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Abstract— Advances in computer memory technology justify 
research towards new and different views on computer 
organization. This paper proposes a novel memory-centric 
computing architecture with the goal to merge memory and 
processing elements in order to provide better conditions for 
parallelization and performance. The paper introduces the
architectural concepts and afterwards shows the design and 
implementation of a corresponding assembler and simulator.

Keywords: Explicit parallelism, memory-centric, high-
performance computing, assembler, simulator.

I. INTRODUCTION 

The most notable characteristic of a classical Von-
Neumann- and Harvard – based computer architecture is the 
clear separation between memory and processing: a 
computer system consists of memory that keeps program 
code and data; and processing units that read program code, 
load data from memory and process it. In this context, it is 
important to note that the difference between memory and 
processing speed has always imposed a bottleneck in 
computing throughput [1], which has led to development of 
various caching solutions. However, memory speed is 
significantly improved now. For example [2] shows a DDR3 
memory that achieves a working frequency of 1.8 GHz.

This justifies research towards new concepts in computer 
architectures that would make closer ties among computing 
and memory resources. It should be mentioned that current 
research is mainly focused toward parallel processing as 
processor technology slowly reaches its upper bounds on 
chip complexity and speed. 

Our research focuses on achieving stronger merge 
between memory and processing units, i.e. incorporating 
processing hardware directly in memory. As part of the 
memory is always used to store program code and the rest is 
used for data, it makes sense to add execution hardware into 
the code parts. Also if the need for virtual memory is taken 
into account, and the memory hardware is observed as a set 
of blocks, then it would be convenient to have an execution 
unit in each memory block that contains program code. This 
allows completely concurrent execution of all programs that 
fit in memory at a given time. The only issues that need to 
be considered in this organization are data inter-dependence 
and synchronization among running threads, and they can be 
resolved by using an appropriate interconnection system.

A single self-executing unit is solely responsible to fetch 
and decode instructions from its code block, and then issue 
data movement and arithmetic commands over the bus so 
that they are performed on the data blocks. Since commands 
are executed directly over the memory data, there is no need 
for processor registers and they are not used. The removal of 
processor registers makes a significant simplification in the 
way programs are written, compiled and executed. This 
paper presents the influence these changes will make on 
processor performance.

The explicitly parallel instruction computing (EPIC) 
architecture as a concept implies that compiler is responsible 
for detection of instruction-level parallelism (ILP) in the 
high-level program code, embedding this information into 
machine-code executables and possibly even preparing a 
complete execution plan [3]. This relieves the burden on 
hardware for various processor features such as: dependence 
checking, branch prediction, pipeline hazards, out-of-order 
execution etc. Although, this implies great simplification for 
the EPIC hardware, at the same time achieving great 
performance improvements, still its most notable 
implementation – Intel IA-64, hasn’t achieved a significant 
success. The presented architecture will incorporate some of
the EPIC concepts, probably resulting in more intensive data 
exchange between the memories and computing elements, 
thus forcing better usage of computational hardware 
elements. Finally, that will hopefully result in better 
acceptance of the EPIC philosophy.

This paper presents and examines an instruction set 
architecture appropriate for the suggested processor 
architecture. As a proof of concept we show an instruction-
level simulator design for the architecture and evaluate its 
performance. The following chapter presents the state-of-
the-art in the field of parallel computing architectures. The 
next two chapters describe the memory-centric computing 
architecture and its instruction set architecture. The fourth 
chapter presents the corresponding simulator, followed by 
simulation results and their analyses. The paper ends with 
conclusion and future work.

II. STATE OF THE ART

The research in the field of computer architectures is 
usually focused on increasing their throughput. The most 
common ways to deal with this issue include efficient data 
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organizations and optimal interconnection between memory 
and processing units. 

Memory-centric computer architectures with special 
attention on connectivity issues are proposed in [4]-[5]. Here 
the computer system is viewed as a reconfigurable array of 
processing units on one side, and memory blocks on the 
other side, all interconnected by direct communication links.
The processing units and the memory blocks have 1-1
mapping, and their interconnection is realized by 
interconnection circuit (crossbar switch). This organization 
shows an improvement of around 75% in regard to classical 
computer organizations. 

In [6] centralized memory pools are proposed that are 
designed for transaction-based applications. In order to 
allow optimal data exchange, they introduce specialized 
three-dimensional interconnection network.

Large numbers of papers also investigate adjustable 
models for memory-centric architectures [7]-[12][13] 
discusses the advantages and the reasons to use memory-
centric architectures, and proposes various implementation 
options. [14]-[16] on the other hand give proposals for 
hardware realizations of different memory-centric 
architectures.

