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Zusammenfassung

Grundlegende Ziele der Datenhaltung sind das effiziente Speichern von sowie der ef-
fiziente Zugriff auf Daten. Datenbanksysteme (DBSs) müssen dabei unterschiedliche
Anforderungen für verschiedenste Anwendungen erfüllen. Dafür wird die Daten-
haltung für die Anwendungen mit Hilfe von diversen Optimierungstechniken für
DBSs maßgeschneidert. Eine mögliche Optimierung für DBSs ist der physische Ent-
wurf mit Hilfe von speziellen Datenstrukturen (z.B. Indexe). Diese Datenstrukturen
verbessern hauptsächlich den Zugriff auf die Daten. Einerseits sollen DBSs ver-
schiedene Anwendungen für das Tagesgeschäft sowie für Vorhersagen unterstützen.
Andererseits haben verschiedene Anwendungszwecke unterschiedliche Anforderungen
und Entwurfsziele, wodurch ein optimaler Entwurf für mehrere Anwendungszwecke
innerhalb eines DBS nicht möglich ist. Darüber hinaus wird die Komplexität des
Entwurfs durch die Abwägung verschiedener Entwurfsziele deutlich erhöht. Als Kon-
sequenz widersprechen sich Mehrzweck-DBS und optimaler Entwurf mit praktikabler
Komplexität für einen bestimmten Anwendungszweck. Verschiedene Anwendungs-
gruppen (d.h., Domänen) werden von Forschern unterschiedlichen Entwurfsregeln
zugeordnet, denn unterschiedliche Domänen zeigen verschiedene Zugriffsmuster auf
Daten. Für die unterschiedlichen Zugriffsmuster existieren unterschiedliche Spe-
icherarchitekturen, welche jeweils für verschiedene Domänen besser geeignet sind.
Dem folgend, sind zeilenorientierte Datenbanksysteme (Row Stores) am besten
für schreiblastige Domänen geeignet, das heißt für das Tagesgeschäft, wohingegen
spaltenorientierte Datenbanksysteme (Column Stores) für leselastige Domänen wie
Vorhersagen (d.h., Analysen) geeignet sind. Die Speicherarchitektur kann im Gegen-
satz zu Datenstrukturen nicht einfach angepasst werden, wenn sich die Anforderun-
gen an das DBS ändern. Weiterhin gibt es für die Auswahl einer Architektur wenig
Werkzeugunterstützung, so dass Datenbankdesigner sich anhand von Heuristiken
vorab für eine Architektur entscheiden. Neben der Schwierigkeit zukünftige An-
forderungen vorhersagen zu können, beschreiben Forscher, dass die verschiedenen
Domänen nicht disjunkt zu einander sind. Das führt für Datenbankdesigner zu dem
Dilemma, dass keine Architektur alle Domänen optimal unterstützt.
Unser erstes Ziel ist daher die Werkzeugunterstützung für die Architekturauswahl

für einen Anwendungszweck zu schaffen. Das Dilemma der Architekturauswahl für
sich verändernde Anforderung abzuschwächen ist unser zweites Ziel. Dies bezieht
sich auch auf Anwendungszwecke, welche sich zwischen den klassischen schreib- und
leselastigen Domänen einordnen. Für die werkzeuggestützte Architekturauswahl er-
weitern wir bestehende Ansätze für den physischen Entwurf wie sie für Row Stores
bekannt sind. Diese Ansätze ermöglichen eine Analyse der Domänenanforderungen
und schlagen Datenstrukturen für die entsprechende Domäne vor. Einen derartigen
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Ansatz integrieren wir in unseren Advisor für den physischen Entwurf, welcher uns
eine Auswahlentscheidung anhand von Kostenschätzungen (d.h., Datenbankstatis-
tiken) und von Stichproben ermöglicht. Dabei schließen wir die semantische Lücke
bei der architekturspezifischen Bewertung von Anfragen (z.B. bei der Kosten-
schätzung) durch einen neuen Extraktions-, Normalisierungs- und Abbildungsansatz.
Bei der Entwicklung des Advisors für den physischen Entwurf haben wir herausgefun-
den, dass die verschiedenen Architekturen sich auch in ihren angestammten Domänen
nicht im Allgemeinen gegenseitig übertreffen (z.B. bei Anfragezeiten). Um auf diesen
Sachverhalt zu reagieren und sich ändernde Anforderungen besser unterstützen zu
können, integrieren wir unseren Ansatz in einen hybriden Speicher, der beide Spe-
icherarchitekturen unterstützt (d.h., Row Store und Column Store). Darüber hinaus
führen wir eine Schnittstelle für hybride Architekturen ein, die zwei unterschiedliche
Varianten unterstützt. In der ersten Variante sind zwei Systeme enthalten (d.h.,
ein Row Store und ein Column Store); wohingegen die zweite Variante durch un-
seren Prototypen repräsentiert wird, der beide Architekturen in einem System un-
terstützt. In verschiedenen Fallstudien haben wir beobachtet, dass keine Architektur
die andere für leselastige, schreiblastige oder dazwischenliegende Domänen gänzlich
übertrifft. In der ersten hybriden Speichervariante entspricht die Verteilung von
Aufgaben im abstrakten Sinne einem Aufbau mit jeweils einem System pro Domäne.
Lediglich der Zugriff auf die aktuellsten Daten ist in dieser Variant möglich. Nichts-
destotrotz haben wir einen Hybridspeicher entwickelt um die Vorteile einer klein-
teiligeren Verteilung von Aufgaben zu zeigen. Dabei haben wir Column Store Funk-
tionalität in einen bestehenden Row Store integriert. Mit Hilfe unseres Prototyps
konnten wir zeigen, dass Hybridspeicher (a) für gemischte (Lese-/Schreib-) Domä-
nen geeignet sind, und (b) dabei konkurrenzfähige und im gewissen Maße außeror-
dentliche Ergebnisse für diese Domain liefern. Als Konsequenz unserer Ergebnisse
sollten neue Architekturen, die zwischen den beiden klassischen Architekturen posi-
tioniert sind, zukünftig für den physischen Entwurf und die Anfrageverarbeitung in
Betracht gezogen werden.
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Abstract

Basic goals of data management are the efficient storage and the efficient access to
data. Thereby, Database Systems (DBSs) have to meet different requirements for
different applications. With several optimization techniques for DBSs, data manage-
ment is tailored for different applications. One option for optimization is the physical
design of DBSs using support structures, which mainly improve access to data (e.g.,
indexes). On the one hand, DBSs shall support multiple purposes for daily operation
as well as forecasts (one system fits all); on the other hand, different purposes imply
differing requirements and design goals, which prevent an optimal design for each
purpose, and increase the complexity of physical design. In other words, both goals
– multi-purpose DBSs and optimal design (for one purpose) with feasible complexity
– contradict each other (one system does not fit all). Researchers describe that dif-
ferent groups of applications (i.e., domains) match different sets of design rules due
to different access pattern to data. For different access pattern, different database
(storage) architectures exist, which are most suitable for conflicting domains. Row-
oriented Database Management Systems (Row Stores) are most suitable for a write-
mostly domain – daily operations; whereas Column-oriented Database Management
Systems (Column Stores) are most suitable for a read-mostly domain – forecasts. In
contrast to support structures, storage architectures cannot easily adapt to chang-
ing requirements, and architecture decision lacks of tool support. Thus, database
designers decide with heuristics for certain architecture beforehand. Beside com-
plexity of requirement prediction, researchers describe that both domains are not
disjoint. Consequently, database designers face the dilemma that architectures do
not optimally support either domains or intermediate domains.
Our first goal is to cope with the dilemma of design decision with tool support

for both domains. Second, we want to mitigate the design dilemma for changing
requirements and for intermediate domains (e.g., frequent change of storage archi-
tecture). For the design dilemma, we extend existing approaches for physical design
of Row Stores, which already allow to analyze domain requirements and to advise
sets of support structures for certain domain. We integrate these approaches in
a physical design advisor for storage architectures, which allows decision based on
cost estimates (i.e., DBS statistics) as well as on samples. We cope with the gap
of architecture-specific requirements concerning cost estimates with a new cost ex-
traction, normalization, and representation approach. Hence, our design advisor
utilizes this approach to compute architectural decision. Beside the tool support
for design decisions, we showed that architectures do not outperform each other for
their inherent domains in general. For changing requirements or intermediate do-
mains, we integrate our approach to hybrid stores, which support both architectures
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– Row Stores and Column Stores. We introduce the Automated Query Interface for
Hybrid Relational Architectures and discuss two different hybrid setups, which the
query interface supports. The first setup is composed of two separate systems – a
Row Store and a Column Store; whereas the second setup is our prototype, which
supports both architectures (i.e., in one system). We observe in case studies that
neither storage architecture outperforms the other for read-mostly, write-mostly, nor
intermediate domains. Besides access to most up-to-date data, a distribution of tasks
in hybrid stores with two systems resembles setups with disjoint DBSs for each do-
main. To show benefits for more fine-grained distribution of tasks, we implement a
hybrid store, in which we add Column Store functionality to an existing Row Store.
With our prototype, we showed that hybrid stores (a) are suitable for intermediate
domains and (b) show at least competitive, in some extent outstanding results for
such domains. As a result, new architectures, which are in between steady architec-
tures, have to be considered for physical design as well as query processing.
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1. Introduction

Data management has a long history as software starts to process data and is ever
since a complex task. Early data management approaches were highly dependent on
internal representations and implementation details steered by the purpose of soft-
ware [LM67]. Hence, Codd [Cod70] proposes a higher level data representation based
on relations, which aims on a general-purpose data management. First Database
Management Systems (DBMSs) were implemented based on the ideas of Codd –
Row-oriented Database Management Systems (Row Stores) [SHWK76, ABC+76];
whereby tuples represent entities of data objects. Therefore, the idea was: store
entities of objects together, thus, tuples (or rows of a table) are physically stored as
unit.
Researchers determined very early that Database Systems (DBSs) need (index)

structures to improve performance and support a variety of applications (e.g., in-
verted files [DL65], combinatorial hashing [Riv76], or B+-tree [Knu73, Pages 559
ff.] or [Com79]). The sum of (index) structures for a DBS is named as physi-
cal design. The variety of index structures and applications led to the dilemma
of optimal physical-design selection which is well-known as index-selection problem
nowadays [Sch75, HC76, Com78, SAC+79, ISR83, CFM95, GHRU97, CDN04]. This
problem passes to the architectural design of DBS through the development of storage
strategies which decompose tuples into their single domain (i.e. column of a table)
in extreme case and are also known as Column-oriented Database Management Sys-
tem (Column Store) nowadays [WFW75, THC79, CK85]. These approaches cannot
prevail against existing DBMSs at this time, thus, Row Stores persist as general-
purpose DBMSs. This fact led to specialization of DBSs for a certain purpose (e.g.,
a system for either daily operations or analyses) along with development of design
advisor for different purpose DBSs [VZZ+00, KLS+03, ZZL+04, ZRL+04, ACN00,
ACK+04, BC06, BC07].
Row Stores dominate the field of data management until mid-2000s when re-

searcher started questioning the general-purpose approach (i.e., one size fits
all) [Sc05]. At the same time, Column Stores came to life again [MF04, SAB+05,
ZBNH05, AMF06, AMDM07, Aba08, SBKZ08, ABH09]. Column Stores turn out be-
ing suitable for analyses (i.e., read-only/-most workloads), in which they outperform
Row Stores by orders of magnitude [SAB+05, AMH08]. In other words, the previous
specialization of DBSs correlates to the storage architecture now. However, physi-
cal design advisors persist as DBMS-specific or at least architecture-specific, thus,
architecture selection is based on heuristics. In short, Row Stores are most suit-
able for daily operations; whereas Column Stores are most suitable for analyses. In
consequence, nowadays the physical design starts with optimal storage-architecture
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1. Introduction

selection followed by physical design on a certain DBS/architecture for the same pur-
pose (cf. index-selection problem). Whereas optimal selection of index structures
is supported by tools, heuristic-based architecture selection reaches limitations by
new requirements for mixed workloads (e.g., analyses on daily-operations data in
real-time) [Van01, Lan04, ZAL08, SB08, SBKZ08].
In this thesis, we discuss approaches for physical design in relational data man-

agement which in their domain are applicable and sophisticatedly. Although the
physical design for a certain DBMS is such complex that (close to) optimal configu-
rations are only feasible with tool support. New opportunities for physical design due
to different storage architectures raise the question if design space is inconveniently
pruned by a-priori DBMS selection. We make this question free from confusion.
Specifically, we transfer ideas from physical design tools and therewith give assis-
tance for DBMS or storage-architecture selection. We question if DBMS or storage
architecture is suitable for a given application and then we advocate physical-design
tuning by existing tools (cf. also DBMS recommender by Brahimi et al. [BBO16]).
As a follow-up challenge, we have to cope with higher complexity for physical design
on the one hand; and on the other hand, we cope with adaptation for changing condi-
tions, which takes advantage of the increased search space for physical design. Even
for small workloads, we observe that storage-architecture selection becomes towards
infeasible without closer insights and tool support as we present in this thesis.

1.1. Contribution

In this thesis, we analyze the impact of storage architectures for a given workload
(domain) and propose an approach to overcome the architecture selection problem.
First, we analyze basic approaches for relational data management and discuss their
capabilities. In the following, we analyze widest spread storage architectures (i.e.,
Row Store and Column Store) with respect to their capabilities for a certain workload
domain. While problems and benefits of architectures are discussed in detail in
literature, benefits of hybrid architecture become obvious by comparison of both
architectures for a mix of classic disjoint workload domains. Rather, we analyze the
impact of storage architecture based on a wide-spread analytical benchmark.
Second, we propose, implement, and evaluate four key aspects that in combination

result in our approach, which we name Automated Query Interface for Relational
Architectures (AQUA2). In detail, we contribute the following four aspects:

1. Architecture-independent workload decomposition, representation, and nor-
malization are necessary to compare storage architecture in-plane. Our ap-
proach – workload pattern – is straightforwardly derived from internal query
representation in relation DBMSs and stores statistics from query optimizers
respectively user samples with respect to architecture specifics. Statistic nor-
malization is necessary due to internal different representation of statistics.
Even though our approach is straightforward, it is necessary for the remaining
aspects of our work.
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1.2. Outline

2. Storage-architecture selection for given workloads based on our workload rep-
resentation. We outline architecture selection on arbitrary degree of detail (i.e.,
in dependency of detail degree of statistics) that is transparent according to
cost functions and thus, to cost criteria. Despite the statistic-based architecture
selection, we propose selection approaches for unknown workload (parts) con-
sidering uncertainty and multi-criteria decision with user weights. Moreover,
we derive heuristics for physical design from our experiments. Architecture
selection is only applicable for DBS redesign or a-priori design on known work-
loads and user samples, but this work is crucial for remaining aspects of our
work (e.g., query processing in hybrid storage systems). We depict the overall
decision procedure in Figure 1.1.

3. A hybrid query interface (AQUA2) integrates our workload-representation
and architecture-selection approaches. Within our query interface we ana-
lyze queries (i.e., parts of a workload) to decide where we execute these best
on hybrid stores (e.g., redundant with both architectures). Therefore, we pro-
pose a stepwise optimization – rule-based on the global level and cost-based on
the local (storage) level. For the rule-based optimization, we propose query-
execution heuristics which we implement in our prototypical hybrid store.

4. Hybrid DBMS implementation with two architectures and query engines.
We additionally implement Column Store functionality in an open-source
Row Store. The integrated AQUA2 framework dispatches queries in the hybrid
DBMS prototype rule-based. Hence, we evaluate our prototype with AQUA2

integration based on a mixed domain benchmark and show significant improve-
ments in comparison to the original implementation. Finally, we outline po-
tential improvements to our prototype and ideas for (a more-general) hybrid
DBMS implementation.

Workload
Workload 

Decomposition

Workload 

Pattern

Statistics

Improvements 

& Weighting 

Factors

Decision 

Model

Figure 1.1.: Workflow of the storage-architecture-decision process.

1.2. Outline

In Chapter 2, we introduce general concepts of the relational data model, relational
storage architectures, different application fields for relational DBMSs, and (poten-
tial) optimization methods. Hereby, we show the basis for our work and assist the

3



1. Introduction

understanding and the classification of our work for readers who are unfamiliar with
relational data-management concepts.
In Chapter 3, we survey two storage architectures for the relational data model

and discuss their benefits and drawbacks. The survey shows necessity for storage-
architecture selection as well as new challenges for either approach on mixed require-
ments for former disjoint application domains. In this context, we show a brief study
for a certain application domain on both approaches that substantiates (design)
challenges by ambiguous results of the study.
In Chapters 4 and 5, we propose, discuss, and evaluate our storage-architecture-

selection approach. Therefore, we introduce an architecture-independent (workload)
decomposition and representation approach in Chapter 4 which is able to store data
of different systems simultaneously. In Chapter 5, we discuss cost estimation based
on our workload representation that we combine and evaluate in a storage advisor
for three different decision situations.
In Chapter 6, we present concepts for hybrid relational storage architectures. We

introduce our query-interface framework, discuss different optimization methods, and
present heuristics for hybrid systems. Subsequently, we show results of a mixed (re-
quirement) workload on two different hybrid system setups – two replicated DBMSs
and a prototypical hybrid DBMS.
In Chapter 7, we discuss related research compared to key aspects of our approach.

Therefore, we compose our consideration to the following five key aspects: workload
representation, self-tuning, physical design, relational storage architectures, and hy-
brid DBMSs.
In Chapter 8, we summarize our contributions and suggest directions for future

research.
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2. Background

In this thesis, we discuss architectural approaches for relational data management
and the selection of those. For readers who are unfamiliar with relational data-
management concepts, we give therefore a brief introduction into main (historic)
concepts, application fields, optimization techniques, and their relevance in this chap-
ter.

2.1. Relational Database Management Systems

In this section, we present fundamental ideas which led to the development of re-
lational Database Management Systems (DBMSs) and prepare the ground of their
success. In the following, we describe the relational data model [Cod70] itself.
Ever since software exists data has to be stored; therefore, engineers developed

data-storage approaches (e.g., graphs represent objects and relationships also known
as network model). Such data systems were based on low-level programming and had
no common (higher level) interface. Moreover, they were often not compatible to each
other even though they were deduced from the same abstract (data-organization)
approach (e.g., tree-structured files). That is, query and administration of data were
highly dependent on implementation details and internal representation (e.g., cf.
Levien and Maron [LM67]).
In the 1970s, drawbacks by this type of data management were identified (e.g., by

Edgar F. Codd [Cod70]); thus, data management came into research focus and first
DBMSs were developed (e.g., Ingres1 [SHWK76], System R [ABC+76, CAB+81]).
Codd introduced a data-representation approach – the relational data model – based
on relations [Cod70] that each represents up to n sets (cf. [Chi68a, Chi68b, Chi68c]
for another set-based approach).
Relations are usually shown in an array representation (i.e., tabular; cf. Figure 2.1)

even though the row order is irrelevant. A row represents an n-tuple of a relation R;
whereby the column ordering is significant as it corresponds to the domain order of
R (i.e., relations are domain-ordered). To hide order dependency from users, users
can use domain-unordered relations. Therefore, columns (i.e., domains of R) have to
be uniquely identifiable (e.g., by name). We identify n-tuple of R by one domain or
by a combination of domains that is non-redundant and we call it primary key (e.g.,
partkey; cf. Figure 2.1). A primary key (or its parts) of a relation S can be a foreign
key of R (e.g., part_brand; cf. Figure 2.2), thus, the foreign key of R describes the

1Announcement 1974: http://engineering2.berkeley.edu/labnotes/1003/history.html.
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2. Background

R (partkey partname part_brand)
1 conrod Mahle
2 wishbone Meyle
3 piston Woessner

Figure 2.1.: Array representation of a ternary relation.

?
R (partkey partname part_brand) S (part_brand city)

1 conrod Mahle Bosch Stuttgart
2 wishbone Meyle Mahle Stuttgart
3 piston Woessner Meyle Hamburg

Woessner Weil am Rhein

Figure 2.2.: Foreign key – A dependency between relation R and S.

reference or dependency to the domain in S2. A domain (or their combination) is
denoted as foreign key of R if it is not the primary key of R, but its elements refer to
(parts of) the primary key of another relation S (e.g., part_brand is not the primary
key in R but in S; cf. Figure 2.2).
A data model itself – even if it is implementation-independent – is not enough to

compute stored data. An (abstract) implementation-independent processing scheme
is needed as well. That is, low-level implementation is irrelevant as long as abstract
result fits to the processing scheme (e.g., to obtain a domain directly via identifier
versus read entire tuples and omit not needed domains). Therefore, Codd [Cod70]
described the following operations on relations:

Permutation: Generates one permutation of R; whereas n! permutations exist with
subject to n domains of R. That is, domains of R are interchanged (e.g.,
converse of R). Permutation is usually transparent to the user due to the
fact that each permutation can be generated by corresponding projection of all
domains implicitly (see below).

Projection (π): Selects a certain subset of domains of a relation and omits the rest.
The result itself is a relation (i.e., the projection of the given relation).

Restriction (Selection σ): Generates a subset of a relation (i.e., a new relation R′)
based on another relation S in the way that R′ contains all n-tuple of R which
satisfy equality to m-tuples of S with subject to: domains of S ⊆ domains of
R. In other words, S represents the result relation for a selection predicate,
whereas predicate selection is directly computed over R nowadays (i.e., still
results in R′).

2Whenever we omit normal forms, foreign key may occur within relations [Cod70].
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Cartesian product (×): Is inherently given because each relation R is a subset of
the Cartesian product of its domains.

(Natural) Join (∗): Combines two relations R and S to a new relation J (cf. Fig-
ure 2.3) that have domains (at least one; e.g., k) in common. That is, J
encloses all domains of R and S without duplication of mutual domains (i.e.,
k) and returns all combined tuples that satisfy equality of k in both relations
(i.e., πk(R) = πk(S)). In general, natural join can be rewritten by the Carte-
sian product and subsequent selection and/or projection to represent a broad
variety of joins.

Composition (◦): Describes the combination of R and S without k (i.e., R following
S); whereby R and S have to be joinable. Furthermore, projection eliminates
duplicates from the join result (i.e., R ◦ S = π′m+n−k′(R ∗ S). However, the
composition of R and S can be dependent on the performed join. We argue,
this operation has no significant relevance in current DBMSs.

In [Cod72], Codd showed the (relational) completeness of the relational algebra
– a collection of operations on relations. Codd included operations (e.g., union,
difference) to his considerations that were inherently supported by definition of the
relational data model, due to the fact that the model was mathematically defined
on relations. Furthermore, Codd showed the completeness of the relational calculus
– a more declarative way to query data. In contrast, queries are specified in a more
procedural way in the relational algebra3. However, Codd showed that that the
relational algebra and the relational calculus are equivalent in their expressive power
(to query data) including set operations [Cod72].
The proliferation of Database Systems (DBSs)4 – especially relational DBS – and

an ever-increasing number of users asked for tools and query languages that were
not only accessible for professionals. Therefore, Chamberlin and Boyce introduced A
Structured English Query Language (SEQUEL) [CB74]. SEQUEL has a long history
of improvements, adaptations, and derivations, which led de facto to standardiza-
tion in form of Structured Query Language (SQL) in 1992 [Ame92, Int92, MS92].
With further development of SEQUEL, the borders softened between historical
distinct database languages. That is, SQL is not only a query language (e.g.,

3Codd regarded relational calculus and algebra due to historical development of different query-
language domains.

4A DBS paraphrases the combination of a DBMS and a database (i.e., the organized data itself).

R ∗ S (partkey partname part_brand city)
1 conrod Mahle Stuttgart
2 wishbone Meyle Hamburg
3 piston Woessner Weil am Rhein

Figure 2.3.: Natural join of relations R and S.
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cf. [CAE+76, DD97, GP99, EM99]). SQL comprises additionally a Data Manip-
ulation Language (DML), which changes data sets (i.e., insert, delete, or update
data), and a Data Definition Language (DDL), which creates and/or modifies data
schema (i.e., an instance of the data model). Other research showed also the high
demand for plain implementation-independent data representations (e.g., the Entity-
Relationship Model [Che76] that can represent a number of data models).
We assume for this thesis that the union-compatibility is constituted by set op-

erations as well as renaming of attributes is constituted by the Cartesian product
operator [KBL05, Page 133 ff.]. Further, we are able to derive other join types (e.g.,
with condition, outer joins) from a set of five basic relational operators [KBL05,
Pages 137 ff.]:

1. the Projection π,

2. the Selection σ,

3. the Union ∪,
4. the Set difference −, and
5. the Cartesian product ×.

Finally, we highlight that the relational algebra and SQL are not equivalent and
have different constraints. Relational DBMSs are not based on sets as the algebra is
defined on, and thus, these systems need special integrity constraints (e.g., UNIQUE)
and operations for duplicate elimination (e.g., DISTINCT). Further differences are:

• Row and column order are significant for SQL (e.g., sorted result respectively
grouping is dependent on column order),

• Duplicate columns names (i.e., domain names of R) may occur as well as
anonymous columns (e.g., unnamed columns after aggregation) in SQL syntax,

• Duplicate rows can occur, whereas duplicate tuples cannot.

A comprehensive overview to properties of relational-algebra operations can be found
in [KBL05, Pages 127 ff.]. The corresponding considerations for SQL queries can be
found in [KBL05, Pages 147 ff.]. Nevertheless, researchers recognized early that
translation of SQL to algebra is helpful for proof of query semantic and equivalence
as well as for query optimization (e.g., Ceri and Gottlob [RKB87]).

2.2. Relational Database Architectures

One of the major benefits of the relational data model is the independence from im-
plementations details, thus, a number of different implementations is possible (i.e.,
architectures). A major aspect of our work is the distinction of relational architec-
tures and their selection with respect to different parameters. In the following, we
present therefore different implementations of the relational data model from history
which evolved over the years.

8



2.2. Relational Database Architectures

The relational data model itself and relational schemas could be implementation-
independent; nevertheless the data representation has to be transferred to physical
storage layers for persistent storage (e.g., store data on Hard Disk Drive (HDD)).
Usually, DBMSs do not have direct access to HDDs but mainly use interfaces from
Operating System (OS) or storage-management tools. A common container (i.e.,
(minimal) DBMS-storage unit) for communication between DBMS and physical stor-
age is the so-called page5 which is often sized as a HDD-data block or a multiple of
these (e.g., cf. [KBL05, Pages 322 ff.]). We highlight, storage organization within
pages is only logical, whereas DBMSs have any freedom to organize their data within
pages, which are transformed via interface for physical storage layer automatically.
We state, there are two main approaches for storage organization within pages.

First, first DBMSs – known as Row-oriented Database Management Systems
(Row Stores) – took over ideas from Codd [Cod70] to physical storage layout di-
rectly – the n-ary Storage Model (NSM) (cf. Section 2.1). That is, an n-tuple of
a relation (i.e., a row) is a unit which is stored together. In other words, rows are
stored one after the other (cf. Figure 2.4).
Second, transposed storage models [WFW75, THC79] were in research focus

from the beginning of relational DBMS that later are summarized under the
term Decomposition Storage Model (DSM) (e.g., a (full) DSM with surrogate
keys [CK85]). These approaches store all values of the same domain (i.e., attribute)
of a relation together (cf. Figure 2.4).
We argue, many approaches proposed mixed NSM/DSM layout that cluster most

important data in one file (i.e., clustered transposed files; e.g., Batory [Bat79], March
et al. [MS77, MS84]). Today, such approaches are known as (vertical) fragmentation
(on a more abstract level) in distributed DBMS (e.g., cf. [EN10, Pages 894 ff.]. We
note, these approaches do not necessarily correlate to the relational model because
most approaches are based on (data) files (e.g., by Wiederhold et al. [WFW75]).
However, several researchers compared the performance of DSM to NSM approaches
(e.g., March et al. [MS77, MS84], Batory [Bat79], Cornell and Yu [CY90]). In these
decades, the DSM approaches had their right to exist for special use cases (e.g.,
clinical and statistical/governmental data [WFW75, THC79]), but were not able
to overcome their drawbacks for wider spread. Some of the drawbacks were re-
dundant storage (e.g., [WFW75]) respectively increased total storage size [CK85]
on limited Input and Output (I/O) resources, query processing were more complex
(e.g., [Bat79]), physical design (i.e., the decomposition schema) were very complex
and bothered with changing retrieval requirements [MS77, MS84, NCWD84], because
decomposition mostly correlated to distribution on different HDDs for best perfor-
mance with DSM approaches, and reduced update performance for DSM [CK85]
which in comparison was highly dependent on the number of inverted files – state-
of-the-art at this time – for comparable NSM solutions.
Nevertheless, until mid-2000s nearly all relational DBMS used a NSM approach

5In former systems, files are commonly the (minimal logical) storage unit.
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Figure 2.4.: Exemplary storage organization of Row Stores and Column Stores within
pages respectively files.

(e.g., System R [ABC+76], INGRES [SHWK76], Oracle6) except for Sybase IQ (for-
merly Expressway), which implemented a DSM approach since the early 1990s.
Modern DSM systems – known as Column-oriented Database Management Sys-
tems (Column Stores) (e.g., Sybase IQ [MF04]) – have no redundant storage and de-
compose the data fully (i.e., data is only stored domain-wise) what is highly different
to former DSM systems. Some systems use writable storages or nodes to overcome
update problems (e.g., Sybase IQ [How10, Syb10], C-Store [SAB+05, Aba08]) and
from time to time compute something like a mini Extract Transform Load (ETL)-
process (cf. Section 2.3).
As Copeland and Khoshafian already stated in [CK85], hardware and database

technology had to highly evolve to support DSM approaches, which happened in
the last decades (e.g., higher I/O bandwidth, cheaper main memory, improved HDD
setups like RAID [PGK88]). Central Processing Units (CPUs) evolved as well, thus,
DSM approaches could take advantage of new technologies (e.g., for joins [MBNK04],
optimize cache consumption [ZNB08]). Moreover, (de-) compression is relatively
less expensive with respect to CPU costs than the decades before, what advocates
data compression in DBMS. The fully Decomposition Storage Model supports com-
pression superiorly due to the fact that attributes have plain data type, thus, high
Compression Ratios (C/Rs) can be achieved (e.g., Infobright ICE [Inf08, Inf11a]),
whereas rows consist of several data types. That is, one of the major drawbacks –
the increased total storage size – is reduced by superior compression support.
We argue, approaches occurred repeatedly which simulated either architecture

6Oracle – introduction and history: https://docs.oracle.com/cd/E11882_01/server.112/
e40540/intro.htm#CNCPT88783.

10

https://docs.oracle.com/cd/E11882_01/server.112/e40540/intro.htm#CNCPT88783
https://docs.oracle.com/cd/E11882_01/server.112/e40540/intro.htm#CNCPT88783


2.3. Application Fields

in the other and compare them to each other (e.g., [CY90, AMH08]). In contrast,
Ailamaki et al. presented a mixed NSM/DSM storage layout [ADHS01]. That is, data
within a page (or a file) is domain-wise stored – as for the DSM; but all domains of a
tuple are kept on the same page – as for the NSM. We show the coarse storage layout
for PAX in Figure 2.4. In [Böß09], Bößwetter presents PAX for super pages (SPAX)
that combines several pages to super pages. Data within super pages is domain-
wise stored; whereby, access to super pages is organized with B+ tree. Furthermore,
data is separated by fix-length attributes and variable-length attributes within super
pages. We state, these approaches have no direct impact on our work, because they
aim at cache efficiency and do not affect I/O behavior. Furthermore, modern DSM
systems have superiorly been established compared to PAX-like approaches, thus,
we do not consider these in more detail here.
For DSM systems, the term Column-oriented Database Management Systems

(Column Stores) has been established. Nevertheless, PAX-like approaches have as
well a column-oriented storage layout, thus, we do not specifically distinguish be-
tween these. That is, we use the term Column Store only. DBMSs, which use the
NSM, are named as Row-oriented Database Management Systems (Row Stores) in
the following.

2.3. Application Fields

We discussed the relational data model and different architectures, which indicated
to different application fields for relational data management. Hence, we discuss
the categorization of applications and their characteristics in the following. The
distinction of application fields implies the necessity to analyze applications for best
possible support by data management, which is part of the motivation of our work.
In the beginning, we introduce terms, which are necessary for the discussion later on.
Subsequently, we discuss the origin of different application fields and their relation
to each other.
In previous consideration, we discussed several relational operators (cf. Sec-

tion 2.1), which enclosed tasks (i.e., database operations) for the DBS
implementation-independent. A single relational operator does not provide a sat-
isfying result to the user because operators produce or compute intermediate results
only. Hence, a sequence of operators is needed which automatically computes (in-
termediate) results. Therefore, we summarize a sequence of relational operators
with the term query whenever results are returned from database. DBSs respond
to various queries of different type, thus, a single query does neither qualify the
application sufficiently nor the requirements to the DBS. Moreover, queries can be
arbitrary complex (e.g., single tuple lookup – a point query – versus queries with
multiple joins). Therefore, we characterize a set of queries as workload. Various sets
of queries can differently characterize workload, thus, workloads are summarized to
workload types. These workload types reflect the core characteristics of workloads
(i.e., the application field) with respect to their requirements to the DBS.
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In history (i.e., 1960s/70s), a database workload was known beforehand due to
antecedent usage of the batch-processing model. For this processing model, it was
necessary to know all tasks which were pooled in a batch; and therefore, one opti-
mized database (and their physical design) for certain (type of) batches. We argue,
a workload classification was not necessary for batches (from present point of view)
because one was able to react on new batches beforehand.
In the early 1980s, the situation dramatically changed by wider spread of ATMs7.

To support ATMs, daily end-user transactions needed to be processed and thus,
(financial) transaction processing had to be automated in the corresponding DBSs
(i.e., online processing). This trend advanced two developments. First, workloads
were not known in advance anymore and second, new ideas evolved for correctness
of automated concurrent computation – especially Atomicity, Consistency, Isolation,
Durability (ACID) [HR83] – that characterized the new workload type. This work-
load type waved through almost every area of daily operations (i.e., not only financial
services) and is later known as Online Transaction Processing (OLTP) (e.g., expla-
nations by Inmon [Inm05, Pages 4 ff. and 26 ff.].
We argue, a database workload consists of more than queries even though from the

outset most database (optimization) research were focused on query optimization8

(e.g., index selection [HC76], for DSM [KCJ+87]; cf. Section 2.4). For expressive con-
sideration, we have to take into account all database operations (e.g., insert/delete,
cursor; cf. TPC-C benchmark9) even though single database operations (e.g., trans-
actions) are too transient for specific optimization. In the aggregate, they can have
a crucial impact and optimization makes sense.
In the early 1990s, ideas for data retrieval came into focus of research again, which

already induced the DSM development in 1970s. However, goal was not only the
support of special use cases (e.g., clinical studies, governmental data), but the sup-
port of strategic (business) decisions as well as evaluation of businesses performance.
That is, requirements for DBSs changed from data retrieval to complex analysis over
large data sets within the database. The requirements for such analyses were com-
pletely different from requirements for OLTP workloads and Codd et al. formulated
the term Online Analytical Processing (OLAP) [CCS93] (cf. also Inmon [Inm05,
Pages 175 ff.]). Nowadays, the importance of OLAP is also reflected by development
of several of benchmark from the TPC10 for decision support solely (i.e., TPC-D,
TPC-DS, TPC-H, TPC-R, and TPC-DI – for ETL).
Codd et al. proposed an OLAP server which had access to all data pools (i.e., not

only relational DBMSs) and supported different types of analysis based on collected
data. However as hardware gets cheaper and cheaper, a special type of DBSs oc-
curred for superior OLAP support – the Data Warehouse (DWH) [Inm05, Pages 29
ff.]. DWHs are no DBSs for daily-operations but they extract and historicize data
from any desired source. Therefore, such systems use ETL processes to integrate

7ATM – Automated teller machine.
8Note, query optimization refers to lookup on (i.e., find) data what always implies a query.
9http://www.tpc.org/tpcc/default.asp.

10http://www.tpc.org/information/benchmarks.asp.
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(a) Exemplary STAR schema. (b) Exemplary Snowflake schema

Figure 2.5.: Typical DWH schemas for relational DBMS.

heterogeneous data. A major benefit of separated DBSs for OLTP and OLAP is
the freedom of schema modeling. That is, special schema types evolve over time to
support DWHs/OLAP. To the best of our knowledge, widest-spread schema types
are the STAR [Inm05, Pages 126 ff.] and the Snowflake schema [Inm05, Pages 360
ff.] (cf. Figure 2.5) respectively. Both schemas have in common that they use a
fact table as central aspect to represent business objects. The fact table connects all
dimension directly (cf. Figure 2.5(a)) respectively indirectly (cf. Figure 2.5(b)) with
each other; whereby dimensions qualify attributes (i.e., features) of in the fact table
represented business objects.
Nowadays, mixed requirements arise (cf. Chapter 3). Therefore, Cole et

al. [CFG+11] proposed the TPC-CH benchmark – a mix of the TPC-H and the
TPC-C benchmark. The TPC-CH schema is a modified TPC-C schema (e.g., rela-
tions SUPPLIER, NATION, and REGION from TPC-H added). We will use these three
benchmarks for our experiments later. Furthermore, we will use the term work-
load domain (in short domain) for the application fields: OLTP, OLAP, and mixed
OLTP/OLAP that are represented by the three mentioned benchmarks.

2.4. Query Optimization & Self-Tuning Methods

For relational data management, different architectures support different workload
domains. Nevertheless, more fine-grained approaches for these architectures exist,
which ease computation of tasks and optimize their execution. Therefore, we give an
overview of basic approaches for execution and optimization of tasks on which our
work is based on. Thus, we discuss principles of query processing, optimization, and
their historical development in the following.
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Query optimization is a crucial task for DBSs as long as data management exists
even as it was based on files in the early days of data management. At this time,
the major goal for query optimization was the efficient reduction of DBS respond
time. Therefore, researchers proposed different file-based (e.g., index-/key-organized
files [SHS05, Pages 140 ff.], heap files [SHS05, Pages 150 ff.]) and tree-based ap-
proaches (e.g., tree versus binary search on frequently changing files [Sus63], the
B-tree [BM70, BM72]) to find corresponding records (e.g., with a pointer). Such
approaches were suitable for unique elements typically the primary key. A compre-
hensive overview for searching techniques (i.e., locate queried record) can be found
in [Knu73, Pages 392 ff.] (or later editions). Nowadays, most DBMSs index primary
keys by default to support fast key-record access; whereas the index type depends
on implementation guidelines (e.g., B-tree, hash index – challenge to find a hash
function [Knu73, Pages 513 ff.]).

For many applications, it was necessary to access secondary keys (i.e., attributes
of a record), thus, only indexing of primary keys was not sufficient. Researchers
considered this challenge very early. First notable contributions addressed methods
and multi-list organization for secondary keys [Joh61, PG63], which influenced the
development of inverted files [DL65]. Further research led to a number of other
secondary-index structures (e.g., B+-tree [Knu73, Pages 559 ff.] – nowadays, widest-
spread index structure) as well as to retrieval on several attributes (e.g., combined
indexes [Lum70], combinatorial hashing [Riv76]). We refer to [Knu73, Pages 559 ff.]
for an overview of (historical) searching (i.e., retrieval) on secondary keys.

However, the DSM [CK85] itself (as well as its predecessors; cf. Section 2.2) was in
the broadest sense a structure for efficient secondary-key access that primarily had
the goal to reduce disk access (i.e., I/O cost). We argue that selection of the optimal
decomposition schema (with clustering) tends to be NP-complete just as physical
design using index structures [Com78, ISR83, FST88, RS91, CBC93b, CBC93a].
Moreover, Batory showed in [Bat79] that optimal query processing is NP-hard on
a given decomposed schema (i.e., transposed files). We suggest, the selection of
optimal physical design respectively index candidates is a NP-complete problem in
general [Mun57, Cab70, SZ79, CS95]. A comprehensive overview of the NP-problem
class can be found in [KPP04]. The decision problem became even more complex due
to wider spread of OLTP, thus, different batches (i.e., workloads) were not known
in advance anymore (cf. Section 2.3). We discuss the complexity for physical design
along with our approach in Section 5.2 more detailed.

Having index structures (i.e., alternate access paths) is not sufficient for optimal
query processing. Therefore, index structures have to be used at first, and at second
the possible best access path have to be selected for a query respectively operation.
Therefore, query-decomposition and access-path-selection approaches were proposed
in the 1970s [WY76, SAC+79]. These approaches estimated costs of certain access
paths to select the optimal path.

To the present day, DBMSs therefore create and evaluate several query
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plans [JK84, Cha98], whereby the optimal query plan11 is selected. In more detail,
we denote the first optimization step as physical optimization (i.e., create possible
internal plans with access paths), and the second step, we denote as cost-based op-
timization that uses statistics to compare internal plans (cf. Figure 2.6). Due to
infinite amount of (potential) query plans, cost-based optimization is a very costly
task (i.e., towards NP-complete) like index-candidate selection (cf. paragraph above).
Moreover, new approaches for index structures (e.g., bitmaps [O’N87, CI98] or join
indexes [Val87]) and joins 12 (e.g., hash-joins [DG85], sort-merge join [Gra94a]) in-
creased the search space further. We note, research in the field of join processing
is in discussion for decades (e.g., [ME92, GLS94, MBNK04]) as well as research on
index structures is not yet finished nowadays [SGS+13, FBK+16].

However, a preceding optimization step is implemented in current DBMSs that
overcomes degenerated query-plan search – the logical respectively algebraic opti-
mization. The algebraic optimization [Fre87, GD87] prunes the solution space of
(potential) query plans by transformation rules (e.g., for join order respectively type).
We highlight, rules for relocation of operation like move down predicate selection as
far as possible (in the query plan), for equivalent terms, and for redundant opera-
tions were derived from first consideration concerning rule-based query optimization.
Nowadays, most (commercial) DBMSs prune the solution space before execution of
cost-based query optimization by rule-based optimization [GD87, Fre87, Sel88]. We
present an overview for abstract query optimization in relational DBMSs in Fig-
ure 2.6 (cf. also [KBL05, Pages 409 ff.] or [Ioa96, Cha98]).
The query-optimization procedure is stable for years due to the fact that most mod-

ern query engines (including the optimizer) are Volcano-like [GD87, Gra90, GM93,
Gra94b, CG94], which does not mean that there is no research on query processing
(e.g., [GHQ95, GPSH02, ENR09]). Volcano-like query engines are extensible for new
operators (e.g., new join techniques), evaluate queries in parallel, and support dy-
namic query plans which remain optimal even if parameters change (e.g., selectivity).
Nevertheless, physical design in terms of access structures (e.g., indexes [CDF+01,
HIKY12]), specific domains (e.g., DWH design [FBB07, BCB10, BBJB14]), and
architectures (e.g., DSM-like approaches [SBKZ08, ABH09] or in-memory process-
ing [Pla09, KN11]) is still very volatile and of high research interest.
An important aspect for physical design is the increasing number requirements

(e.g., more aggregate processing [CS95]) that contradict the essential requirements
– mostly OLTP – even though research on existing physical-design approaches espe-
cially index selection is still an issue [CFM95, CDN04]. Moreover, OLAP becomes
more and more important for daily operations; whereby not each task can be exter-
nalized to specialized DBS (i.e., DWHs). Therefore, new approaches like materialized
views were developed [GHQ95, CKPS95, SDJL96, BDD+98]. Materialized views pre-
compute complex operations like aggregates or joins but suffer from updates due to
result materialization.

11Note, there is no guarantee to find the optimal plan.
12Early systems often just support nested-loop and merge join as in [SAC+79].
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Figure 2.6.: Abstract overview of query optimization in (relational) DBMSs.

From 1990s until today, a major challenge for physical design is the efficient
utilization of different design approaches for more volatile workload requirements
because physical design is static in actual purpose. That is, physical redesign is
not applicable for a single query (or small set of) as well as it is a too costly
(manual) task to perform in short intervals, thus, such approach is not sufficient
to react on changing workloads. Therefore, researchers proposed automatic tuning
approaches [WHMZ94, SSV96, CN97, GHRU97, CN98], which support users (e.g.,
administrators) in tuning physical design of their DBS. That is, such approaches
propose a physical design fairly close to optimal (e.g., set of indexes or material-
ized views) with respect to given constraints (e.g., disk space; cf. Equation 2.1).
Such approaches still struggle with multiple-query optimization where queries access
same attributes or can share intermediate results – a well-known problem (e.g., by
Sellis [Sel88] for query processing). Two major trends occurred in the following years.
First, a number of design advisors were implemented that propose physical design

improvements by user’s request; respectively they alert user to redesign whenever
a benefit above a given threshold is estimated for redesign (e.g., by IBM [VZZ+00,
KLS+03, ZZL+04, ZRL+04] or by Microsoft [ACN00, ACK+04, BC06, BC07]).
Second, more sophisticated self-tuning approaches [WKKS99] were proposed by

several researchers in various characteristics (e.g., for indexes [SGS03, SSG05, Lüb07,
LSSS07b, Lüb08, GK10] or storage management [Ora03a, IBM06c, Ora07, Lüb09])
that have the goal to avoid (or at least to reduce) user interaction for physical design
tuning. In this context, materialized views became Automatic Summary Tables
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Figure 2.7.: Abstract approach for self-tuning databases: (a) according to Weikum et
al. [WHMZ94, WKKS99] and (b) by IBM [IBM06a].

(ASTs) [LGB08, LGB09] which are automatically created, merged, and administered.
We refer to [WMHZ02, CN07, Bru11] for a comprehensive overview for automated

physical design and tuning. Two aspects all self-tuning approaches have in common.
First, the profit calculates the advantage for an estimated (new) configuration com-
pared with the existing configuration (cf. Equation 2.1). The profit calculation has to
satisfy side conditions for system environment (e.g., available size) and (i.e., a thresh-
old – mostly minimum benefit). Second, the strategy for automatic database tuning
is in the broadest sense equal – observe, predict, and react (cf. Figure 2.7) – whether
it is called feedback control loop [WHMZ94, WKKS99] or MAPE [IBM05, IBM06a].

profit(Cnew) − profit(Ccurrent) > min difference

with subject to: max
∑
I∈C

profit(I)∑
I∈C

size(I) ≤ max size

profit(I) = cost(Qcurrent)− cost(Qestimated) (2.1)

Finally, we state that even if abstract query-processing procedure and self-tuning
approaches are equal for relational DBMSs, specialized approaches exist for either ar-
chitecture. We highlight special query processing (e.g., different query decomposition
approaches for NSM [KY83] or query processing for DSM [KCJ+87]) or architecture-
unique index (e.g., cracking – range indexing of columns [IKM07a, IKM07b]) respec-
tively self-tuning (e.g., automatic cracking [Idr10, HIKY12]), but we do not consider
these aspects in more detail here.
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3. The Dilemma of A-priori
Storage-Architecture Selection

Chapter 3 shares material with [LS10, Lüb10, LKS10].

We discussed general knowledge on relational data management, application sce-
narios, and their optimization (cf. Chapter 2). In this chapter, we discuss the impact
of storage architectures to different workload domains (i.e., application fields). There-
fore, we discuss features of both (relational) storage architectures (i.e., Column Store
and Row Store) and their impact on application fields (cf. Section 3.1). In Sec-
tion 3.2, we discuss challenges for mixed workload domains (i.e., OLTP/OLAP) and
the impact on the design process. Finally, we present a case study (cf. Section 3.3),
in which we perform an OLAP benchmark on both architectures, and discuss impacts
on query execution on different architectures.

3.1. Read- vs. Write-optimized DBMS

For a discussion on different architectures concerning read- and write optimization,
we have to consider correlation between architectures and workload domains in more
detail. As discussed in Chapter 2, Row Stores are rather designated for write work-
loads (i.e., OLTP); whereas Column Stores are more designated for read workloads
(i.e., OLAP).
Therefore, we give an overview to different storage types and core features for

both architectures (i.e., Column Store and Row Store) in the following that have
an impact on domain-specific performance of either architecture. Furthermore, we
discuss the increased complexity – due to aggravated performance estimation – for
database design and tuning with respect to both architectures.
First, both storage architectures differ in the way, how they partition relations (i.e.,

tables). Row Stores partition relations horizontally and store these tuple-wise (i.e.,
all attribute values are sequentially stored for each tuple). In contrast, Column Stores
store values of attributes sequentially (i.e., columns; cf. Figure 3.1). Consequently,
Column Stores have to reconstruct tuples during the query execution at a certain mo-
ment whenever more than one column is affected [HLAM06, ZNB08, MBNK04]. We
state, different materialization strategies for Column Stores exist [AMDM07] that
differ in point of time tuples are reconstructed. To mention are (a) early and (b)
late materialization. For (a) early materialization columns are added to the interme-
diate result (i.e., stitched together) on access whenever corresponding columns are
needed for further processing or final result. For (b) late materialization, columns
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are scanned for predicate selection, whereby the result is a position list of attribute
values (e.g., a bitmap) that satisfy the predicates. For computation of intermediate
results, position lists are intersected (e.g., logical AND) to figure out correspond-
ing attribute values (i.e., alike vectors). In consequence, columns are rescanned for
attribute values, which satisfy all predicates, based on the intersected position list1.
However, we mostly observe aggregations and groupings in the DWH domain

(i.e., OLAP workload) that often are processed over single columns. Therefore,
Column Stores reduce the overhead for aggregations (e.g., I/O cost) because only
affected columns are accessed on. In fact, Column Stores are faster than Row Stores
on classic OLAP workloads2 [SAB+05, HLAM06, AMH08, HD08] without OLTP
parts.
We argue that the advantage of vertical partitioning in Column Stores for OLAP

is simultaneously a downside for write operations (e.g., updates). That is, tuples
have to be reconstructed at first, and subsequently to be partitioned during update
operation once again due to column-oriented architecture. In contrast, Row Stores
perform better on tuple operations (i.e., OLTP-like operations; e.g., updates) due
to tuple-wise access that are not negligible even in the DWH domain. Several ap-
proaches [Aba08, Pla09, SBKZ08, VMRC04] try to overcome update problems by
Column Stores but none reaches competitive performance compared to Row Stores.
In addition, Abadi et al. show that vertical partitioning (of relations) in Row Stores
is not a suitable compromise for OLAP [AMH08]. Summarizing, Row Stores show
strengths for write and weakness for read workloads, but we argue that Row Stores
show competitive results for read workloads to some extent. For Column Stores, the
correlation is vice versa, whereby we argue that Column Stores and write operations
are not mutually exclusive in general.
Second, Column Store and Row Stores differ in their core features as well. On

the one hand, Row Stores utilize indexes and materialized views to improve the
performance. Therefore, DBMS vendors and researchers develop a number of self-
tuning techniques [CN07] that tune DBMSs automatically. On the other hand,
such techniques (e.g., index self-tuning) to the best of our knowledge do not ex-
ist for Column Stores in similar manner. Consequently, Row Stores use currently
more mature self-tuning frameworks to take action on workload changes [CN07]
than Column Stores do.
In contrast, Column Stores have – compared to Row Stores – superior support of

compression techniques [AMF06, Aba08]. That is, Column Stores usually support a
number of compressions that can optimally be chosen for each column with respect
to its data type. Moreover, some Column Stores are able to process compressed data
directly [AMF06, Aba08]. Row Stores have to use one compression for a tuple or
tuple partition [AMH08] (i.e., the selected compression is always a compromise that
needs to satisfy all data types of a tuple).
Additionally, Column Stores and Row Stores use different query-processing tech-

1We note, an implementation can be a static order of all columns with respect to a key column.
2http://www.tpc.org/tpch/results/tpch_perf_results.asp.
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3.1. Read- vs. Write-optimized DBMS
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Figure 3.1.: Storage layout for Row Store and Column Store.

niques that are caused by different storage architectures and data-flow paths. On
the one hand, Column Stores have to reconstruct tuples during query processing,
whereby the point of time tuples are reconstructed has crucial impact on query pro-
cessing [AMDM07]. On the other hand, Row Stores can directly process several
columns (without tuple reconstruction), but they always access entire tuples, even if
just a single column has to be processed. Finally, Row Store’s query processors are
always tuple-oriented no matter how data is partitioned. Column Stores can utilize
row-oriented as well as a column-oriented query processors [Aba08] (e.g., in correla-
tion to early or late materialization), whereby the performance already affected by
query-processor selection.
In conclusion, we argue that complexity of DBS design and its tuning is increased

by boosted usages of Column Stores in the DWH domain. Hitherto, we estimate
Row Store performance for a given workload and tune DBSs concerning a given
workload. We are able to easily compare several systems (i.e., Row Stores) because
their core functionality only differs very slightly. Nowadays, we have to estimate
DBMS performance across two architectures. That is, we have to select most suitable
architecture for a given workload.
One may argue, Column Stores are most suitable for DWH applications in gen-

eral because they perform better on essential tasks for the DWH domain (e.g.,
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aggregations). However, we argue that application fields exist where neither
Column Stores nor Row Stores are suitable for each (part of) workload. In line with
others [Aba08, Pla09, SB08, SBKZ08, VMRC04], we argue that mixed requirements
from OLTP and OLAP arise for modern systems (e.g., updates for (near) real-time
DWHs) [ZAL08].

