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Abstract

This thesis is concerned with the statistical modeling of optimal maintenance actions
in repairable systems with either continuous or discrete lifetime distribution.
Five imperfect maintenance models are considered, that is, the impact of a preventive
maintenance (PM) action is not minimal (as bad as old) and not perfect (as good as
new) but lies in between these boundary cases. Two of the imperfect maintenance mod-
els examined, uses a periodic imperfect PM policy with failure type specific conditional
maintenance (CM) actions. In these models the underlying system has two failure types
whereby minor failures can only be removed through minimal repair and major fail-
ures can only be removed through replacement. Two further imperfect maintenance
models uses a sequential failure limit PM policy with imperfect CM and imperfect PM
actions. Moreover, an imperfect maintenance model with sequential PM policy and
minimal CM actions is investigated. This model takes into account that with increas-
ing age PM actions have to be done more often. Cost optimal maintenance policies
for some cost functions and different continuous and discrete lifetime distributions are
considered.



Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Modellierung optimaler Instandhal-
tungsmaßnahmen für reparierbare Systeme, die entweder eine stetige oder eine diskrete
Ausfallverteilung besitzen.
Insgesamt werden fünf unvollständige Reparaturmodelle betrachtet, bei denen die vor-
beugenden Instandhaltungen Reparaturgrade zwischen den beiden Extremen vollstän-
dige Erneuerung und minimale Reparatur zulassen. In zwei der betrachteten un-
vollständigen Reparaturmodellen wird eine periodische Instandhaltungsstrategie ver-
wendet und das zugrundeliegende System besitzt zwei unterschiedliche Typen von
Systemausfällen. Kleine Ausfälle können durch minimale Reparatur behoben wer-
den, wohingegen große Ausfälle nur durch eine Erneuerung behoben werden können.
Zwei weitere unvollständige Reparaturmodelle verwenden eine sequenzielle Ausfalllimit
Instandhaltungsstrategie mit unvollständigen ausfallbedingten und vorbeugenden In-
standhaltungen. Darüber hinaus wird ein weiteres Reparaturmodell betrachtet, bei
dem eine sequenzielle Instandhaltungsstrategie mit unvollständigen vorbeugenden und
minimalen ausfallbedingten Instandhaltungen zugrunde liegt. In diesem Modell wird
berücksichtigt, dass ein System mit fortschreitendem Alter häufiger instand gesetzt
werden muss.
Für die betrachteten unvollständigen Reparaturmodelle werden, unter Verwendung ver-
schiedener Kostenfunktionen und verschiedener stetiger und diskreter Lebensdauerver-
teilungen, kostenoptimale Instandhaltungsstrategien bestimmt und ausgewertet.
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1. Introduction

In our days we use a multitude of technical systems not only in industry but also in
our daily life. Especially for the systems used in production, transportation services
and communication services, reliability plays a key role because most people see reli-
ability as one of the most important quality characteristics. Maintenance actions can
help to improve the reliability of a system and therefore, in the past several decades a
multitude of maintenance models have been discussed in literature.
This research is concerned with the statistical modeling and optimization of imperfect
maintenance models for repairable deteriorating systems with continuous or discrete
lifetime distributions. The considered systems are assumed to be a unity in relation
to the emergence, the occurrence and the localization of failures as well as related to
the planing and the performing of maintenance actions [9]. When a failure occurs a
repairable system can be restored to an operating condition by some repair process.
Therefore, it is not necessary to replace the whole system and the failure intensity
of the system depends on the history of repairs. In general, there are two kinds of
maintenance actions. Preventive or planned maintenance actions and unplanned cor-
rective maintenance actions. Preventive maintenance (PM) occurs when the system is
operating and corrective maintenance (CM), also called repair, is carried out after a
failure of the system. The aim of CM actions is to retain the system in or restore it to
an acceptable operating condition [39].
In general, two steps are needed to build maintenance models. The first one has to
define the effect of PM and CM actions and the second one has to choose a PM policy,
which defines the link between PM and CM actions [17].
The modeling of the maintenance effect can be done, for example, through reduction
of failure intensity or virtual age (see for example Doyen and Gaudoin [16]). In this
thesis it is assumed that maintenance actions have an influence on the failure inten-
sity of the system in such a way that they adjust the virtual age of the system in a
Kijima type manner. Kijima [24] proposed that the state of the system just after a
maintenance action can be described by its virtual age, which is smaller or equal than
the real age of the system. Therefore, Kijima [24] constructed two virtual age models
depending on how the maintenance action affects the virtual age. In Kijima model I it
is assumed that a repair cannot remove the damage that incurred before the previous
repair action. In Kijima model II it is assumed that a repair action can remove the
whole damage accumulated up to the time of the repair action. This means that in
Kijima model II the repair actions can reset the virtual age of the system to a state
between as good as new and as bad as old. The two most common assumptions on
the influence of maintenance actions on the failure intensity of the system is minimal
repair or as bad as old and perfect repair or as good as new. After minimal repair the
failure intensity of the system is the same it had when it failed. Perfect repair means
the failure intensity of the system after repair is that of a new system [5]. Beichelt [10],
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1. Introduction

for example, contains different basic and sophisticated perfect maintenance models. In
reality the state of the system after maintenance will often not be as good as new and
not as bad as old, but something in between. In this case the maintenance action or
repair is called to be imperfect and these imperfect maintenance actions form the basis
of all maintenance models in this thesis. Imperfect maintenance is still a relative young
field of science in comparison to perfect maintenance. Doyen and Gaudoin [17], Pham
and Wang [39], Wang [47] or Pham and Wang [40] give an overview of different perfect
and imperfect maintenance models.
Regarding the selection of the PM policy there are plenty of choices. PM actions
can be, for instance, time-based like age-dependent, periodic or sequential, though the
age-dependent PM policy is the most popular one. Beside this, the PM actions can
also be condition-based and therefore occur at unscheduled times, for example, when
the failure intensity or reliability of a system reaches a predetermined level. A review
of possible maintenance policies is presented, for example, in Pham and Wang [39],
Wang [47] and Sarkar et al. [44]. The maintenance models discussed in this thesis, use
periodic, sequential and failure limit PM policies.
Another significant aspect of the models investigated in this thesis is the lifetime dis-
tribution of the underlying system. Most models in reliability theory use continuous
lifetime distributions, as is the case in three out of five maintenance models in this
research. This is appropriate because in reality most of the lifetimes are continuous.
But there are also several situations where discrete failure data arise. This is the case
if the life length of a system is measured in cycles and the number of cycles successfully
completed prior to failure is observed. The same holds if we have a multi-state system
(MSS) and the number of states prior to failure is observed. For these cases discrete
lifetime distributions are needed to model optimal maintenance actions.
MSS are an important area in modern reliability theory. They provide a flexible tool
for modeling engineering systems in real life. Therefore, two out of five models in this
thesis are concerned with the modeling of optimal maintenance in MSS with a fixed
number of states as described in Kahle [22]. Multi-state systems were first introduced in
Barlow and Wu [6] and El-Neveihi [18]. A historical overview of MSS and an overview
of ideas for MSS reliability theory can be found for example in Lisnianski and Levitin
[31]. A recent contribution on the subject is Lisnianski [30].
Besides the distinction of the used lifetime distributions in continuous and discrete ones,
another significant differentiator of the used lifetime distributions in this research is
the shape of the failure rate. The general quantitative shape of the failure rate consists
of three intervals. The first time interval just after going into operation consists of
early failures (infant mortality) with a decreasing failure rate. During the second stage
of usable life, systems will often fail at an approximately constant rate. During this
period, failures of the system are usually caused by external forces. Then the phase
of wear out failures starts and the failure rate will increase again. This type of failure
rate with all three aging stages is well known as the bathtub curve [9]. In this research,
some of the most commonly used distributions in survival analysis such as Rayleigh,
linear failure rate, Weibull and modified Weibull distribution are used to model the
time to the first failure. Besides these distributions that can have only constant, in-
creasing or decreasing failure rates, a reduced modified Weibull distribution introduced
by Almalki [1] which can also have a bathtub curved failure rate is used to model the
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time to the first failure.
The optimization of PM policies requires an optimization criterion. Possible optimality
criteria are, for example, maximum availability or limit on failure rate or minimum cost
rate. The latter represents the criterion applied in this thesis. To compute this cost
rate the mean costs per cycle are set in relation to the mean cycle length. Therefore,
the operational life of the system is disassembled in cycles, i.e. in relation to cost and
length statistically equivalent time periods.
This research analyzes five different imperfect maintenance models. Chapter 2 con-
tains general definitions that are required for modeling in further chapters. Further-
more, both some continuous and discrete lifetime distributions and some special cost
functions for maintenance actions are introduced. They form the basis for later calcu-
lations.
In what follows, five imperfect maintenance models that are divided in models with
continuous and models with discrete lifetime distributions are analyzed and cost opti-
mal maintenance strategies for several cost functions are computed.
The first model with continuous lifetime distribution is introduced in Chapter 3. This
model is based on the perfect maintenance model of Beichelt [7] that was the first
maintenance model with two different failure types. Analogously to Beichelt’s model
it is assumed that type 1 failures can only be removed by minimal repair and type 2
failures can only be removed through replacement. The model of Beichelt [7] is ex-
tended by imperfect PM actions that reduces the virtual age of the system. Hence, for
modeling the cost optimization problem a periodic imperfect PM policy with failure
type specific CM actions and imperfect PM actions is used.
The repairable system under consideration in Chapter 4 has also a continuous lifetime
distribution but only one failure type. A sequential failure limit PM policy is used to
model the cost optimization problem. The fundamental element of this model are both
imperfect CM and imperfect PM actions.
The last model with continuous lifetime distribution is examined in Chapter 5. Here
the model from Nakagawa [34] is extended with non-constant costs for PM actions.
The repairable system again has only one failure type and a sequential PM policy with
minimal repair as CM and imperfect PM is used. Therefore, this model takes into
account that with increasing time PM actions have to be done more often.
The second part of this thesis contains two imperfect maintenance models with discrete
lifetime distributions. The model in Chapter 6 is the discrete analogue of the model
from Chapter 3. Hence, the underlying system is a multi-state system with two failure
types. Here a periodic PM policy is used whereby CM actions are minimal or perfect
and PM actions are imperfect.
The last model of this thesis in Chapter 7 is the discrete version of the model from
Chapter 4. Therefore, the underlying repairable multi-state system has one failure type
and undergoes imperfect CM and imperfect PM. The PM policy in this chapter is a
sequential failure limit PM policy.
Finally, in Chapter 8 the conclusion summarizes the findings of this thesis and presents
the reasons of possible deviations between the optimal maintenance strategies of the
models with continuous lifetime distribution and the corresponding models with dis-
crete lifetime distribution. Further, the conclusion gives a short overview of areas for
further development and research.
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2. Basics

2.1. Basic Terminology

Consider a nonrepairable system, which means that there is no repair and the system is
discarded after its one and only failure. Let T be the lifetime of that system. Then T is a
positive random variable and F T (t) = P (T ≤ t) is the cumulative distribution function
(CDF) of T . Therefore, F T (t) is the probability that the system failure time is before
time t and F T (t) = 0 if t ≤ 0. Note that for all systems in this research it is assumed
that simultaneous failures cannot occur and therefore, it is assumed that F T (0) = 0. If
the derivative of the CDF exists, fT (t) = dF T (t)/dt is the probability density function
(PDF). The survival or reliability function of the system is the probability that the
system failure time is beyond time t ≥ 0. Thus, for the reliability function it holds
F̄ T (t) = 1−F T (t) = P (T > t). An important function in modeling the failure behavior,
that was even defined in the 60s of the last century in e.g. Barlow and Proschan [5], is
the hazard function, also called failure rate.

Definition 2.1 ([41, p. 8] Continuous Hazard Function/Failure Rate)
The hazard function or failure rate of the continuous random lifetime T is

hT (t) = lim
∆t→0

P (t ≤ T ≤ t+ ∆t|T ≥ t)

∆t
. (2.1)

Equation (2.1) can be rewritten as follows

hT (t) = lim
∆t→0

F T (t+ ∆t)− F T (t−)

∆t
· 1

F̄ T (t−)
=
fT (t)

F̄ T (t)
.1 (2.2)

The failure rate then has the following property

P (t < T ≤ t+ ∆t) = hT (t)∆t+ o(∆t).2 (2.3)

Thus, for ∆t being sufficiently small hT (t)∆t is approximately the probability that the
system fails in [t, t+ ∆t] if it has survived to the beginning of the interval [10].
Integration of equation (2.2) yields to the following result∫ t

0

hT (x)dx =

∫ t

0

fT (x)

F̄ T (x)
dx

y:=FT (x)
=

∫ FT (t)

0

1

1− y
dy = [− ln(1− y)]

FT (t)
0

= − ln(1− F T (t))

1Here FT (t−) = limx↗t F
T (x).

2It holds: g(x) is said to be o(x)⇔ limx→a

∣∣∣ g(x)x ∣∣∣ = 0 and a ∈ R ∪ {−∞,+∞}.
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⇔ F T (t) = 1− exp

(
−
∫ t

0

hT (x)dx

)
(2.4)

⇒ F̄ T (t) = exp

(
−
∫ t

0

hT (x)dx

)
. (2.5)

Definition 2.2 ([41, p. 11] Continuous Cumulative Hazard Function)
Let T be a continuous random lifetime. Then the quantity

HT (t) =

∫ t

0

hT (x)dx (2.6)

is called the cumulative hazard function.

If T is a discrete random variable the failure rate and the cumulative hazard function
is defined as follows.

Definition 2.3 ([26, p. 168] Discrete Hazard Function/Failure Rate)
The hazard function or failure rate of the discrete random lifetime T is

hT (t) = P (T = t|T ≥ t) =
P (T = t)

P (T ≥ t)
. (2.7)

Definition 2.4 ([26, p. 171] Discrete Cumulative Hazard Function)
Let T be a discrete random lifetime. Then the quantity

HT (t) =
t∑

j=1

hT (j) (2.8)

is called the discrete time cumulative hazard function.

Note that (2.7) is the commonly used discrete time failure rate function, that was first
defined in Barlow et al. [4]. For discrete failure time distributions the failure rate is
a conditional probability and therefore hT (t) ≤ 1, whereas in the continuous case the
failure rate is no probability and can be unbounded in some situations. Furthermore,
the cumulative hazard function in the discrete case is not equal − ln(1− F T (t)) as in
the continuous case (see (2.4)), i.e.

HT (t) =
t∑

j=1

hT (j) 6= − ln(1− F T (t)), t = 1, 2, . . . . (2.9)

Therefore, several authors including Roy and Gupta [42] and Xie et al. [49] have
proposed an alternative definition of the discrete failure rate function, denoted by

λT (t) = ln
F̄ T (t− 1)

F̄ T (t)
, t = 1, 2, . . . . (2.10)

Using the alternative failure rate (2.10) the corresponding discrete cumulative hazard
function now equals − ln(1−F T (t)). Since the discrete failure rate will be used in the
modeling of transition probabilities of a Markov chain, it is necessary in what follows
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to use the discrete failure rate function from Definition 2.3.
Now consider a repairable system. This means that there could be more than one failure
during the useful life of the system. In the following the random variables T1, T2, . . . , Tn
denotes the random failure times of a repairable system. Point processes that count
the failures through time are used for formulating stochastic models in mathematical
reliability theory.

Definition 2.5 ([36, p. 16] Counting process)
Define the random variable

Nt =
∑
n≥1

1{Tn≤t}

= max{n ∈ N+ : Tn ≤ t} (2.11)

which is the number of failures in the interval [0, t], where 1{·} is the indicator function.
Then the stochastic point process N = (Nt)t≥0 is called a counting process.

Note that because of the previous definition the number of failures in the interval (a, b]
can be calculated as Nb −Na.

Definition 2.6 ([41, p. 23] Mean Function of a Point Process)
The mean function of a point process N = (Nt)t≥0 is defined to be the expectation

ΛN(t) = E(Nt), ∀t ≥ 0. (2.12)

Definition 2.7 ([41, p. 27] Intensity Function)
The intensity function of a point process N = (Nt)t≥0 is

λN(t) = lim
∆t→0

P (Nt+∆t −Nt ≥ 1)

∆t
. (2.13)

The difference between the intensity function (2.13) and the hazard rate (2.1) is that
hT (t)∆t is approximately the conditional probability that the one and only failure
will occur in a small interval, whereas λN(t)∆t is approximately the unconditional
probability of a failure in a small interval. This failure do not necessarily need to be
the first one.
For every maintenance model of this research the mean cycle length is an essential
element in the calculation of the average maintenance costs per unit time. To calculate
this value the following formula is used.

Remark 2.1
Suppose X is a positive continuous random variable with PDF fX(x) and CDF FX(x)
with x ≥ 0. Now suppose t ≥ 0 is a positive real number. For the CDF of the positive
random variable L = min{X, t} it holds

FL(x) =

{
FX(x) , if 0 ≤ x < t

1 , if x ≥ t
. (2.14)
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Thus, for the expected value of L = min{X, t} it holds

E(L) =

∫ ∞
0

(1− FL(x))dx =

∫ t

0

(1− FX(x))dx+

∫ ∞
t

(1− 1)dx =

∫ t

0

(1− FX(x))dx.

(2.15)

2.2. Poisson Process

Definition 2.8 ([41, p. 35] Poisson Process)
A counting process N = (Nt)t≥0 is said to be a Poisson process if

1. N0 = 0.

2. The process N = (Nt)t≥0 has stochastically independent increments, i.e. for any
n ∈ N+ and any 0 ≤ t0 < t1 < · · · < tn the random variables Nti − Nti−1

(i=1,. . . ,n) are stochastically independent.

3. There is a function λN(t) such that

λN(t) = lim
∆t→0

P (Nt+∆t −Nt = 1)

∆t
. (2.16)

The function λN(t) is called the intensity function of the Poisson process.

4.

lim
∆t→0

P (Nt+∆t −Nt ≥ 2)

∆t
= 0. (2.17)

Note that in case of a constant intensity function, the Poisson process is referred to
as homogeneous and if the intensity function is not constant it is inhomogeneous. As-
sumption 4 precludes the possibility of simultaneous failures and therefore the Poisson
process is a simple process.

Theorem 2.2
Properties 1. through 4. of the Poisson process imply that

P (Nt = n) =
1

n!

(∫ t

0

λN(x)dx

)n
exp

(
−
∫ t

0

λN(x)dx

)
, n = 1, 2, . . . . (2.18)

Proof. See for example [41, p. 36].

Equation (2.18) shows that for a Poisson process the random variable Nt has a Poisson
distribution with mean function

ΛN(t) = E(Nt) =

∫ t

0

λN(x)dx. (2.19)
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Lemma 2.3
Let N = (Nt)t≥0 be a Poisson process with intensity function λN(t). For 0 ≤ s < t the
random variable Nt −Ns has a Poisson distribution with expected value

E(Nt −Ns) = ΛN(t)− ΛN(s) =

∫ t

0

λN(x)dx−
∫ s

0

λN(x)dx =

∫ t

s

λN(x)dx. (2.20)

Define the function pNn (s, t) to be the probability that in the interval (s, t] n failures
occur. Then it holds

pNn (s, t) = P (Nt −Ns = n)

Lemma 2.3
=

1

n!

(∫ t

s

λN(x)dx

)n
exp

(
−
∫ t

s

λN(x)dx

)
, (2.21)

for 0 ≤ s < t and n = 1, 2, . . . .

Remark 2.4 ([29, p. 536])
Consider a repairable system with failure times T1, T2, . . . which form a simple point
process. Let N = (Nt)t≥0 be the corresponding failure counting process. If all failures
are removed through minimal repair, the failure intensity of the counting process is
equal to the hazard function of the time to the first failure of a new system, i.e.

λN(t) = hT1(t) (2.22)

for t ≥ 0. The process N = (Nt)t≥0 is then an inhomogeneous Poisson process with
intensity function hT1(t).

2.3. Markov Chain

Definition 2.9 ([38, p. 695] Discrete-Time Markov Chain)
Let St be an integer valued random variable, called the random state at time t. Suppose
the sample values for each random variable St, t = 0, 1, 2, . . . , form a countable set M
called state space. The process (St)t∈N is a discrete-time Markov chain if the following
condition is fulfilled

P (St = st|S0 = s0, S1 = s1, . . . , St−1 = st−1) = P (St = st|St−1 = st−1), (2.23)

for all t ≥ 2 and s0, s1, . . . , st ∈ M with P (S0 = s0, S1 = s1, . . . St−1 = st−1) > 0. The
initial state S0 has an arbitrary probability distribution.

The condition (2.23) is also known as the Markov condition. Thus, in a Markov chain
the future evolution of the process (St)t∈N depends only on the present state and not
on how the system arrived at that state.

Definition 2.10 ([38, p. 697] Transition Probabilities)
Suppose (St)t∈N is a discrete-time Markov chain with state space M . Then,

pi(n) = P (Sn = i) (2.24)
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represents the probability that at time n the system occupies state i and

pij(m,n) = P (Sn = j|Sm = i) (2.25)

the probability that the system goes into state j at time n given that is was in state i
at time m with i, j ∈ M , m < n and n,m ∈ N. The numbers pij(m,n) represent the
transition probabilities of the Markov chain from state i at time m to state j at time
n.

If the transition probabilities are arranged in a matrix form X(m,n) with

X(m,n) =


p11(m,n) p12(m,n) . . . p1j(m,n) . . .
p21(m,n) p22(m,n) . . . p2j(m,n) . . .

...
...

...
...

...
pi1(m,n) . . . . . . pij(m,n) . . .

. . . . . . . . . . . . . . .

 , (2.26)

the matrix X(m,n) represents a stochastic matrix, i.e. each row summing to 1 and
every entry is a nonnegative real number representing a probability. Since for m < n <
r with m,n, r ∈ N and i, j, k ∈M it holds

P (Sr = i, Sn = j, Sm = k) = pji(n, r)pkj(m,n)pk(m), (2.27)

the probabilities (2.24) and (2.25) completely determine the Markov chain.
In the further research the one-step transition probabilities pij(n − 1, n) are needed.
For i, j ∈M and n ∈ N+, the one-step transition probabilities are defined as follows

pij(n− 1, n) = P (Sn = j|Sn−1 = i). (2.28)

Let (Xn)n∈N+ be the corresponding one-step transition matrices. Thus

Xn =


p11(n− 1, n) p12(n− 1, n) . . . p1j(n− 1, n) . . .
p21(n− 1, n) p22(n− 1, n) . . . p2j(n− 1, n) . . .

...
...

...
...

...
pi1(n− 1, n) . . . . . . pij(n− 1, n) . . .

. . . . . . . . . . . . . . .

 . (2.29)

2.4. Kijima Type Repairs

Kijima et al. [25] and Kijima [24] proposed that the state of the system just after
repair can be described by its virtual age. There two ways are described how repair
actions can affect the virtual age of a system.

Definition 2.11 (Kijima’s type I imperfect repair model)
Suppose ξk is the degree of the kth repair that takes place at time tk. For the virtual
age after the kth repair vk it holds

vk = vk−1 + ξk · (tk − tk−1), tk−1 < tk, k ≥ 1, 0 ≤ ξk ≤ 1. (2.30)

– 9 –



2. Basics

Thus, in Kijima’s type I imperfect repair model a repair cannot remove the damage
that incurred before the previous repair action and the virtual age of the system after
the kth repair is always greater or equal the virtual age after the (k − 1)th repair.

Definition 2.12 (Kijima’s type II imperfect repair model)
Suppose ξk is the degree of the kth repair that takes place at time tk. For the virtual
age after the kth repair vk it holds

vk = ξk · (vk−1 + tk − tk−1), tk−1 < tk, k ≥ 1, 0 ≤ ξk ≤ 1. (2.31)

Therefore, in Kijima’s type II imperfect repair model a repair action can remove the
whole damage accumulated up to the time of the repair action. Hence, the virtual age
of the system after repair can obtain values between zero and the calendar age of the
system. In the first case the degree of repair is zero and therefore the repair makes
the system as good as new. In the second case, when the degree of repair is one, the
system is minimally repaired.
Let N = (Nt)t≥0 be a failure counting process. Using the virtual age vk, for the intensity
function of N between the kth and the (k + 1)th repair it holds

λN(t) = λN(t− tk + vk), tk ≤ t < tk+1, k ≥ 0. (2.32)

2.5. Continuous Lifetime Distributions

In this section some continuous lifetime distributions are introduced that will be used
later to model the time to the first failure. First the modified Weibull distribution
(MWD) that was introduced by Sarhan and Zaindin [43] is described. Then the re-
duced modified Weibull distribution (RMWD) that was introduced by Almalki [1] is
described.

2.5.1. The Modified Weibull Distribution

The modified Weibull distribution (MWD) that was introduced by Sarhan and Zaindin
[43] generalizes some most commonly used distributions in survival analysis such as
exponential, Rayleigh, linear failure rate and Weibull distribution.
In the following, the notation MWD(α, β, γ) is used to denote the modified Weibull
distribution with the scale parameter α and the two shape parameters β and γ. Let
X be modified Weibull distributed MWD(α, β, γ). Then the cumulative distribution
function (CDF) of X is

FX(x;α, β, γ) = 1− exp (−αx− βxγ) , ∀x ≥ 0 (2.33)

and the probability density function (PDF) of X is

fX(x;α, β, γ) = (α + βγxγ−1) exp (−αx− βxγ) , ∀x > 0, (2.34)

where γ > 0, α, β ≥ 0 such that α+ β > 0. The hazard function of the MWD(α, β, γ)
is then

hX(x;α, β, γ) = α + βγxγ−1, ∀x > 0. (2.35)
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Note that the hazard function is constant if β = 0 or γ = 1, increasing in x if β > 0
and γ > 1 and decreasing in x if β > 0 and 0 < γ < 1. If γ = 1 it holds fX(0) = α+ β
and hX(0) = α, if γ > 1 it holds fX(0) = hX(0) = α and if γ < 1 the probability
density function and the hazard function tends to infinity if x goes to zero.
As mentioned above, the MWD(α, β, γ) includes other important lifetime distributions.
If γ = 2 the MWD(α, β, γ) becomes the linear failure rate distribution (LFRD) with
parameters α and β. By setting α = 0 and γ = 2 we get the Rayleigh distribution
(RD) with parameter β. In the case of α = 0 we obtain the Weibull distribution (WD)
with parameters β and γ. Finally, if β = 0, we obtain the exponential distribution
with parameter α.

