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Abstract

This dissertation aims at developing tools to investigate the behavior and mechanisms of
spray dispersion, evaporation, and ignition in turbulent reactive flow at near-practical con-
ditions. One of these tools is a direct numerical simulation (DNS) code which is able to
resolve the physical scales of interest. This DNS tool was validated with different reactive
and non-reactive flows before using it in the main investigations. Spray combustion itself
is a type of two-phase flow, which includes both a continuous phase (gas) and a discrete
phase (liquid droplets). The numerics of both phases should first be well-established and
resolved before any deep analysis, as will be seen in this dissertation. Furthermore, the fol-
lowing numerical reduction models have been examined as well, in order to either reduce the
required computational resources or to perform post-processing of the turbulent flow: (1)
one dimensional turbulence model, (2) tabulation chemistry, and (3) modal decomposition
techniques. The dissertation includes seven chapters which can be summarized as follows.

In the first chapter, a general introduction to spray combustion and turbulent reactive
flow is given. The literature on direct numerical simulation of sprays is reviewed. This
chapter also discusses the physical spatial resolution, which is required in turbulent spray
flow simulation in order to resolve all possible spatial scales. The complete plan for this
dissertation is also summarized in this chapter.

The second chapter reviews most of the fundamentals and the equations of turbulent re-
active flow and spray combustion, starting from the governing equations of different flow
regimes (incompressible, low Mach number, fully compressible), then reviewing the re-
lated thermodynamic, transport, and kinetic relations. Afterwards, some important def-
initions, scales, and non-dimensional numbers in different combustion modes (premixed,
non-premixed) are presented for laminar and turbulent flows, respectively. Finally, the fun-
damentals of the discrete phase (spray) and its governing equations are reviewed.

The developed DNS tool (DINO) is discussed in detail in Chapter 3. The numerical
algorithms, computational efficiency, and scaling are presented. DINO’s verification and
validation are examined by comparison with different analytical, experimental, and numerical
benchmarks. Some examples and applications are given at the end of this chapter.

The fourth chapter investigates the behavior and mechanisms of spray dispersion, evap-
oration, burning, and ignition in turbulent jet flow. The role of scalar dissipation rate and
shear impact are examined, highlighting the importance of DNS in understanding spray com-
bustion and developing models thereof. Furthermore, two numerical settings are suggested,
as benchmarks, which would help in numerical study to investigate different phenomena in
spray turbulent combustion: spray-turbulence-flame interactions, turbulent mixing, trans-
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port, evaporation, ignition, etc.
A tool to quantify the flow state is developed in Chapter 5. This tool is based on the

spectral entropy obtained from solving an eigenvalue problem, which kernel is the auto-
correlation function of the flow velocity. This tool is first derived and then calibrated with
a well-defined flow benchmark: homogeneous isotropic turbulence. After the calibration,
two different applications is tested using this tool. (1) DNS results obtained for the Taylor-
Green vortex benchmark at Re = 1600 as well as (2) results obtained through Large Eddy
Simulations (LES) in a blood nozzle, revealing in both cases a perfect agreement with a
traditional, user-based analysis of the flow conditions.

In the sixth chapter, different approaches for reductions are presented to optimize the
computational resources required for DNS of turbulent reactive flows. Since the numerical
methods employed in this dissertation for the discrete phase (spray) are already consid-
ered as a reduced model (Discrete Particles Simulation, DPS), the techniques described in
this chapter are only applied to the continuous phase (gas mixture). These techniques can
be categorized into three categories based on their nature and application: (1) dimension
reduction: one-dimensional turbulence model, (2) chemistry/kinetic reduction: DNS with
tabulation chemistry, (3) analysis: modal decomposition methods. These three techniques
have been tested and validated, highlighting their ability to analyze the turbulent flow or
make significant reductions in the required computational resources compared to standard
DNS.

This dissertation is concluded with a summary, recommendations, and outlook which are
presented in Chapter 6. The main contributions and novelties contained in this work are
listed below.

Novelties and main contributions:

• Development of a new DNS tool which can accurately handle many different physical
phenomena in reactive and non-reactive two-phase turbulent flows;

• Development of a method to quantify the flow state and detect transition to turbulence;

• Using of the temporally-evolving jet configuration for the first time in 3D DNS of spray
combustion;

• Proving for the first time that the one-dimensional turbulence model can be used to
test the occurrence of auto-ignition in premixed propane/air mixtures;

• Development of a new tool which can perform modal decomposition (SPOD and DMD)
as a post-processing technique to reduce the required disk storage space and to quantify
the turbulence dynamics and scales.



Zusammenfassung

Ziel dieser Dissertation ist es, unterschiedliche Tools zu entwickeln, um das Verhalten und
die Mechanismen der Spray-Dispersion, Verdunstung und Zündung in turbulenter reaktiver
Strömung unter praxisnahen Bedingungen zu untersuchen. Eines dieser Tools ist ein Direkte
Numerische Simulations (DNS) Code, welcher in der Lage ist, die physikalischen Skalen, die
von Interesse sind, aufzulösen. Dieses DNS-Tool wurde für verschiedene reaktive und nicht-
reaktive Strömungen validiert, bevor es bei den Untersuchungen zum Einsatz kam. Sprühver-
brennung an sich ist eine Form der Zweiphasenströmung, welche sowohl eine kontinuierliche
Phase (Gas) als auch eine diskrete Phase (flüssige Tröpfchen) beinhaltet. Die Numerik dieser
beiden Phasen sollte bevor jegliche tiefere Analyse stattfindet, völlig bestimmt und aufgelöst
sein, wie in dieser Dissertation zu sehen sein wird. Außerdem wurden die nachfolgenden vere-
infachten numerischen Modelle ebenso untersucht, um entweder die notwendigen Rechenres-
sourcen oder ein Post-processing der turbulenten Strömung durchzufhren: (1) eindimension-
ales Turbulenzmodell, (2) tabellarische Chemie und (3) Methoden der modalen Zersetzung.

Die Dissertation beinhaltet sieben Kapitel, welche wie folgt zusammengefasst werden
können. Im ersten Kapitel wird eine generelle Einführung zur Sprühverbrennung und tur-
bulenter reaktiver Strömung gegeben. Die Literatur zu Direkter Numerischer Simulation
wird besprochen. Dieses Kapitel behandelt auch die physikalisch-räumliche Auflösung, die
in der turbulenten Sprühströmungssimulation benötigt wird, um alle möglichen räumlichen
Skalen aufzulösen. Der gesamte Plan dieser Dissertation ist ebenfalls in diesem Kapitel
zusammengefasst.

Das zweite Kapitel wiederholt die meisten Grundlagen und die Gleichungen für turbulente
reaktive Strömungen und Sprühverbrennung, ausgehend von den Erhaltungs-Gleichungen
verschiedener Strömungsregime (inkompressible, niedrige Machzahl, vollständig kompress-
ibel) und anschließend die damit verbundenen thermodynamischen, transport- und kinetis-
chen Beziehungen. Danach werden einige wichtige Definitionen, Skalen und dimensionslose
Kennzahlen in verschiedenen Verbrennungsmoden (vorgemischt und nicht-vorgemischt) für
laminare und turbulente Strömungen vorgestellt. Zum Schluss wird auf die Grundlagen der
diskreten Phase (Spray) und deren Erhaltungs-Gleichungen eingegangen.

Das entwickelte DNS-Tool (DINO) ist in Kapitel 3 im Detail diskutiert. Die numerischen
Algorithmen, Rechenleistung und Skalierung werden vorgestellt. Das Verifizieren und Vali-
dieren von DINO werden durch Vergleiche mit verschiedenen analytischen, experimentellen
und numerischen Benchmarks überprüft. Einige Beispiele und Anwendungen sind am Ende
dieses Kapitels enthalten.

Das vierte Kapitel untersucht das Verhalten und die Mechanismen der Spray-Dispersion,
Verdunstung, Verbrennung und Zündung in turbulenter Strahlströmung. Die Rolle der
skalaren Dissipationsrate und des Scheraufpralls werden untersucht und stellen die Bedeu-
tung der DNS für das Verständnis der Spray-Verbrennung und die dafür entwickelten Modelle
dar. Außerdem werden zwei numerische Einstellungen, in Form von Benchmarks, vorgeschla-
gen, welche in der numerischen Untersuchung hilfreich wären, zur Ermittlung verschiedener
Phänomene in turbulenter Sprühverbrennung: Spray-Turbulenz-Flammen-Interaktionen, tur-
bulentes Mischen, Transport, Verdunstung, Zündung, usw.



Ein weiteres Tool zur Quantifizierung des Strömungszustandes wird in Kapitel 5 entwick-
elt. Dieses Tool basiert auf der spektralen Entropie, die durch das Lösen eines Eigenwert-
Problems erhalten wird und wiederrum die Autokorrelationsfunktion der Strömungs-
geschwindigkeit als Grundlage hat. Dieses Tool wird zuerst hergeleitet und dann mit
einem gut definierten Strömungs-Benchmark kalibriert: homogene isotrope Turbulenz.
Nach der Kalibrierung werden zwei unterschiedliche Anwendungen mit diesem Tool un-
tersucht: (1) Taylor-Green-Vortex-Benchmark mit den DNS Ergebnissen bei Re = 1600,
sowie (2) Ergebnisse einer Large-Eddy-Simulation (LES) in einer Blutdüse, wobei in beiden
Fällen eine perfekte Übereinstimmung mit einer traditionellen, bedienbasierten Analyse der
Strömungsbedingungen gezeigt wird.

Im sechsten Kapitel werden verschiedene Reduzierungsansätze vorgestellt, um die Rechen-
ressourcen zu optimieren, welche für die DNS turbulenter reaktiver Strömungen benötigt
werden. Während die, in dieser Dissertation, angewandten numerischen Methoden für die
diskrete Phase (Spray) bereits als reduziertes Modell berücksichtigt werden (diskrete Par-
tikelsimulation, DPS), sind die Methoden, die in diesem Kapitel beschrieben werden, nur für
die kontinuierliche Phase angewendet (Gasmischung). Diese Methoden können basierend auf
ihre Natur und Anwendung in drei Kategorien eingeteilt werden: (1) Dimensionsreduktion:
ein-dimensionales Turbulenzmodell, (2) chemische/kinetische Reduktion: DNS mit tabellar-
ischer Chemie, (3) Analyse: modale Zersetzungsmethoden. Diese drei Methoden wurden
bereits getestet und validiert, welches ihre Fähigkeit unterstreicht, die turbulente Strömung
zu analysieren oder signifikante Reduktionen der erforderlichen Rechenressourcen im Vergle-
ich zu Standard-DNS zu erreichen.

Diese Dissertation wird abgeschlossen mit einer Zusammenfassung, Empfehlungen und
einem Ausblick im Kapitel 6. Die wichtigsten Beiträge und Neuheiten in dieser Arbeit sind
nachfolgend aufgelistet.

Neuheiten und Hauptbeiträge:

• Entwicklung eines neuen DNS-Tools, welches viele verschiedene physikalische Phänomene
bei reaktiven und nicht-reaktiven turbulenten Zweiphasenströmungen korrekt bewälti-
gen kann;

• Entwicklung einer Methode zur Quantifizierung des Strömungszustands und Ermit-
tlung des Übergangs zur Turbulenz;

• Einsatz, der sich zeitlich entwickelnden Strahlkonfiguration zum ersten Mal in 3D-DNS
für die Sprühverbrennung;

• Erstmaliger Beweis, dass das eindimensionale Turbulenzmodell verwendet werden kann,
um das Auftreten von Selbstzündung in vorgemischten Propan/Luft-Gemischen zu
testen;

• Entwicklung eines neuen Tools zur modalen Zersetzung (SPOD und DMD) als post-
processing Technik zur Reduzierung des bentigten Speicherplatzes und zur Quan-
tifizierung der Turbulenzdynamik und -skalen.
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Nomenclatures

Roman Letters

Symbol Description Units
aij Number of atoms of element j in a molecule of species i [-]
ak Diameter of non-resolved droplets [m]
Afj Arrhenius law pre-exponential constant [varies]
c Speed of sound [m/s]
Cd Drag coefficient [-]
Cij Correlation matrix
Cp Specific heat of mixture at constant pressure [J/kg/K]
CF
p,f Specific heats of fuel vapor in the film region [J/kg/K]

Cp,f Specific heats of gas mixture in the film region [J/kg/K]
Cp,k Specific heat of specie k at constant pressure [J/kg/K]
Dk Molecular diffusion coefficient of species k [m2/s]
DkT Thermodiffusion coefficient (Soret effect) [m2/s]
Dth Thermal diffusion coefficient [m2/s]
et Total energy per unit mass [m2/s2] ≡ (J/kg)
Ej Arrhenius law activation energy [J/mole]
E(κ) Energy spectrum of turbulent kinetic energy [m2/s2]
fk Volume force [N/kg]
ht Total energy [J/kg]
hs Sensible enthalpy [J/kg]
H Jet width [m]
lt Integral length scale [m]
J Jacobian matrix
k Turbulent kinetic energy [m2/s2]
L Length [m]
Lv,s Molar latent heat at reference temperature [J/mole]
L2 Second error-norm
L∞ Infinity error-norm
m Total mass of mixture [kg]
mj Mass of element j [kg]
mk Mass of species k [kg]
ṁF Fuel mass flux gained by the gas mixture [kg/s]
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ṁk Liquid mass flux leaving the droplet surface [kg/s]
N Number of grid points [-]
Ne Number of elements [-]
Nk Number of droplets [-]
Ns Number of species [-]
p Hydrodynamic pressure [Pa]
p0 Ambient thermodynamic pressure [Pa]
P∞ Pressure in far-field gas mixture [Pa]
Pref Reference pressure [Pa]
Psat,k Saturated vapor pressure [Pa]
p̃ Perturbational pressure field [Pa]
qi Heat energy flux [W/m2]
Q Number of grid points across a flame front [-]
Qk Total heat rate leaving the droplet k [W]
Re Reynolds number [-]
Ret Reynolds based on integral length scale [-]
Reλ Reynolds number based on Taylor length scale [-]
Reτ Friction Reynolds number [-]
sd spectral entropy [-]
Sij Shear stress tensor [s−1]
sL Laminar flame speed [m/s]
sm Mass-based stoichiometric ratio [-]
sn Molar-based stoichiometric ratio [-]
t Time [s]
T Temperature of mixture [K]
Tcr Critical temperature [K]
Tref Reference temperature [K]
u Flow velocity [m/s ]
uf Fame velocity [m/s]
u+ Mean flow velocity in wall unit [-]
Uco Co-flow flow velocity [m/s]
Uj Jet flow velocity [m/s]
U Velocity vector of fluid at the surface of the immersed body [m/s]
Ud Desired velocity vector of immersed body [m/s]
U ex Exact analytical solution
u′ Turbulent fluctuation velocity [m/s]
u′k Kolmogorov turbulent fluctuation velocity [m/s]
Vi,k Diffusion velocity of species K [m/s]
Vk Velocity vector of discrete phase [m/s]
W Molar weight of mixture [kg/mole]
W ′
j Molar weight of element j [kg/mole]

Wk Molar weight of species k [kg/mole]
x Position vector [m]
Xk Mole fraction of species k [-]
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Yc Mass fraction of progress variable [-]
Yk Mass fraction of species k [-]
Ys,k Vapor surface mass fraction (saturated vapor mass fraction) [-]
YF,∞ Fuel mass fraction in far-field gas mixture [-]
Yz Mixture fraction [-]
Zj Mass fraction of element j [-]

Greek Letters

Symbol Description Units
βj Arrhenius law temperature-dependent exponent [-]
Γe Source term of energy flux per unit volume [J/m3/s]
Γm Source term of mass flux per unit volume [kg/m3/s]
Γui Source term of momentum flux per unit volume [kg/m2/s2]
δd Diffusive flame thickness [m]
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Da Damköhler number
G Group number of droplet
Ka Karlovitz number
Lek Lewis number
Ma Mach number
Nu Nusselt number
Rec Acoustic Reynolds number
Rek Droplet Reynolds number
Sck Schmidt number of species k
Sh Sherwood number
Pr Prandtl number

xxiii



Operators

Symbol Description∑
i Einstein summation convention

∇ Differential operator
·̂ Fourier transform

Miscellaneous

Symbol Description Units
C Progress variable [-]
Djk Binary diffusion coefficients [m2/s]
Jj Progress rate of reaction j [varies]
Kfj Forward rates of reaction j [varies]
Krj Reverse rates of reaction j [varies]
O(·) Order of (·) [-]

Q̇s Heat source rate [J/m3/s]
R Universal gas constant [J/mol/k]
V Unit volume [m3]

Subscripts

Symbol Description
0 Thermodynamic reference state
1 Refers to properties on the fresh gas side
2 Refers to properties on the burned gas side
∞ Refers to state in far field gas mixture
f Refers to state in liquid film
F Refers to Fuel
g Refers to gas
max Refers to maximum value
O Refers to Oxidizer
O2 Refers to Oxygen
ref Stands for reference value

xxiv



Abbreviations

Acronym Description
CFD Computational fluid dynamics
CFL Courant-Friedrichs-Lewy number
CG Conjugate gradient
DMD Dynamic mode decomposition
DNS Direct numerical simulation
DCT Discrete cosine transform
DD Dirichlet-Dirichlet boundary conditions
DST Discrete sine transform
FDA Food and drug administration
FFT Fast Fourier transform
FPI Flame prolongation of intrinsic low-dimensional manifold
HIT Homogeneous isotropic turbulence
HR Heat release
IFFT Inverse fast Fourier transform
ILDM Intrinsic low-dimensional manifold
LES Large eddy simulation
NN Neumann-Neumann boundary conditions
ODT One-dimensional turbulence model
PDF Probability density function
RANS Reynolds-averaged Navier-Stokes simulation
REDIM Reaction-diffusion manifold
RHS Right hand side
SuperMUC Supercomputer at Leibniz Supercomputing Center in Munich
SPOD Snapshot proper orthogonal decomposition
TGV Taylor-Green vortex
VKP Von Karman-Pao analytical spectrum of turbulence kinetic energy

xxv



Chapter 1

Introduction

1.1 Practical Importance of Spray Combustion

Spray combustion is found in many practical energy systems such as diesel engines, direct
injection engines (Fig. 1.1(a)), gas turbines, industrial furnaces, thermal coating processes
(Fig. 1.1(b)), etc. Many physical process are involved in the spray combustion such as
injection, atomization, dispersion, evaporation, and burning. Understanding the physics of
spray combustion is very important for safety, energy efficiency, pollution reduction, health,
etc.

(a) Porsche 911 (997) engine with direct fuel injec-
tion [1].

(b) Coating process using thermal spraying
technique [2].

Figure 1.1: Spray combustion applications.

1.2 Spray

A spray is one type of two-phase flow. It involves a liquid as the dispersed phase in the
form of droplets and a gas as the continuous phase. Challenging and complex fluid transport
and fluid dynamic phenomena can occur with sprays in many different ways. On the scale
of an individual droplet size in a spray, boundary layers and wakes develop due to relative

1
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motion between the droplet center and the ambient gas. Other complicated and coupled fluid
dynamic factors can be listed as follows: shear-driven internal circulation of the liquid in the
droplet, flow modifications due to closely neighboring droplets in the spray, hydrodynamic
interfacial instabilities leading to droplet shape distortion and perhaps droplet shattering,
as well as droplet interactions with vortical structures in the gas flow. On a much larger and
coarser scale, integrated exchanges of mass, momentum, and energy between many droplets
take place with the surrounding gas flow. The problem is further complicated by the strong
coupling of the phenomena on the different scales; one cannot accurately describe the mass,
momentum, and energy exchanges on the large scale without detailed knowledge of the fine-
scale phenomena. In some practical applications, these scales can differ by several orders of
magnitude which results in a challenging sub-grid modeling problem [3]. Figure 1.2 shows
the complexity of the spray dynamics even in a simple practical application.

Figure 1.2: Typical spray atomization and dispersion [4].

1.3 Challenges for Numerics of Spray Combustion

The spray combustion problem is a challenging, multidisciplinary problem. It involves many
physical processes, including atomization, droplet collision and agglomeration, vaporization,
heat and mass transfer, droplet dispersion, ignition, turbulence, pollutant production and
flame extinction, as it can illustrated in Fig.1.3. In general, there is a relative motion between
a droplet and its ambient gas. The aerodynamic characteristics of viscous boundary layers,
pressure gradients, separated flows, and wakes can appear in the gas flow around the liquid
droplet. Internal liquid circulation, driven by surface shear forces, is another important fluid
dynamic feature of the liquid droplet problem. These flow features have a critical impact on
the exchanges of mass, momentum, and energy between the gas and the liquid phases. They
are important for both vaporizing and non-vaporizing situations. In developing the numerical
study of the gas flow field surrounding the droplet and of the liquid flow in the droplet, certain
assumptions are made. A small Mach number is considered so that kinetic energy and
viscous dissipation are negligible. Droplet deformation, effect of gravity, radiation, and mass
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diffusion due to pressure and temperature gradients are all neglected. The multicomponent
gas phase mixture is assumed to behave as an ideal gas. Phase equilibrium is stated at
the droplet-gas interface. Gas phase density and thermophysical parameters are generally
considered variable, unless stated otherwise [3]. It is also common to assume that the droplet
size is smaller than the grid cells (non-resolved droplets). Such DNS with non-resolved spray
resolves the turbulence and flame structure scales only, as will be discussed later in this
dissertation.

Figure 1.3: Schematic diagram showing the spray combustion process [5].

1.4 History of DNS of Spray Combustion

Numerical modeling of the phenomena in the combustion chamber is a necessary stage nowa-
days when developing or improving engines. Model development is based on the understand-
ing of the basic physical phenomena. For this purpose, experimental measurements may be
of great help. However, most often they contribute only incomplete information. Indeed,
the simultaneous presence of a turbulent flow, an evaporating spray, and a combustion pro-
cess in a confined geometry limits the capability of experimental techniques. On the other
hand, direct numerical simulations (DNS) of the flow offer essential information, although
such simulations have severe limitations in terms of Reynolds number. Therefore, an ideal
research project would be to simultaneously carry out numerical and experimental studies on
some basic configurations in order to understand all of the underlying phenomena, especially
for two-phase (spray) flow in turbulent combustion.

A DNS consists of resolving the full set of partial differential equations describing the
physics of the tested case. Despite claiming the resolution of the entire physics, these equa-
tions often result from a closure at a given level of the physics. The Navier-Stokes equations
or Fick’s law in scalar transport equations are themselves models issued from the analysis
of the motion of the various molecules of the flow. However, as far as low or medium range
Mach number flow is considered, the Navier-Stokes equations are regarded to be an exact
representation of reality [6]. DNS offers a unique description of the physical phenomena with
a direct access to all the flow parameters. However, considering two-phase flow, good inten-
tions have to face reality: the presence of an interface between the continuous phase (gas)
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Figure 1.4: Rate of publications of DNS spray combustion since 1996, collected from google-
scholar.

and the discrete phase (liquid) leads to characteristic scales and gradients far too extreme to
be resolved without sacrificing accuracy. The most common alternative is the introduction
of some Lagrangian models to account for the spray. This leads to DNS-DPS (Discrete
Particle Simulation), results of which are correct enough to help in the understanding of
many physical phenomena [6].

DNS was first introduced 44 years ago by Orszag and Patterson [7] and then Rogallo [8]
for the simulation of inert gaseous flows. It has been used in a variety of applications since.
During the last two decades, DNS of reactive flows have been carried out to study non-
premixed, partially premixed, and premixed turbulent combustion of purely gaseous states
[9–11]. DNS has been extended to two-phase flows since the pioneering work of Riley and
Patterson [12]. Most of the first numerical studies were limited to solid particle dispersions.
More recently, Mashayek et al. [13] and Miller and Bellan [14] have conducted the first DNS
with evaporating droplets in turbulent flows. Since then, DNS of two-phase flows have been
extended to incorporate two-way coupling effects, multicomponent fuels, etc. DNS also have
been extended to deal with spray evaporation and combustion phenomena [14–17]. The rate
of publications of DNS spray combustion can be presented in Fig.1.4.

In total, the literature on DNS with spray combustion can be divided into three different
categories based on the kinetic scheme and numerical complexity: (1) DNS with single-step
mechanisms [17–25]; (2) detailed kinetics in 2D simulations [6, 26, 27]; (3) more recently,
detailed chemistry in 3D simulations [28–32]. It is also possible to divide the literature
into three groups based on the numerical configurations: (1) spray dispersion and ignition in
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homogeneous conditions and/or in flow with zero mean-flow velocity [6, 18, 20, 25, 26, 28–31],
(2) spatially-evolving jets [17, 19, 23, 24, 32], and (3) temporally-evolving jets [27]. Frequent
and common conclusions of all of these literature sources state that the equivalence ratio
and droplet size are the most critical parameters controlling spray combustion mode and
ignition. Although these studies answered many questions, the impact of different operation
conditions and configurations has not yet been sufficiently clarified [23]; more specifically, the
effect of shear and scalar dissipation rate are not completely clear. This issue will therefore
be considered here.

1.5 Spatial Resolution of DNS-DPS

Direct numerical simulation grids must ensure that: (1) the calculation is performed in the
largest possible domain to resolve the large scales, (2) the mesh is fine enough to resolve the
smallest scales (usually Kolmogorov scale), (3) the mesh is fine enough to resolve the inner
structure of the flame [11], (4) the mesh is larger than the droplet size.

1.5.1 Resolution of Turbulence Scales

Turbulence scales are well-resolved when the largest and smallest eddies are captured by the
grid mesh. This leads to a standard condition which is derived as follows [11]. Consider a
computational domain with a typical size L. The mesh with total number of grid points
N in each dimension leads to a typical cell size ∆x = L/N . The turbulent flow can be
characterized by the large scale velocity fluctuations u′ and integral length scale lt. The size
of the full domain should be at least of the order of one integral scale lt; L = N ∆x ≥ lt.
The smallest scale of turbulent eddies ηk (Kolmogorov length scale) is estimated from the
Kolmogorov cascade arguments as:

ηk ' lt/(Ret)
3/4 or

ηk
lt
' Re

3/4
t , (1.1)

where lt is computed as a function of turbulent kinetic energy k and its dissipation rate
ε,

lt =
k3/2

ε
, (1.2)

and Kolmogorov length scale,

ηk =

(
ν3

ε

)1/4

. (1.3)

The turbulent kinetic energy and dissipation rate can be defined, respectively, as:
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k =
3

2
u′2, (1.4)

ε = 2 ν 〈SijSij〉 , (1.5)

where ν is the kinematic viscosity of the gas and Sij is the shear stress second-order tensor,

Sij = 0.5

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.6)

The Kolmogorov length scale is resolved by the computation if it is larger than the mesh
size:

ηk > ∆x, (1.7)

or if, in wave space, the computation has a sufficiently large maximum wavenumber κmax ηk
[33], where

κmax =
πN

L
, or κmax =

π

∆x
. (1.8)

Corresponding to what had been concluded in [33], the dissipation spectrum is extremely
small beyond κmax ηk ≥ 1.5. This leads to a rough estimate of the smallest grid resolution,

∆x

ηk
=

π

1.5
≈ 2.1. (1.9)

Combining the previous expressions with the help of the expressions given in Chapter 9
of [33], the numerical grid points of a turbulent simulation could be roughly scaled as follows:

N ∼ 1.6
lt
ηk

= 1.6 Ret
3/4 ≈ 0.4 Re

3/2
λ . (1.10)

More generally, the total number of grid points will be scaled as Ret
3/4 [11]:

In Eq. (1.10), Reλ is the Reynolds number based on the Taylor micro-length scale,

λt = u′
√

15 ν

ε
. (1.11)

Equation (1.10) determines the number of grid points N required in each direction for a
given Reynolds number Ret or the limit value of the Reynolds number for a selected number
of grid points in each direction.

1.5.2 Resolution of Chemical Scales

The inner flame structure must also be resolved on the computational mesh. In the following,
this constraint is discussed for premixed flames since non-premixed flames have no intrinsic
thicknesses and require a different treatment [11]. The proper resolution of chemical scales
depends strongly on the type of chemical scheme used in the DNS. When simple descriptions
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for chemistry are used (one-step, irreversible reaction), calculations show that the resolution
of the inner structure of the flame requires at least ten to twenty grid points (Q ' 20). In
other words, the flame thickness δL should extend beyond Q ' 20 elementary cells, where

∆x =
δL
Q

=
L

N
. (1.12)

Therefore, in terms of flame thicknesses, the size of the computational domain is then
given by

L ' δLN/Q. (1.13)

For standard hydrocarbon flames at room temperature, δL ' 0.5 mm so that a 10243 grid
would yield a box size of approximately L ' 25 mm. This condition also leads to an upper
limit for the turbulence integral length scale lt which must be smaller than L to provide
converged statistics [11]:

lt
δL

<
L

δL
≤ N

Q
(1.14)

Another expression may be obtained by replacing δL with the diffusive flame thickness,
δν = ν/sL. The Damköhler number, Da = τt/τc, compares a flow time scale τt and a chemical
time scale τc. These two time scales may be estimated as τt = lt/u

′ and τc = δν/sL. The
product of the Reynolds number by the Damköhler number is therefore:

RetDa =
l2t sL
δν ν

=

(
lt
δν

)2

, (1.15)

leading to the computational grid condition,

N/Q >
√

RetDa. (1.16)

In this manner, the resolution required to resolve the turbulent flame could be computed
based on both the Damköhler and the turbulent Reynolds number [11].

1.5.3 Resolution of the spray

As mentioned earlier in this chapter, the spray surface in this dissertation will not be resolved
and the DPS approach will be employed. In this approach, the diameter ak of the largest
droplet should be smaller than the grid resolution ∆x:

ak
∆x

< 1.0. (1.17)

Of course, this approach does not consider coalescence or breakup of droplets. In sum-
mary, DNS-DPS have the following spatial scaling limits:
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ak
∆x

< 1, (1.18)

ηk
∆x

> 1, (1.19)

δL
∆x

> 1, (1.20)

lt
L

< 1, (1.21)

κmax ηk ≥ 1.5 (1.22)

N ≥ 1.6 Ret
3/4, (1.23)

N/Q >
√

RetDa. (1.24)

These limits are considered in all simulations carried out in this dissertation.

1.6 Motivation and Dissertation Plan

As mentioned in Sec. 1.4, DNS involving sprays are still a hot research topic and have many
questions that need to be answered; (1) the role and behavior of the scalar dissipation rate
in turbulent mixing, (2) finding a suitable numerical set-up that is affordable and realistic,
(3) having a tool that is able to handle a large domain, a large number of droplets, and, of
course, a relatively high Reynolds number. This dissertation attempts to cover all of these
issues.

The plan and objective of this dissertation could be summarized as follows: after giving a
general introduction and literature survey on direct numerical simulation of spray combustion
in Chapter 1, the fundamentals and governing equations of two-phase flows are given in
Chapter 2. These governing equations and fundamentals are divided into two parts: (1) the
continuous phase (gas), and (2) the discrete phase (liquid droplet).

To cover the third issue discussed in the first paragraph, a powerful DNS tool has been
developed. This tool is called DINO, a 3D DNS solver. It was developed during the Ph.D.
period in collaboration with selected co-workers. DINO is, in principle, able to simulate
different engineering problems in different areas: pure turbulent study, single-phase turbulent
combustion, flow in complex geometries, spray combustion, etc. DINO shows excellent
parallel efficiency, as demonstrated over different supercomputing machines. High-efficiency
computations in terms of CPU time and memory have been conducted with DINO. The
algorithms, parallelization, verifications, validations, and possible applications are discussed
in detail in Chapter 3.

Chapter 4 deals with the first and second issues discussed in the first paragraph. It
introduces and tests affordable and realistic numerical configurations which help investigate
the impact of shear on evaporation, mixing, and auto-ignition of liquid n-heptane droplets. It
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also examines the flame topology which is characterized by the flame index, mixture fraction,
scalar dissipation rate, temperature, and heat release. Thanks to a parametric study, the
impact of different parameters on spray evaporation and autoignition is finally quantified.

In Chapter 5, a tool to quantify the flow state is developed. This tool is based on
the spectral entropy obtained from solving an eigenvalue problem using as kernel the auto-
correlation function of flow velocity. This tool was first derived and then calibrated with a
well-defined flow benchmark: homogeneous isotropic turbulence. After the calibration, two
different applications were tested using this tool: (1) DNS results obtained for the Taylor-
Green vortex benchmark, and (2) results obtained through Large Eddy Simulations (LES)
in a blood nozzle.

Even though DINO performs DNS in a very efficient and fast manner, as will be presented
in this thesis, most of these applications (see Chapters 3 and 4) require the use of supercom-
puters/clusters. Due to this fact, several numerical reduction techniques are introduced in
Chapter 6. These techniques are divided into three categories, depending on the nature of
the reduction: (2) dimensional reduction: a stochastic method called one-dimensional turbu-
lence model; (2) chemical/kinetic reduction: using a tabulation chemistry technique called
FPI; (3) post-processing: two modal decomposition techniques are examined; the first is the
snapshot proper orthogonal decomposition (SPOD), and the second is the dynamic mode
decomposition (DMD). These three approaches are applied only to the gas phase. Therefore,
these methods will be applied to and tested in mostly single phase (gas) turbulent reactive
flows. These approaches, however, could be combined and applied to spray combustion in a
straightforward manner.

This dissertation is closed with a summary in Chapter 7. In this chapter, conclusions
concerning all findings and developed tools are given. From the results and current status
of this dissertation, several recommendations are provided to improve further the two-phase
studies using DINO. Finally, outlook and future plans are briefly discussed.

9



Chapter 2

Fundamentals and Governing
Equations of DNS-DPS

This chapter reviews the governing equations for direct numerical simulation (DNS) and
discrete particle simulation (DPS), with clarifications on some of the physical fundamentals
of the spray process. First, the governing equations for the gas phase at different regimes
are reviewed: compressible, low Mach number, and incompressible flow. Then, fundamental
relations of thermodynamics, transport and chemical kinetics are given. Afterwards, dif-
ferent combustion modes (premixed and non-premixed) in laminar and turbulent flows are
briefly discussed. Here, the most important characteristic relations for these two modes are
given. The second part of this chapter reviews the fundamentals of the spray process: injec-
tion, atomization, dispersion, evaporation, and combustion (burning). This chapter is then
concluded by reviewing the governing equations of the discrete phase.

2.1 DNS for Different Flow Regimes

The Navier-Stokes equation can be written in three main different forms: incompressible,
low-Mach number, and compressible. Selecting the correct form amongst them is based on
the application and the validity of the assumptions. Each regime has numerical advantages
and disadvantages, depending on the applications as explained in the following.

2.1.1 Compressible Flow Equations

The compressible version of the Navier-Stokes equation is used to simulate flow movement
with a relatively high Mach number, Ma > 0.3. The total mass conservation (continuity)
equation reads

∂ρ

∂t
+
∂(ρui)

∂xi
= Γm. (2.1)
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The mass conservation equation for species k reads

∂(ρYk)

∂t
+
∂(ρuiYk)

∂xi
= −∂(ρVk,iYk)

∂xi
+ ω̇k + Γm,k, for k = 1, 2, .., Ns, (2.2)

where Yk is the mass fraction, Vk,i is the diffusion velocity, and the reaction rate should fulfill
the following constraints:

Ns∑

k=1

Yk = 1, (2.3)

Ns∑

k=1

YkVk,i = 0, (2.4)

Ns∑

k=1

ω̇k = 0, (2.5)

where Ns is the total number of species. The equation for the conservation of momentum is
written (i =1, 2, 3):

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+
∂τji
∂xj

+ ρ
Ns∑

k=1

Ykfk,i + Γui , (2.6)

where the viscous tensor τji is defined by:

τji = −2

3
µ
∂uk
∂xk

δji + µ

(
∂uj
∂xi

+
∂ui
∂xj

)
, (2.7)

where, xi, ui, ρ, and µ are the i-th component of the position vector, i-th component of the
gas velocity, total mixture density, and dynamic viscosity of the mixture, respectively.

