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Abstract: This paper explores the integration of renewable energy and artificial intelligence (AI) into next-generation 

wireless communication networks. Using orthogonal frequency-division multiplexing (OFDM) over Rayleigh 

fading channels, we simulate and evaluate four scenarios: traditional wireless systems, renewable-powered 

systems, AI-assisted systems, and intelligent renewable-powered systems. Key performance metrics such as 

Bit Error Rate (BER), Spectral Efficiency (SE), and Energy Efficiency (EE) are analyzed under varying 

signal-to-noise ratio (SNR) conditions. A Q-learning-based AI algorithm is employed for dynamic power 

allocation, aiming to maximize energy efficiency while preserving communication reliability. Simulation 

results show that AI-assisted renewable-powered systems - especially those powered by solar energy - offer 

significant improvements in energy efficiency without degrading signal performance. The findings underscore 

the potential of combining AI and renewable energy to build sustainable, efficient, and reliable wireless 

networks. This study supports the vision of intelligent, green 6G and beyond communication systems, where 

environmental sustainability and high performance are jointly achieved through advanced optimization and 

clean energy integration. 

1 INTRODUCTION 

Orthogonal Frequency Division Multiplexing 

(OFDM) has become a foundational technology in 

modern wireless communication systems, including 

fifth generation (5G) and the upcoming sixth 

generation (6G) networks. Its high spectral efficiency 

and resilience to frequency-selective fading make it 

well-suited for high-data-rate and broadband 

applications [1]. However, OFDM systems suffer 

from a high peak-to-average power ratio (PAPR) and 

require adaptive power control to maintain efficient 

performance under varying channel conditions.  

As 6G aims to enable ultra-reliable, low-latency, 

and high-throughput communications, the demand 

for energy-efficient and sustainable network 

solutions is rising. Traditional grid-powered 

architectures are being reevaluated in favor of 

integrating renewable energy sources, particularly 

solar power, to build green wireless systems [2], [3]. 

Despite its environmental and operational benefits, 

solar energy introduces significant uncertainty due to 

its intermittent and variable nature, posing challenges 

for consistent and reliable wireless transmission - 

especially in OFDM-based networks that are power-

sensitive. Artificial Intelligence (AI), particularly 

Reinforcement Learning (RL), has emerged as a 

powerful tool for power control in wireless systems. 

In contrast to conventional optimization methods, AI-

based techniques such as Q-learning can learn 

optimal power allocation strategies in real time, 

adapting to both the channel state information (CSI) 

and energy availability [4], [5]. These agents can 

strike a dynamic balance between performance 

metrics like Bit Error Rate (BER), Spectral Efficiency 

(SE), and energy consumption - making them well-

suited for next-generation networks powered by 

renewable sources [6], [7]. Despite significant 

progress, most prior works focus either on grid-

powered networks or lack real-time adaptability in 

renewable-powered OFDM systems. Furthermore, 

few studies combine AI-driven dynamic power 

control with realistic solar-powered energy 

constraints, which is a critical gap this paper aims to 

address. In this work, we propose and evaluate an 

intelligent power control scheme based on Q-learning 

for OFDM systems powered by solar energy. The key 

strengths of the proposed approach include real-time 

learning, adaptability to varying channel and energy 

conditions, and a strong focus on maximizing energy 
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efficiency without sacrificing communication 

reliability. The main goals of this paper are to 

investigate dynamic power allocation for OFDM over 

Rayleigh fading channels using Q-learning and to 

evaluate the tradeoff between BER, SE, and energy 

efficiency in solar-powered systems as well as to 

demonstrate the superiority of AI-driven power 

control over static or heuristic-based approaches and 

to validate the performance under realistic solar 

energy harvesting scenarios. The remainder of this 

paper is organized as follows. Section 2 presents 

some works related to the proposed scheme. Section 

3 presents the system models. Section 4 provides the 

numerical results and the discussion. Finally, Section 

5 provides some concluding remarks. 

2 RELATED WORK 

The exponential growth in mobile data demand-

fueled by immersive media, autonomous systems, 

and pervasive IoT devices-has accelerated the global 

pursuit of intelligent and sustainable wireless 

infrastructure. In anticipation of 6G, several research 

efforts have emerged focusing on three essential 

pillars:  

1) renewable energy integration,

2) AI-based power/resource control,

3) simulation of next-generation systems such

as OFDM-based networks under realistic

constraints.

