
11

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Abstract—In this paper we investigate various algorithms
for performing Fast Fourier Transformation (FFT)/Inverse
Fast Fourier Transformation (IFFT), and proper techniques
for maximizing the FFT/IFFT execution speed, such as
pipelining or parallel processing, and use of memory structures
with pre-computed values (look up tables - LUT) or other
dedicated hardware components (usually multipliers).
Furthermore, we discuss the optimal hardware architectures
that best apply to various FFT/IFFT algorithms, along with
their abilities to exploit parallel processing with minimal data
dependences of the FFT/IFFT calculations. An interesting
approach that is also considered in this paper is the application
of the integrated processing-in-memory Intelligent RAM
(IRAM) chip to high speed FFT/IFFT computing. The results
of the assessment study emphasize that the execution speed of
the FFT/IFFT algorithms is tightly connected to the
capabilities of the FFT/IFFT hardware to support the provided
parallelism of the given algorithm. Therefore, we suggest that
the basic Discrete Fourier Transform (DFT)/Inverse Discrete
Fourier Transform (IDFT) can also provide high
performances, by utilizing a specialized FFT/IFFT hardware
architecture that can exploit the provided parallelism of the
DFT/IDF operations. The proposed improvements include
simplified multiplications over symbols given in polar
coordinate system, using sinе and cosine look up tables, and an
approach for performing parallel addition of N input symbols.

Keywords: Cooley-Tukey, DFT/IDFT, FFT/IFFT, Intelligent
RAM, look up tables, OFDM, pipeline and parallel processing,
polar coordinate system.

I. INTRODUCTION

The Fast Fourier Transform and the Inverse Fast Fourier
Transform are widely used efficient and fast techniques for
computing the Discrete Fourier Transform and the Inverse
Discrete Fourier Transform, respectively. The reduced
number of FFT/IFFT calculations required for performing
the same set of DFT/IDFT objectives, results in decreasing
the execution complexity from O(N2) to O(Nlog2N), on
algorithmic level [1][2]. Consequently, FFT/IFFT modules
are extensively used for analysis and implementations of
communication systems with real-time data transmission
requirements. Additionally, the recent advances in chip
production technologies, as well as in FFT/IFFT algorithms,
have resulted with production of several FFT/IFFT chips

that allow significant processing speed up (multi Gb/s) [3]-
[6], as well as decreased chip area and reduced energy
consumption [7]-[9].

The most important and used FFT/IFFT application is the
orthogonal frequency division multiplexing (OFDM), which
is the dominant transmission technique used in the 802.11
set of WLAN standards [10]. This advanced modulation
technique divides the available spectrum into many
overlapping subcarriers, thus allowing more effective
channel utilization and reducing inter-symbol interference
(ISI) and inter-carrier interference (ICI) caused by multi-
path effect [11].

IFFT/FFT modules execute the main functionality in
OFDM systems on sending/receiving side, allowing signals
to be converted from frequency/time domain to
time/frequency domain [2]. Actually, the process of
modulation of the subcarriers in the channel with symbol
information and making them orthogonal to each other is
performed by means of IFFT on the sending side, whereas
the FFT is used for efficient demodulation of the received
signal. By including the IFFT and FFT modules in OFDM
systems, the signal processing complexity is reduced (at
both, transmitting and receiving side) and higher
transmission rates are achieved.

Efficient FFT/IFFT implementation is a topic of
continuous research in the recent years [3][4], and the main
goal is reducing the processing complexity of the FFT/IFFT
calculations. In general, there are two directions in this area
of research. The first one refers to developing algorithms for
FFT/IFFT and their optimization. Best known algorithms in
this field, worth mentioning in this paper are radix-2, radix-
4, radix-8 and split-radix variations of the Cooley-Tukey (C-
T) algorithm [12][13] as well as Winograd algorithm [14]
By increasing the base in C-T algorithm, the number of
operations is decreased, resulting in FFT/IFFT split-radix
implementation becoming superior compared to Winograd
algorithm [15]. The second approach is focused on hardware
architecture improvements and optimization of the
FFT/IFFT module. This includes adequate techniques for
parallel processing and pipelining, memory structures for
preservation of previously calculated results, as well as

Efficiency Comparison of DFT/IDFT
Algorithms by Evaluating Diverse Hardware

Implementations, Parallelization Prospects and
Possible Improvements

Danijela Efnusheva, Natasha Tagasovska, Aristotel Tentov, Marija Kalendar
SS. Cyril and Methodius University - Faculty of Electrical Engineering and Information Technologies

Rugjer Boshkovik bb, PO Box 574, 1000 Skopje, Macedonia
E-mail: {danijela, ntagasovska, toto, marijaka}@feit.ukim.edu.mk

12

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

dedicated components (usually multipliers) for more rapid
calculations [16][17].

The FFT/IFFT implementation, in order to obtain better
performances, can be achieved with various hardware
components, including digital signal processors (DSPs),
general purpose processors (GPPs), smart memories
(IRAM), application specific integrated circuits (ASICs) or
specialized circuits implemented on FPGA. The research
has shown that GPPs and DSPs [14] are programmable and
flexible, but cannot completely satisfy the fast processing
requirements. On the other hand, the IRAM architecture is
insufficiently explored, but considering its abilities to
provide high memory bandwidth and strided memory
accesses, it is expected to provide promising results [18].
Most of the FFT/IFFT implementations are realized as
specialized logic circuits, characterized with different forms
of parallel computing. FPGA components are utterly
suitable for implementation of this type of circuits,
providing a tradeoff between speed, cost, flexibility and
programmability [2][6][15][16][19].

The aim of this paper is to investigate various algorithms
for FFT/IFFT computation and to discuss their hardware
implementation that mostly satisfies the high speed
processing requirements. Actually we talk about several
parallelization techniques and methods, emphasizing the
problem of data dependences in the FFT/IFFT calculations
that limit the processing speed and the maximal utilization
of the available hardware resources. Therefore, we suggest
that the basic DFT/IDFT calculations are very suitable for
parallelization, which can be further improved by
implementing several optimizations of the addition and
multiplication operations over complex numbers. In order
to be effective, the provided modifications should be
supported by a specialized processor-in-memory
architecture. Initial ideas for implementing such approach,
are presented in this paper.

