decoder can predict events before they actually happen, as the computation
of the required feature value can only be performed as soon as the full length of 250ms of
data are acquired. Consequently, this component of the offset is entirely artificial, caused
by the choice of reference point for the feature values.
Besides feature extraction, the applied model training routine also contributes to the

offset. All HMMs are trained on data segments that begin 100ms before the actual button
press. Hence, the onset of a detection is expected to coincide with the time point 100ms
in advance of the button press. This results in an additional offset of approximately 10
samples (100 ms , 10 samples ·10 ms shift/sample).21 In total, a shift of 35 samples between
prediction and ground truth can be attributed to technical sources (feature extraction and
model training). The remaining difference of five samples to the chosen offset of 40 samples
might be explained by delays between brain responses and actual movements. As it is

21Note that this obviously cannot hold true for arbitrarily long time intervals—thus, for example, training
with data that begins several seconds before the actual button press will certainly not mean that move-
ment detections will start at that point. The observed shift effect might also be explained by some other
aspects that are discussed in the following.
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inevitable that movements start several samples before the corresponding button press
is recorded—simply because the finger needs to travel a certain distance to trigger the
button—it is highly plausible that prediction of movement onset is possible already at that
stage. Additionally, movement planning might also be covered by the ECoG recordings,
potentially providing information at an even earlier time point. However, due to the lack
of ground-truth information on the actual movements (e. g. by means of video recordings),
conclusive in-depth analysis of these aspects is not feasible.

To provide fair comparisons between individual datasets, a carefully selected tolerance
value is essential. Figure 4.34 (b) reveals that the influence of the tolerance is qualitatively
identical for all datasets. Increasing the tolerance parameter results in higher performance
values as it widens the window that will be scanned for matching predictions. This holds
true up to a certain point, starting from which the performance increases only marginally
with higher tolerances. At this point, the tolerance window is big enough to cover the
majority of fluctuations in timing of the prediction (i. e. performance saturates). All further
increases in accuracy occurring at even higher tolerances are likely to not correspond to
correct predictions that are just slightly out of timing, but to spurious detections that are
only considered to be correct due to the extensively large tolerance. Consequently, the bend
in the graphs is regarded to represent an ideal working point. From the averaged curve, a
tolerance of 30 samples has been identified as an appropriate setting.
Continuous decoding accuracies vary from 36% to 73% across subjects. Strong variation

is also observed between both sessions of subject S4. These findings are somewhat sur-
prising, given that single trial decoding results are much closer together for those datasets
(Table 4.15). This becomes particularly evident in the case of subject S3. While single
trial decoding accuracies are second highest for S3, the lowest performance values among
all datasets are achieved in the continuous setting. A similar drop in performance is also
present for S4, albeit to a slightly lesser extent. There are several aspects that contribute
to this outcome. First of all, it must be noted that, in general, continuous prediction poses
a significantly more challenging decoding task. Not only is the problem extended from four
classes to five classes (now including rest), but also made more complex, as additional pos-
sibilities for decoding errors come into play (i. e. insertions, deletions, timing mismatches
etc.). Hence, expected performances are lower than for the single trial equivalent. Besides
the increase in difficulty for the decoding task itself, decoder training is more ambitious due
to the cross-session approach. In this setting, training is performed using data from a dif-
ferent session, which has been recorded separately. If any data properties changed from one
session to the other, this may heavily impair the quality of the trained model for prediction.
Such changes can be of various nature, including hard factors like electrode impedance or
altered recording settings, but also—and probably more importantly—soft factors such as
the subject getting used to the experimental task, influence of epileptic episodes, or simply
varying motivation of the subject. It might be legitimate to assume that those factors
are constant throughout the same recording session. However, this assumption might be
violated across different sessions.
Another aspect that needs to be discussed is the validity of rest episode labeling. Since

no physical monitoring of actual movements of the subjects (e. g. by means of data gloves
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Table 4.15: Comparison of decoding accuracies from single trial (Acc.) and continuous decoding (P ) for all
datasets. Results of single trial decoding are taken from Section 4.1 (Table 4.4, HG features).

Subject Session
Single trial Continuous

Acc. [%] (std.) P [%] (std.)

S1
1 97.9 (0.6) 73.4 (1.1)
2 92.4 (2.0) 67.0 (1.5)

S2 all left out

S3
1 85.1 (2.2) 36.2 (1.4)
2 90.5 (1.8) 40.7 (1.6)

S4
1 83.5 (2.7) 60.3 (0.6)
2 83.1 (1.9) 43.7 (1.4)

or video recordings) is available, data episodes are categorized as rest solely based on
the absence of button presses for a certain time period. With this strategy, it cannot
be guaranteed that no other movements, like stretching or relaxing of muscles, have been
performed during these segments. As a consequence, it is quite likely that some of the
segments marked as rest are spoiled with movements. This impedes proper training of
the rest model, and decoding performance deteriorates accordingly. To partly limit the
influence of unfitting rest segments on the analysis, rest episodes are omitted in performance
evaluations. Otherwise, this could strongly bias parameter selection by means of exhaustive
search on training data. The example of word insertion penalty optimization illustrates
the issue: If movements have been performed during segments labeled as rest, there is
a high possibility that the decoder will predict movements therein. Since the segment
was labeled as rest, these predictions are considered to be erroneous, which results in a
significant amount of insertions. When the count of these insertions gets too high, better
overall performance values are achieved by increasing the word insertion penalty. While
this indeed reduces insertions, it also raises the count of deletions in the actual movement
episodes at the same time. As there is no evidence that movement predictions within pause
episodes are actually wrong—because it is entirely possible that there have been movements
without button presses—penalizing those predictions is unjustified. To avoid this issue,
word insertion penalties are selected based on optimization that excludes pause episodes
from the training data. For the same reason, actual decoding performances (i. e. in the
cross-session setting) have been reported for all data samples except for the (hypothetical)
rest episodes. For means of completeness, results including the rest periods are documented
in the Appendix (Table A.2 and A.3).

Conclusion Continuous decoding of brief finger movements can be performed with reason-
able accuracy using an HMM-based approach. However, comparison to single trial results
reveals that performance drops cannot be neglected. It has been discussed that a con-
siderable amount of this reduction in accuracy can be attributed to the increased level of
difficulty. The following section focuses on possibilities to compensate for the increased

107



4. Results

difficulty by incorporation of prior knowledge, and provides insight on how this can be
performed in an HMM-based decoding approach.
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4.6. Prior knowledge incorporation with bi-gram models
The central findings of this section have been published in [46].

Data This section is based on the data as described in Section 4.5. Full information on the
datasets can be found in the corresponding tables (Table 4.11, 4.12, and 4.13). In addition,
the amount of prior information (w. r. t. bi-gram frequencies) contained in the individual
data sub-sessions has been evaluated using Eq. (3.4), as explained in Section 3.6.3. The
resulting entropy values are shown in Table 4.16. For comparison, entropy values of typical
exemplary cases are given in the following:

• Perfect SB1

(fij)SB1 =


0 0 1 0

0.5 0 0.5 0
0 0.5 0 0.5
0 1 0 0


⇒ S(fSB1) = 2 ln(2) ≈ 1.386.

• Random used in the experimental paradigm (SB2)

(fij)SB2 =


0 0.3̄ 0.3̄ 0.3̄

0.3̄ 0 0.3̄ 0.3̄
0.3̄ 0.3̄ 0 0.3̄
0.3̄ 0.3̄ 0.3̄ 0


⇒ S(fSB2) = 4 ln(3) ≈ 4.394.

• Fully randomized sequence

(fij)random =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25


⇒ S(f random) (3.5)= Smax(4) ≈ 5.545.

Approach Compared to the previous section, the decoding approach remains unaltered
with respect to HMM topologies, model initialization and training as well as HTK wrapper
methods. However, the framework is extended by the possibility to incorporate prior knowl-
edge (PK) into the decoding. In particular, two different aspects of available information
are considered in the approach, namely:

1. Strict alternation between movement and rest,

2. Frequencies of pairs of consecutive finger movements.

The first component—henceforth referred to as movement–rest alternation (MRalt)—is
realized by modifying the dictionary from which the decoder constructs the prediction.
In the previous section, the dictionary contained the four movement models and the rest
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Table 4.16: PK information content by means of bi-gram entropy S computed using Eq. (3.4). Higher
entropy values indicate less information content. Due to the fixed tapping sequence, information content
is highest for SB1.

Sub-block
Sequence type

Dataset Full dataset
SB1 SB2 SB3
fixed random free choice

S1 - B1 4.09 2.34 3.66 4.13
S1 - B2 3.94 2.68 4.39 N/A
S3 - B1 4.14 1.68 4.34 3.16
S3 - B2 3.89 1.39 4.16 3.68
S4 - B1 3.82 1.39 4.01 3.86
S4 - B2 4.08 1.39 3.89 5.00

Mean 3.99 1.81 4.08 3.97

model as individual words. Hence, two consecutive predictions could be of the same type,
i. e. two movements or two rest segments. By construction of combined words that consist
of the actual movement model followed by the rest model, the dictionary can be reduced to
four entries of so-called “movement words”. As the decoder can only predict entities from
the dictionary, it is ensured that consecutive individual models are alternating between
movement and rest. The construction of the combined words, along with an example of
how a corresponding continuous prediction may look like, is illustrated in Figure 4.37.

To address the second component of PK—henceforth referred to as Bi-Gram—bi-gram
models are used. These can be considered conveniently within HTK’s decoding routine
’HVite’. Technically, the bi-gram model is realized by use of the word network function-
ality.22 The network used to serve this purpose is shown in Figure 4.38. The network is
constructed to reward transitions from one movement to another based on the relative fre-
quency of appearance fij of the corresponding movement pair (movement of class i followed
by class j). The strength of PK incorporation is controlled with a scaling parameter s:

logPPK
ij := fij · s.

Scaling the PK component with s = 0 leads to the unbiased decoder that does not in-
corporate any PK on frequencies of movement sequences. Contrary, increasing values of s
result in stronger influence of the bi-gram model on the decoding result while the actual
observation probabilities of the underlying data become less important. In other words,
the decoder more and more tends to generate the movement sequence that corresponds
to the most likely transitions in the bi-gram model. Since model transitions are always
rewarded in the given setting, this leads to considerable increase in false positive detections
(i. e. insertions). To compensate for this, a (global) rebalancing term is introduced that
constitutes a penalty applied for every new detection (in addition to the word insertion
22An example of such a word network can be found in the Appendix: Section A.3.
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Figure 4.37: Schematic overview of decoding setup (a) and evaluation (b) for continuous decoding with PK
incorporation. (a) Individual HMMs are fused into combined items consisting of a movement model
and the rest HMM. The resulting four “movement words” constitute the dictionary used for decoding.
The decoder can only predict elements from this dictionary. Consequently, strict alternation between
movement and rest is guaranteed (cf. ’Decoding example’). (b) For evaluation, the start samples of
movement HMMs are compared to the ground truth. Details on the routine can be found in Section 3.6.
(Figure adapted from [46].)

penalty p). The rebalancing term is chosen to be correlated to the strength of the bi-gram
model. Similar to the PK incorporation, it can also be controlled by a parameter r:

logP reweight := −r · s.

