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Summary in German (Zusammenfassung in deutscher Sprache)

Die vorliegende Arbeit tragt den Titel "Ein thermodynamisch konsistentes Rahmenwerk fiir
finite Elastizitdt und Plastizitdt dritter Ordnung". Sie verwendet die Konzepte aus

[Bertram 2015] und [Bertram 2014| und verallgemeinert diese.

Nach einer Einfithrung und einer Literaturiibersicht zu Kontinua mit erstem und zweitem
Deformationsgradienten werden bendtigte Grundlagen und Notation aus Tensoranalysis, Dif-
ferentialgeometrie, Funktionalanalysis und Kontinuumsmechanik kurz vorgestellt. Der darauf
folgende Hauptteil der Arbeit besteht aus vier Teilen, denen je ein Kapitel gewidmet ist. Der
erste Teil rekapituliert eine mathematische Methode zur Herleitung von verallgemeinerten
Spannungstensoren der Ordnung zwei, drei und vier (fortan als Spannungstensoren bezeich-
net), die leistungskonjugiert zum ersten, zweiten und dritten rdumlichen Geschwindigkeitsgra-
dienten sind. Aus der vorgestellten Methode lassen sich alle mechanischen Grundgleichungen
inklusive dem Prinzip der virtuellen Leistung und die zugehdrigen Randbedingungen fiir den
vorliegenden Fall herleiten.

Im zweiten Teil wird ein Rahmenwerk fiir Elastizitét erarbeitet. Es werden zuerst leistungskon-
jugierte, materielle Deformationsvariablen und Spannungsvariablen hergeleitet, und es wird
ihr Transformationsverhalten bei Wechseln der Bezugsplatzierung bestimmt. Danach werden
die grundlegenden Konzepte elastischer Isomorphie und materieller Symmetrie fiir den vor-
liegenden Fall verallgemeinert.

Im dritten Teil wird ein Rahmenwerk fiir Elastoplastizitit entwickelt. Als erstes werden dazu
grundlegende Begriffe und Konzepte wie elastische Bereiche, Fliefgrenzen und elastische Iso-
morphie vorgestellt und auf den vorliegenden Fall verallgemeinert. Dann wird die plastische
Dissipation berechnet, und Fliefregeln werden fiir den vorliegenden Fall angepasst.

Im vierten Teil wird gezeigt, dass das erarbeitete Modell thermodynamisch konsistent ist.
Dazu werden die oben genannten Konzepte nochmal unter Annahme des ersten Gesetzes der
Thermodynamik und der Clausius-Duhem Ungleichung hergeleitet.

Der fiinfte Teil der vorliegenden Arbeit stellt Ergebnisse einer numerischen Simulation mit
finiten Elementen vor. Es wurde mittels Lagrange-Multiplikatoren ein elastisches Mate-
rialmodell fiir kleine Verformungen implementiert, das den zweiten und dritten Verschiebungs-
gradienten einbezieht. Dieses wird auf Polyeder mit Verschiebungsrandbedingungen an Ecken
und Kanten angewendet. Die Losungen zeigen in den meisten Fillen keinerlei Anzeichen von
Singularitdten in den Verschiebungen oder der mechanischen Leistung. Es wird erklért, warum
eine Theorie dritter Ordnung notwendig ist, um diese Ergebnisse zu erhalten, was als eine der
Motivationen fiir das Aufstellen des oben beschriebenen Rahmenwerkes gesehen werden kann.
In einem Anhang wird erklart wie das Rahmenwerk in Teil eins bis vier mit einer anderen,
dquivalenten Deformationvariable verwendet werden kann, und warum die Verwendung ma-
terieller Gradienten des rechten Cauchy-Green Tensors als Deformationsvariablen das Rah-
menwerk unnétig verkomplizieren wiirde. Es stellt sich heraus, dass sog. Pullbacks der Defor-
mationsgradienten sich am besten fiir das vorgestellte Rahmenwerk eignen.






Chapter 1

Introduction






1.1 A short review of the development of strain gradient theo-

ries in continuum mechanics

The amount of literature on mechanical theories that involve strain gradients of higher order
or gradients of other quantities is enormous, even though this field of research is relatively
young. In this section a very brief overview over the development of strain gradient theories is
given, focusing on elasticity and plasticity. It is followed by a more detailed review of impor-
tant publications on second gradient of strain theories, since the present work only examines
this class of models.

In classical mechanics strain is defined as the spatial derivative of the displacement field.
In 1827 Cauchy introduced the concept of the stress tensor [Cauchy 1827|. The so called
constitutive equation defines the relationship between the stress and strain tensor. It is
a property of the material. This approach is classified as a first-order theory. Accord-
ing to [Askes & Aifantis 2011] Cauchy himself was among the first to suggest an extension
of the classical first-order theory. In 1850, he mentioned that the constitutive equation
should involve spatial displacement gradients of higher order to model discrete lattices (see
[Cauchy 1850 i, Cauchy 1850 ii, Cauchy 1851]). Such an approach is classified as a strain gra-
dient theory of higher order, i.e. a theory involving strain gradients of any order. Another
approach to leave the classical first-order framework, is the well known work by the broth-
ers Cosserat. In [Cosserat & Cosserat 1909] they suggest the introduction of microrotations
and couple stresses. This is not a strain gradient approach though. It is often mentioned
in this context, because it clearly is one of the first major approaches that leaves the clas-
sical Cauchy continuum behind. At this point it should also be mentioned, that according
to [dell’Tsola et al. 2015] Gabrio Piola introduced strain gradients to continuum mechanics
through the principle of virtual power as early as 1845. Unfortunately his contribution re-
mained mainly unnoticed. So it happened that the 1960s became the decade of great innova-
tions in strain gradient theories.

In 1962 Toupin developed in [Toupin 1962] a strain gradient elasticity theory for large defor-

mations, where the elastic energy also depends on the strain gradient which yields so called
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couple stresses, i.e., additional stress tensors of order three. The additional strain tensors of
order three in this work are derived from the spatial gradient of the right Cauchy-Riemann
Tensor. Soon after that, in 1963, Toupin and Gazis explained in [Toupin & Gazis 1963] that
the strain gradient can be set in relation to surface effects on an atomic lattice with its nearest
and next-nearest neighbor interaction. One can say that Toupin’s work triggered the develop-
ment of research in strain gradient theory. His work was followed by publications by Mindlin,
who developed a linear elasticity theory for continua under small deformations with a so called
microstructure in [Mindlin 1964|. The term "continuum with microstructure" has been estab-
lished in the research community for a continuum where in addition to a stress measure further
tensor fields enter the balance equations. These additional tensor fields also describe the cur-
rent state of the deformation. They are often interpreted as a measure of a micro deformation.
It is up for discussion whether this interpretation, that distinguishes a micro and a macro level,
can be justified for such a theory. In the literature one often finds the remark, that a strain
gradient elasticity theory can be regarded as a special case of a continuum with microstructure,
because the strain gradient can be chosen to represent the structure of the microdeformation.
In the same year Green and Rivlin presented in [Green & Rivlin 1964] a first approach to
generalize Toupin’s work [Toupin 1962] to higher strain gradients of large deformations. In
1965 Mindlin published another very original work that had great impact. In [Mindlin 1965|
he derives a linear elasticity theory for small deformations with second strain gradients and
uses this theory to model surface effects. The aforementioned results by Toupin, Mindlin,
Green and Rivlin also inspired Germain’s work in 1972 [Germain 1972, Germain 1973| where
he treats strain gradient continua and continua with microstructure for large and small defor-
mations.

All the publications mentioned so far were focused on elasticity. Strain gradient plasticity
was developed later but quickly became a complex research branch mainly concerned with
dislocation phenomena. One of the first plasticity models incorporating strain gradients was
suggested in 1970 by Dillon and Kratochvil in [Dillon & Kratovchvil 1970] for small strains. It
builds upon Mindlin’s elastic second strain gradient theory in [Mindlin 1965] and is motivated

by dislocation interactions. The main aim of this model is to mimic nonuniform deformation
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patterns on microlevel in hardening metals. This publication uses an approach that can be
classified as a constrained plasticity model. This term describes models where the higher-order
plastic variables are determined by the plastic second-order tensor, e.g., defining the gradient
of the plastic strain as the plastic third-order deformation tensor.

From the 1980s on Aifantis and his coworkers developed strain gradient theories with reduced
complexity compared to the aforementioned theories from the 1960s and 1970s. The main
feature of most of these models is, that they contain less components of the strain gradi-
ents and thus less material constants have to be introduced. This reduction of complexity
makes them suitable for numerical solution techniques. In [Aifantis 1984, Aifantis 1987] con-
strained strain gradient plasticity models are developed for small and large deformations to
determine the width of shear bands in soil and metals. Basically in these models the yield
stress depends on the plastic strain and its gradients. This is motivated by certain dislocation
mechanisms. An isotropic strain gradient elasticity model is developed (see [Aifantis 1992]),
which makes use of the Laplacian of the strain and addresses small and large deforma-
tions. This model removes singularities of the strain at dislocation lines and crack tips,
which is discussed in [Altan & Aifantis 1992, Ru & Aifantis 1993]. In [Askes & Aifantis 2006,
Askes & Aifantis 2011] the already mentioned strain gradient elasticity models developed by
Aifantes and coworkers are also extended to include higher-order inertia in dynamics, but
focus on small deformations. Aifantis aimed at making gradient theories more accessible for
application and his research has been expanded by many others with emphasis on different
aspects. In plasticity theory a wide range of publications exists with size-dependence effects in
crystal plasticity as one of the major fields of application. Fleck and Hutchinson apply strain
gradient approaches in crystal plasticity of small deformations where the focus is on length
scale effects, motivated by dislocation theory. It is shown, how J; theory can be generalized
by introducing length scale parameters to model wire torsion and beam bending on the micron
scale. Models for constrained plasticity [Fleck & Hutchinson 1993, Fleck & Hutchinson 2001|
as well as for unconstrained plasticity [Fleck & Hutchinson 2001] are developed in this con-
text. Gurtin developed a strain gradient plasticity theory for large deformations of sin-

gle crystals in [Gurtin 2000, Gurtin 2002|, which is formulated for small deformations in
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[Cermelli & Gurtin 2002]. Both models are constraint plasticity theories. Further treatments
of constrained strain gradient plasticity for small deformations that use a similar approach can
be found in [Gurtin 2003, Gudmundson 2003]. In [Dahlberg & Faleskog 2013| a plane strain
gradient theory for small deformations (based on [Gudmundson 2003]) is used together with a
grain boundary mechanism to model polycrystaline microstructures, where the strain gradients
theory is used to model grain size-dependent strengthening. An unifying thermomechanical
framework for elastoviscoplastic constitutive equations is proposed in [Forest & Sievert 2003]
for strain gradient continua (and continua with higher-grade microstructure), where small and
large deformations are addressed. A multiplicative decomposition into an elastic and a plastic
part is applied to the deformation gradient and an additive decomposition to the pullback of
the second deformation gradient, which is an unconstrained plasticity approach. Then as an
alternative it is suggested to use the gradient of the right Cauchy-Green tensor and to apply
to it an additive decomposition into a plastic and an elastic part, depending on the gradient
of the elastic and the plastic part of the deformation gradient respectively, which makes this
a constrained approach. The aim of a unifying thermomechanical framework was further pur-
sued in [Svendsen et al. 2009], where the first and second gradient of the deformation are used
as strain variables to model large deformations. It is assumed that a free energy exists which is
invariant under changes of the observer. The transformation rules of the strain variables under
changes of the reference placement are derived and the principles of material isomorphisms
and material symmetry are generalized. The multiplicative decomposition into an elastic and
a plastic part is generalized in a constrained plasticity approach and a thermodynamical ex-
tension for such a strain gradient framework is suggested. A thermomechanical framework
for strain gradient elastoplasticity was also published in [Bertram & Forest 2014] for small
deformations but with an unconstrained plasticity approach. This elastoplastic framework
is further generalized for large deformations in [Bertram 2015| and also further extended to
thermoplasticity in [Bertram 2014]. The results of both publications were later integrated in
[Bertram 2016]. These publications use material strain variables by pulling back the second
deformation gradient to the reference placement. The transformation behavior of generalized

stress tensors for changes of the reference placement and material isomorphisms is derived
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in these works. Furthermore plasticity is introduced in an unconstrained approach. Further
aspects of this framework are elaborated in [Bertram & Gliige 2016, Gliige et al. 2016] where
one finds generalizations of internal constraints and eigenmodes respectively.

Of course the field of strain gradient elasticity was also developed further after the men-
tioned publications in the 1960s and 1970s. Forest and Cordero apply Mindlin’s ideas from
[Mindlin 1965] in [Cordero et al. 2015] in a small deformations framework. They model size-
dependent surface effects in the mechanical behavior of objects in the nano scale accounting
for relaxation behavior of traction-free surfaces and provide a finite element (FE) implemen-
tation for Mindlin’s second strain gradient elasticity (see also [Cordero et al. 2011] for such
a FE implementation). In [Polizzotto 2012| a strain gradient elastictiy theory in line with
Aifantis’ approach is developed for small deformations. The classical linear and angular mo-
mentum equations are extended to include higher-order inertia and a wave dispersion problem
for beams is solved. An extension to second strain gradient elasticity, taking into account
velocity gradient inertia, is developed in [Polizzotto 2013] and is extended in [Polizzotto 2014]
with focus on surface effects.

An important feature of strain gradient theories is their regularization property. As already
mentioned the strain gradient model in [Aifantis 1992| is discussed with respect to its regu-
larization property that no strain singularities occur. It is shown in [Lazar & Maugin 2006]
that this model for small deformations still has singularities in the higher-order stresses. In
[Lazar et al. 2006], published shortly after, it is shown for small deformations, that for disloca-
tion problems in an infinite plane a second strain gradient theory produces no singularities at
all. This result is confirmed with applications in dislocation analysis in [Lazar & Maugin 2006,
Lazar 2013|.

Another topic that plays an important role in strain gradient theories, is the generaliza-
tion of Cauchy’s tetrahedron argument for these theories. The question, what form gener-
alized stresses, tractions or forces have, is inherent to strain gradient theories of any order.
In [dell'Isola et al. 2016] it is shown that the tetrahedron argument can be generalized for
strain gradient theories of any order by arguments similar to those used by Cauchy, see also

[Dell'Isola & Seppecher 1997, Dell’Isola Seppecher 2012]. Most of the other papers mentioned
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in this section that derive the form of higher-order stresses, do so by applying the principle of
virtual power.

In the field of fluid dynamics, gradient theories have been established as well. However higher
strain gradients do not play the same role as in solid mechanics. E.g. in

|[Eremeyev & Altenbach 2014] a fluid is modeled so that its strain energy depends on the
mass density and its spatial gradients (sometimes referred to as a Korteweg Model, see
[Korteweg 1901]). This type of gradient models is not examined in the present work, since the
focus lies on the role of spatial gradients of the strain tensor in solids. See [Cordero et al. 2011]
for a comparison of Mindlin’s approach with other first strain gradient capillarity models and
Korteweg models.

Strain gradients have also been introduced in thermodynamical models, however the amount
of publications in this field is smaller than in plasticity or elasticity and mainly deals with cer-
tain topics in thermoplasticity. Examples are [Polizzotto & Borino 1998] or [Polizzotto 2011]
where a thermodynamically consistent strain gradient plasticity theory is developed (for small
deformations). The later takes into account dislocation theory as also done in [Gurtin 2010].
In [Gurtin & Anand 2009] the question of thermodynamic consistency of the earlier mentioned
plasticity models by Aifantis and by Fleck and Hutchinson is discussed. Another noteworthy
work in this field is [Perzyna 1971]. Temperature gradients have been introduced therein with
the result is that thy cancel out since they do not have a counterpart in the Clausius-Duhem

inequality that allows them to make a contribution to the power.

1.2 A detailed review of recent advances in second strain gra-

dient theories in mechanics

Second gradient of strain in elasticity

Leaving aside Piola’s contribution, mentioned in [dell’Isola et al. 2015], the first publication on
second gradient of strain and on higher-order strain gradient models was [Green & Rivlin 1964]
which addressed large deformations. In this work the authors derive a very broad framework

for a large deformation elasticity theory that incorporates strain gradients of arbitrary order.
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They assume the existence of higher-order surface tractions and of higher-order body forces
that are work conjugate to the matching gradient of the velocity field. After postulating a gen-
eralized thermodynamical balance equation they derive generalized local balances. Boundary
conditions are only derived for the case of a first gradient of strain elasticity theory. The first
publication to elaborate precisely how the second gradient of the strain can be introduced to
continuum mechanics is Mindlin’s work [Mindlin 1965], in which he works out a linear elastic-
ity theory for small deformations that incorporates the first and second gradient of the strain.
Mindlin assumes the existence of a potential elastic energy, that depends on the symmetric
part of the strain as well as on the first and second gradient of the strain. The variation of
this energy together with the surface divergence theorem leads to the boundary conditions and
yields three stress tensors of order two, three and four, work conjugate to the symmetrized
strain and the first and second gradient of strain respectively. In an appendix the boundary
conditions on edges and corners are derived by the same means. Mindlin then considers a ho-
mogeneous, centrosymmetric and isotropic material. For the elastic energy density this yields
a polynomial with the standard Lamé constants and 16 additional constants. From there a
component of the fourth-order stress tensor is used to derive a punctual surface tension or a
surface energy per unit area. For an elastic solid in the form of a half-plane he shows that this
framework yields exponentially decreasing strain with distance from a body’s surface. This
result is related to results of strain in extremely thin boundary layers. Besides a short section
on lattice models with next nearest and second next nearest neighbor interaction, Mindlin
also addresses concentrated forces. Finally elastic liquids are examined by defining a potential
elastic energy that depends on the infinitesimal dilatation (the divergence of the displacement
field) and its first and second gradient. With this definition, plane and spherical surfaces of
an elastic liquid are examined. Mindlin established three topics in his paper that were subject

of many publications on second gradient of strain theories in the following decades:
1. The derivation of boundary conditions from the principle of virtual power,
2. surface effects in elastic solids and fluids in a boundary layer,

3. localized forces on edges and corners.
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Mindlins approach is explained in [Wu 1992] where a concept for adhesion is introduced
alongside a derivation of Mindlin’s results with slightly different means. The solution to
the displacement equation of equilibrium is deduced differently and Mindlin’s results are fur-
ther simplified. A thin film is analyzed with the concept of an interface phase with the
result that the apparent Young’s modulus for such a film is slightly higher than that of a
plate. Another direct continuation of Mindlin’s work can be found in [Cordero et al. 2011]
and [Cordero et al. 2015]. Both publications focus on surface effects in nanoelasticity (for
small deformations). In [Cordero et al. 2011] the focus lies on elastic fluids and the surface
effects. It is explained, how the Korteweg theory can be included in a first gradient of strain
theory. It is laid out why these theories can model capillarity effects at interfaces, but are
not able to model internal stresses and strains in the boundary layer, which is due to the al-
ready mentioned fourth-order stress component that represents cohesive forces. The authors
also explain how a second-order micromorphic framework lends itself to applying the FEM to
second gradient of strain theories. The introduction of penalization methods or Lagrangian
multipliers provides an amount of degrees of freedom that can be handled by FEM solvers.
This approach is also used in the present work for FEM models of point and line displacements
in Chapter 7. In [Cordero et al. 2015] the authors continue to elaborate Mindlin’s ideas, fo-
cusing this time on isotropic elasticity of solids under small deformations. One of the main
findings is that besides the already mentioned cohesion modulus, responsible for the "surface
energy property" of the material, further coupling moduli in the elastic potential are respon-
sible for surface stress effects. These two properties turn out to be independent of each other.
The cohesion parameter, as introduced by Mindlin, controls the relaxation of a traction-free
surface, while the so called "higher-order elastic moduli" (or coupling moduli) have a notice-
able influence on the apparent elastic behavior of thin films and beams on the nano scale.
The theoretical framework is applied to determine the size-dependent apparent shear modu-
lus for thin strips under shear analytically. For numerical studies the FEM solution technique
based on a micromorphic theory has been implemented, which has already been outlined in
|Cordero et al. 2011|. It is used to determine the size-dependent apparent Young’s modulus

and Poisson’s ratio of thin films on the nano scale as well as to simulate surface relaxation in a
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porous material. The authors deduce from their work, that for the case of shear a first gradient
of strain theory is not sufficient to model size-dependent effects, but the second gradient of
strain must be taken into account. In Mindlin’s work as well as in [Cordero et al. 2011] and
[Cordero et al. 2015] only the isotropic case is addressed and the authors point out that the
generalization to the non-isotropic case remains an important challenge for future research.
Another recent publication focuses on the other two points that were brought up by Mindlin.
In [Javili et al. 2013] boundary conditions and localized forces are in the focus. The authors
use Mindlin’s approach for the derivation of boundary conditions of a body with edges and cor-
ners. This is done in an elastic framework for large deformations. These were already derived
in the appendix of [Mindlin 1965]. The authors expand Mindlin’s framework by equipping
surfaces of a body with an elastic energy that depends on the strain and its gradient as well as
edges with an elastic energy that depends on the strain. They derive the boundary conditions
for this case by applying the concepts used by Mindlin. It is shown that for an elastic surface
energy to depend on the strain, the elastic bulk energy must depend on the strain gradient.
Similarly for the elastic curve energy to depend on the strain of the curve, the bulk energy
must also depend on the gradient of strain. Another implication is that for a body to sustain
point force on its corners, the elastic bulk energy must depend on the second gradient of strain.
In [Aifantis 1992] small and large deformations are addressed, though emphasis lies on small
deformations. The second strain gradient enters the model by introducing the Laplacian of
the strain in the linear elastic law. In order to obtain a second-order stress tensor, it is scaled
with a parameter and then subtracted from the strain. In the elastic law the stress is equal
to the stiffness tensor (of order four) contracted twice with this new stress tensor. This way
no new stiffness tensor must be introduced, which serves the already mentioned aim to reduce
complexity in higher strain gradient models. In [Lazar et al. 2006, Lazar & Maugin 2006] sec-
ond gradient of strain theories are applied for modeling dislocation phenomena in an elastic
solid under small deformations. An infinitely extended medium is modeled, thus no boundary
conditions are derived. It is assumed that dislocations or disclinations are present. In order to
account for this, the strain is decomposed as the sum of the elastic and the plastic strain. The

bend-twist tensor and the dislocation density tensor are defined by using the incompatible
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elastic strain and its spatial gradient. The Burgers vector is a closed line integral of the elastic
strain. The potential strain energy in this case depends on the strain, the elastic strain and
the first two gradients of each of these variables. Furthermore an isotropic elastic energy is
introduced which resembles Mindlin’s idea, but differs in the constitutive relation of the third-
order stress tensor. It still only requires three model constants, and the stresses coincide with
those in the model of nonlocal elasticity proposed by Eringen in [Eringen 1992, Eringen 2002].
The resulting partial differential equation is solved analytically for an infinite plane by using
integral transformation techniques (e.g. Fourier transformation). The solutions for stress,
strain, distortion, dislocation density and bend-twist tensor are given for the case of a straight
screw dislocation and straight edge dislocation and are all free of singularities. The elastic
energy from |Lazar et al. 2006] is also used in [Mousavi & Paavola 2014|, where Kirchhoff’s
theory for small deformations of plates is extended by the first and second strain gradient.
Boundary conditions are derived by a variation of the energy and analytical solutions for a
stability and free vibration analysis of a simply supported rectangular plate are given. In
[Polizzotto 2013] the author addresses localized forces on edges and corners in combination
with the micromorphic approach introduced in [Mindlin 1964], [Germain 1973] for an elastic
material with small deformations. The author uses a non-standard multi-cell homogenization
procedure, where the body and its cells have edges and corners. He shows that this approach
naturally leads to a second gradient of strain model, if one uses for the microstrains within a
cell a Taylor approximation that is truncated after the second gradient. This idea stems from
[Mindlin 1964, Germain 1973] where the truncation was set after the first gradient already.
Polizzotto proceeds by first introducing a material with microstructure, where a microcell is
attached to every spatial point of the body. The cells attached to inner points of the body
have the form of a ball. Cells attached to regular points of the surface are the piece of a line,
orthogonal to the surface. Cells at points on edges (that are not corner points) have the form
of a circular sector of the plane, that is orthogonal to the edge. Cells at corner points are
portions of a ball. The energy density at each point of the body is the average of the energy
density of the attached cell where the microstrains within the cell are approximated by the

truncated Taylor polynomial. The choice of the cell elements leads naturally to a form of the

20



virtual power, that is very similar to the one derived in [Mindlin 1965|. By combining both
approaches to derive the principle of virtual power, the author obtains a model that allows for
surface effects which stem from a membrane-like boundary layer. In an appendix Polizotto
gives a very pictorial interpretation of higher-order stresses, by using the idea of lever arms
to describe the action of generalized stress tensors on a strain gradient continuum. This very
pictorial section is an important contribution for understanding the abstract concepts that

were introduced by Toupin and Mindlin.

Second gradient of strain in plasticity

In the field of plasticity the second gradient of strain was introduced soon after Mindlin came
forward with his ideas. One of the first publications in second gradient of strain plasticity was
[Dillon & Kratovchvil 1970], where a framework that is formally similar to Mindlin’s is used to
model perfect plasticity and linear work hardening under small strains. The motivation of this
approach lies, as in many publications on gradient plasticity, in the interaction of dislocations.
Even though clearly inspired by Mindlin’s work, the authors suggest boundary conditions,
that are different from Mindlin’s result, by taking into account the gradient of the velocity
at the surface instead of just the normal gradient. Plasticity is modeled by introducing a
residual displacement and its first three gradients as internal variables which makes a con-
strained plasticity theory. The yield function is then defined to depend on the second-, third-
and fourth-order stress tensors associated with the strain and its gradients. An important
feature of this work, setting it apart from Mindlin’s work, is the extension of the second law of
thermodynamics in such a way, that it includes the power associated with the third-order and
fourth-order stress tensors. Important thermodynamical properties of a generalized plasticity
can be derived from this point. Finally perfect plasticity is addressed in a model, that does
not contain strain gradients, while linear work hardening is modeled by introducing first and
second gradients of strain to the free energy. In [Aifantis 1987] small and large deformations
are covered. However the part on large deformations (mainly concerned with kinematic hard-
ening) only covers plasticity without strain gradients but points out where these could enter.

Shear bands are modeled by defining the flow stress as a function of plastic strain minus a
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term linear in the second gradient of the plastic strain which makes this a constrained plas-
ticity model. This approach is elaborated in more detail in [Zbib & Aifantis 1987|, where it is
shown that this approach is capable of predicting width and growth of shear bands by solving
a nonlinear partial differential equation (PDE) that describes the plastic strain in perpendic-
ular direction to the shear band.

Polizzotto recently addressed surface effects in second gradient of strain plasticity in
[Polizzotto 2014]. In this work small deformations are considered and thus the strain is split
additively into an elastic and a plastic part. The virtual power is then assumed to include
contractions of the first and second gradient of plastic strain with corresponding work con-
jugate stress tensors (of higher order). This constrained plasticity model is interpreted as
a micromorphic continuum, where at each point a microcell is attached. The independent
deformation of this microcell is described by the plastic part of the strain and its first two
gradients. The virtual power is split up into an internal and external part. The internal power
has the expected form, which can already be found in [Mindlin 1965] (but with plastic strain
gradients) the external power on the surface of the body differs in its form from those terms
derived by Mindlin. Polizotto introduces tractions in what he calls a "heuristical" appraoch.
In this approach the tractions are two tensors of order two, contracted with the plastic strain
and its partial derivative normal to the surface. This way one obtains two principles of virtual
power: The classical one and an inner one that holds only for the plastic degrees of freedom.
From there surface effects are derived. It turns out, that the model from [Aifantis 1987] can
be cast into Polizotto’s framework in order to model scalar hardening. Finally one has to
mention, that many publications on both, elasticity and plasticity, with second gradients of
strain originated from Aifanti’s work (Altan, Askes, Miihlhaus, Triantafyllidis and Vadoulakis,
to name a few authors). A good overview is given in [Askes et al. 2002] where the authors
categorize publications on second gradient of strain models as either attempts to regularize
elasticity or plasticity, as means of modelling damage mechanics, as micromechanical models

or as homogenizations of a discrete medium.
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Second gradient of strain in thermodynamics

Thermodynamic theories that contain the second gradient of strain are comparatively rare.
One of the earlier publications in this field is [Dillon & Kratovchvil 1970] which has already
been mentioned in the context of plasticity. The thermodynamical part in Chapter 6 of the
present work uses the same methods that are applied therein to derive the the potential
relations from the Clausius-Duhem inequality. A more recent publication in this field is
[Polizzotto 2003] where strain gradients of arbitrary order are introduced but elasticity and
plasticity frameworks are worked out for the setting where the strain and its first two gradients
are taken into account. The frameworks are for small deformations. The framework for
plasticity assumes that the free energy depends on the gradients of the norm of the plastic
strain tensor. The thermodynamic restrictions of the constitutive laws are then derived from
the Clausius-Duhem inequality. In the framework for the purely elastic case the free energy
depends on the first two gradients of the strain tensor. The derivation of thermodynamic
restrictions from the Clausius-Duhem inequality takes a different form than in the plastic case
due to the integrability of the strain condition and is compared to the results in [Mindlin 1965].
The present work has a similar aim as [Dillon & Kratovchvil 1970] and [Polizzotto 2003] but

suggests a unifying framework for elastoplasticity of large deformations.

1.3 Derivation of fundamental principles in mechanics through

the virtual power functional

As already mentioned in the last sections, the approach of deriving the principles of mechan-
ics from the virtual power functional plays an important role for the present work. Apriori
it is neither clear how quantities such as surface tractions or the stress tensor should be
generalized nor how this can be done for the principles of mechanics in cases where higher
deformation gradients are involved. In Section 3.2 it is lined out, how these questions can
be solved through the virtual power functional in the case of second strain gradient mate-
rials. The idea to apply the principle of virtual power to set up a non-classical continuum

theory has been brought forward quite early. In [Cosserat & Cosserat 1909] it is used to
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include local rotations. In [Hellinger 1913, p.622] it is used to include higher strain gra-
dients and therein Piola is cited as one of the first to advertise the principle of virtual
power as a starting point for continuum mechanics. The present work applies the con-
cepts presented in [Bertram & Forest 2007|, where the principles of mechanics are derived
from an objective power functional. It is stated therein though, that the idea of deriving
equations of motions from an invariance requirement for the power has been proposed much
earlier e.g. in [Noll 1963], [Green & Rivlin 1964, [Gurtin & Williams 1971], [Germain 1972],
|Germain 1973], [Maugin 1980], [Gurtin 1981], [Bertram 1983|, [Bertram 1989].

