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Abstract

In this thesis we study the dependence properties of sequential order statistics
based on exchangeable random variables. One of the main application areas of
sequential order statistics is reliability theory where they can be used for describ-
ing the lifetime of a technical k-out-of-n system. Modeling the system lifetime with
the help of sequential order statistics allows to take into account such factors as the
interdependence of components and the impact that a failure has on the lifetimes
of surviving components. In this respect, the knowledge about the influence of de-
pendence properties of component lifetimes on sequential order statistics would
provide an important insight into structural properties of the model.

Our work presents the results on the analysis of such dependence properties
as multivariate total positivity of order two (MTP2 ), hazard rate increasing upon
failure and lifetimes conditionally increasing in sequence.

We provide necessary and sufficient conditions for the above-mentioned de-
pendence properties of sequential order statistics. In particular, we derive sufficient
conditions for the MTP2 of sequential order statistics for several types of distribu-
tions distinguished by the special forms of their conditional hazard rates. Among
others we provide sufficient conditions for the MTP2 of sequential order statistics
based on Schur-constant random variables and Archimedean copulas.

Obtained results shed light on cases when dependence of component lifetimes
induces the corresponding properties of sequential order statistics. Thus, our work
gives a better understanding of the relation between the component lifetimes and
the lifetime of the system and provides a basis for further analysis of reliability
and aging properties of sequential order statistics based on exchangeable random
variables.
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Zusammenfassung

In dieser Dissertation untersuchen wir die Abhängigkeitseigenschaften von sequ-
entiellen Ordnungsstatistiken basierend auf austauschbaren Zufallsvariablen.
Eines der wichtigsten Anwendungsgebiete von sequentiellen Ordnungsstatistiken
ist die Zuverlässigkeitstheorie, in der sie zur Beschreibung der Lebensdauer eines
technischen k-von-n-Systems verwendet werden können. Die Modellierung der
Systemlebensdauer mit Hilfe von sequentiellen Ordnungsstatistiken erlaubt es,
Faktoren wie die Abhängigkeit von Komponenten und die Auswirkungen von
Ausfällen auf die Lebensdauern noch intakter Komponenten zu berücksichtigen.
Kenntnisse über den Einfluss von Abhängigkeitseigenschaften der Lebensdauern
von Komponenten auf sequentielle Ordnungsstatistiken liefern wichtige Einsichten
in strukturelle Eigenschaften des Modells.

In unserer Arbeit werden Ergebnisse der Untersuchung von Abhängigkeits-
eigenschaften wie der mehrdimensionalen totalen Positivität der Ordnung 2
(MTP2 ), „hazard rate increasing upon failure“und „conditionally increasing in se-
quence“vorgestellt.

Wir erhalten notwendige und hinreichende Bedingungen für die genannten
Abhängigkeitseigenschaften von sequentiellen Ordnungsstatistiken. Insbesondere
leiten wir hinreichende Bedingungen für MTP2 von sequentiellen Ordnungsstat-
istiken für mehrere Typen von Verteilungen her, die sich durch die spezielle Form
ihrer bedingten Ausfallrate unterscheiden. Unter anderem liefern wir hinreichende
Bedingungen für MTP2 von sequentiellen Ordnungsstatistiken basierend auf
Schur-konstanten Zufallsvariablen und Archimedischen Copulas.

Unsere Ergebnisse werfen Licht auf die Fälle, in denen Abhängigkeiten der
Lebensdauern von Komponenten entsprechende Eigenschaften für sequentiellen
Ordnungsstatistiken bewirken. Hierdurch trägt unsere Arbeit zu einem besseren
Verständnis der Zusammenhänge zwischen Lebensdauern von Komponenten und
der Systemlebensdauer bei und stellt eine Basis für weitere Untersuchungen von
Zuverlässigkeits- und Alterungseigenschaften von sequentiellen Ordnungsstatisti-
ken basierend auf austauschbaren Zufallsvariablen dar.
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Introduction

Stochastic dependence arises in a variety of areas such as medicine, economics, fin-
ance and engineering. For instance, consider a technical system that consists of sev-
eral identical components working simultaneously. The lifetimes of components
are not predefined and, as a result, possess a stochastic nature. Since components
share the environment and load, a failure of one likely influences the life-lengths
of the remaining. This observation indicates the existence of stochastic dependence
between components lifetimes. Thus, the reliability and safety of such system is
closely related to the notion of dependence between its parts. In past decades, the
topic of stochastic dependence has received a major attention. It has found applic-
ations in probability theory and statistics, reliability theory, mathematical physics,
etc.

In this thesis we study the dependence properties of sequential order statistics
based on exchangeable random variables – a probabilistic model for ordered data
that was introduced in Burkschat (2009). One of its main application areas is reliab-
ility theory where sequential order statistics provide an expression for the life-time
of a technical k -out-of-n system.

In general, a k -out-of-n system consists of n identical components that start
working simultaneously. It functions as long as at least k out of n components are
working. A machine with 4 engines that works as longs as at least 2 engines are
running can be considered as 2-out-of-4 system. k -out-of-n systems were thor-
oughly investigated in context of the coherent systems theory. Their analysis can
be found in Barlow & Proschan (1981) and Meeker & Escobar (1998).

From the definition of a k -out-of-n system follows that the lifetime of the sys-
tem is represented by the (n − k + 1) -th ordered lifetime of its components and
can be obtained in terms of an ordered data model. Because of the widely de-
veloped statistical theory, order statistics based on iid random variables are often
chosen for this purpose. Their detailed description can be found in David & Naga-
raja (2003), Arnold et al. (1992). However, order statistics based on iid random
variables do not reflect possible effects of failures on the remaining components.
To include such interactions sequential order statistics based on conditionally iid
random variables were introduced in Kamps (1995). Further, in Burkschat (2009)
conditional independence was replaced by exchangeability. It resulted in formu-
lation of a universal model for lifetimes in a k -out-of-n system. The correspond-
ing ordered random quantities were named sequential order statistics based on
exchangeable random variables.

As mentioned above, reliability of a system is closely related to dependence re-
lations between its parts. The strength of the relations can be assessed with the help
of different dependence notions. In this regard we will focus on positive depend-
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ence properties. They measure the tendency of random variables to take on con-
cordant values. For instance, an indicator of positive dependence is positive cor-
relation. An overview of positive dependence concepts can be found in Colangelo
et al. (2005). Many dependence properties describe the joint behavior of compon-
ents from the reliability point of view. For instance, describing lifetimes as ”hazard
rate increasing upon failure” indicates that with a failure of one component the
danger of another breakdown increases. Assumptions about system dependence
aspects also lead to a more sophisticated analysis of the effects of different com-
ponent treatments, like repair or replacement policies, see Lai & Xie (2006). Thus,
dependence properties play an important role in understanding the reliability mod-
els and in the further development of their statistical applications, see Barlow &
Proschan (1981) and Block et al. (1990).

Since the lifetime of a system can be expressed as the (n − k + 1) -th order stat-
istic, the following question arises: How does the dependence structure of under-
lying lifetime distributions influence the properties of order statistics? For order
statistics based on iid random variables and sequential order statistics based on
conditionally iid random variables an extensive answer can be found in the literat-
ure, see Avèrousa et al. (2005), Boland et al. (1996) and Cramer (2006). In particular,
both models reveal positive dependence and they are based on positively depend-
ent random variables. With this thesis we address a similar problematic for sequen-
tial order statistics based on exchangeable random variables. Our goal is to explore
their dependence properties in comparison to other models of ordered data and in
reference to the real-life qualities of k -out-of-n systems. We will proceed with the
narrative as outlined below.

In Chapter 1 we look at several models for ordered data, the assumptions that
they impose on a k -out-of-n system, their key properties and connections between
different models. Here we start with the consideration of order statistics based on
iid random variables and proceed to the models that impose weaker conditions
on underlying distributions of random lifetimes. We finish this chapter with the
description of sequential order statistics based on exchangeable random variables.

Chapter 2 builds a foundation for the latter analysis of dependence properties
of sequential order statistics based on exchangeable random variables. We start
this chapter by introducing multivariate conditional hazard rates. These objects
represent the risk of a breakdown taking into account previous failures in the sys-
tem. They also provide an alternative representation for densities of multivariate
survival distributions, see Spizzichino (2001). It is important to note that the joint
density of sequential order statistics based on exchangeable random variables can
be expressed in terms of multivariate densities that describe component lifetimes
between two successive failures. Therefore, further in this chapter we look at dif-
ferent types of multivariate survival distributions. They are grouped according to
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the complexity of interactions between the lifetimes which is assessed with the help
of conditional hazard rates.

In Chapter 3 we give an overview of dependence concepts, related stochastic
orders and their properties. A special focus is on the dependence properties of
ordered random variables as well as random variables described by multivariate
distributions from Chapter 2. This chapter provides the motivation for the analysis
conducted in Chapter 4.

Chapter 4 represents the results of our research on the topic of dependence
properties of sequential order statistics based on exchangeable random variables.
As mentioned above the problem can be summarized by the question: Do the se-
quential order statistics inherit dependence properties from the underlying distri-
butions? First we consider this question in a general set up and provide conditions
for several dependence properties of sequential order statistics. Then we proceed
with the analysis of multivariate total positivity of order two (MTP2 ), which is one
of the strongest positive dependence properties. Here we derive the conditions for
the MTP2 of sequential order statistics under the assumption that the underlying
lifetimes follow a distribution belonging to one of the groups described in Chapter
2.

Conventions and notation

For x = (x1, . . . , xn) and x = (y1, . . . , yn) under x ≤ y we understand xi ≤ yi for
all i = 1, . . . , n .

By increasing (decreasing) functions we mean non-decreasing (non-increasing)
functions.

For all integrals or expectations in this thesis we assume that requirements
of measurability and integrability are automatically met without further mention.
Moreover, considering a product X of measurable spaces Xi, i = 1, ..., n denote by
σ = σ1 × . . . × σn a product measure on X with σi representing σ -finite measures
on Xi, i = 1, . . . , n . Then we will use a shorter notation

dσi(xi) = dxi, dσ(x) = dx

and

∫
X

f (x)dσ(x) =
∫
X

f (x)dx .

In this thesis we consider random vectors of the form Y = (Y1, . . . , Yn), n ∈ N
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defined on some fixed probability space (Ω,F , P) . In this thesis by absolutely
continuous random variables we understand random variables with the joint dis-
tribution that is absolutely continuous with respect to the n -dimensional Lebesgue
measure.

Notation

N {1, 2, 3, . . .}
R (−∞, ∞)
R+ [0, ∞)
Rn
≤ {(t1, . . . , tn) ∈ Rn|t1 ≤ · · · ≤ tn}

C j
n

n!
j!(n− j)!

ln natural logarithm
a.s. almost sure
iid independent and identically distributed
iff if and only if
Sn set of all permutations on {1, . . . , n}
X ∼ F X is a random variable with distribution function F
F 1 − F

4



1 Order statistics

In this chapter we consider several models for ordered data along with assump-
tions that they impose in the context of specific applications from reliability theory.
The overview is hinged on the objects called order statistics. As they are well stud-
ied in the literature, we provide only the information needed for the argumentation
in the following chapters. For deeper insights into the theory of ordered data mod-
els consult the literature cited below.

Let us start by considering n random variables Y1, . . . , Yn . Arranging them
in the ascending order of magnitude we obtain order statistics Y1:n ≤ . . . ≤ Yn:n
(based on Y1, . . . , Yn ). There are different ways to define order statistics formally.
Below the definition from Kamps (1995), using the permutation matrices, is cited.
Another one, using pseudo-inverse functions, can be found in David & Nagaraja
(2003).

Def 1.1. For (y1, . . . , yn) ∈ Rn let a function T : Rn → Rn be defined by

T(y1, . . . , yn) = (y(1), . . . , y(n))

with

(y1, . . . , yn)P = (y(1), . . . , y(n)) ,

where y(1) ≤ . . . ≤ y(n) and P is n × n permutation matrix (which results from permut-
ing the columns of a n × n identity matrix and is defined according to the positions of yi in
(y(1), . . . , y(n)), i = 1, . . . , n) . Moreover, for i = 1, . . . , n let the functions Ti : Rn → R
be defined by

Ti(y1, . . . , yn) = y(i) .

Then, for real valued random variables Y1, . . . , Yn

Y(i) = Ti(Y1, . . . , Yn)

is called the i -th order statistic, i = 1, . . . , n, and

(Y(1), . . . , Y(n)) = T(Y1, . . . , Yn)
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1.1 Order statistics based on iid random variables

is the vector of order statistics (based on Y1, . . . , Yn ).

Remark 1.2. Note that the occurrence of identical outcomes for order statistics based on
absolutely continuous random variables has probability zero. Therefore considering abso-
lutely continuous Y1, . . . , Yn events, such that two or more order statistics attain the same
value, can be neglected.

Order statistics find applications in many areas of mathematics and engineer-
ing science such as statistical inference, life testing, extreme value theory, image
processing (see David & Nagaraja (2003), Castillo (1988), Pitas & Venetsanopoulos
(1992)). In particular, in reliability theory order statistics are used to model lifetimes
of components in a technical system.

Consider a system of n identical components that start working simultaneously.
In addition, assume that the system works as long as at least k of n components
are functioning. In the literature such systems are called k -out-of-n systems, they
play a significant role in reliability theory and are well investigated. For a detailed
description of different types of k -out-of-n systems we refer to Way & Ming (2002).
Below we cite several examples provided in that book. For instance, consider an
automobile with eight cylinder engine that can be driven if at least four cylinders
are firing, i.e. it functions as 4-out-of-8 system. Considering a communication
system with three transmitters, to ensure the delivery of some critical messages at
least two of the transmitters should be operational at any time. Then the transmis-
sion system behaves as 2-out-of-3 system. Other examples of k -out-of-n systems
are multi-engine systems in airplanes, multi-display systems in cockpits, multi-
pump subsystems in hydraulic control systems, etc. From the probabilistic point
of view we observe that the lifetime of an arbitrary k -out-of-n system is given by
the (n − k + 1) -th order statistic based on the random variables representing the
lifetimes of components. For example, the eight-cylinder car can be driven for the
period of time defined by the fourth order statistic.

Many research questions involving ordered data models are motivated by prac-
tical applications. Therefore, we will often interpret facts concerning order statistics
in terms of lifetimes in a technical system. In the following sections we will specify
different models for order statistics by looking at the assumptions that they impose
on the corresponding k -out-of-n system.

1.1 Order statistics based on iid random variables

The simplest model for ordered lifetimes arises if we assume components to be
identical and have no influence on each other. In other words their lifetimes are
represented by continuous iid random variables and the lifetime of the whole sys-
tem is modeled with the help of order statistics based on them. Ordered failure
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1.2 Order statistics based on exchangeable random variables

times in such system are described by the joint density function presented in David
& Nagaraja (2003).

Lemma 1.3. Let Y1:n, . . . , Yn:n represent order statistics from absolutely continuous iid
random variables Y1, . . . , Yn . Then the joint density function of Y1:n, . . . , Yn:n can be
calculated as

f Y1:n ,...,Yn:n(t1, . . . , tn) = n!
n

∏
i=1

f (ti) ,

where t1 ≤ . . . ≤ tn and f represents the density of Yi, i = 1, . . . , n.
Moreover, Y1, . . . , Yn form a Markov chain with transition densities

f Yr+1:n |Yr:n(tr+1|tr) = (n − r)

(
1 − F(tr+1)

1 − F(tr)

)n−r−1
f (tr+1)

1 − F(tr)
,

where F is the distribution function corresponding to f , r = 1, . . . , n − 1 .

An important advantage of this model is the simple form of the joint density
function, which allows to draw conclusions about the system properties at large.
However, the model is not able to reflect two important aspects of k -out-of-n sys-
tems. First, the components, e.g. engines, share the same working environment
and therefore are dependent in many real-life systems. Second, a failure likely
influences the work of remaining components. This influence can manifest itself
through increased load or damages caused by failures.

Therefore, in the following section we will look at structures that arise from
relaxing the independence assumption.

1.2 Order statistics based on exchangeable random variables

Let lifetimes of components in the system be modeled with absolutely continuous
random variables Y1, . . . , Yn such that their joint density function is symmetric, e.g.

f Y1 ,...,Yn(t1, . . . , tn) = f Y1 ,...,Yn(tπ(1), . . . , tπ(n)) (1.1)

for all permutations π defined on the set {1, . . . , n}, n ∈ N . According to Bern-
ardo (1996) such random variables are called exchangeable. Thus, components are
regarded as identical or, in other words, independent of the labels given to them.
This assumption corresponds to a system of components with identical technical
characteristics.
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1.3 Sequential order statistics based on conditionally iid random variables

Representation (1.1) indicates that the density is a symmetric function. As a
result, the distribution of order statistics based on exchangeable Y1, . . . , Yn can be
described by the density function

f Y1:n ,...,Yn:n(t1, . . . , tn) = n! f (t1, . . . , tn) , (1.2)

for t1 ≤ · · · ≤ tn (see David & Nagaraja (2003)).
Moreover, exchangeability allows to address a wide class of joint distributions

for the lifetimes of underlying components, for instance mixture models and cop-
ulas. Note that due to representation (1.2) properties of order statistics are closely
related to those of underlying variables.

1.3 Sequential order statistics based on conditionally iid random vari-
ables

Consider the assumption that lifetime distributions in the system can change from
failure to failure. It reflects the idea of a failure causing damage to surviving com-
ponents and therefore changing their properties or weakening the system. The
corresponding model for ordered data represents an extension of ordinary order
statistics based on iid random variables. It was first introduced in Kamps (1995).
The underlying concept was explained in terms of the triangular scheme which we
introduce next.

X(1)
∗ ← Z1

1 Z1
2 · · · Z1

n−1 Z1
n ∼ F1(·)

X(2)
∗ ← Z2

1 Z2
2 · · · Z2

n−1 ∼ F2(·)−F2(z1
1,n)

1−F2(z1
1,n)

...
...

...
...

X(n−1)
∗ ← Zn−1

1 Zn−1
2 ∼ Fn−1(·)−Fn−1(zn−2

1,3 )

1−Fn−1(zn−2
1,3 )

X(n)
∗ ← Zn

1 ∼ Fn(·)−Fn(zn−1
1,2 )

1−Fn(zn−1
1,2 )

For the sake of simplicity consider the scheme in a context of a k -out-of-n system.
Then every line in the scheme corresponds to the state of the system in the time
period between two consecutive failures. The order in which the states occur is
reflected by the upper index of X(·)

∗ .
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1.3 Sequential order statistics based on conditionally iid random variables

Let F1, . . . , Fn be continuous distribution functions and z(1)1,n ≤ z(2)1,n−1 ≤ . . . ≤
z(n−1)

1,2 be real numbers. The first line of the scheme contains random variables
Z1

1 , . . . , Z1
n that represent the lifetimes of components before the first failure.

Moreover, it is assumed that Z1
1 , . . . , Z1

n are iid with distribution function

F1(·) =
F1(·) − F1(z(0)1,n+1)

1 − F1(z(0)1,n+1)
, z(0)1,n+1 = −∞ .

Then the first ordered failure time X(1)
∗ is obtained as a minimum in the sample

Z1
1 , . . . , Z1

n . To pass to the second state, suppose that the first failure has happened
at time z(1)1,n . Then there remains n − 1 functioning components with lifetimes

Z2
1 , . . . , Z2

n−1 . Given the first failure time z(1)1,n , the random variables Z2
1 , . . . , Z2

n−1
are iid with distribution functions

F2(·) − F2(z(1)1,n)

1 − F2(z(1)1,n)
.

By analogy, second failure time X(2)
∗ is modeled as the minimum of Z2

1 , . . . , Z2
n−1 .

In general, the triangular scheme consists of random variables(
Z(r)

j

)
1≤r≤n, 1≤ j≤n−r+1

,

where
(

Z(r)
j

)
1≤ j≤n−r+1

are iid according to the distribution function

Fr(·) − Fr(z(r−1)
1,n−r+2)

1 − Fr(z(r−1)
1,n−r+2)

, 1 ≤ r ≤ n, z(0)1,n+1 = −∞ ,

which is Fr truncated on the left at the occurrence time z(r−1)
1,n−r+2 of the (r − 1) -

th failure. Given z(r−1)
1,n−r+2 the next failure time X(r)

∗ is modeled as the minimum

in the sample Z(r)
1 , . . . , Z(r)

n−r+1 , which represents lifetimes of remaining n − r +

1 components. Failure times X(1)
∗ , . . . , X(n)

∗ obtained according to the triangular

9



1.3 Sequential order statistics based on conditionally iid random variables

scheme are called sequential order statistics. The definition of sequential order
statistics contains pseudo inverse functions that we introduce next.

Def 1.4. For a univariate distribution function F : R → [0, 1] the pseudo-inverse F−1 :
[0, 1] → R is defined by

F−1(y) = inf{x : F(x) ≥ y}

for y ∈ (0, 1) and F−1(0) = limy→0+ F−1(y), F−1(1) = limy→1− F−1(y) .

Then sequential order statistics can be formally defined as follows.

Def 1.5. Let
(

Y(r)
j

)
1≤r≤n,1≤ j≤n−r+1

be independent random variables with

(
Y(r)

j

)
1≤ j≤n−r+1

∼ Fr ,

where r = 1, . . . , n and F1, . . . , Fn are continuous distribution functions with

F−1
1 (1) ≤ . . . ≤ F−1

n (1) .

Moreover, for j = 1, . . . , n let X(1)
j = Y(1)

j ,

X(1)
∗ = min

{
X(1)

1 , . . . , X(1)
n

}
and for r = 2, . . . , n define

X(r)
j = F−1

r

(
Fr

(
Y(r)

j

)(
1 − Fr

(
X(r−1)
∗

))
+ Fr

(
X(r−1)
∗

))
,

X(r)
∗ = min

1≤ j≤n−r+1
X(r)

j .

Then the random variables X(1)
∗ , . . . , X(n)

∗ are called sequential order statistics.

Remark 1.6. In Definition 1.5 random variables X(r)
1 , . . . , X(r)

n−r+1 represent the lifetimes

of surviving components after the (r − 1) -th failure. Random variables Y(r)
1 , . . . , Y(r)

n−r+1
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1.3 Sequential order statistics based on conditionally iid random variables

are designed to obtain conditional distributions

P
(
X(r)

j ≤ t |X(r−1)
∗ = z

)
=

Fr(t) − Fr(z)
1 − Fr(z)

,

that we have seen in the triangular scheme. Indeed

P
(
X(r)

j ≤ t |X(r−1)
∗ = z

)
= P

(
F−1

r

(
Fr
(
Y(r)

j

)(
1 − Fr

(
X(r−1)
∗

))
+ Fr

(
X(r−1)
∗

))
≤ t |X(r−1)

∗ = z
)

.

Since Fr
(
Y(r)

j

)
(1 − Fr(z)) + Fr(z) is independent of X(r−1)

∗ , the expression above can be
reduced to

P
(

Fr
(
Y(r)

j

)
(1 − Fr(z)) + Fr(z) ≤ Fr(t)

)
= P

(
Fr
(
Y(r)

j

)
≤ Fr(t) − Fr(z)

1 − Fr(z)

)

= P

(
Y(r)

j ≤ F−1
r

(
Fr(t) − Fr(z)

1 − Fr(z)

))

=
Fr(t) − Fr(z)

1 − Fr(z)

and we obtain the needed representation.
To sum up, the structure of sequential order statistics allows to take into account both

the influence of a failure through the changes in distribution and the knowledge about pre-
vious failure time incorporated in conditional distributions.

Theorem 1.7. If F1, . . . , Fn are continuous distribution functions with densities f1, . . . , fn

respectively, then the joint density of the first r sequential order statistics X(1)
∗ , . . . , X(r)

∗ is
given by

f X(1)
∗ ,...,X(r)

∗ (t1, . . . , tr)

=
n!

(n − r)!

r

∏
i=1

(
1 − Fi(ti)

1 − Fi(ti−1)

)n−i fi(ti)

1 − Fi(ti−1)
,
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1.3 Sequential order statistics based on conditionally iid random variables

where r = 1, . . . , n, t0 = −∞ and t1, . . . , tr ∈ R, t0 < t1 ≤ . . . ≤ tr .

Remark 1.8.

(i) Construction of sequential order statistics ensures not only specific Markov proper-
ties of underlying lifetime distributions, but also a Markov property of sequential
order statistics themselves. Indeed, as noted in Cramer & Kamps (2001) from The-
orem 1.7 follows that sequential order statistics form a Markov chain with transition
probabilities

P
(
X(r)
∗ > t |X(r−1)

∗ = s
)
=

(
1 − Fr(t)
1 − Fr(s)

)n−r+1

, (1.3)

where r = 2, . . . , n and s < t .

(ii) In Cramer & Kamps (2003) an alternative representation for sequential order statist-
ics is given. It is built basing on the connection of random variables forming a Markov
chain and uniform distributed random variables (see for example Pfeifer (1989)). In
more detail, let F1, . . . , Fn be continuous distribution functions with

F−1
1 (1) ≤ . . . ≤ F−1

n (1) ,

where F−1
i is a pseudo-inverse of Fi, i = 1, . . . , n. Let V1, . . . , Vn be independent

random variables with Vr ∼ Beta(n − r + 1, 1) , r = 1, . . . n. Then sequential or-
der statistics (based on F1, . . . , Fn ) can be defined as

X(r)
∗ = F−1

r (X(r))

X(r) = 1 − VrFr(X(r−1)
∗ ) ,

(1.4)

where r = 1, . . . , n, X(0)
∗ = −∞ .

Example 1.9. In the definition of sequential order statistics let

Fr(t) = 1 − (1 − F(t))γr/(n−r+1) , (1.5)

where r = 1, . . . , n, F is a continuous distribution function and γ1, . . . ,γn are positive
numbers.

12



1.4 Sequential order statistics based on exchangeable random variables

Then, sequential order statistics X(1)
∗ , . . . , X(n)

∗ based on F1, . . . , Fn of the form (1.5)
correspond to a specific class of ordered random variables called generalized order statistics.
Generalized order statistics represent a unified approach to a range of models for ordered
data and allow to consider their properties in more global context, for deeper insights see
Kamps (1995), Cramer & Kamps (2001).

Applying Theorem 1.7 we can calculate the joint density function of generalized order
statistics as

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = n!
n

∏
i=1

γi(1 − F(ti))
γi−1 f (ti)

(n − i + 1)(1 − F(ti−1))γi

= γn(1 − F(tn))
γn−1 f (tn)

n−1

∏
i=1

γi(1 − F(ti))
γi−γi+1−1 f (ti) ,

where f is the density corresponding to F .
Thus, the form (1.5) allows to reduce uncertainty in the model to the choice of paramet-

ers γ1, . . . ,γn and the distribution function F.

Sequential order statistics reflect a wide variety of dependence relations that
can be observed in systems with identical components. Additionally they possess
a graceful density function, which encourages their application in reliability theory.
Their construction scheme has formed a background for a more general model that
is described in the next section.

1.4 Sequential order statistics based on exchangeable random variables

The structure of sequential order statistics is closely associated with conditional in-
dependence of lifetimes given the previous failure time. In many cases, however,
this assumption is too strong and it would be desirable to have a similar model
basing on a broader class of lifetime distributions. This issue is addressed by the
construction introduced in Burkschat (2009), that assumes exchangeable distribu-
tions of lifetimes for the periods between consecutive failures.

Let us start the consideration of the new model with a simple example.

Example 1.10. Consider a system of three identical components that start working sim-
ultaneously. In the beginning of their run let the lifetimes of components be modeled by
random variables

Y(1)
1 =

Z1

Θ1
, Y(1)

2 =
Z2

Θ1
, Y(1)

3 =
Z3

Θ1
,

13



1.4 Sequential order statistics based on exchangeable random variables

where iid random variables Z1, Z2, Z3 represent lifetimes of components in perfect, sep-
arated environments, and random quantity Θ1 describes the load that the system goes
through, which is independent of Z1, Z2, Z3 .

Assume that the first failure appears at a time point t1 ≥ 0 and changes the distribu-
tions so that the lifetimes are next represented by

Y(2)
1 =

Z1

Θ2
, Y(2)

2 =
Z2

Θ2
, Y(2)

3 =
Z3

Θ2
,

where Θ2 is independent of Z1, Z2, Z3 .
By analogy, after the second failure occurs at a time point t2 ≥ t1 , let the lifetimes be

distributed as

Y(3)
1 =

Z1

Θ3
, Y(3)

2 =
Z2

Θ3
, Y(3)

3 =
Z3

Θ3
,

where Θ3 is independent of Z1, Z2, Z3 .
Thus, we have modeled the lifetimes of both surviving and failed components Y(i)

1 , Y(i)
2 ,

Y(i)
3 for the periods between (i − 1) -th and i -th failure, i = 1, 2, 3 . The effects induced by

each failure are reflected by changes in the distribution of the environmental variable Θi .
Next, by analogy to the triangular scheme, for i = 1, 2, 3 we construct order statistics

Y(i)
1:3, Y(i)

2:3, Y(i)
3:3 from the exchangeable random variables representing lifetimes on each level.

Finally, to connect the failure times between the levels, for 0 ≤ t1 ≤ t2 ≤ t we define
conditional probabilities

P
(
X(1)
∗ ≤ t

)
= P(Y(1)

1:3 ≤ t)

P
(
X(2)
∗ ≤ t |X(1)

∗ = t1
)
= P

(
Y(2)

2:3 ≤ t |Y(2)
1:3 = t1

)
P
(
X(3)
∗ ≤ t |X(2)

∗ = t2, X(1)
∗ = t1

)
= P

(
Y(3)

3:3 ≤ t |Y(3)
2:3 = t2, Y(3)

1:3 = t1
)

,

where X(1)
∗ , X(2)

∗ , X(3)
∗ denote sequential failure times in the system. Such random vari-

ables X(1)
∗ , X(2)

∗ , X(3)
∗ are called sequential order statistics based on exchangeable random

variables Y(i)
1 , Y(i)

2 , Y(i)
3 , i = 1, 2, 3 .

In general, according to Burkschat (2009) sequential order statistics based on
exchangeable random variables are defined as follows.

Def 1.11. Let
(
Y(r)

1 , . . . , Y(r)
n
)
, r = 1, . . . , n, n ∈ N be random vectors with values in

Rn that satisfy the following conditions:

14



1.4 Sequential order statistics based on exchangeable random variables

(i) Random vectors
(
Y(r)

1 , . . . , Y(r)
n
)

have the same support.

(ii) For r = 1, . . . , n random variables Y(r)
1 , . . . , Y(r)

n fulfill

P
(
Y(r)

i = Y(r)
j

)
= 0 ,

where i, j = 1, . . . , n, i 6= j .

(iii) Random variables Y(r)
1 , . . . , Y(r)

n are exchangeable for r = 1, . . . , n.

Then, for r = 1, . . . , n let
(
Y(r)

1:n, . . . , Y(r)
n:n
)

be the random vectors of the corresponding

order statistics. Then random variables X(1)
∗ , . . . , X(n)

∗ are called sequential order statistics
based on exchangeable components if their distribution satisfies

P
(
X(1)
∗ ≤ t1

)
= P

(
Y(1)

1:n ≤ t1
)
, t1 ∈ R,

and

P
(
X(r+1)
∗ ≤ tr+1 |X(r)

∗ = tr, . . . , X(1)
∗ = t1

)
= P

(
Y(r+1)

r+1:n ≤ tr+1 |Y(r+1)
r:n = tr, . . . , Y(r+1)

1:n = t1
)
, tr+1 ∈ R ,

(1.6)

for PX(r)
∗ ,...,X(1)

∗ -almost all (tr, . . . , t1) ∈ Rr , for every r = 1, . . . , n − 1 .

Remark 1.12.

(i) For the sake of simplicity we will refer to the system state between the (r − 1) -th and
r-th failure as the ”r-th level”. For example, the system before the first failure is on
the first level, between the first and the second failure – on the second level and so on.
After the n-th failure we do not assign any level to the system. On the r-th level the
lifetimes of the components are described by random variables Y(r)

1 , . . . , Y(r)
n , (r − 1)

of the corresponding components have already failed at that time, r = 1, . . . , n.

(ii) For r = 1, . . . , n, 0 ≤ t1 ≤ . . . ≤ tr Definition 1.11 ensures

f X(r)
∗ |X

(r−1)
∗ ,...,X(1)

∗ (tr|tr−1, . . . , t1) = f Y(r)
r:n |Y

(r)
r−1:n ,...,Y(r)

1:n(tr|tr−1, . . . , t1) . (1.7)
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1.4 Sequential order statistics based on exchangeable random variables

The last conditional density can be calculated as

f Y(r)
r:n |Y

(r)
r−1:n ,...,Y(r)

1:n(tr|tr−1, . . . , t1)

=
f Y(r)

1:n ,...,Y(r)
r−1:n ,Y(r)

r:n (t1, . . . , tr−1, tr)

f Y(r)
1:n ,...,Y(r)

r−1:n(t1, . . . , tr−1)

=

∫∞
tr

∫∞
yr+1
· · ·

∫∞
yn−1

fr(t1, . . . , tr, yr+1, yr+2, . . . , yn)dyn · · · dyr+2dyr+1∫∞
tr−1

∫∞
yr
· · ·

∫∞
yn−1

fr(t1, . . . , tr−1, yr, yr+1, . . . , yn)dyn · · · dyr+1dyr
,

where fr(t1, . . . , tn) is a shorter notation for the density f Y(r)
1 ,...,Y(r)

n (t1, . . . , tn) .

The following lemma derives an alternative representation for the integrals in
(1.7) .

Lemma 1.13. For an integrable and symmetric function f (t1, . . . , tn) holds

∫ ∞
t

∫ ∞
y j

· · ·
∫ ∞

yn−1

f (t1, . . . , t j−1, y j, . . . , yn)dyn . . . dy j+1dy j

=
1

(n − j + 1)!

∫ ∞
t

∫ ∞
t
· · ·

∫ ∞
t

f (t1, . . . , t j−1, y j, . . . , yn)dyn . . . dy j+1dy j .

The Proof of Lemma 1.13 is primarily technical, for the sake of completeness it
can be found in Appendix.

