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Abstract: The work is devoted to the problem of solving large systems of linear algebraic equations with irregular 
structure matrices. To solve them the variant of the projection method in the Petrov-Galerkin form is 
proposed. Most of the known projection methods is based on the use of bases of Krylov subspaces. The 
main difference of the proposed method is the choice of the basis from coefficients of wavelet packet 
decomposition of the residuals. In general, the wavelet transform can be adaptive due to the entropic criteria 
for the evaluation of elements of the wavelet tree. This distinguishes the proposed method from the known 
FOM method, the GMRES algorithm and other projection solvers. Conducted a series of computational 
experiments comparing the proposed algorithm with the main existing projection methods. The experiments 
showed that the proposed algorithm is competitive with the major existing projection type methods, and in 
some cases can exceed them. 

1 INTRODUCTION 

The development of computer technology causes 
transition to more complex models (three- and multi-
dimensional geometry in arbitrary areas) in the form 
of systems of differential equations in partial 
derivatives and to their discrete analogues on 
unstructured grids. This leads to the necessity of 
solving large sparse systems of linear algebraic 
equations with irregular matrices, for example, in the 
analysis of three-dimensional scanning of complex 
shapes, tomography, etc. 

The most efficient and robust among the iterative 
methods for the solution of such systems of 
equations are projective techniques, especially the 
class that is associated with the projection on the 
Krylov subspace (Saad, 1981). These methods have 
a number of advantages: they are stable, allow 
effective parallelization, works with different row 
and column formats and different types of 
preconditioners. 

 
 

2 BACKGROUND 

Consider the system Ax b  and formulate the 
following problem. Let set some two subspaces 

nK R  and nL R . Is required to find a vector 
that would provide a solution to the original system 
optimum with respect to the subspace L, i.e. to 
satisfy the Petrov-Galerkin condition (Reddy, 2006): 
 

: ( , ) ( , )l L Ax l b l  (1) 
 
Grouping both sides of the properties of the 

scalar product, and noting that xb Ax r , 
condition (1) can be rewritten as: 

 
: ( , ) 0xl L r l  (2) 

 
i.e. xr b Ax L . This problem is called the 
problem of designing the solution x on the 
subspace K orthogonal to the subspace L. 

In a more general formulation of the problem is 
as follows. For the original system is known an 
approximation 0x  to the solution *x . Required to 
clarify its amendment x K  so that 

0( )xb A x L . The condition of Petrov-
Galerkin (2) in this case takes the form: 
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:l L 0 0( ,l) (( ) ,l)x x xr b Ax A  

0 x(r A ,l) 0 . 
(3) 

 
Let dim dimK L m . Let's enter in subspaces 

K and the L bases 1{ }m
j jv   and 1{ }m

j jw  respectively. 
It is easy to see that (3) holds if and only if: 

 
0 j(1 ) : ( ,w ) 0xj j m r A  (4) 

 
Introducing matrix notations 1 2[ | | ... | ]mV v v v  

and 1 2[ | | ... | ]mW w w w  for bases, we can write 
x Vy  where my R  – the vector of coefficients. 

Then (4) takes the form: 
 

0( ) 0TW r AVy , (5) 
 
from whence 0

T TW AVy W r  and 
 

1
0( )T Ty W AV W r . (6) 

 
Thus, the decision should be specified in 

accordance with the formula: 
 

1
1 0 0( )T Tx x V W AV W r , (7) 

 
from which immediately follows an important 
requirement: in practical implementations of 
projection methods subspace K and L and their 
bases should be chosen so that the matrix TW AV  
were either low dimensions, or had a simple 
structure, easy to inversion. 

Formula (7) comprises a wide class of iterative 
methods. The simplest situation is when the space K 
and L are one-dimensional. Let { }K span v  and 

{ }L span w . Then (7) takes the form: 
 

1k k k kx x v , (8) 
  

and k   is easily found from the orthogonality 
conditions ( )k k k kr A v w : 

( , ) ( , ) ( , ) 0k k k k k k k k kr Av w r w Av w , 
from whence:  

( , ) / ( , )k k k k kr w Av w . 
Let k k kv w r . Then (8) takes the form: 

1
( , )

( , )
k k

k k
k k

r r
x x

Ar r
. 

Since the expression in the denominator 
represents the quadratic form T

k kr Ar , the process of 
convergence is guaranteed if the matrix A is 
symmetric and positive definite. 