2.5.2. The Reduced Modified Weibull Distribution

This subsection describes the reduced modified Weibull distribution (RMWD), that
was introduced by Almalki [1]. Almalki reduces the number of parameters of the
modified Weibull distribution, that was introduced by Almalki and Yuan [3], from five
to three and that is why this distribution have the prefix ”reduced”. In contrast to the
MWD from Section 2.5.1, both the initial modified Weibull distribution from Almalki
and Yuan [3] and the RMWD from Almalki [1] allow increasing, decreasing and even
bathtub shapes of the hazard function.
In the following, the notation RMWD(α, β, γ) is used to denote the reduced modified
Weibull distribution with scale parameters α and β and acceleration parameter γ. Let
X be reduced modified Weibull distributed RMWD(α, β, γ). Then the CDF of X is

FX(x;α, β, γ) = 1− exp
(
−α
√
x− β

√
x exp(γx)

)
, ∀x ≥ 0 (2.36)

and the PDF of X is

fX(x;α, β, γ) =
1

2
√
x

(α + β(1 + 2γx) exp(γx)) exp
(
−α
√
x− β

√
x exp(γx)

)
, (2.37)

where x > 0, α, β > 0 and γ > 0. The hazard function or failure rate of the
RMWD(α, β, γ) is then

hX(x;α, β, γ) =
1

2
√
x

(α + β(1 + 2γx) exp(γx)) , ∀x > 0. (2.38)

Figure 2.1 shows the different probability density functions. It can be seen that the
PDF of the LFRD and the RD have a similar shape. This is true also for the hazard
and the cumulative hazard functions as seen in Figures 2.2 and 2.3. As can be seen
in Figure 2.2, the chosen parameters for the RMWD leads to a bathtub shaped failure
rate. Note that the parameters for all distributions are chosen so that the expected
value is equal to 5. Table 2.1 summarizes formulas for the PDF, CDF and failure rate
for all continuous lifetime distributions that are used later in this research.
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Figure 2.1.: Probability density functions.
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Figure 2.2.: Continuous failure rates.

2.6. Discrete Lifetime Distributions

In this section the discrete versions of the continuous lifetime distributions from Section
2.5 are introduced. These discrete lifetime distributions will be used later to model
the lifetime of an operating unit. First the discrete version of the modified Weibull
distribution (MWD) from Section 2.5.1 is considered. Then, the discrete version of
the RMWD from Section 2.5.2 that was introduced by Almalki and Nadarajah [2] is
examined.

2.6.1. The Discrete Modified Weibull Distribution

The discrete version of the MWD that was introduced by Sarhan and Zaindin [43] also
generalizes some most commonly used discrete distributions in survival analysis, such
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Figure 2.3.: Continuous cumulative hazard functions.

Table 2.1.: Continuous lifetime distributions

Distribution fX(x) FX(x) hX(x)

LFRD (α+ 2βx)e−αx−βx
2

1− e−αx−βx2

α+ 2βx

RD (2βx)e−βx
2

1− e−βx2

2βx

WD (βγxγ−1)e−βx
γ

1− e−βxγ βγxγ−1

MWD (α+ βγxγ−1)e−αx−βx
γ

1− e−αx−βxγ α+ βγxγ−1

RMWD α+β(1+2γx)eγx

2
√
x

e−α
√
x−β
√
xeγx 1− e−α

√
x−β
√
xeγx 1

2
√
x
(α+ β(1 + 2γx)eγx)

as the geometric, discrete Rayleigh, discrete linear failure rate and the discrete Weibull
distribution.
From Section 2.5.1 we have that if X is modified Weibull distributed MWD(α, β, γ) it
has the following probability density function

fX(x;α, β, γ) =
(
α + βγxγ−1

)
exp (−αx− βxγ) , ∀x > 0, (2.39)

where γ > 0, α, β ≥ 0 such that α + β > 0.
Let T be the discrete random lifetime of an operating unit. For the discrete version of
the MWD we put the probability mass of the interval (t− 1, t] into the point t, that is

P (T = t) =

∫ t

t−1

fX(s)ds

= exp (−α(t− 1)− β(t− 1)γ)− exp (−αt− βtγ) , t = 1, 2, . . . . (2.40)

The corresponding CDF is given by

F T (t) = P (T ≤ t) =
t∑

j=0

P (T = j)
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= 1− exp (−αt− βtγ) , t = 1, 2, . . . (2.41)

and F T (0) = P (T = 0) = 0. For the failure rate it holds

hT (t) = P (T = t|T ≥ t)

= 1− exp (α(t− 1) + β(t− 1)γ − αt− βtγ) , t = 1, 2, . . . (2.42)

and hT (0) = 0. As mentioned above the DMWD(α, β, γ) includes other important
lifetime distributions. If γ = 2 the DMWD(α, β, γ) becomes the discrete linear failure
rate distribution (DLFRD) with parameters α and β. By setting α = 0 and γ = 2 we
get the discrete Rayleigh distribution (DRD) with parameter β. In the case of α = 0
the discrete Weibull distribution (DWD) with parameters β and γ is obtained. Finally,
if β = 0, we obtain the geometric distribution with success probability 1− exp(−α).

2.6.2. The Discrete Reduced Modified Weibull Distribution

The discrete version of the RMWD was introduced by Almalki and Nadarajah [2]
and based on a three-parameter modified Weibull distribution that was developed
by Almalki [1]. In the following, the notation RMWD(α, β, γ) is used to denote the
reduced modified Weibull distribution with scale parameters α and β and acceleration
parameter γ. Let X be reduced modified Weibull distributed RMWD(α, β, γ). Then,
the probability density function of X is

fX(x;α, β, γ) =
1

2
√
x

(α + β(1 + 2γx) exp(γx)) exp(−α
√
x− β

√
x exp(γx)), (2.43)

for x > 0, α, β > 0 and γ > 0. For the discrete version of the RMWD(α, β, γ) we put
the probability mass of the interval (t− 1, t] into point t, that is

P (T = t) =

∫ t

t−1

fX(s)ds

= exp
(
−
√
t− 1(α + β exp(γ(t− 1)))

)
− exp

(
−
√
t(α + β exp(γt))

)
(2.44)

for t = 1, 2, . . . . The CDF of the discrete reduced modified Weibull distribution
DRMWD(α, β, γ) is given by

F T (t) = P (T ≤ t) = 1− exp
(
−
√
t(α + β exp(γt))

)
, t = 1, 2, . . . , (2.45)

and F T (0) = P (T = 0) = 0. The failure rate is given by

hT (t) = P (T = t|T ≥ t) =
P (T = t)

P (T ≥ t)

= 1− exp
(√

t− 1(α + β exp(γ(t− 1)))−
√
t(α + β exp(γt))

)
, (2.46)

for t = 1, 2, . . . and hT (0) = 0. As shown in [2] the failure rate of the DRMWD(α, β, γ)
can be increasing or has a bathtub shape.
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Figure 2.4.: Probability mass functions.
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Figure 2.5.: Discrete failure rates.

Figure 2.4 shows the different probability mass functions (PMF). The distribution
parameters are the same as in the previous section. Therefore, the plotted discrete
distributions are considered to be the discretized distributions from Section 2.5. How-
ever, the expected value of these discrete lifetime distributions is no longer identical
but slightly larger than five. It can be seen that the PMF of the DLFRD and the DRD
have a similar shape. This is true also for the failure rate and the cumulative hazard
function as seen in Figure 2.5 and Figure 2.6. As can be seen in Figure 2.5, the chosen
parameters for the DRMWD leads to a bathtub shaped failure rate.
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Figure 2.6.: Discrete cumulative hazard functions.

Table 2.2.: Discrete lifetime distributions

Distribution P (T = t) FT (t) hT (t)

DLFRD e−α(t−1)−β(t−1)
2 − e−αt−βt2 1− e−αt−βt2 1− eα(t−1)+β(t−1)2−αt−βt2

DRD e−β(t−1)
2 − e−βt2 1− e−βt2 1− eβ(t−1)2−βt2

DWD e−β(t−1)
γ − e−βtγ 1− e−βtγ 1− eβ(t−1)γ−βtγ

DMWD e−α(t−1)−β(t−1)
γ − e−αt−βtγ 1− e−αt−βtγ 1− eα(t−1)+β(t−1)γ−αt−βtγ

DRMWD e−
√
t−1(α+βeγ(t−1))

−e−
√
t(α+βeγt)

1− e−
√
t(α+βeγt) 1− e

√
t−1(α+βeγ(t−1))−

√
t(α+βeγt)

Note that in Figures 2.4, 2.5 and 2.6 the points are connected with lines for better
visibility.
Table 2.2 summarizes formulas for the PMF, CDF and failure rate for all discrete
lifetime distributions that are used later in this research.
In the further research we use the previously defined discrete lifetime distributions
to model the lifetime of a MSS with n = 20 states. Usually truncated distributions,
i.e. P (T = t|T ≤ n), are used to model the lifetime of such systems. Note that for
the chosen distribution parameters of all previously defined lifetime distributions, the
probability that a failure occurs at a point in time t > 20 is close to zero. This means
there is no significant difference between the lifetime distribution and the truncated
version of it. Hence, it is appropriate here to use the untruncated lifetime distribution
instead of the truncated version of it.

2.7. Introduction of Cost Functions

In this thesis different cost functions for preventive and sometimes also for corrective
maintenance actions are used. This section summarizes the properties of different cost
functions used in further chapters.
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(c) Proportional to the degree of repair - 1
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(d) Proportional to the degree of repair - 2
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Figure 2.7.: Cost functions for PM depending on v with cR = cI = cS = 1000, cM = 500
and τ = 3.

2.7.1. Costs Proportional to the Impact of Repair

If the preventive maintenance action reduces the virtual age of the system to v > 0,
the impact of repair can be expressed in terms of v. Therefore, a small value of v
corresponds to a high impact of repair and vice versa. If the costs of a PM action
depend only on the virtual age after PM, a possible cost function could be

cPM(v) = cI

(
1

v

)δ
, (2.47)

where v > 0, δ > 0 and cI > 0 is a constant cost value. This cost function was
introduced and used e.g. in Kahle [21], [22] and [23]. Note that in case of costs
proportional to the impact of repair, the extreme case of perfect PM actions, i.e.
v = 0, is excluded. Cost function (2.47) has the following properties:
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Figure 2.8.: Cost functions for PM depending on τ with cR = cI = cS = 1000, cM = 500
and v = 3.

• The costs of PM are only bounded below by zero, i.e. cPM(v) > 0.

• Figure 2.7 (a) shows the better the PM actions, i.e. the smaller v, the higher are
the costs for PM. For a perfect repair the costs tend to infinity, i.e. the limit of
cPM(v) as v approaches zero is infinity, on condition that δ does not tend towards
zero.

• The worse the PM actions, i.e. the higher v, the smaller are the costs of PM.
The limit of cPM(v) as v approaches infinity is zero, on condition that δ does not
tend towards zero.

• If δ tends to zero the costs of PM converge to cI for all values of v. Therefore,
the costs of relative good PM actions with v < 1 decrease and the costs of less
good PM actions with v > 1 increase.

• The higher δ, the faster the costs of PM converge to infinity as v approaches zero
and the faster the costs of PM converge to zero as v approaches infinity.

• If v = 1 the costs of PM are always cI independent of δ.

2.7.2. Costs Proportional to the State before Repair

Assume a PM action that reduces the virtual age of a repairable system to v ≥ 0. If
the PM action is done τ ≥ 0 time units after the last maintenance action that reduced
the virtual age of the system to v, the state just before repair can be expressed in terms
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of v + τ . If the costs of PM depend only on the state just before PM, a possible cost
function could be

cPM(v, τ) = cS

(
1

v + τ

)δ
, (2.48)

where v, τ ≥ 0, v+ τ 6= 0, δ > 0 and cS > 0 is a constant cost value. This cost function
was introduced in Gasmi and Mannai [20] and has the following properties:

• The costs of PM are only bounded below by zero, i.e. cPM(v, τ) > 0.

• Figure 2.7 (b) and Figure 2.8 (a) shows the better the PM actions and the shorter
the distance between PM actions, the higher are the costs for PM. In case of
perfect repair, i.e. v = 0, the costs of PM are cPM = cS(1/τ)δ.

• The worse the PM actions and the longer the distance between PM actions, i.e.
the higher v and τ , the lower are the costs of PM. The limit of cPM(v, τ) as v or
τ approaches infinity is zero, on condition that δ does not tends towards zero.

• If δ tends to infinity and v or τ tend to infinity the costs of PM converge to zero.
The higher δ the faster the costs of PM tend towards zero.

• If δ tends to zero the costs of PM converge to cS for all possible values of v and
τ .

• If δ is increasing the costs of PM tend to infinity if v + τ is close to zero.

2.7.3. Costs Proportional to the Degree of Repair - 1

It is assumed that a PM action reduces the virtual age of a repairable system to v ≥ 0.
If the PM action is done τ ≥ 0 time units after the last maintenance action that reduced
the virtual age of the system to v, the degree of repair in a Kijima type II manner is

ξ(v, τ) =
v

v + τ
. (2.49)

If the costs of PM depend on the degree of repair, a possible cost function could be

cPM(v, τ) = cR
(
1− ξ(v, τ)δ

)
, (2.50)

where v, τ ≥ 0, v + τ 6= 0, δ > 0 and cR > 0 are the costs of a replacement. This cost
function was introduced e.g. in Kahle [21], [22] and [23]. Figure 2.7 (c) and Figure 2.8
(b) show the shape of cost function (2.50) for different parameter constellations. This
cost function has the following properties:

• The costs of PM actions are bounded below and above. They are greater than
zero and smaller than the costs of a replacement, i.e. 0 ≤ cPM(v, τ) ≤ cR.

• The better the PM actions, i.e. the smaller v, the higher are the costs for PM. In
case of perfect repair, i.e. ξ(v, τ) = 0, implying that v = 0, the costs of PM are
cPM(v, τ) = cR. The same holds if v tends to zero and δ does not at the same
time tends to zero.
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• The worse the PM actions and the lower the distance between PM actions, i.e.
the higher v and the smaller τ , the lower are the costs for PM. In case of minimal
repair, i.e. ξ(v, τ) = 1, involving that v tends to infinity or τ = 0, there are no
costs of PM, i.e. cPM(v, τ) = 0.

• If v and τ tend to infinity and δ does not tend to zero, the costs of PM tend to
the cost of a replacement, i.e. cPM(v, τ) tends to cR.

• The lower δ the lower are the costs of PM. If v 6= 0 and δ tends to zero, the costs
of PM tend to zero too.

2.7.4. Costs Proportional to the Degree of Repair - 2

Another way to model the costs of PM actions if they depend on the degree of repair
is

cPM(v, τ) = cR (1− ξ(v, τ) exp (ξ(v, τ)− 1))δ , (2.51)

where v, τ ≥ 0, v + τ 6= 0, δ > 0 and cR > 0 are the costs of a replacement. This cost
function was introduced e.g. in Gasmi and Mannai [20]. Figure 2.7 (d) and Figure 2.8
(c) show the shape of cost function (2.51) for different parameter constellations. This
cost function has the following properties:

• The costs of PM actions are bounded below and above. They are greater than
zero and smaller than the costs of a replacement, i.e. 0 ≤ cPM(v, τ) ≤ cR.

• The better the PM actions, i.e. the smaller v, the higher are the costs for PM. In
case of perfect repair, i.e. ξ(v, τ) = 0, implying that v = 0, the costs of PM are
cPM(v, τ) = cR. The same holds if v tends to zero and δ does not at the same
time tends to zero.

• The worse the PM actions and the lower the distance between PM actions, i.e.
the higher v and the smaller τ , the lower are the costs for PM. In case of minimal
repair, i.e. ξ(v, τ) = 1, involving that v tends to infinity or τ = 0, there are no
costs of PM, i.e. cPM(v, τ) = 0. The same holds if τ tends to zero and v and δ
does not at the same time tend to zero.

• The lower δ, the higher are the costs of PM actions. If v 6= 0 and δ tends to zero,
the costs of PM tend to the costs of a replacement.

• If v and τ tend to infinity and δ does not tend to zero, the costs of PM tend to
the cost of a replacement, i.e. cPM(v, τ) tends to cR.

As illustrated in Figure 2.7 (c) and (d), the difference between cost function (2.50) and
(2.51) is that if δ ≤ 1 the costs of PM actions are now higher than before and if δ > 1
the costs of PM actions are lower than before. In contrast to cost function (2.50), the
costs of PM decrease with rising δ.
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2.7.5. Costs Proportional to the Degree of Repair - 3

A third possible way to model the costs of PM actions if they depend on the degree of
repair is

cPM(v, τ) = cR − ξ(v, τ)δ(cR − cM), (2.52)

where v, τ ≥ 0, v + τ 6= 0, δ > 0, cR > 0 are the costs of a replacement and cM > 0
are the costs of a minimal repair. In Figure 2.7 and Figure 2.8 it can be seen that the
shape of both cost functions (2.50) and (2.52) is very similar. The crucial difference
to cost function (2.50) is the lower bound for the costs. If cM ≤ cR, the cost function
(2.52) has the following properties:

• The costs of PM actions are bounded below and above. They are greater than
the costs of a minimal repair and smaller than the costs of a replacement, i.e.
cM ≤ cPM(v, τ) ≤ cR.

• The better the PM actions, i.e. the smaller v, the higher are the costs for PM. In
case of perfect repair, i.e. ξ(v, τ) = 0, implying that v = 0, the costs of PM are
cPM(v, τ) = cR. The same holds if v tends to zero and δ does not at the same
time tends to zero.

• The worse the PM actions and the lower the distance between PM actions, i.e.
the higher v and the smaller τ , the lower are the costs for PM. In case of minimal
repair, i.e. ξ(v, τ) = 1, involving that v tends to infinity or τ = 0, the costs of
PM are identical to the costs of a minimal repair, i.e. cPM(v, τ) = cM .

• If v and τ tend to infinity and δ does not tend to zero, the costs of PM tend to
the cost of a replacement, i.e. cPM(v, τ) tends to cR.

• The lower δ the lower are the costs of PM and the lower is the cost difference
between good and less good PM actions. If v 6= 0 and δ tends to zero, the costs
of PM tend to the costs of a minimal repair.
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3. System with two Failure Types

In contrast to the most common maintenance models, the model in this chapter as-
sumes that there are different kinds of failures, which cannot all be removed by a
minimal repair. In this chapter a repairable system with continuous lifetime distribu-
tion and two different failure types is studied. The modeling of the different failure
types is analogous to Beichelt [7], who is the pioneer in using different failure types in
the modeling of maintenance models. The two failure types are minor failures (type 1)
and large failures (type 2). The minor ones can be repaired by minimal repair and the
large ones can only be removed through replacement. This idea can be illustrated by
the example of a car. If, for instance, the car can not be used because of a defective
generator this can easily be removed through a minimal repair. But after a serious
traffic accident caused, for instance, by run down tires or brakes, the roadworthiness
of the car can surely not be achieved through a minimal repair. In order to avoid
such failures and accidents, it is necessary to carry out regular preventive maintenance
(PM) actions. Part of such maintenance actions is amongst others to repair or replace
all broken and worn items which will soon give up working anyway.
Therefore, it is supposed that the system undergoes both PM and CM actions. A
periodic imperfect preventive maintenance policy with finite planning horizon is used
to model the occurrence of PM actions. This policy supposes that PM is undertaken
at predetermined periodic times. It is assumed that these maintenance actions have a
positive influence on the failure intensity. They adjust the virtual age of the system
in a Kijima type manner. Furthermore, it is assumed that all CM actions for type 1
failures are minimal repairs which means that the state of the system after repair is
the same as just before failure.
In literature there are multiple maintenance models which consider different failure
types and there are many ways to differ between these failure types. Colosimo et al.
[15], for instance, examine an imperfect maintenance model with two different failure
types. Type A failures can be predicted before they happen by a visual inspection.
In this way, the repair costs are smaller than the repair costs of type B failures which
cannot be predicted. Lin et al. [28] proposed a sequential imperfect preventive main-
tenance model with two independent failure types. The difference is here that type
I failures are maintainable failures and type II failures are non-maintainable. Hence,
preventive maintenance actions can reduce the failure rate of maintainable failures but
cannot change the failure rate of non-maintainable failures. Based on that model Ze-
queira and Bérenguer [50] and Castro [13] further assumed for periodic maintenance
models that both failure types are dependent. Besides this, there are also models which
use repairable and unrepairable failure modes (e.g. in Wang and Zhang [46]). Although
there are many publications on systems with multiple types of failures, the imperfect
maintenance model described in this section has not yet been discussed in literature.
This chapter is structured as follows. Section 3.1, Section 3.2 and Section 3.3 contain
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essential assumptions and definitions, which are needed to formulate the cost opti-
mization problem in Section 3.4. Finally, in Section 3.5 different cost functions for PM
actions are used to solve the cost optimization problem. Furthermore, the results are
computed for several continuous lifetime distributions.

3.1. Modeling the System

According to Beichelt [7] and [10], a system with two failure types is considered. For
further research the following assumptions are made.

1. Initially a new repairable system is installed.

2. The system has two failure types, which occur independent of each other. The
first failure type are minor failures (type 1) and the second failure type are large
failures (type 2).

3. Whenever a failure occurs, it is a minor one (type 1) with probability 1-p and a
large one (type 2) with probability p.

4. Type 1 failures can be removed by minimal repair and type 2 failures can only
be removed through replacements.

5. The repair times are negligible small.

3.2. Modeling the Failure Counting Process

First consider a repairable system which has only one failure type and which is not
preventively maintained. Then let (Tn)n≥1 be the random failure times of that system.
Now introduce the counting process N = (Nt)t≥0 which counts the CM actions under
the assumption that there are no PM actions. The intensity function of this counting
process is denoted by λN(t), t ≥ 0. Note that if each failure is removed through minimal
repair, the process N = (Nt)t≥0 is an inhomogeneous Poisson process.
Now suppose that the system is preventively maintained. Then the random failure
times are denoted by (T ∗n)n≥1. The corresponding failure counting process is N∗ =
(N∗t )t≥0. Thus, the random variable N∗t with t ≥ 0 is the number of failures until t and
λN
∗
(t) with t ≥ 0 is the intensity function of N∗.

Finally, assume that the system which undergoes PM has different failure types. To
construct the failure counting processes of both type 1 and type 2 failures, one have
to thin out the process N∗ = (N∗t )t≥0. This method is described, for example, in
Belyaev and Kahle [12]. The random failure times (T ∗n)n≥1 are a point process. Every
realization t∗n of these random variables is of type 2 with probability p and of type 1 with
probability 1− p. Define a new sequence (∆n)n≥1 of independent identical rectangular
distributed random numbers, i.e. P (∆n = 1) = p and P (∆n = 0) = 1− p for n ≥ 1. If
∆n = 1, the failure which occurs at time t∗n is of type 2, else if ∆n = 0, the failure at
time t∗n is of type 1. If one divides the random variables (T ∗n)n≥1 in accordance with the
realization of (∆n)n≥1, this will produce two new point processes (T ∗

′

k )k≥1 and (T ∗
′′

k )k≥1

– 24 –



3.3. Maintenance Policy

of the type 1 and type 2 failure times, respectively.
Let (N∗

′
t )t≥0 be the counting process of type 1 failures. Then it holds

N∗
′

t = N∗t −
N∗t∑
n=1

∆n, ∀t ≥ 0. (3.1)

The same is valid for the counting process of type 2 failures (N∗
′′
t )t≥0, i.e.

N∗
′′

t = N∗t −
N∗t∑
n=1

(1−∆n), ∀t ≥ 0. (3.2)

The sum of both counting processes leads to the original failure counting process

N∗
′

t +N∗
′′

t = N∗t −
N∗t∑
n=1

∆n +N∗t −
N∗t∑
n=1

(1−∆n)

= 2N∗t −
N∗t∑
n=1

1

= N∗t , ∀t ≥ 0. (3.3)

Note that if N∗ = (N∗t )t≥0 is an inhomogeneous Poisson process with intensity function
λN
∗
(t), the corresponding stochastic processes (N∗

′
t )t≥0 and (N∗

′′
t )t≥0 are also inhomoge-

neous Poisson processes with intensity functions (1−p)λN∗(t) and pλN
∗
(t), respectively

[19, p. 134]. Therefore, using Theorem 2.2 it holds

P (N∗
′′

t = n) =
1

n!

(∫ t

0

pλN
∗
(x)dx

)n
exp

(
−
∫ t

0

pλN
∗
(x)dx

)
, n = 1, 2, . . . . (3.4)

3.3. Maintenance Policy

In the following, we consider a periodic imperfect preventive maintenance policy with
finite planning horizon. In the periodic PM policy the system is preventively main-
tained at fixed time intervals and repaired at intervening failures. The maintenance
policy used in this chapter is a direct generalization of the one dealt with in Beichelt
[8].
Similar maintenance policies were applied, for instance, in Nakagawa [32], Sheu and
Lin and Liao [45] and Zequeira and Bérenguer [50].
In particular, the following assumptions are made for the used maintenance policy.

1. The system is maintained according to the failure type. Whenever a minor failure
(type 1) occurs, a minimal repair will be carried out. If the failure is of type 2,
the system will be replaced by a new one.

2. The PM actions are imperfect in the sense that each PM action reduces the
virtual age of the system to a constant virtual age of v ≥ 0.
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3. PM is performed at v + τ , v + 2τ, . . . , v + (N − 1)τ with τ > 0, v ≥ 0 and
N ∈ {1, . . . , Nmax}.

4. If no type 2 failure occurred in [0, v + Nτ), the system is replaced preventively
at v +Nτ .

Note that the restriction of N by Nmax is appropriate since systems have a finite
useful life. Therefore, in our cost optimization problem from Section 3.4 a predefined
maximum number of PM actions, i.e. 1−Nmax, will be taken into account.
The above described maintenance policy contains the age replacement policy and the
minimal repair policy as special cases. The first one is obtained if p = 1 and v = 0.
Then the system is replaced at the time of failure or at age τ whichever occurs first.
If p = 0 and v = 0 we have the minimal repair policy which means that the system is
always replaced at age τ and failures that occur between the periodic replacements are
removed through minimal repair.

3.4. Cost Optimization Problem

Consider a technical system which is maintained with maintenance policy described in
Section 3.3. To optimize the maintenance of this system with respect to cost criteria,
it is necessary to define the cumulative distribution function of the random time of the
first type 2 failure.
Let T1 be the random time of the first failure of a repairable system without PM. Then
T ∗1 is the random time of the first failure of a repairable system with PM and only one
failure type.
If one takes into account two failure types, one have T

′
1 and T

′′
1 as the random times

of the first occurrence of a type 1 or type 2 failure of a repairable system without PM,
respectively. Analogous T ∗

′
1 and T ∗

′′
1 are the random times of the first occurrence of

a type 1 or type 2 failure of a repairable system with consideration of PM actions,
respectively.
In our modeling the random variable T ∗

′′
1 is very important because a type 2 failure

ends a replacement cycle. In what follows, some properties of the distribution of T ∗
′′

1

are given.

