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The IoMT improves healthcare through smart medical devices, enabling real-time monitoring and data
transmission. However, increased connectivity exposes [oMT systems to cyber threats, jeopardizing patient
data confidentiality, system integrity, and availability. Traditional IDS struggle to detect sophisticated attacks,
thus requiring advanced solutions. This study presents a hybrid deep learning model that integrates LSTM
and DNN to improve intrusion detection in IoMT networks. The CICIoMT2024 dataset, comprising network
traffic of 40 IoMT devices under 18 types of cyberattacks, was used for training and evaluation. Data
preprocessing included label encoding, normalization. The LSTM component captures sequential traffic
patterns, while the DNN extracts advanced features for classification. Batch normalization, dropout layers,
and early stopping were implemented to improve model performance. Experimental results show that the
proposed model outperforms the conventional intrusion detection system, achieving 99.6% accuracy in binary
classification, 99.4% in 6-class classification, and 98.4% in 19-class classification. Compared with stand-
alone models, the hybrid approach demonstrates superior accuracy and robustness. This research underscores
the effectiveness of LSTM-DNN in securing IloMT networks. Future work will focus on real-time deployment,
optimization of computational efficiency, and expansion of the dataset to improve cyber threat detection in
medical settings.

not merely a technical requirement but a fundamental
prerequisite for patient safety.
Traditional signature-based Intrusion Detection

The Internet of Medical Things (IoMT) represents a
transformative paradigm in healthcare, integrating
interconnected medical devices, sensors, and
software to enable real-time patient monitoring, data
transmission, and intelligent diagnostics [16], [13].
This ecosystem significantly enhances remote patient
care, chronic disease management, and clinical
efficiency, ultimately improving healthcare outcomes
while reducing operational costs.

However, this pervasive connectivity and the
critical nature of medical data make [oMT networks
a prime target for cyber adversaries [7], [8]. Security
breaches in this context transcend conventional data
theft, posing direct risks to patient safety through the
potential compromise of data confidentiality,
manipulation of vital medical information, or
disruption of life-sustaining healthcare services.
Ensuring the confidentiality, integrity, and
availability (CIA triad) of [oMT systems is therefore
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Systems (IDS) often fail to detect novel,
sophisticated, or evolving cyberattacks tailored to
IoMT protocols and device constraints. This
limitation necessitates the adoption of advanced,
adaptive security solutions. Deep Learning (DL) has
emerged as a powerful approach, capable of
autonomously learning complex patterns and
anomalies from high-dimensional network traffic
data. Among DL architectures, Long Short-Term
Memory (LSTM) networks excel at modeling
temporal dependencies in sequential data, such as
network flow, while Deep Neural Networks (DNNs)
are effective at extracting hierarchical features for
robust classification. A hybrid model that
synergistically combines these strengths presents a
promising avenue for building a more resilient IDS.
Despite progress, existing research often faces
challenges in handling the multi-class, imbalanced
nature of IoMT attack datasets, achieving real-time
efficiency on resource-constrained devices, and



Proceedings of the 13th International Conference on Applied Innovations in IT (ICAIIT), August 2025

generalizing across diverse network environments. To
address these gaps, this study makes the following
key contributions:
= We propose a novel hybrid LSTM-DNN
framework specifically designed for IoMT
security. This architecture leverages LSTM
layers to capture sequential traffic patterns and
DNN layers to perform high-level feature
abstraction, thereby improving detection
accuracy for both known and subtle attack
vectors.
= We introduce a task-oriented preprocessing
pipeline and an adaptive label mapping strategy
optimized for multi-class intrusion detection,
enhancing the model's flexibility and learning
efficiency across different classification tasks
(binary, 6-class, 19-class).
= We implement an enhanced regularization
approach combining batch normalization,
dropout, and a performance-based early
stopping mechanism. This strategy is tailored to
the variability of IoMT data to mitigate
overfitting and ensure model generalizability.
=  We conduct a comprehensive evaluation using
the recent and relevant CICIoMT2024 dataset
[5], which includes traffic from 40 devices
under 18 attack types. Our model demonstrates
superior performance, outperforming
standalone LSTM and DNN baselines as well as
other contemporary approaches reported in the
literature [2], [17].

