

REVIEW ARTICLE

Alternative Techniques for Porous Microparticle Production: Electrospraying, Microfluidics, and Supercritical CO₂

Simon Pöttgen¹ · Christian Wischke¹

Received: 5 June 2025 / Accepted: 21 August 2025 / Published online: 11 September 2025
© The Author(s) 2025

Abstract

Microparticles have been established as injectable drug carriers designed to enable a long-term release of the encapsulated active pharmaceutical ingredients (API). To regulate this release, the diffusion barrier provided by the matrix material – typically hydrolytically degradable polyesters – must be controlled through precise levels of matrix porosity. This mini-review presents processing methods that are alternatives to the most common batch emulsification techniques for the manufacturing of porous polymer particles. A focus is placed on mechanistically describing the particle and pore formation in droplet-based microfluidics, electrospraying, and by supercritical fluids, critically discussing their opportunities and challenges. Ultimately, this review assesses the potential of these techniques in advancing the engineering of porous polymeric carrier systems in the light of scale-up and continuous production.

Keywords Electrospraying · Microfluidics · Microparticles · Porosity · Supercritical fluids

Introduction

Microparticulate drug carriers are an established concept in the development of long-acting drug products. This technology continues to be highly interesting for creating new prospective treatment options and clinical applications [1–3]. Since its implementation, the class of microparticulate drug carrier products is dominated by hydrolytically degradable polyesters as matrix materials such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), or poly(ϵ -caprolactone) (PCL). While other alternative materials may also be relevant for drug delivery [4–6], it is worthwhile to improve, e.g., PLGA-based particulate drug carriers to reach optimal release rates [7–9].

From the perspective of formulation development, the characteristics of each fabrication method in combination with the tunable range of formulation parameters/process conditions can result in different morphological features of microparticles. In particular, the modification of their ultrastructure, namely the particle porosity by suitable fabrication strategies can have a major impact on their performance as

drug carriers. These structures can be critical quality attributes (CQAs) given their potential contribution in regulating drug release kinetics [10–12].

The field of porous particle preparation from polyester materials is dominated by batch emulsification processes [10, 13], with spray drying techniques also playing a relevant role [14, 15]. However, advances in the field of fabrication methods led to less common techniques like droplet-based microfluidics, electrospraying, or the treatment with supercritical fluids, which gained increasing attention in the recent decade [16, 17]. In particular, such alternative techniques can be of interest, specifically if they enable continuous manufacturing, which could contribute to cost reduction, higher product safety, and easier quality controls [18, 19]. Although parenteral controlled release products are not used at quantities like peroral dosage forms, which are currently focused on in pharmaceutical factories for transition to continuous manufacturing, evaluating the applicability of continuous methods can also be relevant for particulate carriers for various reasons. For instance, product quality may be improved if the production method can be combined with a continuous monitoring (and control) of, e.g., particle diameters as an important CQA. Furthermore, overlying processes during particle formation (e.g., solvent/antisolvent flux, polymer precipitation, osmotic processes) and pore creation (e.g., by porogen leakage or osmotic processes)

✉ Christian Wischke
christian.wischke@pharmazie.uni-halle.de

¹ Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Kurt-Mothes-Str. 3, 06120 Halle, Germany

motivate the evaluation of such type of strategies, which may timely separate the particle templating and the creation/fine-tuning of porosity in independent process steps.

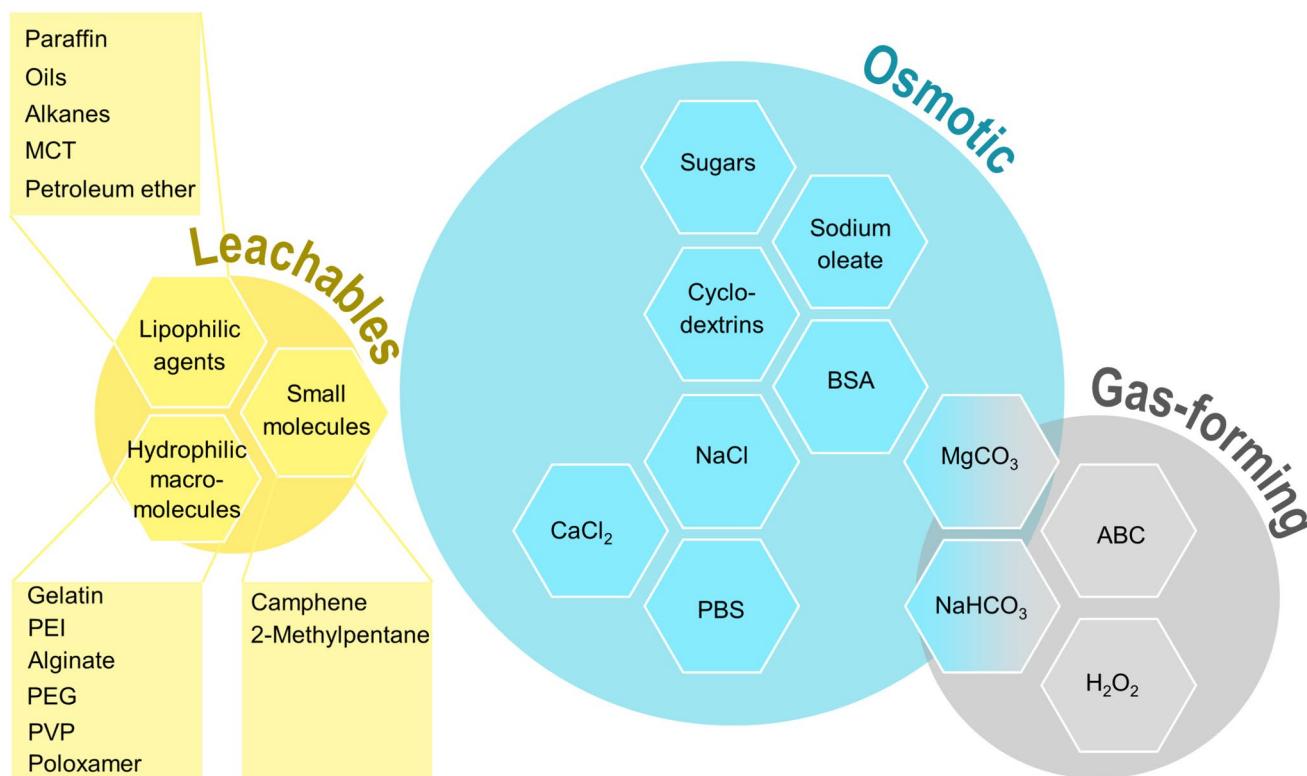
Interestingly, despite the relevance of the degree of porosity and of pore structures for the release function of particulate carriers, this topic is not systematically addressed in research studies and only partially covered in the standard analysis of particulate drug carriers.

In this review, we will focus on the fabrication of porous drug carrier systems – mainly made of synthetic polyesters like PLGA, PLA, and PCL – by using alternative manufacturing methods like electrospraying, droplet-based microfluidics, and supercritical fluid treatment and give a short overview on methods characterizing particle porosity. We will briefly describe the principles of these methods, provide examples of their application to generate porous particles, and critically evaluate the challenges and opportunities of the methods in terms of productivity and reproducibility compared to conventional methods. This review should also contribute to drawing more attention to the inclusion of quantitative analysis of particle porosity in the portfolio of standard characterizations reported in scientific studies on particulate drug carriers made from hydrophobic polymers.

Principles of Pore Creation and Pore Characteristics

Pores are products of phase separation processes, i.e., defects in the bulk polymer matrix. These defects are typically formed on the basis of statistical processes (which means by chance), e.g., when water enters the (organic) polymer phase in emulsion processes.

Pores in polymeric microparticles can have high structural diversity, for instance, in terms of diameters, aspect ratios (width/length), or tortuosity. Pores can be open, i.e., directly accessible from the particle surface, or closed, meaning that the void can only be accessed by diffusion processes through the bulk. These differences in ultrastructure can have a significant effect on the general occurrence and kinetics of exchange processes. In particular, open pores can enable the entrance of the dispersion medium into a particle, at least if the material is sufficiently wettable, thereby supporting mass transport of substances into and out of the particle bulk through their inner surfaces via direct contact with the dispersion medium.


Pores in polymer microparticles are only seldom of homogeneous sizes, with few exceptions. Therefore, one should be aware that reported pore sizes typically would be a mean value that is representative of a certain pore size distribution. However, there is no established criterion or threshold to characterize this size distribution in the field of injectable polymeric drug carriers. Evidently, along with

other structural parameters as well as drug solubility and diffusivity in the (potentially hydrated) polymer matrix, pore size distributions will affect mass transportation. In principle, two particle batches with similar average pore sizes, of which one exhibits a mixture of large and small pores leading to the same numeric value of average pore sizes, may behave differently in terms of mass transfer, as relevant for drug release, polymer degradation rates, as well as mechanical stability of particles during handling. The coefficient of variation (CV), which is occasionally used to describe the width of particle/droplet size distribution for those techniques leading to uniform particle sizes like droplet-based microfluidics [20], would be an appropriate measure also for pore size distributions. As a threshold, a $CV > 40\%$ is here suggested to quantitatively characterize broad pore size distributions. Still, as CV values of pore size distributions are typically not reported, any statement on broad or narrow size distributions in this review will be based on a qualitative assessment in the respective references or a visual assessment of published images by the authors.

Porogens

Pore formation is, in most cases, supported by the use of porogens. These pore-forming substances typically support phase separation processes in nascent particles. Porogens can subsequently, at least to a major extent, be removed from the particle matrix. For instance, some porogens can be extracted by certain solvents after particle solidification or can transition to a gaseous state (evaporation), leaving behind voids in the respective material [21]. According to their mechanisms of action, porogens can be classified into different groups, like gas-forming, osmotic, or leaching/extractable agents [10]. Examples of substances used as porogens and their relative contribution to the scientific literature are summarized in Fig. 1.

In principle, most porogens are compatible with different matrix materials from which porous particles should be produced. Porogens can also be compatible with several fabrication methods, often allowing to enhance the overall porosity and to tailor the pore sizes of polymeric scaffolds, including microparticles, in a controlled fashion [22–24]. However, some porogens, for instance those being based on osmosis, will only work with particle production techniques that at some point involve phase boundaries to an aqueous phase. It should not be forgotten that there can be limitations in the degree of porosity of polymer microparticles and thus in the use of porogens. For instance, overly high porosity in combination with, e.g., brittleness of very thin polymer struts in the scaffold can result in instability and collapse/fracturing of the particles.

Fig. 1 Scheme of different classes of porogens (blue: osmotic; grey: gas-forming; yellow: leachables). Examples of commonly used substances within each class are shown in honeycomb cells, while the size of the background colour reflects their employment in literature.

Osmotic Agents

Osmotic active substances are the most prominent and widely used class of pore-forming agents. Various substances, for example different salts and sugars (NaCl, CaCl₂, PBS buffer, sucrose) that are low in costs, can act as osmotic porogens either by being dissolved in an encapsulated aqueous phase or by being suspended in the organic polymer phase during emulsion-based particle preparation.

The mechanisms of pore formation by osmotic agents is the following: During particle preparation by emulsion techniques, the organic solvent of the polymer solution is gradually extracted to the external medium. At the same time, osmotic agents promote the influx of water from the aqueous continuous phase into the organic polymer phase. This solvent exchange may interfere in various ways with the particle solidification, depending on the respective selected combinations of material and solvent properties, phase volumes, etc., which may promote a faster or slower polymer precipitation at phase boundaries. Though in most cases a major shrinkage of solidifying particles is observed after some time [25, 26] (most protocols keep stirring for 2–12 h), a swelling of nascent particles can be expected immediately after droplet formation, if the matrix material can absorb water. Furthermore, the incorporation of water in the semi-solidified polymer particles may cause pore formation/pore

opening at the particle surfaces during the final drying step, which is typically conducted by freeze drying [10].

Osmotically active agents may contribute to pore formation also via mixed effects. For instance, they may operate through osmosis plus gas formation (carbonates, hydrogen carbonates) or through osmosis plus leaching when being flushed out by water as very small particles from the nascent (larger) polymer microparticles [27, 28]. As we will discuss in Sect. "Opportunities and Challenges of Alternative Methods to Prepare Porous Particles", where manufacturing methods are described, osmotic porogens have been used in microfluidic particle production. Although mass transport mediated via osmotic effects can be sensitive to process scale, the use of osmotically active porogens also appears suited for continuous processing in principle. This is particularly true where scale-up does not proceed in the classical fashion through larger vessels, but uses the numbering-up approach as applicable for microfluidics.

Gas-forming Agents

Those agents are conceptually elegant as they should be completely and autonomously removed from the product. Examples of regularly employed substances are ammonium bicarbonate, other bicarbonate salts (sodium and magnesium bicarbonate), and hydrogen peroxide [29, 30] (Fig. 1).

The underlying principle of gas-forming agents is either their physical transition to a gaseous state or their participation in a chemical reaction, generating gas as one of the reaction products. Obviously, this transition must be inducible at the process conditions of particle preparation, which may involve shear stress, heat development, shifts of pH-values, or hydration of the porogen. In this way, volatile gases like carbon dioxide, ammonia (e.g. in case of ammonium bicarbonate), oxygen, or hydrogen (e.g. from hydrogen peroxide) may be formed. The individual gas molecules accumulate in small bubbles in the polymer matrix and template pores in the material while evaporating.

Besides the use of gas-forming porogens in emulsion processes, the expansion of pressurised gas from its supercritical state is another principle of pore creation via gas bubbles. This principle is implemented in processes employing scCO₂, as will be discussed in more detail in Sect. "Opportunities and Challenges of Alternative Methods to Prepare Porous Particles".

Interestingly, porogens of this class have been used in different studies in a remarkably broad concentration range covering, e.g., 1–15% (w/v) in the w₁ respective phases [31, 32]. When using relatively aggressive substances, such as oxidizing agents or strong bases, potential detrimental effects on the stability of the matrix polymer or the payload should be tested. In terms of continuous manufacturing, examples of producing porous particles with gas-forming porogens in microfluidic systems are also available (Sect. "Opportunities and Challenges of Alternative Methods to Prepare Porous Particles"). However, at larger scales and with higher porogen concentrations, the amount of gas released will be high, which can be problematic in closed channels. Upscaling should therefore be carefully evaluated and tested to avoid disrupting the manufacturing process. For instance, in the worst cases, high gas concentrations may cause inhomogeneities in the batch product. Furthermore, air bubbles captured in closed systems and pressure fluctuation in microfluidic systems due to moving air pockets may interfere with production processes.