This paper is organized in five sections. Section two
discusses variety of FFT/IFFT algorithms for fast
calculation of the DFT/IDFT and compares their efficiency.
Section three provides an overview of different FFT/IFFT
hardware implementations, discussing the achievable speed
up by introducing parallelism. Section four presents several
techniques for efficient hardware implementation of the
basic DFT/IDFT computations, as well as possible
DFT/IDFT improvements of the multiplication and addition
operations, which are essential for performing the
summation of products in the DFT/IDFT. The proposed
improvements should involve maximal parallelism, during
the execution of the DFT/IDFT computations. The paper
ends with a conclusion, stated in section five.

II. SOFTWARE OPTIMIZATION OF DISCRETE FOURIER
TRANSFORM

The DFT/IDFT is the most important discrete transform,
used to perform Fourier analysis in many practical
applications. For example, it has a fundamental function for
modulation and demodulation in OFDM systems [2]. This
transformation deals with a finite discrete-time signal and a
finite or discrete number of frequencies, so it can be
implemented in computers by numerical algorithms or even
-vector dedicated hardware.

Given n real or complex inputs x0,…,xn-1, the DFT [2]
[20], is defined as:

,0,
0

nky
n

k
nk <≤=∑ <≤
−




ωχ (1)

with)/2exp(nin πω −= and 1−=i . Stacking ky and

χ into vectors T
nxxx),...,(10 −= and T

nyyy),...,(10 −=
yields into the equivalent form of a matrix-vector product:

xDFTy n= , nlkDFT kl
nn >≤= ,0],[ω (2)

Straightforward computation of both DFT and
convolution is a matrix-vector multiplication, given as

→

• gW and takes O(N2) operations, for N being a
transformation size.

The breakthrough of the Cooley-Tukey algorithm's family
derives from its capability of significantly cutting down
DFT’s O(N2) complexity to an order of O(Nlog2N), [13].
This advance in computational theory inspired and
motivated a stream of researches targeting even further
speed up and efficiency of performing DFT, and eventually
a whole new class of algorithms was introduced, known as
FFT algorithms. A common feature for most FFT algorithms
is their order of complexity - O(Nlog2N).

A. Divide and Conquer Approach as a Basis for FFT
Algorithms

The DFT usually arises as an approximation to the
continuous Fourier transform, allowing functions sampling
at discrete intervals in space or time. In order to make the
DFT operation more practical, several FFT algorithms were
proposed. The fundamental approach for all of them is to
make use of the properties of the DFT operation itself, and
thus reduce the computational cost of performing the DFT
calculations. This is basically achieved by implementing the
divide and conquer approach [21], which is a basis for most
of the algorithms for effective computation of DFT.

We already stated that the discrete Fourier transform is a
matrix product, whereas 10 ,..., −Nxx is the vector of input
samples, T

NXXx),...,(10 −= is the vector of transform
values and WN is the primitive Nth root of unity, so that WN =

1),/2exp(−=− iNiπ [20]. This product is given by the
following equation:



























×























=



























−

−−−−

−

−

− 1

3

2

1

0

)1)(1()1(21

)1(642

132

1

3

2

1

0

1

1
1

11111

N

NN
N

N
N

N
N

NN
NNNN

N
NNNN

N x

x
x
x
x

WWW

WWWW
WWWW

X

X
X
X
X














 (3)

WN is also referred to as the twiddle factor or phase
factor. This value being a trigonometric function over
discrete points around the 4 quadrants of a two dimensional
plane, has symmetric and periodic properties [22]. Using
these properties of the twiddle factor, unnecessary
computations of the DFT can be easily eliminated.

13

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

The direct evaluation of the matrix-vector product
requires N2 complex multiplications and additions. In order
to reduce this huge number of operations, a divide and
conquer approach is implemented. The general idea of this
methodology is to map the original problem into several
sub-problems in such a way that the following inequality,
[20], is assured:

cost(subproblems) + cost(mapping) < cost(original problem) (4)

The real influence of this method is that, regularly, the
division can be applied recursively to the sub-problems as
well, thus leading to a reduction of the order of complexity.

The important point in (4) is that the divide and conquer
scheme is consisted of two clear costs: the cost of the
mapping (which can be zero when looking at the number of
operations only) and the cost of the sub-problems. As a
consequence, different types of divide and conquer methods
make an effort to find balancing schemes between the
mapping and the sub-problem costs [20]. As an example, the
Cooley-Tukey radix-2 algorithm can be considered, where
the sub-problems results being quite trivial (only sum and
differences), although the mapping requires twiddle factors
that lead to a large number of multiplications. On the
contrary, in the prime factor algorithm, the mapping is done
only by means of permutations (no arithmetic operation are
required), while the small DFTs that appear as sub-problems
indicate substantial costs since their lengths are co-prime
numbers.

B. Families of FFT Algorithms
There are two core families of FFT algorithms: the

Cooley-Tukey algorithms and the Prime Factor algorithms,
[20]. These classes of algorithms differ in the way they
translate the full FFT into smaller sub-transforms. Mostly
two types of routines for Cooley-Tukey algorithms are used:
mixed-radix (general-N) algorithms and radix-2 (power of
2) algorithms. All Radix algorithms are similar in structure,
differing only in the core computation of the butterflies,
[23]. Each type of algorithm can be further categorized
according to additional features, such as whether it operates
in-place or requires an additional scrape space, whether its
output is in a sorted or scrambled order, and whether it uses
decimation-in-time or -frequency iterations.

1) Cooley-Tukey Algorithms
The Cooley–Tukey set of algorithms comprises the most

common fast Fourier transform (FFT) algorithms. They re-
expresses the discrete Fourier transform (DFT) of an
arbitrary composite size N = N1N2 in terms of smaller DFTs
of sizes N1 and N2, recursively, in order to reduce the
computation time to O(Nlog2N) for highly-composite N
(smooth numbers). Usually, either N1 or N2 is a small factor
(not necessarily prime), called the radix (which can differ
between stages of the recursion) [20]-[23]. If N1 is the radix,
the Cooley–Tukey algorithm is called decimation in time
(DIT), whereas if N2 is the radix, it is decimation in
frequency (DIF).

A radix-2 DIT FFT is the simplest and most common
form of the Cooley–Tukey algorithm, although highly
optimized Cooley–Tukey implementations generally use

some other forms of the algorithm. Radix-2 DIT
decomposes a DFT of size N into two interleaved DFTs
(hence the name "radix-2") of size N/2 with each recursive
stage, eventually resulting in a combining stage containing
only size-2 DFTs called "butterfly" [13], operations (so-
called because of the shape of the data-flow diagrams, Fig.
1).

