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Abstract

Microparticles have been established as injectable drug carriers designed to enable a long-term release of the encapsulated
active pharmaceutical ingredients (API). To regulate this release, the diffusion barrier provided by the matrix material — typi-
cally hydrolytically degradable polyesters — must be controlled through precise levels of matrix porosity. This mini-review
presents processing methods that are alternatives to the most common batch emulsification techniques for the manufacturing
of porous polymer particles. A focus is placed on mechanistically describing the particle and pore formation in droplet-based
microfluidics, electrospraying, and by supercritical fluids, critically discussing their opportunities and challenges. Ultimately,
this review assesses the potential of these techniques in advancing the engineering of porous polymeric carrier systems in

the light of scale-up and continuous production.
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Introduction

Microparticulate drug carriers are an established concept in
the development of long-acting drug products. This technol-
ogy continues to be highly interesting for creating new pro-
spective treatment options and clinical applications [1-3].
Since its implementation, the class of microparticulate drug
carrier products is dominated by hydrolytically degradable
polyesters as matrix materials such as polylactide (PLA),
poly(lactide-co-glycolide) (PLGA), or poly(e-caprolactone)
(PCL). While other alternative materials may also be rel-
evant for drug delivery [4-6], it is worthwhile to improve,
e.g., PLGA-based particulate drug carriers to reach optimal
release rates [7-9].

From the perspective of formulation development, the
characteristics of each fabrication method in combination
with the tunable range of formulation parameters/process
conditions can result in different morphological features of
microparticles. In particular, the modification of their ultras-
tructure, namely the particle porosity by suitable fabrication
strategies can have a major impact on their performance as
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drug carriers. These structures can be critical quality attrib-
utes (CQAs) given their potential contribution in regulating
drug release kinetics [10—12].

The field of porous particle preparation from polyester
materials is dominated by batch emulsification processes
[10, 13], with spray drying techniques also playing a relevant
role [14, 15]. However, advances in the field of fabrication
methods led to less common techniques like droplet-based
microfluidics, electrospraying, or the treatment with super-
critical fluids, which gained increasing attention in the recent
decade [16, 17]. In particular, such alternative techniques
can be of interest, specifically if they enable continuous
manufacturing, which could contribute to cost reduction,
higher product safety, and easier quality controls [18, 19].
Although parenteral controlled release products are not
used at quantities like peroral dosage forms, which are cur-
rently focused on in pharmaceutical factories for transition
to continuous manufacturing, evaluating the applicability
of continuous methods can also be relevant for particulate
carriers for various reasons. For instance, product quality
may be improved if the production method can be combined
with a continuous monitoring (and control) of, e.g., parti-
cle diameters as an important CQA. Furthermore, overlying
processes during particle formation (e.g., solvent/antisolvent
flux, polymer precipitation, osmotic processes) and pore
creation (e.g., by porogen leakage or osmotic processes)
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motivate the evaluation of such type of strategies, which
may timely separate the particle templating and the creation/
fine-tuning of porosity in independent process steps.

Interestingly, despite the relevance of the degree of poros-
ity and of pore structures for the release function of particu-
late carriers, this topic is not systematically addressed in
research studies and only partially covered in the standard
analysis of particulate drug carriers.

In this review, we will focus on the fabrication of porous
drug carrier systems — mainly made of synthetic polyesters
like PLGA, PLA, and PCL - by using alternative manufac-
turing methods like electrospraying, droplet-based micro-
fluidics, and supercritical fluid treatment and give a short
overview on methods characterizing particle porosity. We
will briefly describe the principles of these methods, provide
examples of their application to generate porous particles,
and critically evaluate the challenges and opportunities of
the methods in terms of productivity and reproducibility
compared to conventional methods. This review should
also contribute to drawing more attention to the inclusion
of quantitative analysis of particle porosity in the portfolio
of standard characterizations reported in scientific studies on
particulate drug carriers made from hydrophobic polymers.

Principles of Pore Creation and Pore
Characteristics

Pores are products of phase separation processes, i.e., defects
in the bulk polymer matrix. These defects are typically
formed on the basis of statistical processes (which means
by chance), e.g., when water enters the (organic) polymer
phase in emulsion processes.

Pores in polymeric microparticles can have high struc-
tural diversity, for instance, in terms of diameters, aspect
ratios (width/length), or tortuosity. Pores can be open, i.e.,
directly accessible from the particle surface, or closed,
meaning that the void can only be accessed by diffusion
processes through the bulk. These differences in ultrastruc-
ture can have a significant effect on the general occurrence
and kinetics of exchange processes. In particular, open pores
can enable the entrance of the dispersion medium into a par-
ticle, at least if the material is sufficiently wettable, thereby
supporting mass transport of substances into and out of the
particle bulk through their inner surfaces via direct contact
with the dispersion medium.

Pores in polymer microparticles are only seldom of
homogeneous sizes, with few exceptions. Therefore, one
should be aware that reported pore sizes typically would
be a mean value that is representative of a certain pore size
distribution. However, there is no established criterion or
threshold to characterize this size distribution in the field
of injectable polymeric drug carriers. Evidently, along with
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other structural parameters as well as drug solubility and
diffusivity in the (potentially hydrated) polymer matrix, pore
size distributions will affect mass transportation. In princi-
ple, two particle batches with similar average pore sizes, of
which one exhibits a mixture of large and small pores lead-
ing to the same numeric value of average pore sizes, may
behave differently in terms of mass transfer, as relevant for
drug release, polymer degradation rates, as well as mechani-
cal stability of particles during handling. The coefficient of
variation (CV), which is occasionally used to describe the
width of particle/droplet size distribution for those tech-
niques leading to uniform particle sizes like droplet-based
microfluidics [20], would be an appropriate measure also
for pore size distributions. As a threshold, a CV >40% is
here suggested to quantitatively characterize broad pore size
distributions. Still, as CV values of pore size distributions
are typically not reported, any statement on broad or narrow
size distributions in this review will be based on a qualitative
assessment in the respective references or a visual assess-
ment of published images by the authors.

Porogens

Pore formation is, in most cases, supported by the use of
porogens. These pore-forming substances typically support
phase separation processes in nascent particles. Porogens
can subsequently, at least to a major extent, be removed
from the particle matrix. For instance, some porogens can
be extracted by certain solvents after particle solidification
or can transition to a gaseous state (evaporation), leaving
behind voids in the respective material [21]. According
to their mechanisms of action, porogens can be classified
into different groups, like gas-forming, osmotic, or leach-
ing/extractable agents [10]. Examples of substances used
as porogens and their relative contribution to the scientific
literature are summarized in Fig. 1.

