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Abstract

A decade after it was shown that the orientation of visual grating stimuli can be de-

coded from human visual cortex activity by means of multivariate pattern classification

of BOLD fMRI data, numerous studies have investigated which aspects of neuronal

activity are reflected in BOLD response patterns and are accessible for decoding. How-

ever, it remains inconclusive what are the effects of acquisition resolution and MR field

strength on BOLD fMRI decoding analyses. This thesis is the first to provide empir-

ical ultra high-field (7 Tesla) fMRI data recorded at four spatial resolutions (0.8 mm,

1.4 mm, 2 mm, and 3 mm isotropic voxel size) on this topic — in order to test the hy-

potheses on the strength and spatial scale of orientation discriminating signals. Here

I present detailed analysis, in line with predictions from previous simulation studies,

about how the performance of orientation decoding varies with different acquisition res-

olutions. This study also for the first time investigates the effect of MR field strength

on orientation decoding by comparing classification performance across field strengths

(7T vs 3T) in 1.4 mm, 2 mm, and 3 mm resolutions. The interplay between acquisition

resolution and the time series signal to noise ratio contributing to the effective decoding

is also highlighted in this thesis. The potential of using multiband data acquistion in

multivariate decoding studies to provide fast EPI acquisitions with relatively low signal

losses as compared to parallel imaging techniques has been shown here. Moreover, I

also examine different spatial filtering procedures and its effects on multivariate decod-

ing across different resolutions, across field strengths and in different primary sensory

regions of the brain (visual and auditory cortex). Here I show that higher-resolution

scans with subsequent down-sampling or low-pass filtering yield no benefit over scans

natively recorded in the corresponding lower resolution. The orientation-related signal

in the BOLD fMRI data is spatially broadband in nature, includes both high spatial fre-

quency components, as well as large-scale biases previously proposed in the literature.
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Moreover, I found above chance-level contribution from large draining veins to orien-

tation decoding. Multi-resolution raw EPI data acquired at the 7 Tesla were publicly

released to facilitate further investigation.
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quency components, as well as large-scale biases previously proposed in the literature.

Moreover, I found above chance-level contribution from large draining veins to orien-

tation decoding. Multi-resolution raw EPI data acquired at the 7 Tesla were publicly

released to facilitate further investigation.
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Ein Jahrzehnt, nachdem gezeigt wurde, dass die Ausrichtung visueller Gitterreize durch

multivariates Musterdecodieren ausgelesen werden kann, haben zahlreiche Studien mit-

tels Klassifizierung von BOLD fMRI-Daten untersucht, welche Aspekte die neuronalen

Aktivität in BOLD Antwortmuster reflektiert und zugänglich für die Decodierung sind.

Es ist jedoch nicht eindeutig, was die Wirkung von MR Auflösung und MR Feldstärke

auf die Dekodierung ist. Diese Arbeit ist die erste, die empirische Ultrahochfeld-7T

fMRI-Daten zur Verfügung stellt, die in vier räumlichen Auflösungen aufgezeichnet

(0,8 mm, 1,4 mm, 2 mm und 3 mm isotropen Voxelgröße) wurden, um die Hypothesen

zur Stärke und räumlichen Skala der Orientierungsscheidungssignale zu testen. Hier

stelle ich eine detaillierte Analyse im Einklang mit den Prognosen aus vorherigen

Simulation Studien darüber vor, wie die Leistung der Orientierungsdekodierung mit

verschiedenen Akquisitionsauflösungen variiert. In dieser Studie wurde auch zum er-

sten Mal die Wirkung von MR-Feldstärke untersucht, um die Orientierungsdecodierung

durch Klassifikationsleistung über Feldstärken (7T vs 3T) in 1,4 mm, 2 mm und 3

mm Auflösungen zu vergleichen. Das Zusammenspiel zwischen der Auflösung der Er-

fassung und des Zeitreihe Signal-Rausch-Verhältnisses im Hinblick auf die wirksame

Decodierung wird auch in dieser Arbeit hervorgehoben. Hier wurde das Potential der

Verwendung von Multiband-Datenerfassung in multivariaten Dekodierungsstudien mit

schnellen EPI Akquisitionen gezeigt, die relativ geringe Verluste im Vergleich zu paral-

lelen Bildgebungsverfahren haben. Außerdem habe ich auch verschiedene räumliche Fil-

terungsverfahren analysiert und seine Auswirkungen auf die multivariate Dekodierung

in verschiedenen Auflösungen, über Feldstärken und in verschiedenen primären sen-

sorischen Bereichen des Gehirns (Visueller und auditorischer Kortex) untersucht. Hier

zeige ich, dass höhere auflösende Scans mit anschließender Abwärtsabtastung oder Tief-
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passfilterung keinen Vorteil gegenüber Scans ergeben, die nativ in der entsprechenden

geringeren Auflösung aufgezeichnet wurden. Die orientierungsbezogenen Signale der

BOLD fMRI-Daten sind räumlich von der Art Breitband, das sowohl hohe räumliche

Frequenzkomponenten enthält, als auch niedrig-frequenten Signale. Außerdem fand

ich einen signifikanten Beitrag von großen drainierenden Venen zur Orientierungsde-

codierung. Die rohen EPI Daten in multipler Auflösung, die am 7T erworben wurden,

wurden für weitere Untersuchungen öffentlich zur Verfügung gestellt.
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1. General Introduction

1.1 fMRI and Univariate Analysis

Functional Magnetic Resonance Imaging (fMRI) has been a fast and effective tool for

understanding functioning of the brain in-vivo, by utilizing Blood Oxygen Level Depen-

dent (BOLD) signals. BOLD signals are coupled to the haemodynamic activity of the

underlying neural patterns [Ogawa et al., 1990]. Typically a magnetic resonance image

consists of a three dimensional volumetric representation of the brain, where different

regions of the brain are represented as different intentisites of multiple voxels. A voxel is

a cuboid representing the BOLD signal of the brain at that particular location. Hence

the neural activity of a brain performing a cognitive task is reflected in the local blood

flow estimates (a proxy for local neural processing) and is represented as a modulation

of a voxel intensity in a Magnetic Resonance image over a period of time. A fMRI data

consist of several volumetric MR images of the brain acquired over a period of time,

providing snapshots of the functioning of the brain (in terms of BOLD signal) every

repetition time (TR). The modulation of image intensity of a particular voxel is referred

to as the time series of that voxel and gives an estimate of the temporal haemodynamic

activity in the brain at that particular location. Generally, fMRI analysis involves a

mass-univariate approach to statistical analysis of the individual voxel time series. As

a part of the analysis, the experimenter defines a reference model (experimental design)

of the stimulus (or task) over the period of the experiment. A General Linear Model

(GLM) is fitted to the time-series data of each voxel representing the linear estimation of

the individual voxel activity in terms of the experimental design. It has to be noted that

the BOLD signal is sluggish and temporaly smeared and in order to account for this,

the experimental model is first convolved with an assumed Haemodynamic Response

Function (HRF) before the linear corelation is performed with the fMRI time-series of
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Figure 1.1: Mass-univariate General Linear Model analysis
(A) Voxel intensity variation with respect to time (also known as voxel time-series) (B)
The full model fit (including all experimental conditions in the design) to the recorded
time series data. Contrast of Parameter Estimates (COPE) partial model fit shows
how the model fit to the data considering only the contrast of interest (C) Cluster
of activated voxels in the visual cortex in response to a flickering orientation grating
stimulus

individual voxels. A General Linear model in fMRI context can be expressed as:

Y = Xβ + ε

where Y is the estimated voxel response, X is the pre-defined experimental design, β

represents the model parameters and ε is the error term. The parameter estimates (PE)

of the GLM fitted to the individual voxel data are defined as the set of β values which

minimizes the sum of squared differences of the estimated BOLD response and the

corresponding measured fMRI time-series. To find out whether a voxel is significantly

more responsive to a particular experimental condition over the others, a t-statistic is

performed with the β parameter estimates multiplied with a contrast vector between

the two conditions [Mahmoudi et al., 2012, Poline and Brett, 2012]. Figure 1.1 shows

the basic steps of a Univariate GLM approach of fMRI analysis.
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1.2 Machine Learning Classifiers for analyzing fMRI data

In a recent approach to fMRI analysis, Machine Learning classification algorithms has

been applied to patterns of brain activity across multiple voxels (instead of studying

individual voxels) to differentiate between different experimental conditions. These

analysis procedures are collectively known as Multivariate Pattern Analysis (MVPA).

Though the General Linear Model approach has been the standard fMRI analysis pro-

cedure, it has several limitations for studying the voxels in isolation. The univariate

model analysis ignores any covariance between neighboring voxel activities with respect

to the cognitive task being performed. Hence as a standard step for noise reduction,

spatial smoothing across voxels are performed with gaussian kernels, thus smearing out

the fine-grained spatial patterns that might discriminate between experimental con-

ditions [Norman et al., 2006]. Moreover, a tradition GLM approach tries to find the

voxels which show statitically significant response to experimental conditions. But this

ignores the contribution of the weaker voxel responses to a particular condition, which

might carry important information. However, MVPA approach provides increased sen-

sitivity by analyzing patterns of BOLD activity across voxels, irrespective of the fact

that the voxel responses when studied individually may be non-significant. Thus MVPA

provides a powerful tool to map a particular neural activity (represented as a BOLD

activity patterns) with the corresponding cognitive state of the mind.

A standard MVPA procedure involves some basic steps as displayed in Figure 1.2.

Firstly, a feature selection procedure is performed to choose, a set of voxels which are

of relevance to the cognitive task being performed. For example, for a visual decoding

study, voxels in the visual cortex will be selected. In some cases an univariate fea-

ture selection procedure may be performed to localize the voxels which are significantly

more active than the others. A spatial searchlight algorithm [multivariate approach

Kriegeskorte et al., 2006] is also used where adjacent sets of voxels are exhaustively

tested over the brain for maximum informative content in their patterns of activity and

a selection is made based on that criteria. There are several other methods of feature-
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selection being to reduce the dimensioanality of the data [Norman et al., 2006]. In the

second step, pattern assembly is performed. As shown in Figure 1.2A, the time-series

of the voxels after feature selection are sorted in a manner that at a particular time

point, the activation intensity of the selected voxels are considered to be a pattern and

it is subsequently labeled with the corresponding cognitive task being performed by the

brain at that time. The dataset thus created is partitioned into training and testing

sections. The training dataset consists of labeled patterns of activation of the voxels

(shown in Figure 1.2B) and is provided as an input to a machine learning classification

algorithm, and is known as classifier training. The classifier learns to map the voxel

activities to the provided labels. Then this trained classifier is applied on the unla-

beled testing dataset, and the classification procedure assigns a predicted label for each

time point based on patterns of voxel activities. In the final step of cross-validation

the predicted labels are verified with the true labels and the classification accuracy is

determined by the following formula:

Accuracy =
TP + TN

p+ n

where p = TP + FN and n = TN + FP . The true positive count is TP and

TN is the true negative count, FP is the count of total number of false positives and

FN as false negatives. Generally the accuracy of a classification is represented as a

mean of accuracies generated in a Leave-one-run-out cross-validation scheme. In this

cross-validation procedure, the MVPA dataset is partitioned into chunks corresponding

to each experimental run. Data from one chunk are treated as a testing dataset and

the rest is used as a training dataset. The cross-validation procedure is repeated until

all the runs (chunks) are invidually tested by the classifier.

Out of numerous machine learning classification algorithms, correlation based

classifiers, linear discriminant analysis, linear support vector machines, Bayes classi-

fiers, Radial basis function networks etc. have been used in the context of MVPA clas-
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sification of cognitive states. Though each classification algorithm has its own share of

advantages and limitations, linear classifiers are used very commonly in multivariate

analysis of neural patterns. In Figure 1.2C it is shown the general working principle of

a linear and a non-linear classification kernel. The MVPA dataset is represented in a

multi-dimensional space with each of the voxels as one of the dimensions. Each time

point is represented in this multi-dimensional space with each co-ordinate value as the

intensity of each voxel at that time point. In general a trained classification algorithm

determines decision boundary in the multi-dimensional space based on the labels pro-

vided in the training dataset. When the testing dataset is provided as an input to

the trained classifier, the algorithm clusters the testing time-points into different labels

based on the corresponding distance from the decision boundary. The implementa-

tion of different classification algorithms vary from each other, like for linear classifiers

the decision boundary is a multidimensional plane but for non linear classifiers it is a

multidimensional non-linear surface.

A machine learning classifer performance is determined by a set of its hyper-

parameters, for example the C value for a Linear SVM classifier [Burges, 1998, Chang

and Lin, 2011]. As shown in Figure 1.2C, the C parameter represents the trade-off

between width of the margin of the decision boundary and number of support vectors.

Higher the value of C parameter, the more rigid is the margin of SVM. These hyperpa-

rameters could have substantial effect on decoding performance and needs to be tuned

with the process of nested-cross validation. In this method, to optimize the value of

the hyperparameter, the training dataset independently undergoes cross-validation es-

timations after being partitioned into nested training and testing datasets. Once the

optimal nested-cross validation loop determines the best performing hyperparameter

value the classification model is created with the entire training dataset and multi-

variate classification is performed on the testing dataset. Figure 1.3A shows the basic

nested cross validation procedure.
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the classifier model for the entire dataset. (B) confusion matrix - Representation of
the performance of a classifier. A sample confusion matrix of a 4 way classification of
orientation gratings. The true labels (also known as ’Targets’) are represented along
the columns and corresponding predicted labels along the rows.

1.3 Current State of Research in Orientation Decoding

As described in the previous sections, multivariate pattern analysis approach has been

successfully used in studying fMRI signal patterns from the brain and associate it

with the corresponding cognitive task being performed by the participant at that time.

Orientation decoding is one of the most extensively studied paradigm which uses multi-

variate analysis [Haynes and Rees, 2005, Kamitani and Tong, 2005]. In this paradigm a

participant undergoes fMRI scanning while shown oriented gabor or sine-wave gratings

in their visual field and machine learning classifiers are trained to decode the corre-

sponding orientation of the gratings from the patterns of BOLD activity in the primary

visual cortex.

From previous literature [Bartfeld and Grinvald, 1992], the presence of cortical

columnar structures in the primary visual cortex is known, which are responsive to a

particular orientation. There are some probable models of arrangement of the orien-

tation columns in the striate cortex. Hubel and Wiesel [1972] proposed the ’ice cube’

model (see Figure 1.4A), where the orientation columns and the ocular dominance

columns are arranged orthogonal to each other forming a cuboid structure and the spa-
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tial frequency of the orientation columns were higher than that of the ocular dominance

columns. The ’ice cube’ model by Hubel et al. [1995] was a speculative model and it was

unlikely that an idealized model like this would be found in a variable biological system

like the visual cortex [Dow, 2002]. From their electro-physiological studies on macaque

striate cortex, Braitenberg and Braitenberg [1979] proposed the ’pinwheel’ model of

arrangement of the orientation columns in the visual cortex. In this model there are

periodic orientation ’singularity’ points around which various orientation columns were

arrayed in a ’centric’ fashion as they actually appear in the visual world [Dow, 2002](see

Figure 1.4B). The same ’pinwheel’ pattern was unveiled by ultra-high resolution fMRI

in human primary visual cortex [Yacoub et al., 2008]. In Figure 1.4C the white and the

black dots represent the ’singularity’ points. Orientation pinwheels were arranged in a

clockwise manner around the white and in a counter-clockwise manner around the black

singularity points. These orientation columns are sub-millimeter in size and the orienta-

tion selectivity in the primary visual cortex cycle through all orientations approximately

every millimeter. Thus signal from multiple orientation columns are averaged into a

standard 3 mm isotropic voxel size due to partial volume effect. But orientation decod-

ing has been successfully performed by several studies over the last decade [Alink et al.,

2013, Boynton, 2005, Gardner, 2010, Haynes and Rees, 2005, Kamitani and Sawahata,

2010, Misaki et al., 2013, Swisher et al., 2010]. This has led to conflicting inferences

about the true spatial scale of the orientation signals that the classifiers can use to learn

to discriminate different orientations [Alink et al., 2013, Op de Beeck, 2010, Freeman

et al., 2013, Swisher et al., 2010].

The mechanism by which signals from low-resolution voxels are being successfully

decoded to predict information represented at a fine scale relative to the voxel size is

a subject of ongoing debate. This paragraph describes different hypotheses and claims

regarding this. Kamitani and Tong [2005] showed that the orientation decoding per-

3Adapted from Figure 3 of Dow [2002]
3Reproduced from Figure 4 of Dow [2002]
3Reproduced from Figure 2 of Yacoub et al. [2008]
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Figure 1.4: Orientation Columns in V1
(A) Arrangement of orientation columns and ocular dominance columns in the macaque
striate cortex, as shown by an ’ice cube’ model by Hubel et al. [1995].1 (B) ’Pinwheel’
model of orientation columns shown in macaque cortex found by an electro-physiological
study by Braitenberg and Braitenberg [1979]. The arrows show the theoretical direction
of the movement of the electrode in the visual cortex.2 (C) ’Pinwheel’ patterns shown
by fMRI activity in human V1. Solid black lines represent the ocular dominance column
borders.3

formance is the best in lower visual areas like V1 and V2 but higher visual regions

like V4 and MT+ showed little or no orientation selectivity. This finding was in line

with the previous electrophysiological and optical imaging studies of the primate visual

cortex, which showed that the presence of orientation columns primarily in lower visual

regions. From this, Kamitani and Tong [2005] inferred that in the early visual cor-

tex, there are random variability in the spatial distribution of the orientation columns

which lead to local biases in individual voxels leading to a robust decoding of sub-voxel

structures. This view was supported by a simulation study by Chaimow et al. [2011],

where he showed that on increasing the random irregularity of the simulated ocular
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dominance columns enhanced the decoding performance in V1. However, Op de Beeck

[2010] showed that spatial smoothing Gaussian kernels (upto 10mm FWHM) prior to

orientation decoding did not affect the classification accuracies and hence claimed that

the classifiers pick up orientation signals from large scale functional organizations in

the visual cortex. These contribution of the large scale biases in the visual cortex in-

clude the oblique and radial effects as shown by Furmanski and Engel [2000], Sasaki

et al. [2006]. This view is also supported by Freeman et al. [2011] where it has been

shown that the large scale topographic radial maps in the V1 are necessary and suf-

ficient for robust decoding of orientation gratings and globally coherent stimulus like

spirals [Freeman et al., 2013]. The coarse-scale interpretation of orientation decoding

has not gone unchallenged [see Alink et al., 2013]. According to Swisher et al. [2010] the

orientation signals are spatially broadband in nature and present in the spatial range

of 1 mm to 10 mm. In a recent paper Pratte et al. [2016] also showed how the fast

temporal-encoding paradigm for spatial mapping [as implemented in Freeman et al.,

2011], can lead to erroneous estimates of a voxel’s orientation or retinotopic preference.

They claimed that the radial bias is not the only source of orientation information in

fMRI signal and hence not necessary for orientation decoding. Apart from the sig-

nal biases hypotheses, the ability to decode orientations from V1 at low frequencies

is also attributed to the contribution of vasculature (large draining veins) [Gardner,

2010]. Kriegeskorte et al. [2010] introduced the concept of voxel sampling as a complex

spatio-temporal filter due to the contributions of the veins, which make the fine-grained

signals available at a much lower spatial frequency.

