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Abstract—In this paper we investigate various algorithms 
for performing Fast Fourier Transformation (FFT)/Inverse 
Fast Fourier Transformation (IFFT), and proper techniques
for maximizing the FFT/IFFT execution speed, such as 
pipelining or parallel processing, and use of memory structures 
with pre-computed values (look up tables - LUT) or other 
dedicated hardware components (usually multipliers). 
Furthermore, we discuss the optimal hardware architectures 
that best apply to various FFT/IFFT algorithms, along with 
their abilities to exploit parallel processing with minimal data 
dependences of the FFT/IFFT calculations. An interesting 
approach that is also considered in this paper is the application 
of the integrated processing-in-memory Intelligent RAM 
(IRAM) chip to high speed FFT/IFFT computing. The results 
of the assessment study emphasize that the execution speed of 
the FFT/IFFT algorithms is tightly connected to the 
capabilities of the FFT/IFFT hardware to support the provided 
parallelism of the given algorithm. Therefore, we suggest that 
the basic Discrete Fourier Transform (DFT)/Inverse Discrete 
Fourier Transform (IDFT) can also provide high 
performances, by utilizing a specialized FFT/IFFT hardware 
architecture that can exploit the provided parallelism of the 
DFT/IDF operations. The proposed improvements include 
simplified multiplications over symbols given in polar 
coordinate system, using sinе and cosine look up tables, and an 
approach for performing parallel addition of N input symbols. 

Keywords: Cooley-Tukey, DFT/IDFT, FFT/IFFT, Intelligent 
RAM, look up tables, OFDM, pipeline and parallel processing, 
polar coordinate system.

I. INTRODUCTION

The Fast Fourier Transform and the Inverse Fast Fourier 
Transform are widely used efficient and fast techniques for 
computing the Discrete Fourier Transform and the Inverse 
Discrete Fourier Transform, respectively. The reduced 
number of FFT/IFFT calculations required for performing 
the same set of DFT/IDFT objectives, results in decreasing 
the execution complexity from O(N2) to O(Nlog2N), on 
algorithmic level [1][2]. Consequently, FFT/IFFT modules 
are extensively used for analysis and implementations of 
communication systems with real-time data transmission 
requirements. Additionally, the recent advances in chip 
production technologies, as well as in FFT/IFFT algorithms,
have resulted with production of several FFT/IFFT chips 

that allow significant processing speed up (multi Gb/s) [3]-
[6], as well as decreased chip area and reduced energy 
consumption [7]-[9].

The most important and used FFT/IFFT application is the 
orthogonal frequency division multiplexing (OFDM), which 
is the dominant transmission technique used in the 802.11 
set of WLAN standards [10]. This advanced modulation 
technique divides the available spectrum into many 
overlapping subcarriers, thus allowing more effective 
channel utilization and reducing inter-symbol interference 
(ISI) and inter-carrier interference (ICI) caused by multi-
path effect [11]. 

IFFT/FFT modules execute the main functionality in 
OFDM systems on sending/receiving side, allowing signals 
to be converted from frequency/time domain to 
time/frequency domain [2]. Actually, the process of 
modulation of the subcarriers in the channel with symbol 
information and making them orthogonal to each other is 
performed by means of IFFT on the sending side, whereas 
the FFT is used for efficient demodulation of the received 
signal. By including the IFFT and FFT modules in OFDM 
systems, the signal processing complexity is reduced (at 
both, transmitting and receiving side) and higher 
transmission rates are achieved.

Efficient FFT/IFFT implementation is a topic of 
continuous research in the recent years [3][4], and the main 
goal is  reducing the processing complexity of the FFT/IFFT 
calculations. In general, there are two directions in this area 
of research. The first one refers to developing algorithms for 
FFT/IFFT and their optimization. Best known algorithms in 
this field, worth mentioning in this paper are radix-2, radix-
4, radix-8 and split-radix variations of the Cooley-Tukey (C-
T) algorithm [12][13] as well as Winograd algorithm [14] 
By increasing the base in C-T algorithm, the number of 
operations is decreased, resulting in FFT/IFFT split-radix 
implementation becoming superior compared to Winograd 
algorithm [15]. The second approach is focused on hardware 
architecture improvements and optimization of the 
FFT/IFFT module. This includes adequate techniques for 
parallel processing and pipelining, memory structures for 
preservation of previously calculated results, as well as 
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dedicated components (usually multipliers) for more rapid 
calculations [16][17].

The FFT/IFFT implementation, in order to obtain better 
performances, can be achieved with various hardware 
components, including digital signal processors (DSPs), 
general purpose processors (GPPs), smart memories 
(IRAM), application specific integrated circuits (ASICs) or 
specialized circuits implemented on FPGA. The research 
has shown that GPPs and DSPs [14] are programmable and 
flexible, but cannot completely satisfy the fast processing 
requirements. On the other hand, the IRAM architecture is 
insufficiently explored, but considering its abilities to
provide high memory bandwidth and strided memory 
accesses, it is expected to provide promising results [18]. 
Most of the FFT/IFFT implementations are realized as 
specialized logic circuits, characterized with different forms 
of parallel computing. FPGA components are utterly 
suitable for implementation of this type of circuits, 
providing a tradeoff between speed, cost, flexibility and 
programmability [2][6][15][16][19].