In principle, most porogens are compatible with differ-
ent matrix materials from which porous particles should be
produced. Porogens can also be compatible with several
fabrication methods, often allowing to enhance the overall
porosity and to tailor the pore sizes of polymeric scaffolds,
including microparticles, in a controlled fashion [22-24].
However, some porogens, for instance those being based on
osmosis, will only work with particle production techniques
that at some point involve phase boundaries to an aqueous
phase. It should not be forgotten that there can be limitations
in the degree of porosity of polymer microparticles and thus
in the use of porogens. For instance, overly high porosity
in combination with, e.g., brittleness of very thin polymer
struts in the scaffold can result in instability and collapse/
fracturing of the particles.
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Fig.1 Scheme of different classes of porogens (blue: osmotic; grey: gas-forming; yellow: leachables). Examples of commonly used substances
within each class are shown in honeycomb cells, while the size of the background colour reflects their employment in literature.

Osmotic Agents

Osmotic active substances are the most prominent and
widely used class of pore-forming agents. Various sub-
stances, for example different salts and sugars (NaCl, CaCl,,
PBS bulffer, sucrose) that are low in costs, can act as osmotic
porogens either by being dissolved in an encapsulated aque-
ous phase or by being suspended in the organic polymer
phase during emulsion-based particle preparation.

The mechanisms of pore formation by osmotic agents
is the following: During particle preparation by emulsion
techniques, the organic solvent of the polymer solution is
gradually extracted to the external medium. At the same
time, osmotic agents promote the influx of water from the
aqueous continuous phase into the organic polymer phase.
This solvent exchange may interfere in various ways with the
particle solidification, depending on the respective selected
combinations of material and solvent properties, phase vol-
umes, etc., which may promote a faster or slower polymer
precipitation at phase boundaries. Though in most cases a
major shrinkage of solidifying particles is observed after
some time [25, 26] (most protocols keep stirring for 2-12 h),
a swelling of nascent particles can be expected immediately
after droplet formation, if the matrix material can absorb
water. Furthermore, the incorporation of water in the semi-
solidified polymer particles may cause pore formation/pore

opening at the particle surfaces during the final drying step,
which is typically conducted by freeze drying [10].

Osmotically active agents may contribute to pore forma-
tion also via mixed effects. For instance, they may operate
through osmosis plus gas formation (carbonates, hydrogen
carbonates) or through osmosis plus leaching when being
flushed out by water as very small particles from the nas-
cent (larger) polymer microparticles [27, 28]. As we will
discuss in Sect."Opportunities and Challenges of Alternative
Methods to Prepare Porous Particles", where manufacturing
methods are described, osmotic porogens have been used in
microfluidic particle production. Although mass transport
mediated via osmotic effects can be sensitive to process
scale, the use of osmotically active porogens also appears
suited for continuous processing in principle. This is particu-
larly true where scale-up does not proceed in the classical
fashion through larger vessels, but uses the numbering-up
approach as applicable for microfluidics.

Gas-forming Agents

Those agents are conceptually elegant as they should be
completely and autonomously removed from the product.
Examples of regularly employed substances are ammonium
bicarbonate, other bicarbonate salts (sodium and magnesium
bicarbonate), and hydrogen peroxide [29, 30] (Fig. 1).
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The underlying principle of gas-forming agents is either
their physical transition to a gaseous state or their participa-
tion in a chemical reaction, generating gas as one of the reac-
tion products. Obviously, this transition must be inducible
at the process conditions of particle preparation, which may
involve shear stress, heat development, shifts of pH-values,
or hydration of the porogen. In this way, volatile gases like
carbon dioxide, ammonia (e.g. in case of ammonium bicar-
bonate), oxygen, or hydrogen (e.g. from hydrogen peroxide)
may be formed. The individual gas molecules accumulate in
small bubbles in the polymer matrix and template pores in
the material while evaporating.

Besides the use of gas-forming porogens in emul-
sion processes, the expansion of pressurised gas from its
supercritical state is another principle of pore creation via
gas bubbles. This principle is implemented in processes
employing scCO,, as will be discussed in more detail in
Sect."Opportunities and Challenges of Alternative Methods
to Prepare Porous Particles".

Interestingly, porogens of this class have been used in
different studies in a remarkably broad concentration range
covering, e.g., 1-15% (w/v) in the w, respective phases
[31, 32]. When using relatively aggressive substances, such
as oxidizing agents or strong bases, potential detrimental
effects on the stability of the matrix polymer or the pay-
load should be tested. In terms of continuous manufac-
turing, examples of producing porous particles with gas-
forming porogens in microfluidic systems are also available
(Sect."Opportunities and Challenges of Alternative Meth-
ods to Prepare Porous Particles"). However, at larger scales
and with higher porogen concentrations, the amount of gas
released will be high, which can be problematic in closed
channels. Upscaling should therefore be carefully evaluated
and tested to avoid disrupting the manufacturing process.
For instance, in the worst cases, high gas concentrations may
cause inhomogeneities in the batch product. Furthermore, air
bubbles captured in closed systems and pressure fluctua-
tion in microfluidic systems due to moving air pockets may
interfere with production processes.

Leaching Agents

In this class of porogens, numerous materials are reported
ranging from lipophilic oils to polymeric substances [10].
Depending on the used polymer matrix, extractable porogens
may either be miscible with this material or may be phase
separated as solids, fluids, or gels.

The fundamental principle of using extractable porogens
is based on solvents, which dissolve the porogen, but not
the matrix material of the particles. Through this principle,
at some point in the production process, porogens initially
embedded in matrix material are removed, leaving pores
behind [33, 34]. However, the extraction of these substances
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sometimes involves harsh extraction procedures, such as
organic solvents for lipophilic porogens. More hydrophilic
macromolecular porogens like gelatin can typically be
removed within a few hours using a warm water bath [10,
34, 35].