Besides the radix-2 Cooley-Tukey algorithm, other
implementations with radixes of 4 and 8 are also used.
Actually, the value of the radix (2, 4, 8) indicates that the
total number of points used for the transformation can be
expressed as 2x, 4x or 8x, accordingly [15]. Therefore, the C-
T algorithm can execute parallel and independent butterfly
operations with 2, 4 or 8 input/output values, in each of the
algorithm phases (for radix x, the number of phases is
logxN,).

Mixed-radix (also called split-radix) algorithms work by
factorizing the data vector into smaller lengths. These can
then be transformed by FFTs with small number of points,
noted as small-N FFT [24]. Typical programs include FFTs
for small prime factors, such as 2, 3 or 5, which are highly
optimized. Actually, the idea of this algorithm is to use
many multiplied small-N FFT modules and combine them in
order to make longer transforms. If the small-N modules are
supplemented by an O(N2) general-N module then an FFT of
any length can be computed. Of course, any lengths which
contain large prime factors would perform only as O(N2).

The well-known radix-2 Cooley–Tukey algorithm is a
simplified version of the mixed-radix algorithm, realized by
the use of FFT modules whose lengths are only power of
two. Radix-2 algorithms have been the subject of much
research into optimizing the FFT. Many of the most efficient
radix-2 routines are based on the “split-radix” algorithm
[15]. This is actually a hybrid which combines the best parts
of both radix-2 ("power of 2") and radix-4 ("power of 4")
algorithms, for computing distinctive partitions of the
Fourier’s transformation.
2) Prime Factor Algorithms

The prime-factor algorithm (PFA), (also known as the
Good–Thomas algorithm), is a FFT algorithm that re-
expresses the DFT of a size N = N1N2 as a two-dimensional
N1×N2 DFT, but only for the case where N1 and N2 are
relatively prime. These smaller transforms of size N1 and N2
can then be evaluated by applying PFA recursively or by
using some other FFT algorithm. Although this algorithm
has a very simple indexing scheme, it only works in the case
where all factors are co-prime, which makes it suitable as a

Fig. 1. Flow graph of 8-point DIT FFT radix-2 Cooley–Tukey algorithm.

14

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

TABLE I
COMPARISON OF MULTIPLICATION AND ADDITION COMPLEXITY OF DFT AND COOLEY-TUKEY BASED FFT/IFFT ALGORITHMS

specialized algorithm for given lengths, [25]. PFA is also
closely related to the nested Winograd FFT algorithm,
where the latter performs the decomposed N1 by N2
transform via more sophisticated two-dimensional
convolution techniques [26]. Winograd algorithm is
requiring the least known number of multiplications among
practical algorithms for moderate lengths DFTs.

Another less known algorithm is Fast Hartley Transform
(FHT) [27]. This effective algorithm cannot be classified in
formally presented families, since its core characteristic is
what moves them apart. For the DFHT, the kernel is real,
unlike the complex exponential kernel of the DFT. For
complex data, each complex multiplication in the
summation requires four real multiplications and two real
additions using the DFT. For the DFHT, this computation
involves only two real multiplications and one real addition.

It can be noticed that performing efficient and fast
discrete Fourier transform, truly inspired researchers and
burst many peoples’ creativity. Sequentially, along with
many ideas, came many experiments, evaluations and
analysis. An effort was made to sum up the general
conclusions in terms of complexity (meaning effectiveness)
of the different types of FFT algorithms. Table 1 and Table
2 present the results.

From the results gathered in Table 1 and Table 2, an
assumption can be made, that in general, split-radix
algorithm achieves best performance. However, its irregular
structure introduces some difficulties during the
implementation [15]. Observing Table 1, another thing can
be noticed, and that is the obvious decrement of the number
of operations required for FFT, with each increment of
algorithms' radix. Regarding the Prime Factor Algorithms,
from Table 2 it can be concluded that Winogard is more
efficient for smaller FFT sizes while for FFTs with input
array sizes grater then 500 points, Prime Factor Algorithms
present better results. Thus, for this family of algorithms a
general winner or leading algorithm cannot be determined.

At this stage, we conclude FFT algorithms brief overview
and efficiency evaluation, considering different manners of
influencing DFT performances' only through algorithms, i.e.
optimization in software. Nevertheless, these influences'
impact depends on the characteristics of the platform the
algorithms are executed on. Thus, this paper elaborates the
FFT algorithms possible hardware implementations in
section 3, as well.

C. FFT Parallelization and Optimization in Software
The emergence of multi-core processors also encouraged

further research and optimization of FFT algorithms. The
most popular of the previously discussed algorithms were

rewritten introducing multi-threaded FFT programs.
However, well known rule of thumb is that, the more the
code is optimized, the harder it is to be realized in parallel.
Most researches in this direction go with sequentially
executing code until a parallel region is reached where
multiple threads can be employed, [28]. This practice is
truly more a need, since FFT algorithms' separate stages
depend on each other's results.

An accent was also put on joint resources, like twiddle
factors and bit reversal mapping which are commonly
presented as lookup tables (LUT) [28][29]. But then again,
memory may be saved, but usually the case is that memory
accesses are far more expensive (in terms of speed of
execution) then arithmetic operations, due to slower
memories. The consequence of this type of implementation
may not be the performance one hoped for. This particular
fact was the starting point for the FFTW project, [30], where
an effort was made for maximum utilization of computers'
fast memory (cache and RAM), by introducing self-
optimizing FFT algorithms on the behalf of specialized
compiler, that adapt themselves in the form most suitable for
particular architecture implementation.
Sdalksdf

III. HARDWARE OPTIMIZATION OF FFT ALGORITHMS
IMPLEMENTATIONS

Efficiency comparison on all previously discussed
algorithms makes no real sense if they are not associated
with their hardware application. By hardware, we mean
certain architecture and particular platform. It was proven
that the desired performance requirements will only be met
if FFT algorithms are applied into suitable hardware set.
Architectures vary in number of available processing units
as well as in memory size and distribution. These two main
features have inevitable impact on FFT algorithms
efficiency, since they cover parts of FFT which proved to be
the most intense – arithmetic operations and memory
accesses.

A. Various Platforms for FFT Algorithms Hardware
Implementations

Several architectures have been proposed [31][32], each
of them trying to optimize the load of memory accesses and
increase overall speed of FFT execution. These architectures
effectiveness can be further evaluated by physical
implementation. Today’s cutting edge technology provides
number of hardware platforms fit for deploying FFT
algorithms. In this paper GPP, DSP as well as specialized
hardware circuits – ASIC and FPGAs implementations are
discussed.

