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Abstract: The following article addresses a complex combinatorial optimization and integer-programming problem, 
referred to as the vehicle routing problem, which is typically related to the field of transportation logistics. 
The aim of the research is to combine a set of objective functions, number of common generalizations and 
extensions of the problem, arising in distributed services or goods supply. For this purpose, literature on the 
subject has been analysed, leading to the mathematical modelling method being applied. At the current 
moment such complicated variants of the problem present high importance for research because of both 
practical applications and high complexity. The paper proposes a new generalized multi-objective vehicle 
routing problem with multiple depots and heterogeneous vehicles fleet with regard to various factors 
affecting costs. The problem statement is presented as a mixed integer linear program. Objectives 
scalarization approach is proposed in order to reduce decision-maker participation. Shortcomings of the 
single-criterion formulation and negative effects of replacing the criteria with constraints are shown. The 
results provide initial data for solving a large number of transportation problems that are reduced to the 
vehicle routing problem. In particular, the application of the ant colony optimization as a method for solving 
the problem is discussed. 

1 INTRODUCTION 

Transportation affects many stages of production 
and distribution systems and represents an important 
component of the final product cost [1]. Route 
planning largely determines the effectiveness of 
transportation and is often reduced to one of the 
vehicle routing problems (VRP). 

VRP is a combinatorial optimization and integer 
programming problem, which calls for the 
determination of the optimal set of routes to be 
performed by a fleet of vehicles to serve a given set 
of customers. In general, the objective is to 
minimize the overall transportation cost. It is one of 
the most attractive topics in operation research, 
logistics, and supply chain management [2, 3]. This 
interest in VRP is motivated by both its practical 
relevance and its considerable difficulty. 

Indeed, a large number of real-world applications 
have widely shown that the use of software 
optimization and automated procedures for solving 
the VRP yields substantial savings in the global 

transportation costs [4]. However, the successful 
application of optimization techniques requires a 
mathematical model of the problem under 
consideration. 

For today, there are many variants of VRP and 
its formulations, differing mainly by various 
additional restrictions. These variants have extended 
the applicability in real-life cases, but they are often 
based on models that do not take into account many 
factors. 

Typically, a VRP model contains a single 
criterion to be minimized, which is the cost 
proportionate to the total trip distance or time. In 
fact, most of route planning problems are multi-
criteria, and there is no unified solution, which 
simultaneously satisfies all the objectives. 

The purpose of the research is to design a 
mathematical model of multi-objective VRP and a 
scalarization approach for reducing decision-maker 
participation.  This paper considers more complex 
and generalized variant of the VRP, that can be 
categorized as “rich” VRP [5, 6], that is closer to the 
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practical distribution problems. It makes the model 
universally applicable and allows for exclusion of 
extra specifics and characteristics, if needed. 

2 PROBLEM OVERVIEW 

First of all, let us consider the classical VRP to 
demonstrate the need for multiple criteria or 
constraints. 

2.1 The classical VRP 

The solution of the classical VRP problem is a set of 
routes, which all begin and end in one depot, and 
which satisfy the constraint that all the customers are 
served only once (Figure 1). The transportation cost 
can be diminished by reducing the total travelled 
distance and by reducing the number of the required 
vehicles. 

 
Figure 1: Example of a classical VRP solution: the black 
squares and the connecting lines represent clients and 
routes respectively. 

2.2 Downside of a single criterion 

In the case of the described classical VRP with one 
depot, the minimized sum of weights of all edges 
that make up the routes leads to the only optimal 
solution of having a single route for a single vehicle, 
i.e. VRP is reduced to less difficult TSP. 

This conclusion follows from the structural 
features of the road network and its graph: the 
weight of any path between two vertices must be 
greater than or equal to the weight of the edge 
connecting them, therefore the triangle inequality is 
met for all edges: сik + ckj ≥ cij, ∀i, j, k∈V. 

Since the increase in number of vehicles leads to 
an increase in number of the edges entering routes, it 
is possible to reduce the solution cost by connecting 
the last vertex of the previous route with the first 
vertex of the next (Figure 2). 

 
Figure 2: The total cost of the solution is reduced by 
connecting routes into one. 

Obviously, in this case, the total value of all 
routes is reduced, but clients are served sequentially 
and in general, the implementation takes more time 
than using several vehicles. Thus, overall 
performance is reduced and another criteria or 
constraints are is required to resolve the dilemma. 

Notice that the conclusion is valid for both 
symmetric and asymmetric matrix of costs if the 
triangle equality is satisfied. 