The aim of this paper is to investigate various algorithms 
for FFT/IFFT computation and to discuss their hardware 
implementation that mostly satisfies the high speed 
processing requirements. Actually we talk about several 
parallelization techniques and methods, emphasizing the 
problem of data dependences in the FFT/IFFT calculations 
that limit the processing speed and the maximal utilization 
of the available hardware resources. Therefore, we suggest 
that the basic DFT/IDFT calculations are very suitable for 
parallelization, which can be further improved by 
implementing several optimizations of the addition and 
multiplication operations over complex numbers. In order 
to be effective, the provided modifications should be 
supported by a specialized processor-in-memory 
architecture. Initial ideas for implementing such approach, 
are presented in this paper. 

This paper is organized in five sections. Section two 
discusses variety of FFT/IFFT algorithms for fast 
calculation of the DFT/IDFT and compares their efficiency. 
Section three provides an overview of different FFT/IFFT 
hardware implementations, discussing the achievable speed 
up by introducing parallelism. Section four presents several 
techniques for efficient hardware implementation of the 
basic DFT/IDFT computations, as well as possible 
DFT/IDFT improvements of the multiplication and addition 
operations, which are essential for performing the 
summation of products in the DFT/IDFT. The proposed 
improvements should involve maximal parallelism, during 
the execution of the DFT/IDFT computations. The paper 
ends with a conclusion, stated in section five.

II. SOFTWARE OPTIMIZATION OF DISCRETE FOURIER 
TRANSFORM

The DFT/IDFT is the most important discrete transform, 
used to perform Fourier analysis in many practical 
applications. For example, it has a fundamental function for 
modulation and demodulation in OFDM systems [2]. This 
transformation deals with a finite discrete-time signal and a 
finite or discrete number of frequencies, so it can be 
implemented in computers by numerical algorithms or even 
-vector dedicated hardware.

Given n real or complex inputs x0,…,xn-1, the DFT [2] 
[20], is defined as:
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Straightforward computation of both DFT and 
convolution is a matrix-vector multiplication, given as 

→

• gW and takes O(N2) operations, for N being a 
transformation size.

The breakthrough of the Cooley-Tukey algorithm's family 
derives from its capability of significantly cutting down 
DFT’s O(N2) complexity to an order of O(Nlog2N), [13]. 
This advance in computational theory inspired and 
motivated a stream of researches targeting even further 
speed up and efficiency of performing DFT, and eventually 
a whole new class of algorithms was introduced, known as 
FFT algorithms. A common feature for most FFT algorithms 
is their order of complexity - O(Nlog2N).

A. Divide and Conquer Approach as a Basis for FFT 
Algorithms

The DFT usually arises as an approximation to the 
continuous Fourier transform, allowing functions sampling 
at discrete intervals in space or time. In order to make the 
DFT operation more practical, several FFT algorithms were 
proposed. The fundamental approach for all of them is to 
make use of the properties of the DFT operation itself, and 
thus reduce the computational cost of performing the DFT 
calculations. This is basically achieved by implementing the 
divide and conquer approach [21], which is a basis for most 
of the algorithms for effective computation of DFT. 

We already stated that the discrete Fourier transform is a 
matrix product, whereas 10 ,..., −Nxx is the vector of input 
samples, T

NXXx ),...,( 10 −= is the vector of transform 
values and WN is the primitive Nth root of unity, so that WN =

1),/2exp( −=− iNiπ [20]. This product is given by the 
following equation:
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WN is also referred to as the twiddle factor or phase 
factor. This value being a trigonometric function over 
discrete points around the 4 quadrants of a two dimensional 
plane, has symmetric and periodic properties [22]. Using 
these properties of the twiddle factor, unnecessary 
computations of the DFT can be easily eliminated. 



13

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT),  March 2014

The direct evaluation of the matrix-vector product 
requires N2 complex multiplications and additions. In order 
to reduce this huge number of operations, a divide and 
conquer approach is implemented. The general idea of this 
methodology is to map the original problem into several 
sub-problems in such a way that the following inequality, 
[20], is assured:

cost(subproblems) + cost(mapping) < cost(original problem)   (4)

The real influence of this method is that, regularly, the 
division can be applied recursively to the sub-problems as 
well, thus leading to a reduction of the order of complexity.

The important point in (4) is that the divide and conquer 
scheme is consisted of two clear costs: the cost of the 
mapping (which can be zero when looking at the number of 
operations only) and the cost of the sub-problems. As a 
consequence, different types of divide and conquer methods 
make an effort to find balancing schemes between the 
mapping and the sub-problem costs [20]. As an example, the 
Cooley-Tukey radix-2 algorithm can be considered, where 
the sub-problems results being quite trivial (only sum and 
differences), although the mapping requires twiddle factors 
that lead to a large number of multiplications. On the 
contrary, in the prime factor algorithm, the mapping is done 
only by means of permutations (no arithmetic operation are 
required), while the small DFTs that appear as sub-problems 
indicate substantial costs since their lengths are co-prime 
numbers. 

B. Families of FFT Algorithms
There are two core families of FFT algorithms: the 

Cooley-Tukey algorithms and the Prime Factor algorithms,
[20]. These classes of algorithms differ in the way they 
translate the full FFT into smaller sub-transforms. Mostly 
two types of routines for Cooley-Tukey algorithms are used: 
mixed-radix (general-N) algorithms and radix-2 (power of 
2) algorithms. All Radix algorithms are similar in structure, 
differing only in the core computation of the butterflies, 
[23]. Each type of algorithm can be further categorized 
according to additional features, such as whether it operates 
in-place or requires an additional scrape space, whether its 
output is in a sorted or scrambled order, and whether it uses 
decimation-in-time or -frequency iterations.