Due to technological advances in recent years, it is possible to measure very high

resolution fMRI scans in ultra-high MR field strength (7 Tesla). A 7 Tesla scanner pro-

vides superior BOLD sensitivity than a conventional 3 Tesla fMRI acquisition. Keeping

in mind the extensive debate about the spatial scale of orientation signals, it is highly

motivating to acquire high resolution fMRI for performing multivariate analysis be-

cause it provides substantially low partial voluming effect [Weibull et al., 2008]. This is
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especially relevant when Yacoub et al. [2008] has shown that modelling of the pinwheel

patterns of the orientation columns in V1 is possible from 7 Tesla fMRI acquired with

0.5 mm in-plane resolution.

Moreover, in general, to study the spatial scale of orientation signals by compar-

ing metrics like prediction accuracy, across a range of spatial frequencies, the authors

typically acquired high-resolution fMRI and simulated a lower-resolution acquisition by

applying spatial filters to the original data [see Swisher et al., 2010], or reconstruction of

k-space data to different resolutions [Gardumi et al., 2016]. However, these approaches

has not gone unchallenged as it is unclear to what degree particular filtering strate-

gies [e.g. Gaussian filtering vs. low-pass filtering in the spatial frequency domain, see

Misaki et al., 2013] can effectively simulate the properties of fMRI recorded at a lower

physical resolution, where a change in slice thickness alone can significantly alter image

contrast. Despite this criticism, I am not aware of any study that has compared the per-

formance of orientation decoding in visual cortex across a range of physical acquisition

resolutions. Hence, the effect data acquisition at different resolutions on multivariate

decoding still remains inconclusive.

1.4 Thesis Outline

In this thesis, I have addressed these open questions in Experiment 1 (Chapter 3), by

applying multivariate pattern analysis to fMRI data acquired with a standard orienta-

tion decoding paradigm [similar to the paradigm used in Swisher et al., 2010], in four

different resolutions at 7 Tesla (0.8 mm, 1.4 mm, 2 mm and 3 mm isotropic voxel size).

Moreover, to give a better perspective on the spatial scale of the orientation signals,

spatial smoothing (including volumetric gaussian filtering and cortical surface based

filtering) and spatial resampling were also performed. To study the contribution of

veins to orientation decoding, separate susceptibility weighted images were analyzed to

localize the venous voxels in V1 and subsequently orientation decoding was performed

in the venous and non-venous voxels separately. In order to check whether orientation
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decoding benefits from higher magnetic field strengths, in Experiment 2 (Chapter 4)

I present a study to compare multivariate analysis on data acquired from 3 Tesla and

7 Tesla Siemens scanners, at three different resolutions (1.4 mm, 2 mm and 3 mm iso)

with the same stimulation paradigm, almost identical scanning parameters and similar

decoding analysis procedures. It is known that the data acquired from 7 Tesla show

substantially better time-series signal to noise ratio than the 3 Tesla data. To enhance

tSNR in the 3 Tesla acquisition keeping the stimulation paradigm unaltered, I also per-

formed in Experiment 3 (Chapter 5) a multiband acquisition with no parallel imaging

technique for 2 mm 3 Tesla acquisition and compared decoding accuracy with the nor-

mal 2 mm acquisition. The spatial scale of orientation signals as reflected in the 3 Tesla

data, were studied with spatial filtering and compared with the corresponding 7 Tesla

data. Additionally in this thesis, I analyzed whether the spatial scale of columnar

structures as reflected by fMRI data are comparable across different sensory process-

ing regions of the brain. Experiment 4 (Chapter 6) presents multivariate decoding of

musical genres from fMRI signal patterns recorded in primary auditory cortex. The

data were recorded in 7 Tesla with 1.4 mm resolution and subsequent multivariate anal-

ysis was performed on spatially filtered data at different levels of gaussian smoothing.

Overall, this thesis provides a comprehensive analysis of the effect of acquisition reso-

lution and MR field strength on multivariate decoding. To fascilitate future research,

the multi-resolution data acquired in the 7 Tesla has been made publicly available (see

Appendix A) in BIDS (Brain Imaging Data Structure) format as a part of the study-

forrest project [Hanke et al., 2014] and in recent future, the rest of the data will also

be published.



2. Retinotopic Mapping: Localization of V1

Experiment 1 (chapter 3) - Experiment 3 (chapter 5) used retinotopic mapping for

localizing the primary visual cortex (V1) and here I include the detailed description

of the experimental design, data acquisition protocols, and all computational processes

required for the same [first published in Sengupta et al., 2016]. The data processing

pipeline and the quality analysis of the retinotopic maps described in this chapter, were

developed in collaboration with Falko R. Kaule and Professor Michael B. Hoffmann,

who were co-authors of Sengupta et al. [2016].

2.1 Participants

All of the participants recruited in the following experiments previously volunteered for

both studies of the studyforrest project [Hanke et al., 2014, 2015a]. The pool of the

participants included a total of fifteen right-handed volunteers (mean age 29.4 years,

range 21–39, 6 females). The demographics of the participants of the individual ex-

periments are described in the specific methods sections. The integrity of their visual

function was assessed at the Visual Processing Laboratory, Ophthalmic Department,

Otto-von-Guericke University, Magdeburg, Germany (as specified in the following sec-

tion), under the supervision of Professor Michael B. Hoffmann. Participants were fully

instructed about the purpose of the study and received monetary compensation. They

signed an informed consent for public sharing of all obtained data in anonymized form.

All anonymized subject ID references made in this thesis are identical as in Hanke et al.

[2014]. This study was approved by the Ethics Committee of the Otto-von-Guericke

University.

13
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2.2 Subjective measurements of visual function

To test whether the participants had normal visual function and to detect critical

reductions of visual function, two important measures were determined: (1) visual

acuity to identify dysfunction of high resolution vision and (2) visual field sensitivity to

localize visual field defects. For each participant, these measurements were performed

for each eye separately — if necessary with refractive correction. (1) Normal decimal

visual acuity (>=1.0) was obtained for each eye of each participant. (2) Visual field

sensitivities were determined with static threshold perimetry (standard static white-on-

white perimetry, program: dG2, dynamic strategy; OCTOPUS Perimeter 101, Haag-

Streit, Koeniz, Switzerland) at 59 visual field locations in the central visual field (30 °

radius) i.e., covering the part of the visual field that was stimulated during the MRI

scans. In all, except for two participants, visual field sensitivities were normal for each

eye (MD (mean defect) dB<2.0 & >-2.0; LV (loss variance) dB2 < 6) — indicating

the absence of visual field defects. Visual field sensitivities for sub-04 (both eyes) were

slightly lower than normal but not indicative of a distinct visual field defect.

2.3 Retinotopic Mapping

2.3.1 Stimulus

Similar to previous studies [Engel et al., 1997a, Sereno et al., 1995], traveling wave

stimuli were designed to encode visual field representations in the brain using tem-

poral activation patterns[Warnking et al., 2002]. Expanding/contracting rings and

clockwise/counter-clockwise wedges (see Figure 2.1A) consisting of flickering radial

checkerboards (flickering frequency of 5 Hz) were displayed on a gray background (mean

luminance ≈100 cd/m2) to map eccentricity and polar angle. The total run time for

both eccentricity and polar angle stimuli was 180 s, comprising five seamless stimulus

cycles of 32 s duration each along with 4 s and 12 s of task-only periods (no checkerboard

stimuli) respectively at the start and the end.

The flickering checkerboard stimuli had adjacent patches of pseudo-randomly cho-
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sen colors, with pairwise euclidean distances in the Lab color space (quantifying relative

perceptual differences between any two colors) of at least 40. Each of these colored

patches were plaided with a set of radially moving points. To improve the perceived

contrast, the points were either black or white depending on the color of the patch on

which the points were located. The lifetime of these points was set to 0.4 s, a new point

at a random location was initialised after that. With every flicker, the color of the

patches changed to its complementary luminance. Simultaneously, the color changed

and the direction of movement of the plaided points also reversed.

Eccentricity encoding was implemented by a concentric flickering ring expanding

and contracting across the visual field (0.95°of visual angle in width). The ring was not

scaled with cortical magnification factor. The concentric ring traveled across the visual

field in 16 equal steps, stimulating every location in the visual field for 2 s. After each

cycle, the expanding or the contracting rings were replaced by new rings at the center

or the periphery respectively.

Polar angle encoding was implemented by a single moving wedge (clockwise and

counter-clockwise direction). The opening angle of the wedge was 22.5 degrees. Similar

to the eccentricity stimuli, every location in the visual field was stimulated for 2 seconds

before the wedge was moved to the next position.

2.3.2 Center letter reading task

In order to keep the participants’ attention focused and to minimize eye-movements,

they performed a reading task. A black circle (radius 0.4°) was presented as a fixation

point at the center of the screen, superimposed on the main stimulus. Within this circle,

a randomly selected excerpt of song lyrics was shown as a stream of single letters (0.5°

height, letter frequency 1.5 Hz, 85% duty cycle) throughout the entire length of a run.

Participants had to fixate, as they were unable to perform the reading task otherwise.

After each acquisition run, participants were presented with a question related to the

previously read text. They were given two probable answers, to which they replied by
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Figure 2.1: Retinotopic Mapping Stimuli
(A) Ring and wedge stimuli with continuous central letter reading task to encourage
fixation. White numbers indicate the respective phase angle encoding. (B) Histogram
of polar angles for all voxels in the MNI occipital lobe mask for the left and right
hemisphere. Error bars indicate standard deviation across all subjects. 4

corresponding button press (index or middle finger of their right hand). These question

only served the purpose of keep participants attentive — and were otherwise irrelevant.

2.3.3 Stimulation setup

Visual stimuli were presented on a rear-projection screen inside the bore of the mag-

net using an LCD projector (JVC DLA RS66E, JVC Ltd., light transmission reduced

to 13.7% with a gray filter) connected to the stimulus computer via a DVI extender

system (Gefen EXT-DVI-142DLN with EXT-DVI-FM1000). The screen dimensions

were 26.5 cm×21.2 cm at a resolution of 1280×1024 px with a 60 Hz video refresh rate.

The binocular stimulation were presented to the participants through a front-reflective

mirror mounted on top of the head coil at a viewing distance of 63 cm. Stimulation was

implemented with PsychoPy v1.79 (with an early version of the MovieStim2 component

later to be publicly released with PsychoPy v1.81)[Peirce, 2007] on the (Neuro)Debian

operating system [Halchenko and Hanke, 2012]. Participant responses were collected

by a two-button keypad and was also logged on the stimulus computer.

2.3.4 Functional MRI acquisition

For all of the fMRI acquisitions for retinotopic mapping, the following parameters were

used: T2∗-weighted echo-planar images (gradient-echo, 2 s repetition time (TR), 30 ms

4Reproduced from Figure 3 of Sengupta et al. [2016]
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echo time, 90 ° flip angle, 1943 Hz/px bandwidth, parallel acquisition with sensitivity

encoding (SENSE) reduction factor 2) were acquired during stimulation using a whole-

body 3 Tesla Philips Achieva dStream MRI scanner equipped with a 32 channel head

coil. 35 axial slices (thickness 3.0 mm) with 80 × 80 voxels (3.0×3.0 mm) of in-plane

resolution, 240 mm field-of-view (FoV), anterior-to-posterior phase encoding direction)

with a 10% inter-slice gap were recorded in ascending order — practically covering

the whole brain. Philips’ “SmartExam” was used to automatically position slices in

AC-PC orientation such that the topmost slice was located at the superior edge of the

brain. This automatic slice positioning procedure was identical to the one used for

scans reported in the companion article [Sengupta et al., 2016] and yielded a congruent

geometry across all paradigms.

2.3.5 Structural MRI acquisition

Structural images were acquired for all participants in the same 3 Tesla Philips Achieva

scanner. Individual T1-weighted images consisted of 274 sagittal slices (FoV = 191.8

× 256 × 256 mm). It was recorded using a 3D turbo field echo (TFE) sequence

(TR 2500 ms, inversion time (TI) 900 ms, flip angle 8°, echo time (TE) 5.7 ms, band-

width 144.4 Hz/px, SENSE reduction AP 1.2, RL 2.0) with an acquisition resolution

of 0.7 mm. It was reconstructed using a 384 × 384 in-plane reconstruction matrix

(0.67 mm isotropic resolution). A 3D turbo spin-echo (TSE) sequence (TR 2500 ms,

TE eff 230 ms, strong SPIR fat suppression, TSE factor 105, bandwidth 744.8 Hz/px,

SENSE reduction AP 2.0, RL 2.0, scan duration 7:40 min) was used to acquire a

T2-weighted image whose geometric properties were identical to the T1-weighted im-

age. All the anatomical images were recorded as a part of the studyforrest project

[Hanke et al., 2014] and are publicly available from GitHub https://github.com/

psychoinformatics-de/studyforrest-data-structural.

https://github.com/psychoinformatics-de/studyforrest-data-structural
https://github.com/psychoinformatics-de/studyforrest-data-structural
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2.3.6 Experimental Design

Participants performed four acquisition runs in a single session with a total duration

of 12 min, with short breaks in-between and without moving out of the scanner. In

each run, participants performed the center reading task while passively watching the

contracting, counter-clockwise rotating, expanding, and clockwise rotating stimuli in

exactly this sequential order. For the retinotopic mapping experiment, 90 volumes of

fMRI data were acquired for each run.

2.3.7 Retinotopic mapping analysis

Many regions of interest (ROI) in the human visual system follow a retinotopic orga-

nization [Engel et al., 1997a, 1994, Sereno et al., 1995]. The primary areas like V1 and

V2 are also provided as labels with the Freesurfer segmentation using the recon-all

pipeline [Dale et al., 1999]. But the higher visual areas (V3, VO, PHC, etc) need to

be localized by retinotopic mapping [Arcaro et al., 2009, Sereno et al., 2012, Silver and

Kastner, 2009a, Wandell et al., 2007] or probability maps [Van Essen et al., 2001, Wang

et al., 2014].

An analysis pipeline was implemented for the acquired fMRI data based on stan-

dard algorithms publicly available in the software packages Freesurfer [Dale et al., 1999],

FSL [Smith et al., 2004], and AFNI [Cox, 1996]. All analysis steps were performed on a

computer running the (Neuro)Debian operating system [Halchenko and Hanke, 2012],

and all necessary software packages (except for Freesurfer) were obtained from system

software package repositories.

BOLD images time series for all scans of the retinotopic mapping paradigm

were brain-extracted using FSL’s BET and aligned (rigid-body transformation) to a

participant-specific BOLD template image. All volumetric analysis was performed in

this image space. An additional rigid-body transformation was computed to align the

BOLD template image to the previously published cortical surface reconstructions based

on T1 and T2-weighted structural images of the respective participants[Hanke et al.,
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2014] for later delineation of visual areas on the cortical surface. Using AFNI tools,

time series images were also “deobliqued” (3dWarp), slice time corrected (3dTshift),

and temporally bandpass-filtered (3dBandpass cutoff frequencies set to 0.667/32 Hz and

2/32 Hz, where 32 s is the period of both the ring and the wedge stimulus).

For angle map estimation, AFNI’s waver command was used to create an ideal re-

sponse time series waveform based on the design of the stimulus. The bandpass filtered

BOLD images were then processed by the 3dRetinoPhase (DELAY phase estimation

method was based on the response time series model). Expanding and contracting

rings, as well as clockwise and counter-clockwise wedge stimuli, were jointly used to

generate average volumetric phase maps representing eccentricity and polar angles for

each participant. Polar angle maps were adjusted for a shift in the starting position

of the wedge stimulus compared between the two rotation directions. The phase angle

representations, relative to the visual field, are shown in Figure 2.1A. As an overall

indicator of mapping quality, Figure 2.1B shows the distribution of the polar angle

representations across all voxels in the MNI occipital lobe mask combined for all par-

ticipants.

For visualization and subsequent delineation, all volumetric angle maps (after

correction) were projected onto the cortical surface mesh of the respective participant

using Freesurfer’s mri vol2surf command — separately for each hemisphere. In order

to illustrate the quality of the angle maps, the subjectively best, average, and worst

participants (respectively: participant 1, 10, and 9) have been selected on the basis of

visual inspection. Figure 2.2C shows the eccentricity maps on the left panel and the

polar angle maps for both hemispheres on the right panel. Table 2.1 summarizes the

results of the manual inspections of all surface maps. Delineations of the visual areas

depicted in Figure 2.2 were derived according to Kaule et al. [2014](page 4). Further

details on the procedure can be found in Arcaro et al. [2009], Silver and Kastner [2009b],

Wandell et al. [2007].

5Reproduced from Figure 3 of Sengupta et al. [2016]
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Figure 2.2: Retinotopic Mapping Quality Analysis
Inflated occipital cortex surface maps for eccentricity and polar angle for the best,
intermediate, and worst participants: participants 1, 10, and 9 respectively. White lines
indicate manually delineated visual area boundaries; stars mark the center of the visual
field; yellow lines depict the outline of the autogenerated Freesurfer V2 label[Hanke
et al., 2014] for comparison. All maps are constrained to the MNI occipital lobe mask.5
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Participants Phasemap Quality Freesurfer Segmentation Fit
Left Hemifield Right Hemifield Left Left Right Right

V1 V2/3 V1 V2/3

sub-04 4 5 3 3 1 2

sub-06 4 3 3 3 2 2

sub-09 2 2 1 1 1 1

sub-10 4 3 3 2 3 2

sub-16 3 4 3 1 3 2

sub-17 2 3 2 2 3 2

sub-18 3 2 3 2 2 3

sub-20 1 4 2 2 2 2

sub-21 2 3 2 3 3 2

Mean 2.78 3.22 2.44 2.11 2.22 2

Table 2.1: Quality analysis of the phasemaps generated by the retinotopic
mapping processing pipeline.
The phasemaps of the participants recruited in the following experiments were checked for
borders of V123 and Parahippocampal cortex (PHC) complex regions. The phasemap quality
was graded from (1-5) with 5 being the best. The Freesurfer recon-all pipeline also provides
segmentations of V1 and V2/3 regions as labels. The quality of the phasemaps generated here
were also compared against Freesurfer segmentations. The fit of the Freesurfer segmentations
to the phasemaps were graded on a scale of (1-3) with 3 being the best fit. 6

6Generated in collaboration with Falko R. Kaule (available at https://github.com/

psychoinformatics-de/studyforrest-data-retinotopy)

https://github.com/psychoinformatics-de/studyforrest-data-retinotopy
https://github.com/psychoinformatics-de/studyforrest-data-retinotopy


3. Experiment 1: The Effect of Acquistion Resolution on

BOLD fMRI Decoding Analyses at 7 Tesla

3.1 Introduction

The term multivariate pattern (MVP) analysis summarizes a range of data analysis

strategies that are highly suitable for studying neural representations encoded in dis-

tributed patterns of brain activity [see, for example, Bonte et al., 2014, Haxby, 2012,

Haynes, 2009, Zhang et al., 2015]. While there is an ever increasing number of publica-

tions that demonstrate the power of MVP analysis for functional magnetic resonance

imaging (fMRI) data [Alink et al., 2013, Op de Beeck, 2010, Freeman et al., 2011,

2013] with standard resolution (a voxel size of about 2-3 mm isotropic), MVP analysis

is especially promising in the context of high-resolution fMRI. Ongoing technological

improvements, such as ultra high-field MRI scanners (7 Tesla or higher) have pushed

the resolution for fMRI to a level that is slowly approaching the spatial scale of the

columnar organization of the brain [Heidemann et al., 2012, Yacoub et al., 2008]. Being

able to use fMRI to sample brain activity patterns at a near-columnar level makes it

feasible to employ MVP analysis with the aim to decode distributed neural represen-

tations of an entire cortical field at a level of detail that is presently only accessible to

invasive recording techniques with limited spatial coverage. However, at this point, it is

unclear which spatial resolution is most suitable for decoding neural representation from

fMRI data with MVP analysis. While higher resolutions can improve the fidelity of the

BOLD signal by, for example, reducing the partial volume effect [Weibull et al., 2008],

the benefits can be counteracted by physiological noise (such as inevitable motion) and

lower temporal signal-to-noise ratio (tSNR). This raises the question: does the decoding

of neural representations continuously improve with increasing spatial resolution, or is

there an optimal resolution for a given type of representation?
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In this study, I provide empirical data on the effect of spatial acquisition resolution

on the decoding of visual orientation from high field (7 Tesla) fMRI. I recorded BOLD

fMRI data at 0.8 mm, 1.4 mm, 2 mm and 3 mm voxel size while participants were vi-

sually stimulated with oriented phase-flickering gratings using a uniform event-related

paradigm. This is one of the most frequently employed MVP analysis technique: a

cross-validated classification analysis, where a classifier is repeatedly trained to distin-

guish patterns of brain activation from fMRI data of a set of stimulus conditions, and

its prediction accuracy is evaluated against a left-out data portion [Pereira et al., 2009].

