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Abstract: The Internet of Things (IoT) has enabled a wide range of applications that depend on efficient and reliable com-

munication between devices, even in remote or mobile scenarios. However, LoORaWAN communication faces
significant challenges when nodes are mobile. This study investigates methods for predicting and improving
the reliability and energy efficiency of mobile LoORaWAN communication. The Kalman filter, a lightweight
yet robust algorithm, is applied to smooth noisy signal measurements and enhance decision-making. Field ex-
periments in urban, rural, park, and free-field environments demonstrate that predictive filtering can effectively
stabilize the highly variable RSSI and SNR signals typical of mobile devices, providing a more dependable
basis for transmission parameter control. The performance is benchmarked against a naive reactive control
strategy and further contextualized within the framework of standard LoORaWAN Adaptive Data Rate (ADR)
mechanisms. Results indicate that traditional ADR, designed for stationary devices, remains overly conser-
vative in mobile situations, maintaining higher transmission power than necessary. By contrast, predictive
filtering achieves tangible energy savings without compromising reliability. This work represents a meaning-
ful step toward more resilient and efficient LoORaWAN systems capable of supporting the mobile and dynamic
applications of tomorrow’s IoT landscape.

1 INTRODUCTION

creased latency, and inconsistent connectivity, which
undermine the reliability of the entire IoT system.
Addressing this issue is crucial for enabling real-
time mobile applications such as asset tracking, smart
transportation, and environmental monitoring.

The Internet of Things (IoT) has introduced a wide
range of applications that rely on efficient and re-
liable communication between devices, even in re-

mote or mobile scenarios. Among the many wire-
less communication protocols developed for IoT, Lo-
RaWAN stands out due to its low power consump-
tion, long-range coverage, and suitability for de-
vices with limited processing capabilities. LoORaWAN
is particularly advantageous in rural, industrial, or
infrastructure-scarce environments where mobile or
battery-operated devices must function independently
over extended periods.

Despite its benefits, LoRaWAN communication
faces significant challenges when nodes are mobile.
Unlike fixed-position nodes, mobile nodes experience
rapid and unpredictable fluctuations in signal strength
due to factors such as distance from the gateway, en-
vironmental interference, obstacles, and movement
speed. These variations can lead to packet loss, in-
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This project explores methods for predicting sig-
nal strength in mobile LoRaWAN nodes as a means
of improving communication performance. By antic-
ipating signal quality in advance, it becomes possible
to adjust transmission parameters or make proactive
decisions, such as delaying non-urgent transmissions
until conditions improve. The core idea is to blend
LoRaWAN’s existing capabilities with lightweight
predictive techniques that can run on simple micro-
controllers and single-board computers like Arduino
and Raspberry Pi.

In the following sections, the hardware setup, sys-
tem architecture, and signal strength prediction tech-
niques are presented. The results of preliminary ex-
periments with mobile nodes are discussed, followed
by an evaluation of the approach and suggestions for
future improvements.
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2 SYSTEM DESIGN AND
IMPLEMENTATION

To investigate methods for predicting and improv-
ing LoORaWAN signal strength in mobile scenarios, a
custom IoT system was developed. This section de-
scribes the architecture, components, and setup used
to establish LoRaWAN communication between a
mobile sender node and a stationary receiver. The
goal was to create a lightweight and portable system
capable of capturing signal strength data in real time
as the sender moves through different environments.
This system consists of two main components: a
mobile sender node and a stationary receiver gateway.
The sender represents a real-world IoT device (e.g.,
a sensor on a delivery vehicle or a wildlife tracker),
while the receiver acts as a gateway to collect data
and adapt communication parameters dynamically.

2.1 Hardware Components

The hardware architecture is designed to mimic prac-
tical IoT deployments where cost, portability, and en-
ergy efficiency are critical. Both nodes use commer-
cially available components to ensure reproducibility
and scalability.

2.1.1 Sender Node (Mobile Device)

The sender node (Figure 1) is a portable, battery-
powered device built around the following compo-
nents:

* Microcontroller: The Arduino Mega 2560, run-
ning at 16 MHz with 256 KB flash memory,
provides sufficient computational power while
maintaining energy efficiency for mobile [oT
applications;

* LoRa Module: A Dragino LoRa Shield v1.4
[1], equipped with the Semtech SX1276 chip
[2], enables long-range communication in the
868 MHz ISM band (Europe). It supports mul-
tiple bandwidth options (e.g., 125 kHz, 250
kHz, 500 kHz), adjustable spreading factors
(SF7-SF12), and transmit power up to 20 dBm;

* Antenna: An SMA-connected 868 MHz omni-
directional antenna ensures reliable signal cov-
erage in mobile scenarios;

= Power Source: A standard USB power bank
(5V/2A output) powers the Arduino, ensuring
portability during field tests.
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Figure 1: Mobile sender node based on Arduino Mega with
Dragino LoRa Shield.

2.1.2 Receiver Node (Gateway)

The stationary gateway (Figure 2) is designed to
receive data, analyze signal quality, and optimize
transmission settings:

= Single-Board Computer: A Raspberry Pi 3 B+
processes incoming data. Its quad-core 1.4
GHz CPU and 1 GB RAM handle real-time fil-
tering and adaptive algorithms;

= Dragino LoRa Bee v1.1 (SX1276 chip, 868
MHz) [3];

= Antenna: The same SMA-connected 868 MHz
antenna as the sender, ensuring compatibility
and omnidirectional coverage.

