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Abstract

The aim of this dissertation is to present the details of the PNPM DG schemes in one space
dimension for N,M ∈ N0 with M > N , to study their numerical properties, to apply them
to scalar equations and systems of the hyperbolic conservation laws, and to make some basic
comparisons between numerical schemes from this large class of schemes. The PNPM DG
schemes were originally introduced by Dumbser et al. [7].

The PNPM DG schemes use reconstruction operators applied to the discontinuous Galerkin
(DG) scheme. First, the given data are projected on elements of the numerical space domain,
which is discretized by an appropriate partition. This projection gives in each element at
the starting time an approximation which is written in each element as a sum of piecewise
polynomials of a maximal degree N . We define this projection procedure and associate with it
an appropriate basis and an appropriate space of piecewise polynomials. With these algebraic
elements (basis and space), we prove the existence and the uniqueness of the approximation.
Then we prove some of its properties, where we will consider this procedure as an operator.

After that, we prove estimates of this operator using the L1 and L2 norms. This proof is
done using the Bramble-Hilbert lemma. A smooth order N + 1 is proven for the projection
operator which gives polynomials of the degree N . As supplement, we give some examples of
the projection operators using various continuous and discontinuous functions.

We give an extra work for the extension of the projection operator to the 2D case, with some
properties and estimates.

The first step of the PNPM DG schemes is to produce new piecewise polynomials of degree
M . They are reconstructed in each element from these approximate polynomials of the degree
N . We present this reconstruction and define the stencils which have a main role in this step.
We prove the existence of the solution using these operators with conditions on choosing the
size of the stencil with respect to the orders N and M . This proof is a first general proof of
this fact which previously had been obtained for special cases, M = 2N + 1 only, see [14]. We
consider two cases of the solution, either a unique exact solution or a unique solution obtained
by using the least squares approach in the overdetermined case.
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Then we prove some of the properties of the reconstruction operator, especially the identity
property. We also prove that there are some relations between the two previous operators.
Finally, we prove estimates of this operator using the L2 norm. A smooth order M+1 is proven
for the reconstruction operator which gives polynomials of degree M . We again demonstrate,
as supplement, some examples of the reconstruction operators with several types and sizes of
the stencils using various functions.

The second step of the PNPM DG schemes is a time evolution that gives other polynomials
of degree M in time and space. This improvement of the data depends on applying the local
space time Galerkin scheme. We demonstrate the details of this step and explain how to insert
the reconstructed polynomials inside the solutions of this step. After that, we provide some
simple examples for our work in this step.

The third step of PNPM DG schemes is to apply the DG scheme to the conservation laws.
The numerical flux, taken to solve the Riemann problem at the interfaces of the elements, has
to be computed by using the solutions of the local Galerkin step.

We consider the linear advection equation as a standard equation of the 1D hyperbolic
equations. We show the general formula of the PNPM DG schemes for the cases a > 0 and
a < 0, discuss the boundary conditions, and view some special formulas for some choices of the
orders N and M . Then we study the linear stability, obtaining tables of the maximal limits
of the stability for the schemes for all orders till M = 5. We also study the efficiency of the
schemes measuring the cost in the computational time and mesh discretization. We also study
the influence of the size and the type of the stencils.

We also apply the PNPM DG schemes to the Burgers equation and associate to them the
Lax-Friedrichs and Godunov fluxes. We study two different cases. First, we apply the schemes
for the Riemann problem and discuss the effect of the use of the slope limiter. We note that the
Godunov flux gives better results than the Lax-Friedrichs flux. Second, we apply the schemes
for smooth function and compare the solutions using the Lax-Friedrichs and the Godunov fluxes
at different times using the TVDM and TVBM limiters.

In the last Chapter, we apply the schemes to the system of the shallow water equations.



Zusammenfassung

Das Ziel dieser Arbeit ist es, die Details der PNPM DG Schemata für N,M ∈ N0 mit M > N
in einer Raumdimension zu präsentieren, ihre numerischen Eigenschaften zu studieren, sie auf
skalare und Systeme von hyperbolischen Erhaltungssätzen anzuwenden, und einige grundle-
gende Vergleiche zwischen numerischen Schemata aus dieser großen Klasse von Schemata zu
machen. Die PNPM DG Schemata wurden ursprünglich von Dumbser et al. [7] eingeführt.

Die PNPM DG Schemata wenden Rekonstruktionsoperatoren auf die diskontinuierliche Ga-
lerkin Schema an. Die angegebene Daten werden zunächst auf Elemente des numerischen
Intervalls, welches durch eine entsprechende Aufteilung diskretisiert wird, projiziert. Diese
Projektion liefert zur Startzeit in jedem Element eine Approximation, welche in jedem Element
als eine Summe von stückweisen Polynomen vom maximalen Grad N geschrieben wird. Wir
definieren dieses Projektionsverfahren und ordnen ihm eine geeignete Basis und einen geeigneten
Raum stückweiser Polynome zu. Mit diesen algebraischen Elementen (bestehend aus Basis und
Raum) beweisen wir die Existenz und die Eindeutigkeit der Approximation. Darüber hinaus
beweisen wir einige seiner Eigenschaften, indem wir dieses Verfahren als Operator betrachten.

Im Anschluss beweisen wir einige Abschätzungen dieses Operators mit Hilfe der L1- und
L2-Normen. Dieser Beweis wird mit dem Bramble-Hilbert-Lemma durchgeführt. Eine glatte
Ordnung N + 1 wird für den Projektionsoperator, welcher Polynome vom Grad N liefert,
bewiesen. Als Ergänzung geben wir einige Beispiele der Projektionsoperatoren an, bei denen
sowohl kontinuierliche als auch diskontinuierliche Funktionen verwendet werden.

Der Projektionsoperator wird auf den 2D-Fall erweitert und wir geben einige Eigenschaften
und Abschätzungen an.

Im ersten Schritt der PNPM DG Schemata werden neue stückweise Polynome vom Grad
M erzeugt. In jedem Element werden diese aus den annähernden Polynomen eines Grades N
rekonstruiert. Wir präsentieren diese Rekonstruktion und definieren die Abhängigkeitsgebiete,
die in diesem Schritt eine Hauptrolle spielen. Wir beweisen die Existenz der Lösung unter
Verwendung dieser Operatoren mit Bedingungen zur Auswahl der Größe des Gebietes in Bezug
auf die Ordnungen N und M . Dieser Beweis ist der erste allgemeine Beweis dieser Tatsache,
welche bisher für Sonderfälle, nur M = 2N + 1 erhalten wurde, siehe [14]. Wir betrachten
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zwei Fälle der Lösung, entweder eine eindeutige Lösung oder eine, die unter Verwendung des
least-squares Ansatzes erhalten wird.

Dann beweisen wir einige Eigenschaften des Rekonstruktionsoperators, insbesondere die Iden-
titätseigenschaft. Wir beweisen auch, dass zwischen den beiden vorherigen Operatoren einige
Beziehungen bestehen. Schließlich beweisen wir Abschätzungen dieses Operators mit der L2-
Norm. Eine glatte Ordnung M + 1 wird für den Rekonstruktionsoperator bewiesen, welcher
Polynome vom Grad M liefert. Als Ergänzung zeigen wir einige Beispiele der Rekonstruktion-
soperatoren mit verschiedenen Arten und Größen der Abhängigkeitsgebieten unter Verwendung
verschiedener Funktionen.

Der zweite Schritt der PNPM DG Schemata ist eine Zeitentwicklung, welche andere Polynome
vom GradM in Zeit und Raum ergibt. Diese Verbesserung der Daten hängt von der Anwendung
des lokalen Raum-Zeit Galerkin Schemas ab. Wir demonstrieren die Details dieses Schritts und
erklären, wie die rekonstruierten Polynome in die Lösungen dieses Schrittes eingefügt werden.
Danach geben wir einige einfache Beispiele für unsere Arbeit in diesem Schritt.

Im dritten Schritt eines PNPM DG Schemas wird das DG-Schema auf die Erhaltungssätze
angewendet. Der numerische Fluss, der zur Lösung des Riemann-Problems an den Grenzflächen
der Elemente benötigt wird, wird unter Verwendung der Lösungen des lokalen Galerkin-Schritts
berechnet.

Wir betrachten die lineare Advektionsgleichung als eine Standard Gleichung der 1D hyper-
bolischen Gleichungen. Wir zeigen die allgemeine Formel der PNPM DG Schemata für die Fälle
a > 0 und a < 0, diskutieren die Rand-Bedingungen, und zeigen einige spezielle Formeln für
einige Auswahlmöglichkeiten der Ordnungen N und M . Im Anschluss studieren wir die lineare
Stabilität und erhalten Tabellen der maximalen Stabilitätsgrenzen für die Schemata für alle
Ordnungen bis M = 5. Wir studieren auch die Effizienz der Schemata durch Bestimmung
der Kosten für die Rechenzeit und Gitterdiskretisierung. Wir studieren auch den Einfluss der
Größe und der Art der Gebiete.

Wir wenden die PNPM DG Schemata auch auf die Burgers Gleichung an unter Verwen-
dung des Lax-Friedrichs oder Godunov Flusses. Wir studieren zwei verschiedene Fälle. Zuerst
wenden wir die Schemata auf das Riemann-Problem an und diskutieren den Effekt der Ver-
wendung des Slope-Limiters. Es stellt sich heraus, dass der Godunov-Fluss bessere Ergebnisse
liefert als der Lax-Friedrichs-Fluss. Zweitens wenden wir die Schemata auf eine glatte Funk-
tion an und vergleichen die Lösungen mit TVDM- und TVBM-Limitern unter Verwendung der
Lax-Friedrichs und der Godunov Flüsse zu verschiedenen Zeiten.

Im letzten Kapitel wenden wir die Schemata auf das System der Shallow-Water Gleichungen
an.
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Chapter 1

Introduction

1.1 Overview of the PNPM DG Schemes

A conservation law [12] is a system of hyperbolic PDEs that states that the rate of change of a
physical state or conserved quantity is governed by a flux function. We are interested in solving
1D hyperbolic systems of conservation laws

vt(t, x) + f(v(t, x))x = 0,

where the dependent variable v = v(t, x) is the vector of conserved quantities, the continuously
differentiable function f : Rd → Rd is the flux function, x ∈ I = [a, b] ⊂ R is the space variable,
and t > 0 is the time variable. The hyperbolicity means that the Jacobian matrix of f(v)
with respect to v has real eigenvalues associated with a set of linearly independent eigenvectors
which form a basis of Rd, where d ∈ N is the dimension of the vector v.

The PNPM DG schemes, originally developed by Dumbser et al. [7], are able, in general, to
treat these systems even with source term s(v) of the form vt + f(v)x = s(v).

The data are approximated at each time step tn on the space interval I by a piecewise
polynomial un of degree N ∈ N0 using some time independent piecewise basis polynomials Φi,j

of degree i 6 N and with time dependent coefficients ûni,j(t). This approximation is written as

un(t, x) =
Z∑
j=1

N∑
i=0

ûni,j(t)Φi,j(x),

where Z is the number of cells in the discretization.
The PNPM DG schemes start with using a linear reconstruction operator applied at the

beginning of each time step of the discontinuous Galerkin schemes (DG). This operator is
applied to the numerical data un. It increases the order of accuracy in space obtaining high
order piecewise polynomials of an arbitrary degree M > N . These polynomials are linear
combinations of the basis functions Φi,j of degree M with time dependent coefficients ŵni,j(t).
In the special case when M = N the reconstruction operator reduces to the identity. Dumbser
and Munz [8] were the first to propose the application of the reconstruction operators to the
DG schemes at the beginning of each time step.
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1.2. THE MAIN RESULTS

The PNPM DG schemes use also a local continuous space time Galerkin method. This
second step evolves the numerical solution in time inside each element and provides a high
order time discretization of the same order of accuracy as the space discretization. This gives,
as a high order accurate predictor, space time polynomials for the functions v, f and s. Dumbser
et al. [7] proposed to use this approach to obtain smaller algebraic systems and solved these
systems efficiently by a simple iteration scheme. They also explained that at least for linear
hyperbolic PDE this iteration scheme has a unique solution and the convergence to this solution
is guaranteed, according to the Banach fixed point theorem. For linear homogeneous scalar
equations the method always converges for any initial guess vector after at most M iterations.
But for nonlinear systems only about M or M + 1 iterations are taken as an approximation.

The third step is to apply the DG schemes. The result of the iteration method is used
for the time integration of the flux and source evolutions. The ADER methods, for Arbitrary
Accuracy DERivative Riemann problem, of Toro et al. [24], solve a high order Riemann problem
approximately at the interface. They need the Gaussian quadrature in space and time in order
to compute the fluxes across the interface. Dumbser et al. [9, 11] proposed a quadrature free
version of the scheme of arbitrary accuracy in space and time on unstructured meshes in two
and three space dimensions. This version of the ADER schemes is similar to the original ENO
scheme proposed by Harten et al. [15], since it first evolves the data for each element via
the Cauchy-Kovalewski procedure and then solves the interactions across the boundary. In
the PNPM DG schemes, to obtain a quadrature free version of the schemes, the space time
informations has been used, which was neither done in the ENO scheme nor in previous ADER
schemes.

The resulting PNPM DG schemes are one step schemes, i.e. only two time levels are involved
in one time step. They are quadrature free, fully discrete, and can be chosen of arbitrary order
of accuracy in space and time. These schemes contain both the finite volume schemes when
N = 0, and the discontinuous Galerkin schemes when M = N .

1.2 The Main Results

In Chapter 2, we represent how we define a piecewise approximation u using the operator ΠN,Z .
We prove that this operator is stable, linear, conservative and as a best approximation. As well
as, it is an orthogonal projection. We give estimates for this operator in the L1 and L2 norms
for the smooth functions and for the discontinuous ones.

The idea of the projection is extended to the 2D case. We prove in an analogous way similar
properties in Chapter 4.

The main part of the PNPM DG schemes is to use the reconstruction operators, as we will
show in Chapter 5. It is of interest to increase the order of the solution in space arbitrarily. The
reconstruction operator uses a domain around an arbitrary element. This domain is called the
reconstruction stencil. The reconstruction operators are given by equalities of the projections
on the elements of the stencil.

The idea of using the reconstruction operators is inspired from the work of Dumbser et al.
[7]. They applied these operators to conservation laws in two and three space dimensions. Our
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CHAPTER 1. INTRODUCTION

work on the reconstruction operators is only to the one space dimension and this work has
driven us to prove properties more precisely. A central result is a proof of the unique solvability
of the reconstruction step. Our choices of the stencil sizes for the reconstruction operators
always generate systems of equations with full column rank. Furthermore, the reconstruction
operators give approximations of the data considered, but as a special case they recover the
same data when these originally are polynomials of the same degree.

We prove that the reconstruction operator gives unique solutions and it is stable, linear,
conservative, and consistent. We give some theorems to show the relation between the pro-
jection and the reconstruction operators. Moreover, we prove estimates for the reconstruction
operator meaning that the reconstructed polynomials of degree M are accurate of order M + 1
in the L2 norm, provided that the stencil gives equations, whose number is greater than or
equal to the number of the coefficients of the reconstructed polynomials.

The PNPM DG schemes develop the data in time once in each time step. Furthermore,
with the nonlinear equations we use a slope limiter. We apply this limiter once in each time
step. On the other hand, with the RKDG schemes one needs to develop the data in time and
to use the slope limiter several times in each time step, according to the Runge-Kutta stages.
Thus, precisely due to this point, for high order schemes the PNPM are faster than the RKDG
schemes.

Courant numbers are important for the stability of explicit schemes for conservation laws.
We computationally explore maximal limits of these numbers for the PNPM DG schemes by
applying the von-Neumann analysis and using an experimental procedure. We obtain a wide
variety of stability limits, including some unstable cases for which we have only one value λ = 1
that gives a stable solution. Moreover, there are some semi-stable cases with a minimal bound
on the time step and some cases with a larger stability interval that ]0, 1]. This study of the
stability is for the application of the PNPM DG schemes to the linear advection equation.

1.3 Outline of the Structure

Now we give an overview of our thesis. The definition and properties of the projection procedure
are presented in Chapter 2. This projection produces piecewise representations of the data.
These representations are polynomials of degree N > 0. We prove the existence and the
uniqueness of the approximation and prove some properties of the projection operator. At the
end we give estimates of this operator using the L1 and L2 norms. A smooth order N + 1 is
proven for the projection operator which gives polynomials of the degree N .

Some examples of the projection operator using various functions are given in Chapter 3
with figures and tables of errors. The projection always has the order N + 1 of accuracy using
the L2 norm.

The Chapter 4 includes an extension of the projection operator to the 2D case, with some
properties and estimates.

The main part of the work is in Chapter 5 where we introduce the idea of the reconstruction
operators. We define the stencils and their types and sizes. We prove the existence and
uniqueness of the solution using these operators. This is a first general proof of this fact which
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1.3. OUTLINE OF THE STRUCTURE

is previously had been obtained for special cases, M = 2N + 1 only, see [14]. Some examples
of the reconstruction operators with several types and sizes of the reconstruction stencils view
the formulas of these operators. We consider two cases of the solution, either unique exact
solutions or unique solutions by using the least square approach in the overdetermined case.
Furthermore, some theorems review the properties of these operators and review the relation
between the two operators. Finally, we give estimates using the L2 norm. A smooth order
M + 1 is proven for the reconstruction operator which gives polynomials of degree M .

Some examples of the reconstruction operator using various functions are given in Chapter
6 with figures and tables of errors. The reconstruction always has the order M + 1 of accuracy
using the L2 norm.

In Chapter 7 we treat the idea of improvement the data in time. This step increases the
degree of the time variable for the data by applying the space time continuous Galerkin method
to the conservation law considered. We give examples of building the nodal bases, explain how
to insert the reconstructed polynomials and how to reduce the linear algebraic system, and
show the iterative method to solve the reduced linear algebraic system. After that, we view
some formulas of the solutions for the advection equation and for the Burgers equation.

In Chapter 8 the DG schemes are applied to the conservation laws. The numerical flux,
taken to solve the Riemann problem at the interfaces of the elements, will be applied to the
space time solutions of the continuous Galerkin method of Chapter 7.

The Chapter 9 is specified to study the numerical properties of the PNPM DG schemes.
The linear advection equation is of interest to determine the efficiency and the ability of the
numerical schemes to capture the best approximations. We view some examples of the PNPM
DG schemes applied to the advection equation, study the Fourier stability analysis, give the
limits of the Courant numbers associated with these schemes. Also we study the numerical
effect of the size and form of these stencils on the efficiency of the PNPM DG schemes.

In Chapter 10 we apply the PNPM DG schemes to the Burgers equation for the Riemann
problem and for smooth functions. We discuss the influence of the slope limiter on the solutions
and compare the solutions using the Lax-Friedrichs and the Godunov fluxes at different times
and using the TVDM and TVBM limiters.

Finally, in Chapter 11, we apply the PNPM DG schemes to the system the shallow water
equations.
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Chapter 2

The Projection onto Piecewise
Polynomials

2.1 Mathematical Preliminaries

2.1.1 Function Classes

Given a closed finite interval I = [a, b] ⊂ R, we define the space of continuous functions on I,
C(I) := {v : v is continuous at each x ∈ I}, see Adams [1]. This space is a normed linear
space with the norm ||v||C(I) = maxx∈I |v(x)|. We often deal with smoother functions which
have derivatives. If r is a positive integer, we introduce the space of r-times continuously differ-
entiable functions as Cr(I) := {v : v,D(1)v, . . . , D(r)v ∈ C(I)}, where D(i)v is the derivative of
order i of v. At the boundary points a, b ∈ R we assume one-sided continuous differentiability.

We introduce for p ∈ [1,∞] the classical Lebesgue spaces

Lp(I) := {v : v is measurable on I and ||v||Lp(I) <∞},

with the norms

||v||Lp(I) :=

(∫
I

|v(x)|pdx
) 1

p

, 1 6 p <∞,

||v||L∞(I) := ess sup
x∈I
|v(x)|, p =∞,

Especially, we use extensively the L2 norm and the corresponding scalar product

〈f, g〉 :=

∫
I

f(x)g(x)dx. (2.1)

Let p ∈ [1,∞[ and let r be a non negative integer, the Sobolev space is defined by

W r,p(I) := {v ∈ Lp(I) : D(r)v ∈ Lp(I)}, (2.2)

14



2.1. MATHEMATICAL PRELIMINARIES

where the derivatives are taken in the sense of distributions. This space is associated with the
norm

||v||W r,p(I) :=

(
r∑
i=0

(||D(i)v||Lp(I))
p

)1/p

, (2.3)

and with the seminorm
|v|W r,p(I) := ||D(r)v||Lp(I). (2.4)

For the case p = 2, we have the spaces W r,2(I) with the seminorm |v|W r,2(I). The function
| · |W r,p(I) is a seminorm, since we may get |v|W r,p(I) = 0 even if v 6= 0, e.g. if v ≡ 1 and r > 1,
therefore it is not a norm.

2.1.2 The Projection Operator

Let X be a normed linear vector space and V ⊂ X be a linear subspace. Then a bounded
idempotent operator P : X → V with P = P 2 is called a projection operator. Moreover, if X
is a Hilbert space and the image Im(P ) is orthogonal to the kernel ker(P ), then P is called an
orthogonal projection operator. We are interested only in the case where V =Im(P ) is a finite
dimensional subspace.

2.1.3 The Polynomials

Polynomials play a main role in approximation theory and numerical analysis. To indicate why
this might be the case, let N ∈ N0 and I ⊆ R be an interval. We call

PN,I :=

{
p : p(x) =

N∑
i=0

aix
i, a0, . . . , aN ∈ R, x ∈ I

}
, (2.5)

the space of polynomials of a maximal degree N with support I. This space is a finite di-
mensional linear space with the monomials 1, x, . . . , xN as basis. One may also consider any
other convenient basis. The polynomials from PN,I have many attractive features. (1) They
are smooth functions. (2) The coefficients a0, . . . , aN can be stored and evaluated on a digital
computer. (3) The derivative of a polynomial is again a polynomial. (4) The number of zeros of
a polynomial of degree N cannot exceed N . (5) Given any continuous function on an interval
[a, b], there exists a polynomial which is uniformly close to it. (6) Precise rates of convergence
can be given for the approximation of smooth functions by polynomials. These properties in-
dicate, indeed, that polynomials should be ideal for approximation purposes, however, it has
been observed that the polynomials possess one unfortunate feature. Many approximation pro-
cesses involving polynomials tend to produce polynomial approximations that oscillate wildly.
This main drawback of the space PN,I of polynomials is a kind of inflexibility. Polynomials
seem to do all right on sufficiently small intervals, but when we go to larger intervals, severe
oscillations often appear particularly if the degree N > 3, 4. This observation suggests that in
order to achieve a greater flexibility, one should divide up the interval of interest into smaller
sub intervals. We are motivated to define another space of polynomials.

15



CHAPTER 2. THE PROJECTION ONTO PIECEWISE POLYNOMIALS

2.2 The Space of the Piecewise Polynomials

Let Z ∈ N, a < b be real, ∆ := {xj+ 1
2
}Z0 be a grid of Z + 1 equally distant points a =

x 1
2
< x 3

2
< . . . < xZ− 1

2
< xZ+ 1

2
= b which are the called the nodes of the partition or grid.

The set ∆ partitions the interval I = [a, b] into Z disjoint subintervals which we call elements
Ij := [xj− 1

2
, xj+ 1

2
[ for j = 1, . . . , Z. We define the midpoints by xj := 1

2
(xj+ 1

2
+ xj− 1

2
) and the

constant element size h := xj+ 1
2
− xj− 1

2
= b−a

Z
.

2.2.1 The Definition

Given a non negative integer N ∈ N0. We call

PN,I,Z := {p : for all j = 1, . . . , Z, ∃ pj ∈ PN,Ij ; p(x) = pj(x) for x ∈ Ij},

the space of piecewise polynomials of degree at most N with respect to the partition ∆, where
PN,Ij for j = 1, . . . , Z are the spaces of polynomials of the degree N given by (2.5). Any
polynomial on [a, b] is also a smooth piecewise polynomial with respect to any partition of this
interval. This implies that the space PN,I is a subspace of PN,I,Z .

By going over from polynomials to piecewise polynomials, we have gained flexibility, but at
the same time we have lost an important property. The piecewise polynomial functions are not
necessarily smooth and they can even be discontinuous. Each function p ∈ PN,I,Z consists of Z
polynomial terms. This means that the two polynomial terms pj−1 and pj associated with the
intervals Ij−1 and Ij respectively have one common node xj− 1

2
and are unrelated to each other.

Thus there may be a jump discontinuity at xj− 1
2
. Thus, the space PN,I,Z contains functions

with possible jump discontinuities at the interior nodes xj∓ 1
2
.

Remark 2.1. In order to maintain the flexibility of piecewise polynomials with achieving some
degree of global smoothness, one can enforce smoothness conditions on the polynomial terms
and their derivatives at the interior nodes. In other words, one can force the two polynomial
terms to tie together smoothly in the sense that a piecewise polynomial p ∈ PN,I,Z and its first
derivatives are all continuous across the node. For more details, one can see [19]. Here we are
concerned only with the type of piecewise polynomials without such conditions on the terms.

2.2.2 The Legendre Polynomials

The mutually orthogonal Legendre polynomials of degree i ∈ N0 on the reference interval

J = [−1, 1] can be determined by the Rodrigues formula Li(s) = (−1)i

2ii!
di

dsi
{(1− s2)i} for s ∈ J ,

see e.g. Stegun [21]. On J they satisfy the orthogonality condition∫ 1

−1

Lm(s)Ln(s)ds =
2

2n+ 1
δmn,

where δmn is the Kronecker delta and satisfy also

Li(−s) = (−1)iLi(s) and Li(1) = 1, (2.6)

16



2.2. THE SPACE OF THE PIECEWISE POLYNOMIALS

see e.g. Koornwinder et al. [17, Table 18.6.1]. For example, the first four polynomials are{
1, s,

3s2 − 1

2
,
5s3 − 3s

2

}
.

2.2.3 Finding a Basis for the Space PN,I,Z

Let Ij for j = 1, . . . , Z be our discrete intervals with constant length h and midpoints xj. We
define linear reference transformations γj : Ij → J by

γj(x) :=
2

h
(x− xj), x ∈ Ij. (2.7)

We find that γj(x) ∈ [−1, 1] if x ∈ Ij and 0 elsewhere. We can suppose that γ1 is a vari-
able for the Legendre polynomial associated with I1, and γ2 with I2, etc. Thus using these
transformations we obtain the transformed piecewise Legendre basis functions

Φi,j(x) =

{
Li(γj(x)) x ∈ Ij
0 x ∈ I\Ij

j = 1, . . . , Z, i = 0, . . . , N. (2.8)

The functions Φi,j are orthogonal and defined on I, not only on Ij. For example, in Ij

Φ0,j(x) = 1, Φ1,j(x) =
2

h
(x− xj), Φ2,j(x) =

3

2

(
2

h
(x− xj)

)2

− 1

2
,

and in I\Ij we have Φ0,j(x) = Φ1,j(x) = Φ2,j(x) = 0.
We collect the first N + 1 such functions in the set AN,j := {Φ0,j, . . . ,ΦN,j}. Let finally

ΩN,j := span{AN,j} be the space spanned by AN,j. The restriction AN,j|Ij forms a basis for
ΩN,j|Ij , this follows directly from the linearly independence of the Legendre polynomials. Also,
the space ΩN,j|Ij is a subspace of L2(Ij) and L1(Ij), therefore we can use the following scalar
product

〈v, w〉j :=

∫
Ij

v(x)w(x)dx, for all v, w ∈ L2(Ij), (2.9)

and the norms

||v||L2(Ij) :=

√∫
Ij

|v(x)|2dx, for all v ∈ L2(Ij),

||v||L1(Ij) :=

∫
Ij

|v(x)|dx, for all v ∈ L1(Ij).

Each space ΩN,j|Ij has a basis which consists of N + 1 polynomials and is a subspace of PN,Ij ,
thus ΩN,j|Ij = PN,Ij . We can now take a new definition of the space PN,I,Z as follows

PN,I,Z := {p : for all j = 1, . . . , Z, ∃ pj ∈ ΩN,j|Ij ; p(x) = pj(x) for x ∈ Ij}. (2.10)

For all i = 0, . . . , N and j = 1, . . . , Z, the function Φi,j given by (2.8) is a piecewise polynomial

defined on I, thus Φi,j ∈ PN,I,Z . Then the set BN,Z :=
⋃Z
j=1AN,j = {Φi,j}j=1,...,Z

i=0,...,N satisfies

17



CHAPTER 2. THE PROJECTION ONTO PIECEWISE POLYNOMIALS

BN,Z |Ij = AN,j|Ij , for all j = 1, . . . , Z. Thus, BN,Z |Ij is linearly independent. Since AN,k∩AN,i =
{0} when k 6= i, one may easily deduce that BN,Z itself is linearly independent. Then BN,Z is

a basis of the direct sum of the spaces span{AN,j|Ij}, which is itself the sum
∑Z

j=1 PN,I |Ij . On

the other hand, according to the definition (2.10), we have PN,I,Z =
∑Z

j=1 PN,I |Ij . Then BN,Z

is a basis of PN,I,Z . Moreover, the basis BN,Z consists of orthogonal functions on I with∫
Ij

Φm,j(x)Φn,j′(x)dx =

{
h

2m+1
δmn, j = j′,

0, j 6= j′,
m, n = 0, . . . , N. (2.11)

Thus we have proved the following theorem

Theorem 2.2. PN,I,Z has the dimension Z(N + 1) and the set BN,Z is an orthogonal basis for
it.

2.3 Approximating Using Piecewise Polynomials

In this chapter we will study various functions of different order of smoothness, e.g. starting
from the space C∞ of infinitely continuously differentiable functions, such as e.g. sin x, up to
the discontinuous functions, such as a jump function. Therefore, the function, which will be
considered, must be at least bounded on the interval I. The Riemann integral of a bounded
function on a closed interval I always exists, provided that the set of points in I, at which
the function is not continuous, has Lebesgue measure 0, see also [13]. Therefore, we deal with
integrable functions, for example, deal with v ∈ L2(I).