There are different strategies for implementing extrac-
tion/washing steps in continuous processes, some of which
are further discussed in Sect."Opportunities and Challenges
of Alternative Methods to Prepare Porous Particles". For
example, particles incorporating extractable porogens may
be exposed to solvents in extraction baths with a certain par-
ticle residence time as defined, e.g. by sedimentation speeds.
The prepared particles may also be introduced in special
counterflow channels that can be coupled, e.g., to microflu-
idic systems, in which the extractant is brought in contact
with the particle dispersion. Further useful techniques to
realize a separation of solids (particles) from fluids (continu-
ous phase; extraction medium) may be based on centrifuga-
tion, as preparative continuous flow centrifugation is well
established for other use cases in the pharmaceutical sector
and life sciences [36-38]. Accordingly, these methods may
be evaluated to extract leachable agents and to provide a
control of the duration of incubation in washing solutions.

Self-assembly of Materials

Self-assembly is a term used to describe supramolecular
behaviour of substances that can organise themselves into
certain geometric shapes through intermolecular interactions
[39]. Prominent examples of these processes can be seen by
the formation of micelles or colloids [40]. In general, self-
assembly processes are often observed for surfactants and
for block copolymers (BCP), which contain both hydrophilic
and lipophilic block segments [41].

The concept of cubosomes — a term often used in the field
of lipid-based particles with a defined porous structure [42,
43] — has recently been expanded to the field of polymers.
Polymer cubosomes as highly porous particles can be con-
structed via self-assembly from block copolymers, such as
those with an asymmetric diblock structure and a dominat-
ing hydrophobic nature. These polymers form cubic-shaped
assemblies during micro-phase separation with water-filled
voids between the more lipophilic segments. They further
transform into small solid microparticles (often less than
5 um) or nanoparticles with numerous homogeneously sized
pores, typically in the size range of mesopores. The asym-
metric molecular structure of the block copolymers must
involve a larger lipophilic segment (often hydrophobic frac-
tion>90%) to mediate the assembly [44].

The formation of polymer cubosomes often involves sol-
vent exchange processes, such as titration of the polymer
solution with a non-solvent (nanoprecipitation) or solvent-
diffusion-evaporation methods, while other methods also
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exist [45]. For instance, the predominately hydrophobic
block copolymer can be dissolved in a suitable hydrophobic
solvent (e.g. dioxane/DMF mixtures), followed by the addi-
tion of a good solvent for the hydrophilic segments (e.g.
water) to induce nanoprecipitation [46]. The produced pore
system is composed of two simultaneously existing networks
of channels, one being open to the surface and a second one
laying in between the other network and being not accessible
from the surface, at least initially.

As this class of particles has only recently been devel-
oped, the current state of investigation is still in the process
of fundamentally understanding the conditions of controlled
self-assembly, often using polymers that are more relevant
for technical settings rather than the pharmaceutical sec-
tor. However, block copolymers based on PLA and other
degradable materials with potential applications as pharma-
ceutical matrix systems have been reported, suggesting their
general applicability in the field of pharmaceutics and con-
tinuous drug release [47]. Importantly, their highly defined
structures with high porosity and very narrow pore size dis-
tributions make them interesting as standardisable carrier
systems, which, hypothetically, also includes the possibility
of post-modifications like coatings to tailor release rates.

Opportunities and Challenges of Alternative
Methods to Prepare Porous Particles

Electrospraying

Electrospraying allows the dispersion of a liquid into fine
droplets by electrohydrodynamic atomization. The setup
consists of a high voltage power supply, a syringe pump,
a conductive nozzle and a grounded collector. For parti-
cle production, polymer solutions are pumped through the
nozzle and, in the applied electric field, form a fluid cone
at the tip of the nozzle. Charged droplets are ejected from
this cone due to interfacial instabilities. The droplets sub-
sequently shrink and solidify by solvent evaporation dur-
ing their passage in the gas phase towards the collector [17,
48]. Electrospraying can produce particles with a narrow
size distribution, homogenous surface characteristics, and
tunable particle properties like porosity depending on the
fine-tuning of process conditions [49, 50]. Various polymers
such as PCL [50-53], PLGA [54-57], PLA [58, 59] PMMA
[60], Eudragit® [61], or biomacromolecules like gelatin and
chitosan [62, 63] have been processed to porous microparti-
cles by electrospraying.

In order to obtain porous particles by this technique,
typically low polymer concentrations/low fluid viscosities
are required. Relevant formulation and process parameters,
which can affect the particle morphology, include the solvent
type [64—67], the polymer or drug concentration [52, 55,

57, 68], the presence of low concentrations of pore form-
ing agents such as ammonium bicarbonate [54, 59], the
flow rates for feeding the polymer solution to the nozzle
[62, 69], the applied voltages [62, 70], the collector dis-
tance [69, 71], and in many cases environmental conditions
such as temperature and humidity [60, 72]. Numerous stud-
ies have evaluated changes in different process parameters
(e.g., solvent types, polymer concentrations, flow rates, volt-
ages, etc.) and screened the resulting particle properties to
set parameter values for the desired particle morphology [52,
54, 58, 62, 64, 65, 68, 69]. Particularly the type of solvents
is a crucial factor for the particle morphology and porosity.
Mixtures of solvents and non-solvents (for the given poly-
meric material) were applied at different ratios to increase
the porosity of PCL [53] and PMMA [60] particles. For
instance, dichloromethane (DCM), a solvent for PCL, was
blended with ethanol, a non-solvent for PCL, resulting in
a shift of the pore size distribution toward larger average
diameters as the ethanol content increased. Interestingly, at
the highest ethanol concentration, a sharp decrease in pore
size was observed, which was interpreted as the expulsion
of ethanol from the nascent particles, thereby limiting its
contribution to pore formation [53]. For the preparation of
porous PMMA particles by electrospraying, again DCM was
used as a solvent in combination with hexanol, ethanol, and
propanediol as non-solvents, tested at varying humidity con-
ditions [60]. These methods are believed to operate through
a non-solvent induced phase separation (NIPS), wherein
non-solvent droplets form during particle hardening that
eventually cluster to a network of connected pores. While the
use of hexanol resulted in spherical porous particles, ethanol
and propanediol led to less spherical and partially hollow
particles, suggesting that the more rapid phase separation
induced by these more hydrophilic alcohols caused surface
perturbations in the nascent particles [60]. With increasing
humidity of the air environment in the spraying chamber, the
pore diameters increased for samples containing hexanol in
the solvent mixture.