3.2. Challenge to Optimize for OLTP/OLAP Workloads

We discussed storage type and core features of the two major relational architectures
– Row Stores and Column Stores – in correlation to the main workload characteristics
for OLTP (i.e., tuple operations like updates and point queries) and OLAP (i.e.,
read workloads with aggregation and groupings). For workloads corresponding to
one domain, we figure out that a one to one correlation (i.e., OLTP on Row Stores
and OLAP on Column Stores can be feasible and sufficient. However, we suggest
that consideration of individual domains is not sufficient nowadays, because new
requirements arise in recent years, which imply a mix of workload domains (e.g.,
real-time update for DWHs [VMRC04, SB08, ZAL08] and real-time analysis [Van01,
Lan04, MKKI13, LBH+15]). In consequence, boundaries become obscure between
domains, and with that between architectures. Hence, we discuss the challenge of
mixed workload-domain optimization (i.e., mixed OLTP/OLAP) in this section.
We argue, new applications demand for efficient OLAP (e.g., aggregations) as

well as efficient OLTP processing (e.g., updates) or at least partial support of both
domains (e.g., for real-time data or dimension updates). So far, we estimate perfor-
mance for DBMS (i.e., Row Stores) according to their capabilities on optimization
and tuning [Ioa96]; due to negligible differences in their core functionality, they often
differ in implementation details only.
Nevertheless, correct performance and progress estimation is very complex and

tricky [CKR05] (e.g., often worst-case estimation only). For the described environ-
ment, we argue that workload analysis based on queries is suitable because queries
are processed in similar manner, thus, a comparison of query-execution times is suffi-
cient with respect to constraints. However, this assumption does not hold whenever
a second architecture – that differently processes data – is included to estimation or
ranking. Hence, we require new approaches for workload analysis, that are able to
compare different DBMSs across architectures (i.e., Row Store and Column Store),
which differ significantly in storage, functionality, and query-processing techniques.
We state: To compare Column Store and Row Stores, we have to estimate perfor-

mance with respect to given workloads and constraints for both architectures. Due
to different performance and processing scheme on certain operations for both ar-
chitectures, we state that workload analysis has to descend to operation level. We
argue that such adaptation is necessary, because certain operations (e.g., tuple re-
constructions) are not always assessable from a query and its structure. Moreover,
some single operations (e.g., tuple reconstructions) have a significant impact on the
overall performance of queries. Additionally, some operations (may) only exist for
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certain architecture (e.g., tuple reconstruction). Consequently, current workload-
analysis approaches, and thus, workload-estimation tools, have to be adapted due to
the fact; these approaches only support analyses of entire queries and their structure.
That is, operation-specific analyses are not supported yet.
However, optimization and physical design is often based on heuristics. For exam-

ple, Column Stores are chosen for workloads that contain an amount of aggregations
and groupings (like OLAP). We state that system architectures are often constructed
(with assumptions and) by heuristics. Similarly, DBMSs are selected by application
targets (e.g., a reporting application), thus, heuristics determine system’s design.
One can call a heuristic that states for OLAP applications: Column Stores are most
suitable due to the fact that OLAP includes an amount of aggregations and group-
ings. However, we cannot generalize this assumption even though Column Stores
outperform Row Stores for aggregations in general. If a workload contains a large
amount of tuple operations besides typical OLAP operations (e.g., aggregations)
then Column Store performance is poor due to tuple reconstructions. We argue,
processing scheme and necessary operations are not obviously legible from queries
even if these queries are aggregation queries.
Furthermore, Row Stores may compensate poor OLAP performance by efficient

tuple processing (e.g., tuple reconstruction is not necessary). That is, we have to an-
alyze query operations themselves to correctly estimate the query performance. We
present first insights on the impact of single operations (i.e., here tuple reconstruc-
tion) in the following section. With help of workload analysis based on operations,
we can obtain (weighted) comparable estimates with respect to different operations
even though some operations only exist for certain architecture. Such an approach
for workload analyses based on operations across different architectures is a major
goal of our work.
We note, the term query – if not specified differently – includes besides selection

queries also updates, inserts and so on from DML. That is, query characterizes a
part of a workload for the remaining thesis.

3.3. Study – OLAP on Different Architectures

In this section, we present a case study that shows the differences in query processing
and its performance (cf. Section 3.1) by the example OLAP. Therefore, we perform
an OLAP benchmark on a Column Store and a Row Store. We additionally show
challenges for optimization on OLAP workloads by this example, and with that
highlight the even greater challenge for mixed OLTP/OLAP workloads.
In the following, we present details on setup, environment, and our assumptions

concerning this study. Subsequently, we discuss insights into benchmark results,
which show that processing schemes, underlying operations, and their impact are not
easily legible from queries themselves. Finally, we consider challenges for physical
(database) design.
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3.3.1. Setup, Environment, & Assumptions

Our test environment is an Ubuntu 9.10 64bit system running on Samsung X65 with
a 2.2 GHz dual core processor, 2 GB RAM, and 2 GB swap partition. Furthermore,
we use Infobright ICE3 3.2.2 and MySQL4 5.1.37 for our study.
Thereby, ICE represents Column Stores and MySQL represents Row Stores. Our

decision to select these DBMSs is based on two main reasons. First, both DBMSs
are freely available, and second, both are relatively similar. On the one hand, freely
available systems fortify traceability, reasonability, and repeatability; and on the
other hand, systems that originate from same roots are more suitable for compar-
ison. That is, both systems use the common MySQL kernel/management services
except that they utilize different storage architectures. Of course, Infobright adds
functionality to the underlying MySQL (e.g., another storage manager). Neverthe-
less, to the best of our knowledge, there are no other DBMSs that utilize different
storage architectures, and are as similar as these two.
We conclude that no other DBMSs are more suitable to compare impacts on

Column Store and Row Store, even though ICE is focused on DWH applications
(i.e., read-only), and MySQL is implemented as generic DBMS that is focused on
OLTP as Row Stores usually are. We adjust both DBMSs configurations to guaran-
tee the comparability of the results. That is, both systems run on MySQL-standard
configuration. We do not create additional indexes or views for both systems, thus,
indexes and views are only created by workload or benchmarks DDL.
We use a standardized OLAP benchmark – TPC-H (2.8.0) [Tra08] – with 1 GB

data (i.e., scale factor 1) to exclude unintentional impacts by a poor chosen bench-
mark setup. We argue, the benchmark is representative for the DWH domain. We
state, benchmark data (i.e., 1 GB) does not completely fit into main memory for
MySQL-standard configuration (e.g., 16MB key-buffer size). We run two test series
concerning the TPC-H benchmark, to show, that application fields for Row Stores
still exist in DWH domain. That is, Column Stores do not outperform Row Stores
at each query. Moreover, we want to show, that storage-architecture decisions can
be easily shifted by changing workloads.
First, we perform a test series with the standard TPC-H benchmark to obtain

reference values for both DBMSs. Second, we perform a test series with an adjusted
TPC-H benchmark. Therefore, we adjusted the TPC-H benchmark in the following
way: We change the number of returned attributes for each query (i.e., in the SELECT
statement). That is, each query returns results without projection5 (e.g., SELECT *
FROM table). Listing 3.2 shows an exemplary adjusted TPC-H query (cf. Listing 3.7
for the original query). We state that we add GROUP BY statements to queries Q6,
Q14, Q17, and Q19 to create valid SQL statements, due to the fact; more attributes
than the primary aggregation are processed now. Furthermore, we decide to group
these four queries by the same attribute (i.e., each query is extended by GROUP BY

3http://www.infobright.org.
4http://www.mysql.org.
5Projection does not change number of tuples but number of attributes per tuple.
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1 SELECT ∗,COUNT(DISTINCT ps_suppkey) AS supplier_cnt
2 FROM partsupp,part
3 WHERE p_partkey = ps_partkey AND p_brand <> ’Brand#51’ AND p_type NOT LIKE ’SMALL

PLATED%’ AND p_size IN (3,12,14,45,42,21,13,37) AND ps_suppkey NOT IN (
4 SELECT s_suppkey FROM supplier WHERE s_comment LIKE ’%Customer%Complaints%’)
5 GROUP BY p_brand,p_type,p_size ORDER BY supplier_cnt DESC,p_brand,p_type,p_size;

Figure 3.2.: Adjusted TPC-H query Q16

1 SELECT SUM(l_extendedprice ∗ l_discount) AS revenue
2 FROM lineitem
3 WHERE l_shipdate >= date ’1994−01−01’ AND l_shipdate < date ’1994−01−01’ + interval ’1’ year

AND l_discount BETWEEN 0.03 − 0.01 AND 0.03 + 0.01 AND l_quantity < 24;

Figure 3.3.: TPC-H query Q6 [Tra08].

l_shipdate). Moreover, we apply these changes to our test series with the standard
TPC-H benchmark to guarantee comparability.
Finally, we argue that we exclude three queries from our test series. First, Q13 is

not executable on MySQL-syntax. Second, we remove Q18 from test series, because
MySQL is not able to finish this query. That is, we abort the execution, because it
ran for more than 21 hours. In contrast, the execution time on ICE is only 8 seconds
for Q18. Third, Q21 has an extreme high execution time (i.e., 6 hours) on ICE that
indicates optimizer problems for this query. MySQL executes Q21 in 2 minutes and
48 seconds only. We present an overview for both test-series results in Table 3.1 and
discuss these in the following section.

3.3.2. Impact of Architectures to Query Execution

We argue, ICE performs better on typical OLAP queries with aggregates on large
data sets (e.g., Q6 – cf. Listing 3.3); whereby ICE’s performance is not outstanding
in comparison to MySQL for all queries. Our study shows different impacts on the
query-execution time of the queries. We observe three different impacts in our study.

First, we cannot figure out an impact of our adjustments on the query execution
of MySQL – as anticipated. We expect this behavior because Row Stores process

1 SELECT n_name,SUM(l_extendedprice ∗ (1 − l_discount)) AS revenue
2 FROM customer,orders,lineitem,supplier,nation,region
3 WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey AND l_suppkey = s_suppkey AND

c_nationkey = s_nationkey AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND
r_name = ’AMERICA’ AND o_orderdate >= date ’1994−01−01’ AND o_orderdate < date
’1994−01−01’ + interval ’1’ year

4 GROUP BY n_name ORDER BY revenue DESC;

Figure 3.4.: TPC-H query Q5 [Tra08].
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1 SELECT l_returnflag,l_linestatus,SUM(l_quantity) AS sum_qty,SUM(l_extendedprice) AS
sum_base_price,SUM(l_extendedprice ∗ (1 − l_discount)) AS sum_disc_price,SUM(l_extendedprice ∗
(1 − l_discount) ∗ (1 + l_tax)) AS sum_charge,AVG(l_quantity) AS avg_qty,AVG(l_extendedprice) AS
avg_price,AVG(l_discount) AS avg_disc,COUNT(∗) AS count_order

2 FROM lineitem
3 WHERE l_shipdate <= date ’1998−12−01’ − interval ’117’ day
4 GROUP BY l_returnflag,l_linestatus ORDER BY l_returnflag,l_linestatus;

Figure 3.5.: TPC-H query Q1 [Tra08].

Standard TPC-H Adjusted TPC-H Standard TPC-H Adjusted TPC-H

# ICE MySQL ICE MySQL # ICE MySQL ICE MySQL

Q1 00:25 00:26 01:18 00:28 Q11 00:01 00:00 00:22 00:01
Q2 00:45 01:31 01:09 01:34 Q12 00:02 00:04 01:00 00:04
Q3 00:03 00:28 01:11 00:27 Q14 00:01 00:32 00:43 00:31
Q4 02:32 00:05 02:42 00:05 Q15 00:01 00:08 00:02 00:08
Q5 00:03 01:25 01:06 01:31 Q16 00:01 00:09 00:24 00:12
Q6 00:00 00:03 00:40 00:04 Q17 24:15 00:01 24:41 00:01
Q7 00:03 00:30 00:04 00:30 Q19 00:03 00:00 00:31 00:00
Q8 00:02 00:05 00:02 00:05 Q20 10:48 00:01 10:51 00:00
Q9 00:05 00:50 01:09 00:48 Q22 19:21 00:01 19:23 00:01
Q10 00:08 00:10 02:06 00:12

Table 3.1.: Comparison of query-execution times (in mm:ss) for ICE and MySQL on
TPC-H and adjusted TPC-H.

inherently (entire) tuples, thus, no drawbacks arise. There are only some queries that
show a negligible impact (e.g., Q2 – cf. Listing A.1, Q5 – cf. Listing 3.4); whereas the
difference is 3 respectively 6 seconds concerning a query-execution time 1 minute.
We argue, projections, which prepare final results in a query plan, have no impact
on query-execution time for Row Stores because unnecessary attribute will only be
cropped from result sets. That is, projections on intermediate results reduce their
size but not computational cost (e.g., for join results) due to the fact that the number
of tuples to be processed remains. This does not hold for Column Stores.
Second, ICE shows crucial impact for several queries (e.g., Q1, Q3, Q5, and Q16).

We argue that the largely increased query-execution time for these queries (i.e., for
ICE) results from tuple reconstruction on the greatly increased size of tuples (e.g.,
6 from 16 for Q1 respectively 9 to 34 for Q3, cf. Listings 3.5, and A.2). Hence,
such analyses, which induce very large tuples for (intermediate as well as final)
results, crucially worsen performance of Column Stores for OLAP. We conclude that
we cannot disregard size of tuples within queries for storage architecture decisions,
especially not for analysis and reporting tools that process huge data sets.
Third, some queries do not show an impact according to our adjustments of the

TPC-H benchmark (e.g., Q7 or Q15). We argue, tuple-reconstructions costs for these
queries do not have a major share of total costs. That is, result sets and the interme-
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1 CREATE VIEW revenue0 (supplier_no,total_revenue) AS
2 SELECT l_suppkey,SUM(l_extendedprice ∗ (1 − l_discount))
3 FROM lineitem
4 WHERE l_shipdate >= date ’1993−05−01’ AND l_shipdate < date ’1993−05−01’ + interval ’3’

month
5 GROUP BY l_suppkey;
6
7 SELECT s_suppkey,s_name,s_address,s_phone,total_revenue
8 FROM supplier,revenue0
9 WHERE s_suppkey = supplier_no AND total_revenue = (

10 SELECT MAX(total_revenue) FROM revenue0)
11 ORDER BY s_suppkey;
12
13 DROP VIEW revenue0;

Figure 3.6.: TPC-H query Q15 [Tra08].

diate results are comparatively small (e.g., number of involved attributes is largely
reduced by the contained view; cf. Listing 3.6). Furthermore, we state that final
projections have no impact on execution of Q7, because the same projection is done
before grouping and aggregation (i.e., SUM(volume); cf. Listing A.4). We conclude
that lion’s share of costs is caused by other operations for these queries.
We state that queries Q4, Q17, Q20 and Q22 have to be separately considered6. We

argue, these queries are outliers at least for ICE. Very long query-execution times for
these queries on ICE indicate to the same issue with respect to their query structure
(i.e., all these queries are nested; cf. Appendix A.1). We assume that ICE optimizer
or ICE query processor causes an issue while processing (complex) nested queries on
large relations (i.e., CUSTOMER or LINEITEM – the fact table). However, our results for
these queries also show that there is only a negligible impact on both systems by our
adjustments, due to the fact, complex joins cause ICE to reconstruct a large number
of tuples, whether with or without projection, whereas MySQL processes inherently
(entire) tuples without additional cost.
Consequently, we argue that we cannot easily figure out general decision rules

for query optimization across architectures based on the query structure (e.g., SQL
syntax). Already for OLAP, the consideration is very complex and not definite. That
is, we have to analyze impact on single operations to total query costs (e.g., joins,
tuple reconstruction). This also holds for optimal storage-architecture selection for
a given workload (or at least a query), because different impact of operations is not
obvious by query structure or syntax. In other words, akin queries7 (e.g., Q15 and
Q16; cf. Listings 3.6 and 3.7) cause different impact (e.g., by change of projections).
Changing the projection (i.e., a single operation) alters size of intermediate and final
results concerning the number of involved attributes, and causes different impacts
on several queries.

6We note, Q21 fits into same pattern.
7We note, similarity of queries correlates to the existence of simple equality join, aggregates, tuple
operation (i.e., ORDER BY), and low number of attributes for final result (i.e., ≤ 5 attributes).
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1 SELECT p_brand,p_type,p_size,COUNT(DISTINCT ps_suppkey) AS supplier_cnt
2 FROM partsupp,part
3 WHERE p_partkey=ps_partkey AND p_brand<>’Brand#51’ AND p_type NOT LIKE ’SMALL

PLATED%’ AND p_size IN (3, 12, 14, 45, 42, 21, 13, 37) AND ps_suppkey NOT IN (
4 SELECT s_suppkey FROM supplier WHERE s_comment LIKE ’%Customer%Complaints%’)
5 GROUP BY p_brand,p_type,p_size ORDER BY supplier_cnt DESC,p_brand,p_type, p_size;

Figure 3.7.: TPC-H query Q16 [Tra08].

Furthermore, we argue that our assumptions for mutual behavior are confirmed.
That is, Column Stores do not outperform Row Stores for each query in OLAP
environments. We further argue, there are application fields for Row Store and
Column Stores in the DWH domain particularly with regard to mixed workloads (cf.
Section 3.2). For mixed OLTP/OLAP workloads, we assume that considerations for
query optimization and physical design become even more complex and obscure than
for OLAP. We note, we present queries in Appendix A.1 that are not discussed in
detail here.

3.4. Summary

In this chapter, we discussed impacts of different (relational) storage architectures
(i.e., Column Store and Row Store) on application domains and challenges for phys-
ical (database) design on mixed OLTP/OLAP workloads. Therefore, we presented
major the distinctions between architectures and emphasized the increased complex-
ity for design decisions. We further considered current optimization approaches;
whereby we argue, we had to adapt query-wise to operation-wise analysis to be
sufficient for estimation and optimization across architectures. That is, we stated
that the impact of single operations (e.g., tuple reconstruction) is crucial for overall
query processing or at least overall query performance. In consequence, we presented
a study to show first insights into operation impact and discussed the results based
on queries from the TPC-H benchmark.
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4. Workload Decomposition &
Representation

Chapter 4 shares material
with [LGB08, LGB09, Lüb09, LKS10, LKS11c, LKS11b].

If we want to select the optimal storage architecture concerning given work-
loads, we will have to analyze these workloads. Therefore, we need workload-
statistic representations that allow aggregation, processing, as well as administra-
tion of extracted statistics. In this chapter, we introduce our approach to decom-
pose and represent workloads independently from the storage architecture. First,
we present our architecture-independent approach based on the relational data
model [Cod70, Cod72, ABC+76] using existing DBMS functionality. We gather
workload statistics directly from existing systems or use samples to process. Second,
we introduce our workload-pattern approach. That is, we show details of workload
decomposition and discuss different granularities for workload representation. Third,
we present the mapping of decomposed query parts to our workload patterns. Fourth,
we show a proof of concept. Our approach is applicable to each relational DBMS.
Nevertheless, we decide to use a closed source system for the proof of concept be-
cause the richness of detail of optimizer output and query plans is higher and easier
to understand. We state that more detailed information from optimizers results in
more accurate recommendations. Finally, we discuss possible solutions to homoge-
nize statistics from different DBMSs. In Figure 4.6, we illustrate the procedure of
our decision process from given workload up to storage-architecture selection.

Workload
Workload 

Decomposition

Workload 

Pattern

Statistics

Improvements 

& Weighting 

Factors

Decision 

Model

Figure 4.1.: Overall workflow of the storage-architecture-decision process and chrono-
logical classification for the following decomposition approach.
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1 SELECT ∗
2 FROM employees e JOIN departments d
3 ON e.department_id=d.department_id
4 ORDER BY last_name;

Figure 4.2.: Example SQL query (14-1) [Ora10a].

4.1. Relational Algebra & Query Plans

Different application domains require different storage and optimization approaches
(cf. Chapter 3). Our goal is a minimally-invasive and architecture-independent ap-
proach in which we process from workload toward decision different job steps (cf.
Figure 4.1 for workflow classification). Therefore, we use query plans [ABC+76] that
exist in each relational DBMS. On the one hand, we reuse database functionality and
avoid new computation cost for optimization. On the other hand, we make use of sys-
tem optimizer estimates that are necessary for physical database design [FST88]. In
line with Finkelstein et al. [FST88], we state that native cost estimates allow efficient
physical design for a certain purpose. In the field of physical design, approaches based
on native cost estimates lead to several design advisors for commercial DBMSs (e.g.,
for IBM DB2 [KLS+03, ZRL+04, ZZL+04] or Microsoft SQL Server [BC06, BC07]).

Following established approaches based on cost estimates, we collect statistics
directly from a DBMS based on query plans, thus, we use native optimizer-cost esti-
mates. We show an example SQL query in Figure 4.2, its query plan1 in Figure 4.3,
and the corresponding optimizer output (textual query plan) in Table 4.1 [Ora10a]
for an established commercial DBMS. Table 4.1 already presents some statistics such
as number of rows, accessed bytes by the operation, or cost – an artificial value com-
puted from estimated CPU and I/O cost estimations. Nevertheless, Table 4.1 shows
only an excerpt of gathered statistics. All available values for query plan statistics
can be found in the Oracle 11gR2 documentation [Ora10d, Chapter 12.10]. Hence,
we are able to determine the performance of operations on a certain architecture
by statistics – in our example a Row Store – such as CPU cost or I/O cost. We
obtain query plans directly from the DBMS optimizer (e.g., by EXPLAIN PLAN) or
use sample workloads with distribution of operation-types and their corresponding
cost. Hence, our approach is applicable for queries. With respect to our definition
of workloads (cf. Section 2.3), we conclude that our approach is also applicable for
workloads.
In addition to performance evaluation by several estimated cost, we gather further

statistics from query plans which influence performance of an operation on a certain
architecture (e.g., cardinality of attributes). For Column Stores, cardinality indi-
rectly affects performance of operations if the operation processes several columns,

1Note, ω< (sort/order ascending) is not part of the minimal relational algebra that we refer below.
We show the operator to be equivalent in our example’s representation.

30



4.2. From Query Graph Model to Architecture-independentWorkload Representation

Figure 4.3.: Query plan of SQL example (14-1) [Ora10a].

ID Operation Name Rows Bytes Cost (%CPU) . . .
0 SELECT STATEMENT 106 9328 7 (29) . . .
1 SORT ORDER BY 106 9328 7 (29) . . .

* 2 HASH JOIN 106 9328 6 (17) . . .
3 TABLE ACCESS FULL DEPARTMENTS 27 540 2 (0) . . .
4 TABLE ACCESS FULL EMPLOYEES 107 7276 3 (0) . . .

Table 4.1.: Textual query plan of SQL example (14-1) [Ora10a].

thus, Column Stores have to process a number of tuple reconstructions (e.g., high
cardinality leads to many reconstructions). Consequently, we use meta-data (e.g.,
computation of selectivity for attributes) to estimate the influence of data on the
performance of architectures.
Our statistic-gathering approach is applicable for relational DBMSs because all

relational DBMSs are based on the relational data model and implements database
operations to compute on relations. We state that internal database-operation imple-
mentation can be reduced to or at least encapsulated in relational algebra operators.
Such encapsulation of implementation details to relational algebra is also used by
DBMS optimizer (and required) for algebraic query optimization. We conclude, our
cost-estimation approach combines different DBMS implementations as well as dif-
ferent storage architectures, thus, we are able to compute the most efficient physical
design based on native cost estimations.

4.2. From Query Graph Model to
Architecture-independent Workload Representation

In previous work [Bub07, LGB08, LGB09], we developed an approach to an-
alyze, represent, and aggregate given workloads to recommend efficient AST
configurations. Similar approaches based on ASTs can be found in [CKPS95,
GHQ95, SDJL96, BDD+98, MQM97, GHRU97] based on the Query Graph Model
(QGM) [BR91, ZCL+00]. The distinctions are discussed in [ZCL+00]. We evaluate
our approach [LGB08, LGB09] with the TPC-H Benchmark [Tra08] and compare the
results with IBM DB2 Design Advisor (version 9.1) [IBM06b]. We figure out that our
approach [Bub07, LGB08, LGB09] causes a minimal overhead due optimized graph
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modification and restructure operations that are competitive with tree operations,
e.g., traverse:

O
(
(#patterns ∈WG)× log(order of T )(#patterns ∈ T )

)
with WG =̂ Workload Graph and T =̂ Subtree of WG.

For our framework, we adopt our approach, which recommended AST configura-
tions, and assume that T ∈ WG has a root and a number of child nodes. Child
nodes exactly have one parent node and contain workload statistics. Two equivalent
subtrees T and T ′ can exist inWG that are connected at their root (or parent) node.
That is, we aggregate statistics of T and T ′ if their structure in WG is equivalent
(e.g., we aggregate cost of one database operation per DBMS for a given workload).
Consequently, T is always a tree structure. For an architecture-independent workload
representation, we combine the ideas of query optimization by query plans and our
workload-statistic framework to recommend ASTs. Therefore, we take advantage
of abstraction in the relational data model which implies implementation of same
abstract operators in each relational DBMS. However, different relational DBMSs
of the same architecture use different optimization techniques for query execution
(e.g., different index types); whereas basic data-flow paths are almost equal (e.g.,
tuple-wise). Different relational architectures additionally differ in storage type,
data-flow path, and optimization techniques for query execution, but still implement
the same abstract operators. Consequently, we abstract from different optimization
techniques, data-flow paths, and storage types in our framework. Moreover, we state
that architecture independence also covers DBMS independence in the field of rela-
tional DBMSs. Concerning Section 4.1, we are able to extract native cost estimates
using query plans from DBMSs. Further, we observe three additional steps to repre-
sent workload statistics architecture independent. First, we decompose query plans
to single database operations. Second, we map database operations to workload
patterns. Third, workload statistics are stored in our workload graph, thus, we can
administer, analyze, and aggregate statistics.

4.2.1. Decomposition to Single Database Operations

We introduce our approach based on the relational data model [KBL05, Pages 35
ff.] and algebra [KBL05, 127 ff.] – the idea suggests itself to decompose query plans
based on the basic relational algebra operators. Summarized, we have the following
relational operators:

1. the Projection π2,

2. the Selection σ,

3. the Union ∪,
4. the Set Difference −, and

2Note, Projections do not eliminate duplicates implicitly – as Codd proposed in [Cod70].
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Workload

Selection σ 
Cartesian 
product × 

Projection π 

Set difference 
˗ 

Union ∪

Figure 4.4.: Minimal set of relational algebra operators in workloads.

5. the Cartesian product ×.

For a closer view to relational algebra operators and derived operators cf. Section 2.1.
We state that a workload based on relational algebra is composed of or can be reduced
to the above mentioned basic relational algebra operators. Consequently, workloads
in relational DBMSs can be decomposed to only five elements (cf. Figure 4.4).
On closer examination, we figure out two different behaviors. First, the Cartesian

product as well as derived join operators merge sets of attributes and match tuples
of attribute sets to a certain condition (e.g., concatenate each tuple of set A to each
tuple of set B (Cartesian) or concatenate tuples only on equivalent join-attribute
values (equi-join)). Second, projection, selection, union, and set difference modify
tuples of the relation directly; that is, relation structure does not change by these
operators. The projection shows a subset of relation attributes whereas the selection
shows a subset of relation tuples while the base relation remains unchanged. The
union and set difference modify the number of relation tuples only on the condi-
tion that relation structure and attribute names are equival (cf. Section 2.1). We
conclude that workloads based on the relational algebra have to be decomposed to
at least two patterns. The first pattern concatenate relations covers the Cartesian
product and the derived join operators; the second pattern tuple operators covers
the modification of tuples in number and depiction of a relation. We present the
graphical representation in Figure 4.5.
In line with others [KBL05, Pages 147 ff.], we state that the relational algebra is not

powerful enough to support common SQL syntax completely (e.g., SQL:1992 [Int92,
MS92, DD97], SQL:1999 [Int99, GP99, EM99], cf. Section 2.1). We can argue in
diverse directions but the support of relational algebra extensions is highly dependent
on used DBMS. That is, we only depict two general issues. First, SQL is based on
multi-sets instead of sets; and second, the basic relational algebra does not support
aggregation and groupings. However, we focus on the SQL:1992 and the SQL:1999
standard because we assume that these are most commonly used on the one hand;
and on the other hand, newer SQL standards (since SQL:2003) mostly consider
object-relational extensions which we do not yet consider (e.g., Java [Int03a] and
XML [Int03b]).
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Figure 4.5.: Decomposed workload based on the five basic relational algebra operators.
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Figure 4.6.: Workflow – Chronological classification for the following workload-
representation approach.

4.2.2. Map Database Operations to Patterns

We extend our approach to support the power of SQL and to close the gap be-
tween our algebra-based approach and SQL; due to the fact that SQL is the uni-
versal query language for RDBMS (cf. Figure 4.6 for workflow classification). In
Section 2.1, we show that relational algebra and SQL are not equivalent [KBL05,
Pages 147 ff.] but mapping approaches exist for systems which are characterized
by SQL [CG85, RKB87]. However, our approach already covers two basic operation
groups of SQL. First, the concatenate-relations pattern covers the Cartesian product
and all derivable join operations (e.g., equi-join and outer joins). We refer to this
pattern as join pattern in the following. Second, the tuple-operators3 pattern encap-
sulates the tuple processing on tables (select rows as well as columns). Nevertheless,
we miss another important functionality group of SQL: Aggregation of data. That
is, we have to add a third pattern that covers aggregation and groupings from the
SQL functionality [MS92] (cf. Section 2.1). Consequently, we obtain the following
three workload patterns: 1) the join pattern, 2) the tuple-operation pattern, and
3) aggregation & grouping pattern.
We identify different processing schemes (e.g., process columns or rows, concate-

nate relations) with our patterns. We argue that the performance of operations as
well as their impact on the query performance is highly dependent on input and out-

3In the following, we refer to tuple operations when it comes to SQL, thus, we distinguish them
from tuple operators for the relational algebra.
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Figure 4.7.: Derive join pattern from Cartesian product.

put of operations (cf. Chapter 3). Hence, we have to observe the different processing
schemes in more detail. Therefore, we define a number of sub-patterns for each
of those three patterns to characterize particular operations more precisely within
our workload patterns. That is, we extend our approach from a relational-algebra
representation to a representation for SQL-minted systems. We abstract from im-
plementation details in DBMSs and only consider universal operations that modify
rows, columns, or tables4 for query results. However, we enable analyses based on the
three patterns and additionally more fine granular analyses based on sub-patterns
with our workload-representation approach. That is, we can determine which oper-
ations cause the majority of costs within a pattern. In the following, we introduce
the sub-patterns that are assigned to one of those three patterns.

From Cartesian Product toward Join Pattern

First, we define the join pattern based on the Cartesian product5 to cover oper-
ations for the concatenation of relations (joins) of a workload (cf. also Figure 4.7).
Join operations are basic within the relational data model. Hence, these operations
affect each relational DBMS. However, joins are costly tasks and can affect perfor-
mance for DBMSs significantly. We determine this pattern to highlight differences
between join techniques of Column Stores and Row Stores (e.g., process joins directly
on compressed columns or bitmaps). Within this pattern, we distinguish different
processing schemes for the concatenation of relations. That is, we do not distinguish
between different non-optimized and optimized join implementations (e.g., nested
loop vs. merge join), but we distinguish between join processing over tuples and
columns. We abstract from data compression in this pattern due to the fact that
join techniques process (i.e., concatenate) data and do not consider shapes of data
like compression. However, bitmap representation already is a type of compression.
We abstract from further segmentation into sub-patterns because bitmap encoding
is applicable for Row Stores and Column Stores. We consider the general effects of
data compression in another pattern. Consequently, we identify the following two
sub-patterns:

4We refer to tables in consideration of SQL and to relations according to the relational algebra.
5Cartesian product is the first of five basic relational algebra operators that we have to represent.
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Figure 4.8.: Redefine tuple operators for SQL-minted systems.

Vector-based: The column-oriented architecture inherently supports vector-based
join techniques (e.g., invisible join [AMH08]) by the present column-wise par-
titioning. In contrast, Row Stores have to create and maintain structures (e.g.,
bitmap (join) indexes [SAB+05, Lüb08]), which induce additional costs. We
can observe the impact of additional structures to the join performance in
general.

Non-vector-based: This sub-pattern represents non-masked (classic) join tech-
niques [ME92] (e.g., sort-merge-join [Gra94a]) to distinguish the performance
from vector-based join techniques. Moreover, whenever join performance is
influenced by architecture in general, we can observe this behavior.

We identify two sub-patterns only that represent two fundamental different pro-
cessing schemes of Column Stores and Row Stores. Both sub-patterns cover the
representation of the Cartesian product and its derived algorithms to concatenate
relations as first (of five) base relational operator in our framework. Different join
concepts (e.g., merge or nested loop join) are not represented because they are ap-
plicable for both architectures. Hence, we conclude that there is no necessity to map
each join concept into separate sub-patterns. As a result, we can estimate effects
of architectures to the join performance. Figure 4.7 shows the redefined Cartesian
product pattern that we designate as join pattern in the following and the associ-
ated sub-patterns vector-based and non-vector-based. Figure 4.10 (on Page 41)
shows the final result of our transformation.

Definition of the Tuple-Operation Pattern

Second, we refine the tuple-operators pattern (cf. Figure 4.5) that we refer as tuple-
operation pattern in the following. This pattern represents all operations (cf.
Figure 4.8) that modify tuples of a relation in number and depiction (e.g., selection).
We summarize them in one pattern to evaluate the performance of tuple processing
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(schemes) for each architecture, because Row Stores process directly on tuples in
contrast to Column Stores, which have to compute tuple reconstructions to process
on tuples.
Therefore, we define the projection sub-pattern and the selection sub-pattern to

represent the second and third (of five) basic relational algebra operators in our
workload framework. We argue, selection of tuples is not only limited to the selection
operator in SQL-minted systems, thus, we designate the selection sub-pattern as
filtering sub-pattern in the following. Furthermore, we consider intermediate results
in this pattern. We argue that intermediate results are subsets of base relation sets
(cf. Section 2.1). Consequently, we also represent the set difference and the union
operator in this pattern because both relational operators modify the number of
tuples in relations (e.g., as intermediate result).6

We argue, set difference utilizes two sets of tuples to select certain tuples from
either set of tuples (cf. Section 2.1), thus, we associate the set difference to the
filtering sub-pattern. In the same manner as the set difference, the union operator
utilizes two sets of tuples. Entirely, we concatenate these sets to one set of tuples
with equivalent arity instead of filtering the sets (cf. Section 2.1). That is, we have
to access the sets (i.e., relations or their tuples) before we are able to process any of
the base operators.
Preceded data access for query processing is necessary for the relational base oper-

ators as well as for the following extensions to support SQL-minted systems. Hence,
we define the data-access sub-pattern to figure out the accessed amount of data for
operations and to consider the data flow within queries. We also associate the union
to the data-access sub-pattern due to the fact that we do not perform additional
actions to the concatenation of sets. However, we already represent all (five) basic
relational algebra operators and the data-flow mapping for these operators in our
framework.
In addition, we assign the tuple reconstruction (for Column Stores) to the data-

access sub-pattern. In this way, we represent the column-store-specific operation
during query processing to materialize and access tuples on the one hand, and on
the other hand, we are able to analyze the specific access behavior in contrast to
Row Stores. Furthermore, we add the sort/order sub-pattern to support tuple pro-
cessing on SQL-minted systems, which consider, in contrast to the relational algebra,
the order of tuples. In consequence, we identify the following four sub-patterns:

Sort/Order operation: Sort and order operations create certain sequences of tuples
and affect all attribute values of a tuple. We assume that duplicate elimination
is also a kind of sort operations (e.g., DISTINCT-statement) because at least
an internal sort is necessary to find duplicates efficiently. We add this sub-
pattern to represent order of tuples and multi-set semantic (duplicates) from
SQL-minted systems, because neither multi-set semantic nor duplicates exist
in the relational algebra.

6We state that the arity of tuples have to be equivalent to process set difference and union.
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Projection: Projection returns a subset of attributes of relations and causes (nor-
mally) no additional costs. In Row Stores, projection only reduces the arity
of tuples by omitting attributes, thus, only storage size of intermediate results
can be reduced. In Column Stores, projections determine the number of at-
tributes that have to be reconstructed to tuples. That is, the costs for tuple
reconstructions are influenced. Furthermore, this sub-pattern represents the
data flow within queries due to the fact that the projection depicts final query
results. That is, we represent size of final results in this pattern.

Data access and tuple reconstruction: We map different data-access schemes for
Column Stores and Row Stores (i.e., column- vs. tuple-wise) in this pattern.
The access-data sub-pattern represents the amount of data and its costs that
need to be read from base relations (e.g., from disk into buffer) for processing
of this data. Furthermore, we represent the data flow within queries. That
is, we map the data flow from the base relations (with this sub-pattern) via
data processed by operations (each sub-pattern) to the representation of fi-
nal results by the projection sub-pattern. In contrast to Row Stores, which
access the data tuple-wise, Column Stores have to undo the column-wise par-
titioning of data (i.e., reconstruct tuples) for the presentation of final results
at some point during query processing. Except for access on majority of ta-
ble columns, column-wise data access reduces I/O, but tuple-reconstruction
costs are directly related to column-wise data access. This behavior is inde-
pendent from materialization strategies, thus, the materialization strategy only
effects the degree of freedom for optimization which we do not consider in our
workload-representation framework. Consequently, we also represent the tuple
reconstruction as column-store-specific operation in this sub-pattern to map
the processing of tuples for Column Stores.

Filtering: The filtering sub-pattern covers the relational selection operator (i.e., se-
lection of tuples in relations or intermediate results) that we commonly rep-
resent in SQL-minted systems within the WHERE-clause. Furthermore, we
represent the set difference (in SQL MINUS or EXCEPT) within this sub-
pattern because we select tuples out of two sets which are also represented
as relations or intermediate results in DBMSs. However, we represent special
filter operations from SQL-minted systems, too. We argue that the HAVING-
clause process selection of tuples on special intermediate results named groups,
which we thoroughly address in the last workload pattern. That is, we as-
sign the filtering within groups (i.e., with HAVING-statement) to the filtering
sub-pattern.

We conclude, we support all five basic relational algebra operators with our frame-
work at this point. We already represent the Cartesian product by the join pattern.
So, we define the tuple-operation pattern that represents all relation-modifying
operators7 from the relational algebra. The associated sub-pattern projectionmaps

7We remark that intermediate results themselves are relations.
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Figure 4.9.: Add new operations to support SQL-minted systems.

the arity modification of tuples and the filtering sub-pattern maps the relational
selection. We entirely have to represent relational set operations. Hence, we assign
the set difference (i.e., tuple selection from two sets of tuples) to the filtering sub-
pattern and the union (concatenation of tuple sets) to the data-access sub-pattern.

We support SQL-minted systems with the sort/order sub-pattern that consider
the multi-set semantics of SQL, duplicate elimination, and the order of tuples. We
further argue that other predicate selections from SQL syntax (e.g., HAVING) are
also represented by the filtering sub-pattern. We are able to observe different data-
access schemes for Column Stores and Row Stores with the data-access sub-pattern.
However, we represent the tuple reconstruction within the data-access sub-pattern
to analyze the additional costs for this operation in Column Stores. We show the
result in Figure 4.10. Additionally to the complete representation of relational op-
erators and our extensions for SQL-minted systems, we map the entire data flow of
queries from base relations (data access) to final results (projection) in our workload-
representation framework.

New Aggregation & Grouping Pattern

Third, we add a new pattern group for operations that exist in SQL-minted systems
but not in the relational algebra (cf. Figure 4.9). We summarize these operations to
one group because these operations process a single column (e.g., average computa-
tion) or entirely process up to a small number of columns (groupings). We state that
these operations aggregate columns to an expressive value or group equal values of a
column in an order of columns. Hence, we name the pattern aggregation & group-
ing pattern in the following. We complete the support of SQL-minted systems for
our workload-representation framework with this pattern group. We determine ag-
gregation & grouping pattern as counterpart to the tuple-operation pattern. The
tuple-operation pattern reflects the Row Stores strengths due to the tuple-wise ac-
cess. In contrast, the operations grouped to the aggregation & grouping pattern
process only a single column or at least a very limited number of columns (e.g.,
GROUP BY). That is, Column Stores commonly perform well on aggregations and
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groupings (cf. Chapter 3). For aggregation & grouping pattern, we identify inspired
by the SQL syntax the following eight sub-patterns:

Count operation: The COUNT operation counts the number of attribute values (ex-
cept NULL) in a column as well as COUNT(*) counts only the number of key
values/rows, thus, this operation always processes a single column. We argue,
the DISTINCT-statement (cf. Sort/Order pattern) only eliminates multiple-
occurring attribute values from standard COUNT-computation. However, we
are aware that many COUNT-operations are not computed but read from
database statistics.

Min/Max operation: The MIN/MAX-operation computes the minimum respec-
tively the maximum value from all attribute values of a column. These values
are often part of database statistics, too.

Sum operation: This operation computes the sum of all (numeric) attribute values
according to one selected column.

Average computation: The average computation (mean) processes all values of a
single column like the sum operation. Additionally to the sum computation,
the COUNT operation counts the number of attribute values to calculate the
mean (AVG).

Group by operation: This operation groups unique values of a column according to
an order of columns and specifies a subset of relation’s tuples which as well
can be an intermediate result. Groupings are possible from one to n columns
whereas n equals the maximum number of columns of a relation. We state,
groupings are computed on a small subset of the maximum number of columns
commonly. We already assigned the selection of grouping tuples by HAVING
to the filtering sub-pattern (i.e., tuple operation) due to the fact that grouping
tuples have to be reconstructed before. We have to reconstruct tuples within
groups because single columns are not independent from each other anymore.

Cube operations: The cube operation computes all feasible combination of aggre-
gates for selected dimensions, thus, we argue, the cube operation is a special
multidimensional group operation [GBLP95, GCB+97]. The cube computa-
tion requires the power set of aggregating columns. That is, n attributes in
a cube are computed by 2n GROUP BY-clauses. A common abbreviated
syntax is GROUP BY CUBE that is standardized in the SQL:1999 stan-
dard [GP99] as CUBE()-operation. In addition, we consider the ROLLUP
operation (also from SQL:1999 standard [GP99]) that process similar to the
cube computation [GCB+97] as well as other cube operations (e.g., DRILL
DOWN). In contrast to the cube, the ROLLUP computes a specified permu-
tation of attributes and not all permutations. That is, we map most OLAP
operations [GCB+97, GP99] to this sub-pattern.
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Figure 4.10.: Workload patterns based on operations.

Statistical measures: This sub-pattern represents statistical measures (e.g., confi-
dence interval or median) that are processed by SQL-extending functions within
workloads. The standard deviation (STD) is a statistical measure for the vari-
ability of a data set and is computed by a two pass algorithm which means
two cycles. We state that the STD-statement is a good representative for these
measures because it is previously implemented in many DBMSs as function
(e.g., in PL/SQL [Des07] or Transact-SQL [Hen00]) but is not part of the SQL
standards [MS92, DD97, GP99, EM99].

Other: We add this pattern as representative of new processing schemes (i.e., pat-
tern) in SQL-minted systems. In this pattern, we can summarize object-
relational aggregations or any other aggregation type in SQL-trimmed work-
loads. We state that we are able to extend any other pattern with such an
additional sub-pattern to support new functionality.

In the third pattern, we summarize aggregation and grouping functions from most
common used SQL standards [Int92] namely count, min/max, sum, average, and
group by. Furthermore, we add sub-pattern for important statistical computations
and validation (e.g., standard deviation) that we title as statistical measures, and
map the important OLAP operations on cubes to a separate sub-pattern named cube.
We define the other sub-pattern to show extensibility of our workload-representation
framework. We are able to add any further aggregation or grouping operation to our
pattern framework if these are not derivable from our existing patterns. We argue
that this extension is applicable for both other pattern groups as well; whereby we
do not exclude a new pattern group.
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In summary, we extend our workload representation for the relational algebra by a
new group of sub-patterns and the redefinition of existing (sub-) patterns only. First,
we add aggregation and grouping operations to the new aggregation & grouping
pattern in different characteristics to support the SQL syntax. Second, we redefine
and extend the tuple-operations pattern to support different architectures of SQL-
minted systems. We recognize different tuple-processing schemes, make data-flow
analyses possible, and consider architecture-specific operations. Third, the Cartesian
product and its derivable operations are covered by two different concatenation types:
(a) tuple-wise value comparison of join attributes whereas intermediate results are
produced on necessity immediately and (b) vector-wise whereas intermediate-result
materialization is suspended. Implementation details, as different join schemes (e.g.,
merge join), are not covered here. Due to the support of relational algebra operators
and SQL syntax, we conclude that our workload-representation approach allows us
to map each workload operation to our workload patterns. Moreover, we are able to
introduce other new relational architectures into our framework and compare them
to the existing Column Stores and Row Store approaches.

4.2.3. Administration, Analysis, and Aggregation

We establish our workload-representation framework to administer workload statis-
tics for relational DBMSs above. We are aware, each DBMS administers its own
statistics in some manner. However, we aim at minimally-invasive approach as well
as at architecture-independent statistic administration. We show the architecture
independence of our approach in Section 4.3.
We argue that a standalone approach fosters both architecture independence and

minimal overhead in existing systems. That is, we achieve both objectives with a
standalone approach. Whenever we administer statistics of one (the system itself) or
more systems in an existing system; we cause additional workload on this system. We
preserve systems that will be evaluated from additional workload with our standalone
approach. Moreover, statistics from different systems are not usable from respectively
in one statistic-storage system (e.g., incompatible policies). In a standalone statistic-
storage system, we are able to homogenize different statistics to a representation
that is sufficient and applicable to each DBMS (cf. Section 4.4). Our approach also
allows us to store sample statistics. That is, we also use estimated statistics (with
uncertainty) in absence of the corresponding DBSs. We state that we are able to
compare physical present DBSs with samples (non-physical DBSs) as well as compare
samples to each other. In summary, we achieve a maximum degree of freedom for
statistic analyses and their comparability (cf. Section 5.1 for more details).
We store workload statistics or samples for different DBMSs in our framework in

the same information content as DBMSs themselves. Consequently, we are able to
analyze statistics with same methods; and alike, we are able to use same algorithms.
We process query optimization like DBMS’ query optimizer and additionally opti-
mize for several DBMSs architecture-independent and in parallel. We further argue
that complex analyses (e.g., statistical- and machine-learning algorithms [HTF09])
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on stored statistics are feasible in our standalone solution, but in a DBMS itself
such analyses cause too much impact on current workload. However, we enable new
investigation methods (e.g., bottleneck detection, load balancing) based on the pre-
sented statistic-representation approach. Therefore, we need analyses across different
operations, queries, resources, and architectures.
We further argue, DBMSs support different degrees of detail concerning statistics;

whereby statistic samples mostly do not achieve a comparable detail degree as exist-
ing DBSs. Consequently, we have to process given statistics to support their com-
parability whenever we observe different degrees of detail. We focus on bottom-up
alignment of different detail degrees due to the fact that the vice-versa approach (top-
down) has to compute artificial values to achieve more detailed statistics. Artificial
statistic values increase the uncertainty for estimations and reduce the confidence of
our approach. In consequence, we transform all statistics of the DBMS that supports
more detailed statistics, to the lower degree of detail of the DBMS to be compared.
Nevertheless, we are able to satisfy each (feasible) degree of detail for statistics. Our
freedom of choice spans from a single operation of a query (most fine-grained detail)
to the three coarse workload patterns (i.e., join, tuple-operation, and aggregation
& grouping) for statistics to be compared. Beside single operations of a query, we
support various statistic-aggregation levels (bottom-up only) in our framework to
compare DBMSs (i.e., their cost estimates) query-wise, sub-pattern-wise, and each
permutation of these levels up to very abstract costs for complete workloads (e.g.,
three coarse workload patterns). That is, the analysis methods and their degrees
of freedom are only limited by the detail degree of given statistics. We give further
insights in Section 4.3. We conclude that our approach supports each more or less
complex analysis with respect to the given degree of detail for stored statistics.

