
37

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

Abstract— Advances in computer memory technology justify
research towards new and different views on computer
organization. This paper proposes a novel memory-centric
computing architecture with the goal to merge memory and
processing elements in order to provide better conditions for
parallelization and performance. The paper introduces the
architectural concepts and afterwards shows the design and
implementation of a corresponding assembler and simulator.

Keywords: Explicit parallelism, memory-centric, high-
performance computing, assembler, simulator.

I. INTRODUCTION

The most notable characteristic of a classical Von-
Neumann- and Harvard – based computer architecture is the
clear separation between memory and processing: a
computer system consists of memory that keeps program
code and data; and processing units that read program code,
load data from memory and process it. In this context, it is
important to note that the difference between memory and
processing speed has always imposed a bottleneck in
computing throughput [1], which has led to development of
various caching solutions. However, memory speed is
significantly improved now. For example [2] shows a DDR3
memory that achieves a working frequency of 1.8 GHz.

This justifies research towards new concepts in computer
architectures that would make closer ties among computing
and memory resources. It should be mentioned that current
research is mainly focused toward parallel processing as
processor technology slowly reaches its upper bounds on
chip complexity and speed.

Our research focuses on achieving stronger merge
between memory and processing units, i.e. incorporating
processing hardware directly in memory. As part of the
memory is always used to store program code and the rest is
used for data, it makes sense to add execution hardware into
the code parts. Also if the need for virtual memory is taken
into account, and the memory hardware is observed as a set
of blocks, then it would be convenient to have an execution
unit in each memory block that contains program code. This
allows completely concurrent execution of all programs that
fit in memory at a given time. The only issues that need to
be considered in this organization are data inter-dependence
and synchronization among running threads, and they can be
resolved by using an appropriate interconnection system.

A single self-executing unit is solely responsible to fetch
and decode instructions from its code block, and then issue
data movement and arithmetic commands over the bus so
that they are performed on the data blocks. Since commands
are executed directly over the memory data, there is no need
for processor registers and they are not used. The removal of
processor registers makes a significant simplification in the
way programs are written, compiled and executed. This
paper presents the influence these changes will make on
processor performance.

The explicitly parallel instruction computing (EPIC)
architecture as a concept implies that compiler is responsible
for detection of instruction-level parallelism (ILP) in the
high-level program code, embedding this information into
machine-code executables and possibly even preparing a
complete execution plan [3]. This relieves the burden on
hardware for various processor features such as: dependence
checking, branch prediction, pipeline hazards, out-of-order
execution etc. Although, this implies great simplification for
the EPIC hardware, at the same time achieving great
performance improvements, still its most notable
implementation – Intel IA-64, hasn’t achieved a significant
success. The presented architecture will incorporate some of
the EPIC concepts, probably resulting in more intensive data
exchange between the memories and computing elements,
thus forcing better usage of computational hardware
elements. Finally, that will hopefully result in better
acceptance of the EPIC philosophy.

This paper presents and examines an instruction set
architecture appropriate for the suggested processor
architecture. As a proof of concept we show an instruction-
level simulator design for the architecture and evaluate its
performance. The following chapter presents the state-of-
the-art in the field of parallel computing architectures. The
next two chapters describe the memory-centric computing
architecture and its instruction set architecture. The fourth
chapter presents the corresponding simulator, followed by
simulation results and their analyses. The paper ends with
conclusion and future work.

II. STATE OF THE ART

The research in the field of computer architectures is
usually focused on increasing their throughput. The most
common ways to deal with this issue include efficient data

Software for Explicitly Parallel Memory-Centric
Processor Architecture

Goce Dokoski, Danijela Efnusheva, Aristotel Tentov, Marija Kalendar
SS. Cyril and Methodius University - Faculty of Electrical Engineering and Information Technologies

Karpos II bb, PO Box 574, 1000 Skopje, Macedonia
E-mail: {gocedoko, danijela, toto, marijaka}@feit.ukim.edu.mk

38

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

organizations and optimal interconnection between memory
and processing units.

Memory-centric computer architectures with special
attention on connectivity issues are proposed in [4]-[5]. Here
the computer system is viewed as a reconfigurable array of
processing units on one side, and memory blocks on the
other side, all interconnected by direct communication links.
The processing units and the memory blocks have 1-1
mapping, and their interconnection is realized by
interconnection circuit (crossbar switch). This organization
shows an improvement of around 75% in regard to classical
computer organizations.

