
A Matrix Gamma Process
and Applications to Bayesian Analysis

of Multivariate Time Series

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

von Alexander Meier

geb. am 23.01.1989 in Kehl

genehmigt durch die Fakultät für Mathematik

der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr. Claudia Kirch

Prof. Dr. Renate Meyer

Eingereicht am: 22.06.2018

Verteidigung am: 06.09.2018





Abstract

While there is an increasing amount of literature about Bayesian time series analysis, only few

Bayesian nonparametric approaches to multivariate time series exist. Most methods rely on

Whittle’s Likelihood, involving the second order structure of a stationary time series by means

of its spectral density matrix. This is often modeled in terms of the Cholesky decomposition

to ensure positive definiteness. However, with such nonlinear transformations, the modeling of

certain prior knowledge aspects such as mean or variance often proves to be difficult. Further-

more, and most importantly, asymptotic properties such as posterior consistency or posterior

contraction rates are not known.

A different idea is to model the spectral density matrix by means of random measures. This is

in line with existing approaches for the univariate case, where the normalized spectral density is

modeled similar to a probability density, e.g. with a Dirichlet process mixture of Beta densities.

In this work we present a related approach for multivariate time series, with matrix-valued mix-

ture weights induced by a Hermitian positive definite Gamma process. The process construction

is inspired by Kingman’s construction of the Gamma process and utilizes an infinitely divisible

Hermitian positive definite Gamma distribution.

In conjunction with Whittle’s Likelihood, our proposed Bayesian nonparametric procedure for

spectral density inference is shown to perform well for both simulated and real data. Important

theoretical properties such as posterior consistency and contraction rates are also established.

As a preliminary result for these asymptotic considerations, we establish mutual contiguity of

Whittle’s Likelihood and the full Gaussian Likelihood for stationary multivariate Gaussian time

series, a fact that has so far only been known in the univariate case.

We also present a semiparametric model extension, accommodating a parametric linear model

in which the nonparametric time series component constitutes the error term. This model is

investigated with both numerical simulations and in terms of asymptotic properties of the joint

posterior and the marginal posterior of the linear model coefficients.



Zusammenfassung

Trotz zunehmendem Interesse an Bayesscher Zeitreihenanalyse in der Fachliteratur existieren

bis heute nur wenige Bayessche nichtparametrische Ansätze zur multivariaten Zeitreihenanalyse.

Die meisten Verfahren basieren auf der Whittle Likelihood, welche die Abhängigkeitsstruktur der

Zeitreihe in Form der Spektraldichtematrix einbezieht. Letztere wird oft mithilfe der Cholesky

Zerlegung modelliert, um positive Definitheit zu garantieren. Die Modellierung gewisser As-

pekte des Bayesschen Vorwissens wie zum Beispiel Erwartungswert oder Varianz gestaltet sich

jedoch oft schwierig bei Verwendung solcher nichtlinearer Transformationen. Darüber hinaus ist

die Gültigkeit von asymptotischen Gütekriterien wie Konsistenz und Kontraktionsraten der a

posteriori Verteilung nicht bekannt.

Eine andere Idee besteht darin, die Spektraldichtematrix mithilfe von zufälligen Maßen zu mod-

ellieren. Dies ist in Anlehnung an ein aus der Literatur bekanntes Verfahren für den univariaten

Fall, in welchem die normalisierte Spektraldichte analog zu einer Wahrscheinlichkeitsdichte mod-

elliert wird, zum Beispiel mit einer Dirichlet Prozess Mischung von Beta Dichten. In dieser Ar-

beit präsentieren wir einen verwandten Ansatz für multivariate Zeitreihen, mit matrixwertigen

Mischungsgewichten, welche von einem hermitesch positiv definiten Gamma Prozess induziert

werden. Die Prozesskonstruktion ist inspiriert von der Konstruktion nach Kingman und beruht

auf einer unendlich teilbaren hermitesch positiv definiten Gamma Verteilung.

Zusammen mit der Whittle Likelihood liefert das hier vorgestellte Bayessche nichtparametrische

Verfahren zur Spektraldichteschätzung sowohl für simulierte als auch für echte Daten gute Resul-

tate. Wichtige theoretische Eigenschaften wie Konsistenz und Kontraktionsrate der a posteriori

Verteilung werden auch hergeleitet. Als vorausgehendes Resultat für diese asymptotischen Be-

trachtungen leiten wir zudem die gegenseitige Kontiguität der Whittle Likelihood und der vollen

Gaussschen Likelihood für multivariate stationäre Gaussche Zeitreihen her. Dieses Resultat war

bisher lediglich für den univariaten Fall bekannt.

Darüber hinaus präsentieren wir eine Modellerweiterung in Form eines parametrischen lin-

earen Modells, in welchem die nichtparametrisch modellierte Zeitreihe den Fehlerterm darstellt.

Dieses wird sowohl in Form von numerischen Simulationen, als auch mittels asymptotischen

Gütekriterien der gemeinsamen a posteriori Verteilung und der marginalen a posteriori Verteilung

der linearen Modellkoeffizienten untersucht.
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Preface

Spectral Modeling of Stationary Time Series

Spectral theory is a very popular approach to mathematically describe the dependence of a time

series. The idea is to decompose the linear dependence structure as a superposition of peri-

odic components of different frequencies. Such a frequency-domain representation (or spectral

representation) lends itself naturally for inspection and quantification of periodic phenomena

in the data. To elaborate, consider the weak stationary and centered d-dimensional time se-

ries {Zt : t ∈ Z} with autocovariance function Γ(h) = E[Zt+hZ
T
t ] ∈ Rd×d. The famous Herglotz

Lemma (see Theorem 11.8.1 in Brockwell and Davis (1991)) states that Γ can be written in

terms of a superposition of 2π-periodic trigonometric functions:

Γ(h) =

∫
[0,2π]

exp(ihω)F (dω), h ∈ Z,

for a Hermitian positive semidefinite matrix valued measure F = (Fj,k)
d
j,k=1 on [0, 2π], that is,

Fj,j = Fj are finite measures and, for j 6= k, Fj,k = F
(r)
j,k + iF

(i)
j,k , where both F

(r)
j,k and F

(i)
j,k are

differences of finite measures and, for all measurable sets B, the d×d-matrix F (B) is Hermitian

positive semidefinite (Hpsd). The integral in the above representation is understood component-

wise. It may be noted that – despite their natural occurrence in spectral analysis of multivariate

time series – Hpsd measures have also emerged as mathematical research objects in their own

rights. For further details on them and their role in multivariate time series analysis, see e.g.

Salehi (1968), Robertson and Rosenberg (1968), Rosenberg (1974) and the references therein.

Throughout this work, we denote by ‖A‖ the Frobenius norm of a d×d matrixA, see (B.3) in the

Appendix. If the autocovariance function of Zt is absolutely summable, i.e.
∑

h∈Z ‖Γ(h)‖ <∞,

then F possesses a continuous Lebesgue density f : [0, 2π] → S̄+
d , where S̄+

d denotes the set of

Hpsd matrices. In this case, f is given by an inverse Fourier transform of Γ:

f(ω) =
1

2π

∑
h∈Z

Γ(h) exp(−ihω), 0 ≤ ω ≤ 2π. (0.1)

Since Γ(h) ∈ Rd×d and Γ(−h) = Γ(h)T holds for for all h ∈ Z (with AT denoting the transpose

of a matrix A), it is immediate that f(2π − ω) = f(ω)T holds for 0 ≤ ω ≤ π. Due to this

symmetry property, it suffices to consider F and f on [0, π] respectively. Since there is a one-

to-one relation between Γ and f , the spectral density matrix contains all the linear dependence

structure of the time series {Zt}. It constitutes the object of primary interest in this work.
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Bayesian Nonparametrics

Consider a statistical model with data (Z1, . . . , Zn) obeying a likelihood function Pnθ , with a

parameter θ belonging to some set Θ of possible parameters. In the Bayesian framework, θ is

modeled as random. Any knowledge about it (before observing any data) has to be employed in

terms of the prior distribution P (dθ). The connection between data and parameter is described

in terms of the likelihood Pnθ (Z1, . . . , Zn) = P (Z1, . . . , Zn|θ). Once the data (Z1, . . . , Zn) are

observed, they are considered as fixed in the Bayesian paradigm and the prior is updated with

the likelihood to yield the posterior distribution P (dθ|Z1, . . . , Zn), which is given by Bayes’

formula

P (dθ|Z1, . . . , Zn) =
P (Z1, . . . , Zn|θ)P (dθ)∫
Θ P (Z1, . . . , Zn|θ)P (dθ)

∝ P (Z1, . . . , Zn|θ)P (dθ), (0.2)

where the notation p(z) ∝ q(z) refers to the existence of a positive constant (not depending

on z) such that p(z) = cq(z) holds. Often the posterior distribution is not available in closed-

form to analyze, but can be approximated numerically by drawing a large random sample based

on (0.2), e.g. using Markov Chain Monte Carlo (MCMC) methods. There are many different

aspects that make the Bayesian paradigm appealing, such as having the inference results at hand

as a whole in terms of one single mathematical object, i.e. the posterior distribution. However,

the discussion of the advantages and disadvantages of the Bayesian framework in comparison

to the classical (frequentist) approach is far beyond the scope of this work and the reader is

e.g. referred to Section 1.1 in Ghosal and van der Vaart (2017).

A model is called parametric, if the parameter space is finite dimensional, e.g. Θ ⊂ Rd. Para-

metric models are known to be very powerful if they are well-specified (i.e. if the data generating

process belongs to the parametric class in consideration), however inference may be misleading

in case of misspecification, as discussed in Kleijn and Van der Vaart (2012).

On the other hand, in a nonparametric model, the parameter space is of infinite dimension.

Exemplary objects to think about include infinite series, measures or functions – such as the

spectral density of a stationary time series. Despite being less powerful than parametric ap-

proaches, nonparametric models are typically much more flexible in the sense that they cover

a much larger class of data generating processes for which “valid” (in an asymptotic sense to

be specified later) inference can be conducted. However, establishing such validity results in

Bayesian nonparametrics is much harder than in the finite dimensional case: In fact, an impor-

tant difference is that the prior matters even asymptotically and much care has to be taken not

to choose an “unfortunate” prior that ruins validity. Due to advantages in theory and due to

increasing computational power and capacity for numerical posterior approximation, Bayesian

nonparametrics have seen a steady growth over the last few decades and are currently a very

active field of research.

A semiparametric model consists of both a parametric and a nonparametric part. Semipara-

metric models exist in numerous variants (see Chapter 12 in Ghosal and van der Vaart (2017)

or Chapter 4 in Bickel et al. (1998) for examples) and in this work, we will restrict our attention

to partitioned models, i.e. parameters of the form (θ, η) ∈ Θ × H, with Θ being finite dimen-

sional and H being infinite dimensional. Often θ is considered the parameter of interest and η
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a nuisance parameter. As an example from the scope of this work, consider θ = µ ∈ Rd being

the mean and η = f being the spectral density of a stationary time series.

Outline

This work is structured in three main parts and an Appendix.

Part I presents the construction of an Hpsd Gamma process. After an introduction into random

processes and revisiting Kingman’s process construction from the univariate case in Chapter 1,

we will consider the infinitely divisible Hermitian positive definite (Hpd) Gamma distribution in

Chapter 2. Based on this distribution, we will construct an Hpd Gamma process in Chapter 3.

We will investigate distributional properties of the process concerning support and lower bounds

for probability masses. A practical representation in terms of an almost surely convergent infinite

series is derived and the Chapter is concluded with a numerical illustration of random samples

from the process.

Part II discusses a new Bayesian nonparametic method for multivariate spectral density infer-

ence, based on the Hpd Gamma process from Part I. The starting point is an elaboration of

Whittle’s Likelihood in Chapter 4. A main result of this Chapter is the mutual contiguity of

the full Gaussian Likelihood and Whittle’s Likelihood for Gaussian stationary time series, which

serves as a foundation for later asymptotic considerations and constitutes a result of independent

interest beyond the scope of Bayesian inference. A new nonparametric prior for the spectral

density matrix will be introduced in Chapter 5, where also the issue of numerical simulation of

posterior samples is discussed. Chapter 6 contains an illustration of the proposed method, in

terms of a real data example and a comparative simulation study. In Chapter 7, L1-consistency

of the posterior distribution is established and posterior contraction rates in the Hellinger topol-

ogy are derived.

Part III presents a semiparametric Bayesian linear model, consisting of a parametric Bayesian

linear model and a time series error term that is modeled nonparametrically. In Chapter 8, the

model is presented, in which the Gaussian stationary and centered error time series is modeled

with the spectral density matrix prior from Part II. The performance of the proposed method

is illustrated in terms of a comparative simulation study. Chapter 9 specializes to the case

of a mean model, in which the linear model consists only of an intercept and mean vector.

Contraction rates for the joint posterior of mean and spectral density are derived, and it is also

shown that the marginal posterior of the mean converges at a parametric rate under rather

mild prior assumptions. The chapter concludes with an outlook on how a Bernstein-von-Mises

theorem for the mean could be established.

Appendix A summarizes all the mathematical assumptions that have been used throughout this

work, whereas Appendix B contains several auxiliary definitions and results. To emphasize,

Section B.1 contains all important definitions and results from matrix algebra which are used

extensively throughout this work. The notation is summarized in Appendix C.





Part I.

Matrix-Valued Gamma Process



1.
Introduction

We start our considerations by a brief literature review about existing Bayesian nonparametric

approaches to time series analysis in Section 1.1. One of the most famous tools in Bayesian

nonparametrics is the Dirichlet process, which – along with its close connection to the Gamma

process – we will revisit in Section 1.2.

1.1. Bayesian Nonparametric Time Series Analysis

The standardized spectral measure F̃ = F/F ([0, π]), of a univariate stationary time series is

a probability measure on [0, π]. In particular, the corresponding standardized spectral den-

sity f̃ = f/F ([0, π]) is a probability density. This property has been used in several Bayesian

nonparametric modeling approaches, where well-established methods for modeling compactly

supported probability densities have been tailored to this application. As a prominent example,

the Bernstein-Dirichlet prior from Choudhuri et al. (2004a) relies on a mixture of Bernstein

polynomials with mixture weights induced by a Dirichlet process to model the normalized spec-

tral density f̃ on [0, π]. To elaborate, let G0 be a measure on [0, 1] and M > 0. Then the

Bernstein-Dirichlet prior is defined as

f̃(πx) =
k∑
j=1

G

((
j − 1

k
,
j

k

])
b(x|j, k − j + 1), 0 ≤ x ≤ 1,

G ∼ DP(MG0),

k ∼ p(k),

(1.1)

with b(·|j, k − j + 1) denoting the density of the Beta(j, k − j + 1) distribution (see (B.20) in

the Appendix) and DP(MG0) denoting the Dirichlet process with base measure MG0 (see the

upcoming Section 1.2 for a detailed discussion thereof). Here, G0 = EG is the prior mean of

the random probability measure G and the prior variance is proportional to M−1 (thus M is

also called precision or concentration parameter). We refer to measure-valued random vari-

ables as random measures. Accordingly, random probability measures are random variables that

take values in the space of probability measures. Furthermore, p(k) in (1.1) denotes the prior

probability mass function for the polynomial degree k ∈ N. The random function f̃ in (1.1) is
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continuous and integrates to 1, because
∑k

j=1G(((j − 1)/k, j/k]) = G((0, π]) = 1 with proba-

bility 1. See Appendix B.2 (and Lorentz (2012) and Petrone (1999)) for further details on the

Bernstein polynomial approximation of compactly supported functions.

It is also possible to model the normalized spectral measure F̃ itself with a Dirichlet process:

F̃ ∼ DP(MF̃0), (1.2)

where F̃0 is a measure on [0, π] that reflects the prior mean. However, with probability one,

the draws of a Dirichlet process are discrete probability measures (Blackwell, 1973), i.e. they

consist of countably many random probability mass atoms. It may be emphasized that the

notion of discreteness of measures is not to be confused with topological discreteness. While

the former is defined as consisting of at most countably many mass atoms, the latter denotes a

minimum distance between the atoms. The model (1.2) is not suited for inferring the spectral

density function, since the resulting spectral measure is discrete and in particular not absolutely

continuous with respect to the Lebesgue measure.

Instead of modeling the normalized spectral density f̃ and the normalized spectral measure F̃

respectively with a Dirichlet process as in (1.1) and (1.2), it is also possible to model the

(unnormalized) spectral density f and the (unnormalized) spectral measure F respectively with

an unnormalized process, i.e. a random measure F on [0, π] such that F ([0, π]) <∞ holds with

probability 1. As an example, a Gamma process (that is, an independent increment process with

Gamma distributed increments) is used in Section 4.4 in Hjort et al. (2010) for this purpose:

F (dω)
ind.∼ Ga(α(ω), β(ω)), α(ω) = M(ω)f0(ω)dω, β(ω) = M(ω), 0 ≤ ω ≤ π, (1.3)

where f0 is the continuous density of the prior mean spectral measure, and M : [0, π]→ (0,∞)

is a measurable concentration function. The notation in (1.3) is understood as the infinitesimal

increments of the random measure F on [0, π] being Gamma distributed (see the upcoming

Section 3.1 for a mathematically rigorous explanation of this rather vague statement). Similarly,

it is possible to formulate a prior for f as in (1.1), but with a Gamma process prior for the

mixture-weight inducing random measure G instead of a Dirichlet process.

In fact, the Dirichlet process is strongly related to the Gamma process, since it can be obtained

by a normalization thereof, see Chapter 9 in Kingman (1992). The Gamma process is a special

case of a more general concept, namely completely random measures. These are widely used

in Bayesian nonparametrics (see James et al. (2009), Lijoi (2010)). Before having a closer look

at the Gamma process and its connection to the Dirichlet process, we consider the problem of

spectral inference for multivariate time series.

In view of (1.1)–(1.3), the question arises whether there is an extension of the Gamma process or

of the Dirichlet process for modeling the spectral measure and density of multivariate time series.

Bayesian nonparametric approaches for related problems exist. For example, in Zhang et al.

(2014) the joint prior distribution of a set of random matrices is modeled by means of Dirichlet

processes, where the base measure is a matrix-variate distribution. The authors refer to this prior

as matrix-variate Dirichlet process. Since the number of matrices in consideration is fixed there

(to the observation length n), it is not clear how this approach could be embedded in a mixture

setting such as in (1.1). In Dunson et al. (2008), a matrix of (dependent) probability measures
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is constructed by stick-breaking, to which the authors refer as matrix stick-breaking process.

This method offers an alternative to parametric hierarchical models when clustering studies with

mutual borrowing of information is of interest. The constructed matrices of probability measures

do not obey any particular structure (such as Hermitian positive definiteness). In Belitser et al.

(2015), Bayesian nonparametric estimation of the intensity of an inhomogeneous Poisson process

is considered. Although it does not fall into the scope of time series analysis, the work of the

authors is related to this thesis in terms of the intersection between Poisson processes (see the

Hpd Gamma process construction in the upcoming Section 3) and asymptotic results in the

Bayesian nonparametric framework (see the upcoming Section 7). In Wolpert et al. (2011),

the parameters of a Bayesian wavelet mixture model are described by a Lévy random field and

in Zheng et al. (2009), the spectral density of a random field is modeled nonparametrically with a

Dirichlet process in conjunction with multi-dimensional Bernstein polynomials. This constitutes

a generalization of the Bernstein-Dirichlet prior (1.1) that is orthogonal to the method presented

in this thesis. In fact, an interesting idea for future research would be a combination of both

ideas, towards a Bayesian nonparametric method for multivariate random fields. In Cadonna

et al. (2016), a hierarchical Gaussian mixture model is employed in conjunction with Whittle’s

Likelihood for the log spectral density of multiple time series. The proposed method of the

authors yields computationally efficient inference for the spectral densities of the replicated

series, whereas the cross-correlation between the series is not of interest.

Surprisingly, there exists no approach for Bayesian nonparametric modeling of matrix-valued

measures, though there are several reasons that make such a modeling appealing. Most previous

approaches to nonparametric Bayesian multivariate time series analysis rely on a nonparametric

model of the components of the Cholesky decomposition of f−1 (Rosen and Stoffer, 2007; Zhang,

2016) to ensure positive definiteness, a methodology that has recently been extended to the case

of locally stationary time series Li and Krafty (2018). However, due to the non-linearity of the

Cholesky decomposition, it is difficult to employ prior knowledge about the mean and covariance

structure of f . Furthermore, the asymptotic properties of these procedures such as posterior

consistency and posterior contraction rates are not known.

1.2. The Dirichlet Process and the Gamma Process

The Dirichlet process is arguably one of the most widely used tools in Bayesian nonparametric

modeling. There are several equivalent characterizations of the Dirichlet process, which will be

briefly discussed in the following. These characterizations form the basis for many extensions

of the Dirichlet process (see Lijoi (2010) for an overview). We will also emphasize the strong

connection between the Dirichlet Process and the Gamma process before revisiting the famous

Kingman construction thereof, which constitutes the key technique for the construction of the

matrix-valued Gamma process in the upcoming Chapter 3. For what follows, let the underlying

space X fulfill the following assumption.

Assumption X1. Let X be a Polish space, i.e. a topological space that is homeomorphic to a

complete metric space having a countable dense subset. Let X be equipped with a locally compact

and σ-finite and non-trivial Borel measure denoted by dx.
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As suggested by the notation in X1, we may think of dx being equal to the Lebesgue measure

if X is a subset of a Euclidean space. This is e.g. the case for spectral inference (with X = [0, π]),

but the process construction discussed in this section is not limited to this case. Furthermore,

we denote byM the set of finite measures on X , endowed with the smallest σ-algebra such that

the mapping M 3 Φ 7→ Φ(A) is measurable for all Φ ∈ M and all A ⊂ X measurable (with

respect to the Borel σ-algebra). We denote by M∗ the set of probability measures on X .

The Classical Dirichlet Process

The original definition of the Dirichlet process (as given together with the proof of its existence

in Ferguson (1973)) is stated as follows: Let G0 be a probability measure on X and M > 0. A

random probability measure G on X is a Dirichlet process if for all (measurable) finite partitions

of X , the corresponding probability vector follows a Dirichlet distribution:

G ∼ DP(MG0) :⇐⇒

(G(A1), . . . , G(Ak)) ∼ Dir(MG0(A1), . . . ,MG0(Ak)), ∀k, ∀
k∑
j=1

Aj = X ,
(1.4)

where
∑

denotes the disjoint set union, and the Dirichlet distribution is as defined in (B.24) in

the Appendix. From this definition, it follows readily that the expected value of G is G0, with

variance proportional to M−1, see (B.25) in the Appendix (justifying the names base measure

or center measure (Ghosal and van der Vaart (2017)) for G0 and prior precision or concentration

parameter for M).

Another equivalent definition of DP(MG0) was given by Sethuraman (1994) and is of great

importance for many practical applications, as e.g. the sampling methods presented in Ishwaran

and James (2001). Indeed, in case of its existence, the Dirichlet process can be constructed by

a stick-breaking with independent identically distributed (iid) Beta weight proportions and G0

distributed atoms:

G ∼ DP(MG0) ⇐⇒

G
d
=
∑
j≥1

pjδZj , pj = Vj

j−1∏
l=1

(1− Vl), Vj
iid∼ Beta(1,M), Zj

iid∼ G0,
(1.5)

where the sequences {Vj} and {Zj} are independent and δZ denotes the Dirac delta function.

The name stick-breaking comes from the conception of the probability mass G(X ) of G being a

stick of length 1. The first atom weight p1 is given by breaking a (random) fraction V1 from the

stick. From the remaining fraction (1−V1) of the stick, a fraction V2 is broken to determine p2.

And so on. For further details on the stick-breaking, see Sethuraman (1994) or Section 4.2.5

in Ghosal and van der Vaart (2017).

Recall the definition of the Gamma distribution from (B.26) in the Appendix. The Dirichlet

process can also be conceived as a normalized Gamma process. This is an infinite-dimensional

extension of the well-known construction of the k-dimensional Dirichlet distribution as vector

of k independent Gamma variables divided by their sum:

γj
ind.∼ Ga(αj , 1), j = 1, . . . , k =⇒

(
γ1∑
γj
, . . . ,

γk∑
γj

)
∼ Dir(α1, . . . , αk), (1.6)
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(where this distributional equality can readily be verified by using the densities of the Gamma

and Dirichlet distributions). To elaborate, let Φ be a completely random measure on X , i.e. Φ is a

random measure (anM-valued random variable) such that the random variables Φ(A1), . . . ,Φ(Ak)

are independent for all disjoint subsets A1, . . . , Ak of X and all k > 0. Furthermore, let the in-

crements of Φ be Gamma distributed:

Φ(dx)
ind.∼ Ga(MG0(dx),M). (1.7)

The infinitesimal notation in (1.7) is understood as

Φ(A) ∼ Ga(MG0(A),M), for all measurable A ⊂ X

and the notation will be made more precise for the more general multivariate setting in the

upcoming Section 3.1. For convention, we define Ga(0,M) to be the degenerate measure at {0},
for everyM > 0. We shall refer to Φ also as completely random Gamma measure, or (in particular

for X ⊂ R) as Gamma process with independent increments or – whenever the context is clear

– simply as Gamma process. It is known (see Chapter 9 in Kingman (1992)) that

G ∼ DP(MG0) ⇐⇒ G
d
=

Φ

Φ(X )
, Φ as in (1.7),

which is an infinite-dimensional generalization of (1.6). The Gamma process Φ from (1.7) is

called homogeneous, because the precision parameter M is a fixed constant that does not vary

along X . In the more general case of an inhomogeneous process, M is a measurable mapping

from X to (0,∞) and Φ(dx)
ind.∼ Ga(M(x)G0(dx),M(x)), where this notation will be made

precise later in (3.5). The Dirichlet process is by far not the only process than can be constructed

by normalization. In fact, the class of random probability distributions that are obtained by

a normalization of completely random measures are known as normalized random measures

with independent increments (NRMIs) in the literature Regazzini et al. (2003). Applications

of NRMIs in a Bayesian nonparametric framework have been considered in James et al. (2009)

(see also Lijoi (2010) for an overview). Before proceeding to the Hpd measure setting, we will

highlight the Kingman construction of Φ in the following section. This technique shows how

the Gamma process Φ (and hence also the Dirichlet process) can be constructed from a Poisson

process Π on X × [0,∞).

Kingman’s Construction of the Gamma Process

In this section, we briefly revisit the Kingman construction (see Chapter 8 and Chapter 9 in

Kingman (1992)), of the Gamma process Φ from (1.7). The construction is based on Poisson

processes and for a brief introduction into this topic along with the most important results, the

reader may confer Section B.4 in the Appendix. Let X fulfill Assumption X1 and consider the

Borel space Y := X × [0,∞), endowed with the product σ-algebra. Let G0 be a probability

measure on X and M > 0. Define the measure α on X as α(dx) = MG0(dx) and consider

the mapping β : X → (0,∞), given as β(x) ≡ M . Let Π be a Poisson-process on Y with mean

measure

ν(dx, dz) =
exp(−β(x)z)

z
dzα(dx). (1.8)
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The infinitesimal notation for ν in (1.8) is understood as follows: Let B ⊂ Y be measurable.

Then ν(B) :=
∫
Y 1B(x, z) exp(−β(x)z)

z dzα(dx), with 1B denoting the indicator function of the

set B. Now define

Φ ∼ CRM(ν) :⇐⇒

Φ(A) =
∑

(x,z)∈Π

1A(x)z, A ∈ B(X ), Π ∼ PP(ν), (1.9)

with B(X ) denoting the Borel sets in X . It follows from the independence property of Π (see

Appendix B.4) that Φ(A1), . . . ,Φ(Ak) are independent for each disjoint partition A1, . . . , Ak
of X . Hence Φ defines a completely random measure, motivating the notation Φ ∼ CRM(ν).

The measure ν is called the Poisson mean measure of Φ.

Remark. An intuition of (1.9) is as follows: A realization of Π consist of a countable set of

pairs (x, z) ∈ X×[0,∞). Each such pair can be interpreted as a mass atom x and a corresponding

weight z. The (random) measure value Φ(A) of A ⊂ X is given by summing up all the weights z

corresponding to atoms x ∈ A of (x, z) ∈ Π. The mean measure ν of Π controls the mass/weight

distribution.

Campbell’s Theorem (see Theorem B.19 in the Appendix) describes the distribution of Φ ∼
CRM(ν) in terms of the Laplace transform:

E exp(−tΦ(A)) = exp

(
−
∫
Y

(1− exp(−t1A(x)z)) ν(dx, dz)

)
= exp

(
−MG0(A)

∫ ∞
0

(1− exp(−tz)) exp(−Mz)z−1dz

) (1.10)

for t ≥ 0. It is known (see e.g. (9.6) in Kingman (1992)) that the last line in (1.10) is equal

to (1 + M−1t)−MG0(A), which shows that Φ(A) ∼ Ga(MG0(A),M). In particular, the total

mass Φ(X ) ∼ Ga(M,M) is finite with probability one. Accordingly, the construction (1.9)

indeed yields the Gamma process (1.7). The key property of the Gamma distribution for this

construction to be valid is its infinite divisibility. Recall that a probability distribution P is

called infinitely divisible if, for every n ∈ N, there exist iid random variables Xn,1, . . . , Xn,n such

that Xn,1 + . . .+Xn,n
d
= P . This property is needed because of the one-to-one relation between

infinitely divisible laws and so called Lévy–Khinchine representations such as (1.10). We will

elaborate this in more detail in the upcoming Section 2.1.

The Gamma process has received considerable attention in the Bayesian nonparametric liter-

ature. As an example, in Roychowdhury and Kulis (2015) a Gamma process is used for prior

modeling of latent structures within a count data framework. The authors also derive a stick-

breaking representation of the Gamma process similar to (1.5) and quantify truncation error

bounds.

The Matrix Case: A Negative Result

The most famous extension of the Dirichlet distribution to the random Hpd matrix case is the

complex matrix variate Dirichlet distribution, see Troskie (1967), Cui et al. (2005), Gupta and
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Bedoya (2007) and Nagar and Gupta (2009). To elaborate, let k > 0 and α1, . . . , αk > (d− 1).

The k-vector of Hermitian d × d matrices (U1, . . . ,Uk) is said to follow the complex matrix

variate Dirichlet distribution Dird×d(α1, . . . , αk), if its joint probability density function is given

by

p(U1, . . . ,Uk) ∝
k∏
j=1

|Uj |αj−d, 0 < Uj < Id,

k∑
j=1

Uj = Id, (1.11)

where |A| denotes the absolute value of the determinant of the matrix A and A < B is un-

derstood as B −A being Hpd. The question arises whether there exists a generalization of the

Dirichlet process (1.4) with the matrix variate Dirichlet distribution Dird×d, to a matrix variate

Dirichlet process. A negative answer to this question has been given in Bobecka et al. (2010).

A deeper insight can be gained by the following observations. Consider the complex Wishart

distribution CWishd×d(η,Σ), which is defined on the set S+
d of Hpd matrices in terms of the

probability density

fW (Z) =
1

Γ̃d(η)|Σ|η
etr(−Σ−1Z)|Z|η−d, Z ∈ S+

d , (1.12)

where η > d−1 denotes the degrees of freedom and Σ ∈ S+
d the covariance matrix. See Goodman

(1963) for further details. A similar relation as (1.6) connects the complex Wishart distribution

with the matrix variate Dirichlet distribution (see Theorem 1.8 in Cui et al. (2005)):

Wj
ind.∼ CWishd×d(ηj , Id), j = 1, . . . , k,

=⇒
(
Σ
−1/2
W W1Σ

−1/2∗
W , . . . ,Σ

−1/2
W WkΣ

−1/2∗
W

)
∼ Dird×d(η1, . . . , ηk),

(1.13)

where Σ
1/2
W denotes the Hpd square root (see (B.15) in the Appendix) of ΣW =

∑k
j=1Wj .

From (1.12), it can be seen that the probability density of the complex Wishart distribution is

an Hpd matrix-valued generalization of the Gamma distribution. But a process construction as

in Section 1.2 can not be conducted with the complex Wishart distribution, because it lacks the

neccessary property of infinite divisibility (Lévy, 1948).

A closely related approach has been presented in Bru (1991), where the authors defined ran-

dom processes with Wishart distributed marginals in terms of solutions to stochastic differential

equations. This can be conceived as a generalization of a univariate process with χ2
m-distributed

marginals (which can be constructed as the sum of squares of m independent standard Wiener

Processes), to the case of non-integer values of m and to the matrix case. Although the Wishart

marginals of these processes are positive semidefinite (even positive definite for m large enough),

this property does not translate to the process increments (think of a non-increasing process,

where the increments may be negative). Accordingly, this approach is not suited for the frame-

work of random measures, where nonnegative increments are an intrinsically necessary property

for modeling the random measure increments.

Motivated from these negative results, we will present a different generalization of the Gamma

distribution to the random Hpd matrix case that has the desirable property of infinite divisibility

in the upcoming Chapter 2. This distribution will be used to construct an Hpd Gamma process

(similar to (1.9)) in the upcoming Chapter 3.



2.
Infinitely Divisible Hpd Gamma

Distributions

A class of cone-valued infinitely divisible Gamma distributions has been proposed in Pérez-

Abreu and Stelzer (2014). There the authors also considered the special case of the cone of

symmetric positive definite (spd) matrices, yielding the class of infinitely divisible spd Gamma

distributions. In the following Section 2.2, we present a similar specialization thereof: the class

of infinitely divisible complex Hermitian positive definite (Hpd) matrix Gamma distributions.

Several properties of the spd matrix distributions derived in Pérez-Abreu and Stelzer (2014)

will be translated to the Hpd matrix case. Distributional properties will be investigated in

Section 2.3 and a special case (the Hpd AΓ distribution) discussed in Section 2.4.

2.1. Preliminaries

We will start our considerations by a brief introduction into infinitely divisible distributions on

cones and in particular the famous Lévy Khinchine representation. This is followed by a brief

introduction into the basic concepts of matrix calculus and functions of matrix argument.

2.1.1. Infinitely Divisible Distributions on Cones

Recall that a cone K is a subset of a Hilbert space (X , 〈·, ·〉), which is closed under multiplication

with the positive real numbers, i.e. αZ ∈ K for all α > 0 and Z ∈ K. A cone is called proper, if

it is closed, not equal to the trivial cone {0} and if it does not contain a straight line through 0.

The dual cone of K is defined as K′ := {Θ ∈ X : 〈Θ,Z〉 ≥ 0 for all Z ∈ K}. Let X be endowed

with the Borel σ-algebra. For a probability distribution µ on K, the Laplace transform of µ is

defined as

Lµ(Θ) :=

∫
K

exp(−〈Θ,Z〉)µ(dZ), Θ ∈ K′.

It is clear that the real half-line [0,∞) is a proper cone. Another important example is the

space Sd of Hermitian d × d matrices, endowed with the inner product 〈X,Z〉 := tr(XZ)

and the open cone S+
d ⊂ Sd of Hermitian positive definite matrices and its closure S̄+

d , the
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closed cone of Hermitian positive semidefinite matrices. It is clear that S̄+
d is proper and it

follows from Lemma B.7 in the Appendix that (S̄+
d )′ = S̄+

d . The boundary S̄+
d \ S

+
d consists of

all Hermitian positive semidefinite matrices that are not invertible. For a random element X

in S̄+
d with probability distribution µ, the Laplace transform becomes Lµ(Θ) = E etr(−ΘX)

for Θ ∈ S̄+
d , where etr(Z) := exp(trZ) denotes the exponential trace. Recall that a probability

distribution µ is called infinitely divisible if for every n ∈ N there exist independent identically

distributed random variables X1,n, . . . , Xn,n such that the sum
∑n

j=1Xj,n has distribution µ.

The following result will be of great importance.

Theorem 2.1 (Lévy Khinchine representation on proper cones). Let K be a proper cone on

a finite-dimensional Hilbert space and let µ be a probability distribution on K. Then µ is in-

finitely divisible if and only if there exists Γ0 ∈ K and a measure ν on K with ν({0}) = 0

and
∫
Kmin(1,

√
〈Z,Z〉)ν(dZ) <∞ such that the Lévy Khinchine representation

Lµ(Θ) = exp

(
−〈Θ,Γ0〉 −

∫
K

(1− exp(−〈Θ,Z〉))ν(dZ)

)
, Θ ∈ K′, (2.1)

holds for the Laplace transform Lµ of µ.

Proof. See Theorem 1 and Remark 2 in Pérez-Abreu and Rosiński (2007).

The measure ν in Theorem 2.1 is called the Lévy measure of µ. The parameter Γ0 can be

conceived as a mere translation parameter. Indeed, for a random element X ∼ µ in K with µ

as in (2.1), let X̃ ∼ µ̃ with µ̃ defined in terms of the Lévy Khinchine representation

Lµ̃(Θ) = exp

(
−
∫
K

(1− exp(−〈Θ,Z〉))ν(dZ)

)
, Θ ∈ K′.

Then it is not difficult to see that X
d
= X̃+Γ0. The result from Theorem 2.1 can be extended to

infinite-dimensional spaces, see Dettweiler (1976) and Pérez-Abreu and Rosiński (2007). For a

formulation of the Lévy Khinchine representation for Euclidean spaces instead of cones (involv-

ing the Characteristic Function rather than the Laplace transform), see e.g. Section 8 in Sato

(1999). In what follows, we will neglect the translation parameter Γ0 from the Lévy Khinchine

representation (2.1) and assume Γ0 = 0.

A particularly important class of infinitely divisible distributions are the Compound Poisson

distributions, which are characterized by the following result.

Theorem 2.2. Let K be a proper cone on a finite-dimensional Hilbert space and ν∗ be a prob-

ability measure on K. Consider the random matrix X := SN with S0 := 0 and Sk :=
∑k

j=1 Yj

for k ≥ 1 and Yj
iid∼ ν∗ and a random variable N ∼ Poi(C) which is independent of {Yj},

where C is a positive constant. Then X is called Compound Poisson. The Laplace transform

of X is given by

E exp (−〈Θ,X〉) = exp
(
C (Lν∗(Θ)− 1)

)
, Θ ∈ K′.

In this case, we write X ∼ CPoi(C, ν∗).
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Proof. The result is shown for Rd (involving the Characteristic Function rather than the Laplace

Transform) in Theorem 4.3 in Sato (1999) and the proof for the cone case follows along the

lines.

Any infinitely divisible distribution with finite Lévy measure ν is Compound Poisson, as the

following result summarizes.

Lemma 2.3. Let K be a proper cone on a finite-dimensional Hilbert space and let X be an

infinitely divisible random element in K with finite Lévy measure ν. Then X ∼ CPoi(C, ν∗)

with C := ν(K) and ν∗ := ν
C .

Proof. From Theorem 2.1, we get

E exp(−〈Θ,X〉) = exp

(
−
∫
K

(1− exp(−〈Θ,Z〉)) ν(dZ)

)
, Θ ∈ K′.

Since ν is finite, the right hand side can be computed as

exp

(∫
K

exp (−〈Θ,Z〉) ν(dZ)− ν(K)

)
= exp

(
C

(∫
K

exp (−〈Θ,Z〉) ν∗(dZ)− 1

))
,

which – in view of Theorem 2.2 – concludes the proof.

Generally speaking, any infinitely divisible distribution µ with Lévy measure ν (not necessarily

finite) can be approximated by a sequence of Compound Poisson distributions CPoi(Cn, ν
∗
n)

with Cn → ν(K) (which may be +∞) as n → ∞, see e.g. p.44 f. in Sato (1999). We will make

use of such an approximation technique in the proof of the following results, see e.g. the proof

of the upcoming Theorem 2.6.

For an infinitely divisible random element X in S̄+
d , the Lévy Khinchine representation special-

izes as

E etr(−ΘX) = exp

(
−
∫
S̄+d

(1− etr(−ΘZ))ν(dZ)

)
, Θ ∈ S̄+

d , (2.2)

with Lévy measure ν on S̄+
d fulfilling ν({0}) = 0 and

∫
S̄+d

min(1,
√

tr(Z2))ν(dZ) <∞. On Sd, we

will consider the trace norm ‖A‖T := tr((X2)1/2), whereA1/2 denotes the Hpd square root of the

Hpd matrix A (see (B.7) and (B.15) in the Appendix). The trace norm is not the norm induced

by the inner product 〈A,B〉 = tr(AB). However, we will use it in the following considerations

because for A ∈ S̄+
d it obeys the particularly convenient representation ‖A‖T = trA (see (B.9)

in the Appendix). Let Sd denote the unit sphere in (Sd, ‖ · ‖T ). Let S+
d = S̄+

d ∩ Sd be the

intersection of the unit sphere with the cone, and S̄+
d its closure. Note that

S+
d =

{
U ∈ S+

d : trU = 1
}
. (2.3)

Every Z ∈ S̄+
d \ {0} can be decomposed into a radial part r := ‖Z‖T ∈ (0,∞) and a spherical

part U := Z
‖Z‖T ∈ S̄+

d such that Z = rU . We call this decomposition S̄+
d
∼= S̄+

d × [0,∞) the Polar
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decomposition of the cone S̄+
d . With respect to this Polar decomposition, the Lévy Khinchine

representation from (2.2) for an infinitely divisible random element X in S̄+
d specializes as

E etr(−ΘX) = exp

(
−
∫
S̄+d

∫ ∞
0

(1− etr(−rΘU))ν(dU , dr)

)
, Θ ∈ S̄+

d , (2.4)

with the Lévy measure ν being defined on S̄+
d × [0,∞) and fulfilling ν(S̄+

d , {0}) = 0 as well

as
∫
S̄+d

∫∞
0 min(1, r)ν(dU , dr) <∞.

2.1.2. Matrix Calculus

For Z ∈ Sd, write Z = Z1 + iZ2 with Z1 = (z1jk) ∈ Rd×d being symmetric and Z2 = (z2jk) ∈
Rd×d being skew symmetric. Then the Lebesgue measure dZ on Sd is defined as

dZ := dZ1dZ2, dZ1 :=

d∏
j=1

d∏
k=j

dz1jk, dZ2 :=

d∏
j=1

d∏
k=j+1

dz2jk. (2.5)

The infinitesimal notation in (2.5) is understood as follows: For any measurable A ⊂ Sd, the

Lebesgue mass LSd(A) of A in Sd ∼= Rd2 is

LSd(A) :=

∫
Sd
1A(Z)dZ :=

∫
Rd2

1A(Z1 + iZ2)dZ1dZ2,

see (1.2.10) and (3.0.2) in Mathai (1997). Similarly, for any measurable function g : Sd → [0,∞),

the Lebesgue integral∫
Sd
g(Z)dZ :=

∫
Rd2

g(Z1 + iZ2)dZ1dZ1

is defined as usual.

For U ∈ S̄+
d , write U = U1 + iU2 with real matrices U1,U2, where we observe from (2.3) that

the last diagonal entry of U1 can be written as u1dd = 1 −
∑d−1

j=1 u1jj . Thus any measurable

function h : S̄+
d → [0,∞) can be written in the form h(U) = h(ũ1,U2), where ũ1 is a real vector

of dimension d̃ := d(d+1)
2 − 1 containing all functionally independent entries of U1. Accordingly,

we define dU = dũ1dU2 (with dũ1 denoting the Lebesgue measure on Rd̃ and dU2 defined as

in (2.5)) and∫
S̄+d
h(U)dU :=

∫
Rd2−1

1{U1+iU2∈S̄+d }
h(U1 + iU2)dũ1dU2.

In particular, for B ⊂ S̄+
d measurable, the Lebesgue mass LS̄+d (B) of B in S̄+

d is

LS̄+d (B) :=

∫
S̄+d
1B(U)dU =

∫
Rd2−1

1B(U1 + iU2)dũ1dU2 (2.6)

Some further results from matrix calculus are collected in Appendix B.1 and referenced whenever

needed.
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2.2. A Class of Infinitely Divisible Hpd Gamma Distributions

Let α be a finite measure on S̄+
d and let β : S̄+

d → (0,∞) be measurable such that the following

assumption is fulfilled:

Assumption α1. The integral
∫
S̄+d

log
(

1 + 1
β(U)

)
α(dU) is finite.

The infinitely divisible Hpd Gamma distribution Gad×d(α, β) with parameters α and β is defined

by means of its Laplace transform in Polar decomposition (see (2.4)):

X ∼ Gad×d(α, β) :⇐⇒

E etr(−ΘX) = exp

(
−
∫
S̄+d

∫ ∞
0

(1− etr(−rΘU))
exp(−β(U)r)

r
drα(dU)

)
(2.7)

for all Θ ∈ S̄+
d . The distribution of type (2.7) has been presented in Pérez-Abreu and Stelzer

(2014) for general cones, and we will investigate the special case of Hpd matrices in more

detail. It has been shown in Pérez-Abreu and Stelzer (2014) (see Proposition 3.3 there) that

the Gad×d(α, β) distribution (2.7) is well-defined if and only if Assumption α1 is fulfilled. In

this case, it follows from Theorem 2.1 that∫
S̄+d

∫ ∞
0

min(1, r)
exp(−β(U)r)

r
drα(dU) <∞. (2.8)

If β ≡ β0 > 0 is constant, Gad×d(α, β) is called homogeneous. Conducting the integration with

respect to the radial part dr in (2.7) (see Proposition 3.10 in Pérez-Abreu and Stelzer (2014)

for the precise argument) yields the alternative representation of the Laplace transform

E etr(−ΘX) = exp

(
−
∫
S̄+d

log

(
1 +

tr(ΘU)

β(U)

)
α(dU)

)
. (2.9)

Being defined in terms of the Lévy Khinchine representation of its Laplace transform (2.7),

the Hpd Gamma distribution Gad×d(α, β) is necessarily infinitely divisible, according to the

characterization of Theorem 2.1. The measure

ν(dU , dr) :=
exp(−β(U)r)

r
drα(dU) (2.10)

from (2.7) is the Lévy measure of Gad×d(α, β) on S̄+
d
∼= S̄+

d × [0,∞). It may be noted that (2.10)

accommodates the one-dimensional Gamma distribution, since for d = 1 we have S̄+
d = {1},

reducing α to a nonnegative number and β to a positive number. Considering this, the name Hpd

Gamma is justified since P (X ∈ S̄+
d ) = 1 and, under appropriate assumptions on α, even

P (X ∈ S+
d ) = 1, see the upcoming Theorem 2.6. In Pérez-Abreu and Stelzer (2014), the

authors investigated a real spd version of the Gad×d distribution in more detail and the Hpd

Gamma distribution has similar properties as its spd counterpart. As an example, in the next

result, the distribution under Hpd-preserving invertible linear transformations is given.

Lemma 2.4. Let X ∼ Gad×d(α, β) with α and β fulfilling Assumption α1. Let C ∈ Cd×d be

invertible. Let C−∗ := (C∗)−1 be the inverse of the Hermitian conjugate of C. Define the C-

weighted trace norm as ‖B‖C := ‖C−1BC−∗‖T and denote the unit sphere in S+
d with respect
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to ‖ · ‖C by S+
C := {V ∈ S+

d : ‖V ‖C = 1}, and the closure thereof as S̄+
C . Then Y := CXC∗ is

distributed as Gad×d(α̃C , β̃C), where

α̃C(E) =

∫
S̄+C

1E

(
V

‖V ‖T

)
αC(dV ), E ⊂ S̄+

d measurable,

β̃C(U) = βC

(
U

‖U‖C

)
‖U‖C , U ∈ S̄+

d

with the measure αC on S̄+
C and the mapping βC : S̄+

C → (0,∞) given by

αC(F ) = α(C−1FC−∗), F ⊂ S̄+
C measurable,

βC(V ) = β(C−1V C−∗), V ∈ S̄+
C .

with C−1FC−∗ := {C−1V C−∗ : V ∈ F}.

Proof. The result is well-known in the literature (see Proposition 5.3 in Pérez-Abreu and Stelzer

(2014)), however since there is no proof available, it will be presented here for the sake of

completeness. For Θ ∈ S̄+
d , we compute, using (2.7),

E etr(−ΘY ) = E etr(−ΘCXC∗) = E etr(−C∗ΘCX)

= exp

(
−
∫
S̄+

∫ ∞
0

(1− etr(−rC∗ΘCU))
exp(−rβ(U))

r
drα(dU)

)
= exp

(
−
∫
S̄+

∫ ∞
0

(1− etr(−rΘCUC∗))exp(−rβ(U))

r
drα(dU)

)
.

Employing the transformation S̄+ 3 U 7→ UC := CUC∗ ∈ S̄+
C yields

E etr(−ΘY ) = exp

(
−
∫
S̄+C

∫ ∞
0

(1− etr(−rΘUC))
exp(−rβC(UC))

r
drαC(dUC)

)
,

Now consider the transformation S̄+
C 3 UC 7→ V := ‖UC‖−1

T UC ∈ S̄+. Note that UC =

‖V ‖−1
C V . Denote by α̃C the measure on S̄+ induced by αC via the transformation UC 7→ V .

Then

E etr(−ΘY ) = exp

(
−
∫
S̄+

∫ ∞
0

(1− etr(−rΘ‖V ‖−1
C V ))

exp(−rβC(‖V ‖−1
C V ))

r
drα̃C(dV )

)

= exp

(
−
∫
S̄+

∫ ∞
0

(1− etr(−ρΘV ))
exp(−ρβ̃C(V ))

ρ
dρα̃C(dV )

)
,

where the transformation (0,∞) 3 r 7→ ρ := ‖V ‖−1
C r ∈ (0,∞) was used in the last step and β̃C

is as in the claim. This concludes the proof.

2.3. Distributional Properties

In general, there is no closed form probability density available for the Gad×d(α, β) distribution.

Quantifying its support within the cone of Hpsd matrices is still possible – using different
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techniques that rely on the Lévy Khinchine representation instead. Such a result will be derived

in this section, see the upcoming Theorem 2.6.

Recall that for any measure µ on a Borel space X , the support of µ is defined as

supp(µ) := {x ∈ X : µ(Ux) > 0 for every open neighborhood Ux of x}. (2.11)

For a random variable (or matrix) X, the support supp(X) of X is defined as the support of

the probability distribution PX of X. Recall the notion of compound Poisson distributions from

Theorem 2.2. We will start with a general result for Compound Poisson random matrices.

Lemma 2.5. Let ν be a finite nontrivial measure on S̄+
d with ν({0}) = 0 and let C := ν(S̄+

d )

as well as ν∗ = ν
C . Consider the Compound Poisson random matrix X ∼ CPoi(C, ν*). Then

the probability distribution PX of X fulfills

PX = exp(−C)
∞∑
k=0

1

k!
νk, (2.12)

where νk denotes the k-fold convolution of ν (see Section 1.3.1 in Rudin (1962)), i.e. ν0 :=

δ0 and νk := νk−1 ∗ ν with the convolution µ1 ∗ µ2 of two finite measures µ1, µ2 on a Borel

space X being defined as (µ1 ∗ µ2)(E) =
∫
X
∫
X 1E(x + y)µ1(dx)µ2(dy) for E ⊂ X measurable.

In particular, it holds

supp(ν) ⊂ supp(X) ⊂ S̄+
d .

Proof. The representation (2.12) follows from X
d
= SN with N ∼ Poi(C) and Sk for k ≥ 0 as in

Theorem 2.2. Since P (N = 1) = C exp(−C) > 0, this implies supp(ν) = supp(ν∗) ⊂ supp(X).

Furthermore, for every k ∈ N it holds supp(Sk) ⊂ S̄+
d by Lemma B.27 in the Appendix and

since supp(X) is the closure of
⋃∞
k=0 supp(Sk), this concludes the proof.

Theorem 2.6. Let α, β fulfill Assumption α1 and let X ∼ Gad×d(α, β).

(a) Then supp(X) ⊂ S̄+
d .

(b) If supp(α) contains at least d2 linearly independent (in Sd) elements, then the distribution

of X has a probability density with respect to the Lebesgue measure on Sd. In particu-

lar, P (X ∈ S̄+
d \ S

+
d ) = 0 in this case.

(c) If supp(α) = S̄+
d , then supp(X) = S̄+

d .

Proof. The proof of (a) is inspired by the one-dimensional case (see Theorem 24.7 in Sato (1999)),

and relies on the idea of approximating the distribution of X by a sequence (Xn) of compound

Poisson distributed variables. To elaborate, for the Lévy measure ν(dU , dr) of the Gad×d(α, β)

distribution from (2.10), define νn(dU , dr) := 1(1/n,∞)(r)ν(dU , dr) and define the distribution

of Xn for n ∈ N in terms of the Laplace transform

E etr(−ΘXn) := exp

(
−
∫
S+d

∫ ∞
0

(1− etr(−rΘU))νn(dU , dr)

)
, Θ ∈ S̄+

d .
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Since ∫
S+d

∫ ∞
0

νn(dU , dr) =

∫
S+d

∫ ∞
1/n

ν(dU , dr) ≤ n
∫
S+d

∫ ∞
0

min(r, 1)ν(dU , dr) <∞

for every n by (2.8), it follows from Lemma 2.3 that Xn is Compound Poisson. Since supp(νn) ⊂
supp(ν) ⊂ S̄+

d (where the second inclusion is trivial by the definition of ν from (2.10)), it follows

from Lemma 2.5 that supp(Xn) ⊂ S̄+
d for every n. As n→∞, it holds

E etr(−ΘXn)→ E etr(−ΘX), Θ ∈ S̄+
d

by an application of Lebesgue’s Dominated Convergence Theorem. The Lévy Continuity The-

orem for Laplace transforms (see Theorem 4.3 in Kallenberg (1997)) yields that Xn converges

to X in distribution. In particular, it holds 1 = P (Xn ∈ S̄+
d ) → P (X ∈ S̄+

d ) as n → ∞,

concluding (a). Part (b) is Proposition 3.6 in Pérez-Abreu and Stelzer (2014) and part (c) will

be shown in the upcoming Corollary 3.5.

2.4. The Hpd AΓ Distribution

In its general parametrization from Section 2.2, the infinitely divisible Hpd Gamma distribution

offers great flexibility in terms of its parameters α and β. We now consider a special case thereof,

the so-called AΓ distribution which has been considered for the spd matrix case in Pérez-Abreu

and Stelzer (2014). It has the desirable properties that all its cumulants are available analytically.

This makes modeling of key distributional features such as mean and covariance structure easily

possible, as will be shown in the upcoming Lemma 2.9.

Let η > d − 1 and let ω > 0 and Σ ∈ S+
d . Denote by Σ1/2 the Hpd square root of Σ. Then

the AΓ distribution with parameters η, ω and Σ is defined as

Y ∼ AΓ(η, ω,Σ) :⇐⇒ Y
d
= Σ1/2XΣ1/2 with X ∼ AΓ(η, ω, Id),

X ∼ AΓ(η, ω, Id) :⇐⇒ X ∼ Gad×d(ωαη, 1),
(2.13)

where the measure αη on S̄+
d is defined as

αη(dU) =
Γ(dη)

Γ̃d(η)
|U |η−ddU , (2.14)

with the Gamma function Γ and the complex multivariate Gamma function Γ̃d (see (B.14) in

the Appendix). From Lemma B.10 in the Appendix, it follows that αη is a probability measure

and in particular (2.13) is well-defined, since ωαη is a finite measure, having total mass ω. The

next Lemma shows that even for Σ 6= Id, the AΓ(η, ω,Σ) distribution is also a member of

the Gad×d(α, β) family and gives explicit formulas for the distributional parameters α and β.

Lemma 2.7. The AΓ(η, ω,Σ) distribution is the Gad×d(ωαη,Σ, βΣ) distribution with

αη,Σ(dU) = |Σ|−η tr(Σ−1U)−dηαη(dU)

and

βΣ(U) = tr(Σ−1U)

and αη as in (2.14).
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Proof. By Lemma 2.4 with C = Σ1/2 and α = αη, it holds βΣ(U) = tr(Σ−1U) and α̃C(E) =

ω
∫
1E(V /‖V ‖T )αC(dV ) = ωαη,Σ(E). Without loss of generality, we take ω = 1 in the follow-

ing. This yields

αη,Σ(E) =

∫
S̄+
Σ1/2

1E

(
V

‖V ‖T

)
αΣ1/2(dV )

=

∫
S̄+d
1E

(
Σ1/2UΣ1/2

‖Σ1/2UΣ1/2‖T

)
αη(dU)

=
Γ(ηd)

Γ̃d(η)

∫
S+d
1E

(
Σ1/2UΣ1/2

‖Σ1/2UΣ1/2‖T

)
|U |η−ddU ,

(2.15)

where the transformation S+
Σ1/2 3 V 7→ U := Σ−1/2V Σ−1/2 ∈ S+

d was employed. We will

introduce an auxiliary radial Gamma component, to lift the integral from the sphere S+
d to the

cone S+
d , where in the latter we can apply transformations whose Jacobians are known. Indeed,

using the transformation transformation

Z = rU , dZ = rd
2−1drdU (2.16)

from Lemma B.8 in the Appendix, we obtain

αη,Σ(E) =
1

Γ̃d(η)

∫
S+d

∫ ∞
0

1E

(
Σ1/2rUΣ1/2

‖Σ1/2rUΣ1/2‖T

)
rd

2−1 exp(−r)|rU |η−ddrdU

=
1

Γ̃d(η)

∫
S+d

1E

(
Σ1/2ZΣ1/2

‖Σ1/2ZΣ1/2‖T

)
etr(−Z)|Z|η−ddZ.

