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Abstract

In this thesis we are concerned with the elastic flow of curves in R (n > 2). The elastic
flow is the L?-gradient flow corresponding to the elastic energy functional, which is the
integral of the curvature squared taken along the curve. The elastic energy is not only
of mathematical interest, but also has applications in image processing and modeling of
biological structures.

The elastic flow leads to a highly nonlinear parabolic system of partial differential equa-
tions of fourth order for the position vector of the curve. In order to solve this system
numerically, the key idea is to split the fourth order problem into a system of two second
order equations for position and curvature vectors. This approach essentially allows one
to use piecewise linear finite elements for constructing numerical schemes.

In this thesis we propose and analyze a new fully discrete numerical scheme to approx-
imate the solution of the elastic flow. To our knowledge, there is only an error analysis
for a continuous-in-time semidiscrete scheme. We develop our scheme on the basis of
the weak form of the elastic flow, using a fully discrete analogue of the variational rela-
tion between the position and curvature vectors, differentiated with respect to time. The
resulting scheme represents two coupled second order equations and requires solving a
nonlinear problem in each time step.

We first use a suitable constrained minimization problem in order to show that the scheme
has a unique solution in a proper set. Our main results are error bounds of order O(h+At)
for the position vector in H!'-norm and the curvature vector in L?-norm and the constants
depend on higher norms of the solution to the continuous problem. The error analysis is
carried out under a condition that bounds the time step in terms of the spatial grid size.
The proof uses an induction argument and is performed in a series of lemmas, in which
several energy estimates are derived.



Zusammenfassung

In der vorliegenden Arbeit beschéftigen wir uns mit dem elastischen Fluss von Kurven
im R" (n > 2). Der elastische Fluss ist der L?-Gradientenfluss fiir die elastische Ener-
gie, welche sich als Integral des Quadrates der Kriimmung iiber die Kurve beschreiben
lasst. Die elastische Energie ist nicht nur von mathematischem Interesse, sondern hat auch
Anwendungen in der Bildverarbeitung und der Modellierung von biologischen Strukturen.

Der elastische Fluss fithrt zu einem nichtlinearen parabolischen System partieller Dif-
ferentialgleichungen vierter Ordnung. Die Grundidee, um dieses System numerisch zu
losen, besteht darin, das Problem vierter Ordnung in ein System aus zwei Problemen
zweiter Ordnung fiir den Positions- und Kriimmungsvektor zu zerlegen. Diese Metho-
de ermoglicht es, stiickweise lineare finite Elemente fiir die Konstruktion numerischer
Schemata zu nutzen.

In dieser Doktorarbeit prasentieren und analysieren wir ein neues volldiskretes numerisches
Schema zur Approximation von Losungen des elastischen Flusses. Bisher gibt es in der Li-
teratur nur Fehlerabschétzungen fiir ein in der Zeit kontinuierliches semi-diskretes Schema.
Wir entwickeln unser Schema auf Basis der schwachen Formulierung fiir den elastischen
Fluss. Dabei wird ein volldiskretes Analogon der nach der Zeit abgeleiteten Variations-
gleichung fiir die Relation zwischen Positions- und Kriimmungsvektor verwendet. Das
resultierende System besteht aus zwei gekoppelten Gleichungen zweiter Ordnung und
benotigt in jedem Zeitschritt die Losung eines nichtlinearen Problems.

Zunachst nutzen wir ein geeignetes Minimierungsproblem unter Nebenbedingungen, um
zu zeigen, dass das Schema eine eindeutige Losung in einer geeigneten Menge besitzt. Zu
den zentralen Ergebnissen der Arbeit gehren Fehlerabschétzungen der Giite O(h + At)
fiir den Positionsvektor in der H*-Norm und fiir den Kriimmungsvektor in der L?-Norm,
wobei die Konstanten von hoheren Normen der Losung des kontinuierlichen Problems
abhangen. Die Fehleranalyse wird unter einer Bedingung durchgefiihrt, welche den Zeit-
schritt abhangig von der Ortsschrittweite beschrankt. Der Beweis verwendet ein Induk-
tionsargument und kombiniert eine Reihe von Lemmata, die mit Hilfe von Energieab-
schazungen bewiesen werden.
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Chapter 1

Introduction

1.1 Overview. Problem formulation

Overview

The theory of elasticity started several centuries ago with the tests of Galileo on breaking
a beam, held at one end and loaded by a weight at the other. James Bernoulli was
the first, who in 1691 precisely formulated a problem of a thin elastic beam [38]. A
significant contribution to the study and description of the law of elastic rods was done
by Daniel Bernoulli. The scientist found an expression for the bending, also known as
elastic, energy stored in a beam. It was noticed that the work, needed to bend an elastic
rod, is proportional to the squared curvature [40]

1
E(x) = §/I/€2ds,

where ds represents the arclength element of a closed curve z : I — R™ (n > 2) with a
curvature k. It was of particular interest to find critical points of the functional E subject
to fixed length, which are called elastic curves, or simply elasticae. Later, D. Bernoulli
in his letter to Euler suggested that differential equations, defining an elastica, could
be found by minimizing the elastic energy and proposed to express the given problem
in variational form [40]. Following these ideas, Euler by means of calculus of variation
succeeded in deriving the equations, which mathematically describe an elastica [27]. This
leads to the first variation

1
(E@).0) = [ (920 + i) o ds
I
where ¢ is a periodic on I test function, y is the curvature vector and /s f = fs— (fs, 7)7
with 7 =z, being the unit tangent. At a minimum the functional E necessarily satisfies
E'(z) = 0, which is equivalent to the equation

1 :
Vit 5Py =0 in

1



CHAPTER 1. INTRODUCTION

The detailed history of Bernoulli-Euler theory of elastic beams can be found in the works
[52] by Todhunter and [40] by Love.

Problem formulation

In this section, we describe the problem to be treated in the thesis and formulate the aims
of our research. Furthermore, we review the existing methods currently used to solve this
problem and indicate open questions related to the subject.

Let z : [0,27] — R™ (n > 2) be a parametrization of a closed curve. Then for A > 0 we
introduce the modified elastic energy functional

E\(z) := %/0 7Tfist + AL(x), (1.1)

where L(x) denotes the length of the curve and ds and k are the arclength element and
the curvature, respectively, as already defined above.

One is usually interested in local or global minima of the functional E). A general
approach to find critical points is to consider the geometric flow in which the curves
evolve according to the negative L2-gradient of E\. The associated evolution equation is
given then by

1
Ty=— VoY — §\yl2y + Ay (1.2)

and represents a highly nonlinear fourth-order parabolic system of partial differential
equations (PDEs).

While linear PDEs are well understood and exact solutions established in many cases,
analytical treatment of nonlinear PDEs is more difficult task and rarely leads to the exact
solution. Therefore one seeks to solve this type of equations numerically and estimate
the error of the corresponding approximate solution. Numerical methods for solving
frequently use a decoupling strategy. The idea of decoupling is to split the problem
into two second order problems for the position and curvature vectors, where only first
derivatives of the entering functions including test functions appear. This allows one to
use piecewise linear finite elements.

The main goal of the thesis is to derive a novel fully discrete, i.e. in space and time,
numerical scheme to approximate the solution of and carry out the error analysis
for the resulting scheme. To our knowledge, there is no such result in the literature.
Furthermore, in our work we prove the existence of the unique discrete solution under
certain conditions on the time step step size with respect to the spatial grid size. The
error bounds for the introduced scheme are satisfied under these conditions as well. We
note that this sort of restriction is a common case for the time-dependent problems.
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Variational formulation. Numerical scheme

Variational formulation

As already mentioned in the first section, Euler formulated the elastica problem using a
variational principle. Our fully discrete numerical scheme is based on the discretization
of the continuous one and takes advantage of variational techniques as well. Therefore,
we outline here the derivation of the variational formulation for the continuous problem,
leading to our numerical scheme. To this end, we adapt the approach from [25] to the
case of curves.

Let us consider a curve x = x(u) not necessarily parametrized by arclength. We define
the tangent and curvature vectors in a standard way

Ty, 1 Ty Tu
T=—) Y= = , (1.3)
|| || (Ixu!)u ||

so that the energy functional (1.1)) becomes

1 271 21
E\(z) = 5/0 |y\2]96u|—|—)\/0 EAE (1.4)

Then the first variation of Ey in direction ¢ € H,,, ((0,27),R") is given by

eT

, - d _ 2m 1 2m 2w
(EX(z),0) = d—gE,\(CE +EQ)je=0 = /0 (YY) |zl + 5/0 ly[*(7, du) + )\/0 (7, bu),

where by y, we have denoted the derivative of y in direction ¢ and H},, ((0,27), R"™)

per

represents the space of all periodic in H' ((0,27), R™) functions. In order to find y4 we
use the relation between position and curvature vectors in variational form

2 21
/ (9, ) [l + / () =0 Wi € H ((0,27),R")
0 0

and its first variation in direction ¢ € H,,, ((0,27), R")

| el + [Cwame)+ [ oy =0 (5)

|z

where P is the projection matrix defined as
P=I,-17®T. (1.6)

Inserting 1) = y as a test function into (1.5]) yields

@i = [ w3 [ble o) ea [ o

|Iu’

3



CHAPTER 1. INTRODUCTION

Then, for the time-depending functions x,y : [0,27] x [0,T] — R" the weak form of the
gradient flow corresponding to the functional F reads as

/:W(xt,éb) |Tu| — /027r ﬁ(Pyu, Pu) — %/0% [y (7, ) + /\/027F(T’ 6) =0,  (1.7)
/O%(y,@b) |$u|+/027r(7_7wu) =0, (18)

for all ¢,9 € H;e,,((o7 27),R™) and 0 < ¢t < T'. For a smooth function = one can verify

that (1.7))-(1.8) are equivalent to ((1.2)).

Let us now show that t — FE) (z(+,t)) is decreasing. Differentiating ([1.8]) with respect to
time, we receive

27 27 27 1
4 wmmuu+A @mwmw»+4 PP, h) =0

Setting now 1) = y in the above equation and ¢ = z; in (1.7]), we immediately obtain the
energy decrease

2m 1 2w 2w
B = [ )kl 4y [P )+ ) [ ()
0 0 0

d (1/27r ) 21
5 (5 [ WPl +x [
2
=—/ 20f? [e] < 0.
0

Numerical scheme

In the current section, we present a novel scheme, which lies in the heart of our research
and is analyzed in the later chapters.

Our starting point was a result obtained by Deckelnick and Dziuk in [22]. The authors
analyzed a semidiscrete numerical scheme, in the sense that it is discrete in space and
continuous in time, for approximating the evolution of parametric curves by elastic flow
in R™. The authors proved the following error bounds

T
sup IIx(-,t)—wh(-,t)Hi;mL/ el 1) — 2ne (-, O dt < OB,
0

te[0,7
2 r 2
swumw—%mmm+/Wmmw—%wwnﬁscﬁ
te[0,7 0

where the constant C' depends only on 7" > 0 and certain norms of the continuous solution
x of (1.2), whereas x;, and y;, represent the solutions of the semidiscrete problem

27 27 1 1 27 )
I t) ul P U u) T 5 I ) u
| oo = [ Panon) =5 [0 ) (o)

’xhu|

o (1.9)
+ )\/ (Tha ¢hu) = 07
0
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/Oﬂlh [(Yns V)] | Tl +/0 7r(Th,whu) =0, (1.10)

corresponding to (1.7)-(1.8)). Here, ¢y, 1, are test functions of a suitable finite element
space with a grid size h. By I, we have denoted the Lagrange interpolation operator,

while P, = I,, — 7, ® 73, and 73, = are the projection matrix and the tangent vector,

|$hU|
respectively. In order to perform test calculations, the authors used a semi-implicit time

discretization. However, there is no analysis for the resulting fully discrete scheme.
In this context, we suggest the following fully discrete numerical scheme to approximate
the elastic flow of a curve

2w m+41 27 pm m+1 "
[l e[ e
0 0 | Lhu ‘

27 27 m, m+1 _m+1l _ _m
_ l/ I, “ m+1‘ } ( m+1 ¢hu) / (Ph Yhu o Thu $hu) ( m+1’¢hu) (1.11)
0 0

2 [t
2
+)\/ ( m+1>¢hu> - 7
0

27 27
/'huw“wmpyﬂ / L [ o)) |
0 0
. /27r (P;Ln (xZZH . IZL) >¢hu) o
0

|z
Here for a generic function z we used 2™ = z(-,mAt), m = 0,..., M with a final time
T = MAt > 0. Choice of the initial data is discussed in Section 2.2l For a detailed
explanation and definition of the notations, used above, we refer the reader to Section [2.2),
where we introduce discrete quantities.
The first equation of our scheme represents a time-discrete version of with the
exception of

(1.12)

/27r (P}:nylrgjrl xz;bjl J}Z;) ( - ¢ )
hu o %Phu) -
0 |z, +1|

This term vanishes as At — 0 and its role will become clear in the derivation of the
existence and uniqueness result in Section [3.1} The second equation (1.12)) of the scheme
is a discrete analogue of the equation (1.10]) differentiated with respect to time

%({Uuwwmum+l%mww)

:A”@mmmwm%m+lﬂﬁﬂ@ﬂ@.

|$hu‘

Remember that this relation was important in deriving the energy decrease for continu-
ous problem and also holds for the semidiscrete case. We note that the chosen scheme
represents two coupled second order equations and requires solving a nonlinear problem
in each time step.
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In this connection, we formulate the main result of our work.

Theorem 1.1. Let = : [0,27] x [0,T] — R" be a sufficiently smooth solution of (1.7).

Then there exists a solution (z}',y*), m = 0,...,M of -([1.13) and the following
error bounds are satisfied

2 2
maz (o™ = 23 [+ ly™ = vl

- M-1
YA (IW — |+
m=0

6erl —em

At

2) < C (h?+ A%,
(1.13)

where €™ = ™ — x}'. The constant C' depends only on the norms of the solution of the
continuous problem and does not depend on the spatial grid size h and time step size At.

It should be also remarked that error bounds are satisfied under certain conditions
on h and At, which will be formulated in the later chapters.

1.2 Research studies. Willmore functional

This section gives a brief overview of existing methods for solving elastic energy problems.
Additionally, we mention here the strategies listed in the literature for the Willmore func-
tional, which can be thought as a higher dimensional case of the posed problem. Moreover,
we give some examples on the applications of the elastic rod theory and curvature-based
energy functionals.

Research studies

Curve evolutions under the gradient flow for elastic energy have been intensively inves-
tigated in the literature. Also different approaches have been introduced to solve the
associated evolutionary equation.

Polden in [45] studied the evolution of closed curves in the plane under the flow (1.2)). The
author proved the long-time existence of smooth solutions for (1.2)) with A\ being chosen
positive to penalize the length growth. This result has been extended by Dziuk, Kuwert
and Schétzle in [26] for curves in arbitrary dimension. In this study, the length of the
curve is either penalized as well or fixed as a constraint. The authors also proved the
subconvergence of solutions to an elastica, after the curve has been reparametrized by its
arclength and translated. Moreover, Dziuk et al. derived an algorithm for the numerical
approximation of the solution. To this purpose, the authors split the fourth-order problem
into a system of two second-order equations for position and curvature vectors. The
second order convergence in the maximum norm for both vectors was revealed in the
numerical test calculations. An error analysis of the elastic flow of parametric curves in
R™ can be found in [22]. In [2, 5] Barrett, Garcke and Niirnberg presented an alternative
scheme,which particularly ensures an equidistribution of points along the curve.



1.2. RESEARCH STUDIES. WILLMORE FUNCTIONAL

Since we are interested in closed curves, we only shortly mention some results on the
boundary value problems, which are few up to now in the literature. The motion of open
curves with clamped boundary conditions in R™ under the elastic flow has been studied
by Lin (see [39]). Dall’Acqua and Pozzi in [20] extended the Helfrich energy for closed
curves to n-dimensional case with n > 2 and studied motion of open regular curves with
fixed boundary points under the L?-gradient flow for the corresponding functional. Recent
work [19] by three abovementioned authors extends a long-time existence result presented
in [26] to the case of open curves with natural boundary conditions. Furthermore, in [19]
a subconvergence proof is also provided.

All above mentioned numerical methods discretize the problem semi-implicit in time and
thus require to solve at each time step a linear system of equations. As a consequence, one
has to impose a grid-dependent condition on the time step size of the kind At < Ch2.
Motivated by this shortcoming, Balzani and Rumpf in [I] and Perl, Pozzi and Rumpf in
[44] used a different approach, which was earlier introduced by Olischldger and Rumpf in
[43]. They considered a nested variational time discretization with an inner minimization
problem to be solved in each time step. An advantage of such approach is that one imme-
diately obtains the decrease of the discrete energy. Computational results demonstrated
the robustness of the proposed numerical scheme, which essentially allows the time step
size of order of the spatial grid size.

Willmore functional

The Willmore functional, defined as the integral over the surface of the mean curvature
squared

W(I) = /F H%dA,

originates in the Euler-Bernoulli theory of elastic rods and represents the elastic energy for
surfaces. It was first introduced by Germain in 1810, but a broad attention was attracted
much later in Willmore’s work [54]. Critical points of the Willmore functional are referred
to as Willmore surfaces. Theoretical results on the Willmore energy, including existence
of closed Willmore surfaces of prescribed genus as well as local and global existence for the
Willmore flow of closed surfaces, can be found in [49, 6] and [33] 50} [35] 34], respectively,
while regularity result has been obtained in [46].

Experiments on the surface motion by the L?-gradient flow have been carried out in [31]
using Brakke’s surface Evolver (see [I3]), providing the evidence that singularities can be
developed in finite time. A finite difference scheme to approximate axisymmetric solutions
is presented in [41].

Let us now mention some parametric finite element methods. Authors in [4] numeri-
cally approximate with piecewise linear continuous finite elements the Willmore flow,
Gaufl curvature flow and some generalizations of them, such as Helfrich flow. The pre-
sented numerical algorithms extend their previous results (see [3]) and differ from other
existing schemes by a good distribution of mesh points. Another approximation of the
elastic flow of closed two-dimensional surfaces in R? by linear elements is done by Dziuk

7



CHAPTER 1. INTRODUCTION

[25] and Rusu [47], where the latter work is analogous to the results in [26] for curves.
Approximation by quadratic elements is performed in [12] and shows its robustness with
respect to the mesh distribution (see [L1]). All these methods use the splitting strategy,
i.e decoupling the fourth-order problem into two second order equations.

While abovementioned papers treat closed surfaces, existence of the Willmore surfaces
with prescribed boundaries has been less investigated. We refer the reader to [42] by
Nitsche, where the appropriate boundary conditions are discussed and some existence
results are provided as well. Authors in [I5] generalized the result of Rusu in [47] for
surfaces with boundaries. Willmore surfaces of revolution satisfying the Dirichlet bound-
ary conditions have been investigated in [I7, [I8]. A level set method to Willmore flow is
derived in [23].

Applications

Theory of elastic rods is applicable to different fields of science. In biology, due to the
definition of an elastic rod as a structure with length much greater than diameter, it is
used in modeling polymers, bacterial fibers and DNA conformations [, [8, 9, 53], 32]. Thin
long structures also play an important role in physics [51], 24]. In mathematics, connec-
tions between space curves and partial differential equations are of interest 36}, [37].

The Willmore functional is applied in surface restoration, where a destroyed region has to
be replaced in a suitable way by a surface patch, see [10, [16, 43]. The Helfrich functional
is used to describe the behavior of red blood cell membranes. It was first mentioned in
1970 by Canham [14] and later in 1973 was specified by Helfrich [29]. Cell membrane
consists of the lipid bilayer, which has a thickness that is much smaller than the size of
the cell. Therefore membranes can be considered as two-dimensional surfaces, embedded
in three-dimensional space [48]. Being deformed, cell membranes tend to the equilibrium
state, trying to minimize the free elastic energy. This energy was proposed by Helfrich in
[29], based on the similarities between lipid bilayers and liquid crystals. Configurations of
cell membranes arise due to the bending elasticity, as introduced independently in three
papers [14, 29, 28], and can be expressed in terms of the curvature of the membrane
surface.

1.3 Thesis outline

The aim of our research is to carry out an error analysis for —, which constitutes
the major part of our work. The proof of the error bounds is done along the lines of [22],
where a semidiscrete scheme for the elastic flow is analyzed, using 7 auxiliary lemmas. We
have extended these lemmas for the fully discrete case and proved the error bounds .

In Chapter [2] we introduce a finite element space and define some related notations. Ad-
ditionally, we present here important theorems and inequalities, interpolation and inverse

8



1.3. THESIS OUTLINE

estimates, which will be used in our further analysis.

In Chapter |3| we are concerned with the unique solvability of the equations —
of our numerical scheme. We aim to prove the existence of the unique solution to the
posed problem in a certain admissible set. To accomplish this goal, which we formulate
in Theorem [3.1], we use a suitable constrained minimization problem. First, we prove the
existence of the minimizer in a certain class of admissible functions and then show that
this minimizer solves our problem, i.e. satisfies the equations —. Afterwards,
we prove that the system of equations — is uniquely solvable, for what we take
the difference between two solutions and show that this difference is equal to zero. Fur-
ther, in Lemma [3.7 we consider the second equation of our scheme and derive a different
representation for it. Due to the fully discreteness of the scheme this gives rise to the
remainder term R;"*! (the exact form is given in the abovementioned lemma). It is worth
noting that estimation of the remainder term requires particular treatment (is done in
Chapter [5) and its presence complicates the error analysis.

Chapter [ is devoted to the main result of the thesis — the error analysis of the numerical
scheme, which has been introduced above. In order to control expressions on the left-hand
side of , we insert into the equations 1) of our scheme suitable test func-
tions and derive in Lemma and Lemmal4.5/the estimates for the norms ||z™! — mhmH ,
Hym“ — y}?ﬂ , respectively. The combined result is presented in Lemma . Some quan-
tities, which appear on the right-hand side of the above lemma, we cannot handle directly
using the Gronwall argument in Lemma[4.12] Therefore additional estimates are required.
The main difficulty represents the estimation of the difference of the length elements. We
note that from follows (x;,7) = 0, i.e. the equation degenerates in tangential direc-
tion. Thus, in order to estimate the first derivative of the position vector x, one has to
gain control on the direction (see Lemma and the length separately, what was done
in Lemma [£.11] and Lemma [£.121 The first derivative of the curvature vector is treated
in Lemma [£.10] In order to close the error analysis, we formulate in Theorem the

induction-type argument.

In Chapter [5| we complete the proof of Theorem and justify the assumptions on the
discrete solution, made in Theorem [3.I} In this chapter we also estimate the remainder
term, first introduced in Lemma |3.7]

We summarize our work and give some remarks related to the scheme and possible mod-
ifications of the analysis in the last Chapter [6]

Derivation of auxiliary results is collected in the Appendices for the sake of readability.
Appendix [A]includes 4 additional lemmas, which give a detailed proof for the results used
in Lemmal[4.11] In the second Appendix[B]we carry out the estimates of certain remainder
terms, required for the proof of Lemma and appeared due to the discretization of the
length element in Lemma [4.11]
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Chapter 2

Analytic Foundations.
Discretization. Initial conditions

2.1 Analytic foundations

In this section, we fix some notations and collect well-known theorems and important
inequalities, which will be used in the error analysis.
Let us denote by || ||z» and ||- ||z the norm of LP(0,27) and H'(0,27), respectively

1
27 P
HuHmz(/ |u<x>\pdx) Cl<pes
0

[l = ess sup [u(z)|, p = oo,
z€(0,2m)

i = ([ wtopas+ [ |u'<a:>|2dac)é |

For p = 2 we write || [|z2 = ||- |-
In the further analysis we use the following well-known inequalities and theorems.
Cauchy-Schwarz inequality. Let f,g € L?(0,27). Then the following inequality holds:

/07r [f(@)llg(@)|dz < [ Flllgll- (2.1)

Cauchy’s inequality for sums. Let x;,5;, € R, i =1,...,n then

Z|$z‘yz‘\§ (ZWP) (Z\%P) : (2.2)

Young’s inequality. For a,b € R>( and € > 0 holds:

1
b<ea?+ —b. 2.3
ab < ea +4€ ( )
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CHAPTER 2. ANALYTIC FOUNDATIONS. DISCRETIZATION.
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Theorem 2.1 (Gronwall’s inequality, [30]). Let y(t), f(t), and g(t) be non-negative con-
tinuous functions on [0, T| and let us assume that for 0 <t < T we have

mwsﬂa+AE@M@w.

Then for 0 <t < T we also have

mwsﬂw+AEQV@ew(LEwwﬁds

Theorem 2.2 (Discrete Gronwall’s Lemma, [30]). If (yn), (fn), and (gn) are non-negative
sequences and

Un < fat D gryk  forn >0,

0<k<n

%Sﬁﬁ-ij%ﬁww<§:%>ﬁwn20 (24)

0<k<n k<j<n

then

2.2 Discretization

We define in this section a finite element space and introduce related notations. Further-
more, we present some useful relations, which hold in the chosen discrete space.

Space discretization

Let 0 = ug < uy < ... < uy_1 < uy = 27 be a partition of [0,27] into subintervals
I; = [uj_1,u, ] of length h; := u; —u;_; and set h := max;_;__nyh;. The following inverse
assumption is required

,,,,,

h<céh; forallj=1,.. N, (2.5)

where ¢ is independent of h. Let us denote by X}, the space of linear finite elements
Xy, := {nn € C°([0,27]) |y, is a linear polynomial, j = 1,..., N and n,,(0) = n,(27)},

generated by the nodal basis functions ¢;, 7 =1, ..., N, defined by

w ifue [uj_l,uj] s
h; e
pil) = = ety =30 o7
: I U Y
0 otherwise,

The basis function ¢;, j = 1,..., N is shown in Fig.
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2.2. DISCRETIZATION

u;:

j-1 Uj

j Uj+ U UN -1 uy

Figure 2.1: On the left the basis function ¢;, j =1,..., N — 1, on the right ¢x.

Next, in order to deal with vector-valued functions we introduce the following space

X i={on:10,27] = R*|¢p; € Xp,i=1,...,n}.

We denote by I, the Lagrange interpolation operator
N

Inf =) fu)eps.
i=1

Important inequalities

The following interpolation estimates hold

Hf - [th + thu - (Ihf)u “ S ChQHfHH27 vf € H;ser <O7 27T) )

where H2, (0,2m) denotes the space of all periodic functions in H? (0, 27).

per
We present further useful relations:

6n* < [ Lullonl’] < C [ [onl,
I I I

/I(Cbh,%) = /Ij In[(én, n)] — éfﬁ /Ij(cbhu,@bhu)

J

for j =1,...,N and all ¢y, 1, € X}
We use
Zy = {zh :[0,27] — R™ |zh‘1j is constant, j =1, ...,N} :

and Qp, : H*((0,27),R") — Z), given by
1 :
(th)\lj = m/ f?.] = 17"7N7
J 1;

as introduced and defined in [22]. Then,
|f = Qufll < Ch|fllm, VfeHY(0,2r),R").
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CHAPTER 2. ANALYTIC FOUNDATIONS. DISCRETIZATION.
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For n, € X} and h satisfying (2.5)) holds (see [21])
1l < CR7H|m |l o, (2.11)

170l < Ch72 [0l (2.12)

2.3 Initial conditions

Here, we discuss a choice of the initial data and so bound the discrete and continuous
problems together.

Due to the smoothness of the continuous solution there exist constants 0 < ¢y < Cy such
that for m =0,..., M and T" > 0 holds

T
w<lI<C WG w2 [ I~ < Co
0

We choose the following initial datum
r) = I,2°, (2.13)

which determines the discrete curvature vector y? through the relation

/O In [(yis von) ] | (In2?) | +/0 % =0 (2.14)

for all ¢y, € X. This is similar in spirit to [22]. The authors show that this choice of v
is a good approximation of the initial continuous problem.

Moreover, it can be shown that the following bounds are satisfied under the smallness
assumption on the spatial grid size

1
S0 <lah| <2Co,  |yal <2Co i [0,27], (2.15)

We show this for the upper bound on |z9 |. From the interpolation estimate, triangle
inequality and ([2.13)) one obtains

|| < |Q32‘ + ‘xg - x?m‘ < Co+ ng - (Ihxo)uHLw < Co+ Ch <20y,

provided h is small enough. The remaining estimates will be discussed in detail in Sec-

tion B.11
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Chapter 3

Existence and uniqueness result.
Second equation of the scheme

In this chapter, we shall be concerned with the unique solvability of the fully discrete
scheme (L.11)-(L.12), proposed in Chapter [Il Using a suitable constrained minimization
problem, we prove the existence of the solution at the next time step. To do so, we
introduce a functional to be minimized and formulate a constrained minimization prob-
lem. The proof of the existence of the minimizer in the admissible set is presented in
Lemma [3.2] In Lemma [3.3] we show that a minimizer of the given functional satisfies the
equations -, i.e. actually solves our problem. In order to motivate this proof
we find the first variation of the minimized functional, what gives rise to the perturba-
tion term of small order. The uniqueness result is obtained in Lemma by taking the
difference between two solutions and showing that this difference is equal to zero. We
finish this chapter by discussing the second equation of our scheme and giving a differ-
ent representation for it in the form of the equation ({1.10]) up to the remainder term RZH'I.

