
Conversive Hidden non-Markovian Models

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von: Dipl.-Inform. Robert Buchholz

geb. am 17. April 1983 in Berlin

Gutachter:

Prof. Dr.-Ing. Graham Horton
Prof. Khalid Al-Begain, PhD
Dr.-Ing. habil. Juri Tolujew

Magdeburg, den 04. Mai 2012



ii



Abstract

Partially observable discrete stochastic systems are real-life systems whose
stochastic internal behavior is not observable, but certain aspects of which cause
the emission of externally observable signals. Examples for such systems include
the undiagnosed illness of a patient that emits observable symptoms, and the
unobserved mood of a car driver that affects his observable driving behavior. For
many real-life systems it is desirable to be able to reconstruct the unobserved
behavior based on the observations in order to gain insights into the unobserved
behavior.

Hidden Markov models are a well-researched class of partially observable
discrete stochastic models for which such a behavior reconstruction is possible.
For HMMs, efficient algorithms to solve the four main behavior reconstruction
tasks Evaluation, Decoding, Smoothing and Training exist. But a disadvantage
of HMMs is that the internal behavior they can model is limited to discrete
time and Markovian durations. Thus, HMMs are not applicable to many real-
life systems. Certain extensions to HMMs exist that lift the limitation of discrete
time, but those that additionally also lift the limitation of Markovian durations
loose the ability to model concurrent behavior.

In this work, Conversive Hidden non-Markovian models are therefore de-
veloped as a new class of conceptual models that can represent stochastic sys-
tems that are continuous in time and may contain concurrent behavior with
non-Markovian durations. For these CHnMMs, algorithms for the four basic
behavior reconstruction tasks Evaluation, Decoding, Smoothing and Training
are developed.

The developed algorithms compute exact results where comparable simula-
tion algorithms so far only provided approximations. And the developed algo-
rithms for all four tasks have been shown to be practically feasible for model
sizes that allow for practical applications.

Thus, CHnMMs for the first time enable the behavior reconstruction of par-
tially observable discrete stochastic systems in continuous time with concurrent
non-Markovian behavior. They therefore enable practitioners to gain insights
into the unobserved behavior of further systems and – depending on the appli-
cation – may consequently be used to save time and money, or gain insights into
so far unknown behavior.

iii



iv



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and Scientific Challenges . . . . . . . . . . . . . . . . 1
1.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Boundary Conditions and Differentiation . . . . . . . . . . . . . . 3
1.5 Classification of Research . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Related Work 7
2.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Existing Extensions to HMMs . . . . . . . . . . . . . . . . . . . . 13
2.3 Alternative Approaches for Sequential Data Analysis . . . . . . . 16
2.4 Alternative Pattern Recognition Approaches . . . . . . . . . . . . 18
2.5 Augmented Stochastic Petri Nets . . . . . . . . . . . . . . . . . . 19
2.6 The Proxel Method . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Defining Conversive Hidden non-Markovian Models 25
3.1 Identifying an Adequate Conceptual Model . . . . . . . . . . . . 25
3.2 Limitations of CHnMMs Compared to HnMMs . . . . . . . . . . 27
3.3 Formal Specification . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Conversion of ASPNs to CHnMMs . . . . . . . . . . . . . . . . . 30
3.5 Example Models Defined as CHnMMs . . . . . . . . . . . . . . . 31
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The Evaluation Task 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Existing Groundwork and Unresolved Issues . . . . . . . . . . . . 37
4.3 Computing Exact State Change Probabilities . . . . . . . . . . . 40
4.4 Result: The CHnMM Forward Algorithm . . . . . . . . . . . . . 45
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Further Applications and Extensions . . . . . . . . . . . . . . . . 54
4.7 Implementation Considerations . . . . . . . . . . . . . . . . . . . 56
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

v



5 The Decoding Task 59
5.1 The Basic CHnMM Decoding Algorithm . . . . . . . . . . . . . . 60
5.2 Reducing the Memory Consumption . . . . . . . . . . . . . . . . 64
5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 The Smoothing Task 75
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Developing a CHnMM Smoothing Algorithm . . . . . . . . . . . 75
6.3 Computing Backward Probabilities . . . . . . . . . . . . . . . . . 77
6.4 The CHnMM Smoothing Algorithm . . . . . . . . . . . . . . . . 78
6.5 Reducing the Memory Consumption . . . . . . . . . . . . . . . . 82
6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 The Training Task 89
7.1 Developing an EM Algorithm for CHnMM Training . . . . . . . 89
7.2 Optimal Model Parameters through Maximum Likelihood Esti-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.4 Differences between the EM and MLE CHnMM Training Algo-

rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusion 117
8.1 Assessment of Goal Completion . . . . . . . . . . . . . . . . . . . 117
8.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Applicability of Findings Beyond CHnMMs . . . . . . . . . . . . 120
8.4 Benefits and Applications of Findings . . . . . . . . . . . . . . . 122
8.5 Possible Extensions and Future Research . . . . . . . . . . . . . . 123

A Feasibility of HnMM Behavior Reconstruction 127

B Training Concurrent Exponential Activities with MLE 131

C Symbols used in this Work 133

vi



Chapter 1

Introduction

1.1 Background

Many real-world systems are partially observable: their internal behavior is
hidden from an outside observer, but the system emits observable signals that
give hints on the current internal behavior.

One example of such a partially observable system is the behavior of a car
driver. From a distance, his mood is not observable for an outsider, but the
driving dynamics such as the acceleration of the car at a traffic light give an
indication of what that mood could be.

For these systems it is often desirable to reconstruct the unobserved behavior
based on a model of the system and some observations. In the case of car
drivers, it could be worthwhile to reconstruct the mood of car drivers in different
situations in order to determine whether certain traffic conditions negatively
impact the mood of the driver and therefore increase the risk of accidents.

Using behavior reconstruction, the real system can be understood without
having to go through the time-consuming, expensive and sometimes even unfea-
sible process of setting up additional sensors to measure the otherwise unobserv-
able behavior. This allows the practitioner to understand the behavior of the
real system without intervention in its behavior. Benefits of this understanding
range from advancing understanding in scientific applications to saving money
in manufacturing and business applications.

So-called partially observable discrete stochastic (PODS) systems are a well-
researched class of partially observable systems [22, 48, 59, 62, 63, 67]. They can
be modelled with a finite number of possible internal states - for example a car
driver whose mood is either sad, neutral or angry instead of being represented
by a real number - and their unobservable system behavior is influenced by
randomness - for example the duration of shifting gears varies randomly. For
many classes of PODS systems, efficient algorithms for the reconstruction of the
likely unobserved behavior already exist.

1.2 Motivation and Scientific Challenges

However, behavior reconstruction is not yet possible for all PODS systems:
Existing algorithms follow all possible internal behaviors of the model, and
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2 Conversive Hidden non-Markovian Models

determine the probability for each of them. But in many settings, the number
of these internal behaviors increases exponentially with increasing length of
the sequence of observations, which can easily render any approach unfeasible.
Research therefore has so far been concentrated on developing algorithms for
those simple classes of PODS for which the behavior reconstruction can be done
efficiently.

This has lead to the current state of the art where behavior reconstruction
is possible efficiently for some classes of PODS systems, and not possible at
all for the remaining classes. In particular, behavior reconstruction is currently
possible when either the internal unobserved activities1 have random, arbitrarily
distributed (i.e. non-Markovian) durations, or when multiple internal activities
take place at the same time. However, no algorithms exist for systems which
contain both concurrent activities and arbitrarily distributed activity durations
at the same time. Developing algorithms for this class of PODS models is the
focus of this work.

This class of systems with concurrent activities with arbitrary duration dis-
tributions seems especially relevant for practitioners, because in many instances
models – and sometimes also observation protocols – of that type already exist,
but there are no algorithms to make use of that data. For example, production
facilities are often already modelled as PODS systems containing independent
concurrent activities with arbitrary duration distributions (several machines are
active at the same time, but duration of production steps are independent of
each other) [57, 58, 74, 75]. Other application areas can be envisioned as well:
Fastfood restaurants with multiple servers belong to this class of models, as
might a model of the interactions of animals of different species in a given area.

The goal of this work is therefore to enable practitioners to reconstruct
the behavior of systems represented as models with concurrent activities with
arbitrarily distributed durations.

The scientific challenge here lies in the computational complexity: the more
expressive a class of models is, the more different behaviors exist, and thus the
more expensive the behavior reconstruction becomes. Since the class of PODS
models with concurrent processes with arbitrarily distributed durations is the
most extensive class of PODS models tackled so far, it is uncertain whether
algorithms for its behavior reconstruction would be computationally feasible.

1.3 Goals

This work intends to enable practitioners to reconstruct the behavior of this
more extensive class of PODS system in the same way that is possible with
most basic PODS class of Hidden Markov Models (HMMs). For the behav-
ior reconstruction of HMMs, four basic tasks and the corresponding solution
algorithms exist [23, 62, 66]:

• Evaluation2: Determine the probability of a system to have created a
given protocol. This task is performed in order to determine which one

1Throughout this work, we will use the word “activity” as defined in [1]: A time period of
specified length.

2In the remainder of this work, the tasks Evaluation, Decoding, Smoothing and Training
will be capitalized as proper nouns in order to differentiate them from other uses of these
words.
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of several competing models for an observation is most likely the correct
one.

• Decoding: For a given model and a given sequence of observations, recon-
struct the most likely internal behavior sequence that would have gener-
ated the observation protocol at hand. This task directly reconstructs the
most likely internal behavior sequence of the system.

• Smoothing: Given a model and a sequence of observations, determine
probabilities of the model to have been in each possible internal state
at each point in time of a signal observation. For each time of a signal
observation, the smoothing task takes into account all observations before
and after that time. It thus reconstructs the probabilities of the system
to be in each individual internal system state, whereas the Decoding task
is is only concerned with reconstructing the most likely sequence of states.

