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Abstract: As industry of information technologies evolves, demand for high speed data transmission steadily 
increases. The need in it can be found in variety of different industries – from entertainment withtrends for
increasing of video to scientific research. One of the consequences is a demand for new improved transport 
protocols that would use the capacity of Long Fat Pipes by maximum, where common TCP performs much 
slower than it is expected. Such protocols are mostly based on UDP and work at the user space. To improve 
their network throughput, there is an option to implement sending data in a multi-threading way, but that 
can bring complications with it. One of the main obstacles is a possibility of out-of-order delivery due to 
race conditions. This problem is researched in current paper. Causes of reorder are studied regarding UDP-
based transport protocols. Based on the results of the testing, a simple algorithm for compensating out-of-
order delivery is proposed. It’s effect then is analysed on the example of RMDT.

1 INTRODUCTION

The common limitation of operating systems –
involving of significant resources on each system 
send and receive calls – leads to the performance 
limitation on sender side of such an application. Of 
particular interest is a problem of a high data rate 
traffic generation on a sender side. Especially in 
cases of point-to-multipoint communications, when 
the same data has to be transmitted to multiple 
destinations, as sender has to produce more traffic 
than each of the receivers has to process. This can be 
resolved by introducing of a multi-threaded send 
process into a transport protocol. The idea behind 
the use of multi-threading for performance 
improvement lies in fact that only part of system call 
actually concerns working with NIC. So, 
theoretically it could be possible to invoke 
sendmsg() or recvmsg() system calls, which can be 
used as “send” and “receive” operations on Linux
from different cores and all processing, that is not
concerned NIC, will be performed in parallel. Such 
approach can be applied as sendmsg() and recvmsg()

are thread safe and re-entrant (Linux Programmer's 
Manual, 2017). Thus, these calls can be performed 
in parallel and so resulting data rate can be 
increased. Another important fact is that UDP 
preserves message boundaries (IEEE Standards 
Interpretations, 2017). Theoretically, there is no 
reason to assume that within this method there are 
some fundamental limitations of maximum data rate 
achievable.

Besides the speed boost, multi-threading in 
sending and receiving data can bring a number of 
problems on its own. One of them is a problem of 
efficient scalability regarding the system limitations.
Another one is possible interleaving of packets due 
to asynchronous send operations, which is subject of 
investigations in current paper. For transport 
protocols this may present certain pitfalls as packets 
that are out of order could be considered lost by its 
ARQ algorithm. This work aims at provision of
some insights into the packet reordering problem 
and proposes a simple algorithm to overcome it.
In general, there are mechanisms, such as signals, 
mutexes, conditional variables, that allow to avoid 
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such packet reordering problems. However, the 
downside of using these mechanisms is radically 
reduced performance as they usually include waiting 
for synchronization, and when the data rates are on 
the level of gigabits per second, even a block for a 
small amount of time can decrease output from NIC 
significantly. Thus, it is important to keep sender 
lightweight. Considering arguments, presented 
earlier, only lockless data exchange mechanisms are 
used in this work – precisely lockless queues.  

For a simple application that consists of a lockless 
queue as IPC mechanism and sendmsg() system call 
which performs the interaction with network 
hardware, is considered as a test subject. In such an 
application – a few points of possible reorder are 
present: 

➢ out-of-order timings of dequeue() operations 
➢ out-of-order return of the object from a queue 
➢ out-of-order send call 
First and second points can be generally 

considered as one since they produce the same result 
– reordered read from the IPC queue. 

There is a possibility to handle out-of-order 
packets without mechanisms that create additional 
load on sender. This work analyses the behaviour of 
a multithreaded data transmission application and 
analyses the proposed algorithm that handles the 
problem of reordering without locking and works on 
the receiver side, which is important, as its 
implementation does not create an additional load on 
the sender threads, thus does not decrease sender 
performance. 