The main problem of all these methods is the 
choice of the dimension m of the space K. 

3 SOLUTION 

In (Esaulov, 2015) proposed an iterative 
algorithm using wavelet solutions. In the paper we 
propose to implement (7) using the basis V of 
elements different from that used in Krylov 
subspaces. 

As a variant of the construction of the basis V 
can be the basis of containing levels of 
decomposition the 0R -residuals obtained using the 
wavelet transform (Chui, 1992). Wavelet theory 
offers a more flexible signal processing technique 
than the Fourier transform (Bracewell, 2000). It 
provides the possibility of analysis of the signal not 
only by its frequency components, but also localizes 
them. By using wavelet analysis for signal 
processing it is advisable to use the methods of 
multiresolution analysis and fast algorithm for 
finding the wavelet coefficients. Multiscale 
representation makes it possible to review the signal 
at different levels of decomposition. 

One of the most well-known algorithms for 
multiresolution analysis is Mallat algorithm 
(Resnikoff, 1998). In this algorithm, two filters, a 
smoothing A and detailing the D, recursively used to 
obtain data for all available scales. As a rule, filters 
are of finite impulse response in which the samples 
of the analysed signal, trapped in a small window, 
are multiplied by a predetermined set of coefficients, 
the resulting values are summed, and the window is 
shifted to calculate the next value of the output. 
Flowchart of the Mallat algorithm shown in Figure 
1. 

 
Figure 1: Flowchart of the Mallat algorithm wavelet 
analysis of a signal S. 

It is also known wavelet packet decomposition 
(Coifman, 1992), which is characterized by repeated 
filtering of the detailing coefficients. Wavelet packet 
decomposition allows better control of the 
separation process of the original signal spectrum 
into parts, but significantly increases the 
computational complexity. In addition, the wavelet 
packet decomposition contains an excessive number 
of wavelet coefficients, which can be reduced if to 
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organize the search for "best tree". Wavelet packet 
decomposition is adaptive, and is widely used for the 
signal compression and noise reduction. It can adapt 
more accurately to the characteristics of signals by 
selecting the appropriate optimal form of the tree 
decomposition, which provides a minimum number 
of wavelet coefficients for a given accuracy of 
reconstruction of the signal, and, thus deliberately 
excludes from the inverse wavelet transform 
insignificant, redundant information or unnecessary 
signal details. 

A measure of optimality usually is the number of 
wavelet coefficients to reconstruct the signal with a 
given accuracy. It can be performed by entropy, 
evaluated as: 

exp( log( ))n n
n

E p p  , 2 2
n np x x  (9) 

Any averaging of coefficients increases the 
entropy. While tree analysis calculates the entropy 
of a node and its split parts. If the entropy is not 
reduced, when splitting a node, then further 
branching from this node does not make sense. 

In accordance with the proposed working 
hypothesis the algorithm of solving of the system of 
linear equations, using wavelets may be formulated 
as following steps: 

1. Set an initial approximation 0x . 
2. Generate wavelet tree of residuals 0r  in 

accordance with the selected type of 
wavelets tree building algorithm and (9). 

3. On the basis of the wavelet-tree builds 
subspaces K and L. 

4. In accordance with (6-7) the clarification of 
solutions is carried out. 

There are many ways to build bases V and W. 
Using of these methods in solving test problems 
does not give positive result, due to the bad 
conditioning of the main matrix in the (5). This 
occurs because of the proximity of the values of 
individual rows. In view of smoothing and detailing 
properties of the wavelet transform has been 
proposed the following approach. 

Let there is a wavelet tree . The basis of the 
subspace K is the set of nodes corresponding to the 
coefficient of approximation L . As the basis W of 
the subspace L selects the set of nodes r  
corresponding to detailing coefficients. This choice 
can be explained by the fact that in view of the 
approximation properties of the elements of the basis 
V it will display the most relevant information about 
the structure of residuals 0r . 

The vectors corresponding to the elements of the 
basis of the subspace W of L are sparse in many 
cases. This fact can avoid orthogonalization of the 
basis V. 

4 EXPERIMENTS 

As test problems was used examples from the 
Regularization Tools library for MATLAB (Hansen, 
2007). The maximum number of iterations was set to 
500, convergence error was assumed to be 910 . 