The remainder of this paper is structured as
follows: Section 2 reviews related work on DL-based
IDS for IoMT. Section 3 details the proposed
methodology, including the dataset, preprocessing,
and model architecture. Section 4 presents and
discusses the experimental results and comparative
analysis. Section 5 outlines the study's limitations,
and Section 6 concludes the paper with directions for
future work.

2 RELATED WORK

The Internet of Medical Things (IoMT) is a vastly
networked network of medical equipment that both
opens up new possibilities for patient care and reveals
serious weaknesses. The security threats in these
IoMT ecosystems have been the subject of several
research [3].

Recently, several research papers have been
published on analyzing deep learning-based intrusion
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detection systems. This research field is becoming
increasingly important, as its learning and
adaptability capabilities make it highly effective in
dealing with an increasing number of unforeseen
attacks. Since IDS are developed using deep learning

techniques, they work more effectively and
precisely [9].
Dadkhah et al. (2024) [5] proposed the

CICIoMT2024 dataset and evaluated it using used
machine learning (ML) techniques, including
Logistic Regression, AdaBoost, Random Forest and
Deep Neural Networks (DNN) to address the lack of
operational diversity, multiple protocols, and the lack
of device information in existing datasets regarding
IoMT. The donation includes a practical dataset that
includes 40 devices (25 real and 15 virtual) and 18
different attacks. While the dataset is based on current
technology, it lacks consideration for future device
advancements. Their experimental results showed
that they had a strong capacity in binary classification
(99.6%), a moderate capacity in 6-class classification
(73.4%), and a lower degree of accuracy in 19-class
classification (72.9%).

Akar et al. (2025) [2] released the L2D2 model, a
custom Long Short-Term Memory (LSTM)-based
architecture that was specifically designed to detect
multiple classes of intrusion in [PMs. The model
demonstrated excellent classification performance,
achieving 100% accuracy in binary classification,
98% in 6-class, and 95% in 19-class scenarios.
However, the high computational and memory costs
present a significant obstacle to deploying on
resource-limited [oMT devices.

H. Naeem et al. (2024) [17] Used deep learning
models, CNN-BiGRU, CNN-BiLSTM, CNN-
BiRNN, CNN-GRU, CNN-LSTM And CNN-
SimpleRNN, used CICIOMT2024. The
CICIoMT2024 dataset contains only six different
traffic types: DDoS, DoS, MQTT, RECON,
SPOOFING, and Benign. Contrasting with other
claims, it lacks Brute Force, Phishing, or device-
specific intrusion (e.g., insulin pumps). As a result,
researchers should specifically align their analysis
with the dataset's actual content in order to avoid
distortion.

3 PROPOSED METHODOLOGY
3.1 CICIoMT2024 Dataset

The Canadian Institute for Cyber Security developed
the CICIoMT2024 dataset to serve as a
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comprehensive benchmark for evaluating security
solutions for the Internet of Medical Things (IoMT).
It includes network traffic data from 40 IoMT devices
(25 real and 15 simulated) that are subject to 18
different cyber-attacks, and primarily focuses on
three key protocols: (e.g., Wi-Fi, MQTT, and
Bluetooth), the number of features in the
CICIoMT2024 dataset is 45 features represent
different network traffic characteristics, which help in
analyzing normal and malicious activities [5].

The dataset is organized as follows:

Contains a csv/ folder with two subfolders:

= train/ — Data for training deep learning

model.
= test/ — Data for evaluating/testing model.

The dataset used was unlabeled, so we added the
labels and calculated the attack types as shown in
Table 1 The dataset is divided into: (Training 80% /
Testing 20%).

3.2 Data Preprocessing

Most available datasets contain unwanted elements
(missing and duplicate values) that should be
removed or transformed. The preprocessing step is
crucial to obtain a suitable dataset [14].

Standard Deviation. It is a measure of how data is
dispersed around the arithmetic mean. If the standard
deviation is equal to zero or close to zero, it means the
data does not add new information and may be
unhelpful in analysis, so it is removed. If the standard

deviation is large or above zero, the data contains
useful information and is therefore studied.

The training file and test file are combined for
extraction the columns that contain numerical data
such as float64 and integer64 to calculate the
Standard deviation value for each numerical column
while avoiding non-numerical columns such as texts
(object).