DFT C-T Radix-2 C-T Radix-4 C-T Radix-8 C-T Split Radix

Poin
ts

Real
Adds

Real
Muls Total Real

Adds
Real
Muls Total Real

Adds
Real
Muls Total Real

Adds
Real
Muls Total Real

Adds
Real
Muls Total

16 992 1024 2016 152 24 176 148 20 168 148 20 168
32 4032 4096 8128 408 88 496 388 68 456
64 16256 16384 32640 1032 264 1296 976 208 1184 972 204 1176 964 196 1160
128 65280 65536 130816 2504 712 3216 2308 516 2824
256 261632 262144 523776 5896 1800 7696 5488 1392 6880 5380 1284 6664
512 1047552 1048576 2096128 13576 4360 17936 12420 3204 15624 12292 3076 15368
1024 4192256 4194304 8386560 30728 10248 40976 28336 7856 36192 27652 7172 34824

15

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

 Architectural and design issues which are to be
considered for diverse FFT hardware implementations are:
precision of data, number of points for FFT size, and
memory usage. Then performance evaluation is done
according to power consumption, required circuit board area
and desired circuit frequency. The value of these variables
depends on the application which makes use of FFT i.e.
employs it, and what's even more is that these same
parameters have impact on the whole system (FFT
algorithm + platform) performances.

1) General Purpose Processors
Many research efforts have been performed in this area

[30][33] being just part of it. What is interesting to notice is
that a greater part of the execution time was spent on load
and store operations, compared to actual arithmetic
computations [20]. This is a straightforward consequence of
the GPP architecture, designed to satisfy many diverse
applications' needs. Thus, from all implementations, this has
proven to be the least effective one. Nevertheless researches
utilizing these platforms continue, since many upper layer
applications, using everyday technology (consisting GPPs)
require FFT. Hence, a great advancement is made with the
FFTWs' development, which provides an opportunity for
one to choose an optimal algorithm for particular GPP, due
to its adaptive features, by benchmarking FFTW library.
From the gathered results it is obvious that for different FFT
size, different platform is more convenient.
2) Digital Signal Processors

DSPs offer the best flexibility, but limited performance.
These processors sturdily service multiply/accumulate based
algorithms. Unluckily, this is not the case of any FFT
algorithm (where sums of products have been changed to
fewer but less regular computations) [20]. Still, DSPs now
meet some of the FFT requirements, like modulo counters
and bit-reversed addressing. If the modulo counter is
general, it will help the implementation of all FFT
algorithms, but it is often restricted to the Cooley-
Tukey/SRFFT case only (modulo a power of 2), for which
proficient timings are provided on nearly all available
machines by manufacturers, at slightest for small to medium
lengths. DSPs achieve low development cost compared to
dedicated hardware solutions, although at the expense of
medium performance and high power consumption.
3) Application Specific Integrated Circuit

Application Specific Integrated Circuits are famous for
being the fastest platform for processing intense operations.
Many hardware product vendors like Xilinx and Altera
accepted this appropriateness of using ASIC chips for FFT
implementations, and have developed high performance IP
cores, from which designers benefit in reducing the time

required for various product development. Compared to
GPU and DSP they provide flexibility in terms of
algorithms, meaning they are convenient not only for
traditional Cooley-Tukey algorithms but also for PFA, [34].
Another reason to use them is their power efficiency
requirements which are lowest of all.
4) Field Programmable Gateway Arrays (FPGA)

Fast Fourier transform has been playing an important role
in digital signal processing and wireless communication
systems, so the choice of FFT sizes is decided by different
operation standards. It is anticipated to make the FFT size
configurable according to the operation environment, since
achieving a successful design means the system should be
able to support different operating modes required by
diverse applications with low power consumption
requirement [35]. This is the reason why reconfigurable
hardware has been paid more attention recently. FPGAs
combine ASICs desired speed of operation with the
flexibility provided from DSP, resulting in a perfect match
for FFT implementations. Additionally, the capability of
changing the source code according to current specific
application makes this type of platform convincing winner
for FFT implementation. Despite of all the upsides, a
disadvantage must be mentioned, and that its power
consumption.

Further, this paper presents another not so explored
platform, but from our point of view, suitable for FFT
implementation, and that is Intelligent RAM–IRAM.
5) Intelligent RAM

Intelligent RAM [18], is another merged DRAM-logic
processor, designed at the Berkeley University of California
by a small Patterson's team of students. This chip was
designed to serve as multimedia processor on embedded
devices. As a result of the design studies of the Berkeley's
team research group, it was shown that most applicable
architecture to multimedia processing is vector architecture,
rather than MIND, VLIW, and other ILP organizations [36].
This is basically because of the vector processors' abilities to
deliver high performance for data-parallel tasks execution,
and to provide low energy consumption, simplicity of
implementation and scalability with the modern CMOS
technology.

The resulted IRAM chip is called Vector IRAM
(VIRAM). VIRAM is processor that couples on-chip
DRAM for high bandwidth with vector processing to
express fine-grained data parallelism [18]. The VIRAM
architecture (shown on Fig. 2) consists of MIPS GPP core,
attached to a vector register file that is connected to an
external I/O network and also to a 12MB DRAM memory
organized in 8 banks.

TABLE II
COMPARISON OF MULTIPLICATION AND ADDITION COMPLEXITY OF DFT AND PRIME FACTOR BASED FFT/IFFT ALGORITHMS

DFT Prime Factor Winograd

Points Real
Adds

Real
Muls Total Real

Adds
Real
Muls Total Real

Adds
Real
Muls Total

60 14280 14400 28680 888 200 1088 888 136 1024
240 229920 230400 460320 4812 1100 5912 5016 632 5648
504 1015056 1016064 2031120 13388 2524 15912 14540 1572 16112
1008 4062240 4064256 8126496 29548 5804 35352 34668 3548 38216

16

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

Fig. 2. Architecture of IRAM chip.

FFT computations are difficult to be realized with
conventional GPP architectures, given that they require high
memory bandwidth and strided memory accesses.
Nevertheless, it was shown that the performance of
computing floating-point FFTs on a VIRAM processor,
[18], can be competitive with that of existing floating point
DSPs and specialized fixed-point FFT chips.