• Training: Given an initial model and an observation sequence, the training
task is to modify the model in order to better explain the observations.
This is used to build a model that accurately explains the observations
from a rudimentary initial model.

The goal of this work is consequently to provide algorithms that solve these four
basic behavior reconstruction tasks on PODS models with concurrent activities
with arbitrary non-Markovian durations.

Success Criteria The reaching of this goal is subject to two success criteria:
The mandatory criterion is that the tasks which compute an exact solution

for HMMs (Evaluation, Decoding, Smoothing) should also not just provide ap-
proximations for our class of models, but compute exact solutions – given that
the model and the observation sequences are correct. This criterion ensures
that the reconstructed superior probability of a model, state or state sequence
is indeed due to it being the best explanation of the observation, and not simply
an approximation error. For the Training task, the predominantly used Baum-
Welch algorithm for HMM only iteratively finds a better model and also only
finds a locally optimal model, so that we too do not require an exact solution
for the Training of our models.

Second, the purpose of this work is to enable practitioners to reconstruct
the behavior of real-life systems without having to invest in expensive addi-
tional equipment. Thus, as a soft criterion we require that the algorithms to
be developed are as efficient as possible with respect to computation time and
memory consumption, in order to be executable on commodity computers.

1.4 Boundary Conditions and Differentiation

This section briefly lists the boundary conditions under which the algorithms
will be developed, and serves the purpose of distinguishing the goal of this work
from similar research areas that this work is not concerned with.

Every State Change Emits a Signal In all classes of PODS models for
which behavior reconstruction algorithms exist, it is assumed that every change
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of an internal state is related to an externally observable symbol to be emitted
[22, 48, 53, 62, 63, 67, 69, 81]. This limitation can be a limitation to the ex-
pressiveness of the model class, but greatly decreases the computational effort
required for the behavior reconstruction. Since the behavior reconstruction of
our class of models with concurrent activities and arbitrarily distributed activ-
ity is thought to already be more expensive than is the case for existing models,
we too require all internal state changes to emit an externally observable signal,
and therefore the times of all state changes to be detectable. Behavior recon-
struction of PODS systems without this limitation has been attempted before,
but existing approaches have been shown to not be practically feasible [84].

No Experiments on Real-Life Systems The purpose of this work is solely
to enable future practical applications, it is not concerned with proving the
practical applicability. To that end, the algorithms developed are shown to
be theoretically correct, and their behavior is tested on models that resemble
potential application scenarios, but they are not tested on actual real-world
data.

Consequently, the protocols of observations used in all experiments are not
obtained from measurements on real-life systems. Instead, the systems in ques-
tion are modeled in the discrete event simulation tool AnyLogic [8], and those
simulation models are then used to generate artificial sequences of observations.

Systems are Modelled Manually The Training and Evaluation tasks are
tasks that often occur in machine learning. One advantage that PODS behavior
reconstruction has over other machine learning approaches is that a practitioner
can use his experience, partial observations and measurements of the real sys-
tem to manually build a model of the system. He can thus avoid a full-fledged
machine learning approach to automatically build the model, which would re-
quire vast amounts of observation sequences and would still only result in an
approximate model of the system.

Since this work deals with a class of PODS models, we assume as well that
models will mostly be built manually by practitioners. To that end, the Training
algorithms developed will be usable to refine an existing model, but not to
set up the initial model structure. This assumption is also reflected in the
document structure of this work: we will develop the algorithms to reconstruct
the behavior of a model before we introduce the new model Training algorithms
- which in fact are based on the behavior reconstruction algorithms.

1.5 Classification of Research

While this work deals with models that are a generalization of Hidden Markov
Models, it touches other research areas of Computer Science as well:

• The new algorithms will be developed based on existing approaches from
the field of state-space based Simulation of discrete stochastic systems.

• The Evaluation task, for which an algorithm is to be developed, can be
used to determine which model best matches a given measurement, which
is a classical task of Pattern Recognition.
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• The Decoding and Smoothing tasks can be used to find relevant pieces of
information in a large body of data (i.e. multiple observation sequences),
which is a Data Mining task.

• The Training task parameterizes a model without human intervention
solely based on measurements, as is the purpose of Machine Learning
approaches.

Thus, all of algorithms to be developed have in common that they deal with the
generation of knowledge from the raw data of observation sequences.

1.6 Methodology

The remaining work is guided by the following methodology: First, related work
is presented in Chapter 2 in order to evaluate existing alternative approaches
and familiarize the reader with background information relevant to the remain-
ing document. Then, the class of partially observable discrete stochastic models
for which the behavior reconstruction algorithms are to be developed is formally
specified in Chapter 3. Based on this formal specification and borrowing ideas
from the Proxel simulation method and the existing HMM forward algorithm,
an algorithm to solve the Evaluation task for non-Markovian PODS models
with concurrent activities is developed in Chapter 4. Chapter 5 slightly modi-
fies that algorithm and adds backtracking in order to solve the Decoding task.
Then, based on the Evaluation algorithm a complementary backward computa-
tion algorithm is developed in Chapter 6, which together with the Evaluation
algorithm solves the Smoothing task. And finally, Training algorithms are de-
veloped in Chapter 7 based on the Smoothing algorithm. The document is
then concluded in Chapter 8, where the findings are summarized, the success
or failure is determined, and an outlook on benefits of this research and further
research opportunities is given.
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Chapter 2

Related Work

This chapter presents existing research results that are relevant to this thesis.
Its purpose is twofold: First, it introduces existing approaches that this work
is based on. And second, it aims to distinguish the approach developed in this
thesis from existing research results. This is done by giving an overview of
existing approaches that solve problems similar to the ones in this thesis, and
by reasoning why those are unable to solve the specific tasks that are to be
solved in this work.

To that end, the following topics are covered: As Hidden Markov Models and
their basic behavior reconstruction tasks form the basis of this research, they
are introduced in Section 2.1. This introduction includes the formal definition
of HMMs and their behavior reconstruction tasks, and explains how these tasks
are solved. Afterwards, existing approaches that may be suitable to solve these
same tasks on non-Markovian models with concurrent activities are investigated.
This includes derivatives of HMMs in Section 2.2, approaches for sequential data
analysis in Section 2.3 and approaches from the field of pattern recognition in
Section 2.4.

Following these alternative approaches, Section 2.5 introduces stochastic
Petri nets as the class of conceptual models that will be used in the remainder of
this work to visualize non-Markovian PODS models with concurrent activities.
Finally, in Section 2.6 the Proxel simulation method is introduced. It is an algo-
rithm that is able to simulate the behavior of those models whose behavior we
wish to reconstruct and therefore provides several concepts that will be relevant
for the behavior reconstruction tasks as well.

2.1 Hidden Markov Models

HMMs are a class of computational models to represent PODS systems in dis-
crete time with time-homogenous internal behavior. Since the class of computa-
tional models that this work is concerned with is an extension of HMMs, there
are two reasons to introduce HMMs:

First, a formal definition of the four basic HMM tasks needs to be introduced
in order for the tasks to be defined and finally be solved for our class of models
as well. And second, the HMM behavior reconstruction algorithms themselves
will form the basis for the behavior reconstruction of our more expressive class

7



8 Conversive Hidden non-Markovian Models

of PODS models.
Unless explicitly noted otherwise, all information in this section is taken

from Rabiner [62].

Semantics HMMs are partially observable models in discrete time and with
a discrete state space. Thus, an HMM is in one of a finite set of states at any
given point in time. With each time step, the model stochastically changes its
state based on a time-homogenous state transition probability - which includes
the possibility of returning to the same state. After the state change the model
emits an externally observable symbol. The particular symbol to be emitted is
determine stochastically based only on the time-homogenous symbol emission
probability of the state reached.

The specification of an HMM thus has to include a set of discrete states, a set
of symbols, a matrix of state transition probabilities and the set of state symbol
emission probabilities as well as a vector of initial state probabilities. When
a real system is specified as such an HMM, and a sequence of observations (a
so-called “trace”) is available, the likely unobserved behavior of the real system
can be reconstructed.

2.1.1 Formal Specification of HMMs

In this section, HMMs are formally specified. As far as possible, this definition
will later be reused to define the class of non-Markovian PODS models with
concurrent activities.

According to [62], an HMM has:

• a set of N discrete states {S1, . . . , SN}

• a set of M observable symbols {V1, . . . , VM}

In this context, a trace of observations O is a sequence of T individual symbol ob-
servations O = o1 . . . oT where each ot ∈ {V1, . . . , VM}. And qt ∈ {S1, . . . , SN}
is the system state after the tth symbol emission. Further, a path Q of length T
is a sequence of traversed internal states Q = q1 . . . qT . With these definitions,
HMMs are specified by

• an initial probability vector Π ∈ RN with elements πi = P (q0 = Si)

• a matrix of state transition probabilities A ∈ RN×N with elements aij =
P (qt+1 = Sj |qt = Si)

• a set of symbol emission probabilities B = {bi(Vk)}, where each bi(k) is a
function that maps each symbol Vk to the corresponding symbol emission
probability in state Si, i.e. bi(k) = P (ot = Vk|qt = Si)

Since the states Si and symbols Vk are merely names that have no effect on the
actual model behavior, an HMM λ is fully specified by λ = (A,B,Π) alone.

For HMMs specified in this way, four basic behavior reconstruction algo-
rithms exist [23, 62, 66]: Evaluation, Decoding, Smoothing and Training. These
will be explained in detail in the following sections.
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2.1.2 The Evaluation Task

The goal of the Evaluation task is to determine the probability that a model λ
has caused a given trace of observations O, formally to determine the probability
P (O|λ). This task is usually performed when multiple competing models for
a given trace exist [23], in order to determine the most likely model for that
observation.

