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Abstract

In a typical fluidized bed, liquid to be granulated is atomized into small droplets by an
atomizer located at the top of the chamber. These droplets adhere and spread on the
surface of the solid particles which are suspended in the air and form a film on their sur-
face. This liquid film starts to evaporate leaving a hard crust on the particles surface. A
model that describes the temperature and humidity inside a fluidized bed was introduced
by Heinrich [32].
During the flight of the droplets before they adhere on the surface of the particles, the
droplets can be carried away by the gas flow, or they turn into the solid state after the
volatile liquid evaporates. These two cases disable the process. Here we consider the third
case where these droplets hit the particle surfaces. In this work we take into consideration
that these droplets loose some of their mass before hitting the surface of the particles.
The aim of this thesis is to reformulate and extend this model to make it more general
and closer to the reality. The model introduced by Heinrich [32] is modified, two new
equations related to the temperature of the air and humidity in the empty space between
the nozzle and the particles where added and finally the model equation for the nozzle
spray is also reformulated to be convenient to the new model. This is achieved for the 1D
and 2D cases.
The next step is to find an efficient numerical solution for the new model. Our model con-
sists of coupled partial differential equations (PDE’s), in essence, hyperbolic and parabolic
equations. To solve this model, discontinuous Galerkin method (DG) was adapted for the
spatial discretization, where the domain is discretized into smaller cells, then we look for
an approximate solution in every cell. In order to determine the approximate solution we
look for the weak formulation. This can be achieved by multiplying the partial differential
equation by a test function belongs to the finite dimensional space and then we integrate
over every cell. After some manipulations we get a system of ordinary differential equa-
tions.
The resulting ordinary differential equations (ODE’s) are solved employing numerical dif-
ferentiation formulas (NDF).
The numerical results agree with the theoretical consideration for the one and two dimen-
sional cases.
Moreover, another study has been conducted to describe another process related to the
spray drying. In this process, we study the change of the temperature and the concentra-
tion of the droplets, in addition to the population balance model for drying of droplets
containing aggregating nanoparticles.
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Zusammenfassung

In einer typischen Wirbelschicht wird die zu granulierende Flüssigkeit mithilfe eines
auf der Kammer fixierten Zerstäubers in Tröpfchen verdüst. Diese kleinen Tröpchen
haften und verteilen sich auf die Oberfläche der soliden Partikel, die sich in der Luft
befinden, und bilden eine dünne Schicht auf der Oberfläche. Die Schicht fängt an zu
verdampfen und lässt eine harte Schicht auf der Partikeloberfläche. Heinrich [32] stellte
ein Modell vor, welches die Temperatur und Feuchtigkeit in einer Wirbelschicht darstellt.
Bevor die Tröpchen während ihres Fluges die Partikel erreichen, können sir durch den
Gasströmungsweg abgetragen werden. Außerdem werden sie evtl. nach Ausdünstung
der verdampfbaren Flüssigkeit zum Festkörper. Diese zwei Fälle verhindern den Prozess.
Wir berücksichtigen hier den dritten Fall, bei dem die Tröpfchen die Partikeloberfläche
erreichen. In dieser Arbeit berücksichtigen wir auch einen möglichen Massenverlust der
Tröpfchen, bevor siese auf der Oberfläche landen. Das Ziel dieser Dissertation ist es,
dieses Modell neu zu formulieren und so zu erweitern, dass es allgemeiner wird und die
Realität besser annähert.
Das von Heinrich [32] vorgestellte Modell wird in dieser Arbeit modifiziert. Im Wesentlichen
werden zwei Gleichungen hinzugefügt, die die Temperatur und Feuchtigkeit im Leerraum
zwischen der Sprühdüse und den Partikeln beschreiben. Anschließend wird eine Modell-
gleichung des Sprays zur Anpassung an das neue Model, sowohl für den ein als auch zwei-
dimensionalen Fall, dargelegt. Im zweiten Schritt soll eine effiziente numerische Lösung
für das neue Modell beschrieben werden.
Unser Modell setzt sich aus gekoppelten partiellen Differentialgleichungen (PDE’s), nämlich
hyperbolischen und parabolischen Differentialgleichungen, zusammen. Für die Lösung
dieses Modells wurde die unstetige Galerkin-Methode zur räumlichen Diskretisierung
eingesetzt. Dabei wird das Gebiet in kleinen Zellen zerlegt und für jede Zelle eine ap-
proximierte Lösung gesucht. Dafür wird schwache Formulierung eingesetzt. Die partielle
Differentialgleichung wird mit einer dem finiten dimensionalen Raum zugehörigen Test-
funktion multipliziert. Danach wird über jeder Zelle integriert. Nach einigen Manipula-
tionen bekommen wir ein System von gewöhnlichen Differentialgleichungen. Die daraus
entstehenden gewöhnlichen Differentialgleichungen (ODE’s) wurden anschließend durch
Formeln der numerischen Differentiation (NDF) gelöst. Die numerischen Ergebnisse stim-
men mit der theoretischen Betrachtung der ein- und zweidimensionalen Fälle überein. In
einer zweiten Studie beschreiben wir darüber hinaus einen mit der Sprühtrocknung zusam-
menhängenden Prozess. Untersucht werden dabei im Wesentlichen die Veränderung der
Temperatur und Konzentration der Tröpfchen. Weiter betrachten sir das Populationsbi-
lanzmodel der Trocknung von Tröpfchen, die aggregierende Nanoteilchen beinhalten.
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Chapter 1

Introduction

A fluidized bed is a situation in an apparatus of process engineering in which some solid or
liquid particles are suspended against gravity due to a strong upward flow of surrounding
gas. This situation is then used for treatment of the particles, e.g. they may be dried,
burned or coated.

Due to the wide applications of fluidized beds for industrial purposes, the need to study
the mechanics of fluidized beds became more and more important. This comes from the
fact that important products of the chemical industries are particles.

The technology of fluidized beds was initiated in 1922 by the German engineer Fritz Win-
kler [89] who made the first application of fluidization in a reactor for coal gasification.
Many different constructions of fluidized beds were then developed for various industrial
requirements.

Fluidized beds are also used to produce particles with required properties such as dust
free, dry, free flowing, low attrition, etc. One such process is fluidized bed spray granula-
tion. For it several technologies are available such as
• Aggregation: Powders are suspended and then agglomerated due to a binder suspen-
sion or solution which forms liquid bridges between the powder particles.
• Blending: Gas flows through bulk solids causing optimized blending and reducing
blending time.
• Encapsulation: Solids liquids or gaseous material are packaged in capsules.
• Drying: Hot air drys powder particles, where small particles leave the fluid bed and
the bigger are transported into the subsequent section.
• Coating (Layering): Dense particles are produced, where suspension, solution or
emulsion leaves a solid film on the surfaces of the particles.

Fluidized beds are widely used due to the high rate of mass and heat transfer between
the gas and the particles. By convention the heat is transferred from the bulk phase to
the surface of the particles and then into the particles by conduction, while the humidity
is transferred in a form of vapor to the bulk phase by convention [39].
Considerable research was done to predict the particle formation in fluidized beds using
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CHAPTER 1. INTRODUCTION

population balance equations. These population balance equations (PBEs) predict the
temporal change of particle-property distributions [51], [56], [60].

In our work we shall focus on the coating process, where particles in this process are
growing in layers. Agglomeration can take place without a binding agent by molecular
forces (e.g. van der Waals forces, ionic and hydrogen bonds), electrostatic or magnetic
interparticle forces, as well as by thermal effects and chemical reaction, see [7]. To avoid
the agglomerates bounded by molecular forces, a mechanical stress is applied to increase
the distance between the particles above a critical threshold. The electrostatic and the
magnetic forces are short-range forces affect only the very small particles and they are
neglected in our work. The thermal effects which include sintering, partial melting and
glass transition are also neglected here because of the nature of this work. To avoid ag-
glomeration due to the binder liquid, some parameters have to be chosen in a right way,
e.g. particles below 100 µm in diameter tend to agglomerate because of the binder liquid.
Several studies have been done to investigate the phenomena inside the chamber, see e.g.
[53] [87], [51], [70], [50], [61], [88], [38]. Various models were studied, see Heinrich et al.
[34, 33, 35], Heinrich [32], Reppmann [66], Trojosky [84], Blumschein [4] and Henneberg
[36]. Nagaiah [54] used an improved model. This model is mesh independent in order to
be more flexible with different meshes. Also he reformulated the model equation for the
nozzle spray in two and three dimensions.

This work is motivated to study the pneumatic behavior of the heat and the mass trans-
fer beside some other phenomena which take place inside the chamber of the apparatus.
Some possible applications can be found in [1] and [87]. Several researches have been
done to study the behavior of the particles, the wetting efficiency, the humidity of air, the
temperature of air, the temperature of particles, the temperature of the liquid film, the
growth of the particles, the agglomeration, etc.

In the process of the fluidized beds, liquid to be granulated is atomized into small droplet
by an atomizer. These droplets adhere on the surface of the particles. The hot gas which
flows through the distributor at the bottom of the fluidized beds causes the water to
evaporate. Due to this, the initial values of each of the air humidity, the degree of wet-
ting, the temperature of the air, the particles as well as the temperature of the liquid
film will change. The previous model introduced by Heinrich [32] gave a system of partial
differential equations which find the change of the values of the previous quantities. The
solution of this system satisfies the balance equations.
In this work we modify the model which was introduced by Heinrich [32] and Nagaiah
[52], where we assume that the droplets sprayed from the nozzle loose some of their mass
due to evaporation. Because of that, the apparatus is divided into two regions. The
upper region includes just the sprayed droplets, while the lower region includes the solid
particles wetted by collision with the droplets. We assume that the partial evaporation
of the droplets takes place in the upper region only. In addition to this modification we
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introduce a new model related to the upper region. The model equation for the nozzle
spray is also reformulated to be convenient with the new model. The results that we got
fulfil the balance equations and show the change of the studied quantities in both regions.
The difference between the old and the new model can be noticed in the numerical results.
Due to the evaporation of the sprayed droplets in region (1), less amount of the liquid
will enter region (2). Consequently, less humidity will be observed at the outlet of region
(2). The new model is completely explained in Chapter 2.

In Chapter 3 we study another process called the spray drying process which has a very
wide usage in the drying technology. In this chapter we study the change of the temper-
ature and the concentration of the droplet, as well as the shrinkage of the droplet radius
due to the evaporation at the surface of the droplet. The aggregation of the nano-particles
inside a single droplet is also studied briefly in this chapter. At the end of Chapter 3,
some numerical results are presented. These numerical results are supported by some
experiments.
Chapter 4 focuses on the discretization of the partial differential equations in space and
time for hyperbolic and parabolic systems in the 1D and the 2D cases. Due to the high
complexity of the nature of the equations which describe the fluidized bed, the exact
solution is unknown. For this purpose, some numerical methods can be introduced to
find an approximate solution for the partial differential equations. In our work we use a
high order numerical method called discontinuous Galerkin method . In this method, the
domain is discretized into cells, then we integrate the equations over every cell. Finally
we get a system of ordinary differential equation related to time. The result system can
be solved using a type of implicit numerical methods called the numerical differentiation
formulas (NDF) which are a modification of backward differentiation formulas (BDF).
To see the validity of the used numerical methods we introduce some examples of certain
problems related to convection and diffusion equations with the exact solutions.
In Chapter 5 we introduce the numerical results in 1D and in 2D case of each of the hu-
midity of air, the degree of wetting, the temperature of air, the temperature of particles,
as well as the temperature of the liquid film.
Finally, Chapter 6 presents a brief summary and conclusions regarding this work.
At the end, an appendix is given including the relations and the formulas which are needed
to find some parameters.
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Chapter 2

A New Mathematical Modeling of
Heat and Mass Transfer in Fluidized
Beds

A typical fluidized bed granulation device is a cylindrical apparatus provided with a nozzle
positioned at the top, bottom, or side of the chamber as shown in Figure 2.1. A hot gas
passes through a porous plate at the bottom which is penetrable to the gas but not to the
particles. This gas flows through the voids among the particles to be granulated. The pro-
cess starts when the minimal fluidization point is achieved. At this point the fluidization
starts and then these particles are suspended in the heated air. The nozzle starts spraying
a granulation liquid which contains a volatile liquid like water. This liquid, sprayed as
droplets, hits and then is distributed on the surface of the particles. The volatile liquid
evaporates due to the hot, unsaturated fluidizing gas, leaving a thin sold film on the parti-
cle surface. The process of enlarging the particles by layers is called layering or coating.

Here we consider a batch operation (particle side) where the number of particles in this
process stays constant during the process while the size of the particles increases.

2.1 Fundamental assumptions and variables

In order to model these processes we have to consider balance of mass, momentum, and
energy. Their derivation is explained below. Some of the assumptions that we make and
the formulas have been used in a number of previous publications, such as [33, 4].

Geometric configuration: In our work we divide the chamber into two regions as
it is explained in Figure 2.3.

Region (1): This region extends from the height where the particles arrive to the top of
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Inlet Air

Outlet Air

Bed Material

Spraying Liquid

Gas Distributor

Nozzle

Region (2)

Region (1)

Figure 2.1: Top-spray fluidized bed granulator

the chamber where the nozzle is located.
Region (2): This region extends from the bottom of the chamber to the highest point
where the particles arrive.

Now we introduce some fundamental variables and assumptions which are needed for the
work, then we shall conclude our new model considering the both regions.

In the following, we denote by dp the diameter of the particle, ρp the density of the
particle, ξp the drag coefficient, ρA density of air, VA velocity of air, νA the kinematic
viscosity and g the gravitational acceleration. A freely floating single particle is affected
by some forces [51] as shown in Figure 2.2. These forces are known as
gravity force Fgr

Fgr =
π

6
d3
pρpg,

lifting force Fli

Fli =
π

6
d3
pρAg,

drag force Fdr
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Fac

FdrFli

Fgr

dp

Figure 2.2: Forces affect a freely floating single particle

Fdr =
1

2
ξp
π

4
d2
pρAV

2
A ,

and accelerating force Fac

Fac =
π

6
d3
pρp

dVA
dt

.

At a balance point, the sum of these forces is zero due to Newton’s law, i.e.∑
F = 0

or
F gr + F li + F dr + F ac = 0.

Projecting these force vectors onto the z-axis leads to

− π

6
d3
pρpg +

π

6
d3
pρAg +

1

2
ξp
π

4
d2
pρAV

2
A = 0.

After some cancellations and dividing the both sides by ρAν
2
A we get the following relation

4

3

d3
pg(ρp − ρA)

ρAν2
A

= ξp

(
dpVA
νA

)2

.

This can be written also as
4

3
Ar = ξpRe

2,

where Ar and Re are the Archimedes number and the Reynolds number respectively, see
Appendix A.
Specific surface area of a particle: The surface area of the particles plays a very
important role to determine the heat transfer and the amount of evaporation of the liquid

7
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Region 1

Region 2

dApp

H1

H2

Figure 2.3: The two regions

spread on the surface of these particles. The specific surface area A∗ of a particle is given
as

A∗ =
dA

dV
where dA and dV are the incremental surface area and the incremental volume of the
particle respectively.
For monodisperse particles with dp as a diameter, the previous relation can be written as

A∗ =
dA

dV
=

πd2
p

1
6
πd3

p

=
6

dp
.

Concentration: The concentration κi of a component i in a mixed phase of substances
is given as the mass mi of this component per unit volume

κi =
dmi

dV
.

Porosity: The ratio of the volume of the voids to the total volume is denoted by the
porosity ε. It has values between 0 and 1, or is taken as a percentage between 0 and
100%. It can be calculated either from the following formula

ε =
Vvoids
Vtotal

or as a function of Archimedes number and Reynolds number [28]

ε =

(
18Re+ 0.36Re2

Ar

)0.21

.
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2.1. FUNDAMENTAL ASSUMPTIONS AND VARIABLES

In fluidized beds the porosity grows from its minimum value εmf = 0.4 at the minimal
fluidization point and reach its maximum value ε = 1 at the elutriation point.
Wetting efficiency: The Wetting efficiency φ or the degree of wetting is given as the ratio
of wetted particle surface area Awetted to the total particle surface area Awetted +Aunwetted

φ =
Awetted

Awetted + Aunwetted
=

Awetted∑
Ap,single

=
Awetted
Ap

where Ap,single is the surface area of a single particle and Ap is the surface area of all
particles.
Supposing that the particles are completely wetted with a film thickness F that has the
density ρL we get the maximum concentration κL,max to be

κL,max = A∗(1− ε)FρL.

In this case the degree of wetting can be given for i = L as

φ =
κL

κL,max
.

Density of air: Using the ideal gas law, the density of dry air can be written as a
function of gas pressure PA and gas temperature T as follows

ρA =
PA

R̃AT

while the density ρV of vapour is

ρV =
PV

R̃V T
,

where R̃A = 287.22 J/(kgK) is the specific gas constant for dry air, R̃V = 461.5 J/(kgK)
the individual gas constant water vapor and PV the pressure water vapor.
Partial pressure: In a mixture of ideal gases, the partial pressure of an ideal gas is equal
to the pressure of the same gas if it occupies the same volume at the same temperature.
We denote by Pi the pressure of the ith component. According to Dalton’s law of partial
pressures, the total pressure P of the mixture is equal to the sum of the pressures Pi of
the components in the mixture, i.e.

P =
n∑
i=1

Pi,

where n is the number of the components in the mixture. In the case of humid air, the
total pressure is

P = PA + PV .

Specific gas constant: For dry air, the specific gas constant RA is given as

RA =
κBNA

MA

,

9
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where κB is Boltzmann constant, MA = 0.02896 kg/mol is the molecular mass of air and
NA is Avogadro constant. For water vapor it is given as

RV =
κBNA

MV

,

where MV = 0.01802 kg/mol is the molecular mass of vapor.
Humidity of air YA:

YA =
ρV
ρA

=
PV /(R̃V T )

PA/(R̃AT )
=
R̃A

R̃V

PV
PA

=
(κB/MV )

(κB/MA)

PV
PA

=
MV

MA

PV
PA

=
MV

MA

PV
P − PV

.

(2.1)

Latent enthalpy of vaporization ∆hev: It describes the enthalpy change that is needed
to transform a quantity of a substance from liquid to gas at a specific pressure.
Enthalpy of humid air: The enthalpy of humid air hst per volume element is the sum
of the enthalpy of dry air hA per volume element and the enthalpy of vapor hV per volume
element, i.e.

hst = hA + hV .

The enthalpy of dry air per volume element is given as

hA = ρACpAθAdV

= mACpAθA

where CpA is the specific heat capacity of the air, mA the mass of the air and θA the
temperature of the air. The enthalpy of vapor per volume element is

hV = ρAYA(CpV θA + ∆hV,0)dV

= mAYA(CpV θA + ∆hV,0)

where CpV is the specific heat capacity of the vapor.
Saturation vapor pressure Psat: The pressure at the point where the number of water
molecules which are escaping from the water surface due to evaporation is equal to the
number of molecules which are returning to the liquid is called saturation vapor pressure.
It is a function of the temperature where increasing the temperature leads to an increase
in the saturation vapor pressure. Saturation vapor pressure can be approximated through

10



2.1. FUNDAMENTAL ASSUMPTIONS AND VARIABLES

the “Antoine equation” as a function of the temperature θsat, see Schlünder and Tsotsas
[71]

Psat(θsat) = exp

(
23.462− 3978.205

233.349 + θsat

)
.

Adiabatic saturation humidity Ysat:

Ysat(θsat) =
MV

MA

Psat
P − Psat

. (2.2)

The mass transfer coefficient β: This coefficient is used to predict the process of the
transport of masses across an interface or a bulk phase. This coefficient can be found
using the Sherwood number, see Appendix A.

Mass flow rate of evaporation ṁev: If a droplet of the sprayed liquid hits a particle
before it evaporates and returns into solid, it spreads on the surface of this particle
covering the partial area A of the total surface area of this particle. After adhering, the
liquid evaporates at the interface A between the liquid and the humid air. The evaporation
flow can be written as a function of the vapor pressure and the saturated vapor pressure
as follows

ṁev = βA
P

RT
MV ln

(
P − PV
P − Psat

)
, (2.3)

where R is the ideal gas constant.
From (2.1) we can write

PV =
PYA

(MV /MA) + YA
.

Similarly from (2.2)

Psat =
PYsat

(MV /MA) + Ysat
.

Substituting into (2.3) the evaporation flow can be written as

ṁev = βA
PMA

RT

MV

MA

ln

(
(MV /MA) + Ysat
(MV /MA) + YA

)
= βAρAKs(Ysat − YA),

where we set

Ks =
(MV /MA)

Ysat − YA
ln

(
(MV /MA) + Ysat
(MV /MA) + YA

)
,

which is known as Stefan correction. Here we consider the case that the partial pressure of
the vapor is too small in comparison with the total pressure of the system, i.e. PV � P . In
this case, the corrector Ks can be taken to be 1. Now the evaporation flow is determined
by the formula

ṁev = βρAA(Ysat − YA). (2.4)

11
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For droplets, A is the surface area of the droplet given as

A = 4πd2
dr.

Here ddr is the radius of the droplet, and the evaporation mass for a single droplet is

ṁev = 4βρAπd
2
dr(Ysat − YA).

Enthalpy flow of the evaporated water q̇ev: Here we assume that the heat needed for
evaporation is taken from the liquid film, while the heat needed for raising the temperature
from θL to θA comes from the air. The volume-based heat flow of the evaporation q̇ev is
given as

q̇ev = βρAA
∗(1− ε)φ(Ysat − YA)(∆hV,0 + CpV θA).

The heat transfer coefficient α: This coefficient is defined as a proportionality coef-
ficient which is used to find the heat transfer between two surfaces. This coefficient can
be calculated using Nusselt number, see Appendix A
Figure 2.4 shows the enthalpy flow of evaporated water ḣev, the enthalpy flow between the
wetted part of the particle and the air q̇AL, between the unwetted part and the air q̇AP ,
as well as between the film and the particle q̇PL. Heat is transported between interfaces
through conduction, convection and radiation.
In the following, we denote by θA the temperature of the air, θP the temperature of the

Out ow

In ow

Particle

Liquid lm

Air

 

 

Figure 2.4: Heat and mass transfer on a wetted particle
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2.2. DERIVATION OF THE BALANCE EQUATIONS

particles and θL the temperature of the liquid.
The volume based heat flow from the particle to the film q̇PL is given as

q̇PL = (1− ε)A∗φαPL(θP − θL), (2.5)

while for the heat flow from the air to the film q̇AL is

q̇AL = (1− ε)A∗φαAL(θA − θL), (2.6)

and from the air to the particle q̇AP is modeled as

q̇AP = (1− ε)A∗(1− φ)αAP (θA − θP ). (2.7)

During the flight of the droplets in region (1), three different cases are available.
Elutriation takes place when some droplets are carried away by the gas flow before
entering region (2).
Rebound describes the case when droplets turn into the solid state after the volatile
liquid is evaporated. In this case these minute particles rebound from the surface of the
larger solid particles. These dried fines are elutriated if they are light or they remain in
the bed if they are heavy enough.
Adhesion happens when droplets hit and deposit on the surface of the particles.
The first two cases disable the process, while the third case is the required case.

