
A Concept for a High-reliability Meteorological Monitoring System
Using AMQP

Anna Kostromina1, Eduard Siemens1 and Yurii Babich2
1Future Internet Lab Anhalt,

Anhalt University of Applied Sciences, Bernburger Str. 55, 06366 Köthen, Germany,
2Department of Telecommunication Networks,

Odessa National O.S. Popov Academy of Telecommunications, Odessa, Ukraine
anna.kostromina@student.hs-anhalt.de, eduard.siemens@hs-anhalt.de, y.babich@onat.edu.ua

Keywords: AMQP, Rabbit MQ, Meteorological Monitoring, Reliable Message Queues, Availability

Abstract: This paper describes a concept for a resilient meteorological monitoring system for reading data from sensors
by using AMQP in order to increase reliability of the data acquisition system. A set of sensors is connected
to the Beaglebone Black and is located in the mountains of north of Thailand. Gathered data are queued on a
local SoC and sent to a server located in Germany whenever a network connection is available. Further in the
work implementation and test of such a system in Thailand is discussed. Special challenges in the
implementation of the system is the presence of frequent thunderstorms and outages caused by them. To
improve the reliability of data transmission free AMQP implementation is used. The protocol has been
studied, tested, and programs have been created for transmitting data from sensors to a server in Germany
using the Rabbit MQ to store the data in the case of connection failures. Besides that, memory usage problems
were raised when using AMQP in single-board computers, such as Beaglebone Black. The main task of this
work is to propose the most stable and reliable operation of the data transmission system.

1 INTRODUCTION

Monitoring systems are nowadays used in a very wide
range of technical and technological systems. This
paper presents a concept of a meteorological
monitoring system running in a rural area under harsh
weather conditions in the north of Thailand. The goal
of this research was to design and to deploy a
monitoring station in an indigenous village of a
Karens tribe. The station shall be involved in long-
term monitoring of weather conditions in order to
obtain the data required for simulations of energy
availability and consumption minimization in the
case of energy-autarkic cooling houses, designed for
the ASEAN region.

This work was part of the preparatory work for
the Silaa Cooling project where the team of the Future
Internet Lab Anhalt (FILA), along with three
industrial partners from Germany and one Thailand
company are going to develop a coffee-cooling
system for long-term coffee storage. Figure 1 shows

a typical village, at which such a coffee cooling
system has to be built and operated.

The main technical challenges under the given
conditions are as follows:
• The system must have a battery buffered

energy supply due to frequent power outages at
the facility

• The system needs a solid weather protection
but also a flash protection of all the electronic
and electrical components due to frequent
thunderstorms

• All the data must be gathered and reliably
transmitted to a cloud environment at the
facilities in Germany via a GSM modem. Since
the internet connectivity at the location is very
unstable and drop-offs of the internet
connection can last for days or even weeks,
some robust data queuing and delivery must be
implemented, which stores data locally and,
delivers queued data whenever the internet
connectivity to the domestic cloud is available.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

109

The queueing system shall have a persistncy of
data which prevents data loss if a power outage
occurs at any stage of data acquisition and
queueing

• The data must be kept in a quite generic way
since at the time of gathering of the data the
exact needs of later data processing is not yet
completely known. So, it is advisable to keep
the data at the receiving site in two formats – in
a non-growing data-base with data aggregation
and compression, primarily for visual
representation of the data which must be
available in semi-real-time. Along with that, in
a raw data format without data reduction is
needed, for later in-depth analysis of the
particular weather parameters.

Figure 1: Village in the Karens area at which the weather
data have to be gathered.