4.2.4. Threats to Validity

We introduce our workload decomposition and representation framework based on
our own abstraction level and our own point of view. That is, we do not claim
completeness. We are aware that we do not observe each relational algebra and/or
SQL extension above. We argue that we consider the most important processing
schemes (i.e., join processing, column- and tuple-wise processing, and aggregations)
and we reduce more complex operations to our workload patterns. That is, we
reduce the complexity of workload analyses and prune the solution space (number of
operators and operations), in line with others [KBL05, Pages 128 ff.] and to the best
of our knowledge, to a sufficient solution. Nevertheless, we observe dependencies
between several patterns. We consider the join, the filtering, the sort/order, the
group by, the cube pattern, as well as the tuple reconstruction, and the data access
in the following.
First, we consider the complexity of join operations. Join operations inherently

imply tuple selections (e.g., equality of join-attribute values). Hence, we may map
these selections to the filtering pattern. However, the tuple selection itself is part of
the join operation [KBL05, Pages 137 ff.] by definition [Cod70]. Moreover, we need
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to implement new techniques to further decompose join operations and gather the
necessary statistics for concatenation of tuples and the selection due to the fact that
SQL-minted systems do not reduce joins to the Cartesian product and selection of
tuples8. Hence, the administrative cost for tuning would be noticeably increased.
We state that an additional decomposition of join operations is not necessary. Con-
sequently, we keep tuple-selection-cost mapping of joins to the join pattern. To a
side-effect, we sustain the comparability of join techniques according to different
architectures because of system-specific decomposition of join operations is not nec-
essary.

Second, we state that two different types of sort/order operation can occur in
workloads (i.e., implicit and explicit sort). We distinguish between explicit and
implicit sort because the explicit is evoked by workload or a user (command) and
the implicit sort is evoked by the optimizer (reduce query costs). We map the explicit
sort operation to the sort/order pattern due to the fact that each DBMS have to
process this sort for queries in any way. In contrast, the implicit sort (e.g., for sort-
merge join) does not have to be executed in each DBMS because each optimizer
follows different query-optimization policies (e.g., sort-merge join vs. hash join). We
argue that join operations do not only evoke implicit sorts but also groupings, cube
operations, and aggregations may evoke sort operation. In summary, we assign the
costs for implicit sorts to the corresponding (parent) operation (e.g., GROUP BY)
to sustain comparability between different architectures/DBMSs.

Third, we determine that the tuple reconstruction is a column-store-specific opera-
tion and no optimization policy. Column Stores have to reconstruct tuples for several
operations (e.g., multi-column selections, sub-queries) whenever a query computa-
tion refers to more than one column (cf. Section 2.2 and/or Chapter 3). In contrast
to optimization policies (e.g., sorts), the reconstruction of tuples is not optional but
mandatory with respect to the architecture. We emphasize that tuples are found
in Row Stores inherently and Column Stores have to reconstruct them at a certain
point during query processing. That is, we distinguish between tuple reconstruction
and operations which cause the reconstruction to represent the architectural differ-
ences of Column Stores and Row Stores. Consequently, we sustain the comparability
of operations beyond the architectures. We assign the tuple-reconstruction costs to
the data-access sub-pattern as we discussed above due to the fact that these costs
correlate to the saved I/O on data access.

Summarizing, we are aware of dependencies between database operations respec-
tively our patterns and discuss the mapping of these in our approach. We argue that
our approach is suitable and further extensible for relational DBMSs. Nevertheless,
we do not claim completeness, but we show our approach’s architecture independence
in the following sections.

8The DBMS optimizer selects the most efficient join implementation to avoid Cartesian products
during query execution.
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4.3. Architecture-independent Workload Representation

We present our workload-representation framework concerning Row Stores (i.e.,
Oracle) and the relational algebra in the previous section. However, we argue that we
do not need a separate decomposition algorithm for Column Stores (i.e., our work-
load patterns are also sufficient to query plan operations of Column Stores) because
operation naming in Column Stores only differ from typical naming in Row Stores
but the abstract processing schemes are equal (cf. Sections 2.2, 4.1, and 4.2). We
show the architecture independence of our approach by two methods. First, we
representatively illustrate the mapping of query-plan operations for a well-known
Column Store from research (C-Store/Vertica9 in our case). Second, we practically
illustrate our approach by representation of column- and row-store statistics (in our
case – Infobright ICE10 respectively Oracle) in our workload-representation frame-
work.
First, we present the query-plan operations introduced in [SAB+05] and the map-

ping of operations to our workload patterns as follows:

Decompress: The decompress operation decompresses data for subsequent op-
erations in the query plan that cannot be processed on compressed data
(cf. [Aba08]). That is, we map this operation to our data-access pattern.

Select: The select is equivalent to the selection in the relational algebra except that
selection’s result is represented as a bit string. Hence, we assign the select to
our filtering pattern.

Mask: The mask operation is defined on bit strings and only returns those values
whose corresponding bits in the bit string are (represented as) 1. Note, C-
Store uses different encoding schemes for columns [SAB+05]. One of these
encoding schemes is the bit representation in bitmaps (cf. Sections 2.4 and
Chapter 3). We argue that this behavior corresponds to a specialized selection.
Consequently, we map the mask operation to our filtering pattern.

Project: The project is equivalent to the projection of relational algebra. Thus, we
assign this operation to our projection pattern.

Sort: This operation sorts columns of a C-Store projection according to a (set of)
sort column(s). This operation is equivalent to sort operations on projected
tuples. That is, we map the sort to the sort/order pattern.

Aggregations: These operations compute aggregations (e.g., SUM) and groupings
(e.g., GROUP BY) equivalent to SQL [Aba08], thus, we directly map these
operations to the corresponding sub-pattern in our aggregation & grouping
pattern. Note, Column Stores (in our case C-Store) compute only necessary

9Vertica is based on research on C-Store.
10https://infobright.com/.
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column for aggregations in contrast to Row Stores that compute complete tu-
ples.

Concat: The concat operations combines C-Store projections that are sorted in the
same sequence into a new projection (cf. Sections 2.4 and Chapter 3). We
consider this concatenation of (sets of) column(s) as specific type of tuple re-
construction operation and map it to the corresponding (data-access) pattern.

Permute: This operation permutes the order of columns in C-Store projections ac-
cording to the given order by a join index (cf. Section 2.4). It prevents addi-
tional replication overhead that emerges through creation of join indexes and
C-Store projections in several orders. This operation is used for joins, thus,
we map its cost to our join pattern. Furthermore, the join type determines to
which sub-pattern we assign these costs (see below).

Join: Wemap this operation to the join pattern and distinguish two join types. First,
if tuples are already reconstructed then the join is processed like in Row Stores.
That is, we map this join type to the non-vector-based sub-pattern. Second, the
join operation only processes on columns that are necessary to evaluate the join
predicate. The join result is a set of position pairs of the input columns where
the predicate applies [Aba08]. The second join type may process on compressed
data as well as it may uses vector-based join techniques [SAB+05, Lüb08]. That
is, we map this join type to the vector-based sub-pattern.

Bitstring operations: Bitstring operations are logical operators (AND, OR, NOT)
and are only defined for bit strings. These operations process two bit strings
and compute a new bit string with respect to the corresponding logical op-
erator (i.e., bitwise AND respectively OR, complement). In other words, the
bitstring operations implement the concatenation of different selection predi-
cates. Hence, we map these operations to our filtering pattern.

We show that our approach is also applicable for a well-known column-store imple-
mentation from research. We illustrate the mapping of the above discussed operations
to our approach in Figure 4.11. We argue that our scenario shows according to the
architecture independence soundness for our approach. Nevertheless, we present our
second pass for architecture independent statistic representation in the following.
Second, we show the soundness of our approach with a test environment. Therefore,

we use our running example DBMSs. That is, we use Oracle (i.e., 11gR2 Enterprise
Edition) as row-store representative and use Infobright ICE 3.3.111 as column-store
representative. We use the TPC-H benchmark [Tra10] (i.e., version 2.11.0 with
scale factor 1) for our test environment. We again decide for the read-only (OLAP)
benchmark TPC-H due to the fact that Infobright ICE is a read-only DWH [Inf08,
Inf11a]. We perform all 22 TPC-H queries on both systems, gather the statistics, and

11Note, ICE 3.2.2 was no longer available for download. Nevertheless, our results are comparable
for ICE, thus, we do not redo previous experiments.

46



4.3. Architecture-independent Workload Representation

Workload

Min / Max

Sum

Count

Cube

Avg
Statistical 
Measures

Non-vector-based
Filtering

(Having,Selection) 
Select, Mask, 

Bitstring operations

Vector-based

Tuple Operation
Aggregation & 

Grouping 
Aggregations ... 

Join
Join, Permute,

...

OtherGroup by

Projection
Project

Sort / Order
Sort

Tuple Reconstruction / 
Data Access 

Decompress, Concat

A Pattern Names

A C-Store operations

Mapping indication

Figure 4.11.: Workload patterns with C-Store-operation mapping (inspired
by [SAB+05, Aba08]).

store the statistics in our framework. We go into detail in the following paragraphs.
For reasons of clarity and comprehensibility, we show only three representative TPC-
H queries12 namely Q2, Q6, and Q14 in our test scenario (cf. Figure 4.12). We
present the results for the remaining queries in Appendix A.213.
The query structure, syntax, and execution time are not sufficient to estimate the

query-performance behavior on different storage architectures (cf. Chapter 3 and
Chaudhuri et al. [CKR05]). We introduce an approach based on database operations
that provides analyses to find long running operations (bottlenecks). Moreover, we
want to figure out reasons for bad (or good) performance of operations in DBMSs,
thus, we have to use additional metrics. We select the I/O cost14 to compare DBMSs
and summarize the optimizer outputs in Table 4.2. We state that I/O cost is a
reasonable cost metric but is not sufficient to select the optimal storage architecture.
We will show this effect for I/O cost with a negation example in the following.
Following our previous name convention, we define the query IDs according to their
TPC-H query number (i.e., we map the queries with the IDs 2, 6, and 14). The
operations are identified by their query plan number (IDs in Table 4.2). Thus, the
root operation of TPC-H query Q2 has the ID 2.0 in Figure 4.12. All values in
Table 4.2 are given in KBytes. The given values are input cost of each operation
except the table access cost because no information on input cost to table access
operations are available. Note, the granularity of Oracle’s cost measurements is

12The queries show typical results for the TPC-H benchmark in our test environment.
13Please cf. [Tra10] for the complete schema and query description.
14I/O cost is a best practice cost metric.
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on the byte level whereas the measurements of ICE are on the data pack (65K)
level [Inf11b]. Nevertheless, we used the default data block size 8KBytes in our
Oracle installation; that is the smallest accessible unit.
In Figure 4.12, we present the workload patterns with I/O cost15 – the optimizer

output – of the corresponding TPC-H queries. As mentioned before, the projection
operation causes no additional cost. Hence, the I/O cost in Table 4.2 and Figure 4.12
represent the size of final results. The stored information can be analyzed and ag-
gregated in decision models with any necessary granularity. In our example, we
only sum up all values of the data-access pattern for each query to compute I/O
cost per query in KBytes. For the three selected queries, all results and interme-
diate results are smaller than the available main memory, thus, no data has to be
reread subsequently. That is, we refer to data to be read from disk for the following
consideration. We suppose, the DBMS with minimal I/O cost performs best (as we
mentioned before, I/O cost is a good cost metric). Oracle reads 1,452.133 KBytes for
query Q2 and takes 8.14 seconds. ICE needs 41 seconds and accesses 2,340 KBytes.
The results for Q2 support our assumption. Nevertheless, we cannot confirm our as-
sumption for query Q14. Oracle accesses 7,020.894 KBytes and computes the query
in 22.55 seconds whereas ICE computes it in 3 seconds and reads 38,544.757 KBytes.
Moreover, the contradiction confirms for query Q6. Oracle (3,118 KBytes) accesses
less data than ICE (17,529.664 KBytes), but ICE (2 seconds) computes this query
ten times faster than Oracle (22,64 seconds). Hence, we cannot figure out a definite
correlation for our sample workload.
We have previously shown that I/O cost alone is not a sufficient metric to esti-

mate the behavior of database operations and further, we suggest that each single
cost metric is not sufficient. However, I/O cost is one important metric to describe
performance behavior on different storage architectures because one of the crucial
achievements of Column Stores is the reduction of data size (i.e., I/O cost) by aggres-
sive compression. The I/O cost also gives an insight into necessary main memory for
database operations or if operations have to access the secondary memory. Hence, we
can estimate that database operations are completely computed in main memory or
data has to be (re-)read stepwise16. We assume that sets of cost metrics are needed
to sufficiently evaluate the behavior of database operations. Therefore, one needs
tool support as we propose in this thesis.
Each relational DBMS is referable to the relational data model, so these DBMSs

are based on the relational algebra in some manner, too. Thus, we can reduce
or map those operations to our workload patterns; in worst case, we have to add
an architecture-specific operation (e.g., tuple reconstruction for Column Stores) for
hybrid DBMSs to our pattern. For a future (relational) hybrid storage architecture,
such an operation could be necessary to map the cost for conversions between row-
and column-oriented structures and vice versa.

15We are aware, the data size has to be greater than or equal to the page size.
16We remind of the performance gap (circa 105) between main memory and HDDs.
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Workload Q2 Q6 Q14

Oracle (8.14sec) ICE (41sec) Oracle (22.64sec) ICE (2sec) Oracle (22.55sec) ICE (3sec)

Data Access ID16 :1,440 ID24-26 :3*102.513 ID2 :3,118 ID5 :4,382.416 ID4 :5,400 ID8 :410.051
ID15 :0.104 ID22 :102.513 ID4 :4,382.416 ID3 :1,620.894 ID7 :9,533.676
ID13 :11.2 ID21 :102.513 ID3 :4,382.416 ID6 :9,533.676
ID12 :0.029 ID19 :1,332.664 ID2 :4,382.416 ID5 :9,533.676
ID7 :0.8 ID18 :410,051 ID4 :9,533.676

ID16 :1,332.664
ID15 :410.051
ID13 :410.051
ID12 :410.051
ID6-11 :6*102.513
ID5 :410.051

Non-vector-based ID11 :11.229 ID23 :205.025 ID2 :7,020.894 ID3 :9,841.214
ID10 :17 ID20 :205.025
ID9 :88.016 ID17 :1,742.715
ID8 :1,440 ID14 :1,742.715
ID6 :202.760

Tuple reconstruction ID4 :512.563 ID2 :410.051
ID2 :717.588

Sort ID5 :45.346 ID3 :410.051
ID3 :33.18 ID1 :820.101

Count ID1 :31.284

Sum ID1 :3,118 ID1 :4,382.416 ID1 :3,610.173 ID1 :205.025

Projection ID4 :45.346 ID0 :820.101 ID0 :0.02 ID0 :102.513 ID0 :0.049 ID0 :102.513
ID2 :33.18
ID0 :19.8

Table 4.2.: Accessed KBytes by query operations of TPC-H query Q2, Q6, and Q14.49
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Figure 4.12.: Workload graph with mapped I/O cost of TPC-H query Q2, Q6, and Q14.
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Figure 4.13.: Workflow – Chronological classification for the statistic normalization
policies.

4.4. Statistic Normalization

In previous discussions, we do not consider different cost representations that we
extract from query plans (i.e., different DBMSs/optimizers). That is, we show work-
load statistics independent from storage architecture and DBMS in our approach.
We state that the extracted statistics have to be transferred into a homogeneous
presentation, thus, we ensure sound comparison of cost values (cf. Figure 4.13 for
framework classification). We present our policies to normalize different cost repre-
sentations in the following.
We state that it is necessary or at least advantageous to use measurable values

for cost estimation. Artificial computed costs are often inexplicable due to the fact
that the computing method is mostly undisclosed (e.g., the Cost value in Oracle (cf.
Section 4.1)). That is, we cannot reproduce these cost computations. Whenever we
use artificial computed costs, we can only compare equal DBMSs or at least DBMSs
from the same vendor. Moreover, we cannot compare performance of either different
DBMSs or different storage architectures. We argue that cost measures are not only
applicable for performance estimation, but for query optimization and/or algorithm
selection (e.g., cardinality). As we state before, our approach is transparent to
optimization policies. That is, we focus on resource-consumption measures. In the
following, we show exemplary normalization for I/O and CPU cost.
First, we present our ideas to I/O-cost normalization (cf. also [Lüb09]). We state

that I/O is specified in a storage-space-consumption unit (e.g., Oracle specifies I/O
in bytes). The standard storage-space-consumption units are multiples of bytes,
thus, we can easily compute the values to a uniform unit (cf. Equation 4.1).17 We
argue that we automatically achieve compatibility between measured and estimated
values in consideration of approximation errors with our approach due to the fact
that either measured or estimated I/O is represented as multiple of bytes.

1,099,511,627,776 Byte = 1,073,741,824 KByte =
1,048,576 MByte = 1,024 GByte = . . . (4.1)

However, we determine that some DBMSs do not use an I/O representation in

17Note, the conversion factor for storage-consumption units can be 1,024 or 1,000. We use 1,024.
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# storage units ∗ storage-unit size = # KBytes

(a) # storage units ∗ 8 KByte = # KBytes

(b) # storage units ∗ 32 KByte = # KBytes

(b)?# storage units ∗ compressed KByte = # KBytes

with 65,536∗data-type size
1,024∗ C/R = compressed

Figure 4.14.: Conversion for I/O normalization based on DBMS-storage units.

Numbers: d#Bytese = length (p) + s

2
+ 1 with p = precision, s = sign flag (0/1)

Characters: d#Bytese = length (size) with (n)char(size),(n)varchar2(size), . . .

Figure 4.15.: Compute (approx.) byte size of data types in Oracle [Tan08, Ora10b].

terms of byte multiples. These DBMSs use the number of accessed (minimal) DBMS-
storage units (e.g., pages/blocks) to represent the I/O.18 In consequence, we have to
know the smallest accessible DBMS-storage unit. We observe two implementation
groups concerning storage units in DBMSs: (a) the DBMS uses a parameter (e.g.,
Oracle) to set the size of the smallest storage unit (i.e., page/block size) or (b) the
DBMS uses a fixed sized storage unit (e.g., LucidDB or Infobright ICE). Nevertheless,
we obtain the same computation method for (a) and (b). In Figure 4.14, we show the
general computation method and in each case one example. We use for (a) a standard
parameter for many DBMSs (8KByte, e.g., Oracle, PostgreSQL) and for (b) fixed
page size for LucidDB19 (32KByte). We argue that the storage-unit size is available
from DBMS configuration or at least from documentation in terms of fixed storage
units, thus, we can also normalize these I/O values. However, we detect specific
DBMSs, like Infobright ICE [Inf08, Inf11a], that put together a certain number (e.g.,
65,536 values for Infobright) of column values independent from their storage size
(i.e., this storage behavior is specific for Column Stores).
We have to observe the storage size of each column value to compute the storage

size of joined column values. We get the approximated column-value size by data
type of the corresponding column because we can derive the byte-storage size from
the data type. That is, character-data types require (approximately) 1 byte per
sign on the one hand. On the other hand, number-representations use fixed byte-
size from catalog (e.g., an integer value equals 4 byte) or the size is dependently
computed by numbers length (cf. [Syb10, Pages 69 ff.] for Sybase). We argue that
these two representations are sufficient because (almost each) more complex data
type can be reduced to simple char or number representations (e.g., as in our case

18Some DBMSs also use both I/O representations (e.g., Oracle).
19http://www.hydromatic.net/wiki/LucidDbSystemParameters.
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in Oracle [Ora10b]). We show examples for Oracle in Figure 4.15 (cf. [Tan08] for
details).20 However, the joined column values are also compressed, thus, we achieve a
Compression Ratio (C/R). The C/R is variable in our computation method, thus, we
may use this method for other DBMSs, too. We figure out C/R-values from 10:1 to
40:1 in Infobright’s information material [Inf08, Inf11a]. Concerning our experiences
(cf. Section 2.2 and Chapter 3), a C/R 10:1 is most applicable as approximation.
However, the C/R is adaptable for different data sets and/or DBMSs easily. We
present the adopted computation method for Infobright in Figure 4.14 (b)?.
In conclusion, we have to use both I/O-normalization approaches whenever DBMSs

do not support the same (or both) I/O representation(s) ((a) and (b)). Finally, we
argue that each presented method is an approximate technique in some way. The
I/O specification in byte as well as number of storage units21 does not exactly map
the filling of pages. In other words, each page is not equally or completely filled
even though the DBMS parameters concerning free space per page and deallocation
threshold of pages are known. To reduce this uncertainty, we measure the complete
database size and count the number of all allocated pages. This approach is limited
to existing DBSs as well as an approximated filling of pages from the DBMS itself
which some DBMSs support on its own. The same idea is applicable for dynamic
allocated data types (e.g., varchar). Our approach considers the maximum length
of dynamic data type that is not true in general. Therefore, we use the average
length of dynamic data types to improve the soundness of our computation. The
average length of data types can be computed in existing DBSs or approximated
from samples.
Second, we show precise and approximate conversion methodologies for CPU-cost

representations in DBMS optimizer. We state that precise cost-representations22 are
CPU cycle and CPU time [HP12]. Both cost representations are very common for
DBMSs and OSs. We convert CPU cycles to CPU time and vice versa by the help
of CPU clock rates23. We show the conversion formula in Figure 4.16. However,
we abstract from CPU-hibernation techniques (and akin). On the one hand, we
state that CPU startup is very quick from hibernation, and moreover CPU-startup
time shall be equal for a sound evaluation due to equal DBS hardware. On the other
hand, we argue that in most cases DBS’s hardware do not hibernate during workload
processing. We state that the unique CPU-startup is negligible at the beginning of
workload processing.
Nevertheless, we observe DBMSs that use an approximate CPU-cost value the

CPU utilization (e.g., Oracle). CPUs are either busy (100%) or idle (0%). Due to
the fact that systems hardware scales equally24, CPUs alternate between busy and

20Note, our example computation refers to Single-Byte character sets. For Multi-Byte character
sets size equals to bytes [Ora10b, Ora10c].

21Except we may exactly measure these values.
22We are aware that the CPU costs are approximations from DBMS optimizer. We refer to the

conversion type with the accuracy class.
23Please also cf. [HP12, Pages 48 ff.] or computation in MATLAB [FM02, Pages 374 f.].
24Remind the performance gap (approx. 105 ) between main memory and HDDs.
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CPU time =
CPU cycles for an operation

clock rate

CPU utilization
operation

≈ CPU time for an operation
total time for an operation

CPU utilization
query

≈
∑

CPU time for operations
total time for a query

Figure 4.16.: Conversion of (approx.) CPU-utilization units (time, cycles,. . . ) for
different DBMSs following others [FM02, Pol08, HP12].

idle state in sequential processing mode. In other words, tasks alternate between
busy (processing) and idle state (e.g., CPU waits for I/O). Therefore, OSs and/or
DBMSs schedule different tasks in parallel to avoid CPU waits (i.e., idle states). That
is, the CPU utilization is the percentage that an operation or a query (i.e., a task)
utilizes the CPU within a defined time slot [HP12, Pages 48 ff.].25 We state that
the CPU utilization is an approximate cost value because we are not able to convert
CPU utilization values into other CPU-cost representations. We need empirical
or measured values (i.e., time (slots)) to approximate other representations (e.g.,
CPU time) as well as vice versa. We present an approximate computation for each
per operation and per query in Figure 4.16. We argue that CPU utilization is the
most imprecise CPU-cost representation and implies an information loss compared
to CPU time and CPU cycles. Our approach additionally implies the compatibility
of optimizer costs and measured cost values. That is, (a) CPU time, CPU cycles,
and CPU utilization are measurable in OSs and/or DBMSs and (b) DBMS optimizer
estimates CPU costs that we convert into the corresponding (of the three) CPU-cost
representations. Finally, we remark that further conversions and approximations
methodologies for CPU costs are available (e.g., by help of instructions per cycle
(IPC)/cycles per instruction (CPI)). Nevertheless, we do not further elaborate on
this issue and refer to [HP12]. For cost estimation with uncertainty, we refer to
Fortier and Michel [FM02] as well as Poladyan [Pol08].
In conclusion, we normalize measurable costs to achieve a comprehensible and com-

parable statistic representation for relational DBMSs in general. Furthermore, we
guarantee comparability between measures and estimations with our normalization
process. We do not claim completeness that we use all representative cost measures.
To the best of our knowledge, CPU consumption and I/O are the most important
cost measures for DBMS performance estimation, thus, we present the normalization
process for these two measures. Nevertheless, our approach is transparent to the un-
derlying costs because the normalization policy is applicable to each (measurable)
cost value. We show ideas concerning uncertainty and soundness that can further

25A thought example can be found at http://www.ibmsystemsmag.com/ibmi/administrator/
performance/Calculating-CPU-Utilization/.
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4.5. Details of Implementation

1 oracle = ConnectionManager.getConnection(/∗your connection∗/);
2 xplanstmt = oracle.createStatement();
3 xplanstmt.execute("EXPLAIN PLAN FOR /∗put in your query here∗/");
4 xplan = xplanstmt.executeQuery("SELECT plan_table_output FROM table(dbms_xplan.display())");
5 while (xplan.next())
6 {
7 System.out.println(xplan.getString(1));
8 } ...

Figure 4.17.: Exemplary explain plan execution via JDBC for Oracle.

improve our approach. We state that these (existing) approaches are not in the focus
of our work; the approaches may be easily implemented in our approach later due to
modular and transparent implementation of the workload representation approach.

4.5. Details of Implementation

We omit implementation details in the previous sections. In this section, we show
the way to easily reimplement our approach. That is, we show the repeatability of
our approach without our purpose-built implementation and/or previous work (e.g.,
QGM briefly introduced in Section 4.2 [Bub07, LGB09]). Furthermore, we assume
higher soundness of our approach due to the fact that we eliminate artifacts from
implementation. We divide our approach into three parts: 1) statistics extraction ,
2) parsing and normalization , and 3) storage . In abstraction, we can classify the
first two parts as ETL component and the third part as data warehouse database
in a (reference) DWH scenario [Inm05]. We argue the three parts are completely
transparent to each other, to predecessor systems (e.g., statistic sources), and to
successor systems (e.g., analysis tools).
First, we extract the statistics from DBSs. Therefore, we observe two approach

classes: (a) interface-based approaches (e.g., JDBC/ODBC [SGS03, SSG04] or
R [RWM02]) and (b) integrated system tools26 (e.g., SQL*Plus (Oracle), mysql(-ib)
(MySQL/Infobright), or dbisql (Sybase)). We show an exemplary statistic extraction
for Oracle (a) via JDBC in Figure 4.17 and (b) with command-line tools [GNU10] via
SQL*Plus in Figures 4.18 and 4.19. However, we have to know for each DBMS where
query plans and statistics are stored internally. Additionally, we have to prepare op-
timizer output for analysis, whereby the optimizer output is individually configurable
for many DBMSs.
Second, we have to parse and normalize the extracted data to an interpretable

representation. Therefore, we use Bash command-line tools [GNU10] that drop un-
necessary information and normalize cost values. Finally, we prepare the simplified
cost representation for operation-wise import in a database schema27. We provide

26Vendor tools (e.g., Oracle SQL Developer) are special cases of this class because they use opti-
mized vendor-specific interfaces.

27The distribution of operations to tables is dependent on the given schema.
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1 #!/bin/bash
2 echo
3 i=1
4 for i in {1..n}; do #n represents number of queries
5 sqlplus yourusername/yourpassword < explain$i.sql

Figure 4.18.: Exemplary explain plan execution via Bash and SQL*Plus for Oracle.

1 rem Compute explain plan
2 @utlxplan$i /∗Configure your optimizer output − please cf. Oracle documentation∗/
3 EXPLAIN PLAN FOR
4 /∗put in your query here∗/;
5 SPOOL explain_query$i.csv /∗Writes output in current path∗/
6 SELECT ∗ FROM table(DBMS_XPLAN.DISPLAY(’PLAN_TABLE$i’));
7 SPOOL OFF

Figure 4.19.: Exemplary explain.sql for query plan extraction via SQL*Plus.

the code in Listing 4.20 for Oracle standard output.

Third, we show a feasible storage and administration solution for statistics that
does not use our QGM implementation. We state that the usage of the alternative
solution does not have downsides for decision quality. We use the QGM due to
experience in preliminary work, integration of code into our framework (e.g., interface
implementation), and performance issues for data aggregation (e.g., joins in the
relational representation). However, we present an entity-relationship schema for
our workload presentation in Figure 4.21 (inspired by Chen [Che76]).

We summarize that the recreation of statistic-extraction mechanism and workload
representation are easily applicable with just little effort. By usage of scripting utility
(e.g., Bash script) or high level programming languages (e.g., Java), the extraction
and loading methodology can be automated easily.

1 #!/bin/bash
2 i=1
3 for i in {1..n}; do #n represents number of queries
4 file=/yourpath/explain_query$i.csv
5 #kill, header, double quotes, and unnecessary (empty) columns; clean line beginning; add INSERT INTO

statement
6 tail −n +2 $file | sed −e ’s/,[\"][\"]//g’ \
7 −e ’s/[\"][\"]//g’ \
8 −e ’s/^.//’ \
9 −e ’s/\(.∗\)/INSERT INTO "TABLE" VALUES(\1);/’ > /yourpath/cleaned_query$i.csv

10 done

Figure 4.20.: Exemplary Bash script for cleanup of optimizer output in Oracle.
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Figure 4.21.: Entity-relationship schema for our workload-representation approach
(inspired by Chen [Che76]).
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4.6. Summary

In Chapter 4, we introduced our statistic-extraction and administration approach
that allows query and workload analyses for different DBMSs and storage architec-
tures, respectively (i.e., we only observe Row Stores and Column Stores currently).
Our idea started with the relational algebra – the fundamental concept for rela-

tional DBMS; whereupon we introduced abstract base operators (cf. Section 4.1).
Hence, the relational algebra enables us to create queries based on these operators in
form of query plans as well as query plans are used in relational DBMSs to estimate
costs of a query and figure out (or reuse) an optimized execution plan28 for a query.
In consequence, we reduced query plans from DBMS to relational algebra operators.
We obtained better support of SQL in our approach due to addition of aggregations
and groupings to the relational algebra operators. We used our combined opera-
tor set to represent given workloads and the corresponding execution costs that we
extracted (or estimated) from DBMSs.
We administered the extracted workload statistics in our workload patterns. So,

we were able to analyze and/or aggregate the statistics independently from DBMS
and query execution. Therefore, we introduced patterns that represent types of
operations. Different types of operations characterize different processing schemes
on the relational data model (cf. Section 4.2). The processing schemes respectively
workload patterns additionally depict the architectural strengths and weaknesses of
DBMSs. We showed strengths and weaknesses independently from the corresponding
DBMS. We derived the independence from DBMSs and their architecture from the
fact that our approach is based on the relational algebra and query plans on relational
(stored) data. Therefore, we followed two different ideas (cf. Section 4.3). First, we
showed the mapping to our workload pattern by column-store operations from C-
Store. Hence, we discussed how we mapped C-Store operations to processing schemes
in terms of the relational algebra and to our workload pattern, accordingly. Second,
we showed the integration of statistics from a Row Store and a Column Store by
example (i.e., Oracle 11gR2 and Infobright ICE 3.3.1). We argued that a number
of cost components had to be extracted and considered for convenient estimation of
query execution. Nevertheless, we only showed one cost component from statistic
extraction to hide unnecessary complexity and maintain the clear arrangement in
our figures. We discussed the I/O cost for both DBMSs concerning three TPC-H
benchmark queries and presented the I/O cost of both DBMSs in one exemplary
workload graph.
In order to achieve a homogeneous and sound statistic representation for diverse

DBMSs, we introduced a statistic-normalization component in our framework (cf.
Section 4.4). That is, we introduced policies for measurable cost values to compute
comparable cost estimations. We discussed policies for conversation of I/O and CPU
cost. We summarized plain intuitive storage-size conversions in the beginning. More-
over, we introduced one policy for storage units and for CPU utilization (i.e., CPU

28Remind, the execution plan of queries does not have to be optimal (cf. Section 2.4).
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time to utilization per query) each. We forbeared to use artificial computed costs
due to the fact that we are not able to reproduce the cost computation for differ-
ent DBMSs. We are aware that more cost values exist. Nevertheless, we also used
uniform or at least uniform defined cost measures (e.g., number of rows, cardinality,
etc.).
In Section 4.5, we showed implementation details that are not limited to our

tools. That is, we showed implementation-independent and transparent concepts
of the three major framework components. First, we showed the statistic extraction
with two approaches. On the one hand, we used interfaces to extract the statistics
from DBMSs, and on the other hand, we used integrated system tools for statistic
extraction. However, one may use the extracted statistics in any fashion and/or
system. Second, we normalized the extracted statistics to an interpretable and ho-
mogeneous representation for succeeding computations. That is, we could implement
the parsing and normalization component in a programming language which mas-
ters string extraction and manipulation. We presented our code examples in simple
UNIX-based shell script code. We assumed that an implementation may be even
easier with markup- and tag-enabled programming languages. Third, we presented
an alternative storage and administration approach for relational DBMSs. On the
one hand, we encouraged our approach’s reproducibility, and on the other hand,
the alternative approach could be easier integrated into existing meta-data storage
approaches. Therefore, we illustrated the semantic representation of our QGM in
an entity-relationship schema. That is, one may transpose our entity-relationship
schema in any relational representation with respect to DBMS specifics.
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Chapter 5 shares material with [Lüb10, LKS11a, LKS11b, LSKS12, LKS12].

We analyze statistics to select or recommend the optimal storage architecture.
The statistics are given by a sample workload or are extracted from DBMSs as we
discussed in Chapter 4. In this chapter, we introduce the Decision Model (DM)
based on our workload-statistic framework (cf. Chapter 4). Therefore, we discuss
the impact of cost functions1, different granularity levels, and constraints. Based
on our classification, we present our DMs to select the optimal storage architecture.
We introduce a basic DM, wherefrom we derive three DMs for different applica-
tion scenarios – the online DM, the design-prediction model, and the benchmarking
model. First, we present the online DM which only uses extracted statistics from
DBMSs. Second, we present our (offline) design-prediction model to cope with pre-
dicted workloads (or with sample workloads). Third, we show the combination of
both variants – the offline benchmarking model; that is, a variant that benchmarks
an existing and a theoretical system. We evaluate the DM with two DBMSs and
a well-known benchmark to show the feasibility of our approach. Furthermore, we
show heuristic samples that we generate from computations with our DM as well as
preliminary respectively evolutionary work. In Figure 5.1, we show the chronological
classification of the DM in the decision-making process.

Workload
Workload 

Decomposition

Workload 

Pattern

Statistics

Improvements 

& Weighting 

Factors

Decision 

Model

Figure 5.1.: Chronological classification for our "advisor module" in the overall deci-
sion workflow.

5.1. Cost Estimation with and without Uncertainty

In database tuning, we perform optimization according to a certain criterion (e.g.,
minimal response time for each query, maximal throughput, or average query re-
sponse time for a given workload) which is most commonly done for a specific system

1Discussion to data source – artificial costs vs. statistic extraction – are found in Sections 4.2
and 4.4.
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or architecture. Nevertheless, optimization aspects could be more complex (e.g., op-
timal load balancing systems, user preferences, good enough optimization to a given
time threshold). A common approach is the so-called what-if analysis that we use
for query optimization or physical design (e.g., index configuration [CN98, BFB14],
materialized views [ZZL+04]). However, we outline an approach that is applica-
ble across systems and architectures, for different cost functions (with and without
threshold), and for samples (with uncertainty).
An optimal storage architecture has to satisfy all optimization criteria or a

weighted optimum of them (e.g., majority voting). Another challenge is that there
is not a single architecture outperforming the other for each database operation.
Therefore, the overall optimum of all database tasks (user-specified or related to
optimization criteria) has to be taken into account. We show that cost functions for
single measure cannot cover all design criteria, thus, several measures (and their cost
functions) have to be combined. As a result, cost functions become more complex.
However, we argue that it is not useful to include all criteria into storage-architecture
selection for sound results (cf. Section 4.4). Furthermore, we state that it is harder
to find a sufficient cost function for more complex problems. Advantages and dis-
advantages of architectures may be hidden by composite cost functions (for several
cost measures) due to different processing schemes (cf. Section 4.3). Moreover, the
computational costs for complex cost functions can exceed the benefit for further ap-
plication fields (e.g., decisions for single queries). Despite the challenges, a weighted
approach for several criteria is possible; and therefore, we state that a methodology
of ranking system alternatives has to be considered. An important point for ranking
alternatives is the evaluation function according to given criteria. We assume, cost
functions C and the corresponding queries are already partitioned in such a way
that all cost values c describe the cost structure sufficiently. The costs C have to
be selected according the optimization criterion (e.g., query-execution or CPU time,
data size, or user preferences; cf. Chapter 4).
For the selection of the optimal storage architecture, we assume that optimization

criteria are represented by cost measures (e.g., I/O) without uncertainty. Therefore,
the systems to be compared have to be available. The cost function C maps a cost
measure with respect to a given cost criterion. That is, we compute each cost measure
with at least one cost function. Independent from the number of cost measures, we
may have different cost functions for the same cost measure (cf. Figure 5.2) due to
the fact that, a cost measure can be determined in continuous units as well as discrete
units. Whereas linearity in a cost function (e.g., I/O in Byte; cf. Figure 5.2 – top left)
results from algorithms with linear complexity which is analogously true for square
root and quadratic functions. A staircase or stepwise linear function represents
query-execution times where involved data has to be loaded and reallocated (e.g.,
disk swapping or allocate of new space; Figure 5.2 – top center and top right).
Mostly, we assume that mixed or composite cost functions are common in practice.
Moreover, a cost function may be discrete due to the fact that the corresponding
cost measure is measured in discrete units (e.g., page or data-block size).
For small sized queries a quite different cost function behavior is appropriate than
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Figure 5.2.: Different cost functions for the data size and the corresponding query
execution time.

for larger queries with respect to limited (exclusive) resources (e.g., main memory).
We assume that evaluation criteria are defined. For further discussion, we assume
that evaluation criteria are already defined, thus, we do not pay further attention on
these. For ease of explanation and due to the fact that CPU and I/O cost are most
suitable cost measures for architecture-independent comparison – what we already
discuss in Section 4.4, we only use CPU and I/O cost for the remaining thesis.
Nevertheless, a cost function can be used that represents user-specified measures
(as well as standard cost measures) for the comparison of storage architectures.
In Figure 5.2, we depict a selection of cost-function structures concerning query
execution time without a claim to generality. However, we argue that our approach
is transparent concerning cost functions, thus, we compute the storage-architecture
selection with arbitrary cost functions (and measures) on arbitrary degree of detail.
We obtain the arbitrary degree of detail due to arbitrary granularity of workload
representation (cf. Section 4.2).
We have to consider the degree of detail for storage-architecture selection with

uncertainty, too. We use estimated workload statistics (i.e., samples or predicted
workload) whenever to be compared systems are not available. Nevertheless, we
map samples to our workload-representation as we map extracted optimizer statistic
approach on arbitrary degree of detail (cf. Section 4.2). We argue, the uncertainty
is represented in our samples, thus, we do not directly map the uncertainty to the
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cost function C. That is, our sample consists of a set of tasks which are represented
by C and a probability value. The probability value describes the probability that
the corresponding task is executed and encapsulates samples uncertainty. We argue
that we represent samples with uncertainty sufficiently with this approach. However,
we support analyses on arbitrary degree of detail (e.g., aggregate single operations
to pattern level), thus, we have to compute uncertainty from the sample as well.
Therefore, we suggest an error-propagation approach from uncertainty analysis (cf.
Reddy [Red11] as exemplary application in energy engineering or standard literature
by Meyer [Mey92]).
In our design-decision approach, we distinguish between online and offline deci-

sions. We assume, the information space is without uncertainty for online decisions
(i.e., the database system, its optimizer estimates, statistics, etc. are available). We
develop for this scenario our online DM (cf. Section 5.2.1). For offline decisions,
uncertainty has to be taken into account. We state that uncertainty results from
unknown workload (parts) and/or estimation of the corresponding cost. Therefore,
we develop two offline DMs that first, support the design or redraft of systems (cf.
Section 5.2.2), and second the benchmarking of different systems (cf. Section 5.2.3).
Due to the distinction between (both) architectures, we consider decision problems
as ranking of architectural designs. Challenges of rankings under uncertainty are
addressed, e.g., in [BK10], which we do not discuss in this thesis in more detail.

5.2. Storage Advisor: A Priori Storage-Architecture
Selection

We considered gathering and storage of data (i.e., workload statistics) from different
sources (cf. Chapter 4). In this chapter, we establish our storage advisor by means of
DMs. Therefore, we integrate our workload patterns and therein present statistics2

in our DM. Our DM allows us to recommend the optimal storage architecture.
However, we will present basic definitions first. We will derive therefrom three DMs
at abstract level and describe these in abstract, transparent, and implementation-
independent way (e.g., cost functions can be replaced modularly). We remind, our
workload-pattern approach is adaptable on (sub-) pattern as well, which can be
added or refined (cf. Sections 4.2 and 4.4). Hence, our DMs can be further refined
(e.g., more fine-grained or more coarse-grained).
We state that for physical design a common approach for enumeration3 is the

Knapsack [ACK+04] (cf. [Bru11, 92 ff.] for detailed discussion). We refer to bottom-
up strategies only due to the fact that a global optimal configuration is not known
beforehand. A global optimal configuration is necessary for so-called top-down ap-
proaches. However, Knapsack problems [KPP04] are specific problems of the com-
binatorial optimization (for details cf. [Sch03]). Enumeration by Knapsack is well

2Extracted from the optimizer or estimated workload statistics (samples).
3That is, we select a set of candidates according to given constraints.
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known for decades (e.g., [Cab70]). We present the (0-1) Knapsack problem in Equa-
tion 5.1 [Pis95] that describes a maximization problem for profit p of candidates’ j.
xj is binary and describes whether candidate j should be taken or not. Furthermore,
the sum of candidates’ weight wj must not exceed capacity c.

max

n∑
j=1

pj · xj subject to:

n∑
j=1

wj · xj ≤ c j = 1, . . . ,n

xj ∈ {0, 1} (5.1)

The profit pj composes of the benefit bj less the modification costs mcostj (e.g.,
for index selection) [CFM95, LSSS07a, Lüb07, Lüb08]. Benefit bj represents the
advantage to take candidate j; whereasmcostj represents the costs to achieve benefit
bj .

pj = bj −mcostj subject to:
j = 1, . . . , n

In the following, we adapt the general Knapsack problem to the database tuning
domain. We define capacity c as resource constraint rc to be more consistent to
the domain. That is, rc describes the maximum available resources to compute
candidate j (i.e., tasks/queries). The weight wj , which we denote as demand dj in
the following, describes the proportionally consumption of the maximum available
resource rc. We state that demand dj and resource constraint rc describe the same
measure (e.g., I/O). We present our derived Knapsack problem in Equation 5.2.

max
n∑

j=1

(bj −mcostj) · xj subject to:

n∑
j=1

dj · xj ≤ rc j = 1, . . . ,n

xj ∈ {0, 1} (5.2)

Until now, we do not compute the profit of different storage architectures with
our derived Knapsack. Therefore, we introduce variable i that describes the corre-
sponding storage architecture4. That is, we have to select candidates j from i classes
with i ∈ {CS;RS; . . . ;m} now. Consequently, we have to solve a multiple-choice
Knapsack [SZ79] to select the optimal storage architecture. According to Sinha and
Zoltners [SZ79] and in tandem with our previous considerations, we obtain a derived

4In the following formulas, we abbreviate Column Stores as CS and Row Stores as RS.
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multiple-choice Knapsack problem. We present our (abstract) DM in Equation 5.3.

max

m∑
i

n∑
j=1

(bij −mcostij) · xij subject to:

n∑
j=1

dij · xij ≤ rci j = 1, . . . ,n

xij ∈ {0, 1} i ∈ {CS,RS, . . . ,m} (5.3)

We point out, several implementations and optimizations for Knapsack problems are
available (e.g., by Pisinger [Pis95]); hence, we do not consider these aspects in more
detail. We derive advisor approaches from the multiple-choice Knapsack problem in
Equation 5.3 for different application fields in the following sections.
We develop three variants of our DM in the following sections. First, we intro-

duce the online DM based on linear programming in Section 5.2.1. We develop
the online DM to support optimal architecture selection with direct DBMS-statistic
extraction. Second, we introduce a (offline) design-prediction model that ana-
lyzes predicted (and/or) future workloads. As a result, we obtain an indication of
the optimal storage architecture (cf. Section 5.2.2). Third, we combine the online
and design-prediction DM to the offline benchmarking model. This model selects
the optimal architecture like the online DM, but copes with architecture selection
on predicted workloads like the design-prediction model as well. We support sample
and/or predicted workloads as well as extracted DBMS statistics in the third DM
variant (cf. Section 5.2.3).

5.2.1. Online Analysis with Statistics from DBMS

For our online DM, we use extracted statistics directly from DBMS. Furthermore,
we reuse query plans [ABC+76] provided by relational DBMS in any shape (also
cf. Section 2.4). That is, we do not introduce new cost measurements. We argue
that we obtain the best possible initial values for our computations based on direct
DBMS-optimizer output (estimates) [FST88]. For the following considerations, we
assume that statistics of different architectures (here – Row Store and Column Store)
are provided to our online DM. That is, the extracted statistics are normalized and
stored in the workload-pattern framework (cf. Chapter 4 for more details).
We select the optimal storage architecture based on statistics that represent a

number of different cost estimates (e.g., CPU costs). Therefore, we have to decide
which estimation we use for optimizations. We state that our DM is transparent
to cost functions. Nevertheless, cost functions can be arbitrarily complex (cf. Sec-
tion 5.1). On the one hand, a cost function can only represent one cost criterion
(e.g., CPU costs). On the other hand, complex cost functions range from a com-
bined cost function that takes two criteria into account (e.g., CPU and I/O costs)
to very complex cost functions that take all available cost criteria into account (for
more details cf. Section 5.1). However, we derive a simplified optimization problem
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for the storage architecture decision in the following.
We derive our online DM from the abstract DM presented in Equation 5.3 (cf.

Section 5.2). We simplify the abstract DM by two aspects. First, we invert the
optimization criterion from maximum profit (benefit minus costs) to minimum costs
for a workload. We argue that a priori decision causes a suggestion for either archi-
tecture, thus, we have (a) no modification costs (mcostij) for storage modifications
and (b) no benefit (bij) compared to other architectures. In contrast, we compare
workload costs for the architectures, thus, we suggest the architecture that causes
the minimum costs. That is, we replace the benefit bij and the modification costs
mcostij directly by a cost function C(i,j). Second, we omit the capacity criterion of
the abstract DM, and thus, the resource constraint rci is not applicable. We note
that DBMS statistics may include operational information (e.g., current resource
consumption), but for a priori decisions, we use only extracted DBMS statistics that
are independent from operational statistics. Our decision shall be independent from
current state of OS and/or DBMS. Furthermore, we assume a representative given
workload for our analysis. In summary, we suggest the optimal storage architecture
for a given workload without any resource constraints.
We build the architectural decision upon a linear program (cf. [Chv83, Pages 341

ff.]) that is related to the assignment problem5 [Mun57]. We define a cost func-
tion (i.e., execution costs) C(i,j) according to the previous discussed optimization-
criterion inversion. We note that the cost function C(i,j) has – in contrast to
profit pij – no constraints on resource consumption rci. Furthermore, we define
a (database) task as a part of a query (e.g., ID1 represents a join operation within
query Q15). We represent this database task within a workload as ID 15.1 according
to the definition in Section 4.3 (cf. Figure 4.12). The assignment xij is constr-
cuted by the set of database tasks T and the storage architecture {CS;RS}. We
assume that cost function values C(i,j) exist for a task j and a storage architecture
i. Consequently, we set up the derived online DM in Equation 5.4.

min
∑

i∈{CS;RS}

∑
j∈T

C(i,j) · xij subject to:

∑
j∈T

xij =

{
|T |
0

∀i ∈ {CS;RS}

∑
i∈{CS;RS}

xij = 1 ∀j ∈ T

xij ∈ {0, 1} ∀i ∈ {CS;RS},∀j ∈ T (5.4)

Our online DM has two constraints. First, we have to ensure that either all
or none of the tasks are performed by either architecture because we suggest the
one architecture with minimal costs for a given workload. Therefore, we define the

5The assignment problem is another specific problem of the combinatorial optimization.
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domain of i subject to ∀i ∈ {CS;RS}. The cardinality of T (|T |) represents the
number of tasks in a workload. In consequence, we obtain an alternation of task
executions by the case distinction of |T | and 0 (cf. Equation 5.5). That is, whenever
xij is not zero for one value of i then xij have to be zero for all other values of i.

∑
j∈T

xij =

{
|T |
0

∀i ∈ {CS;RS} (5.5)

Second, the binary variable xij = 1 states that we chose an item j from the class
i. That is, xij can be only 0 or 1 and the sum of xij over i have to be 1, thus,
xij = 1 is allowed for one combination of i and j only whereas xij = 0 for all other
combinations of i and j. Consequently,

∑
i∈{CS;RS} xij = 1 ∀j ∈ T guarantees that

we execute all tasks T exactly once (cf. Equation 5.6).∑
i∈{CS;RS}

xij = 1 ∀j ∈ T

xij ∈ {0, 1} ∀i ∈ {CS;RS},∀j ∈ T (5.6)

We state that our online DM (cf. optimization problem in Equation 5.4) sug-
gests the storage architecture with guaranteed minimal costs taking into account
both constraints and a previously defined cost criterion. However, we have to en-
large the co-domain of i only to extend our approach for other architectures (e.g.,
PAX [ADHS01] or SPAX [Böß09] systems) because our DM is transparent to dif-
ferent architectures. We argue, architectures have to comply two of following three
conditions to apply our approach with other architectures:

(a) The architectures to be compared have to support semantically the same work-
load (e.g., the same data model) as well as

(b1) cost estimates for data processing have to be available (e.g., optimizer output)
or at least

(b2) provide sound cost samples for one of the following DM variants.