1.4 Motivation and structure of the present work

The literature review in Sections 1.1 and 1.2 shows, that a second gradient of strain frame-
work in continuum mechanics has features that classical or first gradient of strain models
cannot provide. It can model surface effects as discussed in [Mindlin 1965, Polizzotto 2014,
Cordero et al. 2015], allows a body with corners to sustain point forces as explained in

[Mindlin 1965, Javili et al. 2013, Polizzotto 2013] and has strong regularization properties as
indicated in [Lazar et al. 2006]. The authors of [Cordero et al. 2015] showed, that for the
case of shear a second gradient of strain must be taken into account and that a generalization
of their work to the nonisotropic case is highly desirable. The literature review also shows
that in continuum mechanics gradients of strain models are often taylored for a specific field
of application, e.g., surface effects in elasticity or dislocation phenomena in plasticity. A uni-
fying thermodynamically consistent elastoplastic framework for large deformations that can
accommodate all these models would be desirable. In the case of first gradient of strain mod-
els this aim has been pursued in [Forest & Sievert 2003, Svendsen et al. 2009, Bertram 2014,
Bertram 2015], see also [Bertram 2016| on developments in this field. A corresponding second
gradient of strain framework does not exist yet and thus the aim of the present work lies in set-
ting up such a framework. This is done by generalizing the concepts in [Bertram 2015]|, which
builds upon those in [Forest & Sievert 2003, Svendsen et al. 2009, Bertram & Forest 2014,

Bertram & Forest 2007]. Since one of the main advantages of a second gradient of strain
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theory is the fact that a body can sustain point and line forces on its corners and edges, it is
then shown how the behavior of classical continua and first or second gradient of strain con-
tinua under point and line forces can be modeled with a FEM implementation. The present
work is structured as follows. In Chapter 2 notation and some preliminaries in mathematics
and mechanics are given. In Chapter 3 it is shown how the virtual power functional can be
used to generalize the basic principles of mechanics (such as Euler’s laws of motion, Cauchy’s
laws or the principle of virtual power) for a second gradient of strain framework. This is
done by applying the results from [Mindlin 1965] and [Bertram & Forest 2007] to the case of
a power functional that depends on the velocity and its first three gradients.

Next follows Chapter 4 which can be regarded as the core of the present work. In this chapter
generalized material strain and stress measures are derived by pulling back the stress power
to the reference placement. It is shown, that this procedure naturally yields two sets of ma-
terial stress and strain variables for the envisaged framework. The present work relies on
material variables because they do not require the introduction of objective time derivatives
of the strain and stress variables. One set of variables is chosen to develop the framework
in the following sections. In Appendix A it is shown, that this framework also works with
the other set of stress and strain variables. In Appendix B it is laid out why gradients of
the right Cauchy-Green-tensor, which were used for example by Toupin in [Toupin 1962|, are
less suitable for the framework in the present work. In the following sections the transforma-
tion behavior under changes of the reference placement of these strain and stress measures
is investigated and the concepts of material isomorphy and symmetry are generalized. This
allows later the generalization of elasticity and elastic isomorphisms. In the following Chapter
5 the generalization of plasticity for second gradient of strain materials as well as a split of the
deformation power into an elastic and a plastic part is presented. A generalization of harden-
ing rules and yield criteria is also presented and turns out to be a straightforward extension
of these concepts in classical and first gradient of strain continuum theories. In Chapter 6
it is shown that second gradient of strain materials can be modeled in a thermodynamically
consistent form. This is done by introducing the set thermodynamic variables that account

for the first and second gradient of the strain and the Helmholtz free energy. The elastic
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and plastic behavior of a second gradient of strain material, described in Chapters 4 and 5
is then embedded into the thermodynamical framework. It turns out that the second law of
thermodynamics in the form of the Clausius-Duhem inequality yields the thermoplastic po-
tential for the generalized stresses as well as restrictions of the yield and hardening rules. It
is also shown how elastic and plastic deformations contribute to changes of the temperature.
Chapter 7 presents a FEM implementation of an elastic second gradient of strain continuum
with prescribed point and line displacements. This Chapter has the aim of illustrating the
advantages that a second gradient of strain continuum has, when concentrated point and line
forces have to be modeled. Using Lagrangian multipliers the higher gradients of the strain are
included in a standard FEM framework. A tetrahedron and a cube with prescribed point and
line displacements is examined as a classical continuum as well as a first and second gradient
of strain continuum. The results show that only the second gradient of strain continuum yields
solutions where stress and strain measures do not tend to a solution with discontinuities as the
mesh is refined. Throughout the present work some results are obtained from rather lengthy

computations, which are presented in Appendix C.
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Chapter 2

Preliminaries
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2.1

2.1.1

Preliminaries in mathematics

Tensor analysis

First the tensor notation is introduced.

Tensorial quantities are printed in bold letters. In most cases the order of the tensors

@) 4
will be denoted above it to avoid confusions. As an example A, A denote two different

tensors: one of order three and one of order four. If the context does not allow any
confusion tensors will be denoted without the indication of their index above them. All

tensors in the present work are real tensors over R3.

Tensor contractions for tensors A = A4;, ;. €;, ®..®e;,B=D5j j.e;,®..®e€j,,

each of sufficiently high order n and m, respectively, are denoted as follows:

(2.1)  A-B:=A4 i, 1aBajp. jn€i, ® ... 0e,  De;, Q... Qe

(22) A:B:=A; i, cavBabjs.jm€i ®...0€;,_,Re;, ... .Qe;,
(23) AB:= Al in_sabeBabejs.. jm€ih © . Q€ Qej, R ... Qej,
(2.4) A B := A i, _sabedBabedjs...jm€i @ ... @€, , Rej, D...Qej

(2.5) A ... B:= Ai1~~~in—pk1-~~kkal--~kpjp+1~~~jmei1 RX... R €in p (9 €11 ®...R €.,

p times
where {e, ez, e3} are an ONB of R3.

For a tensor A of order n with ¢ < j < n one defines Al7] a5 the transposed of A with
respect to the i*" and j'" index. With respect to an orthonormal vector basis (ONB)

one thus writes

(2.6) Ald] = Ay kjoki kn€hy @ . Q€ ® .. Q€ @ ... e,

AR denotes the right transposed of the tensor A i.e. the interchange of the last two
indices with respect to an orthonormal basis. Thus one can write A% = Al=1nl For

n =2 A is a second-order tensor which yields AT = AR,
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A" denotes the left transposed of a tensor A i.e. the interchange of the first two
indices with respect to an ONB. This yields AX = A2 For n =2 A is a second-order

tensor which yields AT = AL,
e Symmetrisations of a tensor A of order greater than two will be abbreviated as follows:
[Zvj] r h .
(27)  2sym |A] := A + Al]

0 g
(17]) r 7 1 L.
(2.9) skw |A| = §(A _ A[m])

If A is a second-order tensor one obtains the classic definition of the symmetric part

of a tensor:

(2.10) sym[A] = %(A + A2y = %(A +AT)

e For a second-order tensor A, one defines its axial vector azi(A) as the vector that

fulfills
(2.11) azi(A) x w =skw [A} WL

for every vector w

(2) @ !
e The inverse of a second-order tensor A is denoted by A . The components of A
o1 2y~

with respect to an ONB are denoted by A,, . This is an abuse of notation since A,
does not neccessarily equal 1/ ﬁab. However confusion will be avoided by denoting the
multiplicative inverse of a real number z € R by 1/z or % It is possible to define the
inverse for tensors of even order, while for odd-order tensors this is not possible. Since
only the inverse of second-order tensors is used in the present work, the definition of the

inverse is only given for this case.

2
e The second-order identity tensor is denoted by I and the fourth-order identity
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(4)
tensor is denoted by I. (In general one could introduce even-order identity tensors.

Identity tensors of odd order do not make sense.) For a vector v and a second-order

(2)
tensor F one thus obtains

(n) (n)
The zero tensor of order n is denoted by 0 such that for every nt*-order tensor T

(n) (n)

(214) 0 ... T=0
~~

n times

(2)
The determinant of a second-order tensor F is denoted by J,,,.

The scalar product between two tensors A, B of order n € N can also be denoted by

(A,B) such that

(2.15) (A,B):=A ... B

n times

This notation is introduced, since it allows compact notations for tensors of unknown or

arbitrary order.

Important sets of tensors

(2.16) 7., denotes the set of all invertible second-order tensors.

(2.17) <C//m denotes the set of all symmetric, positive definite second-order tensors.

(2.18) i denotes the set of all orthogonal second-order tensors with positive
determinant.

(2.19) Z/wsn denotes the unimodular group, i.e., the group of all second-order

tensors with determinant of absolute value one.
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e Gradients are denoted as follows

(2.20) Grad() denotes the first gradient.
(2.21)  Grad'l() denotes the second gradient.
(2.22)  Grad'() denotes the third gradient.
(2.23) Grad'V () denotes the fourth gradient.

The order of the gradient is indicated by Roman numbers to avoid confusion with a
transposition, which is indicated by Arabic numbers. A higher-order gradient of unde-
termined order n is denoted by Grad™. Similarly, repeated application of the divergence

operator to a tensor field T is denoted by

(2.24)  div™(T) := div(div(T))

(2.25)  div"(T) := div(div(div(T)))

where the roman numbers prevent confusion with an exponent.

e Time derivatives

Time derivatives are indicated by a dot

.. 00

(2.26) ()°®:= ==

e For a second-order tensor A one defines
(4)

(2.27) Ka:=A"'-Grad'l(A)

e The Rayleigh product is denoted by "x". For a second-order tensor F its action on a

tensor basis element €;, ® ... ® e; with respect to an ONB {ej, e3, e3} is defined as

(228) Fx(e;®..®¢€,)=F-¢,..0F ¢,
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If F is the differential of a diffeomorphism, the Rayleigh product can be interpreted as

the pushforward of a contravariant n-th-order tensor.

n-n

e By "o" a product will be denoted, that is very similar to the Rayleigh product. For a
second-order-tensor F its action on e;; ® ... ® e;, with respect to an ONB {e1, ez, e3} is

defined as

(229) Fo (el‘1 ®...Q ein) = F_T - & F. €, ®..& F. €;,

If F is the differential of a diffeomorphism, the o product can be interpreted as the
pushforward of a n-th-order tensor where the first entry is covariant and the others are

contravariant.

e If not stated otherwise, B(t) denotes a body in R? with smooth surface dB(t) and v (t)

is a smooth velocity field on B(t). The variable ¢ stands for the time.

Remark 2.1.

Let B and B be two three-dimensional regions and « : B — B be a smooth mapping
between them. Define %:: Grad(k). All quantities in B are marked by underlining
them. In index notation partial derivatives with respect to variables in B are denoted

by ”,”, partial derivatives with respect to variables in B are denoted by ”,”. Then the

following equalities hold:

2 2 \[23 @71\ 23]
(2.30)  Grad(P )=- P .((Gmd(P)) & >

, 3
(2.31)  Grad(K;) =K —[K - K<;>][2’4]

P P P
(3) @ T @)
(232) K<2>71 = — P OK<2>
P P
(3) @~ T (3) 2324 (3) ()
(233) Grad(K,—)=—P  oGrad(Ky)+ 3sym | Ky - Ky |)
P P P P
(4) @~ T (4) 2324  3)  (3)
(2.34) K, =P o- Ky + 3sym Ky K |)
P P P P
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Proof.

The proof will be given by computing components with respect to an ONB {eq, ez, e3}.

@ @7t

)
(2.35) I=P . P

(2) 2t (@
(2.36) = 0=Grad(P - P)

(2) @ @) @2t )
(2.37) = 0=[Grad(P )P P12+ P .Grad(P)

27! 2) 2! (2)
2.38 < |Grad(P PPl = - P -Grad(P
Grad 23] pl23] Grad

@1 @t @) 2t
(2.39) <Grad(P )=—-P [Grad(P)3. P |23

(3) @t (2) 27 12)
(2.40) Grad(K ) =Grad(P  -Grad(P)) = (P, PaB~)5€a Qe ey X es
2 ),

@1 (2 )
(2.41) = PoagPapy T Paa Papys €a@esRe, @es
212 @ e @712
(2.42) :< PogPucsPea Papy + Poa Pasps )ea RegRe, X e;
ERG) @2t 2 @ E )
= [Kp KP4 P Grad!(P) =K, —[Kp) - K|
P P P P P
(3) @ @t
(2.43) K<2>—1: Poaa- Pogr€a®eg®e,
P
@ @t @t
(2.44) - Paapab Pbc,'ypcﬁ €a ®65 ®e“/
@ @t @le!
(2.45) == PaaPap PocdPep Pay €a®ep®@ ey
@~ T 3
=P oKy
P
=T —1 —1

(2 (3) 2 2 2
(246) Grad(K ,-1) =—Grad(P o Kp) =—(PacdPay Pcs)s€a ®esR e, es
P

@ @ tet @t
(2.47) =—(PacdPay Pcg)e Pes €a ®egRe,®es

34



2 @ty

@ @ tele @ te!

(248) :(_ PacldePdfy Pc/g’ Pes — PaclchIB Pdf PfglePg'y Pes
@ @t te @te!
- Pacld,Pd»y Pcf PfgiePg/g P )ea Reg®eyRe;s
2 @'e eoleltet @ eoltelte @te!
(249) :(_ PafPfg chldepd’y PC,B Pes — PQCLdPCB Pdf PfgzePQ’Y Pes
@ @'e e @le!
- Paczde’Y Pcf PfgiePg/g Ps )ea Reg®eyRe;s
@ T @ T 3 @
(2.50) =P O( K, )-i' P O( Kp - Ky )
P P P
@ T 3 3 (23
P P
with (2.31)
o (3) G B L
(2.51) — P o(Grad(K ) +[Ky - Kp]*9)
P P P
@ T 3 @ @ 3 B3 (23
P P P P
" (3) T A
(2.52) =P °<Gmd(K<2>) + K - K59+ Koy, - Koy,
P P P
@ @R
+ K, - KP
P
@ T (3) 2324 r3) @)
(2.53) =P o(Grad(K<2>)+ 3sym [K<2> - Ky ])
P P P

For the proof of (2.34) one makes use of the fact that (2.30) can be rewritten as

-1 1

2) 3) (@271 2)”
(2.54) Grad(P )= —[(Kp-P )23.Pp 123
Using (2.54) one can write

(4) 2) 27t
(2.55) K, -1=P -Grad(Grad(P ))
P

) 3 @1 27!

(256) =— P -Grad([(Kp - P 3. p 23]
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(4)
In index notation the components of K , -1 can thus be written as

@ (3 @ 1!
(2.57) — Paa [K o chpgb],d

(2) 2
where in a slight abuse of notation the components of P are denoted by P,; . One continues

the equation by applying the product rule repetitively (as has been demonstrated in the other
parts of this proof) and obtains

(2)
(258) =-— Paa {

(3) (3) @t et @) 3) @ et
- KPMKPMPQbPEdPQC - KPMKPMPQCPQbPEd }

(4) (3) (3) @ ey !
{ KpPapep = KPapp K Ppep }

This yields

(4) @~ T (4) 2324 - 3) 3
P P P

Remark 2.2.

The mapping ()~! that maps an invertible tensor to its inverse is differentiable on the
2)

open set of all invertible second-order-tensors. For an invertible second-order-tensor F

the following equality holds with respect to an orthonormal coordinate system

(2) 1,1
0 2 (2
(2.60) g;c =— Foe Fye
0 Fey
Proof.

@712
(2.61) F oz F 2c= 0ac
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OF, @ 279 Fae
2.62 or zc
Fef F@f
@t 1 EERC) B
o F, (2 @ (2) Fay 2
(263) < (2) nych == Fgu Ty yc
O Fey 5. 9 Fey
~——
=6zelyf
27! 1,1
22
(2.64) NG Z;‘C =— Foe F e
0 Fef

2.1.2 Differential geometry

Definition 2.1. Tangential decomposition
On a smooth surface with normal vector n, one can decompose the gradient of a smooth

tensor field A into a tangential part grad,(A) and normal part grad,(A):

(2.65) grad(A) =grad(A)- (I —[n®n])+grad(A) - [n® n]

gradi(A) grady (A)

This definition gives rise to a decomposition of the divergence

(2.66) div(A) = divi(A) + div,(A)

Remark 2.3. Multiple application of Gauss’ theorem

(s)
Gauss’ theorem yields for a smooth tensor field T of order s:

(s)
(2.67) / (T, grad*~*(v)) dv
B(t)

(s) (s)
= / ((T -n),grad*2(v)) da — /(div(T),gradS_Q(v» dv
aB(1) B(t)

This theorem can now be applied again to the integral over the body on the right hand
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side of Equation (2.67) above. Therefore by subsequent application a gradient term in the
body is removed and a divergence term is created instead. At the same time a gradient

term is added in the surface integral.

Theorem 2.1. Surface divergence theorem
For a smooth tensor field A of any order on a smooth, closed surface 0B with normal n

the following equation holds:

(2.68) / divi(A) da = / divi(n) A -n da
~——
8B(t) 8B(t) =Kkm

The term &, is the negative mean curvature.

Proof.

A proof can be found in [Brand 1947, pp.217].

Remark 2.4. Dropping tangential tensor components

Let A be a smooth tensor field of order s and T a smooth tensor field of order s + 1.

Then
/(T,gmd(A)) da
0B
(2.69) = /(T,gradn(A» + (T, grad,(A)) da
0B
(2.70) = /(T,gradn(A» + divy (A NS T) — (divy(T), A) da
9B s times

Apply Theorem 2.1:

(2.71) = /(T,gradn(A)> + divy(n) (A NS T)-n — (div,(T),A) da

9B Ko s times
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2.1.3 Functional analysis

The following mathematical definitions will be needed in the present work.

Definition 2.2. Completion
A metric space M is complete if every Cauchy sequence in M is convergent in M. If M
is not complete one defines the complete metric space M, as the space that contains M

as a dense subspace. M is called the completion of M.

Definition 2.3. L¥ Spaces
Let B C R? be a body and 1 < p € R. One defines LP(B) as the space of all measurable,

real-valued functions such that the Lebesgue integral
@) [ 17
B

exists.

Definition 2.4. C*Functions
Functions for which the k-th derivative exists and is continuous are called C* Functions.

The set of all such functions on a body B is denoted by C*(B).

Definition 2.5. The weak derivative
Assume that B C R? and f € L?(B). Let i = (i1, ...,4,) be a multiindex. Then g € L?(B)

is the i-th weak derivative of f if for every testfunction ¢

Il
(2.73) /g(ﬂ«")¢( |/ auifbazim

B

n
with |i| = > ig.
k=1
For a tensor field the weak derivative is defined by applying (2.73) to each component.

A detailed introduction on the topics of this section and the last sections can be found in

[Brand 1947] and [Adams 1975].
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2.2 Preliminaries in mechanics

Since the present work should be regarded as an extension of the classic elasticity and plasticity
as presented in [Bertram 2005], this section introduces some basic concepts in the spirit of
[Bertram 2005]. The present work deals with large deformations of a body which occupies the
volume B; at the time t. An abstract material body is a three-dimensional manifold with

boundary denoted by B. The time-dependent, smooth map

(2.74) Kt : B = R3, ky(B) = By

is called the spatial placement of B or also the momentary placement. One also intro-

duces a reference placement

(2.75) ko : B = R3, ko(B) = By

The (large) motion of the body is described by the one parameter family of mappings

(2.76) x:: Bo = R®, x4(Bo) = By

Coordinates in the reference placement are called material coordinates, coordinates in the
spatial placement are called spatial coordinates. The reference placement is not unique. For
two reference placements x and s one calls the composition xsx~! the change of reference
placement. Figure 2.1 is a visualization of this setting. Gradients in the reference placements

are denoted by Grad(), gradients in the spatial placement are denoted by grad().
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0=

b x@%

t

B,

Figure 2.1: Spatial and reference placements of an abstract body manifold

In the present work the time parameter ¢ will be suppressed sometimes. The velocity field is

denoted by
(2.77) v:=x°

Material gradients are denoted with a capital letter and spatial gradients with a lower case

letter. The gradient of the motion is denoted by

(2.78) F := Grad(x)

The right Cauchy-Green tensor (a strain measure) is denoted by
(2.79) C:=FT.F

This yields for the spatial velocity gradient

(2.80) grad(v) =F°* -F~!

The Cauchy stress tensor (which is a spatial tensor) is denoted by T, the (material) second

Piola-Kirchhoff Tensor is denoted by

(2.81) T?*K .= pFt.T.F T
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The material stress tensor is defined as
(2.82) S:=Jp'TPK
The (global) stress power in classical continuum mechanics is defined as

(2.83) Pi= /T : grad(v)dv — /s . CodV = /p v = /p Lm.

Po
B: By By By

where dv and dV denote the spatial and material volume element, respectively, p and pg

denote the spatial and material mass density, respectively, which implies
(2.84) p=Jg po

Furthermore p is the local stress power in classical continuum mechanics. This definition

of the stress power needs to be generalized in the present work.
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Chapter 3

The virtual power in third-order

continua
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3.1 Chapter introduction

This chapter applies the concept presented in |[Bertram & Forest 2007] for a generalization of
the virtual power to third gradient of the strain theories. This approach allows to deduce what
higher-order strain and stress measures look like. In the present work they occur as tensors
of order two, three and four. The existence and form of generalized stress tensors is not a
trivial topic. In the literature several approaches exist. Many authors such as [Mindlin 1965],
[Polizzotto 2012] or [Dillon & Kratovchvil 1970] simply postulate that the stress power or vir-
tual work has a certain form with stress tensors being work conjugate to strain gradient related
terms. Similarly a certain elastic energy or an action functional can be postulated to have
a certain form, as done in [Auffray et al. 2015], [dell'Isola et al. 2015] or [Javili et al. 2013].
Therein stress tensors are derived from the first variation of the functional. Boundary condi-
tions and tractions can be derived once the virtual power or virtual work has been established.
An alternative approach to derive the existence of generalized stress tensors for higher-order
strain gradient materials can be found in [dell'Isola et al. 2016]. In this work the authors
generalize Cauchy’s tetrahedron argument. This requires to equip a body’s surface with a
surface structure of what the authors call "wedges" which are defined through additional nor-
mal vectors on the surface. However, the approach through the stress power or virtual work
is the most common. In Section 3.2 it is assumed that the virtual power is a functional that
is independent of the observer. These assumptions allow to derive the principles of classical
mechanics, such as the principle of d’Alembert, the Newton-Euler laws of motion and a global
form of the principle of virtual power. Then Riesz’ representation theorem is applied to the
virtual power functional which yields the generalized stress tensors of a third gradient of the
strain theory. In Section 3.3 the boundary conditions for a second gradient of strain material
are derived. This is done by applying the surface divergence theorem to the form of the power
functional that Riesz’ presentation theorem yields. This approach stems from |Toupin 1962]
and [Mindlin 1965]. It has been presented in many works ever since such as [Germain 1972,
[Dillon & Kratovchvil 1970], [Polizzotto 2013] or [Javili et al. 2013]. The boundary conditions

are derived for a body that has a smooth surface. In [Mindlin 1965| the boundary conditions
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are also derived for a body with corners and edges and these results will be needed in Chapter
7. Since the presented procedure for the derivation of boundary conditions of a body with
smooth surface or with edges and corners is well established in the literature it is only outlined
for the case of a body with smooth surface. From this it becomes clear how the concept can
be extended to the case of a surface with edges and corners. This section also contains a
short review of the methods and results to derive the boundary conditions in a higher-order

continuum.

3.2 Generalization of the virtual power for higher-order con-

tinua

One assumes that a body B with smooth surface B has a smooth velocity field v = v(t) at any
time t. In certain parts of the present section two observers ¢ and 1 need to be distinguished.
Two observers only differ by a rotation and a shift vector. The observer dependence of a
quantity is indicated by an index. In those cases, where only one observer is considered, the
index will be suppressed. Two observers see a motion x4 and x, respectively. Since in the
present chapter only the momentary placement is of interest the position vectors ry and ry

are used. For the observer ¢ one obtains

(3.1)  the motion 'y = Xo,
(3.2)  the velocity ry, 1= vy = X3 and

(3.3)  the acceleration 13’ 1= vy = x3

Basic assumptions

Assumption 3.1. Principle of determinism
For every motion of a body x4 w.r.t. to an observer ¢ there exists a power functional

7¢(Xs)- Its value is zero if the momentary velocity is zero everywhere.

(1)
(34) 7T¢(X¢,V¢) =0 if Vo = 0
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Assumption 3.2. Principle of objectivity
A motion is dynamically admissible if and only if the power functional for the body is invariant

under changes of observer:

(3.5)  me(xe) = my(Xy)

Corollary 3.1. Euclidean transformations
(3.4) and (3.5) imply that for two observers ¢ and 1 that differ by a rotation matrix Q(¢) and

a shift vector c(t)

(3.6)  ry(t) = Q(1) - ry(t) +c(t)
(3.7)  va(t) = Q1) - vy(t) + Q°()Q'(1) - (ry(t) — c(t))

wx[rg(t)—c(t)]

Definition of the space of virtual velocities

One is tempted to consider the power functional of an observer ¢ as a linear function of the

velocity. This is not correct. One has to introduce first the linear space of virtual velocities:

Definition 3.1. Space of virtual velocities
The space of virtual velocities is denoted by §Vj. It is defined as the space C*(By) i.e.
all k-times continuously differentiable vector fields on By, equipped with a scalar product

(.,.) defined for dvg, dwy € 6V,

(3.8)  (0vg,owy) := /5v¢ 0w
By

+ grad(dvy) M(éww

+ ...

——k ——k

+grad (6vy) ..., grad (0we)dv
k+1 times
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The scalar product in (3.8) defines a norm on §V;

(3.9)  [lovglly o
) 1/2

dv

2
+ ..+

—k

grad (6ve)

——II

— 2
= /\(5V¢\2+ ‘gmd(évgb)‘ + |grad (6ve)
B

The weak gradient g/r\c;i coincides with the strong gradient grad since the fields in this
definition are sufficiently smooth.

Virtual velocities transform like velocities:

(3810) v4(P,1) = Q1) - vy (P,1) + Q*(1Q"(1) - (xy (P, T) — (1))

=wx (rw(P,T)fc(t))

Assuming that Equation (3.10) holds is fundamental in the definition of the space of virtual

velocities. It equips the mathematical space with a mechanical property, that allows the

deduction of the fundamental principles of mechanics in the following sections.

Definition of the virtual power functional

The completion of §V,, with respect to the norm in (3.9) is denoted by V. Then §V,, equipped
with the scalar product from (3.8) is a Hilbert space. The reason why m can be equipped
with such a scalar product is that the limit of a sequence in 0V}, lies in L?. Such a limit might

not be differentiable though! The virtual power can be extended to a functional on m:

Definition 3.2. The virtual power functional

The virtual power for an observer ¢ is a mapping 67 (X, ) : 0V, — R which
1. is continuous and linear,

2. generalizes the mechanical power

(3.11)  6mg(xes Vo) = Ts(Xs)
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Definition 3.2 implies that the following transformation behavior can be assumed for a second

observer if it is known for the first.

(3.12)  dmg(xg, 0ve) = 0Ty (X, 0Vy) + To(Xg) — Ty (Xy)

The definition of the virtual power functional does not ensure uniqueness. The question of
existence is complicated, since Definition 3.2 prescribes the values of a functional on a certain
set of vector fields and then assumes existence of a functional on V' that assumes these val-
ues on this set. Whether such a functional exists, depends on the set where its values were
prescribed. In many cases it is reasonable to assume the existence of such a functional. (A

detailed proof for which cases the functional exists lies beyond the scope of the present work.)

Forces and moments

Riesz’ representation theorem ensures the existence of a generalized force f; € R3 and a

generalized moment m, € R? such that

(3.13) 0mp(Xgp, V) = £, - 0v for constant v € 0V

(3.14)  0mg(xg,w X Tg) = my, - w for constant w € §V;

This yields

Definition 3.3. Resultant forces and moments

(3.15) Resultant force: fo :=1f,+ /r;)'dm
B

(3.16) Resultant moment: mg, := mg, + /r¢ X rg’dm
B

One then deduces the following
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Theorem 3.1. Properties of the generalized force and moment

(3.17)  mp(xe) — mp(xw) = £ - Vo + mg, - w

(319) m :mo‘f'(ﬁ Xf

Here Q denotes the rotation by which the two observers ¢ and ¢ differ and 0 and 0’

—
two points of reference for the moments. 0’0 denotes the vector, that connects these two

points.

Equation (3.18) shows that generalized forces and moments are objective and Equation (3.19)

means that Varignon’s principle holds.

The principles of classical mechanics

The main principles of classical mechanics now follow from Theorem 3.1 as

Corollary 3.2. The principles of classical mechanics
A motion is dynamically admissible if and only if for one observer (and thus for all) one of

the following holds

(3.20) Principle of d’Alembert: £, =0and my, =0
(3.21) Newton-Euler laws of motion: f, = /r;)'dm and moy = /r¢ X Tg dm
B B
. obal principle of virtual power: vo, 0w € R® 1 £, - dvo + myy - 6w =
3.22) Global principle of virtual Vovo, 0w € R? 1 £y - 6 06 0w =0

Riesz’ representation of the power functional

0Ty is a continuous and linear functional on m Therefore Riesz’ representation theorem
1
from [Adams 1975, p. 5, theorem 1.11] can be applied. It exists a unique vector field T 4€ m
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such that for every dvy € Vs

M P
(3.23)  Imy(dvy) = / Ty -0vy+ grad(Ty) : grad(ovy)
B(t)
+...+grad (Ty)) ..., grad (0vy)dv
k+1 times

(L
Riesz’ theorem says that in general the field Ty is only differentiable in the weak sense even

—_~—

if dvy is differentiable in the classic sense. (grad denotes the weak gradient and coincides

with grad in case of differentiability in the classic sense.) However |[Adams 1975, Theorem 6.2
(L
PART III, p. 144] says that in the case, which is considered here, T is a C*=2 function which

means that the first k-2 gradients in (3.23) are derivatives in the classic sense for sufficiently
large k.