Before we formulate in Theorem the main result of this chapter, we would like to
draw a parallel between our approach to solving the problem with the one, proposed
by Olischlager and M. Rumpf in [43]. The authors presented a nested variational time
discretization with an inner minimization problem to be solved in each time step.

Theorem 3.1 (Existence and uniqueness). Suppose (z}*,y"), m € [0, M — 1] satisfy

1
560 < |.fl§'%| < 2Cy, ‘y;zn| <2C, [0727T]7 (31)

where cg > 0,Cy > 0 are independent of h and At constants. Then there exist hg > 0 and

0 < pu <1, such that - has a unique solution (a:%”“,y,’f“), satisfying

ico < |xZL+1} < 4C), ‘y}’:‘+1| <4Cy in [0,27], (3.2)

for all0 < h < hg, provided At < uh® and the discrete energy is decreasing. The constants
depend only on cgy, Cy.
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CHAPTER 3. EXISTENCE AND UNIQUENESS RESULT. SECOND
EQUATION OF THE SCHEME

Here and throughout the thesis we will denote by C' some positive generic constant that
may vary from line to line and is independent of the time step size and mesh size. For
practical reasons, we do not trace the exact value of the constant C, only indicating,
where it is necessary, what this constant depends on.

3.1 Existence and uniqueness result

In this section we present the proof of Theorem [3.1]

3.1.1 Existence of the discrete solution

As already mentioned above, we first proof the existence of the discrete solution to (1.11))-
at the next time step. In the following, we formulate a minimization problem
subject to a constraint and prove the existence of the minimizer in a certain class of
admissible functions. To this purpose, we define for (z5,ys) € X' x X' and Vb, € X}
the relation

27 2 2 me ws Tha — M
J A B A e e
0 0 0 ’xhu|
and introduce the admissible set
1
K = {(xh,yh) € X} x XJ'|(zn, yn) satisfies (3.3) and |xp,| > ZCO} : (3.4)

Let further J : X}’ x X}' — R be the functional defined by

1 1 27 1 2 2
J(xh, yn) = 241 J, I [Jzn — 23] || + 5/0 I [lyal?] |2l +)\/0 |Zhl- (3.5)

Lemma 3.2 (Existence of the minimizer of the functional). The minimization problem

min J(xp, yn) (3.6)

(xhzyh)eK

has at least one solution (zp,yn) € K. Moreover, there exist hg > 0 and 0 < pu < 1, such
that the following bounds hold

1
ZCO < |i‘hu| < 400, |?3h| < 400 m [0,271'] (37)

for all 0 < h < hg, provided that At < uh®. The constants depend only on cqy, Cy.

1 1
Proof. Let us first show that K # (. Indeed, |z}?,| > 50 > 4o and (z}",y;") belongs to
X x X and satisfies (3.3)), i.e.

(P s T, — Th)

ks

=0.

[t e [ o e+
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3.1. EXISTENCE AND UNIQUENESS RESULT

Since J > 0, there exist a = irll(f J and a minimizing sequence (:E?l, yi)jeN € K such that

J (mﬁl, yi) — iI}{f J. Using the lower bound on |z} | as well as 1} and the fact that the

minimizing sequence is admissible we obtain
L1 [ TR B
€23 (el 2 557 | B[l =i bkl + 5 [ [l e

> (G2 i - w21+ ).

This result together with the equivalence of the norms in a finite-dimensional space implies
the boundedness of (xil, yi)jeN. The Bolzano-Weierstrass theorem applies and yields the

JENEEN with limit (z,,9,) € X} x X7,
(Zp, gn) € K. From what follows J (xh ) = T (T, ) = .
It remains to prove the bounds . Observing

existence of a convergent subsequence (I{L’“,yi’“ )

— — m m 1 27T m m 27r m
T (@) < T (&) = / T [ ] ] + A / 2] < e(Co)
0 0

2
and using ([2.7) we obtain

R I TES. o AL RS ENI e
c>—— In—x = T —xp|”. :
=oAL ), IR T ER T = A | 4At b
It follows now from ([2.11)) and ) that
1Z e — @ll e < CR7H |20 — SL"Z”IILoo < Ch™2 |, — 2|l < Ch VAL (3.9)
where the constant C' depends on cg, Cy.
Hence, in view of (3.1)) and using the condition At < ph’ and 0 < p < 1, we obtain
| Thal = 1T — 2 + 2] < Zhe — 2| + 2] < Tha — 25 oo + 23] (3.10)
<CVALh™2 420y < Cy/lih + 2Cy < Ch 4 2C, < 4C,, '
provided hy is sufficiently small. Analogously, we have
1 _3
Bl > ] = Eha = 20l > o0 = OVALR™
(3.11)

1 1 1
2560 — C\/ﬁh > §CQ —Ch > ZCO‘

This proves the bounds on |Zy,| in (3.7). Let us consider the side constraint in order
to get an upper bound on |y,|. Rearranging the terms and inserting the test function

Y, = yp — yy into (3.3]) we obtain

27 27
/ I (9 — 0] [l = / L 1 — )] (2] — 7))
0 0
. /27r (P}zn (jhu - ZL‘ZL) >ghu - y}%)
0

|jhu|

(3.12)
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First, we estimate from above the terms on the right-hand side of the equation (3.12]).

Thus, Cauchy-Schwarz and Young’s inequalities along with (2.7) and (3.9)) provide

2T
<[ hlelon = o+ Cely ) on - af
0
— m — m||2 m||2
<|Zhu — 2l e (ECN1Tn =y 1"+ CCC lyi (%)
<eCVALh™2 ||y, — y || + CCNAth 2.

Using the inverse estimate (2.11)), Young’s inequality, (3.8]) as well as a lower bound (3.11])
on |Zp,|, obtained so far, we deduce

/27r (B (Tnu — 3) s Unu — Yiu)
0 |th|

2
/0 Lol 9 — o)) (] — [2al)

<CIn = yhull 1200 — =33

<Ch Mg =y | | T — 2
<e||gn — y 1> + CC-Ath™.

Let us next estimate from below the left-hand side of (3.12)). From (2.7)), (3.11)) we infer
21 ) 1 )
| o =P ol = gl — w17
0
Combining three above estimates together and using the condition At < ph® we get
1
2o g — it > <e (1+ CVAITE ) g — gl + CC. (VAR + Ath™)

4
<e (1+ C/uh) |gn — yiP|I” + CO- (Vih + ph)
<e (14 Ch) ||gn — y*|I” + 2CC-\/1ih,

1
where the last step follows from 0 < p < 1. Choosing € = gco one obtains

L e,
30 gn — ypl|* (1 = Ch) < E\/ﬁh’

1 5 _4C
o llgn — ™I < == /uh

provided hg is mall enough. The above estimate and an inverse inequality (2.11)) imply
64C* 64C?

_ m2 — _ m12 —
190 = 57w < Ch 7 g — 937 < == b~ Vi < - Vi < G,
0 0

” Céct . . C3c3 . ¢
if /i < 6ac? Setting /¢t = min q 1, 61c2 [ the next estimate completes the proo

Gn] < |gn — 'l + |lyn'l < Non — ui'll e + lyn'| < Co 4+ 2Cy < 4C.
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3.1. EXISTENCE AND UNIQUENESS RESULT

Let us next show that the minimizer (Zp,gs) € K of the functional J is a solution to our
problem at the next time step.

Lemma 3.3. Let (Zp, yp) be a solution of the constraint minimization problem —(@),
such that holds. Then (Zn,yn) satisfies the equations

27 - 2T 2 _
Th — Ty my_ L o 7 (B s Dha)
/0 Ih |:< At 7¢h>:| ’xhu| 2/0 [h Uyh| } (Th>¢hu) /0 —|J_}hu|

3.13)
27 me uafu_mm 27 (
+/ ( h Yn — hg hU) (‘fhﬂuthu) + /\/ (fha(bhu) - 0
0 |$hu| 0
27 - - 27 . . 27 Pm@Z) u;j " — xmu
| o - [ nlo el [ R Re S0 o g

Proof. To begin, we note that (Z,,y,) € K and therefore (3.14)) is satisfied due to the
definition (3.4]) of K. Let us next for ¢, € X}’ and € > 0 define

Tep = Tp + EQp, Ye,n = G(f’?s,h)a

where v, 5, is uniquely determined through the relation

o (P]in,ébhuy xa,hu - xznu)

|x€,hu|

=0

21 27
/0 I (o)) 2ol — / T [ )] ] + /

for all ¢, € X} and small €. We point out that the above relation represents a system
of linear equations for y. ,, which is uniquely solvable, provided |z, .| is bounded away
from zero (what again follows from (3.4))).

Since the lower bound on |Zp,| in is satisfied strictly, we can slightly perturb (zy, y5)
in the direction ¢y, still staying in K. Therefore, (z.p,y.n) € K for sufficiently small €.
Now let

1 1 27 . . 1 27
f(e) :== J(@en, Yen) :§E/0 I [Jzep — 2 *] || + 5/0 I [|yenl] |2 pal

27
+ )\/ |x5,hu|-
0

Since (Zp,ys) is a minimizer of J, f(¢) must have a minimum at ¢ = 0, Therefore,
f(0)=0

Observing the following calculations

i(|jhu + 6gbhu|)|€:0 :i <\/(i‘hu + 6¢hua Thy + €¢hu)>

de de £=0
_ dia (i’hu + 5¢hua Thy + 5¢hu) _ 2 (i‘huu (bhu) _ (7ih ¢h )
2\/(ihu + E¢hu7 ihu + E¢hu> e=0 2 |‘i.h’u‘ ’ “
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one obtains

) d 2 j:h o le . 2 - -
J(€)je=0 = d_gj(xs,hvys,h)|5:0 :/O I Ta‘bh T 5] +/0 In [(Uh Yon)] | Thal

1 27 o - 27 -
[ B bna) -
+ 2/0 w [108)7] (T Oha) + /0 (Ths Ohu)

d
Here we have introduced a notation yg, = —G(2cp)jz=0-

In order to find ¥4, we consider the relation between z and its curvature vector y. To
this purpose, for € > 0 and v, € X}' we define

(P T — )

’xs,h’

21 21
9o Yen) = / I [(gois )] [en] — / T [ )] 2]+ /

By definition of y. ;, we have g(x. 5, y- ) = 0 and hence

2w

d 27
0= %g(ffa,hvya,h)le:o :/0 In [(Yg,n, )] | Zhal +/0 I [y, ¥)] (Fns Onad)
2 <P£1¢hu7¢hu> . 2 (qulnth7fhu — J}%)
+ / (" ru: ) /

|jhu| |jhu|3

(jhua (bhu) .

Inserting ¢, = 5, into the above equation we deduce

2 2w o pmy . )
/ Ih [(y(b,h,gh)] |fhu| - / Ih [|gh|2} (i—ha ¢hu) - / M
0 0 0

‘fhu’
N /27r (P Yhus Thu — TF3,) (
0 |i‘hu\3

jhUJ ¢hu) .
Using the above representation we are able to rewrite the first derivative of f at ¢ =0 as

2w = em 1 2m
o= = [ n (5 ) |l < [0 (o
2m m = 2m m - = m 2w
- / (Ph Y ¢hu) + / (Ph Yo, Thot — xhu) (jhua ¢hu> + A/ (77—/17 ¢hu) )
0 0 0

|ihu| |i‘hu|3

which proves our assertion above. O

Remark 3.4. We note that to prove the existence it is essential that the lower bound
on |Tpy| is strictly satisfied. From follows that this can be achieved under the
condition At < eh®, where e = €(co, Cy) is sufficiently small positive constant. Therefore,
the existence result can be obtained under the milder condition (At < 5h3), whereas the
stronger condition At < uh® provides the uniform control on the curvature vector, which
18 crucial for the error analysis.
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3.1. EXISTENCE AND UNIQUENESS RESULT

3.1.2 Uniqueness of the discrete solution

Lemma 3.5 (Uniqueness of the discrete solution). There exist hg > 0 and 0 < p* < 1,
such that the system of equations -[1.19) has a unique solution (x},y;), provided

1
10 < |2h.) <4Co, |yl <4Cy in [0, 27] (3.15)
and At < p*h*.

Proof. Let us assume that (Zp, 9n), (Zn, yn) € X' X X' are two solutions of the equations

(1.11)-(1.12)) satisfying (3.15). Our aim is to show that they identically coincide. Taking

the difference between the corresponding equations for (z,,y) and (2, y,) we obtain

i—%Emm—@ﬁmww—/%éw(%"—@m)@g
At 0 0 ‘xhu, ‘xhu,

1 27 1 27
5 [ WPl o)+ 5 [0 0] (o)
o (P Gy Tha) e (P, ) (3.16)
h Yhus Lhu _ . h Yhus Lhu ~
+/0 |:f‘hu|3 (xhu7¢hu) /0 |Zi‘hu|3 (IhU7¢hu)
27
A s 7 —
+ /0 (Th — Ths Ghu) =0,
27 21T
| il ol = [ 1l )]
0 0 (3.17)

+/27r (P Zhus Yha) /% (B T Yru) 0
0 ’ihu| 0 ‘i'hu’ '
Here we used the definition of the projection matrix P} = I, — 77" ® 73" and the fact that
P = 0. The first two terms in (3.17)) can be rewritten as

/o ﬂlh (s On)] || = /0 W[h [(Gns )] | Zhal

aAWH@—mwmmM—Aﬂhwmemuwmm.

We insert the following test functions ¢, = T, — 2 and ¥, = gy, — U, into (3.16) and
(3.17)), respectively, and obtain the following equations using the above representation

1 n 2 °n ghu ghu
- I = A m| pm | 2w Jhu Thy — -~ N
At/o h [lxh xhl } |xhu| /0' < h (|i‘hu| |i'hu| y Lh Tp

1 1

2 2m
— 5/ I “ﬂhﬂ (Th, Thu — Tha) + 5/ I “Z)hﬂ (Th> Thu — Thu)
0 0

27 — = 2w ~ A

P T o . P T . .

+ / ( h ?ihu’g hu) (ajhua Thy — xhu) - / ( h %hu’g hu> (xhua Thy — xhu)
0 ‘xhu’ 0 |$hu|

(3.18)

27
+)\/ (Th — Thy Thu — Tha) = 0,
0
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2 2
/JHM—%WWM—/-M@wV@MMMPWM)
0 0

+ /27r (P}:na_:huaghu - ghu> . /QW (P}:n-f:hU7ghu - ghu>
0 ’fhu| 0 |j7hU|

(3.19)
— 0.

As the next step we sum two equations (3.18)), (3.19)) and after rearranging achieve

1 [ A 2 or
At I, U«'fh - th |leu| +/ Iy U?jh - yh|2] |th|
0 0

2 2
NN X _ 1 _ - A
= [ 1l = 00} Gl = o) + 5 [ B 1907 (= )
0 0

_ 1/2” 1, [|@h|2} (fhafhu — iﬂhu) + /27r <P;:n ( Zzhu - @) s Thy — fhu)
2 Jo 0 ’xhu| ’th|

i /271— (P];ni'hua ghu - ghu) + /27r (P]Ti)huvghu - Qhu)
0 0

EW [l 20
27 7 7 2 1 v
pm T . P T N _ -~
0 ’xhu| 0 |xhu|

27

—)\/ (Th — Ths Thu — Tha)
0

9

i=1

Let us estimate the left- and right-hand sides of in order to show that the difference
between two solutions is zero, provided At is small enough. We start with the terms
S1, 59 and S3. First, we complete the square for S; and rewrite S, as well as S3 using the
definition of the tangent vector. This results in

1 27 R . ~ 1 2 ~ R ~
S1+ 52+ 53 =— ‘/ I (|90 = 9ul*] (1hal = |Zhal) + 5/ Iy (190 ] (12 nul — 1Zhal)
0 0

2
1 27 g X - 1 27 o -
5 In 1n]7] (Zhal = [Zhal) + 5 In [5n]°] 2]
0 0
1 2 o o . 1 2w g o -
) I, [|Z/h| } (Ths ) [ 20| — 2 I [|Z/h| } (Tr, Th) 1T k|
0 0
1 2 o
to [ I [9n]°] [0l
0
Using the following relation
1 2 n
(v,w)zl—é\v—w] for v,w € R, |v| = |w| =1, (3.21)
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3.1. EXISTENCE AND UNIQUENESS RESULT

simplifying and rearranging the terms we arrive at
I _ 211~ 214 1 [ L 27 0a = (2=
Si+8+8= I [7l"] |70 — 7l |1L“hu|+;1 In [|967] 170 — 70)” |20
0 0
1 2m - . . -
—3 In [19n = 9nl°] (& hal = [Zhal)
0
=I+11+1I1I.

(3.22)

In order to estimate the first two terms on the right-hand side of (3.22]), we have to deal
with the difference of the tangent vectors. To this purpose, we first derive with the help
of the triangle and reverse triangle inequalities the following estimate

a bl _|ab| —bla| Falal| _|a(]b] —|a]) + (a —b)|al
jal 0] |al[b] |al[b]
(3.23)
lal [Ib| — lal| | Ja—bllal _|b—a]  |a=b] Ja—b
= allp] lallb] (] [

Recalling now the definition of the unit tangent vector and setting a = xp, and b = Ty,
in the above inequality we obtain in view of ([3.15)

Thu  Thy |Zhu — Thal
|th| |i'hu| |jhu’

Using (2.7)), (3.15)) and the above calculations we deduce

|Tn — 7ol = < C|ZThy — Tl - (3.24)

27
1<C / 192 17 — 70)* < C | Zhe — &l < CR72 |2 — 2|
0

The second term I on the right-hand side of (3.22)) can be estimated in the same way.
In view of (2.7), (3.15)), reverse triangle and Young’s inequalities we get

2
11T < C/ (17n] + 190D 150 — 90l 12 — Tnal < CRTH |G = Gull 2 — 2l
0
< e l|gn — Gull* + Ch7? (|2 — 2a])*.

Combining 9y, S5 and Sg we obtain after simplifying the terms

2T R R 1 1
Sy~ S5 + S —/ (P Yy The — Tha) (— ~ )
0

|Ehu| - |xhu|
[ = ) (- )
y u _y U ,.T U — - ~ .
0 hoAh " " |$hu| |xhu|

With the help of (3.15) and an inverse inequality (2.11)) we have

Si+ S5+ S6 <C || Ghull oo 10 = Taall” + C |Tnu — nll 1 Zhu — Tha
<Ch™*||zs, — &n||* + CH 2 |G — Gall |20 — 2|
<e||gn — Gnll> + (Ch=3 + Coh™) |3 — @]
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Next, we recall the definition of the tangent vector to rearrange the following two terms

2 — — 27 ~ ~
PmyhmTh — ~ PmyhuaTh A~ — ~
S7+58=—/ (h,—)(T}uxhu_Ihu)‘i‘ W—)(Thaxhu_l’hu)
0 |th| 0 |$hu|

2 ~ A o ~ ~ —
Pm Uy A~ _ S Pm Uy - . A
=/ (B8 G ) (Tn = s Thu — Thu) +/ i s T = 7o) (Ths Th — Eu)
0 |Zhul 0 |Zhu
Jr/%T (B3 (Gnu — Ynu) , )
0 | %ol
[ ) G — ) (- )
Yhus Th) \Thy Lhu — Thu) \ T2 7~ 1= .
0 " Zhul [ Zhal
Now, the reverse triangle inequality along with (3.15)), (3.24) and the inverse estimate
(2.11)) implies
S7+ S5 <C ([[ghull oo + [1Gnull poe) 1200 = Enall” + C |G = Gl [T —
<e[[gn = gnll” + Cch™ [l3n — @l
It remains to deal with the ninth term. Recalling (3.21]) one derives

(Th, Thu — Tha)

2 21
- s A . _ .
So==X [ = tlanal 7 = fimd ) = =5 [ (1= (072 (] + )
0 0
)\ 27 - o .
==5 [ 17— Tl (2l + |2n]) 0.

0
Finally, with the help of (2.6) we estimate from below the left-hand side of (3.20))
[Pl it + [ )l 20 = 8l 4
Oh AL hu Ohyh Yn hul =75 Ay 1R h 4yh Yull -

Combining the calculations above we get as a result

N co 1 _ _ _ _ _ N &
(A (EOE L Ch? 20K — ChY — 2C.h 4) + lgn = anll* (3 —3¢) <o.

Choosing ¢ = f—% and multiplying the above inequality by At we arrive at

4 8
1Zn — nll? (2 — At =R 24+ O 2+ Ch 3+ S0 ) ) + 2 At |G — dal® < 0.
2 Co Co 16
Using the condition At < p*h?* we estimate the coefficients in front of ||z, — @ ||
4 8 4 8
O At (IR or?ch+ 2 ) > L o (SR on v ont 2
2 Co Co 2 Co Co
4 8 8 _ 3 8
>% (224 on+ Ch —u*—zc—o—@—u*—zﬂ—u*—2@>0,
2 Co Co 2 8 Co 8 Co 4
2 2
provided h < hg and p* < C—Z. Let p* = fcj_?l and the uniqueness of the discrete solution
follows immediately from ¢y > 0. [
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3.2. SECOND EQUATION OF THE SCHEME

3.1.3 Proof of Theorem [3.1]

Proof. The existence of the discrete solution ( m+1,y,’f“) of the system 11}—
follows from Lemma and Lemma E by choosing (Zp, yn) =: ( e y;L"H Then,

2w

e +1,yh+1)SJ<xh,yh>:5/0 AT EAEPY NE

and the decrease of the discrete energy is observed

2m
3 [ [l e [ e
0
1 2 9 2
S A GRSy M)
0 0

<_li 27r [‘xm-i-l xmﬂ ] <0
— 2At ), Pl =

what results in the stability property of the fully discrete scheme (1.11))-(|1.12)). Moreover,
from (3.7) we also deduce that the discrete solution satisfies bounds (3.2]). Finally, the
uniqueness result from Lemma completes the proof. O]

Remark 3.6. It follows from (@ and with &y = xZLH

o ol < O [ g < VAR, m=0. -1 (29

3.2 Second equation of the scheme

The second equation of our scheme is a discrete analogue of the equation (|1.10)
differentiated with respect to time. In our further analysis we will often require the
discrete equivalent of the equation ([1.10). Therefore, below we derive this representation
up to the remainder term RZHI.

Lemma 3.7 (Remainder term). Suppose holds. Then for m = 1,..,M — 1 the
equation can be written in the form

27 2T
[ mlet o)1+ [t + mptey <0 629
0

where the remainder term given by

(R )y =5 / (7, ) | — | (3.27)
k=0

0

l\DI»—l
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CHAPTER 3. EXISTENCE AND UNIQUENESS RESULT. SECOND
EQUATION OF THE SCHEME

Proof. From the equation ([1.12)) we have for £k =0,...,m

2m 2m
AR R AR AT IEA
X /27r (Ph (IZZI — Ihu) 1/1hu) _o.
0

‘th‘

(3.28)

Let us rewrite the last term in (3.28) using the definition of the projection matrix P} =
I, — 78 ® 7} and the fact that Pfr} =0

(Pk (xﬁzl B xhu) 77Z1hu)
7|

- (Ti]f-Ha 77Z)hu) (T}I:+1 Tllf) (Tilfv ¢hu) + (7—}]7?7 ¢hu)

1
(7 ) |7 = 7|

( i ,lvz)hu) (T}lfa,ébhu) 2

Equation (3.28)) now can be written as

21

[l o ek = [ ke i+ [ ) - [ )

2
—l—%/ (Th Una) | Th T Tf’f|2:0'
0

Summing up from k£ = 0 to k = m and using (2.14)) we obtain the claim of the lemma. [

Corollary 3.8 (Numerical scheme with the remainder term). Using Lemma we are
able to rewrite equations — of our scheme in the following way

21 m+1 27 m, m+1
/ I K—xh n cbhﬂ |2} | —/ (5 yhu+f Pra)
0 0 | L h ‘

27 27 m, m+1 _m+1 m
_ % / I o | (7 o) + / (B o =) (@ ) (3.29)
0 0 xp

2T
+)\/0 <m+1 ¢hu): )

/Oﬂfh[(%” Un)] \%“H/ﬂ( ML ) + (R ) = 0. (3.30)
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Chapter 4

Error analysis

In this Chapter, we present the main results of our work. We start by formulating the
error estimates in terms of the L?-norms in Theorem . To prove the error bounds, we
set up in Theorem [4.2] the finite induction argument, which will be closed in Theorem
after the error analysis is finished. The basic idea is as follows: given a discrete solution
at the previous time step, we carry out the error analysis and obtain the estimates for the
desired norms at the next time step. Thus, in Lemma [4.4] and Lemma [4.5] we present the
estimates for the errors between continuous and discrete position and curvature vectors,
respectively. In Lemma [4.6] we combine the results of Lemma[£.4) and Lemma[4.5] On the
right-hand side of the inequality obtained in this lemma we get the differences between
continuous and discrete tangent and curvature vectors, which we treat in Lemma [4.7
and Lemma respectively. We deal separately with the error in the length element,
deriving first the expression for the discrete length element in Lemma [4.11] Finally, we
estimate the norm [||2™1] — |z}2"||| in Lemma with the help of the discrete Gron-
wall’s Lemma. This proof completes the chapter.

We emphasize that our work treats a fully discrete case and thus extends the results of
the work [22] by Deckelnick and Dziuk, where a semidiscrete scheme to approximate the
elastic flow of curves was analyzed. Therefore we follow the structure of the proof of that
paper, in which the error analysis is carried out in a sequence of lemmas.

4.1 Error bounds. Induction argument

Throughout the thesis we will use the regularity of the solution to the continuous problem.
To this intent, we formulate the following helpful result: There exist constants 0 < ¢y < C
and 0 < ¢; < (4, such that for m = 0,..., M in [0, 27| holds:

i 2
co < |z < Co,  |y™| < Co, At ||yk|]; < Co, (4.1)
L
k=0
2" < Ch, oy < Ch, (4.2)
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CHAPTER 4. ERROR ANALYSIS

1 3
560 <|(Ipz™),| < B Co, (4.3)
3 merl _xm
L < =Cy. |}, | ———|| <2C 4.4
hap < Soun |5 | <20 (4.4
[Py | Py [ P o 1P Y™ | Py | < C (4.5)

where the constant C' depends only on the norms of the continuous solution. In view of
the smoothness of the continuous solution and the extreme value theorem, the estimates
and hold.

Let us consider ([,z™), defined on [0,27] and restricted on subinterval I; for some
j €{1,..,N}. Then from the Taylor expansion we infer

™ (u;) — ™ (u;— 3
‘(]hxm)u‘]j‘ — ( J) . ( J 1) — |xum (uj—l) +0(1)| S 5007

™ (u;) — ™ (u,— 1
)| = | TS ) 4 00)] 2 oo

provided A is small enough.
Recalling the definition of the projection matrix (1.6|) as well as (4.1) we deduce

[Py = ly™ = (7" ™) T < Co.
Similarly, we get the remaining estimates.
It is convenient to decompose the error e™ = 2™ — z}* in the following way:
e = (2™ — La™) + (L™ —xp') = €" + ¢}, (4.6)

where 2™ = z(-, mAt) represents the solution of ([1.2)) evaluated at mAt.
In the next theorem we formulate the main result of our work.

Theorem 4.1 (Error bounds). Let x : [0,27] x [0,T] — R™ be a sufficiently smooth
solution of (1.9). Then there exist ho > 0, Aty > 0 and p > 0, such that -[1.19)

has a unique solution (z},yy"), m € [0, ..., M| and the following error bounds are satisfied

maz e =}l + ly™ = i)

M—1
+2m@ﬁh%%+
k=0

for all 0 < h < hg, 0 < At < Aty, provided At < uh®. The constants depend only on the
norms of the continuous solution.

ekl _ ok 2
— || | =€ (h* + At?)

