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Abstract

Massively Multiplayer Online Role-Playing Games (MMORPGs) are very sophisticated
applications, which have significantly grown in popularity since their early days in the
mid-´90s. Along with growing numbers of users the requirements on these systems have
reached a point where technical problems become a severe risk for the commercial suc-
cess. Within the CloudCraft project we investigate how Cloud-based architectures and
data management can help to solve some of the most critical problems regarding scala-
bility and consistency. In this work, we describe an implemented working environment
based on the Cassandra DBMS and some of the key findings outlining its advantages and
shortcomings (e.g., guarantee of game consistency) for the given application scenario.

As outlined for instance by the CAP theorem [GL02], achieving consistency guarantees
within a 100% available and fault-tolerant distributed system is impossible. Neverthe-
less, in real-life applications actual properties are neither black nor white and the degree
of fulfillment of requirements depends on the likelihood of failures and communication
parameters of distributed systems. While typical Cloud-based applications weaken con-
sistency in accordance with less strict applications requirements, strong consistency can
also be achieved, for instance by tunable consistency. This, however, often comes with
a strong degradation of scalability (performance of growing clusters) and availability.
Based on a project investigating the usefulness of Cloud DBMS for MMORPGs we
describe how strong consistency can be provided for such a scenario, by still proving a
high-level of availability and performance suitable for this specific application. For this
purpose we implement a lightweight mechanism to detect failures based on timestamps
and only react accordingly if required.





Zusammenfassung

Massively Multiplayer Online Role-Playing Games (MMORPGs) sind sehr anspruchsvolle
Anwendungen, die seit ihren Anfängen Mitte der ’90er Jahre deutlich an Beliebtheit
gewonnen haben. Neben den wachsenden Nutzerzahlen haben die Anforderungen an
diese Systeme einen Punkt erreicht, an dem technische Probleme ein ernsthaftes Risiko
für den kommerziellen Erfolg werden. Im Rahmen des CloudCraft-Projekts untersuchen
wir, wie Cloud-basierte Architekturen und Datenmanagement dazu beitragen können,
einige der wichtigsten Probleme hinsichtlich Skalierbarkeit und Konsistenz zu lösen.
In dieser Arbeit beschreiben wir eine implementierte Arbeitsumgebung basierend auf
dem Cassandra DBMS und einige der wichtigsten Erkenntnisse, welche die Vorteile
und Mängel (z. B. Garantie der Spielkonsistenz) für das gegebene Anwendungsszenario
skizzieren.

Wie zum Beispiel durch das CAP-Theorem [GL02] dargestellt, ist das Erreichen von
Konsistenzgarantien innerhalb eines 100% verfügbaren und fehlertoleranten verteilten
Systems unmöglich. Dennoch sind in realen Anwendungen tatsächliche Eigenschaften
weder schwarz noch weiß, und der Grad der Erfüllung der Anforderungen hängt von
der Wahrscheinlichkeit von Ausfällen und Kommunikationsparametern verteilter Sys-
teme ab. Während typische Cloud-basierte Anwendungen Konsistenz in Übereinstim-
mung mit weniger strengen Anwendungsanforderungen schwächen, kann eine starke
Konsistenz auch beispielsweise durch einstellbare Konsistenz erreicht werden. Dies
führt jedoch oftmals zu einer signifikanten Verschlechterung der Skalierbarkeit (Leis-
tung wachsender Cluster) und Verfügbarkeit. Basierend auf einem Projekt, das die
Nützlichkeit von Cloud DBMS für MMORPGs untersucht, beschreiben wir, in welchem
Umfang Konsistenz für ein solches Szenario erreicht werden kann, indem immer noch
ein hohes Maß an Verfügbarkeit und Leistung für diesen spezifischen Anwendungs-
fall nachgewiesen wird. Zu diesem Zweck implementieren wir einen Leichtgewicht-
Mechanismus zur Erkennung von Fehlern auf der Basis von Zeitstempeln und reagieren
nur dann entsprechend, wenn es erforderlich ist.
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1. Introduction

Massively Multiplayer Online Games (MMOs or MMOGs) have become more and more
popular over the past decade [FBS07]. In this kind of game, hundreds or thousands of
players from all over the world are able to play together simultaneously. In a virtual
game world, players are allowed to choose a new identity, establish a new social network,
compete or cooperate with other players, or even make some of their dreams that cannot
be fulfilled in their real life come true [APS08]. This kind of game is so popular and
interesting that in 2013 there are already 628 million MMO players worldwide [She13]
and many players are even addicted to it [HWW09]. The game industry is developing
rapidly, and the global PC/MMO games market is expected to grow at a compound
annual growth rate of 7.9% between 2013 and 2017. In 2014 MMOGs have generated
a total of $17 billion in revenues [New14].

As a typical and the most famous type of MMOGs, Massively Multiplayer Online Role-
Playing Games (MMORPGs) develop rapidly. Every year at the Electronic Entertain-
ment Expo (E3) (the largest annual commercial exhibition of the global video game
industry) many upcoming MMORPGs are revealed by game publishers [IGN15]. There
are some examples of the most popular MMORPGs, like World of Warcraft, Aion, Guild
Wars and EVE Online. The difference between MMORPGs and other MMOGs, such
as first-person shooters and real-time strategy games, is that MMORPGs have popu-
larized the term Persistent World [ZKD08], which describes a virtual environment that
continuously exists and changes, no matter whether millions of users, only few users,
or even none at all interact with it [ILJ10]. In addition to the account information, the
state data of objects and characters must be recorded on the server side in real-time,
so that players can quit and continue the game at any time. Player behaviors in the
game will be monitored and backed up in order to maintain the order of the virtual
world. Furthermore, MMORPGs usually have more concurrent players than any other
MMOGs, (for example, World of Warcraft has millions of concurrent players), which
also exacerbates the burden of managing data.
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From a computer science perspective, these Persistent Worlds represent very complex
information systems consisting of multi-tiered architectures of game clients [KVK+09],
game logic, and game data management which typically implement application-specific
patterns of partitioning/sharding, replication, and load-balancing to fulfill the high
requirements regarding performance, scalability, and availability [WKG+07, FDI+10].
For this reason, a qualified database system for data persistence in MMORPGs must
guarantee the data consistency and also be efficient and scalable [ZKD08]. However,
existing conventional Database Management System (DBMS) cannot fully satisfy all
these requirements simultaneously [WKG+07, Cat10]. Therefore, with an increasing
data volume, the storage system becomes a bottleneck, and solving scalability and
availability issues becomes a major cost factor and a development risk.

In the last decade, Cloud data management has become a hot topic. The recently devel-
oped Cloud database management systems (CDBMSs), such as Cassandra, HBase and
Riak, are designed to support highly concurrent data accesses and huge storage, which
can easily meet the challenges mentioned above (e.g., efficiency, scalability and avail-
ability), thereby becoming a solution [Cat10]. Nevertheless, CDBMSs are generally de-
signed for Web applications that have different access characteristics than MMORPGs,
and require lower or various consistency levels [Aba09]. In other words, features of
CDBMSs and RDBMSs are complementary, so they cannot replace each other. For this
reason, if we hope to use a CDBMS to solve this issue, the following factors must be
considered:

Scalability and performance: the advantages of an easily scalable data management
solution for the development and maintenance of an MMORPG are obvious, but
some specific requirements like partitioned game logic servers, real-time require-
ments, and very specific workloads (e.g., write intensive phases of checkpoints) do
not easily fit with what these systems were developed for and raise the question
of how the systems could be used optimally.

Consistency and availability: some data sets in MMORPGs require a high-level of
consistency, such as account and game state data. In accordance with the CAP
Theorem [GL02] consistency in Cloud data management is either very loosely
defined (e.g., eventual consistency) or must be traded versus availability and/or
performance. The latter may not be an option for MMORPGs.

1.1 Goal of this Thesis

Within the CloudCraft project we address the question of how to take advantages of
Cloud data management solutions while finding ways to address their shortcomings for
this class of applications.

For this purpose, we have organized our research as follows: firstly we have analyzed
the typical architecture and data management requirements of MMORPGs; secondly,
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we have classified data in MMORPGs into four data sets according to the data man-
agement requirements (e.g., data consistency, system availability, system scalability,
data model, security, and real-time processing), namely account data, game data, state
data, and log data; then, we have proposed to apply multiple data management sys-
tems (or services) in one MMORPG, and manage diverse data sets accordingly. Data
with strong requirements for data consistency and security (e.g., account data) are still
managed by an RDBMS (relational database management system), while data (e.g.,
log data and state data) requiring scalability and availability are stored in a Cloud
data storage system; to evaluate and improve the scalability and performance of the
new Cloud-based architecture, we have implemented a game prototype based on an
open source MMORPG project that we ported to run on Cassandra, one of the most
popular CDBMS. Furthermore, we have developed an environment to run simulated,
scripted interactions of many clients with many game logic servers as well as Cassandra
nodes. Based on observations made within this environment, we illustrate approaches
to efficiently use the scaling capabilities; we have also analyzed the data consistency
requirements in MMORPGs so as to achieve the required consistency-level for each data
set in our game prototype. We found that the guarantee of high-level consistency in
Cassandra is not efficient. So we have proposed to use a timestamp-based model as well
as a NodeAwarePolicy strategy to solve it; furthermore, we have implemented a testbed
using a conventional RDBMS (MySQL Cluster) to compare the performance with our
new Cloud-based prototype. Experimental results have demonstrated the feasibility of
our proposals.

1.2 Structure of the Thesis

This following of this thesis will be structured as follows:

Chapter 2 Background: In this chapter, we will give a brief introduction of MMORPGs,
including their typical architecture, characteristics and diverse data sets. Further-
more, the typical databases used in MMORPGs and their limitations will also be
discussed.

Chapter 3 Cloud Storage Systems: Using NoSQL DBMSs to manage data is a
hot topic recently. In this chapter, we will compare them with the conventional
RDBMSs, and introduce Cassandra in detail.

Chapter 4 Cloud Data Management for MMORPGs: In this chapter, we will
discuss the feasibility of introducing Cloud-based technologies in MMORPGs.

Chapter 5 Using Cassandra in MMORPGs: Cassandra is not designed for online
games, so there are some issues to be addressed. We will analyze its limitations
in the game scenario, and propose some solutions for them.

Chapter 6 Evaluation: We have carried out some experiments to prove our proposal
of a Cloud-based architecture for MMORPGs. In this chapter we will show some
interesting experimental results and discuss them.
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Chapter 7 Conclusion: In this chapter we will give a conclusion and summary of our
research.

Chapter 8 Future Work: Some limitations and possible improvements of this thesis
work are outlined in this chapter.



2. Background

This chapter shares the material with the DASP article “Cloud Data
Management for Online Games: Potentias and Open Issues” [DSWM13].

In this chapter, we will introduce some foundations of MMORPGs, like their typical
architectures, various data sets, data management requirements for each data set, and
the limitations of RDBMSs in terms of managing data in MMORPGs.

2.1 Massively Multiplayer Online Role-Playing Game

Before we introduce MMORPGs in detail, we will first distinguish it from other types
of MMOGs.

2.1.1 Brief Introduction of Massively Multiplayer Online Games

MMOG is a kind of video game, which has a capability to support a large number
(thousands) of players simultaneously. MMOGs are usually built on game servers and
played over a network, like the Internet. Players only need to download and run a client
software (client-server model) or use a browser (browser-server model) to play these
games. For this reason, MMOGs can be found on most network-capable platforms,
such as the personal computer, smart phone, tablet, video game console, and so on. To
enhance the game’s interactivity online players are enabled to communicate with each
other, which sometimes are from all over the world.

MMOGs are generating huge revenue for game publishers ever year. A report from
NEWZOO shows that the revenue of PC (Personal Computer)/MMO gaming world-
wide in 2014 is $24.4 billion, and it also predicts that the PC/MMO online games
market will reach $30.7 billion in 2017, accounting for 31% of total global games mar-
ket revenues [New14].

MMOGs include a variety of gameplay types, such as:
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Massively multiplayer online role-playing game (MMORPG) : is the most com-
mon type of MMOGs. The game usually takes place in a fantasy game world.
A player assumes the roles of one or more characters (also called avatar) and
controls it/them to explore and change the game world. The core purpose of the
game is to develop the player’s avatar. Therefore, a player needs to pay for the
virtual currency and/or complete some tasks assigned by the game system, other
players, or the guild in order to earn experience points, reach the level of her/his
avatar, upgrade gaming equipment, or buy some virtual items. Some popular
MMORPGs include World of Warcraft, Aion, Guild Wars and EVE Online.

Massively multiplayer online real-time strategy game (MMORTS) : allows play-
ers to set up their own army in the game. In order to maintain and expand their
territory, to obtain more resources to strengthen their armies, players need to
lead their own armies to go into the battle with enemies (other players’ armies)
in real-time. This kind of game includes League of Legends, Shattered Galaxy and
Age of Empires Online.

Massively multiplayer online first-person shooter game (MMOFPS) : usually
simulates a great battle, in which a large-scale of players found a team to fight
with enemies. The display diver can simulate the first-person perspective of an
avatar. Through this perspective, players observe objects in the game, and react
to them accordingly like shooting, jumping, moving, chatting, and so on. Here is
a list of MMOFPSs: MAG, Firefall, World War II Online and Planetside.

Massively multiplayer online racing game (MMORG) : is a kind of racing-themed
game. Trackmania, Kart Rider and Crazyracing Kartrider belong to this kind of
game.

Massively multiplayer online social game (MMOSG) : focus on building a new
social relationship in a virtual world. Players can even get married and have
children there. Second Life is an example of MMOSGs.

2.1.2 Characteristics of MMORPGs

In this project (CloudCraft), we only focus on MMORPGs for the following reasons:

Most popular MMOGs: MMORPGs have most of the subscribers of MMOGs, thereby
occupying most of the Subscription-based MMOG market share (World of War-
craft occupies 36% in 2013) [Sup14]. It is not only a subset of MMOGs, but also
a symbol of these games. For this reason, although games like MMOSGs have
many common features with MMORPGs, we still decided to focus on the latter.

A large number of concurrent players: An MMORPG distinguishes itself from the
others by allowing a very large number (thousands) of players to interact with
each other in one virtual shared game world. EVE Online even supports several
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hundred thousand players on the same server, with over 60,000 playing simultane-
ously at certain times [com10]. In contrast, games like MMOFPSs and MMORGs
always divide concurrent players into a large number of groups with only a limited
number of participators (e.g., 256 players in MAG [1UP08]), and disperse them
on separated battlefields hosted by different game servers. Only players in the
same group can communicate or combat with each other. This characteristic of
MMORPGs requires a high-performance framework of the game server to handle
a large number of concurrent requests.

Unpredictable number of active players: The number of active players in MMORPGs
changes frequently and strongly with the launch of a new expansion of the game or
affected by the gaming experience. An example is that the number of subscribers
to World of Warcraft peaked in excess of 12 million in October 2010, but it had
decreased to 6.8 million in June 2014. Then, in November 2014 coincided with the
release of a new expansion the subscriptions has passed 10 million again [IGN14].
Therefore, the MMORPG framework needs to have the ability to flexibly cope
with the data management burden caused by the surge in the number of players,
and deal with the issue of the waste of resources caused by the plummeted number
of players.

Complex gameplay: Different with MMOFPSs and MMORGs, which only simulate
a particular scene (shooting or racing) in the life, MMORPGs is trying to cre-
ate a new virtual world. That means, a variety of scenarios in the real world
are presented in the game, such as trading, chatting and combating. In other
words, an MMORPG system contains many subsystems, the data management
requirements of which are total different. Thus, MMORPGs are more difficult to
develop, and the experience gained in the development can be applied to other
MMOGs.

Persistent world: Some MMOGs (e.g., MMOFPSs, MMORGs and MMORTSs) usu-
ally divide the virtual game world into small sessions. That means, the game
world will be reset after reaching a limited time or completing a system speci-
fied target. For example, in MMORTSs a match will be terminated after the car
driven by a player has reached the final line. Then, this player needs to wait for
other players to finish and start a new match. In this case, players can neither
save their records during the game, nor continue to complete a task when they log
in the game again. Effects of players on the game world will disappear with the
end of a session. Therefore, only player’s account information must be stored on
the server side. An MMORPG distinguishes itself from other MMOGs by keeping
the virtual game environment running even when players are offline [APS08]. In
other words, they provide a persistent game world. A player can save her/his
records at any time, and continue the game as if she/he never leaves. Hence, not
only the account information of a player, but also the state information of the
game world, player’s avatar and non player character (NPC) must be persisted on
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the game server. In order to maintain such a virtual world, a complex information
system consisting of a multi-tiered architecture is required.

Big data management: As mentioned above, MMOGs host game worlds on the
server. Players must log in to a remote server before starting a game. There-
fore, different with local area network games and single player games, MMOGs
record game logic, game world metadata, players information on the server side.
Note that the type and size of information stored by MMOG systems are dif-
ferently. We find that MMORPGs are facing the management issue of big data,
which can be tracked back to two sources:

1) Unlike other types of MMOGs, MMORPGs must also persist avatar’s state
information on the server, which could contain around one hundred at-
tributes (e.g., avatar’s basic information, skills, inventory, social relation,
equipment, tasks and position) and lead to a complex database schema.
Since an MMORPG could have millions of players, the data size of such
information is very large. Furthermore, the state information is modified
and retrieved constantly, and the parallel requests from players must be re-
sponded in real-time during the game.

2) Moreover, player behavior analysis is essential for game publishers to help
them understand the current game status, fix bugs in the current edition of
game, guide the development of the future expansion, and detect cheating
in the game [SSM11]. For instance, the number of average concurrent users
has been monitored to evaluate the popularity of a game; the income and
expense of players in the game have been analyzed for holding the economic
equilibrium of the game world and curbing inflation; task statistics could
help for setting the difficulty of a game. As a result, almost all the behaviors
of players as well as system logs need to be persistent on the server, which
increase continuously. For example, EverQuest 2 stores over 20 terabytes
(TB) of new log data per year [ILJ10].

Overall, development of an efficient game system to manage and analyze big data
is particularly crucial for MMORPGs, which has become a challenge [ILJ10].

2.1.3 Analysis of Current Data Management for MMORPGs

Modern database technologies could be used in MMORPG systems to solve the data
management issue mentioned above. But firstly we need to understand the architecture
of a game system.

2.1.3.1 A Typical Architecture of MMORPGs

It is not easy to get the knowledge of a practical architecture of an MMORPG in detail
because game companies always protect it to avoid their game servers from attacks.
Furthermore, the architecture of MMORPGs is significantly influenced by the workload



2.1. Massively Multiplayer Online Role-Playing Game 9

of the game server, and consequently the implementation of each MMORPG system is
individual. However, we can still find some common characteristics and components,
namely applying three tiered architecture (see Figure 2.1) [CSKW02, Bur07, WKG+07].

Client

Server

Database

Client 1...N

     Login Server

Map/Logic Server  1...N

     Patch Server       Gateway Server      Chat Server

Transactional Database Cache

Figure 2.1: Three Tiered Architecture

A game client could be a software/browser on a PC or an application on a smart
phone. A client device does not require a strong computing power other than a powerful
graphics processing capability. It is an interface of the game, which is responsible
for communicating with the game server, computing local game state and displaying
the game screen. A game client almost never makes any authoritative decision (e.g.,
whether a monster is within the valid attacking range of a player) because it could be
reverse-engineered, hacked and modified so as to cheat at the game [WKG+07]. Instead,
MMORPGs always take a centralized authoritative game server for arbitration.

The game server tier mainly consists of six components, namely login server, patch
server, gateway server, chat server, map/logic server and transactional database cache.
Map/logic server is a vital component, which runs the simulation engine, maintains the
game rules, detects cheating, and spreads the computation result to the corresponding
players synchronously [LKPMJP06]. Each map/logic server typically hosts one geo-
graphic zone of the game world instance. If a player crosses from one geographic zone
to another, the state of her/his character will also be transferred to another server au-
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tomatically. Accordingly, players can only communicate, interact and influence others
in their geographic vicinity [WKG+07].

Since the game server needs to handle connecting requests from global players, Map/-
logic servers are deployed on a large number of machines [AT06](e.g., World of Warcraft
has over 10,000 servers [NIP+08]), which are usually distributed in several data centers
(zone server) around the world to reduce latency.

In this case, a gateway server is required to maintain the game session of a player,
besides monitoring requests of the player, forwarding them to a zone server, sending
back results to the player, and protecting the map/logic server from attacks. In other
words, it is an information transfer station, which is also composed of series of servers.

A single map/logic server usually can only support around 2000 concurrent play-
ers [KLXH04]. For the purpose of spreading the load out and extending the number
of players on each server, game developers often separate some non-core functions from
the map/logic server. Therefore, servers like the login server, patch server and chat
server are also necessary in a game server system. A login server is responsible for
determining the validity of a player’s identity. A patch server checks and updates game
data stored at the game client side. A chat server handles the chat messages between
players.

Transaction management is a technical challenge in MMORPGs because data corrup-
tion cannot be handled just by ending a game session. Additionally, the incomplete or
failed transaction must be rolled back. MMORPGs, consequently, manage the game
state in an authoritative storage system to provide persistent game worlds. For this
reason, the database plays an important role in this kind of game, and MMORPGs are
more like traditional database applications comparing with other MMOGs [WKG+07].

From Figure 2.1 we can see that the game server does not retrieve game state data di-
rectly from a disk-resident database, but through a transactional database cache (e.g.,
an in-memory database or a real-time database [Hva99]). There are the following rea-
sons [Ale03]: Firstly, it cannot cope with the heavy I/O workload of an MMORPG with
millions of players. Even using some advanced commercial databases like Oracle and
SQL server, the transaction rate cannot satisfy the game requirement, and it cannot
be improved by simply adding more machines [WKG+07]; secondly, executing transac-
tions in a disk-resident database will inevitably pause the game. This pause may occur
at any time, which cannot be tolerated by a real-time system; finally, game providers
need to invest large amounts of money to buy hardware in order to achieve the theo-
retical performance, which unfortunately can only be predicted in the late stage of the
game development. However, if the architecture has to be changed at that time, the
development of the game will be delayed as well.