In [6] centralized memory pools are proposed that are
designed for transaction-based applications. In order to
allow optimal data exchange, they introduce specialized
three-dimensional interconnection network.

Large numbers of papers also investigate adjustable
models for memory-centric architectures [7]-[12][13]
discusses the advantages and the reasons to use memory-
centric architectures, and proposes various implementation
options. [14]-[16] on the other hand give proposals for
hardware realizations of different memory-centric
architectures.

III. ARCHITECTURE DETAILS

As previously mentioned, the main idea of the proposed
architecture is to merge the processing and memory units.
This is done by implementing the processor’s fetch and
decode phases directly in the program part of the memory
i.e. exactly where the instructions are located. Furthermore,
the complete fetch/decode circuitry may be added to every
program memory block, and in case this is too expensive, it
can also be added to a group of blocks. So, one block or a
group of blocks with execution capabilities will be called a
self-executing memory block in the rest of the text.

Therefore, a memory-centric EPIC architecture as
proposed in this paper consists of self-executing memory
blocks, data memory blocks and their interconnection
network.

Fig. 1. Memory-centric computer architecture.

Every active self-executing block fetches and decodes its
instructions and issues them to the memory blocks and to
the ALUs. Whenever a new process is created, the system
scheduler will assign a free block if available, or will free
one in case all are busy.

Given that instructions are executed in-memory, the need
for classical register becomes obsolete, and the instructions
will work directly with memory locations. In order to
decrease instruction length, it is a good idea to use a concept
similar to segmentation. In this case, every executing block
can work with one associated data block at a time, and the
memory operands will represent address offsets in the data
page instead of complete addresses. When data from another
page is needed, the re-association will be performed by a
special instruction. It should be noted that in this context,
the terms block and page are used interchangeably.

Having only one associated data page at a time will
impose problems when a thread accesses data parts that are

interleaved over several data pages, because this will result
in frequent data page re-associations, so it is a compiler's
responsibility to provide an efficient data-to-page mapping
and data manipulation algorithm. This is not a trivial task,
and there is a lot of research that needs to be done in order
to resolve this issue.

As mentioned previously, the goal of this research is to
observe memory as a set of memory pages with execution
capabilities that are interconnected by an appropriate bus
system. It should be noted that this organization is especially
convenient for FPGA implementation, because FPGA
technology is already designed as a reconfigurable network
of small memory and processing blocks. The only issue is
the limit on achievable working frequency of the FPGA
technology as well as its relatively high cost per
implemented logic. Therefore, FPGA should be used for
prototyping and afterwards the final product should be
produced as integrated circuit.

IV. INSTRUCTION SET ARCHITECTURE

The initial instruction set has simple MIPS-like
instructions for arithmetical-logical operations, program
flow control as well as auxiliary operations. Instruction
operands always represent memory addresses that can
address data either directly or indirectly. The instruction
formats and their functions are shown in Table 1.

TABLE I
INSTRUCTION SET ARCHITECTURE

Operation Instruction format

ar
ith

m
et

ic
al

-lo
gi

ca
l

Addition add dest, op1, op2

Subtraction sub dest, op1, op2

Multiplication mul dest, op1, op2

Division div dest, op1, op2

Logical Bit-wise AND and dest, op1, op2

Logical Bit-wise OR or dest, op1, op2

Logical Bit-wise XOR xor dest, op1, op2

Logical Bit-wise NOT not dest, op1

pr
og

ra
m

 fl
ow

 c
on

tr
ol

Branch to dest
if op1 is equal to op2

beq dest, op1, op2

Branch to dest
if op1 is not equal to op2

bne dest, op1, op2

Branch to dest
if op1 is greater than op2

bgt dest, op1, op2

Branch to dest
if op1 is less than op2

blt dest, op1, op2

Branch to dest
if op1 is greater than
or equal to op2

bge dest, op1, op2

Branch to dest
if op1 is less than
or equal to op2

ble dest, op1, op2

Branch to dest b dest

au
xi

lia
ry

Terminate running thread
and deactivate page

hlt

Load byte op to dest lb dest, op

Load 2 bytes op to dest lh dest, op

Load 4 byte word op to dest lw dest, op

Executing
units

Inter-
connection

Data
units

39

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

All operations by default use direct addressing.
Additionally, any operand may be set to use indirect
addressing, by surrounding it in square brackets. For
example, the instruction

add [000F0000h], 00FF0004h, [000F0008h]

will perform addition of the word on address 00FF0004h,
and the word on address that is specified by the word on
address 000F0008h. The result than will be written to the
address specified by the word that resides on address
000F0000h.

