
Experiences Implementing QoS Aware
Routing on Off-the-shelf SDN Switches

Jannis Ohms, Olaf Gebauer,
Nadiia Kotelnikova, Marina Arikova and Diederich Wermser

Research Group IP-Based Communication Systems, Ostfalia University of Applied Sciences,
Salzdahlumer Str. 46/48, D-38302, Wolfenbüttel

jannis.ohms2@ostfalia.de, ola.gebauer@ostfalia.de, nadiia.kotelnikova@hs-anhalt.de, m.arikova@ostfalia.de,
d.wermser@ostfalia.de

Keywords: SDN, OpenFlow, Routing, QoS

Abstract: This paper provides an overview of the Quality of Service (QoS) capabilities defined in the OpenFlow
specification. Several vendor documentations from off-the-shelf products are compared with the OpenFlow
specification. This research reveals inconsistencies between the specification and the vendors
implementation. Queues for examples are not implemented by all vendors. This gap can lead to
interoperability problems in a network while using hardware from different vendors. The research also
shows, that the majority of vendors provide a port statistic function which gives information about incoming
and outgoing bandwidth about each port of a switch. Based on this function a QoS aware routing application
for off-the-shelf switches is proposed. This concept can be used to change the flow of traffic in an
OpenFlow network based on the utilization of the interfaces. Based on the conducted research, the
application can be used with hardware from multiple vendors. This paper does not contain a quantitative
evaluation of the implemented application.

1 INTRODUCTION

Software-Defined Networking (SDN) is a new
concept for the implementation of computer
networks. The most commonly used realization of
the SDN concept is the OpenFlow Protocol [1]
which is specified by the Open Networking
Foundation (ONF). SDN Networks consist out of
multiple SDN switches and at least one SDN
controller. The controller has an overview of the
whole topology and creates flow rules for the
switches. The controlled switches forward packets
according to the flow rules they received. The use of
SDN in large networks creates a requirement for
QoS aware routing. The goal of QoS aware routing
is to choose one of the multiple possible paths in the
network under consideration of the QoS
requirements of the transported traffic. Classical
routing algorithms were developed for autonomous
systems (AS) [2] where each router makes its own
routing decisions. In SDN the routing decisions are
provided by the centralized SDN controller. This
form of centralized control is visualized in Figure 1
and Figure 2. The new form of centralized control

makes it necessary to rethink QoS aware routing in
the context of OpenFlow. In this paper, the authors
will take a look at the QoS mechanisms provided by
the OpenFlow specification, and compare it with the
QoS mechanisms implemented in commercially
available off-the-shelf OpenFlow hardware. This
paper also describes a concept to provide QoS aware
routing which uses the QoS mechanisms
implemented in commercially available off-the-shelf
OpenFlow hardware. The concept has been
implemented as an SDN application.

2 RELATED WORK

OHMS et al. [3] showed that it is possible to use the
queueing mechanism of an off-the-shelf OpenFlow
switch to provide QoS for Voice over IP (VoIP)
streams. The used topology consists of a single
switch. GUCK et al. [4] analysed a set of routing al-
gorithms in the context of SDN. The analysis fo-
cused on resource consumption and efficiency. The
algorithms have only been simulated and not im-

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

117

mailto:jannis.ohms2@ostfalia.de
mailto:ola.gebauer@ostfalia.de
mailto:nadiia.kotelnikova@hs-anhalt.de
mailto:m.arikova@ostfalia.de

plemented on top of real OpenFlow hardware.
ZHANG et al. [5] compared the performance of
OpenFlow with routing protocols like Open Shortest
Path First (OSPF). Their results show that
OpenFlow can react much quicker to topology
changes when compared to OSPF. JINYAO et al. [6]
proposed a QoS aware routing concept which uses

queueing and queue statistics. The concept has been
imple-mented and tested on a single computer using
a network simulator. The related work indicates that
QoS aware routing is a research topic in the
scientific community. Our focus on off-the-shelf
OpenFlow hardware makes this paper unique when
compared to the related work.

Figure 1: Routing in a classical network.

Figure 2: Routing in an SDN network.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

118

3 QOS CAPABILITIES DEFINED
IN THE OPENFLOW
SPECIFICATION

Figure 1: Architecture of the developed QoS aware
routing application.

All statements made are based on the OpenFlow
specification 1.3 which is the most commonly
implemented version regarding the hardware
available on the market [1]. OpenFlow 1.3 provides
three mechanisms to enable QoS.

Queueing
OpenFlow 1.3 provides a class-based queueing

algorithm on the egress port, as a not mandatory part
of the specification. The queues provide a
guaranteed bandwidth and a maximum bandwidth.
The standard specifies OpenFlow messages to
configure queues and to get statistics about
bandwidth and errors for each queue. Each flow
table entry can use an enqueue action to insert a
matched packet into a queue. The standard does not
specify a precedence between the queues or a
required number of queues. The standard also does
not specify any queueing algorithm.

