
- 43 -

Dmitry Kachan, Eduard Siemens
Anhalt University of Applied Sciences - Department of Electrical, Mechanical and Industrial Engineering

Bernburger Str. 57, 06366 Koethen, Germany
E-mail: d.kachan@emw.hs-anhalt.de, e.siemens@emw.hs-anhalt.de

Abstract � This work describes a test tool that allows to make
performance tests of different end-to-end available bandwidth
estimation algorithms along with their different implementations.
The goal of such tests is to find the best-performing algorithm
and its implementation and use it in congestion control
mechanism for high-performance reliable transport protocols.
The main idea of this paper is to describe the options which
provide available bandwidth estimation mechanism for high-
speed data transport protocols and to develop basic functionality
of such test tool with which it will be possible to manage entities
of test application on all involved testing hosts, aided by some
middleware.

Keywords: High-speed transport; available bandwidth,

congestion avoidance, testing of algorihtms.

I. INTRODUCTION
A transport protocol is a complex system with various

number of different logic parts � modules, which together
perform transmission of data between involved peers. In [1]
we have already shown that even modern commercial
transport protocols reveal throughput performance being far
from the optimum, and there is a large room for
improvements. However, optimization of such a system is a
rather complex task, and usually it is reduced to improvement
of some particular modules. This paper addresses
improvement of congestion avoidance algorithms (congestion
control module) and performance of high-speed reliable
transport protocols by means of finding a best-suitable
available bandwidth estimation mechanism.

II. RELATED WORK
Phenomena like congestion in IP networks occur due to

one of the fundamental principle of Internet � best-effort
delivery. For reliable transport protocols the only chance to
perform well is to use some mechanisms to control instant
network utilization and properly react on congestions
occurrence. Congestion control mechanisms used in
contemporary transport protocols are mostly either window-
based or rate-based. Window-based congestion control
algorithm are well known and widely used in TCP [2] [3].
Rate-based congestion control has been widely used in ATM
systems [4] [3]. However, in [5] Y. Gu et al. use rate based
congestion control even in IP networks for a UDP-based

transport over high-bandwidth and high-delay links. Their
experiments show that the use of rate based congestion control
for transport protocols is quite efficient. In [6] L. J. Latecki et
al. use slightly modified SLoPS (Self-Loading Periodic
Streams) algorithm [7] to develop congestion control for
media applications based on estimation of the instantly
available bandwidth estimation. A. K. Aggarwal et al. in [8]
are using available bandwidth estimation to detect congestions
in the data networks. This technique of available bandwidth
estimation is also known from TCP [9].

There are many different approaches for measurement of
available bandwidth. Most of them are based on PGM (Probe
Gab Model) [10] [11] [12] or on PRM (Probe Rate Model) [7].
Within PGM methods, one peer sends a train of packet pairs to
a corresponding peer, and based on the dispersion of pairs of
packets, receiver peer can make an estimation of the available
end-to-end bandwidth. The advantages of these methods are
that they are quite fast and generate not much additional traffic
in the network. However PGM methods are not able to
provide adequate estimation of available bandwidth in
presence of cross traffic in the multi-hop path. Considering
that Internet has almost always a multi-hop configuration,
there are some critical views on the accuracy of results of
PGM models for available bandwidth estimation [13].
The methods based on PRM provide more adequate results of
estimation. In [14], C. D. Guerrero et al. are comparing
common solutions for available bandwidth estimation, and
according to this research the minimal value of estimation
error has been achieved by pathload [7] � a tool based on
PRM (SLoPS algorithm). The disadvantages of this method
are high estimation time due to multiple iterations of the
algorithm, and high load of a link with estimation traffic.
The idea of this work is to use both PGM- and PRM-based
algorithms in the ways, where they provide their best
advantages: less estimation time or more accurate estimation
result to make high speed data transmission more intelligent.

III. AVAILABLE BANDWIDTH ESTIMATION FOR HIGH SPEED
TRANSPORT PROTOCOLS

There are two basic ways how to use available bandwidth
estimation in transport protocols � initial estimation and
estimation during the transmission. First one should be a very

AvBandTest � a Testing Tool for
Implementations of Available Bandwidth

Estimation Algorithms

- 44 -

fast method, which, probably, gives not very accurate, but at
least approximated values of available bandwidth before the
transmission starts. It is necessary to define the initial data rate
at the very beginning. For this phase of transmission, an
algorithm based on PGM could be used.

