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Abstract: This paper provides a proof of concept of an SDN Application to provide QoS for real-time services on 
SDN networks.  Common real-time services are for example VoIP or M2M protocols like OPC UA and 
MQTT. We provide a proof of concept in the form of a specialized application for SIP traffic. The 
application lowers the latency and call-setup-time for VoIP calls. The application uses the metering and 
queueing features of OpenFlow 1.3 to assure high quality of service. The evaluation and optimization of the 
application is still in progress.  

1 INTRODUCTION 

Software-Defined Networking or (SDN) for short is 
a new approach for the implementation of computer 
networks. SDN will be an integral part of the new 
5G mobile network (Tsagkrais, 2015). SDN 
Networks consist out of multiple SDN switches and 
at least one SDN controller. The controller has an 
overview of the whole topology and creates flow 
rules for the switches. The controlled switches 
forward packets according to the flow rules they 
received. The primary used protocol for SDN is 
OpenFlow  (Open Flow Network Foundation, 2012) 
which is specified by the Open Networking 
Foundation (ONF). Reactive forwarding increses the 
overall latency (Keqiang, et al., 2015). This could be 
curcumvented through the use of proactive 
forwarding which creates the requierd flows in 
advance. Low latency is a requirement of real-time 
applications like M2M communication or VoIP. 
Through the use of specially designed SDN 
applications, it could be possible to reduce the 
latency even further if the required flows would be 
provided proactively before the traffic needs to be 
forwarded. The required SDN application is related 
to the required protocol. In this paper, we are using  
the SIP (Session Initiation Protocol) (Rosenberg, et 
al., 2002) protocol as an example.  

Figure 1: Sequence diagram of a SIP call setup with SIP 
proxy. 

2 THE SIP PROTOCOL 

SIP is a protocol used to implement the signaling in 
VoIP systems. The actual media data is transported 
by the RTP (Real Time Protocol) protocol 
(Schulzrinne, et al., 2003). 

Figure 1 shows the call setup when a SIP proxy 
is used. The caller sends an invite message that is 
acknowledged with a trying response by the proxy. 
The proxy forwards the invite to the callee, which 
replies with a trying response. After that the call 
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sends a RINGING message to the proxy to indicate 
that the called phone is ringing. The proxy forwards 
the RINGING message to the caller. The callee 
sends an OK message which contains the used 
codecs and media endpoints of the callee's telephone 
besides other information. The caller receives the 
OK message of the proxy and acknowledges it with 
an ACK message. After the ack message is received, 
the RTP stream for the media data is set up. To 
terminate a call, one party can send a BYE message, 
which is passed through the proxy and afterwards is 
acknowledged by an ok message. 

3 BASIC IDEA OF THE SDN 
APPLICATION 

The proposed application receives a copy of any SIP 
traffic on the network. This opens the opportunity to 
proactively push flows to establish a path for the 
RTP stream. The application can use the media 
description of the callee’s OK message to make a 
bandwidth estimation and reservation to ensure a 
feasible quality of service. This happens proactively 
before the switches forward the actual RTP streams. 

4 RELATED WORK 

Adami et al. (Adami, et al., 2015) propose a special 
load-aware routing application to guarantee QoS for 
VoIP calls in Software-Defined Networks. The 
application measures the link utilization and chooses 
a path with low utilization for VoIP data. In contrary 
to that Egilmez et al.  (Egilmez, et al., 2013) 
developed a special SDN controller which monitors 
the states of the different links in the topology to 
detect congested links. Walner et al. (Wallner & 
Cannistra, 2013) propose the use of OpenFlow 
queues in combination with ToS (Types of Service) 
Header fields. The disadvantage of the ToS field is 
that it has to be set at the client devices. Our 
application will provide QoS without the 
manipulation of the clients. Jeong et al. (Jeong, et 
al., 2012) developed a new NOS (network operating 
system) which uses network slicing and 
virtualization to enable QoS. Our approach 
combines active traffic analysis with OpenFlow 
queues. Our approach does not need to monitor the 
network state since the bandwidth needed is reserved 
by the queues. There are also approaches from 
within the field of industrial automation to use SDN 
for industrial automation. Herlich et al. (Herlich, 