In order to prove the error bounds between continuous and discrete solution, we set up
the finite induction argument. To this purpose we introduce the following function

k+1 k|12

N (4.7)

m—1
m m m||2 m m||2 m m |2
L e e e v [ [ o e A [ R AN
k=0

and formulate the next theorem.
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4.1. ERROR BOUNDS. INDUCTION ARGUMENT

Theorem 4.2 (Finite induction argument). There exist hg > 0, Aty > 0, ¢ >0, v > 0
and 0 < p < 1, such that for 0 < m < M holds

1
560 < loh] < 2Co,  Jyi'l < 2Co i [0, 2a], ZN vl <2Co,  (48)

P < cemA (h* + AF?) (4.9)

and for k =1,...,m the following equations are satisfied

o E k-1 or ( pk—1,k
/ I, [(M7¢h)} |xhu1| _/ (Ph y’};u7¢hu)
0 0 ‘%u‘
1 21 21 Pk 1 ’ ku_ k-1
~5 | [l ko) + | G2 T abwon) @10

2 }xhu

2
+/\/ (T;f,¢hu):07
0

[ et o et - [Tk e ok

_ 4.11
[ ) ) 1
0 ‘xhu‘ 7
for all 0 < h < hgy, 0 < At < Atg, provided that
At < uh’. (4.12)

The constants depend only on the norms of the continuous solution and final time T

Proof. We shall prove the statement by induction on m.
Base. For m = 0 the claimed bounds on |z} | and |y}*| follow from (2.15)). To prove the
third inequality in (4.8]), we adopt the result formulated in Lemma

Lemma 4.3 ([22], Lemma 2.2). Suppose that xpg = Inze. Then for 0 < h < hy,
Using in addition inverse inequalities (2.11]), (2.12)) and interpolation estimate (2.6 we

deduce

< CAL (1), = Rl + CAL[[(10”),, = ][ + OO 02

< CAth™ || Iy — yh||” + CAth? + CAt HyuHLw

< CAth™ ||y® — 2||* + CAt (1 + h + h?) < CAth™ < Cph® < Ch* < 20,

if h < hy and (4.12)) holds. Furthermore, recalling the initial conditions ([2.13)), (2.14)) and
using again (2.6)) we infer

A [ghall7

= [la® =Rl + [ls” = Il + 5] = [l < O,
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CHAPTER 4. ERROR ANALYSIS

Assumption step. Let now m € [1, M — 1] and suppose we have (z}",y"), such that
the induction hypothesis is valid, i.e. (4.8) and . hold and equations (4.10 - - are

satisfied. Further, Theorem [3.1|applies and yields the existence of ( e y,TH) satisfying

(3-2)) which solves the system

21 m+1 21 pm m—l—l’ "
[ K—'” ash)} ol - | CAARLD)
0 0 |2 |
2 27 m, m+1 _m+1 m
_ 1/ “yh +1‘ } ( m+1 thu) / (Ph Y > Thay ﬂfhu) (xmj-l’thu) (4.13)
2 Jo 0 |$h+1}

2
A O u) = 7
+ /(; ( >¢h )
2w 2w
/ I [(?JZH ) )} |$h +1‘ _/ Iy [(yzhb?wh)] |$hmu|
0 0

4.14
N /27r (Pf:n (l.;’zj-l _ .I'ZL) 7¢hu) . ( )
0 |z
Induction step. Let the assumption hold, then
m+1
%co <t <2Co, |yt <20y i [0,20), Y Atlyk,]; . < 2C,
k=0
pm+1 S ée'y(m+1)At (h2 +At2) . (415)

To prove the induction step, we derive the estimates for the norms, which appear in the
function p™*!. In order to carry out the error analysis, we shall use the a priori bounds
1 m—+1
ZCD < ’Zl')h +1| < 40 ‘yh +1| < 400 in [0 27'[' Z At HyhuHLOO < 400 (416)
k=0
Here, the first two bounds follow directly from Whereas the third one can be derived
using in addition (| - the induction hypothe51s and -

m+1

ZAtlly e = [y +ZAtIIy Wl < CAtR |y [} +2C0

<16C5CAth™2 + 200 < 16C5Cuh* + 2Cy < 16C5Ch* + 2C, < 4Cy,

if hg is sufficiently small.

After the error analysis is finished, we can perform the induction step. The proof of the
statement @ is given in Theorem Further, in Chapter we improve the a priori
bounds @ and thereby complete the proof of the present theorem. n

Let us begin with deriving an error estlmate for the scheme - - In what follows,
we shall assume that the bounds ) hold. Additional assumptions on h, At will be
formulated for each lemma Separately. Below we present the results of the first lemma of
the error analysis.
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4.2. POSITION VECTOR

4.2 Position vector

From the error decomposition follows ||e™|| = ||I2™ — 2™|| < C'h? by a standard interpo-
lation estimate. Therefore it will be enough to prove the error bound for e}’ = I, ™ — x}".
Lemma (4.4 below and Lemma [£.3] in the next section derive an estimate for the discrete
time derivative of the error in the position and curvature vector, respectively. These basic
estimates will be combined in Lemma [4.6]

Lemma 4.4 (Position vector). Suppose holds. Then there exist hy > 0 and w > 0,
such that for all 0 < h < hg, provided that At < wh® we have for m =0, ..., M — 1

2m 1 m
1 1 emtl —e
o pm m+1 pm m+1 “u u
/o <|$um+1| Y } h+1‘ I At

L[/ . aq €Ml —em
_5/0 (‘y +1}27_ ‘yh+1| H’T)

m m m m m m 2
<€ (4 AR + [l = Bl I+ 7 = 72 + ot = g

m+1 m 2

€y, T €

At

Co

4

Fllla ] = Jaga I+ [l =7 )+ ono R,
where

RT™! = (ZH L k||2> . (4.17)

The constants are independent of h and At.

Proof. To begin, we take the difference between the continuous equation (|1.7)) evaluated
at (m+ 1) At and ¢y, and the discrete equation (4.13)), what results in

o m—+1 m—+1 o 1 m—+1, m+1
[ e et = [ e Pt o
1

2 2
_ 5/ |ym+1‘2 (Tm+1,¢hu) + /\/ (Tm+1,¢hu)
0 0

27 m+1 m 27 m, m+1
_ o i [0 (P )
(/0 I, {( AL Nﬁh)} |Z 5] /0 }thrl‘

2 27 m, m+1 _m+1 m
_1/ I, “ yrt| } (7 fna) + / (P Y ' T — %) (2 )
0 0

2 m+1
Bl

+A/O2W( ot ¢hu)) =

for all ¢p, € X}
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CHAPTER 4. ERROR ANALYSIS

Next, we add the discrete time derivative of the error to both sides of the above equation.
After rearranging, one obtains

2 em-i-l —em . 27 (Pm+1 1T+17 ¢hu) 27 (Pmyrrqzj-l’ ¢hu)
/0 ( i At k a¢h> |5L'hu| - /0 |.T;n+1| ‘|‘\/0 h }xhh _,’_1‘
1 o m+1|2 (_m+1 1 27r m+1|2 m+1
o merl _ xm m o m+1 m+1
:/0' Ih T 7¢h |Ihu’ —/O (l’t ,¢h> ‘.’L’u ‘ (418)
2w m+1l _ _m
} e —/0 <%7¢h) ||

- f T ) + / ) (P’?%T xﬂ ) (a 61).
0 0 Ty,

To combine the second and third terms on the left-hand side of , we require the
projection matrix at the same time level. For simplicity, we take the previous time step.
Thus, we add the desired term to the left-hand side of and then correct the right-
hand side with the corresponding difference. After some calculations, we arrive at

21 m+1 m 21
€h — % m| _ 1 m, m+1 1 prg,mtl
/0 ( Al 7¢h) |Ihu| /0 (—’ajuerl’P Y ‘ h+1‘ hyhu ¢hu)
/ ( m+1‘ 7L [ym +1} m+1 ¢hu>
2
( e el - [ o) fa
m+1 . 2 m+1 __  m
|:< xh ¢h):| |x2nu| _/ (xh At n 7¢h> ’xznu|
| X 0 (4.19)
_5/0 I, “ m+1‘ } (7 ) + _/ |yh +1‘ (71, )
2w 2 2
—)\/ (Tm+1,¢hu) —l-)\/ (77, du) — / (yrtt, o !xh +1|
0 0 0
2 27 1
+/\/ (yZH-l’ )‘xm—i-l / — ((Pm_Pm—H) m—+1 ¢hu)
0 o |zt

27 pm m+1 _m+1 _ m
+/0 ( " yhu‘ hxff’ th) (:Ezlu—i_l?(bhu) .

We note that the sixth term on the right-hand side of (4.19)) is compensated with the one
on the left-hand side. Moreover, for later use we have added to the right-hand of (4.19)
the ninth and tenth terms, whose sum results in zero.

32



4.2. POSITION VECTOR

Let us rewrite several terms on the right-hand side of (4.19)). In view of ([1.8)) one obtains

2m 2m
)\/ <7m+1;¢hu) — _)\/ (ym+1,¢ ) ‘xm+1| (420)
0 0
while Lemma gives
2 2w
Iy T [ T STt
0 0

Furthermore, ([2.8)) implies
2T $m+l —m 27 merl — m
T h h 7 m _/ ( h h ’ ) m
[ (o) [ [ (e ) e
1 27 27
5 [ [ o 4 g [l (o)
2 Jo 0
2m 2m
m—+1 m+1| m+1 m-+1
+ A/O (yh 7 ) }ajh ‘ /0 In [(yh 7 )} }xh ‘ (4'22)

m+1

1 x — 7
= a0 (e o) bl = S ()

A N
- gzhi/ (y;;j_l ¢hU)|xm+1'

Inserting ¢, = into (4.19) and recalling the error decomposition e™ = € +e¢}",

t
the equation (4.19) in view of the calculations (4.20])-(4.22) translates into

2

/271' eszrl . 67}? ’a:m ‘ B / Pm m+1 P}:ny;quljl eZH—l _ €ZL
0 At hu 0 |£L’m+1| |Im+1 ’ At
2w
_1/ ‘ m+l’27_ |y +1’ mil Cu —ew
2 Jo h At
2 m m m—+1 m 2w m—+1 m
_ I, g €n - €h ‘xm ’ B / Ll eth—_eh }l’m—i_l
0 At ) At hu 0 t ) At u
2w m—+1 m 2 m—+1 m
e — e e — e
T\ m—i—l’ h h xm—i—l _ )\/ m—i-l’ h h xm—&—l
/0 (y At 7 .\ At hu (4.23)
+ 1 iv: hZ/ :Chmu+1 — xhu QZLH — ehmu m |
— A s x w
6=/, At At h
N 1
1 1 2 emtl _em
- h2 — |, m+1 7_m—l—l hu hu
6 ]Zl J /Ij 2 [ At
N
1 €m+1 e
- h2 A erl’ hu hu m+1
6 ; J /Ij <yhu At | Lhu |
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2T m+1 m
1 e —e
. pm_ Pm+1 m+1 “hu hu
/0 |zt (( J v At

2 m, m+1 _ m+1 m m-+1 m m—+1 m

(Ph Yo s Thu xhu) m+1 Chy T Chu A m+1 €, — €

+ o ) S AR
0

E h+1‘ A At
2T 1
_ L pmmit L e @
/0 <‘xzn+1‘P Yu |Ph hu At >
1 2 m+1]2 m—+1 m+1 €y +1_€Z’L
5 (e . )

i=1

Let us next estimate the terms on the right-hand side of the equation (4.23). Firstly, we
use the definition of €™ to rewrite the sum of S; and Sy as

27 m+1 m m—+1 m
€ — € e — €
S+ S5 = — o ) |
L /0 ( At At i
21 m m m+1 m
+/ gt —w _ gl ey — e |z
0 At t ) At hu

27 em+1 —em
T i

=+ 11+1I1.

Thus, Cauchy-Schwarz and Young’s inequalities along with (4.8) imply

1 1
1<C (/2“ et —em 2>2 (/2” eyt — ey 2>2
- At At
0 0
m—+1 m |2 m-+1 m |2 m+1 m |12
(& — € T — T [ — €
S S e e vases | Il vl (RS
H2

where the last estimates follow from ([2.6)) and the boundedness of the continuous solution.
From the Taylor expansion we infer

™ — 2™ = 2" At + O (AP) (4.24)
and similarly as above obtain

s 2 % 2T 2 %
II <C / / <¢€
0 0

Cauchy-Schwarz, Young’s and reverse triangle inequalities along with the boundedness of

m—+41 m+1 m

€ T 6

At

T — ™

At

m+1
— Ty
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the continuous solution provide the estimate for the third term

11 <O/Tr il (bl = gl + [+t = L)
= o At hu u
eZH-l_eZl ’ 2 m m (|2
<e AL + C. (At + 2| = |z )

Rewriting the sum of S3 and S; and using an upper bound on |x}"!| from (4.16]) we derive
o e ey 1 1
S st [ (et B ) e~ )
0 t

27 eerl em
Y e e LT

€hm+1—€ZL ’ m+41 m—+1 m—+41 m+1]|2
B G ([l = e P Yl = )

<e
At

Let us consider the fifth term on the right-hand side of (4.23)). Adding a zero term and
recalling the definition of e} yields

N
1 xm—&-l — gm fEm+1 —xm em-i—l —em
S = — h? hu hu I hu hu m
=52 J/I ( At "ITTAr T At il

j=1 J
N

1 Ml em €m+1 _em
- E h2 I hu hu m
" 0 j=1 ! /Ij < " { At } 7 At il
m+1 m m+41 m
2 — T €hy  — Chu m
ap+ L §jh [ ([ e e

We observe that S5 is negative and therefore can be used for combination with positive
terms of the same structure, which appear on the right-hand side. This combination can
be then estimated by zero from above, provided such positive terms have a small factor
0 > 0 in front. To this end, we use Young’s inequality in the next estimates. Thus, ,
and Cauchy-Schwarz inequality imply

N
1 ) :L.m—l—l —m em+1 —em
5572 6 :_:h’] /] ( h |: At :| ) At |xhu|

m—+1

= 551+ S5,2.

<5Zh2/ M +Cy Zh/|xhu|2
N 6m+1 om 2
2 hu — “hu 2
e [ BB o
i=1 j

35



CHAPTER 4. ERROR ANALYSIS

In order to deal with Sg, we add a zero term and combine the resulting expressions as
follows

1 Y m-l—l m—+1 2 m+1 2 m—l—l BZZH e?zz
=—gZ / ( =@y ), [+ [ (™), | ) T T AL
m+1

1 N 1 m m m m m € u —Gmu
:_EZ /5 W = (Iny™ ), v+ (Ty™ 1)) ( hH’hTth)

1 m 2 m veLqul — 6%
__th/ 5 +1)u| (Th H’hT)fh)
= 56,1 + S62-

The first term in Sg can be estimated by taking out of the integral the L*°-norm of ‘ymH!
and |(I,y™*™"),|. Using further the inverse inequality (2.11)) together with (4.16) and the
boundedness of the continuous solution we obtain

S61<02;h2 (e 4+ 1 (Zay™ 1), llzee) /‘merl (™). | %Z—;c%

j o

<C‘Z:h2 Pl e + My ™4 o) /IJ et — (™), | }WTthu
<Czh / st — (™). | ei'flA_;ehu

Ce —6% e <h2+Hym+1_yh+1”)

<5Zh2/

Here, an interpolation estimate together with Young’s inequality completed the estimate.
Next, in view of (4.3)) we have

Se.0 <6Zh2/

Cauchy-Schwarz and triangle inequalities along with the bounds (4.2)), (4.16|) yield

N h2 m+1 e;ﬁjl 6% | +1|
At i

m+1
M

+ Csh?.

2 m+l +1 m+1 GZZH_QZZ
sozhj/I«m R "
eﬁjl_ ;Lan

+ Gy (12 [l = ")

<5Zh2/
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Combining now S5, together with the estimates of the terms Sso, Ss1 Se2 and S; we
obtain after choosing ¢ small enough

2 N
|z | + 452h§/
j=1

2

<0. (4.25)

N

1
524

j=1 J

m+1 m
ehu — Chy

At

m+1 m
€y — €

At

I;

Exploiting the boundedness of the continuous solution, we integrate by parts the eighth
term and arrive at

2 m+1 m
1 e e
Sg = — —— ([ (pm = prtt) it hu  hu
: /0 [+ (( v At
2T m+1 m
1 e —e
_ m+1 _m—+1 m m+1 m+1 h h
0
27 m~+1 m
1 e —e
+ pmo_ Pm+1 m—l—l’ h h
/0 Efand (< R At
2 m+1 m
1 e —e
pmo_ Pm+1 m—l—l’ h h <e
= i( Jn ) <
Let us next examine Sy. To begin, we add a zero term and generate six differences

27 m, m+1 _m+1 m m+1 m
g — (P h Ynu o Thy xhu) L €hu  — Chu
9 m+1 hu At
0 |y |

2 m~+1 m
o m m-+1 m+1l _  .m m+1 ehu ehu 1 1
[ e (5 S ) ()
/27r m) m+1 (I [ m+1_xm])u) (xm+1 ehmu+1 ehu)
t
0

m+1 m 2
Ch T Ch

2
A + C At .

+

‘xh +1| weo A
+ /27T Pﬁn m+17 [ [ i xm])ﬂ) <xm+1 merl ez:j_l — 6%)
0 |37h +1| " ‘o At
+/ m y%-&-l y;nJrl) (Ih [ m+1 _ xm])u) <$m+1 QZL—H . ehmu)
m+1 u At
Eall
P}Znyﬂ+1 z;Lnu+1 xhu - (Ih [xm+1 - xm])u) m—+1 ezflljrl — EZL
+ i R
0 ’ L hu |
PO ) (e B
0 |37um+1|3 o At

25971 + 5972 + 59,3 + 59,4 + 59,5 + 89,6-

Further, we treat these integrals separately, taking advantage of the boundedness of the
continuous solution. Thus, Cauchy-Schwarz inequality, the inverse estimate (2.11]) along
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with imply
So1 —/0 (P i (Ih [m o Du) (x“H’ : At : ) (‘ h“{ |le+1|3>

2| gl ‘|xm+1| |2+ | ‘
g(JAt/ has
0 At ‘xh+1| |zt [®
cont|| G | am1| — jamtt|| < camt 241 — ||
- At u h At u h
A\ |[em Tt — er||?
<(3) || el - e

From the definition of the projection matrix ((1.6)) we deduce
PP"—P"'=—7"Qm'+ 1 Q@m" ==(17" =)'+ 1" (" —1").  (4.26)
Combining (4.24) and (4.26])) and applying (4.16|) we obtain for the second term

.. / (P = P™) i, (I o — a™]),) ( i G m)
9,2 = x :
0

|$h+1‘ w7 A
2 m+1 m m+1
<OAt / [ — | [ < CAt e — | T o
0
m+1 m At m+1_ m [|?
<CAth™'||7™ — 7| % _(h) Teh +C ™ — 7.

Here, we have again used Cauchy-Schwarz inequality and the inverse estimate (2.11]).
Observing the following calculations

xuerl o x;rsjl m+1 |$m+1} m+1 ‘xh +1’
_ ( m+1 m+l) m+1 m+1 m+1 m+1 <427)
= (7 T +7 :zc xh

and taking into account (4.16]), we deduce with the help of the inverse inequality ([2.11])

Sgg = . (P;zny;n-i_l’ ([ [ H meu) merl — xm+1 e?qu — 6%
9,3 m+1 hu u At
0 [t

2T m+1 m
m+1 _  m+l Chu Chu
<OAt [t — o] | e
-1 m+1 m+1 m+1 1 —€m+1_ezn
<CAth (HT gt H+|H%+ ‘ |$ber ‘H At
At 2 eerl_em 2 m m m
S(T) Ll o ([t = | | = )
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We estimate the next term in a similar way as So;

g _/2” (P (gt — gty (I 2™ = 2m]),) < a1 €t — ehmu)
94 — T Ee—
0

[ RN
o m m entjl — 6% m m e”irl — en}u
<CAt /0 =y [P < Oa [yt gt e
AL\ [ et — em]|? m m
: (7) ; At : +0Hyu +1_?/hu+1H2‘

Recalling the definition of e}’ and using afterwards the inverse inequality (2.11)) as well
as (4.16]), we arrive at

27 m, m+1 m+1l _ m m-+1 m

S (Ph Yhu s Chu ehu) m+1 Shu  — Chu

9,5 — Zz T A:
0

m+1|3 hu At
|xhu ‘
6m+1 _ 6Tn 2 - em+1 _ em 2
SC”y%HHLOO H hu N hu” < CAth 3 hTth

It remains to estimate Sqg. Inserting the continuous difference 2" — 2™ and integrating

by parts the resulting second term as it is done in Sg we deduce from ({2.6) and (2.11))

G / Pyt (I [ — ™), = @t =) (e — e
9,6 — 3 Ty, )
0 Eatinn At

21 m, m+1 ,m+1 _ . .m m+l _ m
+ (P Yu y Ly Ly, ) xm+1 Chu Chu
m+1]3 w0 At
0 [atand
2

+ CLAE.

m+1 m
Ch T Ch

At

m+1 m
€, — 6

At

Next, we are going to handle S;g with the remainder term RZ‘H given by (3.27)). Factoring
out the L>®-norm and using further the inverse (2.12)) and Young’s inequalities we obtain

m 1 2 m
(R =305 [ () [k = ot < C ol 3 7 =
k=0 < 70 k=0
<Ch™% [l D [Imi*! = 74" < ellnl® + Coh=*RT™,
k=0

Here, for brevity we have used the notation (4.17). Setting now the test function v, =

m+1_ m

e
h A7 " into the above inequality we arrive at
emtl _em||?
S0l <€ hTth + C.h 3 RT™ . (4.28)
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Let us deal with S7;. To begin, we recall the definition of the Lagrange interpolation
operator I, and the definition (2.9)) of Z, and note

() ([ )
u 'U‘,Z = I , 2 , Yz, € Zy,.
/0\ < At h 0 h At . h h h

From the above equality follows

27 m m—+1 m—+1 m m+1 m
P P T - x -
Sy = m+1 h m+1 I _ Tu U
M /0 <|g;m+1|y“ |z Ynu o\ Sk At . At
2w
1 merl —m merl —m
— pm m+1 I _ Tu U
/ <|le+1| . ([ At D At )
_ o 1 pm m~+1 I merl —a"” - xuerl — xum
- m+1 Yu ) h A
o \|zpt t (4.29)
27 1 ot m+1 — m m+1
[ (o[ (6 [ D )

Pm Pm+1 m+1 m m+1 m
m+1 m+1 I _ —u
< - e | (0 [ )), - Fm
<Ch ‘ mH‘Pm yr | Ch < CR?,
H1

where an interpolation estimate and (2.10f) were used.
It remains to examine the last term on the right-hand side of (4.23). For this, we add
zero terms and combine the resulting expressions in the following way

1 o m+112,_m+1 m+1]2 _m+1 € w €
Sip =— 5/0 (!y Pt — g ‘ ’T)
1 o m m m m m €u+1 _GT
:_5/0 (‘y +1|2 (7_ 1 h+1) (’y +1} |yh+1‘> H’T)
21 m+1l _ m
SC/O (}ym+1‘2 |7_m+1 . 7_}7:1+1‘ + ‘merl - y;ln+1} (‘ym+1| 4 ‘yszrlD) €

6’U, u
At
<C <h2 4 HTerl _ T}:nJrIHQ X Hym+1 _ y}rln+1||2> .

Here, the last estimate follows from ({2.6) and bounds (4.16)).
Finally, in view of (4.8)) we estimate from below the first term on the left-hand side of
(4.23) and combine all the terms with the discrete time derivative of the error

m+1 m |2 m+1 m 12
b (T =T —daaeh - camt) = |
At 2 ¢ = At
The claim of the lemma follows by choosing 7¢ = f—;, W= @ and provided hy is small
enough. O]
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4.3 Curvature vector

In this section, we shall be concerned with error bounds for the curvature vector.

Lemma 4.5 (Curvature vector). Suppose that holds. Then for ¢ > 0 and m =
0,....,M — 1 we have

11 /27r 9 27 )
— Ih |: Ihym+1 . ym—l-l i| T m+1| / ]h |Ihym - ym| |ZL’%|
([ o P e = [ i - ) e
27 1
1 gmtl — gm 1 g
Pm U U P hu hu m+1 m+1
+/0 (lxm+1| AL ‘ h+1| h At Yu T Y

_ 1/27r ’ym+1 m+1‘2 ‘xh H‘ — |7h]
0

2 At (4.30)
zmtl xn | — Thy,
*A C (e P el PR
6?“_6? ’ 2 2 2
Se|lT gy + Cc (P2 + A+ || |27| = | lIIP + 7™ = ||

[ = = )

Proof. Taking the difference between discrete time derivative of the equation (|1.8]) evalu-
ated at (m + 1)At and v, and the equation (1.12)) divided by At we arrive at

1 2 2m
E</<Wﬂw|mﬂ+/ (7, )
0 2m 2m
_/o (Y™, ¥n) [y _/0 (Tm’wh“)>
1 o 21
L (/ I E o B M ATAIEA
(B has Ty — )
= 0.
g

m—+1
’wh |

(4.31)

Comparing left-hand sides of , we deduce that the term with the discrete
projection matrix P/, which appears in (4.31)), requires generating the corresponding
term at the continuous level. From and the relation P™7™ = 0, which follows from
the definition of the projection matrix, we infer

pPm (x;nJrl — xzn) _ pm_m+l _ pm_m |x;n| _.m+l __ _m (_m+l _m
P p (
m+1 o m+1| )
[a] ] e
" o (4.32)
:Tm+1_7_m+_7_m‘7_m+1_7_m|2
5 .