Applying Lemma 1.13 to the integrals in (1.7) we obtain

f X(r)
∗ |X

(r−1)
∗ ,...,X(1)

∗ (tr|tr−1 . . . , t1)

= (n − r + 1)

∫∞
tr

∫∞
tr
· · ·

∫∞
tr

fr(t1, . . . , tr, yr+1, yr+2, . . . , yn)dyn · · · dyr+2dyr+1∫∞
tr−1

∫∞
tr−1
· · ·

∫∞
tr−1

fr(t1, . . . , tr−1, yr, yr+1, . . . , yn)dyn · · · dyr+1dyr
.

(1.8)

The following theorem yields a representation for the joint density of sequential
order statistics basing on the densities of underlying distributions.

Theorem 1.14. For r = 1, . . . , n let
(
Y(r)

1 , . . . , Y(r)
n
)

possess a joint density function fr
with respect to the n-dimensional Lebesgue measure. Then the density of sequential order
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1.4 Sequential order statistics based on exchangeable random variables

statistics is given by

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn)

= n!
fn(t1, . . . , tn)∫∞

tn−1
fn(t1, . . . , tn−1, yn)dyn

×
n−1

∏
i=2

∫∞
ti

∫∞
yi+1

. . .
∫∞

yn−1
fi(t1, . . . , ti, yi+1, . . . , yn)dyndyn−1 · · · dyi+1∫∞

ti−1

∫∞
yi

. . .
∫∞

yn−1
fi(t1, . . . , ti−1, yi, . . . , yn)dyndyn−1 · · · dyi

×
∫ ∞

t1

∫ ∞
y2

. . .
∫ ∞

yn−1

f1(t1, y2, . . . , yn)dyn · · · dy2 ,

(1.9)

for t1 ≤ · · · ≤ tn .

Proof. The proof is deduced from the fact that

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = f X(1)
∗ (t1)

n

∏
i=2

f X(i)
∗ |X

(i−1)
∗ ,...,X(1)

∗ (ti|ti−1, . . . , t1)

by applying (1.7). For a detailed reasoning see Burkschat (2009).

Example 1.15. Consider the random variables from Example 1.10. Let Z1, Z2, Z3 be inde-
pendent, exponentially distributed with mean 1, and environmental variables Θi be gamma
distributed with parameters αi, λi, i = 1, 2, 3 . Then for sequential order statistics X(1)

∗ ,
X(2)
∗ , X(3)

∗ it follows by (1.8) that

f X(1)
∗ (t1) = f Y(1)

1:3 (t1)

=
3α1 λ

α1
1

(3t1 + λ1)α1+1

f X(2)
∗ |X

(1)
∗ (t2|t1) = f Y(2)

2:3 |Y
(2)
1:3 (t2|t1)

=
2 (α2 + 1) (3t1 + λ2)

α2+1

(t1 + 2t2 + λ2)α2+2

f X(3)
∗ |X

(2)
∗ ,X(1)

∗ (t3|t2, t1) = f Y(3)
3:3 |Y

(3)
2:3 ,Y(3)

1:3 (t3|t2, t1)

=
(α3 + 2)(t1 + 2t2 + λ3)

α3+2

(t1 + t2 + t3 + λ3)α3+3 ,
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1.4 Sequential order statistics based on exchangeable random variables

where 0 ≤ t1 ≤ t2 ≤ t3 . Theorem 1.14 yields

f X(1)
∗ ,X(2)

∗ ,X(3)
∗ (t1, t2, t3)

= f X(3)
∗ |X

(2)
∗ ,X(1)

∗ (t3|t2, t1) f X(2)
∗ |X

(1)
∗ (t2|t1) f X(1)

∗ (t1)

= 3! λα1
1 α1 (α2 + 1) (α3 + 2)

× (t1 + 2t2 + λ3)
α3+2(3t1 + λ2)

α2+1

(t1 + t2 + t3 + λ3)α3+3(t1 + 2t2 + λ2)α2+2(3t1 + λ1)α1+1 ,

(1.10)

where 0 ≤ t1 ≤ t2 ≤ t3 . For the computational details see Appendix.
Note that the density f X(1)

∗ ,X(2)
∗ ,X(3)

∗ contains parameters λi and αi from all the model
levels, which indicates that f X(1)

∗ ,X(2)
∗ ,X(3)

∗ inherits some properties from all the vectors
(
Y(i)

1 ,

Y(i)
2 , Y(i)

3

)
, i = 1, 2, 3 .

According to Burkschat (2009) there exist the following connections between
sequential order statistics based on exchangeable random variables and the models
for ordered data discussed earlier in this chapter.

Remark 1.16.

(i) Assigning the same joint distributions to the lifetimes
(
Y(r)

1 , . . . , Y(r)
n
)

on each level
r, r = 1, . . . , n we obtain usual order statistics based on exchangeable random vari-
ables described in Section 1.2.

(ii) The connection to sequential order statistics based on conditionally iid random vari-
ables appears in the following context:

For r = 1, . . . , n assume the vectors
(
Y(r)

1 , . . . , Y(r)
n
)

consist of iid components with

continuous cumulative distribution functions Fr . Note that Y(r)
1 , . . . , Y(r)

n can be
seen as exchangeable random variables. Let Y(r)

1:n, . . . , Y(r)
n:n represent the order stat-

istics based on
(
Y(r)

1 , . . . , Y(r)
n
)

. Then, according to Definition 1.11 for sequential

order statistics X(1)
∗ , . . . , X(n)

∗ based on
(
Y(r)

1 , . . . , Y(r)
n
)
, r = 1, . . . , n holds

P
(
X(1)
∗ ≤ t1

)
= P

(
Y(1)

1:n ≤ t1
)
= 1 − (1 − F1(t1))

n

and by Lemma 1.3

P
(
X(r+1)
∗ ≤ tr+1 |X(r)

∗ = tr, . . . , X(1)
∗ = t1

)
= P

(
Y(r+1)

r+1:n ≤ tr+1 |Y(r+1)
r:n = tr

)
18



1.4 Sequential order statistics based on exchangeable random variables

= 1 −
(1 − Fr+1(tr+1)

1 − Fr+1(tr)

)n−r
,

where 0 ≤ t1 ≤ . . . ≤ tn and r = 1, . . . , n − 1 .

Moreover, in this setup X(1)
∗ , . . . , X(n)

∗ possess the Markov property and their trans-
ition probabilities coincide with those of sequential order statistics shown in (1.3) .
Note that, in general, sequential order statistics based on exchangeable random vari-
ables are not Markov, if the underlying distributions of order statistics Y(r)

1:n, . . . , Y(r)
n:n

are not Markov.

(iii) In contrast to the other models, sequential order statistics based on exchangeable
random variables possess the most complicated form of the density function. For
the future investigation of dependence properties it would be desirable to describe se-
quential order statistics in a simpler way. Therefore, expressions similar to (1.4) are
of particular interest. However, the construction of (1.4) requires the Markov prop-
erty. Therefore a similar representation does not exist for sequential order statistics
based on exchangeable random variables in general.

(iv) In some k-out-of-n systems the lifetimes of components are not exchangeable. For
instance, consider a system of water pumps with different working capacities, it cor-
responds to dependent and non-exchangeable lifetimes. An extension of Definition
1.11 for this case can be found in Burkschat (2009).

Consider a system where lifetimes of components are conditionally independ-
ent given some parameter Θ . For instance, a system from Example 1.15 is of this
type. As mentioned in Spizzichino (2001), conditional independence summarizes
the assumption that there is no ”physical interaction” among components and, at
the same time, their behavior is influenced by common factors specified by Θ . Dis-
tributions of this type are called ”mixture models”, they will be considered in detail
in Chapter 2. The joint density function of sequential order statistics based mixture
distributions is shown below.

Theorem 1.17. Let Θ1, . . . , Θn be random variables with distributions G1, . . . , Gn, re-
spectively. For r = 1, . . . , n let Y(r)

1 , . . . , Y(r)
n have a joint density function

fr(t1, . . . , tn) =
∫ n

∏
i=1

fr(yi|θ)dGr(θ),

where fr(·|θ) denotes a density with respect to the Lebesque measure for every θ in the

19



1.4 Sequential order statistics based on exchangeable random variables

support of Θr . Then the joint density function of sequential order statistics is given by

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn)

= n!
∫

f1(t1|θ)(F1(t1|θ))n−1dG1(θ)

×
n−1

∏
r=1

∫
(∏r+1

i=1 fr+1(ti|θ))(Fr+1(tr+1|θ))n−r−1dGr+1(θ)∫
(∏r

i=1 fr+1(ti|θ))(Fr+1(tr|θ))n−rdGr+1(θ)
,

where 0 ≤ t1 ≤ · · · ≤ tn and Fr(·|θ) denotes the distribution function corresponding to
fr(·|θ), r = 1, . . . , n.

Remark 1.18. Theorem 1.17 leads to the observation that even consideration the lifetime
distributions of a simple form does not bring noticeable simplifications to the joint dens-
ity function of sequential order statistics. The influence of the level distributions on the
representation of sequential order statistics density will form the core of Chapter 3.

In summary, sequential order statistics based on exchangeable random vari-
ables reflect a wider range of dependencies between components in a system than
other models considered in this thesis. Their properties are influenced by the ran-
dom variables from all the levels in the model. In order to investigate this connec-
tion, in the next section the focus will be placed on special types of distributions for
the lifetimes on the levels.
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2 Multivariate survival distributions

In the following we will look at several types of lifetime distributions that will be
considered throughout this thesis. The distributions are grouped basing on the
forms of corresponding conditional hazard rates.

For the sake of completeness we will start with a short introduction to condi-
tional hazard rates and their properties.

2.1 Conditional hazard rates

Conditional hazard rates generalize the concept of usual univariate hazard rates.
According to Shaked & Shanthikumar (2007) the latter are defined as follows.

Def 2.1. Consider a nonnegative random variable Y with an absolutely continuous dis-
tribution function F and a density f . Then the hazard rate of Y at a time point t ≥ 0 is
defined as

r(t) = lim
δ→0+

P(t < Y ≤ t + δ |Y > t)
δ

=
f (t)
F(t)

, (2.1)

where F(t) = 1 − F(t) .

Remark 2.2.

• According to Shaked & Shanthikumar (2007) a hazard rate allows the representation

r(t) =
d
dt
(
− ln F(t)

)
.

• From the survival theory point of view a hazard rate can be interpreted as the intens-
ity of failure of a device, with a random lifetime X, at a time point t .

As mentioned in the previous chapter a breakdown in the system likely affects
surviving components and their proneness to failure. For instance, an engine mal-
function in a multi-engine system increases the load on the remaining engines and
the intensity of their failures. Conditional hazard rates generalize the univariate
hazard rates in order to take into account the influence of all preceding incidents.

To introduce the notion of conditional hazard rates let us consider a technical
system of n components with not necessary exchangeable random lifetimes Y1, . . . ,
Yn . We are interested in the failure intensity of the component with the number
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2.1 Conditional hazard rates

kl and the lifetime Ykl at a time point t ≥ 0. A history of failures preceding time
point t , ordered by their occurrence, can be described as

ht = {Yi1 = t1, . . . , Yi j = t j, Yk1 > t, . . . , Ykn− j > t} , (2.2)

where 0 ≤ j ≤ n, 0 < t1 ≤ · · · ≤ t j ≤ t, and

I = {i1, . . . , i j} ⊂ {1, 2, . . . , n}
K = {k1, . . . , kn− j} = {1, 2, . . . , n} \ I .

(2.3)

In other words, the set I represents components that have failed before the time
point t , where t1, . . . , t j are their ordered failure times. Yk, k ∈ K , on the contrary,
are components surviving the time t .

Then, according to Shaked & Shanthikumar (2007), the conditional hazard rate
can be defined as follows (see also Spizzichino (2001)).

Def 2.3. Consider a vector Y = (Y1, . . . , Yn) of absolutely continuous random lifetimes.
Given the history of failures ht from (2.2) with I, K defined by (2.3) the conditional hazard
rate of the surviving component Ykl , kl ∈ K is defined as

λkl |I(t|t1, . . . , t j) =

lim
δ→0+

1
δ

P(Ykl ≤ t + δ |Yi1 = t1, . . . , Yi j = t j, Yk1 > t, . . . , Ykn− j > t) .
(2.4)

For j = 0 the conditional hazard rate of the first failure in the system is defined as

λkl |∅(t) = lim
δ→0+

1
δ

P(Ykl ≤ t + δ |Y1 > t, . . . , Yn > t) .

Remark 2.4.

(i) To be able to calculate the limit in (2.4) we can represent the conditional hazard rate
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2.1 Conditional hazard rates

as

λkl |I(t|t1, . . . , t j) =

lim
δ→0+

1
δ

P(Ykl ≤ t + δ, Yk1 > t, . . . , Ykn− j > t |Yi1 = t1, . . . , Yi j = t j)

P(Yk1 > t, . . . , Ykn− j > t |Yi1 = t1, . . . , Yi j = t j)
,

(2.5)

where we define the conditional probabilities with the help of the following equality

P(Yk1 ∈ Ak1 , . . . , Ykn− j ∈ Akn− j |Yi1 = t1, . . . , Yi j = t j)

=
∫

Akn− j

· · ·
∫

Ak1

f Yk1
,...,Ykn− j

|Yi1 ,...,Yi j (tk1 , . . . , tkn− j |t1, . . . , t j)dtk1 . . . dtkn− j

for Aki ⊂ R+, i = 1, . . . , n − j .

The existence of the limits in (2.4) and (2.5) will be addressed in Lemma 2.5 below.

(ii) Consider the representation (2.5) for exchangeable random variables Y1, . . . , Yn . It
can be shown with the help of Lemma I from Szekli (1995) together with Lemma 1.13
that the limit in (2.5) can be calculated as follows

λkl |I(t | t1, . . . , t j)

= lim
δ→0+

1
δ(n − j)

P(t < Yj+1:n ≤ t + δ |Y1:n = t1, . . . , Yj:n = t j)

P(t < Yj+1:n |Y1:n = t1, . . . , Yj:n = t j)

= lim
δ→0+

1
δ(n − j)

P(Yj+1:n ≤ t + δ |Y1:n = t1, . . . , Yj:n = t j, Yj+1:n > t) .

(2.6)

Thus, for exchangeable lifetimes conditional hazard rates depend on the number of
failures and the set of failure times but not on the particular choice of components.
Therefore, from now on a simplified notation will be used for conditional hazard rates
based on exchangeable random variables, namely

λ(t|t1, . . . , t j) = λkl |I(t|t1, . . . , t j)
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2.1 Conditional hazard rates

and

λ(t) = λkl |∅(t) .

(iii) Consider random variables Z1, . . . , Zn such that

Z1 < . . . < Zn a.s. (2.7)

Since the random variables are ordered the identities of failed components are defined
by (i1, . . . , i j) = (1, . . . , j) , where i1, . . . , i j are the indexes defined according to
(2.2).

It follows from Lemma I in Szekli (1995) that for l 6= m, l, m ∈ { j + 1, . . . , n}
holds

lim
δ→0+

1
δ

P(t < Zl ≤ t + δ, t < Zm ≤ t + δ, Z j+1 > t | Z1 = t1, . . . , Z j = t j)

= 0 .

Therefore, we can summarize the behavior of conditional hazard rates by

λl,I(t|ti1 , . . . , tik)

{
≥ 0 if k = l − 1 and {i1, . . . , ik} = {1, . . . , l − 1},
= 0 otherwise.

(2.8)

In other words, for ordered random variables a non-trivial case represents conditional
hazard rates of the form

λl,I(t|t1, . . . , tl−1) = lim
δ→0+

1
δ

P(Zl ≤ t + δ | Z1 = t1, . . . , Zl−1 = tl−1, Zl > t) ,

where I = {1, . . . , l − 1}, l = 1, . . . , n.

Note that by construction order statistics fulfill (2.7). Therefore, to emphasize (2.8),
we will use the notation

λ(t|t1, . . . , tl−1) = lim
δ→0+

1
δ

P(Zl ≤ t + δ | Z1 = t1, . . . , Zl−1 = tl−1, Zl > t) ,
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2.1 Conditional hazard rates

λ∗(t|t1, . . . , tl−1) = lim
δ→0+

1
δ

P(Yl:n ≤ t + δ |Y1:n = t1, . . . , Yl−1:n = tl−1, Yl:n > t) ,

λ( j)(t|t1, . . . , tl−1) = lim
δ→0+

1
δ

P(Y( j)
l:n ≤ t + δ |Y( j)

1:n = t1, . . . , Y( j)
l−1:n = tl−1, Y( j)

l:n > t)

and

λ(∗,l)(t|t1, . . . , tl−1)

= lim
δ→0+

1
δ

P(X(l)
∗ ≤ t + δ |X(1)

∗ = t1, . . . , X(l−1)
∗ = tl−1, X(l)

∗ > t) ,

where j, l = 2, . . . , n. The empty failure history can be considered by analogy.

The following lemma states the existence of the limits in (2.4) and provides ex-
pressions for conditional hazard rates based on exchangeable random variables.
For the proof we refer to Szekli (1995) .

Lemma 2.5. Let Y = (Y1, . . . , Yn) be a vector of exchangeable lifetimes with a joint
density function f (t1, . . . , tn) . For 1 ≤ j ≤ n − 1, 0 < t1 ≤ · · · ≤ t j < t, the limit
in (2.4) exists for almost all (t, t1, . . . , t j) and is a measurable function of (t, t1, . . . , t j) ,
with

λ(t|t1, . . . , t j) =

∫∞
t · · ·

∫∞
t f (t1, . . . , t j, t, t j+2, . . . , tn)dt j+2 . . . dtn∫∞

t · · ·
∫∞

t f (t1, . . . , t j, t j+1, t j+2, . . . , tn)dt j+1 . . . dtn

and

λ(t) =
∫∞

t · · ·
∫∞

t f (t, t2, . . . , tn)dt2 . . . dtn∫∞
t · · ·

∫∞
t f (t1, t2, . . . , tn)dt1 . . . dtn

almost sure.

Taking (2.6) into account an alternative expression for a conditional hazard rate
can be given.

Lemma 2.6. For absolutely continuous exchangeable random variables Y1, . . . , Yn holds

λ(t|t1, . . . , t j) = −
1

(n − j)
∂

∂t
ln P(Yj+1:n > t |Y1:n = t1, . . . , Yj:n = t j) (2.9)
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2.1 Conditional hazard rates

for 1 ≤ j ≤ n − 1, 0 < t1 ≤ · · · ≤ t j < t , and

λ(t) = − 1
n

∂

∂t
ln P(Y1:n > t) ,

almost sure.

Proof. Denote

p(t|t1, . . . , t j) = P(Yj+1:n > t|Y1:n = t1, . . . , Yj:n = t j)

p(t) = P(Y1:n > t) .

From (2.6) follows

λ(t|t1, . . . , t j)

= − 1
(n − j)p(t|t1, . . . , t j)

lim
δ→0+

p(t + δ|t1, . . . , t j) − p(t|t1, . . . , t j)

δ

= − 1
(n − j)

∂

∂t p(t|t1, . . . , t j)

p(t|t1, . . . , t j)
= − 1

(n − j)
∂

∂t
ln p(t|t1, . . . , t j) ,

for almost all 0 ≤ t1 ≤ . . . ≤ t j . By analogy we can state

λ(t) =
1
n

lim
δ→0+

P(t < Y1:n ≤ t + δ)

δP(t < Y1:n)

= − 1
n

∂

∂t p(t)
p(t)

= − 1
n

∂

∂t
ln p(t) .

(2.10)

In the proof of the previous lemma replace Y1:n, . . . , Yn:n by ordered random
variables Z1, . . . , Zn . Then by analogy to (2.9) we observe the following relation.

Lemma 2.7. For absolutely continuous random variables Z1, . . . , Zn , that satisfy (2.7),
conditional hazard rates can be expressed as

λ(t|t1, . . . , t j) = −
∂

∂t
ln P(Z j+1 > t | Z1 = t1, . . . , Z j = t j) (2.11)
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2.1 Conditional hazard rates

for 1 ≤ j ≤ n − 1, 0 < t1 ≤ · · · ≤ t j < t and

λ(t) = − ∂

∂t
ln P(Z1 > t) (2.12)

almost sure.

Comparing (2.9) with (2.11), the only significant difference represents the miss-
ing factor in front of the derivative. It arises from the failure history form for
ordered random variables that we have discussed in Remark 2.4 (iii).

Lemma 2.7 allows to obtain a simpler representation for the conditional hazard
rates of sequential order statistics based on exchangeable random variables.

Lemma 2.8. Consider sequential order statistics X(1)
∗ , . . . , X(n)

∗ based on absolutely con-
tinuous exchangeable random lifetimes

(
Y(i)

1 , . . . , Y(i)
n
)
, i = 1, . . . , n. Then the condi-

tional hazard rates

λ(∗, j+1)(t|t1, . . . , t j)

= lim
δ→0+

1
δ

P
(
X( j+1)
∗ ≤ t + δ |X(1)

∗ = t1, . . . , X( j)
∗ = t j, X( j+1)

∗ > t
)

can be calculated as

λ(∗, j+1)(t|t1, . . . , t j) = (n − j) λ( j+1)(t|t1, . . . , t j) , (2.13)

where by analogy to (2.6) for j = 1, . . . , n − 1

λ( j+1)(t|t1, . . . , t j)

= lim
δ→0+

1
δ(n − j)

P
(
Y( j+1)

j+1:n ≤ t + δ |Y( j+1)
1:n = t1, . . . , Y( j+1)

j:n = t j, Y( j+1)
j+1:n > t

)
.

Proof. Since X(1)
∗ , . . . , X(n)

∗ satisfy (2.7), applying Lemma 2.7 we obtain

λ(∗, j+1)(t|t1, . . . , t j) = −
∂

∂t
ln P(X( j+1)

∗ ≥ t |X(1)
∗ = t1, . . . , X( j)

∗ = t j) .
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2.1 Conditional hazard rates

Moreover, taking into account (1.6) we can state that

λ(∗, j+1)(t|t1, . . . , t j) = −
∂

∂t
ln P(X( j+1)

j+1:n ≥ t |X( j+1)
1:n = t1, . . . , X( j+1)

j:n = t j) .

Finally, comparing the last expression with (2.9) leads to

λ(∗, j+1)(t|t1, . . . , t j) = (n − j) λ( j+1)(t|t1, . . . , t j) ,

where λ( j+1)(t|t1, . . . , t j) corresponds to
(
Y( j+1)

1 , . . . , Y( j+1)
n

)
, j = 1, . . . , n − 1.

In the following we define a cumulative hazard of a component as shown in
Shaked & Shanthikumar (2007).

Def 2.9. Consider a system of exchangeable components with the history of failures as in
(2.2) and the sets I, K defined by (2.3). The cumulative hazard function of the component
i ∈ K at a time point t is defined as

Ψi|I(t|t1, . . . , t j−1) =
∫ t1

0
λi|∅(u)du +

j−1

∑
k=2

∫ tk

tk−1

λi|i1 ,...,ik−1
(u|t1, . . . , tk−1)du

+
∫ t

t j−1

λi|I(u|t1, . . . , t j−1)du .

Remark 2.10. Consider ordered random variables Z1, . . . , Zn and their conditional hazard
rates λi|I(·| · · · ) . Taking into account (2.8) for a cumulative hazard of Z1, . . . , Zn holds

Ψi|I(t|t1, . . . , ti−1) =

{∫ t
ti−1
λi|I(u|t1, . . . , ti−1)du if I = {1, . . . , i − 1},

0 otherwise.

The following lemma states the connection between the joint density of ex-
changeable random variables and the corresponding conditional hazard rates. It
represents a special case of Lemma J in Szekli (1995).

Lemma 2.11. Let Y1, . . . , Yn represent non-negative exchangeable random variables with
the joint density function f (t1, . . . , tn) and conditional hazard rates λ(t|t1, . . . , ti−1),
λ(t), i = 2, . . . , n. Let Y1:n, . . . , Yn:n be order statistics based on Y1, . . . , Yn , for i =
2, . . . , n and almost all 0 ≤ t1 ≤ . . . ≤ tn holds
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2.1 Conditional hazard rates

(i)

P(Yi:n > ti |Yi−1:n = ti−1, . . . , Y1:n = t1)

= exp
(
−(n − i + 1)

∫ ti

ti−1

λ(u|ti−1, . . . , t1)du
)

,

and

P(Y1:n > t1) = exp
(
−n

∫ t1

0
λ(u)du

)
.

(ii)

f Yi:n |Yi−1:n ,...,Y1:n(ti|ti−1, . . . , t1)

= (n − i + 1) λ(ti|ti−1, . . . , t1) exp
(
−(n − i + 1)

∫ ti

ti−1

λ(u|ti−1, . . . , t1)du
)

and

f Y1:n(t1) = n λ(t1) exp
(
−n

∫ t1

0
λ(u)du

)
.

(iii) As a result,

f Y1:n ,...,Yn:n(t1, . . . , tn)

= n! λ(t1)
n

∏
h=2

λ(th|th−1, . . . , t1) exp
(
−n

∫ t1

0
λ(u)du

)

× exp
(
−

n

∑
h=2

(n − h + 1)
∫ th

th−1

λ(u|th−1, . . . , t1)du
)

.

Proof. The first equality is deduced from (2.9) by integrating both parts for t ∈
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[t j, t j+1], t j, t j+1 ∈ R, t j < t j+1

∫ t j+1

t j

λ(t|t1, . . . , t j)dt

= − 1
(n − j)

∫ t j+1

t j

∂

∂t
ln P(Yj+1:n ≥ t|Y1:n = t1, . . . , Yj:n = t j)dt .

Calculating the integral on the right we obtain

∫ t j+1

t j

λ(t|t1, . . . , t j)dt

= − 1
(n − j)

(
ln P(Yj+1:n ≥ t j+1 |Y1:n = t1, . . . , Yj:n = t j)

− ln P(Yj+1:n ≥ t j |Y1:n = t1, . . . , Yj:n = t j)

)
.

Since P(Yj+1:n ≥ t j |Y1:n = t1, . . . , Yj:n = t j) = 1, (i) follows.
Next let us look at the conditional density

f Yi:n |Yi−1:n ,...,Y1:n(ti|ti−1, . . . , t1)

= − ∂

∂ti
P(Yi:n > ti |Yi−1:n = ti−1, . . . , Y1:n = t1)

= − ∂

∂ti
exp

(
−(n − i + 1)

∫ ti

ti−1

λ(u|ti−1, . . . , t1)du
)

and by Leibniz integration rule holds

f Yi:n |Yi−1:n ,...,Y1:n(ti|ti−1, . . . , t1)

= (n − i + 1) λ(ti|ti−1, . . . , t1) exp
(
−(n − i + 1)

∫ ti

ti−1

λ(u|ti−1, . . . , t1)du
)

.

For i = 1 the conditional hazard rate coincides with the usual univariate hazard
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rate of Y1:n . Then from (2.10) for t1 ≥ 0 follows that

P(Y1:n > t1) = exp
(
−n

∫ t1

0
λ(u)du

)
f Y1:n(t1) = n λ(t1) exp

(
−n

∫ t1

0
λ(u)du

)

and (ii) is confirmed.
Finally, the expression (iii) is obtained by substituting (i) and (ii) in the joint

density representation (1.7).

Remark 2.12. Equality (iii) in Lemma 2.11 leads to another representation of the joint
density f Y1 ,...,Yn(t1, . . . , tn) in terms of conditional hazard rates.

Let π be a permutation of t1, . . . , tn such that

(t(1), . . . , t(n)) = π(t1, . . . , tn) ,

where t(1) ≤ . . . ≤ t(n) .
Since for exchangeable random variables

f Y1:n ,...,Yn:n(t(1), . . . , t(n)) = n! f Y1 ,...,Yn(t1, . . . , tn) ,

we obtain

f Y1 ,...,Yn(t1, . . . , tn)

= λ(t(1))
n

∏
h=2

λ(t(h)|t(1), . . . , t(h−1)) exp
(
−n

∫ t(1)

0
λ(u)du

)
× exp

(
−

n

∑
h=2

[n − (h − 1)]
∫ t(h)

t(h−1)

λ(u|t(1), . . . , t(h−1))du
) (2.14)

for t1, . . . , tn ∈ R .

Lemma 2.13. For the density of sequential order statistics X(1)
∗ , . . . , X(n)

∗ and 0 < t1 ≤
. . . ≤ tn holds

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn)
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2.2 Distributions with special forms of conditional hazard rates

= n! λ(1)(t1)
n

∏
h=2

λ(h)(th|t1, . . . , th−1) exp
(
−n

∫ t1

0
λ(1)(u)du

)

× exp
(
−

n

∑
h=2

(n − h + 1)
∫ th

th−1

λ(h)(u|t1, . . . , th−1)du
)

.

Proof. The result is obtained by substitution of the representation for f Yi:n |Yi−1,n ,...,Y1:n

from Lemma 2.11 (ii) in (1.7).

2.2 Distributions with special forms of conditional hazard rates

In the following we are going to consider several types of multivariate distributions
by distinguishing the number of failure times on which the conditional hazard rates
depend.

2.2.1 Distributions with Markov order statistics

To begin with, let us look at a n -dimensional distribution with hazard rates of the
form

λ(t|t1, . . . , tk−1) = g(t)

for k = 2, . . . , n . Such conditional hazard rates are independent of the number of
previous failures and their failure times. The following lemma describes distribu-
tions with conditional hazard rates of this type.

Lemma 2.14. Consider absolutely continuous exchangeable random variables Y1, . . . , Yn
with marginal distribution functions F and corresponding densities f . Denote by

r(t) =
f (t)
F(t)

the univariate hazard rate of Yj, j = 1, . . . , n. Then Y1, . . . , Yn are iid if and only if for
k = 2, . . . , n holds

λ(t|t1, . . . , tk−1) = r(t) . (2.15)

Proof. Let Y1, . . . , Yn be iid, then for the history of failures as in (2.2) by Definition
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2.2 Distributions with special forms of conditional hazard rates

2.3 we obtain

λ(t|t1, . . . , tk−1)

= lim
δ→0+

1
δ

P(Ykl ≤ t + δ |Yi1 = t1, . . . , Yi j = t j, Yk1 > t, . . . , Ykn− j > t)

= lim
δ→0+

1
δ

P(Ykl ≤ t + δ |Ykl > t) .

Consequently, the conditional hazard rate is equal to the univariate hazard rate
defined by (2.1).

It is left to prove that condition (2.15) implies iid. Taking into account (2.14) we
can represent the joint density as

f Y1 ,...,Yn(t1, . . . , tn)

=
n

∏
i=1

r(t(i)) exp
(
−n

∫ t(1)

0
r(u)du

)
exp

(
−

n

∑
h=2

(n − h + 1)
∫ t(h)

t(h−1)

r(u)du
)

=
n

∏
i=1

r(t(i)) exp
[

n
(
ln F(t(1)) − ln F(0)

)]

× exp
[ n

∑
h=2

(n − h + 1)
(
ln F(t(h)) − ln F(t(h−1))

)]

=
n

∏
i=1

r(t(i)) exp
( n

∑
h=1

ln F(t(h))
)

=
n

∏
i=1

f (t(i)) =
n

∏
i=1

f (ti) .

It follows immediately that Y1, . . . , Yn are iid.

For the next step consider distributions with conditional hazard rates depend-
ing on the age of the surviving components and the number of failures, but not on
the failure times, i.e.

λ(t|t1, . . . , tk) = gk(t) , (2.16)

where k = 1, . . . , n − 1.
In the following several examples of distributions that possess such conditional

hazard rates are presented.

Example 2.15.
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2.2 Distributions with special forms of conditional hazard rates

(i) According to Kotz et al. (2000) the density function of the symmetric Block and Basu
multivariate exponential distribution is given by

f (t1, . . . , tn) =
1
n!

exp
(
−λ

n

∑
i=1

ti − γt(n)
) n

∏
r=1

(r · λ + γ) (2.17)

for t(n) = max{t1, . . . , tn} , t1, . . . , tn ∈ R+ , 0 < λ ∈ R and γ ∈ R+ .

In Lemma 2.5 let random lifetimes Y1, . . . , Yn follow the Block and Basu distribution.
Then substituting (2.17) for f we obtain conditional hazard rates

λ(t|t1, . . . , th)

=
1

(n − h)

×
exp

(
−(n − h − 1)λt − γt

)
exp

(
−λ∑

h
i=1 ti − λt

)
exp

(
−(n − h)λt − γt

)
exp

(
−λ∑

h
i=1 ti

)

×

n

∏
j=h+1

(
λ(n − j + 1) + γ

)
n

∏
j=h+2

(
λ(n − j + 1) + γ

)
=
λ(n − h) + γ

(n − h)
.

In this case the multivariate conditional hazard rate depends only on the number of
failed components and stays constant between two failures.

(ii) In Spizzichino (2001) Example 2.37, 3.30 the author considers a model by Ross,
which can be described by the joint density

f (t1, . . . , tn) =
θ n

n!
e−θt(n)

and conditional hazard rates

λ(t|t1, . . . , tk) =
θ

n − k
, (2.18)
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2.2 Distributions with special forms of conditional hazard rates

where θ > 0 is a given quantity and ti ≥ 0, i = 1, . . . , n.

From the form of conditional hazard rates we can conclude that for such systems the
hazard of a failure increases with every failed component. This can be the case, for
example, when failures cause damage to surviving components. Moreover, the condi-
tional hazard rate in (2.18) does not depend on the current time t , i.e. components
do not undergo any aging process. This is the case, for instance, when the duration of
experiment is small and effects of aging are insignificant in comparison to the failure
consequences.

Another group of distributions with conditional hazard rates of the form (2.16)
can be found in Navarro & Burkschat (2011). It is of interest due to the close rela-
tion to sequential order statistics. More specifically, the distributions arise from the
following lemma.

Lemma 2.16. If X(1)
∗ , . . . , X(n)

∗ are sequential order statistics based on F1, F2, . . . , Fn , then
there exists an exchangeable random vector X∗ = (X∗1 , . . . , X∗n) such that the vector of its
usual order statistics is equal to the vector

(
X(1)
∗ , . . . , X(n)

∗
)

.

Thus, under consideration are exchangeable random variables such that their
order statistics coincide in distribution with sequential order statistics. The joint
density of X∗1 , . . . , X∗n can be obtained as follows.