1) Cooley-Tukey Algorithms
The Cooley–Tukey set of algorithms comprises the most 

common fast Fourier transform (FFT) algorithms. They re-
expresses the discrete Fourier transform (DFT) of an 
arbitrary composite size N = N1N2 in terms of smaller DFTs 
of sizes N1 and N2, recursively, in order to reduce the 
computation time to O(Nlog2N) for highly-composite N 
(smooth numbers). Usually, either N1 or N2 is a small factor 
(not necessarily prime), called the radix (which can differ 
between stages of the recursion) [20]-[23]. If N1 is the radix, 
the Cooley–Tukey algorithm is called decimation in time 
(DIT), whereas if N2 is the radix, it is decimation in 
frequency (DIF).

A radix-2 DIT FFT is the simplest and most common 
form of the Cooley–Tukey algorithm, although highly 
optimized Cooley–Tukey implementations generally use 

some other forms of the algorithm. Radix-2 DIT 
decomposes a DFT of size N into two interleaved DFTs 
(hence the name "radix-2") of size N/2 with each recursive 
stage, eventually resulting in a combining stage containing 
only size-2 DFTs called "butterfly" [13], operations (so-
called because of the shape of the data-flow diagrams, Fig. 
1). 

Besides the radix-2 Cooley-Tukey algorithm, other 
implementations with radixes of 4 and 8 are also used. 
Actually, the value of the radix (2, 4, 8) indicates that the 
total number of points used for the transformation can be 
expressed as 2x, 4x or 8x, accordingly [15]. Therefore, the C-
T algorithm can execute parallel and independent butterfly 
operations with 2, 4 or 8 input/output values, in each of the 
algorithm phases (for radix x, the number of phases is 
logxN,). 

Mixed-radix (also called split-radix) algorithms work by 
factorizing the data vector into smaller lengths. These can 
then be transformed by FFTs with small number of points, 
noted as small-N FFT [24]. Typical programs include FFTs 
for small prime factors, such as 2, 3 or 5, which are highly 
optimized. Actually, the idea of this algorithm is to use 
many multiplied small-N FFT modules and combine them in 
order to make longer transforms. If the small-N modules are 
supplemented by an O(N2) general-N module then an FFT of 
any length can be computed. Of course, any lengths which 
contain large prime factors would perform only as O(N2).

The well-known radix-2 Cooley–Tukey algorithm is a 
simplified version of the mixed-radix algorithm, realized by 
the use of FFT modules whose lengths are only power of 
two. Radix-2 algorithms have been the subject of much 
research into optimizing the FFT. Many of the most efficient 
radix-2 routines are based on the “split-radix” algorithm 
[15]. This is actually a hybrid which combines the best parts 
of both radix-2 ("power of 2") and radix-4 ("power of 4") 
algorithms, for computing distinctive partitions of the 
Fourier’s transformation. 
2) Prime Factor Algorithms

The prime-factor algorithm (PFA), (also known as the 
Good–Thomas algorithm), is a FFT algorithm that re-
expresses the DFT of a size N = N1N2 as a two-dimensional 
N1×N2 DFT, but only for the case where N1 and N2 are 
relatively prime. These smaller transforms of size N1 and N2
can then be evaluated by applying PFA recursively or by 
using some other FFT algorithm. Although this algorithm 
has a very simple indexing scheme, it only works in the case 
where all factors are co-prime, which makes it suitable as a 

Fig. 1.  Flow graph of 8-point DIT FFT radix-2 Cooley–Tukey algorithm.
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TABLE I
COMPARISON OF MULTIPLICATION AND ADDITION COMPLEXITY OF DFT AND COOLEY-TUKEY BASED FFT/IFFT ALGORITHMS

specialized algorithm for given lengths, [25]. PFA is also 
closely related to the nested Winograd FFT algorithm, 
where the latter performs the decomposed N1 by N2
transform via more sophisticated two-dimensional 
convolution techniques [26]. Winograd algorithm is 
requiring the least known number of multiplications among 
practical algorithms for moderate lengths DFTs.

Another less known algorithm is Fast Hartley Transform 
(FHT) [27]. This effective algorithm cannot be classified in 
formally presented families, since its core characteristic is 
what moves them apart. For the DFHT, the kernel is real, 
unlike the complex exponential kernel of the DFT. For 
complex data, each complex multiplication in the 
summation requires four real multiplications and two real 
additions using the DFT. For the DFHT, this computation 
involves only two real multiplications and one real addition.

It can be noticed that performing efficient and fast 
discrete Fourier transform, truly inspired researchers and 
burst many peoples’ creativity. Sequentially, along with 
many ideas, came many experiments, evaluations and 
analysis. An effort was made to sum up the general 
conclusions in terms of complexity (meaning effectiveness) 
of the different types of FFT algorithms. Table 1 and Table 
2 present the results.