2016) use an open real-time Ethernet standard on 
regular SDN switches. Through the use of SDN, 
they achieve a more robust and flexible topology. 
SDN enabled them to dynamically change routes in 
the case of errors like link failures or broken 
switches. They achieved low latency and the 
required QoS through the use of a master node 
which enforced a strictly organized media access. 
The use of master nodes is fairly common in 
industrial Ethernet standards (Dürkop, et al., 2015). 
This forms a contrast to our approach since we 
would not rely on a central master or specific 
Ethernet based protocol. 

5 DEVELOPMENT AND TESTING 
ENVIRONMENT 

The testing and development environment for the 
application as seen in Figure 2 consists of the 
following: 
 Two Snom VoIP phones representing user

equipment
 One System running an instance of the

Camalio SIP Proxy
 One System running an Instance of the

Floodlight SDN controller
 Three Edgecore AS4610-30T bare metal

switches running PicOS as operating system.

UA2UA1

SDN-Controller
Northbound-IF

Southbound-IF

SDN-Switch VoIP User-Agent

Openflow, OFDP

VoIP-Payload (e.g. RTP)REST

VoIP-Signalling (e.g. SIP)

SIP-Proxy SDN-Application
VoIP

Figure 2: Testing a development environment for the 
VoIP-application. 
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6 LOGICAL ARCHITECTURE OF 
THE APPLICATION 

SDN-Controller
Northbound-IF

Southbound-IF

SDN-Application
VoIPSIP/SDP-

Parser Message
Evaluation

Bandwidth Reservation

Flow-Pusher

 
Figure 3: The internal components of the application on an 
abstract level. 

The application consists of four components. The 
SIP/SDP (Handley, et al., 2006) parser is used to 
convert the received SIP packets into objects and to 
remove malformed packets. The Message 
Evaluation extracts the needed information for the 
bandwidth reservation and the routing. The 
information extracted from the Message Evaluation 
gets passed on to the bandwidth reservation which 
then estimates the bandwidth and assigns an 
OpenFlow queue for the call. The Flow-Pusher takes 
the callers and callees IP and calculates a path on the 
present topology. After the path is calculated all 
required flows get pushed. The Flow-Pusher also 
pushes a flow to every new switch which copies any 
SIP traffic and sends it to the controller. 

This architecture provides the following main 
benefit: A clear separation between traffic 
processing analysis and path selection, which makes 
the components highly reusable and adaptable. This 

makes it possible to adapt the application for other 
protocols by providing a new analysis module and 
making minor changes like adjusting port numbers 
for the traffic processing. This architecture is 
visualized in Figure 3. 

7 DEVELOPMENT OF THE SDN 
APPLICATION 

Figure 4 shows the internal architecture of the 
Floodlight SDN controller (Project Floodlight, 
2017). The controller consists of multiple 
independent and logical modules to provide a Java 
API as a northbound interface for user defined 
applications to use. Furthermore, the controller 
provides a REST and a Java API (Thomas, 2000) for 
external applications. The Java API provides huge 
performance benefits since the module can use all 
advantages of the controller like the module loading 
system and thread pools for concurrent execution. 
The proposed application will process any incoming 
SIP packets, so the usage of the Java API is 
advantageous for the performance. Floodlight 
provides a well gathered documentation and an easy 
understandable architecture which makes Floodlight 
a good project for prototyping and easy 
development. Our SDN-application consists of three 
modules. The first module is the SIPFlowPusher 
which receives incoming SIP traffic and sets up 
newly added switches to forward incoming SIP 
traffic to the controller. The second module is the 
SIPMsgAnalyzer which takes the SIP traffic from 
the SIPFlowPusher to extract the information. This 
is necessary to setup the required RTP streams. The 
RTPFlowPusher takes the extracted information to 
set up a path through the network and to choose the 
appropriate queue for a good quality of service.  
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Figure 4: Architecture of the Floodlight SDN-controller (mod (Project Floodlight, 2017)). 