Lemma 2.17. If X(1)
∗ , . . . , X(n)

∗ are sequential order statistics based on F1, F2, . . . , Fn , then
the exchangeable random variables X∗1 , . . . , X∗n , defined in Lemma 2.16, possess the joint
density function

f X∗1 ,...,X∗n (t1, . . . , tn) =
n

∏
i=1

(
1 − Fi(t(i))

1 − Fi(t(i−1))

)n−i
fi(t(i))

1 − Fi(t(i−1))
, (2.19)

for t1, . . . , tn ∈ R .

Proof. Let Y1, . . . , Yn be exchangeable random variables and Y1:n, . . . , Yn:n their or-
der statistics . For t1 ≤ . . . ≤ tn it is known that

f Y1:n ,...,Yn:n(t1, . . . , tn) = n! f Y1 ,...,Yn(t1, . . . , tn) .

Then for t1, . . . , tn ∈ R we can write

f Y1 ,...,Yn(t1, . . . , tn) =
1
n!

f Y1:n ,...,Yn:n(t(1), . . . , t(n)) , (2.20)
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2.2 Distributions with special forms of conditional hazard rates

where (t(1), . . . , t(n)) = π(t1, . . . , tn) and π ∈ Sn is such that t(1) ≤ . . . ≤ t(n) . The
result follows by combining (2.20) with the representation of the joint density of
sequential order statistics from Theorem 1.7.

Remark 2.18. As already mentioned, X∗1 , . . . , X∗n provide another example of exchangeable
random variables with conditional hazard rates of the form (2.16). Indeed, by (1.3) together
with (2.9) almost surely holds

λ(t|t1, . . . , th) = −
1

(n − h)
∂

∂t
ln

(
Fh+1(t)
Fh(th)

)n−h

=
fh+1(t)
Fh+1(t)

,

where fh+1(t) is the density function corresponding to the survival function Fh+1(t) , h =
1, . . . , n − 1 and 0 ≤ t1 ≤ . . . ≤ th < t . By analogy, combining the result of Theorem
1.7 with (2.12), the conditional hazard rate of the first failure in the system is obtained as

λ(t) = − 1
(n − h)

∂

∂t
ln
(

F1(t)
)n

=
f1(t)
F1(t)

Thus, for X∗1 , . . . , X∗n conditional hazard rates depend both on the age of the considered
component and the number of failures preceding the current time t .

Example 2.19. Consider sequential order statistics X(1)
∗ , . . . , X(n)

∗ based on F1, . . . , Fn .
For θ0, . . . ,θn−1 > 0 and i = 1, . . . , n define the distribution functions Fi as

Fi(t) = 1 − (1 − F(t))
1

θi−1 .

where F(t) is the distribution function of standard exponential distribution. Then the
following representations exist:

Fi(t) = 1 − exp
(
− t
θi−1

)
fi(t) =

1
θi−1

exp
(
− t
θi−1

)
.
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2.2 Distributions with special forms of conditional hazard rates

According to Balakrishnan et al. (2008) such X(1)
∗ , . . . , X(n)

∗ coincide with the order stat-
istics based on Weinman multivariate exponential distribution. They can be described by
the following density function taken from Kotz et al. (2000)

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = n!
n−1

∏
i=0

1
θi

exp
(
−(n − i)(ti+1 − ti)

θi

)
,

with θi > 0, i = 0, . . . , n − 1, t0 = 0 and t0 ≤ t1 ≤ . . . ≤ tn . Then considering cor-
responding conditional hazard rates one may observe that

λ(t|t1, . . . , th) =
1
θh

a.s.

The corresponding exchangeable random variables X∗1 , . . . , X∗n possess the density

f X∗1 ,...,X∗n (t1, . . . , tn) =
n−1

∏
i=0

1
θi

exp
(−(n − i)(t(i+1) − t(i))

θi

)
,

where t1, . . . , tn ∈ R . According to Kotz et al. (2000) X∗1 , . . . , X∗n follow Freund’s mul-
tivariate exponential distribution.

Remark 2.20. Consider absolutely continuous random variables Y1, . . . , Yn with condi-
tional hazard rates of the form (2.16). It can be seen that their order statistics Y1:n, . . . , Yn:n
possess the Markov property, i.e.

f Yi:n |Yi−1:n ,...,Y1:n(ti|ti−1, . . . , t1) = f Yi:n|Yi−1:n(ti|ti−1) , (2.21)

for i = 2, . . . , n and 0 ≤ t1 ≤ . . . ≤ tn . In more detail, from (2.14) the density function
of Y1, . . . , Yn is of the form

f Y1 ,...,Yn(t1, . . . , tn) =
n

∏
i=1

pi(t(i)) ,
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2.2 Distributions with special forms of conditional hazard rates

where pi are appropriately chosen functions. Then the density of order statistics is

f Y1:n ,...,Yn:n(t1, . . . , tn) = n!
n

∏
i=1

pi(ti), t1 < . . . < tn

and the following equality holds

f Yi:n |Yi−1:n ,...,Y1:n(ti|ti−1, . . . , t1)

=

∫∞
ti

∫∞
ti+1

. . .
∫∞

tn−1
∏

n
j=i+1 p j(t j)dtn . . . dti+2dti+1 pi(ti)∫∞

ti

∫∞
ti

∫∞
ti+1

. . .
∫∞

tn−1
∏

n
j=i+1 p j(t j)dtn . . . dti+2dti+1 pi(ti)dti

= f Yi:n|Yi−1:n(ti|ti−1)

almost surely.

Next we are going to look at distributions that satisfy (2.21). For the sake of con-
sistency let us identify these distributions by the form of their conditional hazard
rates.

Lemma 2.21. The order statistics Y1:n, . . . , Yn:n , which are based on absolutely continuous
exchangeable random variables Y1, . . . , Yn , possess Markov property if and only if for i =
2, . . . , n holds

λ(t|t1, . . . , ti−1) = gi(t, ti−1) ,

where 0 ≤ t1 ≤ . . . ≤ ti−1 < t .

Proof. Let Y1:n, . . . , Yn:n be Markov for i = 1, . . . , n , then by (2.6) holds

λ(t|t1, . . . , ti−1) = lim
∆t→0+

1
∆t

P(Yi:n ≤ t + ∆t |Y1:n = t1, . . . , Yi−1:n = ti−1, Yi:n > t)

= lim
∆t→0+

1
∆t

P(t < Yi:n ≤ t + ∆t |Y1:n = t1, . . . , Yi−1:n = ti−1)

P(t < Yi:n |Y1:n = t1, . . . , Yi−1:n = ti−1)
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2.2 Distributions with special forms of conditional hazard rates

and due to Markov property of Y1:n, . . . , Yn:n we obtain

λ(t|t1, . . . , ti−1) = lim
∆t→0+

1
∆t

P(t < Yi:n ≤ t + ∆t |Yi−1:n = ti−1)

P(t < Yi:n |Yi−1:n = ti−1)

= lim
∆t→0+

1
∆t

P(Yi:n ≤ t + ∆t |Yi−1:n = ti−1, Yi:n > t) .

It is left to show the inverse implication. By Lemma 2.11 (i) holds

f Yi:n |Y1:n ,...,Yi−1:n(ti|t1, . . . , ti−1)

= − ∂

∂ti
exp

(
−(n − i + 1)

∫ ti

ti−1

gi(t, ti−1)dt
)

= (n − i + 1) gi(ti, ti−1) exp
(
−(n − i + 1)

∫ ti

ti−1

gi(t, ti−1)dt
)

.

For the sake of simplicity denote

pi(ti−1, ti) = gi(ti, ti−1) exp
(
−(n − i + 1)

∫ ti

ti−1

gi(t, ti−1)dt
)

so that

f Yi:n |Y1:n ,...,Yi−1:n(ti|t1, . . . , ti−1) = (n − i + 1) pi(ti−1, ti) (2.22)

and the proof follows immediately.

Example 2.22. Consider non-negative exchangeable random variables Y1, . . . , Yn with
joint density function

f (t1, . . . , tn) = l(t(1))
n

∏
i=2

k(t(i−1), t(i)) , (2.23)

where θ ∈ (0, 1], t1, . . . , tn ∈ R+ and

l(t) = 2θ exp
[
−(2t)θ

]
(2t)θ−1 ,
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2.2 Distributions with special forms of conditional hazard rates

k(t(i−1), t(i))

=
2θ exp

[
−(t(i−1) + t(i))θ

](
t(i−1) + t(i)

)θ−2(
θ(t(i−1) + t(i))θ − (θ − 1)

)
2θ exp

[
−(2t(i−1))θ

](
2t(i−1)

)θ−1 .

Note that the numerator of the function k(·|·) consists of the joint density function of some
random variables Z1, Z2 such that Z1 ≤ Z2 a.s. Indeed, since θ ∈ (0, 1] for 0 ≤ z1 ≤ z2
we can state

2θ exp
[
−(z1 + z2)

θ
]
(z1 + z2)

θ−2
(
θ(z1 + z2)

θ − (θ − 1)
)
≥ 0

and ∫ ∞
0

∫ ∞
z1

2θ exp
[
−(z1 + z2)

θ
]
(z1 + z2)

θ−2
(
θ(z1 + z2)

θ − (θ − 1)
)

dz2dz1

=
∫ ∞

0

∫ ∞
z1

2
∂2

∂z2 exp
(
−zθ

)∣∣∣∣
z=z1+z2

dz2dz1

= −
∫ ∞

0
2

∂

∂z
exp

(
−zθ

)∣∣∣∣
z=2z1

dz1

= − exp
(
−yθ

)∣∣∣∞
0

= 1 .

Moreover, since the following equality holds

∫ ∞
z1

2
∂2

∂z2 exp
(
−zθ

)∣∣∣∣
z=z1+z2

dz2

= 2θ exp
[
−(2z1)

θ
]
(2z1)

θ−1 ,

we can conclude that the denominator of k(z1, z2) corresponds to the marginal density of
the variable Z1 . Then k(z1, z2) represents the conditional density f Z2 | Z1(z2|z1) , where
0 ≤ z1 ≤ z2 .

Let us return to the consideration of exchangeable random variables with the joint dens-
ity function described by (2.23). According to (1.2) their order statistics possess the joint
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2.2 Distributions with special forms of conditional hazard rates

density

f Y1:n ,...,Yn:n(t1, . . . , tn) = n! l(t1)
n

∏
i=2

k(ti−1, ti) ,

where 0 ≤ t1 ≤ . . . ≤ tn . Then the conditional densities of order statistics can be can be
described by

f Yi:n |Yi−1:n ,...,Y1:n(ti|ti−1, . . . , t1)

=

∫ ∞
ti

∫ ∞
yi+1

. . .
∫ ∞

yn−1

f Y1:n ,...,Yn:n(t1, . . . , ti, yi+1, . . . , yn)dyn . . . dyi+1∫ ∞
ti−1

∫ ∞
yi

. . .
∫ ∞

yn−1

f Y1:n ,...,Yn:n(t1, . . . , ti−1, yi, . . . , yn)dyn . . . dyi

= k(ti−1, ti)

×

∫ ∞
ti

k(ti, yi+1)
∫ ∞

yi+1

k(yi+1, yi+2) . . .
∫ ∞

yn−1

k(yn−1, yn)dyn . . . dyi+1∫ ∞
ti−1

k(ti−1, yi)
∫ ∞

yi

k(yi, yi+1) . . .
∫ ∞

yn−1

k(yn−1, yn)dyn . . . dyi

.

Observe that
∫∞

y j
k(y j, y j+1)dy j+1 = 1 for j = 1, . . . , n − 1 , since k(yi, yi+1) is a con-

ditional density. Then we can conclude that

f Yi:n |Yi−1:n ,...,Y1:n(ti|ti−1, . . . , t1) = k(ti−1, ti)

and for t ≥ ti−1

P(Yi:n > t |Yi−1:n = ti−1, . . . , Y1:n = t1)

=
∫ ∞

t
k(ti−1, u)du

=

∫ ∞
t

2
∂2

∂z2 exp
(
−zθ

)∣∣∣∣
z=ti−1+u

du

exp
[
−(2ti−1)θ

]
(2ti−1)θ−1

=
2θ exp

[
−(ti−1 + t)θ

]
(ti−1 + t)θ−1

2θ exp
[
−(2ti−1)θ

]
(2ti−1)θ−1
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= exp
[
(2ti−1)

θ − (ti−1 + t)θ
](1

2
+

t
2ti−1

)θ−1

.

Finally, according to (2.9) multivariate conditional hazard rates are obtained as

λ(t|ti−1, . . . , t1)

= − 1
(n − i + 1)

∂

∂t
ln P(Yi:n > t |Yi−1:n = ti−1)

= − 1
(n − i + 1)

∂

∂t

[
(2ti−1)

θ − (ti−1 + t)θ + (θ − 1) ln
(

1
2
+

t
2ti−1

)]

=
1

(n − i + 1)(ti−1 + t)

(
θ(ti−1 + t)θ + 1 − θ

)

for 0 ≤ t1 ≤ . . . ≤ ti−1 ≤ t, i = 1, . . . , n. It depends on the number of previous failures,
last failure time and the age of considered component.

2.2.2 Schur-constant densities

In the following we consider conditional hazard rates that depend on two or more
of the preceding failure times.

To begin with we are going to look at Schur-constant random vectors. In Cara-
mellino & Spizzichino (1996) they are defined as follows.

Def 2.23. A non-negative random vector (Y1, . . . , Yn) is called Schur-constant if it pos-
sesses a Schur-constant joint survival function, i.e. for a suitable univariate survival func-
tion Φ : R+ → [0, 1] holds

F(t1, . . . , tn) = P(T1 > t1, . . . , Tn > tn) = Φ
( n

∑
i=1

ti

)
,

for t1, . . . , tn ∈ R+ .

According to Spizzichino (2001) the Schur-constant property can also be formu-
lated for joint density functions, namely:

Remark 2.24. A joint density function of non-negative lifetimes is Schur-constant if it
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2.2 Distributions with special forms of conditional hazard rates

allows the representation

f (t1, . . . , tn) = φ(
n

∑
i=1

ti),

where φ : R+ → R+ .
Moreover, an absolutely continuous survival function F(t1, . . . , tn) is Schur-constant

if and only if its density f (t1, . . . , tn) is Schur-constant.

Example 2.25. Consider the random variables Y1, Y2, Y3 distributed similar to Y(i)
1 , Y(i)

2 ,
Y(i)

3 from Example 1.15, i.e.

Y1 =
Z1

Θ
, Y2 =

Z2

Θ
, Y3 =

Z3

Θ
,

where Z1, Z2, Z3 are independent, exponentially distributed with mean 1 and Θ is a
gamma distributed random variable with parameters α, λ . Observe that Y1, Y2, Y3 are
Schur-constant. Indeed, it is shown in Appendix that their survival function is given by

P(Y1 > t1, Y2 > t2, Y3 > t3) =
λα

(t1 + t2 + t3 + λ)α

= Φ(t1 + t2 + t3) ,

where

Φ(y) =
λα

(y + λ)α
= (1 +

y
λ
)−α .

Since for α > 0 and y ≥ 0 the function Φ is a survival function we can conclude that
Y1, Y2, Y3 are Schur-constant random variables.

Remark 2.26. In the context of reliability theory Schur-constant random vectors stand
out, among others, by their no-aging property. Namely, Definition 2.23 implies

P(Yk − tk > s |Y1 > t1, . . . , Yk > tk, . . . , Yn > tn)

= P(Yl − tl > s |Y1 > t1, . . . , Yl > tl , . . . , Yn > tn)
(2.24)

for s > 0, (t1, . . . , tn) ∈ Rn
+ and k 6= l .
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Let Y1, . . . , Yn represent lifetimes of components in a system. Then equation (2.24)
states that, under the condition Y1 > t1, . . . , Yn > tn , the distributions of residual life-
times (Yk − tk) and (Yl − tl) of two different components are equal, although the ages tk
and tl can differ. In other words, the age of the component Yk does not influence the cor-
responding conditional probability of the component Yl to survive the next period of length
s .

Conditions under which the function Φ(·) from Definition 2.23 corresponds
to a multivariate survival function were studied in Nelsen (2006) and McNeil &
Nešlehová (2009). Here we outline some of their results.

Def 2.27. Consider an interval I ⊂ R and denote by Ĩ the interior of I . A function
f : R → R+ is called d-monotone on I , where d ≥ 2 , if

(i) it is differentiable on the interior of Ĩ , up to the order d − 2 ,

(ii) for k = 0, 1, . . . , d − 2 and x ∈ Ĩ the derivatives satisfy

(−1)k f (k)(x) ≥ 0 ,

with f (0)(x) = f (x) ,

(iii) (−1)d−2 f (d−2)(x) is non-increasing and convex on Ĩ .

For d = 1 , f is called 1 -monotone if it is non-negative and non-increasing on Ĩ . If f has
derivatives of all orders on Ĩ and if (−1)k f (k)(x) ≥ 0 for all k ∈ N and x ∈ Ĩ , then f is
called completely monotone.

Lemma 2.28. Let Φ be a real valued function on [0, ∞) . The function S, specified for
t1, . . . , tn ∈ R+ by

S(t1, . . . , tn) = Φ(t1 + . . . + tn)

is a survival function if and only if Φ is an n-monotone function on [0, ∞) satisfying the
boundary conditions limt→∞ Φ(t) = 0 and Φ(0) = 1 .

Lemma 2.29. Let Φ be a continuous univariate survival function. Then Φ(t1 + . . . +
tn) is an n-dimensional survival function for all n ≥ 2 if and only if Φ is completely
monotone on [0, ∞) .

Example 2.30. Consider a univariate survival function Φ(t) = max(1 − t, 0)d−1 , for
some d ∈ N, d ≥ 2 . Computing partial derivatives we obtain

Φ(h)(t) = (−1)h (d − 1)!
(d − 1 − h)!

max(1 − t, 0)d−1−h
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for h = 0, . . . , d − 2 . The left and right derivatives of Φ(d−2)(t) do not coincide in t = 1 .
Therefore, the derivative of Φ(d−2)(t) does not exist in t = 1 . However (−1)hΦ(h)(t) ≥
0 for h = 0, . . . , d − 2 and Φ(d−2)(t) is non-increasing and convex on (0, ∞) . Then
according to Definition 2.27 Φ is d-monotone but not (d + 1) -monotone.

The following lemma can be found in Caramellino & Spizzichino (1996). It
provides representations for the joint density and conditional hazard rates of Schur-
constant random variables.

Lemma 2.31. Consider absolutely continuous Schur-constant random variables Y1, . . . ,
Yn with the joint survival function

F(t1, . . . , tn) = P(Y1 > t1, . . . , Yn > tn) = Φ
( n

∑
i=1

ti

)
,

where Φ : R+ → [0, 1] is n-times differentiable.
Then Y1, . . . , Yn possess

(i) a joint density function

f Y1 ,...,Yn(t1, . . . , tn) = (−1)n Φ(n)
( n

∑
i=1

ti

)
,

(ii) conditional hazard rates of the form

λ(t|t1, . . . , th) = −
Φ(h+1)(y)
Φ(h)(y)

, (2.25)

where y = ∑
h
i=1 ti + (n − h)t, 0 ≤ t1 ≤ . . . ≤ th ≤ t .

Proof. Representation (i) is obtained by direct differentiation of the Schur-constant
survival function, i.e.

f Y1 ,...,Yn(t1, . . . , tn) = (−1)n ∂n

∂t1 . . . ∂tn
F(t1, . . . , tn)

= (−1)nΦ(n)
( n

∑
i=1

ti

)
.
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To deduce (ii) notice first that the joint density of order statistics based on Y1, . . . , Yn
can be calculated as

f Y1:n ,...,Yh:n(t1, . . . , th)

= n!
∫ ∞

th

∫ ∞
th+1

. . .
∫ ∞

tn−1

(−1)n Φ(n)
( n

∑
i=1

ti

)
dtn . . . dth+1 .

Further, applying Lemma 1.13 we can reduce the last integral to the following ex-
pression

∫ ∞
th

∫ ∞
th+1

. . .
∫ ∞

tn−1

(−1)n Φ(n)
( n

∑
i=1

ti

)
dtn . . . dth+1

=
1

(n − h)!

∫ ∞
th

∫ ∞
th

. . .
∫ ∞

th

(−1)n Φ(n)
( n

∑
i=1

ti

)
dtn . . . dth+1

=
(−1)h

(n − h)!
Φ(h)

(h−1

∑
i=1

ti + (n − h + 1)th

)
.

Thus, we have obtained that

f Y1:n ,...,Yh:n(t1, . . . , th)

= (−1)h n!
(n − h)!

Φ(h)
(h−1

∑
i=1

ti + (n − h + 1)th

)
.

(2.26)

With the help of (2.9) and (2.26) multivariate conditional hazard rates can be de-

46



2.2 Distributions with special forms of conditional hazard rates

scribed by

λ(t|t1, . . . , th)

= − 1
(n − h)

∂

∂t
ln

[
(−1)h+1(n − h)!
(−1)h(n − h − 1)!

∫ ∞
t

Φ(h+1)
( h

∑
i=1

ti + (n − h)y
)

dy

Φ(h)
(

∑
h−1
i=1 ti + (n − h + 1)th

)
]

= − 1
(n − h)

∂

∂t
ln

[
(−1)h(n − h)!

(−1)h(n − h − 1)! (n − h)

Φ(h)
(

∑
h
i=1 ti + (n − h)t

)
Φ(h)

(
∑

h−1
i=1 ti + (n − h + 1)th

)
]

= − 1
(n − h)

∂

∂t
ln

[
(−1)hΦ(h)

( h

∑
i=1

ti + (n − h)t
)]

.

(2.27)

Finally the needed result is obtained by differentiation in (2.27).

Remark 2.32. Let us look at representation (2.25) from a survival theoretical point of view.
For Schur-constant random variables the hazard rate depends on the history of failures only
through the number of failures h and the total age of the system at the moment t , namely

y =
h

∑
i=1

ti + (n − h)t .

Therefore, from now on a shorter notation for conditional hazard rates will be used:

λ(h, y) = λ(t|t1, . . . , th)

= −Φ(h+1)(y)
Φ(h)(y)

.

Note that due to (2.27) conditional hazard rates can also be calculated as

λ(h, y) = − ∂

∂y
ln |φ(h)(y)|. (2.28)
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A special case represents the densities corresponding to completely monotone
survival functions. In fact, they can be expressed as a Laplace transform of some
probability distribution. In Nelsen (2006) the Laplace transform is defined as fol-
lows.

Def 2.33. Consider a distribution Π defined on [0, ∞) . Then the Laplace transform with
a mixing distribution Π is given by

L(t) =
∫ ∞

0
e−θtdΠ(θ) .

Then the connection between Laplace transform and Schur-constant random
variables arises from Lemma 4.6.5 in Nelsen (2006).

Lemma 2.34. A function φ on [0, ∞) is the Laplace transform of a probability distribution
if and only if it is completely monotone and φ(0) = 1 .

Taking into account Definition 2.23, Lemma 2.34 yields the following result.

Theorem 2.35. Let Y1, . . . , Yn be Schur-constant random variables with survival function

S(t1, . . . , tn) = Φ

( n

∑
i=1

ti

)
,

where Φ is a completely monotone function on R+ . Then, for a suitable probability distri-
bution Π(θ) on [0, ∞) the joint density of Y1, . . . , Yn can be represented as

f Y1 ,...,Yn(t1, . . . , tn) =

∫ ∞
0
θn exp

(
−θ

n

∑
i=1

ti

)
dΠ(θ) , (2.29)

where t1, . . . , tn ∈ R+ .

Proof. Note that for the survival function S holds

S(0, . . . , 0) = Φ(0) = 1 . (2.30)

Then, applying Lemma 2.34 for the function Φ we obtain

S(t1, . . . , tn) =

∫ ∞
0

exp
(
−θ

n

∑
i=1

ti

)
dΠ(θ) .
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2.2 Distributions with special forms of conditional hazard rates

Finally, with the help of Leibniz integration rule the joint density Y1, . . . , Yn can be
described by

f (t1, . . . , tn) = (−1)n ∂n

∂t1 . . . ∂tn
S(t1, . . . , tn)

=

∫ ∞
0
θn exp

(
−θ

n

∑
i=1

ti

)
dΠ(θ) .

Remark 2.36. The proof presented above is a special case of a similar argument concerning
infinite sequences of Schur-constant random variables that can be found in Spizzichino
(2001).

Example 2.37. Let us look again at the random variables Y1, Y2, Y3 from Example 2.25.
They are constructed on the basis of conditionally independent random variables and pos-
sess the joint density of the form (2.29). Namely the density is equal to

f Y1 ,Y2 ,Y3(t1, t2, t3) =
∫ ∞

0
e−θ(t1+t2+t3)

λα

Γ(α)
θα−1e−λθdθ

=
λα

(t1 + t2 + t3 + λ)α
.

Thereby Y1, Y2, Y3 are distributed according to Pareto distribution of the second kind with
parameters α, 1

λ .
According to Kotz et al. (2000) a Pareto survival function of the second kind is defined

as

Φ(t) = (1 + βt)−α

for α,β > 0 and t ∈ R+ .
Its h-th derivative has the form

Φ(h)(t) = (−1)h (α + h − 1)!
(α − 1)!

βh (1 + βt)−α−h . (2.31)
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2.2 Distributions with special forms of conditional hazard rates

By (2.25) conditional hazard rates can be calculate as

λ(y, h) = −Φ(h+1)(y)
Φ(h)(y)

=
(α + h)β
1 + βy

,
(2.32)

where y ≥ 0 . Since Φ(t) is completely monotone, S(t1, . . . , tn) = Φ(t1 + . . . + tn)
represents a n-dimensional survival function for n ≥ 2 . Similar to the three-dimensional
case S(t1, . . . , tn) corresponds to the density function

f (t1, . . . , tn) =
∫ ∞

0
θn exp

(
−θ

n

∑
i=0

ti

)
π(θ)dθ , (2.33)

where π(θ) is a density of the gamma distribution with parameters (α, 1
β ) .

Remark 2.38. Let Y = (Y1, . . . , Yn) be a Schur-constant random vector with a survival
function

Φ(t1, . . . , tn) = S(t1 + . . . + tn) ,

where S is completely monotone on [0, ∞) . It is shown in Nelsen (2005) that the survival
function possesses the representation

S(x1 + . . . + xn) = S
[
φ(S(x1)) + . . . + φ(S(xn))

]
, (2.34)

where φ is the inverse of S.

2.2.3 Archimedean copulas

The form (2.34) of the survival function corresponds to a structure known as copula.
In the following we introduce copulas as it is done in McNeil & Nešlehová (2009).
The definition is formulated in terms of difference operators and quasi monotone
sets. For the sake of completeness these objects will be introduced first.

Def 2.39. Consider a function f : Rn → R , x, h ∈ Rn with h > 0 . A difference oper-
ator ∆h f (x) is defined as

∆h f (x) = ∆n
hn

. . . ∆1
h1

f (x) ,
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2.2 Distributions with special forms of conditional hazard rates

where ∆i
hi

denotes the first order difference operator given by

∆i
hi

f (x) = f (x1, . . . , xi−1, xi + hi, xi+1, . . . , xn) − f (x1, . . . , xi−1, xi, xi+1, . . . , xn) .

Then, for A ⊂ Rn we will call a function f : A → R quasi-monotone on A, if it satisfies
∆h f (x) ≥ 0 for every x and h such that all vertexes of (x, x + h] lie in A.

Then a copula can be defined as follows.

Def 2.40. A n-dimensional copula is a function C : [0, 1]n → [0, 1] satisfying

(i) C(u1, . . . , un) = 0 whenever ui = 0 for at least one i = 1, . . . , n,

(ii) C(u1, . . . , un) = ui if u j = 1 for all j = 1, . . . , n with j 6= i ,

(iii) C is quasi-monotone on [0, 1]n .

Copula functions find applications in a wide range of fields from reliability and
survival analysis to actuarial science and finance (see for example Jaworski et al.
(2010), Clayton (1978), Frees & Valdez (1997), Cherubini et al. (2004)). Many of these
applications originated from Sklar’s theorem introduced in Sklar (1959), which we
quote next. By the means of copulas it provides a link between multivariate distri-
bution functions and their univariate margins (see also Nelsen (2006)).

Theorem 2.41. Let H be a n-dimensional distribution function with margins Fi, i =
1, . . . , n. Then there exist a copula C, referred to as the copula of H , such that

H(t1, . . . , tn) = C(F1(t1), . . . , Fn(tn)) (2.35)

for any t1, . . . , tn ∈ R . Furthermore, C is uniquely determined on D = {u ∈ [0, 1]d|u ∈
ranF1 × · · · × ranFn} , where ranFi denotes the range of Fi . In addition for any u ∈ D,

C(u) = H
(

F−1
1 (u1), . . . , F−1

n (un)
)

,

where F−1
i (ui) = inf{x|Fi(x) ≥ ui}, i = 1, . . . , n.

Conversely, given a copula C and univariate distribution functions Fi(ui), i = 1, . . . ,
n the function H defined by (2.35) is an n-dimensional distribution function with mar-
ginals F1, . . . , Fn .

An interpretation of Sklar’s Theorem for multivariate survival functions can be
found in McNeil & Nešlehová (2009).
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2.2 Distributions with special forms of conditional hazard rates

Theorem 2.42. Let S be an n-dimensional survival function with marginal survival func-
tions Fi, i = 1, . . . , n. Then there exist a copula C, referred to as survival copula of S,
such that

S(t1, . . . , tn) = C
(

F1(t1), . . . , Fn(tn)
)

(2.36)

for t1, . . . , tn ∈ R . Furthermore, C is uniquely determined on D = {u ∈ [0, 1]d|u ∈
ranF1 × · · · × ranFn} , where ranFi denotes the range of Fi . In addition for any u ∈ D,

C(u) = S
(

F−1
1 (u1), . . . , F−1

n (un)
)

,

where F−1
i (ui) = inf{x|Fi(x) ≤ ui}, i = 1, . . . , n.

Conversely, given a copula C and univariate survival functions Fi(ui), i = 1, . . . , n,
S defined by (2.36) is a n-dimensional survival function with marginals F1, . . . , Fn .

Remark 2.43. With respect to Theorem 2.41 and Theorem 2.42, note that a copula and the
corresponding survival copula do not necessarily coincide. This fact is described in more
detail in Example 2.49 (ii).

Next we are going to look at the class of copulas known as Archimedean copu-
las.

Def 2.44. Let φ : [0, 1] → [0, ∞] be a continuous, strictly decreasing function such that
φ(1) = 0 . Then pseudo-inverse of φ is the function φ[−1] : [0, ∞] → [0, 1] given by

φ[−1](t) =

{
φ−1(t), 0 ≤ t ≤ φ(0),
0, φ(0) ≤ t ≤ ∞.

(2.37)

Note that φ[−1] is continuous and non-increasing on [0, ∞] and strictly decreasing on
[0,φ(0)] . Furthermore, φ[−1](φ(u)) = u on [0, 1] , and

φ
(
φ[−1](t)

)
=

{
t, 0 ≤ t ≤ φ(0),
φ(0), φ(0) ≤ t ≤ ∞,

= min
(
t,φ(0)

)
.

Def 2.45. Let φ : [0, 1] → [0, ∞) be a continuous, strictly decreasing function such that
φ(1) = 0 , and let φ[−1] be the pseudo-inverse of φ defined by (2.37). An n-dimensional
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2.2 Distributions with special forms of conditional hazard rates

copula C is called Archimedean if it permits a representation

C(u) = φ[−1](φ(u1) + . . . + φ(un)
)
, u ∈ [0, 1]n . (2.38)

Remark 2.46.

(i) The function φ from Definition 2.45 is called Archimedean generator. If φ(0) = ∞
then φ is called a strict generator. In this case φ[−1] = φ−1 , where φ−1 is the
inverse of φ .

According to Widder (1941) a function g(t) , completely monotone on [0, ∞) and
satisfying g(c) = 0 for some finite c > 0 , must be identically zero on [0, ∞) . Then
we can conclude that completely monotone φ[−1] must be positive on [0, ∞) , i.e. it
corresponds to a strict Archimedean generator and φ[−1] = φ−1 .

(ii) In the frame of Definition 2.45, Remark 2.38 describes the connection between sur-
vival functions of Schur-constant random variables and Archimedean survival copu-
las.

Archimedean copulas have gained popularity due to the simplicity of their con-
struction and nice properties that they possess. The facts presented below are taken
from McNeil & Nešlehová (2009) and Nelsen (2006), to which we refer for further
detail. In particular, the following statements describe Archimedean generators
that produce multivariate copulas.

Lemma 2.47. Let φ be an Archimedean generator. Then C : [0, 1]d → [0, 1] given by

C(u1, . . . , un) = φ[−1](φ(u1) + . . . + φ(un)
)

,

is a n-dimensional copula if and only if φ[−1] is n-monotone on [0, ∞) .

Lemma 2.48. Let φ be a continuous strictly decreasing function from [0, 1] to [0, ∞]
such that φ(0) = ∞ and φ(1) = 0 , and let φ−1 denote the inverse of φ . If C is the
function from [0, 1]n to [0, 1] given by (2.38), then C is an n-copula for all n ≥ 2 if and
only if φ−1 is completely monotone on [0, ∞) .

Example 2.49.

(i) The survival function from Example 2.30 corresponds to the d-dimensional Archime-
dean survival copula

C(u1, . . . , ud) = max

( d

∑
i=1

u
1

d−1
i − (d − 1), 0

)d−1

,
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2.2 Distributions with special forms of conditional hazard rates

where ui ∈ [0, 1] for i = 1, 2, . . . , d and the generator is described by

φ(t) = 1 − t
1

d−1 ,

for t ∈ [0, 1] .

(ii) Consider a Gumbel bivariate copula

C(u1,u2)

= u1 + u2 − 1 + (1 − u1)(1 − u2) exp
(
−θ ln(1 − u1) ln(1 − u2)

)
,

where θ ∈ (0, 1] . The corresponding survival copula is shown in Barnett (1980) and
has the form

S(u1, u2) = u1u2 exp(−θ ln u1 ln u2) .

