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This paper explores the integration of renewable energy and artificial intelligence (Al) into next-generation
wireless communication networks. Using orthogonal frequency-division multiplexing (OFDM) over Rayleigh
fading channels, we simulate and evaluate four scenarios: traditional wireless systems, renewable-powered
systems, Al-assisted systems, and intelligent renewable-powered systems. Key performance metrics such as
Bit Error Rate (BER), Spectral Efficiency (SE), and Energy Efficiency (EE) are analyzed under varying
signal-to-noise ratio (SNR) conditions. A Q-learning-based Al algorithm is employed for dynamic power
allocation, aiming to maximize energy efficiency while preserving communication reliability. Simulation
results show that Al-assisted renewable-powered systems - especially those powered by solar energy - offer
significant improvements in energy efficiency without degrading signal performance. The findings underscore
the potential of combining Al and renewable energy to build sustainable, efficient, and reliable wireless
networks. This study supports the vision of intelligent, green 6G and beyond communication systems, where
environmental sustainability and high performance are jointly achieved through advanced optimization and

clean energy integration.

1 INTRODUCTION

Orthogonal ~ Frequency Division  Multiplexing
(OFDM) has become a foundational technology in
modern wireless communication systems, including
fifth generation (5G) and the upcoming sixth
generation (6G) networks. Its high spectral efficiency
and resilience to frequency-selective fading make it
well-suited for high-data-rate and broadband
applications [1]. However, OFDM systems suffer
from a high peak-to-average power ratio (PAPR) and
require adaptive power control to maintain efficient
performance under varying channel conditions.

As 6G aims to enable ultra-reliable, low-latency,
and high-throughput communications, the demand
for energy-efficient and sustainable network
solutions is rising. Traditional grid-powered
architectures are being reevaluated in favor of
integrating renewable energy sources, particularly
solar power, to build green wireless systems [2], [3].
Despite its environmental and operational benefits,
solar energy introduces significant uncertainty due to
its intermittent and variable nature, posing challenges
for consistent and reliable wireless transmission -
especially in OFDM-based networks that are power-
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sensitive. Artificial Intelligence (Al), particularly
Reinforcement Learning (RL), has emerged as a
powerful tool for power control in wireless systems.
In contrast to conventional optimization methods, Al-
based techniques such as Q-learning can learn
optimal power allocation strategies in real time,
adapting to both the channel state information (CSI)
and energy availability [4], [5]. These agents can
strike a dynamic balance between performance
metrics like Bit Error Rate (BER), Spectral Efficiency
(SE), and energy consumption - making them well-
suited for next-generation networks powered by
renewable sources [6], [7]. Despite significant
progress, most prior works focus either on grid-
powered networks or lack real-time adaptability in
renewable-powered OFDM systems. Furthermore,
few studies combine Al-driven dynamic power
control with realistic solar-powered energy
constraints, which is a critical gap this paper aims to
address. In this work, we propose and evaluate an
intelligent power control scheme based on Q-learning
for OFDM systems powered by solar energy. The key
strengths of the proposed approach include real-time
learning, adaptability to varying channel and energy
conditions, and a strong focus on maximizing energy
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efficiency without sacrificing communication
reliability. The main goals of this paper are to
investigate dynamic power allocation for OFDM over
Rayleigh fading channels using Q-learning and to
evaluate the tradeoff between BER, SE, and energy
efficiency in solar-powered systems as well as to
demonstrate the superiority of Al-driven power
control over static or heuristic-based approaches and
to validate the performance under realistic solar
energy harvesting scenarios. The remainder of this
paper is organized as follows. Section 2 presents
some works related to the proposed scheme. Section
3 presents the system models. Section 4 provides the
numerical results and the discussion. Finally, Section
5 provides some concluding remarks.

2 RELATED WORK

The exponential growth in mobile data demand-
fueled by immersive media, autonomous systems,
and pervasive 10T devices-has accelerated the global
pursuit of intelligent and sustainable wireless
infrastructure. In anticipation of 6G, several research
efforts have emerged focusing on three essential
pillars:

renewable energy integration,

Al-based power/resource control,
simulation of next-generation systems such
as OFDM-based networks under realistic
constraints.