Figure 2: Stationary receiver node with Raspberry Pi 3 B+
and Dragino LoRa BEE.
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2.2 Software Components

The software stack for this project consists of custom
programs running on both the Arduino Mega (sender)
and the Raspberry Pi 3 B+ (receiver), designed to
implement adaptive LoORaWAN communication with
real-time signal strength monitoring and dynamic pa-
rameter adjustment.

2.2.1 Sender (Adruino Mega)

The Arduino runs code written in C++ using the Ar-
duino IDE and leverages the widely used LoRa and
SPI libraries to manage radio communication. The
sender periodically transmits numbered data packets
and listens for acknowledgments (ACKs) from the re-
ceiver. Control information is carried inside these
ACKs, so the sender can update its radio settings in
real time without sending extra synchronization traf-
fic. On startup, a single SYNC exchange is used to
establish the initial configuration and after that, pa-
rameter updates are attached to ACKs during normal
packet exchange. When an ACK contains new values
for spreading factor (SF), coding rate (CR), or trans-
mit power (TP), the sender applies them immediately.
This ensures that the sender adapts to changing sig-
nal conditions, improving reliability and energy effi-
ciency. The code includes CRC checking for packet
integrity and uses timestamped logging via the serial
monitor for debugging and post-processing.
Key features of the sender code include:

= Initialization: Starts with default parameters
(SF=7, CR=4/5, TP=5 dBm), adjustable based
on receiver feedback;

= Packet Transmission: Sends labelled packets
(e.g., "PACKET: 17) and awaits ACKs, retrans-
mitting if necessary;

= Parameter updates in ACKs: The receiver em-
beds SF=..., CR=..., and TP=... inside nor-
mal ACKs. The sender parses these fields and
updates its configuration in place;

* Dynamic Adjustment: Increases TP if ACKs
are not received, ensuring communication re-
liability;

* Logging: Records transmission details and pa-
rameter changes.

2.2.2 Receiver (Raspberry Pi 3 B+)

The receiver runs a Python application based on
the forked pyLoRa (version 0.3.1) library, a modi-
fied implementation of the original pySX127x driver.
This software interfaces with the Dragino LoRa BEE
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module through the SPI bus, which must be en-
abled via Raspberry Pi’s configuration settings. The
Python program continuously listens for incoming
packets, logs signal quality metrics such as RSSI (Re-
ceived Signal Strength Indicator) and SNR (Signal-
to-Noise Ratio) and applies a simplified Kalman fil-
ter to smooth these values. Based on these filtered
parameters, it dynamically adjusts the transmission
power and other communication parameters by send-
ing SYNC messages back to the sender.

The receiver’s software also implements adap-
tive logic to increase or decrease transmission power
based on threshold rules applied to RSSI and SNR
values, aiming to maintain a stable link quality while
minimizing power consumption. Packet delivery ra-
tio (PDR) and CRC error rates are also monitored and
logged to evaluate communication robustness. All
logging data is saved with timestamps in organized
files for later analysis.

Key features of the receiver code include:

= Initialization: Starts with default parameters
(SF=7, CR=4/5);

= Kalman Filter: Smooths RSSI and SNR to re-
duce noise from mobility-induced fluctuations;

* Link Quality: Calculates Packet Delivery Ratio
(PDR), average RSSI, and SNR over a sliding
window;

Adaptive Logic: Dynamically adjusts trans-
mission parameters based on filtered RSSI and
SNR thresholds. If link quality degrades, the
receiver can request higher TP, a larger SF, or
a more robust CR. Conversely, when condi-
tions improve, it suggests lowering TP, reduc-
ing SF, or relaxing CR to save energy and in-
crease throughput;

* Logging: Saves detailed metrics in times-
tamped files.

3 SIGNAL STRENGTH
PREDICTION

This section explores the methodology used to man-
age and interpret signal strength data for mobile Lo-
RaWAN nodes in an adaptive communication system.
The core technique employed is the Kalman filter, a
lightweight yet robust algorithm that smooths noisy
signal measurements to enhance decision-making.
The section breaks down the Kalman filter’s mechan-
ics, its specific application to smoothing RSSI and
SNR values, its limitations, and potential avenues for
future improvement [4].



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), August 2025

Table 1: Example adaptation rules for RSSI/SNR-driven parameter changes.

Condition Action on TP Action on SF Action on CR

RSSI < -95 dBm or | Increase TP (up to max) | Increase SF (towards | Increase CR (towards
SNR < -10 dB SF12) 4/8)

—95 < RSSI < -90 dBm | Increase TP Keep SF Keep CR

and SNR < -5 dB

—-90 <RSSI <-70dBm, | Keep TP Keep SF Keep CR
0<SNR<5dB

RSSI > -70 dBm and | Decrease TP Decrease SF (towards | Decrease CR (towards
SNR > 5 dB SF7) 4/5)

3.1 Understanding the Kalman Filter
3.1.1 Origins and Purpose

The Kalman filter, developed by Rudolf E. Kdlméan in
the 1960s, is a mathematical tool originally designed
for aerospace applications, such as navigation and tra-
jectory tracking. Its purpose is to estimate the state of
a dynamic system, like the position of a spacecraft or,
in our case, the signal strength of a mobile node using
a series of noisy measurements. Today, its versatility
has made it a staple in fields ranging from robotics to
financial modelling, and it’s particularly valuable in
IoT systems where real-time data processing is criti-
cal [5][6].

The filter’s strength lies in its ability to blend pre-
dictions (based on a system model) with measure-
ments (from sensors), producing a refined estimate
that mitigates the effects of noise. For mobile Lo-
RaWAN nodes, this means cleaner RSSI and SNR
data, which leads to more reliable adaptive decisions.