From (4.32)) follows, the necessary term can be expressed with the help of the difference
of the tangents on the left-hand side of (4.31]).
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One easily checks that (4.31) after some modifications and in view of (4.32)) takes the

form
2 m-+1 m m+1 m
) -y yh, — Yy m
I I
| (o[ )
o 1 m+1
1 gmtl _ gm 1 x —
Pm u u P hu hu "
+ (Ww Al A ¢h>

+/2” \wum“\—!:cum!ymﬂ || — |7 T
0 At At ’

27 m—+1 27 m+1 _ . m
:/0 I [(Ih [—y A Y } ¢h)]|$%|—/o (—y A Y ;1/%) |7/ |

A

2 m—+1 m 27
n L, [(y™ |37h ‘ |Thl _/ m1 ’xh
|t e [ ) Ee

1 27 . ’Tm+1 _ Tm’2
+ 5/0 (7- 7whu) T

(4.33)

From ([2.8) we infer for the first term on the right-hand side of the above equation

2w m-+1 m N m—+1 m
y"rtt —y my 1 2 Yyt —y m
[ (o [ o) - i), ([, o)
27 m—+1 m
y _y m
+/0 (]h |: At :| 7¢h) |whu|

Using (2.8)) for the third and fourth terms on the right-hand side of (4.33|) and the relation
above, the equation (4.33)) translates into

/027r I [(Ih [ymHA; ym} yZLHAt yg@,%)} | Tl
o (gt a™ T () on)
+/0 (|mm+1’At |93um\ym+1 |$m+1|A; | |y21+171/}h>
- /027r (Ih lymﬂA—;ym] ,@Dh) |Thu| — /02” <&7¢h) |
o)

+ °n ym+1_ym¢ (‘m| |m|)+1ih2/(m+l¢ )|xh |thu|
o At ) WPl T T 6 ="/, I > hu At

N 2
1 ym—i-l . ym . 1 2 . |7_m+1 o 7_m|
*5 2 /(( e LR R

42




4.3. CURVATURE VECTOR

m+1 m+1

Inserting ¢, = Iy — 1y, into the above equation we obtain

2 m-+1 m m+-1 m
) -y Y — Yy m-+1 m-+1 m
I I I
/0 h[(h{ N ] N yAnY —Un >:||xhu|

27 m+1 m m+1 m
1 m Ly - Ly 1 mPhy  — Lhu m—+1 +1
+/0 <|xm+1|P Al o Al , (Iny ) ~ Yhu

\:U
e Nl i B |$h+1‘ — 2Rl 1
U m U m ] m—+ m+1

+/0 <—At Y —At Y — Y,

27 m+1 m m—+1 m

Y -y y -y m m m
B /0 (I” { ; ] BVt A 1 H) 7kl
o /. m+l _ .m (4.34)
y Y m m m m
w7 (E = ) el — a2
N

1 2 ymﬂ —y™ +1 m-+1

() .-
m m m |xm+1| - |ZE |

+ Z hz/ yhqul’ I y +1) yhqul) At

L[ m+1 may [T = 7_m|2
+§0 (Ta(fhl/ ) ~ Yhu )T

The elementary relation
1 1 1
(aerl _ am’am+1) _ 5 }aerl‘Q -3 ‘am|2 + 5 ‘am+1 _ am‘Q (4.35)

allows us to rewrite the first term on the left-hand side of (4.34]) as follows

1 21
E/o Iy [((Iny™ =y ™) = (g™ = yi) s Tny™ ™ = i) |

ot G A il [P Ry R ey
VAG ; h I3 h h o h h h hu

11 2w

+ 5& Iy, [’ (Ihym+1 y;Ln—H) - (Ihym - yﬁ)‘ﬂ ’thu‘
ol ey

1 o m m x u
3 [ ] P L

Furthermore, (2.8)) implies

1 [2r 9 |xm+1‘_|xm| 1 [27 2|xm+1|_’xm|
- I |: I m+1 _  m+1 i| hu hul _/ I m+1 _  m+1 hu hu
2/0 n || Iny i T 5 0 |1y e B

11 m 12 [T = |2
- o2 [ (), e R L
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A scalar product in the second term on the left-hand side of (4.34]) after inserting a zero
term becomes (-, (Ly™ ™), —yitt) = (-, ym™ — gt ) + (-, (Ly™), — vy, In view
of the above calculations, the equation (4.34]) takes the form

1 (1 [ m+1 m+1]2] [,.m+1 L[ m m |27 | .m
INAG) ; I [‘Ihy — Yn H|xhu ’_5 ; I U[hy _yh”‘xh“’
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R T o R
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6
-3,
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hu
Further, to estimate the terms on the right-hand side of (4.36)) we use the boundedness of
the continuous solution. From (3.1)) and an interpolation estimate we obtain for the first
term

21 m+1 m m—1 m
Yy -y Yy -y m m m
Sl :/ (]h |: :| - 7Ihy 1 Yy, +1) |xhu|
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Analogously, we derive

27 ym+1_ym . )
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0
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With the help of the inverse inequality (2.11)) and an interpolation estimate we deduce
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To combine S; and S5, we first observe
1
(yﬁjrl’ <Ihym+1)u _ y}%ﬂ) + 5 }(Ihym—i-l)u . yﬂ“‘z
1

= 5 (L™ ), !t (™), = i) -

Using (2.11)) and (4.16]), we arrive at
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The sixth term in view of (2.6 can be estimated as
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Approaching the next term as it done in (4.29) in the proof of Lemma , we obtain

2m m+1 m m+1 m
1 it — g 1 Tt —
S, — pmZu U pm hu hu, I m~+1 _ ,m+l <Ch2
-, (|a:z”+1| N A

Let us rewrite the third and fourth terms on the left-hand side of (4.36) in the way, they
appear in the formulation (4.30) of the lemma. A straightforward calculation shows

1 2‘xm+1|_’xm‘
- m+1 _  m+1 hu hu
Bl o I ol [l o e
U ul, m - U ul m T m+1 _  m+1
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+ |$um+1‘ B |‘er|ym+1 . |x7};nu+1| B |xZL’ m+1 ym—i-l _ ym+1
At At b 4
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After simplifying one obtains
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We observe that I1 and I in (4.37]) correspond to the third and fourth terms on the
left-hand side of (4.30]). Therefore, we move I and IV to the right-hand side and estimate
them. Using the following relation for arbitrary vectors a,b € R"

la| — |b] = (la| = 15]) (Ja] + |b]) _ (a —b,a+b)

|a| + [b] |a| + [b]
the fourth term IV can be rewritten as
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xm—l—l + rm xm-i-l + m
One can notice that the term —% ; u hil hu_ hehaves like a difference of
w4 o] e o]

the tangents. Let us show this explicitly. Finding the common denominator and splitting
then the fractions results in
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Finally, using the above calculations we derive the last estimate. Recalling the error

decomposition and exploiting (2.6)), (2.11]), and (4.16)) we deduce
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m+1 m
< Ch A7 (1+h*+ At + |7 =7 H—i—HTmJrl T,’f‘“”)
+Ch* + Ch* (B* + At + |7 — || + |7 = 72+
e e +C <h2 FAL |7 =P | - Tm+1H2>
=3 At c h h '

Note that the last term on the left-hand side of (4.36)) is non-negative and therefore can
be estimated by zero from below. Thus, we obtain the claim of the lemma.
O

4.4 Combined result

In the following Lemma we combine the estimates from Lemma and Lemma [4.5]
At the end of the error analysis this result is discretely integrated with respect to time,
i.e. multiplied by At and summed over m. Finally, the discrete Gronwall’s argument
completes the proof of error bounds.

Lemma 4.6 (Combined result). Suppose holds. Then there exists w > 0, such that
for At < wh?® and m =0,...., M — 1 holds

m+l _ m |2 m+1 _ »m

X R S e ey [ I
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RT™*! s given by . The constants depend only on the norms of the continuous
solution.

Proof. 1t follows from Lemma and Lemma with ¢ = % that
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where we have abbreviated

1 9 ZL‘ m+1 __ ™ .CEm+1 —gm
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1
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Our aim now is to organize terms in A™ and B™ in such a way that each of them is cubic
in an appropriate difference or combination of the terms can be written as a discrete time
derivative. In the first case, such terms will be estimated from below, whereas in the
second case they will be taken into the difference ("™ — (™.

Derivation of A™

A straightforward calculation shows

m-+1

AM — ‘ m—&-ll2 ‘xh | |xhu| ‘ m+1| ( m—+1 IL‘ZLJ_I {L‘Znu)
At ' At

_ ’ym+1|2 m+l Tt — xz” 1 }ym+1’2 |z = [
’ At At

m+1| ‘:L,m|

T AN ]~ Ja
‘th'(mH’T)‘(y ) e

+1|2 ‘xhﬂ‘ B 1‘ h+1| ( ma1 $;’Lnu+1 flleu)
t

‘h At ’ A

Further, with the help of (3.21)) we derive

am = 3y <<xh“l ol _ (o) - <xzzmm>>

At A
1 m+1 _ -m 1 m+1 _ .m
_§‘ym+1{2 (ZEZL,T N T ) _§|ym+1‘2 <7_m+17% - %)
+ {ym—&—lﬁ |zt — ‘xum| ‘ Y7 +1| ( m+1 Tt — le)
At At
m+1| _ |.,.m m+1 _
. (ym+l7 Z@—i—l) |xu |At |xu| ‘ h+l|2 ‘ A ‘ ‘ hul )
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Next, we combine the terms in A™ by adding and subtracting several expressions to obtain

A™ :% }ymﬂ‘? ( |xh +1} — |xhu| + (xznu—i_l’Terl) - (thu77-m)>

At At
g (e 55 =gl ()
+{1| N e R D CO =y
2 ’ At ’ ’ At

‘h+q (nwlf_iilfz>} }h+w2|mﬂ ‘ |
’ At At w

m4112 m+1 "L‘umJrl _:L‘um m—+1 m+1 [L’ metl _xum

#{lraf? (rme B <y (e, S

Al em pmtl . em
_ (ymH,ymH) (Tm+1’ u X u ) + (ym+1,y}rln+1) (TgnJrl’ u X u>}

m+1]|2 m xuerl - xum m+12 |5UZL+1| B |'xum|
+{—\y “ (T “,T>+|y B By Ve
m R el L2 NS m1 T =y
_ (y +17yhm+1) N + (y +17yhm+1) +1 A7
1 m+1l _ m +1 _ .-m
byl (e = T Y fapal = g e (e T ) b

=I+..+VIII

Let us rewrite the above terms. From the definition of the tangent vector and relation
(13.21) we deduce

11

I=— oo [T (e = lagid = (e Ja “\ (e )
(e e
= — g (7 Pl = P e = P e = P e
+%Ait (ly™ 1" = 1y 17 = 7P b

Further, a simple calculation shows

m+1 m
Il —l | m—‘rl‘ ( m+1 m+1 Ly, — T, )
_2 ) 9

At
1 xm—&-l m
II] __ m+1 +1 m+1 U
3 v P m )

:L.m—l—l m
m+1 m m—+1 m+1 m+1 U
( — Yp ) T Th ) At .
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Recalling the definition of the tangent vector and using (3.21f), we arrive at

m+1 _ ,.m |$m+1|_|xm|
VI=— m+1]2 m+1 Ty Ly, m+1(2 [Yu u
T ) At
|xm+1| — |27 +1 +1 +1 Ierl Ty,
- (ym+1’yffln+1) v T Tulog (ym 7y}T ) Tm 7—
At At
m m
| m+1‘ 2 |zt | | m+1‘2 (Tm—l-l Tm) |$u| } m+1‘2| 1 ‘ m+1|2 |2y |
At ’ At At At
_ (ym+1 m+1) | m+1| + (merl ym+1> |$T|
Pk At Pk At
x
4 (ym+1’y21+1) | uAt | (merl’merl) (Terl,T ) |Aut|
2
_1 m+1  m+1 m+1 |7_m+1 _ 7_m|
Observing the following calculations
7_m-i-l —m = Tm+1 o (Tm,,]_m-l—l) Tm+1 —m + (Tm,Tm—&-l) Tm+1
_ 1 ‘Tm—f—l _ 7_m|27_m+1 . Ty (g, T 7
2 |77 |77
% ‘Terl B Tm|27_m+1 N x;n—l]—lnjl xZ’L B (le-&-l _ x’vam;:m-i-l) 7_m—i-l
xu xu
we rewrite the eighth term as follows
m m+1 m
VI ==y ( i, T ) )
2
_|m+1‘ (m+1 m+1)|7 — 7" 7 |
At Thay
| m+1‘ o — '\ |7l
’ |z
_‘ m+1}2( +1 m+1) Smtl Tyt =\ |z
’ At |z |
Further, exploiting (3.21]) results in
1 |7_m+1 _ Tm’2
VIII =— i ‘ m+1| m‘H Tm+1,Tm+1) A |z} |
1 g | — 7 2
P T
‘ m+1| m+1 Fmtl Ly, Th,
’ At \xm|
_ 1 ‘ym+1|2 ‘Tm-i-l _ 7_m+1‘2 mtl gt —a\ o]
4 h ’ At |z |
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Next, we combine /] with the third term on the right-hand side of (4.41]) to get

1| m+1‘ Frl = ay 1_ |h]
2 LAt 2]/

Collecting the above calculations for [, ...,V III we arrive at

m|2
Ty — [y 1 = 7 g

1 ZL‘erl m |CC |
- m+1 m+1 m+1 U 1 — hu
r g (% )

1 m+1 m+1 m—+1 merl x;n
e (o e

Am — 11 (‘ m+1|2‘7_m+1_7_m+1{ |1

m+1 m+1 _  m+1 m+1 m+1 merl x;n
+ (" y yr ) (T Tt
At
1 |7_m+1 _ 7_m|2 ) | m+l T ‘
+ 5 <ym+1’ y;:”“ o ym-i-l) T |$ | m-l—l‘ A |xhu|
1 rmtl _ pm 2 |7 —7'm|2
+§\MH|(m“—ﬁa——E;—)mmw@hﬁ“\——27——u%
1 |7_m+1 _ Tm|2
_ Z ’ m+1| ( m+1 7_m+1’ 7_m+1) N |x%|
1 9 9 xm+1 —m |:L,m |
+1 +1 +1 +1 h
S ym | ‘Tm _ T}zn ’ (Tm , U ~ U ) |ng|

m 2 m|2
+Zm(wﬂ1—W|wr—m|mm

Let us consider the terms Ay, ..., A;;. First, we note that A; represents a discrete time

derivative and therefore will be included in the difference (™! — (™,
2m

Let us next estimate / A;, (i =2,..,11) from below, taking advantage of the bounded-

0
ness of the continuous solution. Thus, the reverse triangle and Young’s inequalities along

with (3.1]) imply

o _l o m+1 m+1 m+1 xm-l—l xum . ‘ZL’%’

A2 - ‘ { ’ 1 m

0 2 Jo At |23
m

S 0/% ‘ m+1| m+1 m—‘,—l‘ gt — — |2l
N 0 |z

|z (4.42)

At
> = C ([l = P+ ) = ol )
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It is straightforward to see that

o _1 o m+1 +1 m+1 T w _xzn m-1 m-+11]2
/0 Az —5/0 ly } ( 7T) > —C|ly™ " =y t|T (443)

We obtain the following estimate with the help of Cauchy-Schwarz inequality

/27r 21 xm+1 — xm
A4 :/ (ym+l7ym+1 . y;Ln—l—l) (Tm—l—l . T;Ln—l—l’ U U )
0 0 At (4.44)

e (e ol e )

From the Taylor expansion and boundedness of the continuous solution we infer

o _]‘ o m+1 |, m+1 m-+1 |7_m+1 — 7—m|2 m
i A5—§/0 (™ gyt —y )T’l’ﬂ
> = (A2 + [yt -y,
27 1 2w |7_m+1 7—m|2 (445)
Ag = — _/ m+1 m+1 m+1’ m+1 B 'rr;L
| aa==g [l = ey e e
> = C (A8 + |7 — 7).
Analogously, we obtain
2w 1 27 m+1 __
/ AIOZ_Z/ ‘ym+1|2‘7_m+1_7_gn+1’2 ( m+17$ N > ||$xm||
0 0 u
> C - (4.46)
[T an=ta [ (P - ) - i) = -l -
0 4 At h hu h

In order to combine three remaining terms Ag, A7 and Ag, one requires the factor |ym+1|2
in front of Ag. For later use we also change the length element from |z} | to |z7!| for

all three terms Ag, A7 and Ag. To do this, we generate additional terms

2
T — 7"
Ag =— ‘h+1|2}h Ath‘|%
Tm+ -7 ’ m 1 m 7) m
- —wmw”h B I (e e p e A A
R R )
At u hul) -
Let us denote by «; the first term on the right-hand side of the above equation
m—+1 m 2

ap = | m+1‘2 ’ ~ ~Th | ‘xuerl‘_ (4'47)
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We represent Ag as Ag = aq + 1216, where 1216 contains remaining terms. In order to derive
the estimate for Ag, we recall 1) with a = [EZL+1 and b = z}, which combined with

(3.1) produces

‘x xh“‘ ‘:10"“’1 xm } ) (4.48)

‘ m—+1 T}?;n‘ S ol7hu  Thul n

kA

Recalling next the definition of the error e’ = I2™ — 27" and inserting the Lagrange
interpolation operator, we use the triangle inequality and boundedness of the continuous
solution to obtain

7 = <O e = = (I [ - :i]l)u +,£]h [z —2m]),|
CERED) e

Using the above result and the inverse inequality (2.11]) we arrive at

<C (}em“ — e |+ At

<C (e —ep| + At).

m+1 e'}rln

|7t = || < CAt+ CAth™ N

(4.50)

Hence, boundedness of the continuous solution and bounds (3.1]), (4.16)) on the discrete
solution together with (4.49) imply

2 1 2 T — T
[t [ (o - ) B
e BT e

27 ‘m—l—l
> =0 [ (= o = e+ e el T
0

— 7 |
At

S — m m leha - — eznu|2
> [ (] o ] - el (R 4 ae
0

m—+1 m ‘2

2 —e
>_C 1+At/ [ = Gl
( A At

2
- ot [ (g -+ e e - ).
0

The inverse estimate ([2.11]), Cauchy-Schwarz and Young’s inequalities further provide

27
Ao > = C (A + o] = ol I+ [y = 5 *1|f)
’ eerl e 2 (451>
. 2 h ~— %h
C (At + At?) b2 A7
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Introducing

as = g P (et = D) e, (4.52)

1 2 rmtl _ pm
o m—+1 m-+1 m m
Az -3 ‘3/ } T T Thy—As; |Zh|

_Tm

—as = g (et = ) (e e

Here we denote the remaining term by A;. Next, with the help of l) we obtain

2 2 +1 _
[ g [ (e e T ) e - )

2w
—C [l = el e =) e =l )

v

A\ 2 [[emtt — em||?

>_C N m| _ |,.m|||2 =v h h )

> ( Fllezl = il + (5) | g
Together with the following notation

1 9 |7_m+1 o 7_m|2
o m+1 m+1
the term Ag can be written as
1 m+1|2 |7_m+1 — 7_m|2 m 1 m—+1|2 |7_m+1 - 7_m|2 m m
Asz—ﬂy +1| Al |xhu|:a3+z‘y +1| T(|xu+l|—|xhu|)a

where the second term in Ag we will associate with flg. Hence,

2

2m 1 2 . |7_m+1_7_m| " m

| A= [l (e = )
21

_o/o At (||| = fael] + ] = )

m m 2
> —C (A + ||| — |2 ]I -

(4.55)

v

Let us next combine ay, ap and ag, from (4.47)), (4.52)) and (4.54), respectively

a1 + g 4 s = _Z |ym+1‘2 ‘Th - Th | ‘anH‘
1 m+1 _ -m 1 m+1 m 2
+§‘ym+1|2 (T;TH_T;TL”;T N T )|IT+1|_Z|ym+1‘2 T AtT | |xZL+1‘

_ _iAit |ym+1‘2 (|T;zn+1 _ Tm2 _9 (T}rln—i-l e Tm) 4 |7_m+1 _ Tm‘2> |%m+l} '
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Simplifying the above results, yields

li |ym+1’2 |(7_m+1 . Tm) . (Tgn—i-l _ T}:n)|2 ‘xum+1| . (4.56)

a::a1+a2+a3:—4At

In the next section we combine « with the corresponding term 5 from B™.
Finally, collecting the estimates (4.42))-(4.46), (4.51)), (4.53) and (4.55) together with
(4.56) and recalling the representation of A;, we obtain

o m 11 m+1|2 | _m+1 m—+1 m+1 m|2
|amz =3 (Pl = P et = 1 = e o))

4 At
11 o m+1|2 m+1 m m+1 m\ |2 |, m+1
—a Pl =) = =) P e
= O (A2 4 [l — o [t = e (4.57)
] = Ll + [l = o))
At m“—ef 2
T A

Derivation of B™

Let us now consider the term B™, defined as follows

m 1 m xum+1 B xum 1 m m;anj_l — ‘/EZ%LL m+1 m+1
B = <|l'um+l|P ( At ) } +1‘ Ph ( At ) Yu ~ Yhu

Ly,

m+1 _ ,.m m+1l _ .m

_ 1 m, m+1l 1 Pm m+1 Ly Ly xhu Lhay

m+1 u m+1|" h Yhu > :
|zm+1 | At At

E5l
From the symmetry property of the projection matrix and after simplifying we deduce

1 merl _gm 1 xm+1 —xm
B™ — m+1 pm hu hu | _ m+1 P hu hu
(o e g N T R

1 xmtl — pm 1 gl — gm
pm m+1 U u o pm m+1 U )
+ <| h+1‘ hyhu ) At > (’x‘um+1| yhu ) At

We recall that we aim to organize terms in B™ in order to obtain cubic differences or
discrete time derivatives. To begin, let us rewrite the second term on the right-hand side
of the above equation. From (4.32) we infer

A 1 1 | —
m+1 hu hu | _ m+1 m+1 m\ _ — (,m+l _m
(yu ‘ h +1‘ At > - At (yu — Tp ) 9 (yu » Th, ) At
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4.4. COMBINED RESULT

The above relation and simple calculations lead us to

1 prmtlpmtl P
B™ — m+1 hu  _ _m+1 m+l _ (2 Fhu _ _m m
o G A G-tk

1 1 1 1
o m+1 - Prmm o m+1 _m+1 _ __m
i (0 (g~ ) 7o) = 7t =)

1 m 1 m m\ ,..m 1 m m | . ~Th ‘ 4.58
T At <y“+1 g (7 F )"T’”‘H) -5 i) P

1 gl gm 1 gl — gm
m, m+1 u U m, m+1 U
‘f‘(—‘ h+1’Ph yhu ) At ) - <|$um+1|P yhu ) At )

In order to combine the second, third and fourth terms with the sixth and seventh terms
on the right-hand side of (4.58)), we need to rewrite 1, I1] and IV in such a way, that a
scalar product of the form (-, 271 — ™) appears. To this end, we rewrite the second term

with the necessary expression and correct the result with the corresponding difference

Il = 1 <m+1 ($$+1_$um’7—m) m m)

AL\ e fam h
1 (zmt — gm ) 1 1

o m~+1 U u ) _ Pmaem |
At (y“ | ( e \Jep] Jap h

Representing 7, as 7. |} |, the first term on the right-hand side of (4.59) takes the form

(4.59)

("L‘ZL+1 - xum’ Tm) y;nJrl7 1 meznu
At |2 |t
) (4.60)
_ x;n+ - xzn |$ZZ| (Pme ym—H) Fm
At o] |t oo '
Using (4.32) we derive
Pm ($m+1 :Em) 1 9
m+1 m U m m+1 m
T -7 Py 57’ |7' ™", (4.61)
what results for the third term in
II] = (yzﬁ-l? 7_m-&-l _ Tm)
B xzv,—i-l _ xzz Pm m+1 N 1 ( _— ) ’Tm—i—l . 7_m|2 (462)
- A ey ) Pt At

It remains to rewrite IV. From the definition of the projection matrix we deduce
pmtl_ pm— _ (Tm+1 — Tm) QT (Tm+1 — Tm) ) (4.63)
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If we combine the above relation with - and :Em+1 =T7" m+1 ‘x

|

]V: m—+1 (Pm+1 Pm) m—l—l)‘ h

At (v Th o1
+1‘

Tm-i-l —m |xh
— <Z/Z®H, A—t) (Tm+177_};n+1) W

m m Tl m € e
+ (™) (TaTh H) %

(4.64)
m+1 1 mxTJrl _ IT m+1 _m+1 |xh _H}
Yu P (T » Th )
e At |
m m 1 mxuerl B xum m ’xh +1|
07 (e )
1 7_m—i-l — g m 2 m+1
-3 ) ST e g ey L

Furthermore, the symmetry property of the projection matrix allows us to write the first
and second terms on the right-hand side of (4.64)) as

Zl'fum+1 — l’um (Tm+1 m+1) Pm m+1 + (ym+1 m) Pme+1 ‘l‘h +1’ (4 65)
At t ") fap ) |
In view of (4.59)-(4.62)), (4.64) and (4.65) the equation (4.58) takes the form
1 pmtlgmtl Py
m m+1 hu  _ _m+l m+1 hu _ _m m
b At(y et T ( ERR )>
m+1 m m—+1 m
Ly — Ty Ty, — Ty
() ()
1 (xmtl — gm ) 1 1
. m+1 U u ) - P 4
At(“‘ ’< apllopa ] o] o)) (4.66)
m—+1 m m|2
(yzn—i—lﬂ_ | “h ‘ y;n-i-l’Tm) [ — |
2 At At
1 |rmHl 7"””|2 ‘:cmﬂ
m-+1 m+1 m _m+1 hu
) (yu T ) Al ( T T ) |z’
where
m+1
!'rh | m+1 m+1 m m+1 1 m, m+1 1 m, m+1 m, m+1
2 = P _— = + P ,
L= |zm+1] z ( ) || || Yhu ‘xZL—i—l Yhu
m 1
2o = |Ihu| (Pm m m+1)7_ + ‘ hJr ‘ ( m+1 m) Pme+1 + 1 pm m+1
* el Y R TG
1
Pmyzz—‘rl‘
et
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Let us rewrite z; and z,. From (3.21)) follows

m+1 2 _
‘xhlJrl‘ (}ifu—f—l: 1) Pm m+1 l{xh—u |7_m+1 _m+l 2 pm mal
u

1 1 m m m

Now we turn our attention to zo. From the definition of the projection matrix we deduce

z1

2y = |$%| ( m merl) Fmo_ |5L‘?I;nu| (Tm Tm) ( m ym+1) m
e Tagr] 7 a7
‘xm—i-l . ) |xm+1 , )
’ m+1’2 ( wt ’Tm) ;Ln_'_ ‘ m+1|2 (y;n"" 77—m) (7— 7—;;“"' )7—
Ly
+; mi1_ 1 (! L L met _my m
1’yhu 1’ Yhu > Th ) 7_h 1‘ Yhu + 1| (yhu T )T

and observe the cancellation of the fifth and seventh terms. Next, we add zero terms to
25 and combine the resulting expressions in the following way

1
%2 = <|xm||x|}lxunt+1| (yztnﬂ T;zn) " — |z (ytTH Tfin) us
i 1
o |xm| |};um+1| (yZL+1 Tm) " AR pey |xm+1| (yuerl? m) TfTLn
m+1 m+1
1 <|‘Ih+1” (ym+177_m) T}:n—l—l |{xh+1|} (ym—O—l?Tm) m
u u
1 1
B |zmH ] (yzwl’fm) T+ |zm ] (yzwl’fm) Tm)
u u
+ ‘xﬂl ( m+1 Tm) mo_ ’:CZZJLL‘ ( m+1 Tm) (Tm Tm) Tm
g a2
‘xh +1’ m+1 _m\ _m |$h +1} m+1 _m m _m+1
+ ’ m+1’ ( ) )7- | m+1| (yu T )(7— ' Th )7—
'U/ u
1 m—+1 m m 1 m+1 m m
M\ (W > 7") T W(y )T
U

1 1
W(Qﬁjl Th)7m+| h+1‘ (y;n“ i:rL)TIT)

1 1 m m m m m
+ (‘ h+1| ’xm+1’> ((yu +17 ) (yu +1’ )Th)

(™ 7™) (= 7i) -

Eatiany
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Using now (3.21)), we can rewrite 2z, as

(qu+1a m Tm) 1 <|x%|7_m

ARl NI

+ (merl’Tm) 1 (‘xh +1|

it A J

27| ( m+1 m) [
u

Together with the following notation

. 1

)
1) G

_Th‘

2
_ T}Zn+1} Fm

m+1 m+1

7))

) = () )

29 = Zg — W(yzﬂ_lﬂ'm) (T;LnH—T,T)
equation (4.66) translates into
m 1 m—+1 1 m+1, m+1 m+1 m+1 m,.m m
B At Yu s ’merl’ Lhu +7 ’ m’ P Thy —Tp +T
xm-{—l —pm xm—i—l —m
_I_( - At uazl>+< “ At u722)
1 xm—i—l —m
m+1 _m u u m—+1 m
] (g 7™) (T’Th —Th)
1 (xmtt — gm ™) 1 1
m—+1 U u ) Pm m
Y (y / < gl N\ al) )
m m m m|2
_ l (ym+1 m) |Th - Th ‘ + 1 ( m—+1 Tm) |7_ +_ T |
2\ At 2\ At
1 e g o
=, m+l _m m+1 m m+1 L,
2 (yu ) T ) At ( +7, Th, ) ’merl’
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where z; is given by

2
1 |xh H} mymtl 1 |xZ;+1 m+1 m+1 L
(4.67)
1 1 m m m
+ <|xm+1| - ‘xzn+1|> (P (yu - yhqul))
and z, takes the form
m-+1 m _m |x%| m 1 m
-~ =) (G~ )
) o (- 1)( A
1 g mtl _m
el 5T
1 |xh +1‘ 1 12 (4.68)
LI oy o s
1
e (™ =™ r™) 7™ = (™ — ™) ')
T,
1 1 m+1 _m m+1 m
+ | h+1‘ |z ((yu T ) (yu )Th)'
Let us consider B; in order to produce discrete time derivatives. To begin, we split it into
two terms
B1 L ym+1 1 Pm—l—lmm—i—l 7_m—i—l + 7_m—l—l . 1 _— _pmgm _ om + Tm
At U |xum+1’ hu h | m| hu h
1 m 1 m m m m m ., m m m
i (7 gy =t o) = (s g )

At
=B11+ B .