From the results gathered in Table 1 and Table 2, an 
assumption can be made, that in general, split-radix
algorithm achieves best performance. However, its irregular 
structure introduces some difficulties during the 
implementation [15]. Observing Table 1, another thing can 
be noticed, and that is the obvious decrement of the number 
of operations required for FFT, with each increment of 
algorithms' radix. Regarding the Prime Factor Algorithms, 
from Table 2 it can be concluded that Winogard is more 
efficient for smaller FFT sizes while for FFTs with input 
array sizes grater then 500 points, Prime Factor Algorithms 
present better results. Thus, for this family of algorithms a 
general winner or leading algorithm cannot be determined. 

At this stage, we conclude FFT algorithms brief overview 
and efficiency evaluation, considering different manners of 
influencing DFT performances' only through algorithms, i.e. 
optimization in software. Nevertheless, these influences' 
impact depends on the characteristics of the platform the 
algorithms are executed on. Thus, this paper elaborates the 
FFT algorithms possible hardware implementations in 
section 3, as well.

C. FFT Parallelization and Optimization in Software
The emergence of multi-core processors also encouraged 

further research and optimization of FFT algorithms. The 
most popular of the previously discussed algorithms were 

rewritten introducing multi-threaded FFT programs. 
However, well known rule of thumb is that, the more the 
code is optimized, the harder it is to be realized in parallel. 
Most researches in this direction go with sequentially 
executing code until a parallel region is reached where 
multiple threads can be employed, [28]. This practice is 
truly more a need, since FFT algorithms' separate stages 
depend on each other's results. 

An accent was also put on joint resources, like twiddle 
factors and bit reversal mapping which are commonly 
presented as lookup tables (LUT) [28][29]. But then again, 
memory may be saved, but usually the case is that memory 
accesses are far more expensive (in terms of speed of 
execution) then arithmetic operations, due to slower 
memories. The consequence of this type of implementation 
may not be the performance one hoped for. This particular 
fact was the starting point for the FFTW project, [30], where 
an effort was made for maximum utilization of computers' 
fast memory (cache and RAM), by introducing self-
optimizing FFT algorithms on the behalf of specialized 
compiler, that adapt themselves in the form most suitable for 
particular architecture implementation.
Sdalksdf

III. HARDWARE OPTIMIZATION OF FFT ALGORITHMS 
IMPLEMENTATIONS

Efficiency comparison on all previously discussed 
algorithms makes no real sense if they are not associated 
with their hardware application. By hardware, we mean 
certain architecture and particular platform. It was proven 
that the desired performance requirements will only be met 
if FFT algorithms are applied into suitable hardware set. 
Architectures vary in number of available processing units 
as well as in memory size and distribution. These two main 
features have inevitable impact on FFT algorithms 
efficiency, since they cover parts of FFT which proved to be 
the most intense – arithmetic operations and memory 
accesses.

A. Various Platforms for FFT Algorithms Hardware 
Implementations

Several architectures have been proposed [31][32], each 
of them trying to optimize the load of memory accesses and 
increase overall speed of FFT execution. These architectures 
effectiveness can be further evaluated by physical 
implementation. Today’s cutting edge technology provides 
number of hardware platforms fit for deploying FFT 
algorithms. In this paper GPP, DSP as well as specialized 
hardware circuits – ASIC and FPGAs implementations are 
discussed.

DFT C-T Radix-2 C-T Radix-4 C-T Radix-8 C-T Split Radix

Poin
ts

Real 
Adds 

Real 
Muls Total Real 

Adds 
Real 
Muls Total Real 

Adds 
Real 
Muls Total Real 

Adds 
Real 
Muls Total Real 

Adds 
Real 
Muls Total

16 992 1024 2016 152 24 176 148 20 168 148 20 168
32 4032 4096 8128 408 88 496 388 68 456
64 16256 16384 32640 1032 264 1296 976 208 1184 972 204 1176 964 196 1160
128 65280 65536 130816 2504 712 3216 2308 516 2824
256 261632 262144 523776 5896 1800 7696 5488 1392 6880 5380 1284 6664
512 1047552 1048576 2096128 13576 4360 17936 12420 3204 15624 12292 3076 15368
1024 4192256 4194304 8386560 30728 10248 40976 28336 7856 36192 27652 7172 34824
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    Architectural and design issues which are to be 
considered for diverse FFT hardware implementations are: 
precision of data, number of points for FFT size, and 
memory usage. Then performance evaluation is done 
according to power consumption, required circuit board area 
and desired circuit frequency. The value of these variables 
depends on the application which makes use of FFT i.e. 
employs it, and what's even more is that these same 
parameters have impact on the whole system (FFT 
algorithm + platform) performances.

1) General Purpose Processors
Many research efforts have been performed in this area 

[30][33] being just part of it. What is interesting to notice is 
that a greater part of the execution time was spent on load 
and store operations, compared to actual arithmetic 
computations [20]. This is a straightforward consequence of 
the GPP architecture, designed to satisfy many diverse 
applications' needs. Thus, from all implementations, this has 
proven to be the least effective one. Nevertheless researches 
utilizing these platforms continue, since many upper layer 
applications, using everyday technology (consisting GPPs) 
require FFT. Hence, a great advancement is made with the 
FFTWs' development, which provides an opportunity for 
one to choose an optimal algorithm for particular GPP, due 
to its adaptive features, by benchmarking FFTW library. 
From the gathered results it is obvious that for different FFT 
size, different platform is more convenient.
2) Digital Signal Processors