The throughput of an in-memory database satisfies the data management requirement
of an MMORPG, consequently, it executes real-time operations in the game instead of
the disk-resident database. However, an in-memory database cannot guarantee the data
persistence when it fails, and its storage costs are high. Therefore, most MMORPGs
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have a transactional database cache sited in front of disk-resident database [WKG+07].
That means, the required data needs to be loaded in a cache, which handles play-
ers’ requests in the form of transactions and then writes data back into the database
asynchronously (e.g., every five or ten minutes).

Typically, each data center hosts its own unique state database. A player has to execute
a character migration operation before she/he moves to another zone server. This
complex data migration process may take a long time [BAT15].

2.1.3.2 Classification of Data Sets in MMORPGs

Not all data in an MMORPG have to be cached on the server side. Actually, MMORPGs
always manage diverse data sets accordingly, thereby separating them in different places
or databases. We have classified data in the game into four sets so as to understand
the process of data accessing in MMORPGs.

Account data: This category of data includes user account information, such as user
ID, password, recharge records and account balance. It is usually only used when
players log in to or log out of a game for identification and accounting purposes.
Compared with transferring game state, the requirement for shortening the re-
sponse time of retrieving account data is not that urgent, hence the use of a
database cache is not necessary.

Game data: Data such as the world geometry and appearance, object and NPC meta-
data (name, race, appearance, etc.), game animations and sounds, system logs,
configuration and game rules/scripts in an MMORPG are generally only modified
by game developers. Game client side often keeps a copy of part of game data
(e.g., world geometry and appearance, game animations and sounds) to minimize
the network traffic for unchangeable data. The game server (patch server) will
update the copy when a client connects it.

State data: PC (Player Character) metadata, inventory, position as well as state of
characters (PC and NPC) and objects in MMORPGs are modified constantly dur-
ing gameplay. As motioned above, modifications of state data are currently exe-
cuted by an in-memory database in real-time and backed up to the disk-resident
database periodically.

Log data: Data like player behaviors, chat histories and mails are also persisted in the
database, and are rarely modified. This kind of data is not used in a game session,
thereby eliminating the need to be preloaded. It is not suggested storing them
together with state data in the same database since collecting of log data brings
the database unnecessary burden and consumes the database capacity rapidly.
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2.1.3.3 A Sample Session in an MMORPG

We integrate all pieces of information and get a typical architecture of MMORPGs
(see Figure 2.2). Now we will walk through a sample session in an MMORPG [WKG+07]:

A player connects the game server through a client, and sends a login request to the login
server, which is responsible for determining its validity. The login server cooperates with
an account database that stores user account information. If the validation is passed,
the login server encrypts the user ID, generates a token, and returns it to the player.
The client then updates the game data stored on it from a patch server, which gets
the data from a game database. When the update is complete, the client uses the
token to communicate with a gateway server, which will assign it to a zone server.
Note that only one zone server provides services throughout an entire session. The
zone server will load the player’s state information from the state database into the
cache, determine physical location of her/his avatar in the game world, assign it to a
logic/map server accordingly, and render a copy of the state information to the client.
Once the assignment is successful, the player can start the game, chat (through a chat
server) and interact with all other players on the same server. The computation of
the interaction occurs on the server or in the database cache, and then the result will
be rendered at the client. The updated state information will be backed up to the
state database periodically. The log database records all player actions (including the
reset actions) and the chat history. When the player quits the game, her/his final state
information will be persisted in the state database and then removed from the database
cache (see Figure 2.3).

Account
Database

Game
Database

State
Database

Log
Database

Client

Zone Server

Map/Logic Server

Transactional database cache

Login Server Patch Server Gateway Server Chat Server

Figure 2.2: Principle Architecture of MMORPGs [WKG+07]
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Read request 
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Cache

Figure 2.3: Management of State Information of an Avatar in MMORPGs

2.2 A Typical Database System in MMORPGs

Currently, popular MMOPRGs mainly apply a distributed RDBMS to persist data
(e.g., Second Life and World of Warcraft both run on MySQL [DBM09], Guild Wars
runs on Microsoft SQL Server [DBM07]), which can commit complex transactions and
are proven to be stable.

A relational database (RDB) implements the relational model. It maintains varying
amounts of tables, which are related by primary keys and foreign keys. Using SQL state-
ments, database developers and administrators maintain a database, and manipulate/-
query data items. There are many tools to maintain and optimize a relational database
system (RDBS). For instance, SQL Server Management Studio and Visual Studio sup-
port Microsoft SQL Server. Overall, an RDB meet all requirements of MMORPGs in
terms of data manipulations.
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With increasing business requirements, centralized systems can hardly meet the needs
such as run-time performance and reliability. Distributed database systems can solve
these problems by increasing data redundancy and the number of computers. Dis-
tributed databases is distributed in the physical layer, but organized in the logical
layer. Each computer has a complete copy of the DBMS, and a local database. For
users, they still consider themselves operating a single database system.

As an example, consider MySQL Cluster [Orab] and its characteristics. MySQL Cluster
adopts a shared-nothing architecture to ensure scalability. In order to balance the
workload among nodes, it automatically partitions data within a table based on the
primary key across all nodes. Each node is able to help clients to access correct shards
to satisfy a query or commit a transaction. For the purpose of guaranteeing availability,
data are replicated to multiple nodes. MySQL Cluster applies a two-phase commit
mechanism to propagate data changes to the primary replica and a secondary replica
synchronously, and then modifies other replicas asynchronously. In this case, at least
one secondary replica has the consistent and redundant data, which can be used as a
fail-over server when the primary server fails. MySQL Cluster also writes redo logs
and checkpoint data to the disk asynchronously, which can be used for failure recovery.
When MySQL Cluster maintains tables in memory, it can support real-time responses.

However, as we mentioned in the introduction, RDBMS cannot fulfill some requirements
(e.g., scalability) of MMORPGs well, and considerable efforts have to be spent on
fulfilling these requirements on other levels [Cat10]. In the following sections, we will
discuss this in detail.

2.3 Data Management Requirements of MMORPGs

MMORPG applies a complex game server to manage various data sets, which have
distinct data management requirements. We have summarized them in Table 2.1 and
explained them in the following.

Support for different levels of consistency:

In a collaborative game, players interact with each other. Changes of state data must be
synchronously propagated to the relevant players within an acceptable period of time.
For this purpose, we need a continuous consistency model in MMORPGs [LLL04].
Changes of the state data and account data must be recorded in the database. It is
intolerable that players find that their last game records are lost when they log in to
the game again. As a result, a strong or at least Read-Your-Writes consistency [Vog09]
is required for such data. However, strong consistency is not necessary for log data and
game data. For example, the existence of a tree in the map, the synchronization of
a bird animation, or the clothing style of a game character is allowed to be different
among client sides. Log data are generally not analyzed immediately. Hence, eventual
consistency [Vog09] is sufficient for these two classes of data.
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Account Data Game Data State Data Log Data

Consistency F F F F F F F F F F

Runtime performance F F F F F F F F

Availability F F F F F F F F F F

Scalability F F F F F F F F

Partitioning F F F F F F F F F

Flexible model F F F F F F

Simplified processing F F F F F F F F F

Security F F F F F F F F F

Re-usability F F F F F F F F F F F F

Table 2.1: Data classification and analysis of their requirements

Performance/real-time:

State data are modified constantly by millions of concurrent players, which brings
a significant traffic to game servers (one player sends an average of six packets per
second [CHHL06]), thereby generating thousands of concurrent database connections.
These commands must be executed in real-time (within 200ms [CHHL06]) and persisted
on the disk efficiently, which have become a challenge to the database performance.

Availability:

As an Internet/Web application, an MMORPG system should be able to respond to
the request of each user within a certain period of time. If lags or complete denial of
services appear frequently, this will significantly decrease the acceptance of the game
and will result in sinking revenues. Availability can be achieved by increasing data
redundancy and setting up fail-over servers.

Scalability:

Typically, online games start with a small or medium number of users. If the game is
successful, this number can grow extremely. To avoid problems of a system laid out for
too few users or its costs when initially laid out for too many users, data management
needs to be extremely scalable [GDG08]. Furthermore, log data will be appended
continually and retained in the database statically for a long time [WKG+07]. The
expansion of data scale should not affect the database performance. Hence, the database
should have the ability to accommodate the growth by adding new hardware [IHK04].

Data sharding:

Performing all operations on one node can simplify the integrity control, but that may
cause a system bottleneck. Therefore, data must be divided into multiple nodes/shards
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in order to balance the workload, process operations in parallel, and reduce processing
costs. Current sharding schemes are most often based on application logic, such as
partial maps (map servers). This does not easily integrate with the requirement of
scalability, i.e., re-partitioning is not trivial when new servers are added. Accordingly,
suitable sharding schemes are a major research issue.

Flexible data model:

A part of data in the game like state data do not have a fixed schema, for example, PCs
have varying abilities, tasks, and inventory. Additionally, MMORPGs are typically
bug-fixed and extended during their run-time. Therefore, it is difficult to adopt the
relational model to manage such data. A flexible data model without a fixed schema is
more suitable.

Simplified processing:

In MMORPGs, only updates of account data and part of state data must be executed in
the form of transactions. In addition, transaction processing in online game databases is
different from that in business databases. For example, in MMORPGs, there are many
transactions, but most of them are of small size. Parallel operations with conflicts occur
rarely, especially in the state and log database, which are responsible for data backup.
There are no write conflicts among players in these two databases because they have
already been resolved in the transactional database cache. There might be a write
conflict from one player, which is usually caused by network latency or server failure,
and can be addressed by comparing the timestamp of the operation. Using locks as
in a traditional database increases the response time. Additionally, deadlock detection
in a distributed system is not easy. Hence, a simplified data processing mechanism is
required.

Security:

Game providers have to be concerned about data security because data breach may lead
to economic risks or legal disputes. For this reason, user-specific data, such as account
data and chat logs, must be strongly protected. Furthermore, it must be possible to
recover data after being maliciously modified.

Ease of use, composability and re-usability:

The data management system should be easy to use by developers and apply for various
MMORPGs. Companies developing and maintaining MMORPGs should be able to re-
use or easily adapt existing data management solutions to new games, similar to the
idea separating the game engine from the game content currently widely applied. An
interesting solution would be game data management provided as a service to various
providers of MMORPGs, but this strongly depends on building up trustworthy services.
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2.4 Limitations of RDBMS in MMORPGs

Traditional RDBMSs are normally easy to use, powerful, stable, efficient, and have
already gained a large number of successful practical experiences. When the traffic
of a web application is not too heavy, a single database can easily cope with it. In
recent years, with the rapid development of the Internet, blog, SNS (social networking
service) and Microblogging gradually become popular. With the increase of web traffic,
almost the majority of web sites using the RDBMS architecture began to face database
performance problems. For this reason, developers began to extensively use database
sharding, replication and caching technique, and optimize the table structure and index.
However, when the data size grows to a certain stage, scalability problems have emerged.
In the following we discuss limitations of RDBMS in MMORPGs in detail:

Hard to scale out:

When the workload of a node in a database cluster is too heavy, it will become a bot-
tleneck of the system. Typically, there are two solutions, namely vertical (scale up) and
horizontal scaling (scale out). Vertical scaling refers to add resources to a single node in
the system, such as upgrading CPUs and extending memories and disks. This method
can effectively improve the performance of a single node. However, it consumes a large
amount of money to buy advanced equipment. If the game becomes unfortunately less
popular and correspondingly the workload of this node goes down, the new added re-
sources will be idle. Moreover, sometimes even if the most powerful equipment has been
used, the issue could still exist. For these reasons, in MMORPGs we typically use the
horizontal scaling method, which means adding more nodes to the cluster in order to
spread the loads. Accordingly, data in the database will be partitioned (vertically/hor-
izontally) into several logical fragments, replicated several times (to avoid single node
failure), and distributed across multiple nodes. While applying the relational model,
a database has to take into account many things like maintaining data integrity (e.g.,
primary key constraint, foreign key constraint or value range constraint) and managing
distributed transactions by locking (e.g., two-phase commit protocol) [SMA+07, Vol10].
All of them would block the concurrent execution of transactions, thereby decreasing
the rate of transactions per second. And the more nodes and replicas exist in the clus-
ter, the greater the impact would be. For this reason, even though some RDBMSs
(e.g., MySQL Cluster and Oracle RAC) have used a shared-nothing architecture, the
scalability of them has still been criticized for a long time [FMC+11, Cat10].

Complex database schema:

An RDBMS implements the relational database model and complies with Codd’s 12
rules [Cod85b, Cod85a], which results in a complex database schema and a low system
performance. Data in the database is structured as a set of relations (tables in SQL),
which are connected by references (foreign keys). Hence, there are many integrity
constraints to follow when modifying data. For example, we cannot delete the value
of an attribute, if another table refers to it. That means, modification of data may
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comply with multiple tables, which is not efficient; to reduce data redundancy RDB
normally complies 3NF (third normal form). In this case, to obtain the result of a
query the system has to perform a join operation across several tables, which might be
distributed in different nodes, or compute values of multiple attributes, both of which
will increase the response time.

Fixed data structure:

The structure of a table, the data type as well as the value range of each column must
be predefined in an RDBMS. The change of data structure (e.g., adding a new attribute
or changing the type of an attribute) leads to modifications of all previous records in a
table, and probably is not transparent to the application level. However, the life cycle
of an MMORPG is bug-fixed. As a result, a game company would have to pause its
game service for a while frequently in order to upgrade and maintain the game system,
which would affect the gaming experience of players.

Strict consistency:

The RDBMS follows a transaction mechanism, thereby providing ACID guarantees
(Atomicity, Consistency, Isolation and Durability) [HR83]. Furthermore, modification
of data object needs to be synchronized to all replicas, or all requests for a data object
need to be processed on a master/primary replica. As a result, the workload at the
master/primary replica or the network traffic between nodes will become a bottleneck
of the system. However, as we discussed above, strict consistency is not necessary for
all data sets in MMORPGs. For some use cases (e.g., backup of state data and log
data), the overhead of this ill-suited consistency mechanism becomes a drawback.

Low availability:

The RDBMS, nowadays, provides solutions to improve availability by replication and
fail-over within the context of distributed databases. Nevertheless, these properties are
not trivial to implement and maintain for a given application, especially considering
the large scale of MMORPGs.

High cost:

The number of mature and commercial RDB products is not too much (e.g., Oracle,
SQL Server, DB2, MySQL and Teradata). Furthermore, many of them require to pay
for an expensive license (except for MySQL). For example, there are three kinds of
licensing models for using SQL Server 2014, namely per core ($14,256 for enterprise
edition), Server + CAL ($8,908 for business intelligence edition) and per user ($38 for
developer edition)1. The database cluster of an MMORPG is supported by a large
number of computers with multi-core processors, and is maintained by numerous game

1http://www.microsoft.com/en-us/server-cloud/products/sql-server/purchasing.aspx (accessed
04.11.2015)
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developers. Purchase of the license increases the cost of game development and op-
eration. Furthermore, it is difficult to predict the scale of a game database cluster,
which depends on the popularity of the game. Excessive purchase of the license is a
serious waste. Additionally, maintenance costs of RDBMSs are high, which make many
enterprises unbearable.

2.5 Summary

In summary, the RDBMS is powerful, but it cannot fit all application scenarios in
MMORPGs. Issues like system scalability, big data management and change of table
structure are challenges for web application developers using RDBMSs. In this context,
the concept of NoSQL databases has been proposed in 2009. Web sites in the pursuit
of high performance and high scalability, have chosen NoSQL technology as a priority
option. NoSQL database has various types, but a common feature of them is that they
have removed relational characteristic. There is no relationship between data, so it is
very easy to extend. Hence, it also brings the scalability to the architecture level. In
the next chapter we will highlight this kind of database.
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3. Cloud Storage Systems

This chapter also shares the material with the DASP article “Cloud Data
Management for Online Games: Potentials and Open Issues” [DSWM13].

In this chapter, we will introduce Cloud storage systems, highlight the new challenges
from managing big data, compare NoSQL stores and RDBs with their application sce-
narios, features and data models, and at last take Cassandra as an example to show
the implementation of a NoSQL store in detail.

3.1 Cloud Computing

With the rapid development of the Internet industry, release, exchange, collection and
processing of information more and more depend on the network. Information on
website is no longer static as in earlier years. The Internet functionality and the network
speed have been improved greatly. Now, the Internet has become an indispensable part
of people’s life.

Given this background, Internet companies are facing unprecedented opportunities and
challenges. Some websites have to deal with millions of concurrent visitors and thereby
processing petabyte data [SLBA11], which could not be handled by conventional system
architecture and DBMS efficiently. For instance, the social network website, Facebook,
has over 1.71 billion monthly active users, who totally share 4.75 billion pieces of content
and upload 300 million photos daily [Zep16]. As a result, a new advanced information
technology, Cloud computing, has been proposed.

Cloud computing combines IT and Internet technology, so as to obtain the super com-
puting and storage capacity [AFG+10]. By using it, shared hardware and software
resources as well as information could be provided to computers and other devices on
demand. Accordingly, IT companies can improve the utilization rate of their exist-
ing resources (e.g., storage space and computing power) by using Cloud technologies,
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and even rent such resources from a Cloud provider, which reduces their operational
costs [KKL10, KK10].

Cloud computing offers three kinds of service models [Kav14], namely infrastructure as
a service (IaaS), platform as a service (PaaS) and software as a service (SaaS)(see Fig-
ure 3.1).

PaaSPaaS

IaaSIaaS

Application Application 
DevelopersDevelopers

End UsersEnd Users

Networks Networks 
ArchitectsArchitects

database, web server, database, web server, 
development tools, ...development tools, ...

SaaSSaaS

physical computing resources, physical computing resources, 
storage space, middleware, storage space, middleware, 

security, backup, ...security, backup, ...

e-mail, games, e-mail, games, 
virtual desktops, ...virtual desktops, ...

Figure 3.1: Three Service Models [Vah14]

IaaS: over the Internet, consumers (e.g., networks architects) obtain infrastructure
services like physical computing resources, storage space, middleware, security,
backup, etc.

PaaS: consumers (like application developers) get a development environment service
(e.g., database, web server, development tools) from a Cloud provider.

SaaS: consumers through the Internet obtain software services, such as e-mail, virtual
desktops or games. Typically, users do not need to buy the software, but lease
the right to use a web-based software from the providers by getting an account
name and a password.

This project aims at building a suitable game data management system. For this reason,
in the next section we focus on introducing Cloud data management in detail.
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3.2 Cloud Data Management

We can classify data into three types, namely structured data, unstructured data and
semi-structured data. Structured data refer to any data that could reside in a fixed
structure such as a two-dimensional table structure, like a row of a table in an RDB.
Unstructured data are all data objects that could not fit into any fixed two-dimensional
table, such as texts, photos, graphics, videos and webpages. Semi-structured data are
between these two types of data. They have generally a self-describing structure, which
mixes tags/markers and information together. XML and HTML are forms of semi-
structured data. These three kinds of data are managed separately by different services
in the Cloud. Normally, we use Cloud storage service to persist unstructured data, and
use Cloud database to store structured data. Semi-structured data could be managed
by both of them.

3.2.1 Cloud Storage and Cloud Database

Cloud storage: is an online storage service (belongs to IaaS model), which is a new
concept extending from the concept of Cloud computing. Specifically, it refers to
the data storage on virtual servers offered by a third party [Roe11].

While applying a private storage system, we must clearly know its interfaces,
transmission protocols, number of hard disks and their capacity. To ensure data
security and business continuity, we also need to establish the appropriate data
backup systems and disaster recovery systems. In addition, periodically status
monitoring, maintenance, hardware and software updates and upgrades for the
storage devices are also necessary. While using the Cloud storage, everything
mentioned above is no longer necessary for the user. All devices in a Cloud
storage system are completely transparent to the user. An authorized user can
access it anywhere via the Internet. Data are stored in the form of files in a
distributed storage system like Hadoop Distributed File System [SKRC10].

Web 2.0 technology helps Cloud storage users to store, share, back up and recover
data like texts, pictures as well as video and audio files easily via PCs, mobile
phones and other mobile equipment. The software Dropbox1 is a good example
for a Cloud storage service.

Cloud database: 2 refers to a database running on a Cloud infrastructure (belongs to
PaaS model). There are two development models: users could either deploy their
own databases in a virtual machine image, or obtain a database service maintained
by a Cloud database vendor. With a professional company for database mainte-
nance and other benefits like storage integration, Cloud databases are economical
(pay-on-demand, no hardware, software or licensing fees), safe, efficient, available,
reliable, easy to use and so on. Therefore, recently Cloud databases have been

1https://www.dropbox.com/ (accessed 19.12.2015)
2https://en.wikipedia.org/wiki/Cloud database (accessed 19.12.2015)
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more and more applied to the domains of Web application, data analysis and data
management.

There are two models using in Cloud databases, namely the SQL- and the NoSQL-
based model. That means, users can get both database services from conventional
RDBMSs (e.g., Oracle, MySQL, SQL Server and IBM DB2) and NoSQL DBMSs
like Cassandra, HBase and MongoDB. In the next section, we will introduce the
inevitability of the appearance of NoSQL stores.

3.2.2 Big Data Management

With the emergence of Web 2.03, instead of employees of a website, users become the
major producers of web information. On the one hand, it greatly increases the richness
and interactivity of web information. On the other hand, it brings the challenge of
processing big data, for example, the big transaction data from C2C (Consumer to
Consumer) websites like eBay, and the big interaction data from SNS websites like
Facebook.

Big data usually have following properties: they have diverse types (Variety), such as
structured, unstructured, semi-structured; the amount of these data is massive (Vol-
ume), which normally reaches the terabyte or petabyte level; the generation speed of
these data is particularly fast (Velocity), so they must be processed in real-time. (It
is called 3Vs properties.) Therefore, to manage the big data, a DBMS must have
scalability, efficiency and high availability.

While using conventional RDBs, website developers have to face many insurmountable
issues (large data processing, multiple data types management, system scalability, etc.).
In the last chapter, we have analyzed the reason, which is due to the restrictions from
the relational model. As a result, website developers have to explore new storage
architectures to meet these challenges. Accordingly, a movement called NoSQL (non
SQL) was launched in 20094 [SLBA11].