However, while each domain has seen significant
progress, a holistic system combining all three
elements remains notably underdeveloped.

2.1 Renewable Energy in Wireless
Networks

Alsharif et al. [3] reviewed various renewable energy
harvesting techniques, particularly solar, as a viable
solution to reduce operational carbon emissions in 5G
and 6G networks. Their study outlines the need for
green base stations powered by intermittent energy
sources but lacks a mechanism to address the
fluctuating nature of harvested energy in real time.
Similarly, Zhang et al. [2] emphasize energy
sustainability in the context of high-frequency 6G
architectures, proposing general frameworks without
simulation-based validation.
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2.2 Al and Power Control in Wireless
Systems

Reinforcement Learning (RL), especially model-free
algorithms like Q-learning, has emerged as a key
technique for real-time power adaptation. In [4],
Nasser et al. propose a deep Q-learning resource
allocation framework for solar-powered cognitive
radio networks (CRNs). Although CRNs differ from
OFDM-based systems, their energy-aware approach
and state-action design present transferable insights.

More closely aligned with OFDM and 6G, Yang
et al. [5] introduce Q-learning for power allocation in
cell-free massive MIMO networks. Their study
demonstrates that RL significantly enhances fairness
and power efficiency but omits energy harvesting
constraints, operating under an ideal power supply
assumption. Similarly, the work by Liu et al. [6]
explores Al in 6G for dynamic power control in dense
networks, though again without considering solar
energy as a power source.

2.3 OFDM and Energy Efficiency

Some studies have analyzed the energy efficiency of
OFDM systems under various power control
schemes. For example, Hassan et al. [7] discuss static
and adaptive power allocation in OFDM over fading
channels but do not incorporate Al or renewable
energy inputs. Their methods lack real-time
adaptability and perform poorly in energy-
constrained settings.

2.4 Gaps ldentified

While previous studies have addressed Al-based
power control, solar energy integration, and OFDM
simulation separately, none have combined them into
a unified Solar 6G framework. This gap is important,
as it overlooks the real-world challenges that arise
when these technologies interact - such as adapting to
fluctuating solar power while maintaining reliable
communication. Al models are often tested in stable
environments, and solar-powered systems typically
lack intelligent control. Integrating OFDM, solar
energy, and Al introduces unique constraints but also
offers the potential for highly efficient and adaptive
wireless systems. Addressing these elements together
is essential for advancing sustainable and intelligent
6G networks. A summary of these related works and
their limitations is presented in Table 1.
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Table 1: Summary of related works.

Ref. Focus Area Key Findings Limitations

[1] 6G Vision Highlights sustainability and intelligence for 6G No implementation or simulation

[2] Green 6G Proposes solar-powered network concepts Lacks dynamic power adaptation
Renewable Energy in | Reviews solar harvesting and deployment No power control mechanism or

[3] 5G/6G scenarios Al

[4] Al in Solar-Powered Dynam_ic power allocation under energy Not OFDM; different network

systems constraints structure

[5] Al in 6G Power fairness optimization in cell-free networks | No energy harvesting considered

[6] Al for Power Control | Al-based energy optimization in dense networks Assumes stable energy supply

7] OFDM Power Evaluates BER/SE under different power No Al or energy-harvesting

Allocation methods integration

3 SYSTEM MODELS

We assume an OFDM-based wireless system with N
subcarriers transmitting over a Rayleigh fading
channel. The received signal on subcarrier k can be
expressed as:

Vi = hpxp + 1y, )
where: xK is the transmitted symbol that modulated
using Quadrature Phase Shift Keying (QPSK) or
Quadrature Amplitude Modulation (QAM). The hk is
the Rayleigh fading coefficient while the nk is the
Additive white Gaussian noise (AWGN). For each
subcarrier k, the instantaneous signal-to-noise ratio
(SNR) is given by:

2
o= @
where Pk is the transmit power allocated to
subcarrier k with the variable o2 refers to the
variance of the noise. Assuming adaptive
modulation, the Shannon achievable data rate on
subcarrier k in [bps/Hz] is

Cy = log,(1 + yi). (3)

The total spectral efficiency (SE) over all subcarriers
is:

SE =~3Ylog,(1 + 7).