2 RELATED WORK

The development of self-sustained and energy-
autarkic systems significantly grows in the
importance during recent years. Especially in the
development aid as well as in the implementation of
decentralised energy production. The chain between
information and communication is crucial and
promises to enable implementation of economically
reasonable systems for assuring a subsistence of
people in rural, mostly off-grid, areas. One of the
approaches similar to SilaaCooling is the ColdHubs
system. That project aims at supporting people in
Africa to store the food in solar-powered cold rooms
[1]. However, the technical approach of ColdHubs is
quite static, the energy provision is secured by some
overprovisioning of the amount of photovoltaic
modules and of the lead batteries capacity, which
makes hard to keep the deployment costs reasonably
low. In contrary to ColdHubs, the SilaaCooling
concept includes heuristic and proactive energy

management, based on weather and energy demands
prediction, operated on a computer on-side, equipped
with a collection of sensors of ambient condition. The
idea and technical realization of SilaaCooilng bases
on a concept of the implementation of energy-
autarkic decentralised energy supply for small
villages in Siberia, developed in one of previous
projects [2].

However, reliable metrological and weather data
acquisition and delivery is also used in other
application cases. So in [3] a data acquisition system
consists of a set of wireless sensors for measuring
meteorological parameters. While the focus in that
research is on the local system design for connecting
wireless sensors, our focus is mostly on the
implementation of a robust resilient data delivery
system.

To avoid data loss on data delivery to the cloud,
existing transmission and queuing protocol called
Advanced Message Queueing Protocol (AMQP) [4]
has been investigated and tested. Among several
AMPQ implementations, the Rabbit MQ system has
been compared with Active MQ. A good comparison
of the said implementations is given in the article
“The analysis of the performance of RabbitMQ and
ActiveMQ” [5]. Furthermore, in [6] and [7] an in-
depth performance analysis for distributed message
delivery using RabbitMQ is given. However, due to a
quite low message load in our target scenario,
performance is not considered as a bottleneck of our
system. The mentioned resilience and persistency of
data is in the foreground of our investigations.

A good and detailed tutorial of use of RabbitMQ
is given in [8]. Here, a lot of important information
about the work and writing programs for messaging
using RabbitMQ is given.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

110

3 THE PROJECT ELEMENTS

3.1 Hardware of the project

3.1.1 Components of monitoring system

In this work we mostly focus on the choice of a robust
queuing and message delivery system able to work
under the harsh conditions described above.

To build a self-sufficient food storage we need to
collect the following weather data: ambient
temperature, humidity, wind gust, solar irradiance.
The latter parameter is crucial for the later
dimensioning of the solar panel size and also for the
size of battery buffer for the SilaaCooling system, to
be developed.

For gathering data in Thailand, in Mai Lae, a
Beaglebone Black (BBB) has been installed, running
Debian 8 Linux. The cheapest and easiest way to get
necessary weather parameters was to get an off the
shelf weather station with a USB interface:

 WH1080 Radio weather station [9] is
connected to the BBB, which gathers the ambient
temperature, humidity, wind data, air pressure and
amount of rain in a 10 minutes interval to the
weather station via an UHF radio link. Up to 14
hours of data can be buffered on the weather station
without data loss in case of downtimes of the BBB.

 For redundancy and for verification of
the data gathered by the weather station, we have
decided to add an additional sensor set to the
system. For this an AM2302 temperature-humidity
sensor, placed at a JeeNode board has been placed
on a pillar next to the sensors of the weather station,
which deliver their data via UHF to a JeeLink,
plugged via a USB hub to the BBB.

 For solar irradiance metering a Si-
RS485TC-T sensor, manufactured by
Ingenieurbüro Mencke & Tegtmeyer GmbH [10], is
used, which is connected to the BBB via an USB/RS
485 adapter. A daemon running on the BBB is
reading the irradiance data in a 30 seconds cycle. In
contrary to temperature and humidity, this sensor
was not doubled, for cost reasons and since the
sensor is a calibrated one with certification.

AM2302 is a temperature and humidity sensor
used to verify temperature and humidity data,
measured by the weather station. The sensor is
mounted on a JeeNode which transmits data via UHF
band to the Jeelink board, connected to the BBB, see
Figure 2.

Figure 2: Components of monitoring system.