3.3 NoSQL Stores

In the late 1990s, Eric Brewer has described the CAP theorem, BASE and eventual
consistency, which became later the theoretical foundation of NoSQL. In the follow-
ing, we will introduce them in detail, and discuss NoSQL stores by comparing it with
conventional RDBs.

3.3.1 CAP Theorem

The famous CAP Theorem is first presented as a conjecture by Eric Brewer, which was
later proven to be true [GL02]. Although some researchers raise an objection to this

3https://en.wikipedia.org/wiki/Web 2.0 (accessed 03.12.2015)
4http://nosql-database.org/ (accessed 03.12.2015)
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theorem, it is still followed by distributed databases like NoSQL stores. This theorem
states that consistency (C), availability (A), and partition tolerance (P), at most two
of them can be guaranteed simultaneously for a distributed computer system.

Consistency: all replicas in a distributed system keep the same value at any time.

Availability: each request can be responded within a period of time. (Even if the
value is not consistent in all replicas, or just sends back a message saying the
system is down.)

Partition tolerance: in the case of network partitioning (such as network interrupt
or node failure), the system can continue to operate as it is complete.

The choice of CA could only be made when the system is deployed in a single data
center, where partition occurs rarely. However, even if the probability of occurrence of
the partition is not high, it is entirely possible to occur, which shakes the CA-oriented
design. In the case of node failure, developers have to go back, and make a trade-off
between C and A.

Current network hardware cannot avoid message delay, packet loss, and so on. So
in practice, partition tolerance must be achieved in a cross regional system. For this
reason, developers have to make a difficult choice on data consistency and availability.

Conventional RDBMSs are designed and optimized for OLTP (Online Transaction Pro-
cessing) systems like banking systems, where inconsistent data may lead to erroneous
computing results or customer’s economic losses. Consequently, this kind of DBMS
chooses to sacrifice system availability (CP type). When there is a network partition,
a write request would be blocked due to the continuous attempt of connecting with the
lost node.

Web 2.0 websites have many significant differences with OLTP systems:

Requirement for data consistency: many real-time Web systems do not require a
strict database transaction. The requirement for read consistency is low, and
in some cases the requirement for write consistency is also not high. Eventual
consistency is allowed.

Requirement for write and read in real-time: the RDB ensures that a read re-
quest could immediately fetch the data after a successful insertion of a data item.
However, for many web applications, such a high real-time feature is not required.
For example, it is totally acceptable on Twitter that after posting a new Tweet,
subscribers see it in a few seconds or even ten seconds.

Requirement for complex SQL queries, especially multi-table queries: any web
system dealing with big data avoids joining multiple large tables and creating com-
plex data analysis type of reports. Especially, SNS websites have avoided that
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from the requirements of system functionality as well as the design of database
schema. Usually there are only retrievals of primary key and queries with simple
conditions within a single table. So complex SQL queries are not required.

Moreover, users of Web 2.0 websites expect to get 7*24 uninterrupted service [BFG+08],
which unfortunately cannot be fulfilled by RDBs guaranteeing strong consistency. For
these reasons, website developers have abandoned the SQL model and designed alterna-
tive DBs. Some NoSQL stores are developed to provide a variety of solutions to ensure
the priority of system availability (support AP).

It is noticed that NoSQL DBMSs are typically designed to deal with the scaling and
performance issues of conventional RDBs. In addition, their functionality highly de-
pends on their specific application scenarios (not only Web 2.0 websites). Therefore, it
does not mean all NoSQL stores (e.g., HBase) have dropped data consistency in favour
of availability.

3.3.2 ACID vs. BASE

Conventional RDBs chose to stick ACID properties (Atomicity, Consistency, Isolation,
Durability) of transactions [HR83].

Atomicity: a transaction is an indivisible work unit. Operations within one transac-
tion are performed either all or none.

Consistency: at the beginning or the end of a transaction, the database must be in
a consistent state. It is noteworthy that the concept of C in ACID is different
with that in CAP and later in BASE. Here, C means all rules (data integrity) of
a database, such as unique keys. In contrast, C in CAP only refers the state of a
single replica, which is only a subset of ACID consistency [Bre12].

Isolation: a transaction cannot be interfered by other transactions. A data item cannot
be accessed by other transactions until it is modified completely.

Durability: once a transaction is committed, changes of data should be persistent.
Even a system failure will not affect them.

In contrast, in the NoSQL movement, developers have made a variety of programs
giving priority to availability and following BASE, which is an acronym of Basically
Available (BA), Soft state (S), and Eventual consistency (E) [FGC+97].

Basically available: NoSQL DBMS typically does not concern isolation, but system
availability. In other words, multiple operations can simultaneously modify the
same data. Hence, the system is able to respond any request. However, the
response could be an inconsistent or changing state.
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Soft state: data state can be regenerated through additional computation or file I/O.
It is exploited to improve performance and failure tolerance. Data are not durable
in disk.

Eventual consistency: the change of a data item will be propagated to all replicas
asynchronously at a more convenient time. Hence, there will be a time lag, during
which the stale data would be seen by users. In this project, three kinds of eventual
consistency will be mentioned, namely causal consistency [Lam78, Vog09], read-
your-writes consistency [Vog09] and timed consistency [TRAR99, LBC12]:

1) causal consistency: in this paper, it means when player A uses a client
software or a browser to access a game server, the server will then transmit
the latest game data in the form of data packets to the client side of player
A. In this case, the subsequent local access by player A is able to return the
updated value. Player B who has not contacted the game server will still
retain the stale data.

2) read-your-writes consistency: in this paper, it describes that once state
data of player A have been persisted in the database, the subsequent read
request from player A will fetch the up-to-date data, yet others may only
obtain a stale version of them.

3) timed consistency: in this paper, it specifically means that update oper-
ations are performed on a quorum of replicas instantaneously at the time
t, and then the updated values will be propagated to all the other replicas
within a time bounded by t + 4 [LBC12].

BASE and ACID are actually at opposite ends of the consistency-availability spec-
trum [Bre12]. Most NoSQL stores limit ACID support [GS11]. Some of them use a
mix of both approaches. For example, Apache Cassandra introduces lightweight trans-
actions in a single partition.

3.3.3 RDBMSs vs. NoSQL DBMSs

RDBs and NoSQL stores are built on different data models, namely the relational/SQL
model and the NoSQL model.

Relational/SQL model: in the relational/SQL model, data are represented in a re-
lation (table) of attributes (columns) and tuples (rows). The database schema is
fixed. The attribute name and its data type must be predefined. Each tuple con-
tains the same attributes. Even though not every tuple needs all these attributes,
the database will still assign all of them to it and insert a NULL (in SQL model)
into the appropriate field (as an attribute value). The integrity constraints (e.g.,
primary key, foreign key and value range constraint) describe valid tuples of a
relation. In addition, the transactional integrity constraints (ACID properties)
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describe valid changes to a database. This structure is suitable for join or com-
plex query operations across relations (tables). Figure 3.2 illustrates a sample of
tables in an RDB. Three tables are connected by foreign keys. All tables have
fixed schema.

NoSQL model: NoSQL stores have simplified the relational/SQL model. Their data
typically are represented as a collection of key-value pairs. And they provide
a flexible/soft schema. Each key-value pair could contain divers types/numbers
of value. Each tuple (row) support to increase or decrease the number of the
key-value pairs as needed. They typically do not place constraints on values,
so values can be comprised of arbitrary format. Each tuple is identified by a
primary key or composite keys. Many integrity constraints have been canceled
(e.g., foreign key constraint) or weakened (e.g., transactional integrity constraint).
For this reason, data partition is easy to reach, and the system can scale out
arbitrarily. The flexible data model makes it possible to use denormalization
in place of join operation across entities, so the system performance has been
significantly improved. We have mapped tables in Figure 3.2 to a NoSQL store
showed in Figure 3.3. Data in the RDB have been denormalized in one table,
which has a dynamic schema. If a character has more than one item, accordingly
more key-value pairs/columns will be appended to the corresponding row.

Item

ID Name Description

1 aa xxxx

Inventory

ItemID CharacterID

1 2

Character

ID Name Gender age

1 Alex male 32

2 Ann female null

Figure 3.2: A Sample of Tables in an RDB

Character 

ID: 1 Name: Alex Gender: male Age: 32

ID: 2 Name: Ann Gender: female ItemName: aa ItemDescription: xxxx

Figure 3.3: A Sample of a Table in a NoSQL Store

NoSQL stores are implemented in significantly different ways, but they still have some
common characteristics. Based on the research result of Ben Scofield we have rated
different categories of RDBMSs and NoSQL DBMSs in Table 3.1 [Sco10].

NoSQL DBMSs are often excellent in the aspects of partition tolerance, performance,
availability, scalability and development costs. However, their drawbacks are also obvi-
ous. For example, they are limited to the functionality (e.g., ad-hoc query, data analysis
and transaction management) due to the lack of support of a SQL-like query language
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RDBMSs NoSQL DBMSs

Data Consistency high variable (low)

Functionality high low

Reliability high variable (moderate)

Complexity moderate low

Partition Tolerance high high

Flexibility low high

Runtime Performance variable high

Availability moderate variable

Scalability variable high

Cost high low

Table 3.1: A General Rating of Different Categories of Two Kinds of DBMS [Sco10]

and the limitation of their underlying structures. We can even state that all functions
that NoSQL DBMSs support could be achieved by RDBMSs; they are less mature than
RDBMSs because they do not have the decades of experience of application and de-
velopment. Particularly, they tend to be open-source, with normally just one or two
companies/communities handling the support angle; additionally, the simple key-value
pair structure is failed to support values with schemes of arbitrary complexity.

In fact, NoSQL DBMSs are complementary to RDBMSs in some aspects. These two
kinds of DBMSs have their own characteristics and application scenarios. Hence, they
will not replace the other. In the rapidly developing Web 2.0 era, we should choose
the right DBMS according to the business scenario, or even combine various DBMSs
in order to get their advantages. That means, we use RDBMSs to concern in the
functionality (e.g., ad-hoc query) of the system, and use NoSQL DBMS to persist data
(e.g., fast backup and recovery of data). In this project, we have adopted this approach
to manage data in MMORPGs.

3.3.4 Classification of NoSQL DBMSs

Based on their data models we can mainly classify NoSQL DBMSs into the following
groups5:

Key-value store: the data structure of it is similar to the Hashtable, in which a
key corresponds to one value. Each key appears at most once (unique) in the
collection. Redis, Riak and Dynamo employ this data model.

Wide Column Store: it also uses key-value pairs to store data, in contrast one key
corresponds to multiple columns (key-value pairs). Wide column stores often
employ a structure like tables, rows and columns to store structured and semi-
structured data. Unlike in the relational model, the number of columns is not

5http://nosql-database.org/ (accessed 03.12.2015)
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fixed, and the column names and their data types can vary from row to row
in one table. It has the ability to hold a large number (billions) of columns in
one row. Timestamp is recorded in each column to determine the valid content.
Google BigTable, Apache Cassandra and HBase use this data model.

Document Store: it generally uses a format as JSON to store data. Its content is in
the document type. Hence, it has the opportunity to build an index on certain
fields to achieve some of the features of an RDBMS. CouchDB and MongoDB are
based on this data model.

Others: there are still many other types of NoSQL stores, such as graph databases,
multimodel databases, object databases, XML databases and so on.

3.4 Apache Cassandra

In the Cloudcraft project, we have taken Cassandra as an example to persist data in
MMORPGs. Thus in this section, we will give an introduction of Cassandra.

Cassandra is a distributed NoSQL DBMS, which was initially developed at Facebook
to power their Inbox Search feature [LM10]. It was released as an open source project
in 2008. Now the enterprise edition of Cassandra is supported by DataStax, Inc.6.
Cassandra inherits the data model of Google BigTable [CDG+08] and the completely
decentralized architecture of Amazon Dynamo [DHJ+07]. Due to its linear scalability
and high availability Cassandra is widely in use at many Web 2.0 websites like Digg
and Twitter, as well as some commercial websites like eBay, GitHub and Netflix.

Cassandra has following main features7:

Fault tolerant: data in Cassandra are automatically replicated to multiple nodes
(could be across multiple data centers) for fault-tolerance. A failed node can
be replaced by another node with no downtime.

Decentralized: Cassandra has a peer-to-peer structure. Every node in the cluster is
identical. That means, there is no master/primary node. Accordingly, there are
no single points of failure or network bottlenecks.

Durable: even when an entire data center goes down, there is still no data lose.

Scalability: read and write throughput both increase linearly as new machines are
added, with no downtime or interruption to applications [KKR14].

Tunable consistency: consistency level of writes and reads is offered to be tunable.
Users are allowed to specify the consistency level for each write/read indepen-
dently from “writes never fail” to “block until all replicas to be available”, with
the quorum level in the middle.

6http://www.datastax.com/ (accessed 15.02.2016)
7http://cassandra.apache.org/ (accessed 23.01.2016)
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Query language: from the release of 0.8, Cassandra Query Language (CQL) has been
added. The CQL syntax is similar to that of SQL, so developers, who are familiar
with SQL, do not need to spend much time to learn it. The function of CQL is,
however, not as strong as SQL. For example, for retrieving data, only the columns
that are part of the primary key and/or have a secondary index defined on them
could be used as query criteria [Casb].

Lightweight transaction: from the release of 2.0, Cassandra starts to support lightweight
transactions, which are restricted to a single partition. This feature aims at sup-
porting a linearizable consistency or the isolation in ACID terms.

In the following subsections, we will provide an overview of Cassandra [Hew10, LM10].

3.4.1 Data Model

Cassandra is a partitioned wide-column store. Its data model brought from Google
BigTable. To understand the data model, we need to know the following terminologies:

Column: column is the basic unit of data in Cassandra. It consists of three com-
ponents, namely name (key), value and timestamp (Table 3.2). Values of these
components are supplied by the client, including the timestamp (represents when
the column was last updated). Timestamp is used in Cassandra for conflict res-
olution. If there is a conflict with the column value between two replicas, the
column with the highest timestamp will replace another one. Timestamp cannot
be used in the client application. Therefore, we can consider the column as a
name/value pair.

A column value has two properties/markers, TTL (time to live) and tombstone.
TTl is an optional expiration period (set by the client application), after which
the data will be marked with a tombstone. Data with a tombstone will be then
automatically removed during the compaction and repair processes (we will discuss
it later in detail).

Additionally, from Cassandra 1.2, collection types (e.g., set, list and map type)
are supported. That means, we could store multiple elements in a single column
value. Elements in the set type are sorted, and there is no duplicate values. List
type keeps the insertion order, and allows duplicate values. A map type contains
a name and a pair of typed values (user defined), and elements are sorted. Each
element has an individual TTL. Furthermore, in Cassandra 2.1 and later, we can
create a user-defined type to attach multiple data fields to a column or even an
element in a collection type.

Row: row is a container of columns. Each row is uniquely identified by a row key that
supplied by the client, and consists of an ordered collection of columns related
to that key (Table 3.3). In RDBs it is only allowed to store column names as
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Column

name: byte[] value: byte[] timestamp: Int64

“user” “Mila” 2015-10-10 02:22

Table 3.2: Structure of a Column

Row

Row Key: byte[] column 1 column 2 ... column N

1————>2 billion columns

Table 3.3: Structure of a Row [McF13]
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Column Family

row key 1 column 1 column 2 column 3 column 4 column 5

row key 2 column 3 column 6

row key 3 column 1

row key 4 column 2 column 6 column 7 column 8

row key 5 column 1 column 3 column 5 column 7 column 9

row key 6 column 3 column 6 column 7

————————————————>

sorted by column name

Table 3.4: Structure of a Column Family

strings, but in Cassandra both row keys and column names can be any kind of
byte array, like strings, integers and UUIDs. Cassandra supports a maximum
number of columns in a single row up to 2 billion [Casa], and is consequently
called wide-column store.

Column family: rows are ordered by their keys in column families (Table 3.4). Each
row does not have to share the same set of columns. Column families are prede-
fined, but the columns are not. Users can add any new column to any column
family at any time. Hence, column family has a flexible schema.

Keyspace: a keyspace contains several column families. It is the outermost container
for data in Cassandra. When we create a keyspace, attributes like data replication
strategy (replica placement strategy), number of replicas (replication factor) and
column families must be defined.

Cluster: Cassandra is typically distributed over several machines that operate to-
gether. Cluster (sometime also called ring) is the outermost container of the
system. Usually there is only one keyspace in a cluster. Data in Cassandra are
distributed in nodes, each of which contains at most one replica for a row. Cas-
sandra arranges nodes in the cluster in a ring format.
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Relational Model Cassandra Model

Database Keyspace

Table Column Family

Primary key Row key

Column name Column name

Column value Column value

Table 3.5: Analogy of Relational Model and Cassandra Model [Pat12]

Table 3.5 helps us transform from the relational world to Cassandra world. However,
we cannot use this analogy while designing Cassandra column families. Instead, we
need to consider column family as a map of a map. The key of an outer map is row key,
and similarly the key of an inner map is column name. Both maps are sorted by their
keys [Pat12]. Because of that we can do efficient lookups and range scans on row keys
and column keys. Furthermore, a key can itself hold a value, consequently, a valueless
column is supported.

3.4.2 Architecture

From this subsection, we start to discuss the internal design of Cassandra.

3.4.2.1 Peer-to-Peer architecture

Nodes in many traditional database clusters (e.g., MySQL Cluster) and even in some
advanced data stores (e.g., Google BigTable), are playing different roles. For instance,
MySQL cluster divides its nodes into three groups, namely management nodes, data
nodes and SQL nodes. Additionally, not all nodes in a cluster are equal in the data
processing. For instance, by applying a master/slave model, only master nodes are
responsible for updating data, and the updates will be then synchronized to slave nodes.
This model is optimized for reading because clients can fetch data from each node.
Furthermore, it is beneficial to data consistency in a distributed environment. However,
there is a potentially single point of failure. When a master node is offline, the relevant
update service will block until a slave node takes over it.

By contrast, Cassandra adopts a peer-to-peer (P2P) model, where all nodes are identi-
cal. This design makes Cassandra overall available and easy of scaling. Firstly, removing
or taking offline of any node will not interrupt the read/write service. Secondly, in or-
der to add a new server, we simply need to add it to the cluster without complicated
configuration. The new added node will automatically learn the topology of the ring
and get the data that it should be responsible for from other nodes. And then it starts
to accept requests from clients.

A precondition for supporting this decentralized architecture is that nodes are aware of
each other’s state. Cassandra applies a gossip protocol for the intra-ring communication.
Gossip service (Gossiper class) starts with the starting of Cassandra on a machine, and
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runs every second on a timer to communicate other nodes. The gossiper class on each
node holds a list of the state information of all nodes (alive and dead). Gossiper sends
a message to a random node periodically in order to synchronize the state information
and detect failure. State information in the gossiper class includes load-information,
migration and node status, such as bootstrapping (the node is booting), normal (the
node has been added into the ring and is ready for accepting reads), leaving (the node
is leaving the ring) and left (the node dies or leaves, or its token has been changed
manually).

3.4.2.2 Ring

Cassandra assigns data to nodes in the cluster by arranging them in a logical ring.
Token (a hash value) is used in Cassandra for data distribution. Each node holds a
unique token to determine its position in the ring (from small to large in the order
of clockwise, see Figure 3.4) and identify the portion of data it hosts. Each node is
assigned all data whose token is smaller than its token, but not smaller than that of
the previous node in the ring (see Figure 3.5). The range of token values is determined
by a partitioner. Cassandra uses Murmur3Partitioner as default for generating tokens,
consequently, the range of token values is from −263 to 263 − 1. Cassandra partitions
data based on the partition key, which is computed to a token value by a token function.
Cassandra uses the primary key (row key) as the partition key. When a row is identified
by a compound key (multiple columns), the first column declared in the definition is
treated as the partition key.

B

C

A

D

Token: -9223372036854775808

Token: -4611686018427387904

Token: 0

Token: 4611686018427387904

Figure 3.4: A Four-node Cassandra Ring using Murmur3Partitioner

Data replication is typically used in Cassandra to ensure reliability and fault tolerance.
The number of copies for each row of data is specified while creating a keyspace by
specifying the replication factor (an attribute of keyspace). A typical setting of that is
THREE. That means, in the ring/cluster there are three nodes hosting copies of each
row. There is no primary or master replica. This replication is transparent to clients.
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to
-1
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to

4611686018427387903

Figure 3.5: Token Range of each Node

Replica placement strategy is another attribute of the keyspace, which refers to how
replicas will be placed in the ring. SimpleStrategy is used for a single data center,
which places the first replica on a node according to its token value, and places ad-
ditional replicas on the next nodes clockwise in the ring (see Figure 3.6). There is
another strategy named NetworkTopologyStrategy, which is recommended for multiple
data centers. Replicas will be placed on distinct racks across data centers.

Adding or moving a node in the ring will trigger the rearrangement of token values
on relevant nodes (not all) automatically. The new added node starts to provide read
services only after obtaining all required replicas.

3.4.2.3 Data Storage Mechanism

The storage mechanism of Cassandra borrows ideas from BigTable, which uses Memtable
and SSTable. Before writing data, Cassandra firstly writes the operation in a log, which
is called CommitLog (there are three kinds of commit log in the database, namely
undo-log, redo-log and undo-redo-log. Cassandra uses timestamp to recognize the data
version, hence CommitLog belongs to redo-log.). And then data are written to a column
family structure called a Memtable, which is a cache of data rows. Data in a Memtable
are sorted by keys. When a Memtable is full, it is flushed to disk as an SSTable. Once
flushed, a SSTable file is immutable. That means no further writes can be done, but
only reads. The Memtable will be then flushed to a new SSTable. Thus, we can consider
that there is only sequential writes and no random writes in Cassandra, which is the
primary reason that its write performance is so well.

SSTable cannot be modified, so that normally a column family corresponds to multiple
SSTables. While performing a key lookup, it would increase the workload greatly if all



36 3. Cloud Storage Systems

B

C

A

D

Replica A, D, C

Replica B, A, D

Replica C, B, A

Replica D, C, B

Figure 3.6: Data Distribution with SimpleStrategy (replication factor is 3)

SSTables are scanned. To avoid scanning the unnecessary SSTables Cassandra applies
Bloom filters, which map all keys containing in SSTables to a bit array in memory.
Only when the filter indicates that the required key exists in a SSTable file, the disk is
accessed to get it.

