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Abstract

Future smart and intelligent environments are envisioned to be loosely coupled composi-
tions of distributed sensor, actuator, and computation systems, which are able to combine
their capabilities, share their information and knowledge, in order to fulfill various tasks au-
tonomously. However, current approaches in these areas do either provide mechanisms for
sharing data only or concentrate on the composition of operations/services for predefined
problem sets.

This thesis, therefore, firstly analyzes the different notions of data, information, and
knowledge to be shared among heterogeneous systems. Based on this distinction, a reference
model that is used to relate the previously disparate approaches was developed. It has
revealed that most of the concepts and attempts for smart and intelligent environments do
only tackle small and restricted aspects.

In contrast to adding a new system to the current state-of-the-art that also operates
on one or more of the identified layers, a concept was developed that integrates these
technologies from different layers, which allows to combine and access them freely. It treats
such compositions of smart information spaces as distributed database, allowing to query,
access, and extract all the required information in the desired formats. The developed
concept is based on three intermediate steps. At first, cloud-based techniques are applied
to form a virtual overlay database and to define a basic organization. In opposition to other
approaches, relevant data and information from different entities is therefore not uploaded
to a cloud infrastructure but, instead, a cloud is formed by all entities within the smart
environment. As a second step and on the basis of SQL-like queries, relevant data for a
certain area or task is identified and translated into a precise 3D rigid-body simulation. This
local reconstruction of the environment is applied in the last step as a general representation
and local knowledge base, from which further representations and information is abstracted.
The type of information or representation is also defined within the mentioned SQL-like
query. For this purpose, a new and embedded programming language that combines both
an SQL-like syntax with new semantics, and declarative aspects with imperative scripting
capabilities has been developed.

As a proof of concept, prototypes have been developed for every described step, which
can be freely downloaded as open source implementations under BSD-license.





Zusammenfassung

Die intelligente Umgebung der Zukunft, wie man sie sich heute vorstellt, besteht aus
einer Vielzahl unterschiedlichster, lose gekoppelter, autonomer Systeme. Dazu zählen Sen-
soren und Aktoren aber auch Recheneinheiten, die nicht lokal verortet sein müssen. Sol-
che Systeme sollen in der Lage sein ihre Fähigkeiten individuell und aufgabenabhängig zu
kombinieren sowie ihr Wissen über die Umgebung und ihre derzeitige Wahrnehmung dyna-
misch zu teilen. Die aktuellen Ansätze und verwendeten Systeme in sogenannten smarten
Umgebungen bieten jedoch nur die Möglichkeit eines dynamischen Datenaustausches in fest
vorgeschriebenen Formaten oder konzentrieren sich auf die Entwicklung von Architekturen,
die nur auf einen kleinen Problembereich anwendbar sind.

Um eine generische Lösung zu entwickeln, wurde in dieser Arbeit zunächst analysiert, wel-
che unterschiedlichen Formen von Daten, Informationen und Wissen in solchen heterogenen
Systemen ausgetauscht werden. Auf Basis dieser Analyse wurde ein schichtenbasiertes Refe-
renzmodell entwickelt, das es erlaubt, bestehende Systeme und Architekturen in Beziehung
zueinander zu setzen. Die daraufhin erfolgte Einordnung der wissenschaftlichen Literatur
zeigte, dass sich die meisten Arbeiten innerhalb dieser Kategorien nur auf kleine Teilaspekte
bzw. Probleme innerhalb von intelligenten Umgebungen konzentrieren.

Das Ziel dieser Arbeit war es nicht, eine weitere spezifische Variante zum derzeitigen
Stand der Forschung hinzuzufügen, welches eine oder mehrere Schichten des Referenzmo-
dells abdeckt, sondern vielmehr ein Konzept zu entwickeln, dass es erlaubt verschiedene
bestehende Technologien einzubinden und ganzheitlich auf sie zuzugreifen. Hierfür wurde
die Metapher einer verteilten Datenbank genutzt, die alle Komponenten einer intelligenten
Umgebung einschließt und es erlaubt, nicht nur auf die verschiedenen Daten zuzugreifen
sondern auch beliebige Informationen in unterschiedlichen Formaten zu generieren bzw. aus
der Umgebung zu extrahieren. Das dafür entwickelte Konzept besteht aus drei Elementen.
In der Basis wird ein Cloud-basierter Ansatz verfolgt, der eine grundlegende Struktur und
Hierarchie festlegt. Im Gegensatz zu anderen Systemen werden hierbei nicht alle Daten
und Informationen unterschiedlicher Systeme in eine Cloud hochgeladen, sondern die Sys-
teme einer intelligenten Umgebung selbst bilden die Cloud. Auf Basis von SQL-ähnlichen
Anfragen lassen sich aufgaben- und situationsrelevante Elemente innerhalb der Cloud iden-
tifizieren, die in ein präzises 3D Modell der Umgebung übersetzt werden. Eine solche Umge-
bungssimulation erlaubt es, Systeme im Kontext zueinander zu betrachten sowie erweiterte
Analysen durchzuführen und angeforderte Informationen flexibel zu generieren. Die Spezi-
fikation, welche Analysen durchgeführt werden bzw. welche Informationen zu extrahieren
sind, wird ebenfalls in der ersten (SQL-ähnlichen) Anfrage definiert. Hierfür wurde eine neue
eingebettete und interpretierte Anfrage- und Programmiersprache mit einer SQL-ähnlichen
Syntax entwickelt, die deklarative Programmieraspekte mit imperativen Ausdrucksformen
verbindet.

Konzeptnachweise wurden für jeden Teilschritt in Form von Software-Prototypen ent-
wickelt. Diese Open-Source-Projekte können frei unter der BSD-Lizenz heruntergeladen
werden.
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1. Introduction

“. . . if technological advances were simply a continuous, linear outgrowth of
past technology, we might expect future computing environments merely to
comprise more laptops possessing more power, more memory, and better color
displays. But the world of information and technology doesn’t always evolve
linearly. Radical new uses of portable information technology are on the
horizon . . . ”

—Mark Weiser on ubiquitous computing 1993 [221]

From an economic point of view, the near future is likely to look as the scene depicted in
Fig. 1.1. Robots and other smart entities enabling ambient intelligence applications are on
the run. The Joint Research Centre0 has therefore launched a series of studies analyzing
the prospects and success of technological innovations and their market developments. This
series is devoted to give an overview on important technological areas in which it would be
important for the EU industry to remain, or to become competitive in the near future. In
the report on robotics [79], it is predicted to have tripled the sales in year 2025 (up to 66
billion $) in nearly all fields, in which especially service and personal robots are accounted
to have the lion’s share.

A similar scenario is envisaged for the field of embedded systems. According to [76], the
number of microprocessors (as an indicator for the penetration of embedded systems in our
daily life) was already two times as big as the human population before the year 2000. In
2008, there were some 30 embedded microprocessors per person in developed countries [67].
And this development does not seem to reach a saturation point [179].

On the one hand, we will be surrounded by a myriad of heterogeneous systems, prob-
ably not directly visible to us, which measure and monitor us as well as aspects of our
environments and take control of more and more (minor and simple) parts of our everyday
life. On the other hand, there will be highly sophisticated and autonomously acting robots
that share with us the same operational areas and interact with us “naturally” and without
boundaries. These are complex compounds of actuators, multimodal sensor systems, and
software that allow them to perform a variety of very complicated tasks.

This development seems to be pretty straightforward and all too natural, especially if we
take a look at the history of robots and their “linear” evolution (see, therefore, the next
section). But as pointed out by Mark Weiser, the father of ubiquitous computing (see the
main quotation), technology does not always evolve linearly. Thus, the actual revolution
was launched (not that radical so far) when new ideas from smart environments and ambient
intelligent systems started to penetrate into research on robotics (Sec. 1.3).

0It is the in-house science service of the European Commission for providing independent scientific advice,
market analyses, and support to EU policy. https://ec.europa.eu/jrc/ipts
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1. Introduction

Figure 1.1.: View on future robotics and ambient intelligent environments

1.1. A Short Overview of the “Linear” History of Robotics

Even though the development of “real” robots was only made possible with the invention
of the programmable computer, the idea of robots and the notion about their capabilities is
much older [36]. The term robot was derived from the Czech science fiction play “Rossumovi
Univerzálnı’ Roboti” from 1921, which can be translated as knowing or understanding (also
cognitive) universal laborers. Originally, it was used to designate artificial organic people,
not robots or better to say automata in the modern sense or in the sense of Fritz Lang’s
gynoid “Maschinenmensch” from 1924 (Fig. 1.2.3).

Some of the earliest examples in the history of robots were based on purely analog cir-
cuits, such as Elmer and Elsie [97]. These two robots with the shape of a tortoises were
constructed between 1948 and 1949 by William Grey Walter and were capable of photo
taxis (a locomotion that occurs when an organism moves in response to the stimulus light),
to find their way to a recharging unit. The primary objective of Elmer and Elsie was to
study complex behaviors that can arise just from small number of brain cells. They were
also regarded as the first biologically inspired autonomous system.

The Unimate is commonly considered to be the first industrial manipulator (cf. [196]).
It was used at General Motors since 1961 to weld and handle die castings. It was intended
to replace human workers where tasks are either dangerous, harmful, or tedious. PUMA
(Programmable Universal Machine for Assembly) was one of the most successful successor
manipulators of the Unimate with six degrees of freedom and only consisting of hinge joints
(and so far away from the original idea).

In addition to production scenarios, there are also further industrial applications such as
the robot assistant LiSA. It was developed by Fraunhofer [192] and allows it to overlap

2
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human and robotic working areas. An even tighter interaction between robots and humans
shall be realized with so-called CoBots (Cooperative roBots), as it was proposed by the
JAHIR-Project (Joint-Action for Humans and Industrial Robots), for example [252]. The
aim is combine human skills with robots’ strength and precision to fulfill tasks they could
not solve on their own. Therefore, JAHIR focuses also on observing and understanding of
non-verbal communication.

In some cases, assistive robots are also wrongly classified as CoBots, although they only
provide a single or a set of services. Examples are the Fraunhofer Care-O-Bots [88] (which
operate since 2000 as guides in the Berlin Museum for Communication), the Wakamaru
(intended to provide companionship to elderly and disabled people [232]), or even the mili-
tary LS3 (Legged Squad Support System) that is primarily used to squad equipment up to
180 kg [240]. Another example of a service robot, in this case also called domestic robot, is
the Roomba. It performs its vacuum cleaning service without any user intervention and it
is controlled by a few simple algorithms (iAdapt Responsive Cleaning Technology, see [233]
for more information).

A more complex autonomous robot than the Roomba, but with similar tasks (i. e. col-
lecting dust), is the NASA Mars Rover (Fig. 1.2.13) [33]. Because it has to operate in a
hostile environment and an overturning or getting stuck cannot be fixed anymore, it has
to plan each of its operations carefully. Although, exploring the surface of another planet
seems to be a quite challenging task, there are search and rescue robots on earth whose
environment and the demands placed upon their skills are far more challenging. Golem
Krang [251], also known as the MacGyver, is a humanoid robot intended to perceive the
environment in a way that it can perform rescues by using and combining tools that were
found in the local surroundings. This requires an extraordinary awareness and knowledge
about the things within the environment — about how to use them, and how to plan ac-
tions — which are close to human capabilities. But this is currently nothing more than an
ambitious objective.

1.2. Robotic Evolution

The so far presented historical outline is also shown in Fig. 1.2. It is used to depict the
commonly described three evolutionary steps in robotics in conjunction with their task- and
environment complexity. Starting from simple automata such as the “Digesting Duck” by
Jacques de Vaucanson or the “Musician” and other dolls by Pierre Jaquet-Droz’s from the
18th century (see Fig. 1.2:11, 12), these automata can be regarded as the zero generation,
although their programs could also be adapted due to a change in the gear wheel or roll
mechanisms. As a result, the musician doll could even play different pieces of music on
a custom built organ by really pressing the keys with her fingers. (See also [120] for a
complete overview of the history and prehistory on programmable machines.)

The dots within Fig. 1.2 represent different entities on a quantitative level according to
their tasks and their operational environment. While the environment complexity ranges
from fixed, well-known settings with constant environmental conditions up to dynamically
changing and unpredictable environments, the task complexity covers required algorithms
and, thus, also appropriate environmental representations starting from very simple pro-
grams and representations going over to highly complex cognitive and learning systems. A
simple pick-and-place task in a dynamically changing household environment (Wakamaru
Fig. 1.2:6) requires more complex sensing and algorithms than in an unobstructed and well-
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known industrial production environment (PUMA Fig. 1.2:3). Certainly, some positions
might be changed or adapted, but the linear relationship between task and environment
will still be present, which was also surprising for the author, who initially had expected a
more scattered plot.

In general, the first robotic generation can be characterized by repeating only fixed se-
quence programs, intended to accomplish simple pick-and-place tasks or point-to-point op-
erations. Reprogramming, re-teaching, or simply re-configuring is required to adapt to
changes of the environment or to alter the task. Sensor systems (in contrast to generation
zero) can be integrated, if there are slight inaccuracies within the environment that might
affect the working accuracy negatively.

The second generation of robots is adaptive to varying situations (including inaccura-
cies) and small changes of the environments. Although, they still execute series of pre-
programmed operations, they are also able make minor corrections and adjustments of
these operational steps. All necessary parameters are gathered with the help of sensing
devices that measure different aspects of the surroundings.

Third-generations robots are characterized as smart or intelligent, but there are different
opinions according to the degree of intelligence related to different fields of interest. As
described in [143], third-generation robots possess a human-like intelligence with a learning
ability to adapt autonomously to changing environments. While the basis for these abilities
is defined as high sensitivity, in fact they can perceive multidimensional information about
the surrounding from a large amount of locally available sensor systems and analyze it in
real-time. Or as emphasized in [59], the basis for intelligent behavior lies in the ability of
adequate world modeling. All learning, searching for solutions and decision making is firstly
applied multiple times in the virtual representation, rather than directly in the real one.

1.3. Robotic Revolution
It seems to be that there is a linear evolution in robotics. More and more advanced systems
appear in various areas, capable of solving more and more complex problems within envi-
ronments of growing complexity. This development goes hand in hand with new kinds of
sensor systems, algorithms, and actuators, but also with traditional “autarchic robot design
patterns” (as criticized in [151]):

Robots must be fully autonomous. Robots can cooperate with humans or other robots,
but they must carry out assigned tasks relying exclusively on their own sensors, ac-
tuators, and decision processes.

Robots must operate in non-structured environments. Robots must adapt to environments
that have not been purposely modified for them.

As also criticized in [30], in traditional systems, each robot would have to explore and
build its own maps of the environment. Without means of creating live and global maps of
large environment, there is a duplication of efforts in exploration and the amount of sensor
information processing. And a new robot, introduced to the same environment, will also
duplicate all the efforts of its predecessors, making the system inefficient.

But, as already mentioned, there are new ideas that started to penetrate robotics and also
the concept of the robot itself. Thus, the real revolution currently takes place between the
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1. Introduction

present robotic systems drawn in Fig. 1.2 and in Fig. 1.1. A robot cannot be seen anymore
as isolated, physically situated, and embodied entity adapting itself to a world tailored
for humans. Instead, the robot itself becomes part of a larger ecology of heterogeneous
systems, other robots, external sensor systems, “smart” objects, etc., which are able to
communicate, get along with heterogeneous information (e. g., numerical, sub-symbolic and
symbolic), share their knowledge, environmental perception, and further capabilities. In
such scenarios, instrumented or smart environments overcome inherent limitations of mobile
platforms and robots offer a mobility dimension unknown to smart environments.

Imagine that the Volksbot in Fig. 1.1 could access the services of the elevator without
pushing a button, and obtain a map for the new environment from the systems that reside
on that floor, with the newest information on moving humans and other obstacles along
with the position of the target person (gathered from available cameras or smart phones).
And imagine that this map could further be represented in a format that could be directly
applied for localization and navigation based on the local laser scanner; or it simply informs
me through my tablet that the packet is for me to pick up. . .

Although, that is easy to imagine, it does not seem to be accomplishable with today’s
technologies and applied methodologies.

1.4. The Frog Problem
In 1959 Lettvin published a pioneering study about the physiology and anatomy of the
frog’s eye Rana Pipiens [140]. Before that, most scientists agreed that an eye transmits a
copy of all occurred stimuli to the brain. But Lettvin revealed that a frog’s retina already
performs some kind of feature extraction. It automatically analyzes an image according to
local variations of light intensity, moving edges, standing contrasts as well as a measure of
illumination, and it transmits such kind of abstracted information/patterns to the frog’s
brain which, in response, releases different behaviors:

1Scene from Fritz Lang’s Metropolis — restored authorized version with the original 1927 orchestral
score (124 min.), licensed by Transit Films on behalf of the Friedrich-Wilhelm-Murnau-Stiffung, Wiesbaden,
copyright 2002 by Kino International Corporation, New York, USA.

2Image number: 10323893 H (4), Credit: Science Museum/Science & Society Picture Library
source: http://www.sciencemuseum.org.uk/images/NonSSPL/10323893.aspx

3Photo from the Integration and Engineering Laboratory at UCDAVIS under PD US ED, source:
http://iel.ucdavis.edu/projects/imc/Hardware.html

4Copyright Bernd Liebl, Fraunhofer IFF, source:
http://iff.fraunhofer.de/en/press/press-releases/2010/robots-get-artificial-skin.html

5Copyright Museum für Kommunikation Berlin, source:
http://www.care-o-bot.de/MuseumRobots.php

6Photo by Nesnad under CC-BY-SA-3.0, source:
http://commons.wikimedia.org/wiki/File%3AWakamaru-fullshot2011.jpg

7Photo under PD US Military, source:
http://www.darpa.mil/Our_Work/TTO/Programs/Legged_Squad_Support_System_(LS3).aspx

8Photo by Larry D. Moore under CC BY-SA 3.0, source:
http://commons.wikimedia.org/wiki/File%3ARoomba_original.jpg

9Picture by Mars Artwork under PD NASA, source:
http://marsrover.nasa.gov/gallery/artwork/rover2browse.html

10Photo by Josh Meister at Georgia Tech under PD US ED, source:
http://www.gatech.edu/research/mediaviewer?pid=160711

11Picture under PD, source: http://commons.wikimedia.org/wiki/File%3ADuck_of_Vaucanson.jpg
12Photo by Rama under CC BY-SA 2.0 FR, source:

http://commons.wikimedia.org/wiki/File%3AAutomates-Jaquet-Droz-p1030472.jpg
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1.4. The Frog Problem

. . . The frog does not seem to see or, at any rate, is not concerned with the detail of sta-
tionary parts of the world around him. He will starve to death surrounded by food if it is
not moving. His choice of food is determined only by size and movement. He will leap to
capture any object the size of an insect or worm, providing it moves like one. He can be
fooled easily not only by a bit of dangled meat but by any moving small object . . . He does re-
member a moving thing providing it stays within his field of vision and he is not distracted. . .

So why Rana Pipiens? This work says much about concepts and preconception as well as
about biological information processing and its simplicity. But if we substitute the “frog”
with a robotic entity and “prey” with the myriad of smart entities (as it was initially
introduced) that offer or publish their data within a distributed, smart, intelligent, or any
kind of instrumented environment, it can also be used as a metaphor for the main problems
that we have in distributed robotics/systems.

Information or data might be accessible within such environments in various forms and
variations. It might be hidden behind different interfaces and protocols, stored in different
databases or published by various middlewares. Thus, a robot or any kind of application
might be surrounded by useful information, but if it does not appear in the right format
it cannot be used. Nonetheless, simply making any kind of data accessible by applying
one standard communication protocol and one generic format for messages and message
descriptions (as it is proposed by most systems that are described within the next section)
does not solve this problem either. It is simply the continuation of the same misconception
as the one prior to Lettvin’s work, since it requires an extraordinary intelligent application
(a Maschinenmensch or unknown capabilities of a frog’s brain), which gathers and assembles
any kind of unfiltered data and transforms it into the required and useful information.

If we look at how distributed applications are developed now, this type of intelligent
work is accomplished by humans that pre-configure an entire distributed system as well as
the robot, and that have knowledge about the surroundings and the tasks a system has to
fulfill. However, this will not be the case anymore within the near future, where systems
will have to solve problems in dynamically changing environments with only a vague prior
knowledge about the tasks and even less about the systems within the surroundings and
their configuration. Although, most of the developed systems so far claim to be generally
applicable and even to be easily extendable to solve different concerns, they are not. The
very reason for this lies in the “biased” way of developing and accessing distributed systems.
Biased in this case means the way of problem solving, which is mostly predefined by the
way of programming language and paradigms we apply. In most solutions, an imperative
programming paradigm is applied, which forces one to define every step of a solution in
detail, where knowledge about the input data (& formats), the configuration of the systems,
and the tasks is a prerequisite. But solving problems this way for environments with growing
complexity where nothing is granted fails in being generally applicable.

Thus, we can either continue building self-contained systems, which gather information
about their surrounding from locally available on-board sensor systems by applying pre-
defined transformations onto predefined data (cf. Robotic Evolution) or, we can start to
develop declarative concepts for a distributed world (cf. Robotic Revolution). (See there-
fore also the essay on programming paradigms in the appendix on page 139.) Applying
the declarative paradigm onto the generation process of information enables us to define
“What” kind of information is required, instead of defining “How” it has to be generated.
Multiple communication middlewares already apply declaration in terms of subscribing for
data that is published within a certain format or under a specific topic; however, there
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is a tremendous difference between data and information, and as it is introduced within
Sec. 2.2.1 in more detail, data refers to the pure amount of available facts, whereby infor-
mation has a certain value in a specific context. A piece of information can be a certain
value, a fusion (which summarizes data of different kind, time, or modality), a map, or even
a complex model (representing different relations).

Thus, the main problems regarding the biological metaphor can be formulated as follows:

1. Lack of Intelligence: Smart Environments (SmEs) or Intelligent Environments (IEs)
(including robots as part of a wide and heterogeneous ecology) do not seem to be
smart or intelligent at any rate, they only consist of networked and reconfigurable
components and services. How can such a “not intelligent” distributed system be
tweaked in order to generate any kind of required information?

2. Holistic Access to Information . . . : A robot within a smart or intelligent environment
can be surrounded by data, but it is simply not usable and not accessible, if it appears
in the wrong format or is hidden behind the wrong interface. How can such informa-
tion spaces be accessed by a robot and how can the information and data from the
robot itself be consumed consistently by the environment?

3. . . . and Memory Externalization: A frog does not possess any kind of long time mem-
ory, because moving things are only “remembered” as long as they stay within its
field of vision. Thus, instead of storing any kind of data from an environment locally
that might be necessary in the future, the environment itself could be interpreted as
externalized memory, since all required data is contained within. How can such dis-
tributed information spaces of “smart components” be organized to create something
like a global memory?

4. Reconfiguration and Representation: Changing one aspect of the well-known environ-
mental configuration might cause a breakdown of the system. To illustrate, noise
in the frogs’ environment would probably result in an extinction of the species in
that area, because mating is related to sound and touch (although there are sensory
systems and probably also filter functions available that could be used for compensa-
tion). Thus, the type of environmental abstraction is currently tightly bound to a set
of “hard-wired” sensors, fixed transformations, and to the set of predefined tasks. But
data from different systems and in different formats could also be used in a dynamic
process to generate the same information. Thus, what mechanisms are required in or-
der to generate again an again the same type of information although the environment
and its inhabitants change continuously?

This problem statement matches the third challenge that was identified in the overview of
ubiquitous and cloud robotics in [49]. It is worth mentioning that the first two challenges in
this overview deal with increased autonomy, social awareness and affective interaction, which
are strongly related to third generation robotics and, therefore, contradicts the Ubiquitous
Robotics (UbiBot) concept in [151]. However, the third challenge deals with engineering
problems, which includes the design of new engineering tools and middlewares to create
services as plug and play applications, interoperability among robots and smart devices
(beyond remote control, voice and web services, and the abstraction of robotic function-
alities), extending the perception and actuation capabilities through the network, and the
sharing of intelligence (by using cloud-based techniques).
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The main objective of this thesis is to develop a concept and mechanisms for declarative
information gathering, which enable an entity to access any kind of information (2. & 3.)
in any kind of desired format (4.) from an instrumented environment, without the need for
extraordinary intelligence (1.).

1.5. Overview
The next chapter is intended to give a detailed overview of the current state of the art. It
starts with a distinction of different terms and notions used in distributed systems, while the
following sub-section is used to define the different aspects of data, information, knowledge,
etc. Both of them define the basic vocabulary that is used within the following chapters.
The second sub-section is furthermore combined with an engineering perspective and defines
a hierarchy, which allows it to organize and relate relevant publications according to “What”
is shared within a distributed environment.

Chap. 3 addresses the main contribution of this thesis, it describes the concept for a
declarative information access bottom-up and it is therefore segregated into three parts.
The first part deals with the organization of data within the environment as well as with
the organization of entities within, a cloud-based approach is used to form some kind of
virtual overlay database that is denoted as the global world model. Within the second part
it is described, how data from the global world model can be transformed into a smaller
and generic representation, which covers all task-related aspect of the environment with a
higher degree of abstraction. In the third part, a declarative query language that allows the
definition of any kind of desired information, which is then extracted or abstracted from
the local world model, is introduced.

The following implementation chapter is organized in correspondence with the concept.
Within the first part it is described in detail, how the distributed and global world model is
developed and maintained by applying a Cassandra, a distributed NoSQL database system.
The second part explains how relevant aspects of this global world model can be translated
into a discrete and precise co-simulation of the surrounding by applying the robotic sim-
ulation environment OpenRAVE. And the last part of this chapter is used to present the
development and the principles of the new declarative programming and querying language
SelectScript.

That this query language can be used to enclose all intermediate steps, namely accessing
the global world model, generating the local world model, and abstracting any kind of
information in a desired format, is demonstrated in Chap. 5. Therefore, the common task
of parcel delivery in a smart factory environment has been chosen, which includes the
accomplishment of several sub-tasks and the generation of various different information.

The achieved results of this thesis are discussed within the last chapter, and an outlook
onto the future work is provided.
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2. Related Work
“Adapt what is useful, reject what is useless, and add what is specifically your
own.”

— Bruce Lee

There are currently plenty of different concepts and terms on distribution aiming or sug-
gesting different kinds of interconnection and interoperability. Thus, the next section is in-
tended to give a short overview of these concepts to differentiate between them (cf. Sec. 2.1).
The introduced systems put different foci onto different aspects (based on their field of ap-
plication), and the term notions was therefore used to underpin the very vague (and some-
times missing) definitions and distinctions. Based on these considerations and the lack of
an appropriate classification or a suitable attribution in the literature, a new classification
scheme was introduced afterwards (cf. Sec. 2.2). It is subsequently applied to differentiate
the related approaches from the literature (cf. Sec. 2.3). A summary as well as discussion
about the main problems identified within the state-of-the-art is presented in the last section
(cf. Sec. 2.4).

2.1. New Concepts of Distribution: Terms and Notions
There are currently different concepts and terms on distribution, aiming or suggesting such
a kind of interconnection. Therefore, this section is intended to give a short overview and
to differentiate between these concepts.

Among all the new notions and paradigms for distribution, Cyber-Physical Systems (CPS)
can be considered as the superset, the most general, and the most spatially extensive con-
cept. It is defined as a collaboration of networked and embedded computational elements
used to monitor and control real world physical processes (cf. [137]). But the emergent
complexity of systems requires fundamentally new design technologies in multi-discipline
areas. Proposed applications range from small-range medical devices and systems as well
as home and building automation, up to autonomous cars and intelligent roads, distributed
robotics, manufacturing, power grids, and many more. As summarized in [31], even though
there are large amounts of funds for projects in that area, the research is at a very early
stage.

The initiative on “Industry 4.0” (the fourth industrial revolution) is a German strategic
project that mostly arises from the paradigm shift of CPS and that is mainly focused on the
manufacturing industry. “Smart Factory” or “Smart Manufacturing”, as described in [92],
can be considered as the key feature of Industry 4.0, whereby the focus lies mostly in
monitoring and developing distributed control application with feedback loops.

The Internet of Things (IoT) in that case is thought to be the connecting communication
paradigm. As described in [31], it is only applied to interconnect a variety of “things or
object” through unique addressing schemes within the existing Internet infrastructure. It is
expected to enable an interconnection of “Smart Devices and Services” that is far beyond
nowadays’ Machine-to-Machine communication (M2M).
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In fact, cyber-physical entities do not necessarily have to be smart: common Radio-
Frequency IDentification (RFID) technology, which is often referred to as being a building
block of CPS, can be used to enhance any kind of object and to support tracking within
well-defined environments. Furthermore, the term “Smart” in this case does not refer to
human-like capabilities, it is more related to technological aspects, such as the entity’s ability
to communicate, to perform a small set of predefined tasks, and to operate autonomously
to some extent. For example, a “Smart Sensor” is defined in [117] as: “. . . one chip, without
external components, including the sensing, interfacing, signal processing and intelligence
(self-testing, self-identification or self-adaptation) functions.”

There are varying definitions and notions of smart devices, sensors [228] and actua-
tors [85], or even products [216]. [122] gives a general classification of “Smart Objects”
according to real world awareness and interactivity. At its lowest level smart is understood
as “activity-aware”, which means that an object perceives the world in terms of event and
activity streams and each event or activity is directly related to the use and handling of
the object (pick up, turn on, operate, etc.). Interaction/communication is bound to static
information exchange and log files only. In contrast to this, second layer “policy-aware”
objects provide context-sensitive information about the object status as well as work per-
formance, and they also contain an embedded policy model that is used to interpret events
and activities. Through this, high-level “process-aware” objects shall understand the com-
plete organizational processes they are part of and can relate the occurrence of external
events to these processes. The IEEE 1451 family of standard for “Smart Transducer” [138]
is more focused on the standardization of interfaces and communication protocols. A com-
mon standard for Transducer Electronic Data-Sheet (TEDS) enables the self-description of
systems that can be communicated and, thus, shared with others.

As a summary, it can be said that smartness actually stands for (standardized) networked
interconnection and perhaps the offer of a small set of (configurable) services. Although
the term “Smart Service” is far more general [153], it is also frequently used to address the
capabilities of a smart entity or a composition of multiple smart devices split across the
network.

Smart Environments (SmEs) can be accounted as a subset of CPS that are commonly
more human centered, examples from the literature are mostly focused on domotics, home
and building automation, smart kitchen, etc. A good overview is given in [54], where the
authors derive a component structure and give the following definition: “We define a smart
environment as one that is able to acquire and apply knowledge about the environment and
its inhabitants in order to improve their experience in that environment.”

Intelligent Environments (IEs) can be further specified as a subset of SmEs and to some
extent even more human-centric (one can say personalized), although the transition is
smooth. While smart environments are compositions of smart devices, IEs are realized with
Ambient Intelligence (AmI). As the interweaving concept of IEs, AmI supports a higher
degree of intelligence and autonomy than previous concepts. According to [32] and [157],
the behavior of the environment is orchestrated by self-programming preemptive processes
(e. g., software agents or multi-agent systems [211]) in order to proactively enhance occu-
pant’s experience and support them in their daily life.

All of the concepts, notions for distribution as well as dynamic interconnection that have
been presented so far can be interpreted as descendants of the already mentioned Ubiquitous
Computing (UbiComp). Mark Weiser was one of the first to realize that computers and
computation itself will become invisible and disappear into the background, hidden by
a myriad of intelligent components “. . . that weave themselves into the fabric of everyday
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life” (cf. [220]). Or as defined later in [221]: “. . . ubiquitous computing will be a world
of fully connected devices, with cheap wireless networks; it will not require that you carry
around a PDA, since information will be accessible everywhere.” Although formulated in a
general and quite human-centric manner, UbiComp predates all of the concepts mentioned
so far. Weiser made conclusions about the mobility of device, wireless bandwidth, and
the ubiquity of information (and displays). Even though there might be slight differences
between the terms Pervasive Computing (PerComp) and Ambient Computing (AmC), they
can be applied synonymously.

To end up this consideration and to close the gap to robotics (although, robots can be
interpreted as an inherent part of all concepts) there is also a concept combining ubiquitous
computing and robotics, called UbiBot. An example often named in this context is the
PEIS ecology, which is described in more detail in Sec. 2.3.4.2.13 on page 52, as well as
the relatively new concept of Network Robot System (NRS), see [191]. It identifies three
types of network robots, visible (embodied robots in a classical sense), virtual (only acting
in cyberspace), and unconscious (external sensor systems), whereby every system is offering
some kind of service that can be combined at runtime to fulfill more complex tasks (or
composed services). The term “Cloud Robotics” was coined in 2010 and refers to the usage
of cloud computing facilities to enhance NRS capabilities (cf. [49]).

Because different systems, approaches, or architectures can be easily associated with
more than a certain concept, it is quite difficult to relate them. At least all of them seem
to be building blocks of CPS. Thus, the next section is applied to introduce a classification
scheme, which allows relating and comparing relevant contributions in these areas on a
qualitative level.

2.2. Classification Methodology

In the chapter “From Autonomous Robots to Artificial Ecosystems” of “From Autonomous
Robots to Artificial Ecosystems” [151], the three different systems are compared with each
other, by hypothetically applying them to a hospital scenario. By reading the previous
section, it becomes obvious that such a single scenario which could be used to compare all
systems and approaches that are covered by CPS probably does not exist. They operate
on different “abstract” layers. Thus, instead of trying to identify different metrics and
benchmark scenarios, it is more advantageous to identify these layers and to relate to
approaches accordingly.

The archetype for this consideration is a pretty well-known Open Systems Interconnec-
tion (OSI) model (cf. [223]), as depicted in Fig. 2.1. It is a stacked differentiation method,
which might seem a bit far away from it at a first glance, but it has helped to implement
another distributed system. Although the TCP/IP stack made the running and became the
basis of the Internet, both share the same principles and the OSI model is still used as a
device to explain networking in general terms. OSI is a conceptual model for a separation of
concerns that defines seven layers of abstraction (in the original version) with characteristic
functions and properties for a communication network, regardless of the underlying internal
structure, technologies and hardware. It covers various different networking protocols, soft-
ware, and even hardware devices, such as switches and routers. The seven distinguishable
layers are physical, data link, network, transport, session, presentation, and application.
Communication is thereby described as a horizontal process between elements of same lay-
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Figure 2.1.: General OSI model as at [223]

ers, throughout which every layer can only interact with the layer beneath, while providing
facilities to be used by the layer above.

Thus, the next section is intended to identify different conceptual layers in CPS as well
as their common characteristics, by distinguishing what is actually shared. This consider-
ation is made by connecting two opposite directions. Starting from a top-down view on
data, information, and knowledge, etc., from the perspective of Information Science, these
concepts are examined in concrete terms from an engineering point of view. Additionally,
the following section is also intended to define the required terminology (which is applied
in subsequent sections and chapters) and, thus, to form a basic vocabulary.

2.2.1. Short Introduction to Information Science

Information Science (IS) itself as a term is relatively hard to define, as it is highly interre-
lated with various research fields, such as computer science, mathematics, logic, philosophy,
cognitive science, economics, communications, social sciences, etc., but in [200] the authors
came up with a working definition of IS:

Information science studies the representation, storage and supply as well as the search
for and retrieval of relevant (predominantly digital) documents and knowledge (including
the environment of information).

According to [40] it is concerned with the body of knowledge, relating IS additionally to
the origination, collection, organization, interpretation, transmission, transformation, and
utilization of information. In addition to this general definition (information scientists still
struggle to find a coherent definition), IS is also concerned about its building blocks and their
definitions. These are data, information, and knowledge, which were used “synonymously”
(not to say sloppily) not only in the previous sections, but also in our everyday language,
and to some extent, also within the scientific literature.

The relation between these three terms is depicted Fig. 2.2. It shows the so-called “Wis-
dom Hierarchy”, a widely accepted concept within IS, which is comparable with the “fault-
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error-failure-chain” applied in dependable systems engineering. Similarly to IS, there is still
an ongoing debate about their exact definitions of data, information, and knowledge (at
least there is consensus about the existence of these first three levels), which is underpinned
by the Delphi study published in [230]. That is why the author is referring to the definitions
in [210]. These three terms are also applied below to classify different approaches in SmEs
and IEs.
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Figure 2.2.: Conventional View on the Wisdom Hierarchy (cf. [172]), with a symbolic curve
representing the value and effort of a learning journey

As depicted at the basis of Fig. 2.2, data can be interpreted as the pure amount of
simple, discrete, and isolated facts. It describes only partially what has happened, without
any judgment or interpretation. Information is something that is derived from data, if it
is put into context or combined within a structure. Knowledge arises from information
when it is interpreted and thus given some meaning or, put technically, information that
has been tested, validated, and codified. Knowledge is thus always associated with some
kind of modeling or simulating capabilities. It can thus be used to make inferences or to
predict future consequences. While most scientists share this view with slight differences in
the details (cf. [230]), the term wisdom provides more potential for debates. Tuomi further
integrates intelligence as an intermediate step between knowledge and wisdom. Intelligence
is therein interpreted as the ability to choose between alternative actions based on knowledge
and when values and commitment are used to guide intelligence, behavior may be said to
be based on wisdom.

To summarize all these with a robotics example, data could be represented by a set of
laser scans, and then can be detected by patterns like edges, straight lines, curves, etc.;
this would represent information and, thus, knowledge could be derived from it through
the generation of a map. Intelligence comes into play when trajectories are planned with
different algorithms on this basis, while choosing a planning algorithm (and thus also the
trajectory) according to certain optimality criteria and constraints could then be considered
as wisdom.

15



2. Related Work

2.2.2. The JDL Data Fusion Model

This process model (cf. [89]) can be regarded as a bottom-up view that is commonly applied
by engineers as a canonical abstraction and categorization when describing fusion methods.
It was established by the Joint Directors of Laboratories (JDL) Data Fusion Working Group
in 1986 in order to cope with the lack of a unifying terminology in the sensor data fusion
domain and, thus, to improve the communications among military researchers and system
developers. Although it was initially developed for the military sector, it has been applied,
adopted and refined to comply with several (non-military) areas (see therefore also [198] in
which the term (Con)fusion was used, when discussing integral parts of the JDL model).

The general fusion model as it is sketched in Fig. 2.3 comprises five intermediate levels
that are required to transform measurement (and context) data into human-interpretable
representations, the so-called Human Computer Interaction (HCI). Thus, sources and the
HCI represent the very boundaries of every system. Furthermore, it is currently intended
for human operators only, allowing them to input commands, request different kinds of
information and reports, as well as assessing situations and drawing inferences in order to
assist human operators. Along with the representation (by applying multimedia methods,
such as graphics, sound, tactile interfaces, etc.), it is also used to guide human’s attention
to overcome cognitive limitations. In principle, the HCI has to be redefined for smart
environments in order to provide a M2M interface. The five steps defined by the JDL as well
as a general database management system are described within the following paragraphs.

DATA FUSION DOMAIN

Sources ...

Level 0: Signal Pre-Processing

Level 1: Object Refinement

Level 2: Situation Refinement

Level 3: Threat Refinement Database Management System

Support
Database

Fusion
Database

Level 4: Process Refinement

Human Computer Interaction (HCI)

Figure 2.3.: The JDL fusion process model, rotated by 90 degrees to match better with the
wisdom hierarchy depicted in Fig. 2.2

0. Level (Signals): It combines the acquisition of input data with its preprocessing.
Input data defines are all available signals from local or external sensor systems, observable
states, data from remote databases, and to some extent also context information (e. g., time,
location, add. attributes). Source preprocessing is intended as an intermediate step that
allocates data to the correct fusion process (next level), performs basic feature extraction
algorithms, and can send alerts to the third level.
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1. Level (Objects): Processes on this level combine lower level locational, parametric,
and identity data for refined representations of individual objects. There are four key
functions associated with this processing level:

1. transformation of sensor data into a consistent set of units and coordinates,

2. refinements in time estimates of an object’s position and kinematics as well as exten-
sions with attributes,

3. assignment of data to objects to enable further statistical estimations, and

4. refinements in the estimation of an object’s identity or its classification

2. Level (Situation): It deals with situational representations, by mapping current
lower level objects and events into the context of their environment. Additionally, it is
focused on relational information (e. g., physical proximity, causal, temporal, and further
relations) between objects (and events). Formal and heuristic methods are therefore applied
to examine the meaning of level 1 processing results.

3. Level (Impact): Threat refinement, also referred to as impact assessment, is applied
to project the current situation into the future and, thus, to plan and draw inferences
(the importance of differentiation between abduction, induction, and deduction is further
emphasized by Llinas et al. in [145]).

4. Level (Overall-Process): This layer can be considered as meta-process. It is used to
monitor lower processes in terms of performance and quality requirements, and to perform
process refinements and adaptive data acquisition.

Data Management: It is described as the most difficult part, because of the large and
varying amount of data (e. g., signals, images, textual and symbolic data, models, etc.). It
therefore deals with functions for effective storing, archiving and querying of fused data (and
also to some extent with the management of input data), thus giving access to historical
data.

2.2.3. Combination and Further Categorization

The common JDL depiction from the literature was rotated 90 degrees in Fig. 2.3 to present
a better correspondence between the two concepts, although a direct match seems to be
obvious. Reviewing the literature for a similar connection between the top-down wisdom
hierarchy and the bottom-up JDL fusion model did not reveal in any findings. The IS data
concept matches the JDL fusion level 0, information matches the JDL concept of an object.
A JDL situation is associated with an adequate representation of objects and their relation,
which corresponds with the concept of knowledge in IS or, in general, with a model or a
world-model in robotics. Deriving predictions or decisions on this basis (probably combined
with additional information and rules gained from support or fusion databases) refers to
intelligence. As a result, wisdom (the appropriate selection between alternatives) lies behind
the data fusion domain (behind the HCI) and requires a human operator.
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IS and the JDL fusion model give essential hints about how systems, middleware ap-
proaches, or architectures operating in CPS can be divided into different classes or cate-
gories, depending on the level of environmental abstraction they are able to share. While
IS is more concerned about the concepts and their distinction, the JDL is more focused
on algorithms and transformations. The JDL thereby also defines what kind of specific
metadata or context information is further required to transfer data into information, in-
formation into knowledge, etc. Stemming from the JDL, two additional layers (in addition
to wisdom, which is currently far beyond the scope) that are not touched by IS could be
identified: sources (originally not part of the fusion domain) and representations (originat-
ing from the HCI). Existing approaches in CPS will be related to the identified layers and
discussed in detail within the next section:

1. Source-Layer: It is used to share information about the very basis, on sensors, actua-
tors, and databases, which might be specified with data-sheets, interface descriptions,
and to some extent also expressed within protocols. Additional information about the
location and identifier (as introduced by the JDL) might also be relevant at this layer.

2. Data-Layer: This layer is used to share and access data, which might appear as
measurement data, streams, system states, actuator commands, etc. It therefore
covers both real-time data (immediate access) and historical data (using database
management systems). It might require additional context information about the
origin of data and its belonging as well as additional quality attributes.

3. Information-Layer: The previous levels are necessary to derive information. Informa-
tion might be generated statically from the available data and sources, but it can also
be generated on demand by applying different functions from a code basis. Informa-
tion can be a pattern or a feature extracted, identified or fused from a set of input
data (as intended by IS) or a specific entity (as intended by the JDL).

4. Knowledge-Layer: Systems operating on this layer share models. In the robotic con-
text, these are any kind of maps, ontologies, formal or logical representations, etc.
(a distinction between different models is presented in Sec. 2.3.4). In fact, any kind
of world model used here represents the relations between different lower level infor-
mation. This means, that this layer is used only for the appropriate representation
of certain environments and situations. It therefore builds the basis for the next
“algorithmic” level.