2.2 Derivation of the balance equations

To find the model we follow Nagaiah [54] and Heinrich et al. [33]. A general balance
equation can be written in the following expression

d

dt

∫
V

u dV = −
∫
S

s(u)· −→n ds+

∫
V

v dV. (2.8)

This form represents the conservation of some quantities u in a closed region with a
volume V and a surface area S over a closed interval [0, T ]. The function u here is a
continuous and differentiable vector valued function defined as u : Ω× [0, T ]→ R`. This
function contains the variables which are conserved. The function s : R` → R3 is a vector
valued flux, −→n is the outward pointing normal vector on the surface S, and v is the rate
of production of u. The vector flux s(u) can be chosen to model different mechanisms
such as advection, convection or dispersion.
On the left hand side of equation (2.8) it is possible to move the derivative inside the
integral, and by applying the Gauss’s theorem to the first term of the right hand side of
(2.8) we get ∫

V

∂u

∂t
dV = −

∫
V

∇ · s(u) dV +

∫
V

v dV. (2.9)
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We will denote the first term on the right hand side as the transport term and the second
term the source term, which actually may be a sink term for a negative source.

The following model is given in Cartesian coordinates.

Assumptions for region (1).

• All droplets are spherical.

• All droplets have the same radius ddr, i.e. the droplets are monodisperse.

• The hot air flows as ideal plug through the fluidized bed, i.e. we have a plug flow
tube reactor (PFTR) behavior. The flow velocity is constant everywhere.

• The droplet temperature θd is uniform throughout each droplet, i.e. Bi < 0.1, where
Bi is the Biot number which gives an index of the heat transfer resistances inside
of and at the surface of the droplet. See Appendix A.

• All droplets hit the particles before they turn into the solid state, i.e. no overspray.

Temperature of the droplet θd

The temperature of the droplet increases due to the hot air, consequently the mass and the
outer radius of every droplet decreases because of the evaporation flow. The evaporation
flow can be calculated from the formula

ṁev1 = β1ρA1Asd(Ysat1 − YA1)

= 4β1ρA1πd
2
dr(Ysat1 − YA1).

(2.10)

The temperature of a single droplet is given by the following ordinary differential equation

dθd
dt

=
1

CpL1mw + CpSmS

[
αAL(θA1 − θd)4πd2

dr − ṁev1(−CpL1θd + ∆hV,0 + CpV 1θA1)
]

(2.11)
where CpL1 and CpS are the specific heat capacity of the liquid and the specific heat ca-
pacity of the solid in the droplet respectively. The quantities mw and mS are the mass of
liquid in a single droplet and the mass of the solids inside this droplet.
The radius of the droplet ddr in the above equation is not constant. It is changing with
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2.2. DERIVATION OF THE BALANCE EQUATIONS

respect to time. To find the change of the radius of a single droplet we start with the
change of the mass m1 of a single droplet with respect to time t given by

dm1

dt
= −ṁev1. (2.12)

We have

m1 = VdrρL1 =
4

3
πρL1d

3
dr

where Vdr is the volume of a single droplet. Replacing m1 and ṁev1 in (2.12) we get

4

3
3πρL1d

2
dr

dddr
dt

= −4β1ρA1πd
2
dr(Ysat1 − YA1).

After some cancellations we obtain

dddr
dt

= −β1(Sh)ρA1

ρL1

(Ysat1 − YA1). (2.13)

Therefore equations (2.11) and (2.13) are coupled.

Mass balance of air in region (1)

Figure 2.5 illustrates the enthalpy flow of evaporated water alongside with the enthalpy
flow between the droplet and the air.
The humidity of air which enters region (1) is increasing due to the evaporation flow which
comes from the surface of the droplets. By convection the humidity is transferred in a
form of vapor to the bulk phase.

Source term: In (2.9) the source v is taken to be the evaporation flow ṁev1 from 2.10.

Transport term: The convection in the plug flow which is given by s(u) = ṁst1 can be
taken as the transport term.

Balance equation:

The humidity YA1 is given as the ratio of the vapor mass mst1 to the mass of air mA1.
Consequently we find that mst1 = YA1mA1 and ṁst1 = YA1ṁA1 where ṁA is the mass flow
rate of the air. Inserting these terms to the balance equation (2.9) leads to∫

V1

∂mst1

∂t
dV1 = −

∫
V1

∂ṁst1

∂z
H1 dV1 +

∫
V1

ṁev1 dV1.

Here H1 represents the height of region (1). For more details about deriving such an
equation the reader is referred to Heinrich [32]. Using equation (2.10) we can write∫

V1

∂(YA1mA1)

∂t
dV1 = −

∫
V1

∂(YA1ṁA)

∂z
H1 dV1 +

∫
V1

β1ρA1Adroplets(Ysat1 − YA1) dV1.
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Droplet
Air

Out ow

In ow

Figure 2.5: Heat and mass transfer on a droplet

Here Adroplets represents the surface area of all droplets. Since the integral balance holds
for arbitrary volume V1 we obtain the differential equation

mA1
∂YA1

∂t
= −ṁAH1

∂YA1

∂z
+ β1ρA1Adroplets(Ysat1 − YA1).

Dividing both sides by mA1 gives

∂YA1

∂t
= −Q1

∂YA1

∂z
+Q2(Ysat1 − YA1), (2.14)

where

Q1 =
ṁA

mA1

H1.

Q2 =
β1ρA1Adroplets

mA1

.

Energy balance of air in region (1)

Figure (2.5) shows the heat flow which occurs between the droplet and air beside the
enthalpy flow of evaporated water. The heat transfer coefficient is calculated according
to Gnielinski [26].
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Source term: Here it can be taken to be the enthalpy of the evaporation flow ḣev1

given by ḣev1 = ṁev1 (∆hV,0 + CpV 1θA1).

Sink: The sink term is the enthalpy flow between the droplet and air q̇AL1 which can be
calculated from equation (2.6).

Transport term: In equation (2.9) the transport term is the convection in the plug
flow s(u) = ḣst1.

Balance equation:

We have

hst1 = hA1 + hV 1

= mA1CpA1θA1 +mA1YA1∆hV,0 +mA1YA1CpV 1θA1,

Taking the derivative of the above formula with respect to time leads to the following
equation

∂hst1
∂t

= mA1CpA1
∂θA1

∂t
+mA1∆hV,0

∂YA1

∂t
+mA1CpV 1

(
YA1

∂θA1

∂t
+ θA1

∂YA1

∂t

)
= mA1 (CpA1 + CpV 1YA1)

∂θA1

∂t
+mA1 (∆hV,0 + CpV 1θA1)

∂YA1

∂t
.

Similarly we find

∂ḣst1
∂z

= ṁA (CpA1 + CpV 1YA1)
∂θA1

∂z
+ ṁA (∆hV,0 + CpV 1θA1)

∂YA1

∂z
.

Again, making use of equation (2.9) gives∫
V1

∂hst1
∂t

dV1 = −
∫
V1

∂ḣst1
∂z

H1 dV1 −
∫
V1

q̇AL1 dV1 +

∫
V1

ḣev1 dV1. (2.15)

Substituting
∂hst1
∂t

and
∂ḣst1
∂z

in (2.15) leads to∫
V1

(
mA1 (CpA1 + CpV 1YA1)

∂θA1

∂t
+mA1 (∆hV,0 + CpV 1θA1)

∂YA1

∂t

)
dV1

= −
∫
V1

(
ṁA (CpA1 + CpV 1YA1)H1

∂θA1

∂z
− ṁA (∆hV,0 + CpV 1θA1)H1

∂YA1

∂z

)
dV1
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−
∫
V1

αAL1Adroplets (θA1 − θd) dV1 +

∫
V1

ṁev1 (∆hV,0 + CpV 1θA1) dV1.

Replacing
∂YA1

∂t
from (2.14) we find∫

V1

mA1 (CpA1 + CpV 1YA1)
∂θA1

∂t
dV1 =

∫
V1

mA1 (∆hV,0 + CpV 1θA1)

[
ṁA

mA1

H1
∂YA1

∂z
− ṁev1

mA1

]
dV1

−
∫
V1

ṁA (CpA1 + CpV 1YA1)H1
∂θA1

∂z
dV1 −

∫
V1

ṁA (∆hV,0 + CpV 1θA1)H1
∂YA1

∂z
dV1

−
∫
V1

αAL1Adroplets (θA1 − θd) dV1 +

∫
V 1

ṁev1 (∆hV,0 + CpV 1θA1) dV1.f

After some cancellations we get∫
V1

mA1 (CpA1 + CpV 1YA1)
∂θA1

∂t
dV1 = −

∫
V1

ṁAH1 (CpA1 + CpV 1YA1)
∂θA1

∂z
dV1

−
∫
V1

αAL1Adroplets (θA1 − θd) dV1.

Since the integral equation is independent of the choice of volume we can write

mA1 (CpA1 + CpV 1YA1)
∂θA1

∂t
= −ṁAH1 (CpA1 + CpV 1YA1)

∂θA1

∂z
− αAL1Adroplets (θA1 − θd) .

Finally, dividing both sides by mA1 (CpA1 + CpV 1YA1) leads us to

∂θA1

∂t
= −Q1

∂θA1

∂z
−Q3 (θA1 − θd) , (2.16)

where

Q3 =
αAL1Adroplets

mA1 (CpA1 + CpV 1YA1)
.

18



2.2. DERIVATION OF THE BALANCE EQUATIONS

Assumptions for region (2)

• All particles are spheres.

• All particles have the same average diameter dp, i.e. the particles are monodisperse.

• The fluidized bed has a constant porosity.

• The injected liquid is completely deposited onto the particles as a film with constant
thickness F .

• A plug flow tube reactor (PFTR) behavior.

• The solid and liquid density are constants.

• The particles are ideally mixed, i.e. we have a continuous stirred-tank reactor
(CSTR) with uniform wetted particles for the one-dimensional model.

• There is no agglomeration, overspray or breakage.

• We have a non-ideal mixing of particles for the two-dimensional model with non-
uniform liquid distribution.

• Only the constant-rate period of drying (first drying period) is observed, i.e drying
from surface-wet particles.

Mass balance of the air in region (2)

The humidity which is carried with the inlet hot gas flow increases according to the
evaporation of the liquid film on the particles. The vapor is transferred into the air as a
function of mass transfer. In equation (2.9) we can take

the source term as the evaporation flow ṁev2 and

the transport term as the convection in the plug flow s(u) = ṁst2.

19



CHAPTER 2. A NEW MATHEMATICAL MODELING OF HEAT AND
MASS TRANSFER IN FLUIDIZED BEDS

Balance equation
Taking H2 as the height of region (2) and substituting the source term and the transport
term in equation (2.9) gives∫

V2

∂mst2

∂t
dV2 = −

∫
V2

∂ṁst2

∂z
H2 dV2 +

∫
V2

ṁev2 dV2.

The usage of equation (2.4) beside the fact that mst2 = YA2mA2 gives∫
V2

∂(YA2mA2)

∂t
dV2 = −

∫
V2

∂(YA2ṁA)

∂z
H2 dV2 +

∫
V2

β2ρA2Apφ(Ysat2 − YA2) dV2.

This equation can be also written in the form

∂(mA2YA2)

∂t
= −H2

∂(ṁAYA2)

∂z
+ β2ρA2Apφ(Ysat2 − YA2).

Since the mass of air is independent of time, and the mass flow rate of air is independent
of space, it is possible to write

mA2
∂YA2

∂t
= −ṁAH2

∂YA2

∂z
+ β2ρA2Apφ(Ysat2 − YA2).

After dividing the both sides of the above equation by mA2 we get

∂YA2

∂t
= −Q4

∂YA2

∂z
+Q5φ(Ysat2 − YA2), (2.17)

Q4 =
ṁA

mA2

H2.

Q5 =
β2ρA2Ap
mA2

.

Energy balance of the air in region (2)

Several studies have been done to study the distribution of the temperature of air in-
side the fluidized bed during the layering process, see e.g. Nienow and Rowe [56], Smith
and Nienow [80] and Wnukowski [91]. Here we follow Heinrich et al. [33].
As it is seen in Figure 2.4, the inlet gas comes in contact with the wetted and the unwetted
part of the particles. Due to this contact, a heat flow takes place between the unwetted
portion of the particle and air beside the heat flow which occurs between the wetted part
(liquid film) of the particle and air. The enthalpy of the evaporated water also increases
the energy of air. In equation (2.9)

the source term is the enthalpy of the evaporation flow ḣev2 = ṁev2 (∆hV,0 + CpV 2θA2),
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the sink terms are the enthalpy flow between the liquid film and air q̇AL2, enthalpy
flow between the unwetted portion and air q̇AP which can be calculated from equations
(2.6) and (2.7) respectively, while

the transport term is the convection in the plug flow s(u) = ḣst2.

Balance equation:

We have

hst2 = hA2 + hV 2

= mA2CpA2θA2 +mA2YA2∆hV,0 +mA2YA2CpV 2θA2.

Taking the derivative of both sides with respect to time leads to

∂hst2
∂t

= mA2 (CpA2 + CpV 2YA2)
∂θA2

∂t
+mA2 (∆hV,0 + CpV 2θA2)

∂YA2

∂t
.

Similarly we can write

∂ḣst2
∂z

= ṁA (CpA2 + CpV 2YA2)
∂θA2

∂z
+ ṁA (∆hV,0 + CpV 2θA2)

∂YA2

∂z
.

When we substitute the source, the sink and the transport terms in the balance equation
(2.9) we obtain the following balance∫

V2

∂hst2
∂t

dV2 = −
∫
V2

∂ḣst2
∂z

H2 dV2 −
∫
V2

q̇AL2 dV2 −
∫
V2

q̇AP dV2 +

∫
V2

ḣev2 dV2, (2.18)

Replacing the integrands in the above equation gives∫
V2

(
mA2 (CpA2 + CpV 2YA2)

∂θA2

∂t
+mA2 (∆hV,0 + CpV 2θA2)

∂YA2

∂t

)
dV2

= −
∫
V2

(
ṁA (CpA2 + CpV 2YA2)H2

∂θA2

∂z
− ṁA (∆hV,0 + CpV 2θA2)H2

∂YA2

∂z

)
dV2

−
∫
V2

αAL2Apφ (θA2 − θL) dV2 −
∫
V2

αAPAp(1− φ) (θA2 − θP ) dV2

+

∫
V2

ṁev2 (∆hV,0 + CpV 2θA2) dV2.

Replacing
∂YA2

∂t
from (2.17), and after some cancellations we get∫

V2

mA2 (CpA2 + CpV 2YA2)
∂θA2

∂t
dV2 = −

∫
V2

ṁAH2 (CpA2 + CpV 2YA2)
∂θA2

∂z
dV2
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−
∫
V2

αAL2Apφ (θA2 − θL) dV2 −
∫
V2

αAPAp(1− φ) (θA2 − θP ) dV2.

The heat transfer coefficient between air and the dry portion of the particle αAP as well
as between the liquid film and air αAL are assumed to be equal as in Groenewold [29], i.e.
αAP = αAL = α.
Taking into consideration that the integral balance holds for arbitrary volume V2 and
after dividing the both sides by mA2 (CpA2 + CpV 2YA2) we obtain

∂θA2

∂t
= −Q4H2

∂θA2

∂z
−Q6 [φ (θA2 − θL) + (1− φ) (θA2 − θP )] , (2.19)

where

Q6 =
αAp

mA2 (CpA2 + CpV 2YA2)
.

Energy balance of the particles

Assuming that the heat transfer coefficient between air and the dry portion of the particle
is equal to the heat transfer coefficient between air and the liquid film, i.e. αAL = αAP = α
we introduce a corrective factor f as follows

f =
αPL
α
.

This dimensionless factor is known as the heat transfer ratio.
The heat flow which takes place between the particles and liquid film as well as be-
tween the unwetted part of the particles and air beside the intensity of dispersion cause a
temporal change to the enthalpy of the particles. Making use of equation (2.9) we consider

the source term as the heat transfer between the unwetted portion of the particles
and air q̇AP ,

the sink term as the heat transfer between the liquid film and the particles q̇PL which
can be found from (2.5), while

the transport term as the particle conduction s(u) = −D∇hp, where D is the con-
duction matrix.

Balance equation:

Substituting these terms in equation (2.9) we get∫
V2

∂hp
∂t

dV2 =

∫
V2

∇ · (D∇hp) dV2 +

∫
V2

q̇AP dV2 −
∫
V2

q̇PL dV2,

where the enthalpy of the solids hp is given as hp = mpCpP θP . Here CpP and mp are
the specific heat capacity and the total mass of the particles respectively. Replacing the
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integrands in the above equation leads us to the following balance∫
V2

∂(mpCpP θP )

∂t
dV2 =

∫
V2

∇ · (D∇(mpCpP θP )) dV2 +

∫
V2

αAPAp(1− φ)(θA2 − θP ) dV2

−
∫
V2

αPLApφ(θP − θL) dV2.

This equation can be also written in the form

mpCpP
∂θP
∂t

= mpCpP∇ · (D∇θP ) + αAPAp(1− φ)(θA2 − θP )− αPLApφ(θP − θL).

Dividing both sides by mpCpP and the usage of the heat transfer ratio f leads to the
following PDE

∂θP
∂t

= ∇ · (D∇θP ) +Q7 [(1− φ)(θA2 − θP )− fφ(θP − θL)] , (2.20)

where

Q7 =
αAp
mpCpP

.

Mass balance of water

The maximal liquid mass inside the fluidized bed is reached when the surface areas of all
particles are covered with liquid film, i.e. the particles are 100% wetted. In this case the
maximum liquid concentration per volume element is given as

ρL,max = A∗p(1− ε)FρL.

It would be very effective from the energic point of view if the particles are completely
or almost completely wetted, but in fact this may leads to undesired results where small
particles may tend to agglomerate. Therefore these wet conditions should be taken into
account in experiments.
In our new model the sprayed liquid loses some of its amount due to the evaporation
which takes place when the droplets pass through region (1). In equation (2.9) we can
take

the source term to be the effective mass flow ṀLV,eff which is given by ṀLV,eff =
ṀLV − ṁev1, where ṀLV is the mass flow of the drop deposition ,

the sink term to be the evaporation flow ṁev2 and

the transport term to be the particle conduction s(u) = −D∇MLP , where MLP =
ApφFρL2.
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Balance equation:

Replacing these terms in equation (2.9) gives∫
V2

∂MLP

∂t
dV2 =

∫
V2

∇ · (D∇MLP ) dV2 −
∫
V2

ṁev2 dV2 +

∫
V2

ṀLV,eff dV2.

Substituting in the previous equation∫
V2

∂(ApφFρL2)

∂t
dV2 =

∫
V2

∇ · (D∇(ApφFρL2)) dV2 −
∫
V2

β2ρA2Apφ(Ysat2 − YA2) dV2

+

∫
V2

ṀLV,eff dV2.

It is also possible to write this equation in the following form

ApFρL2
∂φ

∂t
= ApFρL2∇ · (D∇φ)− β2ρA2Apφ(Ysat2 − YA2) + ṀLV,eff .

Dividing both sides by ApFρL2 leads to

∂φ

∂t
= ∇ · (D∇φ)−Q8φ(Ysat2 − YA2) +Q9ṀLV,eff , (2.21)

where

Q8 =
β2ρA2

FρL2

,

Q9 =
1

ApFρL2

.

Energy balance of Water

The sprayed liquid enters region (1) with a specific temperature and then it changes
after passing through this region as we saw in equation (2.11) and enters region (2) with
another temperature θd,end. The droplets then hit and deposit on the surfaces of the
particles as a film. The temperature of this liquid film is influenced by the dispersion of
the particles, the heat flow between the liquid film and air q̇AL, the heat flow between the
liquid film and the particle q̇PL, the enthalpy flow brought by the liquid into the bed ḣdr
as well as the enthalpy of evaporation ḣev. Again we replace the source term, the sink
term and the transport term in the equation (2.9) where

the source terms here are ḣdr, q̇PL, q̇AL , where ḣdr = ṀLV,effCpL2θd,end,

the sink term is the enthalpy of evaporation flow ḣev, where
ḣev = ṁev2(∆hV,0 + Cp,V 2θA2) = β2ρA2Apφ(Ysat − YA2)(∆hV,0 + CpV 2θA2) and
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the transport term is the particle conduction s(u) = −D∇hL, where
hL = mLCpL2θL = VLρL2CpL2θL = ApφFρL2CpL2θL.

Balance equation:

Inserting these terms to the balance equation (2.9) leads us to∫
V2

∂hL
∂t

dV2 =

∫
V2

∇ · (D∇hL) dV2 +

∫
V2

q̇AL dV2 +

∫
V2

q̇PL dV2 +

∫
V2

ḣdr dV2 −
∫
V2

ḣev dV2,

Substituting the integrands in the above equation gives∫
V2

∂(ApφFρL2CpL2θL)

∂t
dV2 =

∫
V2

∇·(D∇(ApφFρL2CpL2θL)) dV2+

∫
V2

αALApφ(θA2−θL) dV2

+

∫
V2

αPLApφ(θP − θL) dV2 +

∫
V2

ṀLV,effCpL2θd,end dV2

−
∫
V2

β2ρA2Apφ(Ysat2 − YA2)(∆hV,0 + CpV 2θA2) dV2.

The integral balance holds for arbitrary V2 so we can write the previous equation in the
form

ApFρL2CpL2
∂(φθL)

∂t
= ApFρL2CpL2∇ · (D∇(φθL)) + αALApφ(θA2 − θL)

+ αPLApφ(θP − θL)− β2ρA2Apφ(Ysat − YA2)(∆hV,0 + CpV 2θA2) + ṀLV,effCpL2θd,end.

Inserting the corrective factor f and dividing the both sides by the term ApFρL2CpL2

leads to the partial differential equation for liquid film temperature

∂(φθL)

∂t
= ∇ · (D∇(φθL)) +Q10 [φ(θA2 − θL) + fφ(θP − θL)]

−Q11φ (Ysat2 − YA2) (∆hV,0 + CpV 2θA2) +Q12ṀLV,eff , (2.22)

where

Q10 =
α

FρL2CpL2

,

Q11 =
β2ρA2

FρL2CpL2

,

Q12 =
θd,end
ApFρL2

.