Both terms have been defined to be additive corrections to the log-likelihood of the decoded
sequence. The final likelihood of a decoded sequence computes as:

logP final = log
(
PHMM
i · PPK

ij · P reweight · PHMM
j · Pword ins.

)
= logPHMM

i + logPPK
ij + logP reweight + logPHMM

j + logPword ins.

= logPHMM
i + logPHMM

j︸ ︷︷ ︸
output probabilities

+ s · fij︸ ︷︷ ︸
PK reward

−s · r − p︸ ︷︷ ︸
penalties

. (4.4)

Note that Eq. (4.4) is a significantly simplified version of the actual probability. As the
full formula—which would include considering all data samples and model transitions for
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Figure 4.38: Word network used for integration of prior knowledge by means of bi-gram models into the
decoding stage. The initial detection is performed without any bias from PK. Subsequent predictions
are rewarded with respect to the relative frequency of appearance of the corresponding movements. To
prevent extensive false-positive rates, additional detections are penalized by a rebalancing term. Note
that individual elements in this scheme (e. g. ’Index’) refer to “Movement words” (cf. Figure 4.37) that are
a composition of the corresponding finger HMM and the rest model. For reasons of clarity, connections
from/to ’Little’ are omitted in the scheme. (Figure reproduced from [46].)

all possible combinations—is cumbersome, and would not provide any additional insight
into the concept, the approach is presented in this way instead. Equation (4.4) describes
the likelihood of a sequence that is modeled by only two HMMs, i and j. The resulting
likelihood consists of

• the individual likelihood terms for both of the models (PHMM
i and PHMM

j ),

• the PK term that rewards the transition from HMM i to j (PPK
ij ),

• the rebalancing term (P reweight),

• and the word insertion penalty for insertion of the new detection ’HMM j’ (Pword ins.).

In summary, the incorporation of PK with the presented approach depends on three factors:

1. Frequencies of bi-grams fij ,

2. PK scaling parameter s,

3. Strength of rebalancing r.

Two different strategies are investigated that differ in the way these factors are determined.
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4.6. Prior knowledge incorporation with bi-gram models

Table 4.17: Parameter selection in the three setups.

Setup On training data On test data

No PK (Sec. 4.5) Channel selection none
HMM training

Word insertion penalty

Global PK Channel selection none
HMM training

Word insertion penalty
PK scaling factor
Rebalancing factor

Session PK Channel selection (PK matrix fij)a

HMM training PK scaling factor
Word insertion penalty

aPK matrices are computed from the actual (bi-gram) frequencies fij within the corresponding test data
sub-blocks.

In the first setting—named Global PK—training and testing phases are strictly separated,
following the cross-session scheme as described in the previous section (cf. Figure 4.33).
This represents a conventional BCI setting. Besides model training and determination of
the optimal word insertion penalty, the choice of all parameters that are relevant for PK
incorporation is also based on training data only. Since the only a priori information
that holds true for both training and test dataset is the appearance of the fixed tapping
sequence in the first sub-block (SB1), the corresponding bi-gram frequencies (i. e. fSB1)
are used for the PK term. The scaling and rebalancing parameters are determined using
two-dimensional exhaustive search. Ultimately, decoding performances are assessed on a
separate test dataset.
The second setting—referred to as Session PK—focuses on incorporation of context-

specific information. By its arrangement in sub-blocks with differing tasks for the subjects,
the experimental paradigm offers the opportunity to investigate this aspect. To do so,
parameters related to PK incorporation are adjusted to the corresponding sub-blocks. In
particular, this means that the applied bi-gram model is based on the actual frequencies of
movement pairs in the sub-block of interest. In order to appropriately describe the differing
conditions in the sub-blocks, strength of PK and word insertion penalty are optimized on
the test dataset. In doing so, it is ensured that the available PK is used optimally with
respect to the applied incorporation approach (i. e. bi-gram models) and thus, an upper-
boundary of the achievable performance gain is assessed. To determine the optimal values
for PK strength s and word insertion penalty p in this setting, both parameters (as well as
the rebalancing factor r) are initialized with the results from the Global PK setting followed
by alternating one-dimensional23 exhaustive searches for the optimal s or p, respectively

23Instead of alternating one-dimensional searches, a 2D exhaustive search could also be used. While the 2D

113



4. Results

Table 4.18: Optimal parameter values for word insertions penalty p, PK scaling s, and rebalancing factor
r in the Global PK setting. All parameter are optimized based on training data only. One dimensional
exhaustive search is used to determine p (cf. Figure 4.35). The tuple (s, r) is selected by means of 2-d
grid search (Figure 4.39).

Dataset p s r

S1-B1B2 56 40 0.45
S1-B2B1 77 25 0.85
S3-B1B2 66 20 0.35
S3-B2B1 56 30 0.40
S4-B1B2 44 20 0.55
S4-B2B1 41 20 0.73

(starting with s). Five iterations of the routine are performed; that means, each parameter
is updated five times.
Table 4.17 summarizes the parameter selection settings for both setups. Additionally,

the setting from the previous section (No PK, cf. Section 4.5) is listed for comparison.

Results For the Global PK setup, PK parameters are selected using two-dimensional
exhaustive search (also called grid search) on the training dataset. Exemplary results of
such a grid search are shown in Figure 4.39 for data from subject S1. The parameter tuple
(s, r) that leads to the highest performance (left column in Figure 4.39) is selected for
decoding of the test dataset. Table 4.18 shows the selected parameter for all datasets. In
advance of 2D grid search for optimal s and r, word insertion penalty p has been optimized in
a separate exhaustive search (as in Section 4.5). Note that word insertion penalties cannot
be reused from the previous section (No PK) since Global PK is based on the modified
dictionary containing combined “movement words”. This leads to different optimal values
for p. To provide detailed analysis of the influence of both components of PK (i. e. MRalt
and Bi-Gram), decoding is performed once with s = 0 to assess the isolated performance
gain of MRalt, and a second time with the actual optimized tuple of (s, r). The resulting
prediction then contains the performance benefit of both PK components. Figure 4.40 (a)
shows the decoding performances in the Global PK setting. Results from the No PK
setting have been taken from Section 4.5 and are shown for comparison. The individual
contributions of both components of PK (Figure 4.40 (b)) have been assessed with two

version would guarantee to find the global optimum and would appear conceptually simpler, it goes along
with significantly higher computational effort. Keeping computation times at a manageable level has
high priority since optimization needs to be done individually for each sub-block for all of the datasets.
Hence, the alternating 1D approach has been used here.
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Figure 4.39: Grid search results for PK parameters in the Global PK setting. Results are shown exemplary
for subject S1 (training and decoding performed on the same dataset). Decoding performance with
varying PK parameters are shown in the left column. The parameter tuple (s, r) that leads to the highest
performance value is selected for decoding of the corresponding test dataset. Additionally, count of false
negatives (center column) and false positives (right column) is shown. The influence of rebalancing factor
r can be observed in these plots: High values of r imply higher penalties for additional detections and
hence, help reduce the count of insertions. However, the amount of deletions raises at the same time.
(Figure reproduced from [46].)
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Figure 4.40: Performance comparison between decoding with and without PK incorporation. (a) Decoding
performances in the No PK and Global PK settings for all subjects. (b) Individual contributions to the
performance gain with Global PK caused by the Bi-Gram and MRalt component. (Figure reproduced
from [46].)

separate decoding procedures as described above and computed as follows:

∆PMRalt = PGlobal PK(s = 0, ·)− PNo PK (4.5)
and ∆PBi-Gram = PGlobal PK(sopt, ropt)− PGlobal PK(s = 0, ·) (4.6)

=
[
PGlobal PK(sopt, ropt)− PNo PK

]
−∆PMRalt

= ∆PGlobal PK −∆PMRalt.

It can be clearly seen that the MRalt component provides the dominant contribution to
the overall performance gain of the Global PK setup. On average across all subjects and
sessions, 8.3% higher performance (absolute increase) is achieved with the Global PK set-
ting. This performance gain is composed of 6.2% resulting from the MRalt component and
another 2.1% of increase that are caused by the Bi-Gram component. The highest benefit
is reported for S4-B2B1 with an overall performance gain of 12.5% (7.7% + 4.8%). Across
all datasets, the average PK entropy according to Eq. (3.4) is 3.99 ± 0.13 (cf. Table 4.16).
In addition to the results for the full datasets, performances with the Global PK approach
are also documented for individual sub-blocks in Table 4.19.

Session PK Introduction of generalized PK with the Global PK approach shows decent
performance gain in the majority of cases. However, benefit of the Bi-Gram component is
rather limited for most of the datasets. In the following, it will be investigated to what
extend this benefit increases when more task-specific PK is considered. Since each sub-block
in the experiment comprises different tasks, PK has been adapted to the specific conditions
in the respective part of the data. First, the frequencies of all pairs of consecutive finger
movements in the sub-block are computed and used within the bi-gram model that realizes
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Table 4.19: Decoding performances P (in %) for individual sub-blocks in the No PK and Global PK setting.
Additionally, individual performance gains (in %) from the MRalt component (∆PMRalt) and the Bi-
Gram model (∆PBG := ∆PBi-Gram) in Global PK setting are documented. Benefit from the forced
movement–rest alternation (with MRalt) is approximately the same for all sub-blocks. Contrary, the
Bi-Gram component provides benefit mainly for SB1.

Sub-block 1 Sub-block 2 Sub-block 3
No PK Global PK No PK Global PK No PK Global PK

Dataset P ∆PMRalt ∆PBG P ∆PMRalt ∆PBG P ∆PMRalt ∆PBG

S1-B1B2 65.33 +7.67 +4.08 68.58 +6.17 +1.50 N/A N/A N/A
S1-B2B1 72.39 +7.11 +0.50 81.36 +3.56 - 0.17 71.05 +2.47 - 0.41
S3-B1B2 41.22 +2.24 +3.20 49.04 +10.96 - 0.11 15.17 +6.91 +0.94
S3-B2B1 31.58 +8.70 +3.96 52.52 +2.26 - 2.10 - 1.00 +8.44 - 5.79
S4-B1B2 45.38 +4.45 +4.59 41.84 +8.40 +2.10 45.32 +5.00 +1.53
S4-B2B1 63.17 +5.00 +9.91 62.38 +8.95 +2.67 48.00 +9.54 - 6.04

Ø 53.18 +5.86 +4.37 59.29 +6.72 +0.65 35.71 +5.39 - 1.63

Table 4.20: Final parameter values of word insertion penalty p, PK scaling s, and rebalancing factor r used
in the Session PK setup.

