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Abstract 

 

 
The main idea of this dissertation is development of walking strategy of biped robot with 

prolonged double support phase in step cycle. Technical purpose of this work is an 

upgrade of leg’s construction of biped robot Rotto in order to lighten it using an 

electrohydraulic actuator with flexible gear. Scientific objective is design of stable biped 

walking algorithm with step cycle stabilization during double support phase. Force 

controlled electrohydraulic actuator is developed. Stabilization system for planar robot 

using position control of robot’s mass center is developed and implemented. Stabilization 

system for biped robot in the double support state is built using kinematical constraints for 

realization of compliant features of robot. Stable dynamic walking strategy with 

stabilization in the double support state is developed and implemented in biped robot 

Rotto. Performance of developed actuator, control and stabilization systems are simulated 

and proved experimentally. 
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Kurzfassung 

 

 
Die Hauptidee dieser Arbeit ist die Entwicklung von Laufalgorithmen des zweibeinigen 

Roboters mit Doppelstützphase im Schrittzyklus. Technisches Ziel ist die Modernisierung 

der Konstruktion von Roboterbeinen mit Einsatz des elektrohydraulischen Antriebs mit 

flexiblem Getriebe. Wissenschaftliches Ziel der Arbeit ist ein Entwurf des stabilen 

Robotergehens mit der Stabilisierung des Schrittzyklus in der Doppelstützphase. In dieser 

Arbeit ist die Konstruktion des elektrohydraulischen Antriebs mit flexiblem Getriebe 

dargestellt. Das Stabilisierungssystem des vereinfachten Roboters mit Positionsregelung 

des Schwerpunktes wurde entwickelt und implementiert. Das Stabilisierungssystem des 

zweibeinigen Roboters in dem Doppelstützzustand wurde mit kinematischen Reflexen für 

die Gewährleistung der Elastizität des Roboters realisiert. Im Rahmen dieser Arbeit wurde 

stabile dynamische Gehensstrategie entwickelt und im Roboter ROTTO implementiert. 

Die Eigenschaften des entwickelten Antrieb-, Steuer- und Stabilisierungssystem wurden 

simuliert und experimentell geprüft.  
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 Introduction and Statement of the Problem Chapter 1.

1.1 Introduction 

Implementation of dynamic walking by biped robots remains one of the most actual and 

urgent problems nowadays. This can be explained in many ways. On the one hand, this 

form of movement on surface occurs most frequently in nature. It is a feature of people, 

animals, birds and insects. On the other hand, walking is the most energy-efficient form of 

movement [14]. 

 

People and animals demonstrate incredible capabilities of universal adaptive walk in the 

real life. In order to create robots with similar abilities, their mechanisms should have 

much more degrees of freedom than they have currently, and actuators in robots should 

have features similar to muscles of people and animals. 

 

Currently science has no clear and final solution to the problem of biped human-like 

walking. A lot of scientists and researchers worldwide work on this problem in order to 

create more efficient, fast and stable walking robots. The works are held towards creation 

of fundamentally new actuator systems, mechanical constructions, control algorithms and 

stabilization systems. 

 

Scientific interest of this problem is caused not only by the objective to create an exact 

copy of human walking. One of the main goals remains application of obtained 

knowledge, skills and technologies in medicine. Models of movements, control 

algorithms, actuator systems, joint structures and many more other things can be widely 

used in creation of active prostheses which are quite frequently used in medicine. 

1.2 State of Research in Robotics 

At that point a great variety of prototypes of bipedal robots with the ability of dynamic 

walking is built. It is possible to distinguish between them because they have different 

constructions, actuator systems, control algorithms and etc. All robots can be classified on 

the basis of double support phase presence in walking and its duration.  

 

Walking of robots with prolonged double support phase may occur much more often. The 

reason for this is that this type of walking is much more easily implemented. In the double 
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support a mechanism of a robot as a control object is more controllable, since it has 

greater support surface than in the single support state. The presence of this kind of state 

in a step cycle allows stabilizing of a robot and its walking. Such types of gates tend to be 

similar to sneaking gate of a human. The speed of this type of gait is relatively small. 

Energy efficiency is also not very high, since energy is consumed on acceleration and 

deceleration of the robot in every step. 

 

Walking with instantaneous or very short double support phase occurs less frequently but 

at the same time it is more fast and power efficient. This type of robot walking is harder to 

implement. The reason for this is the fact that in the single support phase a mechanism of 

a robot as a control object is almost incontrollable, since it has smaller support surface.  

 

1.2.1 Walking with prolonged double support phase 

The best example of a robot with prolonged double support phase is Asimo (Fig.1) [18], 

[41]. It was designed and developed by Honda in Fundamental Technology Research 

Center in Wako, Japan. Latest version of the robot, which was created in 2014, has 130 

cm height and weight 50 kg, and it has an ability to move at speeds of up to 7 km/h. Zero 

Moment Point stability criterion is used for the stabilization of the robot.  

 

Fig. 1.1 – Honda ASIMO 
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There is also double support phase in the gait of the robot, in which stabilization of 

walking step cycle happens with the help of torques in robot’s feet. Moreover, ASIMO 

can run. During running process there is a phase, in which ASIMO doesn’t have any 

contact with surface. 

 

Walking of the HRP robot, which was built in Japan [7], [27] can be another example of 

walking with prolonged double support phase. 

 

.  

Fig. 1.2 – Robot HRP 

 

Prolonged double support phase is explicitly expressed in the gait of the HRP robot, at the 

time of this phase step cycle stabilization happens with the help of torques in robot’s feet. 

 

Robots like Johnnie and Lola from TU München [17], [42] also walk with prolonged 

double support phase (Fig. 1.3). 
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Fig. 1.3 – Robots Johnnie and Lola from TU München 

 

1.2.2 Walking with instantaneous double support phase 

One of the first examples of walking with instantaneous double support phase is walking 

of robot Spring Flamingo [23], which was build in the MIT in 1994 (Fig. 1.4). A special 

feature of this type of walking is that it is realized in sagittal plane. In order to maintain 

the robot in balance in frontal plane it is held by a rod and is moving in a circle. 

 

Robot’s feet have very small mass and moment of inertia compared with robot’s body. 

Knees and feet of the robot are actuated with actuators, which are force controlled. 

Movements of legs with high dynamics are realized due to lightweight legs, this dynamics 

considerably exceeds dynamics of its own movement of a mechanism relative to a support 

foot. 
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Fig. 1.4 – robot Spring Flamingo 

 

Walking of Spring Turkey [23] from MIT (Fig. 1.5) is also an interesting example of 

planar walking. This robot also moves in a circle with a help of a rod. But for all that it 

hasn’t got any feet. Walking also happens with instantaneous double support phase.  

 

Robots Spring Flamingo and Spring Turkey walk in the plane. The task of step cycle 

stabilization in walking is to move a leg into the position which is consistent with current 

speed of the robot in due time. In the frontal plane these robots are stabilized with a help 

of rod. 
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Fig. 1.5 – robot Spring Turkey 

 

Realization of walking of a biped robot in space without any auxiliary leg with 

instantaneous double support phase is a very difficult task. This kind of walking is most 

similar to walking style of a human and two-legged animal. 

 

Currently one of the best examples of this type of walking is walking of a biped robot 

Petman that was built by Boston Dynamics [8]. 

  

 

Fig. 1.6 – Biped robot Petman 
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PETMAN is a robot designed for testing military clothing in conditions that are similar to 

real life, for example, with the use of real chemical warfare agents.  

 

PETMAN was made public in 2009, but actually only its legs were shown which were 

mowing somewhere towards. However already at that time robot PETMAN demonstrated 

remarkable stability: when developers pushed him, he could stay on both his feet and 

continued to walk. 

 

PETMAN can move fairly fast on smooth or rough country, including stairs, pits and 

moderate barriers. PETMAN is also able to move at speed of 5.2 km per hour, it’s speed 

of brisk walking of a human. This robot walks like a human being, it moves its feet in 

sneakers from heels to toes while walking. 

 

In order to make this robot more stable, there is used the system, which uses gyroscopes 

and thus helps to orientate in space and to stabilize the position of robot. Due to this 

system robot can stay on its feet and is able to return to its normal position after kicks or 

collisions. 

 

1.2.3 Darpa Robotics Challenge 

Darpa Robotics Challenge [12] is a prize competition, where one can meet most modern 

human-like robots. During competitions robots go through a lot of challenges like: 

walking on surface with barriers, climbing the stairs, work with a hand tool, driving of the 

vehicle. Robots also do various tasks in situations which can be dangerous for people, for 

example, rescue operations.  

 

All the robots in the competition are autonomous and have hands with fingers. The main 

goal for participants is to create an algorithm for problem solving in severe conditions that 

can threaten lives, and interaction between robots and people. In this study particular 

attention is paid to video materials that depict walking of robots that participated in the 

competition. Further one can see the most significant examples. 

 

MIT’s HELIOS (Atlas) was made by the company Boston Dynamics in 2013 [40]. 

Robot is 195 cm tall and weighs 182 kg. It also has hands with fingers, which are 
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necessary for implementation of various applied operations. This robot is totally 

autonomous. 

 

Fig. 1.7 – MIT’s HELIOS 

 

There is also double support phase in the gait of the robot, in which gait cycle 

stabilization happens with the help of moments in robot’s feet. Duration of stride in the 

single support is approximately 0.7s. 

 

Robot THORMANG (Fig. 1.8) was made by Robotis in 2013 [38]. It is 16 cm tall and it 

weighs 60 kg. It also has hands with fingers, which are assigned to do various operations 

like: work with a hand tool, opening of the doors, valve rotation, driving of a car and etc. 

 

THORMANG 2 is the upgrade version of THOR-OP (or THORMANG 1) [38]. It is much 

stronger, faster and more stable than the previous version, although its height and weight 

is similar to previous one. Modularity is its main feature. ROBOTIS has been providing 

modular servo actuators Dynamixel and Dynamixel-Pro for a decade. THORMANG 2 is 

simply assembled with 32 Dynamixel-Pro modules; its hardware and software are very 

compact and efficient. It allows us to develop a robot in a very short period time and to 

carry out fixes easily. For these reasons, modularity, we believe, will work well in real-
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life situations and DRC finals as well. After DRC finals, ROBOTIS is going to 

merchandise THORMANG 2 to share the DRC experience with other roboticists[38]. 