The Drate column was deleted because its
standard deviation value is zero and does not add new
information, so the number of features will be
reduced from 45 to 44.

Handling with missing values and duplicate
values:

1) Missing values. that are not present or cannot

be accessed for a particular observation in a
dataset. This can be caused by a variety of
reasons, such as human error, data corruption,
or system failures. Missing values can impact
data analysis and machine learning models,
requiring techniques like imputation (filling in
missing values with estimates) or removal of
incomplete records.
Duplicate Values. refer to repeated data entries
within a dataset. These can arise due to errors
in the collection of data, the combination of
datasets, or problems with the system.
Duplicates can lead to biased analysis and must
be handled by identifying and removing
redundant records while preserving necessary
information.

2)

Table 1: The splitting ratio of 80:20 for training and testing and distribution of the dataset.

Label Train Count Test Count Total Train 80% Test 20 %
TCPIPDDoSUDP 1635956 362070 1998026 81.9 18.1
TCPIPDDoSICMP 1537476 349699 1887175 81.5 18.5
TCPIPDDoSTCP 804465 182598 987063 81.5 18.5
TCPIPDDoSSYN 801962 172397 974359 82.3 17.7
TCPIPDoSUDP 566950 137553 704503 80.5 19.5
TCPIPDoSSYN 441903 98595 540498 81.8 18.2
TCPIPDoSICMP 416292 98432 514724 80.9 19.1
TCPIPDoSTCP 380384 82096 462480 82.2 17.8
Benign 192732 37607 230339 83.7 16.3
MQTTDDoSConnectFlood 173036 41916 214952 80.5 19.5
ReconPortScan 83981 22622 106603 78.8 21.2
MQTTDoSPublishFlood 44376 8505 52881 83.9 16.1
MQTTDDoSPublishFlood 27623 8416 36039 76.6 23.4
ReconOSScan 16832 3834 20666 81.4 18.6
ARPSpoofing 16047 1744 17791 90.2 9.8
MQTTDoSConnectFlood 12773 3131 15904 80.3 19.7
MQTTMalformedData 5130 1747 6877 74.6 254
ReconVulScan 2173 1034 3207 67.8 32.2
ReconPingSweep 740 186 926 79.9 20.1
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The dataset does not contain any missing values,
but it contains duplicate values. In the training file,
there are 5119 duplicate values, while in the test file,
there are 2065 duplicate value, where duplicate
values have been removed.

3.3 The proposed LSTM-DNN Hybrid
Model

The model is implemented in the Kaggle
environment, which supports Python and provides
access to the tools and libraries required for data
processing and training deep learning models. First,
important libraries such as NumPy, Pandas for data
analysis, scikit-learn for data normalization and one-
hot encoding converts categorical variables into
vectors of binary, which ensures that all categories are
treated equally without presupposing a relationship
between them [1], TensorFlow/Keras for model
development and training, and Matplotlib and
Seaborn for visualization and performance analysis
are imported.

The CICIoMT2024dataset is loaded the data is
segmented from its origin into training 80% and
testing 20%. The dataset does not contain labels. We
add the label and separating the input features (X)
from the target labels (y). The number of classes is
determined based on user input using a label mapping
dictionary. The categorical labels are converted to
numerical values using a label encoder and then one-
hot encoded to prepare the labels for training.

To ensure stable training, the input features were
normalized using a standard scaler. The data was then
reshaped into the sequential format required by the
LSTM model. A sequential model was created that
included LSTM layers for sequential data processing
and batch normalization is a method of training that
facilitates the stabilization and acceleration of deep
neural networks by normalizing inputs' values to each
layer as shown in Figure 2. It decreases the internal
rate of change, which allows for a quicker
convergence and increased performance [6]. Dropout
is a method of regularization that randomly turns off
part of the neurons during training in order to avoid
overfitting. This causes the model to learn additional,
more generalized features [12],[10], were followed
by fully connected DNN layers with ReLU activation.
At the output layer, SoftMax activation function was
used for classification.