The form of the power functional in (3.23) is not suitable for mechanical frameworks which
will become clear later. In order to introduce the concept of stress tensors one needs a

1
representation where the gradients of %(75 can be replaced by arbitrary tensor fields of suitable
order. From [Adams 1975, p. 48, theorem 3.8] one can see that the power functional can also
(1 (2 (k)

be written in a different form: There exists a non-unique set of tensor fields { T ¢, T4, ..., T 4},

each with components in L?(B;), such that

(3.24) Omp(dvy) = / Ty -0ve+ Ty grad(ovy) +..+ Ty ... grad (0vy)dv

B(t) k+1 times

(1) (k)
One has to keep in mind that in general the tensor fields { T, ..., T4} are not differentiable,

neither in the classic nor in the weak sense. They are only L?-integrable. One can show that

(1 (k)
{T4,..., Ty} can always be assumed to fulfill (3.24) and

(i) i-1 (1)
(3.25) T4# grad 1(T¢) forie{2,.. k}

This means one can always represent the power functional 074 in the form (3.24) and choose
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(2) (k) (1)
if the tensor fields { T, ..., T4} are weak gradients of T or not. Equation (3.24) is a mathe-

matical form of the virtual power functional that allows the construction of higher-order field
theories for continuum mechanics. The tensor fields {<T1>¢, - <k>¢} will be interpreted as gen-
eralized stress tensors, which is the reason why it is desirable that they are independent of
1
each other rather than gradient of a C! vector field % The problem here is that in general
<T1>¢, vy <Tk>¢ are not differentiable in the classic sense. This property will be crucial in order
to apply integration by parts and the divergence theorem which will allow not only to derive
boundary conditions for higher-order theories but also to generalize the classic local balance
equations of momentum and moment of momentum. Unfortunately from mathematical rea-
soning it is not possible to substitute <T1>¢, e <Tk>¢ by a set of differentiable tensors. The fact
that C* is dense in L? allows for any € > 0 to find a set of C*°-differentiable tensor fields

(L) (k)
T.p,..., Tey such that

(3.26) |57T54)((5V¢) — (57T¢(5V¢)| S g H(Svcz)Hk72
where 07,4 is defined as

(3.27) (57T8¢(5V¢)

(1) 2y (k) —~k
= / ng) ~5V¢+ T5¢: grad(6v¢) + ...+ Ts¢ gra,d (5V¢)dU.

B(t) k+1 times

However (3.26) allows |67-¢(6vy) — 07y (0vg)| to become large if [|6v||, 5 is large enough. This
shows that the outlined approach to derive the existence of a power functional mathematically
has its limitations. It does ensure the existence of the virtual power functional as well as tensors
that can be interpreted as stress tensors. It does not provide the differentiability of those stress
tensors which would be needed. Therefore the only options to set up a higher strain gradient
framework is to follow the common approach to assume that the power functional has the

form (3.24) and that stress tensors are differentiable.
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Principle of invariance of the stress power under rigid body motions

Definition 3.4. Stress power

In the form (3.24) one defines

2 —~— (k) —~—k
(3.28) P := / Ty: grad(éve) + ...+ Ty ...., grad (6ve)dv
B(t) k+1 times

as the stress power or internal power.

Assumption 3.3. Principle of invariance under rigid body motions
Superimposing a rigid body motion does not alter the virtual power of a motion y. For a

rotation matrix Q(t) and a shift vector ¢(t)

(3:29) P(x(0) = P(QW) - x(t) + e(t)).

It is important to note that assumption 3.3 is not equivalent to corollary 3.1. These are two
independent concepts as explained in [Svendsen & Bertram 1999] and

[Bertram & Svendsen 2001], where kinetic gases are given as an example of a material that
does not obey the principle of superimposed rigid body motion. This distinction of material

properties plays an important role in Section 4.4 for the derivation of reduced forms.

3.3 Derivation of boundary conditions for third-order continua

In [Mindlin 1965] the following procedure for obtaining the boundary conditions of the third-

order theory is presented.

(1) (2) (3) . (4)
(3.30) om(ov) = / T -6v + T: grad(6v)+ T ‘grad*(6v)+ T:: grad®(6v) dv
B(t) Transforms with Remark 2.3
(1) (2) 1,3 84
(3.31) - /{T —div(T) + div' (T) — div! (T)} - v do
B(t)

o @@
+ / {IT —div(T) + div'' (T)]-n}-dv
2B(#)
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(3) (4) (4) )
+{(T —div(T))-n} : grad(0v) + {T n}grad®(6v) da

I il

Now Remark 2.4 is applied to each of the terms I and 1T

®n @ ) T
(3.32) om(ov) = / {T —div(T) 4+ div'' (T) —div"**(T)} - év dv
B(t)

(2) (3) 9
+ / {[T —div(T) + div'* (T)] -n} - v
2B(#)

(3) (4) (3) (4)
+{km|T —div(T)] : n®@n — divy[(T —div(T)) -n]}-ov
(3) 4
+{[T —div(T)]-n}: grad,(dv)
4 R
+{km T:n®n}:grad(év)+ (T n):grad,(grad(dv)) da

i} \VA
Again Remark 2.4 is applied to term III
(1) (2) 7,3 5
(3.33) om(ov) = /{T —div(T) + div' (T) — div' (T)} - 5v dv

B(t)

2 3 4
+ / {IT —div(T) + div"' (T)] - n}-dv
aB(t)

(3) (4) (3) ()
+ {km|T —div(T)] :n®@n — divy[(T —div(T))-n]}-dv

3) (4)
+{[T —div(T)] - n} : grad,(év)

4 (4)
+{(km)) Tm@n®n—div,(T:n®n)} - ov

@ .
+ (T n):grad,(grad(év)) da

VA

Now grad,(grad(év)) in term IV is decomposed additively

®n 2 s T
(3.34) om(ov) = /{T —div(T) + div'' (T) — div""* (T)} - v dv
B(t)
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o @@
+ / {IT —div(T) + div"' (T)]-n} - v
2B(#)

(3) (4) (3) (4)
+ {km|T —div(T)] :n®@n — div[(T —div(T))-n]}-dv

3) (4)
+{[T —div(T)]-n} : grad,(év)

o 4 W
+{(km)* T m@n®n—div,(T:n®mn)}-ov
G
+{T ‘n}:grad,(grad,(6v))

@ . “
+{T ‘n}:gradi(grad,(6v)) +{T -n}:grad:(ov) - gradi(n ® n) da
AV VI

The integrals of the terms ¥V and VI can be transformed by applying the product rule and

then Theorem 2.1 (surface divergence theorem):
(4) (4)
J Yda= [ div(grad,(6v):T n)—divy(T n): grad,(6v) da
8B(t) 8B(t)

(4) (4)
= [ {km T:[n®@n]—divy(T -n)}: grad,(dv) da
OB(t)
(@t (@t
[ Mlda= [ div(év-gradin®@n):T -n)—0v-div(gradi(n®@n):T -n))da
aB(t) OB(t)

(LR (LR
= [ {lkmgradi(n®@n):T :n®n]—div(gradi(n®@n):T -n)}-dv da.
aB(1)
One obtains with these transformations
n 2 A3 e
(3.35) dn(ov) = / {T —div(T) + div''(T) —div"""(T)} - dv dv

B(t)
2 G 4
+ / {IT —div(T) + div'' (T)] - n} - v
aB(1)

(3) (4) (3) (4)
+ {km|[T —div(T)] : n®n — divg[(T —div(T)) -n]}-ov

(3) ()
+{[T —div(T)]-n} : grad,(dv)
o )
+{(km)* T m@®n®n—divy(T:n®mn)}-ov

G
+{T ‘n}:grad,(grad,(6v))
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(4) ()
+{km T: [n®n] —divy(T -n)} : grad,(dv)

LR

+ {[kmgradi(n ®n) : T :n®n]
4>LR
—divi(gradi(n®@mn) :T  n)}-0vda

—

—

After rearranging the terms of this equation one arrives at

The final form of the virtual power

N o J——— O
(3.36) om(ov) = /{T —div T +div'' T —div''" T}-0v dv

B(t)
(2) (3) /4
+ / {[T —div(T) + div"* (T)
aB(1)

) (L , @
—divg(T —div(T) — gradi(n®@n) : T )+ div;(T)]-n

) (@t
— (1 + kp)dive(T) — kmgradi(n @n) : T

@ @ o )
— (T —div(T))] :n®n+ [(ky)” T] :n®@n®n}-ov

(3) (4) (4) ()
+{|T —div(T) — 2div,(T)| - n+2(km) T: n®n} : grad,(év)

(4) )
+{T ‘n} : grad,grad,(0v) da

In the form obtained above the virtual power functional yields generalized forms of the main

principles of classical mechanics. These are presented in the next section.

3.4 Generalization of the principles of mechanics for third-order

continua

Following the lines of |Bertram & Forest 2007| allows to obtain generalizations of the main
principles of mechanics in the third-order theory. The results are given here as a few bullet
points since the concept is explained in detail in [Bertram & Forest 2007]| and its application

is straightforward.
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e For a constant field jv=vy one obtains the generalized force f:

W 2) 3) )
(3.37) f= / ( T —div T +div™ T —div' T >dv
B(1)

=: pb =: p(b — #)

(2) ~ (3 4
+ /{[T —div(T) 4 div** (T)
aB(t)

(3) () 4) o 4
— divg(T —div(T) — gradi(n®@mn) :T )+ divi(T)]-n

—

(4) (4)
— [(1 + &m)divy(T) — Kpgradiy(n @ n) : T

(3) () o, 4
— km(T —div(T))] :n®@n+ [(kn)” T] :n®n®n}da

where b is called the specific generalized body force.

e For /v = dw x r with constant éw one obtains the generalized moment m:

(3.38) m, = / r x b dm
B(t)
(2) (3) (4) (3) (4)
+ / r X ( T —div(T) —l—divH(T)> ~n+2am’<( T —div(T)) -n) da
aB(t)

e Integral form of balance of linear momentum and moment of momentum
It follows from d’Alemberts Principle that a motion is dynamically admissible if and

only if

(3.39) 1. /fdmz /bdm—i— /{[%) —dz’v(@)mwﬂ(%

B(t) B(t) dB(t)

(3) (4 (@t L@
— divy(T —div(T) — gradi(n®@n) : T )+ divi(T)] - n

(4) (@ LR (3) (4)
—[(1 + Em)divi(T) — kmgradimn@n) :T  —Kp(T —div(T))] :n®n

4
+ [(km)? T] i n®n @ n}da

(3.40) 2. /rxf’dm:/rxbdm

B(t) B(t)
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(2) (3) s (3) (4)
+ / r x (T —div T +div T)-n+2am’<(T —div T)-n) da
aB(1)

hold for the body for one and thus for all observers.

¢ Extended Cauchy’s Laws

A motion of a body is dynamically admissible if and only if

) L8 " )
(341) 1 <div(T) — div' (T + div (T)) + pb = pit and
(

2) (2T
T=T

(3.42) 2

almost everywhere in a body.

e Principle of virtual power, integral version
A motion is dynamically admissible if and only if for every év € 6V, for one observer ¢

(and thus for all)

(2) (). I (4) o
(3.43) / T: sym grad(6v)+ T : grad' (0v)+ T:: grad™’’ (0v)
B(t)

= /b'(svdv

B(t)
(2) (3) 7,9
+ / {IT —div(T) + div"' (T)
OB(t)

) ) O e
— divy(T —div(T) — gradi(n®n) : T )+ div;(T)]-n

@ (L 3 W
—[(1 + Em)dive(T) — kpgradim @n) :T  —kp(T —div(T))] :n®n

) .
+[(km)* T] 'n®@n®n} v da

(3) (4) (4) (4)
+ / {[ T —div(T) — Qdivt(T)] ‘n+2(km) T:n®@n}: grad,(6v) da
OB(t)

(4) .
+ / {T ‘n} : grad,grady,(év) da
OB(t)

28



Using the fact that two vector fields 0y (dv) and 92(dv) exist such that
(3.44) grad,(6v) = On(dv) ® n gradygrad,(5v) = 02(6v) ®n @ n
one defines three tensor fields that can be interpreted as generalized surface trac-
tions:
1. the vector field of tractions,
(2) 3) (4)

(3.45) t1 :=[T —div(T) + div' (T)

@ W 0 )
— divg(T —div(T) — gradi(n®@n) : T )+ divi(T)]-n

—

€
h
Y

()
— (1 + kp)divy(T) — kgradi(n @ n) : T

R , (0
— k(T —div(T))] :n®n+[(ky)" T] ' n®n®n

2. the tensor field of double tractions,

B W @ (4)
(3.46) to:={| T —div(T)—2divs(T)| -n+2(kp) T:n®n}-n

3. the tensor field of triple tractions,

(4) .
(347) t3:=T n®n®n

Therefore Neumann boundary conditions for the generalized tractions can be pre-

scribed on the surface 0B(t) in the following form:

(3.48) t1 =t
(3.49) to=t""

(3.50) t3=t5".
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e Balance of power, integral version (obtained by setting év = v)
If a motion is kinematically admissible then the balance of power states that the power

of the external loads equals the change of the kinetic energy plus stress power:

1 (2) @) . 1 (4) I
/ 3PV vdv | + / T: sym grad(v)+ T : grad™ (v)+ T: grad™*(v)
(t) B(t)

(3.51) = / b-vdv
B(t)
(2) (3) 7,4
+ / {[T —div(T) + div'' (T)
aB(t)
(3) (1) (@)FF o
—divg(T —div(T) —gradi(n®@n) : T )+ div;(T)]-n
) (LR @ @
— (1 + km)divy(T) — kpgradi(n @n) ;T —K,(T —div(T))]:n®n

()
+[(km)* T] in®@n®@n}-v da

+ [

8B(t)

B @ O (4)
T —div(T) — 2divy(T)| -n+ 2(kpy) T:n®n} : grad,(v) da

(4) :
+ / {T ‘n} : grad,grad,(v) da
aB(t)
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Chapter 4

A material framework for third-order

elasticity
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4.1 Chapter introduction

In this chapter the foundations for a material third-order elastoplasticity framework are laid.
This is done by extending the second-order framework proposed in [Bertram 2015|, following
the outline of this work. First the generalized material strain variables for a second gradient
of strain theory are introduced in Section 4.2. These variables are obtained by pulling back
the stress power to a reference placement. In turns out that this procedure naturally yields
material strain variables for the classical and first gradient of strain theory but not for the
second gradient of strain theory. In the second gradient of strain theory this procedure yields
two sets of material strain variables. The section also reveals another novum in the second
gradient of the strain theory. It is necessary to abolish the concept that for each material
strain tensor a work conjugate material stress tensor exists. Instead the definition of work
conjugacy has to be modified in such a way that one defines for a set containing a material
second-, third- and fourth-order strain tensor the work conjugate set of a material second-,
third- and fourth-order strain tensor.

One of the material variables that the pullback of the stress power yields is chosen to develop
the envisaged framework for second strain gradient elastoplasticity, while the same framework
is outlined for the other variable in Appendix A. In Appendix B it is shown that a third
possible strain variable, the gradient of the right Cauchy-Green tensor exists but that it is less
convenient to handle than the two other ones.

In Section 4.3 the material work conjugate stress tensors are derived for the chosen set of
material strain tensors, and in Section 4.4 generalized stresses and strains are set in relation
to each other by generalizing the concept of constitutive equations and the elastic energy.
Throughout the chapter all concepts will be formulated for an elastic energy as well as for
constitutive equations. Section 4.5 contains the transformation rules for these quantities
under changes of the reference placement. An important result from Section 4.5 is that the
transformation behavior (under changes of the reference placement) of the material fourth-
order strain tensor depends on the current state of the material third-order strain tensor.

Similarly the transformation behavior of the material third-order stress tensor is dependent
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on the state of the material fourth-order stress tensor and of the material third-order strain
tensor. Such a rather complicated transformation behavior under changes of the reference
placement does not occur in the first gradient of strain theory, where no stress or strain variable
influences the transformation behavior of another stress or strain variable under changes of
the reference placement. What follows are Sections 4.6 and 4.7 where the results obtained so
far are applied to generalize the concepts of elastic isomorphy and material symmetry. This
is a straightforward task but it is clearly more complicated than in the case of a first gradient
of strain theory due to the complex transformation behavior under changes of the reference
placement. The concept of elastic isomorphy allows to define what it means that two points of
a material body exhibit the same elastic behavior and the concept of elastic symmetry allows

to define symmetry groups of a material.

4.2 Introduction of material strain measures

In this section material strain measures are introduced and compared for first-, second- and
third-order elasto-plasticity theories of finite deformations. In this context the order of a
mechanical theory indicates up to which order gradients of the motion are involved. This
means that the classic Cauchy theory is a first-order theory since the first gradient of x
determines the stresses and strains. Therefore one strain and one stress tensor is required in
such a theory. For a second-order theory the stresses and strains are determined by the first
and second gradient of the motion. Therefore two strain tensors and two stress tensors are
required for such a theory. Accordingly in a third-order theory three stress and three strain
tensors exist. The concept of work conjugacy plays an important role in this context. It will

be generalized for second- and third-order theories in this section.

Definition 4.1. Work conjugacy in third-order theories

(2) (3 (4 2 (3 (@
Let {Ex, Ex, Ex} be a set of strain measures and {S x, S x, S x} a set of stress
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measures. These two sets are work conjugate to each other if

2 @ 3 @ @w @
(41) pop:SX:EX—I— SX:EX—‘r Sxi:EX

holds for arbitrary processes.

It is important to note that according to definition (4.1) in the third-order theories a single
material strain tensor of order three or four does not have a work conjugate material stress
tensor or vice versa. This is only the case in a first- or second-order theory. From the following

sections it will become clear, why this definition of work conjugacy is required.

4.2.1 A natural strain measure in a first-order theory

The motivation of definition (4.1) lies in a transformation of the classic stress power.

(2) (2) (2)
(42) P= /1 T: grad(v)dm = /1 T: sym(grad(v))dm = / 11 [F~1% T]: C%m
p p P2

By By By L2
=Jg 8

(4.3) /11 S: cram
po 2

Equation (4.2) shows how the stress power as an integral over the body B(¢) can be transformed
into an integral expression over the reference placement By. In the Cauchy continuum (i.e.
a first-order theory) the most common material strain measure is the right Cauchy-Green
tensor C. Tt is the natural choice since Equation (4.2) holds for the stress power functional.
In (4.2) one makes use of the fact that <'I‘2> is symmetric. This is why only the symmetric part
of grad(v) enters the scalar product in Equation (4.2). The reason for C being a natural
choice is that %C' is the pullback of sym (grad(v)). This fact allows to interpret the second
Piola-Kirchhoff tensor <§> as the work conjugate stress tensor of %C'.

It is very important to note that the symmetry of %7 which follows from the invariance of the

(2)
virtual power under rotations of the observer, plays a crucial role here. If T wasn’t symmetric
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one would obtain for the stress power

11
(4.4) / s T x grad(v)]dm = / s [F~1.F*ldm
po 2

(2)
There is no tensor field X that fullfills

2)°
(45) X =F1.F°

2) (2)
such that in this case X could be used as a strain measure with S being power conjugate to
2)
X.

This can be seen from the standard integrability condition which follows from Schwartz’ the-
2
orem: Assuming that such a smooth tensor field X exists it must be a function of F which
2 2
means X=X (F) and one can write

aXa ° ) — [ ] - °
(4'6) 8F5 cd — ab(F) = Facl cb — Facl(sdecd
0Xap 1
4.7 =F_"0
( ) ach ac 9db

2)
According to the Schwarz theorem for sufficiently smooth X the second spatial derivative of
2
X must have the following symmetry property:

X  0Xw
OF.40F.;  OF.;0F.

(4.8)

2)
Using (4.7) to replace the gradient of X in (4.8) yields

OlF . oa] Ol g
OF.; OFy

(4.9)
Applying the product rule and then Remark 2.2 this transforms into

(4.10)  F ' Fploan = Foo Fy o
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2)
Equation (4.10) does not hold in general which means that the tensor X does not exist.

4.2.2 A natural strain measure in a second-order theory

For a second-order theory one obtains the following equality for the stress power:

1 (2 3) . T
(4.11) P_/p T: grad(v)+ T :grad™ (v) | dm

Bt
11, .4 @ L@@
(4.12) :/ —[F "« T]:C*+[F o T|: Kg |Jdm
P2 ~——— —
Bt 42 1 ®
=Jg~ S =Jg~ S
1 /(1@ 3 .3°
(4.13) :/ - S:C°+ S : Ky |dm
4 o 2
0

(3)
This shows that {C, Kg} is a natural choice for a set of material strain measures because
(3)°
Ky is the pullback of grad!!(v), which has been shown e.g. in [Bertram 2015]. The stress

(2) 3) (2) 3)
tensors S and S are work conjugate stress tensors for % C and Ky, respectively, because

they contribute to the power functional by working on %C' and <I3{>F respectively. It is im-
portant to note that <’:2[‘> in the first-order and the second-order theory takes different roles.
In the first-order theory it represents the whole power functional while in the second-order
theory it only represents a part of it. This is a consequence of the Riesz representation theorem.
Note: In the index notation the components of <I£2F will be denoted by }?abc. An indicator

of the dependence on F is is not used in this case to avoid confusion with the indices of the

components.
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4.2.3 Strain measures in a third-order theory

The results in this section are a consequence of the following two remarks

Remark 4.1.

(4.14) FTograd(v) = ([KK ' - [K K] - [K K] +G7“ad(<13{>.)>

Proof.

(3)°
(4.15)  grad™(v) =Grad (gradH(v)) F'=Grad(FToK ) F!

(3)°
(4.16) =Grad(F-[K -F1#.Fp1).F!
(3)° —1p—17p—1 (3)° —17p—17—1
(4.17) :(Faﬁ,a Kgys Fop Fre Fog + Fap Ky sy Fre Fag

(3) I 3) I
+ Fap Kpys Féb,laFvchadl + Fap Ky F&blFVC,laFadl)ea e’ ®e ®e

In the first term of the sum one substitutes Grad(F) = F - K. In the last two terms one

applies Grad(F 1) =F ! . [Grad(F) - F1]%.

R @
(4.18) =(Fae KepaK gys Py Foc Fog + Fap K gysa Fyy Fre Fo

- F & FF, FAF- 1]
af Kpys Lse Feaplyy Lye Fog

@ L
— Fap Kpys FébleglFﬁa,quchadl)ea ®e’ e’ ®el

Rearranging some terms reveals the form of a pullback

3 1 1
(4.19) =( K gaK gys Fackg I Foy

(3)° 111
T Kgys,a Fapky, Fvc Foq

—<3>. F'Fe, JFsF ' F- ]
KB'Y{S o0& Ea,vtapdiyp Yyc - ad

(3)* _ L
— Kpos Foe FeawFasFy ' F FLea e’ @ e @ ef

@3
(4.20) = KepaK gys FacFyy Fi Frlea @ e’ @ e @ ef
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(3)°
+ Kpysa FapFry Fo Fplea@ e’ @ef @ ef

@ T T e
— K gys Fog' FeanFapF, Fio Frlea @ e” @ e @ e

K ;76 F FeanFapFrs FlFyleq e’ @ef @ e
(4.21) = if:?ggo((;();w (F e F T .fgF T.e7@F T . e%)

+ <13(>;757a (F-eg® FT.F T.e"@F T.e%

- }?;vé FilFeou(F-eg@F 7. e @F 7. e"@F 7 e

- %;376 F Feou(Feg@F 7. 0F 7. e"@F " e
(4.22) = %egaff?;w (F-e.® FT.&xF T.e70F 7. e®)

+ <13(>;757a (F-eg® FT.F T.e7@F T.e%

- }?;75}?(5&” (F-eg0F 7. e"oF 7T.e7@F 1. e

3)°* @)

— K gy Kyav (F-e5®F7T-e6®F*T‘e”®F*T-e°‘)

3) (3)° (3)* (3 (3)* (3) (3)°
(4.23) =FTo ([K K- [K -K®-[K -K]+Grad(K ))
Thus one can write

FT o gradt(v) = ([KK - [K K]* - [<13<

Remark 4.2.

(4)° @ @ e e e
(4.24) Kp=Grad(Kgp) + [Kp - Kp]?4 + Ky - Kg] 24

Proof.

With respect to an ONB one can write

(3)
(4.25) Grad(Kyg)
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(4.26) = Grad(F~!-Grad(F))*
Applying the product rule and (2.30) one obtains

(4.27) = (= Fo! FacsFia Fapy + Fod Fapys) €a @€ @0y @ 5

@*
F

BB
(4.28) = —[Kp Kp

].[214]

Applying the product rule to the first summand finally yields the stated formula
O

In a third-order theory one obtains the following equality for the stress power P from Riesz’

theorem:

1/ (). I (4) I
(429) P :/p< T: grad(v)+ T :grad (v)+ T:: grad (v)> dm

By
1/1 = L 8 3)° LW T 117
(4.30) :/ —[F "« T]:C*+[F oT]: Kg+[F "o T|:: [F ograd'(v)] |dm
P 2 N—_—— N—_—— ———
By (2) (3) (4) Use Remark 4.1
::Jl:1 S ::Jl:1 S =:JI:1 S
1 /1@ (3. 3)°
(4.31) :/ - S:C*+ S : Kp
po \ 2
Bo

4) (3)° B B, 23] (3)° ()
+ S {Gmd(KF) +[Kp - Kpl24 — 25ym [KF : KF}})dm
Use Remark 4.2
1 /1@ 3.3 @ @ 23R4 e B
(4.32) :/<2 S:C*+S:Kgp+ S { Ky — 3sym [KF . KF}})dm

£0
By

This result reveals an important peculiarity of the second gradient of strain theory. The
material fourth-order stress tensor <§> enters a scalar product with a fourth-order and a third-
order strain tensor while in the first- and second-order theory each material stress tensor
only enters a scalar product with the strain tensor of the same order. One has the choice

(3) (3) (3) (4
between {C, Kg,Grad(Krg)} and {C, Ky, Kg}. This is the reason why in definition 4.1

work conjugacy must be defined for a set of stress tensors.
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From (4.31) and (4.32) one can see that there is no natural choice for a set of material strain
measures in the third-order theory. The reason for this is that the pullback of grad'!!(v)

takes the form

@ ® e 3)° (3 3)° (3
(4.33) FTograd(v) = Grad(Kg) + [Kr - Kp]?Y — [Kg - Kg]*¥ — [Kg - K¥]
) ) )

(4.34) = [F7! Grad" (F)]* — [Kp - Kg]>Y — [13<F - Kp]®3 — [RF - Ky]

The right hand side is not integrable with respect to time because it violates standard inte-
4)
grability conditions similar to (4.10). This means that no fourth-order tensor field X exists

such that

@°
(4.35) FTograd(v) =X

and can be seen as follows. Looking at (4.34) it becomes clear that, if a fourth-order tensor
4) 4)
field X existed such that (4.35) holds, a fourth-order tensor Y would exist such that

@ @t e @ e . BB
(436) Y = —[Kp - Kg]?" - [Kg - K] - [Kg - Kg).

)
One can assume that Y is a function of F, Grad(F), Grad'!(F) such that

W @ .
(437) Y apea= Y avea (F, Grad(F), Grad' (F))

(4.38) = — (Fou Fab.)*F! Frea — (Foi Faa )" Fig) Fre — (Fog! Focs) Fig Fapa
(4.39) = — [(~F 5 FFy Fag o+ Faq Foy ) Fir) Fre.d]
—((—Fos F5oFoy Fapd + Fag Faqg)Fa) Frep)

- [(_Fr;SlF(;anglea57C + Faiach:c,B)Fﬁ_yvab,d]

Therefore one can deduce that

4)
QY abed e 1 .
OF. ¢ ; oz, — _FaalFﬁyl [F’Vc,d + ch,ydyd + F“/z,d(Scz]Fab,B
ax,

(4.40)
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(4.41) = —Foo Fpl [Fred + Freylya + Fyzabeo) 00 Foy

which reveals

(4)
0 Y abed

442) S
(4.42) e s

= _Fa_oleB_yl [Eye.d + Freydyd + Fyz,d0c:]0be

=L = 8,7 0nc0oq One thus sees that the second derivative of Y with

s
n,o

. OF. &
Using the fact that z7

respect to Grad(F) would take the form

4)
0 Y abed

443) ———mMm———
( ) aFam,Baan,o

= _F(;C}Fﬁ_ylébx [6m'y(5ncéod + 5m75nc5oy5yd + 5m75n250d502]

According to the Schwartz theorem the terms in (4.43) must be symmetric with respect to the
index triplets (o, x, 3) and (m,n,o0) i.e. these triplets must be interchangeable. This is not
the case. Thus a tensor <§4{> that fulfills (4.35) does not exist. A very similar approach has been
used in |[Krawietz 2015a] and in [Krawietz 2015b| it is shown that even in the one-dimensional
case such a variable does not exist.

Note: In the index notation the components of <I4{>F will be denoted by %{)abc. An indicator

of the dependence on F is is not used in this case to avoid confusion with the indices of the

components.

4.2.4 Comparison of strain measures for third-order theories

In Section 4.2.3 it has been shown that the approach via the virtual power functional, conve-

nient as it is, does not yield a natural set of strain measures in third-order theory. It rather lets

one choose between {C, K, Grad(i?p)} or {C,K, <I4(>F} since these sets appear in (4.31) and

(4.32) respectively. In the present work it is shown that both sets can be used for a material

elasto-plasticity framework that generalizes the approach in [Bertram 2015|. In the main part

of the present work (i.e. the following sections) Gra,d(<13(>F) will be used as a strain measure.
(4)

In appendix A it is outlined how Ky can be used as as strain measure. A comparison of both

approaches shows that the same conceptual framework can be used in both cases. Differences
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(4)
only occur in notation and length of calculations. The framework with Kg clearly yields more

compact formulas and thus seems to be more suitable for further extension or applications
of the presented third-order theory. This becomes particularly clear in Section 5.5 where the
calculation of the plastic stress tensors is more convenient when <I4{>F is used. Of course there
are also many other possible choices for strain measures.

One of them would be {C, Grad(C), Grad'! (C)}. This would be in the spirit of [Toupin 1962]
where Grad(C) has been introduced as a possible second-order strain measure. In appendix
B some important aspects of such a framework are presented. This set of strain measures
seems appealing at first since the set only contains material gradients of C and thus seems to
be suitable for theories of arbitrary order. However appendix B shows that there is a problem
with the transformation of the stress tensors under a change of reference placement. It turns

out that the conjugate stress measures with respect to the power functional (4.29) are very

hard to handle when it comes to changes of reference placement.

4.2.5 Kinematical variables

Definition 4.2. The space of configurations
The following sets of tensors will be used to define the space of configurations in third-

order gradient elasticity and elastoplasticity where u, v, w are vector fields.

