
Optimal Control of a Stefan Problem with

Gradient-Based Methods in FEniCS

Master Thesis

submitted to the
Faculty of Mathematics

at
Otto-von-Guericke-Universität Magdeburg

in accordance with the requirements for the degree
Master of Science

authored by Björn Baran
born at December 08, 1989 in Flensburg,

university course Mathematics.

February 4, 2016

Supervised at Max Planck Institute
for Dynamics of Complex Technical Systems by

Dr. Jan Heiland

Contents

Notation V

Symbols VI

Abbreviations X

1. Introduction 2
1.1. Motivation . 2
1.2. Prior Work . 2
1.3. Research Goals . 4
1.4. Outline . 4

2. Two-Phase Stefan Problem 6
2.1. Domain . 6
2.2. Heat Equation . 7
2.3. Mesh Movement . 9
2.4. Navier–Stokes Equations . 9

3. Optimization 11
3.1. Optimal Control Problem . 11

3.1.1. Forward System . 13
3.1.2. Cost Functional . 14

3.2. Derivation of the Adjoint System . 14
3.2.1. Lagrange Functional . 15
3.2.2. Adjoint Equations . 16
3.2.3. Backward System . 33

3.3. Gradient Method . 34
3.3.1. Projected Gradient Method . 35
3.3.2. Line Minimization Algorithm 37
3.3.3. Treatment of Control Constraints 38

4. Implementation and Discretization 39
4.1. Spatial Discretization . 40
4.2. Weak Formulations . 40

5. Numerical Examples 49
5.1. General Setting . 49
5.2. Stabilizing to a Flat Position . 50
5.3. Stabilizing to a Reachable Flat Position 59
5.4. Moving to a Reachable Position . 64

– II –

Contents

6. Conclusions 69

7. Perspectives 70

A. Appendix 71
A.1. Interface Normal Representation . 71
A.2. Stefan Condition Reformulation . 72
A.3. Results for the Example from Section 5.2 73
A.4. Results for the Example from Section 5.3 74
A.5. Results for the Example from Section 5.4 75

Bibliography 79

– III –

List of Figures

2.1. The domain Ω ∈ R2 for the Stefan problem. 7

4.1. Triangulation of the domain Ω(t0) respecting the interface position (−). 39
4.2. Triangulation of the domain Ω(tN) respecting the moved interface

position. 40

5.1. Numerical solution of the forward problem at t = 1. 50
5.2. Interface graphs with λ = 10−10,Λ = 100, Λ̄ = 0. 51
5.3. Computed control for λ = 10−10,Λ = 100, Λ̄ = 0. 52
5.4. Interface graphs with λ = 10−10,Λ = 100, Λ̄ = 0 at various t. 53
5.5. Cost functional for λ = 10−10,Λ = 100, Λ̄ = 0. 54
5.6. Interface distance d at t = E for different parameter sets. 55
5.7. Interface distance dall for the whole time interval for different

parameter sets. 55
5.8. Cost functional for different initial guesses. 56
5.9. Computed controls c1, c5, c6 with different initial guesses. 57
5.10. Interface graphs for the controls c1, c5, c6. 58
5.11. Interface graphs with a reachable interface position c̃d. 59
5.12. Interface graphs with a reachable interface position c̃d and control c̃1

for various t. 60
5.13. Interface distance d at t = E for different parameter sets. 61
5.14. Interface distance dall the whole time interval for different parameter sets. 62
5.15. Interface distance d at t = E for different initial guesses and parameter

sets. 63
5.16. Interface distance d at t = E for different values of λ. 63
5.17. Interface graphs with a reachable interface position ĉd. 64
5.18. Interface graphs with a reachable interface position ĉd for various t. . . 65
5.19. Interface distance d at t = E for different parameter sets. 67
5.20. Interface distance dall the whole time interval for different parameter sets. 67
5.21. Computed controls ĉ1 to ĉ5 with different parameter sets. 68
5.22. Interface distance d at t = E for different controls ĉ1, ĉ6, ĉ7, ĉ8 with

different initial guesses. 68

– IV –

Notation

∂S for S ⊂ Rn, n ∈ {1, 2}: (n − 1)-dimensional
boundary of S

◦ concatenation of two functions: (f ◦ z)(x) =
f(z(x))

∂µf gradient of f in outer normal direction ∂µf =
∇f · µ

∇ gradient operator ∇· =
[
∂·
∂x
, ∂·
∂y

]T
∂tf derivative of f with respect to time
∂xf derivative of f in horizontal direction

∂x f = ∇ f · [1, 0]T

∂yf derivative of f in vertical direction ∂yf = ∇f ·
[0, 1]T

∇f gradient of f : R2 → R, ∇f =
[
∂f
∂x
, ∂f
∂y

]T
(∇f)l gradient of f in normal direction pointing from

the liquid to the solid phase (∇f)l = ∂−νf |Ωl

[k(∇f)]sl jump of the gradient of f in normal direc-
tion across the interface [k(∇f)]sl = [ks(∇f)s −
kl(∇f)l]

(∇f)s gradient of f in normal direction pointing from
the solid to the liquid phase (∇f)s = ∂νf |Ωs

∆ Laplace operator ∆· = ∂2·
∂x2 + ∂2·

∂y2

Dwf total derivative of f with respect to w

∇v gradient of v = [vx, vy]
T : R2 → R2×2,

∇v =

[
∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y

]

– V –

Symbols

C0 space of continuous functions
Cad set of admissible controls Cad ⊂ C
C control space
D finite element space for the adjoint state on the

interface
E end time
ΓC cooling boundary for the heat equation
ΓH inflow boundary for the Navier–Stokes equations

and the heating boundary for the heat equation
ΓI interface between the solid and liquid phases
ΓÑ zero boundary for the mesh movement at the top

of the domain, ΓÑ ⊂ ΓN
ΓN no-slip boundary for the Navier–Stokes equations

and do-nothing boundary for the heat equation
Γout outflow boundary for the Navier–Stokes equa-

tions
G finite element space for the adjoint velocity in the

liquid phase

Ĥ finite element space for the derivative of the in-
terface graph

H finite element space for the interface graph
J finite element space for the adjoint pressure in

the liquid phase
J cost functional
K reformulated cost functional which depends only

on the control
LT linear form for the weak formulation of the heat

equation
Lγ bilinear form for the weak formulation of the ad-

joint Navier–Stokes equations
Lω linear form for the weak formulation of the ad-

joint heat equation
Lψ linear form for the weak formulation of the ad-

joint equation on the interface
Lu bilinear form for the weak formulation of the

Navier–Stokes equations
L Lagrange functional
Λ̄ weight factor of the interface distance term over

the whole time interval dall in the cost functional

– VI –

Symbols

Λ weight factor of the interface distance term at
t = E, d, in the cost functional

L latent heat coefficient
Ωl liquid phase
Ωs solid phase
Ω hold all domain
O finite element space for the adjoint temperature
Pk space of polynomials with degree less than or

equal to k
P finite element space for the pressure in the liquid

phase
Q finite element space for the temperature
R real numbers
ΣC spatial discretization of ΓC
ΣI spatial discretization of ΓI
Σl triangulation of Ωl

Σs triangulation of Ωs

Σ triangulation of Ω
T0 initial temperature distribution
TC cooling temperature at ΓC
TH heating temperature at ΓH
Tm characteristic melting temperature
T temperature T : [0, E]× Ω→ R
U finite element space for the velocity in the liquid

phase
VΓI

finite element space for the interface velocity
VΓI

velocity of the interface ΓI in direction ν,
VΓI

: [0, E] × ΓI → R
Vall mesh movement function which is extending VΓI

to the whole domain Ω, Vall : [0, E] × Ω → R2

V finite element space for the mesh movement
W state space
aT bilinear form for the weak formulation of the heat

equation
aγ multilinear form for the weak formulation of the

adjoint Navier–Stokes equations
aω bilinear form for the weak formulation of the ad-

joint heat equation
aψ bilinear form for the weak formulation of the ad-

joint equation on the interface
au multilinear form for the weak formulation of the

Navier–Stokes equations
α heat conductivity in the solid and liquid phases
c, c pointwise lower and upper bound to admissible

controls
c control c ∈ C

– VII –

Symbols

dall interface distance term over the whole time inter-
val in the cost functional

δ1, δ2 tolerances for the projected gradient algorithm
dk descent direction in kth iteration step of the pro-

jected gradient algorithm
d interface distance term at t = E in the cost func-

tional
e2 unit vector e2 = [0, 1]T

ε1, ε2, ε3 tolerances for the quadratic line minimization al-
gorithm

η kinematic viscosity
γout adjoint state γout : [0, E] × (Γout ∩ ∂Ωl) → R2

γ adjoint state γ : [0, E] × Ωl → R2 (adjoint
velocity)

h0 initial graph representing the interface position
at t = 0, h0 : ΓC → R

hd graph representing the desired interface position,
hd : [0, E] × ΓC → R

ht derivative of h with respect to time, ht = ∂th
hx derivative of h with respect to space, hx = dh

dx

h graph representing the interface position,
h : [0, E] × ΓC → R

imax maximum iteration number of the quadratic line
minimization algorithm

ν unit normal along ΓI pointing from the solid to
the liquid phase

i iteration index in the quadratic line minimization
algorithm

kmax maximum iteration number of the projected gra-
dient algorithm

kj value of the cost functional at sampling point
sj, j = 0, 1, 2 in the quadratic line minimization
algorithm kj = K(P[c, c](p

k − 1
in − sj · dk))

kl heat conductivity in the liquid phase
ks heat conductivity in the solid phase
k iteration index in the projected gradient algo-

rithm
λ weight factor of the control cost term p in the

cost functional
µ outer unit normal of the domain
ωI adjoint state ωI : [0, E] × ΓI → R
ω adjoint state ω : [0, E] × Ω → R (adjoint

temperature)
p control cost term in the cost functional
pin pressure at inflow boundary

pin : [0, E] × ΓH → R

– VIII –

Symbols

Φ function mapping from ΓC to ΓI
π adjoint state π : [0, E] × Ωl → R (adjoint

pressure)
P[c, c] projection P[c, c] : C → Cad
ψC adjoint state ψC : [0, E] × ΓC → R
ψIall adjoint state ψIall : [0, E] × ΓI → R2

ψall adjoint state ψall : [0, E] × Ω → R2

ψ adjoint state ψ : [0, E] × ΓC → R
p pressure p : [0, E] × Ωl → R
q quadratic polynomial q : [s0, s2] → R for the

quadratic line minimization algorithm
s sampling point in the quadratic line minimization

algorithm
sk step size in kth iteration step of the projected

gradient algorithm
τ time step size
u velocity u : [0, E] × Ωl → R2

ϕ adjoint state ϕ : [0, E] × ΓH → R2

v, q test functions for weak formulations

– IX –

Abbreviations

FEM Finite Element Method
PDE Partial Differential Equation
X-FEM Extended Finite Element Method
ALE Arbitrary Lagrangian-Eulerian
FEniCS Finite Element Computational Software, “ni sits

nicely in the middle”, [Anders Logg]
SQP Sequential Quadratic Programming
s.t. subject to

– X –

Acknowledgment

First of all, I want to thank my supervisor Jan Heiland for guiding me throughout
this work. Without his hints, I would have been stuck several times and his comments
helped me a lot while writing down this thesis.

I also want to thank Peter Benner, not only for the possibility to write my thesis in
this interesting field of research, but also for letting me work as a student in his group
at the Max Planck Institute in Magdeburg. There I found a nice and faithful working
environment, which is also due to the colleagues at the MPI.

In this context, I mention Jens Saak in particular. He has been my mentor in the last
few years and opened the door to all of this. In his lectures and while working with him
as a student worker, I learned more than in the rest of my study. As the supervisor of
my scientific project, which preceded this thesis, he laid the foundation of this work.
Together with my office colleague Heiko Weichelt, he encouraged me to remain in the
science and continue as a PhD student.

Meine Familie hat mich von Anfang bis Ende meines Studiums in jeder erdenklichen
Weise unterstützt. Auch wenn sie mich in letzter Zeit viel zu selten zu Gesicht bekom-
men haben, haben sie immer ein offenes Ohr für jegliche Probleme und haben mein
ganzes Studium überhaupt erst möglich gemacht.

Special heartfelt thanks go to Kirsten. She read every single chapter more often than
anybody else and provided me with motivation and moral support all the time.

– 1 –

1. Introduction

1.1. Motivation

Free boundary and moving boundary problems that can be used to model crystal
growth or the solidification and melting of pure materials receive growing attention
in science and technology [8, 40]. The optimal control of these problems appears even
more interesting since certain desired shapes of the boundaries improve, for example,
the material quality. In the case of crystal growth, a flat or at least convex interface
increases the quality of the produced crystal. Besides the quality of the resulting
product, the amount of energy consumed or the length of a production cycle can
depend on the interface shape [8].
Problems with free boundaries include a strong coupling between unknown geometric
quantities, in this case the interface position, and unknown physical quantities like the
temperature distribution and the velocity of the fluid in the liquid phase. This results
in a non-linear problem, for which the numerical solution and especially the optimal
control are challenging tasks.

A model from the class of moving boundary problems is the two-phase Stefan problem,
where the domain consists of two areas, the solid and the liquid phase. In both phases,
the heat distribution is characterized by the heat equation and they are separated by
a moving inner boundary. The motion of this interface is coupled to the temperature
through the Stefan condition. This condition connects the normal velocity of the inter-
face to the jump of the temperature gradient across the interface. Further, the model
can be coupled with Navier–Stokes equations to describe the fluid flow in the liquid
phase. The optimal control of such a non-linear problem in two spatial dimensions still
comes with open tasks and is subject of this work.

1.2. Prior Work

This thesis addresses several mathematical fields. Namely, the modeling and numerical
simulation of moving boundary problems, more precisely of Stefan problems. This in-
cludes mesh movement techniques combined with finite element methods (FEMs). Ad-
ditionally, the modeling and numerical methods of Navier–Stokes equations are treated
here. The thesis also expands on optimal control and PDE-constrained optimization.

A theoretical approach to Stefan-type problems can be found in several textbooks,
e.g., [25, 30, 35]. More recent examples are [12, 14], which are closer to the current
state of research. Previous work on the forward simulation of the Stefan problem
mainly focused on one-dimensional or one-phase Stefan problems. There exist also
weak formulations that completely avoid the explicit representation of the interface.

– 2 –

1.2. Prior Work

Among others, White published an enthalpy formulation of the Stefan problem [37] and
discussed its numerical solution [36]. The enthalpy formulation works with a mushy
region of material. Neither the tracking nor the explicit representation of the interface
is required for this approach, which makes the implementation relatively simple. In
[23, p. 219], a quite short FEniCS [1] implementation of such a formulation can be
found. However, this approach is not suitable for the optimal control with interface
tracking where the sharp interface representation is crucial. A historical overview of
free boundary and solidification models is given in [39]. One possibility to treat the
moving boundary explicitly is using extended finite elements (X-FEM) and a level set
function as it is done by Zabaras et al. [38]. Here the interface is represented as the zero
level set of a time dependent implicit function. This function is approximated together
with the state equations on a fixed grid with finite elements. The weak discontinuity of
the temperature at the interface is treated by X-FEM, which modify the FEM functions
spaces in a narrow band around the interface. A similar idea was already used earlier
by Nochetto et al. [26, 27]. Bernauer adapts the same approach in his PhD thesis [8]
and the corresponding papers like [9]. Bänsch et al. are representing the interface in a
different, more explicit way. They handle the interface with finite elements combined
with a moving mesh, which respects the interface in every time step [5, 6].

Mesh movement methods were originally developed for finite differences. They have
been used for one of the first times together with finite elements in [18]. This technique
is also often found under the name of arbitrary Lagrangian-Eulerian (ALE) methods.
For a historical overview look at [11]. Besides [6], also Beckett and his collaborators
apply a moving mesh to solve the two-dimensional Stefan problem [7].

The system in this thesis is coupled with the Navier–Stokes equations, as is already
mentioned in [6] and [38]. For the derivation of these equations look at the textbooks
[10, 13], which further contain numerical methods and finite element techniques. In
[6], P2/P1 Taylor–Hood finite elements [32] are used to approximate the velocity and
pressure. Ziegenbalg solves a Stefan problem coupled with Navier–Stokes equations in
his PhD thesis [40], too. In contrast to what we consider here, he uses finite differences
combined with a moving mesh.

Well-known textbooks about optimal control and PDE-constrained optimization are
[20, 34]. They suggest possible choices for a cost functional which has the purpose to
steer the system to a desired state. In the case of the Stefan problem, the desired state
is a particular interface position. An important method for the derivation of first order
necessary optimality conditions is the Lagrange formalism. It results in an adjoint-
based optimal control approach. By the help of a Lagrange functional, the adjoint
system is derived and thereby the gradient of the cost functional with respect to the
control variable. A detailed application of this technique for the Stefan problem in level
set formulation can be found in [8,9]. However, the convection terms in the liquid phase
are omitted. This is also the case in [22], where a simplified optimization approach
for free boundary problems is presented and utilized for a Stefan-type problem. In
contrast to these, in [17, 40], the Stefan problem is coupled with the Navier–Stokes
equations and the convection is not driven by inflow and outflow boundaries but by
Lorentz forces. A graph represents the inner boundary. The temperature, velocity, and

– 3 –

1.3. Research Goals

pressure are approximated with finite differences. In [8, 40], the control acts directly
on the temperature. Furthermore, they apply first order optimality conditions and
gradient-based methods to approximate a control. Second order optimality conditions
are proposed in [2,3] for a more general free boundary problem. The latter two papers
are mainly focused on the theoretical derivation of second order sufficient optimality
conditions.

1.3. Research Goals

The aim of this thesis is to develop an optimal control approach for a two-dimensional
two-phase Stefan problem fully coupled with Navier–Stokes equations. In both phases,
the heat distribution is characterized by the heat equation. The fluid flow in the liquid
phase is described by Navier–Stokes equations. The model considered in this work
includes in- and outflow conditions which is an extension to the settings in the existing
research.

In [6], finite elements and an unstructured triangular grid, which respects the interface,
are used to approximate the solution of the Stefan problem. The Stefan condition is
solved in a variational form for the interface velocity in normal direction. By solving
a Laplace equation, this velocity is extended in a smooth way onto the whole mesh
to prevent it from extreme deformation. These techniques are adapted in this thesis
and combined with the adjoint-based optimal control approaches from [8,40]. In order
to have a sharp interface model, the moving boundary is represented as a graph like
in [40]. A main contribution of the present work is the formulation of the adjoint system
and first-order necessary optimality conditions following the “optimize-then-discretize”
paradigm. In contrast to the given references, the control acts on the pressure at the
inlet and not on the temperature. Thus, it affects the interface position in a more
indirect way. Further, the mesh movement is directly included in the PDE system
and the temperature and velocity are augmented by an additional mesh movement
advection term as proposed in [6]. The quadratic tracking-type cost functional, which
penalizes the deviation of the interface from the desired state as well as the control
costs, is minimized with a projected gradient algorithm from [40]. A modified version
of the quadratic line minimization algorithm [40] is used to compute the step size in
the gradient method.
The forward and adjoint PDE systems are numerically solved using the finite element
framework FEniCS [1]. With several numerical examples the performance of the pro-
posed approach is illustrated and analyzed.