To bound the number of SSTable files Cassandra performs compaction regularly. Com-
paction refers to merging multiple old SSTables containing the same column family into
a new SSTable. The main tasks of compaction are:

Garbage Collection: Cassandra does not delete data directly, thereby consuming
more and more disk space. Compaction moves the data with tombstone marker
from disk.

Merger of SSTables: compaction merges multiple SSTable files (including index,
data and filter) into one to improve the read performance.

Generation of MerkleTree: In the process of the merger, a new MerkleTree of the
column family is generated. A MerkleTree is a hash tree to represent the data
in a column family. It is used to compare with that on other nodes to reconcile
data.

3.4.3 Guarantee of Eventual Consistency

The method of guaranteeing eventual consistency is to regularly check whether all repli-
cas are consistent. If not, take some synchronization measures to repair it. Cassandra
adopts three built-in repair utilities for that, namely Anti-Entropy, Hinted Handoff and
Read Repair.
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Anti-Entropy : it is a replica synchronization mechanism. During a major com-
paction, the node exchanges MerkleTree with neighboring nodes to detect whether
a conflict exists. If any difference is found, it launches a repair for that.

Hinted Handoff : during the processing of a write operation, if the write consistency
can be met, the coordinator (a node in the cluster handling for this write request)
creates a hint in the local system for a replica node that is offline due to network
partitioning, or some other reasons. A hint is like a small reminder, which contains
the information of the write operation. However, the written data are not readable
on the node holding the hint. When the replica node has recovered from the
failure, the node holding the hint sends a message immediately to it in order to
replay the write request. This mechanism makes Cassandra always available for
writes, and reduces the time that a recovered node gets ready for providing read
services.

Read Repair : during/after responding a read operation, Cassandra may ( 10% prob-
ability as default) check data consistency on all replicas. If data are inconsistent,
the repair work will be launched (a detailed introduction of Read Repair com-
bining with consistency levels will be given later in Section 3.4.4.2). The proba-
bility for Read Repair is configured while creating a column family by changing
read repair chance.

3.4.4 Data Processing

In this subsection, we will give a short summary of the procedure of writing, reading
and deleting data, as well as consistency levels in Cassandra.

3.4.4.1 Writing Data

A write request from the client is firstly handled by an arbitrary node called coordi-
nator in Cassandra cluster, which does not have to hold the row being written. The
coordinator forwards then the request to all nodes holding the relevant replica. When
the write is complete (it has been written in the CommitLog and Memtable) on a replica
node, it sends back a success acknowledgment to the coordinator. Once the coordina-
tor gets enough success acknowledgments depending on the write consistency level, the
request is considered successful. The coordinator will then respond back to the client.
Otherwise, the coordinator will inform the client that there are not enough available
replicas to perform the write operation.

Figure 3.7 shows the procedure of performing a write in a single data center, which hosts
an eight-node cluster with the replication factor three adopting SimpleStrategy. The
write consistency level is ONE. When the coordinator receives the success acknowledg-
ment from the first replica node (node C), the write operation is considered a success.
If a replica is not available at this moment, thereby missing the write. Cassandra will
make it eventual consistent using one of the synchronization measures mentioned in the
previous subsection.
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Figure 3.7: Procedure of Writing Data (Write Consistency Level is ONE )

In Cassandra, there is no update operation as in an RDBMS, where an old value of a
column is replaced by a new one. Instead, while writing an existing partition, the new
value is written with the modification time (timestamp). When there is a read against
that column, the value with higher timestamp will be returned. Hence, “update” in
Cassandra is already simplified as an insert, which does not need to get and modify the
previous value. This feature makes the “update” efficiently.

3.4.4.2 Reading Data

Similar with writing data, a read request is also first sent to an arbitrary node in the
cluster. And then reading data is divided into two steps.

Step one: the coordinator forwards a direct read request to the closest replica node,
and a digest request to a number of replica nodes determined by the read con-
sistency level. Accordingly, these nodes respond back with the row/a digest of
the requested data. If multiple nodes are contacted, the coordinator compares
the rows in memory, and sends the most recent data (based on the timestamp
included in each column) back to the client. If the read consistency level cannot
be fulfilled at the moment, the coordinator has to respond back the client that
reading data is failed.

Step two: after that, the coordinator may also contact the remaining replica nodes
in the background. The rows from all replicas will be compared to detect the
inconsistent data. If the replicas are not consistent, the up-to-date data will be
pushed to the out-of-date replicas. As we introduced above, this process is called
Read Repair.
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Figure 3.8: Procedure of Reading Data (read consistency level is ONE )

Figure 3.8 shows an example, where the read consistency level is specified to ONE, and
the up-to-date rows are hold on replica node C and D. In the first step, only replica
node B has been contacted because it is the closest replica to the coordinator (that
means replica node B responds node G the fastest). The data fetched from node B is
responded back to the client. In the second step, the remaining two replica nodes have
been contacted. All rows from the replicas have been compared. The coordinator has
found that the replica holding on the node B is out-of-date, so the coordinator issues a
write to it.
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Cassandra improves its read performance by holding a partition key cache and a row
cache, which helps to avoid reading from disk. The partition key cache is enabled by
default. It caches the partition index to help Cassandra know where a partition is
located on disk so as to decrease seeking times and save CPU time as well as memory.
The row cache is similar to a traditional cache like memcached in MySQL, which stores
the entire contents of a partition that is frequently accessed. This feature, however,
consumes large amounts of memory. Thus, on the official website it is suggested enabling
this function unless it is in demand, and typically only one of these two kinds of caches
should be enabled for a column family8.

3.4.4.3 Consistency Levels

Cassandra provides a tunable consistency, which means client can specify how much
consistency is required for each query. The level of consistency refers to how many
replica nodes are involved in a query. The higher the level is, the more likely the
fetched data are to be up-to-date, or the more replica nodes are synchronized, and
consequently, the lower availability the query will be.

There are several write/read consistency levels that a client can specify. Particularly,
the QUORUM level in Cassandra is calculated as follows:

(replication factor/2) + 1 (3.1)

For example, if the replication factor is specified to THREE, two replica nodes must
respond the write/read request.

Write consistency levels: Table 3.6 shows the possible write consistency levels and
their implications for a write request. It is noteworthy that the coordinator for-
wards a write request to all available replica nodes in all data centers, even if a
low consistency level is specified.

Read consistency levels: read consistency levels are declared in Table 3.7. Read
consistency level states the number of replicas must respond to a read request, so
not all replica nodes would be contacted. In addition, ANY level is not supported
here.

3.4.4.4 Deleting Data

Difference with RDBMS, Cassandra does not remove data from disk immediately when
they are deleted. Instead, it adds a tombstone marker on that data, and removes them
later in the background during the compaction. (So the delete in Cassandra is actually a
write.) The reason is that Cassandra is designed to be distributed, durable and eventual
consistent. If a node is down, it cannot receive as well as perform a delete request. When

8https://docs.datastax.com/en/cassandra/2.0/cassandra/operations/ops configuring caches c.html
(accessed 19.02.2016)
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Level Description

ONE/TWO/THREE/QUORUM /ALL A write must be success on at least one/
two/three/a quorum of/all replica nodes.
If there are not enough available replica
nodes, the write will fail.

LOCAL ONE/LOCAL QUORUM A write must be success on at least one/a
quorum of replica nodes in the local data
center. It is used in multiple data center
clusters with the replica placement strat-
egy NetworkTopologyStrategy.

ANY A write must be written on at least one
node. If all replica nodes are down at
write time, the write can still succeed af-
ter a Hinted Handoff is written. How-
ever, reading of this write is only available
until the replica nodes for that partition
have recovered.

Table 3.6: Write Consistency Levels [Dat16]

Level Description

ONE/TWO/THREE/QUORUM /ALL Coordinator returns the data after one/t-
wo/three/a quorum of/all replica nodes
have responded.

LOCAL ONE/LOCAL QUORUM Coordinator returns the data after one/a
quorum of replica nodes in the local data
center have responded.

Table 3.7: Read Consistency Levels [Dat16]

this node becomes available again, it will compare its data with other nodes. This node
will mistakenly think all replicas nodes that received the delete request have missed a
write request, thereby launching a repair. As a result, the deleted data would reappear.

Cassandra uses compaction to collect garbage regularly (The default setting for that is
10 days.). Not only the data with a tombstone marker, but also the out-of-date data
generated by the “update” will be removed from disk.

3.4.5 CQL

CQL is the primary language for communicating with Cassandra. Cassandra develops
rapidly in recent years. Accordingly, many new features are continually added in CQL,
hence there are many differences between distinct CQL versions. This subsection focuses
on the CQL v3 [Casb], which is the latest version of this language at the moment.

The Syntax of CQL is close to SQL. Numerous keywords (e.g., CREATE, INSERT,
UPDATE, DROP, BATCH, COUNT, TABLE and PRIMARY KEY) from SQL are
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reused here so that users can grasp this language quickly. As a result, it makes a sense
that data are stored in tables containing rows of columns like in an RDB. However,
as we know, Cassandra has a different data model with an RDB. We will give some
samples of using CQL v3 in the following.

In Listing 3.1, we have created a keyspace called playerInfo. As introduced in the pre-
vious subsection, we can also specify a replica placement strategy (e.g., SimpleStrategy)
and the number of replicas (e.g., THREE ) while creating a keyspace.

CREATE KEYSPACE playerInfo
WITH replication = {'class':'SimpleStrategy',
'replication_factor': 3};

Listing 3.1: Creation of a Keyspace

In Listing 3.2, we have showed the statement of creating a column family. The syntax
is similar to that in SQL to create a table contains a number of columns and a primary
key for each row. Alternatively, we can even use the CREATE TABLE statement to
create a column family. Furthermore, some operations like the chance of performing
Read Repair can be specified here.

CREATE COLUMNFAMILY player (
player_id int PRIMARY KEY,
player_name text,
player_race text,
player_level int

) WITH read_repair_chance = 1.0;

Listing 3.2: Creation of a Column Family

Support of Dynamic Columns/Wide Rows:

CQL supports dynamic columns/wide rows by using a compound (composite) primary
key in the column family. For example, in Listing 3.3 on the facing page, we have created
a column family called userLogs, which uses user id and took at as a compound primary
key. Besides user id is the partition key and took at is the clustering column in userLogs.
Data on disk are ordered in ascending order of took at values. In Listing 3.4 on the
next page, we have inserted some rows in this column family. If we execute a command
showed in Listing 3.5 on the facing page in cqlsh (a python-based command line client
for executing CQL), we will get the results presented in Listing 3.6 on page 44, which
shows how data are actually structured in Cassandra. Data with the same partition
key are stored together in a same SSTable, and sorted by the value of the compound
primary key.
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CREATE TABLE userLogs (
user_id uuid,
took_at timestamp,
actions text,
PRIMARY KEY (user_id, took_at)

)
WITH CLUSTERING ORDER BY (took_at ASC);

Listing 3.3: Creation of a Column Family with a Compound Primary Key

INSERT INTO userLogs (user_id, took_at, actions)
VALUES (1, '2016−02−16 20:19:00−0500', 'log in');

INSERT INTO userLogs (user_id, took_at, actions)
VALUES (2, '2016−02−16 20:20:00−0500', 'upload a photo');

INSERT INTO userLogs (user_id, took_at, actions)
VALUES (1, '2016−02−16 20:22:00−0500', 'change password');

INSERT INTO userLogs (user_id, took_at, actions)
VALUES (1, '2016−02−16 20:23:00−0500', 'log out');

Listing 3.4: Insertion of Data

Support of Lightweight Transactions:

We can use IF clause in the INSERT and UPDATE statements to support lightweight
transactions (see Listing 3.7 on the following page and Listing 3.8 on the next page).
Similarly, we can also use IF NOT EXISTS/IF EXISTS clause in the CREATE/DROP
and DELETE statements.

Drawbacks of CQL:

Although CQL is developing rapidly and getting more and more strong, it is still not
yet SQL. Currently there are still some restrictions comparing with SQL. For instance,
when we query data, only the columns that are part of the primary key and/or have a
secondary index defined on them are allowed in the WHERE clause; the IN relation is
only allowed on the last column of the partition key [Casb].

3.4.6 Client Tools

Users can use the CQL shell, cqlsh, and DataStax DevCenter (a graphical tool) to
interact with Cassandra. Furthermore, developers can also use a number of drivers
developed by DataStax for different programming languages (e.g., C/C++ Driver, C#

SELECT * FROM userLogs;

Listing 3.5: Selection of Data
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[ c q l sh ]

u s e r i d | took at | a c t i o n s
−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−

1 | 2016−02−16 20:19:00−0500 | l og in
1 | 2016−02−16 20:22:00−0500 | change password
1 | 2016−02−16 20:23:00−0500 | l og out
2 | 2016−02−16 20:23:00−0500 | upload a photo

Listing 3.6: Results of the Query

INSERT INTO userLogs (user_id, took_at, actions)
VALUES (1, '2016−02−16 20:20:00−0500', 'log in');
IF NOT EXISTS;

Listing 3.7: Insertion of Data with Lightweight Transaction

Driver, Java Driver, PHP Driver, and Python Driver) in production applications to
pass CQL statements from the client to Cassandra cluster. Since Cassandra and our
client applications are written in Java, in the following, we will give a brief introduction
for Java Driver9.

Java Driver has a fully asynchronous architecture, which is based on layers. There are
three modules in the driver, namely driver-core, driver-mapping (an object mapper)
and driver-examples. Driver-core (also as the core layer) handles things like connection
pool, discovering new nodes and automatically reconnecting, which are related to the
connections to a Cassandra cluster. Moreover, the higher level layer can be built on
top of API provided by it.

Java Driver is built on Netty, which helps to provide non-blocking I/O with Cassandra.
Furthermore, it has the following main features:

Synchronous and asynchronous API: except for performing a simple synchronous
query, Java Drive provides an asynchronous API to allow the client to get query

9http://docs.datastax.com/en/developer/java-driver/2.0/common/drivers/introduction/introArchOverview c.html
(accessed 19.02.2016)

UPDATE userLogs
SET actions = 'post a status'
WHERE took_at = '2016−02−16 20:20:00−0500'
IF actions = 'log in';

Listing 3.8: Update of Data with Lightweight Transaction
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results in a non-blocking way. This concept makes it possible to maintain a
relatively low number of connections per nodes to achieve good performance.

Connection pooling: by using a connection pool, a request is allowed to use an
opened connection to access Cassandra cluster, which eliminates the process of
creating and destroying a connection. It is noteworthy that for each session, there
is only one connection pool per connected host. The number of connections per
pool can be changed at run-time, which depends on the current load and the
configuration from users.

Automatic nodes discovery: the driver automatically obtains information like sta-
tus of all nodes in the cluster.

Transparent failure: the driver will automatically and transparently connects an-
other node if a Cassandra node is down and the client has not specified that node
as a coordinator. Java Driver will automatically perform a reconnection to the
unavailable node in the background.

Cassandra trace handling: the client can trace a query by using a convenient API of
Java Driver. Information of a query like the IP address of the coordinator as well
as nodes performing the query and the number of involved SSTable is included in
the tracing result.

Configurable load balancing: users can configure a LoadBalancingPolicy for each
new query, which determines the node will be picked as a coordinator, and hosts
will be communicated with by the driver. There are several implementations pro-
vided by Java Driver, such as RoundRobinPolicy, DCAwareRoundRobinPolicy,
TokenAwarePolicy and LatencyAwarePolicy. From the release 2.0.2 of the driver,
TokenAwarePolicy is used by default. By using this policy, the driver first com-
municates with a replica node (as coordinator) instead of a random node in the
cluster for the purpose of reducing internal network communications.

3.5 Summary

In this chapter, we have introduced foundations of the rapid developed Cloud storage
systems, compared NoSQL DBMSs and RDBMSs in detail, and highlighted Cassandra.
In the next chapter, we will propose a Cloud-based architecture for MMORPGs.
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4. Cloud Data Management for
MMORPGs

Some ideas in this chapter are originally published in the DASP article
“Cloud Data Management for Online Games: Potentials and Open
Issues” [DSWM13] and the CLOSER paper “Towards Cloud Data Man-
agement for MMORPGs” [DS13].

In this chapter, we will discuss the feasibility of introducing Cloud-based technologies
(e.g., Cloud database and Cloud storage) to manage data in MMORPGs.

4.1 Feasibility Analysis

Currently, data in MMORPGs are managed by distributed RDBMSs and file systems.
From the technical perspective, all functions of the above storage systems can be ob-
tained from Cloud services. Furthermore, through using Cloud-based technologies, some
data management requirements of online games (e.g., availability, scalability and high
performance) that used to be difficult to meet could also be satisfied. However, some
features are mutually exclusive, such as data consistency and availability (according to
the CAP theorem). For this reason, firstly before we apply a Cloud-based technology
in online games, we need to know whether the new features that this technology brings
are necessary or not; and secondly, we must find out the right balance for the opposite
features [KHA09, KK10]. It is noteworthy that there are various data sets in a game sys-
tem, which are managed in different ways and accordingly have different management
requirements (see Table 2.1). In the following, we will analyze them separately. Since
one of the most important motivations that we apply Cloud-based technologies is scal-
ability, and the biggest conflict they bring is between data consistency and availability,
we will use them as criteria to determine whether to adopt a Cloud-based technology.
The requirements and our recommendations have been summarized in Table 4.1.
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Stored in Consistency Availability Scalability Recommendation

Account data Database Strong Low Low RDBMS/NoSQL DBMS

Client Causal High Low Local file system & database

Game data Server Eventual High Low Distributed file system & database

Server Strong High Low In-memory RDBMS

State data Database Read-your-writes High High NoSQL DBMS

Log data Database Timed High High NoSQL DBMS

Table 4.1: Data Management Requirements and Recommendations for Data Storage

4.1.1 Requirements of Account Data

Account data, such as players’ identity information and some other sensitive data (e.g.,
password and recharge records), are stored in the account database in online games.
The scalability and data consistency requirements are listed in the following:

Consistency vs. Availability: the inconsistency of account data might bring trou-
bles to a player as well as the game provider, or even lead to an economic or
legal dispute. Imagine the following two scenarios: a player has changed the
password successfully. However, when this player logs in to the game again, the
new password is still not valid; a player has transferred to the game account, but
the account balance is not properly presented in the game system. Both cases
would influence the player’s experience, and might result in the customer or the
economic loss of a game company. Hence, we need to access account data under
strong consistency guarantees, and manage them with transactions. Availability
is less important here.

Scalability: an account database manages data from millions of players, but with a
small size. Hence, system scalability is not required. Processing of a large number
of concurrent requests might become a challenge for the database, which could be
addressed by database sharding.

In general, an RDBMS can already fulfill all management requirements of account data.
On the other side, if there is no transaction between rows, a NoSQL DBMS (CP type,
see Section 3.3.1) supporting lightweight transactions can handle them better because
the user account and password (as well as further fields) could be regarded as key-value
pairs to process.

4.1.2 Requirements of Game Data

Game data refer to all data/files that are generated/created and can only be changed
by game developers, such as game world geometry and appearance, object and NPC’s
metadata (name, race, appearance, etc.), game animations and sounds, and so on. They
are distributed at both client and server side, and managed by databases (e.g., object’s
metadata) and file systems (e.g., game animations). In the following, we will discuss
the consistency, availability and scalability requirements of game data.
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Consistency vs. Availability: players are not as sensitive to game data as to account
data. For example, the change of an NPC’s appearance or name, the duration of a
bird animation, and the game interface may not catch the attention of a player and
have no influence on players’ operations. On the other hand, some changes of the
game data must be propagated to all online players synchronously, for instance,
the change of the game world’s appearance, game rules as well as scripts, and
the occurrence frequency of an object during the game. The inconsistency of
these data will lead to errors on the game display and logic, unfair competition
among players, or even a server failure. For this reason, we also need to treat
data consistency of game data seriously.

Game data are updated or loaded from a game server to the client side when a
player logs in to or starts a game. Therefore, from a player’s point of view, a
causal consistency (see Section 3.3.2) is required. From a game server’s point of
view, as long as players in the same game world hold the same version of game
data, the game is fair (players across game worlds are not able to communicate
with each other, consequently, data inconsistency among game worlds will not
be detected or affect the gameplay). It is noted that a game world is typically
hosted by one game server. Hence, eventual consistency among game servers is
acceptable. That means, both conventional and Cloud DBMSs/file systems can
manage them.

Scalability: game data size changes with upgrading the game or launching a new game
edition. The growth of them typically will not pose a challenge to the hard disk
space. Hence, there is no scalability requirement.

Generally, the management of game data do not pose any challenge to the file system/-
database. Both conventional and Cloud storage system can handle them.

4.1.3 Requirements of State Data

In MMORPGs, state data (e.g., Player Character’s metadata and position information)
are cached in an in-memory database at a game server to provide real-time executions,
and duplicated (backed up) in a disk-resident database to ensure the data persistence.
The management requirements for these two databases in an online game are distinct.
We analyze them as follows.

Consistency vs. Availability: state data are modified by players frequently dur-
ing gameplay. The modification must be perceived by all relevant players syn-
chronously, so that players and NPCs can respond correctly and timely. An
example for the necessity of data synchronization is that players cannot toler-
ate that a dead monster continues to attack their characters. Note that players
only access the in-memory database during gameplay. Hence, this database must
ensure strong consistency, and support the transaction management as well as
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complex queries. Moreover, the request for data processing must be responded in
real-time, so it has high requirement for availability.

Another point about managing state data is that modified values must be backed
up to a disk-resident database asynchronously. Similarly, game developers also
need to take care of data consistency and durability in a disk-resident database.
For instance, it is intolerable for a player to find that her/his last game record
is lost when she/he starts the game again. In contrast to that in the in-memory
database, we do not recommend ensuring strong consistency to state data. The
reason is as follows: according to the CAP theorem, we have to sacrifice either
data consistency or availability in the case of network partitioning or high network
latency. Obviously, it is unacceptable that all backup operations are blocked until
the system recovers, which may lead to data loss. Consequently, the level of
data consistency has to be decreased. We propose to ensure a read-your-writes
consistency (see Section 3.3.2) for state data on disk.

Scalability: we have already discussed the scalability requirement of state data in Sec-
tion 2.3. MMORPGs are having trouble dealing with the surge in the size of state
data. However, it is noted that state data in the in-memory database do not have
a large scale, which is limited by the total number of concurrent players that a
game server supports.