III. ARCHITECTURE DETAILS

As previously mentioned, the main idea of the proposed 
architecture is to merge the processing and memory units. 
This is done by implementing the processor’s fetch and 
decode phases directly in the program part of the memory 
i.e. exactly where the instructions are located. Furthermore, 
the complete fetch/decode circuitry may be added to every 
program memory block, and in case this is too expensive, it
can also be added to a group of blocks. So, one block or a 
group of blocks with execution capabilities will be called a 
self-executing memory block in the rest of the text.

Therefore, a memory-centric EPIC architecture as 
proposed in this paper consists of self-executing memory 
blocks, data memory blocks and their interconnection 
network. 

Fig. 1. Memory-centric computer architecture.

Every active self-executing block fetches and decodes its 
instructions and issues them to the memory blocks and to 
the ALUs. Whenever a new process is created, the system 
scheduler will assign a free block if available, or will free 
one in case all are busy.

Given that instructions are executed in-memory, the need 
for classical register becomes obsolete, and the instructions 
will work directly with memory locations. In order to 
decrease instruction length, it is a good idea to use a concept 
similar to segmentation. In this case, every executing block
can work with one associated data block at a time, and the 
memory operands will represent address offsets in the data 
page instead of complete addresses. When data from another 
page is needed, the re-association will be performed by a 
special instruction. It should be noted that in this context, 
the terms block and page are used interchangeably. 

Having only one associated data page at a time will 
impose problems when a thread accesses data parts that are 

interleaved over several data pages, because this will result 
in frequent data page re-associations, so it is a compiler's 
responsibility to provide an efficient data-to-page mapping 
and data manipulation algorithm. This is not a trivial task, 
and there is a lot of research that needs to be done in order 
to resolve this issue.

As mentioned previously, the goal of this research is to 
observe memory as a set of memory pages with execution 
capabilities that are interconnected by an appropriate bus 
system. It should be noted that this organization is especially 
convenient for FPGA implementation, because FPGA 
technology is already designed as a reconfigurable network 
of small memory and processing blocks. The only issue is 
the limit on achievable working frequency of the FPGA 
technology as well as its relatively high cost per 
implemented logic. Therefore, FPGA should be used for 
prototyping and afterwards the final product should be 
produced as integrated circuit.

IV. INSTRUCTION SET ARCHITECTURE

The initial instruction set has simple MIPS-like 
instructions for arithmetical-logical operations, program 
flow control as well as auxiliary operations. Instruction 
operands always represent memory addresses that can 
address data either directly or indirectly. The instruction 
formats and their functions are shown in Table 1. 

TABLE I
INSTRUCTION SET ARCHITECTURE

Operation Instruction format

ar
ith

m
et

ic
al

-lo
gi

ca
l

Addition add dest, op1, op2

Subtraction sub dest, op1, op2

Multiplication mul dest, op1, op2

Division div dest, op1, op2

Logical Bit-wise AND and dest, op1, op2

Logical Bit-wise OR or dest, op1, op2

Logical Bit-wise XOR xor dest, op1, op2

Logical Bit-wise NOT not dest, op1

pr
og

ra
m

 fl
ow

 c
on

tr
ol

Branch to dest 
if op1 is equal to op2

beq dest, op1, op2

Branch to dest 
if op1 is not equal to op2

bne dest, op1, op2

Branch to dest 
if op1 is greater than op2

bgt dest, op1, op2

Branch to dest 
if op1 is less than op2

blt dest, op1, op2

Branch to dest 
if op1 is greater than 
or equal to op2

bge dest, op1, op2

Branch to dest 
if op1 is less than 
or equal to op2

ble dest, op1, op2

Branch to dest b dest

au
xi

lia
ry

Terminate running thread 
and deactivate page

hlt

Load byte op to dest lb dest, op

Load 2 bytes op to dest lh dest, op

Load 4 byte word op to dest lw dest, op

Executing
units

Inter-
connection

Data
units
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All operations by default use direct addressing. 
Additionally, any operand may be set to use indirect 
addressing, by surrounding it in square brackets. For 
example, the instruction 

add [000F0000h], 00FF0004h, [000F0008h] 

will perform addition of the word on address 00FF0004h, 
and the word on address that is specified by the word on 
address 000F0008h. The result than will be written to the 
address specified by the word that resides on address 
000F0000h.