It is called Gumbel-Barnett survival copula. It was pointed out in Genest & MacKay
(1986) that the Gumbel-Barnett copula is Archimedean with generator

φ(t) = ln(1 − θ ln t)

and

φ−1(u) = exp
(

1 − eu

θ

)
,

where t ∈ [0, 1], u ∈ [0, ∞] . However the Gumbel copula is not Archimedean. Fur-
thermore, in Georges et al. (2001) the authors show that the Frank copula is the only
Archimedean copula for which the survival copula is also Archimedean (see Frank
(1979), Frank (1991), Hutchinson & Lai (1990)).

Remark 2.50. As mentioned in Nelsen (2005) there is one-to-one correspondence between
Schur-constant survival functions and Archimedean copulas. Thus, a Schur-constant sur-
vival function S corresponds to a copula with a generator given by the pseudo-inverse of
S.

In particular, a subclass of Archimedean copulas represented by frailty survival
functions generalizes completely monotone Schur-constant survival functions. The
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2.2 Distributions with special forms of conditional hazard rates

concept of frailty reflects the idea that survival times of components depend on an
unobserved random variable Θ . Moreover, the survival times are assumed to be
conditionally independent given Θ . A description of frailty survival distributions
can be found in Oakes (1989). In Georges et al. (2001) frailty survival functions are
defined as follows.

Def 2.51. A frailty survival function S(t1, . . . , tn) with marginal survival functions Fi,
i = 1, . . . , n is defined by

S(t1, . . . , tn) = C̆(F1(t1), . . . , Fn(tn)) ,

where C̆ is an Archimedean copula with a generator corresponding to the inverse of a
Laplace transform with the mixing distribution of the frailty variable Θ .

Example 2.52. For some θ > 0 consider an Archimedean survival copula with generator

φ(t) =
(
t−θ − 1

)
,

φ−1(u) = (1 + u)−
1
θ ,

where t ∈ [0, 1], u ∈ [0, ∞] . This copula belongs to the Clayton family. According to
Nelsen (2005) it generalizes the case of Schur-constant random variables with Pareto joint
survival function of the second kind. In particular, since φ is completely monotone, it
generates an n-dimensional Clayton copula

C(u1, . . . , un) = max

( n

∑
i=1

u−
1
θ

i − (n − 1), 0

)−θ
, (2.39)

where ui ∈ [0, 1], i = 1, 2, . . . , n (see also Nelsen (2006)).
For ti ∈ [0, ∞), i = 1, 2, . . . , n let ui = φ−1(ti) . Then (2.39) turns into a Pareto

survival function, i.e.

C
(
φ−1(t1), . . . ,φ−1(tn)

)
= max

[
(1 + t1)

−θ(− 1
θ ) + · · · + (1 + tn)

−θ(− 1
θ ) − (n − 1), 0

]−θ
= (t1 + · · · + tn + 1)−θ .

Moreover, according to Definition 2.51 C(u1, . . . , un) is a frailty copula. By analogy to
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(2.33) it can be represented as a Laplace transform

C(u1, . . . , un) =

∫ ∞
0

exp
[
−ϑ

n

∑
i=0
φ−1(ui)

]
π(ϑ)dϑ (2.40)

with π(ϑ) = 1
Γ(α) ϑ

α−1 exp(−ϑ) .

Remark 2.53. In the majority of applications Archimedean copulas with one or two para-
meters are considered. However, the number of parameters can be increased by so called
transformation functions. For a detailed description we refer to Nelsen (2006) .
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3 Stochastic orders and dependence notions

Dependence properties play an important role in understanding of stochastic mod-
els. They find applications in such fields as reliability theory, mathematical physics,
actuarial and social sciences. In particular, in reliability theory positive dependence
defines joint behavior of components. For instance, two components represented
by positively dependent random variables tend two behave similarly, i.e. if one
tends to longevity then so does the other. In this chapter we will look at several
stochastic orders and the dependence properties they generate. Furthermore, we
will concentrate our attention on one of the strongest positive dependence proper-
ties called multivariate total positivity and illustrate it with the examples of distri-
butions considered in Chapter 2.

3.1 Stochastic orders

Stochastic orders find a wide range of applications in reliability theory, for instance,
they play a key role in defining dependence and aging properties. We refer to
Shaked & Shanthikumar (1990) for examples of application in reliability theory and
to Shaked & Shanthikumar (2007) and Müller & Stoyan (2002) for an exhaustive
survey of stochastic orders.

In the following we provide definitions for several stochastic orders (cf. Shaked
& Shanthikumar (2007), Spizzichino (2001), Richards (2010)). First a note on nota-
tion:

Def 3.1. For x = (x1, . . . , xn) and y = (y1, . . . , yn) in Rn define the least upper bound

x ∨ y = (max(x1, y1), . . . , max(xn, yn)) (3.1)

and the greatest lower bound,

x ∧ y = (min(x1, y1), . . . , min(xn, yn)). (3.2)

In particular, for n = 1

x ∨ y = max(x, y) ,
x ∧ y = min(x, y) .

Def 3.2. Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two absolutely continuous n-
dimensional random vectors of lifetimes and let us denote by
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3.1 Stochastic orders

η·|·(·|·) and λ·|·(·|·) the corresponding conditional hazard rates,

Φ·|·(·|·) and Ψ·|·(·|·) the corresponding cumulative hazard functions

described in Definitions 2.3 and 2.9. Then X is said to be smaller than Y in

(i) the usual stochastic order (denoted X ≤st Y), if E(φ(X)) ≤ E(φ(Y)) for all in-
creasing functions φ for which the expectations exist,

(ii) the multivariate hazard rate order (denoted X ≤hr Y) if for all t > 0

λr|I(t|yI) ≤ ηr|J(t|xJ) , (3.3)

whenever I ⊂ J ⊂ {1, . . . , n}, r /∈ J, xi ≤ yi < t, x j < t for all i ∈ I, j ∈ J\I .

(iii) the cumulative hazard rate order (X ≤ch Y) if for all t > 0

Ψr|I(t|yI) ≤ Φr|J(t|xJ) , (3.4)

whenever I ⊂ J ⊂ {1, . . . , n}, r /∈ J, xi ≤ yi < t, x j < t for all i ∈ I, j ∈ J\I .

(iv) the likelihood ratio order (denoted X ≤lr Y) if for any pair of vectors x, y ∈ Rn

fX(x) fY(y) ≤ fX(x ∨ y) fY(x ∧ y) . (3.5)

Remark 3.3. For the sets

A = {a1, . . . , ak} ⊂ {1, . . . , n} ,

A = {b1, . . . , bn−k} = {1, . . . , n}\A ,

where 1 ≤ k ≤ n, we will use a shorter notation for the history

{Ya1 = ya1 , . . . , Yak = yak , Yb1 > t, . . . , Ybn−k > t} = {YA = yA, YA > te} .

Similarly, for A = ∅ we denote by

{Y{1,...,n} > te} = {Y1 > t, . . . , Yn > t} .

Then, considering Definition 3.2 note that:
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(i) in part (ii) the history

ht = {YI = yI , YI > te}

includes fewer failures with later failure times than

h′t = {XJ = xJ , XJ > te} ,

where I = {1, . . . , n}\I, J = {1, . . . , n}\J . Therefore ht is often called less severe
than h′t , see for example Spizzichino (2001), Caramellino & Spizzichino (1996).

Assume that X and Y represent lifetimes of components in two systems that start
working simultaneously. Then (3.6) indicates that the system described by X is more
prone to failure at the time point t whenever it went through at least the same number
of failures as the system described by Y and the failures occurred earlier than in Y.

Let X and Y be Schur-constant random variables. Lemma 2.31 states that in this case
the multivariate conditional hazard rates depend on the history ht only through the
number of failed components h and the total age of the system y = ∑

h
i=1 ti + (n −

h)t . Therefore X ≤hr Y is equivalent to

λX(h′, y′) ≥ λY(h, y) , (3.6)

whenever h′ ≥ h, y′ ≤ y for h, h′ ∈ {0, 1, . . . , n − 1} and y, y′ ≥ 0 .

(ii) from the definition of likelihood ratio order follows immediately that for y ≤ x

fY(x) fX(y) ≥ fY(y) fX(x).

For n = 1 this condition is equivalent to X ≤lr Y. In general, however, it is weaker
than (3.5).

Example 3.4. Let us generalize Example 2.1 from Burkschat (2009). Namely, for i = 1, 2
consider random vectors Y(i) = (Y(i)

1 , . . . , Y(i)
n ) . For j = 1, . . . , n let

Y(i)
j ∼

Wj

αiV
,

where W1, . . . , Wn are independent exponentially distributed random variables with mean
1, the random variable V follows the gamma distribution with shape parameter α > 0 and
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scale parameter b = 1
α > 0 and αi > 0 . Moreover, let V be independent of W1, . . . , Wn .

Then the joint survival function of (Y(i)
1 , . . . , Y(i)

n ) can be expressed as

Fi(t1, . . . , tn) =

∫ ∞
0

exp
(
−αiv(t1 + . . . + tn)

) 1
βα

1
Γ(α)

vα−1 exp
(
− v
β

)
dv

=
αα

Γ(α)

∫ ∞
0

e−t tα−1(
αi(t1 + . . . + tn) + α

)α dt

=
( α

αi(t1 + . . . + tn) + α

)α
=

(
1 +

αi(t1 + . . . + tn)

α

)−α
.

(3.7)

We can conclude that Y(i) is Schur-constant with respective univariate survival function
of the form

Φi(y) =

(
1 +

αi

α
y

)−α
.

The derivatives Φ
(l)
i can be calculated as

Φ
(l)
i (y) = (−1)l (α + l − 1)!

(α − 1)!

(αi

α

)l
(

1 +
αi

α
y

)−α−l

and for conditional hazard rates holds

λ(i)(h, y) = −
Φ

(h+1)
i (y)

Φ
(h)
i (y)

= (α + h)
αi

α

(
1 +

αi

α
y
)−1

,

(3.8)

where l = 0, . . . , n, h = 0, . . . , n − 1, i = 1, 2, y ≥ 0 .
Let us look at the sufficient conditions for Y(1) ≤hr Y(2) . According to Definition 3.2
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we have to ensure

(α + h′)
α1

α

(
1 +

α1

α
y′
)−1
≥ (α + h)

α2

α

(
1 +

α2

α
y
)−1

,

for h′ ≥ h, y′ ≤ y. For such h and h′ holds

α + h′ ≥ α + h ,

then it suffices to show

α1

α

(
1 +

α1

α
y′
)−1
≥ α2

α

(
1 +

α2

α
y
)−1

.

The last can be written equivalently as

α1

α + α1 y′
≥ α2

α + α2 y
.

Note that by construction α,α1,α2 > 0 and y, y′ ≥ 0 , therefore the last inequality holds
iff

α1α2 y + α1α ≥ α2α + α1α2 y′

⇔ α1α2(y − y′) + α(α1 − α2) ≥ 0 .
(3.9)

Finally, from (3.9) we can conclude that α1 ≥ α2 ensures Y(1) ≤hr Y(2) .

The theorem below summarizes the relations between the stochastic orders un-
der consideration. It covers results from Shaked & Shanthikumar (2007) and Spiz-
zichino (2001).

Theorem 3.5. The following implications hold

≤lr ⇒ ≤hr ⇒ ≤ch ⇒ ≤st .

Remark 3.6. Assume that random variables X1, . . . , Xn and Y1, . . . , Yn from Definition
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3.2 satisfy almost surely

X1 ≤ . . . ≤ Xn

Y1 ≤ . . . ≤ Yn .

Consider Definition 3.2 (ii) and (iii):

(i) First we are going to look at X ≤hr Y. Observe that the components fail in accord-
ance to their indexes, i.e. in Definition 3.2 I = {1, . . . , m}, J = {1, . . . , l} where
m ≤ l ≤ r − 1 . Taking into account Remark 2.4 (iii) we will distinguish the fol-
lowing cases:

1. m ≤ l < r − 1 , then (3.3) turns into 0 ≤ 0 .

2. m < l = r − 1 , then we obtain 0 ≤ ηr|J(t|xJ) , which holds per definition of
conditional hazard rate.

3. m = l = r − 1 , then should hold

λr|{1,...,r−1}(t|y1, . . . , yr−1) ≤ ηr|{1,...,r−1}(t|x1, . . . , xr−1) , (3.10)

whenever xi ≤ yi, i = 1, . . . , r − 1 .

(ii) Consider X ≤ch Y. Taking into account to Remark 2.10 let us look at the following
cases:

1. I, J 6= {1, . . . , r − 1} , then (3.4) turns into 0 ≤ 0 .

2. I 6= J and J = {1, . . . , r − 1} , then we obtain

∫ t

xr−1

λr|J(u|x1, . . . , xr−1)du ≥ 0 ,

which holds since a conditional hazard rate is a non-negative function.

3. I, J = {1, . . . , r − 1} , (3.4) yields

∫ t

yr−1

λr|I(u|y1, . . . , yr−1)du ≤
∫ t

xr−1

ηr|J(u|x1, . . . , xr−1)du , (3.11)

where xi ≤ yi, i = 1, . . . , r − 1 .
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(iii) Consider order statistics (X(1), . . . , X(n)), (Y(1), . . . , Y(n)) based on absolutely con-
tinuous exchangeable random vectors (X1, . . . , Xn), (Y1, . . . , Yn) . Then by (3.10)
together with (3.11) from

(X1, . . . , Xn) ≤hr (Y1, . . . , Yn)

follows

(X(1), . . . , X(n)) ≤hr (Y(1), . . . , Y(n)).

An analogous observation for random vectors with iid components can be found in
Belzunce et al. (2003b).

In some cases conditions defining stochastic orders can be made more specific.
For instance, in Belzunce et al. (2003a) stochastic orders for random vectors with
mixture distributions are described. In particular, the following statement is given:

Theorem 3.7. Consider random vectors (S1, . . . , Sn, Θ1) and (T1, . . . , Tn, Θ2) , where
(S1, . . . , Sn) and (T1, . . . , Tn) are independent given Θ1 = θ and Θ2 = θ for any value
of θ , respectively, and Θ1 and Θ2 are m-dimensional random vectors defined on Rm . If,
for all i = 1, . . . , n

(i) Si(θ) =st Ti(θ) for all θ ,

(ii) Si(θ) ≤lr Si(θ
′) for all θ ≤ θ′ ,

(iii) Θ1 ≤lr Θ2 ,

then

(S1, . . . , Sn) ≤lr (T1, . . . , Tn) .

Here Si(θ), (Ti(θ)) denotes a distribution of Si (Ti) under the condition Θ1 = θ (Θ2 =
θ) .

For the Schur-constant random variables Theorem 3.7 leads to the following
observation.

Lemma 3.8. Let S = (S1, . . . , Sn) and T = (T1, . . . , Tn) be non-negative n-dimensio-
nal random vectors with joint densities f1, f2 , respectively. For t1, . . . , tn ∈ R+ let

f1(t1, . . . , tn) =
∫ ∞

0
θn exp

(
−θ

n

∑
i=1

ti

)
π1(θ)dθ
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f2(t1, . . . , tn) =
∫ ∞

0
θn exp

(
−θ

n

∑
i=1

ti

)
π2(θ)dθ ,

for some absolutely continuous random variables Θ1, Θ2 with density functions π1(θ),
π2(θ) . If Θ2 ≤lr Θ1 , then S ≤lr T .

Proof. According to Definition 2.23 (S1, . . . , Sn), (T1, . . . , Tn) have Schur-constant
densities and survival functions. Rewrite f1, f2 with respect to Υ1 = −Θ1, Υ2 =
−Θ2

f1(t1, . . . , tn) =
∫ 0

−∞(−1)n ηn exp
(
η

n

∑
i=1

ti

)
π1(−η)dη

f2(t1, . . . , tn) =
∫ 0

−∞(−1)n ηn exp
(
η

n

∑
i=1

ti

)
π2(−η)dη .

Then, without loss of generality we can apply Theorem 3.7 for Υ1, Υ2 defined on
(−∞, 0] . In terms of which Si(η) =st Ti(η) and f Si |Υ1(t|η) = f Ti |Υ2(t|η) = −ηeη t ,
therefore condition (i) is satisfied. According to (ii) for η ≤ η′ and y1 ≤ y2 is re-
quired

− ηe ηy2
(
−η′e η′y1

)
≤ −ηe ηy1

(
−η′e η′y2

)
.

Indeed the last inequality is equivalent to

e η(y2−y1) ≤ e η
′(y2−y1)

⇔ 1 ≤ e (η
′−η)(y2−y1)

which holds since (η′ − η) ≥ 0, (y2 − y1) ≥ 0. It remains to check (iii), namely
that Υ1 ≤lr Υ2 . For η ≤ η′ per definition of the lr -order should hold

−π1(−η′)(−π2(−η)) ≤ −π1(−η)(−π2(−η′)) .

Since θ′ = −η′ ≤ θ = −η , this inequality transforms into

π1(θ
′)π2(θ) ≤ π1(θ)π2(θ

′) ,
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which is equivalent to π2 ≤lr π1 .
Thus, all conditions of the Theorem 3.7 are satisfied and S ≤lr T .

3.2 Dependence notions

In the literature stochastic dependence properties of random variables are qualified
as positive or negative based on the joint behavior that they reflect. Thus, posit-
ive (negative) dependence properties describe the tendency of random variables
to attain concordant (discordant) values. In the following we give an overview of
several dependence notions and their properties.

3.2.1 Positive dependence properties

The following definitions are taken from Karlin & Rinott (1980a), Spizzichino (2001)
and Shaked & Shanthikumar (1987).

Def 3.9. Let Y = (Y1, . . . , Yn) be a random vector with joint density f (t1, . . . , tn) , con-
ditional hazard rates λ·|·(·|·) and cumulative hazard rates Φ(·|·)(·|·) . Then Y is called

(i) associated if

Cov( f (Y), g(Y)) ≥ 0 ,

for all bounded increasing functions f , g : Rn 7→ R .

(ii) conditionally increasing in sequence (CIS) if, for i = 2, . . . , n, it satisfies

P(Yi > t |Yi−1 = ti−1, . . . , Y1 = t1) ≤ P(Yi > t |Yi−1 = t′i−1, . . . , Y1 = t′1)

whenever t j ≤ t′j, j = 1, . . . , i − 1 .

(iii) hazard rate increasing upon failure (HIF), if Y ≤hr Y namely if

λr|I(t|yI) ≤ λr|J(t|xJ) (3.12)

whenever I ⊂ J ⊂ {1, . . . , n}, r /∈ J, xi ≤ yi < t, x j < t for all i ∈ I, j ∈ J\I .

(iv) possessing supportive lifetimes (SL), if X ≤ch X i.e.

Φr|I(t|yI) ≤ Φr|J(t|xJ) (3.13)
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3.2 Dependence notions

whenever I ⊂ J ⊂ {1, . . . , n}, r /∈ J, xi ≤ yi < t, x j < t for all i ∈ I, j ∈ J\I .

(v) multivariate totally positive of order two (MTP2 ), if Y ≤lr Y i.e.

f (x) f (y) ≤ f (x ∨ y) f (x ∧ y) , (3.14)

where x = (x1, . . . , xn), y = (y1, . . . , yn) . For n = 2 the density is called TP2 .

Remark 3.10.

(i) In general, the concept of multivariate total positivity is legitimate not only for prob-
ability densities. According to Khaledi & Kochar (2000), a function f : Rn → [0, ∞)
is called MTP2 if it satisfies the inequality

f (x) f (y) ≤ f (x ∨ y) f (x ∧ y) ,

for x, y ∈ Rn . Moreover, as mentioned in Richards (2010) the operations (3.1) and
(3.2) induce a partial order on Rn and the set becomes a distributive lattice. Thus,
the definition can be generalized further. Specifically, in Karlin & Rinott (1980a)
MTP2 functions defined on lattices are considered. In this thesis we will mostly
concentrate our attention with respect to the MTP2 property on functions of the type
f : Rn

+ → [0, ∞) . For the details in a more general set up we refer to Karlin & Rinott
(1980a).

(ii) In the literature an MTP2 function f : Rn → R+ is also called log-supermodular.
Initially this terminology comes from game theory and economics, where the concept
of MTP2 functions was developed in parallel to stochastics, see, for example, Topkis
(1998).

Def 3.11. A function f : Rn → R is called supermodular, if

f (x) + f (y) ≤ f (x ∨ y) + f (x ∧ y) ,

for all x, y ∈ Rn .

The log-supermodular representation leads to a new description for positive
valued MTP2 functions. Namely, the following fact can be found in Richards (2010)
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Lemma 3.12. Consider a function f : Rn → R+ strictly positive, twice differentiable on
Rn . Then f is MTP2 , iff

∂2

∂xi∂x j
ln f (x1, . . . , xn) ≥ 0 , (3.15)

for all xi, x j ∈ R, i, j = 1, . . . , n, i 6= j .

Remark 3.13. As shown in Remark 2.4 exchangeable random variables possess a distinct
form of conditional hazard rates. Therefore, for exchangeable Y1, . . . , Yn the HIF property
can be written as

λ(t|x1, . . . , xi) ≤ λ(t|y1, . . . , y j) , (3.16)

where i, j ∈ {0, . . . , n}, i ≤ j and yk ≤ xk < t for k = 1, . . . , i and ys < t for s =
i + 1, . . . , j .

Theorem 3.14. Between the dependence properties considered above the following relations
exist:

CIS
↗ ↘

MTP2 Association
↘ ↗

HIF → SL

We refer to Shaked & Shanthikumar (1990) for the proof of the MTP2 → HIF
relationship, to Shaked & Shanthikumar (1987) for HIF→ SL relationship and to
Block & Ting (1981) for the rest.

Due to their role in development of reliability theory and statistics, depend-
ence properties are well studied in the literature. Here we would like to mention
the works of Shaked & Shanthikumar (2007), Block & Ting (1981) and Colangelo
et al. (2005), where an overview of existing dependence properties is presented. In
the following we cite several theorems providing conditions for different types of
positive dependence. A special attention is turned to MTP2 since it is one of the
strongest known dependence properties.

Theorem 3.15. If f (x) and g(x) are two MTP2 functions, then f (x)g(x) is also MTP2 .

Proof. Proof follows directly from the definition of MTP2 , for the details see Karlin
& Rinott (1980a).
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The following result can be found in Khaledi & Kochar (2001).

Lemma 3.16. Consider the functions f (x, y, z) and g(x, z) defined on ordered sets X, Y,
Z respectively. If

(i) f (x, y, z) > 0 and f is TP2 in each pairs of variables when the third variable is held
fixed,

(ii) g(x, z) is TP2 ,

then the function

h(x, y) =
∫

Z
f (x, y, z)g(x, z)dµ(z) ,

defined on X × Y is TP2 in (x, y) .

In this thesis we will investigate the MTP2 property on different sets, i.e. Rn,
Rn
+,Rn

< . Therefore, in the following we present several results concerning the
MTP2 property in a general way. In particular, we are going to consider functions
defined on a product X = ∏

n
i=1 Xi of totally ordered spaces Xi, i = 1, ..., n with

a partial ordering on X , which for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X states
x ≤ y if xi ≤ yi in Xi for i = 1, ..., n .

The following theorem can be found in Karlin & Rinott (1980a). It states that
the MTP2 property is preserved under marginalization.

Theorem 3.17. Let f be an MTP2 function on X =
n

∏
i=1
Xi . Then the marginal function

φ defined on
k

∏
i=1
Xi by

φ(x1, . . . , xk) =
∫
Xn

· · ·
∫
Xk+1

f (x1, . . . , xn)dxk+1 · · · dxn

is MTP2 .

In particular, Theorem 3.17 leads to the following observations.

Theorem 3.18. Consider a MTP2 random vector (X1, . . . , Xn) . Then for {i1, . . . , ik} ⊂
{1, . . . , n} the random vector (Xi1 , . . . , Xik) is MTP2 .
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Remark 3.19. Consider a MTP2 function f : Rn → R . In the inequality (3.14) without
the loss of generality assume

(x1, . . . , xn) = (x1, x2, z3, . . . , zn) ,
(y1, . . . , yn) = (y1, y2, z3, . . . , zn) ,

where z3, . . . , zn ∈ R are held fix. Then inequality (3.14) turns into

f (x1, x2, z3, . . . , zn) f (y1, y2, z3, . . . , zn)

≤ f (x1 ∨ y1, x2 ∨ y2, z3, . . . , zn) f (x1 ∧ y1, x2 ∧ y2, z3, . . . , zn) .

In other words, f is TP2 in any (ti, t j), i, j = 1, . . . , n, i 6= j if all the other variables
are held fix. Thus MTP2 implies TP2 in pairs. The following lemma shows that under a
certain additional assumption the reversed implication also holds. For the proof see Karlin
& Rinott (1980a).

Lemma 3.20. Let f (t) = f (t1, . . . , tn), (t1, . . . , tn) ∈ X be TP2 in every pair of argu-
ments, when the remaining arguments are held constant, and suppose that f (x) f (y) 6= 0
implies f (u) f (v) 6= 0 for any x, y ∈ X and u, v ∈ X with

x ∧ y ≤ u, v ≤ x ∨ y . (3.17)

Then for all x, y ∈ X

f (x) f (y) ≤ f (x ∨ y) f (x ∧ y) .

Applying a similar reasoning the following statement for the case of ordered
random variables can be made.

Lemma 3.21. Consider a density function f (t) = f (t1, . . . , tn), t = (t1, . . . , tn) ∈ Rn ,
such that {

f (t) > 0 t ∈ A
f (t) = 0 t /∈ A ,

(3.18)

where A = {t = (t1, . . . , tn) | t ∈ Rn, t1 ≤ . . . ≤ tn} .
Let f (t1, . . . , tn) be TP2 in every pair of arguments, when the remaining arguments
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are held constant. Then f (t1, . . . , tn) is MTP2 .

Proof. For f (t) to be MTP2 should hold

f (x) f (y) ≤ f (x ∧ y) f (x ∨ y) , (3.19)

for x, y ∈ Rn .
Note that if x /∈ A or y /∈ A then (3.19) turns into

0 ≤ f (x ∧ y) f (x ∨ y) ,

which holds due to (3.18). Thus it suffices to consider (3.19) for x, y ∈ A .
Let us check whether in this case x ∨ y, x ∧ y belong to A . Since min(xi, yi) ≤

xi, yi and xi ≤ xi+1, yi ≤ yi+1 it follows immediately that

min(xi, yi) ≤ min(xi+1, yi+1)

for i = 1, . . . , n − 1. Then x ∧ y ∈ A . By analogy we can state

max(xi, yi) ≤ max(xi+1, yi+1),

since xi, yi ≤ max(xi, yi) and xi ≤ xi+1, yi ≤ yi+1 for i = 1, . . . , n − 1. Therefore
x ∨ y ∈ A .

In the following we are going to show that (3.19) holds for all x, y ∈ A . The
proof is obtained by induction.

The case n = 2 represents the induction base. Obviously, if f (t1, t2) is TP2 ,
then it also can be called MTP2 .

For the induction step assume that (3.19) holds for n = k − 1. Under this as-
sumption we need to prove (3.19) for n = k .

To do so, consider two sets I, J ⊂ {1, . . . , n}, J = {1, . . . , n}\I , such that xi <
yi for all i ∈ I and y j ≤ x j for all j ∈ J . Let s ∈ Sn be a permutation of (t1, . . . , tn)
∈ Rn such that s(t1, . . . , tn) = (t(1), . . . , t(n)) , where t(1) ≤ . . . ≤ t(n) . For the set of
indexes I = {i1, . . . , il} denote xI = (xi1 , . . . , xil ) . Under this notation it suffices to
show

f (x ∧ y) f (x ∨ y)
f (x) f (y)

=
f (s(xJ , yI)) f (s(xI , yJ))

f (s(xJ , xI)) f (s(yJ , yI))

≥ 1 .
(3.20)
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For the sake of simplicity denote J\n = J\{n} . Suppose first that max(xn, yn) =
xn and J\n 6= ∅ . Then we can rewrite the left part of (3.20) as

f (s(xJ\n, yI), xn) f (s(xI , yJ\n), yn)

f (s(xJ\n, xI), xn) f (s(yJ\n, yI), yn)
=

f (s(xJ\n, yI), xn) f (s(xI , yJ\n), xn)

f (s(xJ\n, xI), xn) f (s(yJ\n, yI), xn)

×
f (s(xI , yJ\n), yn) f (s(yJ\n, yI), xn)

f (s(xI , yJ\n), xn) f (s(yJ\n, yI), yn)
.

(3.21)

Due to (3.18) holds

f (s(xI , yJ\n), xn) = f (min(x1, y1), . . . , min(xn−1, yn−1), max(xn, yn)) 6= 0 ,

f (s(yJ\n, yI), xn) = f (y1, . . . , yn−1, max(xn, yn)) 6= 0

for all x, y ∈ A . The last expression in (3.21) is a product of two terms which either
exceed or are equal to one by the induction hypothesis. To confirm (3.21), hold in
the first term xn fixed and apply the induction hypothesis to the remaining (n − 1)
variables, by analogy in the second term hold yJ\n fixed.

Next consider the case max(xn, yn) = xn and J\n = ∅ , then max(xn−1, yn−1)
= yn−1 . By analogy to (3.21) we can write

f (yI\n−1, yn−1, xn) f (xI\n−1, xn−1, yn)

f (xI\n−1, xn−1, xn) f (yI\n−1, yn−1, yn)

=
f (yI\n−1, yn−1, xn) f (xI\n−1, yn−1, yn)

f (xI\n−1, yn−1, xn) f (yI\n−1, yn−1, yn)

×
f (xI\n−1, yn−1, xn) f (xI\n−1, xn−1, yn)

f (s(xI\n−1, yn−1, yn) f (xI\n−1, xn−1, xn)

and the result follows by induction.
It remains to prove that the statement holds in the case max(xn, yn) = yn . In-
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deed, if I\n 6= ∅ then the representation exists

f (x ∧ y) f (x ∨ y)
f (x) f (y)

=
f (s(xJ , yI\n), yn) f (s(xI\n, yJ), xn)

f (s(xJ , xI\n), xn) f (s(yJ , yI\n), yn)

=
f (s(xJ , yI\n), yn) f (s(xI\n, yJ), yn)

f (s(xJ , xI\n), yn) f (s(yJ , yI\n), yn)

×
f (s(xI\n, xJ), yn) f (s(yJ , xI\n), xn)

f (s(xI\n, xJ), xn) f (s(yJ , xI\n), yn)
.

(3.22)

Then (3.22) is shown by induction similarly to the one above. Note that in this case
yn and xI\n are held fix in the corresponding terms .

Finally, the proof for the case max(xn, yn) = yn and I\n = ∅ is obtained by
complete analogy to max(xn, yn) = xn, J\n = ∅ .

For random variables possessing the Markov property a more specific conclu-
sion can be found in Karlin & Rinott (1980a):

Theorem 3.22. Let Y = (Y1, . . . , Yn) describe the evolution of a Markov chain with TP2
transition probability densities. Then Y has a MTP2 joint density.

In the following we provide several examples of MTP2 functions.

Example 3.23.

(i) It is shown in Karlin & Rinott (1980a) that an indicator function IA defined by

IA(x) =

{
1, x ∈ A
0, x /∈ A

is MTP2 for a set A = {t = (t1, . . . , tn) | t ∈ Rn, t1 ≤ . . . ≤ tn} .

(ii) Consider absolutely continuous exchangeable random variables Y1, . . . , Yn . Assume
that Y1, . . . , Yn are MTP2 . Then, it can be seen by Theorem 3.15 together with the
fact that indicator functions are MTP2 that order statistics Y1:n, . . . , Yn:n are also
MTP2 . More concretely, according to (1.1) they possess a joint density

f Y1:n ,...,Yn:n(t1, . . . , tn) = n! f Y1 ,...,Yn(t1, . . . , tn)IRn
<
(t1, . . . , tn) ,
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where both f Y1 ,...,Yn and IRn
<

are MTP2 . Theorem 3.37 and Example 3.38 (i) below
illustrate that the reversed implication does not hold. Namely that MTP2 of order
statistics does not ensure the MTP2 of the underlying variables.

(iii) Let f (x1, . . . , xn) =
n

∏
i=1

fi(xi) , where fi : R → R, i = 1, . . . , n. Then by The-

orem 3.15 f is MTP2 for an arbitrary choice of fi, i = 1, . . . , n.

In particular, consider the density of sequential order statistics based on conditionally
independent random variables

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = n! f1(t1) F1
n−1

(t1)
n

∏
i=2

(
Fi(ti)

Fi(ti−1)

)n−i
fi(ti)

Fi(ti−1)

= n! fn(tn)
n−1

∏
i=1

(
Fi(ti)

Fi+1(ti)

)n−i

fi(ti) ,

for 0 ≤ t1 ≤ . . . ≤ tn .

Then f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) is represented by the product of functions

( Fi(ti)

Fi+1(ti)

)n−i
fi(ti)

and fn(tn) , each of which depends only on one variable. Therefore, sequential order
statistics based on conditionally independent random variables, as well as ordinary
order statistics based on iid random variables, are MTP2 . For the overview concern-
ing dependence properties of order statistics we refer to Belzunce et al. (2003b) and
Cramer (2006).

The following fact is taken from Karlin & Rinott (1980a).

Lemma 3.24. If f (x), x ∈ X =
n

∏
i=1
Xi is MTP2 and l1, . . . , ln : Xi → Xi are all increas-

ing (decreasing) functions , then the function

f (l1(x1), . . . , ln(xn))

is also MTP2 on X .
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Example 3.25. Consider absolutely continuous random variables Y1, . . . , Yn with values
in R+ and the joint density function equal to

f Y1 ,...,Yn(t1, . . . , tn) = c
( n

∑
i=1

ti

)a−1 n

∏
i=1

tai−1
i e−bti ,

where c > 0 is a normalization constant and a, b, ai > 0 for i = 1, . . . , n. According to
Gupta & Richards (1987) this distribution belongs to the family of Liouville distributions.

Let us verify the conditions under which Y1, . . . , Yn are MTP2 . Note that MTP2 of
f Y1 ,...,Yn is equivalent to the MTP2 of

f (t1, . . . , tn) =

( n

∑
i=1

ti

)a−1

.

According to Lemma 3.12 we need to find the values of a such that

∂2

∂ti∂t j
ln f (t1, . . . , tn) ≥ 0 .