Session PK
Sub-block 1 Sub-block 2 Sub-block 3

Dataset r pSB1 sSB1 pSB2 sSB2 pSB3 sSB3

S1 - B1 0.45 -93 46 -83 1 -25 18
S1 - B2 0.85 -40 42 -38.33 32 N/A N/A
S3 - B1 0.35 -60 26 -49 31 -92 58
S3 - B2 0.40 -60.66 28.33 -66 66 -66 23
S4 - B1 0.55 -33 49 -37.66 18 -19 4
S4 - B2 0.73 -26.66 40 -28 62 -8 28

the corresponding PK component. Using the constructed bi-gram model, PK scaling s
and word insertion penalty p are iteratively optimized on the test data (see ’Approach’
paragraph). Table 4.20 shows the results of the optimization.
Decoding performances have been assessed individually for all sub-blocks of all datasets.

Irrespective of the evaluated sub-block, decoder training has been performed on data of SB1
and SB2 from the other session (identical to the No PK and Global PK setup). Figure 4.41
shows the performance gain that is achieved with both components of incorporated PK in
the Session PK setup for the different sub-blocks. To acquire the performance gain of the
individual components (MRalt and Bi-Gram), a routine equivalent to the one described in
the Global PK part has been applied (cf. Eq. (4.5) and (4.6)). The highest performance
gains are reported for SB1 (avg. 14.1%), which is expected since this sub-block contains the
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Figure 4.41: Performance gain with Session PK, broken down by individual contributions from the Bi-Gram
and MRalt component. (left) Results for all sub-blocks from all datasets. The six bars for each sub-block
correspond to the three subjects with two sessions each (i. e. S1-B1B2, S1-B2B1, ..., S4-B2B1). (right)
Performance gain for the three sub-blocks averaged across all six datasets (three subjects, two sessions).
(Left sub-figure reproduced from [46].)

largest amount of usable information due to the fixed tapping pattern. For SB2 and SB3,
average performance gains of 10.4% and 9.4% are achieved, respectively. The difference
between the three sub-blocks becomes even more apparent when looking at individual PK
components. On average across all datasets, the benefit of MRalt is nearly identical for
all sub-blocks (5.3%– 5.7%). This meets expectations, as the corresponding assumption of
strict alternation between movement and rest is equally fulfilled in all sub-blocks. Contrary,
the Bi-Gram component provides approximately twice the benefit for SB1 than for the other
two sub-blocks (8.8% vs. 4.7% / 3.8%).

Figure 4.42 shows the full decoding output of SB1 from S4-B2B1 decoding. This rep-
resents the scenario with highest performance gain (5.9%+16.1%=22.0%). As seen in
Figure 4.42, quite a large number of substitutions—especially between index and middle
finger—are corrected by the introduction of Session PK. Besides that, it also appears that
the count of deletions is reduced. Note that these results compare Session PK to No PK,
and hence, represent combined benefit of both components of PK (MRalt and Bi-Gram).
Since the influence of MRalt on the decoding accuracy has already been investigated in the
previous section, performance gains that result from the Bi-Gram component shall be the
focus of interest here. Predicted sequences, like the one shown in Figure 4.42, represent only
a “snapshot” for a single run (with one particular seed for model initialization). To draw
meaningful conclusions, it is important to compare the actual numbers of decoding errors
for averaged (here: ten repetitions with differing seed) results (Table 4.21 and Appendix:
Table A.4). Apparently, the observation from the snapshot that a considerable amount of
substitutions is corrected (∆S = −15.4), holds true on averaged results. This observation
also clarifies that the reduction of substitutions can be attributed to the Bi-Gram compo-
nent. Compared to the substitutions, the decrease in insertions and deletions is markedly
smaller (∆I = −2.8 and ∆D = −1.1).

With more than 16.1%, the resulting performance gain for SB1 is substantially higher
than for the other two sub-blocks. This reflects that SB1 contains more usable PK. On
average across all datasets, this observation is confirmed, albeit to a much lesser extend.
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Table 4.21: Differences in count of matches and decoding errors (substitutions, insertions, and deletions)
that result from applying the Bi-Gram component in Session PK. Results are shown for dataset S4-
B2B1 (left) and on average across all datasets (right). Values that have negative impact on decoding
performance are shown in red. Results for all other datasets are documented in the Appendix: Table A.4.

S4-B2B1
Sub-block

SB1 SB2 SB3

Matches +16.5 +2.8 +1.1
Substitutions - 15.4 - 4.6 - 0.9
Insertions - 2.8 - 2.2 +0.1
Deletions - 1.1 +1.3 - 0.2

Performance +16.1 +3.0 +1.6

Ø All data
Sub-block

SB1 SB2 SB3

Matches +7.6 +3.7 +4.7
Substitutions - 7.8 - 4.5 - 0.6
Insertions - 3.1 - 3.7 +1.9
Deletions +0.2 +0.6 - 3.9

Performance +8.8 +4.7 +3.8

Still, the main benefit originates from the reduction in substitutions and turns out to be
highest for SB1.
An estimation of the information content that can be used for PK incorporation is given

by the entropy measure defined by Eq. (3.4). This can be computed individually for each
sub-block of all datasets (cf. Table 4.16). Subsequently, entropy values can be compared
to the resulting performance gain that is achieved by incorporation of the corresponding
PK. Such a comparison provides insight into whether there is a correlation between infor-
mation content and performance gains. The entropy measure takes into account only the
information that is utilized in the bi-gram model. Hence, isolated performance gains from
the Bi-Gram component are considered here. Figure 4.43 shows the performance gain for
all individual sub-blocks in dependence on the PK entropy. A general trend of increasing
performance gain for lower entropy values (i. e. higher information content) is observed.
Linear fitting results in a (squared) correlation coefficient r2 = 0.28 under consideration of
all data points. When leaving out the most questionable data point (SB3 from S4-B1B2),
the fit ends up with r2 = 0.40. The mentioned data point belongs to a dataset with by far
the least information content (with respect to bi-gram entropy), but still provided relatively
high performance increase (fourth highest among all data). It is likely that this performance
gain is caused by influences that are uncorrelated to bi-gram information. Consequently,
analysis has been carried out with and without the affected data point. Irrespective of
whether or not the point is considered, linear fitting results in a positive slope for the
relation

∆P (S) = aS + b

that is significant for a confidence level of 95%. The resulting values for the slope and the
corresponding confidence intervals are:

a =1.79 (0.20, 3.38)α=0.95

a∗ =2.29 (0.67, 3.91)α=0.95,

whereby a∗ denotes the slope of the fit with the questionable data point left out. a∗ is still
significantly larger than 0 for a confidence level of 99% (conf. bounds: (0.04, 4.54)α=0.99).
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Figure 4.43: Performance gain of individual sub-blocks in the Session PK setup in dependence of their
corresponding PK entropy. (Figure reproduced from [46].)

There is no theoretical justification on why the relation between PK entropy and per-
formance gain should be linear. This specific functional relation has been chosen, as it
represents the easiest realization of a monotonously increasing relation.

To facilitate comparison of the Session PK results to the findings from the other setups
(No PK and Global PK), decoding results from the individual sub-blocks have been pooled
to provide a total performance for the whole session. In practical terms, this means that
performances have been averaged, weighted by the count of events in the corresponding
sub-block:

〈
P SessionPK

〉
w

= 1
N

3∑
i=1

NSBi · P SessionPK
SBi (4.7)

with N := NSB1 +NSB2 +NSB3.

The resulting weighted averages are shown in Figure 4.44, along with the results from the
No PK and Global PK setups. It becomes apparent that Session PK provides the highest
accuracies throughout all datasets. On average, Session PK leads to a performance gain of
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Figure 4.44: Comparison of decoding performances of all decoding settings. Performance values have been
averaged across both sessions (left). Additionally, results for individual sessions are shown on the right. All
results have been computed from the individual sub-block performances by means of weighted averaging
(Eq. (4.7)). (Figure reproduced from [46].)

14.4% (absolute increase) compared to decoding without PK incorporation (No PK). The
performance increase with respect to Global PK is 6.0% (average across all datasets).

Discussion With the Global PK setup, a generic setting for PK incorporation has been
investigated. Enforcing strict alternation between movement and rest provides consistent
increases in decoding accuracy across all datasets. This is expected, as the underlying
assumption is fulfilled in all cases. In the Global PK configuration, the Bi-Gram compo-
nent—which considers information on how frequent certain pairs of consecutive movements
appear in the data—must also represent the entire dataset. As discussed before, a reason-
able choice for that is to rely on the guaranteed occurrence of the fixed tapping pattern that
is associated with SB1. However, as a consequence of the sub-structure in the experimental
paradigm, any choice of generalized PK can only cover the properties of a fraction of the
data. In the specific case investigated here, the Bi-Gram component meets the properties
of between 30% and 50% of the total events in the data (depending on the specific ratio
between SB1 and the remaining events, cf. Table 4.12). Hence, resulting performance gains
are expected to be less substantial than for PK that holds true for the entire dataset. This
is verified by the results, which expose that the benefit of the Bi-Gram component is ap-
proximately three times smaller than the MRalt performance gain. Still, for entire datasets,
performance decreases cannot be observed in any of the investigated cases. This indicates
that the routine is robust against introduction of potentially misleading information. The
aspect has been examined more closely by analyzing the impact of the Bi-Gram component
on individual sub-block level (Table 4.19). SB2 and SB3 are of particular interest in that
regard, since the introduced PK does not fit for these sub-blocks. With the exception of two
cases (SB3 of S3-B2B1 and S4-B2B1), performance changes are still positive or only slightly
negative (-2.1% ... +2.7%). This shows that misleading information does not considerably
corrupt predictions with the presented approach.