However, while each domain has seen significant 

progress, a holistic system combining all three 

elements remains notably underdeveloped. 

2.1 Renewable Energy in Wireless 
Networks 

Alsharif et al. [3] reviewed various renewable energy 

harvesting techniques, particularly solar, as a viable 

solution to reduce operational carbon emissions in 5G 

and 6G networks. Their study outlines the need for 

green base stations powered by intermittent energy 

sources but lacks a mechanism to address the 

fluctuating nature of harvested energy in real time. 

Similarly, Zhang et al. [2] emphasize energy 

sustainability in the context of high-frequency 6G 

architectures, proposing general frameworks without 

simulation-based validation. 

2.2 AI and Power Control in Wireless 
Systems 

Reinforcement Learning (RL), especially model-free 

algorithms like Q-learning, has emerged as a key 

technique for real-time power adaptation. In [4], 

Nasser et al. propose a deep Q-learning resource 

allocation framework for solar-powered cognitive 

radio networks (CRNs). Although CRNs differ from 

OFDM-based systems, their energy-aware approach 

and state-action design present transferable insights. 

More closely aligned with OFDM and 6G, Yang 

et al. [5] introduce Q-learning for power allocation in 

cell-free massive MIMO networks. Their study 

demonstrates that RL significantly enhances fairness 

and power efficiency but omits energy harvesting 

constraints, operating under an ideal power supply 

assumption. Similarly, the work by Liu et al. [6] 

explores AI in 6G for dynamic power control in dense 

networks, though again without considering solar 

energy as a power source. 

2.3 OFDM and Energy Efficiency 

Some studies have analyzed the energy efficiency of 

OFDM systems under various power control 

schemes. For example, Hassan et al. [7] discuss static 

and adaptive power allocation in OFDM over fading 

channels but do not incorporate AI or renewable 

energy inputs. Their methods lack real-time 

adaptability and perform poorly in energy-

constrained settings. 

2.4 Gaps Identified 

While previous studies have addressed AI-based 

power control, solar energy integration, and OFDM 

simulation separately, none have combined them into 

a unified Solar 6G framework. This gap is important, 

as it overlooks the real-world challenges that arise 

when these technologies interact - such as adapting to 

fluctuating solar power while maintaining reliable 

communication. AI models are often tested in stable 

environments, and solar-powered systems typically 

lack intelligent control. Integrating OFDM, solar 

energy, and AI introduces unique constraints but also 

offers the potential for highly efficient and adaptive 

wireless systems. Addressing these elements together 

is essential for advancing sustainable and intelligent 

6G networks. A summary of these related works and 

their limitations is presented in Table 1. 
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Table 1: Summary of related works. 

Ref. Focus Area Key Findings Limitations 

[1] 6G Vision Highlights sustainability and intelligence for 6G No implementation or simulation 

[2] Green 6G Proposes solar-powered network concepts Lacks dynamic power adaptation 

[3] 
Renewable Energy in 

5G/6G 

Reviews solar harvesting and deployment 

scenarios 

No power control mechanism or 

AI 

[4] 
AI in Solar-Powered 

systems 

Dynamic power allocation under energy 

constraints 

Not OFDM; different network 

structure 

[5] AI in 6G Power fairness optimization in cell-free networks No energy harvesting considered 

[6] AI for Power Control AI-based energy optimization in dense networks Assumes stable energy supply 

[7] 
OFDM Power 

Allocation 

Evaluates BER/SE under different power 

methods 

No AI or energy-harvesting 

integration 

3 SYSTEM MODELS 

We assume an OFDM-based wireless system with 𝑁 

subcarriers transmitting over a Rayleigh fading 

channel. The received signal on subcarrier 𝑘 can be 

expressed as: 

𝑦𝑘 = ℎ𝑘𝑥𝑘 + 𝑛𝑘,       (1) 

where: xk is the transmitted symbol that modulated 

using Quadrature Phase Shift Keying (QPSK) or 

Quadrature Amplitude Modulation (QAM). The hk is 

the Rayleigh fading coefficient while the nk is the 

Additive white Gaussian noise (AWGN).  For each 

subcarrier 𝑘, the instantaneous signal-to-noise ratio 

(SNR) is given by:  