1.4. Outline

The thesis is structured as follows: In chapter 2, the equations forming the forward
PDE system are described in detail. The domain is partitioned in a liquid and a
solid phase separated by the moving interface. The system consists of the heat equa-
tion, the Navier–Stokes equations, and the equations for the mesh movement. The
heat equation is coupled with the interface velocity through the Stefan condition.

– 4 –

1.4. Outline

This condition connects the normal velocity of the interface to the jump of the tem-
perature gradient across the interface. Further, the mesh movement is embedded into
the system and characterized by a Laplace equation. This is again coupled with the
heat equation and the Navier–Stokes equations. The control acts at the inlet through
steering the inflow pressure.

The optimal control problem is defined in chapter 3. In the beginning, the adjoint-
based optimal control approach is formulated in an abstract way. By describing a cost
functional and a Lagrange functional, the approach is applied to the concrete problem.
The adjoint system is obtained through determining the derivatives of the Lagrange
functional with respect to the single states defined in the forward system. With the
backward system at hand, the gradient of the cost functional can be formulated and
plugged into a projected gradient algorithm, equipped with a quadratic line minimiza-
tion algorithm.

To be able to solve the forward and backward systems numerically, the equations and
domain are discretized in chapter 4. The spatial discretization is done by a triangulation
of the domain. The resulting mesh respects the interface position and is moved in every
time step along the interface movement. To discretize the PDE systems in the forward
and backward problems, their weak formulations are developed here.

Chapter 5 contains three numerical examples to illustrate the performance of the ad-
joint approach and the gradient algorithm. In the first example, the interface position
is stabilized to a straight line, which, however, is not reachable by the system due to
the asymmetric setup. In a second example, the interface is stabilized to a flat, not
perfectly straight although reachable position. In the third example, the task is to
move the interface upwards. For all three examples, the influence of different weight
parameters in the cost functional and initial guesses is analyzed.

– 5 –

2. Two-Phase Stefan Problem

The considered model of the Stefan problem consists of the heat equation, including the
Stefan condition and the graph representing the interface. Additionally, the Navier–
Stokes equations and the mesh movement are integrated and fully coupled with the
model. In the following section 2.1, the arrangement of the domain and its boundary
regions are marked out. Moreover, the graph representation of the interface is defined
in this section. The equations characterizing the temperature and the interface move-
ment are described in detail in section 2.2 together with the corresponding boundary
conditions. Analogously, the same is done for the mesh movement in section 2.3 and
for the velocity and pressure in the liquid phase in section 2.4.

2.1. Domain

The domain Ω(t) ∈ R2 is split into the solid phase Ωs(t) and the liquid phase Ωl(t),
which are separated by the interface ΓI(t). The inflow and the heating with the tem-
perature TH(t) are located at ΓH(t), the outflow at Γout(t). At the bottom, there is
the cooling boundary ΓC(t) = [a, b] ⊂ R with the cooling temperature TC(t). The
remaining parts of the outer boundary are denoted ΓN(t) and ΓÑ(t) ⊂ ΓN(t) is at the
top. The inner boundary ΓI(t) moves so that its position is time-dependent. Thus,
the solid and liquid phases are time-dependent as are their boundaries. For the sake of
brevity, the time-dependence “(t)” is dropped in most places throughout this thesis.

As in [40], it is assumed that the interface can be represented as a graph

ΓI(t) =

{[
x

h(t, x)

]
: x ∈ ΓC

}
, with h : [0, E]× ΓC → R,

where [0, E], E > 0 is the time interval. The derivatives of h are abbreviated with

hx :=
dh

dx
, ht := ∂th.

To map from ΓC to the interface ΓI , the function Φ: [0, E]× ΓC → [0, E]× ΓI is used.
It is defined as

Φ(t, x) :=

(
t,

[
x

h(t, x)

])
.

The unit normal vector ν along the interface ΓI pointing from the solid to the liquid
phase can be expressed as

ν(t, x) =
1√

1 + hx(t, x)2

[
−hx(t, x)

1

]
. (2.1)

– 6 –

2.2. Heat Equation

ΓC

ΓÑ

Ωl

Ωs

ΓI

ΓH

Γout

ΓN

ΓN

ΓN

ΓN

Figure 2.1.: The domain Ω ∈ R2 for the Stefan problem.

2.2. Heat Equation

The temperature T in the solid and liquid phases is modeled with the heat equation:

∂tT + (u− Vall) · ∇T − α∆T = 0, (0, E]× Ω,

where u is the velocity of the fluid and Vall the mesh movement. Additionally, the
Stefan condition at the moving interface ΓI couples the temperature with the velocity
of the interface in normal direction:

[ks(∇T)s − kl(∇T)l] =: [k(∇T)]sl = L · VΓI
, on ΓI , (2.2)

with ks and kl denoting the heat conductivities in the solid and liquid phases and L
denoting the latent heat, and with (∇T)s := ∂νT

∣∣
Ωs

, (∇T)l := ∂−νT
∣∣
Ωl

. This equation
can be used to determine VΓI

if T is already known.

– 7 –

2.2. Heat Equation

With (2.1) the velocity of the interface ΓI in normal direction VΓI
is

VΓI
(t, x) = ∂t

[
x

h(t, x)

]
· ν(t, x) =

[
0

ht(t, x)

]
· ν(t, x)

=
ht(t, x)√

1 + hx(t, x)2
= ht(t, x)ν(t, x) · e2,

(2.3)

with e2 = [0, 1]T the unit vector in vertical direction. For more details see (A.1). Using
equation (2.3), the Stefan condition (2.2) can be reformulated to√

1 + h2
x · [k(∇T)]sl ◦ Φ = L · ht, on ΓC .

This reformulation will be needed to couple the whole system with the cost functional.
The system now reads

∂tT + (u− Vall) · ∇T − α∆T = 0, on (0, E]× Ω, (2.4a)√
1 + h2

x · [k(∇T)]sl ◦ Φ− L · ht = 0, on (0, E]× ΓC , (2.4b)√
1 + h2

x · VΓI
◦ Φ− ht = 0, on (0, E]× ΓC , (2.4c)

T = TH , on (0, E]× ΓH , (2.4d)

T = TC , on (0, E]× ΓC , (2.4e)

T = Tm, on (0, E]× ΓI , (2.4f)

∂µT = 0, on (0, E]× (ΓN ∪ Γout), (2.4g)

T (0) = T0, on Ω, (2.4h)

VΓI
(0) = 0, on ΓI , (2.4i)

h(0) = h0, on ΓC . (2.4j)

Equation (2.4c) links the interface graph h and the interface velocity VΓI
, (2.4d) and

(2.4e) are the heating and cooling Dirichlet boundary conditions, and (2.4f) enforces
T to have the characteristic melt temperature on the interface. Equation (2.4g) is the
do-nothing condition [12] for the remaining boundary parts and (2.4h) - (2.4j) are the
initial value conditions. T0 and h0 are the known initial values for T and h,

α :=

{
kl, in Ωl,

ks, in Ωs.

The mesh movement Vall and the velocity of the liquid u will be discussed in the
following sections.

– 8 –

2.3. Mesh Movement

2.3. Mesh Movement

In the initial partition, the edges of the mesh are aligned with the interface ΓI . To keep
this for the next time step, the vertices on the interface must move with VΓI

in normal
direction. In order to prevent the mesh from extreme deformation, VΓI

is smoothly
extended to Vall on the whole domain Ω. For this, the following Laplace equation is
solved:

∆Vall = 0, on (0, E]× Ω, (2.5a)

Vall − VΓI
· ν = 0, on (0, E]× ΓI , (2.5b)

Vall = 0, on (0, E]× (ΓC ∪ ΓÑ), (2.5c)

Vall · µ = 0, on (0, E]× ∂Ω, (2.5d)

Vall(0) = 0, on Ω. (2.5e)

The second equation (2.5b) is a Dirichlet condition on the inner boundary ΓI which
ensures Vall = VΓI

· ν on ΓI . Equations (2.5c) – (2.5e) assure that vertices on the
outer boundary ∂Ω stay on the boundary. These conditions preserve the shape of the
domain.
The interface ΓI is a non-material surface. The movement VΓI

of the interface and the
mesh movement Vall are not related to the movement of any physical material points.
As already pointed out in [6], the non-material movement Vall needs to be removed
from the material movement in T and u with advection terms

−Vall · ∇T

for the heat equation (2.4a) and
−(Vall · ∇)u

for the Navier–Stokes equations, which is denoted in the next section.

2.4. Navier–Stokes Equations

The velocity in the liquid phase u and the pressure p are described with the incom-
pressible Navier–Stokes equations for Newtonian fluids [13]:

∂tu+ ((u− Vall) · ∇)u

−η∆u+∇p = 0, on (0, E]× Ωl, (2.6a)

∇ · u = 0, on (0, E]× Ωl, (2.6b)

u = 0, on (0, E]× ΓI , (2.6c)

u = 0, on (0, E]× (ΓN ∩ ∂Ωl), (2.6d)

p · µ− η∂µu− pin · µ = 0, on (0, E]× ΓH , (2.6e)

p · µ− η∂µu = 0, on (0, E]× (Γout ∩ ∂Ωl), (2.6f)

u(0) = 0, on Ωl, (2.6g)

p(0) = 0, on Ωl. (2.6h)

– 9 –

2.4. Navier–Stokes Equations

The constant η is the kinematic viscosity. Additionally to momentum and mass balance
equations (2.6a) – (2.6b), equation (2.6f) defines a outflow boundary condition on
Γout ∩ ∂Ωl. The inflow boundary condition (2.6e) is influenced by the control variable
pin. Equations (2.6c) – (2.6d) are no-slip boundary conditions and (2.6g) – (2.6h)
initial value conditions for the velocity u and the pressure p.
Notice that if u is used over the whole domain Ω, it is extended with 0 on Ωs. The
pressure at the inflow boundary pin is the control variable. It is used to steer the
system to a desired state with the optimal control approach explained in the following
chapter.

– 10 –

3. Optimization

In the beginning of this chapter, the control problem and Lagrange formalism are
introduced in a general setting. Afterwards, the derived formulation is adapted to the
concrete problem in detail. What follows is closely orientated towards [8, 40]. More
details on optimal control of partial differential equations can be found in [34].
The concrete control problem is defined in terms of the underlying PDE system in
section 3.1.1 and a cost functional in section 3.1.2. The adjoint system is derived in
section 3.2. For this, a Lagrange functional is required (section 3.2.1). The resulting
adjoint system is summarized in section 3.2.3. To compute a control, which steers
the interface to a desired position, a projected gradient algorithm combined with a
quadratic line minimization algorithm are formulated in section 3.3.

3.1. Optimal Control Problem

For the state w from the state space W and the control c which is an element of the
control space C, the optimal control problem is defined as

min
w∈W,c∈C

J(w, c)

subject to (s.t.)

e(w, c) = 0,

c ∈ Cad ⊂ C.

(3.1)

The cost functional J : W × C → R can be used to steer the system to the desired
state wd. The state equation e(w, c) = 0 connects the state and the control. Further,
the control constraint c ∈ Cad defines restrictions to the control. The set of admissible
controls Cad is usually a convex subset of C. In case of Cad = C, the problem is
unrestricted.
Assuming the existence of a unique w(c) ∈ W for every c ∈ Cad, that solves the state
equation e(w(u), c) = 0, the reduced cost functional K(c) := J(w(c), c) together with
an equivalent optimal control problem can be defined:

min
c∈C
K(c)

s.t.

e(w(c), c) = 0,

c ∈ Cad ⊂ C.

(3.2)

In order to find a solution c∗ for (3.2) first-order necessary optimality conditions
are required. These can be derived formally by applying the Lagrange formalism.

– 11 –

3.1. Optimal Control Problem

For this, the Lagrange functional L :W × C × B → R is defined as

L(w, c, ζ) := J(w, c)− e(w, c) · ζ.

The Lagrange multiplier ζ ∈ B is also called adjoint state and e :W × C → B∗, where
B∗ is usually the dual of a Banach space B. From

Lw(w, c, ζ)δw = 0,

for all admissible directions of variation δw ∈ W , the so called adjoint equation

e∗(w, c, ζ) := Jw(w, c)δw − ew(w, c)δw · ζ = 0 (3.3)

follows. Since (3.3) holds for all δw, it also holds for all wc(c)δc with δc ∈ C

Jw(w, c)wc(c)δc = ew(w, c)wc(c)δc · ζ. (3.4)

Further, for all c ∈ Cad the state equation gives

e(w(c), c) = 0,

which leads to
0 = Dce(w, c)δc = ew(w, c)wc(c)δc+ ec(w, c)δc

and
ew(w, c)wc(c)δc = −ec(w, c)δc. (3.5)

The insertion of (3.5) into (3.4) leads to

Jw(w, c)wc(c)δc = −ec(w, c)δc · ζ.

One finds, that the gradient of the cost functional K with respect to the control c can
be expressed in terms of the Lagrange functional:

Kc(c)δc =Jc(w, c)δc+ Jw(w, c)wc(c)δc

=Jc(w, c)δc− ec(w, c)δc · ζ
=Lc(w, c, ζ)δc.

For a control c∗, a state w∗, and an adjoint state ζ∗, the gradient condition reads

〈Lc(w∗, c∗, ζ∗), v − c∗〉
= 〈Jc(w∗, c∗)− ec(w∗, c∗) · ζ∗, v − c∗〉 ≥ 0, for all v ∈ Cad.

(3.6)

In the unrestricted case, where Cad = C, the inequality (3.6) simplifies to the so called
gradient equation

Lc(w∗, c∗, ζ∗) = Jc(w
∗, c∗)− ec(w∗, c∗) · ζ∗ = 0. (3.7)

– 12 –

3.1. Optimal Control Problem

Accordingly, the first order optimality conditions read

e(w, c) = 0, with w = w(c),

e∗(w, c, ζ) = 0, with ζ = ζ(c),

〈Lc(w, c, ζ), v − c〉 ≥ 0, for all v ∈ Cad,
c ∈ Cad ⊂ C.

(3.8)

These are necessary optimality conditions. A control that fulfills (3.8) could be a
maximum of the cost functional K instead of a minimum. If a control fulfills these
conditions and minimizes K locally, (3.8) does not state any information about globality
of the minimum. Nevertheless, (3.8) can be formulated for the present Stefan problem
together with the aim to steer the interface to a desired position. The inflow pressure
c = pin is the control variable and w = [h, T, VΓI

, Vall, u, p] are the states. Concrete
formulations of the state equation, the cost functional and the adjoint equation follow
in the next sections.

3.1.1. Forward System

In case of the Stefan Problem, the state equation in (3.2) is a system of partial differ-
ential equations (PDEs) described in chapter 2. The whole system reads as follows.
For a given control pin find functions T (temperature), h (interface graph), VΓI

(inter-
face velocity), Vall (mesh movement), u (velocity) and p (pressure) such that

HEAT(T, u, Vall) := ∂tT + (u− Vall) · ∇T − α∆T = 0, on (0, E]× Ω,

INT(T, h) :=
√

1 + h2
x · [k(∇T)]sl ◦ Φ− L · ht = 0, on (0, E]× ΓC ,

VEL(h, VΓI
) :=

√
1 + h2

x · VΓI
◦ Φ− ht = 0, on (0, E]× ΓC ,

T = TH , on (0, E]× ΓH ,

T = TC , on (0, E]× ΓC ,

TEMP(T) := T − Tm = 0, on (0, E]× ΓI ,

∂µT = 0, on (0, E]× (ΓN ∪ Γout),

T (0) = T0, on Ω,

VΓI
(0) = 0, on ΓI ,

h(0) = h0, on ΓC ,

MESH(Vall) := ∆Vall = 0, on (0, E]× Ω,

MOVE(Vall, VΓI
) := Vall − VΓI

· ν = 0, on (0, E]× ΓI ,

Vall = 0, on (0, E]× (ΓC ∪ ΓÑ),

Vall · µ = 0, on (0, E]× ∂Ω,

Vall(0) = 0, on Ω, (3.9)

NSE(u, p, Vall) := ∂tu+ ((u− Vall) · ∇)u

−η∆u+∇p = 0, on (0, E]× Ωl,

DIV(u) := ∇ · u = 0, on (0, E]× Ωl,

u = 0, on (0, E]× ΓI ,

– 13 –

3.2. Derivation of the Adjoint System

u = 0, on (0, E]× (ΓN ∩ ∂Ωl),

CONT(p, u, pin) := p · µ− η∂µu− pin · µ = 0, on (0, E]× ΓH ,

OUT(p, u) := p · µ− η∂µu = 0, on (0, E]× (Γout ∩ ∂Ωl),

u(0) = 0, on Ωl,

p(0) = 0, on Ωl.

Throughout this thesis the latter system (3.9) is named the forward system. For later
reference, we introduce the terms HEAT, INT, . . . , OUT.

3.1.2. Cost Functional

In this section, a quadratic tracking-type cost functional is described which expresses
the aim to steer the position of the interface to a desired one. The graph hd describes
the desired position of the interface ΓI . The scalars Λ, Λ̄, and λ are weight factors for
the cost functional J

J(h, pin) :=
Λ

2

∫
ΓC

(h(E, x)− hd(E, x))2 dx+
λ

2

E∫
0

∫
ΓH

(pin(t))2 dxdt

+
Λ̄

2

E∫
0

∫
ΓC

(h(t, x)− hd(t, x))2 dxdt.

The first term aims to steer the interface position to the desired position at terminal
time E, while the third term monitors the interface movement over the complete time
horizon (0, E]. The second term models control costs and has a regularizing effect. By
adjusting λ, constraints on the control pin can become unnecessary. This implies, that
restrictions can be dropped and Cad = C.
So far, no proof of the existence and uniqueness of a solution to the forward system
(3.9) is known [8,40]. Thus, the existence of an optimal control can not be guaranteed.
Therefore, the optimal control techniques applied in this thesis are only formal. It is
assumed that for every pin ∈ Cad, unique states T (pin), h(pin), VΓI

(pin), Vall(pin),
u(pin), and p(pin) exist. As a consequence, the cost functional can be reformulated as
in section 3.1

K(pin) := J(h(pin), pin). (3.10)

The only missing elements to formulate an optimal control problem in the terminology
of (3.8) are the Lagrange functional and the adjoint equation.