2.3.1 The Approximation

Given v ∈ L2(I). We want to approximate v using piecewise polynomials finding u ∈ PN,I,Z in
such a way that the error in L2 norm is minimal. Suppose that the piecewise polynomial u is
written in the form

u(x) =
Z∑
j=1

N∑
i=0

ûi,jΦi,j(x), x ∈ I.

The coefficients ûi,j are the unknowns and must be computed in such a way that the error of
finding them in the L2 norm is minimal.

The error is the difference E(ûi,j, x) = v(x) − u(x). The error becomes minimal when the
derivatives of its norm squared with respect to the unknowns ûk,j vanish, i.e. ∂

∂ûk,j
||E||2L2(I) = 0

for all k = 0, . . . , N and j = 1, . . . , Z. The norm of the error is given by

||E||2L2(I) =

∫ b

a

E2dx =
Z∑
j=1

∫
Ij

(
E|Ij(x)

)2
dx =

Z∑
j=1

∫
Ij

(
v(x)−

N∑
i=0

ûi,jΦi,j(x)

)2

dx.

18



2.3. APPROXIMATING USING PIECEWISE POLYNOMIALS

Thus we have for all k = 0, . . . , N and j = 1, . . . , Z

0 =
∂

∂ûk,j
||E||2L2(I) =

∂

∂ûk,j

 Z∑
j=1

∫
Ij

(
v(x)−

N∑
i=0

ûi,jΦi,j(x)

)2

dx


=

∫
Ij

∂

∂ûk,j

(
v(x)−

N∑
i=0

ûi,jΦi,j(x)

)2

dx = 2

∫
Ij

(
v(x)−

N∑
i=0

ûi,jΦi,j(x)

)
[−Φk,j(x)]dx.

Therefore, we must have
∫
Ij

(∑N
i=0 ûi,jΦi,j(x)

)
Φk,j(x)dx =

∫
Ij
v(x)Φk,j(x)dx, or in detail

û0,j

∫
Ij

Φ0,j(x)Φ0,j(x)dx+ . . .+ ûN,j

∫
Ij

ΦN,j(x)Φ0,j(x)dx =

∫
Ij

v(x)Φ0,j(x)dx,

û0,j

∫
Ij

Φ0,j(x)Φ1,j(x)dx+ . . .+ ûN,j

∫
Ij

ΦN,j(x)Φ1,j(x)dx =

∫
Ij

v(x)Φ1,j(x)dx,

...

û0,j

∫
Ij

Φ0,j(x)ΦN,j(x)dx+ . . .+ ûN,j

∫
Ij

ΦN,j(x)ΦN,j(x)dx =

∫
Ij

v(x)ΦN,j(x)dx.

According to the orthogonality (2.11), we obtain for j = 1, . . . , Z, hû0,j =
∫
Ij
v(x)Φ0,j(x)dx,

h
3
û1,j =

∫
Ij
v(x)Φ1,j(x)dx, and h

2N+1
ûN,j =

∫
Ij
v(x)ΦN,j(x)dx, or simply

ûi,j =
2i+ 1

h
〈v,Φi,j〉j, i = 0, . . . , N, j = 1, . . . , Z.

2.3.2 The Definition

The solution of our problem of approximating a function v ∈ L2(I) using piecewise polynomials
with minimal error using the L2 norm is a piecewise polynomial u ∈ PN,I,Z which is given by

u(x) =
Z∑
j=1

N∑
i=0

ûi,jΦi,j(x), x ∈ I.

The coefficients ûi,j have to computed by the following Z(N + 1) equations

ûi,j =
2i+ 1

h

∫
Ij

v(x)Φi,j(x)dx. (2.12)

We could say also that the solution consists of Z terms. Each term is denoted by

uj(x) =
N∑
i=0

ûi,jΦi,j(x), x ∈ I. (2.13)

It is a polynomial of degree N related to the element Ij and is 0 on I\Ij.
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2.4 Analytical Study

In fact, one can look at the procedure of finding the approximation as the application of an
operator. We define this operator ΠN,Z : L2(I)→ PN,I,Z by ΠN,Z(v) := u to give

ΠN,Z(v)(x) = u(x) =
Z∑
j=1

N∑
i=0

ûi,jΦi,j(x), for x ∈ I, (2.14)

where the coefficients ûi,j are given by (2.12) depending on v. We have for j = 1, . . . , Z

ΠN,Z(v)|Ij(x) = u|Ij(x) = uj(x) =
N∑
i=0

ûi,jΦi,j(x), for x ∈ Ij.

The operator ΠN,Z is linear, that is obvious from the definition. Also the operator ΠN,Z has
the following properties.

2.4.1 Identity

The operator ΠN,Z is a projection, i.e. it is idempotent meaning that if v itself is a polynomial
of degree N defined on I, then ΠN,Z(v) = v. This implies that ΠN,Z(ΠN,Z(v)) = ΠN,Z(v).

Proof. Let u = ΠN,Z(v) and uj = u|Ij for j = 1, . . . , Z. Since v and uj are polynomials of the

degree N defined on Ij, then these both can be written in the form v(x) =
∑N

i=0 v̂i,jΦi,j(x) and

uj(x) =
∑N

i=0 ûi,jΦi,j(x) for x ∈ Ij. We have to prove v̂i,j = ûi,j for all i = 0, . . . , N . According
to (2.12) we have for all i = 0, . . . , N and j = 1, . . . , Z

ûi,j =
2i+ 1

h

∫
I1

v(x)Φi,j(x)dx =
2i+ 1

h

∫
I1

(
N∑
k=0

v̂k,jΦk,j(x)

)
Φi,j(x)dx

=
2i+ 1

h

N∑
k=0

v̂k,j

(∫
I1

Φk,j(x)Φi,j(x)dx

)
=

2i+ 1

h

N∑
k=0

v̂k,j

(
h

2i+ 1
δi,k

)
=

2i+ 1

h
v̂i,j

h

2i+ 1
= v̂i,j.

2.4.2 This Operator is an Orthogonal Projection

The solution u = ΠN,Z(v) is an orthogonal projection of v on PN,I,Z with respect to the L2

scalar product in space.

20



2.4. ANALYTICAL STUDY

Proof. Let u = ΠN,Z(v) and Φi,j one of the basis functions of the space PN,I,Z . We have

〈v − u,Φi,j〉 = 0 + . . .+ 0 + 〈v − uj,Φi,j〉j + 0 + . . .+ 0 = 〈v,Φi,j〉j − 〈uj,Φi,j〉j

=

∫
Ij

v(x)Φi,j(x)dx−
∫
Ij

(
N∑
k=0

ûk,jΦk,j(x)

)
Φi,j(x)dx

=

∫
Ij

v(x)Φi,j(x)dx−
N∑
k=0

ûk,j

(∫
Ij

Φk,j(x)Φi,j(x)dx

)

=

∫
Ij

v(x)Φi,j(x)dx− h

2i+ 1
ûi,j,

and according to (2.12)

〈v − u,Φi,j〉 =

∫
Ij

v(x)Φi,j(x)dx− h

2i+ 1

2i+ 1

h

∫
Ij

v(x)Φi,j(x)dx = 0.

This means that
〈v − u,Φi,j〉 = 0. (2.15)

Thus v −ΠN,Z(v) is orthogonal to all Φi,j, i.e. orthogonal to the space PN,I,Z with respect to
the L2 scalar product. In other words ΠN,Z(v) is the piecewise polynomial closest to v with
respect to the L2 norm. So we call ΠN,Z(v) the L2 projection, or projection of v.

2.4.3 This Operator is the Best Approximation

Directly from the previous property we find ||v − u||L2(I) 6 ||v − p||L2(I) for all p ∈ PN,I,Z . It
means that the piecewise polynomial u = ΠN,Z(v) is the best approximation using piecewise
polynomials, in the sense that the error in the L2 norm is as small as possible.

Proof. Let p ∈ PN,I,Z be arbitrary and set q = u− p ∈ PN,I,Z . Using (2.15) with p replaced by
q, we get, using the Cauchy’s inequality also,

||v − u||2L2(I) = 〈v − u, v − u〉 = 〈v − u, v − u〉+ 〈v − u, q〉 = 〈v − u, v − u+ q〉
= 〈v − u, v − p〉 6 ||v − u||L2(I)||v − p||L2(I).

Dividing by ||v − u||L2(I), if ||v − u||L2(I) 6= 0, we get the result.

2.4.4 Boundedness

Let v ∈ L2(I). The following estimate boundedness holds

||ΠN,Z(v)||L2(I) 6 ||v||L2(I). (2.16)
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Proof. Let u(x) = ΠN,Z(v)(x) =
∑Z

j=1

∑N
i=0 ûi,jΦi,j(x). We have

||uj||2L2(Ij) =

∫
Ij

|uj(x)|2dx =

∫
Ij

(
N∑
i=0

ûi,jΦi,j(x)

)2

dx

=

∫
Ij

 N∑
i=0

û2
i,jΦ

2
i,j(x) +

N∑
i=0

ûi,jΦi,j(x)
N∑
k=0
k 6=i

ûk,jΦk,j(x)

 dx

=
N∑
i=0

û2
i,j||Φi,j||2L2(Ij) +

N∑
i=0

N∑
k=0
k 6=i

ûi,jûk,j〈Φi,j,Φk,j〉j.

According to (2.11), where Φi,j are orthogonal, we get

||uj||2L2(Ij) =
N∑
i=0

û2
i,j||Φi,j||2L2(Ij) =

N∑
i=0

ûi,jûi,j
h

2i+ 1
. (2.17)

According to (2.12) we obtain

||uj||2L2(Ij) =
N∑
i=0

ûi,j

[
2i+ 1

h

∫
Ij

v(x)Φi,j(x)dx

]
h

2i+ 1

=

∫
Ij

v(x)

(
N∑
i=0

ûi,jΦi,j(x)

)
dx =

∫
Ij

v(x)uj(x)dx,

and using the Cauchy Schwarz inequality we find ||uj||2L2(Ij) 6 ||v||L2(Ij)||uj||L2(Ij) or ||uj||L2(Ij) 6
||v||L2(Ij). Squaring and taking the summation over all elements Ij we get

||u||2L2(I) =
Z∑
j=1

||uj||2L2(Ij) 6
Z∑
j=1

||v||2L2(Ij) = ||v||2L2(I).

Finally, by taking the square root, we obtain the result.

Corollary 2.3. From the equality (2.17), we obtain for all j = 1, . . . , Z

h

2N + 1

N∑
i=0

û2
i,j 6 ||uj||2L2(Ij) 6 h

N∑
i=0

û2
i,j.

Let ûj := (û0,j, . . . , ûN,j)
T . Using the Euclidean vector norm1 we obtain the estimates

h

2N + 1
||ûj||2e 6 ||uj||2L2(Ij) 6 h||ûj||2e. (2.19)

1The Euclidean norm is defined in RN+1 by

||p||e =
√
p21 + . . .+ p2N+1, for all p = (p1, . . . , pN+1)T ∈ RN+1. (2.18)
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Setting m := ||ΦN,j||2L2(Ij) = h
2N+1

and m := ||Φ0,j||2L2(Ij) = h we obtain

m||ûj||2e 6 ||uj||2L2(Ij) 6 m||ûj||2e. (2.20)

2.4.5 The Error Estimates of the Projection Operator

We prove error estimates with help of the following theorem, which is a version of the Bramble-
Hilbert Lemma given by Watkins [25, Theorem 1].

Theorem 2.4. Let Υ ∈ Rn be a domain such that the identity map I : WN+1,2(Υ)→ WN,2(Υ)
is a compact operator, i.e. we have a compact embedding. Let WN+1,2(J), with J = [−1, 1], be
the Sobolev space defined by (2.2), and let the seminorm | · |WN+1,2(J), which is defined by (2.4).
Let B : WN+1,2(J) → Y be a bounded linear operator with domain WN+1,2(J) and range in
a normed linear space Y , and let || · ||Y be its norm. Thus there exists a constant ||B|| such
that ||B(f)||Y 6 ||B|| · ||f ||WN+1,2(J) for all f ∈ WN+1,2(J). Suppose also that B(p) = 0 for any
p ∈ PN,J in the space of polynomials of degree N . Then there is a constant C1 which depends
on J and N , but not on B, such that

||B(f)||Y 6 C1 · ||B|| · |f |WN+1,2(J), for all f ∈ WN+1,2(J).

Theorem 2.5. Suppose that the interval I = [a, b] has a uniform partition of Z subintervals
with constant mesh size h = (b − a)/Z. Then, for each v ∈ WN+1,2(I), the following error
estimates hold

||ΠN,Z(v)− v||L2(I) 6 C2h
N+1|v|WN+1,2(I),

||ΠN,Z(v)− v||L1(I) 6 C3h
N+1|v|WN+1,2(I),

where || · ||WN+1,2(I) and | · |WN+1,2(I) the norm and the seminorm, which are defined in (2.3) and
(2.4), respectively.

Proof. The First Inequality. Consider Υ = J = [−1, 1] and f ∈ WN+1,2(J) from Theorem
2.4. We set Y = L2(J). Let ΠN,1 be the projection operator in the special case where the
interval I = J and Z = 1. In this case the assumption of a compact embedding for Theorem
2.4 holds. Then, we can say that the operator B(f) = ΠN,1(f)− f is

1. linear, due to the linearity of the projection operator,

2. bounded, due to (2.16) for the unique element J , and using the triangle inequality, we
get ||B(f)||L2(J) = ||ΠN,1(f)− f ||L2(J) 6 ||ΠN,1(f)||L2(J) + ||f ||L2(J) 6 2||f ||L2(J),

3. due to the property 2.4.1, we have B(p) = ΠN,1(p)− p = 0 for all p ∈ PN,J .

Thus, by Theorem 2.4, there is a constant C1 with ||ΠN,1(f)− f ||L2(J) 6 C1|f |WN+1,2(J). Then
by squaring ∫ 1

−1

|ΠN,1(f)(ξ)− f(ξ)|2dξ 6 C2
1

∫ 1

−1

|D(N+1)f(ξ)|2dξ.
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Let j = 1, . . . , Z be fixed and xj be the midpoint of the element Ij. We use the inverses
γ−1
j : J → Ij of the linear transformations γj given in (2.7), and write x = γ−1

j (ξ) := h
2
ξ + xj

for ξ ∈ J . We also suppose that f = v ◦ γ−1
j . Then for x ∈ Ij we have v(x) = v(γ−1

j (ξ)) =

(v ◦ γ−1
j )(ξ) = f(ξ) and the chain rule gives

df(ξ)

dξ
=
df(ξ)

dx

dx

dξ
=
dv(x)

dx

dx

dξ
=
h

2

dv(x)

dx
⇒ D(N+1)f(ξ) =

(
h

2

)N+1

D(N+1)v(x).

Furthermore, by defining the operators Bj : WN+1,2(Ij)→ L2(Ij) by

Bj(v) = ΠN,Z(v)− v = ΠN,1(f ◦ γj)− (f ◦ γj), for v ∈ WN+1,2(Ij),

and noting that dξ = 2
h
dx, we can now rewrite the last inequality with the variable x and with

the main projection operator ΠN,Z as follows

2

h

∫
Ij

|ΠN,Z(v)(x)− v(x)|2dx 6
2

h
C2

1

∫
Ij

∣∣∣∣∣
(
h

2

)N+1

D(N+1)v(x)

∣∣∣∣∣
2

dx,

or ∫
Ij

|ΠN,Z(v)(x)− v(x)|2dx 6
C2

1

22N+2
h2N+2

∫
Ij

∣∣D(N+1)v(x)
∣∣2 dx.

Then, by taking C2 = C12−N−1, we get

||ΠN,Z(v)− v||2L2(Ij) 6 C2
2h

2N+2|v|2WN+1,2(Ij). (2.21)

By summation over all j we get

||ΠN,Z(v)−v||2L2(I) =
Z∑
j=1

||ΠN,Z(v)−v||2L2(Ij) 6 C2
2h

2N+2

Z∑
j=1

|v|2WN+1,2(Ij) = C2
2h

2N+2|v|2WN+1,2(I).

By taking the square root follows the first inequality.

The Second Inequality. Using the Cauchy Schwarz inequality and (2.21), we have

||ΠN,Z(v)− v||L1(Ij) =

∫
Ij

|ΠN,Z(v)− v|dx 6

(∫
Ij

dx

) 1
2

||ΠN,Z(v)− v||L2(Ij)

= h
1
2 ||ΠN,Z(v)− v||L2(Ij) 6 C2h

N+ 3
2 |v|WN+1,2(Ij).

By summation over all j, we get

||ΠN,Z(v)− v||L1(I) =
Z∑
j=1

||ΠN,Z(v)− v||L1(Ij) 6 C2h
N+ 3

2

Z∑
j=1

|v|WN+1,2(Ij). (2.22)

24
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On the other hand, according to the inequality εϑ 6 1
2
(ε2 + ϑ2), which always holds for all

ε, ϑ ∈ R, we have(
Z∑
j=1

|v|WN+1,2(Ij)

)2

=
Z∑
j=1

|v|2WN+1,2(Ij) +
Z∑
j=1

Z∑
i=1
i 6=j

|v|WN+1,2(Ij)|v|WN+1,2(Ii)

6
Z∑
j=1

|v|2WN+1,2(Ij) +
1

2

Z∑
j=1

Z∑
i=1
i 6=j

(
|v|2WN+1,2(Ij) + |v|2WN+1,2(Ii)

)

=
Z∑
j=1

|v|2WN+1,2(Ij) +
1

2

Z∑
j=1

Z∑
i=1
i 6=j

|v|2WN+1,2(Ij) +
1

2

Z∑
j=1

Z∑
i=1
i 6=j

|v|2WN+1,2(Ii)

=
Z∑
j=1

|v|2WN+1,2(Ij) +
1

2

Z∑
i=1
i 6=j

Z∑
j=1

|v|2WN+1,2(Ij) +
1

2

Z∑
j=1
i 6=j

Z∑
i=1

|v|2WN+1,2(Ii)
.

This implies that(
Z∑
j=1

|v|WN+1,2(Ij)

)2

6
Z∑
j=1

|v|2WN+1,2(Ij) +
Z − 1

2

Z∑
j=1

|v|2WN+1,2(Ij) +
Z − 1

2

Z∑
i=1

|v|2WN+1,2(Ii)

= Z
Z∑
j=1

|v|2WN+1,2(Ij).

Since Z = (b− a)/h, then we have(
Z∑
j=1

|v|WN+1,2(Ij)

)2

6
b− a
h

Z∑
j=1

|v|2WN+1,2(Ij) =
(√

b− ah−
1
2 |v|WN+1,2(I)

)2

.

Taking the square root and then substituting in (2.22) and taking C3 = C2

√
b− a, we get

finally ||ΠN,Z(v)− v||L1(I) 6 C3h
N+1|v|WN+1,2(I), thus the second inequality holds.

The above estimates are all related to smooth data. However, we sometimes face disconti-
nuities which effect the accuracy and the order.

Theorem 2.6. Let N ∈ N0, I ⊂ R, and v ∈ B(I) be a bounded function which has a
discontinuity in I. Suppose h is the length of I. Then, there is a constant C4 which is only
related to N , such that the following error estimate, for all 1 6 p <∞, holds

||ΠN,Z(v)− v||Lp(I) 6 C4||v||L∞(I)h
1/p.
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Proof. Since h = |I|, we take a partition of one element I1 = I and assume that u(x) =
ΠN,Z(v)(x) =

∑N
i=0 ûi,1Φi,1(x) with ûi,1 = 2i+1

h

∫
I
v(x)Φi,1(x)dx for i = 0, . . . , N .

For all i = 0, . . . , N we have ||Φi,1||L∞(I) = 1 and, for x ∈ I

|u(x)− v(x)| 6 |u(x)|+ |v(x)| 6
N∑
i=0

|ûi,1||Φi,1(x)|+ ||v||L∞(I)

6
N∑
i=0

∣∣∣∣2i+ 1

h

∫
I

v(x)Φi,1(x)dx

∣∣∣∣ ||Φi,1||L∞(I) + ||v||L∞(I)

6
N∑
i=0

2i+ 1

h
h||v||L∞(I) ||Φi,1||L∞(I)︸ ︷︷ ︸

=1

 ||Φi,1||L∞(I)︸ ︷︷ ︸
=1

+||v||L∞(I)

=
N∑
i=0

(2i+ 1)||v||L∞(I) + ||v||L∞(I)

=

(
N∑
i=0

(2i+ 1) + 1

)
︸ ︷︷ ︸

:=C4(N)

||v||L∞(I) = C4||v||L∞(I).

Then for all 1 6 p <∞ we have

||u− v||pLp(I) =

∫
I

|u(y)− v(y)|p dy 6
∫
I

Cp
4 ||v||

p
L∞(I)dy = Cp

4 ||v||
p
L∞(I)

∫
I

dy = Cp
4 ||v||

p
L∞(I)h.

Thus the error in the Lp norm is ||u− v||Lp(I) 6 C4||v||L∞(I)h
1/p = O

(
h1/p

)
.
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Chapter 3

Examples of the Projections

3.1 Preface

Again let Z be a positive integer, N be a non negative integer, ∆ = {xj+ 1
2
}Zj=0 be a uniform

partition of equally points of an interval I ⊂ R with a constant mesh size h. Let Ij; j = 1, . . . , Z,
be an element of the partition.

In this chapter we will study two types of functions from the space L2(I) with a support
I which changes with respect to the examples. The types are polynomials of various degrees
and one of the trigonometric functions. Then we will give an example of a function with less
smoothness.

We will check that the Identity 2.4.1 holds for the examples of the polynomials. Furthermore,
the error estimates will be shown, such that the smooth order N + 1 will appear when we use
the projection ΠN,Z of degree N .

We use the projections ΠN,Z to polynomials of degree N , which we defined in the previous
chapter. We usually view the formula of the projection of one element Ij and the formula of
the complete projection on I will be the summation.

We will use the following notations. The projection of a function v to a polynomial of degree
N is denoted by u = ΠN,Z(v) and the restriction on Ij is uj = u|Ij .

After that we will compute the errors on the complete interval I by computing the L2 norm
numerically using some Gaussian quadrature rule.

3.1.1 Gaussian Quadrature Rule

Let n ∈ N. The Gaussian quadrature rule of order n computes the integral of some func-
tion v ∈ L2(I) on the interval I = [a, b], numerically, by the following formula

∫ b
a
v(x)dx ≡∑n

i=1 ωiv(ξi), where ξ1, . . . , ξn ∈ [a, b] are called nodes and ω1, . . . , ωn are called weights and
chosen to minimize the expected error obtained in the approximation.

The roots of the Legendre polynomials give us the nodes and weights for the quadrature
rule. In this way, the nodes ξ1, . . . , ξn produce an integral approximation formula that gives
exact results for any polynomial of degree less than 2n are the roots of the Legendre polynomial
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CHAPTER 3. EXAMPLES OF THE PROJECTIONS

of degree n. This is established by Theorem 4.7 in [4]. The Gaussian rule by using the roots of
Legendre polynomials becomes on the interval [−1, 1].

To do the integral over an arbitrary interval [a, b], the integral can be transformed into an

integral over [−1, 1] by using the change of variables
∫ b
a
v(x)dx =

∫ 1

−1
v
(

(b−a)s+(b+a)
2

)
b−a

2
ds.

This permits Gaussian quadrature to be applied to any interval [a, b].
For our work, we choose the Gaussian rule of max{deg, N} points, where deg is the degree

of the initial function v, and deg = 1 for the v(x) = sin(x).

3.1.2 Experimental Order of Convergence EOC

We also investigate the orders of the accuracy of the projections numerically by calculating the
experimental order of the convergence (EOC).

Let generally X ba a linear space with some norm || · ||X and let vh ∈ X be a numerical
approximation of a given function v ∈ X which depends on a parameter h of the discretization.
The convergence of vh towards v as h tends to zero can be quantified by ||vh − v||X 6 Chκ,
with the order of convergence κ. This gives a possibility to quantify the quality of a numerical
scheme. If we can compute two numerical solutions vh and vh′ , then the order κ can be estimated
experimentally by κ ' EOC(h, h′) =

log(||vh′−v||X/||vh−v||X)

log(h′/h)
.

3.2 Polynomial of Degree One

We consider the polynomial v(x) = x− 1 defined on I = [0, 2]. We have according to (2.12)

û0,j =
1

h

∫
Ij

(x− 1)dx = xj − 1, û1,j =
3

h

∫
Ij

(x− 1)
2

h
(x− xj)dx =

h

2
.

3.2.1 Π0,Z

This projection is given according to (2.14) by Π0,Z(v)|Ij(x) = uj(x) = xj − 1. The error using

the L2 norm is equal to ||v−Π0,Z(v)||2L2(I) = h2

6
. Then we have ||v−Π0,Z(v)||L2(I) = h√

6
= O(h),

i.e. we get a first order projection using the L2 norm. Tables 3.1 and 3.2 show the errors in the
L1 and L2 norms computed numerically and analytically, respectively, by using the Matlab, as
well as the elapsed time, in seconds, during the computations. Note that we can obtain the
same values of the error by using the exact error h√

6
. We note that the numerical integral is

faster than the analytical one and has almost similar values as the analytical. So, we always
will do only the numerical computations.
Example. Z = 5, h = 0.4, x ∈ {0, 0.4, 0.8, 1.2, 1.6, 2} and the projection is

Π0,5(v)|Ij(x) =


−0.8 for x ∈ [0 , 0.4[= [0 , 0.38],
−0.4 for x ∈ [0.4, 0.8[= [0.4, 0.78],

0 for x ∈ [0.8, 1.2[= [0.8, 1.18],
0.4 for x ∈ [1.2, 1.6[= [1.2, 1.58],
0.8 for x ∈ [1.6, 2 ].
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3.3. POLYNOMIAL OF DEGREE TWO

Figure 3.1 shows this projection.

3.2.2 Π1,Z

This projection is given according to (2.14) by

Π1,Z(v)|Ij(x) = uj(x) = û0,j + û1,jΦ1,j(x) = xj − 1 +
h

2

2

h
(x− xj) = x− 1 = v(x).

Thus Π1,Z becomes the identity operator and this agrees with the Property 2.4.1.

3.3 Polynomial of Degree Two

We consider the polynomial v(x) = x2 − 3x+ 2 defined on I = [0, 3]. We have

û0,j =
1

h

∫
Ij

(x2 − 3x+ 2)dx = x2
j − 3xj +

h2

12
+ 2,

û1,j =
3

h

∫
Ij

(x2 − 3x+ 2)
2

h
(x− xj)dx = xjh−

3h

2
,

û2,j =
5

h

∫
Ij

(x2 − 3x+ 2)

(
3

2

(
2

h
(x− xj)

)2

− 1

2

)
dx =

h2

6
.

One could easily find that the operator Π2,Z is the identity operator Π2,Z(v)(x) = v(x).

3.3.1 Π0,Z

This projection is given by Π0,Z(v)|Ij(x) = uj(x) = x2
j − 3xj + h2

12
+ 2. We present the way of

computing the L2 norm of the error in detail. We first take the integral related to Ij∫
Ij

(v(x)− u(x))2 dx =

∫
Ij

(
(x2 − 3x+ 2)− (x2

j − 3xj +
h2

12
+ 2)

)2

dx

= h5

(
x4
j − 2x3

j +
3

2
x2
j −

1

2
xj +

49

720

)
+ h4

(
−6x3

j + 9x2
j −

9

2
xj +

3

4

)
+h3

(
−2x4

j + 8x3
j +

17

6
x2
j −

17

2
xj + 3

)
+ h2(6x3

j − 21x2
j + 9xj) + h(x4

j − 6x3
j + 9x2

j).

We have xj = (j − 1
2
)h then the integral becomes∫

Ij

(v(x)− u(x))2 dx = h5

(
j2

3
− j

3
+

4

45

)
− h4

(
j − 1

2

)
+

3h3

4
.
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By using the following rules of summation
∑Z

j=1 j
2 = Z(Z+1)(2Z+1)

6
,
∑Z

j=1 j = Z(Z+1)
2

, and∑Z
j=1 1 = Z, and noting the relation h = 3

Z
we find that the summation over all Ij gives

||v − u||2L2(I) =
Z∑
j=1

∫
Ij

(v(x)− u(x))2 dx =
3h2

4
− h4

15
.

Finally we get ||v − u||L2(I) =
√

3h2

4
− h4

15
= O(h), i.e. we get a first order projection using the

L2 norm. Table 3.3 shows the errors in the L1 and L2 norms computed by using the Matlab.
Example. Z = 5 we have h = 3

5
= 0.6 and the solution is given by

Π0,5(v)|Ij(x) =
1

50


61 for x ∈ [0 , 0.57],
7 for x ∈ [0.6, 1.17],

−11 for x ∈ [1.2, 1.77],
7 for x ∈ [1.8, 2.17],

61 for x ∈ [2.4, 3].

Figure 3.2 shows this projection.

3.3.2 Π1,Z

It is given by Π1,Z(v)|Ij(x) = uj(x) = û0,j + û1,jΦ1,j(x) = h2

12
− x2

j + 2 + (2xj − 3)x. The error is

equal to ||v −Π1,Z(v)||L2(I) = h2√
60

= O(h2), i.e. we get a second order projection using the L2

norm. We get by using Matlab the Table 3.4. With Z = 5 we have the following solution

Π1,5(v)|Ij(x) =
1

50


97 + 120x for x ∈ [0 , 0.57],
61 + 60x for x ∈ [0.6, 1.17],
−11 for x ∈ [1.2, 1.77],
−119 + 60x for x ∈ [1.8, 2.17],
−263 + 120x for x ∈ [2.4, 3].

Figure 3.3 shows this projection.

3.4 Polynomial of Degree Three

We consider the polynomial v(x) = x3 − x defined on I = [−2, 2]. We have û0,j = x3
j +(

h2

4
− 1
)
xj, û1,j = 3h

2
x2
j + 3h3

40
− h

2
, û2,j = h2

2
xj, and û3,j = h3

20
. The operator Π3,Z is the identity

operator and give the same function v. Table 3.5 presents the errors using Matlab. In Figures
3.4 we view the projections with Z = 5.