Electrosprayed particles can also be collected in fluid
baths to induce particle hardening by NIPS. As illustrated
for PCL particles using ethanol, methanol, butanol, or
tetraethyl orthosilicate as collection medium, the different
hardening fluids led to strongly different pore morpholo-
gies (Fig. 2) [50]. Other interesting parameters include the
polymer concentration and the additional usage of porogens.

The particle production by electrospraying process is lim-
ited to certain (typically low) polymer concentrations, while
fibers instead of particles may be formed at higher polymer
concentrations (electrospinning rather than electrospraying)
[73, 74]. However, within the limited concentration range
suitable for electrospraying, higher polymer concentrations
were shown to produce particles with fewer and smaller sur-
face pores [75]. In some cases, porogens were added to the
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preparation process and SEM pictures of obtained samples. Non-solvents: (a’) methanol, (b’) ethanol, (¢’) 1,2-propanediol, (d’) n-butanol, (e’)
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polymer solution to promote pore formation by an additional
mechanism [54, 59]; however, this does not appear to be a
highly significant parameter in the fabrication of porous par-
ticles via electrospraying. Further effects, such as different
electrospraying setups and other experimental parameters,
have been reviewed in more detail recently [76, 77].
Different needle geometries can be particularly interest-
ing for core—shell and Janus particles. An example are co-
axial needle setups, which consist of a capillary feeding a
solution of the core face that is placed inside another capil-
lary carrying the outer (shell) solution. The flow rates (i.e.,
ratios) of both fluids can be independently tuned through
the respective channels and eventually meet at the tip of the
nozzle to produce core—shell particles [78—80]. In contrast,
non-concentric needle setups with parallel ports seem to
work best for producing Janus microparticles [81, 82]. In
principle, these types of sub-structured particles may also
be tuned to show distinct levels of porosity by the measures
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introduced above, such as varying solvent types [65] or col-
lection media [83].

All the studies mentioned above utilize electrospraying
in small-scale setups and were conducted primarily in aca-
demic research settings. Under these conditions, the produc-
tivity of electrospraying is considered very low (milligrams
per hour), as it typically operates with single nozzles and
requires diluted polymer solutions. Electrospraying can be
rated as suitable for lab-scale manufacturing and particle
engineering processes, as it produces homogenous particle
size distributions and morphologies, and, in some cases,
eliminates the need for additional drying steps. However,
points of concern for pharmaceutical production processes
include the limited throughput of this technique, coupled
with the large volume of organic solvents required relative
to the processed polymer mass (due to the use of diluted
polymer solutions). Nevertheless, in recent years, there
has been technological progress in the production scale of
electrospraying and electrospinning devices, along with an
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increase in the number of suppliers for these machines [84].
Enlarged setups such as multiple nozzles running simultane-
ously have already been used to increase the throughput of
particle production [85-88] (Fig. 3).

The productivity can also be increased by pressurized
gas-assisted electrospraying (EAPG), a process combining
the pneumatic spraying of a polymer solution with the prin-
ciple of particle drying in a high-voltage field. This process
apparently can lead to a higher mass throughput than con-
ventional electrospraying set-ups (up to 1 kg/h) [89] and
has also been applied to prepare particles for drug delivery
[90, 91]. Other milestones on the path to industrial process-
ing in the pharmaceutical sector include the development
of the first pilot-scale processes, followed by GMP-certi-
fied and agency-approved manufacturing plants. Bioinicia
from Spain, which was the first company that achieved this
milestone for nanofibers (electrospinning) to the best of
our knowledge, is also pushing boundaries for large-scale
electrospraying by having opened a GMP-certified EAPG
particle plant in 2023. Apparently, they use multi-needle
setups (up to 5000 needles) for very high throughput and,
if needed, also field deflectors to prevent jet interference.
Other companies, such as Inovenso or Elmarco, also offer
platforms and devices for pilot- and industrial-scale produc-
tion of fibers and particles.

Overall, as the upscaling of the electrospraying processes
for specific pharmaceutical use-cases is not reported in liter-
ature to date, it can be concluded that there are technological
challenges and/or inefficiencies compared to competing pro-
duction technologies. Although electrospraying offers flexi-
bility in the manufacturing of different particle types, such as
by using different needle setups [92], other established phar-
maceutical production processes for particle engineering,
such as spray-drying, are well known and offer much higher
throughput rates. However, the sister technology of elec-
trospraying, electrospinning, has long been facing a similar
criticism but is now a step further ahead due to needleless
set-ups, which already allow the upscaled production of fiber

meshes for various applications at industrial scales [84, 93,
94]. The application of such up-scaled electrospinning pro-
cesses has been reported in the pharmaceutical sector, such
as by post-processing of electrospun fibers into other dosage
forms like tablets [95, 96]. Considering the fact, that electro-
spinning and -spraying devices are very similar, with only
slight differences in process and formulation parameters, it
can be expected that technological advancements such as the
construction of multi-needle/needleless setups that pushed
the sister technology, electrospinning, may also promote the
development of higher throughput for electrospraying.

Droplet-based Microfluidics

Microfluidic techniques allow the handling of particularly
small amounts of fluids while providing a precise control of
flow dynamics, which may differ from conditions at the mac-
roscopic scale [97]. Microfluidic devices (chips) typically
include a network of microscale channels made of glass,
silicon, or other polymeric materials. According to the prin-
ciple of this method, droplets can be generated at the junc-
tions of channels where two or more immiscible fluids are
pumped together. The dispersion into the continuous phase
is mediated — depending on the respective channel geom-
etries, arrangements, and flow conditions — by principles
such as lateral shearing, squeezing of threads by the sur-
rounding media, or Laplace pressure gradients [98]. Under
the well-defined flow conditions in microfluidic devices,
highly reproducible events of droplet formation can be
accomplished leading to monodispersity of particles [99].
Since microfluidic techniques enable fine manipulation
of fluid flow, unique water-in-oil-in-water (w,/o/w,) dou-
ble emulsions can be produced that have a controllable
number of w, water droplets dispersed in each droplet of
the dispersed organic phase, which is impossible to realize
by batch emulsification techniques. Microparticles with 1
to 4 bigger pores were prepared using such procedures,
with the number of pores corresponding to the number