3.2. Derivation of the Adjoint System

The Lagrange functional is defined in this section. It is only required as a tool to
derive the adjoint equations. For the sake of brevity dx, ds, and dt are omitted in what
follows.

– 14 –

3.2. Derivation of the Adjoint System

3.2.1. Lagrange Functional

As in the formal derivation of (3.8) in section 3.1, the Lagrange functional consists of
the cost functional and the term −e(w, c)·ζ, which represents the PDE-constraints mul-
tiplied with a Lagrange multiplier ζ. In the considered case, e(w, c) is the sum of partic-
ular terms from (3.9). Those equations from (3.9) that are not included are treated ex-
plicitly as conditions to the directions of variation (3.14). Let w = [h, T, VΓI

, Vall, u, p]
be the tuple of states and let ζ = [ω, ωI , ψ, ψC , ψall, ψ

I
all, γ, π, ϕ, γ

out] be the tuple
of adjoint states. Then we define, with the terms introduced in (3.9), the Lagrange
functional:

L(h, T,VΓI
, Vall, u, p, pin, ω, ω

I , ψ, ψC , ψall, ψ
I
all, γ, π, ϕ, γ

out) :=

Λ

2

∫
ΓC

(h(E, x)− hd(E, x))2 +
λ

2

E∫
0

∫
ΓH

(pin(t))2

+
Λ̄

2

E∫
0

∫
ΓC

(h(t, x)− hd(t, x))2

−
E∫

0

∫
Ω

HEAT(T, u, Vall) · ω −
E∫

0

∫
ΓC

INT(T, h) · ψ

−
E∫

0

∫
ΓC

VEL(h, VΓI
) · ψC −

E∫
0

∫
ΓI

TEMP(T) · ωI

−
E∫

0

∫
Ω

MESH(Vall) · ψall −
E∫

0

∫
ΓI

MOVE(Vall, VΓI
) · ψIall

−
E∫

0

∫
Ωl

NSE(u, p, Vall) · γ −
E∫

0

∫
Ωl

DIV(u) · π

−
E∫

0

∫
ΓH

CONT(p, u, pin) · ϕ−
E∫

0

∫
Γout∩∂Ωl

OUT(p, u) · γout.

(3.11)

As shown in section 3.1, the derivatives of L with respect to the states w = [h, T, VΓI
,

Vall, u, p] can be used to derive the adjoint system.

– 15 –

3.2. Derivation of the Adjoint System

3.2.2. Adjoint Equations

The normal derivative on the interface ΓI ,

(∂νT)s/l = (∇T)s/l,

mapped onto ΓC , using (A.2) and following [40, p. 163] is

(∇T)s/l ◦ Φ =
√

1 + h2
x(∂yT)s/l ◦ Φ, on ΓC . (3.12)

With (3.12), INT(T, h) becomes

INT(T, h) =
√

1 + h2
x · [ks(∇T)s − kl(∇T)l] ◦ Φ− L · ht

= (1 + h2
x) · [ks(∂yT)s − kl(∂yT)l] ◦ Φ− L · ht.

(3.13)

As explained in (3.3), the derivative of the Lagrange functional with respect to the
states is set equal to zero

D[h,T,VΓI
,Vall,u,p]L[δh, δT, δVΓI

, δVall, δu, δp] = 0,

where δh, . . . , δp denotes the directions of variation. All equations from (3.9), which do
not occur as terms in the Lagrange functional (3.11), are treated as explicit conditions
on the directions of variation:

δT = 0, on (0, E]× (ΓC ∪ ΓH),

∂µδT = 0, on (0, E]× (ΓN ∪ Γout),

δT (0) = 0, on Ω,

δVΓI
(0) = 0, on ΓI ,

δh(0) = 0, on ΓC ,

δVall = 0, on (0, E]× (ΓC ∪ ΓÑ),

δVall(0) = 0, on Ω,

δVall · µ = 0, on (0, E]× ∂Ω,

δu = 0, on (0, E]× (ΓI ∪ (ΓN ∩ ∂Ωl)),

δu(0) = 0, on Ωl,

δp(0) = 0, on Ωl.

(3.14)

These conditions must be ensured when computing the derivatives of L with respect
to the particular states in the following sections.

– 16 –

3.2. Derivation of the Adjoint System

The Derivative with Respect to the Temperature T

We apply integration by parts as well as (3.14) to the variation of the third integral in
the Lagrange functional (3.11) with respect to the temperature. This leads to

DT

(
−

E∫
0

∫
Ω

HEAT(T, u, Vall) · ω

)
· δT

=DT

(
−

E∫
0

∫
Ω

(∂tT + (u− Vall) · ∇T − α∆T) · ω

)
· δT

=−
E∫

0

∫
Ω

∂tδT · ω −
E∫

0

∫
Ω

(u− Vall) · ∇δT · ω

+

E∫
0

∫
Ω

α∆δT · ω.

For better readability, this equation is split into the first integral

−
E∫

0

∫
Ω

∂tδT · ω = −
E∫

0

∫
Ωs

∂tδT · ω −
E∫

0

∫
Ωl

∂tδT · ω

=−
∫
Ωs

ω(E)δT (E) +

∫
Ωs

ω(0) δT (0)︸ ︷︷ ︸
(3.14)
== 0

+

E∫
0

∫
Ωs

∂tω · δT

−
∫
Ωl

ω(E)δT (E) +

∫
Ωl

ω(0) δT (0)︸ ︷︷ ︸
(3.14)
== 0

+

E∫
0

∫
Ωl

∂tω · δT

=−
∫
Ω

ω(E)δT (E) +

E∫
0

∫
Ω

∂tω · δT,

the second integral

−
E∫

0

∫
Ω

(u− Vall) · ∇δT · ω

=−
E∫

0

∫
Ωs

(u− Vall) · ∇δT · ω −
E∫

0

∫
Ωl

(u− Vall) · ∇δT · ω

=−
E∫

0

∫
∂Ωs

(u− Vall) · (ω · µ) · δT +

E∫
0

∫
Ωs

(u− Vall) · ∇ω · δT

– 17 –

3.2. Derivation of the Adjoint System

−
E∫

0

∫
∂Ωl

(u− Vall) · (ω · µ) · δT +

E∫
0

∫
Ωl

(u− Vall) · ∇ω · δT

=

E∫
0

∫
Ω

(u− Vall) · ∇ω · δT −
E∫

0

∫
ΓI

(u− Vall) · (ω · µ︸︷︷︸
= ν

) · δT
∣∣∣
Ωs

−
E∫

0

∫
ΓI

(u− Vall) · (ω · µ︸︷︷︸
= −ν

) · δT
∣∣∣
Ωl

+

E∫
0

∫
∂Ωs\ΓI

ω (Vall · µ)︸ ︷︷ ︸
(2.5)
== 0

·δT

+

E∫
0

∫
∂Ωl\ΓI

ω (Vall · µ)︸ ︷︷ ︸
(2.5)
== 0

·δT −
E∫

0

∫
∂Ωs\ΓI

u · (ω · µ) · δT

−
E∫

0

∫
∂Ωl\ΓI

u · (ω · µ) · δT

=

E∫
0

∫
Ω

(u− Vall) · ∇ω · δT −
E∫

0

∫
ΓI

(u− Vall) · (ω · ν) · δT

+

E∫
0

∫
ΓI

(u− Vall) · (ω · ν) · δT −
E∫

0

∫
ΓC∪ΓN∪(Γout∩∂Ωs)

u︸︷︷︸
(2.6a)
== 0

·(ω · µ) · δT

−
E∫

0

∫
ΓH

u · (ω · µ) · δT︸︷︷︸
(3.14)
== 0

−
E∫

0

∫
Γout∩∂Ωl

u · (ω · µ) · δT

=

E∫
0

∫
Ω

(u− Vall) · ∇ω · δT −
E∫

0

∫
Γout∩∂Ωl

u · (ω · µ) · δT,

and the third integral

E∫
0

∫
Ω

α∆δT · ω =

E∫
0

∫
Ωs

ks∆δT · ω +

E∫
0

∫
Ωl

kl∆δT · ω

=

E∫
0

∫
∂Ωs

ksω∂µδT −
E∫

0

∫
Ωs

ks∇ω · ∇δT

+

E∫
0

∫
∂Ωl

klω∂µδT −
E∫

0

∫
Ωl

kl∇ω · ∇δT

– 18 –

3.2. Derivation of the Adjoint System

=

E∫
0

∫
ΓI

ksω(∂µδT)s +

E∫
0

∫
ΓI

klω(∂µδT)l

+

E∫
0

∫
ΓN∪Γout

αω ∂µδT︸ ︷︷ ︸
(3.14)
== 0

+

E∫
0

∫
ΓH∪ΓC

αω∂µδT

−
E∫

0

∫
∂Ωs

ks∂µωδT +

E∫
0

∫
Ωs

ks∆ωδT

−
E∫

0

∫
∂Ωl

kl∂µωδT +

E∫
0

∫
Ωl

kl∆ωδT

=

E∫
0

∫
ΓI

ωks(∂νδT)s −
E∫

0

∫
ΓI

ωkl(∂νδT)l

−
E∫

0

∫
ΓI

ks(∂µω)sδT −
E∫

0

∫
ΓI

kl(∂µω)lδT

+

E∫
0

∫
Ω

α∆ωδT −
E∫

0

∫
ΓH∪ΓC

α∂µω δT︸︷︷︸
(3.14)
== 0

−
E∫

0

∫
ΓN∪Γout

α∂µωδT +

E∫
0

∫
ΓH∪ΓC

αω∂µδT

=

E∫
0

∫
Ω

α∆ωδT +

E∫
0

∫
ΓI

ω[ks(∂νδT)s − kl(∂νδT)l]

−
E∫

0

∫
ΓI

[ks(∂νω)s − kl(∂νω)l]δT −
E∫

0

∫
ΓN∪Γout

α∂µωδT

+

E∫
0

∫
ΓH∪ΓC

αω∂µδT.

The latter three equations are combined again and now yield

DT

(
−

E∫
0

∫
Ω

HEAT(T, u, Vall) · ω

)
· δT

=−
∫
Ω

ω(E)δT (E) +

E∫
0

∫
Ω

∂tω · δT

– 19 –

3.2. Derivation of the Adjoint System

+

E∫
0

∫
Ω

(u− Vall) · ∇ω · δT −
E∫

0

∫
Γout∩∂Ωl

u · (ω · µ) · δT

+

E∫
0

∫
Ω

α∆ωδT +

E∫
0

∫
ΓI

ω[ks(∂νδT)s − kl(∂νδT)l]

−
E∫

0

∫
ΓI

[ks(∂νω)s − kl(∂νω)l]δT −
E∫

0

∫
ΓN∪Γout

α∂µωδT

+

E∫
0

∫
ΓH∪ΓC

αω∂µδT

=

E∫
0

∫
Ω

(∂tω + (u− Vall) · ∇ω + α∆ω) · δT −
∫
Ω

ω(E)δT (E)

+

E∫
0

∫
ΓI

ω[k(∇δT)]sl −
E∫

0

∫
ΓI

[k(∇ω)]sl δT +

E∫
0

∫
ΓH∪ΓC

αω∂µδT (3.15)

−
E∫

0

∫
Γout∩∂Ωl

(α∂µω + u · (ω · µ)) · δT −
E∫

0

∫
ΓN∪(Γout∩∂Ωs)

α∂µωδT.

Thus, the variation of the Lagrange functional with respect to T together with (3.15)
reads

0 =DTLδT = DT

(
−

E∫
0

∫
Ω

HEAT(T, u, Vall) · ω

)
· δT

+DT

(
−

E∫
0

∫
ΓC

INT(T, h) · ψ

)
· δT +DT

(
−

E∫
0

∫
ΓI

TEMP(T) · ωI
)
· δT

=

E∫
0

∫
Ω

(∂tω + (u− Vall) · ∇ω + α∆ω) · δT −
∫
Ω

ω(E)δT (E)

+

E∫
0

∫
ΓC

ω ◦ Φ[k(∇δT)]sl ◦ Φ−
E∫

0

∫
ΓI

[k(∇ω)]sl δT +

E∫
0

∫
ΓH∪ΓC

αω∂µδT

−
E∫

0

∫
Γout∩∂Ωl

(α∂µω + u · (ω · µ)) · δT −
E∫

0

∫
ΓN∪(Γout∩∂Ωs)

α∂µωδT

– 20 –

3.2. Derivation of the Adjoint System

−
E∫

0

∫
ΓC

√
1 + h2

x · ψ · [k(∇δT)]sl ◦ Φ−
E∫

0

∫
ΓI

ωI · δT

=

E∫
0

∫
Ω

(∂tω + (u− Vall) · ∇ω + α∆ω) · δT −
∫
Ω

ω(E)δT (E)

−
E∫

0

∫
Γout∩∂Ωl

(α∂µω + u · (ω · µ)) · δT −
E∫

0

∫
ΓN∪(Γout∩∂Ωs)

α∂µωδT

+

E∫
0

∫
ΓC

(ω ◦ Φ−
√

1 + h2
x · ψ) · [k(∇δT)]sl ◦ Φ

−
E∫

0

∫
ΓI

(ωI + [k(∇ω)]sl) · δT +

E∫
0

∫
ΓH∪ΓC

αω∂µδT.

By proper variation of δT , certain terms can be eliminated from the prior equation.
Thereby, terms which are integrated over the same domain and have the same multi-
plier on the right can be consolidated into one equation so that the following adjoint
equations arise

∂tω + (u− Vall) · ∇ω + α∆ω = 0, on [0, E)× Ω (3.16a)

α∂µω + u · (ω · µ) = 0, on [0, E)× (Γout ∩ ∂Ωl) (3.16b)

∂µω = 0, on [0, E)× (ΓN ∪ (Γout ∩ ∂Ωs)) (3.16c)

ω = 0, on [0, E)× (ΓC ∪ ΓH) (3.16d)

ω ◦ Φ−
√

1 + h2
x · ψ = 0, on [0, E)× ΓC (3.16e)

ωI + [k(∇ω)]sl = 0, on [0, E)× ΓI (3.16f)

ω(E) = 0, on Ω. (3.16g)

The latter equations are the adjoint system for the adjoint state ω which can be in-
terpreted as the adjoint temperature variable. The first equation (3.16a) is similar to
the heat equation, while the equation (3.16f) is analogue to the Stefan condition. The
other equations can be understood as boundary conditions and the initial condition at
time t = E. The sole source term in these equations is

√
1 + h2

x ·ψ in equation (3.16e),
which realizes the coupling to the adjoint state ψ and through this to the distance
terms in the cost functional (3.10).

– 21 –

3.2. Derivation of the Adjoint System

The Derivative with Respect to the Interface Velocity VΓI

The variation of the interface VΓI
with respect to the normal velocity is

0 =DVΓI
LδVΓI

= DVΓI

(
−

E∫
0

∫
ΓC

VEL(h, VΓI
) · ψC

)
δVΓI

+DVΓI

(
−

E∫
0

∫
ΓI

MOVE(Vall, VΓI
) · ψIall

)
δVΓI

=−
E∫

0

∫
ΓC

√
1 + h2

x · δVΓI
◦ Φ · ψC +

E∫
0

∫
ΓI

δVΓI
· ν · ψIall

=−
E∫

0

∫
ΓC

√
1 + h2

x · ψC · δVΓI
◦ Φ +

E∫
0

∫
ΓC

(ν · ψIall) ◦ Φ · δVΓI
◦ Φ

=−
E∫

0

∫
ΓC

(
√

1 + h2
x · ψC − (ν · ψIall) ◦ Φ) · δVΓI

◦ Φ

from which the adjoint equation√
1 + h2

x · ψC = (ν · ψIall) ◦ Φ, [0, E)× ΓC , (3.17)

results.

The Derivative with Respect to the Mesh Movement Vall

Applying integration by parts and (3.14) to the variation of the eighth integral of the
Lagrange functional (3.11) leads to

DVall

(
−

E∫
0

∫
Ω

MESH(Vall) · ψall

)
· δVall = −

E∫
0

∫
Ω

∆δVall · ψall

=−
E∫

0

∫
∂Ω

ψall · ∂µδVall +

E∫
0

∫
Ω

∇ψall · ∇δVall

=−
E∫

0

∫
∂Ω

ψall · ∂µδVall +

E∫
0

∫
∂Ω

∂µψall · δVall

−
E∫

0

∫
Ω

∆ψall · δVall

– 22 –

3.2. Derivation of the Adjoint System

=−
E∫

0

∫
Ω

∆ψall · δVall −
E∫

0

∫
∂Ω

ψall · ∂µδVall (3.18)

+

E∫
0

∫
ΓC∪ΓÑ

∂µψall · δVall︸︷︷︸
(3.14)
== 0

+

E∫
0

∫
ΓH∪Γout∪(ΓN\ΓÑ)

∂µψall · δVall.

Analogously, the variation of the tenth integral in the Lagrange functional (3.11) is

DVall

(
−

E∫
0

∫
Ωl

NSE(u, p, Vall) · γ

)
· δVall =

E∫
0

∫
Ωl

(δVall · ∇)u · γ

=

E∫
0

∫
Ωl

(∇u)T · γ · δVall.

(3.19)

Together with (3.18) and (3.19), the variation of the Lagrange functional (3.11) with
respect to the mesh movement Vall is

0 =DVallLδVall = DVall

(
−

E∫
0

∫
Ω

HEAT(T, u, Vall) · ω

)
· δVall

+DVall

(
−

E∫
0

∫
Ω

MESH(Vall) · ψall

)
· δVall

+DVall

(
−

E∫
0

∫
ΓI

MOVE(Vall, VΓI
) · ψIall

)
· δVall

+DVall

(
−

E∫
0

∫
Ωl

NSE(u, p, Vall) · γ

)
· δVall

=

E∫
0

∫
Ω

ω∇T · δVall −
E∫

0

∫
Ω

∆ψall · δVall

−
E∫

0

∫
∂Ω

ψall · ∂µδVall +

E∫
0

∫
ΓH∪Γout∪(ΓN\ΓÑ)

∂µψall · δVall

−
E∫

0

∫
ΓI

ψIall · δVall +

E∫
0

∫
Ωl

(∇u)T · γ · δVall

=

E∫
0

∫
Ω

(−∆ψall + ω∇T + (∇u)T · γ) · δVall

– 23 –

3.2. Derivation of the Adjoint System

−
E∫

0

∫
∂Ω

ψall · ∂µδVall −
E∫

0

∫
ΓI

ψIall · δVall (3.20)

+

E∫
0

∫
ΓH∪Γout∪(ΓN\ΓÑ)

∂µψall · δVall.

The following adjoint equations emerge by proper variation with δVall in (3.20)

−∆ψall + ω∇T + (∇u)T · γ = 0, on [0, E)× Ω,

∂µψall = 0, on [0, E)× (ΓH ∪ Γout ∪ (ΓN \ ΓÑ)),

ψall = 0, on [0, E)× ∂Ω,

ψIall = 0, on [0, E)× ΓI .