Furthermore, we assume for feasible (comparative) computations that at least two
existing database systems and their workload statistics are given. Nevertheless, we
can adapt the DM easily by changing the constraints and/or cost criteria (respectively
cost functions). Hence, we can also use our approach for hybrid architectures in
the future, that are not disjoint from their basic architectures (e.g., mixed column-
row-store architecture). Moreover, we can identify very different tasks for different
architectures by a sensitivity analysis. We outline our first results in Section 5.4,
which we use to improve our framework.
We argue that the amount of queries and tasks may be unmanageable in practice,

due to degenerated information content of a (infinite) workloads. Nevertheless, we
are able to analyze the costs on different granularities (e.g., on sub-pattern or pattern
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level; cf. Chapter 4). Therefore, our workload-statistic framework is able to group
similar tasks and/or to restrict the number of tasks at an appropriate level. Moreover,
we state that the set of system tasks T is not limited to one granularity level. That
is, we define a task T by default as part of a query or as a database operation
respectively, but we can use more coarse-grained query workload partitioning (cf.
Chapter 4). The granularity of C(i,j) has to match the granularity of tasks (cf.
Section 5.1). That is, the input granularity as well as the computation granularity is
selectable, thus, we obtain a maximum degree of freedom. Consequently, our linear
program remains manageable for practical use. We argue, a high level abstraction
contradicts the goals of the online DM. We do not consider uncertainty concerning
to query structure in our online DM. In consequence, each query has already been
analyzed and partitioned, thus, we derive the overall cost and are able to rebuild the
query structure.
We summarize, the result of the linear program is the optimal storage architec-

ture for a given workload according to the cost function C(i,j). We state that our
approach to select the optimal storage architecture is comparable to design advisors
(e.g., by Zilio et al. [ZZL+04, ZRL+04]) that suggest the optimal physical design
within systems. That is, our online DM suggest physical design between various
systems (inter) and not within systems (intra) at this point. Furthermore, we sug-
gest extensions that detect mislead design (e.g., as the design alerter by Bruno and
Chaudhuri [BC05, BC06]). Therefore, we assume existing systems to enable a what-if
analysis [BC05]. We face the necessity of existing systems with the following exten-
sions (cf. Sections 5.2.2 and 5.2.3) to enable design alerts (i.e., what-if analysis)
under uncertainty. Nevertheless, we assume that our model for optimal architec-
ture selection assumes that systems do not change query structures which build
upon all database queries and their corresponding execution information. That is,
query-structure changes causes different costs, thus, we have to compute architecture
selection with different cost values. In conclusion, we suggest a sensitivity analysis
that evaluates the restrictions (e.g., granularity vs. uncertainty) of our model and
examines the cost function especially in a more fine-granular way (e.g., multi-object
optimization [MA04]). We present the selection procedure in detail in Section 5.3.

5.2.2. Offline Design Prediction

We showed the decision of optimal architecture for a workload based on real DBMS
statistics in the previous section. We argue, real DBMS-statistics are mostly not
available for predictions for architectural design. Consequently, we adapt the online
DM from Section 5.2.1 to estimate the optimal storage architecture without DBMS-
provided statistics. The adapted DM identifies the optimal storage architecture for
predicted workloads. We consider predicted workloads as samples from existing sys-
tems; or as future workloads that are computed artificially (maybe arbitrarily) to
discover future challenges. For predicted workloads, we assume that the structure
of queries or workload itself is unknown; that is, we have to consider uncertainty of
cost estimation for our use case. However, our DM in fact is independent from query
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structures but it is not independent from the query-cost structure (cf. Chapter 3
and Section 4.3). That is, we have to estimate the query-cost structure for design
predictions. Nevertheless, we have to consider the uncertainty of a Multi-Criteria De-
cision Problem (MCDP), due to the fact, different tasks within queries or workloads
generate multi-dimensionality.
We present an approach that selects the optimal storage architecture based on

DBMS-statistics, and we consider uncertainty of artificial cost estimates (i.e., for
predicted workloads); that is, we only have to join both ideas to predict architectural
design. Hence, we are able to overcome a drawback of the online DM – the necessity
of existing systems – if we are able to compute predicted workloads. Therefore, we
introduce the (offline) design-prediction model in the following. We assume the same
prerequisites as for the online DM. That is, we incorporate the predicted workload
structure, associate the query-cost structure to our workload patterns, and include
fraction on the overall workload (cf. Chapter 4).
First, we extend our previous problem (cf. Equation 5.4) for uncertainty consid-

eration. We argue, an extension of the cost function C(i,j) regarding uncertainty is
sufficient and promising. On the one hand, we concatenate directly the uncertainty
of cost estimation with the cost computation; and on the other hand, our adaptation
is transparent to the previous optimization problem due to the fact that we replace
C(i,j) with a new cost function C∗(i,j). Therefore, we use probability theory to rep-
resent uncertainty, and thus, to represent samples, respectively future workload, as
well as changes in DBMS behavior. However, we need predicted workloads in both
use cases, and hence, we combine both aspects in one cost function C∗(i,j). We
introduce a probability function p(i,j) to represent predicted workloads. That is, we
analyze a predicted workload – a set of database tasks (cf. Section 5.2.1) – according
to the frequency of a certain task to figure out its probability (see Equation 5.7).
Consequently, we derive the probability that a task j has to be computed in a work-
load, whereas the sum of all probabilities p(i,j) is equal to 1, i.e., probability values
p(i,j) represent the ratio of a task j to the (predicted) overall workload which equals
the set of tasks TWL. ∑

j∈TWL

p(i,j) = 1 ∀i ∈ {CS;RS} (5.7)

Due to the (potential) high number of tasks, a partition for tasks as well as
for C(i,j) has to be done. We partition the tasks according to our workload
structure TWL (cf. Section 4.2). As an exemplary result, we use a task set
TWL = {Join, Tuple Operations, Aggregation & Grouping}, whereas the elements
of TWL may be further refined (e.g., join pattern consists of non-vector-based and
vector-based joins). The partitioning of tasks does not appropriately restrict the in-
formation space. Therefore, average costs (for a certain granularity of C(i,j)) must
be estimated, due to the fact that the granularity of C(i,j) has to match to the
granularity of tasks (cf. Section 5.1). In combination with our consideration in
Chapter 4 that the granularity of workload partitioning is selectable, we obtain a
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maximum degree of freedom. In consequence, the cost function C(i,j) from Equa-
tion 5.4 adapts to C∗(i,j) in Equation 5.8. We introduce a probability function
p(i,j) to represent predicted workloads and combine our cost function C(i,j) to a
new cost function C∗(i,j) that considers uncertainty sufficiently and transparently
for our design prediction.

C∗(i,j) = p(i,j) · C(i,j) wrt.∑
j∈TWL

p(i,j) = 1 ∀i ∈ {CS;RS} (5.8)

Second, we have to integrate the new cost function C∗(i,j) into our existing ap-
proach (see Equation 5.4), thus, we substitute the cost function C(i,j) with C∗(i,j)
(see Equation 5.9). Whereas, TWL can be at any granularity, thus, we denote a set
of tasks as T here.

min
∑

i∈{CS;RS}

∑
j∈T

C∗(i,j) · xij subject to:

∑
j∈T

xij =

{
|T |
0

∀i ∈ {CS;RS}

∑
i∈{CS;RS}

xij = 1 ∀j ∈ T

xij ∈ {0, 1} ∀i ∈ {CS;RS}, ∀j ∈ T (5.9)

We highlight, the optimization problem in Equation 5.9 encapsulates and hides im-
portant information content for further observations (e.g., impact of task frequency).
Moreover, we argue that the current representation also hides the ease of adaptation
between our DMs. Consequently, we combine the derivation of C∗(i,j) (cf. Equa-
tion 5.8) with the adapted problem (Equation 5.9) to our design-prediction model in
Equation 5.10.

We summarize that our design-prediction model enables us to estimate the cost of
unknown (predicted) workloads. For quality of our DM according to design predic-
tions, we assume that the estimated cost function is sufficient. Therefore, knowledge
of domain experts is required. However, the partitioning of workload and cost func-
tion enables a more sophisticated approach than guessed decisions. We obtain an
expectation value and cost plan under the given probabilities of the workload tasks.
Consequently, our approach supports the development of sufficient design rules and
design heuristics. This can be used for a sensitivity analysis where more restriction
values are considered. The integration of heuristics results in a heuristic-impelled
design by the DM. Moreover, we allow design prediction on different granularities
of (input) information as well as on different quality of information content. These
extensions transforms our previous approach (cf. Section 5.2.1) into a (heuristic)
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design advisor, thus, we argue that side conditions hold validity. That is, we solve
a non-weighted minimization problem that concerns only costs but no profit and is
transparent to additional architectures and cost functions. Additionally, we suggest
that the design-prediction model is – beside the advisor functionality – suitable to
serve as design alerter for misdirected (or outdated) designs. In consequence, we
state that our DM is easily adaptable or can be iteratively improved. In addition, we
suggest the integration of user preferences. We integrate abstractly user preferences
in the following Section 5.2.3.

min
∑

i∈{CS;RS}

∑
j∈T

p(i,j) · C(i,j) · xij subject to:

∑
j∈T

xij =

{
|T |
0

∀i ∈ {CS;RS}

∑
i∈{CS;RS}

xij = 1 ∀j ∈ T

xij ∈ {0, 1} ∀i ∈ {CS;RS},∀j ∈ T∑
j∈T

p(i,j) = 1 ∀i ∈ {CS;RS} (5.10)

5.2.3. Offline Benchmarking of Different Systems

We presented two approaches to select the storage architecture in the previous two
sections. First, we selected the optimal storage architecture from (at least) two exist-
ing systems, and second, we selected the storage architecture under uncertainty using
samples. Our second offline DM – the offline benchmarking model – combines and
adopts ideas of the two previous approaches (cf. Section 5.2.1 and 5.2.2). That is,
we integrate (a) the capability to benchmark two or more database systems from the
online DM and (b) the capability to select the optimal storage architecture based on
samples. In contrast to the online DM, we have no access to DBMS statistics, thus,
we have to use workload samples (i.e., statistic samples). We focus our research on
storage-architecture optimization to support (a priori) storage advisor, benchmark
different architectures, and encourage hybrid-store development for mixed workloads
(cf. Chapter 3). However, we do not focus on optimization of certain input variables
for the decision problem (e.g., sample workload or workload estimation). In other
words, we assume that workload samples are well-defined and sufficient (cf. Sections
from 5.1 to 5.2.2 for more details). For further literature on workload aggregation,
we refer the reader to query merging (e.g., [GK10]), query matching (e.g., [ZZL+04]),
or workload-prediction approaches (e.g., for data center [GCCK07], online classifi-
cation [HGR09]). Furthermore, we use a multi-criteria approach to evaluate system
requirements and support user-preference integration with respect to workloads.
We introduce the offline benchmarking model in the following. We assume the
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same prerequisites as for the design-prediction model. That is, we use the pre-
dicted workload structures (i.e., samples), associate the query-cost structures to our
workload patterns, and include fraction on the overall workloads (cf. Chapter 4).
Furthermore, we argue that granularity of costs (from samples) has to match to
granularity of tasks (cf. Section 5.1). Nevertheless, we compute a MCDP, due to the
fact; we benchmark systems with respect to different cost criteria (cf. Sections 5.2.1
and 5.2.2). Moreover, we have no access to environmental conditions concerning
the systems to be benchmarked. That is, we have to consider user preferences to
represent the desired system behavior (e.g., resource consumption, bottlenecks) –
more general the systemic environment. Consequently, we compute a MCDP under
uncertainty with respect to given (user) preferences.
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Figure 5.3.: Classification of MCDA methods [BK10] according to
Schneeweiß [Sch91]

An important aspect in the context of Multi-Criteria Decision Analysis (MCDA)
and uncertainty is the representation of the ranking function. Schneeweiß classi-
fies MCDA methods according to ranking functions [BK10, Sch91] (cf. Figure 5.3)
– for further applications of MCDA see [FGE05]. We argue, we have to consider
the following two aspects to figure out a sufficient MCDA method according to
Schneeweiß [Sch91]. First, we consider if an order of alternatives is possible and/or
required. Schneeweiß classifies MCDPs that have an order of alternatives as MCDA
methods with functional preference (cf. Figure 5.3). We argue that alternatives in
terms of storage architectures have an explicit order, due to the fact that our com-
putation of storage-architecture selection is based on (execution) costs, which are in
algebraic order. According to von Winterfeldt and Edwards [vWE86], we are able
to use Multi-Attribute Utility Theory (MAUT) whenever cost values apply and a
utility function is available – for more background literature to MAUT, we recom-
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mend [vNM53, Fis67a, Fis67b, KR76] to the reader. Second, we consider the type
of order. Whenever substitution rules between alternatives are available, we assume
that a preference function is constituted by these substitution rules. Furthermore,
the alternatives have to be assigned to an interval measurement that represents the
degree of difference and has an arbitrarily-defined zero point. We recognize that
cost values according to storage architectures have no arbitrarily-defined zero point,
due to the fact that costs are always positive values (0 or more). Nevertheless, we
compute utility values of an alternative instead of alternative’s minimum costs in
the offline benchmarking model. We emphasize, the utility value – as quality of an
alternative – is the distinctive feature concerning the two previous approaches (cf.
Sections 5.2.1 and 5.2.2). If we would combine low costs of a task with high weights
for the utility value; the resulting utility value puts such tasks in worse position
compared to tasks with higher costs and lower weight. Thereby, low costs of a task
represent good performance on the alternative, and weight for the utility value rep-
resents task’s significance. In consequence, we would contradict the expected result
– the most promising alternative. Therefore, we define the utility value as difference
of alternative’s cost, due to the fact that the difference of alternative’s cost depicts
the most feasible benefit.
We argue that alternatives’ utility value can be positive and negative with respect

to another alternative (cf. Equation 5.11). Moreover, the alternative’s utility value
is exactly zero – which we define as arbitrarily-defined zero point – whenever the
alternatives to be benchmarked have the same costs. In consequence, MAUT allows
us to quantify – how desirable is a certain alternative. That is, we are able to
use MAUT in recommendation systems whenever a function (or estimation) of user
preferences is present.

valuej(ALTx) = costj(ALTy)− costj(ALTx)
valuej(ALTx) < 0, if costj(ALTx) > costj(ALTy)

valuej(ALTx) > 0, if costj(ALTx) < costj(ALTy)

valuej(ALTx) = 0, if costj(ALTx) = costj(ALTy)

with j ∈ T and x,y ∈ i (5.11)

We summarize that we only use costs to compute the optimal storage architecture
(i.e., the optimal alternative), due to the fact that no benefit bij , no modification
costs mcostij , and no resource constraint rcij exist as well as for the previous two
approaches (cf. Sections 5.2.1 and 5.2.2). We compute a set of attributes T (with
j ∈ T ) on a number of alternatives i – in our example Alternative x (ALTx) and
Alternative y (ALTy). We define the set of attributes T as a group of database
tasks (cf. Sections 4.2 and 5.2.1). Hence, we define the profit of x for task j – the
utility value valuej(ALTx) – as difference between costj for ALTy and costj for ALTx
(cf. Equation 5.11). Furthermore, we use weights for a task j (weightj) to qualify
user preferences. The sum of all weights according to a set of tasks T equals 1 (cf.
Equation 5.12). In consequence, we achieve a MCDP that we can solve with MCDA
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methods. According to Schneeweiß, von Winterfeldt, and Edwards [Sch91, vWE86],
we can solve such MCDP with MAUT (cf. Equation 5.14).

n∑
j=1

weightj = 1, with j ∈ T (5.12)

u(P ) =
M∑
j=1

uj(Pj) (5.13)

We recommend an alternative ALTi (i.e., an architectural design) in a multi-attribute
scenario for a set of tasks T according to its utility value value(ALTi). We are
able to recommend the optimal architecture, due to the fact that a measurement
between different dimensions is possible. We argue that the dimensions are defined
by the workload differentiation from Chapter 4 depicted in Figure 4.10 (Page 41.
We combine the general MAUT method according to Fishburn [Fis67a, Fis67b]6

(cf. Equation 5.13) with our previous considerations (cf. Figure 5.3, Equations 5.11
and 5.12) to the offline benchmarking model. In conclusion, the overall utility-value
function is depicted in Equation 5.14.

value(ALTi) =
n∑

j=1

weightj · valuej(ALTi) with

n∑
j=1

weightj = 1 and j ∈ T (5.14)

We outline, we evaluate alternatives (ALTi) – a set of DBMSs (e.g., but not lim-
ited to Column Store and Row Store) – by a utility-function value that takes the
cost structure into account and weights all function values according to the work-
load structure. That is, we are able to differentiate between architectures (e.g.,
Column Store and Row Store), and additionally, we are able to benchmark differ-
ent DBSs. We emphasize that the result of the utility function in Equation 5.14
is the utility of one alternative concerning to a second alternative. Hence, we
recommend that alternative that has the higher utility value value(ALTi)7, thus,
we solve in contrast to the two previous approaches a maximization problem –
max

∑m
i=2 value(ALTi). In detail, we compare m− 1 times to rank m alternatives,

thus, we compute m− 1 passes. If we compute a negative utility value then we rec-
ommend the compared alternative (i.e., valuej(ALTy) whenever valuej(ALTx) < 0
with costj(ALTx) > costj(ALTy)).
Another advantage of MCDA with respect to MAUT is the derivation of user’s

6We refer to the generalized additive independence (GAI) representation – for proofs and detailed
explanations cf. [Bra12].

7We compare alternatives pairwise, thus, we do not have an overall result.

75



5. Cost Estimation & Storage Advisor

workload preferences. Hence, we develop a model of user preferences with respect to
our workload hierarchy and to estimate the desired workload structure. We assume
that weights include user preferences whenever user preferences shall be considered
for alternative selection. Using the MAUT methodology, we obtain a recommenda-
tion or ranking between the set of alternatives. That is, we are able to perform a
decision on this MCDP. Finally, our approach enables us to use this DM to figure out
the optimal design for databases. We determine the offline benchmarking model as
variant of the design-prediction model, thus, we once more emphasize the capability
to advise storage-architecture design as well as the capability to be alerter in existing
environments (e.g., other alternatives show significant better and sound results).

5.3. Evaluation

We present our DM as a priori storage-architecture-selection approach (cf. Sec-
tion 5.2) and its assumptions and prerequisites (cf. Section 5.1). In this section, we
show the proof of concept for our DM and present a case study based on the TPC-H
benchmark [Tra10] with scale factor 1 (cf. Sections 5.3.1 and 5.3.2). We focus on the
online DM (cf. Section 5.2.1), although the case study is adaptable for both other
(offline) DMs (cf. Sections 5.2.2 and 5.2.3) as well. The process of evaluation is
equivalent to the one for online DM. That is, we adapt the granularity of workload
statistics from our workload patterns only. The online DM computes the optimal
storage-architecture on a high degree of detail, whereas the offline DMs compute
on more coarse-grained statistic granularity or even on samples only. However, our
DMs support inter alia an efficient database (storage) design in context of optimal
architecture concerning a workload (e.g., Row Store or Column Store).
For readability of the following considerations, we select two DBMSs only that are

used in real-world OLAP applications – Infobright ICE 3.3.1 and Oracle 11gR2. Both
DBMSs are installed with standard parameters, due to the fact we want to achieve
sound experimental results without preconfigured optimizations (e.g., precomputed
joins) for benchmarks. We loaded both schemata with standard DDL from the TPC-
H benchmark. Moreover, we state that parameter (or index) configurations are not
comparable across different DBMSs or different architectures. Note, Oracle automat-
ically creates primary/foreign key indexes whereas ICE processes without indexes.
Nevertheless, ICE utilizes meta information from the Knowledge Grid [Inf11b] that
corresponds somehow to index-like access (cf. also Section 4.3). We make one ex-
ception – we restrict available main memory to 250 MB, thus, the TPC-H schema
using 1 GB raw data does neither fit into RAM nor the fact table (LINEITEM). We
choose this setup because we do not focus on main-memory processing – there are
more suitable approaches (e.g., [Pla09, KN11]) – but we choose an evaluation setup
for our DM that applies for most real-world DBSs – including disk access (i.e., more
data than fits into RAM). We run our test series on a Samsung X65 with 2.2 GHz
and 2 GB RAM using Ubuntu 10.04.1LTS.
We restrict information content to three queries from the TPC-H benchmark for
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traceability of our considerations, and thus, save comprehensibility. We select the
previous discussed queries Q6, Q15, and Q16 to show different types of queries (which
showed interesting results already; cf. Chapter 3 [Tra08]). Furthermore, we argue
that these queries are representative to show the impact of architecture to perfor-
mance – cf. Listings 6.3, A.26, and A.27 [Tra10]. For the interested reader, we attach
the experimental results for all TPC-H queries in Appendix A.2. In the following,
we select the optimal storage architecture for two different evaluation criteria: (a)
the number of rows to be accessed and (b) I/O costs. However, the evaluation crite-
rion as well as the cost function can be easily replaced or combined as described in
Section 5.2.1.
We show the statistics for query Q6, Q15, and query Q16 – gathered from ICE and

Oracle – in the following section. Subsequently, we compute the storage-architecture
decision for these queries concerning to two different cost criteria in Section 5.3.2.

5.3.1. Gathered Statistics from Workload Patterns

We extract the statistics from the corresponding optimizer – Oracle and ICE – as
described in Chapter 4 [LKS11b, LKS11c]. Furthermore, we store the cost infor-
mation in our workload patterns (cf. Section 4.3). We summarize the extracted
cost information in Tables 5.1 and 5.3 to ensure readability. We use two cost mea-
sures – the optimization criteria – to emphasize that our approach is transparent
to optimization criteria, and thus, to cost functions. That is, we replace the cost
function transparently whenever we modify the optimization criterion – which can
be arbitrarily complex. Furthermore, one cost measure is not sufficient to select the
optimal storage architecture (cf. Sections 5.1 and 5.2.1). Additionally, we underpin
our statements from Chapter 3 that two (or more) cost measures do not correlate
across different architectures even though these cost measures are interdependent.
Therefore, we select the accessed number of rows and the I/O cost to recommend
the storage architecture (i.e., Oracle or ICE) for our exemplary workload – TPC-H
queries Q6, Q15, and Q16. We note, ICE does not access single values of a column but
accesses so-called data packs – compressed storage units in ICE. These data packs
contain 65,536 values [Inf11b], thus, the values for ICE (number of rows) in Table 5.1
are multiples of the data-pack size8.
We identify query operations by IDs that we extract from optimizers. Hence, we

sustain processing schemes of queries and reuse these IDs in our workload patterns.
That is, we are able to restore the processing scheme according to these IDs. In
detail, we represent the first query operation by the highest ID and represent the
last query operation by ID0. We assign jointly operation costs and operation IDs
to the workload patterns, and therefrom we derive cost representation in Tables 5.1
to 5.5. This representation correlates to query-execution plans. We also use this
methodology for administrative needs – for more details cf. Section 4.3.

8Note, we show for ICE all column values that have to be evaluated. The optimizer may suppose
fewer values to be read.
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Workload Q6 Q15 Q16
∑

Pattern Oracle ICE Oracle ICE Oracle ICE Oracle ICE
(22.64sec) (2sec) (26.28sec) (2sec) (3.93sec) (1sec)

Data Access ID2 : 155,900 ID5 : 6,029,312 ID8 : 10,000 ID6 : 6,029,312 ID9 : 800,000 ID6 : 65,536
ID4 : 6,029,312 ID6 : 218,657 ID4 : 6,029,312 ID8 : 30,515 ID5 : 851,968
ID3 : 6,029,312 ID2 : 262,144 ID6 : 500 ID4 : 786,432
ID2 : 6,029,312 (4*65,536) 1,215,572 38,141,952

Non-vector ID1 : 20,000 ID1 : 131,072 ID7 : 830,515 ID3 : 1,114,112
ID5 : 121,371 971,886 1,245,184

Group By ID5 : 218,657 ID5 : 225,954 ID4 : 114,828 ID2 : 473,096
ID3 : 225,954 ID2 : 114,828 (4*118,274) 448,313 925,004

Sort ID7 : 10,000 ID1 : 15,000 ID1 : 73,256
ID4 : 10,000 (4*18,314)
ID2 : 10,000 45,000 73,256

Sum ID1 : 155,900 ID1 : 114,160 155,900 114,160

Projection ID0 : 1 ID0 : 1 ID3 : 10,000 ID0 : 4 ID3 : 114,828 ID0 : 73,256
ID0 : 10,000 (4*1) ID0 : 15,000 (4*18,314) 149,829 73,261

Table 5.1.: Accessed rows (Oracle) respectively number of values for a column (ICE) for TPC-H queries Q6, Q15, and Q16.
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We start our observation with the number of rows to be accessed for a query.
That is, we refer the data-access pattern respectively data to be read from disk.
We show – in Table 5.1 – the number of rows to be accessed and the accessed
number of column values9 for the TPC-H queries Q6, Q15, and Q16. We remind
that Oracle is a Row Store, thus, Oracle always accesses entire tuples. In contrast,
ICE only accesses necessary columns, and thus, the required values. In Table 5.1,
we observe this effect for query Q6. Oracle accesses the required columns in one
pass, thus, it scans the LINEITEM table – the fact table – only once. The LINEITEM
table has approximately six million tuples; due to predicate selection, Oracle reads
155,900 tuples only – cf. ID2 for Q6. We direct the attention to ICE and we observe
that ICE accesses the LINEITEM table in three passes, due to the fact that three
columns (cf. ID2,ID3,ID4)10 have to be processed for Q6. Moreover, ICE uses late
materialization and does not reconstruct tuples before join execution. Nevertheless,
we figure out that ICE in our test setup accesses more values than Oracle. Oracle
reads 2.494.400 values (i.e., 155,900 rows with 16 columns) for Q6 and ICE reads
24,117,248 values (i.e., 6,029,312 values for each processed column – 6,001,215 values
allocate 92 data packs)11 for Q6.
We observe akin results for Q15. That is, Oracle reads 3,568,512 values – i.e.,

218,657 rows through view REVENUE0 with 16 columns on base relation plus 10,000
rows on SUPPLIER with seven columns. At the same time, we observe 12,320,768
read values by ICE – i.e., four columns on SUPPLIER with one data pack each and
two columns on LINEITEM with 92 data packs each.
In contrast, we see that ICE in total reads fewer values (i.e., 1,703,936) for Q16

than Oracle (i.e., 4,278,135). We take a closer look to Q16 (cf. Figure A.27 for the
SQL representation). At first glance, we may conclude akin for Q16 as for Q6 and Q15
according to the results in Table 5.1. At a closer look, we observe that ICE reads more
values on SUPPLIER and PART; however, ICE reads fewer values for PARTSUPP because
only ps_suppkey is scanned (see Table 5.2). Note, ICE takes advantage of subsequent
column selectivity instead of reading each column independently PART (i.e., implicit
tuple reconstruction). We argue, 786,432 values is a worst-case estimation as ICE
reads all columns completely. Due to the selectivity of the respective predecessor
columns, we argue that ICE reads fewer than 12 (estimated) data packs for PART.
Moreover, ICE takes most advantage of the query structure. That is, ICE is able
to compute the sub-query supplier as well as the PARTSUPP part by usage of one
column each only. We observe that in fact, ICE scans only the columns ps_suppkey
– the key of PARTSUPP – and s_comment. We summarize – Column Stores access
tables multiple times whenever query processing involves several columns, and thus,
Column Stores access inherently more values – this observation underpins previous
considerations (cf. Section 3.2). Moreover, we represent for ICE the column values
to be evaluated due to the absence of indexes in ICE. We state, the final number of

9For a homogenized summary of all pattern, we refer to Section 5.3.2.
10l_shipdate, l_discount, and l_quantity.
11ICE accesses all approximately six million values for each of the three LINEITEM columns.
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TPC-H relation Oracle ICE

supplier 500 rows ∗ 7 columns 65,536 rows ∗ 1 column
partsupp 800,000 rows ∗ 5 columns 851,968 rows ∗ 1 column
part 30,515 rows ∗ 9 columns ≈ 262,144 rows ∗ 3 columns∑

4,278,135 values 1,703,936 values

Table 5.2.: Accessed values of TPC-H Q16 per relation for ICE and Oracle.

1 SELECT o_orderpriority,COUNT(∗) AS order_count FROM orders
2 WHERE o_orderdate >= date ’1993−07−01’
3 AND o_orderdate < date ’1993−07−01’ + interval ’3’ month AND EXISTS (
4 SELECT ∗ FROM lineitem WHERE l_orderkey = o_orderkey AND l_commitdate < l_receiptdate)
5 GROUP BY o_orderpriority ORDER BY o_orderpriority;

Figure 5.4.: TPC-H query Q4 [Tra10].

accessed values the optimizer approximates is lower than we present in Table 5.1.
We showed that neither Column Stores are always advantageous nor Row Stores

are. According to our first cost criterion, we observe divided results. We observe
fewer values to be read for Q6 and Q15 by Oracle; in contrast, Q16 gives an advantage
to ICE. Hence, we consider our second cost criterion in the following. Note that
we apply our statistic-normalization approach (cf. Section 4.4) for the following
considerations. We highlight that ICE uses aggressive compression algorithms. We
figure out that the C/R for the TPC-H benchmark in ICE is approximately 5 :
1. In our test setup, we measure 182 MB disk consumption for the 1 GB TPC-H
data sets in ICE. For convenience, we do not separately examine the C/R for each
column. One would usually expect that I/O costs increase by rising number of rows
respectively values. However, we point out that physical data processing in DBMSs
may differ from abstract data representation in the algebra. In general, direct (linear)
correlation does not hold any longer between rows to be accessed and I/O costs –
for Row Stores. We show the extracted cost information (i.e., I/O costs) in KBytes
for our exemplary workload in Table 5.3.

1 SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly FROM lineitem,part
2 WHERE p_partkey = l_partkey AND p_brand = ’Brand#23’ AND p_container = ’MED BOX’
3 AND l_quantity < (
4 SELECT 0.2 ∗ AVG(l_quantity) FROM lineitem WHERE l_partkey = p_partkey);

Figure 5.5.: TPC-H query Q17 [Tra10].
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Workload Q6 Q15 Q16
∑

Pattern Oracle ICE Oracle ICE Oracle ICE Oracle ICE
(22.64sec) (2sec) (26.28sec) (2sec) (3.93sec) (1sec)

Data Access ID2 : 3,044.922 ID5 : 4,382.416 ID8 : 703.125 ID6 : 4,715.582 ID9 : 7,031.25 ID6 : 102.513
ID4 : 4,382.416 ID6 : 4,484.177 ID4 : 4,715.582 ID8 : 1,222.769 ID5 : 1,332.664
ID3 : 4,382.416 ID2 : 410.051 ID6 : 0.033 ID4 : 1,230.152
ID2 : 4,382.416 16,486.276 30,036.667

Non-vector ID1 : 996.093 ID1 : 205.026 ID7 : 8,253.041 ID3 : 1,742.715
ID5 : 5,935.107 15,184.241 1,947.741

Group By ID5 : 4,484.177 ID5 : 410.051 ID4 : 13,232.133 ID2 : 820.102
ID3 : 410.051 ID2 : 5,494.699 23,211.711 1,640.204

Sort ID7 : 703.125 ID1 : 717.773 ID1 : 410.051
ID4 : 205.078
ID2 : 292.969 1,918.945 410.051

Sum ID1 : 3,044.922 ID1 : 4,382.416 3,044.922 4,382.416

Projection ID0 : 0.02 ID0 : 102.513 ID3 : 292.969 ID0 : 410.051 ID3 : 13,232.133 ID0 : 410.051
ID0 : 996.093 ID0 : 717.773 15,238.988 922.615

Table 5.3.: Accessed data of TPC-H queries Q6, Q15, and Q16 in KBytes for Oracle and ICE.
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We remind that Oracle reads for query Q6 and Q15 fewer rows as well as val-
ues than ICE – 2,494,400 to 24,117,248 and 3,568,512 to 12,320,768 values, respec-
tively. According to Table 5.3, we summarize the accessed data to 3,044.922 KBytes
and 5,187.302 KBytes for Oracle; respectively for ICE, we summarize to 17,529.663
KBytes and 9.841,215 KBytes. That is, we observe a direct correlation between
accessed rows respectively values and I/O cost. In contrast, we may observe the
contradiction for Q16 due to the fact that Oracle reads 831,015 rows and 8,287.222
KBytes whereby ICE reads 1,703,936 values and 3,587.943 KBytes. After detailed
consideration (cf. Table 5.2), we highlight that the fact is actually inverse for Q16;
Oracle reads more values than ICE – 4,278,135 to 1,703,936 values – resulting in
higher I/O cost for Oracle namely 8,287.222 KBytes compared to 3,587.943 KBytes
for ICE. That is, we observe a contradicted correlation between rows and I/O cost.
Nevertheless, we argue the correlation holds for values and I/O cost. We consider
the queries Q4 and Q17 from the TPC-H benchmark (cf. Listings 5.4 and 5.5) to show
that Q16 is not an artifact. Therefore, we observe 3,100,907 rows (i.e., 49,208,484 val-
ues) respectively 6,001,415 rows (i.e., 96,021,240 values) for Oracle versus 15,073,280
respectively 18,612,224 values for ICE (cf. Table 5.4) resulting in higher I/O cost for
Oracle. That is, Oracle reads 67,074.205 KBytes and 82,053.135 KBytes whereby
ICE reads 21,220.118 KBytes and 10,558.803 KBytes (cf. Table 5.5). We observe
in our exemplary workload12 that a system has not higher I/O cost that reads more
rows but a system that reads more values. We conclude, the correlation is valid
between values to be accessed and I/O cost for our exemplary workload, but the
correlation is not valid across architectures (rows vs. values) without cost normal-
ization. In summary, according to the results from Table 5.1 to Table 5.5, physical
design based on basic heuristics or based on single cost measures is not sufficient for
complex workloads. That is, we need decision support to select the optimal storage
architecture as we propose in the preceding sections.
Please note, we only refer to the data-access pattern here – we show the overall

comparison in Section 5.3.2. We argue that data of intermediate results is processed
in main memory for the current setup. We may observe more complex effects on
intermediate results for hybrid workloads (cf. Chapter 6) – in contrast to the current
analytical (read-only) workload. Nevertheless, the remaining patterns characterize
intermediate results (e.g., data size), and thus, we discover bottlenecks (e.g., disk
swapping due to undersized main memory). Therefore, we show a summary of all
workload patterns that occur in our exemplary workload assisted by our approach
in the following section.

12We refer to Appendix A for further experimental results.
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Workload Q4 Q17
∑

Pattern Oracle ICE Oracle ICE Oracle ICE
(27.29sec) (153sec) (24.06sec) (1,495sec)

Data Access ID4 : 3,042,903 ID5 : 6,029,312 ID6 : 6,001,215 ID7 : 6,029,312
(48,686,448 values) ID4 : 6,029,312 (96,019,440 values) ID6 : 524,288
ID3 : 58,004 ID3 : 3,014,656 ID5 : 200 (2*262,144)
(522,036 values) (2*1,507,328) (1,800 values) ID5 : 6,029,312

ID4 : 6,029,312 9,102,322 18,612,224

Non-vector ID2 : 3,100,907 ID4 6,001,415 ID2 : 327,680 9,102,322 327,680

Tuple reconstruction ID3 : 12,320,768 − 12,320,768

Group By ID2 : 157,569
(3*52,523) − 157,569

Sort ID1 : 58004 ID1 : 10 (2*5) ID3 : 5,943
ID1 : 5,943 69,890 10

Sum ID1 : 327,680 − 327,680

Projection ID0 : 5 ID0 : 10 (2*5) ID2 : 5,943 ID0 : 1
ID0 : 1 5,949 11

Table 5.4.: Accessed rows (Oracle) respectively number of values for a column (ICE) for TPC-H queries Q4 & Q17.
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Workload Q4 Q17
∑

Pattern Oracle ICE Oracle ICE Oracle ICE
(27,29sec) (153sec) (24.06sec) (1,495sec)

Data Access ID4 : 65,374.869 ID5 : 8,488.048 ID6 : 82,047.861 ID6 : 3,420.457
ID3 : 1,699.336 ID4 : 8,488.048 ID5 : 5.273 ID6 : 297.431

ID3 : 4,244.024 (2*148.716)
(2*2122.012) ID5 : 3,420.457

ID4 : 3,420.457 154,395.066 31,778.922

Non-vector ID2 : 67,074.205 ID4 : 82,053.134 ID2 : 512.563 67,074.205 512.563

Tuple reconstruction ID3 : 29113.593 − 29,113.593

Group By ID2 : 0.3 (3*0.1) − 0.3

Sort ID1 : 2,945.516 ID1 : 0.2 (2*0.1) ID3 : 237.952
ID1 : 75.448 3,258.916 0.2

Sum ID1 : 512.563 − 512.563

Projection ID0 : 0.254 ID0 : 0.2 (2*0.1) ID2 : 237.952 ID0 : 0.1
ID0 : 0.013 238.219 0.3

Table 5.5.: Accessed data of TPC-H queries Q4 & Q17 in KBytes for Oracle and ICE.
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5.3. Evaluation

5.3.2. Solution for the Optimization Problem in the Online DM

We show – in this section – a complete pass of the storage-advisor approach for
our exemplary workload (Q6, Q15, and Q16) based on our decomposition approach
for workloads (cf. Chapter 4) and our cost-estimation and advisor approach (cf.
Section 5.2). The result is the selection of the optimal storage architecture.
We solve the assignment problem (cf. Section 5.2.1) for the architecture selection

with a linear program based on the optimization problem in Equation 5.4. As linear
programming language, we use A Mathematical Programming Language (AMPL)
formulation [FGK02]. Due to the fact that we are interested in the optimal DBMS
for a workload to a specific cost function, the problem is a mixed integer problem13.
We present the AMPL-source code for our approach in Listing 5.6. The presented
source code solves a minimization problem. According to the optimization, a se-
lection of the cost values is necessary. In our example, two possible cost values
(dimensions) are available. We can perform either an optimization according to the
accessed rows (respectively values) or according to I/O cost. We note that – in prac-
tice – such simplification is not always feasible, often all cost influence structures
have to be addressed. That is, workload decomposition is much more complex and
additional DBMSs may be ranked. We highlight, our model is transparent to cost
functions, thus, we easily adapt to arbitrary cost functions – cf. Section 5.2.2 where
we introduce our approach with uncertainty (cf. Equation 5.8). We assume, the ex-
emplary workload is defined by Q6, Q15, and Q16 from the TPC-H benchmark14. We
compute that ICE outperforms Oracle for the given workload (cf. Section 2.3 and
Chapter 3). In the following, we present our DM based on ICE and Oracle according
to two cost dimensions without loss of generality due to the fact that our approach
is transparent to cost functions (cf. Section 5.1), cost measures, architectures and
DBMSs, respectively (cf. Chapter 4).
First, the number of accessed rows respectively values have to be minimized. From

our AMPL program, we figure out that Oracle accesses fewer rows (
∑

2,986,500) than
ICE accesses values (

∑
40,572,817). Therefore, our DM will recommend Oracle with

respect to the first cost dimension and without cost normalization across architec-
tures. This result has been expected with respect to our results in Section 5.3.1 and
the fact that rows are composed of an amount of values. However, we consider the
normalized cost (i.e., values for both DBMS) and figure out that Oracle reads as
well fewer values (

∑
21,710,450) (from disk) than ICE. That is, we determine that

surprisingly Oracle is optimal according to the first cost dimension for our workload
even with cost normalization for the time being. Nevertheless, the ratio declines
from approximately 1 : 13 (rows vs. values) to approximately 1 : 2 (values). We
argue that architecture selection based on one cost measure (or dimension at all) –
even normalized cost – is oversimplified (cf. Sections 5.1 and 5.215).

13Mixed integer programming is the minimization or maximization of a linear function subject to
linear constraints (cf. 5.2.1).

14We remind, this benchmark is designed to simulate OLAP workload.
15For additional information cf. Chapters 3 and 4.
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1 set DBMS; # set of DBMSs for ranking
2 set WorkloadPattern; # set of Workload Patterns
3
4 param cost{i in DBMS, j in WorkloadPattern}; # cost
5 var assign{i in DBMS, j in WorkloadPattern}
6 binary; # = 1 if DBMS i is used, 0 otherwise
7 var use {i in DBMS} binary; # assignment that exactly one DBMS is used
8
9 minimize cost:

10 sum{i in DBMS, j in WorkloadPattern} cost[i,j]∗assign[i,j];
11
12 subject to USAGE: sum{i in DBMS} use[i] = 1; # restriction that exactly one DBMS is in use
13 subject to Multi_Architecture {i in DBMS}:
14 sum {j in WorkloadPattern} assign[i,j] = 6 ∗ use[i]; # this DBMS has to do all 6 Workload Pattern Tasks
15
16 subject to Tasks{j in WorkloadPattern}:
17 sum{i in DBMS} assign[i,j] = 1; # restriction that all tasks are performed

Figure 5.6.: AMPL model for online decision – cost minimization.

Workload Oracle (3×⊕) ICE (9×⊕)

Pattern # rows # values I/O cost # values I/O cost

Data Access 1,215,572 10,341,067 ⊕ 16,486.276 ⊕ 38,141,952 30,036.667
Non-vector 971,886 2,219,770 15,184.241 1,245,184 ⊕ 1,947.741 ⊕
Group By 448,313 5,106,104 23,211.711 925,004 ⊕ 1,640.204 ⊕
Sort 45,000 166,000 1,918.945 73,256 ⊕ 410.051 ⊕
Sum 155,900 2,494,400 3,044.922 ⊕ 114,160 ⊕ 4,382.416
Projection 149,829 1,383,109 15,238.988 73,261 ⊕ 922.615 ⊕∑

2,986,500 21,710,450 75.085,083 40.572.817 39,339.694

Table 5.6.: Summary of accessed data (number of resp. KBytes) for Oracle and ICE
concerning TPC-H queries Q6, Q15, and Q16.

Second, we consider I/O-cost minimization for our workload. We assume that ICE
induces less I/O cost due to aggressive compression, direct processing on compressed
data, and vector operations (e.g., subsequent selectivity; cf. Chapter 3). Our AMPL
program computes for Oracle 75,085.083 KBytes and for ICE 39,339.694 KBytes I/O
cost. As we assume, the I/O cost is much lower for ICE than for Oracle, thus, we
determine ICE as optimal solution according to our second cost dimension. We figure
out additionally that the ratio for I/O cost between Oracle and ICE are the same as
for accessed values, but now in vice versa direction (i.e., approximately 2 : 1). We
present the summary for our results in Table 5.6. We show the summation of cost
per workload pattern and the total sum for each DBMS but not the constraints (i.e.,
subjects in Listing 5.6).
We determine that our model comes to a draw when we consider both cost dimen-

sions and consider only totals for our exemplary workload. Moreover, we figure out
that the cost ratios are contrary. That is, we observe for Oracle, the ratio is approxi-
mately 1 : 2 according to the first and is approximately 2 : 1 according to the second
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cost measure (or vice versa from the point of view for ICE). However, we observe a
draw in terms of optimizer estimation, but in terms of query execution we observe
an explicit result on behalf of ICE for our sample workload (i.e., TPC-H queries Q6,
Q15, and Q16). That is, ICE executes the queries in approximately 5 seconds whereas
Oracle executes the queries in approximately 53 seconds (cf. Table 5.1 or 5.3)16. We
argue that an evaluation of summarized results (e.g., Table 5.6) is (often) not suf-
ficient for sound analysis of system behavior. Therefore, we suggest the evaluation
of pattern among each other as well as against each other. A first coarse approach
may be to count the number of workload pattern ("weighting") for each DBMS with
lower cost in comparison. We remind, the distribution of accessed rows/values per
workload pattern is available in Table 5.1 as well as we can see the distribution of
data access in Table 5.3. Under inclusion of Table 5.6, we conclude that ICE claims 9
out of 12 workload patterns whereas Oracle claims 3 workload patterns. That is, we
observe an advantage for ICE – which reflects better the measured query-execution
times – instead of a draw. For more details we refer to Section 5.4.1, where we discuss
weighting of cost and its evaluation.
In summary, we show a pass of our (online) storage-advisor approach with cost

estimates from the query optimizers. We compare rows to be accessed with values
to be accessed for Oracle (after cost normalization – cf. Section 4.4) and highlight
the impact of cost normalization in Table 5.6. Moreover, we show the aggregated
costs per workload pattern as well as total cost for each DBMS. We observe a draw
between Oracle and ICE for values to be accessed and I/O cost according to total
cost. We additionally suggest a simple voting approach to improve the decision
due to the fact that cost aggregates for single workload pattern provide another
conclusion. That is, ICE wins more workload pattern (less cost) than Oracle – 9
versus 3. However, we state that our model enables us to run a sensitivity analysis
which identifies important cost drivers. Furthermore, it is possible to add easily more
workload information which increases complexity for the decision makers. We also
increase complexity by introducing more DBMSs. The obtained query-decomposition
information on rows, cf. Table 5.1, and I/O cost, cf. Table 5.3, can be aggregated
for each DBMS and workload pattern on arbitrary degree of detail. That is, we are
able to control degree of detail for input information on arbitrary level as well as for
decision processing in our approach. For our example workload, we assume that all
three selected queries (Q6, Q15, and Q16) are executed in the same ratio. Otherwise,
we have to adjust the cost structure by a ("weighting") function with respect to the
query frequency (cf. Sections 5.2.2 and 5.2.3). We discuss "weighting" functionality
in the following section.

5.4. Improvements for Decision-making Process

We recommend the optimal storage architecture for workloads based on extracted
statistics a priori. Therefore, we use our design advisor that we present in Section 5.2.
16Please note, we do not tune the DBMSs configurations (cf. Section 5.3)
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We show in Section 5.3 that unfiltered and non-enriched statistic information can
induce unsatisfactory results. That is, we extend our idea – to count the winner per
workload pattern – from Section 5.3.2 by weights to obtain better results. We present
a more sophisticated approach in Section 5.4.1. Furthermore, we present design
heuristics as by-product of the advisor approach in Section 5.4.2. Design heuristics
are intended for use cases, whenever we have no detailed workload information. We
point out that heuristics have no impact on the a-priori advisor approach due to the
fact; in general a priori design decisions are not time-critical as query optimization is.
We argue, improvements for our DM are independent from the core idea and form an
independent module in the decision-making process (cf. Figure 5.7). Nevertheless,
we show extensions of the core idea in Sections 5.2.2 and 5.2.3 that are reflected in
the following. The (following) improvements are iteratively refined.

Workload
Workload 

Decomposition

Workload 

Pattern

Statistics

Improvements 

& Weighting 

Factors

Decision 

Model

Figure 5.7.: Classification for our improvements in the decision workflow.

5.4.1. Weights for cost estimation

We show a pass of our storage-advisor approach for our example workload in Sec-
tion 5.3.2. We discuss "weighting" functionality with respect to cost estimates for
decision making. So far, we evaluate neither the impact of query frequency nor the
impact of (user) preferences to our decision-making process (apart from our count-
the-winner example). Nevertheless, now both aspects of "weighting" cost estimates
are included in our approach. That is, we show integration of query frequency based
on our (offline) design-prediction model (cf. Section 5.2.2) on the one hand. On the
other hand, we show integration of preferences (i.e., weights) based on our offline
benchmarking model (cf. Section 5.2.3).
First, we use our design-prediction model (cf. Section 5.2.2) to represent query fre-

quency assuming that DBMS-provided statistics are available – which is no necessary
condition for this model. In Section 5.3.2, we state that the queries in our sample
workload are executed in the same ratio. Nevertheless, we transfer the information of
tasks and their cost from linear program to the design-prediction model. We argue,
the probability function p(i,j) represents in absence of uncertainty nothing else than
the execution frequency of task j (with j ∈ T ; cf. Equation 5.10). We conclude
that the overall number of tasks j for our sample workload is for Oracle 22 and for
ICE 20. However, we shift the ratio of query execution for our exemplary workload
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exemplary Workload

Workload Q6 Q15 Q16
Pattern Oracle ICE Oracle ICE Oracle ICE

∑
Data Access 1 (1/22) 4 (1/5) 2 (1/11) 3 (3/20) 3 (3/22) 3 (3/20) 6 (3/11) / 10 (1/2)
Non-vector 1 (1/22) 1 (1/20) 2 (1/11) 1 (1/20) 3 (3/22) / 2 (1/10)
Group By 1 (1/22) 2 (1/10) 2 (1/11) 1 (1/20) 3 (3/22) / 3 (3/20)
Sort 3 (3/22) 1 (1/22) 1 (1/20) 4 (2/11) / 1 (1/20)
Sum 1 (1/22) 1 (1/20) 1 (1/22) / 1 (1/20)
Projection 1 (1/22) 1 (1/20) 2 (1/11) 1 (1/20) 2 (1/11) 1 (1/20) 5 (5/22) / 3 (3/20)∑

3 (3/22) 6 (3/10) 9 (9/22) 7 (7/20) 10 (5/11) 7 (7/20) 22 (1/1) / 20 (1/1)

Table 5.7.: Frequency and relative share (in ( )) of tasks per pattern and per query
in our exemplary workload.

shifted Workload

Workload Q6 Q15 Q16 – twice
Pattern Oracle ICE Oracle ICE Oracle ICE

∑
Data Access 1 (1/32) 4 (4/27) 2 (1/16) 3 (1/9) 6 (3/16) 6 (6/27) 9 (9/32) / 13 (13/27)
Non-vector 1 (1/32) 1 (1/27) 4 (1/8) 2 (2/27) 5 (5/32) / 3 (1/9)
Group By 1 (1/32) 2 (2/27) 4 (1/8) 2 (2/27) 5 (5/32) / 4 (4/27)
Sort 3 (3/32) 2 (1/16) 2 (2/27) 5 (5/32) / 2 (2/27)
Sum 1 (1/32) 1 (1/27) 1 (1/32) / 1 (1/27)
Projection 1 (1/32) 1 (1/27) 2 (1/16) 1 (1/27) 4 (1/8) 2 (2/27) 7 (7/32) / 4 (4/27)∑

3 (3/32) 6 (6/27) 9 (9/32) 7 (7/27) 20 (5/8) 14 (14/27) 32 (1/1) / 27 (1/1)

Table 5.8.: Frequency and relative share (in ( )) of tasks per pattern and per query
in the shifted workload.

– we execute query Q16 twice as often as other queries17. In simplest construction,
we execute each query once with exception of Q16 that we execute twice. Hence, we
recompute the overall number of tasks j for Oracle to 32 and for ICE to 27.