 

Figure 1.8 – Robotis THORMANG 

 

Double support phase is clearly expressed in the gait of the robot, in which stabilization of 

the robot and gate cycle happens with the help of moments in robot’s feet. Duration of 

stride in the single support is approximately 0.5 sec. Stride length is circa 15cm. 

 

Robot HUBO (Fig. 1.9) was built in 2014 in HUBO-Lab (Humanoid Robot Research 

Center) [34]. Height of this robot is 180cm and weight is 80 kg. 

 

DRC-Hubo is the latest version of HUBO. HUBO stands for "HUmanoid roBOt". HUBO 

has been developed since 2002 [34]. DRC-HUBO is the most powerful version among the 

previous HUBO series. The robot is redesigned to be more powerful and more capable. 

We rewrote the walking algorithm for the new design. Every joint motor is more 

powerful. All motors that handle a higher workload now are equipped with air cooling. 

The hands are stronger to handle various tasks in a disaster situation. It can also transform 
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from a standing position, used for biped walking, to a kneeling pose that is meant for 

wheeled and fast motion. This gives the robot is uniqueness [34]. 

 

Fig. 1.9 – DRC-HUBO 

 

There is double support phase, in which stabilization of walking stride cycle happens with 

the help of moments in robot’s feet. Duration of stride in the single support is 

approximately 0.5 sec. 

 

The prototype WALK-MAN platform is an adult size humanoid with a height of 1.85m 

an arm span of 2m and a weight of 118Kg [35]. 

 

The robot is a fully power autonomous, electrically powered by a 2KWh battery unit; its 

body has 33 degrees of freedom (DOF) actuated by high power electric motors and all 

equipped with intrinsic elasticity that gives to the robot superior physical interaction 

capabilities[35]. 

 

The robot perception system includes torque sensing, end effector F/T sensors, and a head 

module equipped with a stereo vision system and a rotating 3D laser scanner, the posture 

of which is controlled by a 2DOF neck chain. Extra RGB-D and colour cameras mounted 



 18 

 

at fixed orientations provide additional coverage of the locomotion and manipulation 

space [35]. 

 

IMU sensors at the head and the pelvis area provide the necessary inertial/orientation 

sensing of the body and the head frames. 

 

Protective soft covers mounted along the body will permit the robot to withstand impacts 

including those occurred during falling incidents [35]. 

 

Fig. 1.10 – Walk-Man 

 

Double support phase is well defined in the gait of the robot, in which stabilization of the 

robot and walking stride cycle happens with the help of moments in robot’s feet. Duration 

of stride in the single support is approximately 0.5 sec. Stride length is circa 15cm. 

 

Given overview allows us to come to a conclusion that the main tendency in development 

of biped robots is performing operations that are typical for people and the use of devices 

designed for people. 
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Walking of these robots is far from human walking, although it has got rather high 

characteristics (speed and stride length). Algorithms of walking are mainly based on the 

use of double support phase for stabilization of the stride cycle. The use of such 

algorithms allows easier to realize stable dynamic walking of biped robots. In comparison 

with walking of a human, it reminds about separated steps or sneaking gate. 

 

1.3 Motivation and Goal 

Object of the study is robot Rotto [47]. Creation of the robot began in 2009 in 

«RobotsLab». Its construction and algorithms of walking, which are based on control of 

periodic oscillation process, were described in previous studies [1], [2], [4].  

 

 

Fig. 1.11 – Biped robot ROTTO 

 

The previous attained results have disadvantages because of big leg mass, it brings 

disturbances into the work of control algorithm. Suggested control algorithms also don’t 

let compensate disturbances that appear during walking, since double support phase 

happens in them instantly, but in single support phase it is hard to stabilize the robot. 
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The technical goal of the paper is to improve robot’s leg construction by equipping it with 

an electrohydraulic actuator with a flexible drive [16] in order to ease and lessen moment 

of inertia in legs and to redistribute masses in the mechanical system of the robot. 

 

Scientific purpose of this thesis is to create an algorithm of dynamic walking with double 

support phase, in which stride cycle is stabilized and disturbances that occur upon contact 

with bearing surface are compensated.  

 

1.4  Statement of the Problem 

From the given technical and scientific purposes of this study following tasks were 

assigned and following problems were solved: 

 

 Design of an electrohydraulic actuator with a flexible gear, that is force controlled. 

 Upgrade of the existing leg construction by equipping it with an electrohydraulic 

actuator in order to lighten them and to redistribute masses of the robot. 

 Design of stabilization system of biped robot for double support state, which is 

based on control of position of robot’s mass center. 

 Creation of an algorithm of dynamic walking with prolonged double support 

phase, in which occur stabilization of step cycle and compensation of external 

disturbances affecting the robot. 

 Implementation of designed stabilization and walking algorithms on the real robot 

ROTTO. 

 

1.5 Structure of the thesis 

Content of the paper is structured as follows: In Chapter 1 introduction into the topic can 

be found. Practical importance and scientific relevance are illustrated. State of research in 

robotics to date is described. Purpose and tasks, which have to be solved, are also 

explained.  

 

Construction of an electrohydraulic actuator with flexible linear drive is represented in 

Chapter 2. There is also described a modernized construction of a leg with this actuator. 
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Practical studies were conducted. They show improvements in the work of a modernized 

leg.  

 

Chapter 3 is devoted to the construction of an algorithm which stabilizes a robot with the 

aid of foot that is based on control of a position of mass center. Prototype of a planar 

robot is described, which was built for synthesis of the stabilization system. Results of 

experimental studies of the proposed stabilization system are clarified in the conclusion. 

 

Stabilization system of a biped robot in the double support is proposed in Chapter 4. 

Methodology is introduced that allows realizing compliance of mechanical structure of a 

robot in relation to bearing surface by means of kinematic relations in the control system. 

Results of experimental studies of the proposed stabilization system are described in the 

conclusion. 

 

Chapter 5 describes in detail proposed walking algorithm of a robot, which is based on the 

use of prolonged double support phase in stride cycle for the stabilization of process. The 

findings of experimental studies of the proposed walking algorithm are clarified. 

Conclusions are made in the end of the paper. 
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 Electrohydraulic actuator. Leg construction upgrade Chapter 2.

According to realization of dynamic walking by biped robots, many demands are to be 

made of its mechanism construction. Within the scope of this work the following 

requirements have to be met: 

 

 Mechanism of robot should have general definite moment of inertia, which 

determines time constant of its own movement, and consequently, time of taking a 

step. 

 Legs of robot should be able to move with rather high dynamics, which allows 

moving legs faster than robot falls. 

 Inertial leg features should be such that highly dynamic leg movements wouldn’t 

negatively affect movements of the entire mechanism. 

 

In other words, leg mass under knee should be essentially smaller than mass of the entire 

robot. Otherwise realization of walking will be bothered by high negative disturbing 

effect caused by cross-connections in the mathematical model of robot’s mechanism. 

 

 In this chapter modernization of robot’s legs is described, this modernization 

allows to redistribute location of masses in the mechanism in such a way, that legs 

become lighter than the entire robot. Modification of the construction of robot’s legs is 

that electrohydraulic actuators with a remote hydraulic drive are used in robot’s feet. 

 

 Construction of the actuator and the leg with its use are also described. 

Quantitative changes of inertial features of the leg and results of the experimental research 

on the upgraded leg are presented. 

 

2.1   Leg’s construction of robot ROTTO 

Robot’s ROTTO leg consists of 3 main elements: foot, shin and hip (see Fig.2.1). 

Construction is made of carbonic pipes and aluminum joints. Foot is also made of 

aluminum. In the given construction 5 degrees of freedom are realized. Joints q1, q2 are 

equipped with actuators, which are force controlled, joints q3..q5 are controlled.  
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q1

q2

q3

q4

q5

 

Fig. 2.1 – Robot’s leg and leg kinematic 

 

Disadvantage of the given construction of a robot’s leg is big mass that lies under knees, 

namely 3.6 kg in comparison with 16.5 kg of full robot’s mass. Leg’s mass center is 

situated 30 cm further than leg’s suspension point, it sets magnitude of moment of inertia: 

 

22 7.03.0)8.08.22.4( mkgJ Leg         (2.1) 

 

Robot’s hip and foot during leg’s movement during walking process execute motions with 

high speeds, at the same time their big mass and moment of inertia set negative effect of 

leg’s movements on movement of the entire robot. In Fig. 2.2 reacting moments of 

bearing in the upper point of leg’s suspension during typical leg movement are presented.  
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Fig. 2.2 – Reaction moment in bearing of leg 

 

2.2 Electrohydraulic linear drive with flexible gear 

In order to reduce negative effect of positive feedback, robot’s leg construction was 

modified. In the robot’s foot was used an electrohydraulic actuator with a flexible drive 

[3], this allowed to lessen mass of robot’s leg and to redistribute mass positions in the 

robot’s construction. 

 

The technical capabilities of the transfer of mechanical energy between the different 

nodes are often limited. There are different mechanisms in which the working body is 

movable but the drive for constructional reasons must be stationary (e.g. hand devices, 

robotic joints, etc.). Alternative way to transfer of mechanical energy from the remote 

drive to the working body is the using of flexible shafts, cables, pneumatic and hydraulic 

machines, etc. This article describes a pilot version of an electrohydraulic linear drive 

with a flexible transmission.  

 

The purpose of the work is getting the drive system with follow features: 

 low weight of the moving element 

 flexible construction  

 ability to force control 

 high dynamic properties  

 simplicity and reliability 
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This paper proposes the drive design which consists of a linear electric drive and closed 

hydraulic transmission based on differential cylinders. Used linear drive was built in 

“RobotsLab” in 2007 and used in the construction of the robot “ROTTO” [30]. Works 

[11], [22] describe another constructions of serial elastic actuators. 

 

Designed electrohydraulic actuator can be used in the joints of robotic mechanisms, 

medical prostheses, etc. An important advantage of the developed design is its autonomy 

compared to classical hydraulic actuator, namely the absence of compressor, valves, 

pressure accumulator, etc. 

2.2.1 Construction of electrohydraulic actuator 

Construction of the developed electrohydraulic actuator is shown in Fig. 2.3. The 

mechanism consists of two main elements: force controlled linear actuator and hydraulic 

transmission. Drive can run in three modes: position control, force control and position 

control with a given force. Hydraulic transmission consists of two double acting 

differential cylinders, whose respective chambers are connected with elastic pipes. An 

important feature of the proposed system is its arrangement, namely the location of the 

force sensor. It is located remote from the working cylinder. This makes the system 

reliable but at the same time causes inaccuracies in the force measurement due to the 

friction in the hydraulic transmission. 