The equation for the conservation of energy has multiple forms; the most common ones
will be presented. The first form is the equation for the total energy et, which can be written
as

∂(ρet)

∂t
+
∂(ρuiet)

∂xi
= − ∂qi

∂xi
+
∂(σijui)

∂xj
+ Q̇s + ρ

Ns∑

k=1

Ykfk,i(ui + Vk,i) + Γe. (2.8)

In this equation, the total stress tensor σij and the energy flux qi are

σij = −pδij + τij (2.9)
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and

qi = λ
∂T

∂xi
+ ρ

Ns∑

k=1

hkYkVk,i, (2.10)

respectively. In Eqn. (2.8), Q̇s represents any heat source (for example, radiative flux,
electrical spark, etc.). The fourth term on the right hand side of this equation is the power
produced by the volume force fk on species k. From the relations between the total energy
et, total enthalpy ht, and the sensible enthalpy hs,

ht = hs +
Ns∑

k=1

∆hof,kYk +
1

2
uiui, (2.11)

the equation for sensible enthalpy can be deduced:

ρ
Dhs
Dt

= ω̇T +
Dp

Dt
+

∂

∂xi

(
λ
∂T

∂xi

)
− ∂

∂xi

(
ρ

Ns∑

k=1

hs,kYkVk,i

)

+ τij
∂ui
∂xj

+ Q̇s + ρ
Ns∑

k=1

Ykfk,iVk,i + Γe, (2.12)

where the first term on the right-hand side of this equation represents the heat release due
to combustion,

ω̇T = −
Ns∑

k=1

∆hof,k ω̇k. (2.13)

In Eqns. (2.11) and (2.13), ∆hof,k is the mass enthalpy of formation of species k at a reference
temperature T0. In CFD, the energy equation is oftentimes coded either in the sensible
enthalpy equation or the temperature form,

ρCp
DT

Dt
= −

Ns∑

k=1

hkω̇k +
Dp

Dt
+

∂

∂xi

(
λ
∂T

∂xi

)
−
(
ρ

Ns∑

k=1

Cp,kYkVk,i

)
∂T

∂xi

+ τij
∂ui
∂xj

+ Q̇s + ρ
Ns∑

k=1

Ykfk,iVk,i + Γe, (2.14)

which are more straightforward for coding. On the right hand side of all previous equa-
tions (Eqs. (2.1)-(2.14)), the Γ refers to the source terms for mass, momentum, and energy;
its value depends on the nature of the source. For spray combustion, the value of Γ will be
given later in this chapter.
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2.1.2 Low Mach Number Flow Equations

The low Mach number model is derived from the compressible flow equations (Eqs. (2.1)-
(2.14)) using asymptotic analysis introduced by Majda and Sethian [34]. Here, the Mach
number is assumed to be smaller than 0.3 with the presence of density variation. This
analysis is reviewed in a simple manner and can be derived by first writing the momentum
equation in one-dimensional form:

ρ
∂u

∂t
+ ρu

∂u

∂x
= −∂p

∂x
+ µ

∂2u

∂x2
. (2.15)

Equation (2.15) can be written in dimensionless form using reference length L and speed of
sound c1 in the fresh gas region as

∂p∗

∂x∗
= − ρ∗∂u

∗

∂t∗︸ ︷︷ ︸
O(Ma)

− ρ∗u∗∂u
∗

∂x∗︸ ︷︷ ︸
O(Ma2)

+
1

Rec

∂

∂x∗
∂u∗

∂x∗︸ ︷︷ ︸
O(Ma/Re)

, (2.16)

where

Rec = ρ1c1L/µ1,

Ma = sL/c1,

u∗ = u/c1,

x∗ = x/L,

ρ∗ = ρ/ρ1,

t∗ = c1t/L,

p∗ = p/(ρ1c
2
1), (2.17)

where Rec and sL are the acoustic Reynolds number and the flame speed, respectively. In
Eq. (2.17), subscript 1 refers to fresh gas quantities. It is obvious from Eq. (2.16) that for
high Reynolds number and unsteady flow, the pressure variation is on the order of Ma. In
the case of subsonic combustion with very low Ma, the pressure variation is thus negligible.
This conclusion allows the assumption that the thermodynamic pressure po is a constant
value. In this manner, the total pressure p can be decomposed into two separate pressures:
the perturbational pressure field p̃ and the ambient thermodynamic pressure p0:

p(x, t) = p0 + p̃(x, t), (2.18)

where the low Mach model assumes that p̃/p0 ∼ O(Ma2) and all thermodynamic quantities
are independent of p̃. Also, this model solves the equation for vorticity and entropy waves,
while neglecting the acoustic ones. In the low Mach model, the total mass, the species mass,
and the conservation of momentum equations (Eqs. (2.1), (2.2) and (2.6)) for compressible
conditions do not change. The changes appear only in the energy, enthalpy, and temperature
equations. In the low Mach model, the following terms are negligible:
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• total pressure derivative, Dp/Dt, in the energy equation which is mainly thermody-
namic,

• viscous heating term, τij (∂ui/∂xj), which can be neglected because it is of high order
in Ma.

Consequently, total energy, sensible enthalpy, and temperature can be defined as

∂(ρet)

∂t
+
∂(ρuiet)

∂xi
= − ∂qi

∂xi
+ Q̇s + ρ

Ns∑

k=1

Ykfk,i(ui + Vk,i) + Γe, (2.19)

ρ
Dhs
Dt

= ω̇T +
∂

∂xi

(
λ
∂T

∂xi

)
− ∂

∂xi

(
ρ

Ns∑

k=1

hs,kYkVk,i

)

+ Q̇s + ρ
Ns∑

k=1

Ykfk,iVk,i + Γe, (2.20)

ρCp
DT

Dt
= −

Ns∑

k=1

hkω̇k +
∂

∂xi

(
λ
∂T

∂xi

)
−
(
ρ

Ns∑

k=1

Cp,kYkVk,i

)
∂T

∂xi

+ Q̇s + ρ
Ns∑

k=1

Ykfk,iVk,i + Γe, (2.21)

respectively. Since the acoustic waves are not considered in the low Mach number model,
the time step limitation is controlled only by convection and diffusion (and possibly radia-
tion). This allows for an increase in the time step compared to that used in a fully com-
pressible model. This will reduce the total computation time of the simulation. However, in
the low Mach number model, the Poisson equation needs to be solved in order to obtain the
fluctuating pressure p̃, which computationally requires additional efforts and special care, as
explained later.

2.1.3 Incompressible Flow Equations

The incompressible version of the Navier-Stokes equation is always used to simulate flow
which has no (and therefore negligible) density variation; thus solving the temperature equa-
tion is not required. The standard application for this model is a cold incompressible flow.
In this model, the mass conservation reads

∂ui
∂xi

= Γm, (2.22)
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and the momentum equation reads simply

∂ui
∂t

+
∂(uiuj)

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ Γu,i. (2.23)

As in the low Mach number model, the incompressible version of the Navier-Stokes equa-
tion requires the Poisson equation to be solved to obtain the fluctuating pressure.

2.2 Thermodynamic Relations

In the previous sections, different transport and thermodynamic properties appeared. These
are reviewed here.

The mass of each species mk in the mixture, which has total mass m, is represented in
mass fraction form as:

Yk = mk/m. (2.24)

However, the mass fraction of the species changes due to chemical reactions, while the
mass of each element j is conserved. The mass of each element can be defined as:

mj =
Ns∑

i=1

aijW
′
j

Wi

mi, for j = 1, 2, ..., Ne, (2.25)

where aij, Ne, W
′
j , and Wi are the number of atoms of element j in a molecule of species i,

total number of elements in the system, the molecular weight of element j, and the molecular
weight of species i, respectively. The mass fraction of element j is then

Zj =
mj

m

=
Ns∑

i=1

aijW
′
j

Wi

Yi

=
W ′
j

W

Ns∑

i=1

aij Xi for j = 1, 2, 3, ..., Ne, (2.26)

where Xi is the mole fraction of species i and W is the mean molecular weight of the mixture,

W =

[
Ns∑

k=1

Yk
Wk

]−1

= Xi
Wi

Yi
. (2.27)
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It is important to keep the following in mind:

Ns∑

i=1

Xi = 1,

Ns∑

i=1

Yi = 1,

Ne∑

j=1

Zj = 1. (2.28)

The total pressure for ideal gases can be expressed as

p =
Ns∑

k=1

pk, (2.29)

pk = ρk
R
Wk

T, (2.30)

where R = 8.314 J/(mole K) is the universal gas constant. The total density of the multi-
species gas is

ρ =
Ns∑

k=1

ρk. (2.31)

In this manner, the equation of state can be defined as

p = ρ
RT
W

. (2.32)

The enthalpy of each species hk and the summation of the sensible and chemical enthalpies
of the mixture h are defined as

hk =

∫ T

T0

Cp,kdT

︸ ︷︷ ︸
sensible

+ ∆h0
f,k︸ ︷︷ ︸

chemical

(2.33)

and

h =
N∑

k=1

hkYk (2.34)

=

∫ T

T0

CpdT

︸ ︷︷ ︸
sensible enthalpy

+
Ns∑

k=1

∆h0
f,kYk

︸ ︷︷ ︸
chemical enthalpy

, (2.35)
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respectively. The energy corresponding to the enthalpy h in the previous equations reads

e = h− p

ρ
. (2.36)

After adding the contribution of the kinetic energy to Eqs. (2.35) and (2.36), the total
enthalpy and energy can be written as

ht = h+
1

2
uiui (2.37)

and

et = e+
1

2
uiui, (2.38)

respectively. In Eq. (2.35), Cp is the heat capacity of the mixture at constant pressure,

Cp =
Ns∑

k=1

Cp,kYk. (2.39)

2.3 Transport Relations

The transport properties, in general, can be collected in three important dimensionless num-
bers:

(1) The Lewis number Lek, which is the ratio of the thermal diffusivity coefficient Dth

to the molecular diffusion coefficient of each species Dk. It compares the diffusion speed of
heat and species k:

Lek =
Dth

Dk

=
λ

ρCpDk

, (2.40)

where λ is the thermal conductivity.
(2) The Prandtl number Pr, which is the ratio of momentum to heat diffusion:

Pr =
ν

Dth

,

=
ν

λ/(ρCp)
,

=
µCp
λ

. (2.41)

(3) The Schmidt number Sck, which is the ratio of momentum and molecular diffusion
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of the species:

Sck =
ν

Dk

. (2.42)

The previous three dimensionless number are connected by the following relation:

Sck = Pr Lek. (2.43)

2.4 Chemical Kinetic Relations

Any chemical system of Ns species reacts in M reactions [11]:

Ns∑

k=1

ν ′kjMk 

Ns∑

k=1

ν”kjMk for j = 1, 2, ...,M, (2.44)

where Mk is a symbol for species k, ν ′kj and ν ′′kj are the molar stoichiometric coefficients of
species k in reaction j. From mass conservation:

Ns∑

k=1

ν ′kjWk =
Ns∑

k=1

ν”kjWk for j = 1, 2, ...,M. (2.45)

The mass reaction rates of species k,

ω̇k =
M∑

j=1

ωkj (2.46)

= Wk

M∑

j=1

νkjJj, (2.47)

are the sum of the mass reaction rate of this species in every reaction j,

ω̇kj = JjWk νkj, (2.48)

where,

νkj = ν ′′kj − ν ′kj. (2.49)

In Eqs. (2.47) and (2.48), Jj is the progress rate of reaction j,

Jj = Kfj
Ns∏

k=1

[Xk]
ν′kj −Krj

Ns∏

k=1

[Xk]
ν′′kj , (2.50)

where [Xk] = ρYk/Wk is the molar concentration of species k. Kfj and Krj are the forward
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and reverse rates of reaction j, which can be modeled using the empirical Arrhenius law:

Kfj = Afj T
βj exp

(
− Ej
RT

)
(2.51)

and the equilibrium relation,

Krj =
Kfj

(
pa
RT

)n
exp

(
∆S0

j

R −
∆H0

j

RT

) , (2.52)

n =
Ns∑

k=1

νkj, (2.53)

where Afj, βj, and Ej, are a pre-exponential constant, temperature exponent, and activation
energy, respectively. ∆ refers to changes due to species passing from reactants to products
in the j-th reaction. H, S, and pa are the enthalpy, entropy, and the atmospheric pressure,
respectively.

2.5 Combustion Modes

In general, the combustion process can be presented by a simple equation:

Reactants→ Products, (2.54)

where the fuel with the symbol (F) reacts with the oxidizer (symbol O) to generate the
combustion product P

ν ′F F + ν ′O O→ ν ′′p P. (2.55)

In complete combustion of any hydrocarbon fuel CmHn the previous equation could be writ-
ten as

ν ′F CmHn + ν ′O2 O2 → ν ′′CO2
CO2 + ν ′′H2O H2O. (2.56)

Overall, the combustion process can be categorized into three different modes depend-
ing on the mixing of the fuel/oxidizer: premixed, non-premixed (diffusion), and partially-
premixed combustion. Each of those can be defined and characterized by several parameters
and non-dimensional numbers in laminar and turbulent flow as is described in the following
sections.

2.5.1 Premixed Combustion

In premixed combustion, fuel and oxidizer are mixed before entering the place of combustion
(chamber), as in the case of an open Bunsen burner: fuel and air are already mixed within
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Figure 1: Different modes of laminar combustion

using a simply tube or by closing the air inlet in a Bunsen burner. Then only fuel issues from the
tube as shown in the second picture in Fig. 1. It mixes with the surrounding air by convection
and diffusion during combustion. Optimal conditions for combustion are restricted to the vicinity of
the surface of stoichiometric mixture. This is the surface where fuel and air are locally mixed in a
proportion that allows both to be entirely consumed. This will lead to the highest flame tempera-
ture and, due to the temperature sensitivity of the chemical reactions, to the fastest reaction rates.
Since in most cases combustion is much faster than diffusion the latter is the rate limiting step that
controls the entire process. This is the reason why those flames, where the reactants are initially
non-premixed, are called diffusion flames. Premixed flames appear with a blue to bluish-green
color, while diffusion flames radiate in a bright yellow color. The blue color of premixed flames is
due to chemiluminescence of some excited species (C2 and CH radicals), while the yellow color of
diffusion flames is caused by radiating soot particles which dominate over the chemiluminescence
that is also present in at the base of a diffusion flame. Close to the burner there appears blue layer
since the local residence time is too short for soot particles to be formed. This leads to the conclu-
sion that the color of a flame is characteristic for the available residence time rather than the mode
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Figure 1: Different modes of laminar combustion

using a simply tube or by closing the air inlet in a Bunsen burner. Then only fuel issues from the
tube as shown in the second picture in Fig. 1. It mixes with the surrounding air by convection
and diffusion during combustion. Optimal conditions for combustion are restricted to the vicinity of
the surface of stoichiometric mixture. This is the surface where fuel and air are locally mixed in a
proportion that allows both to be entirely consumed. This will lead to the highest flame tempera-
ture and, due to the temperature sensitivity of the chemical reactions, to the fastest reaction rates.
Since in most cases combustion is much faster than diffusion the latter is the rate limiting step that
controls the entire process. This is the reason why those flames, where the reactants are initially
non-premixed, are called diffusion flames. Premixed flames appear with a blue to bluish-green
color, while diffusion flames radiate in a bright yellow color. The blue color of premixed flames is
due to chemiluminescence of some excited species (C2 and CH radicals), while the yellow color of
diffusion flames is caused by radiating soot particles which dominate over the chemiluminescence
that is also present in at the base of a diffusion flame. Close to the burner there appears blue layer
since the local residence time is too short for soot particles to be formed. This leads to the conclu-
sion that the color of a flame is characteristic for the available residence time rather than the mode
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(b)

Figure 2.1: Combustion modes: (a) premixed, (b) non-premixed [35].

(a) (b)

Figure 2.2: Typical color of the flame of different combustion modes: (a) premixed [36], (b)
non-premixed [37].
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the tube and the gas is ignited downstream as seen in Fig. 2.1(a). A premixed flame front
will propagate towards the burner until it finds its steady state position in the form of
the well-known Bunsen cone [35]. The fundamental quantity which describes this mode of
combustion is the laminar burning velocity (flame speed) sL. For the steady-state Bunsen
cone, the burning velocity therefore must be equal to the flow velocity vn, normal to the
flame front (see Fig. 2.1(a)). Behind the flame front, yet unburnt intermediates, such as CO
and H2, will mix with air entering from outside the chamber and lead to post flame radiation
and oxidation [35]. Premixed flames appear with a blue to bluish-green color as seen in
Fig. 2.2(a). This blue color is due to the chemiluminescence of some excited species (C2 and
CH radicals). Premixed flames are used whenever intense combustion is required within a
small volume. This is the case in household appliances, spark ignition engines, aspirated
internal combustion engines, and lean-premixed gas turbine combustion chambers. It can
also be found in gas leak explosions. Generally, premixed combustion should be avoided in
large combustion devices such as furnaces, since premixing of large volumes of fuel and air
would represent a serious safety hazard [35]. In premixed combustion devices, it is important
to select the molar-based stoichiometric ratio (air-to-fuel ratio),

sn =
XO

XF

|st =
ν ′O
ν ′F

(2.57)

and/or mass-based stoichiometric ratio,

sm =
YO
YF
|st=

ν ′OWO

ν ′FWF

. (2.58)

Usually, the premixed mixture is characterized using the equivalence ratio φ. This compares
the fuel-to-air ratio in real mixtures with that of the stoichiometric one,

φ =

(
YF
YO

)
/

(
YF
YO

)

st

(2.59)

= sm
YF
YO

(2.60)

= sm
ṁF

ṁO

, (2.61)

where





φ < 1 lean mixture,

φ = 1 stoichiometric mixutre,

φ > 1 rich mixture.

(2.62)

In premixed combustion, the quantities and variables are often studied as a function of
a dimensionless number called progress variable C. This variable should show monotonic
behavior with the combustion process. Frequently, the system temperature T is an example
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of this variable:

C =
T − Tu
Tb − Tu

, (2.63)

where subscripts u and b refer to the unburned (fresh) gas and the burned gas regions,
respectively. As such, C will have a value of zero in the fresh gas region and one in the
burned gas region. Usually the flame surface location is based on a certain value (threshold)
of C.

In order to describe the laminar premixed flame, two important parameters are required:
the laminar flame (burning) speed sL and the flame thickness δL. The flame speed is the
velocity at which the laminar flame front propagates normal to itself into the unburned
mixture. In the literature, there is a multitude of available definitions; the simplest one is
the integral of the burning rate across the flame brush [11]:

sL = − 1

ρuYF,u

∫ ∞

−∞
ω̇F dx. (2.64)

The flame thickness δL also has multiple definitions: (1) Based on the thermal or transport
properties and called diffusive flame thickness,

δd =
Dth

sL
,

=
λu

ρuCp sL
, (2.65)

or

δν =
ν

sL
. (2.66)

(2) Based on temperature profile,

δth =
Tb − Tu

max(|∂T
∂x
|) . (2.67)

A more accurate definition for the flame thickness is the one constructed by defining the
distance over which the progress variable C changes from 0.01 to 0.99; this is usually called
total flame thickness δt [11].

2.5.2 Non-Premixed (Diffusion) Combustion

In non-premixed combustion, no air is mixed with the fuel within the tube of the burner.
This may be achieved by using a simple tube or by closing the air inlet in a Bunsen burner.
Inherently, only fuel exists in the tube as shown in Fig. 2.1(b). Fuel mixes with the surround-
ing air by convection and diffusion during combustion. Optimal conditions for combustion
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are restricted to the vicinity of the surface of the stoichiometric mixture. This is the sur-
face where fuel and air are locally mixed in a proportion that allows both to be entirely
consumed. This leads to the highest flame temperature and to the fastest reaction rates.
Since in most cases combustion is much faster than diffusion, the latter is the rate limiting
step that controls the entire process. For this reason, flames in which the reactants are
initially non-premixed are also called diffusion flames [35]. The diffusion flames usually ra-
diate in a bright yellow color as seen in Fig. 2.2(b). This yellow color is caused by radiating
soot particles which dominate over the chemiluminescence that is also present at the base
of a diffusion flame. Close to the burner, a blue layer appears (see Fig. 2.2(b)) since the
local residence time is too short for soot particles to form. An example for non-premixed
combustion are diesel engines, where a liquid fuel spray is injected into compressed hot air
within the cylinder. It rapidly evaporates and mixes with the air and then auto-ignites un-
der partially premixed conditions. The final stage of combustion occurs under non-premixed
conditions [35].

In diffusion flames, the stoichiometry is represented based on mass flow rates in the fuel
and air streams which again enter separately. The stoichiometry in this mode of combustion
is represented in two different ways: On the one hand there is the local ratio,

φ = sm
YF
YO
, (2.68)

which characterizes the local structure of the flames formed when the fuel and oxidizer
streams interact. On the other hand, the overall (global) behavior of combustion is repre-
sented by the global equivalence ratio,

φg = sm
mass flow rate of the fuel in the first stream

mass flow rate of the oxidizer in the second stream
. (2.69)

It is very common to use a passive scalar notation in analysis and post-processing when
dealing with diffusion flames. Usually, this passive scalar is the mixture fraction ζ. The
simplest form of ζ is the one given for a two-inlet feed system [35]:

ζ =
m1

m1 +m2

, (2.70)

where m1 and m2 are the mass of the fuel and air stream, respectively. When single-step
kinetic mechanisms are employed, the mixture fraction can be expressed as:

ζ =
smYF − YO2 + YO2,2

smYF,1 + YO2,2

, (2.71)

where YF,1 and YO2,2 are the mass fraction of fuel in the fuel stream and the mass fraction
of oxygen in oxidizer stream, respectively. For a stoichiometric mixture, smYF = YO2 , this
passive scalar takes the value of the stoichiometric mixture fraction,
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ζst =
YO2,2

smYF,1 + YO2,2

, (2.72)

where





ζ < ζst lean mixture,

ζ = ζst stoichiometric mixutre,

ζ > ζst rich mixture.

(2.73)

The flame structure in the diffusion flame is usually represented theoretically in the
mixture fraction space, as illustrated in Fig. 2.3, which contains graphs pertaining to the
pure mixing in equilibrium with temperature and mass fractions. Another very important
parameter in the characterization and modeling of diffusion flames is the scalar dissipation
rate,

χ = 2D

(
∂ζ

∂x

)2

, (2.74)

where χ has the dimension of 1/time. It measures the gradients of the mixture fraction
(passive scalar) and the molecular of the species towards the flame. It has a direct impact
on the combustion process as well as on the mixing, where different scalar dissipation levels
lead to different flame structures.

2.6 Turbulent Combustion

The previous section discussed some important concepts for laminar flames. This involves
laminar flows, in which the adjacent layers of fluid slide past one another in a “smooth,
orderly” manner. The only possible mixing is due to molecular diffusion. The velocity,
temperature, and concentration profiles measured in laminar flow with a high-sensitivity
instrument will be quite smooth. At a higher Reynolds number, the flow becomes turbulent.
In turbulent flows, eddies move randomly back and forth and across the adjacent fluid layers.
The flow no longer remains “smooth and orderly”. When the flow entering a flame front is
turbulent, the laminar flame mode studied in the previous section is replaced by a regime
where turbulence and combustion interact [38]. Turbulent combustion is encountered in most
practical combustion systems such as rockets, internal combustion or aircraft engines, indus-
trial burners and furnaces, etc., while laminar combustion applications are almost limited
to candles, lighters and some domestic furnaces. Turbulent combustion flow is very complex
and requires some description of a characteristic scale. In what follows, the most important
scales, which characterize the premixed and non-premixed combustion, are reviewed.
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Figure 2.3: Diffusion flame structure in the mixture fraction ζ diagram, for an infinitely-fast
and irreversible reaction.

2.6.1 Characterization of Turbulent Premixed Combustion

Turbulent premixed combustion may be described as the interaction between a flame front
(thickness δ and speed sL) and an ensemble of “eddies” representing turbulence. These
eddies have sizes ranging from the Kolmogorov (written ηk) to the integral length scale lt
and characteristic speeds ranging from the Kolmogorov velocity u′k to the integral RMS(u′)
velocity. If turbulence is supposed to be homogeneous and isotropic, the speed u(r) and the
size r of any eddy participating to the turbulence cascade are linked by [11],

25



Chapter 2. Fundamentals and Governing Equations of DNS-DPS

ε =
u′(r)3

r
, (2.75)

where ε is the local dissipation rate of turbulent kinetic energy. This assumption is useful
in imagining how a turbulent flow may interact with a premixed front, because it provides
estimates of speed and time variations with r. For example, a typical turbulence time of an
eddy of size r is:

τf (r) =
r

u′(r)
=
r2/3

ε1/3
. (2.76)

Comparing this characteristic flow time to a typical premixed flame time scale, τc = δ/sL, in
order to build a reduced number (Damköhler number), Da(r) = τf (r)/τc, suggests scenarios
for flame/vortex interaction: for large Da(r), chemical times are small compared to the eddy
time and turbulence is not able to significantly affect the inner flame structure. On the other
hand, low values of Da(r) imply long chemical time scales and a flame strongly modified by
turbulent eddies. This number is called the Damköhler number Da(r) which changes when
r goes from the Kolmogorov size ηk to the integral scale lt. The question here is: which
values of r (turbulent eddies) are the most relevant in controlling the flame structure? This
question is still unsolved in general and controls many assumptions for developed models.
Classical approaches introduce two reduced numbers corresponding to the limiting values of
r [11]:

• The Damköhler number Da is defined for the largest eddies and corresponds to the
ratio of the integral time scale τt to the chemical time scale:

Da = Da(lt) =
τt
τc

=
τf (lt)

τc
=
lt/u

′

δ/sL
(2.77)

• The Karlovitz number Ka corresponds to the smallest eddies (Kolmogorov) and is the
ratio of the chemical time scale to the Kolmogorov time:

Ka =
1

Da(ηk)
=
τc
τk

=
τc

τf (ηk)
=
u′(ηk)/ηk
sL/δ

(2.78)

The Karlovitz number could to be written in another form as

Ka =

(
lt
δ

)−1/2(
u′

sL

)3/2

=

(
δ

ηk

)2

=

√
ε/ν

sL/δ
. (2.79)

Since the turbulent Reynolds number based on the integral length scale can be expressed
as

Ret =
u′lt
ν

=

(
u′

sL

)(
lt
δ

)
, (2.80)
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5.2. PREMIXED TURBULENT COMBUSTION REGIMES 201
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Figure 5.12: Classical turbulent combustion diagram: combustion regimes are identified in terms of
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Figure 2.4: Modified turbulent combustion diagram: combustion regimes are identified in
terms of length (lt/δ) and velocity (u′/sL) ratios (log-log scale) [11].

Ret can be expressed as a function of the Karlovitz and the Damköhler number as follows:

Ret = Da2 Ka2. (2.81)

For large Damköhler number values (Da� 1), chemical times are shorter than the inte-
gral turbulence time. Accordingly, turbulence is not able to affect the inner flame structure
which remains close to a laminar flame, wrinkled by turbulent motions (“flamelet” limit). In
this case, the mean burning rate may be estimated from the burning rate of a laminar flame
multiplied by the overall flame surface. On the other hand, when the Damköhler number is
low (Da� 1), the chemical time is larger than the turbulent time. The overall reaction rate
is therefore controlled by chemistry, whereas reactants and products are mixed by turbulent
motions. This regime is the so-called perfectly stirred reactor. This limiting case is quite easy
to model: in this situation, reactants and products are continuously mixed in a time shorter
than the chemical time. The mean reaction rate may then be estimated as the reaction rate
computed using mean values. These regimes are illustrated in Fig.2.4.

2.6.2 Characterization of Turbulent non-Premixed Combustion

As for turbulent premixed flames, non-premixed combustion regimes have to be identified
to support model developments. Compared to premixed flames, regime description is more
difficult in turbulent non-premixed combustion. First, reactants have to mix before the re-
action; chemical reactions are generally limited by mixing. On the other hand, fast mixing,
compared to chemistry, may lead to premixed combustion. The second difficulty arises from
the fact that non-premixed flames do not exhibit well-defined characteristic scales: a diffu-
sion flame does not feature a propagation speed and the local flame thickness depends on

27



Chapter 2. Fundamentals and Governing Equations of DNS-DPS

flow conditions. The thickness of an unstrained diffusion flame increases with time and such
flames have no propagation speed. On the other hand, the thickness of strained flames de-
pends on flow motions and is not an intrinsic flame characteristic. However, in flame/vortex
interactions, flame scales can be defined unambiguously [11]. The first important scale is the
flame scale, which is defined using the initial conditions of the simulation. The initial flame
thickness δi is estimated as

δi =

(
1

|∇ζ|

)

ζ=ζst

=

√
2Dst
χst

, (2.82)

where χst is the scalar dissipation rate at the stoichiometric condition ζ = ζst at time
t = 0 and Dst is the stoichiometric value of the molecular diffusion coefficient. A chemical
time scale τc is defined from asymptotic theories [11] as

τc = 1/χq, (2.83)

where χq is the scalar dissipation rate at quenching which can be computed in many different
ways, the simplest being [11]

χq =
ζ2
st(1− ζst)2

τ pc
, (2.84)

where τ pc is simply the flame time corresponding to a premixed stoichiometric flame:
τ pc = δ/sL = D/s2

L. This scaling illustrates the link between premixed and diffusion flame
parameters: if the stoichiometric speed of the premixed flame is large, the quenching scalar
dissipation of the diffusion flame is also large.

The flame velocity is

uf = δiτc. (2.85)

The Damköhler number in a diffusion flame can be expressed as

Da =
τf
τc
, (2.86)

where τf is the flow time scale which may be taken as a different value:

• in jet flow, τf = Jet diamter
Jet velocity

,

• in a general configuration, τf = 1
χst

, and

• in well-characterized turbulent flow, the Kolmogorov time scale or the large eddy
turnover time scale is chosen.

After characterizing the non-premixed flame by knowing the above scales and non-
dimensional numbers, the combustion regimes can be detected based on Fig. 2.5.
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This qualitative and intuitive analysis is di�cult to summarize on a single combustion
diagram as done for turbulent premixed combustion because the local flame scales depend on
the local flow conditions. In the following, a simple (and rough) description based on two
characteristic ratios is presented:

• a time ratio ⌧t/⌧c comparing the turbulence integral characteristic time ⌧t and the chem-
ical time ⌧c. This ratio corresponds to the Damköhler number Da introduced for tur-
bulent premixed combustion but is not the Damköhler number relevant for the local
non-premixed flame structure (Dfl

a = 1/⌧c�st).

• a length scale ratio lt/ld comparing integral length scale lt and di↵usive thickness ld. As

ld ⇡ ⌘k, lt/ld ⇡ Re
3/4
t (Eq. 4.9), where Ret is the turbulence Reynolds number.

The time ratio (or the Damköhler number) is recast as:

Da =
⌧t
⌧c

=
⌧t
⌧k

⌧k
⌧c

⇡ ⌧t
⌧k

2

e�st⌧c
⇡ 2
p

RetD
fl
a (6.18)

Constant Damköhler numbers Dfl
a correspond to lines of slope 1/2 in a log-log (Da,Ret)

diagram. For su�ciently fast chemistry, the flame is expected to have a laminar flame (LF)
structure. According to Cuenot and Poinsot121 (§ 6.3.1), this condition may be written as
Dfl

a � DLFA
a . Extinction occurs for large chemical times, i.e. when Dfl

a  Dext
a . Results may

then be summarized on a combustion diagram (Fig. 6.23).

Figure 6.23: Regimes for turbulent non-premixed combustion as a function of the Damköhler number
Da = ⌧t/⌧c (based on the turbulence integral time scale ⌧t and the chemical time ⌧c) and the turbulent
Reynolds number Ret.

Such a turbulent combustion diagram should be used with great care. The local flame
thickness and speed depend on the local flow conditions such as local strain rates and may be

Figure 2.5: Regimes for turbulent non-premixed combustion as a function of the Damköhler
number Da = τt/τc (based on the turbulence integral time scale τt and the chemical time τc)
and the turbulent Reynolds number Ret [11].

2.7 Fundamentals of Droplet and Spray Combustion

Two-phase flows indeed include a number of processes involving a variety of time and length
scales. Simplifications must occur in order to be able to reproduce part of these phenomena.
The characteristic length scales of an evaporating two-phase flow range from the size of the
smallest droplets in the spray (of the order of a micrometer) to the size of the combustion
chamber (several centimeters). The characteristic time scales of the flow depend on the size
of the droplet, which has a major impact on the inertia and the lifetime of the droplets. A
brief overview of the principal processes involving the dispersed phase are reviewed in the
following [39].

2.7.1 Injection

The injection system represents one of the essential components of the combustion chamber.
The liquid fuel is injected in the form of a cylindrical column or a thin liquid sheet that, due to
an aerodynamic destructive effect, is atomized into a cloud of droplets. The characteristics of
this cloud, such as the droplet density and size, strongly depend on the injection parameters
and the geometry. There are many types of injectors; rotary atomizers, air blast atomizers,
pressure atomizers, etc. The characteristics of the spray pattern highly depend not only on
the parameters of the injection device, but also on the gaseous flow inside the combustion
chamber and the properties of the liquid fuel: the viscosity (directly influencing the droplet
size) and the fuel volatility (which impacts the vaporization process) [39], for example.

2.7.2 Atomization

Fuels used in aircraft engines are not sufficiently volatile to be ignited if the surface in contact
with the oxidizer is not augmented by pulverization. The liquid sheet exiting the injector
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must be atomized into a cloud of droplets. The atomization process can be described as
the ensemble of mechanisms that occur in the injection of a high pressure liquid through
a small fence. Two different phenomena can be distinguished in this process: the primary
atomization which takes place in the region near the orifice and the secondary atomization
which usually extends much further as is illustrated in Fig. 2.6, a schematic representation
of the main phenomena following the liquid injection [39].

The mechanisms of liquid sheet disintegration have been widely studied. The numer-
ical simulation of the primary atomization process requires the explicit resolution of the
Navier-Stokes (NS) equations for both phases (gas and liquid) and the coupling between
them through jump relations at the interface. In addition, the position and motion of the
interface must be accurately described. DNS of the primary atomization process requires
extremely high resolution meshes, since the length scale of the smallest liquid structures can
become very small as the liquid ligaments approach their breakup. In general the mesh size
is determined by the smallest droplet diameter. At least two to five computational cells per
droplet are needed [40]. This feature prevents numerical simulations of the primary atom-
ization at an industrial scale. However, as small droplets are only present at the periphery of
the liquid sheet, mesh adaptation techniques can be used to reduce the computational cost.
Level-Set and Volume of Fluid (VOF) methods are suitable approaches for this task [41].
Desjardins et al. (2008) [42] developed a level-set method combined with high-order implicit
transport schemes to preserve mass conservation. Due to the large range of length and the
time scales involved in the process, direct and detailed numerical predictions of the primary
atomization process are computationally very expensive and not affordable at large scales.
Their application is limited in terms of Reynolds number and geometric complexity [39].

Once the liquid sheet has decomposed into fine liquid ligaments, further disintegration
occurs and droplets of different sizes arise due to air entrainment and aerodynamic forces
acting on the ligaments. This process is called secondary breakup. Several regimes exist,
depending on the Weber number. The Weber number is a dimensionless number relating
the aerodynamic forces acting on the droplet to its surface tension. Those two forces have
opposite effects on a droplet: the surface tension stabilizes the droplet and the aerodynamic
force tends to break it. This is a process of high difficulty in terms of modeling and simu-
lation. Indeed, there are many effects that must be taken into account, such as the droplet
deformations prior to breakup and collisions and coalescence which are predominant in this
zone of the spray. Indeed, in the secondary breakup zone, the spray is very dense, which
increases the probability of collisions between droplets. Numerical studies of this problem
may rely on different approaches. DNS using an interface tracking method is out of reach
for realistic applications [39].