25



CHAPTER 2. A NEW MATHEMATICAL MODELING OF HEAT AND
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2.2.1 Total balance equations

In fluidized beds it is possible to find the outlet humidity and the outlet temperature of
air at the steady state through the total balance equations.
Humidity of air: The outlet air humidity can be found by knowing the values of the
inlet air humidity, mass flow of the liquid and the mass flow of air as follows

YA,out = YA,in +
ṀL

ṁA

. (2.23)

Temperature of air: The outlet temperature of air can be also found through the
balance of the enthalpies inside the chamber. The balance equation for the temperature
of air is

θA,out =
ṁA(CpA + YA,inCpV )θA,in + ṀL(CpLθL,in −∆hV,0)

ṁA(CpA + YA,outCpV )
. (2.24)

These two balance equations are needed to check the numerical results at the steady state.

2.3 Boundary conditions

Region (1): As it is seen in Figure 2.6 the surface of the fluidized bed at region (1) is
divided into 3 surfaces such that

∂Ω = ∂Ω1 + ∂Ω2 + ∂Ω3,

where
∂Ω1 represents the bottom surface,
∂Ω2 the side wall,
∂Ω3 the top surface.

The bottom surface: Here hot and humid air comes from region (2) to region (1)
passing the surface ∂Ω1, so Dirichlet boundary conditions can be assumed for the bottom
surface of region (1), i.e.

YA1 = YA1,in on ∂Ω1,
θA1 = θA1,in on ∂Ω1,

where YA1,in, θA1,in ∈ R are given constants.

The side wall: For simplicity we assume that the heat exchange between the bed and the
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Figure 2.6: Initial and boundary conditions

wall of the apparatus is ignored, so it is possible to say that the gradient at the wall is zero.

The top surface: Since the boundary here is an outflow boundary, equations (2.14)
and (2.16) have no boundary conditions.

Region (2): Similarly as it is seen in Figure 2.6 the surface of the fluidized bed at region
(2) is also divided into 3 surfaces such that

∂Ω′ = ∂Ω′1 + ∂Ω′2 + ∂Ω′3,

where
∂Ω′1 represents the bottom surface,
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∂Ω′2 the side wall,
∂Ω′3 the top surface.

The bottom surface: The hot fluidizing gas passes the porous plate carrying vapour to
the top of the bed, so again the boundary conditions for equations (2.17) and (2.19) are
given as

YA2 = YA2,in on ∂Ω′1,
θA2 = θA2,in on ∂Ω′1.

It is assumed that the heat transfer at the distributor plate is disregarded, so there is
no flux for the degree of wetting, temperature of particles and temperature of liquid film,
i.e.

n ·D∇φ = 0 on ∂Ω′1,
n ·D∇θP = 0 on ∂Ω′1,
n ·D∇θL = 0 on ∂Ω′1.

The side wall: In general, the wall effects the temperature inside the bed, it can absorb
temperature to increase its temperature or radiate temperature to decrease it. For our
model we assume that the heat exchange between the wall and the bed is neglected, so
we can write the boundary condition at the side wall as following

n ·D∇θP = 0 on ∂Ω′2,
n ·D∇θL = 0 on ∂Ω′2.

The wall of the apparatus is impervious, so there is no flux of degree of wetting, i.e.

n ·D∇φ = 0 on ∂Ω′2.

The top surface: This surface is described as the outflow surface, consequently equa-
tions (2.17) and (2.19) have no boundary condition. Also there is no flux for the degree
of wetting, temperature of liquid and temperature of particles. The boundary conditions
at the top surface for the equations (2.20), (2.21) and (2.22) are

n ·D∇φ = 0 on ∂Ω′3,
n ·D∇θP = 0 on ∂Ω′3,
n ·D∇θL = 0 on ∂Ω′3.
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2.4. TWO DIMENSIONAL MODEL FOR THE LIQUID DEPOSITION
INTO THE FLUIDIZED BED

2.4 Two dimensional model for the liquid deposition

into the fluidized bed

In the sprayed region, droplets hit the particles and deposit on their surfaces. Practically
particles close to the nozzle will be wetted more than those which are further from the
nozzle orifice. The nearest particles to the distributor plate get the least amount of liquid
in the sprayed region. This comes from the fact that particles close to the nozzle form a
shelter allowing a lower amount of liquid to arrive on the particles that are further away
[11]. Due to this fact, the temperature and the humidity are influenced by the spatial
distribution of the sprayed liquid inside the chamber. The spraying area is influenced by
both the impingement efficiency and the dispersion angle of the spray. The dispersion
angle θnozz depends on the nozzle used. The impingement efficiency ηim refers to the
ability of having contact between a droplet and a particle.

2.4.1 Liquid deposition on a single particle surface

At certain air velocities, droplets accelerated by the nozzle cannot follow the streamlines
anymore and deposit on the surface of the particles when their trajectories intersect.
After the collision between a droplet and a particle, the droplet can either be absorbed
by the particle or rebound. The deposition efficiency φdep is given as the product of the
impingement efficiency ηim and the adhesion probability had, see Löffler [45],

φdep = ηimhad. (2.25)

Link and Schlünder [44] introduced a critical impingement velocity Vcrit for horizontal,
dry, non-porous surfaces given by

Vcrit =
4ηdr [3 tan(δs/2) + tan3(δs/2)]

2/3

ddrρdr tan2(δs/2)
, (2.26)

where δs is the contact angle. Contact angles with δs < 90◦ lead to high wetting systems,
while contact angles with δs > 90◦ correspond to poorly wetting systems. Up to the
critical velocity, droplets will adhere and spread on the particle surface, above this value
droplets will rebound.

Impingement efficiency: For a single particle, the impingement efficiency is given as
the ratio of the effective cross section, droplets will collide with the particle within this
area, to the projection area of the particle, see Figure 2.7,

ηim =

(
dim
dp

)2

. (2.27)

In this equation dim is unknown. However, Schuch [72] introduced an alternative formula
using the Stokes number

ηim =

(
St

St+ 2a

)b
.
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Boundary particle trajectory

Streamlines

Figure 2.7: Collision of a droplet and a particle

The number St is the Stokes number given by

St =
ρdrVgasd

2
dr

18ηAdp
. (2.28)

The numbers a, b are parameters that can be found in [33]. From (2.27) and (2.28) it is
obvious that increasing the size of the droplets leads to an increase in the impingement
efficiency, as well as the increase of the atomizing air flow rate.

Adhesion probability: The ratio of droplets which collide with particles and are
captured on the surfaces of these particles is referred to as the adhesion probability. Sev-
eral factors affect the adhesion probability such as liquid properties, the structure of the
particle surface, the kinetic energy of the droplets, wetting and spreading properties as
well as the collision angle. Up to the critical impingement velocity, the adhesion proba-
bility can be assumed to be one. The adhesion probability decreases with the increase of
the droplets size, the droplet temperature, as well as with increase of the droplet velocity
above the critical impingement velocity at which droplets start to rebound. In this case
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the adhesion probability can be determined according to Link [43].
According to Löffler [45], the change of the concentration of droplets in fluidized beds
with respect to the height of the bed is given by the following formula

− dκ

κ
= 1.5

ε

1− ε
φdep
dp

dHNd

or

Cdr =
κ

κ0

= exp

(
−1.5

ε

1− ε
φdep
dp

HNd

)
.

Here κ0 is the initial concentration and HNd is the distance from the nozzle.
As seen in Figure 2.8, most of the injected liquid droplets deposit on the particles surfaces
which are very close to the nozzle, while particles which are further away get a very small
amount of liquid because the closed particles form a shelter preventing a large amount
of liquid to reach the further particles. It is also obvious that increasing the porosity of
the bed leads to an increase in the concentration. Figure 2.9 illustrates that the droplet
concentration rises when the diameter of particles increases.
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Figure 2.8: Influence of porosity on
the droplet concentration
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Figure 2.9: Influence of particle diame-
ter on the droplet concentration

Assumptions:

• The spraying region forms a right circular cone.

• The velocity of droplets udr is considered to be constant until the droplets adhere
to the particles surfaces.

• The liquid within the spraying region is assumed to be evenly distributed. Out of
the spraying region the concentration is taken to be zero.
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Figure 2.10: Polar coordinate of the nozzle

• The particles and the droplets are spheres.

• The deposition efficiency φdep is considered to be constant.

• The polar coordinates (r, θ) are taken in order to find the spatial drop concentration
distribution. Here θ represents the angle of the cone, see Figure 2.10.

The average drop path length can be taken as

SNd =
2

3

ε

1− ε
dp
φdep

, (2.29)

see [33]. The drop concentration flow can be expressed as

κ̇(x) =

κ̇(r, θ) if R < r,
3π

2
− θNozz

2
≤ θ ≤ 3π

2
+
θNozz

2
,

0 otherwise.
(2.30)

Here R is the radius of the circle centered at the nozzle position. We assume for the
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Nozzle center

Nozzle axis

Figure 2.11: The nozzle spray

modeling that this circle does not contain any particles. The balance equation of the drop
concentration in the polar coordinates is

∂κ

∂t
= −∇ · (κudr)− κ̇, (2.31)

where κ̇ is the lost drop concentration flow due to the deposition of particles surfaces and
udr = udrer is the velocity of droplets, where er is the unit vector in the radial direction.
For the divergence ∇ · (κudr) we can write

∇ · (κudr) = ∇ · (κudrer)
= udr (er · ∇κ+ κ∇ · er) .

(2.32)

We have the relation

er · ∇κ = er ·
(
er
∂κ

∂r
+ eθ

1

r

∂κ

∂θ

)
= (er · er)

∂κ

∂r
+ (er · eθ)

1

r

∂κ

∂θ

=
∂κ

∂r
.
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Similarly, we obtain,

κ · ∇er = κ ·
(
er ·

∂er
∂r

+
1

r
eθ ·

∂er
∂θ

)
= κ ·

(
er · 0 +

1

r
eθ · eθ

)
=
κ

r
.

Substituting in equation (2.32) leads to

∇ · (κudr) = udr

(
∂κ

∂r
+
κ

r

)
.

The balance equation (2.31) can be written now as

∂κ

∂t
= −udr

(
∂κ

∂r
+
κ

r

)
− κ̇. (2.33)

Due to equation (2.29) the following holds

κ̇ =
udr
SNd

κ. (2.34)

Substituting in the balance equation gives

∂κ

∂t
= −udr

(
∂κ

∂r
+
κ

r

)
− udr
SNd

κ. (2.35)

Here we solve the above equation in the stationary case where
∂κ

∂t
= 0. This leads after

canceling the velocity to the following ODE

dκ

dr
= −

(
1

r
+

1

SNd

)
κ. (2.36)

The general solution of this ODE is given as

κ = C(θ)
exp(− r

SNd
)

r
, (2.37)

where C(θ) ∈ R.
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2.4.2 Mass balance of spraying

The mission here is to determine the constant C(θ). The liquid flow ṁdr(r) passes through
the spraying region, this flow can be found as following.

ṁdr(r) =

∫
S

κ(x)udr dn

=

3π
2

+
θNozz

2∫
3π
2
− θNozz

2

C(θ)
exp(− r

SNd
)

r
udrrdθ

= C(θ)udrθNozz exp(− r

SNd
)

The liquid mass flow ṀL can be determined by taking the limit of both sides when
r −→ R.

ṀL = lim
r→R

ṁdr(r) = C(θ)udrθNozz exp(− R

SNd
).

Consequently we get

C(θ) =
ṀL

udrθNozz exp(− R
SNd

)
.

Substituting in (2.37)

κ =
ṀL

udrθNozz exp(− R
SNd

)

exp(− r
SNd

)

r
.

Replacing in(2.34) we get

κ̇ =
ṀL

θNozzSNd

exp(− r−R
SNd

)

r
, (2.38)

where

ṀL =

∫
R2

κ̇dX (2.39)

2.5 Invariant regions

In this section we follow the analysis in Nagaiah [52] which was based on Smoller [81].
Note that our model has the following difference in comparison to the one in Nagaiah
[52]. In our model the mass flow rate ṀL is not constant unlike in Nagaiah [52] where
the mass flow rate is supposed to be constant and not influenced by the heat. Also in
our model the temperature of the inlet liquid θd,end is influenced by the humidity and the
temperature of air.
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Invariant regions are very useful to study dynamical systems in order to determine prop-
erties such as the large time behavior of trajectories (solutions) as well as stability.

Definition 1. A set O is called invariant set if every solution of the the differential
equation ẋ = f(x) passing through any point of O lies completely in O, in another word, a
subset O ⊆ E is invariant set under the mapping Ψt : E→ E if for all x ∈ E, Ψt(x) ∈ O,
i.e. Ψt(O) ⊆ O for all t. If this condition holds for t ≥ 0 then O is called a positively
(forwardly) invariant region.

Here we consider an invariant region of the form∏
=

i=n⋂
i=1

{υ ∈ Q : Zi(υ) ≤ 0} , (2.40)

where Q ⊆ Rm, Zi are smooth real valued functions defined on open subsets of Q and for
each i, the gradient ∇Zi does not vanish, see Smoller [81].

Definition 2. The smooth function Z : Rn → R is called quasi-convex at υ if whenever
∇Zυ · ζ = 0, then the Hessian H of Z is positive, i.e. HZυ(ζ, ζ) ≥ 0.

Now we take an open interval Ω in R, the n × n matrix-valued functions D = D(υ, x),
M = M(υ, x) defined on an open subset in Rn × Ω and the smooth n−vector function
F .

Consider the system

∂υ

∂t
= Dυxx +Mυx + F(υ) (x, t) ∈ Ω× R+, (2.41)

together with the initial condition

υ(x, 0) = υ0(x), x ∈ Ω. (2.42)

Our model in region (2) can be written in the matrix form as above as follows
YA2

θA2

θP
φ
φθL


t

=


0 0 0 0 0
0 0 0 0 0
0 0 D 0 0
0 0 0 D 0
0 0 0 0 D



YA2

θA2

θP
φ
φθL


xx

+


−Q4 0 0 0 0

0 −Q4 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



YA2

θA2

θP
φ
φθL


x

+


+Q5φ(Ysat2 − YA2)

−Q6 [φ (θA2 − θL) + (1− φ) (θA2 − θP )]
+Q7 [(1− φ)(θA2 − θP )− fφ(θP − θL)]

−Q8φ(Ysat2 − YA2) +Q9ṀLV,eff

+Q10 [φ(θA2 − θL) + fφ(θP − θL)]−Q11φ (Ysat2 − YA2) (∆hV,0 + CpV 2θA2) +Q12ṀLV,eff

 .

In comparison between the previous two forms we see that
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υ = (YA2, θA2, θP , φ, φθL)

D = diag(0, 0, D,D,D)

M = diag(−Q4,−Q4, 0, 0, 0)

F(υ) =


Q5φ(Ysat2 − YA2),

−Q6 [φ (θA2 − θL) + (1− φ) (θA2 − θP )]
Q7 [(1− φ)(θA2 − θP )− fφ(θP − θL)]

−Q8φ(Ysat2 − YA2) +Q9ṀLV,eff

Q10 [φ(θA2 − θL) + fφ(θP − θL)]−Q11φ (Ysat2 − YA2) (∆hV,0 + CpV 2θA2) +Q12ṀLV,eff

 .

It is obvious that Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, f, ṀLV,eff ,∆hV,0, CpV 2 > 0,

also 0 ≤ YA2 ≤ Ysat2, 0 ≤ θA2 ≤ X, 0 ≤ θP ≤ X, 0 ≤ φ ≤ 1, 0 ≤ θL ≤ X, where

X represents the inlet air temperature.

Theorem 2.5.1. Let
∏

be defined by (2.40), and suppose that for all t ∈ R+ and for
every υ0 ∈ ∂

∏
, so Zi(υ) = 0 for some i, the following conditions hold:

1. ∇Zi at υ0 is a left eigenvector of D(υ0, x), and M(υ0, x), for all x ∈ R.

2. If ∇ZiD(υ0, x) = µ∇Zi, with µ 6= 0, then Zi is quasi-convex at υ0.

3. ∇Zi · F ≤ 0 at υ0, for all t ∈ R+.

Then
∏

is invariant for (2.41).

Proof. See Smoller [81].

Since the process in region (1) is completely dependent on the process in region (2), it is
enough to study the invariant region for the process in region (2).

Lemma 2.5.2. Let
∏

be defined as follows∏
= {YA2, θA2, θP , φ, θL : 0 ≤ YA2 ≤ Ysat2, 0 ≤ θA2, θP , θL ≤ X, 0 ≤ φ ≤ 1}.

Under the conditions

YA2 ≥ Ysat2 −
1

Q11φ(∆hV,0 + CpV 2θA2)

{
Q10 {φθA2 + fφθP}+Q12ṀLV,eff

}
at θL = 0,

θL ≤ X − 1

fφ
(1− φ)(θA2 −X) at θP = X.
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YA2 ≤ Ysat2 −
Q9

Q8

ṀLV,eff at φ = 1

YA2 ≤ Ysat2 −
1

Q11φ(∆hV,0 + CpV 2θA2)

{
Q10 {φ(θA2 −X) + fφ(θP −X)}+Q12ṀLV,eff

}
at θL = X, the system (2.41) has an invariant region.

Proof. Let

Z1(u) = −YA2, Z2(u) = −θA2, Z3(u) = −θP , Z4(u) = −φ,

Z5(u) = −θL, Z6(u) = YA2 − Ysat2, Z7(u) = θA2 −X,

Z8(u) = θP −X, Z9(u) = φ− 1, , Z10(u) = θL −X.

In this case the gradients are

∇Z1 =


−1
0
0
0
0

 ,∇Z2 =


0
−1
0
0
0

 ,∇Z3 =


0
0
−1
0
0

∇Z4 =


0
0
0
−1
0

 ,∇Z5 =


0
0
0
0
−1

 ,

∇Z6 =


1
0
0
0
0

 ,∇Z7 =


0
1
0
0
0

 ,∇Z8 =


0
0
1
0
0

∇Z9 =


0
0
0
1
0

 ,∇Z10 =


0
0
0
0
1

 .

In order to prove that
∏

is an invariant region we need to verify the three conditions
of the Theorem 2.5.1. The eigenvalues of the diagonal matrix D(υ0, x) are {0, D}. The
eigenspace corresponding to λ = 0 is given by

span




1
0
0
0
0

 ,


0
1
0
0
0


 ,

while the eigenspace corresponding to λ = D is given by

span




0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1


 .
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From above we find that all ∇Zi for i = 1, · · · , 10 are left eigenvectors of D(υ0, x). Simi-
larly we find that the eigenvalues of the matrixM(υ0, x) are {0,−Q4}. The eigenvectors
corresponding to λ = 0 are 

0
0
1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1

 ,

while the eigenvectors corresponding to λ = −Q4 are
1
0
0
0
0

 ,


0
1
0
0
0

 .

This means again that the vectors ∇Zi are left eigenvectors of M(υ0, x). The second
condition of Theorem 2.5.1 holds automatically. Now we need to check the last condition.
The equality Z1(υ) = −YA2 implies that

∇Z1 · F |YA2=0= −Q5φ(Ysat2 − YA2) |YA2=0= −Q5φYsat2 ≤ 0.

Similarly Z2(υ) = −θA2 implies

∇Z2 · F |θA2=0 = (−1) {−Q6 {φ (θA2 − θL) + (1− φ) (θA2 − θP )}} |θA2=0

= Q6 {φ (−θL) + (1− φ) (−θP )} ≤ 0.

For Z3(υ) = −θP we obtain

∇Z3 · F |θP=0 = (−1) {Q7 [(1− φ)(θA2 − θP )− fφ(θP − θL)]} |θP=0

= (−1) {Q7 [(1− φ)θA2 − fφ(−θL)]} ≤ 0.

Again for Z4(υ) = −φ we have

∇Z4 · F |φ=0 = (−1)
{
−Q8φ(Ysat2 − YA2) +Q9ṀLV,eff

}
|φ=0

= (−1)
{
Q9ṀLV,eff

}
≤ 0.

Setting Z5(υ) = −θL gives
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∇Z5 · F |θL=0

= (−1)

{
Q10 [φ(θA2 − θL) + fφ(θP − θL)]−Q11φ (Ysat2 − YA2) (∆hV,0 + CpV 2θA2)

+Q12ṀLV,eff |θL=0

}
= (−1)

{
Q10 [φθA2 + fφθP ]−Q11φ (Ysat2 − YA2) (∆hV,0 + CpV 2θA2) +Q12ṀLV,eff

}
.

Due to the assumption of the lemma, the right hand side of the above equation is less
than zero, i.e. ∇Z5 · F |θL=0≤ 0.

Now for Z6(υ) = YA2 − Ysat2 we obtain

∇Z6 · F |YA2=Ysat2= Q5φ(Ysat2 − YA2) |YA2=Ysat2= 0.

If we set Z7(υ) = θA2 −X then we have

∇Z7 · F |θA2=X = {−Q6 {φ (θA2 − θL) + (1− φ) (θA2 − θP )}} |θA2=X

= {−Q6 {φ (X − θL) + (1− φ) (X − θP )}} ≤ 0.

Similarly Z8(υ) = θP −X leads to

∇Z8 · F |θP=X = Q7 [(1− φ)(θA2 − θP )− fφ(θP − θL)] |θP=X

= Q7 [(1− φ)(θA2 −X)− fφ(X − θL)] .

From the assumption of the lemma we find that ∇Z8 · F |θP=X≤ 0.

Again for Z9(υ) = φ− 1 we have

∇Z9 · F |φ=1 =
{
−Q8φ(Ysat2 − YA2) +Q9ṀLV,eff

}
|φ=1

=
{
−Q8(Ysat2 − YA2) +Q9ṀLV,eff

}
.

According to the condition in the statement of the lemma we see that ∇Z9 · F |φ=1≤ 0.

Finally for Z10(υ) = θL −X we get

∇Z10 · F |θL=X
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=

{
Q10 [φ(θA2 − θL) + fφ(θP − θL)]−Q11φ (Ysat2 − YA2) (∆hV,0 + CpV 2θA2)

+Q12ṀLV,eff |θL=X

}
= Q10 [φ(θA2 −X) + fφ(θP −X)]−Q11φ (Ysat2 − YA2) (∆hV,0 + CpV 2θA2) +Q12ṀLV,eff .

Due to the assumption of the lemma, the right hand side of the above equation is less
than zero, i.e. ∇Z10 · F |θL=X≤ 0.

In comparison with the previous model of Heinrich and Nagaiah we notice, e.g. that the
outlet humidity in the new model is less than that one presented by Heinrich and Nagaiah
for the same parameters. This comes from the fact that the droplets loose some of their
mass in region (1) due to the evaporation.
The difference between the outlet humidity of air of the both cases can be calculated as
follows

YA,out,old − YA,out,new =
ṁev1

ṁA

,

where YA,out,old, YA,out,new are the outlet humidity of air of the old and the new model
respectively, ṁev1 is the evaporation flow and ṁA is the mass flow rate of the air. Also
the evaporation which takes place in region (1) causes decreasing in the degree of wetting
which also effects at the same time the temperature of each of the air, the particles as
well as the liquid film as we shall see later.
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Chapter 3

Spray Drying Process

3.1 Introduction

In this chapter we study the so-called spray drying process. This process is similar to
the process that takes place in region (1) as explained in Chapter 2. Here we study this
process for longer time for droplets inside the chamber.