𝛾𝑘 =
⌈ℎ𝑘⌉2 𝑃𝑘

𝜎2 ,        (2) 

where 𝑃𝑘 is the transmit power allocated to 

subcarrier 𝑘 with the variable 𝜎2 refers to the 

variance of the noise. Assuming adaptive 

modulation, the Shannon achievable data rate on 

subcarrier 𝑘 in [bps/Hz] is  

𝐶𝑘 = 𝑙𝑜𝑔2(1 + 𝛾𝑘).         (3) 

The total spectral efficiency (SE) over all subcarriers 

is: 

𝑆𝐸 =
1

𝑁
∑ 𝑙𝑜𝑔2(1 + 𝛾𝑘).𝑁

1    (4) 

Let B be the system bandwidth (in Hz) and 

Ptotal= 𝑃𝑇𝑜𝑡𝑎𝑙 =
1

𝑁
∑  𝑃𝑘

 
𝑘  is the total transmit power.

Then the energy efficiency (EE) can be written as [11] 

𝐸𝐸 =
𝑆𝐸 .  𝐵

𝑃𝑇𝑜𝑡𝑎𝑙
.            (5) 

The approximate BER for over Rayleigh fading 

using average SNR (𝛾̅) can be calculated as 

𝐵𝐸𝑅 =
4

𝑙𝑜𝑔2(𝑀)
(1 −

1

𝑀
) .

1

2
(1 − √

𝛾̅

1+𝛾̅
),       (6) 

where M is the modulation order (e.g., 4 for QPSK, 

16 for 16-QAM).  

In wireless communication, Q-learning enables 

adaptive power allocation by selecting transmit 

power levels based on real-time channel conditions. 

The agent aims to maximize a reward function that 

balances spectral efficiency and power consumption. 

The learning process involves updating Q-values 

iteratively to converge toward an optimal decision-

making policy. 

We use Q-learning to dynamically select power 

levels to balance SE and energy consumption. In our 

model, the state s represents the channel quality, 

expressed as the quantized value of the instantaneous 

channel gain g=∣hk∣2. We divide the range of 

possible channel gains into discrete levels (e.g., low, 

medium, high), enabling the agent to assess the 

quality of the channel before taking action. The 

action a corresponds to selecting a transmit power 

level from a predefined set. Tese sets represent low, 

moderate, and high transmission power settings. The 

Q-learning agent chooses an action based on the

current state to balance energy use and performance.

The reward function evaluates how good a selected

action is in a given state. It encourages spectral

efficiency while penalizing energy usage. The reward

function (r) can be expressed as

𝑟 =  𝑙𝑜𝑔2(1 − 𝛾) − 𝛿 𝑃.   (7) 

Where  𝛿 is a tunable parameter controlling the trade-

off between performance and energy cost and P is the 

power level used. Next, the agent updates the Q-value 

for each state-action pair using the Bellman equation 

below: 
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  𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾. 𝑚𝑎𝑥⏟
𝒶′

𝑄(𝑠′, 𝒶′) − 𝑄(𝑠, 𝑎)].   (8) 

Where: α represents the learning rate and s the next 

state after action a and the max function estimate of 

future reward assuming optimal action in state s′. This 

update allows the agent to learn from experience and 

gradually converge to the optimal power allocation 

strategy for varying channel conditions. 

4 SIMULATION RESULTS AND 

DISCUSSION 

Simulation results have been used to demonstrate the 

performance of OFDM based wireless 

communication systems from spectral and energy 

efficiency prospective. The impacts of integrating the 

solar energy and AI methods have been investigated. 

4.1 Simulation Setup 

A straightforward model for the proposed AI-based 

power control for solar-powered OFDM systems is 

shown in Figure 1. This diagram models the 

transmitter-receiver chain of a wireless 

communication system based on OFDM, with a focus 

on AI-based power control integrated between the 

energy source and the transmitter. The power supply 

powering the communication system are the 

traditional grid-based, or renewable solar. In the case 

of solar energy, power is limited and variable, which 

motivates the need for intelligent control. The power 

control regulates the transmit power fed to the 

transmitter. it receives real-time decisions from the 

AI/Q-learning agent (shown below in red). Its goal is 

to adapt power based on energy availability, channel 

conditions and performance trade-offs (SE, BER, 

EE). Wireless channel is modeled with Rayleigh 

fading and additive white Gaussian noise (AWGN). 