2.3 Constraints instead of multiple 
objectives 

Some objectives can be replaced by constraints in 
order to consider multiple criteria. It is suitable for 
some specific cases and usually greatly facilitates 
the search for solutions, but it poorly corresponds to 
reality in general. 

For example, one of widespread approaches to 
obtain approximately equivalent routes is route 
balancing. There are different ways to balance routes 
by restrictions, like balancing the number of 
customers served by each active vehicle, balancing 
the distance of routes travelled by vehicles or 
balancing the waiting time required for the route.  

In the first instance, the number of vertices in 
each route must not differ by more than specified 
(one, in extreme cases). This restriction allows to 
find solutions effectively even for a large number of 
vertices [7]. 
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Thus, routes are balanced in the number of 
vertices, but not always distance-balanced (it can be 
seen in Figure 3 that routes are incommensurable in 
length). 

 
Figure 3: Balancing the number of vertices. 

Contrariwise, the equalization of route distances 
may lead to irrational result, when a vertex is forced 
to belong to the route (Figure 4 shows that two 
vertices at the bottom are in different routes). 

 
Figure 4: Balancing the distances. 

It should be noted that balancing is sometimes 
proposed as an objective function [2]. However, it is 
rarely justified and associated with costs. 
Furthermore, it is clear, that a compromise among 
different balancing criteria is needed. 

3 GENERALIZATIONS 

In this paper, an asymmetric Heterogeneous Multi-
Depot VRP (HMDVRP) mathematical model is used 
to formalize the described general multi-objective 
problem. It is a variant of the VRP characterized by 
multiple depots, multiple vehicle types and multiple 
asymmetric matrixes of initial data for each vehicle. 

Figure 1 provides an example for the solution with 
the use of four vehicles (a, b, c, d) and different 
depots. 
 

 
Figure 3: The solution for combined generalizations. 

3.1 Symmetric and asymmetric 

In the symmetric VRP, the distance between two 
customers is the same in each opposite direction, 
forming an undirected graph [8]. This assumption 
does not correspond to real conditions [9] and often 
leads to a certain gap between a theoretical project 
and practical application. Actually, the shortest path 
between two points of the road network usually 
depends on directions. Such differences are most 
noticeable at small scales, for example, in an urban 
environment. Therefore, from a practical point of 
view, it is advisable to consider the asymmetric 
VRP, which assumes different distances in each 
opposite direction, forming a directed graph. In 
addition, many software tools for routing provide 
data according to chosen direction. 

On the other hand, the use of a directed graph 
significantly increases the solution space and, 
consequently, complicates the search for the 
optimum. To avoid this, depending on the particular 
application, costs (weights of edges) for opposite 
directions can be reduced to a certain average value. 

Thus, symmetric problem can be considered as a 
particular case of asymmetric one, and since the 
purpose of this article is to pose a generalized 
version of multi-objective VRP, asymmetric variant 
will be used further. 
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3.2 Single and multiple depots 

As noted above, route planning from depots to 
customers is a common and challenging task. 
Nevertheless, there is a rigid assumption that there 
may be only one depot. Although the single-depot 
VRPs have attracted so much attention, they are not 
suitable for some cases where a company has more 
than one depot, in which vehicles start and end their 
routes [10].  

To resolve this limitation, this paper focuses on 
the VRP with multiple depots, or Multi-depot VRP 
(MDVRP). Multi-depot VRP is a generalization of 
the classical VRP, so it does not rule out the case of 
single depot.  

Because there are additional depots, the decision 
makers usually have to determine which depots 
serve which customers, which is a grouping problem 
to be solved prior to the routing and scheduling 
problems. Obviously, this type of problem is more 
challenging and sophisticated than the single-depot 
VRPs. 

3.3 Homogenous and heterogeneous 
fleet 

Commonly, the fleet in VRP models is 
homogeneous, which does not always correspond to 
reality. Decisions relating routing heterogeneous 
fleets of vehicles are frequently taken into 
consideration in logistics operations [11].  

The Heterogeneous Fleet VRP (HVRP) is a 
generalization of the classical VRP in which 
customers are served by several different types of 
vehicles with various characteristics. It is assumed in 
proposed model that the number of vehicles of each 
type is fixed and equal to a constant (for it to be 
unlimited the number of vehicles just should be big 
enough).  

It is harder to solve heterogeneous fleet problem 
than the homogeneous one. Therefore, if the 
difference among vehicles is not significant, 
characteristics can be considered the same. 

4 MATHEMATICAL MODEL 

Taking into account everything above, we have 
constructed a mathematical model of the problem 
based on a linear programming formulation in terms 
of graph theory. 

