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Abstract

The main objective of this thesis is to derive a mathematical model of a ferrofluid seal
which can be used for an accurate and robust numerical simulation. The mathematical
model considers the effect of redistribution of magnetic particles in a moving ferrofluid,
which stays in presence of a strong outer magnetic field. The presence of fluid-gas surfaces
implies the free surface problem to be taken into consideration. Numerical tests determine
the parameter range at which the mathematical model is applicable and answer the main
question, how the effects of fluid motion and particle concentration interact.

The derivation of a mathematical model starts with a system of 3D partial-differential
equations. Different assumptions, such as an axial symmetry of the external forces etc.,
allows to write the system in a 2D cross-section and simplify it. The simplified math-
ematical model is a partially coupled system of three partial differential equations and
an integro-differential equation. For solution of the resulting mathematical model a de-
coupling strategy is suggested. Each equation is considered and discretized as a separate
problem. In most cases the standard theory for unique solvability and stability of the
discretization can be applied. Some of the problems, however, need a special treatment.
For example, the discretization of the convective-diffusive problem describing the particle
concentration. The mixed Finite Element–Finite Volume discretization is introduced, for
which the stability can be shown. In the literature this type of discretizations is usually
performed on weakly acute triangulation of the domain. The presented analysis allows
to extend it to a more general Delaunay triangulation with preserving properties of the
discretization. The numerical computations confirm the theoretical predictions.

The decoupling strategy for the solution of the considered mathematical model is
as follows. The four equations of the system are split into two pairs. The pairs of
the equations are solved sequentially, the coupled solution of each pair is obtained by
iteration technique. The numerical computations provide a better understanding of the
interaction of particle distribution and fluid motion, which is quite strong and cannot be
neglected. The mathematical model is appropriate for modeling of rotary ferrofluid-based
seals. Moreover, under seal conditions the fluid motion effect is dominating, i.e. the
particle concentration stays close to uniform.
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Zusammenfassung

Das Hauptziel der vorliegenden Arbeit ist die Herleitung eines mathematischen Mod-
els für Magnetfluiddichtungen, welches akkurate und robuste numerische Simulationen
ermöglicht. Dieses Model berücksichtigt den Einfluss der Umverteilung magnetischer
Partikel in bewegenten Magnetfluiden unter dem Einfluss äußerer Magnetfelder. Die
vorhandene Fluid-Gas-Oberfläche ist als freie Oberfläche Teil des Problems. Mit Hilfe
numerischer Tests wird der Parameterbereich bestimmt, in welchem das mathematische
Model anwendbar ist. Von besonderem Interesse ist dabei inwieweit sich die Fluidbewe-
gung und die Konzentration der magnetischen Partikel gegenseitig beeinflussen.

Die Herleitung des mathematischen Models geht von einem System dreidimensionaler
partieller Differentialgleichungen aus. Verschiedene Annahmen, wie Achsensymmetrie
der äußeren Kräfte, ermöglichen die Vereinfachung des Systems in eine zweidimensionale
achsensymmetrische Formulierung. Das vereinfachte Model ist ein partiell gekoppeltes
System dreier partieller Differentialgleichungen und einer Integrodifferentialgleichung. Zur
Lösung dieses Problems wird eine Entkopplungsstrategie vorgeschlagen, bei der jede Glei-
chung separat betrachtet und diskretisiert wird. Für die meisten dieser Gleichungen kann
Standardtheorie für die eindeutige Lösbarkeit und Stabilität der Diskretisierung verwandt
werden. Einige Teilprobleme bedürfen jedoch spezieller Techniken. Für die Konvektions-
Diffusions-Gleichung der Partikelkonzentration wird die gemischte Finite Elemente-Finite
Volumen-Diskretisierung eingeführt, für welche Stabilität gezeigt werden kann. In der Lit-
eratur werden für diese Form der Diskretisierung nichtstumpfe Triangulierungen des Ge-
bietes genutzt. Die hier präsentierte Analysis ermöglicht den Übergang zu allgemeineren
Delaunay-Triangulierungen. Die mathematischen Berechnungen bestätigen hierbei die
theoretischen Ergebnisse.

Die Entkopplungsstrategie sieht vor das System aus vier Gleichungen in zwei Glei-
chungspaare zu teilen. Diese Paare werden sequentiell bearbeitet. Die Lösung jedes
solchen Paares aus gekoppelten Gleichungen geschieht dabei mit Hilfe einer Iterationstech-
nik. Die numerischen Simulationen bieten einen besseren Einblick in die Interaktion von
Partikelverteilung und Fluidbewegung. Diese erweist sich als ziemlich stark und kann
nicht vernachlässigt werden. Das gewonnene mathematische Model kann zur Beschrei-
bung von rotierenden ferrofluidbasierten Dichtungen verwendet werden. Unter realistis-
chen Anwendungsbedingungen wird das Problem durch die Fluidbewegung dominiert und
die Partikelkonzentration bleibt nahezu konstant.
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Chapter 1

Introduction

Overview

A ferrofluid is a liquid which becomes strongly magnetized in the presence of a magnetic
field, so that magnetic moment of a ferrofluid is only one order lower than that of a solid
magnetic material. This property is provided by a nanoscaled – around 10 nm – ferri-
or ferromagnetic particles suspended throughout the basic liquid. The carrier fluid can
be some type of hydrocarbons, water or organic solvent. Magnetic particles are covered
by a surfactant, which keeps them dispersed and prevents sedimentation. For detailed
overview of ferrofluids and their properties see [6, 37].

Ferrofluids found wide application in engineering, biology and medicine [6, 37]. This
can be explained by a combination of two properties, usually excluding each other, mag-
netization and fluidity. One of the most successful applications of the ferrofluids are
ferrofluid seals, also called magneto-fluid seals. These are rotary seals with a ferrofluid
being a sealing material, which is held in the gap by a high gradient magnetic field. The
main advantage is a very low leakage, which remains a problem of sealing, especially for
rotary seals [17, 19]. Ferrofluid seal can be used to separate liquids or gases. For both
types of isolated media the main question is how to estimate the stability limits of a fer-
rofluid seal under different operation conditions. For liquids the interaction of a magnetic
fluid and a fluid being sealed on a liquid–liquid interface is a point of great importance
for modeling and application [19]. For gases this problem does not arise, what decreases
the number of effects to be taken into account and simplifies modeling.

There is a number of experimental [1, 35] and numerical studies [16, 22, 29, 31, 33,
47, 48] on ferrofluid seals separating two gas regions. Theoretical and numerical investi-
gations regarding the magnetophoresis and Brownian motion in ferrofluids are presented
in [4, 5, 32, 34]. We should take into account a number of effects. In particular, shaft
rotation brings fluid in motion, the shape of a gas-liquid surface is determined by the
force balance on it, the non-uniform magnetic field leads to non-uniform distribution of
magnetic particles. In the following we discuss the related studies, which lead us to a
new model. It is worth mentioning that all these studies consider the steady state of a
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1. Introduction

ferrofluid seal. A special geometry of structural elements of a ferrofluid seal and its main
advantage were introduced in [47]. The authors neglected the magnetization of a fer-
rofluid, what allowed to obtain an analytical expression for the magnetic field in the gap.
This approach was used in series of works, where either hydrodynamic effects [31, 47, 48]
or redistribution of particles [33] were taken into account. In [22] the authors attempted
to estimate the influence of the fluid velocity on the particle concentration. However, the
backward interaction was not investigated.

Modeling aspects and discretization strategy

In this thesis we are interested in modeling a ferrofluid seal taking into account the
effect of a non-uniform particle distribution in a moving liquid. The interrelation of a fluid
velocity and a particle concentration is considered as well. Following the ideas in the above
mentioned studies and classical literature on ferrofluids [6, 37], we formulate a complex
mathematical model in the three-dimensional Cartesian space. Assuming axisymmetry of
magnetic and velocity fields as well as the smallness of the gap size to the shaft radius,
the system can be approximated by a two-dimensional system in a cross-section. The
relevance of this approximation was shown in [31].

The introduced system can be described as follows. Maxwell’s equations set the mag-
netic fields in the gap. Neglecting the influence of magnetization on the magnetic field
allows us to simplify and solve them analytically. The hydrodynamic properties are de-
scribed by the incompressible Navier-Stokes equation, which is split into two equations.
Specifically, the Laplace equation for the azimuthal component of the velocity and Navier-
Stokes-type equation for the planar velocity component in a cross section. Young-Laplace
equation determines the free surface shape. Moreover, the redistribution of magnetic
particles is described by a convective-diffusive type problem.

Our goal is to obtain a robust numerical solution of the system. The Laplace equation
is solved by two different methods, namely by Finite Elements and Boundary Elements.
We use the boundary element discretization in order to provide a simple coupling with the
Young-Laplace equation. The finite element method is used due to a good connection to
the other discrete problems. The Young-Laplace equation is a complex integro-differential
equation, for which we discuss only the discretization technique not considering its proper-
ties. The slip boundary conditions of the Navier-Stokes equation are not easy to handle, so
we refer to the literature [2, 3] in order to provide a robust numerical scheme. Convection-
diffusion equation leads to a noncoercive elliptic problem and needs a special treatment.
The continuous convective-diffusive type problem was studied in [12]. The authors proved
the unique solvability along with some interesting properties, such as positivity of a solu-
tion. The Finite Volume, discretization preserving important properties of the continuous
problem, was first introduced in [10]. In [21] we suggested the Finite Element–Finite Vol-
ume discretization. The final structure of this scheme is related to the one in [10]. Due to
the similarity of two above schemes, the majority of properties were inherited. Moreover,
in [21] we have shown the stability of the discretization. The disadvantage of the numer-
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ical scheme in [21] is discretization on a weakly acute type triangulation. In this work
we extended it to a more general Delauney triangulation with preserving discretization
properties.

Structure of the thesis

The thesis is outlined as follows. We begin Chapter 2 by presenting some well-known re-
sults of the vector calculus. In particular, the transformations form the three-dimensional
Cartesian coordinates to cylindrical coordinates are given. We proceed this chapter with
the derivation of above mentioned equations, which are written in 3D Cartesian coordi-
nates and then transformed into cylindrical ones. Neglecting particular effects allows us
to provide a planar approximation of the system. We assume the existence of a steady
state of the system and Newtonian behavior of a ferrofluid. Moreover, we neglect the
influence of a fluid magnetization on a magnetic field strength as well as the interparti-
cle dipole-dipole interaction. At the end of the section the full mathematical model is
formulated.

In Chapter 3, the considered model is split into an integro-differential equation and
three partial differential equations, which are studied separately. We analyze the integro-
differential equation and derive the variational formulation of the partial differential equa-
tions. Finally, the existing solvability results for the variational problems are presented.

The discretization of the continuous subproblems is introduced in Chapter 4. We
present Boundary Element and Finite Element method for the Laplace equation, which
describes the azimuthal velocity. The Young-Laplace equation is discretized following the
ideas in [31]. Next, we provide a discretization of the Navier-Stokes equation by the Finite
Element method in velocity-pressure formulation. For the convection-diffusion equation
three methods are discussed. The first one is the Finite-Volume method [10], whereas
the other two are the mixed Finite Element–Finite Volume method on a weakly acute
triangulation [21] and its extension to the Delauney triangulation. The former one is
used for the discretization of the convection-diffusion equation. The solution strategy for
partially coupled system completes this chapter.

The numerical tests are presented in Chapter 5. Here, we compare our numerical
results with the ones obtained in the related study [31]. In order to demonstrate the
properties of the discretization of the convection-diffusion equation some model problems
are considered. Finally, we solve the coupled subsystem of the Navier-Stokes and the
convection-diffusion equations and systemize the results.

3



1. Introduction
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Chapter 2

Mathematical model and
simplifications

We derive a mathematical model of a ferrofluid rotary seal, which you can see on Fig-
ure 2.1. The basic seal consists of a ferrofluid, annular permanent magnet, an annular pole
piece and a magnetically permeable shaft [17]. The shaft is a rotating cylinder around
which the coaxial magnet and pole pieces are placed. We consider a model with a pole
having a hyperboloidal profile, which is quiet close to a triangular shape. According to [35]
the optimal tapering angle lies in between 30 and 45 grad.

4

2

A

5 5

1

3

B

x

S

N

S

N
y

Figure 2.1: Schematic view of the magnetic fluid seal: 1 – magnet, 2 – core, 3 – magnetic
flux concentrator, 4 – shaft, 5 – magnetic fluid, A – region of high pressure, B – region of
low pressure.

The narrow gap between the pole and the shaft is filled with a ferrofluid which forms
a hermetic barrier between two areas of different pressure. The state of ferrofluid in the
seal is determined by the balance of three forces: magnetic force, centrifugal force, and
the pressure drop.
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2. Mathematical model and simplifications

The general 3D model consists of the following equations. The system of the Maxwell
equations describes the magnetic field for nonconducting media

∇ ·B = 0,

∇×H = 0.

The Navier-Stokes equation expresses the flow of the incompressible Newtonian ferrofluid

ρ (v · ∇) v = ∇ · T(v, p,H,B) + ρg,

∇ · v = 0.

The Young-Laplace equation describes the force balance on the free surface Γf and de-
termines its shape

n · [|T(v, p,H,B) · n|] = αK on Γf .

The concentration of ferromagnetic particles is obtained as a solution of a convection-
diffusion problem for the Brownian motion of particles

ρv · ∇c = −∇ · i,
1

|Ω|

∫
Ω

c dx = 1.

All the equations are supplemented with boundary conditions which will be given later.
Here H and B denote the magnetic field intensity and the magnetic induction, respectively,
ρ the fluid density, v the fluid velocity, p the hydrodynamic pressure, g the acceleration
of gravity, T the combined hydrodynamic and magnetic stress tensor, n a unit normal to
Γf , α the surface tension, K the sum of principal curvatures, c the particle concentration,
i the mass flux density.

The derived mathematical model is partially investigated in a series of works [27, 31,
33, 47, 48]. On Figure 2.2 one can see the schematic view of these studies (arrows 1-
3) and the improvement provided by current work (4). Arrows on the figure shows the
dependencies between equations for different models. Let us discuss them in details.

One should note that the effects of particle redistribution and fluid motion were not
considered together in that series of studies [27, 31, 33, 47, 48]. It means in case of moving
liquid the particle concentration was assumed to be uniform, so the convection-diffusion
equation was omitted. The change of particle concentration [33] was investigated for no
flow case, i.e. the Navier-Stokes equation was omitted.

In all above mentioned studies Maxwell equations ignore the fluid magnetization so the
solution is equivalent to gap with no fluid at all. Having in addition the hyperboloid profile
of the concentrator allows to find an analytical expression of magnetic field intensity,
which reduces the system of equations. That is why it is also skipped in the scheme. The
Young-Laplace equation is needed to fix the domain shape, which is used by all the other
equations.

Let us make more clear the split of Navier-Stokes equation, which you can see on the
Figure 2.2. In case of a moving fluid the system of Navier-Stokes and Young-Laplace
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Young-Laplace
equation

Convection-Diffusion
equation

Navier-Stokes
equation

Azimuthal velocityFree surface

Particle distribution Secondary flow

1

4

2     1     

3      1

Figure 2.2: Effects taken into account in different studies: 1 - [31, 47, 48]; 1,2 - [27];
3 - [33]; 1,3,4 - present work.

equations is investigated [27, 31, 47, 48]. The Navier-Stokes equation is split into two
equations for different velocity components: the azimuthal velocity describing liquid rota-
tion around the shaft and the secondary flow expressing fluid motion into 2-dimensional
cross-section. Azimuthal velocity has a great influence on the free surface shape, i.e. the
corresponding problems are strongly coupled.

Influence of the secondary flow on the azimuthal velocity was neglected in [31, 47, 48]
(model 1). That neglecting was studied in [27] (model 1-2), where the numerical tests
have shown its validity. The particle redistribution in case of a non-moving fluid was
observed in [33] (model 3). The aim of the present research is to take into account fluid
motion and nonuniform particle distribution, i.e. to solve the system of Young-Laplace,
Navier-Stokes and convection-diffusion equations (model 1,3,4).

The mathematical model which is used for the numerical simulations is derived in
the following steps. At first we formulate general 3-dimensional equations in Cartesian
coordinates. We investigate the steady state of the system, i.e. the solution does not
depend on time. Also we assume that the system is isothermal, i.e. the temperature of
the system is uniform and constant. Assuming a laminar flow and axially magnetization
of the magnet allows us to consider the rotation symmetry of the system. Further we can
write equations in 3-dimensional cylindrical coordinates with z axis coinciding with the
axis of symmetry. Along that axis the system has rotational invariance. Moving the origin
to the shaft surface along the r axis and taking into consideration the smallness of the gap
we simplify the 3-dimensional system to a 2-dimensional one written in the cross-section.
In the following we describe all these steps in detail for each equation separately.
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2. Mathematical model and simplifications

2.1 Curvilinear coordinates

We present at the first part of this section the transformation from 3D Cartesian co-
ordinates to general curvilinear coordinates. Then formulas for the transformation to
cylindrical coordinates are given. These expressions are later used for the partial differ-
ential equations.

2.1.1 Vector Calculus

Let us consider some basic vector calculus in general 3-dimensional curvilinear coordinates.
We generally follow the description in [25].

Every point in 3-dimensional space is given by three numbers or Cartesian coordinates
x1, x2, x3. Also it can be represented by three other numbers or curvilinear coordinates
q1, q2, q3 which are related to previous ones by the invertible transformations

xi = xi(q1, q2, q3), i = 1, 3,
qj = qj(x1, x2, x3), j = 1, 3.

Every point can also be written as a position vector

r(x1, x2, x3) = x1e1 + x2e2 + x3e3,

where e1, e2, e3 are standard basis vectors in Cartesian coordinates. Each unit vector can
be evaluated by differentiation of a position vector with respect to corresponding variable,
e.g.

ei =
∂r

∂xi

/∣∣∣∣ ∂r

∂xi

∣∣∣∣ , i = 1, 3.

Following these rules we can define the basis vectors in a fixed point of a curvilinear
coordinate system

ki =
1

Hi

∂r

∂qi
i = 1, 3,

where

Hi =

∣∣∣∣ ∂r

∂qi

∣∣∣∣ =

√(
∂x1

∂qi

)2

+

(
∂x2

∂qi

)2

+

(
∂x3

∂qi

)2

(2.1)

are the scale factors which are called Lamé coefficients. Differential changes along the
unit vectors ki can be evaluated as

dsi = |dqir| =
∣∣∣∣ ∂r

∂qi

∣∣∣∣ dqi = Hidqi.

In case the vectors ki are orthogonal at all points, the differential of the arc length is
calculated as a space diagonal

ds2 = ds2
1 + ds2

2 + ds2
3 = H2

1dq
2
1 +H2

2dq
2
2 +H2

3dq
2
3.

8



2.1 Curvilinear coordinates

The gradient of a scalar or vector valued function f in curvilinear coordinates is derived
by the definition

(grad f)i = grad f · ki =
1

Hi

(
∂f

∂x1

∂x1

∂qi
+
∂f

∂x2

∂x2

∂qi
+
∂f

∂x3

∂x3

∂qi

)
=

1

Hi

∂f

∂qi
. (2.2)

The divergence of a vector field a is given by

div a =
1

H1H2H3

(
∂(a1H2H3)

∂q1

+
∂(a2H1H3)

∂q2

+
∂(a3H1H2)

∂q3

)
. (2.3)

Combining equations (2.2) and (2.3) we obtain the formula for the Laplace operator
applied to a scalar function f

∆ f = div grad f

=
1

H1H2H3

(
∂(H2H3

H1

∂f
∂q1

)

∂q1

+
∂(H1H3

H2

∂f
∂q2

)

∂q2

+
∂(H1H2

H3

∂f
∂q3

)

∂q3

)
.

(2.4)

2.1.2 From Cartesian to cylindrical coordinates

We apply the general vector calculus in order to obtain representation of differential
operators in cylindrical coordinates, namely the Laplace operator and material derivative.
We consider the case when the z axis in cylindrical coordinates coincides with the x3 axis
in Cartesian ones. We remind that a point in cylindrical coordinates is determined by
three numbers (r, φ, z) which are related to Cartesian coordinates

r =
√
x2

1 + x2
2, x1 = r cosφ,

φ = arctan
x2

x1

, x2 = r sinφ,

z = x3, x3 = z.

(2.5)

The cylindrical coordinates x, y, z correspond to the general curvilinear coordinates
q1, q2, q3 from previous section. The basis vectors of the cylindrical coordinate system at
arbitrary point P = (x1, x2, x3) are given as follows

r̂ = cosφ e1 + sinφ e2 =
x√

x2
1 + x2

2

e1 +
x2√
x2

1 + x2
2

e2,

φ̂ = − sinφ e1 + cosφ e2 = − x2√
x2

1 + x2
2

e1 +
x1√
x2

1 + x2
2

e2,

ẑ = e3,

(2.6)

which correspond to k1,k2,k3, respectively. Lamé coefficients in point P are evaluated
by (2.1)

Hr =
√

(cosφ)2 + (sinφ)2 + 0 = 1,

Hφ =
√

(−r sinφ)2 + (r cosφ)2 + 0 = r,

Hz =
√

0 + 0 + 1 = 1.

(2.7)
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2. Mathematical model and simplifications

One can notice that vectors e1, e2, e3 are constant in every point of R3. That is why
vectors r̂ and φ̂ depend only on φ in cylindrical coordinates, while ẑ is a constant vector.

Every vector field a can be expressed as a linear combination of vectors (2.6) in some
fixed point P

a = arr̂ + aφφ̂ + azẑ.

Applying Laplace operator to a and writing it in cylindrical coordinates via (2.4), substi-
tuting Lamé coefficients (2.7) leads us to

∆a =
1

r

∂

∂r

(
r
∂a

∂r

)
+

1

r2

∂2a

∂φ2
+
∂2a

∂z2

=
1

r

∂

∂r

[
r

(
∂ar
∂r

r̂ +
∂aφ
∂r

φ̂ +
∂az
∂r

ẑ

)]
+

1

r2

∂

∂φ

(
∂ar
∂φ

r̂ + ar
∂r̂

∂φ
+
∂aφ
∂φ

φ̂ + aφ
∂φ̂

∂φ
+
∂az
∂φ

ẑ

)

+
∂

∂z

(
∂ar
∂z

r̂ +
∂aφ
∂z

φ̂ +
∂az
∂z

ẑ

)
=

1

r

[(
∂ar
∂r

r̂ +
∂aφ
∂r

φ̂ +
∂az
∂r

ẑ

)
+ r

(
∂2ar
∂r2

r̂ +
∂2aφ
∂r2

φ̂ +
∂2az
∂r2

ẑ

)]
+

1

r2

(
∂2ar
∂φ2

r̂ + 2
∂ar
∂φ

∂r̂

∂φ
+ ar

∂2r̂

∂φ2

+
∂2aφ
∂φ2

φ̂ + 2
∂aφ
∂φ

∂φ̂

∂φ
+ aφ

∂2φ̂

∂φ2
+
∂2az
∂φ2

ẑ

)
+

(
∂2ar
∂z2

r̂ +
∂2aφ
∂z2

φ̂ +
∂2az
∂z2

ẑ

)
.