3.1.2 How It Works: The Prediction-Correction
Cycle

The Kalman filter operates in two iterative steps:

* Prediction: Using a model of how the system
evolves, the filter predicts the next state based
on the current estimate. For signal strength,
this might assume that RSSI or SNR changes
gradually over time, with some random varia-
tion (termed process noise, denoted (Q)). This
step also updates the uncertainty of the predic-
tion, tracked via a covariance matrix;

* Correction: When a new measurement arrives
(e.g., a raw RSSI value), the filter adjusts its
prediction by incorporating this data. The mea-
surement is assumed to include noise (quanti-
fied as measurement noise, (R)), and the filter
computes a Kalman gain (K) to determine how
much to trust the measurement versus the pre-
diction. The result is an updated estimate with

reduced uncertainty.

This cycle repeats with each new packet received,
allowing the filter to adapt d ynamically to changing
conditions while smoothing out short-term fluctua-
tions caused by the sender’s mobility or environmen-
tal factors.

3.2 Applying the Kalman Filter to RSSI
and SNR Smoothing

3.2.1 Why Smoothing Matters
In mobile LoRaWAN systems, RSSI and SNR mea-
surements can fluctuate wildly due to factors like dis-
tance, obstacles, or interference. Raw data might
show a sudden drop in RSSI from -80 dBm to -100
dBm due to a temporary obstruction, even if the over-
all signal trend remains stable. Feeding these raw val-
ues directly into the adaptive logic could trigger un-
necessary adjustments, such as increasing TP when
it’s not truly needed.

The Kalman filter mitigates this by providing a
smoothed estimate, ensuring the system responds to
meaningful trends rather than transient noise.

3.2.2 Implementation Details

In this project, separate Kalman filters were applied
to the RSSI and SNR data streams. Each filter was
initialized with a starting estimate (e.g., -90 dBm for
RSSI and 0 dB for SNR) and tuned parameters:

= Process Noise (Q): Represents the expected
variation in signal strength between measure-
ments. A small (Q) (e.g., 0.01) assumes
slow changes, ideal for pedestrian-paced nodes,
while a larger (Q) (e.g., 0.1) suits faster-moving
nodes like vehicles;

= Measurement Noise (R): Reflects the noisiness
of raw measurements, derived from observed
variance in static tests (e.g., (R = 1.5)). A
higher (R) reduces the filter’s reliance on erratic
measurements.
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Tuning was tested across different mobility profiles.
With slow walking, small Q and moderate R stabi-
lized the signal without lag. With faster movement,
larger Q helped track rapid drops. Packets were trans-
mitted every 5 seconds, which is sufficient for walk-
ing but can undersample jogging. In that case increas-
ing Q provides compensation.

Filtered outputs were then fed into the receiver’s
adaptive logic. Instead of reacting to every fluctu-
ation, the controller applied hysteresis (two thresh-
olds) and dwell time (N consecutive packets) so that
only persistent conditions triggered a change. Table
1 summarizes the adaptation rules.

The controller classifies each packet using filtered
RSSTI and SNR. A “raise” state is declared if RSSI <
-92 dBm or SNR < -7 dB, a “lower” state if RSSI
> -86 dBm and SNR > -1 dB, otherwise the state is
neutral. In the raise state, transmit power is increased
first; if already at high power, spreading factor is sug-
gested upward by one; if spreading factor is also at
maximum, coding rate is suggested upward by one.
In the lower state, transmit power is decreased first,
then spreading factor or coding rate if already at the
minimum power.

Primary adaptation action from filtered (RSSI, SNR)
B TPT B TP = SF1 B SFL B CRT

TP mid, SF mid, CR mid

I Keep B CR!
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-
-

4
4

SNR bin (dB)
SNR bin (dB)

-92 -86
RSS! bin (dBm)

-92 -86
RSSI bin (dBm)

TP near max, SF max, CR mid TP min, SF mid, CR high

-
-

4
L

SNR bin (dB)
SNR bin (dB)

-92
RSSI bin (dBm)

-86 -92 -86

RSSI bin (dBm)
Figure 3: Decision heatmap.
Figure 3 shows this mapping on a grid of RSSI
and SNR bins. Bins are value intervals; for exam-
ple, the RSSI bin “-92:-86” means -92 < RSSI < -86

dBm. Hysteresis and dwell operate on top of this map
to prevent brief dips from triggering changes.

4 EXPERIMENTAL PROTOCOL
AND DATA COLLECTION

To evaluate the prediction and adaptation strategies
under realistic conditions, a series of field experi-
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ments was conducted in urban, rural, and park envi-
ronments. Rather than treating every log as equal, the
focus is placed on representative runs that best capture
the behavior of the system in different propagation
regimes. The objective was not to maximize packet
counts, but to expose the system to the full spectrum
of challenges a mobile LoRaWAN node would face:
interference from people and buildings in urban areas,
open-line distances in rural villages, and calm base-
line tests in an isolated park [7][8].

4.1 Field Environments and Motion
Profiles

T
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Figure 4: Urban environment.

The urban environment shown on Figure 4 was a
busy street with dense pedestrian activity. The sender
node was handheld and moved along sidewalks, of-
ten with people passing between sender and receiver.
This created sharp, irregular fades as human bodies
blocked the line-of-sight or reflected the signal. In
addition, building facades introduced multipath com-
ponents, making RSSI and SNR fluctuate more than
distance alone would predict. This setting was delib-
erately chosen to stress-test the filter’s ability to sup-
press noise without losing sight of genuine downward
trends.