5. Intelligence-Layer: It is used to draw inferences for planning and predicting, as well
as for decision support, etc. In this case, a robotic entity might query the smart
environment directly for trajectory to a certain destination. As mentioned in the
introduction, planning does not have to be performed by the robot itself; instead, it
can be covered by a certain sets of services resident within the smart environment,
the cloud, etc. As revealed in Sec. 2.3.4.2, there are already some systems operating
on this layer.

6. Representation: This is not an extension to the previous layer. It is actually a require-
ment, arising from the HCI and covering all other layers. Since the HCI is dealing
with metaphors and the appropriate representation of data, information, knowledge,
and also intelligence (e. g., decision support, forecasting, etc.) for humans, different
“machines” might require (or request) different representations or formats of data,
information, world models, etc.
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2.2.4. Discussion

Based on the idea of the OSI model, a new separation of concerns for the application layer
has been introduced. And, of course, while most technologies and protocols are not directly
designed to meet the requirements of the OSI model, they can be described in terms of how
they fit into one or more of the layers. The same is done within the next section, which
provides a qualitative rather than quantitative view on different approaches (based on six
introduced layers of abstraction). But as in most classification approaches (also in biology)
an entity cannot only be related to one class. Rather, it possesses characteristics that have
to be associated with different layers. Therefore, the metaphor of a boxplot is also used
within the following, to express on which layers a technology is mainly operating (quartiles),
where the focus lies (median), and which layers are additionally covered (whiskers), as well
as rudimentary aspects (outliers). A comparative overview onto the related work using this
classification schema and the boxplot metaphor is given in Fig. 2.15 at page 60.

2.3. Smart Environment Enabling Technologies
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Figure 2.4.: Overview on categories and distinguishing attributes

This section is intended to give a detailed overview on state-of-the-art technologies that
enable access to CPS, SmEs, IEs, whether on source, data, information, or knowledge
level. The developed classification scheme defines the structure of this section (see also
the depiction in Fig. 2.4) and the relevant approaches are placed accordingly. Technologies
are described within the sub-section/layer they mainly belong to the most, but additional
properties that actually belong to different layers are also mentioned. Fig. 2.15 within the
next section shows a synopsis of all cited approaches.

2.3.1. Source-Layer

The survey for this layer will only give a brief overview and it therefore focuses on the
most relevant approaches to describe system interfaces and their capabilities. An extensive
and very detailed state-of-the-art on system descriptions and interface specifications can be
found in the dissertation of Sebastian Zug in [231].
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2.3.1.1. SensorML

It is one of the multiple Open Geospatial Consortium (OGC) specification standards as part
of Sensor Web Enablement (SWE) initiative. Sensors and transducer components (i. e., de-
tectors, transmitters, actuators, and filters) are therein described as physical processes by
uniform XML schemata [165]. Additional non-physical or “pure” processes, which can be
treated as mathematical operations, can be described according to the same standard as
well. A SensorML process defines inputs, outputs, additional parameters and metadata.
These data-sheets are thought to be hosted on every system (or at least be accessible from
within the network), which should enable some kind of plug-n-play and auto-configuring ca-
pabilities (as originally intended by CPS). Furthermore, metadata such as unique identifiers,
names, keywords, capabilities, constraints (i. e., time, legal, and security), documentation,
and location parameters enable the mining and discovery of the processes.

Sensor Model Language (SensorML) is thought to be the basis of further OGC standards
by enabling interoperability on a system and interface syntactic level so that sensors and
processes can be better searched, understood, and thus analyzed and utilized by machines.
Although SensorML is also capable of defining complex data types (for parameters and
metadata) and the new specification on SensorML 2.0 (cf. [164]) makes extensive use of this
possibility, it is actually not intended to describe measurement and actuator data. This is
the domain of another OGC standard, namely TransducerML (see Sec. 2.3.2.2), which is
further dealing with data exchange and interoperability, preservation of raw sensor data,
etc.

Because pure processes (mathematical function), which offer some kinds of (fixed infor-
mation) services that can be utilized for different purposes from within the net are enabled,
it is also necessary to put this approach not only onto the source and data level, but also
to extend it into the direction of the information layer (see Fig. 2.15).

2.3.1.2. IEEE 1451 – TIM & TII

The IEEE 1451 is a family of standards for networked smart transducers [101, 138], which is
similar to the set of OGC specifications. The defined standards can therefore also be divided
into different levels: Those that are used to describe the transducer and its capabilities, and
those that define communication properties (NCAP & NI). The Institute of Electrical and
Electronics Engineers (IEEE) 1451.0 therefore introduces the already mentioned Trans-
ducer Electronic Data-Sheet (TEDS) (see Sec. 2.1), which are XML schemata too. The
definitions of the so-called Transducer Interface Module (TIM) and the Transducer Inde-
pendent Interface (TII) (belonging to this level) include calibration TEDS, transfer function
TEDS, command TEDS, location and title TEDS, as well as manufacturer and identifica-
tion TEDS. These definitions are stored on the TIM hardware element in an electronic
memory device and describe functionality that is independent of the physical communica-
tions media. These TEDS are more or less optional, in contrast to PHY TEDS, transducer
channel TEDS, or meta TEDS, that are used to describe communication capabilities and
settings of a transducer.

2.3.1.3. MOSAIC

It is the “fraMewOrk for fault-tolerant Sensor dAta fusIon in dynamiC environments”, which
is intended to be used as a general programming abstraction for transducers and fusion
processes in distributed environments. XML is therefore also applied to define data-sheets
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while describing systems and measurement data. But in contrast to the previously described
technologies, it integrates advanced mechanisms for online fault and error handling (which
are integrated in the fusion process as well). A general classification scheme for measurement
malfunctions and disturbances was especially developed. A sensor is thus not only described
by its capabilities, location, settings, etc., but also by its proneness to faults and errors,
measurement uncertainties, and by extended geometric properties, such as ranges, covering
areas, even the shape of the sensor beam.

The sensor fault description allows the calculation of fault probabilities for sensors and
even for single sensor measurements. This information is applied within the selection pro-
cess, sensor fusion, and to identify appropriate detection and filter methods. MOSAIC
therefore has to be accounted to operate mainly on source and data level (see Fig. 2.15),
without supporting data transmission itself (which is handled with the help of FAMOUSO,
see 22).

2.3.1.4. Summary

As a matter of course, there are many further examples of self-describing transducers that
could be mentioned on this level, but the core idea is similar to all. An entity (transducer)
is hosting a description of its capabilities and interfaces, to tell other systems what it is and
what data it produces. Not surprisingly, these standards vary according to their intended
application (e. g., a sensor within a chemical reactor in contrast to a multimedia system)
and descriptions can also be hosted externally or within a database, as it is, for example,
described for IEEE 1451 virtual TEDS (if no or only little local memory is available).

An application, operating on this level, is thus self-dependently responsible for identifying
relevant systems and connecting to it in order not only to access and interpret their data,
but also to acquire context information. If there is no general “communication concept”
utilized by all entities, then communication parameters have to be described as well (how
is data transmitted and encoded). But as already mentioned, the next level is intended to
cover these aspects.

2.3.2. Data-Layer

Although “sources” describe the very basis of every smart environment, this abstraction does
not seem to be that relevant for many applications. For example, a smart home application
that is responsible for the apartment temperature and ventilation is only interested in
temperature and humidity data (values in a certain unit), not in the types and configuration
parameters of thermometers. Similar to a nuclear power plant that is monitored by a set of
inspection robots [39], the only data required are the positions and the degree of radiation
(or at least a notification, if a certain value is exceeded).

It is therefore only logical to hide most common aspects behind a common communication
infrastructure. Thus, the main focus of this layer is not the handling of systems (sources)
and their description, but rather data and its description and distribution, because there has
been a lot of research in that area, covering communication middlewares, publish/subscribe
systems, shared memories, event-based systems, etc. Similar to the previous sub-section,
this part is intended to give only a very brief overview of relevant technologies. A complete
overview is given in the thesis by Michael Schulze in [193], where he develops the communi-
cation middleware FAMOUSO, which is especially designed for resource limited embedded
systems.
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2.3.2.1. FAMOUSO

It is a publish/subscribe middleware that was developed in compliance with MOSAIC
(cf. [22, 23]) at the department of Distributed Systems at the Otto-von-Guericke-University
in Magdeburg. FAMOUSO stands for “Family of Adaptive Middleware for autonomOUs
Sentient Objects” and it is intended to offer a seamless data exchange between smart sensors
and actuators on different hardware platforms (ranging from 8-bit micro-controllers up to
32-bit PC/Workstations) over a broad variety of communication media and protocols (e. g.,
CAN, 802.15.4, UDP-MultiCast, and other in-house technologies such as Ad-hoc Wireless
Distribution Service (AWDS) [93]).

In contrast to address-based (or “source”-based) communication, the transmission of data
is anonymized between communication end-points. Publishers are content producers and
subscribers are content consumers. These are roles taken up by distributed applications.
Concerning the publish/subscribe paradigm, an application can specify the kind of data they
produce and/or consume. All communication-relevant aspects are handled by FAMOUSO,
it abstracts data as events, arranges and buffers data according to application requirements,
schedules the communication according priorities, collects fault notifications (e. g., absence
of periodic events), etc. MOSAIC is required to define the structure of events, to ensure
correct message en/decoding as well as correct interpretation. The format of every event
is described with an electronic XML data-sheet, covering data types, units, uncertainties,
additional attributes, but also communication channel attributes, such as deadlines, periods,
and omissions.

2.3.2.2. TransducerML

As already described in the paragraph on SensorML, the “Transducer Markup Language”
is the OGC standard for characterizing data (and metadata) that is produced by SensorML
systems [166]. It is thus intended to offer an efficient encoding of live and streaming data
for the communication layer. To some extent, it seems that the OGC had not been that
consequent when defining their standards, because TransducerML also covers some parts
that deal with the system description (actually a part of the SensorML domain). This
includes information about specific transducer components (model and serial number), their
behavior, system calibration and installation information, owners and operators, responses
to physical phenomena, sensitivity, and other operating parameters. A future harmonization
between the two description languages is thus also indicated as a work in progress in both
specifications.

TransducerML is designed to be self-contained and self-sufficient. Any information that
might be required for later parsing and processing is captured within the XML data product
description. This includes format and types, size, ordering and arrangement, calibration
information, units of measurement, precise time-tagging of individual groups of data, un-
certainties, coordinate reference frames, etc. All of these elements of the TransducerML
system and data description can be automatically tagged, stored for later indexing and
cataloging, as well as applied for discovery (but in this case at more data-related level).

2.3.2.3. ROS

Because integral parts of the later concept were implemented with the help of this “frame-
work” (and it was not mentioned in the referenced thesis [193]), this overview is more
detailed than the others. The “Robot Operating System” could also be literally translated
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as the Swiss Army knife in robotics. It is a relatively new framework, intended to simplify
the development of any kind of robotic application by bringing together the latest scientific
knowledge. And by this time, it has become a de facto standard in the scientific robotics
community (cf. [124]). Robotic applications are no longer designed as single and monolithic
processes, but instead as a collection of (distributed) nodes, which perform a certain type
of computation in accordance with the Unix philosophy (cf. [189]):

“Write programs that do one thing and do it well. Write programs to work together. Write
programs to handle text streams, because that is a universal interface. . . ”

The development of a ROS node is mainly based on two philosophical pillars (apart
from open source ideology), namely peer-to-peer and multilingualism (cf. [175]). To expand
multilingualism and to be able to develop specific nodes, used as detectors or filters, we have
developed an extension for the statistical programming language R1 [7]. In contrast to the
previous approaches, ROS does not cover system descriptions (on source-level) natively, but
it therefore supports multiple communication paradigms. “Natively” in this case means that
there are ROS packages, which allow describing the geometry of robots and manipulators.
The Unified Robot Definition Format (URDF)2, for example, allows to define robot models
with an XML description. Although it is named after “Robot”, it is also possible to describe
sensors and scenes. Robots are described in terms of their kinematic structure, dynamic
properties, and geometry. The support for sensors currently allows to define cameras and ray
sensors with a very limited terminology only (this project is currently dropped and awaiting
proposals for new types of sensor elements). Scenes can only be described as spatial relations
between robots and sensors, including additional basic geometrical primitives.

Natively supported communication paradigms include publish/subscribe, interprocess
communication, service-based communication, and some others. The basis for all commu-
nication is strongly typed messages whose formats are described by a simple but effective
language-neutral interface definition language (not XML). Starting from primitive data
types such as int32, float64, string, arrays etc., more complex structures can be de-
rived and also composed to new message formats, an example is shown in Lis. 4.2 on page 93.
Every ROS package can define its own message formats. A simple ROS-Desktop-Full in-
stallation contains more than 1100 different message formats (and more than 300 service
formats) for various purposes. The only difference between the ROS message specification
and the service description specification is that a service defines a request and response
format.

The ROS publish/subscribe system is, in contrast to FAMOUSO, organized by a cen-
tral node, the roscore. All nodes, therefore, have to register themselves at that master
node and advertise their intent to publish data or to subscribe for data (in this case with
XML-based RPCs). The communication is then instantiated via unicast/multicast UDP
or TCP with the help of the master node, if there is at least one publisher and one sub-
scriber. The ROS publish/subscribe system was initially only intended for single robot
applications and thus handled the communication between a limited set of nodes, but there
are also additional ROS packages (see the overview in [26]), such as multimaster fkie3 or
rocon multimaster4 that also enable publish/subscribe via multiple masters. Interprocess

1rosR: http://wiki.ros.org/rosR
2URDF: http://wiki.ros.org/urdf
3multimaster fkie: http://wiki.ros.org/multimaster_fkie
4rocon multimaster: http://wiki.ros.org/rocon_multimaster
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communication via so-called nodelets5 (cf. [250]) is conceptually similar to the publish/-
subscribe system (topics and message definition). The nodelets package hence runs all
algorithms in the same process with zero copy transport in between.

Data and communication in this case is abstracted by streams and a very rudimentary
message description, compared to TransducerML or MOSAIC. Data streams (logical com-
munication channels) are identified via topics, these are unique strings such as "LaserScan",
"Pose", "CameraInfo", "PickupAction", which are used to identify the content of a stream
as well as its message format. These message formats for laser scan or pose data are stan-
dardized (with no support for units, uncertainties, metadata, etc.). Additional metadata
such as time is included as long as there is a time-stamp directly defined within the message
description and space requires the application of an additional position transformation sys-
tem, called tf [249]. This additional package can be applied to maintain the relationship
between coordinate frames in a tree structure and buffered in time. Data and geometries
(representing manipulators, maps, etc.) can be labeled with these coordinate frames and
on the basis of the tf system transformed (transform points, vectors, and two coordinate
frames at any desired point in time).

In some cases it might also be required to request a calculation on a distinct node (e. g.,
sensor measurement filtering) or request one specific information (e. g., camera parameters)
at a specific time slot, or to execute an action (e. g., grasping an object). This kind of
remote procedure call is handled via “services” (cf. [259]) or “actions” (cf. [255]), shifting
the ROS framework into the direction of the information layer (see Fig. 2.15). Nodes offer
their services by using string names, similar to topics in publish/subscribe, and clients can
call these services by sending their request in an appropriate message format, awaiting the
reply message. The difference between an action and a service in ROS is, that actions
generate and send back intermediate results, such as the current status of the manipulator
within a grasp process.

Access to the parameter server is often mentioned as an additional communication method,
comparable to shared memory. Parameters are stored at runtime in a multivariate dic-
tionary, which is also hosted by the ROS master node. It is mainly applied for simple
configuration purposes, but it also allows to inspect and modify the global configuration.

All in all, ROS seems to have support for everything that might be imaginable, whereby
the main focus lies on data, covering its definition, standardization, and distribution (see
Fig. 2.15). Although entire ROS is probably the largest framework of all CPS enabling
technologies, it starts from a very minimal kernel (cf. [175]). It is based on a tiny set
of key functionalities and features that can be extended and adapted according to new
requirements and in diverse directions.

2.3.2.4. Sensorpedia6

Or as it is called in [87] “the Wikipedia for sensors”, is a research project initiated by
Oak Ridge National Laboratory. Its main objectives lie in the utilization of Web 2.0 social
networking principles in order to provide and organize access to online sensor network data
and related data sets. In contrast to ROS, it is intended to serve as a mediator for sensor
data world-wide, not for a single robot.

At first, sensors and sensor systems have to be registered at Sensorpedia as a new feed,
which requires a self-chosen identifier and an Atom-document that contains a general de-

5nodelet core: http://wiki.ros.org/nodelet_core
6Project-site: https://sites.google.com/site/sensorpedia
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scription (see [86]) of the sensor – the content and some additional context information
(e. g., position, update rate, rights, format, type, etc.) to be published afterwards. The
data source is registered as a simple URL-link, which is used for direct communication with
the sensor. On the basis of these descriptions, sensors can be discovered. All communication
is hidden behind the standard Atom publishing protocol (a simple HTTP-based protocol)
and the standard Atom syndication format (an XML language), which were originally used
for web feeds. Nevertheless, any other standards-based or proprietary protocol can be used
for communication between the subscriber and the publisher, and the Sensorpedia API and
XML format have therefore been slightly adapted to work with sensor data.

In this sense, Sensorpedia is not directly involved within the communication process, the
data or the sensor interface description; instead, it is used as global repository that links to
sensor systems with their data and interface descriptions (i. e., TEDS, SensorML or several
other OGC standards, etc.).

2.3.2.5. Robopedia

As it was described in [68], it utilizes Sensorpedia for robotic application and provides an
extension for mobile surveillance robots, including their sensor observations as well as web-
interfaces for the purpose of controlling their actuators. It should be noted that, these
web-interfaces are static and are currently intended to be used by human operators only
to control robots via the web (offering only limited functionality). For this purpose, every
robot runs a single web server, an additional robot communication server, and a process
per sensor in order to update Sensorpedia.

2.3.3. Information-Layer

Some approaches capable of transforming data into information, such as ROS with services
or IEEE 1451 and SensorML with its virtual processes, have so far been described. As
defined in Sec. 2.2.3, information is more abstract than data or a source level description,
though, according to IS, every piece of data and requested system description, which has
a certain meaning or value in a specific situation, has also to be regarded as information.
From the JDL point of view, information is more specific and funded on the data and source
level. The data fusion process at this level can thus also be interpreted as a reduction of
raw data and used to deduce more expressive values such as the maximum temperature
within certain vicinity or average income. This information cannot be measured directly;
rather, it has to be generated from a larger database. Indirect measurements can be given
as further example (see next paragraph). This kind is required where physical modalities
are not directly measurable.

A conceptually higher type of information (without a physical unit), which was denoted
as “abstract” in [10], deals with identified object, persons, etc. It is something like a wall,
identified within a set of laser scans, a person, a face, or an object, detected within the pixels
of a camera frame. Or it is a specific (reoccurring) pattern or shape, which could also be
the combination of multiple values, such as an explosion can be identified by the coinciding
measured heat, noise, and flash that are above certain thresholds (cf. [125]). I will leave
out the field of complex event processing and detection, which is thoroughly covered by
the Ph.D. thesis of my colleague Christoph Steup and I will therefore concentrate more on
ambient intelligent (smart) middlewares that work primarily on the information layer.
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2.3.3.1. Virtual Sensor

The Virtual Sensor, as described in [105, 106, 163], is a frequently cited concept, opposing
physical and hardware sensors. They tend to provide indirect measurements of abstract
conditions (that, as already mentioned, cannot be directly or physically measured) by com-
bining/fusing data from a set of heterogeneous sensors systems. The “only” presented
application in all publications (covering four years of development) is an intelligent con-
struction example. A user thereby requests information about unsafe regions (as circle
or ellipse) around a crane. The virtual sensor that is constructed dynamically discovers
physical sensors attached to components of a nearby tower crane.

In contrast to the fixed services offered by ROS, IEEE 1451, or OGC, it does not only
offer a method to describe the service interface (i. e., input, output, and metadata). Virtual
sensors furthermore offer a semantics that allows describing the entire process within a
“higher” level of abstraction. This service description is then automatically translated into
“low-level” nesC7, a component-based, event-driven dialect of the programming language
C for TinyOS8 (an embedded operating system). This code can run either locally or it can
even be distributed over the network.

Along with to the definition of the input and output formats of the virtual sensor, the
process has to be described by a so-called “Aggregator”. It is a generic function defining
the operations that have to be performed over a possibly heterogeneous set of input data
in order to calculate the desired measurement. Required sensor data is then gathered
automatically from within the network, based on location and format. Data sources can
thus change over time, while the service itself stays stable and is continuously performing.
And, of course, the input data can also be acquired from virtual sensors. The fourth part
that is required in a virtual sensor definition covers the communication. It is possible
to define the frequency of aggregations, which determines how consistent the aggregated
value is under actual environmental conditions. The applied communication middleware
thereby automatically selects the appropriate communication methods/protocols, based on
the requested frequency for continuous queries, but it also has support for one time queries.

2.3.3.2. TinyDB9

To close with “tiny” services, TinyDB is a distributed query processing system for extracting
information from a network of (smart) TinyOS sensors (cf. [147, 148]). As the name suggests,
it is a declarative approach that interprets a network of sensors similar to a database and,
therefore, also applies a SQL-like syntax to collect data from heterogeneous sensors within
the environment. SQL-like in this case means that the semantics of SELECT, FROM, WHERE,
and GROUP BY clauses are as in SQL. It thus can be used for filtering, aggregating, etc., but
in addition, it also offers further language features (not defined in standard SQL), which
have been especially developed to minimize the power consumption in sensor networks.
Examples include frequency and lifetime queries, dealing with events, and the creation of
Semantic Routing Trees (SRT) for power-efficient information and query propagation.

A SRT allows a node to determine if any of the nodes below it will need to participate
in a given query over some constant attributes. Conceptually, it is equivalent to a database
index (or virtual overlay network) over attributes created on purpose and that can be

7network embedded systems C: http://nescc.sourceforge.net
8TinyOS Project: http://www.tinyos.net
9TinyDB Project: http://telegraph.cs.berkeley.edu/tinydb
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used to locate nodes that have data relevant to the query (see the example in Lis. 2.1).
Another index could be created for any other attribute or measured value (e. g., temperature,
humidity, sound level, etc.). All sensors therefore possess a description of their capabilities,
which are shared among neighbors that are applied within the construction of a SRT. In
this sense, every sensor node is a combination of a database and a router able to interpret
and answer as well as to forward a query and the response.

Listing 2.1: Creating and SRT on sensor locations in TinyDB, the ROOT annotation indi-
cates the node-id where the SRT should be rooted from

1 CREATE SRT loc
2 ON sensors (xloc ,yloc)
3 ROOT 0

Time is another critical issue in sensor networks. TinyDB therefore offers specific language
constructs that allow incorporating times, periods, and durations. The example in Lis. 2.2
depicts such a temporal query on the sound volume. It applies a sliding window that
calculates the average volume over the last 30 s with a sampling once per second that is
reported every 5 s. Note the special syntax for denoting seconds, additionally hours and
days can be denoted.

Listing 2.2: TinyDB sliding window query on the measured sound level
1 SELECT WINAVG (volume , 30s, 5s)
2 FROM sensors
3 SAMPLE PERIOD 1s

The usage of days in the so-called lifetime queries is useful (see the example below).
This query allows gathering a complete measurement series from each sensor that is able
to measure temperature over a duration of 30 days. Doing so, every sensor calculates its
personal measurement period, based on available energy sources and other query claims so
that a node can sustain for that lifetime.

Listing 2.3: TinyDB lifetime query for 30 days on temperature
1 SELECT nodeid , temperature
2 FROM sensors
3 LIFETIME 30 days

Dealing with events is another feature of TinyDB, which can provide significant reductions
in power consumption, by allowing systems to stay dormant until some external conditions
occurs, instead of continually polling or blocking on an iterator waiting for some data
to arrive. The query language therefore allows it to react to events (Lis. 2.4) as well as
releasing them (Lis. 2.5). The example below shows the generated response to an event
that is compiled into the sensor node. Every time a motion event occurs, the query is
issued from the detecting node. The average volume and temperature are collected from
nearby nodes once every 2 s for a period of 30 s.

Listing 2.4: TinyDB released response query to a detected event
1 ON EVENT motion - detect (loc):
2 SELECT AVG ( volume ), AVG ( temperature ), event .loc
3 FROM sensors AS s
4 WHERE dist (s.loc , event .loc) < 10m
5 SAMPLE PERIOD 2s FOR 30s
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In contrast to the response to a low-level API event, queries itself can also be applied to
signal events (onto which other TinyDB sensors might react). The example below releases
a signal whenever the temperature is above a certain threshold.

Listing 2.5: TinyDB release of a “software” event in response to a query
1 SELECT nodeid , temperature
2 WHERE temperature > thresh
3 OUTPUT ACTION SIGNAL hot (nodeid , temperature )

Compared to the virtual sensor concepts, TinyDB is a great approach that effectively
applies a well-known metaphor (relational databases) to an alien field of application (sensor
networks and stream processing). It thereby starts from a limited set of functionalities
combined with techniques for efficient routing in sensor networks. And in contrast to the
virtual sensor concept, TinyDB has been successfully applied in different research projects,
such as the Great Duck Island [202] deployment or the Redwood Monitoring Project [208].

2.3.3.3. OSGi & JINI

JINI10 (cf. [218]) and the OSGi11 framework (cf. [136, 131]) are both based on the Java plat-
form and are so-called “service delivery platforms” that are used to tackle modularization,
collaboration, and service discovery in distributed systems. The OSGi applies a central
“service registry” to announce and request services similar to ROS, while JINI applies a
“lookup service”. This shows already a difference in both technologies, because OSGi tar-
gets more closed and static (smaller) environments running on one JVM (whereby a bundle
can also be a proxy representing external devices), while in JINI clients and services are
expected to run on different JVMs. A service in both cases is represented by a Java in-
terface definition, which means that an application only has to be aware of this “native”
Java interface, while all network-related issues that are required to call the remote code are
hidden behind the frameworks.

In contrast to fixed ROS services, JINI and OSGi allow services to be dynamically in-
stalled, started, stopped, updated and even uninstalled. Additionally, services and clients
can join or leave a federation anytime. JINI furthermore enables code mobility according
to the Java write-once-run-everywhere property of bytecodes, which means that the service
can be executed remotely. Nonetheless, JINI can also load this functionality into a process
(locally) even while the process is running. The application is not aware of this; everything
is handled by and hidden behind JINI.

The OSGi is also an alliance formerly known as “Open Services Gateway initiative”,
providing open vendor standards, paving the way for interoperable service definitions, and
also setting standards for managing devices remotely. In [136] OSGi is introduced as the
enabling framework for “smart spaces”, with commercial systems like ProSyst12 built on
top of it, which is also designated as AmI or IoT middleware. Matilda’s Smart House13 is a
research project where OSGi is used as a service mediator between smart phones and other
wireless technologies to create something like a “magic wands” that help elder and handi-
capped people to interact with, to monitor, and to control their instrumented surrounding.
Atlas, another service delivery platform build on top of the OSGi framework, was combined

10https://river.apache.org/
11http://www.osgi.org/Main/HomePage
12http://www.prosyst.com
13http://www.icta.ufl.edu/gt.htm
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in (cf. [91]) with CAMUS a “context-aware” middleware for robotic companions (see there-
fore Sec. 2.3.3.5.2). In [116] it was applied as middleware layer for services provided by
actuators and sensors to enable so-called “pervasive spaces”.

The virtual sensor concept and service delivery based on JINI or the OSGi framework are
conceptually pretty close (although existing in different domains). But still, the developer
has to define what services are called and in which order, in contrast to TinyDB, which
allows access to information in a more declarative way.

2.3.3.4. Player/Stage

Although not directly an information or feature extraction system, it was described to be
applicable in context-aware intelligent environments (cf. [126]), since the Player component
itself is a device repository server for robots, sensors and actuators, or in other words, for
smart devices. Such devices are abstracted in Player (cf. [84]) by an interface (similar to
the previous ones) and a driver, which might be the connection to a physical device, an
algorithm (similar to a virtual sensor) that receives data, processes and transforms it, but
also a “virtual driver” that creates arbitrary data when needed (e. g., a noise or a random
number generator).

As further described in [126], “feature drivers” can be applied as virtual gateways, offering
advanced processing, learning, and feature extraction “services” in order to run automat-
ically on streams of raw data. Examples are principal component analysis, independent
component analysis, wavelet analysis, Fourier analysis, etc. Based on the input configura-
tion options, given by the user, it is also possible to search for an appropriate cascade of
feature drivers.

A mandatory feature for providing such service compositions is context information,
covering more than the description of an interface and its parameters. This topic gets
briefly discussed within the next paragraph.

To close with Player/Stage or in this case Gazebo [119] as the second component of
this project, Gazebo is a 3D robotic simulator (see Sec. 2.3.4.1.14). It is tightly connected
with Player and applied for research in multi-agent autonomous systems and high fidelity
robot simulations. In the context of this approach it was used to simulate a real robotic
environment, the AwareKitchen [126, 186, 185]. The purpose of this simulated environment
is not only to visualize and replay data captured from Player drivers but also to develop
and test algorithms without using the real hardware.

2.3.3.5. Context-Awareness

Before entering the realms of knowledge representation and to close with information and
services, context has to be considered as an additional sort of information that is required
by all information extraction processes and that is mandatory for dynamic service com-
positions (cf. [203]). Especially in smart and ubiquitous environments it is important for
agents, services, and devices to become aware of their contexts to be able to adapt them-
selves to changing situations. Therefore, there exist a couple of systems and even middleware
approaches that are dealing exclusively with the acquisition and extraction of context in-
formation. Examples include the aforementioned CAMUS that was combined with Atlas
in (cf. [91]), the context-aware middleware for pervasive homecare (CAMPH) (cf. [174]),
or the Context Toolkit (cf. [61]) as one of the most prominent and earliest instances. The
following two sub-paragraphs are used to shortly introduce two totally contrary types of
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context systems CAMUS, which is based on an ontology, and the “service oriented” Context
Toolkit, based on a small set of information and dynamic context services.

But what is context actually? According to [60], a context can be defined by anything
that is relevant to fulfill a certain task, like the task definition itself, sensor measurements,
location, proximity or infrastructure, time, physical conditions, and many more. Examples,
thus, range from environmental attributes such as noise level, light intensity, temperature,
and motion, up to system and device capabilities, available services, user intention, etc. Or
as defined in [24], context is any information that can be used to characterize the situation of
an entity. An entity includes a person, a device, a location, or even a computing application.

The problem with context is that according to the applied classification scheme, context
information somehow belongs to every layer, such as additional information about the lo-
cation, capabilities, criteria of an actuator (source layer), information about transmitted
data such as format, frequency, units, uncertainties (data layer), information about the
quality of a service, additional input parameters and settings, inaccuracies (information
layer), information about the class of an entity. Whether it is theoretically in the coverage
area of a certain sensor has to be accounted as context, but this also requires some kind of
knowledge base or even a world model (knowledge layer). This fact becomes also obvious
by looking at some surveys and classification approaches on context systems. For example,
in [201] context systems are differentiated according to the applied modeling approaches,
data structure, and representation. In the simplest form these are key-value models, at-
taching a certain property to an entity or message (e. g., a location, uncertainty, etc.). They
are easy to manage, but cannot be structured in order to provide sophisticated algorithms
for context retrieval. More complex representations are based on Markup Scheme Models
such as ContextML (cf. [118]), which offers a common XML scheme for describing and ex-
changing context data between different components. Furthermore, it offers commands that
enable context providers to register themselves at so-called “context broker” that are used
for discovery. This is in fact quite similar to other technologies mentioned before, but with a
slightly different focus. Graphical models such as the Unified Modeling Language (UML) or
Object-Role Modeling (ORM) are the third type of contextual modeling according to [201].

2.3.3.5.1. Context Toolkit14: This toolkit is one among the first toolkits providing a gen-
eral concept for building context-enabled applications (cf. [188, 151]). It thereby took over
some metaphors that were applied in the GUI programming domain. The basis for this are
so-called context widgets, which are considered to hide hardware complexity, offer a general
abstraction, and provide reusable and customizable building blocks for context sensing. A
widget, as described in [188], can therefore consist of either “generators”, “interpreters”,
and/or “servers”. A generator acquires raw context information from hardware or software
sensors. An interpreter is thought to transform low-level context information into high-
level information or to acquire information from multiple other widgets (e. g., a “meeting”
widget could rely on multiple “presence” widgets, while a “presence” widget could rely on
multiple generators, abstracting information from batches, image processing, floor sensors,
etc.). Taking composition one step further, a “server” widget is applied to collect and store,
also in addition to interpreting information from other widgets, which is considered to be
similar to a GUI container widget like a frame or a dialog box. An example for this could
be a “person finder” widget. Widgets are hardwired classes with predefined attributes, such
as the location it is used in and the time of the last activity. Callbacks are triggered, if a
change has occurred, informing other widgets or applications.

14http://www.cs.cmu.edu/˜anind/context.html
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Neglecting the fact that the Context Toolkit applies event-based communication, while
the Virtual Sensor (described in Sec. 2.3.3.1) requires continuous communication, both
concepts are actually quite similar and can be applied to solve the same problems. Widgets
and Virtual Sensors can be distributed into the network, both are used for abstracting real
hardware through services like “presence” or “location” (whereby the hardware itself might
change due to migration), and they can be composed to abstract more complex information
(interpreters vs. aggregators).

2.3.3.5.2. CAMUS: The Context-Aware Middleware for URC Systems, in short CAMUS,
provides a context-aware infrastructure for network-based intelligent robot systems and in
contrast to the Context Toolkit, it is an ontology-based context modeling and reasoning
approach. The Ubiquitous Robotic Companion (URC) is a new concept for network-based
intelligent robots (similar to UbiBots, which were introduced in Sec. 2.1) and is promoted
by the Korean government. The main idea of URC is to distribute functional components
through the network and to fully utilize external sensors and processing servers.

The architecture of CAMUS, as it was described repeatedly and in very detail in [110, 194,
155, 98], is unfortunately very complicated and to some extent also misleading. Moreover,
there are no downloadable implementations that could be used to clarify some misunder-
standings. But if it is working as described, it is a very sophisticated system that already
bridges into the layers of knowledge representation and intelligence.

In principle, it consists of three major components (cf. [194]), these are feature extraction
and mapping, an ontology repository, and a reasoning engine. Feature extraction is handled
statically, based on the capabilities of a sensor. For example, a camera sensor can be applied
to acquire features such as luminosity, pixel-change, motion-patterns, etc. Changes are
transmitted via an event-based middleware PLANET [110], which is also used to inform
applications about occurred changes and to interconnect most of the main modules. [110]
demonstrates how such monitoring services can be provided by mobile URCs.

A part of the ontology repository is responsible for quantifying such features and trans-
lating them into so-called “feature tuples”, based on metadata (i. e., device information,
sensor access mechanisms, feature-context-labeling rules, and input and output capabili-
ties of pluggable reasoning modules) and applicable functionality. Feature tuples consist of
a symbol and an associated probability, for example, the result of a low-level luminosity
could be {(Dark, 0.8), (TotalDark, 0.2)}. The ontology repository is also respon-
sible for storing these continuously updated streams of features & tuples, which can be
interpreted as the current environmental (context) state. Additionally, it also hosts the
applied domain ontologies. In CAMUS context is partitioned into five main categories:
namely agents, environments, devices, locations, and time. For example, the top-level con-
cept agent can be further “sub-classified” into persons, software agents (robots included),
groups, or organizations; it has a certain activity profile. Device ontologies describe the
type, a set of offered services, associated profiles, etc. The difference between location
and environment is that the first is used to denote the physical surrounding (based on
the NASA space ontology15 [177] that was further extended with concepts such as BedRoom,
LivingRoom, DiningRoom, etc., in order to comply with the home domain), while the second
is used to encapsulate environmental conditions (e. g., humidity, sound, light, etc.). Since all
facts about entities and their relations are already available in an abstracted representation
(CAMUS makes use of Web Ontology Language (OWL)), reasoning is pretty simple.

15SWEET: http://sweet.jpl.nasa.gov/ontology/space.owl
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The reasoning engine is the third major component of CAMUS, it is actually a collection
of reasoning modules. The authors argue that there are different kinds of logics that would
support inferencing. Thus, based on the available facts, it is possible to apply first order
logic, temporal or spatial logic, as well as Neuronal or Bayesian networks, fuzzy logic, or
(even better) to apply them in combination. The examples below are taken from [98]
and demonstrate the application of Jena in querying the “world model” in Lis. 2.6 and in
extending the rule base by defining new relations Lis. 2.7.

Listing 2.6: Jena RDQL knowledge query (variables are denoted with a leading ?) intended
to identify meetings a person is going to attend, by comparing a person’s lo-
cation with the meeting venue information. Angle brackets enclose relations
(static facts or inferred), see the definition of test:isAttendantOf in Lis. 2.7.

1 SELECT ? meeting
2 WHERE (? user , <rdf:type >, camus : Person ),
3 (? user , <camus : hasLocation >, ?room),
4 (? room , <test:isVenueOf >, ? meeting ),
5 (? user , <test: isAttendantOf >, ? meeting )
6 USING camus FOR <http :// etri.re.kr/URC/ CAMUS #>,
7 test FOR <http :// etri.re.kr/URC/ TestProject #>,
8 rdf FOR <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>

Jena is Java framework for extracting data from and writing data to RDF graphs (in this
case, the CAMUS ontology repository) and it is able of applying different reasoners in its
own (cf. [144]).

Listing 2.7: User-defined inference rule that denotes the new relation (isAttendantOf),
“similar” to Prolog syntax, whereby all prerequisites have to be fulfilled.

1 @prefix camus : <http :// etri.re.kr/URC/ CAMUS #>
2 @prefix test: <http :// etri.re.kr/URC/ TestProject #>
3 @include <file:D:/ ContextManager - Prototype /RULE/ camus_ruld .ckr >
4
5 [ meeting_attendant :
6 (? person rdf:type camus : Person )
7 (? person camus : hasLocation ?room)
8 (? meeting test: hasVenue ?room)
9 (? meeting rdf:type test: meeting )

10 (? room rdf:type camus :Room)
11 ->
12 (? person test: isAttendantOf ? meeting )]

Additionally, the Programming Language for Ubiquitous Environments (PLUE) was de-
veloped on the basis of CAMUS and Java (cf. [51]). It allows defining so-called event-
condition-action rules as an interactive response to context changes that are identified by
the CAMUS system. The PLUE example below was taken from [50]. It defines a new task
for switching on the light and adapting the room temperature to a person’s preferences, if
he or she enters the room. The objects marked with a leading $ refer actually to CORBA
objects (not PLANET) and can be replaced by the current context.

Listing 2.8: PLUE exemplary task definition
1 task SmartRoom {
2 on ( $place . UserEntered e ) {
3 $place . light . turnOn (); }
4 on ( $place . UserEntered e ) {
5 if ( $place . temperature > e.user. preferred_temp .high ) {
6 $place . air_conditioner . turnOn (); }
7 }
8 }
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2.3.3.6. Summary

The presented systems so far, although quite different, represent only approaches suitable
for information generation, extraction, and sharing. As mentioned in the introduction of
this section the association of an approach to a certain layer is not always possible, which is
especially true for systems such as CAMUS and others that allow to reason about context
and other environmental aspects (on the basis of ontologies). Reasoning is one issue that
was initially stated to belong to the knowledge layer and above. And of course, RDF,
RDQL, etc. is also used to support robotic applications, which is described in more detail
within the next section. But the reasoning provided by CAMUS and other approaches
on this layer is mainly about deriving supplemental information and supporting dynamic
service composition on a very rudimentary level.

2.3.4. Knowledge-Layer

As introduced, this section deals with the abstract concept of knowledge representation,
but with a special emphasis on representing the environmental state, thus world modeling.
Every system that is somehow interacting with its environment possesses some form of
world model whether implicit (as part of the program or code) or explicit (in a shareable
representation). Because there are many different types of world models that are applied
for different purposes (by algorithms resident at the intelligence layer) such as localization
and navigation, learning, reasoning, situation-awareness, forecasting, etc., this section is
divided into two parts. The first part is intended to give a short and general overview on
common world modeling techniques or representations applied in the robotics domain (i. e.,
spatial, formal, logical, (temporal)), while the second part deals with approaches that offer
a methodology for sharing world models.

The focus herein lies on the representation (what is shared?) and on technologies &
concepts (how it is accomplished?).

2.3.4.1. Common Robotic World Models — An Overview

There is a huge amount of complex representations that can be applied for a diversity
of problem-solving mechanisms in robotics. The fact that most of the earlier research in
“mobile” robotics dealt with navigation and localization becomes particularly clear in the
state-of-the-art overview [27] from 1992 and the by the synonymously usage of the terms
“map” and “world model”.

As elaborately discussed in [207], robotic mapping is still a highly active research area
that is far from being fully solved, especially for unstructured dynamic and large areas. A
map is simply a spatial representation of the physical environment, which in the field of
mobile robotics is acquired through sequences of sensory observations. Thereby, a certain
type of map can be generated with the help of a range of sensory systems (e. g., cameras,
range finders using sonar, laser, and infrared technology, radar, tactile sensors, compasses,
GPS, etc.). On this basis, information is abstracted and composed to knowledge. These
maps are commonly used for navigation, path & motion planning, and localization. The
following comparison is intended to highlight the most popular formats only, although there
are far more different types available (especially in research).
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2.3.4.1.1. The Grid Model: This model was developed by Nilsson, during the late 1960
for the Shakey-robot (cf. [159]), as one of two types of environmental abstractions (see
paragraph Shakey the Robot on page 35 for the second). It was one of the first applications
of an adaptive cell decomposition used for navigation [159, 160]. Hence, the whole area is
simply represented as a nested grid of 4×4 cells, which are either labeled as full, partly full,
or empty. Partly full cells contain a further (smaller) grid of 4×4 cells, which are labeled
in the same manner. This method allowed the representation of the environment with any
desired level of detail, while occupying only a minimal amount of memory. In fact, quadtrees
(cf. Fig. 2.5a) are similar, the only difference is that they use a decomposable 2× 2 grid,
whereby newer versions also support label cells with probabilities instead of empty or full
(cf. [123]). OctoMaps are thus a continuation for 3D mapping (compare it with paragraph
on OctoMaps).

2.3.4.1.2. Occupancy Grid Map: It is probably the most applied format of all. It was
initially developed in the mid-Eighties by Elfes and Moravec [156, 70] for mapping-based
on wide angle sonar, but it can be used in conjunction with other sensor systems [18]. In
contrast to the grid model, occupancy grids maps consist of a fixed set of cells of equal
size and each cell is labeled with a certain probability of being occupied or not. The
probability values of each cell ranges between [−1,+1], whereby a value in between [−1,0)
mark the probability of being empty, values in between (0,1] of being occupied, and exactly
0 represents an unknown state (cf. with the example in Fig. 2.5b).

This simple spatial representation has been applied in various areas apart from robotics,
where it is used as a standard format, such as in automotive scenarios for modeling mid-
and short-range environments [222, 81]. 3D version of occupancy grids are applied in
avionics [25, 197] and naval scenarios [139].

2.3.4.1.3. The Generalized Voronoi Diagram: It is a popular environmental abstraction,
which, in the context of robotic path planning (cf. [133]), can be used to identify trajec-
tories with a maximum distance to surrounding obstacles (see the example in Fig. 2.5c).
Every cell (Voronoi region) of an obstacle is defined by a set of points whose distance to
this specific obstacle is less than or equal to their distance to every other obstacle in the
environment. Voronoi diagrams can be constructed from various sources, dimensions, and
spaces (continuous/discrete) (cf. [107]).