 

 

Fig. 2.3 – Construction of electrohydraulic actuator 

Here: 1 – main cylinder, 2 – working cylinder, 3 – shaft of main cylinder, 4 – shaft of 

working cylinder, 5,6 – tube connections, 9 – electric drive, 10 – gear, 11 – control 

system of actuator 
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2.2.2 Parameter optimization 

To choose the optimal parameters of elements of the electro-hydraulic drive a 

mathematical model is developed with MATLAB / SimHydraulics [29] (fig. 2.4). 
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Vout
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Force controlled 

linear actuator
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Fig. 2.4 – Simulation model  

 

 

Based on this model the dependence of top drive motions speed from the parameters of 

the system is found (fig. 2.5). 
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Fig. 2.5 – Dependences of top drive motions speed from the parameters of the system 

 

 

Proceeding from obtained dependence for the best balance of dynamical and mass 

properties of the system are choosed the following parameters: cylinder diameter 

Dc=16mm, pipe diameter Dp=6mm, water as the working fluid. 

 

Simulation of working out positions with load 50N with cylinders of diameter 16mm and 

20 mm is shown in fig. 2.6. 
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Fig. 2.6– working out positions with the different cylinder diameters 

 

 

The dynamic of the system is defined by the diameters of cylinders and tubes. 

 

2.2.3 Experiments 

Based on the simulation results of the developed system experimental prototype of 

electrohydraulic drive was built (fig. 2.7). 

 

As the working fluid was used water from reasons of optimality between its fluidity and 

safety of work with it. Drive control is realized with the real-time interface MATLAB / 

XPC Target. 

 

Fig. 2.7– experimental prototype of electrohydraulic drive 
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The aim of experiment - to determine the quality of the obtained system in two main 

aspects: 

 

 The dynamic properties of the system (moving speed) 

 Quality of force measurement in the proposed drive system 

 

Dynamic properties of the system are presented as working out of positions of the drive 

with the load and without it (fig. 2.8). 

 

 

Fig. 2.8 – working out positions with and without the loading 

 

Positioning speed is approx. 60 mm / s. The current load is 50N. Dynamic of the drive is 

satisfactory, the loss in the hydraulic transmission are acceptable. 

 

In this work also was implemented a virtual spring with the given stiffness used a force 

sensor. Fig. 2.9 shows a deformation of a virtual spring with stiffness 2N/mm under 

external loading. 
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Fig. 2.9– deformation of a virtual spring 

 

Another experiment - positioning with limited force. Fig. 2.10 shows a working out of 

positions, wherein the actuator is moved under a load. The drive realizes a constant 

impedance equal 40N. 

 

 
Fig. 2.10 – working out of positions with constant impedance 

 

The force measurement is estimated as the sensor response indications on the pressure 

from side of the working cylinder (fig. 2.11). 
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Fig. 2.11 – force sensor response on the pressure from side of the working cylinder 

 

There is a dead zone by a force measurement, which is caused through the friction of the 

pistons in the cylinders. The magnitude of the dead zone has limits +- 20N (fig. 2.12). 

 

 
Fig. 2.12– dead zone by a force measurement 

 

2.2.4 Force measurement with a pressure sensor 

Dead zone in feedback of force control loop brings negative effect in system’s work. In 

order to minimize this effect drive system was modernized, and namely: elastic force 

sensor was replaced by pressure sensors in hydraulic transmission tubes (see Fig.2.13). 

Pressure value in hydraulic transmission’s tubes is proportional to force that acts on 

cylinders. 

 

In this configuration magnitude of dead zone while measuring force is equal to magnitude 

of dry friction force in the working cylinder. 
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Fig. 2.13 – Electrohydraulic actuator with pressure sensors 

Here: 1 – main cylinder, 2- working cylinder, 3 – shaft of main cylinder, 4 – shaft of 

working cylinder, 5,6 – tube connections, 7,8 – pressure sensors, 9 – electric drive, 

10 – gear, 11 – control system of actuator 

 

In the system two pressure sensors Freescale MPX5700GP [16] are used (fig.2.14). 

 

 

Fig. 2.14 – pressure sensor MPX5700GP  

 

Given sensor measures pressure until 700 kPa, output voltage 0-5V. (fig.2.15). 
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Fig. 2.15 – Output voltage of pressure sensor 

 

Given sensor can measure positive pressure in cylinder’s tube. In order to measure force 

that is applied to cylinders in the hydraulic transmission, two pressure sensors are used 

that are differentially switched on (see Fig.2.16). 

 

-

Us1

Us2

kF

Fref

 

Fig. 2.16 – Differential connection of pressure sensors 

 

Using this method of sensor switching, output characteristic for force measuring in the 

system was obtained (see Fig.2.17). 

 

 

Fig. 2.17 – Force measurement 
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The usage of pressure sensors allows reducing dead zone. 

 

 

Рис. 2.18 – Dead zone by force measurement with pressure sensors 

 

Force control loop is realized using PD regulator (see Fig.2.19). Parameters of the 

regulator are empirically chosen.  

 

Fig. 2.19 – Force control loop 

 

Force control in this loop lasts for 0.07s. (fig.2.20). 

  

Fig. 2.20 – Force control 
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2.3 Leg’s construction of robot ROTTO with an electrohydraulic actuator. 

 

Modernization of leg’s construction in the robot ROTTO was made with the help of an 

electrohydraulic actuator for foot (see Fig.2.21). In addition to this only one degree of 

freedom q1 is actuated, q2 moves freely. 

 

  

Fig. 2.21 – upgraded leg’s construction and kinematics 

 

Leg’s mass under knee is 0.48 kg, what is essentially less than earlier. 

22 19.03.0)16.03.02.4( mkgJ Leg         (2.2) 

 

Fig. 2.22 – Comparison of inertial features of leg’s constructions  
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2.4 Performance simulation of the modernized leg 

On the graph (see Fig.2.23) one can see, how force of bearing reaction in joint of leg 

suspension at mass decrease in the lower part of leg decreases in case of positioning of leg 

along swing trajectory. 

 

Fig. 2.23 – Reaction moments in bearings of legs 

 

2.5 Summary 

The use of an electrohydraulic actuator with a flexible drive enables remote allocation of 

the drive from the working mechanism. Proposed construction of an electrohydraulic 

actuator allowed redistribute masses in robot’s legs, make them less inertial. This also 

gave an opportunity to develop leg’s movement trajectories with lesser disturbances. 

 

The use of fluid pressure sensors in tubes in the actuator construction let us improve 

actuator’s sensitivity that is regulated by force and also make robot’s feet more compliant 

and sensitive during the contact with surface. 

 

Proposed construction of an electrohydraulic actuator can be used in various robotic 

devices, in which an actuator should be situated remotely from the executive mechanism. 
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 Stabilization of the planar robot Chapter 3.

 

Solving the problem of walking of a biped robot, particular attention should be paid to 

standing of a robot. During standing in the double support state robot should maintain 

balance, compensate commensurable external disturbances. Robot must also have an 

ability to balance itself in unstable conditions. Many works propose different methods of 

robot’s balancing [6], [10], [13], [36]. 

 

In order to maintain balance robot needs feet. Robot also needs an active stabilization 

system that keeps robot in balance with the help of feet. We have built a simplified robot 

model that depicts behavior of robot in sagittal plane. This model is used at building and 

testing of robot’s stabilization system in order to reduce temporal and financial costs. 

 

Construction of planar robot model is described in this chapter, an analogy is drawn with 

a biped robot. Further one can see an algorithm of work of robot’s stabilization system 

using feet. At the end results of experiments illustrate how proposed stabilization system 

functions. 

 

3.1 Problem 

A problem was put to maintain the given system in balance. 

 A planar robot should stand in balance regardless of surface’s elastic properties, its 

form and orientation, and also regardless of its own mechanical properties. On top 

of all that lack of equilibrium cannot be tolerated. 

 

 A planar robot should also have a possibility to be position controlled and should 

be able to move along prescribed movement trajectories. Positioning dynamics 

should not depend on properties of surface and robot’s mechanic properties. 

 

 A planar robot should be able to absorb external disturbances and to stay in 

equilibrium regardless of support surface properties and other mechanical 

properties. 
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3.2 Design of a planar robot 

 

Construction of a planar robot is a simplified construction of a biped robot. At the same 

time following refinements are made:  

 A planar robot illustrates behavior of a robot in incident plane in the case of 

double support phase and only a projection of a robot in sagittal plane in the case 

of single support phase.  

 

 Knee of a robot is straightened and fixed. 

  

A planar robot consists of 3 main segments: a foot, a leg and a body. Segments are 

connected with two joints with revolute degrees of freedom. A joint in a foot can be 

moved by an actuator with a hydraulic drive. A joint in the pelvis is actuated with a force 

controlled drive. Construction of planar robot and its kinematics are presented in fig. 3.1. 

    

m1

m2

q1

q2

 

Fig.3.1 – Construction of planar robot and its kinematics 

 

3.3 Control system of a planar robot 

Control system of a planar robot should solve 2 main problems: to hold robot’s body in 

the prescribed position and to maintain the whole robot’s mechanism in the vertical 

position. Main external disturbing action that can cause a state of instability – overturn 
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torque of gravity force. The idea of controlling such system lies in the fact that we have to 

identify disturbing effect and compensate it. 

m1

m2

mCG mCG

X

Y
Y

X
Xm1

Xm2
XCG

 

Fig.3.2 – replacement of a dual-mass system with a virtual single-mass system. 

 

Magnitude of overturn torque of gravity force that acts on the robot depends on the 

robot’s mass center with respect to rotation axis in the foot. It can be calculated as 

follows:  

dFM kk       (3.1) 

 

Here: kF - value of tangential component of gravity force, that affects robot’s mass center, 

d - distance from robot’s mass center to rotation axis in the foot. 

 

)sin( gmF CGk      (3.2) 

)sin(
CGX

d           (3.3) 

 

After substitution (3.2) and (3.3) in (3.1) we get: 

CGCGk XgmM             (3.4) 

 

Here CGm - mass of robot’s mass center, CGX  - projection of robot’s mass center position 

on х axis, are calculated as follows: 
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     21 mmmCG       (3.5) 

21

2211

mm

mXmX
X mm

CG



      (3.6) 

 

Here 1mX , 2mX  - positions of robot’s masses on x axis: 

)sin( 111 qdX m       (3.7) 

)sin()sin( 212112 qqdqlXm      (3.8) 

 

Control system of a planar robot consists of two control loops that regulate the position 

(Fig.3.3). First of them has to maintain prescribed robot’s configuration, in this case it’s 

body’s orientation. In the given control loop PD position controller is used. It defines 

control torque М2 in joint q2: 

dt

de
kekM

q

DqP

2

22      (3.9) 

Here 2qe  - control error: 

istsollq qqe _2_22       (3.10) 

 

Controller parameters Pk , Dk  of proportional and differential components are chosen 

experimentally. 

