
Providing of QoS-Enabled Flows in SDN
Exemplified by VoIP Traffic

Jannis Ohms1, Olaf Gebauer1, Nadiia Kotelnikova1,2, Diederich Wermser1 and Eduard Siemens2
1Research Group IP-Based Communication Systems, Ostfalia University of Applied Sciences,

Salzdahlumer Str. 46/48, D-38302, Wolfenbüttel, Germany
2Future Internet Lab Anhalt, Anhalt University of Applied Sciences, Bernburger Str. 55, D-06366 Köthen, Germany

{jannis.ohms, ola.gebauer, n.kotelnikova, d.wermser}@ostfalia.de, eduard.siemens@hs-anhalt.de

Keywords: Software-Defined Networking, SIP, QoS, OpenFlow.

Abstract: This paper provides a proof of concept of an SDN Application to provide QoS for real-time services on
SDN networks. Common real-time services are for example VoIP or M2M protocols like OPC UA and
MQTT. We provide a proof of concept in the form of a specialized application for SIP traffic. The
application lowers the latency and call-setup-time for VoIP calls. The application uses the metering and
queueing features of OpenFlow 1.3 to assure high quality of service. The evaluation and optimization of the
application is still in progress.

1 INTRODUCTION

Software-Defined Networking or (SDN) for short is
a new approach for the implementation of computer
networks. SDN will be an integral part of the new
5G mobile network (Tsagkrais, 2015). SDN
Networks consist out of multiple SDN switches and
at least one SDN controller. The controller has an
overview of the whole topology and creates flow
rules for the switches. The controlled switches
forward packets according to the flow rules they
received. The primary used protocol for SDN is
OpenFlow (Open Flow Network Foundation, 2012)
which is specified by the Open Networking
Foundation (ONF). Reactive forwarding increses the
overall latency (Keqiang, et al., 2015). This could be
curcumvented through the use of proactive
forwarding which creates the requierd flows in
advance. Low latency is a requirement of real-time
applications like M2M communication or VoIP.
Through the use of specially designed SDN
applications, it could be possible to reduce the
latency even further if the required flows would be
provided proactively before the traffic needs to be
forwarded. The required SDN application is related
to the required protocol. In this paper, we are using
the SIP (Session Initiation Protocol) (Rosenberg, et
al., 2002) protocol as an example.

Figure 1: Sequence diagram of a SIP call setup with SIP
proxy.

2 THE SIP PROTOCOL

SIP is a protocol used to implement the signaling in
VoIP systems. The actual media data is transported
by the RTP (Real Time Protocol) protocol
(Schulzrinne, et al., 2003).

Figure 1 shows the call setup when a SIP proxy
is used. The caller sends an invite message that is
acknowledged with a trying response by the proxy.
The proxy forwards the invite to the callee, which
replies with a trying response. After that the call

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

25

sends a RINGING message to the proxy to indicate
that the called phone is ringing. The proxy forwards
the RINGING message to the caller. The callee
sends an OK message which contains the used
codecs and media endpoints of the callee's telephone
besides other information. The caller receives the
OK message of the proxy and acknowledges it with
an ACK message. After the ack message is received,
the RTP stream for the media data is set up. To
terminate a call, one party can send a BYE message,
which is passed through the proxy and afterwards is
acknowledged by an ok message.

3 BASIC IDEA OF THE SDN
APPLICATION

The proposed application receives a copy of any SIP
traffic on the network. This opens the opportunity to
proactively push flows to establish a path for the
RTP stream. The application can use the media
description of the callee’s OK message to make a
bandwidth estimation and reservation to ensure a
feasible quality of service. This happens proactively
before the switches forward the actual RTP streams.