From this section it can be concluded that there is no such
thing as a universally optimal FFT/IFFT algorithm,
architecture and implementation that is appropriate for all
systems. Therefore, it is recommended to perform a search
across the algorithm, architecture and implementation
dimensions for each system.

B. Further FFT Speedup by Introducing Parallelization
Techniques in Hardware

Traditional FFT hardware architectures include trade-offs
among complexity, power consumption, die size, and other
similar parameters. Still, these architectures don’t have the
scalability to encounter high speed processing requirements
on FFT performance, for instance on emerging high data
rate technologies in wireless communications, like OFDM.
Progress in technology empowers development of
architectures optimal for given class of algorithms,
including FFT.

In general, there are three main techniques of improving
overall FFT speed, all of them based on the Transpose
algorithm, described in [37]:
1) Increasing the order of the radix.

This approach improves both latency and throughput,
but is expensive in terms of computational resource
required for each processing unit.

2) Cascading (pipelining) the processors.
Different processors operate over different stages.
Cascading improves throughput, but not latency. Inter
stage memory is necessary.

3) Parallelizing the processors.
Parallelizing the processors, so that a single large FFT is
divided into N smaller FFTs. Both latency and
throughput are improved with this arrangement.
Drawback is the data transfer between stages.

All these improvement methods require architecture
modifications. Thus, in literature, commonly two
architecture approaches are presented: memory-based FFT
and pipeline-based FFT. Memory-based FFT uses only one
butterfly and large memories for data storage. On the other
hand, pipelined architecture uses many butterflies to
improve the speed. There are several FFT hardware modules

that have been proposed to implement both methods
(memory-based design and pipelined design) in order to
improve speed and minimize area. For example, [38]
proposes six memory-based implementations, realized in
FPGA. The authors give the name of RX2-B1, RX4-B1,
RX2-B2, RX4-B2, RX2-B4, MXRX-B4 for these
architectures, whereas the RX presents the used radix and Bi
indicates that the architecture operates with i outputs in
parallel. The techniques used for each of these architectures
are based on memory sharing, conflict free memory
addressing, in-place memory processing, continuous flow
design, N-word memory size, fixed-point arithmetic and
pre-computed twiddle factors stored in ROM. It was found
that the fastest processors are the RX2-B4 and MXRX-B4
FFT models which can process four data samples per clock
cycle.

Another direction in researching memory based
architecture is towards distributed memory and processing
units. This technique requires re-expressing the FFT
algorithms to adapt them for parallel implementation.
According to [21][39], where several algorithms were
tested, it was proven that additional complexity is added to
the system, as a consequence of the need for communication
between different modules. Also, it was noticed that not all
algorithms are suitable for parallelization, since only
algorithms with regular structure (Cooley-Tukey Radix-2/4,
Split Radix) are advisable, while the block complexity of
Winograd algorithm makes it difficult and unsuited for
parallel implementation.

Regarding the pipelined architectures, many works have
presented optimizations to achieve high performance and
low area consumption. The most famous architectures of
pipeline implementations are multi-path delay commutator,
radix-2 single path delay commutator and radix-2 single
path delay feedback, [35]. The main difference between
these architectures is in the number of inputs, outputs and
butterflies used.

A different approach is applied by [40] proposing an
array processing architecture for parallel FFT
implementation. Key advantage of this architecture is the
elimination of inter stage data transfer, so both, the system
throughput and latency are improved. This idea is basically
similar to IRAM, [18], which also includes vector
processing units, capable to process the input data in
parallel.

Although there have been several efficient designs, there
is an inherent drawback related to the area (and
consequently power) overhead. Another essential conclusion
is the existing threshold, which delimits FFTs' input size
after which this whole additional complication of FFT
implementation system is rewarding, so this fact must also
be taken into account while developing applications.

IV. HARDWARE OPTIMIZATION OF DISCRETE FOURIER
TRANSFORM

The Discrete Fourier Transform is a universal instrument
in science and engineering, including digital signal
processing, communication, and high-performance
computing. Applications employing it belong into the area
of spectral analysis, image compression, interpolation,
solving partial differential equations, and many other tasks,

17

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

[13]. Therefore, as a consequence from its extensive
implementation, meeting its computational demands, is the
high price applications employing DFT, have to pay.

As stated before, the Discrete Fourier Transform for an
N-point sequence x(n) is given by (4), where X(k) and x(n)
are complex numbers, n is the time index and k is the
frequency index [1]. Actually, the DFT formula is expressed
as a summation of complex numbers products.

 1,...,1,0,)()(1

0

2

−== ∑ −

=

−

NkenxkX N

n
N

nkj π

 (4)

By using this equation the DFT computation requires N²
complex multiplications and N(N–1) complex additions,
leading to a complexity of O(N²). Each complex
multiplication requires four real multiplications and two real
additions and each complex addition requires two real
additions. Therefore a total of 4N2 real multiplications and
N(4N-2) real additions are required [1]. Although the DFT
employs the highest number of operations, comparing to
various FFT implementations, all the operations are
independent and can be executed in parallel. This is where
we see a chance for maximal parallelization that will allow
reaching better and faster results.

Generally, the FFT algorithms decrease the number of
operations, but involve significant communication overhead,
during the execution. This is a result of the divide and
conquer approach which halts the system before proceeding
to the next stage until all the output from the previous stage
is generated [21]. For example, the execution of the Cooley-
Tukey radix-x algorithm is performed in logxN phases that
must execute sequentially, although each phase employs
parallel operations. The data dependences that appear
between separate stages of the 8-Point Cooley-Tukey FFT
radix-2 algorithm and DFT are shown in Fig. 3.

As can be seen on Fig. 3, the DFT is computed in only
one phase. According to the fact that the DFT summations
are computed simultaneously, it is of special interest to
implement the DFT component on a hardware architecture
that can support the provided parallelism (for example
IRAM). Furthermore, the computation complexity of the
DFT can be significantly reduced by utilizing some
techniques that can simplify the multiplications of the inner
products and/or parallelize the summations of different
outputs.

A. Techniques for efficient hardware implementation of
DFT

The strong interaction between the algorithm and its
implementation indicates that the algorithm's execution
efficiency depends on the hardware architecture and its
abilities to support the provided parallelism of the algorithm.
Considering the discussion given in the previous section,
serious candidates for implementing the DFT are specific
application integrated circuits or special purpose processors
(similar to IRAM), implemented in FPGA platforms.