 

Task of the second control loop is to maintain robot in balance with the help of feet and it 

also has to position projections of robot’s mass center within the limits of the support 

polygon. In essence we represent our two-mass mechanical system as a one-mass system, 

in which masses of all elements are considered in equivalent mass of robot’s center of 

gravity CGm . Thus, control loop controls the position of virtual one-mass system. 
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Fig. 3.3 – Stabilization system of planar robot. 

 

PD position controller of robot’s center of mass with respect to x axis is used in 

stabilization loop. The controller determines stabilizing torque in the robot’s foot: 

dt

de
kekM XCG

DXCGP 1     (3.11) 

Here 2qe  - control error of robot’s center of mass position with respect to rotation axis in 

the foot: 

istCGsollCGXCG XXe __      (3.12) 

 

3.4   Performance simulation of the control system 

In order to evaluate performance of proposed system for planar robot stabilization was 

built a model of this system in MATLAB/Simulink. Simulating the performance of this 

system is necessary to determine empirically controller parameters in the stabilization 

system and to check functioning in the following cases: 

 

 Pulling planar robot into the balance from unstable position 

 Robot balancing while its configuration is being changed 

 Compensation of external disturbances that act on robot 

 Positioning of mass center of planar robot along necessary trajectories 
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3.4.1 Pulling of mechanisms into the equilibrium state from unstable state 

Further one can see the case when mechanism of planar robot is inclined from equilibrium 

state at zero time (see Fig.3.4). Stabilization system is applying torque in robot’s foot and 

tends to pull it into equilibrium state. 

 

m2

m1

M1

M2

equiriblium
initial state

 
Fig.3.4 – pulling of robot into equilibrium state 

 

Time diagrams of robot’s mass center movement show the process of pulling of mass 

center in the mechanical system of a planar robot into the equilibrium state from unstable 

position (see Fig.3.5). At zero time mass center of the system is 5 cm away from the state 

of unstable position. Over a period of 0.8 sec. (duration of transient process) stabilization 

system pulls the mechanism into the equilibrium state and maintains it in this state. 

 
Fig 3.5 – robot’s mass center movement 
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Given movement process is a curve on the phase plane (see Fig.3.6), which starts from the 

condition of 5 cm at speed 0 cm/s, accelerates, goes through the speed’s maximum that is 

equal to 18 cm/s, then decelerates and goes into zero position with zero speed. 

 
Fig.3.6 – phase diagram of robot’s mass center movement at the stabilization 

 

 

Below one can see time diagrams of angle and angular velocity change in robot’s joints 

during the process of stabilization (s. fig.3.7). 

 
Fig.3.7 – angle and angular velocity in robot’s joints during the stabilization 

 

Stabilization system generates torques in robot’s joints, that are represented in Figure 3.8.  

 
Fig.3.8 – torques in joints of a planar robot during the stabilization 
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3.4.2 Maintaining robot in balance while its configuration is being changed 

In this case we change angle q2 in the robot, in addition to this, stabilization system 

should maintain robot’s mass center above fulcrum, thus keeping mechanism of a planar 

robot in balance while its configuration is being changed (see Fig.3.9). 

m2

m1

M2

M1

inital

config.

final

config.

 
Fig.3.9 – keeping a robot in balance while its configuration is being changed 

 

On the time diagrams (fig.3.10) are represented transient processes of angle and angular 

velocity in the joint q2 of a planar robot. Robot’s upper element turns with respect to the 

leg through 15 deg for 0.33 s. with constant angular velocity 100 deg/s. 

 
Fig.3.10 – angle and angular velocity in joint q2 
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Stabilization system tracks incline of robot’s mass center from equilibrium and tends to 

compensate it with the help of torque in robot’s foot. Transient process of stabilization 

during the change of planar robot’s configuration is represented below (fig.3.11). Robot’s 

mass center deviates from equilibrium state for a short moment within the limits of 4mm 

and then is pulled back into equilibrium state. Range of deviation depends on selected 

rigidity of controller in the stabilization system, amount and speed of change in robot’s 

configuration. 

 
Fig.3.11 – deviation of robot’s mass center from equilibrium state during the change of 

robot’s configuration. 

 

Deviation of robot’s mass center from balance state while robot’s configuration is being 

changed on phase plane is a closed loop near equilibrium point in the origin of 

coordinates (fig.3.12). 

 
Fig.3.12 – phase diagram of robot’s mass center movement during change in robot’s 

configuration 
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Angle q1 changes in such a way that robot’s mass center stays in equilibrium state 

(fig.3.13). 

 
Fig.3.13 – angle change in robot’s foot joint during angle change in upper joint. 

 

3.4.3 Compensation of external disturbances 

Here we consider the case when disturbing force that acts for a short moment is applied 

abruptly to the robot, which is in equilibrium and is controlled by stabilization system 

(fig.3.14). Robot deviates from the equilibrium state, as stabilization system has 

compliant features.  

 

F equilibrium
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distorted
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Fig.3.14 – robot’s behavior under the action of disturbing force 
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External disturbing force of 10N affects the mechanism during 0.3 sec. The force is 

applied stepwise (fig.3.15). 

 
Fig.3.15 – Disturbing force 

 

With all this going on robot’s mechanism deviates from equilibrium and stabilization 

system pulls it back into equilibrium. Time diagrams of robot’s mass center movement 

near equilibrium point are shown in the Figure 3.16. 

 
Fig.3.16 – robot’s mass center behavior at external disturbing effect 

 

The process of compensation of external disturbances on phase plane is a closed loop, that 

begins and ends in the point of origin of coordinates (see Fig.3.17). 

 
Fig.3.17 – phase diagram of robot’s mass center movement during reaction to the external 

disturbance 
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Stabilization system maintains robot’s body in the vertical position. Time diagrams of 

angle and angular velocity changes in robot’s joints during external disturbance are shown 

in fig.3.19. 

 
 

Fig.3.19 – angles and angular velocities in robot’s joints during external disturbance 

 

Stabilization system generates torques in robot’s joints (fig.3.20), which are keeping the 

robot in balance state and robot’s body in the vertical position 

 

 
Fig.3.20 – torques in robot’s joints during external disturbance 

 

3.4.4 Positioning of robot’s mass center  

 

Here is taken a look at the case when with the help of robot’s control system we shift 

robot’s mass center within the limits of support polygon with prescribed speed (fig.3.21). 

It is necessary in order to have an opportunity to accelerate robot’s mass center during 

walking. 
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Fig.3.21 – Positioning of robot’s mass center  

 

 

In the given case robot’s mass center shifts from equilibrium point for 35mm with 

constant speed 50mm/s (fig.3.22). The process of shift lasts for 0.75 s. Later stabilization 

system keeps mechanism in deviated position, compensating static load of gravity force. 

After this mechanism is pulled back into the equilibrium state. 

 
 

Fig.3.22 – position and speed of robot’s mass center 

 

 

On phase plane the trajectory of robot’s mass center movement is a closed polygon, which 

faces match acceleration, movement with constant speed and deceleration (fig.3.23). 



 49 

 

 
Fig.3.23 – phase diagram of robot’s center mass movement along given trajectory 

 

 

Timing diagrams of angle and angular velocity changes in robot’s joints for the given case 

are represented in fig.3.24. Upper element of the robot is supported in vertical position. 

 
Fig.3.24 – angle and angular velocity in robot’s joints 

 

 

Stabilization system of a planar robot generates in the joints torques, which are necessary 

for robot’s mass center movement and for the compensation of static load of gravity force 

in the declined from equilibrium state (fig.3.25). 

 
Fig.3.25 – torques in the joints of a planar robot 
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For all these cases in the control system of a planar robot PD position controllers were 

used. Controller coefficients were defined empirically: kP1=5, kD1=2;   kP2=3, kD2=1.2. In 

the foot joint torque is limited with ±4Nm, in order to prevent robot’s “bouncing”. 

 

3.5 Experimental research of stabilization system performance 

In order to estimate the quality of performance of the developed control system of a 

planar robot were conducted experiments. Experiments were carried out for 2 cases, 

firstly: for maintaining robot’s balance while its configuration is being changed and 

secondly, for positioning of robot’s mass center. 

 

Experiments were run on wooden horizontal surface. Coefficients of position controllers 

were chosen the same as in the simulation model of planar robot. In order to conduct 

experiments real time platform MATLAB/XPC-Target was used. 

 

3.5.1 Balancing of planar robot by the changing its configuration 

In this case we change angle q2 in the robot, stabilization system should keep robot’s 

mass center above support point and thus keep the mechanism of a planar robot in balance 

during the change of its configuration.  

 
Fig.3.26 – positioning of body of planar robot 

 

Angle q2 is declined 25 deg and robot’s mass center slightly deviates from equilibrium 

state and is kept by robot’s stabilization system within the range of ±1cm (fig.3.27). 

 
Fig.3.27 – keeping robot’s mass center near equilibrium state 
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Angle q1 while robot’s configuration is being changed changes in such a way that robot’s 

mass center continues to be in balance (fig.3.28). Kinks of the curve show that robot’s 

foot “bounces” on bearing surface. 

 

 
Fig.3.28 – change of q1 angle while changing angle q2 

 

Robot’s control system generates torques in robot’s joints which change its configuration 

and maintain it in balance (fig.3.29). 

 
Fig.3.29 – torque in robot’s foot 

 

 

3.5.2 Positioning of robot’s mass center within the limits of support polygon 

Robot’s mass center deviates from equilibrium state for 50mm and stays in this state, and 

then it is pulled back into equilibrium state (fig.3.30). 

 
Fig.3.30 – position and speed of robot’s mass center 
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Change of angles in robot’s joints is represented in Fig.3.31. Beats in the curve of joint q1 

movement tell us about robot’s foot “bouncing” on bearing surface that is caused by 

contact features of robot’s feet. Angle q2 is changed in such a way that upper robot’s 

element stays in the vertical position. 

 
Fig.3.31 – change of angles in robot’s joints. 

 

3.6 Summary 

At this stage we checked the conception of stabilization system building of a two-mass 

planar robot with the help of foot. The concept consists of calculation of mechanical 

system mass center position, interpretation and its control like a one-mass system. 