Leaching Agents

In this class of porogens, numerous materials are reported ranging from lipophilic oils to polymeric substances [10]. Depending on the used polymer matrix, extractable porogens may either be miscible with this material or may be phase separated as solids, fluids, or gels.

The fundamental principle of using extractable porogens is based on solvents, which dissolve the porogen, but not the matrix material of the particles. Through this principle, at some point in the production process, porogens initially embedded in matrix material are removed, leaving pores behind [33, 34]. However, the extraction of these substances

sometimes involves harsh extraction procedures, such as organic solvents for lipophilic porogens. More hydrophilic macromolecular porogens like gelatin can typically be removed within a few hours using a warm water bath [10, 34, 35].

There are different strategies for implementing extraction/washing steps in continuous processes, some of which are further discussed in Sect. "Opportunities and Challenges of Alternative Methods to Prepare Porous Particles". For example, particles incorporating extractable porogens may be exposed to solvents in extraction baths with a certain particle residence time as defined, e.g. by sedimentation speeds. The prepared particles may also be introduced in special counterflow channels that can be coupled, e.g., to microfluidic systems, in which the extractant is brought in contact with the particle dispersion. Further useful techniques to realize a separation of solids (particles) from fluids (continuous phase; extraction medium) may be based on centrifugation, as preparative continuous flow centrifugation is well established for other use cases in the pharmaceutical sector and life sciences [36–38]. Accordingly, these methods may be evaluated to extract leachable agents and to provide a control of the duration of incubation in washing solutions.

Self-assembly of Materials

Self-assembly is a term used to describe supramolecular behaviour of substances that can organise themselves into certain geometric shapes through intermolecular interactions [39]. Prominent examples of these processes can be seen by the formation of micelles or colloids [40]. In general, self-assembly processes are often observed for surfactants and for block copolymers (BCP), which contain both hydrophilic and lipophilic block segments [41].

The concept of cubosomes – a term often used in the field of lipid-based particles with a defined porous structure [42, 43] – has recently been expanded to the field of polymers. Polymer cubosomes as highly porous particles can be constructed via self-assembly from block copolymers, such as those with an asymmetric diblock structure and a dominating hydrophobic nature. These polymers form cubic-shaped assemblies during micro-phase separation with water-filled voids between the more lipophilic segments. They further transform into small solid microparticles (often less than 5 μm) or nanoparticles with numerous homogeneously sized pores, typically in the size range of mesopores. The asymmetric molecular structure of the block copolymers must involve a larger lipophilic segment (often hydrophobic fraction > 90%) to mediate the assembly [44].

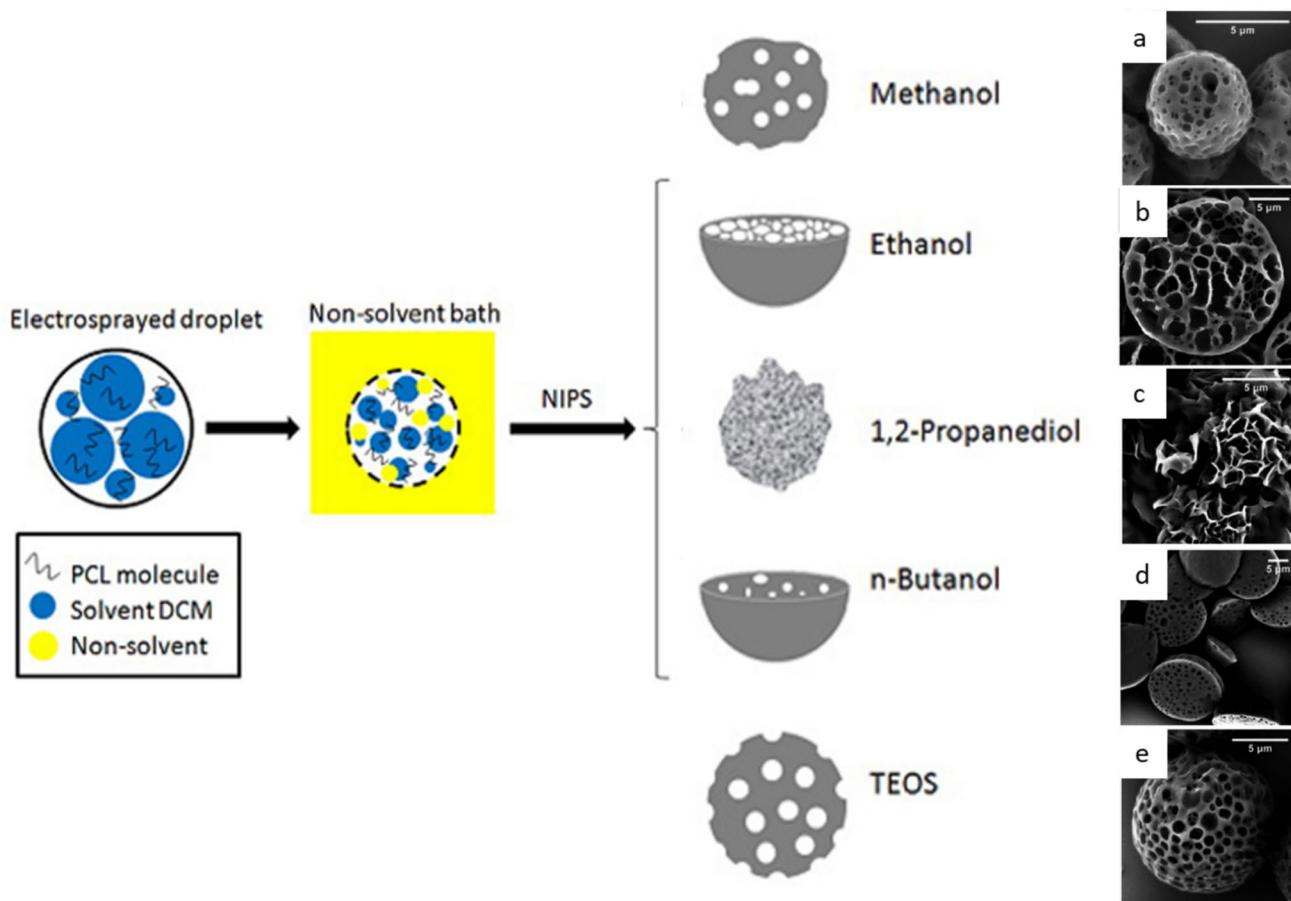
The formation of polymer cubosomes often involves solvent exchange processes, such as titration of the polymer solution with a non-solvent (nanoprecipitation) or solvent-diffusion-evaporation methods, while other methods also

exist [45]. For instance, the predominately hydrophobic block copolymer can be dissolved in a suitable hydrophobic solvent (e.g. dioxane/DMF mixtures), followed by the addition of a good solvent for the hydrophilic segments (e.g. water) to induce nanoprecipitation [46]. The produced pore system is composed of two simultaneously existing networks of channels, one being open to the surface and a second one laying in between the other network and being not accessible from the surface, at least initially.

As this class of particles has only recently been developed, the current state of investigation is still in the process of fundamentally understanding the conditions of controlled self-assembly, often using polymers that are more relevant for technical settings rather than the pharmaceutical sector. However, block copolymers based on PLA and other degradable materials with potential applications as pharmaceutical matrix systems have been reported, suggesting their general applicability in the field of pharmaceutics and continuous drug release [47]. Importantly, their highly defined structures with high porosity and very narrow pore size distributions make them interesting as standardisable carrier systems, which, hypothetically, also includes the possibility of post-modifications like coatings to tailor release rates.

Opportunities and Challenges of Alternative Methods to Prepare Porous Particles

Electrospraying


Electrospraying allows the dispersion of a liquid into fine droplets by electrohydrodynamic atomization. The setup consists of a high voltage power supply, a syringe pump, a conductive nozzle and a grounded collector. For particle production, polymer solutions are pumped through the nozzle and, in the applied electric field, form a fluid cone at the tip of the nozzle. Charged droplets are ejected from this cone due to interfacial instabilities. The droplets subsequently shrink and solidify by solvent evaporation during their passage in the gas phase towards the collector [17, 48]. Electrospraying can produce particles with a narrow size distribution, homogenous surface characteristics, and tunable particle properties like porosity depending on the fine-tuning of process conditions [49, 50]. Various polymers such as PCL [50–53], PLGA [54–57], PLA [58, 59] PMMA [60], Eudragit® [61], or biomacromolecules like gelatin and chitosan [62, 63] have been processed to porous microparticles by electrospraying.

In order to obtain porous particles by this technique, typically low polymer concentrations/low fluid viscosities are required. Relevant formulation and process parameters, which can affect the particle morphology, include the solvent type [64–67], the polymer or drug concentration [52, 55,

57, 68], the presence of low concentrations of pore forming agents such as ammonium bicarbonate [54, 59], the flow rates for feeding the polymer solution to the nozzle [62, 69], the applied voltages [62, 70], the collector distance [69, 71], and in many cases environmental conditions such as temperature and humidity [60, 72]. Numerous studies have evaluated changes in different process parameters (e.g., solvent types, polymer concentrations, flow rates, voltages, etc.) and screened the resulting particle properties to set parameter values for the desired particle morphology [52, 54, 58, 62, 64, 65, 68, 69]. Particularly the type of solvents is a crucial factor for the particle morphology and porosity. Mixtures of solvents and non-solvents (for the given polymeric material) were applied at different ratios to increase the porosity of PCL [53] and PMMA [60] particles. For instance, dichloromethane (DCM), a solvent for PCL, was blended with ethanol, a non-solvent for PCL, resulting in a shift of the pore size distribution toward larger average diameters as the ethanol content increased. Interestingly, at the highest ethanol concentration, a sharp decrease in pore size was observed, which was interpreted as the expulsion of ethanol from the nascent particles, thereby limiting its contribution to pore formation [53]. For the preparation of porous PMMA particles by electrospraying, again DCM was used as a solvent in combination with hexanol, ethanol, and propanediol as non-solvents, tested at varying humidity conditions [60]. These methods are believed to operate through a non-solvent induced phase separation (NIPS), wherein non-solvent droplets form during particle hardening that eventually cluster to a network of connected pores. While the use of hexanol resulted in spherical porous particles, ethanol and propanediol led to less spherical and partially hollow particles, suggesting that the more rapid phase separation induced by these more hydrophilic alcohols caused surface perturbations in the nascent particles [60]. With increasing humidity of the air environment in the spraying chamber, the pore diameters increased for samples containing hexanol in the solvent mixture.

Electrosprayed particles can also be collected in fluid baths to induce particle hardening by NIPS. As illustrated for PCL particles using ethanol, methanol, butanol, or tetraethyl orthosilicate as collection medium, the different hardening fluids led to strongly different pore morphologies (Fig. 2) [50]. Other interesting parameters include the polymer concentration and the additional usage of porogens.

The particle production by electrospraying process is limited to certain (typically low) polymer concentrations, while fibers instead of particles may be formed at higher polymer concentrations (electrospinning rather than electrospraying) [73, 74]. However, within the limited concentration range suitable for electrospraying, higher polymer concentrations were shown to produce particles with fewer and smaller surface pores [75]. In some cases, porogens were added to the

Fig. 2 Preparation of porous PCL particles by electrospraying into a collection bath for non-solvent induced phase separation (NIPS). Scheme of preparation process and SEM pictures of obtained samples. Non-solvents: (a') methanol, (b') ethanol, (c') 1,2-propanediol, (d') n-butanol, (e') tetraethyl orthosilicate. Adapted and reprinted from [50] with permission from MDPI under a Creative Commons Attribution 4.0 International License (<https://creativecommons.org/licenses/by/4.0/>).

polymer solution to promote pore formation by an additional mechanism [54, 59]; however, this does not appear to be a highly significant parameter in the fabrication of porous particles via electrospraying. Further effects, such as different electrospraying setups and other experimental parameters, have been reviewed in more detail recently [76, 77].

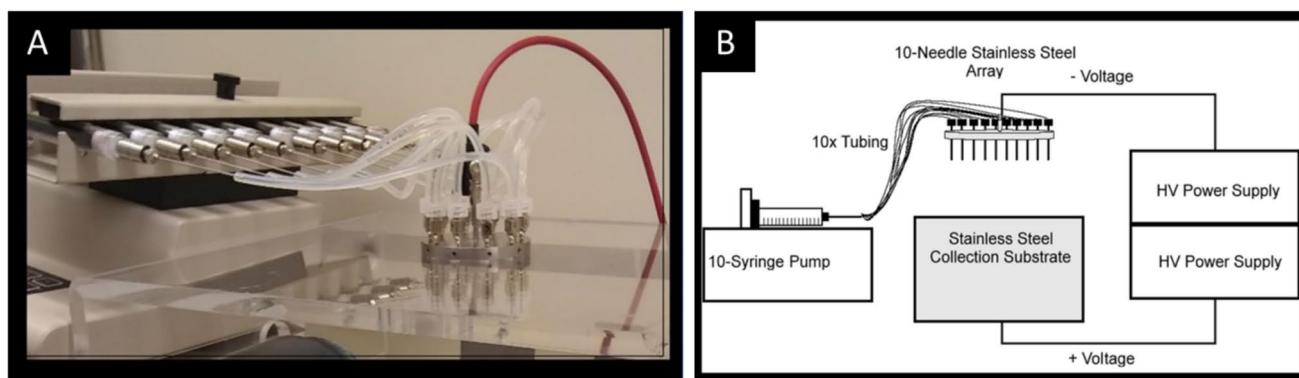
Different needle geometries can be particularly interesting for core–shell and Janus particles. An example are co-axial needle setups, which consist of a capillary feeding a solution of the core face that is placed inside another capillary carrying the outer (shell) solution. The flow rates (i.e., ratios) of both fluids can be independently tuned through the respective channels and eventually meet at the tip of the nozzle to produce core–shell particles [78–80]. In contrast, non-concentric needle setups with parallel ports seem to work best for producing Janus microparticles [81, 82]. In principle, these types of sub-structured particles may also be tuned to show distinct levels of porosity by the measures

introduced above, such as varying solvent types [65] or collection media [83].