For the above mentioned reasons, the benefit of movement sequence consideration is lim-
ited for the Global PK approach. More detailed analysis was indicated to shed light on its
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true possibilities. In the Session PK setup, context-specific information is incorporated. In
this setup, two parameters (PK incorporation strength s and word insertion penalty p) have
been optimized based on the actual test data. Admittedly, this strategy cannot be used in
real-life scenarios. However, essential insight into the capabilities the routine is granted, as
the strategy provides an upper limit for the achievable performance gain. This can be inter-
preted as a setting in which best use (i. e. choosing ideal parameters) is made of the available
PK, with respect to the chosen strategy to incorporate it into decoding (in this case: with
bi-gram models). Although not transferable to real-life cases in straightforward manner,
imaginable realistic scenarios could require similar concepts. When it comes to practical
applications, patient-individual preferences create a demand for situation-dependent PK
incorporation. This encompasses the possibility to switch the PK database itself—an op-
portunity that would, for example, allow the user to select from different “action protocols”
like walking, eating/drinking or the like—but also to provide options to vary different as-
pects of decoder behavior. The latter could consist of adjusting (or fully enabling/disabling)
the extent of PK incorporation or controlling the overall decoder sensitivity to adapt the
BMI to higher/lower levels of activity. It is likely that such adaptions are requested by the
user in a block-wise fashion (e. g. walking→drinking→walking→resting). The Session PK
approach represents a model scenario for such a setting. More realistic realizations would
involve parameter adaption in an on-the-fly manner (e. g. based on previous predictions); a
concept sketch is presented in the outlook (Chapter 6, ’Improved PK incorporation’). It is
unquestionable that those approaches would go along with slightly lower level of accuracy
than the Session PK setup. Still, Session PK results approximate the possible benefit and
can serve as a reference for the actually obtained outcome.

As expected, performance gain resulting from consideration of movement sequences (Bi-
Gram) is substantially higher in the Session PK setup compared to the generalized approach
in Global PK. In particular, decoding the first sub-block (SB1) benefits largely from in-
corporation of information on the fixed tapping sequence, which the patients performed
during this part of the experiment. Depending on the subject, performances rise by 5.3%
to 16.1%. Detailed analysis has revealed that the dominant effect of the Bi-Gram compo-
nent is a reduction in substitutions. This matches expectations, since the bi-gram model
introduces corrections to the probability of a certain prediction within a given context, in
this case: the predecessor event. Such a correction can influence which model provides the
highest total probability and hence, change the class that is predicted. Those adjustments
are reflected by changes in the count of substitutions. One might be tempted to expect that
SB1 can be decoded errorlessly when introducing PK, since the underlying tapping sequence
is fully deterministic. However, this is not possible for several reasons: First of all, patients
occasionally executed erroneous button presses. A single mistake immediately affects two
transition frequencies: from the previous event to the button press (“the mistake”) and
from it to the next one. Thus, overall frequency matrix fij is altered substantially with
each mistake. This becomes particularly apparent for subject S1, with an average entropy
of S = 2.51 in SB1—for comparison, perfect SB1 execution would be SSB1 ≈ 1.39. An-
other important factor is the limited amount of available ground-truth information for the
experimental data. Neither can it be guaranteed that button presses are conducted as a
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single clean movement, nor can it be precluded that movements of other fingers (not re-
sulting in a button press), or at least muscular tension, happen at the same time. These
aspects may relativize some of the decoding errors, since predicting a movement at a certain
time point can actually match reality, although no event is documented for that particular
moment (because no button has been pressed). Note that this can be attributed to the
circumstance that it is not the button presses that are decoded but movements, induced by
activation of muscles by their corresponding neural ensembles. In addition to imperfectly
executed tapping sequences and the lack of detailed ground-truth data, there are some
technical reasons that come into play. Bi-gram-based PK incorporation has no immediate
influence on the timings of detections. To be more precise, it has no direct effect on the
duration of rest intervals. Therefore, decoding errors that arise from wrong timing cannot
be compensated for by that approach. Last, and most importantly, bi-gram models cannot
reflect the entire information on the tapping sequence. As there are two possible successor
events for both index finger and middle finger movements, at least a tri-gram model would
be necessary to do so. Consequently, decoding either an index or middle finger movement
leaves the decoder with two options for the possible next movement in each case. This
degree of non-determinism is reflected by the entropy measure of the bi-gram model for
SB1, which is non-zero; contrary to what it would be if it described a deterministic pro-
cess in its entirety. Using higher order models to incorporate the PK for SB1 would likely
lead to further increases in performance—probably up to near-perfect prediction. However,
real life situations are unlikely to provide such encompassing PK, thus, rendering that set-
ting unrealistic. For that reason, the use of bi-gram models can be seen as a well-suited
compromise rather than a limitation here.

Although considerably smaller than for SB1, performance gains are also found for SB2
and SB3. At first glance, benefits from PK incorporation for SB2 might seem particu-
larly surprising, given that the corresponding task is marked as ’random’. As stated in the
paradigm description (Section 3.7.1), randomization has been restricted such that consec-
utive events cannot be of the same type. Therefore, the movement sequence still contains
usable PK (SSB2 ≈ 4.4 < 5.545 ≈ Smax(4)). This amount of information is sufficient to
compensate some of the decoding errors. Corrections mainly occur for substitutions and
insertions. Reduction in substitutions is explained analogously to SB1. The elimination of
some of the insertion errors results from the fact that erroneous fragmentation of detections
into multiple individual events is prevented by the penalty that is applied when consecutive
detections have the same type (Figure 4.45). In the last sub-block, subjects were granted
the choice to use whatever finger they liked to perform the button press when indicated to
do so. This caused rather high variance in the amount of usable PK across subjects (and
sessions), since patient-individual movement preferences dominated the decision. Corre-
sponding entropy values vary between 3.16 and 5.00 (Table 4.16) with an average of 3.97.
This is a broad range, which averages just slightly below the randomized sequence from
SB2. Consequently, performance gains differ strongly across the datasets. Similar to SB2,
the available PK seems to be sufficient to correct a part of the decoding errors. Contrary
to SB2, though, no meaningful conclusion can be drawn from the averaged changes in de-
coding errors (Table 4.21), since the averages are dominated by a single dataset (S3-B2B1,
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Figure 4.45: Illustration of detection fragmentation without use of the Bi-Gram component. In the given
example, fragmentation can occur when a short intermediate data segment (here: just before the insertion)
is better described by the rest model than the current movement model (here: thumb). This would result
in a slightly higher overall likelihood for a fragmented sequence as shown on the top. Introducing a
penalty for two consecutive detections of the same type (by means of bi-grams) can turn the likelihood
in favor of a continuous segment (bottom).

Appendix: Table A.4). The performance for that particular dataset is rather low (23.9%),
thus, limiting its validity. Apart from that exception, most of the results are comparable
to the other sub-blocks, suggesting that performance changes are induced by similar effects
(i. e. reduced count of insertions etc.).

Technically, the constraint of the strict alternation between movement and rest has been
realized by the construction of movement words. Instead, this could also be addressed by
use of a bi-gram model that involves transition probabilities of 1.0 from any movement to
the rest model, while transitions from rest to any of the movements are equally likely (0.25).
The corresponding transition matrix is given by Eq. (4.8).

(fij)move-rest =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

0.25 0.25 0.25 0.25 0

 (4.8)

Although introducing the identical information as the combined word approach, a bi-gram-
based strategy has a severe drawback in this context: When trying to simultaneously
incorporate information on the frequencies of pairs of movements—as it is done with the Bi-
Gram component—a simple bi-gram approach can no longer be used, since movement–rest
alternation is already using up this option. Instead, at least a tri-gram model would be
necessary to serve the purpose. Consequently, the alternative of using a dictionary of
combined words has been preferred. However, interpretation of MRalt in terms of a possible
bi-gram can provide interesting insight into the amount of information that is introduced
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by that component:

S(fmove-rest) = −
5∑
i=1

5∑
j=1

fmove-rest
ij · ln fmove-rest

ij

= −4 · [1 · ln(1)]− 4 · [0.25 · ln(0.25)] = 0− 1 · ln(0.25)
= − ln(0.52) = 2 ln(2) ≡ S(fSB1) ≈ 1.39.

This means that the consideration of movement–rest alternation should provide the same
amount of information as the movement sequence characteristics (Bi-Gram) from SB1 in the
Session PK setup. Comparison of the results from the corresponding decoding procedures
shows that this is fulfilled quite well for subjects S1 and S3 (avg. difference +1.5%, in favor
of Bi-Gram). However, for subject S4, the Bi-Gram component provides a substantially
higher benefit (avg. difference +7.4%) than MRalt.
Throughout this study, the entropy measure defined by Eq. (3.4) has been used to es-

timate the available information content for any given bi-gram model. The results show
that this measure can serve as a rough approximation of information content. Qualitative
correlation between entropy value and achievable performance gain is found on the level of
averages across all subjects. However, on the level of individual subjects—and particularly
for separate sub-blocks—the entropy measure cannot fully explain the different performance
gains. For this purpose, the measure is too simplistic, considering the substantial level of
complexity that is involved in continuous decoding of brain signals. The final influence
of PK depends closely on very specific characteristics of decoding errors. While available
PK may have high impact on decoder decisions between classes that are frequently mixed-
up without the use of PK, it is certainly much less important for events that are already
predicted reliably in a PK-free setting. Since HMMs are a probabilistic classifier and the
presented PK incorporation approach manipulates those very probabilities, the effect of PK
incorporation also depends on the probability differences between predicted (erroneous) and
actual class. In a situation in which errors occur between two classes and there is only a
minor probability difference between wrong and correct class, even the slightest amount of
PK would possibly fix a large amount of errors. Furthermore, PK can only be beneficial,
if (correctable) decoding errors occur in the first place. In case of near perfect decoding,
performance gains are naturally much harder to achieve.
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5.1. Comparison to other studies

In general, comparison of results across different BCI studies is not a straightforward proce-
dure. This is mainly due to the circumstance that almost every study is based on different
recorded data—some studies might even use different recording modalities—resulting in
significant differences in signal quality and information content. Furthermore, even in case
of similar experimental tasks (e. g. finger tapping), the specific realization of the paradigm
and thus, important practical conditions (e. g. length and intensity of the movements, use
of contra- or ipsilateral hand) vary across those studies. With these limitations in mind,
this section shall provide a comparison of methodology as well as (where possible) achieved
results between this work and related studies.