4 RELATED WORK

Adami et al. (Adami, et al., 2015) propose a special
load-aware routing application to guarantee QoS for
VoIP calls in Software-Defined Networks. The
application measures the link utilization and chooses
a path with low utilization for VoIP data. In contrary
to that Egilmez et al. (Egilmez, et al., 2013)
developed a special SDN controller which monitors
the states of the different links in the topology to
detect congested links. Walner et al. (Wallner &
Cannistra, 2013) propose the use of OpenFlow
queues in combination with ToS (Types of Service)
Header fields. The disadvantage of the ToS field is
that it has to be set at the client devices. Our
application will provide QoS without the
manipulation of the clients. Jeong et al. (Jeong, et
al., 2012) developed a new NOS (network operating
system) which uses network slicing and
virtualization to enable QoS. Our approach
combines active traffic analysis with OpenFlow
queues. Our approach does not need to monitor the
network state since the bandwidth needed is reserved
by the queues. There are also approaches from
within the field of industrial automation to use SDN
for industrial automation. Herlich et al. (Herlich,

2016) use an open real-time Ethernet standard on
regular SDN switches. Through the use of SDN,
they achieve a more robust and flexible topology.
SDN enabled them to dynamically change routes in
the case of errors like link failures or broken
switches. They achieved low latency and the
required QoS through the use of a master node
which enforced a strictly organized media access.
The use of master nodes is fairly common in
industrial Ethernet standards (Dürkop, et al., 2015).
This forms a contrast to our approach since we
would not rely on a central master or specific
Ethernet based protocol.

5 DEVELOPMENT AND TESTING
ENVIRONMENT

The testing and development environment for the
application as seen in Figure 2 consists of the
following:
 Two Snom VoIP phones representing user

equipment
 One System running an instance of the

Camalio SIP Proxy
 One System running an Instance of the

Floodlight SDN controller
 Three Edgecore AS4610-30T bare metal

switches running PicOS as operating system.

UA2UA1

SDN-Controller
Northbound-IF

Southbound-IF

SDN-Switch VoIP User-Agent

Openflow, OFDP

VoIP-Payload (e.g. RTP)REST

VoIP-Signalling (e.g. SIP)

SIP-Proxy SDN-Application
VoIP

Figure 2: Testing a development environment for the
VoIP-application.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

26

6 LOGICAL ARCHITECTURE OF
THE APPLICATION

SDN-Controller
Northbound-IF

Southbound-IF

SDN-Application
VoIPSIP/SDP-

Parser Message
Evaluation

Bandwidth Reservation

Flow-Pusher

Figure 3: The internal components of the application on an
abstract level.

The application consists of four components. The
SIP/SDP (Handley, et al., 2006) parser is used to
convert the received SIP packets into objects and to
remove malformed packets. The Message
Evaluation extracts the needed information for the
bandwidth reservation and the routing. The
information extracted from the Message Evaluation
gets passed on to the bandwidth reservation which
then estimates the bandwidth and assigns an
OpenFlow queue for the call. The Flow-Pusher takes
the callers and callees IP and calculates a path on the
present topology. After the path is calculated all
required flows get pushed. The Flow-Pusher also
pushes a flow to every new switch which copies any
SIP traffic and sends it to the controller.

This architecture provides the following main
benefit: A clear separation between traffic
processing analysis and path selection, which makes
the components highly reusable and adaptable. This

makes it possible to adapt the application for other
protocols by providing a new analysis module and
making minor changes like adjusting port numbers
for the traffic processing. This architecture is
visualized in Figure 3.

7 DEVELOPMENT OF THE SDN
APPLICATION

Figure 4 shows the internal architecture of the
Floodlight SDN controller (Project Floodlight,
2017). The controller consists of multiple
independent and logical modules to provide a Java
API as a northbound interface for user defined
applications to use. Furthermore, the controller
provides a REST and a Java API (Thomas, 2000) for
external applications. The Java API provides huge
performance benefits since the module can use all
advantages of the controller like the module loading
system and thread pools for concurrent execution.
The proposed application will process any incoming
SIP packets, so the usage of the Java API is
advantageous for the performance. Floodlight
provides a well gathered documentation and an easy
understandable architecture which makes Floodlight
a good project for prototyping and easy
development. Our SDN-application consists of three
modules. The first module is the SIPFlowPusher
which receives incoming SIP traffic and sets up
newly added switches to forward incoming SIP
traffic to the controller. The second module is the
SIPMsgAnalyzer which takes the SIP traffic from
the SIPFlowPusher to extract the information. This
is necessary to setup the required RTP streams. The
RTPFlowPusher takes the extracted information to
set up a path through the network and to choose the
appropriate queue for a good quality of service.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

27

Figure 4: Architecture of the Floodlight SDN-controller (mod (Project Floodlight, 2017)).