Figure 5: Rural environment.

The rural environment shown on Figure 5 was
a small village route with long sightlines and sparse
interference. The same sender-receiver pair was car-
ried at a walking pace along a road with minimal ob-
stacles, so the dominant effect was gradual distance-
driven attenuation. This is the classical propagation
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model scenario: path loss increases smoothly with
distance, and stochastic variation is smaller than in ur-
ban conditions. This environment is particularly use-
ful for confirming whether the Kalman filter tracks
slow changes faithfully, since there is little crowd-
driven volatility.

Figure 6: Park environment.

The park environment shown on Figure 6 was
a large, relatively empty outdoor area with few by-
standers. Here the sender could be moved at different
speeds, slow walking vs. jogging, without obstruc-
tions other than occasional trees. The park provided
the cleanest conditions and served as a “baseline san-
ity check” to see the best possible performance of
the smoothing and control loop. Because interference
was minimal, filtered and raw metrics could be com-
pared in isolation to reveal how much variance the
algorithm removed, independent of external disrup-
tions.

Figure 7: Free field environment.

The free-field environment shown on Figure 7
was situated on a gentle, rolling hill, providing a clear,
elevated vantage point over open ground. The re-
ceiver was placed near the crest, while the sender
node was carried along the slope and across the adja-
cent flat area. With no buildings or dense crowds, this
environment was largely free of the multipath effects
and sharp blockages seen in urban settings. The pri-
mary sources of signal variation were distance-driven
path loss and changes in antenna orientation due to the
operator’s movement. This scenario served as a con-
trolled baseline to isolate the fundamental dynamics
of the wireless channel, demonstrating the filter’s per-
formance under near-ideal, line-of-sight conditions.
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Across all four environments, two motion profiles
were tested:

= Slow traverse ~ 4-5km/h: a casual walking
pace with frequent small pauses;

* Fast traverse ~ 9-10km/h: covering the same
route in tens of seconds rather than minutes.

These contrasting speeds were essential to highlight
the filter’s responsiveness, since the same parameters
can be well-suited for one regime and suboptimal for
the other.

4.2 System Roles and Packet Flow

The sender initialized with default LoRa parameters
and began by transmitting a SYNC message. It then
sent sequentially numbered data packets at a fixed ca-
dence, each carrying a CRC for integrity. The re-
ceiver logged every incoming packet, computed raw
RSSI and SNR, applied the Kalman filter t o both

streams, and wrote the results to file. W hen thresh-

olds were crossed, the receiver decided whether to es-
calate or maintain transmit power, and it annotated
the log with both the raw decision (what would have
happened without smoothing) and the filtered adapta-
tion (the actual outcome). This dual record is invalu-
able because it allows later analysis of how often the
smoother prevented unnecessary power changes.
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Figure 8: Adaptive packet flow and decision loop between
sender and receiver.

The complete packet flow and decision logic, en-
compassing both the initial handshake and the main
data cycle, are illustrated in Figure 8. In a typi-
cal data exchange, the sender emits a packet (e.g.,
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“PACKET 17). The receiver processes it (logging, fil-
tering, threshold checks) and may reply with an adap-
tive “ACK 17 containing parameter change sugges-
tions.

4.3 Logging and Metrics

Each log line contained a timestamp with millisecond
precision, the received message label, raw and filtered
RSSI (dBm), raw and filtered SNR (dB), CRC valid-
ity, and the packet delivery ratio (PDR) as observed
up to that point. Adaptation decisions were also em-
bedded in the log, for example:

2025-06-22 21:59:10.024 Received:
Message: PACKET: 11;
RSSI_raw=-105,
RSSI_filtered=-73.8, SNR_raw=4.0,
SNR_filtered=8.5, CRC=Valid,
PDR=100.00%

2025-06-22 21:59:10.025 Adaptation:

TP=0 (Filtered) | Raw decision: No
change
2025-06-22 21:59:10.028 Sent: ACK 11

This made it straightforward to parse the logs and
reconstruct both the “counterfactual” raw control path
and the actual filtered path. To assess how mobility
speed influenced estimation quality, a simple motion
proxy was introduced: the median absolute derivative

of filtered RSSI over time median(’ dRSSly D [dB/s].

dt
Runs with higher values corresponded to faster move-
ment or more abrupt environmental changes, while
runs with lower values reflected slow traverses.

4.4 Representative Dataset

From the broader set of collected logs, four represen-
tative cases (urban, rural, park and free field) were
selected, as they clearly illustrate different stress fac-
tors on the system. In the urban case, the logs reveal
moments where people walking past triggered sharp
raw RSSI drops, which the filter largely suppressed.
In the rural case, the filter tracked the smooth decline
well, showing minimal lag. In the park case, slow
vs. fast traverses under otherwise identical conditions
were directly comparable, highlighting the need for
a speed-aware filter s etting. T he free field case of-
fered near-ideal conditions, with clear line-of-sight
and minimal interference, providing a baseline to as-
sess filtering performance in more complex settings.
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S RESULTS AND ANALYSIS

Building on the experimental setups described in
the previous section, this section evaluates how the
prediction-and-control loop behaved under real mo-
bility. Rather than re-describing the measurement en-
vironments, the focus here is on the observed behav-
iors and how the Kalman filter plus adaptation pol-
icy responded. Four representative traces, one urban,
one rural, one park, and one free field, provide con-
trasting conditions: intermittent crowd-induced fad-
ing, smooth distance-driven attenuation, a clean base-
line, and a near-ideal line-of-sight scenario. The re-
sults are organized around four questions:

= Reliability: was packet delivery preserved
across environments despite mobility?