DSPs offer the best flexibility, but limited performance. 
These processors sturdily service multiply/accumulate based 
algorithms. Unluckily, this is not the case of any FFT 
algorithm (where sums of products have been changed to 
fewer but less regular computations) [20]. Still, DSPs now 
meet some of the FFT requirements, like modulo counters 
and bit-reversed addressing. If the modulo counter is 
general, it will help the implementation of all FFT 
algorithms, but it is often restricted to the Cooley-
Tukey/SRFFT case only (modulo a power of 2), for which 
proficient timings are provided on nearly all available 
machines by manufacturers, at slightest for small to medium 
lengths. DSPs achieve low development cost compared to 
dedicated hardware solutions, although at the expense of 
medium performance and high power consumption.
3) Application Specific Integrated Circuit

Application Specific Integrated Circuits are famous for 
being the fastest platform for processing intense operations. 
Many hardware product vendors like Xilinx and Altera 
accepted this appropriateness of using ASIC chips for FFT 
implementations, and have developed high performance IP 
cores, from which designers benefit in reducing the time

required for various product development. Compared to 
GPU and DSP they provide flexibility in terms of 
algorithms, meaning they are convenient not only for 
traditional Cooley-Tukey algorithms but also for PFA, [34]. 
Another reason to use them is their power efficiency 
requirements which are lowest of all. 
4) Field Programmable Gateway Arrays (FPGA)

Fast Fourier transform has been playing an important role 
in digital signal processing and wireless communication 
systems, so the choice of FFT sizes is decided by different 
operation standards. It is anticipated to make the FFT size 
configurable according to the operation environment, since 
achieving a successful design means the system should be 
able to support different operating modes required by 
diverse applications with low power consumption 
requirement [35]. This is the reason why reconfigurable 
hardware has been paid more attention recently. FPGAs 
combine ASICs desired speed of operation with the 
flexibility provided from DSP, resulting in a perfect match 
for FFT implementations. Additionally, the capability of 
changing the source code according to current specific 
application makes this type of platform convincing winner 
for FFT implementation. Despite of all the upsides, a 
disadvantage must be mentioned, and that its power 
consumption. 

Further, this paper presents another not so explored 
platform, but from our point of view, suitable for FFT 
implementation, and that is Intelligent RAM–IRAM.
5) Intelligent RAM

Intelligent RAM [18], is another merged DRAM-logic 
processor, designed at the Berkeley University of California 
by a small Patterson's team of students. This chip was 
designed to serve as multimedia processor on embedded 
devices. As a result of the design studies of the Berkeley's 
team research group, it was shown that most applicable 
architecture to multimedia processing is vector architecture, 
rather than MIND, VLIW, and other ILP organizations [36]. 
This is basically because of the vector processors' abilities to 
deliver high performance for data-parallel tasks execution, 
and to provide low energy consumption, simplicity of 
implementation and scalability with the modern CMOS 
technology.

The resulted IRAM chip is called Vector IRAM 
(VIRAM). VIRAM is processor that couples on-chip 
DRAM for high bandwidth with vector processing to 
express fine-grained data parallelism [18]. The VIRAM 
architecture (shown on Fig. 2) consists of MIPS GPP core, 
attached to a vector register file that is connected to an 
external I/O network and also to a 12MB DRAM memory 
organized in 8 banks.

TABLE II
COMPARISON OF MULTIPLICATION AND ADDITION COMPLEXITY OF DFT AND PRIME FACTOR BASED FFT/IFFT ALGORITHMS

DFT Prime Factor Winograd

Points Real 
Adds 

Real 
Muls Total Real 

Adds 
Real 
Muls Total Real 

Adds 
Real 
Muls Total

60 14280 14400 28680 888 200 1088 888 136 1024
240 229920 230400 460320 4812 1100 5912 5016 632 5648
504 1015056 1016064 2031120 13388 2524 15912 14540 1572 16112
1008 4062240 4064256 8126496 29548 5804 35352 34668 3548 38216
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Fig. 2.  Architecture of IRAM chip.

FFT computations are difficult to be realized with 
conventional GPP architectures, given that they require high 
memory bandwidth and strided memory accesses. 
Nevertheless, it was shown that the performance of 
computing floating-point FFTs on a VIRAM processor, 
[18], can be competitive with that of existing floating point 
DSPs and specialized fixed-point FFT chips.

From this section it can be concluded that there is no such 
thing as a universally optimal FFT/IFFT algorithm, 
architecture and implementation that is appropriate for all 
systems. Therefore, it is recommended to perform a search 
across the algorithm, architecture and implementation 
dimensions for each system.

B. Further FFT Speedup by Introducing Parallelization 
Techniques in Hardware

Traditional FFT hardware architectures include trade-offs 
among complexity, power consumption, die size, and other 
similar parameters. Still, these architectures don’t have the 
scalability to encounter high speed processing requirements 
on FFT performance, for instance on emerging high data 
rate technologies in wireless communications, like OFDM. 
Progress in technology empowers development of 
architectures optimal for given class of algorithms, 
including FFT.

In general, there are three main techniques of improving 
overall FFT speed, all of them based on the Transpose 
algorithm, described in [37]:
1) Increasing the order of the radix. 

This approach improves both latency and throughput, 
but is expensive in terms of computational resource 
required for each processing unit.

2) Cascading (pipelining) the processors.
Different processors operate over different stages. 
Cascading improves throughput, but not latency. Inter 
stage memory is necessary.

3) Parallelizing the processors.
Parallelizing the processors, so that a single large FFT is 
divided into N smaller FFTs. Both latency and 
throughput are improved with this arrangement. 
Drawback is the data transfer between stages.