10-Needle Stainless Steel
Array - Voltage

HV Power Supply

Stainless Steel

10-Syringe Pump Collection Substrate HV Power Supply

+ Voltage

Fig.3 Enhanced throughput of electrospraying by parallelized multi-needle setups. (A) Photograph of a 10-needle array, attached to high voltage
power supply. (B) Scheme of experimental setup. Adapted and reprinted from [86] with permission from Elsevier.
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of entrapped w, water droplets [100—102]. As the entrap-
ment process can be highly reproducible over long produc-
tion times in stable microfluidic conditions, droplet-based
microfluidics provides a level of control of particle ultra-
structure that can hardly be reached by other techniques.
Beyond the number of encapsulated droplets, particle
porosity can also be regulated by the composition of the
respective phase, i.e., formulation parameters. More spe-
cifically, formulation parameters known from batch emul-
sification techniques (e.g. polymer types and concentra-
tions, emulsifier concentration, additives, emulsion types)
can be transferred to microfluidic systems. For instance,
a decrease of the polymer concentrations in the dispersed
phase and an adjustment of premixed w,/o ratios in double
emulsions can affect the particle porosity [103, 104]. Fur-
thermore, the outcome of the particle morphology depends

strongly on the used matrix material and the applied pro-
cess conditions [105].

The use of porogens, as introduced in Sect."Principles of
Pore Creation and Pore Characteristics"”, is the most effec-
tive route to fabricate porous particles in microfluidic sys-
tems [106, 107]. Different porogens have been employed
for preparing porous PLGA and PLA microspheres by
microfluidics (Table I), including ammonium bicarbonate
[31, 107], gelatin [22, 35, 103, 108-110], collagen [111],
PBS buffer [22], camphene [112, 113], smaller porous silica
particles [101], and assemblies of perfluorinated dendrimers
or hyperbranched polymer skeletons [114, 115]. A tuning of
open porous structures, including increased overall porosity
and/or larger pore sizes, can be achieved by increasing the
concentration of camphene as the porogen, which crystal-
lizes upon solvent removal and is subsequently sublimated
during freeze-drying to create pores [112]. When a gelatin

Table | Examples of Porous Microparticles Prepared by Electrospraying, Microfluidics, and with Supercritical CO,

Polymer Fabrication method ~ Porogen Modified parameters Particle sizes Porosity Pore sizes Reference
(um] [%] (um]
PCL Electrospraying n.a Nonsolvents: 11.70+1.42 n.d 0.49+0.13 [50]
Tetraethyl- orthosilicate, 12.83+2.53 0.56+0.33
butanol, 20.35+4.48 1.35+£0.61
ethanol, 7.00+1.18 0.22+0.18
methanol
PCL Electrospraying n.a Solvent/Nonsolvent ratio 6.14+0.59 n.d 0.1-1.0 [53]
(Ethanol:DCM)1
PMMA Electrospraying n.a Humidity 1 n.d n.d 0-0.22 [60]
Gelatin/ Electrospraying n.a G/C ratio 1 250-500 83-93 n.d [62]
Chitosan Voltage 1
Flow rates 1
PLA Electrospraying n.a Humidity 1 n.d 24-56 n.d [72]
PLGA Microfluidics ABC Flow rates of 7743 71-78 4-3 [31]
PLA cont. phase 112-53 81-86 23-12
PLGA Microfluidics Gelatin n.a 246.3+17.7 n.d 483+7.2 [108]
PLGA Microfluidics Gelatin n.a 55.92+10.11 n.d 11.31+4.4 [110]
PLGA Microfluidics Gelatin Mass ratio 260-540 n.d 20-55 [109]
gelatin:PLGA 1
PCL Microfluidics Camphene  Flow rate ratio 1 42-58 n.d 3-19 [113]
PCL Microfluidics Camphene =~ Camphene concentration 1 170.2-329.5 n.d 11.4-120.1 [112]
Solidification temperature T n.d 35-60
PLGA Microfluidics Gelatin Gelatin concentration 1 443-650 n.d 13.6-80.1 [116]
PLGA Microfluidics Gelatin Gelatin concentration 1 269-397 n.d 8.4-31.1 [104]
PLGA concentration 8.4-32.7
PLGA scCO, n.a Untreated 5.14+2.8 28.24+1.9 0.78 +£0.05 [150]
Post-treatment 12.96+2.9 83.52+34 1.76 +0.47
PLGA scCO, n.a Untreated 22+0.8 39+4.2 0.09+0.01 [149]
Post-treatment 13.8+1.3 92.38+2.96  0.19+0.03

n.a.: not applicable
n.d.: not determined

ABC: ammonium bicarbonate
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solution was used as a porogen in PLGA particles that also
contained fragments of decellularized extracellular matrix
(dECM) in their w, phase, it was observed that increasing
gelatin concentrations, in combination with higher ultrasonic
pre-mixing power during preparation of the w,;/o emulsion,
led to significantly larger pore diameters [116]. Interestingly,
the pore sizes and overall particle sizes also depended on the
content of dispersed dECM and increased in some but not
all cases at the highest (50 wt.%) compared to the lowest
(25 wt.%) dECM loading. A similar study fabricated porous
PLGA particles and investigated the influence of polymer/
concentration, porogen concentration (gelatin), and different
w /o ratios on the pore sizes [104]. Apparently, pore size
tuning was achieved by increasing gelatin concentrations
with additional inverse effects of the w,/o ratios on pore
sizes. Another example of creating pores in a microfluidic
production process was reported for dendrimeric or hyper-
branched perfluorinated polymers, which can stabilize gas
microbubbles in certain formulations (supramolecular com-
plexes with a dye having a perfluorinated alkyl anchor) that
are introduced in organic solutions of PLGA and act as tem-
plates for pores. Changes in the molecular weight and their
molecular architecture (dendrimer, hyperbranched skeleton)
allowed for the tuning of pore sizes, presumably by altera-
tion of the microbubble sizes formed in the presence of the
dye-dendrimer complex [114, 115, 117].

Preparation of microdroplet

PCL solution

PVA solution

CAMP solution

Mixing in microdroplet

Fully mixed microdroplet

20wWt.%

CAMP

40wt.%

CAMP

Stirring and 80wt.%

A CAMP

Collecting

microparticles

Overall, when selecting a certain composition of the for-
mulation, it should be considered that too high concentra-
tions of porogens could result in dysmorphic and collapsed
particles due to the mechanical instability of the remaining
polymeric scaffolds as observed, e.g., when rising the Cam-
phene concentration up to 80% [113]. In addition to the use
of additives acting as porogens, pore formation in particles
prepared by microfluidics will also proceed via osmotic
effects of encapsulated drugs or the simple presence of an
inner water phase in double emulsions [118-120].