The spray combustion simulation performed in this dissertation focuses on the diluted
regime zone located after the secondary breakup zone. Only diluted flow is considered.
Thus, inter-droplet collisions are ignored while two-way coupling with the carrier fluid is
considered. In this type of flow, the main physical phenomena are droplet dispersion and
evaporation.
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Figure 2.6: Phenomenology of the atomization of a spray [39].

2.7.3 Dispersion and Evaporation

In the diluted regime, dispersion and evaporation become predominant. In this case, droplet
trajectories are directly influenced by carrier flow turbulence. However, their response to the
gaseous flow depends also on their inertia. The Stokes number (St) relates the characteristic
particle response time scale (τp) to the characteristic fluid timescale (τf ), giving a measure
of particle inertia. Very inertial particles (St >> 1) have trajectories quite independent from
the carrier fluid flow. On the contrary, very low inertial particles (St � 1) quickly respond
to changes in the gaseous flow [39, 43, 44].

There are many models in terms of the vaporization process. The models are mainly
based on empirical results from single isolated droplets, which have been modified to include
the effects of neighboring droplets, convection, multicomponent fuels, etc. Many parameters
have an influence on the vaporization process. Indeed, the characteristics of the fuel, the
spray and the carrier flow play an important role and directly influence the evaporation of
droplets inside the combustion chamber.

2.7.4 Spray Combustion

The combustion process considered often involves chemical reactions that only take place
in the gaseous phase. Thus, the evaporation of liquid fuel droplets is a necessary step for
the combustion to take place. However, two main types of combustion exist: single-phase
combustion and two-phase combustion. These two regimes depend on the ratio between
the characteristic evaporation time and the convection time of the carrier phase. When the
characteristic evaporation time of the droplets is very small compared to the convection time,
the droplets completely evaporate before reaching the flame front. Combustion taking place
in the single-phase regime only depends on the gaseous fuel repartition in the chamber. The
gaseous fuel field will, however, depend on the characteristics of the evaporation process and
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the dispersion of the droplets. On the other hand, when the evaporation time is longer than
the convection time, the flame and spray are coupled. The droplets may reach the flame
front and the characteristics of the flame strongly depend on the spray parameters [39].
Two-phase flow combustion has different characteristics than gaseous phase combustion.
The characteristics of the flame are modified due to the presence of liquid droplets and
strongly depend on the quantity of fuel that has been evaporated before reaching the flame
front. Indeed, the gaseous field is modified by the presence of droplets upstream from the
flame which may lead to flame instabilities. Note also that the evaporation rate depends,
amongst other things, on the concentration of droplets. This may create zones of very high
concentration of gaseous fuel as well as very lean zones. The mixing is then different from
the case where gaseous fuel is directly injected into the chamber [39]. Réveillon & Vervisch
(2005) [17] classified the different modes depending on a dimensionless number, G, which
is the ratio between the droplet evaporation rate and the diffusion rate of hot gases within
the droplet cloud. When convection is more important than diffusion, G is approximated as
follows:

G ≈ 5N
2/3
k

S
, (2.87)

where Nk is the number of droplets in the cloud and S is a mean droplet spacing parameter
linking the characteristic average distance between droplets to the diffusion flame radius.

Figures 2.7 and 2.8, taken from [17], illustrate four distinct modes of spray combustion
regimes depending on G. In these figures, for large G, the spray is very dense and diffusion
inside the cloud is low, only the droplets located at the periphery of the cloud evaporate. The
flame envelopes the entire cloud of droplets. It is referred to as external sheath combustion.
For diluted spray regimes, where G� 1, droplets are far from each other and the evaporation
rate increases due to the diffusion of hot gases. Separated flames surround each droplet,
which burn individually. Intermediate regimes exist between these two extremes: for G
values slightly larger than one, G > 1, the flame surrounds the whole cloud of droplets but
the diffusion of hot gases is sufficiently high, thus the droplets in the center of the cloud
vaporize. When G < 1, the center of the cloud burns in an external combustion regime and
the droplets located at the periphery burn in an isolated manner.

Réveillon & Vervisch (2005) [17] also provided a different classification based on numerical
results of two-dimensional spray flames in counterflow:

• External combustion regime: for low equivalence ratio, the premixed flame completely
consumes the fuel (liquid and gaseous), whereas when the equivalence ratio is high,
the fuel burns in the diffusion regime.

• Group combustion regime: droplet clusters individually burn on rich premixed flames
usually followed by diffusion flames.

• Hybrid combustion regime: intermediate conditions between the external and the group
combustion regimes.

32



2.8. Modeling the Evaporation of Fuel DropletsTurbulent spray combustion 319

External
sheath

combustion

External
group

combustion

Internal
group

combustion

Single
droplet

combustion

G = 102 

N2/3
——

S
G ∝

interdrop spacing
———————–!droplet radius

Separation, S "∝
102 103 104 108105 106 107

N
um

be
r 

of
 d

ro
pl

et
, N

102

103

104

1010

1

G = 10–1

G = 10–2 

Figure 1. Group combustion diagram (Chigier 1983; Kuo 1986).

vaporizing drop in a quiescent oxidizer and having the mean properties of the spray
(radius and evaporation time). When the separation number S decreases, there is a
point where the flame topology evolves from individual droplet combustion to group
combustion. For a given value of S, on varying N , the number of drops in the
liquid cloud, two major modes (figure 2) of spray combustion may be identified with
respect to the group number G. In the first case, G ≫ 1, the droplets are too close
to each other to allow diffusion of heat inside the cloud. Only an external layer of
droplets is evaporated and the resulting flame remains at a standoff distance from
the spray boundary. Under the other limit condition, G ≪ 1, the droplets are sparse
enough so that the hot gases reach the core of the spray. Hence, evaporation and
combustion processes take place around every individual droplets. Those conditions
delineate the so-called ‘external’ combustion regime expected for G ≫ 1, which is
complemented by the ‘internal’ combustion regime, observed for G ≪ 1 (figure 2). A
smooth transition between these limit regimes was anticipated by Chiu et al. (1982),
leading to intermediate submodes depending on the magnitude of G. When G is
slightly above unity, the flame stays around the droplet group with a temperature rise
of the liquid phase affecting the core of the cloud. For G smaller than unity, a first
ring of individual burning droplets is centred on a droplet cloud surrounded by a
diffusion flame.

Later, Chang and also Borghi and coworkers (Chang 1996; Borghi 1996a,b;
Borghi & Champion 2000) added to the analysis the control parameters of the
reaction zone itself, namely the characteristic flame time τf and its thickness δf . In
addition, the mean evaporation delay τv was introduced. When τv ≪ τf , the mixture
may locally be premixed and a propagating premixed flame develops (figure 3a). This
regime should be observed for all values of mean droplet spacing δs and flame thickness
δf . In practice, the equivalence ratio of the mixture may not be fully uniform and a
weakly varying partially premixed front propagates. If the evaporation time is large
enough, for δf > δs , the collection of drops penetrates the reacting diffusive layers
since the flame is broader than the mean droplet spacing δs . This situation should

Figure 2.7: Group combustion diagram [17].320 J. Reveillon and L. Vervisch
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Figure 2. Combustion modes of a droplet cloud (Chiu et al. 1982; Kuo 1986).
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rapidly promote the thickening of the flame (figure 3b). Aside from these extreme
cases, the separation number (S) should be introduced. After the propagation of a
primary partially premixed front, some droplets may remain, leading to a secondary
(or back-flame) reaction zone (figure 3c). The topology of this secondary combustion
zone depends on the magnitude of S. For small values of S = δs/δrf

, the droplets are
burning individually or are clustered in small groups surrounded by a flame. This
is called the ‘group’ combustion regime. As a complement, Borghi has distinguished

Figure 2.8: Classification of different spray combustion regimes [17].

2.8 Modeling the Evaporation of Fuel Droplets

The process of droplet vaporization is of great importance in many energy systems involving
spray combustion such as diesel engines, gas turbines, industrial furnaces, etc. In a general
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manner, without accounting for droplet burning at injection, the liquid fuel atomizes into
multiple droplets of different sizes, creating a polydisperse spray, the fuel droplets vaporize,
the gaseous fuel mixes with the oxidant and then burns. In these kinds of investigations, the
prediction of the gaseous fuel concentration is very important for the correct evaluation of
critical parameters, such as flame position and heat release [39]. The vaporization of droplets
has been widely studied during the past century, experimentally and theoretically. The
phenomena taking place in spray evaporation and combustion are very complex. Multiple
interactions between the atomization, dispersion, and evaporation of droplets take place
at the same time. For this reason, developing models which consider all of these complex
phenomena is almost an impossible task. Alternatively, the evaporation of single isolated
droplets is studied under different conditions as a first step towards the understanding of the
processes in a spray. An isolated droplet represents an ideal model of the physical phenomena
involved in the diluted regions of the spray. The vaporization of a single droplet is a process
involving momentum, mass and heat transfers in both liquid and gas phases, with coupling
at the droplet interface. This kind of study provides the basis for the development of complex
spray flow modeling, which may be found in many textbooks [3, 38, 45, 46]. Some of the
important evaporation models are listed in the next section.

2.8.1 Existing Evaporation Models

As is introduced in [3, 39], the models of droplet vaporization can be classified into the
following six groups with increasing complexity:

1. Constant droplet-temperature model: the droplet surface temperature is uniform and
does not change with time; it yields the famous d2 law.

2. Infinite liquid-conductivity model: the droplet surface temperature is uniform, time-
varying, and equal to the temperature inside the droplet.

3. Spherically symmetric transient droplet heating model: it takes into account finite
liquid thermal conductivity, but not the recirculation inside the droplets.

4. Effective-conductivity model: takes both finite liquid thermal conductivity and recir-
culation into account.

5. Vortex model for droplet heating: describes the recirculation inside the droplet in terms
of vortex dynamics.

6. Navier-Stokes solution: full exact solution of the Navier-Stokes equations inside the
droplet and in the gaseous flow.

The evaporation models can be more precisely classified by independently describing the
models used on each of the processes taking place in the vaporization of a droplet. Four
main phenomena take place in the evaporation of an isolated droplet [39]:

1. The heat in the gas phase diffuses to the droplet surface;
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2. The heat arriving at the droplet surface is diffused into the inside of the droplet;

3. The molecules of fuel detach from the droplet surface due to their increased internal
energy (vaporization process);

4. The gaseous fuel diffuses from the droplet surface to the surrounding gas.

Most models assume the diffusion in the gas phase (from and to the droplet surface) to be
spherically symmetric. However, some effects due to convection may modify the flow around
the droplet. The spherically symmetric model takes into account the convection effects
through the Sherwood and Nusselt numbers. Other models include the effect of convection,
taking into account the presence of a film around the droplet, introducing correction factors
to the spherically symmetric model [47], or completely solving the flow around the droplet
[3]. This last option is computationally very expensive. In addition, transport properties
are often considered constant between the droplet surface and infinity. Miller et al. (1998)
[48] showed that the heat and mass fluxes to the droplet strongly depend on the evaluation
of the transport and thermodynamic properties of both the gas and the liquid phase [39].

2.8.2 Evaporation Model for a Single Isolated Droplet

This section reviews the equations used in the evaporation model of Abramzon and Sirignano
[47]. In this section and the rest of the dissertation work, infinite conduction in the liquid and
spherical symmetry are assumed. In other words, inside the droplet, the thermal conductivity
is considered infinitely fast and the temperature is uniform. The gas is considered quasi-
stationary, so the thermal and mass transfer in the gaseous phase depend only on the distance
to the surface of the droplet.

The Abramzon-Sirignano Evaporation Model

In principle the Abramzon-Sirignano evaporation model [47] is similar to the one developed
first by Spalding (1953) [49], with some important corrections. The Spalding model for
evaporation does not take into account the existence of a vapor film around the droplet. It
does not consider the finite thickness of the thermal and mass boundary layers around the
droplet. Taking these layers into account leads to modified expressions for the Sherwood
and Nusselt numbers, as will be reviewed in this section [47].

In the Abramzon-Sirignano evaporation model, the mass exchange through the droplet
surface may be represented by the fuel mass leaving the surface s:

ṁF =
(
πρgvk a

2
k

)
s
, (2.88)

where ak is the diameter of k-th droplet and vk is the droplet surface regression velocity.
As the mass loss of the droplet due to evaporation is completely converted into gaseous

fuel, a simple relationship between mass loss from the droplet surface ṁk and the mass gain
in the gas phase ṁF can be obtained:
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ṁF = ṁk. (2.89)

In this model, the droplet mass loss has the following expressions:

ṁk = −π ak ρg,f Dg,f Shk ln(1 + Bm,k) (2.90)

or

ṁk = −π ak ρg,f
λg,f
CF
p,f

Nuk ln(1 + BT,k), (2.91)

where Dg,f , γg,f are the diffusion coefficient and thermal conductivity of the gas mixture
in the film region. Subscripts f , g, and k hereinafter refer to the properties in the film
region, gas phase properties, droplet liquid properties, respectively. In Eq. (2.90), Bm,k is
the Spalding mass transfer number which can be computed as:

Bm,k =
Ys,k − YF,∞

1− Ys,k
, (2.92)

Ys,k =
WF

WF +WO (P∞/Psat,k − 1)
, (2.93)

where Ys,k, YF,∞, WO, P∞, and Psat,k are the vapor surface mass fraction (saturated vapor
mass fraction), fuel mass fraction in the far-field (denoted by the subscript ∞) gas mixture,
oxidizer molar mass, far-field pressure, and saturated vapor pressure computed with the
Clausius-Clapeyron equation:

Psat,k = Pref exp

[
−LvR

(
1

T sk
− 1

Tref

)]
. (2.94)

In Eq. (2.94), R, Pref , and Tref are ideal gas constant, reference pressure and temperature,
taken here as atmospheric pressure and the boiling temperature of the fuel at this pressure,
respectively, while Lv is corrected using the Watson equation,

Lv = Lv,s

(
Tcr − Tk
Tcr − Tref

)0.38

. (2.95)

Here, Lv,s and Tcr are the molar latent heat at temperature Tref and the critical temperature
of the fuel, respectively.

In Eqs. (2.91), BT,k is the Spalding heat transfer number, which is computed as a function
of Bm,k as follows:
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BT,k = (1 + Bm,k)
θ − 1 , (2.96)

θ =
CF
p,f

Cp,f

Shk
Nuk

Prk
Sck

, (2.97)

where CF
p,f and Cp,f are the fuel vapor and gas mixture specific heats at the film region. Sc, Pr,

Sh, and Nu are the Schmidt number for the fuel species, the Prandtl number for the gaseous
mixture in the fuel region, the Sherwood number, and the Nusselt number, respectively.
These dimensionless numbers are computed, in the Abramzon-Sirignano evaporation model,
with the help of the droplet Reynolds number Rek as follows:

Rek =
ρ∞ |U∞ −Vk| ak

µf
, (2.98)

Sck =
µf

ρ∞DF
f

, (2.99)

Prk =
µf Cp,f
λf

, (2.100)

Shk = 2 + 0.55
Re

1/2
k Sc

1/3
k

F (Bm,k)
, (2.101)

Nuk = 2 + 0.55
Re

1/2
k Pr

1/3
k

F (BT,k)
, (2.102)

and

F (B) = (1 + B)0.7 ln(1 + B)

B
, (2.103)

where U∞ and Vk are, respectively, the velocity vectors of the gas mixture in the far-field
and the velocity of the droplet k. The Sherwood number Sh and the Nusselt number Nu are
equal to 2 in the case of evaporation in quiescent atmosphere. Due to the interdependence
of BT and Nu, this model requires an iterative method to find the converged value of BT,k.

The composition and temperature of the mixture in the film are evaluated by interpolation
between their values at the droplet surface and the conditions in the far-field using the one-
third rule [27, 47, 48]. This law assumes that the properties of the gaseous mixture in
the film around the droplet follow a quasi-stationary evolution. Afterwards, the different
thermodynamic properties are calculated at the following temperature and composition [39]:

Tf = Tk +
1

3
(T∞ − Tk), (2.104)

Yf,k = Ys,k +
1

3
(Y∞,k − Ys,k). (2.105)

In order to completely characterize the evaporation process, an equation for the evolution
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of the droplet temperature needs to be provided. The total heat rate (Qk) leaving the droplet
are due to the vaporization process and depend directly on the latent heat of vaporization,

Qk =
d

dt
(mk hs,k) = −ṁk Lv, (2.106)

mk
dhs,k
dt

+ ṁk hs,k = −ṁk Lv, (2.107)

where the change of sensible enthalpy can be presented as a function of droplet temperature,
dhs,k = Cp,kdT . This leads to

mkCp,k
dTk
dt

= −ṁk hs,k︸ ︷︷ ︸
Qc

g

−ṁk Lv (2.108)

and

Qc
g = π akλf Nu(Tk − T∞)

ln(BT,k + 1)

BT,k

. (2.109)

Therefore,

mkCp,k
dTk
dt

= π akλf Nu(Tk − T∞)
ln(BT,k + 1)

BT,k

− ṁk Lv, (2.110)

keeping in mind that, when the mass fraction of evaporated fuel at the surface of the droplet,
Ys,F , approaches 1, the evaporation reaches saturated conditions. Accordingly, the Spalding
mass number (Eq. (2.92)) becomes singular. When saturation is reached, the droplet is
assumed to be at its saturation point, that is, the evaporation takes place without heating
in the liquid and the droplet temperature stays constant.

2.8.3 DNS-DPS Coupling Equation

The coupling between the DNS equations (Navier-Stokes) for the gas phase and the DPS
equations for the liquid spray is performed by adding source terms, Γ, to the conservation
equations for mass, momentum, and energy (Eqs. (2.1)-(2.14)). The expressions for these
source terms can be reviewed as follows:
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Γm = − 1

V
∑

k

αk
dmk

dt
, (2.111)

Γm,k = δk,FΓm , (2.112)

Γui = − 1

V
∑

k

αk
d(mk vk,i)

dt
, (2.113)

Γe = − 1

V
∑

k

αk
d(mkCp,KTk)

dt
, (2.114)

where
∑
k

is the sum over every droplet k inside the volume V and α is the interpolation

weight function which interpolates from Lagrangian to Eulerian space. δk,F is the Kronecker
delta and is 1 for the fuel species (k = F ) and 0 otherwise. vk,i is the i-th component of the
velocity of the droplet k.

After having reviewed all the equations and models needed for the simulations, it is time
developing a suitable computational tool for carrying out corresponding simulations.
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Chapter 3

A New DNS Solver: DINO

3.1 Introduction

As discussed in the abstract section, one of the goals of this dissertation is to develop a new
DNS solver which considers different aspect needed to investigate turbulent combustion:
turbulence, combustion, spray, complex geometry, etc. This kind of solver is difficult to find
with the features one needs. In this chapter, the new solver, called DINO, is described in
detail. The chapter begins by reviewing the important features in DINO, followed by describ-
ing the numerical approaches used in the solver, after which, the parallelization efficiency is
discussed, before verifying the code by comparison with analytical solution benchmarks. The
chapter concludes with the validation of different parts of the code and some combustions
applications. Part of this chapter is based on a publication in Computers and Fluids [50].

3.2 DINO Challenges and Important Features

DINO is a new in-house, Fortran-2003, 3D DNS code developed by the research group
under Prof. Dominique Thévenin at the University of Magdeburg “Otto von Guericke”. It
began in 2013 as a part of my Ph.D. work. The equations are spatially discretized with a
6th order finite-difference stencil and temporally integrated with the 3rd/4th order Runge-
Kutta method. The code is parallelized in two dimensions using the 2DECOMP&FFT
library that acts on top of the standard tools: MPI and FFTW. At the beginning of the
code development, several challenges and questions faced us as a development group, which
can be summarized as follows:

1. Time step restriction due to acoustic waves;

2. Complex treatment of the inflow/outflow boundary condition in compressible solvers;

3. Time step restriction due to the numerical stiffness;

4. Overhead and efficiency of computing the Poisson equation in low-Mach number and
incompressible solvers;

40



3.2. DINO Challenges and Important Features

5. Imposing initial turbulence in an efficient manner;

6. Computing the thermodynamic, kinetic, and transport properties in an accurate way;

7. Treatment of the droplets and of large particles (two-phase flows);

8. Performing DNS for semi-complex geometries.

We (I and the rest of the DNS group, including a collaboration with Felix Dietzsch at
T.U. Freiberg) dealt with these challenges as outlined in the following. First, since acoustic
waves only appear in fully compressible solvers, DINO is coded using a low-Mach number
version of the Navier-Stokes equation (Ch. 2). As such, the time step is no longer controlled
by acoustic waves, but by convection, diffusion, and radiation. Additionally, using a low-
Mach formulation removes the difficulties of imposing complex inflow/outflow boundary
conditions, which appear in classical compressible numerical solvers. In low-Mach number
solvers, standard and straightforward inflow/outflow conditions are implemented without
any special treatment. The other difficulty is the numerical stiffness resulting from the
chemistry; this leads to a small time step (of order of nanoseconds) for the simulation.
Therefore, semi-implicit and additive Runge-Kutta techniques are used to solve this issue.

However, one huge overhead still exists: solving the Poisson equation in parallel compu-
tations with high-order spatial discretization. It has been found that the standard available
solvers, such as HYPRE or ScaLAPACK, though using different orders and different methods
(iterative, matrix inverse), still introduce a huge computational overhead. I thus developed
an efficient parallelized Poisson solver which is based on FFT for both periodic and non-
periodic boundary conditions, but with dedicated pre- and post-processing FFT techniques
in the latter case. This Poisson solver is much faster than the other available techniques and
delivers of course spectral order. This new Poisson solver completely removes the overhead
introduced by any other solver. Combining all previous treatments, an extremely fast DNS
code for single phase turbulent reactive flow simulation is obtained.

In DINO, the chemical source terms and the thermodynamic and kinetic properties are
computed using the Cantera-1.8 library. The transport properties are computed either with
the Cantera library or with the EGlib-3.4 library. The initial turbulent field can be gen-
erated by different methods: inverse Fourier transform with analytical energy spectrum
(Passot-Pouquet or Von Karman-Pao), the Kraichnan technique, digital filter, or the diffu-
sion technique. The reason for employing different techniques for turbulence in DINO is to
maximize the flexibility as a function of boundary type, geometrical configuration, targeted
integral length scale, and fluctuation velocity.

Simulating two-phase flow adds a new level of difficulties and raises several questions:
What is the nature of the second phase? How will it be treated? Will the surface of the second
phase be resolved? Indeed, during the development of this code, two different particles have
been considered: solid large particles, and small droplets. Numerically these two particle
types are treated in completely different ways. For a large particle, which is usually larger
than the grid resolution and Kolmogorov length scale, the surface of this particle must be
resolved. This is accomplished by using the direct force immersed boundary method (DF-
IBM) to avoid using body-fitted grid techniques. On the other hand, the small particles
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(droplets and spray), which are supposed to be smaller than the grid resolution, are treated
as a point source (discrete particle simulation, DPS) without resolving the droplet surface
or considering breakup or coalescence. The common aspect in both DF-IBM and DPS is
the tracking of the particles in Lagrangian space. The properties are exchanged from/into
the gas, which is simulated in an Eulerian frame by interpolating between the Eulerian- and
Lagrangian-space.

The last issue, which was one of the biggest challenges, is performing DNS in semi-
complex geometry. Generally, there are two approaches: (1) using body-fitted grid tech-
niques, or (2) using IBM techniques. The body-fitted grid techniques add complexity to
the DNS, especially for the Poisson-Solver. For this reason, DINO was developed using the
direct boundary IBM (DB-IBM) technique. In this part of DINO, the complex geometry is
implemented by introducing the boundary with stepwise geometry. This is a simple tech-
nique which requires a high resolution mesh. As a recommendation, higher-order DB-IBM
methods should be implemented in future work. Usually, most of the high-order DB-IBM
methods are built on top of the primary stepwise geometry currently implemented.

3.3 Governing Equations

DINO has been conceived from the start as a flexible tool, allowing for a highly accurate
investigation of turbulent flows at low and intermediate velocities. Thus, it involves a va-
riety of algorithms, models and equations. It is impossible to discuss everything in great
detail. Only the most important aspects will be described in what follows, separating in
particular between reacting and non-reacting flows. The low-Mach number approach is used
in DINO for reacting flows, since most applications involving chemical reactions and com-
bustion indeed take place at low Mach numbers, Ma� 1 [11, 50]. For non-reacting flows,
incompressible transport equations are considered instead. For both conditions (reacting
and non-reacting), either single-phase or two-phase turbulent flows can be described with
DINO, as described later. Since DINO relies on external libraries written in dimensional
form, it has been written from the start as a dimensional code as well, using SI units.

3.4 Low-Mach Number Formulation for Reacting Flows

In this case, the pressure in the flow is nearly uniform and the coupling between the fluc-
tuating pressure and the density can be neglected. The present formulation is based on an
incompressible but dilatable approach, first described for reacting flows by [34]. As discussed
ind Sec. 2.1.2, pressure is then split into a spatially homogeneous thermodynamic pressure
p(t) and a dynamic fluctuating pressure p̃(x, t), where p̃(x, t)� p(t). The resulting equations
still contain vorticity and entropy waves, but acoustic waves have disappeared. Therefore,
the timestep is no longer limited by acoustic times, but only by characteristic convection,
diffusion or reaction time scales, leading to a considerable speed-up [50, 51].

The conservations equations underlying the low-Mach number approximation for an ideal
gas involving Ns chemical components are reviewed in Ch. (2) in standard form. Now, they
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are given in compact form, which helps in coding, as follows:

∂t(ρ) = −∂i(ρui) + Γm, (3.1)

∂t(ρui) = −∂ip̃+Rm,i, (3.2)

∂t(T ) = ϑ+RT , (3.3)

∂t(Yk) = =k +RYk , (3.4)

ρ =
pW

RT
, (3.5)

subject to the additional condition for global mass conservation as discussed in Ch. (2):

Ns∑

k=1

Yk = 1, (3.6)

where ρ, ui, Γm, p̃, p, T , Yk, Ns, R and W are the mixture density, i-th-component of
flow velocity, mass source term (per unit volume) introduced by the discrete phase, fluctu-
ation pressure, thermodynamic pressure, temperature, k-th species mass fraction, number
of species, ideal gas constant, and mixture mean molecular weight, respectively. The right-
hand side of the momentum equation, Eq. (3.2), reads using the summation convention of
Einstein:

Rm,i = −∂(ρujui)

∂xj
+

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
− ∂

∂xj

[
2

3
µ
∂ul
∂xl

]
δij + Γu,i, (3.7)

where δij, µ, and Γu,i are the Kronecker delta, dynamic, and momentum source term (per
unit volume) introduced by the discrete phase, respectively. The right-hand side of the
temperature equation, Eq. (3.3), has been split into a stiff term, ϑ, and a non-stiff term, RT ,
respectively:

ϑ = − 1

ρCp

Ns∑

k=1

hkω̇k, (3.8)

RT = −uj
∂T

∂xj
+

1

ρCp

[
∂

∂xj

(
λ
∂T

∂xj

)
− ∂T

∂xj

Ns∑

k=1

ρCp,kYkVk,j + Γe

]
. (3.9)

In Eqs. (3.8) and (3.9), Cp, hk, ω̇k, λ, Vk,j, and Γe represent the specific heat capacity
at constant pressure, specific enthalpy, mass reaction rate, heat diffusion coefficient, j-th
component of the species molecular diffusion velocity, and energy source term (per unit
volume) introduced by the discrete phase, respectively. The stiff term ϑ involves the reaction
rates induced by chemical kinetics and will be integrated in time separately from RT , leading
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to a much faster and more robust integration.

In a similar manner, the right-hand side of the conservation equation for the mass fraction
of species k, Yk (Eq. 3.4), has been split into a stiff term, =k, and a non-stiff term, RYk ,
respectively:

=k =
ω̇k
ρ
, (3.10)

RYk = −uj
∂Yk
∂xj
− 1

ρ

∂(ρYkVkj)

∂xj
+ Γm,k. (3.11)

3.4.1 Available Diffusion Velocity Models

To solve the system involving Eqs. (3.9) and (3.11), the molecular diffusion velocity of species
k, Vk, must be modeled appropriately. In order to increase flexibility, three different ap-
proaches are implemented in DINO, leading to increasing accuracy but also computational
requirements [52]:

1. Unity Lewis numbers;

2. Mixture-averaged diffusion velocities;

3. Multicomponent diffusion velocities.

Additionally, thermal diffusion (Soret term) may be considered for light species, but without
the inverse (Dufour) effect. Diffusion due to pressure gradients and to external forces is not
relevant for the considered applications and is thus not accounted for.

Unity Lewis Numbers

In that case, it is assumed that the Lewis number of species k, Lek = λ/(ρCpDk) are all
identical and equal to unity, meaning that the molecular diffusion velocity of all species is
equal to the heat diffusion velocity. Then, the diffusion coefficient of species k, Dk, can
be immediately estimated as Dk = λ/(ρCp) and is identical for all species: Dk = D. The
diffusion velocity finally reads:

Vk = −D∇Yk
Yk

, (3.12)

with Xk the mole fraction of species k. This is simply the Fick’s law.
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Mixture-Averaged Diffusion Coefficient

Here, following the classical approximation proposed by Hirschfelder and Curtiss, a mixture-
averaged diffusion coefficient Dk is first computed for each species k using:

Dk =
1− Yk∑
j 6=kXj/Djk

, (3.13)

where the Djk are the binary diffusion coefficients. Then, the diffusion velocity is determined
by:

Vk = −Dk
∇Xk

Xk

+
Ns∑

k=1

Dk∇Xk
Wk

W
, (3.14)

The last term in this equation is the correction velocity needed to fulfill mass conservation
by molecular diffusion, i.e.,

∑Ns

k=1 YkVk = 0 (Ch. 2), with Wk the molecular weight of species
k.

Multicomponent Diffusion Velocity

In many applications the combustion process can not be reduced to a representation of a
simple binary mixture. Therefore, the formulation of a species transport law has to account
for different transport properties of each species. In general, the multicomponent diffusion
process is computed by inverting the species linear transport system [53]:

F = L00,00−1

, (3.15)

with

L00,00
ij =

16T

25p

Ns∑

k=1

Xk

WiDik
{WjXj(1− δik)−WiXj(δij − δjk)} . (3.16)

The multicomponent diffusion coefficients are then given by

Dij = Xi
16T W

25 pWj

(Fij − Fii). (3.17)

Finally, the species diffusion velocities read

Vk = − 1

XkW

Ns∑

j=1

Wj Dkj∇Xj . (3.18)

In order to evaluate efficiently all multicomponent transport properties, the EGlib library
[53, 54] in its version 3.4 has been coupled to DINO. The multicomponent diffusion velocity
model has been implemented by Felix Dietzsch at T.U. Freiberg.
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Thermal Diffusion

Thermal diffusion (Soret effect) is implemented as an additional term that might be switched
on by decision of the user. The corresponding diffusion velocity reads:

VkT = −DkT
∇T
T
. (3.19)

Considering that the corresponding computation of DkT is relatively expensive and that this
term is only important for light molecular species, the Soret effect is usually only activated
for species H and H2.

3.4.2 Further Transport Coefficients

Additional transport coefficients appear in the equations listed above. The computation of
the thermal conductivity λ and of the dynamic viscosity µ relies by default on Cantera 1.8,
or alternatively on EGlib 3.4.

3.4.3 Thermodynamic Parameters

All thermodynamic parameters appearing in the previous conservations equations, such as
Cp,k and hk are computed by coupling DINO with Cantera 1.8.

3.4.4 Chemical Kinetics

The chemical source terms ω̇k appearing in the conservation equations for species are com-
puted by Cantera 1.8 based on detailed reaction schemes from the literature, solving one
transport equation for each chemical species appearing in the system. For instance, for one
application presented at the end of this chapter (a turbulent ethylene flame), 51 transport
equations are taken into account: 46 equations for the 46 species of the reaction mechanism,
3 for momentum, 1 for temperature and 1 Poisson equation (using the equation of state to
close the system).

3.5 Incompressible Formulation for Non-Reacting Flows

For non-reacting flows at low Mach numbers, it is better to use fully incompressible flow
equations, reducing to mass and momentum conservation, since energy conservation needs
not be considered separately. This leads to a faster integration and to a reduction of the
memory requirements. Mass conservation in DINO is identical to Eq.(2.22) which was pre-
sented in Ch. 2, while the right-hand side of the momentum equation, Eq. (3.7), reduces
to,

Rm,i = −∂(ρujui)

∂xj
+ µ

∂2ui
∂x2

j

+ Γu,i, (3.20)
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for a constant dynamic viscosity µ.

3.6 Parallelization Strategy

The parallelization of the code relies on a 2D pencil decomposition using the open-source li-
brary 2DECOMP&FFT [55], which has been designed to perform optimized three-dimensional
distributed FFTs. This library is called on top of standard MPI and MPI-I/O libraries and
includes user-friendly programming interfaces. 2DECOMP&FFT supports large-scale paral-
lel applications on distributed memory systems and shows excellent performance on a variety
of existing supercomputers [56, 57]. The library comprises two different possible pencil orien-
tations, x-pencils and z-pencils. DINO has been coded with the x-pencil orientation (Fig. 3.1)
in order to minimize the computational time needed for transposing the data as required for
non-periodic boundary conditions. Using 2DECOMP&FFT an excellent parallel scaling has
been obtained with DINO, as discussed later in Sec. 3.14.1.

y
x

z

Figure 3.1: 2D domain decomposition with x-pencil orientation.

3.7 Time Integration Schemes

In order to increase flexibility, three different time integration algorithms have been coded
in DINO. The final choice of the user should be based on the considered application, on the
required accuracy, on the available computational resources and, most important, on the
stiffness of the problem, in particular for reacting flows.

The first algorithm is a fully explicit, fourth-order Runge-Kutta method rewritten as a
low-storage algorithm [58]. It is the simplest and computationally most efficient algorithm.
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It is activated by default for non-reacting cases. However, it suffers from a limited stability
for stiff applications. The solution procedure reads:

T n+1 = T n + ∆t (ϑn +Rn
T ) , (3.21)

Y n+1
k = Y n + ∆t

(
=nk +Rn

Yk

)
, (3.22)

ρn+1 =
pW n+1

RT n+1
, (3.23)

(ρui)
∗ = (ρui)

n + ∆t Rn
m,i, (3.24)

∇2p̃n+1/2 =
1

∆t

[
∂tρ

n+1 + ∂j(ρuj)
∗] , (3.25)

(ρui)
n+1 = (ρui)

∗ −∆t ∂ip̃
n+1/2. (3.26)

As documented in Eqs. (3.24)-(3.26), the coupling between continuity and momentum
equation is handled by using the pressure-free projection method [59–61]. In this approach
the intermediate quantity (ρu)∗ is obtained by solving the momentum equation without
pressure gradient (Eq. 3.24). Then, applying the divergence operator to Eq. (3.26) leads to

∇2p̃n+1/2 =
1

∆t

[
∂i(ρui)

∗ − ∂i(ρui)n+1
]
. (3.27)

The Poisson equation is closed by substituting the continuity equation, Eq. (3.1), into
Eq. (3.27), leading to the continuity constraint. In Eq. (3.25), a third-order backward finite-
difference approximation is used to compute ∂tρ

n+1.

