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Abstract: The IoMT improves healthcare through smart medical devices, enabling real-time monitoring and data 

transmission. However, increased connectivity exposes IoMT systems to cyber threats, jeopardizing patient 

data confidentiality, system integrity, and availability. Traditional IDS struggle to detect sophisticated attacks, 

thus requiring advanced solutions. This study presents a hybrid deep learning model that integrates LSTM 

and DNN to improve intrusion detection in IoMT networks. The CICIoMT2024 dataset, comprising network 

traffic of 40 IoMT devices under 18 types of cyberattacks, was used for training and evaluation. Data 

preprocessing included label encoding, normalization. The LSTM component captures sequential traffic 

patterns, while the DNN extracts advanced features for classification. Batch normalization, dropout layers, 

and early stopping were implemented to improve model performance. Experimental results show that the 

proposed model outperforms the conventional intrusion detection system, achieving 99.6% accuracy in binary 

classification, 99.4% in 6-class classification, and 98.4% in 19-class classification. Compared with stand-

alone models, the hybrid approach demonstrates superior accuracy and robustness. This research underscores 

the effectiveness of LSTM-DNN in securing IoMT networks. Future work will focus on real-time deployment, 

optimization of computational efficiency, and expansion of the dataset to improve cyber threat detection in 

medical settings.

1 INTRODUCTION 

The Internet of Medical Things (IoMT) represents a 

transformative paradigm in healthcare, integrating 

interconnected medical devices, sensors, and 

software to enable real-time patient monitoring, data 

transmission, and intelligent diagnostics [16], [13]. 

This ecosystem significantly enhances remote patient 

care, chronic disease management, and clinical 

efficiency, ultimately improving healthcare outcomes 

while reducing operational costs. 

However, this pervasive connectivity and the 

critical nature of medical data make IoMT networks 

a prime target for cyber adversaries [7], [8]. Security 

breaches in this context transcend conventional data 

theft, posing direct risks to patient safety through the 

potential compromise of data confidentiality, 

manipulation of vital medical information, or 

disruption of life-sustaining healthcare services. 

Ensuring the confidentiality, integrity, and 

availability (CIA triad) of IoMT systems is therefore 

not merely a technical requirement but a fundamental 

prerequisite for patient safety. 

Traditional signature-based Intrusion Detection 

Systems (IDS) often fail to detect novel, 

sophisticated, or evolving cyberattacks tailored to 

IoMT protocols and device constraints. This 

limitation necessitates the adoption of advanced, 

adaptive security solutions. Deep Learning (DL) has 

emerged as a powerful approach, capable of 

autonomously learning complex patterns and 

anomalies from high-dimensional network traffic 

data. Among DL architectures, Long Short-Term 

Memory (LSTM) networks excel at modeling 

temporal dependencies in sequential data, such as 

network flow, while Deep Neural Networks (DNNs) 

are effective at extracting hierarchical features for 

robust classification. A hybrid model that 

synergistically combines these strengths presents a 

promising avenue for building a more resilient IDS. 

Despite progress, existing research often faces 

challenges in handling the multi-class, imbalanced 

nature of IoMT attack datasets, achieving real-time 

efficiency on resource-constrained devices, and 
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generalizing across diverse network environments. To 

address these gaps, this study makes the following 

key contributions: 

▪ We propose a novel hybrid LSTM-DNN

framework specifically designed for IoMT

security. This architecture leverages LSTM

layers to capture sequential traffic patterns and

DNN layers to perform high-level feature

abstraction, thereby improving detection

accuracy for both known and subtle attack

vectors.

▪ We introduce a task-oriented preprocessing

pipeline and an adaptive label mapping strategy

optimized for multi-class intrusion detection,

enhancing the model's flexibility and learning

efficiency across different classification tasks

(binary, 6-class, 19-class).

▪ We implement an enhanced regularization

approach combining batch normalization,

dropout, and a performance-based early

stopping mechanism. This strategy is tailored to

the variability of IoMT data to mitigate

overfitting and ensure model generalizability.

▪ We conduct a comprehensive evaluation using

the recent and relevant CICIoMT2024 dataset

[5], which includes traffic from 40 devices

under 18 attack types. Our model demonstrates

superior performance, outperforming

standalone LSTM and DNN baselines as well as

other contemporary approaches reported in the

literature [2], [17].