The model was optimized using the Adam
optimizer with a learning rate of 0.0001, this default
is commonly used because it balances the speed of
convergence and stability. A batch size of 64 [4] was
chosen based on experimental testing, this size

54

provides an effective compromise between training
speed and generalizability. The training process was
conducted for 50 epochs, which was sufficient for the
model to converge without the signs of overfitting, as
observed by monitoring the loss of validation. Early
stopping, which employed a patience of 5 epochs,
was employed to halt the training process if no
significant improvement was observed. This
prevented the unnecessary expenditure of
computational resources and overfitting. These
hyperparameters were derived from the initial search
for a good compromise between cost and
performance, which is in line with prior research in
the deep learning field for the purpose of intrusion
detection.

After training is complete, trends in training and
validation accuracy are monitored and performance
curves are analyzed to identify potential issues with
data fit. Finally, the trained model is evaluated on the
test dataset and saved for future predictions or
deployment.

To fully assess the proposed intrusion detection
model, the dataset was divided into three different
scenarios: binary (2 classes), categorical (6 classes),
and multiclass (19 classes). This multiple-level
strategy was employed to represent different levels of
difficulty with classification and to assess the model's

viability in practical environments. Binary
classification allows for an easy distinction between
legitimate  and  criminal traffic.  Six-class

categorization enables the classification of the attack
type as either a targeted or unsystematic attack. This
is important for developing an appropriate response
strategy. Meanwhile, the 19-classification system
provides a specific explanation of the various attack
vectors that are important in comprehending the
specific threat in healthcare systems that are critical
to safety.

The main phases of the proposed model shows in
Figure 1.

Data preprocessing

Label Mapping

i

Classification

3

Evaluation

Figure 1: Main phases of the proposed model.
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LSTM + DNN Model Architecture
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Figure 2: LSTM-DNN Hybrid Model architecture.

4 RESULTS AND DISCUSSION

The performance of the proposed LSTM- DNN
Hybrid Model is rigorously evaluated on the
CICIoMT2024 dataset, which includes binary, six-
class, and 19-class classification tasks. The results for
each task are detailed below, along with the precision,
recall, and F1 -score metrics for different cyberattack
types, and distribution of attack and confusion matrix
for each model.

The results of this study suggest the potential of
deep learning, specifically hybrid LSTM-DNN
structures, in improving the safety of the internet-
based medical environment (IoMT). By accurately
recognizing and categorizing various attacks in real
time, these models can be incorporated into smart
healthcare systems that preserve patient data, ensure
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uninterrupted communication, and reduce the
likelihood of life-threatening disruptions. This is of
special importance for applications like remote
patient monitoring, smart pumping devices, and
connected tools that are diagnostic, these tools can
directly affect the safety of patients, and the
continuity of their treatment.

The proposed LSTM-DNN hybrid model is
superior to traditional models like LSTM alone and
DNN in multiple levels of classification. In the 6-
class and 19-class scenarios, its benefits became more
significant. For example, the accuracy of the
proposed model was 99.47% for 6 classes and
98.43% for 19 classes, while the DNN model was
drastically reduced to 73.4% and 72.9%, respectively
[5]. Even the LSTM model, which is more powerful
than the DNN, had accuracy (95% in 19 classes)
lower case than the hybrid strategy [2]. And CNN
integrated with BiGRU, BiLSTM, BiRNN, GRU,
LSTM, CNN-SimpleRNN, they got an accuracy
between 93% and 94% and did not work on all the
data sets [17].

These enhancements are not only numerical but
also structural. The LSTM layers are effective at
learning the temporal patterns of traffic flow
associated with typical IoMT data. However, without
additional depth, they may lack the capacity to extract
high-dimensional features. By combining DNN
layers, the model’s ability to learn more complex,
abstract representations is increased, this enables the
model to both generalize and differentiate between
classes that are overlapping. This hybrid alliance
enables the model to have a superior performance
compared to its counterparts, especially in
challenging, unequal, and corruptible environments.
4.1 Binary Classification Result
The proposed LSTM-DNN model had a superior
performance in the binary classification task, having
an accuracy of 99.64%, a precision of 99.64%, a
recall of 99.64%, and an F1-score of 99.64%. These
metrics demonstrate the model’s effective ability to
differentiate between criminals and regular traffic.
The high rate of recall in particular demonstrates its
effectiveness in recognizing all instances of attacks,
this is crucial to healthcare applications that may be
lost by a missed attack and lead to serious
consequences.

The Tables 2 and 3 show the distribution of data
between the attack and benign classes in the training
and test sets.
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Table 2: Train value count.

