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Summary
In this thesis convergence of the maximum likelihood estimator for binary response models
is considered, when the design is carried out adaptively. Adaptively means, that the choice
of the next design point, i.e. the value of the control variable at which the next observation
will take place, is based on prior observations. In our case the dependence is through the
maximum likelihood estimate of the parameter in the model.
Since the methods used for independent observations cannot be easily generalized to

this situation, the dependence of design and observations makes it difficult to analyze
the behavior of both. The convergence of the estimator is not necessarily assured, not
even the existence of a finite estimate. From the point of view of design also the question
arises, whether the adaptive design is “optimal” in some sense. We will consider these
problems and start with the search for conditions, under which the maximum likelihood
estimator eventually exists and converges.
A natural way to tackle the dependence is to consider the sequence of estimators as a

recursion. This can be studied using ordinary differential equations or related constructs,
as has been exemplified for stochastic approximation algorithms. Therefore the trajecto-
ries of the estimator are split into a “mean part” and “perturbations”, which might be
deterministic or random. We show, that the mean behavior of the sequence of estimators
can be described by solutions of ordinary differential equations. The limit points of the
sequence follow from the corresponding asymptotic behavior of said solutions.
As an application an adaptive version of the “Wynn algorithm” is studied. In classical

design theory the original nonadaptive version of this vertex direction method is known
to converge to the optimal design. Results are presented concerning the convergence of
the adaptive design and of the estimator when this design is used. Finally its properties
are investigated in simulation studies.





Zusammenfassung
Diese Arbeit beschäftigt sich mit der fast sicheren Konvergenz des Maximum-Likelihood-
Schätzers in Modellen mit binären Beobachtungen bei adaptiven Designs. Adaptives De-
sign bedeutet hier, dass Designpunkte für neue Beobachtungen auf Grundlage früherer
Schätzungen des Modellparameters bestimmt werden. Der adaptive Ansatz sorgt dafür,
dass die Beobachtungen im allgemeinen nicht mehr als unabhängige Zufallsvariablen mo-
delliert werden können und macht daher Untersuchungen des asymptotischen Verhaltens
komplizierter. Bevor die Konvergenz des Schätzers betrachtet werden kann, stellt sich
zudem die Frage, ob zumindest asymptotisch endliche Schätzungen existieren. Aus Sicht
der Versuchsplanung ist zudem von Interesse, ob das entstehende Design „optimal“ ist.
Die rekursive Natur des Problems motiviert Methoden aus dem Bereich der Stochasti-

schen Approximation und Stochastischen Algorithmen zu verwenden. Indem wir die Folge
der Schätzer als Rekursion auffassen und Störterme abspalten, können wir zeigen, dass das
mittlere Verhalten asymptotisch durch Lösungen gewöhnlicher Differentialgleichungen be-
schrieben werden kann. Somit folgt die Konvergenz des Schätzers aus der Asymptotik der
Differentialgleichungen. Das Ergebnis sind Bedingungen an die Folge der Designpunkte,
unter welchen die Folge der Schätzer konvergiert.
Ein spezielles Beispiel für die Wahl der Designpunkte ist eine adaptive Version des

„Wynn-Algorithmus“. Dieser Algorithmus in seiner Grundform wird dazu verwendet op-
timale Designs zu bestimmen. Auf Grundlage der vorher erzielten Resultate wird dieses
Verfahren untersucht und Ergebnisse zur Konvergenz des Designs sowie des Maximum-
Likelihood-Schätzers präsentiert. Eine Simulationsstudie illustriert zum Abschluss diese
Resultate.
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1. Introduction
Planning an experiment can increase the accuracy of the results, reduces cost or saves
time. So it is not astonishing, that articles on planning experiments were published
already at the beginning of the 20th century. These were often inspired by agricultural
questions. For a review with historical perspective on design in general see for example
Atkinson and Bailey (2001).
If different plans are available to carry out an experiment, it is natural to ask the

question: “Which is the best design?” While there were earlier publication by other
researchers, e.g. by Elfving (1952) on linear 2-parameter models, major work was done
by Kiefer (e.g. 1961, 1974). This included the original equivalence theorem by Kiefer and
Wolfowitz (1960), which yields criteria to check for the optimality of a design.
Even though the theory for linear (fixed effect) models is well established, there is a

crucial problem for nonlinear models, which motivated this thesis: The optimal designs
depend on the value of the unknown parameter, since the information matrix usually
does. For a fixed parameter value the linear theory can be generalized to what Chernoff
(1953) called “locally optimal” designs. But because the actual value is not known, some
prior knowledge is needed to fit a locally optimal design for the problem at hand.
If a set of possible values for the parameter is given, designs which give high information

even for the worst choice of the parameter might be of interest. These are called maximin
designs. In a similar way (pseudo-)Bayesian approaches introduce a weight function on the
set of parameters to derive designs, which are optimal “on average”. (for both approaches
see e.g. Chapter 8 in Pronzato and Pázman, 2013, pp. 235)
The approach to circumvent the problem of parameter dependence chosen here is a

sequential one. (see e.g. Silvey, 1980, pp. 62) After an initial phase, in which observations
are obtained, the following steps are repeated until some stopping criterion is met:

• Estimate the parameter.
• Determine new design points.
• Take new observations.

The new design points added in the second step are chosen, to be locally optimal for
the estimated parameter or at least would lead to a locally optimal design. The idea
is now, that the estimate will be close to the actual value of the parameter after some
iterations, and hence the new design points close to the locally optimal points for the
actual parameter. So the two questions of interest here are:

• Does the sequence of estimators converge to the actual parameter?
• Does the sequence of designs converge to a locally optimal design?

Focusing on the sequential maximum likelihood estimation in binary response models,
these questions were studied for this thesis.

1



2 1. Introduction

Because the design depends on the estimate and vice versa, we cannot assume in-
dependent observations anymore. While we cannot use the corresponding theory, the
dependence structure suggests the use of sequential methods.
For maximum likelihood estimation in location and scale families Ying and Wu (1997)

formalized results of Wu (1985) concerning the estimation of the location parameter.
Their paper motivated the approach of this thesis, because they apply methods from
stochastic approximation, as will be done here. Started with the seminal paper of Robbins
and Monro (1951) the method of stochastic approximation considers sequential problems,
like root finding algorithms for stochastically perturbed functions or online estimation of
parameters. Specifically, we will use the ordinary differential equation approach, where
the mean behavior of the estimates is described by a differential equation. (see Ljung,
1977; Kushner and Yin, 2003; Kushner and Clark, 1978)
These models and maximum likelihood estimation therein are introduced in Chapter 2.

This includes some thoughts about the existence of a global maximum. After a brief
description of optimal design theory we introduce the Wynn algorithm, which is a vertex
direction method to find optimal designs. It follows a review about results concerning the
convergence of the estimator for adaptive designs. The chapter closes with an overview
on stochastic approximation and the methods applied in the next chapter.
To ensure, that the log-likelihood eventually has a global maximum, is the goal of the

first section of Chapter 3. After that the focus is on the almost sure convergence of the
maximum likelihood estimator. The sequence of estimates is written recursively and split
into a “mean part” and “perturbations”. In a series of lemmas we find conditions, under
which the “perturbations” are asymptotically negligible. Then the limit of the “mean
part” is characterized.
In Chapter 4 we investigate an adaptive version of the Wynn algorithm. With conditions

for almost sure convergence in place the question is, whether they hold here. We also
consider asymptotic normality and if the design algorithm will be asymptotically optimal.
Chapter 5 presents the results of simulation studies for 2-parameter binary response

models.
The main part of the thesis closes with some conclusions and an outlook in Chapter 6.
Supplementary material including (auxiliary) results, proofs and calculations for some

examples is given in Appendix A and Appendix B.



2. The Model, Estimation and
Related Topics

This section will introduce the basic notation, concepts and methods needed later. After
notational conventions, the model will be described and results concerning estimation,
optimal design and convergence of the estimator are summarized. These are illustrated
by some examples. The chapter closes with a short review and description of stochastic
approximation.

2.1. Basic Notations
Constants are usually denoted by the letters c, C or K. Column vectors or vector valued
functions are denoted by bold, italic letters, e.g. x, θ or f . In some cases capital letters
will be used to distinguish between a random vector, e.g. Y , and its realization y. The
j-th component of a vector x is denoted by xj. Capital letters in a bold and upright
font type are used for matrices or matrix valued functions, e.g. I, A or F. The p × p
identity matrix is denoted by Ep. As a shorthand notation for a p × p diagonal matrix
with diagonal entries aj, j = 1, . . . , p, we will use diagj=1,...,p(aj). Of special interest are
nonnegative definite matrices. A matrix A ∈ Rp×p is called nonnegative definite, if

x>Ax ≥ 0 for all x ∈ Rp .

A nonnegative definite matrix A is called positive definite, if

x>Ax > 0 for all x 6= 0

and positive semidefinite, if additionally

x>Ax = 0 for some x 6= 0 .

For two matrices A,B ∈ Rp×p we write A ≤ B if B−A is nonnegative definite.
If not mentioned otherwise we will use the euclidean norm ‖x‖ :=

√
x>x for a vector

x ∈ Rp. The corresponding induced matrix norm for a real matrix A ∈ Rp×p is then
defined as

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖

= sup
‖x‖6=0

√
x>A>Ax√
x>x

=
√
λmax(A>A) ,

where λmax(A) denotes the largest eigenvalue of A. Similarly λmin(A) is its smallest
eigenvalue. If other eigenvalues are needed, we will use the notation often used for order
statistics: λmin = λ(1) ≤ λ(2) ≤ . . . ≤ λ(p) = λmax. Trace and determinant of a matrix A
are denoted by tr(A) and det(A), respectively.

3



4 2. The Model, Estimation and Related Topics

The indicator function of a set A is denoted by 1A. A subset is denoted using the
symbol ⊆. A proper subset by ⊂. The cardinality of a set A is denoted by |A|.
Let Y,X1, X2, . . . be random variables. To denote convergence in probability we will

use
Xn

p−→ Y .

Similarly convergence in distribution is written as

Xn
d−→ Y.

If the distribution is specified, e.g. the standard normal distribution N (0, 1) we will write

Xn
d−→ N (0, 1) .

The p-dimensional multivariate standard normal distribution is denoted by Np(0,Ep).
Let V ⊆ Rp and f : V −→ R, then

arg max
v∈V

f(v) := {v ∈ V|f(v) ≥ f(w) for allw ∈ V}

denotes the set of values maximizing f . In a slight abuse of notation we will use

w = arg max
v∈V

f(v)

to denote
w ∈ arg max

v∈V
f(v) .

If the maximum is not uniquely defined, we will assume, that the solution can be chosen
arbitrarily or, that there is some rule, which tells us which to choose.

2.2. Binary Response Models
Binary response models are special cases of generalized linear models introduced by Nelder
and Wedderburn (1972). In these models the influence of the control variable on the mean
is described using a linear model and a link function. The link describes the nonlinear
behavior of the mean. This means, that in our case the probability of success of a binary
random variable is “linked” to the linear model. For more information on generalized linear
models see McCullagh and Nelder (1997). Details concerning binary data are covered in
Chapter 4 of their book.
Denote the parameter by θ ∈ Rp, p ∈ N, and the parameter space, i.e. the possible

values for the parameter, by Θ ⊆ Rp.
A special setting of the control variable x ∈ Rp−1 will be called design point. The set of

design points, which can be chosen in the experiment, is called design space and denoted
by X . The influence of the design points in the linear part of the model is described by
the regression function f : X −→ Rp. While in general the components of f are real
valued functions in x, we will consider only the following special case:

f(x) :=
(
1 x1 . . . xp−1

)>
. (2.1)
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The mean function G : R −→ [0, 1] is the essential part, which characterizes the
properties of the model. It is the inverse of the link function from the generalized linear
model. We will assume that it is a continuously differentiable distribution function with
density G′.
An observation at x ∈ Rp−1 is modeled by a binary random variable Y with

P(Y = 1) = 1− P(Y = 0) = G(f(x)>θ) (2.2)

or, equivalently,
E(Y ) = G(f(x)>θ) .

Example 1. The mean functions for the logit, probit, log-log and complementary log-log
model are displayed in Figure 2.1. These models are also considered in McCullagh and
Nelder (1997, p. 108).

−4 −2 0 2 4

t
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0

0.
2

0.
4

0.
6
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8

1.
0

G
(t

)

Figure 2.1.: Comparison of the mean functions for different models.
solid: Logit, dashed: Probit, dotted: Log-log, dash-dotted: Complementary
log-log

Logit model:
The mean function in the logistic or logit model is

G(t) := 1
1 + e−t

, t ∈ R , (2.3)

which is the distribution function of the (standard) logistic distribution. It arises from
modeling the logarithm of the odds by a linear model, i.e.

log
(

P(Y = 1)
1− P(Y = 1)

)
= f(x)>θ . (2.4)

The density G′ is the same as the variance for one observation:

G′(t) = G(t)(1−G(t)) . (2.5)



6 2. The Model, Estimation and Related Topics

Figure 2.2 displays the probability of response in the logistic model with p = 2 for
different choices of θ. The design points in this case are real numbers. The location,
which is often denoted by µ, is influenced by both components: µ = −θ1/θ2. It is the
value of x for which f(x)>θ = 0, i.e. G(f(x)>θ) = 0.5. The slope is only influenced
by θ2.
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(Y

=
1)

Figure 2.2.: P(Y = 1) as a function of x for the logit model and different values of θ.
solid: θ = (0 1)>, dashed: θ = (0 2)>, dotted: θ = (1 0.75)>

Probit model:
The probit model uses the distribution function of the standard normal distribution as
mean function G and hence

G′(t) = 1√
2π

e−
t2
2 , t ∈ R . (2.6)

It is very similar to the logit model, but with lighter tails.

Log-log model:
The link to the linear part of the model is given by

− log(− log(P(Y = 1))) = f(x)>θ ,

which explains the name of the model. The mean function

G(t) := e−e
−t
, t ∈ R ,

is the distribution function of the Gumbel distribution. In contrast to the logit and probit
this model is asymmetric. For t −→∞ it behaves like the logit mean function.
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Complementary log-log model:
This asymmetric model is closely related to the previous one. If we denote the mean
function of the log-log model by G1, then the mean function of the complementary log-log
model can be written as G(t) = 1−G1(−t). It is defined by

log(− log(1− P(Y = 1))) = f(x)>θ ,

and hence has the mean function

G(t) := 1− e−e
t
, t ∈ R .

As is the case for the log-log model G approaches the logit mean function, however for
t −→ −∞.

Let (xi)i≥1 be a sequence in Rp−1, then (Yi)i≥1 denotes a sequence of random variables,
with

P(Yi = 1) = 1− P(Yi = 0) = G(f(xi)>θ) , (2.7)
i = 1, 2, . . ., i.e. where the random variable Yi models an observation at xi. A realization
of this sequence of random variables is denoted by (yi)i≥1.
A sample containing n ∈ N observations can be written as Y1, . . . , Yn or in vector

notation as
Yn =

(
Y1 . . . Yn

)>
.

The corresponding xi are stacked in an n× p-matrix, which is called design matrix, and
denoted by

Fn :=
(
f(x1) . . . f(xn)

)>
. (2.8)

This matrix can be used to write the vector of mean functions corresponding to Yn using
a vector valued function Gn : Rn −→ [0, 1]n defined by

Gn(v) :=
(
G(v1) . . . G(vn)

)>
,v ∈ Rn . (2.9)

As it was pointed out in the introduction we will consider procedures, where the values
of the control variable are chosen depending on previous observations. We will need the
following extensions of the model:
Let xi be realizations of X -valued random variables Xi. Further, let Fn be the σ-field

generated by Yn andX1, . . . ,Xn. Dependence on previous observations means thatXn+1
is Fn-measurable. Instead of (2.7) we have conditional probabilities

P(Yn = 1|Xn = xn) = 1− P(Yn = 0|Xn = xn) = G(f(xn)>θ) (2.10)

and assume, that the probability of a response depends on the value of the control variable
only, i.e.

P(Yn = yn|Yn−1 = yn−1,Xi = xi, i = 1, . . . , n) = P(Yn = yn|Xn = xn). (2.11)

Further assume that if m ∈ N observations, Yn1, . . . , Ynm, are taken at Xn1, . . . ,Xnm in
the n-th step of the experiment, these observations are conditionally independent in the
following sense:

P(Yni = yni, i = 1, . . . ,m|Xni = xni, i = 1, . . . ,m) =
m∏
i=1

P(Yni = yni|Xni = xni) .
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2.3. Maximum Likelihood Estimation
The log-likelihood function for one observation1 is given and denoted by

l(θ, y,f(x)) := y log(P(Y = 1|X = x)) + (1− y) log(P(Y = 0|X = x))
= y log

(
G(f(x)>θ)

)
+ (1− y) log

(
1−G(f(x)>θ)

)
.

For an experiment with n ∈ N observations the log-likelihood function in the above model
is defined by

l(θ,yn,Fn) :=
n∑
i=1

l(θ, yi,f(xi))

=
n∑
i=1

(
yi log

(
G(f(xi)>θ)

)
+ (1− yi) log

(
1−G(f(xi)>θ)

))
. (2.12)

The maximum likelihood estimate based on n observations is defined by

θ̂n := arg max
θ∈Θ

l(θ,yn,Fn) . (2.13)

If no maximum exists, i.e.
arg max
θ∈Θ

l(θ,yn,Fn) = ∅

we will set θ̂n := θ0 for some fixed θ0 ∈ Θ.
The existence of the estimate is a very important issue, as is the uniqueness. Wedder-

burn (1976) considers this question for generalized linear models. He takes the parameter
space into account, i.e. if it is bounded or not, and gives sufficient conditions. Logit,
probit and complementary log-log model are considered as examples for binary response
models. These results can be applied, if there are some design points with more than one
observation.
Some conditions for the existence are given in the following result by Silvapulle (1981),

which is restated here using our notation. It gives conditions for the existence of a
maximum of the log-likelihood over Rp using the separation of the design points. For
the logit model see also Albert and Anderson (1984). The design points are separated, if
there is a hyperplane in Rp, such that the design points where 1’s were observed are on
one side and the design points with 0’s on the other. More precisely, they are separated2,
if there exists v ∈ Rp, such that

f(xi)>v ≤ 0 whenever yi = 0 and f(xi)>v ≥ 0 whenever yi = 1 .

As in Silvapulle (1981) we define the relative interiors of the convex cones generated by
the design points with observation yi = 1 by

C1
n :=

{
n∑
i=1

ki yif(xi)
∣∣∣ ki > 0, i = 1, . . . , n

}
1The notation differs slightly from the notation for more than one observation. But while using

l(θ, y,f(x)>) instead would be a more consistent choice, it would also add to the length of formulas.
2In our definition of separation, points in the separating hyperplane are allowed. This coincides with
the quasi-separation of Albert and Anderson (1984).
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and for yi = 0 by

C0
n :=

{
n∑
i=1

ki (1− yi)f(xi)
∣∣∣ ki > 0, i = 1, . . . , n

}
.

With this notation, separation of the design points is equivalent to C0
n ∩ C1

n = ∅. If
C0
n ∩ C1

n 6= ∅ we will say, that there is an overlap in the design points.
Note that the design space and the regression functions are defined differently, in order

to state the theorem in more general form.

Theorem 1 (Silvapulle, 1981). Let X ⊆ Rp and f(x) = x. Let Fn have full column rank
and Θ = Rp.

(i) If the maximum likelihood estimate θ̂n exists and arg maxθ∈Rp l(θ,yn,Fn) is bounded,
then

C0
n ∩ C1

n 6= ∅ or either C0
n = Rp or C1

n = Rp . (2.14)

(ii) Suppose that l(θ,yn,Fn) is a proper closed concave function with respect to θ. Then
θ̂n exists and arg maxθ∈Rp l(θ,yn,Fn) is bounded if and only if (2.14) is satisfied.

(iii) Suppose that logG and log(1−G) are concave and that xi1 = 1 for all i = 1, . . . , n.
Then θ̂n exists and arg maxθ∈Rp l(θ,yn,Fn) is bounded if and only if C0

n ∩ C1
n 6= ∅.

Further assume that G is strictly increasing at every t satisfying 0 < G(t) < 1.
Then θ̂n is uniquely defined if and only if C0

n ∩ C1
n 6= ∅.

Example 2. To illustrate the theorem, let us consider the case with p = 2 and n = 4.
Let x1 = x2 = 0 and x3 = x4 = 1. If y1 = y2 = 0, y3 = y4 = 1 the log-likelihood has the
form

l(θ,y4,F4) = 2 log(G(θ1 + θ2)) + 2 log(1−G(θ1)) ,
and it is strictly increasing in θ2. Hence there exists no maximum in R2.
If y1 = y3 = 0, y2 = y4 = 1 instead, we get

l(θ,y4,F4) = log(G(θ1 + θ2)(1−G(θ1 + θ2))) + log(G(θ1)(1−G(θ1)))

with the maximum at θ = (G−1(1/2) 0)>.

For our model, defined in Section 2.2, some conditions can be simplified. If a constant
is part of the model, C0

n and C1
n can be at most as large as (0,∞)×Rp−1. As a consequence

(2.14) reduces to
C0
n ∩ C1

n 6= ∅ (2.15)
in (i) and (ii). In fact (2.15) is sufficient for the existence and boundedness in our case.

Lemma 1. Let Fn have full column rank, Θ = Rp and G be a strictly increasing distri-
bution function. Let C0

n ∩ C1
n 6= ∅, then θ̂n exists and arg maxθ∈Rp l(θ,yn,Fn) is bounded.

The main idea of the proof, which is given in the appendix, is to show, that the log-
likelihood is bounded from below in a subset of Rp and tends to −∞ in each direction.
In order to find the maximum likelihood estimates it is convenient to write the derivative

of the log-likelihood with respect to the parameter θ in vector notation. The derivative is
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called score function. We introduce the following notations: Let the functions ψ : R −→ R
and d : R −→ R be defined as

ψ(t) := G′(t)
G(t)(1−G(t)) and d(t) := G′(t)2

G(t)(1−G(t))

for t ∈ R. The first function is an abbreviation for the derivative of the log-odds of G(t):

d
dt log

(
G(t)

1−G(t)

)
= G′(t)
G(t)(1−G(t)) .

The second one will occur in the Hessian and the Fisher information matrix. Define further
the corresponding matrix valued function Ψn : Rn −→ Rn×n and Dn : Rn −→ Rn×n for
v ∈ Rn as

Ψn(v) := diag
i=1,...,n

(ψ(vi)) Dn(v) := diag
i=1,...,n

(d(vi)) . (2.16)

The score function sn based on n observations is given by

sn(θ) := ∂l(θ,yn,Fn)
∂θ

= F>nΨn(Fnθ)(yn −Gn(Fnθ)) . (2.17)

Since
sn(θ) = 0 (2.18)

is a necessary condition for a (local) maximum, the maximum likelihood estimate is often
defined as the solution of (2.18). (see e.g. Fahrmeir and Kaufmann, 1985)
Assume that G is twice continuously differentiable. The Hessian matrix of the log-

likelihood is

Hn(θ,Fn) := F>n diag
i=1,...,n

(
ψ′(f(xi)>θ)

(
yi −G(f(xi)>θ)

))
Fn − F>nDn(Fnθ)Fn (2.19)

=
n∑
i=1

ψ′(f(xi)>θ)
(
yi −G(f(xi)>θ)

)
f(xi)f(xi)>

−
n∑
i=1

d(f(xi)>θ)f(xi)f(xi)> .

The second matrix on the right-hand side of (2.19) is the Fisher information matrix, which
will be introduced in the next section. It is always nonnegative definite. The problematic
part in checking the sufficient condition for a maximum is the first matrix.

Example 3. For all models introduced in Example 1 logG and log(1− G) are concave.
(see Section B.1 for the details) The mean functions are also strictly increasing. Hence
the second part of Theorem 1 (iii) can be applied and an overlap of the defined cones is
equivalent to existence and uniqueness of the maximum likelihood estimate.

Logit model:
Because of (2.4) the log-likelihood simplifies to

l(θ,yn,Fn) =
n∑
i=1

(
yi f(xi)>θ + log

(
1−G(f(xi)>θ)

))
.
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The same reason yields ψ(t) = 1 for all t ∈ R. The score function and Hessian, in which
the first part vanishes, simplify considerably:

sn(θ) = F>n (yn −Gn(Fnθ)) (2.20)

Hn(θ,Fn) = −
n∑
i=1

G(f(xi)>θ)
(
1−G(f(xi)>θ)

)
f(xi)f(xi)> (2.21)

2.4. The Fisher Information
The Fisher information plays an important role in the theory of estimation: Its inverse
yields a lower bound for the covariance matrix of an estimator (Cramér-Rao bound or
information inequality) and the asymptotic covariance matrix for the maximum likelihood
estimator. This holds at least, if the observations are independent identically distributed
and certain regularity conditions are fulfilled. (see e.g. Lehmann and Casella, 1998) The
asymptotic interpretation is of particular interest for nonlinear models. If the covariance
matrix of the estimator is not known, it is substituted by the asymptotic covariance
matrix, i.e. by the inverse of the Fisher information matrix.
The Fisher information matrix for a single observation3 at a fixed design point x is

defined by

I(θ,f(x)) := Cov
(
∂l(θ, Y,f(x))

∂θ

)
.