Most of the research done so far refers to efficient
hardware implementations of FFT, by implementing various
parallelization prospects and specialized components. In this
section we are discussing several techniques (some of them
already used for FFT hardware implementation) that can be
applied when implementing the basic DFT computations in
hardware. We suggest that the hardware architecture of the
DFT module should be specially purposed to exploit the
provided parallelism, when executing summation of
products.

Assuming that each multiplication is consisted of several
additions, it is obvious that the execution of multiplication
operations is more complex than additions. Therefore, when
implementing the products of the DFT summations many
researchers have used specialized multipliers, purposed to
improve the execution efficiency of multiply operations.
Such approach is presented in [17], where the authors
suggest the use of constant co-efficient multiplier. This
multiplier utilizes small blocks of ROM that store 16 partial
products relating to the fixed coefficient and then use a
simple adder to combine these products. As a result, the co-
efficient multiplier is less than one third of the size of full
multipliers. Another multiplier that is also very efficient,
(without using ROM memories) is the shift-and-add
multiplier [8]. This multiplier decomposes the product in
such a way that it requires only additions and multiplications
or divisions by 2, which are realized in a computer by
shifting bits left or right.

A different approach is presented in [41], where low
power and area efficient adder and Vedic multiplier for
computing FFT are presented. Generally, the speed of
addition is limited by the time required for carry propagation
through the adder, since the sum for each bit position in an
elementary adder is generated after the previous bit position
has been summed and a carry has propagated into the next
position. Referring to [41] the carry select adder allows
fastest execution of arithmetic operations by independently
generating multiple carries and then selecting a carry to
generate the final sum. Although this adder is not area
efficient, its ability to decrease the propagation delay makes
it popular for use. The combination of the carry select adder
and Vedic multiplier provides fast execution and also
reduction of FFT chip area and power [41]. The Vedic
multiplier is based on Vedic mathematic principles, which
employs a unique technique of calculations based on sixteen
principles or word-formulae which are termed as Sutras.
This mathematic is very suitable for digital signal
processing [42].

Very efficient technique for calculation of DFT inner
products is Distributed Arithmetic (DA) [43]. This method
is used only if one of the vector operands is known,

Intermediate
results in
phase1

X’(0)-X’(7)

Intermediate
results in
phase2

X’’(0)-X’’(3)

Intermediate
results in
phase2

X’’(4)-X’’(7)

Final results
in phase3
X(0)-X(1)

Final results
in phase3
X(4)-X(5)

Final results
in phase3
X(6)-X(7)

Summation
of products

for X(0)

Summation
of products

for X(7)
...

Fast Fourier Transform Discrete Fourier Transform

Final results
in phase3
X(2)-X(3)

Fig. 3. Data dependence when executing 8-point radix-2 Cooley–Tukey
FFT algorithm and DFT.

18

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

allowing bit-serial computation that forms an inner product
of a pair of vectors in a single direct step. The distributed
arithmetic approach replaces the explicit multipliers by
ROM look up tables and adders, thus providing considerable
reduction in the power consumption. Although this
technique appears to be slow because of its bit serial nature,
it turns out that when the number of samples in each vector
commensurate with the number of bits in each vector
element, the DA is very fast. Another similar approach that
utilizes look-up tables for pre-computing the products of the
DFT summations is presented in [5]. It was shown that such
DTF module can be applied to OFDM transmitter for optical
communication, which is capable to achieve 101.5 Gb/s
through fiber with 16QAM modulated sub carriers, by using
two Xilinx Virtex 5 FPGA boards that work in parallel.

The speed of the DFT calculations can be also improved
by utilizing the CORDIC (coordinate rotation digital
computer) algorithm, which dynamically calculates the
trigonometric functions, using processing elements to
perform vector rotations [44]. The CORDIC component can
also be used for polar to rectangular or rectangular to polar
conversions, and as well for computing a vector magnitude.
This algorithm operates in such a way that it executes vector
rotations by arbitrary angles, using only shift and add
operations, thus providing advantages in speed, accuracy,
simplicity in design and other aspects of performance
requirements.

B. Proposed improvement for efficient hardware
implementation of DFT

The total processing time required for computing the
DFT, depends on the multiplication time, which is generally
far greater than the addition time. The multiplications and
additions of the DFT are performed over complex numbers
[7], which are usually represented in rectangular format:

 (a+bj)·(c+dj) = (ac-bd) + (ad+bc)j (5)

(a+bj) + (c+dj) = (a+c) + (b+d)j (6)

As given in equations (4) and (5) each multiplication of
two complex numbers requires four multiplications of real
numbers (imaginary and real component) and two additions
of real numbers. On the other hand, each addition of two
complex numbers requires two additions of real numbers.
From here, it is obvious that multiplications are more
complex than the additions.

There is an approach [13], which reduces the
multiplication complexity to 3 multiplications and five
additions. This is achieved by regrouping the multiplicands,
as presented in equation (6):

(a+bj)·(c+dj) = [(a+b)c - b(d+c)] + j[(a+b)c + a(d-c)] (7)

Representing complex numbers in rectangular format is a
common choice, basically because the arithmetic operations,
such as: add, sub, mul and div can be easily implemented.
On the other hand, having complex numbers represented in
circular form (polar coordinates) can cause many
difficulties, while performing adds/subs, but allows simpler
implementation of muls/divs operations. Taking all this into

account, in continuation we present a method for simplified
implementation of the DFT/IDFT calculations.

The purpose of the DFT module is to perform the
summation of products, given in equation (4), over input set
of complex numbers. In our approach we consider that the
DFT/IDFT module inputs and twiddle factor angles are
provided in circular format, with polar coordinates (angle φ
and amplitude r). All the twiddle factors magnitudes are 1s,
while the angles are pre-computed and placed in a look up
table. This way, the multiplications between complex
numbers and twiddle factors are executed with only one add
operation. Actually, each product term of the DFT
summations is calculated as:

 1,...,1,0,
)2(2

−=⋅=⋅⋅
−

−

Nkereer N
nki

N
nki

i
π

φ
π

φ (8)

The calculation of the products in the DFT is not data
dependent, so it can be executed in parallel. In order to
compute the appropriate DFT output symbols, subsets of the
calculated products, should be summed up. Given that the
addition of circular format complex numbers is very
complex, a conversion to rectangular format is made:

))2sin()2(cos(
)2(

N
nki

N
nkrer N

nki πφπφ
π

φ
−+−=⋅

−
(9)

The provided conversion involves cosine and sine
operations and two multiplications of real numbers. The cos
and sin operations can be calculated by utilizing look-up
tables with pre-computed cosine and sine values, while the
two multiplications can be performed by using only shift
and add operations, as the authors of [14], suggested. The
conversion is executed in such a way that firstly the cos and
sin tables are looked-up and then the multiplications are
performed. The conversions of different products are
independent of each other and can be performed
simultaneously.