 
The application uses the following services  and 
interfaces of the controller 
 IFloodlightModule: This interfaces is 

implemented by any of the three modules to 
indicate their status as a module to the rest of 
the system. 

 IOFMessageListener: This interface enables 
the SIPFlowPusher module to receive 
incoming SIP traffic for further processing. 

 IOFSwitchListener: This interface notifies 
the SIPFlowPusher when a new switch is 
connected to the network. 

 OFSwitchService: This service enables a 
module to send OpenFlow messages to the  
switch to manipulate the content of the 
switches flow table. 

 RoutingService: The RoutingService is used 
by the SIPMsgAnalyzer to determine a route 
for the RTP streams. 

 DeviceService: The DeviceService is used to 
determine the physical port and MAC 
addresses of connected terminal devices. 

 
The application also uses a third party library 

which is not part of the controller. The jain-sip 
library (O´Doherty & Ranganathan, 2017) provides 
a SIP parser for the application. The use of this 
library reduces the implementation time for the 

SIPMsgAnalyzer drastically since we don’t have to 
write our own parser. 

8 MEASUREMENTS 

We performed the following measurements to 
examine if a bandwidth reservation can be provided 
by OpenFlow queues. Our measurement setup is 
shown in Figure 5. We connected two load 
generators to the switch; we also use a receiver to 
measure the amount of data received. The load 
generator LG1 generated one  high priority stream of 
700 Mbit/s.  LG2 generated a low priority stream of 
1 Gbit/s. The high priority stream has a duration of 
10 seconds; the low priority stream has a length of 
30 seconds. The high priority stream started roughly 
10 seconds after the low priority stream. We 
compared the throughput of the different streams 
using different transport protocols (TCP and UDP) 
with different OpenFlow queue configurations. 
Figure 6 shows the use of TCP without queues. The 
bandwidth of the outgoing interface is shared 
equally between the two streams which implies the 
usage of a round robin algorithm. Figure 7 shows the 
use of TCP with queues in place. The queue is 
configured to reserve 700Mbit/s for the high priority 
stream. The graph indicates that the reserved 
bandwidth is provided. The Figure 8 and Figure 9 
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show the same results regarding UDP. The  
bandwidth could not be provided. One explanation 
for this could be the absence of flow control for 
UDP, this could create an overflow in the switches 
packet buffer which results in a drop of incoming 
packets. To further analyze the results regarding 
UDP we repeated our experiment with an 

overestimated queue size. We reserved 700 Mbit/s 
for a 100 Mbit/s stream. The results are shown in 
Figure 10. The results seem to imply that the size of 
the queue needs to be overestimated in order to work 
for UDP. This could also be an indicator that the 
throughput of the load generator and the throughput 
of the queue are measured on different OSI Layers. 

 

 
Figure 5: Measurement setup. 

 
Figure 6: No bandwidth reservation, TCP. 
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Figure 7: 700 Mbit/s bandwidth reservation, TCP. 

 
Figure 8: No bandwidth reservation, UDP. 

 
Figure 9: 700 Mbit/s bandwidth reservation, UDP. 
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Figure 10: 100 Mbit/s high priority stream with a 700 Mbit/s bandwidth reservation, UDP. 

9 CONCLUSIONS 

The results show that a bandwidth for TCP streams 
can be guaranteed with OpenFlow queues. The 
results for UDP show that further research in the 
area of queue planning and capacity estimation 
needs to be done. Also, additional aspects such as 
jitter and delay of the streams need to be analysed. 
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