In the case of the binary response model this becomes

I(θ,f(x)) = d(f(x)>θ) f(x)f(x)> .

The Fisher information matrix for n independent observations Y1, . . . , Yn is just the sum
of the information matrices of the individual observations:

I(θ,Fn) =
n∑
i=1

I(θ,f(xi)) = F>nDn(Fnθ)Fn . (2.22)

This matrix is always symmetric and nonnegative definite. If the design points are random
variables, equation (2.22) is a conditional information given {Xi = xi, i = 1, . . . , n}.

2.5. Optimal Design of Experiments
This part will briefly introduce the basic notation and fundamental results from the theory
of optimal design. The basis for this section was the book by Silvey (1980). We will start
with a general formulation.
Denote the set of probability measures with support in X by Ξ. Every ξ ∈ Ξ is called

a design. Define the (weighted) information matrix (for a given θ) as

M(θ, ξ) :=
∫
X

I(θ,f(x)) ξ(dx) (2.23)

3Similar to the log-likelihood, we will suppress the transpose sign. (see footnote 1)
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and denote the set of all information matrices over X (for a given θ) by

Mθ :=
{

M(θ, ξ) | ξ ∈ Ξ
}
. (2.24)

Since the convex combination of two probability measures is again a probability measure,
Ξ andMθ are both convex: For every two designs ξ1, ξ2 ∈ Ξ and λ ∈ [0, 1]

λ ξ1 + (1− λ) ξ2 ∈ Ξ

and
M(θ, λ ξ1 + (1− λ) ξ2) = λM(θ, ξ1) + (1− λ) M(θ, ξ2) ∈Mθ .

These definitions are convenient from a mathematical point of view. Because a design
should tell the experimenter where to observe, i.e. which values to choose for the con-
trol variable, and how many observations should be spent there, only designs which have
a finite support are applicable in an experiment. Fortunately we only have to consider
designs with finite support when looking for optimal designs, because we will compare de-
signs using their information matrices. Since symmetric p×p-matrices can be represented
by elements of Rp(p+1)/2 andMθ is the closed convex hull of

{I(θ,f(x)) |x ∈ X} , (2.25)

Carathéodory’s theorem4 tells us, that we need at most p(p+ 1)/2 + 1 support points to
represent an element ofMθ. A design ξ with finite support x1, . . . ,xm ∈ X , m ∈ N, and
corresponding weights wi := ξ(xi), i = 1, . . . ,m, will be written as

ξ =
{
x1 . . . xm
w1 . . . wm

}
.

Its information matrix is given by a sum

M(θ, ξ) =
m∑
i=1

wi I(θ,f(xi)) . (2.26)

We say that a design is singular, if its information matrix is a singular matrix. This is
for example the case, if the support of a design contains less design points than p, the
number of parameters. If there is only one design point x in the support of a design, we
will write ξx. I.e.

ξx :=
{
x
1

}
and M(θ, ξx) = I(θ,f(x)) .

Intuitively a design ξ1 ∈ Ξ should be better than another design ξ2 ∈ Ξ, if its infor-
mation is larger, e.g. if M(θ, ξ1) −M(θ, ξ2) is positive definite. But since in general
there is no design ξ, which is the “largest” in this sense (see Pukelsheim, 2006, Chapter
4, for results in linear models) one usually considers criterion functions φ : Mθ −→ R
instead. We will consider locally optimal designs, which are optimal for a given value
of the parameter. This is due to the fact, that the information matrix depends on the
parameter θ. The terminology appears first in Chernoff (1953).

4The theorem states, that each element of the convex hull of a subset S ⊆ Rn can be expressed as a
convex combination of n + 1 or less elements of S. (see Silvey, 1980, Appendix 2)
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A design ξ∗ ∈ Ξ is locally optimal for the parameter value θ with respect to the criterion
φ, if

φ(M(θ, ξ∗)) ≥ φ(M(θ, ξ)) for all ξ ∈ Ξ . (2.27)
Note, that even if the criterion function φ has a unique maximum inMθ, this does not
mean, that the design ξ∗ is unique, because different designs can have the same information
matrix. But the set of optimal designs is convex, if φ is concave.
Some classical examples of characteristics, which are used to build criteria, are given in

the following list:
• Average variance of the estimator (A-criterion)

tr(M(θ, ξ)−1)

• Largest variance component of the estimator (E-criterion)

λmax(M(θ, ξ)−1)

• Volume of the confidence ellipsoid for the parameter (D-criterion)

det(M(θ, ξ)−1)

They all utilize the inverse of the information matrix as a substitute for the covariance
matrix, i.e. they are based on asymptotic behavior. Note, that all three functions are
decreasing, if the information becomes larger in the above sense. We have to take this
into account for our definition of the optimal design, which maximizes a functional of the
information matrix.
We will consider the D-criterion and define the criterion for M ∈Mθ by

φD(M) :=
log det (M) , det (M) 6= 0
−∞ , det (M) = 0

(2.28)

The advantage in using the logarithm in the definition of the criterion function is that
log det (M) is a concave function onMθ. A design ξ∗ is called locally D-optimal (for the
parameter value θ), if

φD(M(θ, ξ∗)) ≥ φD(M(θ, ξ)) for all ξ ∈ Ξ . (2.29)

To verify the optimality of a design one usually uses directional derivatives of the
criterion: In a maximum all directional derivatives should be nonpositive. This yields
necessary and sufficient conditions for optimality, if the criterion function is concave.
Let M1,M2 ∈Mθ. We define the directional derivative

Fφ(M1,M2) := lim
α→0+

φ((1− α)M1 + αM2)− φ(M1)
α

. (2.30)

This is the “usual” directional derivative in the direction M2 −M1, as we can see by
rewriting

(1− α)M1 + αM2 = M1 + α(M2 −M1) .
The benefit of this formulation is that since (1− α)M1 + αM2 ∈ Mθ by construction,
φ((1− α)M1 + αM2) is always defined.
The following theorems yield the criteria to check for optimality:
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Theorem 2 (Silvey, 1980,Theorem 6.1.1, p. 54). Let θ be fixed. Let φ be concave on
Mθ. Then ξ∗ is locally optimal with respect to φ if and only if Fφ(M(θ, ξ∗),M(θ, ξ)) ≤ 0
for all ξ ∈ Ξ.

Theorem 3 (Silvey, 1980,Theorem 6.1.2, p. 54). Let θ be fixed. Let φ be differentiable
at M(θ, ξ∗) and concave onMθ. Then ξ∗ is locally optimal with respect to φ if and only
if Fφ(M(θ, ξ∗),M(θ, ξx)) ≤ 0 for all x ∈ X .

The second theorem tells us, that if φ is differentiable at an information matrix, it is
sufficient to look in the direction of the “corners” ofMθ to check for optimality. It is also
interesting to note, that

max
x∈X

Fφ(M(θ, ξ∗),M(θ, ξx)) = 0 . (2.31)

If additionally ξ∗ has finite support, then

Fφ(M(θ, ξ∗),M(θ, ξx)) = 0 (2.32)

for all support points of ξ∗.
For the special case of D-optimality in linear models, Theorem 3 and (2.31) were part

of the general equivalence theorem of Kiefer and Wolfowitz (1960). It was generalized
to the nonlinear case by White (1973). Our criterion is differentiable at all nonsingular
matrices and we get

FφD
(M(θ, ξ∗),M(θ, ξ)) = tr(M(θ, ξ)M(θ, ξ∗)−1)− p (2.33)

and
FφD

(M(θ, ξ∗),M(θ, ξx)) = d(f(x)>θ)f(x)>M(θ, ξ∗)−1f(x)− p (2.34)
for nonsingular M(θ, ξ∗).
To compare two competing designs, e.g. to find out which is better or how close it is to

an optimal design, one uses the efficiency. For D-optimality we will define the (relative)
efficiency of ξ1 with respect to ξ2 by

eff(ξ1, ξ2,θ) :=
(

det(M(θ, ξ1))
det(M(θ, ξ2))

)1/p

. (2.35)

Example 4. For the models from Example 1 the locallyD-optimal designs for θ = ( 0 1 )>
and X = R are given in Table 2.1. They can be found in Ford, Torsney and Wu (1992,
Table 4, p. 579). As a feature of the D-criterion all weights are 0.5. The corresponding
values of the mean function at the support points are given, too.
The designs of the symmetric distributions are symmetric, too. The relationship of the

log-log and complementary log-log model and their asymmetric shape are also mirrored
in the design points.

Logit model:
The locally D-optimal design for θ = (0 1)> is

ξ1 :=
{
−1.5434 1.5434

1
2

1
2

}
, (2.36)



2.5. Optimal Design of Experiments 15

Table 2.1.: Locally D-optimal designs for θ = (0 1)>

Support of ξ∗
Model x1 x2 G(x1) G(x2)
Logit −1.5434 1.5434 0.176 0.824
Probit −1.1381 1.1381 0.128 0.872
Log-log −0.9796 1.3377 0.070 0.769
Complementary log-log −1.3377 0.9796 0.231 0.930

whenever {−1.5434, 1.5434} ⊆ X . This is illustrated in Figure 2.3. The pictures show Fφ
for (2.36) and the following two designs:

ξ2 :=
{
−0.5 2.0746

1
2

1
2

}
, ξ3 :=

{
−1.5434 0 1.5434

1
3

1
3

1
3

}
.

The support points of ξ1 are in X = [−2, 2] and the maximum of Fφ is attained at the
support points, as it was suggested by (2.31). This is illustrated in Figure 2.3a. For the
other designs Fφ is positive for some x. If X is changed to [−0.5, 2.5] (Figure 2.3b) the
design ξ2 is locally optimal.
Locally optimal designs for other values of θ are given by

±1.5434− θ1

θ2
.
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(a) X = [−2, 2]
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(b) X = [−0.5, 2.5]

Figure 2.3.: FφD
(M(θ, ξ),M(θ, ξx)) as a function of x for ξ1 (solid), ξ2 (dashed) and ξ3

(dotted). The boundaries of the design space are marked by vertical lines.

Now that we can check, if a design is optimal, there is still the question how to get
candidates. With directional derivatives at hand, it seems reasonable to consider steepest
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ascent algorithms, to find optimal designs. This was first done by Wynn (1970) and
Fedorov (1972) for the linear case (see also Wu and Wynn, 1978), but their method works
for locally optimal designs in nonlinear models, too. For D-optimality the basic algorithm
is as follows: Let (αn)n≥1 be a positive sequence, such that

lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞ .

While it is possible to adjust the step-length in each step by line search, we will restrict
ourselves to the case of αn = n−1, i.e. each point in the sequence (xn)n≥1 has the same
weight. Since this is the case considered by Wynn (1970), we will refer to the algorithm
described below as Wynn algorithm.
Let the initial design ξ0 have a regular information matrix.

Step 1 Calculate the next design point:
xn+1 := arg max

x∈X
FφD

(M(θ, ξn),M(θ, ξx)) , (2.37)

i.e. in the direction where the derivative is largest.

Step 2 Update the design
ξn+1 = (1− αn+1)ξn + αn+1ξxn+1 . (2.38)

Step 3 Stop, if some stopping rule is fulfilled. Otherwise return to Step 1.
The information matrix can be easily calculated in each step:

M(θ, ξn+1) = (1− αn+1)M(θ, ξn) + αn+1 I(θ,f(xn+1)) . (2.39)
It is interesting to note, that for D-optimality maximizing the derivative FφD

in (2.37) is
equivalent to maximizing the efficiency by choosing the next design point. This follows
from Lemma A.1 part (ii):

det(I(θ,Fn) + I(θ,f(x)))
det(I(θ,Fn)) = 1 + d(f(x)>θ)f(x)>I(θ,Fn)−1f(x) .

A problem with locally optimal designs is that we want to use the design, which depends
on the unknown parameter, to estimate this very parameter. We will consider sequential
methods, where the estimation and design step are iterated. For this purpose the Wynn
algorithm will be modified: In each step θ is substituted by the last estimate θ̂n. Let
αn = n−1 and ξ0 be as in the original algorithm.
Step 1 Calculate the next design point:

xn+1 := arg max
x∈X

Fφ
(
M(θ̂n, ξn),M(θ̂n, ξx)

)
, (2.40)

i.e. in the direction where the derivative is largest.

Step 2 Update the design
ξn+1 = (1− αn+1)ξn + αn+1ξxn+1 . (2.41)

Step 3 Stop, if some stopping rule is fulfilled. Otherwise return to Step 1.
This adaptive Wynn algorithm was recently considered by Pronzato (2010) and will be
reviewed in more details in the next section.
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2.6. A Review of Convergence Results for the
Maximum Likelihood Estimator and Adaptive
Design

From now on we will distinguish between θ, i.e. some arbitrary value chosen for the
parameter, and θ̄, which denotes the “actual value” of the parameter, i.e. the fixed value
governing the observations in the specific experiment.
The main criterion for the convergence of the estimator is that the variance tends to 0

or equivalently, that the information tends to infinity. This translates to conditions on
the eigenvalues of the Fisher information matrix, as we will see.
For independent observations Fahrmeir and Kaufmann (1985) proved results for con-

vergence and asymptotic normality of the maximum likelihood estimator in generalized
linear models, which they defined as a solution of (2.18). They also comprehensively
discuss their findings in view of previous results. Their main assumption is, that the in-
formation should tend to infinity for all components of the parameter, but that the speed
of divergence should not be too different. In mathematical formulation this becomes

λmin(I(θ̄,Fn)) −→∞ (2.42)

and there is a neighborhood of θ̄, as well as some constants C > 0, δ > 0, n1 ∈ N, such
that

λmax(I(θ̄,Fn))1/2+δ

λmin(I(θ,Fn)) ≤ C (2.43)

for all n ≥ n1 and all θ in this neighborhood. In the logistic model these conditions yield
θ̂n −→ θ̄ almost surely. In binary response models with other mean functions I(θ,Fn)
has to be substituted by the Hessian matrix of the log-likelihood, to secure the existence
of a maximum.
If the design points are realizations of random variables, as defined at the end of Sec-

tion 2.2, there are similar results. Let εn, n = 1, 2, . . ., form a martingale difference se-
quence with respect to Fn, which is defined in Section 2.2, and letXn+1 be Fn-measurable.
Consider the linear multiple regression model

Yn = f(Xn)>θ + εn ,

where θ ∈ Rp and f(Xn) is Rp-valued for n = 1, 2, . . .. Assume that

sup
n≥1

E(εαn|Fn−1) <∞

for some α > 2. Lai and Wei (1982) showed that the least squares estimator θ̂n converges
almost surely to the true value of the parameter θ, if the extremal eigenvalues of the
matrix F>nFn, i.e. the Fisher information matrix for linear models, fulfill

λmin(F>nFn) −→∞ and log(λmax(F>nFn))
λmin(F>nFn) −→ 0 (2.44)

almost surely. Lai (1994) later extended this to nonlinear least squares applying similar
conditions as Wu (1981), who considered convergence of the nonlinear least squares esti-
mator for independent observations. Lai assumes a compact parameter space Θ. Instead



18 2. The Model, Estimation and Related Topics

of the eigenvalues the conditions are based on

Dn(θ1,θ2) :=
n∑
i=1

(
G(f(xi)>θ1)−G(f(xi)>θ2)

)2
(2.45)

and some term D̃n, which includes squares of higher order mixed partial derivatives and
will not be discussed here. The conditions in (2.42) and (2.43) are replaced by the fol-
lowing: For each θ1 6= θ̄, exist constants 1 < δ < 2, K > 0, C > 0 and n1 ∈ N, such
that

inf
‖θ2−θ1‖≤K

Dn(θ2, θ̄) −→∞ and Dn(θ1, θ̄) + D̃n(
inf‖θ2−θ1‖≤K Dn(θ2, θ̄)

)δ ≤ C

almost surely.
Chen, Hu and Ying (1999) extended the result of Lai and Wei to maximum quasi-

likelihood estimation in generalized linear models. This also is an extension of the results
of Fahrmeir and Kaufmann (1985) for the case of the logit and similar generalized linear
models.5 Chen et al. define their estimate θ̂n as the solution of a “quasi score function”:

F>n (yn −Gn(Fnθ)) = 0 . (2.46)

Note that their quasi-likelihood approach is a special case of the one considered in Mc-
Cullagh and Nelder (1997, Chapter 9, pp. 323), with the variance function equal to G′.
For the logit model the maximum quasi-likelihood approach of Chen et al. is the same
as maximum likelihood, because the left hand side of (2.46) is the score function from
equation (2.20) on page 11. Hence their theorem establishes the strong consistency of
the maximum likelihood estimator and yields a reasonable starting point for choosing
conditions needed for convergence.
Chen et al. assumed that the mean function G is continuously differentiable and strictly

increasing. In addition to the conditions on the eigenvalues in (2.44) they assumed for
the design points, that supi≥1 ‖f(Xi)‖ <∞ almost surely or that G′ is bounded away
from 0.
Ying and Wu (1997) considered a family of similar estimation procedures for location

and scale families and also specified the sequence of design points. Their estimation
equation for the location parameter is given by

n∑
i=1

ψ̃(β̂nxi)(yi −G(β̂n(xi − µ))) = 0 ,

where µ is the location and β̂n is an estimate for the scale parameter. Assume that β̂n
converges almost surely to the true value of the parameter and that the next design
point xn+1 is chosen as µ̂n, which is the estimate of the location parameter based on
n observations. In case of convergence, this yields an asymptotically optimal sequence
of design points in the sense, that the points converge to the locally optimal design for
estimating µ. With some additional assumptions on the weight function ψ̃ and the mean
function G, Ying and Wu showed, that µ̂n converges almost surely to the true value of
the location parameter.

5“Similar generalized linear model” means with natural link function, which is not discussed here.
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Note that the parameters β and µ are not estimated simultaneously by maximum
likelihood and that the weight function ψ̃ does not depend on both parameters. This helps
to avoid the problem of existence and uniqueness of a maximum, as does the estimation
procedure (2.46). Some of the proofs in Ying andWu use results from the field of stochastic
approximation, which motivated the approach in the next chapter.
The adaptive Wynn algorithm from the end of the preceding section is similar in spirit

to the choice of design points by Ying and Wu: The points are chosen such that the design
should tend to the locally optimal design for the parameter. As mentioned above this
was considered by Pronzato (2010) for a finite design space X and compact parameter
space Θ. He first proves almost sure convergence for the nonlinear least squares estimator
and the maximum likelihood estimator in binary response models and then, that the
adaptive Wynn algorithm yields the assumptions needed for convergence. Similar to Lai
(1994) and Wu (1981), he assumes

Dn(θ, θ̄) −→∞

for all θ, with ‖θ − θ̄‖ > δ for all δ > 0. For the maximum likelihood estimator

n∑
i=1

G(f(xi)>θ̄) log
(
G(f(xi)>θ̄)
G(f(xi)>θ)

)
+
(
1−G(f(xi)>θ̄)

)
log
(

1−G(f(xi)>θ̄)
1−G(f(xi)>θ)

)

was used instead of the Dn defined above. This sum has to increase faster than log(log(n))
which is much slower than in previous results and probably due to the restrictions on X .
For the Wynn algorithm part the first step is to show, that for any sequence (θn)n≥1 in

Θ, there are at least p support points with positive weights in the limiting design. Then
in a second step he shows, that from convergence of θn to θ̄ follows that φD(M(θ̄, ξn))
converges to φD(M(θ̄, ξ∗)). To achieve this he has to assume that

min
θ∈Θ

λmin

( ∑
x∈X

I(θ,f(x))
)
> δ > 0

and

λmin

( p∑
i=1

I(θ̄,f(xi))
)
> δ > 0

for any p distinct elements of X .
These results on convergence for a general sequence of designs on a finite design space

can also be found in Pronzato (2009). Of special interest is that asymptotic normality
is considered, too, and that the information matrix acts as asymptotic covariance matrix
in these results. This justifies the use of the information matrix to design experiments
adaptively.
It is interesting to note, that these results yield convergence for a fully adaptive method.

In order to satisfy the conditions on the eigenvalues or Dn or to secure existence of the
estimate one often has to assume that the size of the initial design tends to infinity (see
Chaudhuri and Mykland, 1993) or has to add deterministic design points. (see e.g. the
example in Lai, 1994, pp. 1923)
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2.7. Stochastic Approximation
The idea, which we will study in later chapters is to show convergence of the maximum
likelihood estimator with methods from the field of stochastic approximation. It is con-
cerned with the study of stochastic algorithms of the form

θ̂n+1 = θ̂n + αn+1Zn+1 ,

where Zn is Rp-valued random variable depending on a parameter θ̄. The goal is to
estimate θ̄ recursively by θ̂n. The step size αn > 0 will be assumed to be decreasing.
The first articles by Robbins and Monro (1951) about stochastic root finding and sim-

ilarly Kiefer and Wolfowitz (1952) concerning the search for the maximum of a stochas-
tically perturbed function considered “classical” conditions on the step size, namely

∞∑
i=1

αi =∞ and
∞∑
i=1

α2
i <∞ .

The second condition provides that sums of (conditional) variances or second moments
appearing in the proofs will converge.
In the 1970th the ordinary differential equation method was introduced by Ljung (1977).

It was studied and extended thereafter by several authors. (e.g. Kushner and Clark, 1978;
Métivier and Priouret, 1987) For further references see for example Kushner and Yin
(2003) and Benveniste, Métivier and Priouret (1990) or Benaïm (1999, for a dynamical
systems point of view).
The mean behavior of a stochastic algorithm is described by the solutions of an ordinary

differential equation. The intuition behind this is that the algorithm is a perturbed Euler-
approximation to an ordinary differential equation. The influence of the perturbations will
become negligible due to averaging with the step length. Asymptotics and convergence
of the algorithm can be inferred from this by considering the limit sets of the differential
equation. A benefit of this approach is that it yields a framework for a wider class
of algorithms, e.g. with weaker assumptions on the step length. We will describe the
approach given in Kushner and Yin (2003).
More precisely assume that the random variables Zn+1 from above can be split into

some Rp-valued function z : Rp −→ Rp acting as a “mean value”, the martingale difference
εn+1 := Zn+1 − E(Zn+1|Fn) with Fn generated by Zi, i = 1, . . . , n, and a perturbation
bn+1. Denote the initial value for the estimate by θ̂0. Then the recursion can be rewritten
as

θ̂n+1 = θ̂n + αn+1 z(θ̂n) + αn+1 εn+1 + αn+1 bn+1

After summation over n we arrive at

θ̂n+1 = θ̂m +
n+1∑

i=m+1
αi z(θ̂i−1) +

n+1∑
i=m+1

αi εi +
n+1∑

i=m+1
αibi , n ≥ m. (2.47)

An alternative way to measure the length of the sums, or equivalently the number of
steps separating θ̂n+1 and θ̂m, is to introduce the “natural time” defined by t0 := 0 and
tn := ∑n

i=1 αi, n ∈ N. Defining the index at time t ∈ R by

ν(t) :=
sup{k ∈ N ∪ {0} : tk ≤ t} , t ≥ 0

0 , t < 0
(2.48)
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i.e. ν(t) = n if and only if t ∈ [tn, tn+1), (2.47) becomes

θ̂n+1 = θ̂m +
ν(tn+1)∑
i=m+1

αi z(θ̂i−1) +
ν(tn+1)∑
i=m+1

αi εi +
ν(tn+1)∑
i=m+1

αi bi .

With the piecewise constant, continuous time interpolation

θ̂(t) :=
θ̂n , tn ≤ t < tn+1

θ̂0 , t < 0
(2.49)

i.e. θ̂(t) := θ̂ν(t), this can be extended to arbitrary differences in time, leading to

θ̂(tn + t) = θ̂n +
ν(tn+t)∑
i=n+1

αi z(θ̂i−1) +
ν(tn+t)∑
i=n+1

αi εi +
ν(tn+t)∑
i=n+1

αi bi (2.50)

for t ≥ 0 and

θ̂(tn + t) = θ̂n −
n∑

i=ν(tn+t)+1
αi z(θ̂i−1)−

n∑
i=ν(tn+t)+1

αi εi −
n∑

i=ν(tn+t)+1
αi bi (2.51)

for t < 0.
If we consider θ̂(tn + t) as a function of t ∈ R then we can define a sequence of

functions (θ̂(tn+·))n≥1. Assume that there is a subsequence (θ̂(tnk
+·))k≥1 which converges

uniformly to a function θ(·), on the interval [−1, 1]. Then

θ̂nk
= θ̂(tnk

+ 0) −→ θ(0)

and in general
θ̂ν(tnk

+t) −→ θ(t)

for all t ∈ [−1, 1]. I.e. the limit θ(t) characterizes not only the limit of the subsequence
(θ̂nk

)k≥1, but of all subsequences (θ̂nk′
)k′≥1 for which nk′ ∈ [ν(tnk

− 1), ν(tnk
+ 1)]. More-

over, if there is a subsequence converging uniformly on all compact intervals, we can
describe the asymptotic behavior of the whole sequence of estimates. So the next step is
to characterize convergent subsequences of (θ̂(tn + ·))n≥1.
If the functions θ̂(tn + ·) are continuous, then the concept of equicontinuity and the

Arzelà-Ascoli Theorem (see Kushner and Yin, 2003, p. 102, Theorem 4.2.1) can be used.
Recall the definition of equicontinuity:
Let fn : R −→ Rp, n ∈ N, be bounded functions. We say, that the sequence (fn)n≥1 is

equicontinuous if, for any ε > 0, there is a δ > 0 such that |t− s| ≤ δ, t, s ∈ R, implies

‖fn(t)− fn(s)‖ ≤ ε

for all n ≥ 1. I.e. all functions are continuous and the bounds δ and ε do not depend
on n.