Lemma 3.1 (Distribution function of T ′′1 )
Suppose T1 is the random time of the first failure of a repairable system without PM and
no distinction in failure types. It is assumed that a failure is of type 1 with probability
1 − p and of type 2 with probability p. Let T

′′
1 be the random time of the first type

2 failure of a repairable system without PM. Then, T
′′
1 has the following distribution

function

F T
′′
1 (t) = 1− exp

(
−
∫ t

0

pλN(x)dx

)
, ∀t ≥ 0, (3.5)

where λN(·) is the intensity function of the failure counting process N = (Nt)t≥0.

Proof. Let N = (Nt)t≥0 be the failure counting process under the assumption that
there are no PM actions. As long as each failure is removed through minimal repair,
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the process N = (Nt)t≥0 is an inhomogeneous Poisson process.
In our model we have two failure types and therefore the process N can be written as
the sum of the two counting processes N

′
and N

′′
, which counts the type 1 and type 2

failures, respectively. Note that, if N = (Nt)t≥0 is an inhomogeneous Poisson process
with intensity function λN(t), the corresponding stochastic processes N

′
= (N

′
t )t≥0

and N
′′

= (N
′′
t )t≥0 are also inhomogeneous Poisson processes with intensity functions

pλN(t) and (1 − p)λN(t), respectively [19, p. 134]. Therefore, as long as no type 2
failure occurred, the processes N

′
and N

′′
are inhomogeneous Poisson processes and the

random variable N
′′
t is Poisson distributed with mean ΛN

′′
(t) = E(N

′′
t ) =

∫ t
0
pλN(x)dx.

Using this, Equation (3.5) can be derived as

F T
′′
1 (t) = P (T

′′

1 ≤ t) = P (N
′′

t ≥ 1)

= 1− P (N
′′

t = 0)

Theorem 2.2
= 1− exp

(
−
∫ t

0

pλN(x)dx

)
, ∀t ≥ 0.

Theorem 3.2 (Distribution function of T ∗
′′

1 )
Suppose T

′′
1 is the random time of the first type 2 failure of a repairable system without

PM. Let T ∗
′′

1 be the random time of the first type 2 failure of a repairable system
with PM, following PM policy from Section 3.3. Then for the distribution function

F T ∗
′′

1 (t) = P (T ∗
′′

1 ≤ t) it holds

F T ∗
′′

1 (t) =



0 , if t < 0

F T
′′
1 (t) , if t ∈ [0, v + τ)

F T
′′
1 (v + τ) +

(
1− F T

′′
1 (v + τ)

)(
FT
′′
1 (t−τ)−FT

′′
1 (v)

1−FT
′′
1 (v)

)
, if t ∈ [v + τ, v + 2τ)

F T
′′
1 (v + τ) +

(
F T

′′
1 (v + τ)− F T

′′
1 (v)

) k∑
i=2

(
1−FT

′′
1 (v+τ)

1−FT
′′
1 (v)

)i−1

+

(
1−FT

′′
1 (v+τ)

1−FT
′′
1 (v)

)k (
F T

′′
1 (t− kτ)− F T

′′
1 (v)

)
, if t ∈ [v + kτ, v + {k + 1}τ), k ≥ 2

. (3.6)

Proof. Since T ∗
′′

1 is the random time of the first type 2 failure of a system with PM

actions, it holds that F T ∗
′′

1 (t) = 0, for t < 0. Using maintenance policy from Section
3.3, the first PM time is v+ τ . Before this point in time, a repairable system with PM
actions is identical with an equivalent repairable system without PM. Hence,

F T ∗
′′

1 (t) = P (T
′′

1 ≤ t) = F T
′′
1 (t), ∀t ∈ [0, v + τ). (3.7)

During the time between the first and the second PM action, i.e. t ∈ [v+ τ, v+ 2τ), it
holds

F T ∗
′′

1 (t) = P (T
′′

1 ≤ v + τ) + P (T
′′

1 ≥ v + τ)P (T
′′

1 ≤ t− τ |T ′′1 ≥ v)

– 27 –



3. System with two Failure Types

= F T
′′
1 (v + τ) +

(
1− F T

′′
1 (v + τ)

)(F T
′′
1 (t− τ)− F T

′′
1 (v)

1− F T
′′
1 (v)

)
. (3.8)

For t ∈ [v + kτ, v + {k + 1}τ), k ≥ 2 it holds

F T ∗
′′

1 (t) = P (T
′′

1 ≤ v + τ)

+
k∑
i=2

P (T
′′

1 ≥ v + τ)P (T
′′

1 ≥ v + τ |T ′′1 ≥ v)i−2P (T
′′

1 ≤ v + τ |T ′′1 ≥ v)

+ P (T
′′

1 ≥ v + τ)P (T
′′

1 ≥ v + τ |T ′′1 ≥ v)k−1P (T
′′

1 ≤ t− kτ |T ′′1 ≥ v)

= F T
′′
1 (v + τ)

+
k∑
i=2

(
1− F T

′′
1 (v + τ)

)(1− F T
′′
1 (v + τ)

1− F T
′′
1 (v)

)i−2(
F T

′′
1 (v + τ)− F T

′′
1 (v)

1− F T
′′
1 (v)

)

+
(

1− F T
′′
1 (v + τ)

)(1− F T
′′
1 (v + τ)

1− F T
′′
1 (v)

)k−1(
F T

′′
1 (t− kτ)− F T

′′
1 (v)

1− F T
′′
1 (v)

)

= F T
′′
1 (v + τ) +

(
F T

′′
1 (v + τ)− F T

′′
1 (v)

) k∑
i=2

(
1− F T

′′
1 (v + τ)

1− F T
′′
1 (v)

)i−1

+

(
1− F T

′′
1 (v + τ)

1− F T
′′
1 (v)

)k (
F T

′′
1 (t− kτ)− F T

′′
1 (v)

)
. (3.9)

Figure 3.1 shows (a) the distribution function of the time to the first failure of a
repairable system without PM and only one failure type, (b) the distribution function
of the time to the first type 2 failure of a repairable system without PM and (c) the
distribution function of the time to the first type 2 failure of a repairable system with
PM. The comparison of (b) and (c) shows how PM actions reduce the probability of
the occurrence of failures.

Remark 3.3 (Intensity Function of N∗ = (N∗t )t≥0)
The intensity function of the counting process N∗ = (N∗t )t≥0 is

λN
∗
(t) =


0 , if t < 0

λN(t) , if t ∈ [0, v + τ)

λN(t− kτ) , if t ∈ [v + kτ, v + {k + 1}τ), k = 1, . . . , N − 1

,(3.10)

where λN(t) is the intensity function of the counting process N = (Nt)t≥0, which counts
the failures of a repairable system without PM.

Note that with Remark 2.4 the intensity function of the counting process N = (Nt)t≥0

is equal to the hazard function of the time to the first failure of a new system, i.e.
λN(t) = hT1(t) for t ≥ 0.
Using maintenance policy from Section 3.3, the random cycle length, i.e. the time
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Figure 3.1.: Distribution functions when T1 is WD(β = 0.0057, γ = 3), v = 2, τ = 7, N = 11
and p = 0.1.

between two replacements, is

Lv,τ,N = min{T ∗′′1 , v +Nτ}

{
< v +Nτ , with P (T ∗

′′
1 ≤ v +Nτ)

= v +Nτ , with 1− P (T ∗
′′

1 ≤ v +Nτ)
. (3.11)

In this special problem the distribution function of Lv,τ,N is

FLv,τ,N (t) = P (Lv,τ,N ≤ t) =


0 , if t < 0

F T ∗
′′

1 (t) , if 0 ≤ t < v +Nτ

1 , if t ≥ v +Nτ

. (3.12)

Theorem 3.4 (Mean Cycle Length)
In the case of maintenance policy from Section 3.3, the mean cycle length is

E(Lv,τ,N) = v +Nτ −
∫ v

0

F T
′′
1 (t)dt

− τF T
′′
1 (v + τ)

N−1∑
i=1

(N − i)

(
1− F T

′′
1 (v + τ)

1− F T
′′
1 (v)

)i−1

+ τF T
′′
1 (v)

N−1∑
i=1

(N − i)

(
1− F T

′′
1 (v + τ)

1− F T
′′
1 (v)

)i
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3. System with two Failure Types

−
∫ v+τ

v

F T
′′
1 (t)dt

N∑
i=1

(
1− F T

′′
1 (v + τ)

1− F T
′′
1 (v)

)i−1

. (3.13)

Proof. Using Remark 2.1 we get

E(Lv,τ,N) =

∫ v+Nτ

0

(
1− F T ∗

′′
1 (t)

)
dt = v +Nτ −

∫ v+Nτ

0

F T ∗
′′

1 (t)dt. (3.14)

After inserting (3.6) and using some algebra one get formula (3.13) for the mean cycle
length.
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Figure 3.2.: Mean cycle length when T1 is WD(β = 0.0057, γ = 3), N = 11 and p = 0.1.

In Figure 3.2 the mean cycle length is plotted for the WD with expectation 5. If v = 0
and τ is relative small, the probability that a type 2 failure ends the replacement cycle
is rather low. Therefore, the mean cycle length approximates v+Nτ . If τ increases, the
probability that a type 2 failure ends the replacement cycle is increasing and thus the
mean cycle length for v = 0 is clearly smaller than v +Nτ . Note that with increasing
v+Nτ , the mean cycle length converges to the expected time of the first type 2 failure.
To compute a maintenance cost rate, it is necessary to determine the random number
of minimal repairs during a replacement cycle.

Theorem 3.5 (Mean Number of Type 1 Failures in a Replacement Cycle)
Suppose Zv+Nτ is the random number of type 1 failures in the replacement cycle with
length min{T ∗′′1 , v +Nτ}. Then it holds

E(Zv+Nτ ) =

∫ v+Nτ

0

(
1− F T ∗

′′
1 (x)

)
λN
∗
(x)dx− F T ∗

′′
1 (v +Nτ). (3.15)

Proof. The proof of Theorem 3.5 based on the ideas in Beichelt and Franken [11] and
Beichelt [10, p. 128 ff.]. It is assumed that after a minimal repair the system starts
working immediately. Suppose that the random variables (T ∗n)n≥1 are the random
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3.4. Cost Optimization Problem

failure times of a repairable system with PM. These failures are type 1 failures with
probability 1− p and type 2 failures with probability p. Because of the minimal repair
after type 1 failures the state of the system does not change through this type of
failure. Therefore, as long as no type 2 failure occurred, the failure counting process
N∗ = (N∗t )t≥0 is an inhomogeneous Poisson process with independent increments and
intensity function λN

∗
(t) for t ≥ 0. Using Lemma 2.3 and the resulting equation (2.21),

it holds

pN
∗

0 (s, t) = P (N∗t −N∗s = 0) = exp

(
−
∫ t

s

λN
∗
(x)dx

)
= exp

(
−
(
ΛN∗(t)− ΛN∗(s)

))
, (3.16)

where ΛN∗(t) =
∫ t

0
λN
∗
(x)dx is the mean function of the counting process N∗. Further-

more, by making use of Theorem 2.2, the distribution function of the random time of
the first failure of a repairable system with PM becomes

F T ∗1 (t) = P (T ∗1 ≤ t) = P (N∗t ≥ 1) = 1− P (N∗t = 0)

= 1− exp

(
−
∫ t

0

λN
∗
(x)dx

)
, t ≥ 0. (3.17)

The density function of T ∗1 can be calculated as follows

fT
∗
1 (t) =

dF T ∗1 (t)

dt
= λN

∗
(t)
(
1− F T ∗1 (t)

)
= λN

∗
(t) exp

(
−
∫ t

0

λN
∗
(x)dx

)
. (3.18)

Suppose that only the last failure at the random time T ∗k is of type 2. Hence, the failure
counting process N∗ = (N∗t )t≥0 up to this time is an inhomogeneous Poisson process.
By using induction it can be proved that the following holds for the joint probability
density function of (T ∗1 , T

∗
2 , . . . , T

∗
k ), k = 1, 2, . . . , (induction hypothesis)

fT
∗
1 ,T
∗
2 ,...,T

∗
k (t1, t2, . . . , tk) ={
λN
∗
(t1)λN

∗
(t2) · · · · · λN∗(tk−1)fT

∗
1 (tk) , if 0 ≤ t1 < t2 < · · · < tk

0 , else
. (3.19)

The base case is that the statement holds for k = 2. Let 1 − pN∗0 (t, t2) be the proba-
bility that between t and t2 at least one failure occurs. Using (3.16), the conditional
distribution function of T ∗2 given that T ∗1 = t1 becomes

F T ∗2 (t2|T ∗1 = t1) = 1− pN∗0 (t1, t2) = 1− exp
(
−
(
ΛN∗(t2)− ΛN∗(t1)

))
. (3.20)

Differentiation with respect to t2 yields the corresponding conditional density function

fT
∗
2 (t2|T ∗1 = t1) = λN

∗
(t2) exp

(
−
(
ΛN∗(t2)− ΛN∗(t1)

))
, (3.21)
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3. System with two Failure Types

where 0 ≤ t1 < t2. The joint probability density function of (T ∗1 , T
∗
2 ) is then

fT
∗
1 ,T
∗
2 (t1, t2) = fT

∗
2 (t2|T ∗1 = t1)fT

∗
1 (t1) =

{
λN
∗
(t1)fT

∗
1 (t2) , if 0 ≤ t1 < t2

0 , else
. (3.22)

Now assume that the statement (3.19) is true and use this to prove the statement for
k + 1. It holds

F T ∗k+1(tk+1|T ∗1 = t1, . . . , T
∗
k = tk) = 1− pN∗0 (tk, tk+1)

= 1− exp
(
−
(
ΛN∗(tk+1)− ΛN∗(tk)

))
. (3.23)

Differentiation with respect to tk+1 yields the corresponding conditional density func-
tion

fT
∗
k+1(tk+1|T ∗1 = t1, . . . , T

∗
k = tk) = λN

∗
(tk+1) exp

(
−
(
ΛN∗(tk+1)− ΛN∗(tk)

))
, (3.24)

where 0 ≤ t1 < · · · < tk+1. Thus, for the joint probability density function of
(T ∗1 , . . . , T

∗
k+1) it holds

fT
∗
1 ,T
∗
2 ,...,T

∗
k+1(t1, t2, . . . , tk+1)

= fT
∗
k+1(tk+1|T ∗1 = t1, . . . , T

∗
k = tk)f

T ∗1 ,T
∗
2 ,...,T

∗
k (t1, t2, . . . , tk)

=

{
λN
∗
(t1)λN

∗
(t2) · · · · · λN∗(tk)fT

∗
1 (tk+1) , if 0 ≤ t1 < · · · < tk+1

0 , else
. (3.25)

Hence, hypothesis (3.19) holds for all k ≥ 1.
Now let Z be the random number of type 1 failures until the first type 2 failure occurs
and let p be the probability of type 2 failures. Note that for an integrable function
g(x), x ≥ 0, it holds [9, p. 196]∫ t

0

∫ xk

0

. . .

∫ x3

0

∫ x2

0

k∏
i=1

g(xi)dx1dx2 . . . dxk =
1

k!

(∫ t

0

g(x)dx

)k
, (3.26)

where k ≥ 2.
From (3.19) and for k ≥ 1 it follows

P (Z = k) =

∫ ∞
0

∫ xk+1

0

. . .

∫ x3

0

∫ x2

0

k∏
i=1

(1− p)λN∗(xi)dxipfT
∗
1 (xk+1)dxk+1

(3.26)
=

∫ ∞
0

1

k!

(∫ xk+1

0

(1− p)λN∗(x)dx

)k
pfT

∗
1 (xk+1)dxk+1

t:=xk+1
=

1

k!

∫ ∞
0

(∫ t

0

(1− p)λN∗(x)dx

)k
pfT

∗
1 (t)dt. (3.27)

This is the probability that the first k failures are of type 1 and the (k + 1)th failure
is of type 2. Let T ∗

′′
1 be the random time of the first type 2 failure. Suppose Zt is the

random number of type 1 failures in the replacement cycle with length min{T ∗′′1 , t}.
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3.4. Cost Optimization Problem

Then it holds

P (Zt = k|T ∗′′1 = t)

= lim
∆t→0

P (Zt = k ∩ t ≤ T ∗
′′

1 ≤ t+ ∆t)

P (t ≤ T ∗
′′

1 ≤ t+ ∆t)

= lim
∆t→0

P (t ≤ T ∗
′′

1 = T ∗k+1 ≤ t+ ∆t)

F T ∗
′′

1 (t+ ∆t)− F T ∗
′′

1 (t)

(3.27)
= lim

∆t→0

1
k!

∫ t+∆t

t

(∫ y
0

(1− p)λN∗(x)dx
)k
pfT

∗
1 (y)dy

F T ∗
′′

1 (t+ ∆t)− F T ∗
′′

1 (t)

= lim
∆t→0

(
1
k!

∫ t+∆t

t

(∫ y
0

(1− p)λN∗(x)dx
)k
pfT

∗
1 (y)dy

∆t

· ∆t

F T ∗
′′

1 (t+ ∆t)− F T ∗
′′

1 (t)

)
. (3.28)

If the limits of both factors in equation (3.28) exist, one can rewrite this equation as a
product of two limits. For the limit of the first factor it holds

lim
∆t→0

(
1
k!

∫ t+∆t

t

(∫ y
0

(1− p)λN∗(x)dx
)k
pfT

∗
1 (y)dy

∆t

)

0/0
= lim

∆t→0

1
k!

(∫ t+∆t

0
(1− p)λN∗(x)dx

)k
pfT

∗
1 (t+ ∆t)

1

=
1

k!

(∫ t

0

(1− p)λN∗(x)dx

)k
pfT

∗
1 (t)

and for the limit of the second factor it holds

lim
∆t→0

∆t

F T ∗
′′

1 (t+ ∆t)− F T ∗
′′

1 (t)
=

1

fT
∗′′
1 (t)

=
1

pλN∗(t)(1− F T ∗
′′

1 (t))

=
1− F T ∗1 (t)

pfT
∗
1 (t)(1− F T ∗

′′
1 (t))

.

Therefore, equation (3.28) reduces to

P (Zt = k|T ∗′′1 = t) =
1

k!

(∫ t

0

(1− p)λN∗(x)dx

)k
exp

(
−
∫ t

0

(1− p)λN∗(x)dx

)
, (3.29)

where T ∗k+1 is the random time of the (k + 1)th failure absolute.
The expected value of Zt can be computed with the help of conditional expectation in
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the following way

E(Zt) = E(Zt|T ∗
′′

1 < t)P (T ∗
′′

1 < t) + E(Zt|T ∗
′′

1 ≥ t)P (T ∗
′′

1 ≥ t). (3.30)

The first summand represents the case that the replacement cycle is terminated by a
type 2 failure and the second summand represents the case that a preventive replace-
ment ends the replacement cycle.
From (3.29) it follows that, given T ∗

′′
1 = t, the random variable Zt has a Poisson

distribution with mean

E(Zt|T ∗
′′

1 = t) =

∫ t

0

(1− p)λN∗(x)dx. (3.31)

This can be used to compute both conditional expected values in (3.30). For the first
one it holds

E(Zt|T ∗
′′

1 < t) =

∫ t
0
E(Zx|T ∗

′′
1 = x)dF T ∗

′′
1 (x)

F T ∗
′′

1 (t)
(3.32)

and the second one can be rewritten as follows

E(Zt|T ∗
′′

1 ≥ t) = E(Zt|T ∗
′′

1 = t). (3.33)

The following term is used in the subsequent calculation∫ t

0

pλN
∗
(y)dy

(3.4)
= − lnP (N∗

′′

t = 0) = − lnP (T ∗
′′

1 > t) = − ln F̄ T ∗
′′

1 (t). (3.34)

Inserting (3.32) and (3.33) in the formula for the (unconditional) mean value of Zt
(3.30), using partial integration and substitution yield

E(Zt) =

∫ t

0

∫ x

0

(1− p)λN∗(y)dydF T ∗
′′

1 (x) + F̄ T ∗
′′

1 (t)

∫ t

0

(1− p)λN∗(x)dx

(3.34)
=

∫ t

0

(
ΛN∗(x) + ln F̄ T ∗

′′
1 (x)

)
dF T ∗

′′
1 (x) + F̄ T ∗

′′
1 (t)

(
ΛN∗(t) + ln F̄ T ∗

′′
1 (t)

)
=

∫ t

0

ΛN∗(x)dF T ∗
′′

1 (x) +

∫ t

0

ln F̄ T ∗
′′

1 (x)dF T ∗
′′

1 (x)

+ F̄ T ∗
′′

1 (t)
(

ΛN∗(t) + ln F̄ T ∗
′′

1 (t)
)

=

∫ t

0

ΛN∗(x)pλN
∗
(x)F̄ T ∗

′′
1 (x)dx−

∫ F̄T
∗′′
1 (t)

1

ln y dy

+ F̄ T ∗
′′

1 (t)
(

ΛN∗(t) + ln F̄ T ∗
′′

1 (t)
)

= ΛN∗(t)F T ∗
′′

1 (t)−
∫ t

0

F T ∗
′′

1 (x)dΛN∗(x)− F T ∗
′′

1 (t)− F̄ T ∗
′′

1 (t) ln F̄ T ∗
′′

1 (t)

+ ΛN∗(t)F̄ T ∗
′′

1 (t) + ln F̄ T ∗
′′

1 (t)F̄ T ∗
′′

1 (t)

=

∫ t

0

F̄ T ∗
′′

1 (x)dΛN∗(x)− F T ∗
′′

1 (t). (3.35)
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In the following the optimization criterion of interest will be the average maintenance
cost per unit time. In the underlying maintenance policy there are two scenario.
The first one is that there is no type 2 failure up to the first preventive replacement at
time v+Nτ . In this case the replacement cycle has length [0, v+Nτ ]. The total costs
comprise the costs for minimal repairs during the replacement cycle, the costs for N−1
PM actions and the costs for a preventive replacement at v + Nτ . The probability of
the first scenario is 1− P (T ∗

′′
1 ≤ v +Nτ).

The second scenario is that a type 2 failure occurs before the preventive replacement
takes place at v + Nτ . In this case the total costs consist of the costs for minimal
repairs up to the time of the type 2 failure, the costs of the PM actions and the costs of
a replacement because the type 2 failure can only be removed through a replacement.
The probability of the second scenario is P (T ∗

′′
1 ≤ v +Nτ).

Definition 3.1 (Cost Optimization Problem)
Let cM denotes the costs for a minimal repair, cPM the costs of PM and cR the costs
of a replacement. The average maintenance costs per unit time are

C(v, τ,N) = (1− P (T ∗
′′

1 ≤ v +Nτ))

·
(
cME(Zv+Nτ |T ∗

′′
1 ≥ v +Nτ) + (N − 1)cPM + cR

)
E(Lv,τ,N)

+ P (T ∗
′′

1 ≤ v +Nτ)

(
cME(Zv+Nτ |T ∗

′′
1 < v +Nτ)

E(Lv,τ,N)

+

∑N−1
k=1 cPM1{v+kτ<E(T ∗

′′
1 |T ∗

′′
1 <v+Nτ)} + cR

E(Lv,τ,N)

)

=
cME(Zv+Nτ ) + cR

E(Lv,τ,N)
+ F̄ T ∗

′′

(v +Nτ)
(N − 1)cPM
E(Lv,τ,N)

+ F T ∗
′′

1 (v +Nτ)

∑N−1
k=1 cPM1{v+kτ<E(T ∗

′′
1 |T ∗

′′
1 <v+Nτ)}

E(Lv,τ,N)
, (3.36)

where E(T ∗
′′

1 |T ∗
′′

1 < v + Nτ) is the expected time of the first type 2 failure under the
condition that a type 2 failure ends the replacement cycle and 1{·} is the indicator
function. The optimization problem then have the following form

min
v∈[0,∞), τ∈(0,∞), N∈{1,...,Nmax}

C(v, τ,N). (3.37)

Note that the extreme case τ = 0 is excluded from optimization problem (3.37). How-
ever, the other extreme case of perfect PM actions, i.e. v = 0, is still part of the cost
optimization problem.

3.5. Example for Cost Optimal Maintenance

In this section a part of the cost functions introduced in Section 2.7 are used to model
the costs of PM. Optimal maintenance strategies are computed for different lifetime
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3. System with two Failure Types

distributions.
The main objective of this section is to compute the cost optimal values for v, τ
and N . The number of PM actions is restricted up to 10, i.e. Nmax = 11, and
hence the system will be preventively replaced at the latest after ten PM actions.
The probability that a failure is of type 2 is assumed to be ten percent, i.e. p =
0.1. The costs of corrective maintenance actions, i.e. cM and cR, are assumed to be
constant. No general statement whether the costs of PM are always in between cM
and cR can be made. This individually depends on v, τ , δ and the ratio cM/cR. Since
the resulting average maintenance costs per unit time are not convex and the cost
optimization problem (3.37) could not be solved analytical, complete enumeration is
used to find the optimal maintenance strategies. The optimal maintenance strategies
in this section are computed with the statistical computing software R and have an
accuracy of two decimal places. It is however important to note that all values in
the following tables are computed based on a numerical integration routine and are
therefore only approximative solutions.
The continuous lifetime distributions used in the following subsections to model the
lifetime of the underlying repairable system are described in detail in Section 2.5. The
parameters of all used distributions were chosen so that the expectation is 5 for all
distributions.

3.5.1. Costs Proportional to the Impact of Repair

Suppose the costs of PM actions depend only on the virtual age after PM, i.e.

cPM(v) = cI

(
1

v

)δ
, (3.38)

where v > 0, δ > 0 and cI > 0 is a constant cost value. This cost function is described
in detail in Subsection 2.7.1. Further, it is assumed that cR = cI . Note that in case of
costs proportional to the impact of repair, the extreme case of perfect PM, i.e. v = 0,
is excluded from optimization problem (3.37).
In the following, the optimal values for v and τ and the optimal number of PM actions
before a preventive replacement takes place are computed for different cost ratios cM/cI
and different δ. The numerical results are given in Table 3.1 and lead to the following
conclusions:

1. Because of the very high costs of PM actions with a high impact of repair, the
cost optimal value of v does not have values less than 1.

2. If v > 1 it holds that the smaller δ, the more expensive are PM actions and the
lower is the difference between the costs of PM and the cost of a replacement
since cR = cI . Therefore, for small δ it is cost optimal to do no PM, i.e. N = 1,
and with rising δ it becomes cost optimal to do more PM actions, i.e. the cost
optimal N is rising. In comparison to the other distributions the RMWD has
sooner N > 1, because of the high failure rate at lower ages.