Label Count
1 Attack 6962980
2 Benign 192732
Table 3: Test value count.
Label Count
1 Attack 1574510
Benign 37607

Figure 3 shows a clear and organized distribution
of data, making it easy to understand the contrast
between the attack and benign categories.

1e6 Distribution of Attack Labels (2 Classes)
 Train
6 Test

Frequency
- e W

=

Attack

Benign

Attack Type

Figure 3: Distribution of training and testing samples for
attack and benign classes in binary classification (2-class).

The confusion matrix in Figure 4 illustrates the
model’s performance in classifying Attack and
Benign instances. A large number of samples are
correctly classified, with 1,572,281 attack instances

Accuracy over Epochs

0.99775
0.99750
0.99725
& 0.99700
o
Q 0.99675
=y
0.99650
0.99625
——— Training Accuracy
0.99600 Validation Accuracy
0 5 10 15
Epochs

and 34,105 benign instances accurately identified.
However, some misclassifications occur, where 2,229
attack samples are incorrectly classified as benign,
and 3,502 benign samples are mistaken for attacks.
This indicates strong model performance with a
relatively low error rate.

Figure 5 illustrates the model’s performance over
epochs. In the left graph, both training and validation
accuracy increase rapidly and stabilize at high values,
indicating effective learning. In the right graph,
training and validation loss decrease progressively,
showing model improvement and error reduction
over time, with no clear signs of overfitting.

Confusion Matrix 1c6
14

2229 12

1572281

- 0.8

True Label

3502 34105 S04

Benign

Attack Benign

Predicted Label

Figure 4: Confusion Matrix of attack and benign in 2-class.

Loss over Epochs

0.010 —— Training Loss
Validation Loss
0.009
w 0.008
[%y]
3
0.007
0.006
0.005
o] 5 10 15
Epochs

Figure 5: Accuracy and loss curves for 2-class.
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4.2 Multi-Class (6-Class) Classification
Results

When augmented with a 6-class classification task,
the model still exhibited a reliable performance,
achieving 99.47% accuracy, 99.62% precision,
99.47% recall and an F1 score of 99.53%. This
demonstrates its ability to differentiate between five
types of attacks and benign. Compared to the
standalone LSTM and DNN models, which exhibited
a decrease in performance in the presence of multiple
classes, the LSTM-DNN architecture maintained a
high degree of precision and generalizability.

The Tables 4 and 5 show the distribution of
training and test data across various categories, such
as "DDoS," "DoS," and "Benign." The numbers
indicate a large sample size for "DDoS," followed by
"DoS" and "MQTT," while the other categories have
fewer samples. This distribution provides insight into
the data volume for each category during training and
testing.

Table 4: Train value count.

Label Count
1 DDos 1066762
2 Dos 416676
3 MQTT 63715
4 Benign 37607
5 RECON 25613
6 SPOOFING 1744

Table 5: Test value count.

Label Count
1 DDos 4779187
2 Dos 1805529
3 MQTT 262938
4 Benign 192732
5 RECON 99279
6 SPOOFING 16047

The chart in Figure 6 illustrates the distribution of
samples across six data categories in the training and
test sets. "DDoS" and "DoS" have the highest number
of samples, while categories like "SPOOFING" and
"RECON" have significantly fewer. This visual
representation helps in understanding the prevalence
of each data type in both sets.
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1le6 Distribution of Attack Labels (6 Classes)
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Figure 6: Distribution of attacks and benign in 6-class.

The confusion matrix in Figure 7 displays the
model's performance in classifying different
categories, with high values along the main diagonal
indicating strong classification accuracy, particularly
for "DDoS" and "DoS," where most samples were
correctly classified. However, some
misclassifications are present, such as "Benign"
samples being classified as "SPOOFING”. This
suggests that the model demonstrates high efficiency
in distinguishing most categories.
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Figure 7: Confusion Matrix of attack and benign in 6-class.

The Figure 8 shows the progression of the model's
accuracy and loss over epochs. In the left graph,
accuracy increases rapidly, indicating effective
learning. In the right graph, loss drops sharply in the
early epochs and then stabilizes at a low value,
reflecting improved model performance.
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Accuracy over Epochs

Loss over Epochs
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Figure 8: Accuracy and Loss Curves for 6-class.
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Figure 9: Distribution of attacks and benign in 19-class.