(3.21)

The Derivative with Respect to the Velocity of the Fluid u

The variation of the tenth integral in the Lagrange functional (3.11) with respect to
the velocity in the liquid phase u can be reformulated using integration by parts, the
chain rule, and (3.14):

Du

(
−

E∫
0

∫
Ωl

NSE(u, p, Vall) · γ

)
δu

=−
E∫

0

∫
Ωl

(∂tδu+ ((u− Vall) · ∇)δu+ (δu · ∇)u− η∆δu) · γ

=−
E∫

0

∫
Ωl

∂tδu · γ −
E∫

0

∫
Ωl

((u− Vall) · ∇)δu · γ −
E∫

0

∫
Ωl

(δu · ∇)u · γ

+

E∫
0

∫
Ωl

η∆δu · γ.

For better readability, this equation is split into the first integral

−
E∫

0

∫
Ωl

∂tδu · γ = −
∫
Ωl

γ(E) · δu(E) +

∫
Ωl

γ(0) · δu(0)︸ ︷︷ ︸
(3.14)
== 0

+

E∫
0

∫
Ωl

∂tγ · δu,

the second integral

−
E∫

0

∫
Ωl

((u− Vall) · ∇)δu · γ

– 24 –

3.2. Derivation of the Adjoint System

=−
E∫

0

∫
∂Ωl

(γ · µ) · (u− Vall) · δu+

E∫
0

∫
Ωl

((u− Vall) · ∇)γ · δu

=

E∫
0

∫
Ωl

((u− Vall) · ∇)γ · δu−
E∫

0

∫
ΓI∪(ΓN∩∂Ωl)

(γ · µ) · (u− Vall) · δu(0)︸ ︷︷ ︸
(3.14)
== 0

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

(γ · µ) · (u− Vall) · δu,

the third integral

−
E∫

0

∫
Ωl

(δu · ∇)u · γ = −
E∫

0

∫
Ωl

(∇u)T · γ · δu,

and the fourth integral

E∫
0

∫
Ωl

η∆δu · γ =

E∫
0

∫
∂Ωl

ηγ · ∂µδu−
E∫

0

∫
Ωl

η∇ · γ · ∇ · δu

=

E∫
0

∫
∂Ωl

ηγ · ∂µδu−
E∫

0

∫
∂Ωl

η∂µγ · δu+

E∫
0

∫
Ωl

η∆γ · δu

=

E∫
0

∫
Ωl

η∆γ · δu+

E∫
0

∫
∂Ωl

ηγ · ∂µδu

−
E∫

0

∫
ΓI∪(ΓN∩∂Ωl)

η∂µγ · δu︸︷︷︸
(3.14)
== 0

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

η∂µγ · δu.

The latter four equations combined yield

Du

(
−

E∫
0

∫
Ωl

NSE(u, p, Vall) · γ

)
δu

=−
∫
Ωl

γ(E) · δu(E) +

E∫
0

∫
Ωl

∂tγ · δu+

E∫
0

∫
Ωl

((u− Vall) · ∇)γ · δu

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

(γ · µ) · (u− Vall) · δu−
E∫

0

∫
Ωl

(∇u)T · γ · δu

– 25 –

3.2. Derivation of the Adjoint System

+

E∫
0

∫
Ωl

η∆γ · δu+

E∫
0

∫
∂Ωl

ηγ · ∂µδu−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

η∂µγ · δu

=

E∫
0

∫
Ωl

(
∂tγ + ((u− Vall) · ∇)γ − (∇u)T · γ + η∆γ

)
· δu

−
∫
Ωl

γ(E) · δu(E) +

E∫
0

∫
∂Ωl

ηγ · ∂µδu−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

η∂µγ · δu (3.22)

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

(γ · µ) · (u− Vall) · δu.

Analogously, the variation of the eleventh integral in (3.11) is

Du

(
−

E∫
0

∫
Ωl

DIV(u) · π

)
δu = −

E∫
0

∫
Ωl

∇ · δu · π

=−
E∫

0

∫
∂Ωl

(π · µ) · δu+

E∫
0

∫
Ωl

∇π · δu

=−
E∫

0

∫
ΓI∪(ΓN∩∂Ωl)

(π · µ) · δu︸︷︷︸
(3.14)
== 0

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

(π · µ) · δu

+

E∫
0

∫
Ωl

∇π · δu.

(3.23)

Using (3.22) and (3.23), the variation of the Lagrange functional (3.11) with respect
to u is

0 =DuLδu = Du

(
−

E∫
0

∫
Ωl

HEAT(T, u, Vall) · ω

)
δu

+Du

(
−

E∫
0

∫
Ωl

NSE(u, p, Vall) · γ

)
δu+Du

(
−

E∫
0

∫
Ωl

DIV(u) · π

)
δu

+Du

(
−

E∫
0

∫
ΓH

CONT(p, u, pin) · ϕ

)
δu

+Du

(
−

E∫
0

∫
Γout∩∂Ωl

OUT(p, u) · γout
)
δu

– 26 –

3.2. Derivation of the Adjoint System

=−
E∫

0

∫
Ωl

ω∇T · δu

+

E∫
0

∫
Ωl

(
∂tγ + ((u− Vall) · ∇)γ − (∇u)T · γ + η∆γ

)
· δu

−
∫
Ωl

γ(E) · δu(E) +

E∫
0

∫
∂Ωl

ηγ · ∂µδu−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

η∂µγ · δu

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

(γ · µ) · (u− Vall) · δu

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

(π · µ) · δu+

E∫
0

∫
Ωl

∇π · δu

+

E∫
0

∫
ΓH

ηϕ · ∂µδu+

E∫
0

∫
Γout∩∂Ωl

ηγout · ∂µδu

=

E∫
0

∫
Ωl

(
∂tγ + ((u− Vall) · ∇)γ − (∇u)T · γ

+ η∆γ +∇π − ω∇T
)
· δu

−
E∫

0

∫
ΓH∪(Γout∩∂Ωl)

((γ · µ) · (u− Vall) + (π · µ) + η∂µγ) · δu

+

E∫
0

∫
ΓI∪(ΓN∩∂Ωl)

ηγ · ∂µδu+

E∫
0

∫
ΓH

η(ϕ+ γ) · ∂µδu

+

E∫
0

∫
Γout∩∂Ωl

η(γout + γ) · ∂µδu−
∫
Ωl

γ(E) · δu(E).

Proper variation with δu in the last equation leads to the following adjoint equations

∂tγ − (∇u)T · γ + ((u− Vall) · ∇)γ

+η∆γ +∇π = ω∇T, on [0, E)× Ωl, (3.24a)

(γ · µ) · (u− Vall) + η∂µγ + π · µ = 0, on [0, E)× (ΓH ∪ (Γout ∩ ∂Ωl)), (3.24b)

γ = 0, on [0, E)× (ΓI ∪ (ΓN ∩ ∂Ωl)), (3.24c)

ϕ = −γ, on [0, E)× ΓH , (3.24d)

– 27 –

3.2. Derivation of the Adjoint System

γout = −γ, on [0, E)× ΓH , (3.24e)

γ(E) = 0, on Ωl. (3.24f)

The latter system of equations can be interpreted as the system for the adjoint ve-
locity γ and the adjoint pressure π. The first equation (3.24a) is similar to the mo-
mentum equation of the Navier–Stokes equations. The mass balance equation will
arise in (3.26). The right hand side of (3.24a) couples with the adjoint state ω and
through this indirectly with the distance terms in the cost functional (3.10). Equations
(3.24b),(3.24c) and (3.24f) can be understood as boundary conditions and initial value
condition at time t = E. The only occurrence of the adjoint state ϕ, which will appear
in the gradient of the cost function, is in the equation ϕ = −γ. Details can be found
in section 3.3.

The Derivative with Respect to the Pressure p

The variation of the tenth integral of the Lagrange functional (3.11) with respect to
the pressure p can be reformulated by applying integration by parts

Dp

(
−

E∫
0

∫
Ωl

NSE(u, p, Vall) · γ

)
δp = −

E∫
0

∫
Ωl

∇δp · γ

=−
E∫

0

∫
∂Ωl

(γ · µ) · δp+

E∫
0

∫
Ωl

∇ · γ · δp.

(3.25)

Taking the variation of the Lagrange functional (3.11) and using (3.25), leads to

0 =DpLδp = Dp

(
−

E∫
0

∫
Ωl

NSE(u, p, Vall) · γ

)
δp+Dp

(
−

E∫
0

∫
ΓH

CONT(p, pin) · ϕ

)
δp

+Dp

(
−

E∫
0

∫
Γout∩∂Ωl

OUT(p, u) · γout
)
δp

=−
E∫

0

∫
∂Ωl

(γ · µ) · δp+

E∫
0

∫
Ωl

∇ · γ · δp

−
E∫

0

∫
ΓH

ϕ · µ · δp−
E∫

0

∫
Γout∩∂Ωl

γout · µ · δp

=

E∫
0

∫
Ωl

∇ · γ · δp−
E∫

0

∫
ΓI∪(ΓN∩∂Ωl)

(γ · µ) · δp

– 28 –

3.2. Derivation of the Adjoint System

−
E∫

0

∫
ΓH

(γ · µ+ ϕ · µ) · δp−
E∫

0

∫
Γout∩∂Ωl

(γ · µ+ γout · µ) · δp.

From this equation the following adjoint equations arise

∇ · γ = 0, on [0, E)× Ωl, (3.26a)

γ · µ = 0, on [0, E)× (ΓI ∪ (ΓN ∩ ∂Ωl)), (3.26b)

ϕ · µ = −γ · µ, on [0, E)× ΓH , (3.26c)

γout · µ = −γ · µ, on [0, E)× (Γout ∩ ∂Ωl). (3.26d)

The first equation (3.26a) fits perfectly to (3.24a) – (3.24f) to get an adjoint Navier–
Stokes-like system for γ and π. Equations (3.26b) – (3.26d) appear also in (3.24a) –
(3.24f) in a stronger version.

The Derivative with Respect to the Interface Graph h

We use the chain rule and integration by parts for the fifth integral together with
(3.13). This leads to

Dh

(
−

E∫
0

∫
ΓC

INT(T, h) · ψ

)
· δh

=−
E∫

0

∫
ΓC

(1 + h2
x) · [k(∂2

yT)]sl ◦ Φ · ψ · δh

−
E∫

0

∫
ΓC

2hx · [k(∂yT)]sl ◦ Φ · ψ · δhx +

E∫
0

∫
ΓC

L · ∂tδh · ψ.

For this equation, the application of integration by parts to the second integral

−
E∫

0

∫
ΓC

2hx · [k(∂yT)]sl ◦ Φ · ψ · δhx

=−
E∫

0

∫
∂ΓC

2hx · [k(∂yT)]sl ◦ Φ · (ψ · µ) · δh

+

E∫
0

∫
ΓC

∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ) · δh,

– 29 –

3.2. Derivation of the Adjoint System

and to the third one yields

E∫
0

∫
ΓC

L · ∂tδh · ψ =

∫
ΓC

L · ψ(E) · δh(E)−
∫

ΓC

L · ψ(0) · δh(0)︸ ︷︷ ︸
(3.14)
== 0

−
E∫

0

∫
ΓC

L · ∂tψ · δh.

These equations consolidated again read

Dh

(
−

E∫
0

∫
ΓC

INT(T, h) · ψ

)
· δh

=−
E∫

0

∫
ΓC

(1 + h2
x) · [k(∂2

yT)]sl ◦ Φ · ψ · δh

−
E∫

0

∫
∂ΓC

2hx · [k(∂yT)]sl ◦ Φ · (ψ · µ) · δh

+

E∫
0

∫
ΓC

∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ) · δh (3.27)

+

∫
ΓC

L · ψ(E) · δh(E)−
E∫

0

∫
ΓC

L · ∂tψ · δh.

The same can be done for the sixth integral in (3.11)

Dh

(
−

E∫
0

∫
ΓC

VEL(h, VΓI
) · ψC

)
· δh

=−
E∫

0

∫
ΓC

hx√
1 + h2

x

· VΓI
◦ Φ · ψC · δhx

−
E∫

0

∫
ΓC

√
1 + h2

x · ∂yVΓI
◦ Φ · ψC · δh+

E∫
0

∫
ΓC

δht · ψC .

Again, treating the first

−
E∫

0

∫
ΓC

hx√
1 + h2

x

· VΓI
◦ Φ · ψC · δhx

=−
E∫

0

∫
∂ΓC

hx√
1 + h2

x

· VΓI
◦ Φ · (ψC · µ) · δh

– 30 –

3.2. Derivation of the Adjoint System

+

E∫
0

∫
ΓC

∂x

(
hx√

1 + h2
x

· VΓI
◦ Φ · ψC

)
· δh

and the third integral separately, we arrive at

E∫
0

∫
ΓC

δht · ψC =

∫
ΓC

ψC(E) · δh(E)−
∫

ΓC

ψC(0) · δh(0)︸ ︷︷ ︸
(3.14)
== 0

−
E∫

0

∫
ΓC

∂tψ
C · δh,

which is combined as

Dh

(
−

E∫
0

∫
ΓC

VEL(h, VΓI
) · ψC

)
· δh

=−
E∫

0

∫
∂ΓC

hx√
1 + h2

x

· VΓI
◦ Φ · (ψC · µ) · δh

+

E∫
0

∫
ΓC

∂x

(
hx√

1 + h2
x

· VΓI
◦ Φ · ψC

)
· δh (3.28)

−
E∫

0

∫
ΓC

√
1 + h2

x · ∂yVΓI
◦ Φ · ψC · δh

+

∫
ΓC

ψC(E) · δh(E)−
E∫

0

∫
ΓC

∂tψ
C · δh.

Together with (3.27) and (3.28), the variation of the Lagrange functional L with respect
to h is

0 =DhLδh = Λ

∫
ΓC

(h(E)− hd(E))δh(E) + Λ̄

E∫
0

∫
ΓC

(h− hd)δh

+Dh

(
−

E∫
0

∫
ΓC

INT(T, h) · ψ

)
· δh

+Dh

(
−

E∫
0

∫
ΓC

VEL(h, VΓI
) · ψC

)
· δh

=Λ

∫
ΓC

(h(E)− hd(E))δh(E) + Λ̄

E∫
0

∫
ΓC

(h− hd)δh

– 31 –

3.2. Derivation of the Adjoint System

−
E∫

0

∫
ΓC

(1 + h2
x) · [k(∂2

yT)]sl ◦ Φ · ψ · δh

−
E∫

0

∫
∂ΓC

2hx · [k(∂yT)]sl ◦ Φ · (ψ · µ) · δh

+

E∫
0

∫
ΓC

∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ) · δh

+

∫
ΓC

L · ψ(E) · δh(E)−
E∫

0

∫
ΓC

L · ∂tψ · δh

−
E∫

0

∫
∂ΓC

hx√
1 + h2

x

· VΓI
◦ Φ · (ψC · µ) · δh

+

E∫
0

∫
ΓC

∂x

(
hx√

1 + h2
x

· VΓI
◦ Φ · ψC

)
· δh

−
E∫

0

∫
ΓC

√
1 + h2

x · ∂yVΓI
◦ Φ · ψC · δh

+

∫
ΓC

ψC(E) · δh(E)−
E∫

0

∫
ΓC

∂tψ
C · δh

=−
E∫

0

∫
ΓC

(
(1 + h2

x) · [k(∂2
yT)]sl ◦ Φ · ψ − ∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ)

+ L · ∂tψ − ∂x

(
hx√

1 + h2
x

· VΓI
◦ Φ · ψC

)

+
√

1 + h2
x · ∂yVΓI

◦ Φ · ψC + ∂tψ
C − Λ̄(h− hd)

)
· δh

−
E∫

0

∫
∂ΓC

hx

(
2[k(∂yT)]sl ◦ Φ · ψ +

1√
1 + h2

x

· VΓI
◦ Φ · ψC

)
· (δh · µ)

+

∫
ΓC

(
Λ(h(E)− hd(E)) + L · ψ(E) + ψC(E)

)
δh(E).

– 32 –

3.2. Derivation of the Adjoint System

By proper variation with δh, certain terms can be eliminated from the last equation
and lead to the following adjoint equations

(1 + h2
x) · [k(∂2

yT)]sl ◦ Φ · ψ
−∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ) + L · ∂tψ

−∂x

(
hx√

1 + h2
x

· VΓI
◦ Φ · ψC

)
+
√

1 + h2
x · ∂yVΓI

◦ Φ · ψC + ∂tψ
C − Λ̄(h− hd) = 0, on [0, E)× ΓC ,

2[k(∂yT)]sl ◦ Φ · ψ +
1√

1 + h2
x

· VΓI
◦ Φ · ψC = 0, on [0, E)× ∂ΓC ,

Λ(h(E)− hd(E)) + L · ψ(E) + ψC(E) = 0, on ΓC .

(3.29)

By substitution of the last equation in (3.21) into (3.17), it follows

ψC = 0, on [0, E)× ΓC . (3.30)

Substituting (3.30) into (3.29), we can simplify the system of adjoint equations for ψ
to

L · ∂tψ + (1 + h2
x) · [k(∂2

yT)]sl ◦ Φ · ψ
−∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ)− Λ̄(h− hd) = 0, on [0, E)× ΓC , (3.31a)

ψ = 0, on [0, E)× ∂ΓC , (3.31b)

Λ(h(E)− hd(E)) + L · ψ(E) = 0, on ΓC . (3.31c)

The latter equations are a PDE system for the adjoint state ψ defined on the bottom
boundary ΓC . (3.31b) is the boundary condition and (3.31c) the initial value condition
at terminal time E. Through the terms Λ̄(h− hd) in (3.31a) and Λ(h(E)− hd(E)) in
(3.31c), ψ is directly coupled to the cost functional. Moreover, ψ is linked with the
adjoint state ω and thereby with the adjoint states γ and particularly with ϕ, which
has an important impact on the gradient of the cost functional (3.35).

3.2.3. Backward System

For the optimal control problem in this thesis, the adjoint equation in (3.2) is a PDE
system consisting of the equations derived in the preceding six sections. Several La-
grange multipliers introduced in (3.11) have no influence on the adjoint state ϕ, and
with that no influence on the gradient of the cost functional ∇K (3.35). In particular,
ωI , ψC , ψall, ψ

I
all and γout are of no interest here because the adjoint equations are

used only as a tool to formulate and compute ∇K. Hence, they are neglected in the
following system.