 

Suggested approach let us make a simple control system, which has 2 closed control 

loops: for stabilization in gravity force field and for positioning of prescribed mechanism 

configuration.  

 

Experiments confirm that realized stabilization system allows safely maintain robot in 

equilibrium state, compensate commensurable external disturbances, shift mass center of 

mechanism within the limits of support polygon. Suggested technique will be used for the 

stabilization system of a biped robot. 
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 Biped robot stabilization in double support state Chapter 4.

Method of stabilization of robot’s simplified model was examined in the previous chapter. 

In works [43], [44], [45], [46] are also different methods of robot balancing described. 

Now is presented a stabilization system for a biped robot ROTTO. 

 

In this chapter main tasks for stabilization system of a biped robot are determined. 

Robot’s construction and its kinematics are investigated. Further one can see a 

stabilization system of a biped robot. Stabilization system is separated in 3 levels for 

simple understanding.  

 

At the end of this chapter one can see the results of simulation and experimental 

investigations of functioning of proposed stabilization system. 

 

4.1 Tasks 

Stabilization system of biped robot must have following features:  

 

 Stabilization system have to keep a robot in balance regardless of elastic 

properties of the elements of robot’s construction, regardless of mechanism 

configuration (length and width of leg position) and regardless of properties and 

forms of support surface.  

 

 Stabilization system should be able to position robot’s mass center over support 

polygon, work through various movement trajectories of robot’s center of mass, 

and also let change mechanism configuration (work through trajectories of each 

joint), keeping mechanism in balance regardless of features of construction 

elements and bearing area.  

 

 Stabilization system should also have a possibility to absorb external disturbances, 

safely keep robot’s mechanism in the double support state and effectively damp a 

robot at landing from single support. 
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4.2 Robot’s kinematics 

Robot’s kinematic scheme is represented in fig.4.1. Joints [q3…q10;q13…q15] are position 

controlled. Actuators in joints [q1; q12] are force controlled. Joints [q2;q11] don’t have any 

actuators and move freely. 
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Fig.4.1 – Robot’s ROTTO kinematics 

 

4.3 Control system  

In the proposed stabilization system is used the technique generated in previous chapter 

and implemented in planar robot. Robot’s mechanism is described as equivalent mass 

mCG that is fixed on the weightless rod S. Rod on the rotary joint is fixed to the platform 

lying on the support surface. In this case platform is support polygon of robot’s feet. 

 

Virtual joint qS allows a rod rotating about d axis, which goes through pinning points of 

hinge joints in robot’s feet. Since robot’s joints are equipped with actuators with ball-and-

screw drive with high gear ratio and are position controlled, then robot’s feet have fixed 

length and cannot be freely deformable. It is defined by the fact that robot’s construction 

is rigid and unyielding. Thus virtual rod can rotate with respect to the platform only 

around d axis, but mCG moves only in plane S. Deviation of mCG from plane S is possible 

only at detachment of robot’s foot from support surface. 
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Fig.4.2 – degree of freedom of robot’s mass center relative to support surface. 

 

Without compliance/deformability of robot’s skeleton in plane F is impossible to position, 

damp or somehow control a mechanism in space and safely keep it in the double support 

state. 

 

Let’s make a mechanism compliant in plane F, this will let mCG to move relative to the 

platform not in an arc, but on a sphere without removal of virtual platform from surface, 

in other words in continuous double support state. This compliance is realized with the 

help of application of following kinematical constraints in robot’s control system between 

leg length and position of mass mCG : 

.

,

;

,

;

,

0

0

XMMR

XMML

CGLR

CGLL

MRRR

MLLL

MkdL

MkdL

ZkdL

ZkdL

dLdLLL

dLdLLL













           (4.1) 
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Fig.4.3 – realization of compliance of robot’s skeleton in plane F 

 

After the realization of these kinematical constraints we got one additional degree of 

freedom for robot’s mass center in plane F. Let’s go back to the virtual single-mass 

model: now it can be said that hinge joint has two rotation axis: [qF,qS]. These degrees of 

freedom are actuated and in them torques [MF,MS] can act. These torques are used as 

control action for the control system. 
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d

d

qF

 

Fig.4.4 – degrees of freedom of robot’s mass center relative to support surface 

 

Projections of position of robot’s mass center on axis f and s that lie in plane T (fig.4.5) 

were used as coordinates for control. Coordinate system fs is turned on angle β around 

axis y relative to coordinate system xz. Angle β is determined by mutual alignment of 

robot’s feet on support surface. 

),(2tan 1212 FFFF ZZXXa      (4.2) 
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Fig.4.5 – coordinates for control system 

 

When we have a general idea about system’s kinematics taking into account kinematical 

constraints and ways of affecting it, we can implement stabilization system. Stabilization 

system that is represented in this chapter has a hierarchical structure from three basic 

levels (see Fig.4.6): 

 Actuator control system by position/force 

 Kinematical constraints/reflexes 

 Stabilization system 

 

Realization of actuator control loops in robot’s joints is described in previous chapter. 

Level of kinematic constraints realizes from robot’s legs a virtual platform with virtual 

joints qF,qS. 

 

Upper level is robot’s stabilization system. Stabilization system consist of two control 

loops that regulate projections of robot’s mass center on x and z axis (fig.6). PD position 

controllers are used in control loops. They calculate control torques based on values of 

control errors: 

dt

de
kekM XCG

DXXCGPXZ      (4.3) 

Here XCGe  - control error of robot’s mass center position along x axis that is equal to 

difference of given and actual position: 
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actXrefXe CGCGXCG __      (4.4) 

dt

de
kekM ZCG

DZZCGPZX      (4.5) 

Here ZCGe  - control error of robot’s mass center position along z axis that is equal to 

difference of given and actual position: 

actZrefZe CGCGZCG __       (4.6) 
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Fig.4.6 – biped robot’s stabilization system 

 

Since torques in the virtual platform are applied to the rod around f, s axis, then control 

action should be transformed from coordinate system xy into coordinate system fs taking 

into account angle of turn β. 

 

4.4 Performance simulation of stabilization system 

In order to evaluate performance of proposed stabilization system for biped robot was 

built a simulation model of this system in MATLAB/Simulink. Simulating the 

performance of this system is necessary to determine empirically controller parameters in 

the stabilization system and to check functioning in the following cases: 

 Stabilization of robot in sagittal plane 

 Compensation of disturbances in frontal plane and maintaining robot in the double 

support state 

 Positioning of mass center movement of robot, its acceleration and deceleration in 

the double support state 
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4.4.1 Stabilization of robot in sagittal plane with the help of feet 

Here one can see the case, when robot stands in the double support phase. Stabilization 

system maintains equilibrium. Disturbing force affects robot with impulses along X axis. 

Stabilization system compensates disturbing effect and keeps robot in balance. 

 

Force Fx=30N is applied to robot’s pelvis abruptly and acts over a period of 0.3 sec. 

(fig.4.7). 

 

Fig.4.7 – disturbing force Fx 

 

Under the action of this disturbance robot’s mass center deviates from equilibrium state 

and then it is pulled back into balance influenced by stabilization system (see Fig.4.8). 

 

Fig.4.8 – position and speed of robot’s mass center along X axis in case of compensation 

of external disturbance 

 

On phase plane given process is a closed loop with beginning and end in the origin of 

coordinates (fig.4.9). 
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Fig.4.9 – Phase portrait in case of compensation of external disturbance along X axis 

 

Robot’s stabilization system generates control action - torques in robot’s feet, which pull 

the mechanism back into the balanced condition (see Fig.4.10). 

 

Fig.4.10 – torques in robot’s feet 

 

4.4.2 Stabilization in frontal plane 

At first there was described the case when disturbing force abruptly affected robot’s 

pelvis. Compliant function in robot is switched off, that is robot’s construction in frontal 

plane is rigid. Robot under the influence of disturbance deviates relative to one leg aside 

(second raises), then returns to original position affected by gravity force with certain 

speed, meets the surface, deviates further with respect to the second leg and so on. As a 

result robot returns into quiescent state after several cycles of such oscillations. 

 

Force Fz=30N is applied to robot’s pelvis abruptly and acts over a period of 0.3 sec 

(fig.4.11) 
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Fig.4.11 – disturbing force Fz 

 

Oscillations of robot’s mass center along Z axis fade over in 5 sec. (fig.4.12). 

 
 

Fig.4.12 – position and speed of robot’s mass center along Z axis. 

 

On phase plane this process is a spiral that slowly comes to the origin of coordinates 

(fig.4.13). 

 

Fig.4.13 – phase diagram for the process of robot’s damping in the double support. 
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With all this robot’s contact with surface occasionally intermits (fig.4.14). This factor 

affects negatively robot’s stabilization in sagittal plane, since only one leg has contact 

with support surface and system’s controllability is low. 

 
Fig.4.14 – Contact of robot’s feet with surface 

 

Now let’s assume the case when dependencies (4.1) in robot are switched on and robot’s 

construction becomes compliant in frontal plane relative to the surface. In this case 

robot’s mass center reaction on disturbance happens faster and without oscillations 

(fig.4.15). 

 
Fig.4.15 – Behavior of robot’s mass center at disturbing action in case of robot’s 

compliant construction 

 

On phase plane stabilization process of robot in this case is a loop with beginning and end 

in the origin of coordinates (fig.4.16). 
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Fig.4.16 – Phase diagram of robot’s mass center movement during the reaction on 

disturbance in case of robot’s compliant construction. 

 

Robot’s skeleton on top of all that deforms according to dependencies (4.1) (fig.4.17). 

 

Fig.4.17 – “Deformation” of robot’s skeleton in frontal plane under the influence of 

disturbance. 

 

Also important is that robot in the given process doesn’t move away legs from surface and 

always is in the double support (see Fig.4.18). It affects positively stability’s reserve for 

stabilization system in sagittal plane.  

 
Fig.4.18 – Robot’s feet contact with surface. 
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Further one can see a process when at the beginning robot’s skeleton is “rigid”, external 

force deviates it from equilibrium, then robot returns with certain speed to original 

position and when robot’s second foot has a contact with surface we switch on skeleton’s 

“compliance”. As this takes place, robot stops quickly, without any oscillations safely 

goes into double support state. 

 

Force Fz=30N is applied to robot’s pelvis abruptly and acts over a period of 0.3 sec 

(fig.4.19). 

 

Fig.4.19 – Disturbing force Fz 

 

On time charts (fig.4.20) displacement and speed of robot’s mass center along Z axis are 

shown. 