(4.44) %m denotes the set of all symmetric, positive definite tensors of order two.
(3) (3) (3)

(4.45)  Zoyf={P |(P u)-v=(P -v)-u},
_ @ @ @
(4.46)  Zo ={P |((P u)-v) - w=((P -v)-u)-w= (P w)-v)-u

(4)
= (P u)-w)-vj

The space of configurations is then defined as

(447)  Coply = Tpmx Coyfx Cony
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The motivation of Definition 4.2 lies in the fact that

(3)
(4.48) {C,K,Grad(Kg)} € %oyt

(4.49) [CKKr}e %

Thus, at a point in the reference placement the current state of deformation of a body is

always described by a set of deformation tensors (generalized strain tensors)

2 @ @
(4.50) {X,X,X}e Zs

4.3 Derivation of material stress measures from the power func-

tional

Starting from (4.31) one obtains

1/1®@ 3. 3°
(4.51) P:/ ( S:C*+ S : Ky

o\ 2
By
@ @ @t @ e . 86 (3)°
+ S [[KF cKp)PY - Ky - Kp]P? — [Kp - Kg] +Grad(KF)} >dm

Apply the following transformation to the term marked with "x"

N I A A SR C )
S: |[Kr - Kg]* — [Ky - Kp|* — [Kg - Kg| + Grad(K®)
(a) @ B e e 3)° @) 3°
(452) =5 abed ( Kadezcb - KacyKybd - KaszZCd + Kabc,d )
G NG M /) S M) @ @ e
(4.53) = ( S abcd K ade K pep — S abed K qey K ypd — S abed K qpz K zed
@ @°
+ S abed K abe,d )
@ @ @ e¥er @ @l w3
(454) =Kzad S adeb K gep — SaCdedby Kacy — Sabde K gez Kap. + SadeKabc,d
@2 @ @ @S @ el e @ (3)°
(4.55) - (KF 'S - S: Ky - S:Kp ): Kp + S Grad(Ky)
@@ @ @ @ @ (3)°
(4.56) - (KF 'S - S:2Kg ): Kp + S Grad(Ky)
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to obtain

11 . oe.e selde @ bl o

(4.57) P—/po<2 S:C*+ S :KF+<KF 'S - S:2Kp ):KF
Bo

@ 3)

+ S Grad(KF)> dm

@ @  eblw @ @l
With a(Kpg, S) =Ky :S — S:2 Ky one obtains

11® . © © @ 8 (3)°
(4.58) :/p £ 8:C° (S ta(Kp, S)]: Kp + S+ Grad(Kg) | dm
0
Bo (3)
=:S
1 (1@ 2 @ @ (3)°
(4.59) :/ 3 S:C*+ S :Kg + S:Grad(Kg) | dm
£o

Bo

Thus a set of three material stress and a set of three material strain measures has been defined
and these sets are work conjugate to each other.

Stress measures: Strain measures:
(2) ., (2) T
(4.60) S:=F "x(Jp T) C:=F"_F
(3) @ @bdw @ @l 3)
(461) S:=F'lo(Jp T)+Kg :S — S:2Kp Kp
(3) (3) (4)
=S =a(KFp, S)
(4) 1 (4) (3)
(462) S:=F " o(Jp T) Grad(Kr)

(3) 3)
It is important to keep in mind that S is not a stress tensor but an auxillary term. S is the
third-order stress tensor of the third-order theory developed in the present work. It has been
(3)
marked by the superscript ~ in order to avoid confusion with the third-order tensor S which

is the third-order stress tensor in the second-order theory.

75



4.4 Third-order elasticity

Definition 4.3. Third-order elastic material
A material is called a third-order elastic material if the stress tensors are functions of

the motion x, of Grad(x), Grad'l(x) and of Grad!!!(x).

2) (2
(4.63) S=f (X,Grad(x),Gradll(x),GradHI(X))

3 3
(4.64) fv (X, Grad(x), Gmdn(x), Gmd”l(x))
f

g =
4) (4
S=

(4.65) (x, Grad(x), Grad' (), Gradnl(x))

These constitutive equations can be reduced by taking into account the principle of invariance
under rigid body motions (Assumption 3.3). It is important to note that the principle of
euclidean invariance (Corollary 3.1) alone does not allow to deduce reduced forms of the
constitutive equations as explained in [Bertram & Svendsen 2001]. Therein it is derived, that

Assumption 3.3 yields the reduced forms, which are in the present case

@ @ ) 3)
(4.66) S=f (C,Kg,Grad(Kr))

SR (3)

(4.67) S=f (C,Kp,Grad(Ky))
@ @ @) (3)
(4.68) S=f (C,Kg,Grad(Kr))

(3)
Note: There is no constitutive equation for S because it is not a stress measure. It is a

partial stress that helps making a comparison to the second order theory and facilitates the

understanding of transformation rules.

Definition 4.4. Hyperelasticity

A material is called hyperelastic if there exists a specific elastic energy

w . %ﬂngR
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such that

1 (1@ , @ 3 o )"
(4.69) p:=— 5 S:C°+ S : Ky + S:: Grad(Kg)

Po
(3) (3) e
(4.70) :w(c,KF,Gmd(KF))
(3) (3) (3) (3)
ow <C, Krp, Grad(KF)) ow (C, Kr, Grad(KF)> .3
(4.71) = e C* 4 5 ' Kp

0 Kp
3) 3)
aw(c, K, Grad(Kg)

(3)
0Grad(K)

3)

+ ) = Grad(Kg)®

(3) (3)
A comparison with the components in (4.59) then reveals for all (C, Kr, Gmd(KF)) € %7%/%

(3) (3)
ow (C, Kr, Grad(KF)>
oC

@ @, @ )
472) S =f (C,KF,Gmd(KF)) = 2pp

3 @)

) )
2/ (3) (3) ow <C, Kr, Gmd(KF)>
473) S =1 (C,KF,Gmd(KF)) — po

3)

0 Kg
(3) (3)
4y (4) (3) (3) 6w<C,KF,Gmd(KF)>
(474) S =f (C,KF,Gmd(KF)) = o0 5
0Grad(Kp)

In the rest of the present work all statements regarding elasticity will be made for the elastic
energy without distinguishing elasticity and hyperelasticity. (A non-hyperelastic material

would be unphysical.)

4.5 Changes of the reference placement

Theorem 4.1. Transformation of strain measures under a change of reference

placement

1

Let x and kK be two reference placements. The composition x o k™ is referred to as

the change of the reference placement (see Section 2.2). Its gradient is denoted by
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3)
A := Grad(x o 571), the pullback of its gradient is denoted by Ka:= A~ - Grad(A),
(4)
the pullback of its second gradient is denoted by K a:= A™!- Grad' (A) and one defines
Ja :=det(A). Furthermore one defines

B: %4x %%x Zror X %3x %f%—) gf%

(3) ) (3) (3)
(4.75)  B(Grad(Kr),Kr,A, Ka,Grad(Ky))

3) ) ) (3) \123
.= AT 0 Grad(Ky) + Grad(Ka) — [ A ~<ATo Kp )][ |

(2,3] s BB
+ 2sym [(A o Kg)- Ka }

Then the generalized strain measures transform under a change of the reference placement

as
(4.76) c=AT«C

(3) R
(4.77) Kr = ATo Kp + Ka

(3) (3) (3 (3) (3)

The function 8 has been introduced in order to facilitate notation.

Proof.
. o . & .
The detailed derivation of the transformation of C and Ky is given in [Bertram 2015]. With

(3)
respect to an ONB {ey, ez, e3} the tensor Grad(A”o Kg) has the components

G
(Aaa chd AEbA'yc)ld
G L3 C)
(479) :Aaald Ka’y§ AébA'yc + Aaa Ka'y(sid A(Sbch + Aaa Ka'y6 AébldA’yc
3)
+ A;Li Ka'y5 A(SbA'ycld

(3) (3) (3)
(4.80) =— A AcapAna Koo AsvAve + Aga Kanse AcdAsbAve + Ag K ans AshaAqe

L6
+ Aaa ch& A(sbchld
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Therefore one can write
(3)
Grad(Kp)

(3) (3)
(4.81) =Grad(Ka) + Grad(ATo Kp)

(3) (3) [2,3](34] (3)
(4.82) :Gmd(KA)f[A_I-Gmd(A)-(ATo F} +ATond(KF)
(3) 2,3
+(A—1-(KF A2 Grad(A )[ (A A3 Gmd(A))

3) (3) 2,3](3:4] 3)
(4.83) =Grad(Ka) — [(A*l . Gmd(A)) . (ATo Kr )][ T AT o Grad(Ky)

28 [, )
+ 2sym [A (Kg -A)28 Gmd(A)}
<

3) 3) (3) 2,3] 3)
(4.84) =Grad(Ka) — [ Ka -(ATo Kr )} + AT 6 Grad(K)

23] [ 2,3 -1
+ 25ym [A (Kp-A)R2Y. A A -Gmd(A)]

3) 3) 3) 3) \123)
(4.85) =AT o Grad(Kg) + Grad(K ) — [ Ka -(ATO K )]

[2,3] (3) 3
+ 2sym [(ATO Kr) Ka }

O
Remark 4.3.
Using the definition of 8 from Equation (4.75) in Equation (4.78) one obtains
(3) T (3) 3)
(4.86) Grad(Kg) =A" o Grad(Kg) + Grad(Ka)
(3) (3)
+AT o ( —[A-Ka Al AL Kg)24
(3) (3) (3) (3)
[KF A KA AT 1 AT ][273][274 [KF A KA AT 1 AT ][3,4])'

Equation (4.86) reveals that the transformation under a change of reference placement of
(3) (3)
Grad(Kg) is similar to the transformation of Kg. In both cases the tensors are pulled back

(3) 3)
by AT and then a tensor is added. In the case of Ky the added tensor is K. In the case
(3)
of Grad(Ky) the added tensor depends not only on A and its second gradient but also on

(3) (3)
Kpg. This means that the transformation under a change of reference placement for Kg only
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3)
depends on the change of reference placement, while for Grad(Kpg) it additionally depends
on the current deformation. This is what sets this material third-order theory apart from the
first- and second-order theories. In the following sections it will become clear that this feature

requires non-straight-forward generalizations of basic concepts from material elasto-plasticity.

Theorem 4.2. Transformation of elastic energies under a change of reference
placement
A constant wy € R exists such that for a change of the reference placement the elastic

energy transform as
2) 3) ) . SN
(4.87) w< C, Ky, Grad(K )) - JA,@(A +C,ATo Kp + Ka,

@) @) 3) 3)
B(Gmd(KF), Kg, A, KA;M(KA))) + Wy

Proof. The transformation of the elastic energy follows directly from its definition. O

Theorem 4.3. Transformation of stress measures under a change of reference

placement

=

One defines the auxillary function v : %, 4 X “, ;X e Con, 4 % %,7{ — g//%

B w @3 @

R A T s BB L
= (A" 0 JA[S —a(KF, 8)]) + (ATo Kp + Ka)"? : (A 0 Ja S)

. ) N
— (A oJs S):2(ATo Kp + Ky )M

Then the generalized stress tensors transform under changes of the reference placements

as

(2) L@ . (2)
(4.89) S —JpE LT ET=A"14%(Ja S)

(3) ) (3) N (3) , (3)
(4.90) S —Flo(JpT)=(A" - FHo(JpJs T)=A o (Js S),
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—
w
=

B w @ @

(491) S =v(S,S,A,Ka,Kr)
(4) 1 (4) L 1 (4) L (4)
(4.92) S =F" O(JE T):(A_ -F~ )O(JFJA T):A_ O(JA S)
(3)
Here one has to keep in mind that S is not a stress tensor in the third-order framework.

3)
Since it is used to calculate S it has still been included in this list. The function v has

been introduced in order to facilitate notation.

Proof.

(493) S =S +a(Kg, S)
(4.94) =A""0(Ja S)+Kg:S — S: 2Ky

(4.95) =A"lo <JA[S —a(Kp, 8)])+ Kg:S —

Apply transformation rules (4.90), (4.77) and (4.92)

N 3 G
(4.96) =A"lo (JA[S —o(Kp, S)}) 4+ (ATo Ky + Ka)'2: (A—1 o(Ja S ))

(4) @ @
— (A—l o (Ja S)> :2(ATo Kp + Ka)'3

@ @ @
(4.97) =:7(S,S,AKa,Kr)

Remark 4.4.

One can also bring (4.91) into a form similar to (4.78), i.e., a pullback plus an additional
@ @ @Ma @ e
term, with (K, S):=Kg :S — S:2 Ky as defined in equation (4.57)

(3) (3)
(4.98) S=A"loJa S

) R NP
+JA<—(A oa(Kp, S)) + (ATo Kp + K»)M2 : (A~10 §)
@ ® ©
(A0 S):2(AT0 Kp + KA)[L?’]).
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This rearrangement shows two important things

1.

One can make an observation similar to Remark 4.3. The relation (4.98) reveals

another major difference between the third-order theory developed here and the
second-order theory in [Bertram 2015]: While g in the second order theory is as a
pullback of <§> with A, its equivalent in the third-order theory, %), is the pullback of
%> plus an ad%itional term, which is responsible for the fact, that the transformation
behaviour of <§> under changes of the reference placement depends on the the current
placement, i.e. on <I?){>F

. At every point of the body one can interpret v as a bijective mapping from gﬂ/g

to %/7{ by only considering the first argument of v. (The other arguments can be
seen as parameters). The reason for the bijectivity in this case is that Ja # 0 for

smooth deformations of the body.

Proof.

(4.101)

Apply transformation rules (4.90), (4.77) and (4.92)
B 5@ 3 G @)
— Ao (JA[S — (K, S)}) 4 (ATo Ky + Ka)'2: ( )

) 3 @
- (A—l o (Ja S)> :2(ATo Kp + Kp )13
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Remark 4.5.
(3)

One can also bring the transformation of S into the form of a pullback.

3) B @ @
(4104) 8 =A™ o (Ju[S ~a(Kp, S)
T T ) ) 1,2 T 12,3 @
+ (AT (ATo Kp + Ka)l 2 - Ja (AT @ A7H23 15
@ 1 1\[1,4 (3) T ) 1,3 T
—(2Ja S: (AP @ A (Ky +AT0 Kp)M9 - A ))
Proof.

Do e ow @ e @ @b
(4105) S =S +a(Kp, S)=A""0Js S +Kp:S - S: 2Ky

(4.106) *=Kp:Ja Saps (AT . eo (A eg) @A e,)® (A e5)

@2 .
(4.107) :KE: JA Sapys AaaA A Alé e’ Re, e, X e
@2 L
(4.108) :KaijJA S aBvs AmA]ﬁA Alé e’ ®eL ®e
@ @ .
(4.109) —5asz]JA S aBys AzaA]ﬁA Alé e’ ®eL e
Set 040 = AL AT
T 7T<3>12 el 14-1
(4.110) =A,, A K ijA S apys AzaA]ﬁ A Al(S e’ Qe Re
Rearranging according to indices yields
G L)
(4.111) Am K, J AzaAjﬁ S apyé AamA Al6 e’ ReLRe
<3>12 @ R I -1
(4.112) :A a:z]JAAWAJB S apyé A" e"®AT ey @A e5
1 @7 T a2 Y
(4113) =A"'o AT Kp:JA(AT®AT)T:S

h (4. ® ©
4114) T A1 (AT (ATo Kp + Ka)'2: Ja(AT @ A™))*
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L Wy e
(4.115) s+ = <2A oJa S ) Kp
@
(4.116) =2JA S abed (AT . e“) & (A_l . eb) & (A_l . ec)

» (3)13 .
® (A ~ed):(KCdfec®e ®e)
13

@) 141 AT aa -1 3 d el
(4.117)  =2Ja Saped Ape Ay (A7 -e") ® (A -eb)®e$®ey:(gcdfec®e ®e )

@) -1 —1<3>13 T La -1 f
(4.118) =2JA Sabed Ape Ayg K,y (A7 - €)@ (A7 - &) @e

Again one can extend the equations by using the Kronecker Symbol §

@ -1 —1<3>13 —1(AT . a -1 i

(4.119) =2JA Sabed Age Aya Koy p AjsAsj (A" e )R (A7 -ep) ®e
N——

=55

Rearranging reveals the form of a pullback

) 3 .
(4120)  =2Ja Sabed Ao Ay Ko Ajf (AT - ) @ (A7 - ep) ® (4;;€")
) (31
4121) =A"lo (2JA S: (A'® A Ky -AT)
(4) (3) (3)
(4122)  =A"'o(2/x S: (AT @A) (ATo Kp + Ka )"+ A7)

Thus by substituting the expressions (*) and (**) one obtains

9 LB ete @ @t
(4123) S =S +a=A""0Ja S +Ky:S -S: 2Ky
——  —

= * = sk

(3) 3@ @
(4124) =A"loJa S +A"lo (A*T (AToKp + Ka)'2: Ja(AT® A1) S )

(4) (3) (3)
~A7 o (274 S: (AT AT (Ka +ATo Kr ) AT)

_ -1 @ =T T () ) 12, T —1\23 _<4>
(4125) =A"'o(Ja S +(A™" - (AToKp+ Ka)?: JaA(AT® AT :S)

=

@ 1 1\14 ) T () 13 T
— (274 S: (Al A M (Ka +AT0 Kp)® - A ))

(4.126) =A"lo (JA[S —a(Kp, S)]

=T T () ) 12 T —1\23 @
+ (AT (AToKp + Ka)?: JA(AT® A1) :S))

B @ @
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@
—(2Ja S:(AT'®A

_1)14 . (KA +ATO KF)13 . AT)

3) 3)

)

O

In summary the following transformations for changes of reference placement have been ob-

tained:

Stress measures:

(2) . (2)
(4.127) S=A"'x%J4 S
(3) B w @ @
(4128) S=~v(S,S,A, K4, Ky)
W (4)
(4129) S=A"'oJ4 S

Strain measures:

c=ATxC
R ) B
(3)
Grad(Kp)
3) (3) (3) (3)

= B(Grad(K¥), Kr, A, Ka,Grad(Ka))

Remark 4.6. Transformation of stre

below.

ss and strain measures under two subse-

quent changes of the reference placement

Now it will be investigated how the stress and strain measures transform under two sub-
sequent changes of reference placement. The results will be needed later for dealing with
elastic isomorphy in Theorem 4.9. Three reference placements r, £ and & are defined with

M := Grad(s o k') and N := Grad(x o k*). This situation is sketched in Figure 4.1

K

K

K

(&)
1

w

| N

@

x lhj [ie>

<

Figure 4.1: Change of the reference placement used in the definition of elastic isomorphy
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Of course two subsequent changes of the reference placement can also be substituted by

a single change of the reference placement. This fact lies behind the following relations:

3 G (3) (3)
(4.130) B(Grad(Kr), Kg,N-M, Kn.m, Grad(Knm))

3 B3 (3) (3) r B
= B(#{Grad(Kr), Kp,N, Kn, Grad(Kn)}, N"o Kg

3) 3) 3)
+ Ko M, K, Grad(Kn)

(4.131) v

(3) (4 (3) (3)
< S7 SuNMaKNMyKF>

By @ LW e B @)
:7(7( S, S,N,KN,KF>,det(N)(N o $),M,Kn, N oKF+KN>

Proof.

3 3 3) 3)
(4.132) B(Grad(KF), KF, N- M, I<N.1\/[7 G?“CLd(KN.M))

Apply (4.78) with respect to the change of reference placement é‘l oK

(3)
(4.133) =Grad(Kg)

Apply (4.78) with respect to the change of reference placement E_l 0K

(3 3 3) (3)
(4.134) =B(Grad(Kg), Kg,M, Kz, Grad(Kwm))

(3) (3)
Now apply (4.78) to Grad(Ky) in the first argument and (4.77) to K in the second argument,

both times with respect to the change of reference placement ' o x

) ©® @ 3) NG IC) 3) )
(4.135) :5(6{Gmd(KF), r. N, Ky, Grad(Kn)},N7o Kg + Ky, M, KM,Gmd(KM))

The proof of (4.131) follows a similar scheme:

) 3 (@ ( )<3>
(4.136 ’y( S.S,N-M,Grad(N-M KF)
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Apply (4.91) with respect to the change of reference placement §*1 oK

—

3)
(4137) =S

Apply (4.91) with respect to the change of reference placement §—1 oK

B w @ @
(4138) =~(8, S, M, Kun,Kr )

3) (4)
Now apply (4.91) to S in the first argument, apply (4.92) to S in the second argument and
(3)
(4.77) to K in the last argument, each time with respect to the change of reference placement

@@ @ @ LW e
),det(N)(N o 8), M, Knm, N oKF+KN>

Remark 4.7. Transformation of elastic laws under a change of the reference
placement
For two reference placements

(3) (3)
e x with strain measures C, Ky, Grad(Kpg), an elastic energy w and stress tensors

@ 3

b 9

(2) 3) B 6 s (3)

(2 (3) (
with elastic laws S=f (C,Ky,Grad(Kg)), S=f (C,Kg,Grad(Ky)),
4 (4 (3) (3)
S=f (C, Ky, Grad(KF))

(3) (3)
e x with strain measures C, K, Grad(Kp), an elastic energy w and stress tensors

@ 9 @

S5,8,8

) @3) (3) @ 6 (3)

(2)
(g, KE, GT’CLd(KE)), i = i(ga KE? GTCLCZ(KE)),

(2
with elastic laws S = f
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(2) (3) (3)
(4.140) f (C,Kr,Grad(Kp))

L@, NI SR I @)
= * * L, IR AN O A, ra F) BF, A, KA, Graal{inp
A« J3' f(AT+C ATo Ky + Ka, 8(Grad(Kp), Kr, A, Ka, Grad(K,)))

@B m (3)
(4.141) f (C,Ky,Grad(Kr))

3) 3 @ 3 @3 (3) (3)
T T
= V(f (A *C,A"o Ky + Ka, 8(Grad(Kr), K, A, Ka, Grad( A))>,

@, - r 8 (3) 3 B3 3) 3)
/(AT «C,ATo Kp + Ka, B(Grad(Kr), Kr, A, K4, Grad(K»))),

P r 8 3)
A ,KAfl,A o Kg + Ka >
(4) 3) 3)
(4.142)  f (C,Ky,Grad(Kp))

L@ NI G @ B 3)
—AoJ; i(A «C, A oKF+KA,ﬁ(Gmd(KF),KF,A,KA,Gmd(KA)))

Proof.

The transformation of the elastic laws for the second order stress tensor can be found in
[Bertram 2015]. The fourth-order stress tensor transforms almost as the second-order stress
tensor, one only has to replace the x product by the o product. Therefore the proof for the
transformation of the fourth-order stress tensor can be obtained from the proof of the second-
order stress tensor simply by substituting the product % by the product o. The reason for this
is that <§> and <§> both are pullbacks of the corresponding spatial tensors while the products
denoted by * and o both can be interpreted as pullbacks. Only for the third-order stress tensor

the newly introduced function v lets the transformations look slightly different:

<

@) ’ G E RG] (3) (3)
i(A «C,ATo Ky + K4, B(Grad(Kg), Ky, A, KA,Gmd(KA))>

o~
—~

33 (3) 3) @ @3 @
(4143) = J(C,Kr.Grad(Kp)) = 8 =7( S, S,A,Ka,Kr )
@ 3 B W B @
(4.144) :7< f (C,Kp,Grad(K)), S,A,KA,KF>
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(4) 3) 3)
At this point one applies ’y( -, 8, AL Kj-1,Kp ) on the very left and very right side of

the equation and obtains

(3) 3 3 3 3 3 3
), NG 3 B ® 3)
(4.145) <:w<f(A +C,ATo Kp + Ka, 8(Grad(Kr), K, A, KA,Gmd(KA))),

@ BB
S, A" ,KA—l,KF>
SN (3) 3 ©)

2 (4) (4)
= 7(7( f (C7 KF7 GT‘CLd(KF))’ S 7A7 KA; KF

Y

N——
|
>
. L
NS
>
L
N
I
N—

3)
The next step is to make use of the fact that ’y( ., S, AL Kj-1,Kp ) is the inverse of

(4) 3 3 ]
7( -, S, A, KA,KF> and obtains

3) O IG)) ORNEC) (3) (3)
T T
(4.146) <:>fy<f(A * C,A"o Kr + Ka, B(Grad(Kr), Kr, A, KA,Gmd(KA))),

T AN 3)
S.A ,KAl,KF) =/ (C,Kr,Grad(Kp))

(4)
As a last step one now applies to the left hand side of this equation the two relations S =
(4) 3) (3) @ . r 3 3) (3) r 8 3)
f(C,Kp,Grad(Kg) ) = f (A" «C,A"o Ky + Ka,5(...) ) and Kgp= A'o Ky + Ky

and obtains the result:

(3) G G) O IG) (3) (3)
T T
(4.147) m(f(A «C,ATo Ky + Ka, 3(Grad(Ky), Ky, A, KA,Gmd<KA))),

@, s 8 3) 3 B 3) 3)
f (AT +C,ATo Ky + Ka, B(Grad(Kr), Kr, A, Ka, Grad(K,))),

. 1 T 3) (3)
A GradA™ A OKF+KA>

NG (3)

=f (C, KF,Grad(KF))

89



4.6 Elastic isomorphy

In this section the concept of elastic isomorphy is generalized for the third-order theory.

The fundamental definition of elastic isomorphy is obtained by extending the corresponding
U
definition in [Bertram 2015| with transformation rules for f and f.

Definition 4.5. Elastic isomorphy
Two elastic material points X and Y are called elastically isomorphic if one can find

reference placements kx for X and xy for Y such that

e In kx and ky the mass densities are identical:

(4.148) pox = poy-

o With respect to kx and ky the elastic energies are identical:

(4.149) wy(kx, ) = wa(kx,")

Remark 4.8. Definition of elastic isomorphy with elastic laws
One can also formulate Equation (4.149) with respect to the elastic laws. One then

requires the elastic laws to fulfill

(2) (2)

(4'150) fX (HX7 ) - fY (’iY7 )
(3) 3)

(4.151)  fx (kx,-)=fy (ky,")

4) (4)
(4'152) fX (HX7 ) :fY (’iY7 )

Theorem 4.4. Criterion for elastic isomorphy
Let X and Y be two elastic material points with arbitrary reference placements ky and
ky and wx and wy the corresponding elastic energies. Then these two points are called

(2) (3) )
elastically isomorphic if and only if there exist tensors Pe . %., Pe gﬂ% Pe %W/Z
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such that

2)
(4.153) POy = det(P)pOX

(3) (3)
(4.154) wy (QX, KEX,MX(KEX))
T T

@) ) 3) B B @M
:wy< P «Cy,P oKy, + P,3(Grady(Kg,),Kg P, P,P) ) +

Proof.

The proof of (4.154) follows directly from the relations (4.72)-(4.74).

Note:

2)
The tensor P can be interpreted as the gradient of a change of reference placement, the tensor

3 © 4 (3)
P as K, and the tensor P as Grad(K ). As long as only one material point is considered
P P

these tensors can be considered as independent which means they do not have to fulfill any

integrability condition.

Remark 4.9. Criterion for elastic isomorphy for elastic laws
2 @ 2 &

Theorem 4.4 can also be formulated for elastic laws. Let {ix’ Iy ix} and {7y,iy,iy
be the respective sets of elastic laws in the setting of Theorem 4.4. Then Equation 4.154

can be replaced by

(2) (3) (3)
(4.155) f(Cx,Kr,,Grady(Kr,))

@ L@@ @f )
—P #det"}(P) fY<P «Cyx, P oKp

3) @) 23 @
B(Grady(Kx, ), Kr,, P, P, P ))

3) (3) (3)

(4.156) f . (Cx.KF,,Grady(Kg,))

@ @f T @) (3) R )

@ T @ @) (3) 3 B @
fy(P +Cx. P oKp, +P.8(Grady(Kp,), Ke

I
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@ T @@l @ (3)
P ,— P oP,P oKpg )

(4) (3) (3)
(4.157) f (Cx,Kg,,Grady(Kg,))

(2) L@@ @f @ BB
=P odet (P fy ( P «Cy,P oKp, +P,
B B @6 e
B(Grady (Kg, ), Kg, P, P, P ))
Proof. A proof can be found in Appendix C.1. O

4.7 Material symmetry

Applying the concept of elastic isomorphy to only one reference point, i.e., assuming that
X and Y are the same point in Definition 4.8 defines symmetry. In this case one can drop
the notation for the reference point. As explained in Theorem 4.1 a change of the reference
placement defines three tensors A € Zin, <13{> A€ %,/3 and M(% A) € %% , where <12X>
is the Jacobian of the change of the reference placement map. So in this case the isomorphism

A becomes an automorphism since it maps the tangent space at a point onto itself. One

defines

(2) @ 3 (4) (3)
(4.158) A= A, A=K, A= Grad(Ky)

Since the density must remain unaltered by this change of the reference placement Jy,, =1
A

(2)
must hold. This is why A € 7. If one assumes that A stems from change of the reference

placement that fullfills J,, = 1 everywhere, then this assumption implies
A

(2) (3)
(4.159) I:A=0

(2) (@)
(4.160) I:A=0

The considerations above motivate
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Definition 4.6. Symmetry Transformation

(2) (3) (4)
For a third-order gradient elastic material a symmetry transformation is a triple (A, A A€

isin X Corg % Coryy that fulfills

(2) (3) 2) (@)
(4.161) T:A=0and I:A=0

such that for the elastic energy

(3) (3)
(4.162) w(C,KF,Gmd(KF))

@ @ @ @ @) 3 (@2 @) @
:w(A «C, A oKF+A,B(Gmd(KF),KF,A,A,A))

Remark 4.10.

Definition 4.6 could also be set up without condition (4.161) as in

[Bertram 2015]. Condition (4.161) comes from the following reasoning. If one assumes that
(2)

A is the Jacobian of a change of the reference placement with Jp = 1 everywhere in the body,

then

(2)
(4.163) Grad(det(A)) =0

must hold everywhere. Since det is a differentiable matrix function one can write

(2)
(4.164) 0 = Grad(det(A))

d(det 2)
(4165 =X ;) . Grad(A)
dA
Applying Jacobi’s formula (see Equation 1.39 in |[Bertram 2005]) to the term d((fzef) yields
dA

2)
(4.166) 0=1:[J, A -Grad(A)]
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Furthermore since (4.167) holds everywhere in the body one obtains

(2) 3) (2) (4)

@@ e
(4.169) 0= Grad(1:Ka)=1:Grad(Ka)=1:A

In |Bertram 2015] symmetry transformations are defined without this condition.

