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Zusammenfassung

Kompressible Zweiphasenströmungen sind von großem Interesse, sowohl
in vielen Anwendung wie Wasserturbinen oder der chemischen Industrie,
als auch in verschiedenen Forschungsgebieten wie der Meteorologie, den
Ingenieurwissenschaften oder der Physik. Wir betrachten hier Strömungen
von flüssigen und gasförmigen Phasen derselben Substanz und berücksich-
tigen dabei auch Phasenübergänge, d.h. Kondensation und Verdampfung.
Bedingt durch die hohe Komplexität des betrachteten Problems ist es nötig
Ergebnisse verschiedener Forschungsgebiete miteinander zu kombinieren,
um weitere Erkenntnisse zu gewinnen. Deshalb berücksichtigen wir in die-
ser Arbeit die physikalische Modellierung, die mathematische Analysis und
die numerische Behandlung von Zweiphasenstömungen. Der erste Teil der
Arbeit stellt die benötigten Grundlagen zur Verfügung, Teil zwei behandelt
ein isothermes Modell und abschließend wird in Teil drei ein adiabates Mo-
dell diskutiert.

Die drei Hauptresultate dieser Arbeit sind ein allgemeines Existenzresul-
tat für ein Gleichungssystem, welches isotherme Zweiphasenstömungen
modelliert, eine numerische Methode zum Lösen dieser Gleichungen, wel-
che auch das Entstehen von Phasen behandeln kann und ein Resultat zur
Nichtexistenz von Lösungen im Fall adiabater Zweiphasenströmungen. Die
Ergebnisse für den isothermen Fall werden in Teil zwei gezeigt und das Re-
sultat für die Nichtexistenz in Teil drei.

Um die verschiedenen Fragestellungen zu verstehen und mögliche Ant-
worten zu erarbeiten, benötigen wir Resultate der Thermodynamik und ein
Verständnis der beschreibenden Bilanzgleichungen. Wir werden uns des-
halb nicht einfach darauf beschränken die entsprechenden Ergebnisse zu
zitieren, sondern eine etwas detailiertere Einführung in diese Themen ge-
ben. Der erste Teil der vorliegenden Arbeit gibt deshalb einen Überblick der
wesentlichen zu Grunde liegenden Konzepte. Das erste Kapitel stellt eine
kompakte Behandlung der Gleichgewichtsthermodynamik dar. Wir erklä-
ren die verschiedenen thermodynamischen Potentiale und die zugehörigen
Maxwell-Relationen. Diese werden in der anschließenden Einführung von
Zustandsgleichungen benötigt. Die Zustandsgleichungen haben einen we-
sentlichen Einfluss auf die Dynamik der betrachteten Systeme. Mit einer
kurzen Darstellung der Thermodynamik für zwei Phasen beenden wir das
erste Kapitel.
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Eine Herleitung allgemeiner Bilanzgleichungen, in der Gegenwart von Flä-
chen über welche die betrachteten Größen unstetig sein können, wird im
zweiten Kapitel gegeben. Insbesondere die Bilanzgleichungen für diese sin-
gulären Flächen sind hier von besonderem Interesse. Im wesentlichen findet
man diese Herleitung auch in der Literatur, jedoch werden dabei einige De-
tails weggelassen. Wenn man sich aber neu in dieses Gebiet einarbeitet, ist
diese Art der Präsentation möglicherweise zu kurz gehalten. Deshalb kann
die hier vorliegende Präsentation auch als Einstieg in diese Thematik ge-
nutzt werden. Wir beenden das Kapitel mit einer kompakten Darstellung
der Theorie hyperbolischer partieller Differentialgleichungen mit Fokus auf
den Euler-Gleichungen.

Der zweite Teil der Arbeit behandelt Zweiphasenströmungen, welche durch
die isothermen Euler-Gleichungen beschrieben werden. Im dritten Kapi-
tel beweisen wir ein allgemeines Existenzresultat für das dazu gehörende
Riemann-Problem. Hier beschreiben wir die Strömung durch einen Satz
Euler-Gleichungen und eine Zustandsgleichung, welche sowohl die flüssi-
ge als auch die gasförminge Phase beschreibt. Der Massenfluss zwischen
den Phasen ist durch eine kinetische Relation gegeben. Wir zeigen die Exis-
tenz für alle thermodynamisch sinnvollen Zustandsgleichungen, sowohl
für zweiphasige als auch einphasige Anfangsdaten. Für Anfangsdaten die
aus einer Phase bestehen berücksichtigen wir Nukleation und Kavitation.
Wir möchten betonen, dass die Phasen sowohl in stabilen als auch in meta-
stabilen Zuständen vorliegen können und die Phasen müssen sich nicht im
mechanischen Gleichgewicht befinden.

Im anschließenden vierten Kapitel behandeln wir das Problem numerisch
und geben eine Methode an, die auch die Entstehung von Phasen berück-
sichtigt.

In Anbetracht der Ergebnisse des zweiten Teils stellt sich die Frage, wie
diese auf den Fall des vollen Systems von Euler-Gleichungen übertragen
werden können. Diese Frage wird im dritten Teil beantwortet. Im ersten
Teil ist ersichtlich geworden, dass der volle Satz Euler-Gleichungen keinen
Wärmefluss enthält und deshalb bezeichnen wir das System genauer als
System adiabatischer Euler-Gleichungen. Im fünften Kapitel wird nun der
Einfluss unterschiedlicher Annahmen an der Phasengrenze auf die Struktur
der Lösung des Riemann-Problems untersucht. Hierbei stellt sich heraus,
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dass im Fall der klassischen Sprungbedingungen an der Phasengrenze kein
Phasenübergang zwischen den reinen Phasen stattfinden kann. Deshalb
müssen zusätzliche Größen, welcher auf der Phasengrenze definiert sind,
mit einbezogen werden. Dies führt zum Verlust der selbstähnlichen Struk-
tur der Lösung und wir erhalten eine Singularität auf der Phasengrenze.

Im abschließenden sechsten Kapitel zeigen wir die Nichtexistenz von Kon-
densation durch Kompression und Verdampfung durch Expansion zwi-
schen den reinen Phasen für Modelle, die auf den adiabaten Euler-Glei-
chungen basieren.

Zusammenfassend zeigen die Ergebnisse der vorliegenden Arbeit, dass der
Wärmefluss für die Beschreibung von Zweiphasenströmungen unbedingt
mit einbezogen werden muss. In den isothermen Eulergleichungen ist der
Wärmefluss indirekt noch vorhanden, nur dass die Energiegleichung hier
zur Bestimmungsgleichung für den Wärmefluss wird. Im isothermen Fall
führt dies gewissermaßen zu einer unendlich schnellen Ausbreitung der
Wärme. In den adiabaten Gleichungen ist der Wärmefluss jedoch nicht vor-
handen. Aus diesem Grund können die isothermen Eulergleichungen, im
Vergleich mit den adiabaten Eulergleichungen, als geeignetes Modell zu Be-
schreibung von Zweiphasenströmungen mit Phasenübergängen angesehen
werden.
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Summary

Compressible two phase flows are a topic of high interest in many appli-
cations such as water turbines or chemical engineering and different areas
of current research such as meteorology, engineering and physics. In par-
ticular we consider liquid/vapor flows of a single substance and we take
phase transitions between the two phases into account, i.e. condensation
and evaporation. Due to the complexity of the problem one needs to com-
bine different fields of research to gain further insight. Therefore this work
partly covers the physical modeling, the analytical investigation and the
numerical treatment of two phase flows. The first part provides the basis
for this work, the second part treats an isothermal model and the third part
discusses an adiabatic model.

The three main results of this work are a general existence result for a system
of equations modeling isothermal two phase flows, a numerical method for
the isothermal case that is able to treat phase creation and a nonexistence re-
sult for the case of adiabatic two phase flows. The results for the isothermal
case are presented in the second part and the nonexistence result is given in
the third part.

In order to establish these results we need the theory of thermodynamics
together with an understanding of the governing equations, i.e. the balance
laws. Instead of simply giving the needed results, we believe that a detailed
introduction is more suited for a better understanding of the problems con-
sidered. Therefore the first part of this thesis is dedicated to the introduction
of the main concepts. The first chapter gives a compact survey of equilib-
rium thermodynamics. We give the different thermodynamic potentials
and the corresponding Maxwell relations. These results are needed in the
subsequent discussion of equations of state which have a crucial impact on
the dynamics of the systems considered. We close the first chapter with a
brief introduction of thermodynamics for two phases.

In the second chapter we derive local balance laws in the presence of in-
terfaces across which quantities may be discontinuous. A special focus is
given to the balance laws for quantities on such an interface. To some ex-
tent this derivation may be found in the literature, but quite often several
details of the calculation are left out. For researchers new to this topic,
this kind of presentation might be rather short. Thus the derivation in the
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present work may serve as a good introduction to this topic. We first derive
general balance laws which are then specified for certain quantities and
corresponding assumptions. We close the second chapter with a brief intro-
duction to hyperbolic conservation laws with a focus on the Euler equations.

The second part treats the case of a two phase flow which is governed by
the isothermal Euler equations. In chapter three we give a general existence
result for the corresponding Riemann problem. Here we use one set of Euler
equations for both phases together with one equation of state which covers
the liquid as well as the vapor region of the substance considered. The mass
transfer is modeled using a kinetic relation. We show the existence for all
thermodynamically reasonable equations of state for two phase initial data
as well as for single phase initial data. In the case of single phase initial data
the solution may exhibit phase creation, i.e. nucleation or cavitation. We
want to highlight that this result also covers phase transitions away from
equilibrium and the phases are allowed to be in a stable or a metastable state.

In the fourth chapter we discuss how the isothermal problem may be solved
numerically. The method suggested can treat the two phase case as well
as phase creation. Several examples are presented at the end of the second
chapter.

From the second part the question arises whether the results obtained may
be extended to the full Euler system or not. This question is answered in
the third part. From the first part we know that the heat flux is missing
in the full Euler system and thus we refer to them as the adiabatic Euler
equations. In chapter five we discuss the influence of different assumptions
at the phase boundary on the solution structure of the Riemann problem for
the adiabatic Euler equations. It turns out that in the case of the classical
jump conditions at the phase boundary, no interface quantities, there can be
no phase transition between pure phases. Therefore additional quantities
of the interface have to be considered, since we have excluded the heat flux.
With this assumption we lose the self-similar solution structure and obtain
a solution with a singularity on the phase boundary.

The final chapter six contains a nonexistence result which highlights the
observations of the previous chapter. In particular we show that condensa-
tion by compression and evaporation by expansion between pure phases is
not possible for various models relying on the adiabatic Euler equations.
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Thus the results of this thesis strongly recommend the consideration of
the heat flux in two phase flow problems. The heat flux is still included in
the isothermal Euler equations. Here the energy equation decouples from
the system and determines the heat flux. In the isothermal case one might
say that the heat is distributed at infinite speed. In contrast, in the adiabatic
case the heat flux is absent. Hence the isothermal Euler equations, com-
pared to the adiabatic Euler equations, may serve as a good model for two
phase flow problems with phase transition.
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Introduction

It is an often recognized pattern that certain mathematical problems arise
from applications, then they emancipate somehow and become important
mathematical topics on their own. Nevertheless even in these situations
mathematicians try to find analogies to the underlying (physical) concepts
in order to establish a theory suited to fully understand the considered prob-
lems. This is exactly what happened in the field of fluid dynamics. Scientist
tried to develop a theory in order to describe fluid phenomena and were
faced with severe mathematical difficulties. It then turned out that these
difficulties are in some sense deep mathematical problems, of which many
are still open.

The main results of the present work deal with such problems involving
selected aspects of fluid dynamics. In particular we are concerned with liq-
uid and vapor phases of a single substance and investigate their dynamics
under different conditions such as a fixed temperature. Therefore it is nec-
essary to equip the reader with all concepts that are needed throughout this
thesis to establish our results. To this end we mainly provide two things.
On the one hand we will focus on the physical aspects that are needed to
provide the models and their theoretical bases. On the other hand there is of
course the mathematical theory which kind of certifies the physical models.
By establishing a mathematical framework for the physical models, the the-
ory will for example allow us to say in what sense we may expect solutions.
Thus it helps to study the intrinsic structure of the given models. Since
this is a mathematical thesis we want to give some priority to the phys-
ical aspects, because we belief that a thorough discussion of the physical
principles is most helpful for understanding and solving the mathematical
problems. We further assume that most of the readers are familiar with
basic concepts of the analysis of partial differential equations and thus refer
to the given literature apart from the presented results. According to the
previous remarks the first part consists of two chapters.

Chapter 1 entitled Thermodynamics contains a compressed introduction of
(equilibrium) thermodynamics. This chapter does not replace a deep study
of this topic but merely serves as a guide through this field and thus presents
the main results. Additionally we present certain calculations in detail
where we are of the opinion that they are often of interest in everyday
work but left out in the literature (due to the technical character). Further
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CONCEPTS:

for readers not familiar with thermodynamics these additional calculations
might serve as guiding examples to treat a wide range of thermodynamic
problems mathematically.

Chapter 2 covers a wide range of topics with Balance Laws as the the-
matic parentheses. Some parts of Chapter 2 may be interpreted as the
non-equilibrium extension of the results presented in Chapter 1. We will
present a derivation of the local forms of a generic balance law in the pres-
ence of singularities. From these generic equations we obtain all the govern-
ing equations needed in this work. Further we observe how they are related
and how they may be extended in certain situations. The main reason for
this focus is that we think that this topic is quite difficult to get into and
we thus additionally made some slight changes compared to the literature
which we will comment as they appear. The chapter closes with a brief
overview on the theory of hyperbolic partial differential equations.

The first part of this work consists of the two following chapters

• First, in Chapter 1 we will briefly present all thermodynamic results
needed throughout this work.

• In Chapter 2 the conservation and balance laws that will describe the
fluid motion will be derived and discussed.
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1 Concepts:

Thermodynamics

Presenting thermodynamics is perhaps one of the more difficult things
throughout this thesis. In the book by Müller and Müller [65] the authors
note at the very beginning that

Thermodynamics is the much abused slave of many masters [. . . ].

What they are missing in the following (surely non-exhaustive) listing is
the mathematician investigating models and objects derived from thermo-
dynamical principles. Since we do so we have another perspective on this
field than for example the engineer working on cooling systems. Therefore
we want to apologize to every physicist for not presenting every important
name or idea as it is usually the case.
A brief summary of the thermodynamic results needed for the remain-
ing work, would probably leave some readers puzzled due to the missing
background and motivation of the results. Additionally more experienced
readers may argue that fundamental concepts and connections between the
relations are missing.
If in contrast the topic would be presented in all its generality, to give
as much insight as possible, the chapter would cover some few hundred
pages. This of course is way beyond the scope of this work. Nevertheless,
since thermodynamics plays a crucial role throughout this thesis we want
to present this topic in more detail. Therefore we will highlight the main
results needed here and further present some calculations in detail which
might be of interest for people new to this field of research.

For more details on thermodynamics we recommend the standard liter-
ature and the references therein. In particular we used the famous textbook
by Landau and Lifshitz [51], as mentioned earlier [65], Rebhan [70] and
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CONCEPTS: THERMODYNAMICS

Bartelmann et al. [5]. Additionally we like to draw the readers attention
to the following works. First we want to mention the lecture notes by
Evans [27] (or the condensed version [29]) with a very nice introduction and
description of the mathematical structure of thermodynamics and further
references. Second the work by Lieb and Yngvason [57], where they present
an axiomatic approach to the Second Law of thermodynamics. Finally we
recommend the work by Menikoff and Plohr [60]. This article contains are
very compact, yet detailed description of thermodynamics with a special
focus on the Riemann problem for hyperbolic conservation laws.

The chapter is organized as follows. In Section 1.1 basic quantities, con-
cepts and the laws of thermodynamics are introduced. The following Section
1.2 gives an overview of the different thermodynamic potentials and there
connections, i.e. the Maxwell relations. These relations are of great impor-
tance for the mathematical treatment of thermodynamics. In Section 1.3
we introduce the concept of an equation of state which connects the theory
with applications. In the two Subsections 1.3.1 and 1.3.2 we will discuss
particular equations of state in more detail. These examples may serve the
reader as guidelines when other equations of state need to be discussed. We
finish this chapter with Section 1.4 containing a brief summary of aspects of
the thermodynamics of different phases. In particular we are interested in
equilibrium conditions, the Maxwell construction and thermodynamics of a
surface.

We want to close this introduction with a remark on equilibrium and non-
equilibrium thermodynamics. The results in the following chapter rely on
the assumption that the considered system is in equilibrium or that the
processes evolve in such a way that they can be considered as a sequence
of connected equilibrium states. Based on this assumptions a theory was
developed which is capable of dealing with many different questions aris-
ing in the field of thermodynamics. However, the question that remained
was what to do if the system is far away from thermodynamic equilibrium.
One example that comes up (especially in the context of this work) is the
presence of different phenomena in fluid dynamics, such as shock waves or
phase transitions. This question opened a field of research which is still of
great interest. Some of the aspects will be covered in Chapter 2 which also
contains helpful references.
Nevertheless the ideas and concepts of the equilibrium thermodynamics
serve as the basis and key ingredient for the treatment of non-equilibrium
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1.1. THE LAWS OF THERMODYNAMICS

phenomena. This is best highlighted by an approach often made in non-
equilibrium thermodynamics, i.e. it is assumed that a small part of a ther-
modynamic system is in equilibrium whereas the whole system does not
need to be in equilibrium. Such a system is said to be in local equilibrium.
Thus the results obtained in Chapter 1 may be applied to such systems. It
remains to give some kind of criteria that tell us when a system allows such
approximation. A precise quantification is given in the book of Mauri [59]
which we will not present here in detail. Just to give an impression, it is for
example stated that for a system consisting of gas a temperature gradient up
to 104 K/cm still allows the assumption of local equilibrium. In Bedeaux et
al. [8] even a temperature gradient of 106 K/cm is mentioned. These results
serve as kind of justification to assume that we always have a system in
local equilibrium in the context of this work, underlining the importance of
the equilibrium results.

1.1 The Laws of Thermodynamics

Every system consisting of matter obeys the laws of thermodynamics. Pre-
cisely a thermodynamic system is a macroscopic amount of matter that, in an
adequate sense, is delimited from its environment. Further it can be com-
pletely described by macroscopic variables. One may consider different
types of systems which may also be described by different variables 1, e.g.

• isolated systems exclude the exchange of energy and matter. Therefore
the energy is conserved and in equilibrium it is described by the
number of particles N, the occupied volume V and the internal energy E.

• Closed systems allow energy exchange but forbid exchange of mat-
ter. The macroscopic equilibrium state is described by N, V and the
temperature T.

• Open systems allow the exchange of energy and matter. In equilibrium
they are described by V, T and the chemical potential µ.

The quantities we use may be distinguished in two categories. First we
have the state quantities (or sometimes variables/parameters). State quanti-
ties describe a macroscopic system independent from the way it got there.

1In this work we will use SI – units. Hence we have for the volume [V] = m3, the temperature
[T] = K the energy [E] = J = Nm = kgm2s−2 and the chemical potential [µ] = Jmol−1.
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Mathematically speaking, state quantities are quantities which can be writ-
ten as exact differentials, e.g. [5, 54]. These state quantities are either intensive
or extensive. Extensive state quantities are proportional to the amount of
the substance considered, such as energy, volume and entropy. Intensive
properties do not depend on the amount of substance, just like temper-
ature, pressure or densities of extensive quantities. Second we have the
process quantities which (as the name indicates) describe the way how a sys-
tem reaches a certain macroscopic state. Hence they are in general no exact
differentials. Examples are the change of heat or the work done to or by the
system. By thermodynamic equilibrium we understand a state

• that is unique, independent of its history and can be characterized by
a finite number of macroscopic variables,

• which does not change as time evolves,

• where no macroscopic transport processes (e.g. mass) take place.

Now we skip quite a bit and state the three (or four, depending on how
you count) laws of thermodynamics. The Zeroth Law of thermodynamics
basically defines an equivalence relation for thermodynamic systems.

Zeroth Law of Thermodynamics 1.1.1. Whenever two systems are in thermal
equilibrium with a third one, these two are also in thermal equilibrium.

The First Law of thermodynamics connects the process quantities heat
and work to the state quantity internal energy2. It is also referred to as the
impossibility of a perpetual motion machine of first kind3.

First Law of Thermodynamics 1.1.2. The sum of the differential heat δQ sup-
plied to the system and the differential work done to the system δW give the
differential of the internal energy dE, i.e.

dE = δQ + δW.

The internal energy is determined up to some additive constant.

Mathematically the First Law ensures the existence of a twice differ-
entiable function called internal energy E. Further E is an extensive state

2[Q] = [W] = [E] = J
3A perpetual motion machine of first kind is a virtual, periodic working machine which solely

performs work. In particular it reaches its initial state after one cycle without losing energy.
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variable and thus dE is an exact differential, cf. [27]. Note that this property
of E holds regardless of the fact that δQ and δW may each be process de-
pendent.

The Second Law of thermodynamics can be approached on two ways. First
we have the phenomenological and second the statistical approach. Before
we state the second law we want to give a notion of reversible and irre-
versible processes. A process is called irreversible if it cannot be undone in
a way such that there are no permanent changes in the environment. If a
process can be reversed without abiding changes to the environment it is
called reversible. Now from a phenomenological point of view the Second
Law comprises the observation that there are processes in nature which are
allowed by the First Law but nevertheless do not occur. It is also referred to
as the impossibility of a perpetual motion machine of second kind4 5.

Second Law of Thermodynamics 1.1.3. For thermodynamic systems in equi-
librium exists a state quantity called entropy, S6, which for changes in reversible
processes is given by

dS =
δQ
T
.

For irreversible processes in closed systems from one equilibrium state to another
the entropy increases.

Again, mathematically the Second Law states that under certain circum-
stances there exists an integrating factor 1/T for δQ such that dS is an exact
differential. This does not depend on the number of independent variables
X1, . . . ,Xm. The second part of the Second Law 1.1.3 can be summarized by
Clausius’ inequality

TdS ≥ δQ. (1.1)

The equality only holds for reversible processes. As mentioned earlier the
Second Law can also be derived from statistical considerations. Without
going into too much details the statistical version states

4A perpetual motion machine of second kind is a virtual, periodic working machine. During
one cycle it absorbs heat and completely converts it into work without abiding changes in its
environment.

5This formulation goes back to Planck. There are other formulations by Clausius and Kelvin.
These formulations are all equivalent.

6[S] = JK−1
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CONCEPTS: THERMODYNAMICS

If a macroscopic system is not in equilibrium, the most likely change is
an increase of entropy.

Here the term most likely means almost sure, apart from fluctuations. For more
details on the Second Law we refer to the afore mentioned literature, es-
pecially [57]. The First and Second Law of thermodynamics, especially the
differential relations defined within, will be the ones we will use the most
for deriving mathematical relations between different state quantities.

What is left missing by the First and Second law is some information about
the limit as the temperature approaches zero 7. Hence to complete the
laws of thermodynamics we finally give the Third Law although it is not
necessary for our purposes.

Third Law of Thermodynamics 1.1.4. The entropy S of a thermodynamic
system in equilibrium converges to a unique value for T→ 0. This is independent
from the realized physical path and other state variables. Hence one is free to choose
S|T=0 = 0.

Since the Third Law is not relevant in our case we will not go into much
details. Just note that the absolute value T = 0 K cannot be realized and for
justification of the Third Law quantum mechanical arguments are needed.
See the literature mentioned before.

1.2 Thermodynamic Potentials and Maxwell Re-
lations

Now with the laws of thermodynamic at hand we can exploit the formal
structure that helps to investigate specific questions. A thermodynamic sys-
tem in equilibrium can be described by extensive variables (X0,X1, . . . ,Xm) ∈
Ω ⊂ Rm+1 which are independent from another. 8. It is always possible to
choose these variables such that the entropy is not among them and we
have for the internal energy that E = X0. The remaining variables may have
different meanings, such as volume V or mole number N. We assume Ω to
be an open and convex subset of Rm+1 and call it state space. From now on

7It is worth noting, that the existence of an absolute temperature scale is non trivial. Usually
it is derived using Carnot cycles which implies the use of 1.1.2 and 1.1.3.

8It is a non trivial assumption that a system in equilibrium may be described by a finite
number of variables and we again refer to the given literature (e.g. [70]).
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we assume, if not stated otherwise, that all thermodynamic functions are
defined and evaluated in Ω and conversely all states are taken such that
they are within the domain of a thermodynamic function.
By the second law we know that there exists a function S called entropy.
The entropy is a twice differentiable function

S : Ω→ R with S = S(E,X1, . . . ,Xm). (1.2)

This equation is called fundamental equation and contains all the information
about a thermodynamic system. Further S has the following properties

(i) S is concave

(ii) ∂S/∂E = 1/T > 0

(iii) S is positively homogeneous of degree one, i.e. S(λX) = λS(X) forλ > 0

In [57] it is noted (as Entropy principle) that the Second Law 1.1.3 includes
additivity of the entropy and also property (iii). Both together imply con-
cavity (i), cf. [5], [27] or [57]. Following [57] the concavity (i) is then the
key ingredient to show that ∂S/∂E exists (as already noted above). The
fact that one can write (ii) is due to the fact that for two systems in thermal
equilibrium the corresponding derivatives of the entropy with respect to the
energy are equal. Consequently the temperatures of systems in equilibrium
are equal. The fact that the Temperature is strictly positive9 is a necessity for
the existence of systems in equilibrium, see [51]. Now property (ii) always
allows us to uniquely solve the fundamental equation (1.2) for E

E = E(S,X1, . . . ,Xm). (1.3)

Since (1.3) is only a reformulation of (1.2) it contains the same information
and thus both can be considered to be equivalent. Further, following from
the entropy properties, the internal energy has the following properties

(i) E is convex

(ii) ∂E/∂S = T > 0

(iii) E is positively homogeneous of degree one, i.e. E(λX) = λE(X) for
λ > 0

9For examples of negative Temperatures see §73 in [51].

11



CONCEPTS: THERMODYNAMICS

Extensive Parameter X Intensive parameter P
volume pressure

mole number (neg.) chemical potential
length tension
area surface tension

electric charge electric force
magnetization magnetic intensity

Table 1.1: Different examples for relations of extensive and intensive quantities related to E,
taken from [27]

Note that for the moment it is obvious what is meant by ∂S/∂E or ∂E/∂S
from a mathematical point of view. Nevertheless in thermodynamics it is
common to keep the notation of a quantity (e.g. S) although it might be
expressed by different variables. This is done since the physical meaning of
a quantity does not change along a variable transformation. So to be precise
one writes in our case

∂S
∂E

=

(
∂S
∂E

)
X1,...,Xm

.

The notation on the right gives the information which physical function
is the dependent and with respect to which variable are we evaluating
the derivative. Outside the brackets one notes the remaining independent
variables held constant. Instead of noting the variables held constant it is
also common to note the type of process which is considered. For example
if a certain derivative is evaluated for an adiabatic (δQ = 0) process. Note
that the derivative of the extensive quantity E with respect to the extensive
quantity S gives the intensive quantity T. A similar relation holds for the
extensive variables X1, . . . ,Xm, i.e. we can assign an intensive variable to
every extensive variable. We define so called generalized forces or energetic
intensive quantities as

Pi = −

(
∂E
∂Xi

)
S,X1,...,Xm,Xi

, i = 1, . . . ,m.

There are several different possibilities for such quantities, see the non-
exhaustive summary in Table 1.1. If we now write down the exact differen-
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tial of the internal energy E we obtain

dE = TdS −
m∑

i=1

PidXi. (1.4)

and vice versa for the entropy S

dS =
1
T

dE +
1
T

m∑
i=1

PidXi. (1.5)

Using the property (iii) (E positive homogeneous) we can use Euler’s homo-
geneous function theorem and obtain for E (analogue for S)

E(S,X1, . . . ,Xm) = S
(
∂E
∂S

)
X1,...,Xm

+

m∑
i=1

Xi

(
∂E
∂Xi

)
S,X1,...,Xm,Xi

= TS −
m∑

i=1

PiXi.

(1.6)

Note here, that we made explicit use of the extensive character of the inter-
nal energy. Now since dE should be an exact differential due to the First
Law 1.1.2 we have the following relations between the mixed second order
derivatives(
∂T
∂Xi

)
S,X1,...,Xm,Xi

=

(
∂Pi

∂S

)
X1,...,Xm

and
(
∂Pi

∂Xk

)
S,X1,...,Xm,Xk

=

(
∂Pk

∂Xi

)
S,X1,...,Xm,Xi

(1.7)

Similar relations are also obtained for the entropy S. These relations are
called Maxwell relations. As we will see in a short moment there are further
Maxwell relations derived from other state quantities. Now with all this at
hand we want to introduce further thermodynamic potentials. Therefore
we will use the Legendre transform, see for example [28, 89]. One motivation
for this is the simple need for measurable quantities. For example, it would
be convenient to know the internal energy in terms of the measurable quan-
tities temperature and pressure instead of the volume and the not directly
measurable entropy. For the following we set X1 = V > 0, fix the remaining
variables X2, . . . ,Xm and simply write E(S,V) or S(E,V) respectively. As
noted before the pressure p is given by

p = −

(
∂E
∂V

)
S

with [p] = Pa = Nm−2.
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A more detailed derivation can be found for example in [51] (see §12).
Finally we can introduce additional thermodynamic potentials as Legendre
transforms of the internal Energy.

Definition 1.2.1 (Thermodynamic Potentials).

(i) The Helmholtz free energy F is given by

F(T,V) = inf
S

(E(S,V) − TS). (1.8)

(ii) The enthalpy H is given by

H(S, p) = inf
V

(E(S,V) − pV). (1.9)

(iii) The Gibbs energy or free enthalpy G is given by

G(T, p) = inf
(S,V)

(E(S,V) + pV − TS). (1.10)

The functions E,F,G,H are called thermodynamic potentials

For the physical interpretation of these potentials we refer to the given
literature. So far we only used convexity of E(S,V), but from now on we
will assume strict convexity of E(S,V). Therefore each infimum in Definition
1.2.1 is attained at a unique point and thus we can write the thermodynamic
potentials as

F(T,V) = E(S,V) − TS, 10 with T =

(
∂E
∂S

)
V
, (1.11)

H(S, p) = E(S,V) + pV, with p = −

(
∂E
∂V

)
S
, (1.12)

G(T, p) = E(S,V) + pV − TS, with T =

(
∂E
∂S

)
V
, p = −

(
∂E
∂V

)
S
. (1.13)

These potentials are equivalent to (1.3) considering the information about
a system11, see [70]. From now on we will assume that E is strictly convex

10To be precise, here S = S(T,V) solves T =
∂E
∂S

(S,V). A similar remark applies to the other

potentials.

11We consider exemplary the Helmholtz energy. First solve
(
∂F
∂T

)
V

(T,V) = −S(T,V) for

T(S,V). Second, use (1.11) to obtain E(S,V) = F(T(S,V),V) + T(S,V)S.
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with respect to (S,V) and S is strictly concave, respectively. Further we can
derive the differentials for the other thermodynamic potentials. Exemplary
we present the free energy F

dF
(1.11)
= d(E − TS) = dE − SdT − TdS

(1.4)
= TdS − pdV − SdT − TdS

= −SdT − pdV. (1.14)

Identifying (1.14) with

dF =

(
∂F
∂T

)
V

dT +

(
∂F
∂V

)
T

dV

gives the first derivatives (which also can be obtained using the chain rule
in (1.11)) (

∂F
∂T

)
V

= −S and
(
∂F
∂V

)
T

= −p. (1.15)

For the enthalpy H one obtains

dH = TdS + Vdp, (1.16)(
∂H
∂S

)
p

= T and
(
∂H
∂p

)
S

= V

and for the Gibbs energy

dG = −SdT + Vdp, (1.17)(
∂G
∂T

)
p

= −S and
(
∂G
∂p

)
T

= V.

We want to make the reader aware of a further useful relation that exists
between the internal energy and the Gibbs energy. Consider the internal
energy to be determined by the entropy S, the volume V and the mole
numbers N j, j = 1, . . . ,n with [N j] = mol. Equation (1.6) gives the famous
Gibbs–Duhem relation

E = TS − pV +

n∑
j=1

µ jN j
(1.13)
⇔ G =

n∑
j=1

µ jN j. (1.18)
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The µ j are the so called chemical potentials of the substances and if we only
consider one pure substance we get

G = µN.

Since all these quantities are exact differentials we know that the mixed sec-
ond order derivatives must be equal. This gives further Maxwell relations(

∂T
∂V

)
S

= −

(
∂p
∂S

)
V
, (1.19)(

∂S
∂V

)
T

=

(
∂p
∂T

)
V
, (1.20)(

∂T
∂p

)
S

=

(
∂V
∂S

)
p
, (1.21)(

∂S
∂p

)
T

= −

(
∂V
∂T

)
p
. (1.22)

Other relations can be obtained if we consider general coordinate trans-
formations in two dimensions, which is quite often the case in thermody-
namics. Assume we have the coordinates (x, y) and we apply a unique
and smooth transformation (a diffeomorphism between two subsets ofR2),
such that we obtain (x, z). Here the new coordinate can be expressed as
z = z(x, y) and we can also invert it to obtain x = x(y, z). Hence the Jacobian
of f (y, z) = (x(y, z), z) is

D f =
∂(x, z)
∂(y, z)

=


∂x
∂y

∂x
∂z

∂z
∂y

∂z
∂z

 =

∂x
∂y

∂x
∂z

0 1

 .
Now we use the chain rule and apply it to our transformation and obtain

∂(x, z)
∂(y, z)

=
∂(x, z)
∂(x, y)

∂(x, y)
∂(y, z)

.

Taking the determinant on both sides gives(
∂x
∂y

)
z

= −

(
∂z
∂y

)
x

(
∂x
∂z

)
y
. (1.23)

This relation is also known as Barkhausen’s formula

16



1.3. EQUATIONS OF STATE

1.3 Equations of State

In the previous Section 1.2 we noted that equation (1.3) contains all the
thermodynamical information about a system. An immediate question
for example is what if the entropy is replaced by the (well measurable)
temperature and we therefore have E = E(T,X1, . . . ,Xm)? If we use the
second property of the internal energy (T = ∂E/∂S) we obtain a partial
differential equation for E but we need further information to yield a unique
solution. The same can be observed for any other intensive variable. If the
fundamental equation (1.3) is known one can obtain m+1 equations relating
the intensive and extensive quantities, i.e.

T = T(S,X1, . . . ,Xm),
Pi = Pi(S,X1, . . . ,Xm), i = 1, . . . ,m.

These kind of equations are called equations of state (EOS). The existence of
m + 1 EOS is secured by the thermodynamic laws. Combining these m + 1
equations one may obtain further EOS and if for example all extensive vari-
ables are eliminated we can express the temperature as T = T(P1, . . . ,Pm).
But the equations of state need to be obtained empirically or statistically
since they crucially depend on the considered system. Recall equation (1.6),
it only contains the same information as equation (1.3) if we know all EOS.
This fact can be seen as follows, from (1.6) we derive

dE = TdS + SdT −
m∑

i=1

PidXi −

m∑
i=1

XidPi.

Now we subtract (1.4) and obtain

0 = SdT −
m∑

i=1

XidPi. (1.24)

Now suppose all m EOS for the Pi are known. Further we use that T and
the Pi are state quantities

dT =

(
∂T
∂S

)
X1,...,Xm

dS +

m∑
i=1

(
∂T
∂Xi

)
S,X1,...,Xm,Xi

dXi,

dPi =

(
∂Pi

∂S

)
X1,...,Xm

dS +

m∑
j=1

(
∂Pi

∂X j

)
S,X1,...,Xm,X j

dX j, i = 1, . . . ,m
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and thus obtain together with (1.24)(
∂T
∂S

)
X1,...,Xm

= −
1
S

m∑
i=1

Xi

(
∂Pi

∂S

)
X1,...,Xm,Xi

,(
∂T
∂Xi

)
S,X1,...,Xm,Xi

= −
1
S

m∑
j=1

X j

(
∂P j

∂Xi

)
S,X1,...,Xm,X j

, i = 1, . . . ,m.

Finally T can be obtained by integration up to a constant. Note that equation
(1.24) is also called Gibbs–Duhem relation as well as (1.18). The most common
situation is that we know something about the pressure, the volume and
the temperature, i.e. a relation f (p,V,T) = 0. This relation is an incomplete
EOS since it is lacking information of the system. The relation p = p(V,T) is
called thermal EOS. If we combine it with a caloric EOS E = E(V,T) we regain
the complete picture, see [5] or [60]. Therefore the last missing pieces are
the response functions or material laws. These response functions are directly
measurable quantities. For our purposes we only need five of them and due
to the Maxwell relations there are only three of them independent.

Definition 1.3.1 (Response Functions).

(i) Heat capacity12 at constant volume:

CV = T
(
∂S
∂T

)
V

with [CV] = JK−1

(ii) Heat capacity at constant pressure: Cp = T
(
∂S
∂T

)
p

with [Cp] = JK−1

(iii) Coefficient of thermal expansion: α =
1
V

(
∂V
∂T

)
p

with [α] = K−1

(iv) Isothermal compressibility: κT = −
1
V

(
∂V
∂p

)
T

with [κT] = Pa−1

(v) Adiabatic (isentropic) compressibility: κS = −
1
V

(
∂V
∂p

)
S

with [κS] = Pa−1

12In general heat capacities are defined as Cx =
(
δQrev

dT

)
X

Here X is a state parameter (e.g.

constant magnetic field) held constant during a reversible heat exchange, cf. [5].
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It is worth noting that second order derivatives of thermodynamic po-
tentials can always be written in terms of directly measurable quantities,
see [60]. Measuring these quantities one may obtain the thermal and caloric
EOS and using the Maxwell relations then gives the fundamental equation.
How this can be done is explained for example in [65].
The following Lemma 1.3.2 collects some results that will be used later on.
The proof will also be given to demonstrate some typical manipulations
using thermodynamic relations.

Lemma 1.3.2. Consider the response functions as given in Definition 1.3.1. Then
the following results hold.

(i) CV =

(
∂E
∂T

)
V

and Cp =

(
∂H
∂T

)
p
.

(ii) Cp ≥ CV > 0.

(iii)
κS

κT
= 1 −

α2VT
CpκT

=
CV

Cp
.

Proof:

(i) The first statement is obvious since it directly follows using the chain
rule for the potentials E = E(S(T,V),V) and H = H(S(T, p), p).

(ii) Let us first consider the Gibbs energy (1.13). Since we may express
V = V(T, p) we can use the Helmholtz energy (1.11) and write

G(T, p) = F(T,V(T, p)) + pV(T, p).

Using (1.15) we obtain(
∂G
∂T

)
p

=

(
∂F
∂T

)
V

and
(
∂2G
∂T2

)
p

=

(
∂2F
∂T2

)
V

+
∂F
∂T∂V

(
∂V
∂T

)
p
. (+)

This gives

Cp − CV

T
1.3.1
=

(
∂S
∂T

)
p
−

(
∂S
∂T

)
V

(1.15)
= −

(
∂2G
∂T2

)
p

+

(
∂2F
∂T2

)
V

(+)
= −

∂F
∂T∂V

(
∂V
∂T

)
p

(1.15)
=

(
∂p
∂T

)
V

(
∂V
∂T

)
p

(1.23)
= −

(
∂V
∂T

)2

p

(
∂p
∂V

)
T

1.3.1
=

α2V
κT
≥ 0.
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For the positivity we use the convexity of the internal energy

1
VκT

= −

(
∂p
∂V

)
T

=

(
∂2F
∂V2

)
T

=

(
∂2E
∂V2

)
S
−

(
∂2E
∂S∂V

)2 (
∂E
∂S

)−1

V
≥ 0.

(iii) The second equality follows from the equation Cp −CV =
α2VT
κT

in the

proof of (ii). Hence we only prove
κS

κT
=

CV

Cp
.

κS = −
1
V

(
∂V
∂p

)
S

(1.23)
=

1
V

(
∂S
∂p

)
V

(
∂V
∂S

)
p

=
1
V

(
∂S
∂T

)
V

(
∂T
∂S

)
V

(
∂S
∂p

)
V

(
∂V
∂T

)
p

(
∂T
∂V

)
p

(
∂V
∂S

)
p

=
1
V

(
∂S
∂T

)
V

(
∂T
∂p

)
V

(
∂V
∂T

)
p

(
∂T
∂S

)
p

(1.23)
= −

1
V

(
∂S
∂T

)
V

(
∂V
∂p

)
T

(
∂T
∂V

)
p

(
∂V
∂T

)
p

(
∂T
∂S

)
p

1.3.1
= κT

CV

Cp
.

�
Lemma 1.3.2 (iii) immediately shows that only three of the five quantities
are independent. For our later purposes we therefore follow Menikoff and
Plohr and define dimensionless quantities as in [60].

Definition 1.3.3 (Dimensionless Quantities). Given a thermodynamic system
described by the fundamental equation E(S,V) the following dimensionless quan-
tities can be defined:

(i) The adiabatic exponent or synonymous the dimensionless sound speed

γ =
V
p

(
∂2E
∂V2

)
S

=
1

pκS
. (1.25)

(ii) The Grüneisen coefficient

Γ = −
V
T

(
∂2E
∂S∂V

)
=

αV
CVκT

. (1.26)
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(iii) The dimensionless specific heat

g =
pV
T2

(
∂2E
∂S2

)
V

=
pV

CVT
. (1.27)

(iv) The fundamental derivative

G = −
1
2

V

(
∂3E
∂V3

)
S(

∂2E
∂V2

)
S

= −
1
2

V

(
∂2p
∂V2

)
S(

∂p
∂V

)
S

. (1.28)

Analogously for an isothermal process

(i) The (isothermal) dimensionless sound speed

γT = −
V
p

(
∂p
∂V

)
T

=
1

PκT
. (1.29)

(ii) The (isothermal) fundamental derivative

GT = −
1
2

V

(
∂2p
∂V2

)
T(

∂p
∂V

)
T

. (1.30)

If it is clear from the context the subscript T in the isothermal case is omitted.

These dimensionless quantities are very helpful in discussing the Rie-
mann problem for the Euler equations. Further they have several useful
interpretations which we will not present here in detail. We therefore again
highly recommend [60] and just present some remarks. Every additional
property that we need will be given by the time it is needed.

Remark 1.3.4.

(i) Systems with a convex fundamental equation are called thermodynamically
stable.
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(ii) The convexity of E(S,V) can be expressed in terms of g, γ and Γ, i.e.

E(S,V) convex ⇔ g ≥ 0, γ ≥ 0 and gγ ≥ Γ2. (1.31)

(iii) The thermodynamic laws do not confine the sign of G.

(iv) In the isothermal case one degree of freedom is fixed and hence the correspond-
ing condition for the convexity of E is γT ≥ 0. Note that there is the following
relation

γT

γ
=

CV

Cp
. (1.32)

(v) If Γ , 0 one can choose p and V as independent variables.

(vi) Considering (V,T) as independent variables one obtains for γ and G

γ = −
V
p

( ∂p
∂V

)
T
−

T
CV

(
∂p
∂T

)2

V

 = −
V
p

(
∂p
∂V

)
T

+
Γ2

g
, (1.33)

G =
V2

2pγ

[(
∂2p
∂V2

)
T
−

3T
CV

(
∂p
∂T

)
V

(
∂2p
∂V∂T

)
+

3T
C2

V

(
∂p
∂T

)2

V

(
∂CV

∂V

)
T

+
T

C2
V

(
∂p
∂T

)3

V

(
1 −

T
CV

(
∂CV

∂T

)
V

) . (1.34)

We want to close this general introduction with the definition of the
sound speed, since it is most important for the treatment of fluid dynamics.

Remark 1.3.5 (Specific Quantities). So far extensive quantities were denoted by
capital letters13, which should emphasize the dependence on the amount or mass
of the substance. Quite often it is very useful to consider specific quantities,
i.e. per amount of substance or per mass. In this case the extensive quantities
become intensive and we therefore will use the corresponding small letter. Which
case is considered is often clear from the name of the new variable, e.g. specific
volume with [v] = m3kg−1 or molar volume with [vm] = m3mol−1. If not
stated otherwise we will only consider specific quantities per mass in this work.
The differential relations obtained so far remain valid in contrast for example to
formula (1.6), see [27].

13The temperature being an exception.
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Definition 1.3.6 (Sound Speed). The sound speed a14 is given by

a =

√(
∂p
∂ρ

)
s

=

√
−v2

(
∂p
∂v

)
s
. (1.35)

Here ρ denotes the mass density, v the specific volume with v = 1/ρ and s the
specific entropy. For isothermal processes the sound speed is given by

aT =

√(
∂p
∂ρ

)
T

=

√
−v2

(
∂p
∂v

)
T
. (1.36)

A detailed motivation of this definition can be found for example in [52].
Since v and s are not that convenient in some applications, we want to give
further formulas for the sound speed using different choices of variables

Lemma 1.3.7. Given the sound speed defined by (1.35) and further assume that
a smooth transformation of the thermodynamic variables can be applied. Then the
sound speed can be written in terms of the new thermodynamic variables (x, y) as

a2 = −v2

(
∂p
∂x

)
y

(
∂x
∂v

)
s
− v2

(
∂p
∂y

)
x

(
∂y
∂v

)
s
. (1.37)

In particular the following relations hold

(i) for (v,T)

a2 = −v2

(
∂p
∂v

)
T

+
v2T
cv

(
∂p
∂T

)2

v
,

(ii) for (v, e) with e being the specific internal energy15

a2 = −v2
(
∂p
∂v

)
e
+ pv2

(
∂p
∂e

)
v
,

(iii) for (p, v)

a2 = v2

(
∂e
∂p

)−1

v

( ∂e
∂v

)
p

+ p

 .
14[a] = ms−1

15This constellation is very important when using conservative variables for the Euler equa-
tions.
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Proof: Equation (1.37) is just the chain rule applied to (1.35). The formula
for the case (v,T) follows from (1.37) together with (1.20), (1.23) and 1.3.1 .
The case (v, e) also follows directly from (1.37). In the third case we want to
use (p, v) as independent variables and hence we cannot use (1.37). First we
consider the internal energy to be given in (p, v)

de =

(
∂e
∂p

)
v

dp +

(
∂e
∂v

)
p

dv.

This expression is inserted in the differential for the (specific) entropy

ds =
1
T

de +
p
T

dv =
1
T

(
∂e
∂p

)
v

dp +
1
T

( ∂e
∂v

)
p

+ p

 dv.

From the requirement s = const. we finally obtain

0 = ds =
1
T

(
∂e
∂p

)
v

dp +
1
T

( ∂e
∂v

)
p

+ p

 dv

⇔ dp = −

(
∂e
∂p

)−1

v

( ∂e
∂v

)
p

+ p

︸                    ︷︷                    ︸
=−a2/v2

dv.

�
As already mentioned before, one often has an EOS and needs the corre-
sponding thermodynamic potentials and other related quantities. In the
following we therefore want to present several different EOS and their as-
sociated potentials and quantities.

1.3.1 Ideal Gas and Stiffened Gas EOS

The presumably most popular EOS is the ideal gas EOS. It can be derived
from phenomenological thermodynamics as well as from statistical consid-
erations. Experiments by Boyle, Mariott and Gay-Lussac led to the ideal gas
laws

(i) pV = const. for T = const.

(ii) p ∝ T for V = const.
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(iii) V ∝ T for p = const.

Of further importance is Avogadro’s Law (see [65]):

Equal volumes of different gases at the same pressure and temperature
contain equally many particles.

Altogether these laws are reflected in the ideal gas EOS

pV = NkBT. (1.38)

Here kB = 1.38065 · 10−23 JK−1 denotes the Boltzmann constant. There are
other equivalent versions of this law using relations between the universal
constants. In fact by using the universal gas constant R = 8.3145 JK−1mol−1

and Avogadro’s constant NA = 6.02214129 · 1023 mol−1 we obtain

pV = NkBT = N
R

NA
T = nRT. (1.39)

Here n = N/NA denotes the amount of substance with [n] = mol. If we
consider the density ρ = NmA/V where mA denotes the mass16 of a single
molecule (or atom in the case of Helium for example) we can also write

p = ρ
kBT
mA

. (1.40)

Although this (thermal) EOS is not complete, in the sense discussed previ-
ously, one can already draw several conclusions.

Proposition 1.3.8. The following statements hold for an ideal gas (1.39).

(i) Cp and CV only depend on the temperature.

(ii) Cp − CV = nR.