Additionally, every instruction may accept an immediate
value as a second operand. This is specified by adding i to 
the opcode (addi, subi, muli etc.) For example,

muli 000F0000h, 00FF0004h, 000F0008h 

will calculate the product of the word on address 
00FF0004h and the immediate value 000F0008h, and will 
store the result on address 000F0000h.

The assembler supports the data memory directives 
.space, .byte, .half and .word that allocate and initialize the 
data segments.

V. INSTRUCTION-LEVEL SIMULATOR

In order to make initial analysis, an instruction-level 
simulator is developed in the Python 2.7 programming 
language. It consists of several modules: parser, which 
contains an assembler grammar definition, parses the code, 
and returns python objects representing the instructions; 
program memory units that contain the code and execute it 
instruction by instruction; and data memory units that 
contain the data segments. It should be noted that the parser 
is developed by using the pyparsing library.

The main work of the simulator is done in the program 
memory units. Every unit has a program counter, page 
number, program number, time tag and a flag that indicates 
whether the unit is in use. The time tag is used to identify 
the least recently used unit, in the case when all units are 
active and there is a new thread that needs to be executed. 

The simulator maintains an array of all code pages and 
performs cycle by cycle execution of all active units. Aside 
from showing the transition of memory states, it keeps 
information about the number of executed cycles, page 
faults and data page re-allocations. As such it is a valuable 
tool for performance estimation of the proposed 
architecture. 

Currently the simulator doesn't simulate the 
interconnection among memory units and assumes constant 
time for data exchange. This will not be the case in real 
scenarios, so for more accurate results a simulation on 
FPGA prototype is needed.

VI. SIMULATION RESULTS

In order to estimate and compare the performance 
benefits of a memory-centric architecture, we perform 
simulations and analysis for a typical computing problem:
Fibonacci array generation. The program is written in 
assembler for both a classical MIPS assembler language as 
described in [17]; and the proposed MIPS-like assembler 
presented in the previous chapters of this paper. The former
is simulated in the MARS simulator [17].

The tested program calculates a Fibonacci array of 4-byte 
elements and stores it in memory. The program code is first 
written for the memory-centric MIPS-like architecture, and 
is simulated for variable array lengths. Then it is rewritten 
for the original MIPS assembler and simulated for the same 
array lengths. Figure 1 shows a comparison of the total 
number of executed instructions. It can be easily noticed that 
the number of instructions is almost 50% lower with the 
memory-centric architecture. This means that even with half 
of the working frequency, the memory-centric architecture 
can potentially achieve the same performance. 

This would also mean a 50% decreased power 
consumption.

Fig. 1. Comparison of total number of instructions.

In order to make a fair comparison of execution time, we 
equalize the number of cycles for the two instruction set 
architectures. For a typical multi-cycle MIPS architecture 
the loads execute in 5 cycles; stores and R-type instructions 
in 4 cycles; whereas branching occurs in 3 cycles [16].
Since the memory-centric architecture accesses memory in 
every instruction we can safely assume that it doesn't take 
more than 6 cycles for each instruction. Figure 2 shows a 
comparison of the equivalent number of execution cycles. 
When using this model the number of executed instructions 
is still smaller although not with the same degree.

Fig. 2. Comparison of equivalent number of cycles.

VII. CONCLUSION AND FUTURE WORK

This paper shows that a memory-centric architecture has 
the potential for achieving much better performance and 
lower power consumption than that of a traditional computer 
architecture. One reason for this improvement is the fact that 
programs contain significantly smaller number of 
instructions when written for the proposed architecture and 
require less clock cycles to perform the same operations.

If we also consider the better parallelization opportunities,
it should become clear that this architecture is very 
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promising, and may even revolutionize the parallel 
computing paradigm.

It should be noted however, that presented analyses do 
not take into account cache block misses. This should not 
influence the results significantly, as the size of the self-
executing blocks is similar to the cache memory blocks, and 
the time penalty for a miss should be of the same order of 
magnitude. Comparison that takes this parameter into 
account is left for future work.

Another important consideration for this architecture is 
the interconnection network, because its characteristics will 
have a crucial impact on the system performance. The 
influence will depend on many factors regarding the 
interconnection system, such as its structure and 
implementation, and this is a crucial part of our future 
research.

The proposed architecture is suitable for FPGA 
implementation due to its similarity to the FPGA technology 
– both are structured as a set of data and execution units. 
This solution however is limited when it comes to execution 
speeds due to the nature of the FPGA. Higher speeds will be 
achieved by using ASIC implementation and this opens up a 
whole new field of research.
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