(2.8)

Using representation (2.6) one can evaluate

∂r̂

∂φ
= − sinφ e1 + cosφ e2 = φ̂,

∂2r̂

∂φ2
=
∂φ̂

∂φ
= − cosφ e1 − sinφ e2 = −r̂,

∂2φ̂

∂φ2
= sinφ e1 − cosφ e2 = −φ̂.

(2.9)

Substituting (2.9) to (2.8) we end up with the Laplace operator of a written in cylindrical
coordinates

∆a =

(
∆ar −

ar
r2
− 2

r2

∂aφ
∂φ

)
r̂ +

(
∆aφ −

aφ
r2

+
2

r2

∂ar
∂φ

)
φ̂ +

(
∆az

)
ẑ. (2.10)

The material derivative of a is derived in the same way using formula for gradient (2.2)
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2.1 Curvilinear coordinates

with coefficients (2.7)

(a · ∇) a =

(
ar
∂

∂r
+
aφ
r

∂

∂φ
+ az

∂

∂z

)(
arr̂ + aφφ̂ + azẑ

)
=ar

(
∂ar
∂r

r̂ +
∂aφ
∂r

φ̂ +
∂az
∂r

ẑ

)
+
aφ
r

(
∂ar
∂φ

r̂ + ar
∂r̂

∂φ
+
∂aφ
∂φ

φ̂ + aφ
∂φ̂

∂φ
+
∂az
∂φ

ẑ

)

+ az

(
∂ar
∂z

r̂ +
∂aφ
∂z

φ̂ +
∂az
∂z

ẑ

)
=

(
ar
∂ar
∂r

+
aφ
r

∂ar
∂φ

+ az
∂ar
∂z
−
a2
φ

r

)
r̂

+

(
ar
∂aφ
∂r

+
aφ
r

∂aφ
∂φ

+ az
∂aφ
∂z

+
araφ
r

)
φ̂

+

(
ar
∂az
∂r

+
aφ
r

∂az
∂φ

+ az
∂az
∂z

)
ẑ.

(2.11)

The divergence of a is evaluated according to (2.3)

∇ · a =
1

r

(
∂(r ar)

∂r
+
∂(aφ)

∂φ
+
∂(r az)

∂z

)
. (2.12)

Applying (2.2) to a componentwise we obtain a gradient of a vector valued function

∇a =



∂ar
∂r

∂aφ
∂r

∂az
∂r

1

r

∂ar
∂φ

1

r

∂aφ
∂φ

1

r

∂az
∂φ

∂ar
∂z

∂aφ
∂z

∂az
∂z

 . (2.13)

Using the Lamé coefficients (2.7) the gradient and the Laplace operator of a scalar function
f can be evaluated according to (2.2) and (2.4)

∇f =



∂f

∂r

1

r

∂f

∂φ

∂f

∂z


, (2.14)

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂φ2
+
∂2f

∂z2
. (2.15)
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2. Mathematical model and simplifications

Γ̃f

Γ̃f

Γ̃s Γ̃c

0 1 x

y

Figure 2.3: Domain Ω̃ and its boundary ∂Ω̃ = Γ̃f ∪ Γ̃s ∪ Γ̃c.

2.2 Deriving a simplified mathematical model

Let Ω ⊂ R3 be a bounded domain whose boundary ∂Ω contains the free surface of a
ferrofluid and partially the surface of the shaft and the concentrator where ferrofluid
touches them. We split the boundary ∂Ω to the free surface Γf , the surface on the shaft Γs
and the surface on the concentrator Γc, which are pairwise disjoint and Γf ∪Γs∪Γc = ∂Ω.

After introducing a set of equations in Ω we apply the cylindrical coordinates and write
all the equations in cross-section of Ω with the half-plane Orz. Then the dimensionless
coordinates

x =
r −R
a

, y =
z

a
, φ = φ (2.16)

are applied. Here R denotes the radius of the shaft, a � R the width of the gap. The
cross-section of Ω in half-plane of Oxy (x > 0) for angle φ = 0 is denoted by Ω̃. Its

boundary ∂Ω̃ is split into three parts ∂Ω̃ = Γ̃f ∪ Γ̃s ∪ Γ̃c like ∂Ω, where Γ̃f Γ̃s Γ̃c are

pairwise disjoint. Thanks to the axial symmetry functions written in the cross-section Ω̃
do not depend on φ, so we can consider Ω̃ corresponding to any angle φ. On Figure 2.3
one can see the schematic view of the domain Ω̃ and its boundary.

During simplifications we will use the following approximation. As r ∈ (R,R+ a) and
R� a, we can approximate the ratio a/r by the first term of Taylor series

a

r
=

a

R + ax
=
a

R

(
1− a

R
x+ o

( a
R

))
≈ a

R
= δ. (2.17)

2.2.1 Maxwell’s equations

Maxwell’s equations form the foundation of classical electrodynamics. We apply them to
ferrofluids following Rosensweig [37].
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2.2 Deriving a simplified mathematical model

Assuming that a ferrofluid is nonconducting, the free current density and the dis-
placement current are negligible, the system of Maxwell’s equations is simplified in the
magnetostatic limit to {

∇ ·B = 0,

∇×H = 0
in Ω, (2.18)

where H and B denote the magnetic field intensity and the magnetic induction, respec-
tively. These functions are related to each other by the following identity

B = µ0(H + M), (2.19)

where µ0 = 4π×10−7 V·s/(A·m) is the vacuum permeability. Since a ferrofluid is a ”soft”
material [37], the magnetization vector is parallel to the vector of applied magnetic field

M = M
H

H
. (2.20)

Here M and H are the moduli of vectors M and H, respectively. In that situation using
∇×H = 0 one can show that

(M · ∇) H ≡M∇H. (2.21)

The second equation of the Maxwell’s system (2.18) provides curl of H equal to zero.
Therefore one can introduce a function ψ : R3 → R such that

H ≡ −∇ψ, (2.22)

which satisfies this equation automatically. Using (2.19) and (2.20) and substituting (2.22)
one can rewrite the Maxwell’s system (2.18) as

div

([
1 +

M

H

]
∇ψ
)

= 0 in Ω.

If M is homogeneous, i.e. M/H and ∂M/∂H are small enough, one can neglect the term
M/H. That simplification is valid since under seal conditions the magnetic field strength
is several orders higher than the saturation magnetization Ms of a ferrofluid. That means
M is very close to Ms and almost constant. We finally obtain

∆ψ = 0 in Ω.

Evaluating the Laplace operator in cylindrical coordinates by (2.15) and vanishing the
derivatives with respect to φ due to the axial symmetry we come to

1

r

∂

∂r

(
r
∂ψ

∂r

)
+
∂2ψ

∂z2
= 0. (2.23)
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2. Mathematical model and simplifications

Changing the variables by (2.16) and using the approximation (2.17) the equation is
simplified to

δ
∂ψ

∂x
+
∂2ψ

∂x2
+
∂2ψ

∂y2
= 0.

Neglecting the term with δ due to its smallness we obtain the Laplace equation for a
2-dimensional potential.

∆ψ̃ = 0 in Ω̃. (2.24)

Here ψ̃ is a potential ψ restricted to the cross-section Ω̃.
In final equation for Maxwell’s potential (2.24) there is no magnetization, so one can

conclude that the used model neglects the presence of a ferrofluid in the gap. Linear
sizes of the concentrator are much larger than the gap length between the shaft and
the concentrator. That allows us to extend domain Ω̃ in y axis to infinity and look for a
solution in infinite domain. The magnetic permeability of the shaft and the concentrator is
much higher than that of the ferrofluid. Under these assumption the boundary conditions
only on solid surfaces Γ̃s and Γ̃c are sufficient, which are given according to [47]

ψ̃ = ψ̃0 = const on Γ̃s, ψ̃ = 0 on Γ̃c. (2.25)

Hyperboloidal profile of the concentrator is given by

y2 = tan2 β(x2 − 1), (2.26)

where β denotes an angle formed by an asymptote. One should note that curve (2.26) is
an origin-centered East-West opening hyperbola. The center of that hyperbola coincides
with the origin, and distance from its center to a vertex on x axis is fixed to 1.

Applying elliptic coordinates as it was done in [47] we obtain an analytical expression
for the magnetic field strength in the gap between the shaft and the concentrator as a
solution of the equation (2.24) with boundary conditions (2.25). Making the backward
transformation we get the solution given in the cross-section

hs = hs(x, y) =
sin β[

((x2 + y2) cos2 β + 1)2 − 4x2 cos2 β
]1/4 , (2.27)

where hs is a dimensionless magnetic field intensity given in Ω̃, index s means that it
corresponds to a feroofluid seal with the prescribed geometry.

2.2.2 Magnetic force density

The magnetic force acting on a ferrofluid is an object of special interest, since it describes
the magnetic properties of the material. We follow Rosensweig [37] in order to define a
magnetic force density.

Let us first introduce magnetic stress tensor

Tm(H,B) := −

 H∫
0

µ0

(
∂(Mv)

∂v

)
H

dH +
µ0

2
H2

 I + H⊗B, (2.28)
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2.2 Deriving a simplified mathematical model

where I denotes an identity tensor, Mv the magnetic moment of a volume unit v of colloid.
The integral term here describes the inter-particle or dipole-dipole interaction, which can
be neglected for dilute ferrofluids [37]. So we use a simplified magnetic stress tensor

Tm(H,B) := −µ0

2
H2I + H⊗B.

The magnetic force density is given by

fm = ∇ · Tm = µ0 (M · ∇) H.

As we said before a ferrofluid is a ”soft” material [37], which implies that magnetiza-
tion vector is parallel to a magnetic field intensity and therefore (2.21) holds. Then the
magnetic force density for a volume unit can be written as follows

fm = µ0M∇H, (2.29)

which is equal to the Kelvin force density for H being an outer magnetic field.
According to standard models for ferrofluids [6, 37], magnetization is usually taken

as a function of magnetic field strength and temperature. According to our assumptions
the system is isothermal so the temperature is omitted. The classic approximation of
magnetization is done with the Langevin function

M = MsL(ξh) with L(t) = coth(t)− 1/t, (2.30)

where Ms denotes saturation magnetization, h a dimensionless magnetic field strength

h =
H

H0

,

ξ the Langevin parameter given by

ξ =
µ0mH0

kT
. (2.31)

Here m is a magnetic moment of a single particle, H0 a maximum of the magnetic field
strength, k the Boltzmann constant, T absolute temperature.

According to [37] the saturation magnetization of a ferrofluid is a product of a sat-
uration magnetization of a ferrite and a volume fraction of magnetic particles in a base
liquid. It means, it is a function of particle concentration. We can interpret this as

Ms = Msc, (2.32)

whereMs denotes saturation magnetization of a ferrofluid at current particle concentration
c, Ms is saturation magnetization of a uniform colloid. Substituting (2.30) and (2.32)
into (2.29) we end up with the final expression for the magnetic force density

fm,v = ∇ · Tm = µ0MsH0L(ξh) c∇h. (2.33)
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2. Mathematical model and simplifications

Force applied to a single particle is obtained by multiplying (2.29) by a volume of that
particle taken as an average volume vp. According to definition

M =
dm

dv
,

where dm is a magnetic moment of the volume element dv. It is important to note, that
here M is understood as a magnetization of the ferrite material of some particle and not
of a ferrofluid. We assume that magnetic moment is uniform with respect to the volume
and write

mp = Mvp.

Here vp is an average particle volume, and mp the corresponding magnetic moment. It
holds also for saturation magnetization of ferrite Ms,f and m = |mp| being the absolute
value of a magnetic moment of a particle

m = Ms,fvp. (2.34)

Multiplying (2.29) by vp, substituting there (2.30) with (2.34) we obtain the average
magnetic force applied to a single particle

fm,p = µ0mL (ξh)H0∇h. (2.35)

2.2.3 Navier-Stokes equation

The stationary Navier-Stokes equation for an incompressible ferrofluid is given by [37]

ρ (v · ∇) v = ∇ · T(v, p,H,B) + ρg,

∇ · v = 0,
(2.36)

where v denotes the velocity field, η the dynamic viscosity, ρ the density of a ferrofluid,
p the total pressure, g the acceleration of gravity. The stress tensor T(v, p,H,B) is given
by

T(v, p,H,B) = Tv + Tm. (2.37)

Here tensors Tv and Tm incorporate hydrodynamic and magnetic stresses, respectively.
The magnetic stress tensor Tm was already defined in (2.28). The hydrodynamic one has
the following form

Tv(v, p) := 2ηD(v)− pI, (2.38)

where the velocity deformation tensor D(v) is defined by

D(v) :=
1

2

(
∇v +∇vT

)
.

The boundary conditions are given as follows. At fluid-solid boundaries Γs,Γc the fluid
velocity is equal to that on solid surfaces. On the free surface the slip boundary conditions

16



2.2 Deriving a simplified mathematical model

are imposed. Full set of boundary conditions looks as follows

v = 0 on Γc,

v = v0 on Γs,

v · n = 0, n · [|T(v, p,H,B)|] · τ = 0 on Γf ,

(2.39)

where v0 denotes the rotation velocity of the shaft, n is the unit normal to Γf , τ the unit
tangent, and [| · |] the jump over the surface.

Before applying transformation to cylindrical coordinates we want to rewrite the
Navier-Stokes equation in an alternative form. For incompressible Newtonian fluids it
holds

∇ · Tv(u, p) ≡ η (∆u +∇div u)−∇p = η∆u−∇p.

Substituting it into the Navier-Stokes equation (2.36) we obtain

−η∆v + ρ (v · ∇) v +∇p∗ = fm,v,

∇ · v = 0,
(2.40)

where p∗ is the pressure which incorporates the gravity force, fm,v = ∇ · Tm is given
by (2.33). We recall the axial symmetry of the system, that means the acceleration of
gravity g is parallel to the axis of symmetry Oz. Without loss of generality we direct it
against the axis, i.e. p∗ = p+ ρgz with g = |g|.

Now we apply the cylindrical coordinates (2.10), (2.11), (2.12) to the Navier-Stokes
equation in form (2.40). Due to the axisymmetry all the derivatives with respect to φ
vanish. We write a vector equation coordinatewise

−η
(

1

r

∂

∂r

(
r
∂vr
∂r

)
+
∂2vr
∂z2
− vr
r2

)
+ ρ

(
vr
∂vr
∂r

+ vz
∂vr
∂z
−
v2
φ

r

)
+∇rp

∗ = fm,v · e1,

−η
(
∂2vφ
∂r2

+
∂2vφ
∂z2

− vφ
r2

)
+ ρ

(
vr
∂vφ
∂r

+ vz
∂vφ
∂z

+
vrvφ
r

)
= 0,

−η
(
∂2vz
∂r2

+
∂2vz
∂z2

)
+ ρ

(
vr
∂vz
∂r

+ vr
∂vz
∂z

)
+∇zp

∗ = fm,v · e3,

1

r

(
vr + r

∂vr
∂r

+ r
∂vz
∂z

)
= 0.

(2.41)

We introduce the dimensionless functions given in Ω

vx =
vr
v0

, ω =
vφ
v0

, vy =
vz
v0

, v̂ = (vx, ω, vy), p̂ =
p∗

ρv2
0

, (2.42)

where v0 is the linear velocity of the shaft rotation. We substitute dimensionless co-
ordinates and variables (2.16), (2.42), and expression for magnetic force density (2.33)
into (2.41). Then we apply transformation (2.14) together with the approximation (2.17),
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2. Mathematical model and simplifications

which gives

ηv0

a2

(
δ
∂vx
∂x

+
∂2vx
∂x2

+
∂2vx
∂y2

− δ2vx

)
+
ρv2

0

a

(
vx
∂vx
∂x

+ vy
∂vx
∂y
− δω2

)
+

1

a

∂p̂

∂x
=
µ0MsH0

ρv2
0

L (ξh) c
∂h

∂x
,

ηv0

a2

(
∂2ω

∂x2
+
∂2ω

∂y2
− δ2ω

)
+
ρv2

0

a

(
vx
∂ω

∂x
+ vy

∂ω

∂y
+ δvxω

)
= 0,

ηv0

a2

(
∂2vy
∂x2

+
∂2vy
∂y2

)
+
ρv2

0

a

(
vx
∂vy
∂x

+ vy
∂vy
∂y

)
+

1

a

∂p̂

∂y
=
µ0MsH0

ρv2
0

L (ξh) c
∂h

∂y
,

δvx +
∂vx
∂x

+
∂vy
∂y

= 0.

(2.43)

We recall that the point of our interest is a flow between two coaxial surfaces of revolu-
tion. The distance between the surfaces is much smaller than their radii, this relation can
be approximated by δ according to (2.17). The domain shape causes the rotation com-
ponent of the velocity to be two to three orders higher than two other components [31].
Having in addition δ ∼ 10−2 we can neglect almost all terms with factor δ due to their
smallness except the term δω2, which has the same order as the main term of the corre-
sponding equation.

Now we can write equations (2.43) in 2D. Grouping terms by using differential opera-
tors one obtains

− 1

Re
∆ṽ + (ṽ · ∇) ṽ +∇p̃ = δω̃2e1 +

δ

Frm
L(ξh̃) c̃∇h̃,

∇ · ṽ = 0,

∆ω̃ + ṽ · ∇ω̃ = 0,

(2.44)

where ṽ, ω̃, p̃, c̃, and h̃ are the dimensionless functions defined in the cross-section Ω̃,
which correspond to (vx, vy), ω, p̂, c, and h, respectively. The used constants are standard
for Navier-Stokes equations Reynolds number

Re =
aρv0

η
(2.45)

and the magnetic Froude number, which is chosen in the same manner as in [31]

Frm =
ρv2

0δ

µ0MsH0

. (2.46)

Remark 2.2.1. The term ṽ · ∇ω̃ describes the influence of the secondary flow on the
azimuthal velocity. It was neglected in [31, 47, 48] since ṽ was estimated to be several
orders smaller in magnitude than ω. Later it was considered in [27] and the coupled
system (2.44) was solved numerically. However, the computations have shown that this
term is negligible. That is why we also omit it in the mathematical model.
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2.2 Deriving a simplified mathematical model

We introduce a stress tensor useful for writing Navier-Stokes equation in dimensionless
form

σ(v, p) :=
2

Re
D(v)− pI. (2.47)

One can note that it differs from Tv (2.38) only by multiplicative constant at velocity term.
Using the incompressibility condition ∇ · ṽ = 0 and taking into account the remark 2.2.1
one can write (2.44) as follows

(ṽ · ∇) ṽ −∇ · σ(ṽ, p̃) = e1δω̃
2 +

δ

Frm
L
(
ξh̃
)
c∇h̃ in Ω,

∇ · ṽ = 0 in Ω,

∆ω̃ = 0 in Ω.

(2.48)

Now we can apply the same transformations to the boundary conditions (2.39). Using
the fact that the jumps of H · τ and B ·n vanish and there is no viscous media out of the
ferrofluid seal, one can show that

n · [|T(v, p,H,B)|] · τ = n · [|Tv(v, p)|] · τ = n · Tv(v, p) · τ on Γf .

We recall that all the applied forces and the domain Ω have the axial symmetry around
z axis. In that case the rotation velocity v0, the normal n, and the tangent τ have the
following form in cylindrical coordinates

v0 = (0, v0, 0) , n = (nr, 0, nz) , τ = (−nz, τφ, nr) ,

where v0 = |v0| and τφ is an arbitrary constant. After applying the cylindrical coordi-
nates (2.13) the boundary conditions (2.39) will look as follows

vr = vφ = vz = 0 on Γc,

vr = vz = 0, vφ = v0 on Γs,

vrnr + vznz = 0, (nr, 0, nz) · Tv(v, p) · (−nz, τφ, nr) = 0 on Γf .

Let us consider the last term in more details. Using the representation of Tv(v, p) (2.38)
and transformation formula (2.10), then vanishing all derivatives with respect to φ, we
obtain

n · Tv(v, p) · τ = η (nr, 0, nz) ·


2
∂vr
∂r

+
1

η
p

∂vφ
∂r

∂vz
∂r

+
∂vr
∂z

∂vφ
∂r

1

η
p

∂vφ
∂z

∂vz
∂r

+
∂vr
∂z

∂vφ
∂z

2
∂vz
∂z

+
1

η
p

 · (−nz, τφ, nr)

= η (nr, nz) ·

2
∂vr
∂r

+
1

η
p

∂vz
∂r

+
∂vr
∂z

∂vz
∂r

+
∂vr
∂z

2
∂vz
∂z

+
1

η
p

 · (−nz, nr) + ητφ

(
∂vφ
∂r

nr +
∂vφ
∂z

nz

)
= 0.
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2. Mathematical model and simplifications

Since τφ is an arbitrary constant it must hold

∂vφ
∂r

nr +
∂vφ
∂z

nz = 0.

Using the stress tensor σ(v, p) (2.47) we obtain for dimensionless variables in a cross-
section the following boundary conditions

ṽ = 0, ω̃ = 0 on Γ̃c,

ṽ = 0, ω̃ = 1 on Γ̃s,

ṽ · ñ = 0, ñ · σ(ṽ, p̃) · τ̃ = 0,
∂ω̃

∂ñ
= 0 on Γ̃f ,

(2.49)

where ñ and τ̃ are a unit normal and a tangent to Γ̃f , respectively. Functions ṽ, ω̃, p̃ are

given in cross-section Ω̃.

2.2.4 Convection-Diffusion equation

A magnetic fluid is a stable colloid of ferromagnetic particles dispersed within the carrier
liquid. According to [4] the classical theory for diffusion of Brownian particles can be
applied. Then the stationary convection-diffusion equation has the following form [23]

ρv · ∇c = −∇ · i, (2.50)

where c is the particle concentration, the mass flux density i is given by

i = −ρD∇c+ ρcbf . (2.51)

Here D denotes the diffusion coefficient, b particle mobility, f an average force affecting
a single particle. The force f consists of magnetic and gravity parts. Under seal condi-
tions the magnetic force is several orders higher than the gravity, therefore the gravity
effects can be neglected. In this case f is equal to fm,p, which is defined by (2.35). The
Einstein relation gives the correspondence between the particle mobility and the diffusion
coefficient

b =
D

kT
. (2.52)

Substituting (2.52) into (2.51) we obtain

i = −ρD

(
∇c− 1

kT
c fm,p

)
. (2.53)

Combining (2.35), (2.50), (2.53) and assuming density ρ to be constant we come to

−D∇ · (∇c− c ξL(ξh)∇h) + v · ∇c = 0.
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2.2 Deriving a simplified mathematical model

Applying the divergence termwise we get

−∆c+ ξ
[
L(ξh) (∇c · ∇h+ c∆h) + c∇L(ξh) · ∇h

]
+

1

D
v · ∇c = 0.