Theorem 4 (Arzelà-Ascoli). Let J ⊂ R be a bounded interval. Let (fn)n≥1 be equicon-
tinuous and assume ‖fn(x)‖ ≤ C for all x ∈ J , n ≥ 1, then (fn)n≥1 has a subsequence
converging uniformly to a continuous limit on J .
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In our case the functions will have jumps, which should decrease with increasing n.
Hence we have to interpolate continuously or need some equicontinuity in the extended
sense (see Kushner and Yin, 2003, p. 102):
Let fn : R −→ Rp, n ∈ N, be bounded, measurable functions. We say, that the sequence

(fn)n≥1 is equicontinuous in the extended sense if, for any ε > 0, there is a δ > 0 such
that |t− s| ≤ δ, t, s ∈ R, implies

lim sup
n→∞

‖fn(t)− fn(s)‖ ≤ ε . (2.52)

I.e. there exists a nonnegative null sequence (an)n≥1 such that

‖fn(t)− fn(s)‖ ≤ ε+ an .

With this concept the Arzelà-Ascoli Theorem can be extended (Theorem 4.2.2 in Kushner
and Yin, 2003, p. 102; for a proof see page 79 of this thesis):

Theorem 5 (Extended Arzelà-Ascoli). Let J ⊂ R be a bounded interval. Let (fn)n≥1 be
equicontinuous in the extended sense and assume ‖fn(x)‖ ≤ C for all x ∈ J , n ≥ 1. Then
(fn)n≥1 has a subsequence converging uniformly to a continuous limit on J .

Hence showing, that (θ̂(tn + ·))n≥1 is equicontinuous in the extended sense would yield
the desired convergence.
The only sum in (2.50), which should have an influence on the limit, is the first one

involving z. So this is the sum for which a limit is of interest. The following lemma shows
equicontinuity in the extended sense for the sequence of sums, considered as functions
in t. It follows immediately from the extended Arzelà-Ascoli Theorem (Theorem 5), that
a subsequence with a continuous limit exists.

Lemma 2. Let z : Rp −→ Rp be bounded for all (θ̂i)i≥1 uniformly in i. Then

fn(t) :=
ν(tn+t)∑
i=n+1

αi z(θ̂i−1)

is equicontinuous in the extended sense and the limit f of a convergent subsequence is
Lipschitz continuous.

Proof. Without loss of generality assume that s < t. Since z is bounded

‖fn(t)− fn(s)‖ =
∥∥∥∥∥∥

ν(tn+t)∑
i=ν(tn+s)+1

αi z(θ̂i−1)
∥∥∥∥∥∥ ≤ K

ν(tn+t)∑
i=ν(tn+s)+1

αi

for some constant K > 0. The sum on the right-hand side can be written as
ν(tn+t)∑

i=ν(tn+s)+1
αi =

ν(tn+t)∑
i=1

αi −
ν(tn+s)∑
i=1

αi .

By definition of tn and ν(t) we have

tn + t− αν(tn+t) ≤
ν(tn+t)∑
i=1

αi ≤ tn + t ,
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and hence

‖fn(t)− fn(s)‖ ≤ K
(
tn + t− (tn + s− αν(tn+s))

)
= K

(
t− s+ αν(tn+s)

)
. (2.53)

Since the step size tends to 0, the equicontinuity in the extended sense follows.
For the Lipschitz continuity note, that for the convergent subsequence fnk

holds

‖f(t)− f(s)‖ ≤ ‖f(t)− fnk
(t)‖+ ‖fnk

(s)− f(s)‖+ ‖fnk
(t)− fnk

(s)‖ .

Taking the limit for k −→∞ and using (2.53) yields that

‖f(t)− f(s)‖ ≤ K|t− s| .

The other two sums from (2.50), which include the martingale difference εi and addi-
tional perturbations bi, respectively, should be negligible for large n and all t > 0. We
will use what in Kushner and Yin (2003, p. 137) is called the “asymptotic rate of change
condition” for ∑n

i=1 αi εi and
∑n
i=1 αi bi. (see also Benaïm, 1999, p.12, condition A1). It

is defined as

lim
n→∞

sup

∥∥∥∥∥∥

k∑
i=n+1

αi εi

∥∥∥∥∥∥ : k = n+ 1, . . . , ν(tn + t)
 = 0 (2.54)

lim
n→∞

sup

∥∥∥∥∥∥

k∑
i=n+1

αi bi

∥∥∥∥∥∥ : k = n+ 1, . . . , ν(tn + t)
 = 0 (2.55)

almost surely. Roughly speaking this means that the moving average of the errors tends
to 0. In this definition, we have to be aware, that it is not the limes superior lim supk→∞
which is used, but limk→∞ sup.
If the two sums converge, then (2.54) and (2.55) are naturally fulfilled. Sufficient

conditions for (2.54) are for example boundedness of the martingale differences εi and
αn log(n) −→ 0 for n −→∞. (see Theorem 5.3.3 in Kushner and Yin, 2003, p. 139)
So if Lemma 2, (2.54) and (2.55) hold, the limiting function θ(t) would be a solution

to
dθ(t)

dt = z(θ(t)) .

If it is not possible to find a function z, which is independent of the index i, the
approach can be extended to differential inclusions. (see e.g. Kushner and Yin, 2003 or
Benaïm, Hofbauer and Sorin, 2005) Introduce zi instead of z and assume, that there exist
compact and convex sets Z(θ(t)) ⊆ Rp, depending on θ(t), such that

lim
n→∞

inf
w∈Z(θ(t))

∥∥∥∥∥∥
ν(tn+t)∑
i=n+1

αi zi(θ(t))−w
∥∥∥∥∥∥ = 0 .

Then the limiting function can be characterized as an absolutely continuous function
which fulfills

dθ(t)
dt ∈ Z(θ(t))

for almost every t ∈ R.





3. Asymptotic Behavior of the
Maximum Likelihood Estimator

The main result of this section is the almost sure convergence of the sequence of maximum
likelihood estimators. To achieve this, we will rewrite the sequence as a recursion, such
that the methods described in Section 2.7 can be applied. This will be done in Section 3.2.
Then, since the convergence and asymptotic behavior depends on the accumulated effects
in this recursion, they will be considered. The “asymptotic rate of change condition” for
the perturbations, which was introduced on page 23, will be verified.
Before considering the convergence of the estimator we will assure, that it exists asymp-

totically.

3.1. Asymptotic Existence of the MLE
As we have seen in Lemma 1 and Theorem 1, existence of the estimate is equivalent
to the overlap of the design points, i.e. C0

n ∩ C1
n 6= ∅. We will show in Lemma 5, that

there will be an overlap eventually. A prerequisite is that there are 0’s and 1’s in every
sequence of observations. Lemma 3 shows, that in fact there are infinitely many 0’s and
1’s in each sequence. We will denote the smallest and the largest probability of success
by cθ̄ := minx∈X G(f(x)>θ̄) and Cθ̄ := maxx∈X G(f(x)>θ̄), respectively. Also introduce
the error εn := Yn −G(f(Xn)>θ̄).

Lemma 3. Let 0 < G(t) < 1 for all t ∈ R and let X be compact. Then

0 < cθ̄ ≤ lim inf
n→∞

1
n

n∑
i=1

Yi ≤ lim sup
n→∞

1
n

n∑
i=1

Yi ≤ Cθ̄ < 1

almost surely.

Proof. Consider
1
n

n∑
i=1

Yi = 1
n

n∑
i=1

εi + 1
n

n∑
i=1

G(f(Xi)>θ̄) .

For the first sum on the right-hand side a strong law of large numbers for martingale
differences yields

lim
n→∞

1
n

n∑
i=1

εi = 0

almost surely. (see e.g. Theorem A.1 in the appendix, which is Theorem 2.18 in Hall and
Heyde, 1980, p. 25) The limit of the second sum is bounded by cθ̄ and Cθ̄:

cθ̄ ≤ lim inf
n→∞

1
n

n∑
i=1

G(f(Xi)>θ̄) ≤ lim sup
n→∞

1
n

n∑
i=1

G(f(Xi)>θ̄) ≤ Cθ̄

25
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almost surely. Hence

cθ̄ ≤ lim inf
n→∞

1
n

n∑
i=1

Yi ≤ lim sup
n→∞

1
n

n∑
i=1

Yi ≤ Cθ̄

almost surely. Since 0 < G(t) < 1 for all t ∈ R and X is compact, cθ̄ > 0 and Cθ̄ < 1.

Lemma 3 can be extended to certain subsequences of (Yi)i≥1, which will be needed in
the proof for Lemma 5. Let v ∈ Rp, ‖v‖ = 1, and define the sets

A+
v,n :=

{
i ∈ {1, . . . , n}|f(Xi)>v > 0

}
and A−v,n :=

{
i ∈ {1, . . . , n}|f(Xi)>v < 0

}
.

The following lemma is formulated for |A−v,n|. The analog for |A+
v,n| can be proved simi-

larly.

Lemma 4. Let 0 < G(t) < 1 for all t ∈ R and let X be compact. Then

0 < cθ̄ ≤ lim inf
n→∞

1
|A−v,n|

∑
i∈A−v,n

Yi ≤ lim sup
n→∞

1
|A−v,n|

∑
i∈A−v,n

Yi ≤ Cθ̄ < 1

on {limn→∞ |A−v,n| =∞}.

Proof. Since i ∈ A−v,n is equivalent to f(Xi)>v < 0, we can rewrite the sum of the Yi as

∑
i∈A−v,n

Yi =
n∑
i=1

Yi1{f(Xi)>v<0}

and |A−v,n| = ∑n
i=1 1{f(Xi)>v<0}. It follows that |A−v,n| is Fn−1-measurable, because Xi is

Fi−1-measurable for all i ≥ 1. Since the sum
n∑
i=1

εi1{f(Xi)>v<0}

is a martingale and
n∑
i=1

1
|A−v,i|2

E(ε2
i1{f(Xi)>v<0}|Fi−1)

≤
n∑
i=1

1
|A−v,i|2

G(f(Xi)>θ̄)
(
1−G(f(Xi)>θ̄)

)
1{f(Xi)>v<0} ≤

1
4

∞∑
j=1

1
j2 <∞ ,

it follows from Theorem A.1 that

lim
n→∞

1
|A−v,n|

n∑
i=1

εi1{f(Xi)>v<0} = 0 .

The rest follows as in Lemma 3.

Lemma 5. Let 0 < G(t) < 1 for all t ∈ R and let X be compact. Assume that
limn→∞ λmin(F>nFn) = ∞ almost surely. Then there exists an integer-valued random
variable N with P(N <∞) = 1, such that

P
(
C0
n ∩ C1

n 6= ∅ for all n ≥ N
)

= 1.
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Proof. If the vector v does separate the design points for n ∈ N, then Yi = 0 for all
i ∈ A−v,n and Yi = 1 for all i ∈ A+

v,n or vice versa. But if limn→∞ |A−v,n| = ∞, Lemma 4
yields, that there are infinitely many 0’s and 1’s in the subsequence defined by A−v,n and
hence that

N−v := inf{n ∈ N|∃i, j ∈ A−v,n, i 6= j : Yi = 0, Yj = 1}
is finite. The same holds for limn→∞ |A+

v,n| =∞ and

N+
v := inf{n ∈ N|∃i, j ∈ A+

v,n, i 6= j : Yi = 0, Yj = 1} .

It follows that Nv := inf{N−v , N+
v }, which is the smallest index, such that v is not

separating the design points anymore, is finite on the event{
lim
n→∞

|A−v,n| =∞
}
∪
{

lim
n→∞

|A+
v,n| =∞

}
.

We will show next, that this happens almost surely. Since the minimal eigenvalue of F>nFn

tends to infinity,
lim
n→∞

v>F>nFnv = lim
n→∞

n∑
i=1

(
f(Xi)>v

)2
=∞

almost surely for all ‖v‖ = 1. Hence there are infinitely many indices, such that
(f(Xi)>v)2 > 0, i.e.

P
({

lim
n→∞

|A−v,n| =∞
}
∪
{

lim
n→∞

|A+
v,n| =∞

})
= 1

for all ‖v‖ = 1. Thus P(Nv <∞) = 1 for all ‖v‖ = 1. Denote a countable subset of
{v ∈ Rp|‖v‖ = 1} by V . Then supv∈V Nv is an (extended) integer valued random variable
and it follows, that

P
(

sup
v∈V

Nv =∞
)

= P
( ⋂
n≥1
{sup
v∈V

Nv > n}
)

= 1− P
( ⋃
n≥1
{sup
v∈V

Nv ≤ n}
)

= 1− P
( ⋃
n≥1
{sup
v∈V

Nv = n}
)

= 1− P
( ⋃
n≥1

⋃
v∈V
{Nv = n}

)
.

Since for any v1 ∈ V

P
( ⋃
v∈V

⋃
n≥1
{Nv = n}

)
≥ P

( ⋃
n≥1
{Nv1 = n}

)
= 1 ,

we have
P
(

sup
v∈V

Nv =∞
)

= 0

for all V . It follows from Lemma A.8 (Chow and Teicher, 1988, p. 194) thatN := ess sup‖v‖=1Nv
is almost surely finite, i.e. P(N <∞) = 1, and consequently

P
(
C0
n ∩ C1

n 6= ∅ for all n ≥ N
)

= 1.
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3.2. An “Essentially Recursive” Formulation of the
MLE

Now that we know, that the estimate will exist eventually, the next step will be to find a
recursive formulation for the maximum likelihood estimate. We will see, that there is at
least an “essentially recursive” formulation, which is given in Lemma 6 below.
This will be done using a Taylor expansion of G, namely

G(t) = G(t0) +G′(t0)(t− t0) + r(t, t0) , (3.1)
where r(t, t0) is the approximation error. Notations associated with this are

Rn(θ1,θ2) :=
(
r(f(x1)>θ1,f(x1)>θ2) . . . r(f(xn)>θ1,f(xn)>θ2)

)>
rn(θ1,θ2) := F>nΨn(Fnθ2)Rn(θ1,θ2) .

The random errors for one observation are defined as before by
εn := Yn −G(f(Xn)>θ̄) .

While the notation does not distinguish between realization and random variable, it will
be clear from the context.
Additionally we introduce the following notations

gθ̄(x,θ) := f(x)ψ(f(x)>θ)
(
G(f(x)>θ̄)−G(f(x)>θ)

)
,

the (conditional) expectation of a summand of the score function, and
s̃n(θ1,θ2) := F>nΨn(Fnθ2)(yn −Gn(Fnθ1)) ,

a “pseudo” score function, which will be needed for the recursion. Finally, whenever
I(θ̂i,Fi+1) is nonsingular, we define the following sums for the accumulated effects of the
recursion:

Gm,n :=
n∑

i=m
I(θ̂i,Fi+1)−1gθ̄(xi+1, θ̂i)

Em,n :=
n∑

i=m
I(θ̂i,Fi+1)−1f(xi+1)ψ(f(xi+1)>θ̂i) εi+1

S̃m,n :=
n∑

i=m
I(θ̂i,Fi+1)−1

(
si+1(θ̂i+1)− s̃i+1(θ̂i+1, θ̂i)

)
Rm,n := −

n∑
i=m

I(θ̂i,Fi+1)−1ri+1(θ̂i+1, θ̂i) .

Denote also λn := λmin(F>nFn). As the step length for the stochastic algorithm we will
choose λ−1

n , which occurs naturally, whenever the norm of one of the sums is taken: If θ̂n
is bounded, then

‖I(θ̂n,Fn+1)−1‖ = ‖I(θ̂n,Fn+1)−1(F>n+1Fn+1)(F>n+1Fn+1)−1‖

≤ max
i=1,...,n+1

(
d(f(xi)>θ̂n)

)−1
‖(F>n+1Fn+1)−1‖ ≤ Kλ−1

n+1 .

Hence the “natural time” defined on page 20 will become tn = ∑n
i=1 λ

−1
n .

The following lemma is formulated for a sequence of estimates.
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Lemma 6. If there exists m ∈ N such that the maximum likelihood estimate θ̂n exists
and I(θ̂n,Fn+1) is nonsingular for all n ≥ m, then

θ̂n+1 = θ̂n + I(θ̂n,Fn+1)−1gθ̄(xn+1, θ̂n) + I(θ̂n,Fn+1)−1f(xn+1)ψ(f(xn+1)>θ̂n)εn+1

− I(θ̂n,Fn+1)−1s̃n+1(θ̂n+1, θ̂n)− I(θ̂n,Fn+1)−1rn+1(θ̂n+1, θ̂n) (3.2)

for all n ≥ m.

Proof. Consider the score function from equation (2.17). A Taylor expansion of G as
shown in (3.1), with t0 = f(xi)>θ̂n and t = f(xi)>θ̂n+1, yields

sn+1(θ̂n) = F>n+1Ψn+1(Fn+1θ̂n)(yn+1 −Gn+1(Fn+1θ̂n+1))
+ I(θ̂n,Fn+1)(θ̂n+1 − θ̂n) + F>n+1Ψn+1(Fn+1θ̂n)Rn+1(θ̂n+1, θ̂n)

= s̃n+1(θ̂n+1, θ̂n) + I(θ̂n,Fn+1)(θ̂n+1 − θ̂n) + rn+1(θ̂n+1, θ̂n) .

By rearranging the terms we obtain

I(θ̂n,Fn+1)(θ̂n+1 − θ̂n) = sn+1(θ̂n)− s̃n+1(θ̂n+1, θ̂n)− rn+1(θ̂n+1, θ̂n) .

Since the maximum likelihood estimator based on the first n ≥ m observations exists, we
know that sn(θ̂n) = 0 and hence

sn+1(θ̂n) = f(xn+1)ψ(f(xn+1)>θ̂n)(Yn+1 −G(f(xn+1)>θ̂n))
= gθ̄(xn+1, θ̂n) + f(xn+1)ψ(f(xn+1)>θ̂n)εn+1 .

Because I(θ̂n,Fn+1) is nonsingular the statement of the lemma follows.

To prove convergence of the estimates, we have to consider the accumulated effects of
the terms in the recursion, i.e. the sums of terms on the right-hand side of (3.2).
Applying (3.2) recursively yields

θ̂n+1 = θ̂m + Gm,n + Em,n + S̃m,n +Rm,n .

The last term on the right-hand side is a perturbation corresponding to the sum of bn
in Section 2.7. Together with Em,n, the sum of the random errors, Rm,n should vanish
in the sense of the asymptotic rate of change condition. The only part influencing the
asymptotic behavior of the mean and hence yielding the differential equation should be
Gm,n.

Example 5. In the logistic model ψ(t) = 1 for all t ∈ R. Because of that two major
simplifications happen: Not only

gθ̄(x,θ) = f(x)
(
G(f(x)>θ̄)−G(f(x)>θ)

)
,

but, more importantly, s̃n becomes the score function, such that

s̃n(θ̂n,θ) = sn(θ̂n) = 0

for all θ ∈ Θ. Consequently, S̃m,n = 0 and

θ̂n+1 = θ̂m + Gm,n + Em,n +Rm,n .
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While s̃n vanishes in the logit model, it will be present in other models and determining
the behavior of the “recursion”. One reason for the importance of s̃n is its connection with
the maximum of the log-likelihood. Assume that G is twice continuously differentiable
and denote the first derivative of ψ by ψ′. The asymptotic behavior of s̃ is strongly related
to the asymptotic behavior of the Hessian matrix of the log-likelihood. With the mean
value theorem applied to Ψn+1(Fn+1θn)−Ψn+1(Fn+1θn+1) we get

s̃n+1(θ̂n+1, θ̂n)− sn+1(θ̂n+1)
= Fn+1(Ψn+1(Fn+1θ̂n)−Ψn+1(Fn+1θ̂n+1))(yn+1 −Gn+1(Fn+1θ̂n+1))

=
(
n+1∑
i=1

ψ′(f(xi)>θ∗n)(yi −G(f(xi)>θ̂n+1))f(xi)f(xi)>
)

(θ̂n − θ̂n+1) ,

where θ∗n is a value on the line segment connecting θ̂n+1 and θ̂n. The matrix on the right-
hand side is very similar to the first part of the Hessian matrix, which was introduced
in (2.19):

Hn+1(θ,Fn+1) =
n+1∑
i=1

ψ′(f(xi)>θ)(yi −G(f(xi)>θ))f(xi)f(xi)> − I(θ,Fn+1) .

The Hessian matrix should be negative definite to assure at least a local maximum of the
log-likelihood. If

‖I(θ,Fn+1)−1
n+1∑
i=1

ψ′(f(xi)>θ)(yi −G(f(xi)>θ))f(xi)f(xi)>‖ −→ 0

for n −→∞ the Hessian matrix would be at least asymptotically negative definite. (com-
pare Fahrmeir and Kaufmann, 1985). It would also imply that

‖I(θ,Fn+1)−1s̃n+1(θ̂n+1, θ̂n)‖ = ‖I(θ,Fn+1)−1(s̃n+1(θ̂n+1, θ̂n)− sn+1(θ̂n+1))‖ −→ 0 ,

if the difference of consecutive estimates is bounded. In this sense s̃n is a “measure” for
the existence of a maximum.
Note that the Hessian arises directly in the recursion, if a slightly different approach is

considered. From the mean value theorem

sn+1(θ̂n)− sn+1(θ̂n+1) = Hn+1(θ∗n,Fn+1)(θ̂n − θ̂n+1) ,

with θ∗n on the line segment connecting θ̂n and θ̂n+1, it follows that

θ̂n+1 − θ̂n = −Hn+1(θ∗n,Fn+1)−1
(
sn+1(θ̂n)− sn+1(θ̂n+1)

)
= −Hn+1(θ∗n,Fn+1)−1f(xn+1)ψ(f(xn+1)>θ̂n)(yn+1 −G(f(xn+1)>θ̂n)) , (3.3)

if the Hessian is invertible. Connecting this to our recursion, s̃n can be considered as an
error term from the expansion of Hn+1(θ∗n,Fn+1)−1 around I(θ̂n,Fn+1)−1.
Equation (3.3) yields bounds for ‖θ̂n+1 − θ̂n‖, which can be used to show, that this

difference tends to 0. The following lemma uses a condition similar to the condition (C∗)
in Fahrmeir and Kaufmann (1985, p. 360), to ensure, that the Hessian matrix is negative
definite.
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Lemma 7. Let Θ0 ⊆ Θ be compact. Assume that there exists an m ∈ N and a constant
C > 0, such that

−Hn+1(θ,Fn+1) ≥ C I(θ,Fn+1) (3.4)
for all n ≥ m and all θ ∈ Θ0. If θ̂n, θ̂n+1 ∈ Θ0, then there exists K > 0, not depending
on n, such that

‖θ̂n+1 − θ̂n‖ ≤ K
1

λn+1
.

Proof. From the condition on the Hessian matrix in (3.4) we get, that

λmin(−Hn+1(θ,Fn+1)) ≥ C λmin(I(θ,Fn+1))

for θ ∈ Θ0. Together with (3.3) this yields

‖θ̂n+1 − θ̂n‖ ≤
‖sn+1(θ̂n)− sn+1(θ̂n+1)‖
λmin(−Hn+1(θ∗n,Fn+1)) ≤ K1C

−1 1
λmin(I(θ∗n,Fn+1)) ,

where
K1 := max

x∈X
max
θ∈Θ0
‖f(x)ψ(f(x)>θ)‖ .

Using Lemma A.3 and the boundedness of the function d we obtain

‖I(θ∗n,Fn+1)−1I(θ̂n,Fn+1)‖ ≤ max
x∈X

max
θ∈Θ0

d(f(x)>θ̂n)
d(f(x)>θ) ≤ K2 ,

where K2 > 0 is independent of n. The statement of the lemma follows from

1
λmin(I(θ∗n,Fn+1)) = ‖I(θ∗n,Fn+1)−1‖

= ‖I(θ∗n,Fn+1)−1I(θ̂n,Fn+1)I(θ̂n,Fn+1)−1‖

≤ ‖I(θ∗n,Fn+1)−1I(θ̂n,Fn+1)‖‖I(θ̂n,Fn+1)−1‖ ≤ K2

λn+1

by choosing K = K1K2C
−1.