(iii) The internal energy only depends on the temperature and is given by

E(T) =

∫ T

Tr

CV(τ) dτ + Er. (1.41)

(iv) The entropy as a function of (T,V) is given by

S(T,V) = nR ln
V
Vr

+

∫ T

Tr

CV(τ)
τ

dτ + Sr. (1.42)

16[mA] = kg
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Proof: Considering E = E(S(T,V),V) we obtain the useful relation

(
∂E
∂V

)
T

=

(
∂E
∂S

)
V

(
∂S
∂V

)
T

+

(
∂E
∂V

)
S

(1.20)
= T

(
∂p
∂T

)
V
− p. (1.43)

Obviously this is zero for the ideal gas EOS. Using Lemma 1.3.2 (i) then
gives CV = CV(T) and thus together we have (iii). Further we use Lemma
1.3.2 (iii) and yield

Cp − CV =
α2VT
κT

=
PV
T

= nR.

Hence this immediately results in Cp = Cp(T). For the entropy we use

(
∂S
∂T

)
V

=
CV(T)

T
and

(
∂S
∂V

)
T

=

(
∂p
∂T

)
V
.

Integrating from a reference temperature Tr to T and from a reference vol-
ume Vr to V respectively gives the desired result. �

An explicit relation for CV(T) would complete the picture and we could
calculate the caloric EOS. If we assume the heat capacities to be constant we
conclude 17

E(T) = CV(T − Tr) + Er, (1.44)

S(T,V) = nR ln
V
Vr

+ CV ln
T
Tr

+ Sr. (1.45)

17In this case one may find different names for this kind of EOS, such as perfect, simple or
polytropic gas EOS. It is also quite common to even use the name ideal gas EOS in both situations
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Hence the Gibbs energy for a perfect gas is given by (using (1.13))

V(T, p) =
nRT

p
,

S(T,V(T, p)) = nR ln
(

pr

p
T
Tr

)
+ CV ln

T
Tr

+ Sr,

G(T, p) = E(T, p) − TS(T, p) + pV(T, p),

= CV(T − Tr) + Er − T
(
nR ln

pr

p
+ (CV + nR) ln

T
Tr

+ Sr

)
+ nRT,

= nRT ln
p
pr

+ (CV + nR)
(
T − Tr − T ln

T
Tr

)
− (T − Tr)Sr + Gr,

(1.46)

Gr := Er − TrSr + prVr.

If we now consider an isothermal process at some fixed temperature T∗ and
choose Tr = T∗ we immediately obtain

G(Tr, p) = nRTr ln
p
pr

+ Gr. (1.47)

In a similar way one may obtain every other potential. For later use we
want to give the dimensionless quantities and the sound speed for the ideal
gas.

Proposition 1.3.9. Given the ideal gas EOS (1.39) and a caloric EOS (yet to be
specified). The quantities defined in 1.3.3 are given by

γ = 1 +
nR

CV(T)
, g = γ − 1, Γ = γ − 1, G =

1
2
(
γ + 1

)
+

1
2
γ − 1
γ

dγ
dT
,

γT = 1 and GT = 1.

For the sound speed one obtains using the results of Lemma 1.3.7

a2 = a2(T) = γnRT,

a2
T = nRT, T = const.

Proof: We omit the details of this proof, since it is just a combination of
Definitions 1.3.1, 1.3.3 and of the thermodynamic identities derived before.

�
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Note that in the case of an ideal gas γ is the adiabatic exponent as usually
defined with γ = CP/CV and may depend on the temperature. However,
for other EOS this is in general not true and instead the following relation
holds due to Lemma 1.3.2 (iii), see [60]

Cp

CV
=

γg
γg − Γ2 . (1.48)

Regarding the convexity of E (see (1.31)), one verifies that this holds for
γ ≥ 1 and strict convexity for γ > 1. This finishes our discussion of the ideal
gas.

Another EOS often used for fluid flow problems, especially when liquids
are considered, is the stiffened gas or Tammann EOS 18. In terms of (E,V) it
reads

p(E,V) = (γ0 − 1)
E − E∞

V
− γ0p∞, (1.49)

pr = p(Er,Vr).

For a detailed discussion see [60], Flåtten et al. [33] and Saurel et al. [73]. We
want to calculate the entropy and the temperature under the assumption of
constant heat capacities. Once obtained, other potentials may be derived
using the adequate formulas derived before. It is easy to see, that for p∞ = 0
and E∞ = 0 (1.49) reduces to the ideal gas EOS.

Proposition 1.3.10. For the stiffened gas EOS (1.49) the entropy and temperature
are given by

S(p,V) = Cp ln

 V
Vr

(
p + p∞
pr + p∞

) 1
γ0

 Cp=γ0CV
= CV ln

(( V
Vr

)γ0 p + p∞
pr + p∞

)
T(p,V) =

γ0(p + p∞)V
Cp(γ0 − 1)

Cp=γ0CV
=

(p + p∞)V
CV(γ0 − 1)

.

18It is remarked in [60] that the stiffened gas EOS can be seen as an approximation of any
EOS near a reference state (Er,Vr) with quadratic errors in V − Vr and E − Er.
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Further the dimensionless quantities are

γ = γ0

(
1 +

p∞
p

)
, g = (γ0 − 1)

p
p + p∞

, Γ = γ0 − 1, G =
1
2
(
γ0 + 1

)
,

γT = 1 +
p∞
p

and GT = 1.

According to the results of Lemma 1.3.7 the sound speeds are given by

a2 = a2(T) = γ0v(p + p∞) = γ0(γ0 − 1)cvT,

a2
T = cv(γ0 − 1)T, T = const.

Proof: We want to derive the relations in terms of the volume V and
the pressure p. The state space is denoted by Ω ⊂ R2. We obtain for the
differential of the internal energy E using (1.49)

dE =

(
∂E
∂p

)
V

dp +

(
∂E
∂V

)
p

dV =
V

γ0 − 1
dp +

p + γ0p∞
γ0 − 1

dV.

Using (1.5) we obtain for the entropy

dS =
1
T

dE +
p
T

dV =
V

(γ0 − 1)T
dp +

1
T

(
p + γ0p∞
γ0 − 1

+ p
)

dV.

Hence we have two equations for the temperature

1
T

=
γ0 − 1

V

(
∂S
∂p

)
V

and
1
T

=
γ0 − 1

γ0
(
p + p∞

) (
∂S
∂V

)
p
.

Equalizing these two equations for T gives a hyperbolic PDE for the entropy
S

V
(
∂S
∂V

)
p
− γ0(p + p∞)

(
∂S
∂p

)
V

= 0.

Once the entropy is determined, we are able to calculate all remaining
quantities. We assume the following relation between entropy and volume
19

S ∼ C ln
V
Vr
.

19This can be justified by thermodynamical as well as statistical considerations. Nevertheless
more general choices are possible, see [60]
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Now we can write down the full problem (with a fixed pr)
V

(
∂S
∂V

)
p
− γ0(p + p∞)

(
∂S
∂p

)
V

= 0, (p,V) ∈ Ω,

S(pr,V) = Cp ln
V
Vr
, (pr,V) ∈ Ω.

This PDE can be solved by the Method of Characteristics (see Evans [28])
which transforms it into a system of ODEs for σ

ẋ1(σ, ξ) = γ0(x1 + p∞), x1(0, ξ) = pr,

ẋ2(σ, ξ) = x2, x2(0, ξ) = ξ,

ż(σ, ξ) = 0, z(0, ξ) = Cp ln ξ
Vr
.

We yield the following solution

x1(σ, ξ) = (pr + p∞)eγ0σ − p∞,
x2(σ, ξ) = ξeσ,

z(σ, ξ) = Cp ln
ξ
Vr
.

Expressed in (x1, x2) we have

σ(x1) =
1
γ0

ln
x1 + p∞
pr + p∞

,

ξ(x1, x2) = x2

(
x1 + p∞
pr + p∞

)− 1
γ0

,

z(x1, x2) = Cp ln

 x2

Vr

(
x1 + p∞
pr + p∞

) 1
γ0

 .
So we obtain for the entropy and temperature

S(p,V) = Cp ln

 V
Vr

(
p + p∞
pr + p∞

) 1
γ0

 Cp=γ0CV
= CV ln

(( V
Vr

)γ0 p + p∞
pr + p∞

)
T(p,V) =

γ0(p + p∞)V
Cp(γ0 − 1)

Cp=γ0CV
=

(p + p∞)V
CV(γ0 − 1)

.
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The dimensionless quantities and sound speeds are obtained as before. �

One verifies that these equation reduce to the ones for the ideal gas if
we choose E∞ = 0 and p∞ = 0. Note that for the stiffened gas EOS the
quotient of the heat capacities and the adiabatic exponent are not equal, i.e.
CP/CV = γ0 , γ. Regarding thermodynamic stability it is clear that p ≥ 0 20

and thus with p∞ ≥ 0 we have γ ≥ γ0. For g ≥ 0 we require γ0 ≥ 1 and then
γg ≥ Γ2 follows immediately.

1.3.2 Linear and Non-Linear Tait EOS

In this section we want to present the linear and the non-linear Tait EOS and
derive the corresponding quantities such as entropy and internal energy.
Therefore we will use the established thermodynamic relations in order to
obtain a consistent formulation. The isothermal Tait EOS

p(V) = pr + Kr

((Vr

V

)ν
− 1

)
(1.50)

is for example discussed and used in [23, 25, 37, 46, 72]. Quantities with
subscript r are constant reference values at a given temperature Tr. Here
Kr is the modulus of compression ([Kr] = Pa). The non-linearity is due to
the exponent ν ≥ 1 and we refer to the linear Tait EOS for ν = 1. In [23, 37]
the linear Tait EOS is used and the reference constants pr,Kr and Vr were
chosen at the saturation state for a given temperature Tr according to [84].
The non-linear Tait EOS is for example used in [46] and [72]. In particular, it
was shown in [46] that the equation for the energy balance (2.65) decouples
from (2.63) and (2.64) if one uses (1.50). This is not surprising, because the
full Euler system is temperature dependent.
Here we want to derive the relations for a temperature dependent Tait EOS.
The isothermal case is then easily obtained by fixing T. The main idea is
to replace the (temperature dependent) constants in (1.50) by temperature
dependent functions. In fact also the exponent is weakly temperature de-
pendent, but this is neglected here. A similar idea was proposed in [72]
but the corresponding internal energy is not calculated. Instead the internal

20In general negative pressures are possible in liquids, see Davitt et al. [19]. Nevertheless a
system with negative pressure is not thermodynamic stable and thus the internal energy is not
convex anymore. However one can still use (1.49) but has to be very careful with interpreting
the results.
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energy for the isothermal case is presented. The temperature dependent
Tait EOS reads

p(V,T) = p̄(T) + K̄(T)
((

V̄(T)
V

)ν
− 1

)
. (1.51)

We want to emphasize that the functions p̄, K̄ and V̄ do not necessarily have
to represent actual physical quantities. They represent general temperature
dependent functions which will be specified later on and of course should
ensure thermodynamic stability.

Proposition 1.3.11 (Linear Tait EOS). Consider the Tait EOS (1.51) with ν ≥ 1,
then the internal energy and entropy are given as follows

E(V,T) = A(T) (V − Vr) + B(T)Φ(V) +

∫ T

Tr

CV(Vr, τ) dτ + Er,

S(V,T) = Ā(T) (V − Vr) + B̄(T)Φ(V) +

∫ T

Tr

CV(Vr, τ)
τ

dτ + Sr

with

CV(V,T) = A′(T)(V − Vr) + B′(T)Φ(V) + CV(Vr,T),
Ā(T) = p̄′(T) − K̄′(T),

B̄(T) = −
d

dT
(
K̄(T)V̄(T)ν

)
,

A(T) = TĀ(T) −
(
p̄(T) − K̄(T)

)
,

B(T) = TB̄(T) + K̄(T)V̄(T)ν,

Φ(V) =


ln

Vr

V
, ν = 1

1
1 − ν

(
1

Vν−1 −
1

Vν−1
r

)
, ν > 1

.

The prime denotes the derivative with respect to T. The dimensionless quantities
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are given by 21

γ = ν
K̄(T)V̄(T)ν

pVν
+

Γ2

g
, g =

pV
TCV

, Γ =
V
CV

(
Ā(T) −

B̄(T)
Vν

)
,

γT = ν
KrVν

r

pVν
and GT =

ν + 1
2

.

The sound speeds are according to Lemma 1.3.7

a2 = γpV,

a2
T = ν

KrVν
r

Vν−1 .

Proof: In order to derive the internal energy E(V,T) we use Lemma 1.3.2
(i) and (1.43)

(a)
(
∂E
∂T

)
V

= CV(V,T), (b)
(
∂E
∂V

)
T

= T
(
∂p
∂T

)
V
− p.

From these relations we obtain the internal energy by integration with re-
spect to T and V. Analogously we obtain the entropy using 1.3.1 (i) and
(1.20)

(a)
(
∂S
∂T

)
V

=
CV(V,T)

T
, (b)

(
∂S
∂V

)
T

=

(
∂p
∂T

)
V
.

The remaining quantities are obtained as before. �

Remark 1.3.12. We want to comment on the above results.

(i) Considering (1.50) with ν = 1 and CV(Vr,T) = CV = const. we obtain

E(V,T) = (Kr − pr) (V − Vr) + KrVr ln
Vr

V
+ CV(T − Tr) + Er,

S(V,T) = S(T) = CV ln
T
Tr

+ Sr.

21In this case we omit the calculation of G, due to the complexity of formula (1.34) and the
rather general assumptions on the EOS. However, regarding [76] the Tait EOS with ν = 7 seems
to be a good fit for liquid water concerning the fundamental derivative.
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These are exactly the expressions obtained in [23]. Note that the entropy for
(1.50) does not depend on the density, as remarked in [23]. This due to the
fact that the derivatives of p̄(T), K̄(T) and V̄(T) at T = Tr are neglected here.
Beware of the difference between first choosing these functions constant and
after that calculate the entropy etc. or first calculate all quantities and then
chooses T = const..

(ii) In [46] Ivings et al. used the Tait EOS (1.50) without pr. Note that for (1.50)
one obtains Γ = 0 according Proposition 1.3.11. Thus we have for the ratio
of the heat capacities, according to (1.48), Cp/CV = 1. This is independent of
the choice of ν ≥ 1 and CV(Vr,T).

(iii) As mentioned before, Saurel et al. proposed to choose p̄(T) and V̄(T) to be the
values at the saturation line for liquid water, see [72]. K̄(T) is assumed to
be constant Kr and further they used ν = 7. In this case the isochoric heat
capacity will not be constant.

(iv) So far we have not specified the caloric EOS, but in view of the determined
equations it is sufficient to know CV(Vr,T). In fact, one can write (compare
[5])

CV(V,T) = CV(Vr,T) + T
∫ V

Vr

(
∂2p
∂T2

)
V

(σ,T) dσ.

(v) Concerning the convexity of E(V,S) we again recall (1.31). Up to now
CV(V,T) is not specified completely (a possible choice still could be CV =
const.), however it must satisfy CV > 0. Further we require K̄(T)V̄(T)ν > 0.
The positivity of p,V and T of course is mandatory. With this at hand it
follows that γg ≥ Γ2 and thus the convexity of E.

(vi) Note that the linear Tait EOS (1.51) is equivalent to the stiffened gas EOS
(1.49) for the following particular choice

p̄(T) − K̄(T) = −p∞ and K̄(T)V̄(T) = CV(γ0 − 1)T.

Therefore both are sometimes called Tammann EOS, see [33] and [46].

1.4 Thermodynamics for Multiphase Systems

In this section we briefly want to give some results for thermodynamic
systems containing multiple phases. Generally by phase one denotes a
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chemically and a physically homogeneous part of a thermodynamic system.
Chemically different substances in a system are called components. If only
one component is considered the different aggregate states, e.g. solid, liquid
and vapor, are also called phases. In this work we only want to consider
systems with one component (e.g. water) and two phases, i.e. liquid and
vapor phases.
Let the thermodynamic system be completely described by the entropy S,
the volume V and the mole number N. Hence in view of (1.4) we have for
the internal energy and entropy

dE = TdS − pdV + µdN, (1.52)

dS =
1
T

dE +
p
T

dV −
µ

T
dN. (1.53)

The other potentials can be extended accordingly. The chemical potential
µ quantifies the change of the internal energy when particles are added or
removed from the system. Now consider an isolated system of two phases,
each described by (Ei,Vi,Ni), i = 1, 2, see [5]. For the whole system the
quantities (E,V,N) are kept constant and thus the partial quantities are not
independent from each other, i.e.

E2 = E − E1, V2 = V − V1 and N2 = N −N1.

Further two phases in an isolated system are in equilibrium when the en-
tropy is maximized and thus we get

0 = dS = dS1 + dS2 =
( 1

T1
−

1
T2

)
dE1 +

( p1

T1
−

p2

T2

)
dV1 +

(µ1

T1
−
µ2

T2

)
dN1.

Since the internal energy, volume and mole number of phase one may
change arbitrarily, we obtain the equilibrium conditions for the case of a
one component system with two phases

T1 = T2, p1 = p2, µ1 = µ2. (1.54)

The conditions describe thermal (T), mechanical (p) and phase equilibrium (µ).
Considering (1.54) we express the potential in terms of (T, p) and obtain

µ1(T, p) = µ2(T, p). (1.55)

This equation directly shows that a two phase equilibrium is not possible for
arbitrary combinations of temperature and pressure. Conversely (1.55) de-
fines a curve in the T−p plane. Such a curve separates homogeneous phases
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T

p
critical point

liquid phase vapor phase

Figure 1.1: Saturation curve in the T − p plane

of a substance and is often called coexistence curve or saturation boundary, see
Figure 1.1. Across this curve the Gibbs energy suffers jumps in its first order
derivatives. This gives rise to the Ehrenfest classification of phase transitions,
where the order of the phase transition is given by the order of the lowest
derivative of G that is discontinuous. Hence liquid–vapor phase transitions
below the critical point are first order phase transitions with discontinuities
in (see (1.17)) (

∂G
∂T

)
p

= −S and
(
∂G
∂p

)
T

= V.

Due to the Gibbs–Duhem relation (1.18) we obtain

dµ =
dG − µdN

N
= vdp − sdT. (1.56)

Where v and s are specific quantities per particle. Now using (1.55) gives

dµ1 = dµ2 ⇔ v1dp − s1dT = v2dp − s2dT

and hence we obtain the Clausius–Clapeyron equation

dp
dT

=
s2 − s1

v2 − v1
=

∆q
T∆v

. (1.57)

Here ∆q = T∆s is the latent heat per particle, see [51, 70]. Equation (1.57)
determines the slope of the coexistence curve in the T − p plane. All points
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on this coexistence curve represent states where phase equilibrium states
are possible.
Due to the discontinuity of the volume the situation changes if the V − T
plane is considered instead. Now these states fill a whole domain in the
plane. Left and right to this domain are the homogeneous phases and inside
the domain are mixed states of the adjacent phases. Note that for a pure
state the inequalities (1.31) are strict whereas a point in the mixed phase
region may be written as

v = (1 − α)v1 + αv2, s = (1 − α)s1 + αs2 and e = (1 − α)e1 + αe2 for α ∈ (0, 1).

Hence the (specific) internal energy is not strict convex anymore, i.e. γg = Γ2.
Further all states given by the equations above are mapped onto the same
values of p,T and g by the Legendre transform, see [60].
The coexistence curve ends in a single point which is called the critical point.
Quantities at the critical point are also called critical. There exist no distinct
phases for temperatures above Tc or pressures above pc. In particular the
entropy and the specific volume become continuous. A consequence is, that
above the critical point only phase transitions of second order are possible.
It is shown in [51] that there exists a curve inside the mixed phase region
that separates the whole domain where the thermodynamic inequalities fail
to be true. This curve can be found by investigating(

∂p
∂V

)
T

= 0.

In points where this derivative vanishes the isotherms end, due to the
violation of γT > 0. Further this curve is often referred to as spinodal curve
or line, e.g. [59]. The enclosed interior region is called spinodal region, see
Figure 1.2. For an exemplary discussion of the spinodal of liquid water
see Poole et al. [69]. Given the equilibrium condition (1.54) it follows that
points on the coexistence curve with equal temperature in the v − T plane
are connected by horizontal straight lines. The same holds for the v − p
plane respectively. There are no conditions, given which it is possible that
a substance exists in a homogeneous state inside this domain. However
the states between the spinodal curve and the coexistence curve are so
called meta stable states. When in a meta stable state, the substance is
in a homogeneous phase although it should have changed its state when
in complete equilibrium. Depending on the phase these states are called
overheated liquid or undercooled vapor. Usually a small disturbance of such
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p0

v

p
critical point(1)

(2) (3)

Figure 1.2: Schematic figure of the v − p phase plane. Curve (1) is an isotherm with T = T0.
Curve (2) is the saturation boundary with the liquid on the outer left side and the vapor on the
outer right side, respectively. Curve (3) is the spinodal curve. The region between curve (2)
and curve (3) is the metastable region whereas the area enclosed by curve (3) is the spinodal
region. The blue parts of the isotherm are the metastable states and the horizontal black line is
the coexistence curve in the v − p plane.

a system will immediately lead to a phase transition. According to [65] it
is possible to compress vapor up to a pressure p four times larger than the
corresponding saturation pressure without condensation. The above results
are most often visualized using the van-der-Waals equation of state

nRT =

(
p +

an2

V2

)
(V − nb) . (1.58)

The van-der-Waals EOS is obtained by taking the size of the particles and
their interactions into account. Since we do not want to focus on this
particular EOS see [5, 58, 47] for details. Isotherms of a van-der-Waals fluid
for temperatures below the critical temperature Tc exhibit two extremal
points enclosing an interval where(

∂p
∂V

)
T
> 0.

States inside this interval do not correspond to any realizable homogeneous
state in nature, see [51].
As mentioned before, a equilibrium transition between a liquid and vapor
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state is a horizontal straight line. This line can be found using (1.55). We
have along an isotherm

0 =

∫ 2

1
dµ

(1.56)
=

∫ 2

1
v dp. (1.59)

This formula states that the two areas enclosed by the isotherm and the
horizontal line must be equal. Therefore it is often called equal–area–rule.
Quite often it is also referred to as Maxwell construction. When expressed in
terms of the volume one yields at T0

0 = p0(T0)(v2 − v1) −
∫ v2

v1

p(v,T0) dv. (1.60)

Then the areas between the isobar at pressure p0(T0) and the isotherm at
temperature T0 are equal, see Figure 1.2.
Another point of view concerning the Maxwell construction might be as
follows. Assume we connect an EOS for the liquid state and one for the
vapor state continuously at the fixed temperature T0. Let us further prescribe
the pressure p0(T0) and the minimum liquid pressure pmin (e.g. pmin = 0).
Now we may calculate the maximum vapor pressure p̃ using the Maxwell
construction (1.60) as follows, see also Figure 1.3.

Definition 1.4.1 (Maximum Vapor Pressure). Given a fixed temperature T0
the corresponding saturation pressure p0 is given by (1.55). Furthermore pmin is
defined to be the minimum liquid pressure. Let v̄(p) be a function such that

vL(pmin) = v̄(pmin), vV(p̃) = v̄(p̃) and v̄′(p) > 0.

Then the maximum vapor pressure p̃ is found as the solution of the following
equation

0 = p0(vV(p0) − vL(p0)) −
∫ vV(p0)

vL(p0)
p(v) dv.

The function p(v) given by

p(v) =


pL(v), v ∈ (0, vL(pmin)]
p̄(v), v ∈ (vL(pmin), vV(p̃)),
pV(v), v ∈ [vV(p̃),∞)

.
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p0
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p

critical point

pmin

p̃

Figure 1.3: Schematic figure of the v−p phase plane with the Maxwell construction for the case
considered in Definition 1.4.1.

1.4.1 Thermodynamics of a Surface

In the presence of two phases one has to consider effects related to the
presence of the surface separating the two phases. Therefore we briefly
want to present some results related to a surface. The presented results can
be found in the following works [7, 21, 35, 36, 52, 64, 65] and [80].
To this end we follow [21] and [52]. Let us consider a surface Swith a total
area A ([A] = m2). In a reversible process the work needed to change A by
the infinitesimal amount dA is directly proportional to dA, i.e.

dW = σdA. (1.61)

The quantity σ is called coefficient of the surface tension or sometimes, quite
misleading, just surface tension and is a force per line ([σ] = N/m). It is a
fundamental surface quantity which is strictly positive, otherwise different
phases could not exist, see [52].
If we consider two phases of a single substance at constant temperature the
work in (1.61) is equal to the change of the surface free energy

dFS = σdA. (1.62)
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Let TS and SS denote the surface temperature and the surface entropy,
respectively. If we assume that the surface free energy is related to the
surface entropy in the usual way (see (1.14)) we may write

dFS = −SSdTS + σdA. (1.63)

In complete analogy to (1.15) and (1.20) we obtain the following relations

SS = −

(
∂FS
∂TS

)
A
, σ =

(
∂FS
∂A

)
TS

and
(
∂SS
∂A

)
TS

=

(
∂σ
∂TS

)
A
. (1.64)

If we consider a small surface element A with a uniform temperature we
may assume that there are densities per unit area such that we have

FS = fS(TS)A and SS = sS(TS)A. (1.65)

Thus we conclude using (1.62) and (1.63)

fS = σ and sS = −
dσ

dTS
. (1.66)

Hence the coefficient of the surface tension is also called surface free energy
density. This result may also be found in the works of Gurtin [35, 36]. A
direct consequence can be obtained for the internal surface energy eS, i.e.

σ
(1.66)1

= fS
(1.11)
= eS − TSsS

⇔

eS = σ + TSsS
(1.66)2

= σ − TS
dσ

dTS
= −T2

S

d
dTS

(
σ

TS

)
. (1.67)

This formula can be found in [52] or in another context for example in
[11]. Without derivation we want to cite a relation between the σ and the
temperature as given in [52] (§154,p. 494). The relation is given by

σ ∼ (Tc − T)2ν. (1.68)

Here Tc is the critical temperature and 2ν ≈ 1.3.
In general the coefficient of the surface tension can depend on much more
quantities than just the surface temperature, see [21] and [36]. For example
the geometry of the surface might be respected through the dependence on
the surface normal. Nevertheless it is shown in these works that certain
conditions need to hold to ensure compatibility with thermodynamics. In
particular the equations (1.66) need to hold for the more general cases. We
will not discuss this in detail and refer to the afore mentioned literature.
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2 Concepts:

Balance Laws

In the present chapter we want to introduce the laws used to describe the
dynamics of the fluid motion. These laws are in general referred to as bal-
ance laws. The key contribution from physics to this topic is provided by
the theory for irreversible processes and nonequilibrium thermodynamics.
Results for nonequilibrium thermodynamics can be found in the works of
Bedeaux [7], Mauri [59] and DeGroot and Mazur [20]. Here we want to fo-
cus more on the physical/modeling aspects of the balance laws rather than
the mathematical theory. We assume that the reader is familiar with most
of the mathematical concepts in this field.
An introduction to balance laws from a thermodynamic point of view can
be found in Landau et al. [52], Müller [64] and Müller & Müller [65]. In
Section 2.1 we will present a general derivation of balance laws as it can be
found in [21] and [64]. A further derivation of balance laws in the presence
of interfaces may be found in Bedeaux [7]. A treatment of this topic in two
dimensions can be found in the book of Gurtin [36].
The main part of this work uses the Euler equations and therefore we will
focus on them. In particular the Euler equations are special balance laws,
precisely they are a system of conservation laws. Conservation laws de-
scribe the dynamics of a fluid under the constraint that certain physical
quantities are conserved, i.e. there total change in time is zero. The field
of conservation laws, even when restricted to particular equations, is far to
extensive to be pictured here. A derivation of particular conservation laws
based on the results of Section 2.1 is therefore given in Section 2.2.
A brief overview of the mathematical results for hyperbolic partial differential
equations, in particular hyperbolic conservation laws, is given in Section 2.3. In
this context we, without being complete, refer to the following literature.
The book on partial differential equations by Evans [28] contains a compact
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description of the topic, especially of systems of conservation laws. An ex-
haustive introduction and discussion of analytical methods for conservation
laws can be found in the book of Warnecke [85]. Further we recommend the
books by Dafermos [18], LeFloch [55] and Smoller [75]. The books [18, 55]
give a precise treatment of hyperbolic conservation laws. Especially [18]
starts with a very general approach, introducing the balance laws in terms
of suited measures and further gives a nice historical review of the topic.
The book [75] does not focus on hyperbolic conservation laws alone, but
it also treats reaction-diffusion equations. For additional literature see the
references in the previous mentioned literature.
As mentioned before we focus on the Euler equations. Therefore we will
introduce them in Section 2.4 with respect to the previous sections.

2.1 Generic Balance Laws

In this section we want to derive generic equations that for example may
be used to describe the dynamics of a fluid in the presence of interfaces.
These equations are referred to as balance laws. To be more precise we want
to derive the local description of a general balance law in three dimensions.
This will allows us to derive several relations from one general equation,
highlighting the deep connection between all the resulting equations. We
will present a general derivation as it can be found in [21] and [64]. There-
fore we also recommend the works of Aris [2] and Truesdell and Toupin
[79] 1. For the treatment of moving surfaces in three dimensions we refer to
the suited literature such as the book of Grinfeld [34]. A further derivation
of balance laws in the presence of interfaces may be found in Bedeaux [7].
Although the resulting equations are not needed in their entire generality,
we want to follow this approach. Here the main benefit is that the effects of
simplifying assumptions may be emphasized properly. Thus one immedi-
ately can see the arising difficulties if certain assumptions are dropped.

Let V(t) ⊂ R3 be a time dependent material volume, i.e. there is no mass
flux through the boundary ∂V(t) of V(t). Thus the boundary moves with

1Reference [79] is also very interesting from a historical perspective of view, since it presents
the results in the context of original works. Thus the influences of mathematicians like Christof-
fel, Euler, Hadamard, Hugoniot, Reynolds on this topic become apparent.
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the velocity of the particles included inV(t) 2. Further letS(t) be the surface
separatingV into two regions denoted byV1(t) andV2(t). Such a situation
is sketched in Figure 2.1.

V1 V2

n

S

ν
nS

Figure 2.1: An arbitrary material volume V separated by an internal surface S. The sub-
volumes are denoted by Vi, i = 1, 2 and the outwards pointing unit normal of V is denoted
by n. Pointing from V1 to V2 the unit normal of S is denoted by ν. The unit normal nS is
tangential to S but normal to ∂S.

As mentioned before ∂V is a material surfaces in contrast toSwhich allows
mass transfer between the two regions.
A general balance equation for an additive physical quantity Ψ states that
the total change in time is equal to the flux across the boundary and the
(internal) sources 3, i.e.

dΨ

dt
= Φ︸︷︷︸

Flux

+ Ξ︸︷︷︸
Source

. (2.1)

In the case of a zero right hand side equation (2.1) becomes a conservation
law. For the generic quantity Ψ we have the corresponding volume density
ψ and the surface density ψS. Thus Ψ may be written as

Ψ(t) =

∫
V1∪V2

ψdV +

∫
S

ψS dA. (2.2)

2With particle one does not actually refer to the molecules or atoms of the material. Instead
a particle is the smallest partition of the material such that microscopic effects can be neglected
and a continuous description is possible.

3In the following we will highlight the equations using two colors to highlight the contri-
butions to the resulting equations.
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In a similar manner we introduce the volume flux densityφ and the surface
flux density φ

S
and write (see [21, 64])

Φ(t) = −

∫
(∂V1∪∂V2)\S

φ · n dA −
∫
∂S

φ
S
· nS dl. (2.3)

The first integral accounts for the non-convective flux across the closed
surface of the material volume. Whereas the second integral describes the
flux which is tangential to S and normal to its closed boundary ∂S. Since
the normal vectors n and nS are pointing outwards, the sign takes care that
incoming fluxes contribute positively to Φ.
The source Ξ can be decomposed using the volume density ξ and the surface
density ξS and thus

Ξ(t) =

∫
V1∪V2

ξdV +

∫
S

ξS dA. (2.4)

Inserting equations (2.2), (2.3) and (2.4) into the general balance law (2.1)
gives

d
dt


∫

V1∪V2

ψdV +

∫
S

ψS dA


= −

∫
(∂V1∪∂V2)\S

φ · n dA −
∫
∂S

φ
S
· nS dl +

∫
V1∪V2

ξdV +

∫
S

ξS dA. (2.5)

Examples for physical quantities and their corresponding densities may be
found in [21] or (with slight differences (!)) summarized in a table in [64].
The basic assumption that surface quantities contribute to the total quantity
Ψ is a major point. In fact, this assumption will be responsible for additional
terms in the equations for singular points, which are absent in the standard
case where the jump conditions are purely algebraic.
In the following the time derivative on the left hand side of equation (2.5) is
evaluated using transport theorems since the volume also depends on time.
To this end we start with Reynolds’ transport theorem for volume integrals.
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Theorem 2.1.1 (Reynolds’ Transport Theorem). Let ψ : R × Rn
→ R be a

continuously differentiable density function and V(t) ∈ Rn be a closed volume
moving with the (particle) velocity v. Then the following holds

d
dt

Ψ(t) =
d
dt

∫
V(t)

ψ(t, x) dV =

∫
V(t)

[
∂
∂t
ψ(t, x) + ∇x · (ψ(t, x)v)

]
dV. (2.6)

Proof: Detailed proofs may be found in [2] and [85]. The key idea
is that at any time the volume V(t) may be described applying a smooth
transformation to the initial volume V(0). Let the initial volume V(0) be
described using the coordinates X = (X1, . . . ,Xn). Since we consider a closed
(or material) volume no particles are destroyed or added in the volume.
Thus we assume the existence of a diffeomorphism χ(t,X) such that at every
time t ≥ 0 the coordinates x are given by x = χ(t,X). For t = 0 the mapping χ
is the identity. The Jacobian of χ for fixed t is given by Dχ(t,X) =

(
∂χi/∂X j

)
i, j

and let J = det(Dχ) denote the corresponding determinant. The determinant
J is needed to relate the present volume element dV to the volume element
of the initial configuration dV0, i.e. dV = JdV0. Since J is a function of time
we may calculate the time derivative and obtain (see [2, 85])

dJ
dt

= J∇ · v.

Now we obtain

d
dt

Ψ(t) =
d
dt

∫
V(t)

ψ(t, x) dV =
d
dt

∫
V(0)

ψ(t, χ(t,X))J dV0

=

∫
V(0)

d
dt

(
ψ(t, χ(t,X))J

)
dV0

=

∫
V(0)

[ d
dt
ψ(t, χ(t,X)) + ψ(t, χ(t,X))∇ · v

]
J dV0

=

∫
V(t)

[ d
dt
ψ(t, x) + ψ(t, x)∇ · v

]
dV.
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Using the chain rule and v = dx/dt = ∂χ(t,X)/∂t we may also write

d
dt

Ψ(t) =
d
dt

∫
V(t)

ψ(t, x) dV =

∫
V(t)

[
∂
∂t
ψ(t, x) + ∇x · (ψ(t, x)v)

]
dV.

�

Since we are concerned with a situation where the volume is divided into
two due to the presence of an internal surface, we want to give a general-
ization of Theorem 2.1.1. To keep the notation compact, we introduce the
jump brackets ~.�. Consider the situation of Figure 2.1 and a function which
is continuous inV1 ∪V2. For points xS ∈ Swe write

fi(t, xS) = lim
Vi3x→xS

f (t, x), i = 1, 2 and
�

f
�

(t, xS) := f2(t, xS) − f1(t, xS).

Usually we will not write out the argument since either the equations con-
taining jump brackets should hold in any point of the surface or it is clear
from the context which point is meant.

Theorem 2.1.2 (Generalized Reynolds’ Transport Theorem).

(i) Let Ω be an arbitrary volume (such that Gauss’ theorem can be applied) and
ψ : R ×Rn

→ R be a continuously differentiable density function. Then the
following equation holds∫
Ω

[
∂
∂t
ψ(t, x) + ∇x · (ψ(t, x)v)

]
dV =

∫
Ω

∂
∂t
ψ(t, x) dV +

∫
∂Ω

ψ(t, x)v · n dA.

(2.7)

(ii) Let Ω be a volume analogue to the situation in Figure 2.1 and Σ the internal
(n − 1-dimensional) surface. The function ψ : R ×Rn

→ R is continuously
differentiable in Ω1 ∪ Ω2 and discontinuous across Σ. Let the velocity field
be given such that it is v on the boundary of Ωi\Σ and w on Σ. Then the
following generalization of the above equation holds∫

Ω

[
∂
∂t
ψ(t, x) + ∇x · (ψ(t, x)v)

]
dV

=

∫
Ω1∪Ω2

∂
∂t
ψ(t, x) dV +

∫
(∂Ω1∪∂Ω2)\Σ

ψ(t, x)v · n dA −
∫
Σ

�
ψ

�
w · νdA.

(2.8)
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Proof: A proof of this extension of Theorem 2.1.1 may be found in [79]
(§ C.V pp. 525-526). The proof relies on Theorem 2.1.1 which is applied to
each partial volume, now with the internal surface as part of the boundary,
with a velocity field respecting the different boundary velocities v and w.
Summation gives the desired result. �

Theorem 2.1.2 allows another interpretation of equation (2.6). The proof
of 2.1.1 revealed that the total change of a quantity is balanced by the local
change of the density function and two additional effects. First there is the
convective part and second there is a contribution due to the deformation
of the material volume.
An alternative interpretation can be obtained if we consider Ω to be the
spatial configuration4 of V(t) at a fixed time. Now Ω can be thought of as
a fixed reference volume which is not material anymore and thus allows
transport across its boundary. Hence we may say that the total change at
time t is balanced by the local change and the flux across the boundary of
Ω.

Next we need two integral identities for the (moving) surface S, i.e. a trans-
port theorem and a divergence theorem. We want to focus on the results
rather than the mathematical description of moving surfaces in R3, which
we will keep short. For details we recommend, as before, the books [2, 64]
and further the book of Grinfeld [34]. Additional results may be found in
Cermelli et al. [13]. In particular for the transport equation we also refer to
[26] and the detailed description therein. A compact presentation of some
helpful results is given in the Appendix 8.1.

Theorem 2.1.3 (Integral Theorems for Surfaces).

(i) Let S(t), t ∈ [0,T0] be a family of smooth surfaces in R3 with the surface
area element dA =

√
gdu1du2. Here g = g(t) denotes the determinant

of the metric tensor of the surface at time t and the surface coordinates are
(u1,u2) ∈ U. Further let ψS = ψS(t, x) be a function defined on the surface
such that all of the following quantities exist. The material time derivative
of a surface quantity is given by ψ̊S = ∂tψS + w · ∇xψS, with w beeing the
velocity field of the surface particles. The transport theorem for the surface

4This notion is due to [79].
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integral then reads

d
dt

∫
S(t)

ψS dA =

∫
S(t)

ψ̊S + ψS
1

2g
∂
∂t

g dA. (2.9)

The time derivative of g is given by (8.24).

(ii) Let S ⊂ R3 be a smooth surface with the outward pointing boundary normal
nS tangential to the surface. Further φ

S
is a continuously differentiable

vector field. This function may be decomposed as follows φ
S

= φαττα + φνν
into tangential and normal components. Then the divergence theorem for
surface integrals holds ∫

∂S

φ
S
· nS dl =

∫
S

∇αφ
α
τ dA. (2.10)

Proof: Part (i): The proof of the transport theorem for the surface is quite
analogue to the proof of Theorem 2.1.1. According to the results presented
in 8.1 we have to account for two mappings. First we go from the current
surface S(t) to the initial configuration S(0) and then down to the surface
coordinates. This mapping is given by Φ̃ :U → S(t), see 8.1. We obtain

d
dt

∫
S(t)

ψS(t, x) dA =
d
dt

∫
U

ψS(t, Φ̃(t,uα))
√

g du1du2

=

∫
U

(
d
dt
ψS(t, Φ̃(t,uα)) + ψS

1
2g

∂
∂t

g
)
√

g du1du2

=

∫
S(t)

ψ̊S + ψS
1

2g
∂
∂t

g dA. (2.11)

For the last line we used that ψS is a function of (t, x) with x = Φ̃(t,u1,u2) as
in 8.1 with w = dx/dt.

Part (ii): We will just sketch the proof of the second statement here, but
a detailed one may be found in [2] and [64]. The first major point is the
observation that Stokes’ theorem for the surface may be written as∫

S

εαβ∇αAβ dA =

∫
∂S

Aβτ̄β dl
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Here τ̄β denotes the unit surface vector tangent to the curve ∂S. Further we
have

εαβ =
√

g
(

0 1
−1 0

)
with εαγε

γβ = δαβ .

Now with the choice Aβ = εβγBγ one yields εαβ∇αAβ = ∇αBα. Further
εβγτ̄β = ν̄γ is the outward unit normal to the curve ∂S in the surface. For this
special choice Stokes’ theorem reads∫

S

∇αBα dA =

∫
∂S

Bαν̄α dl. (2.12)

If we now consider the surface flux and decompose it in its tangential and
normal components we have φ

S
= φαττα + φνν. Further the vector nS is

tangential to the surface and normal to its boundary thus may be written as
nS = ν̄ατα. Hence we yield φ

S
· nS = φατ ν̄

βgαβ = φατ ν̄α. Now applying (2.12)
with Bα = φατ gives the desired result. �

Remark 2.1.4. We want to give some few comments on the previous proof.

(i) The proof of formula (2.9) can be found in [2] and [26]. Here, in contrast to
[21, 64], the surface function depends on the surface points x ∈ S ⊂ R3.

(ii) The proof of the transport theorem in the version presented in [21, 64] can be
found in [64] (§ 3.1.1.3, p. 50). There the function ψS directly depends on the
uα instead of the spatial surface coordinates x ∈ S ⊂ R3, i.e. ψS = ψS(t,uα).
Thus the proofs simplifies accordingly. Note, that for this reason the surface
quantities in the local balance laws depend on the surface coordinates uα

instead of the corresponding space coordinates.

(iii) The proof in [2] takes into account that the surface coordinates may also
be convected and thus a more general formula is obtained. This results in
an additional divergence term. Here we consider surfaces with a material
boundary and thus have fixed surface coordinates.

(iv) Since we assume ψS to be a function taking values on the surface we do not
consider values away from the surface 5. Thus we have w · ∇xψS = wα

τ∇αψS
with the tangential components wα

τ , see [2, 26].
5Another possibility is to consider a constant extension of ψS in normal direction which

also would lead to a vanishing normal derivative.

51



CONCEPTS: BALANCE LAWS

(v) In [26] a level set description of the surface is used. The resulting transport
theorem is the same. In particular note that the time derivative of the metric
corresponds to the surface divergence of the velocity field w. This highlights
that the surface transport theorem is analogue to Reynolds’ transport theorem
(material time derivative of a quantity plus the quantity times the divergence
of the velocity field).

Both Theorems 2.1.1 and 2.1.3 can be used to reformulate equation (2.5).
Altogether we have∫

V1∪V2

∂
∂t
ψ + ∇x · (ψv) dV +

∫
S

ψ̊S + ψS
1

2g
∂
∂t

g dA

= −

∫
(∂V1∪∂V2)\S

φ · n dA −
∫
∂S

φ
S
· nS dl +

∫
V1∪V2

ξdV +

∫
S

ξS dA.

The balance law should hold at any time for every material volume. Thus
the balance law in regular points, i.e. points in V1 ∪ V2, can be obtained
using an arbitrary control volume Ω contained in either one of the volumes.
Therefore one may use Gauss’ theorem for the boundary terms. Further the
integrals with respect to the singular surface vanish. This gives∫

Ω

∂
∂t
ψ + ∇x · (ψv) dV = −

∫
∂Ω

φ · n dA +

∫
Ω

ξdV

⇔∫
Ω

∂
∂t
ψ + ∇x ·

(
ψv +φ

)
dV =

∫
Ω

ξdV.

Since this equation should hold for arbitrary control volumes we conclude

∂
∂t
ψ + ∇x ·

(
ψv +φ

)
= ξ. (2.13)

To obtain the balance equation for the singular points, one uses a so called
pillbox argument, for details see [64] and for the two dimensional case see
[36]. The idea is to choose a cylinder Ωε which is oriented according to the
surface normal ν as control volume. It may be chosen as sketched in Figure
2.2. Now as ε goes to zero the volume terms vanish and the boundary terms
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V2 ∩Ωε

V1 ∩Ωε

ε→ 0

ν

S

Figure 2.2: Sketch of the pillbox argument.

reduce to Sε = Ωε ∩ S with the normal ±ν and we obtain∫
Ωε\S

∂
∂t
ψdV +

∫
Sε

ψ̊S + ψS
1

2g
∂
∂t

g dA +

∫
Sε

∇αφ
α
τ dA

= −

∫
∂(V1∩Ωε)

ψv · nε dA −
∫

∂(V2∩Ωε)

ψv · nε dA −
∫

∂(V1∩Ωε)

φ · nε dA

−

∫
∂(V2∩Ωε)

φ · nε dA +

∫
Sε

�
ψ

�
w · νdA +

∫
Ωε\S

ξdV +

∫
Sε

ξS dA

ε→0
⇒∫
Sε

(
ψ̊S + ψS

1
2g

∂
∂t

g + ∇αφ
α
τ

)
dA =

∫
Sε

(�
ψ

�
w · ν −

�
ψv +φ

�
· ν + ξS

)
dA

Thus one obtains together with (8.24) the local balance law in points on the
surface

ψ̊S + ψS
(
∇αwα

τ − 2KMwν
)

+ ∇αφ
α
τ = wν

�
ψ

�
−

�
ψv +φ

�
ν + ξS. (2.14)

The left hand side of (2.14) is the "non-classical part" of the jump condi-
tions and is due to the assignment of a surface quantity.
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So far we derived the equations in three dimensions but the lower di-
mensional cases may also be derived from these equations. In particular
we focus on (2.14). We briefly want to sketch how this may be done, but of
course one may derive these cases on their own.
Assume we have a symmetry such that the surface density is constant in
one surface direction and the normal has no component in this direction.
For example we may choose our coordinate system such that the density is
constant in (w.l.o.g.) x3 direction and the surface normal has the x3 compo-
nent zero. Then the problem reduces to a two dimensional problem, where
the singular surface reduces to a curve. The remaining surface coordinate
may be interpreted as the arc-length s of the curve. Further the mean curva-
ture, as sum of the principle curvatures, reduces to KM = κ/2. Finally the
divergence of the tangential component of the surface velocity reduces to
the derivative with respect to the arc-length s. Thus we obtain

ψ̊S(t, s) + ψS

(
∂
∂s

wτ − κwν

)
+
∂
∂s
φτ = wν

�
ψ

�
−

�
ψv +φ

�
ν + ξS. (2.15)

A detailed derivation, which is genuine two dimensional, is given in the
book of Gurtin [36].
Now for the one dimensional case we assume a planar interface (which
stays planar) with a spatially constant surface density. Since the metric is
constant in time, the derivative ∂tg vanishes and thus we obtain

d
dt
ψS(t) = wν

�
ψ

�
−

�
ψv + φ

�
+ ξS. (2.16)

This type of jump condition is also known as generalized Rankine-Hugoniot
jump conditions, cf. Yang [86].

2.2 Specific Balance Laws & the Entropy Inequal-
ity

Throughout this work we are only interested in balance laws where the
production densities ξ and ξS are identically zero. Often these equations are
referred to as conservation laws, although strictly speaking the considered
quantities might not be conserved due to the presence of a non-convective
flux. For example see the balance of momentum 2.2.2. In particular there are
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four quantities we are interested in. These are mass, momentum and (total)
energy. Further we want to derive the inequality for the entropy. Together
these four reflect the following four physical principles

(I) Conservation of Mass

(II) Newton’s second law

(III) First law of thermodynamics (1.1.2)

(IV) Second law of thermodynamics (1.1.3)

Since we are only interested in fluids with certain properties (e.g. non-
viscous) we will assume some (physical) simplifications. We will make the
reader aware of such situations. As already mentioned before, results for
other quantities may be obtained using [21] and [64]. A very recent work by
Bothe & Dreyer [11] contains a very broad description of continuum ther-
modynamics for multicomponent fluids with focus on chemical reactions.
In [11] various theoretical approaches and their difference are discussed.
Further they deal with constitutive modeling and the entropy principle and
compare the presented approach to the one (among others) discussed in [64].