Now applying the cylindrical coordinates (2.5) and vanishing derivatives with respect to
φ we obtain

−
(

1

r

∂c

∂r
+
∂2c

∂r2
+
∂2c

∂z2

)
+ ξ

{
c
dL(ξh)

dh

[
∂2h

∂r2
+
∂2h

∂z2

]
+L(ξh)

[
∂c

∂r

∂h

∂r
+
∂c

∂z

∂h

∂z
+ c

(
1

r

∂h

∂r
+
∂2h

∂r2
+
∂2h

∂z2

)]}
+

1

D

(
vr
∂c

∂r
+ vz

∂c

∂z

)
= 0.

(2.54)

Using the dimensionless variables (2.16) and dimensionless velocity (2.42) the convection-
diffusion equation (2.54) can be written as

− 1

a2

(
a

r

∂c

∂x
+
∂2c

∂x2
+
∂2c

∂y2

)
+

ξ

a2

{
c

H0

dL(ξh)

dh

[
∂2h

∂x2
+
∂2h

∂y2

]
+L(ξh)

[
∂c

∂x

∂h

∂x
+
∂c

∂y

∂h

∂y
+ c

(
a

r

∂h

∂x
+
∂2h

∂x2
+
∂2h

∂y2

)]}
+
v0

aD

(
vx
∂c

∂x
+ vy

∂c

∂y

)
= 0.

Using the approximation (2.17) and multiplying the equation by a2 we obtain

−
(
δ
∂c

∂x
+
∂2c

∂x2
+
∂2c

∂y2

)
+ ξ

{
c

H0

dL(ξh)

dh

[
∂2h

∂x2
+
∂2h

∂y2

]
+L(ξh)

[
∂c

∂x

∂h

∂x
+
∂c

∂y

∂h

∂y
+ c

(
δ
∂h

∂x
+
∂2h

∂x2
+
∂2h

∂y2

)]}
+
v0a

D

(
vx
∂c

∂x
+ vy

∂c

∂y

)
= 0.

Neglecting all terms with δ due to their smallness we end up with

− 1

Pe
∇ ·
(
∇c̃− c̃ξL

(
ξh̃
)
∇h̃
)

+ ṽ · ∇c̃ = 0, (2.55)

where
Pe =

a v0

D
(2.56)

denotes Péclet number, c̃ and h̃ are the dimensionless c and h in coordinates of a cross-
section Ω̃. The total mass of particles must stay constant. Without loss of generality we
fix it to 1

1

|Ω̃|

∫
Ω̃

c̃ dx = 1. (2.57)
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2. Mathematical model and simplifications

Boundary conditions for the convection-diffusion equation are chosen in sense that
there is no flux of particles through the boundary

∂c

∂n
−
(
ξL (ξh)

∂h

∂n
+ v · n

)
c = 0 on Γ,

where n is a unit outer normal to boundary Γ. Since v satisfies the boundary conditions
for the Navier-Stokes equation (2.39) one can conclude that v · n vanishes on the whole
boundary Γ. Applying the cylindrical coordinates (2.14) we obtain

∂c

∂r
1

r

∂c

∂φ
∂c

∂z

 · n− ξL (ξh) c


∂h

∂r
1

r

∂h

∂φ
∂h

∂z

 · n = 0 on Γ.

Due to the axial symmetry the derivatives with respect to φ vanish. Finally one can write
the boundary conditions in a cross-section

∂c̃

∂ñ
− ξL

(
ξh̃
) ∂h̃
∂ñ

c̃ = 0 on Γ̃, (2.58)

where ñ is a unit outer normal to Γ̃, c̃ and h̃ are the functions c and h written in the
cross-section Ω̃, respectively.

Remark 2.2.2. The term ξL(ξh)∇h can also be presented as ∇ lnϕ with ϕ given by

ϕ = exp

ξh∫
0

L(γ)d γ =
sinh(ξh)

ξh
.

Such a representation was used in [32, 33] in order to obtain an analytical solution for the
convection-diffusion problem in case of no fluid motion. That corresponds to the choice
v ≡ 0 in equation (2.54). Then the problem (2.54), (2.58) has a unique solution c∗, which
has the following form

c∗ =
ϕ∫

Ω
ϕ dx

.

2.2.5 Young-Laplace equation

The Young-Laplace equation describes the position of free surfaces depending on the force
balance on it. We follow [30] deriving the Young-Laplace equation.

Let us first introduce some useful notation. According to our model the free surface
consists of two disconnected parts. It generates the following decomposition

Γf = Γf,1 ∪ Γf,2, Γf,1 ∩ Γf,2 = ∅.
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2.2 Deriving a simplified mathematical model

We define the pressure in the outer media by p
(i)
ext, where index i corresponds to the outer

media with respect to Γf,i. For each part Γf,i we introduce an arc length s of a meridian
line ranging from 0 to li, i = 1, 2. Thanks to the axial symmetry the meridian line does
not depend on φ and without loss of generality we fix φ = 0. Then each meridian line on
Γf,i, i = 1, 2 is described by two parametric functions ri(s) and zi(s), which are related
to cylindrical coordinates (2.5). That curve can be defined as

γf,i : s ∈ [0, li] ⊂ R 7→ (ri(s), 0, zi(s)) ∈ R3. (2.59)

In the same manner we can define meridian lines on solid surfaces Γs and Γc, respectively

γs : s ∈ [0, ls] ⊂ R 7→ (R, 0, zs(s)) ∈ R3,

γc : s ∈ [0, lc] ⊂ R 7→ (rc(s), 0, zc(s)) ∈ R3.
(2.60)

The contact points of these curves can be defined as follows

γs(0) = γf,1(0),

γs(ls) = γf,2(0),

γc(0) = γf,1(l1),

γc(lc) = γf,2(l2).

(2.61)

One should note that the definition is related to some boundary part. For that reason
we denote γ as a curve defined on some boundary part Γ, which allows us to derive more
general formulas. Here Γ is understood as one of the boundary parts Γs, Γc, Γf,1, Γf,2 to
be defined later.

So we derive the Young-Laplace equation for a general meridian curve γ, given by two
parametric functions r(s), z(s). Then a unit normal and a tangent are given as follows

τ = (r′, 0, z′), n = (−z′, 0, r′), (2.62)

where prime denotes derivation with respect to s. Using parametric curves we can write
a coordinate depending function f = f(r, 0, z) as functions of parameter s

f(s) := f(r(s), 0, z(s)) = f(γ(s)) on Γ.

Since we investigate meridian curves with contact points, all of them lie in a single
cross-section, which according to our assumptions coincides with Ω̃. Then the coordinates
in the 2D cross-section are related to 3D coordinates of domain Ω via (2.16) and could be
written as functions of arc length s, i.e.

x(s) =
r(s)−R

a
, y(s) =

z(s)

a
on Γ.

One can also give a function restricted to Γ in a cross-section as a function of parameter
s

f̃(s) := f̃(x(s), y(s)) = f(r(s), 0, z(s)) on Γ.

23



2. Mathematical model and simplifications

This notation will be used further in this chapter for the case of simplicity.
The general Young-Laplace equation describes the force balance on a free surface

n · [|T · n|] = αK on Γf , (2.63)

where K denotes the sum of principal curvatures on the surface, α the surface tension, n
a unit normal to Γf , T(v, p,H,B) the stress tensor defined by (2.37). Substituting the
stress tensor to (2.63) we obtain the following equation

n · [|T(v, p,H,B) · n|] =
µ0

2
(M · n)2 − 2η

∂v

∂n
· n + p− pext = αK on Γf , (2.64)

where n is a unit normal to the surface, p the total pressure of the ferrofluid, and pext

is the pressure in the outer medium with respect to Γf . The total pressure p can be
obtained by integration of the Navier-Stokes equation (2.40) on the interval [0, s∗] along
γ. We recall that derivatives with respect to φ vanish. From boundary conditions (2.39)
it follows that v · n = 0 on ∂Ω and v · τ = 0 on Γs ∪ Γc. Then using representation of a
normal and a tangent (2.62) we obtain

p(s∗) =

s∗∫
0

(
ρ
r′

r
v2
φ − η

1

r

∂(rw)

∂n
− ρgz′

)
ds

− ρ

2
(v · τ )2 + µ0

H(s)∫
H(0)

M dH + p(0) on Γ,

(2.65)

where w is the vorticity given by

w =
∂vz
∂r
− ∂vr

∂z
.

Substituting the obtained pressure into (2.64) we gain

µ0

2
(M · n)2−2η

∂v

∂n
· n +

s∗∫
0

(
ρ
r′

r
v2
φ − η

1

r

∂(rw)

∂n
− ρgz′

)
ds

− ρ

2
(v · τ )2 + µ0

H(s)∫
H(0)

M dH = αK + pext − p(0) on Γf .

Applying the dimensionless coordinates (2.16) and approximation (2.17) we arrive at

s∗∫
0

[
ρδv2

0x
′ω2 − ηv0

R

(
1

δ

∂ŵ

∂n
− ŵy′

)
− ρagy′

]
ds+

µ0M
2
s

2
(M̂ · n)2 − 2

ηv0

a

∂v̂

∂n
· n

− ρv2
0

2
(v̂ · τ )2 + µ0MsH0

h(s)∫
h(0)

M̂ ds = αK + pext − p(0) on Γf ,
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2.2 Deriving a simplified mathematical model

where dimensionless velocity components ω and v̂ are defined by (2.42), dimensionless

vorticity ŵ and magnetization M̂ are given as follows

ŵ =
a

v0

w, M̂ =
M

Ms

.

Dividing the equation by µ0MsH0 we obtain

s∗∫
0

[
Frmx

′ω2 − Frm
Re

(
1

δ

∂ŵ

∂n
− ŵy′

)
− ρag

µ0MsH0

y′ + M̂
∂h

∂s

]
ds+

Ms

2H0

(M̂ · n)2

−2Frm
δRe

∂v̂

∂n
· n− Frm

2δ
(v̂ · τ )2 =

α

µ0MsH0

K+
pext − p(0)

µ0MsH0

on Γf .

Here, the constants Re and Frm are defined by (2.45) and (2.46), respectively.
In order to simplify the obtained equation, we use different arguments following [29,

31, 47, 48]. Using the standard characteristics of ferrofluid seals we obtain the following
estimates of the constants: Pe ∼ 100, Frm ≤ 1, δ ∼ 10−2 and hence, Frm/Re < δ. See
Section 2.4 for more details. For a common ferrofluid seal H0 is two orders higher than
Ms/2. This allows us to ignore the pressure jump (M̂ · n). The constant in front of the
gravity force ρag/(µ0MsH0) does not exceed 10−4, therefore, this term can be omitted.
The capillary jump αK can be neglected for the case Bom = µ0MsH0a/α > 400 [29],
which holds for our choice of parameters.

Let us now consider the remaining velocity terms. As mentioned in Section 2.2.3, the
secondary flow v̂ is two to three orders lower than azimuthal velocity ω. Moreover, ω
has magnitude of 1 due to the problem statement (2.48), (2.49). The structure of a unit
normal and a tangent (2.62) imply all variations of secondary flow v̂ and vorticity ŵ to
be at least two orders lower than ω. Then doing simple calculations one can show that
the term with ω2 is at least two orders higher than all the other velocity terms. It allows
us to neglect all velocity terms with exception of the term with ω2.

After applying the discussed simplifications the Young-Laplace equation can be written
as follows

s∗∫
0

(
Frmx

′ω2 + M̂
∂h

∂s

)
ds =

pext − p(0)

µ0MsH0

on Γf . (2.66)

Using argumentation above, one can show that the terms of this equation are compara-
ble in magnitude. We now switch to functions written in the cross-section Ω̃. Writing
equation (2.66) two times for both γf,i we obtain a system of two equations

s∗∫
0

(
Frmx

′ω̃2 + M̃
∂h̃

∂s

)
ds =

p
(i)
ext − p̃(0, yi(0))

µ0MsH0

on Γf,i,

s∗ ∈ [0, li], i = 1, 2.
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2. Mathematical model and simplifications

These equations are more complex, than it seems. Since the variable s∗ can be arbitrary
on interval [0, li] we can apply a limit to both sides with s∗ → 0. Assuming that ω,M ,
and ∂h/∂s are continuous functions, it immediately follows that the right hand side is
equal to zero. So the right hand side of the equations can be understood as two additional
conditions. The system then can be reformulated as follows

s∗∫
0

(
Frmx

′ω̃2 + M̃
∂h̃

∂s

)
ds = 0, s∗ ∈ [0, li],

p̃(0, yi(0)) = p
(i)
ext, i = 1, 2.

(2.67)

The system needs some clarifications. At first, two conditions on pressure are redundant,
since pressure as a solution of Navier-Stokes equation is unique up to an additive constant.
That is why we consider their difference.

∆pext := p
(2)
ext − p

(1)
ext = p̃(0, y2(0))− p̃(0, yi(0)).

We can eliminate the difference of pressures on the right hand side using the equa-
tion (2.65) one more time with γ = γs. Taking into account the boundary conditions
for the Navier-Stokes equation (2.39), using a unit normal and a tangent to Γs

n = (−1, 0, 0), τ = (0, 0, 1),

and neglecting the gravity force as previously, one can obtain

p(s∗) = µ0

s∗∫
0

M
∂H

∂s
ds+ p(0) on Γs. (2.68)

Since the curve γs is a straight line parallel to z axis, the function rs(s) ≡ R. Then one
can rewrite (2.68) as

p(s∗) = µ0

z(s∗)∫
z(0)

(
M
∂H

∂z

) ∣∣∣∣∣
r=R

dz + p(0) on Γs.

Taking s∗ = ls and using dimensionless variables (2.16) we gain

∆pext = p̃(0, y2(0))− p̃(0, y1(0)) = µ0MsH0

y2(0)∫
y1(0)

(
M̃
∂h̃

∂y

)∣∣∣∣∣
x=0

dy.

Dividing the equation by µ0MsH0 we obtain it in a dimensionless form

Pm =

y2(0)∫
y1(0)

(
M̃
∂h̃

∂y

)∣∣∣∣∣
x=0

dy (2.69)
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2.2 Deriving a simplified mathematical model

with Pm denoting the dimensionless pressure drop

Pm =
∆pext

µ0M sH0

. (2.70)

The second note to system (2.67) is that the values of yi(0), i = 1, 2 are not prescribed,
i.e. two conditions are needed. to fix them The equation (2.69) can be used as first one.
Indeed, we consider two possible cases

1. The pressure drop Pm is given. Then, defining one point, e.g. y1(0), the second
point y2(0) can be found from equation (2.69) in a unique way, since

sign(M̃
∂h̃

∂y
) = sign(y)

and integration goes along the y-axis.

2. One of the points is given. This occurs only in case of critical pressure drop. Then
one of the values yi(0) reaches zero [33], e.g. y1(0) = 0. The value of critical pressure
drop is calculated by (2.69).

The second condition on points of contact yi(0), i = 1, 2 is obtained from the volume
conservation. We introduce an operator

U : (y1(0), y2(0)) 7→ R

defining the volume of fluid, depending on contact points of free surfaces. We need a
condition which makes this dependency unique. Having in mind the symmetry of the
domain with respect to x-axis, it is enough to assume that for all y1(0) an operator
y2(0) 7→ U(y1(0), y2(0)) is an isomorphism. The volume conservation is then written as
follows

U(y1(0), y2(0)) = Ũ0, (2.71)

where Ũ0 denotes a fixed volume of a ferrofluid in the cross-section.

Remark 2.2.3. Due to the smallness of δ = a/R the total fluid volume and its area in a

cross-section are related by the following formula U0 ≈ 2πRŨ0.

Rewriting the system (2.67) with condition on a pressure drop (2.69) and the volume
conservation condition (2.71), the final system of equations will look as follows

s∗∫
0

(
Frmx

′ω̃2 + M̃
∂h̃

∂s

)
ds = 0 on Γf,i, s∗ ∈ [0, li], i = 1, 2,

Pm =

y2(0)∫
y1(0)

(
M̃
∂h̃

∂y

)∣∣∣∣∣
x=0

dy, U(y1(0), y2(0)) = Ũ0.

(2.72)
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2. Mathematical model and simplifications

We write equations in an equivalent form, which is more convenient for discretization.
Integrating by parts we obtain

b∫
a

M̃
∂h̃

∂s
ds = M̃h̃

∣∣∣
b
− M̃h̃

∣∣∣
a
−

b∫
a

h̃
∂M̃

∂s
ds.

Using this and equations for contact points (2.61) we obtain an equivalent formulation of
the Young-Laplace equation (2.72)

(
M̃h̃

) ∣∣∣
(x(s∗),yi(s∗))

+

s∗∫
0

(
Frmx

′ω̃2 − ∂M̃

∂s
h̃

)
ds =

(
M̃h̃

) ∣∣∣
(0,yi(0))

on Γf,i,

s∗ ∈ [0, li], i = 1, 2,

Pm =

y2(0)∫
y1(0)

(
M̃
∂h̃

∂y

)∣∣∣∣∣
x=0

dy, U(y1(0), y2(0)) = Ũ0.

(2.73)

Up to now all derivations were made for a general function M . In other studies [31,
47, 48] the magnetization was assumed to be at saturation Ms. That corresponds to

a choice of dimensionless magnetization M̃ ≡ 1, which simplifies the system greatly.
But we consider more complex case and use a standard Langevin approximation of the
magnetization given by (2.30) and (2.32)

M = M sM̂ = M scL(ξh) with L(t) = coth(t)− 1/t.

Using this representation we rewrite the system corresponding to the Young-Laplace equa-
tion (2.73). Finally, the whole problem can be formulated as follows

Find two parametrized curves such that at each point (x(s∗), yi(s
∗)) it holds

(
c̃L(ξh̃)h̃

) ∣∣∣
(x(s∗),yi(s∗))

+

s∗∫
0

(
Frmx

′ω̃2
i −

∂(c̃L(ξh̃))

∂s
h̃

)
ds =

(
c̃L(ξh̃)h̃

) ∣∣∣
(0,yi(0))

s∗ ∈ [0, li], i = 1, 2,

Pm =

y2(0)∫
y1(0)

(
c̃L(ξh̃)

∂h̃

∂y

)∣∣∣∣∣
x=0

dy, U(y1(0), y2(0)) = Ũ0.

(2.74)

2.3 Complete 2D mathematical model

Combining all of the above we end up with the mathematical model, which is in fact
the system of the equations (2.48), (2.55), (2.57), (2.74). For the sake of simplicity from
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2.3 Complete 2D mathematical model

here and further we use the notation without tilde for the domain in cross-section and its
boundary, as well as for functions given there. Then the full mathematical model can be
written as

∆ω = 0 in Ω, (2.75a)

(v · ∇) v − div σ(v, p) = e1δω
2 +

δ

Frm
L (ξhs) c∇hs in Ω,

∇ · v = 0 in Ω,

(2.75b)

− 1

Pe
∇ · (∇c− cξL (ξhs)∇hs) + v · ∇c = 0 in Ω,

∫
Ω

c dx = |Ω|, (2.75c)

cL(ξhs)hs

∣∣∣
(x(s∗),yi(s∗))

+

s∗∫
0

[
Frmx

′ω2
i −

∂(cL(ξhs))

∂s
hs

]
ds = cL(ξhs)hs

∣∣∣
(0,yi(0))

,

s∗ ∈ [0, li] i = 1, 2,

Pm =

y2(0)∫
y1(0)

cL(ξhs)
∂hs
∂y

dy, U(y1(0), y2(0)) = U0,

(2.75d)

where hs is the analytical solution of Maxwell’s system given by (2.27), stress tensor σ is
given by (2.47), constants Frm, Pm, Pe, and ξ are defined by (2.46), (2.70), (2.56), (2.31),
respectively. The system is supplemented with the boundary conditions (2.49) and (2.58)

ω = 0 on Γc,

ω = 1 on Γs,

∂ω

∂n
= 0 on Γf ,

(2.76a)

v = 0 on Γc ∪ Γs,

v · n = 0 on Γf ,

n · σ(v, p) · τ = 0 on Γf .

(2.76b)

∂c

∂n
− ξL(ξhs)

∂hs
∂n

c = 0 on Γ, (2.76c)

The full problem can be described as follows. Find two curves γf,1, γf,2 defined by the
functions yi(x), i = 1, 2 and the quadruple {ω,v, p, c} in Ω satisfying the system (2.75)
with the boundary conditions (2.76). The domain Ω is determined by the functions yi(x),
i = 1, 2 as follows

Ω :=
{

(x, y) ∈ R2 : x > 0, y2 > (x2 − 1) tan2 β,

y > y1(s) for s ∈ (0, l1), y < y2(s) for s ∈ (0, l2)
}
.

(2.77)
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2. Mathematical model and simplifications

2.4 Parameter values

In this section we estimate all the dimensionless parameters used in our mathematical
model. Our aim is to estimate the parameter values and to reduce the number of varied
parameters. We obtain the parameter range for numerical tests, while the smaller number
of parameters simplifies classification.

The dimensionless constants are the magnetic Froude number, the Reynolds number,
the Péclet number and the Langevin parameter, which are given by (2.46), (2.45), (2.56),
and (2.31), respectively

Frm =
ρv2

0δ

µ0MsH0

,

Re =
v0aρ

η
,

Pe =
a v0

D
= Re · Sc,

ξ =
µ0mH0

kT
.

(2.78)

Here ρ denotes the density of a ferrofluid, v0 the rotation velocity of the shaft, δ the
relation between the gap width a and the shaft radius R, Ms the saturation magnetization
of a uniform ferrofluid, H0 maximum of magnetic field intensity, a the gap width, η
the dynamic viscosity, D the diffusion coefficient, m the magnetic moment of a single
particle, T the absolute temperature, µ0 = 4π×10−7 V·s/(A·m) the vacuum permeability,
k = 1.38 · 10−23J/K the Boltzmann constant.

As we have shown in (2.78), the Reynolds number and the Péclet number are related
through the Schmidt number Sc

Sc =
η

ρD
.

Fixing Schmidt number allows us to consider three independent parameters instead of
four. It can be seen in the system (2.75) that the Froude number Frm determines the
geometry of the domain, whereas the Langevin parameter ξ and the Péclet number Pe
are responsible for coupling of the Navier-Stokes and the convection-diffusion equations.