Additionally, every instruction may accept an immediate
value as a second operand. This is specified by adding i to
the opcode (addi, subi, muli etc.) For example,

muli 000F0000h, 00FF0004h, 000F0008h

will calculate the product of the word on address
00FF0004h and the immediate value 000F0008h, and will
store the result on address 000F0000h.

The assembler supports the data memory directives
.space, .byte, .half and .word that allocate and initialize the
data segments.

V. INSTRUCTION-LEVEL SIMULATOR

In order to make initial analysis, an instruction-level
simulator is developed in the Python 2.7 programming
language. It consists of several modules: parser, which
contains an assembler grammar definition, parses the code,
and returns python objects representing the instructions;
program memory units that contain the code and execute it
instruction by instruction; and data memory units that
contain the data segments. It should be noted that the parser
is developed by using the pyparsing library.

The main work of the simulator is done in the program
memory units. Every unit has a program counter, page
number, program number, time tag and a flag that indicates
whether the unit is in use. The time tag is used to identify
the least recently used unit, in the case when all units are
active and there is a new thread that needs to be executed.

The simulator maintains an array of all code pages and
performs cycle by cycle execution of all active units. Aside
from showing the transition of memory states, it keeps
information about the number of executed cycles, page
faults and data page re-allocations. As such it is a valuable
tool for performance estimation of the proposed
architecture.

Currently the simulator doesn't simulate the
interconnection among memory units and assumes constant
time for data exchange. This will not be the case in real
scenarios, so for more accurate results a simulation on
FPGA prototype is needed.

VI. SIMULATION RESULTS

In order to estimate and compare the performance
benefits of a memory-centric architecture, we perform
simulations and analysis for a typical computing problem:
Fibonacci array generation. The program is written in
assembler for both a classical MIPS assembler language as
described in [17]; and the proposed MIPS-like assembler
presented in the previous chapters of this paper. The former
is simulated in the MARS simulator [17].

The tested program calculates a Fibonacci array of 4-byte
elements and stores it in memory. The program code is first
written for the memory-centric MIPS-like architecture, and
is simulated for variable array lengths. Then it is rewritten
for the original MIPS assembler and simulated for the same
array lengths. Figure 1 shows a comparison of the total
number of executed instructions. It can be easily noticed that
the number of instructions is almost 50% lower with the
memory-centric architecture. This means that even with half
of the working frequency, the memory-centric architecture
can potentially achieve the same performance.

This would also mean a 50% decreased power
consumption.

Fig. 1. Comparison of total number of instructions.

In order to make a fair comparison of execution time, we
equalize the number of cycles for the two instruction set
architectures. For a typical multi-cycle MIPS architecture
the loads execute in 5 cycles; stores and R-type instructions
in 4 cycles; whereas branching occurs in 3 cycles [16].
Since the memory-centric architecture accesses memory in
every instruction we can safely assume that it doesn't take
more than 6 cycles for each instruction. Figure 2 shows a
comparison of the equivalent number of execution cycles.
When using this model the number of executed instructions
is still smaller although not with the same degree.

Fig. 2. Comparison of equivalent number of cycles.

VII. CONCLUSION AND FUTURE WORK

This paper shows that a memory-centric architecture has
the potential for achieving much better performance and
lower power consumption than that of a traditional computer
architecture. One reason for this improvement is the fact that
programs contain significantly smaller number of
instructions when written for the proposed architecture and
require less clock cycles to perform the same operations.

If we also consider the better parallelization opportunities,
it should become clear that this architecture is very

40

Proc. of the 3rd International Conference on Applied Innovations in IT, (ICAIIT), March 2015

promising, and may even revolutionize the parallel
computing paradigm.

It should be noted however, that presented analyses do
not take into account cache block misses. This should not
influence the results significantly, as the size of the self-
executing blocks is similar to the cache memory blocks, and
the time penalty for a miss should be of the same order of
magnitude. Comparison that takes this parameter into
account is left for future work.

Another important consideration for this architecture is
the interconnection network, because its characteristics will
have a crucial impact on the system performance. The
influence will depend on many factors regarding the
interconnection system, such as its structure and
implementation, and this is a crucial part of our future
research.