4.1 Problem formulation 

Let G = (V, A) be a directed graph, where 
V = VC ∪VD is the set of vertices {1, …, n}, VC 
represents clients, VD represents depots and 
A = {(i, j) : i, j ∈ V, i ≠ j} is a set of arcs defined 
between each pair of vertices. Heterogeneous fleet K 
of vehicles available and there is a bijection between 
the set K of vehicles and the set VD of depot-vertices. 
Note that technically the location of depot-vertices 
can coincide if some vehicles belong to a single 
depot. The demand Dj is set for each customer j and 
the carrying capacity Qk for each vehicle k. The end 
goal is to determine a minimum-cost set of routes in 
the feasible region considering all n criteria. 

The formulation uses a set X of binary variables 
xijk equal to 1 if vehicle k travels directly from i to j, 
and to 0 otherwise. 

According to the established assumptions, the 
Generalized Multi-Objective Vehicle Routing 
Problem can be stated as follows: 

{ }1min ( ), , ( ) ,nf X f X (1) 

subject to: 

1, ;ijk C
k K j V

x j V
∈ ∈

= ∀ ∈∑∑  (2) 

0, ;ijk jik
j V j V

x x k K i V
∈ ∈

− = ∀ ∈ ∧∀ ∈∑ ∑  (3) 

1, ;
D

ijk
i V j V

x k K
∈ ∈

≤ ∀ ∈∑∑ (4) 

0, , ;ijk D
j V

x i V k K i k
∈

= ∀ ∈ ∧∀ ∈ ≠∑  (5) 

, .
C

j ijk k
j V i V

D x Q k K
∈ ∈

≤ ∀ ∈∑ ∑  (6) 

Equation (1) contains a vector of objective 
functions to minimize. Constraints (2) guarantee that 
each customer will be visited exactly once. Flow 
conservation constraints are expressed in (3). 
Constraints (4) mean that each vehicle departs from 
the depot once or doesn’t depart at all. It is given 
that the fleet is heterogeneous, therefore it is 
important to consider that each vehicle belongs to its 
own depot (5). Finally, the limitation of the carrying 
capacity, which cannot be less than the total demand 
of the visited customers for each vehicle, presented 
in (6). 

Such flexible formulation makes it possible to 
exclude insignificant limitations from consideration 
leaving only the needed constraints. 
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4.2 Problem parameters 

Roads and clients are characterized by several 
parameters for each type of the vehicle, and defined 
as the initial data of the problem: 
 сijk – fixed fare between vertices i and j for

vehicle k;
 dijk – distance from vertex i to vertex j for

vehicle k;
 tijk – travel time between vertices i and j for

vehicle k, including the service time.
Such choice of parameters is based on real basic 

information about the path between two points, 
which can be obtained using modern navigation 
tools. It is supposed that data on roads are defined 
for various types of transport; therefore, an extra 
parameter index k corresponding to a particular type 
of vehicle is used. 

4.3 Objectives 

Let us form a vector of objective functions (1) 
allowing to take into account the basic criteria for 
estimating the cost of a solution. In construction of 
the mathematical model, the following principle was 
adopted: all decisions ultimately affect the enterprise 
profits and costs, which can be predicted at least 
roughly. Otherwise, additional methods of decision-
making are required to find the weights of objective 
functions. Integrated expert estimates for decision-
making support can simplify this problem [12]. 

1. Number of involved vehicles:
1 1( ) .k ijk

k K
f X xλ

∈

= ∑ ∑∑  

Minimizing the number of involved vehicles is 
one of the key objectives of VRP [13]. If the route 
contains a single vertex, the vehicle does not leave 
the depot and is considered uninvolved. The penalty 
value λ1k is applied to each involved vehicle k. 
Expenses on preparation of the vehicle and the 
courier determine the size of a penalty. 

2. Total travelled distance:
2 2( ) .k ijk ijk

k K i V j V
f X d xλ

∈ ∈ ∈

= ∑ ∑∑  

The total distance of all routes determines 
mainly expenses on fuel and transport servicing. As 
a rule, the fuel consumption per distance unit and the 
type of used gasoline are known for all vehicles. 
Based on these data, fuel cost per distance unit can 
be obtained for each vehicle k. Maintenance costs 
are estimated per distance unit according to 
particular vehicle characteristics. In addition, 
different risk costs are calculated with consideration 
of distance. For instance, the risk associated with 

traffic accidents can be estimated as a multiplication 
of the probability of the accident and the average 
cost of its consequences. In a similar manner, other 
expenses associated with the distance travelled can 
be estimated. Thus, the coefficient of the objective 
function λ2k is the sum of all components. 