Employing successively the transformation

X = Σ1/2ZΣ1/2 ∈ S+
d , dZ = |Σ|−ddX

from Lemma B.9 in the Appendix and (2.16) yields

αη,Σ(E) =
1

Γ̃d(η)|Σ|η

∫
S+d

1E

(
X

‖X‖T

)
etr(−Σ−1X)|X|η−ddX

=
1

Γ̃d(η)|Σ|η

∫
S+d

∫ ∞
0

1E(U) etr(−rΣ−1U)rηd−1|U |η−ddrdU

=
1

Γ̃d(η)|Σ|η

∫
S+d
1E(U)|U |η−dρ(U)dU ,

where

ρ(U) =

∫ ∞
0

etr(−rΣ−1U)rηd−1dr =
Γ(ηd)

tr(Σ−1U)ηd
.

This shows αη,Σ(dU) = |Σ|−η tr(Σ−1U)−dηαη(dU), completing the proof.

From (2.10), we find that the Lévy measure νη,Σ of AΓ(η, ω,Σ) has the Lebesgue density

gη,Σ(U , r) =
ωΓ(ηd)

Γd(η)|Σ|η
tr(Σ−1U)−ηd|U |η−d etr(−rΣ−1U)

r
, U ∈ S+

d , r > 0.
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We call gη,Σ the Lévy density of AΓ(η, ω,Σ). Applying the transformation from Lemma B.8

yields the alternative form

gη,Σ(Z) =
ωΓ(dη)

Γ̃d(η)|Σ|η
etr(−Σ−1Z)

(tr(Σ−1Z))dη
|Z|η−d, Z ∈ S+

d . (2.17)

The next Lemma is in line with Proposition 5.9 in Pérez-Abreu and Stelzer (2014). It is a general

result that relates the cumulants of the AΓ distribution to moments of the complex Wishart

distribution from (1.12).

Lemma 2.8. Let η > d−1 and q > 0 and let the set H be given either by H = S+
d or H = (S+

d )⊗p

for some p > 0 or H = [0,∞). Let h : S+
d → H be a q-homogeneous function, i.e. h(rZ) =

rqh(Z) for all r > 0. Then for the Lévy density gη,Σ from (2.17) of the AΓ(η, ω,Σ) distribution

it holds∫
S+d
h(Z)gη,Σ(Z)dZ = ωB(ηd, q)Eh(W ), (2.18)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) denotes the beta function and W ∼ CWishd×d(η,Σ).

Proof. The proof is analogous to the proof of Proposition 5.9 in Pérez-Abreu and Stelzer (2014).

Lemma 2.8 is applicable e.g. for the matrix power h(Z) = Zp or the tensor product power h(Z) =

Z⊗p with q = p (i.e. Z⊗1 := Z ∈ Cd×d and Z⊗m := Z ⊗Z⊗(m−1) ∈ Cdm×dm for m > 1) or the

determinant power h(Z) = |Z|p (with q = dp). When applied to h(Z) = Z⊗p, (2.18) relates the

cumulants of the AΓ(η, ω,Σ) distribution to the moments of the CWishd×d(η,Σ) distribution.

In particular, we obtain the following result for the mean and covariance structure.

Lemma 2.9. Let X ∼ AΓ(η, ω,Σ). Then, with CovX := E[X⊗2]− (EX)⊗2 ∈ Cd2×d2 it holds

EX =
ω

d
Σ, CovX =

ω

d(ηd+ 1)
(ηId2 +H) (Σ⊗Σ) .

where Id2 is the d2 × d2 identity matrix and H =
∑d

i,j=1Hi,j ⊗Hj,i with the matrices Hi,j

having a one at (i, j) and zeros elsewhere.

Proof. Using Lemma B.29 in the Appendix and the result from Lemma 2.8, we obtain

EX =

∫
S̄+d
Zgη,Σ(Z)dZ = ωB(ηd, 1)EW

for W ∼ CWishd×d(η,Σ). It is known (see e.g. Maiwald and Kraus (2000) or Graczyk et al.

(2003)) that EW = ηΣ and CovW = ηH(Σ ⊗ Σ). Using the properties Γ(z + 1) = zΓ(z)

for z ≥ 1 and Γ(n) = (n − 1)! for n ∈ N (with 0! := 1) of the Gamma function, we also

obtain B(ηd, 1) = Γ(ηd)Γ(1)/Γ(ηd+ 1) = 1/(ηd), concluding EX = ω/dΣ. Similarly, we obtain

CovX =

∫
S̄+d
Z ⊗Zgη,Σ(Z)dZ = ωB(ηd, 2)E[W ⊗W ].
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From E[W⊗W ] = CovW+EW⊗EW = ηH(Σ⊗Σ)+η2Σ⊗Σ andB(ηd, 2) = Γ(ηd)Γ(2)/Γ(ηd+

2) = 1/(ηd(ηd+ 1)), this leads to

CovX =
ω

d(ηd+ 1)
(ηId2 +H) (Σ⊗Σ) .

Remark 2.10. The parameter η of the AΓ(η, ω,Σ) distribution can be interpreted as a regularity

parameter. Decreasing η results in more mass put towards the boundary (i.e. the non-invertible

elements) of S̄+
d . This is similar to the spd case, see the discussion in Remark 5.7 in Pérez-Abreu

and Stelzer (2014) for further details.



3.
The Hpd Gamma Process

In this section, we utilize the Hpd Gamma distribution from Section 2 to construct an Hpd

Gamma process. The construction in the upcoming Section 3.1 will be similar to the Kingman

construction (1.9) of the Gamma process from Section 1.2. Support properties and lower bounds

for probability mass of the process will be investigated in Section 3.2 and an almost surely con-

vergent series representation will be derived in Section 3.3 whereas in Section 3.4 it is explained

and illustrated how random samples from the process can be generated numerically.

3.1. Kingman’s Construction Revisited

Denote by B(S̄+
d ) the Borel sets in S̄+

d . Let X fulfill Assumption X1. Throughout this section,

we will make the following assumptions on the process parameters α(x, ·) and β(x, ·) on X :

Assumption GP1. (a) Let α : X × B(S̄+
d ) → [0,∞) such that {α(x, ·)}x∈X is a family of

finite measures on S̄+
d and such that for all B ∈ B(S̄+

d ) the mapping X 3 x 7→ α(x,B) is

measurable.

(b) Let β : X × S̄+
d → (0,∞) be measurable.

We start by defining the mean measure ν of the underlying Poisson process on X × S̄+
d
∼=

X × S̄+
d × [0,∞) as

ν(dx, dU , dr) =
exp (−β(x,U)r)

r
drα(x, dU)dx. (3.1)

The notation in (3.1) is understood as follows: Let A ⊂ X × S̄+
d × [0,∞) be measurable (with

respect to the product Borel sigma algebra). Then

ν(A) :=

∫
X

∫
S̄+d

∫ ∞
0

1A(x,U , r)
exp (−β(x,U)r)

r
drα(x, dU)dx.

In addition to Assumption GP1, let the process parameters α(x, ·) and β(x, ·) be such that ν

fulfills the following assumption:

Assumption GP2. The integral
∫
X×S̄+d ×[0,∞) min(1, r)ν(dx, dU , dr) is finite for ν as in (3.1).
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For x ∈ X , the measure

ν(x, dU , dr) =
exp (−β(x,U)r)

r
drα(x, dU)

on S̄+
d × [0,∞) corresponds to the Lévy measure from (2.10) of the Gad×d(α(x, ·), β(x, ·)) distri-

bution (provided that α(x, ·) and β(x, ·) fulfill Assumption α1). The dependence on x models

changing parameters of Gad×d along X . This is similar to the one-dimensional Gamma process,

see (1.8) in Section 1.2.

Remark. For our later application of modeling the spectral measure of a multivariate time se-

ries, we will use X = [0, π] and the process parameters α(x, ·), β(x, ·) may be chosen to represent

the prior knowledge about the spectrum at 0 ≤ x ≤ π. In this case (and generally, whenever X is

a bounded measurable subset of Rk for some k > 0), Assumption GP2 is fulfilled if α is a family

of uniformly bounded measures (i.e. there exists α0 > 0 such that α(x, S̄+
d ) ≤ α0 for all x ∈ X )

and β is uniformly bounded away from 0 (i.e. there exists β0 > 0 such that β(x,U) ≥ β0 for

all x ∈ X and all U ∈ S̄+
d ). This follows readily from∫

X×S̄+d ×[0,∞)
min(1, r)ν(dx, dU , dr) ≤ α0

∫
X
dx

∫ ∞
0

min(1, r) exp(−β0r)

r
dr <∞.

Denote by Π ∼ PP(ν) the Poisson process on X × S̄+
d × [0,∞) having mean measure ν from (3.1).

By Assumption GP2, the assumptions of the existence theorem for Poisson processes are fulfilled

(see Theorem B.17 in the Appendix) and hence Π is well-defined. Indeed, ν has no mass atoms

due to the absolutely continuous radial part dr and ν is σ-finite because the measure with

density [r 7→ exp(−βr)/r] on [0,∞) is σ-finite for all β ≥ 0. Based on Π, we define

Φ ∼ CRMd×d(ν) :⇐⇒

Φ(A) =
∑

(x,U ,r)∈Π

1A(x)rU , A ∈ B(X ), Π ∼ PP(ν), (3.2)

where B(X ) denote the Borel sets in X . We call Φ in (3.2) an Hpd Gamma process on X with

parameters α = α(x, ·) and β = β(x, ·), or completely random Hpd measure, as already indicated

by the notation CRMd×d(ν).

Remark 3.1. Let A1, . . . , Ak be a disjoint partition of X . For j = 1, . . . , k, consider the

measure νj(dx, dU , dr) := 1Aj (x)ν(dx, dU , dr). It is clear that ν =
∑k

j=1 νj. Let Π1, . . . ,Πk be

independent Poisson processes, with respective mean measure νj. By the Superposition Theorem

(see Theorem B.18 in the Appendix), it follows that Π is equal in distribution to ∪kj=1Πj. Since

Φ(Aj)
d
=

∑
(x,U ,r)∈∪kj=1Πj

1Aj (x)rU =
∑

(x,U ,r)∈Πj

rU ,

it follows from the independence of the Πj’s that Φ(A1), . . . ,Φ(Ak) are independent.

The name completely random Hpd measure is justified by the independence property from

Remark 3.1. The following result shows that the increments of Φ are Hpd Gamma distributed.
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Theorem 3.2. Let X fulfill Assumption X1 and let α, β and ν fulfill Assumptions GP1 and GP2.

Let Φ be defined as in (3.2) and let A ⊂ X be measurable. Then Φ(A) ∈ S̄+
d with probabil-

ity 1. Furthermore, the distribution of Φ(A) is given in the Lévy-Khinchine representation of

its Laplace transformation

E etr(−ΘΦ(A)) = exp

(
−
∫
S̄+d

∫ ∞
0

(1− etr(−rΘU)) νA(dU , dr)

)
, Θ ∈ S̄+

d ,

with Lévy measure on S̄+
d × [0,∞) given by

νA(dU , dr) =

∫
A
α(x, dU)

exp(−β(x,U)r)

r
drdx. (3.3)

Proof. Fix A ⊂ X and consider the measurable mapping φ : X × S̄+
d × [0,∞) 3 (x,U , r) 7→

φ(x,U , r) = ‖1A(x)rU‖T = 1A(x)r ∈ [0,∞). Let Π ∼ PP(ν) be the Poisson process with mean

measure ν from (3.1). Per definition, Π is a random subset of X × S̄+
d × [0,∞) consisting of at

most countably many elements. Put these elements in some order, such that the distributional

representation

Π
d
= {(xj ,Uj , rj) : j ≥ 1}

holds. By assumption GP2, φ and Π fulfill the assumptions of Campbell’s Theorem (see The-

orem B.19 in the Appendix). An application thereof yields the almost sure convergence of

the infinite series
∑

(x,U ,r)∈Π φ(x,U , r) =
∑∞

j=1 φ(xj ,Uj , rj). The definition (3.2) of Φ(A) can

equivalently be written as

Φ(A) =

∞∑
j=1

1A(xj)rjUj . (3.4)

Since ‖Φ(A)‖T ≤
∑∞

j=1 φ(xj ,Uj , rj) < ∞ with probability 1, it follows that any partial sum

sequence of (3.4) is a Cauchy sequence in the Banach space Sd of Hermitian matrices endowed

with the trace norm ‖ · ‖T , hence Φ(A) ∈ Sd with probability 1. Since all summands are from

the closed cone S̄+
d , it also holds Φ(A) ∈ S̄+

d with probability 1.

Now let Θ ∈ S̄+
d and consider the measurable mapping

φΘ : X × S̄+
d × [0,∞) 3 (x,U , r) 7→ φΘ(x,U , r) = tr(Θ1A(x)rU) ∈ [0,∞).

By (B.9) and Lemma B.4 (b) and (d) in the Appendix, it holds |φΘ(x,U , r)| ≤ ‖Θ‖2φ(x,U , r).

Thus, by similar argumentation as above, we can apply Campbell’s theorem to the random

variable

tr(ΘΦ(A)) =
∑

(x,U ,r)∈Π

φΘ(x,U , r)

to obtain for any t ≥ 0

E etr(−tΘΦ(A)) = E exp (−t tr(ΘΦ(A)))

= exp

(
−
∫
X×S̄+d ×[0,∞)

(1− exp(−tφΘ(x,U , r)))ν(dx, dU , dr)

)
.
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In particular, for t = 1, the right hand side is equal to

exp

(
−
∫
A

∫
S̄+d

∫ ∞
0

(1− etr(−rΘU))
exp(−β(x,U)r)

r
drα(x, dU)dx

)

= exp

(
−
∫
S̄+d

∫ ∞
0

(1− etr(−rΘU)) νA(dU , dr)

)
,

by Tonelli’s theorem (which is applicable by assumption X1).

Remark 3.3. Let Φ ∼ CRMd×d(ν) with ν from (3.1). If β(x,U) = β(U) does not depend

on x ∈ X , then Φ is called homogenous. In this case, Theorem 3.2 shows that Φ(A) is a

random matrix with Lévy measure

νA(dU , dr) = αA(dU)
exp(−β(U)r)

r
dr,

where the measure αA on S̄+
d is defined as the mixture of the α(x, ·)’s with respect to the Borel

measure dx on A, i.e. αA(E) =
∫
A α(x,E)dx for any measurable E ⊂ S̄+

d . With a view on (2.7),

this shows that Φ(A) ∼ Gad×d(αA, β).

In the general (non-homogeneous) case (3.1), the distribution of Φ(A) is not Hpd Gamma. But

according to Theorem 3.2, its Lévy measure is a mixture of Hpd Gamma Lévy measures with

parameters α(x, ·) and β(x, ·) for x ∈ A with respect to the Borel measure dx on A. In this

sense, the (infinitesimal) increments Φ(dx) among x ∈ X are independent and locally Gad×d
distributed, which we will denote as

Φ(dx)
ind.∼ Gad×d(α(x, ·), β(x, ·)). (3.5)

3.2. Distributional Properties

In this section, we will investigate the support and probability mass of the Hpd Gamma Process.

3.2.1. Support

We will start by giving sufficient conditions for full support with the upcoming Theorem 3.4. To

formulate these results, we will need to strengthen the assumptions on the process parameters:

Assumption GP3. (a) There exists N ⊂ X with
∫
N dx = 0 such that supp(α(x, ·)) = S̄+

d

holds for all x ∈ X \N .

(b) The function β is locally bounded, i.e. for every x0 ∈ X there exists a neighborhood U0

of x0 such that supx∈U0,U∈S̄+d
β(x,U) <∞.

Theorem 3.4. Let X fulfill Assumption X1 and let α, β and ν fulfill Assumptions GP1 and GP2

as well as Assumption GP3. Let Φ ∼ CRMd×d(ν). Let A ⊂ X be measurable with
∫
A dx > 0.

Then supp(Φ(A)) = S̄+
d .
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Proof. First recall that the Lévy measure νA of Φ(A) is given as in (3.3). The proof is a slight

modification of the one one-dimensional case (see Theorem 24.10 (iii) in Sato (1999)). The

idea is to split up Φ(A) into a large jumps part Y and a small jumps part Z. To elaborate,

for ε > 0, define νY (dU , dr) := 1(ε/2,∞)(r)νA(dU , dr), and νZ(dU , dr) := 1[0,ε/2](r)νA(dU , dr)

and let Y ,Z be independent defined in terms of the Laplace transforms by

E etr(−ΘY ) := exp

(
−
∫
S+d

∫ ∞
0

(1− etr(−rΘU))νY (dU , dr)

)
, (3.6)

E etr(−ΘZ) := exp

(
−
∫
S+d

∫ ∞
0

(1− etr(−rΘU))νZ(dU , dr)

)
, (3.7)

for Θ ∈ S̄+
d . Then it holds E etr(−ΘΦ(A)) = E etr(−ΘY )E etr(−ΘZ) for all Θ, and hence

(since Y and Z are independent) Φ(A)
d
= Y +Z. Let X ∈ S+

d with ‖X‖T > ε, i.e. X = r0U0

with r0 > ε and U0 ∈ S+
d . We will show X ∈ supp(Φ(A)) and start by showing X ∈ supp(νY ).

To do so, let US+d be an open neighborhood of X, where the openness refers to the topology

in S+
d (as indicated by the subscript). Since S+

d
∼= (0,∞) × S+

d , there exist r1, r2 with ε/2 <

r1 < r0 < r2 < ∞ and an open neighborhood US+d (with respect to the topology in S+
d ) such

that [r1, r2]× US+d ⊆ US+d . This yields

νY (US+d ) ≥
∫ r2

r1

∫
US+
d

νY (dU , dr) =

∫ r2

r1

∫
US+
d

νA(dU , dr).

Using that the function r 7→ exp(−βr)/r is monotonically decreasing on (0,∞) for every β ≥ 0,

we get∫ r2

r1

∫
US+
d

νA(dU , dr) =

∫ r2

r1

∫
US+
d

∫
A

exp(−β(x,U)r)

r
α(x, dU)dxdr

≥ r2 − r1

r2

∫
US+
d

∫
A

exp(−β(x,U)r2)α(x, dU)dx.

Now let Ã ⊂ A such that
∫
Ã dx > 0 and supx∈Ã,U∈S̄+d

β(x,U) =: β1 < ∞. Note that Ã and β1

exist by Assumption GP3. Then∫
US+
d

∫
A

exp(−β(x,U)r2)α(x, dU)dx ≥
∫
US+
d

∫
Ã

exp(−β(x,U)r2)α(x, dU)dx

≥ exp(−β1r2)

∫
US+
d

∫
Ã
α(x, dU)dx.

By Assumption GP3, it holds α(x,US+d ) > 0 for every x ∈ Ã \N (with N being a Lebesgue null

set), yielding∫
US+
d

∫
Ã
α(x, dU)dx =

∫
Ã
α(x,US+d )dx > 0,

which concludes νY (US+d ) > 0 and hence (since US+d was an arbitrary neighborhood of X),

X ∈ supp(νY ). Since νY ([0,∞), S̄+
d ) < ∞ by Assumption GP2, we find from Lemma 2.3
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that Y is compound Poisson and an application of Lemma 2.5 yields supp(νY ) ⊂ supp(Y ),

which concludes X ∈ supp(Y ).

By Lemma B.27 in the Appendix, it suffices to show 0 ∈ supp(Z), to conclude X ∈ supp(Φ(A)).

Since Z̃ = 0 is equivalent to tr Z̃ = ‖Z̃‖T = 0 for Z̃ ∈ S̄+
d (see (B.9) in the Appendix), we will

show 0 ∈ supp(tr(Z)). Recalling trU = 1 for U ∈ S+
d , the (one-dimensional) Laplace transform

of tr(Z) is given as, for t ≥ 0,

E exp(−t tr(Z)) = E etr(−(tId)Z) = exp

(
−
∫
S̄+d

∫ ∞
0

(1− etr(−rtU))νZ(dU , dr)

)

= exp

(
−
∫ ∞

0
(1− exp(−rt))ν̃Z(dr)

)
with the one-dimensional Lévy measure

ν̃Z(dr) =

∫
S̄+d
νZ(dU , dr) = 1[0,ε/2](r)

∫
A

∫
S+d

exp(−β(x,U)r)

r
α(x, dU)dxdr. (3.8)

For any 0 < δ < ε/2 it holds

ν̃Z([0,∞)) ≥ ν̃Z([0, δ]) ≥ exp(−β1δ)

∫
A
α(x,S+

d )dx

∫ δ

0

1

r
dr =∞.

Furthermore,∫ 1

0
rν̃Z(dr) =

∫ ε/2

0

∫
A

∫
S+d
rν(dx, dU , dr) ≤

∫ 1

0

∫
X

∫
S+d
rν(dx, dU , dr) <∞

by Assumption GP2. Thus the assumptions of Lemma B.28 in the Appendix are fulfilled and

this yields 0 = min supp(tr(Z)). Since the support is closed by definition, this concludes the

proof.

The full support property for the Gad×d(α, β) distribution can be obtained as a special case of

the previous Lemma. The result has already been stated in Theorem 2.6, and is restated and

proven in the following Corollary.

Corollary 3.5. Let α, β fulfill Assumption α1 and let X ∼ Gad×d(α, β). Assume that α is of

full support, i.e. supp(α) = S̄+
d . Then X is of full support, i.e. supp(X) = S̄+

d .

Proof. Let X = [0, 1] and consider α̃ : X×B(S̄+
d ) with α̃(x, dU) = α(dU) and β̃ : X×S̄+

d → (0,∞)

with β̃(x,U) = β(U) for x ∈ X and U ∈ S̄+
d . Denote by Φ̃ the Hpd Gamma Process with

parameters α̃ and β̃. Since X , α̃ and β̃ fulfill the assumptions of Theorem 3.4, we conclude

for A = X = [0, 1] that supp(Φ̃(A)) = S̄+
d . On the other hand, from Remark 3.3 it follows

that Φ̃(A) ∼ Gad×d(α, β), which concludes the proof.

3.2.2. Probability Mass Bounds

In this Section, we will derive lower bounds for the probability mass of the Hpd Gamma process.

The main results are Theorem 3.7 and Corollary 3.8. We will need the following stronger

assumptions on the underlying space and the process parameters:
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Assumption GP4. (a) It holds α(x, dU) = g(x,U)dU for a measurable function g : X ×
S̄+
d → (0,∞). Furthermore, there exist positive constants g0, g1 such that g0 ≤ g(x,U) ≤ g1

for all U ∈ S̄+
d and all x ∈ X \N , where N ⊂ X is a null set, i.e.

∫
N dx = 0.

(b) There exist constants 0 < β0 ≤ β1 <∞ and a null set N ⊂ X such that β0 ≤ β(x,U) ≤ β1

holds for all U ∈ S̄+
d and all x ∈ X \N .

Assumption X2. It holds
∫
X dx <∞.

First we observe that Assumption GP4 and Assumption X2 imply Assumption GP2. Further-

more, it may be noted that Assumption X2 is implied by Assumptions GP2 and GP4, since in

this case it holds

∞ >

∫
X

∫
S̄+d

∫ ∞
1

exp(−β(x,U)r

r
drα(x, dU)dx ≥ g0

∫
X
dx

∫
S+d
dU

∫ ∞
1

exp(−β1r)

r
dr > 0.

The assumption g(x,U) ≤ g1 is actually not needed for the results in this Section but included

for the sake of later reference to avoid notational overhead. In fact, this particular assumption

will be needed for the derivation of posterior contraction rates (see the upcoming Section 7.2

and Section 9.1). We start our considerations with the observation that the total weight of α is

finite under the assumptions of this Section.

Lemma 3.6. Let X fulfill Assumptions X1-X2 and let α, β and ν fulfill Assumption GP4.

Then Cα :=
∫
X α(x, S̄+

d )dx is finite.

Proof. By Assumption GP2 and Assumption GP4 it holds

∞ >

∫
X

∫
S̄+d

∫ ∞
1

α(x, dU)
exp(−β(x,U)r)

r
drdx ≥

∫
X
α(x, S̄+

d )dx

∫ ∞
1

exp(−β1r)

r
dr

and since
∫∞

1
exp(−β1r)

r dr > 0 it follows that Cα =
∫
X α(x, S̄+

d )dx is finite.

The following result gives a lower bound for the probability mass that the distribution of Φ(A)

puts in balls of radius ε.

Theorem 3.7. Let X fulfill Assumptions X1 and X2 and let α, β and ν fulfill Assumption GP4.

Let A ⊂ X with L(A) :=
∫
A dx > 0. Let X0 ∈ S+

d with ‖X0‖T ≤ τ for some τ > 1. Then,

with Cα(A) :=
∫
A α(x, S̄+

d )dx it holds

P
(
‖Φ(A)−X0‖T < ε

)
≥ Cκα(A) exp

( (
d2 + Cα(A) + 1

)
log ε

)
,

for all ε > 0 small enough, where C is a positive constant only depending on β0, β1 (as in

Assumption GP4), d and τ . Furthermore, κα(A) is defined as

κα(A) = exp(−cCα(A))

(
1− exp

(
−1

2
W

(
2

Cα(A)

)))
g0L(A),

with g0 from Assumption GP4 and c being a positive constant only depending on β0, β1 and τ ,

and W denoting the Lambert W function (see (B.27) in Section B.5 in the Appendix).
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From Theorem 3.7, we obtain the following immediate corollary.

Corollary 3.8. Under the assumptions of Theorem 3.7, it holds

P
(
‖Φ(A)−X0‖ < ε

)
≥ Cκα(A) exp

( (
d2 + Cα(A) + 1

)
log ε

)
,

for all ε > 0 small enough, where C is a positive constant only depending on β0, β1, (as in

Assumption GP4), Cα, d and τ . Furthermore, κα(A) is defined in Theorem 3.7.

Proof. The result follows from Theorem 3.7, because the matrix norms ‖ · ‖T and ‖ · ‖ are

equivalent.

Before proceeding to the proof of Theorem 3.7, we will consider the concrete example of the

Hpd AΓ(η, ωΣ) process and establish conditions under which the result is applicable.

Lemma 3.9. Let X fulfill Assumptions X1 and X2 and consider the Hpd AΓ(η, ω,Σ) distribu-

tion from Section 2.4. Let η ≡ η0 be fixed, and let ω : X → (0,∞) measurable and Σ : X → S+
d

measurable. Let Φ be an AΓ(η0, ω,Σ) process on X , i.e. an Hpd Gamma process with param-

eters α(x, dU) = ω(x)αη0,Σ(x)(dU) and β(x,U) = βΣ(x)(U) (see Lemma 2.7). Let the process

parameters fulfill the following assumptions:

(a) η0 = d.

(b) It holds

inf
x∈X

λmin(Σ(x)) = τ0 > 0, sup
x∈X

λmax(Σ(x)) = τ1 <∞,

with λmin(A) and λmax(A) denoting the smallest and the largest eigenvalue of A ∈ S+
d .

(c) It holds

inf
x∈X

ω(x) = ω0 > 0, sup
x∈X

ω(x) = ω1 <∞.

Then Φ fulfills Assumption GP4. In particular, Theorem 3.7 is applicable to Φ.

Proof. From Lemma 2.7, we know that

α(x, dU) = g(x,U)dU , g(x,U) = Cω(x)|Σ(x)|−d tr
(
Σ(x)−1U

)−d2
with a positive constant C, as well as

β(x,U) = tr
(
Σ(x)−1U

)
.

An application of Lemma B.4 (d) in the Appendix yields

0 < τ−1
1 ≤ β(x,U) ≤ τ−1

0 <∞, x ∈ X ,U ∈ S+
d ,

and similarly, also using Lemma B.5 in the Appendix,

0 < Cω0τ
d2

0 τ−d
2

1 ≤ g(x,U) ≤ Cω1τ
−d2
0 τd

2

1 <∞, x ∈ X ,U ∈ S+
d .

concluding the proof.
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To prove Theorem 3.7, we will use the same idea of splitting up Φ(A)
d
= Y + Z into a large

jumps compound Poisson component Y and a small jumps component Z, as in the proof of

Theorem 3.4. To do so, we need the following two auxiliary results. The first Lemma 3.10 shows

that the Lévy measure of Φ(A) puts enough mass in a neighborhood of X0. It will be used

later to show that the distribution of Y also puts enough mass in a neighborhood of X0. The

second Lemma 3.11 will be used later to show that the distribution of Z puts enough mass in

a neighborhood of 0.

Lemma 3.10. Let the assumptions of Theorem 3.7 be fulfilled. Then with

Bε(X0) = {X ∈ S+
d : ‖X −X0‖T < ε},

the Lévy measure νA from (3.3) of Φ(A) fulfills

νA
(
Bε(X0)

)
≥ Cg0L(A) exp

(
(d2 + 1) log ε

)
,

for all ε > 0 small enough, where C is a positive constant only depending on β1, d and τ .

Proof. Write X0 = r0U0 with U0 ∈ S+
d and 0 < r0 ≤ τ . For any X = rU ∈ S+

d we have

‖X −X0‖T ≤ r0‖U −U0‖T + |r − r0| ≤ τ‖U −U0‖T + |r − r0|.

Hence, recalling S+
d
∼= (0,∞) × S+

d , we find that Bε(X0) ⊃ Bε/2(r0) × B̃(U0), with B̃(U0) =

Bε/(2τ)(U0) ∩ S+
d , where Bε/(2τ)(U0) denotes the ball in Sd around U0 of radius ε/(2τ) (with

respect to ‖ · ‖T ). Recall that β(x,U) ≤ β1 for all x outside a null set and all U by Assump-

tion GP4. Thus, using that r 7→ exp(−β1r)
r is monotonically decreasing, and that ε, r0 ≤ τ , we

compute

νA(Bε(X0)) =

∫
A

∫
S̄+d

∫ ∞
0

1Bε(X0)(rU)
exp(−β(x,U)r)

r
drα(x, dU)dx

≥
∫
A

∫
B̃(U0)

∫ r0+ε/2

r0−ε/2

exp(−β(x,U)r)

r
drα(x, dU)dx

≥ αA(B̃(U0))

∫ r0+ε/2

r0−ε/2

exp(−β1r)

r
dr

≥ αA(B̃(U0))
2ε exp(−3/2β1τ)

3τ
= CαA(B̃(U0))ε,

with the measure αA on S̄+
d being defined as αA(dU) =:

∫
A α(x, dU)dx. For this, we compute

αA(B̃(U0)) =

∫
A

∫
B̃(U0)

α(x, dU)dx ≥ g0L(A)

∫
B̃(U0)

dU

by Assumption GP4. Now we use Γ(a) =
∫∞

0 xa−1 exp(−x)dx for a > 0 and the transforma-

tion S+
d 3 Z = rU with r = trZ > 0 and U ∈ S+

d , dZ = rd
2−1drdU from Lemma B.8 in the

appendix to obtain∫
B̃(U0)

dU =
1

Γ(d2)

∫
B̃(U0)

∫ ∞
0

rd
2−1 exp(−r)drdU

=
1

Γ(d2)

∫
S+d

∫ ∞
0

1B̃(U0)(U) etr(−rU)rd
2−1drdU

=
1

Γ(d2)

∫
S+d

1B̃(U0)(Z/ tr(Z)) etr(−Z)dZ
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We will now show that Bε/(4τ)(U0) ⊂ {Z ∈ S+
d : Z/ tr(Z) ∈ B̃(U0)}. To do so, let Z ∈

Bε/(4τ)(U0) and compute∥∥∥∥ ZtrZ −U0

∥∥∥∥
T

≤ ‖Z −U0‖T +

∥∥∥∥Z − Z

trZ

∥∥∥∥
T

≤ ε

4τ
+

∣∣∣∣1− 1

trZ

∣∣∣∣ ‖Z‖T . (3.9)

Noting ‖Z‖T = trZ and |1− 1
trZ | =

1
trZ |1− trZ| yields∣∣∣∣1− 1

trZ

∣∣∣∣ ‖Z‖T = |1− trZ| = | tr(U0)− tr(Z)| = | tr(U0 −Z)|.

For A ∈ Sd, denote by λ1(A) ≤ . . . ≤ λd(A) the eigenvalues of A in nondecreasing order. With

this notation, we recall the characterization (B.7) of the trace norm and continue to compute

| tr(U0 −Z)| =

∣∣∣∣∣
d∑
i=1

λi(U0 −Z)

∣∣∣∣∣ ≤
d∑
i=1

|λi(U0 −Z)| = ‖U0 −Z‖T ≤
ε

4τ
,

which concludes ‖1− 1
trZ ‖T ‖Z‖T ≤

ε
4τ and thus Z/ tr(Z) ∈ B̃(U0) by (3.9). For ε small enough,

it holds trZ ≤ τ . We use this result to obtain∫
B̃(U0)

dU =
1

Γ(d2)

∫
S+d

1B̃(U0)(Z/ tr(Z)) etr(−Z)dZ

≥ 1

Γ(d2)

∫
Bε/(4τ)(U0)

etr(−Z)dZ ≥ exp(−τ)

Γ(d2)

∫
Bε/(4τ)(U0)

dZ.

By the equivalence of matrix norms, there exists a positive constant C (depending only on d

and τ), such that with |a|∞ := max{|<a|, |=a|} for z ∈ C it holds

BCε,max(U0) :=

{
Z ∈ Sd : max

i,j=1,...,d
|U0ij − Zij |∞ < Cε

}
⊂ Bε/(4τ)(U0),

thus, recalling the definition of the Lebesgue measure dZ on Sd from (2.5),∫
Bε/(4τ)(U0)

dZ ≥
∫
BCε,max(U0)

dZ = (Cε)d
2
,

yielding the claim.

Lemma 3.11. Let ν be a measure on [0, 1] such that
∫

[0,1] rν(dr) <∞. Let Z be a nonnegative

random variable distributed with Lévy measure ν, i.e.

E exp(−tZ) = exp

(
−
∫

[0,1]
(1− exp(−rt))ν(dr)

)
, t ≥ 0.

Assume that the distribution of Z is non-trivial, i.e. not equal to a Dirac Delta distribution. Let

ψ(u) :=

∫
[0,1]

(exp(ur)− 1− ur)ν(dr), u ∈ R.

Then the derivative ψ′(u) is continuous and strictly monotonically increasing on R. Denote

by u = u(ξ) the inverse function of ξ = ψ′(u) for ξ ∈ (0,∞). Then for every δ > 0 it holds

P (Z ≥ δ) ≤ exp

(
−
∫ δ

0
u(ξ)dξ

)
.
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Proof. See Lemma 26.4 in Sato (1999).

Now we can present the proof of the main result.

Proof of Theorem 3.7. Let νA(dU , dr) denote the Lévy measure from (3.3) of Φ(A). We will

split up Φ(A) into a large jump compound Poisson component Y and a small jump componentZ.

The idea is to bound (from below) the probability of Y being close to X0 and the probability

of Z being close to 0. To elaborate, let νY (dU , dr) := 1(ε/2,∞)(r)νA(dU , dr) and νZ(dU , dr) :=

1[0,ε/2](r)νA(dU , dr) and let Y and Z be independent with distribution as in (3.6) and (3.7).

Then Φ(A)
d
= Y +Z. From ‖Φ(A)−X0‖T ≤ ‖Y −X0‖T + ‖Z‖T it follows

P (Φ(A) ∈ Bε(X0)) ≥ P (Y ∈ Bε/2(X0))P (Z ∈ Bε/2(0)). (3.10)

In view of (3.10), it is sufficient to show the following two results:

(a) There exist positive constants c, C only depending on β0, β1, d and τ such that

P (Y ∈ Bε/2(X0)) ≥ Cg0L(A) exp(−cCα(A)) exp
(
(d2 + Cα(A) + 1) log ε

)
.

(b) It holds

P (Z ∈ Bε/2(0)) ≥ 1− exp

(
−1

2
W

(
2

Cα(A)

))
.

First recall from Lemma 2.3 that Y is compound Poisson. From Lemma 2.5 we obtain

P (Y ∈ Bε/2(X0)) = exp(−CY )

∞∑
k=0

1

k!
νkY (Bε/2(X0)) ≥ exp(−CY )νY (Bε/2(X0)),

with CY := νY (S+
d ) <∞ and νkY being the k-fold convolution of νY . We get

CY =

∫
A

∫
S+d

∫ ∞
ε/2

exp(−β(x,U)r)

r
drα(x, dU)dx ≤

∫
A
α(x, S+

d )dx

∫ ∞
ε/2

exp(−β0r)

r
dr.

The right hand side is equal to Cα(A)E1(β0ε/2), with

E1(x) =

∫ ∞
x

exp(−r)
r

dr, x > 0, (3.11)

denoting the exponential integral function. Using the bound (see 5.1.20 in Abramowitz and

Stegun (1964))

E1(x) ≤ exp(−x) log

(
1 +

1

x

)
≤ log

(
1 +

1

x

)
, x > 0,

we arrive at

CY ≤ Cα(A) log

(
1 +

2

β0ε

)
≤ Cα(A) log

3

β0ε
= Cα(A)

(
log

3

β0
− log ε

)
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for ε < β0. Letting c := max{1, log(3/β0)} > 0, this yields

P (Y ∈ Bε/2(X0)) ≥ exp(−cCα(A)) exp(Cα(A) log ε)νY (Bε/2(X0))

= exp(−cCα(A)) exp (Cα(A) log ε) ν(Bε/2(X0)),

where Bε/2(X0) ⊂ supp(νY ) (and hence νY (Bε/2(X0)) = ν(Bε/2(X0))) for ε small enough was

used in the last step. An application of Lemma 3.10 for ν(Bε/2(X0)) yields

P (Y ∈ Bε/2(X0)) ≥ Cg0L(A) exp(−cCα(A)) exp(Cα(A) log ε) exp((d2 + 1) log ε),

concluding (a).

To show (b), we will apply Lemma 3.11 to trZ in order to bound P (Z ∈ Bε/2(0)) = P (trZ <

ε/2) from below. Recall from (3.8) that the Lévy measure of trZ is given by

ν̃Z(dr) = 1[0,ε/2](r)

∫
A

∫
S+d

exp(−β(x,U)r)

r
α(x, dU)dxdr.

For ε small enough (i.e. ε < 2), the support of ν̃Z is contained in [0, 1]. Since∫
[0,1]

rν̃Z(dr) =

∫ ε/2

0

∫
A

∫
S+d

exp(−β(x,U)r)α(x, dU)dxdr ≤ ε

2
Cα(A) <∞,

it follows that ν̃Z fulfills the assumptions of Lemma 3.11. Consider the function

ψ(u) :=

∫
[0,1]

(exp(ur)− 1− ur) ν̃Z(dr), u ∈ R.

The derivative of ψ can be computed by an application of Lebesgue’s Dominated Convergence

Theorem as

ψ′(u) =

∫
[0,1]

(exp(ur)− 1) rν̃Z(dr)

=

∫ ε/2

0

∫
A

∫
S+d

(exp(ur)− 1) exp(−β(x,U)r)α(x, dU)dxdr

=

∫
A

∫
S+d

(∫ ε/2

0
exp

(
(u− β(x,U))r

)
dr −

∫ ε/2

0
exp

(
(−β(x,U))r

)
dr

)
α(dx, dU)dx

=

∫
A

∫
S+d
L
(
u− β(x,U)

)
− L

(
− β(x,U)

)
α(x,U)dx

with the function L : R → (0,∞) being defined as L(x) = exp(ε/2x)−1
x for x 6= 0. Since L is

continuously differentiable with derivative L′(x) = (ε/2x−1) exp(ε/2x)+1
x2

, it follows from the Mean

Value Theorem that for u > 0, there exists τ = τ(x, u,U) ∈ (−β(x,U),−β(x,U) +u) such that

L
(
u− β(x,U)

)
− L

(
− β(x,U)

)
= L′(τ(x, u,U))u.

This yields

ψ′(u) = ρ(u)u, u > 0, (3.12)
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with

ρ(u) =

∫
A

∫
S+d
L′(τ(x, u,U))α(x, dU)dx.

By Assumption GP4 it holds τ(x, u,U) ∈ (−β1,−β0 + u) ⊂ (−β1, u) for all x,U and all u > 0.

Let δ := ε/2. From Lemma B.25 in the Appendix, we find that L′(t) > 0 for all t ∈ R
and L′(t) ≤ δ2/2 exp(δu) for t ∈ [0, u]. Furthermore, since L′ is monotonically increasing

on R (this can be seen by computing the derivative L′′(t) = [(δt−1)2+1] exp(δt)−2
t3

and by observ-

ing that L′′(t) ≥ 0 for all t ∈ R is equivalent to log(z2 − 2z + 2) + z ≥ log 2 for all z ≥ 0

and log(z2 + 2z + 2) − z ≤ log 2 for all z > 0 and these properties are fulfilled, since the func-

tion h(z) := log(z2− 2z+ 2) + z is monotonically increasing on [0,∞) with h(0) = log 2 and the

function h̃(z) := log(z2 + 2z+ 2)− z is monotonically decreasing on [0,∞) with h̃(0) = log 2), it

even holds L′(t) ≤ δ2/2 exp(δu) for all t ≤ u. This concludes L′(τ(x, u,U)) ∈ (0, δ2/2 exp(δu)),

which leads to ρ(u) ∈ (0, 1
2Cα(A)δ2 exp(δu)), and from (3.12) we arrive at

0 < ψ′(u) ≤ 1

2
Cα(A)δ2 exp(δu)u, u > 0. (3.13)

Denote by u = u(ξ) ≥ 0 the inverse function of ξ = ψ′(u) for ξ ∈ (0,∞). Then (3.13) is

equivalent to

δu(ξ) exp(δu(ξ)) ≥ 2ξ

Cα(A)δ
, ξ > 0. (3.14)

Applying the Lambert W function (see (B.27) in Section B.5 in the Appendix) to the left hand

side of (3.14) yields

W (δu(ξ) exp(δu(ξ))) = δu(ξ).

Since W is strictly monotonically increasing on (0,∞), this yields δu(ξ) ≥W ( 2ξ
Cα(A)δ ) or

u(ξ) ≥ 1

δ
W

(
2ξ

Cα(A)δ

)
, ξ > 0.

An application of Lemma 3.11 yields

P (trZ ≥ δ) ≤ exp

(
−
∫ δ

0
u(ξ)dξ

)
≤ exp

(
−1

δ

∫ δ

0
W

(
2ξ

Cα(A)δ

)
dξ

)
.

Using that W is concave on [0,∞) and that W (0) = 0 yields W ( 2ξ
Cα(A)δ ) ≥ ξ

δW ( 2
Cα(A)) for 0 ≤

ξ ≤ δ, hence

P (trZ ≥ δ) ≤ exp

(
− 1

δ2
W

(
2

Cα(A)

)∫ δ

0
ξdξ

)
= exp

(
−1

2
W

(
2

Cα(A)

))
,

which concludes the proof.
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3.3. An Infinite Series Representation

In (3.2), we defined an Hpd Gamma process Φ ∼ CRMd×d(ν) on X based on the infinitely

divisible Hpd Gamma distribution. The mean measure ν from (3.1) of the underlying Poisson

process Π was chosen as a mixture of Lévy measures of Hpd Gamma distributions, where the

distributional parameters α and β are allowed to change over X . For a practical usage (as e.g. in

Bayesian nonparametric inference), an almost surely convergent series representation of Φ (and

Π respectively) involving iid random variables is of great usefulness. As an example of such a

representation, the Dirichlet process obeys the well-known stick-breaking (1.5), which expands

the process as an infinite sum involving iid random variables drawn from a Beta distribution

and the base measure G0. In this section, we derive an almost surely convergent series represen-

tation for Φ. It is not based on stick-breaking, but on LePage’s method (LePage, 1981), which

can be conceived as a generalization of the Inverse CDF Transform Sampling for non-uniform

random variables (Devroye, 1986). The almost sure convergence of such series has been dis-

cussed in Rosiński (2001). The following Lemma summarizes the results that are needed for our

construction.

Lemma 3.12 (LePage’s Method). Let Y be a Borel space. Consider a Poisson process Π on

Y × [0,∞) with σ-finite mean measure ν being of the form

ν(dy, dr) = ρ(dr|y)α∗(dy), (3.15)

where α∗ is a probability measure on Y and {ρ(·|y) : y ∈ Y} is a family of absolutely continuous

measures on [0,∞), such that for all measurable B ⊂ [0,∞), the mapping [Y 3 y 7→ ρ(B|y)] is

measurable. Denote by

ρ−(w|y) = inf {r > 0: ρ ([r,∞)|y) < w} (3.16)

the inverse of the tail of ρ(·|y). Then the following almost sure representation for Π holds:

Π
a.s.
= {

(
yj , ρ

−(wj |yj)
)
}j≥1, yj

iid∼ α∗, wj =

j∑
i=1

vi, vi
iid∼ Exp(1), (3.17)

where {yj}j≥1 and {vj}j≥1 are independent.

Proof. The proof is a minor adaption of Section 3(B) in Rosiński (2001). We start with a

Poisson Process Π0 on (0,∞) with mean measure ν0(dr) = dr being equal to the Lebesgue

measure. From the Interval Theorem (see Theorem B.20 in the appendix), we can conclude the

representation in distribution

Π0
d
= {wj}j≥1, wj =

j∑
i=1

vi, vi
iid∼ Exp(1). (3.18)

With the Marking Theorem (see Theorem B.21 in the appendix), we can use Π0 to construct a

Poisson Process Π1 on Y × (0,∞) having mean measure ν1(dy, dr) = α∗(dy)dr as follows:

Π1
d
= {(yj , wj)}j≥1, yj

iid∼ α∗,
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where the sequence {wj}j≥1 is as in (3.18) and {yj}j≥1 being independent thereof. Now consider

the mapping h : Y × (0,∞)→ Y × [0,∞), defined as h(y, r) = (y, ρ−(r|y)) with ρ− from (3.16).

For s > 0, let h−1(y, s) := (y, ρ([s,∞)|y)). Then for A ⊂ Y measurable and 0 < a < b it holds

(ν1 ◦ h−1)(A× [a, b)) =

∫
A

∫
[ρ([b,∞)|y),ρ([a,∞)|y))

drα∗(dy) =

∫
A
ρ([a, b)|y)α∗(dy),

which is equal to ν(A × [a, b)) with ν from (3.15). Thus ν = ν1 ◦ h−1 by Carathéodory’s

extension theorem (recall that the measure extension is unique, because ν is assumed to be σ-

finite). Applying the almost sure mapping theorem (see Theorem B.22 in the appendix) to Π1

and h yields the representation (3.17) for Π, with possibly different sequences {vj}, {yj} which

are, however, equal in distribution.

The result from Lemma 3.12 can now be applied to derive a series representation for the Gamma

process Φ from (3.2). To do so, we will need the following strengthened version of Assump-

tion GP2:

Assumption GP2’. The integral Cα :=
∫
X α(x, S̄+

d )dx is finite and there exists a constant β0 >

0 such that β(x,U) ≥ β0 holds for all U ∈ S̄+
d and all x ∈ X \N , where N ⊂ X is a null set.

Lemma 3.13. Let X fulfill assumption X1. Let Φ ∼ CRMd×d(ν) with ν as in (3.1) fulfilling

Assumptions GP1 and GP2’. Then the following series representation holds for Φ:

Φ
a.s.
=
∑
j≥1

δxjrjUj , (xj ,Uj)
iid∼ α∗,

rj = ρ−(wj |Cα, β(xj ,Uj)), wj =

j∑
i=1

vi, vi
iid∼ Exp(1),

where α∗ is the probability measure on X × S̄+
d induced by α, i.e. α∗(dx, dU) = α(x,dU)dx

Cα
with

Cα as in Assumption GP2’ and ρ− is the inverse of the tail of the radial Gamma measure ρ:

ρ−(w|a, b) = inf {r > 0: ρ([r,∞]|a, b) < w} , ρ(dr|a, b) = a
exp(−br)

r
dr.

Proof. We first observe that Assumption GP2’ implies Assumption GP2: Indeed, we find∫
X

∫
S̄+d

∫ ∞
0

min(1, r)ν(dx, dU , dr)

=

∫
X

∫
S̄+d

∫ 1

0
rν(dx, dU , dr) +

∫
X

∫
S̄+d

∫ ∞
1

ν(dx, dU , dr)

=:

∫
X

∫
S̄+d
R1(x,U)α(x, dU)dx+

∫
X

∫
S̄+d
R2(x,U)α(x, dU)dx

with

R1(x,U) =

∫ 1

0
exp(−β(x,U)r)dr ≤

∫ 1

0
dr = 1

and

R2(x,U) =

∫ ∞
1

exp(−β(x,U)r)

r
dr ≤

∫ ∞
1

exp(−β0r)dr =
exp(−β0)

β0
.
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This yields∫
X

∫
S̄+d

∫ ∞
0

min(1, r)ν(dx, dU , dr) ≤ Cα
(

1 +
exp(−β0)

β0

)
<∞,

with Cα from Assumption GP2’. Hence Assumption GP2 is satisfied and Φ is well-defined by

Theorem 3.2. Denote by Π ∼ PP(ν) the underlying Poisson Process. Let Y := X × S̄+
d be

endowed with the product σ-algebra and write y = (x,U) as well as dy = (dx, dU). Denote

by α̃ the measure on Y given as α̃(dy) = α(x, dU)dx. Then ν can be written as

ν(dy, dr) =
exp(−β(y)r)

r
drα̃(dy) = ρ(dr|Cα, β(y))α̃∗(dy),

where α̃∗(dy) = α̃(dy)
Cα

denotes the probability measure on Y induced by α̃. Since ρ(dr|a, b) is

a σ-finite measure for all a, b > 0, it follows that ν is σ-finite and an application of Lemma 3.12

to Π yields

Π
a.s.
= {(yj , ρ−(wj |Cα, β(yj))}j≥1, yj = (xj ,Uj)

iid∼ α̃∗

and {wj}j≥1 as in the claim and independent of {yj}. Recalling the connection between Φ and Π

from (3.2) concludes the proof.

Remark 3.14. The result from Lemma 3.13 requires the computation of the total mass Cα of

the measure α on X × S̄+
d . In many cases, this can be derived analytically. For example, when

employing the AΓ(η, ω,Σ) distribution from Section 2.4 with η ≡ η0 > d− 1 and ω = ω(x) > 0

and Σ = Σ(x) ∈ S+
d for x ∈ X , it holds

∫
S̄+d
α(x, dU) = ω(x)

∫
S+d
αη,Σ(x)(dU) = ω(x), and

hence Cα =
∫
X ω(x)dx.

There is no analytically closed form available for the inverse tail of the Gamma measure ρ−(·|a, b).
However, we have ρ−(w|a, b) = b−1E−1 (a−1w), where E−1 is defined as the inverse exponential

integral function:

E−1 (w) := inf{r > 0: E1(r) < w}, E1(r) =

∫ ∞
r

exp(−z)
z

dz.

As noted in Wolpert and Ickstadt (1998), the values of E1 can be approximated numerically

by tail probabilities of rescaled χ2 distributions and the values of E−1 by the corresponding

quantiles:

E1(r) = lim
δ→0

2

δ
P(χ2

δ > 2r) ≈ 2

δ0
P(χ2

δ0 > 2r), E−1 (z) ≈ 1

2
qχ2

δ0

(1− zδ0/2) (3.19)

for some small value δ0 (e.g. δ0 = 10−12), with qχ2
k
(p) denoting the p-quantile of the Chi Squared

distribution with k degrees of freedom.

3.4. Numerical Simulation of Prior Samples

In this Section, we discuss the non-trivial task of drawing random samples from the Gad×d(α, β)

process. We restrict our attention to the AΓ(η, ω,Σ) distribution from Section 2.4, for the
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following two reasons. On the one hand, it offers a great amount of prior modeling flexibility

while retaining a simple parametrization in terms of only the three parameters η, ω,Σ. On

the other hand, the density of its Lévy measure is available in analytical form (see (2.17))

and this property is in fact necessary for the methods we will present in Section 3.4.2. As

discussed at the end of this Section, the techniques can be extended to many other Gad×d(α, β)

processes. Some illustrations will be shown in Section 3.4.3 and a straightforward extension to

simulation of random samples from the AΓ distribution (rather than the process) is presented

in Section 3.4.4. The methods rely on Markov Chain Monte Carlo (MCMC) algorithms such

as the Gibbs sampler and the Metropolis-Hastings algorithm. A description of both algorithms

(along with a comprehensive introduction to MCMC) can be found in Section 6.3 in Christensen

et al. (2011). We start our consideration in Section 3.4.1 with a convenient and practical

parametrization for elements of the sphere S+
d .

3.4.1. Parametrization of the Ul’s

In this section, we derive a practical parametrization of Hpd matrices U ∈ S+
d with unit trace

(see (2.3)). We use a minor adaptation of the hyperspherical coordinates approach derived

in Mittelbach et al. (2012). To elaborate, let U = ULU
∗
L denote the Cholesky decomposition

and denote the elements of UL as follows:

UL =


y1

y2 − iy3 y4

y5 − iy6 y7 − iy8 y9

. . . . . . . . . . . . . . . . . .

y(d−1)2+1 − iy(d−1)2+2 . . . . . . . . . yd2−2 − iyd2−1 yd2

 .

The components y1, . . . , yd2 are represented in hyperspherical coordinates ϕ1, . . . , ϕd2−1, i.e.

yj =

cos(ϕj)
∏j−1
l=1 sin(ϕl), j = 1, . . . , d2 − 1∏j−1

l=1 sin(ϕl), j = d2,
(3.20)

where the range of ϕj is given by

Ij =

(0, π/2), j = l2 for l = 1, . . . , (d− 1)

(0, π), else,
(3.21)

for j = 1, . . . , d2 − 1, see (60)-(63) in Mittelbach et al. (2012). This yields the parametriza-

tion ϕ := (ϕ1, . . . , ϕd2−1) for U . Denote by T : S+
d → I :=

⊗d2−1
j=1 Ij the transformation T (U) =

ϕ. Then the absolute value of the determinant of the Jacobian JT−1 of the inverse mapping T−1

is given by (see Section IV.A and Section II.B in Mittelbach et al. (2012))

|JT−1(ϕ)| =
d2−1∏
j=1

cospj (ϕj) sinqj (ϕj) (3.22)

with the exponents

pj =

(d+ 1)− l, j = l2 for l = 1, . . . , d− 1

0, else
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and

qj = d2 − (l − 1)d− l − 1−m, for j = l2 +m, j = 1, . . . , d− 1, m = 1, . . . , l,

see (27)-(31) in Mittelbach et al. (2012).

3.4.2. The Algorithm

First, let us briefly revisit the AΓ distribution. Let η0 > d− 1, ω0 > 0 and Σ0 ∈ S+
d . Recall the

following distributional properties of the AΓ(η0, ω0,Σ0) distribution (see Lemma 2.7 and the

proof thereof, and Lemma 2.9):

• The AΓ(η0, ω0,Σ0) distribution is the Gad×d(ω0αη0,Σ0 , βΣ0) distribution with the proba-

bility measure αη0,Σ0 on S+
d and the mapping βΣ0 : S+

d → (0,∞) from Lemma 2.7.

• For X ∼ AΓ(η0, ω0,Σ0) it holds EX = ω0
d Σ0 and CovX ∝ ω0Σ0 ⊗ Σ0, where the

proportionality is understood component-wise.

Let X fulfill Assumption X1. We define an AΓ(η, ω,Σ) process on X under the following

assumptions on the process parameters η, ω,Σ:

Assumption AΓ1. Let η ≡ η0 > d−1 and ω : X → (0,∞) be measurable such that
∫
X ω(x)dx <

∞. Let Σ : X → S+
d be measurable such that supx∈X λmax(Σ(x)) ≤ τ <∞.