3.1.2 The data acquisition system

Data from the three different sources – the
weather station, irradiance meter and JeeNode
connected sensors are read by a tiny Python program.
For reading data from weather station WH 1080, the
API of “pywws” [11] is used by our Python program.
The main loop of iteration through the different
sensor data is running in a daemon fashion, which is
monitored by the Supervisor daemon of Linux. The
JeeNode sensor data are also written by a python
script, which has been developed in a preparatory
work for the SilaaCooling project. Figure 8 shows
how output data from producers sending on Rabbit
MQ and then on servers.

3.2 The software concept

The main idea in the implementation of the system is
to use publicly available open-source code wherever
it is possible for keeping the development effort for
the system low. For gathering the weather data from
the weather station, the open source python package
“pywws” [11] has been used.

The main technical challenge of the system is
however the message queuing and delivery system,
which shall on the one side work on a low-
performance SoC like BBB and on the other hand be
very robust with avoidance of data loss even in the
event of abrupt power outages, connection drops or
link failures to the sensors. For this, the Advanced

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

111

Message Queuing Protocol (AMQP) has been
deployed on the system [3]. Though this system is
originally known as a message broker in banking
transactions, the robustness shall be used in our
design. While a wide range of AMQP
implementations are known on the market, there are
some lean implementations which promises to run on
a low-performance PC platform.

Rabbit MQ is an open source AMQP suite
implementation which provides an exhaustive Python
API for Linux. Reasons to choose Rabbit MQ are the
following [8]:

 RabbitMQ is the only one open source
implementation of the AMQP standard
besides Qpid, whereby Qpid doesn’t provide a
Python API

 Essential features like federation, clustering,
persistency are implemented in RabbitMQ

 Clustering became simpler because of Erlang
 RabbitMQ is more reliable and crush resistant

that it competitors
Clustering connects multiple machines together

to form a single logical broker. Communication is via
Erlang message-passing, so all nodes in the cluster
must have the same Erlang cookie. The network links
between machines in a cluster must be reliable, and
all machines in the cluster must run the same versions
of RabbitMQ and Erlang [12].

By default, each Rabbit MQ instance delivers its
messages from the queue to the consumers using the
Round-Robin algorithm. Also by default, each
message it is deleted from the queue on delivery. To
change this behaviour were used flag
auto_delete=False

3.2.1 Implementation

The instantiation of a RabbitMQ broker consists of
the following steps [8]:

1. Connect to Rabbit MQ
2. Obtain a channel
3. Declare an exchange
4. Create the message
5. Publish the message
6. Close the channel
7. Close the connection

3.2.1 The publish/subscribe model

In the application of weather station gathering two
independent data destinations are necessary – one
which delivers to a fixed size data base for monitoring
purposes and another one with ever growing raw data.
The both subscribers (consumers) can then be co-
located at the same machine or at geographically
remote locations.

For implementing this, a channel publishes two
queues and two clients, which run AMPQ consumers,
consumes the messages from the respective queue
and stores the sensor data to each data base. This
pattern is known as publish/subscribe pattern (Figure
3).
 Producer (P) is a user application that sends a

message to an exchange
 Exchange(X) receives messages from producer

and push them to the queues
 Queue is a buffer that stores the messages
 Consumer(C1, C2) is a user application that

receives messages v
In figure 3 is shown as a working

publish/subscribe algorithm.

Figure 3: Publish/subscribe.

In case of publish/subscribe using the exchange
type as fanout. From exchange data were sent into
queues raw_data and whisper.

The following customization has to be applied to
the default configuration of RabbitMQ to meet the
requirements of the weather data gathering for
SilaaCooling. The data gathering has to be reliable
even in cases of frequent abrupt and long-term power
outages. The first measure is making the message
queues persistent and durable. With persistency,
each data chunk written to the queue is copied to a SD
card. Also the file system on the sd-card is not
buffered, so at each instance the queue is mirrored to
a non-volatile memory. This approach for sure
reduces the transport performance of the queue to the
read/write speed of the SD card. However, this must
be pretty enough for delivering a few messages per
minute with some hundreds of bytes per read/write.
With the durability, the AMQP is saving the
configuration of the published queues to a non-
volatile memory so, on a re-start of the system and of
the AMQP daemon (which provides the exchanges,
channels and queues) the queues of the messages are

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

112

automatically published and so the clients can re-
subscribe to the queue and continue the message
reception from the queue.