The second algorithm for time integration is based on the split semi-implicit fourth-
order Runge-Kutta scheme. In this algorithm the right-hand side of the governing equations
for temperature and species are split into non-stiff parts (RT , Rk) and stiff parts (ϑ, =k),
following [62, 63]. The non-stiff parts of T and Yk are solved using the explicit fourth-order
Runge-Kutta solver:

T ∗ = T n + ∆t (Rn
T ) , (3.28)

Y ∗k = Y n + ∆t
(
Rn
Yk

)
, (3.29)

ρ∗ =
pW ∗

RT ∗
. (3.30)

The stiff parts are integrated in time by using the implicit solver RADAU-5 [64, 65]. Then,
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both solutions are added:

T n+1 = T ∗ + ∆t
(
ϑn+1

)
, (3.31)

Y n+1
k = Y ∗ + ∆t

(
=n+1
k

)
, (3.32)

ρn+1 =
pW n+1

RT n+1
. (3.33)

Finally, momentum conservation and Poisson equation are again integrated using the
explicit fourth-order Runge-Kutta method, as explained above (Eqs. (3.24)-(3.26)).

The third possibility for time integration is to use the additive third-order Runge-Kutta
method. This non-split semi-implicit Runge-Kutta algorithm is an extension of the Rosen-
brock Runge-Kutta approach. In this algorithm the system of equations is solved as follows:

dtZ = f(Z) + g(Z) , (3.34)

∂t(ρu) = f(ρu)−∇p̃ , (3.35)

where f and g are the non-stiff and stiff right-hand side vectors of the equation system,
respectively, while Z is the vector containing the scalar variables (T, Y1, Y2, ....., YNs)

′. Then,
the solution is obtained through following steps:

Zn+1 = Zn +
r∑

j=1

αjKzj , (3.36)

ρn+1 =
pW n+1

RT n+1
, (3.37)

(ρu)∗ = (ρu)n +
r∑

j=1

αjKuj
, (3.38)

∇2p̃n+1/2 =
1

∆t

[
∂tρ

n+1 +∇(ρu)∗
]
, (3.39)

(ρu)n+1 = (ρu)∗ −∆t∇p̃. (3.40)

Where,

[
I−∆t aiJ

(
Zn +

i−1∑

j=1

(dijKzj)

)]
Kzi =

∆t

[
f

(
Zn +

i−1∑

j=1

(bijKzj)

)
+ g

(
Zn +

i−1∑

j=1

(cijKzj)

)]
, (3.41)
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and

Kui
= ∆t

[
f

(
(ρu)n +

i−1∑

j=1

(cijKuj
)

)]
, ∀ i = 1, 2, .., r. (3.42)

In Eqs. (3.36)-(3.42), r is the number of stages (in DINO, r = 3 by default, leading to
third order in time) and J = ∂g/∂Z is the Jacobian matrix of the stiff term, g. The symbols
αj, ai, bij, cij and dij designate constant coefficients. The values of these coefficients depend
on the retained order. The values used in DINO are listed in Table 3.1 and correspond to
the third-order case. More details about the method and its accuracy can be found in [66].

Table 3.1: Coefficients for third-order additive semi-implicit Runge-Kutta integration.
(ai) (bij = dij) (cij) (αi)

a1 a2 a3 b21 b31 b32 c21 c31 c32 α1 = α2 α3

0.797097 0.591381 0.134705 8
7

71
252

7
36

1.05893 0.5 −0.375939 1
8

3
4

Independently from the retained integration procedure, the timestep of the computation
can be optionally controlled by three different limiters, separately or in combination: 1) the
Courant-Friedrichs-Lewy (CFL) stability criterion, 2) the Fourier stability criterion for dif-
fusive terms, and 3) a dynamic accuracy control obtained through timestep-doubling within
the Runge-Kutta procedure, as already used in past DNS codes [58, 67].

3.8 Spatial Discretization

All partial derivatives in space appearing in the conservation equations are discretized using
centered, sixth-order finite differences (seven-point stencil), stepwise reduced down to third-
order near domain boundaries. The communication across processor boundaries is handled
by using the halo-cell communication function included in the 2DECOMP&FFT library.

3.9 Solving the Poisson Equation in Parallel

One of the most difficult issues associated with any low-Mach or incompressible flow solver
is to find an efficient way for solving the Poisson equation. Usually, it is solved by explicit
iterative methods (Conjugate Gradient CG, Multi-grid, etc.) or more rarely by implicit
methods (matrix inversion, spectral methods, or combinations of both). In DINO, the Pois-
son equation is solved by FFT, even when the boundary conditions of the domain are not
periodic.

The developed approach is an extension of that described in [56, 57, 68, 69], where
pre- and post-processing was applied both in physical and in wave space. The current
algorithm needs only pre- and post-processing in the physical space and for a different
purpose. Additional differences result from the fact that the pressure is solved in DINO
in a collocated manner and not on a staggered grid.
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Suitable pre- and and post-processing steps are applied to the corresponding array before
and after calling the parallel FFT subroutine included in 2DECOMP&FFT. All tests have
demonstrated that this method delivers a very high order (equivalent spectral accuracy) and
is also computationally very efficient compared to existing alternatives. In order to explain
the current algorithm it is better to start with classical discrete Fourier transform (F̂k) for
a real sequence Fj, j = 0, 1, 2, ...., N − 1, which is defined by

F̂k =
1

N

N−1∑

j=0

Fje
−2πjk

√
−1/N , k = 0, 1, ...., N − 1. (3.43)

Thanks to Hermitian symmetry, F̂k = F̂ ∗n−k, with F̂N = F̂0. The inverse of this transform
reads:

Fj =
N−1∑

k=0

Fke
2πjk

√
−1/N . (3.44)

This operation is directly applied only for periodic sequences (periodic boundary conditions).
These two transforms can then be obtained immediately with 2DECOMP&FFT and FFTW
libraries, using FFT and IFFT algorithms, respectively.

Concerning now the implementation in DINO, Fj is first transformed in case of Dirichlet-
Dirichlet (DD) boundary conditions using a discrete sine transform (DST),

F̂k =
2

N

N−1∑

j=1

Fj sin(πjk/N). (3.45)

In order to obtain the Fourier transform with the standard FFT parallel routines included
in 2DECOMP&FFT, the Fj array is extended in a pre-processing step to a temporary, odd
symmetry sequence with length of (2N), in the form (0, F1, F2,. . . , FN−1, 0, −FN−1,. . . ,
−F2, −F1), where Fj = −F2N−j for j = 1, N − 1.

In the same manner, in case of Neumann-Neumann (NN) boundary conditions, a discrete
cosine transform (DCT) is used instead:

F̂k =
2

N

[
F0

2
+

N−1∑

j=1

Fj cos(πjk/N) +
(−1)kFN

2

]
, (3.46)

The standard FFT routine is applied after extending the array in a pre-processing step into
a temporary, even symmetry sequence of length (2N) with the form of (F0, F1, F2,. . . , FN−1,
FN , FN−1,. . . , F2, F1), where Fj = F2N−j for j = 1, N − 1.

A combination between both boundary conditions is also possible. In the case of a
Dirichlet-Neumann (DN) combination, a quarter-wave discrete sine transform (QW-DST) is
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suitable:

F̂k =
1

N

[
F0

2
+

N−1∑

j=1

Fj sin(πj(2k − 1)/(2N)) +
(−1)k−1FN

2

]
, (3.47)

Then, a classical FFT routine is again possible, after extending the original sequence to a
temporary, odd symmetry sequence with length of (4N) where (0, F1,. . . , FN , FN−1,. . . ,
F1, 0, −F1,. . . , −FN , −FN−1, . . . , −F1). Similarly, a case with Neumann-Dirichlet (ND)
boundary conditions is now transformed with a quarter-wave discrete cosine transform (QW-
DCT),

F̂k =
1

N

[
F0

2
+

N−1∑

j=1

Fj cos(πj(2k − 1)/(2N))

]
, (3.48)

with a standard FFT routine after extending the original sequence to a temporary, even
symmetry sequence with length of (4N), in the form (F0, F1,. . . , FN−1,0, −FN−1,. . . , −F0,
−F1,. . . , −FN−1, 0,FN−1, . . . , F1).

Finally, the algorithm implemented in DINO for solving the Poisson equation ∇2p = F
can be summarized as follows:

1. Pre-processing for sequence F (input to the algorithm), which is a real array of length
N , extending its length depending on the boundary conditions;

• DD: M = 2N , (0, F1, F2,. . . , FN−1, 0, −FN−1,. . . , −F2, −F1);

• NN: M = 2N , (F0, F1, F2,. . . , FN−1, FN , FN−1,. . . , F2, F1);

• DN: M = 4N , (0, F1,. . . , FN , FN−1,. . . , F1, 0, −F1,. . . , −FN , −FN−1, . . . , −F1);

• ND: M = 4N , (F0, F1,. . . , FN−1,0, −FN−1,. . . , −F0, −F1,. . . , −FN−1, 0,FN−1,
. . . , F1).

2. Apply standard FFT routine (Eq. 3.43) over M discrete points to obtain F̂k;

3. Solve the Poisson equation in wave space, p̂ = −F̂ /κ2;

4. Apply standard IFFT routine (Eq. 3.44) to Fourier transform of the pressure (p̂),
obtaining the pressure in the physical space saved in temporary array F (overwritten
to save memory);

5. Post-processing for array F by saving the correct part into an array P of length N .

This algorithm has been coded for parallel simulations (parallel FFT) to speed-up the
process. Considering for instance a small 3D DNS involving 65 × 65 × 32 grid points par-
allelized using 16 cores with Dirichlet-Neumann, Neumann-Neumann, and periodic-periodic
boundary conditions in x, y, and z direction, respectively, the implemented algorithm is
already 6.75 faster than the CG solver implemented in the well-known HYPRE library [70].
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3.10 Boundary Conditions in Time and Space

For DNS relying on the low-Mach number or on the incompressible formulation, boundary
conditions in space are straightforward [71], at the difference of compressible DNS tools [72].
Standard Dirichlet and Neumann boundary conditions perform well and are stable.

Concerning initial conditions in time, a suitable approximation of real turbulence must
usually be generated for DNS. It is then either used directly for time-decaying simulations
in the same domain, or it is employed for turbulence injection through an inflow boundary,
leading to spatially-evolving turbulence. Both solutions are available in DINO.

To generate the initially needed approximation of the turbulent flow field, four different
algorithms are available in the code, so that initial solutions can be obtained for a broad range
of integral length scales, turbulence intensities and geometrical configurations. By default,
an Inverse Fast Fourier Transform (IFFT) relying either on the Passot-Pouquet spectrum or
on the Von Kármán spectrum with Pao correction [67] (see later Eq. 3.74) has been imple-
mented, with help of Felix Dietzsch at T.U. Freiberg, in parallel using 2DECOMP&FFT.
As alternatives, the Kraichnan technique [73], digital filtering [74], or random noise diffusion
[75] are available as well.

3.11 Grid Stretching

By default, a regular tensor-product grid is generated by DINO. If desirable for the considered
application, a static refinement can be applied based on stretching functions (ξ) close to the
boundaries (for a better resolution of the boundary layer) or at any place within the domain
(e.g., for a better resolution of a mixing region). When applying a static grid refinement, a
numerical transformation is applied based on the chain rule [76]. Hence, the derivatives are
still computed on a regularly-spaced (∂/∂ξ) computational grid, and then projected onto the
real (∂/∂x), adapted grid [76]: For the first derivative, the chain rule is computed as follows:

∂

∂x
=

∂

∂ξ

∂ξ

∂x
, (3.49)

and (2) for the second derivative it is computed as:

∂2

∂x2
=

∂

∂ξ

∂2ξ

∂x2
+

∂2

∂ξ2

(
∂ξ

∂x

)2

. (3.50)

The transformation function must only be computed once, since it does not change. In
that case, it is much easier to keep the equidistant formulation of the derivative computation,
and multiply afterwards with the (fixed) transformation function. Tests have shown that it
is also slightly faster in terms of computing time.

53



Chapter 3. A New DNS Solver: DINO

3.12 Immersed Boundaries

Using two different formulations, the Immersed Boundary Method (IBM) is implemented
within DINO. The first one pertains to static immersed boundaries, that will not change
in time; this is particularly useful to carry out DNS in complex geometries. This method
called direct boundary immersed boundary method (DB-IBM). Considering now moving
particles (solid particles, droplets) resolved on the grid, the second usage of IBM is to
describe two-phase flows; in this case the direct force immersed boundary method (DF-IBM)
is implemented. Both approaches are described in more detail in the next two sections.

3.12.1 DNS in Complex Geometries: DB-IBM

When considering cases with a complex (but currently time-independent) geometry, DINO
relies on DB-IBM. The details of the algorithm can be found in [77, 78]. For this purpose,
DINO reads the discretized input geometry in 3D as binary values transformed into a boolean
variable describing if the corresponding point is within the wall (value: 0) or within the flow
(value: 1) as illustrated in Fig. 3.2 . In this manner, even very complex and irregular
geometries can be considered in the DNS simulation. In the employed method, there is no
interpolation performed at the boundaries which means that this method is zero-order and
thus requires very fine mesh. This is a first step towards currently implemented high order
methods. Note that the spectral Poisson solver described previously in Sec. 3.9 is compatible
with all other features implemented in the code, like those described here.
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no free constants to choose and the boundary conditions are exactly enforced. In addition
the forcing of Eq. (6) does not require additional CPU time since it does not involve the
computation of extra terms, and, when every term is computed at the appropriate time (see
the Appendix), it does not influence the stability of the time integration scheme.

2.3. Interpolation procedures. As mentioned at the beginning of Section 2, the expres-
sions given for the forcing would be correct if the position of the unknowns on the grid
coincided with that of the immersed boundary. This in general is not true because it would
require the boundary to lie on coordinate lines or surfaces which is not the case for complex
curvilinear geometries. In particular, in the present case, where a staggered grid is used,
even if the boundary was coincident with the position where one velocity component was
defined, this would not be so for the other components. Therefore, an interpolation proce-
dure would be needed anyway. In order to test the importance of the interpolation, we have
implemented three different procedures, and we have computed the effect on the accuracy
of the scheme.
The simplest possibility is to select the gridpoints closest to the immersed boundary and

to apply the forcing as if position of the unknown and the boundary were coincident. In
fact, in this case there is no interpolation and the geometry is described in a stepwise way
(Fig. 2a). Note also that the surface is somewhat diffused since the 3 velocity boundary
conditions are applied at different locations.
The second procedure consists of computing for each cell crossed by the boundary the

volume fraction occupied by the body ψb with respect to the volume of the cell ψ . The
weight coefficientψb/ψ is then used to scale the forcing applied to the unknowns closest to
the boundary. For example, with reference to Fig. 2b for the ui variable the forcing would
be fiψb/ψ, fi being the i th component of one of the forcings computed above (Eqs. (2),
(4), (6)).
In the third case, instead of applying a scaling to the forcing,we compute the velocity value

that, in a linear approximation, the point closest to the boundary would have if the boundary
had the velocity V. In Fig. 2c the procedure for one gridpoint is shown, and the forcing is
simply given by one of the expressions above with the imposed velocity V̄ instead of V.
In order to test these procedures, we computed the formation of a vortex ring by injecting a

finite amount of fluid through a curvilinear nozzle (Fig. 3a). The flow and the geometry have
been selected in such a way to reproduce an existing experimental apparatus whose flows
have been used to validate the numerical results. A detailed comparisonwith the experiments
will be shown in Subsection 3.1; here we only compare the different numerical results to

FIG. 2. Sketch of the interpolation procedures: (a) no interpolation⇒ stepwise geometry, (b) volume fraction
weighting, (c) velocity interpolation.

Figure 3.2: Sketch of imposing boundaries into the regular mesh in DB-IBM: stepwise ge-
ometry [77].

As an example, Fig. 3.3 shows a patient-specific cerebral aneurysm [79] represented in
DINO by using DB-IBM, and instantaneous streamlines obtained in this geometry at peak
systole, colored by velocity magnitude.
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Figure 3.3: Representation of domains with a complex geometry in DINO using DB-IBM.
Left: patient-specific cerebral aneurysm [79]. Right: Streamlines colored by velocity magni-
tude at peak systole.

3.12.2 DF-IBM

The second immersed boundary method implemented in DINO, is the DF-IBM described
in [61, 80]. In this method the surface of the immersed body is imposed to the regular grid
through a direct force, which is added to the momentum equation (Fig. 3.4).

Figure 3.4: Schematic diagram showing the location of the surface force [78].

DF-IBM is usually applied to the moving body cases, because of its simple implementa-
tion. In order to explain the concept of DF-IBM, the incompressible Navier-Stokes equation
is used in the following form,

∂u

∂t
+∇(uu) = −∇p

ρ
+
µ

ρ
∇2u + fb, (3.51)

or,
∂u

∂t
= RHS + fb . (3.52)

55



Chapter 3. A New DNS Solver: DINO

This equation is numerically integrated as,

un+1 − un

∆t
= RHSn+1/2 + f

n+1/2
b , (3.53)

where, RHS contains convective, viscous, and the pressure gradient terms. Assuming the
body moves with velocity Ud (desired velocity), the force f

n+1/2
b must fulfill no-slip condition,

Un+1
d = un+1 . (3.54)

Therefore, this force can be computed at the surface of the immersed body as,

f
n+1/2
b = −RHSn+1/2 +

Un+1
d − un

∆t
. (3.55)

Computing this force at each time step is straightforward and leads to a low computa-
tional over head. Note that the desired velocity Ud depends on the geometry of the immersed
body and its dynamics.

3.13 Multiphase Flows

Currently, three different multiphase flow scenarios of increasing complexity can be handled
by DINO. Until now, the disperse phase involves only spherical particles, though working
solutions for resolving spheroids and ellipsoids are available as well [81]:

1. Non-resolved solid particles (also called point particles), suitable to describe particles
smaller than the Kolmogorov length scale, which cannot be resolved on the employed
DNS grid, as depicted in Fig. 3.5(a).

2. Non-resolved droplets, possibly involving evaporation and chemical reactions. Here,
mass and heat exchange between both phases are considered additionally, similar to
the approach retained in [50]. Applied to describe the momentum exchange between
flow and particles, the Lagrangian point-force approach considers Stokes model for the
drag force [43, 44]. The droplet dynamics are determined by knowing its location and
velocity:

dXk

dt
= Vk, (3.56)

dVk

dt
=

U∞ −Vk

τv,k
, (3.57)

τv,k =
ρLa

2
k

18µf

(
1 + 1

6
Re

2/3
k

) . (3.58)

In Eqs. (3.57) – (3.58), Vk and U∞ are the velocity of the k-th droplet and of the
surrounding gas at droplet location. Also, Xk, ρL, Rek, ak, µf , and τv,k are droplet
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position vector, density, Reynolds number, diameter, gas viscosity at the droplet posi-
tion, and momentum relaxation time scale, respectively. Subscripts ∞, f are standing
for properties of gaseous mixture in the far-field and film regions, respectively.

The evaporation process is computed by using an infinite conduction model inside the
droplet and a variable Spalding mass transfer number, Bm,k and heat transfer number,
BT,k as discussed in Sec. 2.8.2. The equations reviewed in Sec. 2.8.2 are given in form
of mass and energy. For coding purpose, it is easier to rewrite them with replacing
mass and energy by diameter and temperature, respectively, as follows:

mk = ρL
πa2

k

4
, (3.59)

da2
k

dt
= − a2

k

τa,k
, (3.60)

dTk
dt

=
1

τt,k

[
T∞ − Tk −

BT,k Lv,s
WF CF

p,f

(
Tcr − Tk
Tcr − Tref

)0.38
]
. (3.61)

Mass and heat transfer of the droplet are characterized by two characteristic time
scales: evaporation delay (τa,k) and heating delay (τt,k),

τa,k =
Sck

4Shk

ρL a
2
k

µf

1

ln(1 + Bm,k)
, (3.62)

τt,k =
Prk

6Nuk

Cp,L
Cp,f

ρL a
2
k

µf

BT,k

ln(1 + BT,k)
. (3.63)

In this set of equations, Tk, Tref , Tcr, and T∞, are the temperature of droplet k, ref-
erence temperature, critical temperature, gas temperature in far-field, respectively.
Also, Pr, Cp,L, CF

p,f , Cp,f , Nu, Sc, Shc, Lv, WF and WO are Prandtl number, specific
heat of the liquid droplet, specific heat of the fuel vapor, specific heat of the gas mix-
ture, Nusselt number, Schmidt number, Sherwood number, latent heat of evaporation,
molecular weight of fuel and oxidizer, respectively. Definitions and expressions for
these dimensionless numbers can be found in Sec. 2.8.2.

3. Fully resolved, moving solid particles. At the difference of the previous approaches,
when considering spherical particles noticeably larger than the Kolmogorov length
scale, the external surface of the particles can and should be resolved (Fig. 3.5(b)). For
this purpose, the DF-IBM described in Sec. 3.12.2 has been employed. Three different
collision models are included to describe particle-particle and particle-wall interactions:
hard sphere model, lubrication force model, and repulsive force model. These model
can be employed as stand alone or in combination, as illustrated in Fig. 3.6.
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(a) (b)

Figure 3.5: Particles in initially homogeneous isotropic turbulence (HIT). (a) Non-resolved
spherical particles (ratio diameter/Kolmogorov length scale of 0.1), the color field shows
vorticity. (b) Fully resolved solid spherical particles (ratio diameter/Kolmogorov length
scale of 20.6), the iso-surface shows the enstrophy of turbulence.

3.14 Code Performance and Verification

3.14.1 Parallel Efficiency

After profiling and optimizing single-processor performance, parallel efficiency has been
tested on a variety of machines in order to check portability. In the interest of space, only
results obtained with SuperMUC at Leibniz Supercomputing Center in Munich will be dis-
cussed. Figure 3.7 shows the strong scalability performance obtained with DINO. This test
corresponds to the DNS of a turbulent hydrogen/air flame using a detailed reaction scheme.
For this test, the number of processors was varied from 1 024 to 16 384. The obtained parallel
efficiency still reaches 85% with 8 192 cores, which is considered as an excellent result for a
low-Mach solver. The considerably lower performance with 16 384 cores (74%) is due to the
fact that, for this number of cores, two separate islands have to be combined on SuperMUC,
leading to large communication overheads.

DINO thus shows a very good parallel efficiency, ensuring efficient computations for up to
O(104) cores, which is a very satisfactory result for a low-Mach solver, since global operations
associated to the Poisson equation severely constrain the parallel performance.
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Figure 3.6: Schematic diagram showing the collision mechanism and model ranges [82].

Figure 3.7: Parallel efficiency (strong scaling) of DINO on SuperMUC.

3.14.2 Accuracy and Order

Many benchmarks have been considered during the development of DINO. In the interest of
space, it is impossible to document all the corresponding results. In the present section, the
most important benchmarks will be discussed.

In order to quantify the accuracy of the solution, the L2 and L∞ error norms will be
computed:

L2 =‖ ud − U ex ‖2=

√√√√ 1

N

N∑

n=1

|udn − U ex
n |2 , (3.64)

L∞ =‖ ud − U ex ‖∞= max
1≤n≤N

|ud
n − U ex

n | , (3.65)
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where ud and U ex are the numerical and exact analytical solutions, respectively.

Spatial Order: 1D Burgers’ Equation

One of the first standard benchmarks is the 1D non-linear Burgers’ equation,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, (3.66)

u(x, t = 1) =
x

1 + exp
(
x2−0.25

4 ν

) , 0 < x < 1

u(x = 0, t) = u(x = 1, t) = 0, t > 0

which has an analytical solution [83]:

U(x, t) =
x/t

1 + exp[x2/(4ν t)]
√
t/exp[1/(8ν)]

. (3.67)

Figure 3.8 (left) shows the comparison between the time-dependent solution obtained
with DINO (black line with circles) and the analytical solution given by Eq. (3.67) (dashed
red line) over a domain of one meter discretized with 1025 grid points, with a kinematic
viscosity of 0.001 m2/s, and a constant timestep of 5 µs. An excellent agreement is observed.

Error norms below 10−9 are obtained when refining the grid. As seen from Fig. 3.8
(right), DINO is found to be, as expected, 6th order in space globally.
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Figure 3.8: Verification and spatial order obtained by solving the one-dimensional Burgers’
equation. Left: time-dependent solution for a case with N = 1025 grid points. Right: error
norms and resulting spatial order of DINO.
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Poisson Equation and Spatial Order: 2D Taylor-Green vortex (2D-TGV)

This benchmark considers the two-dimensional Taylor-Green vortex (2D-TGV). The 3D
version of this problem will be discussed later for validation. The initial velocity and pressure
fields are prescribed at t = 0 as follows:

u(x, y, 0) = sin(2πx/L) cos(2πy/L) ,

v(x, y, 0) = −cos(2πx/L) sin(2πy/L) ,

p(x, y, 0) =
ρ

24
[cos(4πx/L) + cos(4πy/L)] . (3.68)

The analytical solution reads:

u(x, y, t) = u(x, y, 0) exp−8π2νt/L2

,

v(x, y, t) = v(x, y, 0) exp−8π2νt/L2

,

p(x, y, t) = p(x, y, 0) exp−16π2νt/L2

. (3.69)

In the present case, the 2D-TGV is simulated in a periodic square domain with a side length
of L = 1.0 m, with varying number of grid points (N) and kinematic viscosity (ν) but
with a fixed time step (∆t = 0.1 ms). The error norm L2 of the velocity field shown in
Fig. 3.9 (left) demonstrates that DINO reaches 6th order in space for the solution of the
Navier-Stokes equation in 2D as well. Concerning now the Poisson solver, the error norms
of the pressure field have been computed based on the analytical solution. Figure 3.9 (right)
shows indirectly that the order of convergence for the Poisson solver is much higher than 6th
order. In fact, exponential convergence is achieved, as demonstrated in further tests. Due to
the interaction between finite-difference and spectral solver in this particular test case (Eq.
3.27), the overall order shown in Fig. 3.9 (right) cannot be better than the 6th order of the
finite-difference solution.
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Figure 3.9: Verification and spatial order obtained by solving the 2D Taylor-Green vortex
problem. Left: L2 of velocity field. Right: L∞ and L2 of pressure field.
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Temporal Order: Wave Equation

To check the temporal order of the time integration algorithm relying on the explicit Runge-
Kutta scheme, a hyperbolic, one-dimensional wave equation was considered in a periodic
DNS domain:

∂u

∂t
= −c ∂u

∂x
, (3.70)

u(x, t = 0) = sin(2πx), (3.71)

(3.72)

For this system, the analytical solution is known:

U(x, t) = sin[2π(x− c t)]. (3.73)

Figure 3.10 (left) shows the comparison between the solution obtained with DINO, u,
and the analytical solution, U , at different time instants. The simulation employs 128 grid
points, a fixed timestep (∆t = 0.5 ms), and a fixed wave speed of c = 0.5 m/s. In order to
obtain the temporal order, both norms are again computed, this time with a fixed number
of grid points but changing the timestep. Figure 3.10 (right) shows that the Runge-Kutta
procedure delivers as expected an overall 4th-order approximation in time.
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Figure 3.10: Verification and temporal order obtained by solving the one-dimensional wave
equation. Left: time-dependent solution. Right: error norms and resulting temporal order
of DINO.
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3.15 Validation

3.15.1 Lid-Driven Cavity

After checking the proper implementation and accuracy of all major components of DINO,
validation tests should involve the whole set of conservation equations for practically relevant
cases. One of the most classical test cases for this purpose is the two-dimensional lid-driven
cavity for an isothermal incompressible flow. Here, the DINO simulation is performed over
a square domain of L × L = 1 m2 discretized with 129 × 129 grid points. The upper wall
velocity is uwall = 1.0 m/s, and flow kinematic viscosity ν = 10−3 m2/s. The corresponding
Reynolds number is Re= uwallL/ν = 1000. For this simulation the adaptive timestep is
activated based on the condition CFLmax = 0.5. The results of DINO are compared both
to the multigrid solution of Ghia et al. [84] as well as to the spectral solver of Botella and
Peyret [85]. As can be seen from Fig. 3.11, the results obtained with DINO show an excellent
agreement both for the horizontal (u) and vertical velocity (v), respectively.
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Figure 3.11: Steady-state solution for the two-dimensional lid-driven cavity at Re= 1000.
(a) horizontal velocity along the vertical centerline of the cavity. (b) vertical velocity along
the horizontal centerline of the cavity.

3.15.2 Homogeneous Isotropic Turbulence (HIT)

For a DNS solver, describing properly turbulence properties is obviously essential. In order
to check this feature, one fundamental test case is the decay of homogeneous isotropic tur-
bulence. Validation is done here by comparing the turbulence statistics obtained by DINO
with those obtained experimentally behind grid turbulence [86]. The normalized spectrum
obtained with DINO for decaying HIT is compared directly with the spectrum from the ex-
periment of Comte-Bellot and Corrsin (1971) at a Taylor Reynolds number of Reλ = 71.6 and
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Reλ = 65.1. To initiate the simulation, the DNS is started with an analytically prescribed
turbulence spectrum E(κ) following von Kármán with Pao correction (VKP spectrum):

E(κ) =
3u5

e

2εe

[κ/κe]
4

[1 + (κ/κe)2]17/6
exp

(
−9

4

[
κ

κd

]4/3
)
, (3.74)

where ue, εe, κd and κe are the spectrum coefficients and κ is the wave number vector.
Here, values of 0.21, 0.01, 0.08 and 0.018 have been chosen for the spectrum coefficients,
respectively, in order to generate initial turbulence in a domain of size 10 × 10 × 10 cm3.
After a time t = 11.2τη, a Taylor-based Reynolds number Reλ = 71.1 is obtained and the
turbulence properties are compared with the experimental data. Table 3.2 contains also ReΛ,
ε, u′, λt, Λ, τΛ, ηk, and τη, which correspond to Reynolds number based on integral length
scale, dissipation rate of the kinetic energy, fluctuation velocity root mean square, Taylor
length scale, integral length scale, large eddy turn-over time scale, Kolmogorov length scale,
and Kolmogorov time scale, respectively.

Table 3.2: Turbulence properties at time t = 11.2τη
N3 Reλ ReΛ ε [m2/s3] u′ [m/s] λt [mm] Λ [mm] τΛ [ms] ηk [mm] τη [ms]

5123 71.1 336.8 42.52 0.92 3.86 18.3 81.4 0.23 1.1

Figure 3.12 shows the results for the Q-criterion isosurface (Fig. 3.12(a)), and the nor-
malized energy spectrum of the simulation at time t = 11.2τη and of the experiments
(Fig. 3.12(b)). The comparisons show that the DINO simulation agrees perfectly with the
experimental results. It is important to keep in mind that, in this simulation, the ratio of
ηk/∆x, where ∆x denotes the grid spacing, is larger than unity and the product κmaxηk
is larger than 1.5 during the whole simulation, ensuring that all small flow structures are
correctly captured (Sec. 1.5).

3.15.3 3D Taylor-Green Vortex (TGV)

The Taylor-Green vortex (TGV) is a canonical problem in fluid dynamics to study vortex
dynamics, laminar to turbulent transition, turbulent decay and energy dissipation. Further-
more, it was retained as one of the central benchmarks in the International Workshops on
High-Order CFD Methods [87]. The TGV problem involves different key physical processes
found in turbulence and is therefore an excellent testcase for the evaluation of DNS codes.
The problem consists of a cubic volume of fluid that contains a smooth initial distribution of
vorticity, as shown in Fig. 3.13. As time advances the vortices roll-up, stretch and interact
before breaking down. Eventually, viscosity will dissipate all the energy in the fluid and
it will come to rest along a well-defined trajectory [88]. Here, results of DINO are com-
pared with simulation results obtained with a pseudo-spectral code using 5123 grid points
[89]. These results are later denoted RLPK. The geometry is a periodic box of dimension of
0 ≤ x, y, z ≤ 2π [m], a value kept to facilitate post processing and comparisons with results

64



3.15. Validation

(a)

10-3 10-2 10-1 100 101

η

10-4

10-3

10-2

10-1

100

101

102

103

104

E
(

)/
(ε
ν5

)1/
4

DINO (initial-VKP)
DINO, Reλ=71.1

Experiment, Reλ=71.6

Experiment, Reλ=65.1

(b)

Figure 3.12: Homogeneous isotropic turbulence decaying in time. (a) Q-criterion isosurface
(value of 6 × 105 1/s2) at time t = 11.2τη. (b) energy spectrum obtained by DINO compared
with experimental results of [86].

Figure 3.13: isosurface of z-vorticity of 3D-TGV at initial conditions.

from the literature. The initial conditions for TGV are given by the following:

u(x, y, z, 0) = u0 sin(x/L) cos(y/L) cos(z/L), (3.75)

v(x, y, z, 0) = −u0 cos(x/L) sin(y/L) cos(z/L), (3.76)

w(x, y, z, 0) = 0, (3.77)
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where u0 = 1 m/s and L = 1 m are reference velocity and length, respectively. The flow
is computed at a Reynolds number (Re= u0 L/ν) of 1600. Using 3843 or 5123 grid points,
the simulation is performed for a duration of 20Tc, where Tc = L/u0 is the characteristic
convective time scale. By solving the Poisson equation, the initial pressure field is obtained.
The time evolution of isosurfaces of z-vorticity at different times when using 5123 grid points
is illustrated in Fig. 3.14. Starting from Fig. 3.14(a), the vortices start to roll-up. Then, a
breakdown of the coherent structures occurs (Fig. 3.14(b)). Figure 3.14(c) shows the onset
of turbulence before decay due to dissipation (Fig. 3.14(d)).

(a) (b)

(c) (d)

Figure 3.14: Time evolution of isosurfaces of z-vorticity for 3D-TGV using 5123 grid points
at times: (a) t/Tc = 5.46 (vortex roll-up), (b) t/Tc = 8.0 (coherent structure breakdown),
(c) t/Tc = 12.11 (turbulence), (d) t/Tc = 18.55 (decay), respectively.
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Figure 3.15 presents the comparison of the DINO results with that of the pseudo-spectral
code (RLPK [89]). On the left, the time evolution of kinetic energy

KE(t) =
1

2
〈uiui〉, (3.78)

normalized by its initial value is presented, while on the right the evolution of the dissipation
rate ε (normalized by its maximum value) is shown. For this, ε is computed directly from
the strain rate tensor, Sij:

ε(t) = 2 ν 〈SijSij〉, (3.79)

where 〈·〉 in Eqs. (3.78) and (3.79) denotes a spatial average. The comparison between DINO
and RLPK results shows an excellent agreement. This benchmark proves again the ability
of DINO not only to simulate turbulent flows but also transition and dissipation processes.
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Figure 3.15: Temporal evolution of (a) normalized kinetic energy, and (b) its dissipation
rate.

3.15.4 Turbulent Channel Flow

Since resulting features are non-homogeneous and non-isotropic, DNS of a wall-bounded
turbulent channel is far more complicated than HIT, but also more interesting for practical
purposes. Considering that DINO will ultimately be used to investigate multiphase reacting
flows, and keeping in mind that any injection channel and most combustion systems involve
walls, it is absolutely necessary to obtain a correct description of such configurations. Near-
wall turbulent structures are typically much smaller than in the center of the channel. Hence,
using a refined grid near the wall is helpful. As already mentioned in Sec. 3.11, this feature
is implemented in DINO, and has been activated for the present test case. In order to check
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Table 3.3: Parameters of the turbulent channel flow. Note that the mesh sizes ∆x+, ∆y+,∆z+

are in wall units, and that ∆y+ represents the grid size at the center, the grid being refined
close to the walls.