A näıve approach in computing this probability would be to individually
compute the probabilities for all possible paths of internal states and to sum up
these probabilities. This approach, however, would be generally computation-
ally unfeasible: For each of the T time steps the internal state could be any of
the N discrete states, requiring O(NT ) time to compute the final Evaluation
probability.

Instead, the Evaluation task for HMM is generally solved with the inductive
Forward algorithm. For each time t it inductively computes the probabilities to
be in each state based in the state probabilities of the previous time step. More
precisely, it computes the Forward probabilities αt(i) to be in state Si at time
t and having emitted the first t symbols of the trace,

αt(i) = P (qt = Si ∩ o1o2 . . . ot).

These can be computed inductively with the initialization

α1(i) = πibi(o1)

and the induction over the number of time steps t = 1 . . . T − 1:

αt+1(i) =

N∑
j=1

(αt(j) aji bi(ot+1))

With these joint probabilities, P (O|λ) can then be computed using the law of
total probability as:

P (O|λ) =

N∑
i=1

P (qT = Si ∩ o1o2 . . . oT ) =

N∑
i=1

αT (i)

With this approach, one only needs to compute N Forward probabilities for
each of the T time steps. And each Forward probability depends only on the
N Forward probabilities of the previous time step, yielding a time complexity
of O(N2T ).

2.1.3 The Decoding Task

The Decoding task for a given model λ and a given trace O is to find the most
likely sequence of internal system states Q of the model to have created the
trace, formally to find1

arg max
Q=q1...qT

P (Q|O) = arg max
Q=q1...qT

P (Q ∩O)

P (O)
.

1Formally, this probability as well as all following ones would need to be conditioned on the
current model λ, here yielding P (Q|O, λ). For legibility we omit this explicit conditioning on
λ whenever it is clear from the context that the probability is to be computed for the current
model.



10 Conversive Hidden non-Markovian Models

Here, the denominator P (O) is identical for every internal state sequence, thus
does not impact the arg max and may be omitted, yielding:

arg max
Q=q1...qT

P (Q|O) = arg max
Q=q1...qT

P (Q ∩O)

The Decoding task is generally solved with the Viterbi algorithm [79], which
works very similar to the Forward algorithm. Instead of inductively computing
the sum of path probabilities αi(t) that reached state Si after emitting the par-
tial trace o1 . . . ot, the Viterbi algorithm inductively computes the probabilities
δi(t) of the one most likely path that reached Si after emitting o1 . . . ot:

δt(i) = max
Q=q1...qt−1

P (Q ∩ qt = Si ∩ o1 . . . ot)

and for each δi(t) also stores the predecessor state ψi(t) on its path. This
way, the final state qT of the most likely sequence of internal states is simply
that Si with the highest δi(T ), and the stored predecessors ψi(t) allow for the
backtracking of the remaining path. Formally, the Viterbi algorithm is given by
its induction initialization

δ1(i) = πi bi(o1),

its induction step over all time steps t = 1 . . . T − 1:

δt+1(j) = max
i ∈{1...N}

{δt(i) aij bj(ot+1)}

ψt+1(j) = arg max
i ∈{1...N}

{δt(i) aij bj(ot+1)}

and the final backtracking step

q?T = arg max
i
{δT (i)}

q?t = ψt+1(qt+1)

that determines the most likely path of internal states Q? = q?0 . . . q
?
T .

2.1.4 The Smoothing Task

Whereas the Decoding task was concerned with the single most likely path of
internal system states to explain a given observation sequence, the Smoothing
task is concerned with computing the probabilities of the system to be in a
particular state at a particular time given a trace of observations:

γt(i) = P (qt = Si|o1...ot...oT )

It differs from the Forward probabilities computed for the Evaluation task in
that the Forward probabilities take into account only past observations, whereas
the Smoothing task is to compute the state probabilities given all past and future
observations given by the trace.

The Smoothing probabilities γt(i) can be computed from the Forward prob-
abilities αt(i) and the so-called Backward probabilities

βt(i) = P (ot+1...oT |qt = Si)
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as follows:

γi(t) = P (qt = Si|o1 . . . ot . . . oT ) =

=
P (qt = Si ∩ o1 . . . ot . . . oT )

P (o1 . . . ot . . . oT )

=
P (qt = Si ∩ o1 . . . ot . . . oT )∑
j P (qt = Sj ∩ o1 . . . ot . . . oT )

=
P (qt = Si ∩ o1 . . . ot) P (ot+1 . . . oT |qt = Si)∑
j P (qt = Sj ∩ o1 . . . ot) P (ot+1 . . . oT |qt = Sj)

=
αt(i) βt(i)∑
j αt(j) βt(j)

So to perform the Smoothing task, one only needs to compute the Backward
probabilities βi(t) that the system can still emit the remaining trace ot+1 . . . oT
given that it is in state Si at time t. These can be computed similarly to
the Forward probabilities, with the difference that their induction is performed
backwards with the induction initialization

βT (i) = 1

and the induction steps for t = (T − 1) . . . 1 are

βt(i) =

N∑
j=1

(βt+1(j) aij bj(ot+1)) .

With these and the Forward probabilities αi(t) computed for the Evaluation
task, the Smoothing probabilities γi(t) are then simply the normalized product
of the corresponding Forward and Backward probabilities:

γi(t) = P (qt = Si|O) =
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

2.1.5 The Training Task

The final basic HMM task is Training: given an initial model and a trace of
observations, modify the model to better explain the observations (according to
the Evaluation probability). Formally, this means that given a model λ and an
observation sequence O, find a better model λ′ with

P (O|λ′) ≥ P (O|λ).

The Training task is usually solved with the Baum-Welch algorithm [2], which
is an implementation of the Expectation-Maximization paradigm [19]. Its basic
approach is to use the Smoothing probabilities to compute the probabilities of
certain relevant paths of internal states given the observation (the so-called path-
counting), and to derive new model parameters from these path probabilities.
Since an HMM is defined by λ = (A,B,Π), a Training algorithm has to compute
new values for each of the three elements Π, B and A.

The first subtask is thus to compute a new vector of initial state probabilities
Π. Its probabilities are formally the probabilities for the system to be in each
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state at time t = 0 given the observed trace O. Thus, the new initial state
probabilities are simply the Smoothing probabilities at time t = 0, so that the
new vector Π consists of elements

πi = γi(0).

The second subtask is to determine adjusted symbol emission probabilities,
i.e. the probabilities that the system emits a particular symbol given that it
is in a particular state. One interpretation of this probability with respect to
a trace of observation is that it is the ratio of the expected number of times
that the system was in a particular state and emitted a particular symbol to
the expected number of times that the system was in that state at all. Since
exactly one symbol is emitted in each time step, the values for both given a
trace can be computed from the Smoothing probabilities as follows:

bi(k) =

∑
t∈{1..T |ot=Vk}

γt(i)∑
t∈{1..T}

γt(i)

The final subtask is to determine new state change probabilities. These
probabilities aij can each be computed as the ratio of the expected number of
times that the model performed the state change from Si to Sj , to the the ex-
pected number of times that the model could have performed that state change,
i.e. the expected number of times that is was in state Si. To determine the
numerator, first the probabilities for each individual state change at each time
step given the whole trace are computed as:

ξt(i, j) = P (qt = Si ∩ qt+1 = Sj |O) =
αt(i) aij bj(ot+1) βt+1(j)

N∑
k=1

N∑
l=1

αt(k) akl bl(ot+1) βt+1(l)

With these, the ratio of expected values for aij is

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

.

With these three subtasks, the Baum-Welch algorithm has been proven to
determine a new model that is more or at least equally likely to explain the
observation as the original model. In practical applications, the Baum-Welch
algorithm is applied iteratively to obtain better and better models until its
results converge to a locally most likely model to explain observation sequence
O.

Summary HMMs are well-defined, and efficient solution algorithms exist for
all four basic tasks. However, HMMs are not directly applicable to problems
sought to be solved in this work, because they cannot operate on continuous
time and cannot model non-Markovian state changes.

Therefore, in the next section existing extensions to HMMs will be evaluated
with respect to their ability to reconstruct the behavior of non-Markovian PODS
models with concurrent activities.
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2.2 Existing Extensions to HMMs

To allow for efficient behavior reconstruction algorithms, HMMs have a number
of limitations, which render them inapplicable to the behavior reconstruction
of non-Markovian PODS models with concurrent activities. But extensions to
HMMs that lift these limitations may exist. In particular, for our application
we require the following limitations of HMMs to be lifted:

• HMMs operate in discrete time and are restricted to emit exactly one
symbol in each discrete time step. To reflect the behavior of real systems
we require that symbols can be emitted at arbitrary points in time.

• Since HMM transitions are given by constant probabilities, their state
sojourn times necessarily follow a geometric distribution - the discrete
time counterpart of the Markovian exponential distribution. However,
many real-life processes are not Markovian [1] and we therefore require
that activity durations may be arbitrarily distributed.

• In addition, we want to model independent concurrent activities, which
means that some information about the elapsed activity durations must be
retained over a state change. HMMs circumvent this requirement, because
their implicit memoryless geometric distribution is invariant to the elapsed
time. But any non-Markovian extension of HMMs would need to explicitly
take care of retaining this memory.

In this section, we survey existing extensions to HMMs with respect to whether
they lift these three limitations of HMMs.