We summarize the execution frequency of tasks query-wise as well as pattern-wise
in Tables 5.7 and 5.8. In comparison, we observe the expected shift in distribution
of tasks. That is, the relative share of Q16-tasks rises from 5/11 (≈ 45%) to 5/8
(≈ 63%) for Oracle respectively from 7/20 (35%) to 14/27 (≈ 52%) for ICE; whereas
the relative share of other queries lower from 6/11 (≈ 55%) to 3/8 (≈ 38%) for Oracle
and from 13/20 (65%) to 13/27 (≈ 48%) for ICE. We observe the same distribution
shift accordingly for patterns (e.g., share of the non-vector-based-join pattern for
Q16 (and for workload): 1/11 ≈ 9% ↗ 1/8 ≈ 13% (≈ 14% ↗ ≈ 16%) for Oracle
and 1/20 = 5% ↗ 2/27 ≈ 7% (10%↗ ≈ 11%) for ICE). Hence, we observe also an
effect for the cost estimates (cf. Table 5.6). We show the recomputed summary of
accessed data for the shifted workload in Table 5.918.

17Note, we select a simple example consciously to ensure readability and traceability.
18Note, we assume that costs sum up further on for query processing due to missing knowledge

about caching behavior, buffer management, query sequence, and so on.
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Workload Oracle (3×⊕) ICE (9×⊕)

Pattern # rows # values I/O cost # values I/O cost

Data Access 2,046,587 14,619,202 ⊕ 24,740.328 ⊕ 39,845,888 32,701.996
Non-vector 1,923,772 4,369,540 29,372.389 2,359,296 ⊕ 3,690.456 ⊕
Group By 677,969 6,713,696 41,938.543 1,398,100 ⊕ 2,460.306 ⊕
Sort 60,000 226,000 2,636.718 146,512 ⊕ 820.102 ⊕
Sum 155,900 2,494,400 3,044.922 ⊕ 114,160 ⊕ 4,382.416
Projection 279,657 2,706,217 29,188.894 146,517 ⊕ 1,332.666 ⊕∑

5,143,885 21,710,450 130,921.864 44,010,473 45,387.942

Table 5.9.: Summary of accessed data (number of resp. KBytes) for Oracle and ICE
in the shifted workload.

Concerning our results from Section 5.3.2, we conclude that the ratio between Or-
acle and ICE for the first criterion (number accessed values) remains approximately
1 : 2; whereas the ratio for the second criterion (I/O cost) shifts from approximately
2 : 1 to approximately 3 : 1. We state, the ratio change may lead to another result in
certain environments/parameters as the results in Section 5.3.2 lead to. However, we
focus on representation of query frequency in workloads which we show here. We just
mention on the edge that our voting example (count-the-winner; cf. Section 5.3.2)
remains 3 : 9 (cf. Table 5.10). Our query-frequency representation is capable for
DBMS-provided statistics as well as for predicted workloads19. Furthermore, we ar-
gue that the query-frequency representation can be on arbitrary degree of detail (like
cost representation; cf. Sections 4.2 and 4.4), thus, we are still able to compute the
design decision on arbitrary degree of detail assuming that the degrees of freedom
are compatible.
Second, we show the impact of weights to the design decision. Therefore, we

utilize our offline benchmarking model (cf. Section 5.2.3). We compute the value
of an alternative (value(ALTi); i.e., a system i) and compare the value pairwise;
whereas the comparison is possible on arbitrary degree of detail (e.g., task j is an
operation or a pattern; cf. Section 4.2). Note, we only show value computation for
pattern and overall value of an alternative to save readability and comprehensibility.
That is, a workload pattern is equal to a task j. We remind that the value of a
task (valuej(ALTi)) computes from difference of cost (costj(ALTi)) which we show
in Table 5.6 (on Page 86). We recompute the according example with our offline
benchmarking model and show the results in Table 5.10. We use uniformly dis-
tributed weights (weightj) for this computation (cf. Case A in Table 5.11) which is
equivalent to unweighted computation. That is, weightj is 1/6 for each pattern due to
six workload pattern in total. We state that the result is comparable with the result
in Section 5.3.2 – Oracle has higher I/O cost resulting in higher value(ALTICE) (i.e.,
35,745.39) as well as Oracle accesses fewer values resulting higher value(ALTOracle)
(i.e., 18,862,367). Even our voting example (count-the-winner; cf. Section 5.3.2)
remains 3 : 9. However, we argue that the amount of valuej(ALTi) (i.e., benefit; cf.
19We assume, the query frequency is inherently included into predicted workloads.
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Workload accessed values I/O cost
Pattern valuej(ALTOracle) valuej(ALTICE) valuej(ALTOracle) valuej(ALTICE)

Data Access 27,800,885 ⊕ -27,800,885 13,550.391 ⊕ -13,550.391
Non-vector -974,586 974,586 ⊕ -13,236.500 13,236.500 ⊕
Group By -4,181,100 4,181,100 ⊕ -21,571.507 21,571.507 ⊕
Sort -92,744 92,744 ⊕ -1,508.894 1,508.894 ⊕
Sum -2,380,240 2,380,240 ⊕ 1,337.494 ⊕ -1,337.494
Projection -1,309,848 1,309,848 ⊕ -14,316.373 14,316.373 ⊕∑

value(ALTi) 18,862,367 -18,862,367 -35,745.390 35,745.390

Table 5.10.: Case A: Partial results for value(ALTi) per pattern and cost function
and overall value(ALTi) per system and cost function.

Workload Case A Case B Case C Case D
Pattern Oracle ICE Oracle ICE Oracle ICE Oracle ICE

Data Access 1/6 1/6 3/11 1/2 1/10 1/10 1/20 1/20

Non-vector 1/6 1/6 3/22 1/10 9/50 9/50 9/40 9/40

Group By 1/6 1/6 3/22 3/20 9/50 9/50 9/40 9/40

Sort 1/6 1/6 2/11 1/20 9/50 9/50 9/40 9/40

Sum 1/6 1/6 1/22 1/20 9/50 9/50 9/40 9/40

Projection 1/6 1/6 5/22 3/20 9/50 9/50 1/20 1/20∑
weightj 1 1 1 1 1 1 1 1

Table 5.11.: Weights per pattern for value(ALTi) calculation concerning exemplary
workload.

Section 5.2.3) has impact on the overall value(ALTi); in contrast benefits are covered
by votes in our voting example (cf. Section 5.3.2). Hence, we show the impact of
weights (weightj) to value(ALTi) in three other cases.

In Case B, we readopt the frequency idea from above and map execution frequency
of tasks to weights. We take over the results (i.e., sum of relative share per pattern)
from Table 5.7 and assign these as weightj to the corresponding pattern in Table 5.11.
We observe that value(ALTi) changes for each pattern (per system and cost func-
tion; e.g., valueGroup By(ALTICE)declines : 21,571.507↘ 3,235.7260) as well as for∑
value(ALTi) (e.g.

∑
value(ALTICE) : 35,745.39 ↘ −59.7935; cf. Case B in

Table 5.12). Nevertheless, we observe no change in ranking between value(ALTi)
neither per cost function nor between cost functions themselves; whereas amount of
value(ALTi) change as expected. That is, we observe higher value(ALTOracle) con-
cerning accessed values (i.e., 6,456,263 > −12,855,692) and lower value(ALTOracle)
concerning I/O cost (i.e., −4,518.256 < −59.793) again (or vice versa from the point
of view for ICE). For Case C and D (cf. Table 5.11), we use (artificial) user prefer-
ences to show the impact of user experience.
In Case C, we argue that data access has a small (or negligible) impact on the

architecture decision (i.e., weightData Access is 1/10); whereas the query process-
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Case B

Workload accessed values I/O cost
Pattern valuej(ALTOracle) valuej(ALTICE) valuej(ALTOracle) valuej(ALTICE)

Data Access 7,582,059.55 -13,900,442.5 3,695.56118 -6,775.1955
Non-vector -132,898.09 97,458.6 -1,804.97727 1,323.6500
Group By -570,150.00 627,165.0 -2,941.56914 3,235.7260
Sort -16,862.55 4,637.2 -274.34436 75.4447
Sum -108,192.73 119,012.0 60.79518 -66.8747
Projection -297,692.73 196,477.2 -3,253.72114 2,147.4560∑

value(ALTi) 6,456,263 -12,855,692 -4,518.25600 -59.7935

Case C

Workload accessed values I/O cost
Pattern valuej(ALTOracle) valuej(ALTICE) valuej(ALTOracle) valuej(ALTICE)

Data Access 2,780,088.50 2,780,088.50 1,355.0391 1,355.0391
Non-vector -175,425.48 175,425.48 -2,382.5700 -2,382.5700
Group By -752,598.00 752,598.00 -3,882.8713 -3,882.8713
Sort -16,693.92 16,693.92 -271.6009 -271.6009
Sum -428,443.20 428,443.20 240.7489 240.7489
Projection -235,772.64 235,772.64 -2,576.9471 -2,576.9471∑

value(ALTi) 1,171,155 -1,171,155 -7,518.2010 7,518.2010

Case D

Workload accessed values I/O cost
Pattern valuej(ALTOracle) valuej(ALTICE) valuej(ALTOracle) valuej(ALTICE)

Data Access 1,390,044.2 -1,390,044.2 1,129.1992 1,129.1992
Non-vector -219,281.9 219,281.9 -3,309.1250 3,309.1250
Group By -940,747.5 940,747.5 -5,392.8767 5,392.8767
Sort -20,867.4 20,867.4 -377.2235 377.2235
Sum -535,554.0 535,554.0 111.4578 -111.4578
Projection -65,492.4 65,492.4 -1,193.0311 1,193.0311∑

value(ALTi) -391,898.9 391,898.9 -9,031,5990 9,031,5990

Table 5.12.: Case B-D: Partial results for value(ALTi) per pattern and cost function
and overall value(ALTi) per system and cost function.
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ing itself has an uniformly distributed higher impact20 (i.e., weightj is 9/50 with
{j|j ∈ T\Data Access}). One may argue, data access can be highly parallelized
(e.g., with RAID or SAN solutions) in some use cases and its more important that
data size drops fast after data access and evaluation of selection criteria due to limited
shared memory. We observe fast drop in data size after data access for ICE21 (cf. Ta-
bles 5.6 (on Page 86) and 5.9). We recognize for ICE that over 70% of estimated cost
is imputable to the data-access pattern. That is, we observe in the exemplary work-
load on ICE approximately 94% of cost concerning accessed values and we observe
approximately 76% of cost concerning I/O, respectively. Furthermore, we observe
in the shifted workload approximately 90% of cost and approximately 72% of cost,
respectively. Consequently, we determine a fast drop in data size and a low (relative)
share of cost for the other patterns. That is, ICE evaluates large data sets in the
beginning; but in comparison thereto, ICE only processes small data sets.
We visualize this behavior for the exemplary workload in Figures 5.8(a) and 5.9(a).

However, we apply weightsj to the according value(ALTi) and present the results for
Case C in Table 5.12. Again, we observe no change in ranking between value(ALTi)
neither per cost function nor between cost functions themselves. That is, we observe
higher value(ALTOracle) concerning accessed values (i.e., 1,171,155 > −1,171,155)
and lower value(ALTOracle) concerning I/O (i.e., −7518.201 < 7518.201) –for ICE
it is vice versa. Furthermore, we summarize the relative share of accessed values per
DBMS for each workload pattern in Figure 5.8(a). In Figure 5.8(b), we summarize
the relative share of DBMSs for each workload pattern to show the impact of dif-
ferent processing schemes to costs. In Figures 5.9(a) and 5.9(b), we illustrate the
corresponding values for I/O cost.
For Case D, we develop our idea further that we are only interested in pro-

cessing of data rather than access (i.e., data-access pattern) and presentation of
data (i.e., projection pattern). Hence, we reduce weightj for data access and pro-
jection (i.e., weightj is 1/20 with {j|j ∈ {Data Access,Projection}}); whereas
we increase weightj for other patterns (i.e., weightj is 9/40 subject to {j|j ∈
T\{Data Access,Projection}}).
We observe a change in ranking between value(ALTi) for Oracle and ICE in Case

D. That is, value(ALTICE) is higher than value(ALTOracle) for both cost func-
tions now (i.e.,

∑
value(ALTICE) >

∑
value(ALTOracle) for accessed values and

I/O cost; cf. Table 5.12). Hence, we observe higher value(ALTICE) concerning
accessed values (i.e., 391898.9 > −391898.9) now just as well as we observe higher
value(ALTICE) concerning I/O cost again (i.e., amount of value(ALTi) changes as
expected; 9031.599 > −9031.599). Consequently, we determine that weights have an
impact on the design decision – at least for Case D. Therefore, we show four passes
of our offline benchmarking model (i.e., four pairwise rankings) with four different
(to some extent artificial) weighting functions (cf. Tables 5.10, 5.11, and 5.12). We

20For example, data is (mostly) stored in main memory.
21We note, data access is (always) worst-case estimation in ICE. That is, data to be evaluated is

estimated and not data to be accessed.
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Figure 5.8.: Comparison of accessed values for Oracle and ICE (cf. Table 5.6).
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Figure 5.9.: Comparison of I/O cost for Oracle and ICE (cf. Table 5.6).
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note, the weighting functionality in our (offline) benchmarking model is applicable
to DBMS-provided statistics as well as for predicted workloads. Furthermore, we
argue that our benchmarking approach can be on arbitrary degree of detail (like cost
representation; cf. Section 4), thus, we are still able to compute the design decision
on arbitrary degree of detail assuming that the degrees of freedom are compatible.
We conclude, our approach is capable to advice architectural design with "weight-

ing" functionality. On the one hand, we present query-frequency representation in
our design-prediction model (cf. Section 5.2.2). Therefore, we map the frequency of
a query – which consists of a number of tasks j – to the probability function p(i,j),
thus, p(i,j) represents the frequency distribution of tasks j without uncertainty in a
workload (cf. Equation 5.7).
On the other hand, we present the integration of user preferences (i.e., weightj)

with our (offline) benchmarking model (cf. Section 5.2.3). We show four cases
(Case A-D) for value(ALTi) computation – which we derive from u(P ) according
to Fishburn [Fis67a, Fis67b] – and its impact on the design decision. For Case
B and C, we do not observe a crucial impact in comparison with the unweighted
computation (Case A) (i.e., each system is in favor of one cost function concerning
value(ALTi)). For Case D, we observe an impact on the design decision due to the
fact that value(ALTi) is in favor of both cost functions for one system now. Thereby,
weightj represent the frequency of tasks for Case B; whereas weightj are artificial
for Case C and D.

5.4.2. Design heuristics

In this section, we show another outcome from our work that is partially related to the
weighting functionality and to the user preferences. That is, we present heuristics –
a guideline – according to workload types and resource consumption in the following.
We argue, heuristics give an idea of how to select a suitable architecture on restricted
information or how to improve the architecture-design decision by means of user
preferences (e.g., information on bottlenecks on certain resource).
As our DM is not restricted to one architecture, we do not restrict ourselves consid-

erations to a certain architecture. Furthermore, we consider a set of heuristics that
give an outline which architecture is suitable for an application (field). Some valid
rules exist. One rule can be, pure OLTP applications perform best on Row Stores.
A second rule is, (classic) OLAP application with an ETL process or rare updates
are efficient on Column Stores 22. However, we consider the gray area between both
extrema (i.e., between pure OLTP and classical OLAP). In the following, we dedi-
cate ourselves to the question: In which situation does one architecture outperform
the other one and when do they perform nearly equivalent?

OLTP. For OLTP workloads, we just can recommend using Row Stores for efficient
ACID-support on frequent DML statements. Tuple reconstructions on updates and

22Note: Not all Column Stores support update processing; they support just ETL (e.g., ICE).
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data partitioning on inserts decrease significantly the performance of Column Stores
in this domain. A Column Store does not achieve competitive performance except
column-store architecture changes significantly to support concurrent update pro-
cessing (with ACID-support) efficiently (e.g., cf. Abadi et al [AMH08]).

OLAP. In the OLAP domain, one might assume a similar situation as for OLTP
workloads; whereas we argue that this is not true in general. We are aware that
Column Stores outperform Row Stores for many applications or queries; that is, for
aggregates and data access as well as for processing of a small number of columns,
Column Stores perform better. In the majority of cases, Column Stores are most
suitable for applications in this domain. Nevertheless, we state that there are complex
OLAP queries where Column Stores ’ advantage drops (cf. Section 3.2). Complex
OLAP queries are mostly composed of consecutive groupings, a large number of pred-
icate selections on different columns, or complex joins. For such queries, Row Stores
show competitive results although they consume more resources (e.g., main memory,
disk space). We argue, the high amount of tuple reconstruction within these queries
drops Column Stores’ performance. Consequently, these queries have to be consid-
ered for an architecture selection in more detail because they have a critical impact
on physical-design estimation (e.g., by our DM; cf. Section 5.2). This applies to all
workloads that contain more than a few queries of this class.

OLTP/OLAP. For mixed scenarios, the physical design strongly depends on the
ratio between updates, point queries, and analytical queries. We assume that OLTP
and OLAP workload have to be processed on same most up-to-date data (but no
claim to real-time processing). Our experience is that Column Stores perform about
100-times slower on OLTP transactions (e.g., updates) than Row Stores. That is,
Column Stores have to reconstruct tuples for update processing23 to identify those
column values that have to be updated; whereas Row Store identify necessary tu-
ples and compute directly on these. In practice, this observation is more crucial
because it does not even consider concurrency; that is, our observation bases on
single-user execution of transactions. Assuming transaction and analytical queries
take the same time in mean, we state that a transaction (OLTP) shall only occurs
every 100 queries (OLAP) on Column Stores. Moreover, we argue that analytical
queries last longer than single transactions. That is, we determine a smaller ratio.
Our experience is, ten (executions of) analytical queries create higher advantage on
a Column Store than extra costs caused by a single transaction. Furthermore, we
may not give a distinct advice whenever the ratio is smaller than 10 : 1 (i.e., ana-
lytical queries : transactions). We recommend using Row Stores for such scenarios;
except that beforehand, one may know, the ratio is changing to the advantage of
analytical queries. If the ratio is not only temporary below 10 : 1 for a Column Store
then an architecture change may be appropriate. We conclude, in mixed workloads
(OLTP/OLAP), the architecture decision is all about the ratio between analytical

23We exclude blind write without selection criteria.

96



5.5. Summary

queries and transactions. We note further, ratios queries versus transactions (i.e.,
100 : 1 and 10 : 1) may change depending on (complexity of) OLAP queries. We
discuss this issue in Section 6.2 in detail.

CPU & I/O. For physical design, we state that CPU and I/O load have to be
considered. We observe that in average, Row Stores consume more I/O bandwidth
as well as in peak bandwidth, because data size is larger a priori. We distinguish
between estimation of to be evaluated data (cf. Section 5.3) and actual measurable
I/O consumption (cf. Section 6.4). We observe that the measurable I/O consump-
tion is far less than the I/O which has been estimated24. Due to tuple reconstruction
and decompression of data, Column Stores consume more CPU time because recon-
struction and decompression are additional computational cost. That is, we have to
consider wherever we have reserves in hardware resources (e.g., for load balancing).
For more detailed discussions on CPU and I/O consumption, we refer to Chapter 6.

Our heuristics can guide the direction for architecture decisions for certain applica-
tions. That is, we may select a suitable architecture for an application and afterwards
use existing approaches (e.g., IBM’s advisor [ZRL+04]) to tune physical design of the
selected architecture. Whenever workload and/or DBSs are available for analysis,
we recommend the usage of our DM [LKS11a] to compute the optimal architecture
for a workload. The above described heuristics for physical design extend our DM
to reduce computation cost (i.e., solution space is pruned). Additionally, heuristics
make our DM available for scenarios where no or only less information is available.

5.5. Summary

We defined and discussed cost estimations and introduce our storage-advisor ap-
proach in Chapter 5 that allows us the computation of architecture-design decisions.
We used the example of Column Store and Row Stores to explain our approach.
We combined our storage-advisor approach with the workload-pattern approach

to represent the necessary information for decision making. Therefore, we discussed
challenges for cost functions and their parameters (cf. Section 5.1), which are neces-
sary for computation of an optimization problem. An optimal storage architecture
has to satisfy all or at least a weighted optimum of all optimization criteria. We
argued, complex (composite) cost functions for several cost measure are not feasible
to advise the optimal storage architecture because advantages as well as disadvan-
tages are hidden in these functions. Advantages and/or disadvantages emerge due to
different processing schemes of architectures. However, we argued that a weighted
approach for several criteria is feasible; whereas we took the ranking of alternatives
according to given criteria into account. For ranking, we introduced cost function
C(i,j) that maps a certain cost measure to the corresponding cost criterion. We
24One may argue, optimizers for Column Stores do not have yet the maturity as Row Stores have

which have been developed for decades.
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discussed different cost measures and the corresponding cost functions which are
usefull for ranking of alternatives. Furthermore, we argued that we compute the
storage-architecture selection on arbitrary degree of detail and thus, on arbitrary
cost functions. Hence, the degree of detail for our computation is only dependent
on detail degree of cost measures (i.e., stored information in workload patterns) that
can be arbitrarily aggregated (cf. Section 4.2). We concluded that our approach is
transparent to cost functions.
We developed our storage advisor in terms of Decision Models (DMs). Our idea

goes back to the Knapsack which is a common approach for the enumeration in
(database) physical design (i.e., we selected subset of candidates to maximize profit).
We introduced our derivation of the (0-1) Knapsack to an abstract DM. We argued,
we had to take into account multiple architectures to compare these to each other.
Therefore, we extended our abstract DM to a multiple-choice Knapsack. That is,
we introduced a new variable i that represents the architecture, whereas we select
candidates from i classes with i ∈ {CS;RS; . . . ;m} now. In the following, we derived
three DMs from the abstract model.
First, we introduced our online DM that uses DBMS-extracted statistics (cf. Sec-

tion 5.2.1). That is, statistics are available without uncertainty25, and thus, we select
the storage architecture based on cost estimates. We argued that we had to adapt our
abstract model due to inversion of optimization criterion. Therefore, we computed
the storage-architecture selection with costs without resource constraint instead of
profit computation according to a given capacity constraint. We did equate our DM
with the classic assignment problem.
Second, we introduced our (offline) design-prediction model that provides storage-

architecture decision whenever DBMS statistics are not available (cf. Section 5.2.2).
That is, we computed with predicted workloads the storage-architecture decision.
Therefore, we had to consider uncertainty of cost estimation. We argued, our ap-
proach is independent from query structures, but it is not independent from query
cost structures (cf. Chapter 3 and Section 4.3). Moreover, we had to consider the un-
certainty of a Multi-Criteria Decision Problem (MCDP) due to several tasks within
queries which generate multi-dimensionality. We extended our cost function (C(i,j))
in that manner that we combined uncertainty of cost estimation with computation
of cost. That is, we introduced cost function C∗(i,j,) that is composed of C(i,j) and
a probability function p(i,j). The probability function p(i,j) represents the probabil-
ity that a task has to be computed in a workload; whereby the sum of probabilities
p(i,j) has to be 1. We combined our consideration to our (offline) design-prediction
model that was derived from our online DM.
Third, we introduced our offline benchmarking model that combines ideas of the

online DM and the design-prediction model. That is, we combined the capability
to benchmark two (or more) database systems with the capability to compute on
samples. Therefore, we had to solve a MCDP (under uncertainty) due to the fact
that we have no access to environmental parameters and desired system behavior. In

25Moreover, statistics are stored in our workload patterns normalized (cf. Chapter 4).
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the MCDP, we represented the environmental parameters via user preferences. We
had to qualify two aspects to classify our MCDP: (a) is an order of alternatives is
available and (b) what is the type of order. Therefore, we considered Multi-Criteria
Decision Analysis (MCDA) methods with functional preference due to the fact that
we computed decisions based on costs which supposed to be in algebraic order. We
used Multi-Attribute Utility Theory (MAUT) whenever costs values and a utility
function were available. Hence, we had to consider if the type of order is applicable
to a utility function. That is, we had to determine if an interval measurement
with arbitrary-defined zero point is given. Due to the fact, we computed the storage-
architecture decision with utility values (i.e., difference of positive alternatives’ cost),
we fulfilled the conditions for utility functions. Consequently, we integrated our
decision-making methodology in the general MAUT method. We showed that we
are able to compute a ranking for a set of alternative storage architectures due to
the MAUT methodology with respect to user preferences. However, we argued that
our DMs – regardless of the extensions – are transparent to cost functions and they
still support storage-architecture decision on arbitrary degree of detail.
We evaluated our online DM in Section 5.3 to show soundness of our approach.

Therefore, we processed our exemplary workload composed of queries Q6, Q15, and
Q16 from the TPC-H benchmark on a Column Store as well as on a Row Store. We
presented the statistic-gathering process based on our exemplary workload (cf. Sec-
tion 5.3.1). We observed divided results for our exemplary workload concerning data
access; that is, the Row Store read fewer rows for Q6, Q15, and Q16. We argued, the
Column Store scanned several columns on large relations (e.g., fact table LINEITEM)
for Q6 and Q15 completely; whereas the Row Store read only a smaller amount of
tuples. Furthermore, we observed that I/O may be directly correlated to accessed
rows. We observed higher I/O cost for the Column Store concerning Q6 and Q15.
In contrast, we observed surprisingly higher I/O cost for the Row Store concerning
Q16. We contrasted rows with (column) values in previous considerations. Hence, we
applied our statistic normalization approach to calculate accessed (column) values
for Oracle. We observed that the Row Stores read still fewer values for Q6 and Q15,
but for Q16 the Column Store read fewer values now. We stated that the correlation
between accessed rows and values as well as I/O holds only if statistics are normal-
ized. We considered two additional queries from the TPC-H benchmark (i.e., Q4 and
Q17) to show that the observed behavior especially for Q16 is not an artifact. In
the following, we showed our solution process for the assignment problem that we
had to solve in online DM. Therefore, we built up a linear program that we im-
plemented in A Mathematical Programming Language (AMPL)26. We figured out
that as a result, our decision mode computed a draw between the Row Store and the
Column Store. That is, the Row Store computed approximately half number of (col-
umn) values then the Column Store did (i.e., ratio is approximately 1 : 2); whereas
the Row Store caused twice as much I/O cost as the Column Store for computation
(i.e., ratio is approximately 2 : 1). Finally, we discussed potential improvements to

26For details, we refer to Fourer et al. [FGK02].
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the DM as well as ideas to improve results (e.g., soundness).
In Section 5.4, we showed improvements to the decision-making process. We dis-

cussed the necessity of query-frequency representation as well as the mapping of user
preferences (cf. Section 5.4.1). Therefore, we showed the impact of query frequency
to the decision-making process with a shifted workload. The shifted workload differs
from our exemplary workload in this manner that query Q16 is executed twice. We
used our design-prediction model (cf. Section 5.2.2) to compute storage-architecture
decision according to different query frequencies. Therefore, we mapped query fre-
quency to frequency of corresponding tasks with respect to the total number of tasks
in a workload. That is, the probability function p(i,j) represents the frequency of
tasks now; and thus, it represents the query frequency without uncertainty. In sum-
mary, we observed in the shifted workload that the ratio between Oracle and ICE for
number of accessed values remained (approximately 1 : 2); whereas the ratio for I/O
cost shifted from approximately 2 : 1 to approximately 3 : 1. We argued that the
evaluation slightly changed on behalf of ICE. Furthermore, we showed the integration
of user preferences (i.e., weights) by example. We used our (offline) benchmarking
model to compute the storage-architecture decision with weights (cf. Section 5.2.3).
Therefore, we showed the computation for four cases (i.e., Case A to D); whereas
Case A corresponded to the unweighted computation to show the model switch had
no impact on the storage-architecture decision. For Case B, we used the frequency of
tasks as weights that did not change the ranking of alternatives; that is, the amount
of utility values changed but not the ratio of utility values between Oracle and ICE.
We used artificial weights for Case C and D to show the (possible) impact of user
preferences to the storage-architecture decision. We argued in Case C that the data
access did not have the same impact as the processing of data itself. Therefore, we
reduced the weight for the data-access pattern; whereas the other pattern weights
were increased. We figured out that the amount of utility values changed but not the
ratio between Oracle and ICE again. For Case D, we developed further the idea that
data processing in contrast to access and presentation of data has a serious impact
on the storage-architecture decision. Therefore, we reduced further the weight for
data access as well as the weight for data projection was reduced. The weights of
the other patterns were increased accordingly. We figured out that the amount of
utility values changed as well as the ratio of utility values between Oracle and ICE.
That is, we observed that both cost measures were on behalf of ICE now; in contrast
to one cost measure on behalf of each system for Case A to C.
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Chapter 6 shares material with [LS10, LKS12, WKLS12, LSS13, LSKS14].

We introduced our approaches to store workload statistics in Chapter 4. Further-
more, we presented our storage advisor in Chapter 5, which recommends the optimal
storage architecture for (re-) design decisions. In this chapter, we present a holistic
approach that analyzes queries and recommends an architecture from a given set for
query execution independent from the underlying environment. Therefore, we use
approaches from previous chapters for query dispatching and query optimization in
hybrid storage-architecture environments, respectively. Due to transparency from
queries’ point of view, we denote our approach as query interface.
The query interface comprises the complete decision process (cf. Figure 6.1). That

is, we recommend an architecture with our Decision Models (DMs) that compute
on gathered statistics. We reduce the existing workload analysis to a query analysis
with respect to where we execute a certain query. Therefore, we use so-called what-if
analysis [CN98, ZZL+04] and heuristics to give recommendation for a corresponding
query. For the what-if analysis, we use our online DM (cf. Section 5.2.1) on hybrid
systems; whereas hybrid systems maintain both stores1 redundantly. We distinguish
between Hybrid Database Management System (HDBMS) (i.e., both stores in one
DBMS) and Hybrid Database System (HDBS) (i.e., both stores in different DBMSs).
We denote the above described approach as (online) query-dispatching module. To-
gether with our (offline) storage-advisor module, the query interface adds up to
the Automated Query Interface for Relational Architectures (AQUA2) framework;
whereas the heuristic framework is implemented crosscutting in AQUA2’s offline
and online part. Despite design recommendation via storage advisor, the design-
prediction model and the offline benchmarking model act as design advisor or design
alerter within HDBMS or HDBS without replicated stores (e.g., applying profit and
modification costs; cf. Sections 5.2.2 and 5.2.3). AQUA2 implements our query in-
terface for relational architectures. Thereby, we argue that the interface is hybrid
(a) due to merging of the storage-advisor and query-processing approaches with a
crosscutting heuristic framework and (b) due to the transparent support of different
architectures.
First of all, we introduce general ideas for our hybrid query interface in Section 6.1.

In Section 6.2, we discuss heuristics for hybrid DBS and DBMS; whereas we discuss
data locality and degree of freshness in Section 6.3. We evaluate our online dispatcher
approach in Section 6.4.

1We refer to column and row store.
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Figure 6.1.: Decision process comprised by the hybrid query interface.

6.1. A Hybrid Query Interface

We introduce our query interface for hybrid stores in this section. We present a
holistic overview of our AQUA2 framework [LSKS14]. First, we discuss the integra-
tion of our design advisor (cf. Chapter 5), and then we introduce rule-based query
optimization (i.e., dispatching of queries). Therefore, we cover the complete process
from workload (respectively query) to decision and dispatching. Second, we discuss
feasible optimization levels for query optimization in HDBMS/HDBS.

6.1.1. Introduction of AQUA2

The combination of the OLTP and OLAP domains in one application scenario raises
the question of how to process mixed workloads. Therefore, we develop the AQUA2

framework (cf. Figure 6.2) that considers design prediction and performance es-
timation across column- and row-oriented architectures2. AQUA2 refers to our
storage-design advisor (cf. Figure 6.2(a)) as well as to dispatching of queries in
HDBMS/HDBS (cf. Figure 6.2(b)).
We integrate our design-advisor approach to select an optimal storage architec-

ture for a given (sample) workload based on statistic-storage and -aggregation ap-
proach [LKS11c] (cf. Figure 6.2(a)). On the one hand, we are able to extract
workload statistics from existing DBMSs (e.g., by explain-plan functionality). On
the other hand, we can use estimated workload statistics (i.e., samples) for our stor-
age advisor. We store the statistics using our workload-representation approach
in both cases. Our DMs use these statistics to recommend the storage architec-
ture [LKS11a]. We point out that the uncertainty of decision is dependent on source
of workload statistics. However, there may be cases that statistics or sample work-
loads are not available. Therefore, we develop a set of heuristics for physical design
(i.e., rule-based physical-design approach) to recommend the optimal storage archi-
tecture [LSKS12, LKS12]. The storage advisor and its extensions are summarized in
Figure 6.2(a) as the Offline-Decision Framework of AQUA2 (for more details cf.
Chapters 4 and 5). We are only able recommend meaningful architectural decisions
for those workloads that in some manner (at least slightly) are dominated by one
domain (i.e., OLTP or OLAP). For other (mixed) workloads, we encourage devel-

2Please note, we are not limited to these two architectures in general (cf. Section 5.2).
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Figure 6.2.: Overview of AQUA2’s core components: (a) the storage-advisor module
and (b) the query-dispatching module.

opment of hybrid stores. Moreover, we suggest that hybrid stores are more efficient
than each architecture alone is.
To show the efficiency of hybrid stores, our query interface has to support hybrid

stores – regardless it is an HDBMS or an HDBS – to encourage the development
of such systems. Hence, we adapt our rule-based architecture-selection approach to
query-dispatching approach for mixed workloads (cf. Figure 6.2(b)). We consider
hybrid stores with replicated data for now. That is, we use two types of hybrid stores
where data is available (i.e., replicated) in both stores. First, we investigate HDBSs
that comprise two DBMSs (i.e., one column and one row store). We assume repli-
cated data across both stores, and we use the dispatcher functionality to distribute
queries according to our rule set. We denote this case as the replicated solution.
Second, we consider HDBMSs that comprise column-oriented as well as row-oriented
storage in one DBMS. We assume that HDBMSs maintain data redundantly in
column- and row-oriented storage; whereas queries are dispatched to the appropriate
storage variant internally. This case is the hybrid solution. Our interface – AQUA2

– supports both hybrid-store types.
We claim that the rule-based query dispatcher is the most promising approach

for query optimization on hybrid stores, because in terms of complexity cost-based
query dispatching is similar to cost-based query optimization for two stores though.
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In consequence, cost-based optimization for dispatching (in the interface) and for
query execution (in the store) is very costly. We discuss different optimization levels
and strategies in Section 6.1.2. Therefore, we extend our rule-based physical-design
approach to a rule-based query dispatcher. We extend our set of heuristics with
query-processing heuristics [LSKS12, LKS12] for hybrid stores (i.e., replicated and
redundant; cf. Section 6.2). That is, we analyze single queries – instead of workloads
– and decide where to execute these best according to our set of rules. Whenever we
determine where a query should be executed we dispatch this query to the according
store (i.e., to the corresponding DBMS (HDBS) or query processor (HDBMS)). We
argue, our approach is suitable for inter- and intra-query parallelization. That is,
we dispatch queries according to current system load respectively to maximize the
throughput for inter-query parallelization which is suitable for HDBMS and HDBS.
Or otherwise, we dispatch sub-queries (i.e., part of a query) to different stores for
intra-query parallelization, which can be beneficial for complex queries with multiple
processing schemes. However, we argue that intra-query parallelization is more suit-
able for HDBMS due to simpleness of intermediate-result exchange. Nevertheless,
we state that we would need a separate query engine for intra-query parallelization;
whereas such (global) query engine contradicts the idea of our query interface.
We propose further a self-tuning component that adapts ideas of self-tuning [CN07]

(e.g., index configurations or views). We argue, (self-) tuning (e.g., enumeration
problem, parameterization) is crucial for the overall performance of DBS [Lüb09,
SGS+13]. To the best of our knowledge, no current DBMS supports both archi-
tectures and is able to self-adapt the storage system3. Therefore, we implement a
prototypical HDBMS to evaluate our approach for both hybrid-store types. Our
prototype supports both architectures (i.e., redundant storage) to make the first
step and gradually improve our solution (cf. Section 6.4). That is, we implement a
rule-based query-dispatching approach in our prototype. We denote the discussed
components of AQUA2 as the Online Query Dispatcher (cf. Figure 6.2(b)).

6.1.2. Global vs. Local Optimization

For each DBMS, query optimization is a basic task. Cost-based optimizers are
commonly used in DBMS to achieve optimal performance. Nevertheless, we ar-
gue that cost-based optimization is very costly due to computational complex-
ity [SAC+79, Ioa96, KPP04]. Therefore, rule-based approaches are introduced to
prune the solution space for cost-based optimization [Fre87, Sel88]. To the best of
our knowledge, neither rule-based nor cost-based optimizer exists for our require-
ments. For hybrid stores, we have to consider different level of query optimization
due to the fact that queries are analyzed in different steps. We analyze queries for
execution on the optimal store in our query interface as well as queries are analyzed
for query execution by the store to be dispatched. That is, we have to consider global
and local optimization analog to distributed DBMSs [ED95, ÖV11].

3We refer to our analysis in Chapter 7.
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In HDBMSs/HDBSs, we have to consider cost-based and rule-based optimization
for local and global optimization levels. First, we perform optimization – regardless if
rule- or cost-based – on the global level; that is, we need an architecture-independent
optimization approach. This is the main task of AQUA2. And second, we argue that
local optimization is dependent on the corresponding architecture. Hence, we pro-
pose the application of existing optimization approaches (i.e., query engines with
optimizer) of Row Stores and Column Stores for the architecture-dependent opti-
mization – the local level. We present a rule-based optimization approach for our
interface due to the lack of architecture-independent (cost-based) optimizer. We op-
timize queries on the global level based on architecture-independent heuristics and
rules (cf. Section 6.2); what in our case corresponds to query dispatching without
query rewriting. Queries are locally rewritten by architecture-dependent optimizers
on either architecture. Consequently, we reduce the solution space from global to
local optimization with our interface. At local optimization level, we reuse existing
functionality. Rule- and/or cost-based optimization is common in DBMSs. Hence,
we state that native optimizers (local optimization) achieve best performance (i.e.,
optimization result) because they are tailor-made implemented for the correspond-
ing DBMS and thus, for the corresponding architecture. Furthermore, we cause
minimum possible overhead for the overall optimization with our approach, because
query optimization remains unchanged and rule-based query dispatching only adds
slight computational overhead.
Finally, an approach for global cost-based optimization is also conceivable. Such

an approach can be promising for global optimization goals (e.g., minimal total
time). However, we argue that the solution space significantly increases for cost-based
optimization, whenever we apply it to two architectures. That is, the computational
cost also increases for cost-based query plans. As cost-based optimization causes
high computational cost for single architecture already, most (commercial) DBMSs
first prune the solution space by rule-based optimization [GD87, Fre87, Sel88]. We
suggest that an architecture-independent optimizer for several architectures does
not achieve competitive results compared to a tailor-made optimizer for a certain
architecture and system. Consequently, we implement rule-based optimization in our
query interface; whereas we keep cost-based query optimization at the corresponding
architecture (i.e., its query optimizer).

6.2. Heuristics on Hybrid DBS and DBMS

We emphasize the usage of rule-based optimization on global level due to compu-
tational complexity for cost-based optimization and advantages of tailor-made opti-
mizer on local level. Therefore, we present heuristics – an additional outcome from
our work – for query execution on HDBSs and HDBMSs4, respectively. We remind to
our discussion on architectural design in Section 5.4.2, whose results partly overlap

4That is, we assume that the system supports column- and row-store functionality with replicated
respectively redundant data.
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1 SELECT SUM(l_extendedprice ∗ l_discount) AS revenue
2 FROM lineitem
3 WHERE l_shipdate >= date ’1994−01−01’ AND l_shipdate < date ’1994−01−01’ + interval ’1’ year

AND l_discount BETWEEN .06 − 0.01 and .06 + 0.01 AND l_quantity < 24;

Figure 6.3.: TPC-H query Q6 [Tra10].

with results in this section. We discuss only query-processing heuristics for OLAP
and mixed workloads due to our observations that column stores are not competitive
to row stores for OLTP in general.

OLAP. In the OLAP domain, we face a huge amount of data that in general is not
frequently updated. Column stores reduce the amount of data significantly due to
aggressive compression. That is, more data can be loaded in main memory as well as
overall I/O between storage and main memory is reduced. We state, I/O reduction
is a major benefit of column stores. We observe that row stores perform on many
OLAP queries worse due to fact that CPUs idle most time while waiting for I/O
from storage (cf. Section 6.4). Moreover, row stores read unnecessary data for most
OLAP queries (e.g., query Q6 (cf. Listing 6.3) from TPC-H benchmark [Tra10]).
That is, we observe that only a few columns of schema’s relations are accessed (e.g.,
4 out of 16 for Q6). Simultaneously, aggregate functions belong to this execution
schema, too (i.e., usually aggregates refer to one column). We state, column stores
outperform row stores for OLAP as long as only a minority of columns has to be
accessed for aggregation and predicate selection. We only dispatch OLAP queries to
row stores for load-balancing reasons.

Complex OLAP Queries. OLAP analysis becomes more and more complex; thus,
queries become more complex, too. Complex OLAP queries describe complex issues
and generate large (complex) reports (e.g., query Q13 may be part of a report or of
a more complex query). For complex OLAP queries, a major part of relations have
to be accessed and aggregated (i.e., nearly the whole relation has to be read). We
argue, such queries imply a number of tuple reconstructions that reduce performance
of column stores significantly. Hence, row stores achieve competitive performance for
these queries. For Q13 (cf. Listing 6.4), we observe another issue that causes a number
of tuple reconstructions – group operations; that is, tuples have to be reconstructed
precociously. We state that selection on dependent predicates, complex joins, and
sub-queries are further issues that reduce performance through tuple reconstructions
significantly. We argue, these queries are candidates to be dispatched to row stores
(e.g., to balance load).

OLTP/OLAP. For mixed workload environments, our first recommendation is to
split workload into two parts – OLTP and OLAP. We argue that both parts are
allocated to the corresponding part of the HDBS or HDBMS (i.e., OLTP to row
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1 SELECT c_count, COUNT(∗) AS custdist
2 FROM (SELECT c_custkey, COUNT(o_orderkey)
3 FROM customer LEFT OUTER JOIN orders ON c_custkey = o_custkey AND o_comment NOT

LIKE ’%special%request%’
4 GROUP BY c_custkey) AS c_orders (c_custkey, c_count)
5 GROUP BY c_count ORDER BY custdist desc, c_count desc;

Figure 6.4.: TPC-H query Q13 [Tra10].

Feature Column Store Behavior Background

Space Reduced by factor Aggressive compression (e.g., optimal
consumption ≈ 10 (HDD & main memory) compression per data type)
Compressed data Query processing without Does not apply to all compression

decompression types nor to all operations
Data transfer Reduced and less disk swapping More data fits in memory due to

aggressive compression
CPU Increased Compression and tuple reconstruction
consumption cause CPU load
(Point) Lookup Fast response True for OLAP and OLTP workloads
Joins Fast for foreign key join Processing on indexes/single column

Slow for complex join (many columns) Tuple reconstruction needed
Slow for (full) outer join Tuple reconstruction needed

Predicate Fast on independent predicates May processed in parallel
selection Slow on dependent predicates Highly dependent on structure and

dependencies (e.g., reconstruct tuples)
Vector Fast processing (e.g., bitmap join) Inherently supported and easily
operations adaptable
Aggregates and no I/O overhead Occur frequently in OLAP
column operation
Parallelization For inter- and intra-query Not for ACID transactions with

(e.g. parallel aggregation) write operations

Table 6.1.: Insight summary of store qualities for design.

store and OLAP to column store). With this approach, we achieve competitive
performance for both OLAP and OLTP. We do not recommend a more fine-grained
splitting for OLAP-workload parts due to the fact that intra-query parallelization
demands for a separate query engine. Nevertheless, our split methodology can be
extended for load balancing whenever one store is overloaded (i.e., we dispatch to
other store when resources are available).
We summarize the major insights from above and from Section 5.4.2 in Table 6.1.

We present our insights for column stores due to the fact that row store’s behavior is
contrary. Both architectures have advantages as well as disadvantages. We emphasize
advantages of column stores (cf. Table 6.1); nevertheless, column stores still perform
worse on update operations and concurrent non-read-only data access, respectively.
That is, frequent updates and consistency checks cause tuple reconstructions on
column-stores due to the inherently partitioned data; and thus, significant cost. In
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Origin Statement Result

Transactions (DML) Perform best on RS Execute always on RS
(Point) Lookups Perform well on RS and CS Without overload on RS

To load balance on CS if
no real-time requirement

Aggregates Perform best on CS Execute always on CS
Grouping Perform best on CS except for Execute always on CS

∗-operator (e.g., TPC-H Q4) To RS for load balancing
and ≥ 10 columns (e.g., TPC-H Q1)

Predicates Distribute for parallelization only depending Dependent predicates to RS
on type of predicate (e.g., TPC-H Q8, Q13) Independent predicates to CS

Sub-query Distribute for parallelization only To CS: Comprised of aggregates,
dependent on sub-query type independent predicates, foreign-

key joins (e.g., TPC-H Q2) or to
RS: for sub-queries with depen-
dent predicates (e.g., TPC-H Q11)

Joins Distribute for parallelization only Dispatch foreign-key joins to
depending on foreign-key, outer, CS to get a key list
multi-column join Dispatch outer and multi-col.

joins to RS for intermediates

Table 6.2.: Rules for the online query dispatcher in AQUA2.

analytical scenarios, row stores read a lot of unnecessary data because operations
are often based on single columns or small subsets of them. Additionally, row stores
do not reach compression ratios like column stores because different data types are
combined in tuples that cannot be compressed on high ratio as columns that have
just one data type and in best case a more uniform structure and length. That is,
data size is already larger than for a column store which implies more I/O and more
main memory consumption. In line with others [AMH08, ZNB08], we conclude that
both architectures have the right to exist in different applications domains. Neither
row stores cannot outperform column stores in their domain nor vice versa.
Therefore, we focus our approach on gray areas between domains (i.e., mixed

(OLTP/OLAP) workloads, complex OLAP queries). That is, we introduce a
heuristic-based decision framework (i.e., rules) that dispatches queries to the op-
timal store independently when we apply to HDBMS or HDBS [LSKS12, LKS12].
We assume for our set of rules that a consistency-control approach is available (i.e.,
replication mechanism). We present our rules for the online query dispatcher in
Table 6.2. Hence, we present rules for inter- as well as intra-query parallelization
as outcome of our research; even though intra-query parallelization demands for a
(global) query engine (e.g., as for distributed DBMS [ED95, ÖV11]). However, our
research is not focused on query-engine development; thus, our query interface sup-
ports currently inter-query parallelization. Consequently, we implement a subset of
rules in a first step (cf. Section 6.4.3). We discuss improvements to our approach
in Section 6.4.5 and refer to Section 6.3 for discussion on real-time and time-bound
requirements. Nevertheless, we do not claim generality for design and query process-
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ing on row-, column-, and hybrid stores. We are aware, further aspect for design and
query processing for a domain exist, even though these may be no technical aspects.
Some aspect are in favor of row stores:

Tuning: Self-tuning techniques and advisors are more advanced that simplify ad-
ministration and tuning,

User behavior: Intuitive processing of SQL (i.e., easier to predict, understand, de-
velop for),

Training: Most (IT-affine) people are familiar with row-store technology; thus, train-
ing costs are less,

Abstraction: Support for a wide field of data management tasks (i.e., mixed require-
ments with point- and range-queries, full scans for exploration).

6.3. Load Balancing & Queries with Time Constraints

We figure out that it is promising to dispatch mixed workloads (i.e., OLTP/OLAP)
to different architectures [Lüb10, LS10, LKS11c]. Therefore, we derive our dispatch-
ing rules for the online query dispatcher (cf. Section 6.2). That is, as rule of thumb,
we dispatch OLAP queries to the column stores and OLTP transactions to the row
stores; whereas we define OLTP transactions roughly as DML statements and point
lookups (e.g., cf. TPC-C benchmark5). Nevertheless, we observe promising re-
sults for load balancing, inter- and intra-query parallelization, and (near) real-time
OLAP. For these optimization aspects, we argue that a decision where to best ex-
ecute a query or transaction is insufficient. First, we need information of resource
consumption and currently available resources (i.e., further optimization parameter)
for load balancing and parallelization (e.g., current CPU and I/O load). The impact
of hardware consumption is highly dependent on hardware setup; thus, we have to
figure out which resource is most restricted to apply our rules correctly. Second, we
need information of queries’ requirements according to degree of freshness. That is,
we have to know whether most up-to-date data is or is not necessary.
Besides query dispatching for optimal query execution, we can also use our ap-

proach for load-balancing in HDBSs and HDBMS with full data redundancy. That
is, full data redundancy (in both column and row store) supports the execution of all
OLAP queries and OLTP transactions on either architecture. On the one hand, we
can compute cost-based query-plan comparison with our DM (cf. Section 5.2). That
is, we dispatch a query to the store with least resource consumption with respect
to a certain resource6 (e.g., I/O bandwidth). We argue, optimization costs increase
for this approach; and thus, computation time may be higher than execution time
especially for transactions. On the other hand, we may dispatch queries rule-based

5http://www.tpc.org/tpcc/default.asp.
6We note, we are not restricted to one resource; however, we need a weighting methodology for
several resources.
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according to their domain. Therefore, load balancing promises an improvement of
overall system throughput. That is, we implement inter-query parallelization with
respect to the overall workload. However, we show real-time updates in column store
are inefficient (cf. Section 6.4.2), thus, data synchronization slows down the overall
query processing. We assume a similar behavior in an HDBMS. We validate this
assumption with our prototypical implementation. Nevertheless, column stores show
competitive performance on non-concurrent data access. Consequently, OLTP trans-
actions only should be dispatched to column stores if these are comprised of lookups,
which do not depend on most up-to-date data and do not involve concurrent access.
Additionally, we propose load balancing for OLAP queries; especially queries that
(nearly) perform equivalent on both system parts (cf. Sections 6.2 and 6.4.2). Hence,
we dispatch OLAP queries to the row store if the column store is under high load.
Consequently, our optimization criterion shifts from minimum query-execution cost
(cf. Chapter 5) to optimal load factor for query dispatching.
We observe similar results for intra-query parallelization. As a result, we may

only dispatch very specific parts of queries due to the fact that intermediate-result
exchange, which causes extra computational cost, has to benefit in total. We number
query parts to be dispatched among to row stores that cause high number of tuple
reconstruction (e.g., groupings over all columns), (full) outer joins, joins with high
number of join attributes, selection of dependent predicates, and sub-queries with
dependent predicates. In contrast, we can dispatch foreign-key joins, aggregates,
groupings, independent predicate selection, and sub-queries with previously named
parts to column stores. However, our query interface does not support intra-query
parallelization currently, as we mentioned before. Furthermore, we argue that intra-
query parallelization is only useful for an HDBS if the HDBS is set up on a distributed
environment and does not share hardware for column and row store. We state, we
use DBMS monitoring, if available, to observe load peaks or alternatively OS tools.
We emphasize that our approach may be enriched by further approaches (e.g. future-
workload prediction [GCCK07]).
We further argue that time-bound queries cause another optimization criterion for

our dispatching approach. We state, time-bound constraints occur due to time-bound
data partitioning (i.e., data fragmentation [ÖV11, Pages 71 ff.]). In our environment
(i.e., HDBS or HDBMS), we have an abstract horizontal partitioning due to the fact
that data in the Column Store and data in the Row Store diverge from each other
between two consistency-matching passes (i.e., ETL or replication mechanism; e.g.,
replica consistency with lazy master [PMS99]). That is, we have only most up-to-
date data in the row store. This issue has an impact on OLAP processing – at least
in terms of (near) real-time OLAP, because data has to be partially read from both
stores or from the Row Store completely. We argue, there is no impact on standard
reporting (e.g., for annual accounts for previous year). We state that the point in
time, at which freshness of data becomes an issue, is dependent on the frequency of
consistency-matching passes. Otherwise, there may be an issue for more up-to-date
reporting (e.g., stock-receipts for current day).
We argue that our query-dispatching approach is suitable to support (near) real-
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time OLAP queries. We propose two approaches to process (near) real-time OLAP
queries. First, we compute queries, which demand for real-time, in the row-store part
of hybrid HDBMSs or HDBSs; and thus, these queries are executed on most up-to-
date data. Second, we use approaches from distributed DBMSs [ÖV11] to compute
time-bound queries in a distributed way (e.g., freshness-aware middleware [RBSS02],
adaptive virtual partitioning [LMV04, FLP+08]). For both approaches, we need (a)
information from the application, whether a query demands for real-time data (i.e.,
a real-time flag), and (b) a separator (e.g., a timestamp) between current time and
last consistency-matching pass. Under assumption that approaches for time-bound
constraints and data locality are adapted and integrated, we process real-time queries
on column store and on the row store in parallel. That is, we compute (normal)
OLAP query on the column store, and for the time-bound constraint, we compute
only most up-to-date data for OLAP queries on the row store. We may achieve
better performance on time-bound queries with the (second) distributed approach
that computes real-time queries like distributed DBMSs [ÖV11, Pages 205 ff.].
Nevertheless, the distributed approach for time-bound queries and intra-query

parallelization in general demand for a (global) query engine that supports query
processing on several architectures (including architecture-specific query decompo-
sition), time-bound constraints, cost-based optimization, and resource monitoring.
Our approach may be extended to support these demands, but currently we argue,
a global query engine like in distributed DBMSs is not in our focus of current work
for our query interface.