A unique feature of microfluidics is that the combina-
tion of both the composition of the fluid phases and their
feeding ratios can be used to control product properties.
Additionally, channel geometries can be adjusted. While
these parameters are primarily known to affect particle sizes
[121-123], flow rate ratios in w/o/w procedures can also
alter particle morphology [124]. If the porogen is added
to a distinct phase, the particle porosity can be modulated
by fine-tuning the flow rate ratios of the different phases
[31, 113, 125]. Increasing flow ratios towards the polymer
phase at a constant porogen concentration (in this case 20%
camphene) led to a controllable decrease of both the sizes
of PCL particles as well as the pore sizes (Fig. 4) [113].
For improved control of flow ratios and, thus, of particle
morphology, separated microfluidic chips have been used
in some cases for the primary (w,/0) and secondary ([w,/0]/
w,) emulsification steps [125].

CAMP: PCL 1:1 1:2 1:3

Fig.4 Microfluidic production of porous microparticles. (Left) Scheme of microfluidic setup and droplet formation. (Right) Images of parti-
cles depending on the flow rate ratios of the camphene (CAMP; varying wt.% in DCM) and PCL solutions (3 wt.% in DCM) forming a mixed
dispersed phase. Additionally, the concentration of CAMP in the CAMP feeding solution was varied (20, 40, and 80 wt.%). Flow rates of the
dispersed phases: 1:1 (0.5 mL/h CamP and 0.5 mL/h PCL); 1:2 (0.33 mL/h CamP and 0.67 mL/h PCL); 1:3 (0.25 mL/h CamP and 0.75 mL/h
PCL). The flow rates of the continuous phase flow (2 wt.% PVA) were 5, 10, and 20 mL/h for 20, 40, and 80 wt.% CAMP. Adapted and reprinted
from [113] with permission from MDPI under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/

by/4.0/).
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The spectrum of formulation parameters also includes
solvents/non-solvents. When different types of solvents were
compared as solvent for the o-phase, dichloromethane and
chloroform were observed to be advantageous in terms of
producing a spherical morphology and porous ultrastruc-
ture of PLGA particles compared to dimethylcarbonate and
ethylacetate, which are solvents with a higher miscibility
with water [22]. A higher water miscibility of o-phase sol-
vents typically causes a faster mass transport of solvent into
the continuous phase and thus a faster polymer precipita-
tion at the interface. This rapid solidification of the matrix
polymer may lead to the formation of core—shell particles
that could collapse when remaining solvent escapes from
the core [126]. Dichloromethane seems superior due to its
low water miscibility, though a small amount of water May
diffuse into the nascent particles creating porous structures.
Phase separation induced by combinations of solvents and
non-solvents added to the polymer phase for electrospraying,
as discussed above, has also been employed in droplet-based
microfluidics, for instance, by using 2-methylpentane as a
non-solvent additive for PLA or PLGA [127].

While the majority of porous polyester microparticles
processed by microfluidics had an open porous structure [22,
31, 108, 109, 112, 113, 125], which is particularly interest-
ing for pulmonary drug delivery [128, 129] and tissue engi-
neering [130, 131], some other studies showed particles with
a dense and smooth surface but high core porosity [107].
Interestingly, also Janus particles with a one-sided porosity
at the particle surface could be produced by phase separation
of collagen (w; phase) and PLGA (o phase) due to w, phase
coalescence during particle hardening [111].

In an overall assessment, droplet-based microfluidics
typically provide much better results in terms of particle
size distributions up to perfect monodispersity compared to
conventional batch emulsification techniques. In some cases,
higher encapsulation efficiency by microfluidics compared
to batch fabrication was reported for hydrophilic drugs
like metformin hydrochloride [132]. Additionally, given
the very standardized flow conditions and droplet forma-
tion events of one drop after another, less batch-to-batch
variations can be expected [133]. At the same time, due to
the consecutive droplet formation, microfluidic procedures
are much more time-consuming compared to the simulta-
neous droplet formation in batch emulsification methods.
However, the productivity of microfluidic techniques can
be substantially increased by numbering-up (parallelization
rather than conventional scale-up). This means, on the one
hand, operating multiple chips simultaneously, which, how-
ever, also requires multiple sets of essential infrastructure,
such as pump systems. Therefore, on the other hand, setups
have been developed that incorporate multiple sets of chan-
nel junctions (droplet-forming units) arranged in defined
geometries, ensuring identical flow conditions at each unit
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and allowing operation with a single set of pumps [98, 134,
135] (Fig. 5). Additionally, there are several approaches that
demonstrated an increased productivity per channel without
detrimental effects on particle monodispersity. This includes
an alteration of the time point/position of surfactant addition
for droplet stabilization [136] or the operation of capillary
microfluidic devices under tip-streaming rather than drip-
ping conditions [123].

Importantly, the larger scale production with parallel
operation of chips/droplet-forming units has to be subjected
to continuous supervision. In particular, flow dynamics in
multi-channel devices may severely change upon clogging
of individual channels, thus affecting the particles produced
at the other droplet-forming units. Therefore, in contrast
to batch emulsification methods by conventional mixers,
microfluidic production processes require perfectly well
dissolved materials in the different phases, particularly in
the organic polymer phase (no lumps or gel-like particles),
which otherwise could cause inhomogeneous streams inside
the channels.

Other important aspects of upscaling microfluidic
devices include the types of materials and the methods
used to fabricate the chips. Several materials like PDMS,
glass, steel, and thermoplastic polymers as well as differ-
ent chip fabrication methods (e.g. photolithography, hot
embossing, injection molding, 3D printing) may be con-
sidered, as reviewed in detail by other authors [137, 138].
Obviously, it is important to employ materials in chip fabri-
cation that are compatible with the reagents (solvents) used
during particle production and neither dissolve nor swell,
which can be critical with some organic solvents. Addition-
ally, particularly when thinking of 3D printing of chips,
the resolution of the printing technique should be criti-
cally evaluated in terms of both smoothness (flow perturba-
tions) and tightness (device leakage) of the channels. To
the best of our knowledge, industrial-scale droplet-based
microfluidic systems have not been used in the commercial
production of drug carriers yet, but efforts are being made
to bridge the gap between small-scale and industrial-scale
production. Companies like Microcaps (Switzerland) or
Emultech (Netherlands) are developing large-scale solu-
tions for industrial applications. For instance, Microcaps
is using an alternative setup with stacked chips, which
includes multiple channels running simultaneously and a
collection of nascent particles in a bigger reservoir that can
facilitate larger scales.