All the studies mentioned above utilize electrospraying in small-scale setups and were conducted primarily in academic research settings. Under these conditions, the productivity of electrospraying is considered very low (milligrams per hour), as it typically operates with single nozzles and requires diluted polymer solutions. Electrospraying can be rated as suitable for lab-scale manufacturing and particle engineering processes, as it produces homogenous particle size distributions and morphologies, and, in some cases, eliminates the need for additional drying steps. However, points of concern for pharmaceutical production processes include the limited throughput of this technique, coupled with the large volume of organic solvents required relative to the processed polymer mass (due to the use of diluted polymer solutions). Nevertheless, in recent years, there has been technological progress in the production scale of electrospraying and electrospinning devices, along with an

increase in the number of suppliers for these machines [84]. Enlarged setups such as multiple nozzles running simultaneously have already been used to increase the throughput of particle production [85–88] (Fig. 3).

The productivity can also be increased by pressurized gas-assisted electrospraying (EAPG), a process combining the pneumatic spraying of a polymer solution with the principle of particle drying in a high-voltage field. This process apparently can lead to a higher mass throughput than conventional electrospraying set-ups (up to 1 kg/h) [89] and has also been applied to prepare particles for drug delivery [90, 91]. Other milestones on the path to industrial processing in the pharmaceutical sector include the development of the first pilot-scale processes, followed by GMP-certified and agency-approved manufacturing plants. Bioinicia from Spain, which was the first company that achieved this milestone for nanofibers (electrospinning) to the best of our knowledge, is also pushing boundaries for large-scale electrospraying by having opened a GMP-certified EAPG particle plant in 2023. Apparently, they use multi-needle setups (up to 5000 needles) for very high throughput and, if needed, also field deflectors to prevent jet interference. Other companies, such as Inovenso or Elmarco, also offer platforms and devices for pilot- and industrial-scale production of fibers and particles.


Overall, as the upscaling of the electrospraying processes for specific pharmaceutical use-cases is not reported in literature to date, it can be concluded that there are technological challenges and/or inefficiencies compared to competing production technologies. Although electrospraying offers flexibility in the manufacturing of different particle types, such as by using different needle setups [92], other established pharmaceutical production processes for particle engineering, such as spray-drying, are well known and offer much higher throughput rates. However, the sister technology of electrospraying, electrospinning, has long been facing a similar criticism but is now a step further ahead due to needleless set-ups, which already allow the upscaled production of fiber

meshes for various applications at industrial scales [84, 93, 94]. The application of such up-scaled electrospinning processes has been reported in the pharmaceutical sector, such as by post-processing of electrospun fibers into other dosage forms like tablets [95, 96]. Considering the fact, that electrospinning and -spraying devices are very similar, with only slight differences in process and formulation parameters, it can be expected that technological advancements such as the construction of multi-needle/needleless setups that pushed the sister technology, electrospinning, may also promote the development of higher throughput for electrospraying.

Droplet-based Microfluidics

Microfluidic techniques allow the handling of particularly small amounts of fluids while providing a precise control of flow dynamics, which may differ from conditions at the macroscopic scale [97]. Microfluidic devices (chips) typically include a network of microscale channels made of glass, silicon, or other polymeric materials. According to the principle of this method, droplets can be generated at the junctions of channels where two or more immiscible fluids are pumped together. The dispersion into the continuous phase is mediated – depending on the respective channel geometries, arrangements, and flow conditions – by principles such as lateral shearing, squeezing of threads by the surrounding media, or Laplace pressure gradients [98]. Under the well-defined flow conditions in microfluidic devices, highly reproducible events of droplet formation can be accomplished leading to monodispersity of particles [99].

Since microfluidic techniques enable fine manipulation of fluid flow, unique water-in-oil-in-water ($w_1/o/w_2$) double emulsions can be produced that have a controllable number of w_1 water droplets dispersed in each droplet of the dispersed organic phase, which is impossible to realize by batch emulsification techniques. Microparticles with 1 to 4 bigger pores were prepared using such procedures, with the number of pores corresponding to the number

Fig. 3 Enhanced throughput of electrospraying by parallelized multi-needle setups. **(A)** Photograph of a 10-needle array, attached to high voltage power supply. **(B)** Scheme of experimental setup. Adapted and reprinted from [86] with permission from Elsevier.

of entrapped w_1 water droplets [100–102]. As the entrapment process can be highly reproducible over long production times in stable microfluidic conditions, droplet-based microfluidics provides a level of control of particle ultrastructure that can hardly be reached by other techniques.

Beyond the number of encapsulated droplets, particle porosity can also be regulated by the composition of the respective phase, i.e., formulation parameters. More specifically, formulation parameters known from batch emulsification techniques (e.g. polymer types and concentrations, emulsifier concentration, additives, emulsion types) can be transferred to microfluidic systems. For instance, a decrease of the polymer concentrations in the dispersed phase and an adjustment of premixed w_1/o ratios in double emulsions can affect the particle porosity [103, 104]. Furthermore, the outcome of the particle morphology depends

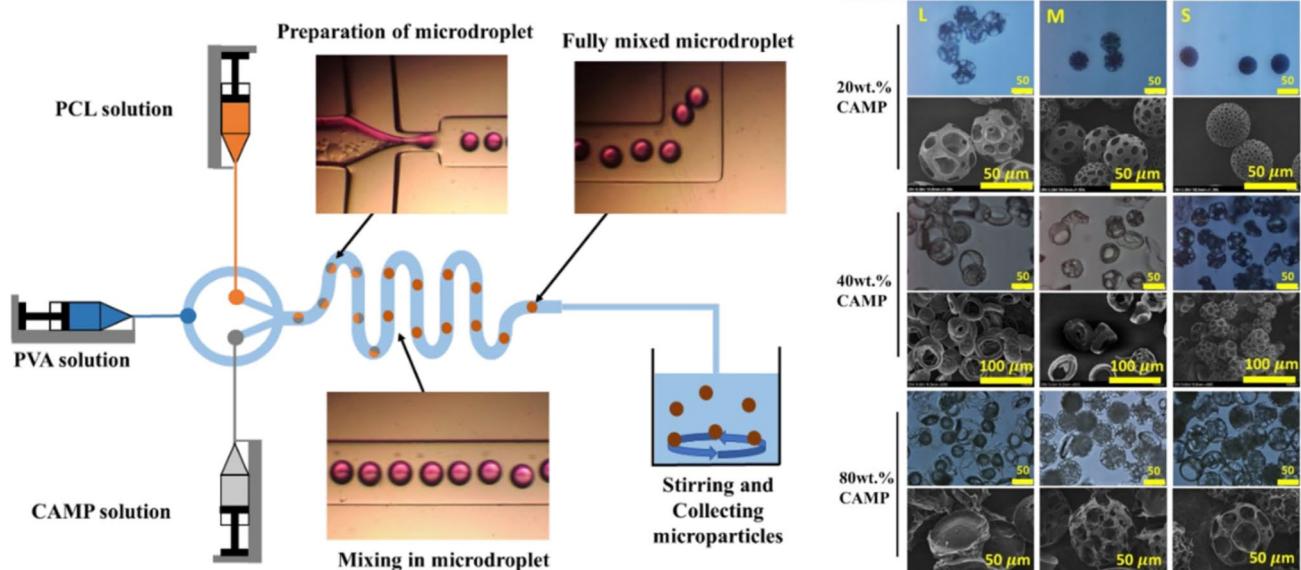
strongly on the used matrix material and the applied process conditions [105].

The use of porogens, as introduced in Sect. "Principles of Pore Creation and Pore Characteristics", is the most effective route to fabricate porous particles in microfluidic systems [106, 107]. Different porogens have been employed for preparing porous PLGA and PLA microspheres by microfluidics (Table I), including ammonium bicarbonate [31, 107], gelatin [22, 35, 103, 108–110], collagen [111], PBS buffer [22], camphene [112, 113], smaller porous silica particles [101], and assemblies of perfluorinated dendrimers or hyperbranched polymer skeletons [114, 115]. A tuning of open porous structures, including increased overall porosity and/or larger pore sizes, can be achieved by increasing the concentration of camphene as the porogen, which crystallizes upon solvent removal and is subsequently sublimated during freeze-drying to create pores [112]. When a gelatin

Table I Examples of Porous Microparticles Prepared by Electrospraying, Microfluidics, and with Supercritical CO_2

Polymer	Fabrication method	Porogen	Modified parameters	Particle sizes [μm]	Porosity [%]	Pore sizes [μm]	Reference
PCL	Electrospraying	n.a	Nonsolvents: Tetraethyl- orthosilicate, butanol, ethanol, methanol	11.70 ± 1.42 12.83 ± 2.53 20.35 ± 4.48 7.00 ± 1.18	n.d	0.49 ± 0.13 0.56 ± 0.33 1.35 ± 0.61 0.22 ± 0.18	[50]
PCL	Electrospraying	n.a	Solvent/Nonsolvent ratio (Ethanol:DCM)↑	6.14 ± 0.59	n.d	0.1–1.0	[53]
PMMA	Electrospraying	n.a	Humidity ↑	n.d	n.d	0–0.22	[60]
Gelatin/ Chitosan	Electrospraying	n.a	G/C ratio ↑ Voltage ↑ Flow rates ↑	250–500	83–93	n.d	[62]
PLA	Electrospraying	n.a	Humidity ↑	n.d	24–56	n.d	[72]
PLGA	Microfluidics	ABC	Flow rates of cont. phase ↑	77–43 112–53	71–78 81–86	4–3 23–12	[31]
PLGA	Microfluidics	Gelatin	n.a	246.3 ± 17.7	n.d	48.3 ± 7.2	[108]
PLGA	Microfluidics	Gelatin	n.a	55.92 ± 10.11	n.d	11.31 ± 4.4	[110]
PLGA	Microfluidics	Gelatin	Mass ratio gelatin:PLGA ↑	260–540	n.d	20–55	[109]
PCL	Microfluidics	Camphene	Flow rate ratio ↑	42–58	n.d	3–19	[113]
PCL	Microfluidics	Camphene	Camphene concentration ↑ Solidification temperature ↑	170.2–329.5 n.d	n.d	11.4–120.1 35–60	[112]
PLGA	Microfluidics	Gelatin	Gelatin concentration ↑	443–650	n.d	13.6–80.1	[116]
PLGA	Microfluidics	Gelatin	Gelatin concentration ↑ PLGA concentration ↑	269–397	n.d	8.4–31.1 8.4–32.7	[104]
PLGA	scCO ₂	n.a	Untreated Post-treatment	5.14 ± 2.8 12.96 ± 2.9	28.24 ± 1.9 83.52 ± 3.4	0.78 ± 0.05 1.76 ± 0.47	[150]
PLGA	scCO ₂	n.a	Untreated Post-treatment	2.2 ± 0.8 13.8 ± 1.3	39 ± 4.2 92.38 ± 2.96	0.09 ± 0.01 0.19 ± 0.03	[149]

n.a.: not applicable


n.d.: not determined

ABC: ammonium bicarbonate

solution was used as a porogen in PLGA particles that also contained fragments of decellularized extracellular matrix (dECM) in their w_1 phase, it was observed that increasing gelatin concentrations, in combination with higher ultrasonic pre-mixing power during preparation of the w_1/o emulsion, led to significantly larger pore diameters [116]. Interestingly, the pore sizes and overall particle sizes also depended on the content of dispersed dECM and increased in some but not all cases at the highest (50 wt.%) compared to the lowest (25 wt.%) dECM loading. A similar study fabricated porous PLGA particles and investigated the influence of polymer/concentration, porogen concentration (gelatin), and different w_1/o ratios on the pore sizes [104]. Apparently, pore size tuning was achieved by increasing gelatin concentrations with additional inverse effects of the w_1/o ratios on pore sizes. Another example of creating pores in a microfluidic production process was reported for dendrimeric or hyperbranched perfluorinated polymers, which can stabilize gas microbubbles in certain formulations (supramolecular complexes with a dye having a perfluorinated alkyl anchor) that are introduced in organic solutions of PLGA and act as templates for pores. Changes in the molecular weight and their molecular architecture (dendrimer, hyperbranched skeleton) allowed for the tuning of pore sizes, presumably by alteration of the microbubble sizes formed in the presence of the dye-dendrimer complex [114, 115, 117].

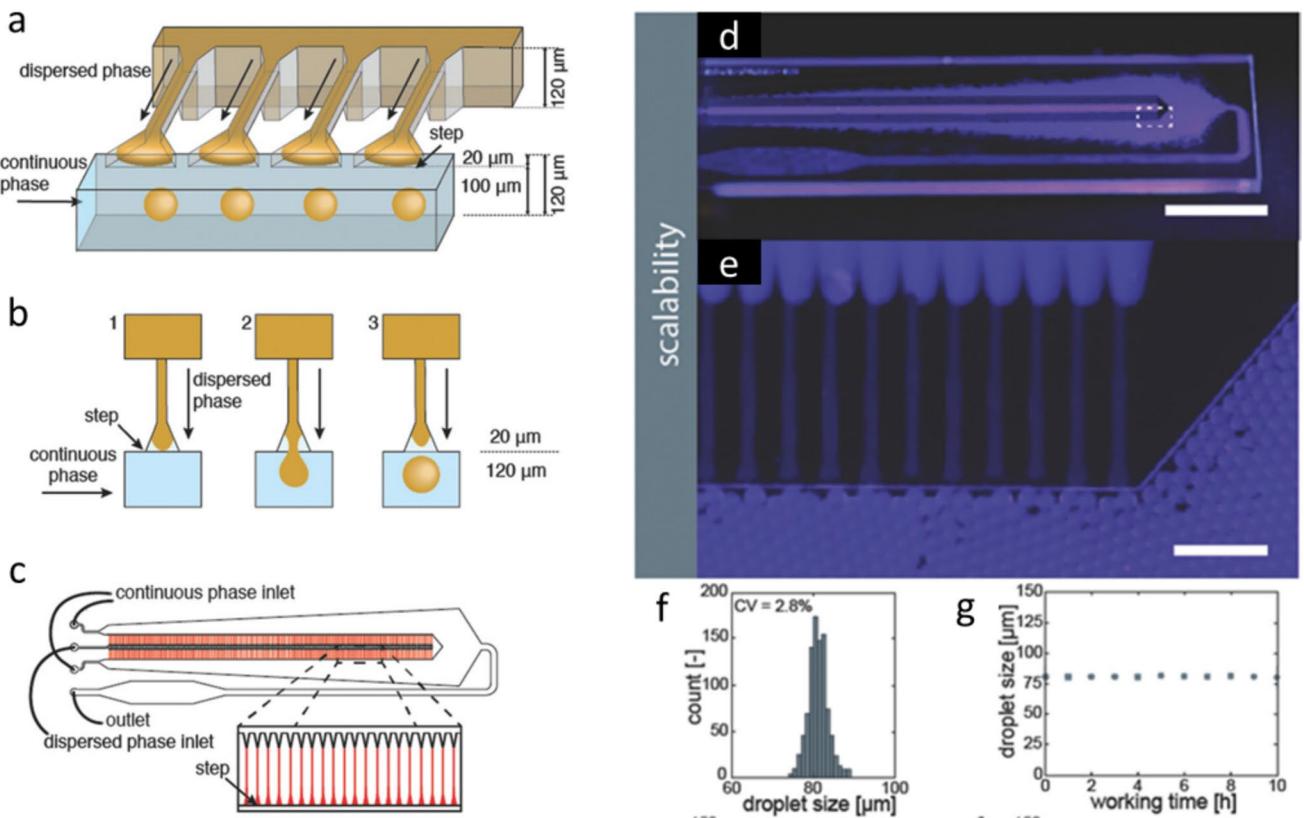
Overall, when selecting a certain composition of the formulation, it should be considered that too high concentrations of porogens could result in dysmorphic and collapsed particles due to the mechanical instability of the remaining polymeric scaffolds as observed, e.g., when rising the Camphene concentration up to 80% [113]. In addition to the use of additives acting as porogens, pore formation in particles prepared by microfluidics will also proceed via osmotic effects of encapsulated drugs or the simple presence of an inner water phase in double emulsions [118–120].