4.3 Complex Multi-Class (19-Class)
Results

In the more difficult 19-class categorization task,
which involves a greater degree of granularity and
often has a similar nature to the attacks, the model had
an accuracy of 98.43% a precision of 98.77%, a recall
of 98.43% and an Fl-score of 98.25%. Despite a
slight decrease in performance compared to binary
and 6-class tasks, the model still performed better
than conventional baselines. This drop is anticipated
because of the increased difficulty in differentiating
the behavior of classes that are overlapped, class
imbalance, and the limited amount of training data for
the minority classes. Involving 18 different attack
types in addition to benign attacks.

The Table 1 show the distribution of samples
across various attack categories and benign data in the
training and test sets. "TCPIPDDoS" attack types
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have the highest number of samples, while other
categories like "ReconVulScan" and
"MQTTMalformedData"  have  fewer.  This
distribution reflects the diversity of data used for
training and testing.

Figure 9 shows the sample distribution of 19 data
categories in the training and test datasets.
"TCPIPDDoS" attacks have the highest number of
samples, while other categories like "ARPSpoofing"
and "MQTTMalformedData" have fewer. This
representation helps to understand the popularity of
each category in the dataset.

The confusion matrix shown in Figure 10
illustrates the model's performance in classifying 19
categories. High values along the main diagonal
indicate strong classification accuracy, especially for
"TCPIPDDoS" and "Benign.". These results reflect
the model's efficiency in distinguishing between
classes, with some limited errors.
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In Figure 11 the left graph shows the gradual consistent reduction in loss, indicating that model
improvement in training and validation accuracy performance improves over time.
across epochs, while the right graph illustrates the
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Figure 10: Confusion Matrix of attacks and benign in 19-class.
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Figure 11: Accuracy and Loss Curves for 19-class.
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Table 6: Performance Metrics of DL Models Across Different Classification Tasks in CICIOMT2024 dataset.

Classification F1- Number of
Model Accuracy | Precision Recall Attack family Count samples in
Task Score
category
Attack 8,537,490 8,537,490
2 class 99.6445 99.6398 99.6445 | 99.6415 Benign 230,339 230339
DDos 5,845,949 5,845,949
Dos 2,222,205 2,222,205
MQTT 326,653 326,653
Proposed 6 class 99.4667 99.6227 99.4667 | 99.5310 RECON 124.892 124.892
LSTM-DNN SPOOFING 17,791 17,791
Hybrid Model Benign 230,339 230,339
18 type 18 type of
Classifying 19 of attacks attacks
19 class 98.4256 98.7723 98.4256 | 98.2460 categories in 8,537,490 8,537,490
Table 1 Benign Benign
230,339 230,339
Attack 8,537,490 8,537,490
2 class 99.6 95.6 94.8 95.2 Benign 230339 230,339
DDos 5,845,949 5,845,949
Dos 2,222,205 2,222,205
MQTT 326,653 326,653
6 class 73.4 72.5 69.3 66.5 RECON 124.892 124.892
DNN [5] SPOOFING 17,791 17,791
Benign 230,339 230,339
18 type
classifying 19 of attacks
19 class 729 64.9 553 52.2 categories in 8,537,490 8,537,490
; 230,339
Table 1 Benign
230,339
Attack 8,537,490 8,537,490
2 class 100 100 100 100 Benign 230339 230339
DDos 5,845,949 5,845,949
Dos 2,222,205 2,222,205
MQTT 326,653 326,653
6 class 98.0 98.0 98.0 98.0 RECON 124.892 124.892
LSTM [2] SPOOFING 17,791 17,791
Benign 230,339 230,339
18 type 18 type of
Classifying 19 of attacks attacks
19 class 95.0 96.0 95.0 95.0 categories in 8,537,490 8,537,490
Table 1 Benign Benign
230,339 230,339
CNN-BiGRU - 94.0
CNN-BiLSTM - 93.0
CNN-BiRNN _ 94.0
CNN-GRU _ - -
93.0 - _ _ DDoS 5,845,949 20,000
CNN-LSTM B :
- Normal 230,339 25,000
CNN- - 93.0 - -
SimpleRNN [17 -
impleRNN [17] 93.0 - -
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4.4 Evaluation Metrics

To assess the performance of the proposed model,
standard classification metrics were used, including
Accuracy, Precision, Recall, and the F1-score. These
metrics follow their conventional definitions widely
adopted in machine learning and pattern recognition
research [2], [9], [14], [16].
= Accuracy reflects the overall proportion of
correctly classified instances.
=  Precision measures the correctness of positive
predictions.
= Recall (Sensitivity) quantifies the proportion of
actual positive cases correctly detected by the
model.
= Fl-score represents the harmonic mean of
Precision and Recall, providing a balanced
assessment when class distributions are uneven.