The application uses the following services and
interfaces of the controller
 IFloodlightModule: This interfaces is

implemented by any of the three modules to
indicate their status as a module to the rest of
the system.

 IOFMessageListener: This interface enables
the SIPFlowPusher module to receive
incoming SIP traffic for further processing.

 IOFSwitchListener: This interface notifies
the SIPFlowPusher when a new switch is
connected to the network.

 OFSwitchService: This service enables a
module to send OpenFlow messages to the
switch to manipulate the content of the
switches flow table.

 RoutingService: The RoutingService is used
by the SIPMsgAnalyzer to determine a route
for the RTP streams.

 DeviceService: The DeviceService is used to
determine the physical port and MAC
addresses of connected terminal devices.

The application also uses a third party library

which is not part of the controller. The jain-sip
library (O´Doherty & Ranganathan, 2017) provides
a SIP parser for the application. The use of this
library reduces the implementation time for the

SIPMsgAnalyzer drastically since we don’t have to
write our own parser.

8 MEASUREMENTS

We performed the following measurements to
examine if a bandwidth reservation can be provided
by OpenFlow queues. Our measurement setup is
shown in Figure 5. We connected two load
generators to the switch; we also use a receiver to
measure the amount of data received. The load
generator LG1 generated one high priority stream of
700 Mbit/s. LG2 generated a low priority stream of
1 Gbit/s. The high priority stream has a duration of
10 seconds; the low priority stream has a length of
30 seconds. The high priority stream started roughly
10 seconds after the low priority stream. We
compared the throughput of the different streams
using different transport protocols (TCP and UDP)
with different OpenFlow queue configurations.
Figure 6 shows the use of TCP without queues. The
bandwidth of the outgoing interface is shared
equally between the two streams which implies the
usage of a round robin algorithm. Figure 7 shows the
use of TCP with queues in place. The queue is
configured to reserve 700Mbit/s for the high priority
stream. The graph indicates that the reserved
bandwidth is provided. The Figure 8 and Figure 9

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

28

show the same results regarding UDP. The
bandwidth could not be provided. One explanation
for this could be the absence of flow control for
UDP, this could create an overflow in the switches
packet buffer which results in a drop of incoming
packets. To further analyze the results regarding
UDP we repeated our experiment with an

overestimated queue size. We reserved 700 Mbit/s
for a 100 Mbit/s stream. The results are shown in
Figure 10. The results seem to imply that the size of
the queue needs to be overestimated in order to work
for UDP. This could also be an indicator that the
throughput of the load generator and the throughput
of the queue are measured on different OSI Layers.

Figure 5: Measurement setup.

Figure 6: No bandwidth reservation, TCP.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

29

Figure 7: 700 Mbit/s bandwidth reservation, TCP.

Figure 8: No bandwidth reservation, UDP.

Figure 9: 700 Mbit/s bandwidth reservation, UDP.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

30

Figure 10: 100 Mbit/s high priority stream with a 700 Mbit/s bandwidth reservation, UDP.

9 CONCLUSIONS

The results show that a bandwidth for TCP streams
can be guaranteed with OpenFlow queues. The
results for UDP show that further research in the
area of queue planning and capacity estimation
needs to be done. Also, additional aspects such as
jitter and delay of the streams need to be analysed.

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

31

ACKNOWLEDGEMENTS

The research presented in this paper is partly funded
by the BMWi (Bundesministerium für Wirtschaft
und Energie) within the ZIM-Programm (Zentrales
Innovationsprogramm Mittelstand). This work is
part of the INAASCA project (Integrated Network
as a Service Solution as Part of Cloud IT
Application Portfolio) (Gebauer, et al., 2016).
Additionally, this work is funded by Volkswagen
Foundation for trilateral partnership between
scholars and scientists from Ukraine, Russia and
Germany within the project CloudBDT: Algorithms
and Methods for Big Data Transport in Cloud
Environments.