3.5 Polynomial of Degree Four

We consider the function v(x) = x4 − 2x3 − x2 + 2x defined on I = [−1, 2]. The operator Π3,Z

is the identity operator. Table 3.6 shows the computations by using Matlab. In Figures 3.5 we
view the four projections ΠN,5 with N = 0, 1, 2.
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3.6. A TRIGONOMETRIC FUNCTION

3.6 A Trigonometric Function

We first consider the trigonometric function v(x) = sin(x) defined on I = [0, 2π]. Table 3.7
gives the errors of computing the projections. Figures 3.6 show ΠN,5 with N = 0, 1, 2.

Now we give a test for the discontinuous case and view how the discontinuity effects on the
orders. We consider the function

v(x) =

{
sin(x) for 0 6 x 6 π

2
,

sin(x+ π) = − sin(x) for π
2
< x 6 3.

(3.1)

Figures 3.7 show some projections with Z = 15. Table 3.8 shows the errors. Note that the
order is lost and it is 1 with L1 norm and 1/2 with L2 norm, but with large meshes.

Finally, we consider the same function but with a computational domain symmetric with
respect to the location of the jump. We define the function

v(x) =

{
sin(x) for 0 6 x 6 π

2
,

− sin(x) for π
2
< x 6 π.

We give, in Tables 3.9 and 3.10, the errors in two groups of meshes, odd and even. We note
that with the odd meshes where the jump is included inside one element the order is lost. It is
clear that we get solutions of order 1 with L1 norm and of order 1/2 with L2 norm. However,
we get solutions of smooth orders N + 1 with the even numbers of the meshes, since the jump
point isn’t an internal point of any element.

3.7 Summary

In this chapter we have applied the projection operators ΠN,Z to various types of functions.

• We found that the Property 2.4.1 holds for the first four examples.

• The error estimates in Section 2.4.5 have clearly appeared. The smooth order N + 1 was
achieved when we have used continuous functions. While the order O

(
h1/p

)
for p = 1, 2

was obtained with discontinuous functions.

• We noted that the discontinuity affects the orders, according to Theorem 2.6. Table 3.8
showed that the order is lost and it was 1 for the L1 norm and 1/2 for the L2 norm,
for suitably fine meshes. On rather coarse meshes the solution error could become larger
after a refinement.

• In the special case where the computational domain was symmetric with respect to the
location of the jump and when the jump was included inside one element the order is lost.
While when the jump point isn’t an internal point of any element the solutions were of
smooth orders N + 1.
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Z L1 errors EOC L2 errors EOC Elapsed time (seconds)
8 0.1075829 0.1020621 0.447907
16 0.0537914 1 0.0510310 1 0.990749
32 0.0268957 1 0.0255155 1 1.772117
64 0.0134479 1 0.0127578 1 3.546628
128 0.0067239 1 0.0063789 1 7.105968
256 0.0033620 1 0.0031894 1 13.777892
512 0.0016810 1 0.0015947 1 28.650745

Table 3.1: The errors of computing Π0,Z(v) for v(x) = x − 1. Numerical integration using a
Gaussian quadrature rule.

Z L1 errors EOC L2 errors EOC Elapsed time (seconds)
8 0.12500000 0.1020621 0.592521
16 0.06250000 1 0.0510310 1 1.117595
32 0.03125000 1 0.0255155 1 2.580826
64 0.01562500 1 0.0127578 1 5.009351
128 0.00781250 1 0.0063789 1 14.078991
256 0.00390630 1 0.0031894 1 28.575431
512 0.00195314 1 0.0015947 1 58.079580

Table 3.2: The errors of computing Π0,Z(v) for v(x) = x− 1. Analytical integration.

Z L1 errors EOC L2 errors EOC
8 0.4398194 1 0.3227234 0.97
16 0.2199097 1 0.1621258 0.99
32 0.1099548 1 0.0811582 1
64 0.0549774 1 0.0405910 1

Table 3.3: The errors of computing Π0,Z(v) for v(x) = x2 − 3x+ 2.

Z L1 errors EOC L2 errors EOC
8 0.0243801 2 0.0181546 2
16 0.0060950 2 0.0045387 2
32 0.0015238 2 0.0011347 2
64 0.0003809 2 0.0002837 2

Table 3.4: The errors of computing Π1,Z(v) for v(x) = x2 − 3x+ 2.
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Z
N = 0 N = 1 N = 2

L1 errors EOC L1 errors EOC L1 errors EOC
8 1.6586 0.95 0.1939931 2 0.0071762 3
16 0.8141305 1.03 0.0484983 2 0.0008970 3
32 0.4036951 1.01 0.0121246 2 0.0001121 3
64 0.2009659 1.01 0.0030311 2 0.0000140 3

L2 errors EOC L2 errors EOC L2 errors EOC
8 1.3185 0.90 0.1281740 1.97 0.0047246 3
16 0.6702478 0.98 0.0322172 1.99 0.0005906 3
32 0.3365006 0.99 0.0080651 2 0.0000738 3
64 0.1684224 1 0.0020170 2 0.0000092 3

Table 3.5: The errors of computing ΠN,Z(v) with N = 0, 1, 2 for v(x) = x3 − x.

Z
N = 0 N = 1 N = 2 N = 3

L1 errors EOC L1 errors EOC L1 errors EOC L1 errors EOC
8 08.3043 0.95 1.4139 1.86 0.0980560 3 0.0027948 4
16 04.2006 0.98 0.3549049 1.99 0.0122570 3 0.0001747 4
32 02.1141 0.99 0.0888158 2 0.0015321 3 0.0000109 4
64 01.0578 1 0.0222095 2 0.0001915 3 0.0000007 4

L2 errors EOC L2 errors EOC L2 errors EOC L2 errors EOC
8 6.6149 0.77 0.9523059 1.88 0.0591194 2.97 0.0016247 4
16 3.4364 0.94 0.2426263 1.97 0.0074317 2.99 0.1015467 4
32 1.7345 0.99 0.0609405 1.99 0.0009303 3 0.0000063 4
64 0.8693072 1 0.0152529 2 0.0001163 3 0.0000004 4

Table 3.6: The errors of computing ΠN,Z(v) with N = 0, 1, 2, 3 for v(x) = x4 − 2x3 − x2 + 2x.

Z
N = 0 N = 1 N = 2 N = 3

L1 errors EOC L1 errors EOC L1 errors EOC L1 errors EOC
8 0.7295349 1.14 0.0889003 2.07 0.0053313 3.10 0.0002853 4.08
16 0.3503279 1.06 0.0219792 2.02 0.0006517 3.03 0.0000176 4.02
32 0.1719585 1.03 0.0054797 2 0.0000808 3.01 0.0000011 4
64 0.0852231 1.01 0.0013690 2 0.0000101 3 0.0000001 4

L2 errors EOC L2 errors EOC L2 errors EOC L2 errors EOC
8 0.3977513 0.96 0.0403887 1.96 0.0026849 2.97 0.0001330 3.97
16 0.2004140 0.99 0.0101642 1.99 0.0003375 2.99 0.0000083 3.99
32 0.1004003 1 0.0025452 2 0.0000422 3 0.0000005 4
64 0.0502244 1 0.0006366 2 0.0000053 3 0.0000001 4

Table 3.7: The errors of computing ΠN,Z(v) with N = 0, 1, 2, 3 for v(x) = sin(x).

33



CHAPTER 3. EXAMPLES OF THE PROJECTIONS

Z
N = 0 N = 1 N = 2 N = 3

L1 errors EOC L1 errors EOC L1 errors EOC L1 errors EOC
60 0.0679552 0.0204950 0.0164041 0.0158297
120 0.0214332 1.66 0.0103905 0.98 0.0080134 1.03 0.0043200 1.87
240 0.0169807 0.34 0.0050974 1.03 0.0041007 0.97 0.0039573 0.13
480 0.0084895 1 0.0025464 1 0.0020503 1 0.0019787 1
960 0.0042445 1 0.0012727 1 0.0010252 1 0.0009893 1
1920 0.0021222 1 0.0006362 1 0.0005126 1 0.0004947 1

L2 errors EOC L2 errors EOC L2 errors EOC L2 errors EOC
60 0.2150411 0.1117078 0.0861445 0.0715561
120 0.1025510 1.07 0.0835836 0.42 0.0568214 0.60 0.0276167 1.37
240 0.1072711 -0.06 0.0558500 0.58 0.0430697 0.40 0.0357772 -0.37
480 0.0758219 0.50 0.0394917 0.50 0.0304548 0.50 0.0252982 0.50
960 0.0536034 0.50 0.0279248 0.50 0.0215348 0.50 0.0178885 0.50
1920 0.0378995 0.50 0.0197458 0.50 0.0152274 0.50 0.0126491 0.50

Table 3.8: The errors of computing ΠN,Z(v) with N = 0, 1, 2, 3 for v given by (3.1).

Z
N = 0 N = 1 N = 2 N = 3

L1 errors EOC L1 errors EOC L1 errors EOC L1 errors EOC
5 0.8582418 0.2727565 0.2084071 0.1989590
15 0.2915306 0.98 0.0875612 1.03 0.0687936 1 0.0663061 1
45 0.0972266 1 0.0286908 1.02 0.0229056 1 0.0221018 1

L2 errors EOC L2 errors EOC L2 errors EOC L2 errors EOC
5 0.7797969 0.3979689 0.3076241 0.2536529
15 0.4443682 0.51 0.2287304 0.5 0.1764430 0.5 0.1464466 0.5
45 0.2545078 0.51 0.1319953 0.5 0.1017944 0.5 0.0845510 0.5

Table 3.9: The errors with odd meshes.

Z
N = 0 N = 1 N = 2 N = 3

L1 errors EOC L1 errors EOC L1 errors EOC L1 errors EOC
10 0.1510497 0.0057227 1.6627e-4 3.8365e-6
20 0.0748294 1.01 0.0014271 2 2.0664e-5 3 2.3920e-7 4
40 0.0372549 1.01 0.0003566 2 2.5768e-6 3 1.4941e-8 4

L2 errors EOC L2 errors EOC L2 errors EOC L2 errors EOC
10 0.1134762 0.0046034 1.2226e-4 2.4201e-6
20 0.0568081 1 0.0011521 2 1.5295e-5 3 1.5136e-7 4
40 0.0284128 1 0.0002881 2 1.9124e-6 3 9.4616e-9 4

Table 3.10: The errors with even meshes.
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3.7. SUMMARY

Figure 3.1: The projection Π0,Z(v) for v(x) = x− 1. The small circles are at the mesh points.

Figure 3.2: The projection Π0,Z for v(x) = x2 − 3x+ 2.

Figure 3.3: The projection Π1,Z for v(x) = x2 − 3x+ 2.
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Figure 3.4: The projections ΠN,5(v) with N = 0, 1, 2 for v(x) = x3 − x.
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3.7. SUMMARY

Figure 3.5: The projections ΠN,5(v) with N = 0, 1, 2 for v(x) = x4 − 2x3 − x2 + 2x.
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Figure 3.6: The projections ΠN,5(v) with N = 0, 1, 2 for v(x) = sin(x).
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3.7. SUMMARY

Figure 3.7: The projections ΠN,15(v) with N = 0, 1, 2.
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Chapter 4

The Projection onto Piecewise
Polynomials: 2D Case

The concept of the projection treated for the approximation in the 1D case can be extended
to the 2D case. This extension consists of defining basis functions over a domain Ω ⊂ R2 and
compute coefficients ûi,j by integrating over Ω.

4.1 2D Discretization

We use a discretization based on rectangles. Let the rectangle Ω = [a, b] × [a′, b′] ⊂ R2 be the
computational domain. We assume that Ω can be partitioned using K elements Ω =

⋃K
j=1 Tj

where Tj is a rectangle and the partition ΩK = {T1, . . . , TK} is assumed to be geometrically
conforming and non-overlapping. By conforming we mean that each corner point in the interior
is shared by exactly four rectangles and each side in the interior by exactly two rectangles. We
also assume that the rectangles have the same length h1 and the same height h2, where by
choosing Z1, Z2 ∈ N we have h1 = b−a

Z1
, h2 = b′−a′

Z2
, and K = Z1 · Z2.

We consider one rectangle element Tj ∈ ΩK , see Figure 4.1, with j = 1, . . . , K whose vertices
are counter clockwise starting at the lower left corner vj,1 = (xj− 1

2
, yj− 1

2
), vj,2 = (xj+ 1

2
, yj− 1

2
),

vj,3 = (xj+ 1
2
, yj+ 1

2
), and vj,4 = (xj− 1

2
, yj+ 1

2
) with length(vj,1vj,2) =length(vj,3vj,4) = h1 and

length(vj,1vj,4) =length(vj,2vj,3) = h2.
Now we define the standard reference square TS = [−1, 1] × [−1, 1] whose vertices are vS,1 =
(−1,−1), vS,2 = (1,−1), vS,3 = (1, 1), vS,4 = (−1, 1). We also define piecewise linear reference
transformations, see Figure 4.2, Rj : Tj → TS from the physical coordinate system (x, y) ∈ Tj
into the reference coordinate system (ξ, η) ∈ TS by

(ξ, η) := Rj(x, y) =

(
2(x− xj)

h1

,
2(y − yj)

h2

)
, (4.1)

or in detail by the formulas ξ(x) =
2(x−xj)

h1
and η(y) =

2(y−yj)

h2
where (xj, yj) is the center of Tj.
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4.2. 2D BASIS FUNCTIONS

Figure 4.1: A rectangle of the 2D discretization.

Figure 4.2: Transformation from Tj to TS.

The differentiations are related by

(
dx
dy

)
= Jj

(
dξ
dη

)
with the Jacobian

|Jj| =
∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ =

∣∣∣∣∣ ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

∣∣∣∣∣ =

∣∣∣∣ h1
2

0
0 h2

2

∣∣∣∣ =
1

4
h1h2.

4.2 2D Basis Functions

Let N ∈ N0 and

PN,Tj = span {ξpηq; 0 6 p, q, p+ q 6 N and (ξ, η) = Rj(x, y) with (x, y) ∈ Tj} ,
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be the space of the piecewise polynomials of degree N in two dimensions. The dimension of
this space is given by

dN := dim(PN,Tj) =
(N + 1)(N + 2)

2
.

For example we have with (ξ, η) ∈ TS, P2,Tj = span{1, ξ, η, ξ2, ξη, η2} with d2 = 6.
Using the linear transformations (4.1) and recalling the basis functions Φ defined in (2.8),

we define basis functions Ψi,j ∈ PN,Tj as

Ψi,j(x, y) := Φp,j(x)Φq,j(y) = Lp(ξ(x))Lq(η(y)), (4.2)

where Lp, Lq are the Legendre polynomials defined in Section 2.2.2, and

ξ ∈ [−1, 1], η ∈ [−1, 1], 0 6 p 6 N, 0 6 q 6 N, 0 6 p+ q 6 N,

i =
(p+ q)(p+ q + 1)

2
+ q, 0 6 i 6 dN − 1.

Note that we can find p and q for a given i. We set m := max
{
k ∈ N; k(k+1)

2
6 i
}

, then we

have q = i−m and p = m− q.
If we denote the mass matrix BN then BN ∈ RdN×dN . In Appendix A we give examples of

these bases and their mass matrices. These basis functions belong to the space PN,Tj and we
have PN,Tj ⊆ L2(Tj) and they are orthogonal on Tj with respect to the scalar product

〈f, g〉Tj =

∫∫
Tj

f(x, y)g(x, y)dydx.

We will use for the functions v ∈ L2(Tj) the following norms

||v||L2(Tj) =
√
〈v, v〉Tj =

(∫∫
Tj

v2(x, y)dydx

) 1
2

, ||v||L1(Tj) =

∫∫
Tj

|v(x, y)|dydx.

We will also use the notations 〈f, g〉Ω, ||v||L2(Ω), and |v|WN+1,2(Ω), as in Chapter 2 for the one
dimensional case. The multiple integrals over the rectangles Tj can be computed by using
Gaussian quadrature rules over TS. The integral of a function f ∈ PN,Tj over Tj is computed
in the form∫∫

Tj

f(x, y)dydx = |Jj|
∫ 1

−1

∫ 1

−1

f(R−1
j (ξ, η))dηdξ =

h1h2

4

∫ 1

−1

∫ 1

−1

f(R−1
j (ξ, η))dηdξ.

The integral over TS of any function g ∈ PN,TS is evaluated numerically by the following
Gaussian quadrature rule of order NG ∈ N∫ 1

−1

∫ 1

−1

g(ξ, η)dηdξ =

NG∑
k=1

NG∑
`=1

ωkω`g(ξk, η`),

with the weights ωk, ω` and the roots ξk, η`. For more details, see Szabo and Babuška [23].
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4.3 The Projection

Given v ∈ L2(Ω). We approximate v using piecewise polynomials finding u ∈ PN,Ω,K in such
a way that the error in L2 norm is minimal. Let uj = u|Tj with j = 1, . . . , K. The piecewise
polynomial u is given by the form

u(x, y) =
K∑
j=1

dN−1∑
i=0

ûi,jΨi,j(x, y), (x, y) ∈ Ω.

The coefficients ûi,j must be computed in such a way that the error in the L2 norm is minimal.
The error is the difference E(ûi,j, x, y) = v(x, y)−u(x, y). The error becomes minimal when the
derivatives of its norm squared with respect to the unknowns ûk,j vanish, i.e. ∂

∂ûk,j
||E||2L2(Ω) = 0

for all k = 0, . . . , dN − 1 and j = 1, . . . , K. We have

||E||2L2(Ω) =

∫∫
Ω

E2dydx =
K∑
j=1

∫∫
Tj

(
E|Tj(x, y)

)2
dydx

=
K∑
j=1

∫∫
Tj

(
v(x, y)−

dN−1∑
i=0

ûi,jΨi,j(x, y)

)2

dydx.

Then we have for all k = 0, . . . , dN − 1 and j = 1, . . . , K∫∫
Tj

(
dN−1∑
i=0

ûi,jΨi,j(x, y)

)
Ψk,j(x, y)dydx =

∫∫
Tj

v(x, y)Ψk,j(x, y)dydx.

This can be written as
dN−1∑
i=0

ûi,j〈Ψi,j,Ψk,j〉Tj = 〈v,Ψk,j〉Tj .

According to (4.2) there are p, p′, q, q′ ∈ {0, . . . , N} where Ψk,j(x, y) = Φp,j(x)Φq,j(y) and
Ψi,j(x, y) = Φp′,j(x)Φq′,j(y). Due to the orthogonality of the one dimensional basis functions
we get

〈Ψi,j,Ψk,j〉Tj =

∫∫
Tj

Ψi,j(x, y)Ψk,j(x, y)dydx

=

∫ x
j+1

2

x
j− 1

2

Φp′,j(x)Φp,j(x)dx

∫ y
j+1

2

y
j− 1

2

Φq′,j(y)Φq,j(y)dy =
h1

2p+ 1

h2

2q + 1
δpp′δqq′ .

Then the last sum in the left hand side reduces to a unique term with index i = k. Then, for
all values j = 1, . . . , K, we find the K × dN solutions of our problem

ûk,j =
(2p+ 1)(2q + 1)

h1h2

〈v,Ψk,j〉Tj , k = 0, . . . , dN − 1, j = 1, . . . , K. (4.3)
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Properties

We define the operator ΓN,K : L2(Ω)→ PN,Ω,K by u := ΓN,K(v) to give

ΓN,K(v)(x, y) = u(x, y) =
K∑
j=1

dN−1∑
i=0

ûi,jΨi,j(x, y), for (x, y) ∈ Ω,

where the coefficients ûi,j are given by (4.3) depending on v. In the same way as the one dimen-
sional case, we find that the operator ΓN,K is linear, orthogonal projection, best approximation,
bounded. Also, for each v ∈ WN+1,2(Ω), the following error estimates hold

||ΓN,K(v)− v||L2(Ω) 6
C1

2N+1
ĥN+1|v|WN+1,2(Ω),

||ΓN,K(v)− v||L1(Ω) 6 C2

√
h1h2ĥ

N+1|v|WN+1,2(Ω),

where ĥ := max{h1, h2}.

44



Chapter 5

The Reconstruction of Higher Order
Polynomials

5.1 The Idea of the Reconstruction

The idea of the projection, as we have found in Chapter 2, is to project a given function v onto
a scalar product space spanned by basis functions with the condition that the error in the L2

norm is minimal in order to get a piecewise polynomial u of degree N . The projection is then
an orthogonal projection. The idea of the reconstruction in the current chapter is somewhat
similar and is to map the projection u onto a set of basis functions of higher order polynomials
with the condition that the error is minimal over a stencil of elements in order to get a piecewise
polynomial of a larger degree M > N .

The reconstruction is, in fact, a non-local map, where the solution does not depend only on
one element, as in the projection, but on a stencil of several adjoining elements.

In this chapter we describe how we reconstruct polynomials of degree M from other poly-
nomials of lower degree N 6 M . The reconstruction procedure is the main step in the PNPM
DG schemes which will be presented later.

In the same way as in Chapter 2 we find that the reconstruction is an application of an
operator. The difference here is that this operator is applied to the projections of degree N
obtained in Chapter 2.

As in the ENO and WENO schemes of Harten et al. [15], the key idea of the reconstruction
starts with choosing a stencil, i.e. domain, from where the reconstruction will be computed. For
those schemes a process of choosing the locally smoothest stencil is automatically done, such
that the scheme will avoid discontinuities during the reconstruction as much as possible. On
the other hand, for the reconstruction during a computation in this thesis, we fix the size and
the shape of the stencil used. Nevertheless, we have different choices we make at the beginning
of a computation.
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5.2 Approximations by the Projection Polynomials

To define the reconstructed polynomial we need some preliminaries. We start with discretizing
the computational domain. Recall Z ∈ N, N,M ∈ N0 satisfy N 6 M , ∆ = {xj+ 1

2
}Z0 to be a

grid of Z + 1 equally distant points in I = [a, b]. Also recall the subintervals Ij = [xj− 1
2
, xj+ 1

2
[

and their midpoints xj for j = 1, . . . , Z, and h to be the constant mesh size.

5.2.1 The Reconstruction Stencil

A reconstruction stencil in one dimensional problems, is the union of the interval Ij with a
finite number of its adjoining intervals. We build the stencil of L elements directly to the left
of Ij, and R elements directly to the right of Ij, and Ij itself. The resulting interval has no
gaps. The size of the stencil is denoted by ne = 1 +L+R with R,L > 0. We denote the stencil
by SIj ,ne,L. This notation points out to the shape of the stencil and the location of Ij in the

stencil. In general, we have with R = ne− (L+ 1), SIj ,ne,L =
⋃R
c=−L Ij+c. For example, we have

SIj ,2,0 = Ij ∪ Ij+1

SIj ,2,1 = Ij−1 ∪ Ij
,

SIj ,3,0 = Ij ∪ Ij+1 ∪ Ij+2

SIj ,3,1 = Ij−1 ∪ Ij ∪ Ij+1

SIj ,3,2 = Ij−2 ∪ Ij−1 ∪ Ij
, etc.

Furthermore, to build the reconstruction polynomial on the whole interval I which has asso-
ciated with it a partition of Z elements, we need Z stencils of the same size ne and the same
shape, i.e. the index L is fixed for all stencils. If we change the size or the shape or both we
will get another polynomial.

5.2.2 The Necessity of Extra Elements

The two stencils SI1,ne,L and SIZ ,ne,L associated to the first and the last elements in the partition
cover their elements and some adjoining elements. Therefore, we have to add extra elements
which are located outside of I either at the left side or at the right side or on both sides. At
these external ghost elements we need to compute the projections, since their values are needed
for the reconstruction. For this purpose we define the extended interval Iex :=

⋃Z
j=1 SIj ,ne,L. It

has Zex := Z + L+R elements and I ⊂ Iex.

Remark 5.1. Another possibility, that is not assumed here, would be to change the stencils
as the boundary is approched in order to take elements from I only. For example, as the
left boundary is approached one could add elements to the right of Ij in order to avoid ghost
elements and to maintain the number of elements ne.

5.2.3 The Projection

Let v ∈ L2(Iex), u ∈ PN,Iex,Zex be the projection of degree N of v, and SIj ,ne,L, with L ∈
{0, . . . , ne−1}, be a stencil related to some element Ij. To build one term of the reconstruction
polynomial, using this stencil, we have to use ne terms of u. According to (2.12) and (2.13)
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the function u ∈ PN,Iex,Zex is given by u(x) =
∑Zex

j=1 uj(x) with uj(x) =
∑N

i=0 ûi,jΦi,j(x) for

x ∈ Ij where for i = 0, . . . , N we have ûi,j = 2i+1
h

∫
Ij
v(x)Φi,j(x)dx. The functions Φi,j are the

orthogonal basis functions given by (2.8).

5.2.4 The Reconstruction Polynomial

Suppose that v ∈ L2(Iex) is any given function and u ∈ PN,Iex,Zex is the projection piecewise
polynomial of degree N of v. The reconstructed polynomial is a piecewise polynomial w ∈
PM,I,Z of degree M > N built using the projection u and is written in the form w =

∑Z
j=1wj

and its terms are given by

wj(x) =
M∑
i=0

ŵi,jΦi,j(x), x ∈ I. (5.1)

5.3 Computing the Coefficients

5.3.1 The Conditions of Computing ŵi,j

The reconstruction must satisfy the following three conditions.

(C1) Sufficient Number of Equations

The stencil must give a sufficient number of conditions. By finding the derivative of the norm
of the error, we get for each element in the stencil N + 1 equations. Then we get ne(N + 1)
equations and their number must satisfy ne(N + 1) >M + 1. Then the following condition

ne >
M + 1

N + 1
, (5.2)

must be satisfied when choosing any stencil. We will consider the cases ne = M+1
N+1

and ne >
M+1
N+1

.

The third case ne <
M+1
N+1

, which generates an under-determined system, will be neglected.

(C2) The Extension of the Terms wj

The terms wj can be extended to the whole stencil associated to Ij as follows. The basis
functions Φi,j are originally defined on the interval Ij and their value is set equal to zero on
I\Ij. Since they are polynomials on Ij, these polynomials are also defined everywhere on R. In
the following we say that we consider the extensions Φe

i,j of the Φi,j when they are considered
to be the same polynomials outside of the interval Ij. For example

Φ1,j(x) =

{
2
h
(x− xj) x ∈ Ij

0 x ∈ I\Ij
, Φe

1,j(x) =

{
2
h
(x− xj) x ∈ SIj ,ne,L

0 x ∈ Iex\SIj ,ne,L.

Given a stencil SIj ,ne,L associated to Ij with size ne which consists of L left elements and R
right elements and Ij itself, and we set c = −L, . . . , R. Let i = 0, . . . ,M . The extension wej
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of the term wj onto Ij+c = [xj− 1
2

+ ch, xj+ 1
2

+ ch[ is defined by wej(y) =
∑M

i=0 ŵi,jΦ
e
i,j(y) for

y ∈ Ij+c. Note that we keep the index j of ŵi,j without changing. For example, as shown in
Figure 5.1, with the stencil SIj ,3,1, we have

Figure 5.1: The basis function Φ1,j (left) and its extension Φe
1,j (right) onto the stencil SIj ,3,1.

(C3) Minimal Errors

The error in L2 norm of computing each term must be minimal on the stencil. The error is the
difference E(ûi,j, y) = u(y)− w(y). Let j = 1, . . . , Z and c = −L, . . . , R. We have for y ∈ Ij+c
and Ej+c = E|Ij+c

Ej+c(ûi,j+c, y) = uj+c(y)− wej(y) =
N∑
i=0

ûi,j+cΦi,j+c(y)−
M∑
`=0

ŵ`,jΦ
e
`,j(y),

and then the least squares function is given by

||Ej+c||2L2(Ij+c) =

∫
Ij+c

(
N∑
i=0

ûi,j+cΦi,j+c(y)−
M∑
`=0

ŵ`,jΦ
e
`,j(y)

)2

dy.

The error becomes minimal when the derivatives of its norm squared with respect to the
unknowns ûk,j+c vanish, i.e. ∂

∂ûk,j+c
||Ej+c||2L2(Ij+c) = 0 for all k = 0, . . . , N , c = −L, . . . , R,

and j = 1, . . . , Z. Since (
∫
·dx)′ =

∫
(·)′dx for a parameter then we get for k = 0, . . . , N and

c = −L, . . . , R the following normal equations

⇒ 2

∫
Ij+c

(
N∑
i=0

ûi,j+cΦi,j+c(y)−
M∑
`=0

ŵ`,jΦ
e
`,j(y)

)
[−Φk,j+c(y)]dy = 0,

⇒
∫
Ij+c

(
M∑
`=0

ŵ`,jΦ
e
`,j(y)

)
Φk,j+c(y)dy =

∫
Ij+c

(
N∑
i=0

ûi,j+cΦi,j+c(y)

)
Φk,j+c(y)dy,

⇒
M∑
`=0

ŵ`,j〈Φe
`,j,Φk,j+c〉j+c =

N∑
i=0

ûi,j+c〈Φi,j+c,Φk,j+c〉j+c.
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The orthogonality holds in Ij+c for the functions Φi,j+c, and according to (2.11) we have
〈Φi,j+c,Φk,j+c〉j+c = h

2k+1
δik. This leads to the system

M∑
`=0

ŵ`,j〈Φe
`,j,Φk,j+c〉j+c =

h

2k + 1
ûk,j+c. (5.3)

This system consists of ne(N + 1) equations and is obtained due to the minimal condition (C3)
for the errors.

Remark 5.2. Due to the orthogonality of the Legendre basis functions we obtain the equalities

ŵi,j = ûi,j, i = 0, . . . , N, j = 1, . . . , Z. (5.4)

Consequently, the reconstructed polynomial w can be written as

w(x) = u(x) +
Z∑
j=1

M∑
i=N+1

ŵi,jΦi,j(x), x ∈ I.