A unique feature of microfluidics is that the combination of both the composition of the fluid phases and their feeding ratios can be used to control product properties. Additionally, channel geometries can be adjusted. While these parameters are primarily known to affect particle sizes [121–123], flow rate ratios in $w/o/w$ procedures can also alter particle morphology [124]. If the porogen is added to a distinct phase, the particle porosity can be modulated by fine-tuning the flow rate ratios of the different phases [31, 113, 125]. Increasing flow ratios towards the polymer phase at a constant porogen concentration (in this case 20% camphene) led to a controllable decrease of both the sizes of PCL particles as well as the pore sizes (Fig. 4) [113]. For improved control of flow ratios and, thus, of particle morphology, separated microfluidic chips have been used in some cases for the primary (w_1/o) and secondary ($[w_1/o]/w_2$) emulsification steps [125].

Fig. 4 Microfluidic production of porous microparticles. (Left) Scheme of microfluidic setup and droplet formation. (Right) Images of particles depending on the flow rate ratios of the camphene (CAMP; varying wt.% in DCM) and PCL solutions (3 wt.% in DCM) forming a mixed dispersed phase. Additionally, the concentration of CAMP in the CAMP feeding solution was varied (20, 40, and 80 wt.%). Flow rates of the dispersed phases: 1:1 (0.5 mL/h CamP and 0.5 mL/h PCL); 1:2 (0.33 mL/h CamP and 0.67 mL/h PCL); 1:3 (0.25 mL/h CamP and 0.75 mL/h PCL). The flow rates of the continuous phase flow (2 wt.% PVA) were 5, 10, and 20 mL/h for 20, 40, and 80 wt.% CAMP. Adapted and reprinted from [113] with permission from MDPI under a Creative Commons Attribution 4.0 International License (<https://creativecommons.org/licenses/by/4.0/>).

The spectrum of formulation parameters also includes solvents/non-solvents. When different types of solvents were compared as solvent for the o-phase, dichloromethane and chloroform were observed to be advantageous in terms of producing a spherical morphology and porous ultrastructure of PLGA particles compared to dimethylcarbonate and ethylacetate, which are solvents with a higher miscibility with water [22]. A higher water miscibility of o-phase solvents typically causes a faster mass transport of solvent into the continuous phase and thus a faster polymer precipitation at the interface. This rapid solidification of the matrix polymer may lead to the formation of core–shell particles that could collapse when remaining solvent escapes from the core [126]. Dichloromethane seems superior due to its low water miscibility, though a small amount of water may diffuse into the nascent particles creating porous structures. Phase separation induced by combinations of solvents and non-solvents added to the polymer phase for electrospraying, as discussed above, has also been employed in droplet-based microfluidics, for instance, by using 2-methylpentane as a non-solvent additive for PLA or PLGA [127].

While the majority of porous polyester microparticles processed by microfluidics had an open porous structure [22, 31, 108, 109, 112, 113, 125], which is particularly interesting for pulmonary drug delivery [128, 129] and tissue engineering [130, 131], some other studies showed particles with a dense and smooth surface but high core porosity [107]. Interestingly, also Janus particles with a one-sided porosity at the particle surface could be produced by phase separation of collagen (w₁ phase) and PLGA (o phase) due to w₁ phase coalescence during particle hardening [111].


In an overall assessment, droplet-based microfluidics typically provide much better results in terms of particle size distributions up to perfect monodispersity compared to conventional batch emulsification techniques. In some cases, higher encapsulation efficiency by microfluidics compared to batch fabrication was reported for hydrophilic drugs like metformin hydrochloride [132]. Additionally, given the very standardized flow conditions and droplet formation events of one drop after another, less batch-to-batch variations can be expected [133]. At the same time, due to the consecutive droplet formation, microfluidic procedures are much more time-consuming compared to the simultaneous droplet formation in batch emulsification methods. However, the productivity of microfluidic techniques can be substantially increased by numbering-up (parallelization rather than conventional scale-up). This means, on the one hand, operating multiple chips simultaneously, which, however, also requires multiple sets of essential infrastructure, such as pump systems. Therefore, on the other hand, setups have been developed that incorporate multiple sets of channel junctions (droplet-forming units) arranged in defined geometries, ensuring identical flow conditions at each unit

and allowing operation with a single set of pumps [98, 134, 135] (Fig. 5). Additionally, there are several approaches that demonstrated an increased productivity per channel without detrimental effects on particle monodispersity. This includes an alteration of the time point/position of surfactant addition for droplet stabilization [136] or the operation of capillary microfluidic devices under tip-streaming rather than dripping conditions [123].

Importantly, the larger scale production with parallel operation of chips/droplet-forming units has to be subjected to continuous supervision. In particular, flow dynamics in multi-channel devices may severely change upon clogging of individual channels, thus affecting the particles produced at the other droplet-forming units. Therefore, in contrast to batch emulsification methods by conventional mixers, microfluidic production processes require perfectly well dissolved materials in the different phases, particularly in the organic polymer phase (no lumps or gel-like particles), which otherwise could cause inhomogeneous streams inside the channels.

Other important aspects of upscaling microfluidic devices include the types of materials and the methods used to fabricate the chips. Several materials like PDMS, glass, steel, and thermoplastic polymers as well as different chip fabrication methods (e.g. photolithography, hot embossing, injection molding, 3D printing) may be considered, as reviewed in detail by other authors [137, 138]. Obviously, it is important to employ materials in chip fabrication that are compatible with the reagents (solvents) used during particle production and neither dissolve nor swell, which can be critical with some organic solvents. Additionally, particularly when thinking of 3D printing of chips, the resolution of the printing technique should be critically evaluated in terms of both smoothness (flow perturbations) and tightness (device leakage) of the channels. To the best of our knowledge, industrial-scale droplet-based microfluidic systems have not been used in the commercial production of drug carriers yet, but efforts are being made to bridge the gap between small-scale and industrial-scale production. Companies like Microcaps (Switzerland) or Emultech (Netherlands) are developing large-scale solutions for industrial applications. For instance, Microcaps is using an alternative setup with stacked chips, which includes multiple channels running simultaneously and a collection of nascent particles in a bigger reservoir that can facilitate larger scales.

Other techniques that allow an enhanced throughput while enabling narrow particle size distributions are based on membrane emulsification, specifically crossflow membrane emulsification, where droplets are typically formed by shear generated by the stirred continuous phase in the collection chamber [139]. For instance, SPG Technologies (Japan) offers special cylindrical glass membranes, which

Fig. 5 Upscaling of microfluidic particle production by numbering-up of droplet forming units in a step emulsification device. **(A)** Schematic of a step-emulsification channel arranged with parallelized droplet makers. **(B)** Illustration of droplet formation. **(C)** Layout of a microfluidic emulsification chip with 364 droplet forming units. **(D-E)** Photographs of the microfluidic glass chip during operation (Scale bars: **(D)** 1 cm, **(E)** 500 μm). **(F)** Size distribution of hexadecane-in-water droplets with a mean size of 80.9 μm and a coefficient of variation (CV) of 2.8%. **(G)** Droplet size homogeneity during Long term operation as measured over 10 h. Adapted and reprinted from [135] with permission from Wiley.

can be incorporated into semi-continuous lab-scale devices [140–142] and are claimed to be compatible with large-scale production equipment. Another company, Micropore (UK), uses membranes and devices made of steel.

In contrast to droplet-based microfluidics, nanoprecipitation within flow-driven systems has enabled the large-scale and GMP-certified manufacturing of lipid nanoparticle vaccines, such as those used for COVID-19 [143]. It should be mentioned that the nanoprecipitation in this case was based on turbulent-flow jet mixing, during which solvent exchange takes place, ultimately leading to spontaneous (i.e., less controlled, statistically distributed) particle formation processes.

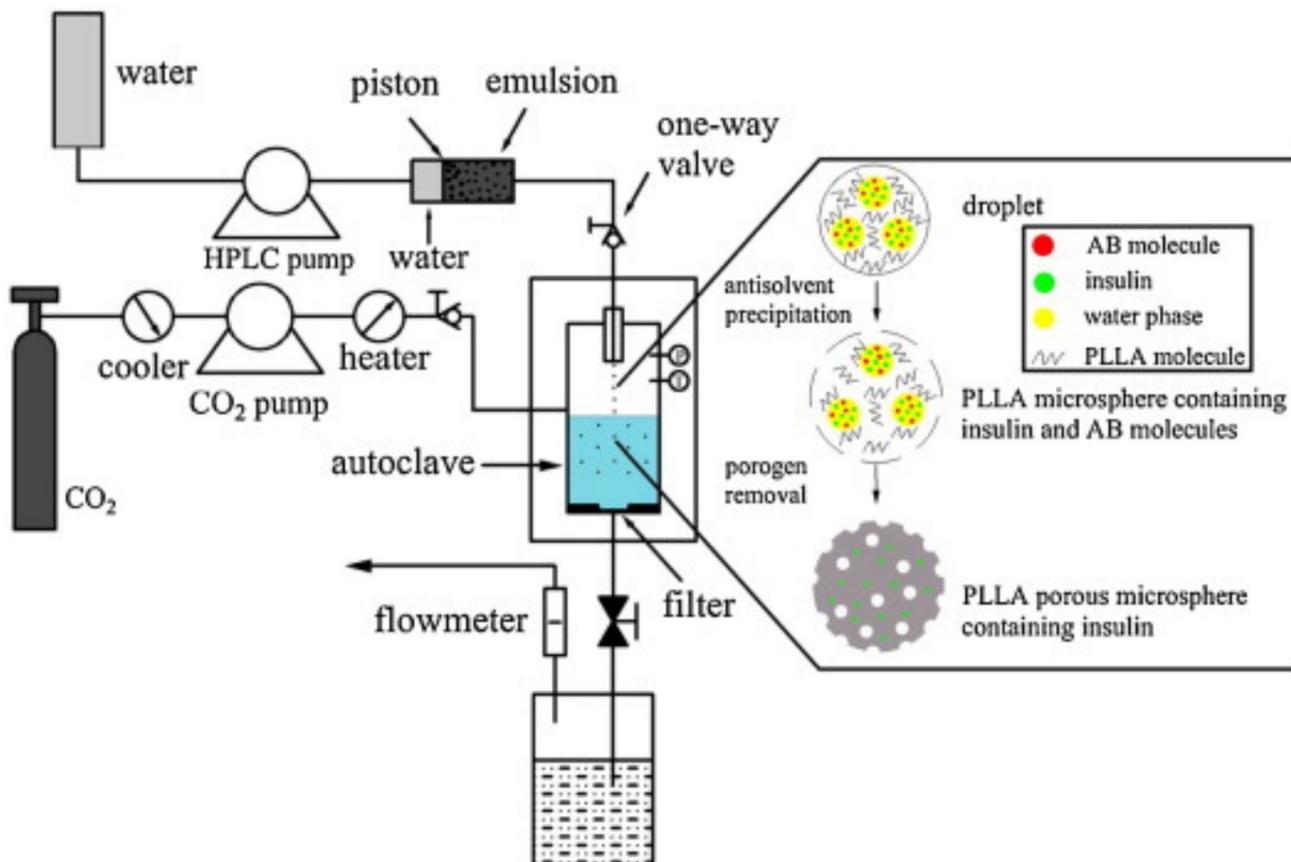
Given the fact that flow-driven techniques with micro-mixing equipment (specifically nanoprecipitation) have already advanced into pharmaceutical manufacturing of drug products, droplet-based microfluidics may likewise find practical applications in industrial-scale particle production. This is particularly expected when challenges of

conventional batch methods – such as variations in particle sizes, morphology, and drug loading [144] – are overcome, the required investment is low (using pumps and reusable microfluidic devices) compared to large scale machinery, and the throughput meets market demands such as for niche therapeutic applications.

Treatment with Supercritical Fluids

Supercritical fluids (SCF) are obtained at a temperature and pressure above the critical point of a given substance, where distinct liquid and gas phases no longer exist. In this state, SCF exhibit unique properties that are intermediate between those of gases and liquids such as moderate density, low viscosity, and high diffusivity. The most commonly used supercritical fluid is carbon dioxide (CO₂) due to its critical point at relatively low temperature and pressure ($\approx 31^{\circ}\text{C}/74$ bar), low-cost, and non-toxic nature.

SCF-based processing is often applied to prepare porous macroscopic scaffolds under solvent-free conditions [145] or to enhance the matrix porosity and pore sizes of initially non- or low porosity systems [146]. The underlying principle is that a SCF such as scCO₂, once absorbed into a material, transitions towards the gaseous state upon depressurization, leading to the formation of CO₂ gas bubbles within the material. This results in the expansion (foaming) of the matrix material.