Between reading the data from the queue by a
consumer and bringing it to save harbour in a data
base, some network errors, data base errors or file
system errors can occur. So, a message shall be
deleted from the queue only if the data base confirms
the storage of the data item. For this an
acknowledgment of messages has been configured in
the RabbitMQ system.

3.2.2 Error resilience tests

Before the system can be deployed in the field in the
mountains of Thailand, a series of scenarios of power
disruptions, network errors and other failures has
been defined, with which message integrity checks
has been performed. The system for testing is shown
on Figure 4.

The Rabbit MQ server and producer which read
the sensor data are running locally on a Beaglebone
Black.

Figure 4: System for sending a data by using Rabbit MQ.

A first test scenario contains the following steps
of tests:

1) abrupt disconnect of consumers (Figure 6)
2) crash of the BBB
3) stop a consumer and re-start after several

minutes to hours
4) power on of the BBB
5) re-connect the producer (while the consumer is

already running)

Figure 5: Disconnect of consumers.

In all the test iteration, no messages where lost.
All of them has been delivered and stored in the
respective data bases at the consumer’s site. n this
case messages were successfully delivered after the
disconnect.

In a second series of tests, the behaviour of the
system in case of producer crash or BBB crash
including the Rabbit MQ server is investigated. For
that the following sequence has been executed:

1) Disconnect of consumers
2) Killing Rabbit MQ server and producer (Figure

6)
3) Restarting Rabbit MQ
4) Reconnect consumers
5) Restart of the producer

Figure 6: Crush of Rabbit MQ producer and server.

All messages were delivered after restart. Testing
were successful.

3.3. Final concept of system for data
transmission

Finally we have implemented the concept as follows.
Figure 7 shows how data from producers are sent to
consumers. For each program a producer
(solar_producer, pywws_producer,
silaacooling_producer) is instantiated and then data
are written to the queue through the AMQP exchange.
For every program two queues are created – the
raw_queue and whisper_queue. All data from raw
queues are going to the consumers on the cloud server
and data from the whisper queues are going to the
consumers on the other server. These servers are
located in Germany.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

113

Figure 7: Sending data on Rabbit MQ.

4 PREDICTIVE MONITORING
OF MEMORY USAGE FOR
RABBIT ΜQ

Rabbit MQ provides a basis for a robust and error
resilient message delivery system in presence of a
variety of network and system errors in the field,
which is lean enough to run on a single-board
computer with rather limited CPU and memory
resources. However, crashes due to memory overruns
can lead to message loss, which must be avoided by
additional means. To control memory usage we
propose to implement a predictive monitoring
approach described in [15]. In this case, the
monitored parameter is the value of memory in use
marked y. It makes sense to use only one threshold
value corresponding to available memory denoted as
ykP. If the value of memory in use reaches the
threshold value we consider having emergency
situation, which must be prevented by means of the
predictive monitoring. In order to minimize load on
single-board computer resources (memory,
processor) we use only one forecast horizon out of

three specified in [15]. The following expression
corresponds to the normal operation of the system.

()minˆ C
C kpy n L y+ < , (1)

where ŷ denotes a forecasted value of the y
parameter estimated using the minimum required
series of the min

Cn size with the time horizon of CL .
If the term (1) is violated memory usage

predictive monitoring system alerts about the
expected emergency situation in order to let take
actions and prevent the situation. If it is impossible to
take any actions due to lack of connection, than the
predictive monitoring system deletes some data from
the memory in order to prevent system crash.