6.4. Evaluation – Online Query Dispatcher

In this section, we evaluate AQUA2’s Online Query Dispatcher to validate our claim
that online dispatching of queries results in a better performance than an architecture
decision. We point out that we switch the column store for evaluation due to the
fact that Infobright ICE is a read-only DWH [Inf08, Inf11a]. In the following, we
use Sybase IQ7 15.2 as column store that is able to process transactions and mixed
workloads (i.e., OLAP and OLTP). That is, we use Sybase and Oracle to evaluate
our approach for the replicated solution. Furthermore, we use our prototype for the
hybrid solution (i.e., an HDBMS). Finally, we discuss extensions to our approach for
hybrid stores (e.g., to reduce redundancy) in Section 6.4.5.

6.4.1. Evaluation Settings – Replicated Solution

In the following experiments, we use the standardized benchmarks TPC-H [Tra10]
and TPC-C [Fer06]8 to show the significance of our results. We use scale factor
10 for TPC-H and 90 warehouses for TPC-C (i.e., both with approximately 10 GB
of data). Additionally, we use the TPC-CH benchmark [CFG+11] – again with 90

7http://go.sap.com/product/data-mgmt/sybase-iq-big-data-management.html.
8A prepared TPC-C environment; Referring: http://www.tpc.org/tpcc/default.asp.
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Query Oracle Sybase Query Oracle Sybase

Q1 01:40 01:18 Q12 01:41 01:26
Q2 01:21 00:18 Q13 00:52 00:42
Q3 01:52 00:46 Q14 01:24 01:16
Q4 01:38 00:07 Q15 01:22 00:19
Q5 03:03 00:22 Q16 00:09 00:08
Q6 01:21 00:03 Q17 01:22 01:16
Q7 02:12 00:05 Q18 03:51 01:03
Q8 01:47 00:21 Q19 01:23 02:03
Q9 03:42 02:21 Q20 01:33 00:50
Q10 02:00 00:15 Q21 04:08 02:23
Q11 00:13 00:09 Q22 00:20 00:07

Table 6.3.: Execution times of TPC-H queries (in mm:ss).

warehouses – that simulates a mixed OLTP/OLAP workload. For the experiments,
we use a Dell Optiplex 9809; whereby we measure CPU consumption and used I/O
bandwidth for TPC-H and TPC-CH every 0.25 seconds, and for TPC-C every 0.01
seconds.

6.4.2. Evaluation – Replicated Solution

In the following, we evaluate the replicated solution for hybrid workloads (cf. Sec-
tion 6.1.1). We use a column and a row store that keep data fully redundant and
use a dispatcher to distribute the query workload. For our test scenario, we use an
Oracle 11gR2.1 (row store) and a Sybase IQ 15.2 (column store) with each 1 GB
main memory available. We present our results for the TPC-H benchmark in the
beginning and followed by the results for the TPC-C benchmark. Subsequently, we
present our results for the TPC-CH benchmark (i.e., a mixed workload).
First, we present the execution times for TPC-H on both systems in Table 6.3. We

highlight queries in Table 6.3 that we discuss in more detail. We consider complex
as well as classical OLAP queries. We identify easily without additional considera-
tion that the row store cannot compete with the column store for Q6, but for Q13.
Furthermore, we identify more examples where the row store achieves competitive
result: Q11, Q14, Q17, and Q19. However, as we assume, for most queries the row
store cannot compete with the column store (cf. Table 6.3; e.g., Q10, Q15). For Q6,
we argue that only a minor number of columns has to be accessed and processed (i.e.,
it is a classical OLAP query), thus, row stores access a lot of unnecessary data. We
observe that the Row Store frequently reaches the limits of I/O bandwidth (approx-
imately 120 MB/s) during data acquisition (i.e., read I/O depicted as red dashed
line; cf. Figure 6.5). We argue that the selectivity of predicates is high enough, thus,

9QuadCore @3.33 GHz, 8 GB RAM running an Ubuntu Server 10.04LTS-64bit (2.6.32-41).
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Figure 6.5.: CPU and I/O for TPC-H Q6 on Oracle and Sybase.

for both systems, the intermediate results fit into main memory. Hence, we do not
observe disk-swapping phases (i.e., write I/O depicted as blue dotted line). Sybase
has an average CPU utilization (depicted as black line) of approximately 274%10 and
14.19 MB/s (in 1 second 0 to 41.69 MB/s) average disk read for Q6; whereas CPUs
start processing (67%) after first measurement interval (0.25 seconds) already (cf.
Figure 6.5). Oracle’s average CPU utilization is approximately 85%, but it needs
more than 1 second to start data processing (i.e., waits for data). We observe this
behavior via subsequent start of the black line for CPU in comparison to the red
dashed line for read I/O. Furthermore, Oracle’s average disk read is 95 MB/s (for
01:19 minutes; cf. red dashed line) approximately. These values show how different
the amount of data for both systems is to process. In consequence, it is reasonable
and inherently that row stores cannot achieve competitive results for this query type.

We can confirm these results for Q10 (Sybase: ≈ 22 MB/s and ≈ 220%, Oracle:
≈ 92 MB/s (read), ≈ 9 MB/s (write during dump), and ≈ 89% respectively ≈ 12%
during dump) as well as for Q15 (Sybase: ≈ 23 MB/s and ≈ 125%, Oracle: ≈ 98
MB/s and ≈ 87%). Even worse, query Q5 and query Q10 (cf. Listings A.18 and A.22
on Page 159 and 160) have long write phases in Oracle (i.e., buffering; cf. blue dotted
line in Figures 6.6 and 6.7). We argue that the disk swapping decreases overall per-
formance significantly. In contrast, Sybase has shorter write phases (e.g., reconstruct
intermediates for final result). These observations correspond to our heuristics (cf.
Section 6.2); Oracle uses the whole I/O bandwidth, but cannot utilize all available
CPU performance due to the large amount of data and the non-parallel computa-
tion. Moreover, main memory is not sufficient for computations in Oracle; even

10We state, CPU utilization over 100% indicates that more than 1 CPU core is used.
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Figure 6.6.: CPU and I/O for TPC-H Q5 on Oracle and Sybase.

Figure 6.7.: CPU and I/O for TPC-H Q10 on Oracle and Sybase.
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Figure 6.8.: CPU and I/O for TPC-H Q13 on Oracle and Sybase.

though main memory is approximately 1/10 of data size. We argue, the selectivity
of predicates is as low for Q5 and Q10 that the intermediate results do not fit into
main memory. These queries are representatives for worse OLAP performance of
row stores.
We observe other results for Q13, which contains two subsequent groupings on an

outer join. For Q13, Sybase cannot utilize parallel computation on different columns
due to subsequent grouping operations (cf. Figure 6.8) that cause tuple reconstruc-
tions. We argue, such behavior is caused by iterative execution of Q13. That is,
an inner and an outer grouping are computed iteratively (cf. Listing 6.4). For col-
umn stores, each grouping causes tuple reconstructions; whereas row stores process
as usual and iterate just once more on the intermediate result. We state that such
behavior may occur more frequently for complex OLAP queries. We also see this
behavior by the CPU usage (approximately 100%). That is, Sybase uses – in con-
trast to other queries – one CPU mainly. In comparison, the disk usage does not
change significantly (approximately 14 MB/s). For Oracle, CPU usage stagnates at
approximately 80% and neither I/O bandwidth is fully utilized (approximately 34
MB/s) nor Oracle does swap to disk. For query Q11, we observe akin behavior (cf.
Figure 6.9) caused by a complex HAVING clause with a sub-query (Sybase: ≈ 19
MB/s and ≈ 94%, Oracle: ≈ 70 MB/s and ≈ 94%). The HAVING clause comprises
of an aggregation over two columns and a sub-query which selects predicate (cf. List-
ing A.23 on Page 160). We point in the same direction for Q14 (cf. Figure A.46 on
Page 170), which causes such behavior by subsequent (dependent) aggregations (cf.
Listing A.25 on Page 160).
However, we argue that query Q19 is completely different, because the aggregation

is processed over three sets of predicates in disjunctive normal form (cf. Listing A.29
on Page 161). For Q19, a huge number of predicate selections, that are not inde-
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Figure 6.9.: CPU and I/O for TPC-H Q11 on Oracle and Sybase.

Figure 6.10.: CPU and I/O for TPC-H Q19 on Oracle and Sybase.

116



6.4. Evaluation – Online Query Dispatcher

Oracle Sybase

Tx Time CPU I/O Time CPU I/O

2.4 (NewOrder) <1 73 2.99 5 65 18.15
2.5 (Payment) <1 62 29.35 4 75 12.07
2.7 (OrderState) <1 68 4.65 40 139 9.05
2.8 (Delivery) <1 63 8.20 <1 198 11.51

Table 6.4.: Execution times (in seconds), Ø CPU in %, and Ø I/O (in MB/s) for
TPC-C transactions.

pendent from each other, causes a worse processing scheme (i.e., worse performance)
for column stores. Accordingly, column stores have to reconstruct tuples for inter-
mediate results on LINEITEM relation (i.e., fact table) as well as on PART relation.
We observe the interdependence by a scattered computation on low CPU load (cf.
black and red line on a low level in Figure 6.10). We summarize, 17 queries perform
better on the column store respectively one on the row stores for TPC-H; whereby
four queries show competitive performance on both stores (cf. Table 6.3).
Second, we investigate column-store performance on OLTP workloads. We show

that column stores cannot sufficiently support mixed OLTP/OLAP workloads. Con-
sequently, we argue that we need row-store functionality for HDBMSs and HDBSs in
this domain. We use the TPC-C benchmark [Fer06] to simulate an OLTP workload.
However, we exclude TPC-C transaction (Tx) 2.6 (StockLevel) from our measure-
ments because it is just a cursor declaration for in-memory tasks, and thus, we would
see no effect (cf. Listing A.36 on Page 165). We highlight, TPC-C transactions are
inherently concurrent. We present the results for our OLTP workload in Table 6.4
for both system (i.e., Oracle and Sybase). For Transactions 2.4 and 2.5 (cf. List-
ings A.34 and A.35 on Page 163), we observe relatively good performance for column
store (i.e., 5 respectively 4 seconds; cf. Figures A.54 and A.55 on Page 172) even
though execution time is a multiple of Oracle’s execution time (i.e., < 1 second).
We argue, the good performance results from the ratio between lookup and write
operations11 (approximately 1 : 1) due to the fact that in general column stores show
very good performance on lookups. We can validate our observation – column stores
perform well on lookups – with transaction 2.8 that contains lookups only (i.e., two
select queries; cf. Listing A.33 on Page 162). Both systems show nearly equivalent
performance (i.e., < 1 second; cf. Figure A.56).
In contrast, column stores show poor performance for transaction 2.7 (cf. List-

ing A.37 on Page 166), that contains twice as many write operations as lookups.
Therefore, we observe a more than forty times higher execution time for the column
store (i.e., less than 1 second for Oracle and 40 seconds for Sybase). This result can-
not be reduced to resource-consumption issues due to the fact that the column store
utilizes 139% of CPU and 9.05 MB/s of I/O bandwidth only. We argue that concur-
11We state, write operations include inserts and updates.
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Figure 6.11.: CPU and I/O for TPC-C Transaction 2.7 on Oracle and Sybase.

rency control significantly slows down the system (e.g., write operations cause tuple
reconstruction for next lookup). The peaks occur while lookups and some inserts
on dimension tables are processed in parallel. We see this behavior by the scattered
processing scheme (cf. Figure 6.11). We refer to transaction 2.4 where the read-write
ratio is approximately 1 : 1 (cf. Listing A.34 on Page163) instead of approximately
1 : 2; whereby the column store just can keep up with the write operations. Our
results show that column stores are not suitable for OLTP workloads even when
they have read-write storage like Sybase [How10] or C-Store [SAB+05, Aba08]. We
argue, write-operation support of column stores is more a functionality completion
than focus on OLTP-workload support. We summarize, our results on the TPC-H
and TPC-C benchmark underline our heuristics for CPU and I/O consumption (cf.
Section 6.2). We argue, the Column Store shows high I/O on TPC-C compared to
the Row Store due to reread data for transaction processing. Nevertheless, column
stores generally consume more CPU time, whereas row store consume more I/O
bandwidth. We refer to Appendix A.3 for queries12 and transactions that we do not
discuss in detail here.
Third, we discuss the impact of mixed workloads to system performance and our

heuristics (i.e., behavior on schema that differs from STAR schema). We show our
results for TPC-CH queries13 in Table 6.5. For TPC-CH query Q5, we obtain two
results for the column store due to the fact that Sybase has issues with modulo
computation. That is, we abort the original query after more than 10 hours and
restart it without modulo computation. However, our results show that the column

12Queries for the TPC-CH benchmark can be found online: https://db.in.tum.de/research/
projects/CHbenCHmark/.

13Queries and source code are available at: https://db.in.tum.de/research/projects/
CHbenCHmark/.
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store cannot significantly outperform the row store for each OLAP query. We argue,
the results for both architectures on the TPC-CH benchmark are closer together than
for the TPC-H benchmark even though the concurrent OLTP part is not executed
during query processing. That is, we observe 13 queries that perform better on
the column store and three on the row stores for TPC-CH; whereby five queries
show competitive performance on both stores (cf. Table 6.5). We argue, schemas
as for TPC-CH are more likely applicable for mixed workload applications than
DWH/OLAP schemas (e.g., STAR schema). That is, we may use our observations
to improve the overall performance in replicated solutions (cf. Section 6.3).

Query Oracle Sybase Query Oracle Sybase

Q1 00:24 00:55 Q12 02:08 00:22
Q2 00:48 00:39 Q13 00:02 00:02
Q3 00:28 00:38 Q14 00:28 00:09
Q4 <00:01 <00:01 Q15 02:06 00:37
Q5 06:10 00:12 (>10h) Q16 01:33 00:20
Q6 00:23 00:03 Q17 00:46 00:06
Q7 00:25 00:02 Q18 01:28 00:45
Q8 00:01 00:06 Q19 00:04 00:02
Q9 00:41 00:16 Q20 00:58 01:03
Q10 01:10 00:41 Q21 02:14 01:27
Q11 01:05 00:17 Q22 00:12 00:02

Table 6.5.: Execution times of TPC-CH queries (in mm:ss).

We conclude that certain OLAP queries are worth to dispatch them to row or
column store according to environment and query. Furthermore, OLTP transac-
tions may not dispatched to single column-store environments. We state that mixed
OLTP/OLAP workload processing is not competitive on single architecture because
row stores do not achieve competitive overall performance on OLAP queries as well as
OLAP query performance significantly decreases on column stores due to consistency
issues by write operations. Furthermore, we regard these results as conformation for
our heuristics. Nevertheless, we discuss the behavior for mixed workloads (including
transactions) for (real) hybrid stores in the following.

6.4.3. A Hybrid DBMS Prototype – An Implementation of AQUA2

We discuss results on OLAP, OLTP, and OLTP/OLAP for replicated solutions (i.e.,
HDBSs) hitherto. In the following, we introduce and evaluate our hybrid solution
(i.e., an HDBMS) to dispatch mixed OLTP/OLAP workloads. For a proof of concept
and evaluation purposes, we implement an HDBMS based on HSQLDB14. HSQLDB
is an open-source-row store that is implemented in Java and is widely used (e.g.,

14http://www.hsqldb.org/.
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Figure 6.12.: Hybrid HSQLDB prototype with AQUA2 integration.

in Open Office15). We implement column-store functionality for HSQLDB based on
version 2.2.5 which we briefly present subsequently.
We integrate the column store minimally-invasive to guarantee the comparability

of the row and the column store in HSQLDB. That is, we reuse existing function-
ality as far as possible (i.e., methods and classes). Furthermore, we apply software-
engineering methods (i.e., like preprocessors) that allow us to remove our modifica-
tions automatically from compiled HSQLDB variants [ABKS13] (cf. Listing 6.13).
That is, we are easily able to build and evaluate variants of our prototype (e.g.,
original row-store implementation). However, we modify and implement three core
aspects in HSQLDB that are the persistence layer, the caching behavior, and the dis-
patcher functionality. Our modifications refer to the HSQLDB-table type TextTable.
We show an overview of modifications in Figure 6.12.
First, we modify the persistence layer of HSQLDB. The first modification changes

the way how HSQLDB stores tables. That is, we implement a column-wise storage of
tables (instead of row-wise). Furthermore, we optimize read-access on these tables to
benefit from the column-wise storage on HDD. Originally, the HSQLDB-CSV-table
15http://hsqldb.org/web/openoffice.html.
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1 public class QuerySpecification extends QueryExpression {
2 static{
3 String storageType;
4 if(Features.HYBRID_STORE == Features.STORAGE_TYPE){
5 storageType = "HYBRID_STORE";
6 }
7 if(Features.COLUMN_STORE == Features.STORAGE_TYPE){
8 storageType = "COLUMN_STORE";
9 }

10 if(Features.ROW_STORE == Features.STORAGE_TYPE){
11 storageType = "ROW_STORE";
12 }
13 System.out.println("Starting server as inMemory: "+storageType);
14 } ...

Figure 6.13.: Example for features in prototypical implementation of AQUA2.

manager stores tables row-wise. That is, the table manager administers one file per
table in which tuples are organized row-wise. For column-wise access, we change
table organization, thus, the table manager administers n files for a table, which
consists of n columns. Therefore, we modify the connect method in class TextTable
(cf. Listing 6.14), which handles text-data sources in HSQLDB (e.g., CSV files in
our case); while the parent class Table remains unchanged and keeps data-structure
management and maintenance of tables. With our adaptation, the table manager
connects to one file per table column. That is, we add a loop to the initialization
of FilePositions of a table with i iterations (line 4). The number of iterations
corresponds to the number of columns n. Furthermore, we adapt the TextCache call
to our columnar representation (line 5; cf. Listing A.57). However, our last change
in the connect method is the incrementation of nextpos (line 11) due to the fact
that a calculation of positions within a row – as in the original implementation – is
not necessary anymore.
In addition, we need to modify the way how HSQLDB reads data from HDD, to

prevent unnecessary tuple reconstructions since tuples are read sequentially. There-
fore, we modify the internal representation of rows for the persistent storage. The
internal data representation is implemented as AVL tree in HSQLDB. Due to the
fact that we implement early materialization, we modify class RowStoreAVLDiskData
only, which implements the persistence layer between internal AVL-tree representa-
tion and TextTable (text files in our case). The (parent) classes16 RowStoreAVLDisk
and RowStoreAVL implement the internal representation for cached tables17 and the
table-type independent base implementation of the persistence layer, respectively.
However, we overload method get in class RowStoreAVLDiskData to handle column-
wise organized data (cf. Listing A.58). That is, get handles row-wise and column-
wise organized data dependent on method call. With our get method, we read

16Note, RowStoreAVLDiskData extends RowStoreAVLDisk, which extends RowStoreAVL. Thereby,
RowStoreAVL implements the interface PersistentStore

17Tables that are completely loaded into cache at database start up.
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1 private void connect(Session session, boolean withReadOnlyData) { ...
2 Row row = null;
3 int nextpos = 1;
4 for (int i = 0; i < this.columnCount; i++) { // number of source files
5 ((TextCache) cache).cols[i].FilePositions.put(nextpos, 0); // initialize FilePositions
6 }
7 while (true) {
8 row = (Row) store.get(nextpos, false); // row−wise
9 if (row == null) {break;}

10 Object[] data = row.getData();
11 nextpos++;
12 systemUpdateIdentityValue(data);
13 enforceRowConstraints(session, data);
14 store.indexRow(session, row);
15 }
16 } ...
17 }

Figure 6.14.: Extract of modifications to the data acquisition for the cache (class Text-
Tache).

data column-wise in chunks (line 7-12) and materialize rows on the level of chunks
(line 17-25; i.e., we build currently 100 rows at once). Hence, our prototype reads
chunks of each column and then reconstructs tuples if necessary which results in
better cache utilization and a reduced CPU overhead. For the implementation, we
use the RowInputInterface, which we discuss with modifications for caching in the
following.
We modify the caching behavior, which is our second core aspect of implementa-

tion, because there is only row-wise caching present in HSQLDB. Additionally to the
row store cache, we implement a cache for the column store in HSQLDB. Therefore,
we modify the way how data files are opened and read into cache (class TextCache;
cf. Listing 6.15). At the beginning, we adapt the buffer initialization (initBuffers),
thus, n columns of a table (i.e., files) lead to n initialized buffers (cf. line 8-15). Fur-
thermore, we change method readObject to myReadObject; whereby both methods
read a (text) stream of characters. Both methods search for special characters (e.g.,
quotation marks, line endings) for processing purposes (cf. line 30-46). Thereby, the
end of a row is identified by line endings (i.e., \n or c = 10; line 35). In contrast
to the original method, myReadObject processes on chunks of rows (i.e., column val-
ues). This way, we prevent complete cache-hierarchy calls for each column value.
Therefore, we introduce CHUNKSIZE and chunkPosCount to iterate over data (line 6
and 21). With these variables, we control processing of a complete chunk (here 100
values or rows) without method recall (line 27-48). We additionally reduce overhead
by skipping of empty rows (line 38). If a chunk is completely processed, we pass data
to the RowInputTextInterface18 and return the result (line 52-57).
In addition, we add a method getFromFile (cf. Listing A.59 on Page 176), which

implements the transfer from persistent storage to cache. This method takes over

18Note, RowInputTextQuoted extends RowInputText, which implements RowInputTextInterface.
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1 import columnar.MyColumn; ...
2 import org.hsqldb.RowAVLDiskData; ...
3 public class TextCache extends DataFileCache { ...
4 public MyColumn[] cols;
5 public RowInputInterface[] rowIns;
6 public static final int CHUNKSIZE = 100; // constant size for now
7 ...
8 protected void initBuffers() {
9 int anzahl = this.table.getColumnCount();

10 if (isQuoted || isAllQuoted) {
11 rowIn = new RowInputTextQuoted(fs, vs, lvs, isAllQuoted);
12 rowOut = new RowOutputTextQuoted(fs, vs, lvs, isAllQuoted,stringEncoding);
13 for (int i = 0; i < anzahl; i++) {rowIns[i] = new RowInputTextQuoted(fs, vs, lvs, isAllQuoted);}

// number of columns
14 } ... // else looks alike
15 } ...
16 protected RowInputInterface[] myReadObject(int rowPos) { // iteration for chunks
17 for (int i = 0; i < cols.length; i++){rowIns[i] = myReadObject(rowPos, i);}
18 return rowIns;
19 }
20 protected RowInputInterface myReadObject(int rowPos, int colIndex) { ...
21 int chunkPosCount = 0; // counter for current position in chunk
22 if (cols[colIndex].FilePositions.containsKey(rowPos) == false) {return null;}
23 int pos = cols[colIndex].FilePositions.get(rowPos); int oldPos = pos;
24 pos = findNextUsedLinePos(pos, colIndex);
25 ...
26 dataFiles[colIndex].seek(pos);
27 while (!complete) { ...
28 c = dataFiles[colIndex].read(); // added [colIndex] // single character in int representation
29 ...
30 switch (c) { ...
31 case CR_CHAR : //13 "\r"
32 c = 10; // character represented as int −−> "\n"
33 if (chunkPosCount >= CHUNKSIZE − 1) {c = 13;wasCR = !hasQuote;} // "− 1"

because not incremented yet
34 break;
35 case LF_CHAR : //10 "\n" // end of row −−> abort; complete = true!
36 chunkPosCount++; c = 124; //124 // separator "|" := 124
37 pos = (int) dataFiles[colIndex].getFilePointer(); // position to current FilePointer
38 pos = findNextUsedLinePos(pos, colIndex); // skips empty rows −−> deleted rows
39 if (pos == −1) {c = 10;complete = !hasQuote;} // <100 values −−> abort!
40 else {cols[colIndex].FilePositions.put(rowPos + chunkPosCount, pos);}
41 dataFiles[colIndex].seek(pos);
42 if (chunkPosCount >= CHUNKSIZE) {c = 10;complete = !hasQuote;} // read 100

values resp. CHUNKSIZE
43 break;
44 default : ... // proceed −−> next
45 }
46 if (c != 10 || chunkPosCount >= CHUNKSIZE) {buffer.append(c)}; // != "\n"
47 }
48 if (complete) {
49 int length = (int) dataFiles[colIndex].getFilePointer() − oldPos;
50 if (wasNormal) {length−−;}
51 if (rowIns[colIndex] == null) { // fs, vs, lvs, isAllQuoted −−> DB initialization parameters
52 if (isQuoted || isAllQuoted) {rowIns[colIndex] = new RowInputTextQuoted(fs, vs, lvs,

isAllQuoted);}
53 else {rowIns[colIndex] = new RowInputText(fs, vs, lvs, isAllQuoted);}
54 }
55 ((RowInputText) rowIns[colIndex]).setSource(buffer.toString(), pos, length, rowPos); // 100

values pipelined; added [colIndex] and rowPos
56 return rowIns[colIndex]; // materialization
57 } ...

Figure 6.15.: Extract of modifications to the data acquisition for the cache (class
TextCache).
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responsibility for locking and data acquisition of data, which is not resident in the
cache, from the corresponding original get method; whereas other get methods
remain unchanged. In contrast to the original get method, getFromFile process
column-wise and reads chunks of data (using RowStoreAVLDiskData). However, we
implement a fully redundant in-memory caching for each table (i.e., row and col-
umn representation). We use the redundant caching approach to dispatch workload
queries. We state that HSQLDB keeps tables in cache as long as there is sufficient
main memory. Note, for evaluation purposes, we need to exclude effects caused by
HDD access (especially when only one of the representations is swapped to disk)
and therefore, we forbid swapping of (parts of) the caches to HDD. As a result,
query processing of our prototype works fully in main memory for now. On the one
hand, main memory processing (after data acquisition) eliminates unintended side
effects and improves the accuracy of measurement. On the other hand, we abstract
from many real-world scenarios with this assumption. Nevertheless, we need the first
modifications – addressed above – for initial loading and persistent storage of tables.
Third, we implement the online query dispatcher based on our heuristic decision

framework for HDBSs respectively HDBMSs (cf. Section 6.2). We integrate the
online query dispatcher into an HDBMS to demonstrate benefits of hybrid solutions.
Currently, we utilize a subset of our heuristic-decision rules. As general rule of
thumb, OLAP queries are processed on the column store and OLTP transactions on
the row store. We implement an alternative data-flow path to process queries on the
column store. In consequence, we access both stores for data processing and load data
into both in-memory representations. For the alternative data-flow path, we modify
query processing slightly. We reuse functionality of the SQL parser, which extracts
expression from SQL text and maps them to different expression groups (e.g., sub-
query). This functionality makes possible query categorization via Boolean variables
(e.g., isAggregated; cf. line 5 in Listing 6.16). That is, we dispatch (execution of)
a query based on contained expressions as method buildResult is requested. In
our example (cf. Listing 6.16) for the hybrid store, we check for queries without
aggregates (line 5) that are executed on the original data-flow path (i.e., row-wise;
line 6-8); whereas queries with aggregates are executed on the alternative data-flow
path (i.e., column-wise; line 10-23). For comparison, we present a code snippet for
the Row Store and Column Store configuration in Listing A.60 (on Page 176). We
present additional methods in Appendix A.5 (e.g., for predicate evaluation), which
are adapted for columnar behavior.
We argue, first results on loading behavior of our column-store implementation

go into the same direction as our results on TPC-C transactions in Section 6.4.2.
Loading the TPC-H benchmark (i.e., inserts; scale factor 0.01) takes twice as long
as the original row-store implementation. Furthermore, we observe higher main-
memory consumption for our column-store implementation which is contrary to other
column-store implementations. We argue that the higher consumption is caused by:
(a) storage overhead due to additional partitioning information and (b) lack of data
compression that catches up the partitioning overhead in other column-store imple-
mentations. Finally, we implement early materialization in our first prototype. We
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1 private Result buildResult(Session session, int limitcount) { // called once per query
2 ...
3 RangeIterator it = rangeIterators[currentIndex];
4 if(Features.STORAGE_TYPE == Features.HYBRID_STORE) {
5 if (!isAggregated || cache[0]==null ) {
6 if (it.next()) { // it.next fetches next row which satisfies conditions
7 if (currentIndex < rangeVariables.length − 1) {currentIndex++; continue;}
8 } else {it.reset(); currentIndex−−; continue;}
9 }

10 else { // isAggregated
11 if (it.myNext(cache, rowPos, count, currentIndex)) { // condition check and it.myNext

fetches next column value (row of column)
12 if (currentIndex < rangeVariables.length − 1) {currentIndex++; continue;}
13 if (rowPos[currentIndex] > count[currentIndex]) {
14 if (rowPos[0] >= count[0]) break; it.reset(); rowPos[currentIndex] = 1;

currentIndex−−;
15 if (currentIndex >= 0) rowPos[currentIndex]++; continue;
16 }
17 } else {
18 if (rowPos[0] >= count[0] +1) break; it.reset(); rowPos[currentIndex] = 1; // set

outer index to 0
19 currentIndex−−;
20 if (currentIndex >= 0) rowPos[currentIndex]++; continue; // increase inner index
21 }
22 }
23 } ... }

Figure 6.16.: Query dispatching for aggregates in hybrid store configuration (class
QuerySpecification).

are aware of the fact that early materialization is not as competitive as late materi-
alization in column stores [AMH08]. Consequently, we are aware that our prototype
has performance issues, thus, we do not expect outstanding but competitive results.

6.4.4. Evaluation – Hybrid Solution

We introduced previously our HDBMS prototype that we use to validate our claim:
hybrid stores can achieve better performance for mixed workloads. For our evalua-
tion, we use the TPC-CH benchmark [CFG+11] which is basically a mixture of the
analytical TPC-H and the transactional TPC-C benchmarks. Therefore, we use a
small version of TPC-CH with 100MB of data (i.e., 1 warehouse) due to the fact that
HSQLDB is not designed for big-data applications. Nevertheless, we argue that the
amount of data is sufficient for a proof of concept. We use a row store (i.e., original
HSQLDB) and our prototype (i.e., an HDBMS) for the evaluation.
We perform all experiments on the same computer (Intel Core i7, 8 GB RAM, Win-

dows 7-64bit, Oracle Java Virtual Machine JRE 1.6, maximum heap size 1.5 GB). For
each variant, we use two workload queues querying the database in parallel. The first
workload queue comprises of OLAP queries; the second one comprises transactional
load of the benchmark using the read-committed isolation level [SHS05, Pages 600
ff.]. We perform the experiment 120 times. Furthermore, we compute a robust mean
value using a γ-trimming approach (γ = 10%) to compensate outliers and ensure
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Query Row Hybrid

Q1 7,183.85 6,780.90
Q4 15.11 14.62
Q6 3,134.69 5,763.29
Q12 1,027.07 29.21
Q16 33,223.67 15,591.78
Q19 24,842.66 1,967.64

Table 6.6.: Ø Execution times (in ms) for TPC-CH queries.

statistical soundness. We limit the number of queries to those that probably cause
interesting insights. As a result, our test program uses TPC-CH queries Q1, Q4, Q6,
Q12, Q16, and Q1919. We select these queries due to the fact that TPC-H queries
Q1, Q12, and Q16 are close together; whereas Q4 and Q6 give advantage to column
stores respectively Q19 gives advantage to row stores (cf. Table 6.3). For TPC-CH,
queries Q4 and Q19 show competitive results on both stores; whereas Q6, Q12, and
Q16 give advantage to column stores respectively Q19 gives advantage to row stores
(cf. Table 6.5). Finally, we remove data changes that are caused by the benchmark,
after each pass of our experiment from the table space. That is, we reset the table
space to ensure comparability of single passes.
We summarize our results (i.e., the average execution time) for the respective

TPC-CH queries with regards to our hybrid prototype and the row-store variant
of HSQLDB in Table 6.6. Our results show that the hybrid solution is faster for
the OLAP queries – using the column-store part – except for query Q6. The result
for Q6 is reasonable due to the fact that we implement early materialization for the
hybrid solution. That is, the hybrid has to reconstruct a large amount of tuples,
that are composed of three columns from a relatively large table (i.e., ORDERLINE
– second largest in benchmark), to compute predicate selection on two columns
and summation on the third column. Nevertheless, the hybrid solution significantly
achieves the better overall performance for mixed workloads. We argue, our results
are sound and significant (e.g., hybrid solution is more than 12 times faster for Q19
respectively more than 30 times for Q12).
We make additional analysis to assign execution times to single high-level opera-

tions (i.e., database operations) to gain further insights and explain our observations.
For our analysis, we use the Java profiler VisualVM20 which is part of Oracle’s Java
Development Kit. The results of this analysis for query Q6 – where row-store is faster
– and query Q19 – largest time benefit of hybrid – are depicted in Table 6.7.
For query Q6, we observe savings in CPU consumption for predicate selection and

aggregation on the hybrid solution. That is, CPU consumption drops from 72.2% to
54.9% for predicate selection respectively from 21.1% to 4.7% for aggregation (i.e.,

19Note: TPC-CH queries are akin to TPC-H queries but not equivalent.
20https://visualvm.java.net/.
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sum). Nevertheless, we observe a very expensive operation – the tuple reconstruction
– for query processing in the hybrid store that utilizes the column-store part, to eval-
uate the selection predicates for aggregation. That is, the column-store part in the
hybrid solution causes 40.1% CPU consumption for this operation (cf. Table 6.7).
As query processing in HSQLDB is optimized for row stores, the selection predicates
are evaluated tuple-wise. Consequently, the query processor reconstructs tuples and
then accesses necessary attributes; whereby evaluation of predicates is performed
tuple-wise. We state that this behavior is inherently due to our minimally-invasive
integration with early (tuple) materialization. However, whenever a tuple is recon-
structed with necessary attributes and these attributes are accessed, cache hierarchies
can be used efficiently since all values are stored in a tuple and thus, close to each
other. In contrast, when we apply the column-store part of the hybrid approach,
Java cannot utilize caches as efficient to reconstruct tuples. VisualVM confirms our
expectation according to computational overhead by tuple reconstruction as almost
half CPU time (40.1%) is used for tuple reconstruction during computation of Q6.
Nevertheless, the difference in execution times between both variants is not that
high (i.e., 3,134.69 ms for row store and 5,763.29 ms for hybrid solution) because
aggregation itself is very efficient since Java uses the cache here efficiently (21.1%
CPU consumption for row store and only 4.7% for hybrid solution).

Query Q6 Query Q19

Operations Row Hybrid Row Hybrid

Selection 72.2 54.9 13.1 16.3
Aggregation 21.1 4.7 – –
Join – – 72.2 77.8
Tuple reconstruction – 40.1 – <5

Table 6.7.: Operations with more than ≈ 5% avg. CPU Consumption (in %).

For query Q19, we observe the highest time benefit of the hybrid solution com-
pared to the row store. For this query, tuple reconstruction is not crucial for two
reasons even though two large tables are involved (i.e., second and fourth largest in
benchmark). First, HSQLDB utilizes indexes and does not scan whole relations to
evaluate join partners of both tables (i.e., ORDERLINE and ITEM). Hence, the column-
store part benefits from the implementation of indexes in HSQLDB. In the original
row-store variant indexes contain precomputed row iterators for fast iteration over
whole indexed data that needs to be updated because of TPC-CH-write load. In
contrast, the column store only caches these iterators that contain information how
rows be reconstructed (i.e., like bitmaps), and thus, there is less computational over-
head which leads to faster execution times. Second, the query result is an aggregate
(i.e., sum). Consequently, the hybrid solution reconstructs tuples with necessary
attribute for ORDERLINE and ITEM and computes the predicate selection like the row
store afterwards. Furthermore, the hybrid solution computes the join with the above
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mentioned benefits; whereby the aggregation is computed on-the-fly due to the fact
that the respective attribute is an independent part21 of the intermediate result (i.e.,
join result) and no further tuple reconstruction is needed. We argue, such behavior
causes the absence of measured values for aggregation for both variants (cf. Ta-
ble 6.7). As a result, the disadvantage of tuple reconstruction is overlaid by other
operations and thus, negligible because the consumed CPU time is less than 5% in
contrast to 40.1% for TPC-CH query Q6.
We conclude that our hybrid solution – an HDBMS – shows at least competitive

and in some extent outstanding results for mixed OLTP/OLAP-workload processing,
even though our dispatching approach is very rudimentary. That is, our assumption
in Section 6.1.1 proved to be true that hybrid stores are more efficient on mixed
workloads than each architecture alone is. We suggest further implementations for
HDBMSs based on our results due to the fact that our implementation lacks of
(columnar) compression, particular vector-operations support, late materialization
and correspondingly columnar processing, etc.

6.4.5. Discussion on Improvements for AQUA2

We presented the results of our experiments; whereby we pointed out some weak-
nesses and deficiency. In this section, we discuss improvements and further ideas.
We showed the suitability of our approach on redundant data storage (cf. Sec-

tions 6.4.2 and 6.4.4. However, we are aware that fully redundant storage cause
several problems (e.g., storage-space consumption, consistency). We assume that
our approach is also feasible for non-redundant hybrid stores we mention before
(e.g., time-bound data partitioning) (cf. Section 6.3). Another opportunity to re-
duce redundancy in hybrid stores is, we observe which part of the database schema
performs with respect to given workloads best, and thus, we allocate schema parts to
different stores. In Chapter 5, we introduce a storage advisor for relational DBMS.
Whether we reduce redundancy in hybrid stores based on time-lines or based on
performance, we may use our storage advisor for performance evaluation for physical
(static) schema design following other advisors [ZRL+04, BC07] for row stores. We
further argue, the advisor approach can be used to monitor systems and alerts on di-
minishing performance at threshold exceeding (i.e., alerter approach; e.g., by Bruno
and Chaudhuri [BC06]), thus, we periodically redesign store-spanned schemas. In
consequence, we come straight to the point that we extend ideas of Agrawal et al. to
automatic physical design [ACN06] for systems with several storage types. There-
fore, we have to extend our heuristic-based query dispatching by information on data
distribution/locality. Moreover, we have to combine both the storage advisor and
the online query dispatcher for dynamic behavior (e.g., evolutionary schema). This
approach is feasible on different granularities of distributed storage. Nevertheless,
fine-grained distribution can cause high reorganization (i.e., on changes) and admin-
istration cost. We suggest that an approach on table level may be a good trade-off
21We note, predicate selection is done before join, thus, there is no further dependency for the

aggregate.
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between benefit and administrative overhead. We are careful to point out that these
ideas demand for a store-spanning query engine due to the fact that intra-query par-
allelization and intermediate-result exchange have to be supported. That is, such
query engine is dependent on the underlying stores. We argue, a query engine for
distributed processing across different contradicts our current vision of a transparent
hybrid query interface (cf. Section 6.3).
We further argue that our approach may be improved without a store-spanning

query engine. We suggest the implementation of further heuristics which do not de-
mand for such query engine (e.g., for complex OLAP queries or to avoid load peaks
on redundant storage; cf. Section 6.2). Additionally, we may improve our solution
by implementation of other column-store-typical approaches and usage of a more
sophisticated column-store implementation. We state, implementation of late mate-
rialization and thus, columnar processing improves performance for several OLAP
queries (e.g., for Q6). We assume that support of both materialization methods may
be promising (cf. Section 3.1); whereby the most suitable is chosen based on query
structure. Furthermore, we should implement (columnar) data compression, com-
pressed data processing, and vector-operation support (cf. Section 6.4.4) which are
essential for column-store performance and inherently belong to column stores.

6.5. Summary

We presented our approach – a hybrid query interface – for mixed OLTP/OLAP
workloads on hybrid stores here in Chapter 6. Therefore, we used our approaches
concerning architecture-independent workload statistics and storage-architecture de-
cision based on these statistics.
We integrated our previous work into a hybrid query interface named Automated

Query Interface for Relational Architectures (AQUA2). That is, we combined previ-
ous work in the offline-decision framework and used insights therefrom to build an
online query dispatcher for mixed workloads on hybrid stores (cf. Section 6.1.1). We
refered to two solutions – the replicated solution and the hybrid solution – in our
approach; whereby both solutions maintained data fully redundant in two stores (i.e.,
column and row store). The replicated solution was composed of two DBMS (i.e.,
an HDBS); whereas the hybrid solution was an HDBMS that combined both stores
in one DBMS. In the following, we considered different optimization approaches
and levels (cf. Section 6.1.2). We discussed global (i.e., in our approach) and local
optimization (i.e., at the store) as well as where the usage of rule- and cost-based
optimization would be suitable. We stated that rule-based optimization was most
suitable for global optimization due to computational cost of cost-based optimization
and transparency ideas concerning our query interface. Furthermore, we argued that
usage of rule- and/or cost-based optimization belongs to the store at local level.
We presented insights into design and query processing on HDBS and HDBMS

to establish a rule-based optimization approach in Section 6.2. Therefore, we intro-
duced a set of rules that contains rules for inter- as well as intra-query parallelization.
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We implemented inter-query-parallelization rules in our query dispatcher. However,
we discussed further query-dispatching criteria that were focused on load balanc-
ing (e.g., throughput maximization) and time-bound queries (e.g., near real-time;
cf. Section 6.3). We had to adapt several approaches from distributed DBMS to
implement such features; whereby we focused on a transparent approach for now.
In Section 6.4, we performed a performance evaluation for both solutions (i.e.,

replicated and hybrid). We performed the TPC-H and TPC-C benchmark on the
replicated solution. As a result, we observed that neither system outperformed the
other for both benchmarks; whereas the row store dominated as anticipated the
TPC-C benchmark and the column store dominated the TPC-H benchmark. Hence,
we performed the TPC-CH benchmark and concluded that the performance was
closer together than for the other benchmarks. That is, we saw our assumptions
confirmed for rule-based query dispatching. Moreover, we implemented a prototype
in HSQLDB to validate our considerations in an HDBMS (cf. Section 6.4.4). We
choosed a minimally-invasive approach that included a second persistence approach
as well as a second cache (i.e., both columnar organized). Furthermore, we imple-
mented our heuristic framework that dispatched queries between both variants (i.e.,
the original data-flow path and the new columnar data-flow path). We performed
the TPC-CH benchmark on our prototype as well as on the original HSQLDB. We
observed competitive and in some extent outstanding results for our prototype. That
is, our prototype outperformed the original HSQLDB implementation. Subsequently,
we discussed the impact of tuple reconstruction based on CPU consumption for our
prototype. Finally, we discussed possible improvements for our approach (cf. Sec-
tion 6.4.5) that implied a more fine-grained heuristic implementation, further imple-
mentation of typical column-store features, and redundancy reduction in HDBMSs.
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We consider related work to our approaches in this chapter. Therefore, we com-
pare related approaches to partial aspects of our work as well as to the overall idea
for hybrid (relational) data management. We compose our considerations in com-
parison to five different aspects. First, we consider workload-decomposition and
statistics-analysis approaches with respect to our workload-decomposition approach
(cf. Chapter 4) and second, we consider advisors for physical design in relational
DBMS (cf. Chapter 5). Third, we discuss relevant ideas in the field of self-tuning,
especially in terms of physical design (cf. Chapters 5 for cost calculation and 6 for
implementation). Fourth, we discuss architectural approaches for relational data
management especially Column Stores and OLAP1. Finally, we consider (hybrid)
approaches, which focus on more generalized DBMSs, and try to overcome architec-
tural drawbacks for mixed requirements (e.g., near real-time OLAP; cf. Chapter 6).

7.1. Related Work on Workload Decomposition &
Representation

Query optimization as well as physical design has to decompose workloads for optimal
query-plan respectively physical-design estimation. Therefore, researchers propose
several approaches with respect to different optimization criteria that we briefly
introduce and compare with our approach in the following (cf. Table 7.1).
An approach for optimal disk performance on mixed workloads proposed by Turby-

fill [Tur88] characterizes (disk) access pattern for OLTP, batches, and ad-hoc queries2

based on heuristics (i.e., experiments). The access patterns are used to aggregate
similar workload parts and to decide how these patterns are executed – (a) in parallel
with possible drawbacks to OLTP or (b) in different time windows.
In contrast to the heuristic-based approach by Turbyfill, Raatikainen [Raa93] dis-

cusses general hardness of automatic workload classification and of cluster analysis,
which arise from classification. Raatikainen argues that (statistical) workload classi-
fication is not necessarily feasible for query-optimization purposes. On the one hand,
classification is highly dependent on similarity function for clusters. On the other
hand, stability and validity of clusters are identified as an issue. Finally, Raatikainen
shows instability of response times for clustering algorithms, thus, such an approach
is not suitable for our purpose – at least in terms of query processing due to time
constraints and their volatility.