After the real and imaginary components of each product
are computed, next is to sum up the results, and produce the
output complex numbers. The number of the outputs
depends on the number of points, used in the DFT/IDFT
module. Each output is generated by performing a sum over
N products. In order to parallelize the summation of N
inputs, we propose a parallel algorithm for that purpose.

The proposed algorithm performs parallel additions of N
inputs with M bits, without having to wait for the carries
generated during the additions. In fact, it allows
simultaneous additions over each bit position of the
numbers. Therefore, the summations of the i-th position
(i=0,..,M-1) bits of each number are performed in parallel
and each of the results is placed in a separate register, and
shifted by i places. If there is a carry, the result register will
have one or more 1s on some of the [i+1, i+M-1] positions.
In that case the algorithm is performed again, and the
appropriate additions are executed once more. Actually, the
algorithm stops only when the generated output of each of
the N registers consists only one 1 on the i-th position or all

19

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

0es. Other terminating condition of the algorithm can be the
state when the results stored in all M registers, are
completely the same as the results stored in all M registers,
but in the previous iteration. In the final step of the
algorithm, each of the registers holds the i-th cipher of the
result.

The given algorithm was introduced to work with binary
numbers, which sometimes can take a long time. In order to
reduce the number of algorithms' iterations, one can work
with numbers given in hexadecimal format. However this
approach will complicate the design, requiring additional
adders for performing the intermediate summations of N
hexadecimal numbers.

The proposed modifications are made to allow parallel
processing during the execution of the operations. However,
the given improvements will only be effective if the
hardware implementation of the DFT/IDFT module is
consisted of many processing engines that can support the
provided add and mul operations. The DFT/IDFT module
will also include three look-up tables for holding the twiddle
factor angles, and for performing the sine and cosine look-
ups. Our opinion is that the processor-in-memory
architecture can be very suitable solution for implementing
the proposed DFT/IDFT improvements.

V. CONCLUSION

The never-ending aspiration for more efficient calculation
of DFT, motivated by its truly widespread expansion in
applications, could not disregard this opportunity. Although
there are different variations of architectures of parallel
systems, the number of researches made in this area, as well
as the number of diverse tracks and ideas within it, is
certainly surprising. Different combinations have been
made, starting from FFT algorithms properties or the
properties of parallel systems; architectures, further
adjusting one to another in the development process.

All the work done in this area proves that by making the
right combination of FFT algorithm, architecture and
platform, desired performance results can be achieved. In
general, all the efficient FFT implementations require
specific hardware architecture that is tailored to support the
computations involved in the FFT algorithm used.

In this paper we consider that most FFT algorithms
include data dependent operations that limit the execution
speed of the algorithm. Therefore, we suggest that the
execution of the basic DFT/IDFT computations can provide
execution speed-up, despite the fact that the DFT/IDFT
involves more computations than many FFT algorithms.
This is basically because the DFT/IDFT computations are
characterized with high level of parallelism, so most of them
can be executed simultaneously.

Considering that the basic DFT/IDFT computation is
represented as summation of products, we propose possible
improvements of the multiply and add operations over
complex numbers. In our approach the multiplications
involve only one add operation, since the operands are given
in polar coordinate system. The additional cost that should
be paid for this is the conversion to rectangular form, which
involves two multiplications and calculation of sin and cos
functions, using look-up tables. Furthermore, we propose an
algorithm for performing parallel additions of N inputs that

excludes the timing overhead caused by the addition of carry
bits. The proposed algorithm involves high level of
parallelism.

The proposed improvements are essential for performing
the summation of products in the DFT/IDFT. It is expected
that they should involve maximal parallelism, during the
calculation of the DFT/IDFT outputs. However, their
execution should be supported by a specialized processor
architecture that would be able to exploit the provided
parallelism. We believe that processor-in-memory
architecture is a good solution for efficient implementation
of the DFT/IDFT module with the proposed modifications.

Even though many researches dedicated their work on
improving DFT calculating performance, we noticed a gap
in examining pure DFT prospects for optimization and
parallelization, where we recognize a great potential. For
future continuing on this work we plan on implementing the
proposed design expecting meaningful results.

ACKNOWLEDGEMENT

This work was partially supported by the ERC Starting
Independent Researcher Grant VISION (Contract n.
240555).

REFERENCES

[1] S. W. Smith, “The Scientist and Engineer's Guide to Digital Signal
Processing,”. California: California technical publishing, 1997.

[2] K. Adzha and B. Kadiran, “Design and implementation of OFDM
transmitter and receiver on FPGA hardware,” M.S. thesis, Faculty of
electrical engineering, Universiti teknologi Malaysia, Malaysia, 2005.

[3] M. Bernhard and J. Speidel, “Implementation of an IFFT for an
optical OFDM transmitter with 12.1 Gbit/s,” ITG Symposium on
Photonic Networks, Germany, 2010.

[4] F. Buchali, R. Dischler, A. Klekamp, M. Bernhard, and D. Efinger,
“Realisation of a real-time 12.1 Gb/s optical OFDM transmitter and
its application in a 109 Gb/s transmission system with coherent
reception,”, 35th European Conference on Optical Communication,
Germany, 2009.

[5] R. Schmogrow and M. Winter, et al, “101.5 Gbit/s real-time OFDM
transmitter with 16QAM modulated subcarriers,” OSA/OFC/NFOEC
2011, vol. A247, pp. 529-551, April 1955.

[6] C. Toal and S. Sezer, et al, “A 1Gbps FPGA-based wireless baseband
MIMO transceiver,” IEEE International SOC Conference (SOCC'12),
pp. 202-207, September 2012.

[7] K. Maharatna, E. Grass, and U. Jagdhold, “A 64-point Fourier
transform chip for high-speed wireless LAN application using
OFDM,” IEEE Journal of Solid-State Circuits, vol. 39, March 2004.

[8] K. Maharatna, E. Grass, and U. Jagdhold, “A Low-power 64-point
FFT/IFFT architecture for wireless broadband communication,” in
Proc. 7th Int’l Conf. on Mobile Multimedia Communication
(MoMuC), Tokyo, Japan, 2000.