The remainder of this paper is structured as 

follows: Section 2 reviews related work on DL-based 

IDS for IoMT. Section 3 details the proposed 

methodology, including the dataset, preprocessing, 

and model architecture. Section 4 presents and 

discusses the experimental results and comparative 

analysis. Section 5 outlines the study's limitations, 

and Section 6 concludes the paper with directions for 

future work. 

2 RELATED WORK 

The Internet of Medical Things (IoMT) is a vastly 

networked network of medical equipment that both 

opens up new possibilities for patient care and reveals 

serious weaknesses. The security threats in these 

IoMT ecosystems have been the subject of several 

research [3]. 

Recently, several research papers have been 

published on analyzing deep learning-based intrusion 

detection systems. This research field is becoming 

increasingly important, as its learning and 

adaptability capabilities make it highly effective in 

dealing with an increasing number of unforeseen 

attacks. Since IDS are developed using deep learning 

techniques, they work more effectively and 

precisely [9]. 

Dadkhah et al. (2024) [5] proposed the 

CICIoMT2024 dataset and evaluated it using used 

machine learning (ML) techniques, including 

Logistic Regression, AdaBoost, Random Forest and 

Deep Neural Networks (DNN) to address the lack of 

operational diversity, multiple protocols, and the lack 

of device information in existing datasets regarding 

IoMT. The donation includes a practical dataset that 

includes 40 devices (25 real and 15 virtual) and 18 

different attacks. While the dataset is based on current 

technology, it lacks consideration for future device 

advancements. Their experimental results showed 

that they had a strong capacity in binary classification 

(99.6%), a moderate capacity in 6-class classification 

(73.4%), and a lower degree of accuracy in 19-class 

classification (72.9%). 

Akar et al. (2025) [2] released the L2D2 model, a 

custom Long Short-Term Memory (LSTM)-based 

architecture that was specifically designed to detect 

multiple classes of intrusion in IPMs. The model 

demonstrated excellent classification performance, 

achieving 100% accuracy in binary classification, 

98% in 6-class, and 95% in 19-class scenarios. 

However, the high computational and memory costs 

present a significant obstacle to deploying on 

resource-limited IoMT devices. 

H. Naeem et al. (2024) [17] Used deep learning

models, CNN-BiGRU, CNN-BiLSTM, CNN-

BiRNN, CNN-GRU, CNN-LSTM And CNN-

SimpleRNN, used CICIOMT2024. The 

CICIoMT2024 dataset contains only six different 

traffic types: DDoS, DoS, MQTT, RECON, 

SPOOFING, and Benign. Contrasting with other 

claims, it lacks Brute Force, Phishing, or device-

specific intrusion (e.g., insulin pumps). As a result, 

researchers should specifically align their analysis 

with the dataset's actual content in order to avoid 

distortion. 

3 PROPOSED METHODOLOGY 

3.1 CICIoMT2024 Dataset 

The Canadian Institute for Cyber Security developed 

the CICIoMT2024 dataset to serve as a 
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comprehensive benchmark for evaluating security 

solutions for the Internet of Medical Things (IoMT). 

It includes network traffic data from 40 IoMT devices 

(25 real and 15 simulated) that are subject to 18 

different cyber-attacks, and primarily focuses on 

three key protocols: (e.g., Wi-Fi, MQTT, and 

Bluetooth), the number of features in the 

CICIoMT2024 dataset is 45 features represent 

different network traffic characteristics, which help in 

analyzing normal and malicious activities [5].

The dataset is organized as follows: 

Contains a csv/ folder with two subfolders: 

▪ train/ – Data for training deep learning

model.

▪ test/ – Data for evaluating/testing model.

The dataset used was unlabeled, so we added the 

labels and calculated the attack types as shown in 

Table 1 The dataset is divided into: (Training 80% / 

Testing 20%). 

3.2 Data Preprocessing 

Most available datasets contain unwanted elements 

(missing and duplicate values) that should be 

removed or transformed. The preprocessing step is 

crucial to obtain a suitable dataset [14]. 

Standard Deviation. It is a measure of how data is 

dispersed around the arithmetic mean. If the standard 

deviation is equal to zero or close to zero, it means the 

data does not add new information and may be 

unhelpful in analysis, so it is removed. If the standard 

deviation is large or above zero, the data contains 

useful information and is therefore studied. 

The training file and test file are combined for 

extraction the columns that contain numerical data 

such as float64 and integer64 to calculate the 

Standard deviation value for each numerical column 

while avoiding non-numerical columns such as texts 

(object). 