2.2.1 Conservation of Mass
In order to obtain the conservation law of mass we make the following
choices

Ψ ψ φ ξ ψS φατ ξS
mass ρ 0 0 ρS 0 0

∂
∂t
ρ + ∇x ·

(
ρv

)
= 0, (2.17)

ρ̊S(t, x) + ρS
(
∇αwα

τ − 2KMwν
)
−

�
ρ(w − v)

�
· ν = 0. (2.18)

For the following we introduce the mass flux ṁ = ρ(v −w) · ν and thus can
rewrite (2.18)

ρ̊S(t, x) + ρS
(
∇αwα

τ − 2KMwν
)

= − ~ṁ� . (2.19)

Note that (2.17) follows immediately from the classical version of Reynolds
Transport Theorem 2.1.1. A nice interpretation of the curvature term in
(2.19) is given in [64].
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2.2.2 Balance of Momentum

Before we present the balance laws of momentum we want to simplify the
physics. For the momentum (precisely the ith component i ∈ {1, 2, 3}) we
have a non-convective flux which is in general given by φ = −tik. Here
tik is the Cauchy Stress Tensor with i, k ∈ {1, 2, 3}. In the following we only
consider (isotropic) non-viscous fluids and thus the stress tensor simplifies
to tik = −pδik, with p being the pressure. The surface flux is related to the
surface stress which is given by the Second Piola Kirchhoff Stress tiα

S
. This

stress acts on the surface and is a force per line. It may be decomposed in a
tangential and a normal part, i.e.

tiα
S

= Sαβτi
β + Sανi. (2.20)

Now we assume that the surface balances external forces only by tangen-
tial stresses, which is reasonable for a liquid-vapor phase interface. Thus
the surface deforms when exposed to external loads. Models with this
assumptions are also called membrane model, see [21, 64]. The important
consequence is, that the surface stress is symmetric whereas the normal
stress vanishes, i.e.

Sαβ = Sβα and Sα = 0.

In particular we have φατ = −tiα
S

. Now we have everything at hand to write
down the balance laws for the following choice of variables (for i ∈ {1, 2, 3})

Ψ ψ φ ξ ψS φατ ξS
momentum ρvi pe(i)6 0 ρSwi −tiα

S
0

∂
∂t

(ρvi) + ∇x ·
(
ρviv + pe(i)

)
= 0, (2.21)(

˚ρSwi
)

+ ρSwi
(
∇αwα

τ − 2KMwν
)
− ∇αtiα

S
= wν

�
ρvi

�
−

�
ρviv + pe(i)

�
· ν.

(2.22)

6e(1) = (1, 0, 0), e(2) = (0, 1, 0), e(3) = (0, 0, 1)
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Using (2.19) the second equation can be simplified as follows(
˚ρSwi

)
+ ρSwi

(
∇αwα

τ − 2KMwν
)
− ∇αtiα

S
= wν

�
ρvi

�
−

�
ρviv + pe(i)

�
· ν

(2.19)
⇔(

˚ρSwi
)
−wi

(
ρ̊S + ~ṁ�

)
− ∇αtiα

S
=

�
ρvi(w − v)

�
· ν −

�
p

�
νi

⇔

ρSẘi −wi ~ṁ� − ∇αtiα
S

= − ~viṁ� −
�

p
�
νi

⇔

ρSẘi − ∇αtiα
S

= − ~ṁ(vi −wi)� −
�

p
�
νi, i ∈ {1, 2, 3}. (2.23)

We further want to illustrate why equation (2.21) is referred to as Euler
equation and thus is the origin of the name for the system of Euler equations.
In the following we show that the original Euler equation (stated by Euler in
1755, [52] §2) is implied by (2.21), provided the conservation of mass (2.17)
holds. We have

0 =
∂
∂t

(ρvi) + ∇x ·
(
ρviv + pe(i)

)
= ρ

∂
∂t

vi + vi
∂
∂t
ρ + vi∇x ·

(
ρv

)
+ ρv · ∇xvi + ∇x ·

(
pe(i)

) ∣∣∣∣∣ · vi

∣∣∣∣∣ 3∑
i=1

0 = v2

(
∂
∂t
ρ + ∇x ·

(
ρv

))
︸               ︷︷               ︸

(2.17)
= 0

+ρv ·
(
∂
∂t

v +
1
2
∇xv2 +

1
ρ
∇xp

)

⇔

∂
∂t

v +
1
2
∇xv2 = −

1
ρ
∇xp. (2.24)

In [52] this equation is obtained from

ρ
dv
dt

= −∇xp.

This is Newton’s second law applied to a volume element of the fluid, as it
was considered by Euler. On the left hand side we have the density ρ times
the acceleration dv/dt which is equal to the force −∇xp acting on the volume
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element.
A further result is obtained if we first multiply (2.21) by vi and then calculate
the sum for i = 1, 2, 3. This gives the balance law for the kinetic energy

∂
∂t

(
ρ

v2

2

)
+ ∇x ·

(1
2
ρv2v + pv

)
= p∇x · v. (2.25)

The analogue equation for the singular points can be obtained accordingly,
i.e.

ρSẘi − ∇αtiα
S

= − ~ṁ(vi −wi)� −
�

p
�
νi

∣∣∣∣∣ ·wi

∣∣∣∣∣ 3∑
i=1

ρS
2

ẘ2
−

3∑
i=1

wi∇αtiα
S

= − ~ṁ(v −w) ·w� −
�

p
�

w · ν (2.26)

For further remarks see [64].

2.2.3 Balance of Energy

Now we want to derive the balance law for the total energy. Up to now the
results in [21] and [64] are the same as far as our case is concerned. However,
for the energy balance a major difference occurs, which for example is of
importance for the isothermal Euler equations 2.4.2. The energy density in
the bulk phases is given by

E := ρ

(
e +

v2

2

)
. (2.27)

Where e is the specific internal energy as introduced in Chapter 1. Now in
slight contrast the surface energy density is given as in [21]

ES := eS + ρS
w2

2
. (2.28)

The major difference between both is that the internal surface energy is not
multiplied by the surface density. In fact this is the difference between the
[21] and [64]. For the flux terms we neglect gravitational, electromagnetic
contributions as well as radiation. With q we denote the heat flux in the bulk
and with qατ the tangential surface heat flux. Altogether we obtain
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Ψ ψ φ ξ ψS φατ ξS
total energy E q + pv 0 ES qατ − tiα

S
wi 0

∂
∂t
E + ∇x ·

(
v
(
E + p

)
+ q

)
= 0, (2.29)

E̊S + ES
(
∇αwα

τ − 2KMwν
)

+ ∇α
(
qατ − tiα

S
wi

)
= wν ~E� −

�
v
(
E + p

)
+ q

�
· ν.

(2.30)

Using (2.19) the second equation can be simplified as follows

E̊S + ES
(
∇αwα

τ − 2KMwν
)

+ ∇α
(
qατ − tiα

S
wi

)
(2.31)

= wν

�
ρ

(
e +

v2

2

)�
−

�
ρv

(
e +

v2

2

)
+ q + pv

�
· ν

(2.19)
⇔

E̊S + eS
(
∇αwα

τ − 2KMwν
)
−

w2

2

(
∂
∂t
ρS + ~ṁ�

)
+ ∇α

(
qατ − tiα

S
wi

)
=

�
ρ(w − v)

(
e +

v2

2

)�
· ν −

�
q + pv

�
· ν

⇔

e̊S +
ρS
2

˚(w2) + eS
(
∇αwα

τ − 2KMwν
)

+ ∇α
(
qατ − tiα

S
wi

)
= −

�
ṁ

(
e +

v2
−w2

2

)�
−

�
q + pv

�
· ν (2.32)

Equation (2.32) again highlights the major impact of the particular structure
of ES. Since now a contribution of the surface energy eS remains even when
ρS ≡ 0.
An alternative derivation of (2.29) and (2.30) can be given by adding the
balance law of the kinetic energy and the balance law of the internal energy,
see [64]. There the balance law for the kinetic energy is derived from the
conservation laws of momentum (2.21) and (2.22). Further the balance law
for the internal energy is derived, which basically represents the first law of
thermodynamics 1.1.2. By adding both balance laws the conservation law
for the total energy is obtained.
We want to close the discussion of the total energy by deriving the balance
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for the internal energy which we will use later. We obtain

0 =
∂
∂t
E + ∇x ·

(
v
(
E + p

)
+ q

)
=
∂
∂t

[
ρ

(
e +

v2

2

)]
+ ∇x ·

[
v
(
ρ

(
e +

v2

2

)
+ p

)
+ q

]
=
∂
∂t

(ρe) + ∇x ·
(
ρev + q

)
+
∂
∂t

(
ρ

v2

2

)
+ ∇x ·

(1
2
ρv2v + pv

)
︸                                ︷︷                                ︸

(2.25)
= p∇x·v

⇔

∂
∂t

(ρe) + ∇x ·
(
ρev + q

)
= −p∇x · v. (2.33)

2.2.4 Entropy Inequality
Finally we want to present the balance law for the entropy. In view of
the second law of thermodynamics (1.1.3) we of course cannot expect the
entropy to be conserved in general. Instead we will obtain a balance law
which will reflect the Clausius inequality (1.1). A detailed discussion of the
entropy principle and derivation of the balance law in other situations may
be found in [11, 21] and [64]. Especially for the entropy principle applied
to the bulk phases we refer to [11] and [64]. Nevertheless we want to make
the reader aware of the following aspects

(i) Bothe & Dreyer [11] focus on chemical reactions in mixtures (with a
common temperature) and are not concerned with interfaces.

(ii) Although we again follow [21] there are two main differences in the
following. In contrast to [21] we focus on a single substance and ignore
chemical reactions. Thus the non-convective entropy flux simplifies to

φ =
1
T

q −
ac∑

a=1

µaJa

 =
q
T
. (2.34)

Where µaJa denote the chemical potential and the diffusion flux of con-
stituent a. The second notable difference is that in [21] the main focus
is on situations where there is no temperature jump at the interface,
i.e. ~T� = 0. We will not assume this in general.
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(iii) We have according to [21] that the surface entropy density is given by
ψS = sS. As for the surface energy density (2.28) this is in contrast to
[64] where density is given by ψS = ρSsS.

(iv) In [64] the entropy principle for singular surfaces is applied to an ideal
wall and thus there is no mass flux across the interface.

As mentioned before we have production terms for the entropy in the bulk
and on the surface. For our purposes it is sufficient to know that the
production terms are positive. Detailed discussions of the production terms
my be found in [11, 51, 59, 64] and [70]. We obtain

Ψ ψ φ ξ ψS φατ ξS
entropy ρs q/T ζ ≥ 0 sS qατ/TS ζS ≥ 0

∂
∂t

(ρs) + ∇x ·

(
ρsv +

q
T

)
= ζ ≥ 0, (2.35)

s̊S + sS
(
∇αwα

τ − 2KMwν
)

+ ∇α

(
qατ
TS

)
= wν

�
ρs

�
−

�
ρsv +

q
T

�
· ν + ζS

⇔

s̊S + sS
(
∇αwα

τ − 2KMwν
)

+ ∇α

(
qατ
TS

)
+ ~ṁs� +

� q
T

�
· ν = ζS ≥ 0. (2.36)

In the following we want to derive relations for the surface quantity from
the entropy principle analogue to those for the bulk phase. So far we
assumed that there exists a surface entropy which satisfies (2.36). Now we
want to exploit the relations to the other surface quantities. Therefore we
assume the surface entropy density to depend on the surface density, the
surface temperature and the metric of the surface to respect the geometry,
i.e. sS = sS(ρS,TS, gαβ). Along with the entropy the surface internal energy
eS also depends on the same set of variables 7. Depending on the considered
problem there may be further variables such as the change of the surface
temperature 8. For the following we want to summarize the assumptions

7This assumption is based on the principle of equipresence, see for example [64, 79]
8A further important restriction on the constitutive equations and the independent variables

comes from the assumption of material frame indifference, see [11, 64]. We omit the discussion
here and refer to the afore mentioned literature.
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(i) We assume the interface to have a uniform temperature (not ~T� = 0)
and thus ∇αTS = 0.

(ii) The surface stress only depends on the symmetric tangential compo-
nent, i.e. tiα

S
= Sαβτβ with Sαβ = Sβα.

(iii) The density of the surface free energy is the coefficient of the surface
tension fS = σ, see (1.66)1

(iv) We only consider a single substance and thus the Gibbs energy of the
surface gS is considered instead of the chemical potential.

To obtain the relations we introduce Lagrange multipliers Λ which may
depend on the same variables as the entropy. To ensure the inequality to
hold, certain terms have to cancel out9. From this requirement we obtain
our relations. We yield (applying summation over the space index i)

0 ≤ ζS = s̊S + sS
(
∇αwα

τ − 2KMwν
)

+ ∇α

(
qατ
TS

)
+ ~ṁs� +

� q
T

�
· ν

−ΛρS

(
ρ̊S + ρS

(
∇αwα

τ − 2KMwν
)

+ ~ṁ�
)

−Λwi

(
ρSẘi − ∇αtiα

S
+ ~ṁ(vi −wi)� +

�
p

�
νi

)
−ΛeS

(
e̊S +

ρS
2

ẘ2 + eS
(
∇αwα

τ − 2KMwν
)

+ ∇α
(
qατ − tiα

S
wi

)
+

�
ṁ

(
e +

v2
−w2

2

)�
+

�
q + pv

�
· ν

)
=

(
s̊S −ΛρS ρ̊S −ΛeS e̊S −

(
Λwi + ΛeSwi

)
ρSẘi

)
+

(
sS −ΛρSρS −ΛeSeS

) (
∇αwα

τ − 2KMwν
)

+ Λwi∇αtiα
S

+ ΛeS∇α

(
tiα
S

wi

)
+ ∇α

(
qατ
TS

)
−ΛeS∇αqατ

+
�

ṁ
(
s −ΛρS −ΛeSe

)�
−

�
p
(
ΛeSv · ν + Λwiνi

)�
−

1
2

ΛeS

�
ṁ

(
v2
−w2

)�
+

�( 1
T
−ΛeS

)
q

�
· ν −Λwi ~ṁ (vi −wi)�

9In particular for the case with ṁ = 0 one notices that the inequality is easily violated
otherwise.
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Now we apply the chain rule to sS = sS(ρS,TS, gαβ) and obtain (with (8.23))

0 ≤ ζS =((
∂sS
∂ρS
−ΛρS −ΛeS

∂sS
∂ρS

)
ρ̊S +

(
∂sS
∂TS

−ΛeS
∂eS
∂TS

)
T̊S −

(
Λwi + ΛeSwi

)
ρSẘi

)
︸                                                                                            ︷︷                                                                                            ︸

(I)

+
(
sS −ΛρSρS −ΛeSeS

) gαβ

2
∂
∂t

gαβ + Λwi∇αtiα
S

+ ΛeS∇α

(
tiα
S

wi

)
+

(
∂sS
∂gαβ

−ΛeS
∂eS
∂gαβ

)
∂
∂t

gαβ︸                                                                            ︷︷                                                                            ︸
(II)

+ ∇α

(
qατ
TS

)
−ΛeS∇αqατ

+
�

ṁ
(
s −ΛρS −ΛeSe

)�
−

�
p
(
ΛeSv · ν + Λwiνi

)�
−

1
2

ΛeS

�
ṁ

(
v2
−w2

)�
+

�( 1
T
−ΛeS

)
q

�
· ν −Λwi ~ṁ (vi −wi)� . (2.37)

Since we want the entropy inequality to be independent of the material time
derivatives we obtain for (I) the following conditions

0 =
∂sS
∂ρS
−ΛρS −ΛeS

∂eS
∂ρS

, (2.38)

0 =
∂sS
∂TS

−ΛeS
∂eS
∂TS

, (2.39)

0 = Λwi + ΛeSwi, (2.40)

Using tiα
S

= Sαβτi
β with Sαβ = Sβα we obtain

tiα
S
∇αwi = Sαβτβ · ∇αw 8.25

=
1
2

Sαβ
∂
∂t

gαβ.

63



CONCEPTS: BALANCE LAWS

With this we manipulate (II) and yield(
sS −ΛρSρS −ΛeSeS

) 1
2

gαβ
∂
∂t

gαβ + Λwi∇αtiα
S

+ ΛeS∇α

(
tiα
S

wi

)
+

(
∂sS
∂gαβ

−ΛeS
∂eS
∂gαβ

)
∂
∂t

gαβ

=

(
∂sS
∂gαβ

−ΛeS
∂eS
∂gαβ

+
1
2

ΛeSSαβ +
1
2

gαβ
(
sS −ΛρSρS −ΛeSeS

)) ∂
∂t

gαβ

+
(
Λwi + ΛeSwi

)
∇αtiα

S
.

Thus we further obtain using (2.40)

0 =
∂sS
∂gαβ

−ΛeS
∂eS
∂gαβ

+
1
2

ΛeSSαβ +
1
2

gαβ
(
sS −ΛρSρS −ΛeSeS

)
. (2.41)

To specify the precise values of the Lagrange multipliers we consider (2.37)
together with the conditions (2.38) - (2.41). Further we will use the Gibbs
energy for the balanced quantities in the bulk phases (compare (1.18)), i.e.

g = e − Ts +
p
ρ
.

Altogether we obtain

0 ≤ ζS = ∇α

(
qατ
TS

)
−ΛeS∇αqατ +

�
ṁ

(
s −ΛρS −ΛeSe

)�
−

�
p
(
ΛeSv · ν + Λwiνi

)�
−

1
2

ΛeS

�
ṁ

(
v2
−w2

)�
+

�( 1
T
−ΛeS

)
q

�
· ν −Λwi ~ṁ (vi −wi)�

= ∇α

(
qατ
TS

)
−ΛeS∇αqατ

+

�
ṁ

(
s
(
1 − TΛeS

)
−ΛρS +

g
T
−

g
T
−ΛeS

(
e − Ts +

p
ρ

))�
−

1
2

ΛeS

�
ṁ (v −w)2

�
+

�( 1
T
−ΛeS

)
q

�
· ν

= ∇α

(
qατ
TS

)
−ΛeS∇αqατ +

�
ṁ

(
−ΛρS −

g
T

)
−

1
2

ΛeSṁ (v −w)2
�

+
�( 1

T
−ΛeS

) (
q · ν + ṁ

(
g + Ts

))�
. (2.42)
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Now we consider an equilibrium state and in view of (1.54) and (1.55) we
assume the Gibbs energy and the temperature to be continuous across the
interface 10. In particular we expect the surface quantities to coincide with
the corresponding bulk quantities. Therefore we choose

ΛeS :=
1

TS
, ΛρS := −

gS
TS

and thus Λwi = −
wi

TS
. (2.43)

With this choice and ∇αTS = 0 equation (2.42) becomes

0 ≤ ζS =

�
ṁ

(
gS
TS
−

g
T

)
−

1
2TS

ṁ (v −w)2
�

+

�(
1
T
−

1
TS

) (
q · ν + ṁ

(
g + Ts

))�
.

(2.44)

Equation (2.39) contains a condition which we already derived in another
context, namely (1.66)2. We have with fS ≡ σ and (2.43)1

0 =
∂sS
∂TS

−ΛeS
∂eS
∂TS

= −
1

TS

(
∂eS
∂TS

− TS
∂sS
∂TS

)
= −

1
TS

(
sS +

∂
∂TS

(eS − TSsS)
)

⇔

sS = −
∂σ
∂TS

. (2.45)

Further we can now also discuss (2.41). Using fS ≡ σ we can write

0 =
∂sS
∂gαβ

−ΛeS
∂eS
∂gαβ

+
1
2

ΛeSSαβ +
1
2

gαβ
(
sS −ΛρSρS −ΛeSeS

)
= −

1
TS

∂
∂gαβ

(eS − TSsS) +
1

2TS
Sαβ +

1
2
ρSgS

TS
gαβ −

1
2TS

gαβ (eS − TSsS)

= −
1

TS
∂σ
∂gαβ

+
1

2TS
Sαβ +

1
2TS

gαβ
(
ρSgS − σ

)
.

From this we obtain for Sαβ

Sαβ =
(
σ − ρSgS

)
gαβ + 2

∂σ
∂gαβ

. (2.46)

10We again refer to [64] for more detailed remarks.
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Remark 2.2.1 (Choice of Kinetic Relation). Later in this work we need an
additional equation that determines the mass flux in order to solve the system at
hand, see for example Chapter 3. Such an equation is called kinetic relation and
it has to satisfy the entropy inequality of course. Therefore we distinguish the
following cases. Consider an inequality of the form

~AB� ≥ 0. (2.47)

and we are looking for an additional equation for the quantity A. First we assume
~A� = 0 and hence (2.47) becomes A ~B� ≥ 0. This inequality is satisfied if A is
given as a (monotone) function of the form

A = f (~B�)


> 0, ~B� > 0
= 0, ~B� = 0
< 0, ~B� < 0

.

A possible simple choice could be the linear ansatz A = τ ~B� with 0 < τ ∈ R.
Nevertheless several nonlinear choices are possible, e.g.

A = τ ~B�p , 0 < τ ∈ R, p = 2k + 1, k ∈N
A = τ sinh (~B�) , 0 < τ ∈ R.

For the second case we assume ~A� , 0. Now we need two kinetic relations. This
can be seen as follows

0 ≤ ~AB� = A2B2 − A1B1.

A possible choice in this case could be A2 = αB2 with 0 < α ∈ R and A1 = −βB1
with 0 < β ∈ R. This gives

0 ≤ ~AB� = αB2
2 + βB2

1.

These results can be applied to the mass flux by considering A = ṁ. Then the first
case corresponds to a continuous mass flux across a discontinuity. Whereas the
second case corresponds to situation where a surface density of the discontinuity is
present.

2.2.5 Summary
Before we proceed, we briefly want to summarize the obtained local equa-
tions for points in the regular phase and on the singular surface, respectively.
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Recall, that in order to derive this equations several assumptions had to be
made. We consider a single substance and neglect chemical reactions. The
fluids are non-viscous and the interface behaves more like a membrane
rather than a shell. Further we ignore physical effects induced by electro-
magnetism, gravitation or radiation. In general the balance laws are given
by (2.13) and (2.14)

∂
∂t
ψ + ∇x ·

(
ψv +φ

)
= ξ,

ψ̊S + ψS
(
∇αwα

τ − 2KMwν
)

+ ∇αφ
α
τ = wν

�
ψ

�
−

�
ψv +φ

�
· ν + ξS.

In order to obtain the conservation laws for mass, momentum, energy and
the balance law for the entropy we made the following choices for the
variables, see Table 2.1. Thus the local equations in the bulk phases are

Ψ ψ φ ξ ψS φατ ξS
mass ρ 0 0 ρS 0 0

momentum ρvi pe(i) 0 ρSwi −Sαβτi
β 0

total energy E q + pv 0 ES qατ − Sαβτβ ·w 0
entropy ρs q/T ζ sS qατ/TS ζS

Table 2.1: Summary of the different variable choices according to the considered quantity Ψ.

given by

∂
∂t
ρ + ∇x ·

(
ρv

)
= 0,

∂
∂t

(ρvi) + ∇x ·
(
ρviv + pe(i)

)
= 0, i ∈ {1, 2, 3},

∂
∂t
E + ∇x ·

(
v
(
E + p

)
+ q

)
= 0,

∂
∂t

(ρs) + ∇x ·

(
ρsv +

q
T

)
= ζ ≥ 0.
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The surface equations are

ρ̊S + ρS
(
∇αwα

τ − 2KMwν
)

= − ~ṁ� ,

ρSẘi − ∇αtiα
S

= − ~ṁ(vi −wi)� −
�

p
�
νi, i ∈ {1, 2, 3},

e̊S +
ρS
2

˚(w2) + eS
(
∇αwα

τ − 2KMwν
)

+ ∇α
(
qατ − tiα

S
wi

)
= −

�
ṁ

(
e +

v2
−w2

2

)�
−

�
q + pv

�
· ν

s̊S + sS
(
∇αwα

τ − 2KMwν
)

+ ∇α

(
qατ
TS

)
+ ~ṁs� +

� q
T

�
· ν = ζS ≥ 0.

The surface entropy is a function of the surface density, surface temperature
and the metric. We derived explicit conditions to assure compatibility with
thermodynamics, i.e.

sS = −
∂σ
∂TS

and Sαβ =
(
σ − ρSgS

)
gαβ + 2

∂σ
∂gαβ

.

Further the entropy inequality may be written as

0 ≤ ζS =

�
ṁ

(
gS
TS
−

g
T

)
−

1
2TS

ṁ (v −w)2
�

+

�(
1
T
−

1
TS

) (
q · ν + ṁ

(
g + Ts

))�
.

and thus the lower dimensional cases are immediately obvious. As an
exemplary application of the above results for singular surfaces we want
to derive the Young-Laplace Law. Therefore we assume a spherical surface
with radius R when there is no mass flux across the interface. Further we
assume ρS ≡ 0 and that the surface free energy density does not depend on
the metric. With these assumptions we obtain for the surface stress using
(2.46) and (8.14)

Sαβ = σ(TS)gαβ and ∇αtiα
S

= Sαβbαβνi = 2
σ
R
νi.

Then (2.23) reduces to the well known Young-Laplace Law�
p

�
= 2σKM = 2

σ
R
. (2.48)
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2.3 Results for Hyperbolic Conservation Laws

The results in the previous sections where mostly driven by physical ar-
guments. Thus we said nothing about the mathematical structure of the
obtained equations in Section 2.2. Throughout this work we will consider
the Euler equations which form a system of hyperbolic conservation laws.
Therefore we want to give a brief introduction into the mathematics of hy-
perbolic conservation laws. As mentioned before we recommend the books
of Dafermos [18], Evans [28], LeFloch [55], Smoller [75] and Warnecke [85]
for further reading. Concerning the Euler equations we also refer to the
works of Chen [15, 16]. The afore mentioned literature also contains many
useful references for the various aspects of problems related to (hyperbolic)
balance laws.
Due to the complexity of the topic we just briefly note the most impor-
tant statements on hyperbolic partial differential equations. The probably
most fundamental property of hyperbolic equations is that (any abstract)
information is propagated at finite speed. This has several consequences,
one of the most severe ones is that even for smooth initial data one has to
expect discontinuities in finite time. In fact this problem already occurs for
single nonlinear equations in one dimension. These difficulties are best un-
derstood by investigating one dimensional prototype examples such as the
linear advection equation or the Burgers equation. The phenomena that can be
studied with these equations are the transport of the solution along charac-
teristic curves, formation of shocks and the non-uniqueness of solutions. We
omit the details here since these examples are quasi textbook classics and
we refer to the literature mentioned above. The case of scalar conservation
laws is pretty much understood and one may find all important results in
the given literature 11. This is in contrast to the situation when systems
(even in one space dimension) are considered. There the theory is far from
being completely understood, again we exemplary refer to the comments
in [18] 12. It is the loss of smoothness from which the difficulties arise. First
and foremost it leads to the difficulty of defining an adequate notion of
weak solution which allows discontinuities. Along with this the problem
of non-uniqueness arises. Therefore mathematicians tried to exploit (math-
ematical) criteria from physical considerations which then pick the correct
solution. Without going into the details these are the vanishing viscosity ap-

11To quote Dafermos as in [18] (p.145):“The theory of the scalar balance law, in several spatial
dimensions, has reached a state of virtual completeness.”

12“At the present time the theory of multidimensional systems is terra incognita [...].”, [18] (p.195).
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proach, the method of entropy inequalities and in one space dimension the Lax
condition. It turns out that (apart from certain exceptions) it is very difficult
to establish these criteria for systems in general. Thus general existence and
uniqueness results for systems of hyperbolic partial differential equations
are still a field of active research. This of course also affects the theory of
numerical algorithms, which crucially needs analytical tools to single out
the admissible solution. However, in certain special cases this is possible.

We now turn to such a special situation, since our focus is on the Rie-
mann problem for the Euler equations. Hence in the following we consider
systems of hyperbolic conservation laws 13. A general system of conservation
laws is of the following form

∂
∂t

u1(t, x) + ∇x · F1(u1(t, x), . . . ,um(t, x)) = 0,

... (2.49)
∂
∂t

um(t, x) + ∇x · Fm(u1(t, x), . . . ,um(t, x)) = 0.

Here t ∈ [0, tmax) ⊆ R+ denotes the time variable and the space variable is
given by x ∈ Ω ⊆ Rn. The unknowns are denoted by ui with ui : R×Rn

→ R
and are called conserved quantities. The functions Fi : Rm

→ Rn are the fluxes.
Introducing u = (u1, . . . ,um) and F = (F1, . . . ,Fm) we can write (2.49) as

∂
∂t

u(t, x) + ∇x · F(u) = 0. (2.50)

Here we understand the divergence in the sense that it is applied to each
row of the m × n matrix F(u). Usually one refers to the open set U ⊆ Rm

with u ∈ U as the state space or state domain.
In the case of one space dimension we have u : R×R→ Rm and F : Rm

→ Rm

and thus write

∂
∂t

u(t, x) +
∂
∂x

F(u) = 0. (2.51)

13Be aware that there is a difference in the use of conservation law. For example the balance
of momentum (2.64) is a mathematical conservation law, whereas it fails to do so in the sense
that the right hand side of (2.1) vanishes.
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The first major concept that is introduced to study (2.51) is hyperbolicity. 14.
We will use the following notation. The Jacobian of F :U → Rm is given by

DF(u) =


∂F1
∂u1

. . . ∂F1
∂um

...
...

∂Fm
∂u1

. . . ∂Fm
∂um

 . (2.52)

and the eigenvalues are denoted by λ1(u), . . . , λm(u). The right eigenvectors
are then given by

DF(u) · ri(u) = λi(u)ri(u), i ∈ {1, . . . ,m}. (2.53)

The pair (λi(u), ri(u)) is called i-th characteristic field.

Definition 2.3.1 (Hyperbolicity). The System (2.51) is called hyperbolic (in
(t, x)) if there are m real eigenvalues λ1(u), . . . , λm(u), and m corresponding lin-
early independent eigenvectors r1(u), . . . , rm(u), of the Jacobian of the flux function
(2.52). If additionally the eigenvalues are all distinct, the system is called strictly
hyperbolic. The system (2.51) is called elliptic if none of the eigenvalues is real and
otherwise one says that it is of composite type. Systems that are hyperbolic in one
region and elliptic in another are said to be of mixed type.

If not stated otherwise we henceforth assume that the system (2.51) is
strictly hyperbolic and we therefore have m linearly independent eigenvec-
tors 15 16. It can be shown that hyperbolicity is invariant under coordinate
changes with respect to the state space, see [28]. This allows certain refor-
mulations of (2.51) without loosing hyperbolicity. Further it is possible to
prove that if the Jacobian is smooth and strictly hyperbolic that the eigen-
values and eigenvectors depend smoothly on u ∈ U, see [28].

We already mentioned that scalar conservation laws exhibit phenomena
that will also occur in the case of systems. Therefore one seeks to transfer
the concepts of scalar conservation laws to the case of systems as it is done

14Here we define hyperbolicity only for one spatial dimension. In fact even in the mul-
tidimensional case, hyperbolicity essentially remains one dimensional in the sense that the
Jacobian in every direction should be hyperbolic, see [15, 18].

15It is shown in [15] and the references therein that in three spatial dimensions there are no
strictly hyperbolic systems with m ≡ 2 mod 4.

16It is exemplary shown in [12] that if the system is not strictly hyperbolic, the solution may
not depend continuously on the initial data.
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in the following.
Scalar conservation laws, for the sake of simplicity in one space dimension,
are distinguished according to the mathematical nature of the flux function.
If the derivative of the flux function is a constant the equation is called
linear, see for example the linear advection equation with f (u) = au, a ∈ R. In
the case of a nonlinear (strict monotone) flux function the equation is called
nonlinear, see for example the Burgers equation with f (u) = u2/2. Now the
concept of linearity/nonlinearity is extended to the case of systems by in-
vestigating the geometrical relation of an eigenvector and the gradient of
the corresponding eigenvalue.

Definition 2.3.2 (Genuine Nonlinear/Linearly Degenerated). The i-th char-
acteristic field (λi(u), ri(u)) of the system (2.51) is called

(i) genuine nonlinear if ∇uλi(u) · ri(u) , 0 for all u ∈ U

(ii) linearly degenerated if ∇uλi(u) · ri(u) = 0 for all u ∈ U.

The operator ∇u denotes the gradient with respect to the chosen state variables.

For a definition in multiple dimensions and further implications, results
and literature see for example [15]17. It is an important observation for the
Euler equations that whether a characteristic field is genuine nonlinear or not
is solely defined by the thermodynamic properties of the considered fluid,
cf. [60].
A nice interpretation of the above defined properties can be obtained from
the following considerations, cf. [28]. Assume we search for solutions of
(2.51) of the type u(t, x) = v(w(t, x)) with v : R→ Rm and w : [0,∞)×R→ R.
The function v and w have to be determined. These solutions are called
simple waves. Inserting this ansatz in (2.51) gives

v̇(w)
∂
∂t

w + DF(v(w))v̇(w)
∂
∂x

w = 0. (2.54)

It can easily be seen that the system (2.54) holds true if for one i ∈ {1, . . . ,m}
and a scalar c(s) ∈ R the following equations hold

∂
∂t

w + λi(v(w))
∂
∂x

w = 0 and
d
ds

v(s) = c(s)ri(v(s)). (2.55)

17It is also proven in [15] that in the case of two spatial dimensions and systems of m = 2k
equations with k ≥ 1 being an odd natural number there is always one linearly degenerate
eigenvalue.
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From (2.55) we can draw two important conclusions. First we see that once
the function v(s) is obtained from the ODE (2.55)2

18, the equation (2.55)1
may be interpreted as scalar conservation law for w. Second we consider the
change of the eigenvalue along the curve s 7→ v(s) and obtain using (2.55)2

d
ds
λi(v(s)) = ∇uλi(v(s))

d
ds

v(s) = ∇uλi(v(s))ri(v(s)). (2.56)

Thus regarding Definition 2.3.2 a genuine nonlinear characteristic field states
that the eigenvalue is strictly monotone along the curve v(s). A linearly de-
generated characteristic field states that the eigenvalue is constant along
the curve v(s). This highlights the connection to the scalar equations. Con-
cerning equation (2.55)2 there is another important observation in the case
of smooth solutions. Given a smooth solution we may apply a nonlinear
transformation of the variables aiming to simplify (2.51) using another ap-
propriate choice of variables. Such a special set of variables is given by the
Riemann invariants, cf. [18, 28, 75].

Definition 2.3.3. An i-th Riemann invariant is a smooth function ωi : U → R
such that

∇uωi(u) · ri(u) = 0.

Note, that in general Riemann invariants do not have to exist. Now the
important observation is that an i-th Riemann invariant is constant across
a simple wave 19. To obtain the Riemann invariants one may use (2.55)2,
which will be exemplary shown in Section 2.4.
For the above considerations we assumed enough smoothness of the func-
tions in order to perform the calculations. Now we want to turn to the
situation in the presence of discontinuities. Thus we need the definition of
a weak solution. Therefore we consider (2.51) with an initial condition

∂
∂t

u(t, x) +
∂
∂x

F(u) = 0, (t, x) ∈ (0, tmax) ×R

u(0, x) = u0(x), x ∈ R.
(2.57)

Now the usual idea is to assume a smooth solution and multiply (2.51) with
a smooth test function with compact support. Then one integrate by parts
and thus obtains a formulation which needs less regularity than assumed

18The curve v(s) as given in (2.55)2 is also called integral curve, cf. [55].
19Indeed, in [75] Riemann invariants are used to define simple waves
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and hence can be used to define a weak solution, see for example [18, 28, 75]
and [85].

Definition 2.3.4 (Weak Solution). A function (measurable and bounded) u :
(0, tmax) ×R→ Rm is called weak solution of (2.57) if it solves

tmax∫
0

+∞∫
−∞

u ·
∂
∂t
ϕ + F(u) ·

∂
∂x
ϕdxdt +

+∞∫
−∞

u(0, x) ·ϕ(0, x) dx = 0 (2.58)

for every test functionϕ ∈
[
C∞0 ([0, tmax) ×R)

]m
.

Let us now consider the situation where we have a regionV ⊂ (0, tmax)×R
which is divided by a smooth curve S intoV1 andV2. Further we assume
that we have a smooth solution in V1 and V2, respectively. Thus in each
part the PDE (2.51) holds. Note that in contrast to the situation in Section
2.1 we neglect additional contributions of functions defined on the curve S.
Now we choose a test function ϕ with compact support in V which does
not necessarily vanish on S and use equation (2.58) to obtain

0 =

tmax∫
0

+∞∫
−∞

u ·
∂
∂t
ϕ + F(u) ·

∂
∂x
ϕdxdt

=

tmax∫
0

∫
V1

u ·
∂
∂t
ϕ + F(u) ·

∂
∂x
ϕdxdt +

tmax∫
0

∫
V2

u ·
∂
∂t
ϕ + F(u) ·

∂
∂x
ϕdxdt.

Sinceϕ has compact support inV we derive

tmax∫
0

∫
V1

u ·
∂
∂t
ϕ + F(u) ·

∂
∂x
ϕdxdt = −

tmax∫
0

∫
V1

(
∂
∂t

u +
∂
∂x

F(u)
)
·ϕdxdt

+

∫
S

(
u1ν

(1) + F(u1)ν(2)
)
·ϕdl

=

∫
S

(
u1ν

(1) + F(u1)ν(2)
)
·ϕdl.
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Here ν = (ν(1), ν(2)) is the unit normal of S analogous to the situation in
Figure 2.1, Section 2.1. A similar calculation for the right part together with
the starting point (2.58) gives

0 =

∫
S

[
(u2 − u1) ν(1) + (F(u2) − F(u1)) ν(2)

]
·ϕdl

Since this equation should be true for all smooth test functions we demand
along S

0 = (u2 − u1) ν(1) + (F(u2) − F(u1)) ν(2).

If we now choose a suited parametrization (t, γ(t)) ofSwe may compute the
unit normal ν = (−γ̇, 1)/

√
1 + γ̇2. With this we finally obtain the Rankine-

Hugoniot jump conditions with S = γ̇ being the speed of S

~F(u)� = S ~u� . (2.59)

Note that equation (2.59) is a special situation of the more general jump
conditions derived in Section 2.1. This can be seen by canceling all surface
related terms and neglect the source terms in equation (2.14). Moreover
(2.59) is a vector valued equation which has to hold in each component.
Further we have that a weak solution of (2.51) has to satisfy the jump
conditions (2.59) in the presence of discontinuities.
Now we want to give some details of Riemann problem which we will need
later on. For the various details we refer to the literature, e.g. [18, 28, 55, 75]
and [85]. The Riemann problem for a system of conservation laws is given
by (2.51) together with piecewise constant initial data, i.e.

∂
∂t

u +
∂
∂x

F(u) = 0 with u = u(t, x) ∈ U and (t, x) ∈ (0, tmax) ×R

u(0, x) =

uL, x < 0
uR, x > 0

. (2.60)

It is the simplest non-trivial type of problem which solution exhibits all
the classical nonlinear phenomena of hyperbolic conservation laws. All
quantities are given as before, U ⊆ Rm is the state space and the flux is
given by a smooth function F : U → Rm. Further we assume that the
Jacobian DF(u) has m distinct real eigenvalues with a corresponding set
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of linearly independent eigenvectors. Thus we have a strictly hyperbolic
system. Additionally all the characteristic fields are assumed to be either
genuine nonlinear or linearly degenerated.
One can immediately verify that the problem (2.60) is invariant under the
transformation (t, x) 7→ (αt, αx) with α > 0. Therefore we look for a self-
similar solution u(t, x) = u(x/t). In the following we will use ξ := x/t.
Considering (2.60) the solution has to satisfy the following conditions (the
prime denotes the derivative with respect to ξ)

−u′(ξ)ξ + F(u(ξ))′ = 0,
u(−∞) = uL, (2.61)
u(+∞) = uR.

Concerning the ansatz for the simple waves given before we can already
draw important conclusions. In our special situation we have u(t, x) = u(x/t)
with the function w(t, x) = ξ and thus (2.55)1 reduces to

∂
∂t

w + λi(u(w))
∂
∂x

w = 0 ⇔ λi(u(ξ)) = ξ. (2.62)

From equation (2.62) we immediately can see that the characteristic curves
x(t) are straight lines, i.e. curves where the solution is constant

0 =
dw
dt

(t, x(t)) =
∂
∂t

w +
dx
dt

∂
∂x

w with
dx
dt

= λi(u(ξ)) = ξ.

Now we turn towards the different types of waves that may occur in the
solution of the Riemann problem. We can distinguish three different types
of waves. Intuitively this can be seen by considering the (straight) charac-
teristics in the x − t plane, see the following Figures 2.3 and 2.5. The first
two wave types are associated to genuine nonlinear fields and may be ex-
emplary investigated by studying the Burgers equation.

Rarefaction Wave: First there is the case of diverging characteristic fields,
i.e. λi(uL) < λi(uR), see Figure 2.3. In this case we have a smooth solution
called rarefaction wave and the slope of the characteristics between the left
and the right state is given by (2.62), i.e. λi(u(ξ)) = ξ. The solution can be
obtained using (2.55)2 with the normalization c(s) = (∇uλi(u(s))ri(u(s)))−1,
i.e.

u(ξ)′ = c(ξ)ri(u(ξ)),
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x

t

Figure 2.3: Diverging characteristics in the case of a rarefaction wave.

cf. [85]. Sometimes one also refers to system (2.55)2 as the Riemann Invari-
ants, e.g. [78].

Shock Wave: Second we might face the situation where the characteristics
intersect and form a shock or at later times run into a shock. In this situation
the solution is discontinuous and we have to use the Rankine-Hugoniot
condition (2.59)

~F(u)� = Si ~u� .

Here Si denotes the velocity of the i-th shock. For the eigenvalues we have
in this situation λi(uL) > Si > λi(uR) which is exactly the Lax entropy crite-
rion, see Figure 2.4 (a). The Lax entropy criterion ensures uniqueness of the

x
(a)

t

x
(b)

t

Figure 2.4: Characteristics in the presence of discontinuities.

solution in one dimension. Among all possible solutions it singles out the
entropy solution in the case that all characteristic fields are either genuine
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nonlinear or linearly degenerated. Moreover it rules out the case the char-
acteristics may run out of discontinuities instead of running into them, see
Figure 2.4 (b).

Contact Discontinuity: The remaining wave type is associated to a linearly
degenerated characteristic field. In this case we have λi(uL) = λi(uR) = Si
due to equation (2.56). Geometrically this means that all characteristics
are parallel to each other, see Figure 2.5. Further the Rankine-Hugoniot

x

t

Figure 2.5: Parallel characteristics in the case of a contact discontinuity.

conditions (2.59) as well as the Riemann Invariants (2.55)2 are fulfilled. In
particular the characteristic speeds of the neighbouring characteristics are
constant across the wave and coincide with the speed of the contact wave.

Now the key observation is that a solution to the Riemann problem (2.60)
can be constructed by piecing together the different wave types such that
the conditions (2.61) as well as the conditions for each wave are satisfied.
For the mathematical justification we refer to the literature, e.g. [28, 55, 75].
In the following Section 2.4 we will give more details for the Euler equations
since these equations are the main objective of the present work.

2.4 Euler Equations

In Section 2.2 we derived a system of six partial differential equations ac-
companied by six equations for points on singular surfaces. The aim of this
section is to derive three submodels from these equations. These models are
obtained by considering different physical processes. A common property
of these three systems is that they form a system of hyperbolic conservation
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laws. All these systems are called Euler equations, which is sometimes a
bit misleading. With the Euler equation one originally referred to (2.24), see
[52]. The adiabatic Euler equations are usually referred to as the Euler equa-
tions or the full Euler system. Quite often the isothermal and isentropic
Euler equations are then often thought of as submodels of the Euler equa-
tions. We want to emphasize that we prefer the point of view, that all three
types of models are submodels of the equations obtained in Section 2.2. This
is mainly due to the fact, that it is for example physically arguable to derive
the isothermal (T = const.) from the adiabatic (q ≡ 0) Euler equations.

2.4.1 Adiabatic Euler Equations
The "classical" system of Euler equations is obtained by assuming a physical
system which is adiabatically isolated such that q ≡ 0. Thus we also refer to
this system as the adiabatic Euler equations. Note that this is not equivalent to
an adiabatic process. An adiabatic process is reversible and implies constant
entropy (see [51]), which of course is in general not the case (e.g. due to
shock waves). 20 Further we assume that the surface quantities vanish
identically, i.e. ρS ≡ 0 and eS ≡ 0. Additionally we assume that the metric is
constant in time, i.e. ∂tgαβ = 0. Note that in the single phase case the jump
conditions only apply to shock waves and hence we then also neglect the
surface stress. Otherwise there would be a remaining contribution in the
balances for the momentum and for the energy in singular points.
The system of Euler equations is given by

∂
∂t
ρ + ∇x ·

(
ρv

)
= 0, (2.63)

∂
∂t

(ρvi) + ∇x ·
(
ρviv + pe(i)

)
= 0, i ∈ {1, 2, 3}, (2.64)

∂
∂t
E + ∇x ·

(
v
(
E + p

))
= 0. (2.65)

The corresponding jump conditions across discontinuities are given by

~ṁ� = 0, (2.66)
ṁ ~vi� +

�
p

�
νi = 0, i ∈ {1, 2, 3}, (2.67)

ṁ
�

e +
1
2

v2 + pv · ν
�

= 0. (2.68)

20In general one should be careful when the word adiabatic is used, since it might have
different meanings depending on the context where it is used.
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Equation (2.68) can be reformulated using (2.67) and one obtains

ṁ
�

e +
p
ρ

+
1
2

(v −w)2
�

= 0. (2.69)

The entropy is balanced by the following equations

∂
∂t

(ρs) + ∇x ·
(
ρsv

)
= 0, (2.70)

ṁ ~s� = ζS ≥ 0. (2.71)

Note that the entropy is conserved away from discontinuities. That the bulk
entropy productions vanishes is due to our assumption of q ≡ 0 and that
we neglected other effect such as diffusion, viscosity or chemical reactions
from the very beginning, see [11] for further insight. Another possible way
to obtain (2.70) is to consider the internal energy to be a function of the
entropy and the density with

∂e
∂s

= T, and
∂e
∂ρ

=
p
ρ2 . (2.72)

If we now use (2.65) and exclude shock waves we obtain

0 =
∂
∂t
E + ∇x ·

(
v
(
E + p

))
=
∂
∂t

(
ρe + ρ

v2

2

)
+ ∇x ·

[(
ρe + ρ

v2

2
+ p

)
v
]

= ρT
(
∂
∂t

s + v · ∇xs
)

+
p
ρ

(
∂
∂t
ρ + v · ∇xρ

)
+
∂
∂t

(
ρ

v2

2

)
+ ∇x ·

[(
ρ

v2

2
+ p

)
v
]

= ρT
(
∂
∂t

s + v · ∇xs
)

+ sT
(
∂
∂t
ρ + ∇x ·

(
ρv

))
︸               ︷︷               ︸

(2.63)
= 0

−p∇x · v

+
∂
∂t

(
ρ

v2

2

)
+ ∇x ·

[(
ρ

v2

2
+ p

)
v
]

= T
(
∂
∂t

(ρs) + ∇x ·
(
ρsv

))
In the (special) situation of the adiabatic Euler equations we can use minus
the physical entropy −s as mathematical entropy for the system. Since s
is concave, see Section 1.2, the mathematical entropy is convex and minus
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the inequality (2.71) is the (mathematical) entropy inequality. Thus in the
present case we have that shocks which are satisfying (2.71) also satisfy the
Lax condition and vice versa, see also [85]. A detailed calculation showing
this equivalence in the isothermal case can be found in Section 3.1.
In the case that the singular surface is assumed to support tension we have
to consider tiα

S
. Further we assume the surface entropy to depend on the

temperature alone and hence obtain21

~ṁ� = 0,

ṁ ~vi� +
�

p
�
νi = ∇αtiα

S

(2.46)
= 2σ(TS)KM, i ∈ {1, 2, 3},

ṁ
�

e +
p
ρ

+
1
2

(v −w)2
�

= 0

ṁ ~s� = ζS ≥ 0.

Note that the jump condition for the energy was again reformulated using
the second equation. If the assumption of a time independent metric is
dropped for example, then the additional term tiα

S
∇αwi occurs in the energy

jump condition.