It is reasonable to manage state data in the in-memory database and the disk-resident
database by using different technologies. An in-memory RDB is more suitable for
caching state data because it can perform complex queries. We propose to use a NoSQL
store (AP type, see Section 3.3.1) in our project to persist/back up state data on disk
because it can solve the scalability issue and guarantee high availability. The challenge
is that there is no such a NoSQL DBMS exactly designed for MMORPGs. We must
find a relatively appropriate one, and then improve it to fulfill all requirements (e.g.,
supporting read-your-writes consistency) of managing state data.

4.1.4 Requirements of Log Data

In our project, log data refer to a player’s behaviors, chat histories and mails. These data
are structured persisted in the database. In the following, we discuss their requirements
for data consistency, availability and scalability.

Consistency vs. Availability: log data are mainly used by game developers for fix-
ing bugs of the game program or by data analysts for data mining purpose. These
data are firstly sorted and cached on the server side during the game, and then
bulk stored into a disk-resident database, thereby reducing the conflict rate as well
as the I/O workload, and increasing the total simultaneous throughput [BBC+11].

It is noteworthy that propagation of log data among replicas will significantly
increase the network traffic and even block the network. Moreover, log data are
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generally organized and analyzed after a long time. Data analysts are only con-
cerned about the continuous sequence of log data, rather than the timeliness of
them. Hence, data inconsistency is acceptable in a period of time. For these
reasons, a deadline-based consistency model, such as timed consistency (see Sec-
tion 3.3.2), is more suitable for log data.

Scalability: log data are derived from millions of players, and are appended continu-
ally. Accordingly, the database managing them must be scalable.

The general format of log contents is a specific time followed by an operation infor-
mation, which is a natural key-value pair. Moreover, they have high requirements for
scalability and availability, but low requirements for data consistency. Therefore, man-
agement of log data using a NoSQL DBMS (AP type, see Section 3.3.1) is more sensible
than using an RDBMS. We can use some tools like Apache Spark1 for data analysis
then.

4.2 A Cloud-based Architecture for MMORPGs

Client

Zone Server

Map/Logic Server

Transactional database cache
(in-memory RDBMS)

Login Server Patch Server Gateway Server Chat Server

Cloud Database
(RDB Service)
Account Data

Cloud Storage 
(Cloud file system)
& Cloud Database

(RDB Service)
Game Data

Cloud Database
(NoSQL Store) 

State Data

Cloud Database
(NoSQL Store) 

Log Data

Figure 4.1: A Cloud-based architecture for MMORPGs

Based on the analysis above, we have proposed a set of cooperating and composable
Cloud services to improve the existing game architecture [DSWM13].

We suggested managing game data with Cloud storage (Cloud file system) as well as
Cloud database (RDB service), and manage other data sets with Cloud databases.
Account data must be processed with ACID transactions, so they are managed by an

1http://spark.apache.org/ (accessed 12.01.2016)



52 4. Cloud Data Management for MMORPGs

RDBMS service. In contrast, log data and state data are recommended persisting in a
NoSQL store.

Storing data in a public Cloud can make a game company focus on the game develop-
ment rather than maintaining the data storage system. Data are stored in the Cloud
provider’s data center. The provider is responsible for managing the data, which helps
a game company to reduce the time of developing new game editions and costs for
buying new drivers. However, the drawback is that the data could be stored in an
insecure environment, which cannot be controlled by the game company. Furthermore,
the latency of data transmission highly depends on the network traffic between game
servers and the Cloud provider’s data center. For this reason, this hosting solution is
suitable for a small game company or a company in its infancy. However, it is better
to host the account data by the game company itself.

For a game company already having expensive data centers, building a private Cloud
environment could be the best option. Data are transmitted across the company’s in-
tranet, hosted at internal data centers, and protected behind a firewall. The drawbacks
are the costs for maintenance/upgrading infrastructures and buying software licenses.
The game company can use Hadoop Distributed File System (HDFS) to store game
data. However, choosing a suitable NoSQL DBMS for state data and log data is a
challenge. We will discuss it in the next section.

4.3 Criteria of Choosing a NoSQL DBMS

In contrast to RDBMSs, there are many types of NoSQL DBMSs, each of which is de-
signed for a specific application scenario and differs from each other. Although NoSQL
DBMSs are easy to use, choosing a suitable one from a wide range of products for a user
is troublesome. We often need to consider the following factors for the determination:

Data structure characteristic: includes whether data are structured or semi-structured,
whether a field can be changed, whether there is a large text field, whether data
can be modified and so on.

State data and log data in MMORPGs are represented in multiple tables. Con-
sider that we usually comply with the denormalization principle to design the
schema of a NoSQL store, the new data structure must be complex; a field could
be changed/added for the purpose of improving a game; a large text field is typi-
cally not contained in both data sets; state data are frequently modified, but log
data are only appended.

A NoSQL store implementing a simple key-value pair model (key-value store)
cannot handle such a complex and dynamic data structure. For this reason,
a NoSQL DBMS implementing a wide column model (one key corresponds to
multiple columns) or a document model is more suitable.
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Query characteristic: includes the condition in queries and the range of hotspot
queries. For example, the retrieval of user information is a random query, and the
retrieval of news is in accordance with time (the latest news is queried normally
more frequently).

In our case, there are two kinds of queries, namely the random query (retrieving
the state of a player) based on the primary key (user ID) and the range query (re-
trieving all operations of a player in a certain period of time) based on composite
keys (user ID and time).

A document store (implementing a document model) is designed to load the whole
document, when data stored in one document are retrieved or modified. This
feature ensures high-level consistency. However, in our case, we only need to
read/write parts of the whole row. For this reason, a NoSQL store implementing
a wide column model is a better choice because only the columns we need will be
loaded.

Write/read characteristic: includes the proportion of insert/update, whether a data
field is updated/read frequently, whether an atomic update is required.

State and log databases are mainly used for the backup/persistence purpose.
Hence, there are far more insert/update operations than read operations; Atom-
icity is important for a write operation.

Therefore, a write-intensive type of NoSQL DBMS is more suitable for our appli-
cation scenario.

In general, we need to choose a wide column-based NoSQL store, which is good at
writing. There are many NoSQL DBMSs meeting these features. In our project, we
decide to use Cassandra as an example because it is more mature and under an active
development. In the next section, we will explain how Cassandra match the above
criteria.

4.4 Possibility of Using Cassandra in MMORPGs

In Section 4.3 we have analyzed the criteria of choosing a right NoSQL store for
MMORPGs. In this section we will explain how Cassandra complies these criteria
in detail.

Data structure: Cassandra is a partitioned row store. Data are structured in the
column family, where each row is identified by a primary key or composite keys.
This structure is similar with that in an RDBMS. Therefore, it facilitates data
mapping between two kinds of database systems.

Cassandra offers a collection column, which is declared using the collection type
(e.g., list, set and map type), followed by another type like int or text. This
feature helps for denormalizating state data from numerous relations in an RDB.
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Cassandra supports a flexible schema. The set of columns in a row is dynamic.
Users can add or remove a field freely at run-time, which is convenient for program
debugging.

Traditional RDBMSs limit the number of columns in each table. For instance, in
each table Oracle 11g supports maximum 1000 columns [Oraa] and SQL Server
2014 supports maximum 1024 columns [Mic]. When we create a wide table with
hundreds of columns, RDBMSs often fail to manage it efficiently. If we do a
column-wise decomposition, the high number of join operations and locking would
greatly affect on the system performance. In contrast, Cassandra, which imple-
ments a wide-column data model, supports a maximum number of cells (rows
* columns) in a single partition up to two billion [Casa]. This feature makes it
possible to store all log information of one player in a single row so as to fetch it
efficiently.

Query: although the functionality of CQL is less powerful than SQL, it still supports
random/range queries on (compound) primary key.

Write/read operation: as introduced in Section 3.4 Cassandra is designed and op-
timized to perform writes efficiently: writes can be initiated by any node in the
cluster; there is no single points of failure for insert/update. Even if all replica
nodes are down, a write operation could still not be blocked (if write consistency
level is ANY ); data are first written in memory, and then are persisted on disk;
update does not check the prior existence of the row. For these reason, Cassandra
differing from other NoSQL stores is write-intensive.

Cassandra cannot only comply with these criteria, but also meet the requirements like
system scalability, availability and data consistency. Therefore, it becomes a good
choice to manage state and log data in MMORPGs.

4.5 Related Work

Commercial MMOG systems typically apply a client/server architecture for maintaining
data security and synchronization [SKS+08, WKG+07]. A centralized server could,
however, become a bottleneck of the system, thereby effecting on the system scalability.
Hence, the design of an alternative scalable architecture for the MMOG system, has
received more and more attentions. However, most of the research aim at making the
system to support more concurrent players [SKS+08, KVK+09, YV05, GDG08, YK13,
MGG06]. In other words, they focus on the scalability of the game server. Our research
focuses on MMORPGs, which offers a persistent game world. That means, a large
volumes of data need to be stored in the backend database, which becomes a challenge.
The new Cloud-based architecture proposed in our CloudCraft project is aimed at
improving the scalability and efficiency of the game database, rather than improving
the scalability of the game server. Certainly, the improvement of the efficiency of
backing up game state allows game servers to deal with more concurrent players.
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In [Muh11], the author proposed to use another NoSQL store Riak2, whose database
model is similar to that of Cassandra, to substitute the RDBMS in MMOGs. However,
after analyzing the use of databases in MMORPGs and features of NoSQL stores, we
come to the conclusion that NoSQL DBMSs cannot substitute RDBMSs in the game
scenario because of their limitations on the support of complex queries and the real-time
processing, etc. [ZKD08]. We propose to make them coordinate in a new architecture,
and deal with different data processing requirements.

In Section 4.1, we have analyzed game consistency requirements of each data set from
the storage system’s perspective. Although some studies have also focused on the
classification of game consistency, they generally discussed it from players’ or servers’
point of view [ZK11, LLL04, PGH06, FDI+10]. In other words, they have actually
analyzed data synchronization among players. Another existing research work did not
discuss diverse data sets accordingly [DAA10, SSR08], or just handled this issue based
on a rough classification of game data [ZKD08].

4.6 Summary

In this chapter, we have proposed a Cloud-based architecture for MMORPGs, and dis-
cussed the possibility of use Cassandra to substitute an RDBMS for managing state and
log data. Cassandra is, however, not designed for online games, so it has some draw-
backs while using in this application scenario. We will point out these shortcomings,
and propose some solutions in the next chapter.

2Riak: http://basho.com/riak/ (accessed 05.08.2015)
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5. Using Cassandra in MMORPGs

Some ideas in this chapter are originally published in the DASP article
“Cloud Data Management for Online Games: Potentials and Open
Issues” [DSWM13], the GvD paper “Consistency Models for Cloud-based
Online Games: the Storage System’s Perspective” [Dia13], an article“Cloud-
Craft: Cloud-based Data Management for MMORPGs” [DWSS14], the
DB&IS paper “Cloud-based Persistence Services for MMORPGs” [DWS14],
and the IDEAS paper“Achieving Consistent Storage for Scalable MMORPG
Environments” [DZSM15].

In the last chapter, we have proposed to take Cassandra as an example for data persis-
tence in the Cloud-based game architecture. However, there are some issues to address
when we use it. In this chapter, we will analyze shortcomings of Cassandra using in the
game scenario, and offer a viable solution for each of them. Issues like the guarantee
of read-your-writes consistency efficiently, optimization of read performance, mapping
database schema between an RDBMS and Cassandra will be discussed.

5.1 Guarantee of Read-your-writes Consistency

Cassandra is typically used in an eventually consistent environment. However, in our
application scenario, we must guarantee a high-level consistency. Cassandra can ensure
that, but in an inefficient way.

5.1.1 Issues Caused by Guaranteeing High-level Consistency

In a Cassandra cluster each node is identical, and there is no master/primary replica for
a given data object. On the one hand, the failure of one node will not affect the system
availability. On the other hand, the guarantee of high-level consistency is expensive. A
query could be executed by any replica node in the cluster, thus to guarantee high-level
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consistency (e.g., strong consistency or read-your-writes consistency for state data), the
consistency level of a write operation and its subsequent read operation must meet the
following prerequisite:

W + R > N,with W,R ∈ {1, 2, . . . , N} (5.1)

In this formula, N refers to the total number of replicas (replication factor) for a
row, while W and R represent the consistency level of write and read, respectively.
This formula states that only if the total number of replicas responded write and its
subsequent read exceeds the replication factor, Cassandra could ensure data consistency.
This is because only in this case at least one replica responding to the query contains
the up-to-date data. However, this mechanism causes following issues.

Issues:

1) More than half of the replicas have to participate in the process of updating and
getting data, which increases the response time for both write and read operations.
Particularly in multiple data centers, where replicas are distributed in several loca-
tions, the influence is significant.

2) In the case of multiple nodes failure, only one replica available (replication factor
is larger than one), write or/and read will fail because the prerequisite is not met,
thereby undermining system availability. In fact, if only a fixed replica node performs
write and its subsequent read (just like a master replica), the result must be up-to-
date. Other replicas will be eventually consistent through the built-in repair utilities
(see Section 3.4.3).

As a result, guarantee of the required read-your-writes consistency for state data in
Cloud-based MMORPGs is problematic.

5.1.1.1 Efficiency of Data Propagation in Cassandra Cluster

Could we ensure data consistency by just specifying write and read consistency level
to ONE? The answer is no! The reason is that data are asynchronously propagated
to all replicas in Cassandra. However, the time gap between the write and a following
read is a vital parameter, which affects the accuracy [BVF+12]. We have carried out
some experiments on Cassandra to evaluate the efficiency of data propagation. The
experimental setup here is the same with that described in Section 6.4.

Detection of Inconsistent Data

In the experiment we quantified the effect of eventual consistency, when the consistency
level of both write and read is specified to ONE (replication factor is three). The result
is shown in Table 5.1.

During test I, all five nodes in the cluster are available. Clients send a total of 10000
write requests to Cassandra. As soon as a write request is successful, a read request
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Operation Number of nodes Write requests Read requests Detection method Inconsistent data

WORO 5 10000 10000 Eager 10.43%

WORO 5 10000 10000 Lazy 0%

WORO 3 → 5 10000 10000 Lazy 4.09%

WORO 3 → 5 200000 10000 Lazy 22.16%

Table 5.1: Detection of Inconsistent Data

against this row is sent (so called eager detection). In theory, 66.7% of the results could
be stale. In our practical experiment, however, only an average of 10.43% of them is
stale. If the read requests are sent after all (10000) write requests are successful (so
called lazy detection), no stale data have been detected (see test II).

The reason is that, no matter which consistency level is specified by the client, Cassan-
dra actually forwards the write request to all available replicas at the same time. In
other words, if all replicas are available, the modification will be synchronized to all of
them. Since the write performance of Cassandra is high, in our experiment environment
(a single data center) stale data are rarely detected.

In test III we have simulated a bad case: two nodes are failed when updating data, but
all five nodes are alive when reading data (if more than two nodes fail, for some data
objects all three replicas will be unavailable. Thus, write operations against these data
could not be performed.). In this case, reading from the two temporarily unavailable
nodes should fetch stale data. However, the result (see test III) shows that only an
average of 4.09% of data is stale.

We increase the total number of write requests to 200000 so that there could be more
inconsistent data (about 300 MB) in the cluster, and Cassandra needs more time to
replay writes. The experimental result shows that although the number of stale data is
enlarged (about 22.16%), it is not directly proportional with the increase of the number
of write requests (see test IV). Furthermore, the inconsistency window in this situation
is about 942296 ms (about 15 minutes 42 seconds), which is short.

5.1.1.2 Inspiration Obtained from the Experiment Results

The Cassandra cluster in our experiment is deployed in an Intranet, which reduces net-
work latency. However, from the experiment result, we can still conclude that Cassan-
dra actually offers a higher data consistency level than it promises (just like some other
Cloud storage systems, such as Amazon SimpleDB, Amazon S3 and Azure [WFZ+11]).
Although there could be some inconsistent data in the case of a node failure, they only
exist for a short period of time after the node is restarted. In MMORPGs a player typ-
ically restarts the game after a long time. During this time gap, modifications of state
data have a sufficient time to be propagated to all available replicas. Therefore, in most
cases the up-to-date data could actually be fetched by specifying the consistency level
of writes and reads to ONE. Unfortunately, a client could not specify the consistency
level like that only because there might be an unpredictable node failure during the
update, and consequently stale data would be returned later.
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Figure 5.1: CloudCraft Architecture: Reusable Services for MMORPGs

Proposal:

To address this issue, the system should be able to detect stale data automatically.
Only when stale data are returned, the system increases the consistency level of read
and executes it again. To achieve this goal, the existing Cloud storage system needs to
be extended [APV07, GBS11, WPC09, Dia13].

5.1.2 A Timestamp-based Solution

In our work, we have proposed a timestamp-based model (TSModel) to solve the issue
discussed above [Dia13, DZSM15]. The basic idea is that a timestamp is applied as a
version ID for each checkpoint of state data, which will be then used as a query criterion
to fetch the current data [APV07]. In this subsection we will explain our solution in
detail.

5.1.2.1 Integration with MMORPG Application Scenario

In order to guarantee game-specific consistency, a game persistence layer is applied
between the game layer and the physical storage layer in the new Cloud-based game
architecture (see Figure 5.1). This layer consists of data access servers (DASs) holding
timestamp tables (TSTs). A DAS is responsible for creating consistent checkpoints
from the in-memory database, flushing them to Cassandra, fetching data from Cas-
sandra regarding game-specific consistency, and playing the role of a counter (genera-
tion of monotonically increasing timestamps). The structure of a TST is very simple,
containing only four attributes, namely an avatar’s or game object’s ID (Id), the last
checkpointing time (TS), the host’s Internet protocol (IP) address of the last checkpoint
in the Cassandra cluster, and a player’s log status for avatar data.

A time asynchronisation among DASs less than the frequency of checkpointing is ac-
ceptable. In a typical client-server-based MMORPG, unless a player has changed the
zone server or a DAS has failed, checkpointing of game state data is handled by a fixed
DAS. For this reason, an accurate global time synchronization is not necessary. The
system clock on each DAS could be synchronized by applying the network time protocol
(NTP).
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Data: snapshot of state data
Result: a checkpoint in Cassandra and a record in a timestamp table (TST)
begin

Id←− avatar’s/game object’s UUID
TS ←− system current time
data←− snapshot of the avatar/game object’s state data

//set write consistency level to ONE
CL←− ONE

//back up state data into Cassandra (checkpointing)
if Cassandra.put(Id, TS, data) with CL
then

//if succeeds (true)
//save the checkpointing time as a version ID in TST
TST.put(Id, TS)

end

end
Algorithm 1: The Process of Checkpointing

5.1.2.2 Checkpointing and Data Recovery with the TSModel

To describe the timestamp-based detection model, we need to first outline the process
of checkpointing game state data.

The Process of Checkpointing

The DAS creates a consistent snapshot of game state from the in-memory database pe-
riodically. The system’s current time of the DAS will be used as a unique monotonically
increasing version ID (also called TS) for each checkpoint. The DAS executes a bulk
write to Cassandra with consistency level (CL) ONE. Cassandra divides the message
into several write requests based on Id. The current state of an object and the TS are
persisted together in one row. When the DAS receives a success acknowledgment, it
will use the same TS to update the TST accordingly (see Algorithm 1).

When a player has quit the game and the state data of her/his avatar have been backed
up to Cassandra, the log status will be modified to “Logout”. Then, the DAS sends a
delete request to the in-memory database to remove the state data of the avatar. Both
situations are showed in Figure 5.2.

The Process of Data Recovery

When a player restarts the game, the DAS first checks the player’s log status in the
TST.
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Figure 5.2: Flow Diagram of Checkpointing

Read (1): If the value is “Login”, that means the previous checkpointing is not yet
completed, so the up-to-date state data of her/his avatar is still hosted in the
in-memory database. In this case, the state data do not need to be recovered,
and data will be directly fetched from the in-memory database (see Figure 5.3
Read 1).

Read (2): If the value is “Logout”, the DAS gets the timestamp from the TST, and
then uses TS and Id as query criteria to retrieve the up-to-date checkpoint with
CL ONE. When a replica in Cassandra receives the request, it compares the TS
with its own TS. If they match, the state data will be returned. Otherwise, a null
value will be sent back. In this case, the DAS has to increase the CL and send the
read request again until the up-to-date checkpoint is found or all available replicas
have been retrieved. If the expected version still has not been found, the latest
version (but stale) in Cassandra has to be used for recovery. At last, the player’s
log status in the TST will be modified from “Logout” to “Login” (see Algorithm 2
and Figure 5.3 Read 2).
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Input: an avatar/game object’s UUID
Output: state data of the anvatar/game object
begin

Id←− avatar’s/game object’s UUID

//get the version ID of the avatar/game object from the timestamp table
(TST)
TS ←− TST.getTS(Id)

//set read consistency level to ONE
CL←− ONE
data←− null

//get state data from Cassandra
while data == null and CL ≤ number of available replicas do

//get state data based on the UUID and version ID
data←− Cassandra.get(Id, TS) with CL

//Check whether the result returned is null
if data == null then

//if did not get any result meeting the retrieval conditions

//increase the read consistency level to check more replicas
CL++

end

end

//Check whether the result returned is null
if data == null then

//if all available replicas have been checked, but still not got any result

//get state data from all available replicas
CL←− number of available replicas
dataSet←− Cassandra.get(Id) with CL

//get the state data with the highest timestamp
for d ∈ dataSet do

if data.TS < d.TS then
data←− d

end

end

end

return(data)

end
Algorithm 2: The Process of Data Recovery
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Figure 5.3: Flow Diagram of Data Recovery

5.1.2.3 Optimisation using a Node-aware Policy

The timestamp-based solution can obviously improve the efficiency of data recovery,
but from the description above, there is an issue:

New issue description: if the first attempt of retrieval fails, the read operation has
to be executed again with a higher read consistency level, which increases the
response time. Therefore, we can conclude that the success rate determines the
read performance.