The Drate column was deleted because its 

standard deviation value is zero  and does not add new 

information, so the number of features will be 

reduced from 45 to 44. 

Handling with missing values and duplicate 

values: 

1) Missing values. that are not present or cannot

be accessed for a particular observation in a

dataset. This can be caused by a variety of

reasons, such as human error, data corruption,

or system failures. Missing values can impact

data analysis and machine learning models,

requiring techniques like imputation (filling in

missing values with estimates) or removal of

incomplete records.

2) Duplicate Values. refer to repeated data entries

within a dataset. These can arise due to errors

in the collection of data, the combination of

datasets, or problems with the system.

Duplicates can lead to biased analysis and must

be handled by identifying and removing

redundant records while preserving necessary

information.

Table 1: The splitting ratio of 80:20 for training and testing and distribution of the dataset. 

Label Train Count Test Count Total Train 80% Test 20 % 

TCPIPDDoSUDP 1635956 362070 1998026 81.9 18.1 

TCPIPDDoSICMP 1537476 349699 1887175 81.5 18.5 

TCPIPDDoSTCP 804465 182598 987063 81.5 18.5 

TCPIPDDoSSYN 801962 172397 974359 82.3 17.7 

TCPIPDoSUDP 566950 137553 704503 80.5 19.5 

TCPIPDoSSYN 441903 98595 540498 81.8 18.2 

TCPIPDoSICMP 416292 98432 514724 80.9 19.1 

TCPIPDoSTCP 380384 82096 462480 82.2 17.8 

Benign 192732 37607 230339 83.7 16.3 

MQTTDDoSConnectFlood 173036 41916 214952 80.5 19.5 

ReconPortScan 83981 22622 106603 78.8 21.2 

MQTTDoSPublishFlood 44376 8505 52881 83.9 16.1 

MQTTDDoSPublishFlood 27623 8416 36039 76.6 23.4 

ReconOSScan 16832 3834 20666 81.4 18.6 

ARPSpoofing 16047 1744 17791 90.2 9.8 

MQTTDoSConnectFlood 12773 3131 15904 80.3 19.7 

MQTTMalformedData 5130 1747 6877 74.6 25.4 

ReconVulScan 2173 1034 3207 67.8 32.2 

ReconPingSweep 740 186 926 79.9 20.1 
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The dataset does not contain any missing values, 

but it contains duplicate values. In the training file, 

there are 5119 duplicate values, while in the test file, 

there are 2065 duplicate value, where duplicate 

values have been removed. 

3.3 The proposed LSTM-DNN Hybrid 
Model 

The model is implemented in the Kaggle 
environment, which supports Python and provides 
access to the tools and libraries required for data 
processing and training deep learning models. First, 
important libraries such as NumPy, Pandas for data 
analysis, scikit-learn for data normalization and one-
hot encoding converts categorical variables into 
vectors of binary, which ensures that all categories are 
treated equally without presupposing a relationship 
between them [1], TensorFlow/Keras for model 
development and training, and Matplotlib and 
Seaborn for visualization and performance analysis 
are imported. 

The CICIoMT2024dataset is loaded the data is 
segmented from its origin into training 80% and 
testing 20%. The dataset does not contain labels. We 
add the label and separating the input features (X) 
from the target labels (y). The number of classes is 
determined based on user input using a label mapping 
dictionary. The categorical labels are converted to 
numerical values using a label encoder and then one-
hot encoded to prepare the labels for training. 

To ensure stable training, the input features were 
normalized using a standard scaler. The data was then 
reshaped into the sequential format required by the 
LSTM model. A sequential model was created that 
included LSTM layers for sequential data processing 
and batch normalization is a method of training that 
facilitates the stabilization and acceleration of deep 
neural networks by normalizing inputs' values to each 
layer as shown in Figure 2. It decreases the internal 
rate of change, which allows for a quicker 
convergence and increased performance [6]. Dropout 
is a method of regularization that randomly turns off 
part of the neurons during training in order to avoid 
overfitting. This causes the model to learn additional, 
more generalized features [12],[10], were followed 
by fully connected DNN layers with ReLU activation. 
At the output layer, SoftMax activation function was 
used for classification. 