2.3.4.1.4. Potential Fields: This representation transfers the environment into a “world”
of forces, whereby attraction is exerted by the goal position and obstacles cause repulsions
(see the example in Fig. 2.5d). Interpreting a mobile robot as a single particle within
this environment allows solving a couple of navigation problems [83, 167]. Using potential
fields in combination with manipulators, which are modeled as an assembly of rigid-bodies
connected via joints, allows even to circumvent problems caused by the complexity of a
kinematic chain and variable side conditions. The tool-center-point can be defined as the
only point that is affected by attractive and repulsive forces — whereby all other parts of
the manipulator are affected by repulsive forces only (see also the example in Fig. 2.7). The
axis angles of the different joints can, then, simply be read off from the model during the
movement and used to control the real manipulator. A major problem of this method is its
affinity to local minima.
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2.3.4.1.5. Topological Maps: This is another graph-based mapping method, whereby
nodes represent landmarks (distinct places within the environment), which are connected
via edges (cf. [127]). (Also see the example in Fig. 2.5f).

The most prominent example is actually the London tube map (which was also one of the
first). The characteristics of the environment change significantly within this representation:
it lacks of scale, distance, and direction, which makes it difficult for a robotic application
to decide whether a landmark has been already visited or not. This is also the reason why
this graph-based approach is mostly applied in combination with other “metric” mapping
methods (e. g., [128, 121]).

2.3.4.1.6. OctoMaps: They are not, as often mentioned, 3D occupancy grid maps only.
Rather, they can be interpreted as a hybrid representation of occupancy grids and octrees
(a 3D version of the previously mentioned quadtrees (cf. The Grid Model)). An octree
subdivides the space recursively into 8 sub-volumes (cubes) of equal size, after which every
volume can be further subdivided into 8 cubes, etc. The resolution of an octree is determined
by the minimum cube size (see the example in Fig. 2.5e). In an OctoMap, all of the octree
leaves are labeled with a certain possibility of being occupied. The probability of an inner
node’s being occupied can then simply be calculated as the average, weighted average, or
as the maximum occupancy (cf. [225]).

2.3.4.1.7. Point Clouds: If the discretization of the environment should be avoided and
a precise environmental representation is more important than memory consumption, then
point clouds should be applied. A point cloud is simply a set of points within a (commonly
3D) coordinate system [162], which represents the occupied space. Newer versions such as
PointCloud2 [184] are a de facto standard in many robotics applications (e. g., mapping (and
SLAM), object identification, segmentation, and surface reconstruction) and can attach even
more information to an n-dimensional point as depicted in Fig. 2.5g (i. e., colors, intensities,
distances, segmentation results, etc.).

2.3.4.1.8. Shakey the Robot: Historically considered, it is worth mentioning Shakey as
the first mobile robotic platform operating in an unstructured and dynamically changing
environment and it was pioneering in many ways. The first version of the robot applied
two types of environmental representations, a spatial one described in Sec. 2.3.4.1.1 and a
property list model [78]. This property list model was used to represent everyday objects as
tuples (LISP data structures), containing all relevant features, such as x- and y-coordinates
of an object, angle, size, shape, name, etc. Actually, it represented a knowledge base
containing all relevant facts about the objects within the environment.

This kind of world model was intended to be used to serve human instructions, for
example, “GO TO A BOX”. It necessitates looking up through all tuples, and identifying an
object called “BOX” within the current environment. The grid model (see Sec. 2.3.4.1.1) is
then afterwards applied to determine a collision free path to the position of the object.

2.3.4.1.9. Lessons learned from Shakey: While the first version of Shakey had to main-
tain two distinct environmental representations, the second version was based on a logical
predicates only. There were five distinct classes (i. e., type(d1,door), type(f2,wall face),

35



2. Related Work
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Figure 2.5.: Different types of spatial world models
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type(r315,room), type(o1,object), and type(shakey,robot)) used to represent all en-
tities. And further predicates were used to define relations between objects, such as
in(shakey,r1), at(shakey,7.0,11.0), name(o1,box), inroom(o1,r2), joinsrooms(d1,
r1,r2), doorstatus(d1,open), etc. These predicates are stored in an indexed data struc-
ture, which can be directly used as an input for Stanford Research Institute Problem
Solver (STRIPS) [75], which is a planning system “similar” to GOLOG (see Sec. 2.3.4.1.11),
and which was used to derive sequences of actions in order to convert the current environ-
mental representation into another one where a goal is accomplished. All positions, dis-
tances, lengths, and angles are measured with respect to a single base coordinate system.
Action routines are responsible to update the statements of the model, such as the position
of the robot and its location while moving.

This kind of “holistic” logical representation which integrates spatial information has
a couple of advantages. It can be applied either to solve problems such as identifying
appropriate action sequences, based on STRIP, or it can be used to reconstruct the spatial
model of the environment in its current configuration. It can be used as a more natural
representation in terms of human-machine interaction because the applied predicates can
also be easily interpreted by humans, which allows formulating facts about the environment
that can be easily interpreted and exchanged by humans and Shakey.
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Figure 2.6.: Replica from the STRIPS model presented at the plenary talk “Making Shakey”
ICRA 2015.

2.3.4.1.10. Prolog: It is actually not a world model, but can be used for building logical
ones and to perform reasoning on them. Prolog is as an acronym, which stands for “PRO-
grammation en LOGique” and describes a new programming paradigm (i. e., declarative
and logical). It was introduced in the early 1970 by Alain Colmerauer [45] and can be seen
as the technical counterpart to the theory of mental logic (cf. [99]). Prolog “programs”
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are expressed in terms of first order logic by facts and rules. The computation, done by
the Prolog-interpreter, is the “simple” search for an answer to a query, on the basis of the
defined rules and facts. There are two types of possible results, positive ones, if the an-
swer could be deduced from the knowledge base, and negative ones, which means that the
answer could not be deduced. This means that there is a need to extend the Prolog-base
with additional knowledge. This lack of knowledge will be handled in more detail within
the next paragraph (cf. GOLOG).

But Prolog can surely do more: In addition to its applications in expert systems [52],
natural language processing [55], or theorem proving [199], it can also be used to implement
further declarative languages. This ability was actually stated to be another program-
ming paradigm, called Language-Oriented Programming (LOP), which was first described
in [219]. Prolog is already frequently used in robotics (see, for example, Sec. 2.3.4.2.11) but
LOP allowed the development of a couple of new languages. As also sketched within the
following paragraphs, to be able to deduce answers on the base of “logical” world models
requires a very specific and abstract environmental representation (which can be hard to
create and to maintain). Thus, reasoning on maps or and other kinds of knowledge represen-
tation is not possible. Nonetheless, as it is shown in Sec. 3.3.2, there are also other methods
or concepts that can be used to reason on different kinds of knowledge representations and
that also support the idea of LOP.

2.3.4.1.11. GOLOG: Although derived from alGOl in LOGic, it is a famous example of
a logic programming language developed with Prolog (cf. [142]). It is based on the situa-
tion calculus [152], a sorted second order logical language with equality, which is intended
to reason about (robotic) actions and their effect on the environment. Thus, the whole
configuration of the environment (including objects and their states) is encoded within log-
ical clauses. Starting from the initial configuration s0, new situations si+1 can be derived
by applying a primitive action a to the current situation with function do(a,si). A sit-
uation is thereby defined as a history of actions that has been executed, though not by
description of the resulting state. Additionally, there are so-called “fluents”, which are
functions that change their result value, allow the query of current situation. For example,
location(Table,s) might result in an (x,y) position, whereas over(Mug,Table,s) returns a
true value.

GOLOG is quite frequently applied in the field of cognitive robotics, it is ideal to de-
scribe and verify situations as well as to deduce action sequences that result in specific
“goal”-situation. But this kind of environmental representation has also some drawbacks.
All actions are executed sequentially, which means that there is no support for concurrency
(e. g., two robots in one operational area) and it does not take into account the occur-
rence of external events. Furthermore, this representation does not support continuous
actions, because every action is executed immediately, leading to an immediate change of
fluent results. For example, the execution of the action do(lift(Robot,Mug),si) would in-
stantly change the result of the fluent over(Mug,Table,si+1), although the process of lifting
and grabbing is continuous and requires some time. This is why projects like RoboEarth
(see Sec. 2.3.4.2.11) combine the logic representation with continuous 3D simulations since
the change of real world positions or relations such as left of(Object1,Object2) happens
continuously, which can be better modeled and checked in time-continuous simulations.
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2.3.4.1.12. ConGOLOG: This is a more realistic implementation of GOLOG [57], realistic
in terms of dynamically changing environments. It is able to deal with incomplete knowl-
edge and it also respects the occurrence of external events (and thus acquires information at
runtime). This is a useful feature and allows reaction (immediately) onto changed environ-
mental conditions while working on a task. This ability is made possible due to the support
of concurrent processes (which is also the origin of the name) with different priorities and
interrupts.

2.3.4.1.13. Further GOLOG Representatives are, for example, IndiGolog [58], an exten-
sion to ConGolog, that supports the inclusion of planning and sensing components within
incremental and deterministic programs. ReadyLog [73] aims at providing a deliberative
component for multi-robot systems under real-time constraints. It has some extensions
similar to ConGolog, but it also extends GOLOG in terms of probabilistic projections,
non-deterministic actions (which leave certain decisions open), and planning on the ba-
sis of Markov Decision Processes. Legolog [141] is a GOLOG implementation for Lego
MINDSTORM robots, intended to run on various Prolog implementations with minimal
requirements.

2.3.4.1.14. 3D Rigid-Body Models: The application of 3D rigid-body simulations is a
widely exploited technique in robotics. In contrast to formal/logical or purely spatial ab-
stractions (maps), the environment is represented more “realistically” in a scene-graph.
Objects and obstacles are represented as closed shapes (with colors, textures, and correct
spatial relations) and robots as compositions of objects with joints, links, and attached mo-
tors. The term more realistically does not only point to the representation, which includes
the generation of simulated sensor measurements, but also on the application itself, which
means that it can be used to try out something or to check whether a task can be fulfilled.
For example, it is possible for a manipulator to try out various trajectories (by emulating
motions) before grasping an object. Of course, something similar could also be accom-
plished with the help of the situation calculus (cf. 2.3.4.1.11) and the following (exemplary)
predicate, but only with a lacking environmental representation:

Poss(pickup(Manipulator, Mug), s) ⇐⇒ near(Manipulator, Mug, s) ∧
¬∃ object is holding(Manipulator, object, s) ∧

¬too heavy(Mug) ∧
. . .

Some rigid-body simulation environments are specialized on one type of robot only, but
next to the replication of the environment and the robot they also offer an exact replication
of the robotic interfaces. This allows to port code directly onto the target platform without
any modifications. Such environments are commonly used in the scientific robotics com-
munity for studying and learning robotic behaviors. Examples are the UCHILSIM [229]
a simulator that was especially developed for the AIBO four-legged league RoboCup, or
ARGoS [171] that was initially developed for the Swarmanoid project (cf. [65]).

Others are intended for testing and developing complex motion planning algorithms for
various types of robots, such as Klamp’t [90] with support for legged locomotion and ma-
nipulation, or OpenRAVE [62] that focuses on analysis of kinematic systems. This last
simulation environment is described in more detail in Sec. 4.2.1, because it has various
advantages and I have used it in important parts of my research.
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Similar approaches also exist in the area of industrial factory automation, where simula-
tors are applied during the design process, for rapid prototyping, algorithm and regression
testing, remote monitoring, safety double-checking, etc. Some environments allow pro-
gramming robots in their specific robot language (e. g., ABB Rapid, Kuka KRL, Siemens
G-Code, etc.) — also see the supported languages of Workspace 5 [104], and other examples
are COSIMIR [80], the WorkCellSimulator [209], or V-REP [180], etc.

However, simulation environments like V-REP and OpenRAVE can further be used to
control the real hardware. It is thus applied as motion planner that searches for collision free
trajectories in a virtual environment or for an optimal gripping position, and if it succeeds,
the same motion is replicated in the real world (cf. [243]). Thus, there is no need for a
fixed and possibly optimal trajectory. It is only required to adapt the virtual environment
according to the configuration of real surroundings.

2.3.4.1.15. Roy’s Mental Imagery: The presented concept in [183, 182] probably had the
largest influence on my research, although its main objectives lie in spatial and situated
speech understanding and, thus, human-machine interaction. The main idea sounds simple
and straightforward: if humans and robots interact in the same or overlapping workspaces,
then robots should possess a mental model as close as possible to the human, which allows
them to be aware of their situational (spatial & physical) context as well as to take over
other perspectives. For example, to be able to properly interpret instructions such as “Give
me the blue screwdriver on my left!”, a robot must connect the meaning of spatial language
with the perceptual and action systems in a situational context.

The environment is therefore represented as a 3D model (similar to the screenshot in
Fig. 2.7), which comprises a model of robot itself, a built-in model of the workspace, a
model of the human co-worker, as well as models of all objects situated on the work surface.
Along with the purely spatial and geometrical representation, objects are also labeled with
quantities such as masses, velocities, colors and textures. A combination of OpenGL and
the ODE is used to implement this representation. ODE is a widely applied physics engine
that consists of two main parts, a rigid-body dynamics simulation engine and a collision
detection engine, which means that every object is resident in two engines (“abstractions”):
on the one hand, as a “body” in the “world” and on the other hand, as a “geom” in “space”.
The world or rigid-body simulation engine keeps track of body with masses, forces, friction,
positions and orientations, etc., while the “space” is used as a container for the geometrical
representation and collision detection. OpenGL was applied for visualization and mental
imagery generation (changing camera perspectives).

The model represents the robot’s belief in the state of the world. In the original scenario
it is updated and maintained with the help of two cameras, mounted onto the robot, and
proprioceptive sensors (position and force) that were placed on each joint. The camera
systems are used to identify new objects and to keep track of them. Proprioception is used to
identify the correct position and orientation of the cameras in relation to the environment;
thereby, every movement is replicated within the virtual representation. The model is
furthermore persistent, which means that objects are kept in place, even if they are out of
sight due to camera movement or movement of the object. ODE is thus applied to predict
the positions of the moving object, based on mass and the identified speed of the object.

15Tutorial website: http://www.aizac.info/projects/ode-viz
Download website: http://sourceforge.net/projects/ode-viz
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Figure 2.7.: My first attempt of replicating Roy’s mental imagery, which was also based
on ODE. The simulation shows a model of a Katana manipulator (5 degrees
of freedom) whose tool-center-point is attracted by a movable red sphere to
indirectly determine the appropriate link states. As in Roy’s example, the
environment contains additional obstacles. To simplify the visualization I had
developed odeViz a visualization library for ODE on the basis of VTK. odeViz15

automatically analyzes the state and the content of the simulation (world and
space) and generates & updates the visualization.

A mental imagery is thus only the visualization/rendering of the entire scene from another
perspective rather than from the head-mounted cameras. The robot that is also keeping
track of the human within the model is thus always able to switch to the human perspective
and to see and interpret the environment “literally” through the eyes of its human co-
worker and, furthermore, to ground spoken language/commands into the spatial context.
For example, by trying to satisfy the prior command, the robot is now able to identify the
right screwdriver, based on color, shape, and position, but also from a set of screwdrivers
where another one might be hidden from the perspective of the human.

2.3.4.2. World Models in CPS – Sharing Knowledge Systems

In contrast to the previous general overview on explicit world models, the following examples
provide actual approaches that are intended to be shared between different heterogeneous
systems such as systems with different sensors, actuators, tasks, and varying environmental
conditions, thus real CPS as they were introduced in the first section. This overview actually
resembles a colorful potpourri compared to the previous layers, but it also emphasizes that
the research in that area is relatively recent and, therefore, relatively specialized in a few
application scenarios only.

2.3.4.2.1. Object-Oriented World Model: Furda and Vlacic proposed such a world model
in [82] for road traffic environments of autonomous (driver- less) city vehicles. The described
concept is pretty straightforward, important aspects of the environment are therefore en-
coded within objects and classes. Different classes are used to represent a set of different
predefined concepts such as vehicles, pedestrians, traffic signs, lanes, etc. An object is thus
used as a specialization and represents a specific car, with a 2D position on a certain lane,
a certain velocity, etc.
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This kind of object-oriented world model is set up with a-priori information obtained
from on-board sensors, and also through car2car communication, which means that the
awareness about other vehicles (whether they are in front or behind) can be obtained either
from the local sensor system, external traffic monitoring systems, or from the communicated
position of the front/back car itself. The actual control application is thus cut-off in total
from lower level sensor data, component descriptions, etc., operating only on the basis of
the abstract world model, see Fig. 2.15.

This type of modeling seems to be appropriate for (hard coded and fast) situation as-
sessment, because all required information is already translated into a simplified structure
with well-known semantics. From this point of view it actually mirrors CAMUS, but it
provides fewer opportunities for applying further and extended reasoning techniques (which
are probably not required in this context.

2.3.4.2.2. Local Dynamic Map: A LDM is conceptually an “Intelligent Transportation
System” specific environmental data container, storing all data and information that might
be relevant for different transportation scenarios (i. e., driving assistance — cooperative-
awareness and road hazard warning, speed management, navigation- and location-based
services, communication services, and station life cycle management). It was originally
introduced by SAFESPOT16, a European research project, whose main objectives lie in
dynamic cooperative networks between vehicles and the road infrastructure for sharing
information. Since 2011 it has become a standard and was defined by the ETSI17 (cf. [71]).
In most cases, an intelligent transportation system is interpreted as a car, but the term
itself comprises a huge variety of entities (cf. [71]).

The LDM is thus the very core of the SAFESPOT system architecture, as depicted in
Fig. 2.8 in addition the positioning system, the VANET router/message generation, data
fusion and the “cooperative” application software. The data fusion unit is the only unit
with “write-access” to the LDM, and it maintains the coherence of the LDM via situation
refinement, spatial and temporal alignment. It is thus based on a fixed set of information
that can be obtained from different sources (car-to-X18) such as local on-board sensors,
other intelligent transportation platforms, infrastructure units, traffic centers, etc., which
are accessed via a dedicated interface to the LDM. The cooperative applications have to
be considered to belong to the intelligence level, because they are actually responsible for
predictions, situation-awareness/assessment, etc. They define and react to events detected
in the LDM (cf. [195]).

But how is knowledge actually encoded within the LDM and queried? Actually, it is a GIS
database that is focused on extending digital maps to incorporate real-time environmental
conditions. Therefore, only data and information about the real world and conceptual
objects is stored, which was previously identified as having an effect on the traffic flow.
All information is thus grouped into four general layers: The first (wide range) layer is
a (usually static) map representation intended for global navigation only. It is based on
NavTeq, OpenStreetMaps or other providers of electronic navigable maps. It has to be
mentioned that a multitude of electronic navigation systems already incorporate data from
various sources, such as wide range of surveillance sensor systems, mobile devices, etc. [158].

16Project website: http://www.safespot-eu.org
17European Telecommunications Standards Institute: http://www.etsi.org
18X represents either Car, Home, Infrastructure, Mobile, or Roadside
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Figure 2.8.: SAFESPOT system architecture, as at [100]

The second layer is intended to store attributes that seldom change, such as speed limits,
traffic signs, and visual features/patterns obtained from on-board camera systems, etc.
These features can also be used for a better positioning in urban environments, where
GPS accuracy might be reduced. The third layer incorporates spatial and dynamically
changing information, such as road and weather conditions, information on accidents or
traffic jams, etc. And the fourth layer incorporates highly dynamic information about
the local environment and the vehicle itself, such as speed, direction, status of different
automotive systems (e. g., ABS, ASR, ESP), as well as the positions of other vehicles and
their states.

Because it is a database, querying is quite simple by applying SQL statements with a
well-known syntax (as it is done by different cooperative applications), and exchanging and
updating this kind of environmental representation is thus also pretty simple. All intelligent
transportation systems therefore simply have to maintain consistency in their databases.
Hence, an LDM has to be interpreted as some “global” world model, containing all relevant
and irrelevant information. The already mentioned cooperative applications are responsible
for building and updating their own local world models. As described in [195] this is done
by repeated and cascaded querying, which unfortunately cannot be achieved under real
real-time constraints. The described collision detection can thus only operate in time cycles
of 50 ms with a large safety buffer.

2.3.4.2.3. PREDiMAP: It stands for “vehicle Perception and Reasoning Enhanced with
Digital MAP” and was an international research project that tried to integrate the vehicle
sensor data and external information into digital maps (cf. [48]). Indeed, its objectives are
pretty equal to LDM, covering topics such as:
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• perception for static map generation

• UAV mapping and disaster management with spatial information

• road edge modeling

• detection and 3D reconstruction of traffic signs

Unfortunately, however, the project did not succeed in fulfilling its objectives and there-
fore did not generate valuable publications or software artifacts. Its placement in Fig. 2.15
is therefore only weakly adumbrated.

2.3.4.2.4. Distributed Scene-Graphs: In contrast to the previous “automotive” represen-
tations, a distributed scene-graph, as introduced in [37], does not define different layers of
data and information to be shared. Instead, it defines a structure for storing, sharing, and
maintaining knowledge that is spread across multiple robotic entities. As the title indicates,
the scene-graph is mainly applied for dealing with 3D data. BRICS3D is the name of the
current C++ implementation [239].

The general idea is to have something like a global and common world model which can
be applied by different entities and for different purposes such as perception, planning,
control, and coordination. The global world is thus represented by a directed acyclic graph
of geometrical and hierarchical entities, as depicted in Fig. 2.9. There are two different types
of nodes: “leave nodes” are used to store any kind of 3D data, such as point clouds, meshes,
primitive shapes, as well as raw and intermediate data (which still has to be processed
and might be useful for further analysis), while “inner nodes” are applied to define groups
and transformations. There is also an extended version of the transformation node that
also deals with uncertainties. Each node has a unique ID attached to it, and additional
attributes can be stored as lists of key-value pairs. It is mentioned that this mechanism
allows tagging entities with semantic attributes or debug information.

To keep track with moving objects or to make predictions, each transformation node
caches a limited history of transformations along with their time-stamps. It is also noted
that time is used to define different strategies for when and how to delete geometric and
transformation data, and thus to minimize the size of the scene-graph. The so far presented
approach is currently struggling with providing automated methods for distribution, thus
creating and maintaining local copies of the entire scene-graph, which is quite challenging
for larger environments. But first attempts [38] towards this direction provide promising
starting points. The system currently does not deal with inconsistencies that may arise due
to a large amount of read and write operations from different entities.

2.3.4.2.5. DAvinCi: Inconsistency is not a real problem of the “Distributed Agents with
Collective Intelligence” system, because it applies the distributed file system called Hadoop
Distributed File System (HDFS) [236] for storing data across multiple machines (files up
to the range of terabytes), whose current consistency model is one-copy-update-semantics
(updates are written to a single copy and are available immediately). As described in [30], it
is a cloud computing framework for heterogeneous service robots. The intended application
of DAvinCi was to build live maps (on demand) based on heterogeneous sensor data that is
stored within the cloud, but similar techniques can be applied to multi-modal map building,
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Figure 2.9.: Robot Scene-Graph example as at [239], with leaves (holding 3D data) as well
as inner group and transformation nodes.

map segmentation, object recognition, etc. In general, it can be applied for any kind of
parallelizable algorithm that processes a large set of input data.

Heretically it can be said that DAvinCi is actually the application of Apache’s Hadoop [234]
open-source framework (which does all the work) in a robotic context. At its core, Hadoop
consists of two main parts, the already mentioned Hadoop Distributed File System (HDFS)
distributed storage and MapReduce [235], which allows to process data with parallel and
distributed algorithms.

DAvinCi applies the ROS messaging system and implements a ROS collector-node that
subscribes to relevant sensor measurements (in the described case these are laser scans,
odometer readings, and camera data). These ROS messages are stored in so-called ROS
bagfiles (the common ROS file format for storing messages [247]), which in turn are pushed
by the collector to the HDFS file system. A particle-based FastSLAM algorithm was im-
plemented in MapReduce to demonstrate the feasibility of the approach.

The DAvinCi framework itself does not possess the ability of relating, selecting, or filtering
of data; nor does it support any kind of sophisticated querying. The application that was
described in [30] is actually only an implementation (offering one service) examining the
possibility of applying Hadoop for map building. This is also highlighted in Fig. 2.15,
compared to other approaches at this level. Unfortunately this project is not available
online. Nevertheless, there are currently two other ROS projects that make use of Apache
Hadoop, the megatree-project19 for storing point clouds in large out-of-core octrees (cf.
Sec. 2.3.4.1.6) and the RoboEarth-project, which is described in detail in Sec. 2.3.4.2.11.

2.3.4.2.6. Cloud Robots as a Service: The authors of [176] promote the idea of combin-
ing cloud techniques and a Service Oriented Architecture (SOA) to fulfill robotic services.

19http://wiki.ros.org/megatree
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In their intended approach, a group of robots and a “smart” room share their acquired
knowledge over an SOA. Whereby robots act as service provider and consumer and the
amount of different services is considered as knowledge. These services are described in
data-sheets and are published into a common repository, making them discoverable. If a
robot fails to fulfill a specific user request, it can connect to a cloud skill repository and
download the requested skill (if available). And the newly learned or updated skills can be
uploaded by the robot into the cloud, making it accessible to others as well.

Information from the environment is provided by infrastructure services, but it is not
described how information is selected and how the appropriate processing of information
is accomplished. The architecture presented is thus very vague (as mentioned, promoting
only the idea) and there is no real concept as it is applied in PEIS (see Sec. 2.3.4.2.13) or
KnowRob (see Sec. 2.3.4.2.11), which fulfill the intended functionality. . . According to the
applied conceptual hierarchy, the mentioned service-knowledge is actually related to the
information level (cf. Fig. 2.15).

2.3.4.2.7. A Robot Cloud Center: As it was described in a few more details in [66], the
robot cloud center is actually intended to fulfill similar tasks as the previous approach. It
therefore also interprets robots as kind of service providers (so-called “robot cloud units”)
within a SOA. It also possesses a service repository and registry, but in contrast to the
previous work it segregates services into three categories: “common” and “application”
services or algorithms on the other hand, which offer general functionalities and helper
functions (e. g., face detection, maze following, obstacle detection, map building, etc.); and
“hardware” services on the other hand, which offer general access to sensor data and motor
drivers.

There are additional components described, though, such as a mapping layer that is re-
sponsible for mapping “requested” virtual robot objects to physical robots. User requests
are thereby handled by a so-called “cloud panel”, which analyzes user requirements, com-
poses new robotic applications based on existing services, deploys newly developed services,
and is furthermore used to manage and analyze existing running services on individual
robots.

In contrast to the previous idea, there is no notion of a smart environment, which could
be applied to extend a robot’s perception. Both approaches do not have a holistic concept
for knowledge sharing, except data-sheets for service descriptions. Sensor data, information,
and general purpose functions are accessible through services, but it is questionable how
these parts can be assembled appropriately based on user demands and as prerequisites
for robotic task fulfillment. Furthermore, both concepts describe aspects that are already
captured, or at least tackled, by PEIS, which predated both, but did not make use of the
term “Cloud”.

2.3.4.2.8. Sobots, Embots, and Mobots: These different types of UbiBots represent an
early but long lasting concept (cf. [113, 111, 112, 115]). It is mainly used for separation of
concerns and to simplify considerations about the smart or ambient intelligent environment,
all entities are simply considered as robots. Embedded robots (Embots) are sensors systems
that offer some kind of “perceptive” service such as positions estimation, vision, sound, etc.
Mobile robots (Mobots) are entities that offer some kind of physically acting capability,
while intelligence is assumed to be handled mostly by software robots (Sobots). Thus,
distributed Embots provide intelligent Sobots with context-aware perceptive capabilities
and Mobots act upon service requests in the physical world.
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All entities exist within so-called ubiquitous spaces (u-spaces), which consist of both a
physical and a virtual environment. Different u-spaces can overlap and, as claimed in [112],
interconnection of UbiBots is handled seamlessly with the help of a middleware. Unfor-
tunately, the authors do not provide any details on their implementation and there is no
system online available. As described in their middleware overview sections in [113, 111,
112, 115, 114] it is a broker-based system, allowing to make offers for services performed
by Embots and Mobots. And as further indicated by the architectural overview on the im-
plemented Sobots, every Sobot is responsible on its own to request sensor information and
actuator services. It is mentioned that these services are standardized, but not how. Sensor
data has to be translated autonomously into a symbolic representation, into what kind of
representation and how this is performed is not discussed. It is furthermore not considered
that Sobots might need to communicate, and thus, it is not described what the services they
offer. At least in [114] a multi-layer architecture for the “broker” is described. It consists
of a central “Device Manager”, required to maintain a database with Embots and Mobots.
It has a “Task Scheduler” and a “Context Provider”, which offer basic services (e. g., user
position, temperature, voice commands, etc.) and it also deduces the current situation by
integrating all types of sensor information. Additionally, a “Sobot Management Layer” is
responsible for transmitting the context information, interconnecting Sobots with Em- and
Mobots, and shifting Sobots into other virtual environments.

To sum up, the concept as it has been presented so far might appear to be holistic, but
it requires a Sobot intelligence level that is not satisfactory by using today’s techniques.
Therefore, based on the presented approach, this UbiBot concept actually belongs to the
lower information level (see Fig. 2.15), and it does not possess any capabilities to share
knowledge.

2.3.4.2.9. DustBots20: This European project [190] for urban hygiene is actually “mirror-
ing” the previous concept. It can be regarded as an example of a networked robot system,
in which two types of mobile robotic platforms cooperate with external sensor systems to
provide different services. These are the DustClean robot (for autonomously cleaning and
sweeping pedestrian areas) and the DustCart robot (for door-to-door garbage collection).
The internal robot architecture is modular, based on IEEE 1451 (cf. [178]). Sensing mod-
ules are abstracted with TEDS and the internal communication is handled with the help of
NCAP, see Sec. 2.3.1.2.

A central “supervisor” manages local data gathering and task execution as well as all the
communication to the external AmI system and to all local modules. Similar to the Sobot-
concepts, the intelligence is not directly located at the robot itself: instead, it is handled
by a remote AmI system (cf. [74]). The AmI is a single external application responsible
for dispatching robots, “high-level” path planning, and service execution. High-level path
planning in this context means that the AmI maintains a complex geo-referenced map
along with locations of known users, available roads, and important locations. A robot
only receives a small map with the relevant part of the city together with the next goal
point. Navigation is then handled with local modules, considering current environmental
conditions. Once the goal point is reached, the AmI transmits the next goal point with
another map. In this case, the AmI dictates the global robotic states, which are abstracted
as action artifacts.

20Project site: http://www.dustbot.org
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The AmI is further responsible for collecting pollution data, its processing, and map
creation. As described in [74] all relevant robotic on-board sensor measurements are aggre-
gated by the supervisor module and transmitted in 2 s cycles to the AmI with data related
to time and position. This data is then stored within a central database and a user might
request an image or table-like representation of current or past pollution for a certain area.

To summarize, what can be said about the DustBot system is that most of the communi-
cation is actually on the data level, knowledge is only shared in a fixed map format. Since
there is only one intelligent AmI application and the number of predefined tasks is limited,
it is probably not required at all to share knowledge between machines (see Fig. 2.15).

2.3.4.2.10. Ubiquitous Network Robot Platform: It is another UbiBot concept (cf. [108,
161]) that tries to combine cloud principles with the idea of networked robots and a SOA
(well, there is currently no standardized definitions nor a consistent terminology). According
to the NRS notion (as described in [191]) there are three types of robots: visible (embodied
robots in a classical sense), virtual (only acting in cyberspace), and unconscious (external
sensor systems). In contrast to the So/Mo/EmBot (cf. Sec. 2.3.4.2.8) it does not make
assumptions about the degree of intelligence; thus, a visible robot (MoBot) can be as smart
as a virtual robot (SoBot).

The ubiquitous network platform is depicted in Fig. 2.10. At a first glance, it is visible
that it differentiates between a local and a global platform with similar components. The
basis for this separation of equal components is that coordination of robots and services
must be provided over a wide area. The local platform thus only covers robots within
certain vicinity, whereby the global platform ranges over multiple areas, providing links to
several physical points and, thus, several local platforms. Both serve as a kind of middle-
layer between the service application and the robotic components at the bottom. All the
required data is gathered within five databases:

1. Robot Registry: data on available robots, such as IDs, shapes, mobility capability,
transporting capability, etc.

2. Map Registry: “local” data about the service execution environment, floor properties,
information about movable and no-go zones, whereby the “global” database provides
positional relations among single areas.

3. User Attribute: data on service users, such as IDs, call name, degree of walking ability,
sight and hearing abilities (since it is intended to support disabled and older people).

4. Operator Registry: data on robot operators and services, such as IDs and associated
skills (operator assistance can be hired, if required).

5. Service Queue: a service repository that also includes metadata about the service
itself, such as IDs, conditions when and where invoked, initiation conditions, etc.
Services are always registered in the global repository and get distributed from there
to the local repositories.

Combining all of this data with current status information about the system that is
maintained by the state and resource managers, the entire system represents a quite complex
kind of knowledge representation layer itself (which is of course tightly interconnected with
message passing and information extraction). It combines static representations of maps and
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Figure 2.10.: General overview on the ubiquitous networked robot platform, as in [108]

static robot & service & users descriptions with dynamic information about their location,
the location of obstructions and target objects. A reference platform implementation is
available at [263].

In [205], this platform was combined with the KnowRob system, whereby the task was
to answer common customer questions in a “supermarket” scenario. It was used to answer
basic questions about food or stationery categories, ingredients, and locations. Robots,
when asked for the location, could also point into the direction of the product. The map
building approaches of both systems were therefore not combined; instead, this platform
served as an “underlay” to KnowRob, abstracting hardware and the execution context, and
also forwarding queries to human operators as a fall-back knowledge source.

Thus, questions were answered on the basis of both the KnowRob ontology system and
an additional semantic map (see Sec. 2.3.4.2.11), as depicted in Fig. 2.11, which contains
instances of products and their locations within the environment (actually a highly precise
3D world model). As mentioned by the authors, this representation can also be coupled
with sensors of the environment, like RFID tag readers that could also update the map.
This representation is also accessed by the human operator who can update the environment
model if the shop layout or some product positions have changed (the KnowRob ontology
can also be adopted by a human operator).

2.3.4.2.11. KnowRob & RoboEarth & . . . : As depicted in Fig. 2.12, KnowRob [204],
Rapyuta [154], and RoboEarth [217] are different parts of a larger system architecture.

KnowRob as described in [204] (and as the name suggests) is a knowledge-processing
framework for (mobile) robots. KnowRob itself is an example for a composition of three
different (or at least two and a half) representations: a logic-based, an ontology-based, and
a semantic map.
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Figure 2.11.: 3D semantic map applied for the supermarket environment, as at [205]

The generation of the semantic map for a kitchen environment was presented in [186],
which is a combination of a feature extraction with background knowledge about “kitchens”.
This so-called “functional mapping” is based on point cloud data, which was segmented in
a first step to extract regions with certain geometrical characteristics. These regions can
be further abstracted into surfaces. The background knowledge is used to identify/classify
surfaces such as tables, cupboards, ovens, etc. that are typical for a kitchen (it simply does
not make sense trying to identify objects like cars or tigers). For example, an oven can be
distinguished from cupboards by the amount and size of handles and knobs. The resulting
semantic map can afterwards be verified by testing it against a ground truth (e. g., positions,
links, etc.).

This semantic map (see the example and figure in Sec. 2.3.4.2.10) is used for spatial
reasoning to check relations such as left of , above, or within, which are required to interpret
human orders (similar to Roy’s Mental images). But next to the spatial domain, it is also
required to check if an object is of a certain type or for what it can be used. For instance, to
be able to interpret commands like “start baking” complementary knowledge about objects
is required (such as its shape is concave so that it can be used as a vessel, etc.).

RoboEarth can be interpreted as an extension to KnowRob that was originally designed
to run on single robots only. The RoboEarth [217] system was therefore introduced to over-
come the hurdle for distributing knowledge by applying cloud-based methods. RoboEarth
can be considered as a top-down approach, closely related to the questions of what data
is required to support KnowRob. Hence, it is used to store data about objects (including
CAD models, point clouds, and image data), maps as compressed archives (containing map
images and information about coordinate systems), and robot task descriptions (i. e., action
recipes in a high-level language). These so-called “action recipes” are further organized in a
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Figure 2.12.: General systems overview as at www.roboearth.org/software-components

hierarchic structure and represented by semantic representations of skills that define specific
robot functionalities that have to be executed. The database services further provide basic
learning and reasoning capabilities, which can be applied by robots to map the descriptions
of their skills to the descriptions of actions recipes. Two different database systems are
therefore applied. All “simple” data is stored in tables in the distributed database system
HBase, which is based on the already mentioned Hadoop (see Sec. 2.3.4.2.5), while seman-
tic data on objects, robots, action recipes, and the environment is stored in the centralized
Sesame [261] (an open-source framework that provides extended methods for querying,
reasoning, and analyzing RDF data, see also Sec. 2.3.3.5.2).

As further described in [217], the RoboEarth’s architecture possesses some additional
generic components. One of these components is responsible for appropriate environment
modeling, which is segregated into a local and a global part. The local part, executed
on the robot, “merges and associates (possibly contradicting) sensor data from the robot’s
3-D perception (e. g., the locations of labeled objects) with tracking data”. The global part
is maintained by the database, “it updates the current local world model by factoring in
suitable prior information. . . and provides simple reasoning capabilities”. It is mentioned
that this modeling approach is based on the formal world model presented in [181], but
I was not able to detect it within the official repositories. Furthermore, the official API
descriptions only provide information concerning the database access (cf. [257, 256]).

Another aspect that has to be mentioned in this context is the idea of “web enabled”
robots [206], coming from the same research group. It describes the possibilities and advan-
tages of using the Internet (i. e., web pages of online shops, Goggle images and SketchUp,
wikiHow, etc.) itself as a knowledge repository for robots. Unfortunately, all has to be
translated into a format applicable by robots, which is not brought to a solution yet.

The Rapyuta cloud engine . . . while KnowRob is mainly dealing with reasoning in
robotic applications and RoboEarth is used to share data, information, and knowledge
(i. e., ontologies and maps), Rapyuta is applied for cloud computing. In other words, it is
a framework for uploading computational heavy task into a computing facility (cf. [154]).
Standard Linux containers are therefore applied to run ROS nodes and services in a virtu-
alized infrastructure.
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2.3.4.2.12. MavHome: It stands for “Managing An Intelligent Versatile Home” and is one
of the long lasting research projects in the AmI area. Its main objectives (as stated in [53])
lie in the development of an environment that acts as one intelligent and autonomous agent
that maximizes the comfort of its inhabitants. This shall be accomplished by perceiving the
state of the environment through any kind of available sensor system and by acting upon
it through any kind of available device. As previously mentioned, it is one agent, but this
agent can be decomposed into sub-agents and so on, whereby every sub<sub>∗ -agent is
responsible for a certain sub<sub>∗ -task.

An overview of all components of the MavHome architecture is given in Fig. 2.13, and
it comprises all elements that are associated with a typical MavHome agent. In contrast
to many of the aforementioned attempts, MavHome possesses a very sophisticated internal
structure. According to (cf. [226]) each (sub-) agent is composed of a decision, informa-
tion, communication, and physical layer. The decision layer is assigned to the application
elements (see Fig. 2.13), information to all kinds of services (i. e., prediction, data mining,
aggregation, and databases), while communication is associated with the applied middle-
ware and different kinds of interfaces, the physical layer is associated with physical devices
(sensors/actuators), but also with other lower hierarchy agents.

The process of perception works as follows: available sensor data is transmitted via the
communication layer to the information layer, to be stored, processed, and transformed into
higher level information that is used in the decision layer. Based on this information and
on the learned experiences, derived knowledge, and observations an action is selected. This
action is checked in the lower information level, and if it passes, it is communicated to a
physical layer and executed.

And it seems to work perfect for some tasks in AmI environments, but these tasks are
rather simple compared to the system described in the next paragraph. Perceived elements
are actually light, humidity, temperature, smoke, gas, motion, switches, and the tasks
to be accomplished in [56, 227, 103, 103] are turning off and on the fan, the lights, the
TV, the coffeemaker, the sprinkler, etc. It is working smoothly, data gets interpreted,
transmitted, and understood because the system is perfectly configured for the environment.
Required data is stored within a central repository, which can afterwards be applied for
data mining [103], learning or anomaly detection [102], which is made possible by fixed
transformation of data into a logical representation (i. e., fixed states like CoffeeMakerOn,
BathLightOf , etc.). A graph-based model is mentioned in [56] to be used for the spatial
representation, which was the reason to list it within the knowledge representation layer in
Fig. 2.15. But again, it comes only with limited capabilities (used for simple control of the
home automation systems), which makes it hardly applicable for robotic applications, in
contrast to the following approach.

2.3.4.2.13. Physically Embedded Intelligent System (PEIS): The PEIS Project [187]
is based on the notion that robots and their surroundings have to be viewed as a tightly
coupled (symbiotic) ecology with mutual dependency. All entities are thus abstracted by the
uniform notion of a “Physically Embedded Intelligent System” — a computerized system
capable of communicating and interacting with the environment through sensors and/or
actuators. In addition to a complex robotic system, surveillance cameras, fridges, or even
RFID labeled objects (e. g., spoons, milk cartons, etc.) are considered to be PEIS objects.
And different PEIS objects “can” congregate or share their services and functionalities to
fulfill tasks that cannot be carried out by individual systems (at least this is the idea).
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Figure 2.13.: General MavHome architecture, as at [102]

The information about capabilities and offered services of PEIS entities (e. g., object
recognition, localization; see [44] for a complete list) as well as the configuration of the
whole ecology is encoded in PTLplan [146]. PTLplan is a Probabilistic Temporal Logic
planner [109], which, in contrast to the situation calculus (see Sec. 2.3.4.1.11), applies prob-
abilities to actions and situations by searching for a defined goal situation. Based on the
available facts, the planner afterwards determines if a certain goal (task) can be accom-
plished and what the required functionalities/services are. In order to reach a certain goal,
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the environment is initially queried for a complete description by using the PEIS commu-
nication middleware that combines a distributed tuple-space event mechanism (cf. [43]).
Due to this tuple-space, the planner or any other system (robots and spoons included) are
always aware of all included entities and the entire configuration of the environment.

While GOLOG, for example, operates only on the knowledge and intelligence level, PEIS
is not cutoff from underlying layers and can therefore be applied onto “lower” level problems
as well. For instance, perceptional anchoring is the process of connecting identifiers which
are used to denote an object (e. g., Mug22) with sensory measurements (e. g., red area in
a camera image, round shape within a laser scan, etc.). As presented in [134], this method
currently works only for PEIS objects. A robot first queries the tuple-space for all “physical
representations” tuples (e. g., color, shape, size, etc.) of all PEIS object within the ecology.
This information is then compared with the available sensor readings.

2.3.4.2.14. Knowledge Ecosystem: A formal approach to define distributed knowledge
bases was published in [150]. It is based on ETHOS (Expert Tribe in a Hybrid Network Op-
erating System) [169], which is comparable to ROS. It introduces the concept of “experts”,
which are concurrent agents responsible for a specific deliberative or reactive behavior. As
depicted in Fig. 2.14 there are three different types of experts, (S) are handling symbolic
knowledge, (D) are meant to deal with analogical and iconic representations (i. e., maps,
sensory inputs, etc.), while reactive behavior is handled by (R). These experts can be or-
ganized and clustered in so-called villages with the help of the ETHOS framework. Hence,
it supports loosely coupled communication via publish/subscribe, synchronous access via
services, and also shared memories (cf. KB, D1, D2 in Fig. 2.14).