2.2.1 Explicit-Duration HMMs

One early approach to add non-Markovian state sojourn times to HMMs were
Explicit-Duration HMMs by Ferguson [22] in 1980. In HMMs, the geometrically
distributed state sojourn times are implictly given by the constant state transi-
tion probabilities. To allow for arbitrary sojourn time distributions, Ferguson’s
model explicitly specifies probability mass functions for each state to describe
the distribution of state sojourn times. In this model, the constant state change
probabilities describe only the probability that the system changes its state to
a given successor state after the explicitly modeled sojourn time has elapsed.

With this simple approach, Ferguson adds a basic notion of non-Markovian
activity durations to HMMs. This extension has been shown to be sufficient
to model systems such as rainfall seasonality [72] and failures in telecommu-
nication systems [71]. However, it is still limited to discrete time and cannot
model concurrent processes, since only a single probility mass function describes
the sojourn time of a state. Additionally, it adds the complication that each
duration probability mass function increases the number of free parameters of
the model by the distributions maximum duration and consequently makes the
Training of such a model far more difficult.

2.2.2 HMMs with Discrete Phase-Type Durations

Instead of modelling the discrete state durations by an explicit probability mass
function that complicates the Training task, several researchers attempted to
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instead model durations without changing the definition of the state change
behavior of HMMs. They modelled sojourn times of states through sequences
of discrete HMM states that form discrete phase-type (DPH) distributions [59]
whose times-to-absorption approximate the desired non-Markovian duration dis-
tributions.

These models have been variously called Expanded State HMMs [67], In-
homogenous HMMs [63], and “HSMMs with durations from the exponential
family” [53]. These classes of models only differ in their approach to the Train-
ing task: they use different DPH distribution topologies (cf. [4] for a survey of
those topologies), and some first train parametric continuous duration distribu-
tions and later convert those to DPH distributions while others directly train
the DPH distributions.

Consequently, all approaches share the same limitations. While they all
allow for non-Markovian duration distributions and they mitigate the Training
problem of Explicit-Duration HMMs, they still operate in discrete time and thus
cannot model time-continuous behavior.

2.2.3 HMMs with Continuous Time

Other researchers developed HMM extensions can operate on continuous time,
where observations consist not only of the observed symbol, but also the exact
time of the observation.

Levinson’s Continuously Variable Duration HMMs (CVDHMMs) are a con-
tinuous time version of the Explicit-Duration HMMs, where the state sojourn
durations are given by continuous gamma distributions instead of discrete proba-
bility mass functions [47, 48]. Salfner’s Generalized Hidden Semi-Markov Mod-
els (GHSMMs) follow the same approach, but allow for the state durations
to be arbitrary continuous probability distributions [69, 70]. And Wei et al.
instead modify the original HMMs structure by replacing the constant state
change probabilities with parameterized exponential distributions and thus do
not need to explicitly model state durations [81]. They consequently call their
class Continuous Time HMMs (CT-HMMs).

While all three approaches fulfill our first criterion of allowing state changes
to occur at arbitrary points in time, they fail in either the second or the third
criterion: CVDHMMs and GHSMMs both model state durations by a single
duration probability distribution and therefore cannot model multiple concur-
rent independent activites. And CVDHMMs as well as CT-HMMs do not allow
activity durations to follow arbitrary non-Markovian distributions.

2.2.4 Hidden non-Markovian Models

Hidden non-Markovian Models (HnMMs) by Krull [36] can be seen as an exten-
sion of CT-HMMs in that they also specify the dynamic behavior of the system
by continuous state change probability distributions and do not explicitly spec-
ify a state sojourn duration distribution. However, in HnMMs, those state
changes are not limited to the exponential distribution, but can be arbitrarily
distributed. And the semantics of HnMMs are that state changes are caused by
the completion of activities, which may have started before the system entered
the current state. Thus, HnMMs allow for the modelling of truly non-Markovian
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concurrent activities, where the completion of one activity causes a state change
but need not impact the time to completion of the other activities.

Beyond that, HnMMs differ from all previously shown HMM derivates in
two additional fundamental ways: First, symbol emissions are caused by the
completion of activities, and thus the symbol emission probabilities are specified
for the activities and not for the states reached by the completion of these
activities. And second, HnMMs do not require all activities to emit observable
symbols, they are supposed to reconstruct the behavior of the hidden system
even if the completion of some activities in the real system went unnoticed.

So, ostensibly HnMMs fullfil all requirements that we set forth for a com-
putational model that can reconstruct the behavior of non-Markovian PODS
models with concurrent activities. But a deeper analysis reveals that general
HnMMs are not practically applicable: First, no complete set of behavior re-
construction algorithms exist; merely partial algorithms for the Evaluation and
Decoding tasks exist [36, 84]. And even for these, the same researchers have
shown that their algorithms seem to have an exponential time complexity in
the number of observations and thus are practically unfeasible for all but the
shortest traces of observations. It seems that the general class of HnMMs is too
extensive to allow for efficient behavior reconstruction algorithms.

Subclasses of HnMMs Beyond the general class of HnMMs, the authors
also proposed several subclasses of HnMMs [39]. These are categorized based
on three binary attributes:

• Certainty of symbol emissions: determines whether observable symbols
are emitted by either all (Eall) or just by some (Esome) state changes.

• Number of direct connections between states: for a single discrete state,
there is either at most a single (SCone), or there can be multiple (SCnT )
ways of reaching another discrete state directly (i.e. by a single discrete
state change).

• Activity continuation: activities in the model are either terminated
(Treset) or may continue (Tkeep) after a discrete state change.

Different classes of HnMMs are conceivable through different combinations of
these attributes. In [36, 84], the infeasibility of the HnMM algorithms has
only been demonstrated for the broadest possible class {Esome, SCnT , Tkeep} of
HnMMs. It is possible that a more restricted class of HnMMs is limited enough
to allow for practically feasible behavior reconstruction algorithms and at the
same time is extensive enough to model systems with concurrent activities with
arbitrary duration distributions as required for this work. However, as of yet
no feasible algorithms exist for any of these classes.

2.2.5 Summary HMM Extensions

Table 2.1 summarizes the findings on the suitability of existing HMM derivates
to the behavior reconstruction task for our class of models. The properties of
the computational models that are sufficient for our modelling class are marked
bold.
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Conceptual
Model

Definition of Activity Du-
rations

Time Between
Observations

Concurrent
Activities

HMM constant probabilities discrete yes
HMM with DPH DPH distributions discrete no
CVDHMM gamma distribution arbitrary no
CT-HMM markovian distribution arbitrary yes
GHSMM arbitrary distributions arbitrary no
HnMM arbitrary distributions arbitrary yes

Table 2.1: Overview over existing approaches of extending HMMs.

As the table shows, all conceptual models but HnMMs lack abilities required
to model concurrent non-Markovian PODS systems.

And the consequences of those deficiencies for the behavior reconstruction
are severe: Limiting the type of probability distributions as well as only approx-
imating the desired probability distributions with DPH distributions causes a
major discrepancy between the model and the actual system and thus causes
an inacceptable error in the behavior reconstruction. Similarly, models that can
only handle discrete times of observations require a discretization of observa-
tions times, a process that reduces information available to the model and thus
its accuracy. And finally, those models that cannot model concurrent activities
can simply not represent systems that contain those, or would have to view them
as not being independent. This again causes a major discrepancy between real
system and model and results in unusably inaccurate behavior reconstruction
results.

Hidden non-Markovian Models have none of these deficiencies, but their
behavior reconstruction has been shown to not be practically feasible due to
their computational complexity.

So, there is currently no computational model derived from HMMs that is
able to practically reconstruct the behavior of non-Markovian PODS systems
with concurrent activities. It might however be possible to select a sufficiently
expressive subclass of HnMMs and to develop efficient algorithms for that class.
This approach is further investigated in Chapter 3.

2.3 Alternative Approaches for Sequential Data
Analysis

Other potentially viable techniques for the behavior reconstruction of non-
Markovian PODS systems with concurrent activities may be found in the re-
search field of sequential data analysis [20]. Those algorithms also process data
sequences to find the underlying cause of the sequence. This is similar to the
tasks for PODS systems, which emit temporal data sequences (sequences of
observations) and the causes of the observations are to be reconstructed.

Maximum Entropy Markov Models (MEMMs) MEMMs [51] model sys-
tems with a similar behavior as HMMs: the models contain a discrete state space
and is discrete in time. In each time step the model changes its state once and
emits a single externally observable symbol.
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But MEMMs were explicitly developed for systems in which an observed is
no just an symbol, but is comprised of – potentially overlapping – features. All
state transition probabilities follow the same maximum entropy probability dis-
tribution and the actual transition probability from that distribution is selected
based only on the weighted sum (where the weights depend on the next state)
of the features present in the current observation. In contrast, we require the
probabilities of state changes to vary only based on the duration probability
distributions for the individual activities.

So, MEMMs in their current form cannot model time-continuous behavior.
And even if they could be extended to do so, all state change probabilities in
an MEMMs still need to follow the same probability distribution in order for
the MEMM training algorithms to work. This violates our requirements that
activity durations may follow arbitrary continuous probability distributions.

Conditional Random Fields Conditional Random Fields [42, 80] are a gen-
eralization of MEMMs. While in MEMMs the next internal state of a model
depends only on the current state and the next observation, there can be undi-
rected dependencies between an internal state and its predecessor and successor
in the special case of a linear chain CRF, and dependencies between an internal
state and potentially all prior and later internal states in a general case CRF.

But with respect to our application CRFs share the limitations of MEMMs:
they have no notion of continuous time and the dependencies between the inter-
nal states necessarily follow an exponential model, while we require continuous,
arbitrarily distributed duration of activities to be modelled.

Bayesian Belief Networks Bayesian Belief Networks are a general way of
graphically modelling conditional dependencies between random variables as a
directed acyclic graph [28]. Using Bayes’ theorem, joint probabilities of any sub-
set of the network’s random variables can be computed from the graph structure
and the annotated conditional probabilities.