Performance of HMM decoders Table 5.1 shows a selection of related studies that use
HMM decoders in the context of BCI (cf. Table 1.1), including details on the used model and
feature configuration. Additionally, a subjective rating is provided, relating the documented
performance of the HMM routine to the approaches it has been compared with in those
studies.
Some studies investigated the application of HMM-based approaches for the decoding of

motor imagery, particularly for discriminating between left and right hand movement imag-
ination. Especially the papers by Obermaier et al. [36], Sitaram et al. [37] and Lederman et
al. [39] document substantial advantages when using HMM decoders. These studies use a
left-to-right model topology in combination with a rather limited number of hidden states
(N ≤ 5) and Gaussian mixture components (M ≤ 5). Interestingly, the amount of fea-
tures used for decoding differs clearly (n = 2...20). However, due to the different recording
modalities (EEG and NIRS), direct comparisons are difficult. Contrary to these positive
results, two of the studies (Rezaei et al. [40] and Cincotti et al. [42]) report poor perfor-
mance of HMMs. Unfortunately, both articles provide insufficient or almost no details on
the concrete HMM configuration. Presumably, model topology has not been selected opti-
mally in these studies, ending up in an unsuited setting for the investigated case. It is also
noteworthy that those two articles represent comparative studies that investigate several
different types of classifiers. Due to the rather extensive amount of adjustable parameters
of HMM decoders (and their substantial influence on decoding outcome), selection of an
appropriate configuration is a more delicate task than for many other routines.
The results presented in Section 4.1 clearly demonstrate that HMM-based decoding can

provide similar decoding accuracies as an SVM approach (representing the class of less
complex decoders). Consequently, the findings from Rezaei et al. and Cincotti et al. cannot
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Table 5.1: Examples of BCI studies using HMM classification. N denotes the number of states in the
HMM, M is the number of Gaussian mixture components in each state and n is the dimension of the
feature vectors (i. e. number of features). Elements that are succeeded by a question mark are uncertain
information that have been guessed from context, whereas a solitary question mark refers to information
missing entirely.

Study Model parameters Features HMM rating

N M transition n type

Obermaier [36] 1-5 1-5 LtR 2 Hjorth param. ++
Sitaram [37] 3 1/3/1 LtR 20 OxyHB/DeoxyHB ++
Lederman [39] 5 3 LtR 10 Filter bank coeff. +/++
Chiappa [38] 2-7 3-15 full 19 PSD (4–40 Hz) 0
Cincotti* [42] ? ? ? 4? 12 spectral comp. – –
Rezaei [40] 2 3 full? 8 AR coefficients – –
Zhao [41] 2-6 ? full? 2 HG N/A

Section 4.1 5 1 LtR (Bakis) 10/6–8 LFTD/HG 0
Section 4.3 4/5 1 LtR/±1 3+7 HG/LFTD +

* very limited detail on used HMM configuration
Abbr.: AR–autoregressive model, HB–hemoglobin, LtR–left-to-right, PSD–power spectral density

Ratings (subjective): – – much worse, – worse, 0 equal, + better, ++ much better.

be confirmed. With a heavily constrained left-to-right topology using five states with a
single mixture component, the applied model configuration in Section 4.1 is similar to the
setup of other studies that document positive results for HMM decoders (e. g. Obermaier
et al. [36], see above). Another important observation in the results from that section is
that HMMs perform particularly well for high quality features (in this case: high gamma).
Almost all other studies using HMM decoders (except for Zhao et al. [41]) are based on
non-invasive recordings, which typically provide only mediocre signal quality. Consequently,
those data do not allow for the use of high gamma features, and as a result, many studies
used low frequency features. The results from Section 4.1 confirm that HMMs can turn
out inferior in case of such features. Hence, underuse of HMM routines for decoding of
invasively recorded data might be a reason for the overall low count in studies that report
beneficial results of that approach.

As a general observation, it can be noted that many related studies feature long trial
durations and are restricted to a small number of (mostly highly distinguishable) classes.
Such conditions typically favor less complex classifiers. In addition, the mentioned studies
focused entirely on decoding of class membership of trials in settings where all members
of a class have identical properties1 (e. g. all events have the same temporal extension).
The full potential of dynamic classifiers remains unused in such setups. Chiappa and
Bengio [38] investigated whether the dynamic aspect of HMM decoding can be beneficial

1This is also referred to as each class having only a single token.
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by comparing its results to a configuration with only a single state—thus, creating a static
setup. The authors used an asynchronous, imagery-based paradigm, which could potentially
constitute a favorable case for dynamic classifiers. However, their findings suggest that no
significant advantage of the dynamic approach can be found. As also discussed by the
authors, this might be attributed to the use of fully connected transition matrices; these
cannot consistently reproduce temporal characteristics.2 The used model topology involved
a huge parameter set with up to 7 states, 15 mixture components and 19 feature dimensions
(yielding a total of 40,061 parameters, cf. Eq. (2.8)). By that, the authors used a rather
high number of features (i. e. 19). As shown in Section 4.1, HMM decoders can be sensitive
to an excessive amount of features, in particular when using low-frequency features (cf.
Figure 4.4). In combination with the fully-connected topology, it is likely that such a
model does not generalize well and hence, the static alternative—which naturally has much
less parameters due to the low state count—provides better results.
With the investigations in Section 4.3, strong focus has been laid on demonstrating the

potential of dynamic decoding. This is ensured by using a setting that involved increased
complexity by means of considering additional attributes of the stimuli, which are now
defined by both type and duration. The appearance of events with the same type but
different temporal extent suggest that dynamic classifiers should be particularly suitable for
decoding thereof. The results demonstrate that the properties of dynamic classification can
be used to extract additional information about the event without dedicated training. An
essential factor for these findings was an appropriate model topology. Contrary to Chiappa
and Bengio [38], transition matrices have been restricted extensively and adapted to the
specific requirements for the used feature types. Additionally, simplified model topology and
problem-adapted feature selection with a reasonable number of selected features contributed
substantially. This ensured representative, consistent state sequences (Viterbi paths), which
in turn allowed for the extraction of event duration information with decent accuracy.
As there is no direct analogue of such an approach for static classifiers, this verifies the
superiority of dynamic classifiers in that context.

Finger tapping Decoding of finger movements is a rather common topic in BCI research.
Consequently, several studies presented approaches and results in that regard. Table 5.2
shows an overview of studies that dealt with single trial finger movement decoding in
a setting comparable to Section 4.1. With respect to the limitations discussed at the
beginning of this section, comparison of the results shows that the HMM-based approach
documented in this work competes well with other methods. This holds true particularly
for the band power features (i. e. high gamma). The average decoding accuracy in this case
is approximately equal to the best listed result (Scherer et al. [127]), and the maximum
performance even clearly dominates the list. It further becomes apparent that for this rather
demanding decoding task (four different finger movements of short duration), non-invasive
data (Quandt et al. [121]) does not seem to provide a sufficiently high level of information
to allow for precise decoding results.
2Note that this might be different if extensive training material would be available. However, this is
typically not the case for BCI studies.
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Table 5.2: Overview of studies reporting single trial finger tapping decoding results.

Study Features Mod. Classifier Dec. accuracy [%]
Avg. (max.)

Liu [128] spectral amplitudes ECoG SVM 83.8 (84.5)
Scherer [127] band power ECoG LVQ 88.9 (91.3)
Shenoy [129] band power ECoG SVM, LPM 77.0 (91.5*)

Quandt [121]
temporal (<16 Hz)

EEG
SVM

43.0 (54.5*)
MEG 57.0 (70.0)

spectrogram MEG 36.0 (N/A)

Section 4.1
temporal

ECoG HMM
74.2+ (80.7)

band power 88.8+ (97.9)

LPM = linear programming machine, LVQ = learning vector quantization
* estimated from figures, + subject S2 excluded

Besides single trial studies (as discussed above), finger movements have also been de-
coded continuously (e. g. in [79,130,131]). However, the settings in these studies differ too
substantially from the finger tapping experiment investigated here (cf. Section 3.7.1) to
allow for meaningful comparison of the results.

Prior knowledge (PK) incorporation As mentioned in the very beginning, PK incorpo-
ration is found rather frequently within BCI spelling scenarios. These approaches typically
use language models that are widely used in speech decoding and which are built from
extensive databases. Using these models, substantial increases in system accuracy can be
achieved [49]. This becomes possible as the desired application of spelling is related to
speech and language. A closely related work is the study by Moses et al. [20] that deals
with so-called neural speech recognition. In their work, the authors decode perceived speech
directly from recorded ECoG signals in human subjects. They use linear discriminant anal-
ysis to estimate the likelihood of individual phonemes. A Viterbi decoder is applied to fuse
these likelihoods with a phonemic language model that was built from a large database
consisting of subtitles from many American films and television series. This decoding ar-
chitecture is similar to a single state HMM routine. The incorporation of PK is done by
means of n-gram models and the authors investigate the benefit for different level of the
models (i. e. varying n). Significant improvements on decoding accuracy have been reported
with that method compared to PK-free decoding.
However, for the case of motor BCI settings, comparable PK databases are unavail-

able. Hence, PK incorporation for those applications is a more complex task that requires
problem-specific strategies. This is also reflected by the fact that no gold-standard approach
for the purpose has established in the literature yet. Instead, several different methods have
been used to consider other sources of information in order to increase the performance of
BCI decoding in motor tasks. Most of these studies cannot be meaningfully compared to
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the methods presented here, due to fundamental differences in the data conditions.
In the method proposed by Delgado Saa et al. [53], conditional random fields (CRF)

are used to decode finger flexion of individual fingers from ECoG signals. The authors
introduce a so-called edge potential function as an additional (multiplicative) factor in the
computation of their class probabilities. This would, in principle, allow them to consider
arbitrary transition probabilities between different classes. However, the correction is used
primarily to limit transition rates between different classes in order to account for the fact
that no rapid changes between individual movements had been performed by the subjects.3
Since rest episodes are considered in the same way as movements (as a sixth class), these
restrictions also limit the change rate between movement and rest episodes. The limitation
of transition rates with that approach has a comparable effect as word insertion penalties in
the continuous HMM approach in Sections 4.5 and 4.6. With respect to the way it affects
decoding of rest episodes, it is also distantly related to the movement–rest alternation
(MRalt) method presented in Section 4.6. However, due to the algorithmic structure of
the used edge potential function4, only class transitions in directly adjacent time points
are considered. The HMM-based approach on the contrary applies penalties for transitions
between individual models. Since the decoder can dwell for several time samples in a single
model, this describes rather long-time dependencies. The possibility of using their CRF
method to incorporate higher-level information, such as frequencies of adjacent movements,
is not discussed by the authors. Anyhow, the aforementioned structure of the edge potential
would make it difficult to consider information similar to the Bi-Gram approach presented
in Section 4.6 (as this refers to long-time dependencies). In fact, since the Bi-Gram method
describes patterns consisting of triples: (movement 1, rest, movement 2), this could not be
realized with that particular edge potential.
As far as movement decoding is concerned, there is no similar example in which the fre-

quencies of subsequent individual events are used to provide the basis for PK incorporation.
Additionally, no other documented study reported the use of n-grams to incorporate PK in
motor tasks.