Although ETHOS was previously developed in the context of RoboCup, it has been
“conceptually” applied to smart environments in [150]. The entire configuration of the
environment including the state of the entities is represented by using description logics,
similar to CAMUS (cf. Sec. 2.3.3.5.2) or KnowRob (cf. Sec. 2.3.4.2.11). A new type of agent
was therefore required and defined to translate sensor data into symbolic representation.

2.3.4.2.15. A Concept of extended Object-Oriented World Modeling: It is currently
a concept only for a complex environment model for autonomous systems [35, 130], with
some basic implementation examples. It separates between sensor data, a world model,
and knowledge. Sensor data is analyzed with the help of already existing knowledge, and
the resulting information is passed to the world model. Knowledge is defined in terms
of specific methods and algorithms for analyzing sensor data (according to the applied
classification, services at the information layer). The world model consists of objects (labeled
with attributes), representing entities of interest. These objects are interconnected in a
scene via relations, similar to the distributed scene-graph approach that was described in
Sec. 2.3.4.2.4.

The authors do not mention how data, knowledge, and the world model are stored or how
scenes, including all details about the environment, are represented. But it discusses the
fact that there is a need for a symbolic abstraction/level to describe situations. Probably
there is some kind of symbolic encoding which can be directly applied onto the world model.
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2.3.4.2.16. Summary: Compared to the lower layer reviews, this overview on the related
work seems to be more scattered and presents much more divergent approaches. While
lower layer technologies up to the information layer already provide a lot of standards with
applications or libraries that can be used to translate between source layer descriptions or
data layer formats (see, for example, [262]), etc., the approaches on the knowledge layer
present mostly single solutions for a few predefined problems. Of course, there still might
exist further approaches (without the knowledge of the author) that would conceptually
belong to this layer but have not been mentioned in this overview. Nevertheless, the liter-
ature review for this layer provides a couple of additional and interesting facts. Firstly, we
are still in the collection phase. There is only a small core of relatively young publications,
which is furthermore perpetually cited in the related work part of publications that deal
with cloud robotics, UbiBots, robots as a service, or simple combinations AmI/SmEs with
robots. Although these terms and the developed concepts seem to be promising and some
of the presented architectures are quite complex, the presented applications and the solved
problems are still at a very early stage. Probably, it is not possible to find a solution that
can be explained on six or eight pages, whereby publishing adaptations of previous adap-
tations seems to be more valuable. Probably it is also too expensive in terms of new and
relevant technologies that have to be developed. It might also be too expensive to provide
a demonstrator. Or it is likely to be too difficult to change our minds and as well as the
commonly practiced approaches.
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Thus, if the tasks that have to be accomplished grow in their complexity, we tend to com-
bine different approaches (cf. Sec. 2.3.4.2.10) and also the different world models, which in
turn lead to very complex and tightly integrated system architectures. Some approaches
can be summarized as supporting technologies, such as LDM, PREDiMAP, Object-Oriented
World Model, Distributed Robotic Scene-Graphs, or even DAvinCi, which provide only a
method to distribute knowledge. Others such as Cloud Robots as a Service, the Robot
Cloud Center, So/Em/Mo-bots, Knowledge Ecosystems, extended Object-Oriented World
Modeling, etc., actually provide concepts for large fields of applications, but with vague
architectural descriptions. It thus contrasts the complex architectures described for the
DustBots, NRS, MavHome, KnowRob&RoboEarth&. . . , and PEIS that are capable of
solving a predefined set of combinable task, but with less complexity if comparing them
to the intended task that should be solved by the systems mentioned before. Whereby,
KnowRob and especially PEIS seem to provide the more general approaches, and due to
their declarative nature they are capable of solving repeatedly new tasks without the need
to change or adapt their architectural designs.

The different types of knowledge representation formats that were listed in Sec. 2.3.4.1
can actually be interpreted as inputs to algorithms associated to intelligence layer (i. e.,
reasoning, planning, situation understanding/awareness, etc.). It thus might be surprising,
at first, that there is no further overview given on the intelligence and the representation
layer. However, as also visible in Fig. 2.15, there is currently no CPS or cloud-based
approach (to the best of my knowledge) capable of solving different types of problems or
dealing with the dynamic representation of content. Instead, those systems that slightly
touch the intelligence level (e. g., CAMUS, DustBots, PEIS, RoboEarth, or MavHome) do
this on the basis of their internal knowledge representation scheme, and therefore mostly
reason on actions and services; only the DustBot externalized path planning.

The next section is intended to close the literature review by discussing the approaches,
technologies, and their main problem more generally.

2.4. Synopsis – Where are we now?

Although the amount of approaches that has been presented, covering the source and data
layer, is little, compared to the approaches operating on higher layers, in fact the former
outnumber the latter (cf. [193, 231]). A lot of research has been done in these areas over the
past decades, which resulted in many elaborated systems. Fig. 2.15 shows that these are
versatile approaches that cover large problem sets in these areas. This becomes particularly
obvious by looking onto the standards that have been defined by the IEEE, OGC, ROS,
in addition to a multitude of industry standards. Due to these standardizations, source
descriptions and data can be easily accessed, transmitted, and transformed (into different
formats). Transforming means that a system description defined by one standard can also
be translated into another and vice versa (e. g., URDF to COLLADA to CAD, or SensorML
to TEDS), similarly to data (e. g., transforming a ROS message in to a MOSAIC message).
Thus, interoperability at the source and data level is actually not a real problem anymore. It
allows the application and the combination of these technologies widely and for a multitude
of applications.

However, turning the attention upwards in the applied hierarchy reveals that this is abso-
lutely not the case for approaches operating at the information and knowledge level. Tech-
nologies in these areas appear more scattered and offer limited functionalities. Of course
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JINI, OSGi, or ROS offer frameworks which enable the implementation of distributed ser-
vices, remote procedures/functions that have standardized formats to describe their inter-
faces; which offer context information along with rendering and code mobility throughout
the network (remote evaluation). Taking a deeper look onto ROS, the offered functionality
is overwhelming. The current ROS repositories21 contain more than 2100 packages for var-
ious purposes. But how is this functionality used? Generally and very traditionally, human
developers seek for the needed ones (i. e., nodes, libraries, services) to solve a particular
problem and assemble them as required. It means that we still have to define what func-
tions have to be called, and we not only have to choose the right input parameters, but also
have to be aware of the context along with applying those functions in the correct order.

Reminding the intelligent construction scenario, used within the virtual sensor concept
on page 26, a user acquires information about unsafe areas in proximity to a crane. It re-
quires one to apply multiple filter, fusion, and transformation functions onto heterogeneous
sensor data, the pose of the sensors and the current configuration of the crane, which has
to be known and included into the calculation and which, afterwards, has to be presented
appropriately to the user. Even a human would struggle to identify all required functions
(if accessible) in correct order and with the correct input parameters to generate this infor-
mation. Thus, simply passing published (sensor/actuator) data to remote functions is not
a satisfactory solution. Yet, the virtual sensor concept starts pointing to a more suitable
direction, which was carved out by TinyDB even more. Although it seems quite natural
to interpret a distributed sensor network as some kind of database (afterwards) and, there-
fore, to apply an SQL-like query language (that was briefly introduced in Sec. 2.3.3.2 on
page 26), it is actually the application of a declarative/relational programming paradigm
to a completely new field. It makes requesting for complex information possible, whereby
the language is only used to define what kind of information. An “abstract machine” is
responsible to deduce this information on the basis of available data, constraints and rules
with different solvers (or search strategies) applied in the background. This fact was also
emphasized for CAMUS in Sec. 2.3.3.5.2. In the case of TinyDB every sensor node runs
an abstract machine to resolve queries and this works also in a distributed manner by ag-
gregating and filtering information (with a fixed and limited set of functionalities) along
semantic routing trees.

Imagine we could query the components in the intelligent construction scenario or any
other smart environment similarly:

Listing 2.9: Exemplary SQL query for dangerous regions around a crane
1 SELECT places FROM crane_region on ground WHERE hazardous_potential >0.01 ...

Approaches at the knowledge level that enable querying or reasoning (e. g., on con-
text, actions, services, etc.) can also be applied to standard frameworks and solvers that
use central knowledge bases, such as CAMUS → Jena; RoboEarth → Sesame; Context-
Toolkit, LDM, PREDiMAP, MavHome → MySQL; Ubiquitous Network Robot Platform
→ PostgreSQL and PostGIS; except PEIS that utilizes PTLplan on a shared memory. LDM
and PREDiMAP thereby offer only complex containers for any kind of data that might be
required in an automotive application (relations between data are represented indirectly by
the database structure). The application itself is then responsible to identify and extract
relevant information.

21Package overview for ROS indigo: http://www.ros.org/browse/list.php
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Approaches that apply different knowledge representation formats from logical or formal
up to more complex ones (e. g., semantic maps, occupancy grid maps, complex 3D models,
etc.) commonly make use of distributed databases or distributed file systems (i. e., DAvinCi,
RoboEarth, Robotic Cloud Center, Cloud Robots as a Service). Nonetheless, as already
mentioned, these are fixed representations of a certain type according to the supported task.
There is currently no system, concept, or approach that allows to switch or translate between
different knowledge representation formats. Therefore, translating between different 2D
maps is probably as easy as translating data or source descriptions on lower layers, even
if it necessitates neglecting the mounting height of the sensor systems that was used to
generate it. This is also true for other knowledge representations that are quite similar to
each other. However, a concept of a global or central format/representation from which
dynamically different kinds of knowledge representations formats or information can be
extracted does not seem to exist. The only concept that tries to put all data into a common
spatial and temporal context is the Distributed Robotic Scene-Graph, which was presented
in Sec. 2.3.4.2.4. But similar to other approaches, it does not possess any kind of interface
to request information or knowledge in a specific format; rather, the application has to deal
with the available data and information. Imagine that it would be possible to extend the
previous select statement from Lis. 2.9, and add something like a request format:

Listing 2.10: Extension to the query in Lis. 2.9 by request formats
1 ...
2 AS OccupancyGridMap with z-pos , resolution , ...
3 AS TopologicalMap with ...
4 AS List ...

Whatever it is, return this information in specific format so that a certain algorithm
(probably from the intelligence level) or application can deal with it. The most obvious
benefit would be that such a practice does not affect any existing system, and there is no
need to change or adapt the code of a system in order to comply with new data, information,
or knowledge representation formats. It is furthermore something that actually belongs to
the top layer “Representation”, which is responsible for the appropriate presentation of
content. This capability is commonly associated with UbiComp and AmI in relation with
HCIs and different types of displays (which is also underpinned by the overview in Fig. 2.15).
But as mentioned earlier, this layer can be envisioned in a much broader context, enclosing
each of the layers below in the sense that any kind of data, information, knowledge, solutions
to problems (e. g., trajectories, action sequences, etc.), which belong to the intelligence layer,
could be presented in various different formats and as indicated in Lis. 2.10.

Summarizing the related work at the knowledge layer, most of the approaches discussed
so far represent highly specialized systems — specialized in terms of their application and
supported knowledge representations. Thus, the more general an approach gets the more
complicated its architecture becomes. This fact becomes obvious by the complexity of the
depicted architectures of MavHome, RoboEarth, the Robot Cloud Center, the Ubiquitous
Network Robot Platform, or ETHOS. It has to be mentioned that these architectural maps
only present very high-level sketches. Every newly introduced feature requires an adaptation
of these systems, the integration of new elements and storage of data, information, or
knowledge. Thus, the complexities grow and systems become even harder to maintain and
adapt.
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To conclude this section and as well as the chapter, there is one remarkable similarity to
the OSI model (introduced in Sec. 2.2.4) and the state-of-the-art depicted in Fig. 2.15 that
has not been mentioned yet. As defined by the OSI model, communication is only possible
between entities that operate on the same abstract layer, and the same seems to be true
for the approaches that have been presented so far. As in the earlier stages of the Internet,
different approaches coexist next to each other, requiring additional interfaces/transforma-
tions to be able to access elements of a foreign architecture. Furthermore, it cannot be
predicted anymore at design-time for an application, what type of metadata, data, infor-
mation, knowledge, and in what representation format might be required to accomplish a
certain task. A certain measurement value or a sensor description might be required also
at the knowledge representation or intelligence layer (for decision making). Thus, access-
ing elements from lower or higher layers is mandatory, though it needs to implement an
additional set of interfaces, which is actually contradictory to an original layered approach.

Literally put, everything might be required in every imaginable format. Thus, the goal of
this thesis is to develop a concept and a prototypical implementation that actually enables
access to any kind of metadata, data, information, etc., from a distributed smart environ-
ment in any desired format. A declarative approach has therefore been designed and will
described within the next chapter, which actually allows it to access any kind of information
with simple SQL-like statements as they were exemplified in the two listings before.
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“. . . if you look on the surface you see complexity, it looks very
non-mathematical. . .

. . . think not of what you see, but what it took to produce what you see. . . ”

—Benôıt Mandelbrot on fractals and nature

As it has already been introduced with the frog problem in Sec. 1.4, the goal of this thesis
is not to add an additional boxplot to the current state-of-the-art; nor is it to develop a
system that fully overlaps with all of the layers presented before (I doubt that this is even
possible). Instead, the main objective of this thesis is to offer a concept that allows us to
integrate different technologies from different layers and to access and combine them freely.
This holistic access mainly covers the four problems carved out in Sec. 1.4. According to
the previous chapter, elements of interest have been differentiated into source level descrip-
tions, data, services, information, world models, etc., whether they are stored somewhere
or accessible in “real-time” (problem 2 & 3). Furthermore, it requires the ability to present
or to generate the desired piece of “information” in the required format (problem 4). And
the major problem (1) is how this can be achieved without an extraordinary intelligent
application.

Fig. 3.1 is used a starting point for the following considerations. It sketches the current
situation as well as its main problem. There is currently no general concepts or interface
that allows the query of such CPS, SmEs, IoT, AmI, etc.; instead we are overpowered by the
myriad of available interfaces, data (and their formats), and functionality. And, therefore,
we still develop applications that deal only with a fraction of it.

As indicated by listings within the previous section and by the “slightly more” detailed
descriptions of systems that adopted the database semantic for their purpose, I took over
some of these ideas and applied them to another domain. Why should it be impossible to
treat such composed smart information spaces in the same way as a “distributed” database?
It would require at least three things: some kind of basic order or organization, some format
to define requests, and some kind of abstract machine that is responsible for processing these
requests and delivering demanded information.

The main question mark is (cf. Fig. 3.1) how a distributed environment of CPS can be
queried as if it would be an ordinary database? Very early conceptual considerations have
been discussed in [1] and [3], the solution presented and updated here consists of three
intermediate steps. These steps are described in a bottom-up fashion within the following
sections: therefore, the following enumeration is intended to provide a short overview on
every step. For each step there exists a separate implementation that can also be applied
independently. Since every step is a conceptual part with its own implementation, such
that every solution can also be applied on its own, it is recommended to read the following
sections in conjunction with their implementation in Chap. 4. The section numbering of
this chapter, therefore, overlaps with the section order within the following chapter.
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Figure 3.1.: The dots are used to mark any kind of appearance of source level descriptions,
real-time sensor or actuator data, context information, maps, historical mea-
surements, etc. within a smart environment that is continuously changing. The
dashed line represents an interface to this distributed environment, which might
be accessed by an application to request for specific information in a certain
representation.

1. Organization: This initial section deals with the problem of organizing data and infor-
mation in a distributed environment of CPS in a way that all of it can be searched and
accessed. To track this problem down, a cloud-based approach is applied. It is used
in two ways: as a holistic store for any kind of data and as a virtual overlay structure
that represents the entire environment. In the simplest sense, this structure can be
described as distributed scene-graph that reflects the global state of the environment.
It therefore can be related to the robotic scene-graph approach that was presented in
Sec. 2.3.4.2.4 but, in contrast, it provides more complex methods to handle and access
data along with information as well as methods for dealing with consistency.

2. Idealization: If the previous step was about the development of a global world model,
this part is used to describe how local world models can be extracted from it. These lo-
cal models reflect the idea of Roy’s mental imagery that was described in Sec. 2.3.4.1.15.
A precise 3D rigid-body simulation is applied to mimic the real environment for a cer-
tain region of interest. Entities within the local model (e. g., sensors, robots, humans,
etc.) can be connected to their real world counterparts in order to replicate their
behavior online (the information of how this can be achieved is taken from cloud).
Additionally, all objects within can be associated with supplementary semantic in-
formation. This “ideal” replica of the environment is thought to represent the most
general model and serves as a common knowledge base for the next part.

3. Extraction & Abstraction: The previously reconstructed local model of the environ-
ment (updated with real-time data) is used in this part for any kind of analysis and
thus information extraction. It is furthermore applied as a source from which dif-
ferent kinds of world models can be abstracted, not only the spatial ones listed in
Sec. 2.3.4.1.
As discussed in Sec. 3.3.1.1, from the point of data analysis and interpretation, there
is no real difference between a database and a simulation. The SQL syntax was
therefore adopted and extended to be applicable on simulations at runtime. All the

62



3.1. Organization & Access

complexity, that is required to generate information and models, is hidden behind
an abstract machine (language interpreter). This section hence, mainly deals with
the development of a general language concepts and, furthermore, with the idea of
how SQL can be applied for reasoning tasks in order to solve similar problems as
Prolog, but with the running simulation as its knowledge base. Another point why
reasoning has become such an important feature of this new language is that it allows
deducing sequences of transformation, fusion, and filter functions. It is similar to the
identification of action sequences for robots, which is actually well-known in robotics
since the times of the situation calculus (see Sec. 2.3.4.1.11); however, reasoning on
the application of ROS functions and services is currently unknown.

That these three steps are afterwards applied in reverse order is demonstrated in Chap. 5.
At the end, only one select statement is required, whereby the local world model is generated
automatically and in accordance with that statement.

3.1. Organization & Access
If you imagine that every mobile or immobile robot, every smart sensor, or a simple appli-
cation possess its own private data storage with its own structure and own formats (e. g.,
binary, XML, JSON, etc.), the discovery as well as searching and accessing this data be-
comes a tough challenge, especially when new entities are introduced or others leave. To
deal with this problem, a couple of systems either upload their data to a centralized or
distributed repository, or have switched to a distributed file systems, such as the already
mentioned MavHome, RoboEarth, or DAvinCi, etc. Nevertheless, only worthwhile and
predefined data is thereby uploaded, which still describes a centralized solution, from an
application point of view.

The goal at this stage should not be to enforce the upload of all (previously defined) data
to an external cloud-based infrastructure, but instead to create a cloud that integrates all
the entities of a smart environment. Such a kind of holistic data store was proposed in [12].
Wherein, every entity maintains its own local database and stores its own data locally for
its own purpose. All of these local databases are organized in a bigger cluster, which allows
the query of and access to data of external systems. Similar to other approaches, it is also
based on a cloud-based infrastructure, but one that has not been introduced to robotics
(cf. Sec. 4.1.1). The main problem thereby was that simply storing data does not offer any
benefits. Instead, some kind of organization is required that allows to interpret and query
data in a global context. This organization was published in [10] and pretty much reflects
the layers that were applied in the previous chapter to categorize the related work.

3.1.1. Categorization
The categories depicted in Fig. 3.2 can be interpreted as a kind of bootstrap for the orga-
nization that is described within the next sub-section. This categorization was introduced
in [10] also as a point for critics to related approaches, which pretend that simply sharing
data is enough to build up any kind of CPS application. Instead, it is merely the basis (or
from another perspective, the tip of the iceberg).

At this stage the term “data” is used because it relates to the sheer amount of data
(literally everything) that can be stored and accessed without any relation. Every kind of
data can be assumed to belong into one of these four general categories. Metadata (literally
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data about data) is used for any kind of source level descriptions (i. e., sensor data-sheets,
robot description formats, data definition formats, etc.). Abstract data is used to classify
any kind of map, identified object, etc., thus everything that cannot be directly measured
but has to be identified or recognized, in contrast to raw and virtual data. Raw data refers
to any kind of sensor measurement, actuator command or status information, as well as any
kind of position information. Sensor fusion results or data transformations that are typically
associated with functions at the information level (applied onto lower level data) can be
associated to virtual data, such as the average or maximum temperature of a room. It is,
for the most part, the application of mathematical or physical laws, in contrast to abstract
data (such as recognized furniture) that, according to the state-of-the-art classification, also
belongs to the information layer. The classes of raw and virtual data, furthermore, appear
in two flavors within a distributed environment, either as real-time data that has to be
accessed and analyzed online or as historical data that has been stored. That, is to say,
historical data should be directly accessible from the cloud, through which only links can
be provided to real-time data.

d a t a
meta abstract historical: raw&virtual real-time: raw&virtual

Figure 3.2.: General categorization of data into four integral parts

3.1.2. Organization

Providing a global structure might look easier than providing a global data store (see the
implementation in Sec. 4.1), but it requires every entity to store its data and information
according to a common pattern. The previously defined categories are now applied as
simple containers (locally) for storing all associated data. The simplified entity relationship
diagram in Fig. 3.3 depicts the entire organization, which can be applied to any underlying
database system — whether centralized or distributed. Metadata was split into two “tables”
that are used to store general data-sheets for sensors (e. g., TEDS, MOSAIC, etc.) and
robots (e. g., COLLADA, URDF, etc.) only. This does not contain any context information
about the location of entity, its identifier, orientation, or how its data can be accessed. In
the same way abstract data is split into one table for location information (of any type) and
the other for data about identifiable objects. Raw and virtual data require multiple tables;
in the ROS-world this would require one table per topic and per producing node.

None of these containers so far stores any kind of contextual information; context is
brought to them by the central table complex. Although linear and distributed, this table’s
structure is hierarchical. Every complex entry possesses at least one unique identifier, a
complex base, a relative pose (relative to the base, which also defines the origin of coor-
dinates), and a type and an entity identifier that is pointing to either metadata, abstract
data, or another complex entry. Thus, any kind of entity is thus represented by a complex
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Metadata

Abstract data

Raw data

Virtual data

complex
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binary-data
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precision
...

objects
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binary-data
comments
precision
...
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ROS - messages
. . .

Figure 3.3.: Organization of data with the help of table complex as the global link, whereby
raw and virtual data only mark accessible historical data and metadata is sep-
arated into two parts to distinguish between acting and sensing entities

entry, to which any kind of further additional information can be attached, such as pose
uncertainties, semantic information, as well as published topics or offered services (if it is a
sensor or a robot). In this case, these entries are used to provide links to real-time data and
services, similar to Sensorpedia & Robopedia described in Sec. 2.3.2.4. An entire mobile
robotic platform would thus be represented by multiple complex entries: one for the mobile
platform, an additional manipulator as well as all on-board sensor systems which have to
be represented as individual “complex” entries, and which form a sub-tree together, as part
of the entire structure.

The principle that is sketched in Fig. 3.4 and, as already mentioned, pretty much re-
flects the notion of a distributed scene-graph as it was described in Sec. 2.3.4.2.4. But in
contrast, the application of a distributed database system for maintaining the global world
model seems to be more promising. It offers more and sophisticated methods for main-
taining consistency (which indeed can be fine-tuned according to different requirements,
see Sec. 4.1.1). It already possesses different methods and syntax to query data. And it
probably allows using better and more effective methods for replication, if an entity with
its partial knowledge about a certain area of the environment leaves the cloud. But as
mentioned previously, this requires every participating entity to store its data accordingly
and to update it continuously.

In contrast to other data classes, raw and virtual data has to be stored in multiple
tables, one table per topic and producer. It is necessary to be able to cope with the large
amount of produced data as well as its diversity, and to reduce replication efforts. In
contrast to other tables, every stored message has to be labeled with a time-stamp, which
allows it to keep temporal relations. Raw and virtual data require a direct association
with their producers (not a spatial relation), in such a way that a video stream can be
associated with a certain (complex) camera, laser scan with the producing scanner, or a set
of position information with the mobile robotic platform. The implementation for this is
briefly described in Sec. 4.1.2 and is actually more complicated than the implementation
of this overlay structure, because being able to query any kind of stored sensor, position,
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Figure 3.4.: Principle of hierarchical organization to maintain, store, and link any kind of
data within a smart environment

robot status or configuration data, etc. (raw & virtual) requires a translation of the binary
data stream into a format that can be queried. An adaptable method for this was presented
in [12], which automatically generates a table structure that reflects the message format
and decodes and encodes messages accordingly.

One benefit (in addition to the distribution) of applying cloud-based data stores, in
this case, is that they do not require such a strict predefined structure as most relational
databases do. Such systems are commonly based on other design principles than fixed tables
for organizing data, such as key-value stores, document stores, etc. Thus, not every detail
has to be known during design-time and not every entry has to have a specific format.
Rather, the intended structure has to be known. As already mentioned, there might be
multiple formats or description formats for sensors or robots. A cloud-based approach
allows the storage of any of them, while letting the next layer or application decide which
one of these should be used. As described within the next section, everything that is required
to query this database is some kind of bootstrap, such as the identifier of a robot or its
type, the number of a room, a position, a recognized marker and everything attached can
be reconstructed by querying the hierarchy upwards or downwards.

3.1.3. Summary

This part introduced the notion of a holistic data store and a distributed scene-graph for
organizational purposes, which is actually a composition of data and information stored on
various different entities that form a smart environment. It thus also provides an infras-
tructure for deriving local world models, which is described within the next section. To
the “complex” graph, therefore, might be referred to as a global world model, but it has
several drawbacks and this requires a transformation of the available data into a local and
more precise model. Although there are primitive spatial and temporal (as primary keys)
relations included to structure the components of the smart environment, it does not allow
switching perspectives (as it was imagined by Roy’s Mental Imagery), nor does it take into
account how the current working step of a manipulator affects its geometry, or how mobile
robotic platforms and transformations of the environment change the sensing areas or affect
sensor readings; it does not support reasoning about action sequences, situation-awareness,
or to make predictions. As described further, there is a difference between “historic” and
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real-time data, for the second the overlay structure does only provide links. Continuous
queries or callbacks known from the active database concepts (see Sec. 5.4) would be far
too complex, expensive, and would not provide a sufficient level of detail. From this point
of view, it makes perfectly sense to reconstruct local world models for a smaller area from
which an information is required and to connect them to the smaller set of available real-time
data, which is produced within them.

3.2. Idealization

Idealization is the process by which scientific models assume facts about the
phenomenon being modeled that are strictly false but make models easier to
understand or solve. That is, it is determined whether the phenomenon
approximates an “ideal case” then the model is applied to make a prediction
based on that ideal case . . . If an approximation is accurate, the model will
have high predictive accuracy . . .

—Wikipedia

Most of my early research as a member of the research group for distributed and embedded
system (EOS) dealt with supporting task in developing new communication middleware con-
cepts (cf. [22, 23]) and with the abstraction of sensors and their fault analysis in distributed
environment (cf. [2, 15, 16, 17]). The research area afterwards shifted to the application
of more complex world models and simulations as tools to perform sensor measurement
validation, plausibility checks, to provide some form of virtual redundancy or forecast en-
vironmental changes, where previously applied methods based on signal analysis reached
their limits (cf. [5, 20, 8]). As I realized afterwards, all of these approaches presented only
very specialized solutions to very specific (and well-known) environments (cf. [4]). Thus,
the first genuine problem was the creation of such models, as it was described within the
previous section, the second dealt with the extraction of information along with further
abstracting of local world models.

This section is used to describe how local world models can be reconstructed and also what
kind of knowledge representation formats are thereby used (cf. Sec. 2.3.4.1). Nevertheless,
the aspect of previous research on sensor data validation is still valid and, therefore, also
discussed within this section in conjunction with some of the main problems that arise while
dealing with local world modeling.

3.2.1. The Local World Model

I propose the application of a 3D rigid-body simulation, which is similar to Roy’s notion
of a world model or to the model applied by KnowRob, with a scene-like representation of
the environment, including all inhabitants (an early conceptual work on this was presented
at [8] and further worked out in [3]). As it is presented within the next section, a rigid-body
simulation can be interpreted as the most general representation of not only other 3D or
2D maps, but also formal and logical representations, and various kinds of information can
be abstracted. But not only can information required by other machines be abstracted, as
described in [13], but representations for human co-workers, by using AR techniques, could
be applied to support a tighter interaction between humans and robots as well. It requires
a visualization of the robot’s intention and next working steps, in order to turn off a robot’s
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black box behavior. This approach was later picked up by former project partners1. The
next section is therefore dealing with issues of information extraction and the generation of
more fine grain environmental representations.

Since the global world model already possesses a hierarchical structure, translating it
into smaller scene-graphs is actually not that complicated. Everything that is required is a
“bootstrap”, a “complex” entity identifier, which might be a room, a position, an identified
robot, a marker, or if the entity itself is already represented within the global model (by
a complex entry), the ID of its base, etc. As depicted in Fig. 3.5, the reconstruction of
the scene can be organized recursively in two directions: upwards, whereby, the ID of an
entry has to match the current base ID and downwards, by querying for the base IDs of
other entries. (See, hence, also the brief description of the appertaining implementation in
Sec. 4.2.2 as well as the listed screencast that demonstrates how the virtual overlay structure
is accessed and queried.)

distributed
database

Figure 3.5.: Reconstruction of a scene from a distributed scene-graph with an extruded
map of the environment (yellow), robots and sensors (green), stored Kinect
scans (blue), and online accessed real-time sensor readings (red), the red arrows
mark the connection of the model to required real-time data.

In contrast to a “simple” 3D representation, a rigid-body simulation distinguishes between
the entities within (e. g., robots, sensors, furniture, walls, etc.) and allows the attachment
of semantic, physical properties, offered services, topic names, pose uncertainties, etc. to
every object, which is stored or linked to within the virtual overlay database. In fact, the
reconstruction of such a local world model is not a real technical challenge and there are
plenty of simulation environments that can be used to maintain a local world model (see the
overview in Sec. 2.3.4.1.14). But in contrast to Roy’s ODE environment, which is a physics
simulation environment only, it is more valuable to apply more complex tools. Tools that
also support the integration, and thus the simulation, of different sensor systems, an integral
part that is left out by all approaches, presented in the related work at the knowledge layer
in Sec. 2.3.4. The next section is thus used to present some of the benefits that arise due
to the application of simulated sensor systems. As described in Sec. 4.2.1 on page 97, the
robot simulation environment OpenRAVE was utilized and adapted for this purpose, but
the general system architecture also allows it to apply different simulation environments.

1A cooperation with the Fraunhofer IFF in the ViERforES (Virtuelle und Erweiterte Realität für höchste
Sicherheit und Zuverlässigkeit von Eingebetteten Systemen) project. See also the description of the EXCELL
project: http://www.iff.fraunhofer.de/en/business-units/robotic-systems/echord-execell.html
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As mentioned within the introduction to this chapter, the local model should also be
applied to replicate any movement, any state change, and also every sensor measurement
that appears within the real world. This requires connecting virtual robots and sensor
systems to their real world counterparts, as it is indicated with the red arrows within Fig. 3.5.
Thereby, all required communication settings should be read from the “complex” entry that
represents a distinct entity. Different mechanism in the background can subscribe for or
request data via various communication systems and update the local model accordingly.
Thus, the reconstructed model itself can be used as local knowledge base maintaining the
spatial relations between different entities, but it can also be applied as a general interface to
different types of sensor systems. Hence, an application does not have to cope anymore with
communication aspects; everything can be hidden behind the local world model. The only
thing required is an interface to real and simulated measurements. How this is accomplished
in described detail is in the implementation for OpenRAVE in Sec. 4.2.2.2.

The appearance of stored raw and virtual data can only be linked to the model. Note that
data such as camera streams or Kinect depth scans cannot (and do not have to) be analyzed
directly just as recognized objects (in stored or online accessed real-time data) which are
directly integrated into the local model. Additional transformation-, fusion-, filter-, etc.
functions have to be applied afterwards, based on the type of requested information. This
issue is discussed within the next layer.

3.2.2. Application

As introduced at the beginning and revealed in earlier publications, the application of rigid-
body simulations for explicit world modeling has several advantages, but it also causes some
problems. Both aspects are briefly described within the following paragraphs. See also the
following play-list to get an impression on some of the main aspects discussed in [3]:

http://www.youtube.com/playlist?list=PLgJeoIw_8oS5ORCWmaZtAD9fX3QpcmOlY

3.2.2.1. Benefits of a Local World Model

As already introduced and previously discussed in [4], precisely simulated environments in
conjunction with simulated sensor systems can be utilized in various ways. On the one
hand, it offers some kind of the ability to perform virtual measurement as virtual sen-
sors can be attached everywhere if their specific measurement formats are required (e. g.,
distance values, laser scans, point clouds, etc.) as input to a certain algorithm (cf. [3]).
Complex hulls within the virtual world can be also defined as safety zones and applied as
collision detectors with virtual objects that have a real world counterpart. It thus enables
quite complex transformations, while the correctness of the model is maintained with the
help of other sensor systems that combine real and virtual measurements. Thus, if real
sensors are also represented within the virtual world, it offers some kind of virtual re-
dundancy that can be used in two ways, and which is highly dependent on the quality
of the virtual environment representation (it is discussed within the next sub-section). It
allows generating intermediate sensor measurements with arbitrary frequency that indeed
only provide approximations to the real value. The elapsed time between two real mea-
surements should therefore always be integrated as a weighting factor. On the other hand,
virtual and real measurements can be used to perform some kind of plausibility checks,
as it was described in [5] for a manipulator with different head mounted sensors. An error
margin was thereby estimated that defined acceptable deviations between real and virtual
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measurements. If there is a discrepancy between real and virtual measurements which can-
not be explained by measurement noise (described within the sensor data-sheet), a system
will have to reason about the source, whether the environmental representation or some
sensor measurements is faulty. Probably, dismissing some of the sensor systems results in
a more consistent configuration, concerning the virtual representation and measurements
compared to real measurements. It is thus also possible to deal with environmental prop-
erties or changes (which occur in highly dynamic surroundings) that might affect a sensor
measurement (cf. [8]). For example, the effect of different surfaces such as reflection or
absorption on light-based or ultra-sonic-based distance sensors can be identified as easily as
ambiguous measurements, which are caused by exceeding a specified measurement range.
In fact, these are no faulty measurements at all — a precise environment model, replicating
those measurements would gain the same results and could still be utilized. But by addi-
tionally replicating any action within the environment model a system becomes aware not
only of the influence of its local behavior on sensor readings (e. g., due to self-occlusion),
but also on changed sensor readings due to the behavior of external systems (e. g., by vir-
tual replications of robotic movements/trajectories, etc.) or due to changed environmental
conditions (e. g., a newly placed box or a closed door, etc.). The effect of external actions
or status changes does not have to be observed with local sensors, it can be observed within
the virtual representation (cf. [3]).

Thus, it allows the identification of disturbed sensor systems, which further enables an
advanced sensor selection as a basis for higher level fusion and transformation as well as
the integration of external sensor systems to it (cf. [20]). Using external sensor mea-
surements for a better position estimation by applying motion sensors, surveillance cameras,
laser scan and distance measurements also from other mobile robots (which continuously
publish their positions) or for other tasks in smart environments (e. g., the detection or
recognition of humans and objects) requires the precise knowledge of what sensor systems
are available, what is their relative position and orientation (with probably known uncer-
tainties), as well as what their coverage area is. The model can thus be searched in order
identify relevant sensors that monitor a certain area or to identify an appropriate set of
sensor systems for a given task. As already described, the model shall also be used to
access the data of external sensors.

Additionally, since real physics engines are applied and objects are also labeled with
physical properties, a persistent model can be used to make predictions about future
states of the environment (or collision) even if objects leave or roll of (as discussed in Roy’s
mental imagery, see Sec. 2.3.4.1.15) an area that is monitored by different sensor systems,
their new positions can be estimated based on the physical simulation. Similarly, it is also
possible to foresee possible collisions by maintaining a forwarding simulation for a certain
time horizon.

3.2.2.2. Problems, Difficulties, and Challenges of a Local World Model

There are a couple of problems that are quite hard to grasp, but fortunately they have been
already widely investigated and discussed in related areas, such as in the research fields of
Data Quality [34] and Information Quality (IQ) [29], which can be related to previously
introduced information science (cf. Sec. 2.2.1) and rely on similar distinctions between
data and information. IQ defines a couple of metrics that can be used to measure the
value or to quantify the confidence of particular information, or in other words: how good
does an information reflect a certain aspect of “reality”. It is thus also associated with the
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relevance for a decision making process. Since data is defined as the basis for information,
the quality of data has a direct effect on derived information. An approach for the online
evaluation of the quality and validity of data, which also incorporates the application of
fusion, filter, and transformation algorithms, was developed by the working group EOS [41,
42]. It allows identifying valid data at runtime, based on a predefined properties vector.
But both approaches correspond in the statement that poor data quality cannot result in
good IQ.

The same applies to the quality of the local world model that is derived from a common
data source that represents the entire environment. There is currently no metric and, in
addition, there will probably not be any metric describing the incompleteness or com-
pleteness of data and, thus, also of the local model. Therefore, the model always comprises
all environmental data and information for a certain vicinity that is directly accessible.
There is currently no other selection process applied than the one that uses the spatial re-
lations. What else might be relevant or not to solve a certain task or to deal with a specific
problem requires some kind of description, which is introduced within the next section. But
the problem of incompleteness remains, and there is no way of identifying what might be
missing or to reason about the degree of completeness. At least inaccuracy can be handled
to some extent, by associating uncertainty values to pose information, sensor systems, or
measurements, etc. In Sec. 4.2.2.3 it is described how arbitrary information can be attached
to an entity within the simulated environment, but there is currently no simulation environ-
ment that is capable including these uncertainties into the simulation process. Additional
methods have to be implemented, such as flow simulation, virtual spraying, sealing, etc.,
which can be seen in the overview at: http://www.fcc.chalmers.se/software/ips

Another problem that is difficult to deal with is inconsistency. Inconsistency might
arise due to several factors. There is the perceptional anchoring problem, which was al-
ready introduced in Sec. 2.3.4.2.13 for the PEIS ecosystems, but that is also known in IQ. In
IQ it can be related to ensuring convergent validity [29], which is defined as the extent
to which multiple items that measure the same construct are or can be correlated. Thus, an
object that was identified by multiple robotic systems does not necessarily have to be rep-
resented as one “complex” entry within the overlay database and, thus, also within model.
In combination with a weak consistency level, this might result not only in an incomplete or
inaccurate but in a wrong representation of the environment (with multiple appearances
of one object). Literally speaking, different systems might have a different view on the
same object or on the environmental configuration (based on different sensory systems and
different points of view). Such inconsistencies can leak into the global environment model,
but the connectivity of entities (different time-stamps) within a distributed environment
can also cause inconsistencies. Inconsistency due to disconnected systems can be handled
to some degree by underlying database system. As it is described in the implementation
in Sec. 4.1.1, eventual consistency might be the best choice for distributed systems of dy-
namically changing (connected/disconnected) entities. Thus, not every data/information is
accessible immediately and a model will therefore present an incomplete and probably not
actual representation of the environment.

But how could the model quality of or the confidence in it be measured? One way
would be to identify the degree of correspondence between the previously introduced virtual
and real sensor measurements. An accurately simulated environment should produce similar
measurement results as the real one. The amount and diversity of sensor systems could
be also used as a weighting factor. Furthermore, reputation could be introduced as an
additional quality measure, which can be associated with the entity that was responsible
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for producing and storing data or information (based on the accuracy of earlier insertions).
And of course, the associated time-stamp to information can be utilized as an additional
value to describe the timeliness of a model.

3.2.3. Discussion

This conceptual part was used to demonstrate the principles and describes the potentials
and problems of applying a rigid-body simulation to replicate the local surroundings. So
far there have been also only weak requirements for a simulation environment defined, a
scene-graph structure to maintain all components of the environment and the capability
to simulate robots and sensors as well. As already mentioned, OpenRAVE was chosen
due to several reasons (see Sec. 4.2.1), but there also might be others. Depending on the
task and probably also on external environmental conditions (e. g., fog due to spraying,
different ground conditions (working on soil), temperature and humidity can affect sensor
measurements, etc.) another simulation environment can be more useful and provide more
sophisticated simulation capabilities and other APIs. Nevertheless, the described problems
will still remain.

A very nice fact at this point is that it is more or less irrelevant what environment is used,
how information is organized, and how it can be interfaced. The simulation environment
is used as a basic framework for the next steps. It can thus be replaced without affecting
the application that is using it for analysis, forecasting, abstraction of other environmental
representation, or to simply extract certain information. But how can it be irrelevant?
The next section introduces a new declarative query language that abstracts the underlying
environment and allows querying any kind of discrete operating simulation with an SQL-like
syntax, whereby an abstract machine is then responsible to produce the requested output.

3.3. Extraction & Abstraction

Change your language and you change your thoughts.

—“Karl Albrecht”

Within this section, the notion of a holistic query language as well as the grammar and
syntax of such a language are introduced. In fact, there is a need for such a language
due to several reasons [9]. I firstly realized this when the interfaces to an applied local
world models and to the developed filter and transformation functions (see Sec. 4.3.1)
grew in their complexity and became hard to maintain. Furthermore, there is a selection
process involved in nearly every extraction of information or in the application of filter and
transformation function, since they are not applied onto the entire local world model but
only on some “selected” parts or aspects. Many parameters for these functions have to be
set dynamically, depending on predefined requirements, the environmental configuration or
other context information.

As recognized in [35, 130] (see also Sec. 2.3.4.2.15), a scene-graph presents a complex
structured world model that requires some kind of semantic/syntax to be able to define
complex situations within, including temporal aspects along with spatial ones in order to
support situational-awareness.
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Conceptually, there are three directions imaginable for dealing with these problems: A
fixed set of templates allowing the extraction of predefined sets of information. A probably
more advanced solution would support basic and imperative scripting elements, enabling a
higher flexibility according to parameter settings and sequence changes (order of execution
of template-based filters/functionality). A declarative approach would push the effort to-
wards an abstract machine or algorithm, allowing to define what is required rather than to
define how it is achieved. Since none of these solves the problem of extracting information
alone, a combined approach is proposed, whereby the main emphasis is put on develop-
ing a declarative query language, which also comprises imperative aspects, allowing the
identification of the appropriate combination and parametrization of functions/templates.

Thus, if we interpret a local world model as the underlying knowledge base, it should
also be possible to query it with a syntax and semantics that is similar to the access of an
“ordinary” database. With the listings 2.9 and 2.10 in Sec. 2.4 on page 57 I already tried
to introduce the SQL syntax as a convenient approach. Within the following section it is
described why this approach is not that unfounded as it might sound at first and how it
can benefit by integrating also imperative programming elements. It is rounded out by a
definition of language requirements and a brief overview on syntax and grammar. Most of
these topics have been introduced already in [6] and to some extent also in [9].

The third part of this section deals with an extension of the language in order to support
reasoning, which was presented in [11]. Reasoning with the help of a SQL-like syntax might
sound even more bizarre, but as revealed later on, it is quite reasonable and it enables the
definition of even more sophisticated queries.

3.3.1. Concept of a Holistic Query Language
3.3.1.1. Databases vs. Simulations

SQL or “Structured Querying Language” [47], is a so-called 4th generation declarative
language, which nowadays has become a standard for defining, storing, manipulating, and
querying data in databases (cf. [69]). And although databases are in general not directly
portable across different Database Management Systems (DBMSs), and different DBMSs
were developed for different purposes with different and specific implementation details
(which is similar to the amount of world models and simulation environments), SQL offers
a standardized interface to access all data and relations. Even non-relational DBMSs, so-
called NoSQL-systems (Not only SQL, for a broader overview see also [246]) try to copy
or (re-implement) the syntax and the semantics of SQL because of its expressiveness and
wide acceptance, well-known examples are Cassandra’s CQL (see, for example, Lis. 4.4 on
page 94) [242] or HBase with Pheonix [260].