Moreover, I focus on the decoding of the representation of oriented visual gratings in

primary visual cortex. Chaimow et al. [2011] investigated the effect of acquisition res-

olution on decoding of the stimulated eye using simulated 3 Tesla fMRI data based

on a model of ocular dominance columns. They found that a resolution of 3 mm was

optimal for decoding and performance decreased with higher or lower resolution. It

is known that the organization of orientation columns is characterized by higher spa-

tial frequencies than ocular dominance columns [Obermayer and Blasdel, 1993] and

the BOLD point-spread function (PSF) is considerably smaller than that at 3 Tesla

[≈2.3 mm FWHM vs. ≈3.5 mm FWHM Engel et al., 1997b, Shmuel et al., 2007]. Con-

sidering that, I expect the maximum orientation decoding accuracy to be at a resolution

higher than 3 mm. Though I are not trying to find or comment on a single optimal

resolution for multivariate analysis, from this study I expect to get a better technical

understanding of how information acquired at different resolutions at 7 Tesla contribute

to orientation decoding performance. Multi-resolution data also allow for evaluating

filtering strategies used in previous studies in terms of their validity regarding the simu-

lation of lower-resolution fMRI acquisitions from high-resolution data. These data also

enable the investigation of the role of aliasing of a high spatial-frequency signal (beyond

the Nyquist frequency) into a lower frequency range sampled by fMRI voxels [sometimes

referred to as “hyperacuity”; Op de Beeck, 2010, Swisher et al., 2010], as, in the case

of spatial aliasing, the frequency bands carrying an orientation-selective signal would
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vary with the sampling resolution of fMRI. Lastly, I collected high-resolution suscep-

tibility weighted imaging data for blood-vessel localization in order to investigate the

role of large draining veins that may carry orientation-selective signals reflected in low

spatial frequency components when sampled by millimeter range voxels [Gardner, 2010,

Kamitani and Tong, 2005, Kriegeskorte and Bandettini, 2007, Shmuel et al., 2010]. In

combination with the multi-resolution fMRI data, I can investigate the effect of this

potential signal source on the orientation decoding at various levels of spatial scale.

While my primary focus is on the technical aspect of acquisition resolution for

decoding information from BOLD signal patterns using the representation of visual

orientations as a well-researched example, I acknowledge that the data can be used

to investigate a number of additional questions, such as the specific nature of the

encoding of visual orientation in the BOLD signal pattern. It can also be a valu-

able resource in further optimization of the decoding procedure (classification algo-

rithm, hyper-parameter optimization, etc.). In order to facilitate the required future

analyses I have publicly released the data. It has been uploaded to OpenFMRI (ac-

cession number: ds000113c) and is also available without restrictions from GitHub

https://github.com/psychoinformatics-de/studyforrest-data-multires7t and

a description is available in Appendix A. This dataset will serve as starting point to a

series of additional analysis that explore aspects beyond acquisition resolution.

3.2 Materials and methods

3.2.1 Participants

Seven healthy right-handed volunteers (age 21-38 years, 5 males) with normal or cor-

rected to normal vision were recruited from the subject pool of the studyforrest project.

Before every scanning session, they were provided with instructions for the experiment

(approved by the Ethics Committee of the Otto-von-Guericke University) and signed

an informed consent form.

https://github.com/psychoinformatics-de/studyforrest-data-multires7t
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3.2.2 Stimuli

A stimulus comprised two semi-annular patches of flickering sine-wave gratings left and

right of a central fixation point on a medium gray background (0.8°-7.6° eccentricity,

160° width on each side with a 20° gap along the vertical meridian, above and below

the fixation point, to aid separation of gratings between hemifields). Gratings on each

side of the stimulus were independently oriented at either 0°, 45°, 90°, or 135°, with a

constant spatial frequency of 1.4 cycles per degree of visual angle corresponding to the

center of the screen, a contrast of 100%, and a flickering frequency of 4 Hz with 50%

duty cycle [Swisher et al., 2010]. The phase of the gratings was changed at a frequency

of 4 Hz and was chosen randomly from 0, π
2
, π, or 3π

2
degrees of phase angle (Figure 3.1).

Stimulus presentation and response logging were implemented using PsychoPy

[v1.79; Peirce, 2008] running on a computer with the (Neuro)Debian operating sys-

tem [Halchenko and Hanke, 2012]. Stimuli were displayed on a rear-projection screen

(1280×1024 pixels resolution; 60 Hz video refresh rate; 25.5 cm wide) located behind

the head coil. Participants viewed the screen via a mirror placed at a distance of ≈4 cm

from their eyes. The total viewing distance was 100 cm.

3.2.3 Behavioral task

In order to keep the participants’ attention focused and to minimize eye-movements,

they performed the reading task (as described in section 2.3.2) throughout the entire

length of a run. Each trial started with 3 s of stimulation with oriented gratings and

continued for another 5 s of a task-only period (Figure 3.1). During task-only periods,

a medium gray background was displayed in both hemifields. At the end of each run,

the participant was asked a question related to the previously read text.

In a pilot experiment with in-scanner eye-movement recordings, the letter reading

task was found to minimize eye-movements effectively; however, it was unsuitable to

verify fixation accuracy on a trial-by-trial basis. In order to evaluate a potential impact

of the reading task on the orientation decoding performance, the task was replaced for
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one participant with a visual detection task. One participant was repeatedly presented

with a Landolt C stimulus (radius 0.12°, left or right opening (0.048°) at random in-

tervals in each run. The participants had to respond to the direction of the opening of

the probe by pressing one of two buttons corresponding to a left or right opening (see

Figure 4.1). Discrimination accuracy for this participant was 98.6%, while orientation

decoding performance did not qualitatively differ from mean decoding accuracy of other

participants. The performance of the subject with the Landolt C task was compared

relative to the 95% binomial proportion confidence interval computed from the number

of correct predictions (BOLD pattern classification), concatenated across hemispheres

and cross-validation fold, and all subjects performing the reading task. For all reso-

lutions (except 3 mm data) the performance of the subject performing the Landolt C

task was within the confidence interval (for 3 mm the decoding accuracy was close to,

but higher, than the upper boundary of the confidence interval). This suggests that

the employed reading task was generally effective in keeping participants focused on

the fixation point.

3.2.4 Procedures

Participants were scanned in four different sessions, one experiment session for each of

the four acquisition resolutions (0.8 mm, 1.4 mm, 2.0 mm and 3.0 mm isotropic). These

sessions took place on different days over the course of five weeks. The order of ac-

quisition resolutions was randomized for each participant. In every experiment session,

participants completed ten runs with short breaks in-between, without leaving the scan-

ner. Each run comprised 30 trials (8 s duration; 4 min total run duration). Independent

sequences were generated per hemifield with equal number of occurrences of each ori-

entation. There were 4 different orientations (0°, 45°, 90°, or 135°) each occurring for

exactly 5 times in the sequence, contributing to 20 trials in one run. The sequences

were randomly shuffled per hemifield. This resulted in random pairings of orientations

within trials. While analyzing, a single GLM was used to model the events in both
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Figure 3.1: Stimulation paradigm
Independent flickering oriented grating stimuli on a medium gray background were
presented in both hemifields for 3 s at the beginning of each trial. Stimulation was
followed by a 5 s inter-trial interval. Throughout an entire experiment run, participants
performed a continuous central letter reading task to maintain fixation. Interspersed
trials where the previous stimulus was repeated in only one of the hemifields were used
to decouple stimulation sequences.

the hemifields. This was done to account for potential inter-hemispheric cross-talk due

to the simultaneous bilateral stimulation, and the correlation in this stimulus sequence

between hemifields. Moreover, in order to minimize undesired attention shift effects, I

opted for a simultaneous onset of the stimulation in both hemifields. Combined with

the further constraint of the same number of stimulation trials per orientation in both

hemifields, this would unavoidably lead to a singularity of the GLM design matrix,

unless a further source of temporal variability is introduced. In order to decouple stim-

ulation sequences between hemifields, 10 unilateral stimulation events (termed NULL

events) were inserted into the trial sequence at pseudo-random positions (a run could

not start with a NULL event and no two NULL events could occur in immediate suc-

cession). NULL events were identical to regular trials, except for the fact that in one

hemifield the same oriented grating as in the previous trial was repeated while the
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other hemifield remained empty. The side of the blank hemifield was chosen at random

for each NULL event. For all participants, the actual generated trial sequences show

a roughly equal count of NULL events for each hemifield and the NULL events were

included in the GLM analysis.

3.2.5 Functional imaging

The objective for functional data acquisition was to obtain BOLD fMRI data from

the V1 ROI at four different resolutions with an identical stimulation paradigm. MR

acquisition parameters were chosen to be maximally similar across resolutions given

two a priori constraints: 1) sufficient spatial coverage of the V1 ROI and 2) identical

sampling frequency (TR) across resolutions.

T2*-weighted echo planar images (EPI) (TR/TE = 2000/22 ms, FA=90°) of the

occipital lobe were acquired during visual stimulation using a 7 Tesla whole body scan-

ner (Siemens, Erlangen, Germany) and a 32 receive channel head coil (Nova Medical,

Wilmington, MA). Slices, oriented parallel to the calcarine sulcus (on a tilted axial

plane), were acquired for 4 different spatial resolutions, i.e. 3 mm isotropic (FoV =

198 mm, matrix size 66 × 66, 37 slices, GRAPPA accel. factor 2), 2 mm isotropic (FoV

= 200 mm, matrix size 100 × 100, 37 slices, GRAPPA accel. factor 3), 1.4 mm isotropic

(FoV = 196 mm, matrix size 140 × 140, 32 slices, GRAPPA accel. factor 3) and

0.8 mm isotropic (FoV = 128 × 166.4 mm (AP × LR), matrix size 160 × 208, 32 slices,

GRAPPA accel. factor 4). All EPI scans implemented ascending slice acquisition order

and used a 10% inter-slice gap to minimize cross-slice excitation. The sequence for

0.8 mm isotropic resolution used a left-right phase encoding direction in order to avoid

wrap-around artifacts, while all other sequences used anterior-posterior phase encoding.

121 volumes were acquired for each experiment run and 10 separate scans (one for each

experimental run) were performed for each subject. An automatic positioning system

(Siemens AutoAlign Head LS) was used to aid positioning of the field-of-view to the

same volume in each scan for each subject similar to the procedure described in Dou
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et al. [2014]. Online distortion correction [In and Speck, 2012] was applied to data from

all the scans.

In order to aid co-registration of the small scan volume of the 0.8 mm acquisition

with the structural image, an additional EPI acquisition was performed that used the

same auto-alignment procedure, but with a 250×250 in-plane matrix and 57 slices (4 s

TR). This setup increased the FoV in the axial plane to cover the full extent of the brain,

while the 20 additional slices further increased the coverage along the inferior-superior

direction. 60 volumes were acquired to improve image signal-to-noise ratio (SNR) by

averaging across volumes. The resulting volume was used as an intermediate alignment

target. Figure 3.2 illustrates the effect of distortion correction and the alignment quality

of BOLD images to the respective structural images for two participants.

3.2.6 Structural imaging

T1 and T2-weighted structural images were acquired for all participants in a 3 Tesla

Philips Achieva scanner equipped with a 32 channel head coil (refer to section 2.3.5).

3.2.7 Region of interest localization

As described in section 2.3, retinotopic measurements were performed using flickering

checkerboard patterns. After retinotopic phase maps (polar angle and eccentricity) were

generated, the V1 region was manually delineated on the cortical surface [following the

procedure described in Warnking et al., 2002]. Surface reconstruction was performed

using the default Freesurfer recon-all pipeline [Dale et al., 1999], using T1 and T2-

weighted images as input. V1 delineations on the surface were projected back into a

subject’s individual volumetric space to generate a participant specific V1 ROI mask

for the classification analyses.

3.2.8 Blood vessel localization

Susceptibility weighted (SW) imaging data [openly available from the studyforrest

project Hanke et al., 2014] were used for localization of veins in V1 by utilizing the



30

CBA

Figure 3.2: Alignment of EPI with structural data
The alignment of distortion corrected EPI functional data obtained at 7 Tesla to the
structural data obtained at 3 Tesla from 2 subjects. (A) Uncorrected data from Siemens
7T Magnetom (B) Distortion corrected data [In and Speck, 2012] (C) Alignment of the
EPI sequences acquired in 7T to the corresponding 3T Structural images. The white
matter segmentation is shown with yellow lines and pial surface with red lines. The
white matter and pial surface segmentations were performed on the structural data
with Freesurfer and overlayed on the aligned EPI images to show the quality of the
alignments.

difference in magnetic susceptibility of venous and neighboring non-venous tissues to

improve contrast in venography [Liu et al., 2014]. These acquisitions were recorded

in a 3 Tesla Philips Achieva scanner using a 3D Presto fast field echo (FFE) sequence

(TR 19 ms, TE shifted 26 ms, flip angle 10°, bandwidth 217.2 Hz/px, NSA 2, SENSE

reduction AP 2.5, FH 2.0). Susceptibility weighted images for every participant had

500 axial slices (thickness 0.35 mm, FoV 181×202×175 mm) and an in-plane acquisition

voxel size of 0.7 mm reconstructed at 0.43 mm (512×512 matrix). The SW images of

every participant consisted of seperate phase and magnitude components. The process-

ing of the these components [similar to the procedure outlined in Haacke et al., 2004]

are described in the following paragraphs.

Phase unwrapping Generally complex MR image acquisition can be expressed as

I = |I| ∗ exp(φ), where |I| is the magnitude part and φ is the phase component of the
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image. The phase image conveys several important information like field inhomogeniety,

venous blood flow etc. But extracting the phase image from the measured complex

image is non-trivial, because the any phase component beyond the range of (−π, π] is

wrapped back into the principal value range. So when the phase image is generated from

the scanner it undergoes the Phase Wrapping process, as mentioned above. The phase

image provided here is actually a phase wrapped image in which the wrapped phase

is defined as Ψ = W (φ) where W is the wrapping operator. So for further processing,

first, the phase components of the SWI scans were masked (using a brain mask derived

from the magnitude component), and 3D phase unwrapped with PRELUDE [default

settings; Jenkinson, 2003] from FSL [v5.0.9; Smith et al., 2004].

Contrast enhancement and localization of veins Similar to Haacke et al. [2004],

the unwrapped phase image was spatially high-pass filtered using a mean ’box’ filter

kernel [65x65x65 voxels, as implemented in fslmaths; Smith et al., 2004]. The high

pass filtered phase component ϕ(x) was then transformed to a score g(x) (value interval

[0, 1]) using g(x) = (π − ϕ(x))/π for 0 < ϕ(x) ≤ π and 1 otherwise. These scores were

multiplied 4 times with the original magnitude image, as suggested by Haacke et al.

[2004], in order to enhance the contrast between venous and non-venous voxels. These

contrast-enhanced images were suitably thresholded to perform segmentation of the

venous voxels. For every participant, 2 different thresholds were chosen (60th and 90th

percentile) and the blood vessel masks were constrained to individual V1 ROI. These

were resliced into different acquisition resolutions using trilinear interpolation.

Separate MVP analyses were performed inside and outside the venous voxels

(with variable threshold) in V1 to investigate their individual contributions at different

acquisition resolutions across different threshold levels.
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Figure 3.3: Localization of veins with SWI
(A) Magnitude image of SWI (B) High-pass filtered phase unwrapped image (C) Con-
trast enhanced masked image which is thresholded for vein localization

3.2.9 Orientation decoding analysis

MVP analysis for orientation decoding was performed with PyMVPA [v2.4.1; Hanke

et al., 2009] on a compute cluster running (Neuro)Debian [v8.0; Halchenko and Hanke,

2012]. For feature extraction, BOLD fMRI time series from an individual experimental

run were voxel-wise fitted to hemodynamic response (HR) regressors (boxcar function

convolved with the canonical Glover HRF kernel [Glover, 1999] for each experimental

condition using a general linear model (GLM). Additionally, the GLM design matrix in-

cluded temporal derivatives of HR regressors, six nuisance regressors for motion (trans-

lation and rotation), and polynomial regressors (up to 2nd-order) modeling temporal

signal drift as regressors of no-interest. GLM β weights were computed using the GLM

implementation in NiPy [v0.3; Millman and Brett, 2007] while accounting for serial

correlation with an autoregressive term (AR1). Lastly, separately for every run β scores

were Z-scored per voxel. The resulting dataset for MVP analysis contained 40 samples

(one normalized β score per condition per run) for each participant.

Linear support vector machines [SVM; PyMVPA’s LinearCSVMC implementation

of the LIBSVM classification algorithm; Chang and Lin, 2011] were used to perform a

within-subject leave-one-run-out cross-validation of 4-way multi-class orientation classi-
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Figure 3.4: Range of tuned Linear SVM C parameters in the orientation
decoding analysis across different resolutions.

fication. This method was selected based on its prevalence in the literature, not because

of an assumed optimal performance in this context. This linear SVM algorithm has

one critical hyper-parameter C that indicates the trade-off between width of the margin

of the classifying hyperplane and number of correctly classified training data points.

While it seems uncommon for neuroimaging studies to optimize this parameter for a

particular application, I observed substantial variability in performance with varying

number of input features. Consequently, I decided to tune this parameter using a nested

cross-validation approach, where the training portion within each cross-validation fold

was subjected to a series of leave-another-run-out cross-validation analyses in order to

perform a grid search for the optimal C value (search interval [10−5, 5 × 10−2] in 200

equal steps). The “optimal” C value was then used to train a classifier on the full

training dataset, which was subsequently evaluated on the data from the left out run.

Reported accuracies always refer to the performance on the test dataset using the tuned

C setting. Tuning of the C parameter was performed independently for each partici-

pant, resolution, and hemisphere. The ranges of tuned C parameters for all resolutions

are illustrated in Figure 3.4.
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3.2.10 Spatial filtering strategies

In order to investigate how signal for orientation decoding is distributed across the

spatial frequency spectrum, two different strategies for volumetric spatial filtering of

the functional imaging data were implemented.