Estimation of available bandwidth during transmission is a
method, which could take more time, however it will be
expected to achieve more precise results. The result of this
estimation will be used for soft reaction of transmission on the
changes in a network, such as an appearance or disappearance
of cross traffic in a path, e.g. by increasing or decreasing of
sending rate in order to avoid congestion and for maximal link
utilisation. For this kind of estimation PRM-based methods
can be used. High speed transport protocols such as UDT [15]
or RWTP [16] inject a time stamp into each data packet. It
could eliminate the main disadvantage of PRM (high load of a
link by probe traffic), since probing traffic could be carried
piggy-back in data traffic of the transport protocol and the
results could be transmitted by means of ACK messages. It
means that no extra traffic will be generated. In that case
SLoPS algorithm should be slightly modified to not make
active measurements that include sending of probing traffic,
but to make a passive, periodically analysing the time stamps
in received packets.

To develop and test the modules for available bandwidth
estimation it is possible either to implement the respective
algorithms within an open source protocol, or to write a light
weight application � vehicle, that gives a chance not only to
implement algorithms, but also make performance tests to
evaluate them. Implementation of such algorithms directly in
the source code of a whole protocol stack could
unintentionally break the protocol, or modification of one
certain software module could negatively affect another
module. Besides that testing of such, implemented within the
protocol stack, algorithm is difficult because its behaviour
would strongly depend also on implementation of the protocol.

IV. STRUCTURE AND IMPLEMENTATION OF AVBANDTEST
The implementation of the algorithms and accordingly the

test tool has been implemented using C++ under Linux
operation system. The reason for this it is that the source code
of high speed protocols such as UDTv4 [15] or RBUDP [17]
are implemented in C/C++. According to it, congestion control
mechanism implemented in C++ can easily be linked to these
protocol implementations in further tests.

In Figure 1 an interconnection model between two
computing nodes is shown. For running tests, two types of
traffic are used: first one is probing traffic � that are packets,
generated by PGM and PRM algorithms to estimate

bandwidth; the second one is a control traffic that contains

messages which set parameters for available bandwidth
estimation, start an estimation session and share result with
their peer. Most of the control traffic messages will be used
only during experiments to find the best algorithm
implementation and the best estimation policy e.g. regarding
the amount of probing traffic or the time of estimation, for
using it in high speed transport protocols. After
implementation of such a mechanism in a real congestion
control mechanism, negotiation will be performed by means of
service messages of the protocol. It is important that
implementation of available bandwidth estimation mechanism
will not use additional socket connections.

Since different kinds of impairments take place in
telecommunication networks, some packets of both, control
and probing traffic, could be received corrupted. The
implementation of estimation mechanism should be able to
handle corruption of probing traffic. In contrary, integrity of
control traffic is out of scope of this test tool and according to
that control interconnection will be implemented by means of
an existing middleware. Such implementation of
interconnection should be robust and allow focusing on the
probing traffic only without paying much attention on
generating of control information.

The structure of AvBandTest is presented in Figure 2.

A. Middleware
The Object Management Group (OMG) has defined a

Common Object Request Broker Architecture (CORBA) [18]
decades ago. Different vendors made different
implementations of CORBA such as: MICO [19], OmniORB
[20] etc. The main problem of CORBA is that the standard
was not fully defined, and so different implementations of
CORBA are mutually not fully compatible. It made the idea of
a really interoperable middleware based on CORBA utopic.
Furthermore, the development of many versions of CORBA is
already discontinued, e.g. the recent version of MICO has
been released September, 14th 2008. Moreover, with
definition of a new C++ standard � C++11, applications, that
worked under MICO are not compiling anymore. The better

ReceiveSender

�������	
�����

���
���	
�����

Figure 1. Interconnection scheme

SOAP

PGM-
based

Hybrid

PRM-
based

HiRes
Timers

Liblutils

Boost
Asio

Available
bandwidth
estimation

External tools and libraries

PMTUD/
evaluating of

MTU size

Constant
send rate

mechanism

Send Rate
estimation

Additional options

AvBandTest

ORB

Communication
Management / Middleware

Buffer

Figure 2. Structure view of AvBand

- 45 -

situation is with OmniORB � latest release was in July of
2011. In contrary to MICO CORBA it allows establishing of
connections directly from application, OmniORB uses
NameService for communication between hosts. It makes
using of such approach not comfortable, because it is needed
to starts NameService on each involved host. Moreover
CORBA by itself is a sophisticated system with huge amount
of its own abstractions, what makes development using this
middleware relatively difficult task.