[9] C. Lin, Y. Yu, and L. Van, “A Low-power 64-point FFT/IFFT design
for IEEE 802.11a WLAN application,” IEEE International
Symposium on Circuits and Systems, Greece, 2006.

[10] M. Bhardwaj, A. Gangwar, and D. Soni, “A review on OFDM:
concept, scope & its applications,” IOSR Journal of Mechanical and
Civil Engineering, Volume 1, Issue 1, pp. 07-11, 2012.

[11] L. Lit win and M. Pugel, “The principles of OFDM,” RF Signal
Processing Journal, pp 30-48, 2001.

[12] T. Fung, “FPGA design and implementation of a memory based
mixed-radix 4/2 FFT processor,” M.S. thesis, Dept. of Electrical Eng.,
Tatung University, Tatung, July 2008.

[13] R. E. Blahut, “Fast Algorithms for Signal Processing,” United
Kingdom: Cambridge University Press, 2010.

[14] J. J. Fúster and K. S. Gugel, “Pipelined 64-point fast Fourier
transform for programmable logic devices,” in Proc. International
conference on advances in recent technologies in communication and
computing, India, 2010.

[15] J. García1, J. A. Michell, G. Ruiz, and A.l M. Burón, “FPGA
realization of a split radix FFT processor,” in Proc. SPIE,
Microtechnologies for the New Millennium, vol. 6590, pp. 1-11,
2007.

20

Proc. of the 2nd International Conference on Applied Innovations in IT, (ICAIIT), March 2014

[16] D. Ghosh, D. Debnath, and A. Chakrabarti, “FPGA based
implementation of FFT processor using different architectures,”
International Journal of Advance Innovations, Thoughts & Ideas,
2012.

[17] M. Chandan, S. L. Pinjare, and C. Mohan Umapthy, “Optimised FFT
design using constant co-efficient multiplier,” International Journal of
Emerging Technology and Advanced Engineering, 2012.

[18] R. Thomas, “An architectural performance study of the fast Fourier
transform on vector IRAM,” Berkeley University, California, Tech.
Rep, 2000.

[19] Y. Ouerhani, M. Jridi, and A. Alfalou, "Implementation techniques of
high-order FFT into low-cost FPGA", in Proc. IEEE 54th
International Midwest Symposium on Circuits and Systems, Korea,
2011.

[20] P. Duhamel and M. Vetterli, “Fast Fourier transforms: a tutorial
review and a state of the art,” Signal Processing Journal, vol. 19,
1990.

[21] S. Meiyappan, “Implementation and performance evaluation of
parallel FFT algorithms,” School of Computing. National University
of Singapore, Singapore.

[22] S. K. Palaniappan, “Design and implementation of radix-4 fast
Fourier transform in ASIC chip with 0.18 μm standard CMOS
technology,” M.S. thesis, Malaysia, 2008.

[23] M. Soni and P. Kunthe, “A General comparison of FFT algorithms,”
Pioneer Journal Of IT & Management, 2011.

[24] B. Gough, “FFT algorithms,” Tutorial paper, 1997
[25] K. M. Pavan Kumar and P. Jain, et al, “FFT algorithms: a survey,”

The International Journal Of Engineering And Science, India, 2013.
[26] S. Winograd, “On computing the discrete Fourier transform,”

Proceedings of the National Academy of Sciences of the United
States of America, 1975.

[27] F. Piccinin, “The fast Hartley transform as an alternative to the fast
Fourier transform,” Australia, Technical Memorandum, SRL-0006-
TM, 1988.

[28] R. Vincke and S. V. Landschoot, et al., “Calculating fast Fourier
transform by using parallel software design patterns,” Tech. Report,
CW 627, October 2012.

[29] A. Cortés, I. Vélez, M. Turrillas, and J. F. Sevillano, “Fast Fourier
transform processors: implementing FFT and IFFT cores for OFDM
communication systems,” Fourier Transform - Signal Processing,
2012.

[30] M. Frigo and S. G. Johnson, “The fastest Fourier transform in the
west,” Tech. Report, MIT-LCS-TR-728, 1997.

[31] Bevan M. Baas, “An approach to low-power, high-performance, fast
Fourier transform processor design,” PhD Thesis, Stanford
University, USA, 1999.

[32] Y. Zhao and T. Ahmet, et al., “Architectural evaluation of flexible
digital signal processing for wireless receivers,” Signals, Systems and
Computers, 2000.

[33] A. Ganapathiraju, J. Hamaker, J. Picone, and A. Skjellum,
“Contemporary view of FFT algorithms,” Mississippi State
University.

[34] J. F. Herron, “Design and development of a high-speed Winograd fast
Fourier transform processor board,” M.S. thesis, Air University, USA,
1992.

[35] C. Li, “Design and implementation of variable-length fast Fourier
transform processor,” M.S. thesis, Tatung University, 2006.

[36] C. Kozyrakis and D. Patterson, “Vector vs. superscalar and VLIW
architectures for embedded multimedia benchmarks,” In proc. of the
35th International Symposium on Microarchitecture, Instabul, Turkey,
November 2002.

[37] T. Lippert, K. Schilling, et al., “Transpose algorithm for FFT on
APE/Quadrics,” In Proc. of HPCN Europe, pp. 439-448, 1998.

[38] H.G. Yeh and G. Truong, “Speed and area analysis of memory based
FFT processors in a FPGA,” Wireless Telecommunications
Symposium, pp. 1-6, 2007.

[39] E. Brachos, “Parallel FFT libraries,” M.S. thesis, Edinburgh
University, 2011.

[40] S. Johnsson and D. Cohen, “Computational arrays for the discrete
Fourier transform,” In Proc. 22nd Computer Society International
Conference, 1981.

[41] C.A. Silambarasan and L. Vanitha, “Design and implementation of
low power and area efficient adder and Vedic multiplier for FFT,”
International Journal of Communications and Engineering, Vol. 1,
2012.

[42] S. S. Kerur and Prakash Narchi, et al., “Implementation of Vedic
multiplier for digital signal processing,” International Journal of
Computer Applications, 2011.

[43] S. A. White, “Applications of distributed arithmetic to digital signal
processing: a tutorial review,” IEEE ASSP Magazine, 1989.

[44] T. Sung, H. Hsin, and L. Ko, “Reconfigurable VLSI architecture for
FFT processor,” WSEAS Transactions on Circuits and Systems, 2009.