We now want to focus on the one dimensional case and exemplary ap-
ply some of the results of the previous Section 2.3 concerning the Riemann
problem (2.60). For a very detailed discussion of the one dimensional Rie-
mann problem for the adiabatic Euler equations, with a special emphasis on
the thermodynamic properties and how they influence the solution struc-
ture, we highly recommend the work by Menikoff and Plohr [60].
Using the conservative variables u = (u1,u2,u3) = (ρ, ρv,E) the flux function
for the Euler system reads

F(u) =

 ρv
ρv2 + p
v(E + p)

 =


u2

u2
2

u1
+ p

u2

u1
(u3 + p)

 . (2.73)

21In this case we have σ ≡ fS = −TSsS

81



CONCEPTS: BALANCE LAWS

Then the Jacobian is given by

A(u) =



0 1 0

−

(u2

u1

)2
+
∂p
∂u1

2
u2

u1
+
∂p
∂u2

∂p
∂u3

−
u2

u2
1

(u3 + p) +
u2

u1

∂p
∂u1

u3 + p
u1

+
u2

u1

∂p
∂u2

u2

u1

(
1 +

∂p
∂u3

)

. (2.74)

At this point we want to outline that the so called homogeneity property
needed for the Flux Vector Splitting (cf. [78]) crucially depends on the chosen
EOS. The homogeneity property is given by A(u)u = F(u). To investigate
this we calculate A(u)u

A(u)u =



u2

u2
2

u1
+ u1

∂p
∂u1

+ u2
∂p
∂u2

+ u3
∂p
∂u3

u2

u1

(
u3 + u1

∂p
∂u1

+ u2
∂p
∂u2

+ u3
∂p
∂u3

)

.

This expression is only equal to F(u) if

p !
= u1

∂p
∂u1

+ u2
∂p
∂u2

+ u3
∂p
∂u3

= ρ
∂p
∂ρ

+ e
∂p
∂e
.

This means that p has to be a homogeneous function of degree one.
For the following calculations we assume that the pressure is given by an
EOS of the form p = p(ρ, e) 22. Now we have using (2.27)

e(u) =
u3

u1
−

1
2

(u2

u1

)2
with de = −

u3

u2
1

−
u2

2

u3
1

 du1 −
u2

u2
1

du2 +
1
u1

du3.

(2.75)

Hence we obtain for the pressure p(u)

dp =

(
∂p
∂ρ

+
∂p
∂e

∂e
∂u1

)
du1 +

∂p
∂e

∂e
∂u2

du2 +
∂p
∂e

∂e
∂u3

du3. (2.76)

22More precisely we should distinguish between the value of the pressure p and functions
p̃(ρ, e) and p̂(u) used to calculate it, i.e. p = p̃(ρ, e) = p̂(u). As mentioned earlier we do not make
this distinction.
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From (2.76) we obtain the useful relation

0 =
∂p
∂u2

+
∂p
∂u3

u2

u1
.

The eigenvalues of (2.74) are given by

λ1/3(u) =
u2

u1
±

√
∂p
∂u1

+

(
p +

u3

u1
−

(u2

u1

)2
)
∂p
∂u3

, λ2(u) =
u2

u1
(2.77)

To rewrite the eigenvalues, especially the radicand, we use (2.75) and (2.76)
to obtain

∂p
∂u1

+

(
p +

u3

u1
−

(u2

u1

)2
)
∂p
∂u3

=
∂p
∂ρ

+
p
ρ2

∂p
∂e
.

Using Lemma 1.3.7 (ii) one verifies that this is the square of the sound speed
a. Hence we can rewrite the eigenvalues as

λ1 = v −
√

a2, λ2 = v and λ3 = v +
√

a2.

These eigenvalues are real and distinct for suited EOS, cf. Section 1.3. The
corresponding eigenvectors are

r1(u) =


1

u2

u1
− a

p + u3 − u2a
u1

 , r2(u) =


1
u2

u1

−
∂u1 p
∂u3 p

+
(u2

u1

)2

 and

r3(u) =


1

u2

u1
+ a

p + u3 + u2a
u1

 . (2.78)

To find the Riemann invariants and further test whether the fields are gen-
uine nonlinear or linearly degenerated we choose other (more convenient)
variables. However, one could also use the conservative variables but the
calculations would be more tedious. There are two choices which seem to
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be useful. The first choice we want to discuss is the case of the primitive
variables (ρ,v, p). The choice of the density and the velocity is obviously
due to the equations for mass and momentum. The pressure is convenient
since it often occurs as independent thermodynamic variable. The Euler
system can be reformulated by simply differentiating the equations, i.e.

∂tρ + v∂xρ + ρ∂xv = 0,

∂tv + v∂xv +
1
ρ
∂xp = 0, (2.79)

∂tp +
1
∂pe

(
p
ρ
− ρ∂ρe

)
∂xv + v∂xp = 0.

Here we assumed that the internal energy is given by an EOS of the form
e = e(ρ, p). The Jacobian is then given by

A =


v ρ 0

0 v
1
ρ

0
1
∂pe

(
p
ρ
− ρ∂ρe

)
v

 . (2.80)

We determine the following three distinct eigenvalues

λ1 = v −

√
1
∂pe

(
p
ρ2 − ∂ρe

)
, λ2 = v and λ3 = v +

√
1
∂pe

(
p
ρ2 − ∂ρe

)
.

(2.81)

Again we verify that the radicand is the square of the sound speed by using
Lemma 1.3.7 (iii). The corresponding eigenvectors are

r1 =


1
−

a
ρ

a2

 , r2 =

1
0
0

 and r3 =


1
a
ρ
a2

 . (2.82)

Now we can immediately verify that the second characteristic field is lin-
early degenerated, i.e.

∇uλ2 · r2 =

0
1
0

 ·
1
0
0

 = 0.
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Thus the second wave is a contact discontinuity. Considering equation
(2.55)2 together with r2 we obtain that the Riemann invariants across the
contact discontinuity are given by the pressure and the velocity. More
precisely, the pressure and the velocity are continuous across the contact
discontinuity, in particular the discontinuity also moves at the velocity S = v.
This implies for the mass flux ṁ = ρ(v−S) = 0 and thus the jump conditions

~ṁ� = 0,
ṁ ~v�︸︷︷︸

=0

+
�

p
�︸︷︷︸

=0

= 0,

ṁ
�

e +
p
ρ

+
1
2

(v − S)2
�

= 0.

hold as expected.

For further insight it is adequate to consider the entropy instead of the
pressure, i.e. the primitive variables (ρ,v, s). This choice is quite favorable
especially from a thermodynamic point of view, since we have the basic
thermodynamic variables density (volume) and entropy as independent
quantities. For smooth solutions the entropy is balanced by equation (2.70)
and hence the entropy is conserved for the rarefaction wave. In particular
the entropy is a Riemann invariant for the rarefaction wave as we shall see
in a moment. Again the Euler system can be easily reformulated by simply
differentiating the equations, i.e.

∂tρ + v∂xρ + ρ∂xv = 0,

∂tv + v∂xv +
1
ρ
∂xp = 0, (2.83)

∂ts + v∂xs = 0.

Here we assumed that the internal energy is given in its fundamental form
e = e(ρ, s). The Jacobian is then given by

A =


v ρ 0
a2

ρ
v

∂sp
ρ

0 0 v

 . (2.84)

We determine the following three distinct eigenvalues

λ1 = v − a, λ2 = v and λ3 = v + a. (2.85)
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Due to the special choice of the variables we immediately obtain the sound
speed a in our calculations. The corresponding eigenvectors are

r1 =


1
−

a
ρ

0

 , r2 =


1
0
a2

∂sp

 and r3 =


1
a
ρ
0

 . (2.86)

Again we can verify that the second characteristic field is linearly degener-
ated. That the pressure is constant in this case can now be obtained from
the jump conditions, i.e. (2.67) together with ~v� = 0. Now we verify that
the first and third characteristic fields are genuine nonlinear. We yield

∇uλ1/3 · r1/3 =


±
∂a
∂ρ
1

±
∂a
∂s

 ·


1
±

a
ρ

0

 = ±

(
∂a
∂ρ

+
a
ρ

)
= ±

1
ρ

∂(ρa)
∂ρ

= ±
a
ρ
G. (2.87)

For the last equation we used the chain rule and the results of Section 1.3
to obtain the fundamental derivative G. It is a fundamental observation
in [60] that whether the considered fields are genuine nonlinear or not is
determined by a dimensionless quantity which is directly linked to the con-
sidered material. Here we will assume G > 0 and thus the first and the
third characteristic field are genuine nonlinear. A further observation was
that the complete dynamics of the Riemann problem can be described using
the dimensionless quantities defined in Definition 1.3.3. For example γ ≥ 0
is needed for thermodynamic stability and for γ > 0 the Euler system is
strictly hyperbolic. A complete discussion of all the different cases and their
implications is beyond our scope and we again refer to [60]. Just note the
difference between G < 0 and G > 0. In the latter (our) case the dynamics
are as expected, i.e. the specific volume increases as the pressure decreases.
Thus a rarefaction wave really rarefies a fluid. However, in the case G < 0
the fluid is compressed by a "rarefaction wave". For this case we also exem-
plary refer to [67].

Now that we know that the first and third waves are genuine nonlinear
we can discuss them in detail. In the case of a shock wave with speed S
the Rankine-Hugoniot conditions (2.59) hold. For the rarefaction wave we
immediately see that the entropy is a Riemann invariant. Further we obtain
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using (2.55)2

dρ
dξ

=

(
±

a
ρ
G

)−1

and
dv
dξ

=

(
±

a
ρ
G

)−1 (
±

a
ρ

)
.

This gives together an equation for the second Riemann invariant R±, i.e.

dv
dρ

= ±
a
ρ
⇔ R± = v ±

∫
ρ

a
σ

dσ. (2.88)

Note that the second independent variable is given by the entropy and thus
the integration is performed along an isentrope.

The Riemann problem may now be solved by connecting the initial states
uL and uR using the obtained relations for the waves. The solution structure
is depicted in Figure 2.6. The key idea is to construct curves in the velocity

x

t

uL

λ1 = v − a

u∗L

λ2 = v

u∗R

λ3 = v + a

uR

Figure 2.6: The solution structure of the Riemann problem.

- pressure plane that reach every state that can be connected to the initial
state uL or uR by a shock or rarefaction wave. Since the pressure and the
velocity are constant across a contact discontinuity a solution is given by the
intersection of such curves, see Figure 2.7. For a rarefaction wave we use
the Riemann invariant given in (2.88) but now such that we use the pressure
instead of the density for the integration. We obtain for a left and a right
rarefaction wave

v∗L = vL −

∫ p∗L

pL

1
aρ

dp and v∗R = vR +

∫ p∗R

pR

1
aρ

dp. (2.89)
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uL

uR

u∗

v

p

Figure 2.7: Intersecting wave curves for a Riemann problem.

For a shock wave we manipulate the Rankine-Hugoniot conditions (2.59) to
obtain for a left and a right shock

v∗L = vL −

√�
p

� �
ρ

�
ρLρ∗L

and v∗R = vR +

√�
p

� �
ρ

�
ρRρ∗R

. (2.90)

Additionally we use the jump condition for the energy and an EOS of the
form e(p, ρ)

0 =
�

e(p, ρ)
�

+
1
2

(pR + pL)
�

1
ρ

�
. (2.91)

to eliminate the internal energy and obtain the density as a function of the
pressure alone.
Finally, due to the conditions for a contact wave p∗R − p∗L =

�
p

�
= 0 and

v∗R − v∗L = ~v� = 0 we can collapse them into a single equation for the
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unknown pressure p∗, i.e.

f (p∗,uL,uR) = fR(p∗,uR) + fL(p∗,uL) + vR − vL = 0, (2.92)

fK(p,uK) =



√�
p

� �
ρ

�
ρ(p)ρK

, p > pK (Shock)∫ p

pK

1
a(ζ)ρ(ζ)

dζ, p ≤ pK (Rarefaction)

, K ∈ {L,R}.

Throughout these calculations we assumed an EOS that links the thermo-
dynamic variables in a suited way, see Section 1.3. Thus we reduced the
problem of solving the Riemann problem to finding a root of a nonlinear
one dimensional equation. We want to close this brief discussion with the
remark that this root does not necessarily has to exist, see the afore men-
tioned literature. A similar discussion for the isothermal case is given in
Section 3.1 and for the isentropic case we omit such a presentation.

2.4.2 Isothermal Euler Equations
Often the isothermal Euler equations are discussed as if they are a submodel
of the Euler equations obtained above. This might be justified from a nu-
merical point of view, but it is surely not from a physical point of view. There
are several reasons for this remark. First we assumed q ≡ 0 to obtain the
Euler equations, but an isothermal process needs heat exchange to keep the
temperature constant. That this can be seen mathematically by analyzing
the energy equations (2.29) and (2.65) is the second point. Further we only
assume ρS ≡ 0. Thus the corresponding conditions for singular surfaces are
obtained fairly easy.
The isothermal Euler equations are given by

∂
∂t
ρ + ∇x ·

(
ρv

)
= 0, (2.93)

∂
∂t

(ρvi) + ∇x ·
(
ρviv + pe(i)

)
= 0, i ∈ {1, 2, 3}, (2.94)

The total energy balance (2.29) determines the heat flux, i.e.

∂
∂t
E + ∇x ·

(
v
(
E + p

)
+ q

)
= 0

∇x · q = −

(
∂
∂t

(
ρe + ρ

v2

2

)
+ ∇x ·

[(
ρe + ρ

v2

2
+ p

)
v
])
. (2.95)
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If we combine the entropy balance (2.35) with (2.95) we yield for T = const.

0 ≤ ζ =
∂
∂t

(ρs) + ∇x ·

(
ρsv +

q
T

)
=
∂
∂t

(ρs) + ∇x ·
(
ρsv

)
−

1
T

(
∂
∂t

(
ρe + ρ

v2

2

)
+ ∇x ·

[(
ρe + ρ

v2

2
+ p

)
v
])

= −
1
T

(
∂
∂t

(
ρ(e − Ts) + ρ

v2

2

)
+ ∇x ·

[(
ρ

(
e − Ts +

p
ρ

)
+ ρ

v2

2

)
v
])
.

This is equivalent to

0 ≥ −Tζ =
∂
∂t

(
ρ(e − Ts) + ρ

v2

2

)
+ ∇x ·

[(
ρ

(
e − Ts +

p
ρ

)
+ ρ

v2

2

)
v
]
. (2.96)

Note that e− Ts is the specific free energy f and f + p/ρ the Gibbs energy of
the bulk phase. This indeed is the stability condition for a thermodynamic
system with uniform and constant temperature. According to [64] (§ 1.4.2,
pp. 23) it states that: "The sum of the free energy and kinetic energy tends to
a minimum under the constraints of constant mass and constant and uniform
temperature. 23

The corresponding jump conditions across discontinuities are given by (2.66)
and

ṁ ~vi� +
�

p
�
νi = Sαβbαβ, i ∈ {1, 2, 3}, (2.97)

Where Sαβ is given by (2.46) with ρS ≡ 0. The entropy inequality for the
singular surface is obtained from (2.44) and thus given by

−ṁ
�

g +
1
2

(v −w)2︸      ︷︷      ︸
=ekin

�
= TζS ≥ 0. (2.98)

Note that this agrees with the flux term in (2.96). That this (mathematical)
entropy inequality is equivalent to the Lax criterion is shown in Section 3.1.

23This is analogue to the situation in equilibrium. Neglect for moment the kinetic energy and
further consider the volume to be constant. Then one obtains 0 ≥ ∂t(ρ f ) + ∇x · (ρ f v) = dF/dt.
Hence in equilibrium the free energy of a system is minimized. This result can be found in the
literature, cf. [52, 70].
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2.4.3 Isentropic Euler Equations
For the isentropic Euler equations we have no contributions on the right
hand side of equation (2.1) and (2.5), respectively. Thus the entropy balances
reduce to

∂
∂t

(ρs) + ∇x ·
(
ρsv

)
= 0, (2.99)

∂
∂t

sS + sS
(
∇αwα

τ − 2KMwν
)

+ ~ṁs� = 0. (2.100)

From Section 1.1 we know that the internal energy and the entropy are
related by the complete differential

de =
1
T

ds +
p
ρ2 dρ

and thus we have for an isentropic process

de =
p
ρ2 dρ.

With this we obtain for the total energy balance as before (with q ≡ 0)

0 =
∂
∂t
E + ∇x ·

((
E + p

)
v
)

=
∂
∂t

(
ρe + ρ

v2

2

)
+ ∇x ·

[(
ρe + ρ

v2

2
+ p

)
v
]

=
∂
∂t

(ρe) + ∇x ·
(
ρev

)
+
∂
∂t

(
ρ

v2

2

)
+ ∇x ·

[(
ρ

v2

2
+ p

)
v
]

= ρ

(
∂e
∂ρ

)
s

(
∂
∂t
ρ + v · ∇xρ

)
+
∂
∂t

(
ρ

v2

2

)
+ ∇x ·

[(
ρ

v2

2
+ p

)
v
]

= −ρ2

(
∂e
∂ρ

)
s
∇x · v +

∂
∂t

(
ρ

v2

2

)
+ ∇x ·

(1
2
ρv2v + pv

)
=
∂
∂t

(
ρ

v2

2

)
+ ∇x ·

(1
2
ρv2v + pv

)
− p∇x · v.

Which is the balance for the kinetic energy (2.25) and thus it is redundant.
Therefore the isentropic Euler equations are given by (2.63) and (2.64), i.e.

∂
∂t
ρ + ∇x ·

(
ρv

)
= 0,

∂
∂t

(ρvi) + ∇x ·
(
ρviv + pe(i)

)
= 0, i ∈ {1, 2, 3}.
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The analogy to the adiabatic Euler equations is no incident. In fact away
from shocks the entropy is conserved for the adiabatic Euler equations as
we have seen before. If we thus further make the same assumptions for the
jump conditions as for the adiabatic Euler equations we obtain the following

~ṁ� = 0,
ṁ ~vi� +

�
p

�
νi = 0, i ∈ {1, 2, 3},

ṁ ~s� = 0.

The difference between the isothermal and the isentropic case becomes
apparent in the EOS, the entropy inequalities and the total energy balance.
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Introduction

In the second part of this work we now want to discuss isothermal two-phase
flows, in particular isothermal liquid-vapor flows. Such compressible liquid-
vapor flows have a wide range of applications. Two-phase flow models are
used to describe such processes, e.g. the formation of clouds, cavitation near
moving objects in liquids such as ship propellers or certain phenomena in
biology. Main difficulties in the modeling result from the phase interactions,
especially from mass and energy transfer due to condensation or evapora-
tion processes.

Several two-phase flow models are available in the literature. They are
mainly distinguished in sharp and diffusive interface models. For a de-
tailed discussion of these models we refer to Zein [87] and concerning sharp
interface models we exemplary refer to Bedeaux et al. [8]. In our work we
study compressible two-phase flows with phase transitions across a sharp
interface. Phase transitions are modeled using a kinetic relation. This con-
cept was introduced by Abeyaratne and Knowles [1] for solid-solid phase
transitions. This kinetic relation controls the mass transfer across the inter-
face between the two adjacent phases. For a more general context of kinetic
relations see LeFloch [55]. As mentioned before an interesting survey on the
Riemann problem for a large class of thermodynamic consistent constitutive
models in the setting of Euler equations models can be found in Menikoff
and Plohr [60]. In this work the considerations are restricted to a simple
kinetic relation that results from the assumption of local equilibrium at the
interface.

In a recent work by Hantke et al. [37] Riemann problems relying on the
isothermal Euler equations with a non-monotone pressure-density function
are considered. This function is composed of three parts: the equations of
state for the two single phases and an arbitrary relation for the intermediate
state. The two phases are distinguished using the Maxwell construction,
also known as the Equal-Area-Rule. The mass transfer is modeled via a ki-
netic relation, derived in [23], based on classical Hertz-Knudsen theory, see
[10]. The authors discussed Riemann problems for various different cases
of initial data and showed existence and uniqueness. Furthermore Hantke
et al. also covered the cases of cavitation and nucleation. The constructed
Riemann solutions are selfsimilar. They consist of constant states, separated
by classical rarefaction or shock waves and phase boundaries. Neverthe-
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less, the basic assumptions are very restrictive. Existence and uniqueness
results are proven for liquid water and its vapor, modeled by linear equa-
tions of state. Also Müller and Voss [67], [81] considered the isothermal
Euler system. In contrast to the above mentioned work they modeled the
fluid using the van der Waals equation of state. Instead of a kinetic relation
the Liu entropy condition is used to achieve uniqueness. As a consequence
Müller and Voss need non-classical composite waves to construct solutions.
A further reference for vapor - liquid phase transitions in the context of con-
servation laws is the detailed review by Fan and Slemrod [30]. They also
treat the isothermal case using the method of vanishing viscosity applied to
the Lagrange formulation of the conservation laws. Additional literature in
this context is given by Merkle [61], Merkle and Rohde [62].

Considering the work of Hantke et al. [37] several questions follow. In
this part we want to consider the following two questions.
First, in Chapter 3 we generalize the results obtained in [37] to arbitrary
equations of state. Therefore we focus on physically reasonable EOS and
refer to the results obtained in the previous part, especially Chapter 1. Chap-
ter 3 is a slightly extended version of the following work24

[41] M. Hantke and F. Thein. A general existence result for isothermal
two-phase flows with phase transition. ArXiv e-prints, Mar. 2017

The second question that arises is the numerical treatment. Due to the
novel approach there are only few methods available to cover all the dy-
namics discussed in the analytical treatment. Hence in Chapter 4 we present
a numerical approach for solving the Riemann problem presented in Chap-
ter 3. The presented numerical method is capable to solve the two phase
problems including nucleation and cavitation. Parts of Chapter 4 have been
published in

[38] M. Hantke and F. Thein. Numerical solutions to the Riemann prob-
lem for compressible isothermal Euler equations for two phase flows with
and without phase transition. In Hyperbolic problems: theory, numerics, appli-
cations, volume 8 of AIMS Ser. Appl. Math., pages 651–658. AIMS, 2014

We want to note that in the present work we explain the method in more

24Currently this work is submitted.
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detail and also apply it to the results obtained in Chapter 3. In particular
we are not restricted to the case of the two specific EOS chosen in [37].
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3
Isothermal Case:

Analytical Solution of the
Riemann Problem

Introduction

The focus of the present chapter is on the distinguished generalization of
the results of Hantke et al. [37] resp. Menikoff and Plohr [60].
We consider two-phase flows for any regular fluid. Both phases can be
modeled by any thermodynamic reasonable equation of state. Further we
construct exact Riemann solutions and prove existence and uniqueness re-
sults that advance achievements in the present literature.
The chapter is organized as follows. In Section 3.1 we summarize results for
the balance equations in the bulk phases and the corresponding jump condi-
tions across discontinuities. We will proceed along the ideas of the Sections
2.3 and 2.4. Further we will also summarize the thermodynamic framework
needed throughout this chapter and discuss the Riemann problem in the
isothermal case including the entropy inequality. Therefore we refer to the
Sections 1.3 and 1.4. In Section 3.2 we prove existence and uniqueness of
a solution at the interface under certain appropriate assumptions. The fol-
lowing Section 3.3 contains a monotonicity argument needed to solve the
two-phase Riemann problem, which is done subsequently. In Section 3.4 we
present solutions to initial one-phase Riemann data leading to nucleation
or cavitation, i.e. the creation of a new phase. We conclude this work with
Section 3.5 where we give a detailed discussion of the assumptions made to
state the previous results followed by some examples and the conclusion.
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3.1 Isothermal Euler Equations

In this section we study inviscid, compressible and isothermal two phase
flows.The two phases are either the liquid or the vapor phase of one sub-
stance. The phases are distinguished by the mass density ρ and further
described by the velocity u. Sometimes it is convenient to use the specific
volume v = 1/ρ instead of the mass density. We will make the reader aware
of such situations. The physical quantities depend on time t ∈ R≥0 and
space x ∈ R. In regular points of the bulk phases the fluid is described using
the (one dimensional) isothermal Euler equations introduced in 2.4.2, i.e.

∂tρ + ∂x(ρu) = 0, (3.1)

∂t(ρu) + ∂x(ρu2 + p) = 0. (3.2)

Accordingly we have the following jump conditions across discontinuities�
ρ(u −W)

�
= 0, (3.3)

ρ(u −W) ~u� +
�

p
�

= 0. (3.4)

Furthermore every discontinuity satisfies the following entropy inequality

ρ(u −W)
�

g + ekin
�
≤ 0. (3.5)

The quantity W is the speed of the discontinuity and Z = −ρ(u −W) the
mass flux where we will distinguish between a classical shock wave and the
phase boundary (non-classical shock)

Z =

Q, shock wave
z, phase boundary

and W =

S, shock wave
w, phase boundary

.

3.1.1 Definition and Requirements for the EOS
Concerning the thermodynamic requirements we refer to the first part of
this work, in particular Chapter 1. Thus we will only give a brief summary
of the results that are needed in the given context.
Usually one only works with the pressure law when dealing with the Euler
equations. Nevertheless it was shown in 1.3 that the pressure law does not
contain all the information about a fluid or more general a thermodynamic
system. From a thermodynamic point of view a system in (local) equilib-
rium can be described relating the extensive quantities energy E, volume V
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and entropy S, i.e. E(V,S). In the following we will use the corresponding
(intensive) densities and thus we use small letters (e.g.: e, v, s). Given this
relation every other quantity can be derived using the first and second law
of thermodynamics 1.1.2, 1.1.3 and the Maxwell relations (1.19) - (1.22). A
discussion using the ideal gas EOS and the Tait EOS can also be found in
[23]. From this point on we assume that we have an EOS for each phase with
consistent thermodynamic properties. In view of Section 1.4 and (3.5) the
thermodynamic potential we will consider here is the Gibbs energy (1.13).
Its differential is given by (1.17), i.e.

dg = −sdT + vdp.

Further the isothermal sound speed is given by (1.36)

a =

√
−v2

(
∂p
∂v

)
T
.

Combining the previous two equations we obtain(
∂g
∂p

)
T

= v > 0,
(
∂2g
∂p2

)
T

=

(
∂v
∂p

)
T

= −
(v

a

)2
< 0. (3.6)

As noted earlier thermodynamic quantities may be expressed using differ-
ent choices of independent variables. Thus the brackets with the subscript
simply denote which quantity is held constant when calculating the deriva-
tive. In the isothermal case the Gibbs potential just depends on the pressure
and hence we omit writing the brackets with subscript T. Here the volume
v and the speed of sound a are strictly positive functions of the pressure
p. Furthermore the inequality for the second derivative is due to the re-
quirement of thermodynamic stability for an isothermal system. In short
this can be seen by considering the requirements for the full case. There,
thermodynamic stability requires the energy to be a convex function, both
in the entropy and the volume, see also 1.2. This implies that the Hessian
of the energy is non negative. If we now assume the temperature to be
constant, what remains is

0 ≤
d2e
dv2 = −

dp
dv
. (3.7)

In the following we use the subscripts {V,L} when it is necessary to distin-
guish the vapor and the liquid phase. Since we are concerned with two
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phases we write gL for the Gibbs energy of the liquid phase and gV for the
vapor phase, respectively. Further we require

∂gi

∂p j
= 0, i , j, i, j ∈ {V,L}.

Since we only consider one substance the condition for two phases to be in
equilibrium is according to (1.55)

gL(pL) = gV(pV). (3.8)

Due to the monotonicity of gK, K ∈ {V,L}we have

gL(pL) = gV(pV) ⇔ pL = pV

and we write in this case

pL = pV =: p0 and gL(p0) = gV(p0).

A crucial point when dealing with different phases is how to discriminate
them and how to connect them thermodynamically consistent. Equations
of state describing two phases (e.g. van der Waals EOS) have a so called
spinodal region which is avoided by the Maxwell construction (or equal
area rule) (1.60), see Section 1.4. We want to discriminate the phases using
the specific volumes. Therefore we need an upper bound for the liquid
volume vm and a lower bound for the vapor volume ṽ. This should still
be consistent with the Maxwell construction. Therefore we may proceed as
follows. We use the EOS for each phase and prescribe the minimum liquid
pressure pmin (e.g. pmin = 0) and from this we obtain vm. Further we know
the saturation pressure p0 for a given temperature T0 from a calculation or
from tables which are available for many substances, such as for water [84].
Now we connect our two EOS monotonically and then obtain the maximum
vapor pressure p̃ according to Definition 1.4.1.
Finally, analogous to [60] we introduce dimensionless quantities which we
will use later on. These quantities are given as in Definition 1.3.3. In
particular we need the (isothermal) dimensionless speed of sound (1.29)

γ := −
v
p

dp
dv
.
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and the (isothermal) fundamental derivative (1.30)

G := −
1
2

v

d2p
dv2

dp
dv

.

We want to recall Remark 1.3.4 to emphasize the difference between the
isothermal γ and the adiabatic γS, i.e.

γ

γS
=

cV

cp

and hence γ ≤ γS for thermodynamic stable systems. Further we have for
γ, using (1.17) and (1.36)

γ =
a2

pv
. (3.9)

For the fundamental derivative one may also write

G =
1
2

v2

pγ
d2p
dv2 = −

v
a

da
dv

+ 1 (3.10)

or when expressed in terms of the pressure

G =
a
v

da
dp

+ 1. (3.11)

The isotherms in the p − v plane are convex if G > 0. This will be assumed
from now on for both phases 1.

3.1.2 Riemann Problem

In the following we briefly discuss the solution of the Riemann problem for
the isothermal Euler equations (3.1) and (3.2) for a single phase. In order to
do so we will discuss the elementary wave types that can occur, which are

1For examples of materials that have a convex or a nonconvex EOS we refer to the listing in
Ben-Dor et al. [9].
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shock or rarefaction waves. The Riemann problem is given by equations
(3.1), (3.2), the EOS and the Riemann initial data

ρ(x, 0) =

 ρ−, x < 0
ρ+, x > 0

and u(x, 0) =

 u−, x < 0
u+, x > 0

. (3.12)

We rewrite the system (3.1) and (3.2) in quasilinear form in terms of the
primitive variables, i.e. the density ρ and the velocity u(

ρ
u

)
t
+

(
u ρ
a2

ρ u

) (
ρ
u

)
x

= 0. (3.13)

The Jacobian matrix

A =

(
u ρ
a2

ρ u

)
(3.14)

has the following eigenvalues and corresponding eigenvectors

λ1 = u − a, r1 =

(
ρ
−a

)
, λ2 = u + a, r2 =

(
ρ
a

)
. (3.15)

Due to the requirement of thermodynamic stability (3.7) this system is hy-
perbolic. We have strict hyperbolicity for

γ > 0. (3.16)

Furthermore one can immediately verify that the waves corresponding to
the eigenvalues and eigenvectors are genuine nonlinear if and only if the
fundamental derivative

G =
ρ

a
da
dρ

+ 1.

does not vanish, i.e.

∇λ1/2 · r1/2 = ∓
a
ρ
G , 0. (3.17)

Here this is in fact the case, since we assumed G > 0. For systems with
genuine nonlinear waves the Lax condition is enough to pick the right
solution, cf. [55] and also [60] for the full system. The Riemann invariants
for this system are

R1 = u +

∫
a
ρ

dρ and R2 = u −
∫

a
ρ

dρ. (3.18)
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Entropy Inequality across a Shock Wave

In what follows we prove, that the Lax condition is equivalent to the entropy
condition for an isothermal system. We consider two states(

ρ1
u1

)
and

(
ρ2
u2

)
separated by a shock wave moving with speed S. Further we will also use
the specific volume v = 1/ρ. Using the continuity of the mass flux and
Q = −ρ(u − S)

u2 − S = −
Q
ρ2

= −v2Q, u1 − S = −
Q
ρ1

= −v1Q⇒ ~u� = −Q ~v� . (3.19)

From the second jump condition (3.4) we obtain

Q =

�
p

�
~u�

Combining this with (3.19) gives

Q2 = −

�
p

�
~v�

. (3.20)

Further we can also derive

~u�2 = −
�

p
�
~v� . (3.21)

The entropy inequality is given by (3.5)

Q
�

g + ekin
�

= −ρ(u − S)
�

g + ekin
�
≥ 0.

Manipulating the bracket by using (3.19) results in�
g + ekin

�
=

�
g −

1
2

p(v2 + v1)
�
.

To discuss this expression we write it as function of p and calculate the first
and second derivative

f (p) = g(p) − g(p1) −
1
2

(p − p1)(v(p) + v1),

f ′(p) =
1
2

v(p) − v1 + (p − p1)
(

v(p)
a(p)

)2
 ,

f ′′(p) = −(p − p1)
v(p)3

a(p)4G.
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We immediately see that

f (p1) = 0, f ′(p1) = 0 and f ′′(p1) = 0

and hence, also using the derivatives, we can conclude

�
g + ekin

� 
< 0, p2 > p1

= 0, p2 = p1

> 0, p2 < p1

. (3.22)

In order to derive the Lax condition we consider (3.20) and discuss the
following function

fQ(p) = −
p − p1

v(p) − v(p1)
with fQ(p2) = Q2.

We yield for fQ

f ′Q(p) = −

(v(p) − v1) + (p − p1)
v(p)2

a(p)2

(v(p) − v1)2 .

The numerator is strictly monotone decreasing for every p > p1 and thus

0 > (v(p) − v1) + (p − p1)
v(p)2

a(p)2 .

This, in turn, gives for p = p2

0 =
�

p
�

+ Q2 ~v� >
�

p
�

+ ~v�
a(p2)2

v(p2)2 ⇔ Q2 <
a(p2)2

v(p2)2 .

Due to the monotonicity of g we further have

Q2 > lim
p→p1

g(p) = − lim
p→p1

p − p1

v(p) − v1

l’Hospital
= lim

p→p1

a(p)2

v(p)2 =
a(p1)2

v(p1)2 .

All together we obtained

a(p1)2

v(p1)2 < Q2 <
a(p2)2

v(p2)2 . (3.23)

Now obtaining the correct sign from the entropy inequality (3.5) and (3.22)
applied to (3.19) with (3.23) gives the Lax condition for a left Shock (Q > 0)
and a right shock (Q < 0), respectively. Therefore we have that in the
isothermal case the Lax condition and the entropy inequality are equivalent.
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Rarefaction Wave

For a rarefaction wave we use the Riemann invariants (3.18) and hence
obtain for a left rarefaction wave (corresponding to λ1)

u2 − u1 = −

∫ ρ2

ρ1

a
ρ

dρ. (3.24)

Furthermore the slope inside the rarefaction is given by

dx
dt

=
x
t

= λ1 = u − a (3.25)

and hence we obtain that the solution inside the rarefaction fan is given by

u =
x
t

+ a and F(ρ) = u − u1 +

∫ ρ

ρ1

a
σ

dσ = 0. (3.26)

Here ρ is obtained as the root of F(ρ). Similar we obtain the results for a
right rarefaction

u2 − u1 =

∫ ρ2

ρ1

a
ρ

dρ,
dx
dt

=
x
t

= λ2 = u + a,

u =
x
t
− a and F(ρ) = u2 − u −

∫ ρ2

ρ

a
σ

dσ = 0. (3.27)

Shock Wave

The relation across a shock wave is given by (3.21)

~u�2 = −~p� ~v� =

�
p

� �
ρ

�
ρ1ρ2

⇔ ~u� = −
√
−~p� ~v� = −

√�
p

� �
ρ

�
ρ1ρ2

.

Solution of the Riemann Problem

If we now want to solve the Riemann problem for the isothermal Euler
equations we just have to connect the three constant states separated by the
waves using the equations obtained above. Therefore we assume the left
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and right state to be given and use that the velocity between the waves is
constant. The solution is obtained as the root of the following function

f (ρ,WL,WR) = fR(ρ,WR) + fL(ρ,WL) + uR − uL = 0, (3.28)

fK(ρ,WK) =



√�
p

� �
ρ

�
ρρK

, ρ > ρK (Shock)∫ ρ

ρK

a(σ)
σ

dσ, ρ ≤ ρK (Rarefaction)

, K ∈ {L,R}.

Due to p′(ρ) > 0 we could also state this problems in terms of the unknown
pressure p, i.e.

f (p,WL,WR) = fR(p,WR) + fL(p,WL) + uR − uL = 0, (3.29)

fK(p,WK) =


√
−

�
p

�
~v�, p > pK (Shock)∫ p

pK

v(ζ)
a(ζ)

dζ, p ≤ pK (Rarefaction)
, K ∈ {L,R}.

In order to investigate f (p,WL,WR) we need information about the asymp-
totic behavior

v(p)
p→∞
→ 0, v(p)

p→0
→ ∞ and further

dv(p)
dp

(3.6)2
= −

v(p)2

a(p)2 < 0.

We obtain for fK(p,WK) in the case of a shock wave

d
dp

fK(p,WK) =
− ~v� +

�
p

� v2

a2

2
√
−

�
p

�
~v�

> 0, (3.30)

d2

dp2 fK(p,WK) = −
1

4(−
�

p
�
~v�)3/2

−4
�

p
�2 ~v�

v3

a4G +

(�
p

� v2

a2 − ~v�
)2 < 0

For a rarefaction wave we yield

d
dp

fK(p,WK) =
v(p)
a(p)

> 0, (3.31)

d2

dp2 fK(p,WK) = −
v(p)2

a(p)3G < 0
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Combining (3.30) with (3.31) gives

d
dp

f (p,WL,WR) > 0 and
d2

dp2 f (p,WL,WR) < 0. (3.32)

Using the asymptotic behavior of v(p) gives

f (p,WL,WR)
p→0
→ −∞ and f (p,WL,WR)

p→∞
→ +∞ (3.33)

and hence we have a unique root which determines the solution of our
system.

3.2 Solution at the Interface

The phase boundary separating the liquid and the vapor phase is a non-
classical or under compressive shock, see [18] or [55] and references therein.
Hence the Lax criterion alone will not give us a unique solution and we need
a further relation at the interface. This equation is called kinetic relation. We
use the kinetic relation derived by Dreyer et al. [23]. The kinetic relation
is chosen such that the mass flux z is proportional to the jump term in the
entropy inequality (3.5)

z
�

g + ekin
�
≥ 0,

see also Remark 2.2.1. If we assume the vapor left to the liquid phase the
kinetic relation reads

z = τpV

�
g + ekin

�
= τpV[gL − gV + ekin

L − ekin
V ]. (3.34)

Otherwise we can use

z = −τpV[gL − gV + ekin
L − ekin

V ]. (3.35)

In the following we will assume the first case. In this section we will prove
that there exists a unique solution of the equations at the interface provided
certain conditions hold. By this we mean that there exists a unique liquid
(vapor) state for a prescribed vapor (liquid) state such that the following
equations hold

~z� = 0,
−z ~u� +

�
p

�
= 0,

z = τpV

�
g + ekin

�
.
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Here ekin denotes the kinetic energy. Furthermore we have for the so called
mobility 0 < τ ∈ R. Usually one uses

τ =
1
√

2π

( m
kT0

) 3
2

(3.36)

where m denotes the mass of a single molecule, k the Boltzmann constant
and T0 the fixed temperature, see [10, 23]. Using the jump conditions (3.3)
and (3.4) we can rewrite (3.34) and obtain

z = τpV

�
g −

1
2

p(vL + vV)
�
. (3.37)

Furthermore we can combine the jump conditions and obtain�
p

�
+ z2 ~v� = 0. (3.38)

Together with the EOS and (3.37) equation (3.38) is a single equation for
one unknown given one state at the phase boundary. For example we will
prescribe the vapor pressure and then obtain the liquid pressure as the
solution of equation (3.38). In the following we will assume as before that
γV ≥ 0 and GK > 0, K ∈ {V,L}. From the mathematical point of view we
need further assumptions to solve the problem. A discussion will be given
later on and it will turn out that these assumptions are rather liberal from
a physical point of view, see Subsection 3.5.1. In the following we need
the quotient of the specific volumes to be uniformly bounded as well as the
corresponding sound speeds

0 <
vL

vV
≤ α < 1, 0 <

vL

vV

aV

aL
≤ αβ < 1, τ(1 − α)2a3

V < γV and

0 < pV ≤ σmaxp0 with σmax =
1 +
√

11 − 6α
2

. (3.39)

Remark 3.2.1. The specific volume and the speed of sound depend on the pressure
but for convenience we often will not write out this dependence explicitly.

Now we can state one of the main results of this work.

Theorem 3.2.2 (Existence and Uniqueness of a Solution at the Interface). For
two phases each described by a thermodynamic consistent equation of state meeting
the requirements (3.39) and

−aV/vV ≤ z ≤ aL/vL
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exists a unique solution of equation (3.38). Furthermore the mass flux z is uniquely
defined. The liquid pressure can be written as a function of the vapor pressure and
has the following properties

p∗L = ϕ(p∗V) ≥ p∗V, ϕ(p0) = p0,
dϕ(p∗V)

dp∗V
> 0

In the remaining part of this section we will give the proof of this theorem.

3.2.1 Proof
The proof of Theorem 3.2.2 is based on the implicit function theorem. The
main steps are the following

(i) We define a function f (pV, pL), see (3.40), which we will analyze and
where the roots correspond to the solution of (3.38).

(ii) The local existence of an admissible root, see Definition 3.2.3, for the
equilibrium case (p0, p0) is given in Remark 3.2.4.

(iii) Lemma 3.2.7 and Lemma 3.2.8 state that the first order derivatives of
f (pV, pL) each have a sign for an admissible solution.

(iv) Uniqueness is shown in Lemma 3.2.11 and global existence is stated
and proven in Lemma 3.2.12.

Replacing z in (3.38) using (3.37) we obtain�
p

�
+

(
τpV

�
g −

1
2

p(vL + vV)
�)2

~v� = 0.

According to this equation we define the following functions

h(pV, pL) := τ
�

g −
1
2

p(vL + vV)
�

= τ
[
gL(pL) − gV(pV) −

1
2

(pL − pV)(vL(pL) + vV(pV))
]
,

f (pV, pL) :=
�

p
�

+
(
pVh(pV, pL)

)2 ~v� . (3.40)

Obviously every root of (3.40) is a solution of (3.38) and we easily see

0 = f (p∗V, p
∗

L)
~v�<0
⇒

�
p

�
≥ 0. (3.41)

Let us furthermore define the following
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Definition 3.2.3 (Admissible Solution). Let (p∗V, p
∗

L) be a solution of f (p∗V, p
∗

L) =
0. We say this solution is admissible if further the following inequalities hold

−
aV(p∗V)
vV(p∗V)

≤ p∗Vh(p∗V, p
∗

L) ≤
aL(p∗L)
vL(p∗L)

.

The quantities aK and vK with K ∈ {L,V} are functions of the pressure as
already mentioned in Remark 3.2.1. Thus the bounds are evaluated at the
pressures (p∗V, p

∗

L) which solve f (p∗V, p
∗

L) = 0.

Remark 3.2.4. It is immediately verified that a solution f (p∗V, p
∗

L) = 0 with p∗V =
p∗L =: p0 implies equilibrium gL(p∗L) = gV(p∗V) and vice versa. Thus we further
obtain

f (p0, p0) = 0, ∂pV f (p0, p0) = −1, ∂pL f (p0, p0) = 1 with p0h(p0, p0) = 0.
(3.42)

Hence there exists a neighborhood of pV = p0 such that (3.38) implicitly defines
a function pL = ϕ(pV) with ϕ′(pV) > 0. Additionally (p0, p0) is an admissible
solution with z = 0.

Lemma 3.2.5. The function h(pV, pL) is strictly monotonically decreasing in pL
under the given assumptions, i.e.

∂pL h(pV, pL) < 0.

Proof: We obtain for the partial derivative of h(pV, pL) using (3.6)2

∂pL h(pV, pL) =
τ
2

{
~v� +

�
p

� v2
L

a2
L

}
.

Let us consider
�

p
�
≥ 0 since it is the only relevant case and the statement

is obvious for
�

p
�
≤ 0 anyway. Since GL > 0 we yield for the second partial

derivative with respect to pL using (3.6)2 and (3.11)

∂2
pL

h(pV, pL) = −τ
�

p
� v3

L

a4
L

GL < 0.

For pL = pV we know that the Lemma is true and if we increase pL the
function is decreasing. Keep in mind that we have

�
p

�
> 0. Hence we

conclude ∂pL h(pV, pL) < 0. �
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Corollary 3.2.6. Every root of (3.40) with z > 0 is admissible.

Proof: Using Lemma 3.2.5 one obtains for f (p∗V, p
∗

L) = 0
with z = p∗Vh(p∗V, p

∗

L)

z2 =
(
p∗Vh(p∗V, p

∗

L)
)2 (3.40)

= −

�
p∗

��
v(p∗)

� Lem. 3.2.5
<

a2
L

v2
L

.

�

Lemma 3.2.7. Let (p∗V, p
∗

L) be an admissible solution of f (p∗V, p
∗

L) = 0. Then the
following inequality holds

∂pL f (p∗V, p
∗

L) > 0.

Proof: For the equilibrium solution (3.42) the stated relation is obvious.
Let us consider p∗Vh(p∗V, p

∗

L) > 0. Using Lemma 3.2.5 and ~v� < 0 we have

∂pL f (p∗V, p
∗

L) = 1 + 2 (p∗Vh(p∗V, p
∗

L))︸         ︷︷         ︸
>0

(p∗V∂pL h(p∗V, p
∗

L)) ~v�︸                  ︷︷                  ︸
>0

− (p∗Vh(p∗V, p
∗

L))2 v2
L

a2
L︸              ︷︷              ︸

<1

> 0.

It remains to prove the Lemma for the case p∗Vh(p∗V, p
∗

L) < 0. We can write

∂pL f (p∗V, p
∗

L) = 1 + 2(p∗Vh(p∗V, p
∗

L))(p∗V∂pL h(p∗V, p
∗

L)) ~v� − (p∗Vh(p∗V, p
∗

L))2 v2
L

a2
L

= 1 + τp∗V(p∗Vh(p∗V, p
∗

L)) ~v�2
(
1 − (p∗Vh(p∗V, p

∗

L))2 v2
L

a2
L

)
− (p∗Vh(p∗V, p

∗

L))2 v2
L

a2
L

=

(
1 − (p∗Vh(p∗V, p

∗

L))2 v2
L

a2
L

) (
1 + τp∗V(p∗Vh(p∗V, p

∗

L)) ~v�2
)
.

The first term is positive, because of −aV/vV ≤ p∗Vh(p∗V, p
∗

L) < 0 and a2
V/v

2
V <

a2
L/v

2
L. For the second term we have

0 < 1 + τp∗V(p∗Vh(p∗V, p
∗

L)) ~v�2 p∗Vh(p∗V ,p
∗

L)<0
⇔ τ < −

1

p∗V(p∗Vh(p∗V, p
∗

L)) ~v�2 .
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Indeed we obtain

−
1

p∗V(p∗Vh(p∗V, p
∗

L)) ~v�2 >
vV

p∗VaV ~v�2

=
1

p∗VvVaV

( vL

vV
− 1

)2

(3.39)1

≥
γV

(1 − α)2a3
V

(3.39)3
> τ.

This proves the Lemma. �

Lemma 3.2.8. Let (p∗V, p
∗

L) be an admissible solution of f (p∗V, p
∗

L) = 0. Then the
following inequality holds

∂pV f (p∗V, p
∗

L) < 0. (3.43)

Proof: Since we have f (p∗V, p
∗

L) = 0 we can write for ∂pV h(p∗V, p
∗

L)

∂pV h(p∗V, p
∗

L) =
τ
2

{
~v� +

�
p

� v2
V

a2
V

}
(3.40)
=

τ
2
~v�

(
1 − (p∗Vh(p∗V, p

∗

L))2 v2
V

a2
V

)
(3.44)

and hence we conclude

∂pV h(p∗V, p
∗

L)


< 0, (p∗Vh(p∗V, p

∗

L))2 <
a2

V

v2
V

,

≥ 0, (p∗Vh(p∗V, p
∗

L))2
≥

a2
V

v2
V

.

In the following we will discuss three cases depending on p∗Vh(p∗V, p
∗

L).

First Case: We discuss the case where −aV/vV ≤ p∗Vh(p∗V, p
∗

L) ≤ 0. It is
obvious to see

∂pV f (p∗V, p
∗

L) =


−1 , p∗Vh(p∗V, p

∗

L) = 0,

2
a2

V

p∗Vv2
V

~v� , p∗Vh(p∗V, p
∗

L) = −
aV

vV

 < 0.

In between we have −aV/vV < p∗Vh(p∗V, p
∗

L) < 0 and so all together

∂pV f (p∗V, p
∗

L) = . . .