Other techniques that allow an enhanced throughput
while enabling narrow particle size distributions are based
on membrane emulsification, specifically crossflow mem-
brane emulsification, where droplets are typically formed by
shear fgenerated by the stirred continuous phase in the col-
lection chamber [139]. For instance, SPG Technologies
(Japan) offers special cylindrical glass membranes, which
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Fig.5 Upscaling of microfluidic particle production by numbering-up of droplet forming units in a step emulsification device. (A) Schematic
of a step-emulsification channel arranged with parallelized droplet makers. (B) Illustration of droplet formation (C) Layout of a microfluidic
emulsification chip with 364 droplet forming unit. (D-E) Photographs of the microfluidic glass chip during operation (Scale bars: (D) 1 cm, (E)
500 pum). (F) Size distribution of hexadecane-in-water droplets with a mean size of 80.9 pm and a coefficient of variation (CV) of 2.8%. (G)
Droplet size homogeneity during Long term operation as measured over 10 h. Adapted and reprinted from [135] with permission from Wiley.

can be incorporated into semi-continuous lab-scale devices
[140-142] and are claimed to be compatible with large-scale
production equipment. Another company, Micropore (UK),
uses membranes and devices made of steel.

In contrast to droplet-based microfluidics, nanoprecipita-
tion within flow-driven systems has enabled the large-scale
and GMP-certified manufacturing of lipid nanoparticle vac-
cines, such as those used for COVID-19 [143]. It should
be mentioned that the nanoprecipitation in this case was
based on turbulent-flow jet mixing, during which solvent
exchange takes place, ultimately leading to spontaneous
(i.e., less controlled, statistically distributed) particle for-
mation processes.

Given the fact that flow-driven techniques with micro-
mixing equipment (specifically nanoprecipitation) have
already advanced into pharmaceutical manufacturing of
drug products, droplet-based microfluidics may likewise
find practical applications in industrial-scale particle pro-
duction. This is particularly expected when challenges of

conventional batch methods — such as variations in particle
sizes, morphology, and drug loading [144] — are overcome,
the required investment is low (using pumps and reusable
microfluidic devices) compared to large scale machinery,
and the throughput meets market demands such as for niche
therapeutic applications.

Treatment with Supercritical Fluids

Supercritical fluids (SCF) are obtained at a temperature
and pressure above the critical point of a given substance,
where distinct liquid and gas phases no longer exist. In
this state, SCF exhibit unique properties that are interme-
diate between those of gases and liquids such as moder-
ate density, low viscosity, and high diffusivity. The most
commonly used supercritical fluid is carbon dioxide (CO,)
due to its critical point at relatively low temperature and
pressure (=~ 31°C/74 bar), low-cost, and non-toxic nature.
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SCF-based processing is often applied to prepare
porous macroscopic scaffolds under solvent-free condi-
tions [145] or to enhance the matrix porosity and pore
sizes of initially non- or low porosity systems [146]. The
underlying principle is that a SCF such as scCO,, once
absorbed into a material, transitions towards the gaseous
state upon depressurization, leading to the formation of
CO, gas bubbles within the material. This results in the
expansion (foaming) of the matrix material.

The application of SCF techniques to prepare porous
PLGA or PLA particles is less common due to the need
for specialized equipment, which is not widely available in
pharmaceutical research [147]. However, there are examples
where particles prepared using conventional batch emulsion
techniques followed by freeze drying were subsequently sub-
jected to post-treatment with scCO, [148, 149]. This treat-
ment enabled an increase in particle porosity as desired.
Additionally, as SCFs have good solvent power for many
substances, a beneficial reduction of the residual DCM con-
tent was observed after SCF treatment for particles initially
formed by using DCM. Interestingly, at the same time, this
procedure led to a modification of the drug release profiles,

water piston emulsion

[ () /

7~ N /

HPLC pump water

e.g., of risperidone towards a more desirable linear pattern
[149, 150].

The mandatory depressurization step during SCF process-
ing can have varying effects on different materials. When
comparing PLA and different PLGA grades after treatment
with scCO,, PLGA particles showed an increase in size,
along with the formation of pores, while the morphology of
PLA particles remained unaltered [149]. The authors sug-
gested that the crystallinity of PLA significantly limits the
mobility of the polymer chains and the absorption of scCO,,
which are essential for scaffold expansion by this method.

The application of SCF can also go beyond pore forma-
tion/foaming. It was shown that the joint exposure of bevaci-
zumab-coated PLA nanoparticles and PLGA microparticles
to scCO, resulted in a transportation (loading) of the PLA
nanoparticles into the pores of the expanding — and thus now
porous — PLGA microparticles [151].

Another process that involves compressed CO, for par-
ticle preparation comprises the hydraulic dispersion of a
polymer solution into droplets/particles, followed by parti-
cle hardening and solvent extraction via precipitation with
compressed antisolvent (PCA process), and foaming — all

cooler
CO, pump

autoclave —f=
Co,

one-way
valve
droplet
, ® AB molecule
antisolvent l ® insulin
precipitation water phase
" T ' PLLA molecule

0
PLLA microsphere containing

insulin and AB molecules
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removal '

p
flowmeter filter

PLLA porous microsphere
containing insulin

Fig.6 Schematic diagram of the preparation process of porous PLA particles with sub-critical compressed CO,. The first emulsion (w,/0) is
pumped through a nozzle and into a steady atmosphere of compressed CO, in an autoclave, from which porous particles can be collected after

depressurization. Reprinted from [128] with permission from Elsevier.
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carried out in a high-pressure spray and extraction reactor in
a single procedure (Fig. 6). In some cases, ABC was added
as an additional porogen [152, 153]. This use of porogens is
reasonable when the system is operated in the sub-critical
regime (highly compressed gas but staying below the super-
critical conditions), i.e., at conditions that still present phase
boundaries between the compressed gas and the polymer
solution, which are necessary for particle formation. Under
subcritical conditions, the level of achievable porosity and
the extent of open pores at the particle surface are often
limited without an additional porogen [154, 155]. The ABC-
assisted particle production via PCA allowed for the fabrica-
tion of irregularly-shaped PLA particles loaded with insulin
as an active ingredient. Importantly, by combining differ-
ent pore-forming principles, a sufficient porosity could be
achieved, with aerodynamic diameters matching the needs
of pulmonary delivery [152, 156].