REFERENCES

Adami, D., 2015. Towards an SDN Network Control
Application for Differentiated Traffic Routing - IEEE
978-1-4673-6432-4. [Online] Available from:
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=
7249251 2017.01.02.

Dürkop, L., Jasperneite, J. & Fay, A., 2015. An analysis of
real-time ethernets with regard to their automatic
configuration. In: Factory Communication Systems
(WFCS). IEEE World Conference , IEEE.

Egilmez, H. E., Dane, S. T. & Bagci, K. T., 2013.
OpenQoS: An OpenFlow controller design for
multimedia delivery with end-to-end Quality of Service
over Software-Defined Networks - IEEE. Signal &
Information Processing Association Annual Summit
and Conference (APSIPA ASC).

Gebauer, O., Ohms, J., Wermser, D. & Wähling, S.-O.,
2016. Mechanisms for the Automated Setup of
Software-Defined Networks - ITG-Fachbericht 263
ISBN 978-38007-4220-2. Osnabrück: VDE Verlag.

Handley, M., Jacobson, V. & Perkins, C., 2006. RFC 4566
- SDP: Session Description Protocol. [Online]
Available from: https://tools.ietf.org/html/rfc4566
2017.01.05.

Herlich, M., 2016. Proof-of-concept for a software-defined
real-time Ethernet. In: Emerging Technologies and
Factory Automation (ETFA). IEEE 21st International
Conference , pp. 1-4.

Jeong, K., Kim, J. & Kim, Y.-T., 2012. QoS-aware
network operating system for software defined
networking with generalized OpenFlows. IEEE
Network Operations and Management Symposium, pp.
1167-1174.

Keqiang, H., 2015. Latency in Software Defined
Networks: Measurements and Mitigation Techniques -
ACM 978-1-4503-3486-0/15/06. [Online] Available
from: https://aaron.gember-jacobson.com/docs/he
2015sigmetrics.pdf 2017.01.08.

O´Doherty, P. & Ranganathan, M., 2017. JSIP: Java SIP
specification Reference Implementation. [Online]
Available from: https://github.com/usnistgov/jsip
2017.01.06

Proc. of the 5th International Conference on Applied Innovations in IT, (ICAIIT), March 2017

32

Open Networking Foundation, 2012. OpenFlow Switch
Specification. [Online] Available from:
https://www.opennetworking.org/images/stories/down
loads/sdn-resources/onf-specifications/openflow/
openflow-spec-v1.3.1.pdf 2017.01.09.

Project Floodlight, 2017. Floodlight OpenFlow Controller
- Project Floodlight. [Online] Available from:
http://www.projectfloodlight.org/floodlight/
2017.01.11.

Rosenberg, J., 2002. RFC 2543 - SIP: Session Initiation
Protocol. [Online] Available from:
https://www.ietf.org/rfc/rfc3261.txt 2017.01.04

Schulzrinne, H., Casner, S., Frederick, R. & Jacobson, V.,
2003. RFC 3550 - RTP: A Transport Protocol for
Real-Time Applications. [Online] Available from:
https://tools.ietf.org/html/rfc3550 2016.12.15.

Thomas, R., 2000. Architectural styles and the design of
network-based software architectures - Doctoral
Thesis. University of California,: s.n.

Tsagkrais, K., 2015. Customizable autonomic network
management: integrating autonomic network
management and software-defined networking. IEEE
Vehicular Technology Magazine, 10(1), pp. 61-68.

Wallner, R. & Cannistra, R., 2013. An SDN approach:
quality of service using big switch’s floodlight open-
source controller. Proceedings of the Asia-Pacific
Advanced Network. Proceedings of the Asia-Pacific
Advanced Network, Issue 35, pp. 14-19.