3. The lower the costs of a repair with a high impact compared to the costs of a
minimal repair, i.e. the higher the ratio cM/cI , the better are the PM actions,
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3.5. Example for Cost Optimal Maintenance

Table 3.1.: Optimal values in case of costs proportional to the impact of repair

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cI = 0.5

δ = 0.125 N = 1
v + τ = 8.87

N = 1
v + τ = 8.57

N = 1
v + τ = 5.83

N = 1
v + τ = 6.4

N = 11
v = 1.24
τ = 13.16

δ = 0.5 N = 2
v = 1.71
τ = 7.81

N = 2
v = 1.82
τ = 7.42

N = 1
v + τ = 5.83

N = 1
v + τ = 6.4

N = 9
v = 3.03
τ = 10.09

δ = 1 N = 8
v = 2.56
τ = 5.85

N = 8
v = 2.46
τ = 5.86

N = 4
v = 2.05
τ = 3.82

N = 10
v = 2.19
τ = 4.41

N = 11
v = 3.86
τ = 7.12

δ = 2 N = 10
v = 2.66
τ = 3.98

N = 10
v = 2.6
τ = 4

N = 11
v = 2.36
τ = 2.54

N = 11
v = 2.46
τ = 2.75

N = 11
v = 3.52
τ = 6.48

cM/cI = 1

δ = 0.125 N = 1
v + τ = 6.21

N = 1
v + τ = 6

N = 1
v + τ = 4.61

N = 1
v + τ = 5.06

N = 8
v = 1.1
τ = 10.09

δ = 0.5 N = 1
v + τ = 6.21

N = 1
v + τ = 6

N = 1
v + τ = 4.61

N = 1
v + τ = 5.06

N = 8
v = 2.53
τ = 8.61

δ = 1 N = 2
v = 2
τ = 4.37

N = 1
v + τ = 6

N = 1
v + τ = 4.61

N = 1
v + τ = 5.06

N = 11
v = 3.3
τ = 6.7

δ = 2 N = 11
v = 2.4
τ = 2.7

N = 11
v = 2.35
τ = 2.65

N = 10
v = 2.1
τ = 2.15

N = 11
v = 2.23
τ = 2.3

N = 11
v = 3.29
τ = 4.85

cM/cI = 2

δ = 0.125 N = 1
v + τ = 4.37

N = 1
v + τ = 4.22

N = 1
v + τ = 3.66

N = 1
v + τ = 4.01

N = 11
v = 1.05
τ = 8.59

δ = 0.5 N = 1
v + τ = 4.37

N = 1
v + τ = 4.22

N = 1
v + τ = 3.66

N = 1
v + τ = 4.01

N = 11
v = 2.23
τ = 7.67

δ = 1 N = 1
v + τ = 4.37

N = 1
v + τ = 4.22

N = 1
v + τ = 3.66

N = 1
v + τ = 4.01

N = 10
v = 2.85
τ = 5.46

δ = 2 N = 11
v = 2.06
τ = 2.11

N = 11
v = 2.03
τ = 2.09

N = 10
v = 1.89
τ = 1.74

N = 10
v = 1.99
τ = 1.86

N = 11
v = 2.96
τ = 4.15
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3. System with two Failure Types

i.e. the cost optimal v is decreasing, and the lower is the distance between PM
actions, i.e. the cost optimal τ is decreasing too. Therefore, it is favorable to do
a good and more frequent PM instead of doing more minimal repairs.

Note that if the cost optimal N is 1, the optimal maintenance strategy is to do no
PM actions and to replace the system every v + τ time units. Hence, the average
maintenance costs from (3.36) reduce to (cME(Zv+τ ) + cR)/E(Lv,τ,1) and the mean

cycle length in this special case is E(Lv,τ,1) = v+τ −
∫ v+τ

0
F T

′′
1 (t)dt. Thus, the optimal

maintenance strategy is not unique because different combinations of v and τ that lead
to the same sum v + τ also lead to the same average maintenance costs. Therefore, if
the optimal N is 1, it is proper to show the optimal sum v + τ instead of the optimal
single values for v and τ .

3.5.2. Costs Proportional to the State before Repair

Suppose the cost function cPM depends on the state just before PM. It holds

cPM(v, τ) = cS

(
1

v + τ

)δ
, (3.39)

where δ > 0 and cS > 0 is a constant cost value. This function is described in detail
in Subsection 2.7.2. It is assumed that the costs of a replacement are equal to cS,
i.e. cR = cS. In the following, the optimal values for v and τ and the optimal N are
computed for different cost ratios cM/cS and different δ. The numerical results are
given in Table 3.2. These results lead to the following conclusions:

1. The smaller δ, the more expensive are PM actions. Therefore, with rising δ it
becomes cost optimal to do more PM actions, i.e. the cost optimal N is rising.

2. The lower the costs of PM compared to the costs of a minimal repair, i.e. the
higher the ratio cM/cS, the lower is the distance between PM actions, i.e. the
cost optimal τ is decreasing. Therefore, it is favorable to do PM more often,
instead of doing more minimal repairs.

3. Since the cost difference between good and less good PM actions is comparatively
small (see e.g. Figure 2.7 (b)), it is for the LFRD, RD, WD and MWD cost
optimal to do perfect PM actions, i.e. v = 0. The same is not true for the
RMWD because of the higher failure rate at lower ages and the associated larger
number of type 1 failures.

4. The LFRD and RD lead nearly to the same optimal solutions. The same holds
for the WD and the MWD.

3.5.3. Costs Proportional to the Degree of Repair - 1

In this subsection it is assumed that the costs of a PM action are proportional to the
degree of repair ξ(v, τ). Here a Kijima type II model is considered and therefore the
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3.5. Example for Cost Optimal Maintenance

Table 3.2.: Optimal values in case of costs proportional to the state before repair

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cS = 0.5

δ = 0.125 N = 8
v = 0
τ = 7.54

N = 11
v = 0
τ = 7.48

N = 9
v = 0
τ = 5.85

N = 9
v = 0
τ = 5.91

N = 10
v = 0.22
τ = 13.32

δ = 0.5 N = 10
v = 0
τ = 6.83

N = 10
v = 0
τ = 6.8

N = 11
v = 0
τ = 5.1

N = 11
v = 0
τ = 5.3

N = 11
v = 0.44
τ = 10.02

δ = 1 N = 11
v = 0
τ = 5.28

N = 11
v = 0
τ = 5.17

N = 11
v = 0
τ = 4.42

N = 11
v = 0
τ = 5.02

N = 11
v = 0.56
τ = 8.89

δ = 2 N = 11
v = 0
τ = 4.12

N = 11
v = 0
τ = 4.04

N = 11
v = 0
τ = 3.71

N = 11
v = 0
τ = 3.95

N = 11
v = 0.76
τ = 6.99

cM/cS = 1

δ = 0.125 N = 9
v = 0
τ = 5.64

N = 9
v = 0
τ = 5.66

N = 8
v = 0
τ = 4.48

N = 11
v = 0
τ = 5.02

N = 8
v = 0.36
τ = 10.68

δ = 0.5 N = 11
v = 0
τ = 4.93

N = 11
v = 0
τ = 4.81

N = 10
v = 0
τ = 4.15

N = 10
v = 0
τ = 4.47

N = 11
v = 0.54
τ = 8.9

δ = 1 N = 11
v = 0
τ = 4.56

N = 11
v = 0
τ = 4.62

N = 11
v = 0
τ = 3.76

N = 11
v = 0
τ = 4.03

N = 10
v = 0.73
τ = 7.44

δ = 2 N = 11
v = 0
τ = 3.42

N = 11
v = 0
τ = 3.35

N = 11
v = 0
τ = 3.21

N = 11
v = 0
τ = 3.41

N = 11
v = 0.94
τ = 5.93

cM/cS = 2

δ = 0.125 N = 11
v = 0
τ = 4.56

N = 8
v = 0
τ = 4.08

N = 10
v = 0
τ = 3.76

N = 10
v = 0
τ = 3.92

N = 11
v = 0.52
τ = 8.91

δ = 0.5 N = 10
v = 0
τ = 3.81

N = 10
v = 0
τ = 3.72

N = 11
v = 0
τ = 3.41

N = 10
v = 0
τ = 3.7

N = 10
v = 0.72
τ = 7.32

δ = 1 N = 11
v = 0
τ = 3.4

N = 11
v = 0
τ = 3.32

N = 11
v = 0
τ = 3.17

N = 11
v = 0
τ = 3.4

N = 11
v = 0.93
τ = 6.21

δ = 2 N = 11
v = 0
τ = 2.83

N = 11
v = 0
τ = 2.78

N = 11
v = 0
τ = 2.77

N = 11
v = 0
τ = 2.94

N = 11
v = 1.12
τ = 5.01
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3. System with two Failure Types

degree of repair corresponds to

ξ(v, τ) =
v

v + τ
. (3.40)

The following cost function is used

cPM(v, τ) = cR
(
1− ξ(v, τ)δ

)
, (3.41)

where δ > 0 and cR > 0 are the costs of a replacement. This function is described
in detail in Subsection 2.7.3. In the following, the optimal values for v and τ and
the optimal number of PM actions before a preventive replacement takes place are
computed for different cost ratios cM/cR and different δ. The numerical results are
given in Table 3.3. Note that if the cost optimal N is 1, there are many cost optimal
values of v and τ , namely the cost optimal values of v and τ form a fixed sum (see the
end of Subsection 3.5.1 for a detailed explanation).

v

τ

0.4 0.6 0.8 1.0 1.2

2.
0

2.
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0

Figure 3.3.: Average maintenance costs for the MWD (α = 0.03, β = 0.004335, γ = 3) if
N = 10, cR = 500, cM = 1000, p = 0.1 and δ = 0.5.

The contour plot in Figure 3.3 shows the dependency of the average maintenance costs
on v and τ for the MWD(α = 0.03, β = 0.004335, γ = 3), the ratio of costs cM/cR = 2,
p = 0.1, N = 10, δ = 0.5 and cost function for PM (3.41).
The numerical results in Table 3.3 lead to the following conclusions:

1. If τ does not tend to zero it holds that the higher δ, the more expensive are the
PM actions. Therefore, with rising δ it becomes cost optimal to do less PM, i.e.
N is decreasing.

2. The lower the costs of a renewal compared to the costs of a minimal repair, i.e.
the higher the ratio cM/cR, the less expensive are the costs for PM compared to
the costs of a minimal repair. Therefore, with rising ratio cM/cR the cost optimal
distance between PM actions becomes shorter, i.e. τ is decreasing, and the PM
actions become better, i.e. v is decreasing too. Hence, it is favorable to do good
PM actions more often, instead of doing more minimal repairs.
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Table 3.3.: Optimal values in case of costs proportional to the degree of repair - 1

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cR = 0.5

δ = 0.125 N = 11
v = 0.84
τ = 3.52

N = 11
v = 0.81
τ = 3.61

N = 11
v = 0.84
τ = 2.66

N = 11
v = 0.93
τ = 2.88

N = 11
v = 2.18
τ = 7.71

δ = 0.5 N = 11
v = 0.85
τ = 6.63

N = 11
v = 0.81
τ = 6.6

N = 11
v = 1.07
τ = 3.88

N = 11
v = 1.27
τ = 3.77

N = 9
v = 2.11
τ = 10.94

δ = 1 N = 9
v = 0
τ = 9.41

N = 9
v = 0
τ = 9.29

N = 9
v = 0
τ = 5.85

N = 10
v = 0
τ = 6.73

N = 11
v = 0.57
τ = 13.66

cM/cR = 1

δ = 0.125 N = 11
v = 0.61
τ = 2.48

N = 11
v = 0.59
τ = 2.4

N = 11
v = 0.68
τ = 2.15

N = 11
v = 0.74
τ = 2.36

N = 10
v = 1.91
τ = 5.59

δ = 0.5 N = 9
v = 0.61
τ = 4.87

N = 11
v = 0.7
τ = 3.97

N = 10
v = 0.89
τ = 2.9

N = 10
v = 0.99
τ = 3.14

N = 11
v = 2.25
τ = 7.65

δ = 1 N = 4
v = 0
τ = 6.23

N = 4
v = 0
τ = 6.37

N = 8
v = 0
τ = 4.58

N = 11
v = 0
τ = 5.02

N = 9
v = 0.58
τ = 12.21

cM/cR = 2

δ = 0.125 N = 11
v = 0.43
τ = 1.8

N = 11
v = 0.42
τ = 1.74

N = 11
v = 0.54
τ = 1.72

N = 11
v = 0.59
τ = 1.89

N = 11
v = 1.83
τ = 4.4

δ = 0.5 N = 10
v = 0.51
τ = 3.02

N = 10
v = 0.49
τ = 2.93

N = 11
v = 0.74
τ = 2.25

N = 10
v = 0.78
τ = 2.53

N = 11
v = 2.09
τ = 5.57

δ = 1 N = 11
v = 0
τ = 4.56

N = 6
v = 0
τ = 4.23

N = 10
v = 0
τ = 3.76

N = 8
v = 0
τ = 4.01

N = 11
v = 0.93
τ = 8.67
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3. System with two Failure Types

3. The cost optimal values of v for the RMWD are higher than for the other distri-
butions because of the higher failure rate at lower ages. The cost optimal values
of τ for the RMWD are also higher than for the other distributions. The rea-
son for this is that the failure rate for this distribution remains for a while at a
relatively low level before it starts increasing again.

3.5.4. Costs Proportional to the Degree of Repair - 2

Like in the previous subsection it is assumed that the costs for a PM action are pro-
portional to the degree of repair ξ(v, τ). Again a Kijima type II model is considered
and therefore the degree of repair corresponds to (3.40). The following cost function is
used

cPM(v, τ) = cR (1− ξ(v, τ) exp (ξ(v, τ)− 1))δ , (3.42)

where δ > 0 and cR > 0 are the costs of a replacement. This function is described in
detail in Subsection 2.7.4.
In the following, the cost optimal values for v and τ and the optimal number of PM
actions before a preventive replacement takes place are computed for different cost
ratios cM/cR and different δ. The numerical results are given in Table 3.4. As before,
if the cost optimal N is 1, there are many cost optimal values of v and τ (see Subsection
3.5.1 for a detailed explanation).
The numerical results in Table 3.4 lead to the following conclusions:

1. The higher δ, the less expensive are PM actions. Therefore, with rising δ it
becomes cost optimal to do more PM, i.e. N is increasing. Since also the cost
difference between good and less good maintenance actions becomes higher with
rising δ, for small values of δ it is cost optimal to do even perfect PM actions and
for high values of δ it is cost optimal to do less good PM actions.

2. The lower the costs of a renewal compared to the costs of a minimal repair, i.e.
the higher the ratio cM/cR, the less expensive are the costs for PM and the shorter
is the distance between PM actions, i.e. the smaller is τ , and the better are the
PM actions, i.e. v is decreasing.

3. In contrast to the other lifetime distributions, for the RMWD it is not even for
small values of δ cost optimal to do perfect PM actions because of the higher
failure rate at lower ages. The cost optimal values of τ for the RMWD are higher
than for the other distributions. The reason for this is that the failure rate for this
distribution remains for a while at a relatively low level before it starts increasing
again.
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Table 3.4.: Optimal values in case of costs proportional to the degree of repair - 2

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cR = 0.5

δ = 0.5 N = 9
v = 0
τ = 9.41

N = 9
v = 0
τ = 9.29

N = 9
v = 0
τ = 5.85

N = 10
v = 0
τ = 6.73

N = 11
v = 0.23
τ = 13.86

δ = 1 N = 9
v = 0
τ = 9.41

N = 9
v = 0
τ = 9.29

N = 9
v = 0
τ = 5.85

N = 10
v = 0
τ = 6.73

N = 11
v = 0.31
τ = 13.82

δ = 2 N = 9
v = 0
τ = 9.41

N = 9
v = 0
τ = 9.29

N = 11
v = 3.84
τ = 0.35

N = 11
v = 4.19
τ = 0.38

N = 11
v = 0.4
τ = 13.77

δ = 3 N = 11
v = 3.93
τ = 0.85

N = 11
v = 3.86
τ = 0.79

N = 11
v = 2.9
τ = 0.66

N = 11
v = 3.18
τ = 0.72

N = 11
v = 7.15
τ = 1.75

cM/cR = 1

δ = 0.5 N = 4
v = 0
τ = 6.23

N = 4
v = 0
τ = 6.37

N = 8
v = 0
τ = 4.58

N = 11
v = 0
τ = 5.02

N = 8
v = 0.36
τ = 10.68

δ = 1 N = 4
v = 0
τ = 6.23

N = 4
v = 0
τ = 6.37

N = 8
v = 0
τ = 4.58

N = 11
v = 0
τ = 5.02

N = 8
v = 0.42
τ = 10.64

δ = 2 N = 11
v = 4.13
τ = 0.28

N = 11
v = 4.03
τ = 0.26

N = 11
v = 3.06
τ = 0.27

N = 11
v = 3.34
τ = 0.31

N = 11
v = 7.47
τ = 0.9

δ = 3 N = 11
v = 2.87
τ = 0.56

N = 11
v = 2.71
τ = 0.57

N = 11
v = 2.32
τ = 0.52

N = 11
v = 2.54
τ = 0.57

N = 11
v = 5.92
τ = 1.5

cM/cR = 2

δ = 0.5 N = 11
v = 0
τ = 4.56

N = 6
v = 0
τ = 4.23

N = 10
v = 0
τ = 3.76

N = 8
v = 0
τ = 4.01

N = 11
v = 0.54
τ = 8.9

δ = 1 N = 11
v = 0
τ = 4.56

N = 6
v = 0
τ = 4.23

N = 10
v = 0
τ = 3.76

N = 8
v = 0
τ = 4.01

N = 11
v = 0.6
τ = 8.87

δ = 2 N = 11
v = 2.98
τ = 0.2

N = 11
v = 2.85
τ = 0.18

N = 11
v = 2.42
τ = 0.22

N = 11
v = 2.66
τ = 0.24

N = 11
v = 0.82
τ = 8.74

δ = 3 N = 11
v = 1.99
τ = 0.42

N = 11
v = 1.92
τ = 0.41

N = 11
v = 1.85
τ = 0.41

N = 11
v = 2.02
τ = 0.46

N = 11
v = 4.85
τ = 1.29
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4. System with one Failure Type and
Imperfect PM and CM

Most of the imperfect maintenance models that have been investigated in literature use
either imperfect preventive maintenance actions or imperfect corrective maintenance
actions. Only a few models uses both imperfect preventive and imperfect corrective
maintenance actions (such as Wang and Pham [48] and Lie and Chun [27]). Such a
maintenance effect modeling forms the basis of the maintenance model in this chapter.
In this chapter a sequential failure limit PM policy in the sense of [17, p. 765] with
infinite planning horizon and with imperfect preventive and imperfect corrective main-
tenance actions is used to formulate a cost optimization problem.
This chapter is structured as follows. Section 4.1 and Section 4.2 contain essential
assumptions and definitions which are needed to formulate the cost optimization prob-
lem in Section 4.3. Finally, in Section 4.4 different cost functions for PM actions are
used to solve the cost optimization problem. Furthermore, the results are computed
for several continuous lifetime distributions.

4.1. Modeling the System

In this chapter the underlying repairable system has the following properties.

1. Initially a new repairable system is installed.

2. The system has only one failure type which can be removed through imperfect
repair actions.

3. The repair times are negligible small.

4.2. Maintenance Policy

The maintenance strategy which is described here is designed for an infinite time hori-
zon. The following assumptions are made.

1. All failures that occurred after installation during the time interval (0, v] are
removed through minimal repair.

2. If there is a failure during the time interval (v, v+ τ) a CM action is carried out.
Otherwise a PM at time v + τ will be carried out.

3. If there is no failure during the pre-defined time interval of length τ > 0 after a
maintenance action, a PM will be carried out.
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4.3. Cost Optimization Problem

4. If a failure occurs during the time interval of the length τ > 0 after a maintenance
action, a CM is carried out.

5. The virtual age of the system after both PM and CM actions is always v ≥ 0.
But since PM actions can be planned, they are assumed to be more cost effective
than unplanned CM actions.

6. Suppose c1, c2, . . . are the realizations of the general maintenance times, i.e. the
times of the CM and PM actions, with c1, c2, · · · ≥ v and ck < ck+1 for k ≥ 1. In
terms of Kijima type II model the degree of the kth repair is

ξk(v, ck, ck−1) =
v

v + ck − ck−1

, (4.1)

for k ≥ 1.

This maintenance policy is a sequential failure limit policy (see [17, p. 765]) because
an alternative formulation of Assumption 2 might be: A PM is performed when the
failure intensity reaches the predetermined level λN

∗
(v + τ).

Note that if v = 0, both PM and CM actions are perfect. This is the only case for
which PM and CM actions have the same degree of repair, in fact ξk = 0 for all k ≥ 1.
Since simultaneous failures are excluded and τ > 0, the interval between two mainte-
nance actions is always greater than zero, i.e. ck − ck−1 > 0 for all k ≥ 1. Therefore,
it is not possible to have minimal CM or PM actions, i.e. ξk < 1 for all k ≥ 1. But
if τ tend to zero or a failure occurs directly after a maintenance actions, the degree of
repair can have values close to one.
Note that if the kth repair is a PM action, the degree of repair for this PM actions is
v/(v + τ) since a PM action is only carried out if there was no failure during a time
interval of length τ , i.e. ck − ck−1 = τ . However, the degree of repair of CM actions is
always greater than or equal the degree of repair of PM actions since ck − ck−1 < τ .

4.3. Cost Optimization Problem

Consider a technical system which is maintained with maintenance policy described
in Section 4.2. The aim of this section is to formulate a cost optimization problem.
The optimization criterion are the average maintenance costs per unit time. For this
purpose, the expected maintenance costs per cycle are set in relation to the mean
cycle length. Here the cycle length is the time between two maintenance actions. For
reasons of simplification, the time between the startup of the system and the age of v
is excluded in the following from the modeling of the cost optimization problem.
Suppose N∗ = (N∗t )t≥0 is the failure counting process, i.e. N∗t is the random number
of failures of a repairable system with PM in the interval [0, t].

Lemma 4.1 (Intensity Function of N∗ = (N∗t )t≥0)
Suppose c1, c2, . . . are realizations of the general maintenance times. The intensity
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4. System with one Failure Type and Imperfect PM and CM

function of the counting process N∗ = (N∗t )t≥0 is then

λN
∗
(t) =


0 , if t < 0

hT1(t) , if t ∈ [0, c1)

hT1(v + t− ck) , if t ∈ [ck, ck+1), k ≥ 1,

(4.2)

where hT1(·) is the hazard function of the time to the first failure of a new system
without maintenance actions.

t

λN
* (t

)

0 v c1 = v + τ c2 c3 c4 = c3 + τ c5 c6 = c5 + τ

0
λN

* (v
)

0
λN

* (v
+

τ)

Figure 4.1.: Exemplary shape of the intensity function for the WD(β = 0.0057, γ = 3).

In Figure 4.1 an exemplary shape of the intensity function is plotted for the WD with
expectation 5. Here CM is carried out at maintenance times c2, c3 and c5 and PM is
performed at c1, c4 and c6.
For the computation of the expected maintenance costs per cycle it is necessary to
compute the probability that a failure occurs within τ time units after a maintenance
action.

Lemma 4.2 (Distribution function of T v)
Let T1 be the random time of the first failure of a repairable system without maintenance.
Suppose T v is the remaining lifetime of the system after a maintenance action that
reduces the virtual age of the system to v. Then T v is a truncated random variable with
the following cumulative distribution function

F T v(t) = P (T v ≤ t) =
F T1(v + t)− F T1(v)

1− F T1(v)
, ∀t ≥ 0. (4.3)

Suppose the random cycle length Lv,τ is the random time between two maintenance
actions. Therefore, it is either the time between two PM actions or the time between
CM and PM actions. It holds

Lv,τ = min{T v, τ}

{
< τ , with P (T v < τ) = P (T1 < v + τ |T1 ≥ v)

= τ , with P (T v ≥ τ) = 1− P (T1 < v + τ |T1 ≥ v)
, (4.4)
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for all τ ≥ 0. Then for the cumulative distribution function of Lv,τ it holds

FLv,τ (t) = P (Lv,τ ≤ t) =


0 , if t < 0

F T1(v + t|T1 ≥ v) , if 0 ≤ t < τ

1 , if t ≥ τ

. (4.5)

Theorem 4.3 (Mean Cycle Length)
For the expected cycle length it holds

E(Lv,τ ) =

∫ τ

0

F̄ T1(v + t|T1 ≥ v)dt. (4.6)

Proof. The mean cycle length (4.6) is derived by using Remark 2.1.

0 5 10 15 20

0
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τ = 1
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Figure 4.2.: Mean cycle length for the LFRD(α = 0.01, β = 0.02944).

In Figure 4.2 the mean cycle length is plotted for the LFRD with expectation 5. Note
that the mean cycle length for v = 0 is bounded from above by min{τ, E(T1)}.

Definition 4.1 (Cost Optimization Problem)
Let cCM denotes the costs of a CM action and cPM the costs of a PM action. The
average maintenance costs per unit time are

C(v, τ) =
cCMP (Lv,τ < τ) + cPMP (Lv,τ = τ)

E(Lv,τ )

(4.5)(4.6)
=

cCMF
T1(v + τ |T1 ≥ v) + cPM F̄

T1(v + τ |T1 ≥ v)∫ τ
0
F̄ T1(v + t|T1 ≥ v)dt

. (4.7)

The optimization problem then has the following form

min
v∈[0,∞), τ∈(0,∞)

C(v, τ). (4.8)
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4. System with one Failure Type and Imperfect PM and CM

Note that the extreme case τ = 0 is excluded from optimization problem. The value
τ = 0 would lead to a degree of repair of one, which can be interpreted as minimal PM
actions and it is not reasonable to do such maintenance actions. However, the other
extreme case of perfect PM actions, i.e. v = 0, is still part of the cost optimization
problem.

4.4. Example for Cost Optimal Maintenance

The costs of CM and PM actions in optimization problem (4.4) are yet unspecified. In
this section a part of the cost functions introduced in Section 2.7 are used to model
the costs of PM and CM actions. Then, the cost optimal parameter v and τ are com-
puted with R for different continuous lifetime distributions that have all an expected
value of 5. Since the optimal solution of optimization problem could not be computed
analytically, complete enumeration is used to determine the cost optimal maintenance
strategies.