1In Chapter 2, we give a coarse overview for corresponding approaches in Row Stores.
2Nowadays, batches and ad-hoc queries summarized as OLAP.
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Nevertheless, Chaudhuri et al. use a clustering approach which targets on superior
support of self-managing DBMSs by reduction of size and diversity of workload in-
formation [CGN02]. The used distance function is focused on index selection in this
approach (i.e., to reduce complexity for the index selection problem). However, work-
loads have to be known in advance. Whenever a workload is not known in advance,
Chaudhuri et al. use sampling approaches additionally (i.e., additional complexity
for quality results). Holze et al. also target on the reduction of size and diversity of
workload information. Therefore, they use a clustering approach based on the gener-
alized Minkowski metric to evaluate the similarity [HGR09]. In more detail, Holze et
al. generalize the approach of Chaudhuri et al. [CGN02] for ongoing workloads (i.e.,
without sampling). Both approaches concern the problem of cluster stability stated
by Raatikainen. That is, the minimal number of cluster k is determined by a quality
loss measure for new clusters that in total must be below threshold δ. Chaudhuri
et al. solve the validity problem by the assumption that workloads are known in ad-
vance respectively sampling; whereas Holze et al. solve this problem with a learning
phase. That is, cluster adaptation freezes after learning phase that ends whenever
the maximum distance of new elements to existing clusters fall short of threshold δ.
Hence, periodical execution of cluster analysis is limited to an applicable amount by
user interaction at expense of cluster quality.
Another point of view for workload decomposition is the temporal aspect. The

temporal aspect is suitable whenever different workload types occur periodically (e.g.,
OLAP and ETL, daily operations and reorganizational tasks). That is, decomposed
workload parts represent similar workload tasks for a period of time, thus, optimiza-
tion (e.g., physical design) is focused on workload parts for a corresponding time
period instead of optimization for (24/7 ) overall workload. Agrawal et al. name
such temporary workload parts with the term sequence (i.e., a set of SQL state-
ments). The following two points are unique characteristics for this approach: (a)
it does not distinguish between different physical design approaches (e.g., indexes,
materialized views) and (b) it preserves query respectively (SQL)-statement order.
In contrast to the previously introduced approaches, the following two approaches

focus on OLAP respectively DWH workloads. That is, the other approaches are
not limited to or are at least not especially designed a single for workload domain.
Ghosh et al. present a clustering-based decomposition in which template-query plans
represent workload clusters [GCCK07]. A template-query plan is a query plan in
which all operations remain but identifying values (e.g., table name) are removed
(like a query with bind variables). A template-query plan represents all queries
within a certain distance (i.e., a cluster); whereby a hierarchical similarity approach
– called SIMCHECK – is used to reduce complexity. Query plans are reused in
this approach whenever a similar cluster exists (i.e., a template-query plan). As
a result, Ghosh et al. reduce query-optimization cost for complex queries greatly.
Nevertheless, template-query plans are sub-optimal for similar queries but according
to the authors fairly close to optimal. An approach by Favre et al. [FBB07] is designed
for workload evolution (i.e., the queries to be analyzed) in DWHs. That is, Favre et
al. do not focus on workload analysis for physical design, but they focus on query
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sets, which represent workloads after evolution. Therefore, they analyze updates on
data and schema to update the workload (i.e., add, delete, or adapt queries).
One may be surprised at our set of related approaches. To the best of our knowl-

edge, besides our approach exists no approach that supports workload decomposition
and representation for physical-design estimation and query optimization. Therefore,
we present related decomposition approaches for query processing (e.g., by Ghosh et
al. [GPSH02]) as well as for physical design (e.g., by Chaudhuri et al. [CGN02]).
We consider the access-pattern approach for mixed workloads by Turbyfill [Tur88]

due to the fact that our approach inherently considers optimal access (patterns)
by storage-architecture selection respectively query dispatching to different stor-
age architectures. In more detail, we also consider disk-access patterns for mixed
OLTP/OLAP workloads because our approach is not limited to main-memory DBS.
The heuristic-based approach for workload patterns is related to our heuristic frame-
work for physical design and query processing. In contrast to our approach, this
approach is limited to a certain DBMS (type). We additionally provide iterative
improvement for our framework.
Furthermore, we discuss the considerations of Raatikainen [Raa93] to show hard-

ness of workload clustering (cf. Lange et al. [LRBB04]; e.g., cluster may be found
where no (natural) cluster exists). In line with Raatikainen, we argue that clustering
is not suitable for workload representation in general. On the one hand, we state that
clustering algorithms are too complex for a multi-purpose approach. That is, identifi-
cation of optimal number of cluster is hard, even if workload is not known in advance
(cf. Chaudhuri et al. [CGN02]), but cluster stability and validity are more difficult
for ongoing workloads (cf., by Holze et al. [HGR09]) that implies costly cluster re-
calculation (e.g., by user interaction). Due to the extension of ideas by Chaudhuri et
al. [CGN02], the approach by Holze et al. [HGR09] is feasible for OLTP and OLAP in
a broad outline. However, we argue that workload clustering is not cost-efficient for
query optimization, but we do not prevent workload clustering with our approach.
Clustering on top of our workload-representation approach is still applicable even
though our superjacent approaches may be adapted. On the other hand, clustering
hides the workload sequence, which is crucial for design tasks and query processing
in mixed OLTP/OLAP in our opinion.
In line with Agrawal et al. [ACN06], we argue workload sequences are an impor-

tant aspect for quality of physical design due to the fact that requirements and/or
drawbacks for special tasks (e.g., ETL) are hidden in overall workloads. That is,
tuning aspects are not considered that can have crucial impact on performance of a
workload sequence (e.g., indexes not dropped before ETL/reorganization). The ap-
proach is designed for, but not limited to, DWH environments – we argue, workload
sequence with variable requirements can arise anywhere (not for DWHs only). In
comparison, our approach is not limited to certain domain and not focused on access
structures, but preserves order of SQL statements as well (i.e., the sequence).
Another approach also targets on DWHs especially on complexity reduction of

workload representation for query processing is proposed by Ghosh et al. [GPSH02].
The approach reduces query-evaluation time (i.e., for query plan creation) for sim-

133



7. Related Work

OLTP/ Arbitrary Preserve Workload Architecture
Approach OLAP Cost Model Query Order Aggregation Independent

Turbyfill [Tur88] • ◦ ◦ • ◦
Raatikainen [Raa93] − ◦ ◦ • −
Evrendilek and Dogac [ED95] − ◦ − ◦ •
Chaudhuri et al. [CGN02] − ◦ ◦ • −
Agrawal et al. [ACN06]3 − ◦ • • •
Ghosh et al. [GCCK07] ◦ − ◦ • ◦
Favre et al. [FBB07] ◦ ◦ ◦ ◦ •
Holze et al. [HGR09] • ◦ ◦ • •
AQUA2 • • • • •

Table 7.1.: Comparison of key aspects for workload decomposition and representation.
Legend: • fulfilled, ◦ not fulfilled, − no information available.

ilar queries. They focus on complex OLAP queries where query-evaluation can be
notable. That is, they reduce query-evaluation time by orders of magnitude, but
evaluation time is in the range of milliseconds and below even without optimization.
We assume, benefits for query evaluation are less significant for less complex queries.
We argue, query execution on the most suitable architecture with optimal query plan
is more crucial than savings in query-evaluation time. However, we do not directly
support reuse of query-plans. As mentioned before for other clustering approaches,
clustering for complexity reduction still is applicable on top our representation.
The approach of Favre et al. [FBB07] is located in the DWH domain as well.

Their approach solves issues for the correctness of workload information induced via
DDL and DML in ETL. In other words, the approach prevents usage of old invalid
workload information for workload analysis. In our domain, schema modifications
in a bulk are not common, thus, a complex analysis for schema evaluation is not
necessary. However, the basic idea is of interest for automatic redesign in hybrid
systems. Nevertheless, evolution of workload information (e.g., column renaming)
can be easily automated via DDL monitoring or recalculation of DBMS statistics via
DML monitoring (i.e., aging) which is only necessary for reusing query-plans.
We summarize key aspects for the above considerations in Table 7.1. We highlight

that in contrast to our approach, neither approach supports arbitrary cost models due
to specialization of approaches for a certain domain in one architecture even though
some approaches are not architecture-dependent directly (e.g., [ACN06, HGR09]).
Finally, we consider an approach, which is marginally related only, by Evrendilek

and Dogac [ED95] for two reasons. First, they propose a decomposition approach
for distributed processing even though the approach is focused on queries. Second,
the approach follows similar ideas for (sub-) query distribution including availability
of cost estimates at global level. Both aspects are related to our hybrid-system
approach. Evrendilek and Dogac propose a cost model for query distribution in
distributed DBMSs with respect to data fragmentation and highlight the idea of

3Designed for DWHs, but sequence of different workload types arise elsewhere too.
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load balancing for replicated data; whereby due to NP-completeness of the (query)
assignment problem a greedy approach is proposed. However, this approach is not
transparent for cost models and does not support any workload administration (e.g.,
aggregation) in contrast to our approach. Moreover, cost-based query optimization
is only applicable for joins according to the authors.

7.2. Related Work on Self-Tuning

Since decades, query optimization is an important research field. However, cost-based
optimization is a costly task, whereas it becomes difficult to handle complexity in
the 1980s (e.g., workload is not known in advance; cf. Chapter 2). Therefore,
Freytag, Graefe, DeWitt, and Sellis [Fre87, GD87, Sel88] lay the groundwork for
most today’s optimizers. They propose rule-based-optimization approaches to prune
the solution space for cost-based optimization which are integrated in all DBMSs
nowadays. Moreover, new query-processing approaches for several operation (e.g.,
join) lead to a new query-processor type – Volcano [Gra90, GM93, Gra94b, CG94] –
which is transparent to specific implementation of operators. Most query processors
are Volcano-like nowadays. Nevertheless, rule-based optimization and proof of rules
is in research [Gra00, ENR09] to the present. In contrast to our approach, rule-based
and cost-based query optimization consider certain architecture only.
Researchers reveal hardness of access-paths selection (e.g., indexes) for optimal

query processing on changing workloads (cf. Chapter 2). Hence, automatic selection
approaches are proposed to support query processing – self-tuning configurations.
We argue, the idea of self-tuning is omnipresent for dynamic database optimization
in which workloads are analyzed to react on specific events. Somehow all self-tuning
approaches are related to our approach. Due to the amount of research in the
field of self-tuning, we only give a brief overview to key aspects. Chaudhuri and
Narasayya [CN07] and Bruno [Bru11] give a good overview to the progress in this
research field as well as the need of further tasks (e.g., mixed workloads or hardness
of workload prediction for multi-tenancy).
First ideas for self-tuning are proposed by Rozen and Shasha [RS91], Mönkeberg et

al. [MZHW93], respectively Weikum et al. [WHM+93, WHMZ94]; whereby the latter
propose the feedback-control loop – observe, predict, and react – which is derived
from control systems in automation engineering. Another pioneering approach –
WATCHMAN – is proposed by Scheuermann et al. [SSV96] that considers intelligent
caching strategies for DWHs. The authors propose algorithms, which, compared to
the existing configuration, estimate optimal cost savings of a new configuration.
Scheuermann et al. do not restrict themselves to certain design structure rather they
aim on a general solution. Similar algorithms are proposed by Caprara et al. [CFM95]
even though the algorithms focus on index selection.
In process of time, several approaches are developed from basic self-tuning ideas.

To mention are self-tuning for index structures (e.g., what-if analysis by Chaudhuri
and Narasayya [CN97, CN98]), which are extended to autonomous index tuning (e.g.,
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by Sattler et al. [SGS03, SSG04, SSG05] and by others [ACN00, LSSS07b, Lüb07]).
An overview to (automatic) index selection and its complexity can be found
in [CDN04]. A second aspect of interest for self-tuning are materialized views
(ASTs) [CKPS95, SDJL96, BM00, ZCL+00, LGB08, LGB09] and their mainte-
nance [MQM97], which are under investigation for years. Furthermore, Agrawal
et al. [ACN00] describe necessity of AST merging for online recommendation and
administration.
Later on, researchers recognize the mutual impact of design structures (e.g., by

Agrawal et al. [ACK+04] or by Zilio et al. [ZZL+04]) as well as the idea of self-
tuning passes to structures itself (e.g., by Graefe and Kuno [GK10] or Idreos et
al. [IKM07b, HIKY12]) or to reduce necessary effort (e.g., size of configurations by
Heeren et al. [HJP03]. However, we raise no claim to completeness.
In line with the presented ideas, our approach follows the same core idea – self-

tuning. Therefore, we analyze workloads to give recommendations and react on
changing requirements (e.g., selection or creation of access paths), and improve query
processing at large – mostly for reduction of costs and query execution times. In
comparison to the mentioned approaches, the unique characteristics of our approach
are the architecture-cross-cutting analysis and recommendation for query processing
(and physical design).

7.3. Related Work on Physical Design

In this section, we discuss advisors respectively alerter for physical design due to
the fact; our approach proposes physical design with respect to storage architec-
tures. Advisors are primarily based on workload decomposition and design-selection
approaches (e.g., for indexes) from previous research, which we do not discuss sep-
arately. Researchers and companies target on automatic physical design because
the design is crucial for DBS performance. Unfortunately, the selection problem is
NP-complete for each design structure. Moreover, there exists interaction between
design structures for query performance (e.g., indexes on materialized views).
Most prominent approaches are the DB2 Design Advisor [VZZ+00, ZRL+04,

ZZL+04], the Database Tuning Advisor/Alerter by Microsoft [ACK+04, BC06,
BC07], and the Oracle SQL Access Advisor [Ora03b] respectively the Oracle Tuning
Advisor [DDD+04]4. All approaches have in common that they analyze workloads to
recommend sets of physical-design structures (i.e., indexes and materialized views)
– namely configurations – that optimize data (path) access and query execution.
Therefore, all advisors gather necessary statistics from optimizers respectively inter-
nal caches/catalogs which is a straightforward – but effective – idea and comparable
to our approach.
However, Zilio et al. [ZZL+04] and Agrawal et al. [ACK+04] highlight necessity

for joint considerations for indexes and materialized views to obtain most efficient
design configuration. Both approaches also take partitioning into account; whereby

4We consider approaches of Microsoft and Oracle as one tool for ease of explanation.
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Zilio et al. [ZRL+04] take additionally multi-dimensional clustering into account.
Nevertheless, it is irrelevant how advanced these approaches are or will be, they are
limited to one DBMS or at least to one architecture; whereas our approach focuses
on physical design in terms of architecture selection.
We argue, advisor approaches for architecture-dependent physical design can be

used in corresponding parts of hybrid systems. For architecture-dependent physical
design, we assume limited tuning capabilities due to dynamic workload dispatching
to different storage architectures, thus, even if a workload is known in advance,
query-dispatching result will not be known before query evaluation. Nevertheless,
a hierarchical optimization is conceivable on a coarse-grained level (e.g., for specific
query types or sequences).
We are sure that there exist many other design-advisor approaches (and not for

Row Stores only), which are not such prominent in literature. We believe sorted
projections in C-Store [SAB+05, Aba08, ABH+13] respectively Vertica (i.e., sorted
multi-column column-wise compressed projections) are candidates for automatic
physical design. However, to the best of our knowledge other approaches are fo-
cused to specific DBMSs or architectures. Finally, we highlight that there exist
related advisor approaches for other purposes (e.g., IBM DB2 Configuration Advi-
sor [KLS+03]). The IBM Configuration Advisor recommends pre-configurations for
DBSs.

7.4. Related Work on Relational Storage Architectures

The relational data model is not limited to certain architecture due to implemen-
tation transparency which is a key finding of Codd [Cod70]. Therefore, we dis-
cuss different architectures that implement the relational data model besides classic
Row Stores like System R/DB2, INGRES, Oracle, SQL Server to name some.
New requirements induce a separation of systems to specialized DBSs for OLTP

and OLAP in the 1990s. Later on, researchers recognize that even specialized systems
(e.g., DWHs) encounter problems with even newer requirements (e.g., too long time
delay by ETL). Researchers attend to such issues especially for OLAP systems (e.g.,
dimension updates by Vaisman et al. [VMRC04]). Others even go further for (near)
real-time OLAP (e.g., real-time ETL [SB08], real-time update and query [ZAL08]).
Shorten update times on OLAP systems is not the only problem which re-

searchers have to engage. Researchers recognize that specialized systems hit the
wall due to the explosion of data amount (e.g., described by Korth and Silber-
schatz [KS97]). A well-known idea [CK85, CY90] advocates the development of a
new architecture – Column Store – in which data-storage methodology (i.e., decom-
position) is inherently suitable for OLAP. A pioneering approach by Sybase (i.e.,
Sybase IQ) exists since early 1990s. However, time has come for Column Stores
in the 2000s, where several open- and closed-source Column Stores were intro-
duced [SAB+05, ZBNH05, LLR06, Ing09, Aba08, SWES08]. Differences of historic
approaches to state-of-the-art Column Stores are discussed in [HLAM06, ABH09].
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Furthermore, Abadi et al. [AMH08] compare performance of Row Stores
and Column Stores on a star-schema benchmark (i.e., SSDBM). They simulate
Column Stores in a Row Stores by indexing each column or vertical partitioning
of the whole schema. That is, usage of Column Store functionality in a Row Stores
is possible but the performance is poor. We argue, Abadi et al. use a classic DWH
benchmark that does not consider new requirements in the OLAP domain, which we
discussed before. Nevertheless, such studies show that system separation becomes
a separation of architectures. That is, Column Stores are more suitable for OLAP;
whereas Row Stores are more suitable for OLTP. Moreover, either architecture can-
not outperform the other in their inherent domains. Thus, we have to select a
storage-architecture based on the domain. Some Column Store implementations are
not designed for any (ad-hoc) DML (e.g., Infobright [SWES08, Inf08, Inf11a, Inf11b])
because they are designed for classic DWH environment with ETL. Others support
DML but still try to cope with update problems known from basic approaches (e.g.,
by Copeland and Khoshafian [CK85]) already. Thus, systems need solutions that
overcome (or at least mitigate) update-processing issues. Therefore, some systems
introduce writable storages respectively nodes, in which DML statements take effect
and subsequently, are merged into read-optimized (column-oriented) storage (e.g.,
C-Store/Vertica [SAB+05] or Sybase [Syb10, How10]). That is, such storages work
like a mini ETL but in contrast, workload can access writable storages already. For
a comprehensive overview to Column Store implementations, we refer to the book
chapter by Abadi et al. [ABH+13].
We state that such storage separation for DML statements is not comparable

to OLTP, thus, storage-architecture selection is still necessary and is even more
crucial for mixed OLTP/OLAP workloads. Our approach is related to storage
architectures in terms of selection of these with respect a given workload (do-
main). However, our approach is not related to architectures in terms of improve-
ments which cope with architecture-specific drawbacks to either domain. We in-
troduce our storage-architecture advisor which assists storage-architecture selection
especially for mixed OLTP/OLAP workloads. We do not deny that approaches
exist for mixed OLTP/OLAP workloads. As hardware gets cheaper, in-memory
DBMSs become attractive. In recent years, in-memory DBMSs are developed (e.g.,
HyPer [KN10, KN11] or HANA [Pla09]) that focus on requirements for mixed
OLTP/OLAP workloads. Still, we argue that even today, not each DBS is suit-
able to run in-memory (e.g., monetary or environmental constraints). We propose
a more general approach assisted by our advisor approach that is also suitable for
disk-based DBSs.

7.5. Related Work on Hybrid Database Management
Systems

In this section, we discuss approaches which support (a) NSM and DSM respectively
something in between or (b) OLTP beside their OLAP capability.
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For sake of completeness, we mention Column Stores with writable stor-
ages [SAB+05, Syb10, How10]. Such systems are designed for OLAP applications
and support DML-statement processing via special storages (i.e., instead of ETL),
but not capable for OLTP by design. Even if writable storages are strict NSM-like,
we do not refer to hybrid systems for such Column Stores. An important aspect is
related to our approach – these systems are not main-memory centric. That is, most
data does not have to be in-memory.
An approach which is hybrid by its design is called Partition Attributes Across

(PAX) [ADHS01, Böß09]. In PAX, data is stored column-wise within a page (or a
file) as for the DSM; but all columns of a tuple are kept on the same page instead of a
page per column. PAX is an interesting approach but not applicable for our purpose.
First, PAX is main-memory centric as it focuses on caching behavior; whereas it has
no impact on I/O performance. Second, PAX needs extra effort for the complex page
layout and inner-page administration (e.g., space management) which has issues with
variable length attributes (e.g., recompaction on changing data). In contrast to PAX,
our research focuses on hybrid solution that is suitable for disk-based DBSs as well.
The same statement holds for an approach by Zukowski et al. [ZNB08] imple-

mented in MonetDB (i.e., it is main-memory centric). This approach supports NSM
and DSM in one system which is able to convert from one representation to the
other on-the-fly (i.e., in-memory). In line with Zukowski et al. [ZNB08], we observe
benefits to convert from NSM to DSM and vice versa during query processing. In
contrast, we do not only focus on trade-offs for CPU caused by tuple reconstructions.
Another approach by Schaffner et al. [SBKZ08] introduces a Column Store in a

MaxDB-based OLTP system that holds a subset of OLTP data (e.g., in SAP Business
Warehouse). That is, a build-in DWH is proposed based on TREX [LLR06] that
supports build-in ETL via queue tables. Another in-memory approach, which is
highly related, proposed by Plattner [Pla09] claims that an in-memory Column Store
is suitable for OLTP and OLAP processing; whereas Plattner supposes an insert-only
approach for update processing (i.e., like historicizing in DWHs). In [Pla11], ideas are
substantiated with implementation of column groups, differential store for superior
OLTP performance (i.e., as described above for other Column Stores), and aging
methodology for data-volume reduction which needs to be hold in main memory.
Aged data (i.e., passive/cold) is hold in a flash-based history store. However, both
approaches have some influence to the later on featured HANA appliance; whereby,
column groups are omitted from the original idea of Plattner. In HANA, both the
Column Stores and the Row Stores are fully kept in-memory5; whereby persistence
is achieved by savepoints and logs6 on high-performance storage [Wor12]. Plattner
states in [Pla11] himself that the proposed approach does not fit on a single server
blade, thus, it runs on a cluster of blades (e.g., 2TB main memory, 64 CPU cores).
Consequently, the HANA approach is outstanding but not feasible for our purpose.

5Architecture overview of the HANA system: http://saphanatutorial.com/
an-insight-into-sap-hana-architecture/.

6Persistent storage for backup and recovery in HANA: http://saphanatutorial.com/
sap-hana-backup-and-recovery/.
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We note that Sherkat et al. [SFA+16] also recognize problems with large resource
requirements by HANA. Therefore, they introduce piecewise columnar access for
reduction of the data amount which needs to be hold in-memory. That is, value
identifier vectors – representing data portions – are split into chunks (i.e., 64-bit
words) of paged data vectors. Nevertheless, main aspects of HANA and its resource
consumption remain, thus, HANA scales up well for high performance applications,
but it is not suitable for smaller applications. In contrast, our approach shall scale
down to smaller disk-based DBMSs as well. A summary for the architecture of HANA
and more detailed considerations on complete appliance can be found in [Wor12].
However, another project – namely HYRISE [GKP+10] – initiated by Plattner is

closely related to the ideas of Schaffner et al. [SBKZ08] and Plattner himself [Pla11].
In contrast to HANA, column groups are of major matter. In other words, HYRISE
supports vertical partitioning of relational tables into arbitrary-wide disjoint sets of
attributes [GKP+10]. That is, the storage manager decides how data is stored –
row-wise, column-wise, or somehow in between. Like HANA, HYRISE divides the
storage into read-optimized main store and write-optimized differential store (i.e.,
delta store) [KKG+11]. Subsequently, Wust et al. [WGP13] introduce priority set-
tings for queries; whereby a query is translated to a set of tasks. Tasks are atomic
of varying size and can be independently executed [WGH+14]. We state, we are
not sure about utilization of the storage manager for the ongoing project due to the
fact that primarily subsequent research refers to the Column Store only (i.e., with
main and delta store; e.g., in [KKG+11, WGH+14]). In line with [AIA14], we argue
that the storage manager adopts ideas of data morphing [HP03] – a cache-miss-cost
model – and proposes (optimal) vertical partitioning concerning cache performance
for a given workload. Nevertheless, a combination of our storage manager (for adap-
tive storage) with priority settings is an important aspect for future directions of
our approach (cf. Section 8.3); but like HANA, HYRISE has immense resource re-
quirements especially main memory. Summarizing, HYRISE is in contrast to our
approach main-memory centric and does not support adaptive storage.
An approach by Kemper and Neumann (e.g., [KN10, KN11]) goes further and

solely focuses on optimal in-memory processing (i.e., excluding archive on external
high-performance-storage server). The HyPer system is designed for OLTP and close
to real-time OLAP; whereby HyPer can be Row Stores or Column Store (i.e., con-
figurable). That is, a HyPer instance uses the same architecture for OLAP and
(serialized) OLTP. Therefore, HyPer strips away many comfortable and transparent
approaches (e.g., buffer management) to achieve maximum performance via utiliza-
tion of modern hardware and OS tools. However, the performance of HyPer is more
than competitive and scales with corresponding hardware (i.e., more main memory
for multiple forks), but a higher investment on hardware is needed for a general pur-
pose in-memory DBS instead of specialized separated (disk-based) systems. That
is, high-level commodity hardware is needed for an initial relative small benchmark
(i.e., 12 warehouses; cf. [KN11, FKN12]); in comparison, we use same benchmark
with 90 warehouses resulting in approximate 10GB initial size of raw data. We argue
that main-memory centric respectively in-memory DBMSs scale up with outstanding
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results, but they come to sweat whenever system has to scale down (e.g., data does
not fit in main memory). We investigate on the trade-off between OLTP/OLAP
support in one DBS and disk-based DBMSs.
We state, several additional powerful OLAP add-ons by DBMS vendors exist. To

name but a few, Microsoft Apollo [Han10, LBH+15] – at first, read-only, updatable
in-memory add-on nowadays, IBM IDAA [MKKI13] – OLAP-server add-on for high
performance server (e.g., mainframe with InfiniBand), and DB2BLU [RAB+13] –
in-memory for read-mostly OLAP. These approaches aim at in-memory high per-
formance analysis but not at hybrid workloads, thus, they leave the focus of our
work.
An approach by Alagiannis et al. – which is designed for analytical queries – does

not hold data redundantly but adapts the internal storage layout in advance to query
execution on table level [AIA14]. This approach – H2O – shows better results on
(read-only) workloads than their corresponding Column Store and Row Store imple-
mentations. Furthermore, the cost model uses CPU and I/O costs for estimation of
query-execution cost as we have suggested, but we are not limited to. However, they
reorganize storage layout via early materialization whenever query benefits from the
new storage layout. What in our opinion is left open how storage layout is written
back to disk – they only state, data may be read from disk, thus, the approach
is main-memory centric in our opinion. Furthermore, the approach uses a (static
or dynamic) window (i.e., number of queries), where other self-tuning approaches
use thresholds to solve problems with inflated reorganization cost respectively with
oscillating workloads. Alagiannis et al. state that the dynamic window adopts on
workload changes but leave open how this is achieved. However, the work on on-the-
fly created operators is very path-breaking for hybrid query processing and thus, we
emphasize deeper inspection for integration into our approach. We argue that adap-
tive in-memory storage-layout is more smoothly and cheaper than on disk, thus, we
can consider different granularities for adaptive storage layout in main memory and
on disk. However, one of our core aspects – the OLTP support – is not considered,
thus, we cannot figure out the impact of OLTP to this approach.
The approach of Arulraj et al. [APM16] extends ideas of H2O in several ways.

First, the flexible storage model (FSM) adds horizontal partitioning (i.e., number of
tuples in a partition by parameter); whereby vertical and horizontal partitioning is
not limited to the table level. Therefore, they introduce physical and logical tile;
whereas physical tiles hold data in a flexible schema and logical tiles hold offsets of
tuples spread over several physical tiles (i.e., comparable to indexes). In contrast
to pages, a reference is prohibited between logical tiles, which may induce recom-
putation of logical tiles. Second, Arulraj et al. reconsider combination of query
execution and data reorganization. That is, they hide specific storage layouts from
query-execution engine; whereby storage layout is incrementally reorganized in back-
ground (in contrast to H2O). For the partitioning, they use a clustering approach
to identify attributes which are accessed together and a greedy algorithm to gener-
ate the (tile) storage layout. Arulraj et al. present significant ideas (i.e., which we
can adopt), but we identify also drawbacks. The insert-only approach (via append
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OLTP Adaptive Multiple Main-memory
Approach Support Stores Centric

Column Stores with write storage7 ◦ ◦ ◦ ◦
PAX [ADHS01] / SPAX [Böß09] • ◦ ◦ •
Zukowski et al. [ZNB08] (MonetDB) − ◦ • •
SAP BW/HANA [SBKZ08, Pla09, Pla11, SFA+16] • ◦ • •
HYRISE [GKP+10, KKG+11, WGP13, WGH+14] • ◦ • •
HyPer [KN10, KN11, FKN12] • ◦ • •
H2O [AIA14] ◦ • • •
FSM [APM16] • • • •
AQUA2 • • • ◦

Table 7.2.: Comparison of key aspects for workload decomposition and representation.
Legend: • fulfilled, ◦ not fulfilled, − no information available.

like HANA) demolishes data locality if not reorganized. Furthermore, workloads are
serialized used for experiments (i.e., first analytical query then transactions), thus,
transactions have an impact on overall system load but not on processing of ana-
lytical queries due to MVCC. That is, we argue that Arulraj et al. use read-mostly
OLAP-like workloads for main evaluation. Arulraj et al. present more write-heavy
workload in supplementary material that is still based on their own benchmark com-
posed of an insert and a (simple) select with varying projectivity and selectivity.
We argue, neither the insert statement represents OLTP nor the query represents
OLAP sufficiently. Moreover, their approach is again main-memory centric (i.e., an
in-memory DBMS). Finally, FSM possesses most core aspects of our work (i.e., for
mixed OLTP/OLAP with reservations) and ideas for integration in our approach but
lacks of disk-based DBS support (i.e., capability to scale down).
We summarize our considerations on hybrid DBMSs in Table 7.2. Column Stores

do not comply with key aspects of our work as anticipated; whereas related ap-
proaches comply with OLTP (PAX) or multiple store support (MonetDB), but are
not adaptive and are main memory-centric in contrast to our approach. Other ap-
proaches (HANA, HYRISE, HyPer) support OLTP and multiple stores, but likewise
they are not adaptive storage and are main memory-centric. Only two approaches
(H2O, FSM) are very closely related to our approach and comply with most key as-
pects (i.e., OLTP support with reservations). However, they are still main-memory
centric and do not scale down well, which is a major aspect of our work and our
motivation from the outset.

7We summarize Column Stores to a group for conservation of clear arrangement due to the fact
that basic idea is the same (e.g., [SAB+05, Syb10, How10]).
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Physical design is beneficial, complex, and crucial for Database Systems (DBSs)
throughout their lifetime. Originally, such design was a manual task, in which ad-
ministrators create index structures for a faster data access. The amount of research
on index structures and index selection shows the significance of this problem over
decades. Besides the number of different index structures, which makes decision for
an index type difficult, the selection of index sets is even more difficult (i.e., the
index-selection problem is NP-complete) for given constraints (e.g., storage space).
Thereby, tools assist database designers figuring out near-optimal index configura-
tions (cf. Chapter 2). Over decades new approaches and new requirements advocate
more and more innovative approaches which increase solution space for physical de-
sign. Column-oriented Database Management Systems (Column Stores) were one
approach for relational Database Management Systems (DBMSs) that store data
column-wise, in contrast to row-wise storage in Row-oriented Database Management
Systems (Row Stores). Column Stores involve several advantages especially for ana-
lytical workloads, but raise a dilemma for physical design where certain architecture
has to be selected as precedent stage for physical design DBSs (cf. Chapter 3). In
contrast to provided tools for physical design of DBSs1, tool support for storage-
architecture selection is an open problem.
In this thesis, we introduced a new approach that extends ideas of existing tool

sets for physical design of relational DBMSs (e.g., advisor for index configurations)
to assist database designers with tool-supported selection of storage architectures.
That is, our approach to select the optimal storage architecture integrates well with
existing approaches which allow database designers the tuning of physical design for
a certain DBSs. In consequence, designers can select the optimal storage architec-
ture at first and at second select optimal DBS-specific design. For tool-supported
design decisions, they do not need expert knowledge as they would need for manual
system design (i.e., architecture or DBMS specifics). Design tools allow users to
decide for the optimal architecture with a given workload (sample) and DBSs (i.e.,
their statistics). Our approach ensures the optimal selection in consideration of un-
certainty of input variables (e.g., quality of samples) even if not all cost measures
are available. However, we do not affect usability of existing design tools whenever
these exist for the selection of physical design and (optimal) storage architecture,
respectively. From now on, designers are able to verify with our approach, if the ar-
chitecture selection is suitable for the given application, before invest in misdirected
physical design tuning on less-than-ideal architecture (i.e., DBMS). Subsequently,

1Most physical design tools are limited to a certain DBMS.
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we proposed ideas for hybrid (relational) DBMSs and DBSs which are intended to
cope with challenges for mixed requirements and are not satisfactorily resolved by
existing architectures. That is, hybrid systems should overcome drawbacks of other
architectures by a suitable and sophisticated trade-off for mixed requirements. We
implemented our composed ideas – which we call Automated Query Interface for
Relational Architectures (AQUA2) – in a prototypical hybrid DBMS as proof of
concept. Afterwards, we generalized our approach in an intellectual game (i.e., po-
tential future work).

8.1. Thesis Summary

In Chapter 2, we discussed general concepts of the relational data model, relational
storage architectures, different application fields for relational DBMSs, and (poten-
tial) optimization methods. Thereby, we introduced the background for our work
and gave assistance for understanding and classification of our work for readers who
were unfamiliar with relational data-management concepts.
In Chapter 3, we surveyed two storage architectures for the relational data model

– Row Store and Column Store – and discussed their benefits and drawbacks. The
survey showed necessity for storage-architecture selection as well as new challenges
for either approach on mixed requirements for former disjoint application domains.
In this context, we presented a brief study for a certain application domain on both
architectures that substantiated (design) challenges by ambiguous results.
In Chapter 4 and Chapter 5, we proposed and evaluated our storage-architecture-

selection approach. Therefore, we introduced an architecture-independent workload-
decomposition and -representation approach in Chapter 4 which enabled us to store
simultaneously statistics of different systems. In Chapter 5, we discussed cost estima-
tion based on our workload representation that both were combined and evaluated in
terms of a storage advisor. Moreover, we discussed three different decision situations
which can be resolved with our approach.
In Chapter 6, we presented concepts for hybrid relational storage architectures. We

introduced our query-interface framework, discussed different optimization methods,
and presented heuristics for hybrid systems. Subsequently, we showed results of a
mixed (requirement) workload on two different hybrid system setups – two replicated
DBMSs and our prototypical implementation of a hybrid DBMS.
In Chapter 7, we discussed related research in comparison to the key aspects of

our approach. Therefore, we focused on the following five key aspects: workload rep-
resentation, self-tuning, physical design, relational storage architectures, and hybrid
DBMSs. We especially discussed hybrid DBMSs in more detail.

8.2. Contribution

As major aspect, we extended physical-design process with respect to decisions on
storage architectures for given workloads. Therefore, we provided an architecture-
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selection (and -verification) approach which is executed before one brings existing
design approaches into action. We analyzed state-of-the-art approaches for relational
data management – Row Store and Column Store – with respect to their capabilities
for a certain workload domain. Furthermore, we advocate for hybrid architectures, as
benefits became obvious for a mix of classic disjoint workload domains. We proposed,
implemented, and evaluated a tool-supported storage-architecture selection which we
name at large AQUA2. In detail, we contributed the following four aspects:

1. We introduced an approach for architecture-independent workload decompo-
sition, representation, and normalization to compare storage architecture in-
plane. We derived our workload-pattern approach straightforwardly from in-
ternal query representation in relational DBMSs in which statistics are stored
from query optimizers respectively user samples with respect to architecture
specifics. We showed necessity of statistics normalization due to vendor-specific
and architecture-specific internal different representation. We integrated the
workload-representation approach into the following aspects of our work.

2. We proposed our storage-architecture-selection approach for given workloads
based on workload patterns. We showed the arbitrary degree of detail of ar-
chitecture selection (i.e., in dependency of detail degree of statistics); whereas
the transparency for cost functions and thus, for cost criteria has been shown.
Despite the statistic-based architecture selection, we proposed selection ap-
proaches for unknown workloads considering uncertainty and multi-criteria de-
cision with user weights. Moreover, we derived heuristics for physical design
from our experiments. We highlighted that the storage-architecture selection
is applicable for DBS redesign or a-priori design on known workloads and user
samples. Our selection approach was not directly pertinent to hybrid archi-
tectures; nevertheless, this work was crucial for further research (i.e., query
processing in hybrid storage systems).

3. We composed our workload-representation and architecture-selection ap-
proaches as hybrid query interface (AQUA2). We analyzed queries (i.e., parts
of a workload) within our query interface and decided where queries are ex-
ecuted best on hybrid stores which support both architectures redundantly.
Therefore, we proposed stepwise optimization – rule-based on the global level
and cost-based on the local (storage) level. For the rule-based optimization, we
have proposed query-execution heuristics which we implemented in our proto-
typical hybrid store.

4. We developed a hybrid DBMS with two architectures and query engines.
Therefore, we implemented additional Column Store functionality in an open-
source Row Store. Queries are rule-based dispatched in the hybrid DBMS
prototype by the integrated AQUA2 framework. Subsequently, we evaluated
our prototypical implementation with AQUA2 integration based on a mixed
domain benchmark; whereas we could show significant improvements in com-
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parison to the Row Store implementation. Finally, we outlined potential im-
provements to our prototype and ideas for (a more-general) hybrid DBMS
implementation.

8.3. Future Work

We have suggested several improvements to (a) storage-architecture selection and (b)
hybrid stores. However, we observe several improvements remain for consideration
which we left open with our approach. We believe that a first improvement is a
further automation of the architecture-selection process, as we have to provide an
extraction mechanism for each DBMS and therefore, we need knowledge of internal
query-plan representation. We argue, a limitation to interface-based extraction (e.g.,
JDBC) may solve the extraction issue even though a number of DBMSs will be
excluded from analysis. To tackle the problem of internal query-plan representation,
text-recognition respectively text-processing approaches may be suitable for mapping
of operations to workload patterns. Such approach also allows further analysis on
commonness and concurrency of workload parts (e.g., cf. Favre et al. [FBB07]).
We did not use automatic analysis and generation or rules for our set of heuristics.

Machine learning may be another direction of research to increase the number of
heuristics and improve their soundness. Therefore, a large enough number of different
DBMSs for both architectures has to be analyzed on suitable benchmark(s), thus,
analysis of statistics via machine learning results in sound rules. Our architecture-
independent workload-representation approach can be utilized to provide necessary
data for learning and test sets, whereas the decision approach would be enriched
by machine learning methods. Sound design rules would ease basic physical design.
Integration into AQUA2 is promising for solution-space pruning as dispatching in
hybrid DBSs would be improved and calculation costs for adaptive storage would be
lighten in hybrid DBMSs.
We did not provide cost-based optimization in our prototypical hybrid store (cf.

Section 6.4.3). In fact, implementation of cost-based query optimizer is necessary
for both query engines as we advocate optimal support of our storage-architecture-
decision approach. Cost-based optimization would also enable design-alerter func-
tionality within hybrid stores that only needs extension of cost functions with mod-
ification cost for redesign. Henceforth, redesign and thus, adaptive storage allows
redundancy reduction for hybrid stores as full redundancy is the major drawback of
our implementation (e.g., higher effort for consistency or higher storage-space con-
sumption). The ideal way would be without redundancy when data is stored only
once in either architecture respectively a representation in between.
We believe that two suitable ways exist for redundancy reduction in hybrid stores

which support both architectures redundantly (e.g., our prototype). First, implemen-
tation and integration of hybrid storage approaches, as we discussed in Section 7.5
(e.g., H2O [AIA14], FSM [APM16]), into disk-based hybrid stores, whereas we should
focus on adaptive approaches which use redundancy-free data representations. Due
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to main-memory centric behavior of such approaches, impacts to disk-based DBSs
– as we aim at – is currently left open. We advocate more research on this aspect
of hybrid stores. However, such hybrid approaches make a query engine necessary
which is able to process on Row Store, Column Store, and everything in between.
That is, complexity increases due to potential query rewriting as it is known from
distributed DBMS (cf. also Section 6.1.2).
Second, implementation of aging algorithms in which redundant data exists only

during asynchronous physical reorganization. A promising approach was proposed
by Funke [FKN12, Fun15] which clusters data into hot (i.e., volatile) and cold parts
(i.e., rarely modified). That is, hot data is uncompressed on small (memory) pages
as needed for optimal OLTP support; whereas cold data is compressed on huge
(memory) pages). In between hot and cold data representation, Funke proposed
transitional stages which implement the cooling process for data (i.e., sliding win-
dow to transfer data from hot into cold part and vice versa). We believe that such
approach is not only suitable for compressed versus uncompressed data representa-
tion on horizontally partitioned Column Store, but also for adaptation of the storage
architecture in a hybrid store based on a sophisticated age-limit. In consequence,
the comparison of both implementations is of research interest.
Despite improvements for hybrid DBMSs, we believe that processing with our

interface on hybrid DBSs would be improved via load-balancing, time-bound parti-
tioning, and intra-query parallelization (i.e., merge of intermediate results needed).
Furthermore, approaches for reusability in query processing may be interesting (e.g.,
for query plans by Ghosh et al. [GPSH02]) especially in combination with ap-
proaches for workload evolution, which imply statistics recalculation (e.g., by Favre
et al. [FBB07]) and thus, imply query-plan recalculation in a combined considera-
tion. In summary, we state that various interesting research topics arise from the
combined point of view on design aspects and decision making as well as from weak
spots which want to be fixed in future.
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A. Appendix

AppendixA shares material with [LGB08, LGB09, Lüb09, LS10, Lüb10, LKS10,
LKS11a, LKS11c, LKS11b, LKS11c, LKS12, WKLS12, LSKS12, LSS13].

In this chapter, we present additional information and results concerning our
framework. That is, we restrict ourselves to sufficient large examples to improve
the readability in previous chapters. Furthermore, we give extra information for
interested readers to improve the comprehension and to support the replicability of
our approaches.

A.1. Our Query Set for TPC-H 2.8

In the following, we present the remaining queries from the TPC-H Benchmark that
we used for first considerations and our case study in Chapter 3.

1 SELECT s_acctbal,s_name,n_name,p_partkey,p_mfgr,s_address,s_phone,s_comment
2 FROM part,supplier,partsupp,nation,region
3 WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND p_size = 25 AND p_type LIKE

’%NICKEL’ AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND r_name =
’AMERICA’ AND ps_supplycost = (

4 SELECT MIN(ps_supplycost)
5 FROM partsupp,supplier,nation,region
6 WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND s_nationkey = n_nationkey

AND n_regionkey = r_regionkey AND r_name = ’AMERICA’)
7 ORDER BY s_acctbal DESC,n_name,s_name,p_partkey
8 LIMIT 100;

Figure A.1.: TPC-H query Q2 [Tra08].

1 SELECT l_orderkey,SUM(l_extendedprice ∗ (1 − l_discount)) AS revenue,o_orderdate,o_shippriority
2 FROM customer,orders,lineitem
3 WHERE c_mktsegment = ’FURNITURE’ AND c_custkey = o_custkey AND l_orderkey = o_orderkey

AND o_orderdate < date ’1995−03−10’ AND l_shipdate > date ’1995−03−10’
4 GROUP BY l_orderkey,o_orderdate,o_shippriority ORDER BY revenue desc,o_orderdate LIMIT 10;

Figure A.2.: TPC-H query Q3 [Tra08].
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1 SELECT o_orderpriority,COUNT(∗) AS order_count
2 FROM orders
3 WHERE o_orderdate >= date ’1994−07−01’ AND o_orderdate < date ’1994−07−01’ + interval ’3’

month AND EXISTS (
4 SELECT ∗ FROM lineitem WHERE l_orderkey = o_orderkey AND l_commitdate < l_receiptdate)
5 GROUP BY o_orderpriority ORDER BY o_orderpriority;

Figure A.3.: TPC-H query Q4 [Tra08].

1 SELECT supp_nation,cust_nation,l_year,sum(volume) AS revenue
2 FROM (SELECT n1.n_name AS supp_nation,n2.n_name AS cust_nation,EXTRACT(year FROM

l_shipdate) AS l_year,l_extendedprice ∗ (1 − l_discount) AS volume
3 FROM supplier,lineitem,orders,customer,nation n1,nation n2
4 WHERE s_suppkey = l_suppkey AND o_orderkey = l_orderkey AND c_custkey = o_custkey AND

s_nationkey = n1.n_nationkey AND c_nationkey = n2.n_nationkey AND (
5 (n1.n_name = ’EGYPT’ AND n2.n_name = ’INDONESIA’) OR (n1.n_name = ’INDONESIA’

AND n2.n_name = ’EGYPT’))
6 AND l_shipdate between date ’1995−01−01’ AND date ’1996−12−31’) AS shipping
7 GROUP BY supp_nation,cust_nation,l_year ORDER BY supp_nation,cust_nation,l_year;

Figure A.4.: TPC-H query Q7 [Tra08].

1 SELECT o_year,SUM(CASE WHEN nation = ’INDONESIA’ THEN volume ELSE 0 END) / SUM(volume)
AS mkt_share

2 FROM (SELECT EXTRACT(year FROM o_orderdate) AS o_year,l_extendedprice ∗ (1 − l_discount) AS
volume,n2.n_name as nation

3 FROM part,supplier,lineitem,orders,customer,nation n1,nation n2,region
4 WHERE p_partkey = l_partkey AND s_suppkey = l_suppkey AND l_orderkey = o_orderkey AND

o_custkey = c_custkey AND c_nationkey = n1.n_nationkey AND n1.n_regionkey = r_regionkey
AND r_name = ’ASIA’ AND s_nationkey = n2.n_nationkey AND o_orderdate BETWEEN date
’1995−01−01’ AND date ’1996−12−31’ AND p_type = ’LARGE BRUSHED COPPER’) AS
all_nations

5 GROUP BY o_year ORDER BY o_year;

Figure A.5.: TPC-H query Q8 [Tra08].

1 SELECT nation,o_year,SUM(amount) AS sum_profit
2 FROM (SELECT n_name AS nation,EXTRACT(year FROM o_orderdate) AS o_year,l_extendedprice ∗ (1
− l_discount) − ps_supplycost ∗ l_quantity AS amount

3 FROM part,supplier,lineitem,partsupp,orders,nation
4 WHERE s_suppkey = l_suppkey AND ps_suppkey = l_suppkey AND ps_partkey = l_partkey AND

p_partkey = l_partkey AND o_orderkey = l_orderkey AND s_nationkey = n_nationkey AND
p_name LIKE ’%papaya%’) AS profit

5 GROUP BY nation,o_year ORDER BY nation,o_year desc;

Figure A.6.: TPC-H query Q9 [Tra08].
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1 SELECT c_custkey,c_name,SUM(l_extendedprice ∗ (1 − l_discount)) AS
revenue,c_acctbal,n_name,c_address,c_phone,c_comment

2 FROM customer,orders,lineitem,nation
3 WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey AND o_orderdate >= date ’1994−12−01’

AND o_orderdate < date ’1994−12−01’ + interval ’3’ month AND l_returnflag = ’R’ AND c_nationkey
= n_nationkey

4 GROUP BY c_custkey,c_name,c_acctbal,c_phone,n_name,c_address,c_comment ORDER BY revenue
DESC LIMIT 20;

Figure A.7.: TPC-H query Q10 [Tra08].

1 SELECT ps_partkey,SUM(ps_supplycost ∗ ps_availqty) AS value
2 FROM partsupp,supplier,nation
3 WHERE ps_suppkey = s_suppkey AND s_nationkey = n_nationkey AND n_name = ’SAUDI ARABIA’
4 GROUP BY ps_partkey HAVING SUM(ps_supplycost ∗ ps_availqty) >
5 (SELECT SUM(ps_supplycost ∗ ps_availqty) ∗ 0.0001000000
6 FROM partsupp,supplier,nation
7 WHERE ps_suppkey = s_suppkey AND s_nationkey = n_nationkey AND n_name = ’SAUDI

ARABIA’)
8 ORDER BY value DESC;

Figure A.8.: TPC-H query Q11 [Tra08].

1 SELECT l_shipmode,SUM(CASE WHEN o_orderpriority = ’1−URGENT’ OR o_orderpriority = ’2−HIGH’
THEN 1 ELSE 0 END) AS high_line_count,SUM(CASE WHEN o_orderpriority <> ’1−URGENT’ AND
o_orderpriority <> ’2−HIGH’ THEN 1 ELSE 0 END) AS low_line_count

2 FROM orders,lineitem
3 WHERE o_orderkey = l_orderkey AND l_shipmode IN (’REG AIR’, ’MAIL’) AND l_commitdate <

l_receiptdate AND l_shipdate < l_commitdate AND l_receiptdate >= date ’1993−01−01’ AND
l_receiptdate < date ’1993−01−01’ + interval ’1’ year

4 GROUP BY l_shipmode ORDER BY l_shipmode;

Figure A.9.: TPC-H query Q12 [Tra08].

1 SELECT 100.00 ∗ SUM(CASE WHEN p_type LIKE ’PROMO%’ THEN l_extendedprice ∗ (1 −
l_discount) ELSE 0 END) / SUM(l_extendedprice ∗ (1 − l_discount)) AS promo_revenue

2 FROM lineitem,part
3 WHERE l_partkey = p_partkey AND l_shipdate >= date ’1996−05−01’ AND l_shipdate < date

’1996−05−01’ + interval ’1’ month;

Figure A.10.: TPC-H query Q14 [Tra08].

1 SELECT SUM(l_extendedprice) / 7.0 AS avg_yearly
2 FROM lineitem,part
3 WHERE p_partkey = l_partkey AND p_brand = ’Brand#12’ AND p_container = ’MED BOX’ AND

l_quantity < (
4 SELECT 0.2 ∗ AVG(l_quantity) FROM lineitem WHERE l_partkey = p_partkey);

Figure A.11.: TPC-H query Q17 [Tra08].
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1 SELECT SUM(l_extendedprice∗ (1 − l_discount)) AS revenue
2 FROM lineitem,part
3 WHERE (
4 p_partkey = l_partkey AND p_brand = ’Brand#31’ AND p_container in (’SM CASE’, ’SM BOX’, ’SM

PACK’, ’SM PKG’) AND l_quantity >= 6 AND l_quantity <= 6 + 10 AND p_size BETWEEN 1
AND 5 AND l_shipmode in (’AIR’, ’AIR REG’) AND l_shipinstruct = ’DELIVER IN PERSON’)

5 OR (
6 p_partkey = l_partkey AND p_brand = ’Brand#15’ AND p_container IN (’MED BAG’, ’MED BOX’,

’MED PKG’, ’MED PACK’)
7 AND l_quantity >= 18 AND l_quantity <= 18 + 10 AND p_size BETWEEN 1 AND 10 AND

l_shipmode IN (’AIR’, ’AIR REG’) AND l_shipinstruct = ’DELIVER IN PERSON’)
8 OR (
9 p_partkey = l_partkey AND p_brand = ’Brand#21’ AND p_container IN (’LG CASE’, ’LG BOX’, ’LG

PACK’, ’LG PKG’) AND l_quantity >= 27 AND l_quantity <= 27 + 10 AND p_size BETWEEN 1
AND 15 AND l_shipmode IN (’AIR’, ’AIR REG’) AND l_shipinstruct = ’DELIVER IN PERSON’);

Figure A.12.: TPC-H query Q19 [Tra08].

1 SELECT s_name,s_address
2 FROM supplier,nation
3 WHERE s_suppkey IN (
4 SELECT ps_suppkey FROM partsupp WHERE ps_partkey IN (
5 SELECT p_partkey FROM part WHERE p_name LIKE ’black%’)
6 AND ps_availqty > (
7 SELECT 0.5 ∗ SUM(l_quantity) FROM lineitem
8 WHERE l_partkey = ps_partkey AND l_suppkey = ps_suppkey AND l_shipdate >= date

’1993−01−01’ AND l_shipdate < date ’1993−01−01’ + interval ’1’ year))
9 AND s_nationkey = n_nationkey AND n_name = ’RUSSIA’

10 ORDER BY s_name;

Figure A.13.: TPC-H query Q20 [Tra08].

1 SELECT cntrycode,COUNT(∗) AS numcust,SUM(c_acctbal) AS totacctbal
2 FROM (SELECT SUBSTRING(c_phone FROM 1 FOR 2) AS cntrycode,c_acctbal
3 FROM customer
4 WHERE SUBSTRING(c_phone FROM 1 FOR 2) IN (’18’, ’20’, ’27’, ’19’, ’25’, ’26’, ’33’) AND

c_acctbal > (
5 SELECT AVG(c_acctbal) FROM customer
6 WHERE c_acctbal > 0.00 AND SUBSTRING(c_phone FROM 1 FOR 2) IN (’18’, ’20’, ’27’, ’19’,

’25’, ’26’, ’33’))
7 AND NOT EXISTS (SELECT ∗ FROM orders WHERE o_custkey = c_custkey)
8 ) AS custsale
9 GROUP BY cntrycode ORDER BY cntrycode;

Figure A.14.: TPC-H query Q22 [Tra08].
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A.2. Query-wise Summary of I/O Costs for TPC-H 2.11.0

In the following tables (Table A.1 to A.17), we present our I/O-consumption results
for queries of the TPC-H benchmark [Tra10] (version 2.11.0, scale factor 1) that
were not discussed in Chapters 4 and 5 in more detail. We present our results
query-wise for both systems (Oracle vs. ICE). The value in each pattern represents
the summation of the corresponding operation costs (i.e., aggregated on sub-pattern
level; cf. Section 4.3).