The application of SCF techniques to prepare porous PLGA or PLA particles is less common due to the need for specialized equipment, which is not widely available in pharmaceutical research [147]. However, there are examples where particles prepared using conventional batch emulsion techniques followed by freeze drying were subsequently subjected to post-treatment with scCO₂ [148, 149]. This treatment enabled an increase in particle porosity as desired. Additionally, as SCFs have good solvent power for many substances, a beneficial reduction of the residual DCM content was observed after SCF treatment for particles initially formed by using DCM. Interestingly, at the same time, this procedure led to a modification of the drug release profiles,

e.g., of risperidone towards a more desirable linear pattern [149, 150].

The mandatory depressurization step during SCF processing can have varying effects on different materials. When comparing PLA and different PLGA grades after treatment with scCO₂, PLGA particles showed an increase in size, along with the formation of pores, while the morphology of PLA particles remained unaltered [149]. The authors suggested that the crystallinity of PLA significantly limits the mobility of the polymer chains and the absorption of scCO₂, which are essential for scaffold expansion by this method.

The application of SCF can also go beyond pore formation/foaming. It was shown that the joint exposure of bevacizumab-coated PLA nanoparticles and PLGA microparticles to scCO₂ resulted in a transportation (loading) of the PLA nanoparticles into the pores of the expanding – and thus now porous – PLGA microparticles [151].

Another process that involves compressed CO₂ for particle preparation comprises the hydraulic dispersion of a polymer solution into droplets/particles, followed by particle hardening and solvent extraction via precipitation with compressed antisolvent (PCA process), and foaming – all

Fig. 6 Schematic diagram of the preparation process of porous PLA particles with sub-critical compressed CO₂. The first emulsion (w₁/o) is pumped through a nozzle and into a steady atmosphere of compressed CO₂ in an autoclave, from which porous particles can be collected after depressurization. Reprinted from [128] with permission from Elsevier.

carried out in a high-pressure spray and extraction reactor in a single procedure (Fig. 6). In some cases, ABC was added as an additional porogen [152, 153]. This use of porogens is reasonable when the system is operated in the sub-critical regime (highly compressed gas but staying below the super-critical conditions), i.e., at conditions that still present phase boundaries between the compressed gas and the polymer solution, which are necessary for particle formation. Under subcritical conditions, the level of achievable porosity and the extent of open pores at the particle surface are often limited without an additional porogen [154, 155]. The ABC-assisted particle production via PCA allowed for the fabrication of irregularly-shaped PLA particles loaded with insulin as an active ingredient. Importantly, by combining different pore-forming principles, a sufficient porosity could be achieved, with aerodynamic diameters matching the needs of pulmonary delivery [152, 156].

In general, the scale-up of supercritical fluid-based processes is well established, e.g., in food technology [157]. Often, the solvent or anti-solvent properties of SCF are utilized there. Given the solubilization power of scCO₂ for many (not too polar) active pharmaceutical compounds (API) [158, 159], it will be important to ensure that the scCO₂-based foaming processes will not result in the extraction and loss of API when applying this process in the pharmaceutical sector. Despite not using polymers, it is interesting to note that a scaled-up semi-continuous production process of quercetin-loaded micelles was operated through scCO₂-based extraction of organic solvent from o/w emulsions, which could potentially be applied to microparticle production as well [160]. Although processes using supercritical fluids are less common than established methods like spray drying, this technique shows some potential to be considered for particle engineering processes. One aspect – although potentially more relevant for the foaming of larger objects – is the improved ecological balance of production, as high-pressure polymer processing with SCF may enable a lower energy consumption and solvent usage [161].

Characterization of Porosity

The analysis of overall porosity, pore size distributions, and/or pore geometries is crucial for understanding the properties of microparticles and their applications. According to the IUPAC, pores are classified by size as micropores (< 2 nm), mesopores (2–50 nm), and macropores (> 50 nm) [162]. As most literature on porous microparticles for pharmaceutical applications reports macroporous characteristics, with voids up to several micrometers, this section briefly summarizes suitable characterization methods for macropores. More comprehensive discussions can be found in specialized reviews on this topic [163, 164].

Easily accessible optical methods, such as light microscopy, are powerful tools for analyzing particle sizes in aqueous dispersions or, after proper sample preparation, in the dry state. However, light microscopy is less frequently used to determine pore sizes, as the pores of pharmaceutically relevant polymer microparticles (mean particle sizes of injectable depot formulation most often in the range of 5–100 µm) are typically not visible in wet dispersion (unless dye-based visualization by confocal microscopy can be employed for relatively large particles/pores). Additionally, limitations of light optics (e.g., resolution, material-dependent opacity, or the curved surface of particles complicating focus plane detection) present further challenges for wet- and dry-state analysis.

Electron microscopy, particularly scanning electron microscopy (SEM), is the gold standard for visualizing porous particles in the dry state, given its high resolution and suitability for imaging three-dimensional objects. SEM can provide direct insights into surface porosity by measuring pore sizes in images using external software (e.g., ImageJ). Challenges associated with SEM include the limited thermal stability of polymers, like PLGA, under the electron beam, which can cause pores and particles to deform in case of improper instrument settings and charging of the samples. To assess internal porosity, experienced operators are needed, given the complex and time-consuming procedures for sample preparation by (cryo)-ultramicrotomy [12]. In cases where microtomy instruments are not available and/or when a lower quality of cross sections is acceptable, cutting with a razor blade may also be used with reasonable results [8, 165, 166], but should involve a critical assessment, as particle deformation and smearing of material over the porous structure can occur. Combinations of SEM with additional techniques, in particular focused ion beam (FIB)-based *in situ* cutting of single particles within the SEM, enable very detailed insights into the particle ultrastructure via multiple cross-sectional views [167]. Importantly, microscopic techniques only provide information on small quantities of sample material, placing significant responsibility on operators to select and provide representative images for subsequent qualitative or semi-quantitative analysis.

Quantitative information on batch porosity and pore size distributions can be obtained by methods like gas adsorption or mercury intrusion porosimetry. Among these, mercury intrusion porosimetry is the best-known and most widely applied method for porous drug carriers due to its ability to cover a wide range of pore sizes (10 nm – 300 µm) and to provide comprehensive insights not only into overall porosity and average pore sizes, but also into pore size distributions including the smallest and largest pore diameters of open pores [10, 168, 169]. However, this method requires larger sample quantities compared to microscopy techniques, and handling of elementary mercury poses

significant health risks, in addition to generating contaminated samples that require special waste containment.

In exploratory research, alternative characterization methods have been discussed to determine pore structures. Examples include micro-computed tomography (μ CT) or nanoCT as non-destructive techniques for analyzing samples typically in the dry state. These methods generate 2D images of different sample planes, which can be combined to construct a three-dimensional model of the sample. For instance, the imaging of porous microstructures inside PLGA particles and the reconstruction of the porous network of risperidone-loaded PLGA particles have been reported using μ CT or nanoCT [7, 8]. Challenges of μ CT include resolution limitations (a few micrometers), while nanoCT provides higher resolution but is restricted to very small samples (usually single particles) and long measurement times, i.e., low sample throughput.

Another explorative method for determining particle porosity is based on sedimentation velocity, which depends on density differences between particles and the suspension medium and thus is affected by porosity (in addition to particle sizes). It was shown for PLGA particles that sedimentation analysis combined with Camera inspection of 50–100 particles can provide a good correlation with data from mercury intrusion porosity [170].

Overall, the most effective method for determining the pore size range and porosity of porous particles is a combination of techniques, most commonly microscopy together with mercury intrusion porosimetry.

Conclusions

The platform of fabrication techniques for porous drug carriers is subject to ongoing technological advancements. Besides conventional batch emulsion techniques, methods like electrospraying, microfluidics, or treatment with supercritical fluids pose some interesting features that can be advantageous to reproducibly fabricate porous drug-loaded particles. Some formulation aspects of batch techniques and mechanisms of pore formation by adding porogens can be transferred and applied to those continuous methods. Despite existing technological challenges and process-related limitations of throughput, a scale-up of the here discussed alternative methods may be possible in principle, in some cases even being evidenced for other application fields or material systems. Still, as of now, these methods may be primarily suited for the cost-effective production of porous particles for niche applications that require high flexibility in production technology, rather than for the manufacturing of large-scale (ton-level) quantities.

Acknowledgements The authors acknowledge the final proof-reading by Lorna Fortune.

Authors Contribution Simon Pöttgen: Conceptualization, Investigation, Methodology, Visualization, Writing – original draft, Writing – review & editing.

Christian Wischke: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Supervision, Writing – review & editing.

Funding Open Access funding enabled and organized by Projekt DEAL. The authors acknowledge institutional funding by Martin-Luther University Halle-Wittenberg and have not received other funding for this work.

Data Availability All data generated or analysed during this study are included in this published article.

Declarations

Competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by/4.0/>.

References

1. Marquina S, Ozgul M, Robertson-Brown K, Kenney MC. A review on PLGA particles as a sustained drug-delivery system and its effect on the retina. *Exp Eye Res*. 2023;235. <https://doi.org/10.1016/j.exer.2023.109626>.
2. Liu MH, Feng DD, Liang XY, Li M, Yang J, Wang H, et al. Old dog new tricks: PLGA microparticles as an adjuvant for insulin peptide fragment-induced immune tolerance against type 1 diabetes. *Mol Pharm*. 2020;17(9):3513–25. <https://doi.org/10.1021/acs.molpharmaceut.0c00525>.
3. Nwazojie CC, Obayemi JD, Salifu AA, Borbor-Sawyer SM, Uzonwanne VO, Onyekanne CE, et al. Targeted drug-loaded PLGA-PCL microspheres for specific and localized treatment of triple negative breast cancer. *J Mater Sci-Mater M*. 2023;34(8). <https://doi.org/10.1007/s10856-023-06738-y>.
4. Lengyel M, Kállai-Szabó N, Antal V, Laki AJ, Antal I. Microparticles, microspheres, and microcapsules for advanced drug delivery. *Scient Pharm*. 2019. <https://doi.org/10.3390/scipharm87030020>.
5. Piacentini E, Bazzarelli F, Poerio T, Alvisa A, Irusta S, Mendoza G, et al. Encapsulation of water-soluble drugs in Poly (vinyl alcohol) (PVA)-microparticles via membrane emulsification: Influence of process and formulation parameters on structural and functional properties. *Mater Today Commun*. 2020;24. <https://doi.org/10.1016/j.mtcomm.2020.100967>.