The model was optimized using the Adam 
optimizer with a learning rate of 0.0001, this default 
is commonly used because it balances the speed of 
convergence and stability. A batch size of 64 [4] was 
chosen based on experimental testing, this size 

provides an effective compromise between training 
speed and generalizability. The training process was 
conducted for 50 epochs, which was sufficient for the 
model to converge without the signs of overfitting, as 
observed by monitoring the loss of validation. Early 
stopping, which employed a patience of 5 epochs, 
was employed to halt the training process if no 
significant improvement was observed. This 
prevented the unnecessary expenditure of 
computational resources and overfitting. These 
hyperparameters were derived from the initial search 
for a good compromise between cost and 
performance, which is in line with prior research in 
the deep learning field for the purpose of intrusion 
detection. 

After training is complete, trends in training and 
validation accuracy are monitored and performance 
curves are analyzed to identify potential issues with 
data fit. Finally, the trained model is evaluated on the 
test dataset and saved for future predictions or 
deployment. 

To fully assess the proposed intrusion detection 
model, the dataset was divided into three different 
scenarios: binary (2 classes), categorical (6 classes), 
and multiclass (19 classes). This multiple-level 
strategy was employed to represent different levels of 
difficulty with classification and to assess the model's 
viability in practical environments. Binary 
classification allows for an easy distinction between 
legitimate and criminal traffic. Six-class 
categorization enables the classification of the attack 
type as either a targeted or unsystematic attack. This 
is important for developing an appropriate response 
strategy. Meanwhile, the 19-classification system 
provides a specific explanation of the various attack 
vectors that are important in comprehending the 
specific threat in healthcare systems that are critical 
to safety. 

The main phases of the proposed model shows in 
Figure 1. 

Figure 1: Main phases of the proposed model. 
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Figure 2: LSTM-DNN Hybrid Model architecture. 

4 RESULTS AND DISCUSSION 

The performance of the proposed LSTM- DNN 

Hybrid Model is rigorously evaluated on the 

CICIoMT2024 dataset, which includes binary, six-

class, and 19-class classification tasks. The results for 

each task are detailed below, along with the precision, 

recall, and F1 -score metrics for different cyberattack 

types, and distribution of attack and confusion matrix 

for each model. 

The results of this study suggest the potential of 

deep learning, specifically hybrid LSTM–DNN 

structures, in improving the safety of the internet-

based medical environment (IoMT). By accurately 

recognizing and categorizing various attacks in real 

time, these models can be incorporated into smart 

healthcare systems that preserve patient data, ensure 

uninterrupted communication, and reduce the 

likelihood of life-threatening disruptions. This is of 

special importance for applications like remote 

patient monitoring, smart pumping devices, and 

connected tools that are diagnostic, these tools can 

directly affect the safety of patients, and the 

continuity of their treatment. 

The proposed LSTM-DNN hybrid model is 

superior to traditional models like LSTM alone and 

DNN in multiple levels of classification. In the 6-

class and 19-class scenarios, its benefits became more 

significant. For example, the accuracy of the 

proposed model was 99.47% for 6 classes and 

98.43% for 19 classes, while the DNN model was 

drastically reduced to 73.4% and 72.9%, respectively 

[5]. Even the LSTM model, which is more powerful 

than the DNN, had accuracy (95% in 19 classes) 

lower case than the hybrid strategy [2]. And CNN 

integrated with BiGRU, BiLSTM, BiRNN, GRU, 

LSTM, CNN-SimpleRNN, they got an accuracy 

between 93% and 94% and did not work on all the 

data sets [17]. 
These enhancements are not only numerical but 

also structural. The LSTM layers are effective at 

learning the temporal patterns of traffic flow 

associated with typical IoMT data. However, without 

additional depth, they may lack the capacity to extract 

high-dimensional features. By combining DNN 

layers, the model’s ability to learn more complex, 

abstract representations is increased, this enables the 

model to both generalize and differentiate between 

classes that are overlapping. This hybrid alliance 

enables the model to have a superior performance 

compared to its counterparts, especially in 

challenging, unequal, and corruptible environments. 

4.1 Binary Classification Result 

The proposed LSTM-DNN model had a superior 

performance in the binary classification task, having 

an accuracy of 99.64%, a precision of 99.64%, a 

recall of 99.64%, and an F1-score of 99.64%. These 

metrics demonstrate the model’s effective ability to 

differentiate between criminals and regular traffic. 