Consider the Poisson mean measure ν on X × S̄+
d × (0,∞) given as

ν(dx, dU , dr) =
exp(−βΣ(x)(U)r)

r
drω(x)αη,Σ(x)(dU)dx. (3.23)

and let Φ ∼ CRMd×d(ν). First observe that by Theorem 3.2 and Lemma 2.9 it holds

E[Φ(A)] =
1

d

∫
A
ω(x)Σ(x)dx, A ⊂ X measurable. (3.24)

Denote by α the measure on X × S̄+
d defined as α(dx, dU) = ω(x)αη,Σ(x)(dU)dx. Let Cα :=

α(X , S+
d ) =

∫
X ω(x)dx <∞ by Assumption AΓ1 (where the last equality is due to Remark 3.14)

denote its total mass and α∗ := α
Cα

its normalization. Under Assumption AΓ1, the assumptions

of Lemma 3.13 are fulfilled since Cα <∞ and, using Lemma B.4 in the Appendix, it holds

βΣ(x)(U) = tr
(
Σ(x)−1U

)
≥ λmin(Σ(x)−1) tr(U) =

1

λmax(Σ(x))
≥ 1

τ

for all x ∈ X and all U ∈ S+
d . From Lemma 3.13, we obtain

Φ
a.s.
=

∞∑
j=1

δxjrjUj , (xj ,Uj)
iid∼ α∗, rj = ρ−(wj |Cα, βΣ(xj)(Uj)),

wj =

j∑
i=1

vi, vi
iid∼ Exp(1),

(3.25)

where the vi’s are independent of the (xj ,Uj)’s and the inverse tail ρ− of the Gamma measure

as in Lemma 3.13. In practice, the representation (3.25) is truncated at some large positive
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integer L, yielding the approximate form Φ ≈
∑L

j=1 δxjrjUj (the part after (5.5) in Section 5.2

for a more detailed discussion of the truncation issue).

In this approximation, Φ is represented by the 3L parameters (x1, . . . , xL, r1, . . . , rL,U1, . . . ,UL).

To generate random samples of Φ, one needs to generate random samples from the probability

distribution α∗ on X × S+
d . Let ω∗(x) = ω(x)

Cα
. Denote by

g∗(x,U) =
Γ(ηd)ω∗(x)|U |η−d

Γ̃d(η)|Σ(x)|η tr (Σ(x)−1U)dη
, x ∈ X ,U ∈ S+

d

the probability density of α∗. We observe

g∗(x,U) = ω∗(x)g∗(U |x), x ∈ X ,U ∈ S+
d (3.26)

with

g∗(U |x) =
Γ(ηd)|U |η−d

Γ̃d(η)|Σ(x)|η tr (Σ(x)−1U)dη
, U ∈ S+

d

being the Lebesgue density of the αη,Σ(x) measure on S+
d for fixed x ∈ X . Assume that the

function ω is such that we can draw random samples from (the probability distribution with

density) ω∗. Then it follows from (3.26) that a random sample (x,U) from α∗ can be generated

by first drawing x from ω∗, and then – given x – drawingU from αη,Σ(x). This idea is summarized

in Algorithm 1. In view of Algorithm 1, a reasonable idea is to set ω∗ to the (known) probability

Algorithm 1: Generate a draw from the AΓ(η, ω,Σ) process

input : L ∈ N, η > d− 1, functions ω : X → (0,∞) and Σ : X → S+
d

1 Compute Cα ←
∫
X ω(x)dx;

2 Draw v1, . . . , vL
iid∼ Exp(1) and compute w1, . . . , wL from (3.25);

3 Draw x1, . . . , xL independently with pdf ω∗ = ω
Cα

;

4 for j ← 1 to L do

5 Draw Uj from αη,Σ(xj), e.g. with Algorithm 2;

6 Compute rj ← ρ−(wj |Cα, βΣ(xj)(Uj));

7 end

output: Φ←
∑L

j=1 δxjrjUj

density function of a continuous random variable on X , such that samples from ω∗ can readily be

obtained. A common example for the case X = [0, 1] are the Beta densities and finite mixtures

thereof. If however ω∗ does not belong to a known family, a numerical sampling method such

as Rejection Sampling or MCMC techniques (see Chapter 6 in Christensen et al. (2011)) can be

employed to draw from ω∗.

Algorithm 1 relies on random draws from the probability distribution αη,Σ0 on S+
d for some Σ0 ∈

S+
d . An efficient method for this purpose can be derived with the following key observation:

The measure αη0,Σ0 is generated by the measure αη0 = αη0,Id from (2.14) under the transforma-

tion S+
d 3 V 7→

Σ
1/2
0 V Σ

1/2
0

tr(Σ0V ) ∈ S+
d , see (2.15) for the precise argument. This idea is summarized

in Algorithm 2, and it remains to derive a method to draw random samples from αη.
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Algorithm 2: Generate a draw from αη0,Σ0

input : η0 > d− 1, Σ0 ∈ S+
d

1 Compute Hpd matrix square root Σ
1/2
0 ;

2 Draw random matrix V from αη0 , e.g. with Algorithm 3;

output: U ← Σ
1/2
0 V Σ

1/2
0

tr(Σ0V )

Since αη has the Lebesgue density

g∗0(U) =
Γ(ηd)

Γ̃d(η)
|U |η−d, U ∈ S+

d , (3.27)

random samples from αη can be obtained efficiently with the Metropolis Hastings algorithm

(see Section 6.3.3 in Christensen et al. (2011)), with the parametrization for elements of the

sphere S+
d from Section 3.4.1. This is illustrated in Algorithm 3. Note that the Jacobian of the

re-parametrization has to be taken into account for the target density (see Line 3). Also note

that uniform proposals are used under the re-parametrization (see Line 4). If η0 = d, the αη0

Algorithm 3: Generate a draw from αη0 (Metropolis-Hastings)

input : η0 > d− 1, Nburn ∈ N

1 Initialize ϕ(1) ← Unif(I) with I =
⊗d2−1

j=1 Ij from (3.21);

2 Set U (1) ← T−1(ϕ(1)) with T from (3.22);

3 Let ptarget

(
ϕ
)

= g∗0(T−1(ϕ))|JT−1(ϕ)|;
4 Let pprop

(
ϕ
)
∝ 1I(ϕ);

5 for i← 1, . . . , Nburn do

6 Retrieve ϕ(i+1) from an MH step with target density ptarget, proposal density pprop and

previous value ϕ(i);

7 Set U (i+1) ← T−1(ϕ(i+1));

8 end

output: U (Nburn+1)

measure corresponds to the uniform probability measure on S+
d . In this case, even more efficient

methods for generating random samples exist (see Mittelbach et al. (2012)).

3.4.3. Illustration

As an example, we will consider three AΓ-processes Φi on X = [0, 1] in dimension d = 2, given

by the following parameters ωi,Σi for i = 1, 2, 3 and b(x|j, k) denoting the probability density

of the Beta(j, k) distribution:

ω1(x) ≡ 2, Σ1(x) ≡ I2, (3.28)

ω2(x) = 2(1 + 9b(x|1, 10)), Σ2(x) =
2

ω2(x)
I2, (3.29)

ω3(x) ≡ 2, Σ3(x) = fVAR(πx|B,S), (3.30)
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Figure 3.1.: Visualization of ω2(x) and 1
ω2(x) from (3.29).

for 0 ≤ x ≤ 1 and fVAR(·|B,S) denoting the spectral density of a VAR(1) model

Zt = BZt−1 + et, et ∼ Nd(0,S),

(the formula of fVAR can be found in (6.7)), with VAR parameter B and covariance matrix S

given by

B =

(
0.5 0

0 −0.7

)
, S =

(
1 −0.5

−0.5 1

)
.

A visualization of ω2(x) is shown in Figure 3.1 and a visualization of Σ3(x) is included in

Figure 5.1(c) and Figure 5.1(d).

The increments dΦi(x) of Φi among 0 ≤ x ≤ 1 are independent and AΓ(η, ωi(x),Σi(x)) dis-

tributed, see (3.5). In particular, it follows from (3.24) that E[dΦi(x)] = ωi(x)
2 Σi(x)dx and

hence

E[dΦ1(x)] = E[dΦ2(x)] = I2dx, E[dΦ3(x)] = fVAR(πx|B,S)dx.

Furthermore, since by Lemma 2.9 it holds Cov[dΦi(x)] ∝ ωi(x)Σi(x)⊗Σi(x) (the proportionality

being understood component-wise) it follows that the deviation of the increments of Φ1 are

homogeneous among x, whereas the deviation of the increments of Φ2 is proportional to ω2(x)−1,

i.e. strictly increasing as x approaches 1, see Figure 3.1. The (cumulated) mean curve of the

process Φi is given as

E[Φi([0, x])] =
1

2

∫ x

0
ωi(t)Σi(t)dt, 0 ≤ x ≤ 1. (3.31)

A visualization of the pointwise distribution of the Φi’s is shown in Figure 3.2. It can be seen

that, while the mean curve of Φ1 and Φ2 coincide – the two processes clearly differ by the second

order structure, since the increase of uncertainty is stronger at the right boundary of Φ2, which

is in line with the choice of ω2(x). A higher truncation threshold of L = 300 is needed for the

approximation of Φ2, to render the strong inhomogeneity properly, whereas a value of L = 60

was sufficient for Φ1 and Φ3.

A visualization of two AΓ(η, ω,Σ) processes with η 6= 2 is shown in Figure 3.3. Recall from

Remark 2.10 that η is a regularity parameter of the underlying AΓ distribution. With small

values of η, more probability mass is put towards the boundary of S+
d (favoring nearly-singular

matrices). This behavior is mirrored in the corresponding AΓ-process. It can indeed be seen
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Figure 3.2.: Visualization of the pointwise (among 0 ≤ x ≤ 1) distribution of the cumulated

process Φi([0, x]) for (a) Φ1 from (3.28), (b) Φ2 from (3.29) and (c) Φ3 from (3.30).

The pointwise mean is drawn in solid black, the area between pointwise upper and

lower quartile in shaded red and the area between pointwise 0.95 and 0.05 quantile in

shaded blue. The visualizations are based on 10,000 samples respectively generated

with Algorithm 1 with L = 60 (L = 300 for (b)).
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Figure 3.3.: Visualization of the pointwise (among 0 ≤ x ≤ 1) distribution of the cumulated

process Φ1([0, x]) with Φ1 from (3.28) for (a) η = 8 and (b) η = 1.1

in the larger scale of the off-diagonal entries in Figure 3.3(b) in comparison to Figure 3.2(a).

For η = 8, the AΓ(η, ω,Σ) distribution is more regular, yielding a smaller off-diagonal scale in

Figure 3.3(a).

3.4.4. Numerical Simulation of Hpd Gamma Matrices

Algorithm 1 can readily be adapted to draw random AΓ matrices. Indeed, for the homogeneous

process case ω ≡ ω0 > 0 and Σ ≡ Σ0 ∈ S+
d , we recall from Remark 3.3 that Φ([0, 1]) ∼

Gad×d(αη0,Σ0 , βΣ0). On the other hand, we get Φ([0, 1]) ≈
∑L

j=1 rjUj from (3.25). Accordingly,

Algorithm 4 describes how random samples from the AΓ distribution can be drawn.

Algorithm 4: Generate a draw from the AΓ(η0, ω0,Σ0) distribution

input : L ∈ N, η0 > d− 1, ω0 > 0, Σ0 ∈ S+
d

1 Draw v1, . . . , vL
iid∼ Exp(1) and compute w1, . . . , wL from (3.25);

2 Draw U1, . . . ,UL
iid∼ αη0,Σ0 , e.g. with Algorithm 2;

3 for j ← 1 to L do Compute rj ← ρ−(wj |Cα, βΣ0(Uj));

output: Z ←
∑L

j=1 rjUj

Algorithm 1 and Algorithm 4 are not restricted to the AΓ distribution, but can be extended to

other Gad×d distributions, as long as the finite measure α on X × S̄+
d has a Lebesgue density g,
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the local spherical mass function ω(x) :=
∫
S+d
gα(x,U)dU is available and there exists a method

to draw random samples from (the probability distribution with Lebesgue density)

g(U |x) :=
g(x,U)∫

S+d
g(x,V )dV

, U ∈ S+
d

for all x ∈ X .





Part II.

Spectral Density Inference



4.
Whittle’s Likelihood

4.1. Introduction

Consider a Gaussian stationary time series {Zt} in Rd with EZt = 0. Denote by Γ(h) :=

E[ZtZ
T
t+h] ∈ Rd×d for h ∈ Z the autocovariance function of {Zt}. For a sample z1, . . . , zn of

size n, denote by z := (zT1 , . . . , z
T
n )T ∈ Rnd the vector of stacked observations. The Gaussian

likelihood Pn is given in terms of the Lebesgue density

pn(z) =
1√

(2π)nd|Γnd|
exp

(
−1

2
zTΓ−1

nd z

)
, z ∈ Rd, (4.1)

with covariance matrix Γnd = E[ZZT ] ∈ Rnd×nd given by

Γnd =


Γ(0) Γ(1) . . . Γ(n− 1)

Γ(−1) Γ(0) . . .
...

. . .

Γ(−n+ 1) . . . Γ(0)

 =


Γ(0) Γ(1) . . . Γ(n− 1)

Γ(1)T Γ(0) . . .
...

. . .

Γ(n− 1)T . . . Γ(0)

 (4.2)

with the last equality following from Γ(h) = Γ(−h)T for h ∈ Z. Since Γnd is consisting of n2

blocks of size d× d, we will also follow the notational convention of writing

Γnd =

Γnd(1, 1) . . . Γnd(1, n)
...

...

Γnd(n, 1) . . . Γnd(n, n)

 (4.3)

with Γnd(j, k) = Γ(−j + k). This notation will become particularly useful when comparing Γnd
with other block matrices. There are several issues with the likelihood (4.1) that make it

unappealing in computational applications. First of all, it relies on the inversion of the nd× nd
covariance matrix Γnd – a task of considerable computational cost (with O(d3n2) floating point

operations, see Akaike (1973)), which is also prone to numerical instabilities even for moderate

values of nd. Aside from this, and relevant in the context of spectral inference, the likelihood Pn

depends on the spectral density f (given its existence) only indirectly through Γnd in terms of

the Herglotz Lemma representation

Γ(h) =

∫ 2π

0
f(ω) exp(−ihω)dω, h ∈ Z. (4.4)
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This indirect dependence on f comes at an additional computational cost of computing Γ(−n+

1), . . . ,Γ(n− 1) from f through (4.4) to get Γnd.

A different idea constitutes the usage of a frequency domain representation of the data itself.

To elaborate, consider the Fourier Coefficients

Z̃j :=
1√
n

n∑
t=1

Zt exp(−itωj), ωj :=
2πj

n
, j = 0, . . . ,

⌊n
2

⌋
. (4.5)

The values ω0, . . . , ωbn/2c are called the Fourier Frequencies. We observe that Z̃0 = 1√
n

∑n
t=1 Zt

corresponds to the (rescaled) sample mean and, for n even, Z̃n/2 = 1√
n

∑n
t=1(−1)tZt to the

(rescaled) alternating sample mean. There is a one-to-one relation between the Fourier Coef-

ficients (which, in what follows, we will also equivalently call frequency domain observations)

and the sample Z1, . . . , Zn (which we will also call time domain observations). In fact, it is well

known that the Fourier inversion formula

Zt =
1

2π
√
n

n−1∑
j=0

Z̃j exp(itωj), t = 1, . . . , n

holds, where for j > bn/2c, the values of Z̃j are defined as Z̃j := Z̃
∗
n−j for n even and Z̃j :=

Z̃
∗
n−j+1 for n odd. Thus the Fourier coefficients contain the same amount of statistical informa-

tion as the time domain observations. Asymptotically, the Fourier coefficients are in a certain

sense independent and normally distributed. To elaborate, for Σ ∈ S+
d , denote by CNd(0,Σ)

the complex multivariate normal distribution, as given by the Lebesgue density

p(z) =
1

πd|Σ|
exp

(
−z∗Σ−1z

)
, z ∈ Cd. (4.6)

Then, as n tends to infinity, for all m ∈ N and all sequences ωl1,n , . . . , ωlm,n of Fourier frequencies

with ωlj,n → ωj ∈ [0, π] for j = 1, . . . ,m, the joint distribution of (Z̃ l1,n , . . . , Z̃ l1,n) converges to

the distribution of an m-vector of independent normals, with the following limiting distributions:
Nd(0, 2πf(0)), ωj = 0,

CNd(0, 2πf(ωji)), ωj ∈ (0, π)

Nd(0, 2πf(π)), ωj = π.

This statement holds true for a wide class of time series models, even beyond Gaussianity, see

e.g. Theorem 13 in Chapter 4 of Hannan (1970). For Gaussian time series, we will derive an

even stronger result, involving measure contiguity rather than asymptotic distributional equality,

in the upcoming Section 4.3. Closely related to the Fourier coefficients is the periodogram

matrix J̃j := 1
2π Z̃jZ̃

∗
j . The above results yield that (any finite selection of) the periodogram

ordinates are asymptotically independent with asymptotic mean being equal to the spectral

density matrix:

EJ̃j ≈ f(ωj), j = 0, . . . , bn/2c. (4.7)

Motivated by these considerations, Whittle’s Likelihood PnW is defined to resemble the asymp-

totic distribution of the Fourier coefficients, i.e. in terms of the Lebesgue density

pnW (z̃0, . . . , z̃bn/2c|f) =

bn/2c∏
j=0

pj,nW (z̃j |f) (4.8)
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with

p0,n
W (z̃0) =

1√
(2π)d|2πf(0)|

exp

(
− 1

4π
z̃T0 f(0)−1z̃0

)
,

pj,nW (z̃j) =
1

πd|2πf(ωj)|
exp

(
− 1

2π
z̃∗jf(ωj)

−1z̃j

)
, j = 1, . . . ,

⌈n
2

⌉
− 1,

p
n/2,n
W (z̃n/2) =

1√
(2π)d|2πf(π)|

exp

(
− 1

4π
z̃Tn/2f(π)−1z̃n/2

)
, for n even.

Whittle’s Likelihood has several conceptual advantages over the full Gaussian likelihood Pn.

Being a product likelihood, it comes with much less computational costs to evaluate (i.e. O(nd3)),

since only n d×d matrices have to be inverted rather than one nd×nd matrix. This also makes

the evaluation much more numerically stable. Furthermore, since it depends directly on the

spectral density f , it lends itself naturally to spectral inference. Since it is only asymptotically

justified, it may be noted that there are situations when the Whittle likelihood approximation

tends to produce biased results, in particular in situations where the effective sample size is

small and this may even be the case for moderate sample sizes if the auto-dependence in the

time series is strong, see Contreras-Cristán et al. (2006). There exist methods to mitigate this

effect to some extent (see Sykulski et al. (2016)) which are however beyond the scope of this

work.

4.2. A Real Valued Formulation

We will sometimes work with a real-valued formulation of Whittle’s likelihood, which will be

described in the following. Let N :=
⌈
n
2

⌉
− 1. Let

D̃n :=

Rd × CdN × Rd, n even,

Rd × CdN , n odd,

and consider the multivariate Discrete Fourier Transform (mDFT) operator Fnd : Rn×d → D̃n,

Fnd((Z1, . . . , Zn)T ) = (Z̃0, . . . , Z̃bn/2c). We will first derive a real-valued version of Fnd, which

will be more convenient in many subsequent considerations. To elaborate, consider the isomor-

phism vecR : D̃n → Rnd defined by stacking real and imaginary parts of (Z̃0, . . . , Z̃bn/2c) ∈ D̃n
suitably below each other:

Z̃ : = vecR(Z̃0, . . . , Z̃bn/2c)

=



Z̃T0 ,√2

<Z̃1

=Z̃1

T

, . . . ,
√

2

<Z̃N
=Z̃N

T

, Z̃
T
N+1


T

, n even,

Z̃T0 ,√2

<Z̃1

=Z̃1

T

, . . . ,
√

2

<Z̃N
=Z̃N

T

T

, n odd,

(4.9)

recalling that <Z and =Z denote the real- and imaginary parts of a complex vector Z. Denote

by Z := (ZT1 , . . . , Z
T
n )T ∈ Rnd the column vector of stacked time domain observations. The
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following result shows that the real-valued frequency domain vector Z̃ from (4.9) can be obtained

from Z by applying a linear, orthogonal transformation.

Lemma 4.1. There exists an orthogonal matrix Fnd ∈ Rnd×nd such for all Z1, . . . , Zn ∈ Rd

with Z := (ZT1 , . . . , Z
T
n )T ∈ Rnd and Z̃ = vecR(Z̃0, . . . , Z̃bn/2c) ∈ Rnd it holds

Z̃ = FndZ. (4.10)

Proof. We start with the case d = 1. It is well known (see e.g. Section 10.1 in Brockwell

and Davis (1991) or Section 2.1 in Kirch et al. (2017)) that in this case the transformation

matrix Fn := Fn1 can be obtained as follows: With

ej :=
1√
n

(
e−2πij/n, e−4πij/n, . . . , e−2nπij/n

)T
, j = 0, . . . ,

⌊n
2

⌋
and cj :=

√
2<ej , sj :=

√
2=ej , we define

Fn :=

(e0, c1, s1, . . . , cN , sN , en/2)T , n even,

(e0, c1, s1, . . . , cN , sN )T , n odd.

It is also well known that Fn is orthogonal. From Fn we can construct the transformation

matrix Fnd for the case d > 1 as follows. Denote byRnd the matrix fulfilling for all X1, . . . , Xnd ∈
R the following equality:

Rnd(X1, X2, . . . , Xnd) = (X1, Xd+1, . . . , X(n−1)d+1, X2, Xd+2, . . . , Xnd), (4.11)

i.e.

(Rnd(X1, . . . , Xnd))(r−1)n+i = X(i−1)d+r (4.12)

for all r = 1, . . . , d and i = 1, . . . , n. Being a permutation matrix, it follows that Rnd is orthogo-

nal. Define the block diagonal matrix F̃nd = Id ⊗Fn. Since Fn is the one-dimensional transfor-

mation matrix, the frequency domain vector of the j’th component is given by (Z̃1,j , . . . , Z̃n,j)
T =

Fn(Z1,j , . . . , Zn,j)
T for j = 1, . . . , d, hence

F̃nd(Z1,1, . . . , Zn,1, Z1,2, . . . , Zn,n)T = (Z̃1,1, . . . , Z̃n,1, Z̃1,2, . . . , Z̃n,d)
T . (4.13)

Note also that F̃nd is orthogonal, since, by Lemma B.1 in the Appendix,

(Id ⊗ Fn)(Id ⊗ Fn)T = (Id ⊗ Fn)(Id ⊗ F T
n ) = Id ⊗ (FnF

T
n ) = Id ⊗ In = Ind

(and (Id ⊗ Fn)T (Id ⊗ Fn) = Ind is shown analogously). On the other hand, the right hand side

of (4.13) can also be obtained as RndZ̃, which is equivalent to Z̃ = RT
ndF̃ndRndZ. Thus the

matrix

Fnd := RT
ndF̃ndRnd = RT

nd(Id ⊗ Fn)Rnd (4.14)

fulfills (4.10) and noting that Fnd is orthogonal concludes the proof.
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The following algebra isomorphism describes the connection between the covariance matrix of a

complex normal random vector and the covariance matrix of its real-valued counterpart.

Lemma 4.2. Consider the mapping

B : Cd×d → R2d×2d, BA =

(
<A −=A
=A <A

)
. (4.15)

Then it holds

(a) B is an algebra isomorphism.

(b) A ∈ Cd×d is Hermitian if and only if BA is symmetric. In this case the absolute value of

the determinant of BA fulfills |BA| = |A|2.

Proof. The mapping B has been considered in the proof of Theorem 13 in Chapter IV (The Law

of Large Numbers) in Hannan (1970). The results are also derived there.

The algebra isomorphism B establishes a direct link between the complex multivariate normal

distribution and the multivariate normal distribution of double dimensionality, as the following

result shows.

Lemma 4.3. Let Z be a random element in Cd with mean zero and E
[
‖Z‖2

]
being finite. Denote

by Σ := E [(Z − EZ)(Z − EZ)∗] the covariance matrix of Z. Assume that Σ ∈ S+
d . Consider

the real-valued version X := (
√

2<ZT ,
√

2=ZT )T ∈ R2d of Z obtained by stacking (and rescaling)

the imaginary part below the real part. Then Z ∼ CNd(0,Σ) if and only if X ∼ N2d(0,BΣ).

Proof. It is shown in the proof of Theorem 13 in Chapter IV in Hannan (1970) that for z ∈ Cd

and x := (
√

2<zT ,
√

2=zT )T ∈ R2d, it holds

z∗Σz =
1

2
xT (BΣ)x.

Thus, denoting by pZ and pX the probability densities of Z and X respectively, this yields

pZ(z) ∝ exp
(
−z∗Σ−1z

)
⇐⇒ pX(x) ∝ exp

(
−1

2
xT (BΣ)−1x

)
,

concluding the proof.

As an immediate consequence of Lemma 4.3, the formula for Whittle’s likelihood in terms of

the real-valued frequency domain observations Z̃ is given by the following Lebesgue density:

pnW (z̃|f) =
1√

(2π)nd|Dnd|
exp

(
−1

2
z̃TD−1

nd z̃

)
, z̃ ∈ Rnd (4.16)

with the following nd × nd block diagonal matrix (note that the block sizes are visualized by

the size of the surrounding squares, where the block size for f(0) and – if applicable – f(π) is
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given by d and by 2d for all other blocks):

Dnd = Dnd[f ] := 2π ·



f(0)

Bf(ω1)

. . .

Bf(ωN )

f(π)


for n even and

Dnd = Dnd[f ] := 2π ·



f(0)

Bf(ω1)

. . .

Bf(ωN )


for n odd.

4.3. Mutual Contiguity of Whittle’s Likelihood and Full

Gaussian Likelihood

Two sequences (Pn) and (Qn) of measures on measurable spaces Xn are called mutually contigu-

ous, if for every sequence (An) of measurable sets it holds: Pn(An)→ 0 if and only if Qn(An)→ 0.

In this case, convergence in probability under Pn is equivalent to convergence in probability un-

der Qn. In this section we will show that for stationary multivariate Gaussian time series, the

full Gaussian likelihood and Whittle’s likelihood are mutually contiguous. We will make the

following assumption on the underlying true spectral density matrix f :

Assumption f1. The eigenvalues of f(ω) are uniformly bounded and uniformly bounded away

from 0. That is, there exist positive constants b0, b1 such that

λmin(f(ω)) ≥ b0, λmax(f(ω)) ≤ b1, 0 ≤ ω ≤ π.
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Assumption f2. The autocovariance function Γ(h) =
∫ 2π

0 f(ω) exp(ihω)dω of f fulfills∑
h∈Z
‖Γ(h)‖|h|a <∞,

for some a > 1.

In Choudhuri et al. (2004b), mutual contiguity of Whittle’s Likelihood PnW and the full Gaussian

Likelihood Pn has been established in the case d = 1 under Assumptions f1-f2. A related result

(also in the univariate case) has been derived in Cai et al. (2013), where the authors showed an

asymptotic equivalence result (in the Le Cam sense) for estimation of the log spectral density.

Let us briefly discuss Assumptions f1–f2. An application of Lemma B.15 in the Appendix

yields that Assumption f2 implies that f is continuously differentiable with derivative being

Hölder of order a− 1 > 0. In fact, this already implies (since f is a continuous function defined

on a compact interval) that the part λmax(f(ω)) ≤ b1 of Assumption f1 holds for some positive

constant b1. The additional assumption λmin(f(ω)) ≥ b0 is in this case equivalent to |f(ω)| 6= 0.

The boundedness of the eigenvalues away from 0 has a statistical interpretation in terms of

decay of so-called linear dependence coefficients, see Theorem 1.7 in Bradley (2002), whereas

the Assumption f2 concerns the decay of the autocovariance function.

It is of course possible to conduct inference under more general assumptions. As an example,

in Rousseau et al. (2012), a Bayesian nonparametric approach to spectral inference for long-

memory processes is presented, allowing for spectral densities having a pole (of certain order)

as ω → 0. However, it is known that for such models the Whittle approximation PnW is no longer

justified (see Section 3 in Robinson (1995)) and these models have to be treated differently. The

following Theorem is the main result of this section.

Theorem 4.4 (Contiguity of Gaussian and Whittle measure in multivariate case). Let {Zt}
be an Rd-valued time series with mean zero, spectral density matrix f and autocovariance

function Γ(h), h ∈ Z. Consider the multivariate Discrete Fourier Transform (mDFT) co-

efficients Z̃0, . . . , Z̃bn/2c from (4.5). Denote by Pn the joint distribution of (Z̃0, . . . , Z̃bn/2c).

Denote by PnW = PnW (·|f) the joint distribution of (Z̃0, . . . , Z̃bn/2c) under the Whittle likelihood,

that is, Z̃0, . . . , Z̃bn/2c are independent and

Z̃0

PnW∼ Nd(0, 2πf(0)),

Z̃j
PnW∼ CNd(0, 2πf(ωj)), for j = 1, . . . ,

⌈n
2

⌉
− 1,

Z̃n/2
PnW∼ Nd(0, 2πf(π)), if n is even.

Let f and Γ fulfill assumptions f1-f2. Then Pn and PnW are mutually contiguous.

We have the following immediate corollary from Theorem 4.4.

Corollary 4.5. Let the assumptions of Theorem 4.4 be fulfilled. Denote by P̃n the joint dis-

tribution of (Z̃1, . . . , Z̃dn/2e−1). Denote by P̃nW the joint distribution of dn/2e − 1 indepen-

dent complex d-variate normal random vectors with mean zero and covariance matrix 2πf(ωj),

j = 1, . . . , dn/2e − 1. Then P̃n and P̃nW are mutually contiguous.
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Despite being a very powerful result, the applicability of Theorem 4.4 is restricted to Gaussian

time series and the contiguity result does not hold for non-Gaussian time series. As a very

simple example, consider Z1, . . . , Zn
iid∼ P with a univariate distribution P having mean zero

and variance σ2. In this case, the spectral density is f(ω) ≡ σ2

2π for 0 ≤ ω ≤ π. Consider the

sample excess kurtosis

κ̂n :=
1

nσ̂4
n

n∑
j=1

(Zj − µ̂n)4 − 3, σ̂2
n =

1

n

n∑
j=1

(Zj − µ̂n)2 , µ̂n =
1

n

n∑
j=1

Zj .

It is known that (under regularity assumptions on the existence of moments), κ̂n is a consistent

estimator of the excess kurtosis κ =
EZ4

1
σ4 − 3, a result that in fact holds true under much more

general conditions (see Theorem 3 in Bai and Ng (2005)). If P is leptokurtic (e.g. Student t,

Laplace) then κ > 0 and if P is platykurtic (e.g. uniform) then κ < 0 and in these cases it

holds κ̂n
Pn→ κ 6= 0. Under PnW = PnW (·|f) however, Z1, . . . , Zn are iid Gaussian (see Section 2.1

in Kirch et al. (2017)) with excess kurtosis zero, such that κ̂n
PnW→ 0. This shows that Pn and PnW

cannot be mutually contiguous.

The boundary frequencies ω0 = 0 and ωn/2 = π (the latter occurring for n even) have to be

taken into account or left away consistently to get mutual contiguity. As an example, under the

assumptions of Theorem 4.4, denote by Pn the full Gaussian likelihood in the frequency domain,

i.e. the joint distribution of (Z̃0, . . . , Z̃bn/2c), and by P̃n the sample mean centered (and sample

alternating mean centered) version thereof, i.e. the joint distribution of (Z̃1, . . . , Z̃dn/2e−1) from

Corollary 4.5. Then Pn and P̃n are not mutually contiguous, even though {Zt} has mean zero.

To see why this is the case, consider the distribution of
√
nZ̄n = 1√

n

∑n
j=1 Zj . Under Pn,√

nZ̄n is asymptotically normally distributed, with mean zero and asymptotic covariance equal

to 2πf(0), see Section 11.2 in Brockwell and Davis (1991). Under P̃n however, it holds
√
nZ̄n =

0 → 0 as n → ∞. Thus Pn and P̃n cannot be mutually contiguous and similarly, Pn and P̃nW
cannot be mutually contiguous.

The proof of Theorem 4.4 will be presented in the upcoming Section 4.3.3. For the proof, a

version of Szegö’s strong limit theorem is needed. This will be presented and proven in the

upcoming Section 4.3.1. Furthermore, a result on the convergence speed of frequency domain

covariance matrices is needed, which will be discussed in Section 4.3.2.

4.3.1. Szegö’s Strong Limit Theorem

Being a classical result in matrix theory, Szegö’s strong limit theorem relates the asymptotic

determinant of the time-domain covariance matrix with the integrated log spectral density. In

the multivariate setting, the covariance matrix is of block Toeplitz structure (see (4.2)) and

the spectral density function is matrix-valued. The result has been generalized to this setting

in Widom (1974) and Widom (1975) (see also Widom (1976)). Although the result can be stated

in more generality, the following formulation is sufficient for our purposes.

Theorem 4.6 (Szegö’s strong limit theorem for Block Toeplitz matrices). Let f : [0, 2π]→ S+
d

be measurable and fulfill Assumptions f1-f2. For n > 0, define the nd × nd Block Toeplitz
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matrix generated by f as

Tn := (Γ(−i+ j))n−1
i,j=0 =


Γ(0) Γ(1) · · · Γ(n− 1)

Γ(−1) Γ(0) · · ·
...

. . .

Γ(−n+ 1) · · · Γ(0)

 . (4.17)

with Γ(h) for h ∈ Z as in Assumption f2.

(a) Let G := exp
(

1
2π

∫ 2π
0 log |2πf(ω)|dω

)
> 0. Then there exists a positive constant E, such

that

lim
n→∞

|Tn|
Gn

= E. (4.18)

(b) Denote by T−n the nd × nd block Toeplitz matrix generated by the function ω 7→ f(ω)−1,

i.e. T−n := (Γ−(−i+ j))n−1
i,j=0 with Γ−(h) =

∫ 2π
0 f(ω)−1 exp(ihω)dω for h ∈ Z. Then

‖Ind − TnT−n ‖ = O(1), as n→∞, (4.19)

where Ind denotes the nd× nd-dimensional identity matrix.

The remainder of this Section is devoted to the proof of Theorem 4.6. First, we need some

background from the theory of Toeplitz operators on Banach spaces. We start with the definition

of an infinite-dimensional version of the block Toeplitz matrices Tn. Denote by L2
d the complex

Hilbert space of Cd-valued functions on the interval [0, 2π] with square integrable components,

endowed with the inner product L2
d 3 φ, ψ 7→ 〈φ, ψ〉 :=

∫ 2π
0 φ(x)∗ψ(x)dx. Recall that any φ ∈ L2

d

can be written in terms of its Fourier series

φ =
1

2π

∑
h∈Z

φ
h

exp(−ih·), φ
h

=

∫ 2π

0
φ(x) exp(ihx)dx, h ∈ Z,

the series being convergent in L2
d. Denote by H2

d the Hardy Space on [0, 2π], i.e. the space of

all φ ∈ L2
d such that φ

h
= 0 holds for all h < 0. Note that H2

d is a closed subspace of L2
d. Denote

by Πd the projection of L2
d onto H2

d. The matrix-vector multiplication with f (from left) can

be conceived as a bounded linear operator L2
d 3 φ 7→ fφ ∈ L2

d. The Toeplitz Operator on H2
d

generated by f is defined as

T : H2
d → H2

d, Tφ := Πd(fφ). (4.20)

The operator T can be thought of as an infinite-dimensional version of the matrix Tn. In-

deed, the latter can as well be conceived as a bounded linear operator acting on the Hardy

Space H2
d through matrix multiplication with the vector of the first n Fourier coefficients φn :=

(φT
0
, . . . , φT

n−1
)T ∈ Cnd:

Tn : H2
d → H2

d, (φ
h
)h≥0 7→ ((Tnφ)h)h≥0 = (Tnφn, 0, 0, . . .). (4.21)

In Section 7.5 in Böttcher (2006), it is shown that

‖Tn − T‖ → 0, n→∞ (4.22)
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holds, where ‖ · ‖ denotes the operator norm.

Denote by L∞d×d the Banach algebra of Cd×d-valued functions on [0, 2π] with bounded com-

ponents, endowed with pointwise matrix-matrix multiplication and the maximum Frobenius

norm L∞d×d 3 g 7→ ‖g‖F,∞ := sup0≤ω≤π ‖g(ω)‖. Define the Besov Space Bd×d as the space

of Cd×d-valued functions on [0, 2π] with components belonging to{
g ∈ L2 :

∑
h∈Z
|h||gh|2 <∞, with gh =

∫ 2π

0
g(ω) exp(ihω)dω〉

}
. (4.23)

Finally, we define the Krein Algebra Kd×d as

Kd×d :=
{
f ∈ L∞d×d : (Id×d −Πd×d)f ∈ Bd×d and Πd×df ∈ Bd×d

}
,

where Id×d denotes the identity operator on L∞d×d and Πd×d denotes the projection onto the

closed subspace H2
d×d of L2

d×d (with H2
d×d being defined analogously to H2

d). We will use the

following result to show Theorem 4.6.

Theorem 4.7 (Szegö’s strong limit theorem, abstract formulation). Let f ∈ Kd×d and the

Toeplitz operator T be defined as in (4.20). Let the Toeplitz matrices Tn be as in (4.17) and G :=

exp
(

1
2π

∫ 2π
0 log |2πf(ω)|dω

)
> 0. Assume that T is invertible. Then there exists a constant E 6=

0 such that

lim
n→∞

|Tn|
Gn

= E.

Proof. See Theorem 10.30 in Böttcher (2006).

For part (b) of Theorem 4.6, we will also need the following result.

Lemma 4.8. Let f : [0, 2π] → S+
d such that f ∈ Bd×d and f−1 ∈ Bd×d. Let the nd × nd block

Toeplitz matrices Tn and T−n be defined as in Theorem 4.6. Then it holds

‖Ind − TnT−n ‖ = O(1), as n→∞.

Proof. The proof for the univariate case d = 1 can be found in Lemma A1.4 in Dzhaparidze and

Kotz (2012) and the proof for the multivariate case d > 1 follows along the same lines.

Now we have all the tools at hand to show Theorem 4.6.

Proof (of Theorem 4.6). To derive part (a), we will verify that the assumptions of Theorem 4.7

are fulfilled. To this end, it suffices to verify that f belongs to Kd×d and that the Toeplitz

operator T from (4.20) is invertible. We first observe that each component of Γ fulfills |Γ(h)rs| ≤
C|h|−a for some universal constant C > 0, uniformly in the components r, s = 1, . . . , d by

Assumption f2 and since |Γ(h)rs| ≤ ‖Γ(h)‖. In particular, since a > 1,∑
h≥0

h |Γ(h)rs|2 <∞ and
∑
h<0

(−h) |Γ(h)rs|2 <∞, (4.24)
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which shows that Πd×df and (Id×d−Πd×d)f are both belonging to Bd×d. This shows f ∈ Kd×d.

For 0 6= z = (zT0 , . . . , z
T
n−1)T ∈ Cnd, it holds

z∗Tnz =
n−1∑
j,k=0

z∗jΓ(k − j)zk =
1

2π

∫ 2π

0
z̃(ω)∗f(ω)z̃(ω)dω,

with z̃(ω) =
∑n−1

j=0 zj exp(ijω). Since f(ω) is positive definite for 0 ≤ ω ≤ 2π, this implies

that Tn is positive definite (in particular invertible) for all n. By Assumption f1, the eigenvalues

of f(ω) stay uniformly bounded away from 0 and so do the eigenvalues of Tn as n → ∞.

From (4.22), this concludes that T is invertible. Now an application of Theorem 4.7 yields (4.18)

for a constant E 6= 0. Recalling that Tn is positive definite for all n yields |Tn| > 0 for all n and

since G > 0, it holds E > 0, concluding (a).

To show (b), we first observe that f ∈ Bd×d holds by (4.24). Using Lemma B.16 in the Appendix,

we find that the function f−1 also fulfills Assumptions f1-f2 and hence f−1 ∈ Bd×d can be

concluded by the same argument as for (4.24). The result now follows from Lemma 4.8.

Remark. The constant E in (4.18) is given by E =
∏
j≥0(1 + λj(R)), with (λj(R))j denoting

the sequence of eigenvalues of the operator R := I−TT− for the Toeplitz operator T from (4.20)

(and T− being defined analogously with f−1 instead of f). Although there is no closed-form

expression known for E for the case d ≥ 2, it is sufficient for our purpose to know E > 0. See

Section 1.6 and Remark 10.29 in Böttcher (2006) for further information.

4.3.2. Convergence Rate of Frequency Domain Covariance Matrix

The following result quantifies the speed of convergence of the covariance matrix in the frequency

domain. It is very similar in spirit to Theorem 1.1 in Hannan and Wahlberg (1989), where the

result is shown in a complex valued formulation. See also Section 3 in Davies (1973), where a

related result is shown with a slower rate of convergence but under more general assumptions.

Theorem 4.9. Let {Zt} be a stationary Rd-valued time series with mean zero and spectral

density matrix f fulfilling Assumptions f1-f2. Denote by Γnd ∈ Rnd×nd the time domain

covariance matrix of Z1, . . . , Zn from (4.2). Let Hnd := FndΓndF
T
nd − Dnd with the block

diagonal matrix Dnd from (4.16) and the Fourier transformation matrix Fnd from Lemma 4.1.

Denote the d × d-blocks of Hnd by Hnd(i, j) ∈ Rd×d for i, j = 1, . . . , n (as in (4.3)). Then it

holds

sup
i,j=1,...,n

‖Hnd(i, j)‖ . n−1

for all n ∈ N, with proportionality constants not depending on n.

The proof of Theorem 4.9 relies on an approximation of the covariance matrix Γnd by a so-called

block circulant matrix. To elaborate, a matrix M ∈ Rnd×nd is called block circulant if there
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exist m(0), . . . ,m(n− 1) ∈ Rd×d such that

M =


m(0) m(1) . . . m(n− 1)

m(n− 1) m(0) . . . m(n− 2)

m(n− 2) m(n− 1) . . . m(n− 3)
...

...
...

m(1) m(2) . . . m(0)

 .

In the case d = 1, M is called circulant. There is a close connection between block circulant

matrices and the multivariate Discrete Fourier transform. Indeed, the eigenvalues of a block

circulant matrix M are related to the Fourier coefficients of m(0), . . . ,m(n−1) and M is block

diagonalized by the Fourier basis (see part (b) of the upcoming proof of Theorem 4.9). In view

of this insight, it is not too surprising that circulants play an important role for the asymptotic

behavior of the frequency domain covariance matrix of a stationary time series. A comprehensive

introduction into circulant matrices can be found in Gray (2006). The following proof follows

the ideas from the univariate case, which is presented in Proposition 5.2 in Brockwell and Davis

(1991).

Proof of Theorem 4.9. We will follow the notational convention from (4.3) of denoting the d×d
blocks of any matrix A ∈ Rnd×nd by A(i, j) ∈ Rd×d for i, j = 1, . . . , n. Consider the following

symmetric block circulant matrix in Rnd×nd:

Cnd :=


Γ(0) Γ(1) . . . Γ (bn/2c) Γ (dn/2e − 1)T . . . Γ(2)T Γ(1)T

Γ(1)T Γ(0) . . . Γ (bn/2c − 1) Γ (bn/2c) . . . Γ(3)T Γ(2)T

...
...

...
...

...
...

Γ(1) Γ(2) . . . Γ (dn/2e − 1)T Γ (dn/2e − 2)T . . . Γ(1)T Γ(0)T

 .

We will show the claim by verifying the following three assertions:

(a) With Gnd := Fnd(Γnd −Cnd)F T
nd it holds

sup
i,j=1,...,n

‖Gnd(i, j)‖ . n−1

for all n ∈ N, with proportionality constants not depending on n.

(b) It holds FndCndF
T
nd = Λnd with Λnd = Dnd[fn], where

fn(ω) :=
1

2π

∑
|h|≤bn/2c

Γ(h) exp(−ihω), 0 ≤ ω ≤ 2π,

denotes a truncated series representation of f and Dnd[fn] is the block diagonal matrix

from (4.16) corresponding to fn.

(c) With Λnd from (b), it holds

sup
i,j=1,...,n

‖Λnd(i, j)−Dnd(i, j)‖ . n−1

for all n, with proportionality constants not depending on n.
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Assertion (a) states that the full covariance matrix Γnd can be approximated (in the frequency

domain) by the block circulant matrix Cnd. Assertion (b) states that the frequency domain

representation thereof is of block diagonal structure Λnd, which in fact closely resembles the

asymptotic frequency domain covariance structure (under Whittle’s Likelihood) and this re-

sembling is made mathematically rigorous in Assertion (c). Once we have shown (a)-(c), the

assertion of the theorem readily follows from

‖Hnd(i, j)‖ = ‖Gnd(i, j) + Λnd(i, j)−Dnd(i, j)‖ ≤ ‖Gnd(i, j)‖+ ‖Λnd(i, j)−Dnd(i, j)‖.

To show (a), first note that for 1 ≤ i, j ≤ n it holds

Gnd(i, j) =
n∑

k,l=1

Fnd(i, k)(Γnd(k, l)−Cnd(k, l))Fnd(j, l)T .

Since the entries of Fnd are bounded in absolute value by (2/n)1/2 (see the definition of Fnd in

the proof of Lemma 4.1), it follows ‖Fnd(i, j)‖ . n−1/2 and hence, using ‖AB‖ ≤ ‖A‖‖B‖ (see

Lemma B.4 in the Appendix)

‖Gnd(i, j)‖ .
1

n

n∑
k,l=1

‖Γnd(k, l)−Cnd(k, l)‖

=
1

n

dn/2e−1∑
m=1

m
∥∥Γ(n−m)− Γ(m)T

∥∥+

dn/2e−1∑
m=1

m
∥∥Γ(n−m)T − Γ(m)

∥∥
.

1

n

dn/2e−1∑
m=1

m‖Γ(m)‖+N
n−1∑

l=n−dn/2e+1

‖Γ(l)‖


.

1

n

n∑
m=1

m‖Γ(m)‖ . 1

n

∞∑
m=1

m‖Γ(m)‖ . 1

n
,

uniformly in i, j, where the last inequality follows from Assumption f2. This concludes (a).

Let us now prove (b) and investigate the frequency domain transformed version ofCnd. Recalling

the representation Fnd = RT
nd(Id ⊗ Fn)Rnd of the Fourier transformation matrix from (4.14)

with the permutation matrix Rnd from (4.11), part (b) is equivalent to

(Id ⊗ Fn)C̃nd = Λ̃nd(Id ⊗ Fn), (4.25)

with C̃nd = RndCndR
T
nd and Λ̃nd = RndΛndR

T
nd. For a matrix A ∈ Rnd×nd with block compo-

nents A(i, j) ∈ Rd×d for i, j = 1, . . . , n, denote by A(r,s) := (A(i, j)r,s)
n
i,j=1 ∈ Rn×n the matrix

consisting of the (r, s)-th entry of all block components, for r, s = 1, . . . , d.

We will first investigate the structure of the transformation A 7→ RndAR
T
nd. For this purpose,

denote the elements of A by ak,l for k, l = 1, . . . , nd. Write k = (r − 1)n + i and l = (s −
1)n + j with r, s ∈ {1, . . . , d} and i, j ∈ {1, . . . , n}. Since Rnd is a permutation matrix, the

operation A 7→ RndA only reorders the elements within the columns of A and similarly, the

operation A 7→ ART
nd only reorders within the rows. By (4.12), the (k, l)-th entry of RndAR

T
nd

is

(RndAR
T
nd)k,l =

(
(RndA)k∗R

T
nd

)
l
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with (RndA)k∗ ∈ R1×nd denoting the k-th row of RndA. Using (4.12), we find

(RndA)k∗ =
(
a(i−1)d+r,1, . . . , a(i−1)d+r,nd

)
.

The l-th entry of (RndA)k∗R
T
nd = [Rnd(RndA)Tk∗]

T is a(i−1)d+r,(j−1)d+s by (4.12). On the other

hand, the (i, j)-th entry of A(r,s) is given by A(i, j)r,s = a(i−1)d+r,(j−1)d+s by definition. We

have just established the following equality:

RndAR
T
nd = Rnd

A(1, 1) . . . A(1, n)
...

...

A(n, 1) . . . A(n, n)

RT
nd =

A
(1,1) . . . A(1,d)

...
...

A(d,1) . . . A(d,d)

 .

This shows that by multiplication from left and right, the permutation matrix Rnd reorders the

elements of A from a d-nesting to an n-nesting. Thus (4.25) is equivalent to
FnC

(1,1)
nd . . . FnC

(1,d)
nd

...
...

FnC
(d,1)
nd . . . FnC

(d,d)
nd

 =


Λ

(1,1)
nd Fn . . . Λ

(1,d)
nd Fn

...
...

Λ
(d,1)
nd Fn . . . Λ

(d,d)
nd Fn,

 . (4.26)

Note that the matrices C
(r,s)
nd ∈ Rn×n are circulant for 1 ≤ r, s ≤ d and symmetric and circulant

for r = s. Denoting the entries of fn(ω) ∈ S+
d by f

(r,s)
n (ω) for r, s = 1, . . . , d, it follows from the

structure of Dnd (as defined after (4.16)) that

Λ
(r,r)
nd = 2π diag

(
f (r,r)
n (0), f (r,r)

n (ω1), f (r,r)
n (ω1), . . . , f (r,r)

n (ωbn/2c)
)

as well as, for r 6= s and n even,

Λ
(r,s)
nd = 2π



f
(r,s)
n (0)

<f (r,s)
n (ω1) −=f (r,s)

n (ω1)

=f (r,s)
n (ω1) <f (r,s)

n (ω1)
. . .

f
(r,s)
n (π)


and for n odd,

Λ
(r,s)
nd = 2π



f
(r,s)
n (0)

<f (r,s)
n (ω1) −=f (r,s)

n (ω1)

=f (r,s)
n (ω1) <f (r,s)

n (ω1)
. . .

<f (r,s)
n (ωbn/2c) −=f

(r,s)
n (ωbn/2c)

=f (r,s)
n (ωbn/2c) <f (r,s)

n (ωbn/2c)


.

It is well known (see e.g. Proposition 4.5.1 in Brockwell and Davis (1991) or Theorem 3.1 in Gray

(2006)) that FnC
(r,s)
nd = Λ

(r,s)
nd Fn holds for r, s = 1, . . . , d, concluding representation (4.26) and

in particular (b).
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To derive (c), we use f(ω) = 1
2π

∑
h∈Z Γ(h) exp(−ihω) to obtain

n‖fn(ω)− f(ω)‖ ≤ n

2π

∑
h>bn/2c

‖Γ(h)‖ .
∑

h>bn/2c

|h|‖Γ(h)‖,

which is bounded from above by a positive constant by Assumption (f2). This shows ‖fn(ω)−
f(ω)‖ . n−1 uniformly for 0 ≤ ω ≤ 2π, yielding ‖Λnd(i, j) − Dnd(i, j)‖ . n−1 uniformly

for i, j = 1, . . . , n, which concludes (c).

4.3.3. Proof of Contiguity

The main idea to establish contiguity is summarized in the following Lemma, which gives suf-

ficient conditions for mutual contiguity and is well known in the literature. Since there was no

proof readily available, it is presented for the sake of completeness.

Lemma 4.10. Let {Pn}, {Qn} be sequences of probability measures, with Pn and Qn being

defined on a measurable space Xn, such that Pn and Qn are mutually absolutely continuous for

all n. Let Λn := log dPn
dQn

be the log Radon-Nikodym derivative. Assume that {EΛn} and {VarΛn}
are bounded sequences under both Pn and Qn. Then Pn and Qn are mutually contiguous.

Proof. We first show that under the assumption of mutually absolutely continuity, it suffices

that Λn is tight under both Pn and Qn in order to obtain mutual contiguity. To see this, we

employ the following characterization of contiguity from Le Cam’s first lemma (see Lemma 6.4

in van der Vaart (2000)):

Qn / Pn ⇐⇒ If for a subsequence m = m(n) :
dPm
dQm

Qm→ U , then P (U > 0) = 1, (4.27)

where Qn / Pn is the notation for Qn being contiguous with respect to Pn, and An
Qn→ B means

that the sequence of random variables An converges weakly under Qn to B.

We now show that tightness of Λn implies contiguity. To do so, assume that Λn is tight under Qn.

Take any subsequence m = m(n) such that dPm
dQm

Qm→ U holds for some random variable U . Using

the tightness of Λn, there exists a subsequence m̃(n) of m(n) such that Λm̃
Qm̃→ V holds for some

random variable V . An application of the continuous mapping theorem reveals U = exp(V ) and

hence P (U > 0) = P (V > −∞) = 1. By characterization (4.27), this yields Qn / Pn. With the

same argument for dQm
dPm

= ( dPmdQm
)−1 and using the tightness of −Λm (which clearly follows from

the tightness of Λm), we also obtain Pn / Qn, i.e. mutual contiguity of Pn and Qn.

It thus remains to show that boundedness of EΛn and VarΛn implies tightness of Λn under

both Pn and Qn. To do so, denote µmax := supn |EPnΛn| <∞ and σ2
max := supn VarPnΛn <∞.

Let ε > 0 and choose the compact interval

Kε :=

[
−µmax −

σmax√
ε
, µmax +

σmax√
ε

]
.

Then, with

KPn :=

[
EPnΛn −

√
VarPnΛn√

ε
,EPnΛn +

√
VarPnΛn√

ε

]
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it holds KPn ⊂ Kε for all n and an application of Chebyshev’s inequality yields 1 − Pn(Λn ∈
Kε) ≤ 1−Pn(Λn ∈ KPn) ≤ ε for all n, i.e. Λn is tight under Pn. By the same argument, we also

obtain that Λn is tight under Qn if |EQnΛn| and VarQn |Λn| are bounded.

Now we can prove the main result of this section.

Proof of Theorem 4.4. The proof follows the ideas of the proof for the univariate case from Choud-

huri et al. (2004b). Some of the arguments from there will be repeated here for the sake of

completeness and readability. Similar to the real-valued frequency domain formulation of Whit-

tle’s Likelihood PnW from (4.16), the true Gaussian likelihood can also be expressed under the

real-valued frequency domain transformation, in terms of the Lebesgue density

pn(z̃) =
1√

(2π)nd|Γnd|
exp

{
−1

2
z̃T (FndΓndF

T
nd)
−1z̃

}
, z̃ ∈ Rnd (4.28)

with Γnd being the time-domain covariance matrix from (4.2). Since vecR is an isomorphism, it

is sufficient to show mutual contiguity in the real valued formulation. It is evident from (4.28)

that the covariance matrix of Z̃ = FndZ under Pn is given by Γ̃nd := FndΓndF
T
nd ∈ Rnd×nd. Let

us have a more detailed look at the structure of Γ̃nd. Denote by Γ̃n[j, k] the covariance matrix

between the jth and kth Fourier coefficient in the real valued formulation. Then Γ̃nd is of the

following block structure – with block sizes visualized by the size of the surrounding rectangles,

where the small squares are d× d and the large squares are 2d× 2d:

Γ̃nd =



Γ̃n[0, 0] Γ̃n[0, 1] . . . Γ̃n[0, n2 − 1] Γ̃n[0, n2 ]

Γ̃n[1, 0] Γ̃n[1, 1] . . . Γ̃n[1, n2 − 1] Γ̃n[1, n2 ]

...
. . .

...
...

Γ̃n[n2 , 0] Γ̃n[n2 , 1] . . . Γ̃n[n2 ,
n
2 − 1] Γ̃n[n2 ,

n
2 ]


for n even, and a corresponding structure for n odd. To show that Pn and PnW are mutually

contiguous, we first note that Pn and PnW are mutually absolutely continuous for all n. Hence,
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by Lemma 4.10, it suffices to show that the log likelihood ratio sequence

Λn := log
pnW (Z̃)

pn(Z̃)
=

1

2
(log |Γnd| − log |Dnd|) +

1

2
Z̃
T
(
Γ̃−1
nd −D

−1
nd

)
Z̃

=:
1

2
Λ(1)
n +

1

2
Λ(2)
n

(4.29)

has bounded mean and variance under both Pn and PnW .

We start by showing the boundedness of Λ
(1)
n from (4.29). Using |BA| = |A|2 from Lemma 4.2 (b)

and |f(π + t)| = |f(π − t)T | = |f(π − t)|, we find log |Dnd| =
∑n−1

j=0 log |2πf(ωj)|. By Assump-

tion f2, f is (component-wise) continuously differentiable (see Lemma B.15 in the Appendix).