6. Li HY, Xu EY. Dual functional pullulan-based spray-dried micro-particles for controlled pulmonary drug delivery. *Int J Pharmaceut.* 2023;641. <https://doi.org/10.1016/j.ijpharm.2023.123057>.
7. Janich C, Friedmann A, Martins de Souza ESJ, Santos de Oliveira C, Souza LE, Rujescu D, *et al.* Risperidone-Loaded PLGA-Lipid Particles with Improved Release Kinetics: Manufacturing and Detailed Characterization by Electron Microscopy and Nano-CT. *Pharm.* 2019;11(12):665. <https://doi.org/10.3390/pharmaceutics11120665>.
8. Lefol LA, Bawuah P, Zeitler JA, Verin J, Danede F, Willart JF, *et al.* Drug release from PLGA microparticles can be slowed down by a surrounding hydrogel. *Int J Pharm-X.* 2023;6. <https://doi.org/10.1016/j.ijpx.2023.100220>.
9. Costa MS, Ramos AM, Cardoso MM. Drug Release Kinetics of PLGA-PEG Microspheres Encapsulating Aclacinomycin A: The Influence of PEG Content. *Proceses.* 2025;13(1). <https://doi.org/10.3390/pr13010112>.
10. Pöttgen S, Mazurek-Budzyńska M, Wischke C. The role of porosity in polyester microparticles for drug delivery. *Int J Pharmaceut.* 2025;125340. <https://doi.org/10.1016/j.ijpharm.2025.125340>.
11. Wischke C, Schwendeman SP. Degradable Polymeric Carriers for Parenteral Controlled Drug Delivery. In: Siepmann J, Siegel RA, Rathbone MJ, editors. *Fundamentals and Applications of Controlled Release Drug Delivery.* Boston, MA: Springer, US; 2012. p. 171–228.
12. Mylonaki I, Allémann E, Delie F, Jordan O. Imaging the porous structure in the core of degrading PLGA microparticles: the effect of molecular weight. *J Control Release.* 2018;286:231–9. <https://doi.org/10.1016/j.jconrel.2018.07.044>.
13. Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porous large PLGA microparticles for pulmonary drug delivery. *Biomater.* 2009;30(10):1947–53. <https://doi.org/10.1016/j.biomaterials.2008.12.044>.
14. Shi NQ, Zhou J, Walker J, Li L, Hong JKY, Olsen KF, *et al.* Microencapsulation of luteinizing hormone-releasing hormone agonist in poly (lactic-co-glycolic acid) microspheres by spray-drying. *J Control Release.* 2020;321:756–72. <https://doi.org/10.1016/j.jconrel.2020.01.023>.
15. Nandyanto ABD, Ogi T, Wang WN, Graden L, Okuyama K. Template-assisted spray-drying method for the fabrication of porous particles with tunable structures. *Adv Powder Technol.* 2019;30(12):2908–24. <https://doi.org/10.1016/j.apt.2019.08.037>.
16. Jia FH, Gao YB, Wang H. Recent Advances in Drug Delivery System Fabricated by Microfluidics for Disease Therapy. *Bioengineering-Basel.* 2022;9(11). <https://doi.org/10.3390/bioengineering9110625>.
17. Alfatama M, Shahzad Y, Choukaife H. Recent advances of electrospray technique for multiparticulate preparation: drug delivery applications. *Adv Colloid Interfac.* 2024;325:103098. <https://doi.org/10.1016/j.cis.2024.103098>.
18. Adam B, Johan PB, Thomas R, Jukka R, Mingshi Y. Application of Spray-drying and Electrospraying/Electrospinning for Poorly Watersoluble Drugs: A Particle Engineering Approach. *Curr Pharm Design.* 2014;20(3):325–48. <https://doi.org/10.2174/1381612811319990399>.
19. Long B, Ryan KM, Padrela L. From batch to continuous - New opportunities for supercritical CO₂ technology in pharmaceutical manufacturing. *Eur J Pharm Sci.* 2019;137. <https://doi.org/10.1016/j.ejps.2019.104971>.
20. Saito M, Yin LJ, Kobayashi I, Nakajima M. Comparison of stability of bovine serum albumin-stabilized emulsions prepared by microchannel emulsification and homogenization. *Food Hydrocolloid.* 2006;20(7):1020–8. <https://doi.org/10.1016/j.foodhyd.2005.10.018>.
21. Lakshmi DS, Radha KS, Castro-Muñoz R, Tanczyk M. Emerging Trends in Porogens toward Material Fabrication: Recent Progresses and Challenges. *Polymers-Basel.* 2022;14(23):5209. <https://doi.org/10.3390/polym14235209>.
22. Ullah A, Kim CM, Kim GM. Solvent effects on the porosity and size of porous PLGA microspheres using gelatin and PBS as porogens in a microfluidic flow-focusing device. *J Nanosci Nanotechnol.* 2017;17(10):7775–82. <https://doi.org/10.1166/jnn.2017.14838>.
23. Zhang CH, Bodmeier R. Porous PLGA microparticles prepared with nanosized/micronized sugar particles as porogens. *Int J Pharmaceut.* 2024;660:124329. <https://doi.org/10.1016/j.ijpharm.2024.124329>.
24. Lazo REL, Oliveira BD, Cobre AD, Ferreira LM, Felipe KB, de Oliveira PR, *et al.* Engineering porous PLGA microparticles for pulmonary delivery of sildenafil citrate. *Powder Technol.* 2023;430:118999. <https://doi.org/10.1016/j.powtec.2023.118999>.
25. Rosca ID, Watari F, Uo M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. *J Control Release.* 2004;99(2):271–80. <https://doi.org/10.1016/j.jconrel.2004.07.007>.
26. Chen JL, Chiang CH, Yeh MK. The mechanism of PLA micro-particle formation by water-in-oil-in-water solvent evaporation method. *J Microencapsul.* 2002;19(3):333–46. <https://doi.org/10.1080/02652040110105373>.
27. Siepmann J, Siepmann F. Mathematical modeling of drug release from lipid dosage forms. *Int J Pharmaceut.* 2011;418(1):42–53. <https://doi.org/10.1016/j.ijpharm.2011.07.015>.
28. Zhang CH, Bodmeier R. Dexamethasone-releasing PLGA films containing sucrose particles as porogens. *J Drug Deliv Sci Tec.* 2024;101. <https://doi.org/10.1016/j.jddst.2024.106217>.
29. Kuriakose AE, Hu WJ, Nguyen KT, Menon JU. Scaffold-based lung tumor culture on porous PLGA microparticle substrates. *PLoS ONE.* 2019;14(5):e0217640. <https://doi.org/10.1371/journal.pone.0217640>.
30. Bae SE, Son JS, Park K, Han DK. Fabrication of covered porous PLGA microspheres using hydrogen peroxide for controlled drug delivery and regenerative medicine. *J Control Release.* 2009;133(1):37–43. <https://doi.org/10.1016/j.jconrel.2008.09.006>.
31. Amoyav B, Benny O. Microfluidic based fabrication and characterization of highly porous polymeric microspheres. *Polymers.* 2019;11(3):419. <https://doi.org/10.3390/polym11030419>.
32. Kim H, Kim BR, Shin YJ, Cho S, Lee J. Controlled formation of polylysinated inner pores in injectable microspheres of low molecular weight poly(lactide-co-glycolide) designed for efficient loading of therapeutic cells. *Artif Cell Nanomed B.* 2018;46:S233–46. <https://doi.org/10.1080/21691401.2018.1491475>.
33. Dhamecha D, Le D, Movsas R, Gonsalves A, Menon JU. Porous polymeric microspheres with controllable pore diameters for tissue engineered lung tumor model development. *Front Bioeng Biotechnol.* 2020;8:799. <https://doi.org/10.3389/fbioe.2020.00799>.
34. Wu JQ, Ding JQ, Xiao BY, Chen DL, Huang DL, Ma P, *et al.* A facile strategy for controlling porous PLGA microspheres via o/w emulsion method. *J Polym Res.* 2022;29(12):508. <https://doi.org/10.1007/s10965-022-03369-9>.
35. Choi SW, Yeh YC, Zhang Y, Sung HW, Xia YN. Uniform beads with controllable pore sizes for biomedical applications. *Small.* 2010;6(14):1492–8. <https://doi.org/10.1002/smll.201000544>.
36. Majekodunmi SO. A Review on Centrifugation in the Pharmaceutical Industry. *Am J Biomed Eng.* 2015;5(2):67–78. <https://doi.org/10.5923/j.ajbe.20150502.03>.
37. Jungbauer A. Continuous downstream processing of biopharmaceuticals. *Trends Biotechnol.* 2013;31(8):479–92. <https://doi.org/10.1016/j.tibtech.2013.05.011>.

38. Hildebrandt L, Voigt N, Zimmermann T, Reese A, Proefrock D. Evaluation of continuous flow centrifugation as an alternative technique to sample microplastic from water bodies. *Mar Environ Res.* 2019. <https://doi.org/10.1016/j.marenres.2019.104768>.

39. Pochan D, Scherman O. Introduction: molecular self-assembly. *Chem Rev.* 2021;121(22):13699–700. <https://doi.org/10.1021/acs.chemrev.1c00884>.

40. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. *J Chem Soc Farad T.* 1976;2(72):1525–68. <https://doi.org/10.1039/f29767201525>.

41. Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide design and self-assembly into targeted nanostructure and functional materials. *Chem Rev.* 2021;121(22):13915–35. <https://doi.org/10.1021/acs.chemrev.1c00712>.

42. Sivadasan D, Sultan MH, Alqahtani SS, Javed S. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications. *Biomedicines.* 2023;11(4):1114. <https://doi.org/10.3390/biomedicines11041114>.

43. Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: A review. *Colloid Interfac Sci.* 2022;46. <https://doi.org/10.1016/j.colcom.2021.100561>.

44. Wong CK, Qiang XL, Müller AHE, Gröschel AH. Self-Assembly of block copolymers into internally ordered microparticles. *Prog Polym Sci.* 2020;102. <https://doi.org/10.1016/j.progpolymsci.2020.101211>.

45. Reyes CFG, Ha S, Kim KT. Synthesis and applications of polymer cubosomes and hexosomes. *J Polym Sci.* 2023;61(12):1196–213. <https://doi.org/10.1002/pol.20230053>.

46. Schumacher M, Foith M, Trömer M, Tänzer N, Rosenfeldt S, Retsch M, et al. Synthesis and Self-Assembly of Poly(4-acetoxystyrene) Cubosomes. *Macromol Rapid Comm.* 2025;46(2). <https://doi.org/10.1002/marc.202400633>.

47. Azhdari S, Linders J, Coban D, Stank TJ, Dargel C, Gojzewski H, et al. Fully Degradable Polyphosphoester Cubosomes for Sustainable Agrochemical Delivery. *Adv Mater.* 2024;36(38). <https://doi.org/10.1002/adma.202406831>.

48. Cam ME, Zhang Y, Edirisinghe M. Electrosprayed microparticles: a novel drug delivery method. *Expert Opin Drug Del.* 2019;16(9):895–901. <https://doi.org/10.1080/17425247.2019.1648427>.

49. Zamani M, Prabhakaran MP, Thian ES, Ramakrishna S. Controlled delivery of stromal derived factor-1 α from poly lactic-co-glycolic acid core-shell particles to recruit mesenchymal stem cells for cardiac regeneration. *J Colloid Interf Sci.* 2015;451:144–52. <https://doi.org/10.1016/j.jcis.2015.04.005>.

50. Gao Y, Bai YT, Zhao D, Chang MW, Ahmad Z, Li JS. Tuning microparticle porosity during single needle electrospraying synthesis via a non-solvent-based physicochemical approach. *Polymers-Basel.* 2015;7(12):2701–10. <https://doi.org/10.3390/polym7121531>.

51. Xing Z, Zhang C, Zhao C, Ahmad Z, Li JS, Chang MW. Targeting oxidative stress using tri-needle electrospray engineered *Ganoderma lucidum* polysaccharide-loaded porous yolk-shell particles. *Eur J Pharm Sci.* 2018;125:64–73. <https://doi.org/10.1016/j.ejps.2018.09.016>.

52. Nguyen-Vu VL, Huynh DP. Fabrication Drug Loaded Polycaprolactone Microparticles by Electrospraying Method. In: Van Toi V, Le TQ, Ngo HT, Nguyen T-H, editors. 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7). Singapore: Springer Singapore; 2020. p. 313–7.

53. Feng JT, Lin L, Chen PP, Hua WD, Sun QM, Ao Z, et al. Topographical binding to mucosa-exposed cancer cells: pollen-mimetic porous microspheres with tunable pore sizes. *ACS Appl Mater Interfaces.* 2015;7(17):8961–7. <https://doi.org/10.1021/am5016827>.

54. Zhu LF, Li M, Liu XY, Jin YG. Drug-loaded PLGA electrospraying porous microspheres for the local therapy of primary lung cancer via pulmonary delivery. *ACS Omega.* 2017;2(5):2273–9. <https://doi.org/10.1021/acsomega.7b00456>.

55. Bohr A, Yang MS, Baldursdóttir S, Kristensen J, Dyas M, Stride E, et al. Particle formation and characteristics of Celecoxib-loaded poly(lactic-co-glycolic acid) microparticles prepared in different solvents using electrospraying. *Polymer.* 2012;53(15):3220–9. <https://doi.org/10.1016/j.polymer.2012.05.002>.

56. Paik DH, Choi SW. Entrapment of protein using electrosprayed poly(D,L-lactide-co-glycolide) microspheres with a porous structure for sustained release. *Macromol Rapid Commun.* 2014;35(11):1033–8. <https://doi.org/10.1002/marc.201400042>.

57. Hao SL, Wang YZ, Wang BC, Deng J, Zhu LC, Cao Y. Formulation of porous poly(lactic-co-glycolic acid) microparticles by electrospray deposition method for controlled drug release. *Mater Sci Eng C-Mater Biol Appl.* 2014;39:113–9. <https://doi.org/10.1016/j.msec.2014.02.014>.

58. Tasci ME, Dede B, Tabak E, Gur A, Sulutas RB, Cesur S, et al. Production, optimization and characterization of polylactic acid microparticles using electrospray with porous structure. *Appl Sci.* 2021;11(11):5090. <https://doi.org/10.3390/app11115090>.

59. Chen AZ, Yang YM, Wang SB, Wang GY, Liu YG, Sun QQ. Preparation of methotrexate-loaded, large, highly-porous PLLA microspheres by a high-voltage electrostatic antisolvent process. *J Mater Sci-Mater M.* 2013;24(8):1917–25. <https://doi.org/10.1007/s10856-013-4942-1>.

60. Huang XW, Gao JF, Zheng N, Li W, Xue HG, Li RKY. Influence of humidity and polymer additives on the morphology of hierarchically porous microspheres prepared from non-solvent assisted electrospraying. *Colloid Surface A.* 2017;517:17–24. <https://doi.org/10.1016/j.colsurfa.2017.01.003>.

61. Hao SL, Wang YZ, Wang BC, Zou QM, Zeng H, Chen XL, et al. A novel gastroretentive porous microparticle for anti-Helicobacter pylori therapy: Preparation and evaluation. *Int J Pharmaceut.* 2014;463(1):10–21. <https://doi.org/10.1016/j.ijpharm.2013.12.052>.

62. Karimian SAM, Mashayekhan S, Baniyasiadi H. Fabrication of porous gelatin-chitosan microcarriers and modeling of process parameters via the RSM method. *Int J Biol Macromol.* 2016;88:288–95. <https://doi.org/10.1016/j.ijbiomac.2016.03.061>.

63. Li L, Du Y, Yin ZX, Li LY, Peng HT, Zheng H, et al. Preparation and the hemostatic property study of porous gelatin microspheres both in vitro and in vivo. *Colloid Surface B.* 2020;187. <https://doi.org/10.1016/j.colsurfb.2019.110641>.

64. Alberto L, Kalluri L, Qu J, Zhao YF, Duan YY. Influence of Polycaprolactone Concentration and Solvent Type on the Dimensions and Morphology of Electrosprayed Particles. *Mater.* 2023;16(5):2122. <https://doi.org/10.3390/ma16052122>.

65. Wang C, Zhou YG. Electrospray of core-shell micro drug carriers with various experimental and material parameters. *Int J Adv Manuf Tech.* 2025;137(1–2):843–55. <https://doi.org/10.1007/s00170-025-15279-3>.

66. Mai ZX, Chen JL, He T, Hu Y, Dong XM, Zhang HW, et al. Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. *RSC Adv.* 2017;7(3):1724–34. <https://doi.org/10.1039/c6ra25314h>.

67. de Anda DAR, Ohannesian N, Martirosyan KS, Chew SA. Effects of solvent used for fabrication on drug loading and release kinetics of electrosprayed temozolomide-loaded PLGA microparticles for the treatment of glioblastoma. *J Biomed Mater Res B.* 2019;107(7):2317–24. <https://doi.org/10.1002/jbm.b.34324>.

68. Tanaka M, Ochi A, Sasai A, Tsujimoto H, Kobara H, Yamamoto H, *et al.* Biodegradable PLGA Microsphere Formation Mechanisms in Electrosprayed Liquid Droplets. *Kona Powder Part J.* 2022;39:251–61. <https://doi.org/10.14356/kona.2022018>.

69. Zhou XQ, Hou CL, Chang TL, Zhang QR, Liang JF. Controlled released of drug from doubled-walled PVA hydrogel/PCL microspheres prepared by single needle electrospraying method. *Colloid Surface B.* 2020;187. <https://doi.org/10.1016/j.colsurfb.2019.110645>.

70. Wang Y, Nie XB, Wei J, Li Y, Pu ZW, Ran X, *et al.* A facile strategy for designing hollow-porous polymer microparticles with tunable structures. *Chem Eng Sci.* 2024;297:120264. <https://doi.org/10.1016/j.ces.2024.120264>.

71. Wang JM, Jansen JA, Yang F. Electrospraying: Possibilities and Challenges of Engineering Carriers for Biomedical Applications—A Mini Review. *Front Chem.* 2019;7. <https://doi.org/10.3389/fchem.2019.00258>.