TN

(4)

Let B be the system bandwidth (in Hz) and
Ptotal= Prypqr = %Zk P, is the total transmit power.
Then the energy efficiency (EE) can be written as [11]
(®)

EE:SE.B

Protal

The approximate BER for over Rayleigh fading
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using average SNR (¥) can be calculated as

—_* RN T ’L
BER_logz(M)(l M)'z(l 1+7)’ ©)

where M is the modulation order (e.g., 4 for QPSK,
16 for 16-QAM).

In wireless communication, Q-learning enables
adaptive power allocation by selecting transmit
power levels based on real-time channel conditions.
The agent aims to maximize a reward function that
balances spectral efficiency and power consumption.
The learning process involves updating Q-values
iteratively to converge toward an optimal decision-
making policy.

We use Q-learning to dynamically select power
levels to balance SE and energy consumption. In our
model, the state s represents the channel quality,
expressed as the quantized value of the instantaneous
channel gain g=lhk|2. We divide the range of
possible channel gains into discrete levels (e.g., low,
medium, high), enabling the agent to assess the
quality of the channel before taking action. The
action a corresponds to selecting a transmit power
level from a predefined set. Tese sets represent low,
moderate, and high transmission power settings. The
Q-learning agent chooses an action based on the
current state to balance energy use and performance.
The reward function evaluates how good a selected
action is in a given state. It encourages spectral
efficiency while penalizing energy usage. The reward
function (r) can be expressed as

r= log,(1—y)—4P.

U]

Where § is a tunable parameter controlling the trade-
off between performance and energy cost and P is the
power level used. Next, the agent updates the Q-value
for each state-action pair using the Bellman equation
below:
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Q(s,a) « Q(s,a) + a|r+ y.rﬁ&xQ(s’,a’) —Q(s,a)|. (8)

a

Where: a represents the learning rate and s the next
state after action a and the max function estimate of
future reward assuming optimal action in state s'. This
update allows the agent to learn from experience and
gradually converge to the optimal power allocation
strategy for varying channel conditions.

4 SIMULATION RESULTS AND
DISCUSSION

Simulation results have been used to demonstrate the
performance  of  OFDM based  wireless
communication systems from spectral and energy
efficiency prospective. The impacts of integrating the
solar energy and Al methods have been investigated.

4.1  Simulation Setup

A straightforward model for the proposed Al-based
power control for solar-powered OFDM systems is
shown in Figure 1. This diagram models the
transmitter-receiver ~ chain  of a  wireless
communication system based on OFDM, with a focus
on Al-based power control integrated between the
energy source and the transmitter. The power supply
powering the communication system are the
traditional grid-based, or renewable solar. In the case
of solar energy, power is limited and variable, which
motivates the need for intelligent control. The power
control regulates the transmit power fed to the
transmitter. it receives real-time decisions from the
Al/Q-learning agent (shown below in red). Its goal is
to adapt power based on energy availability, channel
conditions and performance trade-offs (SE, BER,
EE). Wireless channel is modeled with Rayleigh
fading and additive white Gaussian noise (AWGN).
Al/Q-Learning controller represents the core
intelligence module embedded within the system. It
evaluates and monitors current channel quality (e.g.,
SNR or channel gain) and energy availability and
uses this to quantize the state of the system. Based on
current state and learned Q-values, the best transmit
power level is then selected. The selected power level
then sent to the power control module after receiving
feedback (reward) from the system after transmission
and updates the Q-table accordingly. This forms a
reinforcement learning loop, enabling the system to
learn and adapt its power policy over time for optimal
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performance. All simulations were conducted using
MATLAB R2024a.
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Figure 1. Block Diagram of an Al-Controlled, Solar-
Powered OFDM Network.