Let us determine the parameter values. We use the Stokes-Einstein relation [9] in order
to find the diffusion coefficient

D =
kT

6πηRp

with Rp being the radius of a single particle. As it is known from the literature (see
[34], e.g.), the Stokes-Einstein relation is not precise for ferrofluids in case of nonuniform
particle concentration. However, we aim to estimate this coefficient only to see the order
of magnitude. Taking Rp = 5 · 10−9 m we obtain

D =
1.38 · 10−23 · 300

6π · 3 · 10−2 · 5 · 10−9
≈ 1.46 · 10−12 m2/s
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2.4 Parameter values

and
Sc ≈ 1.43 · 107.

For Reynolds number Re not higher than 200 one can guarantee the laminar flow of the
fluid [31]. Choosing v0 we take into consideration that in industry of ferrofluid seals the
maximum rotation velocity reaches 500.000 dN [17] with d denoting the diameter of the
shaft in mm and N the angular velocity in rev/min, which is equivalent to v0 ≈ 26.2 m/s.
The other physical characteristics are chosen from their typical ranges for the ferrofluid
seals. Such as a = (1÷5) ·10−4 m, δ := a/R = 0.01, T = 300 K, ρ = (1÷1.5) ·103 kg/m3,
Ms = (4 ÷ 6) · 104 A/m, H0 = 105 ÷ 106 A/m, η = 10−3 ÷ 10−1 Pa·s, m = (2 ÷ 2.5) ·
10−19 A ·m2.

Finally, we present in the table below the observed parameters for different choices of
Frm and ξ. It can be seen that we do not exceed the maximum industrial velocity of the
shaft rotation and the magnetic field intensity is close to real values in magnetic seals.

Frm = 0.1 Frm = 0.25 Frm = 0.5 Frm = 0.7 Frm = 1

v0, m/s 6.63 10.48 14.82 17.54 20.96
Re 63.25 100 141.42 167.33 200
Pe 9.05e+8 1.43e+9 2.02e+9 2.39e+9 2.86e+9

Table 2.1: Parameter values for ξ = 6 (H0 = 105 A/m).
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Chapter 3

Continuous problems

The mathematical model (2.75), (2.76) consists of three elliptic boundary value problems.
These problems can be solved numerically using two main approaches: finite difference
methods and variational methods. We use different variational methods such as Finite
Elements, Boundary Elements, and Finite Volumes for discretization of subproblems. In
this chapter we introduce the variational formulation of the problems embedded in the
mathematical model and refer to theory guaranteeing their unique solvability. Each PDE
of the model (2.75), (2.76) is investigated separately. The coupling strategy is discussed
in the next chapter with respect to the discretization method.

3.1 Azimuthal velocity

The problem for azimuthal velocity is given by the equation (2.75a)

∆ω = 0 in Ω ∈ R2 (3.1)

together with the boundary conditions (2.76a)

ω = 0 on Γc,

ω = 1 on Γs,

∂ω

∂n
= 0 on Γf ,

(3.2)

where n is a unit outer normal to Γ.
We use two different discrete methods for the problem (3.1), (3.2). Namely the finite

element and the boundary element method. At first one should consider the coupling of
the problem (3.1), (3.2) with the problem for the Young-Laplace equation. The Young-
Laplace equation (2.75d) is formulated on the free surface. The boundary element method
allows to solve problem (3.1), (3.2) only on the boundary, which is enough for coupling.
But it also decreases the number of degrees of freedom comparing to the finite element
method. The azimuthal velocity also appears on the right-hand side of the Navier-Stokes
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3. Continuous problems

equation (2.75b), so discretization of both problems with the finite elements on the same
mesh makes implementation easier. These two methods need different problem formula-
tion and we present them both.

We start with the weak formulation of the problem. Multiplying by a test function
w ∈ H1(Ω) and integrating by parts we obtain for a new solution function ω ∈ H1(Ω)

(∇ω,∇w)−
∫

Γ

∂ω

∂n
w dγ = 0.

We introduce a bilinear form

aω(ω,w) := (∇ω,∇w)

and two spaces incorporating homogeneous and inhomogeneous boundary conditions

W := {w ∈ H1(Ω) | w = 0 on Γc, w = 1 on Γs},
W0 := {w ∈ H1(Ω) | w = 0 on Γc ∪ Γs}.

Then the weak-formulated problem looks as follows:

Find ω ∈ W such that

aω(ω,w) = 0 ∀w ∈ W0. (3.3)

The integral over the boundary vanishes due to the boundary conditions and the structure
of the spaceW0. It follows from the inverse trace theorem that there exists an extension ωD
satisfying the nonhomogeneous boundary conditions [42]. So it remains to find ω0 ∈ W0

such that
aω(ω0,w) = −aω(ωD,w) ∀w ∈ W0 (3.4)

holds. According to Poincaré-Friedrich’s inequality the semi-norm | · |1,W0 is equivalent
to the norm ‖ · ‖1,W0 . This means that the bilinear form aω(·, ·) is coercive on W0. So
the Lax-Milgram theorem can be applied, which guarantees the unique solvability of the
problem (3.3) [8].

The boundary element method needs a reformulation in form of a boundary integral
equation. The problem for the azimuthal velocity (3.1), (3.2) is described by the Laplace
equation with mixed Dirichlet and Neumann boundary conditions. The Laplace equation
is the most standard for the boundary element method and is widely studied in the
literature, for example in [42]. We use the direct formulation of the boundary integral
equations, and collocation method for the discretization.

The boundary value problem is reformulated to a boundary integral equation for two
unknown functions. This reformulation is based on properties of the fundamental solution
which for 2-dimensional Laplace equation is given by

u∗(ξ0, ξ) = − ln
(
|ξ0 − ξ|

)
= −1

2
ln
((
x0 − x

)2
+
(
y0 − y

)2
)
, (3.5)
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3.2 Secondary flow

where ξ = (x, y), ξ0 = (x0, y0) ∈ R2. The solution of the problem is then given by the
following representation formula∫

Γ

(
u(ξ)

∂u∗

∂n
(ξ0, ξ)− u∗(ξ0, ξ)

∂u

∂n
(ξ)

)
dγ = −πbu(ξ0) (3.6)

with

b =

{
1, ξ0 ∈ Γ,

2, ξ0 ∈ Ω.
(3.7)

We introduce the following notation for the sake of simplicity. We change the boundary
decomposition

ΓD = Γs ∪ Γc, ΓN = Γf , (3.8)

denote

q :=
∂u

∂n
, q∗ :=

∂u∗

∂n
, (3.9)

and write the boundary conditions according to this notation

u = u on ΓD,

q = q on ΓN .
(3.10)

We choose the point ξ0 on the boundary Γ. Then we split the boundary integral
equation (3.6) into two parts for b = 1 according to (3.7)∫

ΓD

u∗ q dγ −
∫

ΓN

u q∗ dγ = πu(ξ0) +

∫
ΓD

u q∗ dγ −
∫

ΓN

u∗ q dγ ξ0 ∈ ΓD,

∫
ΓD

u∗ q dγ −
∫

ΓN

u q∗ dγ − πu(ξ0) =

∫
ΓD

u q∗ dγ −
∫

ΓN

u∗ q dγ ξ0 ∈ ΓN .

(3.11)

We put on the left hand side the unknown functions and skip the argument lists for
simplicity. The solution of the problem is sought in the form

(u, q) ∈ H−1/2(ΓD)×H1/2(ΓN).

The problem (3.11) is the direct formulation of the boundary integral equations. We
refer to [42, Chapter 7.3] for the unique solvability of the continuous problem.

3.2 Secondary flow

The 2D Navier-Stokes-type equation is given by (2.75b)

(v · ∇) v − div σ(v, p) = exδω
2 +

δ

Frm
L (ξhs)∇hs c,

∇ · v = 0

in Ω (3.12)
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3. Continuous problems

and is supplemented with the boundary conditions (2.76b). The boundary conditions
include the Dirichlet type condition on solid surfaces

v = 0 on Γc ∪ Γs (3.13)

and the slip boundary condition on a free surface, consisting of a condition on tangential
stresses

n · σ(v, p)τ = 0 on Γf (3.14)

and a no penetration condition

v · n = 0 on Γf . (3.15)

There are two common ways of applying boundary conditions. One can incorporate
them into ansatz space. The other way is to enforce conditions weakly as a constraint by
Lagrangian multiplier technique. The first approach is classical and in most cases is more
convenient. However, the Lagrange multiplier is more flexible and allows to handle very
complex conditions. The no penetration condition (3.15) was imposed weakly in [45, 46]
and in classical way in [2, 44]. The comparison of these two techniques in [3] has shown
that the incorporation into ansatz space is usually less complex and numerically cheaper.
Therefore, this approach was chosen for the current problem.

For the sake of simplicity we denote

f := exδω
2 +

δ

Frm
L (ξhs) c∇hs. (3.16)

We multiply the equation (3.12) by a vector valued test function w and integrate over
the domain Ω. The equation will look as follows

((v · ∇) v,w)− (div σ(v, p),w) = 〈f ,w〉 in Ω.

Taking into account boundary condition (3.14) one can write

σ(v, p)n = (n · σ(v, p)n)n + (τ · σ(v, p)n)τ = (n · σ(v, p)n)n.

Then using Green’s formula we obtain

−
∫

Ω

div σ(v, p) ·w dx =
2

Re

∫
Ω

D(v) : D(w)dx−
∫

Ω

p div w dx−
∫
∂Ω

w · σ(v, p)n dγ

=
2

Re

∫
Ω

D(v) : D(w)dx−
∫

Ω

p div w dx−
∫
∂Ω

w · n (n · σ(v, p)n) dγ.

We introduce two solution spaces for velocity and pressure, respectively

X := {w ∈
(
H1(Ω)

)2
: w · n = 0 on Γf , w = 0 on Γs ∪ Γc},

M := {q ∈ L2(Ω) :

∫
Ω

q dx = 0} = L2
0(Ω),
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3.2 Secondary flow

two bilinear forms and a trilinear form, respectively

a(u,w) :=
2

Re

∫
Ω

D(u) : D(w) dx,

b(p,w) := −
∫

Ω

p div w dx,

N(u,v,w) :=

∫
Ω

[(u · ∇)v] w dx.

Using this notation we give a weak formulation of the problem (3.12), (3.13), (3.14), (3.15)
according to [44]:

Find a pair (v, p) ∈ X ×M such that

a(v,w) +N(v,v,w) + b(p,w) = 〈f,w〉 ∀w ∈ X,
b(q,v) = 0 ∀q ∈M.

(3.17)

The solvability of the problem (3.17) is usually studied by means of the following problem

Find v ∈ X0 such that

a(v,w) +N(v,v,w) = 〈f,w〉 ∀w ∈ X0, (3.18)

where X0 is defined as follows

X0 := {v ∈ X : div v = 0} . (3.19)

Existence of a solution of the problem (3.18) is guaranteed by [18, Theorem 4.1.2] and
the estimate provided by the Korn’s second inequality and Poincaré-Morrey inequality [45]

a(w,w) ≥ C1‖w‖2
1 − C2

∫
Γ

|w · n|2dγ ∀w ∈ X. (3.20)

One can see that w · n = 0 on Γ for all w ∈ X due to the structure of the space X. So it
follows

a(w,w) ≥ C1‖w‖2
1 ∀w ∈ X.

Then [18, Theorem 4.1.3] proves that solution is unique if Re2‖f‖0 is sufficiently small.
The final step is to show that for each solution v of the problem (3.18) there exist

p ∈ M such that the pair (v, p) is a solution of (3.17). This is proven in [18, Theorem
4.1.4] by using the LBB-condition

β‖q‖0 ≤ sup
w∈H1

0 (Ω)2

|b(w, q)|
‖w‖1

≤ sup
w∈X

|b(w, q)|
‖w‖1

∀q ∈M.
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3. Continuous problems

3.3 Particle concentration

The convection-diffusion problem (2.75c) consists of the convective-diffusive type equation

− 1

Pe
∇ ·
(
∇c− cξL(ξhs)∇hs

)
+ v · ∇c = 0 in Ω (3.21)

the integral condition, fixing the mass of particles

1

|Ω|

∫
Ω

c dx = 1, (3.22)

and is supplemented by the boundary condition (2.76c)

∂c

∂n
− ξL(ξhs)

∂hs
∂n

c = 0 on Γ. (3.23)

For simplicity we introduce the following notation

α := ξL(ξhs)∇hs + Pe v. (3.24)

Since v is a solution of the planar Navier-Stokes equation (3.12) it is a divergence-free
function which satisfies boundary conditions (3.13), (3.15). It means that the boundary
condition can be written as follows

∂c

∂n
− ξL(ξhs)

∂hs
∂n

c =
∂c

∂n
− cα · n = 0.

Then one can write the problem (3.21), (3.23) in a general nonhomogeneous form

−∇ · (∇c−αc) = f in Ω,

(∇c−αc) · n = 0 on Γ.
(3.25)

Multiplying by a test function w ∈ H1(Ω) and integrating by parts we write the problem
for the unknown function c ∈ H1(Ω)

Find c ∈ H1(Ω) such that

ac(c,w) := (∇c−αc,∇w) = 〈f,w〉 for all w ∈ H1(Ω). (3.26)

The integral over the boundary vanishes due to the boundary conditions (3.23). One
immediately can see that for the choice w = const the homogeneous problem is satisfied for
any c ∈ H1(Ω). This induces the necessary solvability condition for the general problem,
i.e. 〈f, 1〉 = 0. In addition solution of a homogeneous problem remains a solution being
multiplied by a constant, i.e. the solution of (3.26) is not unique if it exists.

We start with analysis of coercivity of the bilinear form ac(·, ·). If it holds, then the
Lax-Milgram theorem implies the unique solvability of the problem. Let us introduce a
general factorized space

Vn :=

{
w ∈ H1(Ω) :

1

|Ω|

∫
Ω

w dx = n

}
, n ∈ {0, 1}.
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3.3 Particle concentration

The space V1 incorporates the integral condition (3.22), and the space V0 = H1(Ω)∩L2
0(Ω).

Using this space definition we write the problem (3.26) together with the integral condi-
tion (3.22) as follows

Find c ∈ V1 such that

ac(c,w) = 〈f,w〉 for all w ∈ V0, (3.27)

Homogenizing the integral condition (3.22) we can choose equal ansatz and test spaces.
We obtain the equivalent formulation

Find c ∈ V0 such that

ac(c,w) = 〈f,w〉 − ac(1,w) for all w ∈ V0. (3.28)

As one can see, the bilinear form ac(·, ·) is not coercive on H1(Ω) for an arbitrary α
because of the constant functions. In view of problem (3.28) it is interesting whether
ac(·, ·) is coercive on the factorized space V0 = H1(Ω) ∩ L2

0(Ω). Integrating by parts we
find

ac(w,w) = |w|21 +
1

2
(div α,w2)− 1

2
〈α · n,w2〉Γ for all w ∈ H1(Ω).

Thus, holding

div α ≥ 0 in Ω, (3.29a)

α · n ≤ 0 on ∂Ω (3.29b)

guarantees coercivity on V0 [21]. In that case Lax-Milgram theorem proves the unique
solvability of the problem (3.28).

Conditions (3.29) are satisfied for α ≡ 0 on Ω. That leads us to the Neumann prob-
lem for the Poisson equation. One can also specify a class of nonzero functions, satisfy-
ing (3.29). Integrating both terms over the domain and the boundary, respectively, we
obtain ∫

Ω

divα dx ≥ 0,∫
∂Ω

α · n dγ ≤ 0.

Applying the Gauss theorem we conclude∫
Ω

divα dx =

∫
∂Ω

α · n dγ = 0.

Together with conditions (3.29) and under certain regularity assumptions on α it is equiv-
alent to

divα = 0 in Ω,

α · n = 0 on ∂Ω.
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3. Continuous problems

Here the conditions can be understood either pointwise or almost everywhere. This means
that velocity part of any solution of the Stokes problem with, for example, homogeneous
Dirichlet or slip boundary conditions is a class of functions satisfying (3.29) and, therefore,
guaranteeing the coercivity of the bilinear form ac(·, ·) on V0.

Remark 3.3.1. One can show that for α defined by (3.24) statement (3.29a) holds,
while (3.29b) does not. Indeed, taking into account the boundary conditions for the Navier-
Stokes equation (3.13) and (3.15), and using exact representation for hs (2.27) one can
get the following

divα = div
(
ξL(ξhs)∇hs + Pe v

)
= ξ

∂L(ξhs)

∂hs
(∇hs)2 + ξL(ξhs)∆hs.

Since the Langevin function L(·) is monotonically increasing, its derivative is positive.

A direct computation for hs(x, y) = sin β
[
((x2 + y2) cos2 β + 1)

2 − 4x2 cos2 β
]−1/4

given

by (2.27) shows that ∆hs ≥ 0 for β ∈ [0, π/2]. It provides divα ≥ 0, and moreover,
for β ∈ (0, π/2) it holds divα > 0 in Ω. Gauss’s theorem then implies

∫
∂Ω

α · n dγ > 0
which shows that (3.29b) cannot be satisfied. However, let us have a closer look at the
statement (3.29b)

α · n =
(
ξL(ξhs)∇hs + Pe v

)
· n = ξL(ξhs)∇hs · n.

Taking into account that hs decreases while moving away from the magnet, we conclude
that ∇hs is directed toward it. That is why the statement (3.29b) can only be satisfied if
magnetic field source is placed inside the domain Ω. But that comes into contradiction
with the basics of the mathematical model. Hence α · n has no certain sign.

The question of existence and uniqueness of a solution of the general convective-
diffusive type problem (3.26) was investigated in [12]. There the problem was studied
as a special case of a one parameter family

Find c ∈ H1(Ω) such that

aγ(c,w) := ac(c,w) + γ(c,w) = 〈f,w〉 for all w ∈ H1(Ω). (3.30)

The problem (3.26) is then considered as a special case of (3.30) with γ = 0. The bilinear
form aγ appears to be coercive on H1(Ω). Indeed, using the Hölder’s inequality we can
estimate

aγ(w,w) ≥ |w|21 − ‖α‖0,∞‖w‖0|w|1 + γ‖w‖2
0

≥ 1

2
|w|21 +

(
γ − ‖α‖

2
∞

2
‖w‖

)
‖w‖2

0.
(3.31)

From this one can conclude that aγ is coercive on H1(Ω) having α ∈ L∞ and γ sufficiently
large. A more detailed analysis shows that the regularity assumption on α can be relaxed
to α ∈ Lp, p > 2 [12].

Summarizing the mentioned above we obtain the following statements
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3.3 Particle concentration

• If α satisfies conditions (3.29), i.e. divα ≥ 0 and α ·n ≤ 0, the bilinear form ac(·, ·)
is coercive on V0 = H1(Ω) ∩ L2

0(Ω), the bilinear form aγ(·, ·) is coercive on H1(Ω)
for γ ∈ R+.

• Solutions of the Stokes problem with homogeneous Dirichlet or slip boundary con-
ditions provide a wide class of α satisfying (3.29).

• The bilinear form aγ(·, ·) is coercive on H1(Ω) for the choice of γ being sufficiently
large and α ∈ Lp, p > 2.

The general result for solvability of the problems (3.26) and (3.30) is proven in [12]
and can be given in a single theorem

Theorem 3.3.2 (simplification of Theorem 1.1 [12]). Let Ω ⊂ R2 be a domain with a
Lipschitz-continuous boundary and α ∈ Lp(Ω), p > 2 then it holds

(i) The problem (3.30) is uniquely solvable for any γ > 0 for all f ∈ H−1(Ω).

(ii) The problem (3.26) has a solution if and only if 〈f, 1〉 = 0.

(iii) In case f = 0 problem (3.26) has a solution ĉ unique up to a multiplicative constant,
such that ĉ > 0.

(iv) If 〈f, 1〉 = 0 problem (3.26) has a unique solution c∗ ∈ V0. Set of all solutions of the
problem (3.26) can be written as c∗ + Rĉ ∈ H1(Ω).

The detailed proof of it can be found in [12].
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Chapter 4

Discretization

In this section we continue the study of the mathematical model (2.75), (2.76). We
present the discretization of the continuous problems studied in previous chapter. As it
was mentioned before, we solve each equation separately. The coupling strategy will be
introduced at the end of the chapter.

However we want to mention one important moment. The Young-Laplace equation
determines the force balance on the free surface, so it is given only on the boundary. The
Navier-Stokes and convection-diffusion equations are discretized by the finite element and
finite volume methods on the whole domain. The Laplace equation for azimuthal velocity
is coupled with the Young-Laplace equation, and azimuthal velocity appears on the right-
hand side of the Navier-Stokes equation. Since Laplace equation is standard and the
simplest one in our system, we decided to use for it different numerical methods to better
fit each specific case. Namely, the boundary element discretization for better coupling with
the Young-Laplace equation and finite element discretization for easier incorporation into
Navier-Stokes equation.

We discretize the domain with admissible and shape-regular triangulation Th of Ω [8].
The discrete polygonal domain Ωh =

⋃
T∈Th

T is chosen such that all vertices on ∂Ωh lie

on ∂Ω. The decomposition ∂Ω = Γs ∪ Γc ∪ Γf implies the decomposition of the discrete
boundary ∂Ωh = Γs,h ∪ Γc,h ∪ Γf,h.

4.1 Laplace equation for azimuthal velocity

We discuss here two possible discretizations of the mixed boundary value problem for the
Laplace equation (3.1) with boundary conditions (3.2)
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4. Discretization

∆ω = 0 in Ω,

ω = 0 on Γc,

ω = 1 on Γs,

∂ω

∂n
= 0 on Γf ,

(4.1)

where n is a unit outer normal to Γ.
The finite elements for the Poisson equation are quite standard, so we present here

only the general points. The weak formulation of the problem (4.1) is given by (3.3)

Find ω ∈ W such that
aω(ω,w) = 0 ∀w ∈ W0 (4.2)

with spaces given by

W := {w ∈ H1(Ω) | w = 0 on Γc, w = 1 on Γs},
W0 := {w ∈ H1(Ω) | w = 0 on Γc ∪ Γs}.

We discretize the variational problem (4.2) with standard Galerkin P2 conforming
finite elements. We define the discrete space by

Wh := {wh ∈ C0(Ωh) : w
∣∣
T
∈ P2(T ), for all T ∈ Th, wh = 1 on Γs, wh = 0 on Γc}⊂ W.

Wh0 := {wh ∈ C0(Ωh) : w
∣∣
T
∈ P2(T ), for all T ∈ Th, wh = 0 on Γs ∪ Γc} ⊂ W0.