= Stability: did the Kalman filter reduce volatility
in RSSI and SNR without masking true degra-
dations?

= Responsiveness: how well did the adaptation
logic react in slow versus fast traverses, and did
smoothing sometimes introduce lag?

= Efficiency: did the system save energy by pre-
venting unnecessary parameter increases?

To answer these, time-series comparisons of raw
vs.  filtered R SSI/SNR, v ariance-reduction sum-
maries, and slow/fast motion panels are presented.
Together these reveal where the controller saved
power by ignoring transient fades, and where it risked
under-reacting in rapid movement.

5.1 Reliability Outcomes

Across all representative runs, end-to-end reliability
remained high. Data packets were received with valid
CRCs and acknowledgments were consistently re-
turned. In the urban trace, short fades appeared when
pedestrians crossed the line-of-sight between sender
and receiver, causing temporary signal dips. These
are exactly the kinds of disturbances that a threshold-
only controller would misinterpret as persistent degra-
dation, leading to unnecessary power increases. The
Kalman filter smoothed such events, and the adapta-
tion logic largely avoided reacting to them, demon-
strating the stabilizing value of prediction.

By contrast, the rural trace showed long, grad-
ual declines in RSSI as distance increased, with lit-
tle short-term volatility. Here the filter t racked the
underlying trend closely, and the adaptation policy
correctly escalated transmit power only when sus-
tained attenuation warranted it. This validates that the
system does not miss genuine link degradation even
when smoothing is active.
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5.2 Smoothing and Stability

To assess stability, the variability of raw and filtered
metrics was compared across environments. Vari-
ability was measured in terms of variance, which re-
flects how much the signal fluctuates around its mean.
High variance in RSSI or SNR makes it harder for a
controller to distinguish between temporary dips and
true deterioration, because thresholds are crossed fre-
quently in both cases. By reducing variance, a filter
allows the controller to base its decisions on longer-
term structure rather than reacting to short spikes.

In both the urban and rural traces, the Kalman fil-
ter reduced RSSI fluctuations b y r oughly one-third
and SNR fluctuations by about o ne-fifth. These are
meaningful reductions: a one-third drop in RSSI vari-
ance means that the signal is noticeably steadier and
less likely to oscillate around decision boundaries. In
practical terms, many borderline threshold crossings
that appear in the raw data are smoothed away in the
filtered data. This prevents the system from bouncing
between power levels in response to noise rather than
genuine changes.

The benefit of smoothing was most visible in the
urban trace, where pedestrians occasionally blocked
line-of-sight. Each crossing created sharp but brief
fades in the raw RSSI. Without filtering, the controller
would interpret these as repeated losses, leading to
unnecessary power escalations. The Kalman filter
suppressed these momentary dips, ensuring that only
persistent attenuation triggered action. In the rural en-
vironment, where the dominant trend was distance-
driven path loss, the filter d id n ot alter t he overall
trajectory but still damped the smaller oscillations
caused by reflections and m ultipath. I n t he park,
which served as a cleaner baseline, the differences
were less dramatic, but the filter still delivered slightly
steadier estimates.

Raw vs. filtered RSSI and SNR

—— RSSI raw
RSS! filtered

RSSI (dBm)

N\M“wwwmﬁ ot

WV\M va W\W (“”

—— SNR raw
Packet index

SNR (dB)

SNR filtered

Figure 9: Time-series of raw and filtered RSSI (top) and
SNR (bottom).

Time-series plots (Figure 9) capture this visu-
ally: raw RSSI curves whip in and out of thresholds,
while the filtered trajectories remain more consistent.
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Figure 10: Variance reduction across urban, rural, park and
free field environments.

Variance-reduction bar charts (Figure 10) summarize
the effect across all four environments, confirming
that the Kalman filter improved stability regardless of
context. Importantly, the long-term trends were pre-
served: the filter s moothed n oise but d id n ot mask
genuine degradation.

This balance is critical. An adaptive system that
chases every spike will waste energy and become un-
stable, while one that smooths too aggressively may
miss the onset of real problems. By achieving less jit-
ter while still tracking the overall decline, the Kalman
filter d emonstrated t hat s tability a nd responsiveness
can coexist. These results show why smoothing is not
just cosmetic but an essential component of reliable
control in mobile LoORaWAN links.

5.3 Motion Sensitivity: Slow vs. Fast
Traverses

While smoothing improves stability, its responsive-
ness depends on how quickly the link conditions
evolve. To examine this, two traverses of similar dis-
tance but very different paces were compared. The
slow traverse was a casual walk (= 4-5 km/h), while
the fast traverse (=~ 9-10km/h) covered the same
route in only tens of seconds rather than minutes.

In the slow case, the filtered RSSI trajectory fol-
lowed the gradual decline almost perfectly. Small
fades caused by minor movements or short obstacles
were suppressed without introducing noticeable de-
lay. The adaptation logic escalated transmit power
only when the decline continued over many packets,
which was the intended behavior. This shows that the
filter was well matched to slow mobility where trends
unfold gently and there is enough time to accumulate
evidence before reacting.

The fast case told a different story. Here the raw
RSSI dropped sharply as distance grew. The filtered
curve trailed behind because the process noise param-
eter Q had been set conservatively. The filter therefore
underestimated how severe the path loss had become,
and the controller hesitated before raising transmit
power. Connection was not lost, but the delay made
clear that the filter’s tuning was not equally effective
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across different speeds of motion.
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Figure 11: Comparison of slow (top) and fast (bottom) tra-
verses.