2 RELATED WORK 

The lack of networking performance caused by CPU 
limitation is a problem that is of relevance in almost 
every multi-gigabit data transmission environment. 
This problem is clearly shown in research 
(Srivastava, 2014), which explores the problem of 
traffic generation for a 40 Gbps channel by 
comparison of several generators: D-ITG, packETH, 
Ostinato. As a result, S. Srivastava et al. state that no 
traffic generator was able to achieve the 40 Gbps 
rate. Authors suggest to use multithreaded 
generation of traffic. D-ITG - a generator from 
proposed research, which utilizes the channel using 
16 threads. However, no additional research on 
impact of multithreading on packet-reordering was 
presented. To obtain more data on implementation 
of multi-threading the advantages of a multi-
threaded approach for a network UDP-based 
application were investigated in a separate work 

(Syzov, 2016). Conclusion is, that multi-threading is 
beneficial for the fast traffic generation. It compares 
performance of cases with various amount of threads 
(from 2 to 20) on a 10 Gbps link. This work shows 
clear increase in performance with increasing 
number of threads as with 3 threads almost 10 Gbps 
rate has been achieved. With more than 12 threads, 
data rate starts decreasing. This number corresponds 
to exceed of the amount of CPUs and can be 
explained by overhead on threads management. 

Another work (Nguyen D., 2007) shows the 
methodology for development of a multi-threaded 
network application, which correlates with this 
work. Research, among other subjects, considers two 
of the main pitfalls in a multithreaded network 
application - race conditions on data transport and 
inter-process communication. As explained by 
Nguyen D. et al., in an unsynchronized application, 
there is a possibility of data races and stresses the 
potential harm that it may cause due to reordering 
and data corruption. However, that work does not go 
into detail and does not propose a solution. In 
current research, the problem of possible reorders, 
caused by race conditions, is investigated further 
with tests made and a proposed algorithm for 
reordering avoidance. 

3 TESTING ENVIRONMENT 

All tests were performed in 10 GE Laboratory of 
Future Internet Lab Anhalt (FILA, 2017). The core 
element here is the WAN emulator Netropy 10G that 
can be used to create an emulation of WAN links. 
During each test, 10 GB of data are transmitted. 
MSS is equal to 1472 bytes as it corresponds to 
common 1500 Ethernet v2 MTU (IETF, 2017). For 
sending and receiving, two Linux servers are used. 
Their specifications are presented in table 1. 
 

Table 1: Servers' specifications. 

Name Server 1 Server 2 
Kernel 4.4.0-38generic 

x86_64 
4.4.0-

45lowlatency 
x86_64 

CPU Intel Xeon X5690 (6-
core) 3.5 GHz 

AMD 
Opteron(tm) 4238 
(6-core) 3.3 GHz 

Memory 40 GB DDR3 32 GB DDR3 
NIC Chelsio 

Communications Inc. 
T420CR  

Intel 
Corporation 

82599ES   
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Since system call execution times can show 
significant spikes, all the figures with measurement 
results present filtered data – significant deviations 
are treated as outliers and are removed from data set. 
It is done in order to have a closer look on the 
behaviour of the tested configuration as original data 
often contains spikes that are rare and have different 
causes, which are not studied in this paper. The 
outlier filtering is performed by Tukey method 
(Frigge, 1989), it rejects outcomes, which are out of 
inter-quartile range (approximately 2.698σ). 

For tests, apart from C Library and C++ 
Standard Library, following open source non-
standard libraries were used:  

➢ moodycamel::ConcurrentQueue (concurrent 
queue, 2017)  for inter-process 
communication; 

➢ HPTimer (Fedotova, 2013) for precise time 
measurements. 

3.1 IPC Means 

Since an intensive use of threads is present in this 
work, an appropriate IPC mechanism is required. 
Due to specific use case, there are some key 
requirements for a queue: 

➢ Ability to work in a Single Producer, 
Multiple Consumers mode 

➢ Low time of enqueue and dequeue 
operations. 