= −1 + 2 (p∗Vh(p∗V, p
∗

L))︸         ︷︷         ︸
<0

(h(p∗V, p
∗

L) + p∗V∂pV h(p∗V, p
∗

L))︸                             ︷︷                             ︸
<0

~v� + (p∗Vh(p∗V, p
∗

L))2 v2
V

a2
v︸               ︷︷               ︸

<1

< 0.
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For 0 < p∗Vh(p∗V, p
∗

L) < aL/vL we split the proof into two parts. First we dis-
cuss the interval up to aV/vV and then the remaining part smaller than aL/vL.

Second Case: Using 0 < p∗Vh(p∗V, p
∗

L) ≤ aV/vV we obtain

∂pV f (p∗V, p
∗

L) = . . .

= −1 + 2(p∗Vh(p∗V, p
∗

L))(h(p∗V, p
∗

L) + p∗V∂pV h(p∗V, p
∗

L)) ~v� + (p∗Vh(p∗V, p
∗

L))2 v2
V

a2
V

(3.44)
=

(
1 − (p∗Vh(p∗V, p

∗

L))2 v2
V

a2
V

)
︸                      ︷︷                      ︸

≥0

(
τp∗

2

V h(p∗V, p
∗

L) ~v�2
− 1

)
+ 2p∗V(h(p∗V, p

∗

L))2 ~v�︸                 ︷︷                 ︸
<0

.

For the second term we obtain (as before in the proof of Lemma 3.2.7)

0 > τp∗V(p∗Vh(p∗V, p
∗

L)) ~v�2
− 1

p∗Vh(p∗V ,p
∗

L)>0
⇔ τ <

1

p∗V(p∗Vh(p∗V, p
∗

L)) ~v�2 .

and again we have

1

p∗V(p∗Vh(p∗V, p
∗

L)) ~v�2 ≥
vV

p∗VaV ~v�2

=
1

p∗VvVaV

( vL

vV
− 1

)2

(3.39)1

≥
γV

(1 − α)2a3
V

(3.39)3
> τ.

This proves the Lemma for 0 < p∗Vh(p∗V, p
∗

L) ≤ aV/vV.

Third Case: We discuss aV/vV < p∗Vh(p∗V, p
∗

L) < aL/vL and rewrite ∂pV f (p∗V, p
∗

L)

∂pV f (p∗V, p
∗

L) = . . .

= −1 + 2(p∗Vh(p∗V, p
∗

L))(h(p∗V, p
∗

L) + p∗V∂pV h(p∗V, p
∗

L)) ~v� + (p∗Vh(p∗V, p
∗

L))2 v2
V

a2
V

= −

(
1 − (p∗Vh(p∗V, p

∗

L))2 v2
V

a2
V

)
+ 2(p∗Vh(p∗V, p

∗

L))(p∗V∂p∗V h(p∗V, p
∗

L)) ~v�

+ 2p∗Vh(p∗V, p
∗

l )
2 ~v�
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and further obtain using equation (3.44)

∂pV f (p∗V, p
∗

L) = . . .

= −
2

τ ~v�
∂pV h(p∗V, p

∗

L) + p∗Vh(p∗V, p
∗

L))(p∗V∂p∗V h(p∗V, p
∗

L)) ~v� + 2p∗Vh(p∗V, p
∗

l )
2 ~v�

= −
2

τ ~v�
∂pV h(p∗V, p

∗

L)︸                  ︷︷                  ︸
>0

(
1 − τp∗V ~v�

2 p∗Vh(p∗V, p
∗

L)
)

︸                           ︷︷                           ︸
(3.39)
<0

+ 2p∗Vh(p∗V, p
∗

l )
2 ~v�︸               ︷︷               ︸

<0

< 0.

This ends the proof. �

Corollary 3.2.9 (Monotonicity of the Implicit Function). Let (p∗V, p
∗

L) be an
admissible solution f (p∗V, p

∗

L) = 0. Then there exists a function ϕ with p∗L = ϕ(p∗V)
which is strictly monotonically increasing, i.e. ϕ′(p∗V) > 0.

Proof: This follows using the implicit function theorem together with
Lemma 3.2.7 and 3.2.8. �

Corollary 3.2.10. During a condensation process both pressures are larger than
the saturation pressure

p0 < pV < pL

whereas during evaporation both pressures are smaller than the saturation pressure

pV < pL < p0.

Proof: This follows from Corollary 3.2.9 and pL(p0) = p0. �

Lemma 3.2.11 (Uniqueness). Let (p∗V, p
∗

L) be an admissible solution of f (p∗V, p
∗

L) =
0. Then this root is unique in the sense that for a given p∗V the solution p∗L is unique.

Proof: First we assume that there exists a p∗∗L > p∗L such that f (p∗V, p
∗∗

L ) =
0. From Lemma 3.2.7 we know that ∂pL f (p∗V, p

∗

L) > 0. Hence we have
(monotonicity argument) ∂pL f (p∗V, p

∗∗

L ) ≤ 0. Therefore we have

p∗Vh(p∗V, p
∗∗

L ) < −
aV

vV︸                  ︷︷                  ︸
I

∨̇ p∗Vh(p∗V, p
∗∗

L ) >
aL

vL︸               ︷︷               ︸
II

(3.45)
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otherwise we would meet the requirements of Lemma 3.2.7. Since p∗Vh(p∗V, p
∗

L) ≤
aL/vL and Lemma 3.2.5 we can exclude II. Assuming I is true we have that
the root (p∗V, p

∗∗

L ) itself is not admissible and every possible further root with
pL > p∗∗L would also fulfill relation I due to Lemma 3.2.5 and thus is not
admissible.
Now we assume that there exists a p∗∗L < p∗L such that f (p∗V, p

∗∗

L ) = 0. As in the
first case we have the two possibilities (3.45). The arguments are now quite
analogue to the first case. We can exclude I since

−
aV

vV
≤ p∗Vh(p∗V, p

∗

L) < p∗Vh(p∗V, p
∗∗

L ).

Therefore relation II must hold and p∗∗L is no admissible root. Due to Lemma
3.2.5 every further solution pL < p∗∗L also fulfills II. This proves uniqueness.

�

Lemma 3.2.12 (Global Existence). For every p∗V ∈ [0, σmaxp0] exists a p∗L ∈
[p∗V,∞) such that (p∗V, p

∗

L) is an admissible root of f (p∗V, p
∗

L) = 0.

Proof: We already have local existence in a neighborhood of (p0, p0) due
to the implicit function theorem. In the following we discriminate the cases
depending on whether pV is smaller or larger than the saturation pressure p0.

First Case (0 ≤ pV < p0): Assume that there exists a pV < p0 such that
there exists no pL with f (pV, pL) = 0. Using the above results we know that
there exists an admissible root (p∗V, p

∗

L) in the neighborhood of (p0, p0) and
due to monotonicity/continuity a further root pV < p̄V < p∗V and p̄L such that

f (p̄V, p̄L) = 0 ∧ ∂pL f (p̄V, p̄L) = 0.

Hence this root is not admissible due to Lemma 3.2.7. On the other hand we
have, due to the behavior of the function h(pV, pL) in (p0, p0) and the fact that

f (pV, pL) = 0 ∧ h(pV, pL) = 0 ⇔
�

p
�

= 0,

that h(p̄V, p̄L) > 0 for p̄V < p0. Together with Corollary 3.2.6 this gives

0 < p̄Vh(p̄V, p̄L) ≤
aL

vL
.

This contradicts the above statement that the root p̄V is not admissible.
Therefore the nonexistence assumption is wrong and we have global exis-
tence for 0 ≤ pV < p0.
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Second Case (p0 < pV ≤ σmaxp0): The idea is again to show, that there exists
no p0 < p∗V ≤ σmaxp0 such that

f (p∗V, p
∗

L) = 0 ∧ ∂pL f (p∗V, p
∗

L) = 0. (3.46)

Let us assume we have (p∗V, p
∗

L) such that the above relation holds. From
that we can conclude

∂pL f (p∗V, p
∗

L) = 0
⇔(
p∗Vh(p∗V, p

∗

L)
)2

=
(
1 + 2(p∗Vh(p∗V, p

∗

L))(p∗V∂pL h(p∗V, p
∗

L)) ~v�
) a2

L

v2
L

.

Inserting this expression in 0 = f (p∗V, p
∗

L) gives

0 = f (p∗V, p
∗

L) =
�

p
�

+
(
p∗Vh(p∗V, p

∗

L)
)2
~v�

=
�

p
�

+
(
1 + 2(p∗Vh(p∗V, p

∗

L))(p∗V∂pL h(p∗V, p
∗

L)) ~v�
) a2

L

v2
L

~v�

=
�

p
�

+ ~v�
a2

L

v2
L

+ 2(p∗Vh(p∗V, p
∗

L))(p∗V∂pL h(p∗V, p
∗

L)) ~v�2

=
2
τ

a2
L

v2
L

∂pL h(p∗V, p
∗

L) + 2(p∗Vh(p∗V, p
∗

L))(p∗V∂pL h(p∗V, p
∗

L)) ~v�2

=
2
τ
∂pL h(p∗V, p

∗

L)
a2

L

v2
L

(
1 + τ p∗V

2 h(p∗V, p
∗

L) ~v�2
)

We define the function

H(pV, pL) := 1 + τp2
Vh(pV, pL) ~v�2 .

Due to Lemma 3.2.5 we have H(p∗V, p
∗

L) = 0 and hence

p∗Vh(p∗V, p
∗

L) = −
1

τp∗V ~v�
2 . (3.47)
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Further we can rewrite ∂pL f (pV, pL) in terms of H(pV, pL), i.e.

∂pL f (pV, pL) = . . .

= −
v2

L(
τpVaL ~v�2

)2 (H(pV, pL) − 1)2 +

(
1 +

�
p

�
~v�

v2
L

a2
L

)
(H(pV, pL) − 1) + 1.

From this we immediately yield

H(pV, pL) = ∂pL f (pV, pL)
⇔

0 = (H(pV, pL) − 1)

− v2
L(

τpVaL ~v�2
)2 (H(pV, pL) − 1) +

�
p

�
~v�

v2
L

a2
L

 .
For the considered root (p∗V, p

∗

L) we can exclude the first case since H(p∗V, p
∗

L) =
1 if and only if p∗Vh(p∗V, p

∗

L) = 0. Hence we further look at the second term
which must vanish for (p∗V, p

∗

L) and obtain

H(p∗V, p
∗

L) =
(
τp∗V ~v�

2
)2

�
p

�
~v�

+ 1 ⇔ p∗Vh(p∗V, p
∗

L) = τp∗V
�

p
�
~v� . (3.48)

Summing up we can state that there are two conditions (3.47) and (3.48)
which need to be true for (p∗V, p

∗

L) when (3.46) holds. For equation (3.47) we
easily verify

p∗Vh(p∗V, p
∗

L) = −
1

τp∗V ~v�
2

(3.39)1

≤ −
1

τp∗Vv2
V(1 − α)2

(3.39)3
< −

aV

vV
. (3.49)

Now we investigate (3.48) and prove that this implies p∗Vh(p∗V, p
∗

L) > −aV/vV.
This would contradict (3.49) and hence finish the proof.
First we introduce the following functions for fixed p∗V

F(pL) := p∗Vh(p∗V, pL), F′(pL) = p∗V∂pL h(p∗V, pL),

G(pL) := τp∗V
�

p
�
~v� , G′(pL) = τp∗V

{
~v� −

�
p

� v2
L

a2
L

}
.

We immediately verify for all pL ≥ p∗V

G′(pL) < F′(pL) < 0.
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Furthermore we have

G(p∗V) = 0
p∗V>p0

> F(p∗V) = p∗Vh(p∗V, p
∗

V) = τp∗V
�

g(p∗V)
�
.

Surely there is a p̄L > p∗V such that

G(p̄L) = −
aV

vV
with p̄L = p∗V −

aV

τp∗VvV ~v�
≤ p∗V +

aV

τp∗Vv2
V(1 − α)

. (3.50)

Now we investigate F(p̄L) and obtain

F(p̄L) = p∗Vh(p∗V, p̄L) = τp∗V
{�

g
�
−

1
2

�
p

�
(vL + vV)

}
(3.50)
= τp∗V(

�
g

�
− vV

�
p

�
) +

1
2

aV

vV
.

We have for p∗V = σp0 with σ ∈ [1, σmax]

τp∗V
(�

g
�
− vV

�
p

�) gL(p̄L)>gL(p∗V)
> τp∗V

(�
g(p∗V)

�
− vV

�
p

�)
(3.50)
≥ τp∗V

{�
g(p∗V)

�
−

aV

τp∗VvV(1 − α)

}
= τp∗V

�
g(p∗V)

�
−

aV

vV(1 − α)
Taylor
≥ τp∗V

�
v(p0)

�
(p∗V − p0) −

aV

vV(1 − α)

>
vV(p0)

aV(p0)
�

v(p0)
�σ(σ − 1)p0 −

aV

vV(1 − α)

≥ −
aV(p0)
vV(p0)

σ(σ − 1)
1 − α

−
aV

vV(1 − α)
d
dp

a(p)
v(p)>0
> −

aV(p∗V)
vV(p∗V)

σ(σ − 1) − 1
1 − α

σ≤σmax
≥ −

3
2

aV

vV
.

This gives us F(p̄L) > G(p̄L) and so there exists a p∗∗L ∈ (p∗V, p̄L) such that

F(p∗∗L ) = G(p∗∗L ) > −
aV

vV
. (3.51)

Thus condition (3.48) contradicts the first condition (3.47). Hence there ex-
ists no (p∗V, p

∗

L) such that relation (3.46) holds. This implies global existence
for all p0 < pV ≤ σmaxp0 and finishes the proof. �
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pL
p∗V p∗∗L p̄L

−
aV
vV

F(pL)

G(pL)

Figure 3.1: Idea for the contradiction argument

3.3 Solution of the Two Phase Riemann Problem

In this section we want to solve the Riemann problem. Therefore we fol-
low the strategy of constructing wave curves and obtain the solution as the
intersection of the wave curves, as for example done in [60, 78]. Due to
the phase boundary we have an additional term, but we still want to show
uniqueness of a solution to the Riemann problem. Hence we need a further
monotonicity argument which we will prove in the following.
To this end we additionally need bounds for the dimensionless speed of
sound γV and γL. We distinguish two relevant cases, each with an appro-
priate condition needed to prove monotonicity. This is necessary especially
for EOS (or equivalently fluids) near the critical point, e.g. van der Waals
EOS. Further these conditions show that the dimensionless quantities are
not independent of each other. We consider the following relevant cases

(I)


γV ≤ 1 and 1 ≤ γL with,
1
γL

≥ 1 +
ε(γV)
α

.

(3.52)

(II)


γV < 1 and γL < 1 with,

α ≤

1 − 1
γV

1 − 1
γL

and ε(γV) ≤ 0.
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The quantity ε(γV) is defined as follows, using all quantities as introduced
before,

ε(γV) :=
1
γV
− 1 −

τa3
V

γ2
V

(1 − α)2
(
1 − (αβ)2

)
. (3.53)

So far we proved in Section 3.2 that there exists a unique solution of the
jump conditions at the interface. Furthermore we can express the pressure
in the liquid phase as a strictly monotone increasing function of the vapor
pressure

p∗L = ϕ(p∗V) with ϕ′(p∗V) > 0.

Lemma 3.3.1. Given the requirements (3.39) and (3.52). For an admissible solu-
tion f (p∗V, p

∗

L) = 0 the following monotonicity holds

d
dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)
≥ 0.

Proof: We have

d
dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

= ∂pV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

+ ∂pL

(
p∗Vh(p∗V, p

∗

L) ~v�
)
ϕ′(p∗V)

= (h(p∗V, p
∗

L) + p∗V∂pV h(p∗V, p
∗

L)) ~v� + p∗Vh(p∗V, p
∗

L)
v2

V

a2
V

+

{
p∗V∂pL h(p∗V, p

∗

L) ~v� − p∗Vh(p∗V, p
∗

L)
v2

L

a2
L

}
ϕ′(p∗V).

For (p0, p0) the statement is obvious and hence we assume p∗Vh(p∗V, p
∗

L) , 0
from now on. Hence we can write

d
dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

= . . .

=
1

2p∗Vh(p∗V, p
∗

L)
(∂pV f (p∗V, p

∗

L) + 1) +
1
2

p∗Vh(p∗V, p
∗

L)
v2

V

a2
V

+

{
1

2p∗Vh(p∗V, p
∗

L)
(∂pL f (p∗V, p

∗

L) − 1) −
1
2

p∗Vh(p∗V, p
∗

L)
v2

L

a2
L

}
ϕ′(p∗V).
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Multiplication with ∂pL f (p∗V, p
∗

L) > 0 and use of

ϕ′(p∗V) = −
∂pV f (p∗V, p

∗

L)
∂pL f (p∗V, p

∗

L)
.

gives

∂pL f (p∗V, p
∗

L)
d

dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

= . . .

=

{
1

2p∗Vh(p∗V, p
∗

L)
(∂pV f (p∗V, p

∗

L) + 1) +
1
2

p∗Vh(p∗V, p
∗

L)
v2

V

a2
V

}
∂pL f (p∗V, p

∗

L)

−

{
1

2p∗Vh(p∗V, p
∗

L)
(∂pL f (p∗V, p

∗

L) − 1) −
1
2

p∗Vh(p∗V, p
∗

L)
v2

L

a2
L

}
∂pV f (p∗V, p

∗

L).

This can be reformulated to (see Appendix 9.1 for details)

∂pL f (p∗V, p
∗

L)
d

dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

= h(p∗V, p
∗

L)
(
vL

(
1 −

p∗LvL

a2
L

)
− vV

(
1 −

p∗VvV

a2
V

))
+ τpV ~v�2

(
1 − (p∗Vh(p∗V, p

∗

L))4 v2
V

a2
V

v2
L

a2
L

)
.

Due to the bounds for the EOS we can show

(
vL

(
1 −

p∗LvL

a2
L

)
− vV

(
1 −

p∗VvV

a2
V

))
≥ 0.

and hence we can immediately verify the Lemma for

0 < p∗Vh(p∗V, p
∗

L) ≤
√

aV

vV

aL

vL
.
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Now we want to prove the result for 0 > p∗Vh(p∗V, p
∗

L) ≥ −aV/vV.We have

h(p∗V, p
∗

L)
(
vL

(
1 −

p∗LvL

a2
L

)
− vV

(
1 −

p∗VvV

a2
V

))
+ τp∗V ~v�

2
(
1 − (p∗Vh(p∗V, p

∗

L))4 v2
V

a2
V

v2
L

a2
L

)
≥ −

aV

p∗VvV

(
vL

(
1 −

1
γL

)
− vV

(
1 −

1
γV

))
+ τp∗V ~v�

2
(
1 −

a2
V

v2
V

v2
L

a2
L

)
≥ −

γV

aV

(
vL

(
1 −

1
γL

)
− vV

(
1 −

1
γV

))
+ τv2

Vp∗V(1 − α)2
(
1 − (αβ)2

)
= −

vV

aV

(
γV

γL

vL

vV

(
γL − 1

)
+

(
1 − γV

))
+ τv2

Vp∗V(1 − α)2
(
1 − (αβ)2

)
= −

vV

aV

γV

γL

vL

vV

(
γL − 1

)
+

(
1 − γV

)
−
τa3

V

γV
(1 − α)2

(
1 − (αβ)2

) (+)

γL≥1
≥ −

vV

aV

αγV

γL

(
γL − 1

)
+

(
1 − γV

)
−
τa3

V

γV
(1 − α)2

(
1 − (αβ)2

)
≥ αγV

vV

aV

(
1
γL
−

(
1 +

ε(γV)
α

))
(3.52)(I)
≥ 0.

Starting from (+) we obtain for the case 1 > γ for both phases

−
vV

aV

γV

γL

vL

vV

(
γL − 1

)
+

(
1 − γV

)
−
τa3

V

γV
(1 − α)2

(
1 − (αβ)2

)
≥ −

vV

aV

1 − γV −
τa3

V

γV
(1 − α)2

(
1 − (αβ)2

)
= −γV

vV

aV
ε(γV)

(3.52)(II)
≥ 0.

It remains the case for √
aV

vV

aL

vL
< p∗Vh(p∗V, p

∗

L) <
aL

vL
.

In the subsequent Lemma 3.3.3 we will exclude this case and thus the proof
of this Lemma is finished. �
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Remark 3.3.2 (Assumptions on γ). In Lemma 3.3.1 we only consider cases
where γV ∈ (0, 1] for the vapor phase. As mentioned before the lower bound
ensures hyperbolicity and thermodynamic stability. The upper bound is due to the
fact, that we only consider pressures and temperatures below the critical point.
To illustrate this we consider the isothermal compressibility κT which is defined
as follows

κT = −v
(
∂v
∂p

)
T
.

For real gases κT can be expressed in terms of the pressure and the compressibility
or gas deviation factorZ (not to confuse with the mass flux z used in this work),
i.e.

κT =
1
p
−

1
Z

(
∂Z
∂p

)
T
.

Below the critical point the second term is negative for most gases (cf. [17, 48]) and
hence

κT >
1
p
⇔ γV =

1
pκT

< 1.

This property is reflected by nonlinear EOS such as the van der Waals or Dieterici
EOS. For an ideal gas the second term vanishes and we obtain γV = 1.

Lemma 3.3.3. Consider two phases such that the requirements (3.39) are fulfilled.
Then there exists a maximal mass flux zmax such that for every admissible solution
f (p∗V, p

∗

L) = 0 the following upper bound holds

zmax ≤

√
aV

vV

aL

vL
.

Proof: Since z(pV) = 0 if and only if pV = p0 and further z(p0)′ < 0 we can
focus on vapor pressures smaller than p0. We assume that

zmax >

√
aV

vV

aL

vL
.

Hence there exists a p̃ ∈ (0, p0) such that

z(p̃) = p̃h(p̃, ϕ(p̃)) =

√
aV

vV

aL

vL
and z′(p̃) ≤ 0.

125



ISOTHERMAL CASE: ANALYTICAL SOLUTION OF THE RIEMANN PROBLEM

This gives

0 ≥ z′(p̃) =
1
p̃

√
aV

vV

aL

vL
+ p̃

(
∂pV h(p̃, ϕ(p̃)) + ∂pL h(p̃, ϕ(p̃))ϕ′(p̃)

)
=

1
p̃

√
aV

vV

aL

vL
+
τp̃
2
~v�

(
1 −

aL

aV

vV

vL
+

(
1 −

aV

aL

vL

vV

)
ϕ′(p̃)

)
=

1
p̃

√
aV

vV

aL

vL︸      ︷︷      ︸
>0

+
τp̃
2
~v�

(
1 −

aV

aL

vL

vV

)
︸                  ︷︷                  ︸

<0

(
ϕ′(p̃) −

aL

aV

vV

vL

)

⇒ ξ := ϕ′(p̃) >
aL

aV

vV

vL
≥

1
αβ

(3.39)2
> 1.

Using the definition of ϕ′(pV) we obtain

− ∂pV f (p̃, ϕ(p̃)) = ∂pL f (p̃, ϕ(p̃))ξ
⇔

1 − 2
√

aV

vV

aL

vL

(
1
p̃

√
aV

vV

aL

vL
+ p̃∂pV h(p̃, ϕ(p̃))

)
~v� −

aL

vL

vV

aV

= ξ

(
1 + 2

√
aV

vV

aL

vL
p̃∂pL h(p̃, ϕ(p̃)) ~v� −

aV

vV

vL

aL

)
⇔

1 − ξ +
aV

vV

aL

vL

(
ξ

v2
L

a2
L

−
v2

V

a2
V

)
= . . .

= 2
√

aV

vV

aL

vL
~v�

(
1
p̃

√
aV

vV

aL

vL
+ p̃(∂pV h(p̃, ϕ(p̃)) + ξ∂pL h(p̃, ϕ(p̃)))

)
. (3.54)

For the right hand side of (3.54) we easily see

2
√

aV

vV

aL

vL
~v�

(
1
p̃

√
aV

vV

aL

vL
+ p̃(∂pV h + ξ∂pL h)

)
= 2

√
aV

vV

aL

vL
~v� z′(p̃) ≥ 0.

If we consider the left hand side of (3.54) as a function of ξ we get

d
dξ

(
1 − ξ +

aV

vV

aL

vL

(
ξ

v2
L

a2
L

−
v2

V

a2
V

))
= −1 +

aV

aL

vL

vV
≤ −1 + αβ < 0.
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Thus the left hand side of (3.54) is strictly decreasing in ξ and we have

1 − ξ +
aV

vV

aL

vL

(
ξ

v2
L

a2
L

−
v2

V

a2
V

)
ξ=1
=

aV

vV

aL

vL

�
v2

c2

�
< 0.

Since ξ > 1 the left hand side of (3.54) is negative and hence contradicts the
positive right hand side. Therefore the assumption for zmax is wrong. �

Remark 3.3.4. Lemma 3.3.3 is a direct improvement of Corollary 3.2.6 obtained
during the proof of Theorem 3.2.2. There we stated that the upper bound aL/vL for
the mass flux z is always fulfilled.

Now we consider two phase flows, where we initially have the vapor
phase on the left (x < 0) and the liquid phase on the right side (x > 0). The
different phases are described using the corresponding EOS. The considered
Riemann initial data is

ρ(x, 0) =

 ρV, x < 0
ρL, x > 0

and u(x, 0) =

 uV, x < 0
uL, x > 0

. (3.55)

The solution consists of two classical waves and the phase boundary sep-
arating four constant states. Hence there are three possible wave patterns,
see Figure 3.2.

3.3.1 1st Case: Two Phase Flow without Phase Transition

At first we want to deal with the case where phase transition is excluded,
i.e. z = 0. Let us consider a wave pattern of type (b), see Figure 3.2. The
four constant states are denoted as follows

WV =

(
ρV
uV

)
, W∗

V =

(
ρ∗V
u∗V

)
, W∗

L =

(
ρ∗L
u∗L

)
, WL =

(
ρL
uL

)
.

As in 3.1.2 we want to derive a single function such that the single root p is
the solution for the pressure p∗V. This procedure again uses the constancy
of pressure and velocity across the phase boundary, u∗V = u∗L and p∗V = p∗L,
which is because of z = 0. For the solution we use the results obtained in
Section 3.1.
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x
(a)

t

x
(b)

t

x
(c)

t

Figure 3.2: Wave patterns. Solid line: classical waves. Dashed line: phase boundary

Theorem 3.3.5 (Solution without Phase Transition). Let f (p,WV,WL) be given
as

f (p,WV,WL) = fV(p,WV) + fL(p,WL) + ∆u, ∆u = uL − uV,

with the functions fV and fL given by

fK(p,WK) =


√
−

�
p

�
~vK�, p > pK (Shock)∫ p

pK

vK(ζ)
aK(ζ)

dζ, p ≤ pK (Rarefaction)
, K ∈ {V,L}.

If there is a root f (p∗,WV,WL) = 0 with 0 < p∗ ≤ p̃, then this root is unique. Here
p̃ is given as in Definition 1.4.1. Further this is the unique solution for the pressure
p∗V of the Riemann problem (3.1)-(3.2), (3.55). The velocity u∗ := u∗V = u∗L is given
by

u∗ =
1
2

(uL + uV) +
1
2

( fL(p∗,WV) − fV(p∗,WL)).

Proof: The function f is strictly monotone increasing in p due to the
inequalities (3.30), (3.31) and Lemma 3.3.1.
Furthermore we have f (p,WV,WL) → −∞ for p → 0. Hence f has at most
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one unique root, which is by construction the solution for the pressure p∗V.
The statement for the velocity u∗ follows immediately from the results in
Section 3.1. �

Note that one has to choose the corresponding EOS to calculate the pressure
depending quantities according to the index K ∈ {L,V}.

Theorem 3.3.6 (Sufficient Condition for Solvability). Consider the Riemann
problem (3.1)-(3.2), (3.55). The considered Riemann problem is solvable if and only
if

f (p̃,WV,WL) ≥ 0.

Proof: As seen before in the proof of Theorem 3.3.5, f is strictly mono-
tone increasing in p with f (p,WV,WL)→ −∞ for p→ 0. Accordingly f has
a unique root if and only if f (p,WV,WL) ≥ 0 for p→ p̃. �

So far we discussed the case that the solution is of type (b). The follow-
ing result deals with the cases (a) and (c).

Lemma 3.3.7. There exists no solution of wave pattern types (a) and (c). This
includes the coincidence of a classical wave and the phase boundary.

Proof: Let us first discuss case (c). For the notation see Figure 3.3. Since

x

t

WV W∗∗

V W∗

V WL

Figure 3.3: Wave pattern of type (c) with notation

z = 0 we have w = uL = u∗V for the velocity of the interface. Further we
assume, that the right classical wave is a shock moving with speed S. It is
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obvious that w ≥ S must hold. For the case of a right shock we have p∗∗V > p∗V
and hence we obtain from the entropy inequality Q > 0, see Subsection
3.1.2. Now we make use of the continuity of the mass flux across a shock
wave and obtain

Q = −ρ∗V(u∗V − S) ⇔ u∗V − S = −
Q
ρ∗V

u∗V=w
⇔ S = w +

Q
ρ∗V

> w.

This contradicts the condition w ≥ S. If, on the other hand, the right classi-
cal wave is a rarefaction wave we have for the head speed u∗V + aV(p∗V), see
Subsection 3.1.2. Again this contradicts w = uL = u∗V ≥ u∗V + aV(p∗V). In case
that the phase boundary lies inside the rarefaction wave, we obtain similar
contradictions in the wave speeds. For wave pattern type (a) the arguments
are analogue. �

3.3.2 2nd Case: Two Phase Flow with Phase Transition

Now we want to take phase transition into account, i.e. z , 0. As before
we first want to discuss the wave pattern of type (b), see Figure 3.2. In
order to determine the solution we again construct a function analogue to
Subsection 3.3.1. For the left and right classical waves we use

u∗V = uV − fV(p∗V,WV) and u∗L = uL + fL(p∗L,WL). (3.56)

Across the phase boundary we make use of the jump conditions and obtain
as in Subsection 3.1.2

~u� = u∗L − u∗V = −z ~v� = −z(vL(p∗L) − vV(p∗V)). (3.57)

Finally we use the results obtained in Section 3.2, especially Theorem 3.2.2,
to express the liquid pressure at the interface as a function of the interface
vapor pressure pL = ϕ(pV). Combining these considerations we end up with
the following theorem.

Theorem 3.3.8 (Solution with Phase Transition). Let fz(p,WV,WL) be given
as

fz(p,WV,WL) = fV(p,WV) + fL(ϕ(p),WL) + z ~v� + ∆u, ∆u = uL − uV,
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with the functions fV and fL given by

fV(p,WV) =


√
−

�
p

�
~v�, p > pV (Shock)∫ p

pV

vV(ζ)
aV(ζ)

dζ, p ≤ pV (Rarefaction)
,

fL(ϕ(p),WL) =


√
−

�
p

�
~v�, ϕ(p) > pL (Shock)∫ ϕ(p)

pL

vL(ζ)
aL(ζ)

dζ, ϕ(p) ≤ pL (Rarefaction)
.

The function ϕ(p) is implicitly defined by (3.38) and the mass flux is given by
(3.37). If there is a root fz(p∗,WV,WL) = 0 with 0 < p∗ ≤ p̃, this root is unique. If
further

p∗ > pV we must have z > −
aV(p̄)
vV(p̄)

for p̄ ∈ (pV, p∗). (3.58)

Then p∗ is the unique solution for the pressure p∗V of a (b)-type solution of the
Riemann problem (3.1)-(3.2), (3.55) with phase transition. If there is no root or
condition (3.58) is not satisfied, then there is no solution to the mentioned Riemann
problem.

Proof: Due to (3.30), (3.31), Corollary 3.2.9 and Lemma 3.3.1 we get
that the function fz is strictly monotone increasing in p. Furthermore we
have f (p,WV,WL) → −∞ for p → 0. Hence f has at most one unique root,
which is by construction the solution for the pressure p∗V. Theorem 3.2.2
then uniquely defines the liquid pressure p∗L = ϕ(p∗V) and the mass flux z at
the interface. The remaining quantities can be calculated using the EOS and
(3.56). �

Remark 3.3.9. Condition (3.58) is needed in the case of a shock wave in the (left)
vapor phase to guarantee that w > S. Where w denotes the velocity of the interface
and S of the shock respectively. This can be obtained as follows

u∗V − S = −vV(p∗V)QS and u∗V − w = −vV(p∗V)z ⇔ w − S = vV(p∗V)(z −QS)

⇒ w > S ⇔ z > QS = −
aV(p̄)
vV(p̄)

.
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For the last equality we used the Lax condition for S together with the monotonicity
of a(p)/v(p). If this condition is not satisfied by the root fz(p∗,WV,WL) = 0, the
root is meaningless.

Theorem 3.3.10 (Sufficient Condition for Solvability I). If the Riemann problem
(3.1)-(3.2), (3.55) is solvable without phase transition, see Subsection 3.3.1, then
the same Riemann problem is also solvable taking into account phase transition
according to the kinetic relation (3.37).

Proof:
First Case f (p∗,WV,WL) = 0 with p∗ = p0: In view of Section 3.2 we have
p0 = ϕ(p∗), z = 0 and hence fz(p∗,WV,WL) = 0.

Second Case f (p∗,WV,WL) = 0 with p∗ > p0: From that we have

ϕ(p∗)
3.2.2
> p∗ > p0 and z(p∗) = p∗h(p∗, ϕ(p∗)) < 0.

This gives

fz(p∗,WV,WL) > f (p∗,WV,WL) = 0.

So there exists a p∗V < p∗ such that fz(p∗V,WV,WL) = 0.

Third Case f (p∗,WV,WL) = 0 with p∗ < p0: In this situation we obtain

0 = f (p∗,WV,WL)
p∗<p0
< f (p0,WV,WL)

ϕ(p0)=p0,z=0
= fz(p0,WV,WL)

Hence there exists a p∗V < p0 such that fz(p∗V,WV,WL) = 0. �

Corollary 3.3.11. Consider the Riemann problem (3.1)-(3.2), (3.55) without phase
transition and let p∗ be the solution for the pressure. Then we have for the same
Riemann problem with phase transition and the corresponding solutions p∗V and
p∗L = ϕ(p∗V) the following relations:

(1) p∗ = p0 implies p∗V = p∗L = p0, i.e. equilibrium.

(2) p∗ > p0 implies p0 < p∗V < p∗, i.e. condensation.

(3) p∗ < p0 implies p∗ < p∗L < p0, i.e. evaporation.
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Proof: The equilibrium case is obvious. The inequality p∗V < p∗ in the
second was obtained in the second part in the proof of Theorem 3.3.10. It
remains to show that p0 < p∗V. Assume that p∗V ≤ p0, this gives

0 = fz(p∗V,WV,WL) ≤ fz(p0,WV,WL)

= f (p0,WV,WL)
p0<p∗
< f (p∗,WV,WL) = 0.

For the evaporation case the inequality p∗L < p0 is a consequence of the third
part in the proof of Theorem 3.3.10. There we obtained p∗V < p0 and this
gives, together with Theorem 3.2.2, the second inequality. Finally we want
to prove the first inequality p∗ < p∗L. Again using Theorem 3.2.2 gives p∗V > p0
if we assume p∗L > p0. By an analogous argument as for the second case this
leads to a contradiction. Thus we have p∗L < p0. �

Theorem 3.3.12 (Sufficient Condition for Solvability II). Consider the Riemann
problem (3.1)-(3.2), (3.55) with phase transition. This Riemann problem is solvable
by a (b)-type solution if and only if condition (3.58) holds and

fz(p̃,WV,WL) ≥ 0.

Proof: The statement is obvious, since it guarantees a root for fz. �

As in Subsection 3.3.1 we want to discuss wave patterns of type (a) and
(c) for the Riemann problem (3.1)-(3.2), (3.55) with phase transition. The
results are given in the subsequent three lemmata.

Lemma 3.3.13. There is no solution with a wave pattern of type (a).

Proof: Assume there is a solution of type (a) as in Figure 3.4. In this case
we observe condensation and according to Corollary 3.2.10 we have

z < 0 and p0 < pV < p∗L.

Let us first assume that the left classical wave is a rarefaction wave. The
head speed is given by S = u∗L − aL(p∗L) and we obtain

w = vL(p∗L)z + u∗L
(a)
≤ S = u∗L − aL(p∗L) ⇔ z ≤ −

aL(p∗L)
vL(p∗L)

(3.52)
< −

aV

vV
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x

t

WV W∗

L W∗∗

L WL

Figure 3.4: Wave pattern of type (a) with notation

This is a contradiction and thus we can exclude this case. Given a shock
instead of a rarefaction wave we have using (3.23) and the Lax condition

u∗L − aL(p∗L) > S = u∗L + vL(p∗L)QS > u∗∗L − aL(p∗∗L ) with QS = −
aL(p̄L)
vL(p̄L)

, p̄L ∈ (p∗L, p
∗∗

L ).

Hence we yield

w < S ⇔ z < QS = −
aL(p̄L)
vL(p̄L)

p∗L<p̄L

< −
aL(p∗L)
vL(p∗L)

(3.52)
< −

aV

vV
.

Therefore we can also exclude this case with respect to condition (3.58) and
the proof is finished. �

Lemma 3.3.14. For the considered Riemann problem with phase transition exists
no solution of type (c) with pL ≥ p0.

Proof: A solution of type (c) implies an evaporation process which
requires pL < p0. �

Lemma 3.3.15. For pL ∈ (p̂L, p0] exists no solution of type (c) of the considered
Riemann problem with phase transition.

Proof: Assume we have a wave pattern of type (c) as in Figure 3.3. Hence
we have evaporation and according to Corollary 3.2.10 we have

z > 0 and p∗V < pL < p0.
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Let us first assume that the right classical wave is a rarefaction wave. The
head speed is given by S = u∗V + aV(p∗V) and we obtain

w = vV(p∗V)z + u∗V
(c)
≥ S = u∗V + aV(p∗V) ⇔ z ≥

aV(p∗V)
vV(p∗V)

.

For a right shock (QS > 0) we have using (3.23) and the Lax condition

u∗∗V + aV(p∗∗V) > S = u∗V + vV(p∗V)QS > u∗V + aV(p∗V)

with QS =
aV(p̄V)
vV(p̄V)

, p̄V ∈ (p∗V, p
∗∗

V).

Hence we yield

w > S ⇔ z > QS =
aV(p̄V)
vV(p̄V)

p̄V>p∗V
>

aV(p∗V)
vV(p∗V)

.

Due to Lemma 3.3.3 we have an upper bound for the mass flux that does not
initially exclude the conditions derived above for the rarefaction and shock
wave. But the two cases are excluded if z < aV(p∗V)/vV(p∗V). Indeed we have
due to the monotonicity of z and a/v that

∃ p̂V < p0 such that ∀pV ∈ (p̂V, p0] : z(pV) <
aV(pV)
vV(pV)

.

Due to the strict monotonicity of pL = ϕ(p∗V), see Theorem 3.2.2, the proof is
complete. �

3.4 Phase Creation in Single Phase Flows

3.4.1 Condensation by Compression
Let us consider the following Riemann initial data with ρV± ∈ (0, ρ̃]

ρ(x, 0) =

 ρV− , x < 0
ρV+ , x > 0

and u(x, 0) =

 uV− , x < 0
uV+ , x > 0

. (3.59)

Hence initially we have a Riemann problem for a single vapor phase and
therefore we can directly apply the results obtained in Subsection 3.1.2.
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Theorem 3.4.1 (Solution of Isothermal Euler Equations for a Single Vapor
Phase). Let f (p,WV− ,WV+ ) be given as

f (p,WV− ,WV+ ) = f−(p,WV− ) + f+(p,WV+ ) + ∆u, ∆u = uV+ − uV− ,

with the functions f− and f+ given by

f±(p,WV± ) =


√
−

�
p

�
~v�, p > pV± (Shock)∫ p

pV±

vV(ζ)
aV(ζ)

dζ, p ≤ pV± (Rarefaction)
.

If there is a root f (p∗,WV− ,WV+ ) = 0 with 0 < p∗ ≤ p̃, then this root is unique.
Further this is the unique solution for the pressure p∗V of the Riemann problem (3.1)
- (3.2), (3.59). The velocity u∗V is given by

u∗V =
1
2

(uV+ + uV− ) +
1
2

( f+(p∗,WV+ ) − f−(p∗,WV− )).

This is no new result and therefore it is well known, cf. Toro [78]. Usually
one looks for a pressure p∗ that solves f (p,WV− ,WV+ ) = 0. Due to the
asymptotic behavior there is always a solution. Nevertheless a solution
with an unreasonable large vapor pressure is physically not meaningful,
since a sufficiently high pressure in a gas will lead to a phase transition to a
liquid or even solid phase. According to [37] we also only consider solutions
which satisfy 0 < p∗ ≤ p̃, where p̃ again denotes the maximal gas pressure.
This being said, we can find Riemann initial data without a solution. In this
case proceed as follows.

Definition 3.4.2 (Nucleation Criterion). If there is no solution of the Riemann
problem (3.1) - (3.2), (3.59) according to Theorem 3.4.1, then nucleation occurs.

If this criterion is fulfilled, we search a solution consisting of two classical
waves and two phase boundaries. In the following we will again discuss
several wave patterns.

Lemma 3.4.3. If there is a solution of the Riemann problem (3.1) - (3.2), (3.59)
with two classical waves and two phase boundaries, then no wave is propagating
inside the liquid phase. Hence classical waves may only occur in the vapor phase.

Proof: Assume a left going classical wave is propagating through the
liquid phase. We denote the liquid states left and right to this wave by W∗

L
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and W∗∗

L . Further left to this classical wave there is a phase boundary moving
with speed w1. The vapor state left to this phase boundary is denoted by
W∗

V. Obviously this must be a condensation process and accordingly p∗ > p0
and p∗L > p0. This configuration is excluded by Lemma 3.3.13. Analogously
we can discuss the case of a right going classical wave. �

As a consequence of the above result classical waves only propagate through
the vapor phase. Hence we further have to discuss the following three pat-
terns, see Figure 3.5.

x
(d)

t

x
(e)

t

x
(f)

t

Figure 3.5: Wave patterns. Solid line: classical wave. Dashed line: phase boundary

Lemma 3.4.4. There are no solutions of wave pattern types (d) and (f).

Proof: A solution with type (d) wave pattern corresponds to wave pat-
tern type (c) in the previous Subsection 3.3.2, see Figure 3.3. Thus by Lemma
3.3.14 and Lemma 3.3.15 we know that this is only possible for sufficiently
small pressures and therefore implies evaporation. Since we have a con-
densation process wave pattern type (d) can be excluded. Analogously we
discuss a type (f) solution. This corresponds to a type (a) solution in Sub-
section 3.3.2, see Figure 3.4. Hence due to Lemma 3.3.13 a solution of wave
pattern type (f) is also impossible. �

Consequently the only possible wave pattern in this case is of type (e),
see Figure 3.6.
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x

t

WV− W∗

V W∗

L W∗∗

V WV+

Figure 3.6: Wave pattern of type (e) with notation

Lemma 3.4.5. For a solution of wave pattern type (e) the equality p∗V = p∗∗V holds.

Proof: Across the left phase boundary the liquid pressure p∗L is uniquely
defined by the vapor pressure p∗V using Theorem 3.2.2. So far we assumed
the vapor left of the liquid phase. For the right phase boundary the opposite
is the case and thus we have to use the kinetic relation (3.35). Nevertheless
the results of the previous section remain unchanged and hence we obtain
the same function to determine the liquid pressure

p∗L = ϕ(p∗V) = ϕ(p∗∗V).

Hence the vapor pressures are equal. �

Taking into account that there are two phase boundaries and using the re-
sults obtained in the previous sections we can state the following theorem.

Theorem 3.4.6 (Solution of Isothermal Euler Equations for Two Vapor States
with Phase Transition). Consider the Riemann problem (3.1) - (3.2), (3.59) and
assume the nucleation criterion is satisfied. Let fz(p,WV− ,WV+ ) be given as

fz(p,WV− ,WV+ ) = f−(p,WV− ) + f+(p,WV+ ) + 2z ~v� + ∆u, ∆u = uV+ − uV− ,
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with the functions f− and f+ given by

f±(p,WV± ) =


√
−

�
p

�
~v�, p > pV± (Shock)∫ p

pV±

vV(ζ)
aV(ζ)

dζ, p ≤ pV± (Rarefaction)
.

Here z is given by (3.34) and ~v� = vL(ϕ(p))− vV(p). The function ϕ is implicitly
defined by (3.38). If there is a root fz(p∗,WV− ,WV+ ) = 0 with p0 < p∗ ≤ p̃, then
this root is the only one. Further this is the unique solution for the vapor pressures
p∗V = p∗∗V of the Riemann problem (3.1) - (3.2), (3.59). The liquid velocity u∗L is
given by

u∗L =
1
2

(uV+ + uV− ) +
1
2

( f+(p∗,WV+ ) − f−(p∗,WV− )).

By the previous results it is obvious that fz has at most one root. By
construction this root is the solution for the vapor pressure in the two star
regions, see Figure 3.6. The following results are completely analogue to
those obtained before for the two phase case.

Remark 3.4.7. Note that u∗V , u∗∗V with u∗V + u∗∗V = 2u∗L.

Theorem 3.4.8 (Sufficient Condition for Solvability I). Consider the Riemann
problem (3.1) - (3.2), (3.59). This problem is solvable without phase transition if
and only if

f (p̃,WV− ,WV+ ) ≥ 0.

Here f is given as in Theorem 3.4.1.

Proof: This statement is obvious due to the monotonicity of f . �

Theorem 3.4.9 (Sufficient Condition for Solvability II). Consider the Riemann
problem (3.1) - (3.2), (3.59) and assume the nucleation criterion is satisfied. Ac-
counting for phase transition, this problem is solvable if and only if

fz(p̃,WV− ,WV+ ) ≥ 0.

The function fz is defined as in Theorem 3.4.6.

Proof: Again the statement is obvious due to the monotonicity of fz. �
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3.4.2 Evaporation by Expansion

Now we consider the following Riemann initial data with ρL± ≥ ρmin
L

ρ(x, 0) =

 ρL− , x < 0
ρL+ , x > 0

and u(x, 0) =

 uL− , x < 0
uL+ , x > 0

. (3.60)

Hence initially we have a Riemann problem for a single liquid phase. We
have seen so far that at a planar phase boundary the liquid pressure is
always positive. However it is known that negative liquid pressures are
possible, cf. Davitt et al. [19] for water. This gives rise to cavitation in the
liquid phase. Again, in the liquid-vapor case a negative liquid pressure
is forbidden, see (3.41). Nevertheless in the liquid-liquid case we may
encounter negative liquid pressures. We define the smallest possible liquid
pressure to be pmin and with this definition we obtain the following result.

Theorem 3.4.10 (Solution of Isothermal Euler Equations for a Single Liquid
Phase). Let f (p,WL− ,WL+ ) be given as

f (p,WL− ,WL+ ) = f−(p,WL− ) + f+(p,WL+ ) + ∆u, ∆u = uL+ − uL− ,

with the functions f− and f+ given by

f±(p,WL± ) =


√
−

�
p

�
~v�, p > pL± (Shock)∫ p

pL±

vL(ζ)
aL(ζ)

dζ, p ≤ pL± (Rarefaction)
.

If there is a root f (p∗,WL− ,WL+ ) = 0 with pmin ≤ p∗, then this root is unique.
Further this is the unique solution for the pressure p∗L of the Riemann problem (3.1)
- (3.2), (3.60). The velocity u∗L is given by

u∗L =
1
2

(uL+ + uL− ) +
1
2

( f+(p∗,WL+ ) − f−(p∗,WL− )).

Remark 3.4.11. For simplicity we choose pmin = 0 but lower values are possible
and the theoretical results do not depend on the specific value of pmin.

Analogously to the case of nucleation we define the following.

Definition 3.4.12 (Cavitation Criterion). If there is no solution of the Riemann
problem (3.1) - (3.2), (3.60) according to Theorem 3.4.10, then cavitation may occur.
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If this criterion is fulfilled, we look for a solution involving a vapor
phase, two phase boundaries and two classical waves. Again we discuss
the possible patterns.

Lemma 3.4.13. Assume there is a solution of the Riemann problem (3.1) - (3.2),
(3.60) consisting of two classical waves and two phase boundaries. If the pressures
pL− , pL+ are sufficiently large then no wave travels through the vapor.

The proof is analogue to the one of Lemma 3.3.15.

Lemma 3.4.14. There is no solution of type (d) or (f); see Figure 3.5.