 Another widely used protocol specification for remote
object invocation is SOAP [21] (Simple Object Access
Protocol) which provides a simple and robust technique for
message negotiation and data structure exchange. Many
different implementations of SOAP use various protocols e.g.
HTTP and SMTP for message transmission [22]. There is an
open source software development toolkit for C++ � gSOAP,
which provides means to automatically generate XML and
WSDL code from C++ data and vice versa [23].

On the one hand CORBA has a complete ORB
architecture, but difficult enough implementation and not
finally defined standard. On the other hand SOAP provides
stable communication means, however it has no built-in ORB
architecture. The problem of communication management for
AvBandTest has been solved by development of a simple ORB
architecture like one provided by SOAP.

B. External tools and libraries
In C++, all operations with sockets are used from the

standard C library. A simple IP communication application,
using native C operations, seems quite heavy and hard to read,
especially due to the lack of strong type-safety. Moreover, the
error handling is also inherited from C, what is pretty
inconvenient for C++ programming. Object oriented approach
in C++ for handling of IP communications is already
implemented e.g. by Asio library that is included in a set of
libraries called Boost. There is a big community that
discusses, makes changes and tests the source code of the
Boost library. Moreover, many of Boost libraries in the past
have been assigned as C++ standard. The library
Boost.Asio [24] provides mostly all what is needed to make a
comfortable interconnection between sockets including
convenient error handling mechanism.

The library Liblutils is written by E. Siemens in 2002 and is
used within LTest [25]. It contains a lot of different function
including C++ socket interconnection, but this part is here
exchanged to Boost.Asio due to the wide supporters
community of Boost. AvBandTest uses Liblutils now only due
to a number of convenient strings manipulation functions in
C++.

In such tasks as congestion control, time measurement,
accurate time fetching and efficient time calculation becomes
critical part. In [26] the authors share some novel ideas how to
measure the time with the maximal possible resolution on
common PC systems by performing of assembly code,
wrapped around by C++ interfaces to get an access directly to
timer hardware. All these ideas and a number of comfortable
functions are implemented in the work of I. Fedotova in the
library HiResTimers which is also described in [26]. This
library is used by AvBandTest for time interval measurements.

C. Additional options
1) Buffer
Estimation of available bandwidth will be performed by

the transmission of probe traffic on one side and reception of it
at another side. For both, PGM and PRM, it is necessary to
transmit time stamps in each packet of probe traffic. Beside
the time stamp, each sample must carry a sequence number to
pervert packets reordering in the network. Both, time stamp
and sequence number allocate together not more than 12 bytes
of memory: 4 bytes for nanoseconds, 4 bytes for seconds of
Unix epoch and 4 bytes for the sequence number. In [11] is
shown that the best size for sample packets for PGM should be
������	
����������������	
�� ��
�	�� - between 600 bytes and
1 500 bytes. However it is important to note, that this research
has been done with a presumption, that maximal transfer unit
(MTU) in internet is 1 500 Bytes. In high speed networks, to
achieve maximum capacity, sometimes extended MTU size
(Jumbo frames till 9 000 bytes) is used. So it makes sense to
check whether these packet sizes are also optimal for extended
MTU sizes in the path, or the size of probing packets should
be also extended. Nevertheless, there are only 12 bytes of
useful data in each sample and to satisfy size conditions of
probe packets, the rest space will be allocated with dummy
data, filled up randomly.