This highlights a trade-off in parameterization.
Small Q produces smooth and stable estimates, which
is ideal for slow environments, but it creates lag
during rapid movement. Larger Q can follow fast
changes more closely, but it makes the system sen-
sitive to short-term noise. A practical refinement is
to let Q depend on movement speed. For example,
when motion is slow, the filter can remain conserva-
tive, while in faster traverses it can become more ag-
ile. Another complementary idea is to add hysteresis
or dwell thresholds on top of the filter o utput. Hys-
teresis ensures that a single threshold crossing does
not trigger a power escalation unless the signal stays
below the threshold for several packets. Dwell coun-
ters formalize this by requiring persistence before a
state change is accepted. Together, these refinements
help separate temporary dips from real deterioration.

Figure 11 illustrates this contrast. The slow
panel shows the filtered signal hugging the underly-
ing trendline with minimal jitter. The fast panel shows
the filtered trajectory lagging behind the sharp raw de-
cline, which motivates the need for speed-aware tun-
ing and simple rules like hysteresis to keep decisions
both stable and responsive.

5.4 Control Decisions: Raw vs. Filtered
Paths

Because the receiver logs both the raw metrics and the
filtered adaptation outcomes, it is possible to compare
directly what would have happened without smooth-
ing to what actually occurred. This comparison is use-
ful because it exposes the counterfactual decisions the
system avoided.

In the urban run, the raw path would have trig-
gered multiple increases in transmit power. Each
short fade, caused by pedestrians temporarily block-
ing line-of-sight, would have been misinterpreted as
lasting degradation. The filtered path instead re-
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mained steady through these disturbances. The net-
work stayed reliable because acknowledgments con-
tinued to arrive, but energy was saved by not esca-
lating power unnecessarily. This shows how filtering
can reduce false alarms and improve efficiency with-
out compromising delivery.

In the rural and park runs, the channel varied more
smoothly. Here the raw and filtered d ecisions of-
ten aligned because both saw the same gradual trend.
When the filtered RSSI stayed below the threshold for
a sustained window of time, the controller did raise
transmit power. This confirms that the filtering pro-
cess did not ignore genuine degradation. Instead, it
acted like a safeguard, requiring stronger evidence be-
fore changing state.

The key insight is that smoothing reshapes the de-
cision landscape. Without filtering, the controller re-
acts to every fluctuation, which means wasted energy
and constant toggling of transmit power. With filter-
ing, the controller becomes more selective, changing
state only when the evidence is both strong and persis-
tent. In practice, this behavior can be sharpened fur-
ther with dwell counters or hysteresis rules that force
the system to wait through several consecutive low
values before escalating power. Such mechanisms ex-
tend the principle already demonstrated here: save en-
ergy by ignoring short dips, but never miss a true de-
cline.

This counterfactual view provides one of the
clearest demonstrations of the filter’s v alue. The
logs show that the filtered adaptation path is not only
smoother in appearance but also more rational in its
decisions. It suppresses impulsive reactions while still
responding decisively to genuine signal degradation,
striking a balance between reliability and efficiency
that a raw threshold-based approach cannot achieve,

5.5 Energy Impact and ADR
Comparison

A central goal of integrating predictive filtering is
to enhance the reliability of mobile LoRaWAN links
while simultaneously optimizing energy efficiency.
This section provides a quantitative evaluation of the
energy savings achieved by the Kalman filter-based
adaptive controller. The performance is benchmarked
against a naive, reactive control strategy and contex-
tualized within the framework of standard LoORaWAN
Adaptive Data Rate (ADR) mechanisms.

5.5.1 Methodology for Energy Measurement

To ensure a fair and accurate assessment, a transpar-
ent calculation methodology was developed, rooted in
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the physical properties of radio communication and
the empirical data gathered during experiments. This
approach is generalizable to any adaptive LoRa sys-
tem.

The first step was to establish a baseline for the
energy cost of transmission decisions. The Semtech
LoRa Calculator [9] was used as an authoritative
source to determine the fundamental physical layer
costs for our specific packet configuration. For any
given set of transmission parameters (e.g., Spreading
Factor, Bandwidth, Coding Rate, Transmit Power),
the calculator provides two key deterministic values:

* Time on Air (ToA): The precise duration re-
quired to physically transmit a single packet;

» Transmit Current (I_tx): The current consump-
tion of the radio transceiver for a given output
power level.

E— RxuA R uA _— RxUuA
U uA C ICU uA
[Tx mA: 3.345
e 4534
lTx mA: 15.382

Figure 12: Examples from LoRa Calculator.

These values are intrinsic to the radio hardware
and modulation settings, allowing for the creation of
a definitive energy cost model. The energy consumed
by any single packet transmission can therefore be
calculated as a function of its specific parameters.
Some of the results that were retrieved are shown on
Figure 12.

The second step was to extract the two decision
paths from the logs:

* The Implemented Adaptive Path: The actual
sequence of parameter settings (e.g., TP=0 in
the log example) commanded by our system
based on the Kalman-filtered RSSI and SNR
values;

* The Logged Reactive Path: The alternative de-
cision (Raw decision: No change in the exam-
ple) that was calculated instantaneously using
the raw, unfiltered signal metrics and the same
threshold logic. This path represents a baseline
controller that reacts to every sample without
any noise suppression.