Since the eigenvalues of f are uniformly bounded away from 0 by Assumption f1, the func-

tion ω 7→ |f(ω)| is continuously differentiable and bounded away from 0 (see Theorem 1 in

Section 3 of Chapter 8 in Magnus and Neudecker (2007)). Hence, the function ψ : [0, 2π] →
R, ψ(ω) := log |2πf(ω)| is continuously differentiable. An application of Lemma B.23 in the

Appendix reveals that the Riemann sum converges at rate n−1:∣∣∣∣∣∣ 1

2π

∫ 2π

0
log |2πf(ω)|dω − 1

n

n−1∑
j=0

log |2πf(ωj)|

∣∣∣∣∣∣ . max0≤ω≤2π |ψ′(ω)|
n

yielding

log |Dnd| =
n−1∑
j=0

log |2πf(λj)| = n logG+O(1) (4.30)

as n→∞, with

G := exp

{
1

2π

∫ 2π

0
log |2πf(λ)|dλ

}
> 0.

On the other hand, an application of Lemma 4.6 (a) shows that there exists a positive constant E

such that

log |Γnd| = n logG+ logE + o(1) = n logG+O(1) (4.31)

as n→∞. Putting together (4.30) and (4.31) shows Λ
(1)
n = log |Γnd| − log |Dnd| = O(1).

For the second summand Λ
(2)
n from (4.29) we compute the mean and variance under Pn and PnW

using Lemma B.24 (a) as

EPnΛ(2)
n = tr

(
Ind − Γ̃ndD

−1
nd

)
, (4.32)

VarPnΛ(2)
n = 2 tr

((
Ind − Γ̃ndD

−1
nd

)2
)
, (4.33)

EPnWΛ(2)
n = tr

(
DndΓ̃

−1
nd − Ind

)
, (4.34)

VarPnWΛ(2)
n = 2 tr

((
DndΓ̃

−1
nd − Ind

)2
)
. (4.35)

Now consider the matrix Hnd := Γ̃nd −Dnd ∈ Rnd×nd as in Theorem 4.9. We partition the

matrix Hnd into blocks of the same size as those of Γ̃nd, and denote these blocks by Hn[j, k]
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for j, k = 0, . . . , bn/2c. From Theorem 4.9, we conclude that ‖Hnd[j, k]‖ . n−1 uniformly in j, k.

To avoid the notational case distinction between ω ∈ {0, π} and ω ∈ (0, π), we introduce the

symbolic notation

f̃(ω) :=

f(ω), ω ∈ {0, π}
Bf(ω), else.

Using the result | tr(AB)| ≤ ‖A‖2‖B‖ for A,B ∈ Rd×d from Lemma B.4 in the Appendix, we

obtain from (4.32)

∣∣∣EPnΛ(2)
n

∣∣∣ =
∣∣tr (HndD

−1
nd

)∣∣ = 2π

∣∣∣∣∣∣
bn/2c∑
j=0

tr
(
Hn[j, j]f̃−1(ωj)

)∣∣∣∣∣∣
. 2π

bn/2c∑
j=0

‖Hn[j, j]‖
∥∥∥f̃−1(ωj)

∥∥∥
2

. (bn/2c+ 1)n−1b−1
0 = O(1),

(4.36)

with b0 from Assumption f1, where ‖BA‖ . ‖A‖ was used. Similarly, we compute for (4.33)

0 ≤ tr
((
HndD

−1
nd

)2)
= 4π2

bn/2c∑
j,k=0

tr
(
Hn[j, k]f̃−1(ωk)Hn[k, j]f̃−1(ωj)

)

.
bn/2c∑
j,k=0

‖Hn[j, k]‖‖Hn[k, j]‖‖f̃−1(ωj)‖2‖f̃−1(ωk)‖2

. (bn/2c+ 1)2n−2b−2
0 = O(1),

showing VarPnΛ
(2)
n = O(1).

Now consider a time series with spectral density matrix f(ω)−1, 0 ≤ ω ≤ π. Denote by Γ−nd the

associated block Toeplitz covariance matrix in the time domain:

Γ−nd =


Γ−(0) Γ−(1) . . . Γ−(n− 1)

Γ−(−1) Γ−(0) . . .
...

. . .

Γ−(−n+ 1) . . . Γ−(0)

 , Γ−(h) =

∫ 2π

0
f(ω)−1 exp(ihω)dω.

Clearly, f−1 fulfills Assumption f1. Furthermore, from Lemma B.16 in the Appendix, we obtain

that f−1 and Γ−nd also fulfill Assumption f2. Let H−nd := FndΓ
−
ndF

T
nd−D

−1
nd and denote (similar

to Hnd) the blocks of H−nd by H−n [j, k] for 0 ≤ j, k ≤ bn/2c. Applying Theorem 4.9 to Γ−nd
and f(ω)−1 yields ‖H−nd[j, k]‖ . n−1 uniformly in j, k. Thus we compute from (4.34)∣∣∣EPnWΛ(2)

n

∣∣∣ =
∣∣tr (HndFndΓ

−1
ndF

T
nd

)∣∣
≤
∣∣tr (HndFndΓ

−
ndF

T
nd

)∣∣+
∣∣tr (HndFnd

(
Γ−1
nd − Γ−nd

)
F T
nd

)∣∣ (4.37)

Since the Frobenius norm values of the blocks Hn[j, k] of Hnd and of the blocks H−n [j, k] of H−nd
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are uniformly in O(n−1), we get

‖Hnd‖2 = tr
(
HndH

T
nd

)
=

bn/2c∑
j,k=0

tr
(
Hn[j, k]Hn[j, k]T

)
≤
bn/2c∑
j,k=0

‖Hn[j, k]‖2 = O(1)

(4.38)

and similarly ‖H−nd‖ = O(1). For the first summand in (4.37), we obtain

tr
(
HndFndΓ

−
ndF

T
nd

)
= tr(HndD

−1
nd ) + tr(HndH

−
nd) = O(1),

since tr(HndD
−1
nd ) = O(1) (see (4.36)) and | tr(HndH

−
nd)| ≤ ‖Hnd‖‖H−nd‖ = O(1). For the

second summand in (4.37), we obtain, using that Fnd is orthogonal and hence ‖F T
ndHndFnd‖ =

‖Hnd‖ (by Lemma B.2 in the Appendix) and ‖AB‖ ≤ ‖A‖2‖B‖ (by Lemma B.4 in the Ap-

pendix)∣∣tr (HndFnd
(
Γ−1
nd − Γ−nd

)
F T
nd

)∣∣ ≤ ‖Hnd‖
∥∥Γ−1

nd − Γ−nd
∥∥ ≤ ‖Hnd‖

∥∥Γ−1
nd

∥∥
2

∥∥Ind − ΓndΓ
−
nd

∥∥ .
By (4.38), it holds ‖Hnd‖ = O(1). Furthermore, it is known (see Lemma 2.1 in Hannan and

Wahlberg (1989)) that∥∥Γ−1
nd

∥∥
2
≤ max

0≤ω≤π
‖f(ω)−1‖2 ≤ b−1

0 = O(1),

with b0 from Assumption f1, It thus remains to show the boundedness of
∥∥Ind − ΓndΓ

−
nd

∥∥, which

follows from part (b) of Theorem 4.6.

Finally, the variance part (4.35) under Whittle’s likelihood can be computed as

1

2
VarPnWΛ(2)

n = tr
((
HndFndΓ

−1
ndF

T
nd

)2)
=
∥∥HndFndΓ

−1
ndF

T
nd

∥∥2

and ∥∥HndFndΓ
−1
ndF

T
nd

∥∥ ≤ ∥∥HndFndΓ
−
ndF

T
nd

∥∥+
∥∥HndFnd

(
Γ−1
nd − Γ−nd

)
F T
nd

∥∥ . (4.39)

The first summand in (4.39) is∥∥HndFndΓ
−
ndF

T
nd

∥∥ =
∥∥Hnd

(
D−1
nd +H−nd

)∥∥ ≤ ∥∥HndD
−1
nd

∥∥+
∥∥HndH

−
nd

∥∥ = O(1),

since
∥∥HndD

−1
nd

∥∥ = O(1) (see (4.36)) and
∥∥HndH

−
nd

∥∥ ≤ ‖Hnd‖
∥∥H−nd∥∥ = O(1). The second

summand in (4.39) is∥∥HndFnd
(
Γ−1
nd − Γ−nd

)
F T
nd

∥∥ ≤ ‖Hnd‖‖Γ−1
nd − Γ−nd‖ = O(1).



5.
Bayesian Nonparametric Method for

Spectral Density Inference

5.1. Definition of Prior and Method

In this section, we use the Hpd matrix Gamma process from Chapter 3 in conjunction with Whit-

tle’s likelihood from Chapter 4 to construct a novel method for Bayesian nonparametric spectral

inference for multivariate time series. To elaborate, let X = [0, π] and let Φ ∼ CRMd×d(ν),

with the Hpd Gamma measure ν from (3.1) fulfilling Assumptions GP1-GP2. For k > 0, let the

equidistant interval partition of [0, π] of size k be denoted by

Ij,k =

(
(j − 1)π

k
,
jπ

k

]
, j = 1, . . . , k. (5.1)

We define the Bernstein-Hpd-Gamma prior for the spectral density matrix f as

f(πx) :=
k∑
j=1

Φ (Ij,k) b(x|j, k − j + 1), 0 ≤ x ≤ 1,

k ∼ p(k),

(5.2)

with the Bernstein polynomial basis functions b(·|j, k − j + 1) as defined in (B.20) in the Ap-

pendix. It is assumed that the prior distribution of the polynomial degree k ∈ N (as given

by the probability mass function p(k)) and the Hpd-Gamma process Φ are independent. The

definition (5.2) can be conceived as an extension of the Bernstein-Dirichlet prior (1.1) from the

univariate case to the multivariate case.

Remark. Recall the following approximation property of Bernstein polynomials: Let f0 : X →
S+
d be continuous. Let F0 be the spectral measure corresponding to f0, i.e. F0(A) =

∫
A f0(x)dx

for A ⊂ X measurable. Then the convergence

k∑
j=1

F0 (Ij,k) b(x|j, k − j + 1)→ f0(πx), 0 ≤ x ≤ 1,

holds uniformly and component-wise as k → ∞ (see Lemma B.12 in the Appendix). On the
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other hand, the prior mean of f as in (5.2) conditioned on k is given by

E [f(πx)|k] =
k∑
j=1

EΦ (Ij,k) b(x|j, k − j + 1).

In this sense, the Gamma process Φ is directly connected to prior modeling of F0. If an a

priori guess of f0 is available, it is reasonable to choose the prior parameters of Φ in such

a way that EΦ(A) = F0(A) holds for any measurable A ⊂ X . As an example, when using

the AΓ(η, ω,Σ) process from Section 3.4.2, this can be achieved by choosing the process param-

eters ω and Σ in such a way that 1
dω(x)Σ(x) = f0(x) holds, see (3.24).

To complete the Bayesian model specification, we employ the version P̃nW of Whittle’s Likelihood

from Corollary 4.5, which is defined in terms of the following Lebesgue density for the Fourier

coefficients Z̃1, . . . , Z̃N with N = dn/2e − 1:

p̃nW (z̃1, . . . , z̃N |f) =

N∏
j=1

1

πd|2πf(ωj)|
exp

(
− 1

2π
z̃∗jf(ωj)

−1z̃j

)
, (5.3)

for z̃1, . . . , z̃N ∈ Cd. Observe that in contrast to (4.8), the boundary frequencies ω = {0, π} are

not considered in (5.3). The reason is that we assume the time series to be mean centered. Since

the boundary frequencies represent the sample mean and the sample alternating mean respec-

tively, we exclude them from inference. This can be done since we are only interested in spectral

density inference and ignoring any structure that is related to the mean. However, if one is

interested in additionally estimating the mean or more generally in inference for semiparametric

models (see the upcoming Chapter 8), the boundary frequencies will have to be included in the

likelihood as well.

A common choice for the probability mass function of k is p(k) = C exp(−ck log k) for k ∈ N for

some positive constants c, C. This choice is indeed motivated from asymptotic considerations,

since it yields the “just right” rate of decay (of p(k) as k → ∞), which is needed to obtain

consistency and contraction rate results (see Theorem 7.3 and Theorem 7.20, as well as Re-

mark 7.2 and Remark 7.19). Note that the constant C is only needed for normalization (making

all values p(k) sum up to 1), such that the actual distributional parameter is c. Given c, there

is no analytically closed form available to determine the normalizing constant C−1 =
∑

l∈N p(l),

the prior expected value E[k] =
∑

l∈N lp(l) or the prior variance Var[k] =
∑

l∈N(l − E[k])2p(l).

However, these values can be approximated numerically. As an example, Table 5.1 contains

numerical approximations for some values of c. These have been obtained by drawing 100,000

random samples from the discrete set k ∈ {1, . . . , kmax} with probability mass function p(k),

where kmax = 10, 000.

To draw random samples from the prior (5.2), we can use an extension of Algorithm 1 from Sec-

tion 3.4. Indeed, since k and Φ are a priori independent, we only have to extend Algorithm 1 by

random draws of p(k), which can readily be obtained if we restrict k to a finite set {1, . . . , kmax}
for some large integer kmax, since k is discrete. A visualization of draws from the prior (5.2) is

shown in Figure 5.1, where the process priors Φ1,Φ2 and Φ3 from (3.28)-(3.30) have been used

(see also Figure 3.2 for a visualization of the processes Φi themselves for i = 1, 2, 3). Again, it
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c 1 0.5 0.1 0.05 0.01 0.005 0.001

C−1 1.29 1.78 4.87 7.99 27.28 47.53 180.66

E[k] 1.26 1.66 4.14 6.66 22.76 40.00 155.96

Var[k] 0.27 0.85 10.04 29.82 410.05 1314.881 21024.78

Table 5.1.: Numerical approximations for the normalizing constant C−1, the expected value and

the variance of the distribution p(k) = C exp(−ck log k), k ≥ 1.

can be seen that the pointwise uncertainty of the mixture for Φ2 is monotonically increasing,

whereas the mixture mean coincides with the mixture mean for Φ1. For the VARMA process Φ3

mixture mean curve, a choice of c = 0.01 of the prior parameter for k is not enough to ensure

that the mean curve is rendered properly a priori (see the discrepancy at the left and right

boundary of the dotted blue VARMA mean curve and the solid black mixture mean curve in

Figure 5.1(c)). This effect is mitigated by the choice of c = 0.001 (see Figure 5.1(d)), which

allows for higher values of k (c.f. Table 5.1) and thus a more detailed a priori resolution.

It can be seen that the pointwise quartiles of the Bernstein mixtures in Figure 5.1 are biased

towards zero at the boundary of X . This artifact is systematically introduced by the usage of

Bernstein polynomials. It has to be kept in mind when using the mixture prior for spectral

inference. This issue becomes particular severe in a semiparametric context, when the poste-

rior distribution of the parameter of interest depends on f(0) or f(π) (see the examples in the

upcoming Section 8.1). One possible remedy to this artifact constitutes the usage of truncated

Bernstein polynomials, which yield more robust mixture properties at the boundary. To elab-

orate, the beta densities b(·|j, k − j + 1) in (5.2) are replaced by their truncated and dilated

counterparts

bτrτl (x|j, k − j + 1) := b(τl + x(τr − τl)|j, k − j + 1), 0 ≤ x ≤ 1, (5.4)

for some 0 < τl < τr < 1. As an example, Figure 5.2 depicts mixtures of the same processes as

in Figure 5.1, with Bernstein polynomials truncated at τl = 0.1 and τr = 0.9. It can be seen that

while the artifacts at the boundary are removed, the truncation enforces more effort to render

a priori information at the boundary, in particular in Figure 5.2(c). This effect also comes from

a different approximation behavior of truncated Bernstein polynomials. Indeed, to establish an

asymptotic approximation result as in Lemma B.12 in the Appendix, the truncation bounds have

to be chosen to fulfill τl → 0 and τr → 1 as k →∞. In the numerical illustrations in this work, we

will employ truncated Bernstein polynomials due to their greater robustness at the boundary,

with fixed values τl = 0.1 and τr = 0.9. Asymptotic consideration with truncated Bernstein

polynomials are beyond the scope of this work. It may be noted that the rendering effect can

to some extent be taken into account by choosing a smaller value of c, as in Figure 5.2(d).

5.2. Numerical Simulation of Posterior Samples

We start by describing the computational methods to generate posterior samples under the

prior (5.2) on the spectral density matrix f in conjunction with Whittle’s likelihood (5.3).
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Figure 5.1.: Visualization of the pointwise (among 0 ≤ ω ≤ π) distribution of the Bernstein-Hpd-

Gamma prior with (a) Φ1 from (3.28) and c = 0.01, (b) Φ2 from (3.29) and c = 0.01,

(c) Φ3 from (3.30) and c = 0.01 and (d) Φ3 from (3.30) and c = 0.001. The

pointwise mean is drawn in dashed black, the area between pointwise upper and

lower quartile in shaded red and the area between pointwise 0.95 and 0.05 quantile

in shaded blue. The curve 1
2ωi(x)Σi(x) is shown in solid black. The visualizations

are based on 50,000 samples respectively from Algorithm 1 with L = 30 (L = 300

for (b)) and k sampled directly from {1, . . . , kmax = 500}.
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Figure 5.2.: Visualization of the pointwise (among 0 ≤ ω ≤ π) distribution of the Bernstein-Hpd-

Gamma prior as in Figure 5.1, with Bernstein polynomials truncated at τl = 0.1

and τr = 0.9.
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Let X = [0, π] and let Φ ∼ CRMd×d(ν), such that Assumptions GP1 and GP2’ and GP4 are

fulfilled. Recall the representation for Φ from Lemma 3.13. Since the series representation for Φ

is almost surely convergent, it can be well approximated by a truncation

Φ ≈
L∑
l=1

δxlrlUl (5.5)

at some large integer L. The value of L should depend on the data and sample size and can

e.g. be determined numerically according to the desired tolerance for error in computation.

From our experience in simulation studies, a conservative choice can be formulated as L =

d2 max{20, n1/3}, where in fact in most considered scenarios a choice of L = max{20, dn1/3} was

already sufficient. See Muliere and Tardella (1998) and Choudhuri et al. (2004a) for discussions

on the similar problem of truncating the stick-breaking representation of the Dirichlet process.

In the following, we assume that the probability measure α∗ = α
Cα

with Cα =
∫ π

0 α(x, S̄+
d )dx <∞

has a Lebesgue density on [0, π]× S+
d , which we denote by g∗ = g∗(x,U). The truncated series

approximation (5.5) is parametrized by the 3L parameters

ΘΦ := (v1, . . . , vL, x1, . . . , xL,U1, . . . ,UL) (5.6)

with v1, . . . , vL
iid∼ Exp(1) and (x1,U1), . . . , (xL,UL)

iid∼ α∗ as in Lemma 3.13. Accordingly, the

spectral density matrix in the prior model (5.2) is parametrized by (ΘΦ, k). From Lemma 3.13,

we obtain that the prior probabilities of ΘΦ are given by the Lebesgue density

p(ΘΦ) = exp

(
−

L∑
l=1

[vl − log g∗(xl,Ul)]

)
.

Along with Whittle’s likelihood p̃nW from (5.3) for the frequency domain observation Z̃1, . . . , Z̃N ,

this specifies a full Bayesian model with posterior distribution

p(ΘΦ, k|Z̃1, . . . , Z̃N ) ∝ p̃nW (Z̃1, . . . , Z̃N |ΘΦ, k)p(ΘΦ)p(k). (5.7)

Since this posterior distribution is in general not tractable analytically, we employ computational

methods to generate random samples from it. To do so, we first derive a practically suitable

parametrization of ΘΦ in Section 5.2.1, before presenting a Metropolis-within-Gibbs algorithm to

sample from (5.7) in Section 5.2.2. The implementation in R is briefly discussed in Section 5.2.3.

5.2.1. Parametrization of the radial parts

Instead of the parametrization (5.6) with v1, . . . , vL, we use the parameters r1, . . . , rL from

Lemma 3.13, due to both numerical stability and a clearer interpretation – recalling that the rl’s

are the radial parts of the mass atoms of the Hpd Gamma process Φ. Furthermore, we will

employ the ϕ
l

parametrization from Section 3.4.1 for the Ul’s. This yields the representation

Θ̃Φ := (r1, . . . , rL, x1, . . . , xL, ϕ1
, . . . , ϕ

L
). (5.8)
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To work with this parametrization, we derive the Jacobian of the mapping T̃ : [0,∞)L →
[0,∞)L, (r1, . . . , rL) 7→ (v1, . . . , vL). Let w1, . . . , wL be as in Lemma 3.13. First observe that v1 =

w1 and

vl = wl − wl−1, wl = ρ ([rl,∞)|Cα, β(xl,Ul)) , l = 2, . . . , L.

Since wl only depends on rl, it follows that vl only depends on r1, . . . , rl (and not on rl+1, . . . , rL),

such that the Jacobian JT̃ of T̃ is a lower triangular matrix, and the determinant is given by

the product of its diagonal entries:

∣∣JT̃ (r1, . . . , rL)
∣∣ =

L∏
l=1

∣∣∣∣∂vl∂rl

∣∣∣∣ =

L∏
l=1

∣∣∣∣∂wl∂rl

∣∣∣∣ =

L∏
l=1

∣∣∣∣ ddr[ρ ([r,∞)|Cα, β(xl,Ul))
]
r=rl

∣∣∣∣
Since ∣∣∣∣ ddrρ ([r,∞)|Cα, β(x,U))

∣∣∣∣ = Cα
exp(−β(x,U)r)

r
,

we arrive at

|JT̃ (r1, . . . , rL)| = CLα

L∏
l=1

exp(−β(xl,Ul)rl)

rl
. (5.9)

In practice, the transformation T̃ is evaluated using the numerical approximation for ρ ([r,∞)|a, b)
from (3.19).

5.2.2. A Metropolis-within-Gibbs sampler

We can now present a Markov Chain Monte Carlo method to obtain random samples from

the joint posterior distribution of Φ and k. It is based on the Metropolis-within-Gibbs algo-

rithm. Consider the parametrization Θ̃Φ from (5.8) for Φ. The posterior distribution in this

parametrization is given by

p(Θ̃Φ, k|Z1, . . . , Zn) =

(
L∏
l=1

|JT−1(ϕ
l
)|

)
|JT̃ (r1, . . . , rL)|p(ΘΦ, k|Z1, . . . , Zn) (5.10)

with p(ΘΦ, k|Z1, . . . , Zn) as in (5.7) and the Jacobian determinants of the employed transfor-

mations T and T̃ as in (3.22) and (5.9). To obtain random samples Θ(1), . . . ,Θ(N) from (5.10),

we employ the Gibbs sampler (see Section 6.3.2 in Christensen et al. (2011)). Since the full con-

ditionals do not belong in general to a known class of distributions, each parameter is updated

with a Metropolis-Hastings (MH) step (Section 6.3.3 in Christensen et al. (2011)).

The starting value Θ(1) = (Θ̃
(1)
Φ , k(1)) for the Markov Chain is as follows: Some large integer

for k(1) and r
(1)
1 , . . . , r

(1)
L

iid∼ Exp(1) and x
(1)
1 , . . . , x

(1)
L

iid∼ Unif([0, π]) and ϕ
(1)
1 , . . . , ϕ

(1)
L

iid∼ Unif(I)

with I = ⊗d2−1
j=1 Ij , see (3.21). In the i + 1-th iteration of the Gibbs sampler, the proposal

value k∗,(i+1) for the Metropolis-Hastings step of k is

k∗,(i+1) := min
{
kmax, max{1, k(i) + bε(i+1)

k c}
}
, ε

(i+1)
k ∼ Cauchy(0, 1)
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and some large integer kmax < ∞ which is introduced for computational speed, enabling pre-

computation and storage of the beta densities of degree 1, ..., kmax. A sufficiently large value

of kmax depends on the specific posterior distribution and can be determined numerically by

a preliminary pilot run of the algorithm. For many situations (including all the numerical

illustrations in this work), a value of kmax = 300 was found to be sufficient. Although sampling

from the (approximate) full conditional of k is possible, a Metropolis-Hastings step is used to

avoid the computationally expensive task of evaluating p(Θ̃
(i)
Φ , k|Z1, . . . , Zn) for k = 1, . . . , kmax

in every iteration of the Gibbs sampler.

The radial parts r1, . . . , rL are updated one at a time by individual MH steps. The Metropolis

proposal values for the rl’s are drawn from a Log-Normal distribution, centered around the

previous value:

r
∗,(i+1)
l ∼ LN

(
log(r

(i)
l ), σ2

rl

)
, l = 1, . . . , L.

The proposal scaling parameters σ2
rl

are determined adaptively during the burn-in period, to

ensure an efficient mixing of the Markov Chain. To elaborate, every B ∈ N iterations during

burn-in, the proposal log scaling parameters s
(i)
rl := log(σ

(i)
rl ) are updated, depending on the

acceptance rate a
(i)
rl,B

of the B previous samples r
(i−B+1)
l , . . . , r

(i)
l . If the acceptance rate is too

high, the log scaling parameter is increased, and vice versa:

s(i+1)
rl

:=

s
(i)
rl + δ

(i)
adapt, a

(i)
rl,B

> a∗

s
(i)
rl − δ

(i)
adapt, a

(i)
rl,B

< a∗,

where a∗ ∈ (0, 1) is a target acceptance rate and δ
(i)
adapt > 0 is an adaption step width. Note

that the proposal scaling parameters depend on the iteration i only during the burn-in. After a

burn-in period of length Nburn, they are fixed to σ2
rl

= exp(2s
(Nburn)
rl ). For all adaptive proposal

scalings in this work, we follow the general recommendations from Roberts and Rosenthal (2009)

and use a target acceptance rate of a∗ = 0.44, an adaption step width of δ
(i)
adapt = min(0.05, 1/

√
i)

and an adaption batch size of B = 50. See Section 3 in Roberts and Rosenthal (2009) for further

details on Adaptive Metropolis-Within-Gibbs.

The xl’s are also with individual MH steps, with proposal values x
∗,(i+1)
l on [0, π] given by

x̃
∗,(i+1)
l := x

(i)
l + εxl , εxl ∼ Unif([−δxl , δxl ]),

x
∗,(i+1)
l :=


x̃
∗,(i+1)
l + π, x̃

∗,(i+1)
l < 0,

x̃
∗,(i+1)
l − π, x̃

∗,(i+1)
l > π,

x̃
∗,(i+1)
l , else,

and proposal scaling parameters δxl := πl/(l+ 2
√
n). This proposal suggestion is due to Choud-

huri et al. (2004a), where it has been used for the mass location parameters of a Dirichlet process.

Whereas these proposals yielded feasible mixing properties in all considered examples, it may be

of interest for future research whether the mixing could be improved even further by sampling

the xl’s in a blocked MH-step, with proposal covariance matrix being continuously estimated

based on the samples obtained so far (see Section 2 in Roberts and Rosenthal (2009) for further

details on this idea).
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The components ϕl,1, . . . , ϕl,d2−1 of ~ϕl are sampled blocked, i.e. the Metropolis-Hastings step is

conducted for the vectors ~ϕl and not for each of their components. Besides a computational

advantage (in terms of fewer likelihood evaluations), the blocked sampling is used to take the

posterior correlation between the ϕl,j ’s into account. The proposal ϕ
∗,(i+1)
l for ϕ

l
on I is given

as

ϕ̃∗,(i+1)
l

:= ϕ(i)
l

+ εϕ
l
, εϕ

l
,j

ind.∼ Unif
(

[−δϕ
l
max(Ij), δϕ

l
max(Ij)]

)

ϕ
∗,(i+1)
l,j :=


ϕ̃
∗,(i+1)
l,j + max(Ij), ϕ̃

∗,(i+1)
l,j < 0,

ϕ̃
∗,(i+1)
l,j −max(Ij), ϕ̃

∗,(i+1)
l,j > max(Ij),

ϕ̃
∗,(i+1)
l,j , else

for l = 1, . . . , L and j = 1, . . . , d2 − 1. The proposal scaling parameters δ~ϕl > 0 are determined

adaptively during burn-in. For the sake of simplicity and to save computational costs, the

proposal scaling parameters do not depend on j.

5.2.3. Implementation

The MCMC algorithm of Section 5.2.2 is implemented in the R programming language (R Core

Team, 2018). The computationally most demanding part is the evaluation of Whittle’s Likeli-

hood that has to be performed in every evaluation of the posterior density in the Metropolis-

Hastings steps within the Gibbs sampler. To conduct the evaluation, it is also needed to re-

construct the spectral density matrix f from the parametrization Θ = (Θ̃Φ, k). To make the

runtime of the algorithm feasible, all performance critical parts have been written in C++

and incorporated in R with the Rcpp and RcppArmadillo (Eddelbuettel and Francois, 2011)

packages. Extensive usage has been made of the efficient linear algebra routines and the data

structures provided by the RcppArmadillo package. As a prominent example, the data struc-

ture arma::cx_cube has been used to store the values of the spectral density matrix at the

Fourier frequencies (f(ω1), . . . ,f(ωdn/2e−1) as a complex array of dimension (dn/2e− 1)×d×d.

Similarly, the data structure for storing the current value of (U1, . . . ,UL) is a complex array of

dimension L×d×d. The current values of (r1, . . . , rL) are stored in a regular vector of length L.

By (5.5), the mixture weight matrices for f from (5.2) are given by Φ(Ij,k) =
∑L

l=1 1Ij,k(xl)rlUl,

which can readily be computed for j = 1, . . . , k in O(n+k) steps. To speed up the computation

of the mixture, we pre-compute and store the values of the beta densities b(ξj , i, k − i + 1) (or

their truncated versions bτ2τ1(ξj , i, k − i + 1) from (5.4), respectively) with ξj = ωj/π for j =

1, . . . , dn/2e − 1 and i = 1, . . . , k and k = 1, . . . , kmax.

The Fourier coefficients Z̃0, . . . , Z̃bn/2c are computed once at the beginning of the algorithm

in O(n log n) complexity with the Fast Fourier Transform algorithm, of which an implementa-

tion is provided in R in the fft function of the stats package. For the evaluation of Whittle’s

Likelihood, the matrices f(ωj) have to be inverted. To keep the algorithm numerically stable,

we keep track of the condition numbers κ(f(ωj)) =
λmax(f(ωj))
λmin(f(ωj))

. If a parameter Θ∗ is proposed in

a Metropolis-Hastings step such that for the corresponding spectral density matrix f∗ the con-

dition number at a Fourier frequency is too high, i.e. κ(f∗(ωj)) > Ccond for some j, we reject Θ∗

in the Metropolis-Hastings for the sake of numerical stability. By default, we use Ccond = 1012.
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The implementation of the MCMC algorithm of Section 5.2.2, along with the VAR procedure

(see the upcoming Section 6.2) and the semiparametric extension from the upcoming Section 8.2

comprises around 6,500 lines of R code and around 650 lines of C++ code.

5.3. Forecasting

The Bayesian framework lends itself naturally to forecasting. Recently, Bayesian time series

forecasting has gained new momentum with several leading tech companies publishing software

packages for this purpose. These include, among others, the prophet package (Taylor and

Letham, 2017) by Facebook (implementing a Bayesian additive seasonal time series model), the

CausalImpact package (Brodersen et al., 2015) by Google (implementing a Bayesian approach

to causal impact estimation in time series) and the anomalyDetection package (Boehmke et al.,

2018) by Twitter for network anomaly detection. However, all of those approaches rely on struc-

tural time series models such as ARIMA or VARMA models and are intrinsically parametric.

We will show in the following that forecasting can readily be incorporated in the nonparametric

approach from this work as well.

To produce a one-step forecast in the Bayesian framework, one is interested in the predictive

density p(Zn+1|Z1, . . . , Zn) which can be written as a mixture of the conditional predictive

density (given f) with respect to the posterior distribution of f :

p(Zn+1|Z1, . . . , Zn) =

∫
p(Zn+1|Z1, . . . , Zn,f)P (df |Z1, . . . , Zn). (5.11)

Assume that we have a sample f (1), . . . ,f (M) from the posterior distribution P (df |Z1, . . . , Zn)

at hand, as e.g. obtained by the MCMC method of Section 5.2. Assume further that for

each f (i), we can draw a sample Z
(i)
n+1 from the conditional predictive distribution with den-

sity p(Zn+1|Z1, . . . , Zn,f). Then it follows from (5.11) that Z
(1)
n+1, . . . , Z

(M)
n+1 is a sample from

the predictive distribution P (dZn+1|Z1, . . . , Zn). In the following, we will show that the condi-

tional predictive distribution is in fact multivariate normal, such that random samples thereof

can readily be obtained.

Denote by Xn+1 := vec(Z1, . . . , Zn+1) ∈ R(n+1)d. Recall the real-valued formulation (4.16) of

Whittle’s likelihood. If n+ 1 observations are involved in the likelihood, the frequency domain

covariance matrix is D(n+1)d = D(n+1)d[f ], which is defined as in (4.16) using f evaluated at

the Fourier frequencies ωj,n+1 = 2πj
n+1 for j = 0, . . . , bn+1

2 c. A back-transformation of Whittle’s

likelihood in the time domain yields

p(Xn+1|f) =
1√

(2π)(n+1)d|D(n+1)d|
exp

(
−1

2
XT
n+1G(n+1)dXn+1

)
(5.12)

with the inverse (n+ 1)d× (n+ 1)d time domain covariance matrix

G(n+1)d = F(n+1)dD
−1
(n+1)dF

T
(n+1)d.

We denote by G(i, j) ∈ Rd×d the block components of G(n+1)d for i, j = 1, . . . , n+ 1 (dropping

the subindex (n + 1)d of the block components for the sake of notational convenience). From
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Lemma 4.15 (b) it follows that D(n+1)d is symmetric, which readily implies that G(n+1)d is

symmetric and hence G(i, j) = G(j, i)T holds for all i, j = 1, . . . , n+ 1. Furthermore, G(i, i) is

symmetric positive definite for i = 1, . . . , n+ 1. Conditioning (5.12) on Z1, . . . , Zn, we obtain

p(Zn+1|Z1, . . . , Zn,f) ∝ exp

(
− 1

2

[
ZTn+1G(n+ 1, n+ 1)Zn+1

+

n∑
i=1

ZTi G(i, n+ 1)Zn+1 +

n∑
j=1

ZTn+1G(n+ 1, j)Zj

])

= exp

(
− 1

2

[
ZTn+1G(n+ 1, n+ 1)Zn+1

+ 2
n∑
i=1

ZTi G(i, n+ 1)Zn+1

])
.

Now consider the transformation Yn+1 := G(n+1, n+1)1/2Zn+1. With this transformation and

with

b̃n+1 :=

n∑
i=1

G(n+ 1, n+ 1)−1/2G(n+ 1, i)Zi ∈ Rd

it follows

p(Yn+1|Z1, . . . , Zn,f) ∝ exp

(
−1

2

[
Y T
n+1Y n+1 + 2b̃

T
n+1Y n+1

])
∝ exp

(
−1

2

[
Y T
n+1Y n+1 + 2b̃

T
n+1Y n+1 + b̃

T
n+1b̃n+1

])
= exp

(
−1

2

(
Y n+1 + b̃n+1

)T (
Y n+1 + b̃n+1

))
and conducting a back-substitution Zn+1 = G(n+ 1, n+ 1)−1/2Y n+1 reveals

p(Zn+1|Z1, . . . , Zn,f)

∝ exp

(
−1

2

(
G(n+ 1, n+ 1)1/2Zn+1 + b̃n+1

)T (
G(n+ 1, n+ 1)1/2Zn+1 + b̃n+1

))
= exp

(
−1

2

(
Zn+1 + bn+1

)T
G(n+ 1, n+ 1)

(
Zn+1 + bn+1

))
with

bn+1 = G(n+ 1, n+ 1)−1/2b̃n+1 =

n∑
i=1

G(n+ 1, n+ 1)−1G(n+ 1, i)Zi.

This shows that the conditional distribution of Zn+1 given Z1, . . . , Zn,f is multivariate normal

with mean −bn+1 and covariance matrix G(n+ 1, n+ 1)−1:

Zn+1|Z1, . . . , Zn,f ∼ Nd

(
−bn+1,G(n+ 1, n+ 1)−1

)
. (5.13)

The above approach can readily be extended to k-step ahead forecasts for any k ≥ 1. Indeed,

similar to (5.11), we first observe

p(Zn+1, . . . , Zn+k|Z1, . . . , Zn) =

∫
p(Zn+1, . . . , Zn+k|Z1, . . . , Zn,f)dP (f |Z1, . . . , Zn)
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and thus it suffices again to draw from p(Zn+1, . . . , Zn+k|Z1, . . . , Zn,f) for any f . On the other

hand, we also have the equality

p(Zn+1, . . . , Zn+k|Z1, . . . , Zn,f) = p(Zn+1|Z1, . . . , Zn,f)p(Zn+2|Z1, . . . , Zn+1,f)

× . . .× p(Zn+k|Z1, . . . , Zn+k−1,f),

giving rise to an iterative procedure to draw from p(Zn+1, . . . , Zn+k|Z1, . . . , Zn,f): Start with

drawing Zn+1 from p(Zn+1|Z1, . . . , Zn,f) using (5.13). Then draw Zn+2 from

Zn+2|Z1, . . . , Zn+1,f ∼ Nd

(
−bn+2, G̃(n+ 2, n+ 2)−1

)
with

bn+2 =

n+1∑
i=1

G̃(n+ 2, n+ 2)−1G̃(n+ 2, i)Zi

and the inverse (n+ 2)d× (n+ 2)d time domain covariance matrix

G(n+2)d = F(n+2)dD
−1
(n+2)dF

T
(n+2)d

and its block components G̃(i, j) ∈ Rd×d for i, j = 1, . . . , n+ 2. This scheme can be continued k

times to finally obtain a sample of p(Zn+1, . . . , Zn+k|Z1, . . . , Zn,f).

5.4. Missing Values

It is conceptually straightforward to accommodate missing values within the Bayesian frame-

work. Assume that we have data Z1, . . . , Zn and that there are missing values at positions I ⊂
{1, . . . , n}. Denote the missing values by ZI := {Zi : i ∈ I} and the actually observed data

by Z−I = {Z1 . . . , Zn} \ ZI . Following McCulloch and Tsay (1994), the missing values can be

treated as random and included in the inference as latent variables. The object of interest is then

the joint posterior distribution P (df , dZI |Z−I). To sample from it, the MCMC algorithm from

Section 5.2 can readily be extended by an additional Gibbs step to draw from the full condi-

tional P (dZi|Z−i,f) for each missing value Zi ∈ ZI , where Z−i = {Z1, . . . , Zi−1, Zi+1, . . . , Zn}.
With the same calculations as in Section 5.3, one can derive the following closed-form expression

for the full conditionals of the missing values:

Zi|Z−i,f ∼ Nd

(
−bi,Gnd(i, i)

−1
)
, bi :=

∑
j 6=i
Gnd(i, i)

−1Gnd(i, j)Zj ,

with inverse nd × nd time domain covariance matrix Gnd = FndD
−1
ndF

T
nd and its block compo-

nents Gnd(i, j) ∈ Rd×d.



6.
Numerical Illustration

6.1. Methodology

We start by explaining how an estimate of the true spectral density f0 can be generated from a

posterior sample. The idea is to take the pointwise posterior median of all components (or of their

real and imaginary parts in case of complex values). To elaborate, consider the vectorization

operator G : Sd → Rd2 that maps each hermitian matrixA = (ars)
d
r,s=1 to a vector GA consisting

of the diagonal elements a11, . . . , add and the real and imaginary parts of the entries {ars : r < s}
above the diagonal. Denote the corresponding inverse transformation by G−1 : G(Sd) → Sd,
where G(Sd) ⊂ Rd2 denotes the image of G.

Bayes Estimators

Assume that we have a sample f (1), . . . ,f (N) : [0, π]→ S+
d of spectral density functions at hand.

Consider the vectorized versions g(j) := Gf (j) : [0, π] → Rd2 for j = 1, . . . , N . Denote the

components of g(j) by (g
(j)
1 , . . . , g

(j)
d2

). Denote the pointwise sample median function by ĝ =

(ĝ1, . . . , ĝd2), i.e. ĝr(ω) is defined as the median of {g(1)
r (ω), . . . , g

(N)
r (ω)} for 0 ≤ ω ≤ π and r =

1, . . . , d2. Then an estimate of f0 can be obtained by

f̂0(ω) := G−1ĝ(ω), 0 ≤ ω ≤ π. (6.1)

We call f̂0 the pointwise median spectral density of f (1), . . . ,f (N). In subsequent Sections, we

will often use f̂0 as a Bayes estimator of f0 (as already notationally indicated by the circumflex).

If f0 is known, we can gauge the goodness of f̂0 in terms of the L1-error

‖f̂0 − f0‖1 :=

∫ π

0
‖f̂0(ω)− f0(ω)‖dω ≈ 1

dn/2e − 1

dn/2e−1∑
j=1

‖f̂0(ωj)− f0(ωj)‖ (6.2)

and the L2-error

‖f̂0 − f0‖2 :=

(∫ π

0
‖f̂0(ω)− f0(ω)‖2dω

)1/2

≈

 1

dn/2e − 1

dn/2e−1∑
j=1

‖f̂0(ωj)− f0(ωj)‖2
1/2

.

(6.3)
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Pointwise Credible Regions

Besides an estimator of f0, we are also interested in investigating how much variability the

posterior distribution contains. One might ask e.g. whether most of the posterior probability

mass is allocated within a small neighborhood of f̂0, or whether the probability mass is spread out

widely in the function space. One possible way of investigating this constitutes the computation

of the pointwise a-quantile spectral density f̂
[a]
0 functions for 0 < a < 1. This is done by the

very same construction as f̂0 (employing the a-quantile of {g(1)
r (ω), . . . , g

(N)
r (ω)} rater than the

median). As an example, we will often consider f̂
[0.05]
0 and f̂

[0.95]
0 . The region

Cpw(ω|0.9) :=
{
tf̂

[0.05]
0 (ω) + (1− t)f̂ [0.95]

0 (ω) : 0 ≤ t ≤ 1
}
, 0 ≤ ω ≤ π, (6.4)

between the function graphs of f̂
[0.05]
0 and f̂

[0.95]
0 has the interpretation of being a pointwise 90%

credibility region – that is, for every 0 ≤ ω ≤ π, it holds true that the posterior probability of f(ω)

to lie in Cpw(ω|0.9) is at least 90%. It is important to note that this statement does not hold true

uniformly over 0 ≤ ω ≤ π. In particular, for the graph area Cpw(0.9) := {Cpw(ω|0.9) : 0 ≤ ω ≤ π}
it does not hold that f ∈ Cpw(0.9) with posterior probability at least 90%. The reason is that

pointwise credible regions do not take the multiple testing problem into account that arises when

considering multiple frequencies ω simultaneously.

Uniform Credible Regions

One possible remedy for the aforementioned drawback of pointwise credible regions constitutes

the usage of uniform credible regions. These have been used in Häfner and Kirch (2017) (see

also Neumann and Polzehl (1998) and Kirch et al. (2017)) for univariate functions and we will

present a generalization to the matrix-valued case. To elaborate, denote by H : S+
d → Rd2 the

transformation that maps each Hermitian positive definite matrix A = (ars)
d
r,s=1 to a vector HA

consisting of the logarithmized diagonal elements log a11, . . . , log add and the (non-logarithmized)

real and imaginary parts of the entries {ars : r < s} above the diagonal. For the transformed

versions h(j) = (h
(j)
1 , . . . , h

(j)
d2

) := Hf (j) for j = 1, . . . , N , denote the pointwise sample median

function by ĥ := (ĥ1, . . . , ĥd2). Let σ̂ := (σ̂1, . . . , σ̂d2) with σ̂r(ω) being the median absolute

deviation of {h(1)
r (ω), . . . , h

(N)
r (ω)} for 0 ≤ ω ≤ π and r = 1, . . . , d2. For 0 < a < 1/2,

determine ξa as the smallest positive number such that

1

N

N∑
j=1

1

 max
0≤ω≤π
r=1,...,d2

∣∣∣h(j)
r (ω)− ĥr(ω)

∣∣∣
σ̂r(ω)

≤ ξa

 ≥ 1− a.

Let ĥ
[a/2]

:= ĥ − ξaσ̂ and ĥ
[1−a/2]

:= ĥ + ξaσ̂ and f̃
[a/2]
0 := H−1ĥ

[a/2]
as well as f̃

[1−a/2]
0 :=

H−1ĥ
[1−a/2]

. Then the region between the function graphs of f̃
[a/2]
0 and f̃

[1−a/2]
0 is called uniform

(1 − a)-credibility region and will be denoted by Cuni(ω|1 − a). As an example, we will often

consider a = 0.1, in which case

Cuni(ω|0.9) :=
{
tf̃

[0.05]
0 (ω) + (1− t)f̃ [0.95]

0 (ω) : 0 ≤ t ≤ 1
}
, 0 ≤ ω ≤ π. (6.5)
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By construction, it holds that f ∈ Cuni(ω|0.9) with (empirical) posterior probability of at

least 0.9. It is of interest to investigate the frequentist coverage properties of the uniform

credible sets, in particular whether the posterior credibility matches (at least approximately)

the empirical coverage.

6.2. Simulation Study

In this section, we evaluate the performance of our procedure with simulated data. We employ

the Bernstein-Hpd-Gamma prior from (5.2) for f , where the prior probability mass function for

the polynomial degree k is chosen as p(k) ∝ exp(−0.01k log k) (c.f. Table 5.1). As a prior for Φ,

we use an AΓ(η, ω,Σ) process (as considered in Section 3.4.2). We choose process parameters η ≡
d = 2 and ω ≡ d = 2 and Σ ≡ 104I2. Recall from (3.24) that the prior mean of Φ corresponds to

the spectral measure of White Noise, with constant spectral density. Furthermore, the underlying

Poisson Process mean measure ν from (3.23) of Φ simplifies in this case to

ν(dx, dU , dr) =
2Γ(4)

Γ̃2(2)

exp(−10−4r)

r
dr =

12

π

exp(−10−4r)

r
dr,

where the right hand side does not depend on U . In this sense, Φ is isotropic, i.e. all “directions”

U ∈ S+
d are equally likely to contribute to Φ under the prior. The Bernstein polynomial basis

is truncated as in (5.4), with τl = 0.1 and τr = 0.9, to improve the mixture properties at the

boundary. Along with this prior, we employ Whittle’s Likelihood (5.3). Inference is conducted

with the Markov Chain Monte Carlo (MCMC) algorithm from Section 5.2.

The Markov Chain is run for a total number of 80,000 iterations, where the first 30,000 iterations

are discarded as burn-in period to ensure that the chain “converged” (i.e. reached states of

actually sampling from the posterior distribution, see Section 6.3 in Christensen et al. (2011)).

These numbers have been determined with convergence diagnostics that have been conducted

in preliminary pilot runs for a few individual realizations. These diagnostics include a visual

inspection of the log posterior trace plot and a validation of the results from chains with different

starting values. It may be noted that a visual inspection of the parameter trace plots is not well

suited for convergence diagnostics, because the marginal posterior of the parameters is often

multimodal.

To decrease the dependence within the sample and to reduce memory consumption, the remain-

ing 50,000 are (equidistantly) thinned by a factor of 5, such that a sample of size 10,000 remains

(see Section 6.3 in Christensen et al. (2011)). By preliminary pilot runs, we found that values

of kmax = 300 for the maximum polynomial degree and L = 20 for the series truncation param-

eter of Φ were sufficient for all the considered examples. This procedure for spectral density

inference will be called the NP procedure (where NP stands for nonparametric method) in the

following.
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Comparison Method: Bayesian Vector Autoregression

We compare the NP procedure to a Bayesian Vector Autoregression (VAR). To elaborate, a

(Gaussian) VAR model of order p ≥ 0 is formulated as follows:

Zt =

p∑
j=1

BjZt−1 + et, et
iid∼ Nd(0,Σ), t = p+ 1, . . . , n (6.6)

with innovation covariance matrix Σ ∈ S+
d (R) and coefficient matrices B1, . . . ,Bp ∈ Rd×d,

where Bp 6= 0. For the model (6.6) to be stationary, the constraint |Id −
∑p

j=1Bjz
j | 6= 0 is

assumed for all z ∈ C with |z| ≤ 1 (see Section 11.3 in Brockwell and Davis (1991)). In this

case, the spectral density is given by

fVAR(ω|B1, . . . ,Bp,Σ) =
1

2π

Id − p∑
j=1

Bje
ijω

−1

Σ

Id − p∑
j=1

BT
j e
−ijω

−1

(6.7)

for 0 ≤ ω ≤ π. The first p observations Z1, . . . , Zp in model (6.6) are considered to be fixed.

The conditional likelihood for the remaining observations Zp+1, . . . , Zn is

pVAR(Zp+1 . . . , Zn|Z1, . . . , Zp,B1, . . . ,Bp,Σ)

=

n∏
j=p+1

pVAR(Zj |Zj−1, . . . , Zj−p,B1, . . . ,Bp,Σ)

with

pVAR(Zj |Zj−1, . . . , Zj−p−1,B1, . . . ,Bp,Σ)

=
1√

(2π)d|Σ|
exp

−1

2

(
Zj −

p∑
l=1

BlZj−l

)T
Σ−1

(
Zj −

p∑
l=1

BlZj−l

)
for j = p + 1, . . . , n. The VAR equation (6.6) can also be written in an equivalent vectorized

notation (see Section 2.2.3 in Koop and Korobilis (2010)) as

Zt = Ytb+ et, t = p+ 1, . . . , n, (6.8)

with regressor matrix

Yt =


Y T
t 0 . . . 0

0 Y T
t

...
. . .

0 . . . Y T
t

 ∈ Rd×pd
2
.

and regressors Y t = (ZTt−1, . . . , Z
T
t−p)

T ∈ Rpd and vectorized coefficients

b = (B1,1,1, . . . , B1,1,d, B2,1,1, . . . , Bp,d,d) ∈ Rpd
2
.

The order p is not included into the Bayesian inference, but determined in a preliminary model

selection step with Akaike’s Information Criterion (AIC, see Akaike (1974)), based on a Yule-

Walker estimate and the full likelihood of Z1, . . . , Zn for each VAR order in consideration. For
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the parameters of the VAR(p) model, we employ the Independent Normal-Inverse-Wishart prior

in parametrization (6.8), under which b and Σ are independent and distributed as

b ∼ Npd2(0,V ), Σ ∼Wish−1
d×d(ν,S),

where the inverse Wishart distribution Wish−1
d×d is as defined in (B.2) in the Appendix. Note

that this prior specification does not enforce causality or invertibility of the parametric working

model. The prior parameters are chosen as V = 104Id and ν = 10−4 and S = 10−4Id. This

choice can be interpreted as “vague”, since the prior covariance V of b is “large” and the

prior of Σ is improper. Posterior inference is conducted with a Gibbs sampler, where the full

conditionals are available due to conjugacy properties of the prior and the Gaussian likelihood

(see Section 2.2.3 in Koop and Korobilis (2010)). The Markov Chain is run for a total number

of 80,000 iterations, with a burn-in period of 30,000 iterations and a thinned factor of 5, yielding

a sample of size 10,000. We will refer to this inference method as the VAR procedure in the

following.

Simulated Data

We consider simulated data drawn from the following bivariate VAR(2) model:

Zt =

(
0.5 0

0 −0.3

)
Zt−1 +

(
0 0

0 −0.5

)
Zt−2 + et, et

iid∼ N2

(
0,

(
1 0.9

0.9 1

))
. (6.9)

This model is chosen because it has already been analyzed in the literature (see Rosen and

Stoffer (2007)). Furthermore, we will also consider the following bivariate VMA(1) model:

Zt = et +

(
−0.75 0.5

0.5 0.75

)
et−1, et

iid∼ N2

(
0,

(
1 0.5

0.5 1

))
, (6.10)

which is chosen because it is a simple example of a linear multivariate time series that does

not belong to the family of VAR models. Exemplary realizations from models (6.9)–(6.10) are

shown in Figure 6.1. We consider the sample sizes n = 256, n = 512 and n = 1024. For each

sample size, we generate N = 500 independent realizations of model (6.9) and model (6.10) and

compare the inference results of NP and VAR procedure.

Results

First, let us compare the Bayes estimators. We will use the pointwise median spectral den-

sity (6.1) for this purpose. Exemplary visualizations of the estimates from the NP and VAR

procedure for n = 256 are shown in Figure 6.2. First note that the individual spectra are visual-

ized on a logarithmic scale, whereas real and imaginary parts of the cross spectra are shown on

a regular scale. It can be seen in Figure 6.2 (a) that both procedures yield reasonable spectral

estimates for VAR(2) data. However, the VAR procedure fits better than the NP estimate to

the true spectral density. This is not too surprising, since the fitted VAR model is well-specified.

For the VMA(1) data in Figure 6.2 (b), it can be seen that the VAR procedure struggles to cap-

tures the rough shape of the ground truth spectral density (introducing erroneous wavy bumps).
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Figure 6.1.: Realization of (a) VAR(2) model (6.9) and (b) VMA(1) model (6.10) of respective

length n = 256. The left panel depicts the first component and the right panel the

second component of the time series.

This comes from the fact that the VAR order p is determined in a preliminary model selection

step based on AIC and in the misspecified case, high orders are preferred to account for the

model bias. On the other hand, the fit of the NP procedure looks much closer with appropriate

smoothness. This exemplifies the power of using the NP procedure, which is (in comparison to

the parametric VAR procedure) to a much less extent susceptible to misspecification.

The corresponding 90%-credibility regions (pointwise regions from (6.4) and uniform regions

from (6.5)) are shown in Figure 6.3 for the VAR(2) example and in Figure 6.4 for the VMA(1)

example. It can be seen that both procedures yield reasonable regions for the VAR(2) example,

where the NP procedure struggles slightly more to catch the main features (yielding wavy

regions) than the well-specified VAR procedure. For the VMA(1) example however, it can be

seen that the VAR procedure infers a much larger degree of uncertainty (in terms of size of

credible regions), which – similar to the corresponding spectral estimate from Figure 6.2 (b) –

look very wavy and bumpy. This does not hold true for the NP procedure, where the regions

adhere a degree of smoothness that seems appropriate for the ground truth of this example.

Exemplary runtimes (as measured for one respective realization) are shown in Table 6.1. It

comes as no surprise that the NP procedure – due to its larger number of parameters – is

computationally more demanding than the parametric VAR procedure. In fact, the runtimes

are roughly one order of magnitude larger. Considering the increased robustness of the NP

procedure subject to model misspecification, this can be considered as an acceptable tradeoff.

It can also be observed that the runtimes of the NP procedure are larger for VAR(2) data than
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Figure 6.2.: Spectral estimates for a realization of length n = 256 of (a) the VAR(2) model (6.9)

and (b) the VMA(1) model (6.10) for the NP procedure (dashed) and the VAR

procedure (dotted), where the true spectral density is shown as solid black line.

Time (s)

n = 256 n = 512 n = 1024

NP VAR NP VAR NP VAR

VAR(2) data 82.71 14.48 137.17 27.33 360.91 50.01

VMA(1) data 70.92 20.79 108.63 37.36 303.93 89.70

Table 6.1.: Average runtime of 1000 MCMC iterations for NP procedure and VAR procedure

for one respective realization of model (6.9) and (6.10).
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Figure 6.3.: Posterior credibility regions for a realization of length n = 256 of the VAR(2)

model (6.9) for (a) NP and (b) VAR. Pointwise 90% region is visualized in shaded

red and uniform 90% region in shaded blue and the true spectral density is shown

as solid black line, whereas the periodogram is shown in gray.
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Figure 6.4.: Posterior credibility regions for a realization of length n = 256 of the VMA(1)

model (6.10) for (a) NP and (b) VAR. Pointwise 90% region is visualized in shaded

red and uniform 90% region in shaded blue and the true spectral density is shown

as solid black line, whereas the periodogram is shown in gray.
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for VMA(1) data. This is due the fact that the VMA(1) spectral density is smoother than

the VAR(2) spectral density in consideration, hence the NP procedure needs to employ less

effort to capture the spectral features of the data. Indeed, for the length n = 256, the average

posterior mean of the polynomial degree k is 45.86 for VAR(2) data and 14.32 for VMA(1) data,

with average posterior variance of 85.22 and 14.94 respectively. As for the VAR procedure,

the behavior is the other way round. This is due the fact that for VAR(2) data, the model is

well-specified, whereas for VMA(1) data, the model complexity has to be increased considerably

to capture the misspecified spectral features. Indeed, for the length n = 256, the average VAR

order p (as chosen by the preliminary AIC-based model selection step) is 2.24 for the VAR(2)

data and 7.50 for the VMA(1) data.