5.2. Limitations

Limited data pool All results presented in this work are based on rather small data pools.
Particularly in case of electrocorticography (ECoG) recordings, databases are limited to
2–4 subjects. This has consequences for the generalizability of the findings. To increase
statistic validity of the results, comparison of approaches should ideally be performed on
larger databases. However, due to the difficulty of acquiring invasively recorded brain
signals from larger patient collectives, small databases are very common in respective BCI
studies.
3This might be explained by the fact that the underlying experimental paradigm consisted of fully-
randomized movement sequences and hence, no other usable information except limited class change
rates was available.

4The edge potential is a function Φi(yi, yi−1) that depends on the labels yi of the two adjacent time points
i and i− 1, with i = 1, ..., n whereby n denotes the total number of time points in the data.
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Invasive recordings The majority of findings presented here is based on invasively acquired
data, which provide high signal quality. As shown in Sections 4.2 and 4.3, non-invasive data
(in this case MEG) can also be decoded using the presented HMM decoders; however, the
achievable level of accuracy is lower. It has been shown by Kübler et al. [132] that low
decoding error rates are essential to prevent user frustration during use of a BCI in prac-
tice. Hence, invasive recordings are currently the most promising technique for meaningful
implementation of complex BCI assistance systems. The major issue with recordings by
means of ECoG or intracranial electrodes is their invasiveness. Both techniques go along
with risk for the patient—especially with respect to possible infections due to the cable out-
let—which is why the technique is still of limited use for real-life BCI solutions. However,
current developments on the field of minimally invasive recording instrumentation (so-called
stentrodes [133]) and wireless implant technology [134,135] already show promising results,
thus, potentially minimizing infection risk while maintaining the superior data quality.

Post-hoc analysis Throughout all parts of this work, analysis is based on post-hoc evalu-
ation of pre-recorded data. While this is a conventional approach used in a large number
of contemporary BCI studies, it has implications on the results that should be taken into
consideration. An immediate consequence is that users do not receive any feedback on
decoding results. Hence, decoding routines can only be adjusted to the recorded data (i. e.
to the user), whereas training the user to the system is not feasible (closed-loop setup,
“bi-directional training”). It is expectable that bi-directional training would further in-
crease performances [136,137], although potentially also requiring adaptions to the applied
routines. In case of the single trial test procedure (i. e. by means of cross-validation), an-
other aspect of the post-hoc evaluation comes into play. Training data within a CV routine
contains trials from arbitrary time points within the dataset. If signal properties change
throughout a recording session (e. g. due to the subject getting used to the experiment),
this might change and blur the feature space representation [138]. In the CV routine, the
classifier already “knows” about these upcoming changes, since the training set contains
data from later time points. In an online setup, classifiers would not be trained to these
changing characteristics. Consequently, decoding accuracies may be overestimated slightly
compared to real online results. However, this holds true for any type of classifier and
hence, does not unfairly benefit the HMM decoder in the results of Section 4.1.

Overt movements The investigated movement paradigm (finger tapping, see Section
3.7.1) is based on overt movements, i. e. patients actually performed the movements. Real-
life BCI solutions are intended to assist paralyzed (or otherwise handicapped) patients with
their every-day activities, making it impossible to rely on overt movements. Instead, decod-
ing needs to be based on imagined or attempted movements. However, overt movements
represent a well-suited and commonly used model for investigations of decoding approaches,
primarily for two reasons: First, actually performed movements are easy to check, allowing
for precise labeling of training data as well as meaningful analysis of evaluation datasets;
both of which are difficult to accomplish when using attempted or imagined movements,
as there is no conclusive proof of how well (and when precisely) the subject performed the
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imagination (or attempt). Second, imagined and particularly, attempted movements, go
along with brain activity that is closely related to the one that appears in connection with
actual movements [139, 140]. Recent studies emphasize that attempted movements might
be the most reliable solution for real BCIs in paralyzed patients [141–143]. Since healthy
subjects are unable to perform attempted movements5, overt movements can serve as a
suitable alternative.

Simultaneous events In this work, all decoding tasks consist of assigning a single label
(from a set of discrete6 values) to each sample (or entire trials) of the data. This is achieved
using a maximum likelihood approach (Eq. (2.1)). While this strategy is fully sufficient in
most applications (e. g. in speech decoding, as there can only be one articulation from a
speaker at a time), it can imply limitations for specific demands (e. g. control of a hand
prosthesis). In the example of finger movement decoding presented in Sections 4.5 and
4.6, prediction of multiple simultaneous movements would not be possible with the ML
approach. With appropriate modifications to the decision criterion in the classification
step, the option for multiple events could be realized. To do so, a threshold strategy
on the likelihoods could be used. In that case, a movement would be predicted if the
likelihood of the corresponding model exceeds a specified threshold. By that, several models
could be “active” simultaneously. However, this would not only remove the ability to use
well-established speech decoding tools straightforwardly, but also raises the demand for
substantial modifications to the strategies of PK incorporation (away from simple n-gram
models).

Parameter optimization A general limitation that applies to all parts of this work is
the restriction to the investigation of isolated parameters influences. Analysis of the full
variety of options at the same time is not feasible due to the enormous amount of param-
eters included in the applied routines. Exhaustive search—even on small parameter sub-
sets—requires tremendously high computation times, making it impossible to practically
perform such investigations. Besides these practical time issues, simultaneous variation of
all available parameters also potentially results in locally optimal solutions for individual
datasets (“overfitting”), which then cannot be transferred to other data.

5.3. Summary

It has been shown that HMM-based decoding can provide high accuracies in single trial
BCI decoding. To achieve that, appropriate adaptions to the central components of the
entire signal processing chain played an essential role. This includes finding optimal model
configurations as well as suitable feature extraction and selection strategies. Ultimately,
classification accuracies were brought to the level of gold-standard routines. In selected
5Unless by use of neuromuscular block, like in [142].
6Note that for duration decoding in Section 4.3, predicted durations were not restricted to a pre-defined
set of values but could take (more or less) arbitrary values.
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cases, HMMs outperformed the comparison method (i. e. support vector machines) with
statistically significant performance advantages.

Furthermore, benefits of dynamic decoding have been demonstrated by the extraction
of additional information about the decoded events. For this purpose, a method has been
developed to analyze model output (or precisely, Viterbi paths), in order to assess the
duration of an event without the requirement for a dedicated training routine—this is
an approach without equivalent for static classifiers. In that context, it has also been
shown that tailoring model configurations and adjusting topology restrictions to the specific
properties of the used features, combined with problem-adapted channel selection strategies,
are important contributions to all those findings.
Based on the aforementioned findings, the HMM routines have been extended to enable

continuous decoding. In that context, it has been demonstrated how the gold-standard
speech decoding framework HTK can be adapted for BCI decoding tasks. An extensive
software framework—featuring a convenient graphical user interface for quick variation of
all central decoding components—has been developed for this purpose. With two differ-
ent approaches, it has been shown that HMM-based decoders offer the option for proper
incorporation of prior knowledge from BCI scenarios. By effective utilization of language
models, available a priori information could be exploited to substantially reduce decoding
errors.

In summary, this work evidenced that the application of HMMs is a highly promising
choice for decoding in the context of BCIs with great potential for practical application
and further development. Some concepts for potential future investigations are presented
in the closing chapter.
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As discussed in Section 5.2, the reported results underlie some limitations. While some
of the mentioned restrictions are inherent to the problem, several other aspects might be
addressed in future work. A selection of possible extensions and methodological refinements
is presented here.

Continuous training This would provide the possibility to train models based on data for
which one has no knowledge about the exact timings of the events. Instead of the exact
time stamps of individual events, only the sequence in which events occur needs to
be provided for training. With the HTK framework, this can be realized conveniently
using the HERest subroutine. Training without requirement of timing of the events
could be particularly valuable for imagery-based BCIs, as those imply difficulties to
determine precisely when the subject starts imagining (and how long this continues).

Classifier adaptation With classifier adaption, model parameters could be re-adjusted on-
the-fly during online use of the system. This has two immediate benefits. First, it
increases the amount of training material for the classifier, as decoded ’test’ data
are reused for training; and second, adapting model parameters during use allows
to compensate for changes in the brain signal characteristics (e. g. due to training
effects of the subject) that might occur over time. However, to facilitate meaningful
adaption strategies, precise interpretation of the decoded test data with respect to
whether or not they have been decoded correctly is required. In order not to spoil
model parameters with erroneous information, only events that are decoded correctly
should be considered for online adaption. As there is no label information for test data,
other solutions for this issue are required. Potential strategies could be decoding of
so-called error potentials1 or incorporation of some other sort of reliable user feedback
(e. g. from other sources of information, like eye-tracking).

Closed-loop online setups The use of a closed-loop design would allow for ’bi-directional’
training, i. e. both the decoder is trained to the brain responses of the user and the user
itself is trained to modulate his/her thought processes by observing which responses
they cause from the system. The latter component is not feasible with post-hoc data
analysis (cf. Section 5.2).

More sophisticated paradigms The possible research questions that can be addressed in
BCI studies are often limited by the specific characteristics of the available data.
Experimental paradigms are usually tailored for very specific demands and hence,

1Error potentials are signal deflections that typically appear when the subject recognizes a mistake during
a task. For a detailed description, see e. g. [144].
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Figure 6.1: Exemplary snippet of a sequence for an augmented finger tapping paradigm.

are frequently not ideally suited for deviating requirements.2 Particularly in case
of invasively recorded data, new acquisition should not be carried out carelessly and
hence, experiments would ideally be designed to allow for a broad spectrum of possible
investigations.
A preliminary concept for a potential augmented finger tapping paradigm is briefly
introduced in the following. Instead of just hitting a button on the keyboard for
an arbitrarily short duration (as if it were pressed for reasons of typing), subjects
would be requested to hold the button for a specified duration. The sequence of
events would be constructed such that it, from time to time, contains certain blocks
of a well-defined structure (i. e. with a fixed tapping pattern). These are interleaved
by randomly generated events which could be drawn from a distribution that favors
certain n-grams over others. An exemplary sequence is illustrated in Figure 6.1. Such
a paradigm would allow for investigation of multiple aspects, separately as well as in
arbitrary combination:

• continuous decoding with arbitrary event duration (combines Section 4.3 and
4.6),

• complex patterns of prior information (cf. outlook for ’Improved PK incor-
poration’),

• user training effects (recurrence of identical patterns),

• with further extensions: multiple simultaneous events (i. e. more than one
finger active at a time).