3. Total travelled time:
3 3( ) .k ijk ijk

k K i V j V
f X t xλ

∈ ∈ ∈

= ∑ ∑∑  

The cumulative time to be spent by all vehicles 
is necessary to take into account for the time rate 
wage payment calculation. So, λ3k is estimated as 
wages per unit time for each courier. 

4. The completion time:

4 4( ) max .ijk ijk
i V j V

f X t xλ
∈ ∈

 
=  

 
∑∑  

The time since departure of the first vehicle to 
return of the last vehicle determines costs of 
maintaining the transportation system as λ4 and 
allows for calculation of the prior basic 
compensation of all couriers regardless of their 
employment. All involved vehicles move 
simultaneously therefore the completion time is 
determined by the most prolonged route and is 
evaluated using Chebyshev scalarization function. 
Coefficient λ4 corresponds to the enterprise costs per 
time unit and does not depend on specific routes. 

5. Fixed costs:
5 ( ) .ijk ijk

k K i V j V
f X c x

∈ ∈ ∈

= ∑∑∑  

The movement between two vertices may be 
associated with a priori costs, for instance, toll road 
taxes. In some cases, the cost depends on the type of 
vehicle, thence coefficient value is set for each. 

Thus, for all considered objective functions, the 
value is now expressed in uniform units; therefore, a 
linear scalarization (weighted sum) can be used: 

1
( ).

n

i
i

F f X
=

= ∑  

The proposed criteria are not exhaustive for all 
practical problems, but as analysis has shown, they 
have a significant impact on the cost of the solution. 
Any other criteria can be added in a similar way, but 
it is important to consider that the difficulty of 
finding a solution depends, among other things, on 
the complexity of an objective function. If it is 
impossible to relate the significance of the criterion 
to costs, other decision-making methods may be 
needed, especially for nonlinearity. 
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5 SOLUTION METHOD 

In the field of combinatorial optimization, the VRP 
is regarded as one of the most challenging problems. 
It is indeed NP-hard, so that the task of finding the 
best set of vehicle tours by solving optimization 
models is computationally prohibitive for real-world 
applications [14]. As a result, different types of 
heuristic methodologies are usually applied. 
Furthermore, in view of conflicting objective 
functions it is difficult to accomplish the task of 
clustering. Clustering is likely to eliminate the 
optimal before the start of the search and keep 
suboptimal. Existing algorithms are not designed to 
solve the proposed generalized multicriteria vehicle 
routing problem. 

Therefore, to solve this problem a modified 
multi-objective ant colony optimization algorithm 
(ACO) is being developed.  ACO is a probabilistic 
technique for finding good paths through graphs and 
it is suitable for multi-objective problems [15, 16]. 
Swarm metaheuristics like ACO are useful for a 
large search space, especially using methods of 
increase in effectiveness [17]. The results obtained 
using the algorithm allow us to conclude that the 
solution of the problem depends substantially on the 
chosen weighting coefficients of the objective 
function. 

Figures 5-6 show an example of how different 
solutions of the problem with two of the above 
objectives, the total travelled distance and the 
completion time. These criteria are highly 
conflicting and therewith illustrative. In the first case 
(Figure 5), the sum of distances is minimized, but 
the routes are not balanced and the time required to 
completion is excessive. 

 
Figure 5: Minimization of the total travelled distance. 

Alternatively, in the second case, the time of the 
longest route is minimized primarily, so the routes 
are approximately of equal length though they do 
not look optimal separately. 

 
Figure 6: Minimization of the completion time. 

6 CONCLUSIONS 

A general mixed-integer linear mathematical 
programming formulation of Multi-Objective 
Vehicle Routing Problem with multiple depots and 
heterogeneous vehicles fleet is designed. The 
proposed set of objective functions considers factors 
affecting costs, but the considered list is not 
exhaustive. The presented approach allows 
supplementing the model with other objectives in the 
same way reducing decision-maker participation. In 
addition, it is possible to exclude some extra 
parameters, which are caused by generalization of 
the model, if required. 

The model stated in this paper can be used 
effectively not only to solve problems concerning 
the delivery or collection of goods but for the 
solution of different real-world applications rising in 
transportation systems as well. Several examples of 
specific real-life situations [18, 19, 20] involving 
multi-objective routing problems are presented 
below: 
 cargo transportation; 
 fast food delivery; 
 school bus routing; 
 solid waste and trash collection; 
 merchandise transport routing; 
 tour planning for mobile healthcare facilities; 
 postal services; 
 maintenance engineering. 
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Thus, the new mathematical model, unlike 
existing ones, expands the practical applicability in 
cases of distributed depots and customers, and, at the 
same time, aims to global cost savings. In the 
forthcoming work, an algorithm for solving the 
problem will be reviewed in detail. 
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