Calculating the derivative we obtain

∂2

∂ti∂t j
ln f (t1, . . . , tn) = −

a − 1( n

∑
i=1

ti

)2
,

which is non-negative for 0 < a ≤ 1 .
Thus, we can conclude that Y1, . . . , Yn are MTP2 iff 0 < a ≤ 1 . In Gupta & Richards

(1987) a generalization of this result for arbitrary Liouville distribution is derived.

3.2.2 Negative dependence properties

As mentioned before negative dependence reflects the behavior whereby two sub-
sets of random variables are ”repelling” each other. As the following definition
shows, most of the negative dependence concepts represent a negative analogy
of the positive dependence notions (see Karlin & Rinott (1980b), Müller & Stoyan
(2002)).
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Def 3.26. For n ∈ N let X = (X1, . . . , Xn) be a Rn valued random vector. Then X is
said to be

(i) negatively associated if for every set I ⊂ {1, . . . , n} and J = {1, . . . , n}\I ,

cov
[

f (Xi, i ∈ I), g(Xi, i ∈ J)
]
≤ 0 ,

that is,

E
[

f (Xi, i ∈ I)g(Xi, i ∈ J)
]
≤ E

[
f (Xi, i ∈ I)

]
E
[
g(Xi, i ∈ J)

]
,

for all non-decreasing functions f : R|I| → R and g : Rn−|I| → R such that the
covariance exists.

(ii) conditionally decreasing in sequence (denoted CDS) if, for i = 2, 3, . . . , n, it satisfies

P(Xi > t |Xi−1 = x′i−1, . . . , X1 = x′1)
≤ P(Xi > t |Xi−1 = xi−1, . . . , X1 = x1) ,

whenever t ∈ R, x j ≤ x′j, j = 1, 2, . . . , i − 1 .

(iii) multivariate reverse rule of order two (denoted MRR2 ) if X is absolutely continuous
and its density f is a MRR2 function, i.e.,

f (x) f (y) ≥ f (x ∨ y) f (x ∧ y)

for all x, y ∈ Rn . It is called reversed rule of order two (denoted RR2 ) if n = 2 and
X is MRR2 .

Remark 3.27. In Pemantle (2000) the authors analyze the development of negative de-
pendence theory. In particular, it is pointed out that negative dependence does not receive
sufficient attention in comparison to the theory of positive dependence. One of the reas-
ons for this difference in development lies in the fact that negative dependence does not
necessarily imply negative correlation.

Example 3.28. Consider continuous random variables Y1, . . . , Yn following a Dirichlet
distribution. Then, according to Gupta & Richards (1987), their joint density is described

75



3.2 Dependence notions

by

f Y1 ,...,Yn(t1, . . . , tn) = c
(

1 −
n

∑
i=1

ti

)a−1 n

∏
i=1

tai−1
i ,

where c > 0 is a normalization constant and ti ≥ 0, ∑
n
i=1 ti < 1 and a, ai > 0 for i =

1, . . . , n. It belongs to the family of Liouville distributions of the second kind.
The MRR2 property of Y1, . . . , Yn is equivalent to MRR2 of

f (t1, . . . , tn) =
(

1 −
n

∑
i=1

ti

)a−1
,

which can be reformulated as MTP2 of 1/ f . Applying Lemma 3.12 it is left to consider the
sign of the partial derivative

∂2

∂ti∂t j
ln

1
f (t1, . . . , tn)

= (a − 1)
1(

1 −
n

∑
i=1

ti

)2
.

It is non-negative for a ≥ 1 .
Thus, we can conclude that Y1, . . . , Yn are MRR2 iff a ≥ 1 .

Remark 3.29. Since many of negative dependence properties are defined with reversed
inequalities of positive dependence, part of the observations that hold for positive dependence
have their analogies for negative dependence. Thus, the results described by Theorem 3.14
except for association, Lemma 3.15, Remark 3.19, Lemma 3.20, Lemma 3.21 hold also for
the corresponding negative dependence properties. However, Theorem 3.17 and Theorem
3.18 are not valid. In this respect, in Karlin & Rinott (1980b) strongly MRR2 (S-MRR2 )
random variables are defined. The key property of S-MRR2 random variables is that there
densities remain MRR2 under marginalization.

The concepts of MTP2 and MRR2 can be generalized further according to the-
ory of total positivity described in Karlin (1968). In particular, the book provides
the following connection between TP2 and RR2 random variables:

Lemma 3.30. Consider function f , g, h : R2 → R+ such that

f (a, b) =
∫

C
g(a, c)h(c, b)dc ,
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3.3 Special cases of dependence

where a ∈ A, b ∈ B, A, B, C ⊂ R .

(i) If g(a, c) is TP2 (RR2 ) and h(c, b) is TP2 (RR2 ), then f (a, b) is TP2 for a ∈
A, b ∈ B.

(ii) If g(a, c) is TP2 and h(c, b) is RR2 , then f (a, b) is RR2 for a ∈ A, b ∈ B.

The last theorem also illustrates that integration of a MRR2 function can lead to
a MTP2 result. This observation represents one of the differences between MTP2
and MRR2 .

3.3 Special cases of dependence

In this section we will survey the conditions securing different dependence prop-
erties for the types of random vectors that were already considered in Chapter 2.
Statements derived below will provide the basis for the analysis concerning de-
pendence properties of sequential order statistics in Chapter 4.

3.3.1 HIF and SL

Remark 3.31. Consider absolutely continuous ordered random variables Z1, . . . , Zn . Fol-
lowing the reasoning of Remark 3.6 we can simplify the definitions of such dependence
properties as SL and HIF. Namely, Z1, . . . , Zn are

(i) HIF, if holds

λ(t|x1, . . . , xi−1) ≤ λ(t|y1, . . . , yi−1) (3.23)

(ii) SL, if holds

∫ t

xi−1

λ(u|x1, . . . , xi−1)du ≤
∫ t

yi−1

λ(u|y1, . . . , yi−1)du , (3.24)

for yk ≤ xk < t, k = 1, . . . , i − 1 and i = 1, . . . , n. Here i = 1 corresponds to the haz-
ard rate with no failure history, i.e. λ(t) .

Let us look at the connection between the HIF property of exchangeable random
variables and their order statistics.

Lemma 3.32. Consider absolutely continuous exchangeable random variables Y1, . . . , Yn
and their order statistics Y1:n, . . . , Yn:n . If Y1, . . . , Yn possess the HIF property, then so do
Y1:n, . . . , Yn:n .
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3.3 Special cases of dependence

Proof. On one hand, according to the Remark 3.13 for Y1, . . . , Yn to be HIF their
hazard rates should satisfy the inequalities

λ(t|x1, . . . , xi−1) ≤ λ(t|y1, . . . , y j−1) , (3.25)

where i, j ∈ {1, . . . , n}, i ≤ j and yk ≤ xk < t, ys < t for k = 1, . . . , i − 1, s = i,
. . . , j − 1. As before i = 1 corresponds to λ1(t) . On the other hand, due to Remark
3.31 for order statistics to be HIF should hold

λ∗(t|x1, . . . , xi−1) ≤ λ∗(t|y1, . . . , yi−1) (3.26)

for i = 1, . . . , n , where by analogy to Lemma 2.8

λ∗(t|x1, . . . , xi−1) = lim
δ→0+

1
δ

P
(
Yi:n ≤ t + δ |Y1:n = x1, . . . , Yi−1:n = xi−1, Yi:n > t

)
= (n − i + 1)λi(t|x1, . . . , xi−1) .

Then (3.26) turns into

(n − i + 1)λ(t|x1, . . . , xi−1) ≤ (n − i + 1)λ(t|y1, . . . , yi−1) .

Note that (3.25) implies (3.26). Thus from the HIF property of Y1, . . . , Yn follows
the HIF property of order statistics Y1:n, . . . , Yn:n .

In Example 3.23 we saw that sequential order statistics based on F1, . . . , Fn are
MTP2 and consequently HIF. The following lemma provides the condition for HIF
of exchangeable random variables which order statistics coincide with sequential
order statistics as in Lemma 2.16. It also demonstrates that in general HIF of order
statistics is weaker then the HIF property of the underlying exchangeable random
variables.

Lemma 3.33. For the vector X∗ as in Lemma 2.16, X∗ is HIF iff

fi(t)
Fi(t)

≤ fi+1(t)
Fi+1(t)

for t > 0, i = 1, . . . , n − 1 .
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Proof. Taking into account Remark 2.18 conditional hazard rates of X∗ have the
form

λ(t|t1, . . . , th) =
fh+1(t)
Fh+1(t)

,

where fh+1(t) is the density corresponding to the survival function Fh+1(t) , h =
1, . . . , n − 1 and 0 ≤ t1 ≤ . . . ≤ th < t . Taking into account observations from Re-
mark 3.13 we obtain the proof.

Lemma 3.34. Absolutely continuous, increasingly ordered random variables Z1, . . . , Zn
have supportive lifetimes iff their conditional survival functions

P(Zi > t | Z1 = t1, . . . , Zi−1 = ti−1)

are increasing in t1, . . . , ti−1 ∈ R i.e.

P(Zi > t | Z1 = x1, . . . , Zi−1 = xi−1) ≤ P(Zi > t | Z1 = y1, . . . , Zi−1 = yi−1)
(3.27)

for all x j, y j ∈ R such that xk ≤ xk+1, yk ≤ yk+1, yi−1 ≤ t, x j ≤ y j for j = 1, . . . ,
i − 1 , k = 1, . . . , i − 2, i = 2, . . . , n.

Moreover, for such Z1, . . . , Zn SL is equivalent to CIS.

Proof. According to Remark 3.31 (ii) the definition of the SL property for ordered
random variables takes form∫ t

xi−1

λ(u|x1, . . . , xi−1)du ≥
∫ t

yi−1

λ(u|y1, . . . , yi−1)du . (3.28)

By Lemma 2.7 conditional hazard rates of Z1, . . . , Zn can be expressed as

λ(t | t1, . . . , ti−1) = −
∂

∂t
ln P(Zi > t | Z1 = t1, . . . , Zi−1 = ti−1)

almost surely. Then (3.28) turns into

− ln P(Zi > t | Z1 = x1, . . . , Zi−1 = xi−1)

+ ln P(Zi > xi−1 | Z1 = x1, . . . , Zi−1 = xi−1)
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≥ − ln P(Zi > t | Z1 = y1, . . . , Zi−1 = yi−1)

+ ln P(Zi > yi−1 | Z1 = y1, . . . , Zi−1 = yi−1) .

Note that for ordered random variables

P(Zi > a | Z1 = t1, . . . , Zi−2 = ti−2, Zi−1 = a) = 1 ,

where 0 ≤ t1 ≤ . . . ≤ ti−2 ≤ a . Then we obtain

ln P(Zi > t | Z1 = x1, . . . , Zi−1

= xi−1) ≤ ln P(Zi > t | Z1 = y1, . . . , Zi−1 = yi−1) .

Finally we can state that

P(Zi > t | Z1 = x1, . . . , Zi−1 = xi−1) ≤ P(Zi > t | Z1 = y1, . . . , Zi−1 = yi−1) ,

where x j, y j ∈ R+, x j ≤ y j, j = 1, . . . , i − 1, i = 2, . . . , n .
Comparing the inequality (3.27) with (3.13), the conclusion can be made that for

ordered random variables the SL property is equivalent to CIS.

3.3.2 MTP2

3.3.2.1 Distributions with Markov order statistics

First consider random variables Y1, . . . , Yn with conditional hazard rates of the
form

λ(t|t1, . . . , th) = rh(t) ,

where h = 0, . . . , n − 1, t1 ≤ . . . ≤ th < t, n ∈ N. According to Remark 2.12 for
t1, . . . , tn ∈ R+ the joint density of Y1, . . . , Yn can be described by

f Y1 ,...,Yn(t1, . . . , tn) =
n

∏
i=1

ri−1(t(i)) exp
(
−(n − i + 1)

∫ t(i)

t(i−1)

ri−1(u)du
)

,
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3.3 Special cases of dependence

where (t(1), . . . , t(n)) is the permutation of (t1, . . . , tn) such that t(1) ≤ . . . ≤ t(n) .
To emphasize the specific form of the density we will use the notation

f Y1 ,...,Yn(t1, . . . , tn) =
n

∏
i=1

gi(t(i)) , (3.29)

where

gi(t(i)) = ri−1(t(i)) exp
(

Ri−1(t(i))
)

Ri−1(t) = −(n − i + 1)
∫ t

0
ri−1(u)du + (n − i)

∫ t

0
ri(u)du .

The following lemma provides a necessary and sufficient condition for the MTP2
property of random vectors with joint density as in (3.29).

Lemma 3.35. Consider random variables Y1, . . . , Yn with joint density function

f Y1 ,...,Yn(t1, . . . , tn) =
n

∏
i=1

gi(t(i))

defined on Rn , where for i = 1, 2, . . . , n gi(·) are some univariate continuous functions.
Moreover gi(t) 6= 0 for t ∈ R .

Then Y1, . . . , Yn possess the MTP2 property iff

gi(t)
gi−1(t)

≤ gi(t̃)
gi−1(t̃)

(3.30)

for t, t̃ ∈ R, t̃ < t, i = 2, . . . , n.

Proof. First we are going to prove the sufficient condition. For the sake of readabil-
ity we will use the notation

f (t) = f (t1, . . . , tn)

= f Y1 ,...,Yn(t1, . . . , tn) ,
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where t = (t1, . . . , tn) . Note that under the assumptions of the lemma

f (x) f (y) =
n

∏
i=1

gi(x(i))gi(y(i)) 6= 0

for all x, y ∈ Rn . Consequently, f satisfies the requirements of Lemma 3.20 and
it suffices to prove that f (t1, . . . , tn) is TP2 in every pair of variables. Due to the
symmetry of f it is enough to show the TP2 property with respect to t1, t2 . To do
so, let us consider inequality (3.14) for

x = (x1, x2, t1, . . . , tn−2)

y = (y1, y2, t1, . . . , tn−2) ,
(3.31)

where xi, yi, t j ∈ R, xi 6= yk 6= t j for i, k = 1, 2, j = 1, . . . , n − 2. TP2 is then ex-
tended by continuity of f to all xi, yi, t j ∈ R, i = 1, 2, j = 1, . . . , n − 2.

In the following we will assume that x1 and x2 do not belong simultaneously to
x ∧ y or x ∨ y . Otherwise (3.14) turns into 1 ≤ 1. Due to the symmetry of f , it can
also be assumed without the loss of generality that x1 < min(y1, y2) and x2 > y2 .
All the other cases are obtained by renaming the variables. Thus, there are three
possible arrangements to consider:

1) x1 < y1 < y2 < x2 ,

2) x1 < y2 < y1 < x2 ,

3) x1 < y2 < x2 < y1 .

In the succeeding analysis it will be convenient to use a shorter notation. De-
note by xi the i -th element of a vector x (for example from (3.31) x3 = t1 ), by
(x(1), . . . , x(n)) – the vector of ordered elements of x , πx(i) – the position that xi
takes in (x(1), . . . , x(n)) (for example if x(k) = xl , then πx(l) = k ).

Then, for f to be TP2 in the first two variables, it should hold

f (x) f (y) ≤ f (x ∧ y) f (x ∨ y) ,

for x, y as in (3.31). Taking into account the form of the function f , this inequality
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can be rewritten as

gπx(1)(x1) × . . . × gπx(n)(xn)

× gπy(1)(y1) × . . . × gπy(n)(yn)

≤ gπx∧y(1)(x1 ∧ y1) × . . . × gπx∧y(n)(xn ∧ yn)

× gπx∨y(1)(x1 ∨ y1) × . . . × gπx∨y(n)(xn ∨ yn) .

(3.32)

To prove (3.32) we are going to look at cases 1) to 3) separately.
1) Consider x1 < y1 < y2 < x2 , in other wordsπx∨y(1) = πy(1), πx∧y(1) =

πx(1) and πx∨y(2) = πx(2), πx∧y(2) = πy(2) . Then inequality (3.32) becomes

[
πx(1)−1

∏
j=1

g j(t( j)) · gπx(1)(x1)

πx(2)−1

∏
j=πx(1)+1

g j(t( j−1)) · gπx(2)(x2)
n

∏
j=πx(2)+1

g j(t( j−2))

]

×
[πy(1)−1

∏
j=1

g j(t( j)) · gπy(1)(y1)

πy(2)−1

∏
j=πy(1)+1

g j(t( j−1)) · gπy(2)(y2)
n

∏
j=πy(2)+1

g j(t( j−2))

]

≤
[
πx(1)−1

∏
j=1

g j(t( j)) · gπx(1)(x1)

πy(2)−1

∏
j=πx(1)+1

g j(t( j−1)) · gπy(2)(y2)
n

∏
j=πy(2)+1

g j(t( j−2))

]

×
[πy(1)−1

∏
j=1

g j(t( j)) · gπy(1)(y1)

πx(2)−1

∏
j=πy(1)+1

g j(t( j−1)) · gπx(2)(x2)
n

∏
j=πx(2)+1

g j(t( j−2))

]
.

Reducing both parts of the inequality by coinciding factors, we obtain

πx(2)−1

∏
j=πx(1)+1

g j(t( j−1)) ·
πy(2)−1

∏
j=πy(1)+1

g j(t( j−1))

≤
πy(2)−1

∏
j=πx(1)+1

g j(t( j−1)) ·
πx(2)−1

∏
j=πy(1)+1

g j(t( j−1)) .

(3.33)

Since πy(2) ≤ πx(2) , the analysis of the last inequality falls into two subcases.
1.1) πy(2) = πx(2) and (3.33) is immediately satisfied.
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1.2) πy(2) < πx(2) implies the further reduction of (3.33) to

πx(2)−1

∏
j=πy(2)

g j(t( j−1)) ≤
πx(2)−1

∏
j=πy(2)

g j(t( j−1)) ,

which is equivalent to 1 ≤ 1.
2) Consider x1 < y2 < y1 < x2 , then πx∨y(1) = πy(1) − 1, πx∧y(1) = πx(1)

and πx∨y(2) = πx(2), πx∧y(2) = πy(2) + 1. In this case inequality (3.32) becomes

[πx(1)−1

∏
j=1

g j(t( j)) · gπx(1)(x1)

πx(2)−1

∏
j=πx(1)+1

g j(t( j−1)) · gπx(2)(x2)
n

∏
j=πx(2)+1

g j(t( j−2))

]

×
[πy(2)−1

∏
j=1

g j(t( j)) · gπy(2)(y2)

πy(1)−1

∏
j=πy(2)+1

g j(t( j−1)) · gπy(1)(y1)
n

∏
j=πy(1)+1

g j(t( j−2))

]

≤
[πx(1)−1

∏
j=1

g j(t( j)) · gπx(1)(x1)

πy(2)

∏
j=πx(1)+1

g j(t( j−1)) · gπy(2)+1(y2)
n

∏
j=πy(2)+2

g j(t( j−2))

]

×
[πy(1)−2

∏
j=1

g j(t( j)) · gπy(1)−1(y1)

πx(2)−1

∏
j=πy(1)

g j(t( j−1)) · gπx(2)(x2)
n

∏
j=πx(2)+1

g j(t( j−2))

]
.

Reducing both parts of the inequality by coinciding factors, we obtain

πx(2)−1

∏
j=πx(1)+1

g j(t( j−1)) ·
πy(2)−1

∏
j=1

g j(t( j)) · gπy(2)(y2)

×
πy(1)−1

∏
j=πy(2)+1

g j(t( j−1)) · gπy(1)(y1) ·
n

∏
j=πy(1)+1

g j(t( j−2))

≤
πy(2)

∏
j=πx(1)+1

g j(t( j−1)) · gπy(2)+1(y2) ·
n

∏
j=πy(2)+2

g j(t( j−2))

×
πy(1)−2

∏
j=1

g j(t( j)) · gπy(1)−1(y1) ·
πx(2)−1

∏
j=πy(1)

g j(t( j−1)) .

(3.34)
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Given that x1 < y2 < y1 < x2 we can conclude that πy(2) < πy(1) ≤ πx(2) , in
other words 

πy(2) ≤ πy(1) − 1 ,
πy(2) ≤ πx(2) − 1 ,
πy(1) ≤ πx(2) .

2.1) First let us assume that{
πy(2) = πy(1) − 1 ,
πy(2) = πx(2) − 1 .

Then (3.34) takes form

gπy(2)(y2) · gπy(1)(y1) ≤ gπy(2)+1(y2) · gπy(1)−1(y1)

⇔
gπy(1)(y1)

gπy(1)−1(y1)
≤

gπy(2)+1(y2)

gπy(2)(y2)
.

Since πy(2) + 1 = πy(1) , we can reformulate the last inequality as

gπy(1)(y1)

gπy(1)−1(y1)
≤

gπy(1)(y2)

gπy(1)−1(y2)
,

which is fulfilled for all
gπy(1)(t)

gπy(1)−1(t)
decreasing in t .

2.2) Let us consider {
πy(2) = πy(1) − 1 ,
πy(2) < πx(2) − 1 .

Then (3.34) turns into

πx(2)−1

∏
j=πy(2)+1

g j(t( j−1)) · gπy(2)(y2) · gπy(1)(y1)
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≤ gπy(2)+1(y2) · gπy(1)−1(y1) ·
πx(2)−1

∏
j=πy(1)

g j(t( j−1)) ,

which is equivalent to

gπy(2)(y2) · gπy(1)(y1) ≤ gπy(2)+1(y2) · gπy(1)−1(y1) .

Since πy(2) = πy(1) − 1 we obtain

gπy(1)(y1)

gπy(1)−1(y1)
≤

gπy(1)(y2)

gπy(1)−1(y2)
,

which is true under the conditions of the lemma.
2.3) Finally, if we assume


πy(2) < πy(1) − 1 ,
πy(2) < πx(2) − 1 ,
πy(1) ≤ πx(2) ,

then (3.34) is equivalent to

gπy(2)(y2)

πx(2)−1

∏
j=πy(2)+1

g j(t( j−1))

πy(1)−1

∏
j=πy(2)+1

g j(t( j−1)) · gπy(1)(y1)

≤ gπy(2)+1(y2)

πy(1)

∏
j=πy(2)+2

g j(t( j−2))

πy(1)−2

∏
j=πy(2)

g j(t( j)) · gπy(1)−1(y1)

πx(2)−1

∏
j=πy(1)

g j(t( j−1)) ,

which can be rewritten as

gπy(2)(y2)

πy(1)−1

∏
j=πy(2)+1

g j(t( j−1))

πy(1)−1

∏
j=πy(2)+1

g j(t( j−1)) · gπy(1)(y1)
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≤ gπy(2)+1(y2)

πy(1)

∏
j=πy(2)+2

g j(t( j−2))

πy(1)−2

∏
j=πy(2)

g j(t( j)) · gπy(1)−1(y1) .

Let us rearrange the factors in the following way

πy(1)−2

∏
j=πy(2)

g j+1(t( j))

g j(t( j))
·

gπy(1)(y1)

gπy(1)−1(y1)
≤

gπy(2)+1(y2)

gπy(2)(y2)
·
πy(1)−2

∏
j=πy(2)

g j+2(t( j))

g j+1(t( j))
.

Then we can regroup the factors and write

gπy(2)+1(t(πy(2)))

gπy(2)(t(πy(2)))

πy(1)−3

∏
j=πy(2)

g j+2(t( j+1))

g j+1(t( j+1))
·

gπy(1)(y1)

gπy(1)−1(y1)

≤
gπy(2)+1(y2)

gπy(2)(y2)

πy(1)−3

∏
j=πy(2)

g j+2(t( j))

g j+1(t( j))
·

gπy(1)(t(πy(1)−2))

gπy(1)−1(t(πy(1)−2))
.

Since t(πy(2)) > y2, t( j+1) > t( j) for j = 1, . . . , n − 3 and y1 > t(πy(1)−2) , we can
conclude that the inequality is valid under the conditions of the lemma.

3) It is left to consider x1 < y2 < x2 < y1 , in other words πx∧y(1) = πx(1),
πx∨y(1) = πy(1) and πx∧y(2) = πy(2) + 1, πx∨y(2) = πx(2) − 1. In this case we
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need to verify the following inequality

[πx(1)−1

∏
j=1

g j(t( j)) · gπx(1)(x1)

πx(2)−1

∏
j=πx(1)+1

g j(t( j−1)) · gπx(2)(x2)
n

∏
j=πx(2)+1

g j(t( j−2))

]

×
[πy(2)−1

∏
j=1

g j(t( j)) · gπy(2)(y2)

πy(1)−1

∏
j=πy(2)+1

g j(t( j−1)) · gπy(1)(y1)
n

∏
j=πy(1)+1

g j(t( j−2))

]

≤
[πx(1)−1

∏
j=1

g j(t( j)) · gπx(1)(x1)

πy(2)

∏
j=πx(1)+1

g j(t( j−1)) · gπy(2)+1(y2)
n

∏
j=πy(2)+2

g j(t( j−2))

]

×
[
πx(2)−2

∏
j=1

g j(t( j)) · gπx(2)−1(x2)

πy(1)−1

∏
j=πx(2)

g j(t( j−1)) · gπy(1)(y1)
n

∏
j=πy(1)+1

g j(t( j−2))

]
.

(3.35)

Since x1 < y2 < x2 < y1 one may observe that


πy(2) ≤ πy(1) − 1 ,
πy(2) ≤ πx(2) − 1 ,
πx(2) ≤ πy(1) .

3.1) Analog to the case 2.1) let us start by considering{
πy(2) = πy(1) − 1 ,
πy(2) = πx(2) − 1 .

Then (3.35) can be reduced to

gπx(2)(x2) · gπy(2)(y2) ≤ gπy(2)+1(y2) · gπx(2)−1(x2)

⇔
gπx(2)(x2)

gπx(2)−1(x2)
≤

gπy(2)+1(y2)

gπy(2)(y2)
.

(3.36)
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3.3 Special cases of dependence

Since πy(2) + 1 = πx(2) , we obtain

gπx(2)(x2)

gπx(2)−1(x2)
≤

gπx(2)(y2)

gπx(2)−1(y2)
,

which is satisfied if all the gi(t)
gi−1(t)

are decreasing functions.
3.2) Assume now {

πy(2) = πx(2) − 1 ,
πy(2) < πy(1) − 1 .

Then (3.35) reduces to (3.36), i.e.

gπx(2)(x2) · gπy(2)(y2) ≤ gπy(2)+1(y2) · gπx(2)−1(x2)

⇔
gπx(2)(x2)

gπx(2)−1(x2)
≤

gπy(2)+1(y2)

gπy(2)(y2)
.

3.3) It is left to consider 
πy(2) < πx(2) − 1 ,
πy(2) < πy(1) − 1 ,
πx(2) ≤ πy(1) .
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3.3 Special cases of dependence

Reducing both parts of the inequality (3.35) by coinciding factors, we obtain

πx(2)−1

∏
j=πx(1)+1

g j(t( j−1)) · gπx(2)(x2)
n

∏
j=πx(2)+1

g j(t( j−2))

×
πy(2)−1

∏
j=1

g j(t( j)) · gπy(2)(y2)

πy(1)−1

∏
j=πy(2)+1

g j(t( j−1))

≤
πy(2)

∏
j=πx(1)+1

g j(t( j−1)) · gπy(2)+1(y2)
n

∏
j=πy(2)+2

g j(t( j−2))

×
πx(2)−2

∏
j=1

g j(t( j)) · gπx(2)−1(x2)

πy(1)−1

∏
j=πx(2)

g j(t( j−1)) .

(3.37)

Since πy(2) < πx(2) − 1, (3.37) is equivalent to

πx(2)−1

∏
j=πy(2)+1

g j(t( j−1)) · gπx(2)(x2) · gπy(2)(y2)

πx(2)−1

∏
j=πy(2)+1

g j(t( j−1))

≤ gπy(2)+1(y2)

πx(2)

∏
j=πy(2)+2

g j(t( j−2))

πx(2)−2

∏
j=πy(2)

g j(t( j)) · gπx(2)−1(x2)

and this is again equivalent to

πx(2)−2

∏
j=πy(2)

g j+1(t( j)) · gπx(2)(x2) · gπy(2)(y2)

πx(2)−1

∏
j=πy(2)+1

g j(t( j−1))

≤ gπy(2)+1(y2)

πx(2)−1

∏
j=πy(2)+1

g j+1(t( j−1))

πx(2)−2

∏
j=πy(2)

g j(t( j)) · gπx(2)−1(x2) .
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3.3 Special cases of dependence

Let us rearrange the factors in the following way

πx(2)−2

∏
j=πy(2)

g j+1(t( j))

g j(t( j))
·

gπx(2)(x2)

gπx(2)−1(x2)
≤

gπy(2)+1(y2)

gπy(2)(y2)
·
πx(2)−1

∏
j=πy(2)+1

g j+1(t( j−1))

g j(t( j−1))
.

Finally, regrouping the factors again we observe

gπy(2)+1(t(πy(2)))

gπy(2)(t(πy(2)))
·
πx(2)−2

∏
j=πy(2)+1

g j+1(t( j))

g j(t( j))
·

gπx(2)(x2)

gπx(2)−1(x2)

≤
gπy(2)+1(y2)

gπy(2)(y2)
·
πx(2)−2

∏
j=πy(2)+1

g j+1(t( j−1))

g j(t( j−1))
·

gπx(2)(t(πx(2)−2))

gπx(2)−1(t(πx(2)−2))
.

Since t(πy(2)) > y2, t( j) > t( j−1) for j = 2, . . . , n − 2 and x2 > t(πx(2)−2) , we can
conclude that the inequality holds under the conditions of the lemma.

Thus, the sufficient condition is verified and it is left to show that (3.30) repres-
ents a necessary condition.

Assume that the joint density f (t1, . . . , tn) is MTP2 and consider the inequality
(3.34) with x, y as described in 2.1). In this case (3.34) turns into

gπy(1)(y1)

gπy(1)−1(y1)
≤

gπy(1)(y2)

gπy(1)−1(y2)
.

Considering one by one vectors y with πy(1) = i, i = 2, . . . , n we obtain a set of
necessary conditions

gi(y1)

gi−1(y1)
≤ gi(y2)

gi−1(y2)
,

for i = 2, . . . , n, y1 > y2 , as was to be proved.

Theorem 3.36. Consider a vector X∗ as in Lemma 2.16 with continuous densities fi, i =
1, . . . , n on (0, ∞) . X∗ is MTP2 iff for 0 < x < y, i = 2, . . . , n holds

gi(y)
gi−1(y)

≤ gi(x)
gi−1(x)

, (3.38)
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3.3 Special cases of dependence

where gi(t) =
(

1−Fi(t)
1−Fi+1(t)

)n−i
fi(t) > 0 , t > 0, i = 1, . . . , n.

Proof. Note that according to (2.19) the joint density of X∗ can be represented as

f (t1, . . . , tn) =
n

∏
i=1

gi(t(i)) ,

where gi(t) =
(

1−Fi(t)
1−Fi+1(t)

)n−i
fi(t), i = 1, . . . , n.

Then the result follows from Lemma 3.35.

Theorem 3.37. Consider a vector X∗ as in Lemma 2.16 with continuous densities fi, i =
1, . . . , n on (0, ∞) . X∗ is MRR2 iff for 0 < x < y, i = 2, . . . , n holds

gi(y)
gi−1(y)

≥ gi(x)
gi−1(x)

, (3.39)

where gi(t) =
(

1−Fi(t)
1−Fi+1(t)

)n−i
fi(t) > 0, t > 0, i = 1, . . . , n.

Proof. The result is obtained analogously to the proof of Theorem 3.36.

Example 3.38. Consider random variables Y1, . . . , Yn distributed according to Freund’s
multivariate exponential distribution (FME) from Example 2.19. Recall that the joint dens-
ity function of FME distributed random variables can be written as

f Y1 ,...,Yn(t1, . . . , tn) =
n−1

∏
i=0

1
θi

exp

[
−(n − i)

(
t(i+1) − t(i)

)
θi

]
,

with θi ≥ 0, i = 0, . . . , n − 1, t(0) = 0 .

(i) Let us look at the conditions (3.38). First we will rewrite the joint density as

f Y1 ,...,Yn(t1, . . . , tn) =
n

∏
i=1

1
θi−1

exp

[
t(i)

(
n − i
θi
− n − i + 1

θi−1

)]
,
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3.3 Special cases of dependence

where θn = 1 . Then, in terms of Theorem 3.36 we observe that

gi(t) =
1
θi−1

exp

[
t
(

n − i
θi
− n − i + 1

θi−1

)]

and (3.38) becomes

∂

∂t
gi(t)

gi−1(t)
=
θi−2

θi−1

∂

∂t
exp

[
t
(

n − i
θi
− 2

n − i + 1
θi−1

+
n − i + 2
θi−2

)]

=
θi−2

θi−1

(
n − i
θi
− 2

n − i + 1
θi−1

+
n − i + 2
θi−2

)

× exp

[
t
(

n − i
θi
− 2

n − i + 1
θi−1

+
n − i + 2
θi−2

)]
≤ 0 ,

which for i = 2, . . . , n is equivalent to

n − i
θi
− 2

n − i + 1
θi−1

+
n − i + 2
θi−2

≤ 0 . (3.40)

Thus, we have obtained a system of n − 1 inequalities of the form (3.40). Next we
will show by induction the equivalence of the system (3.40) to the set of conditions

θi ≤ θi−1, i = 1, . . . , n − 1 .

First, consider the inequality from (3.40) for i = n:

− 2
1

θn−1
+

2
θn−2

≤ 0

⇔ 1
θn−2

≤ 1
θn−1

⇔ θn−1 ≤ θn−2 .

In this case the hypothesis holds.
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3.3 Special cases of dependence

Assume that for i = j + 1 the inequality

n − j − 1
θ j+1

− 2
n − j
θ j

+
n − j + 1
θ j−1

≤ 0

can be replaced by

θ j ≤ θ j−1 . (3.41)

It remains to prove for i = j the equivalence of

n − j
θ j
− 2

n − j + 1
θ j−1

+
n − j + 2
θ j−2

≤ 0

to

θ j−1 ≤ θ j−2 .

Rewrite (3.41) as

1
θ j−1

− 1
θ j
≤ 0

and consider the system 
1

θ j−1
− 1

θ j
≤ 0

n− j
θ j
− 2 n− j+1

θ j−1
+ n− j+2

θ j−2
≤ 0 .