Hidden Markov models have been shown to be representable as a special case
of BBNs. Here, each discrete internal state is only dependent on the previous
internal state, and each observation is only dependent on the current inter-
nal state. From this graph structure, the usual HMM behavior reconstruction
algorithms can be derived directly from the corresponding BBN structure [28].

But for non-Markovian models with concurrent processes whose behavior we
which to reconstruct, the actual conditional dependencies are unclear. The next
discrete state that the model will be in depends on the current discrete state, the
next observation and the duration that each activity has been going on so far.
And these possible activity durations in turn depend on how long the model has
been in discrete states in which each activity was active, and thus potentially on
all previous discrete states. Thus, to determine the probabilities of the model to
reach each possible next discrete state using a BBN, one would have to evaluate
all possible sequences of previous discrete states. The number of those sequences
increases exponentially with each discrete state change, rendering the approach
unfeasible for all but very short observation sequences.

Conclusion Maximum Entropy Markov Models, Conditional Random Fields
and Bayesian Belief Networks are well suited to reconstruct the behavior of mod-
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els based on non-temporal sequential observations. But none is easily extended
to continuous time and non-Markovian activity durations.

2.4 Alternative Pattern Recognition Ap-
proaches

Pattern recognition approaches solve similar tasks to our Training and Eval-
uation tasks: real systems emit tuples of observations (the so-called “feature
vector”) and a set of these feature vectors is used to train a model of the be-
havior of the real system or to build a model that can discriminate between
alternate models. For an arbitrary new feature vector the model (or models)
can then be used to decide which real system most likely generated it.

But pattern recognition approaches make certain assumptions that are vio-
lated by our class of models.

Naive Bayes Naive Bayes classifiers use Bayes’ theorem and the assumption
that individual observations are statistically independent in order to compute
the probability of each model to have created the feature vector [7]. But in our
setting the completion of an activity determines which activities are performed
and thus can be completed next, so that subsequent activity completions are
correlated. And since the observations that comprise the feature vector are
caused by the completion of activities, those are correlated as well. Thus, Naive
Bayes classifiers are not applicable to our class of models.

K-Means, Decision Trees and SVMs K-Means clustering, decision trees,
and support vector machines [86] are all classification approaches that attempt
to subdivide the feature space (the space of all feature vectors of a given length)
into regions where all feature vectors inside a region are attributed to a single
cause, i.e. to same most likely model. The approaches only differ in the the
way of subdividing the feature space: K-Means clustering uses Voronoi cells
around sample points, decision trees use axis-aligned planes and support vector
machines use arbitrary planes or arbitrary “warped” planes when using the
optional “kernel trick”.

In theory, those approaches could be trained with labeled example observa-
tion sequences to determine the location and label of the regions, i.e. the regions
of the most likely generating real system. And the trained system could then be
used to determine the most likely real system to have created the observation
sequence, akin to the HMM Evaluation task. Yet, the recognition accuracy of
decision trees on non-Markovian PODS systems even without concurrent ac-
tivities has already been shown to be close to random guessing [9]. And this
accuracy is unlikely to improve substantially for k-means clustering and SVMs,
because the randomness inherent in non-Markovian PODS systems makes the
structure of the true region boundaries highly complex and irregular, and nei-
ther K-Means clustering nor support vector machines approximate those very
well.

Multilayer Perceptrons Multilayer Perceptrons (MLP) are artificial neural
networks with a feedforward structure that – when fed with a n-dimensional
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input vector (e.g. a sequence of n observations) – output an m-dimensional
output vector (e.g. the probability that the input sequences was caused by
each one of the m possible explainations) [73]. They have been shown to be
able to approximate all continuous functions [64] and may thus also be able to
reconstruct the behavior of non-Markovian PODS systems. But they, too, have
been shown to only yield recognition accuracies close to random guesses on the
behavior reconstruction of non-Markovian PODS systems [9]. This is likely to
be due to the effect that even slight changes in the sequence of observations
(e.g. the variation of a single observation time) can cause potentially dramatic
changes in the probability that a given model could have created the trace.
To train an MLP that accurately reflects such a system would likely require
a sizable MLP and an unfeasibly extensive set of Training data which would
additionally result in an unfeasible computation time needed for Training.

Conclusion So, well known pattern recognition algorithms are not viable ap-
proaches to the behavior reconstruction of non-Markovian PODS systems: Naive
Bayes is not applicable since it requires the observations to be conditionally in-
dependent, and all other evaluated approaches have shown very poor accuracy
in the behavior reconstruction of PODS systems (violating the success criterion
of exactness formulated in Section 1.3) and are additionally limited to input
of fixed size, i.e. the length of the observation traces has to be fixed during
training. This means that the additional information contained in longer obser-
vation sequences is not available to those algorithms, and shorter observation
sequences cannot be dealt with at all.

Furthermore it has been shown in previous sections that approaches for se-
quential data analysis are also unsuitable for the behavior reconstruction of
non-Markovian PODS systems with concurrent activities. And existing exten-
sions to HMMs can reconstruct the behavior of either non-Markovian PODS
systems or PODS systems with concurrent activities, but cannot reconstruct
the behavior of systems with both properties. Thus, no approach currently
exists that can accurately reconstruct the behavior on non-Markovian PODS
systems with concurrent activities. The most promosing course of actions to
fill this gap appears to be to further extend HMMs and to develop dedicated
behavior reconstruction algorithms for that extended model class.

2.5 Augmented Stochastic Petri Nets

The task of this thesis is to formally specify a computational model for the class
of non-Markovian PODS systems with concurrent activities, and to develop ef-
ficient algorithms to reconstruct the behavior of those models. While a formal
definition is necessary for the algorithms themselves, the models are better pre-
sented to reader in terms of a easily comprehensible conceptual model. For this
work, we augment non-Markovian stochastic Petri nets as used in [36] as our
class of conceptual models and introduce them in this section.

Stochastic Petri nets [55] are a class of conceptual models that can visualize
various different kinds of discrete systems [5, 50]. The stochastic Petri net (SPN)
as used in [36] has the following elements:

• Places drawn as hollow circles model physical locations or logical states.
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• Tokens drawn as small filled circles located in places model entities in
locations, or the system to be in a particular logical state. The distribu-
tions of tokens in places determines the discrete state of the SPN called
its “marking”.

• Timed transitions, drawn as narrow hollow rectangles model activities
that “fire” a random time interval after they have been activated. This
firing changes the marking of the SPN.

• Immediate transitions, drawn as narrow filled rectangles model an instan-
taneous change of the marking caused by a condition becoming true.

• Input arcs, arrows connecting places to transitions, determine which places
need to be populated by tokens in order for the transition to become
activated - and at the same time in which places tokens are destroyed
when the transition fires.

• Output arcs, arrows connecting transitions to places, determine in which
places tokens are created when the transition fires.

• Inhibitor arcs, drawn as lines connecting a place to a transition with a
circular end at the transition disable that transition if the place contains
enough tokens.

• Multiplicities can be applied to all arcs and determine the number of
tokens relevant to the arc.

Semantics A transition in a Petri net is enabled when in all places connected
to it by input arcs enough tokens according to the arc’s multiplicity are present,
and when all places connected to it by inhibitor arcs contain fewer tokens than
the inhibitor arc’s multiplicity. Enabled immediate transitions fire right away,
while enabled timed transitions fire a random time interval (given by a contin-
uous probability distribution) after being enabled. The firing of a transition
destroys tokens in all places connected to it by input arcs according to the arcs’
multiplicities, and creates new tokens in those places connected to it by output
arcs again according to the arcs’ multiplicities. The behavior of timed transi-
tions when they are deactivated before they can fire depends on their age policy.
Those with the default policy RACE ENABLE forget the duration the transi-
tion has been active. Those marked to have the RACE AGE policy memorize
the elapsed time and continue from there once they are activated again.

Additional Restrictions and Augmentations SPNs as defined above can
model arbitrary discrete stochastic systems. In this work, we slightly deviate
from this definition in order to ensure that every system modelled as an SPN
can be converted to a model that belongs to our new class of computational
models, as will be defined in Chapter 3. To that end we require that the firing
of any two concurrently active timed transitions must not result in the same
marking. And only one immediate transition may be active at any given time.

The definition of SPNs so far does not reflect the stochastic symbol emissions
that would enable the behavior reconstruction of a system modelled in such a
way. We therefore augment SPNs to reflect these symbol emissions: for each
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Figure 2.1: The Car Rental Agency model, shown schematically.

Premium Service
~WB(16;2)

Ordinary Service
~WB(12;2)

Employee 
Idle

Prem. Cust. Waiting

Ord. Cust. Waiting

Premium Arrival
~Exp(1/45)

Ordinary Arrival
~ Exp(2/45)

Emp. Serves Premium

Emp. Serves Ordinary 

Door

Door Door

1.0 1.0

1.0 1.0

50

50

Door

Figure 2.2: The Car Rental Agency model as an augmented SPN.

timed transition, each possible symbol emission is reflected by dashed arrows
starting from the transition and is annotated with the symbol name and the
probability that the symbol is emitted. For reasons that will become apparent in
Chapter 3, we require the symbol emission probabilities for each timed transition
to sum up to one. Immediate transitions may not emit symbols, since they
always fire at the same time as timed transitions and the symbol to be emitted
for that time is already determined by the timed transition.

We call this variant of SPNs an “augmented stochastic Petri net” (ASPN).
It will be used throughout the remaining work to represent models of PODS
systems.

Example Model: The Car Rental Agency One example model that will
be used throughout this work is shown schematically in Figure 2.1 and as an
ASPN in Figure 2.2. It models a car rental agency with a single employee.
This particular agency serves ordinary as well as premium customers. All of
these enter and leave through the same automatic sliding door. Thus, the door
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operation protocol reflects the arrival and service completion of customers.
Inside the car rental agency, two separate lines are formed for ordinary and

premium customers. Each of the two lines can hold at most 50 customers. Any
arriving excess customer will be turned away.