Remark 4.11. Symmetry transformations of elastic laws
2) &) ()
Definition 4.6 can also be formulated for the elastic laws f, f, f One just has to sub-

stitute condition (4.162) by

(2) (3) (3)
(4.170) f (C,Ky,Grad(Kr))

(2)

(2) (2) (<2>T @l @ @ (3)
A

3) (4)
—A«J' f (A +C,A oKp+ A,B(Grad(Kg), K, A, A, A ))

o) (3)
(4171) f (C,Kr,Grad(Kp))

(4)
= (f (A *xC, A oKF+A,B(Gmd(KF),KF,A,A,A)),

CYRSNG) (3)
(4.172)  f (C,Ky,Grad(Kr))

@ @ (3)

) ()
—Aos;' f (A +«C,A oKg+ A, B3(Grad(Kp), K, A, A, A ))

(2) @, @7
U

(3) (3) i}
for all (C, Ky, Grad(Kg)) € %oy
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Definition 4.7. Symmetry group of a material

The set of all symmetry transformations of an elastic energy w with respect to a specific
reference placement is the symmetry group of a material. The symmetry group is
an algebraic group. It is a subset of Zn x %7?/3 X %77/4 and the group operation is

the composition

@ 3 @\ /@ 6 @
(4.173) ( B.B,B ) ( A A A )=
T

The neutral element is defined as

<<2> (3) <4>>
1,0,0

The inverse element is defined as
-1
(2) (3) 4)
(4.174) A A A =

@t @ @ @t W 4R @) B
A —A oA —A o<A+3sym[KA-KAD

Note: The group operation as well as the definition of the neutral and inverse elements follow
from the definition of the strain variables. One has to imagine that two smooth transformations

X2y and X, exist with

A B
(2) (3) (3 (4) 3)
(4.175) A= Grad(xg), A:Ki}, A= Grad(Kﬁ})
2 (3) (3 4) 3)
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Then the composition of the mappings Xy and X ., yields the definition of the group operation:
A B

2) 3) &)

(2) (3) 4 (3) (3)
(4.177) < B,B,B ) ( A AA ) = <Gmd[><<2> (X ()] Kz ), Grad(K ) <2>)>
A B B A B A

(3) (3)
In (4.177) one expresses K, o, and Grad(K s (o)) in terms of the tensors in (4.175) and
B-A B-A

(4.176) and obtains (4.173). This also yields the definition of the neutral element. With the

same approach the entries of the inverse element are calculated as

2) 3) @\ ! (2) (3) (3) -1 @7 @) 2)
(4178) ( A,A,A > = < 7K<2>7Grad(K<2>)> = < A 7K<2>—1,G7’(1d(K<2>—1)>
A A A A

2) (3)
Again K ,), Grad(K ) ™! are expressed in terms of the tensors in (4.175). This is explained
A A
in detail in Equations (2.30)-(2.34).

Definition 4.8. Undistorted states & solids
If for a certain reference placement the symmetry group is a subgroup of the orthogonal
group in the first entry and zero in the other two entries then this reference placement is

called an undistorted state. The elements of the symmetry group then have the form

@ (3) (@
(4.179) (Q, 0,0 )

with Q € (%4 and can be interpreted as rotations. A material that has such an

undistorted state is called a solid.

Definition 4.9. Isotropic material:
If the symmetry group contains the orthogonal group in the first entry and zero in the

others then the material point is called isotropic. It is clear that for an isotropic material
2) (4)

the elastic laws f and f are isotropic tensor functions: First one has to rearrange

(2)

equations (4.170) and (4.172). Next one applies the fact that for isotropic materials A
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@t @T

is orthogonal: A=A . This yields J,, = 1 and it yields that the product "o" can be
A

replaced by the product "«" in Equation (4.172):

(3) (3) af @ @ @f (3)
(4.180) w(C,KF,Grad(KF)> :w(A *C,A xKp, A *Grad(KF)>
ol @ (3) @ @ of @ @f (3)
(4181) A = f (C,Kp,Grad(Kp)) = (A «C,A * Kg, A *Gmd(KF))

—

2T @ @ (3) @, @ of @ @f (3)
(4182) A « f (C,Kp,Grad(Kp)) (A «C,A * Kg, A *Grad(KF)>

3)
The elastic law f is not an isotropic tensor function. The reason for this is the fact
@)
that f transforms with the function v and not as a pull-back like the other elastic laws.

This is another point where the third-order theory deviates remarkably from the first-

and second-order theories.

Remark 4.12. Isotropic and centro-symmetric materials

A material is called centro-symmetric if it contains with a proper symmetry transformation
(2) (3) (4) ) (2) (3) (4) L . .
Q, 0,0 | also the improper one [ — Q, 0, 0 |, which is equivalent to demanding that

< (2) (3) (4)

1,0,0 ) is an element of the symmetry group. A simple material is always centro-

symmetric since

af @ @ @
(4.183) (— A )x C=(A )x C

(2)

implies for a symmetry transformation A€ e

w1t w(C 2 )-0) =u( X +0) = u(c)

In the case of a second gradient of the strain theory this is not the case. This is due to the

fact that

(4.185) (-
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B @ @6 G B @ 6w
(4.186) B(Grad(Kg),Kp,— A, A, A )) # B(Grad(Kg), K, A, A, A )).

Therefore in a second gradient of the strain framework one has to distinguish between sym-
3)
metric and centro-symmetric materials. If one assumes a linear relationship between (C,KF,

3) @ @
Grad(KF)> and ( S,S,S ) for a centro-symmetric gradient material, then this yields that

2) S0 (3) (3)
S can only depend on C as well as that S, S can only depend on Ky and Grad(Kpg).
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Chapter 5

A material framework for third-order

elastoplasticity
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5.1 Chapter introduction

This chapter generalizes the concepts of elastoplasticity in |[Bertram 2015|. Besides general-
izing yield limits and criteria as well as flow or hardening rules, two important concepts are
generalized. The concept of isomorphic elastic ranges governs the transformation of the elastic
law during plastic deformation and yields internal variables. Furthermore the plastic dissipa-
tion of energy is specified, which turns out to be considerably more complicated than in the
classic and first gradient of strain theory. This is again due to the more complicated transfor-
mation behavior of the stress and strain variables under changes of the reference placement.
With respect to plasticity the concept of isomorphic elastic ranges sets the present work apart
from many other publications where a multiplicative decomposition of the strain into a plastic
and an elastic part is suggested instead. Usually this leads to constrained plasticity theories
and limits the range of material behaviors that can be modeled. The so called concept of
isomorphic elastic ranges is less restrictive, it includes the multiplicative decomposition and

is thus more suitable for a unifying framework.

5.2 Elastic ranges

In the spirit of the definition of elastoplasticty in [Bertram 2015] we assume that during a plas-
tic deformation the elastic law and elastic range of a material point changes continuously. In
order to define this process rigourously, the definition of an elastic range from [Bertram 2015
is extended in this section in a straightforward manner to fit the current third-order frame-

work.

Definition 5.1. Elastic range

An elastic range is a tupel { %73, wp} which consists of

1. a non-empty path-connected submanifold with boundary called 87: C %7{/} and
an

(3) (3)
2. elastic energy wp (C, Kp, Gmd(KF)>
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3) 3)
such that after any continuation process {C(7),Kp (7),Grad( Kg )(7)}[}, which re-
mains entirely in #the stresses are determined by the final values of this process.
(2) ow (2) 3) 3)
(51) S (1) =2p 5 =f (C(t), Kp (1), Grad(Kp) (1))
%) owp (3) (3)
(52) S (1) =p—7g = f (C(t), Kp (t),Grad(Kp)())
0 Kp
(4) ow (4) 3) 3)
(53) S (1)=p—— =/ (C().Kp (1), Grad(Kp)(1))
0Grad(Kg)

Remark 5.1.

Definition 5.1 can also be reformulated such that the elastic range is a quadrupel
W @ @@ o @ @ @
@@, e, fp f of the submanifold &p and elastic laws f p, f p, [ p.
PSP TP PSP TP

Remark 5.2.
It is important to note that the elastic laws are physically determined for configurations within
one elastic range # In order to simplify things we extend the elastic laws to the entire set

%ﬁ If one wants to define a material with elastic ranges one has to make the following

(5.4)  Assumption: At any time an elastoplastic material point

is associated with an elastic range.

Using the definition above one can describe the plastic deformation process by saying that
the "material continously passes through different elastic ranges" (CH. 10 in [Bertram 2015]).

This process is also referred to as yielding.

5.3 Isomorphy of the elastic range

One should note that in Definition 4.8 isomorphy is a relation between two elastic points. But
isomorphy can also be defined as a relation between two elastic laws at the same material

point in a straightforward manner. The idea is to use the relations in Theorem 4.9 but to
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(2) (3) (4)
interpret each of the tensors P€ Zuin, P€ g/; Pe %7{ as part of a transformation

between two elastic laws rather than changes of reference placement.

Definition 5.2. Isomorphy of elastic energies
Two different elastic energies w; and wsy at one material point X are isomorphic if the

point X with elastic energy w; is isomorphic to X with elastic energy ws.

Theorem 5.1. Isomorphy criterion for elastic energies

Let X be a material point where a plastic deformation is applied. w; and wo denote
2

two elastic energies at X. They are isomorphic if transformation tensors P o€ e

(3) (4)

Pze %/; Ppe %%exist such that

2)
(55) det(Plz) =1

(3) (3)
(5.6) w1 (C,Kp,Grad(Ky))

@ @ m e GG IR S R
= ws( Py #C, Py 0 K + Pro, 8(Grad(Kr), Kp, Pro, P12, P1s ) )

Proof.

This theorem is simply an application of Theorem 4.4 to the case X =Y. To validate the first
2)
requirement, det(P12) = 1, one has to remember that the reference placement stays the same

when comparing a material point X to itself equipped with two different elastic laws. Thus
(2)
the material densities are the same and the first isomorphy requirement pox = det( P 12)poy
(2) 2) (2)
becomes pox = det(P12)pox which yields det(P12) =1 <Pe i,

Theorem 5.2. Isomorphy criterion for elastic laws

2 & @ (2)
Let X be a material point where a plastic deformation is applied. { f, f1, f1} and { f o,
C/C)
fa, fo} denote two sets of elastic laws at X. These sets of elastic laws are isomorphic
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2) 3)

(4)
if transformation tensors P 12€ wa, Pye ?5¢?{7 Pse %5% exist such that

2)
det(P 12) =1

The theorem can be regarded as a direct consequence of Theorem 5.1 or as an application of

Now the definitions above will be used to describe the evolution of elastic energies and elastic
laws during yielding. In general one has to consider two independent effects that occur during

yielding:

(5.7)
(2) (3) (3)
(58) f1 (C, KF,GTCLd(KF))
2) L@ of @l @ @ 3 3 @
=Py *[det (P 12) f2 ( P12 *C, P12 o Kg + Plg,ﬁ(GT’ad(KF), Kg, P,
3) (4
P12, P12 ))}
(3) (3) (3)
(5.9) f1 (C, KF,Grad(KF))
B @7 ol @ @ @ B @ @B @
= 7( Ia ( P, «C, P, 0 Ky + P1s, 8(Grad(Kp),Kg, P12, P12, P1o )7
@ @7 @l @ @ @ B @ B @
fa ( Py +«C, Py 0 Ky + P, 3(Grad(Kr), K, P12, P12, P12) )7
@t @ @ o @f @ @
P12,— P12 o Plg, P12 o KF —+ P12)
(4) (3) (3)
(5.10)  f, (C,Kw,Grad(Kr))
2) L@ of @l @ @ 3 3 @
P, o[det (P1o) [ ( P, «C, P, 0 Kp + Pyy, 8(Grad(Kg), Kp, P1a,
3) ()
P12, P12 ))}
Proof.

Remark 4.9

1. Hardening (or softening) describes how the elastic range evolves.

2. Evolution of the elastic energies (or laws): The elastic energies (or laws), associated with

the elastic ranges, evolve.
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The second effect, the evolution of the elastic energy (or laws), is modeled in this framework
via the concept of isomorphy from Theorem 5.2. For many materials it has been found, that
the elastic behavior hardly changes under yielding, even if the deformations are very large (see

[Silhavy & Kratochvil]). Therefore it is reasonable to make the following

Assumption 5.1. At one elastoplastic point the elastic energies (or laws) of all elastic

ranges are isomorphic.

Assumption 5.1 is the one of the core features of the present framework since it allows to set
up an unconstrained elastoplasticity framework. It has been introduced in [Bertram 1999] and
implies that the elastic energies (or elastic laws) of all elastic ranges of a point are isomorphic
to the elastic energy (or elastic laws respectively) of an arbitrarily chosen elastic range. This is
because of the group property from Definition 4.7 of the ismorphy transformations. Therefore
one can choose a so called elastic reference energy (or elastic reference laws) such that
the elastic energy (or elastic laws) of the elastic range after any plastic deformation can be
expressed as the transformation of the elastic reference energy (or elastic reference laws). This

fact is formulated as

Theorem 5.3. Existence of an elastic reference energy

Under Assumption 5.1 one can always choose an elastic reference energy wg such that

2) 3)

for any elastic range { g}i, wp} there exist transformation tensors P e Do, P € %74

@)
Pe 7, with

3) 3)
(5.11) ’U)P(C,KF,G’I“ad(KF))

@l @f @ @ @ B @@ @
_ wO(P «C, P oKpg + P,B(Grad(Kg), Ky, P, P, P )).
N —————
::Ce (3) (3)
=Kr, =:Grado(KrF,)

The index "0" indicates that the energy, an elastic law or a gradient is such an reference

(2)
quantity. For gradients this means Grady(...) = Grad(...)- P
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Theorem 5.4. Existence of elastic reference laws
2 G (@
Under Assumption 5.1 one can always choose a set { f ¢, fo, f o} of elastic reference laws
@ &

such that for any elastic range { é, For oo [y } there exist transformation tensors

@ L, @ o W
Pe %M}ﬂ, Pe é% Pe Qﬂ%Wlth

(2) (3) (3)
(512)  f, (C,Ky,Grad(Ky))

(2) L@@ @b @ @@ B B @@
—p *[det— (P) f, (P «C,P oKy + P,B(Grad(Kg),Kp, P, P, P ))]
~_——T—
e ) 3)
= Kr, =:Grado(Kr,)

(3) (3) (3)
(5.13) fp(C,KF,Gmd(KF))

@ @f e @ @ 3 3 @ @ @
:fy( f0<P *C, P oKF+P,,B(Grad(KF),KF,P,P,P)),
e @ @ (3) 2 3

@ e 3) @)
. ( P «C,P oKy + P,B(Grad(Kg),Kp, P, P, P ) )

( (
(5.14)  f, (C.Kg,Grad(Kp))

(2) L@@ et @t m @ B B @@
—p o[det‘ (P) f, ( P «C,P oKy + P,B(Grad(Kg), Ky, P, P, P ))}

Remark 5.3.

At this point it is very important to note that the theorems above transform the elastic
energy or elastic laws, not the reference placement. The form of the transformations is the

same as for a change of the reference placement but the underlying idea is completely different.

2 (3) 4)

Pe Zuwm Pc %//g, Pe %% have the same form as kinematic quantities have but they
2)

are not kinematic quantities since in general they lack integrability. One interprets P € Drrin,

3) 4)
Pec gf%ﬁ Pc ?ﬁ% as internal variables that describe how the elastic laws change during

yielding. This becomes clear in Section 5.4.
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Definition 5.3. Transformation by internal variables

2 3) (4)
Using the internal variables P€ %4, Pe %zz/z; Pe %% that describe the change
of an elastic law during yielding one can define auxillary stress and strain quantities as

follows.

Transformed stresses

(2) (3) (3) @ @t (2)
(5.15)  fo (Ce,Kp,,Grad(Kp,)) =So:=P *(Jp S)

(3) (3) (3) ) 3 @ @ @ e
(5.16)  fo (Ce,Kp,,Grad(Kp,)) =So:=7(S,S,P,P,Kp)

(4) (3) 3) @ @t (4)
(5.17)  fo (Ce, Kp,,Grad(Kp,)) =So:=P o(Jp S)
Transformed strains
(518) C.,=P xC
2

) @
(5.20) Grado(Kp,) = 6<Gmd(KF),KF, P,P,P )

5.4 Yield criteria

The derivation of the yield criteria is a straightforward extension of the concepts in

[Bertram 2015].

Definition 5.4. Yield surface & yield criteria
. e ez <2> <§~>f <4> c
Considering an elastic range { @p,wp} (or { ep, fpo fp, fp }) one decomposes “p

0
into its interior g; and its boundary 0 % One calls 0 gfa the yield surface. The

yield surface is assumed to be smooth enough such that it can be described by a level set
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function:

3) 3) ) 3)
ép: Gt R, (C,KF,Gmd(KF)) b—>q§p(C,KF,Grad(K ))

(5.21) o & = {(c %F,Gmd(%p)) | ¢p(c, <13<>F Gmd(<13{>F)) - o}
(5.22) %0 = {(C, <13{>F,Gmd(<13{>];)> ] ¢p<C,<I3(>F,Gmd(<13(>F)> < 0}

N

(523)  Zop\ & = {(C,%F,Gmd(%FD | ¢p<C,<13{>F,Grad(<13{>F)> >0}

The function ¢p is called a yield criterion. It is usually piecewise differentiable and a

material property.

One can distinguish two phases of a deformation process:

1. Purely elastic deformation

In this phase the strain measures either fulfill
3) 3)
(5.24) 0> ép (c, KF,Gmd(KF)>

or

(3) (3) . (3) (3)
(5.25) 0= ¢p (c, KF,Gmd(KF)) A 0> 6% (C, KF,Grad(KF)>

0
The condition (5.24) means that the elastic process is in the set 8?; , while the condi-
tions in (5.25) mean that the process is on the yield surface 0 &p and either remains on

the surface or is about to reenter the set éc)ia.
2. Elasto-plastic deformation

This phase is characterized by the fact that two equations must hold:

3) 3)
(5.26) 0= g¢p (c, K, Gmd(KF))

and
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LB )
(527) 0<¢% (c, KF,Gmd(KF))

3) 3)
, 8¢p<C,KF,Grad(KF)) &
(5.28) = e :
3) 3)
a¢p(c, Kp, Gmd(KF)) 3)°
+ Ky
@)
9 K
3) 3)
96 p (C, Kr, Gmd(KF)) 3)°
+ & = Grad(Kyg)
0Grad(Ky)

This means that the process is on the yield surface and about to enter the set %@é\ 21/3
thus leaving the set #p. The condition (5.26) is called the yield condition and the

condition (5.27) is called the loading condition

The yield surface evolves during plastic yielding which means that ¢p depends on so called
hardening variables which will be denoted by Z. These hardening variables can be tensors
of any order and characterize the softening or hardening of the material. A general yield

criterion in the configuration space can then be denoted by

@@ @ )
(5.29) <;5< P.P.P,C, KF,Gmd(KF),Z)

During yielding this general yield criterion always fulfills

@ @ @ G 3)
(5.30) ¢< P, P, P,C,KF,Gmd(KF),Z) —0

which implies during yielding

SR w @ 3)
(5.31) & (P,P,P,C, F,Gmd(KF),Z> -0
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The general loading condition is

3 3 3 3
96(C, Kr,Grad(Kp)) ¢ 96(C, Kr,Grad(Ky))  o°
(5.32) 0< T .C + 5 'Ky
9 K
o) )
96(C, Kr, Grad(Kr) ) 3)°
+ :: Grad(Ky)

(3)
0Grad(Kr)

5.5 Plastic dissipation

In this chapter the internal power during yielding is examined. The following abbreviations

will be used:

(5.33) G:=P

) ) R4RS B B
(5.35) Gi=— P o(Gmdo(KP)+ 3sym[Kp-KpD

2 GG, 4) (3)
If one assumes that P is a sufficiently smooth tensor field with P=K ,, and P= Grad(K )
P P

then

(5.36) G=K

(4
(5.37) G= Grad(K%rl)

2 3 @
Let {P, P, P} be the internal variables that describe the change of the elastic law under

(2) 3) (4
yielding as defined in Section 5.3. Then {P, P, P} uniquely determine an alternative set of
(2) (3) (4
internal variables {G, G, G} as defined in (5.33) -(5.35). This will allow to abbreviate the

notation in the following transformations. Since the chosen stress and strain measures are
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work conjugate one can write

(4)

(2) SONNG) 4) (4)
: S::KF

1 G
(5.38)  pol =3 S:C*+ S K+

@ 9w
Now one can rewrite (5.38) by using the transformed stresses S, S, So and transformed
3) 3)
strains Co, Kg,, Grado(Kg,) from Definition 5.3. This means that one has to transform all

stress and strain measures as explained in Theorem 5.4 and yields

(2) . 2 @ (4) @B, @ @* @3 .3 W @
(5.39) pol =8So: Ci+ So: Kp, + So:: Grado(Kg,)*+Sp:G + Sp: G + Sp:G

elastic part plastic part

@ @ @& .3 @ @
(5.40) :w5+ Sp:G +Sp: G + Sp::G

plastic part

with generalized plastic stress tensors

(2) @ (2 2 r@7F @ @ B w @6 e
(541) Sp=2sym[G -So-Ce]+23ym[G 'KFS'G:| v(So, S0, G, G,Kr,)
2T ) B @ @ @ e 2!

~((G oKpg.):7(S0,S0,G,G,Kp )2 G )
QT @ w  of B T B R ®

— G  (Go So)G oGrady(Kg )M +1[(So-G M2iGrady(Kg,)]
1.2 @ @ @7 @ @ g @@

+23ym[Grado(KF€)}:SO'G +S0i(G oM. (G Ky
@t @ T @ T sl @3l 7T gy @B )T

+Kp, :((So-G )BY G )G +Kp :((G 0G):S, -G )
G B R O )

+ ( G-G-G M.spKp -G

(3) B w @6 e T @) @7t ()
(5.42) SP:’}/(SU, SU,G,G,KF :

e

@7t @ @l @
—(G 08¢ :(G oKp)!

@ @t @
(543) Sp=G oS,
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The step by step derivation of the generalized plastic stress tensors, starting from (5.38) is a

straightforward but lengthy calculation. Therefore it is presented in Appendix C.2.

5.6 Flow and hardening rules

2 3) 4
The evolution of the internal plastic variables P, P, P, Z works exactly as in [Bertram 2015],

(4
one just has to add a flow rule for P and extend the set of variables accordingly. The result

are three flow rules

—~
N
=
—~
®
=
—~
w
=

(3) @ @ e 3)
(545) P =} (P,P,P,Z,C,KF,Gmd(KF),C Ky, Grad( F)')

@ W, 2w Qe @ @ (3)°
( P,P,P.Z C,Kyg, Grad(Kp), C ,KF,Gmd(KF))

and a hardening rule

. @@ @ @ @ 3)°
(547) Z :h( P,P,P,Z C,Kg,Grad(Kg), C ,KF,Gmd(KF)>

The function h does not carry a superscript that indicates the tensor order, since the order of
the hardening variable Z has not been fixed. The assumption of rate-independency leads
to the introduction of a plastic consistency parameter A\ > 0. It scales the functions that

2)°  @°  @°
determine the direction of flow and hardening: » ,A A ,A h . This approach yields

@ @° @00 @6 @ @° @° 3)
(548) P =\ } (P,P,P,Z,C,KF,Gmd(KF),C ,KF,Gmd(KF)O)
3)° B 26 @ 2 @ (3 (@° 3° (3)
(549) P =X} (P,P,P,Z,C,KF,Gmd(KF),C ,KF,Gmd(KF)O)
@ W, @ e W @ e @ @° @° 3)
(5.50) P =\ K <P,P,P,Z,C,KF,Gmd(KF),C ,KF,Gmd(KF)°>
(

23 W @ 3 @ E° 3)
(5.51) Z* =\ h°< P,P,P,Z C,Kg, Grad(Ky), C ,KF,Gmd(KF)O>
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with a scale parameter pu:

(2)° (3)° _ (3)°
(5:52) p:=\ [ C [>+ L% Kg [? + L?|Grad(Kg)|?
@° 1 @° 3° 1 3) 1 (3)°
(553) C = ; C y KF:: — KF7 GT’ad(KF)O = ﬁGTGd(KF)
%

Here the constants L with dimension of a length and L with dimension of a squared length

are constants that need to be introduced for dimensional consistency. They determine the
2°* 3)° (3)*

influence that C | Ky, Grad(Kg) have on yielding. During a purely elastic process the con-

sistency parameter must be zero. During yielding the consistency parameter does not vanish,

and it can be calculated by inserting Equations (5.48)-(5.51) into the yield condition (5.31):

@ @ @ 3)
(5.54) 0 :(;5'( P,P,P,C, KF,Gmd(KF),Z)
o6 @° 9 . B3)° o6 (3)° o6 @°
= :C . K —_— . d K e :P
oc C T T RE T o Gred(Ke) + —5
0 Kg 0Grad(Kr) oP
09 . B 09 W 0
+ <3>'P g P Hoz?)
P
o0 2A° 9 . B° oo (3)*
=—= K = K
50 C + @) F+ 3 Grad(Kg)
0 KF 6GTGd(KF)
96 @° QB W @B @ @° @° @
Ak (P,P,P Z.C, Ky, Grad(Ky), C ,KF,Gmd(KF)>
o P
96 . B° /@B W 2P 3 @° @E° 3
A (P,P,P,Z, C, Ky, Grad(Kg), C , Ky, Grad(Ky) )
o P
06 @ @B W @ 3 @° @° (3)
+ A (P,P,P,Z,C,KF,Gmd(KF),C ,KF,Gmd(KF)O)
o P
26 @@w oo 3 @° @° (3)
< )\h°< ,P,P,Z,C,Kyg, Grad(Kr), C ,KF,Gmd(KF)°>>
9z’
Rearranging then yields
dp B ag . Ao (3)°
0 KF 0Grad(Kr)
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=

—~
o~

)

06 @° @B @) (3) G @° @3)° 3)
<+ AT (P,P,P7Z,C,KF,Gmd(KF),C ,KF,Gmd(KF)O)

oy . 3 2 B @ (2B B)  (@° 3)° 3)
A (P,P,P,Z,C,KF,Gmd(KF),C ,KF,Grad(KF)O)

¢ @° 2 3) @ (2 (3) 3 @° @3° (3)
SN (P,P,P,Z,C,KF,Gmd(KF),C ,KF,Gmd(KF)O)

+ <(9qb )\h°< <]?’>, g, %, Z, <(32>, <13{>F, Grad(<13(>F), <2C>O, <13{>;7 Grad(<13(>F)°>> )
Note:
The notation from (2.15) has been used for the scalar product since the variable Z comes
from a vector space of arbitrary but finite dimension. The loading condition (5.27) implies
that A is positive during yielding and zero in all other cases. After substituting X in (5.48) -
(5.51) by (5.55) one obtains the consistent flow and hardening rules. At any time the

Kuhn-Tucker condition holds:

(5.55) Ad =0 with A>0and ¢ <0
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Chapter 6

A thermodynamical framework for
third-order elasticity and

elastoplasticity
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6.1 Chapter introduction

It is the aim of this chapter to find a framework that is as large as possible, i.e., a frame-
work that can accommodate the widest possible range of deformation processes and material
behaviors. The approach used in this chapter stems from [Bertram & Krawietz 2012 and
has already been applied in a similar manner in [Bertram 2014| and the present work is a
straightforward extenion of the results therein. This chapter reintroduces the concepts that
were introduced in the sections on elasticity and elastoplasticity but in a thermodynamical
context. This means that the set of mechanical variables is extended by thermodynamical
variables such as the temperature. Then the first and second law of thermodynamics and the
Helmholtz free energy are introduced. From there potentials for the stresses and for thermo-
dynamic quantities are derived for the elastic and the elastoplastic case. Concepts such as
isomorphy and material symmetry are extended for the thermodynamical framework as well.
This results in a framework where changes of the temperature can originate from elastic or

plastic deformations as well as external heat sources.

6.2 Thermodynamical variables and basic concepts

Definition 6.1. Thermodynamic variables

The specific internal energy is denoted by €.

The heat supply per unit mass and time by irradiation and conduction is denoted by
Q.

The spatial heat flux per unit area and unit time in the current placement is denoted
by qg.

The material heat flux per unit area and unit time in the reference placement is ¢ :=
JrF 1 qp.

The absolute temperature is denoted by 6 .

The material temperature gradient is denoted by g := Grad(0).

The specific entropy is denoted by 7.
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One could include higher gradients of the temperature as independent variables in Definition
6.1 but it has been shown in [Perzyna 1971| that defining higher (spatial) gradients of the
temperature as independent variables would violate the second law of thermodynamics. The
reagon for this is, that they do not have a counterpart in the dissipation inequality and thus

cancel out.

Remark 6.1. Changes of the reference placement
With the notation from Section 4.5 one obtains for changes of the reference placement:

g = AT. g
(62) q:=JaA"'.q

Definition 6.2. The Helmholtz free energy
The Helmholtz free energy is denoted by 1 and defined as

(6.3) Y:=e—0n

Assumption 6.1. Energy balance & Clausius-Duhem inequality

The first law of thermodynamics is assumed as
64) Q=¢e"-p

The second law of thermodynamics is assumed in the form of the Clausius-Duhem
inequality, which is a local and momentary restriction to all admissible thermodynamical

processes:
[ ] o 1
(6.5) p—9*=0n——g-q=0.
PO
In this inequality the thermal dissipation is defined as

6.6) —g-
(6.6) PR
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and the mechanical dissipation is

(6.7)  p—d*— 0%

Definition 6.3. Thermo-kinematical process
In this chapter the concept of the elastic or elasto-plastic process is extended to a thermo-

kinematical process, described by the process

(6.8) {x(7),F(1),Grad(F), GradH(F), 0(1),grad(0)(r)}

with 7 € [0,¢]. With the same arguments as layed out in [Bertram 2005] one can assume
that this process determines the caloro-dynamical state at the end of the process,
which is defined as

(2) 3) (4)
(6.9)  {T (), T (), T (t),ap(t),e(t),n(t)}

6.3 Third-order thermoelasticity

The concept of elasticity from Section 4.4 has to be extended in such a way that the current
caloro-dynamical state is determined only by the current thermo-kinematical state. This

means that the past process does not directly influence the current material behavior.