Moreover, in the special case M = N , the equalities (5.4) cover all ŵi,j for i = 0, . . . ,M and we
have w = u|I . Then the PNPN DG schemes are equivalent to the classical DG schemes, see [7].

5.3.2 The Matrix Form

We define the vectors ŵj := (ŵ0,j, . . . , ŵM,j)
T ∈ RM+1 and ûj+c := (û0,j+c, . . . , ûN,j+c)

T ∈ RN+1

and the matrices

Mj,c :=


〈Φe

0,j,Φ0,j+c〉j+c . . . 〈Φe
M,j,Φ0,j+c〉j+c

〈Φe
0,j,Φ1,j+c〉j+c . . . 〈Φe

M,j,Φ1,j+c〉j+c
...

...
...

〈Φe
0,j,ΦN,j+c〉j+c . . . 〈Φe

M,j,ΦN,j+c〉j+c

 ∈ R(N+1)×(M+1).

Aj+c =


h 0 . . . 0
0 h

3
. . . 0

...
...

...
0 0 . . . h

2N+1

 ∈ R(N+1)×(N+1).

Then, for the system (5.3), we can write the following elemental matrix forms

Mj,c · ŵj = Aj+c · ûj+c for c = −L, . . . , R. (5.5)

Taking yj,c := Aj+c · ûj+c these forms become Mj,c · ŵj = yj,c for c = −L, . . . , R. Also

defining vectors yj and matrices Mj by yj := (yj,−L, . . . ,yj,R)T ∈ Rne(N+1) and Mj :=

(Mj,−L, . . . ,Mj,R)T ∈ Rne(N+1)×(M+1) we can merge the elemental matrix forms into the follow-
ing full matrix form

Mj · ŵj = yj, (5.6)

which is related to the stencil SIj ,ne,L.
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5.3.3 The Rank of the Reconstruction

We depend on the following Lemma to prove the existence of the solution of the system (5.6).

Lemma 5.3. Suppose that (pn)n∈N0 is a sequence of orthogonal polynomials on the interval
[a, b] with pn of degree n. Then, for each k ∈ {0, . . . , n}, the polynomial pk has k simple zeros
that lie in ]a, b[.

Proof. We consider pn with the zeros xn1 , . . . , x
n
n ∈ C. We have p0 = c 6= 0 and

0 = 〈p0, pn〉 = c

∫ b

a

(x− xn1 ) . . . (x− xnn)dx.

This means that pn must have at least one real zero, e.g. x∗, in ]a, b[, at which the polynomial pn
changes its sign. This zero must have an odd multiplicity. Let Ψ = {x ∈]a, b[: x ∈ {xn1 , . . . , xnn}
with odd multiplicities }. Then we know that Ψ 6= ∅, since at least x∗ ∈ Ψ . We set π(x) :=∏

t∈Ψ (x − t). The function π has only simple zeros in ]a, b[, since it is a product of different
linear factors. Then the function pn ·π has in ]a, b[ real zeros with even multiplicities only. This
implies that pn · π has no sign change on ]a, b[. Thus we obtain 〈pn, π〉 6= 0. Now we assume
that π ∈ P` with ` < n, i.e. π =

∑`
j=0 ajpj. Then 〈pn, π〉 =

∑`
j=0 aj〈pj, pn〉 = 0. This is a

contradiction to 〈pn, π〉 6= 0. This means that π ∈ span(pn), thus π = λpn, for some λ ∈ R.
Consequently, pn has only simple zeros all of which lie in ]a, b[.

Corollary 5.4. Suppose that on the interval I = [a, b] we have a set {p0, . . . , pN} of N + 1
orthogonal polynomials with pk ∈ Pk,I for k = 0 . . . , N . Suppose that p ∈ PM,I is a polynomial
of degree M > N which is orthogonal to all pk. Then it follows, by an analogous proof as for
Lemma 5.3, that p has at least N + 1 different zeros on ]a, b[.

Theorem 5.5. The matrix Mj has a full column rank M + 1.

Proof. We consider the homogeneous matrix form Mj · ŵj = 0 of (5.6). This system means
that the coefficient vector of the reconstruction polynomial wj, see (5.1), satisfies

Mj,c · ŵj =

 〈wj,Φ0,j+c〉j+c
...

〈wj,ΦN,j+c〉j+c

 = 0.

Therefore, the polynomial wj of degree M is orthogonal to the N + 1 basis functions Φi,j+c on
all elements Ij+c of the stencil SIj ,ne,L, with i = 0, . . . , N and c = −L, . . . , R. According to
Corollary 5.4, there are at least N + 1 different zeros of w on each element Ij+c. This gives
ne(N + 1) different zeros on the whole stencil. Also according to the condition (5.2) we find
ne(N + 1) > (M + 1) > M . Therefore, w is the zero polynomial. This proves the injectivity of
the reconstruction and implies that the matrix Mj has the full column rank M + 1.
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5.3.4 The Solution of the Reconstruction Problem

For c = 0, the equations (5.3) directly give the equalities (5.4), due to the orthogonality of the
basis functions on Ij. Thus we can ignore the equations related to Ij in the system (5.3). We

now consider the corresponding reduced system. Defining vectors ŷj and matrices M̃j by

ŷj := (yj,−L, . . . ,yj,−1,yj,1, . . . ,yj,R)T ∈ R(ne−1)(N+1),

M̃j := (Mj,−L, . . . ,Mj,−1,Mj,1, . . . ,Mj,R)T ∈ R(ne−1)(N+1)×(M+1),

then we get the following reduced system M̃j · ŵj = ŷj.

The vector ŵj can be divided into two vectors, ûj := (û0,j, . . . , ûN,j)
T ∈ RN+1 of the

known coefficients and x̂j := (ŵN+1,j, . . . , ŵM,j)
T ∈ RM−N of unknown coefficients. Moreover,

the first N + 1 columns in each matrix M̃j are related to the known coefficients. Thus the

matrices M̃j can be divided into two parts, in the form M̃j =
(
M̃j,1, M̃j,2

)
where M̃j,1 ∈

R(ne−1)(N+1)×(N+1) and M̃j,2 ∈ R(ne−1)(N+1)×(M−N). We can rewrite the reduced system as

follows
(
M̃j,1, M̃j,2

)
·
(

ûj
x̂j

)
= ŷj, or

M̃j,2 · x̂j = ŷj − M̃j,1 · ûj. (5.7)

Since the matrix M̃j,2 is a sub matrix from Mj and Mj has, according to Theorem 5.5, a full

column rank, then M̃j,2 has also a full column rank. Thus we conclude the following cases:

1. If ne = M+1
N+1

, then the matrix M̃j,2 is square and invertible. We get the following unique
solution

x̂j = M̃−1
j,2 ·

(
ŷj − M̃j,1 · ûj

)
. (5.8)

2. If ne >
M+1
N+1

, then according to the least squares method1, see e.g. Strang [22, p. 200], we

consider M̃T
j,2 · M̃j,2 which is invertible. Moreover, the system (5.7) is over-determined.

Now with A = M̃j,2, x̃ = x̂j, and b = ŷj − M̃j,1 · ûj, the normal equations are(
M̃T

j,2M̃j,2

)
x̂j = M̃T

j,2

(
ŷj − M̃j,1 · ûj

)
,

and the least squares solution is given by

x̂j =
(
M̃T

j,2 · M̃j,2

)−1

· M̃T
j,2 ·

(
ŷj − M̃j,1 · ûj

)
. (5.9)

3. If ne <
M+1
N+1

, we ignore this case where the system (5.7) is under-determined.2

1For an overdetermined problem Ax = b with A ∈ Rm×n, x ∈ Rn, b ∈ Rm, m > n, and rankA = n, the
quadratic minimization problem x̃ = minx ||Ax− b||2e with the Euclidean norm (2.18) has a unique solution,
provided that the n columns of x are linearly independent, given by solving the normal equations

(
ATA

)
x̃ =

ATb. Moreover, the least squares solution is given by x̃ =
(
ATA

)−1
ATb. For details see e.g. Strang [22].

2One could consider the solution of smallest Euclidean norm which is given by x̂j = M̃T
j,2 ·

(
M̃j,2 · M̃T

j,2

)−1

·(
ŷj − M̃j,1 · ûj

)
. For details see Strang [22, p. 405].
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5.3.5 The Solutions as Linear Combinations

We conclude from the formulas (5.8) and (5.9) that for one fixed element Ij each of the co-
efficients ŵi,j for i = 0, . . . ,M of the term wj can be written as a linear combination of all
coefficients ûk,j+c with k = 0, . . . , N and c = −L, . . . , R. That means that there are constants
ci,k,j+c ∈ R such that

ŵi,j =
R∑

c=−L

N∑
k=0

ci,k,j+cûk,j+c. (5.10)

We define, for i = 0, . . . ,M and j = 1, . . . , Z, the vectors

ci := (ci,0,j−L, ci,1,j−L, . . . , ci,N,j−L, ci,0,j−L+1, . . . , ci,N,j−L+1, . . . , ci,N,j+R) ∈ Rne(N+1),

ûj,s := (û0,j−L, û1,j−L, . . . , ûN,j−L, û0,j−L+1, . . . , ûN,j−L+1, . . . , ûN,j+R)T ∈ Rne(N+1).

The vectors ci are identical for different j. They only depend on the form of the stencil. With
these vectors we can write ŵi,j = ci · ûj,s. Also by defining the matrix C := (c0, . . . , cM)T ∈
R(M+1)×ne(N+1), we can write

ŵj = C · ûj,s. (5.11)

In the same way, as we studied the matrix M̃j,2, we have the following cases:

1. If ne >
M+1
N+1

, then the matrix CTC is invertible, it is positive definite.

2. If ne = M+1
N+1

, then C is invertible, and thus the product CTC is positive definite.

Whether the matrix C is square or rectangle, the product CTC will always be positive definite.
Then, by using the Euclidean norm || · ||e defined in (2.18) and the spectral norm3 ||C||2 =√
βmax(CTC) we have

||ŵj||2e 6 ||C||22||ûj,s||2e = ||C||22
(
||ûj−L||2e + . . .+ ||ûj+R||2e

)
. (5.12)

The last inequality is needed for proving the boundedness later.

5.4 Motivating Examples

In this section we present some examples of the reconstruction solutions with various stencils
up to degree M = 3. We will consider one element Ij of the discretization and give formulas
only of the term wj which associated with Ij.

3Let Q ∈ Rn×m. The spectral norm of Q is the largest singular value of Q, i.e. the square root of the largest
eigenvalue βmax(QTQ) of the positive semidefinite matrix QTQ

||Q||2 =
√
βmax(QTQ).
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5.4.1 N = 0, M = 1

The projection on Ij+c ∈ SIj ,ne,L is constant and is given by uj+c(x) = û0,j+cΦ0,j+c(x) = û0,j+c

for x ∈ Ij+c and c = −L, . . . , R, and the reconstructed polynomial related to Ij is given by
wj(x) = uj(x) + ŵ1,jΦ1,j(x) for x ∈ Ij.

5.4.1.1 Stencils of 2-Elements

Let SIj ,2,1 = Ij−1 ∪ Ij, then for c = −1 the system (5.7) has only one equation and gives
(−2h)ŵ1,j = h(û0,j−1 − û0,j), then the unique solution is

ŵ1,j =
1

2
(û0,j − û0,j−1), (5.13)

and thus for x ∈ I we have

wj(x) = û0,j +
1

2
(û0,j − û0,j−1)

2(x− xj)
h

= û0,j −
xj
h

(û0,j − û0,j−1) +
1

h
(û0,j − û0,j−1)x.

Similarly, for SIj ,2,0 = Ij ∪ Ij+1, and, for c = 1 the system (5.7) has also only one equation and
gives (2h)ŵ1,j = h(û0,j+1 − û0,j), and the unique solution is

ŵ1,j =
1

2
(û0,j+1 − û0,j), (5.14)

and thus for x ∈ I we have

wj(x) = û0,j +
1

2
(û0,j+1 − û0,j)

2(x− xj)
h

= û0,j −
xj
h

(û0,j+1 − û0,j) +
1

h
(û0,j+1 − û0,j)x.

5.4.1.2 Stencils of 3-Elements

Let SIj ,3,2 = Ij−2∪ Ij−1∪ Ij. Then for c = −2,−1, the system (5.7) has two equations and gives(
−4h
−2h

)
ŵ1,j =

(
hû0,j−2

hû0,j−1

)
−
(
h
h

)
û0,j ⇒

(
4
2

)
ŵ1,j =

(
û0,j − û0,j−2

û0,j − û0,j−1

)
.

By applying the least squares approach, where (4, 2)

(
4
2

)
= 20, we get

ŵ1,j =
1

20
(4, 2)

(
û0,j − û0,j−2

û0,j − û0,j−1

)
=

1

10
(3û0,j − û0,j−1 − 2û0,j−2). (5.15)

Similarly, we get

for SIj ,3,1 = Ij−1 ∪ Ij ∪ Ij+1 : ŵ1,j =
1

4
(û0,j+1 − û0,j−1), (5.16)

for SIj ,3,0 = Ij ∪ Ij+1 ∪ Ij+2 : ŵ1,j =
1

10
(2û0,j+2 + û0,j+1 − 3û0,j). (5.17)
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5.4.2 N = 0, M = 2

The reconstructed polynomial related to Ij is given by wj(x) = uj(x)+ ŵ1,jΦ1,j(x)+ ŵ2,jΦ2,j(x)
for x ∈ Ij.

5.4.2.1 Stencils of 2-Elements, Neglected Case

Although this case does not verify the condition (5.2), but we present it for more explanation.
Let SIj ,2,1 = Ij−1 ∪ Ij, then for c = −1 the system (5.7) has only one equation and gives

(−2h, 6h)

(
ŵ1,j

ŵ2,j

)
= h(û0,j−1 − û0,j) ⇒ − 2ŵ1,j + 6ŵ2,j = û0,j−1 − û0,j.

This gives an equation of two variable, thus we have infinite number of solutions.

5.4.2.2 Stencils of 3-Elements

SIj ,3,2 ⇒ ŵ1,j =
1

4
(û0,j−2 − 4û0,j−1 + 3û0,j), ŵ2,j =

1

12
(û0,j−2 − 2û0,j−1 + û0,j), (5.18)

SIj ,3,1 ⇒ ŵ1,j =
1

4
(û0,j+1 − û0,j−1), ŵ2,j =

1

12
(û0,j−1 − 2û0,j + û0,j+1), (5.19)

SIj ,3,0 ⇒ ŵ1,j =
1

4
(4û0,j+1 − 3û0,j − û0,j+2), ŵ2,j =

1

12
(û0,j − 2û0,j+1 + û0,j+2).

5.4.3 N = 0, M = 3

The stencils of 2- or 3-elements do not verify the condition (5.2). We view stencils of 4-elements

SIj ,4,3


ŵ1,j = 1

120
(−19û0,j−3 + 87û0,j−2 − 177û0,j−1 + 109û0,j),

ŵ2,j = 1
12

(−û0,j−3 + 4û0,j−2 − 5û0,j−1 + 2û0,j),

ŵ3,j = 1
120

(−û0,j−3 + 3û0,j−2 − 3û0,j−1 + û0,j).

SIj ,4,2


ŵ1,j = 1

120
(11û0,j−2 − 63û0,j−1 + 33û0,j + 19û0,j+1),

ŵ2,j = 1
12

(û0,j−1 − 2û0,j + û0,j+1),

ŵ3,j = 1
120

(−û0,j−2 + 3û0,j−1 − 3û0,j + û0,j+1).

SIj ,4,1


ŵ1,j = 1

120
(−19û0,j−1 − 33û0,j + 63û0,j+1 − 11û0,j+2),

ŵ2,j = 1
12

(û0,j−1 − 2û0,j + û0,j+1),

ŵ3,j = 1
120

(−û0,j−1 + 3û0,j − 3û0,j+1 + û0,j+2).
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SIj ,4,0


ŵ1,j = 1

120
(−109û0,j + 177û0,j+1 − 87û0,j+2 + 19û0,j+3),

ŵ2,j = 1
12

(2û0,j − 5û0,j+1 + 4û0,j+2 − û0,j+3),

ŵ3,j = 1
120

(−û0,j + 3û0,j+1 − 3û0,j+2 + û0,j+3).

5.4.4 N = 1, M = 2

The projection on Ij+c is linear and is given by uj+c(x) = û0,j+c + û1,j+cΦ1,j+c(x) for x ∈ Ij+c
and c = −L, . . . , R. The reconstructed polynomial related to Ij is given by wj(x) = uj(x) +
ŵ2,jΦ2,j(x) for x ∈ Ij. We consider stencils of 2-elements. For SIj ,2,1 and c = −1 the system

(5.7) has two equations and gives

(
6h
−2h

)
ŵ2,j =

(
hû0,j−1
h
3
û1,j−1

)
−
(
h −2h
0 1

3
h

)(
û0,j

û1,j

)
, then

we have

(
6
−2

)
ŵ2,j =

(
û0,j−1 − û0,j + 2û1,j
1
3
û1,j−1 − 1

3
û1,j

)
. By applying the least squares approach,

where (6,−2)

(
6
−2

)
= 40, we get

ŵ2,j =
1

40
(6,−2)

(
û0,j−1 − û0,j + 2û1,j
1
3
û1,j−1 − 1

3
û1,j

)
=

1

60
(9û0,j−1 − û1,j−1 − 9û0,j + 19û1,j). (5.20)

Similarly, we find, for SIj ,2,0, ŵ2,j = 1
60

(9û0,j+1 + û1,j+1 − 9û0,j − 19û1,j).

5.4.5 N = 1, M = 3

SIj ,2,1 ⇒
{
ŵ2,j = 1

24
(15(û0,j−1 − û0,j) + 11û1,j−1 + 19û1,j),

ŵ3,j = 1
8
(û0,j−1 − û0,j + û1,j−1 + û1,j).

SIj ,2,0 ⇒
{
ŵ2,j = 1

24
(15(û0,j+1 − û0,j)− 11û1,j+1 − 19û1,j),

ŵ3,j = 1
8
(û0,j − û0,j+1 + û1,j + û1,j+1).

5.4.6 N = 2, M = 3

SIj ,2,1 ⇒ ŵ3,j =
1

4410
(165(û0,j − û0,j−1) + 25û1,j−1 − 355û1,j − 3û2,j−1 + 1143û2,j).

SIj ,2,0 ⇒ ŵ3,j =
1

4410
(165(û0,j+1 − û0,j) + 25û1,j+1 − 355û1,j + 3û2,j+1 − 1143û2,j).

5.5 Analytical Study

Let M,N ∈ N0 and SIj ,ne,L be a stencil whose size satisfies the condition ne > M+1
N+1

. We define
an operator <N,M,S,Z : PN,Iex,Zex → PM,I,Z by <N,M,S,Z(u) := w to give

<N,M,S,Z(u)(x) = w(x) = u(x) +
Z∑
j=1

M∑
i=N+1

ŵi,jΦi,j(x), for x ∈ I. (5.21)
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We call this operator the reconstruction operator. We have for j = 1, . . . , Z

<N,M,S,Z(u)|Ij(x) = w|Ij(x) = wj(x) = uj(x) +
M∑

i=N+1

ŵi,jΦi,j(x), for x ∈ I.

We can define this operator in another form

<N,M,S,Z : L2(Iex)→ PM,I,Z , with <N,M,S,Z(ΠN,Zex(v)) = w,

where ΠN,Zex is the projection operator, which is defined in (2.14), of a function v ∈ L2(Iex).

Remark 5.6. The reconstruction operator <N,M,S,Z depends not only on the orders M and N
and the mesh size h, but also on the stencil SIj ,ne,L which is chosen. Thus, if we change one
of these four factors we will get a new operator. For example, if we fix the mesh size h and
take M = 1 and N = 0, then we still need to determine the stencil. There is a wide variety
of choices of stencils which are available, but their sizes have to satisfy the condition (5.2), i.e.
here ne > 2. Two of these choices are shown as follows

• With S = SIj ,2,1 we obtain the operator <0,1,S,Z , whose solutions are (5.13).

• With S = SIj ,2,0 we obtain the operator <0,1,S,Z , whose solutions are (5.14).

The operator <N,M,S,Z has the following properties.

5.5.1 Linearity

The reconstruction operator is linear. This means that, for all p, q ∈ PN,Iex,Zex and % ∈ R,
<N,M,S,Z(p+ q) = <N,M,S,Z(p) + <N,M,S,Z(q) and <N,M,S,Z(%p) = %<N,M,S,Z(p).

Proof. In (5.21) the reconstruction operator is written as the projection, which is linear, and a
correction. Due to (5.10) the coefficients of the correction ŵi,j depend linearly on u. Therefore,
the reconstruction operator is linear.

5.5.2 Conservativity

The following conservation property 〈<N,M,S,Z(u), u|I〉 = 〈u|I , u|I〉 holds for all u ∈ PN,Iex,Zex

where 〈·, ·〉 is the scalar product on L2(I) which was defined in (2.1).

Proof. Let w = <N,M,S,Z(u). We use the equalities (5.4) which hold for the terms wj and
uj on the elements Ij. We have using the orthogonality of the basis functions 〈w, u|I〉 =∑Z

j=1〈wj, uj〉j =
∑Z

j=1〈uj, uj〉j = 〈u|I , u|I〉 where 〈·, ·〉j is the L2 scalar product on the element
Ij, defined in (2.9).
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5.5.3 Consistency for p ∈ PM and Identity

We prove that in the special case when the given function v is a polynomial p ∈ PM = PM,R of
degree M then the system (5.6), Mj · ŵj = yj has a consistent right hand side.

Theorem 5.7. Let p ∈ PM , u = ΠN,Zex(p) and w = <M,M,S,Z(u). The system (5.6) has a
consistent right hand side. This means that for p ∈ PM the least squares solution is an exact
solution of the linear system (5.6) in the overdetermined case.

Proof. Since p ∈ PM and the extended polynomials Φe
0,j, . . . ,Φ

e
M,j are a basis of PM , there

exist constants p̂0,j, · · · , p̂M,j ∈ R such that p(x) =
∑M

m=0 p̂m,jΦ
e
m,j(x). For k = 0, . . . , N and

c = −L, . . . , R let us consider the entries of the system Aj+c · ûj+c = Mj,c · ŵj defined in (5.5).
Using (2.12) we obtain for a row of the system

h

2k + 1
ûk,j+c =

∫
Ij+c

Φk,j+c(x)p(x)dx =
M∑
m=0

p̂m,j

∫
Ij+c

Φk,j+c(x)Φe
m,j(x)dx

=
M∑
m=0

p̂m,j〈Φk,j+c,Φ
e
m,j〉j+c.

This is the k-th row of the equation yj,c = Aj+c · ûj+c = Mj,c · p̂j for p̂j := (p̂0,j, . . . , p̂M,j)
T .

This means that yj,c is in the range of Mj,c for all c = −L, . . . , R. This holds also for the
system (5.6), i.e. the vector yj is in the range of Mj. Thus the system (5.6) has a consistent
right hand side.

Lemma 5.8. Let p ∈ PM . For all N ∈ {0, . . . ,M} and by using any stencil S = SIj ,ne,L with
size ne satisfying ne > M+1

N+1
we have <N,M,S,Z (ΠN,Zex(p)) = p|I . So <N,M,S,Z ◦ΠN,Zex is a quasi

identity map for polynomials in PM . It uses the known values of p ∈ PM on the extended
interval Iex.

Proof. Let u = ΠN,Zex(p) ∈ PN,Iex,Zex and w = <M,M,S,Z(u) ∈ PM,I,Z . Since PM may be
identified one to one with PM,Iex the polynomial p can be expanded on Iex piecewise. Then we
have

p =
Zex∑
j=1

M∑
i=0

p̂i,jΦi,j, u =
Zex∑
j=1

N∑
k=0

ûk,jΦk,j, w =
Z∑
j=1

M∑
`=0

ŵ`,jΦ`,j,

where all ûk,j and p̂i,j are given by (2.12) and the ŵ`,j are the solutions of the reconstruction
equations. We have on the extended interval p̂i,j = ûi,j for i = 0, . . . , N and j = 1, . . . , Zex and
on the original interval the reconstruction coefficients satisfy ŵ`,j = p̂`,j = û`,j for ` = 0, . . . , N
and j = 1, . . . , Z. We want to prove that ŵ`,j = p̂`,j for ` = N + 1, . . . ,M and j = 1, . . . , Z.
By Theorem 5.5 the solution to the reconstruction system (5.6) is unique since Mj has full
column rank. This means that for p ∈ PM we have p̂`,j = ŵ`,j for ` = N + 1, . . . ,M and
j = 1, . . . , Z.
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5.5.4 Further Relations between <N,M,S,Z and ΠN,Zex

Theorem 5.9. Let p, q ∈ PN,Iex,Zex such that <N,M,S,Z(p) = <N,M,S,Z(q). Then, we have
p|I = q|I .

Proof. Let P = <N,M,S,Z(p) = <N,M,S,Z(q) = Q. Then we may write

Z∑
j=1

M∑
i=0

P̂i,jΦi,j(x) =
Z∑
j=1

M∑
i=0

Q̂i,jΦi,j(x),

or
∑Z

j=1

∑M
i=0(P̂i,j− Q̂i,j)Φi,j(x) = 0. Since the piecewise polynomials Φi,j are linearly indepen-

dent basis functions in PM,I,Z then we have P̂i,j = Q̂i,j for all i = 0, . . . ,M and j = 1, . . . , Z.

On the other hand, the equalities (5.4) give p̂i,j = P̂i,j and q̂i,j = Q̂i,j for all i = 0, . . . , N and
j = 1, . . . , Z. Thus we find p̂i,j = q̂i,j for i = 0, . . . , N and j = 1, . . . , Z. Then p|I = q|I .

Theorem 5.10. For any stencil SIj ,ne,L with ne > M+1
N+1

, we have for any u ∈ PN,Iex,Zex

ΠN,Z(<N,M,S,Z(u)) = u|I .

Proof. Let w = <N,M,S,Z(u), and q = ΠN,Z(w). We want to prove that q = u|I . We have

u =
Zex∑
j=1

N∑
i=0

ûi,jΦi,j, w =
Z∑
j=1

M∑
i=0

ŵi,jΦi,j, and q =
Z∑
j=1

N∑
i=0

q̂i,jΦi,j.

For i = 0, . . . , N and j = 1, . . . , Z according to (2.12), we have

q̂i,j =
2i+ 1

h
〈w,Φi,j〉j =

2i+ 1

h

Z∑
j=1

M∑
k=0

ŵk,j〈Φk,j,Φi,j〉j.

Since the basis functions satisfy (2.11), we have q̂i,j = 2i+1
h

(
ŵi,j

h
2i+1

)
= ŵi,j. According to

the conservation property (5.4), we have ŵi,j = ûi,j, then q̂i,j = ûi,j for i = 0, . . . , N and
j = 1, . . . , Z. This implies finally that q = u|I .

Theorem 5.11. For all w ∈ PM,Iex,Zex and all N ∈ {0, . . . ,M}, the relation

<N,M,S,Z(ΠN,Zex(w)) = w|I

holds

Proof. Follows directly from the Lemma 5.8.
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5.5.5 Boundedness

Theorem 5.12. Let w = <N,M,S,Z(u) and let wj and uj be the restrictions to Ij of w and u,
respectively. Then the following inequalities hold

||uj||2L2(Ij) 6 ||wj||2L2(Ij) 6 C5

R∑
c=−L

||uj+c||2L2(Ij+c). (5.22)

Proof. 1. We start with the first part of the inequality (5.22). From the conservation property
5.5.2 and from the Cauchy Schwarz inequality, we have

||uj||2L2(Ij) = 〈uj, uj〉j = 〈wj, uj〉j 6 ||uj||L2(Ij)||wj||L2(Ij).

If ||uj||L2(Ij) = 0 then trivially ||uj||2L2(Ij) 6 ||wj||2L2(Ij). If ||uj||L2(Ij) > 0, then we get

||uj||L2(Ij) 6 ||wj||L2(Ij) and hence ||uj||2L2(Ij) 6 ||wj||2L2(Ij), thus the first part of inequality

(5.22) follows.
2. We apply (2.19) to the term wj, then we have by taking ŵj = (ŵ0,j, . . . , ŵM,j)

T

h

2M + 1
||ŵj||2e 6 ||wj||2L2(Ij) 6 h||ŵj||2e. (5.23)

On the other hand, according to the formula (5.11), we have ŵj = Cûj,s. From (5.12), we get

||ŵj||2e 6 ||C||22||ûj,s||2e = ||C||22
(
||ûj−L||2e + . . .+ ||ûj+R||2e

)
.

According to (2.20), we have ||ûj+c||2e 6 1
m
||uj+c||2L2(Ij+c) for c = −L, . . . , R, and then

||ŵj||2e 6
||C||22
m

(
||uj−L||2L2(Ij−L) + . . .+ ||uj+R||2L2(Ij+R)

)
.

Substituting into (5.23) we obtain

||wj||2L2(Ij) 6 h
||C||22
m

(
||uj−L||2L2(Ij−L) + . . .+ ||uj+R||2L2(Ij+R)

)
.

With noting that m = h
2N+1

, we find

||wj||2L2(Ij) 6 (2N + 1)||C||22
(
||uj−L||2L2(Ij−L) + . . .+ ||uj+R||2L2(Ij+R)

)
.

Finally, noting that the coefficients in C only depend on the basis polynomials and not on the
v or wj, and by taking C5 := (2N + 1)||C||22 we get the right inequality.

59
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5.5.6 The Error Estimates of the Reconstruction Operator

Theorem 5.13. Suppose that the interval I = [a, b] has a uniform partition of Z subintervals
with constant mesh size h = (b− a)/Z. Let N 6 M , S = SIj ,ne,L be a stencil with ne > M+1

N+1
,

and Iex =
⋃Z
j=1 SIj ,ne,L be the extended interval. Then, for each v ∈ WM+1,2(Iex), the following

error estimates hold

||<N,M,S,Z(ΠN,Zex(v))− v|I ||L2(I) 6 C6h
M+1|v|WM+1,2(I),

where | · |WM+1,2(I) is the seminorm on WM+1,2(I) given in (2.4).