Improved PK incorporation The strategy of incorporating PK could be extended to use
of higher order models (i. e. up from bi-gram). This would allow considering more
complex event sequences and thus, providing more flexibility for potential practical
realizations. Additionally, to determine the PK rewards/penalties a straightforward
approach is used that is simply based on frequencies of event sequences. More sophis-
ticated strategies can be used to find reward/penalty values that are better suited.
Instead of using frequencies of appearance as a template for PK penalties, one could
use training data to estimate better values. To do so, one would classify some of the
training data—if desired, this could be done in a nested cross-validation routine—and
take a closer look at the occurring decoding errors. For the errors, the probability

2The picture category task, e. g., could not be used to study PK incorporation, due to the fact that stimulus
type and duration had been selected entirely on a random basis. Therefore, no usable prior information
on sequences is contained in these data.
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differences between the predicted class and the correct class can be computed. Based
on these differences, one could estimate penalty/reward values that would fix the
corresponding decoding errors. Since any penalty or reward added to the decoding
will affect all decoder decisions, it could result in new decoding errors. Hence, such a
routine would likely need to be performed in an iterative way in order to determine
values that lead to the best ratio of error corrections to newly introduced mistakes.
This procedure could be advantageous, as it would allow for different strength of PK
incorporation for specific class duels. This could become necessary when certain class
combinations require only slight modification to fix decoding errors while others can
only be corrected with larger interference.
Another possible extension to the methodology presented in Section 4.6 is closely re-
lated to classifier adaption (see above). To incorporate session-specific PK (Session
PK setting), penalty/reward values have been determined using test data. Although
legitimization of this strategy as a model scenario has been discussed in the corre-
sponding result section, it is debatable to what extent the findings can be transferred
to practical settings. A more realistic approach could be realized by starting with a PK
free setting, decoding a certain amount of test data and using these data afterwards
to refine the parameters of PK incorporation. Decoding of the subsequent segment
of data could then benefit from improved PK parameters. The routine would be re-
peated each time a segment of data with a pre-defined length has been decoded—i. e.
PK estimation can be performed on increasingly longer segments of data as decod-
ing progresses. Contrary to the Session PK method from Section 4.6, this approach
would only require “publishment” of the test data labels after decoding. While this
still involves test data labels in some way, it could be interpreted as feedback from
the user about the outcome of the latest performance of the system in a practical
context.
PK incorporation has been limited to consider information that is inherent to the
task.3 Future work could also include fusion with other sources of information,
like sensor data from prostheses, context information from cameras or various other
sources of information.

Deep Learning Recent studies, especially in the field of automated speech recognition
(ASR), investigated combinations of deep neural networks (DNN) and HMMs. Deep
learning strategies can be used to provide optimized feature extraction or be included
directly into the HMM architecture as a replacement for Gaussian mixture observation
modeling (so-called DNN-HMMs [145]). Several approaches showed highly promis-
ing results in ASR [146,147], emotion recognition [148], and video action recognition
[149]. These methods promise great potential for use in BCI contexts.

3This was necessary, since no other sources of information were available in the investigated scenario.
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A. Appendix

A.1. Examples
Example from Section 3.6.3 Let us assume a three-class sequence with the following
transitions:

11→ 3
13→ 2
32→ 1
21→ 2
12→ 2
22→ 3
23→ 3
33→ 1
31→ 1

or in sorted order:
11→ 3 21→ 2 31→ 1
12→ 2 22→ 3 32→ 1
13→ 2 23→ 3 33→ 1

This leads to the following tri-gram transition frequencies (fijk):

(f1jk) =

 0 0 1
0 1 0
0 1 0

 , (f2jk) =

 0 1 0
0 0 1
0 0 1

 , (f3jk) =

 1 0 0
1 0 0
1 0 0

 .

Apparently, this sequence is fully deterministic. However, its corresponding bi-gram fre-
quencies (fij) are

(fij) =

 1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

 .
Consequently, this sequence has PK entropy S = Smax(3). Information only on the current
event does not allow for any prediction on the upcoming event.
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Examples of visual stimuli

Objects

Faces

Watches

Clothing
(excluded)

Figure A.1: Examples of visual stimuli used in the picture category experiment. Note that ’clothing’ stimuli
have been used only to keep up subjects’ attention (ECoG experiment only) and have been excluded for
analysis.

Example from Section 4.4 Let us assume that the first third (x1) of a given trial x̃ =
(x1,x2) represents the original stimulus A and the remaining two thirds (x2) contain an
additional stimulus B.1 In this example, the first segment shall be modeled with high
likelihood by its corresponding HMM-A, e. g. PHMM-A(x1) = 0.8 while the other HMM-
B provides a significantly lower probability of PHMM-B(x1) = 0.1. The remaining part is
slightly in favor of HMM-B with PHMM-A(x2) = 0.5 and PHMM-B(x2) = 0.6. The resulting
total probability would turn out clearly in favor of class A with the Vanilla HMM approach:

PHMM-A(x̃) = PHMM-A(x1) · PHMM-A(x2) = 0.40
PHMM-B(x̃) = PHMM-B(x1) · PHMM-B(x2) = 0.06

The same example would yield a different result with the semi-continuous approach. In that
case, the first third of x̃ would be modeled by HMM-A followed by a transit to model HMM-
B, which models the rest of the trial (since it has a higher likelihood for that segment).
The total probability would compute as follows:

PWN default(x̃) = PHMM-A(x1) · P penalty
A→B · PHMM-B(x2) = 0.48 · P penalty

A→B
1Note that pauses are omitted for means of simplicity.
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with P penalty
A→B denoting the penalty that is applied for each model transition from HMM-A

to HMM-B. Such a penalty is introduced to prevent the decoder from overabundant model
transitions. For penalty values of P penalty

A→B . 1.0 (i. e. almost no penalty), the ’WN de-
fault’ decoding result would be class B in the given example, as it represents the longer
segment. However, in case of stricter penalties

(
P penalty
A→B < 0.869

)
, the highest total proba-

bility is provided when the entire trial is modeled with HMM-A and hence, class A would
be predicted.
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A.2. Supplementary tables

Table A.1: Full results for comparison of Bakis model vs. unconstrained model.

Subject Session
LFTD

Bakis unconstr. superior t p

S1 1 80.7 (1.9) 77.4 (2.3) Bakis (***) 9.145 3.83E-13
2 78.8 (3.4) 76.0 (3.6) Bakis (***) 3.889 1.31E-04

S2 1 44.0 (5.5) 42.4 (5.6) none 1.311 0.097
2 45.7 (5.7) 45.7 (5.4) none 0.000 0.500
3 40.2 (3.7) 40.0 (3.4) none 0.193 0.424
4 28.8 (4.1) 28.6 (3.7) none 0.177 0.430

S3 1 64.6 (3.7) 61.7 (4.4) Bakis (***) 3.715 2.29E-04
2 80.1 (2.7) 71.3 (3.3) Bakis (***) 14.917 0.000

S4 1 71.4 (2.8) 70.5 (2.8) none 1.256 0.107
2 69.7 (4.1) 68.4 (4.1) none 1.599 0.058

Average 60.4 (19.0) 58.2 (17.4) Bakis (*)� 2.665� 0.013�

Subject Session
HG

Bakis unconstr. superior t p

S1 1 97.9 (0.6) 97.1 (0.7) Bakis (***) 4.719 7.69E-06
2 92.4 (2.0) 91.4 (2.3) Bakis (*) 1.827 0.036

S2 1 35.9 (3.8) 34.2 (3.3) Bakis (*) 1.857 0.034
2 45.6 (3.9) 48.1 (4.8) unconstr. (**) -2.346 0.011
3 36.3 (4.3) 36.5 (4.3) none -0.181 0.429
4 36.4 (4.7) 37.1 (5.6) none -0.529 0.300

S3 1 85.1 (2.2) 84.1 (2.7) none 1.573 0.061
2 90.5 (1.8) 86.5 (2.7) Bakis (***) 6.711 4.47E-09

S4 1 83.5 (2.7) 81.5 (3.2) Bakis (**) 2.600 0.006
2 83.1 (1.9) 78.9 (2.0) Bakis (***) 8.535 3.91E-12

Average 68.7 (26.4) 67.5 (25.3) none� 1.758� 0.056�
�Significance analysis for differences in the averages is carried out with one-sample one-sided t-tests on the
performance differences AccBakis −Accunconstr. (alternative hypothesis: AccBakis −Accunconstr. > 0) in the

individual datasets. The critical t-value for these tests (significance level α = 0.05) is tc = 1.812.
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Table A.3: Continuous decoding accuracies P for all datasets without exclusion of pause and artifact seg-
ments. Different from the results shown in Table A.2, parameter optimization has been performed on
training data that also includes rest episodes here.

Subject Session p ∆p P [%] (std.) ∆P [%] ∆Matches ∆Subst. ∆Ins. ∆Del.

S1
B1B2 -44 -3 61.61 (1.78) -1.77 -4.9 0.0 -1.0 7.9
B2B1 -62 -6 68.80 (1.20) -0.25 -6.7 0.1 -5.6 6.3

S2
B1B2 -40 -5 34.43 (1.79) -1.31 -13.5 -2.7 -8.8 15.0
B2B1 -34 -4 28.33 (0.89) +1.90 -7.8 -1.2 -13.4 8.3

S3
B1B2 -28 -6 38.92 (0.94) -0.60 -22.2 -12.1 -19.4 32.5
B2B1 -34 -4 59.73 (0.96) +4.16 -3.8 -1.8 -11.1 -7.3

Table A.4: Difference in count of matchesM and decoding errors (substitutions S, insertions I and deletions
D) between Session PK (Bi-Gram component only) and No PK.

Sub-block 1 Sub-block 2 Sub-block 3
Errors Errors Errors

Dataset M S I D M S I D M S I D

S1 - B1B2 0.3 -3.1 -6.5 2.8 1.4 -4.0 -3.2 2.6
S1 - B2B1 -2.3 -3.0 -11.8 5.3 0.0 0.0 -0.4 0.0 0.9 -0.8 -0.7 -0.1
S2 - B1B2 4.9 -3.2 -0.9 -1.3 5.3 -5.2 -8.1 -0.1 0.4 -2.5 -2.1 2.1
S2 - B2B1 9.4 -6.9 -0.3 -2.6 3.9 -1.2 0.3 -2.7 14.4 5.0 10.8 -19.3
S3 - B1B2 16.5 -15.3 3.9 -2.0 9.0 -11.8 -8.8 2.8 6.9 -3.9 1.3 -2.1
S3 - B2B1 16.5 -15.4 -2.8 -1.1 2.8 -4.6 -2.2 1.3 1.1 -0.9 0.1 -0.2

Ø 7.6 -7.8 -3.1 0.2 3.7 -4.5 -3.7 0.6 4.7 -0.6 1.9 -3.9

Table A.2: Continuous decoding accuracies P for all datasets without exclusion of pause and artifact seg-
ments (training still performed on data without pause segments). Performance values are averaged across
10 runs with differing seeds for model initialization (standard deviation in brackets). Difference in decod-
ing accuracy ∆P and count of insertions ∆Ins. refer to the results with removed pause/artifacts segments
(compare Table 4.14).