Gaussian smoothing Similar to Swisher et al. [2010], I used Gaussian filtering prior

feature extraction for MVP analysis to estimate the spatial scale of the orientation

specific signal. In the following, the size of the Gaussian filter kernel is described by its

full width at half maximum (FWHM) in mm. Individual filters were implemented using

the following procedure: Low-pass (LP) 3D Gaussian spatial filtering was performed

with the image smooth() function in the nilearn package [Pedregosa et al., 2011]. High-

pass (HP) filtered images for a particular filter size were computed by subtracting the

respective LP filtered image from the original, unfiltered image. Bandpass (BP) filtering

was implemented by a Difference-of-Gaussians (DoG) filter [Alink et al., 2013]. Filtered

images were computed by subtracting the LP filtered images for two filter sizes from

each other. For example, an image for the “4-5 mm” band was computed by subtracting

the 5 mm LP filtered image from the 4 mm LP filtered image. It is important to note

that, due to the nature of the filter, the pass-band of a DoG filter is not as narrow as

the filter-size label might suggest. Figure 3.5 illustrates the attenuation profile of an

exemplary 4-5 mm DoG filter. However, for compactness and compatibility for previous

studies [e.g., Alink et al., 2013] I are characterizing DoG BP filters by the FWHM size of

the underlying LP filters. The respective band-stop (BS) filtered image were computed

by subtracting the corresponding BP filtered image from the original, unfiltered image.

Because of its prevalence in standard fMRI analysis pipelines, spatial filtering was

always applied to the whole volume, prior to any masking. However, as this procedure

can potentially introduce signal from outside an ROI, particularly with large-sized LP

filters, I also performed a supplementary analysis where filtering was restricted to the

V1 ROIs in each hemisphere to prevent information propagation by smoothing (see
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Figure 3.5: Illustration of the attenuation profile of a Difference-of-Gaussian
(DoG) band-pass filter
The blue and green curve represent the profiles of Gaussian low-pass filters (4 mm
and 5 mm respectively) in the frequency domain. Horizontal lines represent the -3 db
points of the Gaussians. Band-pass filtering is implemented by subtracting the two
low-pass filter outputs from each other. The profile of the resulting DoG band-pass
filter is shown in red. Vertical lines show the Nyquist-frequencies for the three lowest
resolutions in the study. The pass-band of this exemplary DoG filter (corresponding
to an axis label “5 mm” in Figure 3.10 contains frequencies higher than what can be
appropriately measured with a 3 mm acquisition.

supplementary material).

All spatial filtering procedures described above were volumetric, using 3D Gaus-

sian kernels and ROI voxel selection was performed after spatial filtering with different

Gaussian kernel widths on the entire volume. Though this 3D filtering procedure was

being extensively used in previous studies like [Op de Beeck, 2010, Swisher et al., 2010],

this approach can lead to information propagation from adjacent parts of the cortex,

white matter and superficial vessels. Moreover, unconstrained 3D filtering does not

respect the cortical folding pattern and, given a large enough filter, can smooth across

sulcal boundaries, such as the two banks of the calcarine sulcus. This confounds filter

width with the extent of the cortical region from which information is drawn. To avoid

this problem, two additional spatial filtering approaches were implemented, namely
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volumetric filtering restricted to the V1 ROI, and surface-based smoothing.

Volumetric filtering restricted to the V1 ROI Similar to the spatial filtering

procedure performed in Alink et al. [2013], the voxel values outside the V1 ROI were

considered to be missing values (NaN) instead of applying spatial filtering on the whole

volume, prior to any masking. To eliminate a potential effect of smoothing across

hemispheres with large Gaussian kernels, filtering was restricted to individual hemi-

spheres. First, voxel values outside the left V1 ROI was considered to be NaNs and

spatial smoothing was applied. The same procedure was applied to the right ROI, and

then the smoothed left and right V1 ROI were combined to form the smoothed BOLD

volume. The same nested cross validation approach was performed on the smoothed

data.

Surface-based smoothing Freesurfer’s mri vol2surf function [Dale et al., 1999]

was used for smoothing gray matter BOLD data on the cortical surface, while specifying

the filter size with the surf-fwhm parameter. In the next step surface-projected data

was mapped back into the BOLD volume using Freesurfer’s mri surf2vol function (tri-

linear interpolation, fill-projfrac parameter with range 0-1 in steps of 0.01). This

procedure was performed for each hemisphere separately. Back projection into the

volume was performed to maintain an equal number of input features for the decoding

analysis. Subsequently, the same nested cross validation approach was performed on

the smoothed data.

Spatial resampling to other resolutions, with and without Gaussian filtering

A frequently expressed concern in the literature with respect to Gaussian smoothing is

that a linear transformation does not actually remove high spatial frequency information

[Alink et al., 2013, Kamitani and Sawahata, 2010]; instead, it merely implements a

relative scaling of frequency components [see Misaki et al., 2013]. In order to investigate

the potential impact of an irreversible frequency-domain transformation, I performed a
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Fourier (FFT) based spatial frequency resampling, which destructively removes high-

frequency components. Resampling BOLD fMRI data from one resolution to the other

was implemented as a two-step procedure. In the following paragraphs, I describe the

procedure using resampling from 0.8 mm to 3.0 mm resolution as an example, but the

procedure was analogous for all resolution pairs.

First FFT-based spatial filtering was performed on the distortion corrected 0.8 mm

data (see Figure 3.6A) using the scipy function signal.resample(). This removed

the higher frequency components, but the voxel grid remained unchanged (in-plane

matrix size (208, 160) with 32 slices). In the next step, linear resampling/reslicing was

performed with nilearn function resample img() to convert the FFT filtered image

to the corresponding 3.0 mm voxel grid (see Fig. 3.6B for an example). Importantly,

other than changing the voxel size, no further transformation, for example, to align

a resampled image to the orientation of the corresponding native acquisition, were

applied.

FFT resampling was also combined with subsequent Gaussian low-pass filtering

in order to evaluate a suggestion by Freeman et al. [2013] that one way of testing the

contribution of fine scale signals to orientation decoding is to compare high-resolution

BOLD fMRI data down-sampled to conventional resolutions, with or without first re-

moving high spatial frequency signals. For all spatial resampling analysis, with or

without Gaussian filtering, all voxels in the respective V1 ROI masks were considered

for multivariate decoding.

3.3 Results

3.3.1 Maximum orientation decoding accuracy

Effect of acquisition resolution and number of input voxels In order to de-

termine the effect of acquisition resolution, I performed orientation decoding at all

resolutions. Figure 3.7A shows the mean classification accuracy across participants and

hemispheres as a function of acquisition resolution in the V1 ROI. In the set of tested
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Figure 3.6: Resampling from 0.8mm iso to 3.0mm iso resolution
(A) Distortion corrected 0.8mm isotropic BOLD image overlayed with V1 ROI mask.
(B) Removal of high-frequency components using scipy function signal.resample() over-
layed with resampled V1 ROI mask (linear interpolation using scipy function ndim-
age.interpolation.zoom())

acquisition resolutions, I found the peak classification performance of 40.89% at 2 mm

isotropic resolution.

In this analysis, the NULL events (unilateral stimulation events) were included in

the GLM. Additionally I analyzed the data using two separate models for both hemi-

fields, while excluding NULL events from the modeling. This resulted in an overall

improved classification performance, but did not impact the structure of the relative

performance differences between resolutions (0.8 mm: 32.32%, 1.4 mm:41.78%, 2.0 mm:

46.42%, and 3.0 mm: 40.17%). The orientation decoding performance in the ipsilat-

eral V1 ROI gives an idea about the combined impact of potential interhemispheric

cross-talk and random correlations of the stimulus sequence between hemispheres. The

ipsilateral accuracies show similar trend as the contralateral accuracies but are sub-

stantiaally lower. The ipsilateral accuracies for 1.4 mm and 2 mm resolution show poor

decoding performance (¡ 30%) and the 0.8 mm and 3 mm decoding accuracies are at

chance level.

For the above analysis, all voxels in the respective V1 ROIs were used. As the

number of voxels in a 0.8 mm V1 mask was substantially higher than those in a 3.0 mm
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V1 Region of Interest Venous voxels in V1 for two thresholds

Left hemisphere Right hemisphere >60th percentile >90th percentile
Resolution #voxels std #voxels std #voxels std #voxels std

0.8 mm 7312 1912 7683 2556 1148 446 287 111
1.4 mm 2084 626 2169 710 518 186 130 47
2.0 mm 883 273 898 311 231 84 58 21
3.0 mm 324 94 327 104 105 36 26 9

Table 3.1: V1 ROI size
Average number of voxels for both hemispheres with standard deviation across partici-
pants. The four rightmost columns indicate the number of voxels within the ROI that
are considered to be intersecting veins for two different thresholds (the 40% of voxels
with the highest volume fraction of blood vessels; and the same for the top 10% voxels;
see Figure 3.13 for an illustration).

V1 mask (Table 3.1) and the number of input features/voxels can impact the classi-

fication performance, I repeated the analysis, but held the number of voxels constant

across participants and resolutions (50, 100, 125, and 150 voxels). Voxel sub-selection

was done randomly, and the analysis was repeated 100 times with a new random se-

lection of voxels. Figure 3.7B shows that a constant and smaller number of input

voxels had a negative effect on classification performance. Classification performance

was better with 2.0 mm and 3.0 mm data as compared to 0.8 mm and 1.4 mm data.

Time-series signal-to-noise ratio (tSNR) It has been shown that overall contrast-

to-noise ratio (OCNR) is a factor that impacts classification performance [Chaimow

et al., 2011]. According to Chaimow et al. [2011] OCNR is a measure is proportional to

contrast range and the square root of the number of voxels and is inversely proportional

to the noise level. The noise level was calculated as the inverse of time course signal-

to-noise ratio, which in turn depends on voxel size [Triantafyllou et al., 2005]. In this

study, tSNR is modulated across acquisition resolutions due to differential impact of

technical/thermal and physiological noise components. In order to characterize this

impact, I computed tSNR for each voxel as the ratio of mean signal intensity across
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Figure 3.7: Orientation decoding accuracy on spatially unfiltered data
(A) Orientation decoding accuracy on spatially unfiltered data as a function of acquisi-
tion resolution in the whole contra-lateral V1 ROI. Error bars show the standard error
of the mean (SEM) across 7 participants averaged across hemispheres. Chance level
accuracy (25%) is indicated as a horizontal dashed line. Classification performance is
detailed in confusion matrices for each resolution depicting the frequency of correct clas-
sification for each combination of prediction and target values. (B) Analog to (A), but
with a constant number of input voxels across resolutions. 50, 100, 125, or 150 voxels
were selected at random from the the whole contra-lateral V1 ROI for the classification
analysis. Selection was repeated 100 times. Error bars show SEM across repetitions.
Upper range limit of 150 voxels was determined by the ROI with the least number of
voxels at 3 mm resolution.

all time points after polynomial detrending (1st and 2nd order; analog to preprocessing

for MVP analysis) of scanner drift noise and the corresponding standard deviation.

Voxel-wise tSNR was averaged across all experiment runs. For a tSNR estimate of the

whole ROI, I averaged this score across all voxels. The relationship of voxel volume and

tSNR in the empirical data can be well explained by the following model [Triantafyllou

et al., 2005]:

tSNR = κV/
√

1 + λ2κ2V 2

where V is the voxel volume, κ is the proportionality constant, and λ is the magnetic

field strength independent constant parameter with λ=0.0117, κ=22.74 (R2=0.95) The

estimated asymptotic tSNR limit of ≈85 ( 1
λ
) is similar to the report of Triantafyllou
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Figure 3.8: Temporal signal-to-noise ratio (tSNR) as a function of voxel
volume
The observed data are represented by dots and the error bars represent the SEM across
subjects. The dashed line shows the fit to the following model tSNR = κV/

√
1 + λ2κ2V 2

similar to the report of Triantafyllou et al. [2005]

et al. [2005] for 7 Tesla acquisitions and is reached around 2.5 mm acquisition resolution

(see supplementary Figure 3.8).

Figure 3.9A illustrates the non-linear relation of tSNR and orientation decoding

accuracy. I observe a substantial drop in accuracy when decreasing resolution from

2 mm to 3 mm, despite a further increase in tSNR. This non-linearity was not observed

by Gardumi et al. [2016], who only reported a positive trend for the correlation between

decoding accuracy and tSNR, based on a single acquisition (1.1 mm resolution with

comparable tSNR of ≈32, and other resolutions being generated by reconstructing k-

space data to lower resolutions).

BOLD signal change Another potential source of differences in orientation decoding

accuracy across resolutions are BOLD signal amplitude differences due to, for example,

differential impact of a partial voluming effect [see Alink et al., 2013, Tong et al., 2012].

In order to quantify this effect, I calculated mean percentage BOLD signal change in

response to any flickering orientation stimulus across resolutions using FeatQuery in
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Figure 3.9: Temporal signal-to-noise ratio and Percentage BOLD signal
change
(A) Temporal signal-to-noise ratio (tSNR) as a function of resolution (voxel volume).
Error bars show the SEM for tSNR and accuracy across subjects and hemispheres. (B)
Estimated BOLD signal change by orientation for all resolutions. Maximum pairwise
signal change difference is observed for the cardinal directions 0°and 90°. This pattern
is congruent with the confusion plots in Figure 3.7A.

FSL [v5.0.9; Smith et al., 2004]. Similar to preprocessing in MVP analysis, no spatial

smoothing was performed before calculating the percentage signal change. In order to

obtain comparable percentage signal change across resolutions, I obtained a mask of all

responsive V1 voxels (z > 2.3 with p < 0.05 default parameters of FSL FEAT) in 0.8 mm

data for every subjects [Swisher et al., 2010, similar to Figure 3]. The responsive V1

voxel mask obtained at 0.8 mm was resliced into 1.4 mm, 2.0 mm and 3.0 mm resolutions.

Percentage signal change was calculated with FeatQuery within these masks. I found

that the mean percentage BOLD signal change was the highest for 0.8 mm resolution

(0.8 mm: 4.51%, 1.4 mm:3.92%, 2.0 mm: 3.73%, and 3.0 mm: 2.05%).

In addition, it may also be that particular orientation stimuli elicit stronger BOLD

responses than others [e.g., a grating along the cardinal orientations; Furmanski and

Engel, 2000]. In order to test for a differential effect and a possible interaction be-

tween orientation and acquisition resolution, I computed a 2-factor (orientation and

resolution) within-subject ANOVA for the estimated BOLD signal change from all 7
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subjects (Figure 3.9B). There was a significant main effect of acquisition resolution

(F (3, 18)=32.99, p=1.58e-07) and orientation, F (1, 6)=12.31, p=0.01), and significant

interaction between the factors, resolution, and orientation (F (3, 18)=4.27, p=0.01).

However, pairwise t-test (Bonferroni-corrected) did not reveal significant differences

between any two particular orientations.

Impact of head motion on decoding accuracy Head motion is a likely factor to

impact decoding accuracy. In order to evaluate this effect, I calculated a head motion

index suggested by Alink et al. [2013] for every participant and acquisition resolution.

Inline with the findings of Gardumi et al. [2016], I found a consistent, but non-significant

trend towards a negative correlation between head motion and decoding accuracy across

acquisition resolutions. (0.8 mm: r=-0.45, p=0.3; 1.4 mm:r=-0.64, p=0.11; 2.0 mm: r=-

0.68, p=0.09; 3.0 mm: r=-0.23, p=0.6).

3.3.2 Filtering Strategies

Impact of volumetric Gaussian smoothing Figure 3.10 A-D show the impact of

Gaussian filtering on the classification performance for data from all four acquisition

resolutions. LP spatial filtering is most commonly performed as a noise reduction step in

fMRI data pre-processing. The classification performance achieved on HP filtered data

of the same filter size is an indication of the amount of usable information removed by

LP filtering. Classification performance on BP filtered data indicates whether usable

information is present in a particular band of spatial frequencies. Likewise, band-

stop performance indicates the presence of usable information anywhere, except in a

particular band.

Except for 0.8 mm and 1.4 mm data, LP filtering did not aid classification perfor-

mance, relative to the performance on unfiltered data. For all resolutions, except for

0.8 mm, the best performance was achieved by LP filtering with kernel sizes no larger

than 3 mm FWHM. Peak performance on HP filtered data was achieved for filter sizes
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larger than 9 mm FWHM, except for the 0.8 mm acquisition resolution. BP filtering

yielded peak performance for all acquisition resolutions in the in the range of ≈5-8 mm,

using DoG BP filters with a 1 mm difference in the FWHM size of the underlying LP

filters. Classification performance of BS filtered data remained above-chance for all spa-

tial frequency bands. The BS performance curve initially follows the LP performance

for small filter sizes, but resembles the HP performance for larger filter sizes.

Impact of alternative spatial filtering procedures Figure 3.11 E-H shows the

performance of orientation decoding following low-pass, high-pass, band-pass, and band-

stop surface based spatial filtering. The results of surface based smoothing were similar

to those of the volumetric Gaussian filter, but the decoding accuracy did not decrease

rapidly with greater filtering. The band pass filtering peak was present at ≈5-8 mm but

less pronounced more evenly sloped than what was obtained from volumetric filtering.

This result is in congruence Swisher et al. [2010]

The results of the volumetric filtering analysis restricted to the V1 ROI are highly

similar to the results of the unconstrained filtering prior masking (Fig. 3.11 A-D).

Impact of spatial resampling to other resolutions, with and without Gaussian

smoothing As an alternative approach to Gaussian LP filtering for simulating a

resolution reduction, data acquired in a particular resolution were resampled (FFT-

based transformation) to all other resolutions and classification analysis was performed

with and without additional prior Gaussian LP filtering, as suggested by Freeman et al.

[2013].

Decoding performance on down-sampled data was lower than the accuracy ob-

tained from data recorded in the respective native resolution. Gaussian LP filtering

prior to down-sampling generally did not make the decoding accuracies better than

that of the native resolution data.

Data acquired at 2.0 mm and 3.0 mm resolutions, showed a general trend towards
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Figure 3.10: Effect of volumetric spatial filtering on orientation decoding
Orientation decoding accuracies for all acquisition resolutions (increasing acquisition
voxel size from top to bottom) and levels of spatial high-pass, low-pass, band-pass, and
band-stop Gaussian filtering. Panels on the right visualize the size of selected Gaussian
filter kernels with respect to the voxel size at each resolution. FWHM values for band-
pass and band-stop filters refer to the corresponding 1 mm band to the closest smaller
filter size (e.g., 5 mm refers to the 4-5 mm band).
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Figure 3.11: Results of alternative spatial filtering procedures
Volumetric spatial filtering restricted to V1 ROI (A-D), cortical surface-based smooth-
ing (E-H).
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Figure 3.12: Orientation decoding performance on fMRI data resampled to
other spatial resolutions
Resampling operation was performed with and without different levels of prior low-
pass Gaussian spatial filtering. Recording high-resolution data with subsequent spatial
down-sampling showed a consistent trend of lower classification accuracy compared to
the native resolution acquisition, with or without prior Gaussian low-pass filtering of
any tested kernel size.

better performance after resampling (up-sampling or down-sampling) compared to the

corresponding native acquisition resolution, even with prior Gaussian LP filtering of

different kernel sizes. 0.8 mm data consistently showed low decoding accuracy when

resampled to any other resolution with or without Gaussian filtering.
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3.3.3 Aliasing

In the case of frequency aliasing, a (spatial) source frequency is aliased into a lower fre-

quency when the sampling frequency is too low (Nyquist-Shannon sampling theorem).

If aliasing occurs, the apparent frequency is dependent on the sampling frequency. I in-

vestigated via BP filtering which frequency bands were most informative for orientation

decoding across all acquisition resolutions using Gaussian BP filtered data (Figure 3.10

A-D; orange curves). Peak accuracy was consistently located in the ≈5-8 mm bands

(highlighted range).

3.3.4 Vascular contribution to orientation decoding

Orientation decoding was performed inside and outside the vein localizer mask in order

to evaluate the availability of orientation discriminating signal in the vascular system.