Then the nonhomogeneous discrete problem can be written as follows

Find ωh ∈ Wh such that

a(ωh,wh) := (∇ωh,∇wh) = 0 ∀wh ∈ Wh0. (4.3)

Like for the continuous problem we apply the inverse trace theorem in order to switch to
the problem with homogeneous boundary conditions. The conforming finite element space
Wh0 ⊂ W0(Ω) provides the coercivity of a(·, ·) on Wh0. Then the Lax-Milgram theorem
can be applied, which guaranties the unique solvability of the discrete problem (4.3).

The boundary element discretization of the boundary integral equations (3.11)∫
ΓD

u∗ q dγ −
∫

ΓN

u q∗ dγ = πu(ξ0) +

∫
ΓD

u q∗ dγ −
∫

ΓN

u∗ q dγ ξ0 ∈ ΓD,

∫
ΓD

u∗ q dγ −
∫

ΓN

u q∗ dγ − πu(ξ0) =

∫
ΓD

u q∗ dγ −
∫

ΓN

u∗ q dγ ξ0 ∈ ΓN .

is observed in more details. We recall useful notation from the continuous case (3.8),
(3.9), (3.10). Namely, the boundary decomposition

ΓD = Γs ∪ Γc, ΓN = Γf ,
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4.1 Laplace equation for azimuthal velocity

functions

q :=
∂u

∂n
, q∗ :=

∂u∗

∂n

and boundary conditions
u = u on ΓD,

q = q on ΓN .

Function u∗ is a fundamental solution of the Laplace equation given by (3.5). We introduce
a sequence of boundary points

Ξ := {ξj = (xj, yj)}Nj=1 (4.4)

and two index sets

ID = {j : (xj, yj) ∈ ΓD}, IN = {j : (xj, yj) ∈ ΓN}.

The sequence Ξ generates the discrete boundary

Γ̂h := ∪τi, j = 1, · · · , N,

where τi are the boundary parts, which are also called boundary elements, with grid points
(xj−1, yj−1), (xj, yj) being their end points.

We choose piecewise constant boundary elements, which means each τi is a line segment
and the discrete solution is sought in the following form

(uh, qh) ∈ S0
h(Γ̂h,N)× S0

h(Γ̂h,D),

where S0
h(Γ̂h) := span {ϕ0

i }Nj=1 with

ϕ0
k(ξ) =

{
1 for ξ ∈ τi,
0 otherwise.

We introduce in addition

∆xj = xj − xj−1, ∆yj = yj − yj−1.

The length of j-th boundary element is given by

lj =
√

∆xj
2 + ∆yj

2, j = 1, · · · , N.

The parameter s is related to the length of Γ̂h so

sj =

j∑
i=1

li, |Γ̂h| = sN .
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4. Discretization

The nodal point on each boundary element τi is chosen as the center of this element, it
can be defined by ξi− 1

2
. Now we can write the parametric representation of the boundary{

x(s) = (s− sj− 1
2
)x′j + xj− 1

2
,

y(s) = (s− sj− 1
2
)y′j + yj− 1

2
,

sj−1 ≤ s ≤ sj, j = 1, · · · , N,
(4.5)

where sj− 1
2

= sj − lj
2

= sj−1 +
lj
2

, x′j =
∆xj
lj

, y′j =
∆yj
lj

.

Taking ξ0 = ξi− 1
2
∈ Γ̂h, i ∈ {1, · · · , N} we can write the system of N linear equations

∑
τj⊂Γ̂h,D

∫ sj

sj−1

u∗ qh ds−
∑

τj⊂Γ̂h,N

∫ sj

sj−1

uh q
∗ ds

= πu(ξi− 1
2
) +

∑
τj⊂Γ̂h,D

∫ sj

sj−1

u q∗ ds−
∑

τj⊂Γ̂h,N

∫ sj

sj−1

u∗ q ds, i ∈ ID,

−πuh(ξi− 1
2
) +

∑
τj⊂Γ̂h,D

∫ sj

sj−1

u∗ qh ds−
∑

τj⊂Γ̂h,N

∫ sj

sj−1

uh q
∗ ds

=
∑

τj⊂Γ̂h,D

∫ sj

sj−1

u q∗ ds−
∑

τj⊂Γ̂h,N

∫ sj

sj−1

u∗ q ds, i ∈ IN .

Further we assume that on every boundary element τj boundary value functions u, q are
constants. We introduce the coefficients vi of the decomposition such that

uh =
∑
j∈IN

vjϕ
0
j , qh =

∑
j∈ID

vjϕ
0
j .

The discrete problem can be written as a system of linear equations

∑
τj⊂Γ̂h,D

vj

∫ sj

sj−1

u∗ ds−
∑

τj⊂Γ̂h,N

vj

∫ sj

sj−1

q∗ ds = πui− 1
2

+
∑

τj⊂Γ̂h,D

uj− 1
2

∫ sj

sj−1

q∗ ds−
∑

τj⊂Γ̂h,N

qj− 1
2

∫ sj

sj−1

u∗ ds, i ∈ ID,

−πvi +
∑

τj⊂Γ̂h,D

vj

∫ sj

sj−1

u∗ ds−
∑

τj⊂Γ̂h,N

vj

∫ sj

sj−1

q∗ ds

=
∑

τj⊂Γ̂h,D

uj− 1
2

∫ sj

sj−1

q∗ ds−
∑

τj⊂Γ̂h,N

qj− 1
2

∫ sj

sj−1

u∗ ds, i ∈ IN .

(4.6)

For more compact view we introduce

aij =

∫ sj

sj−1

u∗(ξi− 1
2
, ξ(s)) ds, bij =

∫ sj

sj−1

q∗(ξi− 1
2
, ξ(s)) ds.
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4.1 Laplace equation for azimuthal velocity

So finally system (4.6) looks like

∑
τj⊂Γ̂h,D

aijvj −
∑

τj⊂Γ̂h,N

bijvj = πui− 1
2

+
∑

τj⊂Γ̂h,D

uj− 1
2
bij −

∑
τj⊂Γ̂h,N

qj− 1
2
aij, i ∈ ID,

∑
τj⊂Γ̂h,D

aijvj −
∑

τj⊂Γ̂h,N

(bij + πδij) vj

=
∑

τj⊂Γ̂h,D

uj− 1
2
bij −

∑
τj⊂Γ̂h,N

qj− 1
2
aij, i ∈ IN ,

(4.7)

where δij is the Kronecker delta.
To simplify the integrals aij and bij we write u∗ and q∗ as functions of parameter s and

represent ρ(ξ0, ξ(s)) in parametric coordinates x(s), y(s) on interval s ∈ [sj−1, sj]. Using

the fact that
(
x′j
)2

+
(
y′j
)2

= 1 by the definition (4.5) we obtain

ρ2(ξ0, ξ(s)) =
(
x0 − x(s)

)2
+
(
y0 − y(s)

)2

=
(
x0 − xj− 1

2
+ (sj− 1

2
− s)x′j

)2

+
(
y0 − yj− 1

2
+ (sj− 1

2
− s)y′j

)2

=
(
sj− 1

2
− s
)2

+
(
y0 − yj− 1

2

)2

+
(
x0 − xj− 1

2

)2

+ 2
(
sj− 1

2
− s
) [
x′j

(
x0 − xj− 1

2

)
) + y′j

(
y0 − yj− 1

2

)]
=
(

(sj− 1
2
− s) +

[
x′j

(
x0 − xj− 1

2

)
+ y′j

(
y0 − yj− 1

2

)])2

−
[
x′j

(
x0 − xj− 1

2

)
+ y′j

(
y0 − yj− 1

2

)]2

+
(
y0 − yj− 1

2

)2

+
(
x0 − xj− 1

2

)2

=
(
s− sj− 1

2
−
[
x′j

(
x0 − xj− 1

2

)
+ y′j

(
y0 − yj− 1

2

)])2

+
(
y′j

(
x0 − xj− 1

2

))2

+
(
x′j

(
y0 − yj− 1

2

))2

− 2x′jy
′
j

(
x0 − xj− 1

2

)(
y0 − yj− 1

2

)
=
(
s− sj− 1

2
−
[
x′j

(
x0 − xj− 1

2

)
+ y′j

(
y0 − yj− 1

2

)])2

+
(
y′j

(
x0 − xj− 1

2

)
− x′j

(
y0 − yj− 1

2

))2

.

In case ξ0 = ξi− 1
2

we can write it in a short form

ρ2(ξi− 1
2
, ξ(s)) =

(
s− sj− 1

2
− cij

)2

+ dij
2 (4.8)
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4. Discretization

with
cij = x′j

(
xi− 1

2
− xj− 1

2

)
+ y′j

(
yi− 1

2
− yj− 1

2

)
,

dij = y′j

(
xi− 1

2
− xj− 1

2

)
− x′j

(
yi− 1

2
− yj− 1

2

)
.

(4.9)

Integrals in coefficients aij and bij are evaluated analytically. Before calculating bij let us
simplify the integrand

∂u∗

∂n
(ξi− 1

2
, ξ(s)) = cos(x̂(s), nj)

xi− 1
2
− x(s)

ρ2
(
ξi− 1

2
, ξ(s)

) + cos(ŷ(s), nj)
yi− 1

2
− y(s)

ρ2
(
ξi− 1

2
, ξ(s)

) . (4.10)

Choosing the direction of the circuit counterclockwise the outer normal determined by

the derivatives of x and y is given by nj =
(
y′j,−x′j

)T
. Cosine of an angle between the x

and nj is

cos(x̂(s), nj) = cos

(
̂(

x′j
0

)
,

(
y′j
−x′j

))
=

x′jy
′
j

x′j

√(
x′j
)2

+
(
y′j
)2

= y′j. (4.11)

In the same way we can get cos(ŷ(s), nj) = −x′j. Substituting this values to (4.10) we
obtain

∂u∗

∂n
(ξi− 1

2
, ξ(s)) =

y′j

(
xi− 1

2
− x(s)

)
− x′j

(
yi− 1

2
− y(s)

)
ρ2
(
ξi− 1

2
ξ(s)

)
=
y′j

(
xi− 1

2
− xj− 1

2
− (s− sj− 1

2
)x′j

)
ρ2
(
ξi− 1

2
, ξ(s)

)
−
x′j

(
yi− 1

2
− yj− 1

2
− (s− sj− 1

2
)y′j

)
ρ2
(
ξi− 1

2
, ξ(s)

)
=

dij

ρ2
(
ξi− 1

2
, ξ(s)

) , s ∈ [sj−1, sj].

(4.12)

Using (4.12) as integrand in bij we end up with

bij =

∫ sj

sj−1

q∗(ξi− 1
2
, ξ(s)) ds = dij

∫ sj

sj−1

ds

ρ2
(
ξi− 1

2
, ξ(s)

)
= dij

∫ sj

sj−1

ds(
s− sj− 1

2
− cij

)2

+ dij
2

= arctan

(
s− sj− 1

2
− cij

dij

)∣∣∣∣sj
sj−1

= arctan

(
lj
2
− cij
dij

)
+ arctan

(
lj
2

+ cij

dij

)
.

(4.13)
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4.2 Young-Laplace equation

Coefficients aij can be evaluated straightly

aij =

∫ sj

sj−1

u∗(ξi− 1
2
, ξ(s)) ds = −1

2

∫ sj

sj−1

ln
(
ρ(ξi− 1

2
, ξ(s))

)
ds

=− 1

2

∫ sj

sj−1

ln

((
s− sj− 1

2
− cij

)2

+ dij
2

)
ds

=− 1

2

(
s− sj− 1

2
− cij

)
ln

((
s− sj− 1

2
− cij

)2

+ dij
2

)∣∣∣∣sj
sj−1

+ s|sjsj−1
− dij arctan

(
s− sj− 1

2
− cij

dij

)∣∣∣∣sj
sj−1

=− 1

2

(
lj
2
− cij

)
ln

((
lj
2
− cij

)2

+ dij
2

)

− 1

2

(
lj
2

+ cij

)
ln

((
lj
2

+ cij

)2

+ dij
2

)
+ lj − dijbij.

(4.14)

The numerical solution of the problem (4.2) is given as a solution of the system (4.7) with
coefficients specified by (4.13), (4.14).

4.2 Young-Laplace equation

Here we discuss the discretization of the Young-Laplace equation (2.75d)

cL(ξhs)hs

∣∣∣
(x(s∗),yi(s∗))

+

s∗∫
0

[
Frmx

′ω2
i −

∂(cL(ξhs))

∂s
hs

]
ds = cL(ξhs)hs

∣∣∣
(0,yi(0))

,

s∗ ∈ [0, li] i = 1, 2,

Pm =

y2(0)∫
y1(0)

cL(ξhs)
∂h

∂y
dy, U(y1(0), y2(0)) = U0,

(4.15)

One can see that the main equation is a nonlinear integro-differential equation with respect
to y. We propose the solution technique which was used for a simpler equation in [31]. It
uses the fact that function hs (2.27) is invertible as function of y. This allows us to write
integrals in (4.15) as follows

s∗∫
0

Frmx
′ω2
i ds =

x(s∗)∫
0

Frmω
2
i dx,

s∗∫
0

∂(cL(ξhs))

∂s
hsds =

x(s∗)∫
0

∂(cL(ξhs))

∂x
hsdx+

y(s∗)∫
y(0)

∂(cL(ξhs))

∂y
hsdy.
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4. Discretization

One should note that integrals on the right hand side remain curve integrals with respect
to s. We introduce new parametrization for more simple discretization.

We recall the expression of the magnetic field intensity (2.27)

hs(x, y) =
sin β[

((x2 + y2) cos2 β + 1)2 − 4x2 cos2 β
]1/4 .

Then for equation
h(x, y) = Φ(x)

we invert h(x, y) with respect to y and obtain

y(x) = ±g(x,Φ(x)), where

g(x,Φ(x)) :=

√√√√√tan4 β

Φ4(x)
+

4x2

cos2 β
− 1

cos2 β
− x2.

(4.16)

The sign of y is chosen depending on the free surface part. Following further the ideas
of [31] we introduce parametrization of a curve with respect to x instead of arc length
s. It is possible if we assume that functions xi(s) corresponding to ri(s) in (2.59) are
bijective. Then we are able to change the integration variable in (2.66) from s ∈ [0, li] to
xi ∈ [0, xi(li)] or yi ∈ [0, yi(li)]. For further simplicity we also define

ζi := xi(li). (4.17)

Moreover, functions yi can be understood as functions of x, i.e. we redefine yi(x) :=
yi(x

−1
i (x)) = yi(s), i = 1, 2.

At this point we assume that each part of free surface preserves the sign, i.e. yi can
be either non-negative or non-positive. So, assuming that i = 1 corresponds to the upper
part, we can write

yi(x) = (−1)i+1g(x,Φ(x)).

For more details see the following remark.

Remark 4.2.1. The question, whether functions yi, i = 1, 2 are sign preserving is a
complex task. It is enough to show that yi(x

∗) 6= 0 for any x∗ ∈ (0, 1]. The interval (0, 1]
is enough due to the domain structure.

Let us first consider simplified Young-Laplace equation as it was used in [31]. There
it was derived for the case the magnetization is at saturation on free surface. That cor-
responds to the choice cL(ξhs) ≡ 1. Then the derivative ∂cL(ξhs)

∂s
vanishes and the Young-

Laplace equation (4.15) is simplified to

hs(x
∗, yi(x

∗)) = Φ̂i(x
∗), i = 1, 2,

Φ̂i(x
∗) := hs(0, yi(0))− Frm

x∗∫
0

ω2
i (x, yi(x))dx,

Pm = h(0, y2(0))− h(0, y1(0)), U(y1(0), y2(0)) = U0.

(4.18)
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4.2 Young-Laplace equation

One can see that Φ̂i(x) is a decreasing function of x. It means magnetic field strength hs
is also a decreasing function of x. Then we can use the fact that isolines of hs are Cassini
ovals [31], which proves that the free surface cannot cross x-axis on interval (0, 1], i.e.
yi(x, hs) is sign preserving.

However, for problem (4.15) it is not possible to show in general that Φi(x) is a de-
creasing function. That is why we leave this question open.

The Young-Laplace equation (4.15) then can be written as follows

yi(x
∗) = (−1)i+1g(x∗,Φi(x

∗)), x∗ ∈ [0, ζi], i = 1, 2,

Pm =

y2(0)∫
y1(0)

cL(ξhs)
∂h

∂y
dy, U(y1(0), y2(0)) = U0

(4.19)

with Φi(·) defined by

Φi(x
∗) :=

1

cL(ξhs)

∣∣∣
(x∗,yi(x∗))

[
cL(ξhs)hs

∣∣∣
(0,yi(0))

− Frm

x∗∫
0

(ωi)
2dx

+

x∗∫
0

∂(cL(ξhs))

∂x
hsdx+

yi(x
∗)∫

yi(0)

∂(cL(ξhs))

∂y
hsdy

]
.

(4.20)

At this point it is important to say some words about the solution process. We solve
the pair of Laplace (2.75a) and Young-Laplace (2.75d) equations one by one repeatedly,
until iterations converge. See Section 4.5 for more details. Each solution of the Young-
Laplace equation generates new mesh Ξ (4.4). Therefore it generates a sequence of grids
Ξj with index j corresponding to the iteration number. We split each grid Ξj into four
subgrids with respect to boundary parts. We need further grids Ξj

s and Ξj
f,i corresponding

to boundary parts Γs and Γf,i, respectively. In addition we change the order of nodes for
Ξj
f,i as follows

Ξj
f,i := {(xk, yk) ∈ Γ̂jf,i,h : x0 = 0, xn−1 < xn ∀n > 0}k=Nf,i

k=0 , i = 1, 2, (4.21)

where j is the grid index for iterations of Laplace and Young-Laplace equations according
to (4.72).

For given grids Ξj
f,i, i = 1, 2 and Ξj

s, and values of integrands in (4.19), (4.20) at
quadrature points one can approximate integrals by the quadrature rule. Then we obtain
the following relations for points yj+1

i on a free surface

yj+1
i = (−1)i+1g(xj+1,Φj

i (x
j)), (xj+1, yj+1

i ) ∈ Ξj+1
i , i = 1, 2, (4.22)
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4. Discretization

where Φj
i (·) is related to Φi(·) in (4.20) with the following changes

Φj
i (x
∗) :=

1

cL(ξhs)

∣∣∣
(x∗,yji (x∗))

[
cL(ξhs)hs

∣∣∣
(0,yji (0))

− Frm

x∗∫
0

(ωji )
2dx

+

x∗∫
0

∂(cL(ξhs))

∂x
hsdx+

yji (x∗)∫
yji (0)

∂(cL(ξhs))

∂y
hsdy

]
.

(4.23)

The equation (4.22) gives a relation between coordinates x and y of point on a free surface
(x, y) ∈ Ξj+1

f,i . In order to find y one should know x, that is why we introduce special grid
for x. Let us denote the sequences of coordinate x

Θj
i := {xk ∈ [0, ζji ] : x0 = 0}k=Nf,i

k=0 , i = 1, 2. (4.24)

The point ζj+1
i can be found from equation (4.22) using the known shape of the concen-

trator described by (2.26)
y2(ζ) = tan2 β(ζ2 − 1).

Substituting y(ζ) into (4.22) and extracting ζ we obtain

ζj+1
i =

√(
sin β

Φj
i (ζ

j
i )

)2

+ cos2 β, i = 1, 2. (4.25)

Grids Θj
i are constructed for two parts of free surface by an arbitrary known rule, e.g.

uniformly, according to the arc length or depending on curvature [30]. Then for given
xk ∈ Θj

i one can solve equation (4.22) and find a pair (xk, yk) ∈ Ξj+1
f,i . Doing it sequen-

tially we construct the whole new grid Ξj+1
f,i . The full discretization then reads as follows

Find new grids Ξj+1
f,i from the old ones Ξj

f,i from the following equations

yj+1
i,k = (−1)i+1g(xj+1

k ,Φj
i (x

j
k)), xj+1

k ∈ Θj+1
i , i = 1, 2,

Pm =

yj+1
2,0∫

yj+1
1,0

cL(ξhs)
∂h

∂y
dy, U(yj+1

1,0 , y
j+1
2,0 ) = U0.

(4.26)

Here functions Φj
i are given by (4.23), grids Θj+1

i , i = 1, 2 are defined by (4.24). The
integral in condition for the pressure drop is approximated by a quadrature rule.

Finally the discrete domain Ωj can be constructed according to (2.77)

Ωj :=
{

(x, y) ∈ R2 : x > 0, y2 > (x2 − 1) tan2 β,

yj1(x) < y for x ∈ (0, ζj1), y < yj2(x) for x ∈ (0, ζj2)
}
.

(4.27)
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4.3 Planar Navier-Stokes-type equation

The only difference is that yji (x) here is not a solution of the continuous problem (2.75d),
but a linear or cubic spline interpolation of the pointwise given curve Θj

i , i = 1, 2.

The scheme (4.26) is used in case when the particle concentration is given. If it is not
determined, we can use the simplified system (4.18).

4.3 Planar Navier-Stokes-type equation

We formulate the finite element discretization of the variational problem (3.17) in finite
element spaces Xh and Mh for u and p, respectively.

Find a pair (uh, ph) ∈ Xh ×Mh such that

ah(uh, wh) +Nh(uh, uh, wh) + bh(ph, wh) = 〈f, wh〉 ∀wh ∈ Xh,

bh(qh, uh) = 0 ∀qh ∈Mh,
(4.28)

where two bilinear and a trilinear forms are defined as follows

ah(uh, wh) :=
2

Re

∫
Ωh

D(uh) : D(wh) dx,

bh(ph, wh) := −
∫

Ωh

p div wh dx,

Nh(uh, vh, wh) :=

∫
Ωh

[(uh · ∇)vh]wh dx.

(4.29)

The solvability of the problem (4.28) needs the same steps as for the continuous prob-
lem, i.e. the coercivity of the bilinear form ah(·, ·) on Xh and fulfillment of the LBB-
condition for the bilinear form bh(·, ·) for the pair of spaces Xh, Mh. On the other hand
the error estimates should be obtained. Both these parts are in strong matter depen-
dent on the choice of the finite element spaces Xh and Mh as well as on the type of the
boundary conditions and their implementation.

We refer for example to [18] for the detailed study of the discretization of Navier-Stokes
equation with Dirichlet boundary conditions for different pairs of finite elements. However,
there are much less information for analysis of problems with slip boundary conditions.
We take as a basis the following related works. In [2, 44] the problem (4.28) with only
slip boundary conditions was investigated. Both papers used the Taylor-Hood element on
polygonal approximations Ωh of Ω. In [44] the non-optimal error estimates of O

(
h1/2

)
was

obtained in H1(Ω) and L2(Ω) norms for velocity and pressure, respectively. That error
bound was improved in [2] to O

(
h3/2

)
in the same norms. These two approaches differ in

the implementation of the boundary condition v · n = 0 on ∂Ω. In [44] it is implemented
only for the vertices on the boundary Ω. It means that the middle points of edges lying
on the discrete boundary ∂Ωh were ignored. In [2] the concept of ”exact triangulation” is
used to implement a discrete version of v · n = 0 on ∂Ωh. The technique similar to one
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4. Discretization

in [2] was used in [27] to obtain the error bound O
(
h3/2

)
for the isoparametric Taylor-

Hood elements for the coupled problem including the Navier-Stokes equation with mixed
Dirichlet and slip boundary conditions.