Definition 6.4. Third-order thermoelasticity

A material is called a third-order thermoelastic material if each of the quantities

(2) (3) (4)
T, T, T,qg, n and ¢ are functions of the set of variables {x, F, Grad(F),Grad' (F), 0,

grad(#)}. Following the line of argumentation in Section 4.4 these constitutive equations

can be reduced to the set of equations:

2) 2 3) 3)
(6.10) S=f (C,Kr,Grad(Kr),0,8)

(3) (3) (3) 3

2 3)
(6.11) S=f (C,Kg,Grad(Kp),0,8)
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4) (4 (3) 3)
(6.12) S=f (C,Kp,Grad(Kr),0,g)

(3) (3)
(6.13)  q=4q(C,Kp,Grad(Kp),0,g)

(3) (3)
(6.14) e£=¢(C,Kp,Grad(Kp),0,g)

3) (3)
(6.15) n=n(C,Kr,Grad(Kr),0,8)

Definition 6.4 implies that in third-order thermoelasticity the free energy is a function of
3) 3)
C,Kp,Grad(Kg), 6 and g since

3) (3)
(6.16) +(C,Kr,Grad(Kr),0,g)

(3) (3) (3) (3)
(6.17) =¢(C,Kg,Grad(Kp),0,g) — 0n(C,Kg,Grad(Kg),0,g)

Theorem 6.1.
For a third-order thermoelastic material the Clausius-Duhem inequality (6.5) is fulfilled

for every thermo-kinematical process if and only if
1. The free energy does not depend on the gradient of the temperature
2. The free energy acts as a potential for the generalized stresses and for the entropy
3. The heat conduction inequality holds: q-g >0

This shows that the thermoelastic behavior of a third-order material is completely deter-

(3) (3) (3) (3)
mined by the two functions ¢(C, Kg, Grad(Kr),0) and ¢(C, Ky, Grad(KF),0,g).

Proof.

Combining equations (6.16) and (6.5) one obtains

11@ @ e @ ® . 3
0 Kr

(3) 1
+6 (3) w ol G'I"ad(KF>. +89'¢9. +8gwg.+0.77+ —g°q
Grad(Kr) pot

1 @@

1 @ .
(619)  =(dcv—5—8):C +(0y ¥ - — S)i Ky
Po Ky PO
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1 @ (3) 1
+(8 (3) Y- — S) i Grad(KF).+(801/1+77)0.+8g1/1g.—l——gq

By standard arguments this leads to the following thermoelastic relations:

(1)
(6.20) Og1h =0

2)
(621) S = 2pydct
(3)

(6.22) S =2pody ¥
Kr

(4)
(623) S =2pd ) ©
Grad(Kg)

(624)  n=—-0p

(6.25) 0>g-q

Now (6.20) means that the free energy is independent of the temperature gradient. Further-
more (6.21)-(6.23) shows that the free energy is a potential for the generalized stresses and
(6.24) that it is a potential for the elastic part of the entropy. Finally (6.25) is the heat

conduction inequality. O

6.4 Material Isomorphy and symmetry

The concept of elastic isomorphy in Section 4.6 can be extended for the case of thermoelastic-
ity. One considers two thermoelastic points as isomorphic if their measurable thermoelastic
behavior does not show any differences during arbitrary thermo-kinematical processes. Mea-
surable quantities are the generalized stresses, the heat flux and the rate of the internal energy.

The entropy and free energy are not considered as directly measurable quantities.

Definition 6.5. Thermoelastic isomorphy

Two thermoelastic points X and Y are thermoelastically isomorphic if two reference
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placements kx and Ky with constants 1. € R and €. € R exist such that

(6.26) pox = poy

(3) 3) 3) 3)
(6.27) 1/1)((0, KF, Grad(KF), 9) = Tﬁy(c, KF, G?”CLd(KF), 9) - 77c9 + &c

(3) 3) (3) (3)
(6.28) qX(C, KF, G’I”ad(KF), Q,g) = qY(C, I(F7 GT‘CLd(KF), (9, g)

(3) (3) -
for all (C, K, Grad(Kr)) € Zoys 0 €R, g € R3.

Remark 6.2.

Definition 6.5 implies with the relations from Theorem 6.1

(2) (3) (3) (2) (3) (3)
(629) fX (Ca KF, Grad( F)a 9) = f Y (C7 Kr, GT‘Gd(KF), 0)

(3) 3) (3) 3) 3) (3)
(630) fX (CaKFaGTad( F)v ) (C7KFaGra’d(KF)79)

3) 3)

0
(4) 3)
(631) fx (Ca Kr, Grad( F)a 9)

(3)
(C,Kr,Grad(Ky),0)

3) 3) 3) 3)
(6.32) ex(C,Kg,Grad(Kg),0) = ey (C,Kyg,Grad(Kg),0) + .

=fy
(4)
=fy

(3) (3) (3) (3)
(633) nX(C, Kpg, GTCLd(KF), 9) = T]y(c, Kp, GTGLd(KF), 9) + Ne

Definition 6.5 is derived from the following reasoning: For third-order thermoelastic materials

the mechanical dissipation is zero

(6.34) 0=p—v* 6%
Use (6.2)

(6.35) =p—e*+0n°
Use (6.4)

(6.36) =—Q+6n°

This shows that the rate of the entropy is measurable since the temperature € and the heat

supply @ are measurable. In conclusion the entropy of two isomorphic points of a thermoelastic
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material can only differ by a constant 7. (which cannot be measured).

(3) (3) (3) (3)
(6.37) nx(Cx,Kr,,Gradx(Kr,),0x) = nv(Cy, K, ,Grady (Kg, ),0y) + 1.

Integration with respect to the temperature then yields

(3) (3) (3) (3)
(6.38) Yx(Cx,Kpy,Gradx(Kr,),0x) = ¥y (Cy, Ky, ,Grady (Kg, ),0y) — 1.0 + ¢

where ¢, is another constant. Finally one can use these relations together with (6.3) to obtain
3) 3)
EX(C)(, KFX, GTadx(KFX), 9)()

(3) (3) (3) (3)
(639) = ¢X(CX7 KFX, GT’adx(KFX), 9)() + 97])((0)(, KFX, GTadx(KFX), 9)()

(3) (3) (3) (3)
(6.40) = @Z)y(Cy, KFy, GTCLdy(KFY), Qy) + Qﬁy(Cy, KFY7GTady(KFY), ey) + &c

(3) (3)
(6.41) = €y(Cy,pr,GTCLdy(KFY),9y) + ¢

which motivates Definition 6.5. From here it is clear that Theorem 4.4 can be generalized in

the same manner.

Theorem 6.2. Criterion for thermoelastic isomorphy

Let X and Y be two thermoelastic material points with arbitrary reference placements
kx and ky. Let ¥x,gx and ¥y, qy be the corresponding thermoelastic laws. Then these
two points are called thermoelastically isomorphic if and only if there exist tensors

(2) (3) (4) S
Pe . /., Pe %74 Pc g/ﬂ% and two real constants ., 7. such that

2)
(6.42)  poy = det(P)pox

(3) (3)
(643) v (Cx, Kry, Gradx(Kry),0)
@7 PG (3) @ B @@
- q/)y( P +«Cx,P oKpg, + P,B(Gradx(Kg,),Kp,, P, P, P ),9)

— el +ec
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) ) 3)
(6.44) det(P)qx(cx,KFX,Gde(KFX),e,gX)

(2) @7 T ) (3) 3 B @6 @
—p *qy( P +«Cx,P oK, + P,B(Gradx(Kg,),Kp,,P, P, P ),0,

%T *gx)

(3) (3) _
for (Cx,Kpy,Gradx(Kgy) € Coys, 0 €R, g € R3.

Remark 6.3.

(2) (3) (4)
Theorem 6.2 implies that the tensors Pe .%., Pe %/; Pe %77{ and two real

constants ., 7. determine the isomorphy transformation of the constitutive laws.

3) (3)
For (Cx,Kry,Gradx(Kry) € Zoys 0 € R

(@) 3) 3)
(645) fX (CXa KanGradX(KFX)’G)

) L@@ ef GG
—P «det"(P) [y ( P +«Cx,P oKp, + P,

(3) (3) (2) (3) (4)
B(GradX(KFX), Kr,, P, P, P ),9)

3) (3) (3)
(646) fX (CXa KvaGradX(KFX)’e)

@ T T @) (3) @ B @
:7< fY<P «Cx, P oKFX+P,B(Gde(KFX),KFX,P,P,P),9),

=
—~
w
=
—~
N
=

@ @f 2T ) (3) B @ @ @
y ( P «Cx,P oKg, + P,B(Gradx(Kgy),Kgy, P, P, P ),0 )

@7t @ @l @ (3)
P ,.P oP,P oKFX+P)

() 3) 3)
(647) fX (CXa KanGradX(KFX)’G)

) L@ @ @f G
(648) =P odet"(P) fy<P «Cx,P oKp, + P,

B B @6 o
B(Gradx(Kg,),Kpy, P, P, P ),9)

(3) (3)
(6.49) ex (CX, KFX,Gde(KFX>7 9)

27 ) (3) 3 B @@
_ gy( P «Cx,P oKg, + P,3(Gradx(Kg,),Kp,, P, P, P ),9) te,

124




(3) (3)
(650) nX (CX> KanGradX(KFX)’e)

2T D) 3) @ B @@
_ ny( P «Cx,P oKpg, + P,B(Gradx(Kg,),Kpy, P, P, P ),9) + 1,

With these results the concept of symmetry transformations can be extended to thermoelastic

materials in a straightforward manner.

Definition 6.6. Thermoelastic symmetry transformations
For a third-order thermoelastic material with material laws ¢ and ¢ a symmetry trans-

@ @) @
formation is a triple (A, A, A) € Zumx Copy x Cony] that fulfills

(2) (3) (2) (4)
(6.51) T:A=0and I:A=0

(3) (3)
such that for all (C, Ky, Grad(Kr)) € Zoys, 0 € R, g € R?

3) 3)
(6.52) ¢(C,KF,Gmd(KF),9>

@f @ @ ® 3 3 (4)
:w(A «C,A o F+A,ﬁ(Gmd(KF),KF,A,A,A),9)

(3)

(3)

(6.53) q(c,KF,Gmd( F),e)
@ o o @ © 3) B @ @ @
A *q(A «C, A oKF+A,B(Gmd(KF),KF,A,A,A),9)

Remark 6.4. Symmetry transformations of thermoelastic laws

Definition 6.6 implies symmetry transformations for the thermoelastic laws.

(3) (3) ,
For all (C, Ky, Grad(Kg)) € %oyt 0 €R, g € R

(2) (3) (3)
(6.54) f (C,KF,Grad(K ),9)

T e @ @ 3 B3 @ 6 @
).0)

@) @ @
( A +C,A oKp+ A, B3(Grad(Kg),Kr, A, A, A

=A *J&; f
A
(3) (3) (3)
(6.55) f (C,Kg,Grad(Kr),0)
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(4) 3) (3)
(6.56) f (C7 Kr,Grad(Kr), 0)

@ @ oof @ @ ® @ o
—AoJy! f (A «C, A oKF+A,B(Gmd(KF),KF,A,A,A),9)
A
(3) ®)
(6.57) ¢(C,Kp,Grad(Kr),0)

@f @ @ @ 3 B3 @ @ @
:5<A «C, A oKF+A,B(Gmd(KF),KF,A,A,A),0)

3) 3)
(6.58) n(C,Kr,Grad(Kr),0)

@f @ @ © 3 B3 @ @ @
:77<A «C, A oKF+A,B(Gmd(KF),KF,A,A,A),0)

The definitions of a symmetry group, undistorted states, a solid and of isotropy in Section 4.7

also apply to the thermoelastic case.

6.5 Thermoplasticity

Definition 6.7. Elastic range

An elastic range is a triple { (%7 Yp, qp} which consists of

1. a non-empty path-connected submanifold with boundary called ZP - %%9 X
Rt x R? and
i 3) (3) (3) (3)
2. thermoelastic laws ¥p (C, KF,Gmd(KF),Q), qp (C, Kg,Grad(K ),G,g)
(3) (3)
such that after any continuation process {C(7), Ky (7), Grad(Kg)(7),0(7),g(7) } i, which

remains entirely in 8?: the caloro-dynamical state is determined by the final values of
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this process:

(2)
(6.59) S =2pedcyp

3)
(6.60) S =po0ys Yp
Kr

(4)
(6.61) S =pd 5 VPP
Grad(Ky)

3) 3)
(6.62) e=1vp(C(t),Kr (t),Grad(Kp)(t),6(t))

(3) (3)
— 09p0p (C(t), Kr (t), Grad(Kr)(1),0(t))

(3) (3)
(6.63) 1= —0gvp(C(t),Kr (t),Grad(Kr)(t),0(t))

and all these functions are assumed to be continuously differentiable on %n/z/gx RT x R3.

In addition to Definition 6.7 one has to make the following

Assumption 6.2.

3) 3)
At the end of a thermokinematical process {C(7), K¢ (7),Grad(Ky)(7),0(7),g(7)}|},
of a point in a third-order thermoelastic material there exists a thermoelastic range such

that
e the final value of the process lies in %f),

e the caloro-dynamic state is determined by the thermoelastic laws ¥p and gp.

The concepts of Section 5.3 apply in the thermoelastic case as well, especially Assumption

5.1, which postulates isomorphy of the elastic ranges. One therefore obtains

Theorem 6.3. Existence of an thermoelastic reference energy
Let 19 and gp be thermoelastic reference laws. For each thermoelastic range { %1):, Uvp,q p}

2 3) &)
a triple P, P, Pe i % Con, 4 X %/f and two real constants ., 7. exist such that

3) 3)
(6.64) ¢p(c,KF,Gmd(KF),9)
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@f @ @ @ 3 B @ e @
— v P +«C,P o Kg+ P,3(Grad(Ke), Ke, P, P, P ),0) =16+,

) )
(6.65) qP<C,KF,Gmd(KF),6,g>

(2) ol @ @ @ @ @ @ @w @f
—p *qO(P «C,P oKp + P,B(Grad(Kg), Ky, P, P, P ),0, P *g)

—
—~
o

(3) (3)
holds for all {C, Kg,Grad(Kg)} € %oy, 6 € RY,g € R3,

2) 3) 4 :
In this thermoplastic framework P, P, Pe Zn x “, 5 X %% and €., 1. are the in-

ternal variables and determine the plastic transformations. Assumption 5.1, which postulates

(3) (3)
isomorphy of the elastic ranges, implies that . and 7. cannot depend on {C, K¢, Grad(Ky)}.

6.6 Yield criteria

The concepts in Section 5.4 can be extended in a straightforward manner to the case of
thermoplasticity. One just has to extend the set of variables by the temperature 6 since
no material is known, where the yield limit depends on the gradient of the temperature.
Therefore it will be assumed in this section that the elastic range is defined as a tupel 873 =

{ &p,0p) C Cofpx RT.

Definition 6.8. Yield surface & yield criteria

Z 0
Considering an elastic range { %:, p} one decomposes &p into its interior %?D and its
boundary 0 %. One calls 0 g)p the yield surface. The yield surface is assumed to be

smooth enough such that it can be described by a level set function:

(6.66) ¢p: Zoppx RT SR, (c, %F,Gmd(%),e) — ¢p (c, <13{>F,Gmd(<13{>F),9>,
6.67) 8 & = {(c %F,Grad(%)p),@) | op (C, <13(>F,G7“ad(<13{>}3~),9 - 0}

6.68) & = {(c %F,Gmd(%)ﬁ) or(C. %F,Gmd(%),e) <o}

. 3) (3) 3) 3)
(6.69) 4\ & = {(C,KF,Gmd(KF),e) | qbp(C,KF,Grad(KF),@) > o}
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The function ¢p is called a yield criterion associated to the elastic range { %3, Yp}. It

is usually piecewise differentiable and a material property.

The yield condition

(6.70) ¢p=0

and the loading condition
(6.71) op» >0

remain the same.
The hardening variables will still be denoted by Z, being tensors of any finite order. A

general yield criterion in the configuration space can then be denoted by

@@ @ @ )
(6.72) q5< P.P,P,C, KF,Gmd(KF),a,z)

During yielding this general yield criterion always fulfills

@ @ @ G )
(6.73) ¢( P, P, P,C,KF,Gmd(KF),e,z) —0

which implies during yielding

R R G 3)
6.74) o ( P. P, P,C,KF,Gmd(KF),H,Z> —0

The general loading condition thus becomes

(2) . (3) (3)
(6.75) 0<(dco) :C +(0s 0):Kgp +(0 1 ¢):Grad(Kg) + (96)0°
Kr Grad(Kr)

6.7 Flow and hardening rules

The rate-independent flow and hardening rules are obtained as in Section 5.6 with the only

difference, that they depend on the temperature. The assumption of rate-independency
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lead to the introduction of a plastic consistency parameter \ > 0. It scales the functions
(2)° (3)° (4)°
that determine the direction of flow and hardening: A4 , A and A . This approach now

yields
@' @, @ @ B @ E° 3)

676) P =An (P,P,P,z,C,KF,Gmd(KF),e,C ,KF,Grad(KF)°,0°>
B 3, @ e B @ E° 3)

677) P =AR (P,P,P,Z,C,KF,Gmd(KF),e,c ,KF,Gmd(KF)O,HO)
@ W, W @ e B @ E° )

678) P =AN (P,P,P,z,C,KF,Gmd(KF),e,C ,KF7Gmd(KF)°,0°)

@ © W Qe B @ E° 3)
(6.79) Z°* =\ h°< P,P,P.Z C,Kg,Grad(Kg),0, C ,KF,Gmd(KF)O,9°>

with a norming factor of the independent variables

2 (3) i (3)
(6.80) pi= \/H C |+ L% Ky ||? + L Grad(Kg)|* + [|6°]]>/6F

and

Here 6 is a reference temperature that can be chosen freely. The constants L with dimension

of a length and L with dimension of a squared length are constants that need to be introduced
2°* 3)° (3)°
for dimensional consistency. They determine the influence that C , Ky, Grad(Kyg) have on

yielding. During a purely elastic process the consistency parameter must be zero. During
yielding the consistency parameter does not vanish, and it can be calculated by inserting

Equations (6.76)-(6.79) into the yield condition, which now takes the form

R RC G )
(6.82) 0=o (P, P, P,C,KF,Gmd(KF),G,Z)
[ ] <3>. [ ]

(2 ) 3)
(683) :(8C¢) :C +(8<3> (Z)) KF —{—(3 (3) qb) o Grad(KF) + (39¢)0'
Kr Grad(Kr)

(3 (4)°
+(090) P +(05¢): P +(0n9) =P +<3z¢>, Z'>
P P P
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2)* . 3)° 3)°
(6.84)  =(9c¢):C +(9s ¢): Kp+(0 5 @) Grad(Kg) + (9p9)6°

Ky Grad(KF)
@° , 26 W @ e 3 @°E° (3)
+ (D d) i A B (P,P,P,z,C,KF,Gmd(KF),e,C ,KF,Gmd(KF)°,9°)

@, e @ B @°E° 3)
+ (D d)'A h (P,P,P,z,C,KF,Gmd(KF),e,c ,KF,Grad(KF)°,9°>
P

@° @@ W @ e 3 @ @° )
( P,P,P,Z C,Kg,Grad(Kr),0, C ,KF,Grad(KF)°,9°>
2)

—
N
~
—
w
R

@ @°e° 3)
C, Ky, Grad(Ky),0, C ,KF,Grad(KF)°,9°)>

+
-
D
N
&
v>/
=
[}
—
oS
w
)
N

Rearranging then yields

(6.85) )\( P,P,P,Z C,Kg,Grad(Kr),0,C ,Kg, Grad(Kg)*,6°

w o~

(2)* .3 (3)°
= _<(80¢> :C +(0 ¢): Kg +(9 @ @) Grad(Kg)
Kp Grad(KFg)
2)° /(2 3) 4 (2 3 (3)
<+<6<2>¢>:A o

2) 3) & (2 3) 3) 2)° 3)° 3) )
+

@)/

2)° (3)° (3)
P,P,P,Z C,Kg,Grad(Kg),0, C |, F,Gmd(K;;)",H")

—

3° @B W @ e B @2°@E° (3)
(P,P,P,Z,C,KF,Gmd( r),0,C ,KF,Gmd(KF)O,9°)

@° 2 3@ (2 @ (3) (2)° (3)° (3)
( P.P,P,Z, C,Kyg, Grad(Kr),6, C ,KF,Grad(KF)°,0°)
2)

G @ @ @) G @° B° 3)
P,.P.P.Z C,Kg,Grad(Kg),0, C ,KF,Grad(KF)°79°>> >

+
S
N
=
“>/
>
VR

where in contrast to Section 5.6 A now also depends on the temperature and its time derivative.
The consistent flow and hardening rules and the Kuhn-Tucker condition hold in the

thermoplastic case as well.

6.8 Thermodynamic consistency

2 (3) (4
The constants €. and 7. can depend on the internal variables P, P, P,Z since these are

constant during purely elastic processes. Using the notation from Theorem 5.3 one can thus
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write

(6.86) o = zp()(Ce, <I?’{>F6,Grado(<13{>Fe),6) n €c< <123>, %, P,Z) _ 9%( %), <I3’>,<P,Z>

3)

(3) (3) (2)
( p

(6.87) E:€0<C6,KFE,Gmd0(KFe),0> te P

)

3) 3) 2 ()
(6.88) 7= no(ce, KFC,Gmdo(er)ﬁ) + nc( P P P.Z

where . is the plastic part of the free energy.

Therefore the time derivative of the free energy can be written as

(3)* (3)
(689) T/J. =3CG¢0 . C; + 8<3> w() :KFE +8 (3) w() : GTCLdO(KFE). + 89¢09.
KF€ GT‘ado(KFe)
2° (3)° 4)® . .
+ 0oy 1P 050 1P +0uye 1P +0z3c 1 Z° + Ogrp. 0
P P P —~—~
=T
(3) (4
Due to the subsymmetries of C, Ky, Ky only those parts of dc, v0,03, 0,0 @ Yo
Kp, Grado(Kr,)

with the same subsymmetries enter Equation (6.89). Thus it can be assumed that

(6'90) {806¢0aa (3) 7/)Oaa (3) @110} S g/;%;

Grado(KrF,) Grado(Kry,)

Now one can apply the approach and notation from Section 5.5 and Appendix C.2 (but with a
(3) 3)
pushforward rather than a pullback) to eliminate (Ce, Ky, , Grad(Kpy,)) in Equation (6.89).

Thus one can write

(2)
(6.91) ¢* =(P *dc, ) : C*

2 3@ .3°
+’Y(a(3) 1/1073 (3) wOaG7G7KFe): KF
Kg, Grado(Kr,)
) ®
+ (P 00 @ Vo) = Grad(KF)
Grado(KrF,)

2 2°* @3 .3 (4) @*
+ (SP7 +a<1%>1/1c) P +( SP’ +a<1:3)>1/1c): P +( SP’ +a<1§>¢c) =P
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+ Oztpe + Z° + (Optpo — 1c)0°

with

(2) (2)
(6.92) Sp=2sym[P -Ocvy -C]

@~ " @ @7 ®)
—P  (Pod 4 )P oGrad(Kg)
Grad(Kr)
@ 3
+[(a (3) '(/J P ) ? GTGd(KF)]
Grad(Kg)

1,2] T

(3) 7. (2)~
+ 2sym [Grad(KF)]:@ @ P
Grad(Kr)
. <2>_T (3) @~ 3
+0 o (P oP)B. (P . Kp)ld
Grad(KF)
312 @~ 2T (313
+Kp 2 ((0 @ ¢-P )BLP )P

Lt R 2"

+Kp (P oP):d 4 P )
Grad(Kr)

@ @', @ @~

+Pp -P.-P-P W9  ¢v:Kg -P

G’I‘ad(KF)

/\
®
D
|
~
—~
R

@ T @3 @ , @~ T
—2((P oP)Kp)"o v P

Grad(KF)
(3) @2 (3) (3) D) 2!
(6.93) SP::[V(% 0,0 o 0. PP Kp)+2P oKg): (P 00 4 o)
Kg Grad(Ky) Grad(KF)
27 @t @ .
— (P 00 3) V) (P oKF)[’}]
Grad(KF)
(4) @t
(6.94) Sp::[P 00 g W
Grad(Kg)

Now one substitutes Equation (6.91) and the definition of the stress power in to the Clausius-
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Duhem inequality (6.5) to obtain

1 @ @
(6.95) 0>(—— S + P xdc, 1) : C*
2po
1@ 2 3 B \.3°
-+ ( - — S +")/(8<3> ¢0, 0 (3) ,(/}07 G7 G7 KF&)): KF
£0o Kp, Grado(KFe)

1@ @ G .1
+ (== S + P od @ Vo) = Grad(Kg)® + —qpgo
00 Grado(Kp,) pod
@) @ 3 L@ @ e
+ (Sp +(9<P2)>1Z)c) P +(Sp +a<§>7/’c): P +(Sp +a<14:1))1/)c) P

 Oge : Z* + (Ot + 100"

2) (2
First one can exploit Equation (6.95) for the case where no yielding takes place, i.e., P=0,

@) (3 @ 4 n)
P=0,P=0,Z*=0. This allows to deduce the thermoelastic relations as in Theorem 6.1.

2 (2
(6.96) S =P xdc, o

(%) @ (3) @3
(697) S = ’Y(a(& 77507 a (3) ¢0, G7 Gu KFE)
Kr, Grado(Kr,)

)
Grado(Kr,)

(6.99) 1m0 = —0pto

(6.100) 0>g-q

Furthermore one can examine the case of yielding, which allows to deduce in addition to the

thermoelastic relations the residual dissipation inequality

2) @°* @) RCIMC) @* .
(6.101) 0 >(Sp: +a%>¢c):P +(Sp +a%>¢c):P +(Sp +a%>¢c) 2P +0z1c: Z

which pose a restriction on the flow and hardening rule. An important consequence, that was
already pointed out in [Bertram 2005| for the classic case, is that yield against the stress is

possible. One can formulate these results as
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Theorem 6.4.
For a thermoplastic third-order material the Clausius-Duhem inequality (6.5) is fulfilled

for every thermo-kinematical process if and only if the free energy does not depend on the

gradient of the temperature and if conditions (6.96)-(6.100) as well as (6.101) are fulfilled.

This implies for the stress power:

(3 (3)
(6.102) p=0c. Yo : C:+ 0z to: Kg, +0 @ Yo Grado(Kpg,)*
KFe GTado(KFe)

=¢g+mod®

2 @° 3¢ @ @ @°
— SPHP — SP’IP — SPHIP

Similar to the case of plastic dissipation in Section 5.5 on can observe a split of the stress
2°* 3°* @°
power into a part that is stored in ¢ and part that is dissipated, working on P , P | P

during yielding.

6.9 Changes of the temperature

Starting from the first law of thermodynamics (6.4) one obtains for the heat supply @

(6.103) Q =¢* —p

Using equations (6.87) and (6.102) yields
@ @ 3 .3 @ @
(6.104) =eg+es —Y5—nob*+ Sp:P + Sp:: P + Spu:P
Now one uses the definition of the Helmholtz free energy and obtains

@ @ 3 .3 @ @°
(6.105) =6ny+co+ Sp:P + Sp: P + Sp:P

This allows to define the thermoelastic heat generation as
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which contains the definitions of

2 (3) 4
e stress-temperature tensors R, R, R

e and the specific heat ¢

with
@, ®
(6.107) R(CE,KFC,Gme ,9) —de.1o
® ,®
(6.108) R(CE,KFP,Gme ,9) =0 Mo
K,
@ o
(6.109) (CE,KFC,Gme ,9) @ Mo
Gradg(KFe)

(3) (3)
(6.110) C(Ce, KFE, Grado(KFe), 9) = 989770

Furthermore one can define the plastic heat generation as

@ @° ¢ .3 @ @
(6.111) Qp:=eo+ Sp:P + Sp:: P + Sp::P

An equation that describes the change of the temperature can now be obtained by rearranging

Equation (6.105).

1 2) @ 3 @ 3)
(6112) 0* =~ [Q + ( R:C'+ R Ky, + Ro Gme(KFer)e

@ @° @ .3 @ @
—eo— Sp:P —Sp:P — Sp:P ]

Equation (6.112) allows to obtain the temperature at the end of an elasto-plastic process by
integrating the time derivative of the temperature along the process. One sees that changes
of the temperature can be caused by heat supply through irradiation and conduction, this
change is described by ). Temperature can also change through thermoelastic deformations,

this change is then described by

2) @3 W (3)
(6113) ( R:Cl+ RiKpg, + Ri Grado(Kr,)*)0
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Furthermore temperature can change through the heat Qp generated during yielding and

hardening, governed by the flow and hardening rules (6.76)-(6.79).
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Chapter 7

Finite element analysis of polyhedra
under point and line forces in second

strain gradient elasticity
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7.1 Chapter Introduction

The majority of results in this chapter has been published under the same title in colabo-
ration with Ivan Giorgio ! in [Reiher, Giorgio, Bertram 2016]. The concepts of point forces
and force distributions along lines are often used in mechanics. However, the common ap-
proach of a Cauchy continuum, i.e., a continuum equipped with an elastic energy that de-
pends on the gradient of the displacement, cannot sustain such point and line forces. A
prescription of such boundary conditions along lines or on points results in singularities of
the displacement field. If one wants to marry the idea of a continuum with that of point
and line forces (or point and line displacements) one has to generalize the concept of the
Cauchy continuum. Extending the elastic energy of the continuum to second and third gra-
dients of the displacement clearly lends itself to this purpose. From Mindlin’s and Germain’s
work [Mindlin 1965, Germain 1973] and further contributions that build upon these ideas
such as [Javili et al. 2013, Alibert et al. 2003, Seppecher et al. 2011, dell’'Isola et. al. 2015,
Carcaterra et al. 2015] it is very clear why the introduction of the first and second strain gra-
dient allow a continuum to sustain boundary conditions on vertices and edges of a body. In
this chapter a finite element approach is presented, that allows the integration of displacement
gradients up to the order of three. This method is then used to examine how different poly-
hedrons react to line and point displacements applied to their edges and corners. This is done
for small deformations such that there is no need to distinguish a reference and a momentary
placement. The notation in this chapter deviates from the other chapters to underline the

fact that only a very special case is considered.

7.2 Implementation in a FEM software

Standard finite element methods are designed for application in first-order problems. Deriva-
tives of order greater than one should be avoided. Therefore a Hellinger-Reissner type vari-
ational principle has been applied. Such an approach has been used for implementing strain

gradient theories with the FEM in publications before, e.g. see [Cordero et al. 2011] and the

Ivan Giorgio Ph.D., Dept. of Structural and Geotechnical Engineering, Univ. di Roma La Sapienza, 00185
Rome, Italy, E-mail: ivan.giorgio@Quniromal.it
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references therein. This allows to bring the problem into a form that is suitable for a standard
FEM environment. The key idea is to introduce additional kinematical fields and Lagrange
multipliers. These allow a formulation where the elastic energy only depends on first-order
derivatives of the variables. This approach increases the number of kinematical descriptors
but it is possible to use lower-order polynomials as interpolating shape functions. In detail,

micromorphic tensors are introduced in the standard FEM code:

(2)
(7.1)  Q, which is constrained to be grad u and

(3) (2)
(7.2)  Q, which is constrained to be grad Q

as well as micromorphic constraints, which are introduced by using Lagrange multipliers A;

and Ag (both are tensors). The third gradient elastic energy for the variables E :=
(2) (3)

sym[grad(u)], Q and Q, and under the assumption of a homogenous and isotropic material,

is defined as

@@ 1 N @ @
(7.3)  Wyper(B,Q, Q) := 5(2HE . E + ) tr(E) ) + 50 grad(Q) | grad(Q)

=W (E) (2)

=W (Q)
1 (3) (3)
+ 1\ grad(Q) = grad(Q)
s (3)
=W (Q)

A Q —gradtw) + Az = (Q ~grad(@))

A and p are the Lamé parameters. A\; and Ay can be regarded as the second gradient stiffness
and the third gradient stiffness, respectively.