– 33 –

3.3. Gradient Method

For given states T , Vall, u and h, find functions ω, γ, π, ψ and ϕ such that

∂tω + (u− Vall) · ∇ω + α∆ω = 0, on [0, E)× Ω,

α∂µω + u · (ω · µ) = 0, on [0, E)× (Γout ∩ ∂Ωl),

∂µω = 0, on [0, E)× (ΓN ∪ (Γout ∩ ∂Ωs)),

ω ◦ Φ =
√

1 + h2
x · ψ, on [0, E)× ΓC ,

ω = 0, on [0, E)× (ΓC ∪ ΓH),

ω(E) = 0, on Ω,

∂tγ + ((u− Vall) · ∇)γ

−(∇u)T · γ + η∆γ +∇π = ω∇T, on [0, E)× Ωl,

∇ · γ = 0, on [0, E)× Ωl, (3.32)

(γ · µ) · (u− Vall)
+η∂µγ + π · µ = 0, on [0, E)× (ΓH ∪ (Γout ∩ ∂Ωl)),

γ = 0, on [0, E)× (ΓI ∪ (ΓN ∩ ∂Ωl)),

ϕ = −γ, on [0, E)× ΓH ,

γ(E) = 0, on Ωl,

L · ∂tψ
+(1 + h2

x) · [k(∂2
yT)]sl ◦ Φ · ψ

−∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ) = Λ̄(h− hd), on [0, E)× ΓC ,

ψ = 0, on [0, E)× ∂ΓC ,

ψ(E) = −Λ

L
(h(E)− hd(E)), on ΓC .

Terminal values for the adjoint states ω, γ and ψ are given for the time E. Thus,
in contrast to the forward system (3.9), the equations in (3.32) have to be solved
backwards in time. Throughout this thesis, the latter system (3.32) is named the
backward system.

3.3. Gradient Method

The optimal control problem can be solved with a gradient method. For this, not
only the forward and backward systems are required, but also the gradient of the cost
functional ∇K, which we derive in this section.
Following the derivation of (3.8), the Lagrange functional can be used to formulate

DpinKδpin = DpinLδpin

= Dpin

(
λ

2

E∫
0

∫
ΓH

(pin)2

)
δpin −Dpin

(E∫
0

∫
ΓH

CONT(p, u, pin) · ϕ

)
δpin

=

E∫
0

∫
ΓH

λpinδpin +

E∫
0

∫
ΓH

(µ · ϕ)δpin

– 34 –

3.3. Gradient Method

=

E∫
0

∫
ΓH

(λpin + (µ · ϕ))δpin.

The analogue to the gradient condition (3.6) reads

E∫
0

∫
ΓH

(λpin + (µ · ϕ))(v − pin) ≥ 0, for all v ∈ Cad (3.33)

where Cad = {c ∈ C : c ≤ c(t) ≤ c, t ∈ [0, E]}. The unrestricted case Cad = C can
be expressed with c = −∞, c = ∞ which results in the following gradient equation
instead of the latter inequality (3.33)

0 = λpin +
1

|ΓH |

∫
ΓH

µ · ϕ, t ∈ (0, E]. (3.34)

As a consequence, the required gradient of the cost functional (3.10) can be expressed
as

∇K = λpin +
1

|ΓH |

∫
ΓH

µ · ϕ, (3.35)

and is now available to be plugged into a gradient method.

3.3.1. Projected Gradient Method

The cost functional (3.10) is to be minimized

min
c∈Cad

K(c).

Given a control pk−1
in ∈ Cad, the direction of steepest descent is the negative gradi-

ent −∇K(pk−1
in). The projected gradient method [34], described in algorithm 1, uses

this as the descent direction (step 6). Further, a step size sk is computed in step 5
with algorithm 2. To ensure that the computed control is admissible, the projection
P[c, c] : C → Cad is utilized pointwise in time (step 7).

P[c, c](c) := max{c,min{c, c}}.

A discussion of this technique can be found in section 3.3.3.

Steps 3 and 4 in algorithm 1 require the numerical solution of several PDE systems.
This is done in a discretized setting. More details on this can be found in chapter 4.
In addition, an initial guess p0

in ∈ Cad is required as input to the algorithm. This issue
is addressed in chapter 5.

– 35 –

3.3. Gradient Method

Algorithm 1: Projected Gradient Method

Input: initial control p0
in

Output: control pkend
in

1 k = 1
2 while not converged do
3 solve forward problem (3.9)
4 solve backward problem (3.32)
5 compute step size sk

6 dk = λpk−1
in + 1

|ΓH |

∫
ΓH

µ · ϕ

7 pkin = P[c, c](p
k−1
in − sk · dk)

8 k = k + 1

9 end

Sufficient stopping criteria, evaluated in step 2 of algorithm 1, are crucial for the
convergence of the projected gradient algorithm. Referring to the gradient equation
(3.34), the algorithm should stop if the norm of the descent step is smaller than a
certain tolerance δ1

||dk|| < δ1. (3.36)

This quantity strongly depends on the parameters chosen in (3.10). Thus, it is possible
that descent directions with very small norm lead to relative large advance in conver-
gence. In this case, the step size sk is chosen respectively large. So a more suitable
criterion is

||sk · dk|| < δ1. (3.37)

In the restricted case, where the gradient equation (3.34) has to be replaced by the in-
equality (3.33), condition (3.36) may be unfulfilled even for a locally optimal control c∗.
However, the corresponding step size would be zero since dk is no descent direction any-
more and (3.37) would be fulfilled.
Another possibility for a stopping criterion is to observe the relative change of the cost
functional.

|K(pk−1
in)−K(pkin)|
|K(pk−1

in)|
< δ2, (3.38)

where δ2 is another tolerance.
It is well known, that gradient methods show a slow convergence behavior [34]. In our
experiments, the algorithm is stopped after a predefined number of iteration steps

k > kmax. (3.39)

Besides the stopping criteria, the choice of the step size sk is of great significance for
the performance of the projected gradient method.

– 36 –

3.3. Gradient Method

Algorithm 2: Quadratic Line Minimization

Input: The step direction dk

Output: step size s

1 i = 1
2 choose s0 = 0 < s1 < s2, ε1
3 kj = K(P[c, c](p

k−1
in − sj · dk)), j = 0, 1, 2

4 while not converged do
5 q ∈ P2 : q(sj) = kj, j = 0, 1, 2
6 s = argmin

s̃∈[s0,s2]

q(s̃)

7 if |s− s2| < ε1 then
8 s0 = s1, k0 = k1, s1 = s2, k1 = k2

9 s2 = s2 + s1 − s0

10 k2 = K(P[c, c](p
k−1
in − s2 · dk))

11 else if s > s1 then
12 s0 = s1, k0 = k1

13 s1 = s

14 k1 = K(P[c, c](p
k−1
in − s1 · dk))

15 i = i+ 1

16 else
17 s2 = s1, k2 = k1

18 s1 = s

19 k1 = K(P[c, c](p
k−1
in − s1 · dk))

20 i = i+ 1

21 end

22 end

3.3.2. Line Minimization Algorithm

The algorithm to compute the step size is a modification of the method used in [40].
Three sampling points are evaluated to approximate K(P[c, c](p

k−1
in − s · dk)) with a

quadratic polynomial q. The local minimum of q is used as the next sampling point to
refine the approximation.
Step 7 in algorithm 2 is a special case. The minimal value of q(s), s ∈ [s0, s2] is very
close or equal to s2 and the actual minimum is expected to be outside of the interval
[s0, s2]. Thus, the range is extended. This is repeated until the minimum of q is inside
the interval [s0, s2] without increasing the iteration counter i. The right boundary
is raised by s2 − s1 every time and grows linearly. In case ||dk|| is small, step 9 of
algorithm 2 can be replaced with s2 = 2 · s2. This leads to an exponential growth rate
of s2 and can save some iterations of algorithm 2.
In every iteration of the algorithm, there appears at least one evaluation of the cost
functional K(P[c, c](p

k−1
in − sj · dk)). These evaluations require the solution of the

forward problem (3.9) and are computationally expensive.

– 37 –

3.3. Gradient Method

To limit the computational cost of the Quadratic Line Minimization, a stopping crite-
rion in step 4 of algorithm 2 is determined by a maximum iteration number imax. If
i > imax the sampling point sj with the smallest cost value kj, j = 0, 1, 2 is returned.
Further, with tolerances ε2, ε3, the algorithm stops if the newly computed minimum s
of the polynomial q is close to an already existing sampling point

|s− sj| < ε2, for any j = 0, 1, 2,

or if the relative change of the value of K at the new sampling point s is small

|K(P[c, c](p
k−1
in − s · dk))− kj|
|k1|

< ε3, for any j = 0, 1, 2.

If the minimum of q computed in the first iteration step is zero or almost zero, it is
assumed that the sampling points may have been too large and s1 and s2 are chosen
s1 = δ, s2 = 2 · δ with 0 < δ � 1 small. If the minimum computed with these small
sampling points is still close to zero, s = 0 is returned.

3.3.3. Treatment of Control Constraints

The treatment of control constraints, as described in section 3.3 and used in algorithm
1, is not trivial. Tröltzsch formulates a projected gradient algorithm in [34], which is
similar to algorithm 1. He also names the difficulties to find a step size when control
constraints are present. As Ziegenbalg [40] and Bernauer [8], we follow the approach
in [34] to simply truncate the control point wise in time with the projection P[c, c] if it
violates the constraints.
A different approach, which is suggested in [34] especially for non-linear problems, is
to use second-order methods. A candidate would be the sequential quadratic program-
ming (SQP) method. It is a Newton-type method. In contrast to Newton’s method,
the handling of state constraints is straight forward in the SQP-method [34]. How-
ever, second-order derivatives and second-order optimality conditions are required for
this algorithm like in [2]. Hinze analyzes the SQP-method in [16] and compares it to
first-order methods like the gradient algorithm. An analysis of the SQP-method for
the control of a phase field equation can be found in [15].
Another way to include control constraints of box-type into the optimization of a Stefan
problem in enthalpy formulation are penalty methods. Roub́ıček studies this in [28]
and together with Verdi in [29].
Neittaanmäki describes a Stefan problem in enthalpy formulation in [24] and treats
box-type control constraints with a regularization approach which is introduced in [33].

The next chapter describes how the PDE systems are discretized in space over time with
a mesh of triangles and finite elements. It also mentions the numerical implementation
in FEniCS.

– 38 –

4. Implementation and Discretization

Step 3 in algorithm 1 requires the forward system to be solved numerically. Since this
can not be done in a continuous setting, a discretization is needed. The same holds for
the backward system in step 4. In this chapter, the spatial and temporal discretization
are described. The domain Ω is partitioned into a mesh of triangles, as pictured in
section 4.1. The PDE systems (3.9) and (3.32) are discretized with finite elements and
an implicit Euler scheme.The weak formulations are developed in section 4.2. For the
numerical implementation, the software FEniCS 1.5.0 [1] is used in Python 2.7.6 [31]
together with the Python package SciPy 0.15.1 [19]. The code is freely accessible at

https://gitlab.mpi-magdeburg.mpg.de/baran/Stefan_Problem_in_FEniCS.git.

Figure 4.1.: Triangulation of the domain Ω(t0) respecting the interface position (−).

– 39 –

https://gitlab.mpi-magdeburg.mpg.de/baran/Stefan_Problem_in_FEniCS.git

4.1. Spatial Discretization

Figure 4.2.: Triangulation of the domain Ω(tN) respecting the moved interface position.

4.1. Spatial Discretization

The domain Ω ⊂ R2 is partitioned with a mesh of triangles. One example for t = 0
can be seen in figure 4.1. The interface ΓI is respected by the triangulation. It is
represented explicitly by edges of the mesh (−). These edges move in direction VΓI

· ν
together with ΓI as illustrated in figure 4.2. In order to prevent the triangulation from
extreme deformation, VΓI

· ν is extended smoothly to Vall over the whole domain and
the whole mesh is moved with Vall. Thus, the domain is discretized with a varying
mesh for each time step.

4.2. Weak Formulations

In this section the weak formulations of the equations in (3.9) and (3.32) are presented.
Let 0 = t0 < . . . < tN = E be a partition of the time interval [0, E]. For 1 ≤ n ≤ N ,
let Σ = Σn be the triangulation of the domain Ω(tn) at time tn. It can be split into
the triangulation of the solid and liquid phases respectively Σ = Σs ∪̇ Σl. The spatial
discretizations of the boundaries ΓC and ΓI are titled ΣC and ΣI . Since the boundaries
are one-dimensional, the discretizations are unions of intervals.

– 40 –

4.2. Weak Formulations

Heat Equation

The temperature at time tn is approximated in a piecewise linear finite element space

T n ∈ Q := {v ∈ C0(Ω) : v|S ∈ P1, S ∈ Σ}.

To obtain the weak formulation of the heat equation (2.4a), it is multiplied with a test
function v ∈ Q and integrated over the domain Ω. Using integration by parts it can
be reformulated.

0 =

∫
Ω

HEAT(T, u, Vall) · v =

∫
Ωs

HEAT(T, u, Vall) · v +

∫
Ωl

HEAT(T, u, Vall) · v

=

∫
Ωs

(∂tT + (u− Vall) · ∇T − ks∆T) · v +

∫
Ωl

(∂tT + (u− Vall) · ∇T − kl∆T) · v

=

∫
Ωs

∂tT · v +

∫
Ωl

∂tT · v +

∫
Ωs

(u− Vall) · ∇T · v +

∫
Ωl

(u− Vall) · ∇T · v (4.1)

−
∫
∂Ωs

ks∂µT · v +

∫
Ωs

ks∇T · ∇v −
∫
∂Ωl

kl∂µT · v +

∫
Ωl

kl∇T · ∇

=

∫
Ω

∂tT · v +

∫
Ω

(u− Vall) · ∇T · v +

∫
Ω

α∇T · ∇v −
∫
∂Ωs

ks∂µT · v −
∫
∂Ωl

kl∂µT · v.

The integrals over the boundaries are treated separately in what follows. The test
function v is equal to zero on parts of the domain, where the temperature T is known
due to Dirichlet boundary conditions. In this case, this holds on ΓI since T = Tm is
known and analogously on ΓH and ΓC :

−
∫
∂Ωs

ks∂µT · v −
∫
∂Ωl

kl∂µT · v

=−
∫

(ΓN∪Γout)∩∂Ωs

ks ∂µT︸︷︷︸
(2.4g)
== 0

·v −
∫

(ΓN∪Γout)∩∂Ωl

kl ∂µT︸︷︷︸
(2.4g)
== 0

·v

−
∫
ΓI

ks(∂µT)s · v︸︷︷︸
(2.4f)
== 0

−
∫
ΓI

kl(∂µT)l · v︸︷︷︸
(2.4f)
== 0

−
∫

ΓH

kl(∂µT)l · v︸︷︷︸
(2.4d)
== 0

−
∫

ΓC

ks(∂µT)s · v︸︷︷︸
(2.4e)
== 0

= 0.

– 41 –

4.2. Weak Formulations

To discretize in time, the derivative of T with respect to time is replaced by a finite
difference: ∫

Ω

∂tT · v =

∫
Ω

T n − T n−1

τ
· v =

∫
Ω

1

τ
T n · v −

∫
Ω

1

τ
T n−1 · v,

where τ = tn − tn−1 is the time step size.
The equation (4.1) can be expressed in terms of a bilinear form

aT (T n, v) :=

∫
Ω

1

τ
T n · v +

∫
Ω

(un − V n
all) · ∇T n · v +

∫
Ω

α∇T n · ∇v,

and a linear form

LT (v) :=

∫
Ω

1

τ
T n−1 · v,

as
aT (T, v) = LT (v), for all t ∈ [t1, . . . , tN], and for all v ∈ Q.

Interface Movement

To compute the velocity of the interface VΓI
in normal direction at time tn, the Stefan

condition (2.2) is solved in a variational form and VΓI
is approximated in a piecewise

linear finite element space

V n
ΓI
∈ VΓI

:= {v ∈ C0(ΓI) : v|Ŝ ∈ P1, Ŝ ∈ ΣI}.

To accomplish this, again a weak formulation is used:∫
ΓI

V n
ΓI
· v =

∫
ΓI

τ

L
[k(∇T n−1)]sl · ν · v, for all n ∈ [1, . . . , N], and for all v ∈ VΓI

.

Since the position of the interface is known and matched by facets and vertices of the
mesh, these facets and vertices can be moved along V n

ΓI
· ν. With the positions of the

interface in the actual and the previous time step, the graph h and its derivatives can
be determined:

hn ∈ H := {v ∈ C0(ΓC) : v|Ŝ ∈ P2, Ŝ ∈ ΣC},
hnx ∈ Ĥ := {v ∈ C0(ΓC) : v|Ŝ ∈ P1, Ŝ ∈ ΣC}.

Mesh Movement

In order to expand the movement of the interface along the interface normals in a
continuous and smooth way, the Laplace equation (2.5) is solved for

V n
all ∈ V := {v ∈ C0(Ω)2 : v|S ∈ P2

1, S ∈ Σ}.

– 42 –

4.2. Weak Formulations

The weak formulation of this reads as follows:

0 =

∫
Ω

MESH(V n
all) · v

=

∫
Ω

∆V n
all · v =

∫
∂Ω

∂µV
n
all · v −

∫
Ω

∇V n
all · ∇v = −

∫
Ω

∇V n
all · ∇v

+

∫
ΓC∪ΓÑ

∂µV
n
all · v︸︷︷︸

(2.5)
== 0

+

∫
ΓH∪Γout∪(ΓN\ΓÑ)

∂µV
n
all · v

= −
∫
Ω

∇V n
all · ∇v

+

∫
ΓH∪Γout∪(ΓN\ΓÑ)

∂µV
n
all · v, for all t ∈ [t1, . . . , tN], and for all v ∈ V .

Navier–Stokes Equations

The approximation of the velocity and pressure in the liquid phase can be computed
with P2/P1 Taylor–Hood finite elements [6]:

un ∈ U := {v ∈ C0(Ωl)
2 : v|S ∈ P2

2, S ∈ Σl},
pn ∈ P := {v ∈ C0(Ωl) : v|S ∈ P1, S ∈ Σl}.