Although it has turned into a standard in the database community, SQL does not only
cope with data; instead, it offers an abstract method for defining, manipulating, and query-
ing relations between “entities”. From this point of view it can be said that there is actually
no real difference between a database and a simulation from the data point of view, both
represent a side of the same medal. As depicted in Fig. 3.6, databases are usually used
to store all relevant aspects of a system or a process, whereby a simulation is applied to
replicate a system’s behavior for the purpose of studying or forecasting. Databases can also
be used to derive important simulation parameters, or data from simulations is stored for
further analysis in a database. Thus, if both are applied to describe the same system (e. g.,
the weather, strength and dynamic analysis, traffic-flow, a library rental system, etc.), then
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Databases Simulations

t0 tn−2 tn−1 tn Aspect

SQL Python, C++, Matlab, IDL,

Java, Excel, R, Fortran, ....

Figure 3.6.: Database entries can be interpreted as representations of a finite set of system
clippings, which start with a first measurement at time t0 and range to the
latest measurement at time tn (now). A simulation is applied to predict future
system states or outputs. These future “measurements” can be produced for
arbitrary small or big time steps, whereby every value is additionally affected
by a growing discretization error over time.

the data that is stored within a database will commonly mirror the data that is reproduced
by a simulation (e. g., temperature and humidity according to time and space).

No one would nowadays try to query a database by directly accessing all data sets and
analyzing or filtering them manually with an imperative or procedural programming lan-
guage. However, this is still true for most of the simulation environments applied in robotics
(as well as in other fields). Would it not be nice to query both sides in the same way and
with the same syntax, such as a weather database/simulation as it is listed below?

Listing 3.1: Identification of European cities whose average temperature is above a certain
threshold

1 SELECT cities , inhabitants , mean_temperature , ...
2 FROM cities_in_europe
3 WHERE mean_temperature > 33.0
4 ORDER BY inhabitants DESC ...

Or simply to analyze network traffic, which is either stored in a database or multiple
log-files or generated by a network simulator (e. g., ns22 or ns3).

Listing 3.2: Exemplary SELECT-statement for an ns2 simulation
1 SELECT average ( throughput ), average ( packet_loss ) FROM network_communication
2 WHERE routing == ’RIP ’ AND fail_rate > 0.05 ...

As already discussed in [11, 6] and also presented by some approaches in Chap. 2, SQL-
like query languages have already been introduced to other fields than databases. For
example, the language integrated query (LINQ) [170] extends some of the .NET languages
to apply SQL queries to relational databases as well as to arrays. It is similar to other
approaches in the Java world, such as the Java Query Language (JQL) [224] or SQL for
Java Objects (JoSQL) [238], among others and with a reduced syntax. But there are no
such attempts that are applicable to query simulations online. Searching the literature for
relevant publications, for querying world models, or simulations, or at least scene-graphs
with the required expressiveness yielded only in one publication [135]. Even the authors
of this paper note that they could not find related approaches to their developed query
language for simulated mesh data, which is called MeshSQL. It allows defining queries
for mesh-based physics simulations. In contrast to the approach presented in this thesis,
the results of a simulation are stored within a database, according to time and space.
MeshSQL is thus a real extension to SQL1999 [69], which is specialized on mesh data only.

2Network Simulator 2: http://www.isi.edu/nsnam/ns
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This query language is intended to enable researchers to interactively explore simulation
data, to identify new and interesting effects. MeshSQL therefore offers temporal, spatial,
statistical, and similarity queries, which require different types of return values, i. e. simple
values, surfaces and slices in different formats, which is also a requirement for my approach.

But before proceeding to the next part, due to several reasons there was initially also a
discussion of applying a Prolog-like syntax (cf. [9]). Prolog and SQL are “quite” similar and
appeared both during the 1970’s. Both are declarative languages and the Predicate Logic,
used by Prolog (logic programming), is a subset of the Relational Calculus implemented by
SQL (relational programming). Furthermore, a subset of Prolog has been already applied
successfully as a database query language, called Datalog [46]. Since the focus initially
was more on extracting facts, relations, different abstractions and not on reasoning, SQL
seemed to be the better choice, also due to its expressiveness and its widespread usage and
acceptance. But as already mentioned, the developed query language was later extended to
be applicable to reasoning problems too (see Sec. 3.3.2.3).

3.3.1.2. Language Requirements

As already introduced and also depicted in Fig. 3.7, the main idea is to put a thin abstraction
layer on top of the local environment model similar to standard SQL, which allows to
apply the same queries over and over again, even when the underlying DBMS changes. As
presented later in Chap. 5, this approach even allows concealing most of the effort that are
required for accessing the overlay database and model generation. Fig. 3.7 shall further give
an impression on the capabilities of the newly developed declarative query language named
SelectScript. Select due to the primarily applied statement and Script because of its
extended scripting capabilities.

distributed
database

S e l e c t S c r i p t — I n t e r p r e t e r

SELECT... FROM...
AS GridMap;

SELECT... FROM...
AS List;

SELECT... FROM...
AS Model;

id:mug21a, pos:(0.2,4.23)
id:katana6, pos:(3.43,1.2)
id:chair78f, pos:(-2.2,0.5)
id:chair1c8, pos(1.33,0.5)
id:desk1e7f, pos:(2.82,0.6)
id:desk229, pos:(-4.0,0.7)
id:..., pos: ...

Figure 3.7.: Interpreting the local environment model as an implicit and dynamically chang-
ing knowledge base should allow the application of an interpreter and a SQL-like
syntax to define what kind information should be extracted from it
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If the generated responses depicted in Fig. 3.7 appear somehow familiar, this is because
they were previously already presented in Sec. 2.3.4.1 on page 36. All of the presented world
models there (except the topological map) were generated with simple SelectScripts and
the transformation functions presented in Sec. 4.3.1. To get a further impression on the
language and its application (before continuing), take also a look at the YouTube play list
that was used to demonstrate parts described in [6]:

https://www.youtube.com/playlist?list=PLgJeoIw_8oS5bgn94qFAVo88FRpXRtqpN

3.3.1.2.1. Dynamic Interpretation: Since models are constructed dynamically, on the
basis of the information stored within the underlying overlay database, and simulating a
variable and continuously changing environment, not all possible combinations of tasks and
associated queries are known at design-time. It is therefore more appropriate to apply an
interpreted language (as it is also true for most declarative languages). It should allow
creating and answering new kinds of queries dynamically or adapting existing ones, based
on the current context.

3.3.1.2.2. Adaptability & Extendibility: As already introduced, there might be different
types of co-simulated local environment models. Thus, adaptability denotes the requirement
of porting the language/interpreter to different “discrete” simulation environments.

As it was shortly introduced in Sec. 2.3.4.1.10 on page 37, Prolog can be interpreted as an
example for Language-Oriented Programming (LOP), since on top of it different languages
have been implemented with support for very specific types of logical world models. LOP
was summarized at best in [64]:

“. . . I want to be able to work in terms of the concepts and notions of the problem I am
trying to solve, instead of being forced to translate my ideas into the notions that a general-
purpose language is able to understand (e. g., classes, methods, loops, . . . ). To achieve this,
I need to use domain-specific languages. How do I get them? I create them . . . ”

As it is later revealed in Sec. 4.3.2, there is actually no need to provide a whole im-
plementation for one world simulation environment. A “whole implementation” means a
complex software to grant access to another complex software. Instead, it is more beneficial
to provide a small language stub for effective querying, which can be extended afterwards to
comply with different environments, required functionality, and probably also with different
programming languages. It thus should be possible to derive new “dialects” for different
underlying systems. From this point of view it can also be applied as a meta-programming
language, which allows combining existing functions dynamically to generate desired infor-
mation (cf. Lis. 3.4 on page 78). Thus functions should provide a basic API, allowing to
interface the underlying system effectively.

3.3.1.2.3. Basic Scripting Capabilities: In contrast to SQL and its derivatives, the lan-
guage should at least provide basic scripting capabilities. Since not everything can be solved
with basic SELECT statements only, a combination of declarative and imperative aspects of-
fers the opportunity to define simple and expressiveness queries. Reoccurring patterns and
sequences of commands could be used to define procedures in order to reduce the complexity
of queries.
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3.3.1.2.4. Situation-Awareness: As previously reviewed in Sec. 2.3.4.2.15, Belkin et al.
emphasized the necessity for appropriate queries on scene-graphs and a definition on a
symbolic level. They argue that even the simplest situations can be defined by a single
symbolic attribute value of an object (e. g., a person is smiling). Prolog or any other formal
representation, therefore, seems to be more suitable for defining and checking situations,
but as shown in Sec. 5.4 a SQL-like syntax can be applied to accomplish this task as well.

Rather than continuously querying (poll) the simulated environment, the system should
provide callback mechanisms for an event-based notification, allowing the encoding of a
situation once and attaching it to the currently simulated environment so that every time
a situation is detected, a specific callback is executed to inform a subscriber.

3.3.1.2.5. Inclusion of Temporal Aspects: A scene-graph commonly depicts only the spa-
tial environmental configuration for a certain point in time. An exception to this is provided
by the distributed scene-graph that was described in Sec. 2.3.4.2.4, wherein transformation
nodes also store a local history of transformations. A query language should thus also pro-
vide the possibility for defining temporal queries in order to include time into the analysis
process. And, therefore, to be able to query for example: since when is something true, for
how long has it been the case, are there temporal patterns, etc. The same is true for the
previous point, defining situations, which also requires the ability to incorporate temporal
aspects.

Within the presented approach, this was solved with a new concept for temporal variables.
These variables store the result of a query for a certain period of time along with their
time-stamp (cf. Lis. 3.9). These variables can be further reused and queried, with the same
syntax as a local robotic world model is queried (see Sec. 3.3.1.3 and also the example in
Lis. 5.16 on page 130).

3.3.1.2.6. Coping with Different Representations: As already mentioned, the locally ap-
plied world model is utilized as the central knowledge (fusion) base from which all required
information shall be extracted as well as other knowledge representation formats. These
formats thereby cover all logical & formal and spatial 2D & 3D representations that have
been listed to some extent in Sec. 2.3.4.1. Thus, the language requires some kind of mech-
anisms and a special syntax, allowing to request information and knowledge in different
formats (the previously mentioned templates). It has also to be extendable and adaptable
to meet new requirements.

Applications and algorithms in this sense do not have to be adapted or altered to make
use of different input formats. Instead, it only has to be requested in the desired format so
that all the details about conversation and transformation are handled in the background
of language (abstract machine). In the language concept that is described within the fol-
lowing section, this is accomplished by the altered application of the SQL keyword AS and
the following statement, which denotes the requested format and needed parameters (cf.
Lis. 3.7).

3.3.1.3. SQL Adaptations to Comply with Simulations

This section is intended to introduce the envisioned language and its expressiveness. It is
furthermore intended to demonstrate that most of the previously described requirements
can be quite easily solved or in other words expressed with the help of a SQL-like syntax.
Lis. 3.3 depicts a simplified version of the SelectScript grammar (there are actually more
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rules for evaluating arithmetic or Boolean expressions, etc.). However, it also depicts five
language features that were already mentioned, but described in more detail here.

SelectScript covers only a subset of SQL, namely the possibility of defining SELECT
queries as listed in lines 42 - 62 in Lis. 3.3 and the possibility of defining PROCEDURED,
see line 65. As it is visible, a query covers the basic SELECT, FROM, WHERE, GROUP BY,
ORDER BY, LIMIT and AS expressions. Thereby, only the application of the keyword AS
was altered to support the request of different response formats. The usual column names,
which are used to define the return values of a query, are defined by the identifiers of an
expression, such as the name of a function called (line 42), or specific built-in functions.
Functions are determined by an identifier and parentheses (line 38). As already mentioned,
functions are defined externally within the host programming language and are only linked
to SelectScript (see Lis. 4.17 on page 110).

A single SELECT definition can thus look like the one listed in Lis. 3.4. If there are multiple
parameters to be passed to a function, then the keyword this is applied to mark the correct
position of the element that was identified by the WHERE-clause. Furthermore, it is also
possible to apply nested function calls. Here, the additional parameters can also contain
complete expressions, SELECT statements, etc. (see line 35 in Lis. 3.3). The definition of
the language allows it furthermore to apply nesting nearly everywhere.

Listing 3.4: Basic SELECT expression with function calls as a column substitution
1 SELECT fct_1 , fct_1 (this), fct_2 (p1 , this , p2), fct_3 ( fct_1 (this)*2, p3) ...

The keyword this is furthermore applied to keep track of different sources, defined in
the FROM expression. If there are multiple sources defined, then the name of the source is
concatenated with this to mark the position of elements for evaluation within a function
or another expression, as depicted below. Or if, for example, the Cartesian product has to
be evaluated, local variables can also be defined within the FROM expression (see line 3 in
the listing below).

Listing 3.5: Application of the this pointer
1 SELECT fct(this) FROM struct ... ;
2 SELECT fct( struct_A .this), fct( struct_B .this) FROM struct_A , struct_B .....
3 SELECT fct(A.this), fct(B.this), C.this FROM A=struct , B=struct , C=( SELECT ...

The WHERE is used identify relevant elements; and only if this expression evaluates to
true, the elements are selected and passed over to the next expressions, or they are ignored
otherwise. If no WHERE expression is defined, all elements are handed over automatically.
The same functions that are applied in other parts can also be applied here as well as in
the GROUP BY, ORDER BY, or LIMIT sections, which implement the same functionalities as in
ordinary SQL.

Listing 3.6: Application of WHERE, GROUP BY, ORDER BY, and LIMIT expressions
1 SELECT .. FROM .. WHERE fct_1 (this) < fct_2 (this , p) AND (( ...
2 GROUP BY fct_3 (this), ...
3 ORDER BY fct_4 (this), ... ASC # or DESC
4 LIMIT 33*3

Furthermore, there is an additional keyword AS that has already been mentioned in the
last paragraph of the previous section, and that is defined in line 58 in Lis. 3.3. It is applied
(in contrast to its common SQL usage) as a key element of the language to define the
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Listing 3.3: Simplified overview on the SelectScript grammar3

1 # a script is a set of ex , each statement is closed with a semicolon #
2 <SCRIPT > ::= (<STMT > ";" | <COMMENT >)+ #
3 # -------------------------------------------------------------------------------#
4 <STMT > ::= <ASSIGNEMENT > | <SELECTION > # #
5 | <PROCEDURE > | <EXPR > # #
6 | "(" <STMT >";"(<SCRIPT >";")+ ")" # def. of a sequence of statements #
7 # -------------------------------------------------------------------------------#
8 # dynamically typed variable assignments , with two types of variables : #
9 <ASSIGNEMENT > ::= <ID > "=" <STMT > # standard #

10 | <ID > "{" <STMT > "}" "=" <STMT > # temporal - with time horizon #
11 # -------------------------------------------------------------------------------#
12 # allowed expression ( identifiers are used as variable or function names ) #
13 <EXPR > ::= <uOp > <EXPR > # unary operators #
14 | <EXPR > <bOp > <EXPR > # binary operators #
15 | <ATOM > # #
16 # -------------------------------------------------------------------------------#
17 # Boolean , compare , and arithmetic operators ( evaluated with precedence ) #
18 <bOp > ::= "+" | "*" | "==" | "<" | " <=" | "%" | "AND" | "OR" | #
19 "-" | "/" | "!=" | ">" | " >=" | "ˆ" | "XOR" | "IN" #
20 <uOp > ::= "-" | "+" | "NOT" #
21 # -------------------------------------------------------------------------------#
22 <ATOM > := (<ID > "." )? "this" # pointer #
23 | <FUNCTION > # function call #
24 | <ID > ("{" <STMT > "}")? # variable call , eg. Nma_12 {time} #
25 | "[" <PARAMS >? "]" # definition of a list #
26 | <STMT > "[" <PARAMS > "]" # slice operator for lists #
27 | see Lis. 3.10 on page 81 # scripting extensions ... #
28 | "(" <STMT > ")" # parenthesis #
29 # -----------------------------------------# literals : #
30 | <Bool > # T(rue), F(alse), 0, 1 #
31 | <Int > | <Float > # ... -1, 0, 1, 2 ... | -3.14159 #
32 | <String > # " enclosed by quotations " #
33 # -------------------------------------------------------------------------------#
34 # list of parameters , applied by select statements , functions , lists , or by #
35 <PARAMS > ::= <STMT > ( "," <STMT > )* # additional AS representations ... #
36 # -------------------------------------------------------------------------------#
37 # function call with and name and arbitrary parameters #
38 <FUNCTION > ::= <ID > "(" <PARAMS >? ")" # identifier (p1 , p2 , (33*4) , ...) #
39 # -------------------------------------------------------------------------------#
40 # querying with the possibility for specialized return values , which is defined #
41 # by the final keyword "AS" ... #
42 <SELECTION > ::= " SELECT " <PARAMS > #
43 "FROM" <PARAMS > #
44 ( " WHERE " <STMT > )? #
45 ( see Lis. 3.13 on page 85 )? # reasoning extensions ... #
54 ( " GROUP " "BY" <PARAMS > )? #
55 ( " ORDER " "BY" <STMT > ("ASC"|"DESC")? #
56 ("," <STMT > ("ASC"|"DESC")?)* )? #
57 ( " LIMIT " <STMT > )? #
58 ( "AS" ( "val" # only the first value #
59 | "list" # array representation ( sequence ) #
60 | "dict" # default representation ( table ) #
61 | " dummy " # for execution only , nothing ret. #
62 | <ID > ( "(" <PARAMS >")" )? )? # enabling extensions #
63 # -------------------------------------------------------------------------------#
64 # procedures are internal function definitions , parameter - passing is allowed #
65 <PROCEDURE > ::= "PROC" ("(" <ID > ("," <ID >)* ")")? ":" <STMT > #
66 # -------------------------------------------------------------------------------#
67 <COMMENT >::= "/*" * "*/" # internal or multi line or single #
68 | "#" * <EOL > # line comment ( until newline ) ... #
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resulting format of a query, which might be a single value, a list of values, a dictionary,
or nothing (dummy, if only the expressions have to be evaluated). The dictionary is also
the default format and preserves the expression identifiers as keys in order to generate a
SQL-like table (see also Lis. 3.14).

But it is also possible to request something totally different, such as an occupancy grid
map (see Lis. 5.12 on page 126), Prolog clauses (see Lis. 5.18 on page 131), or a map showing
the sensor coverage of an area (see Fig. 5.2d). Further expressions can be integrated in order
to extend the language according to various requirements, in addition to the incorporation of
new functions and additional structures. The optional parentheses after the representation
format can be used to pass additional parameters to the method that is used to create these
representations (in fact, they can also contain further (nested) expressions or queries that
are automatically evaluated before passing).

Listing 3.7: Requesting different formats with the keyword AS
1 SELECT .. FROM .. AS representation (..); # dict( ionary ), list , value , or ..

As depicted in line 2 in Lis. 3.3 a script can contain multiple statements (and comments,
equal to SQL, line 67) and intermediate results can also be stored persistently in variables
(see definition in line 9 in Lis. 3.3). This allows to define more complex query scripts by
applying the resulting values, stored in a variable, as inputs to other queries (see therefore
line 2 in the listing below). In this context, persistently means that the values stored in
a variable cannot only be accessed within the same script, but also later by other scripts
as well.

Listing 3.8: Application of basic variables
1 var = (2*3+3.141592) ˆ0.5; var_list = [" string ", fct (2) , var , [...]];
2 var_struct1 = SELECT ...; var_struct2 = SELECT ... FROM var_struct1 ...;

In order to be able to define temporal queries, such as at what point in time something
has become true, or for how long has it been so (in some cases it might also be necessary to
define complex temporal sequences), a new type of variable was defined (see the definition in
line 10 in Lis. 3.3 and the application in the listing below). Temporal variables are defined
with curly braces. Such a variable allows keeping previous results of a script over a certain
period of time and can be applied as a base for further queries (see the example in Lis. 5.16
on page 130). The curly braces are thereby applied in multiple ways, within a variable
assignment they define a maximum time horizon, and empty braces define an “infinite”
time horizon. Temporal variables are especially useful when dealing with situations and
callbacks. As later presented Sec. 5.4 the applied callback mechanism allows it to register a
script, which is then continuously evaluated in the background. Because of the persistence,
the content of such a variable is continuously altered every time the script gets evaluated.
The content of these variables can then be accessed as follows. Calling a temporal variable
without braces returns only the last stored value. It thus appears as if it would be an
ordinary variable. Calling it with empty braces returns all stored values. A negative value
defines a time horizon dating back from the current time, the selection in line 2 is thus
applied onto all stored values within the last 2 time units. And finally, it is also possible to
call such variables with positive values within the braces, which are used to return a value
for a certain point in time.

Listing 3.9: Application of temporal variables
1 var_temp1 {2.5} = SELECT ... ; # with time a horizon of 2.5 time units
2 var_temp2 {} = SELECT ... FROM var_temp1 { -2} ... ;
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But what is the result of a script that contains multiple queries and variables, and in which
there is no keyword such as return (used in other languages)? In fact, the decision about
this was quite simple. The result of a script is always represented by its last statement.
Thus, if there are multiple SELECT statements, then the last one defines the return value
(identified by the keyword AS). But the last statement can also be single placed variable,
the result of a function call, even a variable assignment or a newly defined list, which allows
to place relevant values freely and, thus, to generate complex return formats.

3.3.1.4. Additional Extensions

But additional elements, not commonly known in SQL, have also been introduced to define
more elaborated queries (see Lis. 3.10). Examples are the IF expression that can be used
even within a WHERE expression to change its result. print can be applied for extended
logging, see therefore also the example in Lis. 3.12 on page 83. There are further built-
in functions such as eval that enables reflective programming by dynamic evaluation, to
enables the redefinition of identifiers, mem and del, which can be used to deal with memory
issues, and help, which is intended to provide a basic help-desk on functions. (For their
application see also Sec. 4.3.3 on page 110).

Listing 3.10: SelectScript extensions to support hierarchical queries
66 # additional helpers that can be placed everywhere , see the example in Lis. 5.8 #
67 "IF" "(" <STMT > # evaluates to true or false #
68 ( "," <STMT > # then ... #
69 ( "," <STMT > )? )? ")" # else ... #
70 #
71 # print out arbitrary log information with this inline function , the last #
72 # statement defines also the return value ... #
73 " print " "(" <STMT > ("," <STMT >)* ")" #
74 #
75 # return memory relevant information about variables and procedures ... #
76 "mem" "(" <ID >? ")" #
77 #
78 # deletes a variable and return its value #
79 "del" "(" <ID > ("," <ID >)* ")" #
80 #
81 # evaluate a piece of code #
82 "eval" "(" " SelectScript - commands as strings " ")" #
83 #
84 # change the identifier /function -name within a SELECT expression , it is used to #
85 # change the keys if a dictionary is requested , such as: #
86 "to" "(" <String >, <STMT > ")" # SELECT to ("a",f(a.this)), to ("b",f(b.this)) #
87 #
88 # return all function names (if empty ) or information about a specific one #
89 "help" "(" <STRING >? ")" #

3.3.1.5. Sequences and Procedures

The definition of a statement in Lis. 3.3 on line 6 allows the definition of sequences, which
can be interpreted as some kind of sub-program execution. Thereby, the last statement in
the sequence also defines its return value. Only one global lexical scope is assumed, and
thus, variables defined within a sequence or within the main script persist unless they are
deleted explicitly.

Procedures are thought to be used as substitutions for more complex statements. They
can be stored in variables and be accessed like a variable, whereby their definitions are
evaluated at first to generate the result value. To provide a basic methodology to define
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“function-like” expressions, procedures can also be defined with input parameters. Input
values are thereby not associated with variables, but instead with this pointers.

Listing 3.11: Sequences and their application with procedures
1 result = (a=1; b=2; a+b;);
2 print ( result ); # outputs 3
3
4 p = PROC: a+b; # procedure is stored within a variable
5 a = 98;
6 print ( p ); # evaluating p first , before outputting 100
7
8 p = PROC (a, b):(a=2*a.this;
9 a+b.this ;); # also stored as a variable

10 print ( p(2 ,2) ); # output : 6
11 print ( a, b ); # output : 4 2

3.3.2. Reasoning
3.3.2.1. Graph and Table Equivalence

So far reasoning has been left out from previous considerations, although it has been men-
tioned to be one of the key features. SelectScript has been designed to be a declarative
extension to other programming languages, but reasoning is not that well supported. Al-
though queries such as the following can be easily resolved with the help of SQL and a large
“table” that contains all possible combinations:

• What area is monitored at most by external sensor systems?

• Which areas are less frequently traversed by mobile robotic platforms?

• What combination of sensors offers the best fusion quality or validity?

• Which group of n robots is closest to a certain point?

• . . . ?

As it was already described in [11] and as depicted in Fig. 3.8, most of the common
search problems can be represented as either a graph/tree or as a table. Both contain all
possible combinations . . . search paths. It is obvious that a graph-like structure consumes
less memory than a table, whereby a graph needs to be traversed every time in order to find
an appropriate solution. A table that contains all “paths” can be explored more efficiently,
by applying different caching or indexing strategies and filters in the background, e. g. by
directly requesting the row with the last entry 222.

The table that is depicted in Fig. 3.8b was generated with the help of the SelectScript
shown in Lis. 3.12. The script actually generates only one result, which is listed in line 21.
The additional IF expression, the variables final tower and count have only been intro-
duced to generate logging output that shows all valid sequences of steps and the resulting
tower configuration (in the (xxx) notation). (Note that invalid combinations result in an
empty list and the functions move and showTowers are externally defined). The variable
moves contains a list of all possible steps, which are aggregated in the FROM expression to a
Cartesian product4 and, thus, a very large table. move is applied recursively and is applied
onto each (also invalid) combination of steps.

4The minimum number steps required to solve the Towers of Hanoi problem can be calculated with the
formula 2disks − 1
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221 112

021 121 212 012

011 101 202 022

111 211 201 001 002 102 122 222

(a) Connected undirected graph

0001 000 100 120 020 120 020 120 020
0002 000 100 120 020 120 020 120 100
0003 000 100 120 020 120 020 220 221
0004 000 100 120 020 120 020 220 020
.... ... ... ... ... ... ... ... ...

0693 000 200 210 110 112 012 212 012
0694 000 200 210 110 112 012 212 112
0695 000 200 210 110 112 012 022 122
0696 000 200 210 110 112 012 022 222
0697 000 200 210 110 112 012 022 012
.... ... ... ... ... ... ... ... ...

1084 000 200 100 200 100 200 100 120
1085 000 200 100 200 100 200 100 000
1086 000 200 100 200 100 200 100 200

(b) Table of possible paths

Figure 3.8.: The Tower of Hanoi problem with three disks. Both representations can be used
to identify a valid path and thus the intermediate steps to get from configuration
000 to 222. The numbers mark the positions of the disks (tower) and their order
is used to mark their size (starting with the smallest).

Listing 3.12: Solving the Towers of Hanoi with SelectScript – vanilla approach
1 moves = [[0 ,1] , [0 ,2] , [1 ,0] , [1 ,2] , [2 ,0] , [2 ,1]];
2 count = 0;
3
4 SELECT [m1.this , m2.this , m3.this , m4.this , m5.this , m6.this , m7.this]
5 FROM m1=moves , m2=moves , m3=moves , m4=moves , m5=moves , m6=moves , m7= moves
6 WHERE [[] ,[] ,[3 ,2 ,1]] == ( final_tower = move(m7.this ,
7 move(m6.this ,
8 move(m5.this ,
9 move(m4.this ,

10 move(m3.this ,
11 move(m2.this ,
12 move(m1.this ,
13 [[3 ,2 ,1] ,[] ,[]])))))))
14 ) AND IF ( final_tower != [];
15 print ( count = count +1,
16 showTowers ([[3 ,2 ,1] ,[] ,[]] ,
17 [m1.this , m2.this , m3.this , m4.this ,
18 m5.this , m6.this , m7.this ])),
19 True )
20 AS list;
21 # result : [[[0 , 2], [0, 1], [2, 1], [0, 2], [1, 0], [1, 2], [0, 2]]]

The table and graph/tree equivalence is actually nothing new as well as trying to identify
a solution to the Towers of Hanoi problem with the method that was presented here. It is
furthermore not very efficient and requires way too many instructions. But as described after
the next section, with some slight adaptations, the database metaphor can be applied more
efficiently onto common search and reasoning problems. It furthermore offers a method to
utilize different search strategies and methods for optimization, without the need to change
the problem description. But before that, we need to clarify why declarative reasoning is
so important.
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3.3.2.2. The Declarative Paradigm & Future Requirements

A short essay on the distinction of programming paradigms can be found in the Appendix
on page 139, in which different paradigms are related to the ways that we use to describe
problems in order to get a solution. And for a couple of problems it is more convenient to
formulate them declaratively. But if we look at the mostly applied languages in ROS [7]
or the used paradigms in the overview that has been presented in Chap. 2, problems are
mostly solved in the imperative way to some extent. Imperative programming has proved
to be perfect for lots of applications, but as also criticized, for example, in (cf. [241]) it
is simply wrong to apply dogmatically the same old “principles” onto new environments
and problems such as in CPS. Due to their complexity and the dynamics, not all possible
combinations of available sensor systems, transformations/services, required world models,
etc. can be foreseen and thus hard wired at design-time. Or as discussed in [11], ROS
offers an enormous amount of functionality, but how is it used? We search for the ideal
combination of nodes and modules and try to connect them in the correct order.

Although the application of reasoning methods to solve different problems (also in robotics
and CPS, by utilizing different DSLs) might not be that new, it is new for the area of
appropriate environment perception. Thus, identifying the appropriate set of sensor systems
and the appropriate sequence of transformations (services) to apply is actually quite similar
to reasoning about action sequences in robotics (cf. Sec. 2.3.4.1.11). Sarcastically speaking,
we are still programming in assembly, but of course on a higher abstraction. Thus, trying
to tackle some problems in CPS in a declarative way is actually more beneficial and there
have already been first attempts to go in this direction.

The Robot Perception Architecture (RPA) developed by Nico Hochgeschwender (cf. [96,
95, 94]) is a declarative approach in which parts of a robots perception architecture, as
depicted in Fig. 3.9, are defined as explicit components that can be reconfigured, modified,
and validated. Based on the task requirements (left hand side results in Fig. 3.9) that are
expressed in the Robot Perception Specification Language (RPSL) the most appropriate
perception graph from a set of predefined perception graphs can be identified and selected
at runtime. This is accomplished with the help of a linear “pattern-based” search that is
applied in background.

In contrast to this, the concept that has been presented so far in this thesis provides, at
first, a way to identify and access available data and systems within a loosely coupled smart
environment (not on a single robot), which secondly transforms it into an intermediate
representation, and thirdly SelectScript offers a method to express the required type of
information, etc. What is left out, however, is a methodology that allows defining reasoning
tasks. But in contrast to most systems (also RPSL), where one strategy is applied only,
the intended method for SelectScript, which is described within the next part, allows to
choose between different strategies and to apply optimizations.

3.3.2.3. Search Programming with Hierarchical Queries

The main idea that was presented in [11] dealt with a language extension that enabled
reasoning on the basis of hierarchical queries. Reasoning as it is commonly supported
by Prolog applies only one algorithm, namely backtracking, which is a simple depth-first
search. In contrast to this and other related approaches, the implemented system allows to
apply different algorithms as well as to tweak them as desired, without (or only marginally)
changing the problem definition at all.
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Figure 3.9.: Robot Perception Architecture as in [95], consists of heterogeneous sensor sys-
tems, processing components, and output information. The task-relevant per-
ception graph is identified at runtime.

A recursive or hierarchical query in SQL denotes a special type of query, which is used
to handle hierarchical structured data. A common example is a company database, which
stores all employees’ data as well as the ID of the direct supervisor. Thus, reconstructing
the leadership structure requires additional recursive capabilities. The Lis. 3.13 depicts
an alternative, not standardized, syntax for recursive queries that was implemented in
SelectScript. It adopts the START WITH . . . CONNECT BY construct that was originally
introduced by Oracle [173]. The SQL standard [69] defines a syntax that involves the
keywords WITH RECURSIVE and requires to associate query expressions with a name, which
allows to reuse them. However, since we are not dealing with tables of finite length, but
rather with functions that might generate endless results, an additional STOP WITH construct
was introduced, used to define abort conditions. The START WITH expression is used, as the
name suggests, to define local variables that might be required as well as initial conditions.
The presented example in Lis. 3.14 furthermore depicts that the program structure is more
compact compared to Lis. 3.12 and allows the generation of results more efficiently (a
benchmark is provided in [11]).

Listing 3.13: SelectScript extensions to support hierarchical queries
45 (" START " "WITH" <PARAMS >)?
46 " CONNECT " "BY" <X_OP > <PARAMS >
47 "STOP" "WITH" <STMT >
48 # -------------------------------------------------------------------------------#
49 # additional parameters to optimize or change the applied search strategy #
50 <X_OP > ::= ("NO" " CYCLE ")? # prevents cycles #
51 " UNIQUE "? # allows only unique select results #
52 (" MEMORIZE " <STMT >)? # generates a graph with a certain length #
53 ("COST" <STMT >)? # cost function ( heuristic search ) #

All of the work is actually done with the help of the central CONNECT BY expressions. It is
used to denote which values within the search are affected and how they are changed from
iteration to iteration. The listed language elements, namely SELECT, FROM, WHERE, START
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WITH, CONNECT BY, and STOP WITH, are sufficient to describe the entire search problem
but, as previously mentioned, also the possibility to utilize different search strategies was
included.

The selection of search and optimization strategies can be manually performed by using
the accompanying keywords in the CONNECT BY expression. The method that is applied
by default is a depth-first search algorithm, which actually generates the same solutions,
as they were presented in Fig. 3.8b. This strategy generates also cycles, which might be
desired in some situations, but preventing them and therefore reducing the search space,
the NO CYCLE keyword can also be added to the query. The application of the keyword
UNIQUE further reduces the space of possible paths, by allowing a node within the search to
be traversed only once. The application of MEMORIZE automatically generates a connected
graph at first, which for the problem definition in Lis. 3.14 is actually equal to the one
in Fig. 3.8. This graph can be subsequently traversed with different search strategies, to
which a bidirectional search algorithm is applied by default (cf. Sec. 4.3.4). This reduces
the search space by half trading memory consumption and prevents multiple visits of a
node, but it requires an additional stop parameter that determines the maximal length
of the resulting paths. This maximal path length is defined by the associated value. For
optimization purposes and to enable heuristic searches, a cost expression was introduced.

Listing 3.14: Solving the Towers of Hanoi with SelectScript — hierarchical query
1 moves = [[0 ,1] , [0 ,2] , [1 ,0] , [1 ,2] , [2 ,0] , [2 ,1]];
2
3 SELECT to(this , "move "+str( count )), showTowers (move(this , tower ))
4 FROM moves
5 WHERE [[] ,[] ,[5 ,4 ,3 ,2 ,1]] == move(this , tower )
6 START WITH tower = [[5 ,4 ,3 ,2 ,1] ,[] ,[]] , count =1
7 CONNECT BY MEMORIZE 31
8 tower = move(this , tower ), count = count +1
9 STOP WITH [] == tower ;

10 # result : [[[{ ’ move 1’: [0, 2], ’showTowers ’: ’20000 ’}] ,
11 # [{’ move 2’: [0, 1], ’showTowers ’: ’21000 ’}] ,
12 # [{’ move 3’: [2, 1], ’showTowers ’: ’11000 ’}] ,
13 # ....
39 # [{’ move 30 ’: [1, 2], ’showTowers ’: ’02222 ’}] ,
40 # [{’ move 31 ’: [0, 2], ’showTowers ’: ’22222 ’}]]]

In the screencast listed below, it is further demonstrated that the same techniques can
also be applied to reason about trajectories for a mobile robotic platform within a 3D
environment: https://www.youtube.com/watch?v=EFRV0JSdK3M

3.3.3. Discussion

The presented concept for the query language SelectScript adopts elements of SQL and
adds new features to it. These features cope with the ability of requesting different types
of representation, dealing with temporal aspects, the interaction with and the extendibility
by common programming languages (services) and their functionality. As it was described
in the last part, it also offers a method to define reasoning problems. This feature in
combination with the application of procedures, which are used for code substitution, even
allows it to reason about the appropriate sequence of applying filter and transformations
functions. Hence, the language itself provides a basic syntax for machines and humans
to express their desires in CPS. Since the language itself is intended to be an embedded
language, it can also be applied to extend their host programming language with declarative
aspects.
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3.4. Summary & Discussion

The virtual overlay network described in the first part of the concept provides abstract
repository up to layer 4, according to the conceptual organization that was introduced in
Sec. 2. It provides links to source layer descriptions (metadata), the data and information
layer (raw & virtual data) as well as to different types of knowledge representations for-
mats. The complex container thereby defines a hierarchical organization that structures
these different elements according to space and time (and producer) in a distributed scene-
graph and allows the attachment of additional context information. This structure can be
easily queried and traversed, as it is described within the associated implementation section
(Sec. 4.1). It can be composed of distributed databases, whereby not every entity is forced
to upload all of its data to a cloud. But instead, every entity hosts its own local database
for its own purpose and updates its own local data accordingly. The applied cloud-based
infrastructure is used to handle the access to all local repositories.

It thus defines the basis for the second part, in which elements from the distributed scene-
graph are translated into a 3D rigid-body simulation. This rigid-body simulation provides
a more precise replica of the environment for a certain area. It can be updated in real-
time with real-time data in order to mimic the behavior of real entities within the virtual
world. All related information can be associated to the virtual elements as it is further
described within the implementational description in Sec. 4.2. The local environmental
model is intended to be used for further analyses and abstractions. It can be either created
on purpose for single analysis or used as an application’s central world model for continuous
analyses.

The main problem here lies in the diversity of facts to extract and abstractions to gen-
erate from the local model. To deal with these issues a new type of query language was
introduced, which allows defining in a declarative manner what kind of information or what
kind of environmental abstraction (map) is required. The syntax of the language was in-
spired by SQL, but with adaptations that allow the query of simulation environments online
and request for different formats (accomplished by the keyword AS). It also includes basic
scripting capabilities, allows to deal with temporal issues and to define reasoning problems.
As it is further described in Sec. 4.3, the implementation of the language and its interpreter
are easy to extend, further allowing to adapt it onto new simulation environments and to
define new functionalities and new representation formats. As later presented in Chap. 5,
the language itself can also be used to cover all parts that deal with the generation of the
local environment model and, thus, also with the access to the virtual overlay database.
Another benefit of the developed declarative language concept is that it can also be ap-
plied as some kind of “lingua franca” between systems with different world models since
the language is interpreted and can be applied onto different simulation environments. The
only thing required is a common standard for the naming of request formats, functions and
filters.

The described concept leaves it free where a query is answered and thus also where the
model is created. It can happen locally, but also externally on purpose, in such a way that
the response to a query can be generated similar to the delivery of a service. It thus enables
simple and “low performance” smart systems to request for a map, some information, etc.,
but without the need to spend computational power (locally). The only requirement is to
locally adapt the string queries.

Another benefit of the described three way concept lies in the reduction of efforts for
developing transformation functions. As it is sketched out in Fig. 3.10, only “adaptors” to
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the local environment model as well as transformations from the local model to the desired
information/abstraction have to be defined. It thus requires only to define n + m adaptors
instead of maximum n!∗m, to be able to react onto all combinations.

CassandraROS
& GLODEL

Global

Model
Local Model

plugOpenRAVE

OpenRAVE

SelectScript
Event

OccGridMap
SensorMap

Prolog
SensorSet
EntityList
TopicList
QuadTree

...

Requests Response

Figure 3.10.: Composed view on the entire system implementation

To conclude with the initially defined frog problem:

1. Lack of Intelligence: None of the presented steps requires any form of intelligence; ev-
erything can be accomplished with simple recursive algorithms/structures and if more
elaborate methods for problem solving are needed, the developed language concepts
additionally allow to define reasoning problems and to apply different search and
optimization strategies.

2. Access to Information . . . : The diversity of data, information, systems, knowledge rep-
resentations, etc. becomes manageable and accessible due to the application of a local
environment model, into which all relevant elements from the underlying virtual over-
lay database have to be translated.

3. . . . and Memory Externalization: The virtual overlay database provides links to all mea-
surement data, data-sheets, etc., within a smart environment, which enables the access
to any kind of data on purpose.

4. Reconfiguration and Representation: Models can be constructed and reconstructed dy-
namically and by applying callback mechanisms — it is also possible to react on
occurred changes. Here, situations can be defined with the help of the developed
language concepts.
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“If you can’t beat them, join them.”

—unknown

The following chapter is structured according to the previous one. Every section is used
to describe the developed application or library in detail. Thereby, within the first two
sections mainly existing systems were applied and adapted, in contrast to the last one
where a declarative programming language was adopted and introduced to a new field. All
of the developed systems are available under BSD-license and can be downloaded from the
following repository (among other things): https://gitlab.com/groups/OvGU-ESS

Because most systems were developed either with the help of ROS or for ROS, there are
also tutorials available at the ROS website, and I will refer to them if necessary.

4.1. Organization
The following section is divided into three parts. The second one herein deals with the
application of Cassandra as a common data repository for any kind of ROS messages.
Within the third part, the previously developed cassandra ros library was applied and
extended to form a virtual overlay database that links to any kind of data within a smart
or intelligent environment. But to start with, a short introduction to Cassandra is given in
order to clarify why especially this database system was chosen for the next step.

4.1.1. Why Cassandra?

As it was introduced in [12], Cassandra was initially developed as a so-called NoSQL
database for Facebook [132] and received only little attention in the robotics community.
It provides a distributed key-value store. Thereby, keys map to rows, which can contain
a multitude of columns (values), while rows by themselves are stored in column-families
(similar to tables). Further columns can be added dynamically or removed at any time, so
that different rows can store different types and different amounts of values (although they
are, in principle, stored within one table). That is to say, the structure of the database can
change over time and adapt to varying requirements, unlike a classical relational database
system.

As described in Sec. 3.1.2, an entity can host and update its own Cassandra instance
independently, but instances can also be grouped into larger clusters and keyspaces. Thus,
by querying data on local instance, it also queries data from other connected entities that
are within the same cluster. Different strategies for replication between instances provide
a high availability of data with no single point of failure. An entity/robot/application can
thus leave the cluster while its data remains on other nodes (if required). Every value is
marked with a time-stamp, which allows defining Time To Live (TTL), so that data can
be forgotten after a certain period of time. This is something that is also implemented
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for the Distributed Robotic Scene-Graph (cf. Sec. 2.3.4.2.4). The usage of time-stamps
enables eventual consistency (see also [215]), which is a weaker consistency level than strict
or immediate consistency (commonly used in relational databases), while the first is actu-
ally more appropriate for distributed systems. Eventual consistency means that, due to
the distribution of data and the availability of nodes, it is guaranteed to receive a valid
value which, though, may not be the most recent one. Tunable consistency levels enable
application dependent refinements.

Cassandra was also identified in [212] to be an ideal storage for sensor data. This was also
underpinned by the results from the benchmark in [12] in terms of storage consumption,
write and read performance, as well as query capabilities for arbitrary messages. For more
information on applicable database systems in this area, see also the overview on the related
work that was presented in [12].

4.1.2. A Holistic Data Store
This part describes the architecture, implementation details, and the general concepts be-
hind the application of Cassandra as a holistic data store and, furthermore, how it is used
to define queries on stored ROS messages in a way that it is not possible with the help of
any other system.