The proof of this lemma is analogue to the one of Lemma 3.4.4. Accord-
ingly we construct solutions of type (e), see Figure 3.7.

x

t

WL− W∗

L W∗

V W∗∗

L WL+

Figure 3.7: Wave pattern of type (e) with notation for the liquid case

Theorem 3.4.15 (Solution of Isothermal Euler Equations for Two Liquid
States with Phase Transition). Consider the Riemann problem (3.1) - (3.2),
(3.60) and assume the cavitation criterion is satisfied. Let fz(p,WL− ,WL+ ) be given
as

fz(p,WL− ,WL+ ) = f−(p,WL− ) + f+(p,WL+ ) + 2z ~v� + ∆u, ∆u = uL+ − uL− ,

with the functions f− and f+ given by

f±(p,WL± ) =


√
−

�
p

�
~v�, ϕ(p) > pL± (Shock)∫ ϕ(p)

pL±

vL(ζ)
aL(ζ)

dζ, ϕ(p) ≤ pL± (Rarefaction)
.
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Here z is given by (3.34) and ~v� = vL(ϕ(p))− vV(p). The function ϕ is implicitly
defined by (3.38). If there is a root fz(p∗,WL− ,WL+ ) = 0 with pmin ≤ p∗, then this
root is unique. Further this is the unique solution for the vapor pressures p∗V of the
Riemann problem (3.1) - (3.2), (3.60). The vapor velocity u∗V is given by

u∗V =
1
2

(uL+ + uL− ) +
1
2

( f+(p∗,WL+ ) − f−(p∗,WL− )).

Proof: Due to the previous results, the function fz has at most one root.
This root is by construction the solution for the vapor pressure in the star
region. �

Completely analogue to the condensation case, see Subsection 3.4.1, we
have the following results.

Theorem 3.4.16 (Sufficient Condition for Solvability I). Consider the Riemann
problem (3.1) - (3.2), (3.60). This problem is solvable without phase transition if
and only if

f (pmin,WL− ,WL+ ) ≤ 0.

Here f is given as in Theorem 3.4.10.

Proof: The statement is easily verified due to the monotonicity of f . �

Theorem 3.4.17 (Sufficient Condition for Solvability II). Consider the Riemann
problem (3.1) - (3.2), (3.60) and assume the cavitation criterion is satisfied. If we
admit phase transition, this problem is always solvable.

Proof: This statement is obvious due to the fact that z ~v� → −∞ for
p∗V → 0. �

3.5 Conclusion

3.5.1 Discussion of the Assumptions
In this part we now want to discuss the assumptions previously made to
solve the problem. Basically we have three types of requirements. First
there are the ones due to the underlying thermodynamics, in particular the
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first and second law of thermodynamics. Second there are conditions, one
needs to solve the single phase Riemann problem for the Euler equations.
The third type concerns the assumptions imposed to solve the two phase
problem. Note that the assumptions are sufficient, from a mathematical
point of view, to obtain the results presented throughout this work.

From a thermodynamic point of view we have first and foremost to sat-
isfy the first and second law of thermodynamics including the requirement
of thermodynamic stability (3.7). This is obtained by deriving the pressure
law from a suited thermodynamic potential.
The conditions imposed on the EOS in order to solve the (single phase)
Riemann problem for the Euler equations are

γ > 0, G > 0, v(p)
p→∞
→ 0, and v(p)

p→0
→ ∞

That we require the single phase Riemann problem to be solvable is of course
reasonable, since otherwise any further discussion would be unnecessary.
The conditions above are completely analogue to those stated in [60]. Note
that for any EOS where the speed of sound is a constant (such as in [37]) we
have G = 1. We want to point out that the aforementioned requirements of
type one and two are basically no new or additional assumptions since they
are already needed to treat the single phase case.

Since we are concerned with discussing the case of two phases it is rea-
sonable to assume that all single phase requirements are met and only a
few new ones need to be added. In order to solve the two phase Riemann
problem we need the additional assumptions (3.39) and (3.52).
The uniform upper bound for the quotient of the specific volumes basically
tells us how close we can get to the critical point, where the volumes would
become equal. The case of α = 1, i.e. we include the critical point where
the volumes become equal, is not considered here and has to be treated
separately.
The constant β bounds the quotient of the sound speeds and is only needed
to be strict smaller than 1/α.
The assumption on the lower bound of γV in (3.39) is a rather technical one.
Nevertheless if we assume τ to be as in (3.36) and consider the ideal gas
EOS for the vapor phase we have

1 = γV > τa3
V(1 − α)2 =

1
√

2π

( m
kT0

) 3
2

(1 − α)2a3
V =

(1 − α)2

√
2π

.
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Hence this bound is easily satisfied. If the sound speed of the vapor phase
would depend on the pressure one would have to check this requirement
more carefully. We further want to emphasize that apart from τ > 0 and
(3.39)3 we do not assume any particular shape or even magnitude of τ. This
is a further key point that contributes to the generality of our result.
The last requirement in (3.39) is concerned with the maximum vapor pres-
sure. Due to this bound the vapor is allowed to be compressed (depending
on α) with more than the saturation pressure. This allows metastable states,
which is reflected in the Maxwell construction. Here of course one has to
make sure that the maximum vapor pressure p̃ defined in Definition 1.4.1
satisfies this bound. This can be guaranteed by choosing an appropriate
temperature and also how the two EOS are connected by v̄(p) in Definition
1.4.1. Usually p̃ will only be slightly larger than the saturation pressure for
a wide range of temperatures.

Now we want to comment assumptions (3.52). Let us first consider γL.
Over wide temperature ranges we have γL ≥ 1 for many substances. For
example in Subsection 3.5.2 we consider the linear and nonlinear Tait EOS
for liquid water and for this type of EOS modeling water this is true up
to 636.165 K. A similar result can be obtained for the van der Waals EOS.
Above that temperature it is not possible to use the ideal (polytropic) gas
EOS together with such a liquid EOS, because it would contradict (3.52) (II).
Regarding case (II) we want to emphasize that for 1 > γL > γV the inequality
including α is trivial. In fact in numerical studies we exemplary obtained
that this property is also true for the van der Waals EOS up to ≈ 640 K.
Now we want to comment on ε(γV) in (3.53). Using the ideal gas or the
polytropic gas EOS gives γV = 1 and hence

ε0 := ε(1) = −τa3
V(1 − α)2

(
1 − (αβ)2

)
< 0.

We consider (3.52) (II) and have 1 + ε0/α < 0 over large temperature ranges.
Suppose this term becomes positive at high temperatures, it is however still
smaller than one. Whereas at the same time γL approaches one. Hence this
bound may be still valid. This of course has to be checked for any given
EOS.

3.5.2 Examples
Now we want to present several examples of choices for the equations of
state used to model the fluid under consideration, in this case water. First we
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will discuss the ideal gas EOS for the vapor phase and the (linear) Tait EOS
for the liquid phase as in [37]. For the ideal gas we obtain as in Proposition
1.3.9

pV(vV) =
kT0

mW

1
vV
, γV = 1, GV = 1. (3.61)

Here k is the Boltzmann constant, T0 is the fixed temperature and mW denotes
the mass of a single water molecule. Considering the liquid phase we obtain
as in Proposition 1.3.11

pL(vL) = p0 + K0

(v0

vL
− 1

)
, γL =

(
1 +

vL

K0v0
(p0 − K0)

)−1 K0≥p0

≥ 1, GL = 1.

(3.62)

The quantities with index zero are calculated at the saturation state corre-
sponding to T0. We further have the saturation pressure p0, the modulus of
compression K0 and the specific liquid volume v0, cf. [84]. Note that the rela-
tion K0 ≥ p0 breaks down for temperatures above 636.165 K (Tc = 647.096 K).
Both EOS are linear functions of the mass density and thus it is reasonable
to connect them with a linear function p̄. Hence we obtain the specific vol-
ume of the vapor phase corresponding to the maximum vapor pressure p̃
according to Definition 1.4.1 as the solution of the following equation

0 = K0v0 ln
v0

vm
+

ṽ
vm
− ṽ

kT0

mW
ln

ṽ
vm

+
kT0

mW
ln

vV(p0)
vm

. (3.63)

Here vm is chosen such that

vm =


v0

(
1 −

p0

K0

)−1
,T0 ≤ 620 K,

v0

(
1 +

Tc − T0

Tc

)
,T0 > 620 K.

Using (3.63) we can calculate the quotient vm/ṽ for every reasonable temper-
ature and thus obtainα and also β. Now we can check the assumptions given
in (3.39), (3.52). We have for temperatures up to 636.165 K the following

α . 0.1949, αβ . 0.5419,
1
γL
−

(
1 +

ε0

α

)
& 0.7484 and p̃ . 1.4825p0.

Thus all requirements are met as expected and the limiting factor here are
not the assumptions but the choice of the EOS.
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Remark 3.5.1. Note that in the isothermal case the linear Tait EOS is equivalent
to the stiffend gas EOS

pL(vL) = C(γ − 1)
T0

vL
− pc with C(γ − 1) =

K0v0

T0
and pc = K0 − p0.

As a second example we want to use the nonlinear Tait EOS instead of
the linear one, i.e.

pL(vL) = p0 + K0

((v0

vL

)ν
− 1

)
, ν > 1. (3.64)

Again we use the ideal gas EOS for the vapor phase. We obtain for the
nonlinear Tait EOS as in Proposition 1.3.11

γL = ν
(
1 +

(vL

v0

)ν ( p0

K0
− 1

))−1

> 1, GL =
ν + 1

2

and

vm =


v0

(
1 −

p0

K0

)− 1
ν

,T0 ≤ 620 K,

v0

(
1 +

Tc − T0

Tc

)
,T0 > 620 K.

Next with an approach analogue to the previous case we obtain ṽ as solution
of the following equation and then calculate p̃

0 = (p0 − K0)vm + K0v0 +
K0vν0
1 − ν

 1
vν−1

m
−

1
vν−1

0


+

vm

vm − ṽ
kT0

mW
ln

ṽ
vm

+
kT0

mW
ln

vV(p0)
ṽ

. (3.65)

We can use (3.65) to calculate the quotient vm/ṽ for every reasonable temper-
ature and thus obtain α and also β. Here we use ν = 7 as in [72]. We again
check the assumptions given in (3.39), (3.52) and obtain for temperatures up
to 636.165 K the following

α . 0.1645, αβ . 0.1818,
1
γL
−

(
1 +

ε0

α

)
& 0.7795 and p̃ . 1.2511p0.

Hence this choice of EOS is also suitable for solving this problem for tem-
peratures from 273.15 K up to 636.165 K. Again the limiting factor here are
not the assumptions but the choice of the EOS.
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3.5.3 Conclusion
The aim of the present work was to investigate the Riemann problem for the
isothermal Euler equations when liquid and vapor phases are present which
may condensate or evaporate. We proved that there exist unique solutions
under the given assumptions.To this end we allow any EOS which satisfies
these assumptions, especially nonlinear ones. This is a huge improvement
to the previous work [37] where only two specific linear EOS were chosen
to solve this problem. In contrast to this we for example allow the speed
of sound to depend on the pressure or volume instead of being constant.
Concerning [30] a key difference is that they focus on the van-der-Waals
EOS. Further they proof uniqueness in the case when G < 0 in the vapor
phase. Physically this implies that the vapor state lies in the metastable
region of the phase space. Furthermore we allow phase transitions where
the pressures are not in equilibrium as for example in [24]. Additionally we
can treat nucleation an cavitation. In view of the work by Hantke, T. [39] the
last point has to be emphasized. To our knowledge this is the most general
result concerning Riemann problems for isothermal two phase flows.
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4
Isothermal Case:

Numerical Solution of the
Riemann Problem

Introduction

In this chapter we want to present a numerical procedure for solving the
two phase flow problems presented in the previous Chapter 3. Thus we
rely on the framework introduced in Section 3.1 and the results obtained in
the subsequent Sections 3.2, 3.3 and 3.4. Just to give a brief summary, we
considered two phase flow problems including nucleation and cavitation.
The interface between the adjacent phases is given by a sharp interface
and the mass transfer is controlled using the kinetic relation (3.34). For
the principle aspects of the numerical treatment of hyperbolic conservation
laws we recommend the books of Kröner [50], LeVeque [56] and Toro [78]
and the references therein. Here our main focus is on the discussion of the
vapor/liquid interface. Since there the main difficulties will arise. Once we
solved this case, we can also deal with the cases of nucleation and cavitation.
This chapter is organized in the following way. First we summarize the
problem and point out the main challenges in Section 4.1. The numerical
method, with focus on the phase boundary, is introduced in Section 4.2. It is
most desirable to obtain a direct solver to omit costly iterations. Therefore
we suggest in Section 4.3 a direct calculation of the liquid pressure, in
terms of the vapor pressure, at the interface. In Section 4.4 we discuss the
numerical procedure in the case of cavitation and nucleation. We close this
chapter with the numerical test cases given in Section 4.5.
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4.1 Problem Formulation and Main Challenges

Let us briefly summarize the problem we want to solve. As in Chapter 3
we study inviscid, compressible and isothermal two phase flows. The two
phases are either the liquid or the vapor phase of one substance. The phases
are distinguished by the mass density ρ and further described by the velocity
u. Sometimes it is convenient to use the specific volume v = 1/ρ instead of
the mass density. We will make the reader aware of such situations. The
physical quantities depend on time t ∈ R≥0 and space x ∈ R. In regular
points of the bulk phases the fluid is described using the (one dimensional)
isothermal Euler equations (3.1) and (3.2) introduced in 2.4.2, i.e.

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p) = 0.

The Riemann initial data is given by (3.55)

ρ(x, 0) =

 ρV, x < 0
ρL, x > 0

and u(x, 0) =

 uV, x < 0
uL, x > 0

.

We have the jump conditions (3.3) and (3.4) across discontinuities�
ρ(u −W)

�
= 0,

ρ(u −W) ~u� +
�

p
�

= 0.

Furthermore every discontinuity satisfies the entropy inequality (3.5)

ρ(u −W)
�

g + ekin
�
≤ 0.

The quantity W is the speed of the discontinuity and Z = −ρ(u −W) the
mass flux where we will distinguish between a classical shock wave and the
phase boundary (non-classical shock)

Z =

Q, shock wave
z, phase boundary

and W =

S, shock wave
w, phase boundary

.

The pressure p is linked to the mass density ρ via the EOS. We have for
the mass density ρ ∈ Ωρ ⊆ (0,∞). This domain can be split into the liquid,
spinodal and vapor region, i.e. Ωρ = Ωliq∪Ωspin∪Ωvap. Accordingly the EOS
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consists of three corresponding parts, i.e. an EOS for the vapor phase, the
liquid phase and an intermediate part, see also Section 1.4. In the regular
phases the EOS has the properties discussed in Section 1.3 or Section 3.1.
As noted in Section 1.4 the (unphysical) intermediate part is characterized
by the relation (

∂p
∂v

)
T
> 0.

and thus the considered Euler system becomes elliptic inside this region.
We consider Riemann initial data which may be given as in (3.55), (3.59) or
(3.60). Beside the well known numerical problems of hyperbolic equations
(e.g. [56, 78]), we encounter further difficulties at a phase boundary. To solve
a PDE numerically one usually uses a discretisation of the domain called
mesh or grid. Then one may apply a finite difference approach and use the
point values at the grid points to approximate the solution. Alternatively
one may also use a finite volume approach where cell averages are used
instead of point values. We will use methods based on the latter one. The
averaging inside a cell causes the first problem, see Figure 4.1. Assume

phase boundary

tn
−∆x 0 ∆x

Ωvap Ωliq

ρn
i ρn

i+1

tn+1 = tn + ∆t
ρn+1

i

ρ1 ρ2

ρn+1
i+1 ∆x = w∆tρ1 + (∆x − w∆t)ρ2 ∈ Ωspin

Figure 4.1: Sketch of the situation leading a wrong average. At tn the densities are inside the
pure phases. At tn+1 the phase boundary has moved by w∆t and the averaged density ρn+1

i+1 is
now inside the spinodal region Ωspin.

that at some time t the position of the phase boundary coincides with a cell
boundary. In the (most likely) case that the phase boundary moves with
the velocity w , 0 the phase boundary will have traveled the distance w∆t

151



ISOTHERMAL CASE: NUMERICAL SOLUTION OF THE RIEMANN PROBLEM

after the time step ∆t. Thus the phase boundary will lie inside a cell. Now
averaging can lead to unphysical states in Ωspin and hence this will result in
a wrong solution.
The second crucial point is the calculation of the quantities inside the star
region. The quantities we want to determine are the values of the vapor
phase ρ∗V, v

∗

V, p
∗

V, the values of the liquid phase ρ∗L, v
∗

L, p
∗

L and the speed of
the phase boundary w. We would like to do this with sufficient accuracy,
yet minimizing the computational costs. Finally we need to determine the
correct flux (since we have two different phases) using the solution of the
Riemann problem.

4.2 Numerical Method

In this section we want to present the numerical method we use to solve
the stated problem in one space dimension. For compressible two phase
flows with a sharp interface and a pressure jump at the interface there is
not much literature available. A promising finite volume method for two
dimensions was recently presented in the work by Chalons et al. [14]. The
authors develop a conservative method which exactly resolves planar phase
boundaries. A feature that yet is missing is the ability to treat nucleation
and cavitation. Our method uses similar ideas in one space dimension and
is able to treat nucleation and cavitation. Further results may be found in
the works by Schleper [74] and Fechter et al. [31, 32]. For further literature
we refer to the references therein.

The key idea of our approach is to use Godunov’s method where the fluxes at
cell interfaces between cells with equal phase may be calculated with any
Riemann solver, see [78]. The flux at the phase boundary will be discussed
later on. Concerning the discretization we for now follow the presentation
and the notation given in [78]. The spatial domain [a, b] is discretized in N
cells Ii, i = 1, . . . ,N of uniform size ∆x with the cell boundaries xi− 1

2
, xi+ 1

2
and

the cell center xi, i.e.
Ii = [xi− 1

2
, xi+ 1

2
],

∆x = |Ii| = xi+ 1
2
− xi− 1

2
=

b − a
N

,

xi− 1
2

= (i − 1)∆x, xi =
(
i − 1

2

)
∆x

i = 1, . . . ,N. (4.1)
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The assumption of an uniform grid is just made for the sake of simplicity in
the introduction and is basically not needed. We discretize the time interval
[0,T] using variable time steps ∆t. The time step is restricted using the
CFL-condition

∆t ≤ CCFL
∆x

Sn
max
. (4.2)

The constant CCFL is the CFL-number which is usually chosen in (0, 1]. With
Sn

max we denote the maximum absolute wave speed obtained in every time
step during the numerical simulation. Given a function U(t, x) we calculate
the cell average inside the computational cell Ii at time tn as follows

Un
i =

1
|Ii|

∫ xi+ 1
2

xi− 1
2

U(tn, x) dx. (4.3)

Once all the cell averages are calculated the key idea of Godunov was to solve
the PDE by solving the Riemann problems at each cell boundary and use the
obtained solution to advance in time. This highlights the importance of Rie-
mann problems, since they are crucial building blocks in numerical methods
for hyperbolic problems. The self-similar solution of the Riemann problem
between the cells Ii−1 and Ii at xi−1/2 is given by Ui−1/2(t, x) = Ui−1/2(x/t).
Analogously we denote the solution at the right cell interface xi+1/2 between
the cells Ii and Ii+1 by Ui+1/2(x/t). The flux at xi−1/2 between the cells Ii−1
and Ii is denoted by Fi−1/2. Accordingly the flux at xi+1/2 between the cells Ii
and Ii+1 is denoted by Fi+1/2. Written in conservative form Godunov’s method
then reads

Un+1
i = Un

i −
∆t
∆x

[
Fi+ 1

2
− Fi− 1

2

]
, (4.4)

Fi+ 1
2

= F
(
Ui+ 1

2
(0)

)
. (4.5)

An important progress in the development of numerical methods was made
by the observation, that one does not have to solve the Riemann problem
exactly to obtain a numerical solution of the PDE. This led to a variety of
Riemann solvers which all try to retain as much structure as possible of
the exact solution. One common approach is to approximate the solution
Ui+1/2(0). Other methods directly compute an approximation of the flux
between the cells. However, both use (4.4) to obtain the solution in the
next time step. An overview can be found in the given literature and the
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references therein. In the case of a single phase Riemann problem we will
mainly use the HLL solver in this work, see [42, 78]. However, one may use
any standard Riemann solver away from the phase boundary1.

4.2.1 Grid Alignment and Adaption

We now want to comment on the first stated difficulty that we pointed out
in the context of two phase flows with a sharp interface. For this reason
we assume that we have constant cell values Un

i belonging to two different
phases and that the phase boundaries are aligned with the cell boundaries.
Let us focus on a single phase boundary moving at the velocity w , 0 located
at a certain xi0+1/2. As explained in Section 4.1 the phase boundary will lie
inside a cell at tn+1 = tn + ∆t and hence averaging will lead to unphysical
phase states. In order to avoid this situation we always align our grid to the
phase boundary. This changes the size of the cells and thus we have to deal
with different cell sizes. This is done in the following way. We move the cell
boundary according to the phase boundary, i.e. xi0+1/2 = xi0+1/2 + w∆t, see
Figure 4.2. Next we compare every cell to certain thresholds given by the

tn
Ii0

xi0+1/2 Ii0+1

tn+1

w∆talign grid
tn+1

Ii0

xi0+1/2 + w∆t

Ii0+1

Figure 4.2: Align grid to the new position of the phase boundary.

average cell size ∆xav := (b−a)/N and the two parameters ε1 and ε2. Now we
adjust the grid according to the following rules. If a cell fulfills ∆xi > ε1∆xav
the cell is too large and we split it into two. If a cell fulfills ∆xi < ε2∆xav the
cell is to small and we merge it with a neighbouring cell, if both belong to
the same phase. The cell values have to be updated accordingly. In the case
of nucleation and cavitation we may encounter small cells that must not be

1We also tested the exact Riemann solver and the Weighted Average Flux, see [78]
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merged with the neighbouring cells. How we deal with this situation will
be explained later on.

Since cell sizes may change in every time step, we need to adjust equa-
tion (4.4) so that it is still in conservative form. The result reads

Un+1
i =

∆xn
i

∆xn+1
i

Un
i −

∆t
∆xn+1

i

[
Fi+ 1

2
− Fi− 1

2

]
. (4.6)

with ∆xn
i and ∆xn+1

i being the cell sizes at the times tn and tn+1. One im-
mediately verifies that (4.6) reduces to (4.4) for constant cell sizes. Further
we calculate and update the time step as follows. The initial time step is
obtained by using

S0
max = max{|u − a|, |u + a|} and ∆t = CCFL

∆x0

S0
max
. (4.7)

Where the maximum is computed considering all cell values. As the com-
putation evolves we recalculate the time step as

∆xmin = min
i=1,...,N

{∆xi |∆xi ≥ ε2∆xav} ,

Sn
max = max

S
|S|,

∆t = CCFL
∆xmin

Sn
max

. (4.8)

It remains to discuss the case if a small cell of one phase is surrounded by
cells of the other phase and thus must not be merged with its neighbours.
This is the case when phase creation occurs 2. In this case we proceed as
follows. For cells with size ∆xi < ε2∆xav we apply a local time stepping method
as properly discussed by Müller and Stiriba [66]. We only need a simple
reduced version of the method presented in [66] and will briefly present the
used method in the following, see also Figure 4.3.
Let i0 be the index of the small cell. We then consider the triplet {Ui0−1,Ui0 ,Ui0+1}

and the corresponding quantities. Now we perform a time evolution start-
ing at tn with the small time steps ∆τ until the final time tn+1 = tn + ∆t. The

2It is further possible that this happens when two phase boundaries move towards each
other and the enclosed phase might vanish. This situation is not considered here and will be
discussed in the future.
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tn
Un

i0−1 Un
i0

Un
i0+1

τ1 = tn + ∆τ
Un,1

i0

τn0−1

Un,n0−1
i0

τn0 = tn+1
Un+1

i0−1 Un+1
i0

Un+1
i0+1

F
1

i0−1/2

F
n0−1

i0−1/2

F
1

i0+1/2

F
n0−1

i0+1/2

Figure 4.3: Simplified local time stepping for isolated small cells according to [66]

small cell is updated according to formula (4.6) with the time step ∆τ and
the fluxes F ν

i0±1/2 at the current time level τν = tn + ν∆τ with ν = 0, . . . ,n0

and τn0 = tn+1 3. We have

Un,ν+1
i0

=
∆xνi0

∆xν+1
i0

Un,ν
i0
−

∆τ

∆xν+1
i0

[
F
ν

i0+ 1
2
− F

ν
i0− 1

2

]
. (4.9)

The values of the neighbouring cells remain unchanged throughout the time
evolution. For the update of these (large) neighbouring cells we have to take
care of the fluxes at xi0−1/2 and xi0+1/2. According to [66] this is done in the
following way. At tn we calculate the fluxes Fi0±1/2 as usual. At every further
time level we update these fluxes as follows

Fνi0±1/2 = Fν−1
i0±1/2 +

∆τ
∆t
F
ν

i0±1/2, ν = 1, . . . ,n0.

The fluxes obtained at the end of the evolution of the small cell may then be
used in (4.6) to advance the neighbouring cells from tn to tn+1.

3 A common choice is to choose ∆τ = 2−n0 ∆t such that the CFL-condition on the fine level is
satisfied, see [66].
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4.2.2 Solution at the Interface

In the following we want to discuss the solution at the phase boundary.
Therefore we rely on the results presented in the previous Chapter 3. The
solution of the two phase Riemann problem consists of three waves, sepa-
rating four constant states. In particular we are searching the values in the
star region, i.e. ρ∗V, p

∗

V,u
∗

V in the vapor phase, ρ∗L, p
∗

L,u
∗

L in the liquid phase
and the velocity w of the phase boundary or the mass flux z. The pressure
and the density inside each phase are not independent from each other due
to the EOS given for the particular phase. Further we know that the pres-
sures at the interface are uniquely linked using equation (3.38), see Theorem
3.2.2. The mass flux is given by the kinetic relation (3.34)

z = τpV

�
g + ekin

�
= τpV

[
gL − gV + ekin

L − ekin
V

]
.

Thus according to Theorem 3.3.8 we have to solve the following system for
(p∗V, p

∗

L) to obtain the complete solution

0 = G(p∗V, p
∗

L) =

( �
p

�
+ z2 ~v�

fV(p∗V,WV) + fL(p∗L,WL) + z ~v� + ∆u

)
. (4.10)

The quantities in the second component are given as in Theorem 3.3.8, with
the slight difference that we now explicitly use the liquid pressure. For the
sake of completeness the Jacobian reads

DG(p∗V, p
∗

L) = . . .
−1 + 2z

∂z
∂p∗V
~v� + z2

(
v∗V
a∗V

)2

1 + 2z
∂z
∂p∗L
~v� − z2

(
v∗L
a∗L

)2

d
dp∗V

fV(p∗V,WV) +
∂z
∂p∗V
~v� + z

(
v∗V
a∗V

)2 d
dp∗L

fL(p∗L,WL) +
∂z
∂p∗L
~v� − z

(
v∗L
a∗L

)2

 .
(4.11)

The derivatives of the classical wave functions are given as in Subsection
3.1.2 and the derivatives of the kinetic relation are as in Section 3.2.
Once we have determined the pressures we can calculate the densities via
the corresponding EOS, the mass flux z via the kinetic relation, the velocities
via the wave relations for the classical waves and the velocity of the phase
boundary using the definition of the mass flux z = −ρ(u − w). Since we
always align the computational grid with the phase boundary we have to
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use the corresponding flux when we apply (4.6). The flux at the phase
boundary is determined using the jump conditions (3.3) and (3.4). These
may be rewritten as

ρ∗V(u∗V − w) = ρ∗L(u∗L − w) = −z,
−zu∗V + p∗V = −zu∗L + p∗L.

Thus we directly see the flux across the phase boundary, i.e.

FPB =

[
−z

−zu∗ + p∗

]
. (4.12)

Here one has the freedom to choose either the vapor or the liquid star state
values.

So far we have discussed the case with phase transition. The case with-
out phase transition is obtained using z = 0, which then implies

�
p

�
= 0

and ~u� = 0. Thus we have to solve the single nonlinear equation given in
Theorem 3.3.5. The flux is given by

FPB =

[
0
p∗

]
. (4.13)

Further one immediately verifies that in this case the phase boundary is
quite analogue to a contact discontinuity. Therefore we use in our numerical
simulations, for the case without phase transition, the wave speed estimates
for the HLLC solver as given in [6, 78]. Given the (left) vapor state and the
(right) liquid state we proceed as follows

SL = uL + aL,

SV = uV − aV, (4.14)

w =
pL − pV + ρVuV(SV − uV) − ρLuL(SL − uL)

ρV(SV − uV) − ρL(SL − uL)
,

ρ∗L = ρL
SL − uL

SL − w
.

Here SV and SL denote the velocities of the classical waves. The density
is calculated according to the HLLC solver as presented in [77, 78]. The
pressure p∗ may then be calculated using the liquid EOS. This procedure
gives satisfactory results.
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Due to the results in the previous chapter, especially Corollary 3.3.11, we
use this simple calculation to choose proper initial pressure values for the
Newton iteration in the case with phase transition.

4.3 Approximate Calculation of the Liquid Pres-
sure

When we need to solve the Riemann problem at the phase boundary, we
have to calculate the pressures in the star region by solving the nonlinear
system (4.10). In numerical simulations this has to be done in every time
step for possibly multiple phase boundaries. In the case without phase
transition we remarked that it is possible to adapt the HLLC solver. This
is a non-iterative Riemann solver which calculates the flux directly without
any iteration. For one phase problems non-iterative Riemann solvers are
widely used and very advanced, see [78]. The ultimate goal would be to
give a reliable (and fast) non-iterative Riemann solver for the two phase
Riemann problem. However, due to the presence of the phase boundary
the situation is more complicated. Just to give an example, it is possible
that the solution structure for one set of initial data may differ between the
cases with and without phase transition. Thus it is not possible to easily
predict the solution in the case with phase transition from the knowledge
of the solution for the case without phase transition.

Nevertheless, we want to show that it is possible to reduce the system
(4.10) to a single nonlinear equation by using a suited approximation of
equation (3.38) �

p
�

+ z2 ~v� = 0.

However, we demand that the approximated liquid pressure also satisfies
the properties given in Theorem 3.2.2, i.e.

(i) pL = pV ⇔ pL = pV = p0,

(ii) pV < pL for pV , p0,

(iii) pL is a strictly monotone increasing function of pV.
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The key idea is to approximate (3.40) using a polynomial of second order at
pL = p0, i.e.

h(pV, pL) := τ
�

g −
1
2

p(vL + vV)
�

= τ
[
gL(pL) − gV(pV) −

1
2

(pL − pV)(vL(pL) + vV(pV))
]
,

f (pV, pL) :=
�

p
�

+
(
pVh(pV, pL)

)2 ~v� ,

f̃ (pV, pL) := f (pV, p0) + ∂pL f (pV, p0)(pL − p0) +
1
2
∂2

pL
f (pV, p0)(pL − p0)2. (4.15)

For a suited p between pL and p0 we have

f (pV, pL) = f̃ (pV, pL) +
1
6
∂3

pL
f (pV, p)(pL − p0)3.

Since (4.15) describes a quadratic polynomial in pL we can directly calculate
the two possible solutions of 0 = f̃ (pV, pL)

ϕ̃±(pV) = p0 −
∂pL f (pV, p0)

∂2
pL

f (pV, p0)
±

√√√√√√(
∂pL f (pV, p0)

)2
− 2 f (pV, p0)∂2

pL
f (pV, p0)(

∂2
pL

f (pV, p0)
)2 .

(4.16)

Now there are three main tasks we have to deal with

(i) verify the correct root,

(ii) show that this root is well defined for all allowed temperatures and
vapor pressures and

(iii) prove that the solution has the demanded properties.

The calculations for these questions are very technical and they quickly get
out of hands. Therefore all the detailed calculations and derivatives which
are needed here are given in the Appendix 9.2.
We start with the first question and determine the correct solution. This will
be done by verifying the condition p0 = ϕ̃±(p0). We obtain the following

f (p0, p0) = 0, ∂pL f (p0, p0) = 1 and ∂2
pL

f (p0, p0) = 2
(
p0∂pL h(p0, p0)

)2
~v� < 0.
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4.3. APPROXIMATE CALCULATION OF THE LIQUID PRESSURE

Inserting this into (4.16) gives

ϕ̃±(p0) = p0 −
1

∂2
pL

f (pV, p0)
±

√√
1(

∂2
pL

f (pV, p0)
)2 .

Since ∂2
pL

f (p0, p0) is negative the correct solution is given by ϕ̃−(p0) = p0.
Thus we write from now on

ϕ̃(pV) := p0 −
∂pL f (pV, p0)

∂2
pL

f (pV, p0)
−

√√√√√√(
∂pL f (pV, p0)

)2
− 2 f (pV, p0)∂2

pL
f (pV, p0)(

∂2
pL

f (pV, p0)
)2 .

(4.17)

Since the proof of the next two questions remains open, we briefly want to
summarize the arguments that strongly suggest that these questions may
be answered positively.
To show that the function (4.17) is well defined, we basically have to show
that the appearing quotients depending on pV are well defined. Numerical
results strongly suggest that ∂2

pL
f (pV, p0) < 0, see Figure 4.4.
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Figure 4.4: ∂2
pL

f (pV , p0) for different temperatures and EOS for the liquid phase.
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Thus it remains to show that

d(pV) :=
(
∂pL f (pV, p0)

)2
− 2 f (pV, p0)∂2

pL
f (pV, p0) > 0. (4.18)

Again, numerical tests indicate that d(pV) > C > 0, see Figure 4.5. Finally
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Figure 4.5: d(pV) for different temperatures and EOS for the liquid phase.

we have to verify that the properties of ϕ(pV) given in Theorem 3.2.2 also
hold for the approximation (4.17). This has to be done for all allowed
temperatures and the corresponding vapor pressure pV ∈ (0, p̃]. Here p̃
is again the maximum vapor pressure at T0 as defined in Chapter 3. The
condition p0 = ϕ̃(p0) is met as shown above. Further it is possible to prove
that

lim
pV→0

ϕ̃(pV) = 0 (4.19)

given that the EOS for the vapor phase is the ideal gas EOS4. The details are
given in the Appendix 9.2. Further we have to show that pL = ϕ̃(pV) > pV

4This is a purely mathematical consideration. Physically it needs to be discussed what
really happens in the isothermal limit pV → 0.
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for pV , p0. In view of the previous statements we suggest to investigate
f̃ (pV, pV) and prove that it is negative for all pV , p0. Since (4.15) is (presum-
ably) concave in pL this would be sufficient. Finally we need to prove the
monotonicity ϕ̃′(pV) > 0. Due to the complexity, mostly caused by the high
number of appearing terms, this is far from being solved. Nevertheless,
numerical results again suggest that monotonicity holds. In Figures 4.6, 4.7
and 4.8 we present the function for the liquid pressure (4.17), the difference
pL(pV) − pV and the relative error with respect to the solution obtained by
solving (3.38) with a tolerance of εtol = 10−9. From these results we see
that the desired properties given in Theorem 3.2.2 hold. Let us finally
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Figure 4.6: Results for the stiffened gas EOS at T0 = 363.15 K.

remark that altogether it is more likely to prove these results if the ideal
gas EOS is used for the vapor phase. In particular when it is used together
with a linear EOS for the liquid phase. Many of the difficulties arise when
pV is close to zero. Therefore we also recommend to first try to prove the
desired results for pV > p̄. A detailed choice has to be carefully discussed,
but in our experience most problems already vanished for p̄ = 1 Pa. For
applications higher thresholds may also be possible, e.g. p̄ = 100 Pa, which
is approximately one sixth of the saturation pressure at 273.15 K.
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Figure 4.7: Results for the linear Tait EOS at T0 = 473.15 K.
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Figure 4.8: Results for the non-linear Tait EOS at T0 = 473.15 K.
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4.4. PHASE CREATION

4.4 Phase Creation

The case of phase creation is a challenging issue since we not only have
to detect when phase creation occurs. Further we also have to deal with
technical problems like the creation of new cells which in most cases are
very small and of course with multiple phase boundaries.

4.4.1 Cavitation

When we encounter a liquid/liquid Riemann Problem we may observe cav-
itation, i.e. the creation of vapor. The detailed analysis is presented in
Subsection 3.4.2. In view of the results given there in Theorem 3.4.10, Def-
inition 3.4.12 and Theorem 3.4.15 the main outline for the numerics is as
follows. We solve the single phase Riemann Problem in the liquid phase. If
there is no solution to this problem, in particular when the liquid pressure
in the star region is smaller than the predefined minimum liquid pressure,
p∗ < pmin, we have cavitation. In this case we store the position of the in-
volved cells and perform an extra calculation. Summarized the performed
steps are as follows:

(i) Solve the single phase Riemann problem, if p∗ < pmin cavitation occurs.

(ii) Solve the single phase Riemann problem according to Theorem 3.4.15.5

(iii) From the solution we obtain p∗V, z, wle f t and wright.

(iv) Create a vapor cell of size (wright − wle f t)∆t with the cell values ρ∗V, p∗V
and u∗V.

(v) The fluxes at the phase boundaries are given by

F(le f t)
PB =

[
z

−zu∗V + p∗V

]
and F(right)

PB =

[
−z

−zu∗V + p∗V

]
. (4.20)

In the next time step we then have two phase boundaries which are treated
as discussed in Section 4.2.

5For the solution one may also use the approximation presented in Section 4.3
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4.4.2 Nucleation
The case of nucleation is treated analogous to the previous case of cavita-
tion. When we encounter a vapor/vapor Riemann Problem we may observe
nucleation, i.e. the creation of liquid. The detailed analysis is presented
in Subsection 3.4.1. In view of the results given there in Theorem 3.4.1,
Definition 3.4.2 and Theorem 3.4.6 the main outline for the numerics is as
follows. We solve the single phase Riemann Problem in the vapor phase.
If there is no solution to this problem, i.e. when the vapor pressure in the
star region is greater than the predefined maximum vapor pressure, p∗ > p̃,
we have nucleation. In this case we store the position of the involved cells
and perform an extra calculation. Summarized the performed steps are as
follows:

(i) Solve the single phase Riemann problem, if p∗ > p̃ nucleation occurs.

(ii) Solve the single phase Riemann problem according to Theorem 3.4.6

(iii) From the solution we obtain p∗L, z, wle f t and wright.

(iv) Create a liquid cell of size (wright − wle f t)∆t with the cell values ρ∗L, p∗L
and u∗L.

(v) The fluxes at the phase boundaries are given by

F(le f t)
PB =

[
−z

−zu∗L + p∗L

]
and F(right)

PB =

[
z

−zu∗L + p∗L

]
(4.21)

Again, in the next time step we then have two phase boundaries which are
treated as discussed in Section 4.2. Especially in the case of nucleation it
is important to not that the created cells are usually very small (e.g. seven
orders of magnitude) compared to the other cells. Thus the local time
stepping presented in Section 4.2 is very much needed to avoid too small
time steps in the whole computational domain. We will again comment on
this in the following Section 4.5

4.5 Numerical Examples

In this section we want to present and discuss examples of two phase flow
problems as discussed in the previous Sections 4.2 and 4.4. As before we
will first discuss cases with two phase initial data followed by examples
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exhibiting nucleation and cavitation. All the results of the numerical calcu-
lations are compared to the solution of the Riemann problem obtained with
Newtons method using the tolerance εtol = 10−9. More precisely, since in
some cases the standard Newton method failed to converge, we used the
Newton-Armijo method as presented in Kelley [49]. The saturation pressure
is calculated using the steam tables [84]. In order to distinguish the phases
we proceed according to the examples in Section 3.5, see equations (3.63)
and (3.65). If not stated otherwise we used the exact solution of the Riemann
problem at the phase boundary in our numerical calculations 6. Using this
approach we obtained satisfactory results.

4.5.1 Two Phase Initial Data

Here we present examples for initial two phase data. Therefore we use the
data given in [37].

Example 1

The first example is given by the initial data as given in Table 4.1 and
corresponds to Example 1 in [37]. The following computation was performed

pV uV pL uL

Initial Data 2300 Pa −100 m
s 1000 Pa 100 m

s

T0 p0

Saturation Values 293.15 K 2339.215Pa

Table 4.1: Initial Data - Example 1

6There are mainly two reasons why we omit a presentation of numerical examples using
the approximation for the liquid pressure (4.17). First there where only very small quantitative
differences in the solution, compared to the case with the exact Riemann solution at the
phase boundary, for the considered pressure and temperature ranges. This emphasizes the
conjectured accuracy of the approximation as it also can be seen in the given figures. Further
we obtained no significant speed up of our calculations. These reasons, together with the fact
that we have no analytical proof for the correctness of the approximation, led to the decision
to only present examples with the exact Riemann solution at the phase boundary. However,
the interest in a reliable and fast non-iterative Riemann solver at the phase boundary remains
and the approximation may be a first step in this direction.
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with the linear Tait EOS and the parameters

∆t = 2.850985 · 10−6 s, ∆x0 = 0.5 · 10−2 m, CCFL = 0.9,

tend = 10−3 s and x ∈ [−2, 2] m.

The size of the time step is calculated as given in (4.7), (4.8) and we calculated
497 time steps. The phases are distinguished using the values given in Table
4.2. In Figure 4.9 the numerical results for the case with phase transition are

p̃ ρ̃ pmin ρmin

2339.618586 Pa 0.017293 kg
m3 0 Pa 998.176933 kg

m3

Table 4.2: Maximum vapor pressure and corresponding quantities for the linear Tait EOS
together with the ideal gas EOS at T0 = 293.15 K

shown. For the numerical solution we used the HLL solver as in [78]. The
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Figure 4.9: Solution - Example 1: magenta: initial data, red: exact solution, blue: numerical
solution; wave structure: rarefaction wave (blue), phase boundary (red) and shock wave
(green)

values in the star region are given in Table 4.3.
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vapor p∗V uV∗

exact 1561.366723 Pa 42.475926 m
s

numerical 1559.901001 Pa 42.347724 m
s

liquid p∗L u∗L
exact 1599.555352 Pa 100.000406 m

s

numerical 1598.226735 Pa 100.000405 m
s

Table 4.3: Solution Data - Example 1

Example 2

The initial data for the second example is given in Table 4.4 and corresponds
to Example 2 in [37]. The following computation was performed with the

pV uV pL uL

Initial Data 60000 Pa −200 m
s 100000 Pa −50 m

s

T0 p0

Saturation Values 473.15 K 1554671.86827Pa

Table 4.4: Initial Data - Example 2

linear Tait EOS and the parameters

∆t = 3.769159 · 10−6 s, ∆x0 = 0.5 · 10−2 m, CCFL = 0.9,

tend = 10−3 s and x ∈ [−2, 2] m.

The time step is calculated as given in (4.7) and (4.8). We calculated 373
time steps. The phases are distinguished using the values given in Table
4.5. In Figure 4.10 the numerical results for the case with phase transition

p̃ ρ̃ pmin ρmin

1606360.89173 Pa 7.356189 kg
m3 0 Pa 863.494296 kg

m3

Table 4.5: Maximum vapor pressure and corresponding quantities for the linear Tait EOS
together with the ideal gas EOS at T0 = 473.15 K

are shown. For the numerical solution we used the HLL solver as in [78].
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Figure 4.10: Solution with Phase Transition - Example 2: magenta: initial data, red: exact
solution, blue: numerical solution; wave structure: two shock waves (green), phase boundary
(red)

The values in the star region are given in Table 4.6. Note that for this

vapor p∗V uV∗

exact 106525.049799 Pa −471.944614 m
s

numerical 106010.212128 Pa −472.609211 m
s

liquid p∗L u∗L
exact 193463.627097 Pa −49.905389 m

s

numerical 192800.859460 Pa −49.906060 m
s

Table 4.6: Solution Data - Example 2

example the wave structure changes between the cases with and without
phase transition, see exemplary Figure 4.11.
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Figure 4.11: Solution without Phase Transition - Example 2: magenta: initial data, red: exact
solution, blue: numerical solution; wave structure: rarefaction wave (blue), phase boundary
(red), shock wave (green)

4.5.2 Phase Creation

Example 3

The third example is a nucleation test case with the initial data as given in
Table 4.7 and it corresponds to Example 3 in [37]. The following computation

p−V u−V p+
V u+

V

Initial Data 70000 Pa 2.7 m
s 70000 Pa −2.7 m

s

T0 p0

Saturation Values 363.15 K 70182.360745 Pa

Table 4.7: Initial Data - Example 3

was performed with the linear Tait EOS and the parameters

∆t = 1.091991 · 10−5 s, ∆x0 = 0.5 · 10−2 m, CCFL = 0.9,

tend = 10−3 s and x ∈ [−2, 2] m.

171



ISOTHERMAL CASE: NUMERICAL SOLUTION OF THE RIEMANN PROBLEM

The time step is calculated as given in (4.7) and (4.8). The phases are
distinguished using the values given in Table 4.8. It is important to note,

p̃ ρ̃ pmin ρmin

70388.660656 Pa 0.419977 kg
m3 0 Pa 965.289008 kg

m3

Table 4.8: Maximum vapor pressure and corresponding quantities for the linear Tait EOS
together with the ideal gas EOS at T0 = 363.15 K

that we connected the EOS linearly with respect to the density. If we instead
connect the two EOS linearly with respect to the volume no nucleation
would occur, due to a larger value of p̃, see Table 4.9. To calculate these
quantities we use Definition 1.4.1 with vm = vL(pmin) = 1/ρmin

0 = p0
(
v0,V − v0,L

)
− . . .

−

(∫ vm

v0,L

pL(v) dv +
1
2
(
pV(ṽ) + pmin

)
(ṽ − vm) +

∫ v0,V

ṽ
pV(v) dv

)
. (4.22)

Once the EOS for the liquid and the vapor phase are specified, equation
(4.22) can be solved for ṽ. Figure 4.12 shows the numerical results for the

p̃ ρ̃ pmin ρmin

115702.332624 Pa 0.690343 kg
m3 0 Pa 965.289008 kg

m3

Table 4.9: Alternative maximum vapor pressure and corresponding quantities for the linear
Tait EOS together with the ideal gas EOS at T0 = 363.15 K

case with phase transition. For the numerical solution we used the HLL
solver as in [78]. Note for the wave structure, that the phase boundaries are
so close that they cannot be distinguished in the given picture. The values
are

wleft/right = ±0.000203
m
s

and thus (wright − wle f t) · tend = 4.06 · 10−7 m.

The values in the star region 7 for the pressure are given in Table 4.10. The

7Note that due to numerical errors there is a small difference of ∆p ≈ 7.95 · 10−4 Pa in the
vapor pressures in the star region. This difference is negligible with respect to the magnitude
of the present vapor pressure.
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(a) magenta: initial data, red: exact solution, blue: numerical solution; wave structure: shock
waves (green) and phase boundaries (red)
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(b) Detailed zoom for the pressure; red: exact solution,
blue: numerical solution

Figure 4.12: Solution - Example 3

p∗,−V p∗L p∗,+V

exact 70383.024449 Pa 70383.115685 Pa 70383.024449 Pa
numerical 70383.019144 Pa 70383.110613 Pa 70383.019939 Pa

Table 4.10: Solution Data (Pressure) - Example 3

values for the velocity in the star region8 are given in Table 4.11. To treat

8As for the pressures we have a small difference of order 10−6 in the absolute values of the
vapor velocities in the star region.
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u∗,−V u∗L u∗,+V

exact 0.466005 m
s 0 m

s −0.466005 m
s

numerical 0.465993 m
s −0.223424 · 10−5 m

s −0.465997 m
s

Table 4.11: Solution Data (Velocity) - Example 3

the nucleation case we apply the local time stepping as presented before
in Section 4.2, see equation (4.9) and Figure 4.3. The cell size of the liquid
phase after it is created is

∆xL = 4.429422 · 10−9 m.

Together with a local CFL-number of CCFL = 0.5 this leads to an initial local
time step of the size ∆τ = 5.4004 · 10−12 s. Hence we have ∆τ/∆t ≈ 5 · 10−7.
For the first time step a total of 5093567 local time steps were performed 9.

Example 4

Next we present examples exhibiting cavitation. The initial data for example
four is given in Table 4.12 and it corresponds to Example 4 in [37]. The

p−L u−L p+
L u+

L

Initial Data 60000 Pa −40 m
s 60000 Pa 40 m

s

T0 p0

Saturation Values 363.15 K 70182.360745 Pa

Table 4.12: Initial Data - Example 4

following computation was performed with the linear Tait EOS and the
parameters

∆t = 2.961190 · 10−6 s, ∆x0 = 0.5 · 10−2 m, CCFL = 0.9,

tend = 10−3 s and x ∈ [−2, 2] m.