Proof. Let Ij be an element with j = 1, . . . , Z fixed. Using the triangle inequality, we obtain

||<N,M,S,Z(ΠN,Zex(v))− v|I ||2L2(Ij) 6 ||<N,M,S,Z(ΠN,Zex(v))−ΠM,Zex(v)|I ||2L2(Ij)

+||ΠM,Zex(v)|I − v|I ||2L2(Ij). (5.24)

Due to the identity in Lemma 5.8 and the linearity of the reconstruction operator we have

||<N,M,S,Z(ΠN,Zex (v))−ΠM,Zex (v)|I ||2L2(Ij)
= ||<N,M,S,Z(ΠN,Zex (v))−<N,M,S,Z(ΠN,Zex (ΠM,Zex (v)))||2

L2(Ij)

= ||<N,M,S,Z(ΠN,Zex (v)−ΠN,Zex (ΠM,Zex (v)))||2
L2(Ij)

.

By virtue of inequality (5.22) and linearity as well as boundedness of the projection operator
we obtain

||<N,M,S,Z(ΠN,Zex (v))−ΠM,Zex (v)|I ||2L2(Ij)
6 C5

R∑
c=−L

||(ΠN,Zex(v)−ΠN,Zex(ΠM,Zex(v)))|Ij+c
||2L2(Ij+c)

= C5

R∑
c=−L

||(ΠN,Zex(v −ΠM,Zex(v))|Ij+c
||2L2(Ij+c)

= C5

R∑
c=−L

||(v −ΠM,Zex(v))|Ij+c
||2L2(Ij+c).

Substituting into (5.24) we get

||<N,M,S,Z(ΠN,Zex (v))−v|I ||2L2(Ij)
6C5

∑R
c=−L ||(v−ΠM,Zex (v))|Ij+c

||2
L2(Ij+c)

+||ΠM,Zex (v)|I−v|I ||2L2(Ij)
.

Now the error estimate (2.21) obtained in the proof of Theorem 2.5 gives

||<N,M,S,Z(ΠN,Zex (v))−v|I ||2L2(Ij)
6 C5

R∑
c=−L

(
C2

2h
2M+2|v|2WM+1,2(Ij+c)

)
+ C2

2h
2M+2|v|2WM+1,2(Ij)

= (1 + neC5)C2
2h

2M+2|v|2WM+1,2(Ij).

By taking C6 = C2

√
1 + neC5 and by summation over all j, we get

||<N,M,S,Z(ΠN,Zex(v))− v|I ||2L2(I) 6 C2
6h

2M+2|v|2WM+1,2(I).

Finally, taking the square root, we obtain the result.

60



Chapter 6

Examples of the Reconstruction

The aim of this chapter is to view examples of reconstructed polynomials and to study the
numerical effect of the reconstruction operators. We apply them and study their accuracy
and how do they increase the order of the solutions. We use the same examples considered in
Chapter 3 and the same solutions computed there for the coefficients ûi,j.

6.1 The Function v(x) = x− 1

We have û0,j = xj − 1 and û1,j = h
2
.

• When M = N = 0, we get the same operator Π0,Z . It is of first order, see Table 3.1.

• When M = N = 1, we get the identity operator.

For the operator <0,1,S,Z we first choose the stencil SIj ,2,1. Using û0,j−1 = xj−1− 1 = xj − h− 1
and according to (5.13) we get ŵ0,j = û0,j = xj − 1 and ŵ1,j = 1

2
(û0,j − û0,j−1) = h

2
, and the

reconstructed polynomial is wj(x) = xj − 1 + h
2

2
h
(x − xj) = x − 1 = v(x). Thus this operator

is the identity.
If we choose another stencil we will get the same result. For example, for SIj ,3,2 and according

to (5.15) we have

ŵ1,j =
3(xj − 1)− (xj−1 − 1)− 2(xj−2 − 1)

10
=

1

10
(3xj − 3− (xj −h− 1)− 2(xj − 2h− 1)) =

h

2
.

6.2 The Function v(x) = x2 − 3x + 2

We have û0,j = x2
j − 3xj + h2

12
+ 2, û1,j = xjh− 3h

2
, and û2,j = h2

6
.

• When M = N = 0, we get the same operator Π0,Z . It is of first order, see Table 3.3.

• When M = N = 1, we get the same operator Π1,Z . It is of second order, see Table 3.4.

• When M > 1, we get the identity operator.
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6.2.1 N = 0, M = 1, with SIj ,2,1

Using û0,j−1 = x2
j−1− 3xj−1 + h2

12
+ 2 = x2

j − (2h+ 3)xj + 13h2

12
+ 3h+ 2 and according to (5.13),

we find ŵ0,j = û0,j = x2
j − 3xj + h2

12
+ 2 and ŵ1,j = 1

2
(û0,j − û0,j−1) = hxj − h2

2
− 3h

2
and

wj = x2
j − 3xj +

h2

12
+ 2 +

(
hxj −

h2

2
− 3h

2

)
2

h
(x− xj)

= −x2
j + hxj +

h2

12
+ 2 + (2xj − h− 3)x.

These polynomials are of second order of accuracy and the L2 errors are equal to ||v−w||L2(I) =

h2
√

4/15 = O(h2). We get by using Matlab the Table 6.1.
Example. We take the interval ]0, 3[ and discretize it into 5 elements (with Z = 5) then we
have h = 3

5
= 0.6 and the solution is given by

wj =
1

125


610− 375x for x ∈ [0 , 0.6[,
49− 225x for x ∈ [0.6, 1.2[,
−44− 75x for x ∈ [1.2, 1.8[,

7 + 75x for x ∈ [1.8, 2.4[,
−122 + 225x for x ∈ [2.4, 3 ].

Figure 6.1 shows this solution.

6.2.2 N = 0, M = 1, with SIj ,3,2

According to (5.15), we have ŵ1,j = 1
10

(3û0,j − û0,j−1 − 2û0,j−2) = hxj − 9h2

10
− 3h

2
, and the

reconstructed polynomials are

wj = û0,j = x2
j − 3xj + h2

12
+ 2 +

(
hxj − 9h2

10
− 3h

2

)
2(x−xj)

h

= −x2
j + 9h

5
xj + h2

12
+ 2 +

(
2xj − 9h

5
− 3
)
x.

The L2 errors are equal to ||v −w||L2(I) = h2
√

62/75 = O(h2), i.e. second order, see Table 6.1.
Figure 6.2 shows the solution with Z = 5.

6.2.3 N = 0, M = 1, with SIj ,3,1

According to (5.16), we have ŵ1,j = 1
4
(û0,j+1 − û0,j−1) = xjh − 3h

2
, and the reconstructed

polynomials are wj = x2
j + h2

12
+ xjh

2
h
(x − xj) = h2

12
− x2

j + 2xjx. The L2 errors are equal

to ||v − w||L2(I) = h2
√

1/60 = O(h2), i.e. second order, see Table 6.1. Figure 6.3 shows the
solution with Z = 5.
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6.2.4 N = 0, M = 1, with SIj ,3,0

According to (5.17), we have ŵ1,j = 1
10

(û0,j+1 − 3û0,j + 2û0,j+2) = hxj + 9h2

10
− 3h

2
and the

reconstructed polynomials are wj = −x2
j − 9h

5
xj + h2

12
+ 2 +

(
2xj + 9h

5
− 3
)
x. The L2 errors are

the same as of the case with SIj ,3,2.

6.2.5 M > 1

With any stencil the reconstruction operator will be the identity. For example we choose
N = 1 and M = 2 with SIj ,2,1. Then according to (5.20) we have ŵ0,j = x2

j − 3xj + h2

12
+ 2,

ŵ1,j = û1,j = hxj − 3h
2

, ŵ2,j = 1
12

(û0,j−1 − û0,j + 3û1,j − û1,j−1) = h2

6
. The reconstructed

polynomials are

wj = x2
j − 3xj +

h2

12
+ 2 +

(
hxj −

3h

2

)
2(x− xj)

h
+
h2

6

(
3

2

(
2(x− xj)

h

)2

− 1

2

)
= x2 − 3x+ 2.

6.3 The Function v(x) = x3 − x

We have û0,j = x3
j +

(
h2

4
− 1
)
xj, û1,j = 3h

2
x2
j + 3h3

40
− h

2
, û2,j = h2

2
xj, and û3,j = h3

20
.

• When M = N with N = 0, 1, 2, we get the same operators ΠN,Z . They are of order N+1,
see Table 3.5.

• When M > 2, we get the identity operator.

For N = 0, M = 1, with SIj ,3,1, we have ||v − w||L2(I) =
√

163
420
h6 + 16

15
h4 and

wj = −2x3
j − h2xj +

(
3x2

j +
5h2

4
− 1

)
x.

For N = 0, M = 2, with SIj ,3,1, we have ||v − w||L2(I) =
√

17
42
h3 and

wj = x3
j −

5h2

4
xj +

(
−3x2

j +
5h2

4
− 1

)
x+ 3xjx

2.

For N = 1, M = 2, with SIj ,2,1, we have ||v − w||L2(I) =
√

663
21875

h3 and

wj = x3
j −

57h

50
x2
j −

3h2

20
xj +

19h3

200
+

(
−3x2

j +
57h

25
xj +

3h2

20
− 1

)
x+

(
3xj −

57h

50

)
x2.
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For example, we view the operator when N = 0 and M = 2 with SIj ,3,1 and take the interval
[−2, 2]. With Z = 5 then we have h = 4

5
= 0.8 and the solution is given by

wj =


−1426864/78125− 11837x/625− 24x2/5 for x ∈ [−2,−1.2[,

−152/3125 + 311x/125− 12x2/5 for x ∈ [−1.2,−0.4[,
−x/5 for x ∈ [−0.4, 0.4[,

152/3125 + 311x/125 + 12x2/5 for x ∈ [0.4, 1.2[,
1426864/78125− 11837x/625 + 24x2/5 for x ∈ [1.2, 2].

Figure 6.4 shows this solution and Table 6.2 views the L2 errors.

6.4 The Function v(x) = sin(x)

We consider the function v(x) = sin(x) defined on I = [0, 2π]. Table 6.3 views the L2 errors of
some operators. Figures 6.5 and 6.6 view two solutions.
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Z L2 errors EOC Z L2 errors EOC Z L2 errors EOC
8 0.072618 2 8 0.127858 2 8 0.018155 2
16 0.018155 2 16 0.031964 2 16 0.004539 2
32 0.004539 2 32 0.007991 2 32 0.001135 2
64 0.001135 2 64 0.001998 2 64 0.000284 2

⇑ ⇑ ⇑
h2
√

4/15 h2
√

62/75 h2
√

1/60

Table 6.1: The errors of computing the reconstructed polynomials for v(x) = x2− 3x+ 2 when
N = 0 and M = 1 with the stencils SIj ,2,1 (left), SIj ,3,2 (middle), SIj ,3,1 (right).

Z L2 errors EOC
8 0.079526 3
16 0.009941 3
32 0.001243 3
64 0.000155 3

⇑√
17
42
h3

Table 6.2: The errors of computing the reconstructed polynomials for v(x) = x3 − x when
N = 0 and M = 2 with SIj ,3,1

Z L2 errors EOC L2 errors EOC L2 errors EOC
P0P1

8 5.908358e-2 2.50
16 1.160803e-2 2.35
32 2.641818e-3 2.14
64 6.427222e-4 2.04

P0P2 P1P2

8 4.328446e-2 2.78 3.843646e-3 3.53
16 5.619406e-3 2.95 3.810827e-4 3.33
32 7.091082e-4 2.99 4.368701e-5 3.12
64 8.884859e-5 3 5.327866e-6 3.04

P0P3 P1P3 P2P3

8 1.677594e-2 3.67 2.756360e-3 3.84 1.808543e-4 4.52
16 1.109078e-3 3.92 1.772770e-4 3.96 9.223925e-6 4.29
32 7.029687e-5 3.98 1.115948e-5 3.99 5.368237e-7 4.10
64 4.408990e-6 3.99 6.987184e-7 4 3.289320e-8 4.03

Table 6.3: The errors of computing some reconstructed polynomials for v(x) = sin(x).
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CHAPTER 6. EXAMPLES OF THE RECONSTRUCTION

Figure 6.1: The operator <0,1,S,5 for v(x) = x2 − 3x+ 2 with SIj ,2,1.

Figure 6.2: The operator <0,1,S,5 for v(x) = x2 − 3x+ 2 with SIj ,3,2.

Figure 6.3: The operator <0,1,S,5 for v(x) = x2 − 3x+ 2 with SIj ,3,1.
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6.4. THE FUNCTION V (X) = SIN(X)

Figure 6.4: The operator <0,2,S,5 for v(x) = x3 − x with SIj ,3,1.

Figure 6.5: The operator <0,2,S,5 for v(x) = sin(x) with SIj ,3,1

Figure 6.6: The operator <1,2,S,5 for v(x) = sin(x) with SIj ,2,1
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Chapter 7

The Local Space Time Galerkin
Scheme

The local space time Galerkin scheme is used as a predictor step for solving high order Riemann
problems. This scheme evolves the reconstructed polynomials, produced by the reconstruction
operators in Chapter 5, locally in time inside each element to the same order of accuracy as in
space, by using the governing equations.

This time evolution is a part of the algorithm, proposed by Dumbser et al. [10], of the FV
schemes for solving systems of hyperbolic balance laws with stiff source terms. In the same
manner, another algorithm proposed by Dumbser et al. [7] uses this time evolution, namely,
the PNPM DG schemes. The suggestion of Dumbser of using this approach avoids the Cauchy-
Kovalewski procedure used by Harten et al. [15] to evolve the data in time.

In this thesis we follow the procedure of Dumbser used in [7] for the PNPM DG schemes.
The process starts by choosing space time functions θi,j used as basis functions and as test
functions where they are multiplied by the governing PDEs obtaining a weak form in space and
time.

The solutions of the function, flux, and source terms are represented by linear combinations
in terms of the basis functions θi,j weighted by coefficients. Some of these coefficients are known
and computed with help of the basis functions Φi,j of degree M defined in (2.8). To compute
the remaining coefficients we solve the weak form by replacing these formulas in the weak form
obtaining a local system of linear algebraic equations. This local system is solved by an iteration
scheme.

7.1 The Local Space Time Basis Functions

Let M ∈ N0, T > 0, Z ∈ N, Ij be an element of a partition with constant mesh size h
of the space interval I = [a, b] with j = 1, . . . , Z fixed. Suppose that we have the times
0 = t0 < t1 < . . . < tmax = T with different time steps and let T̆n = [tn, tn+1[, with tn < T , be
a time interval with time step kn = tn+1 − tn.

In the following we proceed according to Dumbser et al. [7]. We want to build basis functions
θi,j according to the following properties:
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7.1. THE LOCAL SPACE TIME BASIS FUNCTIONS

1. They are from the space PM,T̆n×Ij , i.e. they are polynomials of the same degree M in the
space and the time variables.

2. They take their value to be zero outside of T̆n × Ij.

3. They are nodal functions. This means that we choose some nodes on T̆n × Ij. Then we
relate each node to a function such that this function equals to 1 at this node and equals
to 0 at the others. The number of nodes should equal the number of degrees of freedom
of these polynomials.

4. These functions will be used not only as basis functions to represent the solutions of the
local Galerkin scheme, but also as test functions for finding the weak form of the local
space time Galerkin scheme.

In the following, we present two examples of building these basis functions.

7.1.1 M = 2

The general form of a polynomial of degree 2 in space and time, which is zero out of Ij, is

θi,j(t, x) =

{
a1 + a2x+ a3x

2 + a4t+ a5xt+ a6t
2, if x ∈ Ij,

0 if x ∈ I\Ij,
t ∈ T̆n,

with a1, . . . , a6 ∈ R. The number of coefficients is (M + 1)(M + 2)/2 = 6 therefore we need 6
conditions. We take the following 6 nodes

β1 = (tn, xj− 1
2
) β2 = (tn, xj) β3 = (tn, xj+ 1

2
)

β4 = (tn+ 1
2
, xj− 1

2
) β5 = (tn+ 1

2
, xj+ 1

2
) β6 = (tn+1, xj),

see Figure 7.1-b. After that we relate to each node βi one polynomial θi,j for i = 1, . . . , 6. In
total we have 6× 6 = 36 conditions defined as follows

θi,j(βk) = δik, for i, k = 1, . . . , 6.

The node polynomial can be obtained as follows. Let θ1,j be the polynomial of degree 2 related
to the first node β1 = (tn, xj− 1

2
). Then we have

θ1,j(t, x) = a1 + a2x+ a3x
2 + a4t+ a5xt+ a6t

2.

The 6 conditions related to θ1,j are listed as follows

θ1,j(tn, xj− 1
2
) = a1 + a2xj− 1

2
+ a3x

2
j− 1

2
+ a4tn + a5xj− 1

2
tn + a6t

2
n = 1,

θ1,j(tn, xj) = a1 + a2xj + a3x
2
j + a4tn + a5xjtn + a6t

2
n = 0,

θ1,j(tn, xj+ 1
2
) = a1 + a2xj+ 1

2
+ a3x

2
j+ 1

2
+ a4tn + a5xj+ 1

2
tn + a6t

2
n = 0,

θ1,j(tn+ 1
2
, xj− 1

2
) = a1 + a2xj− 1

2
+ a3x

2
j− 1

2
+ a4tn+ 1

2
+ a5xj− 1

2
tn+ 1

2
+ a6t

2
n+ 1

2
= 0,

θ1,j(tn+ 1
2
, xj+ 1

2
) = a1 + a2xj+ 1

2
+ a3x

2
j+ 1

2
+ a4tn+ 1

2
+ a5xj+ 1

2
tn+ 1

2
+ a6t

2
n+ 1

2
= 0,

θ1,j(tn+1, xj) = a1 + a2xj + a3x
2
j + a4tn+1 + a5xjtn+1 + a6t

2
n+1 = 0.
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CHAPTER 7. THE LOCAL SPACE TIME GALERKIN SCHEME

The matrix form is

1 xj− 1
2

x2
j− 1

2

tn xj− 1
2
tn t2n

1 xj x2
j tn xjtn t2n

1 xj+ 1
2

x2
j− 1

2

tn xj+ 1
2
tn t2n

1 xj− 1
2

x2
j− 1

2

tn+ 1
2

xj− 1
2
tn+ 1

2
t2
n+ 1

2

1 xj+ 1
2

x2
j+ 1

2

tn+ 1
2

xj+ 1
2
tn+ 1

2
t2
n+ 1

2

1 xj x2
j tn+1 xjtn+1 t2n+1




a1

a2

a3

a4

a5

a6

 =


1
0
0
0
0
0

 .

The coefficient matrix is invertible, since its determinant equals to k4
nh

4/32. Inverting this
matrix and setting ς = 2

h
(x− xj) and ζ = 1

kn
(t− tn), then we get the solution

θi,j(ζ(t), ς(x)) =

{
−1

2
ς + 1

2
ς2 − 2ζ + ςζ + 2ζ2, if x ∈ Ij,

0 if x ∈ I\Ij,
t ∈ T̆n.

In the same way we get for x ∈ Ij and t ∈ T̆n

θ1,j(ζ(t), ς(x)) = −1
2
ς + 1

2
ς2 − 2ζ + ςζ + 2ζ2, θ2,j(ζ(t), ς(x)) = 1− ς2 + ζ − 2ζ2,

θ3,j(ζ(t), ς(x)) = 1
2
ς + 1

2
ς2 − 2ζ − ζς + 2ζ2, θ4,j(ζ(t), ς(x)) = 2ζ − ζς − 2ζ2,

θ5,j(ζ(t), ς(x)) = 2ζ + ζς − 2ζ2, θ6,j(ζ(t), ς(x)) = −ζ + 2ζ.

(7.1)

We set the basis to be Θ2,j = {θ1,j, θ2,j, θ3,j, θ4,j, θ5,j, θ6,j}. Note that at t = tn we have

θ4,j(tn, x) = θ5,j(tn, x) = θ6,j(tn, x) = 0, for all x ∈ Ij.

The other functions in Θ2,j depend on the spatial points at t = tn. The number of these other
functions is M + 1 = 3, namely, θ1,j, θ2,j, and θ3,j.

7.1.2 M = 1

The general form of a polynomial of first degree in space and time, which is zero out of Ij, is

θi,j(t, x) =

{
a1 + a2x+ a3t, if x ∈ Ij,
0 if x ∈ I\Ij,

t ∈ T̆n.

The number of nodes is (M + 1)(M + 2)/2 = 3 which are β1 = (tn, xj− 1
2
), β2 = (tn, xj+ 1

2
), and

β3 = (tn+1, xj), see Figure 7.1-a. With ς =
2(x−xj)

h
and ζ = t−tn

kn
the functions are given in Ij by

θ1,j(ζ(t), ς(x)) =
1

2
(1− ς − ζ), θ2,j(ζ(t), ς(x)) =

1

2
(1 + ς − ζ), θ3,j(ζ(t), ς(x)) = ζ. (7.2)

We set the basis to be Θ1,j = {θ1,j, θ2,j, θ3,j}. Note that at t = tn we have θ3,j(tn, x) = 0 for
x ∈ Ij. The other functions in Θ1,j depend on the spatial points at t = tn. The number of
these other functions is M + 1 = 2, namely, θ1,j and θ2,j.
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7.2. THE FORMULAS OF THE SOLUTIONS

(a) M = 1,N = 3. (b) M = 2,N = 6.

Figure 7.1: The nodes associated with the nodal functions of degrees M = 1, 2.

7.1.3 The General Case

For an arbitrary degree M , the number of nodes, which we denote by N , is given by N :=
(M + 1)(M + 2)/2. The nodes βr with r = 1, . . . ,N , except the last node, are chosen via the
following distribution

βr = (ti,k, xi,k) =

(
tn +

k

M
kn, xj− 1

2
+

i

M − k
h

)
,

k = 0, 1, . . . ,M − 1,
i = 0, 1, . . . ,M − k,
r = 1, . . . ,N , βr 6= (tn+1, xj).

The last node is set to be (t0,M , x0,M) = (tn+1, xj). According to these N nodes there will be
N nodal space time functions θi,j for i = 1, . . . ,N . They must be zero out of the element
Ij. Moreover, each function must be associated with one node and is computed by solving the
general formula of the space time polynomial of degree M at this node. Then we set the basis
to be

ΘM,j = {θ1,j, . . . , θN ,j}.

The first M + 1 basis functions are taken to depend on the spatial variable x at t = tn. They
could be grouped together in a subbasis Θ0

M,j. All other basis functions vanish for t = tn and
could be grouped together in a subbasis Θ1

M,j. This means ΘM,j = Θ0
M,j ∪Θ1

M,j.

7.2 The Formulas of the Solutions

The general form of the hyperbolic systems of balance laws in one dimension is given by

vt(t, x) + f(v(t, x))x = s(v(t, x)), for x ∈ I, t ∈ [0, T ]. (7.3)
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CHAPTER 7. THE LOCAL SPACE TIME GALERKIN SCHEME

We suppose that the solution v, the flux f , and the source term s using the local space time
Galerkin scheme are approximated on T̆n × I by the formulas

v(t, x) := Un(t, x) =
Z∑
j=1

N∑
i=1

Ûn
i,jθi,j(t, x), (7.4)

f(v(t, x)) := F n(t, x) =
Z∑
j=1

N∑
i=1

f(Ûn
i,j)θi,j(t, x), for (t, x) ∈ T̆n × I,

s(v(t, x)) := Sn(t, x) =
Z∑
j=1

N∑
i=1

s(Ûn
i,j)θi,j(t, x),

where the coefficients Ûn
i,j ∈ R are unknowns. According to the space discretization, these

solutions have the following terms

Un
j (t, x) =

N∑
i=1

Ûn
i,jθi,j(t, x), F n

j (t, x) =
N∑
i=1

f(Ûn
i,j)θi,j(t, x), Snj (t, x) =

N∑
i=1

s(Ûn
i,j)θi,j(t, x).

7.3 The Matrix Form

We multiply (7.3) by θk,j for k = 1, . . . ,N and integrate over T̆n × I. Since the value of these

test functions are taken to be zero outside T̆n × Ij, thus we get for k = 1, . . . ,N∫
T̆n

∫
Ij

θk,j(t, x)vt(t, x)dxdt+

∫
T̆n

∫
Ij

θk,j(t, x)f(v(t, x))xdxdt =

∫
T̆n

∫
Ij

θk,j(t, x)s(v(t, x))dxdt.

Introducing the scalar product

〈g, h〉tx :=

∫
T̆n

∫
Ij

g(t, x)h(t, x)dxdt. (7.5)

and using the previous definitions, the systems become for k = 1, . . . ,N
N∑
i=1

〈θk,j, (θi,j)t〉txÛn
i,j +

N∑
i=1

〈θk,j, (θi,j)x〉txf(Ûn
i,j) =

N∑
i=1

〈θk,j, θi,j〉txs(Ûn
i,j).

We introduce the following matrix entries

Gki := 〈θk,j, (θi,j)t〉tx, Hki := 〈θk,j, (θi,j)x〉tx, Wki := 〈θk,j, θi,j〉tx, 1 6 i, k 6 N .

The values of these entries do not depend on j, since we use the same shifted basis for each

j via a reference transformation. Introducing the vectors Ûn
j :=

(
Ûn

1,j, . . . , Û
n
N ,j

)T
, F̂n

j :=(
f(Ûn

1,j), . . . , f(Ûn
N ,j)

)T
, and Ŝnj :=

(
s(Ûn

1,j), . . . , s(Û
n
N ,j)

)T
, we get the matrix forms

GÛn
j + HF̂n

j = WŜnj .
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7.3. THE MATRIX FORM

The first M + 1 degrees of freedom are related to the functions Θ0
M,j. We group them together

into the subvector Ûn,0
j ∈ RM+1. All other degrees of freedom are grouped together into the

subvector Ûn,1
j ∈ RN−M−1. Analogously, we define the subvectors F̂n,0

j , F̂n,1
j , Ŝn,0j , and Ŝn,1j .

Then the matrix forms become

G

(
Ûn,0
j

Ûn,1
j

)
+ H

(
F̂n,0
j

F̂n,1
j

)
= W

(
Ŝn,0j
Ŝn,1j

)
,

We write the matrices G, H, and W as block matrices

G =

(
G00 G01

G10 G11

)
, H =

(
H00 H01

H10 H11

)
, W =

(
W00 W01

W10 W11

)
,

where

G00,H00,W00 ∈ R(M+1)×(M+1) , G01,H01,W01 ∈ R(M+1)×(N−M−1)

G10,H10,W10 ∈ R(N−M−1)×(M+1) , G11,H11,W11 ∈ R(N−M−1)×(N−M−1)

Then we get(
G00 G01

G10 G11

)(
Ûn,0
j

Ûn,1
j

)
+

(
H00 H01

H10 H11

)(
F̂n,0
j

F̂n,1
j

)
=

(
W00 W01

W10 W11

)(
Ŝn,0j
Ŝn,1j

)
. (7.6)

In the following we give two examples to the matrices arising in the matrix form.

7.3.1 Example M = 2

In this case the space time basis is given by (7.1) and we have the following matrices

G =
h

6


0 1 0 0 0 −1
−2 −1 −2 2 2 1

0 1 0 0 0 −1
−1 −2 1 1 −1 2

1 −2 −1 −1 1 2
2 −3 2 −2 −2 3

 , H =
kn
6


0 0 0 1 −1 0
−1 0 1 −2 2 0

0 0 0 1 −1 0
−2 4 −2 −2 2 0

2 −4 2 −2 2 0
1 0 −1 −2 2 0

 , (7.7)

W =
hkn
180


18 −27 8 −19 −9 −1
−27 80 −27 34 34 −4

8 −27 18 −9 −19 −1
−19 34 −9 44 4 6
−9 34 −19 4 44 6
−1 −4 −1 6 6 24

 . (7.8)

7.3.2 Example M = 1

In this case the space time basis is given by (7.2) and we have the following matrices

G =
h

8

 −1 −1 2
−1 −1 2
−2 −2 4

 , H =
kn
4

 −1 1 0
−1 1 0
−2 2 0

 , W =
hkn
12

 2 0 1
0 2 1
1 1 4

 . (7.9)
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CHAPTER 7. THE LOCAL SPACE TIME GALERKIN SCHEME

7.4 Inserting the Reconstructed Polynomials

In Chapter 5 we have defined the reconstructed polynomial w of degree M as a function only of
the space variable, w = w(x). Since we deal with the time variable t starting from this chapter,
we denote the polynomial w as wn with w(tn, x) = wn(x) at time t = tn. Furthermore, the
coefficients ŵi,j will be denoted as ŵni,j.

We determine the vector Ûn,0
j of the first degrees of freedom related to Θ0

M,j by projecting
the reconstructed polynomial wn at time t = tn onto the space spanned by the first nodal
functions Θ0

M,j. This gives the following system of equations∫
Ij

θ1,j(tn, x)Un(tn, x)dx =

∫
Ij

θ1,j(tn, x)w(tn, x)dx,

...∫
Ij

θM+1,j(tn, x)Un(tn, x)dx =

∫
Ij

θM+1,j(tn, x)w(tn, x)dx,

or, for k = 1, . . . ,M + 1∫
Ij

θk,j(tn, x)
N∑
i=1

Ûn
i,jθi,j(tn, x)dx =

∫
Ij

θk,j(tn, x)
M∑
`=0

ŵn`,jΦ`,j(x)dx.

Since θi,j(tn, x) = 0 for i = M + 2, . . . ,N , then the sum in the left hand side reduces to the
first M + 1 terms. Thus we get

M+1∑
i=1

〈θk,j(tn, ·), θi,j(tn, ·)〉jÛn
i,j =

M∑
`=0

〈θk,j(tn, ·),Φ`,j(·)〉jŵn`,j.

Now we define the vector ŵn
j =

(
ŵn0,j, . . . , ŵ

n
M,j

)T
, and the matrices

J :=



〈θ1,j(tn, ·), θ1,j(tn, ·)〉j . . . 〈θ1,j(tn, ·), θM+1,j(tn, ·)〉j

〈θ2,j(tn, ·), θ1,j(tn, ·)〉j . . . 〈θ2,j(tn, ·), θM+1,j(tn, ·)〉j

...
...