AI/Q-Learning controller represents the core 

intelligence module embedded within the system. It 

evaluates and monitors current channel quality (e.g., 

SNR or channel gain) and energy availability and 

uses this to quantize the state of the system. Based on 

current state and learned Q-values, the best transmit 

power level is then selected. The selected power level 

then sent to the power control module after receiving 

feedback (reward) from the system after transmission 

and updates the Q-table accordingly. This forms a 

reinforcement learning loop, enabling the system to 

learn and adapt its power policy over time for optimal 

performance. All simulations were conducted using 

MATLAB R2024a.  

Figure 1: Block Diagram of an AI-Controlled, Solar-

Powered OFDM Network. 

To evaluate the performance of AI-based power control 

in solar-powered OFDM systems, a MATLAB-based 

Monte Carlo simulation was conducted. The setup models 

a point-to-point wireless link operating under a Rayleigh 

fading environment, with key performance indicators 

including bit error rate (BER), spectral efficiency (SE), and 

energy efficiency (EE). The system employs 64 OFDM 

subcarriers, and each subcarrier experiences independent 

Rayleigh fading. Two modulation schemes are used: QPSK 

for baseline cases (Traditional and Solar) and 16-QAM for 

AI-driven scenarios (AI and Intelligent Solar) to reflect 

adaptive data rate capabilities. For each SNR point, 1000 

OFDM symbols are transmitted per subcarrier to ensure 

statistically significant BER measurements. The transmit 

power is fixed at 0.5 W for the Traditional case and 0.3 W 

for Solar 6G, reflecting a solar energy constraint. In 

contrast, the AI-powered systems select from different 

power values using a Q-learning agent that adapts based on 

real-time channel gain feedback. Other parameters used in 

the simulation can be found in Table 2. 

Table 2: Simulation parameters. 

Parameter Value 

Carrier frequency 28 GHz 

Bandwidth 100-1000MHz

Channel model Fading channel 

Modulation Format QPSK, QAM 

Q- Learning rate α 0.1 

Discount factor γ 0.9 

Exploration rate 0.1 

Power parameters 
Traditional: 0.5 

Solar: 0.3 

4.2 Simulation Results 

In this section, some simulation results to verify the 

theoretical analysis and the effectiveness of the 

proposed approaches are presented. Figure 2 

illustrates the spectral efficiency (SE) performance of 

four different OFDM system configurations under 

varying SNR conditions. The Traditional OFDM 

system, operating at fixed power and using QPSK, 

achieves moderate SE, gradually saturating near 2 

bps/Hz. The Solar-Powered OFDM system, 
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constrained by limited renewable energy shows the 

lowest SE due to its inability to adapt power or 

modulation. In contrast, the AI-Based OFDM system 

employs Q-learning for dynamic power control and 

uses higher-order modulation (16-QAM), 

significantly boosting SE, especially at higher SNRs. 

Most notably, the Intelligent Solar-Powered OFDM 

system - which integrates solar constraints with AI-

driven power adaptation - achieves the highest SE, 

surpassing 5.2 bps/Hz at high SNR. This confirms 

that intelligent power control can effectively 

compensate for solar limitations, enabling sustainable 

and high-throughput communication in future 

wireless networks. 

Figure 2: SE vs. SNR for different scenarios. 

Figure 3 shows that total energy efficiency (EE) 