One message of pywws program contains 98 bytes
on average, one message of the solar_producer
program (for reading Irradiance) contains 93 bytes
and one message of silaacooling_producer program
contains 362 bytes. Consequently, for 24 hours
without connecting to consumers the data will use
41.376 Kb of memory.

In the case of Beaglebone Black or other type of
SoC it is very important to check if there is enough
memory or not. In particular case is good decision to
use some mechanism for removing old log files from
the system without creating problems when reading
data. In case of using a similar system a calculation,
how long it will take to fill the entire free space on the
computer's disk is inevitable.

5 CONCLUSIONS

A system design, for data delivery from the
acquisition part to different consumers positioned
thousands of kilometres away, interconnected via
narrowband erroneous GPRS links is shown in the
paper. Stable and resilient data delivery without
message losses, even in cases of network outages for
several days has been reached with the system. It has
turned out as very flexible, so the location of the
consumers can be easily migrated from one location
to another one. Using two different queues leads us to
a very convenient decoupling of different kinds of use
of the data for post-processing. The memory usage
predictive monitoring system has been implemented
in order to prevent system crash caused by the lack of
available memory, which is crucial for the Rabbit MQ
implementation on a single-board computer.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

114

REFERENCES

[1] Project Coldhubs, http://www.coldhubs.com/
[2] S. Zinov, E. Siemens. “The Smart Lighting Concept”.

Workshop on Problems of Automomous Power
Systems in the Siberian Region. Koethen, October
2013.

[3] M.Benghanem, “Measurement of meteorological data
based on wireless data acquisition system
monitoring”, Applied Energy, pp. 2651-2660,
December 2009

[4] S. Vinoski, “Advanced Message Queuing Protocol”,
IEEE Internet Computing, vol. 10, Issue 6, pp. 87-89,
November 2006

[5] V. M. Ionescu, “The analysis of the performance of
RabbitMQ and ActiveMQ”, IEEE, Romania, pp. 132-
137 , October 2015

[6] Jones, et. al., "RabbitMQ Performance and Scalability
Analysis", project on CS 4284: Systems and
Networking Capstone, Virginia Tech 2011

[7] M. Rostanski K. Grochla,A. Seman “Evaluation of
highly available and fault-tolerant middleware
clustered architectures using RabbitMQ”, IEEE,
Poland, pp 879-884, October 2014

[8] A. Videla and J. Williams, “RabbitMQ in action.
Distributed messaging for everyone.” Manning, April
2012.

[9] “Radio Weather Station with USB and Touchscreen”
[Online];
http://www.produktinfo.conrad.com/datenblaetter/65
0000-674999/672861-an-01-ml-
FUNK_WETTERSTATION_MIT_USB___TOUCH
_de_en.pdf

[10] “Digital silicon Iradiance Sensor Si-rS485-TC-T”
[Online], http://imtsolar.com/wp-content/uploads/
2013/02/Si-Sensoren_RS485_E.pdf

[11] J. Easterbrook, “pywws” [Online] https://github.com/
jim-easterbrook/pywws

[12] “Distributed RabbitMQ brokers” [Online],
http://www.rabbitmq.com/distributed.html

[13] “RabbitMQ documentation” [Online], http:/
/www.rabbitmq.com/documentation.html, accessed
21.01.2014.

[14] “Advanced Message Queuing Protocol. Protocol
Specification” [Online], https://www.redhat.com/f/
pdf/amqp/amqp_0-8_specification.pdf

[15] Y.O. Babich and L.A. Nikityuk, “Functional
improvement of monitoring the dynamic
characteristics of information and communication
networks”, vol. 4/9 (76), Eastern European Journal of
Enterprise Technologies, Kharkiv, 2015, pp.9-14.

Proc. of the 6th International Conference on Applied Innovations in IT, (ICAIIT), March 2018

115

http://www.coldhubs.com/
http://imtsolar.com/wp-content/uploads/
https://github.com/%20jim-easterbrook/pywws
https://github.com/%20jim-easterbrook/pywws
https://www.redhat.com/