 

Fig.4.20 – Displacement and speed of robot’s mass center along Z axis 

 

On phase plane this process looks like a closed loop with beginning and end in the origin 

of coordinates (see Fig.4.21). 
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Fig.4.21 – Phase diagram of process of keeping robot in the double support. 

 

Robot’s skeleton in frontal plane deforms as follows: 

 

Fig.4.22 – “deformation” of robot’s skeleton when robot meets surface. 

 

Robot’s legs after returning of mass center into equilibrium state have continuous contact 

with surface (fig.4.23). 

 
Fig.4.23 – Contact of robot’s legs with surface 
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The use of kinematical connections (4.1) for robot’s skeleton lets us realize robot’s 

stabilization in equilibrium in frontal plane without feet detachment from surface, what 

affects positively stability’s reserve in control system. Also this gives an opportunity to 

stop robot in the double support after leg has had contact with surface. 

4.4.3 Acceleration and deceleration of robot’s mass center 

There one can see the case when with help of angular torque Mx we accelerate robot’s 

mass center along Z axis until certain set of initial conditions, after this we switch off 

dependencies (4.1), thus we make skeleton rigid. We set certain initial conditions for 

robot’s mass center, from which it will move along ballistic trajectories (3.1) relative to 

one of the feet, then it returns back into initial position with certain speed. At the moment 

when second foot touches support surface we activate dependencies (4.1), and robot’s 

mass center smoothly stops and is pulled back to equilibrium state. 

 

Timing diagram of robot’s skeleton “deformation” in frontal plane (see Fig.4.24) consists 

of 3 parts that determine acceleration of mass center, movement with respect to one foot 

in the single support state and absorption of impact when second leg meets surface. 

 

Fig.4.24 – Robot’s skeleton “deformation” in frontal plane 

 

Robot’s mass center executes motions that are represented on fig.4.25. At the beginning it 

accelerates, deviates from equilibrium state and then returns to initial position with certain 

speed, and then is damped in equilibrium state. 
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Fig.4.25 – position and speed of robot’s mass center along Z axis. 

 

On phase plane given process is a loop with beginning and end in the origin of 

coordinates (fig.4.26). 

 

Fig.4.26 – Phase diagram for acceleration-step-damping cycle. 

 

On timing diagrams of robot’s leg contact with bearing surface one can see that robot’s 

mass center accelerates in the double support, then for some time executes motions in the 

single support, then is damped and is maintained in balance in the double support state 

(fig.4.27). 
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Fig.4.27 – Contact of robot’s legs with support surface 

 

This process is a robot’s step in place. Phase diagram of the process (fig.4.26) shows that 

step begins and ends with the same set of conditions of robot’s mass center, it means that 

process can be repeated. Given cycle (acceleration-step-deceleration) will be a basis for 

the realization of walking of a biped robot that is described in next chapter. 

 

4.5 Experiments 

In order to evaluate robot’s performance quality of the stabilization system, experiments 

with biped robot ROTTO were conducted. Experiments were made for the cases of 

robot’s stabilization in sagittal and frontal planes in the double support. 

 

4.5.1 Stabilization of robot in sagittal plane with the help of feet 

Force Fx=30N is applied to robot’s pelvis abruptly and acts over a period of 0.3 sec. 

(fig.4.28) 

 

Fig.4.28 – Force Fx 
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Under the action of this disturbance robot’s mass center deviates from equilibrium state 

and then it is pulled back into balance influenced by stabilization system (fig.4.29). 

 

Fig.4.29 – position and speed of robot’s mass center along X axis in case of compensation 

of external disturbance 

 

On phase plane given process is a closed loop with beginning and end in the origin of 

coordinates (fig.4.30). 

 

Fig.4.30 – Phase portrait in case of compensation of external disturbance along X axis 

 

 

Robot’s stabilization system generates control action – torques in robot’s feet, which pull 

the mechanism back into the balance condition (fig.4.31). 
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Fig.4.31 – torques in robot’s feet 

 

4.5.2 Stabilization in frontal plane 

Now let’s assume the case when dependencies (4.3)  in robot are switched on and robot’s 

construction becomes compliant in frontal plane relative to the surface. In this case 

robot’s mass center reaction on disturbance happens faster and without oscillations 

(fig.4.32). 

 

 
 

Fig.4.32 – Behavior of robot’s mass center at disturbing action in case of robot’s 

compliant construction 

 

On phase plane stabilization process of robot in this case is a loop with beginning and end 

in the origin of coordinates (fig.4.33). 
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Fig.4.33 – Phase diagram of robot’s mass center movement during the reaction on 

disturbance in case of robot’s compliant construction. 

 

Robot’s skeleton on top of all that deforms according to equations (4.1) (fig.4.34). 

 

Fig.4.34 – “Deformation” of robot’s skeleton in frontal plane under the influence of 

disturbance. 

 

4.5.3 Acceleration and deceleration of robot’s mass center  

Robot’s mass center executes motions that are represented on Fig.4.35. At the beginning 

it accelerates, deviates from equilibrium state and then returns to initial position with 

certain speed, and then is damped in equilibrium state. 
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Fig.4.35 – position and speed of robot’s mass center along Z axis. 

 

On phase plane given process is a loop with beginning and end in the origin of 

coordinates (fig.4.36). 

 

Fig.4.36 – Phase diagram for acceleration-step-deceleration cycle. 

 

4.6 Summary 

Proposed stabilization system of a biped robot is based on the evaluation of position of 

mechanism’s mass center and on keeping it in equilibrium state. Stabilization system 

realizes also compliant features of mechanical system with respect to support surface. 

Skeleton’s compliance gives an opportunity to damp robot’s mechanism when it enters in 

contact with support surface that is being displaced and safely keep it in the double 

support state. 

 

Kinematic constraints used in proposed stabilization system allow acting torques apply to 

robot’s center of mass, that allows it’s accelerating to necessary initial conditions. 
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Possibility of the damping of the robot in double support state after the landing allows 

keeping the robot to the equilibrium state every time after each step. Acceleration and 

damping of the robot’s center of mass will be used for the implementation of the step 

cycle in walking strategy that will be presented in next chapter. 
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 Walking of a biped robot Chapter 5.

 

Realization of dynamic walking of biped robots still is one of most important problems in 

robotics. Complexity of the given problem is caused by the complexity of mechanical 

construction of bipedal mechanisms. Multicoordinate mathematical models cause 

complexities while building a control system for such mechanisms.  

 

In this chapter process of walking of biped robot is viewed generally. In order to simplify 

the task robot is viewed as a single-mass mechanic system. In this chapter are also 

considered robot’s movement trajectories while walking, criteria for stable walking. It is 

also deal with the issue of applying control actions to robot in order to stabilize walking 

process. 

 

In this chapter concept of walking realization for robot ROTTO is introduced. Proposed 

concept is based on stabilization of walking process in the double support phase. Results 

of simulation and experiments, and also evaluation of suggested walking algorithm are 

presented in this chapter. 

 

5.1 General terms of Walking 

Process of bipedal walking as shift of certain mass mCG along X axis is considered 

(fig.5.1). Mass mCG is fixed on rod, which is fixed with help of revolute joint to bearing 

surface in point A. Point A moves discretely and interprets the change of robot’s support 

foot. It is influence of movement of swing leg on movement of mass mCG disregarded. 

Speeds of mass mCG stay the same by the changing of support foot. Movement of mass 

mCG is defined by influence of gravity force and torques that are applied in support foot to 

the rod. 
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Fig.5.1 – movement of robot’s mass center during walking 

 

Let’s examine a single step. During pacing it’s necessary that robot’s mass center moves 

from the position «0» to position «1», and foot of swing leg moves from position «A» to 

position «B» (fig.5.2). And also it is important that movement of mass center from the 

initial position to final position should not happen faster than transfer of foot of swing leg. 
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Fig.5.2 – Transfer of robot’s mass center during step 
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Movements of such one-mass mechanical system can be described with following 

equations: 
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It can also be described with series of phase curves for axis x and z that illustrate behavior 

of this system (fig.5.3): 

XCG

XCG

.
1

2

T

ZCG

ZCG.

T1

2

  

Fig.5.3 – Phase portrait for one-mass system for axis X and Z 

 

Successfully step  

At the beginning of step system has vector of initial conditions 

[XCG(t1),dXCG/dt(t1),ZCG(t1),dZCG/dt(t1)]. These initial conditions define further 

movement of the mass mCG (fig. 5.4). In order to take a step successfully it is necessary 

that initial speeds of mass center match in a certain way initial positions relative to 

support point.  
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Fig.5.4 – movement of robot’s mass center during step 

   here: 1 – initial conditions, 2 – final conditions 

 

Series of phase curves for our system relative to x axis is represented in Fig.5.3. It is 

important that initial states XCG(t1),dXCG/dt(t1) would belong to phase trajectory in upper 

quarter of phase portrait.  

 

Vector T shows that at same initial position of mechanism XCG(t1) movement of robot’s 

mass center from position 1 to position 2 will happen faster when initial speed increases. 

Movement of robot’s mass center along z axis is represented in Fig.2b. Here one can see 

that at certain initial states ZCG(t1),dZCG/dt(t1) robot’s mechanism will stay on one feet 

certain time and then will return in initial position. Value of initial speed dZCG/dt(t1) is 

defined by time which robot can stay on one foot. This is shown by direction of vector T. 

 

 

Stable walking 

Stable walking can be defined through repeatable phase curves of the CoM movement. 

Main principles of orbital stability are described in papers [5], [15], [21], [24]. 
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Fig.5.5 – repeatable phase curves of the CoM movement 

 

For the Repeatability of phase curves the following conditions have to be fulfilled: 
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Thus it can be said that during walking it is necessary that with every change of support 

foot, that is in the beginning of every step, right correspondence between position of 

robot’s support position and its mass center speed have to be provided. This 

correspondence should predetermine that: 

 Robot’s mass center moves from position 1 in position 2 along x axis 

 Robot’s mass center does return motion along z axis 

 Time of movements along Z axis is equal to time of movement along x axis, it 

determines right form of robot’s trajectories of mass center movement in plane xz. 

 

Necessary initial conditions of each step can be found by optimization method that is 

described in papers [2]. 