9The calculation time of a simulation until tend = 10−3 s is about 641514.65 s ≈ 7.5 d. For the
simulation until tend = ∆t ≈ 2 · 10−5 s the calculation took 31828.89637 s ≈ 9 h. Both calculation
times were obtained with Matlab 2017a running on a 64-Bit Linux OS with a Intel R© Xeon R©

CPU E5-2650 v4 with 2.20 GHz.
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The time step is calculated as given in (4.7) and (4.8). The phases are
distinguished using the values given in Table 4.8. The numerical results
are presented in Figure 4.13 and we performed 476 time steps. For the
numerical solution we used the HLL solver as in [78]. Note for the wave
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Figure 4.13: Solution - Example 4: magenta: initial data, red: exact solution, blue: numerical
solution; wave structure: rarefaction waves (blue) and phase boundaries (red)

structure, that the head and tail speeds of the rarefaction waves are so close
that they cannot be distinguished in the given picture. The values are

S±head = ±1519.659189
m
s
, S±tail = ±1519.655820

m
s

and∣∣∣S±head − S±tail

∣∣∣ = 0.003369
m
s
.

The values in the star region 10 for the pressure are given in Table 4.13. The
values for the velocity in the star region 11 are given in Table 4.14. To treat

10Note that, as in the nucleation case, due to numerical errors there is a small difference
in the liquid pressures in the star region. Thus there are also different values for the vapor
pressure. In Table 4.13 we give the vapor pressure at the left phase boundary, the value at the
right phase boundary is p∗V = 54666.652586 Pa. Hence the difference is ∆p∗V ≈ 8.2 · 10−5 Pa and
thus it is negligible compared to the magnitude of the present pressure values.

11Similar to the pressure we have the following precise values for the left velocities u∗,−L =

−39.996631478095608 m
s and u∗,−V = 0.1223002731 · 10−5 m

s . On the right side we have u∗,+L =

39.996631476453331 m
s and u∗,+V = −0.229005314 · 10−6 m

s .
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p∗,−L p∗V p∗,+L

exact 55188.614355 Pa 54666.652641 Pa 55188.614355 Pa
numerical 55188.613219 Pa 54666.652668 Pa 55188.612945 Pa

Table 4.13: Solution Data (Pressure) - Example 4

u∗,−L u∗V u∗,+L

exact −39.996631 m
s 0 m

s 39.996631 m
s

numerical −39.996631 m
s 0.122300 · 10−5 m

s 39.996631 m
s

Table 4.14: Solution Data (Velocity) - Example 4

the cavitation case we also used the local time stepping as presented before
in Section 4.2, see equation (4.9) and Figure 4.3. However, compared to the
nucleation case the cell size of the vapor phase after it is created is much
larger, i.e.

∆xV = 2.369553 · 10−4 m.

During the simulation the local time stepping was applied 11 times with a
total of 97 small time steps.

Example 5

Corresponding to Example 5 in [37] we present another example exhibiting
cavitation. The initial data for example five is given in Table 4.15 The

p−L u−L p+
L u+

L

Initial Data 30000 Pa −20 m
s 40000 Pa 30 m

s

T0 p0

Saturation Values 363.15 K 70182.360745 Pa

Table 4.15: Initial Data - Example 5

following computation was performed with the linear Tait EOS and the
parameters

∆t = 2.980805 · 10−6 s, ∆x0 = 0.5 · 10−2 m, CCFL = 0.9,

tend = 10−3 s and x ∈ [−2, 2] m.
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The size of the time step is calculated as given in (4.7), (4.8) and we performed
492 time steps. Further the local time stepping was applied 19 times with a
total of 180 small time steps. The phases are distinguished using the values
given in Table 4.8. The numerical results are presented in Figure 4.14. Here
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(a) magenta: initial data, red: exact solution, blue: numerical solution; wave structure: shock
waves (green) and phase boundaries (red)
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(b) Detailed zoom for the pressure; red: exact solution,
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Figure 4.14: Solution - Example 5

we have exemplary used the Weighted Average Flux solver together with the
van Leer limiter as in [78]. The values in the star region for the pressure are
given in Table 4.1612. The values for the velocity in the star region are given

12As before there is a negligible difference in the numerical solution.
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p∗,−L p∗V p∗,+L

exact 60319.800508 Pa 60095.298565 Pa 60319.800508 Pa
numerical 60319.798929 Pa 60095.298292 Pa 60319.799085 Pa

Table 4.16: Solution Data (Pressure) - Example 5

in Table 4.17.

u∗,−L u∗V u∗,+L

exact −20.021227 m
s 4.996499 m

s 30.014226 m
s

numerical −20.021227 m
s 4.996599 m

s 30.014226 m
s

Table 4.17: Solution Data (Velocity) - Example 5

Example 6

Example six is a modified version of example RP-H5 given in [24]. The
initial data is given in Table 4.18 The following computation was performed

p−L u−L p+
L u+

L

Initial Data 2 · 106 Pa −100 m
s 2 · 106 Pa 100 m

s

T0 p0

Saturation Values 437.310570 K 686358.293543 Pa

Table 4.18: Initial Data - Example 6

with the non-linear Tait EOS and the parameters

∆t = 1.291544 · 10−6 s, ∆x0 = 0.5 · 10−2 m, CCFL = 0.9,

tend = 5 · 10−4 s and x ∈ [−2, 2] m.

The time step is calculated as given in (4.7) and (4.8). The phases are
distinguished using the values given in Table 4.19. The numerical results
are presented in Figure 4.15 and 542 time steps were calculated. The local
times stepping was applied 11 times with a total of 89 small time steps. Here
we again used the HLL solver as in [78]. Again, the head and tail velocities
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p̃ ρ̃ pmin ρmin

698572.308554 Pa 3.461226 kg
m3 0 Pa 903.301343 kg

m3

Table 4.19: Maximum vapor pressure and corresponding quantities for the non-linear Tait EOS
together with the ideal gas EOS at T0 = 437.31057 K
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Figure 4.15: Solution - Example 6

of the rarefaction waves are very close to each other, as for example four.
In the non-isothermal test case given in [24] the authors obtained the same
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wave structure. The values in the star region for the pressure are given in
Table 4.20. The values for the velocity in the star region are given in Table

p∗,−L p∗V p∗,+L

exact 402391.182216 Pa 383546.060043 Pa 402391.182216 Pa
numerical 402391.178337 Pa 383546.056347 Pa 402391.180740 Pa

Table 4.20: Solution Data (Pressure) - Example 6

4.21. In Figure 4.16 we compare the solution for the pressure for different

uL∗,− u∗V uL∗,+

exact −99.477325 m
s 0 m

s 99.477325 m
s

numerical −99.477325 m
s 0.540292690 · 10−6 m

s 99.477325 m
s

Table 4.21: Solution Data (Velocity) - Example 6

liquid EOS. The solution structure remains qualitatively the same and the
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Figure 4.16: Solution (Pressure) - Example 6: linear Tait (blue), non-linear Tait (red), stiffened
gas (green)

.

values in the star region are barely distinguishable from another, see Table
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4.22. The main difference between the three solutions is due to the different
sound speeds which affect the rarefaction waves.

p∗,−L p∗V p∗,+L

linear Tait 403994.450631 Pa 385384.272078 Pa 403994.450631 Pa
non-linear Tait 402391.182216 Pa 383546.060043 Pa 402391.182216 Pa
stiffened gas 403223.628793 Pa 384595.762922 Pa 403223.628793 Pa

Table 4.22: Solution Data (Pressure) for different EOS - Example 6
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Introduction

The third part of this work deals with the case of non-isothermal two phase
flows. In particular we focus on models that rely on the adiabatic (i.e. q ≡ 0)
Euler equations presented in Section 2.4. Again this topic is related to the
work by Hantke et al. [37] for the isothermal case. As mentioned in the
second part several questions arise from [37]. In the previous part we al-
ready discussed and answered the questions whether a generalization to
arbitrary equations of state is possible and how the problem can be treated
numerically. Another quite natural question, at least from a mathematical
point of view, is if similar results can be obtained in the case of the full Euler
system (2.63) - (2.65) 13.

As pointed out before the modeling of such processes is a challenge. The
description of the interface between the fluids as well as their interaction is
of high complexity. Hence we again focus on the treatment of the interface.
We will direct our attention to two phase models that rely on the adiabatic
Euler equations and take into account mass transfer between the fluids.
Exemplary we mention the famous models of Baer-Nunziato type. Here
both phases are described by their own set of Euler equations. An addi-
tional equation for the volume fractions of the phases is considered, see
Section 6.3.3. The original model of Baer and Nunziato [3], that does not
include the effect of mass exchange between the phases, was modified by
Saurel and Abgrall in [71] by introducing relaxation terms for pressures and
velocities of the phases. Later in [73] a similar idea allowed the descrip-
tion of phase transition by using relaxation terms for the temperatures and
chemical potentials. This idea was picked up for instance by Petitpas et al.
in [68] or by Zein et al. in [88].
As in the isothermal case another type of modeling of two phase flows is
to use only one set of Euler equations. Each phase has its own equation of
state. Phase transitions can be described by a further equation that is called
kinetic relation. Again we refer to the well reputed article of Abeyaratne
and Knowles [1] that deals with solid-solid interfaces, the papers of Merkle
[61] or Hantke et al. [37] on the isothermal Euler equations.
Finally we want to refer to a recent paper of Dumbser et al. [24]. In their work
they also consider only one set of equations. Phase transitions take place

13Actually this was the chronological starting point of the whole work. It was supported by
the DFG-Grant HA 6471/2 − 1, “Eulergleichungen mit Phasenübergängen.”
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only in thermal equilibrium and no kinetic relation is used. Surprisingly
this type of modeling is closely related to the Baer-Nunziato type modeling
mentioned above including relaxation terms to describe mass transfer. We
come back to this and the above mentioned models later in Section 6.3.3.

The outline of this part is as follows. Chapter 5 discusses the one dimen-
sional adiabatic Euler equations equipped with different assumptions made
at the interface. We will discuss the case when no quantities on the interface
are present as well as the case when interfacial energy is considered. The
main result is that phase transition between the pure phases is not possible
when the classical (algebraic) jump conditions are applied. Chapter 5 is an
extended version of the published article

[40] M. Hantke and F. Thein. Singular and selfsimilar solutions for Eu-
ler equations with phase transitions. Bulletin of the Brazilian Mathematical
Society, New Series, 47(2):779–786, 2016

The final Chapter 6 gives a nonexistence result for models based on the
adiabatic Euler equations. Precisely we will show that condensation by
compression and cavitation between pure phases is not possible. The re-
sults of Chapter 6 were published in

[39] M. Hantke and F. Thein. Why condensation by compression in pure
water vapor cannot occur in an approach based on Euler equations. Quart.
Appl. Math., 73(3):575–591, 2015

The most important conclusion, that can be drawn form the results in this
part, is that phase transitions between a liquid and a vapor phase are badly
described using models based on the adiabatic Euler equations. Thus we
strongly recommend to use the isothermal Euler equations discussed in the
previous part.
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Solution Types for
Euler Equations with
Phase Transitions

5.1 Introduction

In the following we consider Riemann problems for the full system of Euler
equations, which was discussed in Section 2.4, applied to liquid-vapor flows.
Depending on the assumptions across the phase boundary different kinetic
relations can be derived from the second law of thermodynamics. These
assumptions influence the structure of the solutions.
The outline is as follows. In Section 5.2 we briefly summarize the considered
model and give the jump conditions derived in Section 2.2 for the one
dimensional case. The subsequent Section 5.3 treats the case when self-
similar solutions are considered. This implies that we obtain the classical
jump conditions at the interface. When quantities on the interface are taken
into account we obtain singular solutions. This is discussed in Section
5.4. For both cases we discuss the structure of the solution and give an
appropriate choice of a kinetic relation.

5.2 Balance Laws and Entropy Inequality

The physical fields are assumed to depend on time t ∈ R≥0 and space x ∈ R
as before. In regular points of the bulk phases we have the local balances
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for mass (2.63), momentum (2.64) and energy (2.65)

∂
∂t
ρ +

∂
∂x

(
ρv

)
= 0,

∂
∂t

(ρv) +
∂
∂x

(
ρv2 + p

)
= 0,

∂
∂t
E +

∂
∂x

(
v
(
E + p

))
= 0.

where ρ,v,E denote the density, the velocity and the total energy, respectively.
The specific internal energy is related to the total energy by E = ρ(e + v2/2),
see (2.27). Further the pressure p is given by a suited EOS, as discussed in
1.3. Across discontinuities in one dimension the following equations hold,
compare (2.19), (2.22) and (2.32),

d
dt
ρS +

�
ρ(v −W)

�
= 0, (5.1)

d
dt

(ρSW) +
�
ρ(v −W)v

�
+

�
p

�
= 0, (5.2)

d
dt

(
eS +

ρS
2

W2
)

+

�
ρ(v −W)

(
e +

v2

2

)�
+

�
q + pv

�
= 0. (5.3)

The singular mass and the singular internal energy of the discontinuity are
denoted by ρS and eS. With q we denote the heat flux, for more details see
Section 2.2 and the references therein. In the following we always assume,
that we have eS ≡ 0 and ρS ≡ 0 for regular waves propagating through
the bulk phase (shock waves, contact discontinuities). In contrast we will
consider more general assumptions for phase interfaces. The quantity W
is the speed of the discontinuity, which can be a shock, a contact wave or
a phase boundary and with Z = −ρ(v −W) we denote the mass flux. For
both quantities we will distinguish between a classical shock wave and the
phase boundary (non-classical shock)

Z =

Q, shock wave
z, phase boundary

and W =

S, shock wave
w, phase boundary

.

The mass flux z = −ρ(v − w) across the phase boundary is in this general
situation not continuous. It has to be specified by an additional kinetic
relation, which has to satisfy the entropy inequality (see also (2.36))

d
dt

sS +
�
ρ(v − w)s

�
+

� q
T

�
= ζS ≥ 0 , (5.4)
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the entropy production ζS has to be nonnegative. We consider the singular
entropy as a function of the corresponding energy and density, i.e. sS =
sS(eS, ρS) 1. The interface temperature TS and the Gibbs free energy of the
interface gS are then defined by

1
TS

:=
∂sS
∂eS

and
gS
TS

:= −
∂sS
∂ρS

, (5.5)

compare relations (2.43). In the following no heat conduction is taken into
account, this means that we have q ≡ 0. Assuming that at t = 0 the phase
boundary is located at x = 0 the Riemann initial data may be given by

(ρ,v, p)T =

(ρV,vV, pV)T x < 0
(ρL,vL, pL)T x > 0 .

(5.6)

with V denoting the vapor phase and L the liquid phase, respectively. The
Riemann solution can be constructed as discussed in Section 2.4, compare
Figure 2.7 and the construction of the solution in Chapter 3. The discussion
of rarefaction, shock and contact waves is classical and can also be done as
in Section 2.4. Instead we restrict ourselves to the discussion of the phase
boundary.

5.3 Self-Similar Solutions

So far we have presented all equations in their most general form, apart from
the assumptions made to derive them and the fact that we are concerned
with the one dimensional case. In order to construct self-similar solutions
we make the following simplifying assumptions at the phase boundary

ρS ≡ 0 and eS ≡ 0 (5.7)

to remove the derivative terms in the interface balance equations. This
means that the interface has no mass and no energy. As a consequence we
have

d
dt

sS = 0 .

1Considering equilibrium thermodynamics with the fundamental equation (1.2) S = S(E,V),
this is a quite natural choice.
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Moreover the mass flux across the phase boundary is continuous, i.e.�
ρ(v −W)

�
= 0 .

Accordingly the entropy inequality (5.4) becomes

−z ~s� = ζS ≥ 0 . (5.8)

In view of Remark 2.2.1 this inequality directly implies that the mass flux z
is a function of the differences of the specific entropies s of the phases, i.e.

z ∼ − ~s� . (5.9)

Thus the mass flux is driven by the difference of the specific entropies of the
phases. To derive an explicit kinetic relation we follow the ideas in Dreyer et
al. [23], also compare Remark 2.2.1, and make a linear ansatz for the kinetic
relation in the following form

z = −τ ~s� .

The interface mobility τ is a positive factor. In [23] τ results from the Maxwell
distribution, see also [22], or rather from the classical Hertz-Knudsen theory,
see Bond and Struchtrup [10]. With an analogous choice for the mobility
we end up with

z = −
pVTS
√

2π

(
m

kTS

) 3
2

~s� , (5.10)

where k denotes the Boltzmann constant, m the mass of a single molecule of
the considered substance and pV the pressure of the vapor phase. For more
details see [23].

Corresponding solutions of the considered Riemann problem consist of
five constant states that are separated by four waves see Figure 5.1. The left
and the right wave are classical shock or rarefaction waves, that propagate
through the bulk phases. In addition the solution has a classical contact
wave and a phase boundary, which can be characterized as a non-classical
discontinuity. Let us assume the vapor phase is on the left hand side.

For temperatures lower than the critical temperature the specific entropy
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x

t

WV

Shock/Raref. Wave

W∗

V

CD

W∗∗

V

Phase Boundary

W∗

L

Shock/Raref. Wave

WL

Figure 5.1: Solution structure in the case of (5.7), W = (ρ, ρv,E)T
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Figure 5.2: Schematic Entropy-Temperature Diagram

of the vapor phase is always larger than the specific entropy of the liquid
phase of the same substance, see Figure 5.2. Accordingly we have

z ∼ − ~s� > 0 .

This implies that only evaporation processes can take place. In other words,
for the simplifying assumptions (5.7) no thermal equilibrium can occur.
Further, one can easily obtain that for the above assumption the phase
boundary propagates faster than the bulk phases. This implies, that the
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contact wave always propagates through the vapor phase.
Additional, even more restrictive, insight can be obtained from the energy
balance at the interface 2. Again, since we have excluded equilibrium we
have (v − w) = −z/ρ , 0. Using the mass continuity at the interface we
obtain for the energy balance at the interface

0 = z
�

e +
p
ρ

+
1
2

(v − w)2
�
⇔ 0 =

�
e +

p
ρ

�
+

1
2

������( z
ρ

)2������ .
Introducing the specific enthalpy h = e + p/ρ and using that ρL > ρV (below
the critical point) we yield

~h� = −
z2

2

�
1
ρ2

�
> 0. (5.11)

However, as for the entropy the enthalpy in the (pure) liquid phase is
always smaller than the enthalpy in the (pure) vapor phase for temperatures
below the critical point 3. The saturation curves for different variables for
water using [84] are exemplary shown in Figure 5.3. Thus we obtain the
contradiction

0 > ~h� = −
z2

2

�
1
ρ2

�
> 0. (5.12)

Hence it is not possible to have a phase boundary between the two (pure)
phases in the classical approach that satisfies the jump conditions at the
interface. A similar result will also be obtained in the next chapter using
different arguments.

Remark 5.3.1. We want to point out, that the wave structure as well as the non-
existence of thermal equilibrium solutions are a direct consequence of the entropy
principle (5.8). These phenomena occur for any appropriate choice of a kinetic
relation.

To overcome these phenomena there are two possibilities. On the one
hand heat conduction can be taken into account. On the other hand one can
weaken the simplifying assumptions (5.7), which leads to singular solutions.

2This idea was pointed out to me by Christoph Müller and Timon Hitz during our stay in
Oberwolfach for the MFO Seminar 1723a.

3This can also be obtained by considering the Gibbs free energy in equilibrium 0 = dg =
dh − Tds. This leads to dh = Tds ≈ T(sL − sV) < 0.
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Figure 5.3: The saturation curves for different quantities calculated with the IAPWS-IF97 EOS
[84].

5.4 Singular Solutions

As discussed in the previous section we now use weaker simplifying as-
sumptions. As before we neglect the interface density, i.e. ρS ≡ 0, but
we account for the interface energy. The interface balances for mass and
momentum (5.1) and (5.2) reduce to�

ρ(v − w)
�

= 0, (5.13)
−z ~v� +

�
p

�
= 0, (5.14)

Using (5.13) and (5.14) we rewrite (5.3) and obtain the interface energy
balance equation

d
dt

eS − z
�

e +
p
ρ

+
1
2

(v − w)2
�

= 0. (5.15)

Using the equations (5.13), (5.14) and (5.15) we can rewrite the entropy
inequality (5.4) and yield

z
�

1
TS

(
g +

1
2

(v − w)2
)

+ s
(

T
TS
− 1

)�
= ζS ≥ 0 . (5.16)
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Equation(5.16) may also easily be derived from equation (2.44) neglecting
the heat flux q and assuming a continuous mass flux. Concerning the kinetic
relation equation (5.16) implies

z ∼
�

1
TS

(
g +

1
2

(v − w)2
)

+ s
(

T
TS
− 1

)�
.

Due to the derivative in (5.15) the solution of the considered Riemann prob-
lem is not self-similar. Instead we follow the ideas of Yang [86] and construct
solutions in the sense of measures, where a discontinuity appears on the
phase interface.

Like Yang we assume a delta-shock, propagating with velocity w and lo-
cated at x(t) = w · t, where the singular value of the interface energy is
described by eS(t) = e0 · t. The solution consists of five constant states, sepa-
rated by four waves. As before, the right and left waves are classical shock
or rarefaction waves. The order of the two middle waves, the contact and
the phase boundary, depends on the situation under consideration. With
the same arguments as in the previous section we have that in the case of
evaporation the contact propagates through the vapor phase and otherwise
through the liquid. Accordingly in the case of evaporation we have the
same wave structure as before, see Figure 5.1. For the condensation case see
Figure 5.4. Note, that in contrast to the solutions of Section 5.3 the interface
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Figure 5.4: Solution structure for the condensation case with a singularity on the phase bound-
ary, W = (ρ, ρv,E)T

is now equipped with energy and forms a singularity and hence the solution
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is not self-similar anymore.

Assume, the considered solution describes a condensation process, where
two shock waves propagate through the bulk phases with velocities SL and
SR. Further the contact wave propagates with the wave speed S, then the
solution at time t is of the following form

(ρ, ρv,E)T(t, x) =



(ρV, ρVvV,EV)T, −∞ < x ≤ SL · t
(ρ∗V, ρ

∗

Vv∗V,E
∗

V)T, SL · t < x < w · t
(0, 0, e0δ(x − x(t)) · t)T, x = w · t
(ρ∗∗L , ρ

∗∗

L v∗∗L ,E
∗∗

L )T, w · t < x < S · t
(ρ∗L, ρ

∗

Lv∗L,E
∗

L)T, S · t ≤ x < SR · t
(ρL, ρLvL,EL)T, SR · t ≤ x < ∞

For solutions with rarefactions or with evaporation states one may find a
similar structure.

Analogously to the previous case with the assumptions ρS ≡ 0 and eS(t) =
e0 · t one can treat the following two cases

ρS(t) = ρ0 · t and eS ≡ 0 (5.17)

and

ρS(t) = ρ0 · t and eS(t) = e0 · t . (5.18)

In both cases a singularity will form on the phase interface. The structure of
the solution is the same as before, but in contrast to the previous case, one
obtains singular values for all three components (ρ, ρv,E)T. A non-linear
ansatz for ρS(t) or eS(t) will lead to more complicated solution structure. In
particular the energy of the interface may also be expressed in terms of the
temperature of the interface using the equations (1.67) and (1.68)

eS = −T2
S

d
dTS

(
σ

TS

)
with σ ∼ (Tc − TS)2ν.

5.5 Conclusion

Starting from the jump conditions (5.1) - (5.3) we discussed different assump-
tions that can be made at the interface. First and foremost it is important to
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note that the heat flux q is not present in the balances for energy and entropy
since we consider models relying on the adiabatic Euler equations. In the
following we first discussed the case of absent interface quantities which
leads to a self-similar solution structure. However, we have shown that
(first order) phase transitions between pure phases are not possible due to
the difference in the entropies and enthalpies of the phases below the critical
point. This leads to the conclusion that we either have to use the heat flux,
which is not present here, or account for singular quantities on the interface.
In particular we considered the case where the interface is equipped with
energy. This results in the loss of the self-similar solution structure.
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A Nonexistence Result for
Two Phase Flows

6.1 Introduction

One can find an extensive literature on cavitating flows, but the opposite
question of the creation of a liquid phase by a strong compression is dis-
cussed only in rare cases. In the following we consider pure water vapor,
that will be highly compressed. This can be realized by a steam filled tube
with a flexible piston, see Figure 6.2. If there is no heat exchange with the
neighbourhood of the tube, the process is nearly an adiabatic flow. There-
fore it can be fairly described by the compressible Euler equations. One
may expect, that it is possible to compress the vapor phase such that the
vapor will condensate. This means that a liquid phase is created. In fact,
it turns out this is impossible in a non-isothermal approach based on Eu-
ler equations, which is in agreement with observations from experiments.1

The main focus of this chapter is to give a mathematical proof for this phe-
nomenon.

1Before writing the article we have inconclusively looked for theoretical results. However,
it seemed that there is some kind of common knowledge in certain scientific communities. In
particular while writing this thesis we found the following quote in [52], § 132, p. 640: “[. . . ]
Kondensationsunstetigkeiten eine selbstständige physikalische Erscheinung sind und nicht das Ergebnis
der kompression des Gases in einer gewöhnlichen Stoßwelle. Eine Stoßwelle kann die Dämpfe nicht
zur Kondensation bringen, da die Druckerhöhung in einer Stoßwelle eine geringere Auswirkung auf
den Übersättigungsgrad hat als die entgegengesetzt wirkende Temperaturerhöhung.” Unfortunately
no proof is given, but it strongly underlines the results of the presented nonexistence results
(prove by authority).
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ADIABATIC CASE: A NONEXISTENCE RESULT FOR TWO PHASE FLOWS

In the case of expanding a liquid under the same boundary conditions,
see Figure 6.6, the situation is more complex. Nevertheless, also for the
cavitation case we can prove some theoretical results. For detailed discus-
sions of cavitation models we refer to Iben [43] and [44]. This chapter will
emphasize the results given in the previous Chapter 5 and further gives
alternative arguments.

The chapter is organized as follows. In Section 6.2 we again briefly summa-
rize results for the Riemann Problem for the (adiabatic) compressible Euler
equations and the considered equation of state (EOS). The following Section
6.3 deals with compressed water vapor. First we explain the idea for the
proof of our statement and then we show for a special choice of equations
of state for the phases, that condensation by compression cannot occur.
Subsequently we show, that this idea is also applicable to Baer-Nunziato
type models with relaxation terms as in Saurel et al. [73] and Zein et al.
[88]. Thereafter, we generalize the proof to the real equation of state for water.
Finally we consider the opposite case of cavitation by expansion in Section
6.5. Some closing remarks are given in Section 6.6.

6.2 Adiabatic Euler Equations

As in the previous chapter the physical fields are assumed to depend on
time t ∈ R≥0 and space x ∈ R. In regular points of the bulk phases we have
the local balances for mass, momentum and total energy

∂
∂t
ρ +

∂
∂x

(
ρv

)
= 0, (6.1)

∂
∂t

(ρv) +
∂
∂x

(
ρv2 + p

)
= 0, (6.2)

∂
∂t
E +

∂
∂x

(
v
(
E + p

))
= 0. (6.3)

where ρ,v,E denote the density, the velocity and the total energy, respectively.
The specific internal energy is related to the total energy by E = ρ(e + v2/2),
see (2.27). Further the pressure p is given by an suited EOS, as discussed in
1.3. Here we consider Riemann problems for the Euler equations, that are
given by the above balance equations (6.1)-(6.3), an equation of state and
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6.2. ADIABATIC EULER EQUATIONS

the corresponding Riemann initial data

(ρ,v, e)T =

(ρL,vL, eL)T x < 0
(ρR,vR, eR)T x > 0 .

(6.4)

As mentioned before this is the simplest choice of initial conditions with
piecewise constant data. It is possible and conventional to give initial states
for (ρ,v, p) or (p,v,T) instead of initial states for (ρ,v, e). Also other choices
are imaginable.

The Riemann problem is very helpful in the context of systems of hyper-
bolic partial differential equations, because it exhibits all phenomena as
shock or rarefaction waves. It is a basic problem in the theory of hyperbolic
systems. In numerical methods Riemann problems appear in finite volume
methods for systems of conservation laws due to the discreteness of the grid.

For the Riemann problem for the compressible Euler equations equipped
with an appropriate equation of state one can construct the exact solution
as explained in Section 2.4. The solution is self-similar. It consists of four
constant states, that are separated by shock and rarefaction waves and a
contact discontinuity. Details can be found in the given literature, e.g.
[18, 53, 56, 75, 85].

6.2.1 Definitions and Requirements for the EOS

As mentioned in the previous section we need an EOS to close the system
(6.1)-(6.3). Several commonly accepted EOS are available like the van-
der-Waals EOS or the Tait EOS, see Section 1.3. As already mentioned a
discussion of the adiabatic Euler equations with an arbitrary EOS can be
found in [60]. A collective problem is that for any choice of parameters all
these equations at the best only locally give a good approximation of the
thermodynamic properties of water vapor or liquid water.
On the other hand, the real equation of state for water to the official standard
IAPWS-IF97 based on the standard formulation of Wagner et al. [82, 83, 84]
is too complex for analytical consideration. In the following this equation
of state is called real equation of state.

For the moment we use a modified form of the stiffened gas equation of
state, see [73] and also Section 1.3. In particular equation (1.49) and Propo-
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sition 1.3.10. Summarized, we have in terms of the pressure and the density

ek(pk, ρk) =
pk + γkπk

ρk(γk − 1)
+ qe,k, (6.5)

Tk(pk, ρk) =
pk + πk

Ckρk(γk − 1)
, (6.6)

ak(pk, ρk) =

√
γk(pk + πk)

ρk
, (6.7)

sk(pk,Tk) = Ck ln
Tγk

k

(pk + πk)(γk−1)
+ qs,k. (6.8)

Here T and s denote the temperature and the specific entropy of the fluid. The
speed of sound is given by a. The index k = V, L indicates the phase under
consideration, vapor or liquid. The parameters γ, π, qe, qs and C will be
specified later. In particular qe and qs correspond to the reference values of
the energy and entropy er and sr. Note, that for the special choice of π = 0
and qe = 0 the equation of state reduces to the ideal gas law. The specific
Gibbs free energy of the phases is given by

gk = ek +
pk

ρk
− Tksk.

As pointed out in Section 1.4 in thermodynamic equilibrium the Gibbs
free energies of the phases equal each other and define the coexistence
curve in the T − p plane, see Figure 1.1. Now we also want to determine
the coexistence curve in the case that both phases are modelled using the
stiffened gas EOS with a suited set of parameters. Using the relations (6.5)
- (6.8) the Gibbs free energy of each phase can be expressed as a function of
the temperature and the pressure. Again if not stated otherwise we denote
quantities in a saturation state with a zero index. Now we can obtain the
saturation pressure for a given temperature p0(T) by solving

gL(p0,T) = gV(p0,T). (6.9)

Sometimes it is useful to inversely express the temperature as a function of
the pressure T0(p), which can be obtained analogously

gL(p,T0) = gV(p,T0). (6.10)
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6.2. ADIABATIC EULER EQUATIONS

For admissible pressures we obtain the corresponding saturation temperature.
For the moment we use the same parameters as Saurel et al. [73]. These
parameters 2 are given in Table 6.1. For this special choice of parameters

k γ π C qe qs
vapor 1.43 0 1040 2030000 -23000
liquid 2.35 109 1816 -1167000 0

Table 6.1: Parameters for water vapor and liquid water, [73]

we obtain the saturation curve given by the solid line in Figure 6.1. Here
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Figure 6.1: Comparison of the saturation curves for different quantities calculated with the
IAPWS-IF97 EOS and the stiffened/ideal gas EOS with the parameters given in Table 6.1.

Region 1 belongs to the liquid water phase, whereas Region 2 belongs to the
water vapor. The dashed line marks the real saturation line given in [84].
Obviously the precise shape of the saturation line directly depends on the
choice for the equations of state and the parameters therein.
Throughout the proof of our statement we will need the Maxwell relations
for the Gibbs free energy introduced in Section 1.2, i.e.(

∂g
∂T

)
p

= −s and
(
∂g
∂p

)
T

=
1
ρ
. (6.11)

2We have [π] = Pa, [C] = Jkg−1K−1, [qe] = Jkg−1, [qs] = Jkg−1K−1.
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6.3 Condensation by Compression

6.3.1 Wave Curve in the p − T Phase Space
First we consider the case of the compression of water vapor. This case
can be simulated by a tube which is filled with vapor and equipped with a
flexible piston, which is highly sped up to compress the vapor phase, see
Figure 6.2. The compression of water vapor will lead to an increase of the

vapor

Figure 6.2: Compression of water vapor

pressure and the density of the vapor phase. From the theory of the Euler
equations we know, that a shock wave will propagate through the vapor
phase. Assume that the state ahead of the shock is given by (ρ̂, v̂, p̂). The
state behind the shock is denoted by (ρ∗,v∗, p∗). The jump conditions (2.66)
- (2.68) �

ρ(v − S)
�

= 0,
ρ(v − S) ~v� +

�
p

�
= 0,�

e +
p
ρ

+
1
2

(v − S)2
�

= 0.

and equation (6.5) can be combined to obtain

ρ∗

ρ̂
=

(
p∗

p̂

)
+

(
γ − 1
γ + 1

)
+

2γπ
p̂(γ + 1)(

γ − 1
γ + 1

) (
p∗

p̂

)
+ 1 +

2γπ
p̂(γ + 1)

. (6.12)

For details of the derivation of relation (6.12) we exemplary recommend the
book of Toro [78]. Again we emphasize, that this relation holds only for the
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6.3. CONDENSATION BY COMPRESSION

generalized stiffened gas law (6.5) - (6.8). Using the equation of state (6.6)
we easily obtain an analogous relation for the pressure and the temperature,
which is given by

T̂
T∗

=
p̂ + π

p∗ + π
·

p∗(γ + 1) + p̂(γ − 1) + 2γπ

p̂(γ + 1) + p∗(γ − 1) + 2γπ
p̂
p∗

. (6.13)

From Equation (6.13) we obtain the wave curve T∗(p∗; p̂, T̂) in the (p,T)-phase
space. With this curve we can describe all states (p∗,T∗) that can be connected
to the initial state (p̂, T̂) by a shock wave.

Now assume that the vapor phase with initial pressure and temperature
(p̂, T̂) is compressed sufficiently strong such that a liquid phase is created,
then the corresponding wave curve T∗(p∗; p̂, T̂) must have an intersection
point with the saturation line, see the sketch in Figure 6.3. We want to

p

T

(p̂, T̂)

Region 1

Region 2

Figure 6.3: Solid line: saturation curve T0(p), dashed line: wave curve with initial state

prove that this is impossible. For the proof we assume the existence of the
intersection point and derive a contradiction.
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6.3.2 Proof of the Statement for a Particular EOS
Let us denote the intersection point of the wave curve and the saturation
line by (p∗,T∗). Then the function

T̂(p̂; p∗,T∗) = T∗ ·
p̂
p∗
·

p∗(γV + 1) + p̂(γV − 1)
p̂(γV + 1) + p∗(γV − 1)

(6.14)

denotes all admissible initial states (p̂, T̂). Here we already used the fact that
for the vapor phase we have π = 0. Let the prime ′ denote the derivative of
the temperature functions with respect to the pressure. At the intersection
point the following relation must hold

T̂′(p∗) ≤ T′0(p∗). (6.15)

By a simple calculation we find

T̂′(p∗; p∗,T∗) =
T∗

p∗
·
γV − 1
γV

. (6.16)

To find T′0(p∗) we start with the equilibrium condition (6.10) and express the
Gibbs free energies of the phases as functions of p and T. We yield

gk(p,T) = CkTγk + qe,k − CkT ln
Tγk

(p + πk)γk−1 − Tqs,k

with k = L,V. Using the implicit function theorem and

f (p,T0) = gV(p,T0(p)) − gL(p,T0(p)) = 0 (6.17)

we derive
∂ f
∂p

= CV(γV − 1)
T0

p
− CL(γL − 1)

T0

p + πL

∂ f
∂T0

= −CV ln
TγV

0

(p)γV−1 − qs,V + CL ln
TγL

0

(p + πL)γL−1

= CLγL − CVγV +
qL − qV

T0

and finally

T′0(p∗; T∗) = T∗ ·

CV(γV − 1)
p∗

−
CL(γL − 1)

p∗ + πL

CVγV − CLγL +
qe,V − qe,L

T∗

< T∗ ·

CV(γV − 1)
p∗

CVγV
. (6.18)
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This is clear because

−
CL(γL − 1)

p∗ + πL
< 0 and 0 < −CLγL +

qe,V − qe,L

T∗
.

Obviously (6.18) implies

T′0(p∗; T∗) <
T∗

p∗
·
γV − 1
γV

= T̂′(p∗; p∗,T∗). (6.19)

This is a contradiction, see (6.15). Accordingly we have

Theorem 6.3.1. Using the equations of state (6.5) - (6.8) and the parameters given
in Table 6.1 condensation by compression of pure water vapor cannot occur.

6.3.3 Short Discussion of Different Phase Transition Models
In the following paragraph we explain, why the proof of our statement given
in Subsection 6.3.2 resp. in Subsection 6.4 is applicable for all considered
models based on Euler equations.

The pure water vapor phase can be described by a single set of Euler
equations. The compression leads to an increase of the density and the
pressure as already mentioned in the previous section. One may assume
that for sufficiently strong compression the vapor phase starts to conden-
sate. This means, that a liquid phase is created. Of course, for any state
(p,T) which is in the interior of Region 2 (water vapor), the vapor phase
is situated in a stable state. In order that condensation can happen, there
must be a mechanism for phase transition. Therefore, it is clear that in the
case of condensation the wave curve must have an intersection point with
the saturation line. For this it does not matter, whether phase transition
is modeled by a kinetic relation as in [37, 61] or by using an equilibrium
assumption as done in [24].
Using a kinetic relation, a nucleation criterion is used, see Chapter 3 and
[37]. Here a critical state is reached, in which the vapor phase starts to
condensate, which implies the intersection point.
In the work by Dumbser et al. [24] phase transition is modeled by an equilib-
rium assumption. For any given temperature T and p < p0(T) the pair (T, p)
describes some vapor state. Analogously (T, p) with p > p0(T) describes the
fluid in the liquid state. For p = p0(T) one may have water vapor or liquid
water as well as a mixture of both fluids. The fluid at the saturation state
is defined by its temperature and the mass fraction or equivalently by its
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ADIABATIC CASE: A NONEXISTENCE RESULT FOR TWO PHASE FLOWS

pressure and the mass fraction of the vapor/liquid phase. All corresponding
states in the p − T phase plane are located at the saturation line. For more
details see Iben et al. [45]. Nevertheless, for condensation a wave curve
must have an intersection point with the saturation line.
The Euler equations are only valid for pure fluids or homogeneous mix-
tures in the thermodynamic equilibrium. For models that use only one set
of Euler equations, as discussed before, only pure fluids are present. On the
other hand in the literature often models of Baer-Nunziato type are used to
describe the considered situation. The generalized Baer-Nunziato model is
given by a two phase model using two sets of Euler equations

∂
∂t
αkρk +

∂
∂x
αkρkvk = ±ṁ

∂
∂t
αkρkvk +

∂
∂x
αk

(
ρkv2

k + pk

)
= ±P

∂
∂x
αk ±M

∂
∂t
αkρk

(
ek +

1
2

v2
k

)
+
∂
∂x

[
ρk

(
ek +

1
2

v2
k

)
+ pk

]
vk = ∓P

∂
∂t
αk ± E

k = 1, 2 and a further equation to describe the volume fractions of the phases

∂
∂t
α1 + U

∂
∂x
α1 = A

with the same notations as before. Further, αk denotes the volume fraction
of phase k. The sources A, ṁ,M,E on the right hand side of the equations
describe the exchange of mass, momentum and energy. They include relax-
ation terms for velocity, pressure, temperature and Gibbs free energy of the
phases, that guarantee, that both phases relax to thermodynamic equilib-
rium. The pressure P and the velocity U have to be defined by some closure
law, see [71, 73] or [88].
Again we start with a pure vapor phase, that will be compressed. For
numerical reasons the volume fraction of the pure phase is assumed to be
1 − ε, whereas the volume fraction of the absent phase is assumed to be ε.
Typically one uses ε = 10−8, see for instance Saurel and Abgrall [71].
Mass transfer is described by the Gibbs free energy relaxation term. Con-
densation will occur only in the case, that the specific Gibbs free energy of
the vapor phase is larger than the specific Gibbs free energy of the (artificial)
liquid phase. This is not the case for any set of initial data that describes a
pure water vapor phase. Therefore there is no contribution by the relaxation
terms as long as (T, p) is in the interior of Region 2 (vapor phase).
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In regions of constant volume fractions the system decouples. The solution
for each phase can be determined separately. This implies that the relations
of the single phase Euler equations are also valid for the Baer-Nunziato
model in the present case. In order that condensation can occur the vapor
phase must be compressed in such a manner, that the specific Gibbs free
energy of the vapor phase is larger than the specific Gibbs free energy of
the (artificial) liquid phase. This implies an intersection point of the wave
curve with the saturation line.

6.4 Extension to the Real EOS for Water

In the previous Section 6.3.2 we have proved, that condensation by com-
pression can not occur for the chosen equations of state with parameters
given in Table 6.1. On the other hand, in Figure 6.1 we can see, that this
choice gives a very bad approximation of the real saturation curve for higher
temperatures. We now generalize our statement using the results from the
last section. We want to show, that for the real equation of state and for good
approximations of the real equation of state condensation by compression
cannot occur. The proof uses the same arguments as before.

We start with an arbitrary initial state in the vapor region and we con-
sider the corresponding wave curve. Assume, (p∗,T∗) is the intersection
point of the curve T̂(p̂; p∗,T∗) of all admissible initial states in the p−T phase
space with the real saturation line T0(p). We compare the derivatives and
find the contradiction.

6.4.1 Approximation of the Real EOS
For our purpose it is sufficient to find a good approximation of the real equa-
tion of state in a small neighborhood of the saturation line. In the following
we show how to find suitable parameters, coming from the intersection
point (p∗,T∗). This is an improvement of the method of Le Metayer et al.
[63], which is a modification of the idea introduced by Barberon and Helluy
[4].

Vapor Phase

For any temperature T∗ the corresponding (real) saturation pressure is
known by the real formulas given by Wagner [82, 83]. The same is true
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for the corresponding vapor density ρ∗V, the speed of sound a∗V, the entropy
s∗V and the internal energy e∗V. For simplicity we choose πV = 0. Then from
(6.7) we directly obtain γV. Next we calculate qe,V from (6.5), CV from (6.6)
and qs,V from (6.8). The results are given in Figure 6.4.
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Figure 6.4: Local optimal parameters for the vapor phase

Liquid Phase

For the liquid phase we disclaim the simplifying assumption for the param-
eter π. Accordingly we are looking for five parameters. Thus, beside the
relations (6.5) - (6.8), we can use a further relation. Therefore we consider
the specific heat capacity at constant pressure which is given by

T
(
∂s
∂T

)
p

= Cp,

see Definition 1.3.1 (ii). Using (6.5), (6.6) and (6.8) we find that

Cp,L = TL
∂sL(TL, pL)

∂TL
= CLγL

=
1

TL

(
pL + γLπL

ρL(γL − 1)
+
γLpL − pL

ρL(γL − 1)

)
=

1
TL

(
eL − qe,L +

pL

ρL

)
.
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This gives us the further relation

eL = Cp,LT −
pL

ρL
+ qe,L, (6.20)

where Cp,L denotes the specific heat capacity at constant pressure of the
liquid phase. Again we use the real equation of state to obtain the liquid
density ρ∗L, the speed of sound a∗L, the entropy s∗L, the internal energy e∗L as
well as the specific heat capacity C∗p,L. Then from (6.20) we find qe,L. After
that we calculate πL and γL from (6.5) and (6.7). Finally we obtain CL from
equation (6.6) and qs,L from equation (6.8). The results are given in Figure
6.5. Using the parameters πV, πL, γV, γL,CV,CL, qe,V, qe,L, qs,V, qs,L obtained
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Figure 6.5: Local optimal parameters for the liquid phase

in this section, the equations of state (6.5) - (6.8) give the exact values for
the densities, the internal energies, the entropies and the sound speeds at
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saturation state (p∗,T∗). Also we obtain the exact values for the Gibbs free
energies and the enthalpies. From the Maxwell relations (6.11) as well as
equation (6.17) and the implicit function theorem we see, that we also find
the exact value

T′0(p∗; T∗).

Due to the smoothness of all expressions for any given tolerance ε > 0
we find a sufficiently small neighborhood of the saturation state (p∗,T∗)
such that all relevant physical states ρk, ek, sk, ak, gk are approximated with a
deviation less then ε.

6.4.2 Proof of the Statement for the Real EOS
Assume, for any initial state in the vapor region sufficiently close to the sat-
uration line, the corresponding wave curve in the p−T phase space and the
(real) saturation line have the intersection point (p∗,T∗). Assume further, that
we used the optimal parametersπV, πL, γV, γL,CV,CL, qe,V, qe,L, qs,V, qs,L, such
that the equations of state (6.5) - (6.8) give the exact values for ρk, ek, sk, ak, gk
for both phases at saturation state (p∗,T∗). Then the following relation must
hold at the intersection point

T̂′(p∗) ≤ T′0(p∗). (6.21)

As before T̂(p̂; p∗,T∗) denotes all admissible initial states (p̂, T̂) in the vapor
region, in a sufficiently small neighborhood of (p∗,T∗). For the derivative
we have

T̂′(p∗; p∗,T∗) =
T∗

p∗
·
γV − 1
γV

. (6.22)

Moreover, we have

T′0(p∗; T∗) = T∗ ·

CV(γV − 1)
p∗

−
CL(γL − 1)

p∗ + πL

CVγV − CLγL +
qe,V − qe,L

T∗

. (6.23)

In both equations (6.22) and (6.23) we used the local optimal parameters.
As already explained at the end of Section 6.4.1, equation (6.23) gives the
exact value for the derivative. Simple estimations show, that

T̂′(p∗) > T′0(p∗). (6.24)

210



6.5. CAVITATION BY EXPANSION

Accordingly, there is no such intersection point. Due to the smoothness of all
expressions and the exactness of (6.23) this statement is true for the real equa-
tion of state and for all sufficiently good approximations of the real equation
of state. If there is any set of parametersπV, πL, γV, γL,CV,CL, qe,V, qe,L, qs,V, qs,L
such that (6.24) is not satisfied, then the parameters obviously give a coarse
approximation of the saturation line and the result is not meaningful. The
same is true for any other choice of equations of state for the liquid and the
vapor phase. We summarize

Theorem 6.4.1. Using the real equations of state [84] or any good approximation
of the real equation of state nucleation by compression cannot occur.

6.5 Cavitation by Expansion

After the discussion of condensation by compression one may ask for the
opposite case of cavitation by expansion. We will see, that this process is
more complicated and we will distinguish between two cases. The liquid
phase will be expanded in a manner that phase transition will occur. This
case corresponds to a cavitation tube, which is a tube filled with liquid water
and a flexible piston, see Figure 6.6. To illustrate the physics we give the

liquid

Figure 6.6: Expansion of liquid water

s − T diagram in Figure 6.7, where the path (1) corresponds to the process
considered. We have seen, that the Baer-Nunziato type relaxation model
allows the coexistence of both the vapor and the liquid phase in the same
point of the physical domain at the saturation state. The same is true for
the Eulerian model used by Dumbser et al. [24]. Here the phase transition
is modeled assuming equilibrium. The mixture is called wet steam. An
expansion process such that a mixture of water vapor and liquid water (wet
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ADIABATIC CASE: A NONEXISTENCE RESULT FOR TWO PHASE FLOWS

steam) is created, we call the process weak cavitation. On the other hand, if
pure water vapor is created, we call this process strong cavitation.

6.5.1 Cavitation in the Weak Sense

If the liquid phase is expanded, a rarefaction wave will propagate through
the liquid phase. In analogy to the condensation case we start with an
arbitrary set of initial data in the liquid phase (Region 1). We construct the
wave curve, that connects the initial state to all possible states behind the
rarefaction wave. If (weak) cavitation, by sufficiently strong expansion, can
occur this wave curve must have an intersection point with the saturation
line. It is not surprising, that this is usually the case. Numerous examples
can be found in the literature, see for instance the example cavitation by strong
rarefaction using one set of Euler equations and the equilibrium assumption
in Dumbser et al. [24]. See further the expansion tube problem in Zein et al.
[88] using the Baer-Nunziato type relaxation model.