The weak formulation of the Navier–Stokes equations is obtained by multiplying with
test functions v ∈ U and q ∈ P and integrating over the domain Ωl:

0 =

∫
Ωl

NSE(u, p, Vall) · v +

∫
Ωl

DIV(u) · q

=

∫
Ωl

(∂tu+ ((u− Vall) · ∇)u− η∆u+∇p) · v +

∫
Ωl

∇ · u · q

=

∫
Ωl

∂tu · v +

∫
Ωl

((u− Vall) · ∇)u · v −
∫
∂Ωl

η∂µu · v

+

∫
Ωl

η∇u · ∇v +

∫
∂Ωl

p · µ · v −
∫
Ωl

p · ∇ · v +

∫
Ωl

∇ · u · q

=

∫
Ωl

∂tu · v +

∫
Ωl

((u− Vall) · ∇)u · v +

∫
Ωl

η∇u · ∇v −
∫
Ωl

p · ∇ · v

+

∫
Ωl

∇ · u · q +

∫
ΓI∪(ΓN∩∂Ωl)

(p · µ− η∂µu) · v︸︷︷︸
(2.6a)
== 0

+

∫
ΓH

(p · µ− η∂µu)︸ ︷︷ ︸
(2.6a)
== pin·µ

·v +

∫
Γout∩∂Ωl

(p · µ− η∂µu)︸ ︷︷ ︸
(2.6a)
== 0

·v

– 43 –

4.2. Weak Formulations

=

∫
Ωl

∂tu · v +

∫
Ωl

((u− Vall) · ∇)u · v +

∫
Ωl

η∇u · ∇v (4.2)

−
∫
Ωl

p · ∇ · v +

∫
Ωl

∇ · u · q +

∫
ΓH

pin · µ · v.

The derivative of u with respect to time in (4.2) is discretized in time as follows:∫
Ωl

∂tu · v =

∫
Ωl

un − un−1

τ
· v =

∫
Ωl

1

τ
un · v −

∫
Ωl

1

τ
un−1 · v.

The equation (4.2) can now be expressed in terms of a multilinear form

au(u
n, pn, v, q) :=

∫
Ωl

1

τ
un · v +

∫
Ωl

((un − V n
all) · ∇)un · v +

∫
Ωl

η∇un · ∇v

−
∫
Ωl

pn · ∇ · v +

∫
Ωl

∇ · un · q,

and a bilinear form

Lu(v, q) :=

∫
Ωl

1

τ
un−1 · v −

∫
ΓH

pnin · µ · v,

as

au(u, p, v, q) = Lu(v, q), for all t ∈ [t1, . . . , tN], and for all v ∈ U , q ∈ P .

Adjoint Interface

The adjoint equations in (3.32) are solved backwards in time. Assuming (3.9) is already
solved, the solution of (3.32) for tN = E is known and serves as initial value. Instead,
the solution for t0 = 0 is among the unknowns. The adjoint state ψ at time tn−1 is
approximated in a piecewise quadratic finite element space

ψn−1 ∈ D := {v ∈ C0(ΓC) : v|Ŝ ∈ P2, Ŝ ∈ Σn−1
C }.

The adjoint equation (3.31a) is multiplied with a test function v ∈ D and integrated
over ΓC

0 =

∫
ΓC

L · ∂tψ · v +

∫
ΓC

(1 + h2
x) · [k(∂2

yT)]sl ◦ Φ · ψ · v

−
∫

ΓC

∂x(2hx · [k(∂yT)]sl ◦ Φ · ψ) · v −
∫

ΓC

Λ̄(h− hd) · v.

– 44 –

4.2. Weak Formulations

The discretization in time is realized by a finite difference∫
ΓC

L · ∂tψ · v =

∫
ΓC

L · ψ
n − ψn−1

τ
· v =

∫
ΓC

L

τ
ψn · v −

∫
ΓC

L

τ
ψn−1 · v.

With this, the bilinear and linear forms for the adjoint state ψ read

aψ(ψn−1, v) :=

∫
ΓC

L

τ
ψn−1 · v −

∫
ΓC

(1 + (hn−1
x)2) · [k(∂2

yT
n−1)]sl ◦ Φ · ψn−1 · v

+

∫
ΓC

∂x(2h
n−1
x · [k(∂yT

n−1)]sl ◦ Φ · ψn−1) · v,

Lψ(v) :=

∫
ΓC

L

τ
ψn · v −

∫
ΓC

Λ̄(hn−1 − hn−1
d) · v,

and the weak formulation for ψ can be formulated as

aψ(ψ, v) = Lψ(v), for all t ∈ [t0, . . . , tN−1], and for all v ∈ D.

Adjoint Temperature

To compute the adjoint temperature ω at time tn−1, it is approximated in a piecewise
quadratic finite element space

ωn−1 ∈ O := {v ∈ C0(Ω) : v|S ∈ P2, S ∈ Σn−1}.

By multiplying with a test function v ∈ O, integrating equation (3.16a) over Ω and
applying integration by parts, the weak formulation is obtained

0 =

∫
Ω

(∂tω + (u− Vall) · ∇ω + α∆ω)

=

∫
Ω

∂tω · v +

∫
Ω

(u− Vall) · ∇ω · v +

∫
Ωs

ks∆ω · v +

∫
Ωl

kl∆ω · v

=

∫
Ω

∂tω · v +

∫
Ω

(u− Vall) · ∇ω · v +

∫
∂Ωs

ks∂µω · v −
∫
Ωs

ks∇ω · ∇v

+

∫
∂Ωl

kl∂µω · v −
∫
Ωl

kl∇ω · ∇v

=

∫
Ω

∂tω · v +

∫
Ω

(u− Vall) · ∇ω · v −
∫
Ω

α∇ω · ∇v

+

∫
∂Ωs

ks∂µω · v +

∫
∂Ωl

kl∂µω · v.

– 45 –

4.2. Weak Formulations

The boundary integrals are treated separately in what follows. On the corresponding
parts of the boundaries the conditions (3.16b) - (3.16e) are plugged in∫

∂Ωs

ks∂µω · v +

∫
∂Ωl

kl∂µω · v

=

∫
(ΓN∪Γout)∩∂Ωs

ks ∂µω︸︷︷︸
(3.16c)

== 0

·v +

∫
ΓH

ks∂µω · v︸︷︷︸
(3.16d)

== 0

+

∫
ΓI

ks∂µω · v︸︷︷︸
(3.16e)

== 0

+

∫
Γout∩∂Ωl

kl∂µω︸ ︷︷ ︸
(3.16b)

== −u·(ω·µ)

·v +

∫
ΓN∩∂Ωl

kl ∂µω︸︷︷︸
(3.16c)

== 0

·v

+

∫
ΓH

kl∂µω · v︸︷︷︸
(3.16d)

== 0

+

∫
ΓI

kl∂µω · v︸︷︷︸
(3.16e)

== 0

=−
∫

Γout∩∂Ωl

u · (ω · µ) · v.

To discretize in time the derivative with respect to time is replaced with a difference
quotient ∫

Ω

∂tω · v =

∫
Ω

ωn − ωn−1

τ
· v =

∫
Ω

1

τ
ωn · v −

∫
Ω

1

τ
ωn−1 · v.

The latter equations are used to define the bilinear

aω(ωn−1, v) :=

∫
Ω

1

τ
ωn−1 · v −

∫
Ω

(un−1 − V n−1
all) · ∇ωn−1 · v

+

∫
Ω

α∇ωn−1 · ∇v +

∫
Γout∩∂Ωl

un−1 · (ωn−1 · µ) · v,

and the linear form for the adjoint temperature ω

Lω(v) :=

∫
Ω

1

τ
ωn · v.

Thus, the weak formulation reads

aω(ω, v) = Lω(v), for all t ∈ [t0, . . . , tN−1], and for all v ∈ O.

– 46 –

4.2. Weak Formulations

Adjoint Navier–Stokes Equations

For the numerical solution of the adjoint Navier–Stokes equations (3.24) the adjoint
velocity γ and adjoint pressure π are approximated at time tn−1 with P2/P1 Taylor–
Hood finite elements:

γn−1 ∈ G := {v ∈ C0(Ωl)
2 : v|S ∈ P2

2, S ∈ Σn−1
l },

πn−1 ∈ J := {v ∈ C0(Ωl) : v|S ∈ P1, S ∈ Σn−1
l }.

(4.3)

Multiplication with test functions v ∈ G and q ∈ J and integration over Ωl, together
with integration by parts, leads to

0 =

∫
Ωl

(∂tγ − (∇u)T · γ + ((u− Vall) · ∇)γ + η∆γ +∇π − ω∇T) · v +

∫
Ωl

∇ · γ · q

=

∫
Ωl

∂tγ · v −
∫
Ωl

(∇u)T · γ · v +

∫
Ωl

((u− Vall) · ∇)γ · v +

∫
Ωl

∇π · v

−
∫
Ωl

ω∇T · v +

∫
Ωl

∇ · γ · q +

∫
∂Ωl

η∂µγ · v −
∫
Ωl

η∇γ · ∇v.

The integral over the boundary can be split up and reads∫
∂Ωl

η∂µγ · v

=

∫
ΓI∪(ΓN∩∂Ωl)

η∂µγ · v︸︷︷︸
(3.24c)

== 0

+

∫
ΓH∪(Γout∩∂Ωl)

η∂µγ︸ ︷︷ ︸
(3.24b)

== −(γ·µ)·(u−Vall)−π·µ

·v

=−
∫

ΓH∪(Γout∩∂Ωl)

(γ · µ) · (u− Vall) · v −
∫

ΓH∪(Γout∩∂Ωl)

π · µ · v.

To discretize in time, the derivative of γ with respect to time is replaced by a finite
difference: ∫

Ωl

∂tγ · v =

∫
Ωl

γn − γn−1

τ
· v =

∫
Ωl

1

τ
γn · v −

∫
Ωl

1

τ
γn−1 · v.

Substituting this into the latter equations, leads to the multilinear form

aγ,π(γn−1, πn−1, v, q) :=

∫
Ωl

1

τ
γn−1 · v +

∫
Ωl

(∇un−1)T · γn−1 · v

−
∫
Ωl

((un−1 − V n−1
all) · ∇)γn−1 · v −

∫
Ωl

∇πn−1 · v

−
∫
Ωl

∇ · γn−1 · q +

∫
ΓH∪(Γout∩∂Ωl)

(γn−1 · µ) · (un−1 − V n−1
all) · v

– 47 –

4.2. Weak Formulations

+

∫
ΓH∪(Γout∩∂Ωl)

πn−1 · µ · v +

∫
Ωl

η∇γn−1 · ∇v,

and bilinear form

Lγ(v, q) :=

∫
Ωl

1

τ
γn · v −

∫
Ωl

ωn−1∇T n−1 · v,

which result in the weak formulation

aγ(γ, π, v, q) = Lγ,π(v, q), for all t ∈ [t0, . . . , tN−1], and for all v ∈ G, q ∈ J .

– 48 –

5. Numerical Examples

In this chapter, the general setting and three examples are discussed to validate the
presented optimal control approach of a Stefan problem numerically. The first two
examples in section 5.2 and section 5.3 aim to stabilize the interface to a flat position.
They demonstrate that not all desirable interface positions are reachable due to the
model chosen in this thesis. Further, the importance of well-chosen weights λ,Λ, Λ̄ in
the cost functional is highlighted. In contrast to the first two settings, the controlled
interface moves upwards in the third example (section 5.4). It is used to show the
influence of the selection of an initial guess to the convergence of the projected gradient
method.

5.1. General Setting

The domain described in chapter 2 is a unit square Ω = [0, 1] × [0, 1]. The boundary
regions are

ΓH = {0} × [0.6, 0.8],

ΓC = [0, 1]× {0},
Γout = {1} × [0.2, 0.4],

ΓÑ = [0, 1]× {1},
ΓN = ({0} × ([0, 0.6] ∪ [0.8, 1])) ∪ ({1} × ([0, 0.2] ∪ [0.4, 1])) ∪ ([0, 1]× {1}),

and the initial interface position is ΓI = [0, 1] × {1
6
}. The constants for the two-phase

Stefan problem are

TC = −0.6, TH = 4, Tm = 0, η = 0.05, ks = 1, kl = 0.6, L = 150.

As initial temperature distribution serves T0 = 4y − 2
3
. The tolerances and maximum

iteration numbers of the gradient algorithm and the line minimization are

δ1 = 10−8, δ2 = 10−4, kmax = 100,

ε1 = 10−12, ε2 = 10−4, ε3 = 10−4, δ = 0.05, imax = 5.

As described in section 4.1, the domain is separated into 2388 triangles with 3622
edges and 1235 vertices. 63 of the vertices are positioned on the interface. For the
computation of the interface graph h, the interval ΓC = [0, 1] is partitioned into 69
equally distributed intervals. This results in 141 data points for the graph h due to
its quadratic finite element approximation. The terminal time is set to E = 1 and the
time interval is discretized with step size 0.01 into 100 intervals. Figure 5.1 illustrates
the numerical solution of (3.9) with pin = 1 constant.

– 49 –

5.2. Stabilizing to a Flat Position

(a) Temperature distribution (background
color) with velocity in the liquid (black
arrows) and interface position (white
line).

(b) Interface velocity (red arrows) extended
to the whole domain (green arrows).

Figure 5.1.: Numerical solution of the forward problem at t = 1.

The control constraints are set to

c := 0 ≤ pin(t) ≤ 20 =: c for all t ∈ [0, 1].

The lower bound ensures that the inflow and outflow boundary are not switched. The
upper bound is necessary in some cases since the robustness of the FEniCS internal
solvers is limited. This affects the Navier–Stokes equations and the adjoint Navier–
Stokes equations. If pin > 20 for more than 20 time steps in this setting, the nonlinear
Navier–Stokes-solver may not converge. For the adjoint Navier–Stokes equations the
linear solver gets inaccurate and reveals certain “blow-up” effects. These problems
can be overcome by reducing the time step size. But the discretization of the time
interval is constant throughout the execution of the gradient method. In the majority
of cases, the control constraints are inactive for the computed control. Nevertheless, the
control constraints can become active for the sample points within the line minimization
algorithm if the step size is overestimated. This behavior mainly depends on the choice
of the weight parameters in the cost functional.

5.2. Stabilizing to a Flat Position

The desired interface position is a straight line moving from the start position at y = 1
6

to y = 0.166:

hd(x, t) =
1

6
− t · (1

6
− 0.166).

The sought control should keep the interface as flat as possible and prevent it from
moving away. The inner boundary is requested to move slightly downwards by 2

3
·10−3.

– 50 –

5.2. Stabilizing to a Flat Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.164

0.166

0.168

0.17

0.172

0.174

0.176

0.178

x

h

desired graph
controlled graph
uncontrolled graph

Figure 5.2.: Interface graphs with λ = 10−10,Λ = 100, Λ̄ = 0.

The weight parameters in the cost functional are set to

λ = 10−10, Λ = 100, Λ̄ = 0.

So the cost functional primarily measures the distance of the interface to the desired
interface at the end of the time interval and does not track the interface position for all
points of time. As initial guess for the projected gradient algorithm, we use c0

1(t) ≡ 1.

The described problem is not symmetric. The fluid in the liquid phase always flows
from left to right and the transported heat acts on the interface position more on the
right side near the outflow boundary than on the left side. Thus, the interface velocity
VΓI

tends to take values of lager magnitude on the right side. Additionally, the initial
interface position is closer to the cooling boundary than to the heat source. Thereby
the interface always moves upwards in the beginning of a forward simulation. Then,
it has to be moved back downwards for this example. This causes the interface graph
to form a shallow hilltop in the middle. These asymmetric effects implicate that the
controlled interface can not be expected to be completely flat and to match the desired
interface perfectly.

– 51 –

5.2. Stabilizing to a Flat Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14

16

18

20

t

p i
n

initial guess c0
1

control c1

control constraints

Figure 5.3.: Computed control for λ = 10−10,Λ = 100, Λ̄ = 0.

Figure 5.2 shows the interface graphs of the controlled interface compared to the uncon-
trolled interface. The presented algorithm is able to compute a control c1 (figure 5.3)
which keeps the interface close to the desired interface. The distance and control cost
terms in (3.10) are

d :=

∫
ΓC

(h(E, x)− hd(E, x))2 = 1.4317 · 10−7,

dall :=

E∫
0

∫
ΓC

(h(t, x)− hd(t, x))2 = 7.0578 · 10−7,

p :=

E∫
0

∫
ΓH

(pin(t))2 = 15.38.

The results for this and all the following examples can be found in A.3 – A.5 likewise.
The pathway of the controlled interface is illustrated in figure 5.4. The computed
control c1, which can be seen in figure 5.3, mainly acts at the beginning of the time
interval to stop the interface from moving upwards and moves it back downwards to
the desired position. The control constraints are inactive at all points.
Algorithm 1 stopped after 4 iteration steps caused by stopping criterion (3.38). Figure
5.5 shows the cost functional at every iteration step.

– 52 –

5.2. Stabilizing to a Flat Position

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.16

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.33

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.50

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.66

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.83

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 1

controlled graph; uncontrolled graph; desired graph

Figure 5.4.: Interface graphs with λ = 10−10,Λ = 100, Λ̄ = 0 at various t.

– 53 –

5.2. Stabilizing to a Flat Position

0 0.5 1 1.5 2 2.5 3 3.5 4

10−5

10−4

10−3

iteration

K

Figure 5.5.: Cost functional for λ = 10−10,Λ = 100, Λ̄ = 0.

The convergence behavior is influenced by the choice of the weight factors in the cost
functional (3.10). Running the algorithm with different sets of weights

c1 : λ = 10−10,Λ = 102, Λ̄ = 0,

c2 : λ = 10−10,Λ = 105, Λ̄ = 104,

c3 : λ = 10−10,Λ = 105, Λ̄ = 103,

c4 : λ = 10−10,Λ = 104, Λ̄ = 105

changes the convergence speed and quality of the computed control. With Λ̄ 6= 0 the
interface position is tracked over the whole time interval by the cost functional. Since
the cost functional is not comparable among these parameter sets, instead of the cost
functional, the two distances d and dall are displayed in figures 5.6 and 5.7. In both
figures the values for the initial value are omitted since they are identical. In case
of control c3, both distances are larger than with control c1. But for control c4 the
interface can be moved closer to the desired position over the whole time interval at
the expense of a larger distance at t = E.
Since the two-phase Stefan problem is non-linear, the cost functional must be assumed
non-convex [8]. Consequently, the projected gradient algorithm can only approximate
stationary points of the cost functional. To which stationary point the algorithm
converges, primarily depends on the initial guess.

– 54 –

5.2. Stabilizing to a Flat Position

1 2 3 4
10−7

10−6

iteration

d

c1 : λ = 10−9,Λ = 102, Λ̄ = 0

c2 : λ = 10−9,Λ = 105, Λ̄ = 104

c3 : λ = 10−9,Λ = 105, Λ̄ = 103

c4 : λ = 10−9,Λ = 104, Λ̄ = 105

Figure 5.6.: Interface distance d at t = E for different parameter sets.

1 2 3 4

10−6

10−6.2

10−6.4

iteration

d a
ll

c1 : λ = 10−9,Λ = 102, Λ̄ = 0

c2 : λ = 10−9,Λ = 105, Λ̄ = 104

c3 : λ = 10−9,Λ = 105, Λ̄ = 103

c4 : λ = 10−9,Λ = 104, Λ̄ = 105

Figure 5.7.: Interface distance dall for the whole time interval for different parameter
sets.