 

Stabilization 

Research of given mathematical model shows that system is quite sensitive to set of initial 

states, to impacts by the landing of robot and system must be stabilized by walking.  From 

the above reasoning we can suggest several ways of stabilization of walking process: 
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1. To control robot’s mass center trajectory with help of torques in robot’s feet in 

such a way that it would correspond to the position of support point in the next 

step. Disadvantage of this method is that time constant of control loop for such 

system is quite big, torque in foot is limited, and system in the single support is 

hard to control, since robot’s mass center is situated outside the bearing polygon 

of foot. 

2. To transfer leg depending on velocity of mass center respectively to phase 

portraits of mechanism and thus provide correct initial states for the next step. 

This method of stabilization is hard to realize because it leads to appearance of 

positive feedback in robot’s control system. Also delay in following trajectories 

make this method quite problematic. 

3. Foot stabilization in double support phase 

 

5.2 Implementation of biped walking 

Following works describe walking organization for biped robots [20], [23], [26], [28], 

[32], [33], [37], [39]. Implementation of walking of biped robot Rotto is described further. 

There are three cases of walking presented: 

 Planar walking in frontal plane with a rod support 

 Planar walking in sagittal plane with a rod support 

 3D walking without a rod support 

First two cases are easier to implement in comparison with third case. 

 

5.2.1 Walking in place 

There is considered process of robot walking on the spot with instantaneous double 

support phase. During every step robot deviates relative to support foot and returns back 

in initial position with certain speed (fig.5.6).  
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Fig.5.6 – Robot’s movement in frontal plane during step 

 

Movement of robot’s mass center on phase plane is a curve that connects points 1 and 2 

(fig.5.7). This curve belongs to area 1 on phase plane. Depending on value of initial speed 

in point 1 value of robot’s mass center deviation from initial state during step and time of 

taking a step T change.  
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Fig.5.7 – Phase portrait for one-mass system in frontal plane 

 

Sequence of such steps is a periodical oscillation process that is described in [x]. Robot’s 

movement is viewed as movement of mass mCG fixed on the rod in relation to support 

point (fig.5.8). 
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Fig.5.8 – step cycle in frontal plane 

 

Stability of given process lies in repetition of movement trajectories on phase plane 

(fig.5.9). 
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Fig.5.9 – phase portrait of stable walking in frontal plane 

 

Accordingly, it is necessary to mention: for repetition of step cycle in planar walking on 

the spot following conditions have to be satisfied: 

 Vectors of states [ZCG,dZCG/dt] in the beginning of step should correspond to the 

vector of states[ZCG,dZCG/dt] at the end of step, i.e. in the beginning of next step. 

 Criterion of stability during the step: Initial states [ZCG,dZCG/dt] should belong to 

phase curve that lies in area 1 of phase plane 

 

Simulation of walking on the spot with instantaneous double support phase 

Displacement of robot’s mass center is an oscillation process (fig.5.10). Values of states 

[ZCG,dZCG/dt] at the end of every step are equal to the states at the beginning of step.  
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Fig.5.10 – displacement and speed of robot’s mass center along z axis during walking on 

the spot 

 

Phase trajectories on fig. 5.11 show orbital stable walking on the spot. 

 

Fig.5.11 – phase portrait of robot’s mass center movement during walking on the spot 

 

Walking on the spot with prolonged double support phase 

Let’s discuss such type of walking on the spot, in which robot accelerates at every step 

until state that correspond to desired phase trajectory, robot takes a step, and when swing 

leg has a contact with surface it damps and stops.  

 

At this organization of step cycle phase portrait looks like this 



 83 

 

ZCG

ZCG

1

2

3

ZCG

2

3

 

Fig.5.12 – phase portrait by walking on the spot with stops between steps 

 

Advantage of this stride cycle is that robot’s states after every step are reduced to zero, 

after that are accelerated to necessary values. It allows stabilizing of step cycle. 

 

Simulation of walking on the spot in the double support 

Time diagram of robot’s mass center displacement along z axis (fig.5.13) shows sequence 

of acceleration-step-deceleration for some steps on the spot. On the speed graph one can 

clearly see periods when robot is in the quiescent state. 

 

Fig.5.13 – displacement and speed of robot’s mass center along z axis while walking on 

the spot with pauses between steps 
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On phase diagram it is seen that robot’s mass center from quiescent state accelerates to 

states that correspond to desired phase trajectory, then it moves freely on this trajectory in 

the single support phase (fig.5.14). Upon contact with surface robot is being damped and 

it stops in the initial quiescent state. Then the process is repeated. Curves on phase plane 

occur again, it means that there is an orbital stable walking on the spot. 

 

 Fig.5.14 – phase portrait at walking on the spot with stops between steps 

 

In this section 2 fundamentally different methods of organization of phase cycle are 

represented: 

 With instantaneous double support phase 

 With prolonged double support phase 

 

In the first case for ensuring stable walking process it is necessary that initial states at the 

beginning of the step [ZCG,dZCG/dt] were such that final states [ZCG,dZCG/dt] would be 

equal. 

 

In the second case condition of process stability is simplified. It is in fact necessary that 

robot’s mass center would return to initial state at the end of the step, but speed value of 

mass center doesn’t matter, as in the double support phase robot will be stopped. 

 

Thus we can say that presence of double support phase in stride cycle makes walking 

process simpler for the stabilization, since in the double support mathematical model of 

robot’s mechanical system is easier to control. 
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5.2.2 Walking in sagittal plane 

To begin with, let us consider walking in sagittal plane. The backbone of it in the fact that 

transferred leg is always ahead of robot’s mass center movement along X axis. 

 

Walking process is a movement in plane of certain mass in coordinate system XY, where 

XCG1 – position of mass center relatively to support point, XCG2 – position of foot of swing 

leg relatively to mass center, VCG – horizontal component of speed of mass center 

movement (fig.5.15). 

 

During robot’s walking orbit of phase coordinates XCG VCG can be situated in one of three 

zones (fig.5.16). In zone “1” runs orbital stable walking process, in zone “2” energy of 

mechanism is too big and robot falls ahead, in zone „3” kinetic energy is insufficient and 

robot falls back. 

 

The aim of the paper is formation of stable walking, which is characterized by closed 

orbit of phase coordinates in plane XCG VCG. On the basis of given description following 

requirements to the process are specified: 

 

1. Orbital stability of the process in zone “1” (fig.5.16). 

2. Resistance to external disturbances 

 
Fig.5.15 – Movement of robot in sagittal plane 
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Fig.5.16 – Series of phase trajectories for mechanism in sagittal plane 

 

In order to organize walking of robot in sagittal plane it is necessary that: 

 Robot moves ahead along trajectories «1» 

 Swing leg moves to the next support point faster than robot moves along 

trajectories «1» 

 Next support point should correspond to robot’s speed in such way that state 

vector would correspond to trajectory 1 in the next step. 

 

 

For the implementation of these requirements it is necessary to arrange walking 

algorithm. 
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Fig.5.17 – Walking algorithm in sagittal plane 

 

For implementation of walking control system was built (fig.5.18). Control system 

consists of state machine, robot’s stabilization system on phase trajectories and generator 

of swing leg trajectories. 

 

Current process phase is defined based on values of position and robot’s mass center 

speed relatively to support point and information about contact with surface from force 

sensors in robot’s feet. 
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Stabilization system maintains robot’s movement relatively to support point along desired 

phase trajectory and secures system’s stability to external disturbances. 
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Fig.5.18 – Control system of planar walking in sagittal plane 

 

On fig.5.19 time diagrams of mechanism movement are shown. On Fig.5.20 phase 

diagram of movement is represented. 

 

 
Fig.5.19 – timing diagrams of robot’s mass center movement along X axis 
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Fig.5.20 – phase diagram of robot’s mass center movement along X axis 

 

Using proposed concept it was possible to realize dynamic walking of robot Rotto in a 

circle with step length 25cm and step duration approximately 0.8sec. Process of walking 

is represented on Fig.5.21. 

 

 
Fig.5.21 – Walking of robot Rotto in sagittal plane 
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On Fig.5.22 time diagrams of mechanism movement are represented. On Fig.5.23 phase 

diagram of its movement is shown. 

 

 
Fig.5.22 – robot’s mass center movement along X axis 

 

 
Fig.5.23 – phase diagram of robot’s mass center movement along X axis 

 

5.3 Walking in space 

In the latest works in our laboratory gaits with instantaneous double support phase were 

realized. In addition while changing the support foot speeds were distributed quite 

stochastic. It was large disturbance. It was quite hard to compensate these disturbances in 

the single support with the help of torques in the feet. 

 

5.3.1 Strategy 

In this work is suggested another walking strategy, which based on usage of prolonged 

double support phase. In the double support phase robot will stop, i.e. speed of mass 

center will be reduced to zero under influence of control system. After stop robot’s mass 

center will accelerate again to necessary states for stepping in the single support phase. 
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Step is provisionally divided into 4 intervals: stay, acceleration, step and damping. Every 

phase of step is characterized by movement trajectories ZCG(t),XCG(t), dZCG/dt(t), 

dXCG/dt(t) and limit values [ZCG,XCG,dZCGdt,dXCGdt] (fig.5.24).  

 

 

Fig.5.24 – Trajectories of robot’s mass center movements during stride cycle with 

prolonged double support phase 

 

A special feature of this gait is that every step ends with damping phase. Thus robot is in 

quiescent state like before walking. Let’s examine separately every phase of step: 

 Quiescence. In quiescent state robot stays in the double support phase without any 

motions under the control of control system. Robot’s mass center is kept in center of 

bearing polygon. 

 Acceleration. During acceleration (t0-t1) robot is still in the double support phase. 

Robot’s mass center accelerates along trajectories (fig.5.24) under the influence of control 

system. Acceleration trajectories are synthesized offline taking into account acceleration 

in the double support and ballistic movements in the single support phase. Affected by 

constant torques MX(t)=MXACC, MZ(t)=MZACC single-mass system in the double support 

phase is being brought to the states ZCG(t1)=0.3ZA1 with speeds dZCG/dt(t1), dXCG/dt(t1), 

which by movement in the single support phase will bring the system to the states 

XCG(t2)=L at ZCG(t2)=0. 

 Step. After the end of acceleration robot’s mass center has states 

[XCG(t1),dXCG/dt(t1),ZCG(t1),dZCG/dt(t1)], which determine movement of the system in 
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the single support phase along trajectories (fig.5.22). Swing leg moves along trajectories 

(see Fig.5.25). 

t

q3,q4

(q9,q10)

q3(q10)

q4(q9)

t1 t2

H

L

 

Fig.5.25 – Movement trajectories of joints of transferred leg 

 

Joint movement trajectories of Swing leg are calculated offline by means of inverse 

kinematics. Parameter L corresponds to step length and mass center position in the shifted 

bearing polygon, H – height of leg lifting during transfer. 