In a transport protocol the very important part of
implementation is the data buffer at the sender and receiver
side. The rate of data reception and speed of access to data
strongly depends on the buffer implementation. For test
purposes AvBandTool should also have buffer mechanism that
does not slow down the data transmission performance. The
buffer has been designed as one separate class,
�ReceivedData�� ����� ��������� a vector with the measurement
data from received packets. There is no necessity to store
whole samples because most of data in the packet do not carry
measurement information. For fast storing measured data at
the receiver, receiver side will be notified by the sender via the
control channel about the amount of expected packets to
allocate memory for all expected packets before the reception
of IP packets starts. Such operation will be repeated for each
	���
		����� ��	
������ ���� ���	
� ������������ ���
	����� ��	�
buffer will be released. Further improvement of ��	�
	�	��	
���
buffer could be done by adapting measurements to periodical
on-the-fly available bandwidth estimation. This measurement
will be continuous with some intermediate results and it will
be hard to release the buffer after some certain time period in
that case. This problem could be solved by implementation of
�Ring buffer��� �hich idea is described by E. Siemens et al.
in [27].

Beside this vector, the class contains a number of functions
to access to particular data components of a sample such as
sequence number or time at which the sample has been sent or
received. The class has interfaces to calculate and to return
such statistical parameters as mean of inter-packet time at the
reception or inter-packet time at transmission.

2) Constant send rate mechanism.
Such protocols as RBUDP have an option to send data

with some certain data rate that should be chosen once before
data transmission starts. However it would be more efficiently
to use a mechanism that analyses the actual situation in the

- 46 -

network and notifies the transport engine about changes of
available bandwidth. In that case transport will use available
resources by maximum.

In AvBandTest a rate control mechanism is introduced to
emulate data transmission on the data rates that are adopted
according the available bandwidth during the data
transmission. The main hitch of rate control on the data rates
close to 10 Gbit/s is the accurate time measurement. The
simple example of transmission of 1 500 bytes packet through
10 Gbit/s network can show it. The mean inter-packet time at
the sending side in this case is:

���� � � ��	
���
� 	
��� �

� �����
������ � ��� � ��� � ��

���� (1)

where � � is mean inter-packet time, � � IP packet size and
� � used data rate.

Packets smaller than 1 500 has even less inter-packet time,
so the measurement tool should be able to measure such short
time intervals accurately. In [28] authors show that usual
timers in Linux are not stable in choosing of timer source.
Furthermore�� ��	�
	��	����� ����� ��� �������������� ���	
� ��� ���
request timer system directly, instead of using standard Linux
����	�������clock_gettime�� Time measurement by means of
direct requests to timers are implemented in [26], where is
shown that cost of time requests using this library for different
machines were about 1 μs in the worst case and the values of
tens of nanoseconds in regular cases. The accuracy of time
measurement will always depend on type and hardware
realisation of timer. However within HiResTimer library it is
possible to achieve the most accurate time measurements.

V. FIRST RESULTS
Using Apposite 10G in the 10G-lab of Anhalt University

of Applied Sciences (Koethen, Germany), it is possible to
emulate IP connections with different bottlenecks on the both
sides: sender and receiver. In this way, the accuracy of
bandwidth estimation of a prototype version of AvBandTest
tool can be tested. The simplified diagram of the testbed is
presented in Figure 3. Within presented setup the following
bottlenecks were emulated for both sides: sender and receiver:
10 Mbps, 100 Mbps, 1 000 Mbps, 10 000 Mbps. At the time of
writing of this paper, the only easiest PGM-based algorithm
has been implemented. It works as follow: sender sends to the
receiver a predefined amount of packets, which can be defined
at the time of application start. These packets have been sent
back-to-back � with minimal possible delay between them.
Each packet contains: sequence number of a packet, time
stamp, as described in section IV. Sender evaluates sending
data rate, while it sends data, as sum of bytes of first thousand
packets, or even less, if the whole transmission contains less
than thousand packets, and divides it by time, that sender
spent on sending of this amount of data. After transmission the

receiver calculates the differences between timestamps that
were included in each two consecutive data packets and
calculates the mean value of these differences. For the same
pairs of packets receiver calculates the mean value of time
differences between the moments of receiving of each packet.
The available bandwidth is evaluated as shown in (2)

��	���������� � ���������
�
�

!�"#���
!�"���

$
"%&

� (2)

where ��	����is available bandwidth; �� is sending rate;
n � is a whole number of received pairs; !�"# � is an inter-
packet time at reception for i pair of packets; !�� � is an inter-
packet time at transmission for i pair of packets.