– 55 –

5.2. Stabilizing to a Flat Position

0 1 2 3 4
10−6

10−5

10−4

10−3

10−2

iteration

K

c1: initial guess c0
1

c5: initial guess c0
5

c6: initial guess c0
6

Figure 5.8.: Cost functional for different initial guesses.

The following functions are taken as alternative initial guesses

c0
5(t) ≡ 12,

c0
6(t) =

{
20, t ∈ [0, 0.17],

10, t ∈ (0.17, 1].

Both intend to induce higher velocities of the fluid at the beginning of the time interval
to prevent the interface from moving upwards. Through this, the algorithm is expected
to show better convergence behavior.
The weights of the cost function are set to the same values as for c1:

λ = 10−10, Λ = 100, Λ̄ = 0.

The projected gradient algorithm stops after 3 iterations with the control c5 with
stopping criterion (3.38). As expected, it converges slightly faster with the initial
guess c0

5 than with c0
1 but does not reach a considerable smaller cost value (see figure

5.8). On the contrary, the algorithm converges clearly faster towards c6 which also has
a notable smaller cost value. In this case, it stopped after 2 iterations with stopping
criterion (3.37). Looking at the computed controls in figure 5.9, the algorithm appears
to converge to completely different stationary points. And also the interface graphs in
figure 5.10 are different from each other. Again the control constraints are inactive for
all controls and all points of time.

– 56 –

5.2. Stabilizing to a Flat Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14

16

18

20

t

p i
n

control c1

control c5

control c6

initial guess c0
1

initial guess c0
5

initial guess c0
6

control constraints

Figure 5.9.: Computed controls c1, c5, c6 with different initial guesses.

The algorithm seems to be unable to dissolve the controls from the initial guess near
the terminal time t = E. This is due to the structure of the backward system (3.32)
on which the gradient of the cost functional is dependent, which is used as the descent
direction to update the control. The adjoint state ϕ occurring in the gradient is coupled
with the adjoint velocity γ. The initial value γ(E) is equal to zero on the liquid phase Ωl.
So the adjoint state γ has to “build momentum” during the first backwards time steps.
On the one hand, this is a limitation to the adjoint-based optimal control approach.
On the other hand, the control variable pin(t) has less influence on the behavior of the
forward system and thus on the interface position for t→ E. Therefore, this behavior
of the algorithm makes sense from the gradient point of view.

– 57 –

5.2. Stabilizing to a Flat Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.164

0.165

0.166

0.167

0.168

0.169

0.17

0.171

0.172

0.173

0.174

0.175

0.176

0.177

0.178

x

h

desired graph
c1 controlled graph
c5 controlled graph
c6 controlled graph
uncontrolled graph

Figure 5.10.: Interface graphs for the controls c1, c5, c6.

For the control c6 the distance and control cost terms in (3.10) are

d = 7.7936 · 10−8,

dall = 6.0702 · 10−7,

p = 19.481.

The cost for the control is higher than for c1 but the distances are significantly smaller.

Nevertheless, the algorithm is not able to find a control which matches the desired
interface perfectly due to the already mentioned asymmetry of the problem. Hence,
the performance of algorithm 1 is analyzed for an actually reachable desired interface
position in the next section.

– 58 –

5.3. Stabilizing to a Reachable Flat Position

5.3. Stabilizing to a Reachable Flat Position

To target a desired interface position which is actually reachable by the system, the
forward simulation runs with the following control

c̃d :=


20, t ∈ [0, 0.17],

8.5, t ∈ (0.17, 0.25],

7.5, t ∈ (0.25, 0.63),

8.5, t ∈ [0.63, 1].

With the initial guess and weight parameters set as

λ = 10−10, Λ = 105, Λ̄ = 0,

c̃0
1(t) ≡ 1,

the control c̃1 computed by the projected gradient algorithm is able to approximate
the desired interface position closely as can be seen in figure 5.11, where it is almost
indistinguishable from the desired interface graph.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.164

0.166

0.168

0.17

0.172

0.174

0.176

0.178

x

h

c̃d : desired graph
c̃1 : controlled graph

c̃0
1 : uncontrolled graph

Figure 5.11.: Interface graphs with a reachable interface position c̃d.

– 59 –

5.3. Stabilizing to a Reachable Flat Position

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.16

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.33

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.50

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.66

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 0.83

0 0.2 0.4 0.6 0.8 1

0.165

0.17

0.175

t = 1

controlled graph; uncontrolled graph; desired graph

Figure 5.12.: Interface graphs with a reachable interface position c̃d and control c̃1 for
various t.

– 60 –

5.3. Stabilizing to a Reachable Flat Position

0 5 10 15 20 25 30 35 40 45 50 55 60
10−10

10−9

10−8

10−7

10−6

10−5

10−4

iteration

d

c̃1 : λ = 10−10,Λ = 105, Λ̄ = 0

c̃2 : λ = 10−10,Λ = 106, Λ̄ = 0

c̃3 : λ = 10−10,Λ = 102, Λ̄ = 0

c̃4 : λ = 10−10,Λ = 104, Λ̄ = 105

c̃5 : λ = 10−10,Λ = 105, Λ̄ = 104

Figure 5.13.: Interface distance d at t = E for different parameter sets.

The pathway of the interface graph is illustrated in figure 5.12. The distance and control
cost terms in (3.10) for this example confirm the quality of the computed control

d = 3.9422 · 10−10,

dall = 4.5865 · 10−8,

p = 15.6606.

As for the previous example in section 5.2, the weight factors in the cost functional
influence the convergence behavior and destination. Figure 5.13 and 5.14 present the
distance terms in the cost functional for the iteration steps of the projected gradient
algorithm with the following sets of parameters

c̃1 : λ = 10−10,Λ = 105, Λ̄ = 0,

c̃2 : λ = 10−10,Λ = 106, Λ̄ = 0,

c̃3 : λ = 10−10,Λ = 102, Λ̄ = 0,

c̃4 : λ = 10−10,Λ = 104, Λ̄ = 105,

c̃5 : λ = 10−10,Λ = 105, Λ̄ = 104.

– 61 –

5.3. Stabilizing to a Reachable Flat Position

0 5 10 15 20 25 30 35 40 45 50 55 60
10−8

10−7

10−6

10−5

10−4

iteration

d a
ll

c̃1 : λ = 10−10,Λ = 105, Λ̄ = 0

c̃2 : λ = 10−10,Λ = 106, Λ̄ = 0

c̃3 : λ = 10−10,Λ = 102, Λ̄ = 0

c̃4 : λ = 10−10,Λ = 104, Λ̄ = 105

c̃5 : λ = 10−10,Λ = 105, Λ̄ = 104

Figure 5.14.: Interface distance dall the whole time interval for different parameter sets.

Once more, the distance of the interface over the whole time interval can be reduced
by setting the corresponding weight Λ̄ unequal to zero. But in contrast to the example
from the latter section, the factors that produce good results there do not necessarily
produce good results here and vice versa. This effect gets even more obvious when the
alternative initial guesses

c̃0
6(t) := c0

5(t) ≡ 12,

c̃0
7(t) := c0

6(t) =

{
20, t ∈ [0, 0.17],

10, t ∈ (0.17, 1],

are used as input for the gradient algorithm with different weight factors in the cost
functional. The results are illustrated in figure 5.15. With input c̃0

6 and c̃0
7, the algo-

rithm converges faster in the first iteration steps. However, it does not reach the same
accuracy as the control c̃1. If the same weight factors as for c̃1 and c̃7 are used together
with c̃0

6 as input, the algorithm even fails to converge (A.4).

The factor λ, which penalizes the control cost p in (3.10), can be used to reduce
the control cost and acts as a regularization. This could make the control con-
straints dispensable. These constraints were inactive for all computed controls by now.

– 62 –

5.3. Stabilizing to a Reachable Flat Position

0 5 10 15 20 25 30 35 40
10−10

10−9

10−8

10−7

10−6

10−5

10−4

iteration

d

c̃1 : λ = 10−10,Λ = 105, Λ̄ = 0, initial guess: c̃0
1

c̃6 : λ = 10−10,Λ = 101, Λ̄ = 0, initial guess: c̃0
6

c̃7 : λ = 10−10,Λ = 105, Λ̄ = 0, initial guess: c̃0
7

Figure 5.15.: Interface distance d at t = E for different initial guesses and parameter
sets.

0 5 10 15 20 25 30 35 40
10−10

10−9

10−8

10−7

10−6

10−5

10−4

iteration

d

c̃1 : λ = 10−10,Λ = 105, Λ̄ = 0

c̃8 : λ = 10−6, Λ = 105, Λ̄ = 0

c̃9 : λ = 10−4, Λ = 105, Λ̄ = 0

c̃10 : λ = 10−2, Λ = 105, Λ̄ = 0

Figure 5.16.: Interface distance d at t = E for different values of λ.

– 63 –

5.4. Moving to a Reachable Position

For completeness, the influence of λ on the convergence behavior is analyzed neverthe-
less. The interface distances at the end time t = E are displayed in figure 5.16 for the
following parameter sets

c̃1 : λ = 10−10,Λ = 105, Λ̄ = 0,

c̃8 : λ = 10−6, Λ = 105, Λ̄ = 0,

c̃9 : λ = 10−4, Λ = 105, Λ̄ = 0,

c̃10 : λ = 10−2, Λ = 105, Λ̄ = 0.

For the control c̃8 with λ = 10−6, the differences in the cost function terms are negligi-
ble. By further increasing λ, the control cost p can be reduced (see A.4), but this also
leads to higher distances d and dall.
Controlling the interface in the opposite direction works also satisfactorily as can be
seen in the next section.

5.4. Moving to a Reachable Position

For this example, the desired and uncontrolled interface positions of the previous exam-
ples are switched. The interface is requested to move from the start position upwards.
The desired graph is produced with the control ĉd := c0

1 ≡ 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.166

0.168

0.17

0.172

0.174

0.176

0.178

x

h

controlled graph
uncontrolled graph
desired graph

Figure 5.17.: Interface graphs with a reachable interface position ĉd.

– 64 –

5.4. Moving to a Reachable Position

0 0.2 0.4 0.6 0.8 1
0.165

0.17

0.175

t = 0.16

0 0.2 0.4 0.6 0.8 1
0.165

0.17

0.175

t = 0.33

0 0.2 0.4 0.6 0.8 1
0.165

0.17

0.175

t = 0.50

0 0.2 0.4 0.6 0.8 1
0.165

0.17

0.175

t = 0.66

0 0.2 0.4 0.6 0.8 1
0.165

0.17

0.175

t = 0.83

0 0.2 0.4 0.6 0.8 1
0.165

0.17

0.175

t = 1

controlled graph; uncontrolled graph; desired graph

Figure 5.18.: Interface graphs with a reachable interface position ĉd for various t.

– 65 –

5.4. Moving to a Reachable Position

With initial guess and weight parameters

λ = 10−10, Λ = 106, Λ̄ = 0,

ĉ0
1(t) ≡ 10,

the desired interface can be approximated very accurate as figures 5.17, 5.18 and the
resulting cost functional terms demonstrate

d = 4.2946 · 10−13,

dall = 2.2703 · 10−11,

p = 0.4723.

There are two special attributes about this example. Firstly, the interface distance over
the whole time interval dall (figure 5.20) is lower with the corresponding tracking term
in the cost functional deactivated (Λ̄ = 0) than with those tracking terms activated
(Λ̄ > 0). The distance terms with parameter sets

ĉ1 : λ = 10−10,Λ = 106, Λ̄ = 0,

ĉ2 : λ = 10−10,Λ = 106, Λ̄ = 105,

ĉ3 : λ = 10−10,Λ = 105, Λ̄ = 104,

ĉ4 : λ = 10−4, Λ = 106, Λ̄ = 0,

ĉ5 : λ = 10−10,Λ = 102, Λ̄ = 0,

can be seen in figure 5.19 and 5.20.
Secondly, the lower control constraint, pin ≥ 0, is active for the approximated controls
after the first iteration step of the gradient algorithm. This can be observed based on
the kinks in the controls in figure 5.21. For the control ĉ5 the constraint is active even
after the last iteration step. It preserves the velocity from changing the flow direction.

The initial guesses
ĉ0

6(t) ≡ 5,

ĉ0
7(t) ≡ 2,

ĉ0
8(t) ≡ 0,

are closer to the control ĉd, which produces the desired interface. They are expected
to conclude in better convergence behavior. This holds for the control ĉ8 (figure 5.22).
It can reach almost the same accuracy as ĉ1 with 6 iteration steps less. The interface
distance at terminal time can be reduced further by ĉ6 and furthermore by ĉ7. But
with 57 and 94 iteration steps, they converge slower than ĉ1 and ĉ8. For the various
initial guesses, the same weight factors as for ĉ1 are used.

λ = 10−10, Λ = 106, Λ̄ = 0.

– 66 –

5.4. Moving to a Reachable Position

0 2 4 6 8 10 12 14 16 18 20 22
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

iteration

d

ĉ1 : λ = 10−10,Λ = 106, Λ̄ = 0

ĉ2 : λ = 10−10,Λ = 106, Λ̄ = 105

ĉ3 : λ = 10−10,Λ = 105, Λ̄ = 104

ĉ4 : λ = 10−4, Λ = 106, Λ̄ = 0

ĉ5 : λ = 10−10,Λ = 102, Λ̄ = 0

Figure 5.19.: Interface distance d at t = E for different parameter sets.

0 2 4 6 8 10 12 14 16 18 20 22
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

iteration

d a
ll

ĉ1 : λ = 10−10,Λ = 106, Λ̄ = 0

ĉ2 : λ = 10−10,Λ = 106, Λ̄ = 105

ĉ3 : λ = 10−10,Λ = 105, Λ̄ = 104

ĉ4 : λ = 10−4, Λ = 106, Λ̄ = 0

ĉ5 : λ = 10−10,Λ = 102, Λ̄ = 0

Figure 5.20.: Interface distance dall the whole time interval for different parameter sets.

– 67 –

5.4. Moving to a Reachable Position

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

t

p i
n

ĉ0
1: initial guess

ĉ1 : λ = 10−10,Λ = 106, Λ̄ = 0

ĉ2 : λ = 10−10,Λ = 106, Λ̄ = 105

ĉ3 : λ = 10−10,Λ = 105, Λ̄ = 104

ĉ4 : λ = 10−4, Λ = 106, Λ̄ = 0

ĉ5 : λ = 10−10,Λ = 102, Λ̄ = 0
control constraint

Figure 5.21.: Computed controls ĉ1 to ĉ5 with different parameter sets.

0 10 20 30 40 50 60 70 80 90
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

iteration

d

ĉ1: initial guess ĉ0
1

ĉ6: initial guess ĉ0
6

ĉ7: initial guess ĉ0
7

ĉ8: initial guess ĉ0
8

Figure 5.22.: Interface distance d at t = E for different controls ĉ1, ĉ6, ĉ7, ĉ8 with
different initial guesses.

– 68 –

6. Conclusions

This thesis has introduced an approach for the optimal control of the interface position
in a Stefan problem fully coupled with the Navier–Stokes equations. Compared to
existing research, the new problem setting has increased in complexity. The mesh
movement method used in this thesis is able to track the moving boundary and is fully
included into the PDE systems.
To our extend of knowledge, this is the first attempt to combine mesh movement
methods and finite elements for the optimal control of a two-dimensional two-phase
Stefan problem. The control of the inflow pressure acts relatively indirect on the
interface position, which makes the control of this non-linear problem a challenging
task.
An important contribution of this thesis is the formulation of the adjoint system and,
as a result of this, the first-order necessary optimality conditions using a formal La-
grange approach. Revealed by this, the gradient of the quadratic tracking-type cost
functional can be utilized for a projected gradient algorithm. As illustrated with sev-
eral numerical examples, this algorithm can approach the desired state accurately. A
powerful quadratic line minimization algorithm is integrated into the gradient method.
Moreover, the examples have demonstrated that such a method of steepest descent
is limited to approximate stationary points and is heavily dependent on the choice of
the cost functional. Weight factors that lead to good results in one setting can be an
inappropriate selection for another setting and vice versa. Thus, a general purpose
selection strategy is not close at hand.
Another major contribution of this thesis is the numerical implementation of the PDE
systems, mesh movement techniques, and algorithms in Python with the usage of
FEniCS and SciPy.

– 69 –

7. Perspectives

The approach proposed in this thesis showed off its potential in several numerical
examples. Testing the algorithms for other settings would be interesting. Some more
simple possibilities are to change the initial interface position to something else than
a straight line or to change the shape of the domain. Extending the model to three
spatial dimensions or to an m-phase Stefan problem should be realizable. Certainly,
this would cause additional work, not only on the theoretical, but especially on the
implementation side.
From the mathematical point of view, higher-order optimality conditions and conse-
quently higher-order methods, are desirable. They might lead to faster convergence of
the computationally intensive approximations. Neither the existence nor the unique-
ness of solutions of the two-phase Stefan problem, as formulated in this thesis, are
known. A first step would be the derivation of a rigorous functional analytical frame-
work for the problem. Besides the quadratic cost functional used in this thesis, others,
for example of L1 or L∞ type, might be of interest. Additionally, the curvature of the
interface graph could be used as a measure of the flatness of the interface in the cost
functional.
If the optimal control approach in this thesis is investigated satisfactorily, the next
major step is to develop a closed loop optimal control system for the two-phase Ste-
fan problem. For this boundary feedback stabilization approach, well-known linear
quadratic regulator techniques might be applicable [4].

– 70 –

A. Appendix

A.1. Interface Normal Representation

The angle between the interface normal ν and e2 = [0, 1]T may be named β =](ν, e2).
For two points of time t0, t1 ∈ [0, E], t0 < t1 with t1 − t0 = τ → 0, the interfaces ΓI(t0)
and ΓI(t1) are assumed to be parallel and locally a straight line. The two vectors ht ·e2
and VΓI

· ν point on ΓI(t1) if they have the same starting point on ΓI(t0).

y

x

ΓI(t0)

ΓI(t1)

VΓI
· ν

ht · e2
β

With the formula
cos β =

w1 · w2

||w1|| · ||w2||
,

for two vectors w1, w2 ∈ R2 this leads to

cos β =
VΓI

ht
=
ν · ht · e2

ht
,

and

VΓI
=

[
0

ht

]
· ν = ∂t

[
x

h

]
· ν. (A.1)

– 71 –

A.2. Stefan Condition Reformulation

A.2. Stefan Condition Reformulation

As in section 2.1, β =](ν, e2). May c ∈ R3 be a point on the interface and the
third dimension denote the temperature T . The interface normal ν̃ := ε · ν, ε → 0
and ẽ2 := ε · e2 are scaled. Thus, the temperature T is assumed to be locally linear.
The points a := c+ [ν̃, ∂νT]T and b := c+ [0, ε, ∂yT]T are on the plane defined by the
temperature close to the interface.

x

T

y ΓI

a b

c

Imagine d as the distance between b and the interface.