A closer look at the condition in (3.4) shows that it is equivalent to

n+1∑
i=1

(v>f(xi))2
(
ψ′(f(xi)>θ)(yi −G(f(xi)>θ))− (1− C)d(f(xi)>θ)

)
≤ 0 . (3.5)

A sufficient condition for (3.5) to hold is, if

ψ′(f(xi)>θ)(yi −G(f(xi)>θ))− (1− C)d(f(xi)>θ) ≤ 0

for all i = 1, . . . , n+ 1. A stronger condition is that

ψ′(t)(1−G(t))− (1− C)d(t) ≤ 0 and − ψ′(t)G(t)− (1− C)d(t) ≤ 0 (3.6)

for all t ∈ R, which can be written as t = f(x)>θ for some x ∈ X and θ ∈ Θ0.
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Example 6. All four models introduced in Example 1 satisfy the stronger condition (3.6).
For the logit model this is obvious, because ψ′(t) = 0 for all t ∈ R. It holds for all
0 < C < 1. In the log-log, complementary log-log and probit model it holds for C = 1/2
and hence for all 0 < C ≤ 1/2. The details are given in Section B.2. Our first hint about
the result comes from the log-concavity of the mean functions. The second derivative of
logG(t) is given by

d2

dt2 logG(t) = G′′(t)G(t)−G′(t)2

G(t)2

and has to be negative because of the log-concavity. Let us rewrite the first inequality in
(3.6): It is equivalent to

0 ≥ G′′(t)G(t)(1−G(t))−G′(t)2(1− 2G(t))−G′(t)2G(t)
=
(
G′′(t)G(t)−G′(t)2

)
(1−G(t))

and hence to the second derivative of logG(t) being negative. The same works for log(1−
G(t)). Thus (3.6) is stronger then log-concavity.

3.3. The Localized Process and Behavior of the
Accumulated Effects

One of the problems is to assure, that the estimates do not tend to infinity. To do that,
we will first consider the “local” behavior of the sequence in some compact set.
Let Θ0 ⊂ Θ be compact and convex. The localized versions are defined by multiplying

the indicator function 1Θ0(θ̂i) to each summand:

G(0)
m,n :=

n∑
i=m

1Θ0(θ̂i)I(θ̂i,Fi+1)−1gθ̄(xi+1, θ̂i)

E (0)
m,n :=

n∑
i=m

1Θ0(θ̂i)I(θ̂i,Fi+1)−1f(xi+1)ψ(f(xi+1)>θ̂i) εi+1

S̃(0)
m,n :=

n∑
i=m

1Θ0(θ̂i)I(θ̂i,Fi+1)−1
(
si+1(θ̂i+1)− s̃i+1(θ̂i+1, θ̂i)

)
R(0)
m,n := −

n∑
i=m

1Θ0(θ̂i)I(θ̂i,Fi+1)−1ri+1(θ̂i+1, θ̂i) .

The part representing the mean function is G(0)
m,n. So this is the term, which should be

equicontinuous in the extended sense (see page 22 for the definition) and hence yields the
limiting equation. One goal is, to show, that the asymptotic rate of change condition (see
Equation 2.54) holds for all other terms, i.e. for all t > 0

lim
n→∞

sup
{
‖E (0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}

= 0

lim
n→∞

sup
{
‖S̃(0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}

= 0

lim
n→∞

sup
{
‖R(0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}

= 0 .

If the set Θ0 is visited only finitely often, all of sums are 0 eventually, since the lower
bound for the index increases. The asymptotic rate of change condition will be fulfilled.
We will start with the observational errors in E (0)

m,n.
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The Behavior of E (0)
m,n

The error terms εn+1 are forming a martingale difference sequence with respect to the
sequence of σ-fields Fn generated by Yn andX1, . . . ,Xn. The estimator θ̂n andXn+1 are
measurable with respect to Fn. Thus, if m ∈ N is fixed, E (0)

m,n, n ≥ m+ 1, is a martingale
because

E(E (0)
m,n|Fn) = E (0)

m,n−1 .

Fixing the lower bound is not a problem, because of the definition of the maximum
likelihood estimator: If there is no maximum in Θ we choose a fixed value θ0. (see (2.13)
and the line below it) But by Lemma 5 there are only finitely many summands (almost
surely), which contain this substitute and the qualitative behavior of E (0)

m,n, i.e. if the
asymptotic rate of change condition holds, is not influenced by them.
The next lemma shows, that E (0)

m,n converges almost surely, for n −→ ∞ and conse-
quently the asymptotic rate of change condition is fulfilled. The weaker condition in part
(ii) is very close to the one in Lai and Wei (1982) and Chen et al. (1999). That F>nFn is
nonsingular for all n ≥ m, can be easily implemented by the choice of the initial design.

Lemma 8. Let X and Θ0 be compact. Let G be continuously differentiable, strictly
increasing and 0 < G(t) < 1 for all t ∈ R. Let F>nFn be nonsingular for all n ≥ m almost
surely and assume that limn→∞ λn =∞ almost surely.

(i) If there exists K > 0 such that

λmax(F>nFn)
λmin(F>nFn)δ ≤ K

for some δ ≥ 1 and all n ≥ m, then E (0)
m,n converges almost surely.

(ii) If there exists K > 0 such that(
log(λmax(F>nFn))

)δ
λmin(F>nFn) ≤ K

for some δ > 1 and all n ≥ m, then E (0)
m,n converges almost surely.

Proof. Before we start with the proof itself, we will state some facts, which will help us
later to drop the dependence on the sequence of estimators (θ̂n)n≥m. Define the constants

K1 := min
θ∈Θ0

min
x∈X

d(f(x)>θ) and K2 := max
θ∈Θ0

max
x∈X

d(f(x)>θ)

and note, that
K1v

>F>nFnv ≤ v>I(θ,Fn)v ≤ K2v
>F>nFnv (3.7)

for all θ ∈ Θ0 and all v ∈ Rp. Because X and Θ0 are compact it follows, that also

max
θ∈Θ0

max
x∈X
|f(x)>θ| <∞ ,

and consequently 0 < K1 < K2 < ∞, due to the properties of G. Hence if F>nFn is
nonsingular, so is I(θ,Fn).
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For showing convergence in (i), we notice, that a sequence of random vectors converges
almost surely if and only if all its components converge almost surely. Let v ∈ Rp,
‖v‖ = 1. Then

v>
n∑

i=m
1Θ0(θ̂i)I(θ̂i,Fi+1)−1f(Xi+1)ψ(f(Xi+1)>θ̂i) εi+1 (3.8)

is a martingale and converges almost surely if

n∑
i=m

E
((
1Θ0(θ̂i)v>I(θ̂i,Fi+1)−1f(Xi+1)ψ(f(Xi+1)>θ̂i) εi+1

)2∣∣∣Fi)

=
n∑

i=m

(
1Θ0(θ̂i)v>I(θ̂i,Fi+1)−1f(Xi+1)ψ(f(Xi+1)>θ̂i)

)2
E(ε2

i+1|Fi)

converges almost surely. (see e.g. Hall and Heyde, 1980, p. 35, Theorem 2.17) Since
E(ε2

i+1|Fi) and, for θ̂i ∈ Θ0, ψ(f(xi+1)>θ̂i) are bounded uniformly in i, this is equivalent
to the convergence of

n∑
i=m

1Θ0(θ̂i)
(
v>I(θ̂i,Fi+1)−1f(Xi+1)

)2
. (3.9)

With the Cauchy-Schwarz inequality follows(
v>I(θ̂i,Fi+1)−1f(Xi+1)

)2
≤ v>I(θ̂i,Fi+1)−1v f(Xi+1)>I(θ̂i,Fi+1)−1f(Xi+1) . (3.10)

The first quadratic form on the right-hand side is bounded by the largest eigenvalue of
I(θ̂i,Fi+1)−1:

v>I(θ̂i,Fi+1)−1v ≤ λmax(I(θ̂i,Fi+1)−1) ≤ λmin(I(θ̂i,Fi+1))−1 .

Together with (3.7) and the condition on the eigenvalues of F>i Fi follows

v>I(θ̂i,Fi+1)−1v ≤ 1
K1

λmin(F>i+1Fi+1)−1 ≤ K

K1
λmax(F>i+1Fi+1)−1/δ .

Because F>i+1Fi+1 is a positive definite p× p-matrix

det(F>i+1Fi+1) ≤ λmax(F>i+1Fi+1)p

and hence
v>I(θ̂i,Fi+1)−1v ≤ K

K1
det(F>i+1Fi+1)−1/(pδ) . (3.11)

Consider the second quadratic form on the right-hand side of (3.10). The inequalities in
(3.7) and an application of Lemma A.2 (see also Lemma 2 (ii) in Lai and Wei, 1982) yield

f(Xi+1)>I(θ̂i,Fi+1)−1f(Xi+1) ≤ K2 f(Xi+1)>(F>i+1Fi+1)−1f(Xi+1)

= K2
det(F>i+1Fi+1)− det(F>i Fi)

det(F>i+1Fi+1) . (3.12)
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Also note, that

det(F>i+1Fi+1) ≥ det(F>i+1Fi+1)− det(F>mFm) =
i∑

j=m

(
det(F>j+1Fj+1)− det(F>j Fj)

)
,

(3.13)
which in combination with (3.11) and (3.12) leads to

(v>I(θ̂i,Fi+1)−1f(Xi+1))2 ≤ KK2

K1

det(F>i+1Fi+1)− det(F>i Fi)(∑i
j=m (det(F>j+1Fj+1)− det(F>j Fj))

)1+1/(pδ) .

After summation over i, the Abel-Dini theorem (see e.g. Knopp, 1996, p. 299) yields
convergence of

n∑
i=m

det(F>i+1Fi+1)− det(F>i Fi)(∑i
j=m (det(F>j+1Fj+1)− det(F>j Fj))

)1+1/(pδ) . (3.14)

Hence (3.9) and with that (3.8) converge almost surely. Since (3.8) converges for all
‖v‖ = 1 and uniformly in v, the almost sure convergence of E (0)

m,n follows.
With the less restrictive condition (ii), the convergence follows similarly. Note, that

δ > 1 in this part. The inequality (3.11) becomes

v>I(θ̂i,Fi+1)−1v ≤ pδK

K1

(
log(det(F>i+1Fi+1))

)−δ
.

and hence
(
v>I(θ̂i,Fi+1)−1f(Xi+1)

)2
≤ prKK2

K1

det(F>i+1Fi+1)− det(F>i Fi)
det(F>i+1Fi+1)

(
log(det(F>i+1Fi+1))

)δ .
An upper bound follows as before by replacing the determinants in the denominator using
(3.13). The convergence of the sum follows again by the Abel-Dini Theorem: If in (3.14)
the exponent in the denominator is equal to 1, the sums tend to∞ as a consequence of the
Abel-Dini Theorem. In fact they tend to∞ like log

(∑n
i=m (det(F>i+1Fi+1)− det(F>i Fi))

)
,

in the sense that

lim
n→∞

n∑
i=m

det(F>i+1Fi+1)− det(F>i Fi)∑i
j=m (det(F>j+1Fj+1)− det(F>j Fj))

log
(∑n

i=m (det(F>i+1Fi+1)− det(F>i Fi))
) = 1 .

(see the “Satz” on page 301 in Knopp, 1996) Since the Abel-Dini-Theorem still holds, if
parts are substituted with terms, which are asymptotically equivalent in this sense, the
convergence follows.

The Behavior of R(0)
m,n

Since rn+1 consists mainly of errors from the Taylor expansion, we can expect, that it is
small if the estimates are sufficiently close. The lemma is formulated for one sample path.
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Lemma 9. Let X and Θ0 be compact. Let F>n+1Fn+1 be nonsingular and θ̂n ∈ Θ0. Let G
be twice continuously differentiable and strictly increasing. Then

‖I(θ̂n,Fn+1)−1rn+1(θ̂n+1, θ̂n)‖ ≤ K‖θ̂n+1 − θ̂n‖2 .

for some K > 0, uniformly in n.

Proof. For this proof, introduce the notation

r̃i,n :=
∫ 1

0
G′
(
f(xi)>(θ̂n + s (θ̂n+1 − θ̂n))

)
−G′

(
f(xi)>θ̂n

)
ds

and the diagonal matrix
R̃n+1 := diag

i=1,...,n+1
(r̃i,n) .

We can write the error r, which originated in the Taylor expansion of G, as

r(f(xi)>θ̂n+1,f(xi)>θ̂n) = r̃i,n f(xi)>(θ̂n+1 − θ̂n)

and rn+1 becomes

rn+1(θ̂n+1, θ̂n) =
n+1∑
i=1

r̃i,nψ(f(xi)>θ̂n)f(xi)f(xi)>(θ̂n+1 − θ̂n)

= F>n+1Ψn+1(Fn+1θ̂n)R̃n+1Fn+1 (θ̂n+1 − θ̂n) .

It follows with Lemma A.4 that

‖I(θ̂n,Fn+1)−1rn+1(θ̂n+1, θ̂n)‖ ≤ 2‖θ̂n+1 − θ̂n‖ max
i=1,...,n+1

∣∣∣∣∣ r̃i,n

G′(f(xi)>θ̂n)

∣∣∣∣∣ . (3.15)

As a consequence of the mean value theorem the r̃i,n are bounded above:

|r̃i,n| ≤ max
0≤s≤1

∣∣∣G′(f(xi)>(θ̂n + s (θ̂n+1 − θ̂n))
)
−G′

(
f(xi)>θ̂n

)∣∣∣
≤
∣∣∣f(xi)>(θ̂n+1 − θ̂n)

∣∣∣ max
0≤s≤1

∣∣∣G′′(f(xi)>(θ̂n + s (θ̂n+1 − θ̂n))
)∣∣∣ . (3.16)

The second derivative G′′(t) is continuous and tends to 0 for |t| −→ ∞. Consequently
|G′′(t)| is bounded on R. Since X and Θ0 are compact, it follows from the assumptions
on G that

K := 2 max
θ∈Θ0

max
x∈X

max
t∈R

‖f(x)‖ |G′′(t)|
G′(f(x)>θ)

<∞

and in combination with (3.15) and (3.16)

‖I(θ̂n,Fn+1)−1rn+1(θ̂n+1, θ̂n)‖ ≤ K‖θ̂n+1 − θ̂n‖2 .

As a direct consequence follows, that the asymptotic rate of change condition holds:
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Lemma 10. Additionally to the assumptions of Lemma 9 assume, that for θ̂n ∈ Θ0

‖θ̂n+1 − θ̂n‖ ≤ C
1

λn+1
,

then
lim
n→∞

sup
{
‖R(0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}

= 0

for all t > 0.

Proof. From Lemma 9 and the condition on ‖θ̂n+1 − θ̂n‖ there exists a constant K > 0,
such that

‖R(0)
n,k‖ ≤

k∑
i=n

1Θ0(θ̂i)
∥∥∥I(θ̂i,Fi+1)−1ri+1

(
θ̂i+1, θ̂i

)∥∥∥ ≤ k∑
i=n

K
1
λ2
i+1

Since the λi are positive and not decreasing

sup
{∥∥∥R(0)

n,k

∥∥∥ : k = n, . . . , ν(tn + t)− 1
}
≤ K

λn+1

ν(tn+t)∑
i=n+1

1
λi
.

By definition of ν and tn
ν(tn+t)∑
i=n+1

1
λi
≤ tn + t− tn = t

and hence
sup

{
‖R(0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}
≤ K

λn+1
t

which tends to 0 for n −→∞ and all t > 0.

The Behavior of S̃(0)
m,n

Lemma 11. Let X and Θ0 be compact. Let F>n+1Fn+1 be nonsingular. Let G be twice
continuously differentiable, strictly increasing and 0 < G(t) < 1 for all t ∈ R. Let further
be θ̂n ∈ Θ0 and ‖θ̂n+1 − θ̂n+1‖ ≤ C for some C > 0, then∥∥∥I(θ̂n,Fn+1)−1

(
s̃n+1(θ̂n+1, θ̂n)− sn+1(θ̂n+1)

)∥∥∥ ≤ K‖θ̂n+1 − θ̂n‖

for some K > 0, independent of n.

Proof. Since G is twice continuously differentiable, ψ is continuously differentiable. It
follows from the mean value theorem, that

ψ(f(xi)>θ̂n)− ψ(f(xi)>θ̂n+1) = ψ′(f(xi)>θ̂∗i,n)f(xi)>(θ̂n − θ̂n+1)

for some θ̂∗i,n on the line segment between θ̂n and θ̂n+1. Hence

s̃n+1(θ̂n+1, θ̂n)− sn+1(θ̂n+1)

=
n+1∑
i=1

(
yi −G(f(xi)>θ̂n+1)

)
ψ′(f(xi)>θ̂∗i,n)f(xi)f(xi)>(θ̂n − θ̂n+1) (3.17)
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The sum on the right-hand side is a matrix of the form F>n+1An+1Fn+1, where An+1 is
a diagonal matrix with entries

(
yi −G(f(xi)>θ̂n+1)

)
ψ′(f(xi)>θ̂∗i,n). With Lemma A.4

follows∥∥∥∥I(θ̂n,Fn+1)−1
(
s̃n+1(θ̂n+1, θ̂n)− sn+1(θ̂n+1)

)∥∥∥∥
≤ 2‖θ̂n+1 − θ̂n‖ max

i=1,...,n+1

∣∣∣∣∣∣
(
yi −G(f(xi)>θ̂n+1)

)
ψ′(f(xi)>θ̂∗i,n)

d(f(xi)>θ̂n)

∣∣∣∣∣∣ .
Since ψ′ is continuous and ∣∣∣yi −G(f(xi)>θ̂n+1)

∣∣∣ ≤ 1
the numerator in the maximum is bounded. This together with the continuity of d and the
fact, that it is bounded away from 0 on a compact set, establishes the proof by choosing

K := max
x∈X

max
θ0∈Θ0

max
θ1∈Θ1

∣∣∣∣∣ψ′(f(x)>θ1)
d(f(x)>θ0)

∣∣∣∣∣ ,
where the set Θ1 := {θ ∈ Θ|∀θ0 ∈ Θ0 : ‖θ − θ0‖ ≤ C} is compact.

Lemma 12. Assume further, that for θ̂n ∈ Θ0 there exists C > 0, such that

‖θ̂n+1 − θ̂n‖ ≤ C
1

λn+1
,

then (S̃(0)
n,ν(tn+t)−1)n≥m is equicontinuous in the extended sense.

If additionally

lim
n→∞

∥∥∥∥I(θ̂n,Fn)−1
n∑
i=1

(yi −G(f(xi)>θ̂n))ψ′(f(xi)>θ̂n)f(xi)f(xi)>
∥∥∥∥ = 0

then
lim
n→∞

sup
{
‖S̃(0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}

= 0

for all t > 0.

Proof. Since the summands of S̃(0)
n,k are bounded by a multiple of λ−1

n+1, it follows as in
Lemma 2, that (S̃(0)

n,ν(tn+t)−1)n≥m is equicontinuous in the extended sense.
For the additional assumption, we introduce

ψ′(f(xi)>θ̂∗i,n) = ψ′(f(xi)>θ̂∗i,n)− ψ′(f(xi)>θ̂n+1) + ψ′(f(xi)>θ̂n+1)

in (3.17). Similar to the proof of Lemma 11∥∥∥∥I(θ̂n,Fn+1)−1
(
s̃n+1(θ̂n+1, θ̂n)− sn+1(θ̂n+1)

)∥∥∥∥
≤
∥∥∥∥I(θ̂n,Fn)−1

n+1∑
i=1

(yi −G(f(xi)>θ̂n+1))ψ′(f(xi)>θ̂n+1)f(xi)f(xi)>
∥∥∥∥‖θ̂n+1 − θ̂n‖

+ 2‖θ̂n+1 − θ̂n‖ max
i=1,...,n+1

∣∣∣∣∣∣
(
yi −G(f(xi)>θ̂n+1)

)
(ψ′(f(xi)>θ̂∗i,n)− ψ′(f(xi)>θ̂n+1))
d(f(xi)>θ̂n)

∣∣∣∣∣∣ .
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Because of the additional assumption the first part on the right-hand side tends to 0 faster
then the difference of the estimates. In the second term θ̂∗i,n is a convex combination of
the estimates. Consequently the maximum tends to 0, too, and hence

lim
n−→∞

sup
{
‖S̃(0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}

= 0 .

The Behavior of G(0)
m,n

This is the key part contributing to the asymptotic behavior of θ̂n. Since the summands
are all bounded it follows almost directly, that this part is equicontinuous in the extended
sense. The proof is omitted.

Lemma 13. Let X and Θ0 be compact. Let θ̂n exist for all n ≥ m. Let G be continuous.
Then the sequence of functions (G(0)

n,ν(tn+t)−1)n≥m is equicontinuous in the extended sense.

3.4. Characterizing the Limit
So far we have seen, that the only two parts contributing to the asymptotics of θ̂(tnk

+ t)
are G and S̃. We will assume the additional assumptions on S̃, i.e. that its asymptotic
rate of change tends to 0, and only consider G.
The next question to be answered is: What is the limit? Since we know, that θ̂(tnk

+ t)
converges to some limit θ(t), we can use that to get rid of the direct dependence on the
estimates. In a second step the same is done for the dependence on the individual design
points.
The following decomposition and proofs are based on the proof for Theorem 6.1.1 in

Kushner and Yin (2003, p. 168).
Let us consider G(0)

m,ν(tm+t)−1 and split it into batches corresponding to time intervals of
length ∆ > 0. In the following denote νm,j := ν(tm + j∆) for fixed ∆ > 0.

G(0)
m,ν(tm+t)−1 =

bt/∆c−1∑
j=0

νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ̂i,Fi+1)−1gθ̄(xi+1, θ̂i)

+
ν(tm+t)−1∑

i=ν(tm+bt/∆c∆)
1Θ0(θ̂i)I(θ̂i,Fi+1)−1gθ̄(xi+1, θ̂i) . (3.18)

Similarly define G(1)
m,ν(tm+t)−1, where the estimates are substituted by the limit θ(·) of a

subsequence at times j∆ by

G(1)
m,ν(tm+t)−1 :=

bt/∆c−1∑
j=0

νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))

+
ν(tm+t)−1∑

i=ν(tm+bt/∆c∆)
1Θ0(θ̂i)I(θ(bt/∆c∆),Fi+1)−1gθ̄(xi+1,θ(bt/∆c∆)) . (3.19)
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Evaluating the limiting function at j∆ means, that we compare the estimates with the
beginning of a batch.
The influence of the design points is smoothed by taking batch-wise averages:

g̃m,j := 1
νm,j+1 − νm,j

νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)gθ̄(xi+1,θ(j∆))

M̃m,j := 1
νm,j+1 − νm,j

νm,j+1−1∑
i=νm,j

λi+1I(θ(j∆),Fi+1)−1 .

For the “incomplete” sum ending at ν(tm + t) − 1, we will write g̃m,bt/∆c and M̃m,bt/∆c.
The part capturing these moving averages is denoted by

G(2)
m,ν(tm+t)−1 := ∆

bt/∆c−1∑
j=0

M̃m,jg̃m,j +
(
t−

⌊
t

∆

⌋
∆
)
M̃m,bt/∆cg̃m,bt/∆c . (3.20)

The following Lemmas 14 and 15 show, that the differences ‖G(0)
nk,ν(tnk

+t)−1−G
(1)
nk,ν(tnk

+t)−1‖
and ‖G(1)

nk,ν(tnk
+t)−1 − G

(2)
nk,ν(tnk

+t)−1‖ tend to 0 for k −→∞ and ∆ −→ 0. Because

‖G(0)
nk,ν(tnk

+t)−1 − G
(2)
nk,ν(tnk

+t)−1‖

≤ ‖G(0)
nk,ν(tnk

+t)−1 − G
(1)
nk,ν(tnk

+t)−1‖+ ‖G(1)
nk,ν(tnk

+t)−1 − G
(2)
nk,ν(tnk

+t)−1‖

it follows for ‖G(0)
nk,ν(tnk

+t)−1−G
(2)
nk,ν(tnk

+t)−1‖, too. We will consider the difference between
G(0)
nk,ν(tnk

+t)−1 and G(1)
nk,ν(tnk

+t)−1 first.

Lemma 14. Let (θ̂(tn + ·))n≥m be equicontinuous in the extended sense. Denote by
(θ̂(tnk

+ ·))k≥1 a convergent subsequence and its continuous limit by θ(·). Then for each
t > 0

lim
∆→∞

lim
k→∞
‖G(0)

nk,ν(tnk
+t)−1 − G

(1)
nk,ν(tnk

+t)−1‖ = 0 .

Proof. In the first part of the proof, we will establish upper bounds for the summands of
the difference. With that in place we can use the definition of the index function ν and
the discrete time tn to switch to continuous time, in order to use the uniform convergence
to the limit function θ(·).
For the summands of the inner sums of G(0)

m,ν(tm+t)−1 − G
(1)
m,ν(tm+t)−1 we have

‖I(θ̂i,Fi+1)−1gθ̄(xi+1, θ̂i)− I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))‖
≤
∥∥∥(I(θ̂i,Fi+1)−1 − I(θ(j∆),Fi+1)−1

)
gθ̄(xi+1,θ(j∆)

∥∥∥
+
∥∥∥I(θ̂i,Fi+1)−1

(
gθ̄(xi+1, θ̂i)− gθ̄(xi+1,θ(j∆))

)∥∥∥ . (3.21)

For the first part on the right-hand side of the inequality follows∥∥∥(I(θ̂i,Fi+1)−1 − I(θ(j∆),Fi+1)−1
)
gθ̄(xi+1,θ(j∆))

∥∥∥
≤
∥∥∥(I(θ̂i,Fi+1)−1 − I(θ(j∆),Fi+1)−1

)∥∥∥‖gθ̄(xi+1,θ(j∆))‖ .
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Since 0 ≤ j∆ ≤ t
‖gθ̄(xi+1,θ(j∆))‖ ≤ max

x∈X
sup

0≤s≤t
‖gθ̄(x,θ(s))‖ . (3.22)

The right-hand side is bounded, because the function gθ̄ is continuous in both components,
the limit function θ(·) is continuous, too, and X and [0, t] are compact. The difference of
the inverse matrices can be rewritten as

I(θ̂i,Fi+1)−1 − I(θ(j∆),Fi+1)−1

= I(θ(j∆),Fi+1)−1
(
I(θ̂i,Fi+1)− I(θ(j∆),Fi+1)

)
I(θ̂i,Fi+1)−1 .