1 m m 1 m,.m m m
(yu+1_yu7wp Lhy — Th +7 )

Our aim now is to rewrite B;; and B;» in such a way that they contain 3 differences.
Hence, from the definition of the projection matrix and (3.21]) we deduce

x
|xm|meZZ 4T | m|| " — |x}::|| (r™ ™ =t ™
|~”7hu| 1 |33h ‘
(T 1) e = g -
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Exploiting the above relation, we may continue with

B 1 m+1 |xh H‘ 1 ( m+1 m41
1,1 _A yu ) |xm+1| - T )
2
2 |xm+1| | m+1 m—&-l‘ Tm—i—l)

1 |77 1|k 2
. m ul _q m __.m - U m __ _m m
At (yu ’ <|$um > (Th T )+ 2 |ZEm Th T | T )

1 m m |'Tmu m m ’mrrm m m|2 _m
B172:_Kt(yu+l_yu’<|$’;‘n _]‘>(Th — T )+_:);:n |Th — T |7_ .

u u |

(4.69)

We note that By is a part of the difference (™! — (™. On the other hand, terms which
are not included in this difference have to be estimated. Hence, from the boundedness of
the continuous solution, (4.16)), Cauchy-Schwarz and Young’s inequalities we infer

27 21 m-+1 m m
Yu — Yy ‘xhu’ m 1 |'rhu| Fm m
B = — —1 _
T A G e G ) L R

2T m| _ |,.m 2T
2_0/ Hxhul m‘qu |7_};n_7_m|_cv/ ’xi;:j| |7_}Zn_7_m|2’7_m’

0 "xu| 0 ‘xu‘

2
> — C (23] = lagll® + 7™ = 1) -
2m 2 ZL’m+1 —xm
Let us estimate By = / (“Tt“, zl), where 2; is given by (4.67). Using the
0

0
boundedness of the continuous solution and Young’s inequality we deduce

2
/2Tl' By = /2ﬂ' xTunJrl — xzn 1 |xh +1‘ -1 Pm m+1
0 0 At |33h H‘ |zt

_5/0 ( At "z T+1| ‘T H_Thﬂ‘ Pyt
o ot — 1 1 m (, m+1 m+1
+/0 ( - At =, <|xm+1| ‘thrl‘) (P ( ~ Yhu ))
> = 0 (o = o P+ 7 = e P - )
m+1l _ ..m
We turn now our attention to Bs, where B3 = (%, 22) with Z, given by (4.68]).
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For practical reasons, we enumerate the integrals

m+1 Zl |J;;ZL| m 1 m+1 m m
[ e (S - gt O =
Tlaptt =y 1 || mtl _m
+/0 (_ At y Th, -7 ) |$T+1| <|le+1| 1 (yu ) T )
1 2m x;nJrl . xum _ m |x%|
gl (Farsem) e i iy
1 o xum+1 B xum m+1 Fm m m+1]2 ‘mh +1|
+§/0 (T )(yu T )|T ~Th ‘ |Zn—+1|
o fgmAl gm " m m mAl _my m 1
+/0 (T (7 A ) Kl (7 T A K ) ]
27 sz—i—l . 'TT m m m m m 1 1
+/0 (A—t7 (yu T ) (yu - )Th) ( xznu-f'l‘ N ’xZL+1’>
6
= Bs,.
i=0

We consider the integrals separately, using the boundedness of the continuous solution.
From Cauchy-Schwarz and Young’s inequality, (4.1)) together with (4.16|) follows

27 m+1 m
mth— g 1 |z} |
B :/ < u u7 Fm ( hu _1)) LnJrl’ m_Tm
S At ot |32 (v )
27 m—+1 m
T —x 1
U U m m+1 m_ m
o (5 g o) o =)

2
> = O (Il = e lll® + 7™ = m17) -

Using similar arguments and Taylor expansion 7™+ — 7™ = 7mAt + O(At?) we obtain

2T m-+1 m m+1
o Ly — L, m+1 m+1 1 ‘xh ’ m+1 Fm
ma= [ (g - )\SCZ”“|<|WH\ H )

2T m—+1 m m+1
Ly — Ty m+l _ _m 1 ’Z’ -1 m—+1 Fm
) <|xm+1| ()

> = 0 (A 4 |t = |~ ).

Furthermore, it is straightforward to see that

1 21 xm-{—l _ xm ’:Cm ‘
— +1 2 h
B3,3 _5/0 < “ At “ ) (yZl ) m) |7_m - TIT’ |$m‘ |xum+1| = —C ||7_ — Th H
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With the help of the triangle inequality we derive an estimate

_1 o :CZH_I B xum m-+1 7m m m+1 ’xh +1|
Bs 4 —5/0 (T ) (it 7y o = et T
> = O (A2 + |7t = ).

For the next integral we have

27 m+1 m
Bar — Ly, Ty m m+1 _  m+1 Fm 1
3,5 — A y T yhu yu , T m-+1
0 t Lhy

o x;n+1 — T, m1 11 1
+l£ <___Z?___ )(%w — Y, m'—Tf)T—;Iq
>—C (I =7 + v = vt *)

Similarly as above, we obtain

o IZH_l B IZI m m Fm 1 1
T e )
o ZL’T—H _xm m-+1 7m m 1 1
+/0 ( At ) (yu y T — Th ) (‘xm-i-l |$Ln+l|>

> = C (I =7l + ||| = o))

Observing that
(xmtlh — gm ) B ( 1 1 ) - (rm L rmy (e ™) 1 1

u

] it

= + - +
e B |27 i B e B E
1|rmtt — Tm]2

2 =y

?

and recalling the definition of the projection matrix the fifth term can be rewritten as

1 (xmtt — gm m) 1 1
Br = — — m+1 U u ) _ P
Y (y ( aplfe ]\ ] T

; Alt (ym+t, Pran) |Tm+|;u;’Tml2
g ) et = IR ) gy et - e L
Using additionally (3.21]) leads to
By = 1K( rm ) [t | ||i?||
if L O e
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A similar argument as above may be used to obtain
2w 2m
/ Bs Z—C’/ At(|7‘m—7',’f|+|7 — 7 ) > —C(At2+||7m—T,T||2).
0 0

Let us next consider B,. With the help of (3.21)) we infer

B4 |ZL’"}+1| (yZL+17Tm) <l‘um+1A; an Ti:nJrl len)
= 87 027 (7 7)) ()
A ) () + g )
= g G P g Gt [
AT ) [ = —%é%( ) =

To proceed, we note that 7™ is orthogonal to 7" as a vector of constant length. Recalling

further the definition of the curvature vector y™ = 7, We observe

|23

(i, 7™) = (g™ ™), = ) = = (" m) = = 2 ", me 0, M. (4.70)

Using (4.70)) we rewrite the scalar product (y™*1, 7™) as

(y;n+17 m) (yLnJrl7 m_Tm+1)+ (yzn+1’ m+1)

(ym+1 m _Tm—l—l }xm-i-l ’ym—l—llQ‘ (4.71)
Next, allows us to write By as
1 m+1 m+1|2 _m+l
B, — -3 (1, 7 — ) ‘T AtTh ‘ X = ‘xZnH‘ |ym+1‘2 {T AtTh |
+l( m+l m Tm+l) ks 1_7}?1’2_1}xm+1H m+1|2 |7t _Th’
g W At 2 Y At
1 |z Fmo_ 2 Tm m+1)2
+ 5 |a|;;u+‘1’ ( ;n—&—l,,]_m 7_m+1) ‘ Ath ’ - ‘:L,um| |ym+1‘2 | ~ |
. 1 |w;n| ( m41 Fm 7_m—l—l) |7_m B 7_I:n|2 ’ ml ‘ m+1| |
2 |zt Yo T At At
For simplicity, we represent B, as
By = B + Bu,
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where
1, .. . rmtl el 1, . . |7t — |
T it i R YRNY R
1 }Tm m+1‘2 ‘ ‘ (472)
= ey 2L L e 2
and
B, ;(y;”“,T ) Smtl m+1‘2_‘7_m+1 Tm2)
|xm| m Tm e m m m m
2|$m+1| <y +1’ N ) (‘T — 77 +1|2_‘7_ o |2>
m+1| _
+ %'xu |At |$u| |ym—|—1‘2 (le_T";rL—l-l‘z o |Tm_Tf7Ln|2> )

In view of the boundedness of the continuous solution, Young’s and reverse triangle in-
equalities, we deduce

27
/ B> — 0 (AP + o — 7P+ |l — o)
0

For Bg and B; we analogously obtain

1 m m Terl -7 ’
Bﬁ:_i(qurlaTh) ‘ h - h |
m m 2
L ey T L [
1, . oy [T — 2
B7 _5 (yu+1a7— ) ’ At |
:1 (ym+1 om 7_m+1) ks - 7'm|2 1 ‘:L,m+1| |ym+l‘2 [Tt — Tm‘2
2\ At 2 At
If we denote by
_1 m+1 m+1 2| - }
1. m T — ™
PBs = — 5 ’x +1| |y +1‘2 T’

Bg and By can be written as Bg = (85 + BG and B; = (3 + 37, respectively. Here, BG and
B; contain the first term in Bg and By, respectively. Analogously to (4.51)), we derive
2)

/%B —_E/Qﬂ(mﬂ m_ m+1)‘m+1 ‘
o 6 — 2 o Yu » Th At

m—+1 m
€ T €

2—O<At2+HT —7"|° + Ath~2 N
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From the boundedness of the continuous solution we infer

m m2
/ B; = / yr e — et [rmt = > —CA.
At =

Following the ideas above and using the relations (4.70)), (4.71]) we get

1 m+1 _ _m|2 T m~+1
By = -3 (yT+17 ) |T AtT | ( e, ;7:n+1) ‘|xﬁn+1|‘
1 |7_m+1 _ 7_m|2 T m+1
- _ 5 (y;n+1, 7_m) ~ (Terl 7_]1ln+1 7_}1ln+1) ‘lxﬁn_;_ll‘
. l m+1 _m |7.m+1 B Tm|2 m m+1 _m+1 ‘ Ly, +1|
5 (yu T ) At (T ~Th 2 Th ) |zm ]
m+1 _m |7_m+1 — Tm|2 ‘Ih +1’
B Vs P
1 |7_m+1 _ 7_m|2 merl
Y (y;nHaTm) At (TmH - TiTHvT}TH) Lxm—l-ll
+1 2 m+1
_ % (y;n—&—l’,]_m) |7-m At Tm’ (Tm _ 7_}7Ln+1’ }7Ln+1) ‘lszrl‘
u
Fmtl _ om 2 Im‘i‘l Fm+l _ om
(yzn—l-177_m 7_m+1) | ~ | ‘IZ’LU-H' | m+1‘2 | o~ | } h+1‘
U
Denoting by
+1 _ 2
By = ‘ym—i-ll? ’7— N 7_m| {?L’ZH—I (474)

and by By the remaining in Bg terms we use Young’s inequality and to obtain
2
| Bz o (A flaptt = o+ et - ).
0

Let us consider the sum of 5y, ..., 64 given by (4.72), (4.73]) and (4.74)), respectively

1 | m+1H m+1|2} m+1 m+1‘2

B =P+ B2+ P+ By = 2At

11 11

_§_t| m+1Hym+1| |7_m+1 7?2_5 t‘ m+1‘|ym+1‘2‘7_m_7_},;n+1|2
11 11

_|_§ t‘mm+1||ym+1‘ |7_ T}rln2_|_§ t‘xzn+1||ym+l‘ | m+1 ‘
11 m m 1 m m m m

-3 t| m+1Hym+1| |T +H_ ‘2—1— t‘quHy +1‘ |T +_ }2'

We claim that the above sum is non-negative. To see this, we reorganize the terms in .

m+1| |y

11
For clarity, we omit the factor SA; ‘x ””1‘2 and preserve only the sign in front of
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the absolute values of the differences of the tangents. Thus, using the relation (3.21]) we
arrive at

2 2 2 2
m+1_7_}€n+1‘ _}Tm—l—l_Tern‘ _‘Tm_T}TLn—l-ll +|7_m | _,_| m+1 T}'an‘

ka
—|—|7’m+1—7'm‘2

=2-2( ) — 22 ( ) 242 (7 ) 22 )
|met = et =)

= |7 - m} |t = =2 (e - et )

= |t =) = (et =)

Therefore, the sum ﬁl + 52 + B3 + [, translates into

& _2 At
Combining now 3 together with « given by results in
o o 1 1 m 2 m m m m 2 m
/0 a+5:/0 L P ) - )Pl 20 @)

We note, that the above expression is on the left-hand side of (4.40)). Since it is non-
negative, it can be estimated by zero from below.
Collecting the results of this subsection and recalling (4.69)) yields

27 . 1 27 . T m+1 . .
[Tel <y<% 1>( R
A o)

Lo e e : (4.76)
o m ul _ q m __m - U m ___m m
At/o <y“’(|x;n| =) g ey T

— (A2l = I+ = 7 e - P
)

If we choose w, so that Cw? < C—O, the claim of the lemma follows by combining (|4.40

with the results (4.57), (4.76) for A™ and B™, respectively, with (4.75)) and definition
(4.39) of the function (™.

() = () e

m+1 o

At ey’

o) — [P et — e S| S

]

As mentioned at the beginning of this chapter, several terms which appear on the right-
hand side of in the formulation of Lemma have to be treated separately, since
the discrete Gronwall argument cannot be applied directly. The following lemmas give us
means to control such terms.

68



4.5. TANGENT VECTOR

4.5 Tangent vector

The next Lemma [4.7] provides an estimate for the L2norm of the difference of the tangent
vectors.

Lemma 4.7 (Tangent vector). Suppose that bounds hold. Then form =0,..., M—1
and € > 0 we have

st = e (o =+ e = o)
+ Co (B2 [|lam 4t = || h RTY),

where RT™ s given by ({{-17).

Proof. We evaluate the continuous equation (|1.8) at (m + 1)At and subtract the discrete
one (3.30). The result then is

2 2
/0 (Tm+1 Ui 1/Jhu) = —/O (ymﬂﬂ/)h) ‘x?ﬁl’
2
[T )] |+ (R ).
0

A simple calculation leads us to

[T i) == [T ) (et - )
I [(Iy™ " = ™) ] ||
B[ )] | = [ ) e
(Tuy™ " =™ ) [ |+ (B )
If we further apply (2.8), we arrive at
[ty == [T ) (e - )
[ =) e

27
+ / (Ihym-i-l ym—l-l ’xm-i—l

N
S [ () b )

@IH
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Inserting 1y, = Ia™! — ZL‘ZL_H as a test function into the equation above results in
2w 2
m—+1 m+1 m+1 m+1\ __ m+1 m+1 m+1 m+1
/ (T -1 = )——/ (7’ — T ,(Ih:p )u—xu )
0 0
2
m—+1 m—+1 m—+1 m—+1 m—+1
- [t ) (e e
0

27
_/ Iy [(Iny™ ™ = g™ L™ — ™) ] |
0

2
+/ (]hym+1 ym-‘rl I :L,m-l-l IL‘}T+1) ‘Im—l-l

N
Z / m+1 u , ([hmerl)u mZ’ZH) }merl‘ =+ <Rm+1 [ merl x?];n+1>

We are going to examine these integrals separately. Using Cauchy-Schwarz and Young’s
inequalities along with an interpolation estimate we obtain for the first term

2w
Si== [ ), )
0

SO H,]_m-i-l _ T}?ZH-IH H (Ihxm-‘rl) _ xum-i-lH S 5 ||7_m+1 _ T}TLR+1H2 + Céhz,

u

In a similar way we derive
&=<[WWﬂMWH ) (Jat] = [
<& ezt | = Japr 1P + € (i + Jam+t — a1
From (Z7), (.16) and Young’s inequality we deduce

2m
53 _ _ / [h [(Ihym-i-l . yzn—i—l’lha:m-‘rl o mzﬁ-l ] ‘xh +1’
0

U

27
S/ I, [5 ‘Ihym—l-l _ yz%—i-1|2 el |fh$m+1 _ xzzﬂﬂ !
0
<e H[h?/m+1 o yfTHHQ L. H]hxmﬂ _ szHHZ

<e |y -yt + C <h4 |l — )

where the last estimate follows from and triangle inequality.
An interpolation estimate and an upper bound on ‘a:h H{ from 1} give

2m
Sy :/ (Iny™™ — y™ ™, D™t — 2t ‘xh +1| <C <h4 4 meﬂ m+1”2> .
0
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Further, (4.16]) and (4.27)) together with the boundedness of the continuous solution imply

Zh2/ m+1 u7 (]hxm—l-l)u ’IZL—H |xh +1‘

2T 27

§C’h2 </ ‘(]hl,m-‘rl)u i xTH‘ +/ ‘IZH+1 _ x%+1|>
D27r 027r 2T

<on ([T 1mamet, a4 [l = e+ [ - )
0 0 0

< et = o I + 8 7t = e+ (e o

Here, the inequality || f[[11(00: < V27 [[fl12(0.20) Was also used. The sixth term Se can
be estimated in the following way. First, in view of the definition (3.27)) of the remainder
term we deduce

(Rt oy ) = Z / (7, na) |74 — o] <C||¢hu||LooZH T — k||

(4.77)
<Ch™ il Z Ikt — 7|

Inserting v, = [a™*t — 27! into (4.77), using the relation (4.27) and recalling the
notation (4.17)) we arrive at

|56| = ‘<RZL+1, Ih{L‘m+1 {L‘Zz+1>|

<e (1 4 [l ~ e IF) + 8t - | 4 (oot O R

With the help of (3.21]) we deduce

(Tm+1 _ m+1 _m+1 m+1)

m+1 m—+1 m—+1 m~+1 m+1
T 5Ty T Ty, |37 |T }xh ‘T )

-7

(7"
1
—y m st (Jam| o).
Finally, the above equality and bounds , imply

2m 1 2w 9
/ (Tm—i-l o T}'an—‘,—l’x;n—i—l o xznu—i-l) :E/ |7_m+1 _ Tf’rln—‘rl‘ (| m+1| + ‘xm—i-l’)
0 0

2
20 HTm+1 _ 7_;;1—&-1“ )

Choosing ¢ small enough we complete the proof of this lemma.
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4.6 Numerical scheme. Spatial derivative of the cur-
vature vector

4.6.1 Fully discrete numerical scheme
Lemma 4.8 (Fully discrete scheme). The fully discrete numerical scheme -[1.19)

to approximate the elastic flow of a curve can be written in the form
g™t gm 1
J J +1 +1 +1 +1
O[;n At + m—+1 P)jn—T-l (y;r—li-l - y;n ) | ]m ( ;n - yjm_l )
qj+1 d;
1 2 2 2 2
+1 +1 +1 +1 +1 +1
7 (P s ) st = (st P+ Lo ) )

TNl 0 0 OO il 50 R il NS
mrl Tit1 + mtl 7j
411 q;

- A (T;ﬁl — T;”H) =0,

Q= (gt - ) 4RI =0, (479)

(4.78)

for 3 =1,..., N periodically in N, where

vy =y (), 2 = (27, s 2) |
1
v =) @ = ey ] ol = 2 (e + ). (4.80)
m x;n_x;n—l m m m
= m ph =T e
g — 2|
m
Bl _ 1 o | = ‘2 . Tl|2 (4.81)
i T T G+ T4 Tt AN i) '
=0

Proof. First, we recall that equations (1.11))-(1.12)) are equivalent to (3.29)-(3.30) (see,

Corollary . In order to derive a finite difference scheme, we insert the following test
functions ¢, ¥ = p; e” (k =1,...,n) into (3.29), (3.30)), respectively, and obtain

27 m+l _ m 2r (pm m—l—l’ / €k
/ I {<—xh n s P €k>] || _/ ( - yhl:nﬂ% )

u

1 27 27 Pm m+1’ m+1 m{L
— 5/0 In, “y}fﬂ‘?} (Tgurl’(p;, ek) +/0 ( h yhu‘ nif?‘?) T, ) (thuﬂ,@; ek) (4.82)
Lhy

27
+A/O (7 ) = T+ [T+ TIT+ 1V +V =0,

2 2m
[l e N a4 [ ) + (R )
0 0 (4.83)
=VI4+VII+VIII =0
for y =1,..., N periodically in N, k=1, ...,n.
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CURVATURE VECTOR

Below we present some properties of the basis functions ¢;, which will be helpful in finding
the integrals listed above. We recall that due to the definition of the basis functions, the
function gpj, =1,..., N is different from zero only on [u;_1, u;1]

Uj+1 hj hj+1
909 % ¥j = 9 T 9
1 1
( )‘[ j—1; ]] / 90] h] /j_l h] J

Uj41 Uj+1 1
:>/ / 1:——hj+1:—1,
j+1 j+1 hj+1

where h; is the length of a subinterval I; = [u;_1,u ], j = 1,..., N as defined in Section .
Furthermore, for a piecewise linear function 7, the value |ny,| is constant on each subin-
terval I;

90;' (U)|[uj,u]-+1} -

| (uy) — nn(uj—)| |y — mja] .
ulp, — = s =1,.. N.
|7l h n j
Here we used the notations (4.80)).
Recalling the definition of the Lagrange interpolation operator I, we deduce

2 m+1 m
x — X
1= [ n (T e e

/«27rz< 2 ( )—xh (us) goj(ui)ek> @i(u) [z,

m+1 m
L (UJ) — xy' () k) m
= , € QO(U) ’.T u|
/I\]'U]]_'_l ( At ! "

m m+l _ m u; m m m+1l _  m W
g — |2 = |2y — a2yt =l e
== A7 pi(u) + = A7 pj(u)
J Uj—1 7+1 uj
m+l _ m m+1
1 (" + qm,) 2 Tik _ m Tk~ Tk
9\t A At J At

The second integral can be computed in the following way

2w pm m+1 !k
II:—/ ( hng;u+7lT]e)
0 h

Op o e ) e
J

‘merl _ il i ’:L.erl _ m+1|

J Jj—1 j—1 j+1 J

I U0 B Y Ot e A
|$;n+1 _ x;njil h; J |$;n+4;1 _ T”ﬂ} Bt J+1

1 m m m 1
=i [PJH (%ﬁl Y —H)}k T Tmtl
j+1 q;

" (™ =50

where [Py m“} denotes the k-th component of the vector Py m+1.
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Similarly as above, we derive

1 o m—+1 m+1
mr-—5 | nﬂ ] ()
21
:"/ Z\y’"“ ()] pilu) (774, 0 )
al 2
/ Do @) i) (7t o )
UL

=1

it [ (P e+ )

1 m+1 o m+1 m+1]2

h. >Tj+1,k/ (}yj ‘ pj(u) + |yj+1 ‘ <,0j+1(u)>
.7+]- Uj

11 h;
Tk o . (e ) + t ek (= + o))

=1 (o P et = (= o ) i)

To continue, we note that the fourth integral in view of the definition of the tangent vector
and relation P)'7" = 0 can be written as

| -

|
|>—*/\?
|

N — DN - [\:>|ri wl»—n

>

<.

(B Y i — ) (zmHt o eb) = (B ) (7Ll eF)
0 B h+1‘ e . 2] e)
Approaching the next integral in a similar way as I we receive
2 (pm m+1 m+1
IV—/ ( hy‘};uhﬂ‘ )( e ‘)
B ) e
|xm+1 x;n+11 Js _ J
L ) ) L
|$§n+451 — m—i—l‘ j+Lk N P
LW ) TR e (BT ) )
= qnjf Tivik + q;nJrl Tik -
J

Next, we treat the fifth integral in the same way as II and IV

21 Uj Uj+1
V:/\/O (m+1’g0] ):)\/ (m+17S0j )+>\/ (erl;gO] )

j—1 J

uj Ujt1
m+1 m~+1 / _ m+1 _ __m+l
_>‘< / SOJ—*—THk/ 903')_ )‘(Tﬁlk Tk )
uj_1 w;

7= J
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A similar argument as for I can be used to obtain
2m 2w
VI :/0 [h [(yzwrl,go] |xh +1| _/ Z m+1 903 Uz) k) (Pz ‘xh +1|
2
= [ ) e ) st | = / (5" ). ¢4) ) Jo |
0 18] o

‘merl m+1 ‘ m+1 m+1 ‘ UJ+1
m-+1 + m+1 ]‘H
_y.j k SOJ yj k

j+1

1 m m m m m
2 (qj +1 oy qj++11) ! k+1 _ Hy] k+1_

In view of calculations for the fifth integral we have
2
m—+1 m—+1 m—+1
vir= [t et) = - (k- i)
Recalling the definition (3.27) of the remainder term we obtain for the last integral
VIII = <R,T+1,g0j Z/ Th,QOJ ,ZLH ) 2, k=1,..n.

Arguing in the same way we finally obtain

2 Uuj Ujt1
| e lnn —f /_ (o) it =i+ [l i =i

J

I+1 l eS| 12 A

+ + !

= Jk|7_ _T’/ 90] +1k Ti+1 — j+1|/ ¥j
Uj

2
:_<j+lk ;lﬁ j+l| - k|7'l+1 ;| )
The result follows from the above calculations and recalling (4.81]). O

Corollary 4.9. For j=1,...N and m =0,.... M — 1 holds

(i =) = g () - R (45)
(it ) ; @ |y 4 RM, (4.85)
(7"t = - %a7“| Y — P (4.86)
where
RSP = ot (1) 4 5 R (487
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1 1

RM]erl ( m+1 Rm+1) + 5 ;,H_l ‘Rm+1| aj — (T;:L—Jlrl’ R;n+1) ’
m+1 __ m+1 m+1 1 m-+1 1 m+1 m-+1 <488)
RP™ = (4™ B )+§m—+1|R P (LR,

J

Proof. From (3.21)) and (4.79)) we deduce

(T;ﬁl . 7_]m+17 ijﬂ) _ jnﬁl 7"»"“‘2 _ _% |am+1 m+l Rm+1|
1
= 5 () T e (gt R IR?‘“\Q-
The above calculation also implies
1
() = e (0 (i = 7 ) = R
J
11 1
= g [T = e (R
.7 J
1 m+1 m+1 m+1 m+1 1 1 m+1 1 m+1 m+1
— 9% |yy ‘ + (R )+§ il | o (7t B,
J
1
(77 ) = e (7 (= 7 = Ry
J
1 1 2 1
- 504;”“ i i (7 By
= S (R = (R s (L R
J J

Together with the following abbreviations (4.87))-(4.88)) the assertion follows.

4.6.2 Spatial derivative of the curvature vector

The aim of this section is to prove an error bound for the space derivative of the curvature
vector. In the next lemma we shall make use of the results of Section [4.6.1]

Lemma 4.10 (Spatial derivative of the curvature vector). Suppose holds. Then
there exist hg > 0 and 0 < w < 1, such that for all h < hy and At < wh?® we have for
e>0andm=0,...M —1

m+1l __ m 2
vt =y |* < (e + Carh) | B | 4+ ChTP R
+ Co (R + A + |l — 2712+ ™ — it l1? + 1|2l — x|
e e [ e R [ S e || )

where RT™ is given by . The constants are independent of h and At.
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Proof. Recalling the definition of the projection matrix, we split the difference y™! — y;gfl

in the following way

yrtt =yt = B (gt =yt 4 (it =yt ) (4.89)

We square (4.89), then integrate the result over [0, 27| and using Young’s inequality get
2 2m 2m
J e Y A O R AR e

In order to obtain the first term on the right-hand side of the above equation, we take
the difference between equations (4.13) and ({1.7]), where the latter has been evaluated at
a discrete test function ¢, and (m + 1)At. This results in

2 m—+1 m pm m—+1
Th  —Th my_ ( h Ynu ¢hu)
/0 Iy {( At 7¢h)} | T /0 | hH‘

2m 2r m, m+1 _m+1 m
_ l/ I, “ s ] (7 na) + / A A ) (4 )
0 0

2 m+1
|
2
+/\/ ( s gbhu)
0
o m—+1 m—+1 o 1 m+1, m+1
- /O ("t o) |ty ‘—/0 W(P Y Ohu)
1 2 9 2m
_5/ |ym+1‘ (Tm+1,¢hu) +>\/ (Tm+17¢hu)) -0
0 0
After rearranging the terms the above equation reads as follows

2m 1
[ e (=) )

[

/27r 1 Pm+1 m+1 1 m m+1 ¢
= - m Yu Yu s Phu
0 |xu +1| ‘ T, +1{ h

21 2 m—+1
mtl mA1| _ | _xh7 )] m (4.90)
w [ aranter - [T ( o) |1t
1 27 1 21
i 5/0 [‘yh +1| ] (T ) — _/ ‘ym+1|2 (™ )

) /27r (Prymtt, adt — am ) (77 ) 42 /27r (i1 )
0

‘ h+1’ 0

where the last term on the right-hand side in view of (4.20)) and (4.21]) can be expressed
in the following way

2 2m 2m
)\/0 (Terl m+1 (bhu) —_ /O [h [( m+1’¢h)} |‘rh +1| /0 (merl;(bh) ‘anJrl‘

+ X (R o)
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Inserting ¢, = Iny™t — y}?“ as a test function into (4.90)) and taking into account the
above equality we arrive at

27 1
/ W (ph ( ;n-i-l . y;rq:—i-l) ’ (Ihym—i-l) y}rlr;aj-l)

kA

2w
+ {/ ( m~+1 [ ym+1 yzﬂ-l) }xg-l-l‘
0

27 merl —pm
[ ) ]
1 27
i 5 {/ [‘yh +1| ] m+1’ ([hym+1) y%ﬂ)
o (4.91)
_/ |ym+1}2 (Tm—i-l’ (Ihym“) ?JZZLH)}
0

27 pm m+1 _ m+1 m
_/(; ( h yhu‘x xfﬁ x}m) (xszl’ ([hym+1) yﬂ—i-l)
h

27
1 m m 1 m M m m
- _/0 <\xm+1|P Tyt - +1|Ph ya (Ihy +1) yhu+1>

2
[
0

2T
_/ (ym+1’ Ihym+1 yZ’LJrl) ‘xuerl‘} T\ <R21+17 [hmerl o ylrzn+1>
0

Let us estimate the terms on the right-hand side of (4.91). To begin, we split the first
interval into three

2w 1 1
Sl — _/0 (ymerlle-&-ly;n-‘rl ‘ h+1’Pm m+1 (Ihym—H) y%—f—l)

2w 1
B
0 u

2 1 1 mm+1 m—+1 m+41
~ o\ g ) T U)ok

27 1
—/ (W(P — Byt (™), @/Zifl)-
0

Next, we use - to rewrite the differences P™ — P, P™+1 — P™ respectively.
Then, employmg Cauchy—Schwarz and Young’s inequalities, an interpolation estimate and

bounds (4.16)) we infer
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2
550 [ (et e | e ) ),
<6 [l — gt Cs (12 4+ A 4 7 = P ||| = ).
It will be convenient to write Sy as a sum of three terms

& :/027r (7 Dy =) ([ = L)
e R I
A s

[ ) )

=591+ Sa2 + Sa3.