The architecture was segregated into two basic parts; one is responsible for abstracting the
database management, while the other enables data access in a ROS typical manner. That
is, in contrast to handling data within a database, an application (or application developer)
only has to cope with messages and topics. Because it was not possible to foresee all the
desired purposes, the system and the interface were designed to be not only as generic as
possible but also easily extendable. A simplified draft of the system architecture and its
classes are given in Fig. 4.1.

CassandraTopic−

-msgClass

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic...

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic−binary

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic−yaml

-encode(msg)
-decode(data)
-getColValidationClasses()

CassandraTopic−ros

...: ...

-encode(msg)
-decode(data)
-getColValidationClasses()
-parseMsg()
-ros2cassandra()
-cassandra2ros()
...

CassandraTopic

...: ...

+getMeta()
+setMeta(...)
+addData(msg, key, ttl)
+getData(key, to key, queue)
+removeData(key, to key, queue)
-createKey()
+ ...

Cassandra

sysManager : pycassa.SystemManager
pool : pycassa.ConnectionPool
...: ...

+createKeyspace(...)
+dropKeyspace(...)
+existKeyspace(...)
+connect2Keyspace(...)
+createColumnFamily(...)
+dropColumnFamily(...)
+existColumnFamily(...)
+getColumnFamily(...)
+setColumnFamilyComment(str, ...)
+ ...

RosCassandra

...: ...

+addTopic(topic, format, msg class, ...)
+getTopic(topic)
+existTopic(topic)
+removeTopic(topic)
+getTopicMeta(topic)
-topic2Hash(topic)
+executeCQL(query)
+ ...

Figure 4.1.: Simplified UML class diagram of the cassandra-ros implementation, it is divided
into a topic handling part (left) and database management part (right) classes.

The library is called cassandra-ros, it is implemented in Python and with the help of
pycassa (a Cassandra client library). The project is freely available under the BSD-license
and through the following link: http://ros.org/wiki/cassandra_ros
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(Take also a look at the appertaining playlist of YouTube videos that demonstrate the
capabilities of this library:

https://www.youtube.com/playlist?list=PLgJeoIw_8oS55z_xczH_AbJCb48aZQIEU

and presentation slides at:

http://eos.cs.ovgu.de/wp-content/uploads/2015/06/sozi-presentation.svg)

4.1.2.1. System Architecture

RosCassandra can be seen as the topic management system, abstracting and hiding all
Cassandra-related stuff, with an interface designed to be as close as possible to the common
ROS ideology. Thus, topic-containers are created and accessed, messages are stored and
queried in a way similar to the ROS publish/subscribe API, without bothering about mes-
sage conversation or database-related issues. An example is given in the following listing.

Listing 4.1: Minimal source code example of the cassandra ros API
1 # init Cassandra connection , such an initialization allows to maintain
2 # multiple connection
3 rosCas = RosCassandra (host , port)
4 rosCas . connectToKeyspace ( keyspace )
5 # create new topic - container for tf of type geometry_msgs / TransformStamped
6 rosCas . addTopic ( topic =’tf ’, format =’ros ’, msg_package =’geometry_msgs ’,
7 msg_class =’TransformStamped ’, key_format = ...)
8 casTopic = rosCas . getTopic (’tf ’)
9 # adding messages the topic - container

10 casTopic . addData (msg)
11 ...
12 # retrieving directly messages from the topic -container , without the need for
13 # conversation
14 msg = casTopic . getData (key)

Cassandra column-families are applied as topic-containers, storing one ROS message per
row. RosCassandra therefore applies instances of class CassandraTopic, responsible for
converting nested ROS messages into a “scalar” Cassandra format and vice versa; Messages
can be stored in various formats, with different advantages and disadvantages regarding
speed, size, or methods for requesting and filtering messages (described in more detail
within the next sub-section).

Due to the fact that column-family names are limited to a maximum size of only 48 B,
whereas ROS topic names easily exceed this limit, hashes of topic names are applied as
column-family names. The real topic name as well as other metadata is stored during
creation time of a CassandraTopic within the comment field of every column-family. This
metadata is also used to describe the internal structure of messages and column-families;
altering of values is therefore only allowed to a limited extent. Other metadata is, for
example:

• package and msg class, which define the format of a message,

• key format specifies the primary key (e. g., a time-stamp, a hash value, etc.), but in
some cases it is more appropriate to use parts of the message itself as primary keys
(e. g., sequence numbers), which can be defined with the help of key msg part,

• cassandra format defines the conversion format or, in other words, how messages
are stored within Cassandra (binary, yaml, encoded ROS, etc.)

• other values include the creation time of topic-containers (date) or additional comments
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Storing metadata within the comment field has several advantages compared to the usage
of a separate column-family. It does not affect any column-family structure, it is easy to
extend and interpret and it does not require any further replication or synchronization.
Furthermore, this kind of information storage is used for topic identification, which allows
topics to exist in parallel with other column-families within the same keyspace. Thus,
querying for available topics or other metadata is done via retrieving and parsing all column
family comment fields.

4.1.2.2. Translation of Messages

As mentioned before, this system allows the storage of messages in various formats, such
as string, json, ros, or binary. Further formats can be added by implementing new
classes that inherit methods from class CassandraTopic and overwrite the three meth-
ods, encode(msg), decode(data), and getColValidationClasses(). The ros format is
thereby the actual key feature that automatically translates a ROS message into a congruent
Cassandra format, as it is depicted in listings below. The method getColValidationClass-
es() is thereby only called during the creation of new CassandraTopic (and thus, during
the creation of a new column-family) and is used to define the format of every column. In
some cases this is done statically, if the whole message is stored at once by using just one
column, like in binary- (BYTES TYPE) or in string-format (UTF8 TYPE). These formats are
more appropriate for fast storing of raw data, such as video streams or laser scans, but
it also diminishes the possibility for filtering and extended querying. In contrast to this,
“virtual” data can be stored in the ros format. Therefore, the definition formats of ROS
messages are parsed and translated from a nested message structure (see Lis. 4.2) into a
list of columns (see Lis. 4.3). Furthermore, primitive ROS types (cf. [258]) are translated
into Cassandra data types (cf. [237]) to define column validation classes. Lis. 4.3 presents
the resulting translation for the message definition of geometry msgs/TransformStamped,
compared with the input in Lis. 4.2. The fact, that the original tree structure is used to
define the column names and that column validation classes are generated automatically,
allows to query or to filter messages with a similar syntax as it is used to access message
objects from a programming language like C++ or Python. Column validation classes are
a prerequisite in Cassandra for building secondary indexes on columns. It is therefore the
basis for querying the data store afterwards with the CQL (as described shortly within
the next sub-section). Class CassandraTopic ros thus enables a full exploitation of Cas-
sandra’s querying methods on secondary indexes. Automatic packing and unpacking of
messages is afterwards implemented within the methods encode and decode.

Cassandra supports a maximum column key (and row key) size of 64 kB and column
values up to 2 GB (cf. [28]). These values are sufficient to store messages without applying
extended conversion methods as they were used to rename topics.

As depicted in Fig. 4.1, the parents of CassandraTopic define the storage format, in
other words, how messages are translated into a format that can be stored in Cassandra.
Inheriting from multiple classes may create problems, such as the “diamond problem”1.
This problem could be solved by deleting not required parents during the initialization
phase. Python as a metaprogramming language allows to change and reorder used base
classes. Thus, from a formal point of view, class Cassandra-Topic inherits features from
only one base class (depending on the conversion format).

1Ambiguity problem, raised if a specific feature is implemented in more than one superclass (cf. [149]).
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Listing 4.2: Example of a ROS nested mes-
sage definition

1 std_msgs / Header header
2 uint32 seq
3 time stamp
4 string frame_id
5 string child_frame_id
6 geometry_msgs / Transform transform
7 geometry_msgs / Vector3 translation
8 float64 x
9 float64 y

10 float64 z
11 ...

Listing 4.3: ROS encoded version into
Cassandra columns

header .seq: INT_TYPE
header . stamp : DATE_TYPE
header . frame_id : UTF8_TYPE
child_frame_id : UTF8_TYPE
transform . translation .x: DOUBLE_TYPE
transform . translation .y: DOUBLE_TYPE
transform . translation .z: DOUBLE_TYPE
transform . rotation .x: DOUBLE_TYPE
transform . rotation .y: DOUBLE_TYPE
transform . rotation .z: DOUBLE_TYPE
transform . rotation .w: DOUBLE_TYPE

The translation of arrays in the ros format is not fully resolved yet, if an array is not
of primitive type. One solution to this problem might be the decomposition of complex
array elements into super columns, but this would only work for one iteration only (further
nesting is not allowed). Another problem in using super columns is that a super column
cannot be indexed (cf. [28]) and thus, the intended querying is not supported. Furthermore,
super columns are not officially deprecated, nor are they recommended for usage. Another
solution might be the usage of composite types, as described in [28], but this would require
totally different conversion methods. Arrays within arrays would cause the generation of
huge composite columns, hard to maintain and hard to query, and with increased storage
consumption. Thus, the binary format is more appropriate in such cases.

In order to cope with complex arrays and to preserve the column structure of Cassan-
draTopic ros, the array information is included into column names, by using square brack-
ets like “obj[0].val.a”. In fact, not every value of a message might be equally important
and thus, there is possibly no need to decompose every message in such detail. I therefore
started to implement another encoding method, which requires a little user interaction.
The encoding class simply inherits from all other encoding classes and by defining masks
for every message, it should also be possible to circumvent the “diamond problem” and use
different encoding formats for different parts of a message.

4.1.2.3. Accessing and Querying

As presented in Lis. 4.1, there are two “simple” methods for directly storing and access-
ing messages, these are addData (line 10) and getData (line 14) that are defined in class
CassandraTopic (see also Fig. 4.1). Method addData allows addition of a primary key
and a TTL to every message. If these optional parameters are left out, then the default
values are used, which were defined at the creation of the topic-container, see line 6 in
Lis. 4.1. Requesting single messages or a stream of messages requires one to know the pri-
mary keys, or a start and an end key. As already mentioned, in most cases these methods
are sufficient especially when dealing with large amounts of raw data, which is stored in a
binary format. But when dealing with virtual data, with queries that cover multiple topics
(column-families), or with applying filters, a method more dedicated than just key-value
requests is required.

As already introduced, it is also possible to apply Cassandra’s query language CQL to
enable complex queries over multiple of topics that are stored within the ros-format. But
while column names are equal to ROS message attribute names, column-family names and
topic names differ, due to the usage of hash values (as described in Sec. 4.1.2.1). As listed
below, to deal with this issue class RosCassandra offers a method exequteCQL that gets
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a string (full CQL statement) as input, translates topic names into their column-family
names, and executes the query, by using Cassandra’s Python driver for CQL. The example
below is taken from the evaluation scenario that was presented in [12]. It is part of a longer
demonstration in which data gathered by mobile robot was analyzed afterwards not only
to identify the area where a box with markers was placed, but also to reconstruct a map
for this specific area based on additional sensor measurements taken in the vicinity. t1 and
t2 denote the time of the first and last appearance of the box within a previously analyzed
camera stream, which are used below to identify the location of the robot (nodeID) during
that time. The previously mentioned YouTube playlist in Sec. 4.1.2 is actually a replay of
all intermediate steps of the evaluation presented in [12].

Listing 4.4: cassandra ros CQL example
1 stmt = " SELECT ... translation .x FROM tf " + \
2 " WHERE ... child_frame_id =" + nodeID + \
3 " and KEY > " + str(t1 -5) + " and KEY < " + str(t2 +5) ...
4
5 x_list = rosCas . exequteCQL (stmt)
6 x_min = min( x_list )[0]; x_max = max( x_list )[0]

4.1.3. A Virtual Overlay Database

This part is used to describe glodel the implementation of the concept that was developed
in Sec. 3.1.2 and published in [10]. It defines the general infrastructure to store, access, and
organize data in a distributed overlay database. To get a first impression on the capabilities
of the system, take a look at the accompanying YouTube screencasts that were used to
demonstrate the capabilities of the software and the concept behind:

https://www.youtube.com/playlist?list=PLgJeoIw_8oS5IF9MixOYv1zEzKLE4cCRN

4.1.3.1. Implementation of a GLObal and distributed world moDEL

As depicted in Fig. 4.2, the project mirrors the described database structure in Sec. 3.1.2.
It is furthermore based on the previously presented cassandra-ros project and extends class
Cassadra by implementing a specific database interface. This specific (and general) Base
class is used to derive the specialized classes BaseRobot, BaseSensor, BaseObject and
BaseLocation, which are used to access the associated columns. BaseComplex is used in
two ways, to access column Complex, but it is also as a central interface that instantiates
the other helper classes.

As described in the concept, all data is stored linearly in columns families. But the benefit
of applying Cassandra as the primary data store is that the internal structure of columns
does not have to be predefined. As the excerpt of column-family objects in Lis. 4.5 shows,
each row can have a different set of columns. They can be static, such as all rows contain
a comment column (describing an object in more detail in a UTF-8 encoded string), but
they can also be dynamic, such as the columns “wrl” or “pcd” in row isx34s, which are
furthermore also stored in different formats (i. e., binary and string). These columns, for
example, contain a representation of a mug in different formats and qualities, so that the
“application” can chose the most appropriate format and also the required quality. The
quality is associated with the number within the column name, which is at the moment a
manually defined value.
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Cassandra

sysManager : pycassa.SystemManager
pool : pycassa.ConnectionPool
...

+createKeyspace(...)
+connect2Keyspace(...)
+ ...

Base

+addModel(...)
+getModel(...)
+removeModel(...)
+catalog(...)
+getAllColumnNames(...)
...

BaseRobot

ident = "ROBOT"

+addRobot(...)
+importRobotURDF(...)
+importRobotZAE(...)
+importRobotDAE(...)
+...

BaseSensor

ident = "SENSOR"

+addSensor(...)
+getSensor(...)
+importSensorURDF(...)
+importSensorMosaic(...)
+...

BaseObject

ident = "OBJECT"

+addObject(...)
+getObject(...)
+removeObject(...)
+importObject(...)
+...

BaseLocation

ident = "LOCATION"

+addLocation(...)
+getLocation(...)
+removeLocation(...)
+importLocation(...)
+...

BaseComplex

ident = "COMPLEX"
ROBOT, SENSOR, OBJECT, LOCATION

+getComplex(...)
+addComplex(...)
+typeOf(...)
+baseOf(...)
+...

plugOpenrave

base : BaseComplex
env : openrave.Environment

+createEnvironment(...)
+transformOpenrave(...)
+toOpenrave(...)
+...

Base interface implementation
for accessing Cassandra column-
families.

Base interface implementation
for accessing Cassandra column-
families.

An implementaion of a plugIn class,
which rebuilds an local environment
model for a certain simulation envi-
ronment, based on an instance of
class BaseComplex, which allows to
access the virtual overlay database.

An implementaion of a plugIn class,
which rebuilds an local environment
model for a certain simulation envi-
ronment, based on an instance of
class BaseComplex, which allows to
access the virtual overlay database.

Figure 4.2.: Simplified UML class diagram of the implementation of glodel

Listing 4.5: Extract of column-family objects, row keys (bold), columns (blue), and values
in different formats

1 objects : {
2 ...

116 1 sx34s : {
117 comment : "mug ... ",
118 stl 85 : 00000000 42 69 6e 61 72 79 20 53 54 4c 20 6f 75 74 70 75
119 00000010 74 20 66 72 6f 6d 20 42 6c 65 6e 64 65 72 3a 20
120 00000020 43 3a 5c 55 73 65 72 73 5c 61 64 69 65 74 72 69
121 00000030 63 68 5c 44 6f 63 75 6d 65 6e 74 73 5c 42 6c 65
122 ...
362 wrl 90 : #VRML V2 .0 utf8
363 Transform {
364 translation -1067.343 -1881.088 14.086
365 scale 0.572 0.572 0.572
366 children [DEF GRP_Group1 Group {
367 children [
368 Shape {
369 ...
483 6 yfr48 : {
484 comment : " standard phd student table ... ",
485 pcd 85 : 00000000 23 20 2e 50 43 44 20 76 30 2e 37 20 2d 20 50 6f
486 00000010 69 6e 74 20 43 6c 6f 75 64 20 44 61 74 61 20 66
487 00000020 69 6c 65 20 66 6f 72 6d 61 74 0a 56 45 52 53 49
488 00000030 4f 4e 20 30 2e 37 0a 46 49 45 4c 44 53 20 78 20
489 ...

Locations are stored in a similar way and in different formats, which is equal for robot
descriptions (stored in URDF, COLLADA, or in an OpenRAVE description format). Sen-
sors are currently described only in an OpenRAVE format, but others are also possible.
Keep in mind that these are only containers that store basic description, data-sheets, and
abstract data for a certain type or class of robot or sensor, they are not used to describe
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a certain entity. Context data is associated with the help of the column-family “complex”
(see therefore also Lis. 4.6). As it was described in Sec. 3.1.2, this container is used to
put all data into a general context. A complex entry thus always represents a certain real
object, a single robot, sensor, or a desk, which is present within the environment. As
showed in Lis. 4.6, every complex entry has a key and a type, which are used as references
to the general description of a robot, a sensor, objects and locations as well as to further
complex entries (simple placeholders). As further shown in Lis. 4.6, every complex entity
has a certain position, orientation, which might be affected by uncertainties. These spatial
relations are defined relative to a base, such as the robot’s position is relative to a room, the
room’s position and orientation are relative to a floor, while the floor’s position is relative
to a building, etc. Fig. 4.3 depicts this relative positioning, starting with some sensors that
are attached to a Katana robot and, thus, are relative to the robot’s position. The “base”
entry is thus the central element for organization, allowing the storage of complex entities
hierarchically.

Listing 4.6: Showing the complex entry katana 62x of type robot, whose description is
stored in row katana 450 in column-family robots, whereby position and ori-
entation are defined relative to the complex base entry room 309

1 complex : {
2 ...

256 katana_62x : {
257 key : " katana_450 ",
258 type : " robot ",
259 base : "309",
260 position : [2.329 , 3.232 , 1.15] ,
261 quaternion : [0.926 , 0.0 , 0.0 , 32.2] ,
262 covariance : [0.04234 , 0.25597 , 0.0112287 , 0.1433849 , 0... ],
263 ros-master : "http :// moritz :11311 ",
264 topics : ... },
518 309 : {
519 key : "309",
520 type : " location ",
521 base : "4 _floor ",
522 ... },

Lis. 4.7 within the next section demonstrates briefly how the central class BaseComplex
can be used to query the environment and how the results can be translated into an
OpenRAVE rigid-body simulation (see therefore also Fig. 4.3).

The entire database and “complex” entries thus only represent a snapshot of the global
environmental configuration, a graph similar to the idea of the distributed robotic scene-
graph. Hence, an application is responsible for updating its personal data, such as position,
orientation, etc. as well as its performed changes on the environment, such as newly placed
objects (cargo, mug, etc.) or newly discovered objects (within a video frame or a Kinect
scan) within this database structure. Everything else, like maintaining consistency, redun-
dancy issues, distributing queries, aggregating and transmitting results, is left out to the
cloud database system Cassandra.

But it does not make sense and would be far too slow, if column-family complex would be
queried continuously to identify rapid changes within the environment. A robot’s position,
its configuration, or a sensor is thus also associated with real-time data, for example, a ROS-
master, different topics, and services. Of course it can also be any other communication
paradigm. As long as a link is provided, it should be possible to establish a connection
and interpret the required data within a local environment model. The connection to raw
and virtual data stored within Cassandra topic-containers is established in the same way,
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associated with a complex entity, and thus with a certain sensor, robot or, if required, also
a location. How local environment models are created on the basis of this overlay structure
and connected to real-time data is described within the next section.

4.2. Idealization

The previously described glodel systems already possess an interface for reconstructing
models for OpenRAVE. As depicted in Fig. 4.2 an additional class named plugOpenrave
is responsible for gathering all the required data from the cloud and for transforming it
into an OpenRAVE simulation. Other “plugs” for other simulation environments can be
developed similarly.

See also the screencast that was uploaded to YouTube to get a first impression, it demon-
strates how the virtual overlay structure is accessed and queried in order to generate local
world models for OpenRAVE: https://www.youtube.com/watch?v=kvoC5yxdzsw

4.2.1. Why OpenRAVE?

The utilization of this simulator, which stands for OPEN Robotics Automation Virtual
Environment, for local world modeling was initially described in [4] for a couple of differ-
ent application scenarios. As already mentioned, OpenRAVE is an OpenSource rigid-body
simulation environment (among others) for robotic applications, which is well-known and
possesses a large scientific community. Its main focus lies on simulation and analysis of
kinematic and geometric information for testing, developing and deploying motion plan-
ning algorithms [62]. It was developed in conjunction the IKFast library [253] that analyt-
ically solves robot inverse kinematics equations, based on the robotic model, and generates
optimized C++ code for various types of kinematics. But in addition to the kinematic sim-
ulation capabilities, it also provides a realistic simulation environment for various different
types of sensor systems and also allows the utilization of different physics engines in the
background. The modular architecture allows to integrate and develop new functionality
(e. g., sensors, planners, controllers, etc.) that can be easily attached to the simulation
environment. Different kinds of plugins were thus developed as extension to OpenRAVE
for sensing, transforming, establishing a connection to ROS, and querying. The most im-
portant ones are briefly described within the following sub-sections. All simulated objects,
robots, and sensors can be described with the help of an XML notation that can be further
extended (see Sec. 4.3.3). Last but not least, it has native support for the Python program-
ming language and C++. And the supported client-server protocol allows it to easily build
interfaces to further programming languages (e. g., Matlab/Octave).

4.2.2. plugOpenrave

As depicted in Fig. 4.3 and previously described in Sec. 3.2.1, local environment models
are represented as physics rigid-body simulation. All of the sub-figures in Fig. 4.3 show
screenshots of OpenRAVE simulations that were generated by querying the virtual overlay
structure at different levels. The responsible functionality as well as the connecting interface
is implemented in class plugOpenrave, which is depicted in the UML diagram in Fig. 4.2.
Other classes for other simulation environments can be implemented similarly by utilizing
the interface of class BaseComplex.

97

https://www.youtube.com/watch?v=kvoC5yxdzsw


4. Implementation

Everything else that is required is a bootstrap, such as the Katana’s identifier, a recog-
nized marker at a wall, a room number, etc. All of these explicit entities are represented as
complex entries, which makes it possible to query the database for them: for example the
Katana manipulator with the id katana 62x represents the base for three additional sensor
systems, with no further complex entries that have the explicit sensor identifiers defined as
their base. Hence, the “downward” query ends. But it is also possible to query “upwards”
for the entry that defines the base of the Katana, and so forth. Thus, such a hierarchy
can be pretty easily traversed and, in fact, this is what happens within plugOpenrave —
complex elements are queried recursively (to a predefined depth) and transformations are
applied accordingly.

The following code excerpt in Lis. 4.7 shows how local models can be generated in principle
with a few lines of code and how the environment can be queried for further structural
properties.

(a) Katana-manipulator (with additional sen-
sors attached)

(b) Room 309 (including 3D scans)

(c) Building (global base) (d) 4th floor (assembly of multiple rooms)

Figure 4.3.: Hierarchy of entities, starting from the sensors whose positions are relative to
the robot, while the robot is located within room 309, which is part of the
fourth floor in building 29. The appertaining queries are shown in Lis. 4.7.

4.2.2.1. Integrating Robots

In general, robot definitions include a geometric and kinematic description, a visual repre-
sentation, and probably a simplified collision model. There are multiple description formats
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Listing 4.7: Exemplary utilization of BaseComplex and plugOpenrave, the results are de-
picted in Fig. 4.3

1 # load and prepare OpenRAVE
2 import openravepy as rave # ...
3 env = rave. Environment () # create a new and empty environment
4 env. SetViewer (’qtcoin ’) # open viewer
5
6 # load the GLObal environment moDEL library
7 import roslib ; roslib . load_manifest (" glodel ") # ...
8 from baseComplex import * # with the complex interface
9 from plugOpenrave import plugOpenrave # and OpenRAVE sim. generator

10
11 # initialize database connection
12 base = BaseComplex (host=" localhost ", port =9160 , keyspace =" Model ", debug =F)
13 plug = plugOpenrave (base) # as well as an OpenRAVE environment generator ...
14
15 # id of the Katana robot used as bootstrap to identify its type and base
16 print base. typeOf (" katana_62x ") # result -> robot
17 print base. baseOf (" katana_62x ") # result -> 309
18
19 # generate the local environment model for katana_62x ( search depth = 10)
20 env = plug. createEnvironment (" katana_62x ", 10, env) # cf. Fig. 4.3a
21
22 # generate the local environment model of room 309 ( search depth = 10)
23 print base. typeOf ("309") # result -> location
24 print base. baseOf ("309") # result -> 4 _floor
25 env = plug. createEnvironment ("309", 10, env) # cf. Fig. 4.3b
26
27 # generate the local environment of the fourth floor as well as of the entire
28 # building (as the global base)
29 env = plug. createEnvironment ("4 _floor ", 10, env) # cf. Fig. 4.3d
30 env = plug. createEnvironment (" building_27 ", 10, env) # cf. Fig. 4.3c
31 ...

that allow defining a robotic system in these terms, such as URDF or COLLADA2, Open-
RAVE possesses its own XML definition format for manipulators [244], but it is also possible
to load COLLADA descriptions or to translate between them into the required format.

To be able to replicate a robot’s behavior, also a piece of code is required, which translates
incoming robot’s status information and control messages (in this case ROS topics, see
Sec. 2.3.2.3) into transitions and rotations of links, wheels, the robot itself, etc. Of course,
there are multiple ways to accomplish these translations, but this can be easily solved
with the help of functions defined within a programming language capable of reflection.
Reflection means that a program written in a certain language is able to modify its structure
and behavior at runtime. Examples are Python, LUA, LISP, or even Java, which are able
to load and execute additional pieces of source code. Thus, for every robot that is simulated
a tiny Python script is loaded, which subscribes in the background to relevant data and
which performs the required transformation of the robot model.

4.2.2.2. Integrating Sensors

The integration of a virtual sensor system is a bit more difficult, since their behavior cannot
be replicated by simply changing their position and orientation relative to a base. A surveil-
lance camera, for example, has to be modeled as a “robot” to which a sensor is attached.
Thus, robots and actors are always applied to perform any kind of movement (translational
or rotatory), while sensors are applied to measure a certain physical quantity (within the

2An interchange XML-based file format for interactive 3D applications [63].
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real and the virtual environment). To provide measurements on both sides, I provide an
OpenRAVE plugin that is called the situated-sensor, which is freely available for down-
load, and can be easily extended to support different sensor systems. The general approach
is depicted in Fig. 4.4, and class SituatedSensor offers a generic interface to the ROS
communication framework, which has to be coupled with a virtual sensor implementation.

The DistanceSensor class in Fig. 4.4 is part of another OpenRAVE plugin that was
developed to model and measure with realistic sensor beams for range sensors. For example,
in Lis. 4.8 an infrared distance sensor is defined that utilizes a conical beam that is defined
in line 6. Other shapes can be easily generated and included to replicate different types
of ultra-sonic or radar sensors as well. Thereby, the shape of the beam is not only used
to visualize the measurement, but it is also applied to perform the distance measurements
with the simulated environment. See therefore also the plugin demonstration at:

https://www.youtube.com/watch?v=Ts7Acf70D8U

SituatedSensor

+ string m strRosTopic
+ Subscriber m sSubscriber
- thread threadros
...

+ SituatedSensor(EnvironmentBasePtr ...)
- threadrosfn()
...

SituatedXMLReader

# BaseXMLReaderPtr pcurreader
# shared ptr<SituatedSensor> psensor
# stringstream ss

+ SituatedXMLReader(...)
+ ProcessElement startElement(string...)
+ endElement(string name)
+ ...

SituatedDistanceSensor

+ GraphHandlePtr m ghpGraphGeometry2

+ SituatedDistanceSensor(Environmen ...)
+ Configure(ConfigureCommand command...)
+ callback(sensor msgs::Range::Const ..)
+ render(double distance)
...

SituatedDistanceXMLReader
...

+ SituatedDistanceXMLReader(...)
+ ProcessElement startElement(string...)
+ endElement(string name)
+ ...

DistanceSensor

+ Transform m tTransformation
+ shared ptr<DistanceGeomData> pgeom
+ shared ptr<LaserSensorData> pdata
+ dReal m dTimeToScan
+ bool m bRenderData, m bRenderGeometry
+ bool m bPower ...

+ DistanceSensor(EnvironmentBasePtr ...)
+ SimulateRaySensor()
+ RenderRay(vector<RaveVector<float ...)
+ SimulateMeshSensor()
+ RenderMesh(KinBody::Link::TRIMESH ...)
+ Configure(ConfigureCommand command...)
+ SimulationStep(dReal dTimeElapsed)
...

DistanceXMLReader

# BaseXMLReaderPtr pcurreader
# shared ptr<DistanceSensor> psensor
# stringstream ss

+ DistanceXMLReader(...)
+ ProcessElement startElement(string...)
+ endElement(string name)
+ ...

+

++

Implementations, containing
all functionalities (yellow).
-------------------------------
Internal classes, for configura-
tion and XML data-sheet parsing.

Implementations, containing
all functionalities (yellow).
-------------------------------
Internal classes, for configura-
tion and XML data-sheet parsing.

Hybrid, offering
an interface to real
and virtual measure-
ments.

Hybrid, offering
an interface to real
and virtual measure-
ments.

Figure 4.4.: Simplified UML class diagram of the situated-sensor implementation for a sen-
sor of type distance-sensor.

The resulting offspring of both classes, in this case SituatedDistanceSensor, is able
to measure distances within the virtual world as well as to subscribe for real world ROS
messages of type “sensor msgs/Range”. The original virtual distance sensor is then ap-
plied two times: to measure and visualize the virtual distances and also to visualize real
measurements (overlaid, but in another color, see also Lis. 4.8 for configuration). For the
sake of simplicity, all configurations are handled by internal classes *XMLReader, and in the
same way as it was done with the sensor classes, they are also applied to generate a hybrid
configurator, which can be applied to change settings during runtime as well as through the
parsing config-files (as presented in Lis. 4.8).

Class SituatedDistanceSensor thus implements all the required ROS and OpenRAVE
functionalities, but it also offers a general interface to all measurements.
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Listing 4.8: Configuration example of a situated distance sensor
1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <sensor name=" sharpGP2D120_2 " type=" sit_distance ">
3 <!-- ############### OpenRAVE DISTANCE SENSOR PARAMETERS ############## -->
4 <max_range >0.30 </ max_range > <!-- ranges in meter -->
5 <min_range >0.04 </ min_range >
6 <mesh > beams /cone.dae </ mesh > <!-- approximating the real sensor -->
7 <color >1 0 0</color > <!-- color of the virtual beam -->
8 <scantime >0.039 </ scantime > <!-- time in seconds -->
9 <power >1 </ power > <!-- start measuring immediately -->

10 <!-- ############### ROS - RELATED COMMUNICATION PARAMETERS ############# -->
11 <master >http://edubot02:3113</master >
12 <topic >/infrared2</topic >
13 <realcolor >0 1 0</ realcolor > <!-- visualization color of real ... -->
14 </sensor > <!-- measurements (same mesh) -->

4.2.2.3. Integrating Arbitrary Information

All reconstructed objects within the simulation environments have the same properties such
as identifiers, masses, colors, densities, etc. as defined within column-family complex. Lo-
cations (rooms, walls, etc.) do not necessarily require such properties, since they represent
immobile and static objects. But as discussed earlier, the amount of additional information
that can be attached to a complex entity is arbitrary, such as additional and ambiguous
names, possible ownership relations, battery charge and lifetime, etc. To preserve this
information that cannot be directly translated into the simulation environment, an addi-
tional container is applied. OpenRAVE offers two methods for handling user data that
can be attached to any object, robot, or sensor: SetUserData(key, information) and
GetUserData(key). Additional properties such as ownership are simply stored within that
container and can afterwards be queried from within the local environment model, without
the necessity of querying the virtual overlay database again. Another simulation environ-
ment used for local environment modeling has to implement similar containers.

4.2.3. Summary

The presented components at this section provide an implementation to generate and local
world models, based on the data and descriptions stored within the Cassandra-based sys-
tems, which was introduced in the previous section. Not all of elements described within
the conceptual part were integrated, but it offers an adequate foundation for the following
steps. The developed parts can be easily connected to their real world counterparts and are
capable of replicating movements and measurements as well within the simulated environ-
ment. The OpenRAVE simulation thus offers also an abstract knowledge base, a simplified
and idealized version of the real surrounding that can be interfaced to access and extract
different kinds of information.

4.3. Extraction & Abstraction

This section is mainly intended to describe the implementation of the SelectScript query
language and its extensions to support reasoning. But before that, a short overview of
the OpenRAVE module is given, which was developed previously and which enables the
abstraction of different kinds or representations from a local (OpenRAVE) world model.
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4.3.1. Abstracting Different Representations

Fig. 4.5 depicts the filter module that was developed to transform an OpenRAVE simulation
in other representations, such as occupancy grid maps, quad trees, etc. As it was mentioned
before, nearly all abstractions presented in Fig. 2.5 on page 36 were generated with the help
of this module. The system as it is depicted in Fig. 4.5 is freely available for download. To
get a second impression on its application and capabilities, take a look screencast at:

https://www.youtube.com/watch?v=DTX2pXk5Q2Q

Filter

- Transform m tFilter
...

+ SetRotation( ... )
+ GetRotation()
+ SetOrientation( ... )
+ GetOrientation()

OccupancyGridMap

- unsigned int uiWidth, uiHeight
- double dResolution
...

+ SetSize( ... )
+ GetSize()
+ Scan( ... )
+ Render( ... )
- generateGrid()
...

SensorGridMap

...

...

RangeGridMap

...

...

OccupancyCubeMap

- unsigned int uiNumX, ..Y, ..Z
- double dResolutionX, ..Y, ..Z
...

+ SetSize( ... )
+ GetSize()
+ Scan( ... )
+ Render( ... )
- generateCubes()
...

OctoMap

...

...

SensorCubeMap

...

...

QuadTree

- double dWidth, dHeight
- unsigned int uiSteps
...

+ SetSize( ... )
+ GetSize()
+ Scan( ... )
+ Render( ... )
- initMap()
...

Hierachical implementation of the OpenRAVE filter module that is based the abstract class Filter, from
which all other filter classes are derived by inheriting and extending the generall interface. The
definition of the QuadTree is straightforward, whereby the difference between the generall OccupancyGrid-
Map and OccupancyCubeMap is, that for the first a 2D grid is applied to scan a certain area and in the second
case 3D cubes with parameterizable sizes. The classes "Sensor" theirby measure the sensor coverage.

Hierachical implementation of the OpenRAVE filter module that is based the abstract class Filter, from
which all other filter classes are derived by inheriting and extending the generall interface. The
definition of the QuadTree is straightforward, whereby the difference between the generall OccupancyGrid-
Map and OccupancyCubeMap is, that for the first a 2D grid is applied to scan a certain area and in the second
case 3D cubes with parameterizable sizes. The classes "Sensor" theirby measure the sensor coverage.

Figure 4.5.: Simplified UML class diagram of the filter plugin implementations for Open-
RAVE

The simple architecture depicted in Fig. 4.5 allows to derive new types of filters from
existing ones, such as the SensorGridMap, as it is depicted in Fig. 4.6 below. The basic
interface is thereby defined by the abstract class Filter, its usage is shown in the Python
example below. Other filters are applied similarly. (See the source code examples that were
attached to the module.)

Listing 4.9: Application of the OpenRAVE filter module for abstracting a sensor coverage
map

1 # initialize the filter module and apply it to the simulated environment
2 Filter = RaveCreateModule (env ,’sensorgridmap ’)
3 Filter . SendCommand (’SetTranslation -2.5 -2.5 0.1 ’)
4 Filter . SendCommand (’SetSize 25 25 0.2 ’)
5
6 Filter . SendCommand (’Render ’) # visualize the grid in the scene , Fig. 4.6a
7 scan = Filter . SendCommand (’Scan ’) # perform the sensor coverage scan , Fig. 4.6b

As it was already discussed, the appropriate configuration of these and other modules
for deriving the required abstraction can be quite complicated — although the example
might suggest something else. There are frequent context changes within a dynamically
running simulation, which also affect simple parameters. To deal with this and to hide the
access to different abstraction, the query language SelectScript, whose implementation
is described within the next part, has been developed.
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(a) Exemplary OpenRAVE scene (b) Plotted filter result

Figure 4.6.: Estimating the sensor coverage (b) of a simulated area that is monitored by
two external camera systems (a)

4.3.2. Extraction of Information

As depicted in Fig. 4.7, SelectScript is divided into two parts. Thus, code written in
SelectScript is not directly executed, but instead translated into an intermediate repre-
sentation, which is then passed to the interpreter. The upper part, which is generated with
the help of the parser generator ANother Tool for Language Recognition (ANTLR) [168],
is responsible for translating code into a simplified type of an Abstract Syntax Tree (AST),
which is then passed to the interpreter module below.

Decoupling the parsing and execution process has several advantages; the AST can be
optimized beforehand and executed multiple times afterwards. The AST thereby consists
of a hierarchy of nodes that match with the principal features of a script. The interpreter
then only has to traverse the AST from top-down, which can be easily accomplished with
recursive functions. Instead of building a virtual machine with complex commands and its
own stacking procedures, the stacking implemented by the host programming language can
be utilized. A disadvantage, thereby, is that the parsing and interpretation modules must
be maintained in precise synchrony.

Therefore, the generated bytecode is described in more detail within the next section,
which is followed by a briefly explained interpretation sections, since it represents a simple
(recursive) walk through the AST.

In addition to the basic interpreter and the derived interpreter for OpenRAVE, there is
currently also an interpreter for ODE available. The following YouTube screencast demon-
strates the application of SelectScript for a chaotic particle simulation:

https://www.youtube.com/watch?v=F1XNch1JC9Y

4.3.2.1. Intermediate Representation

The example in Lis. 4.10 shows how the ANTLR generated module (SelectScript) can be
integrated into any Python code and applied to translate a script (string representation)
into an AST, which shows a LISP-like representation (see line 39 in Lis. 4.10). Line 4
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SelectExprLexer
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....

SelectExprParser

....

....

<<uses>><<uses>>
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fct list: dict
var list: dict
...

+ addFunction(name, ptr)
+ addVariable(name, value, age)
+ callVariable(name, age)
+ getTime()
+ eval(prog, this, slide)
# evalFct(prog, slide)
# evalSelect(prog, slide)
# evalAs(AS, SELECT, slide, limit=0)
# iterate(obj)
...

OpenRAVEInterpreter

....

# iterate(obj)
# trigger(name, prog, t, callback)
+ addTrigger(name, prog, t, callback)
+ delTrigger(name)
+ getTime()
...

IndividualInterpreter

....

# evalAs(AS, SELECT, slide, limit=0)
# indivdualRepresentation(...)
...

Base class to interpret SelectScript
bytecode, attach new functions and
transfer variables between SelectScript
and the "host" programming language.

Base class to interpret SelectScript
bytecode, attach new functions and
transfer variables between SelectScript
and the "host" programming language.

A dialect implementation for the
OpenRAVE simulation environment
(derived from the base class). It ex-
tends the base (arithmetic) functions
by a large set of additional OpenRAVE
functions as well as by the capability
of defining and executing triggers.

A dialect implementation for the
OpenRAVE simulation environment
(derived from the base class). It ex-
tends the base (arithmetic) functions
by a large set of additional OpenRAVE
functions as well as by the capability
of defining and executing triggers.

AntLR generated source code that is
used check the syntax of SelectScript
queries and translates them into an easy
to interpret bytecode format.

AntLR generated source code that is
used check the syntax of SelectScript
queries and translates them into an easy
to interpret bytecode format.

Figure 4.7.: Simplified UML diagram of the two-piece class structure of SelectScript

furthermore depicts how the basic compiler can be manually extended (with a sinus function)
to be able to pre-evaluate extended arithmetic expressions (standard operations are already
included) and, thus, to generate an optimized AST. The SelectScript in line 32 contains
five statements (as mentioned before every statement ends with a semicolon), a logical
expression, an arithmetic expression, an arithmetic expression whose result is stored within
a variable, a function call, and a definition of a nested list.

The generated representation in line 39 shows the optimized AST, which can be directly
evaluated by the interpreter. The compiler already reduces some expressions, but it allows
getting a first impression on the general concept of the generated bytecode, which is a
recursive structured list of lists. This representation was taken over from the internal
representation of different “Computer Algebra Systems” that are either based on LISP-like
Maxima or have been inspired by it, such as Maple or MuPad (see also [72]). For example,
the expression in line 34 in Lis. 4.10 is represented internally in Maple and Maxima as [ˆ,
[*, 7, 8], 9].

Listing 4.10: Translation of SelectScript with five statements into an optimized interme-
diate representation

1 import math
2 from SelectScript import * # load the module
3 ssc = SelectScriptCompiler () # instantiate the compiler
4 ssc. simplify_ops [’sin ’] = math.sin # attach a function pointer
5 ...

32 script = "(0 and True) or (1 xor False ); # logical expression \
33 2.3 + 4 * 5; # arithmetic expression \
34 var {6} = (7 * 8) ˆ9; # variable definition \
35 sin(var + 10 * 11); # function call \
36 [var {2} , [12 % 13]]; # list as return value "
37 bcode = ssc. compile ( script )
38 print bcode # list below in comments
39 #[[3 ,1] ,[3 ,22.3] ,[0 , ’ assign ’,[[3,’ var ’] ,[3 ,5416169448144896] ,[3 ,6]]] ,[0 , ’ sin ’
40 # ,[[0,’ add ’,[[1,’ var ’ ,[3 ,0]] ,[3 ,110]]]]] ,[2 ,[[1 , ’ var ’ ,[3 ,2]] ,[2 ,[[3 ,12]]]]]]

In contrast to this, see also Lis. 4.11 for the not optimized version (by setting the debug
parameter to True). Both versions can be evaluated with the interpreter and would generate
exactly the same result. The generated representations consist of 12 atomic elements,
whereby the first element of each list is used to indicate its type. These 12 numbers, which
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can be related to operation code (opcode) for the interpreter, are described within the
following enumeration:

0 Functions: These are represented by lists with three elements, whereby the first value is
of course always 0, the second is used to identify the function, and the third contains
a list of parameters, which have to be evaluated before the function can be evaluated.
By comparing the expressions in Lis. 4.10 with the not optimized version in Lis. 4.11,
it becomes obvious that all arithmetic, logical, or comparison operations, as well as the
assignment are internally represented as functions, whereby the operator precedence
is represented by their position.

1 Variables: They are used to return already stored values. Their structure is similar to
functions, the second list element is a string that identifies the variable and the third is
also a list. This last list represents parameters (which have to be evaluated first) and
identify the time horizon and, thus, the age of a value (see therefore also Sec. 3.3.1.3).

2 Lists: It is a simple method to define user specific return formats and consists only of
two elements, whereby the second represents the list with its elements.

3 Values: Most of the elements within the optimized code in Lis. 4.10 are values, which
(similar to the list) consist of two elements, whereby the second represents the actual
value. This value can be of type boolean, integer, double, or string (cf. Sec. 3.3.1.3).