Two different, arbitrary thresholds were used to classify voxels as intersecting vs. non-

intersecting with veins, based on the co-registered and re-sliced vein mask: the top

40% and top 10% of voxels with the highest value after realignment and reslicing to

the target resolution with trilinear interpolation. The resulting number of voxels is

presented in Table 3.1.

Decoding accuracy was computed inside and outside the vein mask within the V1

ROI. Analyses outside the vein mask were performed twice: once for the entire region

and again for a subset of voxels that was constrained to the number of voxels inside

the vein mask for the corresponding resolution. In the latter case, the analysis was

repeated with a new random voxel selection 100 times.

Figure 3.13A (right panel) shows that voxels with the highest venous content in

their volume still yield above change decoding performance. The performance drop

for the two lowest resolutions between the two vein mask thresholds may be explained

by the low number of input features going into the classification at high threshold

(compare Figure 3.13A, left panel). At 0.8 mm, the 10% most venous voxels yield the

same decoding performance as the rest of the V1 ROI combined (Fig. 3.13, middle
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panel), and noticeably more than a corresponding number of randomly samples non-

venous voxels (Fig. 3.13A, middle panel). Similar results can be observed for the 1.4 mm

resolution.

3.4 Discussion

In order to investigate the effect of acquisition resolution and spatial filtering on the

decoding of visual orientations from primary visual cortex, I measured ultra-high field

7 Tesla fMRI data in four different resolutions from seven participants. Linear SVM

classifiers were trained to classify voxel patterns of regression weights of hemodynamic

response models for the visual stimulation with four different oriented gratings. Cross-

validated classification accuracy was used as quality metric.

The overall classification accuracies reported here are deceptively low (peaking at

40-50% with a theoretical chance-level performance of 25% for the 4-way classification

analyses employed in this study). Other decoding studies in the literature have often

used binary classification paradigms [for example, Alink et al., 2013, Chaimow et al.,

2011] or reported average pairwise accuracy for classification performance results like

[e.g., Op de Beeck, 2010, Kamitani and Tong, 2005]. Converted into average pairwise

binary accuracies, the results reported here range from 55% to 70% (for 0.8 mm and

2 mm respectively, each accuracy corresponding to an analysis of the full V1 ROI and

with no additional smoothing; see Figure 3.7A; theoretical chance-performance: 50%),

hence accuracies are of the same magnitude as in other studies [see, for example, Alink

et al., 2013, Haynes and Rees, 2005]. In addition, some studies like Swisher et al.

[2010] also reported similar unfiltered accuracy results (≈50%) in a 4-way classification

analysis with 0°, 45°, 90°, and 135°gratings with much longer stimulation time (a block

design of 18s of block duration and 8 blocks/run). Therefore, I conclude that the

overall quality of the present data is comparable to that of previous studies, and that

the results presented here can be used to address open questions regarding the impact

of data acquisition and spatial filtering parameters on the decoding of orientation from
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Figure 3.13: Vascular contribution in orientation decoding
(A) Decoding accuracy was computed inside and outside the vein mask within the V1
ROI. The vein masks obtained from susceptibility weighted imaging were thresholded at
two different levels i.e. 60 percentile(%ile) and 90 percentile(%ile). The panel on the left
shows the performance of the entire V1 ROI outside the vein mask (non-venous voxels)
for the two different thresholds. Orientation decoding accuracy on V1 voxels restricted
to the veins mask (venous voxels) is shown on the right panel. The middle panel
depicts the decoding performance of a fixed number of non-venous voxels, the number
of voxels being equal to the number of venous voxels in the right panel corresponding
to every resolutions and thresholds. The dashed horizontal lines indicate the chance
performance. (B) Trilinear interpolation was used to reslice the vein mask to all four
target resolutions. The histogram shows the distribution of mask voxel intensities
corresponding to the volumetric fraction of “vein voxels” in the high-resolution vein
mask (voxel count axis in log-scale). (C) Axial maximum intensity projection of the
vein mask of one participant resliced to the 0.8 mm resolution; illustrates the two chosen
thresholds. The color indicator correspond to the curves depicted in panel A.
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the early visual cortex. Moreover, in this experiment I did not use a univariate feature

selection approach to define the “visually responsive” voxels in V1 (for example a GLM

contrast) in an attempt to improve the decoding accuracy. Studying the potential

impact of such an approach is left to a future study.

Optimal acquisition resolution Among the four tested acquisition resolutions, the

highest decoding accuracy was achieved with a 2 mm resolution (Figure 3.7A). This

result is congruent with a simulation study by Chaimow et al. [2011] that analyzed

the impact of anatomical and physiological properties of primary visual cortex, as well

as technical parameters of BOLD fMRI acquisition on the accuracy of decoding the

stimulated hemifield from signal sampled from ocular dominance columns. The afore-

mentioned study included a number of predictions for choosing optimal voxel size and

number of input voxels to maximize decoding accuracy for 3 Tesla fMRI [see Figure 6

in Chaimow et al., 2011] that show a striking similarity to the results presented here

(Figure 3.7). For 3 Tesla fMRI, Chaimow et al. [2011] showed that peak decoding accu-

racy is achieved between around 3 mm in-plane voxel size for ocular dominance. Given

that the profile of orientation columns has higher spatial frequency compared to ocular

dominance columns [Obermayer and Blasdel, 1993] and the BOLD PSF at 7 Tesla is

considerably smaller compared to 3 Tesla [Engel et al., 1997b, Shmuel et al., 2007] a

higher optimal resolution was to be expected for this study, and this hypothesis is sup-

ported by my results. This finding is also inline with a recent study by Gardumi et al.

[2016] showing that optimal decoding accuracy of speaker identity, or phonemes, from

auditory cortex BOLD patterns could be achieved with an effective voxel size of 2.2 mm

(acquisition resolution was 1.1 mm and target resolution was achieved by reconstructing

k-space data to a lower resolution).

Superior decoding performance at 2 mm could still be observed even when the

number of input voxels for classification was held constant across resolutions, although

the performance differences between resolutions are reduced (Figure 3.7B). The ratio of
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input features (voxels) and the number of observations (fixed in this study) is a critical

factor for the training of a classification model, as with increasing dimensionality the

sampling of the feature space becomes sparser, and, consequently, the estimated decision

surface suffers from increased uncertainty [curse of dimensionality, Bellman, 1961, after

Friedman et al. 2001] In this study, the number of voxels in the ROI varies by a factor

of >20 from the lowest to the highest resolution (Table 3.1). The pattern of decoding

accuracy differences when using the full ROI vs. a constant number of voxels across all

resolutions could indicate that ≈700 input voxels (size of the ROI at 2 mm) represents

the optimal trade-off between the number of observations and input voxels, given the

noise in the data and the fixed number of observations in this study.

Moreover, the present data suggest, in line with Chaimow et al. [2011], that tem-

poral signal-to-noise-ratio, an indicator of temporal signal stability, is a critical factor

for optimal decoding accuracy (Figure 3.9A). I also checked the effect of mean percent-

age BOLD signal change on decoding accuracy across different acquisition resolutions.

Though the overall BOLD signal change amplitude in 0.8 mm data (4.51%) was higher

than that in 2.0 mm data (3.73%), the decoding performance was better in the 2.0 mm

data. In fact, 0.8 mm data had the highest percentage of BOLD signal change but

showed the lowest decoding accuracy among all resolutions. An ’oblique effect’ has

been described in the literature in that cardinal orientations elicited higher activation

changes than oblique orientations of circular gratings Furmanski and Engel [2000]. The

reverse, higher activation for oblique than cardinal orientations, was found by Swisher

et al. [2010], who used the same kind of hemifield gratings as in the present study. my

pattern diverges from both previous results showing activation that was lowest for 0°

and highest for 90° orientations, with oblique orientations in between. A possible ex-

planation may be collateral summation of iso-orientation neurons, because the oriented

lines were longest in the 90° stimuli, shortest in the 0° stimuli and of in-between length

in the oblique orientations. However, this cannot explain the differences between the

Swisher et al. [2010] data and ours, so this remains a speculative interpretation.
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Optimal low-pass filter size Gaussian spatial LP filtering is one of the most com-

mon preprocessing steps for fMRI data analyses. However, the present findings indicate

that explicit spatial LP filtering, in addition to the implicit spatial filtering due to in-

herent motion, and the effect of head movement correction algorithms is generally not

beneficial for orientation decoding (Figure 3.10). Only for resolutions higher than 2 mm

does additional spatial smoothing with 2-3 mm FWHM show a tendency for improved

decoding accuracy. This suggests that, given a resolution, a spatial smoothness equiv-

alent to a Gaussian kernel size of ≈2 mm FWHM is optimal. This is congruent with

the observation of overall lower decoding accuracies for 3 mm scans and is in line with

the prediction of optimal acquisition resolution between 2 mm and 3 mm as presented

above.

Moreover, spatial down-sampling is not beneficial for orientation decoding either.

As shown in Figure 3.12 (0 mm data points, corresponding to no Gaussian smoothing),

orientation decoding on down-sampled data never outperforms the decoding on data

natively recorded in the corresponding resolution (as for example, in the 2.0 mm panel

of Figure 3.12, the 0.8 mm and 1.4 mm downsampled data performed lower than native

2.0 mm data).

Spatial characteristics of orientation specific signals The analysis of individual

spatial frequency bands via BP filtering (Fig. 3.10) revealed that orientation-related

signal is present in a wide range of spatial frequencies as indicated by above-chance

decoding performance for nearly all tested bands. However, a drop in decoding accu-

racy can be observed across all resolutions for bands with a 12 mm FWHM (or larger)

Gaussian kernel as the smaller kernel in the LP filter pair used for BP filtering.

Freeman et al. [2013], states that it is still an open question whether fMRI can

reflect signals originating from sampling random irregularities in the fine-scale columnar

architecture (spatial scale ≈1 mm). This study also suggests that given a columnar

architecture in the human visual cortex [Adams et al., 2007], BOLD fMRI measurements
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at conventional resolution ≈2 mm iso might reflect a combination of fine-scale and

coarse-scale (spatial scale ≈10 mm) contributions. Similarly, I can interpret the present

results such that the orientation-related signal in the BOLD fMRI data is spatially

broadband in nature, includes both high spatial frequency components, as well as large-

scale biases. On one hand the highest decoding accuracy was recorded at 2 mm iso

resolution, and low pass filtered components generated above chance accuracies beyond

10 mm FWHM Gaussian smoothing [similar to Op de Beeck, 2010]. These observations

point to the fact that the low frequency components provide orientation specific signals.

On the other hand I found that for DoG BP filters (Gaussian kernel sizes of 4 and 5 mm

FWHM and larger, decoding performance on BP filtered data was better than the LP

filtered components in all acquisition resolutions. This phenomena shows that low

spatial frequency fMRI components also contribute to noise.

According to Freeman et al. [2013], a convincing proof of fine-scale signals (≈1 mm,

according to the definition by Freeman et al.) underlying the ability to decode orien-

tations would be a comparison between decoding accuracies after down-sampling high-

resolution measurements to conventional scanning resolutions, with and without prior

removal of the columnar-scale contributions. To test this hypothesis, I did FFT based

resampling of the BOLD fMRI data from their native resolution into all three alter-

native resolutions with or without low frequency components (Fig. 3.12). I generally

observe a drop in accuracy after down-sampling data from my two highest resolutions

(0.8 mm and 1.4 mm), regardless of the presents of prior LP Gaussian filtering (except

for a singular slight increase in performance when resampling 0.8 mm to 1.4 mm data

without prior LP filtering). From these findings I conclude that the orientation-related

signal used for decoding is unlikely to comprise of low-frequency components alone.

This conclusion is in line with Swisher et al. [2010] who also reported that “majority

of orientation information in high resolution fMRI activity patterns can be found at

spatial scales ranging from the size of individual columns to about a centimeter”.

Carlson [2014] identified neuronal activity patterns related to stimulus edges that
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mimic a radial bias as a potential source of a global signal bias. The stimuli employed in

this study had clearly visible, unsmoothed edges, hence edge-related activity is a valid

explanation for the observed orientation-related large-scale signals. It can be argued

that the V1 ROI could be adjusted by a “safety margin” to the representation of the

edge of the stimuli to reduce edge related signals. I have tested various criteria for

ROI definition and sizes. I have found very little variation of the results with respect

to the particular shape and size of the ROI. The reported results are based on a V1

ROI generated by retinotopic mapping that used a stimulus that was larger than my

visual orientation stimulus, hence I are likely to sample voxels representing edge-related

signals. In other words, my ROI should contain a maximum amount of stimulus-related

information present in V1. I leave an analysis exploring aspects of the relationship of

individual stimulus properties and ROI shapes with the BOLD signal and decoding to

a future study.

Overall, BP filtering yielded peak performances for all resolutions (except for the

3 mm acquisition). Consistent with Alink et al. [2013], the present results suggest that a

band matching a DoG BP filter consisting of a 5 mm and an 8 mm FWHM Gaussian LP

filter) carries most (but not all) orientation-related signal. This band covers wavelength

from about 4.5 mm to 1.6 cm. The Nyquist-Shannon Sampling Theorem dictates that,

in order to measure a particular signal appropriately, the sampling frequency has to be

at least twice the critical frequency of that signal. Hence, a 3 mm acquisition can only

sample frequencies with a wavelengths of 6 mm or larger, and consequently misses some

part of this most informative band (Fig. 3.5).

This is consistent with my finding that optimal decoding accuracy required a

resolution higher than 3 mm. The nearly identical peak performance on 1.4 mm and

2 mm data is also compatible with this minimum frequency rule. However, the markedly

lower decoding performance on 0.8 mm data is likely evidence that a minimum sampling

resolution is necessary but not sufficient for optimal decoding performance. In this

study, an optimal balance of scanning resolution and temporal signal-to-noise-ratio is
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reached at 2 mm resolution. Higher resolution reduce tSNR and lower resolutions do

not provide sufficient sampling of higher frequency signals.

The present data does not support the hypothesis that the high spatial frequency

signal of orientation columns in early visual cortex could be reflected in (much larger)

fMRI voxels by means of spatial aliasing. In the case of frequency aliasing due to an

insufficient sampling frequency by the voxel grid, the frequency of the aliased signal

would vary depending on the actual sampling frequency (size of the voxel). However,

the peak decoding performance is always located in the same band across all four res-

olutions. my findings are in line with Kamitani and Tong [2005] and Chaimow et al.

[2011] which show that the spatial frequencies of columnar structures (0.5 cycles/mm)

do not contribute signal for decoding, due to several technical limitations like inherent

head motion and reduced SNR proportional to reduction in voxel volume. Moreover,

Shmuel et al. [2007] state that the PSF — that captures blurring factors due to eye

movements, neuronal response, BOLD response PSF in gray matter, as well as the

PSF of the data acquisition process — makes fMRI data inherently LP filtered and,

as such, poses a physical limitation on the spatial frequency scale from which fMRI

signal can be obtained. Kamitani and Tong [2005] and Chaimow et al. [2011] iden-

tify contributions from random variations and irregularities in the columnar structures

captured by larger voxels as the main source of information for decoding. These are

of considerably lower frequency than the primary spatial frequency characteristics of

the columnar organization and are lower than the Nyquist criterion of the BOLD fMRI

sampling frequencies.

It could be speculated that the spatial scale of the orientation signal as estimated

by volumetric spatial filtering is, to some degree, determined by the representation

of the cortical folding pattern in the scan volume. As volumetric filtering procedures

using 3D Gaussian kernels inherently mixes signals from gray matter, white matter, and

superficial vessels. It might be that a volumetric BP filter corresponding to the most

informative spatial frequency band is beneficial because it is of sufficient size to average
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signal across the entire diameter of the folded calcarine sulcus, whereas a smaller filter

is not, and a bigger filter includes a substantial fraction of the surrounding white matter

and adjacent cortical fields. If the above speculation is correct, I could expect lower

decoding accuracy in the most informative band band when replacing the employed

spatial filtering procedure with a cortical surface-based smoothing or a spatial filtering

that is restricted to V1 ROIs in each hemisphere. I performed these two alternative

analyses and found only minor differences in the results (see supplementary material

Fig. 3.11). Similar to the report of Swisher et al. [2010], the band-pass, high-pass,

low-pass components based on these alternative spatial smoothing schemes perform

very similar, but more evenly sloped than what was obtained from the unconstrained

volumetric filtering. Except for the 0.8 mm data, where the insufficient signal is even

more evident, the BP performance is extremely similar. Consequently, I find little

evidence for an impact of using standard, unmasked, volumetric spatial filtering for

this decoding analysis.

Venous voxels in V1 ROI contribute above chance classification of orienta-

tion gratings Several authors have cited an orientation-related BOLD signal origi-

nating from the vascular system (draining veins) as a potential information source for

decoding that may introduce spatial biases in the representation of orientation as mea-

sured with fMRI [Chaimow et al., 2011, Kriegeskorte et al., 2010, Shmuel et al., 2010].

The present results confirm the presence of such a signal. Particularly for the two high-

est resolutions tested here the decoding accuracy obtained from voxels sampling veins

is equal to the performance obtained from the non-venous rest of the V1 ROI, or even

outperforms it when controlling for the number of input voxels for the classification

model (Fig. 3.13A).

A BOLD signal originating in the blood vessels has the potential to introduce

complex transformations of the spatial representation of orientation in the BOLD re-

sponse patterns. Due to the structural properties of the vascular system this signal
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is likely to be of lower spatial frequency, compared to the underlying neuronal acti-

vation pattern, and is superimposed on a potential high-frequency pattern reflecting

the columnar structure of V1. This explanation has been put forth by Kriegeskorte

et al. [2010] who describe voxels as “complex spatio-temporal filters” and my results

are compatible with this model.

It should also be mentioned that previous studies found a substantial reduction

of intra-vascular BOLD signals at higher magnetic field strength [Yacoub et al., 2001],

and enhanced signal contributions from microvascular structures at 7T [Shmuel et al.,

2007]. Consequently, the particular composition of the compound signal captured with

BOLD fMRI will vary with the magnetic field strength. A future study should compare

the present results with data acquisitions at a different field strength to shed more light

on nature of the underlying signal and the implications for decoding analysis.

Limitations The focus of the present study was to investigate the effect of acquisition

resolution and spatial filtering on the decoding of visual orientations from primary

visual cortex. In order to yield comparable results, the acquisition parameters were

constrained to guarantee a certain minimum coverage of the V1 ROI even at the highest

resolutions and to have an identical temporal sampling frequency (TR) to yield the same

number of observations across all resolutions. This choice implied that the GRAPPA

acceleration factor had to be increased with increasing resolution, hence leading to an

increased under-sampling of the k-space with higher resolutions. This could impact the

sensitivity of the scan to high-frequency spatial signals. A future study will have to test

whether the present findings hold when constraints on coverage and sampling frequency

are relaxed. For example, a study by De Martino et al. [2013] using a 3D gradient and

spin echo (GRASE) sequence suggests that such a sequence outperforms a gradient

echo sequence, such as the one employed in this study, for high-resolution imaging at

0.8 mm isotropic resolution — at the expense of a vastly reduced scan volume.

The present study is exclusively based on 7 Tesla fMRI data, hence it remains
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unclear in which way the characteristics of the relation of decoding performance and

acquisition resolution are dependent on MR field-strength. The differences in the sizes

of the BOLD point-spread functions [Engel et al., 1997b, Shmuel et al., 2007] suggest

a lower resolution limit for 3 Tesla scans. However, the reported optimal resolution is

within the range of conventional acquisition resolutions of today’s 3 Tesla scanners. A

future study should address the question of how the decoding performance varies with

field-strength for identical resolutions.