Metering
The OpenFlow specification provides a metering

mechanism which limits the bandwidth of a given
flow. When the limit of a meter is exceeded, all
traffic which goes through the meter gets dropped.
Alternatively, the Type of Service (ToS) bits of the
IPv4 header can be rewritten. The specification
contains OpenFlow messages to configure meters
and to get statistics about bandwidth and errors for
each meter. Each flow table entry can use an action
to assign a matched packet in a given meter. The

specification does not specify the number of meters
which have to be implemented on the switch.

Port Statistics
The specification provides port statistics which

measure the sending and receiving bandwidth for
each port of the switch. The OpenFlow specification
contains a message which enables the controller to
collect port statistics.

4 QOS CAPABILITIES OF THE
OPENFLOW
IMPLEMENTATION FROM
DIFFERENT VENDORS

The authors compared the OpenFlow capable
product families of four different vendors. Namely
HP, Brocade, Juniper, and Pica8. This comparison
focuses on the QoS capabilities described in chapter
3. This comparison is based on documentation
provided by the vendors [10][11][12][13].

Queueing
Not every vendor implements queues. If they do,

they use between 4 to 8 queues per port with a
hierarchical precedence. The queue configuration
messages are not implemented by any vendor, the
queues are usually configured over proprietary CLI
interfaces. Most implementations use the HTB
scheduling algorithm [7]. The queue statistic
messages are only implemented on the Brocade
Netiron switches.

Metering
Metering is implemented by all vendors. The

meter statistics are not always implemented. The
meters are configured through a proprietary CLI
interface.

Port Statistics
Port statistics are implemented by all hardware

vendors used in this comparison.
Based on this results port statistics seem to be

the only commonly available mechanism for our ap-
plication. The use of port statistics has a significant
drawback. The application cannot detect full queues.
This can lead to packet loss if a port seems to be idle
regarding overall bandwidth consumption while one
or more queues exceed their upper bandwidth limit.
This problem can be solved using queue statistics.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

119

5 CONCEPT AND
ARCHITECTURE OF A QOS
AWARE ROUTING
APPLICATION

The application has been developed as an internal
module for the open source SDN controller Project
Floodlight [8]. The architecture of the SDN
controller is visualized in Figure 5. The controller
provides basic functionality implemented as
modules, for example, information about connected
hosts, current network topology, etc. Some functions
are used for the development of the application. The
application for QoS aware routing consists of four
logical components.

Statistics Collector
The Statistics Collector collects the port based

statistics from the switches. This component
contains a background task which gets executed
periodically at a fixed rate.

Intent Registration
The Intent Registration component allows the

registration of intents with QoS requirements. An
intent is a desire of a terminal endpoint to
communicate with another terminal endpoint. It
consists of a set of header fields which identifies a
set of packets. The Intent registration uses the
Routing Service of the SDN controller to find every
possible path to fulfil the desired intent. All paths
get observed by the Path Monitoring.

Path Monitoring
The Path Monitoring component has a

background task which receives data from the
Statistics Collector to evaluate the bandwidth
consumption for every possible port on every path
for every registered intent. If the bandwidth capacity
of a path which is currently in use by an intent gets
exceeded, the Path Monitoring uses an alternative
path if possible. This component uses the Flow
Manipulation component to change the flow of
traffic. The evaluation of every path might not be
possible in large topologies. In this case, a
preselection is necessary to reduce the set of paths to
a size which can be handled by the application.
When an intent gets unregistered, the monitoring of
the possible paths is canceld.

Flow Manipulation
This Flow Manipulation component uses the

Switch Service of the SDN controller to push flow
table entries for every switch on a given path. This
component opens the possibility to create end-to-end
flows for a given path. There is no need to
manipulate each flow table of every switch directly.

This architecture is visualized in Figure 3. The
routing process can be separated into the following
steps.
• If a new intent gets registered, the applica-

tion looks up every possible path which
connects the terminal endpoints of the intent.

• If a path has been found, the application
assigns one path to the intent.

Figure 2: Concept for QoS aware routing presented by
the authors.

• Every packet which matches the header fields
(which are specified in the intent) gets
forwarded through the assigned path.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

120

• The application collects statistical data about
the utilization of every port on every path
which is currently tracked.

• The statistical data is used to compare the
utilization of the current path with every
possible path.

• If a better path is available, the application
reassigns the intent to the better path.

The concept of the application is visualized in
Figure 4.

Figure 3: Architecture of the Floodlight SDN Controller.

Table 1: Comparison of QoS capabilities of OpenFlow product families of different vendors.