Subject Session P [%] (std.) ∆P [%] ∆Ins.

S1
B1B2 63.37 (1.10) -3.59 + 7.1
B2B1 69.05 (1.24) -4.36 +15.7

S2
B1B2 35.75 (1.73) -4.91 +16.0
B2B1 26.42 (1.30) -9.76 +29.7

S3
B1B2 39.52 (1.29) -4.17 +14.6
B2B1 55.57 (0.84) -4.68 +16.9
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Table A.5: Decoding accuracies Acc (in %) for picture category decoding using an HMM or SVM classifier.
Reported t-values correspond to a two-sample one-sided t-test (H0 : AccHMM = AccSVM). The rejection
interval for the null hypothesis is −∞ < t ≤ −3.319 for α = 0.001 (alternative hypothesis: AccSVM >
AccHMM).

Decoding accuracy Acc

Subject HMM SVM t-value

ECoG 1 78.20 (1.90) 84.86 (1.51) -12.27
ECoG 2 80.33 (1.15) 83.55 (1.65) - 7.16
MEG 1 57.19 (2.45) 71.77 (2.82) -17.45
MEG 2 63.41 (3.18) 75.33 (2.04) -14.11
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Data format
Features need to be converted into HTK-compatible file format. The definition of HTK files
[126] allows for the use of user defined features by specifying a specific flag in the header.
The full header is 12 bytes long and is composed of:

nSamples number of samples in file (4-byte integer),

sampPeriod sample period in 100 ns units (4-byte integer),

sampSize number of bytes per sample (2-byte integer),

parmKind a code indicating the sample kind (2-byte integer).

Here, parmKind encodes the type of features in a 6-bit code and uses the remaining bits
to specify additional properties. For the purpose of converting data into HTK-compatible
format, only the 6-bit code is relevant. In particular, one uses the option ’9’ that refers to
“USER - user defined sample kind” [126]. Consequently, the binary representation of the
required parameter is: 0000 0000 0000 1001 (10bit modifier, 6bit type).

To allow for convenient use within HTK subroutines, individual files are created for each
of the trials in the dataset. Filenames follow a strict pattern to encode the class labels
required for training the models:

trial. xxxx︸ ︷︷ ︸
trial number

. x︸︷︷︸
label

. asd︸︷︷︸
arb. file ending

After the header, all data values are stored sequentially as 32bit (4 byte) float values. For
means of compatibility with multiple channels, one simply passes:

sampSize = 4 · C

to the header, whereby C denotes the number of channels to be used.
A C++ implementation of data conversion and file storage in HTK-format is given in

Code Example A.1.
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Code Example A.1 C++ implementation of a data conversion routine for file storage in
HTK-compatible format. Features of all trials are stored in data. Corresponding labels
must be given in label. Note that the dimensions of the dataset (i. e. number of channels,
samples, and trials) are private members of the DataIO class.
bool DataIO::writeTrialsToHTK(float *data, float sPeriod, const QList<int> &label,

const QDir &saveDirectory) const
{

QFile file;
QDataStream out;
out.setFloatingPointPrecision(QDataStream::SinglePrecision);

// binary form 0000 0000 0000 1001 (10bit modifier, 6bit type)
quint16 type = 1;
type <<= 3;
type |= quint16(1);

int smplPerTrial = _nbChannels*_nbSamples;

for(int tr=0; tr<_nbTrials; ++tr)
{

// compose file name
QString fileName("trial.");
for(int i=0; i< (tr ? 3-(int)log10(double(tr)) : 3); ++i)

fileName.append("0");
fileName.append(QString::number(tr) + "." + QString::number(label.at(tr)));
file.setFileName(saveDirectory.absolutePath() + "/" + fileName + ".asd");
if(!file.open(QIODevice::WriteOnly))

return false;

// write data
out.setDevice(&file);

// header
out << qint32(_nbSamples) << qint32(sPeriod) << qint16(4*_nbChannels) << type;
// data
for(int el = 0; el<smplPerTrial; ++el)

out << data[el+smplPerTrial*tr];

file.close();
}

return true;
}
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Figure A.2: User interface of the developed HTK framework. The underlying structure is illustrated in
Figure 3.2. The screenshot shows an example of a typical setting for continuous decoding of finger
movements, as used for example in Section 4.5.

Training
This is an example for a routine call of the HTK submodule HRest for model parameter
training:

"HRest -S E:/workingDirectory/train_thb.scp -M E:/workingDirectory/trained

-i 10 E:/workingDirectory/init/thb"

This call of HRest performs ten iterations of Baum-Welch re-estimation for a specific HMM
(here: the thumb model “thb”) as defined in a model template file. Examples of the re-
quired files are shown in the following for the “thb”-model.

• List of training data (’train_thb.scp’)
feats/trial.0001.1.asd
feats/trial.0006.1.asd
feats/trial.0011.1.asd
feats/trial.0017.1.asd
feats/trial.0024.1.asd
...
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• (initialized) Model template (’thb’)
~o <VecSize> 10 <USER>
~h "thb"
<BeginHMM>
<NumStates>5
<State> 2
<Mean> 10
3136.21 2446.58 2505.05 1824.3 5413.02 2187.67 1983.41 4260.62 1916.68 1713.21
<Variance> 10
505809 143546 176180 71954.6 1.18188e+06 78470.7 96493.9 588626 381804 251940
<State> 3
<Mean> 10
4095.01 2634.9 2673.09 1765.76 6725.16 2107.72 1951.24 4385.82 2004.38 1736.09
<Variance> 10
361721 141101 141436 74521.7 1.65427e+06 76059.1 77123.1 474614 635137 319198
<State> 4
<Mean> 10
4328.4 2456.41 2525.94 1641.07 6638.58 1871.19 1700.58 3688.89 2148.22 1837.89
<Variance> 10
313106 129275 156810 71333.3 1.36088e+06 111306 62262.1 422508 307468 349991
<TransP> 5
0 1 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5
0 0 0 0 0
<EndHMM>

Continuous decoding
The HTK routine HVite is used for the purpose of continuous recognition. An exemplary
program call is shown in the following:

"HVite -w E:/workingDirectory/zeroGram -S E:/workingDirectory/test.scp -l ’*’

-H E:/workingDirectory/trained/trainedHMMs

-i E:/workingDirectory/results/prediction.mlf

-f -p 0 E:/workingDirectory/pseudoDic E:/workingDirectory/HMMmonoPhoneList"

In addition to the trained models (output of HRest) and a list containing all test data
files (analogue to training list), the following files are generated:

• Dictionary (’pseudoDic’)
THUMB thb
INDEX idx
MIDDLE mid
LITTLE lil
REST rest
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• Word network / language model (’zeroGram’)
VERSION=1.0
N=11 L=15
I=0 W=!NULL
I=1 W=!NULL
I=2 W=!NULL
I=3 W=!NULL
I=4 W=!NULL
I=5 W=!NULL
I=6 W=REST
I=7 W=LITTLE
I=8 W=MIDDLE
I=9 W=INDEX
I=10 W=THUMB
J=0 S=4 E=1 l=0
J=1 S=5 E=4 l=0
J=2 S=2 E=5 l=0
J=3 S=10 E=2 l=0
J=4 S=1 E=10 l=0
J=5 S=9 E=2 l=0
J=6 S=1 E=9 l=0
J=7 S=8 E=2 l=0
J=8 S=1 E=8 l=0
J=9 S=7 E=2 l=0
J=10 S=1 E=7 l=0
J=11 S=6 E=2 l=0
J=12 S=1 E=6 l=0
J=13 S=2 E=3 l=0
J=14 S=0 E=1 l=0

PK incorporation
Prior knowledge can be incorporated conveniently using the dictionary and word network
functionalities of HTK. Exemplary files are presented below. Especially word network
specification is quite tedious. To facilitate easier construction of complex networks and to
illustrate probability modifications, an editor widget has been implemented (Figure A.4)
that allows for simple what you see is what you mean editing of word networks.

• Dictionary
index idx rest
little lil rest
middle mid rest
thumb thb rest
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(a) State sequence (b) Evaluation
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Figure A.3: Different options for result visualization in the HTK framework. (a) Plot of the (likeliest) state
sequence for the decoded data segment. States of all individual HMMs (i. e. thumb, index, ..., rest) are
concatenated for visualization (model correspondence indicated on the left). (b) Evaluation of predictions.

Figure A.4: Word network editor showing a network with bi-gram structure. The table on the right lists all
connection from/to the node ’2’ and their corresponding probability weightings. Negative values indicate
penalized connections (red lines), whereas transitions with positive values get rewarded (green lines).
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• Word network / language model (word network as shown in Figure A.4)
VERSION=1.0
N=20 L=38
I=0 W=!NULL
I=1 W=!NULL
I=2 W=!NULL
I=3 W=!NULL
I=4 W=!NULL
I=5 W=!NULL
I=6 W=!NULL
I=7 W=!NULL
I=8 W=!NULL
I=9 W=!NULL
I=10 W=!NULL
I=11 W=!NULL
I=12 W=little
I=13 W=middle
I=14 W=index
I=15 W=thumb
I=16 W=little
I=17 W=middle
I=18 W=index
I=19 W=thumb
J=0 S=10 E=11 l=0
J=1 S=6 E=10 l=0
J=2 S=6 E=2 l=-150
J=3 S=19 E=6 l=0
J=4 S=7 E=10 l=0
J=5 S=7 E=3 l=-150
J=6 S=18 E=7 l=0
J=7 S=8 E=10 l=0
J=8 S=8 E=4 l=-150
J=9 S=17 E=8 l=0
J=10 S=9 E=10 l=0
J=11 S=9 E=5 l=-150
J=12 S=16 E=9 l=0
J=13 S=5 E=19 l=26.6667
J=14 S=5 E=18 l=226.667
J=15 S=5 E=17 l=46.6667
J=16 S=5 E=16 l=0
J=17 S=4 E=16 l=118.31
J=18 S=4 E=17 l=4.22535
J=19 S=4 E=18 l=156.338
J=20 S=4 E=19 l=21.1268
...
J=37 S=0 E=1 l=0
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