The employee serves any premium customer before serving an ordinary cus-
tomer, but will not interrupt the service of a customer once it has started.
When the service of a customer has finished, that customer leaves right away.
The inter-arrival times of customers as well as the service durations are all
random, following known continuous probability distributions.

In the ASPN, the top left and bottom left places represent waiting customers.
The place located between these indicates whether the employee is currently
idle and thus ready to serve the next customer. Whenever the employee is
idle and at least one customer is waiting, the next customer will be served.
Here, the inhibitor arc ensures that premium customers have precedence. The
rightmost places determine whether the employee currently serves an ordinary
or a premium customer. When the service finishes the employee returns to
the “ready” state. The firing of all timed transitions (arrival of a customer,
service completion) causes the door of the car rental agency to open and thus
the emission of the externally observable symbol “Door”.

2.6 The Proxel Method

The Proxel simulation method [29, 43, 44] is an approach to simulate models of
non-Markovian discrete stochastic systems with concurrent activities. It cannot
reconstruct the behavior of those systems – as we would like to – , but its inner
workings may provide insights into how behavior reconstruction algorithms can
be developed for this class of models.

The Proxel method is a state-space based simulation algorithm that uses
supplementary variables [16, 27] to handle non-Markovian activities. Its basic
approach is to observe the model at equidistant points in time and for those
times to determine the probabilities of the model to be in each possible state.
Those probabilities are computed inductively by using the probabilities of every
possible state from the previous point in time and computing the probabilities
for every possible completion of a single activity during the time step in order
to determine individual state probabilities for each state at the end of the time
step.

The basic computational element of the Proxel simulation is a so-called
Proxel, a tuple P = (q, ~τ , p). It consists of a discrete marking2 q representing
a discrete state that the model is in, the age vector ~τ containing the currently
elapsed durations for all non-Markovian active or race-enabled activities, and
the probability p of the model to be the state (q, ~τ) at the given point in time.

Algorithm A modelling expert has to supply a discrete stochastic model of
the system to be simulated, the desired discrete time step size with which the
simulation is to be carried out, and the set of Proxels representing the possible
states the system may be in at time t = 0.

2In [29] the discrete marking has the symbol m. We use q here to conform with the notation
introduced for HMMs so that later in this work elements of HMMs and Proxel simulation can
easily be combined.
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The simulation is then carried out inductively by iterating over all Proxels
of one point in time and determining the possible successor Proxels for the next
point in time by assuming that at most one activity finishes in each time step.
The probability that no activity has been completed is based on the hazard rate
functions [77] µ(t) of the probability distributions of all n enabled activities. It
is given by the ordinary differential equation (ODE)

dΠsojourn

dt
= −Πsojourn

n∑
i=1

µi(t+ τi) (2.1)

where the inital value Πsojourn(0) is the probability of the Proxel currently
processed.

For all other Proxels representing the cases that a single activity has been
completed, the successor’s discrete state can be found in the model specification
and its age vector is a modified version of the predecessor Proxel’s age vector
reflecting the passing of a time step and whether each activity has finished, is
still going on, has been interrupted or has been cancelled during that time step.
Its probability is derived using Πsojourn from Equation 2.1 as

dΠcompletei

dt
= Πsojourn µi(t+ τi).

Using these two formulas, the successor Proxels for all Proxels of a time
step are computed, and the process is repeated for every time step until the
desired simulation end time has been reached. In practical implementations the
ODEs are solved using Euler’s approximation method. And whenever the set of
Proxels for a given point in time contains multiple Proxels with identical discrete
state and age vector, they are merged into a single Proxel by summing up their
probabilities. This Proxel merging limits the growth of the set of Proxels for
each subsequent time step and makes the method computationally feasible.

While generally being more accurate than the Monte Carlo Simulation of a
model, the Proxel method nevertheless computes only an approximation of the
exact simulation results for two reasons: The method considers the completion
of at most one activity per time step, even though a discrete stochastic model
allows for multiple activities to be completed in any given time interval. And the
Euler integration of the ODEs is only an approximation of the actual successor
probabilities.

Conclusion The Proxel method computes an approximate simulation result
for discrete stochastic systems. It is not directly applicable to the behavior
reconstruction of non-Markovian PODS systems, but two of its concepts may
be used to develop those behavior reconstruction algorithms: the concept of
using Proxels containing age vectors to store the probabilities of the system
to be in a given state at a given time, and the ODEs used to compute the
probabilities of the model’s stochastic behavior.

2.7 Summary

This chapter introduced Hidden Markov Models and the basic tasks Evaluation,
Decoding, Smoothing and Training which can be solved on HMMs, and are
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to be solved on our class of continuous time non-Markovian models. It was
argued why existing machine learning approaches cannot solve these tasks on
our class of systems. Furthermore, augmented stochastic Petri nets (ASPNs)
were introduced as a conceptual model for our class of systems and the Proxel
method was shown to be able to simulate possible behavior of the class of models
for which we seek to reconstruct unobserved behavior; the Proxel method might
therefore be a value tool in developing these behavior reconstruction algorithms.

The next chapter formally specifies the class of models of discrete stochastic
models with concurrent activities of non-Markovian durations, and the following
chapters then develop algorithms to solve the basic HMM tasks on that class of
models.



Chapter 3

Defining Conversive Hidden
non-Markovian Models

In this chapter the class of computational models to represent non-Markovian
PODS systems with concurrent activities is determined. HnMMs (cf. Section
2.2.4) have been shown to be the only existing conceptual model able to faith-
fully represent non-Markovian concurrent activities, but also to elude efficient
behavior reconstruction. We therefore select our class of conceptual models
by imposing additional limitations on the definition of HnMMs, assuming that
these will make it possible to develop efficient behavior reconstruction algo-
rithms. We then proceed to derive a formal specification of this class of models
and conclude the chapter by applying this specification to two example models
in order to verify the usability of this specification.

3.1 Identifying an Adequate Conceptual Model

To model non-Markovian PODS systems with concurrent activities, we need
most of the expressiveness of HnMMs, especially

• a discrete state space

• stochastic non-Markovian durations for activities

• activities that occur concurrently, but begin and end independently of
each other

• symbol emissions at arbitrary points in time, resulting in observations to
consist of the time stamp of the observation in addition to the observed
symbol.

However, as was noted as a boundary condition for this work in Section 1.4,
we content ourselves with the limitation that all internal state changes of the
real system are assumed to emit an observable symbol. This limitation is not
present in general HnMMs, but is otherwise shared by HMMs and all HMM
extensions (cf. Section 2.2).

With this limitation in mind we are able to select a subclass of HnMMs as our
computational model. This will be done by looking at the binary classification
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attributes for HnMMs (cf. Section 2.2.4) and reasoning for each whether the
more restrictive attribute value is sufficient for our purposes or whether the more
permissive value needs to be selected. Our final class of computational models
is then the subclass of HnMMs conforming to all selected attribute values.

Attribute “Certainty of Symbol Emissions” : This attribute determines
whether all (Eall) or just some (Esome) of the state changes of the model cause
an observable symbol to be emitted. As noted before, we expect our models to
always emit a symbol whenever an activity ends and thus the discrete state of
the model changes, conforming to the more limited attribute value Eall.

Attribute “Activity Continuation” : This attribute determines whether
all activities cease whenever the system changes its discrete state (Treset), or
whether activities continue beyond state changes (Tkeep). A defining aspect of
our conceptual model is the representation of concurrent activities with non-
Markovian durations. Those were explained to be activities whose times of
occurence overlap, but which begin and end independent from each other. Hav-
ing concurrent activities thus implies that the completion of one activity - which
causes a discrete state change - does not affect the time of completion of the
other activity. Thus, information of the elapsed time of activities has to be
retained beyond discrete state changes, requiring the more permissive attribute
realization Tkeep.

Attribute “Number of direct connections between states” : This at-
tribute determines whether there is exactly one (SCone) or if there are multiple
(SCnT ) activities that can lead from one discrete state to a particular other one.
None of our requirements to a class of computational models is affected by this
attribute. So we chose to determine the realization of this attribute with regard
to conciseness and intelligibility of the resulting notation: For classical HMMs
and their extensions, the behavior of changing the system state from one state
to another is given by a single entry in the state transition matrix, and is there-
fore inherently limited to SCone. In order to also be able to adopt this concise
matrix notation for our class of models and therefore ensure intelligibility of the
algorithm descriptions, we decided to also select the more restricted attribute
value SCone. The definition of ASPNs as the conceptual model for this class
of computational models also contains the corresponding limitation (cf. Section
2.5).

Naming the Class With all attribute values being selected we consequently
define our class of conceptual models for the behavior reconstruction of non-
Markovian PODS systems with concurrent activities as the class of HnMM
models conforming to the attributes Eall, Treset and SCone. We call this class

Conversive Hidden non-Markovian Models

(CHnMMs), since – due to Eall – the system communicates the times of all
internal state changes.



3. Specification 27

3.2 Limitations of CHnMMs Compared to Hn-
MMs

This subclass was defined as narrowly as possible in order to enable the de-
velopment of efficient behavior reconstruction algorithms. While the attribute
values were selected so that all non-Markovian PODS systems with concurrrent
activities that conform to our boundary condition can still be modelled, it is
worth discussing which other types of systems are excluded by these limitations.