Note, that

I(θ̂i,Fi+1)− I(θ(j∆),Fi+1) = F>i+1

(
Di+1(Fi+1θ̂i)−Di+1(Fi+1θ(j∆))

)
Fi+1 .

An application of Lemma A.4 yields∥∥∥I(θ(j∆),Fi+1)−1
(
I(θ̂i,Fi+1)− I(θ(j∆),Fi+1)

)∥∥∥
≤ 2 max

j=1,...,i+1

∣∣∣∣∣d(f(xj)>θ̂i)− d(f(xj)>θ(j∆))
d(f(xj)>θ(j∆))

∣∣∣∣∣ .
A bound for the numerator follows from the mean value theorem:

|d(f(xj)>θ̂i)− d(f(xj)>θ(j∆))| ≤ |f(xj)>(θ̂i − θ(j∆))| sup
u∈R
|d′(u)| .

Consequently∥∥∥I(θ(j∆),Fi+1)−1
(
I(θ̂i,Fi+1)− I(θ(j∆),Fi+1)

)∥∥∥ ≤ K1‖θ̂i − θ(j∆)‖ ,

where the constant is

K1 := 2 max
x∈X

sup
0≤s≤t

sup
u∈R

∣∣∣∣∣ d′(u)‖f(x)‖
d(f(x)>θ(s))

∣∣∣∣∣ .
Also

‖I(θ̂i,Fi+1)−1‖ ≤ λ−1
i+1 max

x∈X
max
θ∈Θ0

(d(f(x)>θ))−1

and hence with K2 := maxx∈X maxθ∈Θ0(d(f(x)>θ))−1

‖I(θ̂i,Fi+1)−1 − I(θ(j∆),Fi+1)−1‖
≤
∥∥∥I(θ(j∆),Fi+1)−1

(
I(θ̂i,Fi+1)− I(θ(j∆),Fi+1)

)∥∥∥ ‖I(θ̂i,Fi+1)−1‖

≤ K1K2

λi+1
‖θ̂i − θ(j∆)‖ . (3.23)

Let us consider the second term on the right-hand side of (3.21). The function gθ̄ is
continuously differentiable in θ for fixed x ∈ X . The mean value theorem yields

‖gθ̄(x, θ̂i)− gθ̄(x,θ(j∆))‖

≤ |f(x)>(θ̂i − θ(j∆))| sup
0≤s≤1

∥∥∥ ∂
∂θ
gθ̄
(
x,θ(j∆) + s (θ̂i − θ(j∆))

)∥∥∥
≤ K3‖θ̂i − θ(j∆)‖
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for some constant K3 > 0. Denoting by Θ2 the closed convex hull of Θ1 and the image of
[0, t] under θ(·), K3 can be chosen as

K3 := max
x∈X

max
θ∈Θ2
‖f(x)‖2|ψ′(f(x)>θ)|+ sup

s∈R
d(s) .

Now by definition of the matrix norm∥∥∥I(θ̂i,Fi+1)−1
(
gθ̄(xi+1, θ̂i)− gθ̄(xi+1,θ(j∆))

)∥∥∥ ≤ K2K3

λi+1
‖θ̂i − θ(j∆)‖ (3.24)

Combining the bounds from (3.21) to (3.24) gives

‖I(θ̂i,Fi+1)−1gθ̄(xi+1, θ̂i)− I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))‖ ≤ K4

λi+1
‖θ̂i − θ(j∆)‖ .

This inequality holds also for the summands of the last sum, running from ν(tm+bt/∆c∆)
to ν(tm + t)− 1, and yields

‖G(0)
m,ν(tm+t)−1 − G

(1)
m,ν(tm+t)−1‖ ≤

bt/∆c−1∑
j=0

νm,j+1−1∑
i=νm,j

K4

λi+1
‖θ̂i − θ(j∆)‖

+
ν(tm+t)−1∑

i=ν(tm+bt/∆c∆)

K4

λi+1
‖θ̂i − θ(j∆)‖ .

By taking the maximum over i we get the bounds
νm,j+1−1∑
i=νm,j

1
λi+1
‖θ̂i − θ(j∆)‖ ≤ max

νm,j≤i≤νm,j+1−1
‖θ̂i − θ(j∆)‖

νm,j+1−1∑
i=νm,j

1
λi+1

for j = 0, . . . , bt/∆c − 1. If we choose j = bt/∆c a bound for the last sum follows
ν(tm+t)−1∑

i=ν(tm+bt/∆c∆)

1
λi+1
‖θ̂i − θ(j∆)‖ ≤ max

νm,j≤i≤νm,j+1−1
‖θ̂i − θ(j∆)‖

ν(tm+t)−1∑
i=νm,j

1
λi+1

,

since
t ≤

⌊
t

∆

⌋
∆ + ∆ .

Taking the maximum over j = 0, . . . , bt/∆c yields the bound

‖G(0)
m,ν(tm+t)−1 − G

(1)
m,ν(tm+t)−1‖

≤ K5 max
j=0,...,bt/∆c

max
νm,j≤i≤νm,j+1−1

‖θ̂i − θ(j∆)‖

×

bt/∆c−1∑
j=0

νm,j+1−1∑
i=νm,j

1
λi+1

+
ν(tm+t)−1∑

i=ν(tm+bt/∆c∆)

1
λi+1

 .
The remaining sums on the right-hand side can be combined to

bt/∆c−1∑
j=0

νm,j+1−1∑
i=νm,j

1
λi+1

+
ν(tm+t)−1∑

i=ν(tm+bt/∆c∆)

1
λi+1

=
ν(tm+t)−1∑

i=m

1
λi+1

.
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By definition of tm and ν
ν(tm+t)−1∑

i=m

1
λi+1

≤ t

for all m ∈ N and hence

‖G(0)
m,ν(tm+t)−1 − G

(1)
m,ν(tm+t)−1‖ ≤ K3 t max

j=0,...,bt/∆c
max

νm,j≤i≤νm,j+1−1
‖θ̂i − θ(j∆)‖ .

Next we will determine upper bounds for the maxima on the right-hand side. The
continuous time interpolation of the estimates, which was defined in (2.49), is the tool to
give upper bounds in terms of the time instead of the index i in the inner maximum. We
will use, that θ̂i = θ̂(ti) and ti = tm+ ti− tm. The difference ti− tm will be used to switch
from index to time.
Remember the definition of ν in (2.48):

ν(t) := sup {k ∈ N : tk ≤ t} .

If νm,j = ν(tm + j∆) ≤ i, then by this definition

tm + j∆ ≤ ti+1 .

Since ti+1 = ti + λ−1
i+1 and λi+1 −→∞ for i −→∞

tm + j∆−∆ ≤ ti

for large enough m. Similarly, if i ≤ νm,j+1 − 1 = ν(tm + j∆ + ∆)− 1 we get

ti ≤ tm + j∆ + ∆− 1
λi+1

≤ tm + j∆ + ∆

and combing both inequalities

j∆−∆ ≤ ti − tm ≤ j∆ + ∆ . (3.25)

The set of indices i described by

ν(tm + j∆) ≤ i ≤ ν(tm + j∆ + ∆)− 1

is a subset of the one described by (3.25). It follows, that

max
νm,j≤i≤νm,j+1−1

‖θ̂i − θ(j∆)‖ ≤ max
j∆−∆≤ti−tm≤j∆+∆

‖θ̂(tm + ti − tm)− θ(j∆)‖

≤ sup
j∆−∆≤T≤j∆+∆

‖θ̂(tm + T )− θ(j∆)‖ .

The last inequality follows from substituting ti − tm by T . Note also, that

j∆−∆ ≤ T ≤ j∆ + ∆⇐⇒ |T − j∆| ≤ ∆ .

For the outer maximum and indices j we get

0 ≤ j∆ ≤
⌊
t

∆

⌋
∆ ≤ t



44 3. Asymptotics of the MLE

and after replacing j∆ by s > 0

max
j=0,...,bt/∆c

max
νm,j≤i≤νm,j+1−1

‖θ̂i − θ(j∆)‖ ≤ sup
0≤s≤t

sup
|T−s|≤∆

‖θ̂(tm + T )− θ(s)‖ .

For the last step introduce θ(T ) on the right-hand side:

sup
0≤s≤t

sup
|T−s|≤∆

‖θ̂(tm + T )− θ(s)‖ ≤ sup
0≤s≤t

sup
|T−s|≤∆

(
‖θ̂(tm + T )− θ(T )‖+ ‖θ(T )− θ(s)‖

)
≤ sup
−∆≤T≤t+∆

‖θ̂(tm + T )− θ(T )‖

+ sup
0≤s≤t

sup
|T−s|≤∆

‖θ(T )− θ(s)‖

For the subsequence (θ̂(tnk
+ ·))k≥1 follows

lim
k→∞

sup
−∆≤T≤t+∆

‖θ̂(tnk
+ T )− θ(T )‖ = 0

because θ̂(tnk
+ ·) converges uniformly to θ(·). The limit of the subsequence is continuous

and uniformly continuous on [0, t]. Consequently for arbitrarily small ∆ > 0

sup
0≤s≤t

sup
|T−s|≤∆

‖θ(T )− θ(s)‖

is arbitrarily small, too. Hence

lim
∆→0

lim
k→∞
‖G(0)

nk,ν(tnk
+t)−1 − G

(1)
nk,ν(tnk

+t)−1‖ = 0

as desired.

Lemma 15. Let
(
θ̂(tn + ·)

)
n≥m

be equicontinuous in the extended sense. Let
(
θ̂(tnk

+ ·)
)
k≥1

be a convergent subsequence and denote its continuous limit by θ(·). Then for each t > 0

lim
∆→0

lim
k→∞
‖G(1)

nk,ν(tnk
+t) − G

(2)
nk,ν(tnk

+t)‖ = 0

Proof. We will start again with the inner sums of G(1)
m,ν(tm+t)−1 − G

(2)
m,ν(tm+t)−1, i.e.

νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))−∆M̃m,jg̃m,j .

We will show, that its limit with respect to m is bounded by a multiple of ∆2. This
yields that ‖G(1)

m,ν(tm+t)−1−G
(2)
m,ν(tm+t)−1‖ is bounded by a multiple of ∆ and tends to 0 for

∆ −→ 0.
Introducing

νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1 1
νm,j+1 − νm,j

νm,j+1−1∑
k=νm,j

1Θ0(θ̂k)gθ̄(xk+1,θ(j∆))

=
νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j
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it follows from the triangle inequality, that

∥∥∥∥ νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))−∆M̃m,jg̃m,j

∥∥∥∥
≤
∥∥∥∥ νm,j+1−1∑

i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))

−
νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j

∥∥∥∥
+
∥∥∥∥ νm,j+1−1∑

i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j −∆M̃m,jg̃m,j

∥∥∥∥ . (3.26)

We will start with the first difference on the right-hand side. By partial summation

νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))−
νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j

=
νm,j+1−1∑
i=νm,j

((
I(θ(j∆),Fi+1)−1 − I(θ(j∆),Fi+2)−1

)

×
i∑

l=νm,j

(
1Θ0(θ̂l)gθ̄(xl+1,θ(j∆))− g̃m,j

))
.

Because gθ̄ is bounded

‖1Θ0(θ̂l)gθ̄(xl+1,θ(j∆))− g̃m,j‖ ≤ K1

for some K1 > 0 and we get

∥∥∥∥ i∑
l=νm,j

(
1Θ0(θ̂l)gθ̄(xl+1,θ(j∆))− g̃m,j

)∥∥∥∥ ≤ K1(i− νm,j + 1) ≤ K1(νm,j+1 − νm,j) .

An upper bound for the difference of the information matrices is given by

‖I(θ(j∆),Fi+1)−1 − I(θ(j∆),Fi+2)−1‖ ≤ K

λi+1λi+2
,

where K > 0. Putting both together yields

∥∥∥∥ νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))−
νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j

∥∥∥∥
≤ KK1

νm,j+1−1∑
i=νm,j

1
λi+2

νm,j+1 − νm,j
λi+1

.
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With the properties of ν and tn (see Lemma A.7) follows, that νm,j+1 − νm,j can be
bounded in terms of λi and ∆. Consequently

νm,j+1−1∑
i=νm,j

1
λi+2

νm,j+1 − νm,j
λi+1

≤
νm,j+1−1∑
i=νm,j

1
λi+2

(
∆
λνm,j

λi+1
+

λνm,j

λi+1λνm,j+1

)

≤ ∆
νm,j+1−1∑
i=νm,j

1
λi+1

+
νm,j+1−1∑
i=νm,j

1
λ2
i+1

. (3.27)

Again by definition of ν and tm

νm,j+1−1∑
i=νm,j

1
λi+1

≤ tm + j∆ + ∆−
(
tm + j∆− 1

λm

)
= ∆ + 1

λm

and
νm,j+1−1∑
i=νm,j

1
λi+1

≥ tm + j∆ + ∆− 1
λm
− (tm + j∆) = ∆− 1

λm
.

If we take the limit with respect to m, it follows, that

lim
m→∞

νm,j+1−1∑
i=νm,j

1
λi+1

= ∆ (3.28)

and since λ−1
i+1 is nonincreasing

lim
m→∞

νm,j+1−1∑
i=νm,j

1
λ2
i+1
≤ lim

m→∞

1
λνm,j+1

νm,j+1−1∑
i=νm,j

1
λi+1

= 0 .

In total this yields

lim
m→∞

∥∥∥∥ νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))−
νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j

∥∥∥∥
≤ KK1 lim

m→∞

∆
νm,j+1−1∑
i=νm,j

1
λi+1

+
νm,j+1−1∑
i=νm,j

1
λ2
i+1

 = K2∆2 . (3.29)

For the remaining term in (3.26) follows

∥∥∥∥ νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j −∆M̃m,jg̃m,j

∥∥∥∥
≤ ‖g̃m,j‖

∥∥∥∥ νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1 −∆M̃m,j

∥∥∥∥ . (3.30)
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Partial summation for the sum on the right-hand side yields

νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1 =
νm,j+1−1∑
i=νm,j

λi+2 − λi+1

λi+1λi+2

i∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1

−
νm,j+1−1∑
i=νm,j+1

1
λi+1

i−1∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1

+
νm,j+1−1∑
i=νm,j

1
λi+2

i∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1

=
νm,j+1−1∑
i=νm,j

λi+2 − λi+1

λi+1λi+2

i∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1

+ 1
λνm,j+1+1

νm,j+1−1∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1

=
νm,j+1−1∑
i=νm,j

λi+2 − λi+1

λi+1λi+2

i∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1

+ νm,j+1 − νm,j
λνm,j+1+1

M̃m,j .

Note that the sum indexed by k is a sum of nonnegative definite matrices and can be
bounded by M̃m,j:

∥∥∥∥ i∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1
∥∥∥∥

≤
∥∥∥∥ νm,j+1−1∑

k=νm,j

λk+1I(θ(j∆),Fk+1)−1
∥∥∥∥ = (νm,j+1 − νm,j)‖M̃m,j‖ ,

and hence

∥∥∥∥ νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1 −∆M̃m,j

∥∥∥∥
≤
∥∥∥∥ νm,j+1−1∑

i=νm,j

λi+2 − λi+1

λi+1λi+2

i∑
k=νm,j

λk+1I(θ(j∆),Fk+1)−1
∥∥∥∥+

∥∥∥∥νm,j+1 − νm,j
λνm,j+1+1

M̃m,j −∆M̃m,j

∥∥∥∥
≤ ‖M̃νm,j ,νm,j−1‖

(νm,j+1 − νm,j)
νm,j+1−1∑
i=νm,j

λi+2 − λi+1

λi+1λi+2
+
∣∣∣∣νm,j+1 − νm,j
λνm,j+1+1

−∆
∣∣∣∣
 . (3.31)

The difference λi+2 − λi+1 is bounded above, so we can use the same bound as in (3.27),
i.e.

(νm,j+1 − νm,j)
νm,j+1−1∑
i=νm,j

λi+2 − λi+1

λi+1λi+2
≤ ∆

νm,j+1−1∑
i=νm,j

1
λi+1

+
νm,j+1−1∑
i=νm,j

1
λ2
i+1

.
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A bound for the second part in (3.31) is∣∣∣∣∣νm,j+1 − νm,j
λνm,j+1+1

−∆
∣∣∣∣∣

≤ max
{∣∣∣∣∣∆ λνm,j

λνm,j+1+1
+

λνm,j

λνm,j+1+1λνm,j+1
−∆

∣∣∣∣∣,
∣∣∣∣∣∆ λνm,j+1

λνm,j+1+1
+

λνm,j+1

λ2
νm,j+1+1

−∆
∣∣∣∣∣
}

≤ ∆ max
{∣∣∣∣∣ λνm,j

λνm,j+1+1
− 1

∣∣∣∣∣,
∣∣∣∣∣ λνm,j+1

λνm,j+1+1
− 1

∣∣∣∣∣
}

+ 1
λνm,j

≤ ∆
∣∣∣∣∣λνm,j+1+1 − λνm,j

λνm,j+1+1

∣∣∣∣∣+ 1
λνm,j

.

With Lemma A.6 follows that the λn = λmin(F>nFn) increases at most linearly in n:

λνm,j+1+1 − λνm,j
≤ λmax

νm,j+1+1∑
i=νm,j+1

f(xi)f(xi)>
 ≤ νm,j+1 − νm,j + 1 .

The leads to
λνm,j+1+1 − λνm,j

λνm,j+1+1
≤ ∆

λνm,j

λνm,j+1+1
+

λνm,j

λνm,j+1+1λνm,j+1
+ 1
λνm,j+1+1

≤ ∆ + 2
λνm,j+1

and ∣∣∣∣∣νm,j+1 − νm,j
λνm,j+1+1

−∆
∣∣∣∣∣ ≤ ∆2 + ∆ + 3

λνm,j

.

Combining (3.30) and (3.31) with their bounds and taking the limit with respect to m
yields

lim
m→∞

∥∥∥∥ νm,j+1−1∑
i=νm,j

I(θ(j∆),Fi+1)−1g̃m,j −∆M̃m,jg̃m,j

∥∥∥∥
≤ K3 lim

m→∞

∆
νm,j+1−1∑
i=νm,j

1
λi+1

+
νm,j+1−1∑
i=νm,j

1
λ2
i+1

+ ∆2 + ∆ + 3
λνm,j

 = 2K3∆2

and finally with (3.29)

lim
m→∞

∥∥∥∥ νm,j+1−1∑
i=νm,j

1Θ0(θ̂i)I(θ(j∆),Fi+1)−1gθ̄(xi+1,θ(j∆))−∆M̃m,jg̃m,j

∥∥∥∥
≤ K2∆2 + 2K3∆2 = K4∆2 .

The same follows for the remaining sum from ν(tm+ bt/∆c∆) to ν(tm+ t)−1. The result
follows since

lim
k→∞
‖G(1)

nk,ν(tnk
+t)−1 − G

(2)
nk,ν(tnk

+t)−1‖ ≤
bt/∆c−1∑
j=0

K4∆2 +K4

(
t−

⌊
t

∆

⌋
∆
)2

≤ K4∆
bt/∆c−1∑

j=0
∆ +

(
t−

⌊
t

∆

⌋
∆
) = K4∆t ,

which tends to 0, if ∆ −→ 0.



3.4. Characterizing the Limit 49

The last step in the characterization of the limit is to investigate

G(2)
n,ν(tn+t)−1 =

bt/∆c−1∑
j=0

∆ M̃nk,jg̃nk,j +
(
t−

⌊
t

∆

⌋
∆
)
M̃nk,bt/∆cg̃nk,bt∆c .

We know, that G(0)
n,ν(tn+t)−1 is equicontinuous in the extended sense and by the same

argument as in Lemma 2 the limit of the convergent subsequence is Lipschitz and abso-
lutely continuous. Hence it can be written as an integral using some measurable function
γ : R −→ Rp. From Lemma 14 and Lemma 15 follows

lim
∆→0

lim
k→∞

∥∥∥∥ bt/∆c−1∑
j=0

∆ M̃nk,jg̃nk,j+
(
t−

⌊
t

∆

⌋
∆
)
M̃nk,bt/∆cg̃nk,bt/∆c−

∫ t

0
γ(s)ds

∥∥∥∥ = 0 . (3.32)

What remains is to characterize the limits of M̃nk,j and g̃nk,j and with that γ.
If the sequence of designs converges, then we can directly characterize the function γ.

Lemma 16. Let λn ≥ cn for some c > 0 and all n ≥ m. Assume further, that for all
θ ∈ Θ0

M(θ, ξn)−1 −→M(θ, ξ)−1

and ∫
X
gθ̄(x,θ) ξn(dx) −→

∫
X
gθ̄(x,θ) ξ(dx)

for n −→∞. Then

lim
k→∞

∥∥∥∥G(2)
nk,ν(tnk

+t) −
∫ t

0
M(θ(s), ξ)−1

∫
X
gθ̄(x,θ(s)) ξ(dx) ds

∥∥∥∥ = 0 .

Proof. Because of the convergence in the prerequisites

lim
k→∞

∥∥∥∥g̃nk,j −
∫
X
gθ̄(x,θ(j∆)) ξ(dx)

∥∥∥∥ = 0

and
lim
k→∞
‖M̃nk,j −M(θ(j∆), ξ)−1‖ = 0 .

Consequently also

lim
k→∞

∥∥∥∥M̃nk,jg̃nk,j −M(θ(j∆), ξ)−1
∫
X
gθ̄(x,θ(j∆)) ξ(dx)

∥∥∥∥ = 0

and

lim
k→∞

∥∥∥∥∥G(2)
nk,ν(nk+t)−1 −

(
∆
bt/∆c∆∑
j=1

M(θ(j∆), ξ)−1
∫
X
gθ̄(x,θ(j∆)) ξ(dx)

−
(
t−

⌊
t

∆

⌋
∆
)
M(θ(j∆), ξ)−1

∫
X
gθ̄(x,θ(j∆)) ξ(dx)

)∥∥∥∥∥ = 0 .

Taking the limit for ∆ −→ 0 yields the result.
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If the design does not converge, we can still do some analysis. We will briefly present
some ideas into the direction of set-valued analysis and differential inclusions. Even
though further development in this direction is beyond the scope of this thesis the ideas
look promising.
While it is not possible to characterize the limit as a single valued function, we can say

something about the sets, which contain the values of M̃nk,j and g̃nk,j.
For the matrix term M̃nk,j we have that for all ‖v‖ = 1 and θ(j∆) ∈ Θ0

0 < min
i=νm,j ,...,νm,j+1−1

λi+1v
>I(θ(j∆),Fi+1)−1v

≤ v>M̃nk,jv ≤ max
i=νm,j ,...,νm,j+1−1

λi+1v
>I(θ(j∆),Fi+1)−1v ≤ K (3.33)

for some K > 0, depending only on Θ0 and X . I.e. M̃nk,j lies in a convex and compact
subset of the nonnegative definite matrices. Denote this subset by M̃θ(j∆). Note that

λi+1v
>I(θ(j∆),Fi+1)−1v = λi+1

i+ 1v
>M(θ(j∆), ξi+1)−1v ,

and
λi+1

i+ 1 = λmin(F>i+1Fi+1)
i+ 1 = λmin

(∫
X
f(x)f(x)>ξi+1(dx)

)
.

Denote λmin(ξ) := λmin
(∫
X f(x)f(x)>ξ(dx)

)
. With this notation follows

M̃θ ⊆ conv
{
A ∈ Rp×p

∣∣∣∃(ξ̃i)i≥1 ⊂ Ξ : A = lim
i→∞

λmin
(
ξ̃i
)
M(θ, ξ̃i)−1, sup

‖v‖=1
v>Av ≤ K

}
.

The second part of interest g̃nk,j, can be written as

g̃nk,j = 1
νnk,j+1 − νnk,j

νnk,j+1−1∑
i=νnk,j

gθ̄(xi+1,θ(j∆)) =
∫
X
gθ̄(x,θ(j∆))ξ(dx)

for some design ξ ∈ Ξ. It follows, that

g̃nk,j ∈ conv
{
gθ̄(x,θ(j∆))

∣∣∣x ∈ X} .
Hence the product M̃nk,jg̃nk,j is an element of the set{

Aw
∣∣∣A ∈ M̃θ,∃ξ ∈ Ξ : w =

∫
X
gθ̄(x,θ)ξ(dx)

}
.

Also there exists a set-valued function Γ(θ), with

Γ(θ) ⊆
{
Aw

∣∣∣A ∈ M̃θ,∃ξ ∈ Ξ : w =
∫
X
gθ̄(x,θ)ξ(dx)

}
,

such that
lim
k→∞

inf
w∈Γ(θ(j∆))

‖M̃nk,jg̃nk,j −w‖ = 0 .