Let us consider these expressions in more detail. Thus, the reverse triangle inequality and
an interpolation estimate along with the boundedness of the continuous solution imply

2m
Sun= [ G T = ) (a2 = )
0
<C (Wt A2 + ] = ol I+ ly™* = i)

Recalling the definition of the error we may write

2w
_ m+1 m+1 m+1 m—+1 m
52,2—/ (27 = Lt Ly™ ™ — gt o
0
27 6m+1_em
h h m+1 m—+1 m

o (e ) b

; At

o 1 g — g 1 1
A e R ]

Exploiting next the Taylor expansion, an interpolation estimate, Cauchy-Schwarz and

Young’s inequalities results in
m+1 m
€~

At
Next, we use (2.8) and Cauchy-Schwarz inequality and find that

2
Sy <e +C (h4 LA L Hmerl _ y;nﬂHQ) .

m+1

523:——Zh2 [ (%—;%,uhym“) - b

xhu

<Ch* (Zny™™), = v |-
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From the error decomposition, inverse estimate (2.11]), boundedness of the continuous
solution, Young’s inequality and an interpolation estimate we deduce
m+1

_ pm m+1l _ .m
o <00 | BB | ([ ]) ) Do, i
emﬂ_e;zn m+1 m+1
<C AL +h ||]hy —Yn H
ept! —ep||”

<e

w0 (14 = ).

At

Let us now consider Ss. In order to apply (2.8)), we first add a zero term and organize the
resulting expressions in the following way

1 27
So=g [0 [l ] G (), = o)
0

1 27
_ 5/0 |ym+1‘2 (7_m+17 (Ihym+1) ylrgjl)

1

21
L (0 ] - ) ), -

+1/ T e e (), )

2 Jo
ZhQ/ |yh +1‘ m+1 (hym+1) y]rg:rl)
2w
+%/ ((‘yh +1’ ‘ m+1| ) m+1 ‘ m+1|2 (Tm-i-l _T;Ln+1) , (Ihym+1) y}rLrLH)
0
=531 + S32.

Further, we treat these integrals separately. Taking out of the integral the L°°-norm of
|yh H‘ and using afterwards the inverse 1} and Young’s inequalities results in

Ss1 SOR* [l |, ma I (2™ ), — v ||

<Ch g o (™), = i+ 11 Ey™ ), ) (™), = v
<C ([1Zay™ " =y ) (™), = 9 1+ ™ = i)

<5 ||yt - y}rlr;:rlHQ e (h2 + [yt =yt > ‘
To estimate S35, we employ Cauchy-Schwarz and Young’s inequalities as well as
21
S12<C [ (= ot (| ) + = ) ), - i
0

<C([ly™ = w7 =) ™), = ™ = )
<0 [yt =yt + Cs <h2 |yt = gt e = e ) .
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We split the next term into a sum as it was done for Sy in Lemma [£.4]

o m m+1 m+1 m m+1 m+1 m+1 1 1
o= [P o)) G ), e (s = )

TP =Pyt (I [wm“—wm])u)(

+ | +1’ ot (™), — v
T,
Pm m+1 Z’ m+1 m
i ( h Yu (;n[ﬂ - - ])u) (xuerl l,zn;rl’ ([hmerl) yﬂﬂ)
hu
Pm m—+1 yﬂ‘;-‘rl 7 (I [Ierl o Im])u . . .
( ( h Irr)z—l-l 3h ) (xhu—l-l, (Ihy +1) yhu—i-l)
hu

+

_l’_
O\»C\O\o\wo\,

2m (P;TZ/Z;H? (In [me ™)), — (»”UZL“ - leu)) (leﬂ (Ihym-u) yfrln—i—l)
Edi a “
(P (),
a1

>

=1

xuerla ([hym+l) yz;bj-l)

O)

4,4+

The following estimates for S; use the boundedness of the continuous solution. An inter-
polation estimate and (4.16|), on the other hand, provide

sy <08t [ 1), | ] - o |
<CAt H(thy’”“) =i [ =l
<AL [yt =y P4 0 (B A+ 2] = o)
Arguing as above and exploiting in addition for the difference P™ — P/ we obtain
Syo <CAt /27T |T™ — 177 |(I ym+1) yhuﬂ‘ < CAt||7™ — 7| H( m“)u - yﬂle
<A# Hym“ g 4+ O (Bt A T - )

Next, from (4.16|) and (4.27) we infer

iy [ a))

m+1 U mhu ’
| |

m—+1 m+1 (Ihym+1> ylzr’;+1)

2w
SCAt/ (|7_m+1_7_m+1}_{_”xm+1} ’xm—HH ’ Iym-H ym-‘rl}
0
<OAL([Jr = mr | 4 ([l = i ) (™ = v
<AL [yt =yt |F o C (0 A [l = et | = a7
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Analogously, we get

27 pm m+1 m+1 T m+1 _ ,.m
8474 :/ ( h (yu yhu )+1(| h [ x ])u) (xzrijl’ ([hmerl)u o ymjl)
0

‘xh
<0At Hym—I—l m—‘rlH H([hym—i-l) m—HH
< (6 4+ CAL) [yt — ym|* + G (Bt + At

Recalling the definition of the error, using (4.16)) and (2.11]) as well as Young’s inequality
we receive

S 2 (PITy}TZjl, ([h [xm-i—l o meu (xzz:rl o x%))
45 = merl 3 (
hu

.Z'};n;rl, ([hym+l) y,%“)

2
<Q/|%“Wm“wﬁwhw“h—ﬁﬁ

SCRH g | e Mleb™ = el | (Zay™), = w2l

s
Ch N (o Yyt — )

<CAth™?
At

m+1
h T

112
<)

From the boundedness of the continuous solution and (4.16]) we infer

27 m, m+1 m+1 _ ,.m
Sie = _/ (P y ™ (I [ z"])u) ( m+l (Ihym+1) m+1)
0

|ZL’m+1 |3 x ~ Yhu

<ol g s (1 + A

u

<SCAL|| (L™, =yt < 8 ||lum ™ — gt ||* + Cs (b2 + A .
We observe that the fifth term can be written as

2 2
So=3 ([ it = ) ot [0 ner = )
0 0
2
_)\/ (ym+1 yr m+1 Imerl yszrl) ‘$h+1|
0

21
AL =) (e [
0
=551+ S52 4+ S53.

By (2.8 @ we have

Ss1 =2 th/ y;’ffl; ym+1) y}%—i-l |$h+1‘
—_Zh2/ <_| Ihym+1)u _yﬂﬂ‘? 1 ((Ihym+1)u’ ([hym+1) yi%“ ) }xh +1‘
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Combining ([2.6)) with Cauchy-Schwarz inequality we find that

2
S0 OB [0, (), = o o

<Ch? H (]hym+1)u _ y%—i-l” <6 Hym+1 _ y%—HHQ 1 Csh3.

u

Analogously we obtain for the sum of two integrals
Ss.2 4 53 C ([ly™ =y |+ [ = | ) [ 2ay™ = v
<C (W4 ([l = feg 1P+ o = i)

The last term to be estimated on the right-hand side of (4.91)) is Sg. Hence, inserting the
test function ¢y, = I,y™* — y"*! into (4.77) we obtain in view of (4.17)

1] = |A (R, Iy™ = gt <6 ||yt — gt |+ Csh® + Csh™ RT™ .

u

Let us finally rewrite the left-hand side of (4.91)). Thus, from the definition of the pro-
jection matrix P" = I — 77" ® 77", from which the relation "7 = 0 and the symmetry
property follow, we infer after adding a zero term

(P (™ =) (Tny™ ), = i)
= (B (i =y st =y )+ (P (e =) s (™), — wi™)
— (P]:n (yZLJrl - y}TLI’;Jrl) 7y;nJrl . y%+l o T}Tln (y;n+1 o y%+1’ T}TLn))
+ (™ =) P (T =yt )
+ (P;LYL <szLYL+1 - y}TLY;Jrl) 7 (Ihmerl)u - y;nJrl)
— (p}zn (y;nJrl . yﬂ+l))2 + (P;ln (yZ"Hrl . y’%—&-l) ’ (Ihym+1)u . ygl+1) ‘

Next, we estimate the left-hand side of 1) from below using an upper bound |$Z@+1‘ <
4Cy. Further, combination of estimates for S, .., S¢ and the relation above imply

s 1 = )P < (554 €t 388) [+t = o
+ (e + CsALR™) A " Csh ™' RT™H
At (4.92)

+(Cs + Co) (B 4+ A) + Cs (7 = 2| + |7 = o)
#(Ca € (Wall = el + ™+ =+ ot = )

The next step consists in deriving a suitable form for the second summand on the right-
hand side of (4.89)). In the following calculations the relation (4.70) will be fundamental.
Therefore, we repeat it here for convenience at the (m + 1)-st time level

m+1l _m+1) _ m+1 _m+1
)= ()

(yu T . (ym+1 7_m+1) _ ‘xum+1| |ym+1‘2_ (4.93)

u 7w
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In order to derive the discrete equivalent of - we use - and -

(yjm+1 ,yjm+117 Jerl) (y;nJrl’ m+1) (y;n+11, jm+1) ( )
1 1 4.94
— = gl = G - REP R

where RP"™' RM™*! given by (4.88).

Combining (4.93]) with (4.94) we find in I,

(y;n-i-l _ y;ﬁt—&-l’ ij) <y2n+1’ m-i-l) (?/ZL—H, ]m-&-l) + (y;n—i-l _ y}rbrqu-l’ ij _ ij-i-l)

m+1 m+1
(yu +1’ +1) _ ( J - Jj— 7Tj +1)
J

m+1 m+1 m m+1 m+1 _m+1 m+1
+(3/u — Y T =T A (T =)

|xm+1} ‘ym—l-l’ + ym-i-l’ m+1 o Tm-i—l)
m+1 1 m+1 1
_|___ m+1 m+1 + =

R e P

m+1 m+1 m m+1
=+ (yu ~ Yhu > T — j )

(R + RMP)

1
Further, the definition Ozm+1 2 (q;"Jrl + q;”ﬂl) allows us to write

(y;n-‘rl yz’;—i-l’ Jm) _ ’ m+1| |ym+1‘2 + y;n-&-l? m+1 _Tm—|—1)
+ M ’ +1| M | +1}
4h; Yi 4h; Yi
1
4 h_j (RF)]m—i-l + RM;T{I) (yzw—i-l y%—i-l’ Jm _ ij—&—l) ]
‘lL‘m+1 _ it m+1
Noting that |z} HM J i S Jh we may continue with
] J
m+1
<y21+1 ylrgjl’ ]m (‘JI +1‘ > ‘ m+1| _'_< m+1 TJerl _Terl)
i <%m+tl - q}”“ qg:l) | v, +1‘
i qu ~ qu+1 q;nﬂ m+1 _ q;nﬂ | m+1’
2hj i h;
1

RPm+l + RM’m+1) (yZ”LJrl y;Zjl) ]Tn _ T;n+l) ]

ha
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A simple calculation leads us finally to

(y;n-i-l y;r;-‘rl’,]_]m) _ ‘xm+1| ‘xm-‘rl’ |ym+1‘2 + wa+17 m+1 Tm+1)
+q§n+—§il_q;n+1‘ +1| _|_qu+1_q;n+1 m+12
4h; Yi 4hj Yi-
qm+1 q
o (= ) + (|y] )
o <RP;”“ +RM) (yz"“ —wh T =),

J

To estimate the last term on the right-hand side of the above equation, we first use (4.48])
and then recall (3.25)) to obtain in [;

\/_

(y;n+1 yZLH,TJm _ m—l—l) < |ym+1 +1‘ ‘ m+1 Th |‘I < |ym+1 m—i—l‘ll
In view of the above estimate we arrive at
[ = o™ )] <Ol = |l + Ol =7
+Ch (|l =+ g = g t)
. (‘merl —y +1| X ‘merl m+1|) (4.95)
_i_%‘Rij-H RMm+1‘+C’\/_|ym+1 m+1’|1 _

In the following we use the triangle and inverse inequalities as well as the definition of [

m—+1 m+1‘
g —a | =

J+l|$hu “ —hy; ’xh+1||1

< by || (T ), [ = e, R [T, [ = e,

+ by ’(Ihmmﬂ)u“g“ — h; ‘(Ihib‘erl u’|1j ’

< R[[(2a2™ ) [ = [ e,

™ ) — 2™ ) 2™ () — 2™ (uy0)
hjta ! h;

+ Ch?.

(4.96)

+ (A1

< Va|(Ba™),[ =

ol
LQ(I Uljt1)

Here, the last estimate follows from the Taylor expansion and smoothness of the contin-
uous solution.

Let us next examine the fifth term on the right-hand side of . From the smallness
of the spatial grid size h and we derive

(L )[R+ R RPEE < O RPH] L (497)
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It can be seen that the first summand in (4.97) is of the lowest order. Therefore, one term
|R}”+1‘ in the second summand in 1’ can be estimated by a constant, when one uses
the relation (4.79) and an upper bound on the discrete curvature vector from (4.16))
m—+1 m+1 m+1 m+41 m+41
R = [=a e (i ) | < Cht 2 (4.98)

Recalling the representation (4.81]) of the remainder term and using ([2.12]) we derive
m+1 k41 k|2 k+1 k(|2
R ‘ <CZ ‘ ~Th ‘Ijufj+1 < Ch- Z ” ~Th HL?(JqujH) : (4.99)

Putting the calculations (4.96))-(4.99) together and employing (2.12)) the inequality (4.95))
translates into

(gt =i )| < Chk OVALRT [y =y o

Ot (7 gy + 17 = + 1~ )

+ N[, = 5 g, onyon + CF ;HTW Wizt onnon
0

Finally, all the expressions in the above inequality have to be squared, integrated over I;
and then summed from 7 = 1,..., N. Using an interpolation estimate and recalling the
notation (4.17) we find

27
/ (gt — gt o) < CAth™ ||yt — gyt | + Ch="RT™ !
0 (4.100)

e G e [ e e [ R el R
Combining the above estimate together with , and Lemma results in
[yt — P < 8C (86 + CAL + 3AL + CAt™®) [y — it

2

m+1 _ _m
+8C (e + CoAPR™) || 2| 4 Cs (b7 + h77) RT™!
+(Cs + Co) (B + AL + [la™ = 2|7+ lly™ =y I + ] =l
[l = P Yl = g (| = )

Without lost of generality we may assume At < 1. Imposing the following condition

8Cy (86 + CAt + CAth™) < =

1 1
we choose 0 so small that 64Cy0 = 1 and fix the constant w = min {1, 3200, } This

1
implies CAt < Cwh® < Ch® < 7 provided hy is sufficiently small. The claim follows.
O
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4.7 Discrete length element

The most difficult part in the error analysis is to estimate the error in the length element.

From (1.2 follows that (z;,7) = 0. Using (4.70) and the smoothness of the continuous
solution we obtain further

et = et _ (et — (7 al) (e atoal) (e
At At At AV
merl _ xm) ( ZL’erl —xm ,7_m+1 —m
— 7_m—|-17 _ 7_m—i—l) 4 ’Im
( At )\ At At v

m+1l _ .m m+1 _ .m
= (7t gty 4 (e x T m) L z r ||
Mt m Y At t y 9 At u

+ Tm+1 o Tm .
Ee—
At T
= [ 7t —me —z" — pmtl — ym+1 o gm ‘[L’erl’ + Fmtl _ m ™
) At t " ? At u At 5 u

And finally

m+1| _ |,.m m+1 _ ,.m m+1 _ ,.m
|‘ru | |xu | + ( m—+1 x x ) ‘xm+1| o (Terl x T _ mtl
_— _— u = _—

xr

At ’ At ’ At ¢
7_erl_Tm

(Far ).

In order to derive a discrete analogue of the left-hand side of the equation (4.101]), induced
on the grid interval [;, we recall

)“ (4.101)

m _ ‘ J J=1l 45 _
‘xhu’\lj = h. —F, m—O,...,M
J J

and introduce the following lemma.

Lemma 4.11 (Discrete length element). The discrete length element satisfies:

m—+1 m m—+1 m m—+1 m
4 —q; n 1 e i — 4 [y Tiy — X ian
At 2 7 9 At ]—1 ) At J

(4.102)
m m ij+1 B TJm m m m+1
form=0,....M —1 and j =1,..., N with N-periodic indexing and with
m+1 __ m—+1 m—+1 m—+1 m—+1
Remj"™ = D" — B + " + G (4.103)
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m+1

1 Qg
7' == o (5 =0 = o™ =3 F) + s (i = ) o
J
)\am+1 Ckm+1
— 4a§n (qﬁ"il m+1) |y] —H‘ 16 m ‘ym-’_l‘ |yj+1 ‘ (qﬁ—51+2(]ﬂ—’il)
Q{m—&—l

- S b P (a2,

(4.104)
where DT, G are given by (A.4), (A.17), (A.26) and , respectively.

Proof. In order to combine the terms on the left-hand side of (4.102)), let us represent
the first one as a sum of scalar products. To do this, we recall the notations (4.80) and
observe

m-+1 m m-+1 m-+1 m m m-+1 m-+1 2 m m 2
A o vl Bl o s | I i‘“"j — T 1 o) — |
At At AL | — ! At |z — 2|
m+1 _ _m+1 m __ .m
_ 1 Z; R E R I B A R
m+1 m+1]77"J j—1 m m |77 Jj—1
|$ T At ‘xj T
1
m+1 . m+1 _ m+1\ _ — (. m _.m __
Al (T‘ » g j—1 ) Al (Tj » g %—1)

I
/\DH

m+1l _  m m+1l _  m m+1l _ _m
Sl L ) e Tt T T T m_ m
i At i At N A

Thus, in view of the above calculations the left-hand side of (4.102]) turns into

m+1 m m+1 m m+1 m
K S e e S ) Y WSS S M S P
At 2 At =1 At J

m+1l _ _m m+1l _ _m
_ 1 T e I e O e M
I A At i At
1 — T

(4.105)

The next steps consist in calculating the first four scalar products on the right-hand side
of . In order not to interrupt the proof of the lemma, we present here only the
results without giving the lengthy proof. For a detailed derivation, we refer the reader to
Appendix [A]

Thus, in view of (A.1)), (A.16)), (A.25) and the sum of the first four scalar products
on the right-hand side of (4.105]), which we denote by SP, can be written as
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1 am—i—l

Sp :_1 j (|y - ‘ ‘ +1‘ ) 1 ;n mAl _ m+1‘2
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Next, we rearrange the terms in S P according to

SP =(Py+ Pi5) + Py + Pi1 + (Ps + Pos) + Pig + Pos + (Py + Por) + (P2 + Pi7)
+ (Pis + Pag) + (Ps + Pyo) + (Pio + Pas) + (Pro + Pag) + P5 + Pi2
+ Py + Py + (P + Pi3) + (P2 + Py) + (D' — BT+ FPH 4 G

The result reads as follows

1 am+1 qm+1 11 - -
SP =i (2%% B 45’““) (o 1* = 1oT7) - 2ar U =)
1 1 . . 1 aerl qm+1
g ) = i (- ) (- )
11 1 1
tiar (l* = o ﬁll)—gﬁ (1" = )
1 a;”tl q]erl m—+1 m+1
- am (2qm+1 - 4qm+1 ‘y Y2
1 [artt gt A | ( 1 1 ) T
_ _ L o + o — 4+ —
;n <2qu1?£1 4an:f51 ‘y]Jrl y] | 4 Oé] aj,1 ‘y y] 1
aerl Oéerl qm+1 . . .
+ 2;§n <2q]m+1 - 42@;1) | Y; +1‘ ( ]+JE1| ]+11‘ + +1 }yj H‘ )
Oér‘n_+1 Oém+1 qurl " . ) . . )
2;;1’;1 <2q]mi1 B 4qjm+1> | J +1‘ ( —El |y]*—'il‘ +Oéj*—;1 |y]*—51 >
1 am+1 am+1
3 (T b SR T ) (o o )
L™ 2 g, 1 () .
+Z iy;n ’yj Hl Jj;{l_'—Z (i;,n_l | J—H} J H
1 aerl 1 &m+l
s g | O ) = g S )
7 i
_A ((O‘TH) ly +1‘ " (O‘m—ﬂ) lym ] )
2 oy Yj ajt Yj

+1 m+1
A ol 2
1 J 1 1 1
+ —C]}TH_ ‘ym—i- | 4 ;n—i— + Rem;ﬁ—i— )
a Oé]_l

Recalling the definition (4.80) we find that

1
m+1 _ — ( m+1 m+1
of =S (g ), oty =

5 (q;n-i-l 4 qm-‘rl)

J

l\DI)—t
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and further derive

Oé;nJrl q;nJrl B 2am+1 q;n+1 B 1 Oé;-n_ﬁl quJrl 2am+1 q;nJrl B 1
m+1 m+1 m-+1 - m+1 m+1 m-+1 -
2q]+1 4q]+1 4q]+1 4 2qj—1 4qJ— 46]]_ 4

Using the above calculations and in view of the definition |i of J;”H we obtain for SP

1 . 1
SP =1 ((%Hl} =y ) t 1 (\?J] 1Pyt )
J j
1 m+1 +1) 1 (m+1 _ m+1)
i (51 = b ) = g (h = I
1 1 1
_'_4 (‘yj H} | JH‘ >_Zoz_ (‘yj H} |yj H‘ >
-
o ]' m+1 m+1 = |,m+1 m+1 2 1 L 1 m+1 m+1]2
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+ g W (s ;Tf\ gt |y f)
m]+1
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- 8 |y] | ( ‘ + [y )
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qm+1 m+1 ) ) s )
TR o i+ (‘meH + 2|y + [y }>
qm+1 m+1 ) 1
=y T (sl 2l P )
A (a;‘n+1)2 m+1|2 (Oé;n—J?)Q m+1|2
- 5 < a;’l Yj | + W Yi—1
m+1 m+1
+ %q;n-l—l <04 |yj +1‘ e Q; jrn-‘rl ) I Rem;nﬂ.
J ]_1

We observe, that sum of the first six terms in S P results in zero. Combining together the
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tenth, eleventh and twelfth terms on the right-hand side of the above equation we get
m—+1

a
o b (o g o )

m+1

;
m+1 m+1 | m-+ ‘ m+1 | m+ 112
+ o 3o m Yj— ( Yi-1 | T Yj—2
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A further simplification of SP leads to
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R
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In order to obtain the representation (4.102), we combine the terms in the following order

5]7.”:(]524—?3)+(]59+P14>—|—<]519+ﬁ’21>+<]55+1510—|—]515>+<P7+1513>

1 m+1 m+1 m+1 m+1 am+1 m+1 m+1 m+1
'_ZQE<Wﬁ1 —y = g ) + e w [* (205 — 247")
)\am-i-l
— o L (a0 - 247)

m—&-Jl

o T T o 20— g

Oém+1

1604m ‘yj +1’ |yJ +1’ 2am+1 + qu)

Employing the definition (4.80) of " we finally receive

1 1 1 1 Oéerl 1 1 )
Sjm: 404 <’y§rfi _yJ+} |m+ _yj+’> 1ém(qﬁ—~i _q;n+ ‘yj+|
)\Oém+1 am+1
U R 160" Lt (4 + 2473)
am—i—l

T 7 |yj +1‘ ‘yj +1‘ ( m+1+2qm+1)
Organizing the terms as it is done below

(151+154>+<]512+1517)+<1520+1522>+<138+1518>+<156+1516+1511>

1 m+1 __  m+1 m+1 m—+112 a}nj_l m—+1 m+1 m+1
~dar (I4; A -\)—ﬂgfﬂ% =)
)\amj'l m m am+1 m m
+ ﬁmll (qj o — 4 +11) ‘ Yj H‘ 16?71 | J H‘ |yJ H‘ (qj++11 + 2q H)

J— J—
aerl
g s s 25 = sy

we obtain the claim of the lemma.

4.8 Discrete Gronwall’s argument

Here, we present the results for the last lemma.

93



CHAPTER 4. ERROR ANALYSIS

Lemma 4.12 (Discrete Gronwall’s argument). Suppose holds. Then there exists
Aty > 0, such that for all At < Aty we have form=0,.... M — 1

||zt = |2 ||* < € (h? + A) + CAth=2ST™  Ch~ RT™

. m A k+1 k41 2 k1l kel 2 ) At2 k+1 k
+ Z 13 ||ZE Ty, H + Hy Y H + + o
k=0

€p  — €

At

2 RTk+1
+ 5 .

Proof. For brevity, we denote ¥ = I;,z*, §* = I,y* and introduce

555 = Ik(uj)7 @f = yk(uj)v Cﬁ = ‘ff - f§_1 )
1 Tk — gk
~k ~k ~ ~k J Jj—1
72 (& +3). 7] |Zh — k|

In view of (4.101) and Lemma we obtain on the subinterval [; for £ =0,...,m

ok — |2k ot — |2k ol — ¥ 1
‘ ’At} ‘_|h }At’h‘:_( ~ ’yk+1>|xﬁ+l|_h_j(5f_5fl)

i1 ft1 & k41 k
0 S B SR I e e R I L 4.106
2h; At 7 At At (4.106)

k+1 _ .k ktl _ ok ok gk
Y QR A S R R e N iR k41
T Ty ; em;" .
At " ; h;

Next, we multiply the equation (4.106) by At and then sum from k = 0,..,m. Using the

reverse triangle inequality and notations introduced above we arrive at

m+1 m+1 0 0
(7™ = i) = [a = wha

S R » k1 ~k
1 S A IO e el TR PR
o, At Y At S ) )G
k+1 k k+1 k
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N g [k
At “
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<
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=I+..+VII
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k

We recall that q] i — a® and from 1) 4.16)) we deduce on I

h ‘xhu}l

-l =

1
§Cohj S qf S 20()hj, k= 0, e, Mm,

1
Zcoh < qm+1 < 4Coh;

Let us next estimate the expressions I,...,VII. To begin, we split the first term in the
following way
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o S et O o W ot SRS
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Further, in view of the smoothness of the continuous solution and bounds (4.16]) we
estimate
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e
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T T AR
m(
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Using now (2.12)), an inverse assumption on h and recalling the definition of e} we get
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hE

i
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Analogous calculations lead to
(3" -1
2 At
- LRl gk - |xk+1}
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Further, smoothness of the continuous solution together with mAt =

— X

e S
’ At
e N, m PRk N
(P ) S (P )
k=0 k=0
m 2
1 ka 7|
=— At———
2y
From the inverse inequality (2.12)) and relation (3.21]) we infer

k+1 _ ko k _
T T X .r
At

‘ k+1 k|
I;

]| hu|1

lzF| < CAt.

i
o

2
At < Ch™ Z ” - Tif”m([j) :

)< f (),
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(4.108)

T implies

M
- xf“) <CY A< CAL
u k=0

(4.109)

‘xhu‘lj

(4.110)

Now we turn our attention to the most difficult part of this lemma — estimation of

the terms V and VII. First, we deal with the difference SJ’53
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we will apply the same technique already used above. In particular, we insert into this
difference a continuous equivalent and then consider the difference between corresponding
continuous and discrete terms. The idea is to generate the terms which already appear
on the right-hand side of the previous estimates.

For the sake of readability, we recall (4.104]) and present

Sk — _ L (‘ k+1 _ k+1‘2 _ | k+1 k41 2) 1 O‘;’CH ( k+1 k+1) ‘ k+1‘4
i 4ok Yit1 =Y Yi Yi— 160 dir1 — 45 Yj
)\O/ﬁ_1 Oél?""l
= (G = T e T (6 24
j j
o [ i (] + 2481
1604? Jj—1 J Jj—1 J :

We claim that

S

=55 (@ G 4L T GH G 97 0T ) | < O

Let us demonstrate that each of five terms in S’Jk can be estimated by a multiple of the
spatial grid size squared. By means of the reverse triangle inequality, Taylor expansion
and smoothness of the continuous we deduce for the first two terms in S]’-C

P ~ k4112 ~ k112 1. ~ R R .
a1 =0 = P < g - -
< Th (lgkt - 01|+ o — ) < o
k1
i - @ [ < ol - a| - ekt - at| < on

J

From the last estimate we also have
~k+1
)\Oéj

~%
4ocj

@ g | |a ) < on.