The high rate of recall in particular demonstrates its 

effectiveness in recognizing all instances of attacks, 

this is crucial to healthcare applications that may be 

lost by a missed attack and lead to serious 

consequences. 

The Tables 2 and 3 show the distribution of data 

between the attack and benign classes in the training 

and test sets. 
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Table 2: Train value count. 

Label Count 

1 Attack 6962980 

2 Benign 192732 

Table 3: Test value count. 

Label Count 

1 Attack 1574510 

2 Benign 37607 

Figure 3 shows a clear and organized distribution 

of data, making it easy to understand the contrast 

between the attack and benign categories. 

Figure 3: Distribution of training and testing samples for 

attack and benign classes in binary classification (2-class). 

The confusion matrix in Figure 4 illustrates the 

model’s performance in classifying Attack and 

Benign instances. A large number of samples are 

correctly classified, with 1,572,281 attack instances 

and 34,105 benign instances accurately identified. 

However, some misclassifications occur, where 2,229 

attack samples are incorrectly classified as benign, 

and 3,502 benign samples are mistaken for attacks. 

This indicates strong model performance with a 

relatively low error rate. 

Figure 5 illustrates the model’s performance over 

epochs. In the left graph, both training and validation 

accuracy increase rapidly and stabilize at high values, 

indicating effective learning. In the right graph, 

training and validation loss decrease progressively, 

showing model improvement and error reduction 

over time, with no clear signs of overfitting. 

Figure 4: Confusion Matrix of attack and benign in 2-class. 

Figure 5: Accuracy and loss curves for 2-class. 
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4.2 Multi-Class (6-Class) Classification 
Results 

When augmented with a 6-class classification task, 

the model still exhibited a reliable performance, 

achieving 99.47% accuracy, 99.62% precision, 

99.47% recall and an F1 score of 99.53%. This 

demonstrates its ability to differentiate between five 

types of attacks and benign. Compared to the 

standalone LSTM and DNN models, which exhibited 

a decrease in performance in the presence of multiple 

classes, the LSTM-DNN architecture maintained a 

high degree of precision and generalizability. 

The Tables 4 and 5 show the distribution of 

training and test data across various categories, such 

as "DDoS," "DoS," and "Benign." The numbers 

indicate a large sample size for "DDoS," followed by 

"DoS" and "MQTT," while the other categories have 

fewer samples. This distribution provides insight into 

the data volume for each category during training and 

testing. 

Table 4: Train value count. 

Label Count 

1 DDos 1066762 

2 Dos 416676 

3 MQTT 63715 

4 Benign 37607 

5 RECON 25613 

6 SPOOFING 1744 

Table 5: Test value count. 

Label Count 

1 DDos 4779187 

2 Dos 1805529 

3 MQTT 262938 

4 Benign 192732 

5 RECON 99279 

6 SPOOFING 16047 

The chart  in Figure 6 illustrates the distribution of 

samples across six data categories in the training and 

test sets. "DDoS" and "DoS" have the highest number 

of samples, while categories like "SPOOFING" and 

"RECON" have significantly fewer. This visual 

representation helps in understanding the prevalence 

of each data type in both sets. 

Figure 6: Distribution of attacks and benign in 6-class. 

The confusion matrix in Figure 7 displays the 

model's performance in classifying different 

categories, with high values along the main diagonal 

indicating strong classification accuracy, particularly 

for "DDoS" and "DoS," where most samples were 

correctly classified. However, some 

misclassifications are present, such as "Benign" 

samples being classified as "SPOOFING”. This 

suggests that the model demonstrates high efficiency 

in distinguishing most categories. 

Figure 7: Confusion Matrix of attack and benign in 6-class. 

The Figure 8 shows the progression of the model's 

accuracy and loss over epochs. In the left graph, 

accuracy increases rapidly, indicating effective 

learning. In the right graph, loss drops sharply in the 

early epochs and then stabilizes at a low value, 

reflecting improved model performance. 
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Figure 8: Accuracy and Loss Curves for 6-class. 

Figure 9: Distribution of attacks and benign in 19-class.

4.3 Complex Multi-Class (19-Class) 
Results 

In the more difficult 19-class categorization task, 

which involves a greater degree of granularity and 

often has a similar nature to the attacks, the model had 

an accuracy of 98.43% a precision of 98.77%, a recall 

of 98.43% and an F1-score of 98.25%. Despite a 

slight decrease in performance compared to binary 

and 6-class tasks, the model still performed better 

than conventional baselines. This drop is anticipated 

because of the increased difficulty in differentiating 

the behavior of classes that are overlapped, class 

imbalance, and the limited amount of training data for 

the minority classes. Involving 18 different attack 

types in addition to benign attacks. 