To evaluate the performance of Al-based power control
in solar-powered OFDM systems, a MATLAB-based
Monte Carlo simulation was conducted. The setup models
a point-to-point wireless link operating under a Rayleigh
fading environment, with key performance indicators
including bit error rate (BER), spectral efficiency (SE), and
energy efficiency (EE). The system employs 64 OFDM
subcarriers, and each subcarrier experiences independent
Rayleigh fading. Two modulation schemes are used: QPSK
for baseline cases (Traditional and Solar) and 16-QAM for
Al-driven scenarios (Al and Intelligent Solar) to reflect
adaptive data rate capabilities. For each SNR point, 1000
OFDM symbols are transmitted per subcarrier to ensure
statistically significant BER measurements. The transmit
power is fixed at 0.5 W for the Traditional case and 0.3 W
for Solar 6G, reflecting a solar energy constraint. In
contrast, the Al-powered systems select from different
power values using a Q-learning agent that adapts based on
real-time channel gain feedback. Other parameters used in
the simulation can be found in Table 2.

Table 2: Simulation parameters.

Parameter Value
Carrier frequency 28 GHz
Bandwidth 100-1000MHz

Channel model Fading channel

Modulation Format QPSK, QAM
Q- Learning rate o 0.1
Discount factor y 0.9
Exploration rate 0.1
Power parameters Traditional: 0.5
Solar: 0.3

4.2  Simulation Results

In this section, some simulation results to verify the
theoretical analysis and the effectiveness of the
proposed approaches are presented. Figure 2
illustrates the spectral efficiency (SE) performance of
four different OFDM system configurations under
varying SNR conditions. The Traditional OFDM
system, operating at fixed power and using QPSK,
achieves moderate SE, gradually saturating near 2
bps/Hz. The Solar-Powered OFDM  system,
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constrained by limited renewable energy shows the
lowest SE due to its inability to adapt power or
modulation. In contrast, the Al-Based OFDM system
employs Q-learning for dynamic power control and
uses  higher-order  modulation  (16-QAM),
significantly boosting SE, especially at higher SNRs.
Most notably, the Intelligent Solar-Powered OFDM
system - which integrates solar constraints with Al-
driven power adaptation - achieves the highest SE,
surpassing 5.2 bps/Hz at high SNR. This confirms
that intelligent power control can effectively
compensate for solar limitations, enabling sustainable
and high-throughput communication in future
wireless networks.

Traditional OFDM Systems
—&— Solar-Powered OFDM Systems
—&— Al Based OFDM Systems.

—&— Inteligent Solar-Powered OFDM System

Spectral Efficiency (bps/Hz)
w
&

SNR (dB)

Figure 2: SE vs. SNR for different scenarios.

Figure 3 shows that total energy efficiency (EE)
performance of four OFDM systems under various
SNR conditions. The Traditional OFDM system,
operating at constant transmit power without
optimization, yields the lowest EE due to inefficient
use of energy resources. The Solar-Powered OFDM
system improves upon this slightly, benefiting from
reduced power consumption, but still lacks dynamic
control, leading to limited gains. The Al-Based
OFDM system, which uses Q-learning for adaptive
power control, achieves significantly higher EE
across the SNR range by intelligently balancing
performance and power consumption. The
Traditional OFDM system shows the lowest EE,
increasing slowly from approximately 0.35 x 107
bps/Hz/W at 0 dB to around 0.4 x 107 bps/Hz/W at
high SNRs due to fixed high-power usage. The Solar-
Powered OFDM system, while limited by a lower
power budget achieves slightly better EE - starting
near 0.6 x 107 bps/Hz/W and saturating at around 0.66
x 107 bps/Hz/W. The Al-Based OFDM system
significantly improves EE, reaching up to 1.6 x 107
bps/Hz/W at 30 dB by adaptively tuning the power to
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match channel conditions. Most impressively, the
Intelligent Solar-Powered OFDM system achieves
the highest EE across all SNRs, starting at 1.38 % 107
bps/Hz/W and peaking near 1.74 x 107 bps/Hz/W at
high SNR. These results confirm that combining Al
with solar power not only conserves energy but also
optimizes its usage, making it a highly promising
approach for sustainable 6G wireless networks.
Notably, the Intelligent Solar-Powered OFDM
system delivers the best results, maintaining superior
EE by combining energy-aware power constraints
with real-time learning-based control. This clearly
demonstrates the potential of integrating artificial
intelligence with renewable energy management to
enhance energy efficiency in next-generation
wireless systems.