Practically this method means that available bandwidth is
back-proportional to a relation of sending inter-packet time
interval and reception inter-packet time interval.

The plot in Figure 4 shows available bandwidth estimation
error for each emulated bottleneck. The error here is a
difference between emulated bottleneck and result of
estimation in percent from bottleneck. Figure 5 shows the
results of evaluation on a link with 50 ms of RTT, uniformly
distributed in the forward and backward directions, and 0.5%
of packet losses in the network in between the sender and
receiver. ���������
�������	���������

	���������the positioning
of the bottleneck on sender side and on the receiver side
accordingly. In the case of 10 000 Mbps there are no
bottlenecks on the sender and receiver sides. The evaluation
has been performed 5 times for each combination of

Figure 3 Simplified chart of testbed topology

Figure 4. Error of available bandwidth evaluation in the network
without impairments

Figure 5. Error of available bandwidth evaluation in presence of
50 ms. of RTT and 0,5% of packet loss in the network

-20%

0%

20%

40%

60%

80%

100%

��
��
��

��	

�
��
�	
��
�
�

�	����
���������
s-10

s-100

s-1000

10000

r-10

r-100

r-1000

-20%

0%

20%

40%

60%

80%

100%

��
��
��

��	

�
��
�	
��
�
�

�	����
���������
s-10

s-100

s-1000

10000

r-10

r-100

- 47 -

bottlenecks and the average values of mistakes are shown. It is
worth noting that within bottleneck on sender side the result of
evaluation is better in the network without impairments;
however, in presence of them this behavior is not saved. We
assume that for initial available bandwidth measurement the
error of about 15% is acceptable. The obtained results showed
that algorithm needs improvement. The current prototype
implementation of AvBandTest is not able to measure
available bandwidth up to 10 000 Mbps: as the plots show, in
both cases evaluation of 10 000 was completely wrong.
Improvement of this point is a significant task for further
work.

VI. CONCLUSION
This work describes problems of available bandwidth

estimation tests, which are used for development of fast data
transport protocols. There are two significant parameters
which can be tested with such techniques: estimation of the
very beginning sending rate and estimation of the target data
rate of rate based congestion control. Discussion about basic
functionality and brief overview of components are presented
in this work. A prototype of the tool that allows evaluation of
different approaches for available bandwidth measurements
has been implemented and tested as a result of this work.

VII. REFERENCES
[1] D. Kachan, E. Siemens, V. Shuvalov. Comparison of contemporary

solutions for high speed data transport on WAN connections. Accepted
to: ICNS, Lisbon, Portugal. 2013.

[2] M. Allman, V. Paxson, W. Stevens. M. Allman, V. Paxson, and W.
Stevens. IETF RFC 2581. 1999.

[3] A. S. Tanenbaum. Computer Networks. Third edition. New Jersey :
Prenice Hall PRT, 1996. p. 813. ISBN 0-13-349945-6.

[4] H. Ohsaki et al. Rate-based congestion control for ATM networks.
ACM SIGCOMM Computer Communication Review. 1995, Vol. 25,
pp. 60-72.

[5] Y. Gu, X. Hong, M. Muzzucco, R. Grossman. Rate Based Congestion
Control over High Bandwidth/Delay Links. IEEE/ACM Transaction on
Networking. 2003, Vol. 11.

[6] L. J. Latecki, T Jin, J. Mulik. A Two-stream Approach for Adaptive
Rate Control in Multimedia Applications. IEEE Int. Conf. on
Multimedia & Expo. 2004.

[7] M. Jain, C. Dovrolis. End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput. IEEE/ACM
Transactions on Networking. 2003, Vol. 11 (4), pp. 537-549.

[8] A. K. Aggarwal, A. N. Bharadwaj, R.D. Kent. Active congestion control
using available bandwidth-based congestion detection. Proc.
ICAI'05/MCBC'05/AMTA'05/MCBE'05. 2005, pp. 390-397.