The total energy consumption for each path was
then computed by summing the cost of every individ-
ual packet according to the predefined energy model.
The overall effectiveness of the adaptive controller
is expressed by the percentage of energy saved com-
pared to the reactive baseline that was logged along-
side it:
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Esaved(%) =100 (1 - (1)

This methodology provides a robust, direct com-
parison based on empirical data captured during op-
eration, isolating the energy impact of the intelligent
control algorithm.

Eadaptive )

E'reactive

5.5.2 Quantified Savings and Strategic
Comparison
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Figure 13: Energy saving by environment.

Applying this analytical framework to the collected
datasets from all four environments yielded the results
summarized in Figure 13.

The results demonstrate that the value of predic-
tion is context-dependent. In the Park environment,
characterized by dense vegetation and frequent short-
duration fades, the adaptive controller achieved the
largest reduction, lowering transmission energy by
27.1%. The high variability of signal conditions in
this setting made the baseline approach prone to over-
reacting to transient dips, while predictive filtering
provided stability by smoothing short-term fluctua-
tions.

In the Free-field scenario, with unobstructed line-
of-sight conditions, the energy saving was 25.5%.
Here, the main disturbances arose from self-induced
variation, such as changes in device orientation during
movement. The filtering method successfully distin-
guished these minor fluctuations from true link degra-
dation, preventing unnecessary parameter escalation.

The Rural environment delivered a still substan-
tial saving of 23.9%. Although rural channels are
generally smoother, sporadic shadowing and occa-
sional non-line-of-sight segments caused the base-
line method to hold higher transmission power for
longer than necessary. Predictive filtering avoided
this by reducing power once the temporary distur-
bances passed.
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Finally, the Urban environment, with its dense
multipath and micro-blockages, showed the smallest
but still meaningful saving of 14.9%. Here, signal
conditions were highly dynamic but often recovered
quickly, limiting the advantage of filtering. Nonethe-
less, the adaptive strategy still reduced unnecessary
overhead, demonstrating consistent benefit across all
tested environments.

To further contextualize these results, a compari-
son was made with the principles of a standard Lo-
RaWAN ADR strategy. ADR is designed for quasi-
static end devices and optimizes for long-term stabil-
ity, often leading to conservative parameter settings
that are slow to scale down after a degradation
event [10].

In contrast, the adaptive strategy evaluated here
is designed for mobility. It requires sustained evi-
dence of a poor link before escalating parameters and,
crucially, is quick to return to more efficient settings
once conditions improve. This agility ensures that the
system does not waste energy by remaining at con-
servative settings longer than necessary. Therefore,
while both strategies aim for reliability, the proposed
approach achieves it with a lower energy footprint in
dynamic mobile scenarios [11].

In conclusion, the integration of predictive filter-
ing fundamentally changes the control paradigm from
a reactive to a proactive one. By making evidence-
based decisions that distinguish between noise and
genuine degradation, the system delivers tangible en-
ergy savings without sacrificing c ommunication in-
tegrity, a critical advancement for power-constrained
mobile IoT applications.

6 DISCUSSION AND FUTURE
WORK

The analysis above demonstrates that prediction and
smoothing techniques significantly improve the sta-
bility of a mobile LoORaWAN link, especially under
conditions of fading and mobility. Yet, as in any real
system, the story does not end with promising re-
sults: there are caveats that must be acknowledged,
and there are opportunities to refine the design fur-
ther. This section steps back from the raw numbers
to reflect on what they mean in practice. It considers
both the limitations of the current setup and the direc-
tions in which the approach can evolve. The aim is
not only to highlight what worked, but also to provide
a realistic picture of where improvements are needed
and how they might be achieved in future work
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6.1 Limitations of the Current
Approach

Every experimental system sits at the intersection of
idealized models and messy reality. The current work
is no exception, and several limitations are worth dis-
cussing.

First, the effectiveness of the Kalman filter is
highly dependent on parameter tuning, particularly
the process noise Q and the measurement noise R.
In our experiments, a conservative Q produced excel-
lent stability during slow movement, where raw RSSI
and SNR fluctuate gently. However, when the same
parameters were applied to fast traverses, the filter
lagged behind sudden changes in distance, briefly un-
derestimating the severity of path loss. This shows
that a single fixed set of parameters may not be uni-
versally optimal. The system worked well in many
cases, but its responsiveness was not equally strong
across all mobility profiles.

Second, while the dataset covers four distinct en-
vironments (urban, rural, park, and free field), there
are still gaps. Urban experiments focused on pedes-
trian interference, but did not include scenarios such
as vehicles moving at higher speeds, indoor propa-
gation through walls, or transitions between line-of-
sight and non-line-of-sight. Similarly, rural tests were
limited to village roads with relatively flat terrain;
mountainous or forested paths could reveal different
attenuation characteristics. Thus, while the results are
representative, they are not exhaustive.

Third, the analysis relies on a specific
sender-receiver pair (Arduino Mega and Rasp-
berry Pi 3 B+ with SX127x modules). These choices
ensured control and reproducibility, but they may
not capture the full variability of real deployments,
where different transceivers, antennas, or firmware
stacks could alter performance. Packet delivery ratios
were high in our runs, but this was partly due to the
controlled setup and fixed cadence of transmissions.
In a denser or noisier spectrum, with many concurrent
nodes, reliability could drop and interact differently
with the filtering logic.