Because of (3.32) follows γ(t) ∈ Γ(θ(t)). So Γ might be used to study the asymptotic
behavior further.
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Especially if λn ≥ cn for some c > 0, this seems promising. In this case exists a lower
bound for (3.33), which is larger than 0, and the set M̃θ becomes more tractable:

M̃θ ⊆ conv
{
λmin(ξ)M(θ, ξ)−1

∣∣∣ ξ ∈ Ξ, λmin(M(θ, ξ)) ≥ K̃
}
,

for some K̃ > 0. All matrices in M̃θ are nonsingular.

Γ(θ) ⊆
{
Aw

∣∣∣A ∈ M̃θ,∃ξ ∈ Ξ : λmin(M(θ, ξ)) > 0 and w =
∫
X
gθ̄(x,θ)ξ(dx)

}
.

It follows, that Γ(θ̄) = {0} and that this is the only “equilibrium” in the sense, that
0 ∈ Γ(θ): Since all matrices in A ∈ M̃θ are nonsingular, only the vector 0 is mapped
onto 0. Hence 0 ∈ Γ(θ) if and only if

∫
X gθ̄(x,θ)ξ(dx) = 0 for some ξ. The mean value

theorem yields∫
X
gθ̄(x,θ)ξ(dx) =

∫
X
f(x)f(x)>ψ(f(x)>θ)G′(f(x)>θ∗)ξ(dx)(θ − θ̄) ,

where θ∗ is on the line segment connecting θ and θ̄. Since the design ξ is nonsingular,
the matrix ∫

X
f(x)f(x)>ψ(f(x)>θ)G′(f(x)>θ∗)ξ(dx)

is nonsingular, too. Hence
∫
X gθ̄(x,θ)ξ(dx) = 0 if and only if θ = θ̄.

3.5. A Convergence Result
Using Lemma 16, we will show that the maximum likelihood estimator converges under
relatively strong conditions. We state some of the assumptions beforehand:

(i) Let X be compact.
(ii) Let G be twice continuously differentiable and strictly increasing.
(iii) Let 0 < G(t) < 1 for all t ∈ R.
(iv) Assume that there exists m ∈ N such that F>nFn is nonsingular almost surely for

all n ≥ m.
(v) Let limn→∞ λmin(F>nFn) =∞ almost surely.
(vi) Assume that there exist c > 0 and m ∈ N, such that for all n ≥ m

λmin(F>nFn) ≥ cn

almost surely.

Theorem 6. Assume ( i) to (vi) and let

lim
n→∞

sup
{
‖S̃(0)

n,k‖ : k = n, . . . , ν(tn + t)− 1
}

= 0

almost surely for all t > 0. Assume that the sequence of designs converges almost surely
as in the prerequisites of Lemma 16.
Assume that there exists C > 0 such that supn≥m ‖θ̂n − θ̄‖ ≤ C almost surely. then

limn→∞ ‖θ̂n − θ̄‖ = 0 almost surely.
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Proof. The assumptions ensure, that Lemma 8 and Lemma 10 hold with Θ0 being the
closed ball with center θ̄ and radius C.
From Lemma 16 follows, that the limiting behavior of θ̂n is described by solutions of

the differential equation

d
dtθ(t) = M(θ(t), ξ)−1

∫
X
gθ̄(x,θ(t)) ξ(dx) .

This differential equation has one asymptotically stable point, which is θ̄. This is a
consequence of the fact that the design ξ is nonsingular. A Lyapunov function, to show
this is

L(θ) :=
∫
X
l(θ̄,f(x), G(f(x)>θ̄))− l(θ,f(x), G(f(x)>θ̄))ξ(dx) .

Since all solutions of the differential equation converge to θ̄ follows the almost sure con-
vergence of the estimator.



4. Adaptive Wynn Algorithm
A special choice for the design sequence is if the design points are generated by an adaptive
Wynn algorithm. Its basic steps were introduced in Section 2.5, more precisely in (2.40)
and (2.41). In this chapter we show and discuss results concerning the asymptotic behavior
of this algorithm.
We will assume that Θ is compact. Hence the estimator θ̂n always exists as a maximum

in Θ, but it may happen, that the estimate is on the boundary of the parameter space. In
order to use the recursion from Lemma 6 we have to ensure that there are finitely many
estimates on the boundary. On the other hand e.g. Lemma 8 can be applied directly.

4.1. Information Tends to Infinity
The adaptive Wynn algorithm chooses the next design point as

xn+1 := arg max
x∈X

(
d(f(x)>θ̂n)f(x)>M(θ̂n, ξn)−1f(x)− p

)
.

A first problem to solve is that the weighted information matrix is bounded below by a
positive definite matrix and consequently

λmin(I(θ,Fn)) > cn

for some c > 0. Otherwise M(θ̂n, ξn) would become singular. If the design space X
consists of a finite number of design points and the Θ is bounded Pronzato (2010) showed
that there are at least p design points, such that the weights at these points are bounded
below by some constant.
In the following lemma we show that the sequence of weighted information matrices

(M(θ, ξn))n≥m has a subsequence of nonsingular matrices for all θ ∈ Θ. As in the previous
chapter we use the notation λn := λmin(F>nFn).

Lemma 17. Let X and Θ be compact. Let (θn)n≥1 be an arbitrary sequence in Θ. Let
d be continuous and assume d(t) > 0 for all t ∈ R. Let F>mFm be nonsingular for some
m ∈ N. For n ≥ m let the design points be chosen using

xn+1 := arg max
x∈X

(
d(f(x)>θn)f(x)>M(θn, ξn)−1f(x)− p

)
.

Then limn→∞ λmin(F>nFn) =∞ and there exist constants 0 < c ≤ C <∞, such that

c ≤ lim sup
n→∞

λmin(F>nFn)
n

≤ C .

53
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Proof. Because F>nFn is nonsingular for n = m ∈ N, it is nonsingular for all n ≥ m. The
upper bound follows, because X is compact and

λn ≤ λmax(F>nFn) ≤ tr(F>nFn) ≤ nmax
x∈X
‖f(x)‖2 .

For the lower bound note that

d(f(xn+1)>θ)f(xn+1)>M(θ, ξn)−1f(xn+1)

= max
v∈Rp

(
2
√
d(f(xn+1)>θ)f(xn+1)>v − v>M(θ, ξn)v

)
.

From this follows, with (3.7) that for all n ≥ m

max
v∈Rp

(
2
√
d(f(xn+1)>θ)f(xn+1)>v − v>M(θ, ξn)v

)
≥ max

v∈Rp

(
2
√
d(f(xn+1)>θ)f(xn+1)>v −Kθ,nv

>M(θn, ξn)v
)

where
Kθ,n := max

x∈X

d(f(x)>θ)
d(f(x)>θn)

.

Combining both inequalities yields

d(f(xn+1)>θ)f(xn+1)>M(θ, ξn)−1f(xn+1)
≥ K1d(f(xn+1)>θn)f(xn+1)>M(θn, ξn)−1f(xn+1) (4.1)

for all θ ∈ Θ. The constant is given by

K1 := min
θ∈Θ

min
θ1∈Θ

(max
x∈X

d(f(x)>θ)
d(f(x)>θ1)

)−1

min
x∈X

d(f(x)>θ)
d(f(x)>θ1)

 .
As a consequence of Lemma A.5 and (3.7) we obtain a lower bound for the right-hand
side of (4.1):

K1d(f(xn+1)>θn)f(xn+1)>M(θn, ξn)−1f(xn+1)
≥ K1Kλmax(M(θn, ξn)−1) = K1Knλmax(I(θn,Fn)−1)

= K1Kn

λmin(I(θn,Fn)) ≥
K2n

λn
, (4.2)

for some K2 > 0. By Lemma A.1 part (ii)
det(M(θ, ξn+1))
det(M(θ, ξn)) =

(
n

n+ 1

)p(
1 + n−1d(f(xn+1)>θ)f(xn+1)>M(θ, ξn)−1f(xn+1)

)
for all θ ∈ Θ. Together with (4.1) and (4.2) this yields

det(M(θ, ξn+1))
det(M(θ, ξn)) ≥

(
n

n+ 1

)p
(1 +K2λ

−1
n )

= 1 +K2λ
−1
n +

((
n

n+ 1

)p
− 1

)
(1 +K2λ

−1
n )

≥ 1 +K2λ
−1
n + p

(
n

n+ 1 − 1
)(

1 +K2λ
−1
n

)
= 1 +K2λ

−1
n − pλ−1

n

λn +K2

n+ 1 = 1 + λ−1
n

(
K2 − p

λn +K2

n+ 1

)
.
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Assume that there is no lower bound, i.e. lim supn→∞ λnn−1 = limn→∞ λnn
−1 = 0. Then

there exists K3 > 0, such that for a sufficiently large m1 ≥ m(
K2 − p

λn +K2

n+ 1

)
≥ K3 > 0

for all n ≥ m1 and consequently

det(M(θ, ξn+1))
det(M(θ, ξn)) ≥ 1 + λ−1

n K3 .

If we apply this recursively, we obtain

det(M(θ, ξm1+n+1))
det(M(θ, ξm1)) ≥

m1+n∏
i=m1

(
1 + λ−1

i K3
)
≥ 1 +K3

m1+n∑
i=m1

λ−1
i .

The sum on the right-hand side tends to ∞ for n −→ ∞, which is a contradiction,
because of the boundedness of the left-hand side. Hence the lower bound follows. Since
λn is monotonously increasing, limn→∞ λn =∞.

The question is: Can it happen that lim infn→ λnn−1 = 0? Note that since λn tends to
infinity, λnn−1 can never be equal to 0. It can only be arbitrarily close.
We will consider the following subsequence of the λn: Let c > 0 be the lower bound

from Lemma 17 and let δ ∈ (0, 1). Let n1 be an index, such that λn1n
−1
1 > c, and define

n2k := inf
{
n > n2k−1

∣∣∣∣λnn < δc
}

and n2k+1 := inf
{
n > n2k

∣∣∣∣λnn > c
}
.

Because λn is nondecreasing in n it follows that

δc >
λn2k

n2k
≥
λn2k−1

n2k
≥ n2k−1

n2k

λn2k−1

n2k−1
>
n2k−1

n2k
c .

As a direct consequence we obtain

n2k−1 < δn2k (4.3)

and that
n2

δk−1 < n2k .

Thus n2k grows exponentially in k.
The gap between n2k−1 and n2k also has to grow. In fact it increases at least as fast as

a multiple of n2k:
(1− δ)n2k < n2k − n2k−1 .

Next we consider the other direction: How many steps does it take to reach the threshold
c again? The speed of this is limited by the fact that

λn2k+1 − λn2k
≤ λmax(F>n2k+1

Fn2k+1 − F>n2k
Fn2k

) ≤ (n2k+1 − n2k) max
x∈X
‖f(x)‖ ,
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which follows from Lemma A.6. This leads to a similar bound as above:

c <
λn2k+1

n2k+1
= λn2k

n2k+1
+
λn2k+1 − λn2k

n2k+1
≤ λn2k

n2k
+ (n2k+1 − n2k)

n2k+1
max
x∈X
‖f(x)‖

< δc+ (n2k+1 − n2k)
n2k+1

max
x∈X
‖f(x)‖

⇐⇒ n2k <

(
1− (1− δ) c

maxx∈X ‖f(x)‖

)
n2k+1 . (4.4)

This means the periods in which λnn
−1 > δc can be arbitrarily long. In an actual

trajectory these will be even larger than suggested by (4.3) and (4.4), because λnn−1 is
not necessarily strictly decreasing or increasing, respectively. While this is no proof for
the desired inequality λn ≥ cn, it is a strong hint, that the inequality holds. A scenario
in which for example limk→∞ λnk

n
−1/2
k = 0 is even less likely.

With regard to Lemma 5 in Chapter 3, the result yields that the log-likelihood function
has a global maximum in Rp. With the additional conditions of Lemma 7, follows that
the difference between neighboring estimates tends to zero as λ−1

n .

4.2. Convergence of the Design and Asymptotic
Normality

These two properties follow, if the sequence of estimators converges. While we will state
the results using almost sure convergence, they hold for convergence in probability. The
proofs are mostly identical to those in (Pronzato, 2009) and (Pronzato, 2010). The main
difference is, that the design space is not assumed to be finite.
We will start with the convergence of the design. It converges in the sense, that the

determinant of the information matrix, i.e. the value of the D-criterion, converges almost
surely to the value of the locally optimal design. Remember, that the D-criterion was
defined as φD(M(θ, ξ)) := log det(M(θ, ξ)).
Lemma 18. Let X and Θ be compact. Assume that there exists m ∈ N, such that
M(θ, ξn) is nonsingular almost surely for all n ≥ m and all θ ∈ Θ. Let d be continuously
differentiable and 0 < d(t) < 1 for all t ∈ R. Let limn→∞ ‖θ̂n − θ̄‖ = 0 almost surely,
then

lim
n→∞

log det(M(θ̂n, ξn)) = log det(M(θ̄, ξ∗θ̄))
almost surely.

Proof. The only difference to Lemma 3 in Pronzato (2010, p. 225, for the proof see pp.
235) is that the design space X is not finite. The first step in the proof is to show, that
for all ε > 0 exists a δ > 0, such that for all ‖θ − θ̄‖ ≤ δ follows

max
x∈X

∥∥∥√d(f(x)>θ)f(x)−
√
d(f(x)>θ̄)f(x)

∥∥∥ ≤ ε .

This continuity property follows in our case from
∥∥∥√d(f(x)>θ)f(x)−

√
d(f(x)>θ̄)f(x)

∥∥∥ ≤ 1
2‖θ−θ̄‖‖f(x)‖2 max

‖θ−θ̄‖≤δ

∣∣∣∣∣∣ d
′(f(x)>θ)√
d(f(x)>θ)

∣∣∣∣∣∣ , (4.5)
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and is a consequence of the differentiability of d and the mean value theorem.
If there exists an m ∈ N, such that M(θ, ξn) is nonsingular for all n ≥ m, then

max
x∈X

max
‖θ−θ̄‖≤δ

∣∣∣d(f(x)>θ)f(x)>M(θ, ξn)−1f(x)− d(f(x)>θ̄)f(x)>M(θ̄, ξn)−1f(x)
∣∣∣ ≤ Cε

for all n ≥ m and some C > 0. This yields that for all ε > 0 exists a δ > 0, such that for
all n ≥ m

d(f(xn+1)>θ̄)f(xn+1)>M(θ̄, ξn)−1f(xn) > max
x∈X

(
d(f(x)>θ̄)f(x)>M(θ̄, ξn)−1f(x)

)
− ε ,

whenever ‖θ̂n − θ̄‖ < δ.
From this point on the proof is the same as in said article of Pronzato. As in other

proofs for adaptive or nonadaptive versions of the Wynn algorithm, a contradiction is used
to prove, that the sequence of designs will be close to the optimal value infinitely often.
In a second step it is shown, that we will be arbitrarily close if n is large enough.

The asymptotic normality yields, that the asymptotic variance is in fact given by the
inverse of the Fisher information matrix, since M(θ̂n, ξn)−1 appears as the normalizing
sequence. This justifies, that it is used in the D-criterion and adaptive Wynn algorithm
to find the optimal design.

Theorem 7. Let X and Θ be compact. Assume that there exists m ∈ N, such that
M(θ, ξn) is nonsingular almost surely for all n ≥ m and all θ ∈ Θ. Let G be twice
continuously differentiable and strictly increasing. Assume further, that 0 < G(t) < 1 for
all t ∈ R. Let limn→∞ ‖θ̂n − θ̄‖ = 0 almost surely, then

√
nM(θ̂n, ξn)1/2(θ̂ − θ̄) d−→ Np(0,Ep) .

Proof. With a Taylor expansion of the score function around the actual parameter follows

0 = sn(θ̂n) = sn(θ̄) + Hn(θ∗n,Fn)(θ̂n − θ̄)

for θ∗n on the line segment connecting θ̂n and θ̄. Bringing the second term onto the other
side yields

sn(θ̄) = −Hn(θ∗n,Fn)(θ̂n − θ̄) . (4.6)
Now we will show, that the normalized sn(θ̄) is asymptotically normal and hence is the
right-hand side of (4.6). Let v ∈ Rp with ‖v‖ = 1 and consider

1√
n
v>M(θ̄, ξ∗θ̄)

−1/2sn(θ̄) .

By a central limit theorem for martingales (see Theorem A.2 in the appendix, compare
with Corollary 3.1 in Hall and Heyde, 1980, p. 58) this is asymptotically standard normal,
if

E
( 1√

n
v>M(θ̄, ξ∗θ̄)

−1/2sn(θ̄)
)

= 0 (4.7)

for all n ≥ 1 and

1
n

n∑
i=1

E
(
(v>M(θ̄, ξ∗θ̄)

−1/2f(Xi)ψ(f(Xi)>θ̄)εi)2|Fi
)

p−→ 1 . (4.8)
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The conditional Lindeberg condition (A.5) in Theorem A.2 is fulfilled automatically, since
the summands in (4.8) are almost surely bounded, i.e.∣∣∣v>M(θ̄, ξ∗θ̄)

−1/2f(Xi)ψ(f(Xi)>θ̄) εi
∣∣∣ ≤ K1

for some K1 > 0. The conditional expectations of this summands of the normalized score
function are

E
(
v>M(θ̄, ξ∗θ̄)

−1/2f(Xi)ψ(f(Xi)>θ̄)εi|Fi
)

= 0

and thus (4.7) holds. The second condition holds, since

1
n

n∑
i=1

E
(
(v>M(θ̄, ξ∗θ̄)

−1/2f(Xi)ψ(f(Xi)>θ̄)εi)2|Fi
)

= 1
n
v>M(θ̄, ξ∗θ̄)

−1/2I(θ̄,Fn)M(θ̄, ξ∗θ̄)
−1/2v

= v>M(θ̄, ξ∗θ̄)
−1/2M(θ̄, ξn)M(θ̄, ξ∗θ̄)

−1/2v

and because of the convergence of the design sequence

lim
n→∞

v>M(θ̄, ξ∗θ̄)
−1/2M(θ̄, ξn)M(θ̄, ξ∗θ̄)

−1/2v = 1 (4.9)

almost surely. This establishes

1√
n
v>M(θ̄, ξ∗θ̄)

−1/2sn(θ̄) d−→ N (0, 1)

and since it holds for all ‖v‖ = 1

1√
n

M(θ̄, ξ∗θ̄)
−1/2sn(θ̄) d−→ Np(0,Ep) .

For the right-hand side of (4.6) we have to show, that

− 1√
n

M(θ̄, ξ∗θ̄)
−1/2Hn(θ∗n,Fn)(θ̂n − θ̄) (4.10)

behaves asymptotically like
√
nM(θ̂n, ξn)1/2(θ̂n − θ̄) .

If we can show that it is asymptotically equivalent to
√
nM(θ̄, ξn)1/2(θ̂n − θ̄) , (4.11)

then the last step follows from the convergence of the estimator.
To do this we will expand (4.10) with

√
nM(θ̄, ξ∗

θ̄
)1/2:

− 1√
n

M(θ̄, ξ∗θ̄)
−1/2Hn(θ∗n,Fn) 1√

n
M(θ̄, ξ∗θ̄)

−1/2√nM(θ̄, ξ∗θ̄)
1/2(θ̂n − θ̄) .
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If we rewrite the Hessian matrix

−Hn(θ∗n,Fn) = I(θ∗n,Fn)−
n∑
i=1

ψ′(f(Xi)>θ∗n)
(
Yi −G(f(Xi)>θ∗n)

)
f(Xi)f(Xi)>

= I(θ∗n,Fn)− I(θ̄,Fn) + I(θ̄,Fn)−
n∑
i=1

ψ′(f(Xi)>θ∗n)f(Xi)f(Xi)>εi

−
n∑
i=1

ψ′(f(Xi)>θ∗n)
(
G(f(Xi)>θ̄)−G(f(Xi)>θ∗n)

)
f(Xi)f(Xi)> ,

(4.12)

we see that I(θ∗n,Fn) − I(θ̄,Fn) and the last sum on the right-hand side of (4.12) can
be bounded by nKj‖θ∗n − θ̄‖, Kj > 0, j = 2, 3. This follows from the properties of
the function G, especially its differentiability, the compactness of X and the fact, that
‖θ∗n− θ̄‖ is also bounded, because of the convergence of the estimates. The first bound is

‖I(θ∗n,Fn)− I(θ̄,Fn)‖ = n‖M(θ∗n, ξn)−M(θ̄, ξn)‖ ≤ nK2‖θ∗n − θ̄‖

and hence

‖ 1
n

M(θ̄, ξ∗θ̄)
−1/2

(
I(θ∗n,Fn)− I(θ̄,Fn)

)
M(θ̄, ξ∗θ̄)

−1/2‖ ≤ K2‖M(θ̄, ξ∗θ̄)
−1‖‖θ∗n − θ̄‖ .

For the second term mentioned above we get∥∥∥∥ n∑
i=1

ψ′(f(Xi)>θ∗n)
(
G(f(Xi)>θ̄)−G(f(Xi)>θ∗n)

)
f(Xi)f(Xi)>

∥∥∥∥
≤ n max

i=1,...,n

∥∥∥ψ′(f(Xi)>θ∗n)
(
G(f(Xi)>θ̄)−G(f(Xi)>θ∗n)

)
f(Xi)f(Xi)>

∥∥∥
≤ nmax

x∈X

(∣∣∣ψ′(f(x)>θ∗n)G′(f(x)>θ∗∗n )
∣∣∣ ‖f(x)‖2‖θ∗n − θ̄‖

)
≤ nK3‖θ∗n − θ̄‖

and K3‖M(θ̄, ξ∗
θ̄
)−1‖‖θ∗n − θ̄‖ as a bound for the normalized version.

For the remaining sum on the right-hand side of (4.12) follows, that it converges to 0
almost surely, since for all ‖v‖ = 1

lim
n→∞

1
n

n∑
i=1

ψ′(f(Xi)>θ∗n)
(
v>M(θ̄, ξ∗θ̄)

−1/2f(Xi)
)2
εi = 0

almost surely. This is a consequence of Theorem A.1, because

1
n
v>M(θ̄, ξ∗θ̄)

−1/2
(

n∑
i=1

ψ′(f(Xi)>θ∗n)f(Xi)f(Xi)>εi
)

M(θ̄, ξ∗θ̄)
−1/2v

= 1
n

n∑
i=1

ψ′(f(Xi)>θ∗n)
(
v>M(θ̄, ξ∗θ̄)

−1/2f(Xi)
)2
εi

and
n∑
i=1

E
((1

i
ψ′(f(Xi)>θ∗n)

(
v>M(θ̄, ξ∗θ̄)

−1/2f(Xi)
)2
εi

)2∣∣∣Fi
)

≤ sup
‖θ∗n−θ̄‖

max
x∈X

∣∣∣∣(v>M(θ̄, ξ∗θ̄)
−1/2f(Xi)

)4
ψ′(f(Xi)>θ∗n)

∣∣∣∣ n∑
i=1

1
i2

E
(
ε2
i |Fi

)
≤ K4

∞∑
i=1

1
i2
,



60 4. Adaptive Wynn Algorithm

for some K4 > 0. As in (4.9) the remaining term

1
n

M(θ̄, ξ∗θ̄)
−1/2I(θ̄,Fn)M(θ̄, ξ∗θ̄)

−1/2

converges to the identity matrix. It follows that (4.10) and (4.11) are asymptotically
equivalent. This in combination with the convergence of the estimator establishes the
proof.



5. Simulations
This chapter will present the results of the simulation studies. While the description
of results will be contained in this chapter, only a representative selection of graphs
are included here. All other figures, which might also be referenced in the text, are in
Appendix C.

5.1. Setup
The software package R (version 2.14.1, 64bit; see R Core Team, 2014) on a desktop
computer with an AMD Phenom II x4 955 (3.2 GHz) as processor and the operating
system Ubuntu 12.04 LTS was used to run the main simulations.
Starting with a fixed initial design, the observations from a binary response model

were simulated. The design points were generated using the adaptive Wynn algorithm for
D-optimal design. Each simulation had 5000 replications, with 500 steps each.
The models under consideration were the logit, probit, log-log and complementary log-

log model, which were described in Example 1.
The choices for X , Θ and the true parameter θ̄ are presented in Table 5.1. The initial

designs was 0,±0.5,±1.5, with one observation per design point.
For all optimizations, i.e. calculation of the estimates and finding the design points, the

build in “general-purpose” method of R was used.1 Some problems in the optimization
procedures arose because of numerical instabilities, if the value of the mean function G
was very close to 0 or 1. This occurred especially for the probit model. Choosing the
design region appropriately, solved this problem.
The parameter setting (1.4 0.4) is a very special one, as can be seen in Figure 5.1. Es-

pecially in the complementary log-log case. The design region is not chosen appropriately.
But it was of interest to see, how the procedure works in these situations.
The locally optimal designs for the simulation settings are given in Table 5.2. As a

feature of the D-criterion, the weights are always 0.5.