Atomizer

Spray to be dried  

Inlet hot air

Discharge tube

Drying chamber

Figure 3.1: Spray dryer

Definition 3. The spray drying process is a method used to convert slurry or nano-sized
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particles included in liquid into a dry powder.

In this process the liquid to be dried is atomized to small droplets, these droplets have
contact with a hot gas as shown in Figure 3.1. Due to this contact a mass and heat
transfer between the droplets and the hot air takes place. The hot gas causes the droplets
to evaporate. Moisture is transferred to the bulk phase leaving solid particles.
The process of spray drying depends completely on the evaporation of liquid content and
has wide applications such as:

Food production: vitamins, enzymes, milk powder.

Industrial purposes: ceramic materials, polyvinyl chloride.

Pharmaceutical industry: antibiotics.

Agricultural chemicals: herbicides, fungicides.

The spray drying process provides a flexible control over some properties of the prod-
uct such as the size and the density. The drying rate is related to the liquid to be dried,
temperature of the droplets, and the size of the droplets. While the size of the droplets
is related to the design of the atomizer.
Several studies were made to depict the changes which take place during the process.
These changes are related to temperature of the droplets, their concentration, their move-
ment inside the spraying region, and aggregation of nano-sized solids inside the droplets.
Contributions to this research can be found in [31, 73, 49, 27, 5, 86, 20, 16, 59].
Single droplet models were assumed in the all previous studies. These models focused
on temperature, diameter, concentration of a single droplet, as well as aggregation of
nano-particles inside the droplet.

3.2 Mechanism of the process

Liquid to be dried is atomized into small droplets by a convenient atomizer. The dryer
is provided with an air disperser. Consequently the droplets and the hot gas will be in
contact. Due to this contact a heat and mass transfer will take place in the drying cham-
ber. Mass transfer can be represented as the evaporation of the solvent. This process
lasts until there is no solvent on the surface of the droplet or inside it and the product
is discharged through a discharge tube. The whole process can be summarized into three
distinct periods.

Warm-up period

In this period the temperature of the droplets starts to increase from the initial tem-
perature t0 until it reaches the wet bulb temperature of the dry gas t1. Evaporation starts
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at the droplet surface.

First drying period

In this period the temperature of the droplet is close to the wet bulb temperature, and
droplets start to shrink due to the evaporation at surface where the diameter decreases
from the initial diameter value R0 to R1. The temperature stays constant because the
added heat is consumed by evaporation. This period lasts until the solvent is completely
evaporated and a very thin solid shell starts to be formed at the surface of the droplet.
At this point the second drying period starts.

Second drying period

This period starts when a solid crust begins to appear at the surface of the droplet.
In this period the mass and the heat transfer are reduced due to the decrease of the
drying rate. The droplet is now divided into two regions: the outer porous solid crust
at the surface and the inner wet core. The outer diameter is constant during this period
while the inner diameter decreases from Ri,0 to Ri,1 according to the evaporation which
occurs through the inner boundary. This period ends when the moving boundary arrives
at the center of the particle, i.e. when the particle is completely dry. It forms a compact
particle, an extremely porous medium if the radius of the droplet at the end of the first
drying period Rd,e

Rd,e >

(
3ms

4 ∗ π(1− ε)ρs

)1/3

. (3.1)

Or it may be a hollow sphere if

Rd,e =

(
3ms

4 ∗ π(1− ε)ρs

)1/3

.

Figure 3.2 illustrates the three periods of the drying process.

3.3 Mathematical models of the process

In this section we study the change of water mass fraction, solid mass fraction, concen-
tration, temperature of the droplets as well as the aggregation of the nano-sized particles
inside the droplets. Here it is assumed that the droplets atomized by the nozzle are
spheres with an initial radius R0.
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Figure 3.2: Droplet drying periods

3.3.1 Basic variables

Here we introduce some basic variables which are needed in the mathematical model. In
a mixture of many substances with total mass mtot, total volume vtot, and total density
ρtot we can define the following quantities.

Mass fraction: This quantity is defined as the ratio of the mass of the component i
to the total mass, i.e.

Xi =
mi

mtot

,

where
mtot =

∑
i

mi.

Taking the summation of all components gives∑
i

Xi =
∑
i

mi

mtot

= 1.

Mass concentration: The concentration of a substance in a mixture is known as the
ratio of the mass of the component i to the total volume, i.e.

Ci =
mi

vtot
. (3.2)

Again the summation of the concentrations of all components gives∑
i

Ci =
∑
i

mi

vtot
=
mtot

vtot
= ρ.

For a mixture consisting of two components, like water and a binder, the mass fraction
of the water is

Xl =
ml

mtot

, (3.3)
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while the mass fraction of the binder is given as

Xb =
mb

mtot

. (3.4)

From the above two equations we find that

Xl +Xb =
ml

mtot

+
mb

mtot

= 1, (3.5)

where the total mass in this case is equal to the summation of the masses of the both
components.
The concentration of the water in the mixture is given as

Cl =
ml

vtot
. (3.6)

The concentration of the binder is
Cb =

mb

vtot
.

The relation between the mass fraction and the concentration can be found as follows.
From equation (3.3) we have

ml = Xlmtot.

Substituting into equation (3.6) leads to

Cl =
Xlmtot

vtot
. (3.7)

Since the density of the mixture ρ is given as the ratio of the total mass to the total
volume of the mixture equation (3.7) can be written in the form

Cl = Xlρ.

Similarly we can find that
Cb = Xbρ.

3.3.2 Change of the water mass fraction

Due to the evaporation of water from the surface of the droplets the water mass fraction
must be changed. This change is given by Fick’s low of diffusion in the following partial
differential equation which is given in the spherical coordinates

∂Xl

∂t
=

1

r2

∂

∂r

(
r2γl

∂Xl

∂r

)
, 0 ≤ t <∞, 0 ≤ r ≤ R(t) (3.8)

with the homogeneous Neumann inner boundary condition

∂Xl

∂r
= 0, at the center of the droplet (3.9)
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To find the outer boundary condition we note that the solid mass of the droplet is constant
with respect to time, i.e.

dmb

dt
= 0.

But from equation (3.4) we find

mb = Xbmtot.

Substituting into the previous equation we get

d

dt
(Xbmtot) = 0

The total mass of the mixture equals to the multiplication of the density and the total
volume, so the the above equation can be written as

d

dt
(Xbρvtot) = 0.

Taking into consideration that the density of the liquid and the solid are constant, the
above equation gives

d

dt
(Xbvtot) = 0

which can be also written in the following integral form

d

dt

∫ R

0

(Xb4πr
2) dr = 0

Dividing both sides by 4π and applying the Leibniz rule yields∫ R

0

r2dXb

dt
dr +R2Xb

dR

dt
= 0.

From equation (3.5) we have Xb = 1−Xl, so the previous equation takes the form

−
∫ R

0

r2dXl

dt
dr +R2(1−Xl)R

dR

dt
= 0.

Using equation (3.8) leads us to the following form∫ R

0

∂

∂r

(
r2γl

∂Xl

∂r

)
dr = R2(1−Xl)R

dR

dt
.

Integrating the left hand side and evaluating the outer boundary we get

R2γl
∂Xl

∂r
|R= R2(1−Xl)R

dR

dt
.
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Dividing the both sides of this expression by R2γl gives the outer boundary condition of
equation (3.8)

∂Xl

∂r
=

1

γl
(1−Xl)

dR

dt
at r = R.

The shrinkage of the droplet is represented by the decrease of the outer radius. The
change of the outer radius is given by the following expression

dR

dt
= −βρa

ρl
(Ysat − Ya). (3.10)

See (2.13) for more detail about the derivation of this equation.
In the foregoing equations, r represents the radial coordinate of the droplet, γl is the
diffusivity of the binder in the water. It is determined as an example by Sloth et al. [79]
as

γl = 3.27× 10−11 exp(5.97Xl) for trehalose,

and
γl = 1.78× 10−13 exp(13.12Xl) for maltodextrin,

β is the mass transfer coefficient, ρa is the density of the hot gas, ρl is the density of
water, Ysat is the adiabatic saturation humidity and Ya is the moisture content in the hot
gas.

3.3.3 Temperature of the droplet

The mass and heat transfer between the droplet and the bulk phase is given by the
following ODE, see [55],

dθd
dt

=
1

Cp,lml + Cp,sms

[
α(θa − θd)4πR2 − Ṁev(−Cp,lθd + ∆hev + Cp,vθa)

]
. (3.11)

The change of the outer radius of the droplet is given again by equation (3.10). The
previous equation assumes a uniform temperature of the droplet. For a non-uniform
distribution of heat inside the droplet another equation for the energy balance of the
droplet can be expressed as follows

ρ (Cp,lXl + Cp,sXs)
∂θd
∂t

=
1

r2

∂

∂r

(
λdr

2∂θd
∂r

)
, 0 ≤ r ≤ R, (3.12)

with the inner boundary condition

∂θd
∂r

= 0, at the center of the droplet

and the outer moving boundary condition

∂θd
∂r

=
1

λd

(
α(θa − θd) + λaρl

dR

dt

)
,

where ρ and λd are the density and the thermal conductivity of the droplet. For more
details about the previous equation the reader is referred to [48].
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3.3.4 Study of a population balance model of nano-suspension
droplets

One of the most important internal phenomena which take place inside droplets is the
aggregation of nano-sized particles contained in these droplets. Due to the aggregation a
thin shell appears. This shell turns into a porous medium forming a crust that reduces
the evaporation rate. These pores allow the process of diffusion and flow of liquid. The
evaporation of the wet core is assumed. The vapor diffuses through the pores into the
bulk phase.
In the following mathematical model it is assumed that there is no deformation of the
droplet shape, i.e. the droplet remains spherical during the process. The volume of sus-
pended spherical particle ν is taken as an internal coordinate where ν ∈ [0,∞[.
The change of the number density n of the suspended nano-sized particles is given in the
following population balance equation (PBE), see [63]

∂n

∂t
+

1

r2

∂

∂r
(r2ωn) =

1

r2

∂

∂r
(r2γl

∂n

∂r
) +Bagg(n, ν, r, t)−Dagg(n, ν, r, t), (3.13)

where r ∈ [0, R] and ν ∈ [0,∞[.
In the foregoing PBE ω is the local shrinkage rate of control volume. It has a nonzero

value
dR

dt
just at boundary i.e.

ω =


dR

dt
, if r = R

0, if r 6= R
(3.14)

Also γl represents the diffusion coefficient of nano-sized particles in liquid. This coefficient
is given as an example according to Nešić and Vodnik as follows

γl =

10−7, if Xl > 0.6

exp

(
−28.1 + 282Xl

1 + 15.47Xl

)
, if Xl ≤ 0.6.

(3.15)

The birth term Bagg(n, ν, r, t) and the death term Dagg(n, ν, r, t) are given respectively in
the following formulas

Bagg(n, ν, r, t) =
1

2

∫ ν

0

β′(u, ν − u)n(t, r, u)n(t, r, ν − u) du, (3.16)

Dagg(n, ν, r, t) =

∫ ∞
0

β′(u, ν)n(t, r, u)n(t, r, ν) du. (3.17)

The above PBE is accompanied with the homogeneous Neumann boundary condition

∂n

∂r
|r=0= 0 (3.18)

and the outer boundary condition

− γl
∂n

∂r
|r=R= 0 (3.19)

50



3.4. NUMERICAL RESULTS

3.4 Numerical results

In order to solve the ordinary differential equations, the Dormand-Prince method is used.
This method is explained in details in Chapter 4. Due to the mass transfer the liquid mass
fraction decreases. This is because of the fact that some amount of water is converted into
vapor causing a decrease of liquid mass. Consequently the solid mass fraction increases
where there is an inverse proportion between the liquid and the solid mass fraction.
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Figure 3.3: Liquid mass fraction of the droplet: R0 = 1mm, θd = 19̊ C, Xs,0 = 0.3,
θa = 178̊ C.
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Figure 3.4: Solid mass fraction

Figures 3.3 and 3.4 illustrate the change of the solid and liquid mass fraction during the
process. Figures 3.5, 3.6 predict the decrease of the droplet mass along with the decrease
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Figure 3.5: The change of the droplet mass

of the droplet radius while Figure 3.7 shows the increase of temperature of the droplet.
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Figure 3.6: Droplet diameter evolution

These results are supported by experimental results. For more details about the experi-
mental results the reader is referred to [6].
In the first drying period the diameter of the droplet decreases until a solid shell is formed
at the surface of the droplet. At that point (locking point) the outer diameter remains
constant. It is assumed that the locking point is obtained when the solid fraction at the
surface of the droplet forms 40% of the mass at the outer diameter of the droplet. In
order to determine the locking point equation (3.8) is solved using the local discontinuous
Galerkin method of order k = 1.
Figure 3.8 shows the decrease of the liquid mass fraction from its initial value Xl = 90%
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Figure 3.7: Temperature of the droplet
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Figure 3.8: Droplet mass fraction with solid mass fraction of 10%, R0 = 0.75mm, θd =
19̊ C, θa = 60̊ C.

until it reaches the locking point with the value Xl = 60% at the surface of the droplet.
Unlike the liquid mass fraction the solid mass fraction increases from Xb = 10% until
it reaches the value Xb = 40% as seen in Figure 3.9. The outer radius of the droplet
decreases from its initial size R0 = 0.75mm until it reaches the locking point at t ' 126s
where it stays constant, see Figure 3.10.

Figures 3.11 and 3.12 show the decrease and the increase of the liquid and the solid mass
fractions for different initial values of the solid mass fraction with respect to time, while
Figure 3.13 shows the decrease of the outer radius until it reaches the locking point.
For a pure water droplet, i.e. Xl = 100% and Xb = 0% the liquid and the solid mass
fractions stay constant until the droplet evaporates completely, i.e. the radius tends to
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Figure 3.9: Droplet mass fraction with solid mass fraction of 10%, R0 = 0.75mm, θd =
19̊ C, θa = 60̊ C.
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Figure 3.10: Radius of the droplet with solid mass fraction of 10%, R0 = 0.75mm,
θd = 19̊ C, θa = 60̊ C.

zero. These figures show that the droplets with higher initial solid mass fraction solidi-
fies faster and at larger droplet size than the droplets with lower initial solid mass fraction.

The influence of the temperature of the bulk phase can be seen in Figures 3.14, 3.15 and
3.16. These figures show that the higher the temperature is, the faster solidification takes
place.
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Figure 3.11: Liquid mass fraction with different initial values, R0 = 0.75mm, θd = 19̊ C,
θa = 60̊ C.

Figure 3.12: Solid mass fraction with different initial values, R0 = 0.75mm, θd = 19̊ C,
θa = 60̊ C.

3.5 Velocity distribution and droplet movement within

the nozzle spray cone

The liquid to be dried is atomized into small droplets and sprayed conically within the
chamber. These droplets are affected by some forces. These forces are the gravity force
Fgr, the lifting force Fli and the drag force Fdr. The momentum of the droplet is given as
[18]

d

dt

(
Mdropυdrop

)
=
∑

F = F gr + F li + cF dr.
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Figure 3.13: Radius of the droplet with different initial values of the liquid mass fraction
with R0 = 0.75mm, θd = 19̊ C, θa = 60̊ C.

Here Mdrop, υdrop are the mass and the velocity of the droplet respectively. The constant
c takes the values {−1,+1}. If the droplet is moving towards the top of the bed then c
has the value (+1) otherwise it has the value (-1), see Fig(3.17) . Projecting these vectors
onto the z − axis leads to

d

dt
(Mdropυdrop,z) = Fgr − Fli + cFdr. (3.20)

The mass of the droplet is given as the multiplication of the volume Vdrop and the density
ρdrop of the droplet i.e. Mdrop = Vdropρdrop. According to the evaporation, the mass of the
droplet is changing during the process time. This change can be expressed as

dMdrop

dt
=

d

dt
(ρdropVdrop) =

d

dt

(
ρdrop

4

3
πd3

drop

)
= 4πρdropd

2
drop

dddrop
dt

(3.21)

Equation (3.20) can be written as

Mdrop
dυdrop,z
dt

+ υdrop,z
dMdrop

dt
= Fgr − Fli + cFdr.

Making use of (3.21) we can write

dυdrop,z
dt

=
Fgr − Fli + cFdr

Mdrop

− 3υdrop,z
4πd3

dropρdrop
4πρdropd

2
drop

dddrop
dt

,

or
dυdrop,z
dt

=
Fgr − Fli + cFdr

ρdropVdrop
− 3υdrop,z

ddrop

dddrop
dt

.
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Figure 3.14: Liquid mass fraction with different air temperatures, R0 = 0.75mm, θd =
19̊ C.

Figure 3.15: Solid mass fraction with different air temperatures, R0 = 0.75mm, θd = 19̊ C.
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Figure 3.16: Radius of the droplet with different air temperature R0 = 0.75mm, θd =
19̊ C.

Figure 3.17: Forces affecting a single droplet

Reichardt [65] suggested that the velocity profile within the jet can be found using the
Gauss error function

ωg,nozz = exp(− ln 2%2)ωg,nozz,center. (3.22)

Here ωg,center is the centerline velocity and % is the radial coordinate of the jet given by

% =
y

ra
, (3.23)
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where y is the horizontal droplet position and ra is the radius of the core spray where the
gas velocity in the open jet equals 50% of the centerline velocity [18]. In Figure 3.18, the

Figure 3.18: Scheme of the nozzle spray cone

shaded area represents the core of the nozzle gas cone according to Truckenbrodt [85]. To
find the centerline velocity, the principle of momentum conservation along the jet is taken
into consideration, see Malmström [47], [94].
Let A be the outlet area, dNozz the radius of the nozzle orifice, ω0 the uniform outlet
velocity. Then the initial momentum is given as

M0 = ρaAω
2
0 = ρaπd

2
Nozzω

2
0.

The momentum Mx at any distance x from the nozzle orifice is given by the following
formula

Mx = 2πρa

∫ ∞
0

ω2
g,nozzy dy.

Due to the principle of momentum conservation we can write

M0 = Mx,

or

ρaπd
2
Nozzω

2
0 = 2πρa

∫ ∞
0

ω2
g,nozzy dy.

After some cancellations we get

d2
Nozzω

2
0 = 2

∫ ∞
0

ω2
g,nozzy dy.
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Making use of equations (3.22), (3.23) and integrating the right hand side the centerline
velocity ωg,center can be written in the form

ωg,center =

√
2 ln 2

ra
dNozzω0.
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Chapter 4

Numerical Scheme and
Discretization of Hyperbolic and
Parabolic Systems

4.1 Introduction

In this chapter we introduce a numerical method called discontinuous Galerkin method
(DGM). This method has been used first by Reed and Hill [64] to solve the neutron trans-
port equation which is a partial differential equation of the hyperbolic type. This method
then was developed and modified to also solve parabolic and elliptic problems. It became
very popular and is used very often to solve linear and nonlinear systems of PDE’s. Sev-
eral publications were made considering discontinuous Galerkin method, for instance see
[37], [19], [68], [12], [90], [83], [23], [24], [25]. The discontinuous Galerkin method can be
represented as a class of the finite element methods (FEM).
In this method, discontinuous piecewise polynomials for both the numerical solution and
the test functions are used. The discontinuous Galerkin method has some very important
properties such as good stability as well as accuracy, the possibility of handling com-
plicated geometries, and the possibility of increasing the accuracy without taking finer
meshes.
In the second section of this chapter we will consider the 1D hyperbolic equation and ex-
plain the discretization of space using the DGM. The local discontinuous Galerkin method
for 1D problems of the second order diffusion equation is considered in the third section.
Section 4 studies 2D hyperbolic problems, while a 2D parabolic equation is introduced in
the fifth section. In Section 6, numerical methods are introduced to solve the resulting
ordinary differential equations. Finally Section 7 introduces the methods which are used
to approximate integrals. Simple examples for every case are presented in Section 8.
This chapter includes some materials drawn from Cockburn and Shu [15], Cockburn et
al. [13].

61



CHAPTER 4. NUMERICAL SCHEME AND DISCRETIZATION OF
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4.2 Spatial discretization of a scalar conservation law

in one space dimension

In this section we will consider the following simple 1D hyperbolic equation

∂tu+ ∂xf(u) = 0, in ]0, 1[×]0, T [, (4.1)

with the initial condition

u(x, 0) = u0, for all x ∈]0, 1[, (4.2)

and periodic boundary condition.

4.2.1 The weak formulation

For the spatial discretization we take a partition
{
xi+ 1

2

}N
i=0

of the domain Ω = ]0, 1[, where

x 1
2

= 0 and xN+ 1
2

= 1. This partition consists of N non-overlapping cells Ii =]xi− 1
2
, xi+ 1

2
[.

The length of the cell Ii is donated by

∆xi = xi+ 1
2
− xi− 1

2
.

The maximum length ∆x is given as

∆x = max
1≤i≤N

∆xi.

The midpoint of a cell Ii is

xi =
xi−1/2 + xi+1/2

2
.

The approximate solution uh is taken from the finite element space

Λh =
{
s ∈ L1(]0, 1[); s |Ii∈ P k(Ii); i = 1, · · · , N

}
,

where
P k = {p; p is a polynomial of degree at most k on I} .

One of the most important differences between the classical finite element method and
the discontinuous Galerkin method is that in the latter the functions of the finite element
space Λh have the possibility to have jumps at the interfaces xi+ 1

2
.

For a function υh ∈ Λh we introduce υh(x
+
i− 1

2

) to be the left hand limit obtained by

considering values inside Ii, whereas υh(x
−
i− 1

2

) is the right hand limit on Ii−1.

The weak formulation can be constructed by multiplying the equations (4.1), (4.2) by an
arbitrary test function υh ∈ Λh and replacing the exact solution u by the approximate
solution uh and finally by integrating over every cell Ii as follows
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∫
Ii

∂tuh(x, t)υh(x) dx+

∫
Ii

∂xf(uh(x, t))υh(x) dx = 0, (4.3)∫
Ii

u(x, 0)υh(x) dx =

∫
Ii

u0υh(x) dx. (4.4)

For the main equation we integrate the second term by parts. Consequently we get

∫
Ii

∂tuh(x, t)υh(x) dx−
∫
Ii

f(uh(x, t))∂xυh(x) dx

+ f(uh(xi+ 1
2
, t))υh(x

−
i+ 1

2

)− f(uh(xi− 1
2
, t))υh(x

+
i− 1

2

) = 0.