All these improvement methods require architecture 
modifications. Thus, in literature, commonly two 
architecture approaches are presented: memory-based FFT 
and pipeline-based FFT. Memory-based FFT uses only one 
butterfly and large memories for data storage. On the other 
hand, pipelined architecture uses many butterflies to 
improve the speed. There are several FFT hardware modules

that have been proposed to implement both methods 
(memory-based design and pipelined design) in order to 
improve speed and minimize area. For example, [38] 
proposes six memory-based implementations, realized in 
FPGA. The authors give the name of RX2-B1, RX4-B1, 
RX2-B2, RX4-B2, RX2-B4, MXRX-B4 for these 
architectures, whereas the RX presents the used radix and Bi 
indicates that the architecture operates with i outputs in 
parallel. The techniques used for each of these architectures 
are based on memory sharing, conflict free memory 
addressing, in-place memory processing, continuous flow 
design, N-word memory size, fixed-point arithmetic and 
pre-computed twiddle factors stored in ROM. It was found 
that the fastest processors are the RX2-B4 and MXRX-B4 
FFT models which can process four data samples per clock 
cycle.

Another direction in researching memory based 
architecture is towards distributed memory and processing 
units. This technique requires re-expressing the FFT 
algorithms to adapt them for parallel implementation. 
According to [21][39], where several algorithms were 
tested, it was proven that additional complexity is added to 
the system, as a consequence of the need for communication 
between different modules. Also, it was noticed that not all 
algorithms are suitable for parallelization, since only 
algorithms with regular structure (Cooley-Tukey Radix-2/4, 
Split Radix) are advisable, while the block complexity of 
Winograd algorithm makes it difficult and unsuited for 
parallel implementation.

Regarding the pipelined architectures, many works have 
presented optimizations to achieve high performance and 
low area consumption. The most famous architectures of 
pipeline implementations are multi-path delay commutator, 
radix-2 single path delay commutator and radix-2 single 
path delay feedback, [35]. The main difference between 
these architectures is in the number of inputs, outputs and 
butterflies used.

A different approach is applied by [40] proposing an 
array processing architecture for parallel FFT 
implementation. Key advantage of this architecture is the 
elimination of inter stage data transfer, so both, the system 
throughput and latency are improved. This idea is basically 
similar to IRAM, [18], which also includes vector 
processing units, capable to process the input data in 
parallel. 

Although there have been several efficient designs, there 
is an inherent drawback related to the area (and 
consequently power) overhead. Another essential conclusion 
is the existing threshold, which delimits FFTs' input size 
after which this whole additional complication of FFT 
implementation system is rewarding, so this fact must also 
be taken into account while developing applications.

IV. HARDWARE OPTIMIZATION OF DISCRETE FOURIER 
TRANSFORM 

The Discrete Fourier Transform is a universal instrument 
in science and engineering, including digital signal 
processing, communication, and high-performance 
computing. Applications employing it belong into the area 
of spectral analysis, image compression, interpolation, 
solving partial differential equations, and many other tasks, 
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[13]. Therefore, as a consequence from its extensive 
implementation, meeting its computational demands, is the 
high price applications employing DFT, have to pay.

As stated before, the Discrete Fourier Transform for an 
N-point sequence x(n) is given by (4), where X(k) and x(n) 
are complex numbers, n is the time index and k is the 
frequency index [1]. Actually, the DFT formula is expressed 
as a summation of complex numbers products.
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By using this equation the DFT computation requires N² 
complex multiplications and N(N–1) complex additions, 
leading to a complexity of O(N²). Each complex 
multiplication requires four real multiplications and two real 
additions and each complex addition requires two real 
additions. Therefore a total of 4N2 real multiplications and 
N(4N-2) real additions are required [1]. Although the DFT 
employs the highest number of operations, comparing to 
various FFT implementations, all the operations are 
independent and can be executed in parallel. This is where 
we see a chance for maximal parallelization that will allow 
reaching better and faster results.

Generally, the FFT algorithms decrease the number of 
operations, but involve significant communication overhead, 
during the execution. This is a result of the divide and 
conquer approach which halts the system before proceeding 
to the next stage until all the output from the previous stage 
is generated [21]. For example, the execution of the Cooley-
Tukey radix-x algorithm is performed in logxN phases that 
must execute sequentially, although each phase employs 
parallel operations. The data dependences that appear 
between separate stages of the 8-Point Cooley-Tukey FFT 
radix-2 algorithm and DFT are shown in Fig. 3. 

As can be seen on Fig. 3, the DFT is computed in only 
one phase. According to the fact that the DFT summations 
are computed simultaneously, it is of special interest to 
implement the DFT component on a hardware architecture 
that can support the provided parallelism (for example 
IRAM). Furthermore, the computation complexity of the 
DFT can be significantly reduced by utilizing some 
techniques that can simplify the multiplications of the inner 
products and/or parallelize the summations of different 
outputs. 

A. Techniques for efficient hardware implementation of 
DFT 

The strong interaction between the algorithm and its 
implementation indicates that the algorithm's execution 
efficiency depends on the hardware architecture and its
abilities to support the provided parallelism of the algorithm. 
Considering the discussion given in the previous section, 
serious candidates for implementing the DFT are specific 
application integrated circuits or special purpose processors 
(similar to IRAM), implemented in FPGA platforms.   