4.4.1. Costs Proportional to the Impact of Repair

Suppose the costs of maintenance actions depends only on the virtual age of the system
after the maintenance action, i.e. the cost functions for PM and CM are

cPM(v) = cI

(
1

v

)δ
, (4.9)

cCM(v) = cF + cI

(
1

v

)δ
, (4.10)

where v > 0, δ > 0, cI > 0 is a constant cost value and cF > 0 is the fixed amount
by which the costs of CM are higher than for PM. The cost function is described in
detail in Subsection 2.7.1. In Figure 4.3 and Figure 4.4 the resulting total costs are
plotted for different values of δ. It can be seen that if v < 1 and τ is fix, the average
maintenance costs increase with increasing δ. If v = 1 and τ is fix, the total costs are
independent of δ. Further, if v > 1 and τ is fix, the average maintenance costs decrease
with increasing δ. Note that in case of costs proportional to the impact of repair the
extreme case v = 0 is excluded from optimization problem (4.4).
The cost optimal values for v and τ are computed for different cost ratios cF/cI and
different δ. The numerical results in Table 4.1 lead to the following conclusions:

1. The higher the amount by which the costs of CM are higher than for PM, i.e.
the higher the ratio cF/cI , the better are the maintenance actions, i.e. v is
decreasing, and the shorter is the interval before a PM action is carried out, i.e.
τ is decreasing.

2. Only for δ = 0.125 it is cost optimal to do very good maintenance actions with
v < 1. For higher δ these maintenance actions are to expensive so that it is cost
optimal to have higher values of v. Compared to the other lifetime distributions
the cost optimal v for the RMWD is always higher. The reason for this lies in
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Table 4.1.: Optimal values in case of costs proportional to the impact of repair

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cI = 0.05

δ = 0.125 v = 0.68
τ = 31.36

v = 0.64
τ = 30.7

v = 0.54
τ = 20.76

v = 0.63
τ = 22.28

v = 2.39
τ = 45.78

δ = 0.5 v = 3.42
τ = 37.18

v = 3.24
τ = 35.83

v = 1.9
τ = 22.57

v = 2.16
τ = 24.14

v = 6.04
τ = 23.64

δ = 1 v = 7.78
τ = 40.5

v = 7.49
τ = 36.64

v = 3.39
τ = 10.06

v = 3.8
τ = 10.66

v = 8.58
τ = 13.86

δ = 2 v = 6.42
τ = 5.77

v = 6.31
τ = 5.7

v = 4.28
τ = 3.98

v = 4.55
τ = 4.14

v = 7.51
τ = 5.86

cF /cI = 0.1

δ = 0.125 v = 0.64
τ = 31.22

v = 0.61
τ = 30.62

v = 0.52
τ = 11.91

v = 0.61
τ = 13.44

v = 2.32
τ = 26.04

δ = 0.5 v = 3.07
τ = 37.01

v = 2.92
τ = 35.87

v = 1.8
τ = 10.4

v = 2.04
τ = 11.42

v = 5.61
τ = 18.79

δ = 1 v = 5.85
τ = 15.25

v = 5.65
τ = 14.99

v = 3.04
τ = 7.11

v = 3.38
τ = 7.55

v = 7.38
τ = 11.13

δ = 2 v = 5.07
τ = 4.65

v = 4.98
τ = 4.59

v = 3.61
τ = 3.31

v = 3.85
τ = 3.45

v = 6.45
τ = 5.12

cF /cI = 0.2

δ = 0.125 v = 0.59
τ = 23.25

v = 0.56
τ = 22.06

v = 0.49
τ = 8.66

v = 0.56
τ = 9.74

v = 2.19
τ = 20.83

δ = 0.5 v = 2.61
τ = 18.67

v = 2.49
τ = 18.02

v = 1.64
τ = 7.47

v = 1.85
τ = 8.18

v = 4.99
τ = 14.78

δ = 1 v = 4.35
τ = 9.68

v = 4.21
τ = 9.49

v = 2.62
τ = 5.29

v = 2.89
τ = 5.64

v = 6.18
τ = 9.11

δ = 2 v = 4.07
τ = 3.8

v = 3.99
τ = 3.76

v = 3.08
τ = 2.79

v = 3.28
τ = 2.93

v = 5.55
τ = 4.47
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Figure 4.3.: Average maintenance costs for the LFRD(α = 0.01, β = 0.02944) if cI =
1000 and cF/cI = 0.1.
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Figure 4.4.: Average maintenance costs for the LFRD(α = 0.01, β = 0.02944) if cI =
1000, cF/cI = 0.1 and τ = 1.

the bathtub shape of the failure rate for the RMWD and the related high failure
rate at lower ages.

3. With rising δ good maintenance actions becomes more expensive compared to
less good maintenance actions. Therefore, with rising δ it becomes cost optimal
to do less good maintenance actions more often, i.e. v tend to increase and τ
is decreasing. This trend can reverse for large δ since the maintenance costs for
v > 1 are decreasing if δ is increasing.
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4.4.2. Costs Proportional to the State before Repair

Suppose the cost function cPM depends on the state just before PM. It holds

cPM(v, τ) = cS

(
1

v + τ

)δ
, (4.11)

where δ > 0 and cS > 0 is a constant cost value. This cost function is described in
detail in Subsection 2.7.2. For CM it is assumed that the costs of a CM action that
takes place t time units after the previous maintenance action are cF + cS (1/(v + t))δ.
Here cF > 0 is a fixed amount, by which the costs of CM are higher than for PM. The
following cost function is used for CM actions

cCM(v, τ) =

∫ τ

0

(
cF + cS

(
1

v + t

)δ)
fT

v

(t|T v ≤ τ)dt. (4.12)

In Figure 4.5 the resulting total costs as a function of v are plotted for different values
of τ and δ. It can be seen that if δ = 2, the average maintenance costs for very small
values of v are very high. This results from the high costs of CM actions if v + t < 1
and δ = 2.
In the following the optimal values for v and τ are computed for different cost ratios
cF/cS and different δ. The numerical results are given in Table 4.2. These results lead
to the following conclusions:
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Figure 4.5.: Average maintenance costs for the LFRD(α = 0.01, β = 0.02944) if cS =
1000 and cF/cS = 0.1.
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4. System with one Failure Type and Imperfect PM and CM

Table 4.2.: Optimal values in case of costs proportional to the state before repair

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cS = 0.05

δ = 0.125 v = 0
τ = 37.91

v = 0
τ = 23.31

v = 0
τ = 39.65

v = 0
τ = 23.47

v = 1.34
τ = 46.08

δ = 0.5 v = 0.01
τ = 31.73

v = 0
τ = 32.04

v = 0
τ = 11.74

v = 0.07
τ = 13.59

v = 3.27
τ = 24.41

δ = 1 v = 0.79
τ = 29.32

v = 0
τ = 23.75

v = 0
τ = 9.08

v = 0.5
τ = 10.25

v = 5.26
τ = 15.37

δ = 2 v = 3.33
τ = 6.94

v = 3.18
τ = 6.91

v = 0
τ = 6.33

v = 1.5
τ = 5.65

v = 4.87
τ = 7.13

cF /cS = 0.1

δ = 0.125 v = 0
τ = 37.78

v = 0
τ = 22.77

v = 0
τ = 10.66

v = 0
τ = 23.34

v = 1.31
τ = 26.01

δ = 0.5 v = 0.01
τ = 31.73

v = 0
τ = 20.46

v = 0
τ = 8.86

v = 0.06
τ = 10.14

v = 3.01
τ = 19.56

δ = 1 v = 0.43
τ = 14.67

v = 0
τ = 13.99

v = 0
τ = 7.15

v = 0.43
τ = 7.89

v = 4.37
τ = 12.46

δ = 2 v = 2.13
τ = 5.76

v = 1.98
τ = 5.74

v = 0
τ = 5.26

v = 1.18
τ = 4.77

v = 4.04
τ = 6.24

cF /cS = 0.2

δ = 0.125 v = 0
τ = 37.56

v = 0
τ = 16.92

v = 0
τ = 7.97

v = 0
τ = 9.02

v = 1.26
τ = 20.84

δ = 0.5 v = 0.01
τ = 13.09

v = 0
τ = 12.31

v = 0
τ = 6.88

v = 0.05
τ = 7.78

v = 2.63
τ = 15.52

δ = 1 v = 0.23
τ = 9.53

v = 0
τ = 9.11

v = 0
τ = 5.77

v = 0.35
τ = 6.27

v = 3.53
τ = 10.23

δ = 2 v = 1.37
τ = 4.81

v = 1.22
τ = 4.81

v = 0
τ = 4.44

v = 0.93
τ = 4.09

v = 3.39
τ = 5.45
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1. The lower δ the higher are the costs of PM and CM actions. Therefore, with
decreasing δ it becomes costs optimal to do maintenance actions less often, i.e.
v is decreasing and τ is increasing.

2. The higher the amount by which the costs of CM are higher than for PM, i.e.
the higher the ratio cF/cS, the cost optimal interval length until a PM is done
becomes shorter, i.e. the cost optimal τ is decreasing, and the better are PM
actions, i.e. the cost optimal v is decreasing too. Therefore, it becomes more
likely that no failure occurs in the time interval of length τ .

3. Since the cost difference between good and less good PM actions is comparatively
small (see e.g. Figure 2.7 (b)), for the LFRD, RD, WD and MWD it is cost
optimal to do mostly perfect PM and CM actions, i.e. v = 0. The same is not
true for the RMWD because of the higher failure rate at lower ages.

4. Compared to the other lifetime distributions the cost optimal v for the WD is
zero for all values of δ. Because of the very low failure rate at lower ages, the high
costs of CM actions with small values of v and τ if, for example, δ = 2, get a low
weight in equation (4.12). Thus, compared to the other lifetime distributions for
the WD it needs higher values of δ that the cost optimal v is greater than zero.

4.4.3. Costs Proportional to the Degree of Repair - 1

In this subsection it is assumed that the costs of maintenance actions are proportional
to the degree of repair. Here a Kijima type II model is considered and therefore the
degree of the kth repair corresponds to (4.1). Since PM actions are always carried
out after τ time units without maintenance actions, the degree of repair for every PM
action is v

v+τ
.

Although both PM and CM actions reduce the virtual age of the system to v, it is as-
sumed that CM actions are slightly more expensive than PM actions. This assumption
makes sense since corrective maintenance actions are generally more expensive than
planned maintenance actions. The following cost function is used for PM actions

cPM(v, τ) = cR

(
1−

(
v

v + τ

)δ)
, (4.13)

where δ > 0 and cR > 0 are the costs of a replacement. This function is described in
detail in Subsection 2.7.3. For CM it is assumed, that the costs for a CM action, that

takes place t time units after the previous maintenance action, are cF +cR

(
1−

(
v
v+t

)δ)
.

Here cF is the fixed amount, by which the costs of CM are higher than for PM. The
following cost function is used for CM actions

cCM(v, τ) =

∫ τ

0

(
cF + cR

(
1−

(
v

v + t

)δ))
fT

v

(t|T v ≤ τ)dt. (4.14)

Although each costs of PM and costs of CM increase with increasing τ , this does not
apply for the total costs C(v, τ). To get the total costs, the probability weighted costs
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4. System with one Failure Type and Imperfect PM and CM

of maintenance actions are divided by the mean cycle length, which is also increasing
with increasing τ . Therefore, it is non-obvious how the total costs depend on τ .
In Figure 4.6 the resulting total costs are plotted for the LFRD, cR = 1000 and cF/cR =
0.1. Here it can be seen that for a fixed τ the total costs can be both increasing and
decreasing with increasing v. This especially depends on δ. For every δ and τ the
average maintenance costs per unit time have a limit as v approaches infinity, since
both the costs for maintenance actions and the mean cycle length have a limit as v
approaches infinity.
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Figure 4.6.: Average maintenance costs for the LFRD(α = 0.01, β = 0.02944) if cR =
1000 and cF/cR = 0.1.

In the following the optimal values for v and τ are computed for different cost ratios
cF/cR and different δ. The numerical results are given in Table 4.3. These results lead
to the following conclusions:

1. The higher δ, the more expensive are PM actions. Therefore, with rising δ it
becomes cost optimal to do less PM, i.e. τ is increasing.

2. Initially the higher δ, the more expensive are even relatively small repairs, i.e.
repairs with large v. That is why with higher δ, the higher is the optimal v. At
a certain point this turns around, because the cost difference between small and
large maintenance actions becomes smaller. Therefore, it is cost optimal to do
even perfect repairs with v = 0. This does not apply for the RMWD because of
the higher failure rate at lower ages.
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Table 4.3.: Optimal values in case of costs proportional to the degree of repair - 1

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cR = 0.05

δ = 0.125 v = 5.63
τ = 1.93

v = 5.44
τ = 1.88

v = 3.71
τ = 0.95

v = 4.07
τ = 1.03

v = 9
τ = 1.94

δ = 0.5 v = 11.19
τ = 7.16

v = 10.81
τ = 6.96

v = 5.23
τ = 3.44

v = 5.78
τ = 3.71

v = 12.37
τ = 5.98

δ = 1 v = 16.29
τ = 13.47

v = 15.75
τ = 13.03

v = 6.61
τ = 5.44

v = 7.32
τ = 5.86

v = 14.69
τ = 8.72

δ = 2 v = 23.43
τ = 12.12

v = 22.66
τ = 11.94

v = 0
τ = 19.91

v = 0
τ = 21.5

v = 16.87
τ = 12.33

cF /cR = 0.1

δ = 0.125 v = 3.88
τ = 1.5

v = 3.75
τ = 1.46

v = 2.92
τ = 0.78

v = 3.2
τ = 0.86

v = 7.19
τ = 1.69

δ = 0.5 v = 7
τ = 6.18

v = 6.75
τ = 6.01

v = 3.63
τ = 3.39

v = 4.06
τ = 3.61

v = 9.5
τ = 5.98

δ = 1 v = 10.17
τ = 10.88

v = 9.8
τ = 10.58

v = 3.98
τ = 5.78

v = 4.58
τ = 6.06

v = 10.96
τ = 9.11

δ = 2 v = 14.59
τ = 36.28

v = 14.06
τ = 35.56

v = 0
τ = 11.34

v = 0
τ = 12.92

v = 11.7
τ = 13.56

cF /cR = 0.2

δ = 0.125 v = 2.7
τ = 1.12

v = 2.61
τ = 1.09

v = 2.3
τ = 0.65

v = 2.53
τ = 0.69

v = 5.77
τ = 1.38

δ = 0.5 v = 4.14
τ = 5.37

v = 3.97
τ = 5.25

v = 2.49
τ = 3.19

v = 2.82
τ = 3.37

v = 7.17
τ = 5.71

δ = 1 v = 5.49
τ = 9.43

v = 5.22
τ = 9.23

v = 0.83
τ = 7.32

v = 2.1
τ = 6.55

v = 7.75
τ = 9.21

δ = 2 v = 0
τ = 20.21

v = 0
τ = 19.1

v = 0
τ = 8.37

v = 0
τ = 9.48

v = 6.56
τ = 14.77
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3. The higher the amount by which the costs of CM are higher than for PM, i.e.
the higher the ratio cF/cR, the better are PM actions, i.e. the cost optimal v is
decreasing. Therefore, it becomes more likely that no failure occurs in the time
interval of length τ .

4.4.4. Costs Proportional to the Degree of Repair - 2

Like in the previous subsection it is assumed that the costs of maintenance actions are
proportional to the degree of repair. Again a Kijima type II model is considered and
therefore the degree of the kth repair corresponds to (4.1). The following cost function
is used for PM actions

cPM(v, τ) = cR

(
1−

(
v

v + τ

)
exp

(
v

v + τ
− 1

))δ
, (4.15)

where δ > 0 and cR > 0 are the costs of a replacement. This function is described in
detail in Subsection 2.7.4. For CM actions the cost function

cCM(v, τ) =

∫ τ

0

(
cF + cR

(
1−

(
v

v + t

)
exp

(
v

v + t
− 1

))δ)
fT

v

(t|T v ≤ τ)dt

(4.16)
with δ > 0 is used. Here cF > 0 is the fixed amount, by which the costs of CM are
higher than for PM.
In Figure 4.7 the resulting total costs are plotted for the LFRD, cR = 1000 and cF/cR =
0.1. Here it can be seen that just like for the costs proportional to the degree of repair
-1 for a fixed τ the total costs can be both increasing and decreasing with increasing
v. This especially depends on δ. For every δ and τ the average maintenance costs per
unit time have a limit as v approaches infinity, since both the costs for maintenance
actions and the mean cycle length have a limit as v approaches infinity.
In the following the optimal values for v and τ are computed for different cost ratios
cF/cR and different δ. The numerical results are given in Table 4.4. These results lead
to the following conclusions:

1. The higher δ, the lower are the costs of maintenance actions. Therefore, the
higher δ the faster the numerator in (4.7) tends to zero if τ tends to zero and v
does not at the same time tends to zero. The denominator in (4.7) also tends to
zero if τ tends to zero. For δ = 2 and δ = 3 the costs of maintenance actions are
so small that it is cost optimal to do non-stop PM actions, i.e. τ is nearly zero
(note that τ = 0 is excluded from optimization problem (4.4)).

2. The higher the amount by which the costs of CM are higher than for PM, i.e.
the higher the ratio cF/cR, the better are PM actions, i.e. the cost optimal v is
decreasing. The cost optimal τ also tend to decrease the higher the ratio cF/cR.
Therefore, it becomes more likely that no failure occurs in the time interval of
length τ .

3. For small δ it is cost optimal to do even perfect repair
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Figure 4.7.: Average maintenance costs for the LFRD(α = 0.01, β = 0.02944) if cR =
1000 and cF/cR = 0.1.

4. The smaller δ, the more expensive are even relatively small repairs, i.e. repairs
with large v, and the smaller is the cost difference between small and large main-
tenance actions. Therefore, for small δ it is cost optimal to do even perfect repairs
with v = 0. This does not apply for the RMWD because of the higher failure
rate at lower ages.
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Table 4.4.: Optimal values in case of costs proportional to the degree of repair - 2

LFRD RD WD MWD RMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cR = 0.05

δ = 0.5 v = 0
τ = 36.02

v = 0
τ = 31.13

v = 0
τ = 39.83

v = 0
τ = 21.5

v = 2.38
τ = 56.03

δ = 1 v = 22.9
τ = 25.14

v = 22.14
τ = 24.74

v = 0
τ = 39.83

v = 0
τ = 21.5

v = 15.88
τ = 13.51

δ = 2 v = 2.99
τ = 0.01

v = 2.92
τ = 0.01

v = 2.6
τ = 0.01

v = 2.79
τ = 0.01

v = 5.2
τ = 0.01

δ = 3 v = 0.93
τ = 0.01

v = 0.92
τ = 0.01

v = 1.06
τ = 0.01

v = 1.12
τ = 0.01

v = 2.88
τ = 0.01

cF /cR = 0.1

δ = 0.5 v = 0
τ = 35.81

v = 0
τ = 31.13

v = 0
τ = 11.34

v = 0
τ = 12.92

v = 2.21
τ = 25.64

δ = 1 v = 13.74
τ = 38.8

v = 13.22
τ = 38.41

v = 0
τ = 11.34

v = 0
τ = 12.92

v = 10.27
τ = 14.92

δ = 2 v = 2.37
τ = 0.01

v = 2.32
τ = 0.01

v = 2.18
τ = 0.01

v = 2.34
τ = 0.01

v = 4.47
τ = 0.01

δ = 3 v = 0.78
τ = 0.01

v = 0.77
τ = 0.01

v = 0.92
τ = 0.01

v = 0.97
τ = 0.01

v = 2.84
τ = 0.01

cF /cR = 0.2

δ = 0.5 v = 0
τ = 20.21

v = 0
τ = 19.1

v = 0
τ = 8.37

v = 0
τ = 9.48

v = 1.96
τ = 20.59

δ = 1 v = 0
τ = 20.21

v = 0
τ = 19.1

v = 0
τ = 8.37

v = 0
τ = 9.48

v = 5.75
τ = 15.18

δ = 2 v = 1.1
τ = 0.01

v = 1.84
τ = 0.01

v = 1.83
τ = 0.01

v = 1.97
τ = 0.01

v = 3.91
τ = 0.01

δ = 3 v = 0.65
τ = 0.01

v = 0.64
τ = 0.01

v = 0.8
τ = 0.01

v = 0.84
τ = 0.01

v = 2.82
τ = 0.01
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Imperfect PM

In contrast to the other maintenance models of this thesis, the maintenance policy used
in this chapter is not periodic but sequential. The main difference is that preventive
maintenance is done at fixed predetermined times, which are not necessarily periodic.
This concept is very practical because in reality with increasing age of the system pre-
ventive maintenance actions have to be done more often. This maintenance policy was
first considered from Nguyen and Murthy [37] and Nakagawa [32], [33].
The maintenance model of this chapter is based on the imperfect preventive mainte-
nance model from Nakagawa [34]. The restricted assumption that the costs for preven-
tive maintenance are constant is eliminated and instead it is assumed that the costs of
preventive maintenance depend on the degree of repair.
This chapter is structured as follows. Section 5.1 and Section 5.2 contain essential
assumptions for the underlying system and maintenance policy. In Section 5.3 the cost
optimization problem, which is solved in Section 5.4, is formulated. The results in
Section 5.4 are computed for several continuous lifetime distributions.

5.1. Modeling the System

In this chapter the underlying repairable system has the following properties.

1. Initially a new repairable system is installed.

2. The system has only one failure type which can be removed through imperfect
repair actions.

3. The repair times are negligible small.

5.2. Maintenance Policy

In the following, we consider a sequential imperfect preventive maintenance policy. This
policy was proposed by Nakagawa [35] and Chen [14] and assumes that PM actions
are carried out at fixed time intervals. In Nakagawa [34] an incomplete maintenance
model was considered with the following assumptions.

1. After pre-defined intervals of length xk ≥ 0, k = 1, . . . , N−1 imperfect PM actions
are carried out. Suppose that x0 = 0 and that the Nth preventive maintenance
action is a replacement. Therefore, the times of imperfect PM actions are

– 59 –



5. System with one Failure Type and Imperfect PM

1. x1

2. x1 + x2

...

N − 1. x1 + x2 + · · ·+ xN−1

and the replacement takes place at

N. x1 + x2 + · · ·+ xN−1 + xN .

2. Failures are removed through minimal repair.

3. The virtual age after the kth imperfect PM action falls to vk = ξk(vk−1+tk−tk−1),
whereby tk =

∑k
i=1 xi is the time of the kth imperfect PM action. The PM actions

become worse over time, i.e. for the degrees of repair it holds

0 = ξ0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξN−1 < 1 and ξN = 0. (5.1)

5.3. Cost Optimization Problem

Consider a technical system which is maintained with maintenance policy described in
Section 5.2. The random failure times of this system are denoted by T ∗1 , T

∗
2 , . . . .

The aim of this section is to formulate a cost optimization problem. The optimization
criterion are the average maintenance costs per unit time. For this, the expected
maintenance costs per cycle are set in relation to the cycle length L. Here the cycle
length is the time between two replacements, i.e. L =

∑N
k=1 xk, and in contrast to the

other models discussed in this thesis L is not a random variable.
Suppose yk ≥ 0 is the virtual age of the system immediately before the kth PM action.
Therefore, it holds

y1 = x1

y2 = x2 + ξ1y1 = x2 + ξ1x1

y3 = x3 + ξ2y2 = x3 + ξ2x2 + ξ2ξ1x1

...

and in general it holds

yk = xk + ξk−1yk−1

= xk + ξk−1xk−1 + · · ·+ ξk−1ξk−2 . . . ξ2ξ1x1, k = 1, 2, . . . , N. (5.2)

Using (5.2) the cycle length L can be rewritten as follows

L =
N∑
k=1

xk =
N∑
k=1

(yk − ξk−1yk−1) =
N−1∑
k=1

(1− ξk)yk + yN . (5.3)
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Suppose N = (Nt)t≥0 is the failure counting process of the repairable system without
PM. This means that all failures are removed through minimal repair and according
to Remark 2.4 the process N = (Nt)t≥0 is an inhomogeneous Poisson process with
intensity function hT1(t).
Suppose N∗ = (N∗t )t≥0 is the failure counting process of the repairable system with
PM. So N∗t is the random number of failures in the interval [0, t] and for the intensity
function the following holds.

Lemma 5.1 (Intensity Function of N∗ = (N∗t )t≥0)
Suppose xk, k = 1, . . . , N , are the interval lengths between PM actions. The intensity
function of the counting process N∗ = (N∗t )t≥0 is then

λN
∗
(t) =


0 , if t < 0

hT1(t) , if t ∈ [0, x1)

hT1(ξkyk + t−
∑k

i=1 xi) , if t ∈
[∑k

i=1 xi,
∑k+1

i=1 xi

)
,

k = 1, . . . , N − 1

(5.4)

where hT1(t) is the hazard function of the time to first failure of a new system.

Theorem 5.2 (Mean Number of Failures in a Replacement Cycle)
The mean number of failures in a replacement cycle of length L is

E(N∗L) =
N∑
k=1

∫ yk

ξk−1yk−1

hT1(t)dt, (5.5)

where hT1(t) is the hazard function of the time to first failure of a new system.

Proof. According to maintenance policy from Section 5.2 all failures are removed
through minimal repair and thus the state after repair is the same as immediately
before failure. Therefore, the failure counting process N∗ = (N∗t )t≥0 is an inhomo-
geneous Poisson process with intensity function λN

∗
(t) with t ≥ 0 and independent

increments. Suppose L =
∑N

k=1 xk is the constant cycle length. Then, from equation
(2.19) it follows that

E(N∗L) =

∫ L

0

λN
∗
(x)dx

=

∫ x1

0

hT1(x)dx+

∫ x1+x2

x1

hT1(ξ1y1 + x− x1)dx+ . . .

+

∫ ∑N
i=1 xi

∑N−1
i=1 xi

hT1

(
ξN−1yN−1 + x−

N−1∑
i=1

xi

)
dx

substitution and (5.2)
=

N∑
k=1

∫ yk

ξk−1yk−1

hT1(t)dt (5.6)
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Definition 5.1 (Cost Optimization Problem)
Let cM denotes the costs of a minimal repair, cPM(k) the costs of the kth PM action
and cR the costs of a replacement. The average maintenance costs per unit time are

C(y1, y2, . . . , yN) =
cME(N∗L) +

∑N−1
k=1 cPM(k) + cR
L

=
cM
∑N

k=1

∫ yk
ξk−1yk−1

hT1(t)dt+
∑N−1

k=1 cPM(k) + cR∑N−1
k=1 (1− ξk)yk + yN

. (5.7)

The optimization problem then has the following form

min
y1,y2,...,yN

C(y1, y2, . . . , yN). (5.8)

5.4. Example for Cost Optimal Maintenance

The costs for PM actions, the sequence (ξk)1≤k<N and the hazard function in optimiza-
tion problem (5.8) are yet unspecified.
In this section it is assumed that the costs of PM actions are proportional to the de-
gree of repair and therefore they are independent of yk. Under this condition the cost
optimal number of PM actions and the cost optimal interval lengths x1, . . . , xN−1 will
be computed using the statistical computing software R.
In what follows, it is assumed that the time to the first failure is modified Weibull dis-
tributed MWD(α, β, γ) (see Subsection 2.5.1 for more details). Therefore, the hazard
function is

hT1(t) = α + βγtγ−1, ∀t > 0. (5.9)

Theorem 5.3
If the time to the first failure is modified Weibull distributed with hazard function (5.9)
and γ 6= 1, the optimization problem (5.8) reduces to

min
N∈N+

C(N), (5.10)

whereby

C(N) =
cR +

∑N−1
k=1 cPM(k)∑N−1
k=0 dk

(5.11)

and dk := (1− ξk)
(

1−ξk
1−ξγk

) 1
γ−1

.