Data Reτ δ Lx Lz Nx Ny Nz ∆x+ ∆y+ ∆z+

DINO 175 0.125 [m] 8δ 4δ 256 193 128 5.4 2.0 5.4
MKM 178 1.00 [-] 4πδ 4πδ 128 129 128 17.7 4.4 5.9
VK 180 1.00 [-] 4πδ 4πδ 384 193 192 5.9 2.9 3.9

the accuracy of DINO when employing the developed spectral solver described in Sec. 3.9 on
a non-uniform grid, the results obtained for a turbulent channel flow with a friction Reynolds
number Reτ ≈ 180 are compared with published DNS databases [90, 91]. These databases
were generated with two different spectral codes. Simulation dimensions and parameters
considered for DINO and for the databases are summarized in Table 3.3. The current
simulation is initiated by using a semi-empirical profile for the turbulent channel flow and
adding divergence-free turbulent fluctuations on top of that profile. These initial fluctuations
are again generated by IFFT using a VKP spectrum as described in Section 3.10. Compared
to initialization with a random noise, preliminary tests have confirmed that this leads to a
much faster convergence toward statistically-steady results. The boundary conditions are
chosen to be periodic in streamwise and spanwise flow direction, using a uniform grid along
both. Along the third direction, wall boundary conditions are used together with near-wall
grid refinement. The smallest grid spacing near the wall is ∆y+

min = 1.4. Turbulence statistics
start being collected after reaching statistically steady-state. The mean streamwise velocity
in the (dimensional) DINO simulation is 0.83 m/s. Figure 3.16 shows the comparison between
DINO, Moser et al. (MKM) and Vreman and Kuerten (VK) concerning mean velocity
profile (u+, Fig. 3.16(a)), as well as velocity fluctuations and correlations (Fig. 3.16(b)). An
excellent agreement is observed, showing that DINO is able to correctly describe turbulence
with the spectral Poisson solver, even for wall-bounded flows and using non-uniform grids.

3.15.5 IBM Validation: flow past a circular cylinder

In order to validate the implemented IBM approach, the classical benchmark involving the
flow past a circular cylinder has been revisited [92]. The circular cylinder has a diameter of
Dc = 25 mm. In order to avoid blockage effects, the cylinder is located at (16Dc, 20Dc) within
a square domain with side length of 40Dc. Two different Reynolds numbers (Re= U∞Dc/ν=
20 and 40) have been considered by changing the free stream velocity U∞ while keeping
ν = 1× 10−4 m2/s . A fine regular grid with 1025× 1025 points has been used to discretize
the domain. Figure 3.17 depicts the streamlines of the flow around the cylinder with Re
equal to 20 (Fig. 3.17(a)) and 40 (Fig. 3.17(b)), using DB-IBM (note that both methods,
DB-IBM and DF-IBM, deliver streamlines that cannot visually be distinguished). The drag
coefficients obtained by these simulation have been compared with values from the literature
in Table 3.4, showing an excellent agreement.
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Figure 3.16: Comparison between DINO, Moser et al. (MKM) and Vreman and Kuerten
(VK) concerning the turbulent channel flow at Reτ ' 180. (a) mean velocity. (b) velocity
fluctuations and correlations.

(a) (b)

Figure 3.17: Streamlines of flow past a circular cylinder using DB-IBM at (a) Re= 20, and
(b) Re=40.

3.15.6 Chemistry and Transport

After successfully completing the validation of DINO for turbulent non-reacting incompress-
ible flows, and keeping in mind that DINO shall be also used to investigate reacting config-
urations, it is necessary to check that all models employed to describe the properties needed
for such cases (chemical kinetics, thermodynamic parameters and transport properties) are
indeed working accurately. For this purpose, comparisons with experimental measurements
will be carried out for configurations of growing complexity.
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Table 3.4: Comparison of the drag coefficient Cd obtained by IBM in DINO with literature
values.

Reference Re=20 Re=40
Body-fitted grid [93] 2.045 1.522
Body-fitted grid [94] 2.111 1.574

IBM [92] 2.144 1.589
DINO, DF-IBM 2.140 1.597
DINO, DB-IBM 2.104 1.581

Ignition Delay

The first comparison allows one to check the correct implantation of the kinetic terms,
showing that the coupling between DINO and Cantera 1.8 is working properly. Additionally,
the efficiency of the time integration for stiff processes can be assessed. For this purpose, the
ignition delay of a reacting mixture is computed in a zero-dimensional simulation, comparable
to an experiment involving a homogeneous mixture. In such a case, all gradients appearing
in the equations are zero, and the integration proceeds only in time, leading to very fast
computations.

Since many different fuels are important for research and practical applications, two
different combustibles have been considered here, both burning in air: 1) C2H4 (ethylene);
2) C7H16 (n-heptane). Different reaction mechanisms are available as a database in the
literature to describe oxidation of these fuels. Established mechanisms have been retained
for this validation, as summarized in Table 3.5.

Table 3.5: Reaction mechanisms employed to compute ignition delays.
Mixture Mechanism Number of species Number of reactions

C2H4/Air
UCSD-2003 [95] 39 173
UCSD-2005[95] 46 235
Luo et al.[96] 32 206

C7H16/Air
Patel et al. [97] 29 52
Liu et al. [98] 44 114

Figure 3.18(a) shows the results obtained with DINO concerning ignition delay for ethy-
lene combustion, compared to a variety of published experimental data [99–101]. Please
note that experimental results have been obtained under different conditions. Therefore,
following a standard procedure in this case, the results of Fig. 3.18(a) have been scaled by
the oxygen concentration in the mixture. A very good agreement is obtained, in particular
with the most complex mechanism [95]. However, the computational time associated to the
mechanism of [96] is considerably shorter, while an acceptable agreement is still observed.

Figure 3.18(b) shows the ignition delays obtained for n-heptane in air, compared to pub-
lished experimental data [102]. Again, the most complex mechanism [98] leads to an excel-
lent agreement with the experiments, while the noticeably smaller (and thus computationally
faster) mechanism of [97] still leads to an acceptable prediction, at least qualitatively.
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Figure 3.18: Ignition delay obtained with DINO compared with experimental results. (a)
C2H4/Air. (b) C7H16/Air. Note that the data have been scaled by the oxygen concentration
in the left figure.

All results in this section have been obtained by using the split, semi-implicit Runge-
Kutta time integration relying on RADAU-5 (see Sec. 3.7). A fast but stable time integration
has been obtained for all conditions.

Laminar Flame Speed

Together with the ignition delay previously discussed, the laminar flame speed SL observed
when burning a fully premixed system (also called in what follows fresh gas), leading to
so-called burnt gas conditions, is considered as the key quantity to properly describe gaseous
reacting flows. This property can be easily computed using dedicated routines like those
implemented in Chemkin or Cantera. However, when using an unsteady solver like DINO,
a proper computation of SL must first be implemented.

Assuming that a quasi steady-state has been obtained with DINO, all time derivatives
are zero (∂t(·) = 0). Since the position of the flame is fixed within the computational domain
under such conditions, and following [11], it can also be assumed that the momentum in the
fresh gas mixture (subscript 1) and in the burnt mixture (subscript 2) are constant and
equal to (ρ1SL), where SL is the (at first unknown) laminar flame speed. Consequently, by
integration of the species equation (Eq. (3.4)), the following equation is obtained to compute
the laminar flame speed out of corresponding DNS simulations:

SL =

∫ 2

1
ω̇kdx− ρVkYk1 + ρVkYk2

ρ(Yk2 − Yk1)
. (3.80)

This equation delivers one value for each species (index k). Following values are the
average obtained when considering the obtained values of SL for all reactants and products.
In order to achieve steady-state conditions with DINO, an initially planar premixed flame
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configuration is initiated in a one-dimensional domain, with a fresh gas mixture on one
side and the corresponding burned gas composition (separately computed beforehand with
Cantera 1.8) on the other side of the domain, first without any underlying velocity. Realistic
flame profiles progressively develop, after starting the simulation. After a prescribed number
of iterations, a first estimation of the flame speed is computed using Eq. (3.80). In order
to stabilize the reaction front within the computational domain, the computed value is then
prescribed in the simulation as fixed velocity inlet. This procedure is repeated iteratively
until the updated flame speed computed using Eq. (3.80) remains constant within ±5%.
Using this approach, a quasi steady-state can be obtained, with a stable flame established
at a fixed position within the one-dimensional domain.

Figure 3.19 shows the comparison of the numerically obtained flame speeds with exper-
imental measurements for ethylene. The integration in time relies on the additive semi-
implicit Runge-Kutta method (see Sec. 3.7). Different independent experimental results
have been involved in the comparison [103–105]. Figure 3.19 shows that DINO reproduces
with an excellent accuracy the laminar flame speed of ethylene flames when using as reac-
tion mechanisms either UCSD-2005 or Luo et al. The third scheme (UCSD-2003) shows
noticeable deviations and will not be considered further.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

φ [-]

0.0

0.2

0.4

0.6

0.8

1.0

S
L

 [
m

/s
]

DINO, (Luo et al., 2012)

DINO, (UCSD, 2003)

DINO, (UCSD, 2005)

Egolfopoulos et al., 1990 

Jomaas et al., 2005

Hassan et al., 1998

Figure 3.19: Comparison of numerically obtained laminar flame speeds with experimental
measurements for ethylene/air flames.

Concluding Sec. 3.15.6, DINO coupled with Cantera 1.8 and Eglib 3.4 is able to represent
accurately the key properties controlling combustion, even for complex fuels, provided cor-
responding reaction schemes are available in the scientific literature. Thanks to the implicit
time-integration solvers, stiff systems can be treated in a stable but accurate manner. Until
now, up to 53 species and up to 325 reactions (GRI-Mech 3.0 [106] ) have been successfully
considered in DINO, as will be discussed later.
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3.16 First Application Examples

In this section, two gas-phase turbulent combustion applications will be discussed, before
considering two-phase flows in the next chapter. Many researchers pay much attention to
the jet configuration, because it allows them to investigate essential phenomena in turbulent
combustion, such as turbulent mixing, transport, and flame-turbulence interaction. Addi-
tionally, it mimics many practical applications, such as engines, furnaces, gas turbines, etc.
Here, two numerical configurations will be examined in terms of robustness and feasibility:
(1) spatially-evolving jet; (2) temporally-evolving jet.

3.16.1 Spatially-Evolving Jet

In this test, the burned gases are injected into fresh (unburned) premixed gases at stoichio-
metric conditions. The direct application of this configuration is to examine safety and to
assess the risk of the burning mixture escaping due to a failure/crack and thus entering
into a fresh premixed gas region at a temperature of 300 K. Two mixtures are tested here:
H2/air and C2H4/air. Both of the mixtures are injected at the same conditions and injection
temperature. The numerical settings are summarized as follows: The length of the numer-
ical domain in the streamwise direction is 0.8 cm, in the spanwise direction 0.6 cm, and in
the crosswise direction 0.2 cm. This domain is discretized over 25 million grid points while
keeping a grid resolution of 15 µm in each direction. The fresh gases are injected with a
jet speed of 170 m/s through a rectangular slot with a width of 0.28 mm and an injection
temperature of 1300 K. Periodic boundary conditions are used in the span- and crosswise
directions, whereas the streamwise direction has inflow and outflow boundary conditions.
It was found that at these conditions, the H2/air mixture is injected with a jet Reynolds
number of 2500, whereas the C2H4/air mixture is injected with a jet Reynolds number of
3360. Figures 3.20 and 3.21 show the time evolution of the iso-surfaces of heat release (red)
and Q-criterion (gray), and the 2D-cut plane of the temperature contour for both cases. The
ignition of the H2/air mixture is observed: heat release and temperature increase. On the
other hand, C2H4/air mixture evolves without ignition. This is attributed to the fact that, at
the same injection conditions, the C2H4/air mixture was injected at higher Reynolds number,
so that the mixing time scale is faster than the chemistry time scale. This leads to misfire.
The situation is reversed for the H2/air mixture. In addition to these two tests, many cases
can be built by changing the controlling parameters (jet speed, injection temperature, jet
width, mixture compositions, etc.) to generate a safety map for such configurations, which
may help in risk prediction. This configuration also helps in investigating the turbulence
mixing and transport. The simulation with C2H4/air was conducted on SuperMUC using
2048 processors and consumed 74 000 CPU-hour.

3.16.2 Temporally-Evolving Jet

The spatially-evolving jet configuration is numerically expensive, especially with combus-
tion. Alternatively, a temporally-evolving jet configuration is sometimes used [107–109]. In
this configuration, a slab of pre-heated unburned premixed mixture is located in the center
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(a) t = 0.018 ms (b) t = 0.039 ms (c) t = 0.054 ms

(d) t = 0.069 ms (e) t = 0.1 ms (f) t = 0.17 ms

Figure 3.20: Time evolution of spatially-evolving jet of H2/air mixture. Red and gray iso-
surfaces represent the heat release and Q-criterion, respectively. The color 2D-cut plane
shows the mixture temperature.

(central jet zone) of the computational domain, whereas the left and right slabs (co-flow
zones) contain the unburned premixed mixture at a temperature of 300 K. In the computa-
tional domain, the middle slab (central jet zone) moves with a jet speed Uj. The surrounding
co-flow zone is quiescent. An isotropic turbulent flow field is generated prior to the DNS,
and is employed to trigger the turbulence in the central jet zone using a hyperbolic tangent
function to filter out the turbulence in the co-flow. In these simulations, the flow is consid-
ered periodic in the streamwise and span-wise directions, whereas it has outflow boundary
conditions in the crosswise direction. In this section, autoignition of two H2/air mixtures at
stoichiometric conditions will be tested in the same domain and condition, but at different
initial jet temperatures. The DNS is performed in domain with dimensions of Lx (streamwise
direction) = 0.4 cm, Ly (crosswise direction) = 0.4 cm, and Lz (spanwise direction) = 0.2 cm.
This domain is discretized over nx = 257, ny = 256, and nz = 128 grid points, respectively.
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(a) t = 0.02 ms (b) t = 0.043 ms (c) t = 0.06 ms

(d) t = 0.075 ms (e) t = 0.11 ms (f) t = 0.16 ms

Figure 3.21: Time evolution of spatially-evolving jet of C2H4/air mixture. Red and gray
iso-surfaces represent the heat release and Q-criterion, respectively. The color 2D-cut plane
shows the mixture temperature.

The middle slab which has a width of 0.04 cm moves with a jet speed of 185 m/s, leading
to a jet Reynolds number of about 2500. The first mixture has an initial jet temperature
of 1300 K (Fig 3.22), while the second case has an initial temperature of 1500 K (Fig 3.23).
As seen in Fig 3.22, the temperature of the mixture decreases and no ignition occurs. This
case is suitable to study quenching and turbulence mixing. On the other hand, when the
initial temperature is 1500 K, the mixture has sufficient energy to ignite and burn. The
temperature increases, as is shown in Fig. 3.23.

These two applications demonstrate DINO’s ability to carry out interesting and chal-
lenging numerical configurations in a stable and robust manner, opening the door for future
studies and simulations involving relatively high Reynolds number with feasible computa-
tional time.

It is now time considering the disperse phase, on the way towards spray combustion.
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(a) t = 0.0 (b) t = 0.026 ms (c) t = 0.035 ms

(d) t = 0.052 ms (e) t = 0.08 ms (f) t = 0.12 ms

Figure 3.22: Time evolution of temperature of H2/air mixture for initial jet temperature of
1300 K.
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(a) t = 0 (b) t = 0.029 ms (c) t = 0.041 ms

(d) t = 0.058 ms (e) t = 0.071 ms (f) t = 0.14 ms

Figure 3.23: Time evolution of temperature of H2/air mixture for initial jet temperature of
1500 K.
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Chapter 4

Spray and Droplets

4.1 Introduction

In this chapter, DNS of spray combustion are carried out for two purposes: (1) demonstrate
the capability of DINO to perform such simulations; (2) answer some of the open questions in
the area of spray combustion, as discussed in Sec. 1.4. Two geometries are again considered:
(a) temporally-evolving jet, (b) spatially-evolving jet. These configurations are employed
here to examine and determine the following: (1) optimal numerical settings, (2) imple-
mentation of detailed kinetic schemes and detailed spray properties, (3) impact of physical
parameters on spray evaporation and combustion, (4) behavior and role of the scalar dis-
sipation rate in turbulent mixing, (5) safety in terms of autoignition occurrence. Part of
this chapter is based on an article published in the Proceedings of the Combustion Institute
[110].

4.2 Validation Evaporation Model

The evaporation model introduced by Spalding (1953) [49] and corrected by Abramzon-
Sirignano (1989) [47] is used here, as already discussed in Secs. 2.8.2 and 3.13. Before
investigating the numerical results, a validation is performed. The most frequent validation
benchmark is the evaporation of a single liquid spherical droplet in hot gas. Experimental
[111] and numerical [39] results of this benchmark are available. Chauveau et al. (2008) [111]
performed experimental measurements concerning the evaporation of a single n-heptane
droplet. In their experiments, an n-heptane droplet with an initial diameter ak,0 = 800
µm, suspended by quartz fibers, evaporates in a quiescent N2 atmosphere at different gas
temperatures and under microgravity conditions. Sierra (2012) [39] used CERFACS’ code
(AVBP) to compute this case. She exposed a single n-heptane droplet, placed in the middle
of a cubic domain, to hot gas. Here, this benchmark is revisited to validate the implemented
evaporation model. In this simulation, a single n-heptane droplet with a diameter of 500
µm is placed in the center of a cubic periodic domain with a size of 10 cm3. This domain is
discretized over 163 grid points to maintain a grid resolution larger than the droplet diameter
(non-resolved approach, DPS). As in the experimental work [111], the domain is filled with
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Figure 4.1: Time evolution of diameter of single n-heptane droplet: validation of the evapo-
ration model. The symbols represent the experimental work of Chauveau et al. (2008) [111];
dashed lines represent the simulation result computed by Sierra (2012) [39]; the solid lines
represent DINO simulations.

N2 at atmospheric pressure and four different gas temperatures are tested: 473, 548, 623,
and 748 K. In DINO simulations, the detailed kinetic mechanism developed by Patel et al.
[112] is used (29 species and 52 elementary reactions); the droplet has an initial temperature
of 300 K. Figure 4.1 shows the temporal evolution of the droplet diameter versus time. It
compares the DINO results with both the experimental [111] and the numerical work [39]. It
is obvious that DINO is closer to the experimental curves for all cases. This is attributed to
the fact that Sierra computed the transport and thermodynamic properties from empirical
relations implemented in AVBP, while DINO uses Cantera-1.8 directly.

This figure demonstrates that the evaporation model is implemented in the correct way
and delivers results which are very close to those acquired by experiments. The small devi-
ations may appear due to model assumption and simplifications, as discussed in Sec. 2.8.2,
or due to measurement uncertainties.

4.3 Temporally-Evolving Jet

This part investigates spray evaporation and autoignition in a temporally-evolving jet. The
impact of shear on evaporation and spray autoignition mechanisms is quantified by comparing
droplets evolving in a high-speed jet flow or in a nearly quiescent environment. Comparisons
are based on the topology of the reaction fronts, as characterized by the mixture fraction,
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scalar dissipation rate, flame index, as well as fields of temperature and heat release. The
impact of the local equivalence ratio and droplet diameter have been investigated by varying
these two parameters.

4.3.1 Numerical Setups

Spray in a temporally-evolving jet is considered here, using a domain with dimensions of
Lx = 2.4 mm, Ly = 6.4 mm, Lz = 6.4 mm, discretized over 96 × 256 × 256 grid points for
spanwise, transverse, and streamwise directions, respectively, keeping a fixed grid resolution
of 25µm. The numerical setup is illustrated in Fig. 4.2. The domain is periodic in streamwise
and spanwise directions while it has outflow boundary conditions in transverse direction.
In Fig. 4.2 the black spheres represent schematically the monodispersed droplets that are
randomly distributed in the central jet region, with a width H of 0.7 mm and a jet velocity
Uj. The droplets always have an initial temperature Tk,0 of 300 K. These droplets are placed
in a central slab of air with a uniform initial temperature T∞,0, and pressure P∞,0, of 1500
K and 5 bar, respectively. In Fig. 4.2, Uco represents the velocity of the gaseous coflow.
Kinetic terms are computed by relying on Cantera 1.8 with a skeletal kinetic mechanism
for n-heptane, which contains Ns = 29 species and 52 elementary reactions, as described in
[112].

Figure 4.2: Numerical configuration.

In the current work, two different configurations are considered: 1) droplets in a fast
temporal jet (Case A); 2) droplets in a nearly quiescent atmosphere (Case B). In Case A,
the velocity of the gaseous jet is equal to the initial velocity of the droplets (always set to 100
m/s), while in Case B, the jet velocity equals the coflow velocity (5 m/s). Case B is directly
inspired by the work of Wang and Rutland (2007) [27] who used 2D DNS to investigate the
ignition of a jet spray in a similar flow. For Case A, the turbulence is triggered by initializing
a homogeneous isotropic turbulent flow field, which has an integral length scale Λ of 0.2 mm
and a fluctuation velocity u′ of 0.4 m/s. The corresponding droplets’ Stokes number based
on the Kolmogorov time scale is 1.43. All turbulence length scales are well resolved in this
simulation, keeping the ratio of Kolmogorov length scale, ηk, to grid resolution, ∆x, larger
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than unity, with ηk/∆x = 2.67. This is sufficient to properly resolve all chemical species as
well in this case. The turbulence signals are filtered using a top-hat filter, and are imposed
only in the middle of the domain (central slab, containing the droplets). Following [27], no
turbulence is initially added in Case B. For both cases, the ratio ak/∆x stays below 0.6,
which is an acceptable value for DNS-DPS of spray combustion [27, 28, 31]. The simulation
conditions for case A have been chosen to mimic combustion in ICE, except for the pressure,
which is kept low, following again [27, 113].

4.3.2 Results and Discussion

Direct comparisons between Case A and Case B will be discussed first, with keeping the
initial local equivalence ratio φ(t = 0) of the mixture in the central jet zone equal to 2 and
a droplet diameter of 10 µm. In the second part of this section, a parametric study will be
performed for Case A by choosing different values for the local equivalence ratio φ (0.5, 1,
2), droplet diameter a (10, 13, 16µm), and jet velocity Uj (25, 50, 75, 100 m/s).

Following [26], auto-ignition is defined as the time and location where the local maximum
temperature rises by 400 K over the initial gas temperature. The autoignition delay time
τg is found to be identical for Case A and Case B (τg = 0.165 ms, for φ = 2 and a = 10
µm); it is always noticeably shorter than the evaporation delay time, τa, equal to 0.27 ms
in Case A and 0.29 ms in Case B. Consequently, only the results at t ≈ τg will be discussed
in details in what follows, together with a discussion concerning the temporal evolution of
scalar dissipation rate. For the analysis, three key quantities will be computed. First, the
elemental mixture fraction ζz (also called Bilger’s mixture fraction [30, 114]) for a generic
hydrocarbon fuel CmHn, with Fu denoting fuel and Ox the oxidizer:

ζz =
β − βOx

βFu − βOx

, (4.1)

β =
Ns∑

i=1

(
aC,i
m

+
aH,i
n
− aO,i

(m+ n/4)

)
Yi
Wi

, (4.2)

where aj,i denotes the number of atoms of element j in species i. Second, the scalar dissipa-
tion rate, based on the thermal diffusion coefficient λ,

χ = 2D (∇ζz)
2 =

2λ

ρCp
(∇ζz)

2 . (4.3)

Third, Takeno’s flame index [115] in its normalized version [6],

ξp =
1

2

(
1 +

∇YFu

|∇YFu|
· ∇YOx

|∇YOx|

)
, (4.4)

which is used to detect burning mode and flame topology, where ξp is 0 for a nonpremixed,
and 1 for a premixed local combustion mode, respectively. Although interesting alternatives
have been derived to compute the flame index when using complex kinetic schemes [116, 117],
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the validity of the classical form of Takeno flame index (Eq. 4.4) for simulations involving
detailed kinetics has been checked recently [118–120].

Evaporation-Ignition Scenarios

Even though Case A and Case B show the same autoignition delay time, the scenarios
of evaporation and ignition clearly differ. Figure 4.3 shows an isosurface of temperature
(T = 1800 K) and droplets (black spheres). In Case A (Fig. 4.3(a)), which has a very
high shear in the gas flow near the jet boundaries, mixing is enhanced and the evaporating
droplets start early to disperse along the side of the jet. The mixture fraction in the gas phase
increases in two different zones: 1) the central jet area, where evaporation mainly occurs,
leading to a decrease in temperature, due to evaporation (Zone I), (2) along the sides of the
jet, due to convection and mixing (Zone II). A sample of Zone II is shown in Fig. 4.4(a).
Due to an increasing mixture fraction in this region and local high temperatures, the ignition
of the spray occurs in a pocket-like manner. These pockets are surrounded by evaporating
droplets, which are the source for further fuel in the gaseous phase. Different flame types
are observed around this region, as shown by Takeno’s flame index: lean premixed flames
(solid thick gray lines, ξp ' 1), and nonpremixed flames (dashed thick gray lines, ξp ' 0),
supporting findings of [17]. In Case B (Fig. 4.3(b)), even though evaporation starts in the
absence of any turbulence, a weak wavy motion develops until time t = τg due to species
diffusion and flame propagation in an inhomogeneous mixture. As seen in Fig. 4.4(b), the
evaporation occurs only in the central jet region for Case B, as expected. Finally, ignition
occurs at the jet boundaries, similar to observations from [17, 32]. Again, both premixed
and nonpremixed flames are observed simultaneously. Later on (not shown), the burning
zone propagates towards the jet core, where evaporation and fuel consumption first reach
completion. This scenario should also be considered when developing or improving models
to describe spray combustion in jet flows.

Statistics

The Probability Density Function (PDF) of ζz is depicted in Fig. 4.5. Here, ζz,st corresponds
to the stoichiometric mixture fraction (ζz,st = 0.062 for the n-heptane/air mixture). At the
ignition time, t = τg, the maximum values of ζz are around 0.17 in Case A and 0.25 in Case
B, respectively. Compared to Case B, the lean mixture (ζz < ζz,st) is very predominant in
Case A. The occurrence of stoichiometric conditions (ζz = ζz,st) is also more pronounced in
Case A than in Case B, whereas Case B shows also very rich conditions.

Figures 4.6, 4.7, and 4.8 show scatter plots of temperature, heat release, and scalar dis-
sipation rate versus mixture fraction, respectively. In all these figures, the scatter points
are colored black to represent nonpremixed flames (ξp ' 0), and white to denote premixed
flames (ξp ' 1), respectively. Figure 4.6 demonstrates that, in Case A (Fig. 4.6(a)) the igni-
tion (high temperatures) occurs predominantly in the lean mixture region (ζz ≤ ζz,st). Both
burning modes, premixed and nonpremixed are observed on both sides of the stoichiometric
conditions, confirming Fig. 4.4(a). However, almost no reaction takes place in the evapora-
tion region (since T∞ < T∞,init at high values of ζz). In Case B, (Fig. 4.6(b)) ignition occurs
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(a) (b)

Figure 4.3: Isosurface of temperature (T = 1800 K) at time t = τg for both configurations:
(a) Case A, (b) Case B. The spheres represent the droplets (size multiplied by factor 10 for
visualization purpose). The windows enclosed within blue dashed lines are discussed in the
next figure.

(a) (b)

Figure 4.4: Two-dimensional cuts through Fig. 4.3 (blue dashed rectangles): (a) Case A, (b)
Case B. The thin isolevels show the temperature with values between 1800 K and 2600 K at
time t = τg. The background represents the mixture fraction, increasing from white (ζz = 0)
to blue (ζz = 0.2). Solid thick gray lines represent premixed flames (ξp ' 1), while dashed
thick gray lines represent nonpremixed flames (ξp ' 0).

mostly for stoichiometric and slightly rich mixtures. Once again, premixed and nonpremixed
combustion modes are observed and coexist, with an additional nonpremixed flame at lean
conditions (top left part of Fig. 4.6(b)). At the same time, a premixed reaction zone appears
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Figure 4.5: Normalized probability density function of mixture fraction at ignition time,
t = τg.

in the evaporation area, associated with the propagation of the burning zone towards the jet
core, as already discussed in the previous section.

(a) (b)

Figure 4.6: Scatter plot of temperature versus mixture fraction at ignition time, t = τg: (a)
Case A, (b) Case B. Black and white dots represent nonpremixed (ξp ' 0), and premixed
(ξp ' 1) flames, respectively.

The scatter plot for heat release in Case A (Fig. 4.7(a)) shows a clear maximum value
around stoichiometric conditions in premixed mode. On the other hand, peak heat release is
found for Case B at rich conditions, with similar contributions of premixed and nonpremixed
flames (Fig. 4.7(b)).

The scalar dissipation rate χ is an essential parameter, which appears in most combustion
models. Looking at the scatter plot of χ for both cases (Fig 4.8), completely different
behaviors are observed. For Case A (Fig. 4.8(a)), a relatively high dissipation rate is observed
at an almost constant level for a broad range of ζz (from 0 to 0.17), associated predominantly
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(a) (b)

Figure 4.7: Scatter plot of heat release versus mixture fraction at ignition time, t = τg. (a)
Case A, (b) Case B. Black and white dots represent nonpremixed (ξp ' 0), and premixed
(ξp ' 1) flames, respectively.

with the nonpremixed burning mode, as a consequence of the faster evaporation. Conversely,
in Case B, peak values of χ are typically twice those found in Case A, and are observed only
near stoichiometry and in the slightly rich region, ζz ≥ ζz,st. Additionally, the peak values of
χ are now found in premixed flames (Fig. 4.8(b)).

(a) (b)

Figure 4.8: Scatter plot of scalar dissipation rate versus mixture fraction at ignition time,
t = τg. (a) Case A, (b) Case B. Black and white dots represent nonpremixed (ξp ' 0), and
premixed (ξp ' 1) flames, respectively.

In order to investigate the role of scalar dissipation, the time evolution of 〈χ|ζz〉 (condi-
tional mean of scalar dissipation) versus mixture fraction is depicted in Fig. 4.9. In Case A,
〈χ|ζz〉 shows monotonic behavior, increasing with ζz (neglecting statistically non-significant
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fluctuations for high values of ζz); while the values of 〈χ|ζz〉 decrease slightly with time due
to turbulence decay and dilatation. In Case B (no turbulence imposed), 〈χ|ζz〉 behaves dif-
ferently. In particular, two peaks appear, a large one for rich, a small one for lean conditions.
With time, the peak at lean condition moves towards stoichiometry (ζz → ζz,st), where ig-
nition occurs (see Figs. 4.6(b) and 4.8(b)). At t > τg, this peak fades away, again due to
dilatation. These different behaviors show how challenging it is to derive general models for
scalar dissipation rate in spray flames.

Figure 4.9: Time evolution for conditional mean of scalar dissipation rate versus mixture
fraction; where the solid lines and dashed lines represent Case A and B, respectively.

To conclude this section, it is clear that spray evaporation and ignition mechanisms
depend highly on the imposed shear in the gas phase; very different results were found in the
high-speed jet compared to the nearly quiescent environment. Since the relative importance
of shear can be easily changed in the temporally-evolving jet, this configuration appears
to be particularly promising for canonical studies; for instance for parametric studies, as
discussed in the next section. Systematic investigations of evaporation, mixing, and ignition
are possible, while computational costs are much lower than in a comparable, spatially-
evolving jet.

Parametric Study

This section focuses only on Case A, with a fast central jet that contains droplets. Three
parameters are varied: the local equivalence ratio in the jet (φ = 0.5, 1, 2), the droplet
diameter (a = 10, 13, 16µm) and the jet velocity (Uj = 25, 50, 75, 100 m/s). Figure 4.10
first shows the impact of φ (for a = 10 µm) on volume-averaged gas temperature. When
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the equivalence ratio is increased, the average temperature and n-heptane mass fraction (not
shown here) increase as well in a monotonous manner and show very similar profiles in time.
In fact, increasing φ at constant droplet diameter means simply increasing the number of
droplets in the numerical domain. As a consequence, the evaporation rate increases along
with the reaction rate, within the considered range of φ and temperatures. This leads to a
higher evaporation rate, and to more n-heptane in the gas mixture, available for reaction.
While increasing the intensity of the process, changing φ has almost no impact on the
autoignition delay time and on the fuel consumption time (Fig. 4.10). The situation is

Figure 4.10: Volume-averaged gas temperature versus time for different values of the local
equivalence ratio φ.

different when changing the diameter of the droplets, a, as shown in Fig. 4.11, while keeping
φ = 2. Larger values of the droplet diameter lead to an increasing ignition delay (Fig. 4.11a),
since larger droplets need more time to evaporate. Figure 4.11b shows that, when increasing
droplet diameter at constant φ, the amount of n-heptane found in the gas decreases. This is
due to two facts. First, when increasing droplet diameter, the ignition delay time becomes
increasingly shorter compared to the evaporation delay time; therefore, the n-heptane fuel
in the gas phase is consumed almost immediately, preventing accumulation. Second, larger
droplets at the same φmean indeed a lower quantity of droplets with a higher individual mass.
As a result, this leads to reduced droplet dispersion in the flow, limiting again evaporation.
The impact of droplet diameter found here contradicts that of Wang and Rutland (2007),
probably because they simulated “spherical” droplets in a 2D domain, while here 3D is
considered. In order to check the impact of shear, jet velocity (Case A) was increased
(Uj= 25, 50, 75, 100 m/s), corresponding to Da=0.31, 0.138, 0.09, 0.07, respectively; where
Da = χq τj is the Damköhler number comparing mixing time scale τj and chemical time scale
1/χq. Here, χq and τj = H/(Uj−Uco) are the scalar dissipation rate at quenching and the jet
time scale, respectively. As expected, ignition time τg decreases with increasing jet velocity.
Figure 4.12 depicts the conditional mean of scalar dissipation rate versus mixture fraction
at the ignition time. At low speed, Uj = 25 m/s, 〈χ|ζz〉 shows the highest values over all
ζz; this is because increasing the ignition delay time allows for higher local concentrations
of n-heptane in the gas, leading to larger scalar dissipation rates. Increasing the jet velocity
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(shear) decreases 〈χ|ζz〉 at ζz ≤ ζz,st, for the same reason. However, for ζz > ζz,st, 〈χ|ζz〉
mostly increases with jet velocity, due to improved mixing but relatively low temperatures
(see Fig. 4.6). To check that the DNS domain is always sufficiently long, the case U∗j = 100
m/s in Figure 4.12 is a repetition with a domain doubled in length, at same grid resolution.
Both results are indeed statistically identical, with only spurious variations at large ζz due
to unsufficient data quantity.

(a) (b)

Figure 4.11: Volume-averaged values versus time for different values of the droplet diameter
a. (a) Gas temperature. (b) n-heptane mass fraction in the gas.

Figure 4.12: Conditional mean of scalar dissipation rate versus mixture fraction at ignition
time for different jet velocities. The case with U∗j = 100 m/s is a repetition of Uj = 100 m/s,
doubling the domain length with same grid resolution.

88



4.4. Spatially-Evolving Jet

4.3.3 Conclusions on the Temporally Evolving Jet

In this work, the mechanisms controlling evaporation, mixing, and ignition of a spray in
a temporally-evolving jet flow have been investigated by means of 3D DNS. A low-Mach
number solver relying on Cantera 1.8 and on a skeletal kinetic mechanism (29 species and
52 elementary reactions describing n-heptane oxidation) were used to this end. In order
to quantify the impact of shear, a spray transported in a fast jet has been compared to
that evolving in a nearly quiescent flow. These comparisons have revealed that shear in
the gas phase indeed has a very significant impact on evaporation, mixing, and ignition
scenarios. With high shear, ignition occurs under the retained conditions in a lean mixture,
and involves both non-premixed and premixed reaction fronts. Peak heat release is found
near stoichiometric conditions in the premixed mode. In the absence of shear, ignition occurs
simultaneously over a broad range of conditions, from lean (in the non-premixed mode) to
stoichiometric and rich mixtures (involving both non-premixed and premixed combustion
fronts). Here, peak heat release is found for a rich mixture involving both combustion
modes. Finally, thanks to a parametric study concerning the impact of droplet size, local
equivalence ratio, and jet velocity, it has been determined that the autoignition delay time
and consumption time depend strongly on the droplet size and jet velocity, yet are almost
independent of the local equivalence ratio, at least for the considered conditions.