performance of four OFDM systems under various 

SNR conditions. The Traditional OFDM system, 

operating at constant transmit power without 

optimization, yields the lowest EE due to inefficient 

use of energy resources. The Solar-Powered OFDM 

system improves upon this slightly, benefiting from 

reduced power consumption, but still lacks dynamic 

control, leading to limited gains. The AI-Based 

OFDM system, which uses Q-learning for adaptive 

power control, achieves significantly higher EE 

across the SNR range by intelligently balancing 

performance and power consumption. The 

Traditional OFDM system shows the lowest EE, 

increasing slowly from approximately 0.35 × 10⁷ 

bps/Hz/W at 0 dB to around 0.4 × 10⁷ bps/Hz/W at 

high SNRs due to fixed high-power usage. The Solar-

Powered OFDM system, while limited by a lower 

power budget achieves slightly better EE - starting 

near 0.6 × 10⁷ bps/Hz/W and saturating at around 0.66 

× 10⁷ bps/Hz/W. The AI-Based OFDM system 

significantly improves EE, reaching up to 1.6 × 10⁷ 

bps/Hz/W at 30 dB by adaptively tuning the power to 

match channel conditions. Most impressively, the 

Intelligent Solar-Powered OFDM system achieves 

the highest EE across all SNRs, starting at 1.38 × 10⁷ 

bps/Hz/W and peaking near 1.74 × 10⁷ bps/Hz/W at 

high SNR. These results confirm that combining AI 

with solar power not only conserves energy but also 

optimizes its usage, making it a highly promising 

approach for sustainable 6G wireless networks. 

Notably, the Intelligent Solar-Powered OFDM 

system delivers the best results, maintaining superior 

EE by combining energy-aware power constraints 

with real-time learning-based control. This clearly 

demonstrates the potential of integrating artificial 

intelligence with renewable energy management to 

enhance energy efficiency in next-generation 

wireless systems. 

Figure 3: EE vs. SNR for different scenarios. 

In order to evaluate the effectiveness of the 
proposed system, the Bit Error Rate (BER) 
performance for four OFDM system configurations 
as a function of SNR, ranging from 0 dB to 30 dB on 
a logarithmic scale. The Solar-Powered OFDM 
system achieves the lowest BER across all SNR 
values, benefiting from low-order QPSK modulation 
and reduced power-induced noise; it drops from 
approximately 1×10⁻¹ at 0 dB to below 2×10⁻⁴ at 30 
dB. The Traditional OFDM system follows, reaching 
about 5×10⁻⁴ at high SNR. In contrast, the AI-Based 
OFDM system - employing 16-QAM and Q-learning 
for power control - shows higher BER, from around 
2×10⁻¹ at low SNR to 7×10⁻⁴ at 30 dB, due to the 
increased symbol error sensitivity of higher-order 
modulation. Similarly, the Intelligent Solar-Powered 
OFDM system, which also uses 16-QAM, maintains 
slightly higher BER than the traditional setup, ending 
near 9×10⁻⁴. These results confirm the tradeoff 
between spectral efficiency and reliability: while AI-
based systems boost throughput, they suffer from 
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higher BER under identical SNR conditions due to 
denser modulation schemes, as shown in Figure 4.  

Figure 4: BER vs. SNR for different scenarios. 

5 CONCLUSIONS 

This study introduced a novel simulation framework 

that integrates solar energy harvesting with Q-

learning-based power control in OFDM wireless 

communication systems, aiming to address the 

sustainability and efficiency demands of future 6G 

networks. Four scenarios - Traditional, Solar-

Powered, AI-Based, and Intelligent Solar-Powered - 

were evaluated under Rayleigh fading conditions. 

The results show that while solar-powered systems 

improve energy efficiency, their performance is 

limited by power fluctuations. However, integrating 

reinforcement learning significantly enhances system 

adaptability and efficiency. Notably, the Intelligent 

Solar-Powered system achieved the highest 

performance, with spectral efficiency reaching 5.2 

bps/Hz and energy efficiency of 1.74×10⁷ bps/Hz/W, 

while maintaining a satisfactory BER. 

Despite the promising results, this work is subject 

to certain limitations. The use of a basic Q-learning 

algorithm with discretized state-action spaces may 

not fully exploit the complexity of real-world energy 

and channel dynamics. Additionally, the solar energy 

model was idealized and did not account for real-time 

irradiance variations or storage limitations. 

Moreover, the framework operates in a simulated 

environment without hardware validation. 

For future work, the model can be enhanced by 

incorporating deep reinforcement learning (DRL) 

techniques to better handle high-dimensional, 

continuous state spaces. Further, integrating real-

world solar datasets and testing on hardware 

platforms or testbeds will increase the practicality and 

deployment readiness of such systems in dynamic, 

real-time environments. These advancements will be 

crucial in developing scalable, intelligent, and 

sustainable wireless networks for the 6G era. 
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