While this study focused on the optimal acquisition parameters for decoding of

visual orientation from fMRI BOLD response patterns in early visual cortex, I ac-

knowledge other possibilities of further optimization of the decoding procedure (clas-

sification algorithm, hyper-parameter optimization, etc.) and their potential impacts

on results and interpretations. To facilitate the required future analyses I have pub-

licly released the data (available without restrictions from GitHub https://github.

com/psychoinformatics-de/studyforrest-data-multires7t) and a “Data in brief”

manuscript along with this. In this study I have found that given a neural signal with

known fine-scale spatial characteristics, there are technical and physiological factors

that place the acquisition resolution optimal for decoding at a substantially coarser

scale. Future studies should investigate whether the optimal settings for other decod-

ing paradigms and different cortical areas, beyond the findings for visual orientation

in visual cortex presented here, and the congruent results for auditory representations

reported by Gardumi et al. [2016], are similar in nature.

https://github.com/psychoinformatics-de/studyforrest-data-multires7t
https://github.com/psychoinformatics-de/studyforrest-data-multires7t


4. Experiment 2: The Effect of MR field strengths (7 Tesla vs.

3 Tesla) on Orientation Decoding: A Comparison Study

4.1 Introduction

As multivariate pattern analysis (MVPA) approaches are being increasingly used to

analyze fMRI data in decoding cognitive states represented in the distributed patterns

of brain activity [Bonte et al., 2014, Haxby, 2012, Haynes and Rees, 2005, Haynes, 2009,

Kamitani and Tong, 2005, Zhang et al., 2015], the true origin and spatial scale of the

decoding signals picked by the classifiers, is being strongly debated [Alink et al., 2013,

Op de Beeck, 2010, Freeman et al., 2013, Swisher et al., 2010]. It is interesting to note

that the data acquisitions in these previous studies were performed not only in different

acquisition resolutions but also in scanners of different field strengths. For example,

Swisher et al. [2010] reached a conclusion of the broadband nature of orientation de-

coding signals from a high resolution dataset acquired in a high-field 7 Tesla scanner,

whereas, Op de Beeck [2010] and Freeman et al. [2011, 2013] concluded that orientation

decoding is driven by a much larger coarse scale map in V1, by performing MVPA on

a dataset acquired on a conventional 3 Tesla scanner. Until now, it hasn’t been in-

vestigated whether these studies reached conflicting conclusions due to the differential

effect of the magnetic field strengths on the acquired data with respect to BOLD signal

sensitivity.

Experiment 1 (chapter 3) investigated the effect of acquisition resolution and spa-

tial filtering on the decoding of visual orientations from V1 by performing multivariate

cross-validated decoding analysis on ultra-high field 7 Tesla fMRI data in four different

resolutions (0.8 mm, 1.4 mm, 2 mm and 3 mm iso) from 7 participants. Among the four

tested acquisition resolutions, the highest decoding accuracy was achieved with a 2 mm

resolution. The results shown in Experiment 1 (chapter 3) were congruent with the

60
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simulation study by Chaimow et al. [2011] which reported that the optimal accuracy of

decoding ocular dominance is reached between 2-3 mm voxel size at 3 Tesla. As signal

to noise ratio (SNR) increases with magnetic field strength, fMRI acquisition at ultra-

high field 7 Tesla is expected to strongly benefit as compared to 3 Tesla. Though 7 Tesla

fMRI offers much higher blood-oxygen level dependent (BOLD) sensitivity and substan-

tial reduction in partial volume effect enabling higher acquisition resolution, [Weibull

et al., 2008], it suffers from higher distortion artifacts and increased physiological noise

(such as inevitable motion). Though relative advantages and shortcomings of 7 Tesla

vs. 3 Tesla have been extensively studied with respect to clinical MR, it remains incon-

clusive what effect MR field strength has on the performance of multivariate decoding.

This becomes even more relevant when in Experiment 1 the best performance at 7 Tesla

was obtained with 2 mm iso data (see Figure 3.7), and at 3 Tesla, fMRI data can be

recorded at 2 mm iso with subtantially less distortion and comparable signal to noise

ratio. In this study, I aim to address this question by performing orientation decoding

analysis similar to that described in Experiment 1 on data acquired from 7 partici-

pants at 3 Tesla in three different acquisition resolutions (1.4 mm, 2 mm and 3 mm iso).

Moreover, in decoding studies in the visual cortex [like Chaimow et al., 2011], it has

been shown that though neural signals emanate from columnar structures, there are

technical and physiological factors that place the optimal acquisition resolution for de-

coding at a substantially coarser scale. Whether the pattern of decoding performance

with respect to different acquisition resolutions (as shown in Experiment 1) remains

similar across a different magnetic field strength (3 Tesla) with an identical orientation

decoding paradigm, is investigated in this study.

Though the main focus of this experiment is the comparison of orientation de-

coding performance in different MR field strengths, it was also examined how post-

acquisition volumetric gaussian filtering affects the decoding performance in 3 Tesla.

This spatial filtering approach before performing multivariate decoding enables to un-

derstanding the spatial scale of the orientation discriminating signals from the visual
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cortex.

4.2 Materials and methods

4.2.1 Participants

Seven healthy right-handed participants (5 males) were recruited from the subject-

pool of the studyforrest project [Hanke et al., 2014, 2015a]. They all had normal or

corrected to normal vision and were paid for their participation. There were 5 subjects

who previously participated in the 7 Tesla experiment described in Experiment 1 (due to

unavailability of sub-04 and sub-18, sub-09 and sub-10 were recruited instead). Before

every scanning session, they were provided with instructions for the experiment and

signed an informed consent form. The study was approved by the Ethics Committee of

the Otto-von-Guericke University.

4.2.2 Stimulus and Experimental Design

In order to keep parity between orientation decoding experiments performed in the

7 Tesla and 3 Tesla experiments, the stimulus was kept identical to that described in

Experiment 1 (chapter 3). Flickering sine-wave orientation gratings (flicker frequency =

4 Hz, constant spatial frequency 1.4 cycles per degree of visual angle with 100%contrast)

were displayed in both hemifields on medium gray background in form of semi-annular

patches (0.8°-7.6° eccentricity, 160° width on each side with a 20° gap along the vertical

meridian). Orientation gratings (0°, 45°, 90°, or 135°) were displayed with random

phase (0, π
2
, π, or 3π

2
degrees) changed at a frequency of 4 Hz.

The presentation computer ((Neuro)Debian operating system [Halchenko and

Hanke, 2012]) performed stimulus presentation and response logging using PsychoPy

[v1.79; Peirce, 2008]. The stimulus was displayed on a high definition rear-projection

screen (1140×780 pixels, 18 cm wide), 60 Hz video refresh rate) placed at a total viewing

distance of 35 cm. In order to keep the participants’ attention focused and to minimize

eye-movements, they performed a center fixation task that was unrelated to the stim-
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Figure 4.1: Oriented grating stimulus with Landolt C fixation task
Event-related stimulation paradigm with 3 s of flickering stimulus at the beginning of
each trial followed by a 5 s inter-trial interval. The participants had to fixate at the
center of the screen performing Landolt C task throughout the entire length of the
experiment. The sequence of oriented gratings displayed in each hemifield were inde-
pendently randomized. The paradigm also included ten trials when the previous stim-
ulus was repeated in only one of the hemifields and were used to decouple stimulation
sequences (refer to section 3.2.4).

ulation with oriented gratings. Participants were asked to fixate on the Landolt-Ring

(radius 0.12°) presented at the center of the screen. At random intervals in each run the

Landolt-C stimulus was shown (left or right opening of 0.048°) and the participants had

to respond to the direction of the opening of the probe by pressing one of two buttons

corresponding to a left or right opening. The mean accuracy for this task was 90.1%

correct across all participants.

FMRI acquisitions (1.4 mm, 2.0 mm and 3.0 mm isotropic) were performed in three

separate sessions, acquisition order being randomized for each participant. Each run

comprised of 30 trials (8 s duration; 4 min total run duration) and each participant

performed 10 experimental runs in every session. The pseudo-random sequence of

displaying orientation gratings in both the hemifields were identical to that of the

7 Tesla experiment and are explained in details in section 3.2.4.
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4.2.3 MR acquisition

BOLD fMRI data from the V1 ROI were acquired at 3 Tesla at three different resolu-

tions with a stimulation paradigm which was almost identical to that used in the 7 Tesla

experiment. For direct comparison of multivariate accuracies, the MR acquisition pa-

rameters were carefully chosen so that they could be maximally similar across multiple

resolutions and across field strengths.

A Siemens Prisma 3 Tesla scanner with a 64 receive channel head coil (Siemens, Er-

langen, Germany) was used to acquire T2*-weighted echo planar images (EPI) (TR/TE

= 2000/30 ms, FA = 90°). The fMRI data were acquired on a tilted axial plane for 3

different spatial resolutions, i.e. 3 mm isotropic (FoV = 216 mm, matrix size 72 × 72,

36 slices, GRAPPA accel. factor 2), 2 mm isotropic (FoV = 216 mm, matrix size 108 ×

108, 32 slices, GRAPPA accel. factor 2) and 1.4 mm isotropic (FoV = 210 mm, matrix

size 150 × 150, 28 slices, GRAPPA accel. factor 3) with slices parallel to the cal-

carine sulcus. Slices were acquired in an ascending order with a 10% inter-slice gap to

minimize cross-slice excitation. All acquisition sequences used anterior-posterior phase

encoding. Each experimental run consists of 120 volumes and 10 separate scans (one

for each experimental run) were performed for each subject.

To be able to directly compare the multivariate decoding performance with re-

spect to MR field strength, the distortion corrected [In and Speck, 2012] 7 Tesla data

(1.4 mm, 2.0 mm and 3.0 mm isotropic) acquired in Experiment 1 were re-analysed in

this study with the same pre-processing steps (like feature selection) and orientation

classification procedure as was done on the 3 Tesla dataset in this study. The analysis

procedures performed on both 7 Tesla and 3 Tesla data in this experiment were sub-

stantially different from the previous one and are described in details in the following

sections.

Structural images for all participants acquired as a part of the studyforrest project

[Hanke et al., 2014] in a 3 Tesla Philips Achieva scanner, were reused in this study (refer

to section 2.3.5).
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4.2.4 Region of interest localization

As described in section 2.3 and 3.2.7, all participants underwent retinotopic mapping

for localization of V1 and a participant specific V1 ROI mask was created in respective

acquisition resolutions. Feature selection is an important pre-processing step in the

MVPA pipeline applied to reduce excessive noise and also for dimensionality reduction

[Haxby, 2012]. Unlike Experiment 1, in this study, univariate feature selection process

was performed in the V1 ROI mask for localizing the visually responsive voxels using

a second-level fixed-effects GLM analysis in FSL FEAT (default parameters - z > 2.3

with p < 0.05) [v5.0.9; Smith et al., 2004]. The visually responsive V1 ROI masks thus

created, were used for all further analyses.

4.2.5 tSNR calculation

The voxelwise time-series signal to noise ratio calculation method was identical to the

method described in section 3.3.1. The overall tSNR value for every acquisition was

obtained by averaging voxelwise tSNR across only the visually responsive voxels in the

V1 ROI to get a better estimate of tSNR, in response to the flickering visual stimulus.

4.2.6 Orientation decoding analysis

Multivariate orientation decoding was performed with PyMVPA [v2.4.1; Hanke et al.,

2009] on a compute cluster running (Neuro)Debian [v8.0; Halchenko and Hanke,

2012]. All functional scans acquired at the 3 Tesla underwent motion correction us-

ing MCFLIRT in FSL [v5.0.9; Smith et al., 2004] and the 7 Tesla data which were

re-analysed in this experiment were already motion corrected as part of the distortion

correction procedure [In and Speck, 2012]. Similar to section 3.2.9, univariate GLM

analysis was performed on BOLD fMRI time series from an individual experimental

run using GLM implementation in NiPy [v0.3; Millman and Brett, 2007] while ac-

counting for serial correlation with an autoregressive term (AR1). The GLM design

matrix included hemodynamic response regressors and corresponding temporal deriva-
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tives, six nuisance regressors for motion (translation and rotation), and polynomial

regressors (up to 2nd-order) modeling temporal signal drift as regressors of no-interest.

The β weights thus computed for every run were Z-scored per voxel. The resulting

dataset for MVP analysis contained 40 samples (one normalized β score per condition

per run) for each participant.

Similar to previous literature, Linear support vector machines [SVM; PyMVPA’s

LinearCSVMC implementation of the LIBSVM classification algorithm; Chang and Lin,

2011] were used to perform a within-subject leave-one-run-out cross-validation of 4-

way multi-class orientation classification. This linear SVM algorithm has a critical

hyper-parameter C that indicates the trade-off between the width of the margin of the

classifying hyperplane and number of correctly classified training data points. In this

experiment the value of the C parameter was scaled according to the norm of the data

(default operation for a linear kernel in PyMVPA).

4.2.7 Spatial filtering

In order to reveal the spatial scale of orientation specific information distributed across

the spatial frequency spectrum, the decoding procedure was repeated after spatial fil-

tering of the functional imaging data with volumetric Gaussian kernels. As it has been

shown in the previous studies like Swisher et al. [2010] and in Experiment 1 (chapter

3) that there was no substantial difference between decoding performance after a 3D

Gaussian filtering and cortical surface-based smoothing approach, in this study I im-

plemented only the 3D Gaussian filtering scheme. Similar to Swisher et al. [2010], I

used Gaussian filtering prior to any feature extraction for MVPA analysis in the par-

ticular ROI to estimate the spatial scale of the orientation specific signal. To be able to

compare with results across previous literature, the level of spatial filtering used in this

method is expressed in terms of the size of the Gaussian filter kernel described by its full

width at half maximum (FWHM) in mm. All spatial smoothing procedures were im-

plemented with the image smooth() function in the nilearn package [Pedregosa et al.,
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2011]. The respective implementations of Low-pass (LP), High-pass (HP), Bandpass

(BP) and band-stop (BS) filtering kernels were identical to the procedure described in

Experiment 1 (see 3.2.10).

4.3 Results

4.3.1 Decoding accuracy and tSNR comparison

In order to determine the effect of MR field strength on orientation decoding, I com-

pared decoding performance averaged across 7 participants in three different acquistion

resolutions (1.4 mm, 2.0 mm and 3.0 mm isotropic) in both 7 Tesla and 3 Tesla. Fig-

ure 4.2A shows the comparison of mean classification accuracy across participants from

7 Tesla and 3 Tesla. For the above analysis, only visually reponsive voxels in the re-

spective V1 ROIs (as described in 4.2.4) were used. For 7 Tesla acquisition the peak

classification performance of 38.92% was recorded at 2 mm isotropic resolution. Mean

accuracy at 1.4 mm isotropic and 3.0 mm isotropic performed lower than 2 mm data.

The pattern of decoding accuracy across resolutions were similar to the study shown

in Experiment 1 (chapter 3), though the ROI and the optimization of SVM classifier

hyperparameters done in this experiment were different from the previous study. For

the 3 Tesla data, the above pattern of decoding accuracy across resolutions was not

observed. The lowest mean decoding accuracy at 3 Tesla was recorded with the 1.4 mm

data. For 2.0 mm data acquired at 3 Tesla decoding performance was lower than that

at 7 Tesla data (the mean decoding accuracy for 2.0 mm data at 3 Tesla was 32.14% and

it was lower than the 95% binomial proportion confidence interval of the 2.0 mm acqui-

sition at 7 Tesla [33.73% - 44.31%] computed from the number of correct predictions

concatenated across hemispheres and cross-validation folds for all subjects). The 3 Tesla

data of 3.0 mm resolution performed better (35.89%) than the other 2 resolutions and

was almost identical to the decoding accuracy 3 mm data at 7 Tesla.

According to Chaimow et al. [2011], the classification performance is impacted

by the overall contrast-to-noise ratio (OCNR), which is directly proportional to the
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time course signal to noise ratio (tSNR) (depends on voxel size [Triantafyllou et al.,

2005]). In previous literature, it has been shown that the noise factor in fMRI time-

series are dominated by physiological and thermal noise. As described in Triantafyllou

et al. [2005], these noise factors vary primarily on signal intensity, echo time of the

EPI sequence and magnetic field strength. Figure 4.2B shows how time-series signal to

noise ratio calculated for only the visually responsive voxels in V1 varies across different

resolutions and across field strengths. It has been observed that the tSNR calculated

in this study is very similar to the tSNR values reported by Triantafyllou et al. [2005]

in figure 6. Similar to Experiment 1, the asymptotic relation of tSNR as a function

of voxel volume and MR field strength was modelled as tSNR = κV/
√

1 + λ2κ2V 2,

where V is the voxel volume, κ is the proportionality constant, and λ is the magnetic

field strength independent constant parameter. The empirical data obtained in this

experiment from both 7 Tesla and 3 Tesla were fitted to the above model. The goodness

of fit of the data to the model was obtained by calculating R2 score. For 7 Tesla,

the model parameters were calculated to be λ=0.013 and κ=22.7 (R2=0.85) and for

3 Tesla, they were λ=0.014, κ=6.6 (R2=0.99). Similar to the observation in Figure

4.2A, that 3 mm iso data acquired at 3 Tesla and at 7 Tesla showed nearly identical

orientation decoding performance, it was observed that the tSNR calculations of these

2 acquisitions were similar.

4.3.2 BOLD signal change

In order to quantify whether orientation decoding at 3 Tesla is driven by differential

impact in fMRI BOLD signal in response to different orientation gratings [see Alink

et al., 2013, Furmanski and Engel, 2000, Tong et al., 2012], I calculated mean percentage

BOLD signal change in response to orientation stimulus across resolutions using Feat-

Query in FSL [v5.0.9; Smith et al., 2004]. Similar to preprocessing in MVP analysis,

no spatial smoothing was performed before calculating the percentage signal change.

Percentage signal change was calculated with Featquery considering only the responsive
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Figure 4.2: Comparison of Magnetic field strengths
(A) Orientation Decoding accuracies across field strengths. For 7 Tesla acquisitions,
the peak decoding accuracy found at 2 mm iso resolution. The 3 Tesla data showed
monotonic increase in accuracy with increase in voxel size. Decoding performance for
3 Tesla data were lower than the 7 Tesla data for 1.4 mm and 2.0 mm resolutions, but
the 3.0 mm acquisition showed identical performance as the 7 Tesla data. (B) Time-
series signal to noise ratio is lower in the 3 Tesla data than 7 Tesla for all acquisition
resolutions. However tSNR level reached an asymptotic level as shown in Triantafyllou
et al. [2005]

voxels in V1. As shown in Figure 4.3B that the mean percentage BOLD signal change

was the highest for 1.4 mm resolution and reduced with increase in voxel dimensions,

similar to Experiment 1 (chapter 3). It was observed that the 0° orientation produced

lowest percentage signal change and only for 3 mm data the percentage signal change

for the oblique (45° and 135°) orientations were more than the cardinal (0° and 90°)

orientations, similar to the ’oblique effect’ [shown in Furmanski and Engel, 2000]. A

2-factor (orientation and resolution) within-subject ANOVA for the estimated BOLD

signal change from all 7 participants were performed to test the significance of effect

of orientation and acquisition resolution and a possible interaction between them. It

was found that there is a significant effect of acquisition resolution on BOLD % signal

change (F (2, 12)=65.5, p=3.49e-07). But there was no significant effect of orientation

(F (1, 6)=5.645, p=0.055) and no significant interaction of acquisition resolution and

orientation (p=0.609). It was also observed that for every acquisition resolutions 0°
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Figure 4.3: Percent signal change in response to different orientations across
acquistion resolutions in 3 Tesla
Mean BOLD Percentage signal change calculated for every orientation across resolu-
tions. For all resolutions, 0° orientations showed lowest signal change. Though the
effect on orientation on signal change was non-significant, ’oblique effect’ [shown in
Furmanski and Engel, 2000] was shown by the 3 mm data

orientation gratings showed the lowest percentage signal change.