A more systematic insight in the results can be gained from Table 6.2, which contains the

average L1-error and average L2-error (as defined in (6.2) and (6.3)) of the Bayes estimates among

the 500 independent realizations from each model, for different sample sizes. The table also

contains the empirical coverage of the uniform 90% region and the median (among replications)

of the median (among frequencies) width of the components of the uniform 90% region. It can be

seen that the VAR model yields smaller errors for the well-specified VAR(2) data and performs

worse for the misspecified model, in which case the NP procedure yields superior results (in

terms of smaller errors). This is in line with the above discussion from Figure 6.2. In the well-

specified case, the VAR procedure yields honest credibility regions, i.e. the empirical coverage

matches (approximately) the corresponding posterior probability mass of the regions, 90% in

this case (we borrowed the notion of honesty from Szabó et al. (2015)). In the misspecified case,

coverage of the VAR procedure is much larger, indicating a higher degree of posterior volatility,

which matches the observations from Figure 6.2.

The NP procedure yields less coverage in all examples. The investigation of frequentist coverage

properties within the Bayesian nonparametric framework still remains a delicate and difficult

matter (see e.g. the discussion in Section 3.5 in Rousseau (2016)), with only few results known

to this day. To achieve honest credible sets, a balance has to be achieved between enough prior

flexibility on the one hand (yielding coverage) and enough penalization of prior complexity on the

other hand (yielding consistency). This is closely related to the commonly known bias/variance-

tradeoff. In other words, following the insights from Szabó et al. (2015), the prior should be

chosen to slightly undersmooth the truth (for coverage), but not too much (for consistency).

It is conjectured that the Bernstein polynomial prior used in the NP procedure is not suitable

for this idea because Bernstein polynomials tend to oversmooth the truth, as suggested by

their suboptimal approximation rates, see Lemma B.13. It will be of great interest for future

research to consider different basis functions and to investigate whether it is possible to establish

conditions under which the posterior distribution yields (asymptotically) honest confidence sets.

6.3. Analysis of the Southern Oscillation Index

In this Section we analyze the Southern Oscillation Index and Recruitment series from Shumway

and Stoffer (2010), which have also been analyzed in Rosen and Stoffer (2007). Both series consist

of monthly data for 452 months ranging over the years 1950-1987 and are available as datasets
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VAR(2) data

n = 256 n = 512 n = 1024

NP VAR NP VAR NP VAR

L1-error 0.105 0.071 0.081 0.050 0.064 0.034

L2-error 0.133 0.094 0.107 0.066 0.085 0.045

Coverage 0.52 0.90 0.37 0.90 0.26 0.91

Width f11 0.287 0.200 0.166 0.116 0.107 0.074

Width <f12 0.177 0.111 0.124 0.069 0.088 0.046

Width =f12 0.225 0.129 0.154 0.078 0.108 0.051

Width f22 0.419 0.183 0.246 0.106 0.160 0.068

VMA(1) data

n = 256 n = 512 n = 1024

NP VAR NP VAR NP VAR

L1-error 0.095 0.155 0.070 0.121 0.053 0.091

L2-error 0.113 0.187 0.084 0.144 0.064 0.108

Coverage 0.61 0.99 0.44 0.98 0.27 0.96

Width f11 0.266 1.233 0.184 0.623 0.131 0.395

Width <f12 0.122 0.485 0.090 0.327 0.077 0.225

Width =f12 0.200 0.584 0.139 0.390 0.100 0.273

Width f22 0.408 1.889 0.281 0.952 0.206 0.598

Table 6.2.: Average L1-error, average L2-error, empirical coverage and median width of uni-

form 90% credibility regions of the NP procedure and the VAR procedure for 500

realizations of model (6.9) and (6.10).
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Figure 6.5.: The SOI and Recruitment series after mean-centering and re-scaling.

soi and rec in the R package astsa Stoffer (2017).

The Southern Oscillation Index (SOI) is defined as the normalized difference in air pressure

between Tahiti (French Polynesia) and Darwin (Northern Territory, Australia). It constitutes

a key indicator for warming or cooling effects of the central and eastern Pacific ocean known

as El Niño and La Niña, see Bureau of Meteorology of the Australian Government (2018a).

It is known that the SOI obeys a cyclical behavior, with cycles being classified in different

meteorological phases (see Bureau of Meteorology of the Australian Government (2018b)). Due

to this cyclical behavior, it can be expected that the observations in the SOI time series are

not independent, but obey a time-dependence structure. One possible way to handle this would

be an explicit modeling of the cyclical component (along with possible seasonal effects), e.g. in

terms of cyclostationary time series or seasonal ARMA models. However, similar to the analysis

in Rosen and Stoffer (2007), we make the simplifying assumption that all these effects can (at

least approximately) be described in terms of the autocovariance structure.

The Recruitment Series consists of the number of new spawned fish in a population in the Pacific

Ocean. Since the fish are known to spawn better in colder waters (Rosen and Stoffer, 2007), it

can be expected that there also exists a cross-correlation between the SOI and the Recruitment

series. The number of new fish is intrinsically integer-valued and this could be taken explicitly

into account with integer-valued time series models. The data as provided in the dataset rec

in the astsa package is re-scaled to the interval [0, 100] and has been treated as real-valued

in Rosen and Stoffer (2007) and we will follow the same approximation. We analyze the sample

mean centered version of the data, where we also divide the Recruitment series data rec by 50

to ensure that the values of both series are in the same order of magnitude. The last re-scaling

step is not necessary, but introduced for the sake of more numerical stability within the MCMC

algorithms. In fact, it ensures that the spectra of both time series are (roughly) of the same

order of magnitude, which stabilizes the numerical evaluation of Whittle’s Likelihood – recall

that the spectral density matrices at the Fourier frequencies have to be inverted for this purpose.

Furthermore, since we are considering linear dependence structure, the inference results could

easily be scaled back. See Figure 6.5 for a visualization of the transformed data with which we

are working in the following.

We employ the NP procedure, with the same prior and MCMC parameters as discussed in

Section 6.2. We parse the data in terms of a bivariate time series, with SOI constituting the first

and Recruitment the second components. Note however that (unlike procedures that work with
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Figure 6.6.: Estimated spectra for the SOI and Recruitment series from the NP procedure. The

posterior median spectral density is shown as solid black line, the pointwise 90% re-

gion is visualized in shaded red and the uniform 90% region in shaded blue, whereas

the periodogram is shown in gray.

the Cholesky decomposition of f) the results are the same if the components were swapped,

since the employed prior is isotropic.

The results are shown in Figure 6.6. It can be seen that a spectral peak at ωyearly := 2π/12 ≈ 0.52

is estimated in the first individual spectrum (which belongs to the SOI time series). Since we

have monthly data, the frequency ωyearly corresponds to a temporal distance of 12 months. The

peak thus has the interpretation of the SOI series having a prominent annual (i.e. at lag 12)

covariance. It can also be seen that cross-periodogram ordinates peak at ωyearly. However, this

seems to affect the spectral estimate only to a minor degree and the NP procedure smooths out

this feature. This is because this cross-periodogram peak only consists of one single periodogram

ordinate. To get a deeper insight in the inferred cross dependence structure, we investigate the

squared coherency function |κ|2 between the components, where the coherency function κ is

defined as

κ(ω|f) :=
f12(ω)

(f11(ω)f22(ω))1/2
, 0 ≤ ω ≤ π.

The coherency can be thought of as a frequency-domain version of the cross-correlation and it

holds |κ(ω|f)|2 ≤ 1 for 0 ≤ ω ≤ π, see Section 11.6 in Brockwell and Davis (1991). We compute

the squared coherency functions |κ(·,f (j))|2 for all of the posterior samples f (1), . . . ,f (10,000).

Figure 6.7 shows the results. It can be seen that the posterior squared coherency also has a

peak at ωyearly, concluding that a prominent annual cross-correlation between the time series

has been inferred. Furthermore, the squared coherency shows several minor peaks, which are
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Figure 6.7.: Estimated squared coherency (pointwise posterior median) between SOI and Re-

cruitment series. The pointwise 90% credible area is shown as shaded red area. The

dotted vertical lines indicate the annual frequency ωyearly = 2π/12 ≈ 0.52 and its

harmonics lωyearly, l = 2, . . . , 5.

approximately located at the harmonic (i.e. integer multiple) frequencies of ωyearly. These ob-

servations are in line with the findings that have been discussed in Rosen and Stoffer (2007).

In fact, the squared coherency of the NP procedure shares the same qualitative features as

the in the referenced literature (Rosen and Stoffer, 2007), except for having a higher degree of

smoothness. One further observation which is also in line with previously known findings, is

that there is another peak indicated in the low-frequency part (i.e. ω approaching 0) of both f11

and |κ|2. This corresponds to a time-dependence in the order of magnitude of several years and

can possibly be explained by the aforementioned meteorological cycles.

6.4. Discussion

We investigated the performance of the proposed NP procedure with both simulated and real

data. In Section 6.2, we have seen that the procedure performs well for simulated data, taking

full advantage over parametric procedures by not being susceptible to misspecification. The

examples have also shown that there is a need for further theoretical investigation of frequentist

properties to make “honest” uncertainty quantification possible (i.e. credible sets that are also

confidence sets, at least asymptotically).

As for real data, we have seen in the Southern Oscillation Index example from Section 6.3 that

the NP procedure yields results that are in line with previous findings from the literature, with

curve estimates that may be smoother than for some other approaches. This property is due to

the usage of Bernstein polynomials, which are known to have suboptimal approximation rates

(see Remark B.14 in the Appendix) and have the tendency to produce over-smoothed results

(see the simulation section in Edwards et al. (2017)). If this property is not desirable, there

are several options to remedy. One obvious option constitutes the use of a different polynomial

basis. As an example, in Edwards et al. (2017) a B-Spline basis with flexible choice of knot

locations is employed to improve the estimation of sharp peaks of the spectral density of a

univariate time series. It is conceptually straightforward to extend the NP procedure from this
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work in the same direction, although great care will have to be taken to provide an efficient

software implementation, since the precluding evaluation of the basis functions further increases

the computational and numerical complexity of the MCMC algorithm. Another option is to

generalize Whittle’s Likelihood to incorporate a parametric working model that can help to

estimate rough spectral features. This has been done in the univariate case in Kirch et al.

(2017).



7.
Asymptotic Properties

For existing approaches to Bayesian nonparametric analysis of multivariate stationary time

series, it is not known if posterior consistency holds. In the following Section 7.1, we will settle

this question to the affirmative for the proposed nonparametric method from Chapter 5. We

will also derive contraction rates of the posterior distribution in Section 7.2.

7.1. Posterior Consistency

We start our considerations with a brief overview on posterior consistency results in Section 7.1.1.

While the famous Bernstein-von-Mises theorem (see van der Vaart (2000), Section 10.2) ensures

asymptotic normality – and in particular consistency in case of well-specification – of the poste-

rior distribution in the parametric setting under regularity and model identifiability assumptions,

this result does not translate to the infinite-dimensional setting of Bayesian nonparametrics in

general. In fact, counterexamples exist where the validity of a Bernstein-von-Mises theorem

or even posterior consistency fails in infinite dimensions (see Diaconis and Freedman (1986)

and Freedman (1999)). The consistency theorem and the assumptions are formulated in Sec-

tion 7.1.2, whereas the proof will be developed in Sections 7.1.3-7.1.5. Section 7.1.6 contains a

discussion of our findings.

7.1.1. Introduction

Let (Z1, . . . , Zn) ∼ Pnθ with θ ∈ Θ and Θ being some measurable space endowed with a metric d.

Assume that some prior distribution on Θ is specified. Then the posterior distribution of θ is

called consistent at θ0 ∈ Θ with respect to d, if for every ε > 0 it holds

P (Bc
ε(θ0)|Z1, . . . , Zn)→ 0, in Pnθ0 probability as n→∞

with Bε(θ0) = {θ ∈ Θ: d(θ, θ0) < ε} and Bc
ε(θ0) denoting its complement set in Θ. In other

words, posterior consistency formalizes the convergence of the posterior distribution towards

a degenerate measure at the true value θ0. A famous and very general result due to Doob

(see van der Vaart (2000), Section 10.4, or Ghosal and van der Vaart (2017), Section 6.2)

ensures posterior consistency for a possibly infinite-dimensional model, requiring appropriate
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model identifiability and measurability. However, this result is restricted to a subset of the

parameter space with prior mass one. Null-sets in infinite dimensions may be large: In fact, a

null-set may even contain a dense subspace – think e.g. about the space of polynomials which is

densely embedded in L2, but may attain prior mass 0 if e.g. a Fourier basis prior is employed.

Thus the result by Doob – despite its generality – is too pessimistic for many situations. See

the discussion in Section 6.2 in Ghosal and van der Vaart (2017) for another example.

A more practical result for the iid setting is the famous theorem from Schwartz (1965) and in

particular the extensions by Barron et al. (1999) and Ghosal et al. (1999). Besides full prior

support in terms of Kullback-Leibler neighborhoods, a stronger form of model identifiability,

i.e. exponentially powerful testability, is required to get consistency of the posterior distribution.

The extended formulation from Barron et al. (1999) relies on sieves of the parameter space and

is of great practical usefulness. In fact, it is known (see e.g. Section 5 in Barron (1989)) that

an exponentially powerful test sequence (ϕn) for testing H0 : p ∈ U against H1 : p /∈ U does

not exist for neighborhoods in many relevant topologies (e.g. L1 or Hellinger) in general. This

renders the fact that a sieve is needed to get consistency in these topologies.

The following result is another extension of Schwartz’s theorem to the case of independent, non-

identically distributed random variables. It will be the key tool for proving posterior consistency

of the spectral density under Whittle’s likelihood.

Theorem 7.1 (Extended version of Schwarz’ Theorem for non-iid observations, Theorem A.1 in

Choudhuri et al. (2004a)). Let Z1,n, . . . , Zn,n be independently distributed having density pi,n(·|θ)
with respect to a σ-finite measure on a Borel space for i = 1, . . . , n, where θ ∈ Θ and Θ is some

measurable space. Let θ0 ∈ Θ. Denote the joint distribution of (Z1,n, . . . , Zn,n) under θ by Pnθ .

Denote the Kullback-Leibler divergence from θ0 to θ at Zi,n and the associated variance by

Ki,n(θ0, θ) := Eθ0 log
pi,n(Zi,n|θ0)

pi,n(Zi,n|θ)
, Vi,n(θ0, θ) := Varθ0 log

pi,n(Zi,n|θ0)

pi,n(Zi,n|θ)
. (7.1)

Let Kn(θ0, θ) := 1
n

∑n
i=1Ki,n(θ0, θ). Consider a sieve sequence (Θn) with Θn ⊂ Θ and let U ⊂ Θ

denote a neighborhood of Θ0. Let a prior P be given on Θ. Let the following support assumptions

on the prior and testability assumptions on the model be fulfilled:

• Prior positivity of neighborhoods: There exists B ⊂ Θ with

(a) P (B) > 0,

(b) lim infn→∞ P ({θ ∈ B : Kn(θ0, θ) < ε}) > 0 for all ε > 0,

(c) 1
n2

∑n
i=1 Vi,n(θ0, θ)→ 0 for all θ ∈ B as n→∞.

• Existence of uniformly exponentially powerful tests: There exists a sequence (ϕn) of tests

and constants c1, c2, c3 not depending on n, such that

(d) Eθ0ϕn → 0 as n→∞,

(e) supθ∈Uc∩Θn Eθ(1− ϕn) ≤ exp(−c1n) and

(f) P (Θc
n) ≤ c2 exp(−c3n).
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Then

P (U c|Z1,n, . . . , Zn,n)→ 0, in Pnθ0 probability as n→∞

with U cn = Θ \ Un.

Let g : X → R be measurable and bounded. Then for a weak neighborhood of the form

U = U(g) =

{
p :

∣∣∣∣∫
X
g(x)p(x)µ(dx)−

∫
X
g(x)p0(x)µ(dx)

∣∣∣∣ < ε

}
, (7.2)

a test sequence (ϕn) fulfilling the assumptions (d)-(f) from Theorem 7.1 can always be con-

structed, at least for the special case of iid observations (see Example 6.20 in Ghosal and van der

Vaart (2017)). However, since only one fixed function g (or at most finitely many g’s) are con-

sidered, the topology is too weak, i.e that the neighborhoods U(g) are too large, as e.g. argued in

Section 1 in Barron et al. (1999). For consistency in stronger topologies, it is typically necessary

to explicitly derive an appropriate test sequence (ϕn). Under the prior positivity of Kullback-

Leibler neighborhoods assumption, the exponentially powerful testability condition is sufficient

and necessary for P (U cn|Z1, . . . , Zn) to decay to 0 exponentially (see Theorem 3.11 in Choi and

Ramamoorthi (2008)).

Figure 7.1 depict an illustrative example of data from a VAR(2) process and the corresponding

pointwise and uniform spectral posterior credibility regions inferred by the NP procedure from

Section 6.2. It can be seen that, with growing sample size, the size of the credibility regions is

shrinking and that their location is approaching the ground truth spectral density f0, indicating

that all posterior mass is asymptotically allocated near f0.

7.1.2. Posterior Consistency for the Spectral Density Matrix

In this section, we will establish posterior consistency for the spectral density for stationary

Gaussian time series under the Bernstein-Hpd-Gamma prior from Section 5.1 and Whittle’s

likelihood. The proof extends the ideas from Choudhuri et al. (2004a) (see also Section 7.3.3

in Ghosal and van der Vaart (2017)), where a similar result has been shown for the normalized

spectral density of a univariate stationary Gaussian time series with a Bernstein-Dirichlet prior

and Whittle’s likelihood. See also Kirch et al. (2017), where posterior consistency has been

established for a semiparametric procedure with a Bernstein-Dirichlet prior on a nonparamet-

ric correction of the spectral density of a univariate stationary Gaussian time series under a

parametric likelihood. These approaches rely on the assumption that the normalizing constant

(i.e. the integral of the true spectral density) is a priori known. Our method of proof does

not rely on this assumption, but instead requires a pointwise upper bound for the (eigenval-

ues of the) spectral density to be known a priori. Indeed, to achieve exponentially powerful

model testability, we will conduct a truncation of the Bernstein-Hpd-Gamma prior such that

the eigenvalues are bounded by a universal constant with prior probability one. Note that this

is in line with Assumption f1 for the true spectral density f0. The truncation will be done

by a suitable restriction of the prior parameters (k,Φ). There should be no confusion between

the truncated Bernstein-Hpd-Gamma prior (which bounds the eigenvalues of f by a universal
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Figure 7.1.: Visualization of posterior consistency: Credibility regions of the NP procedure for

data drawn from the VAR(2) process (6.9) of length (a) n = 128, (b) n = 1024 and

(c) n = 8192, where the periodogram is visualized in gray.
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constant and which will be derived in the following) and the truncated Bernstein polynomials

from (5.4) (which are merely a restriction of the polynomial basis functions to get better mixture

properties at the boundary of [0, π]).

To elaborate, let the positive integers N be endowed with the power σ-algebra FN. Denote

by Md×d the set of all Hpsd measures Φ on [0, π] fulfilling ‖Φ([0, π])‖ <∞, endowed with the

smallest σ-algebra FMd×d such that the mapping

Md×d 3 Φ 7→ Φ(A) ∈ S̄+
d

is measurable for all measurable A ⊂ [0, π]. Let the product space N×Md×d be endowed with

the product σ-algebra FN×Md×d of FN and FMd×d . Consider the space Dd×d of continuous S̄+
d -

valued functions on [0, π], endowed with the σ-algebra FDd×d induced by the maximum Frobenius

norm

‖f‖F,∞ := max
0≤ω≤π

‖f(ω)‖, f ∈ Dd×d. (7.3)

The Bernstein-Hpd-Gamma prior (5.2) is actually a prior on the parametrization (k,Φ) ∈ N×
Md×d. It can also be conceived as a prior P on f ∈ Dd×d via the mapping

B : N×Md×d → Dd×d, B(k,Φ) :=

k∑
j=1

Φ(Ij,k)b(·/π|j, k), (7.4)

with Ij,k the interval partition from (5.1) and b(·, j, k) the Bernstein polynomial basis functions

of degree k for j = 1, . . . , k from (B.20). It is argued in Section 2 in Petrone (1999) that B

is (FN×Md×d ,FDd×d)-measurable. Let τ > 0 and consider the set

Cτ := {f ∈ Dd×d : λmax(f(ω)) ≤ τ for all 0 ≤ ω ≤ π} . (7.5)

Note that Cτ is measurable, i.e. Cτ ∈ FDd×d . Assume that the prior P on f fulfills P (Cτ ) > 0

(this is e.g. the case if the prior on Φ fulfills Assumption GP3 and if the prior on k fulfills

Assumption k1 below, see the upcoming Lemma 7.4). Then we define the truncated Bernstein-

Hpd-Gamma prior Pτ as the restriction of P to Cτ :

Pτ (F ) :=
P (F ∩ Cτ )

P (Cτ )
, for F ⊂ Dd×d measurable. (7.6)

Note that k and Φ are no longer independent under Pτ . In what follows, we will conceive Pτ as

a prior on f or (equivalently) as a prior on (k,Φ), whatever is more convenient. For our main

theorem of this Section, we will make the following assumption:

Assumption k1. There exist positive constants c, C such the prior probability mass function

of k fulfills

0 < p(k) ≤ C exp(−ck log k), k ∈ N.

Let us briefly discuss this prior assumption on k.
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Remark 7.2. Clearly, any prior probability mass function of the form p(k) = C exp(−ck log k)

for k ∈ N and positive constants c, C fulfills Assumption k1. Many other prior choices are of

course possible and Assumption k1 states full support and a decay condition on the tails. As

another example, if k ∼ Poi(C) a priori, i.e. with probability mass function p(k) = Ck

k! exp(−C)

for k ∈ N and a positive constant C, then Assumption k1 is fulfilled. Indeed, it clearly holds p(k) >

0 and an application of Stirling’s Formula (see Abramowitz and Stegun (1964), p. 257) re-

veals log(k!) = k log k − k +O(log k) & k log k and hence

p(k) .
Ck

k!
= exp (k logC − log(k!)) ≤ exp

(
−k
(

log
1

C
+ c log k

))
≤ exp(−c̃k log k)

for positive constants c, c̃.

Denote by PnW,τ (f |Z1, . . . , Zn) the pseudo-posterior distribution of the spectral density matrix f

when employing the truncated Bernstein-Hpd-Gamma prior Pτ from (7.6) in conjunction with

Whittle’s likelihood P̃nW from (5.3). Recall that the Fourier coefficients occurring in P̃nW are

Z̃j =
1√
n

n∑
t=1

Zt exp(−itωj), ωj =
2πj

n
, n = 1, . . . , N, N :=

⌈n
2

⌉
− 1. (7.7)

The following result establishes consistency for the spectral density matrix in the L1 topology.

Theorem 7.3. Let {Zt} be a Gaussian stationary time series in Rd with mean zero, true spectral

density matrix f0 and corresponding true autocovariance function Γ0 fulfilling Assumptions f1-

f2. Denote by Pnf0
the joint distribution of the Fourier coefficients Z̃1, . . . , Z̃N from (7.7) un-

der f0. Let τ ∈ (b1,∞), with the upper bound b1 on the eigenvalues of f0 from Assumption f1.

Let the prior on the spectral density matrix f be given by the truncated Bernstein-Hpd-Gamma

prior Pτ from (7.6), with the prior on Φ fulfilling Assumptions GP1, GP2 and GP3 and the

prior on k fulfilling Assumption k1. Then, for all ε > 0 and Uε := {
∫ π

0 ‖f(ω)− f0(ω)‖dω < ε}
it holds

PnW,τ (U cε |Z1, . . . , Zn)→ 0, in Pnf0
probability as n→∞.

We will prove Theorem 7.3 by showing that the assumptions of Theorem 7.1 are fulfilled.

As a first important observation, it is sufficient to prove Theorem 7.3 under Whittle’s like-

lihood. This follows from the mutual contiguity result of Corollary 4.5, which implies that

convergence of PnW,τ (U cε |Z1, . . . , Zn) in Pnf0
probability is equivalent to convergence in P̃nW (·|f0)

probability. We may thus assume that the Fourier coefficients Z̃1, . . . , Z̃N are distributed as

under P̃nW (·|f0), that is, independent and complex multivariate normal with mean zero and

covariance matrix 2πf(ωj).

7.1.3. Prior Positivity of Neighborhoods

We start the proof with the prior positivity of neighborhoods. The idea is to show prior positivity

of a ‖ · ‖F,∞-neighborhood and then show that the former is contained in a Kullback-Leibler

neighborhood. The upcoming results from Lemma 7.4 and Lemma 7.6 are generalizations of

Section B1 in Choudhuri et al. (2004a) and some steps in the proofs are similar.
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Lemma 7.4. Let the assumptions of Theorem 7.3 be fulfilled. Let ε > 0,

Bε := {f ∈ Dd×d : ‖f − f0‖F,∞ < ε} (7.8)

and denote the non-truncated Bernstein-Hpd-Gamma prior from (5.2) by P .

(a) Then it holds P (Bε) > 0.

(b) Furthermore, for 0 < ε < τ−b1, it holds Bε ⊂ Cτ for the prior truncation set Cτ from (7.5).

In particular, it holds P (Cτ ) > 0.

(c) It holds Pτ (Bε) > 0.

Proof. Let F0(A) :=
∫
A f0(ω)dω for A ⊂ [0, π] denote the spectral measure matrix corresponding

to the spectral density matrix f0 (where the integral is understood component-wise). Choose k0

such that ‖f0−B(k,F0)‖F,∞ < ε
2 holds for all k ≥ k0, with the Bernstein polynomial expansion

operator B from (7.4). This can be done according to the uniform approximation property of

Bernstein polynomials, see Theorem B.12 in the Appendix. Then for k ≥ k0 and f = B(k,Φ),

we use ‖b(·, j, k − j + 1)‖∞ ≤ k (see (B.21) in the Appendix) and get

‖f − f0‖F,∞ ≤ ‖f −B(k,F0)‖F,∞ +
ε

2
≤ k

k∑
j=1

‖Φ(Ij,k)− F0(Ij,k)‖+
ε

2
,

where the interval partition {Ij,k : j = 1, . . . , k} is given by (5.1). Since k and Φ are independent

under P , this yields

P (Bε) ≥
∑
k≥k0

p(k)P

(
max
j=1,...,k

‖Φ(Ij,k)− F0(Ij,k)‖ <
ε

2k2

)
.

Since the prior on k has full support on N (i.e. p(k) > 0 for all k ∈ N) by Assumption k1, it

suffices to show that there exists k̃ ≥ k0 such that

P

(
max
j=1,...,k̃

∥∥∥Φ(Ij,k̃)− F0(Ij,k̃)
∥∥∥ < ε

2k̃2

)
> 0 (7.9)

holds. For Φ ∼ CRMd×d(ν), the probability on the left hand side of (7.9) simplifies to

k̃∏
j=1

P

(∥∥∥Φ(Ij,k̃)− F0(Ij,k̃)
∥∥∥ < ε

2k̃2

)

by the independence property of Φ (see Remark 3.1). Since
∫
Ij,k̃

dx = π/k̃ > 0, an application

of Theorem 3.4 yields supp(Φ(Ij,k̃)) = S̄+
d for all j = 1, . . . , k̃. This leads to

P

(∥∥∥Φ(Ij,k̃)− F0(Ij,k̃)
∥∥∥ < ε

2k̃2

)
> 0, j = 1, . . . , k̃,

and in particular P (Bε) > 0, concluding (a). By assumption it holds τ > b1. Recalling ‖f0(ω)‖2 =

λmax(f0(ω)) from (B.9) in the Appendix, it follows from Lemma B.4 (a) in the Appendix that

λmax(f(ω)) ≤ ‖f(ω)− f0(ω)‖2 + λmax(f0(ω)) ≤ ‖f(ω)− f0(ω)‖+ λmax(f0(ω)),
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yielding Bε ⊂ Cτ for 0 < ε < τ − b1. In particular, we have P (Cτ ) ≥ P (Bε) > 0 by part (a),

concluding (b). Recalling Pτ (Bε) = P (Bε∩Cτ )
P (Cτ ) , it also readily follows Pτ (Bε) = P (Bε)

P (Cτ ) > 0,

i.e. (c).

The following result links the Kullback-Leibler terms of mean zero complex multivariate normals

to the distance of their covariance matrices.

Lemma 7.5. Let Σ0,Σ1 ∈ S+
d and denote by pi(z) the Lebesgue density of the CNd(0,Σi)

distribution for i = 0, 1. Consider the Kullback-Leibler divergence and variance term

K(Σ0,Σ1) :=

∫
Cd

log
p0(z)

p1(z)
p0(z)dz,

V (Σ0,Σ1) :=

∫
Cd

(
log

p0(z)

p1(z)
−K(Σ0,Σ)

)2

p0(z)dz.

(a) Then it holds

V (Σ0,Σ1) ≤ λmax(Σ0)2‖Σ−1
0 −Σ−1

1 ‖
2

and

V (Σ0,Σ1) ≤ 1

λmin(Σ1)2
‖Σ0 −Σ1‖2,

with λmin(Σ) and λmax(Σ) being the smallest and largest eigenvalue of Σ ∈ Sd.

(b) Let Q := Σ
−1/2
1 Σ0Σ

−1/2
1 . Then λmin(Q) ≥ 1

2 implies K(Σ0,Σ1) ≤ ‖Q− Id‖2. In partic-

ular, in this case it holds

K(Σ0,Σ1) ≤ λmax(Σ0)2‖Σ−1
0 −Σ−1

1 ‖
2

and

K(Σ0,Σ1) ≤ 1

λmin(Σ1)2
‖Σ0 −Σ1‖2.

Proof. First we observe that

log
p0(z)

p1(z)
= log

|Σ1|
|Σ0|

+ z∗
(
Σ−1

1 −Σ−1
0

)
z, z ∈ Cd.

For Z ∼ CNd(0,Σ0) and A ∈ Sd, an application of Lemma B.24 in the Appendix yields

E(Z∗AZ) = tr(AΣ0) and Var(Z∗AZ) = tr(AΣ0AΣ0). This yields, using Lemma B.5 and

Lemma B.2 in the Appendix,

K(Σ0,Σ1) = log
|Σ1|
|Σ0|

+ tr
(
Σ−1

1 Σ0 − Id
)

= tr(Q− Id)− log |Q| (7.10)

and

V (Σ0,Σ1) = tr
((

(Σ−1
1 −Σ−1

0 )Σ0

)2)
. (7.11)
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From (7.11), we derive the bound, using Lemma B.4 (c) in the Appendix

V (Σ0,Σ1) ≤ ‖(Σ−1
1 −Σ−1

0 )Σ0‖2 ≤ ‖Σ0‖22
∥∥Σ−1

1 −Σ−1
0

∥∥2
= λmax(Σ0)2

∥∥Σ−1
1 −Σ−1

0

∥∥2

and similarly, using that λmax(A−1) = λmin(A)−1 for A ∈ S+
d ,

V (Σ0,Σ1) = tr
((

Σ−1
1 (Σ0 −Σ1)

)2) ≤ λmin(Σ1)−2 ‖Σ0 −Σ1‖2 ,

concluding part (a). Denote by λ1, . . . , λd the eigenvalues of Q and assume that λmin(Q) ≥ 1
2 ,

i.e. λi ≥ 1
2 for i = 1, . . . , d. From (7.10) we obtain

K(Σ0,Σ1) =
d∑
i=1

(λi − 1− log λi) =
d∑
i=1

(
λ̃i − log(1 + λ̃i)

)
with λ̃i = λi − 1. Note that λ̃i ≥ −1

2 by assumption. Using the inequality x − log(1 + x) ≤ x2

for x ≥ −1
2 , we get

K(Σ0,Σ1) ≤
d∑
i=1

λ̃2
i =

d∑
i=1

(λi − 1)2 = ‖Q− Id‖2.

Finally, applying Lemma B.6 to Q ∈ S+
d , we also get

‖Q− Id‖ = ‖Σ0Σ
−1
1 − Id‖ = ‖Σ0(Σ−1

1 −Σ−1
0 )‖ ≤ λmax(Σ0)‖Σ−1

1 −Σ−1
0 ‖

and similarly ‖Q− Id‖ ≤ λmin(Σ1)−1 ‖Σ0 −Σ1‖, concluding (b).

The following Lemma shows prior positivity of Kullback-Leibler neighborhoods under the trun-

cated Bernstein-Hpd-Gamma.

Lemma 7.6. Let the assumptions of Theorem 7.3 be fulfilled. Let Z̃1, . . . , Z̃N be the multivariate

Fourier coefficients as in (7.7) with N = dn/2e − 1. Let

pj,N (z̃j |f) =
1

(2π2)d|f(ωj)|
exp

(
− 1

2π
z̃∗jf(ωj)

−1z̃j

)
, z̃j ∈ Cd, j = 1, . . . , N (7.12)

denote the probability density of Z̃j under Whittle’s Likelihood P̃nW (·|f) and

KN (f0,f) =
1

N

N∑
j=1

Kj,N (f0,f), Kj,N (f0,f) = Ef0 log
pj,N (Z̃j |f0)

pj,N (Z̃j |f)
, (7.13)

Vj,N (f0,f) = Varf0 log
pj,N (Z̃j |f0)

pj,N (Z̃j |f)
, (7.14)

for j = 1, . . . , N , where Ef0 and Varf0 denotes the mean and variance under P̃nW (·|f0). Then

for ε small enough and Bε from (7.8) it holds

lim inf
N→∞

Pτ

({
f ∈ Bε : KN (f0,f) <

4ε2

b20

})
> 0, (7.15)

1

N2

N∑
j=1

Vj,N (f0,f)→ 0, for all f ∈ Bε as N →∞. (7.16)
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Proof. By Lemma 7.4, we have Pτ (Bε) > 0. Let f ∈ Bε for ε > 0 small enough. We start by

showing the following two auxiliary results:

min
0≤ω≤π

λmin(f(ω)) ≥ b0
2
, (7.17)

min
0≤ω≤π

λmin

(
f(ω)−1/2f0(ω)f(ω)−1/2

)
≥ 1

2
, (7.18)

with b0 from Assumption f1. From the Min-Max principle of Courant-Fisher (see Lemma B.3

in the Appendix), it follows λmin(A + B) ≥ λmin(A) + λmin(B) for A,B ∈ Sd, and by

Lemma B.4 (b) in the Appendix this yields λmin(A+B) ≥ λmin(A)−max{λmax(B),−λmin(B)} ≥
λmin(A)− ‖B‖ and hence

λmin(f(ω)) = λmin(f0(ω) + f(ω)− f0(ω)) ≥ λmin(f0(ω))− ‖f − f0‖ ≥ b0 − ε

for 0 ≤ ω ≤ π, yielding (7.17) for ε ≤ b0/2. Define Q̃(ω) := f(ω)−1/2f0(ω)f(ω)−1/2 (the

notation Q̃ is chosen to avoid confusion with the similarly defined function Q(ω) as in the up-

coming Corollary 7.10). Note that Q̃(ω) is Hermitian positive definite. Since (7.18) is equivalent

to λmin(Q̃(ω))−1 ≥ −1/2, it suffices to the show the stronger statement (λmin(Q̃(ω))−1)2 ≤ 1/4.

In fact, to show (7.18), we will show the even stronger statement

max
0≤ω≤π

d∑
i=1

(
λi(Q̃(ω))− 1

)2
≤ 1

4
, (7.19)

where λ1(A), . . . , λd(A) ∈ R denote the eigenvalues of A ∈ Sd, counted with their respective

multiplicity. To show (7.19), first recall from (B.8) in the Appendix that the representation

d∑
i=1

(
λi(Q̃(ω))− 1

)2
=

d∑
i=1

(
λi

(
Q̃(ω)− Id

))2
= ‖Q̃(ω)− Id‖2

=
∥∥∥f(ω)−1/2 (f0(ω)− f(ω))f(ω)−1/2

∥∥∥2

holds. We use (7.17) and ‖AB‖ ≤ λmax(A)‖B‖ = λmin(A)−1‖B‖ for A ∈ S̄+
d and B ∈ Sd from

Lemma B.4 (d) in the Appendix to get∥∥∥f(ω)−1/2 (f0(ω)− f(ω))f(ω)−1/2
∥∥∥2
≤ λmin(f(ω))−2‖f0(ω)− f(ω)‖2 ≤ 4

b20
ε2 ≤ 1

4

for 0 ≤ ω ≤ π for ε small enough (ε < b0
4 ). This shows (7.19) and in particular (7.18). An

application of part (b) of Lemma 7.5 yields, since (7.18) holds,

Kj,N (f0,f) ≤ 1

λmin(f(ωj))2
‖f0(ωj)− f(ωj)‖2 ≤

4ε2

b20
,

for j = 1, . . . , N , where (7.17) was used in the last step. This yields KN (f0,f) < 4ε2

b20
for

every f ∈ Bε, i.e.

Pτ

({
f ∈ Bε : KN (f0,f) <

4ε2

b20

})
≥ Pτ (Bε) > 0
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by Lemma 7.4, concluding the proof of (7.15), since Pτ (Bε) does not depend on N . Similarly,

an application of part (a) of Lemma 7.5 yields Vj,N (f0,f) ≤ 4ε2

b20
for j = 1, . . . , N , which implies

1

N2

N∑
j=1

Vj,N (f0,f) ≤ 1

N

(
4ε

b0

)2

→ 0

as N →∞, concluding (7.16).

7.1.4. Exponential Testability

Now we show the existence of a sieve (Θn) of the parameter space Θ = Dd×d and a sequence of

tests (ϕn) fulfilling the assumptions (d)-(f) of Theorem 7.1. For k > 0, let

S+k
d :=

{
W : W = (W1, . . . ,Wk) with Wj ∈ S+

d for j = 1, . . . , k
}
.

For W = (W1, . . . ,Wk) ∈ S+k
d , let B(k,W ) :=

∑k
j=1Wjb(·|j, k − j + 1). Recalling the trunca-

tion set Cτ from (7.5), we now define the sieve Θn as

Θn :=

kn⋃
k=1

{
B(k,W ) : W ∈ S+k

d

}
∩ Cτ , kn :=

⌊
δn

log n

⌋
, (7.20)

with δ > 0 to be specified later. We need the following auxiliary result.

Lemma 7.7. Let W = (W1, . . . ,Wk) ∈ S+k
d . Then it holds

‖Wj‖ ≤
√
d‖B(k,W )‖F,∞, j = 1, . . . , k,

where ‖ · ‖F,∞ denotes the maximum Frobenius norm from (7.3).

Proof. Let W0 :=
∑k

j=1Wj ∈ S+
d and let j ∈ {1, . . . , k}. It is clear that Wj ≤W0 (in the Hpsd

sense, i.e. W0 −Wj ∈ S̄+
d ). Clearly, this implies λmax(W0) ≥ λmax(Wj) (because otherwise it

would hold z∗(W0−Wj)z < 0 for 0 6= z being an eigenvector of Wj corresponding to λmax(Wj),

which would contradict Wj ≤W0). Using this along with Lemma B.4 in the Appendix yields

‖Wj‖ ≤
√
dλmax(Wj) ≤

√
dλmax(W0) ≤

√
d‖W0‖. (7.21)

Furthermore, using
∫ π

0 b(ω/π|j, k − j + 1)dω = π
∫ 1

0 b(x|j, k − j + 1)dx = π it holds

W0 =
1

π

k∑
j=1

Wj

∫ π

0
b(ω|j, k − j + 1)dω =

1

π

∫ π

0
B(k,W )[ω]dω

and in particular

‖W0‖ ≤
1

π

∫ π

0
‖B(k,W )[ω]‖dω ≤ ‖B(k,W )‖F,∞.

Combining this with (7.21) concludes the proof.
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The following Lemma quantifies the metric entropy of Θn with respect to the maximum Frobe-

nius norm ‖ · ‖F,∞ in terms of the ε-covering number. Recall from (B.28) in the Appendix that

the ε-covering number is defined as the smallest number of ε-balls needed to cover Θn. This

result will be needed for the construction of tests, where we will use the technique of covering the

alternative set with small balls – and the bound for the entropy is needed to derive consistency

of the test under the null hypothesis.

Lemma 7.8. The ε-covering number N(ε,Θn, ‖ · ‖F,∞) of Θn from (7.20) in the maximum

Frobenius norm ‖ · ‖F,∞ is bounded by

logN(ε,Θn, ‖ · ‖F,∞) ≤ kn

(
4d2 log kn + 2d2 log

6d3/2τ

ε
+ 1

)

with kn as in (7.20).

Proof. The proof is an adaption of the proof of Lemma B4 in Choudhuri et al. (2004a). Let Θ̃k,τ :=

{B(k,W ) : W ∈ S+k
d } ∩ Cτ . Since Θn = ∪knk=1Θ̃k,τ it holds

N(ε,Θn, ‖ · ‖F,∞) ≤
kn∑
k=1

N(ε, Θ̃k,τ , ‖ · ‖F,∞). (7.22)

Let k ≤ kn and let W 1,W 2 ∈ S+k
d , such that fi := B(k,W i) ∈ Θ̃k,τ for i = 1, 2. We consider

the norm ‖W i‖1 :=
∑k

j=1 ‖Wij‖1 on S+k
d , with the 1-norm ‖Wij‖1 as defined in (B.4). By

Lemma B.4 in the Appendix, it holds ‖A‖1 ≤ d‖A‖ and together with Lemma 7.7, this yields

‖W i‖1 =

k∑
j=1

‖Wij‖1 ≤ d
k∑
j=1

‖Wij‖ ≤ d3/2k‖fi‖F,∞ ≤ d3/2kτ. (7.23)

Recalling ‖b(·, j, k−j+1)‖∞ ≤ k from (B.21) in the Appendix and ‖A‖ ≤ ‖A‖1 from Lemma B.4

in the Appendix, we obtain

‖f1 − f2‖F,∞ ≤ k
k∑
j=1

‖W1j −W2j‖ ≤ k
k∑
j=1

‖W1j −W2j‖1 = k‖W 1 −W 2‖1. (7.24)

Combining (7.23) and (7.24) with Lemma B.32 (b), we get

N(ε, Θ̃k,τ , ‖ · ‖F,∞) ≤ N
( ε
k
,
{
W ∈ S+k

d : ‖W ‖1 ≤ d3/2kτ
}
, ‖ · ‖1

)
≤ N

( ε
k
,
{
z ∈ Ckd

2
: ‖z‖1 ≤ d3/2kτ

}
, ‖ · ‖1

)
,

where we conceived S+k
d as a subset of Ckd2 in the last step. Noting for z = x + iy ∈ C

(with x, y ∈ R) the inequality |z| ≤ |x|+ |y|, it follows that the right hand side is bounded from

above by

N
( ε

2k
, {x ∈ R2kd2 : ‖x‖1 ≤ d3/2kτ}, ‖ · ‖1

)
≤

(
6d3/2k2τ

ε

)2kd2

≤

(
6d3/2k2

nτ

ε

)2knd2

,
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where the first inequality was obtained with an application of Lemma B.31 in the Appendix.

From (7.22), this yields

logN(ε,Θn, ‖ · ‖F,∞) ≤ log kn + 4d2kn log kn + 2d2kn log
6d3/2τ

ε

≤ kn

(
4d2 log kn + 2d2 log

6d3/2τ

ε
+ 1

)
.

To construct uniformly exponentially powerful tests, we need the following results. They trans-

late the integral condition
∫ π

0 ‖f(ω) − f0(ω)‖dω > ε (occurring in the test alternatives) to

suitable pointwise conditions that hold at sufficiently many Fourier frequencies – making testing

possible at these frequencies. The results are similar in spirit to Lemma B2 in Choudhuri et al.

(2004a), where the univariate case under the assumption
∫ π

0 f(ω) − f0(ω)dω = 0 is treated.

Some arguments of our proof of the upcoming Lemma 7.9 are similar to the proof of Lemma B2

in Choudhuri et al. (2004a) and are included for the sake of completeness and readability.

Lemma 7.9. Let −∞ < a < b <∞ and f0 : [a, b]→ Sd be continuous. Let ε > 0. Let Ωn(a, b) :=

{a, a+ (b− a)/n, . . . , b− (b− a)/n, b}. Then there exists k0 ∈ N such that for every k ≥ k0 and

every f : [a, b] → Sd with components frs, r, s = 1, . . . , d being polynomials of degree k, it holds

true that
∫ b
a ‖f(x)− f0(x)‖dx > ε implies

#

{
x ∈ Ωn(a, b) : ‖f(x)− f0(x)‖ > ε

4(b− a)

}
≥ nε

8ρ(b− a)
− 4k,

with #E denoting the cardinality of a set E and ρ := max{‖f‖F,∞, ‖f0‖F,∞}.

Proof. Put A :=
{
x ∈ [a, b] : ‖f(x)− f0(x)‖ > ε

4(b−a)

}
. By the uniform approximation property

of Bernstein polynomials (see Lemma B.12 in the Appendix) there exists k0 ∈ N such that for

all k ≥ k0 the Bernstein polynomial approximation of degree k

f̃0(x) :=

k∑
j=1

(∫ a+ j
k

(b−a)

a+ j−1
k

(b−a)
f0(t)dt

)
b

(
x− a
b− a

∣∣∣ j, k − j + 1

)
, a ≤ x ≤ b,

fulfills

max
a≤x≤b

‖f0(x)− f̃0(x)‖ < ε

4(b− a)
. (7.25)

Put Ã :=
{
x ∈ [a, b] : ‖f(x)− f̃0(x)‖ > ε

2(b−a)

}
. Because of

‖f(x)− f̃0(x)| ≤ ‖f(x)− f0(x)‖+
ε

4(b− a)
,

it holds Ã ⊂ A and we continue by bounding the cardinality of Ã ∩ Ωn(a, b) from below. The

integrated Frobenius norm of f − f̃0 decomposes as∫ b

a
‖f(x)− f̃0(x)‖dx =

∫
Ã
‖f(x)− f̃0(x)‖dx+

∫
Ãc
‖f(x)− f̃0(x)‖dx ≤ 2ρL(Ã) +

ε

2
,



Asymptotic Properties 109

where L denotes the Lebesgue measure on R. Combining this with the assumption
∫ b
a ‖f(x)−

f0(x)‖dx > ε and (7.25) yields

ε <

∫ b

a
‖f(x)− f0(x)‖dx ≤

∫ b

a
‖f(x)− f̃0(x)‖dx+

ε

4
≤ 2ρL(Ã) +

3ε

4

and thus L(Ã) ≥ ε
8ρ . Since Ã =

{
x ∈ [a, b] : t(x) > ε2

4(b−a)2

}
with t(x) := tr

(
(f(x)− f̃0(x))2

)
being a polynomial of degree 2k, it follows that Ã is the union of at most 2k open intervals.

Denote these intervals by Ã1, . . . , Ãm with m ≤ 2k and let hj be the length of interval Ãj
for j = 1, . . . ,m. Since any subinterval of [a, b] having length h contains at least nh

b−a − 2

many x’s from Ωn(a, b), it follows that the cardinality of Ã∩Ωn(a, b) is bounded from below by

m∑
j=1

(
nhj
b− a

− 2

)
=
nL(Ã)

b− a
− 2m ≥ nε

8ρ(b− a)
− 4k.

For the construction of tests, a slightly different characterization is needed. This follows readily

from Lemma 7.9 under the additional assumption that all eigenvalues are strictly positive, and

is formulated in the following corollary.

Corollary 7.10. Let the assumptions of Lemma 7.9 be fulfilled. Assume additionally that f0(x) ∈
S+
d for a ≤ x ≤ b. Let k0 and f be as in Lemma 7.9. Let Q(x) := f0(x)−1/2f(x)f0(x)−1/2.

Then
∫ b
a ‖f(x)− f0(x)‖dx > ε implies

#
{
x ∈ Ωn(a, b) : λmax(Q(x)) > 1 + ε̃ or λmin (Q(x)) < 1− ε̃

}
≥ nε

8ρ(b− a)
− 4k

with ε̃ = ε
4(b−a)ρ

√
d

and ρ := max{‖f‖F,∞, ‖f0‖F,∞}.

Proof. Denote the sorted eigenvalues ofQ(x) by λ1(x) ≤ . . . ≤ λd(x) for a ≤ x ≤ b. First observe

that for every δ > 0,
∑d

i=1(λi(x)− 1)2 > δ2 implies either λd(x) > 1 + δ√
d

or λ1(x) < 1− δ√
d
, as

otherwise |λi(x)− 1| ≤ δ√
d

for i = 1, . . . , d. Therefore, we will bound the cardinality of the set

A :=

{
x ∈ Ωn(a, b) :

d∑
i=1

(λi(x)− 1)2 > dε̃2

}
.

To do so, we compute for a ≤ x ≤ b
d∑
i=1

(λi(x)− 1)2 = tr ((Q(x)− Id)(Q(x)− Id)) = ‖Q(x)− Id‖2

= ‖f−1/2
0 (f(x)− f0(x))f

−1/2
0 ‖2.

From Lemma B.4 in the Appendix, we get

‖f−1/2
0 (f(x)− f0(x))f

−1/2
0 ‖2 ≥ λmax(f0(x))−2‖f(x)− f0(x)‖2 ≥ 1

ρ2
‖f(x)− f0(x)‖2.

This shows Ã ⊂ A with Ã :=
{
x ∈ Ωn(a, b) : ‖f(x)− f0(x)‖ >

√
dρε̃
}

. An application of

Lemma 7.9 shows that the cardinality of Ã is at least nε
8ρ(b−a) − 4k, concluding the proof.
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Now we can construct a uniformly exponentially powerful test as follows: First, we will derive a

test that is exponentially powerful for a fixed alternative. This will be done in Lemma 7.14. The

proof makes use of the previous pointwise distinguishably results of alternatives at sufficiently

many Fourier frequencies. The exponential rate is due to a large deviation result for complex

multivariate normal random variables, which is presented in the upcoming Theorem 7.11. The

proof of Theorem 7.11 is involved and relies on some auxiliary results, which are presented in

Lemma 7.12 and Lemma 7.13. Afterwards, we will construct a uniformly exponentially powerful

test by covering the whole alternative by small balls in Lemma 7.15, where the covering number

is controlled by the entropy result from Lemma 7.8.

Theorem 7.11. Let Y 1, . . . , Y m be independent with Y j ∼ CNd(0,Σj) and Σj ∈ S+
d for j =

1, . . . ,m. With Σ0j ,Σ1j ∈ S+
d , consider testing

H0 : Σj = Σ0j for j = 1, . . . ,m against H1 : Σj = Σ1j for j = 1, . . . ,m

with either

λmax

(
Σ
−1/2
0j Σ1jΣ

−1/2
0j

)
> 1 + ε, j = 1, . . . ,m, (7.26)

or

λmin

(
Σ
−1/2
0j Σ1jΣ

−1/2
0j

)
< 1− ε, j = 1, . . . ,m, (7.27)

where A1/2 denotes the Hermitian positive definite matrix square root of A ∈ S+
d and ε > 0 does

not depend on m. Then there exists a test ϕm fulfilling

EH0ϕm ≤ exp(−c0m) (7.28)

EH1(1− ϕm) ≤ exp(−c1m) (7.29)

for all m, with positive constants c0, c1 depending only on ε.

To prove the result of Theorem 7.11, we need the following two technical Lemmas.

Lemma 7.12. Let Σ0,Σ1 ∈ S+
d . For 0 6= a ∈ Cd, define ψ(a) := a∗Σ1a

a∗Σ0a
. Denote by amax

and amin an eigenvector corresponding to the largest (and smallest) eigenvalue λmax (and λmin)

of the matrix Σ
−1/2
0 Σ1Σ

−1/2
0 . Then

sup
a6=0

ψ(a) = ψ(Σ
−1/2
0 amax) = λmax, inf

a6=0
ψ(a) = ψ(Σ

−1/2
0 amin) = λmin.

Proof. It holds

ψ(Σ
−1/2
0 amax) =

a∗maxΣ
−1/2
0 Σ1Σ

−1/2
0 amax

‖amax‖2
= λmax = sup

a6=0
ψ(a),

where the characterization of λmax from the Minmax-theorem of Courant-Fisher (see Lemma B.3

in the Appendix) was used in the last step. The representation for λmin follows analogously.
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Lemma 7.13. Let Σ, Σ̃ ∈ S+
d and Z ∼ CNd(0,Σ). Let 0 6= a ∈ Cd. Consider the random

quadratic form Ψa,Σ̃(Z) := a∗ZZ∗a

a∗Σ̃a
. Then

Ψa,Σ̃(Z) ∼ a∗Σa

2a∗Σ̃a
χ2

2,

where χ2
k denotes the Chi-squared distribution with k degrees of freedom.

Proof. We first observe that, by the cyclic property of the trace (see Lemma B.2 in the Appendix)

a∗ZZ∗a = tr(a∗ZZ∗a) = tr(Z∗AZ) = Z∗AZ,

with the Hermitian matrix A := aa∗. By Lemma B.24, we obtain Z∗AZ
d
=
∑d

i=1 λi|Xi|2,

where λ1, . . . , λd are the eigenvalues of ΣA and X1, . . . , Xd
iid∼ CN(0, 1). Since ΣA is of rank 1,

d − 1 eigenvalues are equal to 0. Without loss of generality, assume λ1 6= 0. This implies the

representation Z∗AZ ∼ λ1|X1|2. On the other hand, we have

a∗Σa = tr(a∗Σa) = tr(AΣ) =

d∑
i=1

λi = λ1,

which shows Ψa,Σ(Z) ∼ |X1|2. From Lemma 4.3, we know that X1 ∼ CN(0, 1) is equivalent

to <(X1),=(X1)
iid∼ N(0, 1/2), yielding |X1|2 ∼ 1

2χ
2
2. Since Ψa,Σ̃(Z) = a∗Σa

a∗Σ̃a
Ψa,Σ(Z), the result

follows.

Proof (of Theorem 7.11). The proof is an adaption of Lemma B3 in Choudhuri et al. (2004a) and

Lemma A2 in Kirch et al. (2017). We first consider the case (7.26). Let Qj := Σ
−1/2
0j Σ1jΣ

−1/2
0j

for j = 1, . . . ,m. Denote by 0 6= bj ∈ Cd an eigenvector of Qj corresponding the largest

eigenvalue λmax(Qj) and let aj := Σ
−1/2
0j bj . Consider the test statistic

Tm :=
m∑
j=1

Ψaj ,Σ0j (Y j), Ψaj ,Σ0j (Y j) :=
a∗jY jY

∗
jaj

a∗jΣ0jaj

and define the corresponding test ϕm as follows:

ϕm = 1 if Tm > m
(

1 +
ε

2

)
, ϕm = 0 else.

Then, with 1 < x := 1 + ε
2 < 3

2 (for ε < 1), we obtain for arbitrary z > 0 with Markov’s

inequality

EH0ϕm = PH0(Tm > mx) = PH0(eTmz > emxz) ≤ e−mxzEH0e
Tmz.

Under H0, it holds Ψaj ,Σ0j (Y j)
iid∼ χ2

2
2 , j = 1, . . . ,m, by Lemma 7.13, i.e. Tm

H0∼ χ2
2m
2 . Thus the

moment generating function ψm of Tm exists and is given as ψm(z) = EH0e
Tmz = (1 − z)−m

for z < 1, yielding

EH0ϕm ≤ exp (−m(log(1− z) + xz)) , for all 0 < z < 1.
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The function g(z) = log(1 − z) + xz attains its maximum at z∗ := 1 − 1
x ∈ (0, 1) and g(z∗) =

log 1
x−1+x = x− (1+log x) > 0 since x > 1. This yields EH0ϕm ≤ exp(−c0m) with c0 = g(z∗),

concluding (7.28).

Under H1, it holds

Tm ∼
m∑
j=1

a∗jΣ1jaj

a∗jΣ0jaj
Xj =

m∑
j=1

λmax(Qj)Xj

with X1, . . . , Xm
iid∼ χ2

2
2 by Lemma 7.13 and Lemma 7.12. Using assumption (7.26), this yields,

with Sm ∼
χ2
2m
2 ,

EH1(1− ϕm) = PH1

(
Tm ≤ m

(
1 +

ε

2

))
≤ P

(
(1 + ε)Sm ≤ m

(
1 +

ε

2

))
= P (Sm ≤ mx̃)

with x̃ := 1+ε/2
1+ε ∈

(
1
2 , 1
)
. With the same arguments as under H0, we get for 0 < z̃ < 1,

P (Sm ≤ mx̃) = P (e−Smz̃ ≥ e−mx̃z̃) ≤ exp(−m(log(1 + z̃)− x̃z̃)).