〈θM+1,j(tn, ·), θ1,j(tn, ·)〉j . . . 〈θM+1,j(tn, ·), θM+1,j(tn, ·)〉j


,

K :=



〈θ1,j(tn, ·),Φ0,j(·)〉j . . . 〈θ1,j(tn, ·),ΦM,j(·)〉j

〈θ2,j(tn, ·),Φ0,j(·)〉j . . . 〈θ2,j(tn, ·),ΦM,j(·)〉j

...
...

〈θM+1,j(tn, ·),Φ0,j(·)〉j . . . 〈θM+1,j(tn, ·),ΦM,j(·)〉j


,
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then, making k takes the values 1, . . . ,M + 1, we get the following matrix forms JÛn,0
j = Kŵn

j .
Since the functions θi,j for i = 1,M +1, belong to the basis, they are linearly independent, thus
the columns of J are linearly independent. This implies that J is invertible, for all orders M > 0.
So by denoting the following projection Matrix OM := J−1K we can write Ûn,0

j = OMŵn
j . The

matrix OM is square of size M + 1. We give now four examples of these projection matrices

O0 = 1, O1 =

(
1 −1
1 1

)
, O2 =

 1 −1 1
1 0 −1

2

1 1 1

 , O3 =


1 −1 1 −1
1 −1

3
−1

3
11
27

1 1
3
−1

3
−11

27

1 1 1 1

 .

7.4.1 Example M = 2

We choose N = 0 and SIj ,3,1. According to (5.19) we have

Ûn,0
j =

 1 −1 1
1 0 −1

2

1 1 1


 ûn0,j

ûn0,j+1−ûn0,j−1

4
ûn0,j−1−2ûn0,j+ûn0,j+1

12

 =
1

24

 8ûn0,j−1 + 20ûn0,j − 4ûn0,j+1

−ûn0,j−1 + 26ûn0,j − ûn0,j+1

−4ûn0,j−1 + 20ûn0,j + 8ûn0,j+1

 .

7.4.2 Example M = 1

We choose N = 0 and SIj ,2,1. According to (5.13) we have(
Ûn

1,j

Ûn
2,j

)
=

(
1 −1
1 1

)(
ûn0,j

1
2
(ûn0,j − ûn0,j−1)

)
=

1

2

(
ûn0,j + ûn0,j−1

3ûn0,j − ûn0,j−1

)
.

7.5 Reducing the Algebraic System

Since we now have determined M +1 known coefficients, we no longer need the upper blocks in
(7.6). Therefore, we cancel the first M + 1 rows of these systems to obtain the smaller systems

(
G10 G11

)( Ûn,0
j

Ûn,1
j

)
+
(
H10 H11

)( F̂n,0
j

F̂n,1
j

)
=
(
W10 W11

)( Ŝn,0j
Ŝn,1j

)
.

In order to determine the vector Ûn,1
j we have to solve the nonlinear equations

G11Ûn,1
j + H11F̂n,1

j −W11Ŝn,1j = −G10Ûn,0
j −H10F̂n,0

j + W10Ŝn,0j .

The quadratic matrix G11 depends on the mesh size h but not on the time step or the equations
to be solved. For all orders of accuracy, the matrix G11 is invertible, since its columns are
linearly independent. Therefore we obtain a fixed point problem for the unknowns Ûn,1

j

Ûn,1
j =

(
G11

)−1
[
W11Ŝn,1j −H11F̂n,1

j + W10Ŝn,0j −H10F̂n,0
j −G10Ûn,0

j

]
.
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7.5.1 Example M = 2

We depend on the matrices given by (7.7) and (7.8). Then we have

G10 =
h

6

 −1 −2 1
1 −2 −1
2 −3 2

 , H10 = kn

6

 −2 4 −2
2 −4 2
1 0 −1

 , W10 =
hkn
180

 −19 34 −9
−9 34 −19
−1 −4 −1

 ,

G11 =
h

6

 1 −1 2
−1 1 2
−2 −2 3

 , H11 = kn

3

 −1 1 0
−1 1 0
−1 1 0

 , W11 =
hkn
90

 22 2 3
2 22 3
3 3 12

 .

The unknown degrees of freedom are then given by Ûn
4,j

Ûn
5,j

Ûn
6,j

 =
kn
120

 70 −10 −15
−10 70 −15

48 48 12


 s(Ûn

4,j)

s(Ûn
5,j)

s(Ûn
6,j)

+
kn
4h

 1 −1 0
1 −1 0
4 −4 0


 f(Ûn

4,j)

f(Ûn
5,j)

f(Ûn
6,j)


+

kn
120

 −30 55 −10
−10 55 −30
−28 68 −28


 s(Ûn

1,j)

s(Ûn
2,j)

s(Ûn
3,j)

+
kn
4h

 5 −8 3
−3 8 −5

0 0 0


 f(Ûn

1,j)

f(Ûn
2,j)

f(Ûn
3,j)


+

 1 0 0
0 0 1
0 1 0


 Ûn

1,j

Ûn
2,j

Ûn
3,j

 .

7.5.2 Example M = 1

We depend on the matrices given by (7.9).

G10 =
h

4
(−1,−1), H10 =

kn
2

(−1, 1), W10 =
hkn
12

(1, 1), G11 =
h

2
, H11 = 0, W11 =

hkn
3
.

(7.10)

The unique unknown degree of freedom Ûn
3,j is given by

Ûn
3,j = 2kn

3
s
(
Ûn

3,j

)
+ kn

6
(1, 1)

 s
(
Ûn

1,j

)
s
(
Ûn

2,j

) + kn
h

(1,−1)

 f
(
Ûn

1,j

)
f
(
Ûn

2,j

) +
(

1
2
, 1

2

)( Ûn
1,j

Ûn
2,j

)
.

7.6 Iterating the Reduced Algebraic System

We solve the final system for Ûn,1
j using the fixed point iteration

Ûn,1,i+1
j =

(
G11

)−1
[
W11Ŝn,1,ij −H11F̂n,1,i

j + W10Ŝn,0j −H10F̂n,0
j −G10Ûn,0

j

]
. (7.11)

The superscript i denotes the iteration number. This approach works since (G11)
−1

W11 and
(G11)

−1
H11 turn out to be contraction mappings, see Dumbser et al. [7, p.8218]. In our practical

computations the fixed point was determined after at most M + 1 iterations.
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As suggested in [7] we begin iterating by using a stationary solution in time of (7.3) as an

initial guess value for Ûn,1
j . The stationary equation is vt = 0. The matrix form is GÛn

j = 0.
Then we get the initial guess with i = 0

Ûn,1,0
j = −

(
G11

)−1
G10Ûn,0

j . (7.12)

7.7 Example 1: the Linear Advection Equation

Now we apply the local Galerkin scheme to the initial value problem of the linear advection
equation vt(t, x) + avx(t, x) = 0 for (t, x) ∈ R>0 × I with I ⊂ R, a ∈ R, and with an initial
function v0(x) = v(0, x) defined on I. We show formulas of the solutions of this approach

on some time element T̆n = [tn, tn+1[ with time step kn > 0. We have f(Ûn
i,j) = aÛn

i,j for all
i = 1, . . . ,N and j = 1, . . . , Z. The iterative scheme (7.11) becomes

Ûn,1,i+1
j =

(
G11

)−1
[
−aH11Ûn,1,i

j − aH10Ûn,0
j −G10Ûn,0

j

]
. (7.13)

This system has to be solved iteratively for Ûn,1
j with the initial guess given in (7.12).

7.7.1 M = 0

The solution is piecewise constant Ûn
1,j = ŵn0,j = ûn0,j where no need to the iteration.

7.7.2 M = 1

We have N = 3 and the known coefficients are given by(
Ûn

1,j

Ûn
2,j

)
=

(
1 −1
1 1

)(
ŵn0,j
ŵn1,j

)
=

(
ŵn0,j − ŵn1,j
ŵn0,j + ŵn1,j

)
.

On the other hand, since, according to (7.10), H11 = 0 and there is no source terms with our
advection equation, then the local Galerkin scheme with M = 1 is fully explicit and hence it
does not need any iteration. The iterative equation (7.13) becomes

Ûn,i+1
3,j =

2akn
h

(
1

2
,
−1

2

)(
Ûn

1,j

Ûn
2,j

)
+

(
1

2
,
1

2

)(
Ûn

1,j

Ûn
2,j

)
= ŵn0,j −

2akn
h

ŵn1,j.

7.7.2.1 N = 0 and M = 1

With SIj ,2,1. According to (5.13) we have

Ûn
j =

1

2

 ûn0,j−1 + ûn0,j
−ûn0,j−1 + 3ûn0,j

2ûn0,j + 2akn
h

(ûn0,j−1 − ûn0,j)

 .
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With SIj ,2,0. According to (5.14) we have

Ûn
j =

1

2

 3ûn0,j − ûn0,j+1

ûn0,j + ûn0,j+1

2ûn0,j + 2akn
h

(ûn0,j − ûn0,j+1)

 .

With SIj ,3,2. According to (5.15) we have

Ûn
j =

1

10

 2ûn0,j−2 + ûn0,j−1 + 7ûn0,j
−2ûn0,j−2 − ûn0,j−1 + 13ûn0,j

10ûn0,j + 2akn
h

(2ûn0,j−2 + ûn0,j−1 − 3ûn0,j+1)

 .

With SIj ,3,1. According to (5.16) we have

Ûn
j =

1

4

 ûn0,j−1 + 4ûn0,j − ûn0,j+1

−ûn0,j−1 + 4ûn0,j + ûn0,j+1

4ûn0,j + 2akn
h

(ûn0,j−1 − ûn0,j+1)

 .

With SIj ,3,0 and the degrees of freedom (5.17)

Ûn
j =

1

10

 13ûn0,j − ûn0,j+1 − 2ûn0,j+2

7ûn0,j + ûn0,j+1 + 2ûn0,j+2

10ûn0,j + 2akn
h

(3ûn0,j − ûn0,j+1 − 2ûn0,j+2)

 .

7.7.2.2 M = N = 1

We have ŵni,j = ûni,j for i = 0, 1 and Ûn
j =

 ûn0,j − ûn1,j
ûn0,j + ûn1,j

ûn0,j − 2akn
h
ûn1,j

.

7.7.3 M = 2

We have 6 coefficients where N = 6 and the known coefficients are computed by Ûn
1,j

Ûn
2,j

Ûn
3,j

 =

 1 −1 1
1 0 −1

2

1 1 1

 ŵn0,j
ŵn1,j
ŵn2,j

 =

 ŵn0,j − ŵn1,j + ŵn2,j
ŵn0,j − 1

2
ŵn2,j

ŵn0,j + ŵn1,j + ŵn2,j

 .

The iterative equation (7.13) becomes Ûn
4,j

Ûn
5,j

Ûn
6,j


i+1

=
akn
4h

 1 −1 0
1 −1 0
4 −4 0


 Ûn

4,j

Ûn
5,j

Ûn
6,j


i

+

akn
4h

 5 −8 3
−3 8 −5

0 0 0

+

 1 0 0
0 0 1
0 1 0


 Ûn

1,j

Ûn
2,j

Ûn
3,j

 .
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7.7.3.1 N = 0 and M = 2

With SIj ,3,2. According to (5.18), the known coefficients become Ûn
1,j

Ûn
2,j

Ûn
3,j

 =
1

24

 −4ûn0,j−2 + 20ûn0,j−1 + 8ûn0,j
−ûn0,j−2 + 2ûn0,j−1 + 23ûn0,j
8ûn0,j−2 − 28ûn0,j−1 + 44ûn0,j

 .

We begin with the guess solution (7.12) corresponding to the iteration index i = 0 to get Ûn
4,j

Ûn
5,j

Ûn
6,j


1

=
1

48

 −8ûn0,j−2 + 40ûn0,j−1 + 16ûn0,j + 6akn
h

(ûn0,j−2 − ûn0,j−2)
16ûn0,j−2 − 56ûn0,j−1 + 88ûn0,j − 6akn

h
(3ûn0,j−2 − 8ûn0,j−1 + 5ûn0,j)
−2ûn0,j−2 + 4ûn0,j−1 + 46ûn0,j

 .

We iterate the solution again to get Ûn
4,j

Ûn
5,j

Ûn
6,j


2

=
1

48

 −8ûn0,j−2+40ûn0,j−1+16ûn0,j+ 24akn
h

(ûn0,j−1−ûn0,j)+
6(akn)2

h2
(ûn0,j−2−2ûn0,j−1+ûn0,j)

+16ûn0,j−2−56ûn0,j−1+88ûn0,j−
24akn

h
(ûn0,j−2−3ûn0,j−1+2ûn0,j)+

6(akn)2

h2
(ûn0,j−2−2ûn0,j−1+ûn0,j)

−2(ûn0,j−2−2ûn0,j−1−23ûn0,j)− 24akn
h

(ûn0,j−2−4ûn0,j−1+3ûn0,j)+
24(akn)2

h2
(ûn0,j−2−2ûn0,j−1+ûn0,j)

 .

If we repeat the iteration we will get the same result Ûn,1,i
j = Ûn,1,2

j for all i > 3.

7.7.3.2 N = 1 and M = 2

With SIj ,2,1. According to (5.20) we have Ûn
1,j

Ûn
2,j

Ûn
3,j

 =
1

120

 18ûn0,j−1 + 102ûn0,j − 2ûn1,j−1 − 82ûn1,j
−9ûn0,j−1 + 129ûn0,j + ûn1,j−1 − 19ûn1,j

18ûn0,j−1 + 102ûn0,j − 2ûn1,j−1 + 158ûn1,j

 .

In the same way and after two iterations we get the solution

Ûn
1,j =

1

60

[
9ûn0,j−1 + 51ûn0,j − ûn1,j−1 − 41ûn1,j +

3akn
h

(9(ûn0,j−1 − ûn0,j)

−ûn1,j−1 − ûn1,j) +
3(akn)2

2h2
(9(ûn0,j−1 − ûn0,j)− ûn1,j−1 + 19ûn1,j)

]
,

Ûn
2,j =

1

60

[
9ûn0,j−1 + 51ûn0,j − ûn1,j−1 + 79ûn1,j −

3akn
h

(9(ûn0,j−1 − ûn0,j)

−ûn1,j−1 + 39ûn1,j) +
3(akn)2

2h2
(9(ûn0,j−1 − ûn0,j)− ûn1,j−1 + 19ûn1,j)

]
,

Ûn
3,j =

1

60

[
−1

2
(9ûn0,j−1 − 129ûn0,j − ûn1,j−1 + 19ûn1,j)−

120akn
h

û1,j

+
6(akn)2

h2
(9(ûn0,j−1 − ûn0,j)− ûn1,j−1 + 19ûn1,j)

]
.
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7.7.3.3 M = N = 2

We have ŵni,j = ûni,j for i = 0, 1, 2 and

 Ûn
1,j

Ûn
2,j

Ûn
3,j

 =

 ûn0,j − ûn1,j + ûn2,j
ûn0,j − 1

2
ûn2,j

ûn0,j + ûn1,j + ûn2,j

. After two iterations

we get the following solution Ûn
4,j

Ûn
5,j

Ûn
6,j

 =

 ûn0,j − ûn1,j + ûn2,j − akn
h

(ûn1,j − 3ûn2,j) + 3(akn)2

2h2
ûn2,j

ûn0,j + ûn1,j + ûn2,j − akn
h

(ûn1,j + 3ûn2,j) + 3(akn)2

2h2
ûn2,j

ûn0,j − 1
2
ûn2,j − 2akn

h
ûn1,j + 6(akn)2

h2
ûn2,j

 .

7.8 Example 2: Nonlinear Burgers Equation

Now we apply the local Galerkin scheme to the initial value problem of the nonlinear Burgers
equation vt(t, x) + (v2/2)x(t, x) = 0 for (t, x) ∈ R>0× I with I ⊂ R and with an initial function

v0(x) = v(0, x) defined on I. We have f(Ûn
i,j) = 1

2
(Ûn

i,j)
2 for all i = 1, . . . ,N and j = 1, . . . , Z.

7.8.1 M = 1

The known coefficients are given by(
Ûn

1,j

Ûn
2,j

)
=

(
1 −1
1 1

)(
ŵn0,j
ŵn1,j

)
=

(
ŵn0,j − ŵn1,j
ŵn0,j + ŵn1,j

)
.

We found above that the local Galerkin scheme with M = 1 does not need any iteration. The
iterative equation becomes

Ûn,i+1
3,j =

2kn
h

(
1

2
,
−1

2

) 1
2

(
Ûn

1,j

)2

1
2

(
Ûn

2,j

)2

+

(
1

2
,
1

2

)(
Ûn

1,j

Ûn
2,j

)
= ŵn0,j −

2kn
h
ŵn0,jŵ

n
1,j.

7.8.2 N = 0, M = 1, with SIj ,2,1

Ûn
j =

1

2

 ûn0,j−1 + ûn0,j
−ûn0,j−1 + 3ûn0,j

2ûn0,j + 2kn
h
ûn0,j(û

n
0,j−1 − ûn0,j)

 .

7.8.3 M = N = 1

We have ŵni,j = ûni,j for i = 0, 1 and

Ûn
j =

 ûn0,j − ûn1,j
ûn0,j + ûn1,j

ûn0,j − 2kn
h
ûn0,jû

n
1,j

 .
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Chapter 8

The Discontinuous Galerkin Schemes

8.1 Preface

Here we apply the DG schemes [5, 6] and use numerical fluxes whose arguments are the solutions
Un and F n of the previous step.

Let T > 0 and I ⊂ R. We discretize the intervals I and [0, T ] and consider Ij = [xj− 1
2
, xj+ 1

2
[

and T̆n = [tn, tn+1[ with a time step kn > 0 and a constant mesh size h for j = 1, . . . , Z.
In this thesis we will study various functions of different order of smoothness, e.g. starting

from the space C∞(I) of infinitely continuously differentiable functions, such as e.g. sinx, up
to the discontinuous functions, such as a jump function. Therefore, at each time t ∈ [0, T ], the
function which will be considered must be at least bounded on the interval I.

The integral of a bounded function on a closed interval I always exists, provided that the
set of points in I, at which the function is not continuous, has Lebesgue measure 0, see also
[13]. Then we can deal with integrable functions, for example, deal with v(t, ·) ∈ L2(I). The
conserved functions will be from the following function space

L∞([0, T ], L2(I)) = {v : [0, T ]× I → R, such that ess sup
t∈[0,T ]

||v(t, ·)|| <∞}.

8.2 The PNPM DG Schemes

Here we formulate the final fully discrete PNPM DG schemes for the general nonlinear hyperbolic
systems of balance laws in one space dimension. We have

vt(t, x) + f(v(t, x))x = s(v(t, x)), for (t, x) ∈ [0, T ]× I.

Let vp, fp, and sp be arbitrary components of the vectors v, f , and s, respectively. According
to these components we have the following equation

(vp(t, x))t + (fp(vq(t, x))x = sp(vq(t, x)).

The components fp and sp are based on the vector v, so we write them in the form fp(vq)
and sp(vq), respectively, where vq of the subindex q indicates an arbitrary component of the
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vector v. We consider one space element Ij, with j = 1, . . . , Z fixed, and one time element

T̆n = [tn, tn+1[.

8.2.1 Step 1.

Multiplying with an arbitrary smooth function χ ∈ L2(Ij), integrating over T̆n × Ij, and using
integration by parts in space we get∫

T̆n

∫
Ij

χ(x)(vp(t, x))tdxdt+

∫
T̆n

χ(x)fp(vq(t, x))
∣∣∣xj+1

2
x
j− 1

2
dt

−
∫
T̆n

∫
Ij

χx(x)fp (vq(t, x)) dxdt =

∫
T̆n

∫
Ij

χ(x)sp (vq(t, x)) dxdt. (8.1)

8.2.2 Step 2.

We assume that the numerical solution, defined on T̆n× I, of the DG scheme, which we denote
as unp , is a piecewise polynomial of the degree N and is given by

unp (t, x) =
Z∑
j=1

N∑
`=0

ûnp,`,j(t)Φ`,j(x), for x ∈ I,

where ûnp,`,j ∈ R, for j = 1, . . . , Z and ` = 0, . . . , N , are unknowns, and Φ`,j are the Legendre
basis functions of degree N > 0, which are given by (2.8). This solution has Z terms, each
term is written as

unp,j(t, x) =
N∑
`=0

ûnp,`,j(t)Φ`,j(x), for j = 1, . . . , Z.

8.2.3 Step 3.

Substituting the numerical solution unp and replacing the test function χ by the basis functions
Φk,j for k = 0, . . . , N in (8.1) leads to the following forms∫

T̆n

∫
Ij

Φk,j(x)(unp (t, x))tdxdt+

∫
T̆n

Φk,j(x)fp(u
n
q (t, x))

∣∣∣xj+1
2

x
j− 1

2
dt

−
∫
T̆n

∫
Ij

(Φk,j(x))xfp(u
n
q (t, x))dxdt =

∫
T̆n

∫
Ij

Φk,j(x)sp(u
n
q (t, x))dxdt.

The sum over the index j in the numerical solution unp is reduced only to one term unp,j which has
values on Ij and the other terms have value zero on Ij. By the index k = 0, . . . , N we have N+1

equations for the N+1 unknown coefficients ûnk,j(t). Now with unp,j(t, x) =
∑N

`=0 û
n
p,`,j(t)Φ`,j(x),
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we have ∫
T̆n

∫
Ij

Φk,j(x)

(
N∑
`=0

ûnp,`,j(t)Φ`,j(x)

)
t

dxdt+

∫
T̆n

Φk,j(x)fp(u
n
q,j(t, x))

∣∣∣xj+1
2

x
j− 1

2
dt

−
∫
T̆n

∫
Ij

(Φk,j(x))xfp
(
unq,j(t, x)

)
dxdt =

∫
T̆n

∫
Ij

Φk,j(x)sp
(
unq,j(t, x)

)
dxdt. (8.2)

8.2.3.1 The First Term in (8.2)

The time derivative and the time integral in the first term are applied to ûnp,`,j, since the
functions Φ`,j are independent of the time variable. This derivative can be replaced as follows
for x ∈ Ij∫

T̆n

(
N∑
`=0

ûnp,`,j(t)Φ`,j(x)

)
t

dt =
N∑
`=0

(∫
T̆n

(
ûnp,`,j(t)

)
t
dt

)
Φ`,j(x) =

N∑
`=0

(
ûn+1
p,`,j − û

n
p,`,j

)
Φ`,j(x).

Thus we have for the first term in (8.2)∫
Ij

Φk,j(x)
N∑
`=0

(
ûn+1
p,`,j − û

n
p,`,j

)
Φ`,j(x)dx.

Due to the orthogonality of the basis functions, the sum in the first term reduces to one term
with index k = ` and the space integral has the value h

2k+1
. Thus the first term becomes

h

2k + 1

(
ûn+1
p,k,j − û

n
p,k,j

)
.

8.2.3.2 The Second Term in (8.2)

According to the special values (2.6) of the Legendre polynomials, we have Φk,j(xj− 1
2
) = (−1)k

and Φk,j(xj+ 1
2
) = 1 for k = 0, . . . , N . Then we have for the second term in (8.2)∫

T̆n

[
fp

(
unq,j(t, xj+ 1

2
)
)
− (−1)kfp

(
unq,j(t, xj− 1

2
)
)]
dt.

Substituting these first and second terms in (8.2) we obtain the following system

h

2k + 1

(
ûn+1
p,k,j − û

n
p,k,j

)
+

∫
T̆n

[
fp

(
unq,j(t, xj+ 1

2
)
)
− (−1)kfp

(
unq,j(t, xj− 1

2
)
)]
dt

−
∫
T̆n

∫
Ij

(Φk,j(x))xfp
(
unq,j(t, x)

)
dxdt =

∫
T̆n

∫
Ij

Φk,j(x)sp
(
unq,j(t, x)

)
dxdt. (8.3)
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8.2.4 Step 4.

Since the piecewise test functions Φk,j are discontinuous at the interfaces between the elements,
then along an element boundary two distinct values of the solution can be obtained. To remove
this non uniqueness in the second term the flux function fp is replaced by a numerical flux func-
tion Fp which produces a single unique value. We can use any consistent monotone numerical
flux that guarantees stable schemes and implies the convergence to the entropy solutions. For
more details see [5].

For the values fp

(
unq,j(t, xj+ 1

2
)
)

, we follow Dumbser et al. [7] and use numerical flux func-

tions whose arguments are the solutions Un
q,j, see (7.4), of the local Galerkin scheme, i.e.

fp

(
unq,j(t, xj+ 1

2
)
)
≈ Fn

p,j+ 1
2
(t) := Fp

(
Un
q,j(t, xj+ 1

2
), Un

q,j+1(t, xj+ 1
2
)
)
.

Similarly, we have

fp

(
unq,j(t, xj− 1

2
)
)
≈ Fn

p,j− 1
2
(t) := Fp

(
Un
q,j−1(t, xj− 1

2
), Un

q,j(t, xj− 1
2
)
)
.

We insert also these solutions Un
q,j in the formulas of the flux and source terms

fp
(
unq,j(t, x)

)
≈

N∑
i=1

fp

(
Ûn
q,i,j

)
θi,j(t, x),

sp
(
unq,j(t, x)

)
≈

N∑
i=1

sp

(
Ûn
q,i,j

)
θi,j(t, x), for (t, x) ∈ T̆n × Ij.

Substituting into (8.3) we get using (7.4)

h

2k + 1

(
ûn+1
p,k,j − û

n
p,k,j

)
+

∫
T̆n

Fn
p,j+ 1

2
(t)dt− (−1)k

∫
T̆n

Fn
p,j− 1

2
(t)dt

−
∫
T̆n

∫
Ij

(Φk,j(x))x

[
N∑
i=1

fp

(
Ûn
q,i,j

)
θi,j(t, x)

]
dxdt

=

∫
T̆n

∫
Ij

Φk,j(x)

[
N∑
i=1

sp

(
Ûn
q,i,j

)
θi,j(t, x)

]
dxdt.

The coefficients fp

(
Ûn
q,i,j

)
and sp

(
Ûn
q,i,j

)
are constants, thus, using the scalar product 〈·, ·〉tx,

given by (7.5), we get

h

2k + 1

(
ûn+1
p,k,j − û

n
p,k,j

)
+

∫
T̆n

Fn
p,j+ 1

2
(t)dt− (−1)k

∫
T̆n

Fn
p,j− 1

2
(t)dt

−
N∑
i=1

fp

(
Ûn
q,i,j

)
〈(Φk,j)x, θi,j〉tx =

N∑
i=1

sp

(
Ûn
q,i,j

)
〈Φk,j, θi,j〉tx.
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8.2.5 Step 5.

Finally, by rearranging the terms, we get the fully discrete one step PNPM DG scheme

ûn+1
p,k,j = ûnp,k,j −

2k + 1

h

∫
T̆n

Fn
p,j+ 1

2
(t)dt+ (−1)k

2k + 1

h

∫
T̆n

Fn
p,j− 1

2
(t)dt (8.4)

+
2k + 1

h

N∑
i=1

fp

(
Ûn
q,i,j

)
〈(Φk,j)x, θi,j〉tx +

2k + 1

h

N∑
i=1

sp

(
Ûn
q,i,j

)
〈Φk,j, θi,j〉tx.

The equations (8.4) give the updates of ûnp,k,j from the time tn to tn+1. The numerical discrete
solution updated at the new time tn+1 related to the element Ij is the term

un+1
p,j (x) =

N∑
k=0

ûn+1
p,k,jΦk,j(x), for (t, x) ∈ T̆n × Ij,

taking the summation over all elements of the discretization we get

un+1
p (x) =

Z∑
j=1

N∑
k=0

ûn+1
p,k,jΦk,j(x), for (t, x) ∈ T̆n × I.
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Chapter 9

Linear Advection Equation and
Numerical Studies

Starting from this chapter for previty we say only the PNPM schemes.
Let us consider the scalar linear advection equation vt(t, x) + avx(t, x) = 0 for (t, x) ∈

[0, T ] × I with T > 0, I = [ε1, ε2] ⊂ R, and a ∈ R. Suppose that the initial solution is
v0 = v(0, ·) ∈ L2(I). The exact solution is given by ve(t, x) = v0(x− at).

9.1 The PNPM Schemes

We use the Lax-Friedrichs flux given by Cockburn and Shu [6]

Fn
LF,j+ 1

2
(t) =

1

2

[
aUn

j+1(t, xj+ 1
2
) + aUn

j (t, xj+ 1
2
)− C

(
Un
j+1(t, xj+ 1

2
)− Un

j (t, xj+ 1
2
)
)]
,

where C = max
minI(v0)6s6maxI(v0)

|f ′(s)| = |a|.

We have the following two cases. If a > 0 we have

Fn
LF,j+ 1

2
(t) = aUn

j (t, xj+ 1
2
) = a

N∑
i=1

Ûn
i,jθi,j(t, xj+ 1

2
)

Fn
LF,j− 1

2
(t) = aUn

j−1(t, xj− 1
2
) = a

N∑
i=1

Ûn
i,j−1θi,j−1(t, xj− 1

2
)

and substituting into (8.4) we obtain

ûn+1
k,j = ûnk,j −

(2k + 1)a

h

N∑
i=1

{
Ûn
i,j

(∫
T̆n

θi,j(t, xj+ 1
2
)dt

)
−(−1)kÛn

i,j−1

(∫
T̆n

θi,j−1(t, xj− 1
2
)dt

)
− Ûn

i,j〈(Φk,j)x, θi,j〉tx
}
, (9.1)
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If a < 0 we have

Fn
LF,j+ 1

2
(t) = aUn

j+1(t, xj+ 1
2
) = a

N∑
i=1

Ûn
i,j+1θi,j+1(t, xj+ 1

2
)

Fn
LF,j− 1

2
(t) = aUn

j (t, xj− 1
2
) = a

N∑
i=1

Ûn
i,jθi,j(t, xj− 1

2
)

and

ûn+1
k,j = ûnk,j −

(2k + 1)a

h

N∑
i=1

{
Ûn
i,j+1

(∫
T̆n

θi,j+1(t, xj+ 1
2
)dt

)
−(−1)kÛn

i,j

(∫
T̆n

θi,j(t, xj− 1
2
)dt

)
− Ûn

i,j〈(Φk,j)x, θi,j〉tx
}
. (9.2)

The N + 1 relations (9.1) or (9.2) give updates of the degrees of freedom.