The function f(uh(xi+ 1
2
, t)) is then replaced by a numerical flux f̂(u)i+ 1

2
(t) given by

f̂(u)i+ 1
2
(t) = f̂(u(x−

i+ 1
2

, t), u(x+
i+ 1

2

, t)).

The conservative formulation now has the following form∫
Ii

∂tuh(x, t)υh(x) dx−
∫
Ii

f(uh(x, t))∂xυh(x) dx

+ f̂(uh)i+ 1
2
(t)υh(x

−
i+ 1

2

)− f̂(uh)i− 1
2
(t)υh(x

+
i− 1

2

) = 0, (4.5)∫
Ii

u(x, 0)υh(x) dx =

∫
Ii

u0υh(x) dx. (4.6)

4.2.2 Diagonalizing the mass matrix

The approximate solution uh regarding the element Ii is taken as

uh(x, t) =
k∑
r=0

uri (t)Ψr(x) for x ∈ Ii,

where

Ψr(x) = Pr

(
2(x− xi)

∆xi

)
.

Here Pr is taken to be the Legendre polynomial given as

Pr(x) =
1

2rr!

dr

dxr
[
(x2 − 1)r

]
=

1

2r

r∑
k=0

(
r

k

)2

(x− 1)r−k(x+ 1)k

(4.7)
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The Legendre polynomials for n = 0, 1, 2, 3 are

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x)

respectively. Figure 4.4 shows the Legendre polynomials which are used as the basis
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Figure 4.1: Legendre polynomials

functions. These polynomials have a very important property which is their orthogonality
with respect to the L2 inner product on [−1,+1], i.e.∫ +1

−1

Pr(z)Ps(z)d z =

(
2

2r + 1

)
δrs, (4.8)

where

δrs =

{
0, if r 6= s

1, if r = s

is the Kronecker delta. From equation (4.7) we can find

Pn(1) = 1, Pn(−1) = (−1)n. (4.9)

The test function υh(x) is taken as follows

υh(x) = Ψs(x).
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Now we consider the first term of equation (4.5)∫
Ii

∂tuh(x, t)υh(x) dx =

∫ x
i+1

2

x
i− 1

2

∂t

(
k∑
r=0

uri (t)Ψr(x)

)
Ψs(x) dx

= ∂t

k∑
r=0

uri (t)

∫ x
i+1

2

x
i− 1

2

Ψr(x)Ψs(x) dx.

In order to exploit the orthogonality property of the Legendre polynomials, we need to
transform the domain of the integral from [xi− 1

2
, xi+ 1

2
] to [−1, + 1]. Therefore we use

the following transformation z = Ax+B and solve the system

−1 = Axi− 1
2

+B

+1 = Axi+ 1
2

+B.

After solving this system we get the following transformation

z =
2(x− xi)

∆xi
.

The first term of equation (4.5) leads to the formula∫
Ii

∂tuh(x, t)υh(x) dx = ∂t

k∑
r=0

uri (t)

∫ x
i+1

2

x
i− 1

2

Ψr(x)Ψs(x) dx

= ∂t

k∑
r=0

uri (t)
∆xi

2

∫ +1

−1

Pr(z)Ps(z) dz

= ∂t

k∑
r=0

uri (t)
∆xi

2

2

2s+ 1
δrs

=
∆xi

2s+ 1
∂tu

s
i (t).

In a similar way, the left hand side of (4.6) can be written as∫
Ii

u(x, 0)υh(x) dx =
∆xi

2s+ 1
usi (0).

The values of the test function υh(x) at the boundaries xi− 1
2

and xi+ 1
2

of the cell Ii can
be found as follows

υh(x
+
i− 1

2

) = Ψs(xi− 1
2
) = Ps

(
2(xi− 1

2
− xi)

∆xi

)
= Ps(−1) = (−1)s,
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υh(x
−
i+ 1

2

) = Ψs(xi+ 1
2
) = Ps

(
2(xi+ 1

2
− xi)

∆xi

)
= Ps(+1) = +1.

Now the conservative formulation can be written as

For i = 1, · · · , N and for s = 0, · · · , k

∂usi (t)

∂t
=

2s+ 1

∆xi

∫
Ii

f(uh(x, t))∂xΨs(x) dx

− 2s+ 1

∆xi

{
f̂(uh)i+ 1

2
(t)− (−1)sf̂(uh)i− 1

2
(t)
}
. (4.10)

usi (0) =
2s+ 1

∆xi

∫
Ii

u0Ψs(x) dx. (4.11)

This shows that the spatial discretization leads to the following system of ordinary differ-
ential equation

d

dt
uh = M(uh), (4.12)

uh(0) = uh(x, 0). (4.13)

In a special case, if u0 = C where C is a constant, then for (4.11) we can write

usi (0) =
2s+ 1

∆xi

∫
Ii

CΨs(x) dx

=
2s+ 1

∆xi
C

∫
Ii

P0

(
2(x− xi)

∆xi

)
Ps

(
2(x− xi)

∆xi

)
dx

=
2s+ 1

∆xi
C

∆xi
2

∫ +1

−1

P0(z)Ps(z) dz

=
2s+ 1

2
C

2

2s+ 1
δ0s

= Cδ0s =

{
C, if s = 0

0, otherwise

4.2.3 Numerical flux

The boundary flux f(uh(xi+ 1
2
, t)) is approximated by the numerical flux f̂(u)i+ 1

2
(t) which

can be chosen to be one of the following numerical schemes
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• The Lax-Friedrichs scheme:

f̂(ui− 1
2
, ui+ 1

2
) =

1

2

{
f(ui− 1

2
) + f(ui+ 1

2
)− α(ui+ 1

2
− ui− 1

2
)
}
,

α = max
u
| f ′(u) | .

• The local Lax-Friedrichs scheme:

f̂(ui− 1
2
, ui+ 1

2
) =

1

2

{
f(ui− 1

2
) + f(ui+ 1

2
)− α(ui+ 1

2
− ui− 1

2
)
}
,

α = max
(u
i− 1

2
,u
i+1

2
)
| f ′(u) | .

• The Engquist-Osher scheme:

f̂(ui− 1
2
, ui+ 1

2
) = f+(ui− 1

2
) + f−(ui+ 1

2
) + f(0),

where

f+(u) =

∫ u

0

max(f ′(u), 0) du,

f−(u) =

∫ u

0

min(f ′(u), 0) du.

• The Roe scheme:

f̂(ui− 1
2
, ui+ 1

2
) =

{
f(ui− 1

2
), if αi ≥ 0,

f(ui+ 1
2
), if αi < 0,

where

αi =
f(ui+ 1

2
)− f(ui− 1

2
)

ui+ 1
2
− ui− 1

2

.

• The Godunov scheme:

f̂(ui− 1
2
, ui+ 1

2
) =

minu
i− 1

2
≤u≤u

i+1
2

f(u), if ui− 1
2
≤ ui+ 1

2
,

maxu
i− 1

2
≥u≥u

i+1
2

f(u), if ui− 1
2
> ui+ 1

2
.

(4.14)

In the linear case where f(u) = Cu, all these numerical schemes are identical and have
the flux

f̂(ui− 1
2
, ui+ 1

2
) =

{
Cui− 1

2
, if C ≥ 0,

Cui+ 1
2
, if C < 0.
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In the discontinuous Galerkin method, the approximate solution uh can be discontinuous
at the boundaries of the cell. The fluxes at these boundaries depend on the following left
and right limits [42] of u

u−
i+ 1

2

= lim
x→x−

i+1
2

u(x, t) (left), u+
i+ 1

2

= lim
x→x+

i+1
2

u(x, t) (right).

Figure 4.6 shows the jump across the boundary xi− 1
2

of the cell Ii. These fluxes are given

in the following formulas [14]

u−
i+ 1

2

=
k∑
r=0

uri (t)Ψr(x)|x
i+1

2

, u+
i− 1

2

=
k∑
r=0

uri (t)Ψr(x)|x
i− 1

2

.

Figure 4.2: The jump across the boundary xi− 1
2

4.2.4 Error estimation

For the linear case, the following theorem holds [13].

Theorem 4.2.1. Suppose that the initial condition u0 belongs to Hk+1(]0, 1[). Then we
have

‖u− uh‖L2(0,1) ≤ C ′|u0|Hk+1(]0,1[)(∆x)k+ 1
2 ,

where C ′ depends on k, |C|, and T .
If the initial condition u0 belongs to Hk+2(]0, 1[). Then we have

‖u− uh‖L2(0,1) ≤ C ′|u0|Hk+2(]0,1[)(∆x)k+1.

Proof. See [13].

4.3 The local discontinuous Galerkin method for one

dimensional second order diffusion problems

In this section we consider a one dimensional convection diffusion problem of the form

∂tu+ ∂xf(u)− (A(u)ux)x = 0, in ]0, 1[×]0, T [, (4.15)
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with the initial condition

u(x, 0) = u0, for all x ∈]0, 1[. (4.16)

This section includes material drawn from [13], [15], [77]. Before we proceed with our
problem we introduce the following notations

[Q] = Q+ −Q−, Q+
i+ 1

2

= Q(x+
i+ 1

2

), Q−
i+ 1

2

= Q(x−
i+ 1

2

).

For the system (4.15) and (4.16) we insert the variables

q =
√
A(u)∂xu, S(u) =

∫ u√
A(z) dz.

Making use of these new variables our system (4.15) and (4.16) can be rewritten in the
form

∂tu+ ∂x

(
f(u)−

√
A(u)q

)
= 0, in ]0, 1[×]0, T [ (4.17)

q − ∂xS(u) = 0, in ]0, 1[×]0, T [ (4.18)

u(x, 0) = u0, for all x ∈]0, 1[. (4.19)

Note that the system (4.18) is not a hyperbolic system. The second equation also does
not include the time derivative.

4.3.1 The weak formulation

As we did in the previous section we take a partition
{
xi+ 1

2

}N
i=0

for the interval ]0, 1[

consisting of non-overlapping elements Ii =]xi− 1
2
, xi+ 1

2
[.

Now we set
∆xi = xi+ 1

2
− xi− 1

2
.

The center of a cell Ii is

xi =
xi−1/2 + xi+1/2

2
.

To discretize in space we multiply (4.17), (4.18) and (4.19) respectively by arbitrary test
functions υh,u, υh,q and υh,c from the finite element space

Λh =
{
s ∈ L1(]0, 1[); s |Ii∈ P k(Ii); i = 1, · · · , N

}
,

where
P k = {p; p is a polynomial of degree at most k in I} .

Then we replace the exact solution (u, q) by the approximate solution (uh, qh) and inte-
grate over every element Ii for i = 1, · · · , N as follows∫

Ii

∂tuh(x, t)υh,u(x) dx+

∫
Ii

∂x

(
f(uh)−

√
A(uh)qh(x, t)

)
υh,u(x) dx = 0, (4.20)
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∫
Ii

qh(x, t)υh,q(x) dx−
∫
Ii

∂xS(uh)υh,q(x) dx = 0, (4.21)∫
Ii

uh(x, 0)υh,c(x) dx =

∫
Ii

u0υh,c(x) dx. (4.22)

Now we set f(uh) −
√
A(uh)qh(x, t) = Hh and integrate the second term of (4.20) and

(4.21) by parts. This leads to the following system∫
Ii

∂tuh(x, t)υh,u(x) dx−
∫
Ii

Hh(uh(x, t), qh(x, t))∂xυh,u(x) dx

+Hh(uh(xi+ 1
2
, t), qh(xi+ 1

2
, t))υh,u(x

−
i+ 1

2

)−Hh(uh(xi− 1
2
, t), qh(xi− 1

2
, t))υh,u(x

+
i− 1

2

) = 0,

(4.23)∫
Ii

qh(x, t)υh,q(x) dx+

∫
Ii

S(u(x, t))∂xυh,q(x) dx

− S(uh(xi+ 1
2
, t))υh,q(x

−
i+ 1

2

) + S(uh(xi− 1
2
, t))υh,q(x

+
i− 1

2

) = 0 (4.24)∫
Ii

uh(x, 0)υh,c(x) dx =

∫
Ii

u0υh,c(x) dx. (4.25)

Since the functions uh and qh are discontinuous at the boundaries of every cell, the func-
tions Hh(uh(xi+ 1

2
, t), qh(xi+ 1

2
, t)) and S(uh(xi+ 1

2
, t)) must be replaced by the numerical

fluxes Ĥh(uh(xi+ 1
2
, t), qh(xi+ 1

2
, t)) and Ŝ(uh(xi+ 1

2
, t)) respectively.

Our system now is given as∫
Ii

∂tuh(x, t)υh,u(x) dx−
∫
Ii

Hh(uh(x, t), qh(x, t))∂xυh,u(x) dx

+ Ĥh(uh(xi+ 1
2
, t), qh(xi+ 1

2
, t))υh,u(x

−
i+ 1

2

)− Ĥh(uh(xi− 1
2
, t), qh(xi− 1

2
, t))υh,u(x

+
i− 1

2

) = 0,

(4.26)∫
Ii

qh(x, t)υh,q(x) dx+

∫
Ii

S(u(x, t))∂xυh,q(x) dx

− Ŝ(uh(xi+ 1
2
, t))υh,q(x

−
i+ 1

2

) + Ŝ(uh(xi− 1
2
, t))υh,q(x

+
i− 1

2

) = 0, (4.27)∫
Ii

uh(x, 0)υh,c(x) dx =

∫
Ii

u0υh,c(x) dx. (4.28)

The numerical fluxes Ĥh(uh(xi+ 1
2
, t), qh(xi+ 1

2
, t)) and Ŝ(uh(xi+ 1

2
, t)) are determined either

as

Ĥ = f̂ − [S(uh)]

[u]
q+
h , Ŝ = S(u−h ),

or as

Ĥ = f̂ − [S(uh)]

[u]
q−h , Ŝ = (u+

h ),
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see [77]. The convection flux f̂ can be taken to be any locally Lipschitz E-flux, see Osher
[57].
As we did in Section 4.2 we take the approximate solution (uh, qh) as follows

uh(x, t) =
k∑
r=0

uri (t)Ψr(x), qh(x, t) =
k∑
r=0

qri (t)Ψr(x) for x ∈ Ii.

Here

Ψr(x) = Pr

(
2(x− xi)

∆xi

)
, (4.29)

where Pr is considered to be the Legendre polynomial of degree r. The test functions
υh,u(x), υh,q(x) and υh,c(x) can be taken also as

υh,u(x) = υh,q(x) = υh,c(x) = Ψs(x). (4.30)

Taking this into consideration and taking the transformation

Z =
2(x− xi)

∆xi
,

the first term of (4.26) can be written as follows∫
Ii

∂tuh(x, t)υh,u(x) dx =
∆xi

2s+ 1
∂tu

s
i (t).

The first term of (4.27) can be similarly written as∫
Ii

qh(x, t)υh,q(x) dx =
∆xi

2s+ 1
qsi .

Finally the left hand side of (4.28) is written as∫
Ii

uh(x, 0)υh,c(x) dx =
∆xi

2s+ 1
usi (0).

The values of the test functions at the cell boundaries xi+ 1
2

and xi− 1
2

are calculated as
follows

υh,u(xi+ 1
2
) = υh,q(xi+ 1

2
) = υh,c(xi+ 1

2
) = Ψs(xi+ 1

2
) = Ps(1) = 1.

υh,u(xi− 1
2
) = υh,q(xi− 1

2
) = υh,c(xi− 1

2
) = Ψs(xi− 1

2
) = Ps(−1) = (−1)s.

Our system now can be written as follows:

For i = 1, · · · , N and for s = 0, · · · , k

∂usi (t)

∂t
=

2s+ 1

∆xi

∫
Ii

Hh(uh(x, t), qh(x, t))∂xPs

(
2(x− xi)

∆xi

)
dx
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− 2s+ 1

∆xi

{
Ĥh(uh(xi+ 1

2
, t), qh(xi+ 1

2
, t))− (−1)sĤh(uh(xi− 1

2
, t), qh(xi− 1

2
, t))
}
, (4.31)

qsi = −2s+ 1

∆xi

∫
Ii

S(u(x, t))∂xPs

(
2(x− xi)

∆xi

)
dx

+
2s+ 1

∆xi

{
Ŝ(uh(xi+ 1

2
, t))− (−1)sŜ(uh(xi− 1

2
, t))
}
, (4.32)

usi (0) =
2s+ 1

∆xi

∫
Ii

u0Ps

(
2(x− xi)

∆xi

)
dx. (4.33)

As we did before, if the initial condition is constant, i.e. u0 = C then (4.33) takes the
form

usi (0) =

{
C, if s = 0

0, otherwise.
(4.34)

Now we see that after the spatial discretization the system was converted into an ODE
system.

4.3.2 Error estimation

Theorem 4.3.1. Let u be the exact solution of (4.15), uh the numerical solution. For a
small h we have the error estimates

‖u− uh‖ ≤ Chk+ 1
2 ,

where C is a constant depends on the time t and k is the degree of the polynomials in the
finite element space Λh.

Proof. See [92].

As a special case we take A(u) = 1 and f(u) = 0. This leads us to the heat equation

ut − uxx = 0, in ]0, 2π[×]0, T [. (4.35)

This equation can be decomposed into two equations

ut − qx = 0, (4.36)

q − ux = 0. (4.37)

This system is written in the semi-discretized form as

∂

∂t
usi (t) =

2s+ 1

∆xi

{
q̂(xi+ 1

2
)− (−1)sq̂(xi− 1

2
)
}
− 2s+ 1

∆xi

∫
Ii

qh(x, t)∂xPs

(
2(x− xi)

∆xi

)
dx,

qsi =
2s+ 1

∆xi

{
û(xi+ 1

2
)− (−1)sû(xi− 1

2
)
}
− 2s+ 1

∆xi

∫
Ii

uh(x, t)∂xPs

(
2(x− xi)

∆xi

)
dx.
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Figure 4.3: Partition of a rectangular domain into rectangular elements

The numerical fluxes for the heat equation are given either as

ûi+ 1
2

= u−
i+ 1

2

, q̂i+ 1
2

= q+
i+ 1

2

or as
ûi+ 1

2
= u+

i+ 1
2

, q̂i+ 1
2

= q−
i+ 1

2

.

4.4 Discontinuous Galerkin method for two dimen-

sional hyperbolic problems

This section includes materials taken from [92], [41], [3], [76]. Here we consider a simple
2D hyperbolic equation

∂tu+ ∂xf(u) + ∂yg(u) = 0, (x, y) ∈ Ω, t ∈ [0, T ], (4.38)

with the initial condition

u(x, y, 0) = u0, for all (x, y) ∈ Ω (4.39)

Here we assume that Ω is a rectangular domain.

4.4.1 Spatial discretization and weak formulation

For simplicity we assume a partition of the domain Ω into rectangular elements as seen
in Figure 4.3.

In the x−direction we take the partition
{
xi+ 1

2

}Nx
i=0

where

x 1
2
< x 3

2
< · · · < xNx+ 1

2
,
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while in the y−direction the partition
{
yj+ 1

2

}Ny
j=0

is taken, where

y 1
2
< y 3

2
< · · · < yNy+ 1

2
.

In this way the domain Ω is partitioned into rectangular elements Ωij as follows

for i = 1, · · · , Nx and j = 1, · · · , Ny

Ωij =
{

(x, y)|xi− 1
2
≤ x ≤ xi+ 1

2
, yj− 1

2
≤ y ≤ yj+ 1

2

}
.

The length of the cell in the x−direction is given as

∆xi = xi+ 1
2
− xi− 1

2
.

The maximum length in the x−direction is

∆x = max
1≤i≤Nx

∆xi,

while the center of the cell is

xi =
xi−1/2 + xi+1/2

2
.

Similarly, the length of the cell Ωij in the y−direction is

∆yj = yj+ 1
2
− yj− 1

2
.

The maximum length is denoted by

∆y = max
1≤j≤Ny

∆yj.

The center of the cell in the y−direction is taken as

yj =
yj−1/2 + yj+1/2

2
.

The approximate solution uh is taken from the finite element space

Λh =
{
s ∈ L1(Ω); s|Ωij ∈ P k; i = 1 : · · · : Nx, j = 1 : · · · : Ny

}
,

where
P k = {P ;P is a polynomial of degree up to k in Ω} .

To construct the weak formulation we multiply (4.38) and (4.39) by the test function
υh(x, y) from the finite element space Λh and then by replacing the exact solution u(x, y, t)
by the approximate solution uh(x, y, t) taken from the finite element space Λh and finally
by integrating every term over the rectangular element Ωij as follows∫

Ωij

∂tuh(x, y, t)υh(x, y) dΩij +

∫
Ωij

∂xf(uh(x, y, t))υh(x, y) dΩij
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+

∫
Ωij

∂yg(uh(x, y, t))υh(x, y) dΩij = 0, (4.40)

∫
Ωij

uh(x, y, 0)υh(x, y) dΩij =

∫
Ωij

u0(x, y)υh(x, y) dΩij. (4.41)

The approximate solution uh(x, y, t) on the rectangular element Ωij is given as

uh(x, y, t) =
k∑
r=0

k∑
s=0

ursij (t)Ψr(x)Ψs(y), (x, y) ∈ Ωij, (4.42)

where Ψr, Ψs are Legendre polynomials given as

Ψr(x) = Pr

(
2(x− xi)

∆xi

)
, Ψs(y) = Ps

(
2(y − yj)

∆yj

)
. (4.43)

The test function υh(x, y) can be taken as

υh(x, y) = Ψl(x)Ψm(y). (4.44)

Now let’s consider the first term of (4.40)

I1 =

∫
Ωij

∂tuh(x, y, t)υh(x, y) dΩij

= ∂t

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

k∑
r=0

k∑
s=0

ursij (t)Ψr(x)Ψs(y)Ψl(x)Ψm(y) dx dy

= ∂t

k∑
r=0

k∑
s=0

ursij (t)

∫ x
i+1

2

x
i− 1

2

Ψr(x)Ψl(x) dx

∫ y
j+1

2

y
j− 1

2

Ψs(y)Ψm(y) dy.

Here ∫ x
i+1

2

x
i− 1

2

Ψr(x)Ψl(x) dx =

∫ x
i+1

2

x
i− 1

2

Pr

(
2(x− xi)

∆xi

)
Pl

(
2(x− xi)

∆xi

)
dx.

Now we take the transformation

2(x− xi)
∆xi

= z ⇒ dx =
∆xi

2
dz

and then we substitute into the above equality. This leads to
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∫ x
i+1

2

x
i− 1

2

Ψr(x)Ψl(x) dx =
∆xi

2

∫ +1

−1

Pr(z)Pl(z) dz

=
∆xi

2

2

2l + 1
δlr

=
∆xi

2l + 1
δlr

Similarly, we find that ∫ y
j+1

2

y
j− 1

2

Ψs(y)Ψm(y) dy =
∆yj

2m+ 1
δsm.