The function g̃(z̃) = log(1 + z̃) − x̃z̃ attains its maximum at z̃∗ := 1
x̃ − 1 ∈ (0, 1) and g̃(z̃∗) =

log 1
x̃ − 1 + x̃ > 0 since 0 < x̃ < 1. This yields (7.29) with c1 = g̃(z̃∗), concluding the proof for

the case (7.26).

The proof for the case (7.27) is similar, using the test statistic

T̃m :=
m∑
j=1

Ψãj ,Σ0j (Y j), Ψãj ,Σ0j (Yj) :=
ã∗jY jY

∗
j ãj

ã∗jΣ0j ãj
,

where ãj := Σ
−1/2
0j b̃j and 0 6= b̃j ∈ Cd being an eigenvector of Qj corresponding to the smallest

eigenvalue λmin(Qj). The test ϕm is then defined as

ϕm = 1 if Tm < m
(

1− ε

2

)
, ϕm = 0 else

and the proof of (7.28) and (7.29) is similar as for the case (7.26).

Together with Corollary 7.10, we can now use Theorem 7.11 to construct an exponentially

consistent and powerful test against a fixed alternative.

Lemma 7.14. Let f0 : [0, π]→ S+
d be continuous and fulfill Assumption f1. Let τ > b1 with b1

from Assumption f1. Let f ∈ Θn ∩ U cε , with Uε =
{
f :
∫ π

0 ‖f(ω)− f0(ω)‖dω < ε
}

and Θn

from (7.20). Let Z̃1, . . . , Z̃N be distributed as the multivariate Fourier coefficients under the

Whittle likelihood P̃nW (·|f̃), i.e. Z̃j ∼ CNd(0, 2πf̃(ωj)) for j = 1, . . . , N =
⌈
n
2

⌉
− 1. Then there

exists a test ϕn,f ,ε, depending only on f and f0 to test

H0 : f̃ = f0 against H1 : f̃ = f

such that

EH0ϕn,f ,ε ≤ 2 exp(−c0n), EH1(1− ϕn,f ,ε) ≤ exp(−c1n)

for all n, with positive constants c0, c1 depending only on ε, τ and d.
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Proof. For j = 1, . . . , N , let Qj := f0(ωj)
−1/2f(ωj)f0(ωj)

−1/2 and aj := f0(ωj)
−1/2ãj with 0 6=

ãj ∈ Cd being an eigenvector of Qj corresponding to the largest eigenvalue λmax(Qj). Similarly,

let bj := f0(ωj)
−1/2b̃j with 0 6= b̃j ∈ Cd being an eigenvector of Qj corresponding to the smallest

eigenvalue λmin(Qj). Let ε̃ := ε
4πτ
√
d
. Consider the two tests ϕ+

n,f ,ε and ϕ−n,f ,ε defined as

ϕ+
n,f ,ε = 1 if

∑
j∈I+n,f

a∗j Z̃jZ̃
∗
jaj

a∗jf0(ωj)aj
> m+

(
1 +

ε̃

2

)
, ϕ+

n,f ,ε = 0 else,

ϕ−n,f ,ε = 1 if
∑
j∈I−n,f

b∗j Z̃jZ̃
∗
jbj

b∗jf0(ωj)bj
< m−

(
1− ε̃

2

)
, ϕ−n,f ,ε = 0 else,

with

I+
n,f := {j : λmax(Qj) > 1 + ε̃} , m+ := #I+

n,f ,

I−n,f := {j : λmin(Qj) < 1− ε̃} , m− := #I−n,f .

By Corollary 7.10, it holds m+ + m− ≥ Nε
8τ(b−a) − 4kn ≥ n

(
ε

16τ(b−a) − δ
)
> 0 by the choice

of kn in (7.20), if δ is chosen small enough. Thus, with δ̃ := 1
2

(
ε

16τ(b−a) − δ
)
> 0, it holds

either m+ ≥ δ̃n or m− ≥ δ̃n. We define the test as

ϕn,f ,ε := max
{
1{m+≥δ̃n}ϕ

+
n,f ,ε,1{m−≥δ̃n}ϕ

−
n,f ,ε

}
.

Applying Theorem 7.11 to {Z̃j : j ∈ I+
n,f} and {Z̃j : j ∈ I−n,f} yields

EH0ϕ
†
n,f ,ε ≤ 2 exp(−c†0m

†), EH1(1− ϕ†n,f ,ε) ≤ exp(−c†1m
†),

for † ∈ {+,−} and constants c†i only depending on ε̃, i.e. depending on ε and τ and d. This

yields the desired properties of ϕn,f ,ε with c0 = δ̃min{c+
0 , c
−
0 } and c1 = δ̃max{c+

1 , c
−
1 }.

Now we can construct a uniformly exponentially powerful test, by combining the tests against

fixed alternatives from Lemma 7.14 with the bound for the covering number from Lemma 7.8.

Lemma 7.15. Let f0 : [0, π]→ S+
d be continuous and fulfill Assumption f1. Let τ > b1 with b1

from Assumption f1. Let Uε = {f :
∫ π

0 ‖f(ω)− f0(ω)‖ < ε} for ε > 0 small enough and let Θn

and kn be as in (7.20) with δ > 0 small enough. Let Z̃1, . . . , Z̃N be as in Lemma 7.14. Then

there exists a test ϕn to test

H0 : f̃ = f0 againt H1 : f̃ ∈ U cε ∩Θn

such that

Ef0ϕn → 0 and sup
f∈Ucε∩Θn

Ef (1− ϕn) ≤ exp(−c1n)

as n → ∞ for some constant c1 > 0, where Ef̃ denotes the expected value under the joint

distribution of Z̃1, . . . , Z̃N .
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Proof. The proceeding is as described e.g. in Section 6.4 in Ghosal and van der Vaart (2017).

We start by covering U cε ∩ Θn with balls of radius ε
2 in ‖ · ‖F,∞, with centers f1, . . . ,fNε ,

where Nε = N
(
ε
2 ,Θn, ‖ · ‖F,∞

)
is the ε/2-covering number. Then we use the tests ϕn,j :=

ϕn,fj ,ε/2, j = 1, . . . , Nε from Lemma 7.14 against the respective simple alternative fj to define

a test

ϕn := max{ϕn,1, . . . , ϕn,Nε}.

For f ∈ U cε ∩ Θn, let j(f) be such that ‖fj(f) − f‖F,∞ < ε
2 . Then by Lemma 7.14, we readily

obtain that ϕn is uniformly exponentially powerful:

sup
f∈Ucε∩Θn

Ef (1− ϕn) ≤ sup
f∈Ucε∩Θn

Ef

(
1− ϕn,j(f)

)
≤ sup

f∈Ucε∩Θn

exp(−c1n) = exp(−c1n),

because c1 does not depend on f ∈ U cε ∩ Θn. The size of ϕn can be bounded with an upper

bound for the covering number Nε, which has been given in Lemma 7.8. Together with the size

obtained for the ϕn,j ’s in Lemma 7.14, this yields

Ef0ϕn ≤
Nε∑
j=1

Ef0ϕn,fj ≤ 2Nε exp(−c0n) ≤ 2 exp
(
kn

(
4d2 log kn + C̃

)
− c0n

)
where C̃ is a constant that depends only on τ, ε and d. Now recalling from (7.20) that kn =

bδn/ log nc with δ > 0 sufficiently small, we obtain for sufficiently large values of n

kn(4d2 log kn + C̃)− c0n ≤ 8d2kn log kn − c0n ≤ 8d2δn

(
log δ

log n
+ 1− log log n

log n
− c0

8d2δ

)
which is bounded from above by −c̃n for a positive constant c̃ if δ < min{1, c0

8d2
}, because in

this case

log δ

log n
+ 1− log log n

log n
− c0

8d2δ
< 1− c0

8d2δ
< 0.

This shows Ef0ϕn . exp(−c̃n)→ 0 as n→∞.

7.1.5. Proof of Consistency Theorem

The following result bounds the prior mass of the sieve complement.

Lemma 7.16. Under the assumptions of Theorem 7.3, there exist positive constants C, c̃ such

that the complement Θc
n = Dd×d \Θn of Θn from (7.20) fulfills

Pτ (Θc
n) ≤ C exp(−c̃n)

for all n.

Proof. Since

Pτ (Θc
n) =

P (Θc
n ∩ Cτ )

P (Cτ )
≤ 1

P (Cτ )
P (Θc

n) =
1

P (Cτ )

∑
k>kn

p(k)
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it suffices to show the existence of a positive constant c̃ such that
∑

k>kn
p(k) . exp(−c̃n), with

the prior p(k) fulfilling Assumption k1. We start with∑
k>kn

p(k) ≤ C
∑
k>kn

exp(−ck log k) ≤ C
∫ ∞
kn

exp(−cx log x)dx,

where in the last step it was used that the function (0,∞) 3 x 7→ exp(−cx log x) is monotonically

decreasing. We continue with∫ ∞
kn

exp(−cx log x)dx ≤
∫ ∞
kn

exp(−cx log kn)dx =
1

c log kn
exp(−ckn log kn).

Clearly it holds 1
c log kn

≤ 1 for n large enough. Furthermore, using kn =
⌊

δn
logn

⌋
≥ δ̃n

logn for

any 0 < δ̃ < δ (for n large enough), it follows

exp(−ckn log kn) ≤ exp

(
− cδ̃n

log n

(
log δ̃ + log n− log log n

))

= exp

(
−cδ̃n+

cδ̃n

log n

(
log logn− log δ̃

))

≤ exp

(
−cδ̃n+

2cδ̃n

log n
log logn

)
≤ exp(−c̃n)

for n large enough for a positive constant c̃.

Now we can collect all the previous results and present the proof of the consistency theorem.

Proof (of Theorem 7.3). We show that all assumptions of Theorem 7.1 are satisfied. By Lemma 7.4

and Lemma 7.6, it follows that B := {f ∈ Dd×d : ‖f − f0‖F,∞ < ε} fulfills the assumptions (a)-

(c) of Theorem 7.1. Let the sieve Θn be as in (7.20), with δ > 0 small enough (as specified in the

proof of Lemma 7.15). Then it follows from Lemma 7.15 that the testability assumptions (d)

and (e) of Theorem 7.1 are satisfied. Finally, assumption (f) of Theorem 7.1 is fulfilled by

Lemma 7.16, concluding the proof.

7.1.6. Discussion

We have shown posterior consistency of the spectral density of a multivariate time series. Our

proof technique relies on the assumption that the prior on f is supported on a set {f ∈
Dd×d : ‖f‖2 < τ} for some τ > 0 sufficiently large to cover the ground truth f0. This as-

sumption is needed for our proof of exponentially powerful model testability, which would not

work for arbitrarily high-peaked alternatives. Prior restrictions of this type are common practice

in the theoretical analysis of Bayesian nonparametrics (see e.g. Section 5 in Shen and Wasser-

man (2001), Section 4 in Wu and Ghosal (2010), Section 2.2 in van der Vaart and van Zanten

(2009) or Section 6 in Ghosal and Van Der Vaart (2007), among others). However, one may

ask if it is possible to relax the prior restriction, e.g. to allow for the truncation bound to grow

with the sample size, i.e. τn →∞ as n→∞. Such assumptions (involving τn prior restrictions
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on both f and its derivative) have been considered in Ghosal and Roy (2006) and Choi and

Schervish (2007) in the context of nonparametric regression and it will be of interest for future

research if they can also be employed in the scope of this work.

It may be noted that, although the formulation (and the proof) of Theorem 7.3 involves the

Frobenius matrix norm, the result can equivalently be stated for any other matrix norm, say ‖·‖∗.
This is due to the equivalence of matrix norms. The statement of the Theorem then translates

to neighborhoods of the form Uε,∗ := {f ∈ Dd×d :
∫ π

0 ‖f(ω) − f0(ω)‖∗dω < ε}. In fact, the

Frobenius norm has been chosen mainly for mathematical convenience to conduct the proofs –

due to its close connection to eigenvalues and the trace.

One further interesting aspect for future research is to widen the class of stationary time series

for which consistency holds beyond Gaussianity. Our proof technique relies heavily on the

mutual contiguity of the exact likelihood and Whittle’s likelihood approximation for Gaussian

time series. For different classes of distributions, this result is not true in general (see the

discussion after Corollary 4.5) and hence a different proof technique will be needed to establish

consistency in the non-Gaussian case. Another interesting extension would be to consider the

high-dimensional asymptotic setting, in which the dimension d of the observations is allowed to

depend on n and to grow to infinity as n tends to infinity.

7.2. Posterior Contraction Rates

A posterior consistency result states that the posterior distribution converges asymptotically

to the degenerate measure at the true parameter θ0. In other words, for every arbitrarily

small (but fixed) neighborhood U of θ0, all posterior probability mass will eventually aggregate

within U as the sample size grows to infinity. It is natural to ask how fast this convergence takes

place. The idea of how to measure this constitutes the usage of shrinking (instead of fixed)

neighborhoods Un of θ0. The question is then, how fast the radii of these neighborhoods can

shrink to 0, such that they still capture all posterior mass asymptotically. This idea is made

mathematically rigorous by the notion of contraction rates. A brief introduction into posterior

contraction rates is given in Section 7.2.1. Our main theorem, establishing contraction rates for

the spectral density matrix in the Hellinger topology is presented in Section 7.2.2. The proof of

the theorem will be developed in Sections 7.2.3-7.2.5 and the final Section 7.2.6 concludes with

a discussion of our findings.

7.2.1. Introduction

Let (εn) be a sequence of positive numbers, typically fulfilling εn → 0 as n→∞ (although the

latter property is not needed technically for the definition). Let (Z1, . . . , Zn) ∼ Pnθ , with θ ∈ Θ

and Θ being some parameter space endowed with a metric d. Then (εn) is a contraction rate

at θ0 with respect to d, if for every sequence (Mn) of positive numbers with Mn →∞ it holds

P
(
Bc
Mnεn(θ0)|Z1, . . . , Zn

)
→ 0, in Pnθ0 probability as n→∞, (7.30)
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with Bε(θ0) = {θ ∈ Θ: d(θ0, θ) < ε}. Here, for every sequence (Mn) in particular refers to

sequences that diverge arbitrarily slowly to infinity as n grows. In fact, there are examples in

which the sequence Mn can be replaced by a positive constant M (see e.g. Section 2 in Ghosal

et al. (2000)), however for many proof techniques this is not possible. Still, for Mn tending to

infinity arbitrarily slowly, the radius Mnεn in (7.30) can be viewed as close enough to εn, such

that εn allows to be interpreted as order of convergence speed. For a more detailed discussion,

see e.g. Chapter 8 in Ghosal and van der Vaart (2017).

Theorem 7.1 is not suited to derive good contraction rates, since it is usually necessary to employ

stronger assumptions on the model and the prior. Of course, it can be expected that model

testability and prior positivity will also be needed and it is additionally required to quantify

how much mass the prior distribution puts in certain regions and how fast the convergence of

the model tests takes place – this will be made precise in the upcoming Theorem 7.17, which

can be conceived as an extension of Theorem 7.1.

Rates of convergence for iid models have been derived in Ghosal et al. (2000), and – using a

different entropy measure – also for certain regression models in Shen and Wasserman (2001). A

general theory for non-iid observations has been developed in Ghosal and Van Der Vaart (2007),

where the authors also established contraction rates for the spectral density of a univariate

Gaussian time series for a truncated version of the Bernstein-Dirichlet prior from Choudhuri

et al. (2004a) and Whittle’s likelihood in the Hellinger topology. Furthermore, the authors also

derived conditions for contraction rates in the L2-topology, using the full Gaussian likelihood

and prior distributions that are confined to uniform Hölder classes.

Theorem 7.17. Let Z1,n, . . . , Zn,n be independently distributed having density pj,n(·, θ) with

respect to a σ-finite measure on a Borel space Xj for j = 1, . . . , n, where θ ∈ Θ and Θ is some

measurable space. Let θ0 ∈ Θ. Denote the joint distribution of (Z1,n, . . . , Zn,n) under θ ∈ Θ

by Pnθ . Let the Kullback-Leibler (KL) divergences Kj,n and variance terms Vj,n be defined as

in (7.1) and let

Kn(θ0, θ) :=
1

n

n∑
j=1

Kj,n(θ0, θ), Vn(θ0, θ) :=
1

n

n∑
j=1

Vj,n(θ0, θ).

Consider the KL-type neighborhoods

Bn,2(θ0, δ) :=
{
θ ∈ Θ: Kn(θ0, θ) < δ2, Vn(θ0, θ) < δ2

}
.

Let P be a prior on Θ and consider a sieve sequence (Θn) with Θn ⊂ Θ. Let (εn) be a sequence

of positive numbers with εn → 0 and nε2
n → ∞ as n → ∞. Let dn, en be two semimetrics (as

defined in Definition B.30 in the Appendix) on Θ. Let the following assumptions be fulfilled:

• Prior mass of neighborhoods: There exists c > 0 such that

(a) P (Bn,2(θ0, εn)) ≥ exp(−cnε2
n).

• Existence of tests: There exist ξ,K > 0 such that for all δ > 0 and θ1 ∈ Θ with dn(θ1, θ0) >

δ, there exists a test ϕn with

(b) Enθ0ϕn ≤ exp(−Knδ2),
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(c) supθ∈Θ: en(θ,θ1)<ξδ E
n
θ (1− ϕn) ≤ exp(−Knδ2),

where Enθ refers to the expected value under Pnθ .

• Sieve entropy and complement mass: With the ξ > 0 from (c) it holds

(d) supε>εn N(ξε, {θ ∈ Θn : dn(θ, θ0) < 2ε}, en) ≤ exp(nε2
n),

(e) P (Θcn)
P (Bn,2(θ0,εn)) = o(exp(−2nε2

n)) as n→∞.

Then εn is a posterior contraction rate with respect to dn in the sense of (7.30).

Proof. The result is Theorem 1 and Lemma 1 in Ghosal and Van Der Vaart (2007). Indeed, we

observe that Assumption (a) implies

P (θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn)

P (Bn,2(θ0, εn))
≤ exp(Knε2

nj
2/2)

for all sufficiently large j ∈ N, since the numerator on the left hand side is smaller or equal to 1.

Hence Assumption (2.5) in their Theorem 1 is fulfilled. Furthermore, Assumptions (b) and (c)

correspond to Assumption (2.2) in Ghosal and Van Der Vaart (2007), and Assumption (d) to

Assumption (2.4). Finally, Assumption (e) corresponds to the assumptions of their Lemma 1.

When comparing the assumptions of the posterior contraction Theorem 7.17 with the posterior

consistency Theorem 7.1, the following differences are prominent. The assumptions of prior

positivity (assumptions (a)-(c) of Theorem 7.1) are strengthened to an actual prior mass quan-

tification of neighborhoods (assumption (a) of Theorem 7.17). The assumption of uniformly

exponentially powerful testing (assumptions (d) and (e) of Theorem 7.1) have been modified

towards an assumption for local testing against fixed alternatives, at an exponential nδ2 con-

vergence rate (see assumptions (b) and (c) of Theorem 7.17) and a stronger upper bound for

the sieve entropy in terms of covering numbers (assumption (d)). The prior mass of the sieve

complement (assumption (f) of Theorem 7.1) has been refined to assumption (e). The result

from Theorem 7.17 can be stated for more general experiments (e.g. dependent observations)

and under suitable conditions it is also possible to strengthen the posterior contraction rate

from convergence in Pnθ probability to Pnθ almost sure convergence, see Section 8.3 in Ghosal

and van der Vaart (2017) for further details.

In view of these differences, there are two main challenges when extending a consistency result

towards posterior contraction rates. Namely, the choice of a suitable topology (semimetrics dn
and en fulfilling the testability assumptions (b) and (c) from Theorem 7.17) and to establish the

prior mass condition (a) of Theorem 7.17. Regarding the first issue, the L1 topology (integrated

Frobenius norm) is not suited, since it is too restrictive. In fact, an inspection of the proof of

Lemma 7.15 reveals that an exponential nδ2 rate cannot be established by our proof technique.

A default choice in the setting of independently, non-identically distributed random variables is

the root average squared Hellinger distance

dn,H(θ, θ0) :=

√√√√ 1

n

n∑
j=1

d2
H (pj,n(·, θ), pj,n(·, θ0)) (7.31)
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(see (3.1) in Ghosal and Van Der Vaart (2007)), with the Hellinger distance dH(p, q) between

two probability densities p, q on a Borel space X being defined as

d2
H(p, q) =

1

2

∫
X

(√
p(z)−

√
q(z)

)2
dz = 1−

∫
X

√
p(z)q(z)dz.

It is known that tests satisfying assumptions (b) and (c) from Theorem 7.17 exist for dn = en =

dn,H (with K = 1
2 and ξ = 1

18), as the following result summarizes.

Lemma 7.18. Let Θ be a measurable space and let Z1,n, . . . , Zn,n be independently distributed

with densities pj(·, θ) with respect to a σ-finite measure on a Borel space for j = 1, . . . , n,

where θ ∈ Θ. Let ε > 0 and θ0, θ1 ∈ Θ with dn,H(θ, θ0) > ε. Then there exists a test ϕn such

that

Enθ0ϕn ≤ exp(−1

2
nε2), sup

θ∈Θ: dn,H(θ,θ1)≤ ε
18

Enθ (1− ϕn) ≤ exp(−1

2
nε2),

where Enθ denotes the expected value under the joint distribution of (Z1,n, . . . , Zn,n|θ).

Proof. See Lemma 2 in Ghosal and Van Der Vaart (2007).

It is known that a contraction rate of εn = n−a/(2+2a)(log n)(1+2a)/(2+2a) for an a-smooth spectral

density (where we use the notion of smoothness in the sense of Assumption f2) for a ∈ (1, 2)

of a univariate Gaussian time series with respect to dn,H under Whittle’s likelihood can be

achieved with a Bernstein-Dirichlet prior (see Ghosal and Van Der Vaart (2007) and Exam-

ple 9.19 in Ghosal and van der Vaart (2017), where the authors present a result for a ∈ (0, 2],

however their argument is only valid for a ∈ (1, 2), since their proof technique relies on the

mutual contiguity result from Choudhuri et al. (2004b), which is only valid for a > 1). This

rate can be improved when using splines, which are known to have better approximation prop-

erties than Bernstein polynomials (c.f. Remark B.14 in the Appendix). It it thus of interest

to investigate whether these rates can also be attained in the multivariate setting under the

Bernstein-Hpd-Gamma prior. In the upcoming Section 7.2.2 (see Theorem 7.20), we will settle

the answer to affirmative.

7.2.2. Contraction Rates in the Root Average Squared Hellinger Distance

As for posterior consistency (see Section 7.1.2), we will also consider a truncated prior. The

truncation is conducted two-sided, keeping the eigenvalues of the spectral density matrices uni-

formly away from both zero and infinity a priori. This is in line with Assumption f1 on the

ground truth spectral density (c.f. the discussion after Assumption f2 for a brief discussion of

the statistical interpretation of these conditions). To elaborate the prior, let 0 < τ1 ≤ τ2 < ∞
and consider

Cτ0,τ1 := {f ∈ Dd×d : λmin(f(ω)) ≥ τ0, λmax(f(ω)) ≤ τ1 for all 0 ≤ ω ≤ π} . (7.32)

Denote by P the Bernstein-Hpd-Gamma prior as in (5.2) and assume that P (Cτ0,τ1) > 0 holds

(this is e.g. the case if the prior fulfills Assumption GP4 and Assumption k2 below, see the



120 7.2. Posterior Contraction Rates

upcoming Corollary 7.21). Define the two-sided truncation of P as

Pτ0,τ1(F ) :=
P (F ∩ Cτ0,τ1)

P (Cτ0,τ1)
, F ⊂ Dd×d measurable. (7.33)

We will employ the following assumption on the prior probability mass function of the polynomial

degree k:

Assumption k2. There exist positive constants A1, A2 and positive constant κ1, κ2 such that

A1 exp(−κ1k log k) ≤ p(k) ≤ A2 exp(−κ2k), k ∈ N.

We shall give a brief discussion of this assumption.

Remark 7.19. (a) Any prior probability mass function of the form p(k) = C exp(−ck log k)

for k ∈ N and positive constants c, C clearly fulfills Assumption k2. Similarly, so does any

prior with probability mass function of the form p(k) = C exp(−ck).

(b) If k ∼ Poi(C) a priori, i.e. with probability mass function p(k) = Ck

k! exp(−C) for k ∈ N
and a positive constant C, then Assumption k2 is also fulfilled. This follows with the same

argument as in Remark 7.2 (b).

Based on the general result from Theorem 7.17 and the existence of tests for dn,H from Lemma 7.18,

we can now formulate the contraction rate results for the spectral density matrix with respect

to dn,H , under suitable assumptions on Bernstein Hpd Gamma prior.

Theorem 7.20. Let {Zt} be a Gaussian stationary time series in Rd with mean zero and

spectral density matrix f0 fulfilling Assumptions f1-f2 with 1 < a ≤ 2. Let τ0 ∈ (0, b0) and τ1 ∈
(b1,∞) (with b0 and b1 from Assumption f1). Denote by Pnf0

the joint distribution of the

Fourier coefficients Z̃1, . . . , Z̃N from (7.7). Let the prior on the spectral density matrix f be

given by the truncated Bernstein-Hpd-Gamma prior Pτ0,τ1 from (7.33) with prior on Φ fulfilling

Assumption GP4 and prior on k fulfilling Assumption k2. Then

εn = n−a/(2+2a)(log n)(1+2a)/(2+2a)

is a contraction rate with respect to the root average squared Hellinger distance dn,H under

Whittle’s likelihood P̃nW (from (5.3)), i.e. for every positive sequence (Mn) with Mn →∞ for n→
∞ it holds

PnW ;τ0,τ1 ({f : dn,H(f ,f0) ≥Mnεn} |Z1, . . . , Zn)→ 0, in Pnf0
probability as n→∞,

where PnW ;τ0,τ1
denotes the pseudo posterior distribution obtained by updating the Pτ0,τ1 prior

with Whittle’s likelihood P̃nW .

We first observe that in the setting of Theorem 7.20, the average squared Hellinger distance d2
n,H

is given by

d2
n,H(f ,f0) =

1

N

N∑
j=1

d2
H

(
pj,N (·|f0), pj,N (·|f)

)
(7.34)

with p1,N , . . . , pN,N from (7.12). We will prove Theorem 7.20 by verifying the assumptions of

Theorem 7.17. Since the assumptions of the contiguity result from Corollary 4.5 are fulfilled,

we can without loss of generality assume that Z̃1, . . . , Z̃n are independent and distributed as

under P̃nW (·|f0).
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7.2.3. Prior Mass of Neighborhoods

The two-sided truncation in (7.33) is well-defined under the above assumptions, as the following

result summarizes.

Corollary 7.21. Let the assumptions of Theorem 7.20 be fulfilled. Let ε ∈ (0,min{b0− τ0, τ1−
b1}) and

Bε := {f ∈ Dd×d : ‖f − f0‖F,∞ < ε}.

Then it holds Bε ⊂ Cτ0,τ1 for the two-sided truncation set Cτ0,τ1 from (7.32). In particular, it

holds P (Cτ0,τ1) > 0.

Proof. First observe that from Lemma B.3, we obtain λmin(A + B) ≥ λmin(A) + λmin(B)

for A,B ∈ Sd. Let f ∈ Bε. These considerations lead to

λmin(f(ω)) ≥ λmin(f(ω)− f0(ω)) + λmin(f0(ω)) ≥ λmin(f(ω)− f0(ω)) + b0

for 0 ≤ ω ≤ π. Since ε2 > ‖f(ω)−f0(ω)‖2, it follows from (B.8) in the Appendix that |λj(f(ω)−
f0(ω))| < ε for j = 1, . . . , d, and in particular λmin(f(ω)− f0(ω)) > −ε, yielding λmin(f(ω)) ≥
b0 − ε ≥ τ0 for 0 < ε < b0 − τ0. With the same argument as in the proof of Lemma 7.4, we also

obtain λmax(f(ω)) ≤ τ1 for 0 < ε < τ1 − b1. This shows f ∈ Cτ0,τ1 and the rest of the proof is

analogous to the proof of Lemma 7.4.

Similar to (7.20), we define a sieve structure Θn on Θ = Dd×d by

Θn :=

kn⋃
k=1

{
B(k,W ) : W ∈ S+k

d

}
∩ Cτ0,τ1 , kn := ρε−2/a

n , (7.35)

with a from Assumption f2 and εn as in Theorem 7.20 and ρ is a positive constant to be specified

later. We start with quantifying the prior mass of neighborhoods of Φ.

Lemma 7.22. Let f0 fulfill Assumptions f1-f2. Let kn be as in (7.35). Let Φ ∼ CRMd×d(ν)

with Poisson mean measure ν from (3.1) fulfilling Assumption GP4. Let

F0(A) :=

∫
A
f0(ω)dω, A ⊂ [0, π] measurable, (7.36)

denote the spectral Hpd measure corresponding to f0. Denote by (Ij,kn : j = 1, . . . , kn) the

partition of [0, π] from (5.1). Then there exist positive constants c0, C0 not depending on n such

that

P

 kn∑
j=1

‖Φ(Ij,kn)− F0(Ij,kn)‖ < εn
kn

 ≥ C0 exp(c0kn log εn)

holds for all n with εn as in Theorem 7.20.
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Proof. First we note that

P

 kn∑
j=1

‖Φ(Ij,kn)− F0(Ij,kn)‖ < εn
kn

 ≥ P ( max
j=1,...,kn

‖Φ(Ij,kn)− F0(Ij,kn)‖ < εn
k2
n

)
.

Since it holds 1
kn
≥ εn for n large enough, the probability on the right hand side is bounded

from below by

P

(
max

j=1,...,kn
‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε3

n

)
=

kn∏
j=1

P
(
‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε3

n

)
,

where the independence property of Φ from Remark 3.1 was used in the last step. Since X =

[0, π] fulfills Assumptions X1 and X2, the assumptions of Theorem 3.7 and Corollary 3.8 are ful-

filled. With Cα,j,kn :=
∫
Ij,kn

α(x,S+
d )dx, an application of Corollary 3.8 yields, for j = 1, . . . , kn,

P
(
‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε3

n

)
≥ Cκα,j,kn exp

(
(d2 + Cα,j,kn + 1)3 log εn

)
with

κα,j,kn = exp(−cCα,j,kn)

(
1− exp

{
−1

2
W

(
2

Cα,j,kn

)})
g0L(Ij,kn)

= exp(−cCα,j,kn)

(
1− exp

{
−1

2
W

(
2

Cα,j,kn

)})
g0π

kn
,

with g0 from Assumption GP4 and positive constants c, C only depending on β0, β1 as in As-

sumption GP4, d and b1 as in Assumptions f1. Using
∑kn

j=1Cα,j,kn =
∫ π

0 α(x,S+
d )dx = Cα, this

leads to

kn∏
j=1

P
(
‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε3

n

)

≥ Ckn
 kn∏
j=1

κα,j,kn

 exp
(
(Cα + kn(d2 + 1))3 log εn

)
,

(7.37)

with

kn∏
j=1

κα,j,kn = exp(−cCα)

(
g0π

kn

)kn kn∏
j=1

(
1− exp

{
−1

2
W

(
2

Cα,j,kn

)})
.

Since, by Assumption GP4 and Lemma B.10 in the Appendix it holds

Cα,j,kn =

∫
Ij,kn

∫
S+d
α(x, dU)dx ≤ g1

∫
Ij,kn

dx

∫
S+d
dU =

g1π

kn

Γ̃d(d)

Γ(d2)
≤ C1

for all j = 1, . . . , kn and hence, recalling that the Lambert W function (as defined in (B.27) in

the Appendix) is strictly monotonically increasing on (0,∞),

1− exp

(
−1

2
W

(
2

Cα,j,kn

))
≥ 1− exp

(
−1

2
W

(
2

C1

))
=: c̃ > 0,
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we get

kn∏
j=1

κα,j,kn ≥ exp(−cCα)

(
c̃πg0

kn

)kn
≥ exp(−cCα) (πc̃g0)kn εknn .

With (7.37), this leads to

kn∏
j=1

P
(
‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε3

n

)
≥ C̃kn exp(−cCα) exp

(
(Cα + kn(3d2 + 4)) log εn

)
for a positive constant C̃. The right hand side is equal to

exp(−cCα) exp

(
kn log εn

(
3d2 + 4 +

Cα
kn

+
log C̃

log εn

))
≥ C0 exp(c0kn log εn)

for all n, where C0 := exp(−cCα) > 0 and c0 is a positive constant, since 3d2 + 4 + {Cα/kn +

log C̃/ log εn} is bounded from above.

The following result quantifies the prior mass of neighborhoods of f0 under the truncated

Bernstein-Hpd-Gamma prior.

Lemma 7.23. Let the assumptions of Theorem 7.20 be fulfilled. For j = 1, . . . , N let the

Kullback Leibler terms Kj,N (f0,f),KN (f0,f) and Vj,N (f0,f) be as in (7.13) and (7.14) and

define VN (f0,f) := 1
N

∑N
j=1 Vj,N (f0,f). For ε > 0, let

BN,2(f0, ε) :=
{
f ∈ Θn : KN (f0,f) < ε2, VN (f0,f) < ε2

}
, (7.38)

with the sieve Θn from (7.35). Then there exists a positive constant c such that

Pτ0,τ1(BN,2(f0, εn)) ≥ exp(−cnε2
n)

holds for all n with εn = n−a/(2+2a)(log n)(1+2a)/(2+2a) as in Theorem 7.20.

Proof. The proof is similar to Section 7.3 in Ghosal and Van Der Vaart (2007) and Section 9.3

in Ghosal and van der Vaart (2017), where a related result has been shown for the univariate case.

Let ε̃n := b0εn
2 and Bε̃n := {f ∈ Θn : ‖f − f0‖F,∞ < ε̃n}. Let f ∈ Bε̃n . From Lemma 7.5 (a),

we get

Vj,N (f0,f) ≤ λmin(f(ωj))
−2‖f0j − f(ωj)‖2 ≤ ε2

n, j = 1, . . . , N,

where in the last step it was used that λmin(f(ωj)) ≥ b0
2 by (7.17) for n large enough. By (7.18),

the assumptions of part (b) of Lemma 7.5 are fulfilled, yielding Kj,N (f0,f) ≤ ε2
n. We conclude

that Bε̃n ⊂ BN,2(f0, εn) and proceed by bounding the prior mass of Bε̃n from below.

For ε̃n small enough, it holds Bε̃n ⊂ Cτ0,τ1 (with the two-sided truncation set Cτ0,τ1 from (7.32))

by Corollary 7.21 and hence Pτ0,τ1(Bε̃n) =
P (Bε̃n )
P (Cτ0,τ1 ) ≥ P (Bε̃n), where P denotes the Bernstein-

Hpd-Gamma prior without truncation.

Let f =
∑kn

j=1 Φ(Ij,kn)b(·/π|j, kn − j + 1). Recall that the components of f0 are (by Assump-

tion f2 and Lemma B.15 in the Appendix) continuously differentiable with derivative being
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Hölder of order a − 1 > 0. Denote by F0 the spectral (Hpd) measure corresponding to f0 as

in (7.36). An application of Lemma B.13 in the Appendix yields ‖f0−B(kn,F0)‖F,∞ ≤ Ck−a/2n

and hence, using ‖b(·|j, k − j + 1)‖∞ ≤ k (see (B.21) in the Appendix),

‖f − f0‖F,∞ ≤ ‖f −B(kn,F0)‖F,∞ + Ck−a/2n ≤ kn
kn∑
j=1

‖Φ(Ij,kn)− F0(Ij,kn)‖+ Ck−a/2n

(recall the definition of the equidistant partition of [0, π] from (5.1)). Choosing ρ in (7.35) large

enough yields Ck
−a/2
n = Cρ−a/2εn ≤ ε̃n

2 and thus

P (Bε̃n) ≥ P

(k,Φ) : k = kn, kn

kn∑
j=1

‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε̃n
2




= P (k = kn)P

Φ :

kn∑
j=1

‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε̃n
2kn


 ,

(7.39)

where in the last step it was used that k and Φ are independent under the prior. By the choice

of kn it also holds

kn log kn =
−2

a
kn log εn + kn log ρ ≤ −3

a
kn log εn (7.40)

for n large enough. Hence, by prior assumption k2 it holds

P (k = kn) = p(kn) ≥ A1 exp(−κ1kn log kn) ≥ A1 exp(c̃1kn log εn)

for a positive constant c̃1. Furthermore, it follows with Lemma 7.22 that

P

 kn∑
j=1

‖Φ(Ij,kn)− F0(Ij,kn)‖ < ε̃n
2kn

 ≥ C exp(c̃2kn log εn)

for positive constants C, c̃2. Combining these results into (7.39), we arrive at

P (Bε̃n) ≥ C exp(c̃3kn log εn) = C exp(ρc̃3ε
−2/a
n log εn)

for a positive constant c̃3. Furthermore, εn fulfills (for n large enough)

ε−2/a
n log εn = n1/(1+a)(log n)−(1/a+2)/(1+a)

(
−a

2 + 2a
log n+

1 + 2a

2 + 2a
log logn

)
≥ −a

2 + 2a
n1/(1+a)(log n)1−(1/a+2)/(1+a)

= −c4nn
−a/(1+a)(log n)(a−1/a−1)/(1+a)

= −c4nn
−a/(1+a)(log n)(1+2a)/(1+a)|o(1)|,

i.e.

ε−2/a
n log εn ≥ −c4nε

2
n|o(1)| (7.41)

as nε2
n →∞ for a positive constant c4. Hence it follows

P (Bε̃n) ≥ C exp(−ρc̃3c4nε
2
n) = exp(logC − ρc̃3c4nε

2
n) ≥ exp(−2ρc̃3c4nε

2
n), (7.42)

yielding the claim with c = 2ρc̃3c4 > 0.
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7.2.4. Sieve Entropy and Complement Mass

The next result quantifies the sieve entropy in terms of covering numbers with respect to dn,H .

The idea is to bound dn,H from above by means of the maximum Frobenius norm (see the

upcoming Lemma 7.24), and then apply the existing result for the latter from Lemma 7.8.

Lemma 7.24. Let Σ1,Σ2 ∈ S+
d with λmin(Σi) ≥ τ0 > 0 and λmax(Σi) ≤ τ1 < ∞ for i = 1, 2.

Denote by pi the density of the CNd(0,Σi) distribution for i = 1, 2. Then the squared Hellinger

distance between p1 and p2 can be bounded from above by

d2
H(p1, p2) . ‖Σ1 −Σ2‖

for proportionality constants depending only on τ0, τ1 and d.

Proof. The normalizing constant of the probability density of the CNd(0,Σ
−1) distribution is∫

Cd
exp(−z∗Σz)dz =

πd

|Σ|
, Σ ∈ S+

d .

With this we compute, using the results from Lemma B.5 in the Appendix,

d2
H(p1, p2) = 1−

∫
Cd

√
p1(z)

√
p2(z)dz

= 1− 1

πd|Σ1Σ2|1/2

∫
Cd

exp

(
−z∗

[
Σ−1

1

2
+

Σ−1
2

2

]
z

)
dz

= 1− 2d

|Σ1Σ2|1/2|Σ−1
1 + Σ−1

2 |
= 1− |2Σ

1/2
1 Σ

1/2
2 |

|Σ1 + Σ2|
.

From this, we compute

|2Σ
1/2
1 Σ

1/2
2 |

|Σ1 + Σ2|
=

|2Id|
|Σ−1/2

1 ||Σ−1/2
2 ||Σ1 + Σ2|

=
|2Id|

|Σ−1/2
2 ||Σ1/2

1 + Σ
−1/4
1 Σ2Σ

−1/4
1 |

=
|2Id|

|Σ−1/4
2 Σ

1/2
1 Σ

−1/4
2 + Σ

−1/4
2 Σ

−1/4
1 Σ2Σ

−1/4
1 Σ

−1/4
2 |

=
|2Id|
|Q+ Q̃|

,

with Q = Σ
−1/4
2 Σ

1/2
1 Σ

−1/4
2 ∈ S+

d and Q̃ = Σ
−1/4
2 Σ

−1/4
1 Σ2Σ

−1/4
1 Σ

−1/4
2 ∈ S+

d and Σ1/4 denoting

the Hpd square root of Σ1/2 for Σ ∈ S+
d . Note that the eigenvalues of Q and Q̃ are bounded

away from 0 (this follows from the Min-Max Theorem of Courant Fisher from Lemma B.3 in

the Appendix, since the eigenvalues of Σ0 and Σ1 are bounded and bounded away from 0 by

assumption) and hence |Q + Q̃| ≥
∏d
i=1(λi(Q) + λi(Q̃)) (see Lemma B.5 in the Appendix) is

bounded away from 0. This yields

d2
H(p1, p2) =

|Q+ Q̃| − |2Id|
|Q+ Q̃|

.

∣∣∣∣∣Q+ Q̃

2

∣∣∣∣∣− |Id|,
where the proportionality factor depends only on τ0, τ1 and d. Observe that the eigenvalues

of Q + Q̃ are also bounded, i.e. λmax(Q+Q̃
2 ) ≤ τ for some positive constant τ (depending only

on τ0, τ1 and d). Using |Id| = 1 and |Σ| ≤ λmax(Σ)d for Σ ∈ S+
d yields

0 ≤ d2
H(p1, p2) .

(
λmax

(
Q+ Q̃

2

))d
− 1.
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It follows that τ ≥ λmax(Q+Q̃
2 ) ≥ 1, which implies that the largest eigenvalue Q+Q̃

2 − Id is

nonnegative (note however that Q+Q̃
2 − Id is not positive semidefinite in general, but may have

eigenvalues smaller than zero as well). By Lemma B.26 in the Appendix, there exists a positive

constant τ̃ such that(
λmax

(
Q+ Q̃

2

))d
− 1 ≤ τ̃

(
λmax

(
Q+ Q̃

2

)
− 1

)
. λmax

(
Q+ Q̃

2

)
− 1.

By Lemma B.4 in the Appendix, we find

λmax

(
Q+ Q̃

2

)
− 1 = λmax

(
Q+ Q̃

2
− Id

)
≤

∥∥∥∥∥Q+ Q̃

2
− Id

∥∥∥∥∥
2

≤ 1

2
‖Q− Id‖2 +

1

2
‖Q̃− Id‖2,

and it follows

d2
H(p1, p2) . ‖Q− Id‖+ ‖Q̃− Id‖. (7.43)

For the first summand in (7.43) we get, using Lemma B.6 in the appendix (and recalling ‖AB‖ ≤
‖A‖2‖B‖)

‖Q− Id‖ = ‖Σ−1/2
2 Σ

1/2
1 − Id‖ ≤ ‖Σ

−1/2
2 ‖2‖Σ1/2

1 −Σ
1/2
2 ‖ ≤ τ

−1/2
0 ‖Σ1/2

1 −Σ
1/2
2 ‖.

Consider the mapping Ψ : S+
d → S

+
d defined as the Hermitian positive definite matrix square

root Σ 7→ Ψ(Σ) := Σ1/2. Then for Σ1 6= Σ2 it holds

‖Ψ(Σ1)−Ψ(Σ2)‖
‖Σ1 −Σ2‖

≤ ‖Ψ(Σ1)−Ψ(Σ2)−Ψ′(Σ1)[Σ2 −Σ1]‖
‖Σ1 −Σ2‖

+
‖Ψ′(Σ1)[Σ2 −Σ1]‖
‖Σ1 −Σ2‖

, (7.44)

where Ψ′ is as in Lemma B.11. The first summand on the right hand side of (7.44) is the

difference quotient of Ψ(Z) at Z = Σ1 and converges to 0 as ‖Σ1 − Σ2‖ → 0, since Ψ

is Fréchet differentiable by Lemma B.11. In particular, it is bounded for all Σ1,Σ2 with

bounded eigenvalues. The second summand on the right hand side of (7.44) is smaller or equal

to ‖Ψ′(Σ1)‖, which is bounded by a constant (only depending on τ0 and d) by Lemma B.11.

This yields ‖Σ1/2
1 −Σ

1/2
2 ‖ . ‖Σ1 −Σ2‖ and thus

‖Q− Id‖ . ‖Σ1 −Σ2‖. (7.45)

For the second summand in (7.43), we first observe

‖Q̃− Id‖ ≤ ‖Q̃−Q−1‖+ ‖Q−1 − Id‖.

With the same argument as for (7.45), we readily obtain ‖Q−1−Id‖ . ‖Σ1−Σ2‖. Furthermore

‖Q̃−Q−1‖ = ‖Σ−1/4
2 Σ

−1/4
1 Σ2Σ

−1/4
1 Σ

−1/4
2 −Σ

1/4
2 Σ

−1/2
1 Σ

1/4
2 ‖

= ‖Σ−1/4
2 (Σ

−1/4
1 Σ2Σ

−1/4
1 −Σ

1/2
2 Σ

−1/2
1 Σ

1/2
2 )Σ

−1/4
2 ‖

≤ τ−1/2
0 ‖Σ−1/4

1 Σ2Σ
−1/4
1 −Σ

1/2
2 Σ

−1/2
1 Σ

1/2
2 ‖

≤ τ−1/2
0 (‖Σ−1/4

1 Σ2Σ
−1/4
1 −Σ

1/2
2 ‖+ ‖Σ1/2

2 Σ
−1/2
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and

‖Σ1/2
2 Σ

−1/2
1 Σ

1/2
2 −Σ

1/2
2 ‖ ≤ τ

1/2
1 ‖Σ−1/2

1 Σ
1/2
2 − Id‖ ≤

(
τ1

τ0

)1/2

‖Σ1/2
2 −Σ

1/2
1 ‖ . ‖Σ1 −Σ2‖

as well as

‖Σ−1/4
1 Σ2Σ

−1/4
1 −Σ

1/2
2 ‖ ≤ ‖Σ

−1/4
1 Σ2Σ

−1/4
1 −Σ

1/2
1 ‖+ ‖Σ1/2

1 −Σ
1/2
2 ‖

≤ τ−1/2
0 ‖Σ2 −Σ1‖+ ‖Σ1/2

1 −Σ
1/2
2 ‖

. ‖Σ1 −Σ2‖

yield ‖Q̃− Id‖ . ‖Σ1 −Σ2‖. Combining this with (7.45) and (7.43) yields the claim.

Lemma 7.25. Let the assumptions of Theorem 7.20 be fulfilled. Then for sieve Θn from (7.35),

the ε-covering number in the root average squared Hellinger topology fulfills

log sup
ε>εn

N(ξε, {f ∈ Θn : dn,H(f ,f0) < 2ε}, dn,H) ≤ nε2
n

with εn as in Theorem 7.20.

Proof. The proof follows the arguments of Section 9.5.2 in Ghosal and van der Vaart (2017).

Recall the representation of dn,H(f ,f0) from (7.34). From Lemma 7.24 we conclude for every f ∈
Θn

d2
n,H(f ,f0) ≤ max

j=1,...,N
d2
H (pj,N (·|f0), pj,N (·|f)) . ‖f − f0‖F,∞.

From this, an application of Lemma B.32 in the Appendix yields

log sup
ε>εn

N(ξε, {f ∈ Θn : dn,H(f ,f0) < 2ε}, dn,H) ≤ logN(ξεn,Θn, dn,H)

≤ logN(cξ2ε2
n,Θn, ‖ · ‖F,∞)

≤ c1kn log kn − c2kn log εn + c3

for positive constants c1, c2, c3, where the result from Lemma 7.8 was used in the last step.

Using (7.40) and (7.41), this is bounded from above(
−3

a
− c2

)
kn log εn + c3 = −ρ

(
3

a
+ c2

)
ε−2/a
n log εn + c3 ≤ nε2

n|o(1)|+ c3

as nε2
n →∞. Since it also holds c3 = nε2

nc3/(nε
2
n) = |o(1)|nε2

n, this leads to

logN(cξ2ε2
n,Θn, ‖ · ‖F,∞) ≤ nε2

n|o(1)| ≤ nε2
n (7.46)

for n large enough, concluding the proof.



128 7.2. Posterior Contraction Rates

7.2.5. Proof of Contraction Rate Theorem

The last piece in the puzzle is to bound the prior mass of the sieve complement Θc
n = Dd×d \Θn,

which will be done in the following Lemma.

Lemma 7.26. Let the assumptions of Theorem 7.20 be fulfilled. Then it holds

Pτ0,τ1(Θc
n)

Pτ0,τ1(Bn,2(f0, εn))
= o

(
exp(−2nε2

n)
)

with Θn as in (7.35) and Bn,2(f0, εn) from (7.38).

Proof. The proof follows the arguments of Section 9.5.2 in Ghosal and van der Vaart (2017).

First note that – by the same argument as in the proof of Lemma 7.16 – there exist positive

constants C, c̃ such that

Pτ0,τ1(Θc
n) ≤ C

log kn
exp(−c̃kn log kn) ≤ exp(−c̃kn log kn)

holds for n large enough. With kn as in (7.35) and εn as in the assumptions, we get c̃kn log kn ≥
ρnε2

n with (7.40) and (7.41). This yields

Pτ0,τ1(Θc
n) ≤ exp(−ρnε2

n). (7.47)

Using the result from Lemma 7.23, we arrive at

Pτ0,τ1(Θc
n)

Pτ0,τ1(BN,2(f0, εn))
≤ exp

(
−(ρ− c)nε2

n

)
and choosing ρ sufficiently large (such that ρ − c > 2 and in accordance with the choice be-

fore (7.39)) yields the result.

Now we can show the main result of this section by putting all previous results together.

Proof (of Theorem 7.20). We will apply Theorem 7.17. By Lemma 7.18, assumptions (b) and (c)

of Theorem 7.17 are fulfilled, by Lemma 7.23, also assumption (a). Furthermore, assumption (d)

follows from Lemma 7.25. Finally, assumption (e) from Theorem 7.17 is fulfilled for the sieve Θn

from (7.35) by Lemma 7.26.

7.2.6. Discussion

We established posterior contraction rates for the spectral density matrix of a multivariate

Gaussian time series in the Hellinger topology. The rates coincide with the univariate case,

which has been considered in Ghosal and Van Der Vaart (2007). It is known that these rates

can be improved when using a different polynomial basis than the Bernstein polynomials.

It may be argued that the Hellinger topology is not the most “natural” topology for a curve

estimation problem and it will be of interest for future research to establish rates in different

topologies (such as L1). As an example, in Ghosal and Van Der Vaart (2007) the authors derived
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conditions for L2 contraction rates for the spectral density of a univariate time series. These

conditions include prior assumptions that are related to an a priori bound of the derivative.

One main challenge for rates in different topologies is to show the existence of appropriate tests

(condition (b) and (c) of Theorem 7.17). As an example, the tests for the L1 topology from

Lemma 7.15 do not lend themselves to this purpose, since they do not yield the needed nε2
n

rate. On the other hand, the technique from Theorem 7.17 is not the only feasible way of

deriving posterior contraction rates. In fact, it has been argued in Hoffmann et al. (2015) (see

Section 5.3 there for a detailed discussion) that this proof technique has limitations and may

yield suboptimal rates for certain models and topologies.





Part III.

Semiparametric Model



8.
Bayesian Semiparametric Linear Model

In many cases, a stationary centered time series is not the only object of interest, but merely de-

scribes the error sequence in a model with an additional finite-dimensional parameter of interest.

Examples of such a situation range from linear models (with model coefficients being parameters

of interest) and change point analysis (with change points being parameters of interest) to non-

linear regression (with the regression function being parameter of interest). Such models have

seen recent attention in the Bayesian nonparametric literature. For example, in Amewou-Atisso

et al. (2003), a Bayesian linear regression model is analyzed, where the density of the iid noise

is modeled nonparametrically with Polya Tree or Dirichlet Process mixture of normals. In Ed-

wards et al. (2015), the noise time series of a parametric gravitational wave signal has been

modeled nonparametrically with a Bernstein-Dirichlet prior on the spectral density. Despite

the existence of many other Bayesian semiparametric approaches in this spirit (see Section 12.3

in Ghosal and van der Vaart (2017) and the references therein for further examples), only few

Bayesian semiparametric models for time series analysis have been considered in the literature,

in particular from an asymptotic perspective.

8.1. Model and Prior Specification

We consider the following multivariate Bayesian linear model:

Zt = XtB + et, t = 1, . . . , n, (8.1)

where {Zt} is the observed time series in Rd andXt ∈ Rd×r is a (fixed) design matrix and B ∈ Rr

the linear model coefficient. The noise {et} is assumed to be a stationary Gaussian time series

in Rd with Eet = 0. The model equation (8.1) can equivalently be written in a vectorized

formulation

Z = XB + e,

with the stacked observations Z = (ZT1 , . . . , Z
T
n )T ∈ Rnd and e = (eT1 , . . . , e

T
n )T ∈ Rnd as well

as X = (XT
1 , . . . ,X

T
n )T ∈ Rnd×r. In what follows, we assume that the design matrix X is

of full rank such that XTX is invertible. Denoting by Fnd ∈ Rnd×nd the orthogonal Fourier
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transformation matrix from Lemma 4.1, the above formulation can equivalently be written in

the frequency domain as

Z̃ = X̃B + ẽ, (8.2)

with Z̃ = FndZ ∈ Rnd and ẽ = Fnde ∈ Rnd as well as X̃ = FndX ∈ Rnd×r. Recall from

Section 4.2 that Z̃ contains the stacked real- and imaginary parts of the frequency domain

observations. This representation invites us to employ Whittle’s Likelihood to conduct inference

about B and f in the frequency domain. Under Whittle’s Likelihood PnW from (4.16), the

frequency domain noise vector ẽ is multivariate normal with mean zero and block diagonal

covariance matrix Dnd as in (4.16), i.e. ẽ ∼ Nnd(0,Dnd). Thus Whittle’s Likelihood for the

model (8.1) is given by the Lebesgue density

pnW (z̃|B,f) =
1√

(2π)nd|Dnd|
exp

(
−1

2

(
z̃ − X̃B

)T
D−1
nd

(
z̃ − X̃B

))
, (8.3)

for z̃ ∈ Rnd. The Bayesian model is completed by a prior specification for B and f . If one

does not want to rely on any parametric assumption about {et} (aside the Gaussianity), it

seems natural to model it nonparametrically in terms of a nonparametric model for f . In this

case, the above model is a semiparametric model, consisting of a parametric (finite dimensional)

parameter of interest B and a nonparametric (infinite-dimensional) component f . We will

consider independent priors of the form P (dB, df) = P (dB)P (df). For the spectral density

matrix f , we employ the nonparametric Bernstein-Hpd-Gamma prior from Section 5.1. For

the linear model parameter B, many priors are possible and commonly used (see e.g. Section 9

in Christensen et al. (2011) for an overview). One particularly popular noninformative prior

choice which we will also employ for the numerical illustration in the upcoming Section 8.3 is

the Standard Improper Reference (SIR) Prior (where the name is due to Section 9 in Christensen

et al. (2011)), given by p(B) ∝ 1.

Examples

Let us consider some exemplary models that are accommodated in the model formulation (8.1):

(a) Spectral density model: Z̃ = ẽ with the spectral density matrix f being the only parameter.

This is included in formulation (8.1) by letting r = 0.

(b) Mean model Zt = µ+ et: Letting r = d and B = (µ1, . . . , µd)
T as well as Xt = Id for t =

1, . . . , n corresponds to each time series component having an individual mean (instead of

assuming mean zero). It can readily be seen that the frequency domain representation is

given by Z̃ = µ̃+ ẽ with µ̃ = (
√
nµ, 0, . . . , 0) ∈ Rnd. Note that the only occurrence of the

mean µ from the time domain in the frequency domain is at ω = 0. This is illustrated

in Figure 8.1(a). As an important consequence, the full conditional of µ under Whittle’s

Likelihood (8.3) only depends on f through f(0). We will have a more detailed look at

this model from an asymptotic perspective in the upcoming Chapter 9.

(c) Linear trend model Zt = µ+bt+et: Letting r = 2d and B = (µ1, . . . , µd, b1, . . . , bd) as well

asXt = (Id, tId) ∈ Rd×2d corresponds to the inclusion of a linear trend for each component
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Figure 8.1.: Time and frequency domain representation of (a) a mean signal St = µ for t =

1, . . . , n and (b) a linear trend signal St = bt for t = 1, . . . , n, for the exemplary

signal length of n = 16 and µ = 1 and b = 1
16 .