As the first test problem was taken the system of 
linear algebraic equations of Fox & Goodwin 
problem (Baker, 1977). The order of the main matrix 
was set to 100. Table 1 shows values of relative 
errors of solutions for Fox & Goodwin problem: 
Transpose-free quasi-minimal residual method 
(tfqmr), Generalized minimal residual method 
(gmres), Conjugate gradients squared method (cgs), 
Quasi-minimal residual method (qmr).  

Table 1: Solution of the Fox & Goodwin problem by 
MATLAB solvers. 

Solver Error, % 
tfqmr 0.027 
gmres 0.029 
cgs 0.025 
qmr 0.029 

Table 2: Solution of the Fox & Goodwin problem by 
the proposed algorithm 

Wavelet 
type 

Error, % 
Using the one-

dimensional 
decomposition 

basis 

Using the one-
dimensional 

reconstruction 
basis 

V=A L, 
W= r 

V= L, 
W= r 

V=A L, 
W= r 

V= L, 
W= r 

db1 0.085 0.066 0.018 0.087 
db2 0.064 8.773 0.329 5.197 
db8 0.324 5.911 0.125 7.485 
sym2 0.064 4.378 0.329 0.356 
sym8 0.324 6.172 0.335 6.167 
coif5 0.136 23.527 0.427 6.415 

Table 3: Solution of the Shaw problem by 
MATLAB solvers. 

Solver Error, % 
tfqmr 0.592 
gmres 0.644 
cgs 0.602 
qmr 0.650 
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Table 4: Solution of the Shaw problem by the 
proposed algorithm 

Wavelet 
type 

Error, % 
Using the one-

dimensional 
decomposition 

basis 

Using the one-
dimensional 

reconstruction 
basis 

V=A L, 
W= r 

V= L, 
W= r 

V=A L, 
W= r 

V= L, 
W= r 

db1 0.920 0.901 31.117 31.117 
db2 3.130 2.050 1.992 1.992 
db8 1.828 7.002 3.299 3.269 
sym2 3.130 3.276 0.570 0.570 
sym8 2.869 5.125 3.115 3.115 
coif5 1.923 5.141 3.236 3.225 

Table 5: Solution of the Baart problem by MATLAB 
solvers. 

Solver Error, % 
tfqmr 0.110 
gmres 0.110 
cgs 0.110 
qmr 0.109 

Table 6: Solution of the Baart problem by the 
proposed algorithm 

Wavelet 
type 

Error, % 
Using the one-

dimensional 
decomposition 

basis 

Using the one-
dimensional 

reconstruction 
basis 

V=A L, 
W= r 

V= L, 
W= r 

V=A L, 
W= r 

V= L, 
W= r 

db1 1.017 0.054 0.083 0.083 
db2 0.522 0.522 4.325 2.143 
db8 4.741 11.96 3.858 3.687 
sym2 0.522 0.522 3.079 1.254 
sym8 6.463 3.670 4.252 24.235 
coif5 4.726 4.086 4.531 4.795 

The solution by the proposed algorithm using 
different types of wavelets shown in Table 2: 
Daubechies (db1, db2, db8), Symlets (sym2, sym8), 
Coiflets (coif5). 

As the second test problem was taken the system 
of linear algebraic equations of Shaw problem 
(Shaw, 1972). The order of the main matrix was set 
to 256. Table 3 shows values of relative errors of 
MATLAB solvers solutions for Shaw problem. The 
solution by the proposed algorithm using different 
types of wavelets shown in Table 4. 

As the third test problem was taken the system of 
linear algebraic equations of Baart problem (Baart, 

1982).The order of the main matrix was set to 100. 
Table 5 shows values of relative errors of MATLAB 
solvers solutions for Baart problem. The solution by 
the proposed algorithm using different types of 
wavelets shown in Table 6. 

5 CONCLUSIONS 

The paper shows that projection methods using 
Krylov subspace is a promising method for solving 
systems of linear equations. Based on conducted 
analysis, it was formulated the hypothesis about the 
possibility of using elements of the wavelet 
decomposition and wavelet reconstruction of the 
residuals as an alternative to Krylov subspaces. 
Principles of wavelet analysis of one-dimensional 
signals using entropy criteria are formed. 

Conducted computing experiments have shown 
that the proposed algorithm is competitive with the 
major existing projection type methods, and in some 
cases can exceed them. It is also shown that 
accuracy of the solution depends on the type of 
wavelet. 
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