The Table 1 show the distribution of samples 

across various attack categories and benign data in the 

training and test sets. "TCPIPDDoS" attack types 

have the highest number of samples, while other 

categories like "ReconVulScan" and 

"MQTTMalformedData" have fewer. This 

distribution reflects the diversity of data used for 

training and testing. 

Figure 9 shows the sample distribution of 19 data 

categories in the training and test datasets. 

"TCPIPDDoS" attacks have the highest number of 

samples, while other categories like "ARPSpoofing" 

and "MQTTMalformedData" have fewer. This 

representation helps to understand the popularity of 

each category in the dataset. 

The confusion matrix shown in Figure 10 

illustrates the model's performance in classifying 19 

categories. High values along the main diagonal 

indicate strong classification accuracy, especially for 

"TCPIPDDoS" and "Benign.". These results reflect 

the model's efficiency in distinguishing between 

classes, with some limited errors. 
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In Figure 11 the left graph shows the gradual 

improvement in training and validation accuracy 

across epochs, while the right graph illustrates the 

consistent reduction in loss, indicating that model 

performance improves over time. 

Figure 10: Confusion Matrix of attacks and benign in 19-class. 

Figure 11: Accuracy and Loss Curves for 19-class. 
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Table 6: Performance Metrics of DL Models Across Different Classification Tasks in CICIOMT2024 dataset. 

Model 
Classification 

Task 
Accuracy Precision Recall 

F1-

Score 
Attack family Count 

Number of 
samples in 

category 

Proposed 

LSTM-DNN 

Hybrid Model 

2 class 99.6445 99.6398 99.6445 99.6415 
Attack 

Benign 

8,537,490 

230,339 

8,537,490 

230,339 

6 class 99.4667 99.6227 99.4667 99.5310 

DDos 

Dos 

MQTT 

RECON 

SPOOFING 

Benign 

5,845,949 

2,222,205 

326,653 

124,892 

17,791 

230,339 

5,845,949 

2,222,205 

326,653 

124,892 

17,791 

230,339 

19 class 98.4256 98.7723 98.4256 98.2460 

Classifying 19 

categories in 

Table 1 

18 type 

of attacks 

8,537,490 

Benign 

230,339 

18 type of 

attacks 

8,537,490 

Benign 

230,339 

DNN [5] 

2 class 99.6 95.6 94.8 95.2 
Attack 

Benign 

8,537,490 

230,339 

8,537,490 

230,339 

6 class 73.4 72.5 69.3 66.5 

DDos 

Dos 

MQTT 

RECON 

SPOOFING 

Benign 

5,845,949 

2,222,205 

326,653 

124,892 

17,791 

230,339 

5,845,949 

2,222,205 

326,653 

124,892 

17,791 

230,339 

19 class 72.9 64.9 55.3 52.2 

classifying 19 

categories in 

Table 1 

18 type 

of attacks 

8,537,490 

Benign 

230,339 

8,537,490 

230,339 

LSTM [2] 

2 class 100 100 100 100 
Attack 

Benign 

8,537,490 

230,339 

8,537,490 

230,339 

6 class 98.0 98.0 98.0 98.0 

DDos 

Dos 

MQTT 

RECON 

SPOOFING 

Benign 

5,845,949 

2,222,205 

326,653 

124,892 

17,791 

230,339 

5,845,949 

2,222,205 

326,653 

124,892 

17,791 

230,339 

19 class 95.0 96.0 95.0 95.0 

Classifying 19 

categories in 

Table 1 

18 type 

of attacks 

8,537,490 

Benign 

230,339 

18 type of 

attacks 

8,537,490 

Benign 

230,339 

CNN-BiGRU 

CNN-BiLSTM 

CNN-BiRNN 

CNN-GRU 

CNN-LSTM 

CNN-

SimpleRNN [17] 

_ 

_ 

_ 

_ 

_ 

_ 

94.0 

93.0 

94.0 

93.0 

93.0 

93.0 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

_ 

DDoS 

Normal 

5,845,949 

230,339 

20,000 

25,000 
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4.4 Evaluation Metrics 

To assess the performance of the proposed model, 
standard classification metrics were used, including 
Accuracy, Precision, Recall, and the F1-score. These 
metrics follow their conventional definitions widely 
adopted in machine learning and pattern recognition 
research [2], [9], [14], [16]. 
▪ Accuracy reflects the overall proportion of

correctly classified instances.
▪ Precision measures the correctness of positive

predictions.
▪ Recall (Sensitivity) quantifies the proportion of

actual positive cases correctly detected by the
model.