Also a few additional requirements are given, 
that simplify usage of the queue and give more 
options to a developer: 

➢ Ability to acquire approximate number of 
elements in the queue or avoiding overflow 
and gaining information on senders’ 
performance without direct communicating 
with sender threads; 

➢ Support of a dynamic allocation of additional 
memory for the option to increase queue 
size if senders significantly slows down for 
some period of time. 

Following these requirements, 
moodycamel::ConcurrentQueue was chosen as it 
provides fast enough operations and also slow 
degradation of performance. It provides approximate 
amount of objects currently placed in the queue, 
which can be used to determine if threads work 
correctly without additional queue for the backward 
channel. Apart from this, the possibility to enqueue 
only if there is free allocated memory is present, 
which is useful if dynamic behaviour is not desired. 

3.2 Time Acquisition 

In order to retrieve data on timings of various 
operations a precise time acquiring mechanism is 

required. For this purpose the HPTimer library has 
been used, since it provides faster time acquisition 
than standard std::chrono library (Fedotova, 2013). 
It is worth to note that each measurement contains 
overhead of the timer itself which however is non-
negligible.  

4 TEST AND ANALYSIS OF 
REORDERS 

For analysis and evaluation of reorder causes, some 
research should be made in order to analyze the 
behavior of a multi-threaded application in general. 
The stability of send call timings is of interest as 
inconsistency may lead to race conditions. In a real 
case, however, each send iteration includes 
additional operations that are not directly connected 
to a send call itself, the program as a whole is not 
executed constantly and, apart from all else, the 
system call may not take the same time on each 
iteration. To assess, how system handles sendmsg() 
call, some experiments have to be performed. 

To acquire information on timings of main 
operations on sender threads’ side, a test has to be 
performed with measurements of sendmsg() and 
dequeue() operations in sequence. The algorithm is 
minimalistic for precise measurements. It does not 
contain any operations apart from measured ones, 
time measurements and std::vector::push_back() 
operation to a reserved storage per loop. Results are 
presented on figures 1-3.  

Figure 2: enqueue() operation time measurements on 
Server 1 in a thread. 

Figure 1: sendmsg() operation time measurements on 
Server 1 in a thread. 
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On all figures, there is some inconsistency 
observed. The most prominent one is a significant 
drop on figure 3, that occurs when enqueue process 
on producer side (figure 2) is finished. However, it 
should be noted, that in tested case dequeue() takes 
much less time than sendmsg(). Also, in comparison 
to pure sendmsg() in a single thread, there are more 
inconsistencies in this case (deviation of 112ns vs. 
63ns).  

Next test aims to determine the volume of packet 
reorders in an application. As there are two main 
possible points of reorder causing operations, each 
of them is tested separately and then in combination. 
For this purpose, a set of test applications has been 
developed.  

For tests, all data collection is placed at the 
receiver. In the test with no queue, the 
differentiation between sender threads is performed 
by setting predefined calculation of sequence 
numbers. The one, used in this test is defined by 
formula 1: 

(1) 

where  it the sequence number of message i; ID 
– thread identification number; – amount of
threads. In that way, each sending thread has its own 
sequence of numbers, that differs from others. With 
this approach, it would be incorrect to count out-of-
order numbering inside one loop of each thread. 
More appropriate would be to count reorder cases, 
when order of numbers differs on each loop or if one 
of the threads sends messages faster than others. For 
the final test with queue, no additional functionality 
on the sender side is required. Receiver simply gets 
the message, then separates and stores a sequence 
number. The amount of threads, that are of interest, 
are 2, 3 and 11. Amounts of 2 and 3 are important as 
in this cases the maximum bandwidth of a 10 Gbps 
link is reached. The case with 11 threads represents 
the maximum quantity of sender threads for having 
one thread per CPU as one thread is a main 
application. However, for a better overview of the 
behavior, two additional numbers of threads between 
3 and 11 are also considered. Such test can provide 

some information about significance of reorders as 
necessity of handling them depends on it. 

For each case 40 trials were conducted. Collected 
data is analysed and the mean percentage of reorders 
is calculated. Each deviation from the expected next 
number is treated as reorder in case if factual 
number is bigger than expected. Results are 
presented in table 2.  