Listing 4.11: Unoptimized intermediate representation of the script defined in Lis. 4.10
1 bcode = ssc. compile (script , debug =True)
2 print bcode
3 #[ [0, ’or ’, [ [0, ’and ’, [[3 , 0], [3, True ]]] ,
4 # [0, ’xor ’, [[3 , 1], [3, False ]]]]] ,
5 # [0, ’add ’, [ [3, 2.3] ,
6 # [0, ’mul ’, [[3 , 4], [3, 5]]]]] ,
7 # [0, ’assign ’, [ [3, ’var ’],
8 # [0, ’pow ’, [ [0, ’mul ’, [[3 , 7], [3, 8]]] ,
9 # [3, 9]]] ,

10 # [3, 6]]] ,
11 # [0, ’sin ’, [ [0, ’add ’, [ [1, ’var ’, [3, 0]] ,
12 # [0, ’mul ’, [[3 , 10] , [3, 11]]]]]]] ,
13 # [2, [ [1, ’var ’, [3, 2]] ,
14 # [2, [ [0, ’mod ’, [[3 , 12] , [3, 13]]]]]]]]

Lis. 4.12 shows an exemplary select statements. Only the SELECT and FROM expressions
are mandatory in a script, while the others are optional (but nevertheless mandatory for an
improved evaluation). The result shows new elements that are required for an appropriate
evaluation of query.

4 Select-Statements: As it is visible in the pretty printed representation in Lis. 4.12,
a SELECT query contains eight further lists, one for every possible sub-expression
(marked in the comments). Each of these lists contains the functions and expressions
that have to be evaluated, except HAVING that is not yet implemented and the last
elements that are used for recursive queries. The SELECT expression, for example,
contains two lists which are equally structured as the previously discussed elements.
In most cases these are functions that have to be applied onto the iterated elements,
with a nested structure, etc.
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Listing 4.12: Intermediate representation of a SELECT query
1 code = " SELECT f1(a.this), f2(b.this , f3(a.this)) \
2 FROM a = struct , b = struct \
3 WHERE f4(a.this) >= f5(b.this) \
4 GROUP BY f6(a.this), f7(b.this , var) \
5 ORDER BY f8(a.this) DESC \
6 LIMIT 10 \
7 AS representation (1, f9(var)); "
8 bcode = ssc. compile (code)
9 print bcode

10 # [ [4, [ [0, ’f1 ’, [ [5, ’a ’]]], ## SELECT
11 # [0, ’f2 ’, [ [5, ’b ’],
12 # [0, ’f3 ’, [ [5, ’a ’]]]]]] ,
13 # [ [0, ’assign ’, [ [3, ’a ’], ## FROM
14 # [1, ’struct ’, [3, 0]] ,
15 # [3, 0]]] ,
16 # [0, ’assign ’, [ [3, ’b ’],
17 # [1, ’struct ’, [3, 0]] ,
18 # [3, 0]]]] ,
19 # [0, ’ge ’, [ [0, ’f4 ’, [[5 , ’a ’]]], ## WHERE
20 # [0, ’f5 ’, [[5 , ’b ’]]]]] ,
21 # [ [0, ’f6 ’, [ [5, ’a ’]]], ## GROUP BY
22 # [0, ’f7 ’, [ [5, ’b ’],
23 # [1, ’var ’, [3, 0]]]]] ,
24 # [ ], ## HAVING
25 # [ [ [0, ’f8 ’, [ [5, ’a ’]]], 1]] , ## ORDER BY
26 # [’ representation ’, [ [3, 1], ## AS
27 # [0, ’f9 ’, [ [1, ’var ’, [3, 0]]]]]] ,
28 # [ [ ], ## START WITH
29 # [ ], ## CONNECT BY
30 # [ ], ## STOP WITH
31 # [0, 0, [], []]]] ## list for additional optimizations
32 # [3, 10]] ## LIMIT

The third last list in this case is used to define the required output format of a
select query. The four standard response representations (i. e., list, dictionary,
value, and dummy) are part of the language definition and can thus be defined in
uppercase, lowercase, or mixed, but in the AST they are either represented as ’l’,
’d’, ’v’, ’0’. For all other representation formats that are user-defined and, thus,
are extensions of the basic interpreter, the compiler passes the complete identifier
of the requested format. Because optional parameters are allowed (see Lis. 5.12 on
page 126), the second list contains additional parameters, which have to be defined
within parentheses.

5 This-Pointers: Looking at the resulting FROM list in Lis. 4.12, it shows two elements, or
two assignment functions that are used to define new variables (a and b, that are
only pointing on variable struct) in order to generate the Cartesian product of all
elements within struct.

To be able to evaluate functions with the correct order of parameters and to be able
to choose between the required elements, the a.this keyword (or [5, ’a’] internal
representation) is applied. Whereby the string is representing the variable, the Carte-
sian product of ...FROM env, so2, x=func(...)... would result in three different
elements (i. e., [5, ’env’], [5, ’so2’], [5, ’x’]). In contrast to this, in a FROM def-
inition with only one element, it is sufficient to use only this, resulting in an empty
string [5, ’’].
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7 Internal Evaluation: If a string with some SelectScript code has to be evaluated at
runtime, the internal eval function can be applied. This results in an internal rep-
resentation [7, ’string-code’] and dynamically allows the generation of new code
and, thus, reflexive programming.

. . . : There are of course also further additional elements that are used internally only.

10 The IF Expression: The element to be mentioned at last is the IF expression, as it
was already presented in Sec. 3.3.2.1 in Lis. 3.12. It is translated into the following
structure [10, [stmt] [stmt], [stmt]], in which the result of the first statement
defines which statement is to be evaluated afterwards; if true then the first, otherwise
the second. The evaluated statement also defines the return value of the IF expression.

Listing 4.13: Intermediate representation of a procedure and a sequence
1 code = " PROC(a, b) : (a.this; b.this; a.this+b.this ;) ; "
2 print = ssc. compile (code)
3 # [[11 , [’a’, ’b ’], [[5 , ’a ’], [5, ’b ’], [0, ’add ’, [[5 , ’a ’], [5, ’b ’]]]]]]

11 Procedures: As listed above, procedures can be used to simplify queries, as they store
code — that is executed when they are called. A procedure therefore has to be stored
in a variable, list, etc. The first list thereby defines parameters which can be passed
over as pointers to the procedure, when it is evaluated.

Sequences: A script itself is defined as a list of list, which defines a successive chain of
instructions that have to be evaluated (the last defines the return). In the same
manner, set of instructions can be defined within parentheses, as it is done in the
example above. All elements are evaluated and the result of the last is returned as
the result of this evaluation. Sequences can be defined everywhere, in such a way
that evaluating a WHERE expression can also contain sequences, which enables a more
complex definition of queries.

The open language definition of SelectScript allows it to place SELECT statements
nearly everywhere within a script. The equivalent code of the obscure script, which is
listed in Lis. 4.14 below, implemented within pure Python or any other language would
probably generate a looping monster that is hard to define, hard to maintain, and even
harder to change and adapt. Due to the applied LISP-like intermediate representation,
the implementation of an interpreter, which is presented in within the next sub-section, is
actually quite simple.

4.3.2.2. The Interpreter

The SelectScript Interpreter as depicted in Fig. 4.7 consists of only one class and has to
be extended by derived classes in order to be able to access simulation data. Nevertheless,
this basic interpreter can operate on simple lists, dictionaries, values, as it already covers
basic operations (in fact, all binary and unary operations listed in Lis. 3.3). And as already
mentioned, the implementation of the interpreter is “pretty simple” and should furthermore
also be possible for other languages than Python. The current proof of concept implemen-
tation consists of less than 160 lines of code, if the recursive elements (search programming)
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Listing 4.14: Obscure example of a nested SelectScript query
1 SELECT foo(this , max( SELECT bar FROM struct ))
2 FROM main_struct = SELECT bar FROM struct2
3 WHERE foo_bar (this , 2) in SELECT foo
4 FROM struct3
5 AS dict (max( SELECT bar
6 FROM struct
7 AS list))
8 AS list
9 AS Map( height = SELECT pos FROM main_struct

10 WHERE test1 (this) AND NOT IF( test3 (this , ’pi ’) ,
11 print ("wow"), True ,
12 eval("fct("+str(this)+")"))
13 ORDER BY pos ASC
14 AS val );

are excluded. The reason for this lies in the recursive implementation of the interpreter,
which is directly related to the structure of the intermediate bytecode representation. The
following example is therefore written within pseudo code by applying a Pascal-like syntax.

Listing 4.15: Pseudo code implementation of the SelectScript interpreter
1 FUNCTION eval(p_list , slice = NIL) BEGIN
2 CASE p_list [0] OF
3 is Array : BEGIN { sub - lists with code ( expressions / phrases /...) }
4 results := Array [];
5 FOR sub_list in p_list DO
6 append ( results , eval(sub_list , slice ) );
7 RETURN results ; END
8 0 : BEGIN { ----------- Functions (name , [ parameters ]) ------------ }
9 RETURN callFunction ( p_list [1] , eval( p_list [2] , slice ) ); END

10 1 : BEGIN { --------------- Variables (name , time) ---------------- }
11 RETURN callVariable ( p_list [1] , eval( p_list [2] , slice ) ); END
12 2 : BEGIN { ------------------------ Lists ------------------------ }
13 RETURN eval( p_list [1] , slice ); END
14 3 : BEGIN { ----------------------- Values ------------------------ }
15 RETURN p_list [1]; END
16 4 : BEGIN { ------- Select - Statements ([ select ][ from ][...]) ------- }
17 RETURN evalSelect ( p_list [1..8] , slice ); END
18 5 : BEGIN { --------------------- This - Pointer -------------------- }
19 RETURN slice [ p_list [1]]; END
20 ..: { -------------------- Miscellaneous -------------------- }
21 7 : BEGIN { ----------------- Internal Evaluation ----------------- }
22 RETURN eval( compile ( p_list [1] ), slice ); END
23 ..: { -------------------- Miscellaneous -------------------- }
24 10: BEGIN { -------------------- If Then Else --------------------- }
25 IF eval( p_list [1] , this) THEN: RETURN eval( p_list [2] , slice );
26 ELSE: RETURN eval( p_list [3] , slice ); END
27 11: BEGIN { ---------------------- Procedure ---------------------- }
28 RETURN Procedure ( p_list [1] , p_list [2])
29 END { CASE }
30 END { FUNCTION }

The program itself and defined sequences, which define successive commands or expres-
sions terminated by a semicolon, are organized as successive lists covered by the first case
in the central eval function. Other elements are identified with a leading number: for
example, 0 identifies a function call followed by a unique function name and by a list of
parameters that have to be evaluated beforehand. These elements form the input parame-
ter of the helper function callFunction, which executes the appropriate function with the
given parameters and returns its result. New functions can be added quite easily, as it is
described within the next sub-section.
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Calling the content of a variable works similarly (but operates on different structures
in the background); the second list element contains the name and the third comprises
time parameters. The assignment of variables is handled with the help of a function call
associated to “assign” (to which the “=” operator is transformed) — the parameters are
the name of the variable and its time definition. That is it, and the evaluation of lists along
with values is straightforward. The cases 4 and 5 are required to evaluate select queries
correctly and evalSelect, as listed below, is used as another helper function.

Listing 4.16: Pseudo code for evaluating SELECT expressions
1 FUNCTION evalSelect (p_list , slice ) BEGIN
2 Select := p_list [0]; { list of expression to apply to the result set }
3 Result1 := evalFrom ( p_list [1] , slice );
4 IF recursive elements have been defined THEN:
5 Result2 := evalRecursion ( p_list , Result1 ); { see Sec. 4.3.4 }
6 ELSE:
7 Result2 := evalWhere ( p_list [2] , Result1 );
8 Result3 := evalOrder ( p_list [5] , Result2 );
9 Result4 := evalGroup ( p_list [3] , Result3 );

10 { Result5 := evalHaving ( p_list [4] , Result4 ) }
11 RETURN evalAs ( p_list [6][1] , { string , identifying the response format }
12 eval( p_list [6][1] , slice ), { list of additional parameters }
13 Select , { list of expressions to apply to Result4 }
14 Result4 , { identified , ordered , and grouped elements }
15 eval( p_list [8])); { evaluate LIMIT expression }
16 END { FUNCTION }

It is used to call all required “filter” steps in the correct order. As mentioned before, only
the select- and from parts are mandatory, defining the source and the result. The default
result output format is a table-like structure (“dictionary”), generated with the help of
evalAs. The other steps are used to refine the result set. Also all of these functions make
use of the central eval function. evalFrom is used to create an iterator that either iterates
through a list, traverses all nodes of a tree, or steps through any other structure. If there are
multiple (comma separated) structures to iterate through, then they are iterated repeatedly
and form the Cartesian product. Recursion is left out in this consideration, but described
in more detail in Sec. 4.3.4 on page 113.

The “from” generated iterator is also the source of the second “slice” input parameter
of function eval. It represents the current element/row of the result list/matrix to be
evaluated. It is passed to all “where”, “order”, “group”, or “as” evaluation steps. Case 5 in
the central eval function determines the correct element by evaluating the this expression
and returns its value. Because queries might contain further (nested) queries, the slice
parameter is also extended recursively (see, for example, Lis. 4.28 on 115).

The resulting format is generated by the evalAs function, which takes a string as input
(that identifies the requested output format, e. g., list, map, etc.), the second parameter
contains a list of input parameters (which probably also have to be evaluated, because they
might also contain expressions and further select statements), the third parameter simply
contains a list of expressions that have to be applied on the identified result set (parameter
four).

As described within the next sub-section, all of these functions can be redefined or over-
loaded in order derive new interpreters for new simulation environments or to integrate and
generate more and different kinds of abstractions.
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4.3.3. Building Extensions
There are already complex dialects available for OpenRAVE and ODE, but the following
example is intended to present insights on the extensions and adaptation process of the
interpreter. Therefore, the ten following listings are used to give a rather abstract example,
by developing a prototypical extension for strings. For further information, see also the
notebooks that are available at: https://gitlab.com/OvGU-ESS/SelectScript_demos

As already mentioned, new functions can be attached without the need for deriving a new
interpreter class. As it is listed in Fig. 4.7 and indicated in Lis. 4.17, the basic interpreter
SelectScriptInterpreter already contains a method (addFunction(name, ptr, ...))
that allows it to add new functions or methods. These are stored internally in an associative
array. Thus, the used function name within a script has to match this key within the
“function repository” that is to be called.

Listing 4.17: Adding new functionality to the basic SelectScript interpreter
1 import SelectScript
2 import SelectScript . Interpreter
3
4 ssi = SelectScript . Interpreter ()
5 ssi. addFunction ("ord", ord , " Returns the int "+ # attaching a new function ,
6 " ordinal of a character .\ nUsage : ord(’a ’) ->97") # with an optional info string

As it is demonstrated below, the SelectScript internal help system, which is common
for many scripting languages, allows it to explore the available functionality.

Listing 4.18: Using the internal help system
7 prog = SelectScript . compile ("help ();") # requesting help results in a
8 print ssi.eval(prog) # list of all available func -
9 # [’help ’,’clear ’,’print ’,’to ’,’var ’,’ord ’] # tions , operators not included

10
11 prog = SelectScript . compile ("help(’ord ’);") # getting help for a certain
12 print ssi.eval(prog) # function # ord #
13 # Returns the int ordinal of a character .
14 # Usage : ord(’a ’) ->97

Operators are not listed, but their behavior can also be changed if required. Since oper-
ators (see line 18 in the listing on page 79) are handled internally as functions, they can be
adapted accordingly. The simple example in Lis. 4.19 below shows how the modulo operator
can be made applicable onto the string data type as well. The result is a list of sub-strings
with a length that is defined by the second operator.

Listing 4.19: Adapting the behavior of SelectScript operators
15 prog = SelectScript . compile ("’abCdeFghI ’ %3;")
16 print ssi.eval(prog)
17 # --------------------------------------------------------------------------
18 # TypeError Traceback (most recent call last)
19 # ...
48 def newModulo (op_1 , op_2):
49 if isinstance (op_1 , str):
50 return [ op_1[i:i+op_2] for i in range (0, len(op_1), op_2) ]
51 return op_1 % op_2 # else part
52
53 ssi. addFunction ("mod", newModulo )
54 print ssi.eval(prog)
55 # [’abC ’, ’deF ’, ’ghI ’]

For exchanging data between the SelectScript interpreter and the host programming
language, the internal method addVariable can be used. It requires some data and a new
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name. Similarly, complete scene-graphs and simulation environments can be attached to
the interpreter. All available variables, including those that have been created internally for
storing intermediate results, can also be listed and explored with the internal help function
mem() (see the listing below).

Listing 4.20: Porting data to the SelectScript interpreter
56 data = " Xabcdefghabc543201AVBX " # attaching new data to the inter -
57 ssi. addVariable ("abc", data) # preter is similar to the attach -
58 # ment of new functions ...
59 prog = SelectScript . compile ("mem( );") # showing all stored elements is
60 print ssi.eval(prog) # similar ... procedures are stored
61 # [’abc ’] # in the local memory too
62
63 prog = SelectScript . compile ("mem(’abc ’);") # and also getting more informa -
64 print ssi.eval(prog) # tion for debug purposes ; proce -
65 # age: 0 # dures generate other outputs
66 # val: ’Xabcdefghabc543201AVBX ’

These variables/data can be accessed by the host programming language in two ways:
either via directly calling the variable with a script — the last statement of a script also
defines its return value. Or, in order to simplify this process, without the need for generating
an intermediate representation, variables can also be accessed directly by calling method
callVariable.

Listing 4.21: Getting data from SelectScript back to the host programming language
67 prog = SelectScript . compile ("abc;") # a script can also be used to re -
68 print ssi.eval(prog) # turn the value of a variable ...
69 # ’Xabcdefghabc543201AVBX ’
70 print ssi. callVariable (’abc ’) # but it is also possible to re -
71 # ’Xabcdefghabc543201AVBX ’ # quest them via " callVariable "

As it is visible within the example below, trying to query strings does not work as ex-
pected. The basic SelectScript interpreter interprets strings as a whole and, thus, returns
only one element, dividing a string into its elements, namely characters requires either to
apply the previously adapted modulo operator or to derive an new class that overwrites
method getListFrom.

Listing 4.22: Trying to apply queries to strings, step 1 & 2
72 prog = SelectScript . compile (" SELECT this FROM abc AS list;")
73 print ssi.eval(prog)
74 # [’ Xabcdefghabc543201AVBX ’]
75
76 prog = SelectScript . compile (" SELECT this FROM abc %1 AS list;") print
77 ssi.eval(prog) #
78 [’X’,’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’a’,’b’,’c’,’5’,’4’,’3’,’2’,’0’, ...

The example in the listing below depicts a little Python hack, which allows changing the
method of a certain object without the need for deriving a new class. The new iterString
method is used to replace the method iterateThrough. It checks the data types of elements
that are called within a FROM part, all data is automatically passed to this method before
it is evaluated, and if it is a string it will return all characters separately; otherwise, the
object is passed back to the super class method.

Thus, repeating the query now does not require the usage of an additional modulo opera-
tor or another function, and it allows to use of all the common SelectScript functionalities
without further changes.
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Listing 4.23: Integrate the ability to iterate over characters within a string
79 import types
80 def iterString (self , obj):
81 if isinstance (obj , str):
82 for c in obj: yield c
83 else:
84 yield SelectScript . Interpreter . iterate (self , obj)
85 ssi. iterate = types . MethodType ( iterString , ssi , SelectScript . Interpreter )

Listing 4.24: Trying to apply queries to strings, step 3
86 prog = SelectScript . compile (" SELECT to(this , ’char ’), ord(this) \
87 FROM abc WHERE ord(this) < 60 \
88 AS dict;")
89 print ssi.eval(prog)
90 # [{’ char ’: ’5’, ’ord ’: 53} ,
91 # {’char ’: ’4’, ’ord ’: 52} ,
92 # {’char ’: ’3’, ’ord ’: 51} ,
93 # {’char ’: ’2’, ’ord ’: 50} ,
94 # {’char ’: ’0’, ’ord ’: 48} ,
95 # {’char ’: ’1’, ’ord ’: 49}]

The last element that has not been touched yet is the ability to define different response
formats, so far only lists and dicts have been requested. The process for this is similar
to the previous extension, and it also requires deriving a new class and overwriting method
evalAs, or, as it is presented below in Lis. 4.25, to directly redefine a method of an object.
The requested format is automatically passed on in parameter AS and has to be checked
at first. If the result of a query is requested AS string, all parameters are passed to the
super class method evalAs list for simplicity and then joined into a string. More complex
representations can also be derived; therefore, all additional SELECT expressions and results
of the previous evaluations (WHERE . . . ) are passed on as additional parameters.

Listing 4.25: Defining new response formats for SelectScript
96 def evalAs_string (self , AS , PARAMS , SELECT , RESULTS , LIMIT ):
97 if AS == ’string ’:
98 return "".join(self. evalAs_list (PARAMS , SELECT , RESULTS , LIMIT ))
99 return SelectScript . Interpreter . evalAs (self , AS , PARAMS , SELECT ,

100 RESULTS , LIMIT )
101 ssi. evalAs = types . MethodType ( evalAs_string , ssi , SelectScript . Interpreter )

Lis. 4.26 shows the final example in which the result is requested as a string and the
modulo operator is applied onto an integer value (and it works properly). Only characters
with an even ordinal number are returned in order.

Listing 4.26: Requesting the result of a query AS string
102 prog = SelectScript . compile (" SELECT this FROM abc \
103 WHERE ord(this) % 2 == 0 \
104 ORDER BY ord(this) \
105 AS string ;")
106 print ssi.eval(prog)
107 # 024 BVXXbbdfh

All other SelectScript dialects have been developed similarly, but with two additional
features. The derived class has to overwrite the method getTime, which is used as a
connection to the internal simulation time and allows it to add time-stamps to variables.
Time-stamping and dealing with temporal variables is afterwards also handled in the back-
ground of the language interpreter. Furthermore, the ability to apply triggers, similar to
the idea in active databases, is currently defined within the derived classes (see, therefore,
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the application examples in Lis. 5.14, Lis. 5.15, or Lis. 5.16). It is currently not a part
of the basic interpreter, since every simulation environment has its own way of integrating
continuously executed functionalities.

4.3.4. Recursive Evaluation

As already introduced in Sec. 3.3.2.3, recursive queries offer a convenient way of defining
search problems. Different search algorithms can be applied and tweaked without bothering
about their details, while the definition of the actual problem remains fixed. (See, therefore,
the example below in Lis. 4.27, as it depicts the query that is used to solve the Towers of
Hanoi problem, but in a reduced version by selecting only the plain tower configuration
with no additional and pretty printed steps.)

Listing 4.27: Recursive query with generated bytecode example
1 script = " moves = [[0 , 1], [0, 2], [1, 0], [1, 2], [2, 0], [2, 1]]; \
2 SELECT move(this , tower ) FROM moves \
3 WHERE move(this , tower ) == [[] ,[] ,[6 ,5 ,4 ,3 ,2 ,1]] \
4 START WITH tower = [[6 ,5 ,4 ,3 ,2 ,1] ,[] ,[]] \
5 CONNECT BY MEMORIZE 63 \
6 tower = move(this , tower ) \
7 STOP WITH tower == [] \
8 LIMIT 123; "
9 bcode = SelectScript . compile (script , debug =True)

10 pp. print ( bcode )
11 # [ ... initialization of variable moves ...
12 # [4, [[0 , ’move ’, [[5 , ’’], [1, ’tower ’, [3, 0]]]]] , ## SELECT
13 # [[1 , ’moves ’, [3, 0]]] , ## FROM
14 # [0, ’eq ’, [[0 , ’move ’, [[5 , ’’], [1, ’tower ’, [3, ... ## WHERE
15 # [], [], [], ## GROUP BY , HAVING , ORDER BY
16 # [’d’, []] , ## AS dictionary ( default )
17 # [ [[0 , ’assign ’, [[3 , ’tower ’], [2, [[2 , [[3 , 6], ... ## START WITH
18 # [[0 , ’assign ’, [[3 , ’tower ’], [0, ’move ’, [[5 , ... ## CONNECT BY
19 # [0, ’eq ’, [[1 , ’tower ’, [3, 0]] , [2, []]]] , ## STOP WITH
20 # [0, 0, ## NO CYCLES (0/1) | UNIQUE (0/1)
21 # [3, 63] , []]] , ## MEMORIZE (STMT) | COST (STMT)
22 # [3, 123]]] ## LIMIT

The pretty printed bytecode within comments actually reveals nothing new; the only
difference from previous examples is that the last list, which is used to define the hierarchical
aspects, is not empty anymore. This recursive part consists of four sub-lists:

[[ START WITH ], . . .] It contains a couple of (originally comma separated) statements that
define starting conditions. These are executed only once at the beginning of a search.

[[ CONNECT BY ], . . .] The second list defines the recursive structure, what elements are
affected and how, it therefore contains a couple of (comma separated) statements
that are executed at every recursion step.

[ STOP WITH ] In contrast to these, a stop condition is defined only with one expression,
which is evaluated after every recursion step. If and only if it evaluates to False the
evaluation of this “branch” is continued by newly interpreting the FROM and WHERE
expressions.

That is it, these definitions — in combination with the primary SELECT . . . FROM . . . WHERE
statements — are sufficient to let the abstract machine perform a search. But which search
strategy gets applied is determined by the additional keywords that are listed below (see
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also Sec. 3.3.2.3). Every keyword changes a value within the last sub-list (state vector) in
this enumeration and, therefore, triggers the application or adaptation of a certain search
algorithm.

[ NO CYCLE, it is equal to the original definition (see [173]) and prevents cycling of repetitive
results. The definition of this keyword simply sets the first list element to 1 otherwise
(and by default) it is set to 0. The results are defined by the SELECT expression and
repetitive results are compared at every hierarchical step. Thus, if the result of a
previous SELECT expression is equal to the current, to be evaluated, this “path” is not
followed anymore. It thus defines some kind of additional stop criterion.

UNIQUE, this keyword sets the second list value to either 1 or, if specified otherwise, to 0.
It triggers another, stricter optimization strategy that backups all intermediate results
(at least their hashes) and allows it, only to follow search paths with intermediate
results that have not been visited yet. It thus prevents cycling on a global scale, while
the previous one only keeps track of the current search path.

MEMORIZE, while the last keywords have been optional optimization to the depth-first
search strategy, which is applied by default, this keyword changes the entire search
algorithm and performs a bidirectional search on the basis of a directed graph. This
graph is constructed with the help of the previously described recursive statements,
where SELECT expressions represent nodes, and edges are defined by the CONNECT BY
expression. To prevent the endlessly growth of this graph, the keyword MEMORIZE
is accompanied by an additional expression that defines the maximum graph depth,
thus the amount of allowed recursive steps. Since the applied search algorithm only
generates simple paths (without cycles) and the graph itself contains only unique
nodes, setting of previous parameters is currently obsolete. But it can also be replaced
by other algorithms. . .

COST ] And at last, an element for defining a cost “expression” is available. It is evaluated
prior to each and every recursive in such a way that in the depth-first search algorithm,
the elements from the FROM expression are ordered accordingly. The element with the
lowest cost is then evaluated within the next step and so on. Within the creation
process of the directed graph (MEMORIZE), this element defines the weight for every
generated edge. After the graph is created, these edge weights are used to calculate
the “length” of a simple path and to return identified paths ordered by the sum of
their edges, starting with the smallest one.

The following two parts briefly describe how the generated intermediate code, which
has been described so far, is used to perform different search strategies. For the sake of
simplicity, only two strategies are described, without the application of optimizations.

4.3.4.1. Recursion: Depth-First Search

The code example in the listing below depicts the general evaluation of a recursive query,
if only START WITH, CONNECT BY, and STOP WITH expressions are defined. For the sake
of clarity, these sub-list containing the relevant expressions are copied into local variables
(line 3). The START WITH expressions are evaluated only once (line 8), and since they are
only used to define the local variables and the initial settings, there is no need to store the
results of this evaluations, nor to react to them. The only thing that has to be stored is
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the current state of defined (global) variables, which includes identifiers and their values
(line 10). These are restored at every iteration of the loop (line 13). Within the loop, each
element/row of the list/matrix generated originally by the evalFrom function is evaluated
(line 15) and tested to determine if it fulfills the goal condition (line 17) or the stop condition
(line 20). Only if the stop condition is not met, the variables are changed by evaluating the
CONNECT BY expressions (line 21) and the evalRecursionDepthFirst is called recursively,
returning new sequences that lead to a goal condition.

Listing 4.28: Pseudo code for evaluating simple recursive queries with the depth-first search
algorithm

1 FUNCTION evalRecursionDepthFirst (p_list , slice , From) BEGIN
2 { copy recursive expressions }
3 Start := p_list [7][0]; Connect := p_list [7][1]; Stop := p_list [7][2];
4
5 p_list [7][0] := Array []; { clear start expression , to prevent from ... }
6 Results := Array []; { ... being evaluated multiple times }
7
8 FOR expr IN Start DO
9 eval(expr , slice ); { < generate local variables and }

10 backup := variable_repository ; { < ... make a back up of them }
11
12 FOR row IN From DO { go through all rows }
13 variable_repository := backup ; { restore local variables }
14 { generate a new intermediate result }
15 current := evalAs ( p_list [6][0] , p_list [6][1] , p_list [0] ,[row , slice ]);
16
17 IF evalWhere ( p_list [2] , [row , slice ]) THEN
18 append ( Results , current );
19
20 IF not eval(Stop , [row , slice ]) THEN
21 FOR expr IN Connect DO { change local variables ... }
22 eval(expr , [row , slice ]); { ... in repository }
23
24 FOR next IN evalRecursionDepthFirst (p_list , slice , From) DO
25 append (Results , concatenate (current , next));
26
27 RETURN Results ;
28 END { FUNCTION }

There is no such value that defines something like a maximum search depth, in fact this
has to be defined explicitly (if required) within the script, which can be achieved with the
following code:
1 ...
2 START WITH .... , depth = 0
3 CONNECT BY .... , depth = depth +1
4 STOP WITH .. AND depth > 30
5 ...

As mentioned before, optimization strategies have not been considered as well as stacking,
as it is handled by the host programming language, whereby other implementations without
recursive function calls and local stacking are imaginable.

4.3.4.2. Recursion: Bidirectional Search

If keyword MEMORIZE <STMT> is defined, another search strategy is executed. In contrast
to the previous version, the definition of the maximum search depth as an additional value
here is mandatory. Here, it does not directly define the maximum search depth but length
of the generated graph (line 16), which is searched afterwards (line 43). Thus, the function
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below does not perform the actual search; it is used to transform the problem (query) into
an equivalent graph representation. This construction process consumes relatively more
memory and time, but it allows applying different and more efficient search algorithms.
The beginning of the function is thus similar to the previous one, whereby the graph is
initialized with two nodes (the source and the target node). Afterwards, new nodes that
are created recursively are added to the graph, together with an additional edge. If a newly
generated node already exists within the graph, then only the new edge is attached. For all
nodes that also fulfill the goal condition (line 39), a new edge is added pointing from that
node to the target node.

Stored directly within the node (or another structure, such as hash map, associative array,
etc.) are all intermediate results as well as the configuration of variables, which have to be
restored at every iteration step. The benefit of this approach is that cycles are prevented
and every node is unique. Thus, the optimization strategies NO CYCLE and UNIQUE are not
required here.

Listing 4.29: Pseudo code for generating a graph on the basis of the recursive definitions,
which is searched afterwards for all simple paths

1 FUNCTION evalRecursionGraph (p_list , slice , From):
2 { copy recursive expressions }
3 Start := p_list [7][0]; Connect := p_list [7][1]; Stop := p_list [7][2];
4 p_list [7][0] := Array []; { delete start expressions }
5
6 G := Graph (); { new graph to store the entire structure }
7
8 FOR expr IN Start DO { < generate local variables and ... }
9 eval(expr , slice ); { v store them within the first node }

10 source = Node( level =0, data=NIL , memory = variable_repository );
11 target = Node( level =INF , data=NIL , memory =NIL);
12
13 add_node (G, id=’source ’, node= source );
14 add_node (G, id=’target ’, node= target );
15
16 FOR L in 0.. p_list [7][3][2] DO { defined by MEMORIZE <STMT > }
17 FOR node in G with level equal to L DO
18 FOR row in From DO
19 variable_repository := node. memory ; { restore var. settings }
20 { generate intermediate results ... }
21 data := evalAs ( p_list [6][0] ,p_list [6][1] ,
22 p_list [0] , [row , slice ] );
23 { ... , which can be used to generate a node identifier ... }
24 id := hash(data);
25
26 IF id not in G THEN { create & insert a new node into graph }
27 IF eval(Stop , [row , slice ]) THEN
28 memory := NIL; level := NIL;
29 ELSE
30 FOR expr IN Connect DO
31 eval(expr , [row , slice ])
32 memory := varible_repository ; level := L+1;
33
34 new_node := Node(level , data , memory );
35 add_node (G, id , new_node );
36
37 add_edge (G, node.id , id); { insert new edge }
38
39 IF evalWhere (prog [2] , [row , slice ]) THEN
40 add_edge (G, id , ’target ’); { new target node identified }
41
42 { now , search G for paths from source to target }
43 RETURN bidirectional_all_simple_paths (G, ’source ’, ’target ’);
44 END { FUNCTION }
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As listed in line 43 above, the graph is searched for simple paths at the end. A simple path
is a path with no repeating nodes. The currently implemented strategy is a bidirectional
search algorithm that runs in two direction: one from the source to the target and another
from the target to the source. Thereby only matching leaves have to be identified, it
thus minimizes the search space by half. In addition and as a further benefit, paths are
generated in order, starting from the shortest paths and then increasing stepwise in length.
More information on the algorithm and a benchmark against common search algorithms is
presented in [245].

4.3.5. Discussion
The developed programming language is not only a DSL for one specific purpose, which
allows abstracting a simulation environment as if it was a database. Instead, it is extendable
so that it can be used in various ways that even go beyond the notion of a simple query
language. As it is shown in the next chapter, every kind of query is handled with simple
SelectScript requests, thereby it is possible either to apply the declarative paradigm, or
the imperative — or a combination of both. And as it is demonstrated in the Appendix
on page 141, the language can also be used to reason about the application and order of
filter, fusion, and transformation functions, which allows it to identify a sequence of such
functions, depending on the given input and the desired output.

The current version of the interpreter is developed in Python, which is a drawback in
terms of speed and memory efficiency; besides this, Python offers a convenient way for
rapid prototyping, experimenting with new language elements, and an object-oriented pos-
sibility for adaptations. However, the implementation of the language and the interpreter
is so minimalistic that it can also be implemented in other languages. A first prototype
is currently implemented in C, which is so small that it can even be applied on micro-
controllers, allowing the query of not only the environment with this language, but also
every system, embedded or not. Having the same capabilities in terms of dynamic typing,
it is required to develop an own type system. In terms of speed, first tests reveal that the
pure C implementation is approx. 500 times faster than the current Python prototype.

In addition to the interpretation of the language, it is also imaginable to directly translate
a SelectScript into optimized Python bytecode, which could be directly executed on the
Python VM (without the need for an additional interpreter). In the same way, it should
therefore also be possible to apply the LLVM (Low Level Virtual Machine) infrastructure
in order to produce just-in-time compiled code for different queries.
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The following evaluation is thought to present a typical delivery scenario in a smart factory
environment (see Fig. 5.1 on page 123). Therefore, a mobile robotic platform at first has to
reach the current location of a packet and deliver it to a certain destination. This “pretty”
simple task includes several sub-tasks to be solved, such as:

• identifying and selecting the appropriate mobile platform,

• identifying the relative positions of the packet to deliver and the mobile platform,

• generating a local model that includes both entities as well as others,

• abstracting different types of maps, which are used as a basis for different path plan-
ning strategies as well as for the robot’s localization,

• defining situations onto which the mobile platform has to react,

• online identification of robots that are in the coverage area of different sensors, to be
used for better localization and to enable extended environmental perception,

• and abstracting logical/formal models that are used to reason about complex action
sequences (grasping the packet) . . .

As it was mentioned before, all of these sub-tasks will be solved with the help of Se-
lectScript — or SelectScript will at least provide the basis for a solution. Further-
more, all of the three steps that were defined within the concept (i. e., access to the global
model, generation of a local model, and extraction of further representations and informa-
tion) are abstracted by the developed query language itself. Therefore, a special “dialect”
has been developed (similar to the one presented in Sec. 4.3.3) that combines all previ-
ously developed components. It is described briefly within the next section. The following
sections introduce the access to the global world model and the generation of local world
models, which is then combined within the fourth section to solve each of the intermediate
steps that are listed above and that are necessary to accomplish the packet delivering task.

5.1. Initialization
The developed language interpreter in module SelectScript Evaluation encapsulates all
parts of the described concept and can be downloaded at:

https://gitlab.com/OvGU-ESS/SelectScript_OpenRAVE

It, therefore, inherits aspects from all software solutions that have been developed, these
are glodel (for accessing the global model, see Sec. 4.1.3), plugOpenrave (for generating
local models, Sec. 4.2.2), and the existing SelectScirpt dialect for OpenRAVE (for ex-
tracting information from an OpenRAVE simulation and abstracting further environmental
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representation, as it was described in [6, 11]), which has also been combined with the
developed filter plugins (see Sec. 4.3.1).

Lis. 5.1 shows a Python snippet that is sufficient to generate a local OpenRAVE instance
as well as an instance to the new language extension for SelectScript. The connection to
a Cassandra instance and thus to the global model is generated automatically. Compiling
queries to the intermediate representation is, for simplicity reasons, also kept in the back-
ground. Thus, as it is shown in the last line in Lis. 5.1, the response to a query is directly
generated.

Listing 5.1: Python initialization of the evaluation scenario
1 from openravepy import * # load OpenRAVE lib for Python
2 env = Environment () # create empty OpenRAVE environment
3 env. SetViewer (" qtcoin ") # set up visualization
4
5 # load interface to new SelectScript dialect
6 from SelectScript_Evaluation import Interpreter
7
8 base = Interpreter ( environment = env , # attaching an OpenRAVE environment
9 host = " localhost ", # global model access points

10 port = 9160 , # with host , port , and key -
11 keyspace = " Evaluation ", # space ...
12 debug = False ) # not running in debug mode
13
14 base. query ("help ();") # first query , gets directly compiled and executed #
15 # [" sensingEnvIDs ", "help", " get_time ", " get_location ", " within ",
16 # " environmentID ", " free_model ", " get_sensor ", " get_robot ", "id", ... ]

The listing above is the only Python example; all of the following queries and scripts
are represented as pure SelectScript snippets, which are directly passed to base.query.
The generated results are then either presented as screenshots or as comments at the end
of a listing.

5.2. Accessing the Global World Model

The SelectScript interface to the data stored in the virtual overlay database was defined
in accordance with the main column-families that were described in Sec. 3.1. There are
four functions used per column-family, for accessing (get), for adding (add), for updating
(set), and for removing (rm). Handling of raw and virtual data is currently not integrated
and requires applying the original interface as it was described in [12].

As shown in the listing below for column-family robot, a robot can be described in many
ways (e. g., zipped COLLADA, XML, URDF, CAD, etc.), which enables an application or,
in this case, the described plugOpenrave module to select the most appropriate format.

Listing 5.2: Accessing column-family robots
1 get_robot ();
2 # [" barrett -wam", " katana ", "kawanda - hirox ", "kuka - youbot ", "puma "]
3 get_robot (" katana ");
4 # OrderedDict ([(" zae", "PK\x03\x04\x14\x00\x00\x00\x00\x00\x08\x00\xa9\x8d\x
5 # d7 >\ xb8p\xd4\x15 :\ xa3\x0c\x00\ xfaQP \x00\x14\x00\x1c\
6 # x00neuronics - katana . daeUT \t\x00\x03\x1e\xfd\x02N\x04
7 # \xfc\ x02Nux \x0b\x00\x01\x04\xe8\x03\x00\x00\x04\xe8\
8 # x03\x00\x00\xcc\xfd ]\ xb347 \x92\xa0\x07 ˆ\ xf7\xfc\x8ac
9 # ....

10 set_robot (" katana ", "xml", "<Robot name= ... ")
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Sensors are actually organized in the same way as robots; hence, for demonstration and
for the sake of simplicity the standard OpenRAVE sensor description format was utilized to
model and, thus, to describe the capabilities of real sensor systems. The sensor description
in Lis. 5.3, for example, is equivalent to the description of Hokuyo URG-04LX-UG01 laser
scanner, in the data-sheet [254].

Listing 5.3: Accessing column-family sensors
1 get_sensor ();
2 # [" geovision :GV - FER5302 ", " hokuyo : URG_04LX_UG01 ", " sharp : GP2Y0A41SK0F ", ...
3 get_sensor (" hokuyo : URG_04LX_UG01 ");
4 # OrderedDict ([(" xml", "< sensor type=’ BaseLaser2D ’>
5 # <minangle > -120 </ minangle >
6 # <maxangle > 120 </ maxangle >
7 # <maxrange > 4</ maxrange >
8 # <resolution > 0.36 </ resolution >
9 # <scantime > 0.10 </ scantime >

10 # </sensor >") ])

As it is furthermore visible, the column-families for robots and sensors contain only a little
amount of data if it is compared with the amount of sensors that are actually used within a
local environment model (see the next section). The reason for this was already described
within the concept in Sec. 3.1. Sensors, robots, locations, and objects are only placeholders
for a certain type or class of entity, which is put into context and associated with additional
information by the hierarchical organized column-family complex (see Sec. 3.1.2). As it
is shown in the listing below, there might be multiple different Youbots or Hokuyo laser
scanners, but each of them points to a certain sensor or robot description, which is identified
by the entries type and key.

Listing 5.4: Accessing column-family complex
1 get_complex ();
2 # ["*" , ... , " cam_g28d ", ... , " hall1 ", ... , " hokuyo_8502 ", .. " plant ", ... ,
3 # " youbot_1kfe ", " youbot_29tg ", " youbot_8502 ", " youbot_x7e1 ", " youbot_xk99 "]
4 get_complex (" hokuyo_8502 ");
5 # OrderedDict ([(" base", " youbot_8502 ") ,
6 # (" key", " hokuyo : URG_04LX_UG01 ") ,
7 # (" link", "base ") , # == part of the robot
8 # (" master ", "http :// youbot_8502 :13675") ,
9 # (" orientation ", "0.9 0 0 0.9") ,

10 # (" topics ", ["/ scan", "/ scaninfo "])),
11 # (" translation ", "0.3 0 0.1") ,
12 # (" type", " SENSOR ") ])

As it is also visible, every complex entry also has, in addition to supplementary commu-
nication parameters, a relative position to another complex base. For instance, the sensor’s
position in the listing above is attached with a certain translation and orientation to the
base of complex entry with key youbot 8502.

In order to deal with these hierarchies, there are two functions defined: pred and succ
(see Lis. 5.5), which stand for predecessor and successor. While there is currently only
one predecessor allowed, which is defined by the complex entry base, an entity can have
multiple successors. Thus, different complex entries can point to the same origin, such as
multiple sensors can be attached to one robot.

The listing below emphasizes this situation with multiple different successors. The com-
plex entry for * thereby denotes the root of the hierarchy (see, therefore, also the example
Fig. 5.1c). It thus can be used as a convention for a common entry point, if there is no
further information on other entries that can be used to build a local environment model
and it is also the only complex entry with no predecessor.
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Listing 5.5: Application of pred and succ for dealing with the hierarchy in column-family
complex

1 pred(" hokuyo_8502 "); # equal to the entry base , see Lis. 5.4
2 # youbot_8520
3
4 succ("*");
5 # [" plant ", " outside_terrain "]
6
7 succ(" plant ", full=True);
8 # [(" hall1 ",
9 # OrderedDict ([(" base", " plant ") , (" translation ", "8 1 0") ,

10 # (" type", " COMPLEX ") , (" info", ...) , ... ])),
11 # (" hall2 ",
12 # OrderedDict ([(" base", " plant ") , (" translation ", "4 13 0") ,
13 # (" type", " COMPLEX ") , (" info", ...) , ... ])),
14 # (" hall3 ",
15 # OrderedDict ([(" base", " plant ") , (" translation ", "23 9 0") ,
16 # (" type", " COMPLEX ") , (" info", ...) , ... ]))]

5.3. Generation of Local World Models

The generation of local world models on the basis of complex entries, as it was described
in Sec. 3.2 and implemented in module plugOpenrave (see Sec. 4.2.2), is handled by one
central function get model. As it is depicted in the listing below, it requires two parameters.
Here, the second parameter is optional as it only defines the recursion depth, or in other
words, the depth of successors is inserted into the model. If no second parameter is passed,
then all successors are integrated into the local model.