Pica8 Juniper Brocade HP
Queues Yes Yes Yes No

Metering Yes Yes Yes Yes
Queue Statistics No No Not in all products No

Port Statistic Yes Yes Yes Yes

6 CONCLUSIONS

There are inconsistencies between features of the
OpenFlow specification and the vendor
implementations of hardware switches (see Table 1).
Depending on the vendor this gap can cause
interoperability problems. The ONF specifies new
OpenFlow versions every year, which results in
outdated hardware. Most OpenFlow features are
implemented in the application specific integrated
circuit (ASIC) of a switch. In case of a new
performance demanding OpenFlow functionality
(e.g. queueing), new ASICs and switches have to be
developed and deployed. This results in skipping
certain version and features. An alternative way to

implement new features in existing hardware is the
use of P4 [9]. This is a domain specific language
which enables software-based packet processing. P4
programs are compiled into hardware. This turns the
static switch ASIC into a chip which can be
dynamically reprogrammed after it has been
deployed as part of a switch. This can be compared
to a Field Programmable Gate Array (FPGA). By
using P4, vendors can update their hardware after it
has been deployed. The proposed concept shows that
the routing behaviour of an OpenFlow network can
be changed based on the utilisation of the hardware
interfaces. A quantitative evaluation of the
application is not within the scope of this paper. The
proof-of-concept implementation uses the current

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

121

bandwidth utilisation to determine the quality of a
given path. In future more parameters and models
should be evaluated in order to provide guaranteed
QoS. This is indispensable in the context of Industry
4.0 and wide area SDN networks.

ACKNOWLEDGMENTS

The research presented in this paper is funded by the
BMWi (Bundesministerium für Wirtschaft und
Energie) within the ZIM-Program (Zentrales
Innovationsprogramm Mittelstand), project
INAASCA (Integrated Network as a Service
Solution as Part of Cloud IT Application Portfolio)
[14]. Additionally this work was supported by the
Ministry for Science and Culture of Lower Saxony
as part of SecuRIn (VWZN3224), which is funded
by the funding initiative “Niedersächsisches Vorab”
of Lower Saxony.

REFERENCES

[1] Open Networking Foundation, „OpenFlow Switch
Specification Version 1.3.5 (Protocol version 0x04
),“ [Online] Available: https://3vf60mmveq1g8vzn
48q2o71a-wpengine.netdna-ssl.com/wp-
content/uploads/2014/10/openflow-switch-v1.3.5.pdf.

[2] A. S. Tanenbaum und D. Wetherall, Computer
networks, Prentice hall, 1996.

[3] J. Ohms, O. Gebauer, N. Kotelnikova, D. Wermser
und E. Siemens, “Providing of QoS-Enabled Flows in
SDN Exemplified by VoIP Traffic,” 5th International
Conference on Applied Innovations in IT, 2017.

[4] J. W. Guck, A. van Bemten, M. Reisslein und W.
Kellerer, “Unicast QoS routing algorithms for SDN,“
IEEE Communications Surveys & Tutorials, 2017.

[5] H. Zhang und J. Yan, “Performance of SDN routing
in comparison with legacy routing protocols,” In
Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), 2015.

[6] Y. Jinyao, Z. Hailong, S. Qianjun, L. Bo und G.
Xiao, “HiQoS An SDN-based multipath QoS solution
,“ China Communications, Bd. 12, Nr. 5, p. 123–133,
2015.

[7] J. L. Valenzuela, A. Monleon, I. San Esteban, M.
Portoles und O. Sallent, “A hierarchical token bucket
algorithm to enhance QoS,” in IEEE 802.11, In
Vehicular Technology Conference, VTC2004-Fall.
2004 IEEE 60th (Vol. 4, pp. 2659-2662), 2004.

[8] Project Floodlight, “Floodlight OpenFlow
Controller,“ [Online] Available: http://www.project
floodlight.org/floodlight/.

[9] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N.
McKeown, J. Rexford, C. Schlesinger, D. Talayco,
A. Vahdat und G. Varghese, “P4 Programming
protocol-independent packet processors,“ ACM
SIGCOMM Computer Communication Review, Bd.
44, Nr. 3, p. 87–95, 2014.

[10] Hewlett Packard, “HP Switch Software OpenFlow
Administrator's Guide K/KA/WB 15.1,“ [Online]
Available: http://h20628.www2.hp.com/km-ext/kmc
sdirect/emr_na-c03991489-1.pdf.

[11] Brocade, “Brocade NetIron Software Defined
Networking (SDN) Configuration Guide,“ [Online]
Available: http://www.brocade.com/cotent/html/en/
configuration-guide/NI_05800a_SDN/GUID-
4C86703D-AF09-43B0-8DCA-8402D65624B0.html.

[12] Juniper Networks, “OpenFlow Support on Juniper
Networks Devices,“ [Online] Available:
https://www.juniper.net/documentation/en_US/releas
e-independent/junos/topics/reference/general/junos-
sdn-openflow-supported-platforms.html.

[13] Pica8, “PicOS Open vSwitch Configuration Guide,“
[Online] Available: http://www.pica8.com/wp-
content/uploads/2015/09/v2.9/html/ovs-
configuration-guide/.

[14] D. Wermser und O. Gebauer, “NaaS as Business
Concept and SDN as Technology – How do They
Interrelate,” 20. ITG-Fachtagung, 2015.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

122

https://3vf60mmveq/
http://www.project/
http://h20628.www2.hp.com/km-ext/