Table 2: Percentage of reordered packets on Server 1. 

Tested case, 
threads 

2 3 5 8 11 

sendmsg() 50% 33% 21% 16% 10% 

Sendmsg() + 
dequeue() 

0.02% 4.2% 6.2% 14% 31.3% 

As can be seen, sendmsg() is not handled well by 
the kernel in regard to proper ordering. Another 
conclusion is that internal blocking of the send call 
in kernel space can decrease the reordering 
percentage, since the increase in the amount of 
threads decreases reorder percentage. As for 
combined sendmsg() and dequeue(), there is an 
expected increase in percentage of out-of-order 
delivery. However, it is not linear. And in case of 2 
threads, the percentage is small enough to be 
neglected.  

To check if this behaviour is the same for 
different hardware, an additional test for a 
sendmsg()+dequeue() was conducted on a different 
server. Results are presented in table 3 

Table 3: Percentage of reordered packets on Server 2. 

Tested 
case, 

threads 

2 3 5 8 11 

Sendmsg() 
+ 

dequeue() 

2% 3% 6% 18% 30% 

As can be seen, while the percentage is different 
for some cases, the difference is generally not 
significant and the behavior remains the same. 

Apart from percentage of reorders, the depth (in 
packets) between expected receive of a reordered 
packet and factual is of interest. It can show how 
long the application should wait before it can send 
NACK to get optimal performance. Results of 
processing collected data are presented in table 4 for 
cases with 2, 8 and 11 threads.  

Figure 3: dequeue() operation time measurements on 
Server 1 in a thread. 
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Table 4: Depth of reorders (in %). 

     Depth 

Scenario 

1 2 3 4 5 6 and 
more 

Server 1, 2 
threads 

1 69 1 7 7 15 

Server 1, 8 
threads 

4 33 21 13 3 25 

Server 1, 11 
threads 

4 25 16 9 4 42 

Server 2, 2 
threads 

0 97 0.3 0.3 0.3 2 

Server 2, 8 
threads 

2 11 7 3 1 76 

Server 2, 11 
threads 

2 6 3 1 2 86 

From data, presented in table 3 it can be 
concluded that generally reorders tend to have depth 
of 2 or 3. Also, there is a significant difference 
between results on server 1 and 2. While on server 1 
most of reorders have depth of 2 or 3 even if the 
amount of threads is increased, on server 2 with 
additional threads added percentage significantly 
shifts to more deep.  

In a more close to a real use scenario with a 
serialized sequence of dequeue() and sendmsg(), the 
presence of a single data producer via the queue 
mostly compensates the timing reordering of packets 
by the kernel. Also, the percentage of reorders in the 
case of two threads is negligible. This is important 
as in some cases two threads can already reach 10 
Gbps data rate, which might be enough for most 
applications. However, with addition of more 
threads there is a rapid increase in out-of-order 
delivery percentage. This fact means that there is a 
necessity in a mechanism that would handle such 
behavior to avoid decrease in utilization due to 
packet reorders. 

5 PROPOSED REORDER 
HANDLING IN THE 
PROTOCOL 

To compensate out-of-order delivery an algorithm is 
suggested for implementation on the receiver side 
which handles the packet reordering in a feasible 
way. Basic principle of the algorithm is that every 
thread sends packets with thread-specific sequence 
numbering in addition to the connection-specific 
numbering. In the described multi-threaded sending 
scenario, is safe to assume that all packets that have 

numbers lower than the least number from received 
last from each thread, are either lost or received. For 
purposes of this algorithm, some bytes at the header 
have to be reserved for a number of a thread, that 
sends the data packet. This has two main 
consequences: 

➢ Maximum amount of sender-threads is 
restricted by the maximum thread number 
in the respective header field; 

➢ Additional operations for processing data are 
to be placed on the receiver side. 

A flow chart of the described approach is shown 
on figure 4 and visual representation of packet 
reordering on figure 5. 