4.4 Spatially-Evolving Jet

Although, spray in a spatially-evolving jet is a more realistic configuration, it is compu-
tationally, more expensive than the temporally-evolving jet for two reasons: (1) It needs
a larger domain to correctly follow the spatial evolution, (2) more Lagrangian particles
must be tracked. As discussed in the previous chapter, the alternative solution is to use a
temporally-evolving jet. However, this setting is not enough to answer all open questions in
this area, especially, those concerning spatial evolutions. Because of that, spatially-evolving
jet simulations should be ideally combined with temporally-evolving studies. In the follow-
ing, just preliminary results of spatially-evolving jet simulations are shown; in the future
more attention will be paid to this configuration.

4.4.1 Numerical Settings

In a spatially-evolving jet, n-heptane liquid droplets are injected into hot air (T0 = 1600 K)
with a speed of 50 m/s through a round inlet with diameter of 0.6 mm. There are three
cases, written Case I, Case II, and Case III. The main difference between them is the speed
of the surrounding and injected gas. In Case I, the air is initially quiescent. In Cases II and
III, hot air is injected with speed of 50 and 70 m/s, respectively. The length of the domain in
streamwise direction always 1 cm. However, the lengths of other directions are not constant
for all cases. Instead, the resolution is kept constant in all directions and for all cases at
∆x = 19.5µm. The droplets have initial diameter of 10 µm. Figures 4.13, 4.14, and 4.15
show the time evolution of temperature and the droplets for Cases I, II, and II, respectively.
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As it is seen from these figures, the ignition starts at different places and the flame
structure is different, depending on the initial condition. In case I, where the air is quiescent,
the gas decelerates the droplets, increasing the residence time. The evaporated fuel mixes
with the oxidizer and ignites near to the inlet. The ignition starts around the jet edge and
envelopes the droplets as it is seen from Fig. 4.13. This can be considered as external group
combustion, as illustrated in Figs. 2.7 and 2.8. The behaviors of the spray in Cases II and
III are somehow similar, but not identical. In both cases the ignition starts at the same time
t = 0.1 ms but not at the same place, as seen from Figs. 4.14(a) and 4.15(a), respectively.
This is attributed to the fact that the air injected in Case III is faster than in Case II. The
ignition starts around the jet, and then spreads to the tip of the jet, surrounding the jet head.
The flow in Case III fluctuates more than the other two cases due to increased velocity and
turbulence. This set-up is a very good candidate for studying ignition occurrence for safety
applications; when ignition and evaporation depend on the initial and running conditions.
In the future, more investigations shall be performed with this configuration.

(a) t = 0.06 ms (b) t = 0.08 ms (c) t = 0.13 ms (d) t = 0.19 ms (e) t = 0.41 ms

Figure 4.13: Temporal-evolution of 2D-cut plane of gas temperature and droplets for Case
I. The size of each droplet is multiplied by 2 for visualization.

Case III can be presented in 3D to show the complete structures of the flow in all direc-
tions. The time evolution of a gas temperature iso-volume (T = 2000 K) is illustrated in
Fig. 4.16. As it can be seen from Fig. 4.16(f), the flow is non-symmetric due to turbulence.

4.4.2 Conclusion on Spatially-Evolving Jet

The numerical setting investigated in this section demonstrates that the behavior and mecha-
nism of spray combustion in a spatially-evolving jet strongly depend on the initial conditions;
droplet diameter, surrounding flow speed and temperature, jet diameter, etc. This setting
is a very good candidate to study ignition occurrence in safety tests. Furthermore, it would
help to investigate different physical phenomena in turbulent spray combustion: mixing,
shear, transport, ignition, evaporation, etc.

90



4.5. General Conclusion

(a) t = 0.10 ms (b) t = 0.12 ms (c) t = 0.18 ms (d) t = 0.24 ms (e) t = 0.28 ms

Figure 4.14: Temporal-evolution of 2D-cut plane of gas temperature and droplets for Case
II. The size of each droplet is multiplied by 2 for visualization.

(a) t = 0.10 ms (b) t = 0.12 ms (c) t = 0.18 ms (d) t = 0.24 ms (e) t = 0.28 ms

Figure 4.15: Temporal-evolution of 2D-cut plane of gas temperature and droplets for Case
III. The size of each droplet is multiplied by 2 for visualization.

4.5 General Conclusion

As a final conclusion, DNS-DPS is found to be a very promising technique for investigating
turbulent spray combustion with a high level of accuracy. However, such simulations are still
computationally expensive. High-level model reduction techniques would help in studying
turbulent spray combustion with shorter computational time, allowing systematic studies.
In DNS-DPS, the discrete phase uses the DPS model. Therefore, further reduction on the
side of the discrete phase is not possible. The reduction models may only be applied to the
continuous (gas) side. For this reason, some model reductions will be tested and developed
for the gas side only in Ch. 6. In future, these reduction techniques could be also applied
directly to DNS-DPS simulations.

The possibility of using one or the other of these reduction techniques completely depends
on the balance between chemistry and turbulence intensity. For this reason, the next chapter
introduces a new approach to quantify uniquely the local flow state and the intensity of
turbulence.
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(a) t = 0.03 ms (b) t = 0.10 ms

(c) t = 0.12 ms (d) t = 0.18 ms

(e) t = 0.24 ms (f) t = 0.28 ms

Figure 4.16: Temporal-evolution of iso-volume of gas temperature (value T = 2000 K) with
droplets for Case III. The size of each droplet is multiplied by 4 for visualization.
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Chapter 5

A Tool to Quantify the Flow State:
Spectral Entropy

5.1 Introduction

In many practical applications, the flow state changes locally from one location inside the
computational domain to another; or in time, for instance before/after ignition. There-
fore, different computational concepts/solvers could be applied, e.g., DNS, LES, RANS,
hybrid, etc. In this chapter, it is shown that the spectral entropy Sd, obtained by solving
the eigenvalue problem for the temporal autocorrelation function, can be used in order to
uniquely quantify the flow state and differentiate between laminar, transitional, or turbulent
regimes. As such, it delivers a direct measure of turbulence intensity. Consequently, it can
be employed to guide hybrid simulations. The first test of this approach relies on DNS for
decaying Homogeneous Isotropic Turbulence (HIT) and is performed using DINO for ten
different Taylor numbers. Results obtained by analyzing DNS indicate that Sd is an excel-
lent candidate in quantifying turbulence intensity and transition. To verify the robustness
of the corresponding analysis, the impact of different resolutions was investigated, revealing
that a correct state estimate is still obtained with a coarser spatial or temporal resolution.
Finally, to examine the generality of the approach, the entropy thresholds obtained from the
DNS analysis were used with the same algorithm to analyze (1) DNS results obtained for the
Taylor-Green vortex benchmark at Re = 1600 as well as (2) results obtained through Large
Eddy Simulations (LES) in a blood nozzle, revealing in both cases a perfect agreement with
a traditional, user-based analysis of the flow conditions. Hence, Sd appears to be an excel-
lent quantitative indicator of laminar, transitional, or turbulent flow, allowing an automatic,
user-independent analysis of the flow state for a variety of conditions. In principle, it could
be used without modification to analyze experimental measurements, as well. Part of this
chapter are based on an article submitted to the International Journal of Heat and Fluid
Flow.
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5.2 History and Literature Survey

Transitional flows are encountered in a variety of practical applications, but transition to
turbulence requires further understanding. For instance, there is currently a controversial
discussion concerning the possible role of transition in explaining the rupture of arterial ves-
sels and aneurysms [121, 122]. While highly turbulent flows can be properly described using
their characteristic energy spectra [33, 123], the appropriate characterization of transitional
conditions is far more challenging.

Numerous studies have already been documented in the scientific literature concerning
flow transition, see [124–130] to cite a few, illustrating the diversity of paths and processes
involved on the way from laminar to turbulent flow and back. However, currently, to the
best of the authors’ knowledge, no universal criterion can be found that allows for a direct
and user-independent measure of the flow state (either laminar, transitional, or turbulent)
based on numerically computed or experimentally measured flow velocity fields. A better
understanding of transition and a localization of corresponding conditions could lead to more
accurate simulations in connection with wall models, or when using Detached or Large-Eddy
Simulations [131, 132]. Additionally, such a criterion is essential to guide hybrid simulations
[133], combining in the best possible way different simulation models (possibly laminar flow
equations; Reynolds-Averaged Navier-Stokes approach – RANS; Unsteady RANS – URANS;
LES; DNS). By identifying the flow state and quantifying the intensity of turbulence, a
suitable approach can be implemented in an adaptive manner to combine proper models
in space, different regions being computed using different numerical models; or possibly in
time, switching between different computational approaches as appropriate. Considering
the rapid development of hybrid simulations [134, 135], identifying automatically the most
appropriate model is becoming increasingly important. In order to be successful, hybrid
simulations should ultimately rely on a user-independent and generally valid indicator of the
flow state computed from the simulated flow field, as proposed in this work. Additionally,
such an indicator could readily be used to guide in an automatic manner the resolution needed
in space and time, so that, starting from a fully resolved computation, grid coarsening and
larger time steps could be used for part of the domain or the simulation. Finally, the same
approach could also be used to automatically detect regions of interest (e.g., places where
transition takes place) when analyzing large datasets.

Proper Orthogonal Decomposition (POD) appears to be a good candidate for detecting
transition and analyzing the flow state [136]. After Aubry et al. [137, 138] introduced the
idea of using the normalized spectral entropy of the POD eigenvalues to identify changes in
flow behavior as a function of the Reynolds number, various works have built on top of the
same idea, e.g., [121, 139–142]. In all of these publications, the entropy is a case-dependent
value that is used to characterize the flow in a specific configuration. A generalization of the
corresponding findings was not attempted.

In general, POD can be performed either with a singular value decomposition [143] or by
using the method of Sirovich [144] (also called snapshot POD or SPOD). The latter method is
computationally more tractable when considering very large datasets, as obtained, e.g., from
DNS. Sirovich’s approach requires that the snapshots should be uncorrelated and linearly
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independent. Further details concerning both approaches and comparisons between them
are described, e.g., by [145–155].

Using the eigenvalue equation of the temporal autocorrelation function as it appears in
Sirovich’s original work (Eq. (14) of [144]), a new technique has been derived in this chapter
to detect the flow state, but without requiring snapshot independency. In order to calibrate
this approach, it should first be applied to well-known flow states. For this purpose, 3D
DNS has been conducted, using DINO, for homogeneous isotropic, incompressible, time-
decaying turbulence, while increasing in a systematic manner the Taylor Reynolds number
from laminar to turbulent conditions through the transition zone. Here, the spatial and
temporal resolution requirements associated with the most turbulent case have been kept for
all conditions in the DNS. All results have then been analyzed by means of our approach,
delivering finally the spectral entropy. In this manner, it is possible to associate the value of
the spectral entropy Sd to a specific flow state, and in particular to delineate the transition
region or to quantify turbulence intensity based on Sd. Varying in a systematic manner the
temporal and spatial resolution employed when post-processing the DNS data, it is possible
to quantify the impact of these parameters and the robustness of the analysis. Finally,
results obtained from a two-dimensional analysis are compared to the three-dimensional
results, since many currently employed experimental measurement techniques only deliver
2D data. Again, the spectral entropy threshold obtained from this analysis can be considered
as flow state indicator in any hybrid simulation or used in data post-processing to quantify
the flow state, in experiments or simulations. After having derived proper thresholds from
these DNS data, two completely different and independent datasets have then been analyzed
in the same manner to check the general applicability of the procedure. These two datasets
are: (1) a DNS simulation of the classical three-dimensional Taylor-Green vortex (TGV) at a
Reynolds number of 1600 (see Sec. 3.15.3); (2) LES computations of a real blood nozzle used
by the Food and Drug Administration (FDA) to investigate the accuracy of Computational
Fluid Dynamics (CFD) for flows covering laminar, transitional, and turbulent regimes at
different values of the Reynolds number [156]. Computing the resulting spectral entropy
values at different times (for TGV) or spatial locations (for the FDA nozzle), it is observed
that exactly the same thresholds can be successfully applied in all cases to quantify the flow
state.

5.3 Governing Equations

The governing equation of an incompressible flow are used to generate the DNS, as reviewed
in Sec. 3.5. The derived equations for the spectral entropy are presented in the next section.

5.3.1 Eigenvalue Problem

As mentioned before, the developed method was originally inspired by the SPOD method
described in [144], though with a very different purpose and hence conditions. In this section,
the notations follow those of [144, 146, 157].

The fundamental idea behind original POD is to decompose each signal u(x, tk) into
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orthogonal deterministic functions φ (POD spatial modes) and time-dependent coefficients
ak (POD temporal coefficients):

u(x, tk) =
∞∑

l=1

alk φ
l(x). (5.1)

Here, superscript l and subscript k refer to the mode number and index of corresponding
snapshot (or time step), respectively. The function φ denotes the eigenfunction of the
Fredholm integral equation

∫

X

R(x,x′) · φ(x′) dx′ = λφ(x). (5.2)

The kernel of this eigenvalue problem is the two-point spatial correlation function

R(x,x′) = 〈u(x, tk)⊗ u(x′, tk)〉t , (5.3)

where tk and x are snapshot time and position vector, respectively. In POD, φ is chosen
to maximize the value of 〈|(u,φ)|2〉/‖ φ ‖2, where 〈·〉t, 〈·〉, (·, ·) and ‖ · ‖ are time aver-
age, spatial average, inner product and norm, respectively. Since the spatial modes φl are
orthonormal to each other, the following equation can be used

φl(x) =
Nm∑

k=1

alk u(x, tk). (5.4)

In order to determine the coefficients ak, Eq. (5.4) is substituted into Eq. (5.2), resulting
in

(
1

Nm

Nm∑

i=1

u(x, ti)⊗ u(x, ti),
Nm∑

k=1

aku(x, tk)

)
= λ

Nm∑

k=1

aku(x, tk), (5.5)

where Nm is the total number of snapshots. Sirovich [144] simplified Eq. (5.5) to

Nm∑

k=1

1

Nm

(u(x, ti),u(x, tk)) ak = λai ; i = 1, ......., Nm. (5.6)

However, this simplification is only correct if the snapshots are uncorrelated and linearly
independent. Moreover, since Eq. (5.3) is a time-average, it is clear that this formulation
was originally derived for statistically steady flows in mind.

Equation (5.6) can be rewritten in symbolic form as:

CA = λA , (5.7)

A = (a1, a2, ........, aNm)T , (5.8)

Cij =
(u(x, ti),u(x, tj))

Nm

. (5.9)
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Solving this eigenvalue problem, Eq. (5.7), leads to a total of Nm eigenvalues, written
λl, and eigenvectors, denoted Al (l ∈ 1, 2, 3, ..., Nm). When using SPOD for data analysis
or data compression, it is not always necessary to keep all Nm modes. Then, M represents
the number of modes retained in the analysis while Nm still represents the total number of
snapshots, i.e., the whole data-set available for the analysis, obviously with M ≤ Nm.

If the collected snapshots are not uncorrelated and linearly independent, the original
signal will not be decomposed correctly by SPOD using Eq. (5.1). However, properly de-
composing the signal is not at all the purpose of the present work. Equation (5.6) remains
in all cases a valid equation, describing the eigenvalue problem based on the temporal au-
tocorrelation function as kernel. The obtained eigenvalues represent the spectrum of the
autocorrelation matrix (C in Eq. (5.7)). In what follows, these eigenvalues will be used
in a standalone manner to quantify the flow state. For this purpose, the two conditions
underlying SPOD (uncorrelated snapshots and statistically steady flows) are irrelevant.

5.3.2 Spectral Entropy

In order to characterize the intensity of the turbulence contained in the analyzed velocity
field u, the spectral entropy Sd [158–160], as classically used in information theory, can
now be computed. This quantity should allow one to distinguish between different flow
regimes, from “highly disordered” (here, meaning turbulence), to “partially ordered” (here,
for transition), or “well ordered” (here, for laminar flow).

For the computation of the spectral entropy, the relative energy, P l first computed based
on the corresponding eigenvalue, after ordering them in decreasing order based on λl, as:

P l =
λl

M∑
j=1

λj
, (5.10)

where M ≤ Nm is the number of modes retained in the analysis. Then, the spectral entropy
can be determined as:

Sd = −
M∑

l=1

P l lnP l. (5.11)

According to Eq. (5.11), the maximum possible value of Sd is reached when all eigenvalues
are equal to each other, i.e., P l = 1/M , and consequently Sd = ln(M). Physically, this
means that the energy is equally distributed over all the M modes. The minimum value of
Sd corresponds to the case where the original signal contains only one mode, the first one,
meaning that the flow field is steady. Then, Sd = 0.

5.4 Numerical Approaches and Algorithms

DINO, in his incompressible version, has been used to perform the DNS. Computing the
spectral entropy has been performed as a post-processing step by using an in-house Python
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script called PyPODe, which has been originally developed for SPOD analysis and thus con-
tains a solution procedure for Eq. (5.7). In order to follow the steps described in Sect. 5.3.2,
the employed algorithm proceeds as follows:

• compute the correlation matrix C, Eq. (5.9);

• solve the eigenvalue problem, Eq. (5.7), to obtain λl and Al;

• sort the eigenvalues λl in descending order;

• compute the relative energy P l of each mode;

• deduce the spectral entropy Sd.

5.5 Results and Discussion

In order to check the procedure, the spectral entropy Sd has been first determined for ten
different DNS computations associated with increasing values of the Taylor Reynolds num-
ber. The retained values span all the interesting flow regimes from laminar to turbulent, as
quantified based on Reλ following for instance [161, 162]. The initial parameters correspond-
ing to each case are listed in Table 5.1. In this table, u′, ε, λt, ηk, and τη are the root mean
square of the velocity fluctuations, dissipation rate of the turbulence kinetic energy, Taylor
length scale, Kolmogorov length scale, and Kolmogorov time scale, respectively. In Table
5.1, Λ and τΛ are the longitudinal integral length scale

Λ =
π

2 〈u2
1〉

∫ κmax

0

E(κ)

κ
dκ, (5.12)

and the turbulence eddy turnover time scale,

τΛ =
Λ

u′
, (5.13)

respectively, where in this equation, u1, κ, and E(κ) are the velocity fluctuation of the
turbulence in x-direction, wave number, and the spectrum of the kinetic energy, respectively.
Reynolds number based on the Taylor or longitudinal integral length scales are defined as:

Reλ =
u′ λt
ν

, (5.14)

and

ReΛ =
u′ Λ

ν
, (5.15)

respectively.
The time evolutions of the Reynolds number for these cases are shown in Fig. 5.1. It

is well-known that the influence of the initial boundary conditions in time (analytical von
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Kármán-Pao spectrum, see [? ]) can be felt until t ' τΛ [163]. For this reason, all simulations
have been pursued until t = 3τΛ, the analysis being performed in the time interval of [τΛ, 3 τΛ],
as seen in Fig. 5.1. In this manner, possible artifacts associated with the initial conditions
are avoided.

5.5.1 Suitable Time Scales for the Entropy Analysis

In our approach, it is important to decide (1) what is the suitable distance in time between
two consecutive snapshots entering the analysis, and (2) what the overall time duration
for a complete analysis should be. After having answered both questions, the underlying
number of snapshots Nm will be determined. The following guidelines have been derived for
analyzing the DNS results first, i.e., in a case for which all existing scales in time and space
are available in the data. However, the resulting recommendations should also be usable in
a more general frame, therefore rough estimates are proposed as well in what follows.

Let us start by considering the minimum time step ∆tsmin between two consecutive snap-
shots entering the analysis. Clearly, ∆tsmin → 0 would mean that these snapshots contain
identical information (and would thus of course be perfectly correlated). Such an analysis
would be useless, since the analysis should involve fields that differ from each other. In
any turbulent flow, the minimum time interval for which changes in the flow structure are
expected is the Kolmogorov time scale, τη. Choosing ∆tsmin < τη would thus lead to a high
computational overhead at no benefit, since the analyzed fields would be almost identical.
On the other hand, and even if corresponding changes will only occur at small scales in
space, two snapshots separated by at least τη will be different and thus lead to an interesting
analysis. Now, when choosing ∆tsmin much larger than τη, the analysis cannot account for
small-scale effects and will thus give misleading results at this scale. Nevertheless, such an
analysis might still deliver interesting information concerning larger flow scales.

This shows that the distance in time between two consecutive snapshots in a DNS should
be chosen at least equal to τη, but not much larger than τη, if short time-scales are of interest.
Later in this work, the condition ∆tsmin ∈ [τη, 2τη] is retained as a practical range, leading to
the fastest possible analysis while still retaining the whole information at all time-scales.

If τη is not known a priori, a rough estimation for ∆tsmin to compute the spectral entropy
can be obtained instead following:

∆tsmin '
smallest resolved length

velocity rms
' resolution (num./exp.)

velocity rms
=

∆x

urms

, (5.16)

This estimation will usually lead to values of ∆tsmin slightly below τη, as it will be shown for
instance in Sect. 5.5.4, and is thus an appropriate, conservative estimate for ∆tsmin.

Now, what should the duration of the whole analysis be? The time distance between
the first and the last snapshot (the complete time interval used for the analysis), ∆tsoverall,
should be at least equal to the largest flow time scale of interest, τ fmax. In a turbulent flow,
this largest flow time scale is classically given by the turbulence eddy turn-over time, τΛ,
leading to the condition ∆tsoverall ≥ τΛ. However, depending on the problem considered and
on the objective of the analysis, ∆tsoverall might be in many cases much larger than τΛ; there
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Table 5.1: Initial turbulence parameters employed for the ten DNS computations. Please
keep in mind that a fixed grid (equidistant grid points N = 5123, needed to resolve properly
the most turbulent case) has been used for all conditions.

Reλ ReΛ ε [m2/s3] u′ [m/s] λt [mm] Λ [mm] τΛ [s] ηk [mm] τη [s]

2.0635 3.6392 0.000565 0.009463 10.9036 19.2298 2.032210 3.856940 0.297520
8.1454 14.365 0.008801 0.037352 10.9036 19.2298 0.514826 1.941280 0.075372
15.205 26.816 0.030668 0.069724 10.9036 19.2298 0.275800 1.420870 0.040378
30.410 53.631 0.122672 0.139448 10.9036 19.2298 0.137900 1.004710 0.020189
46.157 81.404 0.282624 0.211661 10.9036 19.2298 0.090852 0.815503 0.013301
65.163 114.92 0.563292 0.298816 10.9036 19.2298 0.064353 0.686348 0.009421
81.454 143.65 0.880143 0.373520 10.9036 19.2298 0.051483 0.613888 0.007537
100.46 177.17 1.338800 0.460675 10.9036 19.2298 0.041743 0.552776 0.006111
149.88 264.32 2.979810 0.687277 10.9036 19.2298 0.027980 0.452564 0.004096
190.06 335.19 4.791890 0.871547 10.9036 19.2298 0.022064 0.401884 0.003230

is no fundamental upper limit for the value of ∆tsoverall. Later in this work, when analyzing
HIT data derived from DNS in time-decaying turbulence, the condition ∆tsoverall = 2τΛ is
retained.

If τΛ is not known, the minimum value of ∆tsoverall can be approximately estimated instead
by:

∆tsoverall ≥
0.2 (minimum domain length)

urms

(5.17)

where the numerator, 20% of the minimum domain length, is used as an approximation of
the integral length scale, following [164, 165].

To summarize, when analyzing HIT data obtained from DNS, appropriate time scales
read:

τη ≤ ∆tsmin ≤ 2 τη;

∆tsoverall ≥ τΛ. (5.18)

Considering that τη and τΛ are not always known, suitable values for the time scales
allowing the meaningful computation of spectral entropy can be roughly estimated for such
cases as:

∆x

urms

≤ ∆tsmin ≤ 2
∆x

urms

;

∆tsoverall ≥
0.2 (minimum domain length)

urms

. (5.19)
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Figure 5.1: Evolution of the Taylor Reynolds number vs. time for all time-decaying DNS
simulations. The time interval used for the analysis of the DNS results starts at t = τΛ and
stops at t = 3τΛ for all cases. Values of τΛ listed in Table 5.1 are used for normalization.

5.5.2 Using Spectral Entropy as a Measure of Turbulence Inten-
sity

Before returning to the issue concerning suitable time scales, the ten DNS computations
from Table 5.1 are first analyzed. Considering an overall duration covering two integral time
scales (∆tsoverall = 2τΛ, see Fig. 5.1), 50 equidistant snapshots are extracted and used in the
analysis. Figure 5.2 shows the evolution of spectral entropy versus Taylor Reynolds number
when considering all modes (M = Nm = 50). The Reynolds number of the horizontal axis is
the average Taylor Reynolds number computed in the DNS for the time interval [τΛ, 3 τΛ],
used for the analysis as well (see again Fig. 5.1). It is observed in Fig. 5.2 that Sd shows a
monotonic behavior when increasing the Reynolds number from laminar conditions to fully
turbulent flows. As such, the spectral entropy can be used as a direct measure of turbulence
intensity. It can thus be employed to delineate between laminar/quasi-laminar, transitional,
and turbulent regimes. In Fig. 5.2, the gray regions correspond roughly to transitional
conditions (Reλ in the range of [20− 40], following [161, 162]).

The exact values obtained for the spectral entropy Sd are given in Table 5.2. At very low
Reynolds number (Reλ ≤ 20) the flow remains quasi-laminar, and corresponding values of
the spectral entropy are 0 ≤ Sd ≤ 0.7. In the intermediate range, corresponding to transition
(around 20 ≤ Reλ ≤ 40), the spectral entropy still increases in a monotonous manner up
to Sd ≤ 1.1, but at a lower pace. Finally, under turbulent conditions (Reλ ≥ 40), the
spectral entropy slowly grows with Reλ and systematically shows values above 1.1. Analyzing
the data more closely, an excellent fit is obtained with a logarithmic function given by
Sd = A ln(B Reλ + 1), with coefficients A = 1.089 and B = 0.0431. In the light of these
results, the transition between quasi-laminar and turbulent conditions would be roughly
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Figure 5.2: Spectral entropy versus average Taylor Reynolds number for all DNS simulations,
computed with all modes (M = Nm = 50). The dashed line with black dots represents the
entropy computed directly from the DNS data. The solid line represents the best curve
fitting, with coefficients A = 1.089 and B = 0.0431. The vertical and horizontal gray regions
represent the transitional region in terms of Reλ and of the corresponding entropy values.

associated with Sd ' 1 (or, if a range is preferred, to values of Sd ∈ [0.7− 1.1]).
Note that Byrne et al. [121] also used the spectral entropy to quantify the flow stabil-

ity within patient-specific cerebral aneurysms. In their study of more than 200 different
datasets, they concluded that Sd = 0.0713 corresponds to stable flows, whereas Sd = 0.674
is representative for the onset of unstable flows. The second value indeed corresponds to the
beginning of transition in our analysis, confirming the previous discussion.

5.5.3 Impact of Spatial Resolution

It is now important to check how robust Sd might be to estimate the flow state and turbulence
intensity. While in DNS all scales must be properly resolved, it is generally impossible to
resolve all temporal and spatial scales in experimental measurements. In LES, processes
taking place at small scale are modeled and not solved exactly. Could Sd still be used as a
robust estimator under such conditions?

In order to answer this question, the analysis has been applied to the same ten cases
but decreasing progressively the spatial resolution used during post-processing (N = 2563,
1283, 643, 323, 163, 83), simply by skipping more and more grid points in a regular manner
in the full DNS dataset of 5123 points. Figure 5.3 shows the corresponding results, and is
almost identical to Fig. 5.2. This figure demonstrates that the analysis and the associated
computation of Sd do not depend noticeably on the spatial resolution employed during post-
processing, at least as long as enough snapshots (here M = Nm = 50) are employed. Hence,
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Table 5.2: Spectral entropy Sd computed with all modes.

Flow regime Reλ ReΛ Sd

quasi-laminar
1.15 1.33 0.09
6.84 8.80 0.29
12.51 17.72 0.46

transition
21.97 36.34 0.71
29.34 54.48 0.89
36.47 75.01 1.03

turbulent
41.81 92.06 1.11
47.20 110.85 1.20
58.99 157.81 1.38
67.08 195.24 1.48

Sd appears to be a robust estimator of flow state and turbulence intensity, and can also be
used to analyze results that are not obtained by DNS, for instance from experiments or using
LES, as shown at the end of this work.

5.5.4 Impact of Temporal Resolution

Similar to the issue discussed in the previous section, it is important to now check the required
resolution in time. In other words, what is the minimum number of snapshots Nm,min needed
to correctly predict the flow state? For the results discussed until this point, 50 snapshots
have been systematically employed, this value being retained quite arbitrarily. It is time to
come back to the discussion of Sect. 5.5.1 in order to obtain a better understanding of how
∆tsoverall, ∆tsmin and thus Nm,min = ∆tsoverall/∆t

s
min should finally be chosen.

Mathematically, a first answer concerning the minimum number of needed snapshots
can be proposed by looking at Eq. (5.11), showing that the theoretical upper limit of Sd is
ln(Nm). As a consequence, it is obviously necessary that ln(Nm) should be larger than the
true value of Sd.

Since the true value of Sd is usually not known a priori, and considering that this condition
is a necessary but not a sufficient one, a further discussion is needed. Following Sect. 5.5.1,
the minimum number of snapshots can be estimated as:

Nm,min =
∆tsoverall

∆tsmin

' 2τΛ

[1–2]τη
. (5.20)

keeping in mind that the analysis has been carried out over the duration t ∈ [τΛ, 3τΛ] for
this DNS of time-decaying turbulence (see again Fig. 5.1), so that ∆tsoverall = 2τΛ here.

The resulting minimum numbers of snapshots obtained from Eq. (5.20) for all HIT cases
studied by DNS are summarized in Table 5.3. All values of Nm,min are represented as a
rounded range because of the factor 2 appearing in the denominator of Eq. (5.20). In this
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Figure 5.3: Spectral entropy versus average Taylor Reynolds number for all 3D DNS simu-
lations, as a function of the spatial resolution used during post-processing.

table, two different methods have been used to compute Nm,min. The first one, shown in bold
in the second column, is based on the exact turbulence scales obtained from the simulations,
entering Eq. (5.20); the second one is a rough estimate obtained from Eq. (5.19). As observed
when comparing both values, Eq. (5.19) delivers a very conservative estimate and will thus
lead to additional computational overhead.

The large deviations observed between exact value and estimate mainly result from the
fact that Eq. (5.19) is based on the employed grid resolution; in the present DNS, all simula-
tions were performed using a very fine grid resolution, needed only at high Reynolds number,
even for the cases with very low Reynolds numbers. This unusual procedure strongly pe-
nalizes the estimate from Eq. (5.19), leading to large discrepancies at low values of Reλ.
Keeping this in mind, it is considered that the approximation Eq. (5.19) delivers, in general,
a suitable first guess for the minimum number of snapshots needed for the analysis, when
characteristic scales are unknown (for instance when considering experiments or LES simu-
lations). Starting from this rough estimate, a refined value can be obtained by changing the
employed number of snapshots and checking the outcome.

An independent alternative to check the minimum number of snapshots Nm,min needed
for the analysis, is to repeat it with a constant, given spatial resolution (here, the highest
resolution with 5123 grid points has been chosen), but systematically reducing the number
of involved snapshots Nm while keeping the same overall time, ∆tsoverall = 2τΛ. This implies
that the time interval between two consecutive snapshots ∆tsmin will decrease proportionally
to the number of snapshots Nm. Corresponding results are plotted in Fig. 5.4. By comparing
Fig. 5.4 and Table 5.3, and considering the highest number of snapshots (Nm = 50) as a
reference, an excellent agreement is observed:

104



5.5. Results and Discussion

• Three snapshots are indeed sufficient to obtain the correct value of Sd when Reλ < 20;

• Six snapshots are sufficient for all cases with Reλ < 40;

• Eight snapshots are sufficient when Reλ < 50;

• Ten snapshots are enough for all Reynolds numbers considered in this work, Reλ ≤ 67.

It is worth mentioning that a relative error in Sd exceeding 20% is only observed for
Nm = 3 (a very small number of snapshots) for Reynolds number Reλ ≥ 30. This is easy
to comprehend, since it is the only case violating the first necessary condition listed at the
beginning of this section, ln(Nm) ≥ Sd. Here, ln(Nm = 3) = 1.099, a value below that found
for Sd in any turbulent flow. It is therefore impossible to analyze in a meaningful manner a
turbulent flow with such a small number of snapshots.

To conclude this analysis:

• A small number of snapshots (here, Nm = 10 for Reλ ≤ 67) are already sufficient to
quantify accurately the flow state (quasi-laminar, transitional, or turbulent).

• However, when increasing the turbulence intensity, an increasing amount of snapshots
will be necessary to obtain an accurate estimate of the real value of Sd.

• Nevertheless, a small number of snapshots like Nm = 10 remain sufficient to delineate
between quasi-laminar, transitional, and turbulent conditions in a qualitative manner,
and this independently of the turbulence intensity.

Going back now to the results discussed in Sect. 5.5.2, it clearly appears that the number
of snapshots arbitrarily selected at first, Nm = 50, was grossly overestimated. Using so many
snapshots for an overall time duration of ∆tsoverall = 2τΛ leads to a time distance between
snapshots far below the Kolmogorov time scale, ∆tsmin � τη. Though this is not a real
problem, it is a waste of computational resources that should be avoided, since the same
information can be obtained using a much smaller data-set as input for the analysis.

5.5.5 2D vs. 3D Analysis

Many experimental measurements access only two-dimensional velocity fields, even if they
deliver the three velocity components, for instance when using Stereoscopic Particle Imaging
Velocimetry (Stereo-PIV). It is therefore interesting to check if a meaningful two-dimensional
analysis of a three-dimensional dataset would be possible. For this purpose, four 2D slices
(arbitrarily chosen normal to the z-axis) have been extracted from the 3D DNS dataset (for
z = 0.0, z = 0.25Lz, z = 0.50Lz, z = 0.75Lz). The results of the analysis using these slices
(with three velocity components) are then compared with the values of Sd obtained from the
full 3D analysis, as shown in Fig. 5.5.

Obviously, the 2D slices do not contain the entire information concerning the velocity,
so that the results are not identical but vary spuriously around the real, 3D value of Sd.
However, the obtained variations are quite small (within 10% of each other), highlighting
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Table 5.3: Minimum number of snapshots Nm,min needed for analyzing the flow state. The
bold values in the second column are obtained from the exact DNS scales using Eq. (5.20).
In the last column, the estimate values deduced from Eq. (5.19) are presented.

Reλ (average) Nm,min =
∆tsoverall
∆tsmin

Exact (Eq. (5.20)) Estimate (Eq. (5.19))

1.15 1-2 20-40
6.84 2-3 44-88
12.51 3-5 53-107
21.97 4-7 62-125
29.34 5-9 66-132
36.47 6-11 69-148
41.81 7-13 71-143
47.20 7-14 73-145
58.99 10-19 75-150
67.08 11-22 76-152
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Figure 5.4: Spectral entropy versus average Taylor Reynolds number for all 3D DNS simu-
lations, as a function of the number of snapshots Nm involved in the analysis while keeping
the overall time constant, ∆tsoverall = 2τΛ.
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Figure 5.5: Spectral entropy versus average Taylor Reynolds number for all 3D DNS simu-
lations using different 2D slices, compared to the 3D analysis (solid line).

again the robustness of the spectral entropy as an indicator of the flow state. Using Sd = 1 as
a threshold of transition, separating quasi-laminar from turbulent states, all two-dimensional
slices could have been used to correctly predict this condition. Interestingly, the curves fall
almost on top of each other for quasi-laminar conditions (which is not surprising), but come
also closer to each other at higher turbulence intensity, revealing the increasing homogeneity
of turbulence. The largest relative differences are observed within the transition zone.

Finally, it appears that processing two-dimensional slices from a three-dimensional dataset
with the approach presented in this work would be sufficient to predict the flow state (lam-
inar, transitional, or turbulent) with an acceptable accuracy for HIT. This would of course
not necessarily be the case for flows with strongly anisotropic turbulent features. Never-
theless, due to the isotropic nature of small-scale turbulence, the analysis of slices should
still deliver a good approximation in general. Confident in the robustness of the developed
approach, two independent application benchmarks can now be considered.