Traditional OFDM Systems
—&— Solar-Powered OFDM Syslems
12fF —&— Al Based OFDM Systems

—&— Intelligent Solar-Powered OFDM System

Energy Efficiency {bps/Hz/AW)

L I L !
0 5 10 15 20 25 30
SNR (dB)

Figure 3: EE vs. SNR for different scenarios.

In order to evaluate the effectiveness of the
proposed system, the Bit Error Rate (BER)
performance for four OFDM system configurations
as a function of SNR, ranging from 0 dB to 30 dB on
a logarithmic scale. The Solar-Powered OFDM
system achieves the lowest BER across all SNR
values, benefiting from low-order QPSK modulation
and reduced power-induced noise; it drops from
approximately 1x107* at 0 dB to below 2x10* at 30
dB. The Traditional OFDM system follows, reaching
about 5x107* at high SNR. In contrast, the Al-Based
OFDM system - employing 16-QAM and Q-learning
for power control - shows higher BER, from around
2x107! at low SNR to 7x10™ at 30 dB, due to the
increased symbol error sensitivity of higher-order
modulation. Similarly, the Intelligent Solar-Powered
OFDM system, which also uses 16-QAM, maintains
slightly higher BER than the traditional setup, ending
near 9x10™% These results confirm the tradeoff
between spectral efficiency and reliability: while Al-
based systems boost throughput, they suffer from
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higher BER under identical SNR conditions due to
denser modulation schemes, as shown in Figure 4.

Bit Error Rate

Traditional OFDM Systems
—&— Solar-Powered OFDM Systems
—&A— Al Based OFDM Systems
= & =Inteliigent SolarPowered OFDM System

" i .

L .
0 5 10 15 20 25 30
SNR (@B)

Figure 4: BER vs. SNR for different scenarios.

5 CONCLUSIONS

This study introduced a novel simulation framework
that integrates solar energy harvesting with Q-
learning-based power control in OFDM wireless
communication systems, aiming to address the
sustainability and efficiency demands of future 6G
networks. Four scenarios - Traditional, Solar-
Powered, Al-Based, and Intelligent Solar-Powered -
were evaluated under Rayleigh fading conditions.
The results show that while solar-powered systems
improve energy efficiency, their performance is
limited by power fluctuations. However, integrating
reinforcement learning significantly enhances system
adaptability and efficiency. Notably, the Intelligent
Solar-Powered  system achieved the highest
performance, with spectral efficiency reaching 5.2
bps/Hz and energy efficiency of 1.74x107 bps/Hz/W,
while maintaining a satisfactory BER.

Despite the promising results, this work is subject
to certain limitations. The use of a basic Q-learning
algorithm with discretized state-action spaces may
not fully exploit the complexity of real-world energy
and channel dynamics. Additionally, the solar energy
model was idealized and did not account for real-time
irradiance  variations or storage limitations.
Moreover, the framework operates in a simulated
environment without hardware validation.

For future work, the model can be enhanced by
incorporating deep reinforcement learning (DRL)
techniques to better handle high-dimensional,
continuous state spaces. Further, integrating real-
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world solar datasets and testing on hardware
platforms or testbeds will increase the practicality and
deployment readiness of such systems in dynamic,
real-time environments. These advancements will be
crucial in developing scalable, intelligent, and
sustainable wireless networks for the 6G era.
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