Here TI is a unique thread ID and Pnum is a 
connection-global sequence number of a packet. As 
can be seen, packet 5 was lost during transmission, 
but receiver does not send NACK immediately, but 

Figure 5: Visualization of the reorder handling algorithm. 

Figure 4: Flow chart of the reorder handling algorithm. 
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rather waits until it can be sure that the packet is 
actually lost. NACK is sent after packet 6 from 
thread 0 and packet 7 from thread 1 are received. 

When implemented on the receiver side, it can 
handle reorders caused by multithreading by such 
approach. However, it does not cover other causes 
for out-of-order delivery. Also, in real-world 
scenarios, apart from principles, described in the 
algorithm, some modifications have to be applied. 
The reason for that is the possibility of packet losses. 
As receiver has to notify sender about missing 
packets at some point, some functionality regarding 
this has to be implemented. Two generally used 
solutions are: 

➢ Setting the timeout. If a missing packet was 
not received in a predefined period of time 
it is considered to be lost; 

➢ Defining a number of packets, that can be 
received after a missing one. If missing 
data was not received after that number, a 
packet is considered to be lost. 

TCP, for example, implements both approaches 
as it has a defined window, but also TCP has a 
timeout for each packet to be received. If timeout is 
exceeded or if last message of a window is received, 
missing packets are considered to be lost. In regard 
to algorithm explained in this chapter, the number of 
packets that are received after a missing one depends 
on the depth of reorders.  

With example of RMDT, the use of 8 theads with 
server 1 as a sender, unhandled reorders will result 
in 14% loss on it’s own. And if transmission is 
performed throug channel with losses, the total 
percentage of packets retransmitted can be even 
higher, thus, decreasing overall performance of a 
protocol. However, by implementation of reorder 
handling algorithm with waiting window of 4, most 
of reorders will be handled and difference in  
performance between these two cases is more than 
10%. On the other hand, in a scenario of 2 threads, 
the percentage of reorders is low enough to be 
ignored.  

The main difference between this algorithm and 
simple wait for a defined number of packets or a 
timeout is that it allows to differentiate between loss 
and reorder on the run. Thus, it does not 
significantly decrease the performance of the ARQ 
protoclol. 

5 CONCLUSIONS 

There is a demand in transport protocols, that can 
efficiently and reliably transmit data. To develop 
such a protocol, a number of problems have to be 

considered. One of them is a preservation of the 
ordering of data packets as for some types of ARQ, 
an out-of-order packet might be equal to a lost 
packet. In this work, basic reasons for out-of-order 
delivery caused by multithreading were considered. 
With measurements on timings of operations 
involved and reorders themselves, some insight was 
provided into behaviour of a multithreaded network 
application. In a case of 2 threads, depending on 
hardware, the percentage of reorders ranged from 
0.02% to 02% with depth mostly equal to 2 (from 
69% to 97% of reorders). 

For the problem of reordering, to optimize data 
integrity preservation, an algorithm was suggested 
and it’s benefits evaluated on the example of 
RMDT.  

5 FUTURE WORK 

Possible continuation of this work is developing and 
testing more complex algorithm that would include 
handling out-of-order delivery in general, not only 
that caused by multi-threading. More work can be 
done on evaluating the influence of reorders in a real 
transport protocol. In particular, the subject of 
reordering in wide area networks should be 
researched. Such research may provide information 
necessary for developing an appropriate out-of-order 
handling mechanism in protocols that operate on 
wide area network. 

Additional tests should also be performed for 
different setups. Of special interest are tests with 
different types of hardware and its´ configuration. 
Also, tests with dynamically changing load on CPU 
and memory usage are of interest. Based on the 
results of such tests, the proposed algorithm can be 
improved to be able to handle variety of situations 
correctly. 

For testing approach as a part of a real protocol, 
if all functionality will be proved to work correctly, 
this approach can be tested as a part of an UDP-
based multi-threaded transport protocol for high 
speed data transmission. 
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