In general, the scale-up of supercritical fluid-based pro-
cesses is well established, e.g., in food technology [157].
Often, the solvent or anti-solvent properties of SCF are
utilized there. Given the solubilization power of scCO, for
many (not too polar) active pharmaceutical compounds
(APT) [158, 159], it will be important to ensure that the
scCO,-based foaming processes will not result in the extrac-
tion and loss of API when applying this process in the phar-
maceutical sector. Despite not using polymers, it is inter-
esting to note that a scaled-up semi-continuous production
process of quercetin-loaded micelles was operated through
scCO,-based extraction of organic solvent from o/w emul-
sions, which could potentially be applied to microparticle
production as well [160]. Although processes using super-
critical fluids are less common than established methods
like spray drying, this technique shows some potential to be
considered for particle engineering processes. One aspect
— although potentially more relevant for the foaming of
larger objects — is the improved ecological balance of pro-
duction, as high-pressure polymer processing with SCF may
enable a lower energy consumption and solvent usage [161].

Characterization of Porosity

The analysis of overall porosity, pore size distributions, and/
or pore geometries is crucial for understanding the prop-
erties of microparticles and their applications. According
to the IUPAC, pores are classified by size as micropores
(<2 nm), mesopores (2-50 nm), and macropores (> 50 nm)
[162]. As most literature on porous microparticles for phar-
maceutical applications reports macroporous characteristics,
with voids up to several micrometers, this section briefly
summarizes suitable characterization methods for macropo-
res. More comprehensive discussions can be found in spe-
cialized reviews on this topic [163, 164].

Easily accessible optical methods, such as light micros-
copy, are powerful tools for analyzing particle sizes in aque-
ous dispersions or, after proper sample preparation, in the
dry state. However, light microscopy is less frequently used
to determine pore sizes, as the pores of pharmaceutically rel-
evant polymer microparticles (mean particle sizes of inject-
able depot formulation most often in the range of 5-100 pm)
are typically not visible in wet dispersion (unless dye-based
visualization by confocal microscopy can be employed for
relatively large particles/pores). Additionally, limitations of
light optics (e.g., resolution, material-dependent opacity,
or the curved surface of particles complicating focus plane
detection) present further challenges for wet- and dry-state
analysis.

Electron microscopy, particularly scanning electron
microscopy (SEM), is the gold standard for visualizing
porous particles in the dry state, given its high resolution and
suitability for imaging three-dimensional objects. SEM can
provide direct insights into surface porosity by measuring
pore sizes in images using external software (e.g., Imagel).
Challenges associated with SEM include the limited ther-
mal stability of polymers, like PLGA, under the electron
beam, which can cause pores and particles to deform in case
of improper instrument settings and charging of the sam-
ples. To assess internal porosity, experienced operators are
needed, given the complex and time-consuming procedures
for sample preparation by (cryo)-ultramicrotomy [12]. In
cases where microtomy instruments are not available and/
or when a lower quality of cross sections is acceptable, cut-
ting with a razor blade may also be used with reasonable
results [8, 165, 166], but should involve a critical assess-
ment, as particle deformation and smearing of material over
the porous structure can occur. Combinations of SEM with
additional techniques, in particular focused ion beam (FIB)-
based in situ cutting of single particles within the SEM,
enable very detailed insights into the particle ultrastructure
via multiple cross-sectional views [167]. Importantly, micro-
scopic techniques only provide information on small quan-
tities of sample material, placing significant responsibility
on operators to select and provide representative images for
subsequent qualitative or semi-quantitative analysis.

Quantitative information on batch porosity and pore size
distributions can be obtained by methods like gas adsorption
or mercury intrusion porosimetry. Among these, mercury
intrusion porosimetry is the best-known and most widely
applied method for porous drug carriers due to its abil-
ity to cover a wide range of pore sizes (10 nm — 300 pm)
and to provide comprehensive insights not only into over-
all porosity and average pore sizes, but also into pore size
distributions including the smallest and largest pore diam-
eters of open pores [10, 168, 169]. However, this method
requires larger sample quantities a compared to microscopy
techniques, and handling of elementary mercury poses
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significant health risks, in addition to generating contami-
nated samples that require special waste containment.

In exploratory research, alternative characterization meth-
ods have been discussed to determine pore structures. Exam-
ples include micro-computed tomography (UCT) or nanoCT
as non-destructive techniques for analyzing samples typically
in the dry state. These methods generate 2D images of dif-
ferent sample planes, which can be combined to construct
a three-dimensional model of the sample. For instance, the
imaging of porous microstructures inside PLGA particles
and the reconstruction of the porous network of risperidone-
loaded PLGA particles have been reported using pCT or
nanoCT [7, 8]. Challenges of uCT include resolution limi-
tations (a few micrometers), while nanoCT provides higher
resolution but is restricted to very small samples (usually sin-
gle particles) and long measurement times, i.e., low sample
throughput.

Another explorative method for determining particle
porosity is based on sedimentation velocity, which depends
on density differences between particles and the suspension
medium and thus is affected by porosity (in addition to par-
ticle sizes). It was shown for PLGA particles that sedimenta-
tion analysis combined with Camera inspection of 50-100
particles can provide a good correlation with data from mer-
cury intrusion porosity [170].

Overall, the most effective method for determining the
pore size range and porosity of porous particles is a combi-
nation of techniques, most commonly microscopy together
with mercury intrusion porosimetry.

Conclusions

The platform of fabrication techniques for porous drug car-
riers is subject to ongoing technological advancements.
Besides conventional batch emulsion techniques, methods
like electrospraying, microfluidics, or treatment with super-
critical fluids pose some interesting features that can be
advantageous to reproducibly fabricate porous drug-loaded
particles. Some formulation aspects of batch techniques
and mechanisms of pore formation by adding porogens
can be transferred and applied to those continuous meth-
ods. Despite existing technological challenges and process-
related limitations of throughput, a scale-up of the here dis-
cussed alternative methods may be possible in principle, in
some cases even being evidenced for other application fields
or material systems. Still, as of now, these methods may be
primarily suited for the cost-effective production of porous
particles for niche applications that require high flexibility
in production technology, rather than for the manufacturing
of large-scale (ton-level) quantities.
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