Workload Query Q1

Pattern Oracle (22.82sec) ICE (25sec)
Rows I/O Costs Rows I/O Costs

Data Access 5789.7K 156321.522 6012.7K 5980
Group By 5789.7K 156321.5K 5916.6K 5980
Projection 5 0.135 4 65

Table A.1.: Accessed data of TPC-H query Q1 - Number of rows and I/O costs in
KBytes.

Workload Query Q2

Pattern Oracle (8.14) ICE (41sec)
Rows I/O Costs Rows I/O Costs

Data Access 10.2K 1452.133 1048.6K 1040
Non-vector 12K 1759.005 4521.9K 4455
Tuple Reconstruction 162.3K 195
Sort 316 78.526 460 65
Count 158 31.284 460 65
Projection 416 98.326 100 65

Table A.2.: Accessed data of TPC-H query Q2 - Number of rows and I/O costs in
KBytes.

Workload Query Q3

Pattern Oracle (30.97sec) ICE (3sec)
Rows I/O Costs Rows I/O Costs

Data Access 3984.7K 89977.195 7712K 7670
Non-vector 4204.7K 98117.269 9240.6K 9165
Tuple Reconstruction 177.6K 195
Group By 501.7K 30102.72 30.5K 65
Sort 501.7K 30102.72 11.6K 65
Count 501.7K 24082.172 11.6K 65
Projection 10 0.48 10 65

Table A.3.: Accessed data of TPC-H query Q3 - Number of rows and I/O costs in
KBytes.
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Workload Query Q5

Pattern Oracle (32.66sec) ICE (4sec)
Rows I/O Costs Rows I/O Costs

Data Access 6389.5K 119631.12 7908.1K 7865
Non-vector 7777.1K 243824.536 14378.3K 14300
Tuple Reconstruction 1392.5K 1430
Group By 7.4K 844.854 7243 5980
Sort 50 3.65 5 65
Projection 25 2.85 5 65

Table A.4.: Accessed data of TPC-H query Q5 - Number of rows and I/O costs in
KBytes.

Workload Query Q7

Pattern Oracle (29.48sec) ICE (4sec)
Rows I/O Costs Rows I/O Costs

Data Access 3249.8K 63543.499 7908.1K 7865
Non-vector 3678.7K 102714.005 15685.4K 15600
Tuple Reconstruction 443.8K 455
Filtering 220.8K 260
Group By 5.6k 617.493 5.9K 65
Projection 1.5K 152.504 4 65

Table A.5.: Accessed data of TPC-H query Q7 - Number of rows and I/O costs in
KBytes.

Workload Query Q8

Pattern Oracle (29.95sec) ICE (3sec)
Rows I/O Costs Rows I/O Costs

Data Access 6619.1K 154010.467 8234.9K 8190
Non-vector 6700.3K 159438.031 22090.3K 21970
Tuple Reconstruction 494K 520
Group By 2446 364.454 2603 65
Projection 732 109.068 2 65

Table A.6.: Accessed data of TPC-H query Q8 - Number of rows and I/O costs in
KBytes.

Workload Query Q9

Pattern Oracle (37.05sec) ICE (7sec)
Rows I/O Costs Rows I/O Costs

Data Access 7511.2K 183432.882 8757.7K 8710
Non-vector 9212.7K 277307.627 33723.7K 33540
Tuple Reconstruction 1743.8K 1755
Group By 297.1K 38924.947 348.8K 390
Projection 42.5K 5571.823 175 65

Table A.7.: Accessed data of TPC-H query Q9 - Number of rows and I/O costs in
KBytes.
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Workload Query Q10

Pattern Oracle (29.18sec) ICE (10sec)
Rows I/O Costs Rows I/O Costs

Data Access 2305.6K 75690.021 7973.4K 7930
Non-vector 2402.9K 79190.306 9476.6K 9425
Group By 97.21K 20900.15 114.7K 130
Sort 97.21K 20900.15 37.9K 65
Count 97.21K 17400.59 37.9K 65
Projection 97.23K 20903.73 20 65

Table A.8.: Accessed data of TPC-H query Q10 - Number of rows and I/O costs in
KBytes.

Workload Query Q11

Pattern Oracle (5.06sec) ICE (1sec)
Rows I/O Costs Rows I/O Costs

Data Access 810K 14470.029 1960.7K 1950
Non-vector 1610K 52070.029 2091.4K 2080
Tuple Reconstruction 64.2K 65
Group By 32K 1728 31.7K 65
Sort 832K 15648 29.8K 65
Projection 64K 2496 752 65

Table A.9.: Accessed data of TPC-H query Q11 - Number of rows and I/O costs in
KBytes.

Workload Query Q12

Pattern Oracle (26.85sec) ICE(6sec)
Rows I/O Costs Rows I/O Costs

Data Access 1511.7K 33479.167 7515.9K 7475
Non-vector 1511.7K 33479.167 7515.9K 7475
Tuple Reconstruction 30.9K 65
Group By 11.7K 726.281 30.9K 65
Projection 2 0.126 2 65

Table A.10.: Accessed data of TPC-H query Q12 - Number of rows and I/O costs in
KBytes.

Workload Query Q13

Pattern Oracle (5.24sec) ICE (22sec)
Rows I/O Costs Rows I/O Costs

Data Access 1575K 87625 1699.3K 1690
Non-vector 1575K 87625 1699.3K 1690
Tuple Reconstruction 1483.9K 1495
Group By 201.4K 7956.248 1533.9K 195
Sort 100.7K 1309.256 150k 195
Projection 201.4K 2618.512 42 65

Table A.11.: Accessed data of TPC-H query Q13 - Number of rows and I/O costs in
KBytes.
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Workload Query Q14

Pattern Oracle (22.55sec) ICE (3sec)
Rows I/O Cost Rows I/O Cost

Data Access 273.7K 7020.894 6274.1K 6240
Non-vector 273.7K 7020.894 6274.1K 6240
Tuple Reconstruction 75.9K 5980
Sum 73.7K 3610.173 75.9K 5980
Projection 1 0.049 1 65

Table A.12.: Accessed data of TPC-H query Q14 - Number of rows and I/O cost in
KBytes.

Workload Query Q18

Pattern Oracle (31.56sec) ICE (9sec)
Rows I/O Costs Rows I/O Costs

Data Access 6001.2K 54011.02 7712K 7670
Non-vector 32 0.425 9215.2K 9165
Tuple Reconstruction 798 65
Group By 6001.2K 54010.935 399 65
Sort 5 0.265 57 65
Count 4 0.3 57 65
Projection 9 0.562 57 65

Table A.13.: Accessed data of TPC-H query Q18 - Number of rows and I/O costs in
KBytes.

Workload Query Q19

Pattern Oracle (33.27sec) ICE (11sec)
Rows I/O Costs Rows I/O Costs

Data Access 239.1K 12899.256 18822.5K 18720
Non-vector 239.1K 12899.256 6274.2K 6240
Tuple Reconstruction 121 65
Filtering 96 130
Sum 357 29.988 121 65
Projection 1 0.084 1 65

Table A.14.: Accessed data of TPC-H query Q19 - Number of rows and I/O costs in
KBytes.
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Workload Query Q20

Pattern Oracle (31.56sec) ICE (9min 43sec)
Rows I/O Costs Rows I/O Costs

Data Access 869.9K 17397.8 7123.8K 7085
Non-vector 869.9K 17398.274 130.7K 130
Group By 4 0.388
Sort 1 0.092 204 65
Projection 2 0.096 204 65

Table A.15.: Accessed data of TPC-H query Q20 - Number of rows and I/O costs in
KBytes.

Workload Query Q21

Pattern Oracle (1min 2.48sec) ICE (6h 3min 58sec)
Rows I/O Costs Rows I/O Costs

Data Access 6511.2K 166481.649 13659.4K 13585
Non-vector 13218.7K 547594.066 15162.6K 15080
Tuple Reconstruction 12.9K 65
Group By 177.1K 32685.07 4141 65
Sort 3043K 115632.914 411 65
Count 100 4 411 65
Projection 300 23.6 100 65

Table A.16.: Accessed data of TPC-H query Q21 - Number of rows and I/O costs in
KBytes.

Workload Query Q22

Pattern Oracle (5.34sec) ICE (1sec)
Rows I/O Costs Rows I/O Costs

Data Access 1509.8K 7717.578 392.1K 390
Non-vector 1500.5K 7513.77
Filtering 588.2K 585
Group By 5 0.160 6384 65
Count 9.3K 203.808 7 65
Projection 1 0.032 7 65

Table A.17.: Accessed data of TPC-H query Q22 - Number of rows and I/O costs in
KBytes.
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A.3. TPC-H Queries and TPC-C Transaction

In this section, we present TPC-H queries [Tra10] and TPC-C transactions [Fer06],
which we used for our evaluations and not presented in Chapters 4, 5, or 6. Queries for
the TPC-CH benchmark can be found online: https://db.in.tum.de/research/
projects/CHbenCHmark/.

1 SELECT l_returnflag,l_linestatus,SUM(l_quantity) AS sum_qty,SUM(l_extendedprice) AS
sum_base_price,SUM(l_extendedprice ∗ (1 − l_discount)) AS sum_disc_price,SUM(l_extendedprice ∗
(1 − l_discount) ∗ (1 + l_tax)) AS sum_charge,AVG(l_quantity) AS avg_qty,AVG(l_extendedprice) AS
avg_price,AVG(l_discount) AS avg_disc,COUNT(∗) AS count_order

2 FROM lineitem
3 WHERE l_shipdate <= date ’1998−12−01’ − interval ’90’ day (3)
4 GROUP BY l_returnflag,l_linestatus ORDER BY l_returnflag,l_linestatus;

Figure A.15.: TPC-H query Q1 [Tra10].

1 SELECT ∗ FROM (
2 SELECT s_acctbal,s_name,n_name,p_partkey,p_mfgr,s_address,s_phone,s_comment
3 FROM part,supplier,partsupp,nation,region
4 WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND p_size = 15 AND p_type

LIKE ’%BRASS’ AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND r_name =
’EUROPE’ AND ps_supplycost = (

5 SELECT MIN(ps_supplycost)
6 FROM partsupp,supplier,nation,region
7 WHERE p_partkey = ps_partkey AND s_suppkey = ps_suppkey AND s_nationkey =

n_nationkey AND n_regionkey = r_regionkey AND r_name = ’EUROPE’
8 ) ORDER BY s_acctbal desc,n_name,s_name,p_partkey)
9 WHERE rownum <= 100;

Figure A.16.: TPC-H query Q2 [Tra10].

1 SELECT ∗ FROM (
2 SELECT l_orderkey,SUM(l_extendedprice ∗ (1 − l_discount)) AS revenue,o_orderdate,o_shippriority
3 FROM customer,orders,lineitem
4 WHERE c_mktsegment = ’BUILDING’ AND c_custkey = o_custkey AND l_orderkey = o_orderkey

AND o_orderdate < date ’1995−03−15’ AND l_shipdate > date ’1995−03−15’
5 GROUP BY l_orderkey,o_orderdate,o_shippriority ORDER BY revenue DESC,o_orderdate)
6 WHERE rownum <= 10;

Figure A.17.: TPC-H query Q3 [Tra10].
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A.3. TPC-H Queries and TPC-C Transaction

1 SELECT n_name,sum(l_extendedprice ∗ (1 − l_discount)) as revenue
2 FROM customer,orders,lineitem,supplier,nation,region
3 WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey AND l_suppkey = s_suppkey AND

c_nationkey = s_nationkey AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey AND
r_name = ’ASIA’ AND o_orderdate >= date ’1994−01−01’ AND o_orderdate < date ’1994−01−01’ +
interval ’1’ year

4 GROUP BY n_name ORDER BY revenue DESC;

Figure A.18.: TPC-H query Q5 [Tra10].

1 SELECT supp_nation,cust_nation,l_year,SUM(volume) AS revenue
2 FROM (SELECT n1.n_name AS supp_nation,n2.n_name AS cust_nation,EXTRACT(year FROM

l_shipdate) AS l_year,l_extendedprice ∗ (1 − l_discount) AS volume
3 FROM supplier,lineitem,orders,customer,nation n1,nation n2
4 WHERE s_suppkey = l_suppkey AND o_orderkey = l_orderkey AND c_custkey = o_custkey AND

s_nationkey = n1.n_nationkey AND c_nationkey = n2.n_nationkey AND (
5 (n1.n_name = ’FRANCE’ AND n2.n_name = ’GERMANY’) OR (n1.n_name = ’GERMANY’ AND

n2.n_name = ’FRANCE’))
6 AND l_shipdate between date ’1995−01−01’ AND date ’1996−12−31’) shipping
7 GROUP BY supp_nation,cust_nation,l_year ORDER BY supp_nation,cust_nation,l_year;

Figure A.19.: TPC-H query Q7 [Tra10].

1 SELECT o_year,SUM(CASE WHEN nation = ’BRAZIL’ THEN volume ELSE 0 END) / SUM(volume) AS
mkt_share

2 FROM (SELECT EXTRACT(year FROM o_orderdate) AS o_year,l_extendedprice ∗ (1 − l_discount) AS
volume,n2.n_name AS nation

3 FROM part,supplier,lineitem,orders,customer,nation n1,nation n2,region
4 WHERE p_partkey = l_partkey AND s_suppkey = l_suppkey AND l_orderkey = o_orderkey AND

o_custkey = c_custkey AND c_nationkey = n1.n_nationkey AND n1.n_regionkey = r_regionkey
AND r_name = ’AMERICA’ AND s_nationkey = n2.n_nationkey AND o_orderdate BETWEEN
date ’1995−01−01’ AND date ’1996−12−31’ AND p_type = ’ECONOMY ANODIZED STEEL’)
all_nations

5 GROUP BY o_year ORDER BY o_year;

Figure A.20.: TPC-H query Q8 [Tra10].

1 SELECT nation,o_year,SUM(amount) AS sum_profit
2 FROM (SELECT n_name nation,EXTRACT(year FROM o_orderdate) o_year,l_extendedprice ∗ (1 −

l_discount) − ps_supplycost ∗ l_quantity amount
3 FROM part,supplier,lineitem,partsupp,orders,nation
4 WHERE s_suppkey = l_suppkey AND ps_suppkey = l_suppkey AND ps_partkey = l_partkey AND

p_partkey = l_partkey AND o_orderkey = l_orderkey AND s_nationkey = n_nationkey AND p_name
LIKE ’%green%’) profit

5 GROUP BY nation,o_year ORDER BY nation,o_year DESC;

Figure A.21.: TPC-H query Q9 [Tra10].
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1 SELECT ∗ FROM (
2 SELECT c_custkey,c_name,SUM(l_extendedprice ∗ (1 − l_discount)) AS

revenue,c_acctbal,n_name,c_address,c_phone,c_comment
3 FROM customer,orders,lineitem,nation
4 WHERE c_custkey = o_custkey and l_orderkey = o_orderkey and o_orderdate >= date

’1993−10−01’ and o_orderdate < date ’1993−10−01’ + interval ’3’ month and l_returnflag = ’R’
and c_nationkey = n_nationkey

5 GROUP BY c_custkey,c_name,c_acctbal,c_phone,n_name,c_address,c_comment ORDER BY revenue
DESC)

6 WHERE rownum <= 20;

Figure A.22.: TPC-H query Q10 [Tra10].

1 SELECT ps_partkey,SUM(ps_supplycost ∗ ps_availqty) AS value
2 FROM partsupp,supplier,nation
3 WHERE ps_suppkey = s_suppkey AND s_nationkey = n_nationkey AND n_name = ’GERMANY’
4 GROUP BY ps_partkey HAVING SUM(ps_supplycost ∗ ps_availqty) > (
5 SELECT SUM(ps_supplycost ∗ ps_availqty) ∗ 0.0001000000
6 FROM partsupp,supplier,nation
7 WHERE ps_suppkey = s_suppkey AND s_nationkey = n_nationkey AND n_name = ’GERMANY’)
8 ORDER BY value DESC;

Figure A.23.: TPC-H query Q11 [Tra10].

1 SELECT l_shipmode,SUM(CASE WHEN o_orderpriority = ’1−URGENT’ OR o_orderpriority = ’2−HIGH’
THEN 1 ELSE 0 END) as high_line_count,SUM(CASE WHEN o_orderpriority <> ’1−URGENT’ AND
o_orderpriority <> ’2−HIGH’ THEN 1 ELSE 0 END) as low_line_count

2 FROM orders,lineitem
3 WHERE o_orderkey = l_orderkey AND l_shipmode in (’MAIL’, ’SHIP’) AND l_commitdate <

l_receiptdate AND l_shipdate < l_commitdate AND l_receiptdate >= date ’1994−01−01’ AND
l_receiptdate < date ’1994−01−01’ + interval ’1’ year

4 GROUP BY l_shipmode ORDER BY l_shipmode;

Figure A.24.: TPC-H query Q12 [Tra10].

1 SELECT 100.00 ∗ SUM(CASE WHEN p_type LIKE ’PROMO%’ THEN l_extendedprice ∗ (1 −
l_discount) ELSE 0 END) / SUM(l_extendedprice ∗ (1 − l_discount)) AS promo_revenue

2 FROM lineitem,part
3 WHERE l_partkey = p_partkey AND l_shipdate >= date ’1995−09−01’ AND l_shipdate < date

’1995−09−01’ + interval ’1’ month;

Figure A.25.: TPC-H query Q14 [Tra10].
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1 CREATE VIEW revenue0 (supplier_no, total_revenue) AS
2 SELECT l_suppkey,SUM(l_extendedprice ∗ (1 − l_discount))
3 FROM lineitem
4 WHERE l_shipdate >= date ’1996−01−01’ AND l_shipdate < date ’1996−01−01’ + interval ’3’

month
5 GROUP BY l_suppkey;
6
7 SELECT s_suppkey,s_name,s_address,s_phone,total_revenue
8 FROM supplier,revenue0
9 WHERE s_suppkey = supplier_no AND total_revenue = (

10 SELECT MAX(total_revenue) FROM revenue0)
11 ORDER BY s_suppkey;
12
13 DROP VIEW revenue0;

Figure A.26.: TPC-H query Q15 [Tra10].

1 SELECT p_brand,p_type,p_size,COUNT(DISTINCT ps_suppkey) AS supplier_cnt
2 FROM partsupp,part
3 WHERE p_partkey = ps_partkey AND p_brand <> ’Brand#45’ AND p_type not LIKE ’MEDIUM

POLISHED%’ AND p_size in (49, 14, 23, 45, 19, 3, 36, 9) AND ps_suppkey NOT IN (
4 SELECT s_suppkey FROM supplier WHERE s_comment LIKE ’%Customer%Complaints%’)
5 GROUP BY p_brand,p_type,p_size ORDER BY supplier_cnt DESC, p_brand, p_type, p_size;

Figure A.27.: TPC-H query Q16 [Tra10].

1 SELECT ∗ FROM (
2 SELECT c_name,c_custkey,o_orderkey,o_orderdate,o_totalprice,SUM(l_quantity)
3 FROM customer,orders,lineitem
4 WHERE o_orderkey IN (
5 SELECT l_orderkey FROM lineitem GROUP BY l_orderkey HAVING SUM(l_quantity) > 300)
6 AND c_custkey = o_custkey AND o_orderkey = l_orderkey
7 GROUP BY c_name,c_custkey,o_orderkey,o_orderdate,o_totalprice ORDER BY o_totalprice DESC,

o_orderdate)
8 WHERE rownum <= 100;

Figure A.28.: TPC-H query Q18 [Tra10].

1 SELECT SUM(l_extendedprice∗ (1 − l_discount)) AS revenue
2 WHERE (
3 p_partkey = l_partkey AND p_brand = ’Brand#12’ AND p_container in (’SM CASE’, ’SM BOX’, ’SM

PACK’, ’SM PKG’) AND l_quantity >= 1 and l_quantity <= 1 + 10 AND p_size between 1 and 5
AND l_shipmode in (’AIR’, ’AIR REG’) AND l_shipinstruct = ’DELIVER IN PERSON’)

4 OR (
5 p_partkey = l_partkey AND p_brand = ’Brand#23’ AND p_container in (’MED BAG’, ’MED BOX’,

’MED PKG’, ’MED PACK’) AND l_quantity >= 10 and l_quantity <= 10 + 10 AND p_size
between 1 and 10 AND l_shipmode in (’AIR’, ’AIR REG’) AND l_shipinstruct = ’DELIVER IN
PERSON’)

6 OR (
7 p_partkey = l_partkey AND p_brand = ’Brand#34’ AND p_container in (’LG CASE’, ’LG BOX’, ’LG

PACK’, ’LG PKG’) AND l_quantity >= 20 and l_quantity <= 20 + 10 AND p_size between 1 and
15 AND l_shipmode in (’AIR’, ’AIR REG’) AND l_shipinstruct = ’DELIVER IN PERSON’);

Figure A.29.: TPC-H query Q19 [Tra10].
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1 SELECT s_name,s_address
2 FROM supplier,nation
3 WHERE s_suppkey IN (
4 SELECT ps_suppkey FROM partsupp WHERE ps_partkey IN (
5 SELECT p_partkey FROM part WHERE p_name LIKE ’forest%’)
6 AND ps_availqty > (SELECT 0.5 ∗ SUM(l_quantity) FROM lineitem
7 WHERE l_partkey = ps_partkey AND l_suppkey = ps_suppkey AND l_shipdate >= date

’1994−01−01’ AND l_shipdate < date ’1994−01−01’ + interval ’1’ year))
8 AND s_nationkey = n_nationkey AND n_name = ’CANADA’
9 ORDER BY s_name;

Figure A.30.: TPC-H query Q20 [Tra10].

1 SELECT ∗ FROM (
2 SELECT s_name,COUNT(∗) AS numwait
3 FROM supplier,lineitem l1,orders,nation
4 WHERE s_suppkey = l1.l_suppkey AND o_orderkey = l1.l_orderkey AND o_orderstatus = ’F’ AND

l1.l_receiptdate > l1.l_commitdate AND EXISTS (
5 SELECT ∗ FROM lineitem l2 WHERE l2.l_orderkey = l1.l_orderkey AND l2.l_suppkey <>

l1.l_suppkey)
6 AND NOT EXISTS (
7 SELECT ∗ FROM lineitem l3 WHERE l3.l_orderkey = l1.l_orderkey AND l3.l_suppkey <>

l1.l_suppkey AND l3.l_receiptdate > l3.l_commitdate)
8 AND s_nationkey = n_nationkey AND n_name = ’SAUDI ARABIA’
9 GROUP BY s_name ORDER BY numwait DESC,s_name)

10 WHERE rownum <= 100;

Figure A.31.: TPC-H query Q21 [Tra10].

1 SELECT cntrycode,COUNT(∗) AS numcust,SUM(c_acctbal) AS totacctbal
2 FROM (SELECT SUBSTR(c_phone, 1, 2) AS cntrycode,c_acctbal
3 FROM customer
4 WHERE SUBSTR(c_phone, 1, 2) IN (’13’, ’31’, ’23’, ’29’, ’30’, ’18’, ’17’) and c_acctbal > (
5 SELECT AVG(c_acctbal) FROM customer
6 WHERE c_acctbal > 0.00 AND SUBSTR(c_phone, 1, 2) IN (’13’, ’31’, ’23’, ’29’, ’30’, ’18’,

’17’))
7 AND NOT EXISTS (SELECT ∗ FROM orders WHERE o_custkey = c_custkey)
8 ) custsale
9 GROUP BY cntrycode ORDER BY cntrycode;

Figure A.32.: TPC-H query Q22 [Tra10].

1 SELECT d_next_o_id FROM district WHERE d_id = 1 AND d_w_id = 50;
2 SELECT COUNT(DISTINCT (s_i_id)) FROM stock, order_line WHERE ol_w_id = 50 AND ol_d_id =

1 AND ol_o_id < 3001 AND ol_o_id >= 3001 −20 AND s_w_id = 50 AND s_i_id = ol_i_id AND
s_quantity < 10;

3 COMMIT WORK;

Figure A.33.: Single extracted transaction 2.8 (Delivery) [Fer06].
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1 SELECT w_tax, c_discount, c_last, c_credit FROM warehouse, customer WHERE w_id=17 AND
c_w_id=17 AND c_d_id=7 AND c_id=1584;

2 SELECT d_next_o_id, d_tax FROM district WHERE d_id=7 AND d_w_id=17;
3 UPDATE district SET d_next_o_id=3001+1 WHERE d_id=7 AND d_w_id=17;
4 INSERT INTO orderr (o_id, o_d_id, o_w_id, o_c_id, o_entry_d, o_carrier_id, o_all_local) VALUES

(3001,7,17,1584,TO_DATE(’2012−05−19 18:06:00’, ’YYYY/MM/DD HH24:MI:SS’),0,1);
5 INSERT INTO new_order (no_o_id, no_d_id, no_w_id) VALUES (3001,7,17);
6 SELECT i_price, i_name, i_data FROM item WHERE i_id=5576;
7 SELECT s_quantity, s_data, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05, s_dist_06,

s_dist_07, s_dist_08, s_dist_09, s_dist_10 FROM stock WHERE s_i_id =5576 AND s_w_id =17;
8 UPDATE stock SET s_quantity=98 WHERE s_i_id =5576 AND s_w_id =17;
9 UPDATE stock SET s_ytd=0.000000 +3, s_order_cnt=0+1 WHERE s_i_id =5576 AND s_w_id =17;

10 INSERT INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id,
ol_quantity, ol_amount, ol_dist_info) VALUES (3001, 7, 17, 1, 5576, 17, 3, 41.32, ’6xB:fLK
Hm;2=f2eWMwu7,]o’);

11 SELECT i_price, i_name, i_data FROM item WHERE i_id=89016;
12 SELECT s_quantity, s_data, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05, s_dist_06,

s_dist_07, s_dist_08, s_dist_09, s_dist_10 FROM stock WHERE s_i_id =89016 AND s_w_id =17;
13 UPDATE stock SET s_quantity=85 WHERE s_i_id =89016 AND s_w_id =17;
14 UPDATE stock SET s_ytd=0.000000 +1, s_order_cnt=0+1 WHERE s_i_id =89016 AND s_w_id =17;
15 INSERT INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id,

ol_quantity, ol_amount, ol_dist_info) VALUES (3001, 7, 17, 2, 89016, 17, 1, 40.90,
’HDcBT#T|G;B{>v{f5@dT:c=P’);

16 SELECT i_price, i_name, i_data FROM item WHERE i_id=52205;
17 SELECT s_quantity, s_data, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05, s_dist_06,

s_dist_07, s_dist_08, s_dist_09, s_dist_10 FROM stock WHERE s_i_id =52205 AND s_w_id =17;
18 UPDATE stock SET s_quantity=87 WHERE s_i_id =52205 AND s_w_id =17;
19 UPDATE stock SET s_ytd=0.000000 +7, s_order_cnt=0+1 WHERE s_i_id =52205 AND s_w_id =17;
20 INSERT INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id,

ol_quantity, ol_amount, ol_dist_info) VALUES (3001, 7, 17, 3, 52205, 17, 7, 488.66,
’\YqBa|aAYUc=UH_1!EOVn1ho’);

21 SELECT i_price, i_name, i_data FROM item WHERE i_id=97160;
22 SELECT s_quantity, s_data, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05, s_dist_06,

s_dist_07, s_dist_08, s_dist_09, s_dist_10 FROM stock WHERE s_i_id =97160 AND s_w_id =17;
23 UPDATE stock SET s_quantity=71 WHERE s_i_id =97160 AND s_w_id =17;
24 UPDATE stock SET s_ytd=0.000000 +3, s_order_cnt=0+1 WHERE s_i_id =97160 AND s_w_id =17;
25 INSERT INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id,

ol_quantity, ol_amount, ol_dist_info) VALUES (3001, 7, 17, 4, 97160, 17, 3, 293.24,
’k=."32t"P%$c8yeh"jN:f7%h’);

26 SELECT i_price, i_name, i_data FROM item WHERE i_id=64374;
27 SELECT s_quantity, s_data, s_dist_01, s_dist_02, s_dist_03, s_dist_04, s_dist_05, s_dist_06,

s_dist_07, s_dist_08, s_dist_09, s_dist_10 FROM stock WHERE s_i_id =64374 AND s_w_id =17;
28 UPDATE stock SET s_quantity=57 WHERE s_i_id =64374 AND s_w_id =17;
29 UPDATE stock SET s_ytd=0.000000 +5, s_order_cnt=0+1 WHERE s_i_id =64374 AND s_w_id =17;
30 INSERT INTO order_line (ol_o_id, ol_d_id, ol_w_id, ol_number, ol_i_id, ol_supply_w_id,

ol_quantity, ol_amount, ol_dist_info) VALUES (3001, 7, 17, 5, 64374, 17, 5, 465.01,
’kk−x+oFv]TrhF<b(qXp;tVCi’);

31 UPDATE orderr SET o_ol_cnt=5 WHERE o_id=3001 AND o_d_id=7 AND o_w_id=17;
32 COMMIT WORK;

Figure A.34.: Single extracted transaction 2.4 (NewOrder) [Fer06].
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1 SELECT w_name, w_street_1, w_street_2, w_city, w_state, w_zip FROM warehouse WHERE w_id =
11;

2 UPDATE warehouse SET w_ytd = w_ytd + 1708.16 WHERE w_id = 11;
3 SELECT d_name, d_street_1, d_street_2, d_city, d_state, d_zip FROM district WHERE d_w_id = 11

AND d_id = 8;
4 UPDATE district SET d_ytd = d_ytd + 1708.16 WHERE d_id = 8 AND d_w_id = 11;
5 SELECT count(c_id) FROM customer WHERE c_last = ’CALLIOUGTHATION’ AND c_d_id = 9 AND

c_w_id = 84;
6 DECLARE c_id customer.c_id%TYPE; c_first customer.c_first%TYPE; c_middle

customer.c_middle%TYPE; c_street_1 customer.c_street_1%TYPE; c_street_2
customer.c_street_2%TYPE; c_city customer.c_city%TYPE; c_state customer.c_state%TYPE; c_zip
customer.c_zip%TYPE; c_phone customer.c_phone%TYPE; c_credit customer.c_credit%TYPE;
c_credit_lim customer.c_credit_lim%TYPE; c_discount customer.c_discount%TYPE; c_balance
customer.c_balance%TYPE; c_since customer.c_since%TYPE; CURSOR c_porlast IS SELECT c_id,
c_first, c_middle, c_street_1, c_street_2, c_city, c_state, c_zip, c_phone, c_credit, c_credit_lim,
c_discount, c_balance, c_since FROM customer WHERE c_w_id = 84 AND c_d_id = 9 AND c_last
= ’CALLIOUGTHATION’ ORDER BY c_first;

7 BEGIN OPEN c_porlast;
8 FETCH c_porlast INTO c_id, c_first, c_middle, c_street_1, c_street_2, c_city, c_state, c_zip, c_phone,

c_credit, c_credit_lim, c_discount, c_balance, c_since;
9 CLOSE c_porlast; END;

10 UPDATE customer SET c_balance = c_balance − 1708.16, c_ytd_payment = c_ytd_payment + 1708.16,
c_payment_cnt = c_payment_cnt +1 WHERE c_w_id = 84 AND c_d_id = 9 AND c_id = 719;

11 INSERT INTO history (h_c_d_id, h_c_w_id, h_c_id, h_d_id, h_w_id, h_date, h_amount, h_data)
VALUES (9, 84, 719, 8, 11, TO_DATE(’2012−05−19 18:05:49’, ’YYYY/MM/DD HH24:MI:SS’), 1708.16,
’8kA5DHz R|.Z^q:4q’);

12 COMMIT WORK;
13 SELECT w_name, w_street_1, w_street_2, w_city, w_state, w_zip FROM warehouse WHERE w_id =

10;
14 UPDATE warehouse SET w_ytd = w_ytd + 4701.98 WHERE w_id = 10;
15 SELECT d_name, d_street_1, d_street_2, d_city, d_state, d_zip FROM district WHERE d_w_id = 10

AND d_id = 9;
16 UPDATE district SET d_ytd = d_ytd + 4701.98 WHERE d_id = 9 AND d_w_id = 10;
17 SELECT c_first, c_middle, c_last, c_street_1, c_street_2, c_city, c_state, c_zip, c_phone, c_credit,

c_discount, c_balance, c_since FROM customer WHERE c_w_id = 10 AND c_d_id = 9 AND c_id =
2781;

18 UPDATE customer SET c_balance = c_balance − 4701.98, c_ytd_payment = c_ytd_payment + 4701.98,
c_payment_cnt = c_payment_cnt +1 WHERE c_w_id = 10 AND c_d_id = 9 AND c_id = 2781;

19 INSERT INTO history (h_c_d_id, h_c_w_id, h_c_id, h_d_id, h_w_id, h_date, h_amount, h_data)
VALUES (9, 10, 2781, 9, 10, TO_DATE(’2012−05−19 18:05:49’, ’YYYY/MM/DD HH24:MI:SS’),
4701.98, ’^^A]\Vp= |4f(Ce%’);

20 COMMIT WORK;

Figure A.35.: Single extracted transaction 2.5 (Payment) [Fer06].
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1 SELECT c_balance, c_first, c_middle, c_last FROM customer WHERE c_w_id = 15 AND c_d_id = 9
AND c_id = 1271;

2 DECLARE cur_ordenes CURSOR FOR SELECT o_id, o_entry_d, o_carrier_id FROM orderr WHERE
o_w_id = 15 AND o_d_id = 9 AND o_c_id = 1271 ORDER BY o_id DESC;

3 OPEN cur_ordenes;
4 FETCH FROM cur_ordenes INTO o_id = 2296, o_entry_d = 2012−03−11 01:01:27, o_carrier_id = 0;
5 CLOSE cur_ordenes;
6 DECLARE cur_ord_lines CURSOR FOR SELECT ol_i_id, ol_supply_w_id, ol_quantity, ol_amount,

ol_delivery_d FROM order_line WHERE ol_w_id = 15 AND ol_d_id = 9 AND ol_o_id = 2296;
7 AGDB~Execution OrderState.10: OPEN cur_ord_lines;
8 FETCH FROM cur_ord_lines INTO ol_i_id = 74255, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 4653.77, ol_delivery_d = 1970−01−01 00:00:00;
9 FETCH FROM cur_ord_lines INTO ol_i_id = 14379, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 640.04, ol_delivery_d = 1970−01−01 00:00:00;
10 FETCH FROM cur_ord_lines INTO ol_i_id = 22852, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 5825.25, ol_delivery_d = 1970−01−01 00:00:00;
11 FETCH FROM cur_ord_lines INTO ol_i_id = 59773, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 8991.15, ol_delivery_d = 1970−01−01 00:00:00;
12 FETCH FROM cur_ord_lines INTO ol_i_id = 41543, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 3106.39, ol_delivery_d = 1970−01−01 00:00:00;
13 FETCH FROM cur_ord_lines INTO ol_i_id = 35091, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 2181.42, ol_delivery_d = 1970−01−01 00:00:00;
14 FETCH FROM cur_ord_lines INTO ol_i_id = 16454, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 8192.52, ol_delivery_d = 1970−01−01 00:00:00;
15 FETCH FROM cur_ord_lines INTO ol_i_id = 15799, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 7760.15, ol_delivery_d = 1970−01−01 00:00:00;
16 FETCH FROM cur_ord_lines INTO ol_i_id = 49470, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 2821.46, ol_delivery_d = 1970−01−01 00:00:00;
17 FETCH FROM cur_ord_lines INTO ol_i_id = 39305, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 4017.79, ol_delivery_d = 1970−01−01 00:00:00;
18 FETCH FROM cur_ord_lines INTO ol_i_id = 75571, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 6751.31, ol_delivery_d = 1970−01−01 00:00:00;
19 FETCH FROM cur_ord_lines INTO ol_i_id = 91012, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 5927.84, ol_delivery_d = 1970−01−01 00:00:00;
20 FETCH FROM cur_ord_lines INTO ol_i_id = 74396, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 6199.20, ol_delivery_d = 1970−01−01 00:00:00;
21 FETCH FROM cur_ord_lines INTO ol_i_id = 92024, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 4943.85, ol_delivery_d = 1970−01−01 00:00:00;
22 FETCH FROM cur_ord_lines INTO ol_i_id = 92024, ol_supply_w_id = 15, ol_quantity = 5, ol_amount

= 4943.85, ol_delivery_d = 1970−01−01 00:00:00;
23 CLOSE cur_ord_lines;
24 COMMIT WORK;

Figure A.36.: Single extracted transaction 2.6 (StockLevel) [Fer06].
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1 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 1;
2 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 1;
3 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 1 AND o_id = 2101;
4 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 1 AND o_id = 2101;
5 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 1;
6 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 1;
7 UPDATE customer SET c_balance = c_balance + 27304.74, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 1 AND c_id = 418;
8 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 2;
9 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 2;

10 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 2 AND o_id = 2101;
11 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 2 AND o_id = 2101;
12 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 2;
13 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 2;
14 UPDATE customer SET c_balance = c_balance + 64079.01, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 2 AND c_id = 418;
15 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 3;
16 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 3;
17 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 3 AND o_id = 2101;
18 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 3 AND o_id = 2101;
19 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 3;
20 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 3;
21 UPDATE customer SET c_balance = c_balance + 27505.93, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 3 AND c_id = 418;
22 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 4;
23 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 4;
24 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 4 AND o_id = 2101;
25 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 4 AND o_id = 2101;
26 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 4;
27 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 4;
28 UPDATE customer SET c_balance = c_balance + 46320.51, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 4 AND c_id = 418;
29 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 5;
30 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 5;
31 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 5 AND o_id = 2101;
32 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 5 AND o_id = 2101;
33 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 5;
34 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 5;
35 UPDATE customer SET c_balance = c_balance + 67651.09, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 5 AND c_id = 418;
36 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 6;
37 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 6;
38 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 6 AND o_id = 2101;
39 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 6 AND o_id = 2101;
40 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 6;
41 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 6;
42 UPDATE customer SET c_balance = c_balance + 66155.56, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 6 AND c_id = 418;
43 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 7;
44 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 7;
45 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 7 AND o_id = 2101;
46 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 7 AND o_id = 2101;
47 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 7;
48 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 7;
49 UPDATE customer SET c_balance = c_balance + 32115.57, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 7 AND c_id = 418;
50 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 8;
51 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 8;
52 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 8 AND o_id = 2101;
53 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 8 AND o_id = 2101;
54 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 8;
55 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 8;
56 UPDATE customer SET c_balance = c_balance + 63714.72, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 8 AND c_id = 418;
57 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 9;
58 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 9;
59 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 9 AND o_id = 2101;
60 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 9 AND o_id = 2101;
61 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 9;
62 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 9;
63 UPDATE customer SET c_balance = c_balance + 34407.62, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 9 AND c_id = 418;
64 SELECT min(no_o_id) FROM new_order WHERE no_w_id = 13 AND no_d_id = 10;
65 DELETE FROM new_order WHERE no_o_id = 2101 AND no_w_id = 13 AND no_d_id = 10;
66 SELECT o_c_id FROM orderr WHERE o_w_id = 13 AND o_d_id = 10 AND o_id = 2101;
67 UPDATE orderr SET o_carrier_id = 3 WHERE o_w_id = 13 AND o_d_id = 10 AND o_id = 2101;
68 UPDATE order_line SET ol_delivery_d = TO_DATE(’2012−05−19 18:05:44’, ’YYYY/MM/DD HH24:MI:SS’) WHERE ol_o_id

= 2101 AND ol_w_id = 13 AND ol_d_id = 10;
69 SELECT sum(ol_amount) FROM order_line WHERE ol_o_id = 2101 AND ol_w_id = 13 AND ol_d_id = 10;
70 UPDATE customer SET c_balance = c_balance + 36404.44, c_delivery_cnt = c_delivery_cnt + 1 WHERE c_w_id = 13 AND

c_d_id = 10 AND c_id = 418; COMMIT WORK;

Figure A.37.: Single extracted transaction 2.7 (OrderState) [Fer06].
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A.4. Resource Consumption of the Replicated Solution
for TPC-H and TPC-C

We present the resource consumption for the remaining queries in the following,
which we did not present in Chapter 6.

Figure A.38.: CPU and I/O for TPC-H Q1 on Oracle and Sybase.

Figure A.39.: CPU and I/O for TPC-H Q2 on Oracle and Sybase.
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Figure A.40.: CPU and I/O for TPC-H Q3 on Oracle and Sybase.

Figure A.41.: CPU and I/O for TPC-H Q4 on Oracle and Sybase.

Figure A.42.: CPU and I/O for TPC-H Q7 on Oracle and Sybase.
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Figure A.43.: CPU and I/O for TPC-H Q8 on Oracle and Sybase.

Figure A.44.: CPU and I/O for TPC-H Q9 on Oracle and Sybase.

Figure A.45.: CPU and I/O for TPC-H Q12 on Oracle and Sybase.
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Figure A.46.: CPU and I/O for TPC-H Q14 on Oracle and Sybase.

Figure A.47.: CPU and I/O for TPC-H Q15 on Oracle and Sybase.

Figure A.48.: CPU and I/O for TPC-H Q16 on Oracle and Sybase.
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Figure A.49.: CPU and I/O for TPC-H Q17 on Oracle and Sybase.

Figure A.50.: CPU and I/O for TPC-H Q18 on Oracle and Sybase.

Figure A.51.: CPU and I/O for TPC-H Q20 on Oracle and Sybase.
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Figure A.52.: CPU and I/O for TPC-H Q21 on Oracle and Sybase.

Figure A.53.: CPU and I/O for TPC-H Q22 on Oracle and Sybase.

Figure A.54.: CPU and I/O for TPC-C Transaction 2.4 on Oracle and Sybase.

172



A.4. Resource Consumption of the Replicated Solution for TPC-H and TPC-C

Figure A.55.: CPU and I/O for TPC-C Transaction 2.5 on Oracle and Sybase.

Figure A.56.: CPU and I/O for TPC-C Transaction 2.8 on Oracle and Sybase.
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A.5. Additional Methods for Column-Store
Implementation in HSQLDB

We present additional methods in this section, which we have derived and adapted
from HSQLDB methods for our prototype. For functionality descriptions, we refer
to Section 6.4.3.

1 import java.util.HashMap;
2 import org.hsqldb.rowio.RowOutputInterface;
3 import org.hsqldb.types.Type;
4
5 public class MyColumn {
6 public HashMap<Integer, Object> Components;
7 public HashMap<Integer, Integer> FilePositions;
8 private Type type;
9

10 public MyColumn(HashMap<Integer, Object>comps, HashMap<Integer, Integer> pos, Type t) {
11 Components = comps;
12 FilePositions = pos;
13 type = t;
14 }
15 public MyColumn(Type t) {
16 Components = new HashMap<Integer, Object>();
17 FilePositions = new HashMap<Integer, Integer>();
18 type = t;
19 }
20 public void setType(Type t) {
21 type = t;
22 }
23 public void write(int index, RowOutputInterface out) {
24 if (Components.containsKey(index) == false) {return;}
25 Object myData = Components.get(index);
26 out.writeData(type, myData); out.writeEnd();
27 }
28 public void writeAll(RowOutputInterface out) {
29 for (int i : Components.keySet()) {write(i, out);}
30 }
31 /∗∗ @param index @param out @return length of Components[index] in Byte for the corresponding source

file (incl. separator "|") ∗/
32 public int getSize(int index, RowOutputInterface out) {
33 out.reset(); write(index, out);
34 int size = out.getOutputStream().size();
35 out.reset();
36 return size;
37 }
38 }

Figure A.57.: Class MyColumn for columnar representation in HSQLDB.
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1 public CachedObject[] get(RowInputInterface[] ins) { // ins contains (a chunk of) a column
2 final int chunkSize = TextCache.CHUNKSIZE;
3 Type[] colsTypes = table.getColumnTypes();
4 Object[][] cols = new Object[table.getColumnCount()][chunkSize]; // 1st element = column; 2nd element

= row
5 RowAVLDiskData[] rows = new RowAVLDiskData[chunkSize]; // currently constant 100 rows
6 int rowPos = ((RowInputText) ins[0]).rowPos;
7 for (int i = 0; i < ins.length; i++) { // COLUMNS
8 try {
9 for (int j = 0; j < chunkSize; j++) {

10 cols[i][j] = ins[i].readData(colsTypes[i]);
11 ((TextCache) this.cache).cols[i].Components.put(rowPos + j, cols[i][j]); // create MyColumns
12 }
13 } catch (IOException e) {throw Error.error(ErrorCode.TEXT_FILE_IO, e);}
14 }
15 // columns to rows −−> build result
16 Object[][] data = new Object[chunkSize][ins.length];
17 for (int j = 0 ; j < chunkSize; j++) {
18 if (cols[0][j] == null)
19 break; // aborts if < 100 values
20 for (int i = 0; i < cols.length; i++) {data[j][i] = cols[i][j];}
21 rows[j] = new RowAVLDiskData(this, table, data[j]);
22 rows[j].setPos(rowPos + j);
23 rows[j].setStorageSize(1);
24 rows[j].setChanged(false);
25 }
26 if (currentRow != null) {currentRow.setData(data[0]);}
27 return rows;
28 }

Figure A.58.: New method get for column-wise organized data (class RowStoreAVLD-
iskData).
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1 protected CachedObject getFromFile(int rowPos, PersistentStore store, boolean keep) {
2 CachedObject object = null;
3 CachedObject[] rows = new CachedObject[TextCache.CHUNKSIZE];
4 writeLock.lock();
5 try {
6 object = cache.get(rowPos);
7 if (object != null) {
8 if (keep) {object.keepInMemory(true);}
9 return object; // from cache

10 } // if row requested from file, #CHUNKSIZE rows loaded −−> next row in cache (sequentially)
11 for (int j = 0; j < 2; j++) {
12 try { // read data from files
13 RowInputInterface[] colInputs = myReadObject(rowPos); // chunk from (column) files
14 if (colInputs[0] == null) {return null;}
15 rows = ((RowStoreAVLDiskData) store).get(colInputs); //RowStoreAVLDiskdata.get()
16 break;
17 }
18 catch (OutOfMemoryError err) {cache.forceCleanUp(); System.gc(); if (j > 0) {throw err;}}
19 }
20 for (int i = 0; i < rows.length; i++) {
21 if (rows[i] == null) {break;}
22 cache.put(rowPos + i, rows[i]); // add row to cache
23 if (keep) {rows[i].keepInMemory(true);}
24 }
25 return rows[0]; // returns first element, which was requested
26 } catch (HsqlException e) {database.logger.logSevereEvent(dataFileName + " getFromFile " +

rowPos, e); throw e;}
27 finally {writeLock.unlock();}
28 }

Figure A.59.: Alternative get method for data not resident in cache (class TextCache).

1 ...
2 if (Features.STORAGE_TYPE == Features.ROW_STORE) { // original implementation (row by row)
3 if (it.next()) { // it.next fetches next row which satisfies conditions
4 if (currentIndex < rangeVariables.length − 1) {currentIndex++; continue;}
5 } else {it.reset(); currentIndex−−; continue;}
6 }
7 if (Features.STORAGE_TYPE == Features.COLUMN_STORE) {
8 if (it.myNext(cache, rowPos, count, currentIndex)) { // condition check and it.myNext fetches next

column value (row of column)
9 if (currentIndex < rangeVariables.length − 1) {currentIndex++; continue;}

10 if (rowPos[currentIndex] > count[currentIndex]) {
11 if (rowPos[0] >= count[0]) break; it.reset(); rowPos[currentIndex] = 1; currentIndex−−;
12 if (currentIndex >= 0) rowPos[currentIndex]++; continue;
13 }
14 } else {
15 if (rowPos[0] >= count[0] +1) break; it.reset(); rowPos[currentIndex] = 1; // set outer index to 0
16 currentIndex−−;
17 if (currentIndex >= 0) rowPos[currentIndex]++; continue; // increase inner index
18 }
19 } ...

Figure A.60.: Query dispatching for aggregates in Row Store and Column Store con-
figuration (class QuerySpecification).
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1 ...
2 public boolean myNext( Object cache[], int[] position, int maxPos[], int currentIndex) {
3 while (condIndex < conditions.length) {
4 if (isBeforeFirst) {isBeforeFirst = false; initialiseIterator();}
5 boolean result = myFindNext(cache, position, maxPos, currentIndex);
6 if (result) {return true;}
7 reset(); condIndex++;
8 }
9 condIndex = 0;

10 return false;
11 } ...
12
13 protected boolean myFindNext(Object cache[], int[] position, int maxPos[], int currentIndex) { // fetches

next row which fits the conditions
14 boolean result = false;
15 while (true) {
16 if (conditions[condIndex].indexEndCondition != null && !conditions[condIndex].indexEndCondition

.myTestCondition(session, cache, position, currentIndex)) {
17 if (!conditions[condIndex].isJoin) {hasLeftOuterRow = false;}
18 break;
19 }
20 if (joinConditions[condIndex].nonIndexCondition != null &&

!joinConditions[condIndex].nonIndexCondition .myTestCondition(session, cache, position,
currentIndex)) {

21 if (position[currentIndex] < maxPos[currentIndex]) {
22 position[currentIndex]++; continue;
23 } else {return false;}
24 }
25 if (whereConditions[condIndex].nonIndexCondition != null &&

!whereConditions[condIndex].nonIndexCondition .myTestCondition(session, cache, position,
currentIndex)) {

26 hasLeftOuterRow = false; addFoundRow(); continue;
27 }
28 if (position.length == 1 && position[0] >= maxPos[0]+1) {return false;}
29 Expression e = conditions[condIndex].excludeConditions;
30 if (e != null && e.testCondition(session)) {continue;}
31 addFoundRow();
32 hasLeftOuterRow = false;
33 return true;
34 }
35 it.release();
36 currentRow = null;
37 currentData = rangeVar.emptyData;
38 if (hasLeftOuterRow && condIndex == conditions.length − 1) {
39 result = (whereConditions[condIndex].nonIndexCondition == null ||

whereConditions[condIndex].nonIndexCondition .myTestCondition(session, cache, position,
currentIndex));

40 hasLeftOuterRow = false;
41 }
42 return result;
43 } ...

Figure A.61.: Predicate evaluation methods for alternative data-flow path: myNext
and myFindNext (class RangeVariable).
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