[9] R. Wang et al. Efficiency/Friendliness Tradeoffs in TCP Westwood.
Proc. Computers and Communications, ISCC. 2002, pp. 304-311.

[10] C. Dovrolis, P. Ramanathan, D. Moor. What do packet dispersion
techniques measure? proceedings of INFOCOM 2001. Twentieth
Annual Joint Conference of the IEEE Computer and Communications
Societies. 2001, Vol. 2, pp. 905-914.

[11] M. Jain C. Dovrolis. Packet-Dispersion Techniques and a Capacity-
Estimation Methodology. IEEE/ACM Transaction on Networking. 2004,
Vol. 12, pp. 963-977.

[12] V. J. Ribeiro et al. pathChirp: Efficient Available Bandwidth Estimation
for Network Paths. Passive and Active Measurement Workshop. 2003.

[13] L. Lao, C. Dovrolis, M. Y. Sanadidi. The probe gap model can
underestimate the available bandwidth of multihop paths. ACM
SIGCOMM Computer Communication Review. 2006, Vol. 36 issue5.

[14] C. D. Guerrero, M. A. Labrador. On the applicability of available
bandwidth estimation techniques and tools. Computer Communications.
Vol. 33 Issue 1, 2010, pp. 11-22.

[15] Y. Gu, R. L. Grossman. UDT: UDP-based Data Transfer for High-Speed
Wide Area Networks. Computer Networks (Elsevier). May 2007.

[16] E. Siemens, R. Einhorn, A. Aust. Multi-Gigabit Challenges: Similarities
between Scientific Environments and Media Production. ACIT -
Information and Communication Technology : s.n., 2010.

[17] E. He, J. Leigh, O. Yu, T. DeFanti. Reliable Blast UDP: Predictable
High Performance Bulk Data Transfer. In Proceeding of 5th Int. Conf.
on Cluster Computing. 2002.

[18] S. Vinoski. CORBA: integrating diverse applications within distributed
heterogeneous environments. Communications Magazine, IEEE. 1997,
Vol. 35, pp. 46-55.

[19] A. Puder, K. Römer. MICO: An Open Source CORBA Implementation.
- 3rd ed. s.l. : Morgan Kaufmann Publishers, 2000.

[20] S.-I. Lo, S. Pope. The Implementation of a High Performance ORB over
Multiple Network Transports. In Middleware 98: IFIP International
Conference on Distributed Systems Platforms and Open Distributed
Processing. 1998.

[21] M. Gudgin et al. W3C Recomendations. SOAP Version 1.2 Part 1:
Messaging Framework (Second Edition). [Online] 04 27, 2007. [Cited:
01 2013, 14.] http://www.w3.org/TR/soap12-part1/.

[22] F. Curbera. Unraveling the Web services web: an introduction to SOAP,
WSDL, and UDDI . Internet Computing, IEEE. 2002, Vols. 6 , Issue: 2 ,
pp. 86-93.

[23] R. A. van Engelen. gSOAP Toolkit. The gSOAP Toolkit for SOAP Web
Services and XML-Based Applications . [Online] [Cited: 01 15, 2013.]
http://www.cs.fsu.edu/~engelen/soap.html.

[24] C. Kohlhoff . Boost C++ Libraries. Boost.Asio. [Online] [Cited: 01 15,
2013.] http://www.boost.org/doc/libs/1_52_0/doc/html/boost_asio.html.

[25] E. Siemens, S. Piger, C. Grimm, M. Fromme. LTest � A Tool for
Distributed Network Performance Measurement. Proc. Consumer
Communications and Networking Conference, 2004. First IEEE. 2004,
pp. 239-244.

[26] I. Fedotova, E. Siemens, H. Hu. A High-precision Time Handling
Library for Tracking Internet Packet Dynamics. Accepted to: ICNS,
Lisbon, Portugal. 2013.

[27] E. Siemens, Xiaopeng Qiu. Datentransport in multimedialen Systemen:
Effiziente Pufferspeicher für schnellen Datentransport. 2009. 978-
3836479837.

[28] D. Kachan, E. Siemens, H. Hu. Tools for the high-accuracy time
measurement in computer systems. T-Comm � Telecommunication and
Transport. 2012, 8, pp 23-27.