Proof. Note that if the time to the first failure has a constant hazard function, the
optimization problem (5.11) has no unique optimum. In terms of the modified Weibull
distribution this means that there exists no unique solution if β = 0 or γ = 1. To find
the optimal values for y1, y2, . . . , yN , one can set the partial derivatives from (5.7) with
respect to yk, k = 1, . . . , N , equal to zero. Then, the cost optimal values y1, y2, . . . , yN
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are a solution of the following system of equations

hT1(yk)− ξkhT1(ξkyk)
1− ξk

= hT1(yN), k = 1, 2, . . . , N − 1. (5.12)

cMh
T1(yN) = C(y1, y2, . . . , yN). (5.13)

Inserting hazard function (5.9) with γ 6= 1 into equation (5.12) leads to

α + βγyγ−1
k − ξk (α + βγ(ξkyk)

γ−1)

1− ξk
= α + βγyγ−1

N

⇔ yγ−1
k (1− ξγk )

1− ξk
= yγ−1

N

⇔ yk =

(
1− ξk
1− ξγk

) 1
γ−1

yN , k = 1, 2, . . . , N − 1. (5.14)

Substituting here the average maintenance costs C(y1, y2, . . . , yN) in (5.13) one get

cMh
T1(yN) =

cM
∑N

k=1

∫ yk
ξk−1yk−1

hT1(t)dt+
∑N−1

k=1 cPM(k) + cR∑N−1
k=1 (1− ξk)yk + yN

⇔ hT1(yN)

(
N−1∑
k=1

(1− ξk)yk + yN

)
−

N∑
k=1

∫ yk

ξk−1yk−1

hT1(t)dt =
cR +

∑N−1
k=1 cPM(k)

cM
.

Inserting the hazard function (5.9) of the MWD(α, β, γ) leads to

(
α + βγyγ−1

N

)(N−1∑
k=1

(1− ξk)yk + yN

)
−

N∑
k=1

∫ yk

ξk−1yk−1

α + βγtγ−1dt

=
cR +

∑N−1
k=1 cPM(k)

cM

⇔
(
α + βγyγ−1

N

)(N−1∑
k=1

(1− ξk)yk + yN

)

−
N∑
k=1

(
α(yk − ξk−1yk−1) + β(yγk − ξ

γ
k−1y

γ
k−1)

)
=

cR +
∑N−1

k=1 cPM(k)

cM

⇔
(
α + βγyγ−1

N

)(N−1∑
k=1

(1− ξk)yk + yN

)
− α

(
N−1∑
k=1

(1− ξk)yk + yN

)

−β

(
N−1∑
k=1

(1− ξγk )yγk + yγN

)
=

cR +
∑N−1

k=1 cPM(k)

cM

(5.14)⇔
(
α + βγyγ−1

N

)(N−1∑
k=1

(1− ξk)
(

1− ξk
1− ξγk

) 1
γ−1

yN + yN

)
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−α

(
N−1∑
k=1

(1− ξk)
(

1− ξk
1− ξγk

) 1
γ−1

yN + yN

)

−β

(
N−1∑
k=1

(1− ξγk )

(
1− ξk
1− ξγk

) γ
γ−1

yγN + yγN

)
=

cR +
∑N−1

k=1 cPM(k)

cM

⇔ yγN (βγ − β)

(
N−1∑
k=1

(1− ξk)
(

1− ξk
1− ξγk

) 1
γ−1

+ 1

)
=

cR +
∑N−1

k=1 cPM(k)

cM

⇔ yγN =
cR +

∑N−1
k=1 cPM(k)

cM (βγ − β)

(∑N−1
k=1 (1− ξk)

(
1−ξk
1−ξγk

) 1
γ−1

+ 1

) (5.15)

Using equation (5.13) the following equivalence holds

min
y1,y2,...,yN

C(y1, y2, . . . , yN)⇔ min
N

cMh
T1(yN). (5.16)

Substituting yN at the right-hand side through (5.15) results in

cMh
T1(yN) = cM


 cR +

∑N−1
k=1 cPM(k)

cM (βγ − β)
(∑N−1

k=0 dk

)


γ−1
γ

βγ + α

 , (5.17)

whereby dk := (1 − ξk)
(

1−ξk
1−ξγk

) 1
γ−1

. Minimizing (5.17) with respect to N provides the

same result as minimizing C(N) with respect to N , whereby

C(N) :=
cR +

∑N−1
k=1 cPM(k)∑N−1
k=0 dk

. (5.18)

Therefore, the following equivalence holds

min
y1,y2,...,yN

C(y1, y2, . . . , yN)⇔ min
N

C(N). (5.19)

Theorem 5.4
If cPM(k) ≥ cPM(N) for k < N and limk→∞ ξk = 1, there exists a finite N? which
satisfies (5.10). If the sequence (ξk)1≤k<N is strictly monotonic increasing, N? is even
unique.

Proof. In order that formula (5.11) has an unique minimum C(N?), the following
conditions have to be fulfilled

∀N ≥ N? it is: C(N) ≤ C(N + 1) (5.20)

∀N < N? it is: C(N) > C(N + 1). (5.21)
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The first inequality reduces as follows

C(N) ≤ C(N + 1)

⇔ cR+
∑N−1
k=1 cPM (k)∑N−1
k=0 dk

≤ cR+
∑N
k=1 cPM (k)∑N
k=0 dk

⇔ cR+
∑N−1
k=1 cPM (k)∑N−1
k=0

dk
dN

≤ cR+
∑N−1
k=1 cPM (k)+cPM (N)∑N−1

k=0
dk
dN

+1

⇔ cR +
∑N−1

k=1 cPM(k) ≤ cPM(N)
∑N−1

k=0
dk
dN

⇔ cR+
∑N−1
k=1 cPM (k)

cPM (N)
≤

∑N−1
k=0

dk
dN
.

Suppose cPM(k) ≥ cPM(N) for all k < N . Then, we have the relation

N−1∑
k=0

dk
dN
≥ cR +

∑N−1
k=1 cPM(k)

cPM(N)
≥ cR
cPM(N)

+ (N − 1). (5.22)

Define L(N) :=
∑N−1

k=0
dk
dN
− (N − 1). Thus, if L(N) is monotonic increasing in N and

limN→∞ L(N) > cR
cPM (N)

, both inequalities (5.20) and (5.21) are satisfied.
Furthermore, if limk→∞ ξk = 1, then

lim
k→∞

dk = lim
ξk→1

(1− ξk)
(

1− ξk
1− ξγk

) 1
γ−1

= 0. (5.23)

Nakagawa [34] has shown that dk is decreasing in k, i.e. dk ≥ dN for k < N and dk
dN
≥ 1.

Thus, with ξ0 = 0 it holds that d0 = 1 and

lim
N→∞

L(N) = lim
N→∞

(
N−1∑
k=0

dk
dN
− (N − 1)

)
= lim

N→∞

(
d0

dN
+

N−1∑
k=1

dk
dN
− (N − 1)

)

≥ lim
N→∞

(
d0

dN
+

N−1∑
k=1

1− (N − 1)

)
= lim

N→∞

d0

dN
= lim

N→∞

1

dN
=∞. (5.24)

To summarize, if limk→∞ ξk = 1 a finite N?, which minimize equation (5.10), exists. If
the sequence (ξk)1≤k<N is strictly monotonic increasing, N? is even finite and unique.

In the following the degree of repair is analogous to Nakagawa [34]

ξk =
k

k + 1
, ∀k < N. (5.25)

Note that with (5.25) the sequence (ξk)1≤k<N is strictly monotonic increasing and that
limk→∞ ξk = 1.

– 65 –



5. System with one Failure Type and Imperfect PM

5.4.1. Costs Proportional to the Degree of Repair - 3

In this subsection it is assumed that the costs of PM actions are proportional to the
degree of repair. The cost function for PM actions is

cPM(k) = cR − ξδk(cR − cM), δ > 0, (5.26)

where cR > cM and cM denotes the costs for a minimal repair and cR are the costs
of a replacement. This cost function is described in detail in Subsection 2.7.5. Since
the sequence (ξk)1≤k<N is strictly monotonic increasing, cPM(k) ≥ cPM(N) for k < N .
Therefore, all conditions of Remark 5.4 are fulfilled and a finite and unique N? exists.
The statistical computing software R is used to solve optimization problem (5.19).
Inserting the cost optimal N∗ in equation (5.15) gives the cost optimal value of yN
that can be used to compute the virtual ages yk ≥ 0 of the system immediately before
the kth PM actions.

Theorem 5.5
If δ ≥ 1 the cost optimal N? of optimization problem (5.10) is one.

Proof. Suppose γ 6= 1. For N? > 1 the condition C(1) > C(2) must be fulfilled. From
(5.11) follows

C(1) > C(2)

⇔ cR > cR+cPM (1)
d0+d1

⇔ cR >
2cR−ξδ1(cR−cM )

1+(1−ξ1)

(
1−ξ1
1−ξγ1

) 1
γ−1

⇔ cR

(
1 +

(
(1−ξ1)γ

1−ξγ1

) 1
γ−1

)
− 2cR > −ξδ1(cR − cM)

⇔ 1
ξδ1

(
1−

(
(1−ξ1)γ

1−ξγ1

) 1
γ−1

)
< cR−cM

cR
.

(5.27)

Since cR > cM it holds that 0 < cR−cM
cR

< 1. The degree of repair ξ1 is 0 < ξ1 < 1. For
the left-hand side of the above inequality it holds

lim
ξ1→0

1

ξδ1

(
1−

(
(1− ξ1)γ

1− ξγ1

) 1
γ−1

)

= lim
ξ1→0

(
1−

(
(1−ξ1)γ

1−ξγ1

) 1
γ−1

)
ξδ1

0
0= lim

ξ1→0

− 1
γ−1

(
(1−ξ1)γ

1−ξγ1

) 2−γ
γ−1 (−γ(1− ξ1)γ−1(1− ξγ1 )− (1− ξ1)γ(−γξγ−1

1 )
)

δξδ−1
1 (1− ξγ1 )2
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=


0 , if δ < 1
γ
γ−1

, if δ = 1 and γ > 1

∞ , if δ = 1 and γ < 1

∞ , if δ > 1

(5.28)

and

lim
ξ1→1

1

ξδ1

(
1−

(
(1− ξ1)γ

1− ξγ1

) 1
γ−1

)
= 1−

(
lim
ξ1→1

(1− ξ1)γ

1− ξγ1

) 1
γ−1

0
0= 1−

(
lim
ξ1→1

γ(1− ξ1)γ−1

−γξγ−1
1

) 1
γ−1

= 1. (5.29)

Define g(x) ≡ 1
xδ

(
1−

(
(1−x)γ

1−xγ

) 1
γ−1

)
. If function g(x) is monotonically decreasing for

δ ≥ 1, the minimum of g(x) in the interval [0, 1] is in x = 1 and g(1) = 1. In this case,
condition (5.27) would not have been complied with and N? = 1.
In the following the monotony of g(x) is analyzed for δ ≥ 1. It holds

g(x) monotonically decreasing ⇔ g′(x) =
dg(x)

dx
< 0. (5.30)

The derivative of g(x) with respect to x is

g′(x) =
−δ
xδ+1

(
1−

(
(1− x)γ

1− xγ

) 1
γ−1

)
− γ(1− x)

γ
γ−1
−1(1− xγ)

1
γ−1
−1(xγ − x)

(γ − 1)xδ(1− xγ)
2

γ−1

. (5.31)

Replace g′(x) in (5.30) through (5.31) and get

g′(x) < 0

⇔ γ(1− x)
γ
γ−1
−1(1− xγ)

1
γ−1
−1(x− xγ)

(γ − 1)xδ(1− xγ)
2

γ−1

<
δ

xδ+1

(
1−

(
(1− x)γ

1− xγ

) 1
γ−1

)

⇔ γ(1− x)
1

γ−1 (x− xγ)x
(γ − 1)(1− xγ)

γ
γ−1

< δ

(
1−

(
(1− x)γ

1− xγ

) 1
γ−1

)

⇔ γ(1− x)
1

γ−1 (x− xγ)x

(γ − 1)(1− xγ)
(

(1− xγ)
1

γ−1 − (1− x)
γ
γ−1

) < δ

⇔ γ(1− x)
1

γ−1 (x− xγ)x

(γ − 1)(1− xγ)
(

(1− xγ)
1

γ−1 − (1− x)
γ
γ−1

) ≤ 1 (5.32)

For γ < 1 this inequality is equivalent to

γ(1− x)
1

γ−1 (x− xγ)x ≥ (γ − 1)(1− xγ)
(

(1− xγ)
1

γ−1 − (1− x)
γ
γ−1

)
(5.33)
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and since x ∈ (0, 1) it holds that 1 − x > 1 − xγ. Therefore, the right-hand side of
inequality (5.33) is limited from above through

(γ − 1)(1− xγ)
(

(1− x)
1

γ−1 − (1− x)
γ
γ−1

)
. (5.34)

Then instead of proving inequality (5.33) one can verify the following inequality

γ(1− x)
1

γ−1 (x− xγ)x ≥ (γ − 1)(1− xγ)
(

(1− x)
1

γ−1 − (1− x)
γ
γ−1

)
⇔ γ(1− x)

1
γ−1 (x− xγ)x ≥ (γ − 1)(1− xγ)(1− x)

1
γ−1x

⇔ γ(x− xγ) ≥ (γ − 1)(1− xγ)
⇔ γx− γxγ ≥ γ − γxγ − 1 + xγ

⇔ γ ≤ 1− xγ

1− x
⇔ γ ≤ xγ−1 + xγ−2 + · · ·+ x+ 1 (5.35)

This inequality is true since x ∈ (0, 1) and each of the γ summands at the right-hand
side of (5.35) is greater than one. Therefore, g′(x) < 0 and condition (5.27) does not
hold. Hence N? is always one for δ ≥ 1 and γ < 1.
Analogue if γ > 1 inequality (5.32) is equivalent to

γ(1− x)
1

γ−1 (x− xγ)x ≤ (γ − 1)(1− xγ)
(

(1− xγ)
1

γ−1 − (1− x)
γ
γ−1

)
. (5.36)

Using 1− x < 1− xγ and xγ−1 < 1, xγ−2 < 1,..., x < 1 it can be shown that g′(x) < 0
if γ > 1. Thus also for γ > 1 and δ ≥ 1, N? is always one.

In the following, the cost optimal number of PM actions and the cost optimal interval
lengths x1, . . . , xN−1 are computed for different cost ratios cM/cR and different δ. The
parameters of all used distributions were chosen so that the expectation is 5 for all
distributions. The numerical results are given in Table 5.1, Table 5.2 and Table 5.3.
These results lead to the following conclusions:

1. The time between PM actions is decreasing with increasing age of the system.

2. The lower the costs of a replacement compared to the costs of a minimal repair,
i.e. the higher the ratio cM/cR, the less PM actions are carried out, i.e. the
smaller is the cost optimal N?.

3. With rising δ the factor ξδk in cost function (5.26) becomes smaller. Therefore,
PM actions become more expensive in comparison to minimal repair actions.
Hence, less and less PM actions are carried out and beyond a certain point it
becomes cost optimal to no longer perform PM actions, i.e. N? = 1. Instead
the time between replacements is increasing and occurring failures are removed
through relatively cheap minimal repairs.

4. The LFRD and RD lead nearly to the same optimal solutions. The same holds
for the WD and MWD.
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Table 5.1.: Optimal values for N and x1, . . . , xN−1 in case of costs proportional to the
degree of repair - 3 and δ = 0.2

LFRD RD WD MWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

cM/cR = 0.02

N? 11 11 12 12

x1 25.95 25.12 11.61 12.72

x2 10.38 10.05 4.77 5.22

x3 6.67 6.46 3.05 3.34

x4 4.94 4.78 2.26 2.47

x5 3.93 3.81 1.79 1.97

x6 3.27 3.16 1.49 1.63

x7 2.79 2.71 1.27 1.4

x8 2.44 2.36 1.11 1.22

x9 2.17 2.1 0.99 1.08

x10 1.95 1.89 0.89 0.97

x11 20.39 19.74 0.81 0.89

x12 6.88 7.54

cM/cR = 0.05

N? 5 5 5 5

x1 15.87 15.37 8.41 9.21

x2 6.35 6.15 3.45 3.78

x3 4.08 3.95 2.21 2.42

x4 3.02 2.93 1.64 1.79

x5 13.23 12.8 5.43 5.95

cM/cR = 0.1

N? 3 3 3 3

x1 11.68 11.31 6.89 7.55

x2 4.67 4.52 2.83 3.1

x3 10.52 10.18 4.93 5.4
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Table 5.2.: Optimal values for N and x1, . . . , xN−1 in case of costs proportional to the
degree of repair - 3 and δ = 0.5

LFRD RD WD MWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

cM/cR = 0.02

N? 2 2 4 4

x1 29.77 28.82 12.84 14.07

x2 29.77 28.82 5.27 5.77

x3 3.38 3.7

x4 8.61 9.43

cM/cR = 0.05

N? 2 2 2 2

x1 17.34 16.79 9.01 9.87

x2 17.34 16.79 7.41 8.12

cM/cR = 0.1

N? 1 1 2 2

x1 12.29 11.89 7.21 7.9

x2 5.93 6.5

Table 5.3.: Optimal values for N and x1, . . . , xN−1 in case of costs proportional to the
degree of repair - 3 and δ = 0.8

LFRD RD WD MWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

cM/cR = 0.02

N? 1 1 1 1

x1 30.1 29.13 13.15 14.41

cM/cR = 0.05

N? 1 1 1 1

x1 17.38 16.82 9.12 9.99

cM/cR = 0.1

N? 1 1 1 1

x1 12.29 11.89 7.24 7.93
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The maintenance model of this chapter is the discrete analogue of the model from
Chapter 3. The underlying repairable system is assumed to have a discrete lifetime
distribution. Under this assumption the system can be interpreted as a repairable
multi-state system (MSS) with n states. Therefore, a time scale analogously to Kahle
[22] have to be introduced and it is assumed that at time 1 the system is in state one,
at time 2 the system is in state two and so on. Using this time scale, one can model
imperfect maintenance actions also for multi-state systems.
In this chapter following Beichelt [7] it is assumed that there are two failure types
minor and major ones. Minor failures (type 1) can be removed by minimal repair and
major failures (type 2) can only be removed by replacement.
Using a periodic PM policy, the system undergoes imperfect PM actions at predeter-
mined periodic times and failures in between are removed according to the failure type.
It is assumed that the imperfect PM actions adjust the virtual age of the system in a
Kijima type manner.
This chapter is structured as follows. Section 6.1, 6.2 and 6.3 contain essential assump-
tions and definitions, which are needed to formulate the cost optimization problem in
Section 6.4. Finally, in Section 6.5 optimal maintenance strategies are computed for
different cost functions for PM and different discrete lifetime distributions.

6.1. Modeling the System

According to Kahle [22], a multi-state system (MSS) is considered. For further research
the following assumptions are made.

1. Initially, a new repairable MSS is installed. The MSS has n states in which the
system can fail. A time scale is introduced so that the system in time 1 is in
state one, in time 2 in state two and so on.

2. At each state the system can fail with some probability. The system has two
types of failures, minor failures (type 1) and major failures (type 2).

3. Whenever a failure occurs, it is a minor one (type 1) with probability 1-p and a
major one (type 2) with probability p.

4. Type 1 failures can be removed by a minimal repair and type 2 failures can only
be removed by replacements.

5. The repair times are negligible small.
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6.2. Modeling the Markov Chain

Consider the repairable system from Section 6.1. Let the positive random variables
(T ∗n)n∈N+ be the random failure times of the system with PM and without distinction
of failure types.
The corresponding discrete-time counting process (N∗t )t∈N is defined by

N∗t = max{n ∈ N+ : T ∗n ≤ t} (6.1)

for t ∈ N and N∗0 = 0. This means N∗t counts the number of failures which occurred
up to time t without distinction of type 1 and type 2 failures. Therefore,

∆N∗t = N∗t −N∗t−1 =

{
1 , if the MSS fails at t

0 , else
. (6.2)

It is assumed that after minimal repair the system starts working immediately and
that at particular points in time only one failure can occur. Therefore, as long as all
failures are removed through minimal repair it holds that P (∆N∗t = 1) = hT

∗
(t), where

T ∗ is the random time to failure and hT
∗
(t) is the failure rate of the MSS with PM and

without distinction of failure types. It holds

hT
∗
(t) = P (T ∗ = t|T ∗ ≥ t) =

P (T ∗ = t)

P (T ∗ ≥ t)
, t = 0, 1, ..., n. (6.3)

Now consider a MSS with two different failure types (see assumptions 2, 3 and 4 from
Section 6.1). Then let S∗t be the random state of the MSS in t. Define the following
three states:

S∗t = 0: MSS is operating in t.
S∗t = 1: MSS is under minimal repair in t due to type 1 failure.
S∗t = 2: MSS is not operating because of type 2 failure.

The sequence (S∗t )t∈N is a Markov chain with state space M = {0, 1, 2} and satisfies
the Markov condition (2.23), i.e.

P (S∗t = st|S∗0 = s0, . . . , S
∗
t−1 = st−1) = P (S∗t = st|S∗t−1 = st−1) (6.4)

for all t ≥ 2 and s0, s1, . . . , st ∈M with P (S∗0 = s0, S
∗
1 = s1, . . . , S

∗
t−1 = st−1) > 0. The

MSS starts working with state 0. Therefore, the initial distribution is

P (S∗0 = s0) =

{
1 , if s0 = 0

0 , if s0 ∈ {1, 2}
. (6.5)

The one-step transition matrices (X∗n)n∈N+ are given by

X∗n =


1− hT ∗(n) (1− p)hT ∗(n) phT

∗
(n)

1− hT ∗(n) (1− p)hT ∗(n) phT
∗
(n)

0 0 1

 . (6.6)
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Note that state 2 is absorbing because the system has to be replaced after type 2
failures. Using (2.27) one get

P (S∗k = sk, S
∗
k+1 = sk+1, . . . , S

∗
n = sn) = P (S∗k = sk)

n∏
j=k+1

X∗j (sj−1, sj), (6.7)

for sk, sk+1, . . . , sn ∈M and with X∗j (sj−1, sj) = P (S∗j = sj|S∗j−1 = sj−1) and

X∗j (sj−1, sj) =



1− hT ∗(j) , if sj−1 ∈ {0, 1}, sj = 0

(1− p)hT ∗(j) , if sj−1 ∈ {0, 1}, sj = 1

phT
∗
(j) , if sj−1 ∈ {0, 1}, sj = 2

0 , if sj−1 = 2, sj ∈ {0, 1}
1 , if sj−1 = 2, sj = 2

, (6.8)

for j ≥ 1 and hT
∗
(·) is the failure rate of T ∗ and p is the probability of a type 2 failure.

6.3. Maintenance Policy

In the following, we consider a periodic imperfect preventive maintenance policy with
finite planning horizon. In the periodic PM policy the system is preventively main-
tained at fixed time intervals and repaired at intervening failures. Similar maintenance
policies were applied for instance in Nakagawa [32], Sheu and Lin and Liao [45] and
Zequeira and Bérenguer [50].
In particular, the following assumptions are made for the used maintenance policy.

1. The system is maintained according to the failure type. Whenever a minor failure
(type 1) occurs, a minimal repair will be carried out. If the failure is of type 2
the system will be replaced by a new one.

2. The PM actions are imperfect in the sense that each PM action reduces the
virtual age of the system to a constant virtual age of v with v ∈ {0, . . . , n− 1}.

3. PM is performed at v + τ , v + 2τ, . . . , v + (N − 1)τ , with τ ∈ {1, . . . , n − v},
v ∈ {0, . . . , n − 1} and N ∈ {1, . . . , Nmax}. Together with assumption 2 this
means that every time when the system reaches the virtual age of v + τ the PM
action resets the system to the virtual age of v. If the MSS has n states the
following pairs of v and τ are possible

τ = 1; v = 0, . . . , v = n− 1,

τ = 2; v = 0, . . . , v = n− 2,
...

τ = n− 1; v = 0 or v = 1,

τ = n; v = 0.
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4. If no type 2 failure occurred in time interval [0, v + Nτ), the system is replaced
preventively at v +Nτ .

Note that the restriction of N through Nmax is appropriate since systems have a finite
useful life. Therefore, in our cost optimization problem from Section 6.4 a predefined
maximum number of PM actions, i.e. 1−Nmax, will be taken into account.
The above described maintenance policy contains the age replacement policy and the
minimal repair policy as special cases. The first one is obtained if p = 1 and v = 0.
Then the system is replaced at the time of failure or at age τ whichever occurs first.
If p = 0 and v = 0 we have the minimal repair policy which means that the system is
always replaced at age τ and failures that occur between the periodic replacements are
removed through minimal repair.

6.4. Cost Optimization Problem

Consider a technical system which is maintained with maintenance policy described in
Section 6.3. To optimize the maintenance of this system with respect to cost criteria it
is necessary to define the cumulative distribution function of the random time of the
first type 2 failure.
Let T1 be the discrete random time of the first failure of a repairable MSS without
preventive maintenance and no distinction in failure types. Then T ∗1 is the discrete
random time of the first failure of a repairable MSS with preventive maintenance and
only one failure type.
If one takes into account two failure types, one have T

′
1 and T

′′
1 as the times of the

first occurrence of a type 1 or type 2 failure of a repairable MSS without preventive
maintenance, respectively. Analogous T ∗

′
1 and T ∗

′′
1 are the times of the first occurrence

of a type 1 or type 2 failure of a repairable MSS with consideration of preventive main-
tenance actions, respectively.
The random variable T ∗

′′
1 if of great interest, since a type 2 failure terminates a re-

placement cycle. In what follows, some properties of the distribution of T ∗
′′

1 are given.