In order to have an optimal error estimate we use P2/P1 Taylor-Hood finite elements.
So the finite element spaces Xh and Mh are defined as follows

Xh ={wh ∈
(
C0(Ωh)

)2 | wh
∣∣
T
∈ P2(T )2, wh(p) · n(Gh(p)) = 0 ∀p ∈ Nh,f ,

wh(p) = 0 ∀p ∈ Nh,D},

Mh ={qh ∈ C0(Ωh) | qh
∣∣
T
∈ P1(T ),

∫
Ωh

qh = 0},
(4.30)

where Nh,f and Nh,D are the sets of all vertices and midpoints lying on Γf,h and Γs,h∪Γc,h,
respectively.

We cannot directly follow the proof of existence and uniqueness of a solution used
for the continuous problem (3.17). In discrete case the boundary conditions are applied
pointwise, which implies 〈wh, nh〉Γh

6= 0. Hence, the inequality (3.20) cannot show the
coercivity of ah(·, ·) directly. The LBB-condition in discrete case is also a complex task
and should be proven for a chosen pair of finite element spaces. Lemma 3.3 in [2] proves
the coercivity of the bilinear form ah(·, ·) and the LBB-condition for bh(·, ·) for the dis-
cretization of the Navier-Stokes equation with slip boundary conditions by Taylor-Hood
finite elements. Using our extension of Lemma 3.1 (see Lemma 4.3.1 below) one can derive
the same for the problem (4.28). The mentioned results and standard theory [18] imply
that the discrete problem (4.28) has a unique solution for (Re)2‖f‖0 being small enough.

The main points of the proof of the error estimate in [2] are as follows. The concept
of ”exact triangulation” was used in order to have better approximation on the boundary
and also resolve the problem that (v, p) and (vh, ph) lie in different spaces. The ”ex-

act triangulation” provides a mapping Gh, which is a homeomorphism between Ω̃h to
Ω. For detailed description of a construction of such triangulation and analysis of its
approximation properties please refer to [7, 24].

We introduce in addition for any pair (wh, qh) ∈ Xh ×Mh the following functions

(wh, qh) :=

(
wh ◦G−1

h , qh ◦G−1
h −

1

|Ω|

∫
Ω

qh ◦G−1
h

)
∈ X ×M. (4.31)

The desired error estimate looks as follows

‖v − vh‖1 + ‖p− ph‖0 ≤ Ch
3
2 (4.32)

for (v, p) being a solution of the continuous problem (3.17) and (vh, ph) a solution of the
discrete problem (4.28).

The following boundary estimate plays an important role in the proof of (4.32). It was
proven in [2] only for the problem with slip boundary conditions and here we extend it
for the case of mixed Dirichlet and slip boundary conditions.
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4.3 Planar Navier-Stokes-type equation

Lemma 4.3.1 (Corollary of Lemma 3.1 [2]). There exists h0 > 0 s.t. for all 0 < h < h0

and all wh ∈ Xh

‖wh · n‖0,∂Ω ≤ ch
3
2‖wh‖1.

Proof. We split the boundary according to its decomposition and write

‖wh · n‖2
0,∂Ω =

∫
Γc∪Γs

|wh · n|2 dγ +

∫
Γf

|wh|2 · n dγ.

The boundary integral over Γc ∪ Γs vanishes due to the boundary conditions. In [2] the
desired error estimate is proven for the case of slip boundary condition applied on the
whole boundary. As the proof is given separately for each ∂Ω ∩ T , T ∈ Th, we can apply
it for a part of the boundary Γf . Which implies the result of the lemma. �

One of the difficult points of the proof of the error estimate is that the regularity prop-
erties of (u, p) are not satisfied for our domain Ω. In particular the following properties
were used

‖u‖2
3 + ‖p‖2

2 ≤ C‖f‖2
1,

which are satisfied for Ω in class C4 [41]. This inequality was used in the proof of the
error estimate (4.32). We then can assume sufficient regularity of u and p and bound
their norms by some constants. One can also note that analysis in [2] does not use the
quasi-uniform assumption on the triangulation, so does our extension. That allows us to
apply the adaptive mesh refinement, if we need, without loss of approximation properties.

Now we want to give some implementation notes for our discretization. The prob-
lem (3.17) should be discretized in Xh×Mh defined by (4.30). This needs for all discrete
functions vh ∈ Xh holding vh = 0 on Γc,h ∪ Γs,h and vh(p) · n(Gh(p)) = 0 for all p ∈ Nh,f .
These conditions provide certain difficulties in constructing the basis of Xh. It is easier
at first to discretize the problem in a larger space and then satisfy the restrictions of Xh.
Let us define

Wh := {wh ∈
(
C0(Ωh)

)2
: wh

∣∣
T
∈ P2(T )2},

for which Xh ⊂ Wh holds.

The basis of Wh is written as {ϕi}2NU
i=1 which is defined through one-dimensional basis

{φi}NU
i=1

ϕi =



(
φi
0

)
, i ∈ {1, . . . , NU},

(
0

φi−NU

)
, i ∈ {NU + 1, . . . , 2NU}.

(4.33)

The basis of Mh is given by {ψi}NP
i=1. Every discrete function wh ∈ Wh and qh ∈ Mh can
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4. Discretization

be decomposed into a sum of weighted basis functions

wh =

2NU∑
i=1

wiϕi, (4.34)

qh =

NP∑
i=1

qiψi. (4.35)

For every node of the mesh pk there is only one basis function φl not vanishing in it, i.e.
φl(pk) = δlk with δlk being the Kronecker symbol. So the value of wh in pk is determined
by only two components of decomposition (4.34) zlϕl and zl+NU

ϕl+NU
.

Using representations (4.34), (4.35) for solution and test functions, the problem (4.28)
can be discretized into a system of the following equations

a(

2NU∑
i=1

uiϕi, ϕj) +Nh(ũh,

2NU∑
i=1

uiϕi, ϕj)

+(

NP∑
i=1

piψi,∇ · ϕj) = (fh, ϕj), j = 1, · · · , 2NU , (4.36a)

(ψj,

2NU∑
i=1

ui∇ · ϕi) = 0, j = 1, · · · , NP , (4.36b)

where ũh is the known function involved to linearize the system. We use well known
fixed-point iteration for solving the Navier-Stokes equation, so that on each iteration step
it is approximated by a linear problem. It reads as follows

For a given initial step u0 find a pair (uj+1, pj+1), j > 0 sequentially solving

ah(u
j+1, w) +Nh(u

j, uj+1, w) + bh(p
j+1, w) = (fh, w) ∀w ∈ Xh,

b(q, uj+1) = 0 ∀q ∈Mh.
(4.37)

The iteration process stops, when (uj, pj) converges to some pair (u, p). On each iteration
step the problem (4.37) is linear. For more details please refer to [43].

Further we consider the discretization of the linearized problem (4.36). We can apply
the boundary conditions included into Xh to obtain the final discretization in Xh ×Mh.
At first we impose the Dirichlet boundary conditions and fix the constant for pressure,
applying

uh(p) = 0 for all p ∈ Nh,D,
ph(pi) = 0 for a single i ∈ {1, . . . , NP}.

This overwrites the |Nh,D|+ 1 lines of the system.
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4.3 Planar Navier-Stokes-type equation

The next step is to apply slip boundary conditions as the second restriction of Xh

space. Let p ∈ Nh,f be a boundary node on Γf,h corresponding to basis functions ϕl and
ϕl+NU

. One has to satisfy in that point for uh and vh conditions like

wh(p) · ñh(p) = 0 for all p ∈ Nh,f (4.38)

with
ñh(p) = n(Gh(p)). (4.39)

As we discussed before, this needs the construction of the ”exact triangulation” operator,
which is quite difficult to handle. However, in [3] the normal was chosen as a weighted
average

ñh(p) =
mh(p)

|mh(p)|
, mh(p) :=

∑
Γi∈Oh : p∈Γi

|Γi|nih, (4.40)

where Oh = {T ∩ Γh : T ∈ Th, T ∩ Γf,h 6= ∅} and nih is a unit outer normal to Γi. It was
shown that the choice of a normal according to (4.40) leads to the same convergence rate
O(h3/2) as for (4.39). Therefore, we use the simpler normal (4.40) in our implementation
and ignore the construction of the ”exact triangulation”.

Using functions representation (4.34) and structure of the basis (4.33) we can apply
the no penetration condition (4.38) to a solution and test function as follows. For the
solution function it is applied simply as a linear combination

ulnk,1 + ul+NU
nk,2 = 0,

where nk,i, i = 1, 2 denotes first and second component of the normal ñh(pk), ul and ul+NU

are the coefficients of uh in representation (4.34). Formulating it with basis functions we
come to

− nk,2(ulϕl, ϕl) + nk,1(ul+NU
ϕl+NU

, ϕl+NU
) = 0. (4.41)

Making the linear combination of equations number l and l +NU with coefficients −nk,2
and nk,1, respectively, and using linearity we obtain

a(

2NU∑
i=1

uiϕi, ϕ̄l) + b(

2NU∑
i=1

uiϕi, ũh, ϕ̄l) + (

NP∑
i=1

piψi,∇ · ϕ̄l) = (fh, ϕ̄l) (4.42)

with

ϕ̄l = −nk,2ϕl + nk,1ϕl+NU
=

(
−nk,2
nk,1

)
φl.

One can see that ϕ̄l · nk = 0. It means that this manipulation gives us the basis function
satisfying no penetration condition (4.38).

Finally, we replace equations (4.36a) with numbers j = l and j = l + NU by equa-
tions (4.41) and (4.42). Repeating these steps for all pk ∈ Γf,i we write a problem for
modified functions ũh, w̃h ∈ Xh, which completes the implementation of the discrete
problem (4.28).
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4. Discretization

4.4 Convection-Diffusion equation

We recall the continuous problem which we want to discretize. The classical formulation
of the problem is a generalization of (3.21), (3.23)

Find u ∈ C2(Ω) ∩ C1(Ω) such that

−∆u+∇ · (αu) = f in Ω,

(∇u−αu) · n = 0 on Γ
(4.43)

with n denoting a unit outer normal to Γ. The weak formulation of the problem (4.43) is
given by (3.26)

Find u ∈ H1(Ω) such that

(∇u−αu,∇w) = 〈f, w〉 for all w ∈ H1(Ω). (4.44)

Solution of both problems must satisfy the mass conservation condition (3.22)

1

|Ω|

∫
Ω

u dx = 1. (4.45)

The main properties of the continuous problem are provided by Theorem 3.3.2. A
discrete method which preserves these properties was first introduced in [10], where a
finite volume approach was applied for different types of fluxes. Namely, centered flux,
widely used in fluid mechanics upwind flux [36], and Scharfetter-Gummel flux, which
is common for semiconductor framework [26, 38]. These fluxes were parametrized by a
single function B(·) with several assumptions on it, which guaranteed the properties of
the discretization. The scheme was constructed on a so called ”admissible mesh”.

In [21] the mixed finite element finite volume approach was suggested. This approach
was considered before in [13, 14, 15, 20, 36] with some changes. The weak formulation
there was split into two terms which were discretized separately. The weighting func-
tion λ(·) appeared naturally into approximated problem. Holding some assumptions on
λ(·) allowed to refer to [10] for the main properties of the discretization. The weakly
acute triangulation (that is, no angle is greater than π/2) was used as the basic domain
decomposition.

Let us introduce the following notation. Let P = {pi, i = 1, . . . , N} be the set of
vertices of the triangulation Th. A dual domain associated with pi is defined by

Di :=
⋃

T∩pi 6=∅

{p ∈ T : |pip| < |ppj| for all vertices pj ∈ T}, (4.46)

where | · | is the length of a line segment. The dual domain decomposition of Ωh is then
given by

Dh = {Di}Ni=1.

58



4.4 Convection-Diffusion equation

One should note that T ∈ Th is a closed set, while Di is open for pi /∈ Γ and neither open
nor closed for pi ∈ Γ. We introduce an index set

Λi = {j 6= i : ∃T ∈ Th such that pi, pj ∈ T}.

The intersection of Di and Dj, j ∈ Λi is a face of Di denoted by Γij, which is, according
to mesh construction, orthogonal to a line segment pipj. Its length is denoted by dij :=
|Γij|. The distance between two neighbor mesh points is by hij = |pipj|, j ∈ Λi. In that
definition one should avoid the situation when |Γij| = 0. For that reason we redefine

Λi = {j 6= i : ∃T ∈ Th such that pi, pj ∈ T, |Γij| 6= 0}. (4.47)

The constructed secondary grid is related to the grids defined in [10] and [21]. Re-
defining Di := Di we obtain for a weakly acute triangulation a grid equal to one in [21].
For inner nodes pi such that pi /∈ Γh the all assumptions of an ”admissible mesh” defined
in [10] are satisfied. However grid points of the mesh Dh lie on the boundary Γh and
control volumes Di may be nonconvex due to the boundary. Both conditions come into
contradiction with the definition of an ”admissible mesh”. To show this difference we
present an ”admissible mesh” from [10] making its definition more similar to Dh

Gij := {p ∈ Ωh : |pip| < cij|ppj| for all vertices pi, pj, j ∈ Θj},

Mi :=
⋂
j∈Θi

Gij, i = 1, · · · , N, (4.48)

where cij = 1/cji > 0, Θi ⊆ {1, · · · , N} \ {i} are index sets, Ωh is a polygonal approxi-
mation of Ω. The sets of points P , indices Θi and constants cij, j ∈ Θi are chosen so that⋃N
i=1M i = Ω, Mi∩Mj = ∅, i 6= j, and for any open line segment σ ⊂ Γh∩∂Mi (boundary

edge) the line orthogonal to it and going trough pi crosses σ. One can show that P taken
as vertices of Delaunay triangulation, Θi = Λi and cij = 1 for all i = 1, · · · , N, j ∈ Λi

generates decomposition by pairwise disjoint polygons covering Ωh (conclusion from proof
of Lemma 4.4.5). An ”admissible mesh” is then defined as follows

M = {Mi}Ni=1.

We define Λi, Γij, dij and hij for M in the same manner as we did for Dh.
In the following subsections we discuss the possible discretizations of the convective-

diffusive type problem in classical (4.43) or weak (4.44) formulation.

4.4.1 Finite volume method

Here we discuss the finite volume discretization [10] applied to the problem (4.43) on an
”admissible mesh” M of a polygonal domain Ωh. Integrating both sides of the equation
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4. Discretization

and using Gauss’s theorem we obtain∫
Ωh

∇ · (∇u−αu) dx =
N∑
i=1

∫
Di

∇ · (∇u−αu) dx =
N∑
i=1

∫
∂Di

(∇u−αu) · n dγ

=
N∑
i=1

∑
j∈Λi

∫
Γij

(∇u−αu) · nij dγ +

∫
Γh

(∇u−αu) · n dγ,

where nij and n are unit normals to Γij and Γh pointing out of Di and Ωh, respectively.
The integral over the boundary Γh vanishes due to the boundary condition.

The idea of a finite volume method is to write a flux balance over ∂Di by approximating∫
Γij

(∇u−αu) · nij dγ.

In [10] several known numerical fluxes were used as an approximation of surface integrals,
namely centered, upwind and Scharfetter-Gummel fluxes. These fluxes were generalized
using a generic function B(·). The general approximation in [10] can be written as follows∑

j∈Λi

∫
Γij

(∇u−αu) · nij dγ ≈
dij
hij

(B(−Nijhij)u(pi)−B(Nijhij)u(pj)) ,

where Nij defined by

Nij := − 1

dij

∫
Γij

α · nij dγ (4.49)

denotes the flux of α through Γij and the function B(·) must satisfy the following condi-
tions in order to prove important properties of the scheme.

B is Lipschitz-continuous on R, (B1)

B(0) = 1 and B(s) > 0 for all s ∈ R, (B2)

B(s)−B(−s) = −s for all s ∈ R. (B3)

Since the balance of fluxes holds for each control volume independently, we obtain a
system of linear equations. The solution space in that case is given by a piecewise constant
function

Zh = {g(x) : g(x) ≡ const, x ∈ Di}.
Defining by ui the value of uh on Di the finite volume discretization of the problem (4.43)
is given by

Find a piecewise constant function uh ∈ Zh such that∑
j∈Λi

dij
hij

(B(−Nijhij)ui −B(Nijhij)uj) = fi, i = 1, · · · , N, (4.50)
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4.4 Convection-Diffusion equation

where the discrete right hand side fi =
∫
Di
f dx. Writing a one parameter family of

problems (3.30) in classical formulation we have

−∆u+∇ · (αu) + γu = f in Ω,

(∇u−αu) · n = 0 on Γ.
(4.51)

The problem (4.51) is discretized like (4.50) adding the term γ|Di|ui on the left hand side.
We obtain

Find a piecewise constant function uh ∈ Zh such that∑
j∈Λi

dij
hij

(B(−Nijhij)ui −B(Nijhij)uj) + γ|Di|ui = fi, i = 1, · · · , N. (4.52)

The properties of this discretization proven in [10] can be summarized in a theorem

Theorem 4.4.1 (composition of Theorem 2.5, 2.6 [10]). Let M be an ”admissible mesh”
of Ωh. For B(·) satisfying (B1)-(B3) the finite volume discretizations (4.50) and (4.52)
have the following properties

(i) Problem (4.52) has a unique solution for γ > 0.

(ii) Problem (4.50) with f ≡ 0 has a one dimensional solution space spanned by ûh ∈ Zh
such that ûh(pi) > 0 for all i = 1, · · · , N .

(iii) Problem (4.50) has a unique solution uh ∈ Zh satisfying
∫

Ωh
uh = 0 only in case

N∑
i=1

fi = 0.

In addition in [10] the convergence results were presented, showing that

uh → u as h→ 0

for u and uh being chosen as

• Solutions of the continuous (4.51) and the discrete (4.52) problems, respectively.

• Two unique elements with L2 norms equal to 1 in kernels of problems (4.43)
and (4.50), respectively.

• Two unique solutions with L2 norms equal to 0 of problems (4.43) and (4.50) with
〈f, 1〉 = 0, respectively.

In all these results discrete Sobolev inequality was proven

‖u‖0,q ≤ C(|u|1,M + ‖u‖0,2) (4.53)
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with q < +∞ and constant C = C(Ωh, ζ, q). The norm | · |1,M denotes the discrete
H1-seminorm given by

|u|1,M =

(
1

2

N∑
i=1

∑
j∈Λi

dij
hij

(ui − uj)2

)
.

The important assumption for the proof of discrete Sobolev inequalities is that there exists
a constant ζ such that

d(pi, σ) ≥ ζ|σ| ∀σ ⊂ ∂Di, (4.54)

where σ denotes any edge of ∂Di, d(pi, σ) a distance from the point pi to the edge σ. One
can notice that (4.54) cannot be satisfied for Dh, since this mesh allows points pi to lie
on the boundary Γh, which gives d(pi, σ) = 0 for σ ⊂ ∂Di ∩Ωh and contradicts to (4.54).

4.4.2 Mixed approach on a weakly acute triangulation

In this subsection we discuss the discretization from [21]. We denote by Th a weakly acute
triangulation, i.e. each angle of any triangle is less or equal to π/2. The weak formulation
is split into two terms which are discretized by two different methods. The diffusive term
(∇u,∇w) is discretized by standard Galerkin with P1 finite elements on a triangulation
Th. The convective term (αu,∇w) is approximated by a finite volume method on a dual
(secondary) grid Dh defined at the beginning of this section.

We introduce the discrete problem corresponding to the weak formulation of the
convection-diffusion problem (4.44)

Find uh ∈ Wh such that

(∇uh,∇wh) + bh(uh, wh) = 〈f, wh〉 for all wh ∈ Wh, (4.55)

where on the left hand side stand discretizations of diffusive and convective terms, respec-
tively. A finite element space is defined by

Wh := {wh ∈ C0(Ωh) : wh
∣∣
T
∈ P1}. (4.56)

Expressing uh via basis of Wh we obtain by a direct computation

(∇uh,∇ϕi) = −
∑
j∈Λi

dij
hij

(uj − ui). (4.57)

The discretization of a convective term is started like in [36] with the identity

(αu,∇w) ≡ (∇ · (αw), u)− (∇ ·α, uv). (4.58)

We define the characteristic function of the dual domain Di

χi(p) =

{
1, p ∈ Di,

0, p /∈ Di
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4.4 Convection-Diffusion equation

and the lumping operator lh

lhw :=
N∑
i=1

w(pi)χi. (4.59)

Applying the lumping operator lh and Gauss’s theorem to (4.58) we obtain

(αu,∇w) ≈ (∇ · (αw), lhu)− (∇ ·α, lh(uw))

=
N∑
i=1

∫
Di

[∇ · (αw)u(pi)−∇ ·αu(pi)w(pi)]

=
N∑
i=1

∑
j∈Λi

∫
Γij

[αwu(pi)−αu(pi)w(pi)] · nijdγ,

where nij denotes the unit normal to Γij pointing out of the dual domain Di. We approx-
imate w in each integral over Γij using an upwind parameter λij

w ≈ λijw(pi) + (1− λij)w(pj).

It leads us to

(αu,∇w) ≈ −
N∑
i=1

∑
j∈Λi

dijNiju(pi)(1− λij) [w(pj)− w(pi)]

=
N∑
i=1

∑
j∈Λi

dijNij(1− λij)u(pi)w(pi)−
N∑
k=1

∑
l∈Λk

dklNkl(1− λkl)u(pk)w(pl)

=
N∑
i=1

∑
j∈Λi

dijNij(1− λij)u(pi)w(pi) +
N∑
l=1

∑
k∈Λl

dlkNlkλlku(pk)w(pl)

=
N∑
i=1

∑
j∈Λi

dijNijw(pi) [(1− λij)u(pi) + λiju(pj)] ,

where Nij is the flux across Γij defined by (4.49). Taking u = uh, w = wh and expressing
them via the basis of Wh we obtain

(αuh,∇ϕi) ≈
∑
j∈Λi

dijNij [(1− λij)ui + λijuj] . (4.60)

Summing up the discretization of two terms we end up with the discrete problem

Find uh ∈ Wh such that∑
j∈Λi

dij
hij

([1−Nijhij(1− λij)]ui + [1 +Nijhijλij]uj) = fi, i = 1, · · · , N, (4.61)
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where fi =
∫
Di
f dx, Wh is defined by (4.56). We can also write (4.61) as a system of

linear equations Auh = f , where matrix entries aij are given by

aij =



∑
k∈Λi

dik
hik

(
1−Nikhik[1− λij]

)
j = i,

−dij
hij

(
1 +Nijhijλij

)
j ∈ Λi,

0 otherwise.