(with individual slopes and intercepts). The frequency domain representation of this model

is more involved. In fact, a linear trend in the time domain yields a trigonometric signal in

the frequency domain that is visible at all Fourier frequencies. To elaborate, with St := t

observe that 1√
n

∑n
t=1 St =

√
n(n+1)

2 is the frequency domain representation at ω = 0

and with ωj = j2π
n for j = 1, . . . , bn/2c it holds (see Appendix A12 in Kammler (2000))

1√
n

∑n
t=1 St exp(−itωj) =

√
n

2 (1+i cot
ωj
2 ) with the cotangent function cotω = cosω

sinω for 0 <

ω < π. This is illustrated in Figure 8.1(b). As a consequence, the full conditional of b

under Whittle’s Likelihood (8.3) depends on f through f(0),f(ω1), . . . ,f(ωbn/2c), i.e. at

all Fourier frequencies. This is an important difference to the mean µ model from (b).

(d) Linear trend model with common slope Zt = µ + bt + et: Letting r = d + 1 and B =

(µ1, . . . , µd, b) as well as Xt = (Id|(t, . . . , t)T ) ∈ Rd×(d+1) corresponds to the inclusion of a

linear trend for each component (with common slope and individual intercepts).

8.2. Numerical Simulations of Posterior Samples

We employ a Gibbs sampler to draw samples from the joint posterior PnW (dB, df |Z̃) of (B,f)

in model (8.1) under Whittle’s Likelihood PnW (dZ̃|B,f) from (8.3). To draw from the full con-
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ditional of f , the Metropolis-within-Gibbs algorithm from Section 5.2.2 is used. We will show

in the following that the full conditional of B is available, if the SIR prior p(B) ∝ 1 is em-

ployed. Indeed, recall that under PnW (·|B,f), it holds that ẽ is multivariate normal with mean 0

and covariance matrix Dnd. The conditional likelihood of B in this case is (see Section 9.2.2

in Christensen et al. (2011))

B|Z,f ∼ Nr

(
B̂, (X̃TD−1

nd X̃)−1
)
, (8.4)

where B̂ = (X̃TD−1
nd X̃)−1X̃D−1

nd Z̃ is the maximum (conditional) likelihood estimator of B.

Under the SIR prior (being flat), the full conditional coincides with the conditional likelihood.

Consider the mean model (b) from Section 8.1 as an example. The maximum likelihood estima-

tor µ̂n is the sample mean, which under PnW is distributed as the first Fourier coefficient Z̃(0)

corresponding to ω = 0. Hence conditional likelihood (and the full conditional under the SIR

prior) of µ is

µ|Z,f ∼ Nd

(
µ̂
n
, 2πf(0)

)
, µ̂

n
:=

1

n

n∑
t=1

Zt. (8.5)

If another prior instead of the SIR prior is used, the distribution in (8.4) does not constitute

the full conditional of B. However, it can still be used as a proposal distribution in an MH step

for B. From our numerical experiments, we found that good mixing properties can be achieved

for other prior choices than the SIR prior, when employing an MH step with the following

random walk proposal scheme based on (8.4):

B∗,(i+1) ∼ Nr

(
B(i), (X̃TD−1

nd X̃)−1
)
. (8.6)

It is important to note that the Bernstein-Hpd-Gamma prior from Section 5.1 does not en-

force f(0) to be symmetric positive definite (rather, it is Hermitian positive definite). The

property of f(0) being spd is however desirable and in fact mandatory for a valid statistical

inference in the semiparametric model: Unlike for the spectral density inference from Chap-

ter 5, the boundary frequencies (corresponding to ω = 0 and ω = π) can not be left away from

Whittle’s Likelihood because otherwise the parameter B would not be identifiable in the model.

Consider the mean model (b) from Section 8.1 as an example. We have seen that in fact the

only occurrence of µ in the frequency domain representation (8.2) is at the first Fourier coeffi-

cient Z̃(0) corresponding to ω = 0. With a view on the full conditional of µ from (8.5), This

emphasizes the conceptual need of f(0) to be spd. Therefore, we will discard the imaginary part

of f(0) (and similarly the imaginary part of f(π)) in the Bernstein mixture parametrization (5.2)

of f .

8.3. Numerical Illustration

In this Section, we evaluate the performance of the proposed procedure for a multivariate linear

model. We consider the linear trend model with common slope from (d) in Section 8, which can

be written as

Zt = µ+ bt+ et, t = 1, . . . , n. (8.7)
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Similar to the simulation study in Section 6.2, we compare the NP procedure with the VAR

procedure. Additionally, we also consider the results of a procedure, in which the residual time

series et is modeled as Gaussian White Noise. This procedure is denoted by the WN procedure

(where NP stands for White Noise model). It corresponds to the VAR procedure, where the

order is fixed to p = 0 and it is included to illustrate the necessity of taking an existing time

dependence in the residuals into account.

The respective prior on the parametric part B = (µT , b)T is given by the SIR prior p(B) ∝ 1 and

the respective prior on the time series component is independent of p(B) and as in Section 6.2

(i.e. Bernstein-Hpd-Gamma prior on f for NP and the Independent Normal-Inverse-Wishart

prior for VAR) with the same prior parameters as in Section 6.2. The order p for the VAR

procedure is determined in an AIC based model selection step, with the noise e1, . . . , en directly

(which is available for simulated data). The Gibbs sampling algorithms of NP and VAR are

amended by an additional step for B to accommodate the linear model, with a conjugate Gibbs

step drawn from (8.4) for NP and an MH step with proposal (8.6) for VAR. Each Markov Chain

is run for a total length of 80,000 iterations, where the first 30,000 iterations are discarded as

burn-in period and the remaining 50,000 are thinned by a factor of 5, yielding a respective

posterior sample size of 10,000.

Simulated Data

We consider simulated data drawn from the linear model (8.7) for dimension d = 2 with µ1 = 1

and µ2 = −1 as well as b = 0.01. For the noise time series {et}, we use the VAR(2) model

from (6.9) and the VMA(1) model from (6.10). For each noise model, we generate N = 200

independent realizations for each sample size of n = 256 and n = 512 as well as n = 1024.

Exemplary realizations are shown in Figure 8.2. For each component of B = (µ1, µ2, b), we

consider the posterior median as Bayes estimator and compute 90% credibility regions with

the 0.05 and 0.95 quantile of the respective empirical marginal posterior distribution. We then

compare the average (among the N replications) Root Mean Squared Error (RMSE) of the

Bayes estimators and the empirical coverage of the credibility regions. The median width of the

credibility intervals is also considered. Furthermore, we will also consider L1-error and L2-error

of the posterior median spectral density and the empirical coverage of uniform 90% regions for f

as in Section 6.2.

Results

The results can be found in Table 8.1. First of all, we observe that all results of the WN

procedure are worse than for the VAR and NP procedure. Whereas this is not too surprising

for spectral density inference results (in particular L1-error and L2-error), the results for µ1, µ2

and b illustrate the point that when the time dependence of the nuisance component is ignored

in the model, the inference quality for the parameter of interest will suffer.

It can be seen that the L1 error and L2 error of the Bayes estimate of f is smaller for the

VAR procedure for VAR(2) data, whereas for VMA(1) data, the NP procedure performs better.
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Figure 8.2.: Realization of linear trend model (8.7) with (a) VAR(2) noise from (6.9) and (b)

VMA(1) noise from (6.10) of respective length n = 256. The left panel depicts the

first component and the right panel the second component of the time series Zt in

gray. The linear trend is visualized as dashed line.
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VAR(2) data

n = 256 n = 512 n = 1024

WN NP VAR WN NP VAR WN NP VAR

L1-error f 0.277 0.104 0.072 0.276 0.082 0.052 0.276 0.063 0.035

L2-error f 0.299 0.132 0.096 0.297 0.107 0.070 0.297 0.085 0.047

Coverage f 0.00 0.48 0.91 0.00 0.35 0.88 0.00 0.26 0.88

RMSE µ1 0.193 0.135 0.131 0.138 0.094 0.092 0.095 0.066 0.066

RMSE µ2 0.147 0.055 0.049 0.107 0.037 0.035 0.073 0.026 0.025

n× RMSE b 0.285 0.085 0.069 0.209 0.057 0.049 0.142 0.038 0.035

Coverage µ1 0.75 0.86 0.91 0.74 0.87 0.90 0.72 0.87 0.90

Coverage µ2 0.87 0.88 0.92 0.86 0.87 0.91 0.84 0.89 0.89

Coverage b 0.80 0.88 0.91 0.78 0.88 0.89 0.78 0.89 0.88

Length µ1 0.433 0.406 0.441 0.306 0.288 0.309 0.216 0.205 0.216

Length µ2 0.438 0.178 0.167 0.309 0.120 0.116 0.218 0.083 0.081

n× Length b 0.721 0.276 0.232 0.511 0.179 0.163 0.362 0.120 0.114

VMA(1) data

n = 256 n = 512 n = 1024

WN NP VAR WN NP VAR WN NP VAR

L1-error f 0.311 0.093 0.155 0.310 0.070 0.121 0.309 0.054 0.093

L2-error f 0.323 0.110 0.189 0.322 0.084 0.146 0.321 0.064 0.110

Coverage f 0.00 0.62 0.98 0.00 0.45 0.96 0.00 0.27 0.96

RMSE µ1 0.136 0.047 0.046 0.098 0.032 0.031 0.066 0.023 0.023

RMSE µ2 0.186 0.132 0.132 0.131 0.092 0.092 0.092 0.067 0.067

n× RMSE b 0.257 0.040 0.034 0.187 0.023 0.020 0.125 0.016 0.014

Coverage µ1 0.89 0.88 0.95 0.90 0.86 0.93 0.90 0.85 0.91

Coverage µ2 0.81 0.81 0.91 0.81 0.83 0.90 0.80 0.84 0.89

Coverage b 0.85 0.96 1.00 0.84 0.95 0.99 0.85 0.87 0.98

Length µ1 0.439 0.145 0.190 0.310 0.095 0.120 0.219 0.066 0.079

Length µ2 0.472 0.354 0.480 0.334 0.255 0.322 0.236 0.186 0.221

n× Length b 0.721 0.170 0.205 0.511 0.089 0.113 0.361 0.052 0.067

Table 8.1.: Average L1-error, average L2-error, RMSE, empirical coverage and lengths of uni-

form 90% credibility regions of the NP procedure and the VAR procedure for 200

realizations of the linear trend model (8.7) with noise from (6.9) and (6.10).
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Furthermore, the NP procedure produces less coverage for f , whereas the VAR procedure yields

approximately honest regions in the well specified case and larger regions for f than NP in both

models. These observations are in line with the results from Section 6.2 (see Table 6.2).

The RMSEs of the parameters are very similar for both the NP and VAR procedure, whereas

a tendency of the NP procedure to yield slightly more biased estimates (in terms of higher

RMSE values) can be conceived, especially for the slope b. This bias effect is diminishing with

increasing sample size, indicating that it may have been introduced by the Whittle Likelihood

approximation, c.f. the discussion at the end of Section 4.1.

As for the coverage for the linear model coefficients, it can be observed that for the VAR(2)

data, both NP and VAR procedures perform well and yield credibility regions that are close to

being honest (i.e. with an empirical coverage close to 90%), where the length of the credibility

intervals of NP are smaller than of VAR for µ1 and larger for µ2 and b. For the VMA(1) data

on the other hand, the VAR procedure yields much wider intervals for all components of B and

produces almost unit coverage for b, whereas the NP procedure produces coverage slightly below

honesty for µ1, µ2 and slightly above honesty for b.

Discussion

If the main interest lies in inference about the linear model coefficients B (and the marginal

posterior for f is not of interest), then there is no “clear winner” based on this simulation study.

As for the joint posterior of (B,f), the NP procedure is more robust against misspecification as

the parametric VAR method, as seen in terms of the L1 errors for f and the intervals lengths for b

in Table 8.1. We found that the NP procedure yields slightly more biased Bayes estimates of B

(particularly for small and moderate sample sizes) and whereas it is conjectured that this effect

is introduced by the Whittle Likelihood approximation, it will be of interest for future research

to investigate this effect in more detail. A further direction for future research constitutes the

empirical comparison of the procedures for non-Gaussian data.



9.
Asymptotic properties

In this Section, we will have a closer look from an asymptotic perspective at the mean model

Zt = µ+ et, t = 1, . . . , n (9.1)

where the mean vector µ ∈ Rd is the parameter of interest and et is a stationary Gaussian time

series in Rd with Eet = 0 and spectral density f , constituting the noise in this model. Recall

from (8.3) that Whittle’s Likelihood for model (9.1) is given in terms of the Lebesgue density

pnW (z̃|µ,f) =
1√

(2π)nd|Dnd|
exp

{
−1

2
(z̃ − µ̃)TD−1

nd (z̃ − µ̃)

}
(9.2)

for z̃ ∈ Rnd with the frequency domain mean vector µ̃ = (
√
nµT , 0, . . . , 0)T ∈ Rnd. We will

also consider the complex-valued frequency domain formulation of Whittle’s Likelihood, which

(similar to (4.8)) is defined in terms of the Fourier coefficients Z̃0, . . . , Z̃bn/2c from (4.5) as

pnW (z̃0, . . . , z̃bn/2c|µ,f) = p0,n(z̃0|µ,f)

bn/2c∏
j=1

pj,n(z̃j |f) (9.3)

with

p0,n(z̃0|µ,f) =
1√

(2π)d|2πf(0)|
exp

(
− 1

4π

(
z̃0 −

√
nµ
)T
f(0)−1

(
z̃0 −

√
nµ
))

and, for n even,

pn/2,n(z̃n/2|f) =
1√

(2π)d|2πf(π)|
exp

(
− 1

4π
z̃Tn/2f(π)−1z̃n/2

)
,

and pj,n for j = 1, . . . , dn/2e − 1 as in (7.12). We will consider a prior of form P (dµ, df) =

P (dµ)P (df), i.e. µ and f are a priori independent. The question arises which conditions

on P (dµ) and P (df) are sufficient to ensure that the joint posterior of (µ,f) behaves “well” in

an asymptotic sense. Furthermore, if the primary interest lies in inference about µ, the question

is how the marginal posterior of µ behaves asymptotically. As an example, in the parametric

iid setting it is well known that (under regularity assumptions) the posterior for µ contracts at

rate n−1/2 around the true value and that the asymptotic limiting distribution of the posterior
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is Gaussian, a result that actually holds true in much wider generality and is well-known as

Bernstein-von-Mises phenomenon (see Section 10.2 in van der Vaart (2000) for a formulation in

the parametric iid setting or Theorem 2.1 in Kleijn and Van der Vaart (2012) for a more general

formulation that includes the non-iid case and a possible model misspecification). Thus, we also

wish to investigate: Is it possible in the model (9.1) to get the same rate of contraction for µ as

if f was actually known (i.e. n−1/2)? And does the marginal posterior of µ converge to a known

distribution (e.g. Gaussian), i.e. can we establish a Bernstein-von-Mises type result?

We will investigate these questions in the following sections. In Section 9.1, we establish con-

traction rates for the joint posterior distribution of (µ,f). It will be shown there that the same

rate of contraction in the Hellinger topology can be achieved as for f in Section 7.2.2 – under the

same prior assumptions for f and under prior positivity and regularity assumptions on µ. This

has the clear interpretation that the “bottleneck” for the rate of contraction is the nonparametric

part f . Indeed, we will see in Section 7.2.2 that the posterior contraction is highly anisotropic:

The marginal posterior of µ is shown to contract at rate n−1/2. It is rather surprising that the

conditions on P (df) to achieve this are even much weaker than the ones employed for the joint

contraction rate theorem. The question of whether a Bernstein-von-Mises theorem can be es-

tablished remains open. It is indicated by considerations in the final Section 9.3 that additional

assumptions have to be employed to achieve this goal. The reason is that for marginal asymp-

totic normality of µ, it is needed that the marginal posterior of f(0) is consistent. However,

consistency in L1 as shown in Section 7.1.2 is not strong enough for this purpose.

9.1. Joint Posterior Contraction Rates

We will work with the following prior assumption for µ:

Assumption µ1. The prior P (dµ) on µ is such that all moments exist. Furthermore, it is

assumed that in a neighborhood of µ
0
, it possesses a Lebesgue density that is continuous and

bounded away from 0.

We can now formulate the main result of this Section, stating that the same contraction rate

can be achieved for the joint posterior of (µ,f) as in Section 7.2.2.

Theorem 9.1. Let {Zt} be a Gaussian stationary time series in Rd with mean µ
0

and spectral

density matrix f0 fulfilling Assumptions f1-f2 with 1 < a ≤ 2. Let τ0 ∈ (0, b0) and τ1 ∈ (b1,∞)

(with b0 and b1 from Assumption f1). Let the prior on (µ,f) be given as Pτ0,τ1(dµ, df) :=

P (dµ)Pτ0,τ1(df), with P (dµ) fulfilling Assumption µ1 and the truncated Bernstein-Hpd-Gamma

prior Pτ0,τ1 from (7.33) fulfilling Assumptions GP4 and k2. Then

εn = n−a/(2+2a)(log n)(1+2a)/(2+2a)

is a posterior contraction rate for (µ,f) with respect to the root average squared Hellinger dis-

tance dn,H , i.e. for every positive sequence (Mn) with Mn →∞ for n→∞ it holds

PnW ;τ0,τ1

({
(µ,f) : dn,H

(
(µ,f), (µ

0
,f0)

)
≥Mnεn

}
|Z1, . . . , Zn

)
→ 0, in Pn(µ

0
,f0) probability
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as n → ∞, where PnW ;τ0,τ1
denotes the pseudo posterior distribution obtained by updating

the prior with Whittle’s likelihood PnW from (9.2) and Pn(µ
0
,f0) denotes the joint distribution

of Z1, . . . , Zn under (µ
0
,f0).

In the setting of Theorem 9.1, the average squared Hellinger distance is given by, with N :=

bn/2c,

d2
n,H((µ,f), (µ0,f)) =

1

N + 1

d2
H

(
p0,n(·|µ,f), p0,n(·|µ

0
,f0)

)
+

N∑
j=1

d2
H (pj,n(·|f), pj,n(·|f0))

 (9.4)

with p0,n, . . . , pN,n from (9.3). To show Theorem 9.1, we will proceed similar to Section 7.2.2 by

showing that the assumptions of the general contraction rates Theorem 7.17 are fulfilled. The

proof will rely on the contiguity result from Theorem 4.4. We will start with the prior mass of

neighborhoods in Section 9.1.1, continue with the sieve entropy in Section 9.1.2 and collect the

result for the proof of Theorem 9.1 in Section 9.1.3.

9.1.1. Prior Mass of Neighborhoods

The following result bounds the KL terms between multivariate normals from above in terms of

distances of the respective matrices and mean vectors. It is similar in spirit to Lemma 7.5 and

will be important for translating the KL prior mass conditions into prior mass conditions for µ

and f .

Lemma 9.2. Let µ
0
, µ

1
∈ Rd and Σ0,Σ1 ∈ S+

d (R), where S+
d (R) denotes the cone of symmetric

positive definite matrices in Rd×d. with λmin(Σi) ≥ τ0 and λmax(Σi) ≤ τ1 for i = 0, 1 and some

positive constants τ0, τ1. Assume that λmin(Σ
−1/2
1 Σ0Σ

−1/2
1 ) ≥ 1

2 . Let pi denote the density of

the Nd(µi,Σi) distribution for i = 0, 1. Denote by

K :=

∫
Rd

log
p0(z)

p1(z)
p0(z)dz, V :=

∫
Rd

(
log

p0(z)

p1(z)
−K

)2

p0(z)dz

the Kullback-Leibler divergence and associated variance term from p0 to p1. Then it holds

K . ‖Σ0 −Σ1‖2 + ‖µ
0
− µ

1
‖2 (9.5)

and

V . ‖Σ0 −Σ1‖2 + ‖µ
0
− µ

1
‖+ ‖µ

0
− µ

1
‖2 (9.6)

with proportionality constants only depending on τ0, τ1 and d.

Proof. We start by computing for z ∈ Rd

2 log
p0(z)

p1(z)
= log |Σ1| − log |Σ0|+ (z − µ

1
)TΣ−1

1 (z − µ
1
)− (z − µ

0
)TΣ−1

0 (z − µ
0
).
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The third summand can be decomposed as

(z − µ
1
)TΣ−1

1 (z − µ
1
) = (z − µ

0
+ µ

0
− µ

1
)TΣ−1

1 (z − µ
0

+ µ
0
− µ

1
)

= (z − µ
0
)TΣ−1

1 (z − µ
0
) + 2(µ

0
− µ

1
)TΣ−1

1 (z − µ
0
)

+ (µ
0
− µ

1
)TΣ−1

1 (µ
0
− µ

1
),

where the symmetry of Σ−1
1 was used in the last step. This yields

2 log
p0(z)

p1(z)
= log |Σ1| − log |Σ0|+ (z − µ

0
)T
(
Σ−1

1 −Σ−1
0

)
(z − µ

0
)

+ 2(µ
0
− µ

1
)TΣ−1

1 (z − µ
0
) + (µ

0
− µ

1
)TΣ−1

1 (µ
0
− µ

1
).

(9.7)

Letting l1(z) := log |Σ1|−log |Σ0|+(z−µ
0
)T
(
Σ−1

1 −Σ−1
0

)
(z−µ

0
) we observe that 1

2

∫
l1(z)p0(z)dz

is the Kullback-Leibler divergence between an Nd(µ0
,Σ0) and an Nd(µ0

,Σ1) distribution. Since

by assumption it holds λmin(Σ
−1/2
1 Σ0Σ

−1/2
1 ) ≥ 1

2 , we find that the assumptions of Lemma 7.5 (b)

are fulfilled. While Lemma 7.5 is actually formulated for the complex multivariate normal CNd

distribution, the results and the proof are valid completely analogous for the real multivariate

normal Nd distribution. Thus we can conclude∫
l1(z)p0(z)dz .

1

λmin(Σ1)2
‖Σ0 −Σ1‖2 . ‖Σ0 −Σ1‖2.

Letting l2(z) := 2(µ
0
−µ

1
)TΣ−1

1 (z−µ
0
) it follows that

∫
l2(z)p0(z)dz = 0, since µ0 is the mean

under p0. Since it also holds

(µ
0
− µ

1
)TΣ−1

1 (µ
0
− µ

1
) ≤ 1

τ0
‖µ

0
− µ

1
‖2 . ‖µ

0
− µ

1
‖2

by the Minmax theorem of Courant-Fisher, assertion (9.5) follows.

To show (9.6), let Z ∼ Nd(0,Σ0). Then V = Var[log p0(Z+µ0)
p1(Z+µ0) ] and from (9.7) this yields

4V = Var
[
ZT
(
Σ−1

1 −Σ−1
0

)
Z + 2(µ

0
− µ

1
)TΣ−1

1 Z
]

=: Var [η1 + η2] ,

which can also be written as

Var[η1 + η2] = Var[η1] + Var[η2] + 2Cov(η1, η2).

Note that Var[η1] is the KL variance term between an Nd(0,Σ0) and an Nd(0,Σ1) distribution.

From part (a) of Lemma 7.5 (recalling that the result there is formulated for the CNd distribution

but valid and proven analogously for the Nd distribution), we get

Var[η1] .
1

λmin(Σ1)2
‖Σ0 −Σ1‖2 . ‖Σ0 −Σ1‖2.

As EZ = 0, it follows E[(µ
0
−µ

1
)TΣ−1

1 Z] = 0 and an application of Lemma B.24 in the Appendix
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yields

1

4
Var[η2] = Var

[
(µ

0
− µ

1
)TΣ−1

1 Z
]

= E
[
(µ

0
− µ

1
)TΣ−1

1 ZZTΣ−1
1 (µ

0
− µ

1
)
]

= E
[
ZTΣ−1

1 (µ
0
− µ

1
)(µ

0
− µ

1
)TΣ−1

1 Z
]

= tr
(
Σ0Σ

−1
1 (µ

0
− µ

1
)(µ

0
− µ

1
)TΣ−1

1

)
= tr

(
(µ

0
− µ

1
)TΣ−1

1 Σ0Σ
−1
1 (µ

0
− µ

1
)
)

≤ λmax

(
Σ−1

1 Σ0Σ
−1
1

)
‖µ

0
− µ

1
‖2

. ‖µ
0
− µ

1
‖2,

where the cyclic property of the trace from Lemma B.2 in the Appendix was used. For the

covariance term, we use the Cauchy-Schwartz inequality to obtain

|Cov(η1, η2)| ≤
(
Var[η1]Var[η0]

)1/2
. ‖Σ0 −Σ1‖‖µ0

− µ
1
‖ . ‖µ

0
− µ

1
‖,

yielding (9.6).

Recall the definition of the Bernstein polynomial expansion operator B from (7.4) and of the two-

sided prior truncation set Cτ0,τ1 from (7.32). We will consider the following sieve structure Θn

on the parameter space Θ = Rd ×Dd×d:

Θn := Θ(1)
n ×Θ(2)

n ,

Θ(1)
n :=

{
µ ∈ Rd : ‖µ‖ < Mn

}
, Mn := exp(ρ1nε

2
n),

Θ(2)
n :=

kn⋃
k=1

{
B(k,W ) : W ∈ S+k

d

}
∩ Cτ0,τ1 , kn := ρ2ε

−2/a
n ,

(9.8)

with positive constants ρ1 and ρ2 that are to be specified later. In fact, ρ2 will be chosen

sufficiently large and ρ1 sufficiently small in later considerations. The next result quantifies the

prior mass of shrinking Kullback-Leibler neighborhoods. It is similar in spirit to Lemma 7.23.

Lemma 9.3. Let the assumptions of Theorem 9.1 be fulfilled. Let N := bn/2c. Consider the

KL divergence

Kn

(
(µ

0
,f0), (µ,f)

)
:=

1

N + 1

K0,n

(
(µ

0
,f0), (µ,f)

)
+

N∑
j=1

Kj,n(f0,f)


with

K0,n

(
(µ

0
,f0), (µ,f)

)
= E(µ

0
,f0) log

p0,n(Z̃0|µ0
,f0)

p0,n(Z̃0|µ,f)
,

Kj,n(f0,f)) = E(µ
0
,f0) log

pj,n(Z̃j |f0)

pj,n(Z̃j |f)
, j = 1, . . . , N,

with p0,n, . . . , pN,n as in (9.3), and the corresponding KL variance term

Vn
(
(µ

0
,f0), (µ,f)

)
:=

1

N + 1

V0,n

(
(µ

0
,f0), (µ,f)

)
+

N∑
j=1

Vj,n(f0,f)

 .
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For ε > 0, let

Bn,2(µ
0
,f0, ε)

:=
{

(µ,f) ∈ Θn : Kn

(
(µ

0
,f0), (µ,f)

)
< ε2, Vn

(
(µ

0
,f0), (µ,f)

)
< ε2

} (9.9)

with the sieve Θn from (9.8). Then there exists a positive constant c such that

Pτ0,τ1
(
Bn,2(µ

0
,f0, εn)

)
≥ exp(−cnε2

n)

holds for all n ∈ N large enough, with εn = n−a/(2+2a)(log n)(1+2a)/(2+2a).

Proof. Let (µ,f) ∈ Bn,2(µ
0
,f0, εn). First recall from (7.17) and (7.18) that for εn small enough,

it holds

min
0≤ω≤π

λmin(f(ω)) ≥ b0
2
, min

0≤ω≤π
λmin

(
f(ω)−1/2f0(ω)f(ω)−1/2

)
≥ 1

2
,

with b0 from Assumption f1. Thus an application of Lemma 7.5 yields

Kj,n(f0,f) . ‖f(ωj)− f0(ωj)‖2, Vj,n(f0,f) . ‖f(ωj)− f0(ωj)‖2

for j = 1, . . . , N . Similarly, an application of Lemma 9.2 to K0,n (recalling that p0,n(·|µ,f) is

the density of the Nd(
√
nµ, 2πf(0)) distribution) yields

K0,n

(
(µ

0
,f0), (µ,f)

)
. n‖µ− µ

0
‖2 + ‖f(0)− f0(0)‖2,

and

Vj,n
(
(µ

0
,f0), (µ,f)

)
. n1/2‖µ− µ

0
‖+ n‖µ− µ

0
‖2 + ‖f(0)− f0(0)‖2

. n
(
‖µ− µ

0
‖+ ‖µ− µ

0
‖2
)

+ ‖f(0)− f0(0)‖2.

This yields

Kn

(
(µ

0
,f0), (µ,f)

)
.

1

N + 1

n‖µ− µ
0
‖2 +

N∑
j=0

‖f(ωj)− f0(ωj)‖2


. ‖µ− µ
0
‖2 + ‖f − f0‖2F,∞

with the maximum Frobenius norm ‖ · ‖F,∞ from (7.3) and similarly

Vn
(
(µ

0
,f0), (µ,f)

)
. ‖µ− µ

0
‖+ ‖µ− µ

0
‖2 + ‖f − f0‖2F,∞.

Thus, there exists a positive constant c such that Bcε̃n(µ
0
)×Bcεn(f0) ⊂ Bn,2(µ

0
,f0, εn) with ε̃ =

min{εn, ε2
n} and Bcε̃n(µ

0
) denoting the ball (in Rd) of radius cε̃n and Bcεn(f0) := {f ∈

Dd×d : ‖f − f0‖F,∞ < cεn} the ball in Dd×d with respect to ‖ · ‖F,∞.

We continue by bounding the prior mass of Bcε̃n(µ
0
)×Bcεn(f0) from below. First we recall from

Assumption µ1 that there exists a positive constant C such that the Lebesgue density of P (dµ)

fulfills p(µ) ≥ C for all µ ∈ Bcε̃n(µ
0
) for n large enough. Since ε̃n = ε2

n for n large enough, this

yields (with L denoting the Lebesgue measure in Rd)

P (Bcε̃n(µ
0
)) ≥ CL(Bcε2n(µ

0
)) ≥ C̃ε2d

n = exp(log C̃ + 2d log εn) ≥ exp(−c1nε
2
n)
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for a positive constants C̃, where in the last step it was used that εn fulfills

log C̃ + d log εn ≥ ε−2/a
n log εn ≥ −c1nε

2
n

for some positive constant c1 for n large enough by (7.41). From (7.42), it follows that the

Bernstein-Hpd-Gamma prior fulfills Pτ0,τ1(Bcεn(f0)) ≥ exp(−c2nε
2
n) for a positive constant c2,

yielding that the joint prior for (µ,f) fulfills

Pτ0,τ1

(
Bcε̃n(µ

0
)×Bcεn(f0)

)
= P

(
Bcε̃n(µ

0
)
)
Pτ0,τ1

(
Bcεn(f0)

)
≥ exp

(
− (c1 + c2)nε2

n

)
,

which concludes the proof.

9.1.2. Sieve Entropy and Complement Mass

The following result bounds the Hellinger distance between two multivariate normals from above

in terms of distances of the respective matrices and mean vectors. It is similar in spirit to

Lemma 7.24 and will be important for quantifying the sieve entropy.

Lemma 9.4. Let µ
1
, µ

2
∈ Rd and Σ1,Σ2 ∈ S+

d (R) with λmin(Σi) ≥ τ0 and λmax(Σi) ≤ τ1

for i = 1, 2 and some positive constants τ0, τ1. Let pi denote the density of the Nd(µi,Σi)

distribution for i = 1, 2. Then it holds

d2
H(p1, p2) . ‖Σ1 −Σ2‖+ ‖µ

1
− µ

2
‖

with proportionality constants depending only on τ0, τ1 and d.

Proof. We start by noting the representation (see Pardo (2005), p.51)

d2
H(p1, p2) = 1− 2d/2

|Σ1Σ2|1/4|Σ−1
1 + Σ−1

2 |1/2
exp

(
−1

4
(µ

1
− µ

2
)T (Σ1 + Σ2)−1 (µ

1
− µ

2
)

)
= 1− 2d/2

|Σ1Σ2|1/4|Σ−1
1 + Σ−1

2 |1/2
+

2d/2

|Σ1Σ2|1/4|Σ−1
1 + Σ−1

2 |1/2
×(

1− exp

(
−1

4
(µ

1
− µ

2
)T (Σ1 + Σ2)−1 (µ

1
− µ

2
)

))
By analogous arguments as in the proof of Lemma 7.24, it holds

0 ≤ 1− 2d/2

|Σ1Σ2|1/4|Σ−1
1 + Σ−1

2 |1/2
. ‖Σ1 −Σ2‖.

Using the boundedness assumption of the eigenvalues, we obtain from Lemma B.5 in the Ap-

pendix

|Σi| ≥ τd0 , |Σ−1
i | ≥ τ

−d
1 , |Σ−1

1 + Σ−1
2 | ≥ (2τ1)−d,



Asymptotic properties 147

hence

2d/2

|Σ1Σ2|1/4|Σ−1
1 + Σ−1

2 |1/2

(
1− exp

(
−1

4
(µ

1
− µ

2
)T (Σ1 + Σ2)−1 (µ

1
− µ

2
)

))
. 1− exp

(
−1

4
(µ

1
− µ

2
)T (Σ1 + Σ2)−1 (µ

1
− µ

2
)

)
≤ 1− exp

(
−1

4
λmax

(
(Σ1 + Σ2)−1

)
‖µ

1
− µ

2
‖2
)

= 1− exp(−c‖µ
1
− µ

2
‖2),

where the Min-Max theorem of Courant-Fisher (see Lemma B.3 in the Appendix) was employed.

The function hc : [0,∞) → [0,∞), hc(x) := 1 − exp(−cx2) has a point of inflection at x∗ =

(2c)−1/2, where the maximal derivative is attained, with value h′c(x
∗) =

√
2c exp(−1/2) > 0.

Thus we compute

1− exp(−c‖µ
1
− µ

2
‖2) ≤ h′c(x∗)‖µ1

− µ
2
‖ . ‖µ

1
− µ

2
‖,

which concludes the proof.

With the previous result, we can derive an upper bound for the metric entropy of the sieve Θn.

Lemma 9.5. Let the assumptions of Theorem 9.1 be fulfilled. Then for the sieve Θn from (9.8),

the ε-covering number in the root average squared Hellinger topology fulfills

log sup
ε>εn

N
(
ξε, {(µ,f) ∈ Θn : d2

n,H

(
(µ

0
,f0), (µ,f)

)
< 2ε}, dn,H

)
≤ nε2

n.

Proof. Recall the representation of d2
n,H from (9.4). Let N = bn/2c. From Lemma 9.4, we

obtain

d2
H

(
pj,n(·|f0), pj,n(·|f)

)
. ‖f0(ωj)− f(ωj)‖, j = 1, . . . , N,

and from Lemma 9.4, recalling that p0,n(·|µ,f) is the density of the Nd(
√
nµ, 2πf(0)) distribu-

tion, we obtain

d2
H

(
p0,n(·|µ

0
,f0), p0,n(·|µ,f)

)
. n1/2‖µ

0
− µ‖+ ‖f0(0)− f(0)‖

yielding

d2
n,H

(
(µ

0
,f0), (µ,f)

)
. n−1/2‖µ

0
− µ‖+ ‖f0 − f‖F,∞.

Thus, by Lemma B.32 in the Appendix, there exists a positive constant c such that

logN(ε,Θn, dn,H) ≤ logN(cn1/2ε2,Θ(1)
n , ‖ · ‖) + logN(cε2,Θ(2)

n , ‖ · ‖F,∞).

In particular, this yields

log sup
ε>εn

N
(
ξε, {(µ,f) ∈ Θn : d2

n,H

(
(µ

0
,f0), (µ,f)

)
< 2ε}, dn,H

)
≤ logN(ξεn,Θn, dn,H)

≤ logN(cξ2n1/2ε2
n,Θ

(1)
n , ‖ · ‖) + logN(cξ2ε2

n,Θ
(2)
n , ‖ · ‖F,∞).

(9.10)



148 9.1. Joint Posterior Contraction Rates

Recalling the definition of Mn = exp(ρ1nε
2
n) from (9.8), an application of Lemma B.31 in the

Appendix reveals

logN(cξ2n1/2ε2
n,Θ

(1)
n , ‖ · ‖) ≤ d(log(3Mn)− log(cξ2n1/2ε2

n))

= d log 3 + dρ1nε
2
n − d log(cξ2n1/2ε2

n) ≤ 2dρ1nε
2
n

for n large enough. Choosing ρ1 small enough, this yields

logN(cξ2n1/2ε2
n,Θ

(1)
n , ‖ · ‖) ≤ 1

2
nε2

n.

From (7.46), we obtain

logN(cξ2ε2
n,Θ

(2)
n , ‖ · ‖F,∞) ≤ 1

2
nε2

n,

and in view of (9.10), this concludes the proof.

9.1.3. Proof of Joint Contraction Rate Theorem

It remains to bound the prior mass of the sieve complement, which is the following result.

Lemma 9.6. Let the assumptions of Theorem 9.1 be fulfilled. Then it holds

Pτ0,τ1(Θc
n)

Pτ0,τ1(Bn,2(µ
0
,f0, εn))

= o
(
exp(−2nε2

n)
)

with Θn as in (9.8) and Bn,2(µ
0
,f0, εn) from (9.9).

Proof. First observe that

Θc
n =

(
Θ(1)
n ×Θ(2)

n

)c
=
(

Θ(1)c
n ×Θ(2)

)
∪
(

Θ(1) ×Θ(2)c
n

)
,

with Θ
(i)c
n denoting the complement of Θ

(i)
n in Θ(i) for i = 1, 2, where Θ(1) = Rd and Θ(2) = Dd×d.

Since µ and f are a priori independent, this yields

Pτ0,τ1(Θc
n) = P (Θ(1)c

n ) + Pτ0,τ1(Θ(2)c
n ).

By Assumption µ1, all prior moments of µ exist. Thus we compute with Mn = exp(ρ1nε
2
n)

for δ > 0 with Chebyshevs inequality

P (Θ(1)c
n ) = P (‖µ‖ > Mn) ≤M−δ/ρ1n

∫
‖µ‖>Mn

‖µ‖δ/ρ1P (dµ) .M−δ/ρ1n

with proportionality constants depending only on δ, ρ1 and P (dµ). Since M
−δ/ρ1
n = exp(−δnε2

n),

it follows from Lemma 9.3 that

P (Θ
(1)c
n )

Pτ0,τ1(Bn,2(µ
0
,f0, εn))

. exp(−(δ − c)nε2
n) = o

(
exp(−2nε2

n)
)

for δ > 2 + c. On the other hand, it also holds

Pτ0,τ1(Θ
(2)c
n )

Pτ0,τ1(Bn,2(µ
0
,f0, εn))

= o
(
exp(−2nε2

n)
)

by (7.47) and Lemma 9.3, hence the result follows.
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Now we are able to present the proof of the main result.

Proof (of Theorem 9.1). We will apply Theorem 7.17. By Lemma 7.18, assumptions (b) and (c)

of Theorem 7.17 are fulfilled and by Lemma 9.3, also assumption (a). Assumption (d) is fulfilled

by Lemma 9.5 and assumption (e) for the sieve Θn from (9.8) by Lemma 9.6.

9.2. Marginal Contraction at Parametric Rate

The following result gives sufficient conditions for the marginal posterior to contract at para-

metric rate and motivates the following considerations in this section.

Theorem 9.7. Let X1, . . . , Xn be random variables in some Euclidean space with likelihood

function P (dX1, . . . , dXn|θ, η) where the parameter is partitioned as (θ, η) with θ ∈ Θ and η ∈
H and Θ,H being (jointly) measurable spaces. Let (θ0, η0) ∈ Θ × H. Assume that some

prior P (dθ, dη) is specified on Θ × H. Denote by Pn0 the joint distribution of X1, . . . , Xn un-

der (θ0, η0) and by En0 the corresponding expected value operator. Let (εn) be a sequence of

positive numbers. Assume that there exists a sequence (Hn) of subsets of H such that

(a) the marginal posterior of η concentrates on Hn asymptotically, i.e.

P (η ∈ Hn|X1, . . . , Xn)→ 1, in Pn0 probability as n→∞,

(b) the conditional posterior of θ contracts uniformly at rate εn, i.e. for every sequence (Mn)

of positive numbers with Mn →∞ it holds

En0 sup
η∈Hn

P (‖θ − θ0‖ > εnMn|η,X1, . . . , Xn)→ 0.

Then the marginal posterior of θ contracts at rate εn, i.e.

P (‖θ − θ0‖ > εnMn|X1, . . . , Xn)→ 0, in Pn0 probability as n→∞

for every positive sequence (Mn) with Mn →∞.

Proof. See Theorem 6.2 in Bickel and Kleijn (2012).

The goal of this Section is to apply Theorem 9.7 to show that the marginal posterior of µ

contracts at rate n−1/2. This result will be presented in Theorem 9.9. Consider the following

space of Hpd functions that are bounded and bounded away from zero:

H :=

{
f : [0, π]→ S+

d : sup
0≤ω≤π

‖f(ω)‖ <∞, sup
0≤ω≤π

‖f−1(ω)‖ <∞
}

and, for constants 0 < τ0, τ1 <∞, the following subset:

Hτ0,τ1 := {f ∈ H : λmin(f(0)) ≥ τ0, λmax(f(0)) ≤ τ1} . (9.11)

Observe that in contrast to the prior restriction set from (7.32) as considered previously, the re-

striction by τ0 and τ1 in (9.11) only applies to f(0). We will work with the following assumptions

on the prior on µ and f :
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Assumption µ2. The prior on (µ,f) is of the form P (dµ, df) ∝ P (df), i.e. µ and f are a

priori independent and the prior on µ is improper with p(µ) ∝ 1. The prior on f is assumed to

fulfill P (f ∈ Hτ0,τ1) = 1 for some 0 < τ0 < τ1 <∞ with Hτ0,τ1 from (9.11).

We will use the following notational shorthand for µ ∈ Rd and Σ ∈ S+
d (R):

Nd(µ,Σ)[B] :=
1

(2π)d/2|Σ|1/2

∫
B

exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)
dz,

for B ⊂ Rd measurable. Furthermore, for r > 0, denote by Br(µ0
) = {µ ∈ Rd : ‖µ − µ

0
‖ < r}

the Euclidean ball of radius r. We will need the following Lemma.

Lemma 9.8. Let r > 0 and Σ1,Σ2 ∈ S+
d (R) such that λmin(Σ2) ≥ λmax(Σ1). Then

Nd(0,Σ1) [Br(0)] ≥ Nd(0,Σ2) [Br(0)] .

Proof. Denote by Σ
1/2
i the spd square root of Σi for i = 1, 2. First we compute, using the

substitution z = Σ
1/2
2 Σ

−1/2
1 y, dz = |Σ2|1/2|Σ1|−1/2dy:

Nd(0,Σ2) [Br(0)] =
1

(2π)d/2|Σ2|1/2

∫
Br(0)

exp

(
−1

2
zTΣ−1

2 z

)
dz

=
1

(2π)d/2|Σ1|1/2

∫
B̃r(0)

exp

(
−1

2
yTΣ−1

1 y

)
dy

= Nd(0,Σ1)
[
B̃r(0)

]
with B̃r(0) := {y ∈ Rd : ‖Σ1/2

2 Σ
−1/2
1 y‖2 < r2}. It suffices to show B̃r(0) ⊂ Br(0). To do so, we

employ the Min-Max theorem of Courant-Fisher and get

‖Σ1/2
2 Σ

−1/2
1 y‖2 = yTΣ

1/2
2 Σ−1

1 Σ
1/2
2 y ≥ λmin

(
Σ

1/2
2 Σ−1

1 Σ
1/2
2

)
‖y‖2.

Since by Lemma B.3 in the Appendix it holds

λmin

(
Σ

1/2
2 Σ−1

1 Σ
1/2
2

)
=

1

λmax

(
Σ
−1/2
2 Σ1Σ

−1/2
2

) ≥ 1

λmax(Σ−1
2 )λmax(Σ1)

=
λmin(Σ2)

λmax(Σ1)
≥ 1

by assumption, we get ‖Σ1/2
2 Σ

−1/2
1 y‖ ≥ ‖y‖ and thus B̃r(0) ⊂ Br(0), concluding the proof.

Now we can formulate the main result of this section.

Theorem 9.9. Let {Zn} be a stationary Gaussian time series in Rd with mean µ
0

and spectral

density matrix f0 fulfilling Assumptions f1 and f2. Let the prior fulfill Assumption µ2 with 0 <

τ0 < λmin(f0(0)) and λmax(f0(0)) < τ1 < ∞. Denote by PnW (dµ, df |Z1, . . . , Zn) the joint

posterior of (µ,f) when updating P (dµ, df) with Whittle’s likelihood (9.2). Then the marginal

posterior of µ contracts at rate n−1/2, i.e.

PnW (n1/2‖µ− µ
0
‖ > Mn|Z1, . . . , Zn)→ 0, in Pn0 probability as n→∞

for every sequence (Mn) of positive numbers with Mn → ∞, where Pn0 denotes the joint distri-

bution of (Z1, . . . , Zn) under (µ
0
,f0).
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The Assumption f2 on f0 in Theorem 9.9 is only needed to justify the Whittle approximation

(see Theorem 4.4). If the full Gaussian likelihood is used instead of Whittle’s Likelihood, it can

be relaxed. In fact, an inspection of the upcoming proof reveals that it is sufficient to assume

that f0 is continuous and f0 ∈ Hτ0,τ1 (with Hτ0,τ1 from (9.11)) in this case.

Proof of Theorem 9.9. Due to the contiguity result from Theorem 4.4, we can assume that

the joint distribution of (Z1, . . . , Zn) is given by PnW (·|µ
0
,f0). By Assumption µ2, the prior

on µ is flat and hence the conditional posterior of µ is equal to the conditional likelihood.

Hence it follows from (8.5) that PnW (dµ|f , Z1, . . . , Zn) is a d-variate normal distribution with

mean µ̂
n

:= 1
n

∑n
t=1 Zt and covariance matrix n−12πf(0). Since it holds

PnW (f ∈ Hτ0,τ1 |Z1, . . . , Zn) = 1, for all (Z1, . . . , Zn).

by Assumption µ2, it follows that assumption (a) of Theorem 9.7 is satisfied and we will continue

to show that assumption (b) is also satisfied, which is equivalent to

En0 sup
f∈Hτ0,τ1

PnW (n1/2‖µ− µ
0
‖ > Mn|f , Z1, . . . , Zn)→ 0. (9.12)

The conditional probability on the left hand side of (9.12) is equal to

PnW (n1/2‖µ− µ
0
‖ > Mn|f , Z1, . . . , Zn) = PnW (µ /∈ Bn−1/2Mn

(µ
0
)|f , Z1, . . . , Zn)

= 1−Nd

(
µ̂
n
, n−12πf(0)

) [
Bn−1/2Mn

(µ
0
)
]

and (9.12) is equivalent to

En0 inf
f∈Hτ0,τ1

Nd

(
µ̂
n
, n−12πf(0)

) [
Bn−1/2Mn

(µ
0
)
]
→ 1. (9.13)

Under PnW (·|µ
0
,f0), it holds µ̂

n
= µ

0
+rn with rn ∼ Nd

(
0, n−12πf0(0)

)
. This follows from (4.8),

noting that µ̂
n

is equal to the Fourier coefficient Z̃0 at the zero frequency. Using translation

by µ, we obtain

Nd

(
µ̂
n
, n−12πf(0)

) [
Bn−1/2Mn

(µ
0
)
]

= Nd

(
rn, n

−12πf(0)
) [
Bn−1/2Mn

(0)
]
.

Let r̃ :=
√
n(2π)−1/2rn. Then r̃ ∼ Nd(0,f0(0)) and, using |aA| = |a|d|A| for a ∈ R and A ∈

Rd×d, we compute

Nd

(
rn, n

−12πf(0)
) [
Bn−1/2Mn

(0)
]

=
nd/2

(2π)d|f(0)|1/2

∫
|z|<n−1/2Mn

exp
(
− n

4π
(z − rn)Tf(0)−1(z − rn)

)
dz

=
nd/2

(2π)d|f(0)|1/2

∫
|z|<n−1/2Mn

exp

(
−1

2

(√
nz√
2π
− r̃
)T
f(0)−1

(√
nz√
2π
− r̃
))

dz.

Employing the transformation y =
√
n(2π)−1/2z with dz = (2π)d/2n−d/2dy, this reveals

Nd

(
rn, n

−12πf(0)
) [
Bn−1/2Mn

(0)
]

=
1

(2π)d/2|f(0)|1/2

∫
|y|<M̃n

exp

(
−1

2

(
y − r̃

)T
f(0)−1

(
y − r̃

))
dy

= Nd (r̃,f(0))
[
BM̃n

(0)
]
,
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with M̃n = (2π)−1/2Mn. Thus the left hand side of (9.13) is equal to

En0 inf
f∈Hτ0,τ1

Nd(r̃,f(0))
[
BM̃n

(0)
]

=
1

(2π)d/2|f0(0)|1/2

∫
Rd

exp

(
−1

2
rTf0(0)−1r

)
inf

f∈Hτ0,τ1
Nd(r,f(0))

[
BM̃n

(0)
]
dr

≥ 1

(2π)d/2|f0(0)|1/2

∫
BM̃n/2(0)

exp

(
−1

2
rTf0(0)−1r

)
inf

f∈Hτ0,τ1
Nd(r,f(0))

[
BM̃n

(0)
]
dr.

For ‖r‖ < M̃n/2 it holds BM̃n/2
(0) ⊂ BM̃n

(−r) and thus

Nd(r,f(0))
[
BM̃n

(0)
]

= Nd(0,f(0))
[
BM̃n

(−r)
]
≥ Nd(0,f(0))

[
BM̃n/2

(0)
]

for any f ∈ Hτ0,τ1 , yielding

En0 inf
f∈Hτ0,τ1

Nd(r̃,f(0))
[
BM̃n

(0)
]

≥ 1

(2π)d/2|f0(0)|1/2

∫
B̃Mn/2(0)

exp

(
−1

2
rTf0(0)−1r

)
inf

f∈Hτ0,τ1
Nd(0,f(0))

[
BM̃n/2

(0)
]
dr

= Nd(0,f0(0))
[
BM̃n/2

(0)
]

inf
f∈Hτ0,τ1

Nd(0,f(0))
[
BM̃n/2

(0)
]
.

Now consider the matrix T := diag(τ1, . . . , τ1) ∈ Rd×d. By assumption, it holds f(0) ≤ T for

all f ∈ Hτ0,τ1 and an application of Lemma 9.8 yields

Nd(0,f0(0))
[
BM̃n/2

(0)
]

inf
f∈Hτ0,τ1

Nd(0,f(0))
[
BM̃n/2

(0)
]

≥ Nd(0,f0(0))
[
BM̃n/2

(0)
]
Nd(0,T )

[
BM̃n/2

(0)
]
→ 1,

because M̃n = (2π)−1/2Mn → ∞ as n → ∞. We have shown that the assumptions of Theo-

rem 9.7 are fulfilled, and an application thereof yields the claim.

9.3. Outlook: Bernstein-von-Mises

In Section 9.2, we have seen that an n−1/2 rate of contraction can be achieved for the marginal

posterior of µ. The question arises whether the limiting distribution of the posterior distribution

is Gaussian, i.e. whether a Bernstein-von-Mises type theorem can be established. In a parametric

setting, it is necessary that the likelihood is asymptotically equal to a properly scaled Gaussian

location model, a property known as Local Asymptotic Normality. It can be expected that this

property is also needed in the semiparametric context. The following general theorem gives

sufficient conditions for scalar parameters of interest.

Theorem 9.10 (Semiparametric Bernstein-von-Mises). Let Z1, . . . , Zn be random variables in

some Euclidean space with likelihood having Lebesgue density p(Z1, . . . , Zn|θ, η), where the pa-

rameter is partitioned as (θ, η) with θ ∈ Θ ⊂ R and η ∈ H and H is a measurable space. Let θ

and η be independent under the prior, i.e. P (dθ, dη) = P (dθ)P (dη). Let (Θn) and (Hn) be

sequences of measurable subsets of Θ and H. Assume that the following properties hold:
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(a) Local Asymptotic Normality: There exists a tight sequence (Gn) of random variables

(i.e. the sequence of distribution functions of Gn is tight) and a sequence of positive num-

bers (an), bounded away from 0, such that the log likelihood ratio can be written as

log
p(Z1, . . . , Zn|θ, η)

p(Z1, . . . , Zn|θ0, η)
=
√
n(θ − θ0)Gn −

1

2
nan|θ − θ0|2 +Rn(θ, η)

for all (θ, η) ∈ Θ×H with a remainder term Rn(θ, η) fulfilling

sup
θ∈Θn,η∈Hn

Rn(θ, η)

1 + n|θ − θ0|2
→ 0, as n→∞. (9.14)

The sequences (Gn) and (an) may depend on (θ0, η0), but not on (θ, η).

(b) Prior positivity: In an open neighborhood of θ0, the prior on θ possesses a continuous

Lebesgue density that is positive and bounded away from 0.

(c) Joint and uniform conditional nuisance posterior concentration: It holds

P (θ ∈ Θn, η ∈ Hn|Z1, . . . , Zn)→ 1

as well as

inf
θ∈Θn

P (η ∈ Hn|Z1, . . . , Zn, θ)→ 1.

Then for the marginal posterior P (dθ|Z1, . . . , Zn) of θ it holds

E0δTV

[
P (θ ∈ ·|Z1, . . . , Zn), N(θ0 + a−1

n Gn, n
−1a−1

n )
]
→ 0,

with E0 denoting the expected value under (θ0, η0) and δTV denoting the total variation distance

between two measures.

Proof. See Theorem 12.9 in Ghosal and van der Vaart (2017).

It may be noted that Theorem 9.10 can be formulated in more generality, employing so-called

least favorable transformations of the nuisance parameter, see Section 12.3.2 in Ghosal and

van der Vaart (2017). However, the above formulation is sufficient for our considerations. Let

us restrict our attention to the univariate case d = 1 and investigate how the assumptions of

Theorem 9.10 translate to the mean θ = µ of a time series with nuisance parameter η = f being

the spectral density. With Whittle’s Likelihood (9.3), the log likelihood ratio is

log
pW (Z1, . . . , Zn|µ, f)

pW (Z1, . . . , Zn|µ0, f)
=

1

2

(
(Z̃0 −

√
nµ0)2

2πf(0)
− (Z̃0 −

√
nµ)2

2πf(0)

)
(9.15)

with the Fourier coefficient at ω = 0 given by Z̃0 = 1√
n

∑n
t=1 Zt. Let Gn := Z̃0 −

√
nµ0. Un-

der PW (·|µ0, f0), it holds Gn ∼ N(0, 2πf0(0)). Hence the sequence (Gn) is tight. Furthermore,

the right hand side of (9.15) is equal to

1

4πf(0)

(
G2
n −

(
Gn −

√
n(µ− µ0)

)2)
=

1

4πf(0)

(
2
√
nGn(µ− µ0)− n(µ− µ0)2

)
=

1

2πf0(0)

(√
nGn(µ− µ0)− 1

2
n(µ− µ0)2

)
+Rn(µ, f)



154 9.3. Outlook: Bernstein-von-Mises

with remainder term

Rn(µ, f) =
1

2π

(√
nGn(µ− µ0)− 1

2
n(µ− µ0)2

)(
1

f(0)
− 1

f0(0)

)
=:
(
R(1)
n (µ) +R(2)

n (µ)
)( 1

f(0)
− 1

f0(0)

)
.

From these considerations, it follows that assumption (a) of Theorem 9.10 is fulfilled if the

remainder fulfills the decay condition (9.14). Thus we compute∣∣∣R(1)
n (µ)

(
1

f(0) −
1

f0(0)

)∣∣∣
1 + n(µ− µ0)2

.

√
n|µ− µ0| |Gn|

1 + n(µ− µ0)2

∣∣∣∣ 1

f(0)
− 1

f0(0)

∣∣∣∣ . (9.16)

Recall the set Hτ0,τ1 from (9.11). It follows from (9.16) that

sup
µ∈R,f∈Hτ0,τ1

∣∣∣R(1)
n (µ)

(
1

f(0) −
1

f0(0)

)∣∣∣
1 + n(µ− µ0)2

→ 0, n→∞.

Furthermore, we compute∣∣∣R(2)
n (µ)

(
1

f(0) −
1

f0(0)

)∣∣∣
1 + n(µ− µ0)2

.
n(µ− µ0)2

1 + n(µ− µ0)2

∣∣∣∣ 1

f(0)
− 1

f0(0)

∣∣∣∣ .
Thus, for condition (9.14) to be fulfilled, we need to find posterior concentration set sequences (Θn)

and (Hn) such that either supµ∈Θn n(µ− µ0)2 → 0 holds or

sup
f∈Hn

|f(0)− f0(0)| → 0, as n→∞. (9.17)

The first condition can in general not be expected to hold, since it is known from the parametric

case that the posterior of µ does not contract faster than with rate n−1/2 (see Section 10.2

in van der Vaart (2000)). Thus it follows from Theorem 9.10 that a Bernstein-von-Mises the-

orem for µ can be established if a posterior concentration (in the sense of condition (c) of

Theorem 9.10) set sequence (Hn) can be found such that condition (9.17) is fulfilled. The condi-

tion (9.17) is of different nature than the previous results of this work (L1 posterior consistency

in Section 7.1.2 and Hellinger contraction rates in Sections 7.2.2 and 9.1), since it involves point-

wise consistency at ω = 0. The question under which conditions this can be established remains

open. For future work, it will be of great interest to investigate if consistency or contraction

rates employing pointwise conditions can as well be established and this could be used to estab-

lish (9.17), implying a Bernstein-von-Mises result for µ. One possible approach to tackle this

issue would be to establish consistency in the supremum norm, a road that has been taken in

the recent literature for some special models, see Castillo (2014) and Yoo and Ghosal (2016).