The remaining in S]"-C two expressions after adding a zero term can be written as

dHlk?k?k k ~"€+1k2k2k k
k412 | ~k+1(2 [ sk+1 | o=k+1 k1|2 | ~k+1(2 (sk+1 | o~k+1
#&? g g (@t + 24 - 1é&? g g (@ + 26
&k—‘rl

= tege 15 (1B - ) (@22 + 22

~k+1

o
o= |7 (17 — () (@ + 28
J
&fﬂ ~k+1|4 skl Skl skl Sh+1
T |97 (@ + 2070 — 5t —2457) -
J
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Observing that

~k ~k+1 ~k ~k+1 ~k ~k ~k ~k ~k+1 ~k
ity + 2050 — G -2 = (G — ) w3 — @) + (G - )

a similar argument may be used to obtain

~k+1 ~k+1

Yj k1|2 (2 (ke okt 1y Y k12 k1|2 (kD okl 2
| (@ +2gh) - Sop g (g 4+ 2a5) | < Okt
166 166
Arguing in the same way we may conclude S ]'-“_1 < Ch?. Therefore,
k k k_ &k k Sk 2

Hence, it remains to estimate the difference between S]’? and gf since the difference
At first, we derive an inequality which will be often used in the remaining estimates.
Thus, from the smoothness of the continuous solution, the inverse inequality (2.12) an
interpolation estimate we infer

SJ’-EI — S'jk 1 behaves in a similar way. We will treat the terms separately.

= = g et = e,
< Vs 7t = feh ey + B3 |
Next, recalling the definition of af and using results in
1 1
L (st =P = [ = o) = o (1t = 5 =l - 1)
J J
Skl skl kel kel
4 T4 — 4 — 4G - - - -
S S | A A
1 . . _ .
b gmr (= = =) = (1t -~ 1 - )|
j
 cliit il g -,
C N .
b (R kP - WPl - e, )
< VRl =k gagron,y + OF + Ol = o, (15521, + o] ,)

+Cnlgist =k, (190 + )
< VR[] = 2k g, 0y + O (L [l )
+ OVl = b oo,y (L )

where for the last step we have used an interpolation estimate.
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Using (4.16)) we achieve for the next typical term

a’?+1,€2k2k B} ~k+1k2k2k k
1 1 1 1 T -
1(]30[? ‘yj+ { }yj-—ii:l (jj__g +2qjil) __1é&§ ‘yj+ | ‘yjil (jj-_Z +2qji_1)
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< \Toar ~ 1aar| |9 R (@5 +2a55)
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< VR = |2 o or oo, o+ O+ CRGT =00 e
VAN [ i IR v 1 9 + OB+ OV [y =y

~ k412
Yj

I;Ul; 11Ul 42) Iit1) "

The remaining terms in the difference S¥ — S* and S*_ | — S¥ | can be estimated in a
similar way. Thus, introducing a notation

[(j) - j,QU[j,1U[jUIj+1U[j+2 (4113)
and recalling we arrive at
5F = SEl <OV (I~ el 100 = o )
O (14 VR = ok ) (0 k2 )

Combining the estimates (4.107)-(4.110) for the terms [, II,111,IV and VI with the
estimate (4.114)) for V' we get in I;

|| = Japt |, < et —ah + C(h+ Ay + O Y |yt — o
k=0

At (mxw = Jabi Moy )+ 195 = 08 o, )+

2
[re

k+1 k
€, €

At

LQ(I(M)
1

+ I
Vit
m 1 .
T CZAt <h + ﬁ Hysﬂ - y}l;leL%[(j))) (1 + ||y,’§fHLw) + o ZAt ‘Rem;?Jrl‘ _
= J k=0

In order to obtain the claim of the lemma, we have to square the above result, integrate
it over /; and then sum from j =1, ..., N. For simplicity, we perform this step separately
for the last term on the right-hand side of the above inequality. Using the auxiliary
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result (B.1]), an inverse assumption on h and Cauchy’s inequality we find

al 1 “ _ 2 ’
> [ o (o8 O I ) S =

N 1 m 2
3 [ (S B e Il

j=1 71 "5 \ k=0

m m 2
< CZAt ( + ||yk+1HLOO) ZAtﬁ (Z [ )
+CZAt (1+ Hy;’filHLoo> >
k=0

k=0

Ath™2 |7+ — 7|,

Denoting for brevity
ST = Z |ritt — (4.115)

and recalling the notation (4.17)) together Wlth the initial condition 29 = I;,z°, we obtain
with the help of Cauchy’s inequality

|24 = e ||P < € (h + A#?) + CAth2ST™ ! + Ch~  RT™

Loy a (1!}96’““\ kI + o - 4 S 2)
u h At

k=0

+CY At <1 + IIy;'iinoo) (hQZAt—i—ZAt”yk“ y,’jjl\f) + O AtRTH.
k=0

k=0
Further, Lemma with e = 1 and a priori bounds (4.16]) imply
e m+1w <C (h2 + At?) + CAth2ST™ " + Ch™'RT™!

+Ch° ZAtRT’““ + CZAt |25+ — |2k

k=0 k=0

k+1 k

At

m 2

oY A (kaﬂ B [ = P (1 AR ) |

k=0

Next, we split the fifth term on the right—hand side of the above inequality as follows
A || = g | +ZNH\W1| — | I

Finally, smallness of At allows us to move the term At |||z ] — |z} H!H to the left-
hand side, provided Aty is small enough. To complete the proof, the discrete Gronwall’s
Lemma ([2.2)) applies and yields the result.

m

100



Chapter 5

Completion of Induction argument.
A posteriori estimates

5.1 Completion of Induction argument

First of all, we start with an auxiliary result, which will be used later.

Lemma 5.1. Suppose holds. Then there exists w > 0 independent of h and At,
such that for all At < wh? we have form =0,...,.M — 1

k+1 k12

At

G m m 2 At m C m
+3_;Hy +1_yh+1|| gC(h2+At2)+CﬁST H+ERT +1

m
Co

— At
64 —

- 1
DI (nwl =P g e = P R ).

Proof From Lemma [4.6| after multiplying both sides by At and summing up from k& = 0
to k = m we get
Z (M = ¢F) <> AL (W + AP) + Ch Y ALRTH!

k= k=0 k=0

k+1

m
Co eh - eh

16
k=0

At

rey A <Hy’““ P e I ),
k=0

where (™ is given by (4.39).
Recalling the initial condition 29 = I,z° and estimating (Y < Ch? by (2.6) and (2.7) we
may write

0 m

Z (Hykﬂ U o+ ] = Lt I+ = 7))
k=0

k+1 k12

+ ¢ < C (B 4 AP) + Ch? Y ALRTH!
k_
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The next term we estimate from below

1 o 1 2m
T L e e A e e oy

2 0
o ‘xh —H‘ m+1| m+1 m+1
+ 0 |$m+1| (Th -7 )
1 l,m—f—l
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co [ +1 +1]2 e +12
> ‘I Y =y | — C/ ’Tm — 7" |
0

2
—C’/ m+1‘_|xm+1|H7_m+1_7_}:n+1|_
Let us consider separately the first term on the right-hand side of the above inequality.

Using Young’s inequality (2.3)) with ¢ = 1 we derive
‘Ihy +1_yh+1‘ Z}fhy 1y +1| —i—‘y +1_yh+1|

_9 |Ihym+1 _ ym—l-l‘ ’ym+1 _ yzn+1‘
1
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and with the help of (2.7 , Cauchy-Schwarz and Young’s inequalities we finally obtain
¢ 216 [yt — m+1H2 — 5 ||[am ] = |2 hH‘H — O <h4 + ||t - T}:n+1H2) ‘

Taking into account the above result for (™! we deduce

B S04 AF) + On S anr

k=0
+5|H$T“\ |~%“\H + Csh* + Cs |7 —

O A ([l =y | = a7 =)

k=0
Applying now Lemma [4.7] for the third term on the right-hand side of the above inequality

one obtains

ZAt

<5+€Ca H\xi?“l [+ o[l -

k+1
eh <
16 v

s

6%“ ch ’ €O || m+1 . m+1)2 2 2 2
+ gl T < O (W AP) + Cs (14 Co) h

ek

+ C5C: || — P + CsCh T RT™ 4 O3y AtRTF

k=0
F O A ([l =y G+ | = a7 =)
k=0
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At the same time Lemma implies

m 2

ZAtHym“ it )® < (e + CAPRT DAL
k=0

k+1 k
Ch —Ch

) A Tk+1
N + C.h Z tR

k=0

Loy a (2 4+ A2 4l = |yt = o ] )

k=0
and yields
ekH ey ’ Co 2
Z At||= g ot = < O G (B4 AP) + Gy (14 Co) 1P
(5 —i—&?C(s H|xm+1‘ ‘xh +1|H 4 20 ||ym+1 m+1H2 oNel meﬂ _ xan”Q

+CsC.h ' RT™ 4+ C (W8 + C.h™®) Y AtRTH
k=0

(e+—)ZAt

# O3 At (o o ok = P+ e = ot )
k=0

F 00T A ([l = 2P+ g+ = g+ 1|~ k)7
k=0

As the next step we make use of Lemma for the third term on the right-hand side.
The previous inequality becomes

2
+ % |y™*t - yZ”lH2 <C(146+¢eCs+C.) (B + At

k+1 k

At

m
Co

— A
16 t
k=0

+Cs (1+Co) h* +2C5 Hym“— P + CsCe et — |
2
<5+g(0+05 )ZN

+ (0 + C5) CAth~2ST™
+ (64 eCs5 4+ CsCo) T 'RT™ + C (W + h™° (Ce + 6 + £Cy)) Z AtRT*+

k+1 k
ey eh

k=0
+ O A ([l =g = @ O 25 - LI
k=0
+(64+eCs+CC) > At (||gc’f+l — P |y - y,ﬁ+1||2) .

k=0
1/
Choosing first 6 and then ¢ sufficiently small we let w to be equal 3 %.
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The resulting inequality reads then as follows

2

Co — eftl ek o\ m 1 (12
3—;;At hTth 3—;Hy oyt <O (R + AP

+ O ||l — P+ ChTIRT™ 4 O3 AtRTH 4 CAth™2ST™ !
k=0

#0380 ([ o [ = ] ek [ - ).
k=0

In order to estimate the second term on the right-hand side of the above inequality we
observe

m 27
2 2 2 2
L mA |12 (0 02 gL kL2 |k ok
h h h h
k=00

m 21
=30 [ ) () )
0

k=0
[T eﬁ“ - eﬁ k41 k41 k k
m aon Rl _ gk R _ ok
_Z/o & (Ih{ At ]_ At ’<xk+l_xi+l>+(xk_$£))'
k=0

Recalling the initial condition, Cauchy’s and Young’s inequalities we obtain for § > 0

k+1 k
€, — €

2 m
|| Ok Ci YDAt =t ()

k=0

m
”xmﬂ _th+1”2 < 5ZAt
k=0

The claim follows by choosing § sufficiently small and using Lemma [f.7| withe = 1. O

We are now in position to complete the proof of Theorem [£.2] For convenience, we
formulate the following theorem.

Theorem 5.2 (Function p™1). Let (zF,yF), 0 < k < m be given, such that (@ holds.
Then there exist hg > 0, Aty >0, ¢ >0, v >0 and 0 < & < 1, such that if the function

P, given by , satisfies
p™ < eeB (B + A, (5.2)

then
pm+1 < ée’y(m—i-l)At (h2 —|—At2) (53)

for all 0 < h < hg, 0 < At < Aty, provided that At < £h%. The constants depend only
on the norms of the continuous solution and final time T
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Proof. Let us now show that (5.3)) holds. Recalling the definition (4.7)) and using (5.1))
with § = 1 and Lemma .12 we arrive at

k 2

pm+1 _ ||xm+1 _th+1”2+ Hym+1 +1H i |H$m+1‘ . | hH‘H —|—ZA1€
<O (B2 + A2 m+1 m+11|2 At m-+1 C m+1 -5 A k+1
<C (W4 AL) + [ly™*t =y |7+ O3 ST + - RT™ ! + Ch Z tRT
k=0
m A2 oF L _ ok 2
+C;§At(”xkﬂ_fiﬂ\\uH?JHI—?JEHHQJF <1+ h4) A )

In view of Lemma [B.1] we deduce

P <C (B2 + AP) +CZA2€ <ka+1 _ $1;L+1H2+ [+t — y£+1H2_|_ [+ - ’:L.k—f—lm >

k=0
k+1  k
+C%STm+1 iRTm“ = ZAtRTkH +c ZAt N

k=0
Next, we split the second term on the right-hand side of the above inequality into a sum
of the last summand At <me+1 — xZLHHQ + ||ymtt - yZnHHQ + || fam | = || > and
the remaining sum till m — 1. Further, smallness of At allows us to move the above term

to the left-hand side. Here, without lost of generality we may assume At < % Now,
discrete Gronwall’s Lemma applies and yields

p"tt <C (W + AtQ) + CAth>ST™ ™ + C (h—1 + Ath™®) RT™!
k+1 BZ 2 (5.4)

+ Ch™® Z AtRTH! + CAPh Z At T

k=0

It remains to examine the second, third and fourth terms on the right-hand side of the
above inequality. In view of (4.50)) we obtain for ST™! given by (4.115)

2

+ CAt.

k+1 k
€h _—Cn

ST = ZH LRI < OAthT QZAt ~

Recalling the deﬁmtlon (4.17) of RT™"! and taking into account ([3.25)) and the induction
hypothesis (4.9) we deduce

RT™ — (Z HTk-i-l _ ThH i HTm+1 — ) Z H k+1 Th
2\ k“ h m+1 m |2 k+1
< C | Ath™ ZAt +At+Hx — | ZHT

ek
< O (Ath~%ee™™ (h? + Af) + At + Ath™?) (% > At
k=0

At

k+1 k
h T

At

2
+At>.
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Analogously, for the fourth term on the right-hand side of (5.4) we have

m—1 2
At (ZH l+1—T;LH2> <CZAt Ath~2ee MDA (B2 4 AP) 4 At)?

k=0 =0 k=0

—_

SCAR + CENPR™ (B2 + AR)* Y Aerkrnat
0

3

B
Il

We note that here the induction hypothesis applies, since the first sum goes till m — 1.
Exploiting the formula for the sum of the first m terms of a geometric series we obtain

m—1 e2ymAt _ q 2ymAt 2y(m+1)At 2y(m+1)At
2y(k+1)At __ 2vAL € 2yat € € _ €
At E e = Ate”” AT < Ate™ —627At_1§At AT = >
k=0

Here, we used the Taylor expansion of the exponential function and e?'2f —1 > 2vyAt > 0.
Hence,

—_

3

a2

AtRTH! < CAP + O DMARR (12 + AF)°
Y

0

il

In view of the above calculations and after rearranging the coefficients, ([5.4)) takes the
form

P <C (B2 4 AP + 0‘; HmEDMALRI (B2 4 A#2)? 4 CAE (W5 4 h72)
+C (™' + Ath™5) (™ (AL? + At*h %) + At*h?)

LA (oo (A A AR A\ &
+C((5+ﬁ) (ceV (h2 sl vl R > At

k=0

k+1 k(12

Ch T

At

=l+..+V

Let us examine the above terms in more detail. We shall omit in our further consideration
the generic constant C, concentrating only on the crucial terms, and using it again when
collecting all the results together. The second term in view of the relation M At = T and
under the condition At < & h3 can be estimated as

¢

Il — 27(m+1 AtAtQh (h2 + At2)2 < ;67(m+1 )AL (h2 + At2) e’YMAt (Ach 4+ At4h )

&
]
< mDAt (12 AR) 6T (€ 4 AP,

v

Without lost of generality we may assume At?h~2 < 1. From what follows

II < (m+1 VAt (h2 + At2) 2£ e'yT _e'y(erl )AL (hZ + Atz)

\2|Q>
\Q
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if the following condition is satisfied
26%¢e7” < 1. (5.5

Here and after we shall assume that A¢,h < 1. On the other hand, condition At < Sh%
along with 0 < £ < 1 and Young’s inequality implies for the third term

[T = A (W% + h72) < €02 + €Aths < h® + Ath < C (h® + A
Furthermore, from and Young’s inequality we derive
IV =B (AR + At'h ™ + APh™0 + APh™T) + APh ™ + At*h 7
<™ (§2h6 +E2ALR + A + §3At2h%) + 2Rt 4 e3hi
<2627 (W' + A#?) + b + b3 < O (2 + AP)
Combining the coefficients in front of the fifth term we analogously obtain
e (AR + AtRTS + APRTT + APRTY) + AR + AR + AR
< e <§2h4 ALK + A1 +§3At2h%) +e2p? +§3h% +ep?

~—

< 26%" (B® + At) + 3¢2h7 < h® + At + 3607 < 5h.
Let us collect the above results together

k+1 k(12

.~

1 ¢ m 3 =
PO (D 4 AL) + Coe DN (02 £ AF) +5ChE Yy At

v k=0

<C(h* + At*)+ cse%mﬂw(fﬂ +A#) + 5Chz p

Here we used the definition of the function p™*!. Further, provided hq is sufficiently

small, the above inequality with a slightly different constant C' turns into
pm—|—1 SC (h2 —|—At2) + C«Ee'y(m—‘rl)At (hZ + AtQ)
g

5) o (m+D)AL (h2 4 At2) ééey(m—Fl)At (h2 i At2).

In order to satisfy the above inequality, we choose the constants in the following way

c<1+5>gé,

i

0ge<1_9).
Y

C 1
Let — = 3 then v = 2C' and ¢ = 2C. Since the constants v and ¢ already fixed, we
Y

can now make a choice for £. Let £ = min{

<c(1+

1
1, ———
PR /CeQCT

satisfied. And the assertion of the lemma follows.

}, so that the condition 1} is

]
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5.2 A posteriori estimates

From Lemma |4.10] with € = 1 and Theorem under the made assumptions on ¢,y and
At with a generic constant C, which may vary from line to line, follows

k+1 k
m+l _, m+1]|2 2p, €~ 5 k+1
E At ||yt —yt|” < (14 CAR kEOAt A7 +Ch kEOAtRT
FO (0 +88) + 03T A (||l = P o = e = )

k=0
1
<C (1 + ger(mThAL (1 + At + AR+ )) (W + AF) < C (R* + AP).
g
Thus, we obtain

2 2
Jmaz [l = o+ " = o7

+ Z - (lly’”“ v+

Here, we have used the relation

m+1 _ em

At

2
>§C(h2+At2).

m+1 m+1 __ m+1 m+1 m+1 m+1 m+1
Ly — Ly, (T — Th ) } ‘ + 7 (‘Iu | -

and Lemma 4.7
The smoothness of the continuous solution together with the above inequality and the

inverse estimates (2.11)), (2.12)) allows us to write

ezt~ <0 (Vi S <0V

‘merlD

ZAt ot = i < O

Observing further we achieve

3
‘xh +1| > |xm+1‘ H gt :Uﬂ:rlHLoo >co— OVh > 160

o) < % = + Ja2] < OV Gy < 360

Analogously, we obtain
3
ZN Ikt < ZN s+ lom + ZN Iy = i 1 < Co+ Ch < SCo.

To sum up, we conclude that being given a solution (z}',y;") at the previous time step,
we are able to find the solution (a:m“,yznﬂ) at the next time step. Performing these
steps repeatedly allows to find all the solutions (z}*, y") for m = 1, ..., M. Therefore, the

proof of Theorem together with the proof of the error bounds is completed.
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Chapter 6

Summary

The major goal of the thesis was to carry out an error analysis of a fully discrete numerical
scheme to approximate the elastic flow of curves.

An L2-gradient flow of the modified elastic energy functional Fy defined by leads to
the evolution equation . This equation is of fourth-order and represents a parabolic
system of partial differential equations. To solve the problem numerically, we split the
fourth-order problem into two coupled second order equations. The proposed fully dis-
crete numerical scheme (L.11))-(1.12) is based on the weak formulation of the continuous
and continuous-in-time semidiscrete problems. The chosen finite element set consists of
the continuous piecewise linear functions. In order to prove the existence of the unique
solution to (L.11)-(1.12), we formulated a suitable constrained minimization problem to
be solved in each time step. From the existence of the minimizer followed the existence
of the discrete solution at the next time step. Under certain restrictions (At < ph®) it
was possible to obtain the unique solution of the system satisfying specified bounds.

To begin the error analysis, we formulated an induction-type argument with a hypothesis

m—1 m+1]|2 m—+1 m+1]|2
7 = g+ ™ = |

m 9 k+1
L3 A (Hy5+1 e
k=0

(6.1)

€ —ek"

At

2
) < C (h*+ Af).

and showed that is true for m = 0. Assuming the induction hypothesis for some
m and applying the existence result we obtained a priori bounds on the discrete solution
at the next time step, which were required to carry out the error analysis. To estimate
the error between continuous and discrete solutions, we inserted test functions into the
equations of the scheme and derived the estimates of certain norms. Due to the degen-
eracy of the equation in tangential direction, we treated the space derivative of the
position vector in several lemmas for the direction and length, respectively. A discrete
Gronwall’s argument completed this proof. After the error analysis was closed, we proved
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the induction step and improved a priori bounds on the discrete solution.
Our main result is a derivation of the following error bounds

maz 2" =l + ly™ = i)

M-1 m+1
+ oA (IW — I+
m=0

e —e™

At

2
> < C (R + A%,

where e™ = z™ — 2", provided that At < ph®. The constants depend only on the certain
norms of the continuous solution and final time T = M At.

In the following, we would like to mention some interesting facts and questions, related
to the subject of the thesis.

e To ensure the unique solvability of the fully discrete problem, one has to impose the
restriction At < eh® (see, Remark .

e The induction step (see, Theorem [5.2]), which was used to prove error bounds, was
carried out under the assumption At < ¢ hi.

e The condition At < puh® was crucial for the error analysis, since it was used to
control the curvature vector at the next time step.

In this connection, the following questions are of interest:

— Is it possible to prove the induction step under the milder condition At < eh3?

— Is there any way to improve the condition At < ph® or gain uniform control
on the curvature vector in a different way?

e Is there a fully discrete numerical scheme to approximate the solution of ([1.2]), which
is linear at each time step and can be analyzed?
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Appendix A

In this chapter, we present 4 auxiliary lemmas, in which we derive the proof for the results
formulated in Lemma 4111

Lemma A.1. The first scalar product on the right-hand side of can be written as

m+l _ .om m+1
<7_m+1 L Ly ) _ 11 a |ym+1‘2_ ‘ym+1{2
J ) At - 9 gmt1 m Jj+1 J
9j+1
m+1
11 mt+1 m+1‘2
2 gmtL om yj+1 yj
Zj+1 J
+1 —m+1
1ol aj 2 2 2
~- J m+1 m+1 m+1 m+1 m+1
4 mtL gm U/ <%‘+1 [ "+ e |y }> (A1)
Zj+1 @
m+1 2
11 (Jm+1_Jm+1)_|_1(aj ) ‘ m+1|2jm+1
o qm \Titl T i 1 qm Y i+l
J J
m+1 2
_AM| m+1‘2+Dm+1
2 am Y i
J
where
1 1
m—+1 __ m+1 _  m+l1 m—+1
D; T gl (?Jj+1 i I )
i 4j+1

m+1)2
11 (O‘j ) |y;7“+1‘2(RPm+1+RM?+1)

5 m+1 m Jj+1
20 o
1 1
m+1 _  m+l _m m+1 _ _m m~+1, m+1
o gt (it — o ) (T — 7 oy (A2)
J 1j+1
m—+1\2
11 (O‘j ) |m+1‘2( mtl _m+l m _Terl)
T m Y Y51 — Y 5T j+1

) m+1 m
2¢7 o

1 1 m m m m m m m
Cgitar (o T RMG (7, B (W = o )
J J
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_ ELL ( m+1 _ m+l1 erl ) m-+1 Tm+1|2
2 am m+1 y]—l—l y] ) ]+1 J+1 .
J ]+1
_1 11 ( m+l _ ,m+l m ) m+1 _ ‘ Fm+l 7_m+1|2
4 o™ m+1 y]-‘,—l y] ) T. ]+1 J+1 ]+1 :
J ]+1
11 1
+ - — RS — A\—RS!
2a7 J a™ J
e J

and

m
Rm+1 __lz k—l—l_ ‘ k|7_k+1 k‘Z
J - 9 J+1 J+1 ]+1 J )

k=0
Rsm—i-l _Oém+1 (ym+1 Rm+1
1 1 (A.3)
RMm+1 (ym—i-l Rm—H) T 5 |Rm+1‘ — (Tﬁ-ll-17R§n+1)’
& aj'
m+1 __ m+1 m+1 1 1 m+1]2 1 m+1 m+1
RP™ = (yj™, R; )+§ i Rj ‘JFW(TJ Ry
j
Proof. Taking a scalar product between T}”H and we derive
O W X et WO A /it /20),
J J ’ At q;ril q;n-‘rl

=3 (P st P) ety = (et o+l ) ()

pm m+1 _  m+l m+1
RO ) s
q]—‘,—l

pm m+1 yrri+1 m—+1
( ( qm+]1 ) ’ J ) (T;?%+1 m+1) + A ( ﬁjl_l 7_j"m—i-lj 7_jm+1) ]
J

We observe that sum of the second and fifth terms on the right-hand side results in zero.
After introducing the following abbreviation

Tt = O%*W-H%“W) (A4)

the above equation takes the form

m-+1 _ m
m m+1 Ij xj
o T —_
J J ) At

Pm m+1 m-+1 7 m+1 1
_ ( (yg+1 erylg ) 7j ) -5 (J;:L_J{l (T;nJrl’T;iJlrl) _ ijﬂ) (A.5)
qj+1
Pm m+1 _  m+l ’ m—l—l
n ( j+1 (yj+1 m—&?-Jl] ) Ti+1 ) ( ]71—41-17 ]m—i—l) i )\( ]nrlrl ij—&-l’T]m—&-l) '

qj+1
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Recalling the symmetry property of the projection matrix and identity (3.21)) we deduce
for the first and third terms on the right-hand side of ((A.5))

m ~m+1  m+1 m+l1 m ~m+1 _ m+1 m+l
(Pj+17j Y1 Y ) (Pj+l7—j+1 Y1 Y ) (
m—+1 m+1

dji1 411
m m+1 __ _m+1 m+1 __  m+1
(P (i =) syt =)
m—+1
4541
m m+1  m+1l _  m+l
1 (Pj+17j+1 yYiv1 Y ) m+1l m+1‘2
5 m+1 Jj+1 7j )
9j+1

From the definition of the projection matrix (|1.6)) and relation (3.21]) we infer

Tj+1 2 Tj

m—+1 m+1)

(A.6)

(A7)

1 2
pm m~+1 m~+1 m m+1) -m m~+1 m - | m+1 m ‘ m
17541 T4 (T T, )Tj+1 = Tj+1 j+1 1 o 1Tj+1 j+1l T4t

J+1 1541
Application of (4.79)) and (4.85) leads to

Pt (72" =) = (i = 7) = (o i = ) i
:a;n+1y;rt+l 4 R;nJrl _ (Tﬁ_l,&?Jrly;lJﬂ 4 R;nJrl) Tﬁ—l
:a;nJrly;nJrl 4 R;nJrl _ (Tﬁrl o ijzJIrI’a;n+1y;n+l) Tﬁl

PR ) T (e R T (4.8)

:a;n—l-ly;‘n—i-l + R;-TH_I + (7_]?1—{1-1 o Tfil,a;ﬂ—l-ly;n—kl) 7_;11

1 2 2
. m+1 ‘ m+1| m _ _m+l m+1_m m m+1\ -m
5 (o) Y; T — o) T RMTTT (Tj+1, R} ) T

—

J

In view of (3.21)), (4.79) and (4.84) we may write

1 2
m+1 (_m+1 _m+1) _ ym+1l _ ym+1 _ gm+1 _ = ym+1 | m+1 _ _m+l
T (i) = T = T = ] 5 i+ i =

1 1)2 1|2 1 1 1 (A.9)
_gm+1l _ gm+1l _ =, m+ m+ m+1 m+1 ym+
=Jiin —Jj 9 (o) [y 7 A" = RS

Taking into account ((A.6)-(A.9) and using once more (4.84]) for A-term, the equation (A.5])

translates into
m+1 _ "

m

1

m m—+1 J J _ m+1 _  m+1 m—+1, m+1

G\ T Ay )T it (72" =g o)
541

1
m—+41 m—41 m—+1
+ o (W — L R

j+1
+ o U — ) (T = e ) (A.10)
1
1 1 2 2
g () P G
J
1
e (R () G — o)
j+1
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1 1

m—+1 m+1 _m+1 m m—+1 m+1|2
Tyt (it =y i = ) [ =
qj+1
1 1 2 2
m—+1 m+1 _m m—+1 m—+1 m—+1 m
T At (it =yt [ = =
dj+1
1 1 2 2 1
m+1 m-+1 m+1 m+1 m+1 m—+1 tm—+1
—5 (T =) 4+ 4 (e) N A g BS
A 2 2
m—+1 +1 +1
=2 (a2 g - A RS
With the help of the elementary relation
1 2 1 2 1 2
m+1 m—+1\ __ m-+1 m+1 m+1 m+1
(i) = =5 [ — o+ 5 [+ 5
we derive for the first term on the right-hand side of (A.10)
m+1 m+1 m+1, m+1\ __ 7 m+1  m+1 J m-41
ot (7 =y e Ty ) = = (i ) — e
qj+1 J+1 J+1 (All)
:liﬂ <|ymt1‘2 _ ‘ym+1’2> _ la;nﬂ ‘ym? . ym+1|2
m i+ j m i+ j :
2 q]'_:il J J 2 q]‘_:gl J J
For later use, we split the scalar product as
m+1 m-+1 m _ m+1 m+1 m+1 m+1 m—+1 m m+1
(' =y ) = (i =y ) + (i -yt - ) . (A2)

Next, from (4.94]) we derive

( m—+1 m—+1 m+1) 1 m—+1

m 2 1 m m 2 m m
Y — Y T )= _§aj+1 |yj++11‘ — —at! ‘Z/j +1} — RP™T RMj 1 (A13)

277 Jj+1

Combining (A.12)-(A.13]) the fourth term on the right-hand side of (A.10]) can be written

in the following way

1 1
=5 () T G = )
J
1 (o)
8D e (g b g )
1j(am+1)2 (A.14)
j m 2 m m
byt P (RBE R
J
]' m m m m m m
) (o H)Q i HF il (i =y i — )
I+

where RP™!, RM™*! are given by (4.88)).
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In view of the calculations (A.11)-(A.14), equation (A.10) after dividing both sides by o
takes the form

Fm+1 $3ﬂ+1 — liamﬂ ’ m+1|2 _ | m+1‘2
i At 2 am qm+1 Yi+1 Yj

Jj+1
m+41
11 o } mtl m+l|2 L1 (! — ! Rm+1)
20ém m+1 y]+1 j o™ m-+1 yg—l—l y]
Tj+1 i 4i+1
1 1
m+1 _  m+1 _m m+1 m+1 m+1
am qni—iil (yg+1 Yj ’Tj+1) (Tj+1 TJ+1’ Yj )
J
m+1 —m+41
10‘] & | T.”H‘Z amit| m+1‘2+am+1| m+1‘2
4 qm+1 Oém y] 7+1 y]—‘,—l 7 y]
J+1 J
+1
11 (o)
- J m—+1 m-1 m—+1
2 mng o™ ‘ Yj | RPJ+1 +RMj )
95+ J
m+1)2
. (o7) | m+1| (et — bt g ) (A.15)
2qm+1 a™ Yj Yir1 Yj ' T+l Jjt+1
Jj+1 J
_ 1 1 (Oém+1RMm+1+( Rm+1))( m+1 m+1 Fm )
g qm \% j Ti+10 Yier =Y T
J+1 7
_1 L1 ( mAl o mAl mtl ) m+1 _7_m+1‘2
9 am qmtl yj+1 y] ) j+1 j+1 ]
Jj+
o 1 1 1 ( m+1 _  m+1 m m+1 m+1‘ m+1 T ’
40ém qmﬁl yj+1 y] ) J+1 j+1 J+1 Jj+1
J+
+1
1 L (O/” )
- m+1 _ m+1 - J m—+1 m—l—l m+1 ym+1
2am (‘]J-i-l ‘]j ) + 4 ’ Yj | JJ+1 2 RS J]+1
J J J
m
é( J ) ‘ +1| Rsm-i-l
2 a J 7 J ’

We note that only six terms from the right-hand side of are used in the calculations
in Lemma [4.11] while the remaining terms are estimated in Lemma 4.12] Therefore, it is
convenient to write the equation in a short form with these chosen six terms.
Thus, we include the first, second, fifth, eleventh, thirteenth and fourteenth terms into
in the full form. Furthermore, for brevity we denote by DJT-'hLl all the terms that
are left. The exact form of D}”“ is given in in the formulation of the lemma.