Consequently the first term of (4.40) takes the formulation

I1 =

∫
Ωij

∂tuh(x, y, t)υh(x, y) dΩij = ∂t

k∑
r=0

k∑
s=0

ursij (t)
∆xi

2l + 1
δlr

∆yj
2m+ 1

δsm

=
∆xi

2l + 1

∆yj
2m+ 1

∂tu
lm
ij (t). (4.45)

Now we consider the second term of (4.40)

I2 =

∫
Ωij

∂xf(uh(x, y, t))υh(x, y) dΩij

=

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

∂xf(uh(x, y, t))υh(x, y) dx dy.

Integrating by parts leads to

I2 =

∫ y
j+1

2

y
j− 1

2

f(uh(x, y, t))υh(x, y)

∣∣∣∣xi+1
2

x
i− 1

2

−
∫ x

i+1
2

x
i− 1

2

f(uh(x, y, t))∂xυh(x, y) dx

 dy

=

∫ y
j+1

2

y
j− 1

2

{
f(uh(xi+ 1

2
, y, t))υh(x

−
i+ 1

2

, y)− f(uh(xi− 1
2
, y, t))υh(x

+
i− 1

2

, y)
}
dy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

f(uh(x, y, t))∂xυh(x, y) dx dy.
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Since the flux f is discontinuous at the edges xi− 1
2
, xi+ 1

2
it is replaced by the numerical

flux f̂ which can be taken to be the Lax-Friedrich flux. We have also

υh(xi+ 1
2
, y) = Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

) ∣∣∣∣
x=x

i+1
2

= Pl(1)Pm

(
2(y − yj)

∆yj

)
= Pm

(
2(y − yj)

∆yj

)
,

υh(xi− 1
2
, y) = Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

) ∣∣∣∣
x=x

i− 1
2

= Pl(−1)Pm

(
2(y − yj)

∆yj

)
= (−1)lPm

(
2(y − yj)

∆yj

)
.

Now we can write

I2 =

∫ y
j+1

2

y
j− 1

2

{
f̂(uh(xi+ 1

2
, y, t))− (−1)lf̂(uh(xi− 1

2
, y, t))

}
Pm

(
2(y − yj)

∆yj

)
dy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

f(uh(x, y, t))Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy.

In a very similar way the third term of (4.40)

I3 =

∫
Ωij

∂yg(uh(x, y, t))υh(x, y) dx dy

can be written as

I3 =

∫ x
i+1

2

x
i− 1

2

{
ĝ(uh(x, yj+ 1

2
, t))− (−1)mĝ(uh(x, yj− 1

2
, t))
}
Pl

(
2(x− xi)

∆xi

)
dx

−
∫ x

i+1
2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

g(uh(x, y, t))Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dy dx
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In the following we consider the left hand side of (4.41)

Ileft =

∫
Ωij

uh(x, y, 0)υh(x, y) dx dy

=

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

uh(x, y, 0)υh(x, y) dy dx

=

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

k∑
r=0

k∑
s=0

ursij (0)Ψr(x)Ψs(y)Ψl(x)Ψm(y) dy dx

=
k∑
r=0

k∑
s=0

ursij (0)

∫ x
i+1

2

x
i− 1

2

Ψr(x)Ψl(x) dx

∫ y
j+1

2

y
j− 1

2

Ψs(y)Ψm(y) dy


=

k∑
r=0

k∑
s=0

ursij (0)
∆xi

2l + 1
δlr

∆yj
2m+ 1

δsm

=
∆xi

2l + 1

∆yj
2m+ 1

ulmij (0).

Now the equations (4.40), (4.41) are written as

∂

∂t
ulmij = −2l + 1

∆xi

2m+ 1

∆yj

[∫ y
j+1

2

y
j− 1

2

{
f̂(uh(xi+ 1

2
, y, t))− (−1)lf̂(uh(xi− 1

2
, y, t))

}
Pm

(
2(y − yj)

∆yj

)
dy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

f(uh(x, y, t))Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy

]

−2l + 1

∆xi

2m+ 1

∆yj

[∫ x
i+1

2

x
i− 1

2

{
ĝ(uh(x, yj+ 1

2
, t))− (−1)mĝ(uh(x, yj− 1

2
, t))
}
Pl

(
2(x− xi)

∆xi

)
dx

−
∫ x

i+1
2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

g(uh(x, y, t))Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dy dx

]
, (4.46)

with the initial condition

ulmij (0) =
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

u0(x, y, 0)Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

)
dy dx.

(4.47)
The fluxes at the boundaries of a cell are given as

u−(xi+ 1
2
, y) =

k∑
r=0

k∑
s=0

ursijΨr(x)Ψs(y)
∣∣∣
x
i+1

2

,
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u+(xi− 1
2
, y) =

k∑
r=0

k∑
s=0

ursijΨr(x)Ψs(y)
∣∣∣
x
i− 1

2

,

u−(x, yj+ 1
2
) =

k∑
r=0

k∑
s=0

ursijΨr(x)Ψs(y)
∣∣∣
y
j+1

2

,

u+(x, yj− 1
2
) =

k∑
r=0

k∑
s=0

ursijΨr(x)Ψs(y)
∣∣∣
y
j− 1

2

.

In a special case, if the initial condition is constant, i.e. u0(x, y, 0) = C, then (4.47) can
be written as

ulmij =
2l + 1

∆xi

2m+ 1

∆yj
C

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

)
dy dx

=
2l + 1

∆xi

2m+ 1

∆yj
C

∫ x
i+1

2

x
i− 1

2

P0

(
2(x− xi)

∆xi

)
Pl

(
2(x− xi)

∆xi

)
dx


∫ y

j+1
2

y
j− 1

2

P0

(
2(y − yj)

∆yj

)
Pm

(
2(y − yj)

∆yj

)
dy


=

2l + 1

∆xi

2m+ 1

∆yj
C

∆xi
2

∆yj
2

2

2l + 1
δ0l

2

2m+ 1
δ0m

= Cδ0lδ0m =

{
C, if l = m = 0

0, otherwise.

4.5 The local discontinuous Galerkin method for two

dimensional second order diffusion problems

Now we consider the convection diffusion problem of the form

∂tu+
d∑
i=1

∂xi

(
fi(u)−

d∑
j=1

Aij(u)∂xju

)
= 0, x ∈ Ω, t ∈ [0, T ] (4.48)

with the initial condition

u(x1, x2, · · · , 0) = u0, for all x ∈ Ω. (4.49)

Here we assume that the matrix Aij(u) is a symmetric, positive semi-definite matrix. In
two dimensions we take the form
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ut + ∂xf(u)− ∂x [A11(u)∂xu+ A12(u)∂yu]

+ ∂yg(u)− ∂y [A21(u)∂xu+ A22(u)∂yu] = 0, (4.50)

with the initial condition
u(x, y, 0) = u0. (4.51)

It is known that a real symmetric matrix Aij is semi-definite if and only if there exists a
non-singular symmetric matrix Mij such that

Aij = MijM
t
ij,

where M t
ij is the transposed matrix of Mij. The matrix Aij can be written also as

Aij(u) =
2∑

ν=1

Miν(u)Mνj(u).

The entries of the matrix Aij are

A11 = M11M11 +M12M21

A12 = M11M12 +M12M22

A21 = M21M11 +M22M21

A22 = M21M12 +M22M22

After substituting in (4.50) and doing some manipulations we get

ut + ∂xf(u) + ∂yg(u)− ∂x [M11(M11∂xu+M12∂yu) +M12(M21∂xu+M22∂yu)]

− ∂y [M21(M11∂xu+M12∂yu) +M22(M21∂xu+M22∂yu)] = 0. (4.52)

Taking
q1 = M11∂xu+M12∂yu, (4.53)

q2 = M21∂xu+M22∂yu (4.54)

equation (4.52) takes the form

ut + ∂xf(u) + ∂yg(u)− ∂x(M11q1 +M12q2)− ∂y(M21q1 +M22q2) = 0.

Now we introduce a new variable

Sνi(u) =

∫ u

Mνi(z) dz. (4.55)

Our system can now be written as

ut + ∂xf(u) + ∂yg(u)− ∂x(M11q1 +M12q2)− ∂y(M21q1 +M22q2) = 0, (4.56)

q1 − ∂xS11(u)− ∂yS12(u) = 0, (4.57)

q2 − ∂xS21(u)− ∂yS22(u) = 0, (4.58)

u(x, y, 0) = u0. (4.59)

80



4.5. THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR TWO
DIMENSIONAL SECOND ORDER DIFFUSION PROBLEMS

4.5.1 The weak formulation

Again for simplicity we assume that the domain Ω is partitioned into rectangular elements
Ωij as seen in Figure 4.3.

Ωij =
{

(x, y)|xi− 1
2
≤ x ≤ xi+ 1

2
, yj− 1

2
≤ y ≤ yj+ 1

2

}
.

The length of the cell on the x−direction and on the y−direction are given respectively
as

∆xi = xi+ 1
2
− xi− 1

2
,

∆yj = yj+ 1
2
− yj− 1

2
.

The maximum length in both the x−direction and the y−direction are

∆x = max
1≤i≤Nx

∆xi,

∆y = max
1≤j≤Ny

∆yj.

The center of the any cell Ωij is

(xi, yj) = (
xi−1/2 + xi+1/2

2
,
yj−1/2 + yj+1/2

2
).

The approximate solution (uh, q1h, q2h) is taken from the finite element space

Λh =
{
s; s|Ωij ∈ P k; i = 1 : · · · : Nx, j = 1 : · · · : Ny

}
,

where
P k = {P ;P is a polynomial of degree up to k in Ω} .

To construct the weak formulation we multiply (4.56), (4.57), (4.58) and (4.59) respec-
tively by the test functions υh,u, υh,q1 , υh,q2 and υh,c taken from the finite element space
Λh. Then we integrate over every cell Ωij and replace the exact solution (u, q1, q2) by the
approximate solution (uh, q1,h, q2,h) as follows∫

Ωij

∂tuh(x, y, t)υh,u(x, y)d xd y +

∫
Ωij

∂xf(u(x, y, t))υh,u(x, y)d xd y

+

∫
Ωij

∂yg(u(x, y, t))υh,u(x, y)d xd y −
∫

Ωij

∂x(M11q1,h +M12q2,h)υh,u(x, y)d xd y

−
∫

Ωij

∂y(M21q1,h +M22q2,h)υh,u(x, y)d xd y = 0, (4.60)∫
Ωij

q1,hυh,q1(x, y)d xd y−
∫

Ωij

∂xS11(u)υh,q1(x, y)d xd y−
∫

Ωij

∂yS12(u)υh,q1(x, y)d xd y = 0,

(4.61)
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∫
Ωij

q2,hυh,q2(x, y)d xd y−
∫

Ωij

∂xS21(u)υh,q2(x, y)d xd y−
∫

Ωij

∂yS22(u)υh,q2(x, y)d xd y = 0,

(4.62)∫
Ωij

u(x, y, 0)υh,c(x, y)d xd y =

∫
Ωij

u0υh,c(x, y)d xd y. (4.63)

We assume that the solution (uh, q1,h, q2,h) is expressed as

uh =
k∑
r=0

k∑
s=0

ursij (t)Ψr(x)Ψs(y), q1,h =
k∑
r=0

k∑
s=0

qrs1ij(t)Ψr(x)Ψs(y),

q2,h =
k∑
r=0

k∑
s=0

qrs2ij(t)Ψr(x)Ψs(y). (4.64)

Here

Ψr(x) =

(
2(x− xi)

∆xi

)
, Ψs(y) =

(
2(y − yj)

∆yj

)
, (4.65)

where Ψr(x) and Ψs(y) are the Legendre polynomials of degree r and s respectively. The
test functions υh,u, υh,q1 , υh,q2 and υh,c are given as

υh,u = υh,q2 = υh,q2 = υh,c = Ψl(x)Ψm(y). (4.66)

Now we consider the first term of (4.60)

I1 =

∫
Ωij

∂tuh(x, y, t)υh,u(x, y)d xd y

=
∆xi

2l + 1

∆yj
2m+ 1

∂tu
lm
ij (t).

Applying the integration by parts for the second term of (4.60) we get

I2 =

∫ y
j+1

2

y
j− 1

2

f(uh(x, y, t))υh,u(x, y)

∣∣∣∣xi+1
2

x
i− 1

2

−
∫ x

i+1
2

x
i− 1

2

f(uh(x, y, t))∂xυh,u(x, y) dx

 dy

=

∫ y
j+1

2

y
j− 1

2

{
f(uh(xi+ 1

2
, y, t))υh,u(x

−
i+ 1

2

, y)− f(uh(xi− 1
2
, y, t))υh,u(x

+
i− 1

2

, y)
}
dy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

f(uh(x, y, t))∂xυh,u(x, y) dx dy.
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The flux f is discontinuous at the edges xi− 1
2
, xi+ 1

2
, therefore it is replaced by the numerical

flux f̂ . Also we have

υh,u(xi+ 1
2
, y) = Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

) ∣∣∣∣
x=x

i+1
2

= Pl(1)Pm

(
2(y − yj)

∆yj

)
= Pm

(
2(y − yj)

∆yj

)

and

υh,u(xi− 1
2
, y) = Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

) ∣∣∣∣
x=x

i− 1
2

= Pl(−1)Pm

(
2(y − yj)

∆yj

)
= (−1)lPm

(
2(y − yj)

∆yj

)
.

Now we can insert these to give

I2 =

∫ y
j+1

2

y
j− 1

2

{
f̂(uh(xi+ 1

2
, y, t))− (−1)lf̂(uh(xi− 1

2
, y, t))

}
Pm

(
2(y − yj)

∆yj

)
dy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

f(uh(x, y, t))Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy.

The third term of (4.60) is handled in a very similar way as the second term

I3 =

∫ x
i+1

2

x
i− 1

2

{
ĝ(uh(x, yj+ 1

2
, t))− (−1)mĝ(uh(x, yj− 1

2
, t))
}
Pl

(
2(x− xi)

∆xi

)
dx

−
∫ x

i+1
2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

g(uh(x, y, t))Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dy dx.

Now we consider the forth term of (4.60)

I4 =

∫
Ωij

∂x(M11q1,h +M12q2,h)υh,u(x, y)d xd y.

Integrating by parts leads us to

I4 =

∫ y
j+1

2

y
j− 1

2

(M11q1,h +M12q2,h) υh,u

∣∣∣∣xi+1
2

x
i− 1

2

−
∫ x

i+1
2

x
i− 1

2

(M11q1,h +M12q2,h) ∂xυh,ud x

 d y.
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The functions M11, M12, q1,h and q2,h are replaced by M̂11, M̂12, q̂1,h and q̂2,h respectively.
The last equation takes now the following form

I4 =

∫ y
j+1

2

y
j− 1

2

[(
M̂11(xi+ 1

2
, y)q̂1,h(xi+ 1

2
, y) + M̂12(xi+ 1

2
, y)q̂2,h(xi+ 1

2
, y)
)
−

(−1)l
(
M̂11(xi− 1

2
, y)q̂1,h(xi− 1

2
, y) + M̂12(xi− 1

2
, y)q̂2,h(xi− 1

2
, y)
)]
Pm

(
2(y − yj)

∆yj

)
d y−∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

(M11q1,h +M12q2,h)Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
d xd y.

Similarly the fifth term can be written as

I5 =

∫ x
i+1

2

x
i− 1

2

[(
M̂21(x, yj+ 1

2
)q̂1,h(x, yj+ 1

2
) + M̂22(x, yj+ 1

2
)q̂2,h(x, yj+ 1

2
)
)
−

(−1)m
(
M̂21(x, yj− 1

2
)q̂1,h(x, yj− 1

2
) + M̂22(x, yj− 1

2
)q̂2,h(x, yj− 1

2
)
)]
Pl

(
2(x− xi)

∆xi

)
d x−∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

(M21q1,h +M22q2,h)Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
d xd y.

Now we consider equation (4.61) and start with the first term

I1 =

∫
Ωij

q1,hυh,q1(x, y)d xd y

=

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

k∑
r=0

k∑
s=0

qrs1ijΨr(x)Ψs(y)Ψl(x)Ψm(y) dy dx

=
k∑
r=0

k∑
s=0

qrs1ij

∫ x
i+1

2

x
i− 1

2

Ψr(x)Ψl(x) dx

∫ y
j+1

2

y
j− 1

2

Ψs(y)Ψm(y) dy

=
∆xi

2

∆yj
2

k∑
r=0

k∑
s=0

qrs1ij

∫ +1

−1

Pr(x)Pl(x) dx

∫ +1

−1

Ps(y)Pm(y) dy

=
∆xi

2

∆yj
2

k∑
r=0

k∑
s=0

qrs1ij

2

2l + 1

2

2m+ 1
δrlδsm

=
∆xi

2l + 1

∆yj
2m+ 1

qlm1ij.

The second term of (4.61) is handled as follows

84



4.5. THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR TWO
DIMENSIONAL SECOND ORDER DIFFUSION PROBLEMS

I2 =

∫
Ωij

∂xS11(u)υh,q1(x, y)d xd y

=

∫ y
j+1

2

y
j− 1

2

S11(u)υ(x, y)

∣∣∣∣xi+1
2

x
i− 1

2

−
∫ x

i+1
2

x
i− 1

2

S11(u)∂xυ(x, y) dx

 dy

=

∫ y
j+1

2

y
j− 1

2

{
Ŝ11(u(xi+ 1

2
, y))− (−1)lŜ11(u(xi− 1

2
, y))

}
Pm

(
2(y − yj)

∆yj

)
dy

−
∫ y

j+1
2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

S11(u(x, y))Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy.

The third term of (4.61)

I3 =

∫
Ωij

∂xS12(u)υh,q1(x, y)d xd y

can be written in a similar way as

I3 =

∫ x
i+1

2

x
i− 1

2

{
Ŝ12(u(x, yj+ 1

2
))− (−1)mŜ12(u(x, yj− 1

2
))
}
Pl

(
2(x− xi)

∆xi

)
dx

−
∫ x

i+1
2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

S12(u(x, y))Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dx dy.

Equation (4.62) is handled exactly as equation (4.61). For the last equation (4.63) we can
write

ulmij (0) =
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

u0(x, y, 0)Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

)
.

For i, j = 1, · · · , N and for l,m = 1, 2 our System can now be written in the semi-discrete
form as

∂ulmij
∂t

=
2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

f(uh(x, y, t))Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy

+
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

g(uh(x, y, t))Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dy dx
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− 2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

{
f̂(uh(xi+ 1

2
, y, t))− (−1)lf̂(uh(xi− 1

2
, y, t))

}
Pm

(
2(y − yj)

∆yj

)
dy

− 2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

{
ĝ(uh(x, yj+ 1

2
, t))− (−1)mĝ(uh(x, yj− 1

2
, t))
}
Pl

(
2(x− xi)

∆xi

)
dx

+
2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

[(
M̂11(xi+ 1

2
, y)q̂1,h(xi+ 1

2
, y) + M̂12(xi+ 1

2
, y)q̂2,h(xi+ 1

2
, y)
)

− (−1)l
(
M̂11(xi− 1

2
, y)q̂1,h(xi− 1

2
, y) + M̂12(xi− 1

2
, y)q̂2,h(xi− 1

2
, y)
)]
Pm

(
2(y − yj)

∆yj

)
d y

+
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

[(
M̂21(x, yj+ 1

2
)q̂1,h(x, yj+ 1

2
) + M̂22(x, yj+ 1

2
)q̂2,h(x, yj+ 1

2
)
)

− (−1)m
(
M̂21(x, yj− 1

2
)q̂1,h(x, yj− 1

2
) + M̂22(x, yj− 1

2
)q̂2,h(x, yj− 1

2
)
)]
Pl

(
2(x− xi)

∆xi

)
d x

−2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

(M11q1,h +M12q2,h)Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
d xd y

−2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

(M21q1,h +M22q2,h)Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
d xd y.

(4.67)

qlm1ij =
2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

S11(u(x, y))Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy

+
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

S12(u(x, y))Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dx dy

− 2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

{
Ŝ11(u(xi+ 1

2
, y))− (−1)lŜ11(u(xi− 1

2
, y))

}
Pm

(
2(y − yj)

∆yj

)
dy

− 2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

{
Ŝ12(u(x, yj+ 1

2
))− (−1)mŜ12(u(x, yj− 1

2
))
}
Pl

(
2(x− xi)

∆xi

)
dx.

(4.68)

qlm2ij =
2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

S21(u(x, y))Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy

+
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

S22(u(x, y))Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dx dy
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− 2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

{
Ŝ21(u(xi+ 1

2
, y))− (−1)lŜ21(u(xi− 1

2
, y))

}
Pm

(
2(y − yj)

∆yj

)
dy

− 2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

{
Ŝ22(u(x, yj+ 1

2
))− (−1)mŜ22(u(x, yj− 1

2
))
}
Pl

(
2(x− xi)

∆xi

)
dx,

(4.69)
with the initial condition

ulmij (0) =
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

∫ y
j+1

2

y
j− 1

2

u0(x, y, 0)Pl

(
2(x− xi)

∆xi

)
Pm

(
2(y − yj)

∆yj

)
. (4.70)

In a special case, if the initial condition is constant, i.e. u0(x, y, 0) = C then the last
equation can be written as

ulmij (0) =

{
C, if l = m = 0

0, otherwise.

Before we continue we introduce the following notations

[Q] = Q+ −Q−, Q+
i+ 1

2

= Q(x+
i+ 1

2

), Q−
i+ 1

2

= Q(x−
i+ 1

2

).

The numerical convection fluxes f̂ and ĝ are chosen as any monotone fluxe, while the
other numerical fluxes are given as

M̂ij =
[Sij]

[u]
, Ŝij = S−ij , q̂i = q+

i , for i, j = 1, 2.

In a special case if
f(u) = g(u) = A12(u) = A21(u) = 0,

A11 = A22 = α (constant),

then (4.50) takes the form
∂u

∂t
− ∂2u

∂x2
− ∂2u

∂y2
= 0.

By introducing the variables q1 and q2 we get

q1 =
∂u

∂x
, q2 =

∂u

∂y
,

∂u

∂t
− ∂q1

∂x
− ∂q2

∂y
= 0,

and the semi-discretization is

∂ulmij
∂t

=
2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

{
q̂1(xi+ 1

2
, y)− (−1)lq̂1(xi− 1

2
, y)
}
Pm

(
2(y − yj)

∆yj

)
dy

− 2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

q1(x, y)Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy
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+
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

{
q̂2(x, yj+ 1

2
)− (−1)mq̂2(x, yj− 1

2
)
}
Pl

(
2(x− xi)

∆xi

)
dx

− 2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

q2(x, y)Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dx dy,

qlm1ij =
2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

{
û(xi+ 1

2
, y)− (−1)lû(xi− 1

2
, y)
}
Pm

(
2(y − yj)

∆yj

)
dy

− 2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

u(x, y)Pm

(
2(y − yj)

∆yj

)
∂xPl

(
2(x− xi)

∆xi

)
dx dy,

qlm2ij =
2l + 1

∆xi

2m+ 1

∆yj

∫ x
i+1

2

x
i− 1

2

{
û(x, yj+ 1

2
)− (−1)mû(x, yj− 1

2
)
}
Pl

(
2(x− xi)

∆xi

)
dx

− 2l + 1

∆xi

2m+ 1

∆yj

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

u(x, y)Pl

(
2(x− xi)

∆xi

)
∂yPm

(
2(y − yj)

∆yj

)
dx dy.