Finally, a fundamental limitation lies in defining
the optimization goal itself. The current system pri-
oritizes reliability above all else, minimizing power
only when the link is exceptionally good. However,
a real-world deployment might need to balance this
against other constraints, such as maximizing battery
life even at the cost of occasional packet loss, or min-
imizing network-wide interference. The adaptation
logic presented here is a single strategy, and explor-
ing different cost functions for different applications
remains an open challenge.
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Taken together, these limitations frame the system
as a prototype and proof-of-concept. It demonstrates
that filtering stabilizes decisions and prevents over-
reaction, but it does not yet provide a fully general
solution that covers all environments and devices.

6.2 Future Research Directions

The results open several promising directions for fu-
ture work. One natural enhancement would be to
integrate additional sensing modalities, such as GPS
or inertial sensors, alongside the radio link metrics.
By combining location and movement data with fil-
tered RSSI and SNR, the system could better antic-
ipate when signal degradation is likely to occur, for
example at the edge of coverage or when turning be-
hind an obstruction. A GPS-assisted controller could
also enable spatially aware adaptation policies, learn-
ing how specific routes or areas typically affect link
quality and adjusting parameters preemptively.

Another direction is to test the framework in more
diverse mobility patterns and environments. The
present study focused on pedestrian mobility in urban,
rural, and park conditions, but many IoT deployments
involve vehicles, drones, or mixed indoor—outdoor
transitions. Each of these contexts presents different
propagation challenges, from fast Doppler-induced
fluctuations in vehicular links to sudden attenuation
indoors. Extending the experiments to such settings
would demonstrate whether filtering remains robust
under higher dynamics and more abrupt changes in
channel conditions.

A further opportunity lies in integration with ma-
chine learning methods [12]. Threshold-based deci-
sion logic provides a solid baseline, but predictive
models could extract patterns from historical data and
anticipate link quality changes before they occur. Re-
inforcement learning could, for example, optimize pa-
rameter updates to maximize long-term delivery ra-
tios, while classification models could identify mo-
bility contexts, such as walking versus driving, and
adjust adaptation strategies accordingly. These ap-
proaches would preserve the stabilizing role of filter-
ing while making control more proactive and context-
aware.

Finally, scaling to multi-node scenarios represents
an essential step toward real-world applicability [13].
LoRaWAN networks are typically shared by many de-
vices, each competing for airtime. Evaluating the sys-
tem in settings with multiple transmitters would high-
light how filtering-based adaptation interacts with in-
terference, collisions, and duty-cycle limits. This
would also create opportunities to investigate fairness,
ensuring that one device’s adaptive gains do not re-
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duce performance for others.

Taken together, these directions show a clear path
forward: enrich adaptation with additional sensing,
broaden validation across more demanding mobility
patterns, explore predictive learning methods, and ex-
pand evaluation to larger, multi-node networks. Each
of these steps would build on the central insight
demonstrated here: smoothing noisy link metrics be-
fore making adaptation decisions provides a more sta-
ble foundation for reliable mobile LoRa communica-
tion.

7 CONCLUSIONS

This project has demonstrated that predictive filter-
ing and adaptive control can significantly enhance
the reliability and energy efficiency o f m obile Lo-
RaWAN communication. Through systematic field
experiments in urban, rural, park and free field envi-
ronments, we have established that even lightweight
prediction methods such as the Kalman filter can ef-
fectively stabilize the unpredictable RSSI and SNR
signals typical of mobile devices, creating a more de-
pendable foundation for transmission parameter con-
trol.

The analysis revealed that the benefits of filtering
are not uniform across all situations. During slow
movement, the filter closely followed gradual signal
trends, while faster motion revealed a slight lag that
indicates the need for adaptive tuning of filter param-
eters based on mobility patterns. This comparison be-
tween raw and filtered decision paths confirmed that
filtering provides tangible benefits for both energy ef-
ficiency and link s tability, n ot m erely ¢ osmetic im-
provements.

The most important results show clear improve-
ments in signal stability, with the filter reducing RSSI
variations by approximately one-third in challenging
urban conditions. This stabilization translated into
measurable energy savings of 14.9% (Urban), 27.1%
(Park), 23.9% (Rural), and 25.5% (Free field) by pre-
venting unnecessary power increases during short-
term signal problems. Importantly, these efficiency
gains were achieved without compromising reliabil-
ity, as the system maintained high packet delivery
rates across all test scenarios.

The analysis clearly shows what would occur
without the filter: a basic controller would frequently
overreact to temporary signal changes, causing un-
necessary power spikes and energy waste. This is par-
ticularly evident in urban environments where pedes-
trian movement causes brief signal drops that trig-
ger false alarms in unfiltered s ystems. The compar-
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ison with standard ADR methods further supports our
approach, demonstrating that traditional systems de-
signed for stationary devices remain overly conserva-
tive in mobile situations, maintaining higher transmis-
sion power than necessary for extended periods.
Beyond these technical insights, the work high-
lights the value of real-world experimentation. Test-
ing in urban, rural, and park conditions provided a
comprehensive understanding of system performance
that simulations alone could not reveal. While the
current approach has limitations, particularly in its
threshold-based logic and single-device testing, it es-
tablishes a solid foundation for future development
with enhanced sensing capabilities, diverse mobility
patterns, and multi-node network configurations.
Nevertheless, this research provides convincing
evidence that intelligent signal processing can directly
extend battery life without reducing communication
quality. The project confirms that filtering repre-
sents not just an optional enhancement but an essen-
tial component for effective mobile LoRaWAN sys-
tems, transforming unpredictable radio signals into
a trustworthy basis for autonomous decision-making
and sustainable operation. This work represents a
meaningful step toward more resilient and efficient
LoRa systems capable of supporting the mobile and
dynamic applications of tomorrow’s IoT landscape.
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