O]

In the following lemmas we perform similar calculations. Therefore, in order not to
overburden the presentation, we omit several technical calculations concentrating only on
the main results. The next lemma gives the representation for the second term on the

right-hand side of (4.105)).
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Lemma A.2. The second scalar product on the right-hand side of takes the form

Fml O 11 O‘TH (} +1‘ [y )
i At 2q am Yj Y-
2 qm—H m | +1 y] "51
1 (a’”“) L . 2 m 2
~ T g M (S P e ) (a9
Ll ey 1 (@) "
_§E(Jj+1_Jj_J{1)_Z;—11|j+1‘J+1
%(O‘i’:ﬁl) | ! +1‘ E]m+1
j—1
where
1 1
Em+1 T (y]m—i-l ]mJ517Rm+1)
-1 Y-
11 (o)’ o n m
qu—klﬁ 7 (RPP + RMSY)
1 1
qm+1 a™ L (y;nJrl B y;nJEI’ ml) (TjniT1 TJ 1 ;nﬁly]mﬁl)
j i
1 1 (aj JE ) m+1 m+1 m—+1 m m—+1
i om 1Y Y2 T T T
214511 "y }J ‘( -2 2 Tj— ) (A.l?)
e (PTRPPE = (7 RPE)) O = 777
-1 -
1 1 1
g W s =) [
Qi
e G ) e o Pl -
Q;
_ EL m+1 ym+1 | 7 m+1
QQT_IRSJA it + Oé;n_IRijl

and R’f“, RS’?H, RM;”H, RP}”Jrl are given by .

Proof. We take a scalar product between 7"
and obtain
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Gt ) | )
- m+1 m+1
j 91

1
-4 (( m-l—l‘ X |ym+1‘ )(]m+1 m+1) <| m—‘,—l‘ +| 1 > (Tjni—ll—lyij—i—l))
( ( . yymtl)a JmH) (Tm+1 m+1)
q;nJrl J ) J
(Pm (merl B merl ) 771+1 m m m m m
_ J qm+1] 2) Tj-1 ) (Tjj{l +1) +)\( +1 TjjlaTj +1)_
J
We observe that sum of the first and fourth terms on the right-hand side of the above
equation is equal to zero. Next, using already introduced abbreviation 1) for J]erl we
arrive at
o™ — g
O‘;n—l (ijﬂ’ J 1At J 1>
P ym+1 ym-i-l ’ m~+1 1 . . - m
B qm-i-lj 1) i) 5 (St =t (et ) (A.18)
j
(Pm (merl B merl ) TZJA m m m m m
)T (e ) o (5t = ).
J

Combining the first and third terms on the right-hand side of (A.18)) and recalling (3.21])
as well as the symmetry property of the projection matrix yield

(PmlT 7y;n+1 y]mng) B (PmleH’y;nH meng) (Fmt )
q;n+1 q]erl Jj—17j
Pm m+1 m+1 m—+1 m—+1
GG qu) Y =Yy (A.19)
j
+ 1 (PmleH’y;nH - y;ngl) SmAl m+1‘2
2 qjm-i-l 7j j

Let us rewrite the above terms starting from the second one. Definition of the projection
matrix (1.6 together with the identity (3.21]) implies

1 2
m _m+1 _ _m+1 m m—+1 m _ _m+1 m m+1 m m
Pyt =t = () )t = T - TolT-1 T Tl T (A.20)
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Following the ideas in ([A.8) we reformulate the next term as

PR (0 = ) = R 4 (25— )
1
+§(am+1) ’y] +1| 7_ 1+Oém+1RPm+1 m1 <A21>
= (7 RY) 7
Analogously to (A.9), we obtain
1
m—+1 m—+1 m+1 _m+1\ _ m+1 m—+1 m m—+1 m+1
J = T () =g = +§(O‘j— Hlypt | (A.22)

m+1 ym—+1
+ RS

In view of (A.19)-(A.22) and applying (4.84) for A-term, the equation (A.18|) takes the

form
gt — g 1
ozg"_l (ijﬂ’ J 1At J 1) - - 1 (y;n—i-l_y;n—i;, ;n—&ily]m—iil)
]_
+ 1 (y;ﬂJrl ]mngijJrl)
J,
1
g (G = ) (0 = o )
J
1 1
+ éqmﬂ (O‘?— ) ‘ Yj +1| m+1 - y;n—glngml)
j—1
1 m+1 pp pm+1 m  pmtl m+l _ mtl _m (A.23)
+ qmﬁl (ajfl RPjA - (Tj—pRjﬂ )) (y] —Yj2,Tj— 1)
-
1 1
* 2! (g7 =yt =) ot =
-
1 1
qu-&il (y;wrl _y;n+21:7'ym1) ’7—]’.”“ _7-’,”+1| ‘TmH Tjrzl‘2
i
_ % (ij+1 . Jjni+11) . i ( m+1) ‘ZJJ +1| Jm+1 R5m+1jjm+1
A

5 ) sy

j—1

In a similar way as it is done in Lemma we get for the first term on the right-hand

side of (A.23)

1 m+1

m+1
< m+1 m+1 ) 1(1/ m+1 m+1]2

-1 Y
Y- Yj— 2qmj1 J Jj—2

1 Qs
2 qm+1

m+1 m—+1 m+1, m+1\ __
(yy _yJ2’J—131)

jfl
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Using (4.94) and (4.88) we rewrite the fourth term on the right-hand side of (A.23) as

1 O{m+1 m m m

2 ( q]m-il-l) } ] +1‘ ( +1 yj +217 g 1)

- 4<ﬁ%—|j“\( Th@?\+%zw%z%)—5ﬁﬁ§—13“\RP+l
—aﬁﬁi—h*WRM'”+;gﬁ¢+j“|<*1—%§,1—a:w

Taking into account the above calculations the equation (A.23)) after dividing both sides
by o, translates into

m+1 _ m m+1
s Tj-1 L1 1 L oo5 | m+1‘2 _} m+1]2
i At 2q m+1 o Yi-1 Yj—2

]—1
11 ot 2, 11
m+1 _  m+l m+1 m+1 m~+1
+35 9 m-‘rl m ‘y j | “m+1 (y] y] 2 ’R )
q;_ - i—1 i

1 1

m+1
q] ] 1

()t
4 q]m+1 al

m+1 m+1 m m+1 m m+1 m+1
(yy Y2 Tj- 1) (Tj—l -1 %1 Yj- 1)

m+1 m+1 |, m+1|2 m+1 |, m+1|2
iy ( S e e >

31
3 B e (e«
iq%“'i%)l e =t s ) .
g (G REE = (0 RE) (' — o)
3 g W = ) by =
imltl%ll(y?‘“ gt ) et = R et =
) - HE a1 g
%((i ) ]+ lesﬁl.

Again, we write the equation (A.24) in a short form (A.16) denoting by EJ"*" the remain-
ing terms given in (A.17)).

]
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Lemma A.3. The third term on the right-hand side of has the form

41
1 Y ay " —af o
2\77 7 At J

m—+1
_ g <| m1|2 ~ | +1’) _i <‘ +1| |y +1}>
4 nrilo‘ Yir Y; 4o ;n Yj Yj
q;
m—+1
Lg; 1 Yyt m+1|2 11 }ym-i-l Yt
4 ﬁ—lil a;ﬂ J+1 4« 7]71 J Jj—1
st (A.25)
a; 2 2
m+1 m+1 |, m+1 m+1 |, m+1
o s ( [+ T [y )
J
1qm+1 i m—+1 m+1 |, m+1|2 m+1 |, m+1|2
Sqm+1—aj | < R VR )
1 Ode A Oéerl
m+1_J |, m+l m+1 m+1 m+1 m+1 m+1
8% }yj ‘ (JJ+1 +‘]j )+ 2qj } Y; ‘ +F
J J
where
1 qm+l m+l 1 qm+1 m+l
m+1 _ m+1 m—+1 m+1 m+1
Fj B 4qm+1 o™ | Y; ‘ RPJH 4 rr_z:gl Q™ ‘ Yj | RM
J q; J
1 qm+1 m+1
m+1 m+1 , m+1 m+1
+qu+1 am ‘ Yj | ( +1 7 T oY T Y )
J
1qm+1 1 m+1 m+1 m—+1
2an51 _RM " ( J+1’y]+—~i - yJ * )
J J
1qm+1 1 m m+1 _ m+1 m+1 m—+1
2q7.1+11a_m (7 =7y (s vy — )
J J
_ Z Jm ;"+1|2RP;”+1 4 | Y +1‘ RMm+1
O‘J’Jr1 aa (A.26)
]' O[;n m—+1 2 m +1 m—+1 m—+1
+ o T = =)
J
]' 1 RPerl m , m+1 m—+1
T ogm it (7" = )
J
]' 1 m m—+1 m—+1 m ., m+1 m—+1
_Ea_m(j_Tj ) (T =)
J
— =L —RM I — L RP
4 04]' J+1 4 aj J J
]'qm+1 ]' m+1 m—+1 m+1 m 1 m+1 m-+1 m—+1
+2qTTila' (yj—i-l Y T 7T ) 2 & ‘yj | +RM
J J
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. 1qm+1 1 ( m+l m+1 +m ) m+1 m |2 <1 m+1‘ Jrl| —|—RMm+l)
m y , B 4 y
4%#{1 am It Ti+1 el 2% !
B li (ym+1 ym—|—1 m+1 Tm) _lam-‘rl | -‘rl‘ R_Pm'f'l
205 M =17 j 2% 1% ’
11 2(_1
mAl o metl m+l _ _m QML |ymtt o
_Z_m(yj — ) | Tj'( 2 o | A )
@;
25 Ryttt 245 ppmtd
T3 ol ;T O‘E'n ’

with RP™' and RM]™" given by .

m+1

Proof. Equation (4.78) after taking a scalar product with y7*"" and recalling the symmetry

of the projection matrix turns into

m—+1 m
a™ m+1 xj B xj
Y s A

1

m ., m+1l | m+1 m—+1
m+1 ( +1Y5 Y+ T Y )+ m-+1
j+1 J

((I% P ) ()

(Pryy oy =yt

A.27
() ) o
pm 7_m—&-17ym-i—1 ym—i-l
( J+17j+1 qm{;ll J ) (T;;rlrl’y;nﬂ)
Jj+
pm m+17ym+1 ym+1
P SV (e ) (it = 7).
j
First, with the help of (4.86) we obtain
Pm m+1 _meJrl ( m’y;n+1) _ y]erl ( m+1’y;n+1) ] o (ij o ij+17y;n+1) 7_]
=y S [ REPE — (= ) o
Whereas the identity (4.85]) implies
Py =y = () 7
=y = () i - (T - Ty T
m 1 m m m m m m
=Yj - 2 Q; ! ‘yy +1| RM T Tj+1 — (Tj+1 J+J1rl’yy H) Tj+1-

Analogously to (A.7)), we derive

1 2
PRt =gt (i ) g = g ‘ |t
j j j 9 il 7
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Using the relations (4.85)), (4.86)), abbreviation (A.4) and calculated above products be-
tween projection matrix on the one side and tangent and curvature vectors on the other
side, the equation ((A.27) after dividing both sides by o’ takes the form

m+1 m
T, — X 1 1
m+1 77 J — m+1 , m+1 m~+1
(?/j ) At > anril ar (yj Y 7Y )
1 1 a;n—’—l m—+1 m—+1 m—+1
9 m m Y; 1Y Y,
quﬁl o | J ‘ ( Tj+ Jj+ J )
1 1
+1 +1 +1
+ a_mRM? (J+1’yﬁ1 -5 )
J+1 g
1 L( m m+1 m+1) ( m+1 m+1)
mA1 gm \Ti+1 = Tit1 0 Y5 T Yy — Y
J+1 g
1 1 1 1 oyt
+ _ m+17 m+1 m+1 + - m+1 mj m+1 m—+1
q;n+1 o (yj Y Y- ) 24 m+1 o |yj ‘ ( Y Y- )
+ 1 LRPm-i-l ( m , m+1 m+1)
m+1 - m J 0 Y5 Y
4G %
1 1 1am+1
m m+1 m , m+1 m—+1 m+1 m+1
(T — m, S - J A28
q;71+1a;n(3 Yj )( Yj Y- 1) 4 o™ | Yj ’ Jj+1 ( )
11 Mm-H m+1 1am+1 m—+1 m+1 11 Pm+1 m+1
g M g W G RE
+ 1 1 ( m+1 _  m+1 m+1 m ) 1 m+1| +1‘ +RMm+1
Ml Y1 =Y T — T 2% 1Y
9j+1 ]
1 1 1 2 (1
m+1 _  m+1 m+1 _ . m m+1 m—+1 RMm—H
QQﬁtla (?JJH Yi . Tj+1 ]+1‘ (2 @ |y] ‘ + )
1 1 1
m+1 m-+1 m+1 m m+1 m+1 m—+1
ot gm (y] Y157 _Tj)( 2] |yJ ‘ RPJ’ )
q; J
1 1 1 2 1
m+ m+1 _m m+1 m m+l m+1 m+1
Qq;n'f'l@( Y- 1’3)‘71' _Tj| ( 2] ‘yj | RPJ’ )
J m+1 m+1 m+1
+ AL [y A RMj AR
J a; J

The first scalar product on the right-hand side of (A.28)) after completing a square becomes

1 1 ( m+1 , m+1 m+1) _
m+1 \m Yy Y T Y5 o
qJ+1 J
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while the second scalar product in view of (4.85)) and (4.86) can be transformed as follows

m+1 m—+1
1 1 a m+1 1 1 Oé m+1 m+1

2 ;:ﬁl o |y] +1‘ (Hl,yﬁtl—y] )_5 ;Tf aj’ ‘y] le| (}’ﬂl,ym — Y )

1 1 aerl

2 gl |y Yj H‘ (7741 — ;ﬁrl’yﬁtl ?/;nﬂ)
1 1 ot 11 ot
= 4qm+1 ;gn Jnjr—gl |yJ H‘ | Yin ‘ 2 ;’f{l % | Y; H‘ RPJn}rJlrl
11 (am—f—l) 11 am+1
4qm+1;+| ! +1‘ qu+1 o } 0 +1’ RMmH
J J
1 1 Oém-i—l
2qm+l a™ } ] +1’ +1 Jn‘l‘!‘—il_l’y;r}:il y;n_H)
J

We note that the first and the third terms on the right-hand side of the above equality
will be used later in a short representation of the equation (A.28)).
For the fifth term on the right-hand side of (A.28)) we obtain

LTt omet ompry 1 11 ( m+1 m+1 >
;n—i—l a] (y] »Yj ~ Y1 ) _ZC];T”H a;n ‘ Yj | ’ Yj- }
1 1 1

= m+l m+1{2
m+1 m 9] ]
2q7" o]

And the sixth scalar product gives

11 am+1 11 am—l—l
g e P (™ = ) = G e P (L = )
q; J q; J
1 1 CY’m—f—l
5 [ (=t )
J J
= 1 1 w’ +1| 1 1 ﬂ‘ +1} Rpm-H
4qm+1 Oz] ] 2q]m+1 @J J
11 ol 2 L1 oo™ +1
_Zlq;nHW i ‘yym ’ |J ’ 2q;”+1 % ‘J ’ RMm
1 1 am+1
oy [ = =),
J J

from here again the first and the third terms are of our interest.
Collecting the above results the equation 1) after multiplying it by éq;”“ in a short

form will look like (A.25). In F/"*" we include all the terms that are left after this concise
formulation.

]
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Lemma A.4. The fourth scalar product on the right-hand side of transforms into

m—+1 m
1 my1 Ti-1 T T m+1
2 yj 1> At q]

11 1¢! 1 a1 (2
= —ga (P =) + 35 —— (g = ')
J— 37
11, . 1q’”+1 .
+Z m }y - jjil 4 m+1 —Y; —51 i
Q-
1qm+1 m+1 ) (A.29)
m+1 m+1 m-+ m+1 m+
8 m—&il &ml J+ <O[ B ‘yj | +CY + ‘y] )
-
1 Ckm+1
-3 P g by )
1 m+1 )\ m+1
8qjm+1a] : ‘ ] +1{ Jm+1+Jm+1) +Z 54 m+1c:)jm1 ‘ ] +1’ +Gm+1
J— J-
where
. 1ot . 1ot .
GjH:—gx\ g RE - ” | yp i R
1o
1o i (g = 7115”“ yi)
1 1
s R (e =)
1 1 m m—+1 m o m+1 m—+1
e ) (P - o)
1 qm+1 1 . . . 1 qm+1 m+1 .
2qm+1 o (yj -sil’y] +1 —y -;1) -5 ;n_tl agnl | v, —H‘ RP +1
1 qm+1 mt1 (A.30)
m+1 RMm+1
4qm+1 ;n . | J ‘
1 qm+1 m+l . . .
4qm+1 ;ﬂ . ‘ ] +1| 1 - '*—H’yj i y] —51)
1qm+1 1 m m m
2qm+1 1RP +1 ( l’y] - y] —;1)
;-
2qm+1 ] (72 = 7 ) (T = )
Q-
m+1 m~+1
-3 i SR i % a REP
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1 1 1
m—+1 m+1 m+1 m m+1 m—+1 m—+1
+§ m (y] Y17 _Tj)<2a3 ’] | + 1M )
1 1 2 (1
m—+1 m+1 m m+1 m m+1 m+1
+Za (yJ Y- 1’])’Tj _le (2 Qi \y] | +RM )
1qm+1 1 m+1 m—+1 m+1 1 m+1 m+1 m—+1
T 2gman (0" =y i = 7t T 9% [yi'|” = RP
] 1
1qm+1 1 +1 mtl _m +1 m |2 1 m+1 m+1
4 m+1 (y;n T Yj2 5T )’Tm 7—j—1’ _5% |y] RPj—l
q j 1
)\ m+1 )\ m+1
+§Z R qu RPP!

with RPI"*" and RM]"*" given, by .

Proof. Replacing j with j — 1 in the derivation of Lemma and multiplying the result
by ;q]m“ at the end of the proof we obtain the claim of the lemma. O
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Appendix B

We derive here the estimate of the remainder term required for the proof in Lemma 4.12]

Lemma B.1 (Estimation of Remm+1) The remainder term Remm+1 =0,...,.M—1,
g =1,...,N can be estimated in the following way

[ Rem ™| <CR™ (1+ [l 1) le = e

(B.1)
+Ch 2 |y | HT’”+1

where 1(;) is given by .
Proof. To begin, we recall the definition (4.103) of Rem!"*!

~Th HL?(I( )7

m+1 __ m—+1 m—+1 m—+1 m—+1
Remj™ = D" — BT + F" + G

where D7 EL LG are given by (A.2), (A.17), (A.26) and (A.30)), respec-
tively. Let us analyze these terms. From the proofs of Lemma [A.I}Lemma [A.4] follows
that that the first two and the last two terms have a similar structure. The only difference
within a pair, that one observes, is a subinterval /;, on which the discrete expressions are
taken, where index j varies from j — 2 to j 4+ 2. Therefore, we may concentrate only on
one term from each group using the notation I; for the resulting estimate of Rem"”rl
Running a few steps forward both groups produce the same estimate. Hence, we Choose
D}”H from the first pair and repeat here for convenience its representation

m+1 1 1 m—+1 m—+1 m—+1 L1 (Oé;n—H) m+1 m+1 m+1
Dj T gl (y]+1 (L )+§ mil om ‘ Y | (RPJ-H + 1M, )
J 4j+1 j+1 7
1 1
e (5 = ) (Y = o)
J 13+
1 1 (am+1)
§qm+11a—\% P (et =yt e, — )
J+ J
1 1
e (M (g B) G o
J J
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. 1 L1 ( mtl L mtl mAl ) m+l _ 7_m+1|2
2 q™ m+1 J+1 Yi Tt Tj+1 '
J ]+1
_1 L1 ( m+1 m+1 7m ) m4+1 _ ‘ Fm+l 7_m+1|2
4 oM m+1 Yjirr —Yj Tj+1 J+1 Tj+1 ]
J ]+1
11 2 2
Z_— pgmtl m+1 m-1 m-+1
T1a mRS' (]y] "+ [y > /\ 5]

J

= Z Q;,
=1

where RijH, RM JT"+17 RS;”JFI, R’j”Jrl presented in 1) In order to simplify the esti-
mation of D;”H, we keep the above abbreviations. Moreover, it will be helpful to express
them in terms of RT“. To begin, we recall the estimate 1)

REANE

Thus, it remains to consider RS;"H. Using the definitions 1) |D of RS;”Jrl and
RM™*!, respectively, we can express RST""! as

m+1 _ _m+1 m—+1 m—+1 m—+1
RS} = o RMG (77 R

Next, in view of the definition (4.80) of /" and (4.16) we deduce

1 ‘
ZCOhj SQTSZLCQ}LJ, sz,...,M, ] :1,...,N,
from what the estimate follows
m—+1 m—+1
| RS < CRP
With the help of (4.84]) we can rewrite the difference of the tangents as

smtl m+1|2_ m+1 }
Tit1 — Tj = (aj Yj

what yields the splitting of the terms in the way Q¢ = Qp1 + P62, Q7 = Q71 + Q72
Let us next estimate DmH combining the terms with a similar structure

Q1] ,|Qs| <Ch~™ 1|3/h+1‘|] |RT |
Qul <R (B7] + |RE)
@al <Oy |y, I =7l
@l @l <R, 7 7
Qual <O~ ™, bt =l R,
|Q71’<Ch}yh+1’|l+1 ﬂJlrl—TﬂlF,
[@ral <CR7 s [t = | R

|Qs|, Q| <Ch™! |R}n+1’ .

+1’ +2Rsm+1

9
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For ease of presentation, we restrict ourselves to the terms of lower order only. If one
allows a crude estimate for Qg2 and ()72 estimating the difference of the tangents by a
constant one obtains then ();.For the same reason, we may ignore @4, Qg1 as well as Q7
and consider ()3 instead. Furthermore, we choose ()3 and neglect (g and Q9. Hence, we
have to deal with three terms @)1, )2, @)3. Using an inverse inequality we find

Qs < Ch7= [y | e It =i e
Thus, combining the estimates for @)1, Q2 and Q)3 we deduce

D7 <R (1 [y ) (1B + [RTS)

Iiva)”

1 m+1 (BQ)
+ O |y | 7 =72,
We choose from the second pair ijH and present here for clarity 1}
1 qm+1 m+1 1 qm+1 m+1
Fm+1 m+1 R m+1 _ = m—+1 RMm+1
4qm+1 O‘j | J } Jj+1 4 ]W—L&-ng O‘j ‘ J |
1 qurl m+1 m+1 m+1 _ m—+1 m—+1
+ quJrl aj ‘ ] | 1 j+1 7yj+1 o y] )
1 qm+1 1
m__R m+1 L ym+1 _ ym+1
9 q]ﬁl 043 ( Ti+1 Yj41 J )
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where the terms in curly brackets are counted as two independent terms. Hence,

|Q1| S C|RPJT—T—T1 )

Q2] |Qui],|Qu] < C |RMjm+1| )
Qs [Qr2],|Qa2| < C |RPJm+1} )
Qs < C|RM|
Qul1Qual < Ch [y, [t = 7]

Qal < Clym| 1.,

Q5] < (J|yh +1‘|I 1 ]714{1 -

Qsl, Q17| < Ch |y H‘u |Tm+1 m‘?

|Q9| < C|yh

Qul < Ly 1 —

J
m+1 m+1 m m—+1
|Qual < C'lyg, ‘u T T Tl ‘RMJ K

Qusl < Chlgp |, It = il

@uol < C Ly, It = il [RMH
(Qusl < Clyi| |7 = [[RP
(Quol < Chly™ |, 1t =7

[Qol < C lyii!] |7+t =7 | [RPIHL

9

Using the similar arguments as for D;-”+ we compare the groups to determine the terms
of the lower order. We observe that due to ()5 we can neglect the terms )3, Q13 and Q15
and deal with @5 only. Estimating next the difference of the tangents by a constant in
Q14 and ()16 one obtains the term )4. Moreover, we can ignore the terms (Jg, Q17 and
Q19 and treat (Q19. Analogously, instead of considering ()15 and Q29 one can examine (Qg.
Due to the definition of RP;”“, RMJ’-”Jrl and notation /(;), which will be used at the end,
we choose from the first four groups one representative, for instance (Jg. For the same
reason, we estimate Qg and 1o instead of Q)4 and )5, respectively. Summarizing, we end
up with the following terms Qg, Q9 and (19. In view of the above estimates, recalling

and using (2.12) we arrive at
Qo + 1Qal <C™ (Lt [l ],2) |71

|Q1o] <Ch™2 ||yh g I = HL?(IJ*H)'

We note that due to our remark at the beginning of the proof, E™! and GT“ can be
estimated in a similar way. Using now the notation I(;), results (B.2)), (B.3) and estimate
(4.99) we immediately obtain the claim of the lemma.

(B.3)

O
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