The numerical fluxes for this case are

û(xi+ 1
2
, y) = u−(xi+ 1

2
, y), û(x, yj+ 1

2
) = u−(x, yj+ 1

2
),

q̂1(xi+ 1
2
, y) = q+

1 (xi+ 1
2
, y), q̂1(x, yj+ 1

2
) = q+

1 (x, yj+ 1
2
),

q̂2(xi+ 1
2
, y) = q+

2 (xi+ 1
2
, y), q̂2(x, yj+ 1

2
) = q+

2 (x, yj+ 1
2
),

where

u−(xi+ 1
2
, y) =

k∑
r=0

k∑
s=0

ursij (t)Pr

(
2(x− xi)

∆xi

)
Ps

(
2(y − yj)

∆yj

) ∣∣∣∣
x=x

i+1
2

,

u−(x, yj+ 1
2
) =

k∑
r=0

k∑
s=0

ursij (t)Pr

(
2(x− xi)

∆xi

)
Ps

(
2(y − yj)

∆yj

) ∣∣∣∣
y=y

j+1
2

,

q+
1 (xi+ 1

2
, y) =

k∑
r=0

k∑
s=0

qrs1i+1,j(t)Pr

(
2(x− xi)

∆xi

)
Ps

(
2(y − yj)

∆yj

) ∣∣∣∣
x=x

i+1
2

,

q+
1 (x, yj+ 1

2
) =

k∑
r=0

k∑
s=0

qrs1i,j+1(t)Pr

(
2(x− xi)

∆xi

)
Ps

(
2(y − yj)

∆yj

) ∣∣∣∣
y=y

j+1
2

,

q+
2 (xi+ 1

2
, y) =

k∑
r=0

k∑
s=0

qrs2i+1,j(t)Pr

(
2(x− xi)

∆xi

)
Ps

(
2(y − yj)

∆yj

) ∣∣∣∣
x=x

i+1
2

,

q+
2 (x, yj+ 1

2
) =

k∑
r=0

k∑
s=0

qrs2i,j+1(t)Pr

(
2(x− xi)

∆xi

)
Ps

(
2(y − yj)

∆yj

) ∣∣∣∣
y=y

j+1
2

.
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4.6 Numerical solution of ordinary differential equa-

tions

4.6.1 Runge-Kutta method

To integrate the ordinary differential equations (ODEs) an explicit Runge-Kutta method
is used. This method gives very precise results and is very easy to implement. To illustrate
this method we take a simple first order ordinary differential equation u′ = f(t, u) with
the initial condition u(t0) = u0. Denoting the number of stages by r, the general form of
the family of Runge-Kutta method is given as

un+1 = un + ∆t
r∑
i=1

βiHi,

where

H1 = f(tn, un),
H2 = f(tn + γ2∆t, un + ∆tα21H1),
H3 = f(tn + γ3∆t, un + ∆t(α31H1 + α32H2)),

...
Hr = f(tn + γr∆t, un + ∆t(αr1H1 + αr2H2 + · · ·+ αr,r−1Hr−1)).

Here the matrix [αij] for 1 ≤ j < i ≤ r denotes the Runge-Kutta matrix, while the
coefficients βi for i = 1, · · · , r and γi for i = 2, · · · , r are the weights and the nodes
respectively. The Runge-Kutta formula can be expressed using the so-called Butcher
array. For explicit methods it has the form

0
γ2 α21

γ3 α31 α32
...

...
. . .

γr αr1 αr2 · · · αr,r−1

β1 β2 . . . βr−1 βr

with the property

γi =
r∑
j=1

αij.

For r = 1 we get the simplest Runge-Kutta method. In comparison with Taylor expansion
we find that β1 = 1. In this case we get

un+1 = un + ∆tf(tn, un),

which is exactly the explicit Euler’s method.
For r = 2 we get a two stage Runge-Kutta method with the Butcher array
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0
1/2 1/2

0 1

In this case the second order Runge-Kutta method is given as

un+1 = un + ∆tf(tn +
∆t

2
, un +

∆t

2
f(tn, un)).

For r = 4 a corresponding Butcher array is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

giving the classical fourth order Runge-Kutta method that has the form

un+1 = un +
∆t

2
(H1 + 2H2 + 2H3 +H4),

with

H1 = f(tn, un),
H2 = f(tn + ∆t

2
, un + ∆t

2
H1),

H3 = f(tn + ∆t
2
, un + ∆t

2
H2),

H4 = f(tn + ∆t, un + ∆tH2).

For more details about Runge-Kutta methods the reader is referred to [75], [9], [93], [8],
[58].

4.6.2 Adaptive Runge-Kutta methods

Dormand-Prince method

The embedded Runge-Kutta methods include two Runge-Kutta formulas usually of orders
p and p − 1, see [62]. One member of the Runge-Kutta family is the Dormand-Prince
method. In this method p is taken to be 5. The corresponding Butcher array is given as
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0

1

5

1

5

3

10

3

40

9

40

4

5

44

45
−56

15

32

9

8

9

19372

6561
−25360

2187

64448

6561
−212

729

1
9017

3168
−355

33

46732

5247

49

176
− 5103

18656

1
35

384
0

500

1113

125

192
−2187

6784

11

84

5179

57600
0

7571

16695

393

640
− 92097

339200

187

2100

1

40

35

384
0

500

1113

125

192
−2187

6784

11

84
0

The scheme of the lower order step is given as

ûn+1 = un + ∆t

p−1∑
i=1

β̂iHi,

where the Hi’s are given as above. Now we can write

ûn+1 = un +
35

384
H1 +

500

1113
H3 +

125

192
H4 −

2187

6784
H5 +

11

84
H6,

and

un+1 = un +
5179

57600
H1 +

7571

16695
H3 +

393

640
H4 −

92097

339200
H5 +

187

2100
H6 +

1

40
H7.

The error is given as

| ûn+1 − un+1 |=|
71

57600
H1 −

71

16695
H3 +

71

1920
H4 −

17253

339200
H5 +

22

525
H6 −

1

40
H7 | .

More details about this method can be found in [46], [78], [82], [21].
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4.6.3 Backward and Numerical Differentiation Formulas

Backward Differentiation Formulas (BDF)

The k − step BDF method has the form

k∑
i=0

αiun+i−k+1 = ∆tβkf(tn+1, un+1). (4.71)

Here ∆t is the step size and αi and βk are parameters given in Table 4.1

k α5 α4 α3 α2 α1 α0 βk p

1 1 -1 1 1

2 1 -
4

3

1

3

2

3
2

3 1 −18

11

9

11
− 2

11

6

11
3

4 1 −48

25

36

25
−16

25

3

25

12

25
4

5 1 −300

137

300

137
−200

137

175

137
− 12

137

60

137
5

Table 4.1: Coefficients of the BDF methods

In this table p denotes the order of the method. As an example, the backward differenti-
ation formula (BDF2) is given as

un+1 =
2

3
∆tf(tn+1, un+1)− 1

3
un−1 +

4

3
un.

Equation (4.71) can be also written as

k∑
m=1

1

m
∇mun+1 = ∆tf(tn+1, un+1), (4.72)

where the operator ∇ is given as

∇yk = yk − yk−1.

Higher order differences can be obtained by repeating the operations of the backward
difference operator, e.g.
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∇2yk = ∇(∇yk) = ∇(yk − yk−1)

= ∇yk −∇yk−1

= yk − yk−1 − yk−1 + yk−2

= yk − 2yk−1 + yk−2.

In general we can write

∇ryk =
r∑
s=0

(−1)s
(
r

s

)
yk−s,

where
(
r
s

)
is the binomial coefficient.

Numerical Differentiation Formulas (NDF)

Numerical differentiation methods are a modification of the backward differentiation
methods where a new term is added. For a k − step method these methods have the
formula

k∑
m=1

1

m
∇mun+1 = ∆tf(tn+1, un+1) + κγk

(
un+1 − u[0]

n+1

)
, (4.73)

where

u
[0]
n+1 =

k∑
m=0

∇mun.

In this formula κ is a scalar parameter and γk is given by γk =
∑k

i=1 1/i. The coefficients
of the NDF methods of order 1 to 5 are given in Table 4.2.
It is simple by induction to prove the following formula

un+1 − u[0]
n+1 = ∇k+1un+1. (4.74)

Using this formula it is possible also with induction to prove the following identity

k∑
m=1

1

m
∇mun+1 = γk

(
un+1 − u[0]

n+1

)
+

k∑
m=1

γm∇mun.

Due to this formula, equation (4.73) is equivalent to the following equation

(1− κ)γk

(
un+1 − u[0]

n+1

)
+

k∑
m=1

γm∇mun −∆tf(tn+1, un+1) = 0.

To solve this algebraic equation the simplified Newton’s method is used. This method
will be clarified in the following subsection. More details about the BDF and the NDF
can be found in [30], [74] [69].
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k κ α5 α4 α3 α2 α1 α0 βk p

1 −37/200 1 -1 1 1

2 −1/9 1 -
4

3

1

3

2

3
2

3 −0.0823 1 −18

11

9

11
− 2

11

6

11
3

4 −0.0415 1 −48

25

36

25
−16

25

3

25

12

25
4

5 0 1 −300

137

300

137
−200

137

175

137
− 12

137

60

137
5

Table 4.2: Coefficients of the NDF methods

4.6.4 Newton and Simplified Newton’s Iteration

Let ϕ : D ⊆ Rn −→ Rn be a differential function. Newton iteration is a method used to
solve non-linear algebraic equations as

ϕi(x1, · · · , xN) = 0, i = 1 : · · · , N.

In the Newton iteration the function ϕ(X) where X = (x1, · · · , xN) is approximated in
the vicinity of Xk = (xk1, · · · , xkN) by a function ϕk(X) and the solution is used as the
next iterate Xk+1 = (xk+1

1 , · · · , xk+1
N ). Making use of Taylor expansion we get

0 = ϕk(X) = ϕ(Xk) + Jϕ(Xk)(X −Xk).

Here Jϕ(X) is the Jacobi matrix given by

[Jϕ(X)]ij =
∂ϕi(X)

∂xj
.

Next we solve the equation ϕk(X
k+1) = 0 for the iterate Xk+1

0 = ϕk(X
k+1) = ϕ(Xk) + Jϕ(Xk)(Xk+1 −Xk)

or
Xk+1 = Xk −

[
Jϕ(Xk)

]−1
ϕ(Xk).

This is called the Newton iteration. If the same Jacobi matrix is used successively then
we get the so-called the simplified Newton’s method where the iteration is given by

Xk+1 = Xk −
[
Jϕ(X0)

]−1
ϕ(Xk).

The iteration is terminated if the convergence is not achieved. In this case the step size
is reduced. For more details the reader is referred to [10], [75], [40].

94



4.7. NUMERICAL INTEGRATION

4.7 Numerical integration

For some integrands it is very complicated to find the integrals because of the complicated
nature of these integrands. In order to solve this problem some numerical integrations
are used, e.g. trapezoidal rule, rectangle rule, Simpson’s rule, Newton-Cotes formulas,
Gauß-Legendre quadrature. In our work Gauß-Legendre quadrature is used for 1D and 2D
domains.

Gauß-Legendre quadrature for 1D

The integral

If =

∫ +1

−1

f(x)dx

is approximated by the sum

If ≈
n∑
i=1

wif(xi).

Here wi and xi represent the weights and the nodes respectively. The Gauß node xi is the
ith root of the Legendre polynomial Pn given by

Pn =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
.

The weights are given by

wi =
2

(1− x2
i )[P

′
n(xi)]2

,

see [17].

Example 4.7.1. For two points, i.e. n = 2 we have two nodes located at x1 = −1/
√

3
and x2 = 1/

√
3. The corresponding weights are w1 = w2 = 1

∫ +1

−1

f(ζ) dζ = f(
1√
3

) + f(− 1√
3

).

The nodes and the weights up to 5 points are listed in Table 4.3. The nodes and the
weights up to n = 16 can be found in [2].
In general, in order to integrate

If =

∫ b

a

f(x)dx (4.75)

we take a transformation T = αx+ β and solve the system

−1 = aα + β,
+1 = bα + β.
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Figure 4.4: A 2-point Gauß-Legendre quadrature rule

Number of points, n Nodes, xi Weights, wi
1 0 2

2 ± 1/
√

3 1

3
0 8/9

±
√

3/5 5/9

4
±
√

3
7
− 2

7

√
6
5

18+
√

30
36

±
√

3
7

+ 2
7

√
6
5

18−
√

30
36

5

0 128/225

±1
3

√
5− 2

√
10
7

322+13
√

70
900

±1
3

√
5 + 2

√
10
7

322−13
√

70
900

Table 4.3: Table of nodes and weights up to n = 5

The solution of this system gives

α =
2

b− a
, β =

a+ b

a− b
.

The transformation we seek now is

T =
1

b− a

(
2x− (a+ b)

)
.

The integral If can be written now as∫ b

a

f(x)dx =
b− a

2

∫ +1

−1

f

(
b− a

2
T +

a+ b

2

)
d T.

96



4.7. NUMERICAL INTEGRATION

The approximation of this integral is given due to Gauß-Legendre by∫ b

a

f(x)dx ≈ b− a
2

n∑
i=1

wif

(
b− a

2
Ti +

a+ b

2

)
. (4.76)

Gauß-Legendre quadrature for 2D

The integral

If =

∫ +1

−1

∫ +1

−1

f(x, y)dxdy

is approximated by the sum

If ≈
n∑
i=1

n∑
j=1

wiwjf(xi, yj).

Again wi, wj represent the weights and xi, xi represent the nodes.
For one point i.e. n = 1 we have

If =

∫ +1

−1

∫ +1

−1

f(x, y)dxdy = 4f(0, 0).

For two points i.e. n = 2 we get the formula

Figure 4.5: One point Gauß-Legendre rule

If =

∫ +1

−1

∫ +1

−1

f(x, y)dxdy

= f(
1√
3
,

1√
3

) + f(− 1√
3
,

1√
3

) + f(
1√
3
,− 1√

3
) + f(− 1√

3
,− 1√

3
).

In general, the integral

If =

∫ b

a

∫ d

c

f(x, y)dydx
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Figure 4.6: Two points Gauß-Legendre rule

can be written after taking the following two transformations with respect to x and y

T =
1

b− a

(
2x− (a+ b)

)
, S =

1

d− c

(
2y − (c+ d)

)
,

as

If =
b− a

2

d− c
2

∫ +1

−1

∫ +1

−1

f

(
b− a

2
T +

a+ b

2
,
d− c

2
S +

c+ d

2

)
dS dT.

The approximation of this integral is given due to Gauß-Legendre quadrature by

If =
b− a

2

d− c
2

n∑
i=1

n∑
j=1

wiwjf

(
b− a

2
Ti +

a+ b

2
,
d− c

2
Sj +

c+ d

2

)
. (4.77)

For more details about Gauß-Legendre quadrature and some other methods, the reader
is referred to [22] and [67].

4.8 The L2 error and the experimental order of con-

vergence EOC

The L2 error in the region Ω is given in the following formula

‖u− uh‖L2(Ω) =

(∫
Ω

| u− uh |2 dΩ
)1/2

,

where u and uh are the exact and the approximate solutions respectively.
The experimental order of convergence (EOC) of the mesh sizes h and h′ can be calculated
with respect to the Lp − norm as follows

EOC(h, h′) :=
log(‖u− uh′‖Lp)− log(‖u− uh‖)Lp

log h− log h′
.
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4.9 Numerical examples

In the following the discontinuous Galerkin method with piecewise linear elements has
been used for the spatial discretization, while the resulting ODEs were solved using the
Dormand-Prince method. Both methods have been already explained in Sections 4.2, 4.3,
4.4 and 4.5 as well as in Subsection 4.6.2.

4.9.1 1D hyperbolic partial differential equation example

In the following we consider the advection equation given by

ut + ux = 0, in ]0, 2π[×]0, 10[, (4.78)

with the initial condition

u(x, 0) = sin(x), for all x ∈]0, 2π[, (4.79)

and the periodic boundary condition. The exact solution for this equation is given as
u(x, t) = sin(x− t). Figure 4.7 shows both the exact and the approximate solution taken

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5

x

u
(x

,t
)

 

 

Exact solution

Aproximate solution

Figure 4.7: Comparison of the exact solution and the approximate solution.

with N = 50 points and piecewise linear elements.

In the table below we see the L2 errors and the orders of convergence for the discontinuous
Galerkin method applied to the equation (4.78) with the initial condition u(x, 0) = sin(x)
at t=10.

∆x L2 error order
2π/50 1.77e-03 —
2π/100 4.31e-04 2.04
2π/200 1.07e-04 2.00
2π/400 2.66e-05 2.00
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4.9.2 1D parabolic partial differential equation example

Here we take the following heat equation

ut − uxx = 0, in ]0, 2π[×]0, 1[, (4.80)

with the initial condition

u(x, 0) = sin(x), for all x ∈]0, 2π[, (4.81)

and the periodic boundary condition. The exact solution for this equation is given as
u(x, t) = exp(−t) sin(x)
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Figure 4.8: Comparison of the exact solution and the approximate solution.

Figure 4.8 shows both the exact and the approximate solution taken with N = 50 points
and again with piecewise linear elements.

In the table below we see the L2 errors and the orders of convergence for the discontinuous
Galerkin method applied to the equation (4.80) with the initial condition u(x, 0) = sin(x)
at t=1.

∆x L2 error order
2π/50 6.26e-04 —
2π/100 1.56e-04 2.00
2π/200 3.89e-05 2.00
2π/400 9.64e-06 2.00

4.9.3 2D hyperbolic partial differential equation example

Here we find the numerical solution for the following 2D partial differential equation

ut + ux + uy = 0, (x, y) ∈ Ω = [0, 4π]× [0, 4π], t ∈ [0, 2], (4.82)
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with the initial condition

u(x, y, 0) = sin(x+ y), for all (x, y) ∈ Ω (4.83)

and the periodic boundary condition. The exact solution for this equation is u(x, y) =
sin(x+y−2t). Figure 4.9 shows the numerical solution of equation (4.82) at the left hand
side next to the exact solution at the right hand side. The L2 errors as well as the orders
of convergence are presented in the following table.
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Figure 4.9: Numerical solution (left) and the exact solution (right).

mesh size L2 error order
40× 40 6.21e-02 —
80× 80 1.51e-02 2.03

160× 160 3.75e-03 2.01
320× 320 9.35e-04 2.00

4.9.4 2D parabolic partial differential equation example

Now we consider the following 2D heat equation

ut −∆u = 0, (x, y) ∈ Ω = [0, 2π]× [0, 2π], t ∈ [0, 0.4], (4.84)

with the initial condition

u(x, y, 0) = sin(x+ y), for all (x, y) ∈ Ω (4.85)

and the periodic boundary condition. Here ∆ is the Laplacian operator given as

∆u = ∇2u =
∂2u

∂x2
+
∂2u

∂y2
.

This PDE has an exact solution given as u(x, y, t) = exp(−2t) sin(x+ y).
Figure 4.10 presents the numerical solution for the equation (4.84) beside the exact solu-
tion with N = 80 and T = 0.4. The L2 errors and the orders of convergence are shown in
the bottom table.
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Figure 4.10: Numerical solution (left) and the exact solution (right).

mesh size L2 error order
10× 10 5.94e-02 —
20× 20 1.41e-02 2.07
40× 40 3.43e-03 2.03
80× 80 8.48e-04 2.01
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Chapter 5

Numerical Results

In this chapter we present the numerical results for the two systems given in Chapter 2.
In the first section we show the numerical results in 1D for the uniform distribution of
liquid droplets where we present the influence of the mass flow rate of the air ṁA, the
temperature of air θA2, the heat transfer ratio f , the thickness of the film F as well as the
mass flow rate of the liquid ṀLV . In the second section a 2D simulation for the case of
a non-uniform distribution is presented. The results are computed at the top of the flu-
idized bed with respect to time and at the last moment t = 250s with respect to the height.

5.1 Numerical results in 1D

The liquid is atomized and sprayed from the nozzle covering an area in the fluidized bed
chamber. These droplets adhere on the surface of the particles forming a film on each
particle. The water evaporates increasing the humidity of the air. As we see in Figure 5.1,
the humidity is increasing almost linearly in the axial direction in both regions. The air
temperature is decreasing also in axial direction, see Figure 5.2. The maximum value the
temperature of air takes place directly at the bottom of the chamber where the distributor
plate is. This is because of the inflow of the air.

The left hand side of Figure 5.3 shows that in region (2) the humidity of air is increasing
with respect to time until it arrives the steady state. At this point the outlet humidity
verifies the balance equation (2.23). The right hand side of Figure 5.3 shows that the
degree of wetting is increasing at first very fast from its initial value 10−8 at t = 0
and then very slowly toward the outlet value. The temperature of air along with the
temperature of particles are decreasing from the initial time t = 0 to the final time as
seen in Figure 5.4. The temperature of the liquid film increases very sharply from the
inlet liquid temperature to a certain value before it starts to decrease till it arrives to the
steady state, see Figure 5.5. The interpretation of this phenomenon is that after a while
the process reaches the equilibrium point between the heat supplied by the hot gas and
the heat loss due to evaporation of the film.
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Figure 5.1: Humidity with respect to the
height
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Figure 5.2: Temperature of air with re-
spect to the height

Influence of the air mass flow rate ṁA

Figures 5.6 and 5.8 show that the air mass flow rate is inversely proportional to the
humidity of air and the degree of wetting, while it is directly proportional to the air
temperature and the particle temperature as seen in Figures 5.7 and 5.9. The outlet
values of the liquid temperature at the steady state are changing slightly due to the
change of the air mass flow rate, see Figure 5.10.