5.5.6 First Benchmark: Three-Dimensional Taylor-Green Vortex
(3D-TGV)

As discussed in Sec. 3.15.3, the flow in the 3D-TGV evolves through three regimes: laminar,
transition, turbulent. Therefore, it is a perfect candidate to test the validity of spectral
entropy. In order to compute the spectral entropy for the time-evolving TGV flow in a
meaningful manner, the analysis has been applied for increasing overall time intervals (t/Tc =
[0− 3], [0− 5], [0− 7], [0− 9], [0− 11], [0− 15] and [0− 18]), meaning finally that ∆tsoverall ∈
[3t/Tc, 18t/Tc] starting from initialization. In this manner, the different physical processes
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described previously are progressively taken into account in the analysis, so that the resulting
flow states can be quantified. The number of snapshots Nm involved in the analysis increases
proportionally to the time duration.

In order to demonstrate one last time the robustness of the approach, the results obtained
when considering more snapshots are summarized in Table 5.4, but show as expected a
negligible dependency on this parameter.

The final results are presented in Fig. 5.6(a), which shows the spectral entropy versus
time, plotting the value of Sd at the end of the time interval considered for the analysis,
∆tsoverall. The figure is divided 1) horizontally by a gray region showing the range of Sd
corresponding to transition as obtained in Sect. 5.5.2; and 2) vertically by the line t/Tc = 11,
widely accepted in the TGV scientific literature as the time corresponding to the onset of
turbulence, see [88, 166]. As can be seen, Figs. 5.6(a) and 5.6(b) show a perfect agreement
between the established vortex dynamics scenario discussed in the scientific literature, Ch. 4,
and the entropy threshold obtained in the current study to characterize the flow state.
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Figure 5.6: Time statistics of 3D-TGV benchmark. (a) Evolution of the spectral entropy Sd
computed for increasing values of ∆tsoverall ∈ [3t/Tc, 18t/Tc] starting from initialization, the
resulting value of Sd being plotted at the end of the corresponding time interval. (b) Dissi-
pation rate of the kinetic energy computed using DINO simulation.

5.5.7 Second Benchmark: LES of Transitional Flow Within the
FDA Nozzle

After having developed a criterion to describe the flow state based on DNS data, it is
interesting to check if this approach might be applied to completely different conditions,
corresponding to a real application. For this purpose, the same process is now applied to the
nozzle benchmark proposed by the U.S. Food and Drug Administration [156]. Corresponding
LES data have been obtained at a Reynolds number of 6500 based on the nozzle diameter,
as described in [167]. These conditions have been specifically selected since, due to large
changes in local diameter, the flow state is expected to be initially laminar, then transition
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Table 5.4: Evolution of spectral entropy values for 3D-TGV as function of the number of
snapshots Nm.

t/Tc [-] Nm Sd

[0− 3]
26 0.1944
38 0.1873
76 0.1875

[0− 5]
32 0.4041
63 0.3969
125 0.3933

[0− 7]
59 0.6203
88 0.6167
175 0.6130

[0− 9]
76 0.8815
113 0.8736
225 0.8705

[0− 11]
92 1.0744
138 1.0758
275 1.0738

[0− 13]
109 1.2143
163 1.2129
325 1.2116

[0− 15]
126 1.3198
188 1.3171
376 1.3161

[0− 18]
151 1.4374
226 1.4369
451 1.4364

to turbulence before re-laminarization occurs. It is therefore particularly suitable to check
the threshold values of Sd listed previously. The entire LES data sets are available and
will now be post-processed along different planes normal to the main flow direction. The
lower part of Fig. 5.7 shows nine spectral entropy values (labeled from 1 to 9) along the
corresponding planes depicted in the top part of Fig. 5.7. At each cross-section, all LES
mesh cells have been included in the analysis, with all three velocity components.

The obtained results based on Sd fully confirm the statements discussed in [167]. Us-
ing Sd ≈ 1 as an indicator of transition, the FDA nozzle starts from a fully laminar flow
(Sd ≈ 0), undergoes transition to turbulence between sections 3 and 4, just after the sudden
expansion, before getting back to laminar conditions around section 8. This shows that
the methodology first developed by relying on academic DNS datasets can also be directly
employed to analyze realistic flow conditions. The spectral entropy can thus be used as a
user-independent indicator of the local flow state (laminar, transitional, or turbulent), either
in space or in time, opening the door for hybrid simulations of such cases.
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Figure 5.7: Analysis results for the FDA nozzle, with flow from left to right. Top: instan-
taneous velocity magnitude in a central 2D plane, as obtained by LES; the blue lines with
the labels refer to the locations of the analyzed cross-sections. Bottom: spectral entropy Sd
obtained at the different cross-sections, the numbers from 1 to 9 corresponding to the labels
in the top figure.

5.6 Conclusions

Based on reference DNS datasets obtained at ten different Taylor Reynolds numbers cov-
ering all flow regimes from laminar to fully turbulent, the spectral entropy Sd computed
from the eigenvalues of the temporal autocorrelation function is proposed as a quantitative
indicator of the flow state. It is a user-independent quantity that can be computed in an
automatic manner, delivering a single scalar, non-dimensional quantity starting from a three-
dimensional, unsteady velocity field. The tests have shown that it is a robust estimator, with
only limited impact of the resolution in space and time during post-processing. Additionally,
two-dimensional fields appear to be sufficient for determining the flow state, at least under
locally isotropic conditions. Therefore, this same estimator could be readily employed to
analyze experimental data sets obtained by planar techniques.

The generality of these findings has been successfully challenged by applying the same
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methodology to (1) DNS results of the three-dimensional Taylor-Green vortex benchmark at
Re=1600 and to (2) LES results of the transitional flow within the FDA benchmark nozzle.
Obviously, further tests will be needed to verify the universality of the threshold values
for Sd. At the current state of this analysis, Sd ≈ 1 appears to be a suitable indicator of
transition, with Sd ≤ 0.7 identifying laminar and quasi-laminar conditions, and Sd ≥ 1.1
denoting turbulent flow. With the help of these thresholds, hybrid CFD codes could locally
detect a region with a different flow state and, therefore, determine the proper local solver.

Having now a suitable measure of turbulence intensity, different method suitable for
coupling chemistry with a turbulent flow will be describe.
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Chapter 6

Model Reduction and Modal
Decomposition

6.1 Introduction

As already discussed in previous chapters, the numerical simulation of 3D turbulent combus-
tion, with/without spray, is computationally expensive and requires extremely large super-
computers to carry out the simulation and to save the results, which are several terabytes in
size. Therefore, two different approaches are classically utilized to reduce the computational
run time and/or size of the output results: (1) reducing the run time using a reliable model
along with DNS, (2) reducing the size of the output by saving coarse results, then applying
the modal decomposition techniques. In this chapter, two model reduction techniques are
used: (a) one-dimensional turbulence model (ODT) which is a stochastic model considered as
a spatial reduction, (b) tabulation chemistry (FPI). For the other aspect, two modal decom-
position methods are employed to perform post-processing on the coarse resolution result
of the well-resolved simulation: (1) proper orthogonal decomposition (POD), and (2) dy-
namic mode decomposition (DMD). The interest of these modal decomposition methods is
to extract the flow structure from coarse resolution results or even from 2D descriptions.

In DNS-DPS simulations, no further reduction is suggested in this dissertation for the
discrete phase (liquid droplets). All previously suggested reductions are applied to the
continuous phase only. Hence, in this chapter these techniques will be tested and validated
only on pure gas applications as well. In future, using these techniques with spray combustion
is straightforward and does not require any significant modifications.

6.2 Spatial Reduction: ODT

6.2.1 Objectives

This part investigates the ability of the one-dimensional turbulence model (ODT) to pre-
dict occurrence of ignition and ignition probability in a reacting gas mixture submitted to
turbulence. Since ODT is computationally very efficient, this would be a major progress for
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safety-relevant applications. ODT delivers fast predictions, while still capturing the most
relevant physicochemical processes controlling ignition. However, ODT contains some em-
pirical parameters that must be set by comparison with reliable reference data. To set these
parameters and check the accuracy of the resulting ODT predictions, they are compared
in this chapter with reference data from the DNS. DNS is recognized as the most accurate
numerical tool to investigate ignition in turbulent flow. However, it requires enormous com-
putational times, so that it cannot be used for practical safety predictions. As demonstrated
in this part, ODT realizations can be used to correctly predict the occurrence of ignition
in turbulent premixed flames while saving more than 90% of the required computational
time, memory and disk space, thanks to validation and comparison with DNS. Part of this
work has been submitted to the International Journal of Physical Chemistry (Zeitschrift für
Physikalische Chemie).

6.2.2 State of The Art

The physicochemical processes leading to ignition of a reactive mixture have been extensively
investigated during the last decades, demonstrating both the importance and the complexity
of this issue. Most early studies of ignition phenomena from the point of view of safety
analysis could only rely on experimental measurements and simplified theoretical models,
like those reported in the seminal book of Lewis and von Elbe [168]. This is due to the
fact that ignition is a fully coupled process involving two main aspects: 1) chemistry and
2) heat transfer, both mostly in a turbulent environment. Chemical kinetics describe the
evolution of all radicals needed for the onset of ignition. A quantitative investigation taking
this point into account can only be realized if all relevant chemical pathways are known, if
the corresponding reaction parameters have been determined accurately, and if the available
computational power is sufficient to carry out corresponding simulations, involving possibly
hundreds or thousands of individual reactions. The challenge associated with this issue hence
completely depends on the composition of the considered mixture, in particular on the fuel.
Secondly, heat exchange processes with the surroundings will be essential to decide if the
ignition event will be successful and lead to a fully developed flame, or if it will fail after a
short time. In order to take this aspect into account, all relevant heat exchange paths must be
described accurately. A reliable quantitative study then necessitates an excellent description
of the local turbulent flow conditions and of all relevant transport properties. The challenges
associated with this second aspect depend on the flow conditions (laminar vs. turbulent)
and on the retained configuration (premixed vs. non-premixed, possible interaction with
surfaces, possible importance of radiative heat transfer, of evaporation...).

In this chapter, only the ignition of premixed systems is considered, so that fuel and oxi-
dizer are always well-mixed in advance. Due to the progress in computing power, simulations
taking into account in a realistic manner the surrounding turbulent flow conditions, and thus
the convective and conductive heat exchange, became possible in the early nineties. Corre-
sponding results are found for instance in [72, 169] for two-dimensional (2D) flows and/or
employing a single-step chemical reaction to describe oxidation. The obtained observations
have been discussed further in [10, 11], demonstrating in particular the interest of direct
numerical simulations (DNS) to investigate such configurations. Nevertheless, the probabil-
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ity of successful ignition could not be considered using DNS and realistic chemical kinetics
at this early stage. Later works went a step ahead to consider more realistic kinetics in
2D flows (e.g., [170]) or in 3D conditions but with a simplified kinetic description (one-step
chemistry, like for instance in [171–173]). Later DNS studies indeed considered 3D flames
with complex kinetic schemes (see e.g., [50, 174, 175]) but did not investigate specifically
ignition probability.

DNS is indeed recognized as the most accurate tool to investigate ignition of a pre-
mixed system. However, quantifying ignition probability in connection with turbulence re-
quires many realizations, due to the stochastic nature of turbulent coupling. Repeating in
a parametric study many DNS in 3D while taking into account complex kinetics is simply
impossible on current computers. Therefore, a suitable alternative is needed, possibly in
connection with a few isolated DNS simulations. After checking thoroughly the scientific
literature, a proper tool appears to be the one-dimensional turbulence model (ODT), which
was developed first for cold flows by Kerstein [176]. This model has undergone continual
improvement since then. A vector formulation of this model was introduced by Kerstein et
al. [177]. Ashurst and Kerstein [178] developed a variable-density formulation, and also in-
troduced a spatial formulation of the model in which all variables evolve along lines in space,
invoking standard boundary layer assumptions. This variable-density formulation is crucial
for combustion simulations. ODT has been applied for many different combustion systems;
Echekki et al. [179] applied the ODT model to turbulent jet diffusion flames. Hewson and
Kerstein used the model directly to study syngas flames [180], including a detailed study of
flame extinction and reignition [181]. Gupta and Echekki [182] investigated autoignition in
spatially-evolving jet diffusion flames. Punati et al. [183] compared ODT with DNS for a
temporally-evolving jet diffusion flame. Lignell and Rappleye [184] studied extinction and
reignition in spatially-evolving jet flames. Jozefik et al. [185] evaluated the ability of ODT
to simulate reactive counterflow flames by comparing with a DNS dataset. Unfortunately,
all these interesting studies have considered non-premixed systems, and cannot therefore
directly be used for our current objectives.

Very recently, Punati et al. [186] performed ODT simulations of a planar, premixed
hydrogen jet flame. They investigated mostly flame propagation processes. They found that
standard ODT is not able to reproduce correctly these conditions, and highlighted possible
further development.

In this chapter, ODT is used as complement to DNS in order to investigate ignition
probability. DNS are first performed for reference cases. After calibrating the ODT param-
eters with these reference values, it is checked that ODT can indeed be used to evaluate the
occurrence of ignition. Based on these findings, ODT could then be used as standalone tool
to compute ignition probability for safety-relevant conditions.

Since ignition involves complex kinetic paths, it is absolutely necessary to take into ac-
count sufficiently accurate reaction schemes in the numerical analysis. Appropriate kinetic
schemes will be considered in this section for propane/air mixture. To the authors’ knowl-
edge, it is the first time that ODT is considered in a premixed configuration involving such
a complex fuel.
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gradients, and the rate of shear. Prior to stirring
events, the 1D domain is regridded to a uniform
grid using a second-order interpolation scheme.

Turbulent Advection

The stochastic implementation of turbulent ad-
vection involves mapping events applied to the
computed 1D scalar field. Similarly to the more
recent implementations of the LEM, each map-
ping event is a ‘triplet map’ applied to a sampled
segment (eddy) of size l̂ and left boundary
location, ŷ, such that the eddy spans the range
[ ŷ, ŷ ! l̂]. The triplet map, shown in Fig. 1, is a
conservative rearrangement. It consists of the
replacement of 1D profile on the sampled seg-
ment, l̂, by three identical copies compressed to
span one-third of their original size. The middle
copy is then inverted to obtain continuity of the
values on the new profile. However, derivatives
at the interfaces of the three sub-intervals are
not continuous.

Triplet maps are 1D representations of stir-
ring in 3D space. Therefore, the rotational
folding of a flame may result in the tripling of
the number of flames or a break up of the flame
structure on the 1D domain. Under intense
turbulence (stirring) conditions, the latter pro-
cess is prevalent and reflects burning in a dis-
tributed reaction mode. It is also likely that
under these conditions, eddies of comparable
size to the flame thickness are energetic enough
to break up the reaction zone. Under less
intense turbulence conditions, the former pro-
cess of interface-tripling generates multiple

flamelets. For those conditions, the relatively
rare events that result in the break up of reac-
tion zones reflect the mechanism of rotational
folding, flame curvature, and flame-flame inter-
actions.

The frequency of stirring events is governed
by an eddy rate distribution:

!r" l̂; ŷ, t# "
1

l̂2#" l̂; ŷ, t#
, (5)

where #( l̂; ŷ, t) is a characteristic eddy time
scale evaluated from the available energy for
stirring provided by the local shear, subject to a
viscous penalty:

! l̂
#"

2

" $A"UL $ UR#%2

$ ! l̂
#d
"2

, where #d #
l̂2

16%̂
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In Eq. 6, #d represents a characteristic viscous
diffusion time associated with an eddy of size l̂.
The eddy mean viscosity is expressed as follows:

%̂ " $1
l̂ %

ŷ

ŷ!l̂ d y
%" y#&&1

, (7)

corresponding to the effective viscosity of a
lamellar variable-viscosity configuration. The
first term on the right-hand side of Eq. 6
corresponds to the driving shear, where the
characteristic velocities UL and UR are veloci-
ties averaged over the left and right halves of
the segment, l̂:

UL "
2
l̂ %

ŷ

ŷ!"l̂ / 2#

u" y, t# d y,

and (8)

UR "
2
l̂ %

ŷ!"l̂ / 2#

ŷ!l̂

u" y, t# d y.

A is a free parameter of order unity that ac-
counts for the various geometry and flow con-
tributions, and relates the local shear to the
eddy characteristic time. From Eq. 6, it is evi-
dent that when the right-hand side is smaller
than zero, eddy events are prohibited. There-
fore, this equation provides a cut-off for the

Fig. 1. Application of the triplet map to an initially linear
profile. The rearrangement event consists of the replace-
ment of the 1D profile on a segment, l, by three identical
copies compressed to one-third of their original size. The
middle copy is then inverted to obtain continuity of the
values on the new profile. However, derivatives at the
interfaces of the three sub-intervals are not continuous.
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Figure 6.1: A schematic illustration of the triplet map in ODT [179].

6.2.3 Governing Equations

DNS and ODT involve different sets of equations and formulations. DNS are further per-
formed using a low-Mach number solver in DINO; the complete equation are reviewed in
Ch. 3. The ODT formulations are described in what follows.

ODT Model Equation

In the low-Mach number DNS solver, the diffusion and advection process are considered
simultaneously. On the other hand, the ODT model handles these processes in two separate,
but coupled steps. The following is an explanation of the ODT concept as reviewed in [184].
The diffusive advancement is simulated by solving a one-dimensional form of the Navier-
Stokes equation, without advection term nor fluctuation pressure. Instead, the diffusive
advancement is implemented using a Lagrangian finite-volume method, in which cell faces
move with the mass-average velocity. In the ODT simulation, the cells expand or contract
due to flow dilatation arising from heat or mass transfer processes. More details about
these diffusive equations and their connection to the Navier-Stokes equation can be found in
[184, 187].

The omitted terms are modeled by concurrent mapping events of the scalar fields, corre-
sponding to the turbulent advection processes. Advection processes representing turbulent
transport are implemented as discrete eddy events, involving triplet maps that rearrange
the fluid domain and mimic the effect of turbulence. These triplet maps occur concurrently
with the diffusion processes, and are parameterized by a size l, position y0, and time scale
τ . The triplet map is implemented, as illustrated in Fig. 6.1, by taking all variable profiles
in the eddy region, making three copies, compressing each of them spatially by a factor of
three, and replacing the original profiles by the three compressed copies with the middle
copy inverted spatially.
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The triplet map is conservative of all quantities and it can be defined as

f(y) =





3(y − y0) if y0 ≤ y ≤ y0 + l/3,

2l − 3(y − y0) if y0 + l/3 ≤ y ≤ y0 + 2l/3,

3(y − y0)− l if y0 + 2l/3 ≤ y ≤ y0 + l,

y − y0 otherwise.

(6.1)

The ODT velocity profile evolves through the specification of the occurrences of eddy
events. The eddy selection process is stochastic and follows the variable density formulation
first introduced in [178], modified as described in [184]. In this formulation, the eddy time
scale τ for a candidate eddy (y0, l) is computed using (1) a measure Ekin of the local kinetic
energy in the eddy region, and (2) the scaling: Ekin = 0.5ρ0l

3/τ 2 , where ρ0 is a measure of
density in the eddy region. The local rate (per square length) of each eddy is

λ′ =
1

l2τ
, (6.2)

and the total rate of all eddies is

Λ′ =

∫ ∫
λ′dy0dl. (6.3)

Therefore, the joint PDF of eddy parameters y0 and l is

P (y0, l) = λ′(y0, l)/Λ
′. (6.4)

Eddy occurrences can be sampled from a Poisson distribution with mean rate Λ′, with y0

and l parameters sampled from P (y0, l).

In practice, evaluating P (y0, l) is prohibitively expensive since it changes continuously as
the velocity profile changes. In fact, the time scales of all possible eddies would need to be
computed to obtained P (y0, l), which would then be used to sample the next eddy. But after a
single eddy were implemented (and associated diffusive advancement occurs), P (y0, l) would
need to be recomputed. Instead, a thinning process [188] based on the rejection method [189]
is used. Eddies are sampled from an analytic approximation to P (y0, l), denoted P̃ (y0, l),
and accepted with probability

Pa =
∆ts

τ P̃ (y0, l).l2
. (6.5)

P̃ (y0, l) is modeled as P̃ (y0, l) = f(l) · g(y0). The PDF g(y0) is uniform on the domain
y0 ≤ 0 ≤ Ly − 1, where Ly is the domain length and f(l) is given in [184]:

f(l) =
−2lp
l2

(
exp(−2lp/l)

exp(−2lp/lmax)− exp(−2lp/lmin)

)
, (6.6)
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where lp, lmin, and lmax are user-specified most probable, minimum, and maximum eddy sizes,
respectively. Values used in the simulations are lp/Ly = 0.05, lmax/Ly = 1, and lmin/Ly =
0.005. The function f(l) reasonably approximates the shape of the eddy PDF. The accuracy
of f(l) only affects the eddy sampling efficiency, which is not the limiting step in the ODT
simulations (the diffusive-reactive advancement is). In Eq. (6.5), the time ∆ts between the
eddy trials is sampled from a Poisson distribution with mean ∆ts. This mean sample time is
initialized as ∆ts = 0.1Pa ·∆y2/ν n, where ν is kinematic viscosity, n is the number of grid
points, ∆y2 is the average grid size, and Pa is a specified average acceptance probability
(set to 0.02). ∆y2/ν is a diffusive time at the grid cell size (an approximate lower bound on
an eddy timescale). The factor 1/n allows sampling of this small diffusive scale eddy in all
cells (on average). The 0.1 multiplier is a conservative factor. ∆ts is dynamically adjusted
during the simulation to maintain the specified Pa.

The eddy time scale τ , which is used to specify the eddy acceptance probability, can be
computed as

1

τ
= C

√
2

ρ0l3
(Ekin − Z Evp), (6.7)

In this equation, ρ0 = l−3
∫
ρK(y)2dy is a measure of the density in the eddy region

for variable density flow, with K(y) the kernel function used in the vector formulation of
ODT. Evp is a viscous penalty term; it suppresses small eddies that are subject to strong
viscous damping and modeled using scaling arguments as Evp = 0.5µ̄2/ρ̄l, where ρ̄ and µ̄
are the average density and viscosity in the eddy region. Finally, the parameters C and Z
are adjustable model parameters. For open domains, a restriction must be imposed on the
eddy selection process in order to prevent unphysically large eddy events from occurring.
Suppression of large eddies is obtained using the elapsed time method, following [179, 180,
184, 187]. The corresponding criterion reads

t > βτ. (6.8)

It is applied in such a way that the eddies are only allowed if the elapsed time is greater
than βτ , where β is an adjustable parameter as well. Therefore, there are three significant
empirical parameters in ODT that need to be adjusted; C, Z, and β. For this purpose,
comparing with reference DNS data is an excellent opportunity.

6.2.4 Numerical Settings

A temporally-evolving planar jet configuration has been considered in this section. The
interest of this specific configuration for DNS studies has been discussed in more detail in
Ch. 4 [110]; this configuration is ideal for ODT, since it is statically 1D. In this setup, a
layer of pre-heated unburned premixed mixture is located in the center (central jet zone) of
the computational domain, whereas left and right layers (co-flow zones) contain unburned
premixed mixture at a temperature of 300 K. Initial profiles of temperature and major
species are illustrated along a 1D-line following the y-direction of the domain, as shown
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in Fig. 6.2(a). The comparisons rely on a 3D simulation for DNS, while 1D simulations
are sufficient for ODT, both evolving in time. The corresponding comparison is explained
schematically in Fig. 6.2(b). In this figure, contours of instantaneous temperature field are
presented as a typical output from DNS, whereas the white line represents the ODT line
direction. In the 3D DNS domain, the middle slab (central jet zone) moves with jet speed Uj.
The surrounding co-flow zone is quiescent. An isotropic turbulent flow field is generated prior
to the DNS simulation, and is used to trigger the turbulence in the central jet zone, using a
hyperbolic tangent function to filter out the turbulence in the coflow. For DNS simulations,
the flow is considered periodic in streamwise direction and spanwise direction, whereas it has
outflow boundary conditions in the crosswise direction. The DNS simulation is performed
in a domain with dimension of Lx (streamwise direction) = 0.7 cm, Ly (crosswise direction)
= 0.5 cm, and Lx (spanwise direction) = 0.25 cm. This domain has been discretized over
nx = 384, ny = 257, and nz = 128 grid points, respectively. In ODT simulations, the 1D
domain has a length of L = 0.5 cm, initially discretized with 256 grid cells. However, it is
important to mention that the ODT code used here relies on dynamic mesh adaption [187].
Therefore, the number and size of the cell is adapted automatically based on the underlying
eddies’ properties.

In this section, a stoichiometric mixture of propane (C3H8)/air is employed to examine
the ignition occurrence in premixed, sheared turbulent flames. Again, the initial distribu-
tion of temperature and major species is illustrated in Fig. 6.2(a). The propane oxidation
is described in both DNS and ODT by the GRI-mech 3.0 kinetic mechanism [106], which is
implemented by relying on the open-source library Cantera for obtaining all physicochemical
and thermodynamic properties. The GRI-mech 3.0 is a well-established, optimized mech-
anism, built from a compilation of 325 elementary chemical reactions, involving Ns = 53
chemical species. This mechanism has been mainly optimized to describe natural gas oxi-
dation. The underlying optimization process did not explicitly include targets relevant to
pure propane. However, many studies (e.g., [190, 191]) compared experimental results with
numerical ones based on GRI-mech 3.0 for propane flames, and revealed that this mechanism
agrees very well with experimental results for propane oxidation.

The DNS simulations, again, have been conducted using DINO. The C++ parallel code
developed by Lignell and co-workers [187] is used for the ODT simulations. Both codes have
been running on SuperMUC. The parallelization in DNS relies on domain-decomposition
implemented with Message-Passing Interface (MPI). For ODT, parallelization is performed
by considering simultaneously many different independent realizations; therefore, no com-
munication is required.

6.2.5 Results

In this section four cases will be tested, as documented in Table 6.1. All these cases have
the same initial uniform mixture (stoichiometric C3H8/air), but different initial maximum
temperature (temperature in the central jet region, see Fig. 6.2(a)). These cases have been
selected based on preliminary studies, since autoignition will succeed in two of them (Tmax =
1600 K, Tmax = 1700 K) and fail for the other two conditions (Tmax = 1400 K, Tmax = 1500
K). Table 6.1 summarizes the properties of these cases for DNS and ODT. There, Tmax, νj,
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(a) (b)

Figure 6.2: Numerical settings; (a) Schematic distribution of initial temperature and major
species mass fractions for autoignition tests. (b) Instantaneous DNS result in the 3D domain,
showing the temperature field as color contours. The white thick line along the crosswise
direction, with a profile plotted along it, represents a typical 1D ODT simulation.

Table 6.1: Initial properties of the four cases considered to investigate autoignition with both
DNS and ODT

Case Tmax Uj [m/s] νj [m2/s] Rej autoignition occurrence
Case I 1400 130 2.01× 10−4 388.06 fails
Case II 1500 150 2.25× 10−4 400.00 fails
Case III 1600 180 2.51× 10−4 430.00 success
Case IV 1700 200 2.77× 10−4 433.21 success

and Rej are maximum temperature of the mixture, kinematic viscosity, and the Reynolds
number in the jet region, respectively. For all cases, Rej= Uj H/νj is kept around 400, so
that turbulence intensity remains similar. In all simulations and cases, the jet width is kept
as H = 0.6 mm and the kinematic viscosity of the co-flow remains 1.49 × 10−5 m2/s. The
time in this section is nondimensionalized using the jet flow time scale τj = H/Uj.

Even though the initial profiles for both DNS and ODT are identical, it does not mean
that the turbulence-flame interaction processes are exactly the same. To obtain the same
turbulence structure and scales, the ODT parameters (C, Z, and β) first need to be tuned in
an appropriate manner. After setting the underlying parameters based on DNS as reference
data, ODT will be used as standalone tool and compared with the DNS in order to evaluate
the possibility of using ODT to generate a probability map for different parameters, opening
the door for later systematic studies relevant for safety predictions.
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ODT parameter tuning

In the next sections, the ensemble-averaged statistics in DNS are obtained by computing
the mean values over the streamwise and spanwise directions. The ensemble-averaged in the
ODT is obtained by averaging over 544 independent realizations. This number or realizations
is corresponding to the number of processors used simultaneously on SuperMUC machine
for ODT simulations (34 nodes × 16 cores).

Eddy rate parameter C

The eddy rate parameter C plays a very important role in the ODT simulation, since it
quantifies turbulent transport. Therefore, it is roughly analogous to the coefficient of an
eddy-viscosity model, with the distinction that it tunes the advancement of a temporally-
and spatially-resolved unsteady simulation, rather than an ensemble-averaged state [187].
Figures 6.3 - 6.6 show the comparison between DNS and ODT for three different values of
C (2.5, 5.0, 10.0), while retaining β = 0.8 and Z = 200. This initial guess for β and Z
is obtained based on our own experience and on the observations discussed in [183]. In all
cases, C = 2.5 leads to ODT temperature profiles in good qualitative agreement with DNS,
but with a quantitative difference. For Case I at early simulation times, ODT with C = 2.5
gives good agreement with DNS as seen from Fig. 6.3(a); but it increasingly deviates with
time (Fig. 6.3(b) and 6.3(c)). A similar behavior is observed for Case II, but with a larger
deviation, as seen from Figs. 6.4(a)-6.4(c). Although C = 2.5 does not lead to a perfect
agreement at all times, it is still sufficient to predict ignition success, which is the central
issue of this project.
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Figure 6.3: Time-evolution of ensemble-averaged temperature of Case I

Unfortunately, Figure 6.5 shows that ODT with these parameters does not predict cor-
rectly autoignition for Case III. Nevertheless, it is observed that decreasing the value of C
(within chosen range: 2.5 - 10) improves the agreement between ODT and DNS.

On the other hand, decreasing C to 2.5 is sufficient in Case IV to correctly predict
successful ignition. The question remains, why ODT fails in Case III but succeeds in Case
IV? This is because increasing temperature in Case IV smoothed out the large eddies in
the ODT simulation, preventing unphysical diffusion and mixing, which was not the case
in Case III. This takes us to the second important parameter, β, which is used to suppress
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Figure 6.4: Time-evolution of ensemble-averaged temperature of Case II
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Figure 6.5: Time-evolution of ensemble-averaged temperature of Case III

such unphysical eddies. Before considering β, it is clear that keeping C = 2.5 is the best
choice among the three values investigated. Considering further tests and after discussing
with experienced ODT users, decreasing C further would lead to excessively smooth profiles,
which would not reproduce any more the physical reality. Hence, C = 2.5 will be kept
throughout in what follows.
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Figure 6.6: Time-evolution of ensemble-averaged temperature of Case IV
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Large-eddy suppression parameter β

In this study, a strong large-eddy suppression mechanism is required to prevent unphysically
large eddies from occurring in open domains, as already discussed before. These large eddies
can have a strong impact on overall turbulent entrainment and mixing rates. The impact
of β on the temperature profile is checked by choosing values of β = 0.8, 1.0, 1.2, 1.5, while
keeping C = 2.5 and Z = 200. The results are illustrated in Figs. 6.7-6.10. It is observed
that increasing β gives a better agreement with DNS simulations for the temperature profile.
Looking closer at Case I, it is found that at early times (Figs. 6.7(a) and 6.7(b)) ODT with
β = 1.5 shows best comparison to DNS. Later (Fig. 6.7(c)) DNS profiles are found between
curves of β = 1.5 and β = 1.2. In Case II, ODT with β = 1.5 is always the best choice
(Fig. 6.8); still, ODT with β = 1.2 is close to the DNS results.
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Figure 6.7: Time-evolution of ensemble-averaged temperature of Case I
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Figure 6.8: Time-evolution of ensemble-averaged temperature of Case II

As discussed in the previous section, the third case (Case III) is the most critical one,
since choosing wrong parameters for ODT will lead to a wrong prediction concerning ignition
success. Looking at Fig. 6.9, it is found that ODT with β = 1.2 and 1.5 both predict
autoignition correctly. However, ODT with β = 1.2 underestimates the temperature profile
at later times (Fig. 6.9(c)). It is also seen that ODT with β = 0.8 and 1.0 underpredicts the
temperature profile and leads to the wrong prediction.
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Figure 6.9: Time-evolution of ensemble-averaged temperature of Case III

As discussed before, Case IV has a high temperature, which is smoothing out large eddies,
decreasing turbulent mixing, Therefore, changing β = 1.0 to 1.2 and 1.5 does not change
much the observations in this case.
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Figure 6.10: Time-evolution of ensemble-averaged temperature of Case IV

In summary, choosing a value of β between 1.2 and 1.5 while keeping C = 2.5 leads to
an excellent agreement between ODT and DNS, leading to correct predictions of ignition
occurrence or failure for the tested conditions.

Viscous penalty parameter Z

The viscous penalty parameter Z is used to suppress small eddies. Usually, Z has a very
small impact compared to the other two parameters (C and β). This is confirmed for Cases
I, II and IV in Figs. 6.11, 6.12, and 6.14, respectively. Changing Z from 10 to 200 (while
keeping C = 2.5 and β = 1.5) does not change in any noticeable way the temperature
profiles or the occurrence of ignition. However, a slight impact of Z is observed in Case III
(Fig. 6.13), where ODT with Z = 200 shows a much better agreement compared to that
generated by ODT with Z = 10. Hence, Z = 200 will be used for all further simulations.
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Figure 6.11: Time-evolution of ensemble-averaged temperature of Case I
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Figure 6.12: Time-evolution of ensemble-averaged temperature of Case II

0 1 2 3 4 5
L [mm]

500

1000

1500

2000

T
 [K

] t=9.0 τj
β=1.5

C=2.5

DNS
Z=10
Z=200

(a)

0 1 2 3 4 5
L [mm]

500

1000

1500

2000

T
 [K

] t=15.0 τj
β=1.5

C=2.5

DNS
Z=10
Z=200

(b)

0 1 2 3 4 5
L [mm]

500

1000

1500

2000

T
 [K

] t=21.0 τj
β=1.5

C=2.5

DNS
Z=10
Z=200

(c)

Figure 6.13: Time-evolution of ensemble-averaged temperature of Case III

ODT versus DNS

After completing the adjustment of all ODT parameters, it is now time to have a deeper
look at the ODT simulations, and see how many details can be obtained from ODT.

ODT realization with the full DNS domain

Figures 6.15-6.18 show instantaneous profiles of the temperature field in the DNS and ODT
domain. These figures demonstrate the similarity between the outputs of DNS and ODT. In
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Figure 6.14: Time-evolution of ensemble-averaged temperature of Case IV

order to facilitate comparison, a line along the crosswise direction of the DNS domain is taken
(Figs. 6.15(b), 6.16(b), 6.17(b), and 6.18(b)) and is qualitatively compared to a single ODT
realization (Figs. 6.15(c), 6.16(c), 6.17(c), and 6.18(c)) using the preset parameters, C = 2.5,
β = 1.5, and Z = 200. These comparisons demonstrate the qualitative ability of ODT to
capture the evolution of turbulent eddies and turbulent mixing for all cases. Note that the
axis scales used in subfigures (b) and (c) are always the same: this is a direct comparison.
However, it is not sufficient to judge the ability of ODT from such instantaneous figures
and isolated, random realizations. Therefore, scatter plots have been generated to support
further discussions.
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Figure 6.15: Instantaneous temperature profile at t = 32.6τj for Case I: (a) Contours of
DNS, (b) line taken along the crosswise direction of DNS domain, (c) An ODT realization
selected randomly.