▪ F1-score represents the harmonic mean of
Precision and Recall, providing a balanced
assessment when class distributions are uneven.

These well-established metrics are sufficient to 
rigorously evaluate the model’s predictive 
performance and ensure comparability with existing 
approaches. 

4.5 Comparative and Scientific Analysis 

The outcomes of the three classification tasks are 
evident of the effectiveness and versatility of the 
proposed hybrid LSTM-DNN model. Its superior 
capabilities are attributed to the combination of 
temporal pattern recognition (via LSTM) with 
abstract feature extraction (via DNN). The consistent 
superiority of the model over standalone LSTM and 
DNN models, especially in terms of accuracy, 
demonstrates its potential for real-world security 
applications in the IoMT. The logical progression of 
decreasing performance from binary to multi-class 
classification is expected scientifically, as the 
complexity of the task and the similarity between 
classes increase. 

Table 6 shows the performance comparison of 
different models on different classification tasks (2, 6, 
and 19 classes) based on accuracy, precision, recall, 
and F1 score. 

The LSTM-DNN hybrid model is the best overall 
because it combines the advantages of LSTM and 
DNN, ensuring balanced performance on all 
classification tasks. 

5 LIMITATIONS OF THE STUDY 

Despite the encouraging performance of the proposed 
LSTM-DNN model on the CICIoMT2024 dataset, 

several caveats should be mentioned. First, the dataset 
may have a bias because of its synthetic nature and 
the limited number of real-world scenarios and 
devices represented. This may have an effect on the 
generalizability of the model to other IoMT 
environments with different traffic patterns or attacks. 
Second, although the model demonstrated high 
accuracy in off-line experiments, its effectiveness in 
real time intrusion detection systems has not been 
empirically tested and may be adversely affected by 
limitations such as processing delay, resource 
constraints, and evolving attacks. Finally, the model's 
performance may differ depending on the distribution 
of classes is balanced or novel (day zero) attacks are 
present in the training data. Future endeavors should 
investigate practical adaptive learning methods and 
frequent real time comparison to address these issues 

6 CONCLUSIONS 

This article described a hybrid LSTM-DNN deep 
learning model that was intended to detect and 
categorize cyberattacks in IoMT environments. The 
proposed model had a high performance that was 
achieved with a 99.64% accuracy for binary 
classification, 99.47% for 6 classes, and 98.43% for 

19 classes. Other than that, it consistently 

demonstrated superior generalizations and 
consistency.). Leveraging the CICIoMT2024 dataset, 
which encompasses diverse cyberattack scenarios, 
our model demonstrated superior performance in 
detecting intrusions across binary, six-class, and 19-
class classification tasks. The results show that the 
proposed LSTM-DNN hybrid model outperforms 
traditional machine learning techniques, achieving 
high accuracy, precision, recall, and F1-score. 

The study underscores the importance of 
advanced deep learning methodologies in securing 
IoMT networks, which face an increasing number of 
cyber threats. The combination of LSTM for 
sequential data analysis and DNN for feature 
extraction effectively identifies normal and malicious 
traffic. Additionally, data preprocessing techniques, 
dynamic label mapping, and model optimization 
contributed to the model’s robustness and 
generalizability. 

Despite its promising performance, challenges 
remain regarding real-time deployment and 
computational efficiency. Future research will focus 
on optimizing model performance, integrating 
attention mechanisms for improved feature selection, 
and evaluating real-world applicability. Expanding 
the dataset with additional attack variations and real-
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time traffic data will further enhance the reliability of 
intrusion detection in IoMT environments. 

As cyber threats continue to evolve, ensuring the 
security of IoMT systems is critical to protecting 
patient data and healthcare infrastructure. The 
findings of this study contribute to the ongoing 
development of intelligent, automated cybersecurity 
solutions, paving the way for more resilient and 
adaptive intrusion detection systems in medical 
networks. 

These findings confirm the model's potential for 
real-time deployment in healthcare settings where 
speed and accuracy are paramount. 
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