Influence of air temperature θA2

Figure 5.11 shows that the humidity is increasing towards the top of region (2). We
can see in this figure that the outflow humidity at the top of region (2) for the lower
temperature of air is larger than the outflow of the humidity for the higher temperature
of air. In region (2) all of them have the same outflow value at the steady state to verify
the balance equation (2.23). This can be interpreted as follows: At a higher temperature
of air more evaporation takes place in region (1), consequently less water arrives in region
(2). This leads to a lower humidity in the outflow in region (2). This can be also seen at the
left hand side of Figure 5.13 which shows the humidity at the top of region (2). Different
values of the air temperature lead to different outflow values at the steady state. Higher
inlet air temperatures lead to higher outflow temperatures for each of the temperature
of air, the particles and the liquid, see Figures 5.12, 5.14, and 5.15. In contrast to this,
higher inlet air temperatures give lower values of the degree of wetting at the outlet, see
the right hand side of Figure 5.13

Influence of the thickness of the liquid film F

From the Figures 5.16, 5.17 and 5.18 it is possible to see that every balance quantity
has almost the same outlet value for different thicknesses of the liquid film. The only
difference can be seen is the behavior of the balance equations in few seconds after the
injection of the liquid. The thickness of the film has no influence on the heat transfer
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Figure 5.3: Simulation of air humidity and the degree of wetting with respect to the time.
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Figure 5.4: Simulation of the temperature of air and the temperature of particle with
respect to the time.
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Figure 5.5: Simulation of the temperature of liquid with respect to the time.

between the liquid film and the air. It has an influence on just the particle. The stronger
the thickness is, the more time is needed to arrive at the steady state.
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Figure 5.6: Simulation of air humidity
with respect to the height for different
values of ṁA
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Figure 5.7: Simulation of air tempera-
ture with respect to the height for dif-
ferent values of ṁA

Influence of the mass flow rate of the liquid ṀLV

Increasing the mass flow rate of the liquid results in a higher humidity of the air. This
matches with the balance equation (2.23). Also this increase leads to a larger degree of
wetting where the wetted surface becomes larger which means that the interface between
the liquid film and the air, as well as the liquid film and the particle becomes larger. This
leads to a decrease in the temperatures of air, particles and the liquid film, see Figures
5.19, 5.20, 5.21, 5.22 and 5.23.

Influence of the heat transfer coefficient f

To see the effect of the ratio of the heat transfer coefficient f we present the simulations
for two different thicknesses F = 1 µm and F = 100 µm each with a different ratio of
heat transfer coefficient. As seen in Figure 5.27 for F = 1 µm the humidity curves for
different values of f are almost identical. This comes from the fact that for very small
thicknesses, f has no effect on the evaporation flow. This also can be seen in Figure 5.28
for the temperature of air and the temperature of particle. The heat transfer coefficient
has a strong effect on both the degree of wetting and the temperature of liquid, where a
smaller value of f results in a higher outflow of the degree of wetting at the final value in
contrast to the temperature of liquid outflow. This means that for a better heat transfer
between the hot particles and the cold liquid film we get a higher temperature of liquid
film, see Figures 5.24, 5.27, 5.26 and 5.29.

5.2 Numerical results in 2D

In this section we take into consideration the non-uniform distribution of the spray in the
fluidized bed which was described in Chapter 2. The spraying is assumed to be down from
the top. The nozzle is located at the top of the fluidized bed and in the middle of the
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Figure 5.8: Simulation of air humidity and the degree of wetting for different values of
ṁA.
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ṁA = 0.3kg/s
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Figure 5.9: Simulation of the temperature of air and the temperature of particle for
different values of ṁA.
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ṁA = 0.5kg/s

Figure 5.10: Simulation of the temperature of liquid for different values of ṁA.

diameter of the apparatus, i.e. at the point (dapp
2
, Htot) as seen in Figure 2.3. The spraying

angle θNozz is taken to be π
6

while the deposition efficiency is taken as φdep = 30%. Here
we present the numerical results of the humidity of air, the temperature of the air, the
degree of wetting, the temperature of the particles as well as the temperature of the liquid
film. The humidity of the air is increasing almost linearly from its initial value until it
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Figure 5.11: Simulation of air humidity
with respect to the height for different
values of θA2
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Figure 5.12: Simulation of the tempera-
ture of air with respect to the height for
different values of θA2

arrives at the steady state where it reaches its maximum value at the top of the fluidized
bed, see the left hand side of Figure 5.30. The temperature of air is decreasing from the
initial value at t = 0 at the distribution plate until it arrives at the stationary state as
seen in the right hand side of Figure 5.30. On the right hand side of Figure 5.31 we see
that the temperature of particles has a very slight difference with respect to the height.
This is because of the very high heat transfer between the air and the particles as well
as between the air and the liquid film, also because of the high axial intermixing of the
particles. Due to this we see a very small difference between the lowest and the highest
value, where the difference does not exceed a few percent. The degree of wetting reaches
its maximum value near the nozzle region and decreases after that. This is because of the
fact that we have an almost complete deposition of the liquid droplets onto the particles
after few centimeters from the nozzle, see the left hand side of Figure 5.31. Unlike the
degree of wetting the temperature of the liquid film reaches the lowest value near the
nozzle region. This is because of the fact that temperature of the injected liquid is 20◦C,
so the temperature decreases when the energy of the particles is absorbed and increases
when the energy is emitted as seen in Figure 5.32. The patterns of the parameters in
the 2D computations behave exactly as the 1D patterns. Because of this they will not be
presented here. Instead of this we shall show the behavior of the parameters in different
time levels. This can be seen in the figures from Fig 5.33 to Fig 5.62.
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Figure 5.13: Simulation of air humidity and the degree of wetting for different values of
θA2.
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Figure 5.14: Simulation of the temperature of air and the temperature of particle for
different values of θA2.
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Figure 5.15: Simulation of the temperature of liquid for different values of θA2.
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Figure 5.16: Simulation of air humidity and the degree of wetting for different values of
F .
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Figure 5.17: Simulation of the temperature of air and the temperature of particle for
different values of F .
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Figure 5.18: Simulation of the temperature of liquid for different values of F .
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Figure 5.19: Simulation of air humidity
with respect to the height for different
values of ṀLV

0 0.2 0.4 0.6 0.8 1 1.2
55

60

65

70

75

80

Height [s]

T
e
m

p
e
ra

tu
re

 o
f 
a
ir
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Figure 5.20: Simulation of air tempera-
ture with respect to the height for dif-
ferent values of ṀLV
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Figure 5.21: Simulation of air humidity and the degree of wetting for different values of
ṀLV .
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Figure 5.22: Simulation of the temperature of air and the temperature of particle for
different values of ṀLV .
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Figure 5.23: Simulation of the temperature of liquid for different values of ṀLV .
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Figure 5.24: Simulation of air humidity and the degree of wetting for F = 100 µm and
different values of the heat transfer coefficient f .
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Figure 5.25: Simulation of air temperature and particle temperature for F = 100 µm and
different values of the heat transfer coefficient f .
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Figure 5.26: Simulation of the temperature of liquid for F = 100 µm and different values
of the heat transfer coefficient f .
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Figure 5.27: Simulation of air humidity and the degree of wetting for F = 1 µm and
different values of the heat transfer coefficient f .
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Figure 5.28: Simulation of air temperature and particle temperature for F = 1 µm and
different values of the heat transfer coefficient f .
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Figure 5.29: Simulation of the temperature of liquid for F = 1 µm and different values of
the heat transfer coefficient f .

114



5.2. NUMERICAL RESULTS IN 2D

4

1

5

6

7

0.8

8

H
u

m
id

it
y
 [

k
g

/k
g

]

×10 -3

9

0.6

Height [m]

0.5

10

Diameter [m]

0.4

0.2
0 0

4

5

6

7

8

9

10

×10 -3

68

1

70

72

0.8

74

T
e
m
p
e
ra
tu
re

o
f
a
ir

C
◦

76

0.6

Height [m]

0.5

78

Diameter [m]

80

0.4

0.2
0 0

70

71

72

73

74

75

76

77

78

79

80

Figure 5.30: Simulation of air humidity and the temperature of air.
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Figure 5.31: Simulation of the degree of wetting and the temperature of particles.
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Figure 5.33: Simulation of air humidity at time t = 0.1s.
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Figure 5.34: Simulation of air humidity at time t = 1s.
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Figure 5.35: Simulation of air humidity at time t = 10s.
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Figure 5.36: Simulation of air humidity at time t = 50s.
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Figure 5.37: Simulation of air humidity at time t = 100s.
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Figure 5.38: Simulation of air humidity at time t = 250s.

117



CHAPTER 5. NUMERICAL RESULTS

79.988

1

79.99

79.992

0.8

79.994

T
e
m
p
e
ra
tu
re

o
f
a
ir

C
◦

79.996

0.6

Height [m]

0.5

79.998

Diameter [m]

80

0.4

0.2
0 0

79.989

79.99

79.991

79.992

79.993

79.994

79.995

79.996

79.997

79.998

79.999

0 0.2 0.4 0.6 0.8

Diameter [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

ig
h

t 
[m

]

79.989

79.99

79.991

79.992

79.993

79.994

79.995

79.996

79.997

79.998

79.999

Figure 5.39: Simulation of air temperature at time t = 0.1s.
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Figure 5.40: Simulation of air temperature at time t = 1s.
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Figure 5.41: Simulation of air temperature at time t = 10s.

118



5.2. NUMERICAL RESULTS IN 2D

72

1

74

0.8

76

T
e
m
p
e
ra
tu
re

o
f
a
ir

C
◦

0.6

78

Height [m]

0.5

Diameter [m]

80

0.4

0.2
0 0

74

75

76

77

78

79

80

0 0.2 0.4 0.6 0.8

Diameter [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

ig
h

t 
[m

]

74

75

76

77

78

79

80

Figure 5.42: Simulation of air temperature at time t = 50s.
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Figure 5.43: Simulation of air temperature at time t = 100s.
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Figure 5.44: Simulation of air temperature at time t = 250s.
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Figure 5.45: Simulation of the degree of wetting at time t = 0.1s.
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Figure 5.46: Simulation of the degree of wetting at time t = 1s.
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Figure 5.47: Simulation of the degree of wetting at time t = 10s.
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Figure 5.48: Simulation of the degree of wetting at time t = 50s.
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Figure 5.49: Simulation of the degree of wetting at time t = 100s.
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Figure 5.50: Simulation of the degree of wetting at time t = 250s.
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Figure 5.51: Simulation of the particle temperature at time t = 0.1s.
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Figure 5.52: Simulation of the particle temperature at time t = 1s.
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Figure 5.53: Simulation of the particle temperature at time t = 10s.
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Figure 5.54: Simulation of the particle temperature at time t = 50s.
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Figure 5.55: Simulation of the particle temperature at time t = 100s.
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Figure 5.56: Simulation of the particle temperature at time t = 250s.

123



CHAPTER 5. NUMERICAL RESULTS

21

1

21.5

0.8

22

T
e
m
p
e
ra
tu
re

o
f
li
q
u
id

C
◦

0.6

22.5

Height [m]

0.5

Diameter [m]

23

0.4

0.2
0 0

21.6

21.8

22

22.2

22.4

22.6

22.8

0 0.2 0.4 0.6 0.8

Diameter [m]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
e

ig
h

t 
[m

]
21.6

21.8

22

22.2

22.4

22.6

22.8

Figure 5.57: Simulation of the liquid film temperature at time t = 0.1s.
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Figure 5.58: Simulation of the liquid film temperature at time t = 1s.
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Figure 5.59: Simulation of the liquid film temperature at time t = 10s.
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Figure 5.60: Simulation of the liquid film temperature at time t = 50s.
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Figure 5.61: Simulation of the liquid film temperature at time t = 100s.
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Figure 5.62: Simulation of the liquid film temperature at time t = 250s.
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Chapter 6

Summary

In this thesis, a new study of the mass and heat transfer in a fluidized bed has been
studied. An existing model was extended by adding two new partial differential equations
related to the humidity and the temperature of the air. Also it was modified after taking
the evaporation of the atomized droplets in region 1 into consideration . The derivation
of the two models can be found in Chapter 2. The liquid spray model was also modified
to match the new study. The arising semilinear partial differential equations were solved
using the discontinuous Galerkin method. The numerical differentiation formulas (NDF)
were applied to solve the resulting ordinary differential equations. Both methods were
explained in Chapter 4. The numerical simulations for these equations were presented in
Chapter 5, where the influence of the air mass flow rate, the temperature of the inlet air,
the thickness of the liquid film, the liquid mass flow rate as well as the ratio of the heat
transfer coefficient were presented in the uniform distribution for the 1D case. Also the
two dimensional distribution of the humidity of air, the temperature of air, the degree of
wetting, the temperature of the particles as well as the temperature of the liquid film in
the non-uniform distribution of the liquid spray was presented.
To complete the work, another process called the spray drying process has been studied
in Chapter 3. In this process we studied the change of the temperature of the droplet, the
shrinkage of the droplet radius, the concentration of the droplet as well as the aggregation
of the nano-particles inside a single droplet. This model can be also modified. In this
model we assumed a constant thickness of the film on the particles surface while it is
possible to consider different thicknesses according to how the particles are close to the
nozzle.

126



Appendix A

Notations

A surface area, m2

A∗ specific surface area, m2/m3

Cp specific heat capacity at constant pressure, J/(kg K)
d diameter, m
D dispersion matrix, m2/s
dV incremental volume, m3

f heat transfer ratio, (dimensionless)
F liquid film thickness, m
g gravitational acceleration, m/s2

h enthalpy, J
ḣ enthalpy of the evaporation flow, J/s
H height, m
had adhesion probability, (dimensionless)
∆hv specific heat of evaporation of water , J/kg
∆hv,0 specific heat of evaporation of water at 0 ◦C , J/kg
M molecular mass, kg/mol
m mass, kg
ṁ mass flow, kg/s
Ṁ mass flow rate, kg/s
n number density, 1/m3

P pressure, Pa
q area based heat, J/m2

q̇ area based heat flow, J/(m2 s)
RA specific gas constant for dry air, J/(mol K)
R radius, m
S length, m
t time, s
T temperature, K
V velocity, m/s
X mass fraction, (dimensionless)
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APPENDIX A. NOTATIONS

Y humidity, (dimensionless)

Greek symbols

α heat transfer coefficient, W/(m2 K)
β mass transfer coefficient, m/s
γ diffusivity, m2/s
δs contact angle, (dimensionless)
ε porosity, m3/m3

η dynamic viscosity, kg/(m s)
ηim impingement efficiency, (dimensionless)
θ temperature, K
κ concentration, kg/m3

κ0 initial concentration, kg/m3

κ̇ concentration flow, kg/(m3 s)
λ thermal conductivity, W/(m K)
ν kinematic viscosity, m2/s
ξ drag coefficient, (dimensionless)
ρ density, kg/m3

φ degree of wetting, (dimensionless)
φdep deposition efficiency, (dimensionless)
ω local shrinkage rate of control volume, m/s

Subscripts

A air
ac acceleration
ad adhesion
agg aggregation
b binder
dep deposition
dr droplet
dr drag
eff effective
ev evaporation
gr gravity
in inflow
im impingement
L liquid
li lifting
nozz nozzle
out outflow
P particle
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S solid
sat saturation
sd single droplet
st steam
tot total
v vapor

Dimensionless numbers

A.0.1 Dimensionless numbers

Archimedes number

Ar =
d3
pg(ρp − ρA)

ρAν2
A

.

Nusselt number

Nu =
αL

λA
.

Prandtl number

Pr =
ηCp
λ
.

Reynolds number

Re =
dpVA
νA

.

Schmidt number
Sc =

νA
DV

.

Sherwood number

Sh =
βdp
DV

.

Spalding number

B =
Cpv(TA − Td)

∆hV
.

Stokes number

St =
ρdrVgasd

2
dr

18ηAdp
.

Biot number

Bi =
αLc
λ
.
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Appendix B

Parameters for Heat and Mass
Transfer in Fluidized Beds

B.0.2 Constants

Avogadro constant

NA = 6.022140857 · 1023 mol−1.

Boltzmann constant

κB =
R

NA

= 1.38064852 · 1023 J/K.

Universal Gas constant

R = 8.3144598 J/(mol K).

Gravitational constant

g = 9.81 m/s2.

Molecular mass of air

MA = 0.02896 kg/mol.

Molecular mass of vapor

MV = 0.01802 kg/mol.

specific gas constant

RA = 287.22 J/(kg K).

Specific heat of evaporation of water at 0 ◦C

∆hv,0 = 2500000 J/kg.

Standard pressure

P = 101325 Pa.
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B.0.3 Values of parameters

The following parameters are taken from the Ph.D theses of Henneberg [36] and Heinrich
[32].
• Dry air

Density of air

ρA =
P

RA(θA + 273.15)
.

Unit: [kg/m3]

Specific heat capacity at constant pressure

CpA = A+B · θA + C · θ2
A +D · θ3

A.
A = +1006.256
B = +2.2120536 · 10−2

C = +4.180195 · 10−4

D = −1.521916 · 10−7

(B.1)

Unit: [J/(kg K)]

Thermal conductivity

λA = A+B · θA + C · θ2
A +D · θ3

A.
A = +24.5211 · 10−3

B = +7.501414 · 10−5

C = −2.593344 · 10−8

D = +5.292884 · 10−11

(B.2)

Unit: [W/(m K)]

Dynamic viscosity

ηA = A+B · θA + C · θ2
A +D · θ3

A.
A = +1.705568 · 10−5

B = +4.511012 · 10−8

C = −8.766234 · 10−12

D = −3.382035 · 10−15

(B.3)

Unit: [kg/(m s)]
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APPENDIX B. PARAMETERS FOR HEAT AND MASS TRANSFER IN
FLUIDIZED BEDS

Kinematic viscosity

νA =
ηA
ρA
.

Unit: [m2/(s)]

Prandtl number

PrA =
ηACpA
λA

.

Unit: [−]

•Water

Density of water
ρL = A+B · θL + C · θ2

L.
A = +1006
B = +0.26
C = −0.0022

(B.4)

Unit: [kg/m3]

Specific heat capacity at constant pressure

CpL = A+B · θL + C · θ2
L +D · θ3

L.
A = +4174.785
B = +1.785308 · 10−2

C = −5.097403 · 10−4

D = +4.216721 · 10−5

(B.5)

Unit: [J/(kg K)]

Specific heat of evaporation of water

∆hv = A+B · θL + C · θ2
L.

A = +2500000
B = −2042.5
C = −3.8130

(B.6)

Unit: [J/kg]

Saturation vapor pressure
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Psat(θL) = exp(A+
B

C + θL
).

A = +23.462
B = −3978.205
C = +233.349

(B.7)

Unit: [Pa]

• Vapor

Adiabatic saturation humidity

Ysat(θL) =
MV

MA

Psat
P − Psat

.

Unit: [kg/kg]

Specific heat of evaporation of vapor

CpV = A+B · θL + C · θ2
L +D · θ3

L.
A = +1862
B = +2.858485 · 10−1

C = +6.148483 · 10−4

D = −2.060606 · 10−7

(B.8)

Unit: [J/(kg K)]

Diffusion coefficient of water in air

DV =
2.252

P

(
θA + 273.15

273.15

)1.81

.

Unit: [m2/s]

B.0.4 Parameters calculations

Cross section surface of the Fluidized bed

AApp = π

(
dApp

2

)2

.
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APPENDIX B. PARAMETERS FOR HEAT AND MASS TRANSFER IN
FLUIDIZED BEDS

volume of the Fluidized bed

Vfb = AAppHtot.

Porosity

ε =
Vvoid
Vfb

=
Vvoid

Vvoid + VP
=

(
18Re+ 0.36Re2

Ar

)0.21

.

Number of particles

NP =
6(1− ε)Vfb

πd3
p

.

Surface area of all particles

Ap =
6(1− ε)Vfb

dp
.

Schmidt number
Sc =

νA
DV

.

Sherwood number
Sh = 2 + 0.72

√
Re

3
√
Sc.

Mass transfer coefficient

β =
DV Sh

dp
.

Nusselt number for laminar flow

Nulam = 0.664Pr1/3Re1/2
ε ,

where

Reε =
Re

ε
.

Nusselt number for turbulent flow

Nuturb = 0.037
PrRe0.8

ε

1 + 2.443Re−0.1
ε (Pr

2
3 − 1)

.

Nusselt number

Nu = 2 +
√
Nu2

lam +Nu2
turb)(1 + 1.5(1− ε)).

Lewis number

Le =
λA

CpρADV

.

For air-water mixture Le ' 1 ⇒ Sh ' Nu.

Heat transfer coefficient

α =
NuλA
dp

.
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B.1. PARAMETERS

B.1 Parameters

Parameters values in 2D for fluidized beds

Fluidized bed Parameters
total height Htot 1.20 m
height of region 2 H2 1 m
width dApp 0.80 m
Bed material (beads)
density ρP 2471 kg/m3

total mass mP 20 kg
diameter dP 1.16 mm
specific heat capacity CP 750 J/kg K
Liquid spraying

mass flow rate ṀL 10 kg/h
liquid inlet temperature θin 20 ◦C
Fluidization gas
mass flow rate ṁA 0.4 kg/s
inlet humidity Yin 0.004 kg/kg
inlet temperature θA,in 80 ◦C
Other parameters
heat transfer ratio f 1 −
liquid film thickness F 100 µm
dispersion in z−axis Dz 0.055 m2/s
dispersion in y−axis Dy 0.55 m2/s
Initial conditions for the computation
humidity of air Y0 0.004 kg/kg
temperature of air θA,0 80 ◦C
degree of wetting φ0 1e− 8 −
temperature of particles θP 80 ◦C
temperature of liquid film θL 80 ◦C

Parameters values for spray drying

mass fraction of solids Xs,0 0.30 −
velocity of air Va 1.4 m/s
total mass of the droplet mtot,0 4.3e− 6 kg
specific heat capacity of the solids Cp,s 750 J/kg K
humidity of air Ya 0.004 kg/kg
temperature of the inlet gas θa 178 ◦C
Initial conditions for the computation
radius of the droplet R0 1e− 3 m
temperature of droplet θd,0 19 ◦C
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[1] J. Beránek, K. Rose, and G. Winterstein. Grundlagen der Wirbelschicht-Technik. Buchreihe
Verfahrenstechnik. Krausskopf, 1975.

[2] W.H. Beyer. CRC Standard Mathematical Tables: 28th Ed. CRC Press, 1987.

[3] R. Biswas, K.D. Devine, and J.E. Flaherty. Parallel, adaptive finite element methods for
conservation laws. Applied Numerical Mathematics, 14(1-3):255–283, 1994.

[4] J. Blumschein. Wärme- und Stoffübergang in der flüssigkeitsbedüsten Wirbelschicht.
Diploma thesis, Otto von Guericke Universität Magdeburg, 2002.

[5] G. Brenn. Concentration fields in evaporating droplets. International Journal of Heat and
Mass Transfer, 48(2):395 – 402, 2005.

[6] A. Bück, M. Peglow, M. Naumann, and E. Tsotsas. Population balance model for drying
of droplets containing aggregating nanoparticles. AIChE Journal, 58(11):3318–3328, 2012.

[7] A. Bück and E. Tsotsas. Agglomeration, in: Encyclopedia of food and health (Edited by:
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