(4.62)

In [21] the upwind parameter λ was given by λij = Φ(Nijhij) with Φ(·) being a weighting
function controlling the amount of upwinding and satisfying

Φ(t) = 1− Φ(−t) ∀t > 0 and 0 ≤ Φ(t) ≤ 1 ∀t ∈ R, (H1)

t

[
Φ(t)− 1

2

]
≥ 0 ∀t ∈ R, (H2)

Ψ(t) := tΦ(t) is Lipschitz continuous on R, (H3)

Ψ(t) > 1− 1

t
for t > 0 and Ψ(t) < −1

t
for t < 0. (H4)

It was also shown in [21] that defining B(t) = 1 + tΦ(t) and making simple transforma-
tion, the discretization (4.61) on a dual grid Dh of a weakly acute triangulation becomes
identical to (4.50) on an ”admissible mesh” M. In addition assumptions (B1)-(B3) on
B(·) are equivalent to (H1), (H3), (H4) on Φ(·). That closeness allows to prove the exis-
tence and uniqueness of a solution of the discrete problem by just referring to [10]. The
assumption (H2) allows to transfer coercivity results from the continuous problem to the
discrete one, see [21] for more details.

The most important results listed in [21] can be summarized as follows

Theorem 4.4.2. Let the weighting function Φ(·) satisfy the assumptions (H1)-(H4) then
the following holds

(i) For α such that α · n ≤ 0 on ∂Ω, divα ≥ 0 in Ω, and sufficiently small mesh size
h the bilinear form ah(uh, vh) := (∇uh,∇vh) + bh(uh, vh) is coercive on Wh.

(ii) The kernel of the matrix A defined by (4.62) is one-dimensional and is spanned by
a vector ûh such that either (ûh)i > 0 or (ûh)i < 0 for all i.

(iii) The nonhomogeneous problem (4.61) has a unique solution uh ∈ Wh with
∫

Ωh
uh = 0

if and only if
∑N

i=1 fi = 0.

Part (ii) may be interpreted like the problem (4.61) with f ≡ 0 has a solution unique
up to a multiplicative constant.

As it was mentioned before, the convergence analysis in [10] uses discrete Sobolev
inequalities (4.53), whose proof cannot be followed directly for the mesh Dh. Moreover,
the order of convergence was not estimated there. The different approach was used in [21]
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4.4 Convection-Diffusion equation

which also provides the convergence rate. At first it was shown that the discrete inf-sup
constant is uniformly bounded from below

βh := inf
u∈W̃h

sup
w∈W̃h

ah(uh, wh)

‖uh‖1‖wh‖1

≥ β0 > 0

for all h small enough. The space W̃h is space Wh (4.56) with incorporated integral
condition (4.45)

W̃h = {wh ∈ Wh :

∫
Ωh

whdx = 0}.

Using the bound of the inf-sup constant the error estimate was proven

‖u− uh‖1 ≤ Ch(‖u‖2 + ‖f‖0). (4.63)

4.4.3 Mixed approach on a Delaunay triangulation

In this section we want to extend the results from [21] to a more flexible Delaunay trian-
gulation. We start with definitions of Delaunay triangulation and Voronoi polygon and
propose a Voronoi diagram as the dual domain decomposition to Delaunay triangulation.

Definition 4.4.3 (Definition from [11]). Let P be a set of points in the plane. A trian-
gulation T is Delaunay triangulation of P if for each edge σ of T there exists a circle C
with the following properties:

(1) The endpoints of edge σ are on the boundary of C.

(2) No other vertex of P is in the interior of C.

In other words it can be described as an empty circumcircle property, which is well
explained in [40]: ”The circumcircle of a triangle is the unique circle that passes through
its three vertices. The Delaunay triangulation of a set of vertices is the triangulation
(usually, but not always, unique) in which every triangle has an empty circumcircle –
meaning that the circle encloses no vertex of the triangulation”. We denote the Delaunay
triangulation of Ωh as TD.

The definition of a planar ordinary Voronoi polygon is given as follows

Definition 4.4.4 (Definition V2 in [28]). Let P = {p1, · · · , pn} ⊂ R2, where 2 < n <∞
and pi 6= pj for i 6= j. We call the region given by

D(pi) = {p : ‖ppi‖ < ‖ppj‖ for all j 6= i}

the planar ordinary Voronoi polygon associated with pi (or the Voronoi polygon of pi),
and the set given by

D̃h = {D(p1), · · · , D(pn)}

the planar ordinary Voronoi diagram generated by P (or the Voronoi diagram of P ).
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4. Discretization

Here and further we name a planar ordinary Voronoi polygon simply Voronoi polygon
for simplicity. Every Voronoi polygon can be defined as an intersection of half-planes.
From this immediately follows that every Voronoi polygon is a convex set up to the
boundary of a discretized domain.

We propose the Voronoi diagram of the polygonal domain Ωh, not necessary convex, as
a domain decomposition. Let us denote such a decomposition as D̃h. It can be constructed
as a dual mesh to the Delaunay triangulation. The Delaunay triangulation in its turn
can be made automatically by well known implementation Triangle [39]. One can notice
that a dual domain decomposition Dh of a weakly acute triangulation is a special case of
Voronoi diagram D̃h constructed on vertices of Delaunay triangulation.

The vertices of Voronoi polygons are circumcenters of Delaunay triangles. In general
case triangles satisfying the Delaunay condition are not acute, so the circumcenter may
not be located inside the triangle itself. It can provide some problems on the boundary,
but Triangle [39] can construct a triangulation such that circumcenters of all triangles lie
inside triangulation. We further assume that this property holds for TD.

We repeat the discretization steps (4.57) and (4.60) to show that the scheme from [21]
can be applied on a more general Delaunay triangulation and start with some useful
notation. We define with indices i, j, k three vertices pi, pj, pk of a triangle T . Angles,
corresponding to these vertices of triangle, are denoted by αi, αj, αk, respectively. The
edge of between two vertices pi and pj is pipj with length hij = |pipj|. Moreover, we
denote the circumcenter of a triangle T by pc, and the center of edge pipj by pm.

The first term of the discrete form ah(·, ·) is derived directly

(∇uh,∇ϕi) =
∑

T∈TD : pi∈T

(∇uh,∇ϕi)T

=
∑

T∈TD : pi∈T

(
(uj − ui) (∇ϕj,∇ϕi)T + (uk − ui) (∇ϕk,∇ϕi)T

)
.

(4.64)

One can show by simple computations that

( ̂∇ϕi,∇ϕj)
∣∣
T

= π − αk.

Using representation |∇ϕi| = hjk/2|T | we come to

(∇ϕi,∇ϕj)T =
hikhjk
4|T |

cos( ̂∇ϕi,∇ϕj)
∣∣
T

=
hikhjk
4|T |

cosαk.

Applying formula for area of triangle |T | = 1
2
|pipk||pjpk| sinαk we end up with

(∇ϕi,∇ϕj)T = −1

2
cotαk. (4.65)

The second scalar product in (4.64) (∇ϕk,∇ϕi)T is evaluated in the same way. This
formula is a 2D special case of a more general one listed in [49]. Vector ∇ϕi is directed
along the height of the triangle from side to vertex. Using simple geometry one can obtain

cotαk = 2
dk
hij
. (4.66)
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4.4 Convection-Diffusion equation

Here we used dk related to the length of a mid perpendicular to a circumcenter pcpm

dk :=

{
|pcpm|, αk ≤ π/2,

−|pcpm|, αk > π/2.
(4.67)

Let us define index sets corresponding to each boundary component Γij

Iij = Iji := {k : pk ∈ P, k 6= i, j, ∃T ∈ TD such that pi, pj, pk ∈ T},

which contains one index in case pipj ⊂ Γh and two indices otherwise.
Substituting the evaluation of scalar products (4.65)–(4.67) into (4.64) we obtain

(∇uh,∇ϕi) = −
∑

T∈TD : pi∈T

(
(uj − ui)

dk
hij

+ (uk − ui)
dj
hik

)

= −
∑
j∈Λi

∑
k∈Iij

dk
hij

(uj − ui) = −
∑
j∈Λi

d̃ij
hij

(uj − ui) ,
(4.68)

where Λi is defined by (4.47) and d̃ij is given by

d̃ij :=

{
dk1 + dk2 , k1, k2 ∈ Iij, k1 6= k2,

dk, k ∈ Iij, |pipj| ⊂ Γh
(4.69)

with dk defined by (4.67). It was proven in [49] that such a discretization on Delaunay

triangulation satisfies the maximum principle by showing that d̃ij ≥ 0. However, in order

to refer to the scheme (4.61) from [21] one should show in addition that d̃ij = dij = |Γij|
for all i, j.

Lemma 4.4.5. For a Delaunay triangulation TD of the domain Ωh and piecewise lin-
ear basis functions ϕi, i = 1, N of Wh (4.56) the discretization of the diffusive term

(∇uh,∇ϕi) (4.68) is equivalent to (4.57) on a weakly acute triangulation, i.e. d̃ij = |Γij|.

Proof. At first we distinguish two cases, where pipj is a boundary edge and an inner,
respectively.

1) Assume pipj is a boundary edge. Then according to (4.69) d̃ij = dk. As we assumed
before, the circumcenter pc lies within the triangulation TD, which implies αk ≤ pi/2.

And as a consequence we have by (4.67) d̃ij = |pmpc| = |Γij|.
2) Let pipj be an inner edge, i.e. there exist T1, T2 ∈ TD such that T1 ∩ T2 = Γij. We

choose k1, k2 ∈ Iij such that pk1 ∈ T1, pk2 ∈ T2. There are three possible cases

• dk1 ≥ 0 and dk2 ≥ 0;

• dk1 ≤ 0 and dk2 < 0;

• dk1 · dk2 < 0.
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4. Discretization

In case dk1 , dk2 ≥ 0 both triangles are weakly acute, which immediately implies d̃ij = |Γij|.
The case dk1 ≤ 0 and dk2 < 0 cannot occur since it implies the circumcircle of T1 containing
pk2 , which comes into contradiction with the Definition 4.4.3 of a Delaunay triangulation.
It remains to prove the statement for dk1 · dk2 < 0. Without loss of generality we consider
dk1 > 0 and dk2 < 0. It means that both vertices pk1 , pk2 lie on the same side of mid-
perpendicular of the edge pipj. According to Definition 4.4.3 there is no point in P which
is inside of a circumcircle of any triangle T ∈ TD. One can conclude that

|pk1pc2| < |pk1pc1|.

Finally, using (4.69) and (4.67) one can show

d̃ij = dk1 + dk2 = |pmpc1| − |pmpc2 | = |pk1pc1 | − |pk1pc2| = |pc1pc2| = |Γij|,

which completes the proof. �

The discretization of the convective term bh(·, ·) directly repeats the derivation of (4.60).
The only difference for TD is that Γij and pipj may not cross each other, which neverthe-
less allows to apply the lumping operator (4.59). The final discretization has exactly the
same form as (4.61)

Find uh ∈ Wh such that∑
j∈Λi

dij
hij

([1−Nijhij(1− λij)]ui + [1 +Nijhijλij]uj) = fi, i = 1, · · · , N. (4.70)

One should note, that there is a difference in construction of dij between these two meth-
ods, that comes from different triangulations. But due to equivalent definitions, the
properties can also be transfered, including solvability result in Theorem 4.4.2 and the
error estimate (4.63).

4.4.4 Implementation notes

The discretization of the problem (4.70) in space Wh leads to a system of linear equations

Auh = 0, (4.71)

with matrix A = (aij)ij defined by (4.62). The right hand side can be written as f = (0)i.
According to Theorem 4.4.2 matrix A has a one-dimensional kernel, and solution of (4.71)
exists and is unique up to a multiplicative constant. In order to have it unique we fix the
solution ûh at an arbitrary point pk. It is done by changing the corresponding row of the
system

ãkj =

{
0, k 6= j,

1, k = j
for all j,

f̃k = 1.
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4.5 Solution strategy

We want to show that k can be chosen arbitrary, i.e. by deleting any equation in (4.70)
we obtain a linear independent system. We prove this statement for matrix formula-
tion (4.71). Let us assume that the j-th row is deleted and the rest of the system is
linearly dependent. Then there exists a vector λ 6= 0, which has zero on j-th position,
such that Aλ = 0. On the other hand, the kernel of A is one-dimensional and spanned by
a strictly positive vector. Hence, λ ≡ 0 that leads to a contradiction. This proves that
every n − 1 rows of matrix A are linearly independent. Moreover, adding an arbitrary
non negative and non trivial vector a to a system of n− 1 rows of matrix A, one obtains
a linearly independent system, since such a vector a is not orthogonal to the kernel of A.

One should note that such a procedure does not provide a solution satisfying the mass
conservation condition (4.45). So we have to do one more step. We find the normalization

constant for the solution of the modified system Ãuh = f̃

CN =
1

Ωh

∫
Ωh

uh dx.

Then the final solution is given then by ũh = uh CN . The closer CN is to 1, the better
computational accuracy we have. Therefore, one should choose a point at which the value
of the normalized solution ũh is close to 1. To find the index of this point, precomputation
of uh can be used.

4.5 Solution strategy

In this section we discuss the solution of the whole system (2.75), (2.76), which was
discretized above. The equations are partially coupled, but the discretization of each
equation is performed separately. Therefore, an additional technique is required. We
suggest iterative solving of equations by updating solutions on each step. We split the
system (2.75) into two subsystems. The first one consists of Young-Laplace and Laplace
equations, the second one of Navier-Stokes and convection-diffusion equations. This de-
coupling follows in a natural way from the structure of equations. One can perform
iterations between these pairs later. The iteration process starts with the pair of Young-
Laplace (2.75d) and Laplace (2.75a) equations, which describe the position of free surfaces
and the azimuthal velocity, respectively. Since the particle concentration is unknown, the
simplified version of the Young-Laplace equation (4.18) is used. The subsystem can be
illustrated as follows

yj+1
i (x∗) = (−1)i+1g(x∗, Φ̂j

i (x
∗)), x∗ ∈ [0, ζji ], i = 1, 2,

∆ωj+1 = 0 in Ωj+1.
(4.72)

Here, yji and ωj are sequences of solutions of the Young-Laplace and Laplace equations,
respectively. The discretizations of these equations are presented above in this chapter.
The equation is written in a continuous way and the boundary conditions as well as
conditions on the Young-Laplace equation for simplicity are omitted. The Young Laplace
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4. Discretization

equation is discretized by (4.26), the function Φ̂j
i is derived from (4.18) in the same way as

Φj
i given by (4.23). The Young-Laplace equation produces a grid of boundary nodes Ξj+1

i

from a given grid Ξj
i , i = 1, 2 and azimuthal velocity ωj. Afterwards, the grid Ξj+1 for the

Laplace equation is constructed by (4.4) and includes all the points of Ξj+1
i , i = 1, 2 and

points on the solid boundaries Γs, Γc. Once ωj+1 is obtained, the values of Φ̂j
i (·) can be

evaluated on the grid Ξj+1
i . We continue the iterations until the convergence is reached.

The initial guess is ω0 = 0, for which Φ̂0
i becomes an analytically given function, so that

the first grids Ξ0
i , i = 1, 2 can be constructed.

After a final step j∗, the domain Ω is determined by (4.27) using yj
∗

i , i = 1, 2. After
that Ω is approximated by a polygonal domain Ωh, which is then partitioned by the
Delaunay triangulation. We solve the second subsystem on a discrete domain Ωh defined
above.

At first, the Laplace equation is discretized one more time with P2 finite elements, the
finite element solution is used later in the discretization of the Navier-Stokes equation. The
coupled system of the Navier-Stokes (2.75b) and convection-diffusion (2.75c) equations is
linearized as follows(

vk · ∇
)
vk − div σ(vk, pk) = e1δω

2 +
δ

Frm
L (ξhs) c

k−1∇hs in Ω,

∇ · vk = 0 in Ω,

− 1

Pe
∇ ·
(
∇ck − ckξL (ξhs)∇hs

)
+ vk · ∇ck = 0 in Ω,

∫
Ω

ck dx = |Ω|.
(4.73)

Here vk and ck are sequential numerical solutions of the Navier-Stokes and convection-
diffusion equations, respectively. We omit for simplicity the boundary conditions (2.76b), (2.76c)
and linearization technique for the Navier-Stokes equation (4.37). The Navier-Stokes
equation is discretized using the P2/P1 Taylor-Hood finite elements, whereas the convection-
diffusion equation is solved with the mixed Finite Element–Finite Volume technique. We
continue iterations until the convergence is reached.

Later, the iteration process between two mentioned pairs can be performed with the
help of a solution of the convection-diffusion equation. This, however, involves additional
implementation challenges and is beyond the scope of the current work.
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Chapter 5

Numerical results

In this chapter we present numerical calculations for the mathematical model described
in previous chapters. We start with some model problems and compare results with ones
appeared in other researches.

All the calculations were made in in-house project MoonMD with some improvements.
MoonMD provides mesh construction by using well known algorithm Triangle [39, 40] and
a wide range of different finite element methods for Navier-Stokes and convection-diffusion
equations. As an extra we have added the following implementations

• Discretization of the Young-Laplace equation as an integral equation;

• Boundary element method for the Laplace equation;

• Slip boundary condition for the Navier-Stokes equation;

• Discretization of the convective term of the convection-diffusion equation with Finite
Volume Method;

• Algorithm for local mesh refinement.

5.1 Free surface computations

We start the solution process of the mathematical model (2.75) finding the numerical
solution of the coupled problem of the Young-Laplace equation and the Laplace equation
for azimuthal velocity (4.72). The solution technique was discussed in details in Sec-
tions 4.1, 4.2. Since the particle concentration is unknown it is considered to be uniform.
It leads us to a discretization of the simplified Young-Laplace equation (4.18)

yj+1
i,k = (−1)i+1g(xj+1

k , Φ̂j
i (x

j
k)), xj+1

k ∈ Θj+1
i , i = 1, 2,

Φ̂i(x
∗) := hs(0, yi(0))− Frm

x∗∫
0

ω2
i (x, yi(x))dx,

Pm = h(0, y2,0)− h(0, y1,0), U(y1(0), y2(0)) = U0,
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which corresponds to the problem in [31]. The sequences Θj
f,i (4.24) are generated by a

uniform fragmentation of [0, ζji ]

Θj
f,i := {xk = khi ∈ [0, ζji ]}k=N

k=0 , hi =
ζji
N
, i = 1, 2

with ζji denoted according to (4.25)

ζji =

√√√√( sin β

Φ̂j
i (ζ

j
i )

)2

+ cos2 β, i = 1, 2.

The discrete domain is then determined as follows

Ωh :=
{

(x, y) ∈ R2 : x > 0, x < xh(y),

y1(x) < y for x ∈ (0, ζ1), y < y2(x) for x ∈ (0, ζ2)
}
.

(5.1)

Here xh(y) is a polyline approximation of a right branch of hyperbola (2.26) between y1(ζ1)
and y2(ζ2), functions yi(x) are understood as polylines constructed from the discrete curves
(xk, yi,k), i = 1, 2, k = 0, N , index j is omitted for simplicity.

Choosing arbitrary mesh on Γjh,s, which is a straight line, and using the polygonal
boundary of Ωh we construct grid Ξ by (4.4) for boundary element method. After that we
solve the discrete problem for the Laplace equation (4.7) with coefficients (4.13), (4.14).

For the first step we should determine Φ̂0 which is taken for ω0 = 0 and can be also
interpreted as Frm → 0. The stopping criteria is

2∑
i=1

N∑
k=0

(xj+1
k − xjk)

2(yj+1
i,k − y

j
i,k)

2 < ε2,

were ε denotes the tolerance.
In Tables 5.1 and 5.2 one can see the number of iterations needed to obtain a solution

of the coupled system for zero (Pm = 0) and critical (Pm = Pm∗) pressure drops, respec-
tively. The remaining parameters are the domain area U = 5 and tolerance ε = 10−9. We
do not show examples for Frm > 0.5, because in this case a better initial guess is needed.

Points per component Frm = 0.1 Frm = 0.25 Frm = 0.5

5 13 31 87
10 13 27 60
25 13 27 57
50 13 27 58
100 14 27 59

Table 5.1: Number of iterations between Young-Laplace and Laplace equations, Pm= 0.

As one can see, the number of points per component has almost no influence on the
number of iterations. However, the more points on the boundary, the better interpolation
we can achieve. So we choose 50 points per boundary component for further computations.
The obtained free surface shapes are in good agreement with the results presented in [31].
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Points per component Frm = 0.1 Frm = 0.25 Frm = 0.5

5 19 47 152
10 19 37 65
25 19 36 63
50 19 37 61
100 19 37 57

Table 5.2: Number of iterations between Young-Laplace and Laplace equations, Pm=Pm∗.

5.2 Problem for azimuthal velocity

We present here computations for the azimuthal velocity obtained as a solution of the
Laplace equation (2.75a)

∆ω = 0 (5.2)

with corresponding boundary conditions (2.76a). On Figure 5.1 the azimuthal velocity
for different geometries, i.e. different Froude numbers Frm, is presented. These solutions
are obtained by the Finite Element method and used for later calculus in Navier-Stokes
equation.

Comparing results with ones presented in [31], which were calculated by the Boundary
Element method, one can see that they are in a good agreement.

5.3 Navier-Stokes model problem

In that example we ignore the coupling between the Navier-Stokes and convection-diffusion
equation (4.73) as it was done in [31]. The Navier-Stokes equation (2.75b) then is written
as follows

(v · ∇) v − div σ(v, p) = exδω
2,

∇ · v = 0
in Ω. (5.3)

In [31] the Navier-Stokes equation was solved in vorticity–stream function formulation.
We repeat the tests for velocity–pressure formulation using the same parameters and
compare the results. On Figures 5.2, 5.3 one can see the representation of secondary
flow as the main point of interest. Comparing the numerical tests we conclude that the
structure of the secondary flow as well as its magnitude match the results in [31].
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(a) (b) (c)

(d) (e) (f)

Figure 5.1: Isolines of the azimuthal velocity for zero (a-c) and critical (d-f) pressure
drops. Frm = 0.1; 0.25; 1, Re = 63.2456; 100; 200, from left to right.

5.4 Convection-Diffusion model problems

We start with simple tests for the general convective-diffusive type problem (3.25) with
zero right hand side

−∇ · (∇c−αc) = 0 in Ω,

(∇c−αc) · n = 0 on Γ.
(5.4)

The homogeneous problem means we compute the kernel ĉ of the associated operator with∫
Ωh
ĉ dx/|Ωh| = 1. The problems with known analytical solutions are chosen, in order to

74



5.4 Convection-Diffusion model problems

Figure 5.2: Secondary flow for no pressure drop. Frm = 0.1; 0.25; 1, Re = 63.2456; 100; 200,
from left to right.