Remark 6.1 (Failure rate of T ∗)
Suppose T = T1 is the discrete random time of the first failure of a MSS without PM
and hT (t) is the corresponding failure rate. Let T ∗ = T ∗1 be the discrete random time
of the first failure of a MSS with PM following the PM policy from Section 6.3. Then
the corresponding failure rate is

hT
∗
(t) =


0 , if t < 0

hT (t) , if t ∈ [0, v + τ − 1]

hT (t− kτ) , if t ∈ [v + kτ, v + (k + 1)τ − 1]

(6.9)

for k = 1, 2, . . . .

Theorem 6.2 (Distribution function of T ∗
′′

1 )
Suppose T ∗

′′
1 is the discrete random time of the first type 2 failure of a repairable MSS
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with PM following PM policy that is described in Section 6.3. Then T ∗
′′

1 has the fol-
lowing distribution function

F T ∗
′′

1 (t) = P (T ∗
′′

1 ≤ t) =
t∑

j=1

phT
∗
(j)
(
1− P (S∗j−1 = 2)

)
, t = 1, 2, . . . , (6.10)

where (S∗t )t∈N is the Markov chain from Section 6.2.

Proof. Suppose a MSS with PM that is done following PM policy from Section 6.3.
Let (S∗t )t∈N be the Markov Chain from Section 6.2. Thus, the state space is M =
{e1, e2, e3} = {0, 1, 2} and S∗t is the random state of the MSS in t. For t = 1, 2, . . . it
holds

P (T ∗
′′

1 ≤ t) =
t∑

j=1

P (T ∗
′′

1 = j) =
t∑

j=1

P (S∗j = 2, S∗j−1 6= 2)

=
t∑

j=1

P (S∗j = 2|S∗j−1 6= 2)P (S∗j−1 6= 2)

(6.8)
=

t∑
j=1

phT
∗
(j)
(
1− P (S∗j−1 = 2)

)
. (6.11)

Note that the system starts without failure and therefore P (T ∗
′′

1 = 0) = 0.

Figure 6.1 shows (a) the distribution function of the time to the first failure of a
repairable MSS without PM and only one failure type, (b) the distribution function
of the time to the first type 2 failure of a repairable MSS without PM and (c) the
distribution function of the time to the first type 2 failure of a repairable MSS with
PM. The comparison of (b) and (c) shows how PM actions reduce the probability of
failures. Note that in Figure 6.1 the points are connected with lines for better visibility.
Comparing Figure 6.1 with Figure 3.1, the values of the distribution functions in (a)
are identical at the discrete points in time, since both Weibull distributions have the
same parameterization. But in (b) and (c) the distribution functions in the continuous
and the discrete case differ. Thus, in the discrete case it takes longer until the first
type 2 failure occurs and therefore the mean cycle length in the discrete case is larger
than in the continuous case. The reason for these deviations lies in the inequality of
the failure rate functions in the discrete and the continuous case.
With the underlying PM policy the random cycle length that means the time between
two replacements is

Lv,τ,N = min{T ∗′′1 , v +Nτ}

{
< v +Nτ , with P (T ∗

′′
1 ≤ v +Nτ − 1)

= v +Nτ , with 1− P (T ∗
′′

1 ≤ v +Nτ − 1)
. (6.12)
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Figure 6.1.: Distribution functions when T1 is DWD(β = 0.0057, γ = 3), v = 2, τ = 7,
N = 11 and p = 0.1.

Theorem 6.3 (Mean Cycle Length)
With the underlying PM policy the mean cycle length is

E(Lv,τ,N) =
v+Nτ−1∑
j=1

jP (T ∗
′′

1 = j) + (v +Nτ)P (T ∗
′′

1 ≥ v +Nτ). (6.13)

Proof. The random cycle length is a positive discrete random variable and has the
following probability mass function

P (Lv,τ,N = t) =


0 , if t < 0

P (T ∗
′′

1 = t) , if t ∈ {0, . . . , v +Nτ − 1}
P (T ∗

′′
1 ≥ t) , if t = v +Nτ

0 , if t > v +Nτ

. (6.14)

Using this, the mean cycle length is computed as follows

E(Lv,τ,N) =
∞∑
j=0

j · P (Lv,τ,N = j)

=
v+Nτ−1∑
j=0

j · P (T ∗
′′

1 = j) + (v +Nτ)P (T ∗
′′

1 ≥ v +Nτ)
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+
∞∑

j=v+Nτ+1

j · 0. (6.15)

To compute a maintenance cost rate, it is necessary to compute the random number
of minimal repairs during the replacement cycle and therefore the number of type 1
failures in a replacement cycle.

Theorem 6.4 (Mean Number of Type 1 failures in a replacement cycle)
Suppose (S∗t )t∈N is the Markov Chain from Section 6.2 and S∗t is the random state of
the MSS at t. Let Zt be the random number of type 1 failures in the replacement cycle
with length min{T ∗′′1 , t} that have to be removed through minimal repair. Then it holds

E(Zt) =
t−1∑
k=1

k


t−1∑

j=k+1
s1,...,sj−1 6=2∑j−1

i=1 si=k

P (S∗1 = s1, . . . , S
∗
j = 2)

+
∑

s1,...,st−1 6=2∑t−1
i=1 si=k

P (S∗1 = s1, . . . , S
∗
t−1 = st−1)

 . (6.16)

Proof. Suppose a MSS with PM that is done following PM policy from Section 6.3. Let
(S∗t )t∈N be the Markov Chain from Section 6.2. Thus, the state space is M = {0, 1, 2}
and S∗t is the random state of the MSS at t.
Let Zt be the random number of type 1 failures of the MSS in a replacement cycle with
length min{T ∗′′1 , t}. Here we are interested in the number of type 1 failures that are
removed through minimal repair. Since min{T ∗′′1 , t} is the length of the replacement
cycle, the MSS is replaced preventively at time t = v+Nτ if T ∗

′′
1 ≥ t, no matter whether

a failure occurs at t or not. Therefore, t−1 is the upper limit of the random number of
type 1 failures and hence for the number of minimal repairs in the replacement cycle,
i.e. 1 ≤ Zt ≤ t−1. For the expected number of minimal repairs in a replacement cycle
with length min{T ∗′′1 , t} it holds

E(Zt) =
t−1∑
k=1

kP (Zt = k)

with

P (Zt = k) =
t−1∑

j=k+1
s1,...,sj−1 6=2∑j−1

i=1 si=k

P (S∗1 = s1, . . . , S
∗
j = 2) +

∑
s1,...,st−1 6=2∑t−1

i=1 si=k

P (S∗1 = s1, . . . , S
∗
t−1 = st−1).
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The optimization criterion of interest will be the average maintenance costs per unit
of time. In the underlying PM policy there are two scenario.
The first one is that there is no type 2 failure up to the preventive replacement at
time v + Nτ . In this case the replacement cycle has length v + Nτ and there are
costs for minimal repairs during this cycle, for N − 1 PM actions and for a preventive
replacement at v +Nτ . The probability of the first scenario is P (T ∗

′′
1 ≥ v +Nτ).

The second scenario is that a type 2 failure occurs before the preventive replacement
takes place at v+Nτ . In this case one have costs for minimal repairs and costs for PM
actions but both only until the expected time of the type 2 failure. Furthermore, one
have the costs for replacement because the type 2 failure can only be removed through
replacement. The probability of the second scenario is P (T ∗

′′
1 < v +Nτ).

Definition 6.1 (Cost Optimization Problem)
Let cM denotes the costs for a minimal repair, cPM the costs of PM and cR the costs
of a replacement. The average maintenance costs per unit of time are

C(v, τ,N) =
cME(Zv+Nτ ) + cR

E(Lv,τ,N)

+ P (T ∗
′′

1 ≥ v +Nτ)
(N − 1)cPM
E(Lv,τ,N)

+ P (T ∗
′′

1 < v +Nτ)

N−1∑
k=1

cPM1{v+kτ<E(T ∗
′′

1 |T ∗
′′

1 <v+Nτ)}

E(Lv,τ,N)
, (6.17)

where E(T ∗
′′

1 |T ∗
′′

1 < v + Nτ) is the expected time of the first type 2 failure under the
condition that a type 2 failure ends the replacement cycle and 1{·} is the indicator
function. In case of MSS with n states the optimization problem have the following
form

min
v∈{0,...,n−1}, τ∈{1,...,n−v}, N∈{1,...,Nmax}

C(v, τ,N) (6.18)

Note that the extreme case τ = 0 is excluded from optimization problem (3.37). The
value τ = 0 would lead to a degree of repair of one, which can be interpreted as minimal
PM actions. This is not reasonable in the maintenance model under consideration.
However, the other extreme case of perfect PM actions, i.e. v = 0, is still part of the
cost optimization problem.

6.5. Example for Cost Optimal Maintenance

In this section special cost functions for PM actions are considered and the optimal
maintenance strategy for a MSS with n = 20 states is computed for different discrete
lifetime distributions. In order to provide a comparison with the analogue continuous
maintenance model from Chapter 3 the same cost functions for PM used in Chapter 3
are used here.
The main objective of this section is to compute the cost optimal values for v, τ and N .
In the following computations the number of PM actions is restricted up to 10. This
means Nmax = 11 and hence the MSS will be preventively replaced at the latest after
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ten PM actions. The probability that a failure is of type 2 is assumed to be ten percent,
i.e. p = 0.1. Since the cost optimization problem (6.18) could not be solved analytical,
complete enumeration is used to find the cost optimal maintenance strategies with R.
Note that in this section the parameters of all discrete lifetime distributions were
identical to the parameters of the continuous lifetime distributions in the previous
sections.

6.5.1. Costs Proportional to the Impact of Repair

Suppose the costs of PM actions depend only on the virtual age after PM, i.e.

cPM(v) = cI

(
1

v

)δ
, (6.19)

where v ≥ 1, δ > 0 and cI > 0 is a constant cost value. This cost function is described
in detail in Subsection 2.7.1. Further, it is assumed that cR = cI . However, it is
important to note that in the discrete case v can have only values equal or greater one.
Therefore, contrary to the continuous case the costs of PM are not only bounded below
but also above by cI , i.e. 0 < cPM(v) ≤ cI .
In the following, the optimal values for v and τ and the optimal number of PM actions
before a preventive replacement takes place are computed for different cost ratios cM/cI
and different δ. The numerical results are given in Table 6.1. These results lead to the
following conclusions:

1. The smaller δ, the more expensive are PM actions and the lower is the difference
between the costs of PM and the costs of a replacement. Therefore, for small
δ it is cost optimal to do no PM, i.e. N = 1 and with rising δ it becomes cost
optimal to do more PM actions, i.e. the cost optimal N is rising. In comparison
to the other distributions the DRMWD has sooner N > 1, because of the high
failure rate at lower states.

2. The lower the costs of a repair with a high impact compared to the costs of a
minimal repair, i.e. the higher the ratio cM/cI , the better are the PM actions,
i.e. the cost optimal v is decreasing, and the lower is the distance between PM
actions, i.e. the cost optimal τ is decreasing too. Therefore, it is favorable to do
a good and more frequent PM instead of doing more minimal repairs.

3. The DLFRD and DRD lead nearly to the same optimal solutions. The same
holds for the DWD and DMWD.

Note that if the cost optimal N is 1, the optimal maintenance strategy is to do no
PM actions and to replace the system every v + τ time units if there has not already
occurred a type 2 failure. Hence, the average maintenance costs from (6.17) reduce
to (cME(Zv+τ ) + cR)/E(Lv,τ,1). Thus, the optimal maintenance strategy is not unique
because different combinations of v and τ that lead to the same sum v+ τ also lead to
the same average maintenance costs. Therefore, if the cost optimal N is 1, it is proper
to show the optimal sum v + τ instead of the optimal single values for v and τ .
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Table 6.1.: Optimal values in case of costs proportional to the impact of repair

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cI = 0.5

δ = 0.125 N = 1
v + τ = 10

N = 1
v + τ = 10

N = 1
v + τ = 7

N = 1
v + τ = 8

N = 2
v = 2
τ = 14

δ = 0.5 N = 2
v = 2
τ = 9

N = 2
v = 2
τ = 9

N = 1
v + τ = 7

N = 1
v + τ = 8

N = 9
v = 3
τ = 12

δ = 1 N = 11
v = 3
τ = 6

N = 11
v = 3
τ = 6

N = 9
v = 2
τ = 5

N = 9
v = 2
τ = 5

N = 11
v = 4
τ = 8

δ = 2 N = 11
v = 3
τ = 4

N = 11
v = 3
τ = 4

N = 11
v = 3
τ = 3

N = 11
v = 3
τ = 3

N = 11
v = 4
τ = 6

cM/cI = 1

δ = 0.125 N = 1
v + τ = 7

N = 1
v + τ = 7

N = 1
v + τ = 5

N = 1
v + τ = 6

N = 2
v = 2
τ = 11

δ = 0.5 N = 1
v + τ = 7

N = 1
v + τ = 7

N = 1
v + τ = 5

N = 1
v + τ = 6

N = 11
v = 3
τ = 9

δ = 1 N = 2
v = 2
τ = 5

N = 2
v = 2
τ = 5

N = 1
v + τ = 5

N = 11
v = 2
τ = 4

N = 10
v = 4
τ = 6

δ = 2 N = 11
v = 2
τ = 4

N = 11
v = 2
τ = 3

N = 10
v = 2
τ = 3

N = 11
v = 2
τ = 3

N = 11
v = 4
τ = 5

cM/cI = 2

δ = 0.125 N = 1
v + τ = 5

N = 1
v + τ = 5

N = 1
v + τ = 4

N = 1
v + τ = 5

N = 1
v + τ = 10

δ = 0.5 N = 1
v + τ = 5

N = 1
v + τ = 5

N = 1
v + τ = 4

N = 1
v + τ = 5

N = 10
v = 3
τ = 7

δ = 1 N = 1
v + τ = 5

N = 1
v + τ = 5

N = 1
v + τ = 4

N = 1
v + τ = 5

N = 10
v = 3
τ = 6

δ = 2 N = 11
v = 2
τ = 2

N = 11
v = 2
τ = 2

N = 11
v = 2
τ = 2

N = 10
v = 2
τ = 2

N = 11
v = 3
τ = 5
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6.5.2. Costs Proportional to the State before Repair

Suppose the cost function cPM depends on the state just before PM. It holds

cPM(v, τ) = cS

(
1

v + τ

)δ
, (6.20)

where δ > 0 and cS > 0 is a constant cost value. This function is described in detail
in Subsection 2.7.2. It is assumed that cR = cS.
The cost optimal maintenance strategies for different cost ratios cM/cS and different δ
are given in Table 6.2 and lead to the following conclusions:

1. The smaller δ, the more expensive are PM actions. Therefore, with rising δ it
becomes cost optimal to do more PM actions, i.e. the cost optimal N is rising.

2. The lower the costs of PM compared to the costs of a minimal repair, i.e. the
higher the ratio cM/cS, the lower is the distance between PM actions, i.e. the
cost optimal τ is decreasing. Therefore, it is favorable to do PM more often,
instead of doing more minimal repairs.

3. Since the cost difference between good and less good PM actions is comparatively
small, it is cost optimal to do perfect PM actions, i.e. v = 0. The same is true
also for the DRMWD, since the failure rate is zero at time zero.

4. The DLFRD and DRD lead nearly to the same optimal solutions. The same
holds for the DWD and DMWD.

6.5.3. Costs Proportional to the Degree of Repair - 1

Analogue to the continuous case in Subsection 3.5.3 the following cost function is used
for PM actions

cPM(v, τ) = cR
(
1− ξ(v, τ)δ

)
, (6.21)

where ξ(v, τ) is the degree of repair (see (3.40)), δ > 0 and cR > 0 are the costs of
replacement. This cost function is described in detail in Subsection 2.7.3. The cost
optimal maintenance strategies for different cost ratios cM/cR and different δ are given
in Table 6.3 and lead to the following conclusions:

1. The higher δ, the more expensive are the PM actions. Therefore, with rising δ it
becomes cost optimal to do less PM, i.e. N is decreasing.

2. The lower the costs of a replacement compared to the costs of a minimal repair,
i.e. the higher the ratio cM/cR, the less expensive are the costs for PM compared
to the costs of a minimal repair. Therefore, the distance between PM actions
becomes smaller, i.e. τ is decreasing.

3. The cost optimal values of v for the DRMWD are higher than for the other
distributions because of the higher failure rate at lower states. The cost optimal
values of τ for the DRMWD are also higher than for the other distributions. The
reason for this is that the failure rate for this distribution remains for a while at
a relatively low level before it starts increasing again.
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Table 6.2.: Optimal values in case of costs proportional to the state before repair

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cS = 0.5

δ = 0.125 N = 7
v = 0
τ = 9

N = 11
v = 0
τ = 9

N = 6
v = 0
τ = 7

N = 11
v = 0
τ = 7

N = 11
v = 0
τ = 16

δ = 0.5 N = 9
v = 0
τ = 7

N = 9
v = 0
τ = 7

N = 10
v = 0
τ = 6

N = 10
v = 0
τ = 6

N = 11
v = 0
τ = 11

δ = 1 N = 11
v = 0
τ = 6

N = 11
v = 0
τ = 6

N = 11
v = 0
τ = 5

N = 11
v = 0
τ = 5

N = 11
v = 0
τ = 11

δ = 2 N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 8

cM/cS = 1

δ = 0.125 N = 11
v = 0
τ = 6

N = 11
v = 0
τ = 6

N = 10
v = 0
τ = 5

N = 8
v = 0
τ = 6

N = 11
v = 0
τ = 11

δ = 0.5 N = 11
v = 0
τ = 6

N = 11
v = 0
τ = 6

N = 10
v = 0
τ = 5

N = 10
v = 0
τ = 5

N = 11
v = 0
τ = 11

δ = 1 N = 11
v = 0
τ = 5

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 5

N = 10
v = 0
τ = 9

δ = 2 N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 7

cM/cS = 2

δ = 0.125 N = 8
v = 0
τ = 5

N = 10
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 10
v = 0
τ = 5

N = 10
v = 0
τ = 9

δ = 0.5 N = 10
v = 0
τ = 4

N = 10
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 10
v = 0
τ = 4

N = 10
v = 0
τ = 9

δ = 1 N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 4

N = 11
v = 0
τ = 8

δ = 2 N = 11
v = 0
τ = 3

N = 11
v = 0
τ = 3

N = 11
v = 0
τ = 3

N = 11
v = 0
τ = 3

N = 11
v = 0
τ = 6
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Table 6.3.: Optimal values in case of costs proportional to the degree of repair - 1

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cR = 0.5

δ = 0.125 N = 11
v = 1
τ = 4

N = 11
v = 1
τ = 3

N = 11
v = 1
τ = 3

N = 11
v = 1
τ = 3

N = 10
v = 3
τ = 7

δ = 0.5 N = 10
v = 1
τ = 7

N = 10
v = 1
τ = 7

N = 11
v = 1
τ = 5

N = 11
v = 2
τ = 4

N = 8
v = 3
τ = 10

δ = 1 N = 10
v = 0
τ = 12

N = 11
v = 0
τ = 12

N = 6
v = 0
τ = 7

N = 4
v = 0
τ = 8

N = 2
v = 0
τ = 16

cM/cR = 1

δ = 0.125 N = 11
v = 1
τ = 2

N = 11
v = 1
τ = 2

N = 11
v = 1
τ = 2

N = 11
v = 1
τ = 3

N = 11
v = 3
τ = 5

δ = 0.5 N = 11
v = 1
τ = 5

N = 10
v = 1
τ = 4

N = 10
v = 1
τ = 3

N = 10
v = 1
τ = 4

N = 10
v = 3
τ = 7

δ = 1 N = 4
v = 0
τ = 7

N = 4
v = 0
τ = 7

N = 10
v = 0
τ = 5

N = 6
v = 0
τ = 6

N = 2
v = 0
τ = 13

cM/cR = 2

δ = 0.125 N = 11
v = 1
τ = 2

N = 11
v = 1
τ = 1

N = 11
v = 1
τ = 2

N = 11
v = 1
τ = 2

N = 11
v = 3
τ = 4

δ = 0.5 N = 10
v = 1
τ = 3

N = 10
v = 1
τ = 2

N = 10
v = 1
τ = 3

N = 10
v = 1
τ = 3

N = 10
v = 3
τ = 5

δ = 1 N = 6
v = 0
τ = 5

N = 6
v = 0
τ = 5

N = 1
v + τ = 4

N = 8
v = 0
τ = 5

N = 2
v = 0
τ = 10
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Figure 6.2 shows the dependency of the average maintenance costs on v and τ for the
DMWD(α = 0.03, β = 0.004335, γ = 3), the cost ratio cM/cR = 2, p = 0.1, N = 10
and δ = 0.5 using cost function (6.21). The points are connected with lines for a better
visibility. It can be seen that the cost function has a unique minimum for a fixed value
of N .

0 5 10 15 20

20
0

30
0

40
0

50
0

60
0

v

C
(v

, τ
, N

)

1234567891011121314151617181920

(a) For all τ

0 2 4 6 8

15
0

20
0

25
0

30
0

v

C
(v

, τ
, N

)

τ = 1
τ = 2
τ = 3
τ = 4
τ = 5
τ = 6

(b) For τ = 1, . . . , 6

Figure 6.2.: Average maintenance costs for the DMWD(α = 0.03, β = 0.004335, γ = 3) if
N = 10, cR = 500, cM = 1000, p = 0.1 and δ = 0.5.

6.5.4. Costs Proportional to the Degree of Repair - 2

Like in the previous subsection it is assumed that the costs for a PM action are pro-
portional to the degree of repair ξ(v, τ), but here the following cost function is used

cPM(v, τ) = cR (1− ξ(v, τ) exp (ξ(v, τ)− 1))δ , (6.22)

where δ > 0 and cR > 0 are the costs for a replacement. This cost function is described
in detail in Subsection 2.7.4. The cost optimal maintenance strategies are given in
table 6.4 and lead to the following conclusions:

1. The higher δ, the less expensive are PM actions. Therefore, with rising δ it
becomes cost optimal to do more PM actions, i.e. N is increasing.

2. The lower the costs of a renewal compared to the costs of a minimal repair, i.e.
the higher the ratio cM/cR, the less expensive are the costs for good PM and the
better are the PM actions, i.e. v is decreasing.

3. The cost optimal values of v for the DRMWD are higher than for the other
distributions. The reason for this is that the DRMWD has a higher failure rate
at lower states. The cost optimal values of τ for the DRMWD are also higher
than for the other distributions. This is also caused by the failure rate of the
DRMWD which remains for a while at a relatively low level.
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Table 6.4.: Optimal values in case of costs proportional to the degree of repair - 2

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142
β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cM/cR = 0.5

δ = 0.5 N = 1
v + τ = 10

N = 1
v + τ = 10

N = 1
v + τ = 7

N = 1
v + τ = 8

N = 11
v = 0
τ = 17

δ = 1 N = 1
v + τ = 10

N = 1
v + τ = 10

N = 1
v + τ = 7

N = 1
v + τ = 8

N = 11
v = 0
τ = 17

δ = 2 N = 1
v + τ = 10

N = 1
v + τ = 10

N = 1
v + τ = 7

N = 1
v + τ = 8

N = 11
v = 10
τ = 1

δ = 3 N = 11
v = 5
τ = 1

N = 11
v = 4
τ = 1

N = 11
v = 3
τ = 1

N = 11
v = 4
τ = 1

N = 11
v = 8
τ = 2

cM/cR = 1

δ = 0.5 N = 1
v + τ = 7

N = 1
v + τ = 7

N = 1
v + τ = 5

N = 1
v + τ = 6

N = 1
v + τ = 13

δ = 1 N = 1
v + τ = 7

N = 1
v + τ = 7

N = 1
v + τ = 5

N = 1
v + τ = 6

N = 1
v + τ = 13

δ = 2 N = 1
v + τ = 7

N = 1
v + τ = 7

N = 1
v + τ = 5

N = 1
v + τ = 6

N = 11
v = 8
τ = 1

δ = 3 N = 11
v = 3
τ = 1

N = 11
v = 3
τ = 1

N = 11
v = 3
τ = 1

N = 11
v = 3
τ = 1

N = 11
v = 7
τ = 1

cM/cR = 2

δ = 0.5 N = 1
v + τ = 5

N = 1
v + τ = 5

N = 1
v + τ = 4

N = 1
v + τ = 5

N = 1
v + τ = 10

δ = 1 N = 1
v + τ = 5

N = 1
v + τ = 5

N = 1
v + τ = 4

N = 1
v + τ = 5

N = 1
v + τ = 10

δ = 2 N = 1
v + τ = 5

N = 1
v + τ = 5

N = 1
v + τ = 4

N = 1
v + τ = 5

N = 11
v = 7
τ = 1

δ = 3 N = 11
v = 2
τ = 1

N = 11
v = 2
τ = 1

N = 11
v = 2
τ = 1

N = 11
v = 2
τ = 1

N = 11
v = 5
τ = 1
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Imperfect PM and CM

The maintenance model in this chapter is the discrete analogue of the model in Chapter
4. Like in the previous chapter a repairable multi-state system (MSS) with n states is
used and it is assumed that at time 1 the system is in state one, at time 2 the system
is in state two and so on (as described in Kahle [22]).
The maintenance model of this chapter includes both imperfect preventive and imper-
fect corrective maintenance actions. Here a sequential failure limit PM policy with
infinite planning horizon is used to formulate a cost optimization problem.
This chapter is structured as follows. Section 7.1 and Section 7.2 contain essential as-
sumptions and definitions that are needed to formulate the cost optimization problem
in Section 7.3. Finally, in Section 7.4 different cost functions for PM and CM and
different discrete lifetime distributions are used and the optimal maintenance strategy
is computed.

7.1. Modeling the System

According to Kahle [22], we consider a repairable multi-state system (MSS). This
system has the following properties.

1. Initially a new repairable MSS is installed. The MSS has n states in which the
system can fail. A time scale is introduced so that the system at time 1 is in
state one, at time 2 in state two and so on.

2. The system has only one failure type which can be removed through imperfect
repair actions.

3. The repair times are negligible small.

7.2. Maintenance Policy

The maintenance strategy described here is designed for an infinite time horizon. The
following assumptions are made.

1. All failures that occurred after installation during the time interval (0, v] are
removed through minimal repair.

2. If there is a failure during the time interval (v, v+ τ) a CM action is carried out.
Otherwise a PM action at time v + τ will be carried out.

– 87 –



7. System with one Failure Type and Imperfect PM and CM

3. If there is no failure during the pre-defined time interval of length τ > 0 after a
maintenance action, a PM will be carried out. For τ it holds τ ∈ {1, . . . , n− v}.

4. If a failure occurs during the time interval of the length τ > 0 after a maintenance
action, a CM is carried out.

5. The virtual age of the system after both PM actions and CM actions is always
v ≥ 0 and v ∈ {0, . . . , n−1}. Since PM actions can be planned, they are assumed
to be more cost effective than unplanned CM actions.