(2)
The second gradient elastic energy for the variables E, Q is specified as

(2) (2) (2
(7.4) WgradQ(Ea Q) = W[(E) + W[](Q) + All(Q —grad u)

The energies have been brought into a dimensionless form by choosing a reference length scale

lrey and a reference Lamé constant A..r. This means that the real material constants are
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related to the reference constants:

(75) A= Av-eal) o Hreal -y Al Cdg = A2rear

Aref Aref Arefres Avefres
The problem of solving the boundary value problem of a second or third gradient material now
reduces to the variational problem of finding an extremum of Wy, .4 or W42 on a certain
set of shape functions subject to constraints. For all simulations A = 1 and pu = 0.08 has
been set. Except for the section with the parameter study on Ay and Ao we set \; = 0.04 and
A2 = 0.0015. This choice is purely academic and based on dimensional reasoning. It ensures
that the gradient effects occur in a boundary layer of size £ = 0.21,.y which can be captured
by the meshes that have been used.
The software package COMSOL Multiphysics [Comsol 2016| has been used to implement the
approach described beforehand. This is done by using the weak form feature of the software
that allows the user to enter the variational problem directly. The software solves for the
fields w;, %)Zj, 81% and the Lagrange multipliers Ay,; and Ag,, in the third gradient cases

(2)

or for the fields u;, @;; and the Lagrange multiplier A,; in the second gradient cases. Fur-

]
ther Lagrange multipliers are needed to implement displacement boundary conditions. These
multipliers are chosen to be quadratic Lagrange shape functions in order to be consistent
with the before mentioned assumptions. Since the tools in this approach were not designed
for higher gradient problems, in future research more suitable numerical tools could be in-
vestigated such as those in [Fischer et al. 2010, Greco & Cuomo 2014, Greco & Cuomo 2016,
Cazzani et al. 2015, Cazzani et al. 2014, della Corte et al. 2016]. In what follows the defor-
mation for polyhedrons equipped with the introduced gradient energy is presented. The

grayscale scheme in all figures represents the stored elastic energy.

7.3 The tetrahedron

The tetrahedron has been chosen for extensive numerical studies, since it is the simplest

polyhedron to demonstrate the effect of the second strain gradient in the elastic energy.
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7.3.1 A tetrahedron with one point displacement and one fixed surface

A tetrahedron with each side of length [,..; is subjected to a displacement of magnitude
0.051,¢¢ at the tip to satisfy the small deformation assumption. The displacement vector is
orthogonal to the surface opposite to the vertex to which the displacement is applied. In
Figure 7.1 one can see, that for the classic first gradient energy the displacement field and
the energy are both mesh-dependent. This spurious mesh dependence is apparent from the
fact that the induced displacement and energy for any mesh are concentrated in the cell at
the tip and vanish everywhere else. The energy density grows unbounded as can be seen on
the scale bar on the right of the bodies. In the solutions for the second gradient energy in
Figure 7.2 spurious mesh dependence can only be observed for the energy. In contrast to the
case with a first-order energy, the displacement field does not show any indication of mesh-
dependence. The displacement field clearly tends to a solution with a discontinuity at the tip
with a singularity of the elastic energy. Again the spurious mesh dependence of the second
gradient energy is apparent from the fact, that it is confined to the finite element at the tip,
and that its density maximum grows with each mesh refinement. Thus the solutions tend to a
limit where the displacement is continuous but the second gradient energy has a singularity at
the tip. Only the solution for a third gradient energy in Figure 7.3 can be regarded as mesh-

independent since both the elastic energy and the displacement undergo negligible changes

when the mesh is refined.

Figure 7.1: Mesh-dependent solution for tip displacement with first-order elastic energy. The
mesh on the right has been refined around the tip.
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Figure 7.2: Mesh-dependent solution for tip displacement with second gradient elastic energy.
The mesh on the right has been refined around the tip.
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Figure 7.3: Mesh-independent solution for tip displacement with third gradient elastic energy.
The mesh on the right has been refined around the tip.

Mesh refinement study for third gradient energy

A mesh refinement study has been conducted for the case of a third gradient energy by applying
several tetrahedral meshes. Refinement has mainly been concentrated on the tip where the
displacement is prescribed, as shown in Figure 7.4. In Figure 7.5 one can see that the values
for the components of the elastic energy vary in a small range as the mesh is refined. These
results suggest that a mesh with a number of elements that lies in the middle of the evaluated

range is sufficient for further numerical studies.
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Figure 7.4: Third gradient energy: solutions for meshes with 46, 176 and 340 elements (from
left to right)
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Figure 7.5: Value of the components Wy, Wy, Wiy of the stored elastic third gradient energy

Wraas for meshes with different number of elements

Parameter Study for \; and Ao

In order to understand the dependence of the third gradient energy on the choice of the
dimensionless material parameters A, A1, A2, a parameter study has been set up with A =1
and p = 0.08 as already mentioned. In Figures 7.6-7.9 the dependence of the third gradient
energy Wy, ,q3 and of its three components (W, Wi and Wiyyr) on the parameter A\; and Ay

is visualized. The plots show that in this case A\; has a greater influence on W, .43 than Ag.
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Figure 7.6: The stored elastic third gradient energy W,,,4s plotted over different ranges
of A1 and Xo. This plot has been created with kind support of Ivan Giorgio for
[Reiher, Giorgio, Bertram 2016].
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Figure 7.7: The stored energy component Wy plotted over different ranges of A; and M. This
plot has been created with kind support of Ivan Giorgio for [Reiher, Giorgio, Bertram 2016].
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Figure 7.8: The stored energy component Wiy plotted over different ranges of A; and Ag. This
plot has been created with kind support of Ivan Giorgio for [Reiher, Giorgio, Bertram 2016].
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Figure 7.9: The stored energy component Wiy plotted over different ranges of A; and 9. This
plot has been created with kind support of Ivan Giorgio for [Reiher, Giorgio, Bertram 2016].
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Equivalent forces for a tetrahedron with point displacement

In the case of the prescribed tip displacement for a tetrahedron with a fixed bottom surface,
the surface tractions have been calculated. This can be done by evaluating the Lagrange
multipliers assigned to the displacement boundary conditions. These values are dimensionless
since the energy has been non-dimensionalised. In order to obtain meaningful values in the
first gradient energy, the tip displacement has been approximated by the exponential function.
For a third gradient energy the force at the tip is 18 times higher than for the third gradient
case. (Absolute values of the forces are not of interest in this case since no real material is
modeled.) The traction field on the fixed bottom surface for both cases is shown in Figure
7.10. This discrepancy shows that a higher gradient model requires careful calibration in order
to render meaningful values. This, however, does not lie within the scope of the present work.
The same holds for the traction field that has very different forms for the cases of first- and

third-order energies as can been seen in Figure 7.10.

Figure 7.10: Traction fields on the fixed bottom surface for a first gradient (left) and third
gradient (right) solution of a tetrahedron with a tip displacement. The arrows on the right plot
are magnified by a factor of three compared to the left plot. This figure shows the deformed
tetrahedron from the bottom surface where a zero displacement boundary condition has been
prescribed. The deformation around the tip of the tetrahedron is hardly recognizable at the
top of the figure due to the viewing angle.

7.3.2 A tetrahedron with one line displacement and one fixed surface

The displacements are prescribed along one edge of the tetrahedron. The displacements in-

crease linearly along the edge starting from zero at one point and reaching 0.051/,.; at the
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other point as depicted in Figure 7.11. The surface at the bottom is fixed. In the case of the
first gradient energy the solutions for the displacement in Figure 7.12 are not mesh dependent
and tend to a limit that is continuous. The solutions for the energy are mesh-dependent and
tend to a line singularity of the energy, i.e., all points on the line with the prescribed displace-
ment become singularities of the energy. This spurious mesh dependence shows that a first
gradient energy does not allow the bulk to sustain a line displacement. Figure 7.13 shows,
that the solutions for a second gradient energy also tend to a case with no discontinuities in
the displacement field. Furthermore Figure 7.13 gives evidence, that in the limit the energy is
continuous except for the tip where it has a discontinuity. Along the rest of the line it appears
that in the limit the second gradient energy is continuous. Of course it could also be that
in the limit all points on the line become discontinuities of the energy. The third gradient
energy in Figure 7.14 clearly yields solutions that only vary to a small extend with variations
of the mesh. This indicates mesh independence which means that no discontinuities in the
displacement or the third gradient energy are present. Therefore it confirms that a third gra-
dient energy allows the bulk to sustain line displacements. Comparing Figure 7.13 and Figure
7.14 the most noticable difference is, that in the second gradient case the energy is focused in

a narrower region.

Figure 7.11: Prescribed line displacement along an edge of a tetrahedron

Figure 7.12-Figure 7.14 show the solutions of the tetrahedron for the first, second and third

gradient elastic energy with the prescribed line displacement from Figure 7.11.
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Figure 7.12: Solution for a tetrahedron with prescribed non-constant line displacement and
fixed bottom surface equipped with the first gradient energy (mapped by grayscale scheme).
From the left to the right the mesh becomes finer around the edge with the prescribed line
displacement.
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Figure 7.13: Solution for a tetrahedron with the prescribed non-constant line displacement and
fixed bottom surface equipped with the second gradient energy (mapped by grayscale scheme).
From the left to the right the mesh becomes finer around the edge with the prescribed line
displacement.
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Figure 7.14: Solution for a tetrahedron with prescribed non-constant line displacement and
fixed bottom surface equipped with the third gradient energy (mapped by grayscale scheme).
From the left to the right the mesh becomes finer around the edge with the prescribed line
displacement.
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7.4 The cube

7.4.1 A cube with one prescribed, shear-like line displacement and one

fixed surface

A cube has been chosen to demonstrate the effect of a line displacement. The bottom of the
cube has been fixed and a displacement of 0.05 1, parallel to the bottom surface is prescribed

as illustrated in Figure 7.15.

Figure 7.15: A cube with fixed bottom surface and prescribed displacement at one edge

For this geometry the influence of the higher gradients is even more pronounced than for a
tetrahedron. The solutions have similar properties as those in Figures 7.12 - 7.14. One can
see in Figure 7.16 that the first gradient energy produces solutions that tend to a continuous
displacement field with a line singularity of the energy along the edge with the prescribed
displacement. The second gradient material in Figure 7.17 yields results, that are similar
to those obtained for the tetrahedron in Figure 7.13. In the limit the displacement field is
clearly continuous while the second gradient energy has discontinuities at the end points of
the edge with the prescribed line displacement. Figure 7.18 shows, that the third gradient
material can sustain the line displacement with no singularities or discontinuities, neither in

the displacement field nor in the energy.
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Figure 7.16: A deformed cube with fixed bottom surface and prescribed displacement at one
edge with the first gradient energy. From the left to the right the mesh becomes finer around
the edge with the prescribed line displacement.
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Figure 7.17: A deformed cube with fixed bottom surface and prescribed displacement at one
edge with the second gradient energy. From the left to the right the mesh becomes finer
around the edge with the prescribed line displacement.
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Figure 7.18: A deformed cube with fixed bottom surface and prescribed displacement at one
edge with the third gradient energy. From the left to the right the mesh becomes finer around
the edge with the prescribed line displacement.

7.4.2 A cube with point displacements

Figure 7.19 and 7.20 show two cases of prescribed point displacements on a cube. On Figure
7.19 a tip displacement has been applied in combination with a zero displacement boundary
condition at one surface of the cube. The displacement with magnitude 0.05/,.¢ is chosen in
direction of the space diagonal, while the fixed surface is in the the xy-plane. In Figure 7.20
displacements of magnitude 0.05/,.y have been prescribed at four vertices, each displacement
in direction of the space diagonal corresponding to the vertex where it is applied. In both
cases it is clear that a first-order material leads to a discontinuity in the displacement with
a singularity in the energy. A second-order material results in continuous displacements with
singularities in the energy. The third-order material clearly yields a continuous solutions for

both, the displacement and the energy.
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Figure 7.19: From left to right: Plot of the corresponding elastic energy for a first, second,
and third-order material
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Figure 7.20: From left to right: Plot of the corresponding elastic energy for a first, second,
and third-order material

7.5 The cylinder

For a cylinder of radius [,y and height 0.5/,.; the bottom surface is fixed and at the upper
edge a displacement of 0.05/,.s in direction orthogonal to the flat surface is prescribed (see
Figure 7.21).

Here one would expect that the second gradient energy yields a solution without singularities.
However Figure 7.21 suggests that this is not true. This case should be investigated with more

suitable numeric tools.
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Figure 7.21: Solution of a cylinder with fixed bottom surface and prescribed displacement at
the upper edge for the second gradient energy. The grayscale plot maps the (second gradient)
elastic energy

7.6 Chapter conclusions

A numerical study has been carried out concerning different geometries and with various
boundary conditions for a material with a constitutive laws that involve the second and third
gradient of the displacement. The results show that only third gradient materials can sustain
point forces while first- and second gradient continua are not able do so. It has been shown that
a second gradient material under prescribed line displacements yields a continuous solution for
the displacement field with discontinuities or possibly even singularities at vertices. Further
research involving more suitable tools is required in the field, e.g. to investigate the case of

the cylinder with a line displacement, where unexpected singularities occured.
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Chapter 8

Concluding remarks and outlook
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The present work develops a material, thermodynamically consistent second strain gradient

framework in the spirit of [Svendsen et al. 2009], |Bertram 2014] and [Bertram 2015] for large

deformations. (Also referred to as a third-order theory.) One novelty in the third-order theory

is that a pair of two equivalent generalized material strain measures of order four exist: <I4{>F

and Grad (<IB(>F) In the lower-order theories the (generalized) unique material strain measures

can be derived from the internal power. In the literature the material gradients of C have
(4)

been suggested as suitable generalized strain measures but the present work shows that Ky or
(3)

Grad(Ky) are more convenient to handle since they include gradients of the anti-symmetric
part of F, which are not included in Grad(C). The tensor <I4<>F has turned out to be the most
convenient to handle for a material third-order theory.

Another unexpected novelty in the third-order theory is, that the generalized material stress
tensor of order three depends on the the generalized spatial stress tensors of order three and
four. This leads to a comparatively complicated transformation behavior of the stress and
strain measures under changes of the reference placement, which is reflected by the introduc-
tion of the transformation functions «, 8 and . From there the further generalization of
the concepts in elasticity, elastoplasticity and thermodynamics are straightforward but the
derivation of the generalized plastic stress tensors becomes considerably more complicated.
From these facts it becomes evident that with this scheme it is possible to set up a material
framework for strain gradients of n-th order. First one has to pull back the spatial velocity
gradients and the generalized Cauchy stresses in the stress power. This can be expected to
yield material strain measures of the form F~! - Grad®(F). Each generalized material stress
tensor of order greater than two will probably depend on the generalized Cauchy stress of the
same order and maybe of those of higher order. (These conjectures have to be checked for
each case though.) Then one has to determine the transformation behavior of the generalized
stress and strain measures under changes of the reference placement by introducing further
functions that generalize «, § and ~. Once this is done the further steps follow exactly the
same scheme as in the present work.

Of course it would be desirable to find a general scheme how to determine a n-th-order frame-

work, i.e., a formula for the generalized stress tensors and for the transformation rules under
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changes of the reference placement. This will be a very demanding problem to solve which
starts with the boundary conditions. So far it has not been possible to derive from the second-
and third-order boundary conditions a conjecture for a formula for the n-th-order boundary
conditions. Similarly a conjecture for a formula for the generalized material stress tensors
of order n seems very hard to pose leaving aside the corresponding transformations under
changes of the reference placement. So far one has to calculate all these quantities separately
for each n. This leads to the question up to which order it makes sense to work out strain
gradient frameworks.

From an academic point of view it would be desirable to know the governing equations of
a n-th-order framework to better understand the mathematics of higher strain gradient ma-
terials. From a more applied point of view no material models have been applied yet that
include second or higher gradients of the strain. The enormous amount of material parameters
required by such models is a major disadvantage with respect to complexity.

A strong motivation for introducing higher strain gradients is their ability to model point and
line forces on vertices and edges respectively. In the present work it is laid out why no more
than two gradients of the strain are required for this task. In the light of these results in seems
questionable if the development of frameworks that include more than the first two gradients
of the strain is a reasonable aim at this point. Further research on first and second gradient
of strain frameworks seems to make more sense. With respect to numerics an implementation
of large deformations and plasticity would be the next step. Furthermore the investigation
of more complex geometries as the cylinder, which caused problems in the present work, is
required. An isogeometric analysis could be an appropriate tool for further research especially
since it could bring down computing times. In this context another field that needs to be
considered for further research are cases where highly localized strains or stresses occur which
could be modeled by point and line distributions. For all of these tasks the framework in the

present work can be used as a foundation.
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Appendix A

A second strain gradient

(4)

elastoplasticity framework with K
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A.1 Derivation of material stress measures from the power func-

tional

(4)
In this appendix a material framework for third-order plasticity is outlined, where K is used

as the strain tensor of order four. This is done by reformulating the crucial results from
(4)
Chapters 4 and 5 for Kg. In those cases, where only the notation changes, the results are not

written down again but only the changes in notation are pointed out.

Starting from (4.32) one obtains

1/1@ , &.6° @ (@ 24230 G
(A.1) P—/po<2 S:C*+ S iKp+ Su [KF— 3sym [KFKF]de

By

*
, (@ :
Due to to the subsymmetries of S the term marked with %

can be written with respect to an ONB as

@ @ @ @ @ @bl (@3lgslge
(A2) = Sachabc + SadeKabcd - Sadechx Kabz - SacbdedJ: Kacx

()21 (3)[1,3] (3)

adch cbx K adzx

@ @@l (e

which yields

1/1@ @ @b @ @ @
(A.4) P:/p<2 S:C*+(S -3S:Ky )Kp+ S::KF)dm
0 ————
By (4) (3)
=a(S ,Kr)
1/1@ B @ 3 @ @
(A.5) :/<25 c* <S—a(S,KF) Ky + S KF>dm
Po
0 )
=:S
1 /1@ B @ @ @
(A.6) :/(2 S:C*+ S : Ky + S::KF>dm
£0

Bo

Thus a set of three material stress and a set of three material strain measures has been defined
and these sets are work conjugate to each other.
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Stress measures Strain measures

(2) ) @) .
(A7) S:=F x(JpT) C:=F F
B @ e 3)

(A.8) S:=(S -3 S: Ky ) Ky
—_——
(4) (3)
—a(S,Kr)
(1) X ) (4)
(Ag) S:=F "o (JF T) Kg

A.2 Third-order elasticity

One defines constitutive functions by extending the definitions in [Bertram 2015] as follows:

3)
Note: There is no constitutive equation for S because it is not a generalized stress measure

but a partial stress. It should be regarded as a quantity that helps making a comparison to

the second-order theory and it makes some transformations shorter.

Definition A.1. Hyperelasticity

A material is called hyperelastic if there exists a specific elastic energy

@ : Gty R
such that
12 @) 3 @ @
(A13) p :% 3 S:C*+ S Ky + S:Kyg
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B W e
(A.14) :w(c,KF,KF)
) LB @ Y
o C,KF,KF) 8w(C,KF,KF).<3>' aw(c,KF,KF) (4)°
(A.15) = 5C :C* + 3 Ky + @ =Ky
8KF 81<F

(3) @
A comparison with the components in (A.6) then reveals for all (C, Kr, Ky ) € %@%ﬁ

le
B @
3) 3 @) @ aw(C,KF,KF)
OKp
B @
W W, s w éw(C,KF,KF)
(4)
0 Kg

A.3 Changes of the reference placement

3) (2 4
The transformation of C, Kg, S and S is derived in Section 4.5. Therefore only the trans-
(4) @)
formation of Kg and S is derived here.

Theorem A.1l. Transformation under changes of the reference placement

Again one defines auxillary functions

(A19) B: Cofx Copix Swx Coix Congf — Coryf,
(A20) A: Cogx Cofx Sowx Cogfx Coffr Corys,

woE 3 @ LW W paRs B @)
(A21) B(Kp Kp, A, Ka Ka)=AToKp+Ka + 3sym [A oKp-Ka |,
@@ @ @@Ll
(A.22) 7(S,S,AKa,Kp)=A"lo0 [JA(S 13 S Ky )}
(1) RG]
- (A*l o (Ja S))  [ATo Kp + Ka]l9,
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such that

(

(A24) S=7(S,S,A,Ka,Kp)

Proof.

First (A.23) is proved.

(A.25) K - (E—l : Gmd”(E)) - (A—1 F~'. Grad(Grad(F - A) - A) - A)

) )
Thus, with respect to an ONB {ej, ez, e3} one can write the components of K :=K,, as
F

Ao o [(FocAcp) aAdn ] e Acs

aa™ ab
(A26) :A;;F(;lyl [Fbc,dAcﬁAdv + FbcAcB,dAd'y],eAe5
(A.27) =Apr o [ Foede Ac Ady + FoedAcseAdy + FoeaAcsAdy e

+ FyeeAcp.aAdy + FyeAcg geAdy + FoeAcgaAdy,el Aes
(A.28) = At F [Foede Acg Ady Acs + Fi bc,dAc,BlfA}el AgyAcs + Fbc,dAcﬁAdylfAfel Acs
+ Fie,eAcp, fA]?; AgyAes + FyeAcp aeAdyAes + I bcAc,BlgAg;dl AdvlfA;elAeé]
(A.29) =A Fy Fyede AcgAdy Acs + FocdAcs s Ady + Fod,cAcsAdys

+ Fbc,eAcﬁﬂAeé + FbcAcB,deAd'yAeé + FbcAcﬁlgAg_dl Ad'ylﬁ]

In the next step one makes use of Acgge = Acﬁﬂ fA;dlA]?el — AcglgAg_xleflyA;;A;el, which

can be easily verified by applying Remark 2.1

(A.30) =A o F,t [F be,de AcgAdyAes + FoeaAcp s Ady + Fod,cAcpAdy s
+ Foe,e Acpy Aes + Foe[Acp gr Agg A7l — Acp g Aga Augy) Ay A7 Aay Acs
+ FbcAcﬂlgA;dl Ad@}
(A.31) =Apd Fy Focde Acg Ay Acs + Ang F;blFbc,dAcﬁlaAdy + AL FJbIde,cAcBAdwl(S
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t Agd Foy FoeeAcpy Acs + Ao Aag s

In notation without indices one therefore obtains

@ W@ RARI B
(A32) Kp=ATo Kp + Ka + 3sym [A— - (Kp -A)[’]-Gmd(A)}
LW @ AR BB
(A33)  =AToKp + Ka + 3sym [(A o Kp)- KA}

Transformation (A.24) is proved similarly:

B @ @l (3) (4) 3 @)
(A34) S=S—-S:Ky =A"lo(Jy S)— (A—1 o (Ja s)) [ATo Kp + K 4]
B @) (4) 3 @
(A35) =A"lo [JA(S +a(s, K))} - (A*l o (Ja S)> [ATo Kp + K419
B @ @ @
(A.36) =:79(S,S,A Ka, Ky

O

In summary the following transformations for changes of reference placement have been ob-
tained:

Stress Measures: Strain measures:
2 (2)
(A37) S=A"1%J,8 C=ATxC
(3) B w @ @ (3) @ @
(A38) S=7(S,S,A,Ka,Kr) K= Ao Ky + Ka
@ (4) @ W3 (3)  (4)
(A 39) SZA OJA S KE:B KFyKF7A7KA7KA

~ (4)
At this point one should note that the transformations 8 and 7 from the framework with Kg
3)
are more compact than 5 and v from the framework with Grad(Krg).

Remark A.1. Transformation of stress and strain measures under two subse-
quent changes of reference placement

Again it will be investigated how the stress and strain measures transform under two

167



subsequent changes of reference placement. The results will be needed later for deal-
ing with elastic isomorphy. Three reference placements x, £ and x are defined with

M := Grad(k o™ ') and N := Grad(x o k). This situation is sketched in Figure 4.1.

Two subsequent changes of reference placement can also be substituted by a single change

of reference placement. This fact lies behind the following relations:

~ 4 (3) (3) (4)
(A40) B(Kr, Ky, N-M,Knwm, Ko )

W) (3) (3) (3) r 8 (3) @) @
— B(P{ Kr, Kr. N, Kn, Grad(Kn)},N"o K + Kn, M, Knt, Kt )
)

det(N)(N~"to S),M, Ky, NTo Kp + Kn

B w @ @ ) (4) (3) 3 @) >

Proof.
The proof follows exactly the lines of the proof of Remark 4.6 and is therefore left to the

reader. O

Remark A.2. Transformation of elastic energies and elastic laws under a change
of reference placement

Using the transformation rules for strain and stress measures, one can deduce the follow-
ing. For two reference placements

3 ) 3

~

e x with strain measures C, Ky, Kg, an elastic energy w and stress tensors S, S,
(4)
S
@ A @ 6 o @ W @)

~

with elastic laws S=f (C,Kr,Kr ), S=f (C,Kg,Kr ), S=f (C,Kp,Kr )

3 @ @ @
e x with strain measures C, Ky, Ky, an elastic energy @ and stress tensors S, S,
(4)
S
@ @A @ ow @ 8 @ o@w @ W @ @
with elastic laws S = f (C,Kg,Kr ), S = f (C,Kp,Kp ), S = f (C,Kp,Kp

)
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a constant W, € R exists such that the elastic energies transform as

/28 @ (T r 8 @ W B3 3) @)
(A42) @ C, Ky, Kp ) =0(AT+C,ATo Ky + Ka, B( Kr, Kr, A, Ka, Ky ))

+@0

The elastic laws transform as

(A43) [ (C,Kp, Kr)
2) 3 @ W @ 3 @
:A*J_li<AT*C,AToKF+KA,,B(KF,KF,A,KA,KA))
3) )
(A44) [ (C,Kp, Ky)
@, S @B W B @
A" xC,A OKF+KAaB(KF7KFaAaKAaKA)>a
AT« C,AToKp + K, B( Kp, Kr, A, Ka, Ky )
(3) @ @ >

I
)
)
VR VN

3) 3) @) 3 3 @ )

ALK, 1, AToKp + Kp

@ 3@
(A45) f (C,Kp,Ky)

- s BB e e W
=AoJy i(A +C,A"o Kr + Ka,3( Kr, Kp, A, Ka, Ka ))
Proof.
The proof follows exactly the lines of the proof from Remark 4.7. O

A.4 Elastic Isomorphy

The definition of elastic isomorphy can be obtained from Definition 4.5 by simply substituting
0w QoW
wbywor {f, f, f}yby{f,f,f} Therefore it is not stated here.

Theorem A.2. Criterion for elastic isomorphy

Let X and Y be two elastic material points with arbitrary reference placements ky and
2 @& @ 2 @3 @
ty and elastic energies wx and wy. Let {f ., f, f }tand {f,, . f,} be the
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respective sets of elastic laws. Then these two points are called elastically isomorphic if
2) (3) &
and only if there exist tensors P . %., Pe %74 Pe %/{ such that

2)
(A.46) poy = det(P)pox

~ G @
(A.47) wX(QX,KngKEX)

~

@7 2T @) @ @ B @ e W
) + wy

:@Y< P +«Cy,P oKp, + P, 3(Kp Kg P, P,P)

2) 3 @
(A48) f (Cx,Kr, Kr,)

2) @2 @
=P xdet 1(P) fy

—
R

@7 @ ) @ @@ @Y
(P +«Cy,P oKp +P,B(KEX,KEX,P,P,P)>

3) 3) @
(A49) [ (Cx.Kr, . Kr, )

e aos " @) @ w3 @ W
:7<fY<P «Cx,P oKp _+ P 3(Kp

@7 T ) @ @ @ @ W
(P +Cy, P oKEX+P,6(KEX,KEX,P,P,P)>,

(4) 3) @
(A50) f . (Cx.Kp, Kr, )

@ @ W ol O G
—P odet (P)fY<P «Cyx, P o Kp

Note:
2) ] )
The tensor P can be interpreted as the gradient of a change of reference placement, the
3 © @@

tensor P as K, and the tensor P as Kp. As long as only one material point is considered
P

these tensors can be considered as independent which means they do not have to fullfill any

integrability condition.

Proof.

The proof follows exactly the lines of the proof from Theorem 4.9. O
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A.5 Material symmetry

Applying the concept of elastic isomorphy to only one point, i.e. setting X =Y in Definition
4.5 defines symmetry. In this case one can drop the notation for the reference point. As
explained in Theorem A.1 a change of reference placement defines three tensors A € ﬁ%
<13{> A€ %7/3 and % A€ %% So in this case the isomorphism A becomes an automorphism

since it maps the tangent space at a point onto itself. One can set

—
A

(A51) A=A
3 (3)
(A52) A =Ka
@
(A53) A =Ka

@ @ @
The tensors A, A, A can then be considered as independent from each other because they

are only considered at one point. The behavior around this point (necessary for derivatives)
is not of interest. In the following definition of symmetry the idea is to express the fact that
a certain change of the reference placement at a point does not change the elastic law at this

point.

Definition A.2. Symmetry Transformation

—
=

2) (3)
For a gradient elastic material a symmetry transformation is a triple (A, A, A) € g{iﬂ/}

such that

B @ ot et e e w @ @ e @
(A.54) w(C,KF,KF>:w(A «C, A oKF+A,B(KF,KF,A,A,A))

For the elastic laws this means

2 3 @
(A55)  f (C,Kp,Kp)

@ 2ot @f @ e w3 @ W
A % f(A «C, A oKF+A,6(KF,KF,A,A,A)>
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(A56) f (C,Kp,Ky)

(A57)  f (C,Kp, Ky )

—A oL f(A +xC,A oKp+ A,3(Kp,Kp, A,A,A)

3) (@
for all (C,Kg,K¥) € Zi

Definition A.3. Symmetry group of a third-order material
The set of all symmetry transformations is the symmetry group of a material. The
symmetry group is an algebraic group under composition:

The composition is defined as

@ @l @ ¢l @ @ pizg.o7 @ ®@
(B-A,A oB+A,A oB+A + 3sym [( B ])

The neutral element is defined as
(2) (3) (4)

(A.59) 1,0,0

The inverse element is defined as

-1
2 (3) @ @7t @ T @@ T @ 2423 3 3
(A60) |AAA|] =(A ,—A oA,A o(—A+ 3sym [A-AD
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The entries of the inverse element are calculated as

—
=

@ @) & @) @ IR
(A61) (A,AA)'=(AKpKa) =(A1 Ky 1, K 1)

)

by using Equations (2.30)-(2.34).