4.3.3 Impact of Gaussian smoothing

Figure 4.4 A-C show how spatial smoothing with Gaussian kernels affects the per-

formance of multivariate orientation decoding using linear SVM classifier across data

acquired in 3 Tesla from three different acquisition resolutions (1.4 mm, 2.0 mm and

3.0 mm). LP volumetric gaussian filtering shows monotonic decrease in decoding ac-

curacy with increase in kernel size in all resolutions. But the decoding performance

remained above chance-level even after spatial smoothing of 10 mm. The complimen-

tary HP filtered images indicate the amount of high-frequency spatial information is

left after low frequency components are removed from the image by LP filtering. HP

components showed above chance decoding accuracy and performed better than the

LP filtered image beyond the 9-10 mm filtering kernel in all resolutions. Band pass
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filtered images show how much decoding information is present at a particular spatial

frequency band of 1 mm FWHM bandwidth. The overall best decoding accuracy was

again obtained by the BP filtered images. The BP components showed a prominent

peak in accuracy in the range of ≈5-8 mm for all resolutions. This observation is similar

to the findings in Experiment 1 and in Alink et al. [2013]. Classification performance

of BS filtered data remained above-chance for all spatial frequency bands. The BS per-

formance curve initially follows the LP performance for small filter sizes, but resembles

the HP performance for larger filter sizes.

4.4 Discussion

The primary focus of this study was to investigate the effect of MR field strength

on orientation decoding from primary visual cortex (V1). With that objective, a

cross-validated orientation classification analyses with Linear Support Vector Machine

classifier were performed on fMRI data acquired from 7 right handed participants in

both 7 Tesla and 3 Tesla Siemens scanners in 3 different acquisition resolutions (1.4 mm,

2.0 mm and [ mm3.0] isotropic). The classification model was trained to decode four

different orientation gratings (0°, 45°, 90°, or 135°) from the patterns of β weights ob-

tained by fitting BOLD fMRI data from V1 to a GLM. Classification accuracy averaged

across both hemifields and across participants was used as a metric for comparison of

decoding performance between MR field strengths. Similar to Experiment 1, the decod-

ing accuracies of the 4-way classification in this experiment were lower as compared to

pairwise classification accuracies reported in other studies like Haynes and Rees [2005],

Kamitani and Tong [2005].

In Experiment 1, it was found that the optimal C parameter for a Linear SVM

classifier might vary upto a large extent between resolutions (Figure 3.4), the search

range of the hyper-parameter being manually determined. It is to be explicitly men-

tioned that the main focus of this study was to compare orientation decoding perfor-

mance across MR field strengths and not a comparison across acquisition resolutions.
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Figure 4.4: Spatial smoothing with volumetric Gaussian filter
Above chance level orientation decoding accuracy was shown in all resolutions even with
spatial smoothing beyond 10 mm FWHM of gaussian smoothing. Band pass filtering
showed the highest decoding accuracy peak in the ≈5-8 mm FWHM in all resolutions
of 3 Tesla showing the absence of aliasing of fine scale signals from V1 by the voxel grid.
Band stop components show decoding accuracies similar to low pass components until
≈5-8 mm band and then shows similar decoding accuracies like the highpass compo-
nents. This shows the broadband nature of the orientation signals.
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Hence, the value of the C parameter was intentionally scaled according to the norm of

the data and not fine-tuned within a given range by nested cross validation.

Orientation classification analysis at 7 Tesla shows a distinct peak in decoding

performance at 2 mm isotropic resolution. Both 1.4 mm data (higher acquisition res-

olution) and 3 mm data (lower acquisition resolution) showed similar decoding per-

formance, lower than that of the 2 mm data. This pattern of variation of decoding

accuarcy with respect to the acquisition resolution is 7 Tesla is inline with the study in

Experiment 1 (chapter 3). In case of 3 Tesla data, the decoding accuracy monotonically

increased with increase in voxel size. in fact, the decoding accuracy at 3 mm resolution

acquired at 3 Tesla was almost identical to the 3 mm data acquired at 7 Tesla. This

brings me to the discussion, whether I am benefitting from acquiring fMRI data at

ultra high field strengths. Though the choice of MR field strength (7 Tesla vs. 3 Tesla)

should depend on the particular study and the hypothesis being tested, it is a well

known fact that higher field strengths like 7 Tesla provides superior signal to noise ratio

and improved BOLD signal sensitivity over 3 Tesla. But as shown in previous literature,

fMRI time-series is dominated by physiological and thermal noise under some condi-

tions. Specifically, Triantafyllou et al. [2005] showed that unlike image SNR, the fMRI

time-series signal to noise ratio (tSNR) reached its asymptotic limit with moderate spa-

tial resolution (≈ between 2-3 mm isotropic) at 3 Tesla and it shows only marginal gains

from data acquisition at higher field strengths (7 Tesla). This asymptotic trend of tSNR

with respect to voxel dimensions in different field strengths was found in the empirical

data analyzed in this study (refer to Figure 4.2B). Moreover, it has been shown in the

simulation study of Chaimow et al. [2011], how multivariate decoding performance at

a particular resolution varies proportionally with the tSNR factor. This explains the

reason why 3 mm data of 7 Tesla and 3 mm data of 3 Tesla showing very similar tSNR

values performed almost identically in orientation decoding.

From the discussion in the previous paragraph, it is evident that tSNR is an im-

portant factor in orientation decoding, but it is not the exclusive driving factor. The
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spatial scale of the orientation specific signal is also a primary key which determines the

performance of orientation decoding at a particular combination of acquisition resolu-

tion and MR field strength. As shown in Figure 3.9A, at 7 Tesla, though the tSNR value

of the 3 mm data was more than the 2 mm acquisition, the decoding accuracy for the

3 mm data was lower, because it did not have the sufficient spatial sampling frequency

to be able to capture the orientation specific signals. On the other hand, 0.8 mm and

1.4 mm data acquired in 7 Tesla provided good spatial sampling frequency but lacked in

tSNR due to smaller voxel size. So better orientation decoding performance requires an

optimal balance of acquisition resolution and tSNR factor, which was obtained in 2 mm

data at the 7 Tesla. But in the 3 Tesla acquisition, due to reduced field strength, 2 mm

data did not have adequate tSNR (41.66) as compared to the 7 Tesla 2 mm acquisition

(61.94). This was also reflected at the substantially lower decoding accuracy of 3 Tesla

2 mm data as compared to that of the 7 Tesla.

Spatial scale of orientation specific signals is a widely debated area of research

[Alink et al., 2013, Op de Beeck, 2010, Freeman et al., 2011, 2013, Gardner, 2010].

There are several competing ideas, one group of scientists have shown that the orienta-

tion decoding classifiers reflect these underlying fine scale organizations (spatial scale ¡

1 mm) of orientation columns in the primary visual cortex [Adams et al., 2007, Hubel

and Wiesel, 1972]. Boynton [2005], Kamitani and Tong [2005] showed that random

irregularites in the columnar organizations as sampled by the acquisition voxel grid

provides a reliable bias of orientation decoding. Conversely, the concept of orientation

decoding depending entirely on low frequency coarse-scale orientations, including biases

for radial and cardinal orientations has been proposed by Furmanski and Engel [2000],

Mannion et al. [2010], Sasaki et al. [2006]. In this study, I performed a 2-factor (orienta-

tion and resolution) within-subject ANOVA for the mean BOLD signal change from all

7 participants in the visually responsive voxels of V1 and could not find significant effect

of orientation. Only in the 3 mm data it was observed that the percentage signal change

for the cardinal orientations were lower than the radial orientations, similar to ’oblique
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effect’ reported by Swisher et al. [2010]. Spatial filtering with volumetric Gaussian ker-

nel also indicate the spatial scale of orientation specific signals. In all resolutions I find

that the Band pass filtered component showed highest decoding accuracy in the ≈5-

8 mm. This is identical to the results shown in the gaussian filtering approach on 7 Tesla

data (Figure 3.10). It indicates that orientation specific signals which are present in a

particular band of frequencies, are preferred and beneficially sampled by the classifiers

to perform orientation decoding across MR field strengths. But the spatial scale of the

orientation signals were not confined to that particular band. LP filtered components

showed gradual decline in decoding accuracy but performance was above chance beyond

10 mm smoothing showing the contribution of coarse scale signals. On the other hand

the HP filtered components beyond 10 mm show high decoding performance indicating

high frequency signals. Interestingly, the band stop components always perform above

chance level with decoding accuraies similar to the low pass filtered components until

the ≈5-8 mmand then resembling the accuracies of the high pass filtered component.

This shows how the low frequency and the high frequency components of the orienta-

tion specific signals contribute to decoding in different ranges of the spectrum. Overall

I again conclude that the orientation signals are spatially broadband in nature, start-

ing from millimeter range columnar signals to large-scale orientation biases (beyond

10 mm), in line with the findings of Experiment 1 and Swisher et al. [2010].



5. Experiment 3: Dependence of Orientation Decoding on

tSNR

5.1 Background and Motivation

In Experiment 1 and Experiment 3, it was shown how the balance of BOLD acquisition

resolution and the corresponding tSNR plays an important role in optimal decoding

performance. The primary difference between the pattern of decoding accuracy across

acquisition resolutions in 7 Tesla vs. 3 Tesla is at 2 mm resolution. The substantially

lower decoding accuracy with 2 mm data at 3 Tesla, can be attributed to the fact that

the 7 Tesla acquisition provides better BOLD sensitivity and hence the tSNR figures

were substantially higher (tSNR: 41.66 for 2 mm data in 3 Tesla and 61.94 for 2 mm data

in 7 Tesla). This explanation of lower decoding performance of 2 mm data in 3 Tesla

is supported by the findings of Tong et al. [2012], where it is shown how orientation

classification performance was highly correlated to the amplitude of the stimulus-driven

fMRI response. In Experiment 1, evidences of this correlation can be found, where it is

shown that for all resolutions the highest difference in mean percentage signal change

between 0° and 90° (see Figure 3.9B) orientations is also reflected in the maximum

decoding performance obtained for discriminating between 0° and 90° orientations (see

confusion plots in Figure 3.7A). Keeping in mind these findings, it can be hypothesized

that by modifying the scanning protocol parameters, if the tSNR factor of the 2 mm

data in 3 Tesla could be enhanced, then a better decoding accuracy should be obtained.

5.2 Methods

5.2.1 Data Acquisition

In the 2 mm data acquisition protocol at 3 Tesla parallel image acquisition technique

[GRAPPA accel. factor 2 Griswold et al., 2002] was used for keeping repetition time

76



77

(TR) unchanged across resolutions. Though parallel imaging techniques are used in

MR imaging to reduce acquisition time, it has a limitation of decreased SNR than the

MR images obtained from Fourier transform of the k -space in the traditional manner.

For parallel imaging acceleration factor of R, theoretically SNR is reduced by a factor

of
√
R [Glockner et al., 2005]. To check the effect of enhanced tSNR on decoding

accuracy without modifying the repetition time (TR), a separate dataset was acquired

with Simultaneous Multi-slice EPI (multiband) acquisition after switching off GRAPPA

acceleration. The multiband technique was chosen because this method provides faster

fMRI acquisition without significant loss of SNR. FoV in this acquisition setup was kept

exactly same as the single band acquistion (FoV=216 mm, matrix size 108×108, 32

slices). In order to keep identical repetition time (TR) across all resolutions multiband

acquisition factor of 2 was introduced and the 7/8 partial fourier transform of the k-

space was performed (SMS=2, TR = 2000 ms, FA = 90°, 7/8 k-space, 120 volumes).

The EPI data acquisition was performed with a paradigm identical to Experiment 2.

The same participants who previously volunteered for Experiment 2 also participated

in this experiment.

5.2.2 Data Analysis

The Region of Interest localization, the tSNR calculation procedure and the ori-

entation decoding analysis were identical to that of Experiment 2.

5.3 Results and Conclusion

In this experiment, I compared the tSNR calculations and corresponding decoding ac-

curacies of the normal 2 mm iso 3 Tesla acquisition, the multiband 2 mm iso 3 Tesla

acquisition and the 2 mm iso 7 Tesla acquisition. As shown in Figure 5.1, 2 mm data

with GRAPPA acceleration factor 2, mean tSNR across all V1 responsive voxels across

participants was 41.66. On the other hand, mean tSNR of the 2 mm multiband acquisi-

tion without GRAPPA acceleration was calculated as 57.68 showing a 38.45% increase.
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Figure 5.1: Dependence of orientation decoding on tSNR
With multiband 2 mm iso acquisition 38.45% increase of tSNR was achieved over normal
2 mm data at 3 Tesla, but the decoding accuracy showed marginal enhancement (≈3%).
However, the tSNR of 2 mm iso 7T acquisition was 48.67% more than mm2 data at
3 Teslaand the decoding accuracy was ≈21% better.

It was observed in Figure 5.1 that, with this enhancement in tSNR, the mean orienta-

tion decoding performance at 2 mm iso increased from 32.1% for normal EPI acquisition

to 33.4% for multiband acquisition. The 2 mm acquisition at 7 Tesla had tSNR of 61.94

and it showed 38.92% decoding accuracy.

Only a very moderate improvement in decoding accuracy was observed as shown

in Figure 5.1. This phenomena can be attributed to the much larger BOLD point spread

function in 3 Tesla as compared to that of 7 Tesla. According to Shmuel et al. [2007],

at 7 Tesla the BOLD PSF has an upper bound of 2.34 ± 0.20 mm, whereas, at 3 Tesla

the obtained PSF is much wider, ≈ 3.4 mm. This is because, at 3 Tesla stimulus-evoked

BOLD signals from intravascular contributions of large draining veins constitute ≈ 50%

of the fMRI signals [Shmuel et al., 2007]. On the other hand the intravascular BOLD

contributions become negligible only at MR field strength of 7 Tesla or above, because

it provides reduced susceptibility due to lowered echo time (TE) [Duong et al., 2003,

Jochimsen et al., 2004].

Inline with Tong et al. [2012], from these findings it can be concluded that there

is a positive correlation between the Orientation decoding accuracy and the tSNR
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obtained for that acquisition with respect to the particular stimulus. But the correlation

is not linear and it depends on other factors like the acquisition resolution, BOLD PSF

of that magnetic field strength, contribution of veins etc. Though it is out of scope of

this experiment, Tong et al. [2012] also showed how decoding accuracy is varying with

the spatial frequency and the contrast of the orientation stimulus. In a future study, it

can be investigated, whether there is an optimal combination of stimulus parameters,

acquisition resolution, scanning protocol parameters and magnetic field strength which

will provide improved decoding accuracies and more detailed insight into the true spatial

scale of orientation specific signals.



6. Experiment 4: Multivariate Decoding in Auditory Cortex

6.1 Background and Motivation

Though recently, multivariate decoding is studied in auditory cortex [Gardumi et al.,

2016, Vetter et al., 2014], the most extendively studied paradigm over the last decade

has been decoding orientation gratings from the BOLD fMRI patterns from the visual

cortex. Like most previous literature, the Experiment 1 (Chapter 3) and Experiment 2

(Chapter 4) used an event-related orientation decoding paradigm for investigating the

effect of acquistion resolution and MR field strength on multivariate classification anal-

ysis. Upon investigating the spatial scale of orientation specific signals with volumetric

Gaussian spatial filtering, emerged a particular pattern. In line with Swisher et al.

[2010], in both the experiments I found evidences to conclude that orientation specific

signals were broadband in nature ranging from ≈ 1 mm-10 mm, representing columnar

scale contributions to large scale signal biases. Especially, the ≈5-8 mm FWHM band

showed maximum orientation decoding accuracy across acquistition resolutions and MR

field strengths. I wanted to investigate whether the same patterns of decoding were dis-

played for a different decoding paradigm in a different region of the brain. The subjects

who volunteered for the Experiment 1, also participated in the perception of musical

genres study [Hanke et al., 2015a], as a part of the studyforrest project [Hanke et al.,

2014]. Here I re-analyzed the auditory fMRI data for decoding musical genres from

activation patterns from auditory cortex and investigate the spatial scale of decoding

signals with spatial smoothing.

6.2 Methods

The seven participants passively listened to five natural, stereo, high-quality music

stimuli (6 s duration; 44.1 kHz sampling rate) for each of five different musical genres:

1) Ambient, 2) Roots Country 3) Heavy Metal, 4) 50s Rock’n’Roll, and 5) Symphonic
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while fMRI was recorded in 7 Tesla Siemens scanner [please see procedural details in

Hanke et al., 2015a]. The EPI scans were recorded with 1.4 mm isotropic voxel size

(TR=2.00 sec, matrix size 160×160, 36 slices, 10% interslice gap) and were distortion

corrected [In and Speck, 2012] and aligned to a per-subject BOLD template image

(voxel size 1.2 mm). The multivariate decoding of musical genres from the suditory

cortex fMRI signal patterns was performed on the template aligned functional images.

The Region of interest (ROI) in the primary auditory cortex (Broadmann Area 41 and

42) included Freesurfer cortical parcellation of superiortemporal and transversetemporal

gyri in both left and right hemispheres. Leave-one-run-out nested cross validation was

performed with Linear CSVM classifier (similar to Section 3.2.9) and mean classification

accuracy across 7 participants are reported in Figure 6.1. The spatial scale of decoding

signals were studied with MVP analysis on fMRI images after 3D volumetric Gaussian

spatial filtering, with Low pass, High pass, Band Pass and Band stop implementations

(implementation details in Section 3.2.10).

6.3 Results and Conclusion

Figure 6.1 shows the multivariate decoding performance of 5 different types of musical

genres from primary auditory cortex signal patterns. The theoretical chance level of

20% is shown by dashed line. The unfiltered decoding performance and the decod-

ing accuracies after spatial filtering were higher than chance level. But the pattern

of decoding accuracies at different levels of spatial filtering with volumetric Gaussian

kernels, resembled the results of orientation decoding from V1 (as shown in Figure 3.10

and Figure 4.4). The bandpass component also show maximum decoding accuracy in

the ≈5-8 mm. The lowpass components showed steady decline of performance with in-

creasing kernel width after the 3 mm FWHM mark but does not reach chance level even

after 20 mm of smoothing. The highpass components showed better decoding accura-

cies beyond 9 mm FWHM. The Bandstop component’s performance was similar to the

lowpass components until the 5 mm FWHM band and then started following highpass
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Figure 6.1: Decoding accuracy in auditory cortex after spatial smoothing
Classification accuracy of decoding musical genres from BOLD signal patterns from the
primary auditory cortex. The unfiltered data showed much higher decoding accuracy
than orientation classification in V1. After low pass spatial filtering by gaussian kernel
the decoding accuracy stayed above chance level even at 20 mm FWHM. High pass, band
pass and band stop filters showed very similar trend as found in orientation decoding
across the smoothing spectrum. Peak decoding accuracy was reached at ≈5-8 mm
band in the band pass filtered components. The bandpass components showed better
accuracy than the high pass components until 15mm FWHM smoothing. This hints at
larger contribution of low frequency decoding signal unlike orientation decoding.

components.