Table 5.1.: X , Θ and θ̄ for the simulations
Θ X θ̄>

[−2 2]× [0 2] [−1.5 1.5]
(0 1)

(0.6 1.8)
(1.4 0.4)

1Because of the constraints it was “L-BFGS-B”, which according to the built-in documentation is due
to Byrd, Lu, Nocedal and Zhu (1995).
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(a) Logit
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(b) Probit
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(c) Log-log
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(d) Complementary log-log

Figure 5.1.: Probabilities of the models used in the simulation.
solid: θ̄ = (0 1)>, dashed: θ̄ = (0.6 1.8)>, dotted: θ̄ = (1.4 0.4)>

Table 5.2.: Locally D-optimal designs for the simulations
Model θ̄> x1 x2

Logit
(0 1) -1.5000 1.5000

(0.6 1.8) -1.1908 0.5241
(1.4 0.4) -1.5000 1.5000

Probit
(0 1) -1.1381 1.1381

(0.6 1.8) -0.9656 0.2989
(1.4 0.4) -1.5000 1.5000

Log-log
(0 1) -0.9796 1.3377

(0.6 1.8) -0.8776 0.4098
(1.4 0.4) -1.5000 1.5000

Complementary
log-log

(0 1) -1.3377 0.9796
(0.6 1.8) -1.0765 0.2109
(1.4 0.4) -1.5000 0.3481
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5.2. Results

5.2.1. Separation of the Design Points

The separation of the design points in the sense of Section 2.3 was determined, too.
Separation meant, that the relative interiors of the convex cones corresponding to observed
0’s and 1’s are disjoint: C0

n ∩ C1
n = ∅. Otherwise there is an overlap in the design points.

While in the setting of the simulations this was not necessary to ensure the existence of
the estimate, it is of interest to verify the asymptotic existence from Lemma 5 and to find
out how long it takes, until the estimates in R2 exist. Table 5.3 summarizes the results.
For the parameter settings (0 1) and (0.6 1.8), the number of steps, until overlap

is reasonably small: To achieve 99%, between 20 and 30 observations are needed. If
θ̄ = (1.4 0.4) it takes more than two or even three times the number of observations for
the complementary log-log and the probit model, if compared to the other two parameter
settings. This can be explained with the corresponding probabilities shown in Figure 5.1:
In the complementary log-log model for example, the probability to observe a 0 is ap-
proximately 0.1 on the left boundary of the design space and around 0.001 on the right.
So it naturally needs more steps, to achieve an overlap in the design points corresponding
to 0’s and 1’s. For the probit model the situation is a bit better, which is reflected in the
values of the quantiles.

Table 5.3.: Overlap in the design points
Sample Quantiles2

Model θ̄> Initial1 75% 90% 95% 99% 100%

Logit
(0 1) 0.3678 8 10 12 16 30

(0.6 1.8) 0.1844 10 14 17 23 43
(1.4 0.4) 0.1884 14 20 26 42 95

Probit
(0 1) 0.2564 8 10 12 16 26

(0.6 1.8) 0.0312 10 14 16 22 34
(1.4 0.4) 0.0348 24 35 46 73 175

Log-log
(0 1) 0.2938 8 10 12 16 25

(0.6 1.8) 0.1412 10 14 17 29 48
(1.4 0.4) 0.2170 12 17 22 39 78

complementary
Log-log

(0 1) 0.1434 8 11 12 16 32
(0.6 1.8) 0.0058 10 13 16 23 45
(1.4 0.4) 0.0008 50 74 93 138 306

1 Initial: Proportion of replications with overlap in the initial design.
2 Sample Quantiles: These are for the number of steps, until there is overlap.
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5.2.2. Distribution of the Estimates, Mean Squared Error and
Bias

Distribution of the Estimates
The Figures 5.2 to 5.5 show histograms of the components θ̂1 and θ̂2 of the estimates
and different sample sizes. From left to right these are 50, 250 and 500. The general
shape of the histograms are very similar for all models, hence only the logit model (for
all parameter values) and the complementary log-log model for one value is displayed.
For small sample sizes, the distribution of the components has a higher variability than

that for large n, as was to be expected. The estimates accumulate around the actual
value, which is represented by the dashed vertical line, and the shape of the histogram
becomes more symmetric. The proportion of estimates taking values on the boundary is
also decreasing as the sample sizes increases. This is visible especially in the cases where
θ̄ = (0.6 1.8) (e.g. Figure 5.3) and θ̄ = (1.4 0.4) (e.g. Figure 5.4 and Figure 5.5).
For θ̄ = (1.4 0.4) the distribution becomes visibly smoother for larger sample sizes.

While there is a “baseline distribution” in Figure 5.5 (a), the spikes can be attributed to
the replications, where no overlap occurred. (see Table 5.3)

Eigenvalues of the Mean Squared Error Matrix
In Figure 5.6 and Figure 5.7 the square root of the eigenvalues of the estimated mean
squared error matrix MSEn are displayed. They are all decreasing and, as indicated
by the gray solid curves, are of order

√
n. Again the graph is qualitatively very similar

between the models. The main difference is, the distance between the curves shown in
the figures.
The standard setting θ̄ = (0 1) shows the best performance. Also the eigenvalues

are closer to each other. The bad choice of the design space for θ̄ = (1.4 0.4) in the
complementary log-log model is especially seen in the beginning steps. This is also visible
for the probit model (Figure C.9), but not as distinctive as it is here.

Bias
The estimated bias for different sample sizes is shown in Table 5.4 and Table 5.5. In the
standard case and if θ̄ = (1.4 0.4)>, the bias for the slope component θ2 is decreasing.
The bias for θ1 is either decreasing or already small. For the bias we will write it is “small”
or “decreasing”, if its absolute value is.
For the remaining parameter setting the bias seems to increase. It is closer to 0 for

sample sizes of 50 or 100, than it is for 500 observations. This can be explained by the
fact, that the actual parameter is relatively close to the boundary of the parameter space
and a considerable amount of estimates is still on the boundary. This can be seen in
Figure 5.3 (c). Comparing the adaptive versions to one with a fixed sequence of design
points, which alternated between two design points, showed a bias of the same order.
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(b) n = 250

−2 −1 0 1 2θ̂1

0
0.

05
0.

1
0.

15
R

el
at

iv
e 

fr
eq

ue
nc

y

(c) n = 500
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Figure 5.2.: Histograms of the components of the estimates and different sample sizes for

the logit model with θ̄ = (0 1)>
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(b) n = 250
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(c) n = 500
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Figure 5.3.: Histograms of the components of the estimates and different sample sizes for
the logit model with θ̄ = (0.6 1.8)>
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Figure 5.4.: Histograms of the components of the estimates and different sample sizes for

the logit model with θ̄ = (1.4 0.4)>
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Figure 5.5.: Histograms of the components of the estimates and different sample sizes for
the complementary log-log model with θ̄ = (1.4 0.4)>
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Figure 5.6.: Square root of the eigenvalues of MSEn for the logit model.
solid: λmax(MSEn), dashed: λmin(MSEn), gray solid: curves of order n−1/2
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Figure 5.7.: Square root of the eigenvalues of MSEn for the complementary log-log model.
solid: λmax(MSEn), dashed: λmin(MSEn), gray solid: curves of order n−1/2

Table 5.4.: Bias for the estimates of θ1 after n steps
n

Model θ̄> 50 100 250 400 500

Logit
(0 1) -0.0048 -0.0010 -0.0044 -0.0017 -0.0016

(0.6 1.8) -0.0068 0.0041 0.0032 0.0045 0.0046
(1.4 0.4) 0.0798 0.0438 0.0176 0.0092 0.0079

Probit
(0 1) 0.0044 0.0003 0.0004 -0.0008 -0.0005

(0.6 1.8) 0.0021 0.0004 0.0017 0.0043 0.0047
(1.4 0.4) 0.1366 0.0866 0.0378 0.0233 0.0193

Log-log
(0 1) 0.0015 0.0023 0.0005 0.0001 -0.0002

(0.6 1.8) -0.0109 0.0010 0.0045 0.0053 0.0055
(1.4 0.4) 0.0827 0.0525 0.0221 0.0138 0.0115

Complementary
log-log

(0 1) -0.0027 -0.0028 -0.0028 -0.0010 -0.0010
(0.6 1.8) 0.0197 0.0128 0.0070 0.0053 0.0050
(1.4 0.4) 0.2266 0.1281 0.0737 0.0487 0.0357
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Table 5.5.: Bias for the estimates of θ2 after n steps
n

Model θ̄> 50 100 250 400 500

Logit
(0 1) 0.1235 0.0565 0.0201 0.0121 0.0080

(0.6 1.8) -0.0170 0.0006 0.0084 0.0102 0.0118
(1.4 0.4) 0.0583 0.0282 0.0115 0.0061 0.0042

Probit
(0 1) 0.1131 0.0515 0.0187 0.0101 0.0082

(0.6 1.8) 0.0052 0.0130 0.0150 0.0155 0.0134
(1.4 0.4) 0.0864 0.0586 0.0285 0.0173 0.0139

Log-log
(0 1) 0.1381 0.0615 0.0211 0.0126 0.0099

(0.6 1.8) 0.0036 0.0128 0.0141 0.0144 0.0134
(1.4 0.4) 0.0453 0.0244 0.0100 0.0054 0.0051

Complementary
log-log

(0 1) 0.1332 0.0586 0.0231 0.0136 0.0104
(0.6 1.8) -0.0002 0.0069 0.0112 0.0097 0.0104
(1.4 0.4) 0.1257 0.0872 0.0547 0.0364 0.0274

Comparison of Mean Squared Error and Fisher Information
Figure 5.8 shows the efficiency of MSEn for the logit model. Here the efficiency is calcu-
lated as (

det(M(θ̄, ξ∗
θ̄
)−1)

det(nMSEn)

)1/p

.

It shows how close the mean squared error and the asymptotic covariance matrix are.
For large sample sizes the efficiency becomes closer to 1, which is consistent with the
asymptotic behavior mentioned in Section 4.2. Even in the case θ̄ = (1.4 0.4)> the
efficiency is increasing, but the effects described above are clearly visible in the probit
and complementary log-log model as illustrated in Figure 5.9.
For θ̄ = (0.6 1.8)> the efficiency is larger than 1. This is again due to the fact, that a

lot of estimates for the slope parameter θ2 are on the boundary of the parameter space,
i.e. equal to 2, and hence the variance component is comparably small. For the other
parameter values the efficiency is it at least smaller than 1 for sample sizes larger than
50.
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(c) θ̄ = (1.4 0.4)>

Figure 5.8.: D-efficiency of the estimated MSE for the logit model
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Figure 5.9.: D-efficiency of the estimated MSE for different models and θ̄ = (1.4 0.4)>

5.2.3. Efficiency of the Adaptive Designs and Behavior of the
Design Points

Figure 5.10 and Figure 5.11 summarize the efficiencies eff(ξn, ξ∗, θ̄), i.e. the determinant
of the information matrix of the simulated design compared to the one of locally optimal
design. (see equation (2.35) for the definition) Displayed are sample quantiles, derived
from the replications of a specific setting, in dependence of the sample size. The distri-
bution of the efficiencies for a fixed sample size is skewed with more weight close to 1.
In most cases the maximum is very close to the 75%-quantile. The 25%-quantile usually
reaches an efficiency of 0.8 after around 100 steps.
The logit model behaves very well in all given settings. This is also supported by

Table 5.6, which shows how many replications reached an efficiency of at least 0.9 after
a given number of steps. For the logit model at least 75% reached this efficiency after 50
steps. For the other models it took 100.
An exception is as before the problematic value of θ̄ = (1.4 0.4)>. In the probit

and the complementary log-log model, the smallest efficiency does not seem to increase
at all. One part of the explanation for this could be, that it took a lot of steps, until
the design points overlapped. As Table 5.3 illustrated, it took 175 steps for the probit
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model and 306 for the complementary log-log until this happened for the last replication.
So all the estimates before that were possibly “far away” from the actual value and the
corresponding design points probably not optimal. One drawback of the Wynn algorithm
is, that it takes a relatively long time to get these “bad” values out of the system, and
hence the low efficiency for the minimum.
The choice of the new design point is also sensitive to the value of the estimates. For the

complementary log-log model one of the eigenvalues of the MSE-matrix is still relatively
large, resulting in large variability in the design points. The histograms of design points
at steps 50, 250 and 500, shown in Figure 5.14, illustrate that. While the left design point
is fixed on the boundary, design points chosen on the right vary a lot. But one can see,
that they are accumulating around the optimal points, which are marked by dashed lines.
Some other examples, where the change in the distribution of the design points is more

visible, are displayed in Figure 5.12 and Figure 5.13.

Table 5.6.: Proportion of replications with efficiency higher than 0.9 after n steps
n

Model θ̄> 25 50 100 250 500

Logit
(0 1) 0.5754 0.7528 0.9056 0.9928 0.9998

(0.6 1.8) 0.7434 0.8670 0.9508 0.9974 1.0000
(1.4 0.4) 0.7968 0.8882 0.9586 0.9962 1.0000

Probit
(0 1) 0.5288 0.7374 0.9194 0.9954 1.0000

(0.6 1.8) 0.0000 0.5060 0.8254 0.9860 0.9996
(1.4 0.4) 0.5748 0.6650 0.7596 0.8872 0.9598

Log-log
(0 1) 0.2534 0.5370 0.8114 0.9822 0.9990

(0.6 1.8) 0.0672 0.4098 0.7642 0.9688 0.9966
(1.4 0.4) 0.8056 0.8972 0.9654 0.9968 1.0000

Complementary
log-log

(0 1) 0.2828 0.5632 0.8284 0.9808 0.9986
(0.6 1.8) 0.0000 0.3138 0.7420 0.9574 0.9972
(1.4 0.4) 0.0110 0.0670 0.1658 0.3894 0.6616



5.2. Results 71

0 100 200 300 400 500

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n

ef
f(ξ

n, 
ξ* , θ

)

(a) θ̄ = (0 1)>

0 100 200 300 400 500

0.
2

0.
4

0.
6

0.
8

1.
0

n

ef
f(ξ

n, 
ξ* , θ

)
(b) θ̄ = (0.6 1.8)>

0 100 200 300 400 500

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n

ef
f(ξ

n, 
ξ* , θ

)

(c) θ̄ = (1.4 0.4)>

Figure 5.10.: Efficiency of the adaptive design for the logit model.
solid: median of the efficiencies, dashed: 5%- and 95%-quantile, dotted:
minimum and maximum
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Figure 5.11.: Efficiency of the adaptive design for the complementary log-log model.
solid: median of the efficiencies, dashed: 5%- and 95%-quantile, dotted:
minimum and maximum
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(b) n = 250
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(c) n = 500

Figure 5.12.: Histograms of the design points at different steps calculated over all repli-
cations for the logit model with θ̄ = (0 1)>.
dashed lines: locally D-optimal design points
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Figure 5.13.: Histograms of the design points at different steps calculated over all repli-
cations for the logit model with θ̄ = (0.6 1.8)>.
dashed lines: locally D-optimal design points
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(c) n = 500

Figure 5.14.: Histograms of the design points at different steps calculated over all repli-
cations for the complementary log-log model with θ̄ = (1.4 0.4)>.
dashed lines: locally D-optimal design points



6. Concluding Remarks
As written in the introduction, the two main themes of this thesis were:

• Does the sequence of estimators converge to the actual parameter?
• Does the sequence of designs converge to a locally optimal design?

The results in Chapter 3 mark only the first steps for studying the convergence of the
estimator using the method of ordinary differential equations. This approach has not
been tried before.
While it is probably too early to think in this direction, it seems to be possible to extend

the approach to other generalized linear models, too. The score function, Hessian matrix
and Fisher information matrix have similar structures in these models, so it should be
possible to extend the method. Especially, since in most of the proofs in Chapter 3 only
boundedness of the model was used, and not specifically its binary nature.
As illustrated by Theorem 6 overly restrictive conditions on the design sequence, namely

its convergence, were required. This probably can be mitigated by the characterization
of the limit by the sets, which contain the trajectories. Consequently this would lead to
the study of differential inclusions.
Another open point is the behavior of S̃n,m, s̃n and, closely related, the behavior of the

Hessian matrix. The simulations and calculations for other examples suggested all that
n∑
i=1

ψ′(f(xi)>θ̂n)
(
yi −G(f(xi)>θ̂n)

)
f(xi)f(xi)> ,

which is the first term in the Hessian matrix, is bounded. This would imply the asymptotic
rate of change condition for S̃n,m.
However it is interesting and assuring to note that the eigenvalue conditions of Lemma 8

are close to those used in the convergence theorems in the literature.
That the investigation of the convergence is not in vain is shown by the simulations.

The results of the simulations support that the estimator converges. The mean squared
error matrix seems to tend to 0 and is approaching the optimal asymptotic variance. The
problems which might hint for non-convergence, like a (for the author surprisingly high)
bias after 500 observations can be explained within the model. Similar things can be said
about the convergence of the adaptive design. The design approaches the locally optimal
design even though it is slower than using the Wynn algorithm with the actual parameter.
A problem to investigate further is, which initial design to choose. The equidistant

design chosen for the simulations in Chapter 5 is quite conservative and minimal in the
sense, that there was only one observation per design point. If one would spend more
observations in the beginning, the estimates would be more stable at the start. Karvanen
(2008) proposes an interesting approach for the 2-parameter model using binary search.
The goal is to shorten the time until there is an overlap in the design points.
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A. Appendix

A.1. Proof of Lemma 1
Lemma 1. Let Fn have full column rank, Θ = Rp and G be a strictly increasing distri-
bution function. Let C0

n ∩ C1
n 6= ∅, then θ̂n exists and arg maxθ∈Rp l(θ,yn,Fn) is bounded.

Proof. In this proof, let v ∈ Rp be a unit vector, i.e. ‖v‖ = 1.
All summands of the log-likelihood and hence the log-likelihood itself are strictly smaller

than 0, because G takes only values in the interval (0, 1). Since X is compact we can
choose a θ ∈ Rp, such that

|f(x)>θ| ≤ C

for some C > 0 and all x ∈ X and hence |l(θ,yn,Fn)| is bounded. If we can show now,
that the log-likelihood tends to −∞ in all directions, i.e.

lim
t→∞

l(θ + tv,yn,Fn) = −∞

for all unit vectors v, the result would follow. But because l and all its summands are
bounded above, it is in fact sufficient, that at least one of the summands in the log-
likelihood tends to −∞. Let us consider the behavior of the summands.
Since G is a distribution function we have,

lim
t→∞

logG(t) = 0 lim
t→∞

log(1−G(t)) = −∞

lim
t→−∞

logG(t) = −∞ lim
t→−∞

log(1−G(t)) = 0

and the summands of the log-likelihood function

yi logG
(
f(xi)>(θ + tv)

)
+ (1− yi) log

(
1−G

(
f(xi)>(θ + tv)

))
,

depending on the sign of f(xi)>v and the value of yi, will tend to 0 or −∞, too.
Let i ∈ {1, . . . , n} and v be fixed, such that f(xi)>v > 0. Assume for now, that yi = 1.

Because C0
n ∩ C1

n 6= ∅ there exists i′ ∈ {1, . . . , n}, i′ 6= i, such that

yi′ = 0 and f(xi′)>v > 0

or

yi′ = 1 and f(xi′)>v < 0 .

For t −→∞ the i-th summand will tend to 0, but

lim
t→∞

(
yi′ logG

(
f(xi′)>(θ + tv)

)
+ (1− yi′) log

(
1−G

(
f(xi′)>(θ + tv)

)))
= −∞ .
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For t −→ −∞ the i-th summand of the log-likelihood will tend to −∞ itself. It follows,
that the log-likelihood tends to −∞ for the directions given by v and −v. The same
argument holds, if yi = 0.
What remains to be shown is, that for each unit vector v exists an index i ∈ {1, . . . , n},

i.e. a design point xi, such that
f(xi)>v 6= 0 .

But this is a consequence of the fact, that Fn has full column rank, and hence its rows
span Rp. Consequently the log-likelihood tends to −∞ in all directions and the set of
maxima, arg maxθ∈Rp l(θ,yn,Fn), is bounded and not empty.

A.2. Some Results on Matrices
Let fi ∈ Rp, i = 1, 2, . . ., be a sequence of vectors, Fn := (f1, . . . ,fn)> the n × p matrix
with i-th row f>i . Define An := F>nFn = ∑n

i=1 fif
>
i . Let (vi)i≥1 be a sequence in R and

vn = (v1, . . . , vn)> the vector of its first n components.
The following lemma shows two consequences of the fact, that

det(Ep + f1f
>
2 ) = 1 + f>1 f2 .

(Harville, 1997, Corollary 18.1.3, p. 420) The first part can be found in Lai and Wei
(1982, Lemma 2 (i), p. 156), the second for example in Wynn (1970, p. 1658):

Lemma A.1. (i) If An+1 is nonsingular, then

f>n+1A−1
n+1fn+1 = det An+1 − det An

det An+1

(ii) If An is nonsingular, then

f>n+1A−1
n fn+1 = det An+1 − det An

det An

Lemma A.2 corresponds to Lemma 2 (ii) in Lai and Wei (1982). It gives a bound for
sums of quadratic forms.

Lemma A.2 (Lai and Wei, 1982, Lemma 2 (ii)). Assume that Am is nonsingular for
some m ∈ N. Then λmax(An) is nondecreasing and An is nonsingular for all n ≥ m.
Moreover if limn→∞ λmax(An) <∞, then ∑∞i=m f>i A−1

i fi <∞.
On the other hand, if limn→∞ λmax(An) = ∞, then there exist n0 ≥ m and K > 0, such
that ∑n

i=m f
>
i A−1

i fi

log
(
λmax(An)

) ≤ K

for all n ≥ m.

The next lemma is used in equation (2.12) of Chen et al. (1999).

Lemma A.3. Let F be a n × p matrix with full column rank, i.e. F>F is invertible, let
A be a n× n diagonal matrix with positive diagonal elements and let v ∈ Rp.
Then

λmin(A)‖v‖ ≤ ‖(F>F)−1F>AFv‖ ≤ λmax(A)‖v‖
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Proof. Since λmin(A) is the smallest diagonal element of A

1
λmin(A)F>AF− F>F

is positive semidefinite and hence is

(F>F)−1 − λmin(A) (F>AF)−1 .

By definition of the norm

‖(F>F)−1F>AFv‖2 = v>F>AF(F>F)−2F>AFv
≥ λmin(A)2 v>F>AF(F>AF)−2F>AFv = λmin(A)2 ‖v‖2 .

The second inequality follows similarly, since

F>F− 1
λmax(A)F>AF

is positive semidefinite and hence

v>F>AF(F>F)−2F>AFv ≤ λmax(A)2 v>F>AF(F>AF)−2F>AFv .

The proof for the upper bound in Lemma A.3 is valid for diagonal matrices with non-
negative entries, as long as λmax(A) > 0. For arbitrary diagonal matrices A we get the
following result.

Lemma A.4. Let F be a n × p matrix with full column rank, i.e. F>F is invertible, let
A be a n× n diagonal matrix and let v ∈ Rp.
Then

‖(F>F)−1F>AFv‖ ≤ 2 max{|λmin(A)|, |λmax(A)|}‖v‖

Proof. Denote the entries of the diagonal matrix A by ai, i = 1, . . . , n. This matrix can
be written as the difference of its positive and negative parts A+ and A−, which are
defined by

A+ = diag
i=1,...,n

(max{ai, 0}) and A− = diag
i=1,...,n

(max{−ai, 0}) .

With the triangle inequality follows

‖(F>F)−1F>AFv‖ ≤ ‖(F>F)−1F>A+Fv‖+ ‖(F>F)−1F>A−Fv‖ .

Now we can apply the upper bound from Lemma A.3 to both summands on the right-hand
side and get

‖(F>F)−1F>AFv‖ ≤ λmax(A+)‖v‖+ λmax(A−)‖v‖ .
By definition

λmax(A+) = max{λmax(A), 0} and λmax(A−) = max{−λmin(A), 0}

which finishes the proof.
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Corollary A.1. Let F be a n × p matrix with full column rank, i.e. F>F is invertible,
let A1 and A2 be a n× n diagonal matrices with positive diagonals and let v ∈ Rp.
Then

‖(F>A1F)−1v − (F>A2F)−1v‖
≤ 2 max

{∣∣∣λmin(A−1
1 (A2 −A1))

∣∣∣, ∣∣∣λmax(A−1
1 (A2 −A1))

∣∣∣}‖(F>A2F)−1v‖

Proof. With the properties of the norm follows

‖(F>A1F)−1v − (F>A2F)−1v‖ ≤ ‖(F>A1F)−1(F>A2F− F>A1F)‖‖(F>A2F)−1v‖ .

Application of Lemma A.4 yields the result:

‖(F>A1F)−1(F>A2F− F>A1F)‖
≤ 2 max

{∣∣∣λmin(A−1
1 (A2 −A1))

∣∣∣, ∣∣∣λmax(A−1
1 (A2 −A1))

∣∣∣} .
The following lemma is also mentioned in Wu and Wynn (1978, p. 1280)

Lemma A.5. Let X be compact and ξ ∈ Ξ a nonsingular design. Let d be continuous
and d(t) > 0 for all t ∈ R. Then there exist constants 0 < c ≤ C <∞ such that

cλmax(M(θ, ξ)−1) ≤ max
x∈X

(
d(f(x)>θ)f(x)>M(θ, ξ)−1f(x)

)
≤ Cλmax(M(θ, ξ)−1) .