These well-established metrics are sufficient to
rigorously evaluate the model’s predictive
performance and ensure comparability with existing
approaches.

4.5 Comparative and Scientific Analysis

The outcomes of the three classification tasks are
evident of the effectiveness and versatility of the
proposed hybrid LSTM-DNN model. Its superior
capabilities are attributed to the combination of
temporal pattern recognition (via LSTM) with
abstract feature extraction (via DNN). The consistent
superiority of the model over standalone LSTM and
DNN models, especially in terms of accuracy,
demonstrates its potential for real-world security
applications in the IoMT. The logical progression of
decreasing performance from binary to multi-class
classification is expected scientifically, as the
complexity of the task and the similarity between
classes increase.

Table 6 shows the performance comparison of
different models on different classification tasks (2, 6,
and 19 classes) based on accuracy, precision, recall,
and F1 score.

The LSTM-DNN hybrid model is the best overall
because it combines the advantages of LSTM and
DNN, ensuring balanced performance on all
classification tasks.

5 LIMITATIONS OF THE STUDY

Despite the encouraging performance of the proposed
LSTM-DNN model on the CICIoMT2024 dataset,
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several caveats should be mentioned. First, the dataset
may have a bias because of its synthetic nature and
the limited number of real-world scenarios and
devices represented. This may have an effect on the
generalizability of the model to other IoMT
environments with different traffic patterns or attacks.
Second, although the model demonstrated high
accuracy in off-line experiments, its effectiveness in
real time intrusion detection systems has not been
empirically tested and may be adversely affected by
limitations such as processing delay, resource
constraints, and evolving attacks. Finally, the model's
performance may differ depending on the distribution
of classes is balanced or novel (day zero) attacks are
present in the training data. Future endeavors should
investigate practical adaptive learning methods and
frequent real time comparison to address these issues

6 CONCLUSIONS

This article described a hybrid LSTM-DNN deep
learning model that was intended to detect and
categorize cyberattacks in IoMT environments. The
proposed model had a high performance that was
achieved with a 99.64% accuracy for binary
classification, 99.47% for 6 classes, and 98.43% for

19 classes. Other than that, it consistently
demonstrated  superior  generalizations  and
consistency.). Leveraging the CICIoMT2024 dataset,
which encompasses diverse cyberattack scenarios,
our model demonstrated superior performance in
detecting intrusions across binary, six-class, and 19-
class classification tasks. The results show that the
proposed LSTM-DNN hybrid model outperforms
traditional machine learning techniques, achieving
high accuracy, precision, recall, and F1-score.

The study underscores the importance of
advanced deep learning methodologies in securing
[oMT networks, which face an increasing number of
cyber threats. The combination of LSTM for
sequential data analysis and DNN for feature
extraction effectively identifies normal and malicious
traffic. Additionally, data preprocessing techniques,
dynamic label mapping, and model optimization

contributed to the model’s robustness and
generalizability.

Despite its promising performance, challenges
remain regarding real-time deployment and

computational efficiency. Future research will focus
on optimizing model performance, integrating
attention mechanisms for improved feature selection,
and evaluating real-world applicability. Expanding
the dataset with additional attack variations and real-
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time traffic data will further enhance the reliability of
intrusion detection in [oMT environments.

As cyber threats continue to evolve, ensuring the
security of IoMT systems is critical to protecting
patient data and healthcare infrastructure. The
findings of this study contribute to the ongoing
development of intelligent, automated cybersecurity
solutions, paving the way for more resilient and
adaptive intrusion detection systems in medical
networks.

These findings confirm the model's potential for
real-time deployment in healthcare settings where
speed and accuracy are paramount.
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