 

Damping. After working out of trajectories swing leg of robot meets the surface. Robot’s 

mass center has speeds [dXCG/dt(t2),dZCG/dt(t2)], that were acquired during step. On the 

given stage stabilization system tends to reduce these speeds to zero and kept system’s 

mass center in the center of support polygon. Torques in feet are equal to: 

 

 (t)Xk(t)Xk(t)M 

(t);Zk(t)Zk(t)M

CGDCGPZ

CGDCGPX




    (5.3) 

Thus stabilization system brings mechanism again to quiescent state. 

 

5.3.2 Control system 

Further robot’s walking control system is represented (fig.5.26). Main task of this control 

system is organization of step cycles according to walking strategy that was described 

earlier. Walking control system consists of following main elements: 

 

 State machine 

 Generator of robot’s mass center trajectories at acceleration  

 Generator of trajectories of robot’s joints during leg swing 

 Stabilization system of robot in the double support state 
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Fig.5.26 – control system of biped robot  

 

Task of state machine is to determine and switch current step phase. State machine 

operates based on current values of robot’s mass center states and information about 

robot’s contact with surface. 

 

Generator of robot’s mass center trajectories at acceleration forms robot’s movements 

which bring it to such states that are necessary for moving at stage of single support phase 

at leg swing. 

 

During movement in the single support phase joints of robot work out trajectories which 

are necessary for leg swing to the next support point. These trajectories are formed with 

help of generator of trajectories for single support phase. 

  

Robot’s stabilization system in the double support phase is described in chapter 4. Its 

tasks are to serve trajectories of robot’s mass center acceleration and damp robot’s 

mechanism after taking a step and maintain robot in quiescent state. 

 

5.3.3 Simulations of 3D walking 

For evaluation of proposed robot’s walking concept simulations of control system’s 

performance using contact processing model [25] were conducted. 

 

On the graphs of movement and robot’s mass center speed relatively to Z axis (fig.5.27) it 

is seen that robot stops completely between steps. 
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Fig.5.27 – position and speed of robot’s mass center along Z axis 

 

Phase portrait of robot’s mass center movement in frontal plane represents closed 

repetitive curves. This fact confirms orbital stability of the given process. 

 

Fig.5.28 – phase portrait of robot’s mass center movements in frontal plane 

 

Robot’s mass center movement in sagittal plane relatively to support foot is represented 

on Fig.5.29. Step length is approximately 15cm. 
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Fig.5.29 – position and speed of robot’s mass center along X axis 

 

Phase portrait of robot’s mass center movement in sagittal plane represents closed 

repetitive curves. This fact confirms orbital stability of the given process (see Fig.5.30). 

 

Fig.5.30 – Phase portrait of robot’s mass center movement in sagittal plane 

 

Trace of robot’s mass center movement above support surface is represented on Fig.5.31.  



 96 

 

 

Fig.5.31 – Trace of robot’s mass center movement above support surface 

 

5.3.4 Experiments 

Experimental research of performance of robot’s control system was conducted on 

horizontal support surface. Robot’s mass center movement in frontal and sagittal planes is 

shown on Fig.5.32a. Graphs are presented also for the results of walking simulation 

(fig.5.32b) for comparison with the results of experiment. 

 

Fig.5.30a – movement of robot’s mass center in frontal and sagittal planes during walking 

– experiment 
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Fig.5.30b – movement of robot’s mass center in frontal and sagittal planes during walking 

– simulation 

 

 

Robot’s stabilization system maintains mechanism in balance state with help of torques in 

robot’s feet (fig.5.33). 

 

Fig.5.33 – torques in robot’s feet during walking 

 

Trace of robot’s mass center movement above support surface is represented on fig.5.34a 

for experiment and on fig.5.34b for simulation. 
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a)     b) 

Fig.5.34 – Trace of robot’s mass center movement above support surface 

 

Screenshots of robot’s step are shown in fig 5.35 

 

Fig.5.35 – Screenshots of robot’s step 
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5.4 Summary 

 
Proposed walking method allows us to realize more stable step cycle on account of more 

stable control system. Here states of robot’s mass center on account of control system in 

the double support phase after entering in contact always are reduced to given initial 

states of single support phase. 

 

On the one hand such organization of walking let us minimize disturbances in robot’s 

control system which were caused by robot’s contact process with support surface at 

change of support foot. On the other hand there was a complete stop of robot between 

steps, what causes low walking speed (approximately 0.5m/sec. at step length 25cm) and 

inefficient use of energy. 

 

In the future improvement of given gait is planned in such a way that damping of robot 

between steps would happen not until complete stop, but until set of necessary states for 

taking next step. It will let exclude «stay» phase from step cycle, cut down duration of 

double support phase and make gait more fast and efficient, but proposed method would 

be used only at occurrence of big disturbances or at the end of walking. 
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Conclusion 
 

 

 

This thesis describes modernization of construction of legs in the robot ROTTO using 

implementation of a special electrohydraulic actuator with a flexible gear and algorithm 

of dynamic walking with stabilization of step cycle during prolonged double support 

phase. 

 

The use of an electrohydraulic actuator with a flexible remote linear gear allows to lighten 

mass of robot’s legs and to redistribute masses in the mechanical system. It made it 

possible to realize movements of robot’s legs with higher dynamics than earlier and also 

to lower negative effect of cross-connections in the mathematical model of robot. 

 

Proposed construction of an electrohydraulic drive gives an opportunity to use it in 

devices, where an actuator should be situated remotely from the last moving element. 

Advantage of this actuator is that it combines features of an electric drive from the point 

of view of control tasks and hydraulic drive from the point of view of mass-dimensional 

features.  

 

This paper also illustrates technique of balancing of a multimass mechanical system using 

position control of its mass center. This approach let us to build a control system that is 

easy to understand for a multicoordinate mechanical system with the use of classical 

control methods and simple PID controllers. 

 

Concept of virtual kinematical constraints is used in the stabilization system, it helps to 

create elastic properties for a mechanical system with a position actuators, that allows to 

make a mechanical construction “flexible” and pliant in relation to support surface. 

 

Proposed algorithm of dynamic walking by a biped robot is mainly based on the use of 

prolonged double support phase in step cycle. Double support phase is used for damping 

of robot’s mechanism after its contact with surface. 

 

Using this approach step cycle by walking can be easily stabilized, as every step in this 

case ends with similar conditions - speed and position of robot’s mass center.  On the 
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other hand this gait is less effective compared to gait with instantaneous double support 

phase, as in every step robot throws its kinetic energy and then wastes energy for 

acceleration in order to take a next step. 

 

An advantage of this method of stride cycle realization is simplicity and reliability of 

walking process, simplicity of its implementation, lower requirements to dynamics of 

robot’s actuators and also to precision of measurements in mechanism speed. 

 

Gait proposed in paper realizes steps of robot with length of approximately 25 cm and 

step period 1 sec, what is approximately 0.9 km/hour. 
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Zusammenfassung 
 

 

Im Rahmen dieser Arbeit, wird die Modernisierung der Konstruktion, von den Beinen des 

Roboters ROTTO durch den Einsatz von einem speziellen elektrohydraulischen Aktor mit 

flexiblem Getriebe beschrieben. Dabei wird ein Algorithmus des dynamischen Gehens 

mit Stabilisierung des Schrittzyklus in der Doppelstützphase dargestellt. 

 

Die Verwendung eines elektrohydraulischen Antriebs mit flexiblem Getriebe, ermöglicht 

die Gesamtmasse von Roboterbeinen zu reduzieren und die Massen in dem mechanischen 

System zu verteilen. Daraus folgt, dass die Bewegungen der Roboterbeine mit höherer 

Dynamik zu realisieren und auch die negativen Auswirkungen von Querkopplungen im 

mathematischen Modell des Roboters zu verringern sind. 

 

Der elektrohydraulischen Antrieb kann in den Geräten und Anlagen eingesetzt werden, 

wo ein Aktor entfernt vor dem Endeffektor sich befinden kann. Der Vorteil dieses Aktors 

ist, die Kombination von Eigenschaften eines elektrischen Antriebs, vom Gesichtspunkt 

der Regelungstechnik und des hydraulischen Antriebs, bezüglich des Verhältnisses 

Gewicht/Leistung. 

 

In dieser Arbeit wird eine Methode der Gleichgewichtsunterhaltung des 

mehrdimensionalen mechanischen Systems, durch Lageregelung des Schwerpunktes 

betrachtet. Solche Methode ermöglicht das einfache Regelungssystem für 

mehrdimensionale mechanische Systeme mit klassischem PID-Regler zu entwerfen. 

 

Das Konzept der virtuellen kinematischen Reflexen, ermöglicht in dem 

Stabilisierungssystem, die elastischen Eigenschaften des mechanischen Systems mit 

positionsgeregelten Gelenken zu erstellen, um eine mechanische Konstruktion "flexibel" 

und nachgiebig bezüglich der Stützoberfläche zu erschaffen. 

 

Der Algorithmus des dynamischen Gehens, des zweibeinigen Roboters, ist vor allem auf 

der Verwendung von einer längeren Doppelstützphase in einem Schrittzyklus basiert. In 

der Doppelstützphase wird eine Dämpfung des Roboters nach dem Kontakt mit einer 

Stützoberfläche realisiert.  
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Solch eine Art von Schrittzyklus erlaubt, dass der Robotergang leicht zu stabilisieren ist. 

Basierend auf der Idee, welches jeder Schritt mit gleichen Roboterzuständen bzw. 

Position- und Geschwindigkeitswerten, des Schwerpunktes von Gesamtsystem endet. Von 

anderer Seite ist solches Gehen wenig effektiv im Vergleich zum Gehen mit sofortiger 

Doppelstützphase, weil die kinetische Energie in jedem Schritt durch 

Dämpfung/Beschleunigung des Roboters verloren wird. 

 

Die Vorteile des entwickelten Schrittzyklus, ist die Einfachheit und Zuverlässigkeit des 

Robotergehens. Eine einfache technische Realisierung dank der niedrigen Anforderungen 

an die Aktordynamik und an die Messgenauigkeit der Geschwindigkeit. 

  

In Rahmen dieser Arbeit wurde ein dynamisches Gehen des Roboters ROTTO mit 

Schrittdauer von ca. 1s und Schrittweite von ca. 25cm realisiert, was der Geschwindigkeit 

von ca. 0.9km/h entspricht. 
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