The proposed architecture is suitable for FPGA
implementation due to its similarity to the FPGA technology
– both are structured as a set of data and execution units.
This solution however is limited when it comes to execution
speeds due to the nature of the FPGA. Higher speeds will be
achieved by using ASIC implementation and this opens up a
whole new field of research.

REFERENCES

[1] C. Carvalho, „The Gap between Processor and Memory Speeds“,3rd
Internal Conference on Computer Architecture (ICCA'02), Braga,
2002

[2] Memory Performance of Xeon E5-2600 v2 (Ivy Bridge-EP) based
Systems, White Paper, Fujitsu, 2013

[3] Schlansker, M.S.; Rau, B.R., "EPIC: Explicitly Parallel Instruction
Computing," Computer , vol.33, no.2, pp.37,45, Feb 2000

[4] P. Sirisuk et. al. (Eds.): ARC 2010, LNCS 5992, pp. 400-405,
Springer-Verlag, Berlin Heidelberg, 2010

[5] Kiyoung Choi, „Reconfigurable Computing: Architectures, Tools and
Applications“, 6th International Symposium, ARC 2010, Bangkok,
Thailand, March 17-19, 2010

[6] Wassal, A.G.; Sarhan, H.H.; ElSherief, A., „Novel 3D memory-
centric NoC architecture for transaction-based SoC applications",
Electronics, Communications and Photonics Conference (SIECPC),
2011 Saudi International, pp.1,5, 24-26, April 2011

[7] Yamin Li, Sanli Li, and Wanming Chu, „Memory Centric
Interconnection Mechanism for Message Passing in Parallel
Systems“, Third International Conference on Massively Parallel
Computing Systems (MPCS98), Colorado Springs, Colorado, Apr. 6–
9, 1998

[8] ChunYi Su, Dong Li, Dimitrios S. Nikolopoulos, Kirk W. Cameron,
Bronis R. de Supinski, Edgar A. Le´on, Model-Based, „Memory-
Centric Performance and Power Optimization on NUMA
Multiprocessors, Workload Characterization (IISWC)“, 2012 IEEE
International Symposium on , vol., no., pp.164,173, 4-6 Nov. 2012

[9] D. Li, B. de Supinski, M. Schulz, K. Cameron, and D. Nikolopoulos,
„Hybrid MPI/OpenMP Power-Aware Computing“, in IEEE
International Symposium on Parallel Distributed Processing, 2010

[10] K. Singh, M. Curtis-Maury, S. A. McKee, F. Blagojevi´c, D. S.
Nikolopoulos, B. R. de Supinski, and M. Schulz, „Comparing
Scalability Prediction Strategies on an SMP of CMPs“, Proc. of the
16th international Euro-Par conference on Parallel processing, 2010.

[11] Berić, A.; Van Meerbergen, J.; de Haan, G.; Sethuraman, R.,
„Memory-Centric Video Processing“, Circuits and Systems for Video
Technology, IEEE Transactions on , vol.18, no.4, pp.439,452, April
2008

[12] Ivan Lunteren, J., „Towards memory centric computing: a flexible
address mapping scheme", Electrical and Computer Engineering,
1999 IEEE Canadian Conference on , vol.1, no., pp.385,390 vol.1, 9-
12 May 1999

[13] Burger, D.; Goodman, J.R., „Memory-centric architectures: why and
perhaps what", Innovative Architecture for Future Generation High-
Performance Processors and Systems, 1997 , vol., no., pp.92,, 22-24
Oct 1997

[14] Bonatto, A.C.; Susin, A.A., „Memory subsystem architecture design
for multimedia applications“, VLSI (ISVLSI), 2013 IEEE Computer
Society Annual Symposium on , vol., no., pp.213,214, 5-7 Aug. 2013

[15] Gwangsun Kim; Kim, J.; Jung Ho Ahn; Jaeha Kim, „Memory-centric
system interconnect design with Hybrid Memory Cubes“, Parallel
Architectures and Compilation Techniques (PACT), 2013 22nd
International Conference on , vol., no., pp.145,155, 7-11 Sept. 2013

[16] David A. Patterson, John L. Hennessy, “Computer Organization and
Design: The Hardware/Software Interface (The Morgan Kaufmann
Series in Computer Architecture and Design)”, Paperback, Morgan
Kaufmann Publishers, Oct 2013

[17] Kenneth Vollmar, Pete Sanderson, “MARS: An Education-Oriented
MIPS Assembly Language Simulator”, SIGCSE'06 Houston, USA,
March 2006