The reason is that the read request is executed by a replica node, which does not
host the up-to-date checkpoint. For instance, Figure 5.4 shows the process of writing
a checkpoint and its subsequent operation of reading the checkpoint. The up-to-date
checkpoint is hosted by node B (replica 1). Unfortunately, the coordinator has for-
warded the read request to node C (replica 2), which hosts a stale checkpoint. In this
case, a null value would be returned to the client, and the read operation has to be
executed again.

To optimize our timestamp-based solution, we propose to sacrifice a part of database
transparency in exchange for the success rate. In other words, the IP address of the
replica node that has performed the last checkpointing, will also be recorded in the
TST. For subsequent read requests on this checkpoint, the DAS will connect to that
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node (as a coordinator) directly. In this case, the success rate will be increased if that
node is still available (see Figure 5.5).

We can understand this strategy like this for write operations each replica is still iden-
tical as before, but for read operations there is a “primary” replica. For this reason, our
proposal will not affect the system availability. The checkpoint could still be flushed to
any replica as before; if that replica node fails, a read request could be executed by the
other replica nodes. In our project, we name this strategy as NodeAwarePolicy.

Comparison with the TokenAwarePolicy in Java Drive

It is noteworthy that the Cassandra tool, Java Drive, provides a TokenAwarePolicy for
load balancing (see Section 3.4.6), which has a similar function with our NodeAware-
Policy. However, there are the following differences:

1) For each write/read using the TokenAwarePolicy, only the node hosting the first
replica (determined by the token value of a data object’s partition key) will be
used as a coordinator. In other words, each replica node is not identical any more,
instead there is a “primary” replica. So the system performance will be affected if
the workload of the“primary” replica node is heavy, or the physical distance between
that node and the Cassandra client initiating a request.

2) By using the TokenAwarePolicy, the Cassandra client only maintains a list of IP
addresses of all nodes in the ring, which can be easy to obtain. In contrast, the



66 5. Using Cassandra in MMORPGs

NodeAwarePolicy needs to record the host IP address for each data object on the
server side, so we have to consider the persistence of these information (we will
discuss that in the next subsection.).

3) The TokenAwarePolicy is more suitable for a changing environment, where the IP
address of a node change frequently. It is because that Java Drive updates the infor-
mation of the ring regularly. However, it could becomes a problem for NodeAware-
Policy, which only updates the IP address after a write operation is successfully
performed.

4) The TokenAwarePolicy cannot get information of all replica nodes of a data object
because it has no idea about the replication factor and replica placement strategy of
the ring. As a result, if the“primary” replica node is unavailable, a random node will
take its place as a coordinator. In contrast, NodeAwarePolicy considers the node
failure, thus all these information will be collected. If a replica node fails, the other
replica nodes will be first used as an alternative.

In summary, our NodeAwarePolicy has a better write/read performance than the To-
kenAwarePolicy, especially in an unstable environment, where node failure occurs oc-
casionally. We will give an experimental proof later in Section 6.4.

5.1.2.4 System Reliability

To prevent a single TST from becoming a bottleneck of the system, several TSTs on dif-
ferent nodes need to work in parallel. The checkpoint information (e.g., TS) is assigned
to different TSTs depending on the location (game world/map) of avatars/objects. If
one of the servers hosting TSTs goes down, a new/another TST takes the place of its
work immediately. A TST failure will not affect the gameplay. The lost data (e.g., TS)
could be regained by accepting new checkpoints (for active avatars), or recovered by
fetching relevant information (such as getting the biggest version ID of the checkpoints
of one avatar/object) from Cassandra cluster (for inactive avatars). However, during
the recovery, the client has to perform a read ALL to get the up-to-date checkpoint.

5.1.3 Related Work

Some researchers proposed to extend the existing CDBMSs or design a new Cloud
data store to provide ACID transactions [CBKN11, GBS11, WPC09, DEAA09, PD10,
VCO10, GS11, LLMZ11]. That means the new systems could provide ACID updates
to multiple rows at a time just like in RDBMSs. The new systems could certainly help
to guarantee the game consistency, which is lower than strong consistency. However,
comparing with our proposal they are too general and not specific to the game scenario.
As a result, the new systems have to sacrifice performance and availability to achieve
some unnecessary features for online games.

Similarly, in [DAA10], authors have although analyzed the game consistency, they sug-
gested supporting strong consistency by extending an existing CDBMS, which will affect
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the system performance. Our timestamp-based solution could guarantee data currency
in an eventually consistent environment.

The possibility of using the timestamp as a version ID to identify current data in a
replicated database has already been studied. However, these solutions either focus on
some other storage systems or are designed for other application scenarios. For instance,
in [APV07], authors have proposed a new key-based timestamping service to generate
monotonically increasing timestamps, which is designed for distributed hash tables with
a P2P structure. The main objective is to synchronize timestamps in a P2P environment
and to scale out to large numbers of peers. The testbed in this work takes a client/server
structure, where timestamp synchronization is not problematic. Improvement of the
efficiency and accuracy of queries in a NoSQL DBMS (e.g., Cassandra) is our research
focus.

In [GBS11], authors also record the version ID got from a Cloud storage system for data
currency. However, they suggested that if a read request fetched an old version ID from
the Cloud, the system should wait for some milliseconds and try it again. Consequently,
this approach blocks the read operation and increases unnecessary response time, which
is not suitable for MMORPGs.

5.2 Read Performance

Cassandra is designed to provide a high performance of writes, rather than reads. Hence,
its read performance is not as high as its write performance, especially in our application
scenario.

5.2.1 Issue Description

In the following, we discuss this issue from internal and external aspects.

Issues:

1) We proposed to persist the state information of an avatar/object in a single row
in Cassandra. As introduced in Section 3.4.2.3 Cassandra stores data in SSTables
and Memtables. When a read request against a row comes in to a replica node, all
SSTables and any Memtables that contain columns from that row must be combined.
For this reason, the more fragments the row has, the more CPU and disk I/O will be
consumed. Unfortunately, Cassandra is used in our project to persist checkpoints.
That means data in one row are frequently updated. If data are not well structured
in a column family, it is easy to produce large amounts of fragments.

2) The row cache can be used in Cassandra to avoid fetching data from disk (see Sec-
tion 3.4.4.2), which works when a partition/row is frequently accessed. However, in
our case, a checkpoint is at most used once. Therefore, this built-in mechanism is
useless to us.
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Figure 5.6: Different Designs of State Column Family (State CF)

5.2.2 Proposal of the Data Structure in Column Family

Since we cannot cache all checkpoints in memory, we have to read them from disk.
Cassandra works best when it executes a single sequential operation, so we must keep
this best practice in mind while designing the data structure in Cassandra.

We have proposed to store a timestamp with the checkpoint. There are three possible
data structures to implement it (see Figure 5.6). We will explain and discuss their
advantages and disadvantages in the following.

Option I

We store the timestamp as a “regular” column (see Figure 5.6a).

Advantages: the old values will be deleted when storing a new checkpoint. That
means, if a replica node has executed an update successfully, there are no stale
data on this node any more. Hence, the database size will not grow unlimitedly.

Disadvantages: columns of a row are fragmented in several SSTable files because new
values will be stored in a new SSTable (see Section 3.4.4.1). As a result, data will
be then collected from multiple SSTable files, which affects the read performance;
furthermore, a secondary index on the timestamp column needs to be created,
if we want to use the timestamp as a criterion to look up data. However, the
timestamp is changed too frequently in our application scenario. Maintenance of
such an index affects the write performance.

Option II

The second approach is to use the avatar’s/object’s ID and the timestamp as compound
primary key (see Figure 5.6b). In this case, the timestamp is used as a clustering column.

Advantages: the backup of a checkpoint is simplified to an insert operation (not up-
date). Accordingly, an entire checkpoint will be flushed to a simple SSTable file.
Therefore, fetching of a checkpoint only reads from disk sequentially. Moreover,
we do not need to create a secondary index on the timestamp column so as to use
it as a query criterion.
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Disadvantages: the stale data could not be removed automatically by compacting
SSTables because Cassandra does not know they are out of date. The database
size may grow unlimitedly, which will affect the system performance. Hence, an
additional process is required to delete these data.

Option III

We can also combine the avatar’s/object’s ID and the timestamp (separated by a special
symbol like @), and use it as a primary key (see Figure 5.6c).

This design has all the advantages and disadvantages of the second option because
each checkpoint is also stored in a single SSTable. The difference between them is the
partition key. In the option II the avatar’s/object’s ID is used as the partition key,
so all checkpoints of one avatar/object could be fetched from one node. However, in
the option III the partition key is the primary key, the value of witch is unique. That
means, checkpoints of one avatar/object are distributed on different nodes (probably
all nodes in the cluster), which brings some new advantages and disadvantages.

Advantages: it offers higher fault tolerance. By using the option II (as well as the
option I), if all replica nodes hosting the state data of one avatar/object are down,
checkpointing of this avatar’s/object’s state data has to be blocked until one of
the replica nodes recovers. By using the option III, the replica nodes are not
fixed because the value of each checkpoint’s partition key is different. So if a
latest checkpoint has been successfully flushed to disk, the backup of the blocked
checkpoint could be ignored.

Disadvantages: frequent changes (adding and removing) of row keys cause a heavy
overhead for maintaining the primary index. Furthermore, when the timestamp
table on the server side fails, fetching the latest checkpoint is problematic. CQL
does not support a ‘like’ query as in SQL. That means, currently, it is impossible
to get the checkpoint by only using an avatar’s/object’s ID.

From the above discussion, we can reasonably reach a conclusion that the option II
is more appropriate for our application scenario. In addition, this schema could also
be applied by the log column family, so that all log information of a player could be
ordered by the timestamp and stored in the same replica node.

5.3 Mapping Database Schema

In our Cloud-based architecture, a checkpoint is frequently transferred between an RDB
(the in-memory database) and a NoSQL store (Cassandra). Hence, there are some new
requirements for the design of the database schema in Cassandra.

5.3.1 Issue Description

We explain the new issue in the following:
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Issue:

The design concept of these two kinds of database is different. For example, tables in
the RDB are often normalized in order to minimize data redundancy, so the result of
a query is always gotten from multiple tables. In contrast, tables (column families) in
Cassandra are denormalized to improve the query performance, so the result is gotten
from a single row. For this reason, we need a middleware on the server side to transfer
data between a multi-table schema and a single-column family schema. Consequently,
the structure of a column family must be well designed, so that the middleware can
work efficiently and the change of the structure of a table will not cause a wide range
of modification of the middleware program.

5.3.2 Proposal of the Structure of a Column Family

Figure 5.7 illustrates an example. In the following, we will provide two possible solutions
to map these tables to a single column family in Cassandra.

Solution I:

In our previous work, limited by the capability of the early CQL and Cassandra, we
simply proposed to design the structure of a column family like in Figure 5.8 [DSWM13].
Since the column name in Cassandra must be unique, we have to rename the columns
in the Inventory table. Although this is feasible, it brings a number of problems:

1) The middleware must be aware of the naming rules in Cassandra. As long as the
rules have been changed, the middleware program has to be modified to adapt to it
either. Otherwise, it will inevitably lead to system errors. Furthermore, the program
does not have the versatility, which is hard to be used for other games.

2) Columns in a column family are ordered by their names. After we map multiple
tables in an RDB to a single column family, all columns will be reordered. That
means, columns once belonged to the same table will not be stored sequentially,
which increases the processing time of the middleware to map results/checkpoints
back to the in-memory DB.

Solution II:

With the help of Cassandra 2.1 and later, we can use collection types and a user-defined
type (UDT) to improve the structure of a column family (see Section 3.4.1). Figure 5.9
shows a sample of the new data structure of character column family. Inventory is
the name of a map column, and <quantity:10, location:1> is the value of a UDT (The
implementation of this structure will be illustrated later in Section 6.3). Through using
this structure, we can order all columns of a table together, and use their own names.
Accordingly, all problems mentioned above have been solved.
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Inventory

ItemID CharacterID quantity location

1 2 10 1

3 2 5 2

Character

ID Name Gender age

1 Alex male 32

2 Ann female null

Figure 5.7: An Example of an RDB Schema

Character 

ID: 1 Name: Alex Gender: male Age: 32

ID: 2 Name: Ann Gender: female Item_1: 1 Item_1_quantity: 10 Item_1_location: 1 Item_2: 3 Item_2_quantity: 5 Item_1_location: 2

Figure 5.8: Solution I: A Possible Data Structure in Cassandra

Character
ID: 1 Name: Alex Gender: male Age: 32

ID: 2 Name: Ann Gender: female Inventory

1: < quantity:10, location: 1> 3: < quantity:5, location: 2>

Figure 5.9: Solution II: A Possible Data Structure in Cassandra

5.4 Other Issues

Cassandra is not designed for online games, so there are some inherent mechanisms or
characteristics, which may bring some troubles.

Read Repair:

Read Repair is used to guarantee eventual consistency (see Section 3.4.3). However,
in our use case, we do not mind whether the data in the cluster are consistent or not
after fetching the checkpoint. Performing this request consumes unnecessary system
resources, which affects the throughput of the cluster. Although the default probability
of performing it is reduced to 0.1 in Cassandra 1.0 and later, we still propose to disable
it.

Query capability:

CQL and Cassandra are developing rapidly, but their query capability is not as strong
as RDBMSs. As a result, game developers have to consider all possible queries before
they design a column family. That will increase the difficulty of developing games and
limit the expansion of the game functionality.
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5.5 Summary

In this chapter, we have discussed the potential issues we have to face when using
Cassandra for backing up checkpoints. Some possible solutions like a timestamp-based
model have been proposed to address these issues. However, for some issues we can only
rely on the further development of Cassandra. In the next chapter, we will introduce
the implementation of the Cloud-based game testbed and some other testbeds in detail,
and then evaluate and compare them.
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Part of the experiment results in this chapter are originally published in an
article “CloudCraft: Cloud-based Data Management for
MMORPGs” [DWSS14], the DB&IS paper “Cloud-based Persistence Ser-
vices for MMORPGs” [DWS14], and the IDEAS paper “Achieving Consis-
tent Storage for Scalable MMORPG Environments” [DZSM15].

Under the CloudCraft project, we have run a number of sub-projects in order to verify
our proposal of a Cloud-based MMORPGs. In this chapter, we classify these sub-
projects into three groups, namely the potential scalability of a Cloud-based game
system, the performance comparison of MySQL Cluster and Cassandra in MMORPGs,
and the efficiency of guaranteeing the Read-Your-Writes consistency. Next, we will
introduce them one by one.

6.1 Experimental Infrastructure
We have built various game prototypes for different evaluation purposes. These proto-
types differ in the system architecture, the database schema, the Cassandra configura-
tion, and so on. However, they have the same experimental infrastructure.

For carrying out experiments, our faculty provides eight virtual machines with the
Ubuntu operating system, each of which configures 2.40 GHz CPU, 8 GB memory and
91 GB hard disk (see Table 6.1). For security reasons, these virtual machines cannot be
visited from outside directly. A client needs firstly to connect a stepping stone server
through the secure shell (SSH) protocol, and then get access to the virtual machines
via it indirectly (see an example in Figure 6.3).

6.2 Experimental Proof of the System Scalability
In this sub-project, we aim at providing a proof of concept for Cloud-based online game,
as well as evaluating the scalability and performance of it. For this purpose, we have
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Computer System 8 virtual machines
CPU Intel(R) Xeon(R) E5620 2.40 GHz
RAM 8 GB
Disk 90.18 GB, 7200RPM

Network 100MBit/s
Operating System Ubuntu 13.04 (64 bit)

Java version 1.7.0 25
Programming language Java

Table 6.1: Experimental Infrastructure

designed and implemented a prototypical game platform, which borrowed the design
from an open source MMORPG test environment and ported it to Cassandra [Wan13].

We have to point out that physical resources for the experiments were limited as de-
scribed below, so the focus is mostly on scaling the number of clients versus a small set
of up to five Cassandra servers. Nevertheless, we got some interesting results.

6.2.1 Prototype Architecture

Figure 6.1 shows the architecture of our game prototype, which consists of a client side
and a server side. The client side can be scripted to support experimental setups of
thousands of players; the server side is responsible for handling requests from game
clients and managing the various data sets in the game. There are four layers at the
server side, namely, the communication layer, the game logic layer, the data access layer,
and the physical storage layer. The game client and the game server communicate via
a socket server, which we named the communication layer; the game logic layer is
responsible for handling commands sent by players and dealing with game logic; the
data access layer is used for communication between the logic layer and the storage
layer; the physical storage layer performs data accessing operations and hosts data in
the game. As we have in the previous chapter proposed, Cassandra cluster is applied
at the physical storage layer.

6.2.2 Implementation of the MMORPG Environment

Our research focuses on analyzing the influence of using a Cloud storage system for
MMORPGs rather than designing a real and complex online game. Therefore, a sim-
plified but robust game client and game server supporting basic game logic suffice to
fulfill our experimental requirements.

6.2.2.1 Implementation of the Game Client

We have implemented a game prototype based on an open source project JMMORPG1,
which consists of a simple Java game client and a game server running on an RDBMS.
We have used the architecture and the client GUI (Graphical User Interface) of it, such
as avatar figures and maps (see Figure 6.2).

1JMMORPG project:http://sourceforge.net/projects/jmmorpg/ (accessed 20.02.2014).
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Physical Storage Layer (Cassandra Cluster)

Game Clients (JMMORPG)

Data Access Layer (Hector)

Game Logic layer 

Communication Layer/ Socket Servers (Darkstar)

Figure 6.1: Architecture of the Game Prototype

Figure 6.2: GUI of the Game Client
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6.2.2.2 Implementation of the Game Server

We have rebuilt the game server based on the JMMORPG project, and persisted data
in the Cassandra cluster.

The communication layer in the prototype is built based on the Darkstar project2, which
provides a convenient functions library to help developers to deal with the challenging
aspects of networked game development [Bur07, BW09]. There are three core compo-
nents in the Darkstar, namely DataManager, TaskManager and ChannelManager. All
of the game state objects are represented by Java objects in Darkstar. Therefore, the
management of concurrent data access becomes a challenge. Darkstar provides a Data-
Manager interface to handle concurrency; each client communication (read/manipulate
data) generates a task, which is transactional, independent and short-lived (100 ms). It
is the smallest executable unit in Darkstar. A TaskManager is used for scheduling and
creating a single task; a ChannelManager is applied in Darkstar to create and manage
the channel, which is a communication group consisting of multiple client sessions and
the server.

In the logic layer, we have simulated some basic game logic, such as responding to
commands ordered by clients (e.g., players’ login requests and avatars’ movements) and
supporting interactions among players (e.g., chatting and trading), all of which involve
querying the database.

We have applied a high-level Java API (Hector3) for the data access layer, which makes
it possible to access Cassandra through an RPC (Remote Procedure Call) serialization
mechanism.

Furthermore, in the Cassandra cluster, we have implemented several column families for
accounts, avatars, NPCs, logs, maps, inventories and items, which have the structure
like in Figure 5.8.

6.2.3 Experimental Setup

The game prototype was running on Cassandra 1.2.5, which was the latest stable version
when we carried out the experiment. At most three virtual machines were used to deploy
the game server. The number of nodes in the Cassandra cluster was set from three to
five. Figure 6.3 shows the infrastructure of the prototype.

We also have implemented a simplified command-line game client for the experiments
because it consumed less system resources and works like the GUI client. Our bench-
mark was a player’s normal behavior, such as moving and trading. From data man-
agement perspective, the essence of these operations is performing writes/reads to the
database. We have created one row for each avatar in the avatar column family to host
its state data, each of which consists of 20 columns and has 540 bytes (row size). The

2DarkStar website: http://sourceforge.net/apps/trac/reddwarf/ (accessed 20.02.2014).
3Hector website: http://hector-client.github.io/hector/build/html/index.html (accessed

20.02.2014).
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Figure 6.3: Infrastructure of the Game Prototype [DWSS14]

game client randomly ordered a write/read command regarding one of those columns,
and then sent it to the game server. Meanwhile, the response time of each command
has been recorded.

The evaluation focuses on the potential scalability and performance of our prototype
in the case of multi-player concurrent accesses. In the experiment, we will change the
number of nodes in the Cassandra cluster from one to five, so we keep the replication
factor of the cluster to one (That means, the cluster has only one copy for each row, and
a write/read command will succeed once one replica node responds to it.). Otherwise, if
the replication factor is larger than the number of nodes in the Cluster (for example, in
a single node Cassandra, the replication factor is specified to three), the system throws
an exception when executing a command.

6.2.4 Experiments

We have evaluated the scalability of the game server and Cassandra cluster in an online
game scenario separately.

6.2.4.1 Scalability of the Game Server

Through this experiment we wanted to get the maximum number of concurrent clients
that our game server can support. Therefore, we have fixed the number of nodes in
the Cassandra cluster to five, and added up to three game servers during the experi-
ment. The number of concurrent clients connecting to the server was increased from
100 to 1500. Each client randomly sends 500 write/read commands. We calculated
then the average response time (total run-time of all concurrent clients/(500*number
of concurrent clients)) for one write/read command.

We present the experimental result with a single game server in Figure 6.4a. When
the client number is not more than 500, the average response time for each read/write
command is under 15 ms. That means, 500 concurrent clients put little pressure on
the game server as well as the 5-node Cassandra cluster. However, when the client
number is up to 600, the game server throws many “time-out” exceptions, which block
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Figure 6.4: Scalability of the Game Server Connecting with Five-node Cassandra

the acceptance of subsequent commands. (The default maximum amount of time that
a transaction will be permitted to run before being aborted is 100 milliseconds4.) So
the maximum number of concurrent clients in the case of single game server is around
500. Similarly, we found that the client number is directly proportional to the growth
of the number of game servers (see Figure 6.4b). Therefore, we came to the conclusion
that the total amount of clients is limited by the concurrent processing capability of
the game server, whereas it could be raised easily by adding more servers.

6.2.4.2 Potential Scalability of Cassandra in an MMORPG

Scalability of a database is reflected by its ability that by increasing the number of
database nodes to improve database performance. Hence, this time we have fixed the
number of game servers to three, and set the node number in the Cassandra cluster from
one to five. Each game server is connected by 100, 200, 300, 400, and 500 clients in turn.
That means, the Cassandra cluster handles 300, 600, 900, 1200, 1500 clients separately.
Every client sends 500 read or write commands. The corresponding response time of
each command is recorded and afterwards the average response time is calculated.