6. Suppose c1, c2, . . . are the realizations of the general maintenance times. In terms
of Kijima type II model the degree of the kth repair is

ξk(v, ck, ck−1) =
v

v + ck − ck−1

, ∀k ≥ 1. (7.1)

This maintenance policy is a sequential failure limit policy (see [17, p. 765]) because
an alternative formulation of Assumption 2 might be: A PM is performed when the
failure intensity reaches the predetermined level λN

∗
(v + τ).

7.3. Cost Optimization Problem

Consider a technical system that is maintained with maintenance policy described in
Section 7.2. The aim of this section is to formulate a cost optimization problem.
The optimization criterion are the average maintenance costs per unit time. For this
purpose, the expected maintenance costs per cycle are set in relation to the mean cycle
length. Here the cycle length is the time between two maintenance actions and for
reasons of simplification, the time between the startup of the system and the age of v
is excluded from the modeling of the cost optimization problem.
Suppose N∗ = (N∗t )t≥0 is the failure counting process, i.e. N∗t is the random number
of failures of a repairable system with PM in the interval [0, t].

Lemma 7.1 (Intensity Function of N∗ = (N∗t )t≥0)
Suppose c1, c2, . . . are realizations of the general maintenance times. The intensity
function of the counting process N∗ = (N∗t )t≥0 is then

λN
∗
(t) =


0 , if t < 0

hT1(t) , if t ∈ [0, c1)

hT1(v + t− ck) , if t ∈ [ck, ck+1), k ≥ 1,

(7.2)

where hT1(·) is the hazard function of the time to first failure of a new system.

For the computation of the expected maintenance costs per cycle it is necessary to
compute the probability that a failure occurs within τ time units after a maintenance
action.

Lemma 7.2 (Distribution function of T v)
Let T1 be the discrete random time of the first failure of a repairable system without
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maintenance. Suppose T v is the remaining discrete lifetime of the system after a main-
tenance action that reduces the virtual age of the system to v. Then T v is a truncated
discrete random variable with the following cumulative distribution function

F T v(t) = P (T v ≤ t) =
F T1(v + t)− F T1(v)

1− F T1(v)
, ∀t = 0, 1, 2, . . . . (7.3)

Suppose the random cycle length Lv,τ is the random time between two maintenance
actions. Therefore, it is either the time between two PM actions or the time between
CM and PM actions. It holds

Lv,τ = min{T v, τ}

{
< τ , with P (T v < τ) = P (T1 < v + τ |T1 > v)

= τ , with P (T v ≥ τ) = 1− P (T1 < v + τ |T1 > v)
, (7.4)

for τ ∈ {1, . . . , n− v}. For the cumulative distribution function of Lv,τ it holds

FLv,τ (t) = P (Lv,τ ≤ t) =


0 , if t < 0

F T1(v + t|T1 > v) , if t ∈ {0, . . . , τ − 1}
1 , if t ≥ τ

. (7.5)

Theorem 7.3 (Mean Cycle Length)
For the expected cycle length it holds

E(Lv,τ ) =
τ−1∑
j=0

j · P (T1 = v + j|T1 > v) + τ · P (T1 ≥ v + τ |T1 > v). (7.6)

Proof. The random cycle length is a positive discrete random variable with the follow-
ing probability mass function

P (Lv,τ = t) =


0 , if t < 0

P (T1 = v + t|T1 > v) , if t ∈ {0, . . . , τ − 1}
P (T1 ≥ v + t|T1 > v) , if t = τ

0 , if t > τ

. (7.7)

Using this, the mean cycle length is computed as follows

E(Lv,τ ) =
∞∑
j=0

j · P (Lv,τ = j)

=
τ−1∑
j=0

j · P (Lv,τ = j) + τ · P (Lv,τ = τ)

=
τ−1∑
j=0

j · P (T1 = v + j|T1 > v) + τ · P (T1 ≥ v + τ |T1 > v). (7.8)
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Figure 7.1.: Mean cycle length for the DLFRD(α = 0.01, β = 0.02944).

In Figure 7.1 the mean cycle length is plotted for the DLFRD. Note that for better
visibility the points are connected with lines. The mean cycle length in the discrete
case is bounded from below by one and for v = 0 the mean cycle length is bounded
from above by min{τ, E(T1)}. Note that since P (T1 = 0) = 0, the expected time to
first failure of a new system is always greater or equal one, i.e. E(T1) ≥ 1. For the
same parameterization of the lifetime distribution in the continuous and the discrete
case the mean cycle length in the discrete case is always greater or equal the mean
cycle length in the continuous case.

Definition 7.1 (Cost Optimization Problem)
Let cCM denotes the costs of a CM action and cPM the costs of a PM action. The
average maintenance costs per unit time are

C(v, τ) =
cCMP (T v < τ) + cPMP (T v ≥ τ)

E(Lv,τ )
. (7.9)

The optimization problem then have the following form

min
v∈{0,...,n−1}, τ∈{1,...,n−v}

C(v, τ). (7.10)

Note that if τ = 1, there will be no CM actions, i.e. P (T v < 1) = 0, and E(Lv,1) = 1.
Thus, for the average maintenance costs per unit time it holds C(v, 1) = cPM .

7.4. Example for Cost Optimal Maintenance

The costs for CM and PM actions in optimization problem (7.10) are yet unspecified.
In this section special cost functions for CM and PM actions are considered and cost
optimal parameter v and τ are computed for different discrete lifetime distributions
using R and complete enumeration. In order to provide a comparison with the ana-
logue continuous maintenance model from Chapter 4 the same cost functions used in
Chapter 4 are used here and the parameterization of the discrete lifetime distributions
is identical to the continuous case.
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7.4.1. Costs Proportional to the Impact of Repair

In this section it is assumed, that the costs for maintenance actions depends only on
the virtual age after repair, i.e. the cost function for PM is

cPM(v) = cI

(
1

v

)δ
, (7.11)

and the cost function for CM is

cCM(v) = cF + cI

(
1

v

)δ
, (7.12)

where v > 0, δ > 0, cI > 0 is a constant cost value and cF > 0 is the fixed amount,
by which the costs for CM are higher than for PM. This cost function is described
in detail in Subsection 2.7.1. Note that in case of costs proportional to the impact
of repair the extreme case of perfect repair, i.e. v = 0, have to be excluded from
optimization problem (7.10).
The cost optimal maintenance strategies for different cost ratios cF/cI and different δ
are given in Table 7.1 and lead to the following conclusions:

1. Only for δ = 0.125 it is cost optimal to do very good maintenance actions with
v = 1. For higher δ these maintenance actions are too expensive compared to
worse maintenance actions. Therefore, with rising δ it is cost optimal to have
higher values of v.

2. The higher δ the greater is the cost difference between good and less good main-
tenance actions and the faster the costs of PM tend to zero and the costs of CM
tend to cF . Therefore, for high values of δ it is cost optimal to do nonstop bad
PM actions.

3. For lower values of δ the maintenance costs are relatively high and the cost
difference between good and less good maintenance actions is relatively small.
Therefore, the higher the amount, by which the costs of CM are higher than for
PM, i.e. the higher the ratio cF/cI , the better are the maintenance actions, i.e.
v is decreasing.

4. If the cost optimal values of v for the other distributions are at a low level, the
DRMWD has higher cost optimal values of v. The reason for this lies in the high
failure rate at lower states for the DRMWD.

7.4.2. Costs Proportional to the State before Repair

Assume the cost function cPM depends on the state just before PM. It holds

cPM(v, τ) = cS

(
1

v + τ

)δ
, (7.13)
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Table 7.1.: Optimal values in case of costs proportional to the impact of repair

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cI = 0.05

δ = 0.125 v = 1
τ = 19

v = 1
τ = 19

v = 1
τ = 10

v = 1
τ = 11

v = 3
τ = 17

δ = 0.5 v = 5
τ = 15

v = 4
τ = 16

v = 2
τ = 9

v = 3
τ = 9

v = 7
τ = 13

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 10
τ = 9

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

cF /cI = 0.1

δ = 0.125 v = 1
τ = 19

v = 1
τ = 19

v = 1
τ = 8

v = 1
τ = 10

v = 2
τ = 18

δ = 0.5 v = 4
τ = 15

v = 4
τ = 14

v = 2
τ = 7

v = 2
τ = 8

v = 6
τ = 14

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

cF /cI = 0.2

δ = 0.125 v = 1
τ = 14

v = 1
τ = 13

v = 1
τ = 7

v = 1
τ = 8

v = 2
τ = 18

δ = 0.5 v = 3
τ = 10

v = 3
τ = 10

v = 19
τ = 1

v = 19
τ = 1

v = 5
τ = 13

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1
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where δ > 0 and cS > 0 is a constant cost value. This cost function is described in
Subsection 2.7.2. The following cost function is used for CM actions

cCM(v, τ) =
τ−1∑
t=1

(
cF + cS

(
1

v + t

)δ)
P (T v = t|T v < τ), (7.14)

where cF > 0 is the fixed amount, by which the costs for CM are higher than for
PM. The cost optimal maintenance strategies are given in Table 7.2 and lead to the
following conclusions:

1. Since the cost difference between good and less good PM actions is comparatively
small for lower values of δ (see e.g. Figure 2.7 (b)), for the DLFRD, DRD, DWD
and DMWD it is cost optimal to do mostly perfect PM and CM actions, i.e.
v = 0. The same is not true for the RMWD because of the higher failure rate at
lower states.

2. The higher the amount by which the costs of CM are higher than for PM, i.e.
the higher the ratio cF/cS, the cost optimal interval length until a PM is done
becomes shorter, i.e. the cost optimal τ is decreasing, whereas the cost optimal v
remains fairly constant. Therefore, it becomes more likely that no failure occurs
in the time interval of length τ .

3. The higher δ, the less expensive are maintenance actions. Therefore, for high
values of δ it is cost optimal to do nonstop PM actions and no CM actions, i.e.
the cost optimal τ is one. Note that if τ = 1 it holds that C(v, 1) = cPM(v, 1).
Since cPM(v, 1) is a decreasing function of v, the corresponding cost optimal value
of v, if τ = 1, is the highest possible value of v, i.e. v = 19.

7.4.3. Costs Proportional to the Degree of Repair - 1

In this subsection it is assumed, that maintenance costs are proportional to the degree
of repair. Analogue to the continuous maintenance model from Subsection 4.4.3 the
following cost function is used for PM actions

cPM(v, τ) = cR

(
1−

(
v

v + τ

)δ)
, (7.15)

where δ > 0 and cR > 0 are the costs of replacement. This function is described in
detail in Subsection 2.7.3. In the discrete case the cost function used for CM actions is

cCM(v, τ) =
τ−1∑
t=1

(
cF + cR

(
1−

(
v

v + t

)δ))
P (T v = t|T v < τ), (7.16)

where cF > 0 is the fixed amount by which the costs of CM are higher than for PM.
In the following the optimal values for v and τ are computed for different cost ratios
cF/cR and different δ. The numerical results are given in Table 7.3 and lead to the
following conclusion:
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Table 7.2.: Optimal values in case of costs proportional to the state before repair

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cS = 0.05

δ = 0.125 v = 0
τ = 20

v = 0
τ = 20

v = 0
τ = 10

v = 0
τ = 11

v = 1
τ = 19

δ = 0.5 v = 0
τ = 20

v = 0
τ = 19

v = 0
τ = 9

v = 0
τ = 10

v = 3
τ = 17

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 0
τ = 8

v = 19
τ = 1

v = 5
τ = 13

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

cF /cR = 0.1

δ = 0.125 v = 0
τ = 18

v = 0
τ = 17

v = 0
τ = 9

v = 0
τ = 10

v = 1
τ = 19

δ = 0.5 v = 0
τ = 14

v = 0
τ = 13

v = 0
τ = 8

v = 0
τ = 9

v = 3
τ = 17

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 4
τ = 11

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

cF /cR = 0.2

δ = 0.125 v = 0
τ = 12

v = 0
τ = 12

v = 0
τ = 7

v = 0
τ = 8

v = 1
τ = 18

δ = 0.5 v = 0
τ = 10

v = 0
τ = 9

v = 0
τ = 7

v = 0
τ = 7

v = 3
τ = 13

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1
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Table 7.3.: Optimal values in case of costs proportional to the degree of repair - 1

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cR = 0.05

δ = 0.5 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 4 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 1
τ = 19

δ = 6 v = 0
τ = 20

v = 0
τ = 20

v = 0
τ = 11

v = 0
τ = 12

v = 1
τ = 19

cF /cR = 0.1

δ = 0.5 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 4 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 1
τ = 19

δ = 6 v = 0
τ = 19

v = 0
τ = 18

v = 0
τ = 9

v = 0
τ = 10

v = 1
τ = 19

cF /cR = 0.2

δ = 0.5 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 4 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 6 v = 0
τ = 13

v = 0
τ = 13

v = 0
τ = 8

v = 0
τ = 8

v = 1
τ = 19
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1. The lower δ, the lower are the maintenance costs and the faster the costs of PM
tend to zero and the costs of CM tend to cF . Therefore, it is cost optimal to
do nonstop PM actions and no CM actions, i.e. the cost optimal τ is one, and
the corresponding cost optimal value of v is the highest possible value of v, i.e.
v = 19.

2. The higher δ, the higher are the maintenance costs and the smaller is the cost
difference between good and less good maintenance actions (see e.g. Figure 2.7
(c)). Therefore, for the DLFRD, DRD, DWD and DMWD it is cost optimal to
do perfect PM and CM actions, i.e. v = 0. The same is not true for the RMWD
because of the higher failure rate at lower states.

3. The higher the amount by which the costs of CM are higher than for PM, i.e.
the higher the ratio cF/cR, the shorter is the time interval until a PM action will
be carried out, i.e. the smaller is τ .

7.4.4. Costs Proportional to the Degree of Repair - 2

In this section it is again assumed that the costs for maintenance actions are propor-
tional to the degree of repair. Analogue to the continuous maintenance model from
Subsection 4.4.4 the following cost function is used for PM actions

cPM(v, τ) = cR

(
1−

(
v

v + τ

)
exp

(
v

v + τ
− 1

))δ
, (7.17)

where δ > 0 and cR > 0 are the costs of a replacement. This function is described in
detail in Subsection 2.7.4. For CM actions the following cost function is used

cCM(v, τ) =
τ−1∑
t=1

(
cF + cR

(
1−

(
v

v + t

)
exp

(
v

v + t
− 1

))δ)
P (T v = t|T v < τ).

(7.18)
Here cF > 0 is the fixed amount, by which the costs of CM are higher than for PM.
In the following the optimal values for v and τ are computed for different cost ratios
cF/cR and different δ. The numerical results are given in Table 7.4 and lead to the
following conclusions:

1. The higher δ, the lower are the maintenance costs and the faster the costs of PM
tend to zero and the costs of CM tend to cF . Therefore, it is cost optimal to do
nonstop bad PM actions and no CM actions, i.e. τ = 1 and v = 19.

2. The lower δ, the higher are the maintenance costs and the smaller is the cost
difference between good and less good maintenance actions (see e.g. Figure 2.7
(d)). Therefore, for the DLFRD, DRD, DWD and DMWD it is cost optimal to
do perfect PM and CM actions, i.e. v = 0. This does not apply for the RMWD
because of the higher failure rate at lower states.

3. The higher the amount by which the costs of CM are higher than for PM, i.e.
the higher the ratio cF/cR, the shorter is the time interval until a PM action will
be carried out, i.e. τ is decreasing, whereas v remains constant.
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Table 7.4.: Optimal values in case of costs proportional to the degree of repair - 2

DLFRD DRD DWD DMWD DRMWD

α = 0.01
β = 0.02944

β = 0.03142 β = 0.0057
γ = 3

α = 0.03
β = 0.004335
γ = 3

α = 0.1
β = 0.1746
γ = 0.1

cF /cR = 0.05

δ = 0.125 v = 0
τ = 20

v = 0
τ = 20

v = 0
τ = 11

v = 0
τ = 12

v = 1
τ = 19

δ = 0.5 v = 0
τ = 20

v = 0
τ = 20

v = 0
τ = 11

v = 0
τ = 12

v = 1
τ = 19

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

cF /cR = 0.1

δ = 0.125 v = 0
τ = 19

v = 0
τ = 18

v = 0
τ = 9

v = 0
τ = 10

v = 1
τ = 19

δ = 0.5 v = 0
τ = 19

v = 0
τ = 18

v = 0
τ = 9

v = 0
τ = 10

v = 1
τ = 18

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

cF /cR = 0.2

δ = 0.125 v = 0
τ = 13

v = 0
τ = 13

v = 0
τ = 8

v = 0
τ = 8

v = 1
τ = 18

δ = 0.5 v = 0
τ = 13

v = 0
τ = 13

v = 0
τ = 8

v = 0
τ = 8

v = 1
τ = 17

δ = 1 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

δ = 2 v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1

v = 19
τ = 1
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8. Conclusion

This research provides several imperfect maintenance models that can be applied for
a variety of maintenance problems in both continuous and discrete time. For two of
three maintenance models with continuous lifetime distribution this thesis contains the
analogue discrete maintenance model and therefore makes it possible to compare the
resulting cost optimal maintenance strategies and to evaluate the effect of discretiza-
tion on the resulting optimal strategies. As a result it can be concluded that the cost
optimal maintenance strategies diverge from each other more or less but the interpre-
tation of results remains unchanged through discretization.
In this thesis it is shown how to use inhomogeneous Poisson processes, discrete time
Markov chains and truncated random variables to model different imperfect mainte-
nance models. In the interest of clarity, essential definitions are given in a special
chapter called Basics at the beginning of this research. In particular, the impact of
preventive maintenance actions is assumed to be not minimal and not perfect but in
between these boundary cases. For all imperfect maintenance models investigated, cost
optimal maintenance strategies for various cost functions are computed with R and are
then interpreted. For this purpose, the costs of preventive maintenance actions are as-
sumed to be proportional to the impact of repair, the state before repair or the degree
of repair. Based on such cost functions the costs of preventive maintenance actions
increase with increasing maintenance quality. The optimization criterion of interest in
this research are always the average maintenance costs per unit time. Therefore, in
each model the mean costs per cycle are set in relation to the mean cycle length. Since
all imperfect maintenance models use nearly the same cost functions for PM actions,
they are introduced in a special section at the beginning of this thesis (see Section 2.7).
In this research both models with continuous and models with discrete lifetime distri-
bution are investigated. All models use the same selection of lifetime distributions and
therefore they are described at the beginning of this thesis in Section 2.5 and Section
2.6. In the continuous case the linear failure rate distribution, the Rayleigh distri-
bution, the Weibull Distribution, the modified Weibull distribution and the reduced
modified Weibull distribution with an expected value of five are used in calculations
that are carried out. In contrast to the other lifetime distributions the last of those
distributions allows bathtub curved failure rates and is therefore well-suited to fit the
general quantitative shape of the failure rate that consists of the three intervals infant
mortality, usable life and phase of wear out failures. To enhance comparability, the
discrete counterparts of these distributions are used in the second part of this research
to perform calculations for the discrete models. It was deliberately decided against
choosing the distribution parameters for the discrete lifetime distributions so that the
expected value is five again as in the continuous case. This is useful to exactly evalu-
ate the effect of discretization of continuous lifetime distributions on the cost optimal
maintenance strategies. All in all, this proceeding of choosing the same parameteriza-
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tion leads to a higher expected time to first failure for the discrete lifetime distributions
that is close to 5.5.
In Chapter 3 and Chapter 6 an imperfect maintenance model for systems with two
different failure types is modeled and optimal maintenance strategies are determined.
These maintenance models provide an extension of a perfect preventive maintenance
model from Beichelt [7]. It is assumed that type 1 failures can be removed by minimal
repair and that type 2 failures can only be removed through replacement. In addi-
tion to corrective maintenance actions that remove failures according to their failure
type, the system is preventively maintained at fixed time intervals. These preventive
maintenance actions are imperfect in the sense that they reduce the virtual age of the
system in a Kijima type manner. In both maintenance models the time between two
replacements defines a cycle.
In the continuous case the failure counting processes are modeled as inhomogeneous
Poisson processes. The distribution function of the random time to the first type 2 fail-
ure and the expected number of minimal repairs in a replacement cycle are determined
with the help of the intensity function of these inhomogeneous Poisson processes.
In the discrete case the underlying system is assumed to be a repairable multi-state
system with a fixed number of states as described in Kahle [22]. A discrete time Markov
chain is used to model the distribution of the random time to the first type 2 failure
and the expected number of minimal repairs in the replacement cycle.
Optimal maintenance strategies are computed with R using complete enumeration for
both continuous and discrete lifetime distributions. The lifetime distributions used
in both cases are parametrized identical to ensure a high degree of comparability be-
tween the optimal maintenance strategies in the continuous and the discrete case. As
expected, the optimal maintenance strategies that are computed for different lifetime
distributions in the continuous and the discrete case are very similar. Nevertheless,
there are sometimes more, sometimes less differences in the resulting cost optimal
maintenance strategies. One crucial difference between the continuous and the discrete
case is the number of minimal repairs that can be expected during the replacement
cycle. In the continuous maintenance model from Chapter 3 the expected number of
minimal repairs is higher than in the discrete maintenance model from Chapter 6. The
reason for this is that in the discrete case the maximum number of type 1 failures and
therefore the maximum number of minimal repairs in a replacement cycle is bounded
above, since at every point in time only one failure can occur. In the continuous case,
however, such a restriction of the number of minimal repairs in a replacement cycle
does not exist. Another difference between the continuous and the discrete case is
that the mean cycle length in the discrete case is always equal or greater than in the
continuous case since the discretization of the continuous lifetime distributions shifts
probability mass away from lower values to higher values.
In view of the high complexity, these imperfect maintenance models can be applied for
a variety of maintenance problems but it is also a weakness of these models. For this
reason it is not possible to determine the optimal maintenance strategies analytically
but only through complete enumeration that require long calculation times especially
for increasing values of Nmax. Therefore, a possible starting point for future research
could be to find a suitable optimization algorithm that significantly reduces calculation
time.

– 99 –



8. Conclusion

In Chapter 4 and Chapter 7 an imperfect maintenance model with both imperfect
preventive and imperfect corrective maintenance actions is investigated. A sequential
failure limit PM policy with infinite planning horizon is used to formulate a cost opti-
mization problem.
The derivation of the optimization problem in the continuous (Chapter 4) and the
discrete case (Chapter 7) is quite similar. In both cases the remaining lifetime of the
system after a maintenance action is modeled as a truncated random variable. With
the help of this truncated random variable the costs of corrective maintenance actions,
the mean cycle length and thus the average maintenance costs per unit time can be
computed. In contrast to all other maintenance models in this thesis, a cycle is defined
here as the time between two maintenance actions and not as the time between two
replacements.
A comparison of both models shows that the mean cycle length in the discrete case
is always higher than in the continuous case since the discretization of the continuous
lifetime distributions shifts probability mass away from lower values to higher values.
Since a cycle is defined as the time between two maintenance actions, especially for the
calculation of the costs of CM actions the time since the last maintenance action have
to be taken into special consideration. A failure can occur at every point in time till
the PM takes place and therefore one have to compute the expected costs of corrective
maintenance per cycle by using the probability distribution of the remaining lifetime of
the system after a maintenance action. This will cause the costs of CM to be identical
in the discrete and the continuous case if the cost function is independent of the time
since the last maintenance action. If the used cost function is an increasing function
of the time since the last maintenance action, the costs of CM in the discrete case are
higher than in the continuous case and vice versa. Based on the above stated facts, the
resulting cost optimal maintenance strategies in the continuous and the discrete case
differ considerably in parts.
Optimal maintenance strategies are computed with R using again complete enumer-
ation for both continuous and discrete lifetime distributions since it is not possible
to determine the optimal maintenance strategies analytically. This proceeding require
long computation time and therefore it is here again meaningful to find a suitable op-
timization algorithm that reduces calculation time.
The resulting cost optimal maintenance strategies shows that in special parameter con-
stellations it is cost optimal to do quasi-non-stop PM actions if the costs of PM are
close to zero. If additionally the cost optimal value of v is very high, it is no longer
appropriate to exclude the time between the startup of the system and the age of v
from optimization problem, since the costs for minimal repairs in this time interval are
likely a significant portion of the total maintenance costs. In further research it can
be investigated how this costs can be reasonably embedded in the cost optimization
problem.
The maintenance model in Chapter 5 has a maintenance policy with PM that is done
at fixed predetermined times which are not necessarily periodic. This model takes into
account that in reality with increasing age of the system PM actions have to be done
more often. The cost optimization problem is modeled using the intensity function of
the failure counting process which is an inhomogeneous Poisson process. In contrast
to all other models examined in this thesis, the mean cycle length is not random but
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constant. Not least for this reason, the cost optimal maintenance strategies in this
model can be determined analytically. Under the assumption that the time to the first
failure is modified Weibull distributed, the original cost optimization problem reduces
to an optimization problem where only the cost optimal number of PM actions have to
be found. It was shown that this optimization problem has an unique optimum under
certain conditions. Using this, the cost optimal maintenance strategies are computed
with R. A new cost function for PM actions was used so that costs of PM are always
greater than the costs of minimal repair and smaller than the costs of a replacement.
As a result in this special case, it was proofed that if the cost function for PM is concave
it is cost optimal to do no PM actions and only preventive replacements are carried
out. Besides, if the cost function of PM is not concave, it becomes possible to have
cost optimal maintenance strategies with positive number of PM actions whereby the
time between PM actions is decreasing with increasing age of the system.
The corrective maintenance actions in the maintenance model from Chapter 5 are as-
sumed to be minimal. A possible extension of this model could be to include imperfect
CM actions. In possible further research similar to the model from Chapter 5, the fact
that in reality with increasing age of the system PM actions have to be done more
often could be reflected in the models from Chapters 3 and 6 by the use of an increas-
ing sequence of degrees of repairs. This would lead to a sequential instead of periodic
maintenance policy. Furthermore, in case of a preventive replacement one can take
into consideration a resale value for the exchanged system, since the system is still in
working condition and could be used for example as a spare part donator.
All models in this thesis use the minimum cost rate as optimization criterion. De-
pending on the area of application and the requirements on the repairable system, it
could be appropriate to use other optimization criteria such as maximum availability
or limit on failure rate. Thus, in future research for the models described in this thesis,
the influence on the optimal maintenance strategies could be investigated if another
optimization criterion is used.
The maintenance models investigated in this thesis have a multitude of application ar-
eas. As a next step these models should be applied to real systems. This will certainly
leads to further development of these maintenance models and it is expected that some
reports to these subjects will be published in near future.
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