Most of the research done so far refers to efficient 
hardware implementations of FFT, by implementing various 
parallelization prospects and specialized components. In this 
section we are discussing several techniques (some of them 
already used for FFT hardware implementation) that can be 
applied when implementing the basic DFT computations in 
hardware. We suggest that the hardware architecture of the 
DFT module should be specially purposed to exploit the 
provided parallelism, when executing summation of 
products.

Assuming that each multiplication is consisted of several 
additions, it is obvious that the execution of multiplication 
operations is more complex than additions. Therefore, when 
implementing the products of the DFT summations many 
researchers have used specialized multipliers, purposed to 
improve the execution efficiency of multiply operations. 
Such approach is presented in [17], where the authors 
suggest the use of constant co-efficient multiplier. This 
multiplier utilizes small blocks of ROM that store 16 partial 
products relating to the fixed coefficient and then use a 
simple adder to combine these products. As a result, the co-
efficient multiplier is less than one third of the size of full 
multipliers. Another multiplier that is also very efficient, 
(without using ROM memories) is the shift-and-add 
multiplier [8]. This multiplier decomposes the product in 
such a way that it requires only additions and multiplications 
or divisions by 2, which are realized in a computer by 
shifting bits left or right. 

A different approach is presented in [41], where low 
power and area efficient adder and Vedic multiplier for 
computing FFT are presented. Generally, the speed of 
addition is limited by the time required for carry propagation 
through the adder, since the sum for each bit position in an 
elementary adder is generated after the previous bit position 
has been summed and a carry has propagated into the next 
position. Referring to [41] the carry select adder allows 
fastest execution of arithmetic operations by independently 
generating multiple carries and then selecting a carry to 
generate the final sum. Although this adder is not area 
efficient, its ability to decrease the propagation delay makes 
it popular for use. The combination of the carry select adder 
and Vedic multiplier provides fast execution and also 
reduction of FFT chip area and power [41]. The Vedic 
multiplier is based on Vedic mathematic principles, which 
employs a unique technique of calculations based on sixteen 
principles or word-formulae which are termed as Sutras. 
This mathematic is very suitable for digital signal 
processing [42]. 

Very efficient technique for calculation of DFT inner 
products is Distributed Arithmetic (DA) [43]. This method 
is used only if one of the vector operands is known, 
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Fig. 3.  Data dependence when executing 8-point radix-2 Cooley–Tukey 
FFT algorithm and DFT.
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allowing bit-serial computation that forms an inner product 
of a pair of vectors in a single direct step. The distributed 
arithmetic approach replaces the explicit multipliers by 
ROM look up tables and adders, thus providing considerable 
reduction in the power consumption. Although this 
technique appears to be slow because of its bit serial nature, 
it turns out that when the number of samples in each vector 
commensurate with the number of bits in each vector 
element, the DA is very fast. Another similar approach that 
utilizes look-up tables for pre-computing the products of the 
DFT summations is presented in [5]. It was shown that such 
DTF module can be applied to OFDM transmitter for optical 
communication, which is capable to achieve 101.5 Gb/s 
through fiber with 16QAM modulated sub carriers, by using 
two Xilinx Virtex 5 FPGA boards that work in parallel.

The speed of the DFT calculations can be also improved 
by utilizing the CORDIC (coordinate rotation digital 
computer) algorithm, which dynamically calculates the 
trigonometric functions, using processing elements to 
perform vector rotations [44]. The CORDIC component can 
also be used for polar to rectangular or rectangular to polar 
conversions, and as well for computing a vector magnitude. 
This algorithm operates in such a way that it executes vector 
rotations by arbitrary angles, using only shift and add 
operations, thus providing advantages in speed, accuracy, 
simplicity in design and other aspects of performance 
requirements.

B. Proposed improvement for efficient hardware 
implementation of DFT

The total processing time required for computing the 
DFT, depends on the multiplication time, which is generally 
far greater than the addition time. The multiplications and 
additions of the DFT are performed over complex numbers 
[7], which are usually represented in rectangular format:

           (a+bj)·(c+dj) = (ac-bd) + (ad+bc)j                      (5)

(a+bj) + (c+dj) = (a+c) + (b+d)j                         (6) 

As given in equations (4) and (5) each multiplication of 
two complex numbers requires four multiplications of real 
numbers (imaginary and real component) and two additions 
of real numbers. On the other hand, each addition of two 
complex numbers requires two additions of real numbers. 
From here, it is obvious that multiplications are more 
complex than the additions. 

There is an approach [13], which reduces the 
multiplication complexity to 3 multiplications and five 
additions. This is achieved by regrouping the multiplicands, 
as presented in equation (6):

(a+bj)·(c+dj) = [(a+b)c - b(d+c)] + j[(a+b)c + a(d-c)]    (7)

Representing complex numbers in rectangular format is a 
common choice, basically because the arithmetic operations, 
such as: add, sub, mul and div can be easily implemented. 
On the other hand, having complex numbers represented in 
circular form (polar coordinates) can cause many 
difficulties, while performing adds/subs, but allows simpler 
implementation of muls/divs operations. Taking all this into

account, in continuation we present a method for simplified 
implementation of the DFT/IDFT calculations. 