Multiplying the first inequality by (n − j) and adding these inequalities together we
obtain 

1
θ j−1
− 1

θ j
≤ 0

n− j+2
θ j−2

− n− j+2
θ j−1

≤ 0
⇔


1

θ j−1
− 1

θ j
≤ 0

1
θ j−2
− 1

θ j−1
≤ 0

⇔
{
θ j ≤ θ j−1

θ j−1 ≤ θ j−2 ,
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3.3 Special cases of dependence

which is what we wanted to show.

Therefore, the system of inequalities (3.40) for i = 2, . . . , n can be replaced by

θi ≤ θi−1, i = 1, . . . , n − 1. (3.42)

Thus, for θi ≤ θi−1 the resulting Y1, . . . , Yn will be MTP2 .

For θi > θi−1 their order statistics Y1:n, . . . , Yn:n are still MTP2 according to The-
orem 3.15. However the corresponding Y1, . . . , Yn are MRR2 since conditions θi >
θi−1 for i = 1, . . . , n − 1 correspond to (3.39).

(ii) Let us revert the inequality sign in (3.42)

θi ≥ θi−1, i = 1, . . . , n − 1, (3.43)

and without the loss of generality consider the covariance of X1 and X2

Cov(X1, X2) =
1

n2(n − 1)

(n−1

∑
i=0

θ2
i

(
n − n + i

n − i

)
− 2

n−2

∑
i=0

n−1

∑
j=i+1

iθiθ j

n − i

)
(3.44)

calculated in the Appendix.

The set of conditions (3.43) yields the following upper bound for the covariance

Cov(X1, X2)

=
1

n2(n − 1)

[n−1

∑
i=0

θ2
i

(
n − n + i

n − i

)
− 2

n−2

∑
i=0

n−1

∑
j=i+1

i
n − i

θiθ j

]

≤ 1
n2(n − 1)

[n−1

∑
i=0

θ2
i

(
n − n + i

n − i

)
− 2

n−2

∑
i=0

i
n − i

θ2
i

( n−1

∑
j=i+1

1
)]

=
1

n2(n − 1)

[n−2

∑
i=0

θ2
i

(
n − n + i

n − i
− 2

i
n − i

(n − 1 − i)
)

+ (1 − n)θ2
n−1

]
.
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Simplifying the coefficient before θ2
i we obtain

Cov(X1, X2)

≤ 1
n2(n − 1)

[n−2

∑
i=0

θ2
i

n2 − ni − n − i − 2ni + 2i2 + 2i
n − i

+ (1 − n)θ2
n−1

]

=
1

n2(n − 1)

[n−2

∑
i=0

θ2
i
(n − i)2 − i(n − i) − (n − i)

n − i
+ (1 − n)θ2

n−1

]

=
1

n2(n − 1)

[n−2

∑
i=0

θ2
i (n − 2i − 1) + (1 − n)θ2

n−1

]
.

Thus, we come to the conclusion

Cov(X1, X2) ≤
1

n2(n − 1)

[n−2

∑
i=0

θ2
i (n − 2i − 1) + (1 − n)θ2

n−1

]
. (3.45)

Obviously, the sequence (n − 2i − 1) is decreasing in i , moreover{
n − 2i − 1 ≥ 0 for i ≤ [ n−1

2 ]

n − 2i − 1 < 0 for i > [ n−1
2 ] ,

where [·] denotes the integer part of a fraction. Note also that for i = n − 1 holds
n − 2i − 1 = 1 − n. Taking these facts into account we can rewrite (3.45) as

Cov(X1, X2) ≤
1

n2(n − 1)

[
[ n−1

2 ]

∑
i=0

θ2
i (n − 2i − 1) −

n−1

∑
i=[ n−1

2 ]+1

θ2
i (2i + 1 − n)

]
.

Furthermore, since θi is increasing in i ,

Cov(X1, X2)

≤ 1
n2(n − 1)

[
[ n−1

2 ]

∑
i=0

θ2
[ n−1

2 ]
(n − 2i − 1) −

n−1

∑
i=[ n−1

2 ]+1

θ2
[ n−1

2 ]
(2i + 1 − n)

]
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=
1

n2(n − 1)

[
θ2
[ n−1

2 ]

n−1

∑
i=0

(n − 2i − 1)

]

holds.

Observe that

n−1

∑
i=0

(n − 2i − 1) = n2 − 2
n − 1

2
n − n = 0 .

Thus, we have verified that for FME distributed random variables under the condi-
tions of Theorem 3.37 holds

Cov(Xi, X j) ≤ 0 ,

where i, j = 1, . . . , n, i 6= j . In other words, although in general MRR2 does not
imply negative covariances, we have proved that for FME random variables this im-
plication holds.

Let us carry on the consideration of special cases for the MTP2 property. Con-
sider exchangeable random variables Y1, . . . , Yn with conditional hazard rates of
the form

λ(t|th, . . . , t1) = g(t, h, th) .

In this case we can specify conditions for the MTP2 property of order statistics
based on such Y1, . . . , Yn .

By Lemma 2.21 Y1:n, . . . , Yn:n posses the Markov property. Then applying The-
orem 3.22 we can make the following conclusion concerning MTP2 of order statist-
ics:

Lemma 3.39. Let Y1, . . . , Yn be exchangeable absolutely continuous random variables pos-
sessing the conditional hazard rates of the form

λ(t|th, . . . , t1) = g(t, h, th).

If all the transition densities f Yi:n|Yi−1:n are TP2 for i = 2, . . . , n, then Y1:n, . . . , Yn:n are
MTP2 .

Example 3.40. Consider Y1:n, . . . , Yn:n based on the random variables from Example 2.22
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with parameter θ = 1 . The density f Yi:n|Yi−1:n is calculated as

f Yi:n|Yi−1:n(ti|ti−1) = exp(ti−1 − ti) ,

where 0 ≤ ti−1 ≤ ti . Observe that f Yi:n|Yi−1:n is MTP2 as a product of univariate func-
tions. Then by Lemma 3.39 Y1:n, . . . , Yn:n are also MTP2 .

3.3.2.2 Schur-constant random variables

The dependence properties of Schur-constant random variables are well studied
in the literature. For instance, the following facts can be found in Caramellino &
Spizzichino (1996):

Lemma 3.41. Consider absolutely continuous Schur-constant random variables Y1, . . . ,
Yn with joint survival function

F(t1, . . . , tn) = Φ(t1 + · · · + tn), t1, . . . , tn ∈ R+

and conditional hazard rates λ(h, y) . Moreover let Φ be n-times differentiable. Then the
following conditions are equivalent

(i) Y1, . . . , Yn are MTP2 ,

(ii)
∣∣Φ(n)(t)

∣∣ is log-convex,

(iii) λ(h, y) are non-decreasing in h and non-increasing in y ∈ R+ .

Proof. In the following we will prove the equivalence for h = n . The result for
all the other values of h follows by analogy from the observation that the MTP2
property of Y1, . . . , Yn implies the MTP2 of Y1, . . . , Yh .

Lemma 3.12 implies that Y1, . . . , Yn are MTP2 if and only if

∂2

∂ti∂t j
ln
[
(−1)nΦ(n)(t1 + · · · + tn)

]
≥ 0 .

We can rewrite this fact as

∂2

∂t2 ln
∣∣Φ(n)(t)

∣∣
t=t1+···+tn

≥ 0 . (3.46)
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Thus we have shown the equivalence of (i) and (ii). To state the equivalence of (ii)
and (iii), let us consider (3.46) in more detail

∂2

∂t2 ln
∣∣Φ(n)(t)

∣∣ = ∂

∂t
Φ(n+1)(t)
Φ(n)(t)

=
Φ(n+2)(t)Φ(n)(t) − (Φ(n+1)(t))2

(Φ(n)(t))2

≥ 0

for all t such that Φ(n)(t) 6= 0. The last inequality holds iff

Φ(n+2)(t)Φ(n)(t) −
(
Φ(n+1)(t)

)2 ≥ 0 . (3.47)

Consider Φ(n+1)(t) = 0, then (3.47) holds automatically. For Φ(n+1)(t) 6= 0 we can
transform (3.47) into

Φ(n+2)(t)
Φ(n+1)(t)

· Φ
(n+1)(t)
Φ(n)(t)

−
(
Φ(n+1)(t)
Φ(n)(t)

)2

≥ 0 .

In other words (3.47) is equivalent to

λ(n + 1, t)λ(n, t) − (λ(n, t))2 ≥ 0 .

For λ(n, t) 6= 0 it can be simplified to

λ(n + 1, t) ≥ λ(n, t), t ∈ R+ .

Thus we have shown that λ(h, y) is non-decreasing in h . The fact that λ(h, y) is
non-increasing in y can be verified by combining (3.46) with (2.28), which states

λ(n, y) = − ∂

∂y
ln
∣∣Φ(n)(y)

∣∣ .
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Indeed it follows immediately that

∂

∂y
λ(n, y) = − ∂2

∂t2 ln
∣∣Φ(n)(t)

∣∣ ≤ 0

as was to be proved.

Lemma 3.42. Consider a vector of Schur-constant lifetimes Y = (Y1, . . . , Yn) with mul-
tivariate conditional hazard rates λ(h, y), h = 0, . . . , n − 1, y ∈ R+ . Y is HIF iff

λ(h, y) ≤ λ(h′, y′),

whenever h′ ≥ h, y′ ≤ y.

Remark 3.43. Lemma 3.41 and Lemma 3.42 show, in particular, that for Schur-constant
random variables MTP2 is equivalent to HIF.

The following example illustrates the application of Lemma 3.41.

Example 3.44.

(i) Let the random variables Y1, . . . , Yn follow the distribution of correlated gamma vari-
ables (see Kotz et al. (2000)) of the form

f Y1 ,...,Yn(t1, . . . , tn) = c
( n

∑
i=1

ti
)n−1

n

∏
i=1

e−bti

with a parameter b > 0 and a normalization constant c > 0 such that f Y1 ,...,Yn is a
joint density function. According to the Remark 2.24 Y1, . . . , Yn are Schur-constant
and from the form of the joint density we observe that

|Φ(n)(t)| = c tn−1 e−bt ,

where Φ(t) is a univariate survival function from Definition 2.23. Consider

∂2

∂t2 ln |Φ(n)(t)| = c
∂2

∂t2

[
(n − 1) ln t − bt

]
= c

∂

∂t
[n − 1

t
− b

]
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= −c
n − 1

t2 ≤ 0 .

Therefore, by Lemma 3.41 (ii) Y1, . . . , Yn are not MTP2 . Moreover, according to
Gupta & Richards (1987) they are MRR2 .

(ii) Consider absolutely continuous random variables Y1, . . . , Yn with Pareto survival
function of the second kind described in Example 2.37. According to (2.32) condi-
tional hazard rates of Y1, . . . , Yn have the form

λ(y, h) = −Φ(h+1)(y)
Φ(h)(y)

= (α + h)β(1 + βy)−1 ,

where h = 1, . . . , n − 1, y ≥ 0 . Since it is increasing in h and decreasing in y
for all β and α , the condition (iii) of Lemma 3.41 is satisfied and we can state that
Y1, . . . , Yn are MTP2 .

Remark 3.45. Consider Schur-constant random variables Y1, . . . , Yn with completely
monotone survival function Φ and the joint density function

f Y1 ,...,Yn(t1, . . . , tn) =

∫ ∞
0
θn exp

(
−θ

n

∑
i=1

ti

)
dπ(θ)

as in (2.29). Note that exp(−θ t) is RR2 in θ, t . Then Theorem 3.30 (i) yields that
f Y1 ,...,Yn(t1, . . . , tn) is MTP2 .

3.3.2.3 Archimedean copulas

An overview of dependence properties for random vectors with joint distribution
functions represented by Archimedean copulas can be found in Nelsen (2006) and
Müller & Scarsini (2005). In particular, the following results concerning the MTP2
property can be found in Müller & Scarsini (2005).

Theorem 3.46. Consider absolutely continuous random variables Y1, . . . , Yn with a joint
distribution function represented by a strict Archimedean copula with generator φ and n-
times differentiable φ−1 . Then Y1, . . . , Yn are MTP2 if and only if (−1)n ∂n

∂ynφ
−1(y) is

log-convex.

A similar results holds for Archimedean survival copulas:
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3.3 Special cases of dependence

Theorem 3.47. Consider absolutely continuous random variables Y1, . . . , Yn with a joint
survival function represented by a strict Archimedean survival copula with generator φ
and n-times differentiable φ−1 .

Then Y1, . . . , Yn are MTP2 if and only if (−1)n ∂n

∂ynφ
−1(y) is log-convex.

Example 3.48.

(i) Consider absolutely continuous random variables Y1, Y2 . Let their distribution func-
tion be represented by the Ali-Mikhail-Haq copula with generator

φ(t) = ln
1 − θ(1 − t)

t
,

φ−1(u) =
1 − θ
eu − θ ,

where t ∈ [0, 1], u ∈ [0, ∞], θ ∈ (−1, 1] (see also Nelsen (2006), Table 4.1, cop-
ula 4.2.3). Then by Theorem 3.47 it suffices to check if ∂2

∂t2φ
−1(t) is a log-convex

function. The second derivative of φ−1 is given by

∂2

∂t2φ
−1(t) =

(1 − θ) et(et + θ)

(et − θ)3 .

Consequently we can state that

∂2

∂t2 ln
∂2

∂t2φ
−1(t) = et ·

[
θ

(et + θ)2 +
3θ

(et − θ)2

]
≥ 0 ,

for all θ ∈ [0, 1] . Thus, for θ ∈ [0, 1] random variables Y1, Y2 possess the TP2
property.

(ii) Consider random variables Y1, Y2 with Gumbel-Barnett survival copula from Ex-
ample 2.49. By analogy to (i)

∂2

∂t2φ
−1(t) = exp

(
1 − et

θ

)
et

θ

(
et

θ
− 1

)
∂2

∂t2 ln
∂2

∂t2φ
−1(t) = − et

θ

[
1 + 1/

( et

θ
− 1

)2
]
< 0
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3.3 Special cases of dependence

for all θ ∈ [0, 1), t ∈ [0, ∞] , consequently Y1, Y2 are not TP2 for any θ .

(iii) Consider exchangeable random variables Y1, . . . , Yn with joint survival function de-
scribed by an n-dimensional Clayton copula from Example 2.52. Let the correspond-
ing marginal survival function F(·) be absolutely continuous . Due to the integral
representation (2.40) the joint density of Y1, . . . , Yn is of the form

f (t1, . . . , tn) =

∫ ∞
0
θn exp

[
−θ

n

∑
i=0
φ−1(F(ti)

)]

×
n

∏
i=1

(
φ−1)′(F(ti)

)
F′(ti) π(θ) dθ ,

where t1, . . . , tn ∈ R+ . Note that

∂2

∂θ∂t
ln exp

[
θφ−1(F(t))]

=
∂2

∂θ∂t

[
θφ−1(F(t))]

=
(
φ−1)′(F(t))F′(t)

≥ 0 .

Therefore, according to Lemma 3.12, the function exp

[
θφ−1(F(t))] is TP2 with

respect to θ, t . Then exp

[
−θφ−1(F(t))] is RR2 and so is

θ exp

[
−θφ−1(F(ti)

)] (
φ−1)′(F(ti)

)
F′(ti) .

Applying Lemma 3.20 together with Lemma 3.30 we can conclude that f (t1, . . . , tn)
is MTP2 .
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4 Dependence properties of sequential order statistics

In previous chapters we have looked at different models for ordered data such
as ordinary order statistics based on iid or exchangeable random variables, se-
quential order statistics based on conditionally iid and sequential order statistics
based on exchangeable random variables. As illustrated in Remark 1.16 sequen-
tial order statistics based on exchangeable random variables generalize other con-
sidered models. Regarding the dependence properties, Example 3.23 and Lemma
3.32 presented cases when ordered random variables inherit the dependence prop-
erties from the underlying distributions. The question arises if these results can be
extended to the case of sequential order statistics based on exchangeable random
variables.

In this respect the upcoming reasoning will be dedicated to the investigation of
the relationship between the properties of sequential order statistics X(1)

∗ , . . . , X(n)
∗

and the underlying exchangeable random variables Y(i)
1 , . . . , Y(i)

n , i = 1, . . . , n . As
usual by Y(i)

1:n, . . . , Y(i)
i:n we will denote order statistics based on Y(i)

1 , . . . , Y(i)
n , i =

1, . . . , n .

4.1 CIS and SL

According to Example 3.23 order statistics based on exchangeable random vari-
ables are known to be MTP2 . As the CIS property is weaker then MTP2 we can
conclude that such order statistics are also CIS. In the following we provide a sim-
ilar statement for sequential order statistics based on exchangeable random vari-
ables.

Theorem 4.1. If Y(i)
1:n, . . . , Y(i)

i:n are CIS for i = 1, . . . , n, then X(1)
∗ , . . . , X(n)

∗ are CIS.

Proof. According to Definition 3.9 (ii) we need to verify that for t j ≤ t′j and j =
1, . . . , i − 1 holds

P(X(i)
∗ > t |X(i−1)

∗ = ti−1, . . . , X(1)
∗ = t1)

≤ P(X(i)
∗ > t |X(i−1)

∗ = t′i−1, . . . , X(1)
∗ = t′1) .

Note that according to Definition 1.11 conditional probabilities of X(1)
∗ , . . . , X(n)

∗
have the representation

P(X(i)
∗ > t |X(i−1)

∗ = ti−1, . . . , X(1)
∗ = t1)

104



4.2 HIF

= P(Y(i)
i:n > t |Y(i)

i−1:n = ti−1, . . . , Y(i)
1:n = t1) .

Since Y(i)
1:n, . . . , Y(i)

n:n are CIS, the result follows.

Remark 4.2. By analogy we can state that: If Y(i)
1:n, . . . , Y(i)

i:n are CDS for i = 1, . . . , n,
then X(1)

∗ , . . . , X(n)
∗ are CDS.

Theorem 4.3. If Y(i)
1 , . . . , Y(i)

n are MTP2 for i = 1, . . . , n, then X(1)
∗ , . . . , X(n)

∗ are CIS.

Proof. Recall that MTP2 of exchangeable Y(i)
1 , . . . , Y(i)

n implies the MTP2 of their
order statistics. Moreover, according to Theorem 3.14, MTP2 is stronger then the
CIS property. Then, applying Theorem 4.1, we obtain the result .

Theorem 4.4. If for i = 1, . . . , n Y(i)
1 , . . . , Y(i)

n are MTP2 , then X(1)
∗ , . . . , X(n)

∗ are SL.

Proof. Since X(1)
∗ , . . . , X(n)

∗ are absolutely continuous ordered random variables, the
proof follows from Theorem 4.3 combined with Lemma 3.34.

Note that Theorems 4.3 and 4.4 state that X(1)
∗ , . . . , X(n)

∗ inherit at least to some
extent the dependence properties of underlying distributions.

4.2 HIF

As we have seen in Lemma 3.32 the HIF property of exchangeable random vari-
ables implies the HIF property of their order statistics. It turns out that the relation
also holds for sequential order statistics based on exchangeable random variables.

Theorem 4.5. If Y(i)
1 , . . . , Y(i)

n are HIF for i = 1, . . . , n, then X(1)
∗ , . . . , X(n)

∗ are HIF.

Proof. Taking into account (3.23) HIF of X(1)
∗ , . . . , X(n)

∗ can be defined by

λ(∗,i)(t|x1, . . . , xi−1) ≤ λ(∗,i)(t|y1, . . . , yi−1) , (4.1)

λ(∗,1)(t) ≤ λ(∗,1)(t) ,

where 0 ≤ y j ≤ x j < t for j = 1, . . . , i − 1, i = 2, . . . , n . By (2.13) inequalities in
(4.1) are equivalent to

λ(i)(t|x1, . . . , xi−1) ≤ λ(i)(t|y1, . . . , yi−1) ,

λ(1)(t) ≤ λ(1)(t) ,
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4.3 MTP2

respectively. They hold due to the HIF property of Y(i)
1 , . . . , Y(i)

n , i = 1, . . . , n .

Thus, due to the construction of sequential order statistics their behavior with
respect to the HIF property is fully determined by the corresponding properties of
distributions on the levels.

4.3 MTP2

4.3.1 Necessary conditions

Theorem 4.6. If X(1)
∗ , . . . , X(n)

∗ are MTP2 , then f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti) is TP2 in ti, tk for
t1, . . . , ti ∈ R+ and k = 1, . . . , i − 1, i = 2, . . . , n.

Proof. By Theorem 3.18 MTP2 of X(1)
∗ , . . . , X(n)

∗ implies the MTP2 of the marginal
densities

f X(1)
∗ ,...,X(i)

∗ =
i

∏
j=1

f Y( j)
j:n |Y

( j)
j−1:n ,...,Y( j)

1:n(t j|t j−1, . . . , t1) ,

where i = 2, . . . , n .
Note that f X(1)

∗ ,...,X(i)
∗ depends on ti only through f Y(i)

1:n ,...,Y(i)
i:n (t1, . . . , ti−1, ti) . Then

MTP2 of f X(1)
∗ ,...,X(i)

∗ implies that f Y(i)
1:n ,...,Y(i)

i−1:n ,Y(i)
i:n (t1, . . . , ti−1, ti) is TP2 in ti, tk , where

k = 1, . . . , i − 1.

4.3.2 Sufficient conditions

We will start the analysis of sufficient conditions for the MTP2 of sequential order
statistics by looking at the combination of Lemma 2.13 and 3.12.

Lemma 4.7. Consider sequential order statistics X(1)
∗ , . . . , X(n)

∗ with a density which is
twice partially differentiable on

A = {(t1, . . . , tn) | f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) 6= 0}

in every pair ti, t j, i 6= j, i, j = 1, . . . , n. Then X(1)
∗ , . . . , X(n)

∗ are MTP2 on A iff one
of the following conditions is satisfied

(i) ∂2

∂ti∂t j

[ n

∑
k=i

ln f Y(k)
k:n |Y

(k)
k−1:n ,...,Y(k)

1:n (tk|tk−1, . . . , t1)

]
≥ 0 ,
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4.3 MTP2

(ii) ∂2

∂ti∂t j

n

∑
k=i

[
ln λ(k)(tk|t1, . . . , tk−1) − (n − k + 1)

∫ tk

tk−1

λ(k)(u|t1, . . . , tk−1)du
]
≥ 0

for 1 ≤ i < j ≤ n, (t1, . . . , tn) ∈ A .

Proof. Condition (i) is obtained by applying Lemma 3.12 for the joint density of
X(1)
∗ , . . . , X(n)

∗ . Namely, for 1 ≤ i < j ≤ n and 0 ≤ t1 ≤ . . . ≤ tn should hold

∂2

∂ti∂t j
ln f X(1)

∗ ,...,X(n)
∗ (t1, . . . , tn) =

∂2

∂ti∂t j
ln

n

∏
i=1

f X(i)
∗ |X

(i−1)
∗ ,...,X(1)

∗ (ti|ti−1, . . . , t1)

=
∂2

∂ti∂t j
ln

n

∏
i=1

f Y(i)
i:n |Y

(i)
i−1:n ,...,Y(i)

1:n(ti|ti−1, . . . , t1)

=
∂2

∂ti∂t j

[ n

∑
k=i

ln f Y(i)
i:n |Y

(i)
i−1:n ,...,Y(i)

1:n(ti|ti−1, . . . , t1)

]
≥ 0 .

The second condition is obtained from Lemma 3.12 together with Lemma 2.13.

The following example illustrates the application of Lemma 4.7.

Example 4.8. Consider continuous exchangeable random variables Y(i)
1 , Y(i)

2 , Y(i)
3 , i =

1, 2, 3 from Example 1.15. Moreover, let λi = λ > 0 for i = 1, 2, 3 . Then, from (1.10)
follows that the joint density of sequential order statistics based on Y(i)

1 , Y(i)
2 , Y(i)

3 can be
obtained as

f X(1)
∗ ,X(2)

∗ ,X(3)
∗ (t1, t2, t3) = 3!λα1 α1(α2 + 1) (α3 + 2)

× (t1 + 2t2 + λ)α3−α2(3t1 + λ)α2−α1

(t1 + t2 + t3 + λ)α3+3 ,

where 0 ≤ t1 ≤ t2 ≤ t3 .
In the following we will check the MTP2 property of X(1)

∗ , X(2)
∗ , X(3)

∗ by verifying
Lemma 4.7 (i). We start by calculating ∂2

∂t2∂t3
ln f X(1)

∗ ,X(2)
∗ ,X(3)

∗ (t1, t2, t3) :

∂2

∂t2∂t3
ln f X(1)

∗ ,X(2)
∗ ,X(3)

∗ (t1, t2, t3) = −
∂2

∂t2∂t3
(α3 + 3) ln(t1 + t2 + t3 + λ)
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4.3 MTP2

= − ∂

∂t2

α3 + 3
t1 + t2 + t3 + λ

=
α3 + 3

(t1 + t2 + t3 + λ)2 ≥ 0 .

It follows by analogy that ∂2

∂t1∂t3
ln f X(1)

∗ ,X(2)
∗ ,X(3)

∗ (t1, t2, t3) ≥ 0 . Next, let us look at the

sign of ∂2

∂t1∂t2
ln f X(1)

∗ ,X(2)
∗ ,X(3)

∗ (t1, t2, t3) :

∂2

∂t1∂t2
ln f X(1)

∗ ,X(2)
∗ ,X(3)

∗ (t1, t2, t3) =
∂2

∂t1∂t2

[
(α3 − α2) ln(t1 + 2t2 + λ)

− (α3 + 3) ln(t1 + t2 + t3 + λ)
]

=
∂

∂t1

[
2 (α3 − α2)

t1 + 2t2 + λ
− α3 + 3

t1 + t2 + t3 + λ

]
=

2 (α2 − α3)

(t1 + 2t2 + λ)2 +
α3 + 3

(t1 + t2 + t3 + λ)2 .

We can conclude that α2 ≥ α3 yields ∂2

∂t1∂t2
ln f X(1)

∗ ,X(2)
∗ ,X(3)

∗ (t1, t2, t3) ≥ 0 . Therefore for

α2 ≥ α3 X(1)
∗ , X(2)

∗ , X(3)
∗ possess an MTP2 density.

Let us look closer at the case α2 < α3 and search for t1, t2, t3 that do not satisfy Lemma
4.7 (i). In this respect consider the inequality

2 (α3 − α2)

(t1 + 2t2 + λ)2 ≥
α3 + 3

(t1 + t2 + t3 + λ)2 .

It can be rewritten in the form

(t1 + t2 + t3 + λ)2 ≥ (α3 + 3)(t1 + 2t2 + λ)2

2 (α3 − α2)
.

Further, since t1, t2, t3,α3, λ ≥ 0 and α3 > α2 , we can state equivalently that

t3 ≥

√
(α3 + 3)(t1 + 2t2 + λ)2

2 (α3 − α2)
− t1 − t2 − λ .

108



4.3 MTP2

Restricting α3 > α2 we can bound the expression on the right with√
(α3 + 3)(t1 + 2t2 + λ)2

2 (α3 − α2)
− t1 − t2 − λ ≤

√
(α3 + 3)(t1 + 2t2 + λ)2

2 (α3 − α2)

< ∞ .

Then for every choice of parameter λ and every t1, t2 ≥ 0 there exists such t3 ≥ t2 that

∂2

∂t1∂t2
ln f X(1)

∗ ,X(2)
∗ ,X(3)

∗ (t1, t2, t3) ≤ 0 .

In other words for α3 > α2 X(1)
∗ , X(2)

∗ , X(3)
∗ are not MTP2 .

Remark 4.9.

(i) Consider the random variables X(1)
∗ , X(2)

∗ , X(3)
∗ from the previous example. Note that

according to Remark 3.45 Y(i)
1 , Y(i)

2 , Y(i)
3 are MTP2 for each i = 1, 2, 3 . Thus, al-

though all the underlying distributions are MTP2 , for a specific choice of parameters
we obtain sequential order statistics, that are not MTP2 . Thereby sequential order
statistics based on exchangeable random variables differ from other models of ordered
data that we considered in this thesis (recall Example 3.23).

(ii) For n = 2 f X(1)
∗ ,X(2)

∗ is MTP2 iff f Y(2)
1:2 ,Y(2)

2:2 is MTP2 .

Lemma 4.10. Assume Y(n)
1:n , . . . , Y(n)

n:n to be MTP2 . Then X(1)
∗ , . . . , X(n)

∗ possess the

MTP2 property if f Y(i)1:n ,...,Y(i)i:n

f Y(i+1)
1:n ,...,Y(i+1)

i:n

is MTP2 for i = 2, . . . , n − 1 .

Proof. Recall that the joint density of sequential order statistics is of the form

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = f Y(1)
1:n (t1)

n

∏
i=2

f Y(i)
i:n |Y

(i)
i−1:n ,...,Y(i)

1:n(ti|ti−1, . . . , t1)

= f Y(n)
1:n ,...,Y(n)

n:n (t1, . . . , tn)
n−1

∏
i=1

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)
.

Then the result follows from Theorem 3.15.
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Remark 4.11. Applying Lemma 3.12 to twice partially differentiable functions f Y(i)
1:n ,...,Y(i)

i:n

and f Y(i+1)
1:n ,...,Y(i+1)

i:n , the MTP2 property of f Y(i)1:n ,...,Y(i)i:n

f Y(i+1)
1:n ,...,Y(i+1)

i:n

is equivalent to

∂2

∂tk∂tl
ln

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)
≥ 0

for 0 ≤ t1 ≤ . . . ≤ ti and 1 ≤ k < l ≤ i .

4.4 Special cases

4.4.1 Distributions with Markov order statistics

Theorem 4.12. For i = 1, . . . , n, k = 1, . . . , n − 1 consider Y(i)
1 , . . . , Y(i)

n with condi-
tional hazard rates that can be represented as

λ(i)(t|t1, . . . , tk) = gi(t, k) .

Then X(1)
∗ , . . . , X(n)

∗ are MTP2 .

Proof. Denote

li(t, h) =
∫ t

0
gi(u, h)du .

Then according to Lemma 2.13 we can write

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn)

=

( n

∏
i=1

gi(ti, i − 1)

)
exp

(
−n

∫ t1

0
g1(u, 0)du

)

× exp

(
−

n

∑
h=2

(n − h + 1)
∫ th

th−1

gh(u, h − 1)du

)
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or in terms of li(t, h)

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn)

=

( n

∏
i=1

gi(ti, i − 1)

)
exp

(
−n
(

l1(t1, 0) − l1(0, 0)
))

× exp

(
−

n

∑
h=2

(n − h + 1)
(

lh(th, h − 1) − lh(th−1, h − 1)
))

,

(4.2)

where 0 < t1 ≤ . . . ≤ tn . In other words, f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) can be represented
as a product of functions depending only on one of the ti ’s each. Then the result
follows by Theorem 3.15.

Recall that by Lemma 2.21 order statistics Y(i)
1:n, . . . , Y(i)

n:n of the random variables
Y(i)

1 , . . . , Y(i)
n from Theorem 4.12 possess the Markov property. Therefore we can

state the following generalization of Theorem 4.12.

Theorem 4.13. Consider Y(i)
1 , . . . , Y(i)

n such that Y(i)
1:n, . . . , Y(i)

n:n possess the Markov prop-
erty for every i = 1, . . . , n. If order statistics Y(i)

1:n, . . . , Y(i)
n:n are MTP2 for i = 1, . . . , n,

then X(1)
∗ , . . . , X(n)

∗ are MTP2 .

Proof. Since Y(i)
1:n, . . . , Y(i)

n:n are Markov, representation (1.7) turns into

f X(k)
∗ |X

(k−1)
∗ ,...,X(1)

∗ (tk|tk−1, . . . , t1) = f Y(k)
k:n |Y

(k)
k−1:n(tk|tk−1)

and the corresponding joint density function can be calculated as

f X(1)
∗ ,...,X(n)

∗ = f Y(1)
1:n (t1)

n

∏
k=2

f Y(k)
k:n |Y

(k)
k−1:n(tk|tk−1) .

Note that according to Theorem 3.18 MTP2 property of Y(i)
1:n, . . . , Y(i)

n:n implies the
MTP2 of conditional densities

f Y(k)
k:n |Y

(k)
k−1:n(tk|tk−1) =

f Y(k)
k−1:n ,Y(k)

k:n (tk−1, tk)

f Y(k)
k−1:n(tk−1)

.
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By applying Lemma 3.21, we obtain the result.

Example 4.14. Let Y(i)
1 , . . . , Y(i)

n be the exchangeable random variables obtained from se-
quential order statistics in Example 2.19 with parameters θi

0, . . . ,θi
n−1 ≥ 0, i = 1, . . . , n.

Then the corresponding conditional hazard rates possess the representation

λ(i)(t|t1, . . . , th) =
1
θi

h
a.s.

By Lemma 4.12 we can conclude that X(1)
∗ , . . . , X(n)

∗ are MTP2 . Note that although the
order statistics Y(i)

1:n, . . . , Y(i)
n:n possess the MTP2 property, the random variables Y(i)

1 , . . . ,
Y(i)

n are not necessarily MTP2 as illustrated in Example 3.38.

Thus, the MTP2 property of X(1)
∗ , . . . , X(n)

∗ is guaranteed by the MTP2 property
of underlying distributions of order statistics.

4.4.2 Schur-constant densities

First let us look at the representation for the density of sequential order statistics
based on Schur-constant random variables.

Lemma 4.15. Let Y(i)
1 , . . . , Y(i)

n be absolutely continuous Schur-constant with n-times
differentiable survival functions Φi, i = 1, . . . , n. Then the joint density of sequential
order statistics can be written as

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = (−1)n n! Φ(1)
1 (y1)

n

∏
i=2

Φ
(i)
i (yi)

Φ
(i−1)
i (yi−1)

,

where yi = ∑
i−1
j=1 t j + (n − i + 1)ti and 0 ≤ t1 ≤ . . . ≤ tn .