Listing 5.6: Generation of local world models
1 help(" get_model ");
2 # get_model :
3 # Generates a OpenRAVE model from " glodel ", based on the passed identifier ,
4 # the int value for recursion_depth is optional ...
5 # Usage : get_model ( string : identifier , int: recursion_depth ) -> OpenRAVE model

Fig. 5.1 shows three examples for reconstructed local world models as OpenRAVE sim-
ulations in different complexity. Every location-specific entry is marked by the blue color,
while entities from column-family objects are highlighted by the green color. The whole
environment as depicted in Fig. 5.1c consists of three halls and an outside terrain, these
complex entries are further segregated into quadrants of equal size, which allows generating
even more fine-grained local world models (see, for example, Fig. 5.4 on page 129).

The reconstructed local world model represents the latest state of the environment that
is stored within the global model. To update the local model, it is therefore required to
subscribe for topics of included robots that are used to publish the current robotic state.
As it was described in Sec. 3.2.1, every real action can thus be replicated within the virtual
world allowing the observation of the effects an action has onto the environment. As it is
shown within the next section, it is more appropriate to subscribe for real sensor data only if
it is required for a certain task, or to minimize communication overhead: yet SelectScript
helps to identify which sensor data is relevant or not.
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"youbot 8025"

"hokuyo 8025"

(a) get model("youbot 8025");

"cam g28d"

"cam 39fq"

(b) get model(pred("youbot 8025")); # == "hall1"

"hall1"

"hall2"

"hall3"

"outside terrain"

(c) get model("*"); # == get model( pred(pred("hall1")) )

Figure 5.1.: Three screenshots of reconstructed local world models. (a) shows the model of
the Youbot with the identifier youbot 8025, which also includes the associated
Hokuyo laser scanner. (b) depicts the reconstructed model of production hall1,
the current predecessor of the shown Youbot in (a). The entire plant along
with its outside terrain and all assembly lines, robots, external sensor systems,
etc. are depicted in (c).

5.4. Application of SelectScript

While the previous sections more or less dealt only with functions that were attached to
SelectScript, the following one is intended to demonstrate the complete capabilities of the
language and how it can be used for information extraction and representation abstraction.

As it was introduced before, the first sub-task covers the identification of a mobile robotic
platform that can be used to accomplish the task of delivering the packet, which is registered
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under the complex identifier cargo a32s within the virtual overlay database. Lis. 5.7 is
therefore used to query for the identifier of a mobile robotic platform. Since complex entries
only possess relative position definitions, at first a local model of the whole environment is
created with the command get model (see also the appertaining screenshot in Fig. 5.1c).
All robots within the generated model are checked if they fulfill the characteristics of being
a mobile robot in idle state. These are ordered according to their Euclidean distance to the
packet that has to be delivered, and the identifier of the first robot is directly returned. If
required, also other parameters such as battery status, size, max load parameters could be
added to the query; or if the robotic platform possesses a manipulator, this manipulator
can be used to grasp the object (check within the simulation), etc.

Listing 5.7: Query for identifying the closes mobile robot in idle state to the target
1 SELECT id(this)
2 FROM get_model ( "*" )
3 WHERE isRobot (this) AND isMobile (this) AND state (this) == "idle"
4 ORDER BY distance (this , " cargo_a32s ") ASC
5 AS value ;
6 # result : youbot_8502

The next step could target the identification of the minimal model containing both enti-
ties: the robot and the packet, namely the complex identifier of the nearest predecessor of
both entities in the hierarchy. Although there are multiple solutions imaginable as well as a
specialized function defined within the host programming language, the listing below shows
a simple way through which this recurring problem can be solved with the possibilities of
SelectScript. A procedure with two input parameters that is based on the previously
described predecessor function was therefore defined. It applies the basic recursion strategy
that was described in Sec. 4.3.4.1 on page 114 to search for a common predecessor of both
entities that is not equal to the global source of the complex hierarchy. Within the IF
expression, it is evaluated whether the search was successful or not; if not, then the global
source identifier * is returned as the result. Remember, the result of the last statement
defines the return value of a script or procedure.

Listing 5.8: Search for the closest common predecessor identifier
1 MIN_MODEL_ID = PROC(source , target ) : (
2 ID = SELECT parent [this] FROM [0 ,1]
3 WHERE parent [0] == parent [1]
4
5 START WITH parent = [ source .this , target .this]
6 CONNECT BY parent [this] = pred( parent [this ])
7 STOP WITH pred( parent [this ]) == "*"
8
9 LIMIT 1 # limit of one , because one result is sufficient

10 AS list; # result as a list
11
12 IF ( ID != [], # if: the result is not empty
13 ID[0,-1], # then: return the last element within the list
14 "*"); # else: return the main entry id ( entire model )
15 ); # end of PROCEDURE

The procedure above is used within the following listing to identify the closest predecessor
of the robot and its target, and its result is used to reconstruct the smallest local environment
that includes both entities. The positions of the robot and the target objects within the
newly created model are printed out by the last two function-calls.
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Listing 5.9: Generating the minimal local model with the robot and its cargo
1 robot_id = " youbot_8502 "; # id of the previously identified robot
2 target_id = " cargo_a32s "; # id of the target for the transport to perform
3
4 model_id = MIN_MODEL_ID ( robot_id , target_id ); # plant , the successor of
5 # hall1 , hall2 , and hall3
6
7 get_model ( model_id ); # generate a new local environment model
8
9 print ( " source position :", position ( robot_id ) /*[x, y, z]*/ );

10 print ( " target position :", position ( target_id ) /*[x, y, z]*/ );
11 # source position : [12.0 , 3.5 , 0.65]
12 # target position : [11.5 , 20.5 , 0.0 ]

The following expression demonstrates how a local environment model can be simplified
or cleaned up, if necessary. The resulting model only contains elements associated with
location and the previously identified Youbot. All of the other previously included objects,
sensors, and robots are filtered out. The variable environment is thereby associated with the
OpenRAVE simulation environment. Whenever environment is applied within a script, it is
used to access the current simulation environment. By assigning the result of a query to this
variable, the current state of the simulation environment itself and, thus, its visualization
is changed as well. But it is also possible to create other OpenRAVE environments by
assigning them to other variable identifiers than environment. In this case, clones of the
existing environments are generated, which can be used in parallel for different purposes.
The generation of new OpenRAVE simulation environments is defined by the keywords AS
environment (see the last line in the listing below).

Listing 5.10: Filtering the local environment model
1 environment = SELECT this
2 FROM environment
3 WHERE isLocation (this) OR id(this) == robot_id
4 AS environment ;

The next procedure demonstrates how recursive queries can be used to identify a path
from the current position of the robot to the position of the target object or, in other words,
to check if a path to the location of the target object exists. The program below represents
a simplified version to the program that was published in [11]. The first SELECT statement
is used to generate a list that defines the directions into which a robot can move, based on
the passed value for the parameter step width.

The second SELECT searches a path from the source position to the position of the target
object. It therefore literally moves the virtual robot within the virtual environment into all
directions, which were generated by the first SELECT statement. To speed up the search, an
optimization method that was introduced in Sec. 3.3.2.3 on page 84 and that is defined by
the keyword UNIQUE is used. The search process is disrupted if a correct path is identified,
if the target position cannot be reached anymore with the remaining number of steps, or
if a collision between the robot and its environment occur. The result of this procedure
is a list of x,y coordinates. (See also Fig. 5.2a, which depicts a screenshot of the cleaned
up minimal local environment model (top-view) along with the traced positions that were
visited during the search (red) and the identified path (black)).

The identified trajectory has a length of 150 steps. This kind of reasoning can surely be
used for path planning, but there are various different kinds of algorithms that are much
more elaborate and can solve this problem in a more efficient way. As mentioned earlier,
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Listing 5.11: Test for reachability
1 TEST_REACHABILITY = PROC(robot , target_pos , steps , step_width ) : (
2 # generate a list with directions as [x,y] coordinates
3 directions = SELECT [x.this , y.this]
4 FROM x=[ step_width .this , -step_width .this ,0] , y=x
5 WHERE [x.this , y.this] != [0 ,0]
6 AS list;
7
8 SELECT (this+ cur_pos )
9 FROM directions

10 WHERE target_pos .this == move(robot , this+ cur_pos )
11
12 START WITH cur_pos = position (robot ,0 ,2) , level = steps .this
13 CONNECT BY UNIQUE
14 level = level -1, cur_pos = move(robot , cur_pos +this)
15 STOP WITH distance ( target_pos ,this+ cur_pos ) > step_width .this* level
16 OR checkCollision ( robot )
17 LIMIT 1 # one identified path is sufficient
18 AS list;
19 ); # end of PROCEDURE
20
21 path = TEST_REACHABILITY ( robot_id , position (target_id , 0, 2) , 150 , 0.25 );
22 #[[12.25 , 3.75] , [12.50 , 4.00] , [12.75 , 4.25] , [13.00 , 4.50] , [13.25 , 4.75] ,
23 # [13.50 , 5.00] , [13.75 , 5.25] , [14.00 , 5.50] , [14.25 , 5.75] , [14.50 , 6.00] ,
24 # [14.75 , 6.25] , [15.00 , 6.50] , [15.25 , 6.75] , [15.50 , 7.00] , [15.75 , 7.25] ,
25 # [15.50 , 7.25] , [15.25 , 7.00] , [15.25 , 7.25] , [15.00 , 7.00] , [15.00 , 6.75] ,
26 # [15.25 , 6.50] , [15.50 , 6.75] , [15.75 , 6.50] , [16.00 , 6.25] , [16.25 , 6.00] ,
27 # [16.50 , 5.75] , [16.75 , 5.50] , [17.00 , 5.75] , [17.25 , 5.50] , [17.50 , 5.75] ,
28 # [17.75 , 5.50] , [18.00 , 5.75] , [18.25 , 6.00] , [18.50 , 5.75] , [18.75 , 6.00] ,
29 # [19.00 , 6.25] , [19.25 , 6.50] , [19.50 , 6.75] , [19.75 , 6.50] , [20.00 , 6.75] ,
30 # ......

scripts can also be used to request the needed input to an algorithm or system in a desired
format. The following query in Lis. 5.12, for example, generates an occupancy grid map
at a certain height and with a certain resolution, which contains only task-relevant entities
and that can be either used for later localization or used as an input for a path planning
algorithm. (See the resulting map in Fig. 5.2b.)

Listing 5.12: Abstractions of further environmental representations
1 get_model ( model_id ); # restore minimal local model
2
3 SELECT this FROM environment
4 WHERE isLocation (this) OR isObject (this)
5 AS occupancygrid ( resolution (" hokuyo_8502 "), # get scanner resolution
6 position (" hokuyo_8502 ", 2, 3) ); # get z position

A simple change of the desired format, followed by the keyword AS, results in completely
different environmental abstractions. In addition to a simple textual representation as
list, table-like dictionaries, etc., the result of a query can also be requested as a quadtree
Fig. 5.2c, as an octomap Fig. 5.2e with the height of the Youbot. But it is also possible
to generate something totally different, which was actually hard to grasp, such as a map
showing the sensor coverage of an area Fig. 5.2d. Such a combination of a sensor coverage
map and an occupancy grid map could be used to identify optimal paths in terms of external
surveillance. Another method could apply to historical positions of robots from previous
trajectories to derive histograms showing highly frequented areas that could be avoided by
the path planning algorithm.
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(a) Traced reachability test (b) AS occupancygrid

(c) AS quadtree (d) AS sensor map

(e) AS octomap

Figure 5.2.: Generated results of SelectScript queries, while (a) shows the result of
Lis. 5.11, all the other figures depict results of Lis. 5.12 in different request
formats.
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Increasing localization accuracy by applying external sensor systems could be accom-
plished by the simple method that is depicted below in Lis. 5.13. It is used to identify all
robots that are currently in the detection area of a sensor, the result is grouped by the
robot identifiers themselves, as printed out in the last lines of the snippet.

Listing 5.13: Identifying combinations of robots and their observing sensor systems, the
result is grouped by the robot identifiers

1 SELECT id( sensor .this)
2 FROM robot = environment , sensor = environment
3 WHERE isRobot ( robot .this) AND isSensor ( sensor .this) AND
4 isSensing ( sensor .this , robot .this)
5 GROUP BY id( robot .this)
6 AS list;
7 # { " katana_12e4 ": [" cam_q17b "], " youbot_4567 ": [" cam_8502 ", " cam_4389 "],
8 # " youbot_2389 ": [" cam_p15c ", " hokuyo_b9f5 "], " katana_96aa ": [" cam_q17b "],
9 # " youbot_8502 ": [" cam_g28d "] }

But the same can also be accomplished online for one robot, which requires knowledge
about its observers so that external sensor systems can be used for a better localization or
to monitor the space that will be entered by a robot in the future. The example in Lis. 5.14
therefore contains four statements: The first SELECT statement is only used to store all
sensor identifiers of the local environment model within a list, which is then used in the
second procedure to identify those sensors that are currently monitoring the robot with
the identifier that is stored in robot id. This procedure is then registered with a unique
identifier, a repetition time for checking of 0.5 s, and a procedure that is called, if the result
of the query changes. This is also the reason for the different time-stamps that are printed
out at the end of Lis. 5.14, as it was described previously in Sec. 3.3.1.2.4; the callback
procedure is only called if the result changes. Thus, the last state of a query is persistent
as long as the callback procedure is not called (which reduces the communication effort
tremendously). This process is better visualized in Fig. 5.3 from two perspectives, where
only those sensors are rendered that are monitoring the certain Youbot at the moment.

Listing 5.14: Defining a simple situation in SelectScript and reacting onto occurred
changes by applying a callback mechanism, see the rendered result in Fig. 5.3

1 sensors = SELECT this
2 FROM environment
3 WHERE isSensor (this)
4 AS list;
5
6 SENSOR_PROC = PROC: SELECT id(this), master (this), topics (this)
7 FROM sensors
8 WHERE isSensing (this , robot_id )
9 AS dict;

10
11 CALLBACK = PROC(msg): print ("time:", get_time () , "msg:", msg.this);
12
13 # unregister_callback (" robot_surveillance ");
14 register_callback (" robot_surveillance ", SENSOR_PROC , 0.5 , CALLBACK );
15 # time: 2.0 msg: [{" id ": " cam_8502 ", " master ": "http :// cam_8502 :13675" ,
16 # " topics ": ["/ camera /info", "/ camera / image_rgb ", "/ cam ...
17 # time: 5.5 msg: [{" id ": " cam_4398 ", " master ": "http :// cam_4398 :13223" ,
18 # " topics ": ["/ camera /info", "/ camera / image_rgb ", "/ cam ...
19 # ...
20 # time: 39.5 msg: []
21 # ...
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(a) View from inside hall 1 (b) Top-view

Figure 5.3.: Snapshot of the result of Lis. 5.14 from two perspectives, rendering only sensor
systems that have Youbot with identifier youbot 8502 in their detection range

The same method can also be used to abstract more specific and local models, such as
defined Lis. 5.15. It is used to dynamically generate smaller environment models that only
contain elements that are in direct vicinity to the moving robot. The result for different
points in time is shown in Fig. 5.4. In the same way, smaller maps can be generated as well,
which change according to the dynamic changes of the environment.

Listing 5.15: Another method for dynamically generating local environment models, see the
result in Fig. 5.4

1 MODEL_PROC = PROC: SELECT this
2 FROM environment
3 WHERE distance (this , robot_id ) < 4
4 AS environment ; # or AS occupancygrid ... or AS ...
5 register_callback (" model_change ", MODEL_PROC , ...

Figure 5.4.: Dynamically generated local environment models for different points in time,
containing only elements that are in direct vicinity to the moving robot (see
script in Lis. 5.15)

The more complex example in Lis. 5.16 below shows the application of temporal variables
and, as previously mentioned in Sec. 4.3.2.1 on page 107, demonstrates that nesting of
queries is allowed nearly everywhere. This script is intended to identify mobile robots that
are for 2 s within the safety margin of the moving Youbot. Thus, only if a foreign robot
was for the entire 2 s within the safety margin, the callback is triggered. The script is also
stored as a procedure and fires its results via the previously presented mechanism. The first
variable is a temporal variable, which stores the result of the query (all mobile robots within
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a certain range to the current position of the Youbot) for 5 s. Within the second query,
how the values of the last 2 s are accessed is shown. As it was described in Sec. 3.3.1.3 on
page 80, getting the value for a certain point in time requires a positive value to be included
into curly braces, for all values the braces have to be empty; and without braces, only the
last recent value is returned (similar to an ordinary variable). The result of the second
query is a dictionary (default representation), with the identifiers and current positions of
robots that have been within the safety region of the mobile robot since 2 s in total.

Listing 5.16: Application of temporal variables to identify other robots within the safety
area to the moving Youbot

1 NEAR_ROBOTS = PROC: (
2 ROBOTS {5.0} = SELECT this
3 FROM ( SELECT this
4 FROM environment
5 WHERE isRobot (this) AND isMobile (this) AND
6 id(this) != robot_id
7 AS list )
8 WHERE distance (this , robot_id ) < 4
9 AS list;

10
11 SELECT id( robot .this), position ( robot .this)
12 FROM robot = UNION ( NEAR_ROBOTS { -2.0} )
13 WHERE NEAR_ROBOTS { -2.0} == ( SELECT this
14 FROM NEAR_ROBOTS { -2.0}
15 WHERE robot .this in this
16 AS list );
17 );
18 register_callback (" near_robots ", NEAR_ROBOTS , 0.1 ...
19 # time: 0.0 msg: []
20 # time: 43.7 msg: [{" id ": " katana_86aa ", " position ": [17.64 , 18.30 , 0.32]}]
21 # time: 44.5 msg: [{" id ": " katana_12e4 ", " position ": [16.81 , 16.85 , 0.32]} ,
22 # {" id ": " katana_86aa ", " position ": [17.64 , 18.30 , 0.32]}]
23 # ...

Finally, the robot arrived at the target position near the packet that has to be transported.
The code in Lis. 5.17 generates a local model that contains a rack, which is the predecessor
of the packet and also contains other packets stacked within.

Listing 5.17: Generating a local model for the cargo environment
1 get_model ( pred(" cargo_6h20 ") ); # creating a local model
2 set_color ( " cargo_6h20 ", [1 ,0 ,0] ); # change color of object to red

It is easy to see that the red object cannot be directly grasped; instead, it requires
identifying an action sequence for removing objects from above and placing them elsewhere
before the actual target object can be grasped and placed onto the Youbot’s transport
platform (and probably putting the other objects back into the rack). As it was described
in Sec. 2.3.4.1.10 and Sec. 2.3.4.1.11, such a type of problem can be easily solved by logical
reasoning. It is thus often presented as an example for Prolog [248] or GOLOG, but it
requires a logical representation of the environment. As it was also discussed earlier in
Sec. 3.3.1.2.6, the ability of deriving such representations is mandatory as it is already
encoded within the virtual world, and extracting the required facts is actually as easy
as abstracting different types of maps or 3D representations. The only requirement is to
request the result as a logical representation, by applying the keywords AS prolog, as it is
done within the example in Lis. 5.18.
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"cargo ptt4"

"cargo 6tt2"

"cargo 76ny"

"cargo 1090"

"cargo 8892"

"cargo j774"

"cargo 29ok"

"cargo a32s"

"cargo 6h20"

"cargo ki7z"

"cargo uj65"

Figure 5.5.: Screenshot of the generated local model from Lis. 5.17, which contains the pre-
decessor of the packet with identifier cargo 6h20 as well as all of its successors

Listing 5.18: Deriving logical environmental representations (AS prolog)
1 SELECT above (a.this , b.this), below (a.this , b.this),
2 to( position (a.this), "pos"),
3 to( volume (a.this), "vol"), to( within (a.this , b.this), "in")
4 # left_of (a.this , b.this), right_of (a.this , b.this),
5 FROM a= environment , b= environment
6 WHERE within ("rack", a.this)
7 AS prolog ;

The result of this query is depicted below in Lis. 5.19, and it shows a list of facts that
can directly be fed into Prolog knowledge base, as it is done in Lis. 5.20. The result set in
the listing below shows clearly that not everything is converted into a logical expression.
Rather, clauses are generated only if the result of a function called within the SELECT
expression does not evaluate to false or an empty list. The built-in function "to" is thereby
only used to rename some of the result expressions. Facts about the left and right relation
are commented out for the sake of readability, but it is possible to generate these facts also
based on the current viewport (allowing to take over somebody else’s perspective) or based
on global coordinates.

The Python example in Lis. 5.20 below shows a simple method of how the facts, which
were extracted from the local environment model, can be inserted into a Prolog knowledge
base and the last line shows how this knowledge base can be queried in the Prolog typical
manner.
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Listing 5.19: Generated Prolog clauses as the result of the query in Lis. 5.18
1 result = [ " above ( cargo_29ok , cargo_1090 )", " above ( cargo_29ok , cargo_j774 )",
2 " above ( cargo_6h20 , cargo_6tt2 )", " above ( cargo_6h20 , cargo_76ny )",
3 " above ( cargo_6h20 , cargo_8892 )", " above ( cargo_76ny , cargo_6tt2 )",
4 " above ( cargo_8892 , cargo_1090 )", " above ( cargo_a32s , cargo_1090 )",
5 " above ( cargo_a32s , cargo_8892 )", " above ( cargo_a32s , cargo_j774 )",
6 " above ( cargo_j774 , cargo_1090 )", " above ( cargo_ki7z , cargo_6tt2 )",
7 " above ( cargo_ki7z , cargo_76ny )", " above ( cargo_ptt4 , cargo_6tt2 )",
8 " above ( cargo_uj65 , cargo_6tt2 )", " above ( cargo_uj65 , cargo_ptt4 )",
9

10
11 " below ( cargo_1090 , cargo_29ok )", " below ( cargo_1090 , cargo_8892 )",
12 " below ( cargo_1090 , cargo_a32s )", " below ( cargo_1090 , cargo_j774 )",
13 " below ( cargo_6tt2 , cargo_6h20 )", " below ( cargo_6tt2 , cargo_76ny )",
14 " below ( cargo_6tt2 , cargo_ki7z )", " below ( cargo_6tt2 , cargo_ptt4 )",
15 " below ( cargo_6tt2 , cargo_uj65 )", " below ( cargo_76ny , cargo_6h20 )",
16 " below ( cargo_76ny , cargo_ki7z )", " below ( cargo_8892 , cargo_6h20 )",
17 " below ( cargo_8892 , cargo_a32s )", " below ( cargo_j774 , cargo_29ok )",
18 " below ( cargo_j774 , cargo_a32s )", " below ( cargo_ptt4 , cargo_uj65 )",
19
20
21 "in(rack , cargo_1090 )", "in(rack , cargo_29ok )",
22 "in(rack , cargo_6h20 )", "in(rack , cargo_6tt2 )",
23 "in(rack , cargo_76ny )", "in(rack , cargo_8892 )",
24 "in(rack , cargo_a32s )", "in(rack , cargo_j774 )",
25 "in(rack , cargo_ki7z )", "in(rack , cargo_ptt4 )",
26 "in(rack , cargo_uj65 )",
27
28
29 "pos( cargo_1090 , [ -2.33 , 1.25 , 1.77]) ",
30 "pos( cargo_29ok , [ -2.52 , 1.28 , 1.38]) ",
31 "pos( cargo_6h20 , [ -2.02 , 1.28 , 1.37]) ",
32 "pos( cargo_6tt2 , [ -1.76 , 1.25 , 1.72]) ",
33 "pos( cargo_76ny , [ -1.88 , 1.25 , 1.58]) ",
34 "pos( cargo_8892 , [ -2.21 , 1.26 , 1.59]) ",
35 "pos( cargo_a32s , [ -2.29 , 1.28 , 1.37]) ",
36 "pos( cargo_j774 , [ -2.45 , 1.25 , 1.58]) ",
37 "pos( cargo_ki7z , [ -1.80 , 1.26 , 1.37]) ",
38 "pos( cargo_ptt4 , [ -1.58 , 1.29 , 1.58]) ",
39 "pos( cargo_uj65 , [ -1.53 , 1.29 , 1.37]) ",
40
41
42 "vol( cargo_1090 , 0.004) ", "vol( cargo_29ok , 0.002) ",
43 "vol( cargo_6h20 , 0.002) ", "vol( cargo_6tt2 , 0.002) ",
44 "vol( cargo_76ny , 0.004) ", "vol( cargo_8892 , 0.004) ",
45 "vol( cargo_a32s , 0.002) ", "vol( cargo_j774 , 0.002) ",
46 "vol( cargo_ki7z , 0.002) ", "vol( cargo_ptt4 , 0.002) ",
47 "vol( cargo_uj65 , 0.002) " ]

Listing 5.20: Proof of concept, querying the Prolog knowledge base
1 from pyswip import Prolog # interface to SWI Prolog
2
3 prolog = Prolog () # generate a new instance and
4 for fact in result : # feed in the facts stored in variable result
5 prolog . assertz (fact)
6
7 print list( prolog . query (" above ( cargo_6h20 , X)"))
8 # [ " cargo_6tt2 ", " cargo_76ny ", " cargo_8892 " ]
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5.5. Discussion

Although all entities within the evaluation were simulated and, thus, only synthetical data
was applied, it was sufficient to highlight integral parts of the developed concept and its
implementation. Nevertheless, it indicates that it is indeed possible to treat a smart en-
vironment as if it would be a database system, but it requires from all entities within the
environment to store their data accordingly. Other reoccurring tasks can be solved with
the help of simple SelectScript queries. The environment and its inhabitants as well as
data might change, but the queries remain and will generate other results, depending on
the environmental configuration. This enables an entity to operate in new surroundings,
whereby it only has to keep its bunch of predefined queries — the results are generated
automatically without further knowledge or intelligence. It thus contrasts the imperative
way, in which a system would have to discover and identify relevant data and information
manually and try to transform them into the desired representation.

Sensor data access, the earlier mentioned fusion and service capabilities have been left
out, but the system so far can be used as a basis for various further extensions. Sensor
measurements can only be interpreted and evaluated with additional context information
and the system allows not only the access to this information freely but also theaddition of
new ones. For example, the “service” of identifying and localizing a person with the help
of existing cameras and laser scanners (mounted onto mobile robotic platforms) could be
easily achieved, if current positions and orientations of sensor systems are known and if
appropriate algorithms are applied:
1 SELECT position (this)
2 FROM environment
3 WHERE isPerson (this) and id(this) == " person of interest "
4 AS value ;

Such extensions could also be hidden behind the query language too, similar to the
abstraction of new representations. For example, the generation of a map required three
intermediate steps: first the abstraction of a list of objects, which is then translated into a
new “clone” environment, onto which the filters are applied.

Furthermore, any of the implementations can be replaced without affecting the entire
system at all, such as the underlying database infrastructure, the communication interfaces
(ROS), the simulation environment, applied filters, etc. The only thing that has to remain
constant is the language that is used to assemble all of the underlying mechanism in order
to extract the required information.

Another aspect, also mentioned earlier, is that the language itself can be used as some
kind of lingua franca to translate between different world models the robotic systems might
work with, since robots might possess their own and exclusive internal “simulation” of
the outside world. The only thing required is a SelectScript interpreter on top of that
simulation environment. The additional overhead caused by the interpreter in this case can
be neglected, the Python interpreter is constructed with less than 500 lines of code, or the
next version interpreter developed in C (and discussed within the next chapter) requires
less than 32 kB program memory and can therefore also run on micro-controllers.

A generated environment model can be built and maintained locally, but the concept
allows it also to perform all steps remotely, in such a way that an entity only has to send its
request script to a certain instance that generates all results for it and sends them back in
the desired format defined within the query. This allows conserving resources and executing
computationally heavy tasks on a “proxy”, while the actual robotic systems can get along
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with only little computational power (and only with its required maps and information).
Furthermore, this is also possible with registered callbacks, which allows to evaluate “situ-
ation” procedures externally and to retrieve a message, if a certain environmental state has
changed.
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6. Summary & Outlook

Concerning the main objectives of this thesis, which were stated within the first chapter:

. . . develop a concept and mechanisms for declarative information gathering, which enable
an entity to access any kind of information (2. & 3.) in any kind of desired format (4.)
from an instrumented environment, without the need for extraordinary intelligence (1.).

The solution for this can be summarized in two sentences. A first, by making all data ac-
cessible by applying a cloud-based approach with a common hierarchy, from which required
parts are translated into precise 3D rigid-body simulation of the environment. Secondly,
from this simulation all required information is extracted or abstracted, whereby the re-
quired kind of information and desired formats are defined with the help of declarative
query language.

Concerning the four sub-problems that were described in Sec. 1.4:

1. Lack of Intelligence: As it was mentioned earlier, none of the three conceptual layers
requires some kind of intelligence nor does any system within a SmE. It is thus a
solution for the problems of “Robotics Revolution” (cf. Sec. 1.3) and for the near
future, which would even enable a robotic vacuum cleaner to access the information
of its surroundings and does, therefore, not require systems, which were described
within Sec. 1.2 (“Robotic Evolution”).

2. Holistic Access to Information . . . : The declarative aspects of the developed query lan-
guage and the systems below, which encapsulate system descriptions, online and his-
toric data, as well as context enable a system to access the first four layers that were
introduced in Chap. 2 (i. e., sources, data, information, and knowledge).

3. . . . and Memory Externalization: Instead of storing possibly relevant data locally on a
system with its own format, the concept of the global world model allows the access
to all kind of historic data, which different systems (producers) store for their own
purposes. The only difficulty thereby is to enforce all systems to store their data
according to a common standard and according to a global hierarchy.

4. Reconfiguration and Representation: The declarative solution allows defining what kind
of information is required and also the desired format. The entire environment might
change continuously and, thus, also affect the generation process of information itself,
but all this is hidden behind an abstract automate that is responsible for generating
the information.

All of this was accomplished by separating the problem solution into three distinct layer-
s/steps: a global world model, a local environment model, and a declarative query language.
Each of these layers provide a sub-concept and the developed implementations can be used
by their own, whereby these prototypes provide interchangeable solutions. Interchangeable
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in this context means that the applied database system or the simulation environment can
be replaced by others.

Although Cassandra has been mentioned in the literature to be an ideal storage for
sensor data and for future robotics memory management (cf. [214, 213, 212]), it was firstly
introduced to robotics and SmEs with the developed systems in [12] and [10]. These systems
allow to store and query any kind of data, whereby messages are dynamically translated
from the ROS message format into a decomposed Cassandra format. Furthermore, the
decentralized system was applied to implement a hierarchy with a graph-like structure to
represent the global state of an environment, which also allows the addition of context
(e. g., communication, location & time, quantities, etc.) to every “complex” element. It
thus represents the global state of the environment. But this kind of representation is only
useful as a global container; it cannot be used to react onto fast and occurring changes in
the environment, nor does it allow the interpretation of different facts in different contexts.

Therefore, the concept of a local world model has been introduced, and defined as a
precise co-simulation of a smaller part of the surrounding. It is a new idea to translate
parts of the global world model into a scene-graph for a simulation environment, which can
be updated in real-time and that is used to replay real behavior of real entities within a
VM environment model. It enables different kinds of analyses and, thus, also querying and
transformations, which goes far beyond the capabilities a database system (the global world
model). These local environment models were set up on the basis of OpenRAVE, whereby
different extensions have been provided to support various kinds of filtering, querying, and
sensor integration. Of course, however, there is still a lot of work to do, which requires addi-
tional metrics, for completeness, confidence, quality, etc. (as it was discussed in Sec. 3.2.2.2).

All of this is enclosed by a newly developed multi-paradigm programming language called
SelectScript. It does not only support declarative programming, but also structured
programming (in an imperative way) and, if required, by means of support for functions,
loops, and conditional jumps, and various different data types and structures. It is an
embedded and extendable language that can be adapted to become applicable in various
different problem domains. This language on top of the previously developed conceptual
layers is the key element that allows the abstraction of a smart environment with all included
and interconnected entities, similar to an ordinary database system, by applying the same
metaphors. But also in this case, it goes beyond standard SQL-like approach, since it
does not only support to access and query data in standard data types (i. e., boolean,
numeric, string, arrays, tables), but also entities of a running simulation, for 3D models,
or maps. And, as it was demonstrated in Sec. 4.3.3, it is also extendable in this case,
allowing the definition of new request types for information. It has to be mentioned that
the idea of accessing running simulations with the help of a database query language seems
to be something that is totally new and has not been applied before. Furthermore, the
implementation of recursive queries supports the handling of reasoning problems, which, due
to the implementation of different strategies that are also extendable and tweakable, allows
to solve such problems more efficiently than other declarative programming languages, such
as Prolog that only implements one back-propagation algorithm.

The development of one future aspect has already started. In order to make a “frog”
able to access and query any kind of “prey”, the idea of a holistic query and programming
language was extended onto the field of smaller embedded devices, allowing the treatment
of any component of the environment as if it would be a database. Therefore, some aspects
of the language have been rethought, such that the newest version of the language has also
support for new data types such as sets, inline and list comprehension, exception handling,
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loops, and it also includes functional aspects. The idea is not to bring another scripting
language to this area of embedded devices; there already exist projects such as eLUA1,
NanoVM2, PyMite3, or Espurino4, but all of them share similar programming principles
and paradigms, in contrast to SelectScript. The new implementation of the compiler
translates SelectScript code into a bytecode that can be executed on a SelectScript
Virtual Machine (VM), which is implemented in C and also comprises a dynamic type
system.

The implementation of a VM has various benefits in contrast to the previous directly
interpreted version. A faulty script does not affect other programs running on other VMs.
It enables a parallelization by running multiple VMs and it also enables a restricted assess
to the underlying functionality for different users (roles). Functions are still developed in
the host programming language and only linked to the VM, similarly as it was done in
Python, but different functions can now also be added to different VMs.

Since SelectScript also has support for structured programming, entire programs can
also be written, which can be used to control an embedded device. It enables us not only
to update programs without flashing — which is accomplished simply by replacing scripts
— but also to configure a system. Callbacks can be applied to support event handling,
and different scheduling mechanisms can be applied in order to organize the execution of
different scripts on different VMs depending on priority settings.

If it is applicable to embedded systems, it can also be applied to other, larger systems and,
thus, really be used to implement some kind of lingua franca for a distributed smart system.
And instead of subscribing to certain kinds of data/topics, SelectScripts could be used
to define complex events, similar to the introduced callback mechanisms. By applying the
global and local world model into the compilation and distribution of scripts, it should thus
be possible to identify relevant nodes/entities and to shift to them the execution of parts
of a script.

1embedded LUA: http://www.eluaproject.net
2embedded Java: http://www.harbaum.org/till/nanovm/index.shtml
3Python on a Chip: https://wiki.python.org/moin/PyMite
4JavaScript for Micro-controllers: http://www.espruino.com
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A. Appendix

A.1. An Essay on Programming Paradigms
If we think of programming as a general concept for expressing problems in terms of an
Input/Output system and by what is given, then three general paradigms can be differen-
tiated. Interestingly, these three “methods of resolution” directly mirror the three concepts
of logical reasoning, namely deduction, induction, and abduction (cf. [77]).

Imperative Programming & Deduction This first (and mostly applied) paradigm can
be defined as:

Program(Input)⇒?
Thereby, the Input data is known or given and the Program is defined in terms of trans-
formation steps in order to generate the “unknown” Output data. Other paradigms such
as structured, procedural, aspect-, feature-, and object-oriented programming can be asso-
ciated primarily to this paradigm, since its main concern lies in the definition of the control
flow. In other words, we are deducing the result, based on a set of rules and a given case.

Declarative Programming & Induction It is mostly assumed to be the opposite of the
previous paradigm, as it can be defined as follows:

?(Input)⇒Output

It provides some form of notation or description of the Input and Output, whereby the
question mark does not represent the abstract concept of a Program in terms of a control
flow. But, instead, an abstract machine, reasoner, a (search) algorithm, etc. is applied that
generates a result on the basis of the formal description of the Input and Output. It is
thereby also wrong to consider Input & Output as some form of data only, as it rather
defines both values and transformations, depending on the applied “concept”. For example,
in functional programming the IO is expressed in terms of mathematical notion of functions
and parameters, in logical programmming as facts and rules, in “relational” programming
as entities and relations, or in symbolic programing as symbols and formulas, etc. Thus,
both of them can be generated, just as in Prolog it is possible to resolve on the basis of facts
and rules, if a certain fact is true/false or under which circumstances it becomes true/false,
but it is also possible to query for a set of successive rules or to derive new ones.

Thus, the same is true for induction, where a case and the results are known and the goal
lies in the identification of rules, which are required to generate the result on the basis of
the given case.

Probabilistic Programming & Abduction For the sake of completeness, the last com-
bination that has been left out so far is the following, which has recently been denoted as
the probabilistic programming paradigm:

Program(?)⇒Output
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In this case, the Program cannot be considered as a strict set of transformation steps
either, which are simply applied backwards in reverse order to get from a known Output to
its Input. Instead, the Output here has to be considered as some form of observation and the
Program as some kind of probabilistic model. This model can be a vague description of a
system/calculation/control-flow by using background knowledge, beliefs and assumptions,
possible interactions between elements or transitions between states, etc. Here, each of
these aspects is described in terms of distributions and probabilities, which do not have to
be defined in particular. Literally spoken, the Program itself is a huge sample generator for
probability distributions that cannot be described mathematically. Hence, having a model
and some observations allows drawing inferences about the Input. Thereby, Input does not
necessarily define input data, but also model parameters, probability functions, etc.

The most prominent example is the language “Picture” [129], which was developed in
2015 at the Massachusetts Institute of Technology. 50 lines of Picture code that describe
believes about human faces and projections were sufficient to solve the problem of inverse
graphics, in which the most likely 3D models of human faces were inferred on the basis of
given 2D photos (thus, the actual Output).

Surprisingly, this kind of problem solving directly matches abduction, where the result is
known as well as the rules that might lead to it and the goal is to identify the original case.
Compared to the other concepts, the vaguest “results” are generated with this method.
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A.2. Reasoning about Filter-Sequences

Another aspect that has not been mentioned so far is concerned with the dynamic assess and
combination filters and fusion functions of sensor data as it is described in the work of Tino
Brade [41, 42]. He proposes a failure semantic for distributed sensing in order to encapsu-
late the individual failure characteristic. Based on the thesis of Sebastian Zug [231], which
identified a set of 14 failure classes (outliers, offset, saturation, etc.), Brade had derived a
mathematical model describing the effect of a component (sensor, filter, failure detector)
on amplitude and occurrence probability related to each failure class. Similarly, the fault
tolerance level of the application is individually defined. It enables a developer (at design-
time) or a monitoring component (at runtime) to evaluate the applicability of a processing
chain (i. e., filters, detectors) automatically. Based on the defined algebra, such process-
ing changes could also be generated on demand with the help of simple SelectScript
programs.

The following two snippets are only intended as examples to demonstrate the principle
of how such sequences can be generated; it is not represented in the current research by
Tino Brade and Sebastian Zug. The first assignment in Lis. A.1 defines a list with simple
arithmetic expressions, which are used in the following SELECT query. The goal is to identify
a sequence of applicable functions that transform start value x, defined with the START WITH
expression along with the number of operations allowed, into a value as it is defined within
the GOAL procedure. The OPS procedure list defines the applicable set of transformations,
whereby the x value is substituted by the numerical values of x are calculated during the
evaluation of the script. The first five results of that query are depicted within the comments
below, with all intermediate operations and results.

Listing A.1: Dynamic generation of operation sequences, part 1
1 OPS = [[ PROC: x+1. , "+ 1"], [PROC: x -1. , "- 1"], [PROC: x+x, "+ x" ],
2 [PROC: -x, "neg"], [PROC: x/2. , "/ 2"], [PROC: sqrt(x), "sqrt"],
3 [PROC: sin(x), "sin"], [PROC: cos(x), "cos"], [PROC: tan(x), "tan"]];
4
5 GOAL = PROC: this [0] < 0.5 AND this [0] > 0.4999;
6
7 SELECT this [1] , this [0]
8 FROM OPS
9 WHERE GOAL

10
11 START WITH x = 22, step = 5
12 CONNECT BY NO CYCLE # COST this [2]
13 x= this [0] , step=step -1
14 STOP WITH step == 0 # get_time () - start_time >= .1
15
16 ORDER BY len(this) DESC
17 LIMIT 5
18 AS list;
19 #[[ ’+ 1’, 23.0 , ’tan ’, 1.588153083 , ’sin ’, 0.9998493752 , ’/ 2’, 0.4999246876]
20 # [’+ x’, 44, ’neg ’, -44, ’cos ’, 0.999843308647691 , ’/ 2’, 0.499921654323845]
21 # [’+ x’, 44, ’sin ’, 0.0177019251 , ’cos ’, 0.9998433250 , ’/ 2’, 0.49992166250]
22 # [’+ x’, 44, ’cos ’, 0.9998433086 , ’sqrt ’, 0.9999216512 , ’/ 2’, 0.4999608256]
23 # [’+ x’, 44, ’cos ’, 0.9998433086476912 , ’/ 2’, 0.4999216543238456]]

As it is also depicted in the comments above, the script could be further tweaked in such
a way that the STOP WITH expression could contain another condition that allows meeting
real-time requirements. It stops the search, if too much time is consumed. As an additional
element, cost values could be added as a third element to the operations list, indicating the
computational effort. This value could be directly applied in the COST expression, which
would search for cheap sequences first.
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The goal condition was defined by a boundary, which is easier to match than an exact
value. As depicted in the listing below, it can also be used to search for any kind of goal
value. And as the result in the comments below reveals, there exists only one sequence of
at max. 6 operations that can be used to generate a required result of 1.2345 . . .

Listing A.2: Dynamic generation of operation sequences, part 2
1 ...
2 GOAL = PROC: this [0] < 1.23456 AND this [0] >= 1.2345;
3 ...
4 #[[’- 1’, 21.0 , ’sqrt ’, 4.58257569495584 , ’sin ’, -0.9915860810139135 ,
5 # ’- 1’, -1.9915860810139 , ’tan ’, 2.234536338627 , ’- 1’, 1.234536338627]]
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A.3. Publications
Fig. A.1 depicts all relevant publications I have written or co-authored. It can be read as a
timeline, which shows two main areas of my research: Early projects were focused onto the
field of middlewares and architectures for distributed systems as well as on fault/error/fail-
ure detection, which cover the lower layers of the hierarchy that was identified in Sec. 2.2.3.
As it is further visible, there were other contrasting publications that dealt mostly with the
representation of different kind of information and world models. Most of the research that
was referenced in this thesis is depicted on the right part in Fig. A.1.

[15] [13] [2] [23] [14] [22] [5] [16] [19] [20] [4] [17] [18] [1] [3] [21] [9] [7] [12] [10] [6] [11]
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Figure A.1.: Synopsis of my own publications according to the presented literature review
in Fig. 2.15 on page 60, the values of the x labels correspond to the reference
identifier of the publication.

143



144



Bibliography

Publications
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[11] André Dietrich et al. “Reasoning in complex environments with the SelectScript
declarative language.” In: IROS Workshop on Domain-Specific Languages and models
for ROBotic systems (DSLRob-15). Hamburg, Germany, 2015.
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