72. Ikeuchi M, Tane R, Ikuta K. Electrospray deposition and direct patterning of polylactic acid nanofibrous microcapsules for tissue engineering. *Biomed Microdevices.* 2012;14(1):35–43. <https://doi.org/10.1007/s10544-011-9583-x>.

73. Unverzagt L, Dolynchuk O, Lettau O, Wischke C. Characteristics and challenges of poly(ethylene-vinyl acetate) solution electrospinning. *ACS Omega.* 2024;9(16):18624–33. <https://doi.org/10.1021/acsomega.4c01452>.

74. Liu XL, Baldursdottir SG, Aho J, Qu HY, Christensen LP, Rantanen J, *et al.* Electrosprinnability of poly lactic-co-glycolic acid (PLGA): the role of solvent type and solvent composition. *Pharm Res.* 2017;34(4):738–49. <https://doi.org/10.1007/s11095-017-2100-z>.

75. Wu YQ, Clark RL. Controllable porous polymer particles generated by electrospraying. *J Colloid Interf Sci.* 2007;310(2):529–35. <https://doi.org/10.1016/j.jcis.2007.02.023>.

76. Zhao SY, Huang C, Yue X, Li XB, Zhou P, Wu AX, *et al.* Application advance of electrosprayed micro/nanoparticles based on natural or synthetic polymers for drug delivery system. *Mater Des.* 2022;220:110850. <https://doi.org/10.1016/j.matdes.2022.110850>.

77. Morais AIS, Vieira EG, Afewerki S, Sousa RB, Honorio LMC, Cambrussi ANCO, *et al.* Fabrication of polymeric microparticles by electrospray: the impact of experimental parameters. *J Funct Biomater.* 2020;11(1):4. <https://doi.org/10.3390/jfb11010004>.

78. Gómez-Mascaraque LG, Tordera F, Fabra MJ, Martínez-Sanz M, Lopez-Rubio A. Coaxial electrospraying of biopolymers as a strategy to improve protection of bioactive food ingredients. *Innov Food Sci Emerg.* 2019;51:2–11. <https://doi.org/10.1016/j.ifset.2018.03.023>.

79. Tang J, Schutzman R, Rodríguez CA, Lahann J, Rodríguez-Hornedo N, Prausnitz MR, *et al.* Coaxial electrospray of uniform polylactide core-shell microparticles for long-acting contraceptive. *J Control Release.* 2022;341:634–45. <https://doi.org/10.1016/j.jconrel.2021.12.017>.

80. Zhang XL, Qu QL, Zhou A, Wang YL, Zhang J, Xiong RH, *et al.* Core-shell microparticles: From rational engineering to diverse applications. *Adv Colloid Interfac.* 2022;299. <https://doi.org/10.1016/j.cis.2021.102568>.

81. Zhang CC, Chang MW, Li YD, Qi YK, Wu JW, Ahmad Z, *et al.* Janus particle synthesis aligned non-concentric angular nozzles and electrohydrodynamic co-flow for tunable drug release. *RSC Adv.* 2016;6(81):77174–8. <https://doi.org/10.1039/c6ra15387a>.

82. Li K, Li P, Jia ZT, Qi B, Xu JW, Kang DY, *et al.* Enhanced fluorescent intensity of magnetic-fluorescent bifunctional PLGA microspheres based on Janus electrospraying for bioapplication. *Sci Rep.* 2018. <https://doi.org/10.1038/s41598-018-34856-z>.

83. Gao Y, Zhao D, Chang MW, Ahmad Z, Li X, Suo HR, *et al.* Morphology control of electrosprayed core-shell particles via collection media variation. *Mater Lett.* 2015;146:59–64. <https://doi.org/10.1016/j.matlet.2015.02.013>.

84. Omer S, Forgách L, Zelkó R, Sebe I. Scale-up of electrospinning: market overview of products and devices for pharmaceutical and biomedical purposes. *Pharmaceutics.* 2021;13(2):286. <https://doi.org/10.3390/pharmaceutics13020286>.

85. Almería B, Deng WW, Fahmy TM, Gomez A. Controlling the morphology of electrospray-generated PLGA microparticles for drug delivery. *J Colloid Interf Sci.* 2010;343(1):125–33. <https://doi.org/10.1016/j.jcis.2009.10.002>.

86. Batty CJ, Gallovin MD, Williams J, Ross TM, Bachelder EM, Ainslie KM. Multiplexed electrospray enables high throughput production of cGAMP microparticles to serve as an adjuvant for a broadly acting influenza vaccine. *Int J Pharmaceut.* 2022;622. <https://doi.org/10.1016/j.ijpharm.2022.121839>.

87. Parhizkar M, Reardon PJT, Knowles JC, Browning RJ, Stride E, Pedley RB, *et al.* Performance of novel high throughput multi electrospray systems for forming of polymeric micro/nanoparticles. *Mater Des.* 2017;126:73–84. <https://doi.org/10.1016/j.matdes.2017.04.029>.

88. Mosa MA, Kim SH, Kwon KS. Multinozzle electrospray method for high-throughput and uniform coating: application of superhydrophobic coating. *J Coat Technol Res.* 2023;20(3):1069–81. <https://doi.org/10.1007/s11998-022-00725-8>.

89. Escobar-García JD, Prieto C, Pardo-Figuerez M, Lagaron JM. Dragon's Blood Sap Microencapsulation within Whey Protein Concentrate and Zein Using Electrospraying Assisted by Pressurized Gas Technology. *Molecules.* 2023;28(10). <https://doi.org/10.3390/molecules28104137>.

90. Prieto C, Evtoski Z, Pardo-Figuerez M, Lagaron JM. Bioavailability enhancement of nanostructured microparticles of carvedilol. *J Drug Deliv Sci Tec.* 2021;66. <https://doi.org/10.1016/j.jddst.2021.102780>.

91. Prieto C, Evtoski Z, Pardo-Figuerez M, Lagaron JM. Nanostructured valsartan microparticles with enhanced bioavailability produced by high-throughput electrohydrodynamic room-temperature atomization. *Mol Pharmaceut.* 2021;18(8):2947–58. <https://doi.org/10.1021/acs.molpharmacol.1c00098>.

92. Rahmani-Manglano NE, Guadix EM, Yesiltas B, Prieto C, Lagaron JM, Jacobsen C, *et al.* Non-emulsion-based encapsulation of fish oil by coaxial electrospraying assisted by pressurized gas enhances the oxidative stability of a capsule-fortified salad dressing. *Food Chem.* 2024. <https://doi.org/10.1016/j.foodchem.2023.137157>.

93. Yu M, Dong RH, Yan X, Yu GF, You MH, Ning X, *et al.* Recent advances in needleless electrospinning of ultrathin fibers: from academia to industrial production. *Macromol Mater Eng.* 2017. <https://doi.org/10.1002/mame.201700002>.

94. Klicova M, Oulehlova Z, Klapstova A, Hejda M, Krejcik M, Novak O, *et al.* Biomimetic hierarchical nanofibrous surfaces inspired by superhydrophobic lotus leaf structure for preventing tissue adhesions. *Mater Design.* 2022;217. <https://doi.org/10.1016/j.matdes.2022.110661>.

95. Vass P, Nagy ZK, Kóczán R, Fehér C, Démuth B, Szabó E, *et al.* Continuous drying of a protein-type drug using scaled-up fiber formation with HP-β-CD matrix resulting in a directly compressible powder for tableting. *Eur J Pharm Sci.* 2020;141. <https://doi.org/10.1016/j.ejps.2019.105089>.

96. Vass P, Szabó E, Domokos A, Hirsch E, Galata D, Farkas B, *et al.* Scale-up of electrospinning technology: Applications in the pharmaceutical industry. *Wires Nanomed Nanobi.* 2020;12(4). <https://doi.org/10.1002/wnan.1611>.

97. Franke TA, Wixforth A. Microfluidics for miniaturized laboratories on a chip. *ChemPhysChem*. 2008;9(15):2140–56. <https://doi.org/10.1002/cphc.200800349>.

98. Wischke C. Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics. *Int J Pharm*. 2020;584:119401. <https://doi.org/10.1016/j.ijpharm.2020.119401>.

99. Damiati S, Kompella UB, Damiati SA, Kodzius R. Microfluidic Devices for Drug Delivery Systems and Drug Screening. *Genes-Basel*. 2018;9(2). <https://doi.org/10.3390/genes9020103>.

100. Wang J, Cheng Y, Yu YR, Fu FF, Chen ZY, Zhao YJ, et al. Microfluidic generation of porous microcarriers for three-dimensional cell culture. *ACS Appl Mater Interfaces*. 2015;7(49):27035–9. <https://doi.org/10.1021/acsmami.5b10442>.

101. Zhao X, Liu YX, Yu YR, Huang Q, Ji W, Li JS, et al. Hierarchically porous composite microparticles from microfluidics for controllable drug delivery. *Nanoscale*. 2018;10(26):12595–604. <https://doi.org/10.1039/c8nn03728k>.

102. Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. *Lab Chip*. 2012;12(12):2135–45. <https://doi.org/10.1039/c2lc21164e>.

103. Shi YX, Zhang X, Mu KT, Wang YF, Jiang T, Jiang ST, et al. Precise Fabrication of Porous Microspheres by Iso-Density Emulsion Combined with Microfluidics. *Polymers-Basel*. 2022;14(13). <https://doi.org/10.3390/polym14132687>.

104. Kankala RK, Zhao J, Liu CG, Song XJ, Yang DY, Zhu K, et al. Highly Porous Microcarriers for Minimally Invasive In Situ Skeletal Muscle Cell Delivery. *Small*. 2019;15(25). <https://doi.org/10.1002/smll.201901397>.

105. Chen WW, Li H, Zhang XY, Sang YT, Nie ZH. Microfluidic preparation of monodisperse PLGA-PEG/PLGA microspheres with controllable morphology for drug release. *Lab Chip*. 2024;24(19):4623–31. <https://doi.org/10.1039/d4lc00486h>.

106. Li W, Zhang LY, Ge XH, Xu BY, Zhang WX, Qu LL, et al. Microfluidic fabrication of microparticles for biomedical applications. *Chem Soc Rev*. 2018;47(15):5646–83. <https://doi.org/10.1039/c7cs00263g>.

107. Zhai JQ, Ou ZL, Zhong LT, Wang YE, Cao LP, Guan SX. Exenatide-loaded inside-porous poly(lactic-co-glycolic acid) microspheres as a long-acting drug delivery system with improved release characteristics. *Drug Deliv*. 2020;27(1):1667–75. <https://doi.org/10.1080/10717544.2020.1850919>.

108. Huang CC, Wei HJ, Yeh YC, Wang JJ, Lin WW, Lee TY, et al. Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. *Biomaterials*. 2012;33(16):4069–77. <https://doi.org/10.1016/j.biomaterials.2012.02.024>.

109. Lee D-H. Fabrication of biodegradable polymeric microspheres with controllable porous structure for cell delivery. *Biomed J Sci Tech Res*. 2020;26(5):BJSTR. MS.ID.004429. <https://doi.org/10.2617/bjstr.2020.26.004429>.

110. Kim CM, Park SJ, Kim GM. Applications of PLGA microcarriers prepared using geometrically passive breakup on microfluidic chip. *Int J Precis Eng Man*. 2015;16(12):2545–51. <https://doi.org/10.1007/s12541-015-0326-4>.

111. Song WY, Jin ZY, Huang X, Xi ZH, Luo XS, Cen L. Microfluidic-preparation of PLGA microcarriers with collagen patches for MSCs expansion and osteogenic differentiation. *Eur Polym J*. 2022;170. <https://doi.org/10.1016/j.eurpolymj.2022.111177>.

112. Park JH, Han CM, Lee EJ, Kim HW. Preparation of highly monodispersed porous-channelled poly (caprolactone) microspheres by a microfluidic system. *Mater Lett*. 2016;181:92–8. <https://doi.org/10.1016/j.matlet.2016.06.020>.

113. Han JH, Kim CM, Kim TH, Jin S, Kim GM. Development of In Situ Microfluidic System for Preparation of Controlled Porous Microsphere for Tissue Engineering. *Pharm*. 2022;14(11):2345. <https://doi.org/10.3390/pharmaceutics14112345>.

114. Wagner O, Zieringer M, Duncanson WJ, Weitz DA, Haag R. Perfluoroalkyl-functionalized hyperbranched polyglycerol as pore forming agents and supramolecular hosts in polymer microspheres. *Int J Mol Sci*. 2015;16(9):20183–94. <https://doi.org/10.3390/ijms160920183>.

115. Duncanson WJ, Zieringer M, Wagner O, Wilking JN, Abbspourrad A, Haag R, et al. Microfluidic synthesis of monodisperse porous microspheres with size-tunable pores. *Soft Matter*. 2012;8(41):10636–40. <https://doi.org/10.1039/c2sm25694k>.

116. Luo SC, Wang QQ, Li MT, Xu PY, Wang YC, Wang Y, et al. Engineered liver-derived decellularized extracellular matrix-based three-dimensional tumor constructs for enhanced drug screening efficiency. *Regen Biomater*. 2024;11. <https://doi.org/10.1093/rb/rbae113>.

117. Zieringer M, Garcia-Bernabé A, Costisella B, Glatz H, Bannwarth W, Haag R. Size-tunable micron-bubbles based on fluorous-fluorous interactions of perfluorinated dendritic polyglycerols. *ChemPhysChem*. 2010;11(12):2617–22. <https://doi.org/10.1002/cphc.201000157>.

118. Mou CL, Ju XJ, Zhang L, Xie R, Wang W, Deng NN, et al. Monodisperse and fast-responsive poly(isopropylacrylamide) microgels with open-celled porous structure. *Langmuir*. 2014;30(5):1455–64. <https://doi.org/10.1021/la4046379>.

119. Huang RH, Zhang H, Lv LL, Zhang YQ, Li J, Wang H, et al. Design of gefitinib-loaded PLGA microspheres via microfluidics for lung cancer. *Mater Design*. 2023;234. <https://doi.org/10.1016/j.matdes.2023.112336>.

120. Choi S, Kang BS, Choi G, Kang MS, Park H, Kim N, et al. Multichamber PLGA Microparticles with Enhanced Monodispersity and Encapsulation Efficiency Fabricated by a Batch-Microfluidic Hybrid Approach. *Adv Nanobiomed Res*. 2023;3(10). <https://doi.org/10.1002/anbr.202300044>.