ΓI

a

b

c

ν̃
ẽ2 dβ

β

This leads to

cos β =
ν̃ · ẽ2

||ν̃|| · ||ẽ2||
=

1√
1 + h2

x

·

[
−hx

1

]
·

[
0

1

]
=

1√
1 + h2

x

,

cos β =
d

||e2||
= d =

1√
1 + h2

x

,

implying that

∂yT = ∂νT · d =
1√

1 + h2
x

· ∂νT. (A.2)

The gradient of the temperature in vertical direction can be expressed in dependence
of the gradient in normal direction

(∇T)s/l ◦ Φ =
√

1 + h2
x(∂yT)s/l ◦ Φ on ΓC .

The Stefan condition (2.4b) can be reformulated to√
1 + h2

x · [ks(∇T)s − kl(∇T)l] ◦ Φ− L · ht
=(1 + h2

x) · [ks(∂yT)s − kl(∂yT)l] ◦ Φ− L · ht = 0.

– 72 –

A.3. Results for the Example from Section 5.2

A.3. Results for the Example from Section 5.2

Table A.1.: Results for the example from section 5.2.

initial
guess

λ Λ Λ̄ d dall p # iterations

c0
1 10−10 102 0 1.4317 · 10−7 7.0578 · 10−7 15.3800 4

c0
1 10−10 105 104 1.8107 · 10−7 6.7245 · 10−7 15.0412 4

c0
1 10−10 105 103 2.0051 · 10−7 7.2671 · 10−7 14.7371 2

c0
1 10−10 104 105 2.3960 · 10−7 4.5955 · 10−7 15.0645 3

c0
1 10−10 105 0 1.9919 · 10−7 7.2675 · 10−7 14.7474 2

c0
5 10−10 102 0 1.4710 · 10−7 1.7631 · 10−6 19.9472 3

c0
6 10−10 102 0 7.7936 · 10−8 6.0702 · 10−7 19.4810 2

Initial guesses:
c0

1(t) ≡ 1,

c0
5(t) ≡ 12,

c0
6(t) =

{
20, t ∈ [0, 0.17],

10, t ∈ (0.17, 1].

Terms from the cost functional (3.10):

d :=

∫
ΓC

(h(E, x)− hd(E, x))2,

dall :=

E∫
0

∫
ΓC

(h(t, x)− hd(t, x))2,

p :=

E∫
0

∫
ΓH

(pin(t)I(x))2.

– 73 –

A.4. Results for the Example from Section 5.3

A.4. Results for the Example from Section 5.3

Table A.2.: Results for the example from section 5.3.

initial
guess

λ Λ Λ̄ d dall p # iterations

c̃0
1 10−10 105 0 3.9422 · 10−10 4.5865 · 10−8 15.6606 37

c̃0
1 10−10 106 0 2.1424 · 10−10 3.4164 · 10−8 15.7936 57

c̃0
1 10−10 102 0 2.6145 · 10−8 9.9363 · 10−8 14.1653 4

c̃0
1 10−10 104 105 9.1034 · 10−8 3.7233 · 10−8 13.8367 3

c̃0
1 10−10 105 104 5.0140 · 10−9 1.1374 · 10−8 15.3050 11

c̃0
6 10−10 101 0 1.1778 · 10−8 7.8689 · 10−7 19.2143 3

c̃0
6 10−10 105 0 3.0897 · 10−6 4.7712 · 10−7 22.5000 1

c̃0
7 10−10 105 0 1.5294 · 10−9 9.7993 · 10−8 18.5422 2

c̃0
1 10−6 105 0 4.0616 · 10−10 4.6221 · 10−8 15.6531 26

c̃0
1 10−4 105 0 1.7234 · 10−9 4.6233 · 10−8 15.2697 16

c̃0
1 10−2 105 0 4.0210 · 10−8 9.8700 · 10−8 13.9190 4

Initial guesses:
c̃0

1(t) ≡ 1,

c̃0
6(t) ≡ 12,

c̃0
7(t) =

{
20, t ∈ [0, 0.17],

10, t ∈ (0.17, 1].

– 74 –

A.5. Results for the Example from Section 5.4

A.5. Results for the Example from Section 5.4

Table A.3.: Results for the example from section 5.4.

initial
guess

λ Λ Λ̄ d dall p # iterations

ĉ0
1 10−10 106 0 4.2946 · 10−13 2.2703 · 10−11 0.4723 18

ĉ0
1 10−10 106 105 2.1660 · 10−11 1.8172 · 10−10 0.4588 4

ĉ0
1 10−10 105 104 3.9863 · 10−10 3.6088 · 10−9 2.3250 3

ĉ0
1 10−4 106 0 4.2506 · 10−13 2.4663 · 10−11 0.4082 22

ĉ0
1 10−10 106 0 2.0937 · 10−10 2.0346 · 10−9 2.0347 2

ĉ0
6 10−10 106 0 2.9456 · 10−13 1.5957 · 10−11 0.2999 57

ĉ0
7 10−10 106 0 1.2191 · 10−13 1.2069 · 10−11 0.1824 94

ĉ0
8 10−10 106 0 4.9211 · 10−13 2.1927 · 10−11 0.1341 12

Initial guesses:
ĉ0

1(t) ≡ 10,

ĉ0
6(t) ≡ 5,

ĉ0
7(t) ≡ 2,

ĉ0
8(t) ≡ 0.

– 75 –

Bibliography

[1] M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,
J. Ring, M. E. Rognes, and G. N. Wells. The FEniCS Project Version 1.5. Archive
of Numerical Software, 3(100), 2015. http://fenicsproject.org/.

[2] H. Antil, R. H. Nochetto, and P. Sodré. Optimal Control of a Free Boundary
Problem: Analysis with Second-Order Sufficient Conditions. SIAM Journal on
Control and Optimization, 52(5):2771–2799, 2014. http://dx.doi.org/10.1137/
120893306.

[3] H. Antil, R. H. Nochetto, and P. Sodré. Optimal Control of a Free Boundary
Problem with Surface Tension Effects: A Priori Error Analysis. SIAM Journal
on Numerical Analysis, 53(5):2279–2306, 2015. http://dx.doi.org/10.1137/

140958360.

[4] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt. Riccati-based boundary
feedback stabilization of incompressible Navier–Stokes flows. SIAMSciComp,
37(2):A832–A858, 2015. http://dx.doi.org/10.1137/140980016.

[5] E. Bänsch, J. Paul, and A. Schmidt. An ALE FEM for solid-liquid
phase transitions with free melt surface. Berichte aus der Technomathematik
10-07, 2010. http://www.math.uni-bremen.de/zetem/cms/media.php/262/

report1007.pdf.

[6] E. Bänsch, J. Paul, and A. Schmidt. An ALE finite element method for a cou-
pled Stefan problem and Navier-Stokes equations with free capillary surface. In-
ternational Journal for Numerical Methods in Fluids, 71(10):1282–1296, 2013.
http://dx.doi.org/10.1002/fld.3711.

[7] G. Beckett, J. A. Mackenzie, and M. L. Robertson. A Moving Mesh Finite Ele-
ment Method for the Solution of Two-Dimensional Stefan Problems. Journal of
Computational Physics, 168(2):500 – 518, 2001. http://dx.doi.org/10.1006/

jcph.2001.6721.

[8] M. Bernauer. Motion Planning for the Two-Phase Stefan Problem in Level Set
Formulation. PhD thesis, Chemnitz University of Technology, 2010. http://

nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-63654.

[9] M. K. Bernauer and R. Herzog. Optimal Control of the Classical Two-Phase
Stefan Problem in Level Set Formulation. SIAM Journal on Scientific Computing,
33(1):342–363, 2011. http://dx.doi.org/10.1137/100783327.

– 76 –

http://fenicsproject.org/
http://dx.doi.org/10.1137/120893306
http://dx.doi.org/10.1137/120893306
http://dx.doi.org/10.1137/140958360
http://dx.doi.org/10.1137/140958360
http://dx.doi.org/10.1137/140980016
http://www.math.uni-bremen.de/zetem/cms/media.php/262/report1007.pdf
http://www.math.uni-bremen.de/zetem/cms/media.php/262/report1007.pdf
http://dx.doi.org/10.1002/fld.3711
http://dx.doi.org/10.1006/jcph.2001.6721
http://dx.doi.org/10.1006/jcph.2001.6721
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-63654
http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-63654
http://dx.doi.org/10.1137/100783327

Bibliography

[10] M. O. Bristeau, R. Glowinski, and J. Periaux. Numerical methods for the
Navier–Stokes equations. Applications to the simulation of compressible and in-
compressible viscous flows. Computer Physics Reports, 6(1):73 – 187, 1987.
http://dx.doi.org/10.1016/0167-7977(87)90011-6.

[11] J. Donea, S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian fi-
nite element method for transient dynamic fluid-structure interactions. Com-
puter Methods in Applied Mechanics and Engineering, 33(1):689 – 723, 1982.
http://dx.doi.org/10.1016/0045-7825(82)90128-1.

[12] C. Eck, H. Garcke, and P. Knabner. Mathematische Modellierung. Springer, 2011.
http://dx.doi.org/10.1007/978-3-642-18424-6.

[13] R. Glowinski. Finite element methods for the numerical simulation of incom-
pressible viscous flow. Introduction to the control of the Navier–Stokes equations.
Lectures in Applied Mathematics 28 (1991): 219-301, 1991.

[14] S. C. Gupta (Of Indian Institute of Science in Bangalore). The classical Stefan
problem : basic concepts, modelling and analysis. Elsevier, 2003. http://trove.

nla.gov.au/work/9624319.

[15] M. Heinkenschloss and F. Tröltzsch. Analysis of the Lagrange-SQP-Newton
method for the control of a phase field equation. Control and Cybernetics, Vol.
28, no 2:177–211, 1999.

[16] M. Hinze. Optimal and instantaneous control of the instationary Navier–Stokes
equations. Habilitationsschrift, 2002. http://www.math.uni-hamburg.de/home/

hinze/Psfiles/habil_mod.pdf.

[17] M. Hinze and S. Ziegenbalg. Optimal control of the free boundary in a two-phase
Stefan problem with flow driven by convection. ZAMM - Journal of Applied Math-
ematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik,
87(6):430–448, 2007. http://dx.doi.org/10.1002/zamm.200610326.

[18] T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian fi-
nite element formulation for incompressible viscous flows. Computer Methods in
Applied Mechanics and Engineering, 29(3):329 – 349, 1981. http://dx.doi.org/
10.1016/0045-7825(81)90049-9.

[19] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for
Python. http://www.scipy.org/, 2001–2013.

[20] G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ul-
brich, and S. Ulbrich. Constrained Optimization and Optimal Control for Par-
tial Differential Equations. Birkhäuser, 2012. http://dx.doi.org/10.1007/

978-3-0348-0133-1.

[21] A. Logg, K. Mardal, G. N. Wells, et al. Automated Solution of Differential Equa-
tions by the Finite Element Method. Springer, 2012. http://dx.doi.org/10.

1007/978-3-642-23099-8.

– 77 –

http://dx.doi.org/10.1016/0167-7977(87)90011-6
http://dx.doi.org/10.1016/0045-7825(82)90128-1
http://dx.doi.org/10.1007/978-3-642-18424-6
http://trove.nla.gov.au/work/9624319
http://trove.nla.gov.au/work/9624319
http://www.math.uni-hamburg.de/home/hinze/Psfiles/habil_mod.pdf
http://www.math.uni-hamburg.de/home/hinze/Psfiles/habil_mod.pdf
http://dx.doi.org/10.1002/zamm.200610326
http://dx.doi.org/10.1016/0045-7825(81)90049-9
http://dx.doi.org/10.1016/0045-7825(81)90049-9
http://www.scipy.org/
http://dx.doi.org/10.1007/978-3-0348-0133-1
http://dx.doi.org/10.1007/978-3-0348-0133-1
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8

Bibliography

[22] J. Marburger. Adjoint-Based Optimal Control of Time-Dependent Free Bound-
ary Problems. ArXiv e-prints, 2012. http://adsabs.harvard.edu/abs/

2012arXiv1212.3789M.

[23] A. Nadeshda, M. Y. Antonov, V. S. Borisov, et al. Computational Technolo-
gies. Advanced Topics. De Gruyter, 2014. http://www.degruyter.com/view/

product/428706.

[24] P. Neittaanmäki. Optimal control for state constrained two-phase Stefan
problems. Birkhäuser, 99:309–316, 1991. http://dx.doi.org/10.1007/

978-3-0348-5715-4_27.

[25] M. Niezgodka, A. Crowley, and A. M. Meirmanov. The Stefan Problem. De
Gruyter, 2011. http://www.degruyter.com/view/product/172604.

[26] R. H. Nochetto, M. Paolini, and C. Verdi. An Adaptive Finite Element Method
for Two-Phase Stefan Problems in Two Space Dimensions. I: Stability and Error
Estimates. Mathematics of Computation, 57(195):73–108, 1991. http://doi.

org/10.2307/2938664.

[27] R. H. Nochetto, M. Paolini, and C. Verdi. An Adaptive Finite Element Method
for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and
Numerical Experiments. SIAM Journal on Scientific and Statistical Computing,
12(5):1207–1244, 1991. http://dx.doi.org/10.1137/0912065.

[28] T. Roub́ıček. Optimal control of a Stefan problem with state-space con-
straints. Numerische Mathematik, 50(6):723–744. http://dx.doi.org/10.1007/
BF01398381.

[29] T. Roub́ıček and C. Verdi. A stable approximation of a constrained optimal
control for continuous casting. Numerical Functional Analysis and Optimization,
13(5-6):487–494, 1992. http://dx.doi.org/10.1080/01630569208816494.

[30] L. I. Rubinshtĕın. The Stefan Problem. Translations of mathematical monographs.
American Mathematical Society, 1971.

[31] Stichting Mathematisch Centrum, Amsterdam, The Netherlands. Python. http:
//www.python.org, 1991–1995.

[32] C. Taylor and P. Hood. A numerical solution of the Navier–Stokes equations
using the finite element technique. Computers & Fluids, 1(1):73 – 100, 1973.
http://dx.doi.org/10.1016/0045-7930(73)90027-3.

[33] D. Tiba and M. Tiba. Approximation for control problems with pointwise state
constraints, volume 91. Birkhäuser, 1989.

[34] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen: Theorie, Ver-
fahren und Anwendungen. Vieweg+Teubner, 2009. http://link.springer.com/
book/10.1007%2F978-3-8348-9357-4.

– 78 –

http://adsabs.harvard.edu/abs/2012arXiv1212.3789M
http://adsabs.harvard.edu/abs/2012arXiv1212.3789M
http://www.degruyter.com/view/product/428706
http://www.degruyter.com/view/product/428706
http://dx.doi.org/10.1007/978-3-0348-5715-4_27
http://dx.doi.org/10.1007/978-3-0348-5715-4_27
http://www.degruyter.com/view/product/172604
http://doi.org/10.2307/2938664
http://doi.org/10.2307/2938664
http://dx.doi.org/10.1137/0912065
http://dx.doi.org/10.1007/BF01398381
http://dx.doi.org/10.1007/BF01398381
http://dx.doi.org/10.1080/01630569208816494
http://www.python.org
http://www.python.org
http://dx.doi.org/10.1016/0045-7930(73)90027-3
http://link.springer.com/book/10.1007%2F978-3-8348-9357-4
http://link.springer.com/book/10.1007%2F978-3-8348-9357-4

Bibliography

[35] A. Visintin. Models of Phase Transitions. Birkhäuser, 1996. http://dx.doi.

org/10.1007/978-1-4612-4078-5.

[36] R. E. White. A Numerical Solution of the Enthalpy Formulation of the Stefan
Problem. SIAM Journal on Numerical Analysis, 19(6):1158–1172, 1982. http:

//dx.doi.org/10.1137/0719083.

[37] R. E. White. An Enthalpty Formulation of the Stefan Problem. SIAM Journal
on Numerical Analysis, 19(6):1129–1157, 1982. http://dx.doi.org/10.1137/

0719082.

[38] N. Zabaras, B. Ganapathysubramanian, and L. Tan. Modelling dendritic solidi-
fication with melt convection using the extended finite element method. Journal
of Computational Physics, 218(1):200 – 227, 2006. http://www.sciencedirect.
com/science/article/pii/S0021999106000787.

[39] N. Zabaras and D. Samanta. A stabilized volume-averaging finite element method
for flow in porous media and binary alloy solidification processes. International
Journal for Numerical Methods in Engineering, 60(6):1103–1138, 2004. http:

//dx.doi.org/10.1002/nme.998.

[40] S. Ziegenbalg. Kontrolle freier Ränder bei der Erstarrung von Kristallschmelzen.
PhD thesis, Technische Universität Dresden, 2008. http://nbn-resolving.de/

urn:nbn:de:bsz:14-ds-1212521184972-55836.

– 79 –

http://dx.doi.org/10.1007/978-1-4612-4078-5
http://dx.doi.org/10.1007/978-1-4612-4078-5
http://dx.doi.org/10.1137/0719083
http://dx.doi.org/10.1137/0719083
http://dx.doi.org/10.1137/0719082
http://dx.doi.org/10.1137/0719082
http://www.sciencedirect.com/science/article/pii/S0021999106000787
http://www.sciencedirect.com/science/article/pii/S0021999106000787
http://dx.doi.org/10.1002/nme.998
http://dx.doi.org/10.1002/nme.998
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1212521184972-55836
http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1212521184972-55836

Statutory Declarations

I declare that I have developed and written the enclosed Master Thesis completely
by myself, and have not used sources or means without declaration in the text. Any
thoughts from others or literal quotations are clearly marked. The Master Thesis was
not used in the same or in a similar version to achieve an academic grading or is being
published elsewhere.

Location, Date, Signature

– 80 –

	Notation
	Symbols
	Abbreviations
	Introduction
	Motivation
	Prior Work
	Research Goals
	Outline

	Two-Phase Stefan Problem
	Domain
	Heat Equation
	Mesh Movement
	Navier–Stokes Equations

	Optimization
	Optimal Control Problem
	Forward System
	Cost Functional

	Derivation of the Adjoint System
	Lagrange Functional
	Adjoint Equations
	Backward System

	Gradient Method
	Projected Gradient Method
	Line Minimization Algorithm
	Treatment of Control Constraints

	Implementation and Discretization
	Spatial Discretization
	Weak Formulations

	Numerical Examples
	General Setting
	Stabilizing to a Flat Position
	Stabilizing to a Reachable Flat Position
	Moving to a Reachable Position

	Conclusions
	Perspectives
	Appendix
	Interface Normal Representation
	Stefan Condition Reformulation
	Results for the Example from Section 5.2
	Results for the Example from Section 5.3
	Results for the Example from Section 5.4

	Bibliography