In the previous Sections, we restricted our attention to the mean model. It is conjectured that

the results and proof ideas can readily be carried over to more general models, as e.g. the linear

model (8.1). A possible difficulty in this context will be that the Fourier Transform of the design

matrix induces a frequency domain signal not only on ω = 0 but on all Fourier Frequencies (see

the examples in Section 8.1).
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A.
Assumptions

Chapter 1 and Chapter 2

Assumption α1. The integral
∫
S̄+d

log
(

1 + 1
β(U)

)
α(dU) is finite.

Assumption X1. Let X be a Polish space, i.e. a topological space that is homeomorphic to a

complete metric space having a countable dense subset. Let X be equipped with a locally compact

and σ-finite and non-trivial Borel measure denoted by dx.

Chapter 3

Assumption AΓ1. Let η ≡ η0 > d−1 and ω : X → (0,∞) be measurable such that
∫
X ω(x)dx <

∞. Let Σ : X → S+
d be measurable such that supx∈X λmax(Σ(x)) ≤ τ <∞.

Assumption GP1. (a) Let α : X × B(S̄+
d ) → [0,∞) such that {α(x, ·)}x∈X is a family of

finite measures on S̄+
d and such that for all B ∈ B(S̄+

d ) the mapping X 3 x 7→ α(x,B) is

measurable.

(b) Let β : X × S̄+
d → (0,∞) be measurable.

Assumption GP2. The integral
∫
X×S̄+d ×[0,∞) min(1, r)ν(dx, dU , dr) is finite for ν as in (3.1).

Assumption GP2’. The integral Cα :=
∫
X α(x, S̄+

d )dx is finite and there exists a constant β0 >

0 such that β(x,U) ≥ β0 holds for all U ∈ S̄+
d and all x ∈ X \N , where N ⊂ X is a null set.

Assumption GP3. (a) There exists N ⊂ X with
∫
N dx = 0 such that supp(α(x, ·)) = S̄+

d

holds for all x ∈ X \N .

(b) The function β is locally bounded, i.e. for every x0 ∈ X there exists a neighborhood U0

of x0 such that supx∈U0,U∈S̄+d
β(x,U) <∞.

Assumption GP4. (a) It holds α(x, dU) = g(x,U)dU for a measurable function g : X ×
S̄+
d → (0,∞). Furthermore, there exist positive constants g0, g1 such that g0 ≤ g(x,U) ≤ g1

for all U ∈ S̄+
d and all x ∈ X \N , where N ⊂ X is a null set, i.e.

∫
N dx = 0.
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(b) There exist constants 0 < β0 ≤ β1 <∞ and a null set N ⊂ X such that β0 ≤ β(x,U) ≤ β1

holds for all U ∈ S̄+
d and all x ∈ X \N .

Assumption X2. It holds
∫
X dx <∞.

Chapter 4

Assumption f1. The eigenvalues of f(ω) are uniformly bounded and uniformly bounded away

from 0. That is, there exist positive constants b0, b1 such that

λmin(f(ω)) ≥ b0, λmax(f(ω)) ≤ b1, 0 ≤ ω ≤ π.

Assumption f2. The autocovariance function Γ(h) =
∫ 2π

0 f(ω) exp(ihω)dω of f fulfills∑
h∈Z
‖Γ(h)‖|h|a <∞,

for some a > 1.

Chapter 7

Assumption k1. There exist positive constants c, C such the prior probability mass function

of k fulfills

0 < p(k) ≤ C exp(−ck log k), k ∈ N.

Assumption k2. There exist positive constants A1, A2 and positive constant κ1, κ2 such that

A1 exp(−κ1k log k) ≤ p(k) ≤ A2 exp(−κ2k), k ∈ N.

Chapter 9

Assumption µ1. The prior P (dµ) on µ is such that all moments exist. Furthermore, it is

assumed that in a neighborhood of µ
0
, it possesses a Lebesgue density that is continuous and

bounded away from 0.

Assumption µ2. The prior on (µ,f) is of the form P (dµ, df) ∝ P (df), i.e. µ and f are a

priori independent and the prior on µ is improper with p(µ) ∝ 1. The prior on f is assumed to

fulfill P (f ∈ Hτ0,τ1) = 1 for some 0 < τ0 < τ1 <∞ with Hτ0,τ1 from (9.11).
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B.1. Matrix Algebra

For A,B ∈ Cd×d, the Kronecker product of A = (aij) and B is defined as

A⊗B :=

a11B . . . a1dB
...

...

ad1B . . . addB

 ∈ Cd
2×d2 . (B.1)

The following calculation rules apply.

Lemma B.1. Let A,B,C,D ∈ Cd×d. Then it holds

(A⊗B)∗ = A∗ ⊗B∗, (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Proof. See Section 2 in Chapter 2 of Magnus and Neudecker (2007).

Let m > d− 1 and S ∈ S+
d (R) with S+

d (R) denoting the set of symmetric positive definite Rd×d

matrices. The Inverse Wishart distribution Wish−1
d×d(m,S) with m degrees of freedom and scale

matrix S is defined in terms of the Lebesgue density

p(Z) =
|S|m/2

2md/2Γd(m/2)
|Z|−(m+d+1)/2 etr

(
−1

2
SX−1

)
, Z ∈ S+

d (R), (B.2)

where Γd denotes the multivariate Gamma function (see Chapter 1.4 in Gupta and Nagar (1999)).

Norms and Eigenvalues

For a matrix A ∈ Sd, denote the eigenvalues of A by λ1(A), . . . , λd(A) ∈ R. Furthermore,

denote by λmin(A) and λmax(A) the smallest and largest eigenvalue. The trace is defined as

tr(A) :=

d∑
i=1

aii =

d∑
i=1

λi(A).

The following cyclic property of the trace applies:
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Lemma B.2. Let A,B,C ∈ Cd×d. Then

tr(ABC) = tr(BCA) = tr(CAB).

Proof. See Section 10 in Chapter 1 of Magnus and Neudecker (2007).

The following result is well-known as the Min-Max principle of Courant-Fisher.

Lemma B.3 (A.1 in Marshall et al. (2011)). Let A ∈ Sd. Then

λmin(A) = min
06=z∈Cd

z∗Az

‖z‖2
, λmax(A) = max

06=z∈Cd
z∗Az

‖z‖2
.

In this work, we consider the following matrix norms. LetA = (aij) ∈ Cd×d. Then the Frobenius

Norm is defined as

‖A‖ :=
√

tr(AA∗) =

√√√√ d∑
i,j=1

|aij |2. (B.3)

The 1-Norm is defined as

‖A‖1 :=

d∑
i,j=1

|aij |, (B.4)

whereas the Euclidean Norm is defined as

‖A‖2 :=
√
λmax(AA∗) (B.5)

and the Max Norm as

‖A‖∞ := max
i,j=1,...,d

|aij |. (B.6)

The Trace Norm is defined as

‖A‖T := tr
(

(AA∗)1/2
)

=
d∑
j=1

√
(λj(AA∗) (B.7)

where (AA∗)1/2 denotes the Hermitian positive semidefinite matrix square root of AA∗ ∈ S̄+
d ,

see (B.15). For A ∈ Sd the Frobenius and trace norm simplify to

‖A‖ =

√√√√ d∑
j=1

λj(A)2, ‖A‖T =

d∑
j=1

|λj(A)| (B.8)

and for A ∈ S̄+
d , we have the particularly convenient representations

‖A‖T = tr(A), ‖A‖2 = λmax(A). (B.9)

We will frequently need the following inequalities.
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Lemma B.4. (a) For A ∈ Cd×d it holds

1

d
‖A‖1 ≤ ‖A‖ ≤ ‖A‖1, ‖A‖2 ≤ ‖A‖ ≤

√
d‖A‖2, ‖A‖ ≤ d‖A‖∞,

and

‖UAU∗‖ = ‖A‖

for all unitary U ∈ Cd×d.

(b) For A ∈ Sd it holds

λmax(A) ≤ ‖A‖2, |λmin(A)| ≤ ‖A‖2.

(c) For A,B ∈ Cd×d it holds

| tr(AB)| ≤ ‖A‖‖B‖, ‖AB‖ ≤ ‖A‖2‖B‖, ‖AB‖ ≤ ‖A‖‖B‖.

(d) For A,B ∈ S̄+
d and C ∈ Sd it holds

λmin(A) tr(B) ≤ tr(AB) ≤ λmax(A) tr(B) (B.10)

and

λmin(A)‖C‖ ≤ ‖A1/2CA1/2‖ ≤ λmax(A)‖C‖. (B.11)

Proof. Part (a) and (b) and (c) are standard results, see e.g. Appendix II of Davies (1973).

Part (c) can be found in Appendix I of Dzhaparidze and Kotz (2012). For a proof of (B.10),

see Sections H.1.g and H.1.h in Chapter 9 of Marshall et al. (2011). To show (B.11), we use the

cyclic property of the trace from Lemma B.2 to compute

‖A1/2CA1/2‖2 = tr
(
A1/2CACA1/2

)
= tr(ACAC) ≥ λmin(A) tr(CAC),

where (B.10) was used in the last step for A ∈ S̄+
d and CAC ∈ S̄+

d . By the same argument, it

also holds

tr(CAC) = tr(ACC) ≥ λmin(A) tr(CC) = λmin(A)‖C‖2,

yielding the lower bound in (B.11) and the proof for the upper bound follows along the same

lines.

The absolute value of the determinant of A ∈ Cd×d is abbreviated by

|A| := |det(A)|. (B.12)

The following results for the determinant are used frequently.

Lemma B.5. (a) For A,B ∈ Cd×d it holds

detA =

n∏
j=1

λj(A), det(AB) = detA detB,

with λ1(A), . . . , λd(A) ∈ C denoting the eigenvalues of A.



Mathematical Appendix 161

(b) For A ∈ S+
d it holds

|A| = detA, |A1/2| = |A|1/2, |A−1| = |A|−1,

with A1/2 denoting the Hpd matrix square root of A from (B.15).

(c) For A,B ∈ S+
d it holds

|A+B| ≥
d∏
i=1

(λi(A) + λi(B)) ,

with λ1(A) ≤ . . . ≤ λd(A) and λ1(B) ≤ . . . ≤ λd(B) denoting the eigenvalues in nonde-

creasing order.

Proof. Part (a) and (b) are standard results an can e.g. be found in Section 9 in Chapter 1

of Magnus and Neudecker (2007). For part (c), see Section G.2.a in Chapter 9 of Marshall et al.

(2011).

The following result can be useful when working with the Frobenius norm.

Lemma B.6. Let A,B ∈ S̄+
d . Then

‖B1/2AB1/2 − Id‖ = ‖BA− Id‖ = ‖AB − Id‖ = ‖A1/2BA1/2 − Id‖,

where A1/2 ∈ S̄+
d denotes the Hermitian positive semidefinite square root.

Proof. By the cyclic property of the trace from Lemma B.2 it holds

tr(B1/2ABAB1/2) = tr(ABAB) = tr(A1/2BABA1/2) = tr(BABA)

and the result follows from

‖C − Id‖2 = tr ((C − Id)(C − Id)∗) = tr(CC∗)− 2 tr(C) + d

for C = B1/2AB1/2 or C = AB or C = A1/2BA1/2 or C = BA.

The following result gives some insight into the structure of the cone S̄+
d of Hermitian positive

semidefinite matrices.

Lemma B.7. Let A ∈ Sd. Then A ∈ S̄+
d if and only if tr(AB) ≥ 0 holds for all B ∈ S̄+

d .

Proof. By Lemma B.4, it holds tr(AB) ≥ 0 for all A,B ∈ S̄+
d . Assume that A ∈ Sd \ S̄+

d .

Denote by λ1, . . . , λd the eigenvalues of A. Then it holds λi < 0 for some i (because otherwise,

it would hold A ∈ S̄+
d ). Without loss of generality, let λ1 < 0. Let U ∈ Cd×d be unitary such

that A = UΛU∗, with Λ = diag(λ1, . . . , λd). Let B := U Diag(1, 0, . . . , 0)U∗. Then it clearly

holds B ∈ S̄+
d and tr(AB) = λ1 < 0.
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Jacobians of Transformations

Recall the definition of the Lebesgue measure dZ on S+
d and dU on S+

d from (2.5) and (2.6).

We need the following results.

Lemma B.8. Let Z ∈ S+
d and let U := 1

rZ ∈ S+
d with r = trZ > 0. Then dZ = rd

2−1drdU .

Proof. To show the result, we re-parametrize the complex matrices Z and U as real vectors and

derive the Jacobian determinant of the vector-to-vector transformation. To elaborate, for Z =

(zij)
d
i,j=1 and U = (uij)

d
i,j=1 and r = trZ we will consider the transformation z 7→ ϕ, where

z := (z11,<z12,=z12, . . . ,=zd−1,d, zdd) ∈ Rd
2
,

ϕ := (r, u11,<u12,=u12, . . . ,=ud−1,d) ∈ Rd
2
.

This parametrization is in line with the definition of the Lebesgue measure dZ and dU from (2.5)

and (2.6). We will compute the determinant of the Jacobian J = (
∂zi
∂ϕ

j

)d
2

i,j=1 by the following

cofactor expansion along the first column of J :

detJ =
d2∑
i=1

Ci1Ji1, Ci1 = (−1)i+1 detAi1 (B.13)

and Aij denoting the (i, j)-minor matrix of J , i.e. the (d2 − 1) × (d2 − 1) matrix obtained by

deleting the i-th row and j-th column from J . The values Cij are called the cofactors of J . The

matrix J is of the following structure:

J =


∂z
∂r rId2−1

∂zd2
∂ϕ


.

First observe that, since Z = rU and udd = 1−
∑d−1

j=1 ujj , the first column of J is given by

∂z

∂r
=

u11,<u12,=u12, . . . ,=ud−1,d, 1−
d−1∑
j=1

ujj

T

.

Furthermore, for i = 1, . . . , d2 − 1, the row vector (∂zi)/(∂ϕ) contains exactly one non-zero

element aside from the its first entry, namely (∂zi)/(∂ϕi+1
) = r. The last row (∂zd2)/(∂ϕ) =

(∂zdd)/(∂ϕ) contains exactly d − 1 non-zero entries aside from its first entry, namely the en-

tries (∂zdd)/(∂ujj) = −r for j = 1, . . . , d− 1. Thus, all cofactors Ci1 of J along the first column

are zero, except for the ones corresponding to zi’s fulfilling zi = zkk for some k (because for all the

other zi’s, the (i− 1)-th column of the corresponding cofactor-submatrix is zero). Denote these

non-zero cofactors by Ck and the corresponding cofactor-submatrices by Ak ∈ R(d2−1)×(d2−1),

k = 1, . . . , d. Since Ad is diagonal with entries r, we have detAd = rd
2−1 and hence

Cd = (−1)d
2+1 detAd = (−1)d

2+1rd
2−1.
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For k = 1, . . . , d− 1, the matrix Ak is of the following structure:

Ak =



0

rIa
... 0a×b

r0b×a
... Ib
0

∗ −r ∗


,

where a+ b = d2 − 2. A cofactor expansion along the last row of Ak yields

detAk = (−1)k+d2−1(−r)rd2−2 = (−1)d
2+krd

2−1

and hence

Ck = (−1)1+k detAk = (−1)d
2+1rd

2−1, k = 1, . . . , d− 1.

Combining these insights with (B.13) reveals

detJ =
d−1∑
k=1

ukkCk +

(
1−

d−1∑
k=1

ukk

)
Cd

= (−1)d
2+1

d−1∑
k=1

ukkr
d2−1 + (−1)d

2+1

(
1−

d−1∑
k=1

ukk

)
rd

2−1

= (−1)d
2+1rd

2−1,

hence |J | = rd
2−1, concluding the proof.

Lemma B.9. Let Z ∈ S+
d and let Σ ∈ Cd×d be invertible. Let Y = ΣZΣ∗. Then dY =

|ΣΣ∗|ddZ.

Proof. See Mathai (1997), Theorem 3.5.

Let η > d− 1. The complex multivariate Gamma function is defined as

Γ̃d(η) =

∫
S+d

etr(−Z)|Z|η−ddZ = πd(d−1)/2
d∏
j=1

Γ(η − j + 1), (B.14)

where Γ(a) =
∫∞

0 za−1 exp(−z)dz is the Gamma function, being defined for a > 0.

Lemma B.10. Let η > d− 1. Then∫
S+d
|U |η−ddU =

Γ̃d(η)

Γ(ηd)
.
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Proof. The proof is an adaption of Proposition 5.5 in Pérez-Abreu and Stelzer (2014) and uses

the same idea of transforming the spherical integral to an integral over the whole cone S+
d , by

employing a one-dimensional Gamma radial component. Observe that for any a > 0 we have∫
S+d
|U |η−ddU =

1

Γ(a)

∫ ∞
0

∫
S+d
ra−ηd+d2−1 exp(−r)|rU |η−ddrdU

=
1

Γ(a)

∫
S+d

tr(Z)a−ηd etr(−Z)|Z|η−ddZ,

where the transformation

Z = rU , r = trZ, drdU = r−d
2+1dZ

from Lemma B.8 was used in the last step. Now choosing a = ηd and using the definition (B.14)

of the complex multivariate Gamma function concludes the proof.

Hpd Matrix Square Root

Any matrix A ∈ Sd can be written as A = UΛU∗ with U being a unitary matrix containing

the eigenvectors of A as columns and Λ = diag(λ1, . . . , λd), being the diagonal matrix of the

eigenvalues λ1, . . . , λd ∈ R of A. If A ∈ S̄+
d , it holds λj ≥ 0 for j = 1, . . . , d and we can define

in this case

A1/2 := UΛ1/2U∗, Λ1/2 := diag(λ
1/2
1 , . . . , λ

1/2
d ). (B.15)

We call A the Hermitian positive semidefinite square root of A (or Hpd square root if A ∈ S+
d ).

It is clear that A1/2 ∈ S̄+
d (and A1/2 ∈ S+

d if A ∈ S+
d ) and that A1/2A1/2 = A.

Similar to the one-dimensional case, the matrix square root is differentiable and uniformly

Lipschitz, if the domain of definition is uniformly bounded away from 0 (in terms of eigenvalues),

as we will show in the following. Recall that a function Ψ : Sd → Sd is called Fréchet differentiable

at Z ∈ Sd, if there exists a linear function Ψ′(Z) : Sd → Sd and a positive constant C such

that ‖Ψ′(Z)[A]‖ ≤ C‖A‖ holds for all A ∈ Sd and

‖Ψ(Z +X)−Ψ(Z)−Ψ′(Z)[X]‖
‖X‖

→ 0, as ‖X‖ → 0. (B.16)

Lemma B.11. Consider the mapping Ψ : S+
d → S

+
d defined as the Hermitian positive definite

matrix square root Ψ(Z) = Z1/2. Then Ψ is Fréchet differentiable. For Z ∈ S+
d , the Fréchet

derivative Ψ′(Z) : Sd → Sd is given by

Ψ′(Z)[A] = Uφ(U∗AU)U∗, A ∈ Sd (B.17)

with

φ(Ã)ij :=
ãij√

λi +
√
λj
, Ã = (ãij) ∈ Sd,

where λ1, . . . , λd > 0 are the eigenvalues of Z and U is unitary such that Z = UΛU∗, with Λ =

diag(λ1, . . . , λd). Furthermore, for all τ > 0 and S+
d|τ := {Z ∈ S+

d : λmin(Z) ≥ τ} there exists a

positive constant C only depending on τ and d such that

‖Ψ′(Z)‖ ≤ C, for all Z ∈ S+
d|τ , (B.18)
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with ‖Ψ′(Z)‖ := sup06=A∈Sd
‖Ψ′(Z)[A]‖
‖A‖ denoting the operator norm of Ψ′(Z).

Proof. Applying the Fréchet differential operator to the left and right hand side of Ψ(Z)Ψ(Z) =

Z and using the chain rule (see Chapter 8, Section 2, equation (15) in Magnus and Neudecker

(2007)) yields

Ψ′(Z)[A]Ψ(Z) + Ψ(Z)Ψ′(Z)[A] = A, A ∈ Sd. (B.19)

First assume that U = Id, i.e. Z = Λ = diag(λ1, . . . , λd). Let B = Ψ′(Z)[A]. Then (B.19)

becomes

BΛ1/2 + Λ1/2B = A, Λ1/2 = diag(
√
λ1, . . . ,

√
λd),

from which aij = (
√
λi +

√
λj)bij and hence bij =

aij√
λi+
√
λj

can directly be concluded. For the

case U 6= Id, let X ∈ Sd such that Λ +X ∈ S+
d . Recalling Ψ(Z) = Z1/2 = UΛ1/2U∗ and the

unitary invariance of the Frobenius norm (i.e. ‖UAU∗‖ = ‖A‖ for all unitary matrices U and

all A ∈ Cd×d, see Lemma B.4) we consider the difference quotient

‖(UΛU∗ + X̃)1/2 −UΛ1/2U∗ −UΨ′(Λ)[U∗X̃U ]U∗‖
‖X̃‖

=
‖U((Λ +U∗X̃U)1/2 −Λ1/2 −Ψ′(Λ)[U∗X̃U ])U∗‖

‖X̃‖

=
‖(Λ + X̃)1/2 −Λ1/2 −Ψ′(Λ)[U∗X̃U ]‖

‖U∗X̃U‖
→ 0,

as ‖X̃‖ → 0 by definition of Ψ′(Λ). This shows that Ψ′(Z)[A] = UΨ′(Λ)[U∗AU ]U∗, conclud-

ing the proof of (B.17).

Consider the max norm ‖ · ‖∞ from (B.6). By the equivalence of matrix norms, there exist

positive constants c1, c2 only depending on d such that c1‖A‖∞ ≤ ‖A‖ ≤ c2‖A‖∞ holds for

all A ∈ Cd×d. For Z ∈ S+
d|τ and A ∈ Sd, we get

‖Ψ′(Z)[A]‖ = ‖Uφ(U∗AU)U∗‖ = ‖φ(U∗AU)‖ ≤ c2‖φ(U∗AU)‖∞,

where the unitary invariance of the Frobenius norm ‖·‖ was used in the second step. Furthermore

it clearly holds

‖φ(U∗AU)‖∞ ≤
1

2
√
λmin(Z)

‖U∗AU‖∞ ≤
1

2
√
τ
‖U∗AU‖∞,

and finally

‖U∗AU‖∞ ≤
1

c1
‖U∗AU‖ =

1

c1
‖A‖

yields

‖Ψ′(Z)[A]‖ ≤ c2

2c1
√
τ
‖A‖,

which concludes (B.18) with C := c2
2c1
√
τ
.
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B.2. Bernstein Polynomials

The Bernstein polynomial basis of degree k ∈ N on [0, 1] consists of the following k Beta density

functions:

b(x|j, k − j + 1) =
Γ(k + 1)

Γ(j)Γ(k − j + 1)
xj−1(1− x)k−j , 0 ≤ x ≤ 1, j = 1, . . . , k (B.20)

with Γ(j) =
∫∞

0 rj−1 exp(−j)dr denoting the Gamma function. Given some mixture weights w :=

(w1, . . . , wk) ∈ Rk, the Bernstein polynomial mixture of degree k is defined as

B(k,w)[x] :=
k∑
j=1

wjb(x|j, k − j + 1), 0 ≤ x ≤ 1.

By Section 1 in Petrone (1999), it holds
∫ 1

0 b(x|j, k−j+1)dx = 1 and max0≤x≤1 |b(x|j, k−1+1)| ≤
k for all k ∈ N and all j = 1, . . . , k. This implies∫ 1

0
B(k,w)[x]dx =

k∑
j=1

wj , max
0≤x≤1

|B(k,w)[x]| ≤ k max
j=1,...,k

|wj |. (B.21)

We first present some approximation properties of Bernstein polynomials.

Lemma B.12. Let f : [0, 1]→ Cd×d be continuous. For k ∈ N, consider the Bernstein polyno-

mial

fk(x) =
k∑
j=1

(∫ j
k

j−1
k

f(t)dt

)
b(x|j, k − j + 1), 0 ≤ x ≤ 1, (B.22)

where the integral is understood component-wise. Then it holds

max
0≤x≤1

‖f(x)− fk(x)‖ → 0, as k →∞.

Furthermore, if f takes only values in S̄+
d (or S+

d ), then so does fk.

Proof. Let ε > 0. Consider the components frs for r, s = 1, . . . , d of f . By the uniform approx-

imation property of Bernstein polynomials (see Theorem 1.6.1 in Lorentz (2012) or Section 1

in Petrone (1999)), there exists for every δ > 0 a positive integer k0,rs such that for all k ≥ k0,rs

it holds max0≤x≤1 |frs(x)− fk,rs(x)| < δ, with

fk,rs(x) =

k∑
j=1

(∫ j
k

j−1
k

frs(t)dt

)
b(x|j, k − j + 1), 0 ≤ x ≤ 1

denoting the r, s-th component of fk. Since
∫ j/k

(j−1)/k f(t)dt ∈ S̄+
d for f : [0, 1] → S̄+

d , it fol-

lows fk(x) ∈ S̄+
d for 0 ≤ x ≤ 1 in this case. Similarly, if f takes values in S+

d , then it holds

z∗

(∫ j/k

(j−1)/k
f(t)dt

)
z =

∫ j/k

(j−1)/k
z∗f(t)zdt > 0, j = 1, . . . , k,
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for all z ∈ Cd, which shows that
∫ j/k

(j−1)/k f(t)dt ∈ S+
d Hence fk only takes values in S+

d in

this case. With k ≥ k0 := maxr,s=1,...,d k0,rs it holds max0≤x≤1 ‖f(x) − fk(x)‖∞ < δ. Note

that maxr,s=1,...,d |Ars| ≥ 1
d2
‖A‖ for all A ∈ Cd×d. Choosing δ < ε

d we obtain for k ≥ k0 from

Lemma B.4

max
0≤x≤1

‖f(x)− fk(x)‖ ≤ d max
0≤x≤1

‖f(x)− fk(x)‖∞ < ε,

concluding the proof.

The preceding result can be strengthened to get a rate of convergence, under additional regularity

assumptions on f , as the following result shows.

Lemma B.13. Let f : [0, 1]→ Cd×d and fk be defined as in (B.22).

(a) If the components of f are Hölder of order 0 < a ≤ 1, then there exists a positive constant C

such that

max
0≤x≤1

‖f(x)− fk(x)‖ ≤ Ck−a/2

holds for all k ∈ N.

(b) If the components of f are continuously differentiable with derivatives being Hölder of

order 0 < a ≤ 1, then there exists a positive constant C such that

max
0≤x≤1

‖f(x)− fk(x)‖ ≤ Ck−(1+a)/2

holds for all k ∈ N.

Proof. The rates of approximation for the components of f is well-known, see e.g. Theorem 1.6.1

and Theorem 1.6.2 in Lorentz (2012), or Lemma E.3 in Ghosal and van der Vaart (2017). The

rate in the matrix norm can be obtained with the same argument as in Lemma B.12.

Remark B.14. The approximation rates achieved by Bernstein polynomials (see Lemma B.13)

are not optimal. It is known that for a function f on [0, 1] of smoothness a, there exists a

polynomial fk of degree k such that ‖f−fk‖∞ < Ck−a holds for all k ∈ N and some constant C >

0, see Section 1.6 in Lorentz (2012). These rates can e.g. be attained by splines, see Lemma E.5

in Ghosal and van der Vaart (2017).

B.3. Fourier Series

Let (bk)k∈Z be a sequence of matrices in Cd×d such that
∑

k∈Z ‖bk‖2 <∞. Let

f(ω) :=
∑
k∈Z

bk exp(−ikω), ω ∈ R. (B.23)

Clearly, f is 2π-periodic and by Parceval’s Theorem, the components of f are in L2([0, 2π]).

For 0 < a ≤ 1, we denote by Cad×d the space of continuous 2π-periodic functions g which are

Hölder of order a, i.e.

Cad×d :=

{
g : R→ Cd×d 2π-periodic : sup

ω∈R
‖g(ω + δ)− g(ω)‖ ≤ C|δ|a for some C > 0

}
.
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The following Lemma summarizes some regularity conditions for f from (B.23), in terms of

decay of the Fourier coefficients bk.

Lemma B.15. Let (bk)k∈Z be a sequence of matrices in Cd×d.

(a) If
∑

k∈Z ‖bk‖ < ∞, then the series in (B.23) converges uniformly for 0 ≤ ω ≤ 2π. In

particular, f is continuous.

(b) If
∑

k∈Z |k|a‖bk‖ <∞ for some 0 < a ≤ 1, then f ∈ Cad×d.

(c) If
∑

k∈Z |k|s‖bk‖ < ∞ for some positive integer s, then f is s times continuously differ-

entiable with derivative f (s)(ω) =
∑

k∈Z(−k)sbk exp(−ikω) for ω ∈ R, where the series

converges uniformly for 0 ≤ ω ≤ 2π.

(d) If
∑

k∈Z |k|s+a‖bk‖ <∞ for some 0 < a < 1 and some positive integer s, then f (s) ∈ Cad×d.

Proof. LetN ≥ 0 and consider the trigonometric polynomial fN :=
∑N

k=0 bk exp(−ikω). ForN >

M ≥ 0, we get

‖fN − fM‖F,∞ =

∥∥∥∥∥
N∑

k=M+1

bk exp(−ik·)

∥∥∥∥∥
F,∞

≤
N∑

k=M+1

‖bk‖.

Since (bk)k≥0 (being convergent) is a Cauchy sequence in `1(Cd×d), so are the components

of (fN )N≥0 a Cauchy sequence in the Banach space C([0, 2π], ‖·‖∞), thus convergent. Similarly,

also (fN )N≤0 is convergent, yielding (a).

To show (b), let δ ∈ R and define Dδf(ω) := f(ω + δ)− f(ω). It suffices to show ‖Dδf(ω)‖ ≤
C|δ|a for some constant C that does not depend on δ or ω. With ξk(ω) := exp(−ikω), we

compute

|Dδξk(ω)|
|δ|a

=
|Dkδξ1(kω)|
|δ|a

≤ C|kδ|a

|δ|a
= C|k|a,

where the constant C does not depend on k, ω or δ, since ξ1 ∈ Ca. Thus

‖Dδf(ω)‖
|δ|a

≤
∑
k∈Z
‖bk‖

|Dδξk(ω)|
|δ|a

≤ C
∑
k∈Z
‖bk‖|k|a.

This yields (b), since the right hand side is finite and does not depend on δ.

Part (c) follows readily from the dominated convergence theorem, using part (a). Part (d)

follows by a combination of part (b) and (c).

We will also encounter the following regularity class, which is defined in terms of decay of the

Fourier coefficients. For a ≥ 0, let

Aad×d :=

{
f =

∑
k∈Z

bk exp(−ik·) :
∑
k∈Z
‖bk‖|k|a <∞

}
.

It is known that Aad×d with the pointwise matrix multiplication is a Banach algebra (see Sec-

tion 13.1 in Gröchenig (2013)). The next result is a generalization of Wiener’s Lemma, stating

that the invertible elements in Aad×d are characterized by pointwise invertibility.
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Lemma B.16. For a ≥ 0, let f ∈ Aad×d with |f(ω)| 6= 0 for 0 ≤ ω ≤ π. Then f−1 ∈ Aad×d.

Proof. The proof can be found in Lemma 13.3.2 in Gröchenig (2013).

B.4. Poisson Processes

Let Y be a Borel space, i.e. a topological space endowed with the Borel σ-algebra. A Poisson

process Π on Y is a random countable subset of Y, such that for all k > 0 and all disjoint

subsets A1, . . . , Ak of Y, the random variables N(A1), . . . , N(Ak) are independent with N(Ai) ∼
Poi(ν(Ai)), where N(Ai) = #{Π ∩ Ai}. The measure ν on Y is called the mean measure of Π.

We write Π ∼ PP(ν). The proofs of the next four results can all be found in Kingman (1992)

(see Sections 2.2, 2.5, 3.2, 4.1 and 5 there).

Theorem B.17 (Existence Theorem). Let ν be a σ-finite measure on a Borel space Y such that

for all y ∈ Y, the set {y} is measurable with ν({y}) = 0. Then there exists a Poisson process Π

on Y with mean measure ν.

Theorem B.18 (Superposition Theorem). Let {Πj : j ∈ N} be a countable collection of in-

dependent Poisson processes having respective mean measure νj on a Borel space Y. Denote

by Π := ∪∞j=1Πj their superposition. Then it holds Π ∼ Poi(ν) with ν :=
∑∞

j=1 νj.

Theorem B.19 (Campbell’s Theorem). Let Π be a Poisson process with mean measure ν on

a Borel space Y and let g : Y → [0,∞) be measurable. Then the sum Φ :=
∑

y∈Π g(y) is

absolutely convergent in probability if and only if
∫
Y min{|g(y)|, 1}ν(dy) is finite. In this case,

the distribution of Φ is given in terms of the Laplace transform

E exp(−tΦ) = exp

(
−
∫
Y

(1− exp(−tg(y)))ν(dy)

)
, t ≥ 0.

Theorem B.20 (Interval Theorem). Let Π be a Poisson process on [0,∞) with mean mea-

sure ν(dy) = λdy, where dy denotes the Lebesgue measure and λ is a positive constant. Let y1 :=

inf Π and yj+1 := inf{Π \ {y1, . . . , yj}} for j ≥ 1. Then the increments

z1 := y1, zj+1 := yj+1 − yj (j ≥ 1),

are independent with zj ∼ Exp(λ) for j = 1, 2, . . ..

Theorem B.21 (Marking Theorem). Let Y,Z be Borel spaces and let Π be a Poisson process

on Y with mean measure ν. Consider a mapping α : Y × B(Z) → [0,∞) (with B(Z) denoting

the Borel σ-algebra in Z) such that for every y ∈ Y, α(y, ·) is a probability measure on Z and

that for every measurable B ⊂ Z, the mapping Y 3 y 7→ α(y,B) is measurable. Consider the

following random subset of Y × Z:

Π0 := {(y,my) : y ∈ Π}, my|y
ind.∼ α(y, ·),

consisting of each element y ∈ Y of Π and a respective marking my ∈ Z, drawn independently

from α(y, ·). Then Π0 is a Poisson process on Y × Z with mean measure

ν0(A) =

∫
Y×Z

1A(y, z)α(y, dz)ν(dy), A ⊂ X × Y measurable.
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Theorem B.22 (Almost sure mapping Theorem). Let Y,Z be Borel spaces and let Π, Π̃ be

Poisson processes on Y and Z with mean measure ν and ν̃ respectively. Assume that there ex-

ists a measurable function h : Y → Z such that ν̃(B) = ν(h−1(B)) for every measurable B ⊂ Z.

Assume further that the underlying probability space of Π̃ is rich enough to carry a Unif([0, 1])

random variable (i.e. having the continuous uniform distribution on (0, 1)) which is indepen-

dent of Π̃. Let {zj}j≥1
d
= Π. Then there exists a sequence {z̃j}j≥1 of random variables in Y

with {z̃j}j≥1
d
= {zj}j≥1 such that the almost sure representation Π̃

a.s.
= {h(z̃j)}j≥1 holds.

Proof. The conclusion Π̃
d
= {h(zj)}j≥1 is standard, see e.g. Section 2.3 in Kingman (1992). The

argument for the almost sure representation is given in Proposition 2.1 in Rosiński (2001).

B.5. Miscellaneous

Let k > 1 and a1, . . . , ak > 0. The Dirichlet distribution Dir(a1, . . . , ak) is defined on the

standard (k − 1)-simplex, in terms of the probability density

p(x1, . . . , xk) =
Γ
(∑k

j=1 aj

)
∏k
j=1 Γ(aj)

k∏
j=1

x
aj−1
j , x1, . . . , xk ∈ (0, 1),

k∑
j=1

xj = 1. (B.24)

For (X1, . . . , Xk) ∼ Dir(a1, . . . , ak) with a0 :=
∑k

j=1 aj it holds

EXj =
aj
a0
, VarXj =

aj(a0 − aj)
a2

0(a0 + 1)
, j = 1, . . . , k. (B.25)

The Gamma distribution Ga(a, b) with shape parameter a > 0 and rate parameter b > 0 is

defined in terms of the Lebesgue density

p(x) =
ba

Γ(a)
xa−1 exp(−bx), x > 0. (B.26)

The following result of Riemann sum convergence speed is well known in the literature. However,

since a reference of the proof was not readily available, the proof is included for the sake of

completeness.

Lemma B.23. Let g : [0, 1] → R be continuously differentiable. Then, with xj := j/n for j =

0, . . . , n− 1 it holds∣∣∣∣∣∣
∫ 1

0
g(x)dx− 1

n

n−1∑
j=0

g(xj)

∣∣∣∣∣∣ ≤ max0≤x≤1 |g′(x)|
n

.

Proof. First observe that∫ 1

0
g(x)dx =

n−1∑
j=1

∫ xj+1

xj

g(x)dx,
1

n

n−1∑
j=0

g(xj) =

n−1∑
j=0

∫ xj+1

xj

g(xj)dx.
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This leads to∣∣∣∣∣∣
∫ 1

0
g(x)dx− 1

n

n−1∑
j=0

g(xj)

∣∣∣∣∣∣ ≤
n−1∑
j=0

∫ xj+1

xj

|g(x)− g(xj)|dx.

By the mean value theorem, there exist x̃j ∈ [j/n, (j+1)/n] for j = 0, . . . , n−1 such that g(x)−
g(xj) =

g′(x̃j)
n . This yields |g(x)− g(xj)| ≤

max0≤x≤1 |g′(x)|
n and hence

n−1∑
j=0

∫ xj+1

xj

|g(x)− g(xj)|dx ≤
n−1∑
j=0

max0≤x≤1 |g′(x)|
n2

=
max0≤x≤1 |g′(x)|

n
,

concluding the proof.

The following result describes the distribution of random quadratic forms for the multivariate

normal and complex multivariate normal distribution.

Lemma B.24. (a) Let Σ ∈ S+
d (R) and Z ∼ Nd(0,Σ). Let A ∈ Sd(R). Consider the random

quadratic form Ψ(Z) := ZTAZ. Then

Ψ(Z)
d
=

d∑
i=1

λi|Xi|2,

where λ1, . . . , λd are the eigenvalues of ΣA and X1, . . . , Xd
iid∼ N(0, 1). In particular, it

holds

EΨ(Z) =

d∑
i=1

λi = tr(ΣA), VarΨ(Z) =

d∑
i=1

2λ2
i = 2 tr

(
(ΣA)2

)
.

(b) Let Σ ∈ S+
d and Z ∼ CNd(0,Σ). Let A ∈ Sd. Consider the random quadratic form Ψ(Z) :=

Z∗AZ. Then

Ψ(Z)
d
=

d∑
i=1

λi|Xi|2,

where λ1, . . . , λd are the eigenvalues of ΣA and X1, . . . , Xd
iid∼ CN(0, 1). In particular, it

holds

EΨ(Z) =
d∑
i=1

λi = tr(ΣA), VarΨ(Z) =
d∑
i=1

λ2
i = tr

(
(ΣA)2

)
.

Proof. See the Appendix in Ibragimov (1963).

The Lambert W function is defined as the inverse function of R 3 x 7→ x exp(x), such that

W (z) exp(W (z)) = z, for z ≥ − exp(−1). (B.27)

Since x 7→ x exp(x) is not injective, W consists of two branches for − exp(−1) ≤ z < 0, see

Section 1 and Figure 1 in Corless et al. (1996). It is evident that W is strictly monotonically
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increasing on (0,∞). Furthermore, W is concave on [0,∞) (see Section 3 in Corless et al.

(1996)).

We will also need the following results.

Lemma B.25. Let α > 0. Then

α2

2
exp

(αx
2

)
≤ (αx− 1) exp(αx) + 1

x2
≤ α2

2
exp(αx), x ≥ 0

and

(αx− 1) exp(αx) + 1

x2
≥ α2

2
exp(αx), x ≤ 0.

Proof. Using basic algebra, we find that the upper bound (αx−1) exp(αx)+1
x2

≤ α2

2 exp(αx) for x ≥ 0

is equivalent to

(αx− 1)2 + 1− 2 exp(−αx) ≥ 0, x ≥ 0,

or equivalently h(z) ≥ 0 for z ≥ 0 with h(z) := (z− 1)2 + 1− 2 exp(−z). Since h(0) = 0 and the

derivative h′ of h fulfills

h′(z) = 2(z − 1 + exp(−z)) ≥ 0, z ≥ 0,

the upper bound follows. The proofs for the lower bound for x ≥ 0 and the results for x ≤ 0 are

analogous.

Lemma B.26. Let τ ≥ 1 and a > 0. Then there exists a positive constant C, only depending

on τ and a, such that

za − 1 ≤ C(z − 1), 1 ≤ z ≤ τ.

Proof. Consider the function g(z) := za − 1. Assume first that a ≤ 1. In this case, g is

concave, yielding g(z) ≤ g′(z)(z − 1) ≤ a(z − 1) for z ≥ 1. If a > 1, then g is strictly

convex, and the function graph of g is below the straight line between g(1) and g(τ), which

yields g(z) ≤ τa−1
τ−1 (z − 1) for 1 ≤ z ≤ τ in this case.

Lemma B.27. Let X,Y be independent random elements in Sd. Then the support of X + Y

is the closure of {A+B : A ∈ supp(X),B ∈ supp(Y )}.

Proof. The result is Lemma 24.1 in Sato (1999), by identifying Sd with Rd2 .

Lemma B.28. Let Z be a nonnegative random variable with distribution given by its Laplace

transform

E exp(−tZ) = exp

(
−
∫ ∞

0
(1− exp(−rt))ν(dr)

)
, t ≥ 0,

and Lévy measure ν on [0,∞) with ν([0,∞)) =∞ and
∫ 1

0 rν(dr) <∞. Then min supp(Z) = 0.

Proof. See Corollary 24.8 in Sato (1999).
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The following result gives an explicit formula for mean and covariance of infinitely divisible

random Hpd matrices.

Lemma B.29. Let X be a random element in S̄+
d with infinitely divisible distribution given in

terms of the Lévy Khinchine representation (see Theorem 2.1) of its Laplace transform

L(Θ) = E etr(−ΘX) = exp

(
−
∫
S̄+d

(1− etr(−ΘZ))ν(dZ)

)
, Θ ∈ S̄+

d

with Lévy measure ν.

(a) If
∫
S̄+d
‖Z‖ν(dZ) <∞, then EX =

∫
S̄+d
Zν(dZ).

(b) If
∫
S̄+d
‖Z‖2ν(dZ) <∞, then CovX := E[X⊗2]−(EX)⊗2 is well-defined and it holds CovX =∫

S̄+d
Z ⊗Zν(dZ).

Proof. The cumulant generating function of X is defined as K(Θ) := logL(−Θ) for Θ ∈ S̄−d
with S̄−d denoting the cone of Hermitian negative semidefinite matrices. Differentiating K and

evaluation at Θ = 0 yields the cumulants. The functional derivative of K in direction T ∈ Sd
is given by

∂

∂Θ
KT (Θ) = lim

ε→0

K(Θ + εT )−K(Θ)

ε
= lim

ε→0

∫
S̄+d

etr(ΘZ)− etr((Θ + εT )Z)

ε
ν(dZ).

By Theorem 1.2 in Mathai (1997) it holds ∂
∂Θ [tr(ΘZ)] = Z, which implies ∂

∂Θ [etr(ΘZ)] =

etr(ΘZ)Z and hence

lim
ε→0

etr(ΘZ)− etr((Θ + εT )Z)

ε
= etr(ΘZ) tr(TZ).

An application of Lebesgue’s dominated convergence theorem reveals

∂

∂Θ
KT (Θ) =

∫
S̄+d

etr(ΘZ) tr(TZ)ν(dZ),

where the integral on the right hand side is well-defined since 0 < etr(ΘZ) ≤ 1 holds and

since | tr(TZ)| ≤ ‖T ‖‖Z‖, which is ν-integrable by assumption. This shows

∂

∂Θ
K(Θ) =

∫
S̄+d

etr(ΘZ)Zν(dZ)

and letting Θ → 0 concludes (a). Similarly, for the second cumulant we use ∂
∂Θ [etr(ΘZ)Z] =

etr(ΘZ)Z ⊗Z (see Magnus and Neudecker (2007), (24), p. 208) to get

∂2

∂Θ2
K(Θ) =

∫
S̄+d

etr(ΘZ)Z ⊗Zν(dZ)

and letting Θ→ 0 concludes (b).
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Metric Entropy

We will need the notion of a semimetric.

Definition B.30. Let X be a set and d : X ×X → [0,∞) be a symmetric function satisfying the

triangle inequality d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X and d(x, x) = 0 for all x ∈ X .

Then d is called a semimetric.

Semimetrics generalize the notion of a metric and they lack the identity of indiscernibles (that

is, d(x, y) = 0 to imply x = y). For ε > 0, the ε-covering number of a set X with respect to a

semimetric d on X is defined as

N(ε,X , d) := inf

N ∈ N : ∃x1, . . . , xN ∈ X with X =
N⋃
j=1

Bε(xj)

 , (B.28)

where Bε(x) = {y ∈ X : d(x, y) < ε}. The following lemma gives a bound for the covering

number of closed balls in Euclidean spaces.

Lemma B.31. For x = (x1, . . . , xd) ∈ Rd, denote for p ≥ 1 the p-norm of x by ‖x‖p =

(
∑d

i=1 |xi|p)1/p. Then for M > 0 and 0 < ε < M it holds

N
(
ε, {x ∈ Rd : ‖x‖p ≤M}, ‖ · ‖p

)
≤
(

3M

ε

)d
.

Proof. See (A.9) in Ghosal and Van Der Vaart (2007).

The following calculation rules for covering numbers apply.

Lemma B.32. (a) Let d1, d2 be semimetrics on a set X such that there exists a, b > 0 with

da1(x, y) ≤ bd2(x, y), for all x, y ∈ X .

Then N(ε,X , d1) ≤ N( ε
a

b ,X , d2).

(b) Let X ,Y be sets and d be a semimetric on X and e be a semimetric on Y. Let f : X → Y
be surjective such that there exists a, b > 0 with

ea(f(x), f(y)) ≤ bd(x, y), for all x, y ∈ X .

Then N(ε,Y, e) ≤ N( ε
a

b ,X , d).

Proof. We only show part (b), because part (a) is actually a special case thereof (with X = Y
and f being the identity). Let B1, . . . , BN be a covering of X with respect to d with radius εa

b ,

i.e.

Bj = B εa

b
,d(xj) =

{
x ∈ X : d(x, xj) <

εa

b

}
, j = 1, . . . , N

for some x1, . . . , xN ∈ X such that X =
⋃N
j=1Bj . Let f(Bj) := {f(x) : x ∈ Bj}. Since f is

surjective, it also holds Y =
⋃N
j=1 f(Bj). Consider B̃j := Bε,e(f(xj)) for j = 1, . . . , N . By
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assumption, it holds e(f(x), f(xj)) ≤ b1/ad1/a(x, xj) < ε for all x ∈ Bj , yielding f(Bj) ⊂ B̃j .

Thus it also holds Y =
⋃N
j=1 B̃j and it follows that B̃1, . . . , B̃N is an ε-cover with respect to e

of Y. This argument shows that any εa

b -cover (with respect to d) of X induces an ε-cover (with

respect to e) of Y the same size, concluding the proof.



C.
Notation

Throughout this work, matrices are written in bold as A and vectors underlined as Z. Mea-

sures in the Bayesian context (prior, posterior or likelihood) are usually denoted by capital

letters, e.g. P (dθ|Z) and (in case of existence), the corresponding Lebesgue density in lower

case, e.g. p(θ|Z). The used symbols are summarized in the following.

Functions and Operators

1A indicator function for set A

‖ · ‖F,∞ maximum Frobenius norm, see (7.3)

B(k,Φ) Bernstein polynomial expansion operator, see (7.4)

b(·|j, k − j + 1) density of Beta(j, k − j + 1) distribution, see (B.2)

bτrτl (·|j, k − j + 1) truncated Bernstein polynomial basis function, see (5.4)

δx Dirac Delta function at x

E1 exponential integral function, see (3.11)

E[X] expected value of random variable X

f(ω),F (dω) spectral density and spectral measure matrix, see (0.1)

Γ(a), Γ̃d(η) Gamma and complex multivariate Gamma function, see (B.14)

Γ(h) covariance function of stationary time series

Lµ(Θ) Laplace transform of measure µ, see Section 2.1.1

Var[X] variance of random variable X

vecR stacking operator, see (4.9)

Matrices

|A| absolute value of determinant

A < B B −A ∈ S+
d

‖A‖ Frobenius norm, see (B.3)

‖A‖# for # ∈ {1, 2,∞, T}: matrix norms, see (B.4)–(B.7)

A1/2 Hermitian positive definite square root of A ∈ S+
d , see (B.15)
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AT ,A∗ transpose and Hermitian conjugate

A⊗B Kronecker product, see (B.1)

BA isomorphism from Cd×d to R2d×2d from (4.15)

detA determinant

etrA exponential trace, i.e. exp(trA)

Fnd Fourier Transformation matrix, see Lemma 4.1

Id d× d identity matrix

λmin(A), λmax(A) smallest and largest eigenvalue of Hermitian matrix A

trA trace

Probability Distributions

AΓ(η, ω,Σ) AΓ distribution, see (2.13)

CNd(0,Σ) complex d-variate normal, see (4.6)

CWishd×d(η,Σ) complex Wishart distribution, see (1.12)

CPoi(C, ν∗) Compound Poisson distribution, see Theorem 2.2

CRM(ν) Completely Random Measure with Poisson mean measure ν, see (1.9)

CRMd×d(ν) Completely Random Hpd Measure with Poisson mean measure ν, see (3.2)

DP(G) Dirichlet Process with base measure G

Ga(α, β) Gamma distribution with α, β > 0

Gad×d(α, β) Hpd Gamma distribution, see (2.7)

Nd(µ,Σ) d-variate normal with mean µ ∈ Rd and variance Σ ∈ S+
d (R)

Poi(C) Poisson distribution

Unif(X ) Uniform distribution on X
Wish−1

d×d(η,Σ) Inverse Wishart distribution, see (B.2)

Spaces and Sets

B(X ) Borel sets on a topological space X
C complex numbers

Dd×d set of continuous S+
d -valued functions on X

LX Lebesgue measure on Euclidean space X
Lp measurable functions with Lebesgue integrable absolute pth power (1 ≤ p <∞)

Md×d set of finite Hpd measures on X
N positive integers

R real numbers

Sd space of Hermitian d× d matrices

S+
d cone of Hermitian positive definite d× d matrices

S+
d (R) cone of symmetric positive definite d× d matrices

Sd set of Hermitian d× d matrices with unit trace, see (2.3)

S+
d set of Hermitian positive definite d× d matrices with unit trace

Z integers
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Miscellaneous

an . bn there exists a positive constant C such that an ≤ Cbn for all n

dn,H root average squared Hellinger distance, see (7.31)

Ē closure of a subset E ⊂ X of a topological space X
#E cardinality of set E

=z imaginary part of z ∈ C
N(ε,X , d) ε-covering number, see (B.28)

p(z) ∝ f(z) there exists a positive constant C such that p(z) = Cf(z)

<z real part of z ∈ C
supp(µ) support of measure µ, see (2.11)
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Böttcher, A. (2006). Analysis of Toeplitz Operators. Springer Monographs in Mathematics.

Springer-Verlag Berlin Heidelberg, second edition.

Bradley, R. C. (2002). On positive spectral density functions. Bernoulli, 8(2):175–193.

Brockwell, P. and Davis, R. (1991). Time Series: Theory and Methods. Springer Series in



180 Bibliography

Statistics. Springer New York.

Brodersen, K. H., Gallusser, F., Koehler, J., Remy, N., and Scott, S. L. (2015). Inferring

causal impact using Bayesian structural time-series models. The Annals of Applied Statistics,

9(1):247–274.

Bru, M.-F. (1991). Wishart processes. Journal of Theoretical Probability, 4(4):725–751.

Bureau of Meteorology of the Australian Government (2018a). Climate glossary – Southern

Oscillation Index (SOI). http://www.bom.gov.au/climate/glossary/soi.shtml. Accessed:

2018-05-15.

Bureau of Meteorology of the Australian Government (2018b). The three phases of the

El Niño Southern Oscillation (ENSO). http://www.bom.gov.au/climate/enso/history/

ln-2010-12/three-phases-of-ENSO.shtml. Accessed: 2018-05-15.

Cadonna, A., Kottas, A., and Prado, R. (2016). Bayesian spectral modeling for multiple time

series. Technical report, Jack Baskin School of Engineering, Santa Cruz.

Cai, T. T., Ren, Z., and Zhou, H. H. (2013). Optimal rates of convergence for estimating

Toeplitz covariance matrices. Probability Theory and Related Fields, 156(1-2):101–143.

Castillo, I. (2014). On Bayesian supremum norm contraction rates. The Annals of Statistics,

42(5):2058–2091.

Choi, T. and Ramamoorthi, R. (2008). Remarks on consistency of posterior distributions. In

Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh,

pages 170–186. Institute of Mathematical Statistics Collections.

Choi, T. and Schervish, M. J. (2007). On posterior consistency in nonparametric regression

problems. Journal of Multivariate Analysis, 98(10):1969–1987.

Choudhuri, N., Ghosal, S., and Roy, A. (2004a). Bayesian estimation of the spectral density of

a time series. Journal of the American Statistical Association, 99(468):1050–1059.

Choudhuri, N., Ghosal, S., and Roy, A. (2004b). Contiguity of the Whittle measure for a

Gaussian time series. Biometrika, 91(1):211–218.

Christensen, R., Johnson, W., Branscum, A., and Hanson, T. E. (2011). Bayesian ideas and

data analysis: an introduction for scientists and statisticians. CRC Press.

Contreras-Cristán, A., Gutiérrez-Peña, E., and Walker, S. G. (2006). A note on Whittle’s

likelihood. Communications in Statistics Simulation and Computation, 35(4):857–875.

Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., and Knuth, D. E. (1996). On the

Lambert W function. Advances in Computational mathematics, 5(1):329–359.

Cui, X., Gupta, A. K., and Nagar, D. K. (2005). Wilks’ factorization of the complex matrix

variate Dirichlet distributions. Revista Matemática Complutense, 18(2):315–328.
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Pérez-Abreu, V. and Stelzer, R. (2014). Infinitely divisible multivariate and matrix gamma

distributions. Journal of Multivariate Analysis, 130:155–175.

Petrone, S. (1999). Random Bernstein polynomials. Scandinavian Journal of Statistics,

26(3):373–393.

R Core Team (2018). R: A language and environment for statistical computing. R Foundation

for Statistical Computing, Vienna, Austria.

Regazzini, E., Lijoi, A., and Prünster, I. (2003). Distributional results for means of normalized



184 Bibliography

random measures with independent increments. The Annals of Statistics, pages 560–585.

Roberts, G. O. and Rosenthal, J. S. (2009). Examples of adaptive MCMC. Journal of Compu-

tational and Graphical Statistics, 18(2):349–367.

Robertson, J. B. and Rosenberg, M. (1968). The decomposition of matrix-valued measures. The

Michigan Mathematical Journal, 15(3):353–368.

Robinson, P. M. (1995). Log-periodogram regression of time series with long range dependence.

The annals of Statistics, pages 1048–1072.

Rosen, O. and Stoffer, D. S. (2007). Automatic estimation of multivariate spectra via smoothing

splines. Biometrika, 94(2).

Rosenberg, M. (1974). Operators as spectral integrals of operator-valued functions from the

study of multivariate stationary stochastic processes. Journal of Multivariate Analysis,

4(2):166–209.
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dictionaries: Lévy adaptive regression kernels. The Annals of Statistics, 39(4):1916–1962.

Wolpert, R. L. and Ickstadt, K. (1998). Simulation of Lévy random fields. In Practical nonpara-
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