From Figure 6.5a we can find that, a high performance of one-node Cassandra is
achieved for less than 600 clients. When the number of clients reaches 900, the re-
sponse time of read operation increases sharply over 180 ms, which is unexpected. If we
start 1200 clients, the Cassandra cluster will not respond to the write and read request
normally. Many clients report a connection time out exception because of limitation of
Cassandra I/O. Thus, we terminate the first-round experiment and conclude that one-
node Cassandra can only support up to 600 clients in our experimental environment.

4Darkstar configuration file:http://grepcode.com/file/repo1.maven.org/maven2/com.projectdarkstar.server/sgs-
server/0.9.8.10/com/sun/sgs/app/doc-files/config-properties.html (accessed 20.02.2014).
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Figure 6.5: Average Response Time (Calculated from (500*Number of Concurrent
Clients) Commands) of Cassandra Cluster Connecting with Three Game Servers
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Figure 6.6: Comparison of Write and Read Performance of Different Cassandra Clusters
(Node Number from One to Five) Connected by Various Number of Concurrent Clients
(from 300 to 1500)

Figure 6.5b shows that the maximum number of clients reaches 1200 when there are two
nodes in the Cassandra cluster. In the case of 1500 concurrent connections, the issue of
timeout appears again. Therefore, we conclude that a two-node Cassandra cluster can
support about 1200 clients by using our prototype.

Figure 6.5c, 6.5d and 6.5e present that, when the number of nodes in Cassandra cluster
is more than three, our prototype can support at least 1500 concurrent players.

In order to observe the different results in Figure 6.5, we plot the writing and reading
response time in Figure 6.6a and 6.6b.

According to the experimental result, we can observe the following tendency:
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1. The number of concurrent players supported by our prototype can be increased
(from 600 to 1500) by adding more nodes into the Cassandra cluster.

2. Cassandra achieves a satisfactory writing performance (around 20 ms), which is
relatively better than the reading performance. Furthermore, the change in the
number of nodes has little influence on writing performance (concentrated between
15 ms and 25 ms). In contrast, reading performance is obviously improved by
adding nodes. In the case of five-node Cassandra cluster, reading and writing
performance tends to become similar.

3. The five-node Cassandra cluster exhibits the best and most stable performance
in all range of clients’ number. With increasing number of clients, there is no
obvious variation of reading and writing response time. Both of them fluctuate
around 15 ms.

4. Generally, the system performance has been improved by scaling out the Cas-
sandra cluster. For example, five-node Cassandra has the best performance;
three-node and four-node Cassandra are observably better than two-node cluster.
However, there are still some exceptions. An example is that the performance of
three-node and four-node Cassandra is similar. Theoretically, four-node Cassan-
dra should be better. However, our experiment shows some contrary results, such
as reading response time at 1500 clients and writing response time at 900 clients.
It may be caused by network latency, system configurations, or even some internal
processing mechanism of Cassandra. Unfortunately, our prototype cannot reveal
the reason.

5. One-node Cassandra shows a better performance in the case of 300 or 600 clients.
The reason could be that the advantage of a multi-node Cassandra cluster is
not outstanding when the number of concurrent players is relatively small. In
addition, the communication between nodes also consumes some time since data
are distributed on different nodes.

Based on the analysis above, we can conclude that a NoSQL DBMS like Cassandra
exhibits a satisfactory scalability for typical MMORPG requirements. With increasing
numbers of clients, the database performance encounters a bottleneck. However, the
database throughput as well as response time can be improved easily by scaling out
the cluster; Cassandra shows a high performance in the experiment. The response time
of writing and reading typically fluctuates between 10 ms and 40 ms, which fulfills the
requirement of an MMOG [CHHL06]; Cassandra is a write-intensive database. The
experimental results show that its writing performance is stable and excellent. This
feature makes it suitable to perform a backend database of a multi-player online game,
which needs to handle more write requirements.
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Figure 6.7: A Screenshot of PlaneShift7

6.3 Comparative Experiments of System Performance

After building a scalable game prototype, our research focus switches to compare the
system performance of a NoSQL DBMS (Cassandra cluster) and a conventional RDBMS
(MySQL Cluster in this experiment) when checkpointing and recovering state data of
MMORPGs. The database schema using in the JMMORPG project is in this case
relatively simple, which cannot satisfy our new experimental requirements. For this
reason, we have changed our experimental subject to another open source project,
PlaneShift5, which is closer to a practical commercial MMORPG.

6.3.1 A Practical Game Database Case Study: PlaneShift Project

PlaneShift is a 3D MMORPG under heavy development [Pan]. Figure 6.7 presents a
screenshot of PlaneShift. Its latest source code could be downloaded from the website
SourceForge6. Since this game is in the beta stage of the development, it still has
many bugs and missing features, and its game server is not reliable. However, this
game is created to meet commercial quality standards, so it has all the functionality
that a practical MMORPG should have, including combats, magics, crafts and quests.
Furthermore, state data of character and the virtual world are persisted on the server,
so a user can reconnect at any time to continue the game. As a result, this game has a
complete game architecture as well as a complex database schema like in a commercial
MMORPG.

PlaneShift uses MySQL to manage all game data. The database design and even the
scripts8 to access the database are provided on the website. The database schema of

5PlaneShift project:http://www.planeshift.it/ (accessed 10.10.2015).
6PlaneShift source code:https://sourceforge.net/projects/planeshift/ (accessed 10.10.2015).
7A Screenshot of PlaneShift: http://www.planeshift.it/element/%5B%5D/Picture%20of%20the%20day/

planeshift 333.jpg (accessed 20.12.2015).
8PlaneShift source code:https://github.com/baoboa/planeshift/tree/master/src/server/database/mysql

(accessed 27.11.2015).
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PlaneShift is presented in Chapter A. There are totally 92 tables in the database, which
could be mainly divided into eight groups based on the game scenario, namely character
tables, guild tables, NPC movement tables, NPC dialog tables, crafting tables, spells
tables, items tables and Mini-game Tables9. These tables are designed to mange various
data sets (see Section 2.1.3.2). For example, the accounts table is used to store players’
account data; the gm command log table is applied to back up players’ log data; state
data in PlaneShift are respectively managed in character tables, NPC Movement tables,
items tables, and so on.

In our experiment, we only focus on accessing the state data of character entities. For
this reason, only nine tables are involved (see Figure 6.8):

Characters table : has total 61 attributes, such as id, name, account id, loc x (loca-
tion coordinate) and bank money circles. It is the core table among these tables.
Other tables refer to the id attribute of it.

Item instances table : records the information of an item instance, like its owner
(char id owner), guardian (char id guardian), creator (creator mark id), location
coordinate and so on. It has 32 attributes.

Character relationships table : is used to represent the relationship (e.g., family,
buddy and spouse) between two characters, which has four attributes.

Other tables : including character events, character traits, player spells, character quests,
trainer skills and character skills are associative tables (bridge tables). These ta-
ble are used to resolve many-to-many relationships between characters table and
another table in the database. For example, character skills table maps characters
table and skills table together by referencing the primary keys of them to present
all skills that a character has.

6.3.2 Implementation of Testbeds

We have only borrowed the database schema of PlaneShift, rather than the entire
project. Two testbeds using different kinds of databases have been implemented. Based
on the experimental requirements, they only support a limited functionality. Since we
will compare the database performance of adding, checkpointing and recovering state
data, both testbeds support to insert, update and read data to/from the database.

6.3.2.1 Implementation of the Database using MySQL Cluster

In the testbed-MySQL, we have used MySQL Cluster 7.4.4 to manage data, and used
JDBC to access the database. MySQL Cluster is deployed on five virtual machines.
There should be at least one management server in the cluster to manage and monitor

9PlaneShift source code:http://planeshift.top-ix.org/pswiki/index.php?title=DatabaseDesign#Character Tables
(accessed 20.12.2015).
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Figure 6.8: Character State Data Related Tables in the PlaneShift Database
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Figure 6.9: Database Architecture of Testbed-MySQL

all nodes. And it is recommended putting it on a separate node so as to avoid a
server failure caused by other processes. Thereby, the cluster is configured with one
management node. The other nodes are divided into two groups (number of replicas is
two) and configured as both SQL and data nodes (see Figure 6.9). That means, data
are distributed on only four nodes.

We have created nine tables in the database to imitate the database schema of PlaneShift
(see Figure 6.10). Table names and the number of attributes keep the same with that
of original tables. But we have simplified dependencies among tables. Each table has
now only one foreign key related to the characters table. The name and type of some
attributes also have been modified in order to simplify the code of the testbed. The
impact of these modifications on the experimental results is negligible.

In practice, developers always use some advanced technologies or methods to optimize
the performance of accessing RDBs. For this reason, Testbed-MySQL also supports
prepared statements and stored procedures.

Prepared statement : is typically used with SQL statements, which is a feature in
DBMSs used to repeatedly execute similar database statements with high effi-
ciency. The statement is a template created with placeholders instead of actual
values by the application and sent to the DBMS. At a later time, the certain
constant values are passed to substitute placeholders during each execution. The
statement is compiled by the DBMS once, so it enhances the performance con-
siderably. Furthermore, using prepared statement can also protect the database
from SQL injection.

Stored procedure : is a set of SQL statements with an assigned name and parameters
(if it has) that is stored in the database in compiled form. Business logic could
be embed in the procedure. The conditional logic applied to the results of a
SQL statement can determine which subsequent SQL statements are going to be
executed. Furthermore, it can be shared by a number of applications by calling
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Figure 6.10: Database Schema of Testbed-MySQL
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Figure 6.11: Database Architecture of Testbed-Cassandra

the procedure. A stored procedure is only compiled when it is created. Therefore,
it improves the database performance.

We will use them on all three kinds of operations, and choose the best experimental
result of each operation to compare with results from testbed-Cassandra.

Moreover, for data checkpointing, a strategy called CopyUpdated is adopted. That
means, only the changed values will be updated into the database. This strategy can
significantly reduce the number of operations for each checkpointing. In order to realize
it, we have used an in-memory database, H210, in the testbed to store the information of
the last checkpoint, which will be used to compare with the current one. Comparative
results are used to determine things like which row/column in a table needs to be
updated, which row needs to be removed, which data need to be inserted into a table.

6.3.2.2 Implementation of the Database using Cassandra

In the testbed-Cassandra, we have applied Cassandra 2.1.12 to manage data. On the
client side, Java Driver is applied to access Cassandra. Similar with that in the Testbed-
MySQL, we have deployed a five-node cluster (see Figure 6.11). Different with that in
MySQL Cluster, all five nodes are responsible to store data. Furthermore, the repli-
cation factor is specified to two. Another significant difference is that there is only
one table (Characters table) in the database, which is nested (see Figure 6.12). Other
bridge tables have been mapped as map/set type columns of this table. That means, all
information of one character is stored in one row. Listing 6.1 on page 89 shows the script
for creating the Characters table by using CQL. The type and number of attributes in
both testbeds are the same.

Cassandra also supports prepared statements, but not yet stored procedures. However,
in this testbed, we have used none of them to optimize the performance because we

10H2 website: http://www.h2database.com/html/main.html (accessed 20.12.2015)
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characters

id account_id loc_sector_id racegender_id name col1 ... col56 character_events ... item_instances

map<int, frozen <events>> ... map<int, frozen <items>>

Figure 6.12: Database Schema of Testbed-Cassandra

Testbed-MySQL Testbed-Cassandra
DBMS MySQL Cluster 7.4.4 Cassandra 2.1.12

API JDBC Java Driver
Number of Nodes 5 5

Number of Data Nodes 4 5
Number of Replicas 2 2
Number of Tables 9 1

Optimization prepared statement & stored procedure none
Strategy for Checkpointing CopyUpdated CopyAll

Table 6.2: Comparison of Two Testbeds

want to use the basic operations for the later comparison. For the data checkpointing,
we have adopted another strategy called CopyAll. That means, the current checkpoint
will completely substitute the stale one in the column family. This strategy leads to a
number of repeated writes, if the change between two checkpoints is small. However, it is
ideal for Cassandra because in this way there is only write operations for checkpointing
without delete and query operations.

A comparison of two testbeds shows in Table 6.2.

6.3.2.3 Related Work

We have proposed to use different strategies (CopyUpdated and CopyAll) in our testbeds
for data checkpointing. The idea of these strategies comes from others’ research.
In [VCS+09], authors have evaluated the overhead, checkpoint, and recovery times
of several consistent checkpointing algorithms. They have proposed two fast checkpoint
recovery algorithms for MMOGs in another work [CVS+11]. In our project, we focus
on how to flush structured checkpoints to Cassandra as well as MySQL Cluster, and
fetch them efficiently, which could be considered as an extension of their research.

6.3.3 Experimental Setup

The experiment is carried out in a multi-process operating environment, which simulate
a real application scenario. We have executed 10 processes in parallel to access the
database. The average time of running 10000 operations in one process will be returned
as an experimental result.

Cassandra is eventually consistent. In order to guarantee the read-your-writes consis-
tency, we specify the write consistency level to ONE and the read consistency level
to ALL. The disk-resident database in MMORPGs is write-intensive. We must try to
shorten the processing time of write operations. Hence, the consistency level of write
is lower than read.
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//Creation of a user−defined type named event
CREATE TYPE PlaneShift_db.event (

col1 text,
col2 text

);

CREATE TYPE ...

...

//Creation of a column family named characters
CREATE TABLE PlaneShift_db.characters (

id uuid PRIMARY KEY,
account_id int,
loc_sector_id int,
racegender_id int,
name text,
col1 text,
...
col56 text,
character_events map<int, frozen <event>>, // a collection map
character_spells map<int, frozen <spell>>,
character_relationships map<int, frozen <relationship>>,
character_quests map<int, frozen <quest>>,
item_instances map<int, frozen <instance>>,
character_skills map<int, frozen <cskill>>,
trainer_skills map<int, frozen <tskill>>,
character_traits set<int> // a collection set

);

Listing 6.1: Creation of Characters Column Family

We have carried out two groups of experiments under different experimental environ-
ments.

Experimental environment I (no character) : we have simulated the scenario
that an online game is just released, so more and more players start to join the
game. That means, at the beginning there is no record in the database. We will
evaluate the system performance of adding new characters’ data into the database,
as well as checkpointing and querying data in this case.

Experimental environment II (one million characters) : an online game has
already robustly run for a long time, which has accumulated a large number
of players. To simulate this scenario, we have previously inserted one million
characters’ information in the database. That means, in the characters table of
both testbed databases, there are already one million rows. Additionally, we re-
strict that each character has at most 20 records in each bridge table (in testbed-
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MySQL) or collection type column (in testbed-Cassandra). During the check-
pointing we generate a random number between zero and twenty for each bridge
table or collection type column as the new number of records storing in it. For this
reason, every bridge table in the Testbed-MySQL has around ten million rows.

6.3.4 Experiments

We will evaluate each testbed separately, and then compare their results at last.

6.3.4.1 Experimental Results from Testbed-MySQL

The experimental results shown in Figure 6.13 make it easy for us to reach the following
conclusions:

1) The best performance of inserting state data is gotten from using prepared state-
ments. For update and read operations in both experiential environments, the use
of stored procedures helps more. We will then use the best result for each operation
in this testbed to compare with that from testbed-Cassandra.

2) The experiential results have proven that both prepared statement and stored pro-
cedure can help for enhancing the system performance.

3) Stored procedure is more suitable for our application scenario. Some complex
database operations, like update, insert, query and delete data from multiple ta-
bles can be packaged together as a stored procedure, and manage as a transaction
in the database.

4) The read performance of MySQL Cluster is high. The reason is that MySQL Cluster
partitions and distributes data by hashing on keys. It uses then a hash index to query
data, rather than scanning all rows.

5) The performance of update is higher than insert in our experiment. That is because
by using the CopyUpdated strategy less data have been modified during the updating.

6) The data volume in the database does not affect on the results significantly. The
reason could be that in this experiment, it is not a challenge to use a five-node
MySQL Cluster to manage records of one million characters.

6.3.4.2 Experimental Results from Testbed-Cassandra

Figure 6.14 shows the experimental results of testbed-Cassandra. Accordingly, we get
the following conclusions:

1) In contrast with the results from testbed-MySQL, the write performance of Cassan-
dra is higher than read. The reason has been discussed in Section 3.4. Especially in
this experiment, the read consistency level is ALL, which is higher than the write
consistency level (ONE ).

2) The data volume does not affect the experimental results. A five-node Cassandra
cluster can also deal with the records of one million characters.
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(a) Comparison of the Performance of Insert, Update and Read Using Three
Methods in the Experimental Environment I (No Character)
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Basic 1905043 297146 

Prepared Statement 1709935 291786 
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(b) Comparison of the Performance of Update and Read Using Three Methods
in the Experimental Environment II (One Million Characters)

Figure 6.13: Comparison of the Performance (Average Running Time for 10000 Op-
erations) of Different Operations of Testbed-MySQL Using Three Methods in Two
Experimental Environments
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(a) The Performance of Insert, Update and Read in the Experimental Environ-
ment I (No Character)
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(b) The Performance of Update and Read in the Experimental Environment II
(One Million Characters)

Figure 6.14: Performance (Average Running Time for 10000 Operations) of Different
Operations of Testbed-Cassandra in Two Experimental Environments
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6.3.4.3 Comparison of Experimental Results from Two Testbeds

We have integrated the best results from two testbeds into two diagrams (see Figure 6.15
and Figure 6.16). The comparative results are obvious and convincing. In both two
experimental environments, use of Cassandra can significantly improve the efficiency
of data processing, even though we have not used any optimization technique. For
example, in Figure 6.15 the running time for inserting, updating and reading state data
has been reduced respectively by 94.4%, 92.9% and 40.6% through using Cassandra.
Besides the different ways of data processing between RDBMS and NoSQL DBMS,
there are following specific reasons:

Database Schema : in testbed-MySQL, the information of one character are as-
signed to nine tables. Moreover, each bridge table holds a maximum of 20 records
of a character. Thus, each data operation could involve at most 161 rows, which
are distributed in different tables and even nodes in the cluster. The communica-
tion and I/O costs are consequently high. In contrast, in testbed-Cassandra, the
entire information of one character is kept together in one row. Therefore, the
overhead for data access is minimized.

Consistency mechanism : the MySQL Cluster used in testbed-MySQL hosts two
replicas for all data. By using the default two-phase commit mechanism, data
are synchronized to both replicas during executing a write operation (see Sec-
tion 2.2). Furthermore, distributed locks are required here to guarantee ACID
transactions. However, in testbed-Cassandra, as long as one replica has been
updated successfully, the write operation is considered to be complete.

Additionally, we can also reach some other conclusions:

1) The read performance has not been enhanced as much as the write performance.
There are two reasons: MySQL Cluster caches all data in memory. Cassandra
only caches the latest or the most frequently accessed data. Therefore, disk I/O is
inevitable; the read consistency level in Cassandra is specified to ALL. In contrast,
MySQL Cluster fetched data only from one replica. In the next section, we will
focus on improving the read performance of Cassandra.

2) The running time of checkpointing has been reduced obviously by using Cassandra.
The benefit is that the frequency of checkpointing could be increased, which reduces
the loss caused by a game server failure. Or we can checkpoint more characters’
state data at the original frequency.

Overall, these experimental results have shown that the use of an RDBMS for data
checkpointing and recovery in our game scenario is not efficient. The performance
could be easily improved by applying Cassandra instead.
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(b) Comparison of Update Performance
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(c) Comparison of Read Performance

Figure 6.15: Comparison of the Performance (Average Running Time for 10000 Oper-
ations) of Two Testbeds in the Experimental Environment I (No Character)
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(a) Comparison of Update Performance
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(b) Comparison of Read Performance

Figure 6.16: Comparison of the Performance (Average Running Time for 10000 Oper-
ations) of Two Testbeds in the Experimental Environment II (One Million Characters)

6.4 Experimental Proof of the Timestamp-based Model

In Chapter 5, we have pointed out Cassandra’ problem in guaranteeing read-your-
writes Consistency. Moreover, in Section 6.3, experimental results have shown that
using Cassandra cannot enhance the read performance as much as write performance.
Therefore, we have proposed the TSModel to address this problem. In this section, we
want to verify it by experiments.

6.4.1 Implementation of the Testbed

In this experiment, we need to implement a data access server (DAS) and deploy a
Cassandra cluster to cooperate with it.

6.4.1.1 Implementation of the Data Access Server

Based on the experimental requirements, we have implemented the following function-
ality for the application on the DAS:

Communication with Cassandra and TST : the application on the DAS is a
bridge between the game server and the Cassandra cluster. State data are ex-
changed here for the data checkpointing and recovery purpose. Hence, it holds
the connection with Cassandra; furthermore, the timestamp of each operation
needs to be stored on the DAS. Accordingly, we have embedded H2 (a lightweight
in-memory RDBMS) in the application to host the TST.
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Tunable configuration : we will carry out a series of experiments to verify our
Timestamp-based Model. The configuration of Cassandra Cluster/application
for each experiment is different. For this reason, configurations like operation
type (read/write/delete), consistency level, load balancing policy and data range
should be tunable in the application.

Support for Node-aware Policy : in Chapter 5, we have proposed a new load
balancing policy to communicate with Cassandra by using Java Driver. Hence,
we have added a new class, NodeAwarePolicy, in Java Driver, which implements
the ChainableLoadBalancingPolicy class. The process of this class is showed in
Algorithm 3. Furthermore, we have overwritten the getReplicas() function in the
Metadata class to make it possible to get the information about the replication
factor as well as the replica placement strategy of the ring. In this way, if a user
applies the NodeAwarePolicy, the new function can return all replica nodes for a
data object. If the TokenAwarePolicy is used, the original getReplicas() function
will be called, which only returns the “primary” replica node calculated by the
token.

Powerful control panel : in order to facilitate setting of experimental parameters
manually, we have designed a flexible and powerful control panel (see Figure 6.17).
For example, we can use dialog I (see Figure 6.17a) to create/drop a keyspace/col-
umn family, and use dialog II (see Figure 6.17b) to execute different operations.
Moreover, this application provides an interface to accept command line argu-
ments from another application to set up all these parameters.