Figure 5.3: Secondary flow for critical pressure drop. Frm = 0.1; 0.25; 1, Re =
63.2456; 100; 200, from left to right.

estimate convergence rates. We test discretizations by a mixed Finite Element–Finite
Volume technique on a weakly acute triangulation (4.61) and on Delaunay triangula-
tion (4.70).

5.4.1 Academic test problems

We repeat the tests cases 1 and 2 from [21] on weakly acute and Delaunay triangulations.
The problem is considered in a unit square domain Ω = (0, 1) × (0, 1). We denote the
decomposition of the domain Ω by a weakly acute triangulation as Ωh,a and by Delaunay

75



5. Numerical results

triangulation as Ωh,D. The discrete domain Ωh,a on level 0 consists of two triangles. Next
level meshes are constructed by sequential refinement of each triangle into four ones of
equal area. The mesh Ωh,D is constructed by the Delaunay triangulation of the domain
Ω for a given set of the boundary points. Since we want these meshes to be as similar
as possible, we define ∂Ωh,D := ∂Ωh,a. In order to have the similar number of degrees
of freedom, the constraint on the maximum triangle area was taken as 3

4
h2, where h is a

distance between two neighboring boundary nodes (mesh size of ∂Ωh,D).
On Figures 5.4 one can see discrete domains Ωh,a and Ωh,D for different levels, respec-

tively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.4: Meshes on level 0 to 3 from left to right on Ωh,a (a-d) and Ωh,D (e-h)

In Table 5.3 one can see comparison of the meshes on different levels. In most cases
Ωh,D has a slightly larger number of DOFs and cells than Ωh,a, in some cases the numbers
for both meshes are equal. In the following examples we provide the errors in L2 and H1

norms as well as minimum and maximum values.

Test case 1. The first example takes a strong but constant convection field

α = ∇Ψ(x, y)T = (40, 0)T , Ψ(x, y) = 40x,

which does not satisfy the coercivity condition (3.29). The scaled analytical solution is
given by

c(x, y) =
40

1− exp(−40)
exp(−40(1− x)).

In Table 5.4 the minimum and maximum values of discrete solutions are given. Like
in [21] we consider also a numerical solution obtained by a standard Galerkin Finite El-
ement method. One can see that this method provide huge oscillations of solution on
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5.4 Convection-Diffusion model problems

Ωh,a Ωh,D

level DOFs cells DOFs cells

0 4 2 4 2
1 9 8 9 8
2 25 32 26 34
3 81 128 81 128
4 289 512 293 520
5 1089 2048 1131 2132
6 4225 8192 4404 8550
7 16641 32768 17411 34308
8 66049 131072 69727 138428
9 263169 524288 277522 552994
10 1050625 2097152 1109514 2214930

Table 5.3: Number of degrees of freedom and triangles of Ωh,a and Ωh,D on different levels.

coarser meshes, while the mixed Finite Element–Finite Volume discretization provides
positive values for the weakly acute and Delaunay triangulations on all mesh levels. The
used upwind function is Scharfetter-Gummel. The errors of the discrete solutions are
presented on Figure 5.5.
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Figure 5.5: Errors for test case 1. On Ωh,a - green triangles, on Ωh,D - red circles.

Test case 2. The second example corresponds to a nonconstant convection field

α = ∇Ψ(x, y)T , Ψ(x, y) = log(1 + x+ y − 2xy).

One can show that ∇ · α < 0 and α · n changes sign along Γ, i.e. the coercivity condi-
tions (3.29) are not satisfied. The scaled solution is given by

c(x, y) =
2

3
(1 + x+ y − 2xy).

The errors in H1 and L2 norms are presented on Figure 5.6.
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5. Numerical results

Minimum value Maximum value
level Ωh,a Ωh,D Ωh,a Ωh,a Ωh,D Ωh,a

FE–FV FE–FV Galerkin FE–FV FE–FV Galerkin

2 3.39837e-17 3.44112e-17 -68.2520 7.99927 8.0999 96.6648
3 6.70638e-17 6.43539e-17 -33.1906 15.7858 15.1479 62.2907
4 1.15322e-16 1.16186e-16 -9.77680 27.1451 27.3484 49.9365
5 1.50793e-16 1.51329e-16 -5.28308e-17 35.4944 35.6206 44.1083
6 1.64610e-16 1.64407e-16 2.99895e-17 38.7468 38.6991 41.5351
7 1.68565e-16 1.68534e-16 1.13334e-16 39.6776 39.6705 40.5251
8 1.69589e-16 1.69594e-16 1.53708e-16 39.9188 39.9199 40.1679
9 1.69848e-16 1.69850e-16 1.65706e-16 39.9797 39.9803 40.0511
10 1.69913e-16 1.69913e-16 1.68859e-16 39.9949 39.9951 40.0151

Table 5.4: Test case 1. Minimum and maximum values of the discrete solutions for
different meshes and methods.
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Figure 5.6: Errors for test case 2. On Ωh,a - green triangles, on Ωh,D - red circles.

Conclusions. The both examples show that more general Delaunay triangulation
does not decrease the accuracy of numerical solution. In both cases the errors for two
meshes show similar values and qualitative behavior. Convergence rates inH1 norm satisfy
the theoretical predictions. The errors in L2 norm have second order of convergence due
to the choice of Scharfetter-Gummel upwinding.

5.4.2 Seal-related problem

In this section we find a discrete solution of the Convection-Diffusion equation in the
domain, corresponding to the seal shape. We want to find two discrete solutions of
the problem with the same method but on different meshes. Using the fact that the
convection-diffusion equation (2.75c), (2.76c) has an exact solution in case of no flow [33],
we can measure the errors. The equation (5.4) with α given by (3.24) and zero velocity
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5.4 Convection-Diffusion model problems

field is as follows

∇ · (∇c− cξL (ξhs)∇hs) = 0 in Ω,

(∇c−αc) · n = 0 on Γ,
(5.5)

where L(·) denotes the Langevin function (2.30), ξ the dimensionless Langevin parame-
ter (2.31), hs is an analytical expression of the magnetic field strength (2.27).

The analytical solution has the following form [33]

c =
ϕ|Ω|∫
Ω
ϕ dx

(5.6)

with ϕ denoted by

ϕ(hs) = exp

 ξhs∫
0

L(γ) dγ

 =
sinh(ξhs)

ξhs
.

The exact solution (5.6) represents the concentration of magnetic particles in a fer-
rofluid seal in no flow case. One can expect a high pick at the region where hs reaches
its maximum, especially for high values of ξ. Knowing form of hs given by (2.27) and the
fact, that the domain Ω is bounded by two analytical curves, one can conclude that the
maximum is obtained at the point (1, 0) corresponding to the pick of the concentrator.

Figure 5.7: Examples of meshes with and without local mesh refinements.

The local mesh refinement can be used there in order to improve the numerical solution.
On Figure 5.7 one can see the example of the mesh with and without local mesh refinement.
Using the exact solution (5.6) we can also measure the errors. One can see these results
for two choices of ξ on Figure 5.8.
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Figure 5.8: Errors in L2 and H1 norms for different values of ξ, ξ = 10 (a,b), ξ = 50 (c,d)

5.5 Coupled NSE–CDE system

The system of Navier-Stokes (2.75b) and convection-diffusion equation (2.75c)

(v · ∇) v − div σ(v, p) = exδω
2 +

δ

Frm
cL(ξhs),

∇ · v = 0,

− 1

Pe
∇ ·
(
∇c− cξL(ξhs)∇hs

)
+ v · ∇c = 0

(5.7)

is solved iteratively, one equation after another. At this point we use calculations of free
surface providing the domain Ω, and azimuthal velocity ω, which were done in Sections 5.1
and 5.2, respectively. We use shapes for either zero or critical pressure drops.

For a better convergence of iterations the relaxation technique was used. Let us define
the solution operators N(v, c) and S(c) of the Navier-Stokes and convection-diffusion
equations, respectively. The choice of operators corresponds to some fixed constants, i.e.
Reynolds, Péclet, magnetic Froude number, and Langevin coefficient. Then one can use
relaxation in the following way

vi = N(ṽi−1, c̃i−1)

ṽi = β1vi + (1− β1)vi−1

ci = S(ṽi)

c̃i = β2ci + (1− β2)ci−1,

(5.8)

where β1, β2 ∈ (0, 1] are relaxation constants, vi and ci solutions on the i-th iteration
step, ṽi and c̃i relaxed solutions.

The initial choice of concentration and secondary flow is taken as follows. The particle
concentration is uniform (c0 = 1) and the secondary flow is zero (v0 = 0). The first
numerical tests have shown that provided iteration technique converges to a solution not
for all parameter values. To improve the convergence we use intermediate steps. It means
we change the parameter values in order to lower the coupling between equations. The
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5.5 Coupled NSE–CDE system

obtained solution is later used as an improved initial guess. In order to have a better
overview of convergence for different parameter values, all the presented results were
commuted separately, every time starting with the initial guess c0 = 1, v0 = 0.

5.5.1 Local mesh refinement

The local mesh refinement can increase the accuracy of the discrete solution in problematic
regions, providing generally a better solution. Local refinement is applied at regions which
were defined empirically. It happens that in these areas the secondary flow is especially
low and can miss the correct direction. Probably here lies the answer, why the more
accurate secondary flow helps to achieve a better precision of particle distribution.

On Figure 5.9 one can see the difference between regular mesh and mesh with local
refinement. The regions of refinement can be divided into three categories: the area near
concentrator, corners, central area on the shaft. Some of them are bounded with boxes
and marked with numbers 1, 2, 3, respectively.

(a) (b)

Figure 5.9: Mesh structure with (a) and without (b) local mesh refinement.

On Figure 5.10 solutions on the regular and refined meshes are presented. On Fig-
ures 5.11, 5.12, 5.13 one can see how the local mesh refinement improves the solution of
convection-diffusion equation locally. All solutions are presented with color scheme of a
solution on the refined mesh for a better view.

5.5.2 Coupled system for no pressure drop

We present typical solutions obtained for a wide parameter range in case of no pressure
drop. Zero pressure drop causes the domain Ω to be symmetric with respect to x-axis.
We choose the parameter values according to evaluations in Section 2.4. The Reynolds
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5. Numerical results

(a) (b)

Figure 5.10: Solutions on regular (a) and locally refined (b) meshes.

(a) (b) (c) (d)

Figure 5.11: Difference in computations of particle distribution, region 1. Regular mesh
(a–b) and locally refined (c–d).

number is fixed to 100 as an average of the given values. Langevin parameter ξ changes in
a small region, which is nevertheless enough for a significant influence on the solution of
the coupled system. The magnetic Froude number Frm is related to the domain shape and
varied in a given range, that is between 0.1 and 1. For values of Péclet number greater
than 109 we observe in some cases numerical instability. That is why the lower values of
the parameter are considered.

On Figure 5.14 one can compare the secondary flow and particle concentration com-
puted for the coupled system (5.7) with the solution of independent problems (5.3)
and (5.5). In Table 5.5 the maximum of particle concentration, as one of the most
important characteristics, for the coupled system is listed. Empty cells mean the coupled
solution was not obtained for that choice of constants.
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5.5 Coupled NSE–CDE system

(a) (b) (c) (d)

Figure 5.12: Difference in computations of particle distribution, region 2. Regular mesh
(a–b) and locally refined (c–d).

(a) (b) (c) (d)

Figure 5.13: Difference in computations of particle distribution, region 3. Regular mesh
(a–b) and locally refined (c–d).

Analyzing the results in the table, one can conclude that the coupled system converges
either for almost uniform particle concentration (right part, large Péclet number) or for
non disturbed particle concentration (left part, small Péclet number).

The secondary flow on Figure 5.14 is almost equivalent in structure and magnitude for
both the concentration independent Navier-Stokes equation (5.3) and the Navier-Stokes
equation in the coupled system (5.7). At the same time graphs for particle concentration
differ much more. On Figures 5.15 one can see difference of secondary flows for the
mentioned cases. We plot the magnitude |v| over the line ((0, 0); (1, 0)), which splits the
domain into two equal parts. One can observe on the figure that two secondary flows
differ only slightly in magnitude along this line. But in region approximately between 0.9
and 1, where the highest particle concentration is reached, secondary flow for the coupled
system is up to several orders lower than for concentration independent problem. It can
be expressed in the way that high particle concentration prevents fluid motion.

83



5. Numerical results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.14: Computations of secondary flow (a–h) and particle concentration (i–p) as
concentration independent (a–d), (i–l) and coupled (e–h), (m–p) problems. Re = 100, Pe
= 107, ξ = 6, Frm = 0.1; 0.25; 0.5; 1 from left to right. Zero pressure drop.
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Frm = 0.1
Pe = 105 Pe = 106 Pe = 107 Pe = 108 Pe = 109 Pe = 1010

ξ = 2 1.246 1.127 1.061 1.026 1.011 1.007
ξ = 6 – – 1.523 1.149 1.064 1.036
ξ = 10 – – – 1.312 1.117 –

Frm = 0.25
ξ = 2 1.227 1.122 1.060 1.027 1.012 1.009
ξ = 6 5.607 – 1.420 1.163 1.064 1.028
ξ = 10 – – – 1.309 1.127 1.054

Frm = 0.5
ξ = 2 1.305 1.137 1.067 1.031 1.013 1.032
ξ = 6 4.908 – 1.522 1.190 1.072 –
ξ = 10 16.80 – – 1.370 1.147 –

Frm = 1
ξ = 2 1.235 1.178 1.148 1.067 1.024 1.019
ξ = 6 3.881 2.482 1.867 – – 1.058
ξ = 10 13.39 – – – – 1.109

Table 5.5: The maximum of the concentration achieved for the coupled system, Re = 100,
no pressure drop (Pm = 0).

(a) (b) (c) (d)

Figure 5.15: Magnitude of the secondary flow for the coupled system and independent
from particle concentration measured over line ((0, 0); (1, 0)), Re = 100, Pe = 107, ξ = 6,
Frm = 0.1; 0.25; 0.5; 1 from left to right. Red dashed line - coupled system, blue dotted
line - independent problem.
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5.5.3 Coupled system for critical pressure drop

We solve the coupled system once more for different domain geometry, which is set by
critical pressure drop. We considered the same set of parameters. However, these results
are less interesting, since we have got almost uniform particle concentration even for
low Péclet numbers and almost not dependent on the magnetic Froude number. On
Figure 5.16 one can see that with changing Frm globally different secondary flows provide
very similar location of an area of high particle concentration together with the similar
magnitude.

We present the Figure 5.17 comparing the secondary flow for the coupled system and
concentration independent case. The difference in flows is much lower than in case of no
pressure drop, that is Figure 5.15. However, one can still observe the high difference in a
region of varying concentration. The values are calculated along the line from the origin
to the right-up corner.

5.5.4 Particle concentration on a free surface

One of our goals is to understand whether iterations between two subsystems (4.72)
and (4.73) are required. In Section 5.1 we solved (4.72) with simplified Young-Laplace
equation (4.18), since the particle concentration is unknown at that point. However, if
particle concentration is sufficiently uniform along the free surface, we can conclude that
iterations between subsystems are unnecessary and our solution is close to the solution of
the whole system (2.75). The following figures show that fluid motion makes the ferrofluid
on free surfaces much closer to uniform, comparing to the solution of velocity independent
convection-diffusion equation (5.5).

Either for critical or for zero pressure drop we draw the particle concentration along
the upper free surface. In case of zero pressure drop we do it because of symmetry, in
case of critical - because on the upper surface the particle distribution is less uniform. On
Figure 5.18 the typical distribution of magnetic particles on a free surface in case of no
fluid motion is presented. As one can see, for sufficiently high Langevin parameter ξ, i.e.
high magnetic field intensity, fluid becomes up to ten times more dilute, then uniform.

On Figure 5.19 pictures for the solutions of the coupled system (4.73) for different
values of magnetic Froude number and Langevin parameter are considered. One can see,
that graphs look very similar either for different pressure drops, or different parameter
values. The particles concentration becomes almost uniform except the small area near
the concentrator, which in its turn will hardly change the behavior of ferrofluid in case of
iterations between subsystems (4.72) and (4.73).

5.5.5 Different fluid volume

In this subsection we present the results obtained for different fluid volumes. We model
only the case of zero pressure drop, since we find it more interesting. All the previous
results were obtained for the volume U0 = 5. We consider two volumes 2 and 10 in
addition to have a better overview of the problem. The result of convergence along with
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5.16: Computations of secondary flow (a – h) and particle concentration (i – p) as
independent (a – d), (i – l) and coupled (e – h), (m – p) problems. Re = 100, Pe = 107,
ξ = 6, Frm = 0.1; 0.25; 0.5; 1 from left to right. Critical pressure drop.
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(a) (b) (c) (d)

Figure 5.17: Magnitude of the secondary flow for the coupled system and independent
from particle concentration measured over line from the origin to the right-up corner, Re
= 100, Pe = 107, ξ = 6, Frm = 0.1; 0.25; 0.5; 1 from left to right. Red dotted line - coupled
system, blue dashed line - independent problem.
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Figure 5.18: Distribution of magnetic particles along the upper free surface, no fluid
motion.

the final particle concentration are presented in Tables 5.7 and 5.8. The results for the
fluid volume U0 = 2 are calculated only for values of magnetic Froude number lower than
0.5, since for higher values our method becomes unstable. A better choice of the boundary
points for the Young-Laplace equation may help with this problem.

One can see in Table 5.6 that the maximum concentration of magnetic particles in a
non-disturbed state is directly dependent on the fluid volume. This effect has been also
observed in [33]. But with increasing of the Péclet number, i.e. the influence of a fluid
motion, the situation changes significantly. It is especially seen for the case U0 = 10. With
Péclet number greater than 106 the solution demonstrates lower particle concentration
together with incredible convergence comparing to case U0 = 5, Table 5.5.

U0 = 2 U0 = 5 U0 = 10
ξ = 2 1.31 1.44 1.55
ξ = 6 3.66 5.82 8.76
ξ = 10 9.36 19.2 35.5

Table 5.6: Approximate maximum of concentration for given parameters.
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(b) Symmetric, ξ = 6,
Pe = 107
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Figure 5.19: Distribution of magnetic particles along the upper free surface, solutions of
the coupled system (4.73).

Frm = 0.1
Pe = 105 Pe = 106 Pe = 107 Pe = 108 Pe = 109 Pe = 1010

ξ = 2 1.313 1.262 1.163 – – –
ξ = 6 – – – – – –
ξ = 10 – – – – – –

Frm = 0.25
ξ = 2 1.228 1.069 1.03 1.014 1.012 1.012
ξ = 6 3.698 – – 1.069 1.03 –
ξ = 10 9.515 – – 1.134 1.056 –

Table 5.7: Maximum of the concentration achieved for the coupled system, Re = 100,
U0 = 2.

The pictures showing the secondary flow for different Froude numbers are presented
on Figures 5.20 and 5.21.
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Figure 5.20: Secondary flow provided by the problem (5.3), Re = 100, U0 = 10, Frm =
0.1; 0.25; 0.5; 1 form left to right.

Figure 5.21: Secondary flow provided by the problem (5.3), Re = 100, U0 = 2, Frm =
0.1; 0.25 form left to right.
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Frm = 0.1
Pe = 105 Pe = 106 Pe = 107 Pe = 108 Pe = 109 Pe = 1010

ξ = 2 1.23 1.119 1.056 1.024 1.01 1.007
ξ = 6 – – 1.409 1.139 1.058 1.038
ξ = 10 – – – 1.273 1.107 –

Frm = 0.25
ξ = 2 1.2 1.106 1.052 1.024 1.019 1.019
ξ = 6 – – 1.331 1.14 1.051 1.021
ξ = 10 – – 1.826 1.269 1.105 1.039

Frm = 0.5
ξ = 2 1.201 1.106 1.052 1.024 1.025 1.028
ξ = 6 5.979 1.893 1.336 1.131 1.049 1.03
ξ = 10 – – 1.712 1.275 1.096 1.038

Frm = 1
ξ = 2 1.216 1.11 1.055 1.025 1.011 1.011
ξ = 6 5.342 1.87 1.333 1.132 1.052 1.02
ξ = 10 21.66 5.331 1.746 1.274 1.099 1.037

Table 5.8: Maximum of concentration achieved for the coupled system, Re = 100, U0 = 10.
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Chapter 6

Summary

In this thesis a mathematical model of the ferrofluid rotary seal is considered. This model
is based on the existing studies. While deriving one can make particular assumptions,
which essentially simplify the system of equations. However, the influence of these simpli-
fications reduces the model accuracy. Therefore, a more complex and, at the same time,
more general model may reveal better properties. We derive such a model and provide a
robust numerical discretization of it.

The constructed mathematical model consists of an integro-differential and three par-
tial differential equations, and is hard to handle. Each equations of the system was studied
separately. Simple discretization of the Young-Laplace equation followed previous stud-
ies. Discretization of the Laplace equation was done twice with Boundary Element and
Finite Element methods. The Boundary Element method is more convenient for incor-
poration with the Young-Laplace equation. However, the Finite Element discretization
was used for a better connection with the remaining numerical approximations. The
Navier-Stokes equation with slip boundary conditions was solved in a velocity-pressure
formulation. For the convection-diffusion equation a mixed Finite Element–Finite Vol-
ume method on a weakly acute triangulation was suggested. This mixed discretization
is related to an existing Finite Volume discretization, which allowed to prove the unique
solvability and other important properties of the scheme. Moreover, the stability of it
was shown. Further investigations allowed to extend this discretization to a more general
Delaunay triangulation with preserving its properties.

We did the validation of the discretizations, comparing our computations with ones
given in other studies. Due to complexity of the whole system we introduced the decou-
pling procedure. The system of equations was split into two subsystems, each of which
was solved iteratively. The main part of it is a nonlinear subsystem of the Navier-Stokes
and the convection-diffusion equations. Their interaction has not been considered up to
now in the related studies. Finally, we calculated the result of coupling of two effects of
fluid motion and particle concentration. The obtained results showed that this interaction
plays an important role and cannot be neglected.

In a future work we would like to improve the following aspects. Numerical calculations
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6. Summary

indicated a particular directions in which the further investigations can be done. In
particular, the parameter range of good convergence of the iterative scheme can be studied
in more details. The introduced iteration method can be improved, or a new one can be
suggested, in order to provide a better convergence. Another possible approach is the
derivation of a more complex mathematical model, which describes more physical effects.
It may add new equations, complicate the investigated equations, or even introduce a
time-dependent system.
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