One can observe here that the formulas in Definition A.3 are more compact than those in

Definition 4.7.

Definition A.4. Undistorted states & solids

If for a certain reference placement the symmetry group is a subgroup of the orthogonal
group in the first entry and zero in the other two entries then this reference placement is
called an undistorted state. The elements of the symmetry group can be interpreted

as rotations. A material that has such an undistorted state is called a solid.

Definition A.5. Isotropic material:
If the symmetry group is the orthogonal group in the first entry and zero in the others

then the material point is called isotropic. It is clear that for an isotropic material the
2 4

elastic laws <f> and <]?> are isotropic tensor functions: First one has to rearrange Equations

(A.Eif)) aan (A.57). Next one applies the fact that for isotropic materials <A2> is orthogonal:

<12&> :<A2> . This yields J(AQ> =1 and it yields that the product "o" can be replaced by the

product "x" in Equation (A.57).

T

@f @ 3 @ 2 @ @ @ @ @
(A62) A * [ (C,Kg,Kg) = (A «C,A *Kg, A *KF>
@f W3 @ W oo e @ @ @

The elastic law f is not an isotropic tensor function. The reason for this is the fact that
3)
f transforms with the function 5 and not as a pull-back like the other elastic laws.

Remark 4.12 also applies in this case, one just has to substitute the according stress and strain

measures.
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A.6 Plastic dissipation

In this chapter the internal power during yielding is examined. The following abbreviations

will be used:

(A64) G:=P

(A65) Gi=—P oP

@ T @ 2423 3 (3
(A.66) G:=P o(— P + 3sym [P - P })

=

@ . RO S
If one assumes that P is a sufficiently smooth tensor field with P=K,y and P=K, then
P P

3
(A67) G

—
N

3)
K, -1
P

—~
R

SUNR0Y
(A68) G =K,
P

(2) (3) @
Let {P, P, P} be the internal variables that describe the change of the elastic law under yield-

@ @ @ (2) (3) 4
ing. Then {P, P, P} uniquely determines an alternative set of internal variables {G,G,G}.
This will allow to abbreviate the notation in the following transformations. Since the chosen

stress and strain measures are work conjugate one can write

\/
=

2 3 @ N N R M @3 @ @

(A69) pol == f (C,Kp,Kp):C*+ f (C,Kp,Kp) Kp + f (C,Kp,Kp) :Kp

1
2
2 3 @

Now one can rewrite (A.69) by using the reference laws { f o, fo, fo}. This means that one
has to transform all stress and strain measures in a similar way as in Appendix C.2. One
obtains

(2) B @ @@ @t @ e @ e
(A?O) pol = So: C;-i- So: KFﬁ + SQ::KFC+ Sp:G +Sp: G + Sp::G

~
elastic part plastic part

L@@ m e @ e
(A?l) :w5+ Sp:G +Sp: G + Sp::G
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with

@M@ @ W @@ @t @ 7T
+<6KFO:SO-G )—(SO:(G - Kg, )12 +<3KF e >
W oo™ e @ pn21 e e @t ng

—3<so- G -KFO-G> ) :(G .(G .G ) )}

@t 3 (@) (gt @7t @ @7 () (3) \ [1,3]
[ o(So+3SuKg, )= (G ©89):(G oKp +G)

@ @ L2 et @
—|—3<G OKF0> :<G oS())}

A.7 Variables to be substituted in other sections

The section on gradient elastoplasticity, flow and hardening rules, isomorphy of the elastic

ranges, yield criteria and on flow and hardening rules can be directly transferred to the case
4)

where K is the fourth-order strain tensor. One just has to substitute
3) (4)

Grad(Kr) by Kg

(3) (4)
Grado(Kr,) by Kr,

B and v by B and ¥,
(3) (3)
S 0 by S 0,

w by W

wo and wp by Wy and wWp
—~ —~0 —

“ L Ey £ E oL

(2) 2 @6 @ @ W

(4)
{f . f. fyby{Ff.F,.f} PbyP
7 by Z

)
7
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—~
—

2) (3) (@) 2) 3) @
hoh,h,hby h,h, h, h

A by A

u L by i, L

¢ and ¢p by ¢ and ép.

From the results obtained so far it becomes clear that the thermodynamical framework can

(4)
be obtained in the same manner as the elastic and the elastoplastic frameworrk with Kg.

A.8 Comparison of the generalized strain measures

In order to asses the suitability of the introduced sets of generalized strain measures one has
to compare the transformation behavior under changes of the reference placement of stress
and strain measures. (Abbreviated by the functions 5 and + or E and 7.

3)
In the framework with Grad(Ky) the transformations under changes of the reference place-

ment are
3) - 3) (3) 3) s B \723
(A.72) Grad(Kg) =AT o Grad(Ky) + Grad(Ka) — [KA .(A o Ky )}
23 1. B @
+ 25ym [(ATo Ky)- KA}
) @ gt w @
(A.73) S=(A"'oJa[S —Kp :S - S:2Kyp ]

3 (4)
+(AToKp + Kpa)2 (A7 oJs S)

. ) P B,
— (At oJs S):2(ATo K + Kp )M

(4)
In the framework with Kg the transformations under changes of the reference placement are

) L@ W R
(A74) Kgp=ATo Ky + Ka + 3sym [(A o Kp) Ka

{ 3 L 3 @)

3 @
(A75) S =Alo[Ja(S +3 S:Kp )} ~ (A—1 o(Ja S)) . [ATo Kp + Ka]L?

L=

A direct comparison shows that the formulas that govern a change of the reference placement
()
in the framework with Ky have the advantage of being more compact. Both frameworks are
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equivalent though, since one can be obtained from the other by using the formula

@ W e e
(A.76) Grad(Kr) = [Kg] — [Kp - Kg]>¥
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Appendix B

Transformation of stress and strain

measures 1n a second order framework

with C and Grad(C)
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In this appendix it will be shown, that a strain gradient elastoplasticity framework with C
and Grad(C) as generalized strain measures yields transformation laws for the change of
the reference placement that are more complicated than those in the framework with <I3{>F
Therefore one can deduce that a second-strain-gradient elastoplasticity framework with C,
Grad(C) and Grad!!(C) will yield even more complicated laws. This shows that gradients

of C are not a good choice for higher-gradient elastoplasticity frameworks. One could use the

following relation (from [Krawietz 1993, [Hwang et al. 2002]) in order to show this.
(3) .
(B.1) Kg=C":Sym(Grad(C))
with
1 ‘
(B2) Sym(Grad(C)) := 5((Grad(C)) + (Grad(C))[Q’s] - (Grad(C))[l’?’])

However in this chapter an approach similar to the one in Section 4.2.2 is used to derive
material stress and strain measures and their transformation behavior under changes of the
reference placement. This is done in order to facilitate comparison of these approaches. The

notation and quantities introduced in Chapter 4 will be used in this chapter as well.

B.1 Relation between material and spatial stress tensors

(3) (3)
In Chapter 4.2.2 the strain measure Ky is derived as the pullback of grad(v), and S is the

3
pullback of T. If one wants to introduce Grad(C) into this framework one has to proceed as
follows. One starts with the assumption that the material stress power density can be written

as

(c2) 2)°*  (C3) (2)°
(B3) pol=8:C + S :Grad(C)

(2) (2)
This assumption is valid since C and Grad(C ) can be derived from F*® and Grad(F)®.
(C2) (C3)

Therefore generalized stress tensors S and S exist, which allow to express the power
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functional in terms of these variables. One should note that (B.3) implies that

2y (cT
(B.4) S =8

(C3) [1,2] (C3)
(B.5) S :2sym{ S }

One can now calculate the pushforward of each stress and strain variable in (B.3).

Lemma B.1. Pushforward of the strain measures

(2)°
(B.6) FToC = 2$ym<grad(v))
o (2)°
(B.7) F~ " oGrad(C)

_ 2 11 _ 2.3 -11(2.3]
=2sym |grad"’ (v) + 2sym/( grad(v)) - [grad(F) F~]

Proof.
The derivation of (B.6) can be found e.g. in [Bertram 2015|. For the derivation of (B.7) the

following identity will be used in this proof
(B.8) gradl(v) = [grad(F')[2’3] -Ffl][2’3] — grad(v) - [grad(F)[2’3] ~F*1][2’3]
With respect to an ONB the components of F~7 o C are

(B.9) Fo FptiFacF g Fyt + TR P F FL

+ F F Facal g Fyt + Fo T F Fae g FL FL
(B.10) :FO;)TFlgde(;; + F&TF£7dva,ﬁF@1

+ Voo FacaFg Fpl + Fau yFog Fyt
(B.11) =F3yaFy Fyt + Foy Fapava s Fy)

+ Ua,aFac,chglF;yl + F&c,chglF;yl
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Thus

(1,2]
(B.12) FToC=2sym [[grad(F')[2 SLE 23 4 grad(v)T - [grad(F)123 . F1123]

with the identity (B.8)

(1,2]
(B.13) = 2sym [gmdn( )+ grad(v) - [gmd(F)pv?’] ) F_l][2=3]
+ grad(v)" - [grad(F)123 . F—l}[Q,S]}

[1,2]
(B.14) = 2sym [gradn( )+ 2sym<grad(v)> [grad(F)123 . p1) 23]

Theorem B.1. Relation between spatial and material stress tensors

(2) 1., (C2) . 3 .
(B.15) T = (2Jg 'Fo S ) +4Jg sym(Grad(F): S F')

(3) N (er)
(B.16) T =2(Jgz'Fo S )

Proof. For the stress power one obtains

1 rc2) @ (© @°
(B.17) P—/p[ S:C + S iGrad(C )|dm
0
Bo

C2 (2)* (c3) . (2)*
/1JF—1[(F0 <s>) :(F 7o C )+ (Fo S )i{(F ToGrad(C ))}dm
S0P
(B.19) /

B

Apply (B.6) and (B.7)

(B.18)

e I 2)°
S1Fo § ) (FToC )4 (Jg'Fo 8 )i(F 7 oGrad(C ))|am

b\'—‘

10, .. (2
(B.20) :/ (Jg'Fo S ) :2sym(grad(v))
% P
(€3 . 1,2
+ (Jg'Fo S )i2sym [gradn( )
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+ 2sym (gmd(v)) . [gmd(F)[Qv?ﬂ . Fl][ZB]Hdm
Due to the symmetries from (B.4) and (B.5) this can be written as

1], .. {2 I B
(B.21) :/ (2Jg'Fo 'S ) :grad(v) +2(Jg'Fo S )igrad'(v)
p

(C3) .
+2(Jp'Fo S ) [23ym<grad(v)) - [grad(F)23] ,F1][2,3]Hdm

1 1., (C2) e (G I
(B.22) :/ (2Jg'Fo S ) :grad(v)+2(Jg 'Fo S )igrad''(v)
p
B

23] p-1123] . (-1 ) \23
+ [[gmd(F)[ SR R23 (Jg'Fo S )] :4sym(grad(v)>]dm

1 (C2) (C3) .
(B.23) —/p{(2J§1Fo S ) :grad(v)+2(Jg'Fo S )igrad'(v)
—1 (C2) —T\[2,3]  —T)[2.3]
+ Jg ' [Grad(F): (F- (S -F-F HEL.F )57 dsym(grad(v))
C2 (C3) .
(B.24) :/1[(2JF1FO <S>) tgrad(v) +2(Jg'Fo S )igrad™(v)
% p
) (C3) T
+ 4Jg 'sym(Grad(F) : S F') :gmd(v)}dm
C2 (C3)
(B.25) :/;[((2JF1FO 'S") + 4 sym (Grad(F) : S F7)) : grad(v)

B
(cs) .
+ 2(J§1Fo S ):gmdn(v)} dm

(2) (3)
This reveals for the Cauchy type stress tensors T and T from Section 4.2.2

—

) . (©2) . 3 .
(B.26) T = (2Jg'Fo S )+4Jg'sym(Grad(F): S F')

(C3)
(B27) T =2(Jp'Fo S )

—
=
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B.2 Transformation of strain and stress tensors under changes

of the reference placement

For a change of the reference placement as introduced in Chapter 4 one obtains

Theorem B.2. Transformation of Grad(C) under changes of the reference place-

ment

[1,2]
(B.28) Grad(C) = A o Grad(C)+ 2sym |AT - C - Grad(A)}

Proof.

Grad(C)
(B.29) =Grad(F-F)
(B.30) = Grad(AT-FT.F-A)
(B.31) = Grad(AT-C-A)
(B.32) = [Grad(A)-C- A% + AT . [Grad(C)P? . A]®¥ + AT . C - Grad(A)

2,3]

(B.33) = [Grad(A)-C-A]23 4 AT. [[Gmd(C) - A]123] -A] +AT.C-Grad(A)

1.2
(B.34) = A o Grad(C)+ 2sym [AT C- Gmd(A)]

Theorem B.3. Transformation of stress measures under changes of the refer-

ence placement

(C2) (C2)
S

(B.35) = JaA"o 'S

— 2JAA71 oF 1o 8ym<[(F .c 1. Sym [Grad(C)] ) A)[2,3] N

(c3)
+F-Gmd(A)} ‘A Ja(Al S)) . ATFY)

1 (C3) T
+F-C ' Sym(Grad(C)): S ‘F )
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(B36) S =JaA'o S

Proof.

Equation (B.36) can be obtained by rearranging Equation (B.16). For deriving the transfor-
(C2)
mation of S one uses (B.15) to write

(C3)
: S

C
B37)  ((275'Fo ‘") + 475 sym (Grad(F) F7))
2) (c2)

(©3)
—T= ((2Jg'Fo S ) +4Jg sym(Grad(F): S E7))

(C2)
(B:38) <(2Jg5'Fo S )
C2 (C3)
= (2J§1Fo <S> ) — 4JE_15ym(Grad(E) : S -ET)

., (C3) T
+4Jg 'sym(Grad(F) : S -F")

with E = F - A and (B.36)

(c2)
(B.39) e2Jp'J'FoAo S
(c2)
— (2/5'Fo 8 ) —4Jg" Iz sym ([(Grad(F) - A)** - A + F - Grad(A)]
o D —1 (C3)
A:Ja(A0 S ) ATF )+4JF sym(Grad(F) : S
(C2) 23]
(BA0) & S =JaA ' o—2J4A o F o sym([(Grad(F)- A)*7 - A

.FT)

(C3)
: S

(c3)
+F - Grad(A)]-A: Ja(A ™% S )-ATFT) + Grad(F) -FT)

Using (B.1) finally yields

(B.41) =JaA 7o 'S
—2JaA"toFto sym([(F .C7 . Sym [Grad(C)} ) A)[2,3] A
(C3)
+F-M(A)] “A:Ja(ATo S ) ATFT)

., (C3) T
+F-C™" - Sym(Grad(C)) : S FT)
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O

(C2)
The transformation of S under changes of the reference placement in Equation (B.35) has
(2)
two inherent disadvantages over the transformation of S.

(C2) (2)
1. The transformation of § is much more complicated than the transformation of S since

it cannot be written as a pushforward.

2. It involves the tensor F which cannot be determined from C. All transformations of
strain and stress tensors under changes of the reference placement in Chapter 4 only

involve the strain variables that are used in the framework:

(3) @3 @ 3
C,Kp,Grad(Kg),S,S, S

only depend on

(3) 3 @ ¥ _ .
C,Kg,Grad(Kg), S, S, S as well as A and its first two gradients.

This is not surprising since in a gradient theory the rotational parts of F affect the
spatial variables. Thus, a framework, that uses C and its spatial gradients, must always
be endowed with extra variables that carry information on the antisymmetric part of
F since these are not included in C. The material variable <13{>F:: F~!. Grad(F) has
the symmetric and antisymmetric parts of F already "built in". Together with the very
complicated transformation behavior of <CS.2> under changes of the reference placement in
(B.35) it appears that {C, Grad(C)} is not a convenient choice for the spatial variables
in a framework for strain gradient elastoplasticity. In the cases of second strain gradient

elastoplasticity with C and its gradients the transformations would become even more

complicated so that the disadvantages remain the same.
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Appendix C

Further proofs
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C.1 Proof of Theorem 4.9

(2) (4)
The proof for f can be found [Bertram 2015| and the proof for f follows exactly the same
3)
scheme. So only the proof for f is presented here. The transformation rule (4.141) for
3)
f x (...) with respect to xx o iy and Ay := Grad(kx o k') says that

SN ) (3)
B8(Grady(Kg ), Kp,, Ay ,KA;(1,G7"adX(KA;(1))>,
(1) 3) 3)
fx (A;{T *QX7A;(TO Kp, + KA}—(I,
SN I ) (3)
B8(Grady (Kg ), Kp,, Ay ,KA;(l,Gde(KA;(l))),
3) G )
Ax,KAX,AX o KEX + KA;(l )

3) (

2 (4)
Now one applies the isomorphy conditions f x (...) =

()
()and fy () =Fy ()

3)
Y

) 3) (3)
rs -T -T
C2) =y fy (AX #Cx, AXTo K, + Ky,

SN I ) (3)
B8(Grady (Kg ), Kp, , Ay ,KA;,G?“adX(KA;))),
(4) (3) 3)
(AT Cx Ao K, + Ky,

N I ) )
B(Grady (Kg ), Kr,, A5, KA;(l,Gde(KA;(l))),

BN S
Ax,KAX,AX o KEX + KA;(I )

(3)
Next, the transformation rules (4.141) and (4.142) are applied again, this time for fy and

(4)
fy with respect to ky 05;1 and Ay := Grad(ky 05;1)

(3) (3) (3) (3)
(C3) =y (’y(fY(A,T/ « Ay« Cx, A} o AYTo K, +A{o K, +Ka,,

191



SN I ) 3
B[8(Grady(Kr, ), Kr,, Ax', K 1, Gradx (K, 1)),

3) 3) 3) (3)
A o KF + K 1 Ay,KAy,GT’ad(KAY)] ),

@ . ® . ) 3)
iY(AY*AX #Cx, AT 0 Ao Kp, +AT0 Ky1 + Ka,,

(3) (3) L ® (3)
B[B(Grady (Kr, ), Kr,. Ax', K, 1. Gradx (K, 1)),

3) 3) 3) (3)
A o KF + K 1 ,Ay, KAy,GT’ad(KAY)]>
L 8 (3) r 8 3)
A K 1AYoA OKEX—&—AYOKA;—&—KAY ,
@ T _p T 3 r B 3)
AyoJAny<AY*AX *Cx,Ay oAy o Kp, +AYOKA;(1+KAY,

3) (3) (3) (3)
ﬁ[ﬁ(mX(KEX)aKgxyA , K < GradX(KA;(l)),

(3) (3) (3) (3)
A OKFX +K < Ay,KAy,Grad(KAY)]>

I ST
Ax,KAX,AX o KEX + KA)_(l

Next the transformation rule (4.130) is applied where A ' takes the role of N and Ay takes
the role of M.

(3) (3) (3) (3)
(C4) =y (v <fy (A§ AV« Cy, Al 0 Ao Kp +Afo Ky +Kay,

3 @
BlGradyx (K, ), Kr,, Ay - Ay, Grady(AY' - Ay),

(3)
GTCLdY(KA;(I.Ay)}),

@ . 3) 3) (3)
iY<AY*AX #Cx, AT 0 A o Kp, +AT0 Kyi + Ka,,

(3) (3)
B|Gradyx (K, ), Kr,, Ay - Ay, Grady(AY' - Ay),

(3)
Gmdy(KAq.Ay)]),

(3) (3) (3) (3)
Ay,K 1AYOA OKF +AYOKA—1+KAY),

71(4) T r T (3) 3) (3)
AyoJAyiy Ay x Ay xCyx, Ay oAy oKF —I—AYOKA 1+ Kay,
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R
B(Gradx(Kp,),Kr,, Ay - Ay,Grady (A" - Ay),

(3)
Grady(KA;.Ay))) ,

I R
Ax,KAX,AX o KEX —+ KA;(l

Transformation rule (4.131) is applied where A}" takes the role of N and Ay takes the role
of M

@) . ) (3) (3)
(C.5) :7<fY(Ai§ * Ay« Cx, Ay o Ao K, +Afo K, +Ka,,

(3) (3) . (3) (3)
ﬁ(mX(KEX)v KExaAX <Ay, KA;(lAAYa GradY(KA;(l.AY)) )a

@ . ) C) )
iY<AY AT < Cy, AT 0 AT K, +AT0 Ky 1 + Ka, !
I I ) )
B(Grady (Kr ), Kp,, AY - Ay, Ky 5, Grady (K1 4))),

LW e ® N I
AY . AX7KA;,1~AX7AY OAX o KEX —l—AYO KA;(l + KAY

Now one applies the transformations AL * AJT # (.) = AT - AT« (), ATo AT o (o)
T T s @ (3) 3)
AY'AX O(...) and AYO KA;(l =+ KAY:KA;(l-AY

3) 3) 3)
(C.6) =7<fY(Ai§ A« Cy AL Ao K, + Kata,
(3) 3) 5 3) 3)
B(Gde(KEX), Kr Ay Ay, KA)—(l,Ay,Gde(KA)—(l‘AY)) )’
(4) S roa_r 8 3)
(AT AT« Co AT Ao Kp, 4Ky
3) 3) , 3) 3)
ﬁ(GradX(KEX), Kr,, Ay Ay, KA)—(I.AYa GradY(KA;(1~Ay)))’
. 3) T 3 r B (3)
AY . AX>KA;,1~AXﬂAY OAX o KEX —l—AYO KA;(l =+ KAY
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(2)
Now one introduces the notation P:= A;(l - Ay and obtains

@) @T T @) (3)
3 B @ e (3)
ﬂ(Gde(KFX),KEX, P,K%,Grady(K%)
@ T T @) (3)
Jy(P +Cy P oKp, + Ky,
B B @ e 3)

ﬂ(mx(KEX% KEX7 Pv

P ,Kg,-1,P oKp, + Ky

K
@71 @) T @) (3) )
P P

(3) @ T (3

Next one uses the relation K , 1= — P o K, which is derived in (2.32).
P

P

@t @7 ® (3)
3 (3) (2) (3) (3)
B(Gradyx(Kr,),Kp,, P,K%>,Grady(K<2>)
@ @7 @l @ (3)
iy(P *Cy, P OKEX+K<E2,>’
(3) (3) (2) (3) 3)
B(Gradx(Kr,),Kr,, P, K%>7Grady(K<rz)>)
ot @ T @3 @f @ (3)
P ,—P oKy,P OKFX+K<2>)
P P

(3 (3) (4) (3
Introducing the notation P:=K,, and P:= Grady (K s,,) yields
P P

=

T T |

@ T T @) (3) 3
iy< P «Cy,P oKy _+ P,3(Grady(Kr,),
@ b @ T @ el @ (3)

P P oP,P oKFX+P>
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C.2 Derivation of the plastic stress tensors

C.10 l 1%) C* % : <13<> <§> <14<>
(C.10) po oL TS Ryt Siky
I i 1

@ @ T 2!
(C.11) I=S:(P -Co-P )*

2) @ @1 @t @ @7 @
(C12) =S¢:Cl+ S: (P CoP )+ S:(P CoP )

(2) @ @ @ T @l @ e of oTf
@ @ @f @ @ @
(0.14) =So: Ca—i- Sop:P - P Co+ Sp: Cp- P P
2) 2 (@) @
(C15) =So:Cy+2sym[P - Sy -Cp| :P
(2) @t (@ 2)*

2
(C.16) =So:CH+2sym[G - Sy -Co|:G

(C17) II=S Kp

(3)
Using Equation (5.34) that defines G one obtains

B ow oee @ .
(018) :’Y(S(b So,G, G, KF()):(P © KFO + G)
W @ EE .
(C19) =180, 80,G, G Kp)i((P o Kr,)*+ G

B @ e o @ @t @b @ @ @
(C.20) :'y(SO,SO,G,G,KFO):( : : : P
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@2 2 o @

Using P =—P - P - P yields
@ weee 0" e e o' e
(C.21) :y(SO,SO,G,G,KFO):(—P P .P.(Kp P )29 P

@ @ @7 e

+P (Kg, - P )23 p
@ @ @ :

+P (Kp, - P L S ¢ )

B @ @ @ e
(C22)  =v(So, S0, G,G,Kr,)

ey @ @t @21

3 3 @ @ -
+G —-P-P P (Kp-P 2P

(% o Kg

0

@ 3 @ @7t @ @ @t @2~
+P(Kgp,-P P 4+P . (Kg,-P )P )

After applying the definitions in Equations (5.33) and (5.34) and some rearranging one obtains

@ 9w o@ee e B w2 3
(023) =G O’Y(So, So, G, G, KFO): KFO +’Y(SQ, SQ, G, G,KFO)I G

a2 @1t @ @ @ @w @ 6 e
+(23ym[G -KFO-G}:V(SO,SO,G,G,KFO)

G YD) @ @ @ @ e e 2! 2)*
— (Kr, - G)23. G:7(S,, S0, G, G, Kp,) 2. G )T) .G

@ 9w o@ee e B w2 e 3
(024) =G O’Y(SO? 807 Ga Ga KFO): KFO +’Y(S(]v SOv Ga G7KF0): G

a2 @1t @ @ @ W @ 6 e
—I-(stm [G K, - G} :7(So, S0, G, G, Kr,)

T 3 B @w @ 6 e 2! 2)®
— ((G oKg,):7(S0, S0, G, G, Kp,)M2- G )T) .G

@7 @ B @6 W,
(C25) M =(G o Sy):pB(Grady(Kg,),Kr,, G,G,G)

@7t @
(C.26)  =(G o Sy)

@27 3) @w 3 @7 @ 23 - @7 @) 3) 1\
:: ( G oGrady(Kr,)+ G — G (G o Kg,)+ 2sym |(G o Kpg,) G D
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-1

@7t @ 2T 3 e @71 @ @

(C271) =(G oSy ::(G ondo(KFo)) +(G oS :G
@7t @ @ @7 @ e
(G o8y ::(G-(G oKFO))

@t 23 @7 @) (3) e
+(G oSy = (28ym [(G oKp,) G D
1

@' @ @7 B e @71 @ @
(C.28) =(G oSy = (G oGrado(KFO)) +(G oSy =G
27" @ @ QT @ 7" @ @ @f ®
(G oS, ::(G (G oKFO)>—(G oSO)::(G-(G o Kp,)
@7 (@ " 3 @ @7 (@ " 3 @
+(G o8y (z(G oKF0)°-G>+(G o So) (2(G o Kp,) G )
@7 @ @7 B e @7 @ @
(C29) =(G o Sy ::(G oGrady(Kg,)) + (G o Sg) =G
Q7@ b g et et W @ o @
—((G o So): (G oKFO)’>:G—(G oSo)::(G-G oKFO)>
@ @ SR R " @ o
+(G OSO)::<(G o Kp,) G)+(2(G oKFO. oSO>

H n

Now one applies the product rule to all terms that involve a time derivative of the product.

@ (3) Q" @ @ of ®
(C.30) = So: Grady(Kg,)* + (— G (Go S))[G oGrady(Kg,)]"
@ T (3) 1.2 @ 1@ @y @
+[(So-G iGrady(Ke, )] + 2sym [Gmdo( r)|i So- G ):G
@7t @ @
+(G o8y =G

3 L ®°
(G oSy : (G oKFO)[L?’]):G
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One rearranges the terms in pgl = I+ II + III and obtains

2) . W I
(C.31) pol = So: Cy+ So:: Grado(Kr,)

@ B w @ e e 2)
+[Go1(80,80,G,G,Kr,)- Go(G (G ©8Sy))

@ @t @ @l e
+2Go((G o Sg):G ”:KN
@7 (@ a2 @7 @ @ 3w @ 6 e
—i—[QSym[G .so.co]+2sym[G 'KFO-G}:V(SO,SO,G,G,KFO)
2T ) B w @ 6 e 2!
—((G oKg,):7(So, S0, G, G, Kg,)"3- G )"
QT @ @w @ (3

) )
—~G  (Go Sy)G oGrady(Kg,)™

@ 7T 3 . 12 @ @ @
+[(So- G HGrady(Kp, )T+ 2sym [Grado(KFO)}: So- G

@ @ @ @7t @
+S0i(G oM. (G Ky,

@t @@ e @t
+ Kg, : ((So )34 ):G

@7 @ @ @t @ @3 T
+(G -G-G-G M. spKp -G
@77 @ B ggw @R
—2((G OG)- KFO) ’ SO G ]Z
B w @6 e 2T (3 @7t @
+[7(SO,SO,G,G,KFO)+2(G oKp,): (G o Sg)
@t @ o oof @ e
(G 08 : (G oKFO)M}:G
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(2) (4) (3) 3 (3°
(C.32) = So: C0+ So:: Grado(Kr,)*+ So: Kp,
@7 (2 12 @ @ @ B w @6 e
+ [2sym[G . S0 -Col+2sym [ G - Kgp, - G} . (S0, So, G, G, Kg,)

2" @ Bow o ee @7
~((G ©Kp,):7(S0.80.G, G, Kp)"?- G
0 0

" o @ of ®
— G (Go So)G oGrady(Kg,)

W o 3 . 12 ® q.@ @7
+[(So-G Grady(Ke, )| + 2sym [Gmdo(KFO)}: So- G
@ @ @ @7 @
+S0i(G oM. (G . Ky,

@2 @ 7T @7 T (3L
+ Kpg, : ((So )34 ):G

@3 T gy @3l T
+Kp, : (G 0G):S, G )

™" @ e et @ et T
+ ( G-G -G M:SyKyp, -G

2T @3 @ @ @ T, @
~2((G 0 G)Kg,)"i S G |G

B w @ e e EEE) @7 @

+[7(SO,SO,G,G7KFO)+2(G oKp,): (G o Sg)

@7t @ o @f @@
(G oSy : (G oKFO)[’]}:G

@7 @ 4 @
+ [G o SO} =G
@ @ @ W ® . @ @ ® e W @

(C.33) =80:Co+ So: Kp, + So:: Grado(Kp,)*+ Sp:G + Sp: G + SpuG

elastic part plastic part

L@@t e 3w @
(C.34) =wy+ Sp:G + Sp: G + Sp:G

plastic part
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