Support for multi-processes : the experiment is carried out under a multi-processes
environment, so we have also designed a master application to call the application
introduced above. This master application can call any number of slave applica-
tions, and pass different commands (parameters) to each of them. Furthermore,
we also use the master application to manage the Cassandra cluster (start/stop
one or several specified nodes).

6.4.1.2 Database Schema

When we implemented this testbed, the collection type was not supported by CQL.
For this reason, the structure of the column family is like Figure 5.8 with up to 160
columns, and the timestamp is stored as in Figure 5.6b. The column name is a string
type, and the column value is an integer type.

6.4.2 Experimental Setup

Table 6.3 shows the setup of the testbed. We have deployed a five-node Cassandra
cluster. Although the number of nodes is less than that in a practical game database,
it is enough for our evaluations because we can already perform tests with different
consistency levels, simulate a node failure, and get inconsistent data (see Table 5.1);
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(a) Dialog I of the Control Panel

(b) Dialog II of the Control Panel

Figure 6.17: Control Panel
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Input: an avatar/game object’s UUID and the operation type (read, write, or
delete)

Output: the coordinator for this operation
begin

//***step I***//
if is a read operation then

get the host address (IP) from H2 based on the UUID
while not yet checked all replica nodes in Cassandra do

if a replica node with that IP is found && is up then
return(use this replica node as the coordinator)

end

end

end

//***step II***//
//is not a read operation//
//or did not find any alive replica node with that IP//
while not yet checked all replica nodes in Cassandra do

if a replica node is up then
return(use this replica node as the coordinator)

end

end

//***step III***//
//all replica nodes are down//
while not yet checked all other nodes in Cassandra do

if a node is up then
return(use this node as the coordinator)

end

end

end
Algorithm 3: Process of the NodeAwarePolicy Class

30 million rows have been previously inserted into Cassandra cluster and the TST to
simulate a real number of registered players in an MMORPG; in practice, there could
be multiple TSTs working in parallel. We have only used one in order to evaluate its
performance under a heavy workload; Each row in Cassandra contains a flexible number
of columns from 110 to 160, which simulates the different number of properties that
an object has; Cassandra is mainly used in this scenario to back up data, so writes are
significantly more than reads. During the experiment, we have executed 10 processes
in parallel to access Cassandra, with nine for writing and one for reading, which is used
to simulate a real game environment; we use the average running time for executing
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Cassandra Version 1.2.13
Number of Nodes 5
Replication Factor 3
Number of Rows 30 million

Number of Columns 110 ∼ 160
Data Size > 120 GB

Client Driver DataStax Java Driver 1.0
Writes : Reads 9 : 1

Table 6.3: Experimental Setup

10000 operations under this experimental environment as the criterion to evaluate the
system performance.

6.4.3 Experiments

We will evaluate the efficiency of our timestamp-based model (TSModel), and compare
it with some built-in methods in various environments (e.g., all nodes are up, or some
nodes are down). Furthermore, there are two factors (accessing of the TST and data
size in the cluster) that affect the efficiency of the new model. We will also assess their
impact through experiments.

6.4.3.1 Effect of Accessing the Timestamp Table (TST) in H2

We have introduced a TST in the new game architecture, which certainly enhances the
running time for data processing. However, the TST has a simple structure (only four
columns), and is held in memory. Compared to the data accessing in a distributed disk
resident database with data replication, its effect is negligible.

Figure 6.18 presents the running time of writes and reads with different CLs. The
running time of accessing the TST only occupies about 9% in writes and about 12% in
reads. Moreover, even if the running time of H2 is calculated, the total running time
of querying with a low CL is still shorter than the running time of querying Cassandra
with a high CL. For instance, the total time of write ONE is 129231 ms, which is still
shorter than performing write TWO in Cassandra (131929 ms).

6.4.3.2 Write/Read Performance Using the Timestamp-based Model

We have proposed to use TSModel to guarantee the game consistency, and also proposed
to integrate TSModel with the NodeAwarePolicy strategy (N TSModel) to improve the
system performance. In this experiment, we will evaluate the write/read performance of
TSModel, N TSModel and T TSModel (TSModel integrates with the build-in strategy
TokenAwarePolicy in Java Driver), and compare them with basic operations in Cassan-
dra. The write/read CL of the first three methods is set to ONE, and the running time
of H2 is calculated in the total running time. The write/read CL of basic operations
is set to ONE, TWO, or ALL, and the total running time only includes the running
time of Cassandra. During the experiment, all five nodes are available. The results are
showed in Figure 6.19. We can reach conclusions from the figures that:
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W. One W. Two W. All 

Running Time of H2 13088 12648 11642 

Running Time of Cassandra 116143 131929 164566 
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(a) Effect on the Performance (Average Running Time for 10000
Operations) of Basic Write Operations with Different Consistency
Levels

R. One R. Two R. All 

Running Time of H2 59879 58951 57061 

Running Time of Cassandra 379952 484359 541479 
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(b) Effect on the Performance (Average Running Time for 10000
Operations) of Basic Read Operations with Different Consistency
Levels

Figure 6.18: Effect of Accessing the TST in H2

1) the query performance using TSModel is between write/read ONE and TWO. That
means when all nodes in the cluster are available, the write/read performance to
guarantee the read-your-writes consistency is now close to CL ONE, which is efficient.

2) the query performance of both N TSModel and T TSModel is closer to or even bet-
ter than write/read ONE. Actually, through applying the TokenAwarePolicy and
NodeAwarePolicy strategy, the write/read performance of Cassandra has been in-
creased. The reason is that there is less communication among nodes in the cluster
(coordinator is one of the replica nodes).
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N_TSModel T_TSModel TSModel W. One W. Two W. All 

Running time (ms) 102262 112965 131543 116143 131929 164566 
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(a) Comparison of Write Performance (Average Running Time for 10000 Operations)

N_TSModel T_TSModel TSModel R. One R. Two R. All 

Running time (ms) 384067 387952 429913 379952 484359 541479 
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(b) Comparison of Read Performance (Average Running Time for 10000 Operations)

Figure 6.19: Performance Comparison of TSModel and its Derivative (N TSModel and
T TSModel) with Basic Operations (Write/Read with Different Consistency Levels) in
Cassandra

3) the performance of N TSModel is better than T TSModel, especially the write per-
formance. That is because the most efficient replica node has been chosen as the
coordinator, so the running time is short. And the workload of each node in the
cluster is more balanced.

6.4.3.3 Read Performance under a Node Failure Environment

Similar to the test four presented in Table 5.1, we have repeated the above experiment
under a temporary node failure environment (Two nodes are failed during writing, all
nodes are available during reading. The write Cl is set to ONE ).
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N_TSModel T_TSModel TSModel R. One R. Two R. All 

Running time (ms) 642208 663153 754319 515129 767003 1207829 

Nr. of invalid results 0 0 0 2568 342 0 
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2495 → 0 1203 → 0 1777 → 0 

Figure 6.20: Comparison of Read Performance under Node Failure

Figure 6.20 leads us to the conclusion that:

1) only read ALL could ensure to fetch the up-to-date data by just retrieving once.
However, its performance is the worst.

2) although the running time of read ONE and read TWO is relatively shorter, both
of them cannot guarantee data currency.

3) by using the timestamp-based model (TSModel, N TSModel and T TSModel), the
total time is compressed between read ONE and read TWO, whereas all up-to-date
data are fetched eventually.

4) in theory, by using the NodeAwarePolicy, no invalid data (null value) should be found
since the coordinator already holds the update-to-date data. However, in practice,
the invalid data are still returned. Through tracing the query, we found that the
coordinator does not always execute the request locally. Sometimes it forwards the
request to another replica node, which might be just recovered from a node failure.
Consequently it does not hold the up-to-date data. The reason could be that the
workload of this coordinator is too heavy, so the other replica node can process the
request faster. However, we can still state that the invalid data are halved (from
24995 to 1203), and consequently, the read performance is much closer to read ONE.

6.4.3.4 Effect of Data Size

As discussed in Section 5.2.2, the data size of the cluster will increase obviously caused
by the stale data. Figure 6.21 describes the system performance under different data
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W. One W. Two W. All 

Running Time (Data size: 
130GB) 

105771 117650 147317 

Running Time (Data size: 
280GB) 

116143 131929 164566 
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(a) Effect on Write Performance (Average Running Time for 10000
Operations)

R. One R. Two R. All 

Running Time (Data size: 
130GB) 

335105 419211 463480 

Running Time (Data size: 
280GB) 

379952 484359 541479 
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(b) Effect on Read performance (Average Running Time for 10000
Operations)

Figure 6.21: Effect of Data Size in Cassandra on System Performance

size (130 GB and 280 GB). Both write and read performance have been affected. The
time is wasted by retrieving a large number of files (SSTables) in disk. Therefore, we
conclude that it is imperative to clean up all stale data timely.

The strategy of deleting stale data could be classified into two groups, namely, eager
deletion and lazy deletion. Eager deletion refers to deleting the stale data instantly
after flushing a new checkpoint; Lazy deletion describes that stale data will be deleted
together asynchronously during a garbage collection at a specific time or under a certain
condition (e.g., when the cluster is idle). Cassandra does not yet support a range query
on the second compound primary key (TS in our experiment). That means, the stale
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Testbed-MySQL Testbed-Cassandra Testbed-N_TSModel 
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(a) Comparison of Update Performance (Average Running Time
for 10000 Operations)

Testbed-MySQL Testbed-Cassandra Testbed-N_TSModel 

Running Time 177632 122918 75533,1 
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(b) Comparison of Read Performance (Average Running Time for
10000 Operations)

Figure 6.22: Performance Comparison of Testbed-N TSModel with Testbed-MySQL
and Testbed-Cassandra (Two Replicas in Each Database)

data could only be deleted one by one, thereby spending the same time, whichever
strategy is chosen. Lazy deletion prevents bringing extra workload during peak hours.
However, we have to record the timestamp of each checkpoint on the server side, or get
it by executing an expensive read ALL in the cluster and use it to detect stale data.
Overall, we need to choose the strategy based on the actual scenario.

6.4.3.5 Performance Comparison with Testbed-MySQL and Testbed-Cassandra

We have rebuilt the testbed-Cassandra introduced in Section 6.3 to make it support
the N TSModel, and named it as testbed-N TSModel. And then, we have compared its
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update and read performance with that of the other two testbeds when guaranteeing
the Read-Your-Writes consistency. The experimental setup is the same with the ex-
perimental environment II (one million characters) (see Section 6.3.3). There are two
replicas for each row in all three testbeds. The write consistency level is ONE and read
consistency level is ALL (TWO) in testbed-Cassandra. In testbed-N TSModel, if there
is no node failure, both write and read consistency level is ONE. Experimental results
are showed in Figure 6.22.

We can reach the conclusion that by using the N TSModel, both read and update
performance have been enhanced. The average time for processing 10000 updates and
reads is reduced by 94.9% and 57.5% comparing with the testbed-MySQL, which is
satisfactory.

6.5 Summary

In this chapter, we have implemented a number of testbeds for different experimental
purposes. The experimental results have proven that using NoSQL DBMS (e.g., Cas-
sandra) for checkpointing and recovering state data is reasonable. It brings a potential
scalability and high performance for persisting data of MMORPGs.
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7. Conclusion

Within the CloudCraft project, we proposed a Cloud-based architecture for MMORPGs.
The introduction of a NoSQL DBMS in the game scenario is aiming at addressing the
issue caused by using RDBMSs for managing large amounts of game data. For in-
stance, RDBMSs are hard to scale out, and are not always available in a distributed
environment. In order to choose a suitable NoSQL DBMS as a substitute, we analyzed
the existing architectures of MMORPGs and the management requirements of different
data sets in them. We found that the state data and log data must be managed in
the database, which pose a challenge to conventional RDBMSs. Furthermore, there are
also some requirements that cannot be fulfilled by a NoSQL DBMS, like the real-time
processing and complex query. For this reason, we only proposed to use NoSQL DBMSs
to persist data checkpoints, which are applied to recover data to an in-memory database
in game servers. For this use case, the chosen NoSQL DBMS must be write-intensive.
Finally, Cassandra entered our field of vision. We demonstrated then the feasibility of
using it in theory.

To provide an experimental proof for the potential scalability of Cassandra in the game
scenario, we created a prototype based on an open source project, JMMORPG. We
redesigned the database schema of it to meet the features of Cassandra’s database
model. The experimental results showed that under a certain workload, the system
performance could be improved by adding more nodes in Cassandra cluster, and the
write/read performance is satisfactory.

We also compared the checkpoint and recovery times of MySQL Cluster and Cassandra
when processing the same amount of state data. We used different methods/strategies
to optimize the performance of MySQL Cluster, but only executed the basic operations
in Cassandra. The experimental results confirmed the correctness of the choice of
Cassandra. The running time for executing inserts, updates and reads has been reduced
by 94.4%, 92.9% and 40.6%. From the result we also found that Cassandra cannot
guarantee data consistency efficiently.
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In a distributed system (like Cassandra cluster), the implied trade-off between con-
sistency and run-time performance and/or availability cannot be solved easily, as we
demonstrated. For this purpose, we introduced several concepts to manage consistency
in a multi-layered architecture. A key ingredient is a simple timestamp-based approach,
which checks for inconsistencies on the fly and only mends these if they occur. As the
check itself is quite light-weight and, as also shown, situations triggering the inconsis-
tency are very unlikely in our scenario, the new approach provides excellent run-time
performance compared to strongly consistent operations as provided by Cassandra it-
self. The average time for processing 10000 updates and reads is reduced by 94.9% and
57.5% respectively comparing with the testbed using MySQL Cluster.

Overall, by using the Cloud technology, we can solve the data persistence issues that
MMORPGs are facing. The new Cloud-based architecture helps to improve the scala-
bility, availability and performance of the game system significantly.



8. Future Work

We have carried out many experiments on the system scalability, performance and
game consistency. However, limited by the infrastructure and time there are more
experiments to be done, and some open issues are left to address. This research could
continue from the following aspects:

1) All experiments in this work were carried out in an intranet. In practice, data of an
MMORPG are distributed and replicated in multiple data centers to avoid getting
data from remote geographic locations. However, data synchronization across mul-
tiple data centers would delay the running time of writes. The write performance
of RDBMSs supporting strong consistency is even worse in this situation. By using
a NoSQL DBMS like Cassandra, we can specify the write/read consistency to the
LOCAL level (e.g., LOCAL ONE or LOCAL QUORUM ), which could improve the
write performance. That means, in theory the performance difference between using
two kinds of DBMSs in a multi-data center environment should be more obvious.
In the future, we would like to evaluate the performance of our prototype in this
environment.

2) We proposed a node-aware policy to specify the coordinator for each query, which
only works at the moment with the SimpleStrategy, that places the additional replicas
on the next nodes of the first replica node clockwise in the ring. In a multi-data
center environment, another replica placement strategy NetworkTopologyStrategy is
recommended, which places replica across multiple data centers and on distinct
racks. In this case, the method of getting information of all replica nodes using
in our prototype does not work. We would modify our program to adapt to this
environment in the future.

3) With the help of the node-aware policy, we can specify the replica node holding
the current checkpoint as a coordinator. And we also have checked the source code
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of Cassandra 2.11, which showed if a coordinator holds the data locally, it returns
them directly without forwarding the request to other replica nodes. However, in
practice sometimes the coordinator still gets data from other replica nodes, which
could be stale. Currently, it is still an open issue for us. In the future, we would use
the node-aware policy in the latest release of Cassandra (currently is version 3.6) to
check whether it works or not. If not, we would check the code of Cassandra and
trace a query request to find out the reason.

4) Limited by the infrastructure, we could only take at most five nodes in a Cassandra
cluster, so we can only conclude that our Cloud-based prototype has potential scal-
ability. The number of nodes in a practical game database is far more than that.
Hence, we would increase the number of nodes in the future, and redo the experi-
ment. Furthermore, we also would like to evaluate the scalability of RDBMS in this
experimental environment. We hope the experimental result could prove that using
a NoSQL DBMS is more suitable in the game scenario.

5) In this project, we have taken Cassandra as an example in the Cloud-based proto-
type, but there are many other NoSQL DBMSs could be used, like HBase, MongoDB
and Riak. Each NoSQL DBMS has its own characteristics as well as issues when
using in the game scenario. For example, if we use HBase here, the guarantee of
read-your-writes consistency would not become a problem any more because it en-
sures strong consistency in the row level. However, the write performance especially
under a node failure could be worse than Cassandra. In the future, we would like
to compare Cassandra with other NoSQL DBMSs in the game scenario to find out
the best alternative to RDBMSs in MMORPGs.

1https://github.com/apache/cassandra/blob/trunk/src/java/org/apache/cassandra/service/
AbstractReadExecutor.java#L78 (accessed 26.11.2014)
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The database schema of PlaneShift is presented as follows1:

1Database Schema of PlaneShift: https://github.com/baoboa/planeshift/blob/master/src/server/
database/planeshift db rev1256.png (accessed 20.12.2015).
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Figure A.1: Database schema of PlaneShift1
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[SSR08] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris :
Reliable Transactional P2P Key/Value Store. In Proceedings of the 7th
ACM SIGPLAN workshop on ERLANG (ERLAND 2008), pages 41–48,
September 2008. (cited on Page 55)

[Sup14] Superdata. Top 10 Subscription-based MMOs. Website,
July 2014. Available online at http://2p.com/7801190 1/
Top-10-Subscribtion-based-MMOs-Elder-Scrolls-Online-Tops-772k-Subscribers-by-Apophis.
htm; visited on July 23th, 2015. (cited on Page 6)

[TRAR99] Francisco J. Torres-Rojas, Mustaque Ahamad, and Michel Raynal. Timed
Consistency for Shared Distributed Objects. In Proceedings of the eigh-
teenth annual ACM symposium on Principles of distributed computing
(PODC 1999), pages 163–172, May 1999. (cited on Page 27)

[Vah14] Vivek Vahie. 99 Problems but the Cloud ain’t One:
What are SaaS, PaaS and IaaS? Website, August 2014.
Available online at http://www.tgdaily.com/enterprise/
127086-99-problems-but-the-cloud-aint-one-what-are-saas-paas-and-iaas;
visited on November 26th, 2015. (cited on Page xiii and 22)

[VCO10] Hoang Tam Vo, Chun Chen, and Chin Ooi. Towards Elastic Transactional
Cloud Storage with Range Query Support. Proceedings of the VLDB
Endowment, 3(1):506–517, 2010. (cited on Page 66)

[VCS+09] Marcos Vaz Salles, Tuan Cao, Benjamin Sowell, Alan Demers, Johannes
Gehrke, Christoph Koch, and Walker White. An Evaluation of Check-
point Recovery for Massively Multiplayer Online Games. Proceedings of
the VLDB Endowment, 2(1):1258–1269, 2009. (cited on Page 88)

[Vog09] Werner Vogels. Eventually Consistent. Communications of the ACM
(CACM), 52(1):40–44, 2009. (cited on Page 14 and 27)

[Vol10] LLC VoltDB. Voltdb technical overview. Whitepaper, 2010. (cited on

Page 17)

[Wan13] Shuo Wang. Towards Cloud Data Management for Online Games - A
Prototype Platform. master thesis, University of Magdeburg, Germany,
September 2013. (cited on Page 74)

[WFZ+11] Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. Data
Consistency Properties and the Trade-offs in Commercial Cloud Storages:

http://2p.com/7801190_1/Top-10-Subscribtion-based-MMOs-Elder-Scrolls-Online-Tops-772k- Subscribers-by-Apophis.htm
http://2p.com/7801190_1/Top-10-Subscribtion-based-MMOs-Elder-Scrolls-Online-Tops-772k- Subscribers-by-Apophis.htm
http://2p.com/7801190_1/Top-10-Subscribtion-based-MMOs-Elder-Scrolls-Online-Tops-772k- Subscribers-by-Apophis.htm
http://www.tgdaily.com/enterprise/127086-99-problems-but-the-cloud-aint-one-what-are-saas-paas-and-iaas
http://www.tgdaily.com/enterprise/127086-99-problems-but-the-cloud-aint-one-what-are-saas-paas-and-iaas


Bibliography 125

the Consumers’ Perspective. In Conference on Innovative Data Systems
Research (CIDR 2011), pages 134–143, January 2011. (cited on Page 59)

[WKG+07] Walker White, Christoph Koch, Nitin Gupta, Johannes Gehrke, and Alan
Demers. Database Research Opportunities in Computer Games. ACM
SIGMOD Record, 36(3):7–13, 2007. (cited on Page xiii, 2, 9, 10, 11, 12, 15,

and 54)

[WPC09] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. Scalable Transactions
for Web Applications in the Cloud. In 15th International Euro-Par Con-
ference (Euro-Par 2009), pages 442–453, August 2009. (cited on Page 60

and 66)

[YK13] Amir Yahyavi and Bettina Kemme. Peer-to-Peer Architectures for Mas-
sively Multiplayer Online Games: A Survey. ACM Computing Surveys
(CSUR), 46(1):Article No. 9, 2013. (cited on Page 54)

[YV05] Anthony Peiqun Yu and Son T Vuong. MOPAR : A Mobile Peer-to-Peer
Overlay Architecture for Interest Management of Massively Multiplayer
Online Games. In Proceedings of the international workshop on Network
and operating systems support for digital audio and video (NOSSDAV
2005), pages 99–104, June 2005. (cited on Page 54)

[Zep16] Zephoria. The Top 20 Valuable Facebook Statistics – Updated September
2016. Website, September 2016. Available online at https://zephoria.
com/top-15-valuable-facebook-statistics/; visited on October 5th, 2016.
(cited on Page 21)

[ZK11] Kaiwen Zhang and Bettina Kemme. Transaction Models for Massively
Multiplayer Online Games. In Proceedings of the 2011 IEEE 30th Inter-
national Symposium on Reliable Distributed Systems (SRDS 2011), pages
31–40, October 2011. (cited on Page 55)

[ZKD08] Kaiwen Zhang, Bettina Kemme, and Alexandre Denault. Persistence
in Massively Multiplayer Online Games. In Proceedings of the 7th
ACM SIGCOMM Workshop on Network and System Support for Games
(NETGAMES 2008), pages 53–58. ACM Press, October 2008. (cited on

Page 1, 2, and 55)

https://zephoria.com/top-15-valuable-facebook-statistics/
https://zephoria.com/top-15-valuable-facebook-statistics/


126 Bibliography
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