In line with Gardumi et al. [2016], the results suggest that decoding informa-

tion for musical genre classification from the primary auditory cortex are spatially dis-

tributed and are represented at different spatial scales. However, similar to V1, though

the decoding signals originating from the primary auditory cortex are also spatially

broadband in nature, ≈5-8 mm band contributes more than other frequency bands.

Keeping in mind, the broadband nature of the decoding signals and the results of the

vowel decoding shown in Gardumi et al. [2016], it can be concluded that for multivariate
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decoding in the auditory cortex, there is no particular optimal spatial resolution but

the acquisition resolution and the corresponding spatial smoothing parameters need to

be tailored to the particular decoding task which is being investigated.

It is to be noted that the findings of this experiment show striking similarity with

the orientation decoding accuracy patterns obtained from the visual cortex. Until now

one of the most debated points in multivariate pattern analysis literature has been the

origin and the scale of the orientation decoding signals and most of the previous studies

have related it to some anatomical or topographical structure, which is specific to the

visual cortex, namely, submillimeter scale orientation columns or large scale orientation

maps etc. But it was shown in Linden and Schreiner [2003] how the anatomy and the

synaptic physiology of the auditory cortex have important differences from the colum-

nar organization of the visual cortex and these differences have corresponding functional

significances too. Irrespective of these anatomical differences and the differences in the

experimental stimulations and the psychophysical task performed by the participants,

the consistency of the pattern of decoding accuracy (along different levels of spatial

smoothing) across two different sensory cortices is highly significant. Does that mean

that multivariate decoding is actually dependant on much more basic physical param-

eters which are consistent across different sensory cortices? Finding an answer to this

question is out of the scope of this experiment, but it is extremely relevant for better

understanding of the process of multivariate decoding and needs to be investigated in

details in future studies.



7. Summary and General Conclusions

Over the last decade, there has been a multitude of studies which used Multivariate

Pattern Analysis approach to successfully decode viewed orientations from the BOLD

signal patterns in the primary visual cortex [Alink et al., 2013, Op de Beeck, 2010,

Boynton, 2005, Freeman et al., 2011, 2013, Gardner, 2010, Haynes and Rees, 2005,

Kamitani and Sawahata, 2010, Kamitani and Tong, 2005, Misaki et al., 2013, Pratte

et al., 2016, Swisher et al., 2010]. In contrast to the conventional univariate fMRI anal-

ysis approach of studying individual voxel response in isolation, multivariate techniques

apply machine learning approaches to analyze the patterns of activity of multiple voxels

together even if the activity in individual voxel might not be significant. The ability

to decode orientations from BOLD patterns recorded by conventional 3 mm isotropic

voxels at 3 Tesla(though it has been shown by previous electrophysiological studies that

orientation selectivity in V1 originate from sub-millimeter range columnar structures)

has led to an ongoing debate about the true spatial scale of orientation signals picked

up by the classifiers. There are several hypotheses put forward to explain this mech-

anism, for example, random irregularities in V1 columnar structures introducing local

bias effects in voxel signals [Kamitani and Tong, 2005], exclusive coarse-scale radial bi-

ases [Freeman et al., 2011, 2013], functionally organized cortical vasculature providing

a complex spatio-temporal filter [Gardner, 2010, Kriegeskorte et al., 2010] etc. In these

reports the spatial scale of the orientation signals has been studied by running decoding

analysis on either spatially filtered images (by gaussian filtering kernel of variable width)

or on spatially resampled images (k-space resampling to other lower resolutions). How-

ever it remains inconclusive, what effect data acquisition in different resolutions have

on orientation decoding and whether higher magnetic field strength (7 Tesla) has any

benefit over the conventional 3 Tesla. These open questions were addresed in this thesis.
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7.1 Summary of the experimental procedures and results

In Experiment 1, fMRI data was acquired in four different resolutions at 7 Tesla

(0.8 mm, 1.4 mm, 2 mm and 3 mm iso) from 7 participants while they passively watched

independent semi-annular orientation gratings ( 0°, 45°, 90°, or 135°) in both hemifields.

Linear Support Vector machine classifier was used with nested cross validation to decode

the viewed orientation from the BOLD activity pattern in the contralateral hemisphere.

The highest recorded decoding accuracy in the 4-way classification was found in the

2 mm data. From the results, I could conclude that at 2 mm resolution there was

an optimal balance of tSNR and sampling frequency, If I went to higher resolution

(0.8 mm, 1.4 mm) I could not get enough tSNR due to reduced voxel size, and 3.0 mm

data had more tSNR but lacked sampling frequency. Spatial filtering prior to decoding

showed that the ≈5-8 mm is the most informative band in orientation decoding from

V1. Moreover I showed that the orientation signal is highly broadband in nature,

including columnar scale contributions to signals of spatial scale of 10 mm. In this study

I also localized the veins in V1 with susceptibility weighted imaging and did decoding

analysis both inside and outside the venous voxels. It showed that the vasculature in

V1 contributes to above-chance decoding accuracies which is inline with the concept of

complex spatio-temporal filters.

In Experiment 1, the 2 mm iso data, which provided maximum decoding accu-

racy at 7 Tesla, can be acquired with the conventional 3 Tesla scanner with much less

distortion than 7 TeslaḢence the comparison study described in Experiment 2 was per-

formed where orientation decoding was compared across MR field strengths (7 Tesla vs

3 Tesla) in multiple acquisiition resolutions(1.4 mm, 2 mm and 3 mm) to get a better

understanding whether multivariate decoding profits from high magnetic field. It was

reported that in 3 Tesla decoding accuracies monotonically increased with increase in

voxel size and the decoding performance in 2 mm 3 Tesla data was lower than 2 mm

7 Tesla data. It was revealed that the 3 Tesla acquisitions had lower tSNR values than

the corresponding 7 Tesla acquisitions. Spatial filtering prior to decoding analysis in the
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3 Tesla data showed almost identical patterns of accuracy across the entire spectrum

substantiating the claim of orientation signals being broadband.

To determine the dependence of orientation decoding on time series signal to

noise ratio in Experiment 3 I performed a separate multiband acquisition at 3 Tesla

with 2 mm resolution, with the same experimental paradigm, with no parallel imaging

technique to enhance the tSNR. In the multiband 3 Tesla acquisition though substantial

increase in tSNR was achieved, the decoding accuracy marginally increased, showing

the blurring effect of the much larger BOLD point spread function of 3 Tesla acquisitiion

as compared to the 7 Tesla.

As shown in Experiment 1 and Experiment 2, a very consistent pattern of orien-

tation decoding accuracy in V1 emerged with Gaussian spatial filtering across magnetic

field strengths and acquisition resolutions. In Experiment 4 I also found that this same

pattern is reflected in decoding musical genres from fMRI activation patterns in the

primary auditory cortex.

7.2 Conclusion and Future Research

In conclusion, the experiments included in this thesis present an in-depth analysis

of some technical aspects in multivariate orientation decoding from V1. This is the

first time that multi resolution fMRI data has been compared against each other and

also across magnetic field strengths. The results give us a clearer idea about the spatial

broadband nature of the orientation specific signals, with particularly high contributions

from the ≈5-8 mm band. In line with the simulation studies by Chaimow et al. [2011], it

can be concluded from this thesis, that data acquisition for orientation decoding approx-

imately around 2 mm iso provide better decoding performance. The consistency of the

pattern of decoding accuracy across different levels of Gaussian smoothing in different

experimental paradigms in different regions of the brain, hints at rather uniform factors

underlying the ability to decode. These factors might include the technical parameters

of scanning, uniformity of anatomical structures across primary sensory areas of the
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cortex, decoding analysis procedures etc. and is a subject of further research. Though

there has been previous simulation studies modelling the functional organization of

vasculature in V1, this thesis for the first time provides empirical evidence about the

contribution of veins in orientation decoding across different resolutions. The venous

voxels in V1 providing above chance decoding accuracy, support the claim of complex

spatio-temporal filter [Kriegeskorte et al., 2010] where it plays an important role in

bringing fine scale functional signals to a much lower resolution which can be sampled

by the voxel grid. The comparison of MR field strength on orientation decoding shows

that 7 Tesla provides better decoding performance than 3 Tesla at resolutions where

the higher magnetic field strength can provide better tSNR due to improved BOLD

sensitivity. Though decoding accuracy is shown to be positively correlated with tSNR,

it is not the sole driving factor. From the results of comparison between normal EPI

acquisition and multiband acquisition in 3 Tesla, it can be concluded that the balance

of acquisition resolution and corresponding tSNR along with the BOLD PSF, plays an

important role in decoding accuracy.

It is to be understood that multivariate decoding of fMRI data is a relatively new

field in Neuroscience and that there are a multitude of other factors which are still to

be explored and are out of scope of this thesis. One of the most important factors that

needs to be investigated is the effect of the classification algorithm on decoding perfor-

mance. This thesis uses the most widely used Linear support vector machine classifier

for easy comparison with previous literature. Keeping in mind the intrinsic non linearity

of the decision surface in the multidimensional classification space, non-linear kernels

may be better suited for this purpose. Not only different classification algorithms, the

optimization of the hyperparameters of these kernels is a subject of extensive research.

For example, in this thesis it was shown that C parameter optimization of the Linear

SVM kernel by nested cross validation improved decoding accuracy. Regarding fea-

ture selection before classification, it is known to be an important step but it has to

be investigated what is the optimal way of performing it. In this thesis, univariate



88

feature selection was performed, but the effect of classifiers like Sparse Multinomial

Linear Regressor, which provides in-built feature selection functionality, needs to be

studied further. This study shows the immense potential of multiband imaging in case

of orientation decoding, because it provides fast acquisition time without substantial

loss in BOLD signal which is not possible with parallel imaging techniques. Whether

at 7 Tesla multiband imaging can be used to provide better SNR at high resolution EPI

acquisitions and the correponding effects on decoding are left for a future study. With

the increase of the application of the powerful multivariate methods in fMRI analysis,

this thesis is expected to provide valuable technical resources for future studies. I un-

derstand that the ultra-high field multi-resolution data acquired as part of this thesis

could prove very useful to other researchers and might provide a widely used resource

for years to come. Even to facilitate future research, the data was made publicly avail-

able in the widely accepted BIDS format and the comparison with 3 Tesla dataset will

also be published soon.
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and extravascular contributions to spin-echo fmri at 3 t. Magnetic resonance in

medicine 52, 724–732.

Kamitani, Y., Sawahata, Y., 2010. Spatial smoothing hurts localization but not infor-

mation: pitfalls for brain mappers. Neuroimage 49, 1949–52.

Kamitani, Y., Tong, F., 2005. Decoding the visual and subjective contents of the human

brain. Nature Neuroscience 8, 679–85.

Kaule, F.R., Wolynski, B., Gottlob, I., Stadler, J., Speck, O., Kanowski, M.,

Meltendorf, S., Behrens-Baumann, W., Hoffmann, M.B., 2014. Impact of chiasma

opticum malformations on the organization of the human ventral visual cortex. Hum.

Brain Mapp. , 5093–5105.

Kriegeskorte, N., Bandettini, P., 2007. Analyzing for information, not activation, to

exploit high-resolution fMRI. Neuroimage 38, 649–62.

Kriegeskorte, N., Cusack, R., Bandettini, P., 2010. How does an fMRI voxel sam-

ple the neuronal activity pattern: compact-kernel or complex spatiotemporal filter?

Neuroimage 49, 1965–76.

Kriegeskorte, N., Goebel, R., Bandettini, P., 2006. Information-based functional brain

mapping. P. Natl. Acad. Sci. USA 103, 3863–3868.

Linden, J.F., Schreiner, C.E., 2003. Columnar transformations in auditory cortex? a

comparison to visual and somatosensory cortices. Cerebral Cortex 13, 83–89.

Liu, S., Mok, K., Neelavalli, J., Cheng, Y.C.N., Tang, J., Ye, Y., Haacke, E.M., 2014.

Improved mr venography using quantitative susceptibility-weighted imaging. Journal

of Magnetic Resonance Imaging 40, 698–708.



95

Mahmoudi, A., Takerkart, S., Regragui, F., Boussaoud, D., Brovelli, A., 2012. Mul-

tivoxel pattern analysis for fmri data: A review. Computational and mathematical

methods in medicine 2012.

Mannion, D.J., McDonald, J.S., Clifford, C.W., 2010. Orientation anisotropies in hu-

man visual cortex. Journal of Neurophysiology 103, 3465–3471.

Millman, K.J., Brett, M., 2007. Analysis of functional magnetic resonance imaging in

Python. Computing in Science & Engineering 9, 52–55. doi:10.1109/MCSE.2007.46.

Misaki, M., Luh, W., Bandettini, P., 2013. The effect of spatial smoothing on fMRI

decoding of columnar-level organization with linear support vector machine. Journal

of Neuroscience Methods 212, 355–61.

Norman, K., Polyn, S., Detre, G., Haxby, J., 2006. Beyond mind-reading: multi-voxel

pattern analysis of fMRI data. Trends Cogn Sci 10, 424–30.

Obermayer, K., Blasdel, G.G., 1993. Geometry of orientation and ocular dominance

columns in monkey striate cortex. The Journal of Neuroscience 13, 4114–4129.

Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W., 1990. Brain magnetic resonance imaging

with contrast dependent on blood oxygenation. Proceedings of the National Academy

of Sciences 87, 9868–9872.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine

learning in Python. The Journal of Machine Learning Research 12, 2825–2830.

Peirce, J., 2007. PsychoPy–Psychophysics software in Python. Journal of Neuroscience

Methods 162, 8–13.

Peirce, J.W., 2008. Generating stimuli for neuroscience using PsychoPy. Frontiers in

Neuroinformatics 2.

http://dx.doi.org/10.1109/MCSE.2007.46


96

Pereira, F., Mitchell, T., Botvinick, M., 2009. Machine learning classifiers and fMRI: a

tutorial overview. Neuroimage 45, S199–S209.

Poline, J.B., Brett, M., 2012. The general linear model and fmri: does love last forever?

Neuroimage 62, 871–880.

Pratte, M.S., Sy, J.L., Swisher, J.D., Tong, F., 2016. Radial bias is not necessary for

orientation decoding. NeuroImage 127, 23–33.

Sasaki, Y., Rajimehr, R., Kim, B.W., Ekstrom, L.B., Vanduffel, W., Tootell, R.B.,

2006. The radial bias: a different slant on visual orientation sensitivity in human and

nonhuman primates. Neuron 51, 661–670.

Sengupta, A., Kaule, F., Guntupalli, J.S., HHoffmann, M., Häusler, C., Stadler, J.,
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A. Data Availability

The empirical ultra high-field fMRI dataset recorded at four spatial resolutions (0.8 mm,

1.4 mm, 2 mm, and 3 mm isotropic voxel size) for orientation decoding in visual cortex —

in order to test hypotheses on the strength and spatial scale of orientation discriminating

signals are openly accessible from the OpenfMRI portal (dataset accession number:

ds000113c) in BIDS (Brain Imaging Data Structure) format.

A.1 Data Specifications Table

Subject area Neuroimaging

More specific subject area Early visual system

Type of data Ultra High Field (7 Tesla) BOLD fMRI

Data format Raw and distortion corrected BOLD fMRI data

stored in compressed NIFTI format; BIDS-

compliant

Experimental factors Acquisition resolution (within-subject factor;

0.8 mm, 1.4 mm, 2 mm, and 3 mm isotropic voxel

size)

Data source location Magdeburg, Germany

Data accessibility Data available at OpenfMRI portal (dataset

accession number: ds000113c), as well as

Github/ZENODO (DOI: 10.5281/zenodo.46756).

A.2 Value of the data

• first publicly available dataset to provide ultra high-field, multi-resolution BOLD

fMRI data for a uniform stimulation paradigm targeting the representation of

visual orientations in early visual cortex
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• compliant with the brain imaging data structure (BIDS) standard, hence highly

suitable for automated processing

• potent dataset for optimization and benchmarking of algorithms, such as pattern

classification and feature extraction

• flexible and unrestricted data access down to the level of individual files facilitate

cloud-based analysis and utilization in (web-based) demonstrations

A.3 Data structure and usage information

This dataset is compliant with the Brain Imaging Data Structure (BIDS) specifi-

cation[Gorgolewski et al., 2015], which is a new standard to organize and describe

neuroimaging and behavioral data in an intuitive and common manner. Data are

shared in documented standard formats, such as NIfTI or plain text files, to en-

able further processing in arbitrary analysis environments with no imposed depen-

dencies on proprietary tools. Extensive documentation of this standard is available at

http://bids.neuroimaging.io. This section provides information about the released

data, but limits its description to aspects that extends the BIDS specifications. For

a general description of the dataset layout and file naming conventions, the reader is

referred to the BIDS documentation. In summary, all files related to the data acqui-

sitions for a particular participant described in this manuscript can be located in a

sub-<ID>/ses-r<RES>/ directory, where ID is the numeric subject code, and RES is a

two-digit acquisition resolution identifier.

In order to de-identify data, information on center-specific study and subject

codes have been removed using an automated procedure. All human participants were

given integer IDs that are consistent across all other data releases of the studyforrest

project [Hanke et al., 2016, 2014, 2015b, Sengupta et al., 2016].

All data are made available under the terms of the Public Domain Dedica-

tion and License (PDDL; http://opendatacommons.org/licenses/pddl/1.0/). All

http://bids.neuroimaging.io
http://opendatacommons.org/licenses/pddl/1.0/
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source code is released under the terms of the MIT license (http://www.opensource.

org/licenses/MIT). In short, this means that anybody is free to download and

use this dataset for any purpose as well as to produce and re-share derived data

artifacts. While not legally required, we hope that all users of the data will ac-

knowledge the original authors by citing this publication and follow good scientific

practise as laid out in the ODC Attribution/Share-Alike Community Norms (http:

//opendatacommons.org/norms/odc-by-sa/).

Participant demographics

A plain text table (participants.tsv) contains basic demographics for each partici-

pant: gender, age group (five-year bin size), and self-reported handedness.

fMRI data

fMRI data are provided in two flavors: raw (*run-?? bold.nii.gz) and distortion-

corrected (*rec-dico run-?? bold.nii.gz). While raw BOLD data are suitable for

further analysis, they suffer from severe geometric distortions. Distortion correction

was applied using an online procedure [In and Speck, 2012] and the resulting data

represents the primary data type for further analysis.

Motion estimates

Data motion correction was performed scanner-side as part of the distortion correc-

tion procedure, and the associated motion estimates are provided in a whitespace-

delimited 6-column text file (*motion physio.tsv.gz; translation X, Y, Z in mm,

rotation around X, Y, Z in deg) with one row per fMRI volume for each acquisition run

separately.

Stimulus timing

Stimulation timing information for each acquisition run is provided in corresponding

* events.tsv files. These four-column text files describe the onset and duration of

http://www.opensource.org/licenses/MIT
http://www.opensource.org/licenses/MIT
http://opendatacommons.org/norms/odc-by-sa/
http://opendatacommons.org/norms/odc-by-sa/
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a stimulus trial (in seconds from the acquisition run start) and identify the associated

stimulus orientation (in deg) presented in the left (lh orientation), and in the right

hemifield (rh orientation). A stimulus orientation label of none indicates that no

stimulus was present in the respective trial (unilateral stimulation).

Auxilliary scans to facilitate alignment

Data for the additional fMRI acquisition with enhanced spatial coverage at 0.8 mm

resolution is provided in *task-coverage* files. These images can be used to aid

alignment of high-resolution BOLD images with limited coverage to other functional or

structural images.
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