6.5.2 Cavitation in the Strong Sense

For the moment we restrict ourselves to the two model types, that allow
the coexistence of vapor and liquid, as in [24, 88]. Models, using a kinetic

Critical Point

Pure Liquid Wet Steam Pure Vapor

s

T

(2)

(1)
(3)

Figure 6.7: Schematic Entropy-Temperature Diagram with different processes: (1) isentropic
expansion - rarefaction wave, (2) isothermal path, (3) isentropic compression, see Iben [43]
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6.5. CAVITATION BY EXPANSION

relation will be discussed later.
One may assume that for sufficiently strong expansions one may create pure
water vapor. To illustrate that situation we refer to Figure 6.8. As pointed

p

ρ

Region 1 (p̂, T̂)

Wet Steam Region

Region 2

Figure 6.8: Solid line: saturation curves ρV(p0), ρL(p0), dashed line: wave curve with initial
state and final pure water vapor state

out in Section 1.4 the saturation states in the T − p phase plane are located
on a single curve, whereas the coexistence curve in the p − ρ phase plane
will enclose a whole domain of saturation states due to the jump in the
volume, compare Figures 1.1 and 1.2. The wet steam region is bounded by
the saturation (solid) lines. Assume, there is any initial liquid state, marked
by the star and assume further, the liquid is expanded in a manner that pure
water vapor is created. This state is indicated by the circle. Then there is a
rarefaction wave curve, connecting the star and the circle state. This wave
curve crosses the two curves ρk(p0). The same situation in the p − T phase
plane is given in Figure 6.9. In the following we will show, that strong
cavitation for the models considered cannot occur. The argument is similar
to the argument in the condensation case. Assume, the circle state exists.
This implies the existence of a rarefaction wave curve that connects both
the circle and the star state. The intersection point of the wave curve and
the saturation curve T0(p) in the p − T phase plane is called (p∗,T∗). Let us
consider that part of the wave curve, that is located in the vapor in Region
2. We denote this curve by T̂(p; p∗,T∗). As before for the intersection point
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p

T
(p̂, T̂)

Region 1

Region 2

Figure 6.9: Solid line: saturation curve, dashed line: wave curve, star: initial state, circle: pure
water vapor state

we must have

T̂′(p∗; p∗,T∗) ≤ T′0(p∗).

The wave curve is found to be

T̂(p; p∗,T∗) = T∗
(

p
p∗

) γV−1
γV

. (6.25)

This directly follows from Equation (6.8) and the fact, that the entropy is
constant across a rarefaction wave. Equation (6.25) implies

T̂′(p∗; p∗,T∗) =
T∗

p∗
·
γV − 1
γV

. (6.26)

This gives a contradiction, see (6.22) and (6.23).

Theorem 6.5.1. Using the real equation of state or any good approximation of the
real equation of state strong cavitation by expansion cannot occur in an approach
based on Euler equations and an equilibrium assumption, [24, 88].

There is an alternative, very simple argument to show, that a pure liquid
state and a pure water vapor state cannot be connected by a rarefaction wave.
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6.6. CONCLUSIONS

As already mentioned it is a well known fact, that the entropy is constant
across a rarefaction wave. However, as already noted in the previous Section
5.3, we have that for any temperature between triple point temperature and
critical temperature Ttripel = 273.16 K < T < Tcrit = 647.096 K the entropies
satisfy the inequalities

sL < scrit < sV. (6.27)

Obviously there are no (pure) liquid and (pure) vapor states with the same
entropy. This also can be seen in Figure 6.7.

Using an Eulerian approach like Dumbser et al. [24] one can obtain only
weak cavitation. Wet steam is created, which is a mixture of water vapor
and liquid water at saturation state. For the entropy one has

smix = µsV + (1 − µ)sL (6.28)

where µ ∈ [0, 1] denotes the vapor mass fraction, see [24]. Due to Equation
(6.27) the value µ is bounded for cavitation starting from pure liquid water.
Using the steam tables of Wagner [83] we find

µ ≤ 0.5. (6.29)

In contrast to the equilibrium models discussed in the first part of Section
6.5.2 models using a kinetic relation are able to produce strong cavitation.
This is clear by Section 6.5.1. A rarefaction wave curve in the liquid Region
1 can have an intersection point with the saturation line. Here a critical state
is reached. A cavitation criterion can be used, see Chapter 3 or Hantke et al.
[37]. The liquid phase starts to evaporate and a pure vapor phase is created.
An important difference to the previous models is, that the solution is not
smooth and entropy production by phase transition is allowed. Therefore
there is no contradiction to previous results.

6.6 Conclusions

We have seen, that condensation by compression cannot occur in an Eulerian
approach. Due to the compression of the water vapor not only the pres-
sure but also the temperature is increasing. Due to the rising temperature
the saturation pressure is increasing. The key point is, that the saturation
pressure increases much faster than the pressure inside the vapor phase.
Therefore phase transition cannot take place. From observations of nearly
adiabatic flows, see Figure 6.6 and 6.2 this phenomenon is known.
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• The Euler equations correctly reflect this behavior. We presented a
mathematical proof for this.

• Adiabatic compression of vapor does not lead to a liquid phase, see
Figure 6.7, path (1). To reach this state, a negative heat flow has to be
used. This is equivalent to the use of isothermal Euler equations such
as presented in Chapter 3. This corresponds to path (1) in Figure 6.7.

This effect comes up in much weaker form in the case of cavitation. The
reason may be that the temperature changes due to the expansion are much
smaller.

• It is not possible to evaporate a pure liquid by a rarefaction wave
completely, only with external supply of energy, see again Figure 6.7.
This is also equivalent to the use of isothermal Euler equations, see
Figure 6.7, path (2).

• We gave a mathematical proof for this.

On the other hand this shows, that heat flow plays an important role in
cavitation processes or in condensation processes caused by compression.
Thus Eulerian models (i.e. without heat transfer) are not appropriate to
describe such effects.
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7 Open Questions

In this chapter we want to summarize several questions or problems that
arise in the context of this work. Some of them might be rather easy whereas
other questions may be more difficult to answer. However, the decision
whether a question is easy to answer or not is definitely something that is
difficult to answer in advance. A presumably easy problem may hide severe
difficulties and with the right idea a difficult problem may be solved in an
instant.

The stated problems are not ordered by priority. We try to sort them ac-
cording to the previous content.

Problem 1. The mathematical problems and results related to this work are
an interesting topic on their own and their treatment is already justified
by mathematical interest. However, since the studied models are used
in several applications the obtained results should be compared with real
world experiments. We found it difficult to get different experimental data
(e.g. for two phase flows) that are suited to serve for a comparison with
the numerical simulations. Hence we think that mathematicians, physicists
and engineers working on this field should set up a series of test problems
that then should be performed in experiments such that the results may be
used to validate different approaches.

Problem 2. It is a well known result, that for that the entropy jump of weak
shock wave is of third order in the strength of the shock, see [9, 18, 60].
Now the question arises how this result is changed when the generalized
jump conditions are used? For example what are the consequences for the
entropy jump when the energy of the interface is considered?
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OPEN QUESTIONS

Problem 3. To obtain the general existence result in Chapter 3 we assumed
that G > 0 in both phases. Does a similar result hold for the case of G < 0?
Regarding the possible applications it should be sufficient to exclusively
discuss this case for the vapor phase. Further we think that this should only
affect the solution of the Riemann problem. Theorem 3.2.2 should remain
valid forGV < 0. For single phases the case of a nonconvex EOS is discussed
in [67].

Problem 4. The kinetic relation in Chapter 3 was obtained by assuming
that the mass flux is directly proportional to the jump of g + ekin. Which
properties should a kinetic relation of the form z = f (

�
g + ekin

�
) fulfill in

order to obtain similar results? See also Remark 2.2.1.

Problem 5. So far we included the case that a phase may be created. The
description of the opposite case (e.g. a completely evaporating droplet)
would also be nice to know.

Problem 6. The results of Chapter 3 are obtained under certain assumptions.
These assumptions are sufficient to state these results. Do these assumptions
already cover all relevant EOS? Is it possible to drop some of the (technical)
assumptions?

Problem 7. As for most one dimensional problems it would be desirable to
extend the discussion to the two and three dimensional case. This would
imply to consider surface tension.

Problem 8. We proposed an approach to solve one dimensional Riemann
problems for two phase flows including nucleation and cavitation. As
previously mentioned there are promising results for two dimensions which
currently are not able to treat phase creation. This is a major issue which is
directly connected to the analytical discussion. Especially the treatment of
the curvature in the numerical method is a major issue.

Problem 9. Is there a reliable and fast direct solver for the two phase Rie-
mann problem1?

Problem 10. In the third part of this work we have shown that it is necessary
to consider interface quantities in the adiabatic case. This case of singular
solutions has to be properly discussed. However, we think that in the case
of two phsae flows with phase transition the need for interface quantities in
the adiabatic case just reflects the (unphysical) absence of the heat flux.

1The author bets a beer on no.
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Problem 11. The physical key arguments for the non-existence result are
the sign of the entropy jump and the enthalpy jump, respectively. We
have shown this for water and assume these properties to hold for many
substances. Are there substances where these relations do not hold?

Problem 12. The proof of the main result in Chapter 6 relies on a suited
approximation of the saturation line of water given by the IAPWS-IF97. Is
there another proof directly comparing the slope of the shock curve with
the slope of the saturation curve given by the Clausius-Clapeyron equation.
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8 Appendix:

Concepts

8.1 Calculus of Moving Surfaces

The aim of the present section is to briefly summarize the most important
results for moving surfaces used throughout this work. We exemplary refer
to the works by Aris [2], Dziuk et al. [26], Grinfeld [34] and the references
therein.
In the following we will use the following notational conventions

(i) Lower case Greek indices refer to the surface and may take the values
{1, 2}. In contrast lower case Latin indices refer to the ambient space,
i.e. the standard R3 in our case.

(ii) Bold quantities refer to vectors in R3.

(iii) We use the Einstein summation convention, i.e. summation applies
to every index which appears twice. Once as superscript and once
as subscript. Such an index is often called dummy index and may be
renamed. See the following two examples

x · y =

3∑
i=1

xiyi = xiyi = x jy j,

AαBα = AβBβ = A1B1 + A2B2.

(iv) An expression of the form AαBα consisting of a contravariant and a

223



APPENDIX: CONCEPTS

covariant tensor1 is called contraction 2.

A two dimensional surfaceS inR3 may be described through a parametriza-
tion depending on a two dimensional coordinate system. We want to specify
this in the following. Let U ⊂ R2 be open and Φ : U → R3 an (injective)
smooth parametrization such that

S ≡ Φ(U) =
{
x ∈ R3

| x = Φ(u1,u2), uα ∈ U, α = 1, 2
}
. (8.1)

The tangents and the normal of S are given by

τα =
∂Φ
∂uα

, α = 1, 2 and ν =
τ1 × τ2

|τ1 × τ2|
. (8.2)

Since we want the tangents to be linearly independent the Jacobian of Φ
should be of rank two. The components of the surface metric are given by

gαβ = τα · τβ. (8.3)

Thus the metric is positive definite and symmetric. The inverse of the metric
is denoted by gαβ and we further have

gαβgβγ = δαγ and g := det(gαβ) = g11g22 − g2
12. (8.4)

A straight forward (and tedious) calculation shows
√

g = |τ1 × τ2|. (8.5)

Another important observation is that a vector may be decomposed in its
tangential and normal components. This is due to the fact that the surface
tangents and the surface normal form a basis of R3. For a vector in T ∈ R3

we thus may write

T = Tατ︸︷︷︸
tangential component

τα + Tν︸︷︷︸
normal component

ν. (8.6)

1We will skip the detailed introduction of tensors here and refer to the afore mentioned
literature. A tensor is a quantity which has certain transformation properties. The order of a
tensor is given by the number of indices. A tensor with upper indices is called contravariant
and covariant with lower indices, respectively.

2Whereas tensors might change with the coordinate system a contraction produces an
invariant quantity and thus it is one of the fundamental operations in tensor calculus.
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8.1. CALCULUS OF MOVING SURFACES

When we move along the surface the tangents and the normal will change
with respect to the coordinate lines. First we want to discuss the tangents.
From geometric intuition it is clear that in general the tangent will change
tangential and normal direction. Thus we define according to (8.6)

∂τα
∂uβ

= Γ
γ
αβτγ + bαβν. (8.7)

The normal component is called curvature tensor and is given by

bαβ =
∂τα
∂uβ
· ν =

∂2Φ

∂uα∂uβ
ν. (8.8)

Roughly speaking it gives the change of the tangent vectors in normal
direction along the coordinate lines. Again the geometric view is quite clear
since we expect no normal component of the derivative of a tangent for a
flat surface. Along with the curvature tensor one can define the quantity
KM which denotes the mean curvature 3. It is given by

KM =
1
2

gαβbαβ. (8.9)

The tangential component in (8.7) is called the Christoffel symbol. It can be
calculated using the following formula

∂τα
∂uβ

= Γ
γ
αβτγ + bαβν

|·τδ & | gδε
⇔ gδε

∂τα
∂uβ
· τδ = Γ

γ
αβgγδgδε = Γεαβ

gδε
∂τα
∂uβ
· τδ =

1
2

gδε
(
∂τα
∂uβ
· τδ +

∂τα
∂uβ
· τδ

)
=

1
2

gδε
(
∂τα
∂uβ
· τδ +

∂τβ
∂uα
· τδ

)
=

1
2

gδε
(
∂(τα · τδ)
∂uβ

−
∂τδ
∂uβ
· τα +

∂(τβ · τδ)
∂uα

−
∂τδ
∂uα
· τβ

)
=

1
2

gδε
(
∂gαδ
∂uβ

+
∂gβδ
∂uα

−
∂(τα · τβ)

∂uδ

)
⇔ Γ

γ
αβ =

1
2

gγδ
(
∂gαδ
∂uβ

+
∂gβδ
∂uα

−
∂gαβ
∂uδ

)
. (8.10)

It is a non-trivial fact and observation that the curvature tensor and the
Christoffel symbol are quantities which are intrinsic to the surface, see [2, 34].

3The factor 1/2 is a convention one has to agree on. It is also possible to define the mean
curvature without this factor, cf. [34].
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Now we discuss how the change of the (unit) normal can be calculated.
Intuitively there should be no normal component and indeed this can be
seen differentiating ν · ν = 1. We therefore may write

∂ν
∂uα

= Tβατβ. (8.11)

In the following we want to determine the tangential component Tβα, see
[64]. Therefore we differentiate ν · τγ = 0 with respect to uα, i.e.

0 =
∂ν
∂uα
· τγ +

∂τγ
∂uα
· ν ⇔

∂ν
∂uα
· τγ = −

∂τγ
∂uα
· ν.

If now (8.11) is multiplied by τγ and compared to the previous formula we
obtain

∂ν
∂uα
· τγ = Tβα τβ · τγ︸︷︷︸

=gβγ

= −
∂τγ
∂uα
· ν ⇔ Tβα = −gβγ

∂τγ
∂uα
· ν

Inserting this in (8.11) and using (8.7) finally gives

∂ν
∂uα

= −gβγbγατβ. (8.12)

So far we only used partial derivatives with respect to the surface coordi-
nates. This however might lead to problems since the result may depend
on the chosen coordinates for some quantities. Therefore one needs a new
derivative which is independent from the chosen parametrization. This is
called covariant derivative ∇α. We will omit the details of the derivation and
interpretation and again refer to the books [2, 34]. In short one can think of
the covariant derivative as respecting the change in the coordinates as well
as the change with respect to the tangents. In full generality the covariant
derivative for a quantity with mixed indices referring to the Euclidean R3 4

and the surface we have (see [34])

∇γTiα
jβ =

∂Tiα
jβ

∂uγ
+ τk

γΓ
i
mkTmα

jβ − τ
k
γΓ

m
ikTiα

mβ + ΓαδγTiδ
jβ − ΓδγβT

iα
jδ. (8.13)

4Here we assumed the canonical basis, otherwise a slight generalization is necessary, see
[34].
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The basic rules are that for every upper index one has an + Christoffel term
and a − for every lower index. If an index does not appear the whole
Christoffel term vanishes, e.g.

∇γTα =
∂Tα

∂uγ
+ ΓαδγTδ.

The covariant derivative has the following properties (more may be found
in the given literature)

(i) The covariant derivative coincides with the partial derivative when
applied to invariants (e.g. the normal ν and its components).

(ii) The covariant derivative satisfies sum and product rules, but it does
not commute.

(iii) The covariant derivative commutes with contraction.

(iv) The covariant derivatives ∇γgαβ and ∇γgαβ vanish. This is also called
metrilinic property, see [34].

As mentioned above the surface normal is an invariant and thus 5

∇αν =
∂ν
∂uα

.

For the tangents we obtain

∇βτα =
∂τα
∂uβ

+ Γ
γ
αβτγ

(8.7)
= bαβν. (8.14)

In this result the main property of the covariant derivative becomes appar-
ent, i.e. the result is independent from the chosen parametrization of the
surface. Further we have that ∇βτα = ∇ατβ.
Using the covariant derivative one can also calculate the surface divergence
of a quantity Tα as (see [34])

∇αTα =
1
√

g
∂
∂uα

(√
gTα

)
. (8.15)

5This can be seen by comparing the result obtained above (8.12) to the derivation of ∇αν in
[34].
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Another important relation my be obtained by calculating the covariant
derivative of (8.6)

∇αT = ∇α
(
Tβττβ + Tνν

)
= ∇α

(
Tβττβ

)
+ ∇α (Tνν)

= τβ∇αTβτ + Tβτ∇ατβ + ν∇αTν + Tν∇αν

= τβ∇αTβτ + Tβτbαβν +
∂Tν
∂uα

ν − Tνgβγbγατβ

=
(
∇αTβτ − Tνgβγbγα

)
τβ +

(
Tβτbαβ +

∂Tν
∂uα

)
ν. (8.16)

Equations (8.6) and (8.16) are also valid for tensorial quantities Tα, i.e.

Tα = Tαβτ τβ + Tανν and ∇γTα =
(
∇γTαβτ − Tαν gβδbδγ

)
τβ +

(
Tαβτ bγβ + ∇γTαν

)
ν.

(8.17)

So far we only considered a fixed surface S ⊂ R3. Now we wan to extend
the results to a moving surface. A moving surface S(t) can be considered
as a family of surfaces S(t) with a parameter t ∈ [0,T0],T0 > 0. The ini-
tial surface S0 = S(0) may be described as before with a smooth injective
parametrization Φ : U → S0. We further assume that there exists a suited
velocity field w(t, .) and a consistent diffeomorphism Ψ(t, .) such that the
following holds

Ψ(t, .) : S0 → S(t) with


∂
∂t

Ψ(t, .) = w(t,Ψ(t, .))

Ψ(0, .) = Id
.

With this we have for every particle P with xP(0) = x0 ∈ S0 that xP(t) =
Ψ(t, xP(0)) ∈ S(t) and equivalently

d
dt

xp(t) = w(t, xP(t))

xP(0) = x0.

Now we may also describe the surface S(t) in terms of the surface coordi-
nates (u1,u2) ∈ U using the mapping

Φ̃ = Ψ(t, .) ◦Φ :U → S(t).
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The results obtained so far remain valid and we assume that the dependence
on the parameter t is smooth. The first immediate result we obtain is that
the coordinate velocity of a point x is given by 6

w =
∂Φ̃(t,uα)

∂t
. (8.18)

and my be decomposed according to (8.6)

w = wα
ττα + wνν. (8.19)

The quantities wα
τ are called tangential coordinate velocity. The term wν is

called velocity of the surface with wνν being the vector normal velocity, see
[34]. It is important to note that wν is an invariant of the surface and a nice
geometric motivation is given in [34]. Now we can relate the coordinate
velocity (8.18) and the tangents (8.2)1 by

∂τα
∂t

=
∂w
∂uα

. (8.20)

The covariant derivative of the velocity can be obtained using (8.16)

∇αw =
(
∇αwβ

τ − wνgβγbγα
)
τβ +

(
wβ
τbαβ +

∂wν

∂uα

)
ν. (8.21)

A small computation (involving some index changes) shows that

∇αw =
∂w
∂uα

.

With this we may calculate the time derivative of the metric gαβ

∂
∂t

gαβ =
∂
∂t

(τα · τβ) =
∂τα
∂t
· τβ + τα ·

∂τβ
∂t

= ∇αw · τβ + τα · ∇βw

=
(
∇αwγ

τ − wνgγδbδα
)
τγ · τβ +

(
∇βw

γ
τ − wνgγδbγβ

)
τγ · τα

= gγβ∇αwγ
τ + gγα∇βw

γ
τ − 2wνbαβ. (8.22)

6A major issue when working with moving surfaces is how to define an invariant time
derivative. Here we only refer to the result obtained in [13, 26, 34, 35] since we are not
concerned with the details.
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If we contract (8.22) with the inverse gαβ one yields

gαβ
∂
∂t

gαβ = gαβ
(
gγβ∇αwγ

τ + gγα∇βw
γ
τ − 2wνbαβ

)
= δαγ∇αwγ

τ + δ
β
γ∇βw

γ
τ − 2wνgαβbαβ

= 2
(
∇αwα

τ − 2wνKM
)
. (8.23)

Now we can also calculate the time derivative of the determinant g. There
are two possible ways to obtain the result. First one may use the non-trivial
result (see [34]) that

∂g
∂gαβ

= ggαβ.

Now one obtains using the chain rule and (8.23)

∂
∂t

g =
∂g
∂gαβ

∂
∂t

gαβ = ggαβ
∂
∂t

gαβ = 2g
(
∇αwα

τ − 2wνKM
)
. (8.24)

Second we follow the more direct approach presented in [2], i.e.

∂
∂t

g =
∂
∂t

(
g11g22 − g2

12

)
= g22

∂
∂t

g11 + g11
∂
∂t

g22 − 2g12
∂
∂t

g12

= gg11 ∂
∂t

g11 + gg22 ∂
∂t

g22 + 2gg12 ∂
∂t

g12 = ggαβ
∂
∂t

gαβ.

A further useful relation connects ∇αw and the time derivative of the metric
in a special situation. Therefore we consider Aαβτβ with a symmetric tensor
Aαβ = Aβα. Now we calculate

Aαβτβ · ∇αw
(8.20)
= Aαβτβ ·

∂τα
∂t

=
1
2

(
Aαβτβ ·

∂τα
∂t

+ Aαβτβ ·
∂τα
∂t

)
=

1
2

(
Aαβτβ ·

∂τα
∂t

+ Aβατα ·
∂τβ
∂t

)
Aαβ=Aβα

=
1
2

Aαβ

(
τβ ·

∂τα
∂t

+ τα ·
∂τβ
∂t

)
=

1
2

Aαβ ∂
∂t

gαβ. (8.25)
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9 Appendix:

Isothermal Case

9.1 Detailed Calculations for the Isothermal Case
- Analysis

In this short appendix we want to give the detailed calculation used in the
proof of Lemma 3.3.1. There we started with

d
dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

= ∂pV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

+ ∂pL

(
p∗Vh(p∗V, p

∗

L) ~v�
)
ϕ′(p∗V)

= (h(p∗V, p
∗

L) + p∗V∂pV h(p∗V, p
∗

L)) ~v� + p∗Vh(p∗V, p
∗

L)
v2

V

a2
V

+

{
p∗V∂pL h(p∗V, p

∗

L) ~v� − p∗Vh(p∗V, p
∗

L)
v2

L

a2
L

}
ϕ′(p∗V).

We assume p∗Vh(p∗V, p
∗

L) , 0 from now on and thus may write

d
dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

=
1

2p∗Vh(p∗V, p
∗

L)
(∂pV f (p∗V, p

∗

L) + 1) +
1
2

p∗Vh(p∗V, p
∗

L)
v2

V

a2
V

+

{
1

2p∗Vh(p∗V, p
∗

L)
(∂pL f (p∗V, p

∗

L) − 1) −
1
2

p∗Vh(p∗V, p
∗

L)
v2

L

a2
L

}
ϕ′(p∗V).

Multiplication with ∂pL f (p∗V, p
∗

L) > 0 and use of

ϕ′(p∗V) = −
∂pV f (p∗V, p

∗

L)
∂pL f (p∗V, p

∗

L)
.
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gives

∂pL f (p∗V, p
∗

L)
d

dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

= . . .

=

{
1
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∗
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∗
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1
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V

a2
V
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−
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1
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∗
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∗
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1
2
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∗

L)
v2

L

a2
L

}
∂pV f (p∗V, p

∗
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=
1

2p∗Vh(p∗V, p
∗
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∗
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∗

L))

+
1
2
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∗
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(
∂pV f (p∗V, p

∗
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L
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∗
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V
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)
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∗
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∗

L))
(
1 + (p∗Vh(p∗V, p

∗

L))2 v2
L
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)
~v�

+ pV∂pL h(p∗V, p
∗

L)
(
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∗
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~v� + p∗Vh(p∗V, p
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(

v2
V
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V

−
v2

L
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)
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(
1 + (p∗Vh(p∗V, p
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L))2 v2
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)
− p∗Vh(p∗V, p
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�

v2
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�
+ τpV ~v�2
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�
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∗

L))4 v2
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)
Thus we finally obtain the following equation

∂pL f (p∗V, p
∗

L)
d

dpV

(
p∗Vh(p∗V, p

∗

L) ~v�
)

= h(p∗V, p
∗

L)
(
vL

(
1 −

p∗LvL

a2
L

)
− vV

(
1 −

p∗VvV

a2
V

))
+ τpV ~v�2

(
1 − (p∗Vh(p∗V, p

∗

L))4 v2
V

a2
V

v2
L

a2
L

)
.
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9.2 Detailed Calculations for the Isothermal Case
- Numerics

In this section we want to give the derivatives and some calculations needed
throughout Chapter 4. All quantities and assumptions are as in the Chapters
3 and 4.

9.2.1 Derivatives of h(pV, pL) and f (pV, pL) with respect to pL

The derivatives of (3.40)1

h(pV, pL) := τ
�

g −
1
2

p(vL + vV)
�

= τ
[
gL(pL) − gV(pV) −

1
2

(pL − pV)(vL(pL) + vV(pV))
]

with respect to pL are

∂pL h(pV, pL) =
τ
2

[
~v� +

�
p

� v2
L

a2
L

]
, (9.1)

∂2
pL

h(pV, pL) = −τ
�

p
� v3

L

a4
L

GL, (9.2)

∂3
pL

h(pV, pL) = −τ
v3

L

a4
L

GL − τ
�

p
� v4

L

a6
L

GL (1 − 4GL) − τ
�

p
� v3

L

a4
L

∂GL

∂pL
. (9.3)

Note that for the third derivative (9.3) the derivative of GL is needed. Up
to our knowledge this term has not been discussed in the literature so far.
Which is presumably due to the fact that this is a rather technical quantity
which is not needed in most cases. However, in many cases it might be
sufficient to work with GL = const. which then simplifies the calculations.

The derivatives of (3.40)2

f (pV, pL) :=
�

p
�

+
(
pVh(pV, pL)

)2 ~v�
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with respect to pL are given in the following. For the derivatives of first and
second order we yield

∂pL f (pV, pL) = 1 + 2(pVh(pV, pL))(pV∂pL h(pV, pL)) ~v� − (pVh(pV, pL))2
(vL

aL

)2
,

(9.4)

∂2
pL

f (pV, pL) = 2(pVh(pV, pL))
(
pV∂

2
pL

h(pV, pL)
)
~v� + 2

(
pV∂pL h(pV, pL)

)2
~v�

− 4(pVh(pV, pL))
(
pV∂pL h(pV, pL)

) (vL

aL

)2
+ 2(pVh(pV, pL)2

v3
L

a4
L

GL,

(9.5)

The third order derivative is needed for the remainder of the expansion and
is given by

∂3
pL

f (pV, pL) = . . .

= 2(pVh(pV, pL))
(
pV∂

3
pL

h(pV, pL

)
~v� + 6

(
pV∂pL h(pV, pL)

) (
pV∂

2
pL

h(pV, pL)
)
~v�

− 6(pVh(pV, pL))
(
pV∂

2
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h(pV, pL)
) (vL

aL

)2
− 2

(
pV∂

2
pL

h(pV, pL)
)2

(vL

aL

)2

− 4
(
pV∂pL h(pV, pL)

)2
(vL

aL

)2
+ 12(pVh(pV, pL))

(
pV∂pL h(pV, pL)

) v3
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+ 2(pVh(pV, pL))2 v4
L

a6
L

GL (1 − 4GL) + 2(pVh(pV, pL))2
v3

L

a4
L

∂GL

∂pL
. (9.6)

Concerning the third derivative (9.6) the same remark as before applies to
the derivative of GL.

9.2.2 Limit behaviour as pV → 0

Here we want to present the details for the result (4.19) in the case that the
vapor phase is modeled as an ideal Gas. For h(pV, p0) and ∂pL h(pV, p0) we
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have the following limits

lim
pV→0

pVh(pV, p0) = lim
pV→0

τpV

[
−gV(pV) −

1
2

(p0 − pV)(vL(p0) + vV(pV))
]

= −τ lim
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2
VpV ln
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pV

2
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→p0a2
v/2


= −

1
2
τp0a2

V, (9.7)
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lim
pV→0

∂2
pL

h(pV, p0) = −τ lim
pV→0

(p0 − pV)
v3

L0

a4
L0

GL0 = −τp0
v3

L0

a4
L0

GL0. (9.9)

The limits of the functions (3.40)2, (9.4) and (9.5) all diverge to minus infinity
for pV → 0 and pL = p0. Here we need the limits of the quotients appearing
in (4.17). We first yield (omitting the arguments (pV, p0) of the occurring
functions)

lim
pV→0

f (pV, p0)
∂2

pL
f (pV, p0)

= . . .

= lim
pV→0
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2
(9.10)
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and further

lim
pV→0

∂pL f (pV, p0)
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Here we have also used that ~v�→ −∞ for pV → 0 and pL = p0 for an ideal
gas. Now we can show

lim
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236



Bibliography

[1] R. Abeyaratne and J. K. Knowles. Kinetic relations and the propaga-
tion of phase boundaries in solids. Archive for Rational Mechanics and
Analysis, 114(2):119–154, 1991.

[2] R. Aris. Vectors, tensors, and the basic equations of fluid mechanics. Dover
Publications, New York, 1989.

[3] M. Baer and J. Nunziato. A two-phase mixture theory for the
deflagration-to-detonation transition (ddt) in reactive granular materi-
als. International Journal of Multiphase Flow, 12(6):861 – 889, 1986.

[4] T. Barberon and P. Helluy. Finite volume simulation of cavitating flows.
Computers & Fluids, 34(7):832 – 858, 2005.

[5] M. Bartelmann, B. Feuerbacher, T. Krüger, D. Lüst, A. Rebhan, and
A. Wipf. Theoretische Physik. Springer Spektrum, 2015.

[6] P. Batten, N. Clarke, C. Lambert, and D. M. Causon. On the choice
of wavespeeds for the HLLC Riemann solver. SIAM J. Sci. Comput.,
18(6):1553–1570, 1997.

[7] D. Bedeaux. Nonequilibrium thermodynamics and statistical physics
of surfaces. Advances in Chemical Physics, 64:47–109, 1986.

[8] D. Bedeaux and S. Kjelstrup. Irreversible thermodynamics—a tool
to describe phase transitions far from global equilibrium. Chemical
Engineering Science, 59(1):109 – 118, 2004.

[9] G. Ben-Dor, O. Igra, T. Elperin, and A. Lifshitz. Handbook of Shock Waves:
Theoritical, experimental, and numerical techniques. Handbook of Shock
Waves. Academic Press, 2001.

237



BIBLIOGRAPHY

[10] M. Bond and H. Struchtrup. Mean evaporation and condensation
coefficients based on energy dependent condensation probability. Phys.
Rev. E, 70:061605, Dec 2004.

[11] D. Bothe and W. Dreyer. Continuum thermodynamics of chemically
reacting fluid mixtures. Acta Mechanica, 226(6):1757–1805, 2015.

[12] A. Bressan. Lecture notes on hyperbolic conservation laws, 2009.

[13] P. Cermelli, E. Fried, and M. E. Gurtin. Transport relations for surface
integrals arising in the formulation of balance laws for evolving fluid
interfaces. Journal of Fluid Mechanics, 544:339–351, 12 2005.

[14] C. Chalons, C. Rohde, and M. Wiebe. A finite volume method for
undercompressive shock waves in two space dimensions. ESAIM Math.
Model. Numer. Anal., 2017.

[15] G.-Q. Chen. Euler equations and related hyperbolic conservation laws.
In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations
Evolutionary Equations, volume 2, pages 1 – 104. North-Holland, 2005.

[16] G.-Q. Chen and D. Wang. The cauchy problem for the euler equa-
tions for compressible fluids. In S. Friedlander and D. Serre, editors,
Handbook of Mathematical Fluid Dynamics, volume 1, pages 421 – 543.
North-Holland, 2002.

[17] P. Colonna and A. Guardone. Molecular interpretation of nonclassical
gas dynamics of dense vapors under the van der waals model. Physics
of Fluids, 18(5), 2006.

[18] C. M. Dafermos. Hyperbolic Conservation Laws in Continuum Physics,
volume 325 of Grundlehren der mathematischen Wissenschaften. Springer
Berlin Heidelberg, 2016.

[19] K. Davitt, E. Rolley, F. Caupin, A. Arvengas, and S. Balibar. Equation
of state of water under negative pressure. Journal of Chemical Physics,
133(17):1745071 – 1745078, 2010.

[20] S. De Groot and P. Mazur. Non-Equilibrium Thermodynamics. Dover
Books on Physics. Dover Publications, 2013.

[21] W. Dreyer. On jump conditions at phaseboundaries for ordered and
disordered phases. WIAS Preprint, 2003.

238



BIBLIOGRAPHY

[22] W. Dreyer and F. Duderstadt. On the Becker/Döring theory of nucle-
ation of liquid droplets in solids. Journal of Statistical Physics, 123(1):55–
87, 2006.

[23] W. Dreyer, F. Duderstadt, M. Hantke, and G. Warnecke. Bubbles in
liquids with phase transition. Part 1. On phase change of a single vapor
bubble in liquid water. Contin. Mech. Thermodyn., 24(4-6):461–483, 2012.

[24] M. Dumbser, U. Iben, and C.-D. Munz. Efficient implementation of
high order unstructured weno schemes for cavitating flows. Computers
& Fluids, 86(0):141 – 168, 2013.

[25] J. Dymond and R. Malhotra. The Tait equation: 100 years on. Interna-
tional Journal of Thermophysics, 9(6):941–951, 1988.

[26] G. Dziuk and C. M. Elliott. Finite elements on evolving surfaces. IMA
Journal of Numerical Analysis, 27(2):262, 2007.

[27] L. C. Evans. Entropy and partial differential equations, lecture notes.

[28] L. C. Evans. Partial differential equations. American Math. Soc., Provi-
dence, RI, 1998. Literaturverz. S. 651 - 654.

[29] L. C. Evans. A survey of entropy methods for partial differential equa-
tions. Bull. Amer. Math. Soc. (N.S.), 41(4):409–438, 2004.

[30] H. Fan and M. Slemrod. Dynamic flows with liquid/vapor phase tran-
sitions. volume 1, pages 373 – 420. North-Holland, 2002.

[31] S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler. Approximate riemann
solver for compressible liquid vapor flow with phase transition and
surface tension. Computers & Fluids, 2017.

[32] S. Fechter, C.-D. Munz, C. Rohde, and C. Zeiler. A sharp interface
method for compressible liquid–vapor flow with phase transition and
surface tension. Journal of Computational Physics, 336:347 – 374, 2017.

[33] T. Flåtten, A. Morin, and S. Munkejord. On solutions to equilibrium
problems for systems of stiffened gases. SIAM Journal on Applied Math-
ematics, 71(1):41–67, 2011.

[34] P. Grinfeld. Introduction to Tensor Analysis and the Calculus of Moving
Surfaces. Springer New York, 2013.

239



BIBLIOGRAPHY

[35] M. E. Gurtin. On thermomechanical laws for the motion of a phase
interface. Z. Angew. Math. Phys., 42(3):370–388, 1991.

[36] M. E. Gurtin. Thermomechanics of evolving phase boundaries in the plane.
Oxford University Press, 1993.

[37] M. Hantke, W. Dreyer, and G. Warnecke. Exact solutions to the Rie-
mann problem for compressible isothermal Euler equations for two
phase flows with and without phase transition. Quarterly of Applied
Mathematics, 71:509 – 540, 2013.

[38] M. Hantke and F. Thein. Numerical solutions to the Riemann problem
for compressible isothermal Euler equations for two phase flows with
and without phase transition. In Hyperbolic problems: theory, numerics,
applications, volume 8 of AIMS Ser. Appl. Math., pages 651–658. AIMS,
2014.

[39] M. Hantke and F. Thein. Why condensation by compression in pure
water vapor cannot occur in an approach based on Euler equations.
Quart. Appl. Math., 73(3):575–591, 2015.

[40] M. Hantke and F. Thein. Singular and selfsimilar solutions for Euler
equations with phase transitions. Bulletin of the Brazilian Mathematical
Society, New Series, 47(2):779–786, 2016.

[41] M. Hantke and F. Thein. A general existence result for isothermal
two-phase flows with phase transition. ArXiv e-prints, Mar. 2017.

[42] A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and
Godunov-type schemes for hyperbolic conservation laws. SIAM Rev.,
25(1):35–61, 1983.

[43] U. Iben. Modeling of cavitation. Systems Analysis Modelling Simulation,
42(9):1283–1307, 2002.

[44] U. Iben. Entwicklung und Untersuchung von Kavitationsmodellen
im Zusammenhang mit transienten Leitungsströmungen. Fortschritt-
Berichte VDI, Reihe 7, Strömungstechnik, 2004. VDI Verlag.

[45] U. Iben, F. Wrona, C.-D. Munz, and M. Beck. Cavitation in hydraulic
tools based on thermodynamic properties of liquid and gas. ASME
Journal of Fluids Engineering, 124(4):1011–1017, 2002.

240



BIBLIOGRAPHY

[46] M. J. Ivings, D. M. Causon, and E. F. Toro. On Riemann solvers for com-
pressible liquids. International Journal for Numerical Methods in Fluids,
28(3):395–418, 1998.

[47] D. C. Johnston. Advances in Thermodynamics of the van der Waals Fluid.
2053-2571. Morgan & Claypool Publishers, 2014.

[48] D. L. Katz, D. Cornell, J. A. Vary, R. Kobayashi, J. R. Elenbass, F. H.
Poettmann, and C. F. Weinaug. Handbook of natural gas engineering. New
York : McGraw-Hill, 1959.

[49] C. Kelley. Iterative Methods for Linear and Nonlinear Equations, volume 16
of Frontiers in Applied Mathematics. Society for industrial and Applied
Mathematics, 1995.

[50] D. Kröner. Numerical Schemes for Conservation Laws. Advances in nu-
merical mathematics. Wiley, 1997.

[51] L. D. Landau and E. M. Lifschitz. Lehrbuch der theoretischen Physik,Bd.V
Statistische Physik. Akad.-Verl., Berlin, 8. edition, 1987.

[52] L. D. Landau and E. M. Lifschitz. Lehrbuch der theoretischen Physik, Bd.VI
Hydrodynamik. Akad.-Verl., Berlin, 5. edition, 1991.

[53] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical
Theory of Shock Waves. Society for Industrial and Applied Mathematics,
1973.

[54] J. M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts
in Mathematics. Springer New York, 2012.

[55] P. LeFloch. Hyperbolic Systems of Conservation Laws: The Theory of Clas-
sical and Nonclassical Shock Waves. Lectures in Mathematics. Birkhäuser
Verlag, 2002.

[56] R. J. LeVeque. Numerical methods for conservation laws, volume 132.
Springer, 1992.

[57] E. H. Lieb and J. Yngvason. The physics and mathematics of the second
law of thermodynamics. Physics Reports, 310(1):1 – 96, 1999.

[58] L. P. Mario N. Berberan-Santos, Evgeny N. Bodunov. The van der Waals
equation: Analytical and approximate solutions. Journal of Mathematical
Chemistry, 43(4):1437–1457, 1 2008.

241



BIBLIOGRAPHY

[59] R. Mauri. Non-Equilibrium Thermodynamics in Multiphase Flows. Soft
and Biological Matter. Springer Berlin Heidelberg, 2013.

[60] R. Menikoff and B. J. Plohr. The Riemann problem for fluid flow of real
materials. Rev. Mod. Phys., 61:75–130, Jan 1989.

[61] C. Merkle. Dynamical Phase Transitions in Compressible Media. PhD
thesis, Universität Freiburg, 2006.

[62] C. Merkle and C. Rohde. The sharp-interface approach for fluids with
phase change: Riemann problems and ghost fluid techniques. ESAIM:
M2AN, 41(6):1089–1123, 2007.

[63] O. L. Métayer, J. Massoni, and R. Saurel. Élaboration des lois d’état d’un
liquide et de sa vapeur pour les modèles d’écoulements diphasiques.
International Journal of Thermal Sciences, 43(3):265 – 276, 2004.

[64] I. Müller. Thermodynamics. Interaction of Mechanics and Mathematics
Series. Pitman, 1985.

[65] I. Müller and W. H. Müller. Fundamentals of Thermodynamics and Appli-
cations. Springer Berlin Heidelberg, 2009.

[66] S. Müller and Y. Stiriba. Fully adaptive multiscale schemes for con-
servation laws employing locally varying time stepping. Journal of
Scientific Computing, 30(3):493–531, 2007.

[67] S. Müller and A. Voss. The Riemann problem for the Euler equations
with nonconvex and nonsmooth equation of state: Construction of
wave curves. SIAM Journal on Scientific Computing, 28(2):651–681, 2006.

[68] F. Petitpas, J. Massoni, R. Saurel, E. Lapebie, and L. Munier. Diffuse
interface model for high speed cavitating underwater systems. Inter-
national Journal of Multiphase Flow, 35(8):747 – 759, 2009.

[69] P. H. Poole, F. Sciortino, U. Essmann, and H. E. Stanley. Spinodal of
liquid water. Phys. Rev. E, 48:3799–3817, Nov 1993.

[70] P. D. E. Rebhan. Theoretische Physik: Thermodynamik und Statistik. Spek-
trum Akademischer Verlag, 2010.

[71] R. Saurel and R. Abgrall. A multiphase Godunov method for compress-
ible multifluid and multiphase flows. Journal of Computational Physics,
150(2):425 – 467, 1999.

242



BIBLIOGRAPHY

[72] R. Saurel, P. Cocchi, and P. B. Butler. Numerical study of cavitation in
the wake of a hypervelocity underwater projectile. Journal of Propulsion
and Power, 15(4):513–522, 1999.

[73] R. Saurel, F. Petitpas, and R. Abgrall. Modelling phase transition in
metastable liquids: application to cavitating and flashing flows. J.
Fluid Mech., 607:313–350, 2008.

[74] V. Schleper. A HLL-type Riemann solver for two-phase flow with
surface forces and phase transitions. Applied Numerical Mathematics,
108:256 – 270, 2016.

[75] J. Smoller. Shock waves and reaction—diffusion equations, volume 258.
Springer Science & Business Media, 2012.

[76] P. A. Thompson. A fundamental derivative in gasdynamics. Physics of
Fluids (1958-1988), 14(9):1843–1849, 1971.

[77] E. Toro, M. Spruce, and W. Speares. Restoration of the contact surface
in the HLL-Riemann solver. Shock Waves, 4(1):25–34, 1994.

[78] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer Berlin Heidelberg, 2009.

[79] C. Truesdell and R. Toupin. The Classical Field Theories, pages 226–858.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1960.

[80] J. Vermaak, C. Mays, and D. Kuhlmann-Wilsdorf. On surface stress and
surface tension: I. theoretical considerations. Surface Science, 12(2):128
– 133, 1968.

[81] A. Voß. Exact Riemann Solution for the Euler Equations with Nonconvex
and Nonsmooth Equation of State. PhD thesis, RWTH Aachen, 2005.

[82] W. Wagner, J. R. Cooper, A. Dittmann, J. Kijima, H.-J. Kretzschmar,
A. Kruse, R. Mareš, K. Oguchi, H. Sato, I. Stöcker, O. Šifner, Y. Takaishi,
I. Tanishita, J. Trübenbach, and T. Willkommen. The IAPWS indus-
trial formulation 1997 for the thermodynamic properties of water and
steam. J. Eng. Gas Turbines Power, 122(1):150–184, 2000.

[83] W. Wagner and H. Kretzschmar. International Steam Tables - Proper-
ties of Water and Steam based on the Industrial Formulation IAPWS-IF97.
Springer Berlin Heidelberg, 2007.

243



BIBLIOGRAPHY

[84] W. Wagner and A. Kruse. Properties of water and steam: the industrial
standard IAPWS-IF97 for the thermodynamic properties and supplementary
equations for other properties : tables based on these equations. Springer-
Verlag, 1998.

[85] G. Warnecke. Analytische Methoden in der Theorie der Erhaltungsgleichung.
B.G. Teubner, Stuttgart-Leipzig, 1999.

[86] H. Yang. Riemann problems for a class of coupled hyperbolic systems
of conservation laws. Journal of Differential Equations, 159(2):447 – 484,
1999.

[87] A. Zein. Numerical methods for multiphase mixture Conservation laws with
phase transition. PhD thesis, Otto-von-Guericke Universität Magde-
burg, 2010.

[88] A. Zein, M. Hantke, and G. Warnecke. Modeling phase transition for
compressible two-phase flows applied to metastable liquids. Journal of
Computational Physics, 229(8):2964 – 2998, 2010.

[89] E. Çınlar and R. J. Vanderbei. Real and Convex Analysis. Undergraduate
Texts in Mathematics. Springer US, 2013.

244


	Zusammenfassung
	Summary
	Acknowledgements
	I Concepts
	Thermodynamics
	The Laws of Thermodynamics
	Thermodynamic Potentials and Maxwell Relations
	Equations of State
	Ideal Gas and Stiffened Gas EOS
	Linear and Non-Linear Tait EOS

	Thermodynamics for Multiphase Systems
	Thermodynamics of a Surface


	Balance Laws
	Generic Balance Laws
	Specific Balance Laws & the Entropy Inequality
	Conservation of Mass
	Balance of Momentum
	Balance of Energy
	Entropy Inequality
	Summary

	Results for Hyperbolic Conservation Laws
	Euler Equations
	Adiabatic Euler Equations
	Isothermal Euler Equations
	Isentropic Euler Equations



	II Isothermal Case
	Analytical Solution of the Riemann Problem
	Isothermal Euler Equations
	Definition and Requirements for the EOS
	Riemann Problem

	Solution at the Interface
	Proof

	Solution of the Two Phase Riemann Problem
	First Case: Two Phase Flow without Phase Transition
	Second Case: Two Phase Flow with Phase Transition

	Phase Creation in Single Phase Flows
	Condensation by Compression
	Evaporation by Expansion

	Conclusion
	Discussion of the Assumptions
	Examples
	Conclusion


	Numerical Solution of the Riemann Problem
	Problem Formulation and Main Challenges
	Numerical Method
	Grid Alignment and Adaption
	Solution at the Interface

	Approximate Calculation of the Liquid Pressure
	Phase Creation
	Cavitation
	Nucleation

	Numerical Examples
	Two Phase Initial Data
	Phase Creation



	III Adiabatic Case
	Solution Types for Euler Equations with Phase Transitions
	Introduction
	Balance Laws and Entropy Inequality
	Self-Similar Solutions
	Singular Solutions
	Conclusion

	A Nonexistence Result for Two Phase Flows
	Introduction
	Adiabatic Euler Equations
	Definitions and Requirements for the EOS

	Condensation by Compression
	Wave Curve in the p-T Phase Space
	Proof of the Statement for a Particular EOS
	Short Discussion of Different Phase Transition Models

	Extension to the Real EOS for Water
	Approximation of the Real EOS
	Proof of the Statement for the Real EOS

	Cavitation by Expansion
	Cavitation in the Weak Sense
	Cavitation in the Strong Sense

	Conclusions


	Open Questions
	Appendix
	Concepts
	Calculus of Moving Surfaces

	Isothermal Case
	Detailed Calculations for the Isothermal Case - Analysis
	Detailed Calculations for the Isothermal Case - Numerics
	Derivatives of h(pV,pL) and f(pV,pL) with respect to pL
	Limit behaviour as pV -> 0



	Bibliography