The purpose of the DFT module is to perform the 
summation of products, given in equation (4), over input set 
of complex numbers. In our approach we consider that the 
DFT/IDFT module inputs and twiddle factor angles are 
provided in circular format, with polar coordinates (angle φ
and amplitude r ). All the twiddle factors magnitudes are 1s, 
while the angles are pre-computed and placed in a look up 
table. This way, the multiplications between complex 
numbers and twiddle factors are executed with only one add 
operation. Actually, each product term of the DFT 
summations is calculated as:
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The calculation of the products in the DFT is not data 
dependent, so it can be executed in parallel. In order to 
compute the appropriate DFT output symbols, subsets of the 
calculated products, should be summed up. Given that the 
addition of circular format complex numbers is very 
complex, a conversion to rectangular format is made:
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The provided conversion involves cosine and sine 
operations and two multiplications of real numbers. The cos 
and sin operations can be calculated by utilizing look-up 
tables with pre-computed cosine and sine values, while the 
two multiplications can be performed by using only shift 
and add operations, as the authors of [14], suggested. The 
conversion is executed in such a way that firstly the cos and 
sin tables are looked-up and then the multiplications are 
performed. The conversions of different products are 
independent of each other and can be performed 
simultaneously. 

After the real and imaginary components of each product 
are computed, next is to sum up the results, and produce the 
output complex numbers. The number of the outputs 
depends on the number of points, used in the DFT/IDFT 
module. Each output is generated by performing a sum over 
N products. In order to parallelize the summation of N 
inputs, we propose a parallel algorithm for that purpose.

The proposed algorithm performs parallel additions of N 
inputs with M bits, without having to wait for the carries 
generated during the additions. In fact, it allows 
simultaneous additions over each bit position of the 
numbers. Therefore, the summations of the i-th position 
(i=0,..,M-1) bits of each number are performed in parallel 
and each of the results is placed in a separate register, and 
shifted by i places. If there is a carry, the result register will 
have one or more 1s on some of the [i+1, i+M-1] positions. 
In that case the algorithm is performed again, and the 
appropriate additions are executed once more. Actually, the 
algorithm stops only when the generated output of each of 
the N registers consists only one 1 on the i-th position or all 
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0es. Other terminating condition of the algorithm can be the 
state when the results stored in all M registers, are 
completely the same as the results stored in all M registers, 
but in the previous iteration. In the final step of the 
algorithm, each of the registers holds the i-th cipher of the 
result. 

The given algorithm was introduced to work with binary 
numbers, which sometimes can take a long time. In order to 
reduce the number of algorithms' iterations, one can work 
with numbers given in hexadecimal format. However this 
approach will complicate the design, requiring additional 
adders for performing the intermediate summations of N 
hexadecimal numbers. 

The proposed modifications are made to allow parallel 
processing during the execution of the operations. However, 
the given improvements will only be effective if the 
hardware implementation of the DFT/IDFT module is 
consisted of many processing engines that can support the 
provided add and mul operations. The DFT/IDFT module 
will also include three look-up tables for holding the twiddle 
factor angles, and for performing the sine and cosine look-
ups. Our opinion is that the processor-in-memory 
architecture can be very suitable solution for implementing 
the proposed DFT/IDFT improvements.

V. CONCLUSION

The never-ending aspiration for more efficient calculation 
of DFT, motivated by its truly widespread expansion in 
applications, could not disregard this opportunity. Although 
there are different variations of architectures of parallel 
systems, the number of researches made in this area, as well 
as the number of diverse tracks and ideas within it, is 
certainly surprising. Different combinations have been 
made, starting from FFT algorithms properties or the 
properties of parallel systems; architectures, further 
adjusting one to another in the development process.

All the work done in this area proves that by making the 
right combination of FFT algorithm, architecture and 
platform, desired performance results can be achieved. In 
general, all the efficient FFT implementations require 
specific hardware architecture that is tailored to support the 
computations involved in the FFT algorithm used.

In this paper we consider that most FFT algorithms 
include data dependent operations that limit the execution 
speed of the algorithm. Therefore, we suggest that the 
execution of the basic DFT/IDFT computations can provide 
execution speed-up, despite the fact that the DFT/IDFT 
involves more computations than many FFT algorithms. 
This is basically because the DFT/IDFT computations are 
characterized with high level of parallelism, so most of them 
can be executed simultaneously. 

Considering that the basic DFT/IDFT computation is 
represented as summation of products, we propose possible 
improvements of the multiply and add operations over 
complex numbers. In our approach the multiplications 
involve only one add operation, since the operands are given 
in polar coordinate system. The additional cost that should 
be paid for this is the conversion to rectangular form, which 
involves two multiplications and calculation of sin and cos 
functions, using look-up tables. Furthermore, we propose an 
algorithm for performing parallel additions of N inputs that 

excludes the timing overhead caused by the addition of carry 
bits. The proposed algorithm involves high level of 
parallelism.

The proposed improvements are essential for performing 
the summation of products in the DFT/IDFT. It is expected 
that they should involve maximal parallelism, during the 
calculation of the DFT/IDFT outputs. However, their 
execution should be supported by a specialized processor 
architecture that would be able to exploit the provided 
parallelism. We believe that processor-in-memory 
architecture is a good solution for efficient implementation 
of the DFT/IDFT module with the proposed modifications. 

Even though many researches dedicated their work on 
improving DFT calculating performance, we noticed a gap 
in examining pure DFT prospects for optimization and 
parallelization, where we recognize a great potential. For 
future continuing on this work we plan on implementing the 
proposed design expecting meaningful results.
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