Proof. Combining (2.13) with the representation for conditional hazard rates from
Lemma 2.31 (ii) we obtain

λ(∗,h)(t|t1, . . . , th−1) = −(n − h + 1)
Φ

(h)
h (y)

Φ
(h−1)
h (y)

∣∣∣∣∣
y=∑

h−1
j=1 t j+(n−h+1)t

= −(n − h + 1)
∂

∂y
ln Φ

(h−1)
h (y)

∣∣∣∣
y=∑

h−1
j=1 t j+(n−h+1)t

,

112



4.4 Special cases

which allows the following representation

exp

(
−
∫ th

th−1

λ(∗,h)(t|t1, . . . , th−1)dt

)

= exp

(
(n − h + 1)

∫ th

th−1

∂

∂y
ln Φ

(h−1)
h (y)

∣∣∣∣
y=∑

h−1
j=1 t j+(n−h+1)t

dt

)

= exp

(∫ yh

yh−1

∂

∂y
ln Φ

(h−1)
h (y)dy

)

=
Φ

(h−1)
h (yh)

Φ
(h−1)
h (yh−1)

.

Then applying Lemma 2.13 we can write

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = (−1)n n!
Φ

(0)
1 (y1)

Φ
(0)
1 (0)

Φ
(1)
1 (y1)

Φ
(0)
1 (y1)

×
n

∏
i=2

Φ
(i−1)
i (yi)

Φ
(i−1)
i (yi−1)

Φ
(i)
i (yi)

Φ
(i−1)
i (yi)

= (−1)n n! Φ(1)
1 (y1)

n

∏
i=2

Φ
(i)
i (yi)

Φ
(i−1)
i (yi−1)

.

With respect to the MTP2 property of sequential order statistics based on Schur-
constant random variables we can state the following:

Lemma 4.16. Let Y(i) = (Y(i)
1 , . . . , Y(i)

n ) be a random vector of absolutely continuous
MTP2 Schur-constant lifetimes with an n-times differentiable survival function Φi and
hazard rates

λ(i)(h, y) = −
Φ

(h+1)
i (y)

Φ
(h)
i (y)

,

where i = 1, . . . , n, h = 0, . . . , n − 1 and y ≥ 0 . Moreover let Φn−1, Φn be (n + 1) -
times differentiable.
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If for i = 2, . . . , n − 1 and y ≥ 0 holds

∂

∂y
(
λ(i+1)(i, y) − λ(i)(i, y)

)
≥ 0 , (4.3)

then X(1)
∗ , . . . , X(n)

∗ are MTP2 .

Proof. Since Y(i) is MTP2 , by Lemma 4.10 it suffices to ensure that

∂2

∂tk∂tl
ln

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)
≥ 0 , (4.4)

for 0 ≤ t1 ≤ . . . ≤ ti and 1 ≤ l < k ≤ i, i = 2, . . . , n − 1. Due to the representa-

tion (2.26) for marginal densities f Y(i)
1:n ,...,Y(i)

i:n , the expression on the left hand side of
(4.4) can be rewritten as

∂2

∂tk∂tl
ln

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)

=
∂2

∂tk∂tl

[
ln
(
(−1)iΦ

(i)
i (y)

)
− ln

(
(−1)iΦ

(i)
i+1(y)

)]∣∣∣∣∣
y=τ

,

where τ = ∑
i−1
j=1 t j + (n − i + 1)ti .

Then, for k 6= i ∂2

∂tk∂tl
ln f Y(i)1:n ,...,Y(i)i:n

f Y(i+1)
1:n ,...,Y(i+1)

i:n

turns into

∂2

∂tk∂tl
ln

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)

=
∂

∂tl

[
Φ

(i+1)
i (y)

Φ
(i)
i (y)

−
Φ

(i+1)
i+1 (y)

Φ
(i)
i+1(y)

]∣∣∣∣∣
y = ∑

i−1
j=1 t j + (n − i + 1)ti

=
∂

∂y

[
λ(i+1)(i, y) − λ(i)(i, y)

]∣∣∣∣∣
y = ∑

i−1
j=1 t j + (n − i + 1)ti

.

(4.5)
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By analogy, for k = i the derivative can be calculated as

∂2

∂tk∂tl
ln

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)

= (n − i + 1)
∂

∂y

[
λ(i+1)(i, y) − λ(i)(i, y)

]∣∣∣
y = ∑

i−1
j=1 t j + (n − i + 1)ti

.

(4.6)

Substituting (4.6) and (4.5) into (4.4) we obtain the required statement.

Lemma 4.17. For i = 1, . . . , n let Y(i) = (Y(i)
1 , . . . , Y(i)

n ) be an absolutely continuous
MTP2 vector of Schur-constant lifetimes with n-times differentiable joint survival func-
tion Φi . Moreover let Φn−1, Φn be (n + 1) -times differentiable. If for i = 2, . . . , n − 1
and y ≥ 0 holds

(i) Y(i) ≤hr Y(i+1) ,

(ii)
λ(i+1)(i + 1, y)
λ(i+1)(i, y)

≤
λ(i)(i + 1, y)
λ(i)(i, y)

,

then the relationship (4.3) is satisfied, i.e.

∂

∂y
(
λ(i+1)(i, y) − λ(i)(i, y)

)
≥ 0 .

Proof. First, consider the derivative ∂

∂y ln λ(i)(h, y) . Due to (2.25) it can be represen-
ted as

∂

∂y
ln λ(i)(h, y) =

∂

∂y
ln
[
(−1)h+1Φ

(h+1)
i (y)

]
− ∂

∂y
ln
[
(−1)hΦ

(h)
i (y)

]
= λ(i)(h, y) − λ(i)(h + 1, y) .

Then for i = 1, . . . , n, h = 1, . . . , n − 1 holds

∂

∂y
λ(i)(h, y) = λ(i)(h, y)

∂

∂y
ln λ(i)(h, y)

= λ(i)(h, y)
(
λ(i)(h, y) − λ(i)(h + 1, y)

)
.
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The last observation allows to represent the expression on the left hand side of (4.3)
as

∂

∂y
(
λ(i+1)(i, y) − λ(i)(i, y)

)
= λ(i+1)(i, y)

(
λ(i+1)(i, y) − λ(i+1)(i + 1, y)

)
− λ(i)(i, y)

(
λ(i)(i, y) − λ(i)(i + 1, y)

)
.

It suffices to show that under the conditions of the lemma holds

λ(i+1)(i, y)
(
λ(i+1)(i + 1, y) − λ(i+1)(i, y)

)
≤ λ(i)(i, y)

(
λ(i)(i + 1, y) − λ(i)(i, y)

)
. (4.7)

Let us proceed with the verification of (4.7) in several steps.
Consider the case λ(i)(i, y) = 0, due to condition (i) of the lemma it implies

λ(i+1)(i, y) = 0 and (4.7) turns into 0 ≤ 0.
Next assume that λ(i+1)(i, y) = 0. Note that the MTP2 property of Y(i) yields

λ(i)(i + 1, y) − λ(i)(i, y) ≥ 0 .

Thus the expression on the left hand side of (4.7) turns into 0 and the one on the
right hand side is non-negative. We can conclude that in this case (4.7) holds.

It is left to consider the case λ(i)(i, y)λ(i+1)(i, y) > 0. Dividing both parts of
(4.7) by λ2

(i)(i, y)λ2
(i+1)(i, y) > 0 we obtain

1
λ2
(i)(i, y)

(
λ(i+1)(i + 1, y)
λ(i+1)(i, y)

− 1

)

≤ 1
λ2
(i+1)(i, y)

(
λ(i)(i + 1, y)
λ(i)(i, y)

− 1

)
. (4.8)

Note that from condition (i) follows that

λ2
(i)(i, y) ≥ λ2

(i+1)(i, y)

⇔ 1
λ2
(i)(i, y)

≤ 1
λ2
(i+1)(i, y)

. (4.9)
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In addition, condition (ii) ensures

λ(i+1)(i + 1, y)
λ(i+1)(i, y)

− 1 ≤
λ(i)(i + 1, y)
λ(i)(i, y)

− 1 . (4.10)

Finally, from (4.9) together with (4.10) we can conclude that (4.8) is satisfied.

Lemma 4.18. For i = 1, . . . , n let Y(i) = (Y(i)
1 , . . . , Y(i)

n ) be an absolutely continuous
MTP2 vector of Schur-constant lifetimes with n-times differentiable joint survival func-
tions Φi . Let Φn−1, Φn be (n + 1) -times differentiable functions. If for i = 2, . . . , n − 1
and y ≥ 0 holds

(i) Y(i) ≤hr Y(i+1) ,

(ii)
∂

∂y
λ(i+1)(i, y)
λ(i)(i, y)

≥ 0 ,

then

∂

∂y
(
λ(i+1)(i, y) − λ(i)(i, y)

)
≥ 0 .

Proof. It suffices to show that, under the conditions of the lemma, function

λ(i+1)(i, y) − λ(i)(i, y)

is increasing in y , i.e.

λ(i+1)(i, y1) − λ(i)(i, y1) ≤ λ(i+1)(i, y2) − λ(i)(i, y2)

⇔ λ(i+1)(i, y1) + λ(i)(i, y2) ≤ λ(i+1)(i, y2) + λ(i)(i, y1)

for 0 ≤ y1 ≤ y2 . In the last inequality denote the summands from left to right as
a, b, c, d . Herewith we need to prove that a + b ≤ c + d .

Since Y(i) ≤hr Y(i+1) and Y(i) is MTP2 we can state

λ(i)(i, y1) ≥ λ(i+1)(i, y1)

λ(i)(i, y1) ≥ λ(i)(i, y2) ,
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in other words d ≥ a, b . Note that for 0 ≤ y1 ≤ y2 condition (ii) is equivalent to

λ(i+1)(i, y1)

λ(i)(i, y1)
≤
λ(i+1)(i, y2)

λ(i)(i, y2)

⇔ λ(i+1)(i, y1)λ(i)(i, y2) ≤ λ(i)(i, y1)λ(i+1)(i, y2) ,

in terms of the introduced notation ab ≤ cd .
Then, we can conclude that

(c + d) − (a + b) =
1
d
[(d − a)(d − b) + (cd − ab)] ≥ 0 .

Consequently, a + b ≤ c + d , which is the required result.
The development of the inequality a + b ≤ c + d as above can be found in the

proof of Theorem 2.1 in Karlin & Rinott (1980a).

Theorem 4.19. For i = 1, . . . , n let Y(i) = (Y(i)
1 , . . . , Y(i)

n ) be an absolutely continuous
MTP2 vectors of Schur-constant lifetimes with n-times differentiable joint survival func-
tions Φi and hazard rates

λ(i)(h, y) = −
Φ

(h+1)
i (y)

Φ
(h)
i (y)

.

Moreover let Φn−1, Φn be (n + 1) -time differentiable functions.
If for i = 2, . . . , n − 1, y ≥ 0 one of the following conditions is satisfied

(i)

∂

∂y
(λ(i+1)(i, y) − λ(i)(i, y)) ≥ 0 ,

(ii) Y(i) ≤hr Y(i+1) and

λ(i+1)(i + 1, y)
λ(i+1)(i, y)

≤
λ(i)(i + 1, y)
λ(i)(i, y)

,
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(iii) Y(i) ≤hr Y(i+1) and

∂

∂y
λ(i+1)(i, y)
λ(i)(i, y)

≥ 0 ,

then X(1)
∗ , . . . , X(n)

∗ are MTP2 .
Moreover (ii) ⇒ (i) and (iii) ⇒ (i).

Proof. Direct consequence of Lemma 4.16, Lemma 4.17 and Lemma 4.18.

Example 4.20. Consider random vectors Y(i) = (Y(i)
1 , . . . , Y(i)

n ) described in Example 3.4,
i = 1, . . . , n. Recall that Y(i) possess the joint survival function described by (3.7), i.e.

Fi(t1, . . . , tn) =

(
1 +

αi(t1 + . . . + tn)

α

)−α
,

where αi,α > 0, i = 1, . . . , n. Next we are going to look at restrictions on αi and α that
ensure the condition (i) of Theorem 4.19.

Taking into account (3.8), (i) can be written as

∂

∂y
(
λ(i+1)(i, y) − λ(i)(i, y)

)
= (α + i)

[
−
(αi+1

α

)2(
1 +

αi+1

α
y
)−2

+
(αi

α

)2(
1 +

αi

α
y
)−2

]
≥ 0 .

The last inequality is equivalent to

α2
i+1

(α + αi+1 y)2 ≤
α2

i
(α + αi y)2

⇔ α2
i+1α

2 + 2α2
i+1ααi y + α2

i+1α
2
i y2 ≤ α2

iα
2 + 2α2

iααi+1 y + α2
i+1α

2
i y2

⇔ α2(αi+1 − αi)(αi+1 + αi) ≤ 2ααiαi+1 y(αi − αi+1) ,

which holds for all y ≥ 0 iff αi ≥ αi+1 . Therefore, sequential order statistics based on
such Y(i) are MTP2 if αi ≥ αi+1, i = 1, . . . , n − 1 . Moreover, from Example 3.4 follows
that Y(i) ≤hr Y(i+1) .
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Remark 4.21. Considering vectors with completely monotone survival functions Lemma
3.8 allows us to give conditions in Theorem 4.19 which may be easier to check. Assume that
the joint density of Y(i)

1 , . . . , Y(i)
n has a form

f Y(i)
1 ,...,Y(i)

n (t1, . . . , tn) =

∫ ∞
0
θn exp

(
−θ

n

∑
j=1

t j

)
πi(θ)dθ , (4.11)

where πi is a univariate density function, i = 1, . . . , n. First, note that due to representa-
tion (4.11) by Remark 3.45 the vectors Y(i) are MTP2 . Second, conditions Y(i) ≤hr Y(i+1)
can be replaced by πi+1 ≤lr πi . Taking into account that hr-order is weaker than lr-order,
the observation follows from Theorem 4.19 and Lemma 3.8.

Assume that Φi(y) = Φ(y,αi
1, . . . ,αi

k) . In other words Φi belong to the same
distribution family and are distinguished only by values of the parameters α1, . . . ,
αk . In particular, αi

1, . . . ,αi
k is a set of parameters that correspond to Φi .

Lemma 4.22. Let Y(i)
1 , . . . , Y(i)

n be absolutely continuous MTP2 Schur-constant lifetimes
with n-times differentiable survival functions Φi(y) = Φ(y,αi

1, . . . ,αi
k), i = 1, . . . , n,

k ∈ N , and hazard rates

λ(i)(h, y) = −
Φ(h+1)(y,αi

1, . . . ,αi
k)

Φ(h)(y,αi
1, . . . ,αi

k)

= λ(h, y,αi
1, . . . ,αi

k) .

Moreover, let Φn−1, Φn be (n + 1) -times differentiable in y. If for y ≥ 0 and i =
2, . . . , n − 1 holds

(i) ∂

∂yλ(h, y,α1, . . . ,αk) is increasing (decreasing) in α j if y is held fix, j = 1, . . . , k ,

(ii) αi
1,αi

2, . . . ,αi
n are increasing (decreasing) in i ,

then X(1)
∗ , . . . , X(n)

∗ are MTP2 .

Proof. In the following we consider an increasing sequence αi
1,αi

2, . . . ,αi
n . The

proof for a decreasing sequence follows by analogy.
To begin with, rewrite the condition (i) of Theorem 4.19 as

∂

∂y
λ(h, y,αi

1,αi
2 . . . ,αi

k) ≤
∂

∂y
λ(h, y,αi+1

1 ,αi+1
2 . . . ,αi+1

k )
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and denote by

g(h, y,α1,α2 . . . ,αk) =
∂

∂y
λ(h, y,α1,α2 . . . ,αk) .

Then, since g is increasing in α1, . . . ,αk and αi
1,αi

2, . . . ,αi
n is increasing in i we can

state

g(h, y,αi
1,αi

2 . . . ,αi
k) ≤ g(h, y,αi+1

1 ,αi
2 . . . ,αi

k)

≤ g(h, y,αi+1
1 ,αi+1

2 ,αi
3 . . . ,αi

k)

. . .

≤ g(h, y,αi+1
1 ,αi+1

2 ,αi+1
3 . . . ,αi+1

k )

for i = 1, . . . , n − 1. Thus we have shown that Theorem 4.19 (i) is satisfied and
consequently X(1)

∗ , . . . , X(n)
∗ are MTP2 .

Lemma 4.23. For i = 1, . . . , n let Y(i) = (Y(i)
1 , . . . , Y(i)

n ) be an absolutely continuous
vector of MTP2 Schur-constant lifetimes with n-times differentiable survival function
Φi(y) = Φ(y,αi

1, . . . ,αi
k) and hazard rates

λ(i)(h, y) = −
Φ(h+1)(y,αi

1, . . . ,αi
k)

Φ(h)(y,αi
1, . . . ,αi

k)

= λ(h, y,αi
1, . . . ,αi

k) .

Moreover, let Φn−1, Φn be (n + 1) -times differentiable in y.
If for i = 2, . . . , n − 1 and y ≥ 0 holds

(i) Y(i) ≤hr Y(i+1),

(ii) λ(i+1,y,α1 ,...,αk)
λ(i,y,α1 ,...,αk)

is decreasing (increasing) in α j when y is held fix, j = 1, . . . , k,

(iii) αi
1,αi

2, . . . ,αi
n are increasing (decreasing) in i ,

then X(1)
∗ , . . . , X(n)

∗ are MTP2 .

Proof. Similar to the proof of Lemma 4.22, Lemma 4.23 implies condition (ii) of
Theorem 4.19 .
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Example 4.24. With the help of Lemma 4.23 we can generalize Example 4.20. Namely,
consider a vector of Schur-constant random variables Y(i) = (Y(i)

1 , . . . , Y(i)
n ) with Pareto

survival function of the second kind

Φi(t) = (1 + βit)−αi ,

where αi,βi > 0, t ≥ 0 . In particular replacing (αi,βi) with (α, αi
α ) we obtain the case

considered in Example 4.20. The h-th derivative of the survival function is represented by

Φ
(h)
i (t) = (−1)h (αi + h − 1)!

(αi − 1)!
βh

i (1 + βit)−αi−h

and with the help of (2.25) a hazard rate can be calculated as

λ(i)(h, y) = −
Φ

(h+1)
i (y)

Φ
(h)
i (y)

=
(αi + h + 1 − 1)! (αi − 1)!
(αi − 1)! (αi + h − 1)!

βh+1
i

βh
i

(1 + βi y)−αi−h−1+αi+h

= (αi + h)βi (1 + βi y)−1 .

Let us look at the requirements of Lemma 4.23. First, consider condition (i). In the following
we are going to claim a stronger relation namely that Y(i) ≤lr Y(i+1) . Recall that Pareto
survival function of the second kind correspond to the joint density

f Y(i)
1 ,...,Y(i)

n (t1, . . . , tn) =
∫ ∞

0
θn exp[−θ

n

∑
i=0

ti]πi(θ)dθ

with

πi(θ) =
1
β
αi
i

1
Γ(αi)

θαi−1 exp[− θ
βi

] .

According to Lemma 3.8 to verify Y(i) ≤lr Y(i+1) it suffices to show πi+1 ≤lr πi . The last
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is equivalent to ∂

∂θ
πi(θ)
πi+1(θ)

≥ 0 for θ ∈ R+ . Let us look at ∂

∂θ
πi(θ)
πi+1(θ)

:

∂

∂θ

πi(θ)

πi+1(θ)
=

∂

∂θ

[
β
αi+1
i+1

β
αi
i

Γ(αi+1)

Γ(αi)

θαi−1

θαi+1−1 exp
( θ

βi+1
− θ

βi

)]

=
β
αi+1
i+1

β
αi
i

Γ(αi+1)

Γ(αi)
θαi−αi+1−1 exp

( θ

βi+1
− θ

βi

)
×
[
(αi − αi+1) +

( 1
βi+1

− 1
βi

)
θ

]

Hence Y(i) ≤lr Y(i+1) if βi+1 ≤ βi and αi+1 ≤ αi .
Next, consider the ratio of λ(i)(i + 1, y) and λ(i)(i, y)

λ(i)(i + 1, y)
λ(i)(i, y)

=
αi + h + 1
αi + h

= 1 +
1

αi + h
.

Then we can state

∂

∂βi

λ(i)(i + 1, y)
λ(i)(i, y)

= 0 (4.12)

and

∂

∂αi

λ(i)(i + 1, y)
λ(i)(i, y)

= − 1
(αi + h)2

≤ 0
(4.13)

Due to (4.12) and (4.13) conditions (ii) and (iii) are satisfied. Thus, it follows by Lemma
4.23 that sequential order statistics based on random variables with Pareto survival func-
tion of the second kind are MTP2 if the corresponding joint densities are lr-ordered, namely
fi ≤lr fi+1 or in terms of parameters βi+1 ≤ βi and αi+1 ≤ αi, i = 2, . . . , n − 1 . Note
that Lemma 4.22 also leads to this result.
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4.4.3 Archimedean copulas

Lemma 4.25. For i = 1, . . . , n consider absolutely continuous Y(i)
1 , . . . , Y(i)

n . Let their
survival function be an Archimedean survival copula with strict generator function φi , i.e.

Si(t1, . . . , tn) = φ−1
i

(
φi
(

Fi(t1)
)
+ · · · + φi

(
Fi(tn)

))
.

Then the joint density function of X(1)
∗ , . . . , X(n)

∗ can be calculated as

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn)

= n!
∂

∂y
φ−1

1 (y)
∣∣∣∣

y=nφ1

(
F1(t1)

) φ′1(F1(t1)
)

f1(t1)

×
n

∏
i=2

∂i

∂yiφ
−1
i (y)|

y=∑
i−1
k=1φi

(
Fi(tk)

)
+(n−i+1)φi

(
Fi(ti)

)φ′i(Fi(ti)
)

fi(ti)

∂i−1

∂yi−1φ
−1
i (y)|

y=∑
i−1
k=1φi

(
Fi(tk)

)
+(n−i+1)φi

(
Fi(ti−1)

) ,

for 0 ≤ t1 ≤ . . . ≤ tn .

Proof. Recall that the joint density function of Y(i)
1 , . . . , Y(i)

n can be calculated as

fi(t1, . . . , tn) = (−1)n ∂n

∂t1 · · · ∂tn
Si(t1, . . . , tn)

=
∂n

∂ynφ
−1
i (y)

∣∣∣∣
y=∑

n
k=1φi

(
Fi(tk)

) n

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk) .

In the following, we are going to prove by induction that

∫ ∞
th−1

· · ·
∫ ∞

tn−1

fi(t1, . . . , tn)dtn . . . dth

=
1

(n − h + 1)!
∂h−1

∂yh−1φ
−1
i (y)

∣∣∣∣
y=∑

h−2
k=1 φi

(
Fi(tk)

)
+(n−h+2)φi

(
Fi(th−1)

)
×

h−1

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk) .

(4.14)
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Since Fi(∞) = 0 and φi is a strict generator, for h = n holds

∫ ∞
tn−1

fi(t1, . . . , tn)dtn

=
∫ ∞

tn−1

∂n

∂z1 . . . ∂zn
φ−1

i (z1 + . . . + zn)

∣∣∣∣zk=φi

(
Fi(tk)

)
k=1,...,n

n

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk)dtn

Applying the Leibniz integral rule we obtain

∫ ∞
tn−1

fi(t1, . . . , tn)dtn

=

[
− ∂n−1

∂z1 . . . ∂zn−1

∫ ∞
zn−1

∂

∂zn
φ−1

i (z1 + . . . + zn)dzn

− ∂n−1

∂z1 . . . ∂zn−2∂zn
φ−1

i (z1 + . . . + zn−1 + zn)

∣∣∣∣
zn=zn−1

]∣∣∣∣∣zk=φi

(
Fi(tk)

)
k=1,...,n

×
n−1

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk)

=

[
∂n−1

∂z1 . . . ∂zn−1

(
φ−1

i (
n−2

∑
k=1

zk + 2zn−1) − φ−1
i (∞)

)

− ∂n−1

∂z1 . . . ∂zn−2∂zn
φ−1

i (z1 + . . . + zn−1 + zn)

∣∣∣∣
zn=zn−1

]∣∣∣∣∣zk=φi

(
Fi(tk)

)
k=1,...,n

×
n−1

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk)

=

[
2

∂n−1

∂yn−1φ
−1
i (y) − ∂n−1

∂yn−1φ
−1
i (y)

]∣∣∣∣∣
y=∑

n−2
k=1 φi

(
Fi(tk)

)
+2φi

(
Fi(tn−1)

)
×

n−1

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk)
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=
∂n−1

∂yn−1φ
−1
i (y)

∣∣∣∣
y=∑

n−2
k=1 φi

(
Fi(tk)

)
+2φi

(
Fi(tn−1)

) n−1

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk) .

According to the induction hypothesis should be satisfied

∫ ∞
th

· · ·
∫ ∞

tn−1

fi(t1, . . . , tn)dtn . . . dth+1

=
1

(n − h)!
∂h

∂yhφ
−1
i (y)

∣∣∣∣
y=∑

h−1
k=1 φi

(
Fi(tk)

)
+(n−h+1)φi

(
Fi(th)

)
×

h

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk) .

(4.15)

Then we can represent the integral on the left hand side of (4.14) as

∫ ∞
th−1

· · ·
∫ ∞

tn−1

fi(t1, . . . , tn)dtn . . . dth

=
∫ ∞

th−1

1
(n − h)!

∂h

∂yhφ
−1
i (y)

∣∣∣∣
y=∑

h−1
k=1 φi

(
Fi(tk)

)
+(n−h+1)φi

(
Fi(th)

)
×

h

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk)dth

=
1

(n − h + 1)!
∂h−1

∂yh−1φ
−1
i (y)

∣∣∣∣
y=∑

h−2
k=1 φi

(
Fi(tk)

)
+(n−h+2)φi

(
Fi(th−1)

)
×

h−1

∏
k=1

φ′i
(

Fi(tk)
)

fi(tk)
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and the induction is completed. Equality (4.14) yields

f Y(i)
i:n |Y

(i)
i−1:n ,...,Y(i)

1:n(ti|ti−1, . . . , t1)

=

∫ ∞
ti

∫ ∞
yi+1

. . .
∫ ∞

yn−1

fi(t1, . . . , ti, yi+1, . . . , yn)dyn · · · dyi+2dyi+1∫ ∞
ti−1

∫ ∞
yi

. . .
∫ ∞

yn−1

fi(t1, . . . , ti−1, yi, . . . , yn)dyn · · · dyi+1dyi

=
(n − i + 1)!
(n − i)!

i

∏
k=1
φ′i
(

Fi(tk)
)

fi(tk)

i−1

∏
k=1
φ′i
(

Fi(tk)
)

fi(tk)

×

∂i

∂yiφ
−1
i (y)

∣∣∣
y=∑

i−1
k=1φi

(
Fi(tk)

)
+(n−i+1)φi

(
Fi(ti)

)
∂i−1

∂yi−1φ
−1
i (y)

∣∣∣
y=∑

i−2
k=1φi

(
Fi(tk)

)
+(n−i+2)φi

(
Fi(ti−1)

)
= (n − i + 1)φ′i

(
Fi(ti)

)
fi(ti)

×

∂i

∂yiφ
−1
i (y)

∣∣∣
y=∑

i−1
k=1φi

(
Fi(tk)

)
+(n−i+1)φi

(
Fi(ti)

)
∂i−1

∂yi−1φ
−1
i (y)

∣∣∣
y=∑

i−2
k=1φi

(
Fi(tk)

)
+(n−i+2)φi

(
Fi(ti−1)

) .

(4.16)

Then the result follows from the observation that

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = f Y(1)
1:n (t1)

n

∏
i=2

f Y(i)
i:n |Y

(i)
i−1:n ,...,Y(i)

1:n(ti|ti−1, . . . , t1) .

Lemma 4.26. Let Y(i)
1 , . . . , Y(i)

n possess a survival function represented by an Archime-
dean survival copula with a strict generator function φi, i = 1, . . . , n, i.e.

Si(t1, . . . , tn) = φ−1
i

(
φi
(

Fi(t1)
)
+ · · · + φi

(
Fi(tn)

))
.

Then, for h = 2, . . . , n and 0 ≤ t1 ≤ . . . ≤ th−1 ≤ t multivariate conditional hazard
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rates of X(1)
∗ , . . . , X(n)

∗ are of the form

λ(∗,h)(t|t1, . . . , th−1)

= (n − h + 1)φ′h
(

Fh(t)
)

fh(t)

×

∂h

∂yhφ
−1
h (y)

∣∣∣
y=∑

h−1
k=1 φh

(
Fh(tk)

)
+(n−h+1)φh

(
Fh(t)
)

∂h−1

∂yh−1φ
−1
h (y)

∣∣∣
y=∑

h−1
k=1 φh

(
Fh(tk)

)
+(n−h+1)φh

(
Fh(t)
) .

Proof. According to Lemma 1.13 and Lemma 2.5 together with equality (2.13) con-
ditional hazard rates of sequential order statistics can be calculated as

λ(∗,h)(t|t1, . . . , th−1)

=

∫ ∞
t

∫ ∞
yh+1

. . .
∫ ∞

yn−1

fh(t1, . . . , th−1, t, yh+1, . . . , yn)dyn · · · dyh+2dyh+1∫ ∞
t

∫ ∞
yh

. . .
∫ ∞

yn−1

fh(t1, . . . , th−1, yh, . . . , yn)dyn · · · dyh+1dyh

.

Then, applying (4.14) we obtain

λ(∗,h)(t|t1, . . . , th−1)

=
(n − h + 1)!
(n − h)!

∂h

∂yhφ
−1
h (y)

∣∣∣
y=∑

h−1
k=1 φh

(
Fh(tk)

)
+(n−h+1)φh

(
Fh(t)
)

∂h−1

∂yh−1φ
−1
h (y)

∣∣∣
y=∑

h−1
k=1 φh

(
Fh(tk)

)
+(n−h+1)φh

(
Fh(t)
)

×

h−1

∏
k=1
φ′h
(

Fh(tk)
)

fh(tk)φ
′
h

(
Fh(t)

)
fi(t)

h−1

∏
k=1
φ′h
(

Fh(tk)
)

fh(tk)

= (n − h + 1)

∂h

∂yhφ
−1
h (y)

∣∣∣
y=∑

h−1
k=1 φh

(
Fh(tk)

)
+(n−h+1)φh

(
Fh(t)
)φ′h(Fh(t)

)
fh(t)

∂h−1

∂yh−1φ
−1
h (y)

∣∣∣
y=∑

h−1
k=1 φh

(
Fh(tk)

)
+(n−h+1)φh

(
Fh(t)
) ,

which was to be proved.
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Theorem 4.27. For i = 1, . . . , n consider absolutely continuous lifetimes Y(i)
1 , . . . , Y(i)

n

with univariate marginal distribution functions Fi . Let Y(i)
1 , . . . , Y(i)

n possess an Archime-
dean survival copula based on strict generator φi , i.e. the joint survival function of Y(i)

1 ,
. . . , Y(i)

n can be represented as

Si(t1, . . . , tn) = φ−1
i

(
φi(Fi(t1)) + · · · + φi(Fi(tn))

)
,

where φ−1
n−1(t) and φ−1

n (t) are (n + 1) -times differentiable. Moreover let Y(i)
1:n, . . . , Y(i)

n:n

possess the MTP2 property for i = 2, . . . , n. Denote gi(t) = φ′i
(

Fi(t)
)

fi(t) .
If for i, k, l = 2, . . . , n − 1 such that 2 ≤ l < k ≤ i and t1, . . . , tn ∈ R holds

∂

∂tl

[
λ(i+1)(ti|t1, . . . , ti−1)

gi+1(tk)

gi+1(ti)
− λ(i)(ti|t1, . . . , ti−1)

gi(tk)

gi(ti)

]
≥ 0 ,

then X(1)
∗ , . . . , X(n)

∗ are MTP2 .

Proof. According to Lemma 4.10 it suffices to ensure

∂2

∂tk∂tl
ln

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)
≥ 0 (4.17)

for 0 ≤ t1 ≤ . . . ≤ ti and 1 ≤ l < k ≤ i, i = 2, . . . , n − 1. For i, j = 1, . . . , n de-
note

y( j,i) =
j−1

∑
k=1
φi
(

Fi(tk)
)
+ (n − j + 1)φi

(
Fi(t j)

)
.

Observe that the following equality holds

∂2

∂tk∂tl
ln

f Y(i)
1:n ,...,Y(i)

i:n (t1, . . . , ti)

f Y(i+1)
1:n ,...,Y(i+1)

i:n (t1, . . . , ti)

=
∂2

∂tk∂tl
ln

(
∂i

∂yiφ
−1
i (y)|y=y(i,i) ∏

i
j=1φ

′
i
(

Fi(t j)
)

fi(t j)

∂i

∂yiφ
−1
i+1(y)|y=y(i,i+1) ∏

i
j=1φ

′
i+1

(
Fi+1(t j)

)
fi+1(t j)

)
.
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Noticing that

∂2

∂tk∂tl
ln

( i

∏
j=1
φ′i(Fi(t j)) fi(t j)

∏
i
j=1φ

′
i+1(Fi+1(t j)) fi+1(t j)

)
= 0 ,

it is left to consider the sign of

∂2

∂tk∂tl
ln

(
∂i

∂yiφ
−1
i (y)|y=y(i,i)

∂i

∂yiφ
−1
i+1(y)|y=y(i,i+1)

)
.

For k < i the derivative turns into

∂2

∂tk∂tl
ln

(
∂i

∂yiφ
−1
i (y)|y=y(i,i)

∂i

∂yiφ
−1
i+1(y)|y=y(i,i+1)

)

=
∂

∂tl

(
−

∂i+1

∂yi+1φ
−1
i (y)|y=y(i,i)gi(tk)

∂i

∂yiφ
−1
i (y)|y=y(i,i)

+

∂i+1

∂yi+1φ
−1
i+1(y)|y=y(i,i+1)gi+1(tk)

∂i

∂yiφ
−1
i+1(y)|y=y(i,i+1)

)
.

(4.18)

By analogy, for k = i we obtain

∂2

∂ti∂tl
ln

(
∂i

∂yiφ
−1
i (y)|y=y(i,i)

∂i

∂yiφ
−1
i+1(y)|y=y(i,i+1)

)

= (n − l + 1)
∂

∂tl

(
−

∂i+1

∂yi+1φ
−1
i (y)|y=y(i,i)gi(ti)

∂i

∂yiφ
−1
i (y)|y=y(i,i)

+

∂i+1

∂yi+1φ
−1
i+1(y)|y=y(i,i+1)gi+1(ti)

∂i

∂yiφ
−1
i+1(y)|y=y(i,i+1)

)
.