9.1.1 The Extra Elements

The space interval is always discretized into Z elements. The relations (9.1) (for a > 0) and
(9.2) (for a < 0) indicate that the new degrees of freedom ûn+1

k,j depend on the values ûnk,j and

Ûn
i,j, as well as on Ûn

i,j−1 (for a > 0) or Ûn
i,j+1 (for a < 0), of the past time tn. The values Ûn

i,j−1

and Ûn
i,j+1 locate at the left element Ij−1 and the right element Ij+1, respectively. Therefore,

we add two extra element. Thus we need Z + 2 elements.
In additional, the degrees of freedom Ûn

i,{ for { = j−1, j, j+1 are related to the reconstructed
degrees of freedom ŵn

k,{, respectively. The degrees of freedom ŵn
k,{ depend on the elements within

the stencil which contains ne elements.

• If M = N , then ne = 1 and ŵn
k,{ = ûn

k,{. We do not need any neighbors.

• If M > N , then ne > 1 and ŵn
k,{ need ne−1 new neighbors. Then we have to add (2ne−2)

elements in order to cover all shapes of the stencil.

Thus we have to add 2ne extra elements. For example, the PNPM schemes with N = M have
single stencils, i.e. ne = 1, and need only two extra elements, (one at left, one at right). The
stencils of size 2 require 4 extra elements, (2 at left, 2 at right), and so on.

9.1.2 The Boundary Conditions

Let us discretize the space interval into Z elements and attach them with the extra elements.
The relations (9.1) and (9.2) give updates only to the main Z elements. In order to continue
with the time variable we have to update the solutions on the 2ne extra elements. Therefore,
we need to add 2ne boundary conditions.
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Example: Periodic Initial Function

Let M,N ∈ N with M > N . We discretize the space interval [ε1, ε2] into Z elements and add
2ne extra elements. The boundary conditions are given in the Table 9.1.

The size of The number of The Boundary Conditions for all i = 0, 1, . . . , N
the stencil, ne all elements

Left Right

1 Z + 2 ûn+1
i,1 = ûn+1

i,Z+1 ûn+1
i,Z+2 = ûn+1

i,2

2 Z + 4
ûn+1
i,1 = ûn+1

i,Z+1 ûn+1
i,Z+3 = ûn+1

i,3

ûn+1
i,2 = ûn+1

i,Z+2 ûn+1
i,Z+4 = ûn+1

i,4

3 Z + 6

ûn+1
i,1 = ûn+1

i,Z+1 ûn+1
i,Z+4 = ûn+1

i,4

ûn+1
i,2 = ûn+1

i,Z+2 ûn+1
i,Z+5 = ûn+1

i,5

ûn+1
i,3 = ûn+1

i,Z+3 ûn+1
i,Z+6 = ûn+1

i,6

Table 9.1: The boundary conditions of the PNPM schemes applied to the advection equation
with a periodic initial function.

9.1.3 Some PNPM Formulas for a > 0

The arguments of the discretization kn and h are related, see [5], by the Courant number
λ = akn

h
. This number is important for the stability of the schemes.

The P0P0 Scheme

ûn+1
0,j = ûn0,j + λ

(
ûn0,j−1 − ûn0,j

)
. (9.3)

The P0P1 Scheme with SIj ,2,1

ûn+1
0,j = ûn0,j −

λ

2

(
ûn0,j−2 − 4ûn0,j−1 + 3ûn0,j

)
+
λ2

2

(
ûn0,j−2 − 2ûn0,j−1 + ûn0,j

)
.

The P0P1 Scheme with SIj ,2,0

ûn+1
0,j = ûn0,j +

λ

2

(
ûn0,j−1 − ûn0,j+1

)
+
λ2

2

(
ûn0,j−1 − 2ûn0,j + ûn0,j+1

)
.
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The P1P1 Scheme

ûn+1
0,j = ûn0,j + λ

(
ûn0,j−1 − ûn0,j + ûn1,j−1 − ûn1,j

)
− λ2

(
ûn1,j−1 − ûn1,j

)
,

ûn+1
1,j = ûn1,j − 3λ

(
ûn0,j−1 − ûn0,j + ûn1,j−1 + ûn1,j

)
+ 3λ2

(
ûn1,j−1 − ûn1,j

)
.

The P0P2 Scheme with SIj ,3,2

ûn+1
0,j = ûn0,j +

λ

6

(
2ûn0,j−3 − 9ûn0,j−2 + 18ûn0,j−1 − 11ûn0,j

)
− λ2

2

(
ûn0,j−3 − 4ûn0,j−2

+ 5ûn0,j−1 − 2ûn0,j
)

+
λ3

6

(
ûn0,j−3 − 3ûn0,j−2 + 3ûn0,j−1 − ûn0,j

)
.

The P0P2 Scheme with SIj ,3,1

ûn+1
0,j = ûn0,j −

λ

6

(
ûn0,j−2 − 6ûn0,j−1 + 3ûn0,j + 2ûn0,j+1

)
+
λ2

2

(
ûn0,j−1 − 2ûn0,j + ûn0,j+1

)
+
λ3

6

(
ûn0,j−2 − 3ûn0,j−1 + 3ûn0,j − ûn0,j+1

)
.

The P0P2 Scheme with SIj ,3,0

ûn+1
0,j = ûn0,j +

λ

6

(
2ûn0,j−1 + 3ûn0,j − 6ûn0,j+1 + ûn0,j+2

)
+
λ2

2

(
ûn0,j−1 − 2ûn0,j + ûn0,j+1

)
+
λ3

6

(
ûn0,j−1 − 3ûn0,j + 3ûn0,j+1 − ûn0,j+2

)
.

The P1P2 Scheme with SIj ,2,1

ûn+1
0,j = ûn0,j + λ

60

(
9ûn0,j−2 − ûn1,j−2 + 42ûn0,j−1 + 80ûn1,j−1 − 51ûn0,j − 79ûn1,j

)
−λ2

20

(
9
(
ûn0,j−2 − 2ûn0,j−1 + ûn0,j

)
− ûn1,j−2 + 40ûn1,j−1 − 39ûn1,j

)
+λ3

30

(
9
(
ûn0,j−2 − 2ûn0,j−1 + ûn0,j

)
− ûn1,j−2 + 20ûn1,j−1 − 19ûn1,j

)
,

ûn+1
1,j = ûn1,j − λ

20

(
9ûn0,j−2 − ûn1,j−2 + 60ûn0,j−1 + 78ûn1,j−1 − 69ûn0,j + 79ûn1,j

)
+3λ

2

20

(
9
(
ûn0,j−2 − ûn0,j

)
− ûn1,j−2 + 38ûn1,j−1 − ûn1,j

)
−λ3

10

(
9
(
ûn0,j−2 − 2ûn0,j−1 + ûn0,j

)
− ûn1,j−2 + 20ûn1,j−1 − 19ûn1,j

)
.
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The P2P2 Scheme

ûn+1
0,j = ûn0,j + λ

(
ûn0,j−1 + ûn1,j−1 + ûn2,j−1 − ûn0,j − ûn1,j − ûn2,j

)
−λ2

(
ûn1,j−1 + 3ûn2,j−1 − ûn1,j − 3ûn2,j

)
+ 2λ3

(
ûn2,j−1 − ûn2,j

)
,

ûn+1
1,j = ûn1,j − 3λ

(
ûn0,j−1 + ûn1,j−1 + ûn2,j−1 − ûn0,j + ûn1,j + ûn2,j

)
+3λ2

(
ûn1,j−1 + 3ûn2,j−1 − ûn1,j + 3ûn2,j

)
− 6λ3

(
ûn2,j−1 − ûn2,j

)
,

ûn+1
2,j = ûn2,j + 5λ

(
ûn0,j−1 + ûn1,j−1 + ûn2,j−1 − ûn0,j + ûn1,j − ûn2,j

)
−5λ2

(
ûn1,j−1 + 3ûn2,j−1 − ûn1,j + 3ûn2,j

)
+ 10λ3

(
ûn2,j−1 − ûn2,j

)
.

9.2 Numerical studies

In fact, there are several parameters which control the PNPM schemes, namely: (1) The orders
N and M . (2) The size ne of any stencil SIj ,ne,L, that must satisfy the condition ne > M+1

N+1
.

(3) The index L of the stencil SIj ,ne,L that indicates the form of the stencil. (4) The mesh size
Z which gives the length h of the elements. (5) The maximal time value T with the time step

kn 6 T . (6) The Courant number λ = |a|kn
h

which relates the time step kn to the mesh length
h, see [5].

In the following we study the stability and efficiency of the PNPM schemes by studying three
of these parameters, namely, the Courant number as well as the size and form of the stencils.

9.2.1 Stability Analysis

The Courant number is important for the stability of the schemes. We determine maximal
Courant numbers which are limits of the stability. We study the PNPM schemes applying to
the linear advection equation vt + vx = 0 with a = 1. At first, we apply the von Neumann
stability analysis [16] with the special case N = 0. Then we follow an experimental procedure
for higher order PNPM schemes with N > 0.

9.2.1.1 Von Neumann Analysis

The computational domain of the Fourier representations is the region [−z, z] which is dis-
cretized into 2Zf mesh elements with equidistant length element hf = z/Zf and z ∈ R is a
period of the initial data. We decompose the coefficients ûn0,j inside the element Ij, into a
Fourier sum as

ûn0,j =

Zf∑
`=−Zf

An` eijφ` , (9.4)

where An` is called the amplitude vector at time level tn, i =
√
−1 is the imaginary unit, and

φ` is the wave number and it is given by φ` = `π/Zf with ` = −Zf , . . . , Zf . This finite sum
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splits the time dependence from the spatial one, where the time evolution is included in the
time dependence of the amplitude An` .

Now we substitute this finite sum into the scheme considered. Then, dividing by eijφ` , we
obtain a relation between the amplitude vectors An` and An+1

` with some space shifts e∓iφ` .
This relation can be written as An+1

` = D`An` , where D` is called the amplification factor for
` = −Zf , . . . , Zf .

The stability condition of the von Neumann analysis states that the Euclidean norm of
the amplitude vector An` for any wave number φ` does not grow in time. In other words, this
condition can be written as |D`| 6 1 for all φ`.

The P0P0 Scheme

In this case we can obtain the Courant number λ = kn
h

exactly. Substituting (9.4) in (9.3) we
get, for ` = −Zf , . . . , Zf ,

An+1
` eijφ` = An` eijφ` + λ

(
An` ei(j−1)φ` −An` eijφ`

)
= An` eijφ`

(
1 + λe−iφ` − λ

)
.

Dividing by eijφ` we get An+1
` =

(
1− λ+ λe−iφ`

)︸ ︷︷ ︸
D`

An` . Then we have

|D`|2 = DT
` D` =

(
1− λ+ λeiφ`

) (
1− λ+ λe−iφ`

)
= 1 + λ

[
−2 + eiφ` + e−iφ`

]
+ λ2

[
1− eiφ` − e−iφ` + e−iφ`eiφ`

]
= 1 + λ[−2 + 2 cos(φ`)] + λ2[2− 2 cos(φ`)] = 1 + 2λ(λ− 1)[1− cos(φ`)].

The condition max |D`| 6 1 is equivalent to λ(λ − 1)[1 − cos(φ`)] 6 0, this indicates directly
that the Courant number is bounded by 0 < λ 6 1.

For other PNPM Schemes with N = 0

We can determine the maximal Courant numbers numerically. The amplification factor D`

is a function of two variables D` = D`(φ`, λ). We take Zf = 3 then ` = −3, . . . , 3 and
φ` ∈ {−π,−2π/3,−π/3, 0, π/3, 2π/3, π}, and define the variable λs = s/10 with 1 6 s 6 30
which covers the interval [1/10, 3]. Then we compute the modulus of D` at each value of φ`
and of λ, then we get a 7 × 30 matrix of these values. Each column is related to one value of
λs. If all entries of the column are less or equal to one then the value λs, to which this column
associated, gives a stable solution of the scheme.
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For example, the P0P1 scheme with stencil SIj ,2,0, we obtain the following matrix

0.98 0.92 . . . 0.62 1 1.42 1.88 . . .
0.98 0.95 . . . 0.80 1 1.25 1.55 . . .
0.99 0.99 . . . 0.98 1 1.03 1.07 . . .

1 1 . . . 1 1 1 1 . . .
0.99 0.99 . . . 0.98 1 1.03 1.07 . . .
0.98 0.95 . . . 0.80 1 1.25 1.55 . . .
0.98 0.92 . . . 0.62 1 1.42 1.88 . . .
⇑ ⇑ ⇑ ⇑ ⇑

λ1 = 0.1 λ2 = 0.2 λ9 = 0.9 λ10 = 1 λ11 = 1.1


Note that, starting from the eleventh column, the entries are larger than one. This proves that
the value λ11 = 1.1 gives an unstable solution. Thus the maximum value of λs which gives a
stable solution is λ10, thus λmax ≈ λ10 = 1. On the other hand, all columns to the left of the
eleventh have entries less or equal one, thus their λs give stable solutions. We obtain that the
range of the Courant number for the P0P1 scheme using SIj ,2,0 is the interval λ ∈ (0, 1].

ne L P0P1 P0P2 P0P3 P0P4 P0P5

2
0 (0, 1]
1 (0,2]

3
0 (0, 1] ∗
1 (0, 1] (0, 1]
2 (0, 1] [1,2]

4

0 (0, 1] ∗ ∗
1 (0, 1] (0, 1] (0, 1]
2 (0, 1] (0, 1] (0,2]
3 (0, 1] ∗ [1,2]

5

0 (0, 1] (0.5,1] ∗ ∗
1 (0, 1] (0, 1] (0, 1] ∗
2 (0, 1] (0, 1] (0, 1] (0, 1]
3 (0, 1] (0, 1] (0, 1] [1,2]
4 (0, 1] ∗ ∗ ∗

6

0 (0, 1] (0, 1] ∗ ∗ ∗
1 (0, 1] (0, 1] (0, 1] ∗ ∗
2 (0, 1] (0, 1] (0, 1] (0, 1] (0, 1]
3 (0, 1] (0, 1] (0, 1] (0, 1] (0, 1]
4 (0, 1] (0, 1] (0, 1] (0, 1] ∗
5 (0, 1] (0, 1] ∗ [1,2] ∗

Table 9.2: The maximal Courant numbers for some PNPM schemes, for N = 0 and M =
1, 2, 3, 4, 5.

Table 9.2 includes the maximal limits λmax, which are computed numerically in this way, of

92



9.2. NUMERICAL STUDIES

the Courant numbers for the P0PM schemes with N = 0 and various orders M = 1, . . . , 5 with
all cases of the stencils SIj ,ne,L with ne =

⌈
M+1
N+1

⌉
, . . . , 6 and L = 0, . . . , ne − 1. The symbol ∗

indicates unstable cases for which we have only one value λ = 1 that gives a stable solution.
The fact that λ = 1 is stable is an artifact due to the equation vt + vx = 0, because for λ = 1
the numerical solution of these schemes is the exact solution. Moreover, the range (0, 1] mostly
appears, but there are some semi-stable cases which are written in boldface. Also, there are
two cases with higher stability λ ∈ (0, 2] that are also highlighted in boldface.

9.2.1.2 Another Experimental Procedure

The von Neumann analysis for higher order PNPM schemes with N > 0 is not possible without
the use of computer algebra and numerical computation, see Dumbser [7, p. 8221]. Therefore,
we consider another numerical procedure. We continue in the study of the advection equation
vt + vx = 0 with the initial solution v0(x) = sin(x) for x ∈ [0, 2π] and periodicity as the
boundary condition. So we have v0(x) = sin(x) for all x ∈ R. It is well known that the exact
solution is ve(t, x) = v0(x− t) on [0, T ]× [0, 2π].

We found experimentally appropriate limits of the Courant numbers which guarantee the
stability without resorting to von Neumann analysis. We checked the stability of the numerical
solutions at the final time T = 100π for a mesh with Z = 50. Let us set λC := 1/(2N +
1). Cockburn [5] considered Runge-Kutta DG schemes and took for the linear equations λ
somewhat smaller than λC as a limit in order to avoid unstable solutions. We start with this
inequality and define variables λs in an interval around λC as follows λs = αNλC + 0.001s for
s = 0, 1, 2, . . ., where 0 < αN < 1 is constant associated to the order N and determines the
starting point of a search algorithm. We use the values α0 = 0.99, α1 = 0.9, α2 = 0.8, α3 = 0.7,
α4 = 0.6, and α5 = 0.5.

Increasing the index s, the variable λs comes closer to the ratio λC and then larger than
λC . For each value λs, we associate the value L1

s =
∫
I
|ve(T, x) − w(T, x)|dx, which is the L1

error of the reconstructed polynomial (solution) w computed using the PNPM scheme at the
last time T with time step ∆t = λsh. We compute the errors L1

s numerically using Gaussian
rules of enough large orders. As well, we compute the differences d1,s = |L1

s − L1
s−1| for s > 0,

defining d1,0 = 0. We also set a condition to stop this algorithm which is d1,s > TOL, where
TOL is a tolerance that we choose enough large, e.g. TOL = 10, to guarantee that the L1

error is large, and this means that the solution is unstable. For example, we consider the P2P2

scheme. Then we have λC = 0.2, α2 = 0.8 and λs = 0.16 + 0.001s. We arrange the errors in
the following table which leads to the conclusion that λmax ≈ 0.171.

s 2 3 4 5 6 7 8 9 10 11 12
λs 0.162 0.163 0.164 0.165 0.166 0.167 0.168 0.169 0.170 0.171 0.172
L1
s 0.074 0.047 0.009 0.040 0.064 0.079 0.005 0.009 0.011 0.018 4× 1074

Note that in solution plots the solution for λs = 0.170 looks smooth, whereas for λs = 0.171
small oscillations occur that become stronger for larger λs.
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In the following, we give the approximate values of λmax for all PNPM schemes for

M = 0, . . . , 5, N = 0, . . . ,M, ne =

⌈
M + 1

N + 1

⌉
, . . . , 6, L = 0, . . . , ne − 1.

9.2.1.2.1 Case M = 1. For the P1P1 scheme we obtain λC = 0.333 and λmax ≈ 1/3. For
the P0P1, see Table 9.3.

ne\L 0 1 2 3 4 5
2 1.003 2.006
3 1.005 1.006 1.008
4 1.005 1.006 1.007 1.009
5 1.005 1.005 1.006 1.008 1.007
6 1.006 1.006 1.005 1.008 1.007 1.007

Table 9.3: The maximal Courant numbers for P0P1 scheme with λC = 1.

9.2.1.2.2 Case M = 2. For the P2P2 scheme we obtain λC = 0.2 and λmax ≈ 0.17. Also,
Tables 9.4 give the approximations of λmax for the P0P2 and P1P2 schemes.

The P0P2 schemes with λC = 1
ne\L 0 1 2 3 4 5

3 1.002 1.01 [1,2]
4 1.013 1.012 1.005 1.011
5 1.003 1.01 1.006 1.005 1.011
6 1.004 1.007 1.006 1.006 1.006 1.01

The P1P2 schemes with λC = 0.333
ne\L 0 1 2 3 4 5

2 1/3 *
3 1/3 1/3 *
4 1/3 1/3 * *
5 1/3 1/3 1/3 * *
6 1/3 1/3 1/3 * * 0.305

Table 9.4: The maximal Courant numbers for P0P2 and P1P2 schemes.

9.2.1.2.3 Case M = 3. For the P2P3 schemes where λC = 0.2 and with all stencils con-
sidered above we obtain λmax ≈ 0.17 and for the P3P3 scheme where λC = 0.143 we find
λmax ≈ 0.103. For the P0P3 and P1P3 schemes, see Table 9.5.
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The P0P3 schemes with λC = 1
ne\L 0 1 2 3 4 5

4 1.001 1.005 2.009 [1,2]
5 1.002 1.01 1.006 1.005 1.02
6 1.002 1.011 1.006 1.006 1.006 1.017

The P1P3 schemes with λC = 0.333
ne\L 0 1 2 3 4 5

2 0.318 *
3 0.328 0.34 *
4 0.331 0.33 0.338 *
5 0.332 1/3 0.332 * *
6 0.332 0.332 0.316 0.335 * *

Table 9.5: The maximal Courant numbers for P0P3 and P1P3 schemes.

9.2.1.2.4 Case M = 4. For the P3P4 schemes with λC = 0.143 we obtain λmax ≈ 0.103 and
for the P4P4 scheme where λC = 0.111 we find λmax ≈ 0.069. For the P0P4, P1P4, and P2P4

schemes, see Table 9.6.

The P0P4 schemes with λC = 1
ne\L 0 1 2 3 4 5

5 1 1.002 1.012 2.02 [1,1.5]
6 1 1.006 1.012 1 1 [1,2]

The P1P4 schemes with λC = 0.333
3 0.316 0.346 *
4 0.325 0.347 * *
5 0.328 0.338 0.337 * *
6 0.330 0.338 0.337 * 0.312 *

The P2P4 schemes with λC = 0.2
ne\L 0 1 2 3 4 5

2 0.166 *
3 0.169 0.176 *
4 0.170 0.173 0.173 *
5 0.170 0.170 0.172 0.170 0.170
6 0.170 0.170 0.172 0.172 0.170 0.170

Table 9.6: The maximal Courant numbers for P0P4, P1P4, and P2P3 schemes.

9.2.1.2.5 Case M = 5. For the P4P5 schemes where λC = 0.111 we obtain λmax ≈ 0.069
and for the P5P5 scheme where λC = 0.091 we find λmax ≈ 0.05. For the P0P5, P1P5, P2P5, and
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P3P4 schemes, see Table 9.7.

The P0P5 schemes with λC = 1
ne\L 0 1 2 3 4 5

6 1 1.001 1.005 [1,2] [1,3] 1
The P2P5 schemes with λC = 0.2

2 * *
3 0.165 0.176 *
4 0.167 0.176 0.175 *
5 0.168 0.175 0.172 0.174 *
6 0.169 0.172 0.172 0.172 0.172 *

The P1P5 schemes with λC = 0.333
ne\L 0 1 2 3 4 5

3 * 0.402 *
4 * 0.346 * *
5 * 0.345 0.335 * *
6 0.324 0.344 0.327 0.34 * *

The P3P5 schemes with λC = 0.143
2 0.1 *
3 0.103 0.106 0.102
4 0.103 0.105 0.104 0.103
5 0.103 0.103 0.104 0.103 0.103
6 0.103 0.103 0.104 0.104 0.103 0.103

Table 9.7: The maximal Courant numbers for P0P5, P1P5, P2P5, and P3P5 schemes.

9.2.2 Experimantal Order of Convergence (EOC)

We investigate the orders of the accuracy numerically by calculating the EOC. Let generally
X ba a linear space with some norm || · ||X and let vh ∈ X be a numerical approximation of a
given function v ∈ X which depends on a parameter h of the discretization. The convergence
of vh towards v as h tends to zero can be quantified by ||vh − v||X 6 Chκ, with the order of
convergence κ. This gives a possibility to quantify the quality of a numerical scheme. If we can
compute two numerical solutions vh and vh′ , then the order κ can be estimated experimentally
by κ ' EOC(h, h′) =

log(||vh′−v||X/||vh−v||X)

log(h′/h)
.

The maximum Courant numbers computed above are quite sharp since oscillations occur
with slightly longer time steps. Therefore, for our further tests, we used the following restrictive
bounds on the Courant number, see Table 9.8.
Now we consider the advection equation vt + vx = 0 with v(0, x) = sin(x) defined on I = [0, 2π]
and its solution at time T = 2π. We apply some PNPM schemes. The CFL numbers λ are
taken from the Table 9.8. The L1 errors are listed in the Table 9.9 where we always used the
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The order N 0 1 2 3 4 5
The Courant number λused 1 0.25 0.16 0.08 0.05 0.05

Table 9.8: The Courant numbers λused for N = 0, . . . , 5.

stencil SIj ,5,2. The numbers for the EOC were truncated after the second decimal. Note that
we always get the expected order of convergence close to M + 1. Some of the schemes produce
a wrong experimental order on the coarsest meshes. This is not a problem, since the order is
an asymptotic property for h→ 0.

Z L1 EOC L1 EOC L1 EOC L1 EOC L1 EOC
P0P0

10 6.23e-1
20 3.17e-1 0.97
40 1.58e-1 1.00

P0P1 P1P1

10 1.50e-1 1.67e-1
20 2.34e-2 2.68 4.16e-2 2.01
40 4.17e-3 2.49 1.03e-2 2.00

P0P2 P1P2 P2P2

10 1.32e-1 2.61e-2 2.03e-1
20 1.80e-2 2.87 2.14e-3 3.60 9.81e-4 7.69
40 2.28e-3 2.98 2.17e-4 3.30 1.22e-4 3.00

P0P3 P1P3 P2P3 P3P3

10 7.85e-3 2.10e-2 2.00e-1 1.96e-4
20 4.56e-4 4.10 1.36e-3 3.94 2.68e-5 12.86 1.23e-5 3.99
40 2.77e-5 4.04 8.61e-5 3.98 1.21e-6 4.46 7.80e-7 3.98

P0P4 P1P4 P2P4 P3P4 P4P4

10 3.54e-3 1.28e-3 2.01e-1 1.27e-5 1.25e-1
20 1.19e-4 4.89 3.57e-5 5.16 2.13e-5 13.20 2.39e-7 5.73 6.28e-2 1.00
40 3.75e-6 4.98 1.07e-6 5.04 6.72e-7 4.98 5.86e-9 5.34 5.60e-9 23.41
80 1.75e-10 4.99

Table 9.9: The L1 errors and EOC of some PNPM schemes applied to the advection equation.

9.2.3 The Study of the Efficiency

We again consider the advection equation vt + vx = 0 with the initial function v0(x) = sin(x)
defined on I = [0, 2π] and its solution at time T = 2π. The CFL numbers λ were taken from the
Table 9.8. We study the efficiency of the PNPM schemes by setting the bound for the L1 errors
at time T = 2π to be 0.01. We measure the speed of the schemes by the computational time
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and number of time steps Z1. Since we consider the linear advection equation then the time
step ∆t is constant and then it is equal to ∆t = T/Z1 = 2π/Z1. Also the time step is computed
using the Courant number λ by ∆t = λh/a. With our assumptions here we have a = 1 and
h = 2π/Z then ∆t = λ2π/Z. Thus we have 2π/Z1 = λ2π/Z which implies that Z1 = Z/λ. A
further indicator of and the cost of the discretization is the mesh size Z. To explain how do we
perform these computations we take as example the P0P1 scheme using the stencil SIj ,2,1 and
take the mesh size Z changing from Z = 2 to Z = 35. We ended the computation when the L1

error became lower than 0.01. For brevity, we give only some of these results for Z = 28, . . . , 35.
Table 9.10 shows that, when Z = 33, it is the first case where the L1 error is less than 0.01. In
this case we need 33 iterations and a computational time of 0.049 seconds.

L1 0.0132681 0.0123711 0.0115621 0.0108299 0.0101650 0.0095595
time 0.0376 0.0364 0.0399 0.0460 0.0458 0.0490
Z1 28 29 30 31 32 33
Z 28 29 30 31 32 33

Table 9.10: The computational time and the mesh size for the P0P1 scheme.

Now we will only give the data for the solution that satisfies the error bound on the coarsest
mesh, which we obtain from a sequence of finer and finer meshes as explained. The errors will
be rounded to 4 decimals.

9.2.3.1 The Influence of the Size ne

We recall that the reconstruction stencil is given by SIj ,ne,L =
⋃R
c=−L Ij+c and it consists of the

interval Ij with L and R elements to the left and right of Ij, respectively, and its size is given
by ne = 1 +L+R with L ∈ {0, . . . , ne− 1} and R > 0. We used various stencils with different
sizes ne and fixed the index L at the values L = 0 and L = ne − 1, see Table 9.11.

For M = 1, we have two schemes, the P0P1 scheme with various stencils and the P1P1

scheme with the unique stencil SIj ,1,0 = Ij. In all cases N = M we have ne = 1 since there is no
reconstruction needed. Table 9.11 shows that the P0P1 scheme is faster than the P1P1 scheme.
This is expected, since the piecewise constant solution P0P1 scheme has only one unknown
degree of freedom. But the P1P1 scheme has a higher accuracy on the same mesh. Also, we
find that the computational time grows when the size of stencil becomes larger, again this is
expected, since the information comes from more cells. Thus the size of the stencil has negative
influence on the efficiency of the scheme, as expected. An important point is that the larger
stencils need more grid points to achieve the same accuracy.