By selecting the attribute value Eall we exclude all systems where any in-
ternal state change is not externally observable. In many complex systems, at
least some activities are completely hidden from an outside observer, making it
impossible to model them as a CHnMM. Ostensibly, it may seem possible to
convert general HnMMs to CHnMMs by introducing a null symbol and have
every state change that would emit no symbol emit that null symbol instead,
thereby conforming to Eall. But behavior reconstruction always requires a com-
plete trace of observations in addition to a model. And thus a complete trace
would have to include the times at which unobservable state changes occured
and emitted the null symbol. Yet, since those state changes where unobservable
to begin with, it is impossible - even when accepting increased computational
complexity - to convert a general HnMM to a CHnMM.

The attribute value Tkeep does not impose any limitations on the expressive-
ness of CHnMMs, since it is more permissive than the alternative Treset. The
latter would have prevented the modelling of concurrent activities and together
with Eall would have resulted in the models to be GHSMMs, for which efficient
algorithms already exist [69, 70].

The final attribute value SCone imposes slight limitations on the modelling
power of CHnMMs as it prevents multiple activities from having the same con-
sequences. However, the class SCone was selected only for conciseness of the
formal specification and the algorithms developed in the subsequent chapters.
It has no practical impact: First, all algorithms developed could be applied
to SCnT models as well, one only needs to change the data representation,
but algorithm complexity and formulas remain unchanged. And second, SCnT
models can be converted to SCone without loss of functionality: whenever the
completion of two activities would lead to the same discrete state, one simply
duplicates that state and lets each activity lead to a different copy.

Thus, the only real limitation on the applicability of CHnMMs compared to
HnMMs is to require that the completion of all activities is externally observable.
This limitation is thought to be necessary, because it is essential for efficient
behavior reconstruction.

In the next section, the informally determined CHnMM class will be defined
formally.

3.3 Formal Specification

The formal specification of CHnMMs will be split into two parts: First, we
specify the elements of the original HMMs (cf. Section 2.1) that are adequate
for CHnMMs as well. Afterwards, the new addition that are specific to CHnMMs
are specified. The parts of the HMM specification that apply to CHnMMs as
well are:
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• The internal behavior of the model causes the emission of symbols from
the set {V1, . . . , VM}, which can be observed externally.

• CHnMMs have a discrete state space consisting of N states S1, . . . , SN .
However, in contrast to HMMs, for CHnMMs the discrete state no longer
fully specifies the current model state alone; the elapsed durations of all
activities has to be included in a state description as well.

• The discrete state after the tth symbol emission is represented by the
symbol qt ∈ {S1, . . . SN}

• The probability of the model to be in each of the N states at time t = 0 is
given by an initial probability vector Π ∈ RN with elements πi = P (q0 =
Si). Since all elements are probabilities, ∀i : πi ≥ 0 and (

∑
i πi) = 1 have

to hold.

• The state change behavior of the model is given by a matrix A with size
N × N , whose entries aij describe the conditions under which the state
change from discrete state Si to discrete state Sj occurs. However, for
CHnMMs the matrix elements are no longer numbers, but have to contain
more complex specifications of the activities whose completion changes
the discrete state. The exact definition of this state transition matrix will
be given in the following.

Furthermore, CHnMMs have additional properties beyond HMMs:

• Since CHnMMs model systems with activities of non-Markovian durations,
they can no longer be specified by constant probabilities. Instead, the state
change behavior of the model is directly specified by a set of K activities
TR = {TR1, . . . , TRK}, of which each activity TRi

1 is specified by a
tuple (dist, id, b(v), aging):

– dist specifies the continuous probability distribution that determines
the duration of the activity until it is completed and causes a discrete
state change.

– id ∈ N is a unique identifier of the state transition with the fixed
value TRi.id = i. The id is used to track activities that begin in
one discrete state and continue in another. This is necessary since
CHnMMs are of type Tkeep and thus the probabilitiy that an activity
causes the next discrete state change depends on how long it has been
active in previous discrete states.

– b(v) : {V1, . . . , Vk} 7→ R+
0 is a function that determines the prob-

ability with which the activity emits each symbol when causing a
discrete state change. Since CHnMMs fall into the HnMM class Eall,
each activity is guaranteed to emit exactly one symbol upon causing
a state change, formally requiring that

∀i ∈ {1, . . . ,K} :

 M∑
j=1

TRi.b(Vj)

 = 1

1The more obvious choice of a symbol for activities would be Ai, but A is already used for
the state transition matrix in accordance with the HMM specification. TRi is used instead,
since activities cause discrete state transitions.
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This definition mimics the definition of the symbol emission proba-
bilities in HMMs (cf. Section 2.1).

– aging ∈ {true, false}. An activity may be interrupted by a state
change, i.e. it may be active in one discrete state and inactive in the
next one without having caused the state change and thus without
having been completed. In those cases the value aging determines
whether the activity continues when it is activated again (= true) or
whether it restarts from the beginning (= false)

• The state transition matrix A specifies the discrete state change behavior
of the model. For HMMs it contained constant probabilities. Since in
CHnMMs discrete state changes are caused by the completion of activities,
here the matrix A contains the activities from TR. More concretely, every
matrix entry aij of the state transition matrix A is either the one activity
from {TR1, . . . , TRK} that causes the state change from Si to Sj , or the
special symbol ∅ when no such state change is possible.

One additional limitation on the matrix A is that activities cannot at the
same time cause and not cause the next state change. To that end, each
activity can be active at most once per discrete state and thus appear at
most once in each row of A, formally requiring that

∀i, ∀j 6= l : aij = TRk ⇒ ail 6= TRk

Note that ASPNs (cf. Section 2.5) as a conceptual model for CHnMMs also
enforce this limitation by requiring that at most one immediate transition
is active at any given time and thus when an activity ends there is exactly
one possible outcome.

All these symbols together define the behavior of a CHnMM. But since the states
Si and symbols Vj are merely names that do not affect the model behavior, and
since all elements of TR are also present in A, a CHnMM λ is already fully
specified by the matrix A and the initial probability vector Π, i.e. λ = (A,Π).

3.3.1 Semantics

The semantics of a CHnMM specified that way are as follows: At any given
time, the model is in one of the specified discrete states. Depending on that
state, multiple activities may be ongoing at the same time. The durations of all
activities are random (distributed according to known probability distributions)
and depend on how long – if at all – the activities have already lasted in previous
discrete states. The first activity to finish causes the next state change to
another discrete state, and also the emission of an observable symbol. In this
new state another set of activities is active. The activities from the old state may
either continue in the new state, be interrupted to continue in a future discrete
state (for aging activities), or may be terminated and restart in a future state.
The activities that are active in the new state may either continue from the
previous state or from the time when they were last interrupted by a state
change (for aging activities), or may restart.
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3.3.2 Additional Notation

In addition to the specification of CHnMMs, the following notation will be used
in this work in conjunction with CHnMMs:

• An observation o of a symbol emission is a tuple o = (v, e), where v ∈
{V1, . . . , VM} specifies the observed symbol and e specifies the time of the
symbol emission.

• A trace O = o1o2 . . . oT is a sequence of observations in chronological
order, i.e. ∀i < j : oi.e < oj .e.

• For an activity TRi with duration probability distribution dist, the func-
tions pdf(dist),cdf(dist) and hrf(dist) define the probability density func-
tion, cumulative distribution function and hazard rate function of the dis-
tribution, respectively. For example, cdf(TRi.dist)(5) returns the value
of TRi’s cdf at position t = 5.

• For a probability distribution dist, the boolean function isExp(dist) re-
turns whether the probability distribution is an exponential distribution
and therefore Markovian.

This concludes the definition of CHnMMs and the introduction of additional
notation that is used throughout the remaining work. For quick reference, all
definitions given in this section are listed concisely in Appendix C. In the next
sections we will show that these definitions are able to represent realistic sys-
tems by showing how realistic problems informally specified as ASPNs can be
converted to strictly formal CHnMMs.

3.4 Conversion of ASPNs to CHnMMs

So far we have defined ASPNs as our class of conceptual models in which practi-
tioners can model their behavior reconstruction problems. We have also defined
CHnMMs as our class of computational models which will be used to solve these
behavior reconstruction tasks. However, we have yet to show how to convert
the former into the latter.

Algorithms already exist for converting a generalized stochastic Petri net
(GSPN) to a continuous time Markov chain (CTMC) [50]. Our classes of ASPNs
and CHnMMs are extensions of GSPNs and CTMCs, respectively, augmented by
the ability to allow for non-Markovian durations and the emission of externally
observable symbols. Thus, the following procedure for converting an ASPN to
a CHnMM is quite similar to the existing approach.

A general correspondence exist between ASPNs and CHnMM in that ASPN
markings correspond to CHnMM states and ASPN timed transitions correspond
to CHnMM activities. With these in mind, the idea of the algorithm to convert
an ASPN to a CHnMM is as follows:

1. From the known initial marking of the ASPN recursively determine all N
reachable tangible markings, i.e. reachable markings in which no immedi-
ate transition is active. In theory, the number of tangible markings in an
ASPN may be infinite, but in practical applications usually only a finite
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set of markings has non-zero probabilities2. For each of those markings of
the ASPN, a discrete state Si is created for the CHnMM.

2. For each of the M unique symbols that the timed transitions of the ASPN
emit, a corresponding CHnMM symbol Vi is created.

3. For each of the K timed transitions in the ASPN, a CHnMM activity TRi
is created, whose elements (dist, id, b(v), aging) are given as follows:

• dist is the duration probability distribution of the timed transition

• id of the ith activity is i in accordance with the definition of CHnMMs

• b(v), the mapping from emitted symbol to probability, is directly
taken from the symbol emission probabilities specified for the corre-
sponding ASPN timed transition

• aging is true when the ASPN transition is of type RACE AGE (cf.
Section 2.5), and false otherwise.