Proof. The upper bound follows from

max
x∈X

(
d(f(x)>θ)f(x)>M(θ, ξ)−1f(x)

)
≤ max

x∈X

d(f(x)>θ)f(x)>M(θ, ξ)−1f(x)
d(f(x)>θ)f(x)>f(x)

max
x∈X

(
d(f(x)>θ)f(x)>f(x)

)
≤ λmax(M(θ, ξ)−1) max

x∈X

(
d(f(x)>θ)f(x)>f(x)

)
since C := maxx∈X

(
d(f(x)>θ)f(x)>f(x)

)
is bounded. For the lower bound consider the

spectral decomposition of M(θ, ξ)−1. Denote its eigenvalues by λ̃(1) ≤ . . . ≤ λ̃(p) and the
corresponding normed eigenvectors by zi, i = 1, . . . , p, then

max
x∈X

(
d(f(x)>θ)f(x)>M(θ, ξ)−1f(x)

)
= max

x∈X

p∑
i=1

d(f(x)>θ)(f(x)>zi)2λ̃(i)

≥ max
x∈X

d(f(x)>θ)(f(x)>zp)2λ̃(p) .

For any nonsingular design η ∈ Ξ follows, that

max
x∈X

d(f(x)>θ)(f(x)>zp)2λ̃(p) ≥
∫
X
d(f(x)>θ)(f(x)>zp)2η(dx)λ̃(p)

≥ z>p M(θ, η)zpλ̃(p) ≥ λmin(M(θ, η))λmax(M(θ, ξ)−1)

and λmin(M(θ, η)) > 0. Choosing a nonsingular design η0, which is not ξ, but otherwise
arbitrary, closes the proof with c := λmin(M(θ, η0)).
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The following lemma gives a bound for the difference of the eigenvalues of two matrices.
It is in fact valid for Hermitian matrices. (see Serre, 2010, Proposition 6.2, p. 112)

Lemma A.6. Let the matrices A,B ∈ Rp×p be symmetric. Denote by λ(k) the k-th
smallest eigenvalue, then

|λ(k)(A)− λ(k)(B)| ≤ max{|λmax(A−B)|, |λmin(A−B)|} .

A.3. Results Concerning Stochastic Approximation
Next the extended Arzelà-Ascoli theorem from page 22 is proved. The theorem itself
appears as Theorem 4.2.2 in Kushner and Yin (2003, p. 102). The functions fn : R −→ Rp

in the sequence (fn)n≥1 are assumed to be bounded and measurable.

Theorem 5 (Extended Arzelà-Ascoli). Let J ⊂ R be a bounded interval. Let (fn)n≥1 be
equicontinuous in the extended sense and assume ‖fn(x)‖ ≤ C for all x ∈ J , n ≥ 1, then
(fn)n≥1 has a subsequence converging uniformly to a continuous limit on J .

Proof. Since the fn are bounded, we can find a convergent subsequence on Q ∩ J using
a diagonal argument: I.e. there is a subsequence (fni

)i≥1 such that fni
(x1) converges for

some x1 ∈ Q ∩ J . Now (fni
)i≥1 includes a further subsequence, which converges at some

point x2 ∈ Q ∩ J , x1 6= x2. By induction we get a subsequence converging pointwise on
Q ∩ J .
Denote this subsequence by (f̃n)n≥1 and its limit by f̃∞. Next we will extend the

convergence to J . Let t ∈ J and ε > 0. Since Q is dense in R, there exist s ∈ Q ∩ J such
that |t− s| ≤ ε.
With the equicontinuity in the extended sense there exists an n1 ∈ N, such that

‖f̃n(t)− f̃n(s)‖ ≤ ε (A.1)

for all n ≥ n1. Since f̃n(s) converges for all s ∈ Q ∩ J there exists an n2 ∈ N, such that

‖f̃n(s)− f̃m(s)‖ ≤ ε (A.2)

for all n,m ≥ n2. Combining both we get

‖f̃n(t)− f̃m(t)‖ ≤ ‖f̃n(t)− f̃n(s)‖+ ‖f̃n(s)− f̃m(s)‖+ ‖f̃n(s)− f̃m(t)‖ ≤ 3ε

for n,m ≥ max{n1, n2}. But this means, that (f̃n)n≥1 converges uniformly to f̃∞ on J .
The continuity of the limit follows from

‖f̃∞(t)− f̃∞(s)‖ ≤ ‖f̃∞(t)− f̃n(t)‖+ ‖f̃n(t)− f̃n(s)‖+ ‖f̃∞(s)− f̃n(s)‖

and equations (A.1), (A.2).

The following lemma summarizes some facts about tn, ν and related sums.

Lemma A.7. Let s < t.

(i) t− αν(tn+t)+1 ≤
∑ν(tn+t)
i=n+1 αi ≤ t
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(ii) t− s− αν(tn+t)+1 ≤
∑ν(tn+t)
i=ν(tn+s)+1 αi ≤ t− s+ αν(tn+s)+1

(iii)
t− s− αν(tn+t)+1

αν(tn+t)
≤ ν(tn + t)− ν(tn + s) ≤ t− s+ αν(tn+s)+1

αν(tn+s)

Proof. By definition of the time tn
ν(tn+t)∑
i=n+1

αi = tν(tn+t) − tn ≤ tn + t− tn = t .

The lower bound follows similarly:

tν(tn+t)+1 ≥ tn + t =⇒ tν(tn+t) ≥ tn + t− αν(tn+t)+1 .

Combining both inequalities from before yields
ν(tn+t)∑

i=ν(tn+s)+1
αi =

ν(tn+t)∑
i=n+1

αi −
ν(tn+s)∑
i=n+1

αi ≤ t− s+ αν(tn+s)+1

and
ν(tn+t)∑

i=ν(tn+s)+1
αi ≥ t− s− αν(tn+t)+1 .

Since

(ν(tn + t)− ν(tn + s))αν(tn+t) ≤
ν(tn+t)∑

i=ν(tn+s)+1
αi ≤ (ν(tn + t)− ν(tn + s))αν(tn+s)+1

this follows from item (ii).

A.4. Limit Theorems for Martingales
Theorem A.1 (Theorem 2.18, Hall and Heyde, 1980, p. 35). Let Sn = ∑n

i=1 εi be a
martingale with respect to Fn and (Un)n≥1 a nondecreasing sequence of positive random
variables such that Un is Fn−1-measurable for each n.
If 1 ≤ p ≤ 2 then

∞∑
i=1

U−1
i εi (A.3)

converges almost surely on the set {∑∞i=1 U
−p
i E(|εi|p|Fi−1) <∞}, and

lim
n→∞

U−1
n

n∑
i=1

εi = 0 (A.4)

almost surely on the set {limn→∞ Un =∞,∑∞i=1 U
−p
i E(|εi|p|Fi−1) <∞}.

If 1 ≤ p ≤ 2, then (A.3) and (A.4) both hold on the set
{ ∞∑
i=1

U−1
i <∞,

∞∑
i=1

U
−1−p/2
i E(|εi|p|Fi−1) <∞

}
.
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The following central limit theorem follows from Corollary 3.1 in Hall and Heyde (1980,
p. 58). Similar results can be found in Dvoretzky (1972).

Theorem A.2. Let Sn := ∑n
i=1 εi be a zero mean, square integrable martingale with

respect to Fn. Let
1
n

n∑
i=1

E
(
ε2
i

∣∣∣Fi) p−→ 1

and for all δ > 0
1
n

n∑
i=1

E
(
ε2
i1{|n−1/2εi|>δ}

∣∣∣Fi) p−→ 0 . (A.5)

Then n−1/2Sn
d−→ N(0, 1).

A.5. The Essential Supremum
This can be found in Chow and Teicher (1988, p. 194). While they assume a gen-
eral measure space with a σ-finite measure and measurable function, we restrict the
definition to a probability space (Ω,F ,P). Let T be an arbitrary nonempty set and
Xt : Ω −→ R ∪ {±∞}, t ∈ T , a family of random variables. Then ess supt∈T Xt is defined
by

(i) ess supt∈T Xt is a random variable

(ii) For all t ∈ T : P(Xt ≤ ess supt∈T Xt) = 1

(iii) Let Z be a random variable satisfying (i) and (ii) then P(Z ≥ ess supt∈T Xt) = 1

Lemma A.8 (Lemma 6.5.1, Chow and Teicher, 1988, p. 194). Under the previous as-
sumptions, there exists a countable subset T0 ⊆ T , such that

sup
t∈T0

Xt = ess sup
t∈T

Xt .





B. Calculations for the Examples
This section summarizes some facts about models introduced in Example 1, i.e. logit,
probit, log-log and complementary log-log. They differ in the choice of the mean function
as can be seen in Figure 2.1. The Table B.1 shows mean functions, derivatives and ψ for
the models. For the probit model ψ does not simplify. The corresponding entry is marked
by an asterisk. The distribution function of the standard normal distribution is denoted
by Φ.

Table B.1.: Mean functions, derivatives and ψ for different models
Model G(t) G′(t) G′′(t) ψ(t)
Logit (1 + e−t)−1 G(t)(1−G(t)) G′(t)(1− 2G(t)) 1
Probit Φ(t) (2π)−1/2 e−t

2/2 −tG′(t) ∗

Log-log e−e
−t

e−tG(t) (e−t − 1)G′(t) e−t (1−G(t))−1

complementary
log-log

1− e−et
et (1−G(t)) (1− et)G′(t) etG(t)−1

B.1. Log-concavity of G and 1−G
Logit model
Log-concavity of G(t) follows since

d
dt logG(t) = G(t)(1−G(t))

G(t) = 1−G(t)

and G is strictly increasing. By symmetry log(1−G(t)) = logG(−t), which yields the
concavity of log(1−G(t)).

Probit model
The derivative of the standard normal density is

G′′(t) = −t 1√
2π
e−

1
2 t

2 = −tG′(t)

and hence

d2

dt2 logG(t) = G′′(t)G(t)−G′(t)2

G(t)2 = −(tG(t) +G′(t)) G
′(t)

G(t)2 .

83
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This is negative, if tG(t) + G′(t) > 0. For t ≥ 0 it obviously holds. If t is negative, this
follows from an inequality for Mill’s ratio (see e.g. Gut, 2013, p. 558): For s > 0

1−G(s) < G′(s)
s

. (B.1)

Substitute s by −t > 0, then this is equivalent to

−t (1−G(−t)) < G′(−t)⇐⇒ −t (1−G(−t))−G′(−t) < 0 ,

which by symmetry of G and G′ is equivalent to tG(t) + G′(t) > 0. Concavity of
log(1−G(t)) follows again by symmetry.

Log-log model
The mean function is log-concave, since

logG(t) = −e−t

is concave. For log(1−G(t)) consider its derivatives:

d
dt log(1−G(t)) = e−t

(
1− ee−t

)−1

d2

dt2 log(1−G(t)) = −e−t

(1− ee−t)2

(
1− ee−t + ee

−t

e−t
)

It is negative if and only if
1− ee−t + ee

−t

e−t > 0

or equivalently if
e−e

−t

> 1− e−t .

This is true for all t ∈ R as can be checked using the Taylor approximation of the
exponential function, i.e. by

e−x > 1− x

and choosing x = exp(−t). Hence the log-likelihood is concave, since G and 1 − G are
both log-concave.

Complementary log-log model
Showing concavity here is virtually the same as in the log-log case. The reason is the
relationship of the two models: Denote the mean function of the log-log model by G1,
then G(t) = 1 − G1(−t). Consequently the log-concavity follows immediately from the
results for the log-log model.

B.2. Calculations for Example 6
The conditions to check for the models is, that

ψ′(t)(1−G(t))− (1− C)d(t) ≤ 0 and − ψ′(t)G(t)− (1− C)d(t) ≤ 0 .
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We will see, that these hold for C = 1/2. Consider the first inequality:

0 ≥ ψ′(t)(1−G(t))− 1
2d(t)

= G′′(t)G(t)(1−G(t))−G′(t)2(1− 2G(t))
G(t)2(1−G(t)) − 1

2
G′(t)2

G(t)(1−G(t))

⇐⇒ 0 ≥ G′′(t)G(t)(1−G(t))−G′(t)2(1− 2G(t))− 1
2G
′(t)2G(t)

= G′′(t)G(t)(1−G(t))−G′(t)2
(

1− 3
2G(t)

)
. (B.2)

Similarly, for the second inequality:

0 ≥ −ψ′(t)G(t)− 1
2d(t)

⇐⇒ 0 ≤ G′′(t)G(t)(1−G(t))−G′(t)2(1− 2G(t)) + 1
2G
′(t)2(1−G(t))

= G′′(t)G(t)(1−G(t))− 1
2G
′(t)2(1− 3G(t)) . (B.3)

Log-log model
For the first inequality, the one in (B.2), we get:

0 ≥ (e−t − 1)G′(t)G(t)(1−G(t))−G′(t)e−tG(t)
(

1− 3
2G(t)

)
⇐⇒ 0 ≥ (e−t − 1)(1−G(t))− e−t

(
1− 3

2G(t)
)

= −1 +G(t) + 1
2e
−tG(t)

⇐⇒ G(t)−1 = ee
−t ≥ 1 + 1

2e
−t .

That the last inequality holds follows, as in the previous section, with a Taylor expansion
of the exponential function:

ee
−t ≥ 1 + e−t > 1 + 1

2e
−t . (B.4)

The second inequality we have to check is (B.3):

0 ≤ (e−t − 1)G′(t)G(t)(1−G(t))− 1
2G
′(t)e−tG(t)(1− 3G(t))

⇐⇒ 0 ≤ (e−t − 1)(1−G(t))− 1
2e
−t(1− 3G(t))

=
(
e−t − 1− 1

2e
−t
)

(1−G(t)) + e−tG(t)

=
(1

2e
−t − 1

)
(1−G(t))− e−t(1−G(t)) + e−t

= −
(

1 + e−t
1
2

)
(1−G(t)) + e−t (B.5)
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We will show, that the right-hand side is a decreasing function in t, which is positive at
t = 0 and tends to 0 for t −→ ∞. From this follows, that it has to be positive on the
whole real line.
The right-hand side of (B.5) is a decreasing function in t: Its derivative

d
dt

(
−
(

1 + 1
2e
−t
)

(1−G(t)) + e−t
)

= e−t
1
2(1−G(t)) +

(
1 + 1

2e
−t
)
G′(t)− e−t

= e−t
1
2
(
−1 +G(t)(1 + e−t)

)
is negative, if and only if

0 ≥ −1 +G(t)(1 + e−t)⇐⇒ G(t)−1 ≥ 1 + e−t ,

which, as stated in (B.4), holds for all t ∈ R. The limit of (B.5) for t −→∞ is

lim
t→∞

(
−
(

1 + 1
2e
−t
)

(1−G(t)) + e−t
)

= 0 .

Since for t = 0
−
(

1 + 1
2e
−t
)

(1−G(t)) + e−t = 3− e
2e > 0 .

the right-hand side of (B.5) has to be nonnegative.

Complementary log-log model
As in the previous section denote the mean function of the log-log model by G1, then
G(t) = 1−G1(−t). With this convention

0 ≥ G′′(t)G(t)(1−G(t))−G′(t)2
(

1− 3
2G(t)

)
⇐⇒ 0 ≥ −G′′1(−t)G1(−t)(1−G1(−t))−G′1(−t)2

(
1− 3

2(1−G1(−t))
)

⇐⇒ 0 ≤ G′′1(−t)G1(−t)(1−G1(−t))− 1
2G
′
1(−t)2

(
1− 3G1(−t))

)
and

0 ≤ G′′(t)G(t)(1−G(t))− 1
2G
′(t)2

(
1− 3G(t))

)
⇐⇒ 0 ≤ −G′′1(−t)G1(−t)(1−G1(−t))− 1

2G
′
1(−t)2

(
1− 3(1−G1(−t))

)
⇐⇒ 0 ≥ G′′1(−t)G1(−t)(1−G1(−t)) +G′1(−t)2

(
1− 3

2G1(−t)
)
,

which are the inequalities for the log-log model with −t instead of t. Since (B.2) and
(B.3) hold for all t ∈ R in the log-log case, the proof is finished.

Probit model
Because G′′(t) = −tG′(t) the inequalities (B.2) and (B.3) reduce to

0 ≤ tG(t)(1−G(t)) +G′(t)
(

1− 3
2G(t)

)
(B.6)
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and
0 ≥ tG(t)(1−G(t)) + 1

2G
′(t)(1− 3G(t)) .

The symmetry of the normal distribution yields, that they are equivalent. We will consider
(B.6). Let t < 0, then G(t) < 1/2 and by direct calculations

1− 3
2G(t) > (1−G(t))2 .

It follows, that

tG(t)(1−G(t)) +G′(t)
(

1− 3
2G(t)

)
≥ tG(t)(1−G(t)) +G′(t)(1−G(t))2

=
(
tG(t) +G′(t)(1−G(t))

)
(1−G(t)) .

The right-hand side is positive, if

tG(t) +G′(t)(1−G(t)) > 0 . (B.7)

We will use a similar argument as for the log-log model to show, that this holds: An
increasing function, which is positive at some point and tends to 0 for t −→ −∞ has to
be nonnegative.
The left-hand side of (B.7) is positive at t = 0 and its limit for t −→ −∞ is

lim
t→−∞

(tG(t) +G′(t)(1−G(t))) = 0 .

It remains, to show, that it is increasing. The first derivative of the left-hand side of (B.7)
is

d
dt(tG(t) +G′(t)(1−G(t))) = G(t) + tG′(t) +G′′(t)(1−G(t))−G′(t)2

= G(t) + tG′(t)G(t)−G′(t)2

= G(t)−G′(t)(−tG(t) +G′(t))
= G(t)−G′(t)

(
− t(1−G(−t)) +G′(t)

)
.

The last equality holds because of the symmetry of the normal distribution. With (B.1),
i.e. from the properties of Mill’s ratio, follows

G(t)−G′(t)
(
− t(1−G(−t)) +G′(t)

)
≥ G(t)−G′(t)(G′(−t) +G′(t)) = G(t)− 2G′(t)2 ,

where the last equality is again because of the symmetry. Now G(t)− 2G′(t)2 tends to 0
for t −→ −∞ and is positive for t = 0, too. Its derivative is given by

d
dt
(
G(t)− 2G′(t)2

)
= G′(t)(1 + 4tG′(t)) ,

which is positive if and only if 1 + 4tG′(t) is.
The function −x exp(−x2) has a local maximum at x = −1/

√
2 and hence, with the

substitution t =
√

2x, √
π

4 > 0.44 > 1√
2e1/2

≥ −t√
2et2/2
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for t ≤ 0. But because
√
π

4 >
−t√
2et2/2

⇐⇒ 1 + 4tG′(t) > 0 ,

follows, that G(t) − 2G′(t)2 is increasing. Combining this with its limit yields, that the
left-hand side of (B.7) is increasing and itself is positive. Hence the inequality (B.7) holds
for t < 0 and consequently (B.6).
The result for the positive half-axis follows similarly.



C. Additional Figures from the
Simulations

Distribution of the Estimates
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Figure C.1.: Histograms of the components of the estimate and different sample sizes for
the probit model with θ̄ = (0 1)>
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Figure C.2.: Histograms of the components of the estimate and different sample sizes for

the probit model with θ̄ = (0.6 1.8)>
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Figure C.3.: Histograms of the components of the estimate and different sample sizes for
the probit model with θ̄ = (1.4 0.4)>
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Figure C.4.: Histograms of the components of the estimate and different sample sizes for

the log-log model with θ̄ = (0 1)>
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Figure C.5.: Histograms of the components of the estimate and different sample sizes for
the log-log model with θ̄ = (0.6 1.8)>
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Figure C.6.: Histograms of the components of the estimate and different sample sizes for

the log-log model with θ̄ = (1.4 0.4)>
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Figure C.7.: Histograms of the components of the estimate and different sample sizes for
the complementary log-log model with θ̄ = (0 1)>
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Figure C.8.: Histograms of the components of the estimate and different sample sizes for

the complementary log-log model with θ̄ = (0.6 1.8)>

Eigenvalues of the Mean Squared Error Matrix
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Figure C.9.: Square root of the eigenvalues of MSEn for the probit model.
solid: λmax(MSEn), dashed: λmin(MSEn), gray solid: curves of order n−1/2
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Figure C.10.: Square root of the eigenvalues of MSEn for the log-log model.
solid: λmax(MSEn), dashed: λmin(MSEn), gray solid: curves of order n−1/2
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Figure C.11.: D-efficiency of the estimated MSE for the probit model
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Figure C.12.: D-efficiency of the estimated MSE for the log-log model
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Figure C.13.: D-efficiency of the estimated MSE for the complementary log-log model
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Figure C.14.: Efficiency of the adaptive design for the probit model.
solid: median of the efficiencies, dashed: 5%- and 95%-quantile, dotted:
minimum and maximum
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Figure C.15.: Efficiency of the adaptive design for the log-log model.
solid: median of the efficiencies, dashed: 5%- and 95%-quantile, dotted:
minimum and maximum
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Histograms of the Design Points
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(c) n = 500

Figure C.16.: Histograms of the design points at different steps calculated over all repli-
cations for the logit model with θ̄ = (1.4 0.4)>.
dashed lines: locally D-optimal design points
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Figure C.17.: Histograms of the design points at different steps calculated over all repli-
cations for the probit model with θ̄ = (0 1)>.
dashed lines: locally D-optimal design points
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(c) n = 500

Figure C.18.: Histograms of the design points at different steps calculated over all repli-
cations for the probit model with θ̄ = (0.6 1.8)>.
dashed lines: locally D-optimal design points
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(c) n = 500

Figure C.19.: Histograms of the design points at different steps calculated over all repli-
cations for the probit model with θ̄ = (1.4 0.4)>.
dashed lines: locally D-optimal design points
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(c) n = 500

Figure C.20.: Histograms of the design points at different steps calculated over all repli-
cations for the log-log model with θ̄ = (0 1)>.
dashed lines: locally D-optimal design points
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Figure C.21.: Histograms of the design points at different steps calculated over all repli-
cations for the log-log model with θ̄ = (0.6 1.8)>.
dashed lines: locally D-optimal design points
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(c) n = 500

Figure C.22.: Histograms of the design points at different steps calculated over all repli-
cations for the log-log model with θ̄ = (1.4 0.4)>.
dashed lines: locally D-optimal design points
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(c) n = 500

Figure C.23.: Histograms of the design points at different steps calculated over all repli-
cations for the complementary log-log model with θ̄ = (0 1)>.
dashed lines: locally D-optimal design points
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(c) n = 500

Figure C.24.: Histograms of the design points at different steps calculated over all repli-
cations for the complementary log-log model with θ̄ = (0.6 1.8)>.
dashed lines: locally D-optimal design points
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List of Symbols

1A indicator function of the set A.

Cjn relative interior of the convex cone generated by design points
where yi = j, j = 0, 1.

d(t) weight function in the Fisher information matrix.
Dn(Fnθ) diagonal matrix with entries d(f(xi)>θ).
Dn(θ1,θ2) sum of squares for nonlinear models.

eff(ξ1, ξ2,θ) efficiency of the design ξ1 with respect to ξ2.
Em,n accumulated effects of the observational error εn.
Ep indentity matrix.
εn random / observational error of the n-th observation.

f(x) regression function.
Fn design matrix.
Fn σ-field generated by Yn and X1, . . . ,Xn.
Fφ(M1,M2) directional derivative of the criterion function φ at M1 in direction

of M2 −M1.

G(t) mean function.
Gm,n accumulated effects of the mean function.
Gn(Fnθ) vector of mean functions corresponding to Yn.

Hn(θ,Fn) Hessian matrix of the log-likelihood.

I(θ,F) Fisher information matrix.

l(θ,yn,Fn) log-likelihood function for n observations.
λn minimal eigenvalue of F>nFn.
λmin(A), λmax(A) smallest/largest eigenvalue of a matrix A.

Mθ set of all weighted information matrices over X .
M(θ, ξ) weighted (Fisher) information matrix for a design ξ.
MSEn estimated mean squared error matrix.

ν(t) index at time t.

φD D-criterion.
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104 List of Symbols

ψ(t) first derivative of log
(
G(t)/(1−G(t))

)
.

Ψn(Fnθ) diagonal matrix with entries ψ(f(xi)>θ).

r(t, t0) error of the Taylor expansion of G.
Rn(θ1,θ2),Rn vector of errors of the Taylor expansion of G.
Rm,n accumulated effects of Rn.

sn(θ) score function.
S̃m,n accumulated effects of s̃.
s̃n(θ1,θ2) “pseudo” score function in the recursion of θ̂n.

Θ parameter space.
θ parameter.
θ̄ “actual value” of the parameter in the experiment.
θ̂n maximum likelihood estimator/estimate based on the first n ob-

servations.
θ̂(t) piecewise constant time interpolation of the sequence of estimates.
θ(t) limit function of the interpolated process θ̂(tn + t).
tn “natural” time after n steps.

X design space.
X, Xn X -valued random variables.
x, xn design point, n-th design point.
ξ design.
ξx one-point design concentrated at x.
Ξ set of all designs over X .

Y , Yn observation, n-th observation.
Yn vector of the first n observations.
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