For M = 2, we have the P0P2, P1P2, and P2P2 schemes. Table 9.11 shows that P0P2 scheme
is faster than the others. Comparing tables we see that whereas in Table 9.9 on the same
spatial mesh the error decreases from P0P2 to P1P2 to P2P2 schemes, on the other hand, in
terms of the actual efficiency using the smallest possible stencil in Table 9.11 the order in terms
of computational time is reversed. This is despite the fact that the other schemes need fewer
mesh points to achieve the same accuracy. But they need more time steps due to their stability
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L = 0
ne L1 time Z1 Z

P0P1

2 0.00955 0.00898 33 33
3 0.00904 0.01328 45 45
4 0.00961 0.01471 52 52
5 0.00903 0.01872 61 61
6 0.00974 0.01890 65 65

P1P1

1 0.00879 0.01887 116 29
P0P2

3 0.00626 0.00586 19 19
4 0.00991 0.00657 21 21
5 0.00802 0.00768 27 27
6 0.00982 0.00915 29 29

P1P2

2 0.00851 0.01446 56 14
3 0.00537 0.01459 76 19
4 0.00721 0.01534 76 19
5 0.00895 0.01483 76 19
6 0.00914 0.01647 80 20

P2P2

1 0.00203 0.01236 75 12

L = ne − 1
ne L1 time Z1 Z

P0P1

2 0.00955 0.01030 33 33
3 0.00904 0.01288 45 45
4 0.00961 0.01511 52 52
5 0.00903 0.01741 61 61
6 0.00974 0.01905 65 65

P1P1

1 0.00879 0.01991 116 29
P0P2

3 0.00626 0.00630 19 19
4 0.00991 0.00638 21 21
5 0.00802 0.00826 27 27
6 0.00982 0.00919 29 29

P1P2

2

unstable
3
4
5
6 0.00897 0.01508 76 19

P2P2

1 0.00203 0.01313 75 12

Table 9.11: Numerical computations for some PNPM schemes with M = 1 and M = 2 for two
values of L, L = 0 and L = ne − 1.

restrictions. Note also that there is no real difference between choosing the larger stencils in
an upwind L = ne − 1 or a downwind L = 0 manner.

In Table 9.12 we now compare the case L = 0 with the smallest stencil for different mesh
sizes. The computational time of the P0P2 scheme is the smallest using the different meshes
comparing with the P1P2 and P2P2 schemes. Again we see that the stability is crucial to the
comparison since severer stability limits lead to a larger number of time steps.

9.2.3.2 The Influence of the Shifting L

We now use stencils of the same size ne but with different type for the values L = 0, . . . , ne− 1.
We choose M = 3 and ne = 5.

We note in Table 9.13 that the symmetric stencil with L = 2 is the best choice according to
the computational time and the spatial discretization. On the other hand, the one side stencils
with L = 0 and L = 4 require slightly longer computational time. The difference in choice
of stencil is not very pronounced. Moreover, for the finite volume scheme P0P3, the number
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L = 0
P0P2 with ne = 3 P1P2 with ne = 2 P2P2

Z L1 time Z1 L1 time Z1 L1 time Z1

10 0.04172 0.01471 10 0.02313 0.01881 40 0.08998 0.02117 63
11 0.99828 0.00517 12 0.25449 0.00995 45 0.04117 0.01186 69
12 0.02444 0.00462 12 0.23295 0.01008 49 0.00203 0.01282 75
13 0.84816 0.00503 14 0.01062 0.01122 52 0.10307 0.01438 82
14 0.01550 0.00806 14 0.00851 0.01421 56 0.06386 0.01830 88
15 0.73693 0.00530 16 0.18595 0.01169 61 0.02988 0.01558 94

Table 9.12: Numerical computations for some PNPM schemes with M = 2 using the smallest
possible stencil.

L L1 time Z1 Z
P0P3

0 0.00676 0.00714 16 16
1 0.00784 0.00540 12 12
2 0.00940 0.00421 8 8
3 0.00784 0.00485 12 12
4 0.00676 0.00632 16 16

P1P3

0 0.00772 0.01277 56 14
1 0.00661 0.01146 40 10
2 0.00931 0.01017 40 10
3

unstable
4

L L1 time Z1 Z
P2P3

0 0.00491 0.01139 50 8
1 0.00405 0.01156 50 8
2 0.00097 0.01165 50 8
3 0.00350 0.01178 50 8
4 0.00440 0.01220 50 8

P3P3

0 0.00009 0.02086 125 10

Table 9.13: The computational time and the mesh size of some PNPM schemes for M = 3 with
different types of the stencils of the size ne = 5.

of iterations relates to the type of the stencil, whereas with N > 0 this number seems to be
constant. This is seen also in Table 9.11.

Furthermore, when N = 0, the number of iterations Z1 is equal to the mesh size Z, whereas
for N > 0, this number is larger than Z by a factor due to the stability restriction. This indeed
means that with larger N the cost of the computations is larger, but this improves the accuracy.
This agrees with the results in the Table 9.9 where we find for example that for Z = 40 the
P3P3 scheme is more accurate than the P2P3 scheme which is in turn more accurate than the
P1P3 and P0P3 schemes.

In Table 9.14 we again compare the computational time for some PNPM schemes with
M = 3 using the smallest stencil for different mesh sizes. The computational time of the P0P3

scheme is the smallest using the different meshes comparing with the P1P2 and P2P2 schemes.
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Again we see that the stability is crucial to the comparison since severer stability limits lead
to a larger number of time steps.

P0P3 P0P3 P1P3 P2P3 P3P3

with ne = 4 with ne = 4 with ne = 2 with ne = 2
and L = 1 and L = 2 and L = 0 and L = 0

Z L1 time L1 time L1 time L1 time L1 time
10 0.0070 0.0037 0.0070 0.0036 0.0040 0.0098 0.0884 0.0125 0.00009 0.0197
11 0.9979 0.0044 0.9994 0.0043 0.2501 0.0096 0.0400 0.0168 0.04045 0.0263
12 0.0034 0.0045 0.0034 0.0042 0.2299 0.0104 0.0003 0.0143 0.00004 0.0235
13 0.8480 0.0052 0.8486 0.0048 0.0014 0.0116 0.1025 0.0148 0.03424 0.0263
14 0.0018 0.0050 0.0018 0.0047 0.0010 0.0111 0.0634 0.0157 0.00002 0.0290
15 0.7368 0.0066 0.7371 0.0060 0.1847 0.0133 0.0295 0.0186 0.02968 0.0323

Table 9.14: Numerical computations for some PNPM schemes with M = 3 using the smallest
possible stencil.

101



Chapter 10

The Burgers Equation

Here we apply the PNPM schemes to the initial value problem of the Burgers equation vt(t, x)+
(v2/2)x(t, x) = 0 for (t, x) ∈ R>0 × [a, b] with an initial function v0(x) = v(0, x).

10.1 The PNPM Schemes

In this chapter we will use two numerical fluxes. The Lax-Friedrichs flux is given by

Fn
LF,j+ 1

2
(t) =

1

2


(
Un
j+1(t, xj+ 1

2
)
)2

2
+

(
Un
j (t, xj+ 1

2
)
)2

2
− C

(
Un
j+1(t, xj+ 1

2
)− Un

j (t, xj+ 1
2
)
)

where C = max
minI(v0)6s6maxI(v0)

|f ′(s)| = max
minI(v0)6s6maxI(v0)

|s| = max
x∈I
|v0(x)|.

The Godunov flux is given by

Fn
G,j+ 1

2
(t) =


max{f(Un

j+1(t, xj+ 1
2
)), f(Un

j (t, xj+ 1
2
))} if Un

j+1(t, xj+ 1
2
) < Un

j+1(t, xj+ 1
2
),

min{f(Un
j+1(t, xj+ 1

2
)), f(Un

j (t, xj+ 1
2
))} if Un

j+1(t, xj+ 1
2
) > Un

j+1(t, xj+ 1
2
).

Then the scheme (8.4) becomes in the form

ûn+1
k,j = ûnk,j −

2k + 1

h

∫
T̆n

Fn
j+ 1

2
(t)dt+ (−1)k

2k + 1

h

∫
T̆n

Fn
j− 1

2
(t)dt

+
2k + 1

h

N∑
i=1

f
(
Ûn
i,j

)
〈(Φk,j)x, θi,j〉tx.

For example, we consider the P0P0 scheme. In this case we have Ûn
1,j = ŵn0,j = ûn0,j, and

f
(
Ûn

1,j

)
= 1

2
(ûn0,j)

2. We have Φ0,j(x) = 1, θ1,j(t, x) = 1, and 〈(Φ0,j)x, θ1,j〉tx = 0. The Lax-

Friedrichs flux becomes

Fn
LF,j+ 1

2
(t) =

(
ûn0,j+1

)2
+
(
ûn0,j
)2

4
− C

2

(
ûn0,j+1 − ûn0,j

)
,
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Fn
LF,j− 1

2
(t) =

(
ûn0,j
)2

+
(
ûn0,j−1

)2

4
− C

2

(
ûn0,j − ûn0,j−1

)
.

Thus we get

ûn+1
0,j = ûn0,j −

1

2h

∫
T̆n

{(
ûn0,j+1

)2 −
(
ûn0,j−1

)2

2
− C(ûn0,j−1 − 2ûn0,j + ûn0,j+1)

}
dt

= ûn0,j −
kn
2h

{(
ûn0,j+1

)2 −
(
ûn0,j−1

)2

2
− C(ûn0,j−1 − 2ûn0,j + ûn0,j+1)

}
.

10.2 The Slope Limiter

The PNPM schemes for the Burgers equation generate oscillations near the discontinuities which
in turn render the schemes unstable in the high order cases. So we use a slope limiter. We
will use the limiter defined in Cockburn [5] for the RKDG. The author proved that the RKDG
scheme obtained is total variation diminishing in the means (TVDM) under a CFL condition.
At first we need the following notation.

The minmod function µ : Rr → R with r > 0, is given, for η1, . . . , ηr ∈ R by

µ(η1, . . . , ηr) =

{
ν min16i6r |ηi|, if ν = sign(η1) = . . . = sign(ηr)
0, otherwise.

We assume that the term unj of the solution at time tn is unj =
∑N

i=0 û
n
i,jΦi,j. We denote by ũnj

to the slope limiter of unj and calculate the two limits(
ũn
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2

)−
:= ûn0,j + µ

((
un
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2

)−
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n
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)
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ũn
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.

We can finally define the slope limiter as follows.

1. If the conditions
(
ũn
j+ 1

2

)−
=
(
un
j+ 1

2

)−
and

(
ũn
j− 1

2

)+

=
(
un
j− 1

2

)+

hold then we set ũnj = unj .

2. If not, then we set ũnj = ûn0,j + µ
(
ûn1,j, û

n
0,j − ûn0,j−1, û

n
0,j+1 − ûn0,j

)
Φ1,j.

This slope limiter enforces the TVDM property, but it loses the high order accuracy. Therefore,
we modify the slope limiter displayed above in such a way we preserve the high order accuracy
even at local extrema. The resulting scheme will then be total variation bounded in the means
(TVBM). We follow Shu [20] and modify the definition by using the TVB corrected minmod
function µ̂ defined as follows. We define

µ̂(η1, . . . , ηr) =

{
η1, if |η1| 6 Ĉh2,
µ(η1, . . . , ηr), otherwise,
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where Ĉ is an upper bound of |(v0)xx| at the local extrema. In other words, if the initial function
v0(x) ∈ C2(I), then we can take

Ĉ = sup{|(v0)xx(x)|, for all x ∈ [a, b] such that (v0)x(x) = 0}.

10.3 The Riemann Problems

We first rewrite the Burgers equation in the form vt + (v2/2)x = vt + vvx = 0. The method
of characteristics enables us to determine some exact solutions. If we evaluate x as a function
x = x(t) of t, then the characteristics of the Burgers equation are curves in the x-t plane and
given by x′(t) = f ′(v) = v(t, x(t)). The function v is a constant along characteristics, since

d

dt
v(t, x(t)) = vt(t, x(t)) + vx(t, x(t))x′(t) = vt + vvx = 0.

We suppose e.g. v = v0 = v(0, x(0)), then the characteristics have constant slopes. This means
that they are straight lines of the form x(t) = v0t+ x(0).

The conservation law together with piecewise constant data having a single discontinuity is
known as the Riemann problem, see LeVeque [18]. An example of these initial data is given by

v0(x) =

{
vL, for x < x∗,
vR, for x > x∗,

where x∗ ∈ R.

Since the initial solution is constant, except at x = x∗, the constant which is associated to the
TVBM slope limiter is Ĉ = 0. So when we would use the slope limiter it will hold only the
TVDM property and the high order accuracy will be lost. The Riemann problem can be solved
depending on the relation between vL and vR.

When vL > vR. The problem has a unique weak solution which is the following shock wave

v(t, x) =

{
vL, for x < x∗ + ϕt
vR, for x > x∗ + ϕt.

where ϕ is the shock speed which is given by the following Rankine-Hugoniot jump condition

ϕ =
f(vL)− f(vR)

vL − vR
=
vL + vR

2
. (10.1)

Since vL > ϕ > vR, which is known as the entropy condition, then the characteristics in each
of the regions should go into the shock as time advances, see Figure 10.1.

When vL < vR. The solution is a rarefaction wave, see LeVeque [18],

v(t, x) =


vL, for x < x∗ + vLt
(x(t)− x∗)/t, for x∗ + vLt 6 x < x∗ + vRt
vR, for x∗ + vRt 6 x.

The rarefaction solution is shown in Figure 10.2.
In the following we apply some PNPM schemes and study the influence of the slope limiter

and the numerical fluxes on the solution.
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10.3. THE RIEMANN PROBLEMS

10.3.1 Initial Data I

We first use the initial data

v0(x) =

{
2, for −1 6 x < 0,
0, for 0 6 x 6 1.

The shock speed is ϕ = 1. For x < t the characteristics are the lines x(t) = 2t+x(0), whilst for
x > t the characteristics are given by the vertical lines x = x(0), until they cross, see Figure
10.3, then they go into the shock. So the solution is given by

v(t, x) =

{
2, for −1 6 x < t,
0, for t 6 x 6 1.

Now we apply the P0P0 scheme using the Lax-Friedrichs flux with final time T = 0.1. The
shock appears at x = T = 0.1. Since M = 0 we do not need to apply the slope limiter. Table
10.1 shows that the solution is of a half order using the L2 norm while it is of the first order
with the L1 norm, this agrees with the Theorem 2.6 about the discontinuous solutions. Figure
10.4 views this solution with T = 0.1 and Z = 128.

We apply the P0P1 scheme with the stencil SIj ,3,1 and T = 0.1 for three cases, the first
without using the slope limiter, the second and third with using a TVDM slope limiter but
with Lax-Friedrichs and Godunov fluxes, respectively. The oscillations appear clearly in Figure
10.5. The use of the slope limiter, as shown in Figures 10.6 and 10.7, removes these oscillations
at the jump, and by using the Godunov flux, the solution is slightly better.

We view in Table 10.2 the L1 and L2 errors of the P0P1 scheme using the TVDM slope
limiter. We find that the Godunov flux gives better solutions.

10.3.2 Initial Data II

The initial data are

v(0, x) =


2, for −1 6 x 6 0,
1, for 0 < x 6 2,
0, for 2 < x 6 4.

The solution consists of two moving shocks ϕ1 and ϕ2, the first shock at x = 0 moves with
speed ϕ1 = 1.5 and the second at x = 2 moves with speed ϕ2 = 0.5. After a small time t < 2,
the characteristics and shock lines are given by

ϕ1 : x(t) = 3
2
t,

ϕ2 : x(t) = 1
2
t+ 2,

x(t) =


2t+ x(0) for x 6 3

2
t,

t+ x(0) for 3
2
t < x 6 1

2
t+ 2,

x(0) for 1
2
t+ 2 < x,

until the shocks would cross. To illustrate this meeting, the left part of the characteristics cross
with the slope ϕ1 when their times are equal, i.e.

tcha = tsho →
x− x(0)

2
=

2

3
x → x = −3x(0).
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CHAPTER 10. THE BURGERS EQUATION

For example, the characteristic through x(0) = −0.5 is the line x(t) = 2t − 0.5. It goes into
the shock at x = −3(−0.5) = 1.5 and so 1.5 = 2t − 0.5 or t = 1. This is the same point if we
substitute t = 1 in the equation of the ϕ1. Hence for a small time (t < 2) the solution is given
by

v(t, x) =


2, for −1 6 x 6 3

2
t,

1, for 3
2
t < x 6 1

2
t+ 2,

0, for 1
2
t+ 2 < x 6 4.

With the time, the middle region, defined onto 1.5t < x 6 0.5t + 2, becomes smaller and
smaller, and at (x = 3, t = 2) this domain diminishes and the two shocks merge into one shock
ϕ3, see Figure 10.8. The new shock will connect between two values vL = 2 to the left and
vR = 0 to the right. Using the Rankine-Hugoniot condition (10.1) the shock speed equals to
ϕ3 = 1 and the equation of the shock line is

1 =
x(t)− x(2)

t− 2
=
x(t)− 3

t− 2
→ x(t) = t+ 1.

Therefore, we have

v(t, x) =

{
2, for −1 6 x 6 t+ 1,
0, for t+ 1 < x 6 4,

for t > 2.

Figures 10.9, 10.10, 10.11, and 10.12 views the P1P2 solution with the stencil SIj ,3,1 using the
TVDM limiter with Z = 128 at times T = 1, 1.8, 2, 2.5. Note how the two shocks merge when
T = 2 and with T > 2 the soltion is shifting to right. The order of accuracy of the solutions
are again a half with the L2 norm and one with the L1 norm.

Z L1 EOC L2 EOC
32 0.1259 0.3059
64 0.0696 0.86 0.2140 0.52
128 0.0372 0.90 0.1604 0.42

Table 10.1: The L1 and L2 errors of the P0P0 scheme for the initial data I.

Lax-Friedrichs Godunov
Z L1 EOC L2 EOC L1 EOC L2 EOC
32 0.1259 0.3097 0.0613 0.2552
64 0.0696 0.86 0.2182 0.51 0.0239 1.36 0.1511 0.76
128 0.0372 0.90 0.1622 0.43 0.0154 0.64 0.1276 0.24

Table 10.2: The errors of the P0P1 scheme for the initial data I.

10.4 The Burgers Equation with Smooth Initial Data

We choose the initial data to be the periodic function v0(x) = sin(x) for x ∈ [0, 2π].
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10.4. THE BURGERS EQUATION WITH SMOOTH INITIAL DATA

Figure 10.1: The shock solution corresponds to the case vL > vR.

Figure 10.2: The rarefaction solution corresponds to the case vL < vR.

Figure 10.3: The characteristics of the initial data I.
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CHAPTER 10. THE BURGERS EQUATION

Figure 10.4: The P0P0 solution for data I.

Figure 10.5: The P0P1 solution without using the slope limiter.

Figure 10.6: The P0P1 solution with T = 0.1 using slope limiter with the Lax-Friedrichs flux.
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10.4. THE BURGERS EQUATION WITH SMOOTH INITIAL DATA

Figure 10.7: The P0P1 scheme with T = 0.1 using slope limiter with the Godunov flux.

Figure 10.8: The characteristics and the shock solution corresponds to data II.

Figure 10.9: The P1P2 scheme for data II at T = 1.
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CHAPTER 10. THE BURGERS EQUATION

Figure 10.10: The P1P2 scheme for data II at T = 1.8.

Figure 10.11: The P1P2 scheme for data II at T = 2.

Figure 10.12: The P1P2 scheme for data II at T .
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10.4. THE BURGERS EQUATION WITH SMOOTH INITIAL DATA

10.4.1 The Exact Solution

The exact solution after time T > 0, see LeVeque [18], is given implicitly by the function
v(T, x) = sin(x − uT ) for x ∈ [0, 2π]. The method of characteristics determines the exact
solution also the characteristics are straight lines of the form x(t) = v0t + x(0) with constant
slopes v0 = v(0, x(0)).

At the time t = 0 the initial function has the value zero at x = π. The characteristic at
x = π is vertical, it is so at x = 0 and x = π, and the solution on this line is constant and
equals to zero, so a small shock appears immediately at the point of x = π. At t = π/2 the
characteristics of the maximal value 1 of v0 at π/2 and of the minimal value −1 of v0 at 3π/2
reach x = π. For later times the modulus of these values decreases, see Figure 10.13.

Figure 10.13: The exact solution of the Burgers equation for the initial data v0(x) = sin(x)
using the characteristic method.

10.4.2 The Numerical Solutions

We will compute the errors on the whole domain x ∈ [0, 2π] and on the domain away from the
shock which appears at x = π, i.e. the shock excluding domain will be chosen to be

x ∈ [0, π − 0.15[ ∪ ]π + 0.15, 2π].

The sine function has two local extrema in [0, 2π], namely y = π/2 and y = 3π/2, and

|(v0)xx(y)| = 1. Then by choosing Ĉ = 1 the slope limiter will verify the TVBM property.
In order to find the best solution of this example applying the PNPM schemes, we consider

all of the following points:

• The slope limiter will be not applied at first, then it will be applied with the TVDM
property (Ĉ = 0) and with the TVBM property (Ĉ = 1).

• The Lax-Friedrichs and the Godunov fluxes will be considered.
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CHAPTER 10. THE BURGERS EQUATION

• The L1 errors will be computed on the whole and the shock excluding domains.

On the other hand, we fix the final time to be T = 1 and choose only the stencil SIj ,3,1 which
consists of three elements with one left neighbor of Ij. This stencil fits with all schemes we
study in this section.

Tables 10.3 and 10.4 view the errors and orders of the P0P1 and P1P1 Schemes, respectively.
We note, from these Tables that

• (Scheme) It clearly appears that the P1P1 is better than the P0P1.

• (Domain) The solution always is of second order when the errors are computed away from
the shocks. While, we lose the orders, if we compute the errors onto the whole domain.

• (Limiter) The TVDM limiter increases the error with the coarse mesh, then with fine
mesh works better. While the TVBM limiter always gives good results. Moreover, the
slope limiters only remove the oscillations and do not improve the order.

• (Flux) The Lax-Friedrichs flux gives better results than these which the Godunov flux
gives. This appears clearly, when we move from the P0P1 to P1P1, where we see that the
errors using the Lax-Friedrichs flux reduce to about 50% or less, while using the Godunov
flux, the errors reduce with a weaker rate.

From the remarks above we resume the progress onto the higher order schemes only by using
the Lax-Friedrichs flux and using the TVBM-limiter.
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10.4. THE BURGERS EQUATION WITH SMOOTH INITIAL DATA

Z
shock excluding domain whole domain

Lax-Friedrichs Godunov Lax-Friedrichs Godunov
Without-limiter

80 6.84e-3 3.92e-3 45.73e-3 16.44e-3
160 1.02e-3 2.75 0.87e-3 2.17 19.22e-3 1.25 6.06e-3 1.44
320 0.22e-3 2.23 0.22e-3 1.98 8.40e-3 1.19 2.32e-3 1.39

With TVDM-limiter
80 6.78e-3 4.09e-3 44.92e-3 11.87e-3

160 1.04e-3 2.71 0.89e-3 2.19 19.24e-3 1.22 4.31e-3 1.46
320 0.22e-3 2.25 0.22e-3 2.01 8.40e-3 1.20 1.65e-3 1.38

With TVBM-limiter
80 6.67e-3 3.92e-3 44.88e-3 11.72e-3

160 1.02e-3 2.71 0.87e-3 2.17 19.22e-3 1.22 4.29e-3 1.45
320 0.22e-3 2.23 0.22e-3 1.98 8.40e-3 1.19 1.65e-3 1.38

Table 10.3: The L1 errors of the P0P1 scheme.

Z
shock excluding domain whole domain

Lax-Friedrichs Godunov Lax-Friedrichs Godunov
Without-limiter

80 1.32e-3 3.20e-3 23.30e-3 8.87e-3
160 0.22e-3 2.60 0.83e-3 1.95 9.86e-3 1.24 3.22e-3 1.46
320 0.06e-3 1.93 0.22e-3 1.93 4.17e-3 1.24 1.19e-3 1.44

With TVDM-limiter
80 4.37e-3 5.55e-3 23.17e-3 11.22e-3

160 0.91e-3 2.26 1.33e-3 2.06 9.51e-3 1.29 3.73e-3 1.59
320 0.21e-3 2.15 0.32e-3 2.06 3.98e-3 1.26 1.29e-3 1.53

With TVBM-limiter
80 1.27e-3 2.41e-3 20.37e-3 8.09e-3

160 0.22e-3 2.55 0.64e-3 1.92 8.88e-3 1.20 3.02e-3 1.42
320 0.06e-3 1.93 0.17e-3 1.90 3.84e-3 1.21 1.14e-3 1.41

Table 10.4: The L1 errors of the P1P1 scheme.
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Chapter 11

The Shallow Water Equations

11.1 The Mathematical Model

We are interested to the system of one dimensional shallow water equations with discontinuous
bed topography Λ(x), see [2], which can be written in the form

Ut + F(U)x = S(U), (11.1)

where U =

 Λ
}
}ṽ

 , F(U) =

 0
}ṽ

}ṽ2 + g
2
}2

 , S(U) =

 0
0

−g}Λx

 ,
and the variables Λ, }, ṽ and g are respectively the bottom topography, the water height, the
water velocity and the gravitational constant. We will study the shallow water equations on
the flat bottom area, i.e. Λ(x) = 0, then the system becomes homogeneous

Ut + F(U)x = 0. (11.2)

The quasi linear form of the system (11.1) is written as Vt+A(V)Vx = 0 where V = (Λ, }, }ṽ)T ,
the Jacobian matrix A(V) is given as

A(V) =

 0 0 0
0 0 1
g} g}− ṽ2 2ṽ

 .
The eigenvalues are λ0 = 0, }1 = ṽ − σ, and }2 = ṽ + σ, where σ =

√
g} is the sound speed.

The system (11.2) is not strictly hyperbolic due to that }0 can be equal to any of two other
eigenvalues. The corresponding right eigenvectors are

R0 =

 σ2−ṽ2
σ2

1
0

 , R1 =

 0
1

ṽ − σ

 , R2 =

 0
1

ṽ + σ

 .
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11.2. NUMERICAL TEST

11.2 Numerical Test

The Lax-Friedrichs flux used here is given by

Fn
LF,j+ 1

2
(t) =

1

2

[
f
(
Un
j+1(t, xj+ 1

2
)
)

+ f
(
Un
j (t, xj+ 1

2
)
)
− C

(
Un
j+1(t, xj+ 1

2
)− Un

j (t, xj+ 1
2
)
)]

where C = max
I

(
|ṽ(x)|+

√
g}(x)

)
.

This value of C is the spectral radius of the matrix of the quasi form, see [26]. We consider the
following Riemann initial value problem

}(x) =

{
}L = 4 for −3 6 x < 0,
}R = 0.4 for 0 6 x 6 3,

ṽ(x) = 0.

The computational domain is x ∈ [−3, 3]. We will use the TVDM slope limiter defined in
Section 10.2. Figure 11.1 views the P1P1 solution with Z = 300 at time T = 0.2.

Figure 11.1: The P1P1 solution using TVDM limiter with Z = 300 at time T = 0.2.
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Conclusion

We have considered the PNPM DG schemes for the 1D problems of the hyperbolic conservation
laws with N 6M introduced by Dumbser et al. [7].

We presented some properties of the projection operators. We proved that the piecewise
polynomials of degree N > 0 are approximations of order N + 1 for smooth initial data. The
projection operators also recover the same initial data exactly if these initial data are polynomial
of the same degree N .

We proved that the reconstruction operators give unique solutions and recover the same
initial data exactly if these initial data are polynomial of the same degree M .

In Chapters 3 and 6 the solutions for some examples were approximations of the expected
order. Also for those in Chapter 6 we found small differences by changing the stencils.

All allowed combinations 0 6 N 6 M 6 5 had some stencils with stability for all CFL
numbers between 0 and a maximal CFL number. We found a wide range of maximal stability
limits being CFL numbers between 0.103 and 2. Some stencils have a strange semi-stability
behaviour since they are stable for CFL numbers in an interval bounded away from 0. Also
some stencils lead to unstable schemes.

Using the stability limits that we obtained, we checked the experimental order of convergence
(EOC). We report only the cases 0 6 N 6 M 6 4 for the stencil SIj ,5,2. We always obtain an
expected EOC close to M + 1, also in other cases we did not put into the paper.

Based on the stability limits of the various schemes we also studied the efficiency of the
schemes. We found that for given M the P0PM schemes are faster than the others with M >
N > 0. Also, we found that the computational time grows when the size of stencil becomes
larger and there was no real difference between choosing the larger stencils in an upwind L =
ne−1 or a downwind L = 0 manner. We noted that the symmetric stencil, i.e. with ne > 1 odd
and L = ne

2
−1, achieves a required accuracy on a coarser mesh leading to a faster computation

in comparison to the asymmetric stencils of the same size.
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Appendix A

2D Hierarchical Orthogonal Basis on
Rectangles

Let Tj be a rectangle from the partition ΩK and (x, y) ∈ Tj and (ξ, η) = Rj(x, y) ∈ TS.
For N = 0, the unique basis function is Ψ0,j(ξ, η) = 1.
For N = 1, the basis has three functions Ψ0,j(ξ, η) = 1, Ψ1,j(ξ, η) = ξ, and Ψ2,j(ξ, η) = η.
For N = 2, the basis has six functions

Ψ0,j = 1, Ψ1,j = ξ, Ψ2,j =
1

2
(3ξ2 − 1), Ψ3,j = η, Ψ4,j = ξη, Ψ5,j =

1

2
(3η2 − 1).

For N = 3, the basis has ten functions

Ψ0,j = 1 Ψ1,j = ξ Ψ2,j = 1
2
(3ξ2 − 1) Ψ3,j = 1

2
(5ξ3 − 3ξ)

Ψ4,j = η Ψ5,j = ηξ Ψ6,j = 1
2
(3ξ2 − 1)η Ψ7,j = 1

2
(3η2 − 1)

Ψ8,j = 1
2
ξ(3η2 − 1) Ψ9,j = 1

2
(5η3 − 3η),

The mass matrices are B0 = h1h2, B1 = h1h2

 1 0 0
0 1

3
0

0 0 1
3

, and

B2 = h1h2


1 0 0 0 0 0
0 1

3
0 0 0 0

0 0 1
5

0 0 0
0 0 0 1

3
0 0

0 0 0 0 1
9

0
0 0 0 0 0 1

5

 , B3 = h1h2



1 0 0 0 0 0 0 0 0 0
0 1

3
0 0 0 0 0 0 0 0

0 0 1
5

0 0 0 0 0 0 0
0 0 0 1

7
0 0 0 0 0 0

0 0 0 0 1
3

0 0 0 0 0
0 0 0 0 0 1

9
0 0 0 0

0 0 0 0 0 0 1
15

0 0 0
0 0 0 0 0 0 0 1

5
0 0

0 0 0 0 0 0 0 0 1
15

0
0 0 0 0 0 0 0 0 0 1

7
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