Scatter plot of heat release

This section discusses the ability of ODT to reproduce the heat release scatter plot as function
of temperature, since heat release and temperature are essential parameters in safety-relevant
applications. The ODT results are obtained by keeping C = 2.5, β = 1.5, and Z = 200 for
all cases, except for Case IV, for which the influence of β will be discussed further. Again,
the axis scales used for DNS and ODT are always identical.
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Figure 6.16: Instantaneous temperature profile at t = 37.5τj for Case II: (a) Contours of
DNS, (b) line taken along the crosswise direction of DNS domain, (c) An ODT realization
selected randomly.
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Figure 6.17: Instantaneous temperature profile at t = 27.27τj for Case III: (a) Contours of
DNS, (b) line taken along the crosswise direction of DNS domain, (c) An ODT realization
selected randomly.
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Figure 6.18: Instantaneous temperature profile at t = 20.69τj for Case IV: (a) Contours of
DNS, (b) line taken along the crosswise direction of DNS domain, (c) An ODT realization
selected randomly.

For Case I (Fig. 6.19), ODT leads at early times to an underestimation of heat release
(Figs. 6.19(a) and 6.19(b)); the dispersion of the initial distribution is too small. With
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growing time, the structure of heat release is represented by ODT with increasing accuracy.
At later times, t = 15.2 τ and t = 19.5 τ , ODT reproduces the heat release scatter plot of
DNS with a very good agreement, with only a slight over-prediction at temperatures around
800-1000 K.

Case II shows a slightly different behavior, as it is seen from Fig. 6.20. At early stages
(Figs. 6.20(a) - 6.20(b)) the dispersion of ODT is not sufficient and does not reproduce
correctly heat release at high temperature (T > 1400 K); this may be due to a delay of
the onset of eddies in ODT model. However, ODT later starts to agree extremely well with
DNS; nearly identical structures are finally observed (Figs. 6.20(g) and 6.20(h)).

Figure 6.21 demonstrates that Case III is very well reproduced by ODT; the left and
right columns show good agreement at all times.

Regarding finally Case IV, it has been previously discussed that changing β from 1.0
to 1.5 did not impact noticeably the temperature (see again Fig. 6.10). Testing first ODT
with β = 1.5, the obtained heat release scatter plot is very regular (Figs. 6.22(c), 6.22(f),
6.22(i), and 6.22(l)); the obtained dispersion is much too small compared to DNS results
(Figs. 6.22(a), 6.22(d), 6.22(g), and 6.22(j)). Changing the value of β to 1.2, the scatter
plots are in much better agreement with the DNS reference.

As a conclusion of this section, it is observed that ODT is able to reproduce with a
very good accuracy the heat release and temperature profiles for four different reference
cases computed by DNS. Considering both temperature and heat release, the optimal ODT
parameters for this problem are found to be C = 2.5, β = 1.2, and Z = 200. Using these
parameters, ODT is able to properly distinguish between successful or failed ignition.

6.2.6 Advantages and Drawbacks of ODT

After adjusting the free parameters C, Z, and β, ODT becomes an extremely fast compu-
tational approach. The longest DNS simulation in this study consumed 73, 728 CPU-hours
on SuperMUC; for comparison, the longest ODT simulation required 1, 500 CPU-hours on
the same machine, but for 544 realizations; one single ODT computation takes only a few
minutes. The same observation applies for the required storage disk space. DNS always
stores 3D data, whereas ODT saves 1D profiles. While the largest DNS simulation produced
500 GB of data, 500 realizations of ODT required only 5 GB. Replacing completely DNS by
ODT, for the current conditions and Reynolds number, would save 97.9% of computational
time and 99% of storage disk space. Even when considering very complex kinetic mecha-
nisms, ODT could still be employed on a standard PC, without any need for a dedicated
supercomputing system. This would make systematic safety-relevant studies possible. It
is important to keep in mind that this comparison is case-dependent; it depends on the
Reynolds number and the conditions under test [192].

Overall, ODT appears to be an excellent tool to predict ignition probability for safety
applications. In a few hours of computing time, a parametric study is possible with ODT,
after tuning the model parameters by comparisons with DNS. This is the only drawback of
ODT; reference cases are needed (experiment or DNS) in order to fit the three free parameters
for the specific configuration considered in the study.
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Figure 6.19: Time-evolution of scatter plot of heat release versus temperature for Case I.
Left column represents the DNS. Right column represents ODT. Time from top to bottom:
t = 6.5 τj, 10.8 τj, 15.2 τj, and 19.5 τj.
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Figure 6.20: Time-evolution of scatter plot of heat release versus temperature for Case II.
Left column represents the DNS. Right column represents ODT. Time from top to bottom:
t = 7.5 τj, 10.0 τj, 15.0 τj, and 20.0 τj.
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Figure 6.21: Time-evolution of scatter plot of heat release versus temperature for Case III.
Left column represents the DNS. Right column represents ODT. Time from top to bottom:
t = 9.0 τj, 12.0 τj, 15.0 τj, and 21.0 τj.
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Figure 6.22: Time-evolution of scatter plot of heat release versus temperature for Case IV.
Left column represents the DNS. Second column represents ODT with β = 1.2. Last column
represents ODT with β = 1.5. Time from top to bottom: t = 10.0 τj, 13.3 τj, 16.7 τj, and
20.0 τj.
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6.2.7 Conclusions on ODT

This study has shown that ODT is able to predict success or failure of autoignition for a
premixed flame in turbulent shear flow. A temporally-evolving planar jet configuration has
been used for that purpose, comparing ODT results with DNS observations in a systematic
manner. These comparisons show that ODT can predict temperature and heat release for a
variety of initial conditions involving different temperatures and jet velocities both qualita-
tively and quantitatively. After fitting the three free parameters of the model, ODT is able
to correctly predict the occurrence of autoignition with extremely short computational times
and negligible disk space requirements. This opens the door for the generation of ignition
probability maps for safety-relevant applications. Compared to a systematic DNS study,
ODT saves more than 90% of computational resources.
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6.3 Tabulation Chemistry: FPI

This section focuses on the probability of autoignition of an ethylene/air mixture by com-
paring detailed chemistry and tabulated chemistry.

6.3.1 Objectives

Here, we evaluate the implementation of tabulated chemistry (FPI) in the DINO code and
examine its capability to simulate premixed turbulent jet flames. The evaluation is first
performed by comparing the obtained flame structure in a 1D planar laminar premixed flame
and the required computational efforts associated with tabulated chemistry with results
produced by a detailed chemistry approach relying on Cantera. Then, a simulation of a
turbulent jet flame using FPI is compared with that using detailed chemistry.

6.3.2 State of The Art

The tabulated chemistry approach called FPI relies on detailed chemistry evaluations as
first described by Gicquel et al. [193] as an extension of intrinsic low-dimensional manifolds
technique [194]. The capability of FPI to provide accurate predictions at low computational
costs has been demonstrated for many combustion applications, e.g., [195–198]. This makes
FPI one of the most promising reduced models for laminar and turbulent combustion appli-
cations. The advantage of FPI becomes even more important with complex mixtures, e.g.,
methane, ethylene, diethyl ether, n-heptane, etc. In the current section, combustion of a
turbulent ethylene/air mixture is of particular interest. Resolving all turbulence and flame
scales in a DNS using detailed chemistry (solving all reaction and species equations during
the simulation) leads to unacceptable computational times. The current study evaluates and
discusses the behavior of FPI concerning combustion of ethylene/air mixtures, comparing
the obtained accuracy and the required computational time associated to a detailed chem-
istry DNS (relying on Cantera) with those obtained with FPI. To the authors’ knowledge,
a comparison between detailed chemistry and FPI has never been provided yet for such a
complex fuel in a DNS.

6.3.3 FPI Principle

The FPI approach relies on a pre-tabulated detailed chemistry solution, usually based on
one-dimensional laminar premixed flames. In this approach, every thermodynamic/physi-
cal/chemical quantity, ϕ, is expressed as a function of two independent variables: mixture
fraction, Yz, and progress variable, Yc:

ϕFPI = ϕ(Yz(φ), Yc). (6.9)

Here, Yz describes the state of the mixture through the equivalence ratio φ. Hence, it should
be based on a suitable combination of non-reactive species. In this study, Yz is simply equal
to the nitrogen mass fraction, YN2 . On the other hand, Yc must show a monotonic behavior
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representing the overall process of the chemical reactions. Here, the progress variable has
been chosen as a combination of CO and CO2, following [199, 200]:

Yc = YCO2 + αYCO, α ≥ 0 . (6.10)

6.3.4 Numerics

In order to evaluate the FPI behavior for an ethylene/air system, a 1D look-up table has
been generated by using an in-house Fortran code based on Cantera version 1.8. The table
is computed starting from a skeletal mechanism developed by Luo et al. [96] that contains
32 species and 206 reactions. In this study, Yz, Yc, and all species mass fractions Yk, mole
fractions Xk, mixture-averaged diffusion coefficients Dk, and mass production rates ω̇k are
saved into an FPI table. The temperature, density, dynamic viscosity, specific heat, and
thermal conductivity of the mixture are stored in the same table, as well. This table is
generated under the unity Lewis number assumption.

All comparisons have been performed using DINO. DINO can handle both techniques:
detailed chemistry (based on Cantera) or tabulated chemistry (based on FPI tables). In
the case of detailed chemistry, 211 conservation equations are finally solved: the low-Mach
number Navier-Stokes equations, Poisson equation for pressure, temperature, and 32 species
equations, with the system being closed by the equation of state. On the other hand, in the
case of FPI, only six equations need to be solved: again, the low-Mach number Navier-Stokes
equations, Poisson equation for pressure, and two conservation equations for Yz and Yc, using
the equation of state to close the system.

6.3.5 Results

FPI with 1D Planar Premixed Flame

In this section, comparisons concerning laminar 1D planar premixed flames for stoichiometric
conditions, φ = 1, are presented. Figure 6.23 shows the relation between different species
mass fraction combination (progress variable) versus the temperature.

Figures 6.24 and 6.25 show the comparison between detailed chemistry (Cantera, red
line) and tabulated chemistry (FPI, dashed black line) in terms of temperature and heat
release for an ethylene/air mixture at two different values for α in Eq. (6.10). These figures
reveal that the FPI simulations are able to reproduce the correct flame structure. Under
current mixture conditions, the results with α = 0 reproduce the flame structure perfectly
for a 1D laminar flame.

FPI with Planar Spatially-Evolving Jet

Herein lies a similar case, in concept, to that discussed in Sec 3.16.1, where the burned gases
are injected into the fresh premixed mixture. Again, this is an application for safety predic-
tion, where the burned gases may escape through a crack to the fresh unburned premixed
mixture. A schematic diagram of the combustion system and the DNS domain is illustrated
in Fig. 6.26.
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Figure 6.23: Temperature versus different possible progress variables.
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Figure 6.24: Comparison of FPI with detailed chemistry: temperature.

The numerical settings for this simulation may be summarized as follows: the pre-cooled
burned gases of the ethylene/air mixture are injected with a speed of 110 m/s through a
planar nozzle with a width of 0.28 mm; these burned gases are injected at a temperature
of 1100 K into a fresh premixed ethylene/air mixture at temperature of 300 K; this leads
to a initial jet Reynolds number of 2020. The domain lengths in all directions are 8 mm
in streamwise direction, 6 mm in crosswise direction, and 2 mm in span-wise direction.
This domain is computationally discretized over 25 million grid points to maintain the grid
resolution at 15.6 µm in all directions. The kinetic scheme developed by Luo et al. [96] is
used during the detailed chemistry simulation, and to generate the FPI table. Again this
mechanism has 32 species and 206 elementary reactions.

Figure 6.27 shows the temporal revolution of the temperature iso-surface for both the
detailed kinetic simulation and the FPI simulation. This figure demonstrates that the FPI
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Figure 6.25: Comparison of FPI with detailed chemistry: heat release.
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Figure 6.26: Schematic diagram shows the burned gases escape from combustion system
and illustrate the considered DNS domain. The iso-surfaces in the right-hand side figure
represents the temperature at different levels.

simulation shows excellent agreement with the detailed chemistry simulation in low turbu-
lence regions; slight deviations appear in high-turbulence regions.

In order to gain a full picture of these deviations, averaged values taken over the span-
wise direction are collected at different lines along the stream-wise direction, as is illustrated
in figure 6.28.

Averaged temperature and velocity at these locations are presented in Figs 6.29, and 6.30,
respectively. As is seen in Figs. 6.29(a), 6.29(b), 6.30(a), and 6.30(b), the temperature and
stream-wise velocity of the FPI simulation show very good agreement with those of the
detailed chemistry simulation up to a distance of y/H ≤ 15. These results are at weak
turbulence regions. At higher locations, y/H > 15 (Figs. 6.29(c), 6.29(d), 6.30(c), and
6.30(d)), the mixing increases and the flow becomes more turbulent. At these locations, FPI
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(a) Det.: t = 0.06 ms (b) Det.: t = 0.12 ms (c) Det.: t = 0.16 ms (d) Det.: t = 0.185 ms

(e) FPI: t = 0.06 ms (f) FPI: t = 0.12 ms (g) FPI: t = 0.16 ms (h) FPI: t = 0.185 ms

Figure 6.27: Temporal revolution of temperature iso-surface for both detailed (Det.) chem-
istry simulation (Top) and FPI one (bottom).

and detailed chemistry show more deviations from one another. This is attributed to the
fact that the one-dimensional FPI table is applicable to weak turbulent flow, but for stronger
turbulent flow, a higher dimensional table is required.

6.3.6 Conclusions on FPI

In the 3D simulations, the FPI simulation consumed 5 900 CPU-hours, whereas the detailed
kinetic simulation consumed 59 000 CPU-hours. As a general conclusion, the FPI tabulation
technique produces acceptable results in DINO and saves 90% of the CPU time required
for detailed kinetic simulations. As for future recommendations, two- and three-dimensional
FPI tables should be implemented as in [201, 202] to capture the cases involving strong
turbulence
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Figure 6.28: Schematic diagram showing the places where the averages are computed. Av-
erage is computed over spanwise direction at 4 different locations along the streamwise
direction; y/H = 10, 15, 29, and 25. H is the jet width, and y is the length along the
streamwise direction.
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Figure 6.29: Ensemble-average temperature collected over spanwise direction at 4 different
location along the streamwise direction.
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Figure 6.30: Ensemble-averaged streamwise velocity collected over spanwise direction at 4
different location along the streamwise direction.
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6.4 Post-Processing Analysis: DMD vs SPOD

6.4.1 Objectives

The objective of this section is to show the advantage of using the modal decomposition
in post-processing and in analyzing turbulent coherent structures. To accomplish this, the
turbulent structures in a channel flow and in a mixing jet are investigated using Dynamic
Mode Decomposition (DMD) and Snapshot Proper Orthogonal Decomposition (SPOD, see
also Ch. 5). The analyzed data sets have been generated by DNS at high Reynolds numbers.
In the channel flow, the occurrence of turbulent superstructures (e.g. very large scale struc-
tures) will mainly be examined. The jet case is employed to investigate mixing in turbulent
jet flow. In both cases, DMD and SPOD, analyses are compared to test their performance
concerning the analysis of complex flow and to highlight the complementarity between these
two approaches. In both cases, coarse resolution outputs are saved from well-resolved DNS
simulations. The modal decomposition analysis is then carried out, showing the ability of
these techniques to extract important turbulent features from coarse output. This leads to a
large amount of saved disc space and makes the analysis of an extraordinarily large domain
possible.

6.4.2 Fundamentals of SPOD and DMD

In principe, SPOD and DMD are designed to define the coherent structure of turbulence,
but in two different ways. In the following, the basic equations for each of them are defined.

In SPOD, each signal (here, flow velocity) can be decomposed, as already described in
Ch. 5, into temporal parts a and spatial parts φ,

u(xi, tj) = uj =
M∑

m=1

am(tj)φm(xi), (6.11)

where the eigenfunctions φm are called spatial modes and am is the temporal coefficient. The
φm and am are completely determined after solving the eigenvalue problem

Cvi = λivi , for i = 1, 2, ...., N, (6.12)

where λi and vi are the eigenvalue and eigenvectors of the i-th mode, respectively. The
entries of C describe the covariance of two snapshots at different moments in time, C =
Cij = (ui,uj). This matrix C is similar to the temporal autocorrelation function, which is
statistically second-order, and λi represents the energy associated to the i-th mode.

The basics of DMD is to assume that the snapshots are generated by a linear, discrete
time model,

uj+1 = Auj. (6.13)

It is assumed that the snapshots become linearly dependent for an increasing number of
snapshots, so that snapshot uN can be constructed by a linear combination of all previous
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snapshots,

uN =
N−1∑

j=1

cjuj. (6.14)

The previous relation can be also written as:

[u2...uN ] = A[u1...uN−1] = ŨC̃ + reT , (6.15)

where in this equation, Ũ = [u1, ...,uN−1] is the reduced data matrix, e = [0, 0, ...., 1] is the
unit vector, r is the residual error, and C̃ is the companion matrix,

C̃ =




0 0 . . . 0 c1

1 0 . . . 0 c2

0 1 . . . 0 c3
...

...
. . .

...
...

0 . . . 0 1 cN−1



,

where the entries ci are computed such that the error is minimized (least-square problem).
As in SPOD, after obtaining C̃, an eigenvalue problem is solved,

C̃ṽi = λ̃iṽi , for i = 1, 2, ...., N − 1. (6.16)

After obtaining the eigenvalue λ̃ and eigenvectors ṽi, the DMD modes and temporal
amplitudes can be obtained [203]. In DMD, the eigenvalues and eigenvectors are complex
numbers. The frequency fi and growth (or decay) rate σi of the DMD is obtained by
logarithmic mapping of the eigenvalues;

fi =
=[ln(λ̃i)]

2 π ∆t
, (6.17)

σi =
<[ln(λ̃i)]

∆t
. (6.18)

The main difference between SPOD and DMD is that SPOD is based on an energy rank-
ing of orthogonal structures computed from a correlation matrix of the snapshot. This leads
to two possible drawbacks: (1) the energy content is not necessarily the correct measure
to rank the flow structures; (2) valuable information may be lost since only second-order
statistics are used as a basis for the decomposition. Additionally, POD allows mixing be-
tween scale and frequency at each mode, while DMD separately provides one growth rate
and frequency for each mode. In DMD, the dynamic modes are non-orthogonal; they can
be sorted by frequency, growth rate, or mode norm. SPOD and DMD also differ in the
computational requirements. In the following examples, it was found that computing the
DMD decomposition is six times slower than for POD.
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6.4.3 Numerical Settings

DNS have been conducted to simulate two different cases: (1) turbulent flow in a square-
shaped channel with a bulk Reynolds number of 20 000 in a domain of size H × 20H ×H,
where H is the height of the channel; this domain was discretized with more than 400 million
grid points; (2) mixing of hydrogen with air in a turbulent jet flow at a jet Reynolds number
of 2 600, simulated with about 70 million grid points in a domain of size 7.5dj×30dj×7.5dj,
where dj is the jet diameter. All simulations were performed using DINO. The results
of these DNS were then analyzed with the in-house Python script called PyPODe which
was developed during this Ph.D. work. PyPODe was coded on top of the modred-1.0.2
package [204] and contains both DMD [205] and SPOD [144] algorithms. Figures 6.31(a)
and 6.31(b) show 2D-planes of velocity magnitude in the turbulent channel and the iso-
volume of the mixture fraction in the jet, respectively.

(a)

(b)

Figure 6.31: (a) 2D cuts showing instantaneous velocity magnitude in the highly turbulent
channel flow. (b) Iso-volume of instantaneous mixture fraction in the turbulent jet.
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6.4.4 Results and Analysis

In this section, the analysis of jet flow and turbulent channel flow using both SPOD and
DMD will be discussed. In the following, the first mode (which represents the mean value)
is removed and not included in the spectrum or to show the spatial modes. The modal
decomposition analysis is performed for coarse outputs of a well-resolved simulation; only
75% of the computational grid points are written to the disk. In this manner, 25% of disk
space is saved by using modal decomposition. It could even use a coarser outputs and still
obtain important information.

Jet flow As in many turbulent mixing processes, the turbulent jet has three different
ranges of scale responsible for the entire turbulence dynamics [206]: (1) smallest scales that
are responsible for molecular mixing; (2) large-scale flow structures describe the entrainment
stage that is responsible for the engulfment of large pockets of irrotational fluid species into
the turbulent flow region; (3) intermediate range of scales, which are responsible for the
subsequent kinematic stirring process responsible for the large interfacial surface generation
between the mixed species.
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Figure 6.32: Modal spectrum of the mixing jet case. (a) eigenvalue of SPOD. (b) spectrum
of DMD.

Figure 6.32(a) shows the eigenvalue (spectrum) of SPOD versus the number of modes.
From this figure, it is obvious that the first modes (most energetic modes) are the most
dominant, with a rapid energy decrease (exponential decay). By comparison, the logarithmic
mapping of the DMD eigenvalues can be represented as growth (decay) rate versus frequency,
as seen in Fig. 6.32(b). In this figure, the numbers represent the numbering of the modes
and are not ordered; one could sort them based on the frequency in order to identify the most
dominant modes. Figure 6.33 shows the iso-surfaces of the spatial modes: the top row is
the SPOD and the bottom row is the DMD. From the first five modes (Figs. 6.33(a)-6.33(e)
and Figs. 6.33(h)-6.33(l) ) in both SPOD and DMD, it is clear that the most dominant
structures appear in the original shear layer and progressively extend toward the transition
region. The first four modes are quite similar in topology, while the fifth mode shows a
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(a) m=1 (b) m=2 (c) m=3 (d) m=4 (e) m=5 (f) m=30 (g) m=46

(h) m=3 (i) m=7 (j) m=21 (k) m=31 (l) m=15 (m) m=23 (n) m=27

Figure 6.33: Iso-surfaces of the spatial modes in the mixing jet, colored by the sign of
streamwise velocity (positive or negative); each mode is normalized by its local maximum.
Red and blue iso-surfaces represent the values of 0.5 and −0.5, respectively. Top: SPOD.
Bottom: DMD.

difference between SPOD and DMD. In DMD (Fig.6.33(m)), broader structures appear at
the head of the jet, which may have been lost in SPOD (Fig.6.33(e)) due to its intrinsic
limitation to second-order. Figures 6.33(f) and 6.33(m) illustrate that SPOD and DMD
show qualitatively similar intermediate modes. At high frequency in DMD, Fig. 6.33(n)
shows the fastest and smallest structure revealed by the dynamics modes. It still shows a
structure which is similar to the largest mode in SPOD (Fig 6.33(g)), even if it is known
that this cannot be directly interpreted in terms of a physical structure.

In conclusion, the SPOD, which is computationally six times faster than DMD, is able to
properly extract the most energetic modes and their corresponding coherent structures. In
cases where the interest is set on low-order structures or on specific frequency regions, DMD
would probably be the proper choice.
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Channel flow In a very long turbulent channel flow at high Reynolds numbers (Re
≥ 20 000), long meandering velocity fluctuations with both positive and negative streamwise
velocity are sometimes observed [207]. These velocity fluctuations appear in the log-law and
lower wake regions of the turbulent boundary layer and are named superstructures. In the
present work, possible superstructures are tracked with SPOD and DMD.

As usual, the spectrum of modal decomposition should be presented first (Figs. 6.34(a)
and 6.34(b)). Again, the first dominant spatial modes could be represented in an isolated
manner based on the given spectrum. Figure 6.35 shows that SPOD (Figs. 6.35(a)-6.35(f)),
and even more so DMD (Figs. 6.35(g)-6.35(l)), reveal the presence of very long meandering
velocity fluctuations, with both positive and negative streamwise velocities. These might be
superstructures, in agreement with the definition of [207]. However, it is in this case difficult
to find a qualitative similarity between the POD and DMD modes. This is attributed to the
fact that the number of snapshots employed for the analysis is not sufficient. In future work,
a larger number of snapshot must be taken into account. From these preliminary results, it
appears that DMD might play an essential role in following the dynamics of superstructures;
SPOD may most likely only be used for very energetic superstructures.
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Figure 6.34: Modal spectrum of the channel flow case. (a) eigenvalue of SPOD. (b) spectrum
of DMD

6.4.5 Conclusions on Modal Decomposition

Turbulent structures and mixing in a long turbulent channel flow and in a mixing jet have
been investigated with both SPOD and DMD modal decomposition methods. It has been
found that in the mixing jet case, both SPOD and DMD qualitatively deliver very similar
information concerning dominant structures and modes. In the turbulent channel flow at
high Reynolds number, DMD seems to be more suitable for identifying and tracking possible
superstructures. However, in both cases, SPOD computations were found to be about six
times faster than the corresponding DMD analysis. Additionally, SPOD and DMD should
be retained as complementary methods for the same analysis, taking advantage of both
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(a) m=1 (b) m=2 (c) m=3 (d) m=4 (e) m=19 (f) m=21

(g) m=1 (h) m=3 (i) m=5 (j) m=7 (k) m=9 (l) m=11

Figure 6.35: Iso-surfaces of the spatial modes in the channel flow close to the wall (part of
the domain), colored by the sign of streamwise velocity (positive or negative); each mode is
normalized by its local maximum value. Red and blue iso-surfaces represent the values of
0.5 and −0.5, respectively. Top: POD. Bottom: DMD.
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approaches. As a final conclusion, using modal decomposition is very useful to describe the
turbulence dynamics and scales with the possibility of reducing the required storage disk
space.

6.5 Conclusion

During this Ph.D. work, different reduction techniques and analysis methods have been
implemented and tested. All show specific advantages and limitations. Future work will be
necessary to check, in a systematic manner, the best possible conditions for DNS of spray
combustion.
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Chapter 7

Conclusions and Outlook

7.1 Conclusion

As is well-known in the DNS community, DNS of turbulent combustion requires a computa-
tionally parallelized solver that can efficiently scale over large machines (supercomputers),
as well as a large amount of disk space. Additionally, for relatively large DNS, the size of
the total output may reach several terabytes. Copying such data from supercomputers to a
local machine sometimes necessitates more time than that required for the simulation itself.
All of these are challenges that the modern DNS of combustion faces.

This dissertation discussed all of the tools required in order to perform and analyze DNS
of turbulent flows and spray combustion. After discussing the fundamentals of turbulent
spray combustion and reviewing the governing equations, a new DNS tool, called DINO,
has been developed. DINO offers a solution to a great deal of problems facing researchers
who concern themselves with DNS of turbulent combustion. It is sixth-order in space and
fourth-order in time. DINO is a low-Mach number solver. Therefore, the time step allowed
in DINO’s simulations is larger than that required in similar, fully compressible solvers. This
is owed to the time step in the low-Mach number formulation being controlled by diffusion
and convection instead of by the acoustic wave time scale, which is generally extremely
small (order of nanoseconds). DINO possesses a new tool to compute the Poisson equation
in an efficient way. This tool is based on a standard FFT library, and is even applicable
for non-periodic boundary conditions. DINO exhibits excellent scalability on different ma-
chines, which assists in conducting large simulations in an acceptable time. Verification and
validation have been carried out to evaluate the efficiency and capability of DINO. Two im-
portant turbulent combustion numerical settings have been tested, namely temporally- and
spatially-evolving jets demonstrating DINO’s ability to carry out such complex flow simula-
tions. After having a strong DNS solver in DINO, which deals with turbulent gas flows, a
second part, which deals with the discrete phase, has been implemented and validated. This
second part, called discrete particle simulation (DPS), considers non-resolved liquid droplets
or solid particles. In DPS, the discrete phase is tracked in Lagrangian space. Exchanges
of mass, momentum, and heat transfer between the continuous phase and discrete phase
are accomplished via interpolation from Eulerian to Lagrangian spaces. For fully resolved
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particles, the surface of each particle is resolved using the direct force immersed boundary
method (DF-IBM). In DINO, a complex geometry can be implemented with a regular grid
using the direct boundary immersed boundary method (DB-IBM).

A detailed evaporation model has been used in spray combustion simulations. This
model was first validated. Then, two different applications were investigated and examined:
(1) spray in temporally-evolving jet, and (2) spray in spatially-evolving jet. These investi-
gations have revealed that shear in the gas phase indeed has a very significant impact on
evaporation, mixing, and ignition scenarios. With high shear, ignition occurs under the re-
tained conditions in a lean mixture, and involves both non-premixed and premixed reaction
fronts. Peak heat release is found near stoichiometric conditions in the premixed mode.
In the absence of shear, ignition occurs simultaneously over a broad range of conditions,
from lean (in the non-premixed mode) to stoichiometric and rich mixtures (involving both
non-premixed and premixed combustion fronts). Here, peak heat release is found for a rich
mixture involving both combustion modes. Thanks to a parametric study concerning the
impact of droplet size, local equivalence ratio, and jet velocity, it has been found that the
autoignition delay time and consumption time depend strongly on the droplet size and jet
velocity, yet are almost independent of the local equivalence ratio, at least for the considered
conditions.

As is common in turbulent flow, it is very useful to quantify the flow state locally and
globally. For this reason, a new tool has been developed to quantify the flow state: laminar,
transitional, or turbulent. This tool is based on the spectral entropy Sd obtained from
solving an eigenvalue problem, with the auto-correlation function of the flow velocity as
kernel. This tool was first derived and then calibrated with a well-defined flow benchmark:
homogeneous isotropic turbulence. After the calibration, two different applications were
tested using this tool: (1) DNS results obtained for the Taylor-Green vortex benchmark
at Re = 1600 as well as (2) results obtained through Large Eddy Simulations in a blood
nozzle, revealing in both cases a perfect agreement with a traditional, user-based analysis of
the flow conditions. Hence, Sd appears to be an excellent quantitative indicator of laminar,
transitional, or turbulent flow, allowing an automatic, user-independent analysis of the flow
state for a variety of conditions. With its help, one can acquire the nature of any general
flow during the simulation or during the post-processing step, opening the door for a more
efficient use of large-scale and hyper simulations.

The last part of this dissertation considered the possible reduction of the computational
efforts in terms of computational time and disk storage space. Two techniques were suggested
and examined to reduce the running computational time, along with another two for storage
space reduction. The first two techniques are the one-dimensional turbulence model (ODT)
and tabulation chemistry (FPI). ODT is a stochastic method which mimics the effect of 3D
turbulence in 1D simulations by resolving most of the physics involved; more than 90% of
the run time is saved by using this technique. The FPI technique is a kind of chemical-
kinetic reduction; in this technique, the thermodynamics, kinetics, and transport properties
are tabulated as a function of a progress variable instead of computing them at each time
step during the simulation. With this technique, 90% of the computational time required
for a detailed simulation can be avoided. The other two techniques examined in order to
reduce the required disk space are the snapshot proper orthogonal decomposition (SPOD)
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and dynamic mode decomposition (DMD). With the help of these methods, post-processing
can be conducted for coarse output of a well-resolved simulation and still capture all of the
dynamics and scales of turbulence.

The main contributions and novelties contained in this dissertation are listed below.

Novelties and main contributions:

• Development of a new DNS tool which can accurately handle many different physical
phenomena in reactive and non-reactive two-phase turbulent flows;

• Development of a method to quantify the flow state and detect transition to turbulence;

• Using of the temporally-evolving jet configuration for the first time in 3D DNS of spray
combustion;

• Proving for the first time that the one-dimensional turbulence model can be used to
test the occurrence of auto-ignition in premixed propane/air mixtures;

• Development of a new tool which can perform modal decomposition (SPOD and DMD)
as a post-processing technique to reduce the required disk storage space and to analyze
the turbulence dynamics and scales.

7.2 Outlook and Recommendations

In future work, several developments could be carried out to increase further the efficiency
of DNS. Corresponding recommendations are listed as follows:

1. Implementing a multi-block technique in DINO, which would help in simulating com-
plex geometries while maintaining the efficiency of the original solver. It should be
kept in mind that doing this is a very large modification of the solver.

2. Improving the order of DB-IBM since, in the current version of DINO, DB-IBM is
based on a zero-order method; necessitating extremely fine grids locally.

3. Improving the FPI tabulation method implemented in DINO since, in this version, it
is based on the unity Lewis number assumption. Additionally, a 2D or 3D table would
increase the accuracy of FPI-DNS simulations in highly turbulent flows.

4. Combining in an optimal manner SPOD and DMD analysis.

5. These would allow further systematic studies of spray combustion, on the way towards
nanoparticle synthesis in spray flames.
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transport models on turbulent combustion simulations. Prog. Energy Combust. Sci.,
30:61–117, 2004.

[53] A. Ern and V. Giovangigli. Multicomponent transport algorithms. Lecture Notes in
Physics Monographs, Berlin, Heidelberg, Springer. 24, 1994.

[54] A. Ern and V. Giovangigli. Fast and accurate multicomponent transport property
evaluation. J. Comput. Phys., 120(1):105–116, 1995.

[55] N. Li and S. Laizet. 2DECOMP&FFT - a highly scalable 2D decomposition library
and FFT interface. In Cray User Group 2010 conference, Edinburgh, UK, 2010.

154



Bibliography

[56] S. Laizet, E. Lamballais, and J.C. Vassilicos. A numerical strategy to combine high-
order schemes, complex geometry and parallel computing for high resolution DNS of
fractal generated turbulence. Comput. Fluids, 39:471–484, 2010.

[57] S. Laizet and N. Li. Incompact3d: A powerful tool to tackle turbulence problems with
up to O(105) computational cores. Int. J. Numer. Meth. Fluids, 67:1735–1757, 2011.

[58] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in
FORTRAN. Cambridge University Press, New York, US, 2nd edition, 1992.

[59] J. Kim and P. Moin. Application of a fractional-step method to incompressible Navier-
Stokes equations. J. Comput. Phys., 59:308–323, 1985.

[60] D. Brown, R. Cortez, and M. Minion. Accurate projection methods for the incom-
pressible Navier-Stokes equations. J. Comput. Phys., 168(2):464–499, 2001.

[61] F. Lucci, A. Ferrante, and S. Elghobashi. Modulation of isotropic turbulence by par-
ticles of Taylor-length-scale size. J. Fluid Mech., 650:5–55, 2010.

[62] H.N. Najm, P.S. Wyckoff, and O.M. Knio. A semi-implicit numerical scheme for
reacting flow. I. Stiff chemistry. J. Comput. Phys., 143:381–402, 1998.

[63] O.M. Knio, H.N. Najm, and P.S. Wyckoff. A semi-implicit numerical scheme for
reacting flow. II. Stiff, operator-split formulation. J. Comput. Phys., 154:428–467,
1999.

[64] E. Hairer and G. Wanner. Solving ordinary differential equations II: Stiff and
differential-algebraic problems. Berlin, Springer-Verlag, 2nd revised edition, 1999.
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[72] M. Baum, T. Poinsot, and D. Thévenin. Accurate boundary conditions for multicom-
ponent reactive flows. J. Comput. Phys., 116(2):247–261, 1995.

[73] R.H. Kraichnan. Diffusion by a random velocity field. Phys. Fluids, 13:22–31, 1970.

[74] M. Klein, A. Sadiki, and J. Janicka. A digital filter based generation of inflow data
for spatially developing direct numerical or large eddy simulation. J. Comput. Phys.,
186:625–665, 2002.

[75] A. Kempf, M. Klein, and J. Janicka. Efficient generation of initial-and inflow-conditions
for transient turbulent flows in arbitrary geometries. Flow Turb. Combust., 74:67–84,
2005.

[76] J.D. Anderson. Computational fluid dynamics: the basics with applications. McGraw-
Hill, New York, US, 1995.

[77] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simulations.
J. Comput. Phys., 161:35–60, 2000.

[78] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech.,
37:239–261, 2005.

[79] D.A. Steinman, Y. Hoi, P. Fahy, L. Morris, M.T. Walsh, N. Aristokleous, A.S.
Anayiotos, Y. Papaharilaou, A. Arzani, S.C. Shadden, P. Berg, G. Janiga, and et al.
Variability of computational fluid dynamics solutions for pressure and flow in a giant
aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge. J
Biomech Eng., 135:021016, 2013.

[80] M. Uhlmann. An immersed boundary method with direct forcing for the simulation
of particulate flows. J. Comput. Phys., 209:448–476, 2005.

[81] A. Eshghinejadfard, A. Abdelsamie, G. Janiga, and D. Thévenin. Direct-forcing im-
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