(4.19)

Taking into account Lemma 4.26, the required statement is a combination of (4.17)
with (4.18) and (4.19).

Remark 4.28. As follows from Remark 2.38 Archimedean survival copulas generalize the
concept of Schur-constant survival functions. In this context it can be seen that Theorem
4.27 yields a generalization of Lemma 4.16.
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Theorem 4.29. For i = 1, . . . , n let absolutely continuous lifetimes Y(i)
1 , . . . , Y(i)

n possess
an Archimedean survival copula with strict generator φi and marginal survival functions
Fi , i.e. the joint survival function of Y(i)

1 , . . . , Y(i)
n can be represented as

Si(t1, . . . , tn) = φ−1
i

(
φi
(

Fi(t1)
)
+ . . . + φi

(
Fi(tn)

))
.

Moreover let the marginal distribution functions be recursively defined as

F1(t) = F(t)

Fi+1(t) = φ−1
i+1

(
φi
(

Fi(t)
))

, (4.20)

for a marginal survival function F and i = 1, . . . , n − 1 .
Then, sequential order statistics X(1)

∗ , . . . , X(n)
∗ are MTP2 , if sequential order statistics

Z(1)
∗ , . . . , Z(n)

∗ based on absolutely continuous Schur-constant lifetimes T(i)
1 , . . . , T(i)

n with
survival functions

Gi(t1, . . . , tn) = φ−1
i (t1 + . . . + tn) ,

are MTP2 for i = 1, . . . , n.

Proof. For i = 1, . . . , n and the choice of marginal survival functions (4.20) we ob-
tain

φi+1
(

Fi+1(t)
)
= φi

(
Fi(t)

)
= φ1

(
F(t)

)
.

Denote R(t) = φ1
(

F(t)
)

, then by Lemma 4.25 the joint density of X(1)
∗ , . . . , X(n)

∗
can be expressed as

f X(1)
∗ ,...,X(n)

∗ (t1, . . . , tn) = n!
∂

∂y
φ−1

1 (y)|y=nR(t1)R
′(t1)

×
n

∏
i=2

∂i

∂yiφ
−1
i (y)|y=∑

i−1
k=1 R(tk)+(n−i+1)R(ti)

R′(ti)

∂i−1

∂yi−1φ
−1
i (y)|y=∑

i−1
k=1 R(tk)+(n−i+1)R(ti−1)

.
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Then, the MTP2 property of the function

g(t1, . . . , tn) = n!
∂

∂y
φ−1

1 (y)|y=nR(t1)

·
n

∏
i=2

∂i

∂yiφ
−1
i (y)|y=∑

i−1
k=1 R(tk)+(n−i+1)R(ti)

∂i−1

∂yi−1φ
−1
i (y)|y=∑

i−1
k=1 R(tk)+(n−i+1)R(ti−1)

ensures the same property of X(1)
∗ , . . . , X(n)

∗ .
In the following we will prove that under the conditions of the theorem the

function g(t1, . . . , tn) is MTP2 . Note that applying Lemma 4.25 with the choice
of marginal survival functions from (4.20) we obtain the following joint density of
sequential order statistics Z(1)

∗ , . . . , Z(n)
∗ :

f Z(1)
∗ ,...,Z(n)

∗ (t1, . . . , tn) = n!
∂

∂y
φ−1

1 (y)|y=nt1

n

∏
i=2

∂i

∂yiφ
−1
i (y)|y=∑

i−1
k=1 tk+(n−i+1)ti

∂i−1

∂yi−1φ
−1
i (y)|y=∑

i−1
k=1 tk+(n−i+1)ti−1

This density is assumed to be MTP2 . Since per definition φi is decreasing on
[0, ∞) , we can state

R′(t) = (φ1)
′(F(t))F′(t) ≥ 0 .

Then, applying Lemma 3.24 with li(t) = R(t), i = 1, . . . , n we can conclude that
g(t1, . . . , tn) is MTP2 , which was to be proved.

Example 4.30. For i = 1, . . . , n let Y(i)
1 , . . . , Y(i)

n possess a survival copula from the
Clayton copula family with generator φi(t) = t−1\αi − 1 and univariate survival func-
tions Fi(t) = exp

(
− λαit

α1

)
, αi > 0 . Note that in this case holds

φi(Fi(t)) = φi−1(Fi−1(t)) = exp
(
− λt
α1

)
− 1 .

Then, the conditions of Theorem 4.29 are satisfied and X(1)
∗ , . . . , X(n)

∗ are MTP2 if the
same property holds for Z(1)

∗ , . . . , Z(n)
∗ based on exchangeable random variables with Pareto
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survival functions

Si(t1, . . . , tn) =
(

1 +
n

∑
j=1

t j

)−αi
,

which can be represented as a Laplace transform of gamma distribution with the density

πi(θ) =
1

Γ(αi)
θαi−1e−θ .

From Example 4.24 follows that Z(1)
∗ , . . . , Z(n)

∗ are MTP2 if αi ≥ αi+1 .
Then, applying Lemma 4.23 we can conclude that X(1)

∗ , . . . , X(n)
∗ are MTP2 if αi ≥

αi+1 for i = 2, . . . , n − 1 .

Lemma 4.31. Consider absolutely continuous exchangeable random variables Y1, . . . , Yn .
For l = 1, . . . , k − 2, k = 2, . . . , n the following conditions are equivalent

(i) ∂

∂tl
P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1) = 0

(ii) ∂

∂tl
λ(tk|tk−1, . . . , t1) = 0 ,

under the assumption that λ(tk|tk−1, . . . , t1) and ∂

∂tl
λ(tk|tk−1, . . . , t1) are continuous in

t1, . . . , tk where 0 < t1 ≤ . . . ≤ tk .

Proof. According to Lemma 2.6 conditional hazard rates allow the following rep-
resentation

λ(tk|tk−1, . . . , t1) = −
1

(n − k + 1)

∂

∂tk
P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)

P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)
.

Then, for l = 1, . . . , k − 2 we can write

∂

∂tl
λ(tk|tk−1, . . . , t1)

= − 1
n − k + 1

(
∂2

∂tl∂tk
P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)

P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)

−
∂

∂tl
P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)

P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)2

133



4.4 Special cases

× ∂

∂tk
P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)

)
.

where l = 1, . . . , k − 2 and 0 < t1 ≤ . . . ≤ tk . Thus from (i) follows (ii).
To prove the reversed statement recall that according to Lemma 2.11 (i) holds

P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)

= exp
(
−(n − k + 1)

∫ tk

tk−1

λ(u|tk−1, . . . , t1)du
)

.

Since λ(tk|tk−1, . . . , t1) and ∂

∂tl
λ(tk|tk−1, . . . , t1) are continuous in t1, . . . , tk we can

state

∂

∂tl
P(Yk:n > tk |Yk−1:n = tk−1, . . . , Y1:n = t1)

= −(n − k + 1) exp

(
−(n − k + 1)

∫ tk

tk−1

λ(u|tk−1, . . . , t1)du

)

×
∫ tk

tk−1

∂

∂tl
λ(u|tk−1, . . . , t1)du ,

and from (ii) follows (i).

Theorem 4.32. For n > 3 consider exchangeable random lifetimes Y1, . . . , Yn with a joint
density f Y1 ,...,Yn ∈ C2 and a joint survival function S(t1, . . . , tn) represented by an Archi-
medean survival copula with a strict generator φ , i.e.

S(t1, . . . , tn) = φ−1
(
φ
(

F(t1)
)
+ · · · + φ

(
F(tn)

))
,

where F(t) is a marginal survival function of Yi, i = 1, . . . , n.
Then, for i, j = 1, . . . , k − 1, k > 3 , a conditional density

f Yk:n |Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1)

134



4.4 Special cases

is TP2 in every pair of variables ti, t j, i 6= j iff for l = 1, . . . , k − 1 holds

∂

∂tl
λ(tk|tk−1, . . . , t1) = 0 ,

where 0 ≤ t1 < . . . < tk such that f Y1 ,...,Yk(t1, . . . , tk) 6= 0 .

Proof. Consider the conditional density

f Yk:n |Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1)

and assume that it is TP2 in ti, t j, 1 ≤ i 6= j ≤ k − 1.
By analogy to (4.16) we can represent the conditional density f Yk:n |Yk−1:n ,...,Y1:n as

f Yk:n |Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1) =
L(k)

(
∑

k−1
l=1 R(tl) + (n − k + 1)R(tk)

)
R′(tk)

L(k−1)
(

∑
k−2
l=1 R(tl) + (n − k + 2)R(tk−1)

) ,

where L(k)(y) = (−1)k ∂k

∂ykφ
−1(y) and R(t) = φ(F(t)) .

For shortness sake we will use the notation

g(s, tk−1, tk) =
L(k)

(
s + R(tk−1) + (n − k + 1)R(tk)

)
R′(tk)

L(k−1)
(

s + (n − k + 2)R(tk−1)
) .

First we are going to show that for 1 ≤ i < k − 1 holds

∂

∂ti
f Yk:n |Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1) = 0 .

Since f Yk:n |Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1) is TP2 in ti, t j for 1 ≤ i < j < k − 1, we ob-
serve that

∂

∂ti∂t j
ln f Yk:n |Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1)
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4.4 Special cases

=
∂

∂ti∂t j
ln

L(k)
(

∑
k−1
l=1 R(tl) + (n − k + 1)R(tk)

)
R′(tk)

L(k−1)
(

∑
k−2
l=1 R(tl) + (n − k + 2)R(tk−1))

=
∂2

∂s2 ln
L(k)

(
s + R(tk−1) + (n − k + 1)R(tk)

)
L(k−1)

(
s + (n − k + 2)R(tk−1))

∣∣∣∣∣∣∣
s=∑

k−2
l=1 R(tl)

× R′(tk)R′(ti)R′(t j) ≥ 0 .

Since φ is a decreasing function we can state that

R′(t) = −φ′(F(t)) f (t) ≥ 0 .

Therefore, for 0 < s < (k − 2)R(tk−1) the following inequality holds

∂2

∂s2 ln
L(k)

(
s + R(tk−1) + (n − k + 1)R(tk)

)
L(k−1)

(
s + (n − k + 2)R(tk−1))

≥ 0 (4.21)

From (4.21) we can conclude that g(s, tk−1, tk) is log-convex and hence also convex
in s on (0, (k − 2)R(tk−1)) for fixed tk−1, tk . Then, for θ ∈ [0, 1] and 0 < x < y <
(k − 2)R(tk−1) holds

g(θx + (1 − θ)y, tk−1, tk) ≤ θg(x, tk−1, tk) + (1 − θ)g(y, tk−1, tk) . (4.22)

Let us assume that there exist tk, tk−1, x, y such that in (4.22) the inequality is strict.
Then, due to continuity of g(s, tk−1, tk) , the strict inequality holds in a neighbour-
hood of tk : U(tk) ⊂ [tk−1, ∞) . Integrating both parts of inequality (4.22) in tk on
(tk−1, ∞) we obtain

∫ ∞
tk−1

g(θx + (1 − θ)y, tk−1, tk)dtk

≤ θ
∫ ∞

tk−1

g(x, tk−1, tk)dtk + (1 − θ)
∫ ∞

tk−1

g(y, tk−1, tk)dtk .
(4.23)
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Moreover, we can represent (4.23) as

∫
U(tk)

g(θx + (1 − θ)y, tk−1, tk)dtk +
∫
(tk−1 ,∞)\U(tk)

g(θx + (1 − θ)y, tk−1, tk)dtk

≤ θ
∫

U(tk)
g(x, tk−1, tk)dtk + (1 − θ)

∫
U(tk)

g(y, tk−1, tk)dtk

+ θ
∫
(tk−1 ,∞)\U(tk)

g(x, tk−1, tk)dtk + (1 − θ)
∫
(tk−1 ,∞)\U(tk)

g(y, tk−1, tk)dtk ,

where for U(tk) = (a, b), tk−1 < a < b < ∞ we denote by

∫
(tk−1 ,∞)\U(tk)

g(x, tk−1, tk)dtk =
∫ a

tk−1

g(x, tk−1, tk)dtk +
∫ ∞

b
g(x, tk−1, tk)dtk .

Then, due to the assumption above the inequality in (4.23) is strict, i.e.

∫ ∞
tk−1

g(θx + (1 − θ)y, tk−1, tk)dtk

< θ

∫ ∞
tk−1

g(x, tk−1, tk)dtk + (1 − θ)
∫ ∞

tk−1

g(y, tk−1, tk)dtk .
(4.24)

Due to continuity of φ and F for every s ∈ (0, (k − 2)R(tk−1)) there exist t′1, . . . ,
t′k−2 , 0 < t′1 < . . . < t′k−2 < tk−1 such that s = ∑

k−2
l=1 R(t′l) . Recall that g(s, tk−1, tk)

represents a conditional density f Yk:n |Yk−1:n ,...,Y1:n(tk|tk−1, t′k−2, . . . , t′1) , therefore

∫ ∞
tk−1

g(s, tk−1, tk)dtk = 1 .

Then (4.24) turns into 1 < 1 and we have reached a contradiction. We can conclude
that our assumption was incorrect and there is no such tk, tk−1, x, y that in (4.22) the
inequality is strict, meaning

∂2

∂s2 g(s, tk−1, tk) = 0 . (4.25)
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Recall that we started with the assumption that g is log-convex, i.e.

∂2

∂s2 ln g(s, tk−1, tk) ≥ 0.

Note that the above derivative can be calculated as

∂2

∂s2 ln g(s, tk−1, tk) =
g(s, tk−1, tk)

∂2

∂s2 g(s, tk−1, tk) − ( ∂

∂s g(s, tk−1, tk))
2

g(s, tk−1, tk)2 .

Taking into account (4.25) we obtain the equality

∂2

∂s2 ln g(s, tk−1, tk) = −
(

∂

∂s g(s, tk−1, tk)

g(s, tk−1, tk)

)2

.

Then the inequality ∂2

∂s2 ln g(s, tk−1, tk) ≥ 0 holds iff ∂

∂s g(s, tk−1, tk) = 0.
Thus we have shown that if f Yk:n|Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1) is TP2 in any pair

(ti, t j), 1 ≤ i < j ≤ k − 1, then for l = 1, . . . , k − 2

∂

∂tl
f Yk:n|Yk−1:n ,...,Y1:n(tk|tk−1, . . . , t1) = 0

and consequently

∂

∂tl
P(Yk:n > t|Yk−1:n = tk−1, . . . , Y1:n = t1) = 0 , (4.26)

for 0 < t1 ≤ . . . ≤ tk−1 ≤ t .
Moreover, by Lemma 4.31 condition (4.26) is equivalent to

∂

∂tl
λ(tk|tk−1, . . . , t1) = 0 ,

where l = 1, . . . , k − 2.
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It is left to prove that

∂

∂tk−1
λ(tk|tk−1, . . . , t1) = 0

Note that Y1:n, . . . , Yn:n possess Markov property due to (4.26). Therefore by ana-
logy to the proof in Section 5 of Lagerås (2010) for t > tk−1 should hold

P(Yk:n > t|Yk−1:n = tk−1, . . . , Y1:n = t1)

=
L(k−1)

(
∑

k−1
l=1 R(tl) + (n − k + 1)R(t)

)
L(k−1)

(
∑

k−2
l=1 R(tl) + (n − k + 2)R(tk−1)

)
=

L(k−1)
(

R(tk−1) + (n − k + 1)R(t)
)

L(k−1)
(
(n − k + 2)R(tk−1)

) .

(4.27)

Let us denote x1 = ∑
k−2
l=1 R(tl), x2 = (n − k + 2)R(tk−1), x3 = (n − k + 1)R(t) −

(n − k + 1)R(tk−1) . Then (4.27) can be rewritten as

L(k−1)(x1 + x2 + x3)

L(k−1)(x1 + x2)
=

L(k−1)(x2 + x3)

L(k−1)(x2)
.

Let f (x) = L(k−1)(x2+x)
L(k−1)(x2)

, then the above equation turns into

f (x1 + x3)

f (x1)
= f (x3) ,

in other words f (x1 + x3) = f (x1) f (x3) . Consequently for some constant c holds
f (x) = e−cx .

Therefore from (4.27) we can conclude that

P(Yk:n > t|Yk−1:n = tk−1, . . . , Y1:n = t1) = e
−c(n−k+1)

(
R(t)−R(tk−1)

)
.
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Applying Lemma 2.6 a conditional hazard rate in this case can be calculated as

λ(t|tk−1, . . . , t1) = −
R′(t)

n − k + 1
−c(n − k + 1)e

−c(n−k+1)
(

R(t)−R(tk−1)

)
e
−c(n−k+1)

(
R(t)−R(tk−1)

)
= cR′(t) ,

(4.28)

where k = 1, . . . , n − 1. Then, from representation (4.28) follows that

∂

∂tk−1
λ(tk|tk−1, . . . , t1) = 0 .

It is left to show the reversed statement. Namely, assume that for 0 < t1 ≤
. . . ≤ tk and l = 1, . . . , k − 2 holds

∂

∂tl
λ(tk|tk−1, . . . , t1) = 0 .

Then, one may observe that for 1 ≤ i < j ≤ k − 1 holds

∂2

∂ti∂t j
ln f Yk:n|Yk−1:n ,...,Y1;n(tk|tk−1, . . . , t1)

=
∂2

∂ti∂t j
ln

(
λ(tk|tk−1, . . . , t1) exp

[
−(n − k)

∫ tk

tk−1

λ(u|tk−1, . . . , t1)du
])

=
∂

∂t j

(
∂

∂ti
λ(tk|tk−1, . . . , t1)

λ(tk|tk−1, . . . , t1)
− (n − k)

∫ tk

tk−1

∂

∂ti
λ(u|tk−1, . . . , t1)du

)
= 0 ,

which proves the theorem.

Remark 4.33. Theorem 4.32 allows to conclude that considering Y(i)
1 , . . . , Y(i)

n with sur-
vival functions represented by Archimedean copulas with a strict generator a necessary

140



4.4 Special cases

condition for MTP2 of f X(i)
∗ |X

(i−1)
∗ ,...,X(1)

∗ is

∂

∂tl
λi(ti|ti−1, . . . , t1) = 0

for l = 1, . . . , i − 1 and i = 4, . . . , n.
Taking into account Lemma 2.14 and representation (4.28) we can conclude that such

Y(i)
1 , . . . , Y(i)

n are iid. In other words, for n > 3 the MTP2 property of sequential order
statistics X(1)

∗ , . . . , X(n)
∗ can be achieved without stating any interdependence between the

lifetimes Y(i)
1 , . . . , Y(i)

n on the different levels only if Y(i)
1 , . . . , Y(i)

n are iid for i = 1, . . . , n.
Since Schur-constant random variables represent a particular case of Archimedean copulas
a similar observation holds also for them.
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Appendix

Proof of Lemma 1.13

Proof. We need to prove that for a symmetric function f (y1, . . . , yn) holds

∫ ∞
t

∫ ∞
t
· · ·

∫ ∞
t

f (t1, . . . , t j−1, y j, . . . , yn)dyn . . . dy j+1dy j

= (n − j + 1)!
∫ ∞

t

∫ ∞
y j

· · ·
∫ ∞

yn−1

f (t1, . . . , t j−1, y j, . . . , yn)dyn . . . dy j+1dy j .

(4.29)

The proof will be conducted by induction.
We will start by proving that the equality holds for j = n − 1. Since f is a

symmetric function, the integral on the right hand side of the equality (4.29) can be
represented as

∫ ∞
t

∫ ∞
t

f (t1, . . . , tn−2, yn−1, yn)dyndyn−1

=
∫ ∞

t

∫ ∞
t

f (t1, . . . , tn−2, yn−1, yn)(I{yn≤yn−1} + I{yn>yn−1})dyndyn−1

= 2
∫ ∞

t

∫ ∞
yn−1

f (t1, . . . , tn−2, yn−1, yn)dyndyn−1 ,

which we set out to show.
Now let us assume, that for j = k + 1 holds

∫ ∞
t

∫ ∞
t
· · ·

∫ ∞
t

f (t1, . . . , tk, yk+1, . . . , yn)dyn . . . dyk+2dyk+1

= (n − k)!
∫ ∞

t

∫ ∞
yk+1

· · ·
∫ ∞

yn−1

f (t1, . . . , tk, yk+1, . . . , yn)dyn . . . dyk+2dyk+1 .

It is left to prove that for j = k holds

∫ ∞
t

∫ ∞
t
· · ·

∫ ∞
t

f (t1, . . . , tk−1, yk, . . . , yn)dyn . . . dyk+1dyk

= (n − k + 1)!
∫ ∞

t

∫ ∞
yk

· · ·
∫ ∞

yn−1

f (t1, . . . , tk−1, yk, . . . , yn)dyn . . . dyk+1dyk .

(4.30)
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Note that for y j, . . . , yn ∈ R the following representation exists

IR(n− j)
<

(y j+1, . . . , yn)

= IR(n− j+1)
<

(y j, . . . , yn) +
n−1

∑
s= j+1

IR(n− j+1)
<

(y j+1, . . . , ys, y j, ys+1, . . . , yn)

+ IR(n− j+1)
<

(y j+1, . . . , yn, y j) ,

where IR(n− j)
<

(y j+1, . . . , yn) is an indicator function defined by

IR(n− j+1)
<

(y j, . . . , yn) =

{
1, y j < . . . < yn

0, otherwise .

Then we can the integral on the right hand side of (4.30) as

∫ ∞
t

∫ ∞
t
· · ·

∫ ∞
t

f (t1, . . . , t j−1, y j, . . . , yn)dyn . . . dy j+1dy j

=
∫ ∞

t

[
(n − j)!∫ ∞

t
· · ·

∫ ∞
t

f (t1, . . . , t j−1, y j, . . . , yn)IR(n− j)
<

(y j+1, . . . , yn)dyn . . . dy j+1]
dy j

= (n − j)!
∫ ∞

t

∫ ∞
t
· · ·

∫ ∞
t

[
f (t1, . . . , t j−1, y j, . . . , yn)IR(n− j+1)

<
(y j, . . . , yn)

+
n−1

∑
s= j+1

f (t1, . . . , y j, . . . , yn)IR(n− j+1)
<

(y j+1, . . . , ys, y j, ys+1, . . . , yn)

+ f (t1, . . . , t j−1, y j, . . . , yn)IR(n− j+1)
<

(y j+1, . . . , yn, y j)]
dyn . . . dy j+1dy j .

Applying the substitution y′j = y j+1, y′s−1 = ys, y′s = y j and switching the integra-

143



tion order according to Fubini’s theorem we obtain

∫ ∞
t

∫ ∞
t
· · ·

∫ ∞
t

f (t1, . . . , t j−1, y j, . . . , yn)dyn . . . dy j+1dy j

= (n − j)!(n − j + 1)

×
∫ ∞

t
· · ·

∫ ∞
t

f (t1, . . . , t j−1, y′j, . . . , y′n)IR(n− j+1)
<

(y′j, . . . , y′n)dy′n . . . dy′j

= (n − j + 1)!
∫ ∞

t

∫ ∞
y j

· · ·
∫ ∞

yn−1

f (t1, . . . , t j−1, y j, . . . , yn)dyn . . . dy j+1dy j

as was to be proved.

Complement to Example 1.15

In the following we present the intermediate steps in the calculation of the joint
density of sequential order statistics.

The joint survival functions of Y(i)
1 , Y(i)

2 , Y(i)
3 can be computed as

P(Y1 > t1, Y2 > t2, Y3 > t3) =
∫ ∞

0
e−θ(t1+t2+t3)

λα

Γ(α)
θα−1e−λθdθ

=
λα

(t1 + t2 + t3 + λ)α
.

Then the density f Y1 ,Y2 ,Y3 is calculated as

f Y1 ,Y2 ,Y3(t1, t2, t3) = (−1)3 ∂3

∂t1∂t2∂t3
P(Y1 > t1, Y2 > t2, Y3 > t3)

=
α(α + 1)(α + 2)λα

(t1 + t2 + t3 + λ)α+3 .

On basis of this result we can calculate the following densities

f Y1:3 ,Y2:3 ,Y3:3(t1, t2, t3) = 3! f Y1 ,Y2 ,Y3(t1, t2, t3)

= 3!
α(α + 1)(α + 2)λα

(t1 + t2 + t3 + λ)α+3 ,

f Y1:3 ,Y2:3(t1, t2) = 3!
∫ ∞

t2

f Y1:3 ,Y2:3 ,Y3:3(t1, t2, t3)dt3
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=
3!α(α + 1)λα

(t1 + 2t2 + λ)α+2 ,

f Y1:3(t1) =
∫ ∞

t1

f Y1:3 ,Y2:3(t1, t2)dt2

=
3α λα

(3t1 + λ)α+1 ,

where 0 ≤ t1 ≤ t2 ≤ t3 .

Derivation of the covariance between Xi and X j in Example 3.38

Without the loss of generality we restrict the consideration to Cov(X1, X2) . Since
the distribution is symmetric all the other pairs Xi, X j, i 6= j , have the same cov-
ariance. Recall that the covariance has the representation

Cov(X1, X2) = E(X1X2) − E(X1)E(X2)

= E(X1X2) − E(X1)
2 .

(4.31)

In the following we are going to calculate the expectations in (4.31) with the help
of moment-generating functions. Specifically, according to Kotz et al. (2000) the
moment- generating function for the Freund multivariate distribution of random
variables X1, . . . , Xk is of the form

E
[
et1X1+...+tnXk

]
=

1
k! ∑

∗

P

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1

, (4.32)

where Θ0, . . . , Θk−1 > 0 and {tP(1), . . . , tP(k)} is one of the k! possible permuta-
tions of t1, . . . , tk and ∑

∗
P is a sum over all such permutations.

Taking into account (4.32) we can calculate E(X1) as

E(X1) =

[
∂

∂t1
E
(

exp(t1X1 + . . . + tkXk)
)]

t1=...=tk=0

=

[
∂

∂t1

1
k! ∑

∗

P

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1
]

t1=...=tk=0
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=

[
1
k! ∑

∗

P

∂

∂t1

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1
]

t1=...=tk=0

.

Next we are going to calculate the partial derivative with the help of the formula

∂

∂t
f (t) = f (t)

∂

∂t
ln | f (t)|

for such t that f (t) 6= 0. In more detail

1
k! ∑

∗

P

∂

∂t1

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1

=
1
k! ∑

∗

P

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1

×
(
−

k−1

∑
i=0

∂

∂t1
ln

∣∣∣∣∣1 − Θi

k − i

k

∑
j=i+1

tP( j)

∣∣∣∣∣
)

.

Without the loss of generality assume t1 = tP(l) , where l is specified by the per-
mutation P . Then the last expression turns into

1
k! ∑

∗

P

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1

×
(
−

l−1

∑
i=0

− Θi
k−i

1 − Θi
k−i ∑

k
j=i+1 tP( j)

)
.

For t = (0, . . . , 0) we obtain

E(X1) =
1
k! ∑

∗

P

l−1

∑
i=0

Θi

k − i
.

Note that for each l there exist (k − 1)! permutations such that t1 = tP(l) . Con-
sequently we obtain

E(X1) =
(k − 1)!

k!

k

∑
l=1

l−1

∑
i=0

Θi

k − i

=
1
k

k−1

∑
i=0

k

∑
l=i+1

Θi

k − i
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=
1
k

k−1

∑
i=0

Θi .

Then we have established the representation

E(X1)E(X2) = (E(X1))
2

=
1
k2

(
k−1

∑
i=0

Θi

)2

=
1
k2

(
k−1

∑
i=0

Θ2
i + 2 ·

k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j

)
.

It is left to calculate E(X1X2) . By analogy with the calculation of E(X1) we can
write

E(X1X2) =

[
∂2

∂t1∂t2
E
(
exp(t1X1 + . . . + tkXk)

)]
t1=...=tk=0

.

First let us obtain an explicit representation for the derivative:

∂2

∂t1∂t2
E
(
exp(t1X1 + . . . + tkXk)

)
=

∂

∂t2

1
k! ∑

∗

P

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1

×
(
−

l−1

∑
i=0

− Θi
k−i

1 − Θi
k−i ∑

k
j=i+1 tP( j)

)

=
1
k! ∑

∗

P

[(
∂

∂t2

k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1)
×
(

l−1

∑
i=0

Θi
k−i

1 − Θi
k−i ∑

k
j=i+1 tP( j)

)

+
k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1

× ∂

∂t2

(
l−1

∑
i=0

Θi
k−i

1 − Θi
k−i ∑

k
j=i+1 tP( j)

)]
.

Without the loss of generality assume t2 = tP(n) , where n is specified by P and
n 6= l , then we can represent the derivative as

∂2

∂t1∂t2
E(exp(t1X1 + . . . + tkXk))
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=
1
k! ∑

∗

P

[(
k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1)

×
(

n−1

∑
i=0

Θi
k−i

1 − Θi
k−i ∑

k
j=i+1 tP( j)

)
×
(

l−1

∑
i=0

Θi
k−i

1 − Θi
k−i ∑

k
j=i+1 tP( j)

)

+
k−1

∏
i=0

(
1 − Θi

k − i

k

∑
j=i+1

tP( j)

)−1

×
(

min(l,n)−1

∑
i=0

( Θi
k−i )

2

(1 − Θi
k−i ∑

k
j=i+1 tP( j))2

)]
.

For t = (0, . . . , 0) we obtain

E(X1X2) =
1
k! ∑

∗

P

[(
n−1

∑
i=0

Θi

k − i

)
×
(

l−1

∑
i=0

Θi

k − i

)
+

(
min(l,n)−1

∑
i=0

( Θi

k − i

)2
)]

.

Note that for fixed l and n there exist (k − 2)! substitutions such that t1 = tP(l),
t2 = tP(n) . Moreover, the values of E(X1X2) for the substitutions with t1 = tP(l),
t2 = tP(n) and t1 = tP(n), t2 = tP(l) are equal. Therefore without the loss of gener-
ality we can assume l < n and calculate E(X1X2) as

E(X1X2) =
2

k(k − 1)

k−1

∑
l=1

k

∑
n=l+1

[(
n−1

∑
i=0

Θi

k − i

)
×
(

l−1

∑
i=0

Θi

k − i

)
+

l−1

∑
i=0

( Θi

k − i

)2
]

.

The first part of the double sum can be calculated as follows:

k−1

∑
l=1

k

∑
n=l+1

(
n−1

∑
i=0

Θi

k − i

)
×
(

l−1

∑
i=0

Θi

k − i

)

=
k−1

∑
l=1

[(
l−1

∑
i=0

Θi

k − i

)
×
(

k

∑
n=l+1

n−1

∑
i=0

Θi

k − i

)]

=
k−1

∑
l=1

[(
l−1

∑
i=0

Θi

k − i

)
×
(
(k − l)

l−1

∑
i=0

Θi

k − i
+

k−1

∑
i=l

Θi

)]

=
k−1

∑
l=1

(k − l)

(
l−1

∑
i=0

Θi

k − i

)2

+
k−1

∑
l=1

(
l−1

∑
i=0

Θi

k − i

)(
k−1

∑
i=l

Θi

)
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=
k−1

∑
l=1

(k − l)

[
l−1

∑
i=0

( Θi

k − i

)2
+ 2

l−2

∑
i=0

l−1

∑
j=i+1

ΘiΘ j

(k − i)(k − j)

]
+

k−1

∑
l=1

l−1

∑
i=0

k−1

∑
j=l

ΘiΘ j

k − i

=
k−2

∑
i=0

( Θi

k − i

)2
(

k−1

∑
l=i+1

(k − l)

)
+ 2

k−3

∑
i=0

k−1

∑
l=i+2

l−1

∑
j=i+1

(k − l)ΘiΘ j

(k − i)(k − j)

+
k−2

∑
i=0

k−1

∑
l=i+1

k−1

∑
j=l

ΘiΘ j

k − i

=
k−2

∑
i=0

( Θi

k − i

)2 (k − i − 1)(k − i)
2

+
k−3

∑
i=0

k−2

∑
j=i+1

ΘiΘ j(k − j − 1)
(k − i)

+
k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j( j − i)
k − i

.

Then we come to the following formula for E(X1X2) :

E(X1X2)

=
2

k(k − 1)

[
k−2

∑
i=0

( Θi

k − i

)2 (k − i − 1)(k − i)
2

+
k−3

∑
i=0

k−2

∑
j=i+1

ΘiΘ j(k − j − 1)
(k − i)

+
k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j( j − i)
k − i

+
k−2

∑
i=0

( Θi

k − i

)2 (k − i − 1)(k − i)
2

]

=
2

k(k − 1)

[
k−2

∑
i=0

( Θi

k − i

)2
(k − i − 1)(k − i) +

k−3

∑
i=0

k−2

∑
j=i+1

ΘiΘ j(k − j − 1)
(k − i)

+
k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j( j − i)
k − i

]
.

Finally we can calculate the covariance as

Cov(X1, X2)

=
2

k(k − 1)

[
k−2

∑
i=0

( Θi

k − i

)2
(k − i − 1)(k − i) +

k−3

∑
i=0

k−2

∑
j=i+1

ΘiΘ j(k − j − 1)
(k − i)
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+
k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j( j − i)
k − i

]

− 1
k2

[
k−1

∑
i=0

Θ2
i + 2 ·

k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j

]

=
1

k2(k − 1)

[
k−1

∑
i=0

Θ2
i

(
2k(k − i − 1)

k − i
− k + 1

)

+ 2
k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j

(
k(k − j − 1)

k − i
+

k( j − i)
k − i

− (k − 1)

)]

=
1

k2(k − 1)

[
k−1

∑
i=0

Θ2
i

(
k − k + i

k − i

)
− 2

k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j

( i
k − i

)]
.

Thus, we have obtained the formula for the covariance of two random variables
belonging to the n -dimensional random vector distributed according to Freund’s
multivariate exponential distribution:

Cov(X1, X2) =
1

k2(k − 1)
·
[

k−1

∑
i=0

Θ2
i

(
k − k + i

k − i

)
− 2

k−2

∑
i=0

k−1

∑
j=i+1

ΘiΘ j

( i
k − i

)]
.
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