121. Visaveliya N, Köhler JM. Simultaneous size and color tuning of polymer microparticles in a single-step microfluidic synthesis: particles for fluorescence labeling. *J Mater Chem C*. 2015;3(4):844–53. <https://doi.org/10.1039/c4tc01809e>.

122. Lababidi N, Sigal V, Koenneke A, Schwarzkopf K, Manz A, Schneider M. Microfluidics as tool to prepare size-tunable PLGA nanoparticles with high curcumin encapsulation for efficient mucus penetration. *Beilstein J Nanotech*. 2019;10:2280–93. <https://doi.org/10.3762/bjnano.10.220>.

123. Friess F, Lendlein A, Wischke C. Size control of shape switchable micronetworks by fast two-step microfluidic templating. *J Mater Res*. 2021;36(16):3248–57. <https://doi.org/10.1557/s43578-021-00295-2>.

124. Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. *J Am Chem Soc*. 2005;127(22):8058–63. <https://doi.org/10.1021/ja042494w>.

125. Yeh SI, Fu CY, Sung CY, Kao SC. Microfluidic fabrication of porous PLGA microspheres without pre-emulsification step. *Microfluid Nanofluid*. 2023;27(7):47. <https://doi.org/10.1007/s10404-023-02656-1>.

126. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. *Int J Pharm*. 2008;364(2):298–327. <https://doi.org/10.1016/j.ijpharm.2008.04.042>.

127. Ekanem EE, Nabavi SA, Vladisavljevic GT, Gu S. Structured Biodegradable Polymeric Microparticles for Drug Delivery Produced Using Flow Focusing Glass Microfluidic Devices. *ACS Appl Mater Inter*. 2015;7(41):23132–43. <https://doi.org/10.1021/acsmami.5b06943>.

128. Gharse S, Fiegel J. Large porous hollow particles: lightweight champions of pulmonary drug delivery. *Curr Pharm Des*.

2016;22(17):2463–9. <https://doi.org/10.2174/1381612822666160128145356>.

129. Zhang H, Hao LZ, Pan JA, Gao Q, Zhang JF, Kankala RK, *et al.* Microfluidic fabrication of inhalable large porous microspheres loaded with H₂S-releasing aspirin derivative for pulmonary arterial hypertension therapy. *J Control Release*. 2021;329:286–98. <https://doi.org/10.1016/j.jconrel.2020.11.060>.

130. Wang Y, Kankala RK, Cai YY, Tang HX, Zhu K, Zhang JT, *et al.* Minimally invasive co-injection of modular micro-muscular and micro-vascular tissues improves *in situ* skeletal muscle regeneration. *Biomaterials*. 2021;277. <https://doi.org/10.1016/j.biomaterials.2021.121072>.

131. Wang Y, Kankala RK, Zhang JT, Hao LZ, Zhu K, Wang SB, *et al.* Modeling Endothelialized Hepatic Tumor Microtissues for Drug Screening. *Adv Sci*. 2020;7(21). <https://doi.org/10.1002/advs.202002002>.

132. Aboelela SS, Ibrahim M, Badruddoza AM, Tran V, Ferri JK, Roper TD. Encapsulation of a highly hydrophilic drug in polymeric particles: A comparative study of batch and microfluidic processes. *Int J Pharmaceut*. 2021;606. <https://doi.org/10.1016/j.ijpharm.2021.120906>.

133. Yonet-Tanyeri N, Parker RS, Falo LJR, Little SR. Investigation of the Impact of Manufacturing Methods on Protein-Based Long-Acting Injectable Formulations: A Comparative Assessment for Microfluidics vs. Conventional Methods. *Pharmaceutics*. 2024;16(10). <https://doi.org/10.3390/pharmaceutics16101264>.

134. Wu JY, Yadavali S, Lee D, Issadore DA. Scaling up the throughput of microfluidic droplet-based materials synthesis: A review of recent progress and outlook. *Appl Phys Rev*. 2021;8(3). <https://doi.org/10.1063/5.0049897>.

135. Ofner A, Moore DG, Rühs PA, Schwendimann P, Eggersdorfer M, Amstad E, *et al.* High-Throughput Step Emulsification for the Production of Functional Materials Using a Glass Microfluidic Device. *Macromol Chem Phys*. 2017;218(2). <https://doi.org/10.1002/macp.201600472>.

136. Seiffert S, Friess F, Lendlein A, Wischke C. Faster droplet production by delayed surfactant-addition in two-phase microfluidics to form thermo-sensitive microgels. *J Colloid Interf Sci*. 2015;452:38–42. <https://doi.org/10.1016/j.jcis.2015.04.017>.

137. Ma YQ, Sun XY, Cai ZW, Tu MJ, Wang YG, Ouyang Q, *et al.* Transformation gap from research findings to large-scale commercialized products in microfluidic field. *Mater Today Bio*. 2024;29. <https://doi.org/10.1016/j.mtbio.2024.101373>.

138. Cong HJ, Zhang N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. *Biomicrofluidics*. 2022;16(2). <https://doi.org/10.1063/5.0079045>.

139. Ma G. Membrane Emulsification process: principle and model. In: Novel membrane emulsification: principles, preparation, processes, and bioapplications. Wiley-VCH, 2023; 1–26. <https://doi.org/10.1002/9783527830855.ch1>

140. Mugabi J, Tamaru S, Naohiro K, Lemus-Mondaca R, Igura N, Shimoda M. Preparation of highly monodispersed emulsions by swirl flow membrane emulsification using Shirasu porous glass (SPG) membranes - A comparative study with cross-flow membrane emulsification. *Chem Eng Process*. 2019;145. <https://doi.org/10.1016/j.cep.2019.107677>.

141. Shimoda M, Miyamae H, Nishiyama K, Yuasa T, Noma S, Igura N. Swirl-Flow Membrane Emulsification for High Throughput of Dispersed Phase Flux through Shirasu Porous Glass (SPG) Membrane. *J Chem Eng Jpn*. 2011;44(1):1–6. <https://doi.org/10.1252/jcej.10we156>.

142. Shin JM, Kim MP, Yang H, Ku KH, Jang SG, Youm KH, *et al.* Monodisperse nanostructured spheres of block copolymers and nanoparticles via cross-flow membrane emulsification. *Chem Mater*. 2015;27(18):6314–21. <https://doi.org/10.1021/acs.chemmater.5b02020>.

143. Warne N, Ruesch M, Siwik P, Mensah P, Ludwig J, Hripcak M, *et al.* Delivering 3 billion doses of Comirnaty in 2021. *Nat Biotechnol*. 2023;41(2):183–8. <https://doi.org/10.1038/s41587-022-01643-1>.

144. Otte A, Park K. Transitioning from a lab-scale PLGA microparticle formulation to pilot-scale manufacturing. *J Control Release*. 2022;348:841–8. <https://doi.org/10.1016/j.jconrel.2022.06.036>.

145. Alvarez I, Gutiérrez C, Rodríguez JF, de Lucas A, García MT. Production of biodegradable PLGA foams processed with high pressure CO₂. *J Supercrit Fluid*. 2020;164:104886. <https://doi.org/10.1016/j.supflu.2020.104886>.

146. Behl M, Razzaq MY, Mazurek-Budzynska M, Lendlein A. Polyetheretheretherthane Based Porous Scaffolds with Tailorable Architectures by Supercritical CO₂ Foaming. *Mrs Adv*. 2020;5(45):2317–30. <https://doi.org/10.1557/adv.2020.345>.

147. Gangapurwala G, Vollrath A, De San Luis A, Schubert US. PLA/PLGA-based drug delivery systems produced with supercritical CO₂-a green future for particle formulation? *Pharm*. 2020;12(11):1118. <https://doi.org/10.3390/pharmaceutics12111118>.

148. Soh SH, Lee LY. Microencapsulation and Nanoencapsulation Using Supercritical Fluid (SCF) Techniques. *Pharm*. 2019;11(1). <https://doi.org/10.3390/pharmaceutics11010021>.

149. Koushik K, Kompella UB. Preparation of large porous desloratadine-PLGA microparticles with reduced residual solvent and cellular uptake using a supercritical carbon dioxide process. *Pharm Res-Dordr*. 2004;21(3):524–35. <https://doi.org/10.1023/B:PHAM.0000019308.25479.a4>.

150. Kamali H, Atamanesh M, Kaffash E, Mohammadpour F, Khodaverdi E, Hadizadeh F. Elimination of residual solvent from PLGA microspheres containing risperidone using supercritical carbon dioxide. *J Drug Deliv Sci Tec*. 2020;57:101702. <https://doi.org/10.1016/j.jddst.2020.101702>.

151. Yandrapu SK, Upadhyay AK, Petrasch JM, Kompella UB. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. *Mol Pharm*. 2013;10(12):4676–86. <https://doi.org/10.1021/mp400487f>.

152. Chen AZ, Tang N, Wang SB, Kang YQ, Song HF. Insulin-loaded poly-L-lactide porous microspheres prepared in supercritical CO₂ for pulmonary drug delivery. *J Supercrit Fluids*. 2015;101:117–23. <https://doi.org/10.1016/j.supflu.2015.03.010>.

153. Chen AZ, Zhao C, Wang SB, Liu YG, Lin DL. Generation of porous poly-L-lactide microspheres by emulsion-combined precipitation with a compressed CO₂ antisolvent process. *J Mater Chem B*. 2013;1(23):2967–75. <https://doi.org/10.1039/c3tb20468e>.

154. de Diego YP, Pellikaan HC, Wubbolds FE, Witkamp GJ, Janssens PJ. Operating regimes and mechanism of particle formation during the precipitation of polymers using the PCA process. *J Supercrit Fluid*. 2005;35(2):147–56. <https://doi.org/10.1016/j.supflu.2004.12.012>.

155. Reverchon E, De Marco I, Adami R, Caputo G. Expanded micro-particles by supercritical antisolvent precipitation: interpretation of results. *J Supercrit Fluids*. 2008;44(1):98–108. <https://doi.org/10.1016/j.supflu.2007.08.008>.

156. Lin XF, Kankala RK, Tang N, Xu PY, Hao LZ, Yang DY, *et al.* Supercritical Fluid-Assisted Porous Microspheres for Efficient Delivery of Insulin and Inhalation Therapy of Diabetes. *Adv Healthc Mater*. 2019;8(12). <https://doi.org/10.1002/adhm.201800910>.

157. Kamjam M, Ngamprasertsith S, Sawangkeaw R, Charoenchaitrakool M, Privat R, Jaubert JN, *et al.* The Great Versatility of Supercritical Fluids in Industrial Processes: A Focus

on Chemical, Agri-Food and Energy Applications. *Process*. 2024;12(11). <https://doi.org/10.3390/pr12112402>.

158. Bagher H, Notej B, Shahsavari S, Hashemipour H. Supercritical carbon dioxide utilization in drug delivery: Experimental study and modeling of paracetamol solubility. *Eur J Pharm Sci*. 2022;177. <https://doi.org/10.1016/j.ejps.2022.106273>.

159. Rezaei T, Nazarpour V, Shahini N, Bahmani S, Shahkar A, Abdihaji M, *et al.* A universal methodology for reliable predicting the non-steroidal anti-inflammatory drug solubility in supercritical carbon dioxide. *Sci Rep-Uk*. 2022;12(1). <https://doi.org/10.1038/s41598-022-04942-4>.

160. Léval G, Albarelli JQ, Santos DT, Meireles MAA, Martín A, Rodríguez-Rojo S, *et al.* Quercetin loaded particles production by means of supercritical fluid extraction of emulsions: process scale-up study and thermo-economic evaluation. *Food Bioprod Process*. 2017;103:27–38. <https://doi.org/10.1016/j.fbp.2017.02.008>.

161. Knez Z, Markocic E, Leitgeb M, Primozic M, Hrncic MK, Skerget M. Industrial applications of supercritical fluids: A review. *Energy*. 2014;77:235–43. <https://doi.org/10.1016/j.energy.2014.07.044>.

162. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JH, Pernicone N, *et al.* Recommendations for the Characterization of Porous Solids. *Pure Appl Chem*. 1994;66(8):1739–58. <https://doi.org/10.1351/pac199466081739>.

163. Anovitz LM, Cole DR. Characterization and analysis of porosity and pore structures. *Rev Mineral Geochem*. 2015;80(1):61–164. <https://doi.org/10.2138/rmg.2015.80.04>.

164. Markl D, Strobel A, Schlossnikl R, Botker J, Bawuah P, Ridgway C, *et al.* Characterisation of pore structures of pharmaceutical tablets: A review. *Int J Pharmaceut*. 2018;538(1–2):188–214. <https://doi.org/10.1016/j.ijpharm.2018.01.017>.

165. Lee Y, Sah H. Simple emulsion technique as an innovative template for preparation of porous, spongelike poly(lactide-co-glycolide) microspheres with pore-closing capability. *J Mater Sci*. 2016;51(13):6257–74. <https://doi.org/10.1007/s10853-016-9923-6>.

166. Lefol LA, Sodano A, Bawuah P, Zeitler JA, Verin J, Danede F, *et al.* Release mechanisms of PLGA microparticles prepared using a microfluidics device or a beaker. *Int J Pharm: X*. 2025;10:100366. <https://doi.org/10.1016/j.ijpx.2025.100366>.

167. Clark AG, Wang RF, Qin YR, Wang Y, Zhu AD, Lomeo J, *et al.* Assessing microstructural critical quality attributes in PLGA microspheres by FIB-SEM analytics. *J Control Release*. 2022;349:580–91. <https://doi.org/10.1016/j.jconrel.2022.06.066>.

168. Vay K, Scheler S, Friess W. New insights into the pore structure of poly(D,L-lactide-co-glycolide) microspheres. *Int J Pharmaceut*. 2010;402(1–2):20–6. <https://doi.org/10.1016/j.ijpharm.2010.09.014>.

169. Pestalova A, Gajdziok J. Modern trends in the formulation of microparticles for lung delivery using porogens: methods, principles and examples. *Pharm Dev Technol*. 2024;29(5):504–16. <https://doi.org/10.1080/10837450.2024.2350530>.

170. Sediq AS, Waasdorp SKD, Nejadnik MR, van Beers MMC, Meulenaar J, Verrijk R, *et al.* Determination of the porosity of PLGA microparticles by tracking their sedimentation velocity using a flow imaging microscope (FlowCAM). *Pharm Res*. 2017;34(5):1104–14. <https://doi.org/10.1007/s11095-017-2120-8>.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.