4. The initial probability vector Π of length N (the number of discrete states
in the CHnMM and equivalently the number of tangible markings in the
ASPN) has a probability value of one for the discrete state Si that corre-
sponds to the known initial marking of the ASPN, and probability values
of zero for all other entries.

5. The state transition matrix A of dimension N×N is initially filled with the
symbol ∅ in each of its entries. Then, for each of the tangible markings
Si and each timed transition TRk that is enabled in said marking, the
tangible marking Sj is determined that is reached when transition TRk
fires in Si and all subsequently active immediate transitions in subsequent
markings of the same time step fire as well. With this found Sj , the entry
aij of A is set to TRk. Since the ASPN definition requires that only
one immediate transition is active at a given time, the reached tangible
marking is unique and thus can be determined3.

This procedure converts an ASPN to a CHnMM λ = (A,Π), which can then be
used in conjunction with the algorithms developed in the following chapters to
reconstruct the unobserved system behavior.

3.5 Example Models Defined as CHnMMs

We will now use this procedure of converting ASPNs to CHnMMs in order to
exemplarily specify two CHnMMs of realistic systems with partially observable

2For ASPNs with an infinite number of reachable markings no CHnMM can be built.
However, for these, exact behavior reconstruction as attempted in this work would not be
possible in any case, since exact reconstruction would need to take into account all of the
infinite number of markings, which is not feasible.

3One exception is that an infinite sequence of immediate transitions may fire after a single
timed transition has fired and thus no tangible state is ever reached. In this case the ASPN is
deadlocked, no tangible target state exists and the ASPN cannot be converted to a CHnMM.
However, such deadlocking ASPNs are not practically relevant since the deadlock means that
the system can never progress beyond the point in time at which the deadlock occurred, which
does not occur in real-life systems.
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Machine 2

Tester

Machine 1
Item by M2
~N(120; 20)

Item by M1
~N(150; 25)

Previous           Item by M2

OkDefectiveOkDefective
0.90.1 0.950.05

Figure 3.1: The quality tester model, shown schematically (left) and as an
augmented SPN (right).

behavior. These two CHnMMs will also be used repeatedly in the remainder of
this work to experimentally test the algorithms developed.

The two systems were selected to show potential practical applications of
CHnMMs and at the same time cover different kinds of CHnMMs: They differ
in the model complexity, where one model has only a single marking, whereas the
other one has about 5000 reachable markings. And they differ in the amount of
information present in the observations: In one model, different transitions emit
symbols with different probabilities, so that the type of emitted symbol contains
information on what activity is more likely to just have been completed. In the
other one, every transition emits the same single symbol so that the information
of the observation sequence lies only in the times of the symbol emissions, but
not in the symbols themselves.

3.5.1 The Quality Tester

The “Tester” example model represents a partially observable part of a pro-
duction line (cf. Figure 3.1): Two machines are imperfectly producing indis-
tinguishable items, causing some items to be defective. Producing an item
takes a random amount of time and the two machines have different continuous
probability distributions to describe this randomness, because they are different
models.

The items are then put on conveyor belts to be fed to a single automatic
quality tester for quality control. This tester logs the time of each quality test
and the test result (“ok” or “defective”). Since the time that the items spend on
the conveyor belts is known, constant, and identical for both machines, the times
at which each item was produced can directly be derived from the test protocol.
This yields a production protocol containing the times of item production and
the quality predicate (“ok” or “defective”) of each item produced.

In this scenario, the owner or the operator of the production facility may
be interested in finding out which of the two machines has a higher ratio of
defective items. For safety reasons, the area between the two machines and
the tester is unobservable and thus the only source of even partial observations
of the system behavior is the quality test protocol. Determining the source of
defective items thus requires behavior reconstruction and thus prior to that the
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modelling of the system as an ASPN and a conversion to an CHnMM.
The simple schematic version of this model (cf. left hand side of Figure 3.1)

can almost directly be converted into an ASPN, since the system has only a
single discrete state and two distinct activities (the production of items by the
two machines) that are always active. The only obstacle is that independently
of which machine has produced an item, the system is alwas in the same mark-
ing, which violates one of the limitations of ASPNs. As a remedy, the procedure
developed to circumvent the SCone limitation of CHnMMs can be applied (cf.
Section 3.2): by storing the source of the previously produced item the single
marking of this system is duplicated and the firing of the state transition rep-
resenting the two machines are made to reach different clone markings. The
resulting ASPN can be seen on the right-hand side of Figure 3.1).

With the procedure outlined in Section 3.4, this ASPN can then be converted
to the following CHnMM:

• States: Sprev from 1, Sprev from 2

• Symbols: Vok, Vdefective

• Activities:

– TRM1: (∼ N(150, 25), 0, Vok → 0.9;Vdefective → 0.1, false)

– TRM2: (∼ N(120, 20), 1, Vok → 0.95;Vdefective → 0.05, false)

• State transition matrix A =

(
TRM1

TRM2

TRM1
TRM2

)
• Initial probability vector Π = (1, 0)

With only two discrete states and two concurrent activities, this model is
close to the most simple CHnMM imaginable. It can thus be used to illustrate
the upper limit of computational performance for the CHnMM algorithms to
be developed, and is used as an application example for those algorithms.

3.5.2 The Car Rental Agency

The Car Rental Agency model (cf. Figure 2.2 on page 21) that models the
behavior of customers and the only employee in said rental agency has already
been introduced in Section 2.5 as an example of ASPNs. In this section, we
only present the so far omitted representation of this system as a CHnMM.

In this model, a marking consists of the numbers of ordinary and premium
customers currently standing in line, as well as the type (ordinary or premium)
of the customer who is currently being served. With the system allowing for
up to 50 customers per queue the resulting CHnMM will have more than 5000
discrete states and the state transition matrix consequently more than 25 million
entries. In order to give a feasible representation of the state space we use the
set-builder notation. And we only list those elements of the state transition
matrix A that are not equal to ∅.
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Discrete States We name states using a tuple (X, i, j) where X ∈ {O,P}
denotes whether the currently served customer is an ordinary (O) or a premium
(P) customer, i denotes the number of waiting ordinary and j the number of
waiting premium customers. The set of discrete states of the Car Rental Agency
model is then

{Sidle} ∪ {SO,i,j |i, j ∈ {0 . . . 50}} ∪ {SP,i,j |i, j ∈ {0 . . . 50}}

Set of Symbols The set of externally observable symbols contains only a sin-
gle symbol VDoor, since all discrete state changes (arrival and service completion
of a customer) cause the door of the rental station to open.

Activities The only activities than occur in this model are the arrivals and
service completions of ordinary and premium customers, respectively:

• TRpremiumArrive: (∼ Exp(1/45), 0, VDoor → 1, true)

• TRpremiumService: (∼Weibull(16, 2), 1, VDoor → 1, true)

• TRordinaryArrive: (∼ Exp(2/45), 2, VDoor → 1, true)

• TRordinaryService: (∼Weibull(12, 2), 3, VDoor → 1, true)

State Transition Matrix Since it is impractical to given the whole state
transition matrix with its more than 25 million entries, we only list those entries
that represent possible state changes, i.e. matrix entries that do not contain the
special symbol ∅.

• SO,0,0 ⇒ Sidle : TRordinaryService

• SP,0,0 ⇒ Sidle : TRpremiumService

• Sidle ⇒ SO,0,0 : TRordinaryArrive

• Sidle ⇒ SP,0,0 : TRpremiumArrive

• ∀i ∈ {0 . . . 50}, j ∈ {0 . . . 49} : SO,i,j ⇒ SO,i,j+1 : TRpremiumArrive

• ∀i ∈ {0 . . . 49}, j ∈ {0 . . . 50} : SO,i,j ⇒ SO,i+1,j : TRordinaryArrive

• ∀i ∈ {0 . . . 50}, j ∈ {1 . . . 50} : SO,i,j ⇒ SP,i,j−1 : TRordinaryService

• ∀i ∈ {1 . . . 50} : SO,i,0 ⇒ SO,i−1,0 : TRordinaryService

• ∀i ∈ {0 . . . 50}, j ∈ {0 . . . 49} : SP,i,j ⇒ SP,i,j+1 : TRpremiumArrive

• ∀i ∈ {0 . . . 49}, j ∈ {0 . . . 50} : SP,i,j ⇒ SP,i+1,j : TRordinaryArrive

• ∀i ∈ {0 . . . 50}, j ∈ {1 . . . 50} : SP,i,j ⇒ SP,i,j−1 : TRpremiumService

• ∀i ∈ {1 . . . 50} : SP,i,0 ⇒ SO,i−1,0 : TRpremiumService
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Initial Probability Vector The initial probability vector Π contains the
probability 1.0 for the initial marking (no customers are present in the rental
station and the clerk is thus idle) and 0.0 probability otherwise:

Π : πi =

{
1.0 if Si = Sidle

0.0 otherwise

This model has an extensive discrete state space 2500 times the size of the
Tester state space. And the model has three concurrent activities (two arrival
activities and the service of either an ordinary or a premium customer) in most
discrete states. Thus, computation time and memory consumption will likely
be far higher for this model than for the Tester model. The Car Rental Agency
model is therefore used in this work to test the limits of practical applicability
of the algorithms developed.

3.6 Summary

In this chapter, the requirements to a class of computational models that can
represent the behavior of partially observable discrete stochastic models with
concurrent non-Markovian activities have been analyzed, and a computational
model - called Conversive Hidden non-Markovian Models - has been specified.
Finally, two example models of that class have been introduced informally, and
were specified formally by the means of CHnMMs, supporting the statement
that the definition of CHnMMs is usable to specify real-life systems.

Due to being a subclass of HnMMs, the existing partial HnMM behavior
reconstruction algorithms would be applicable to the class of CHnMMs as well.
However, since the HnMM algorithms have been shown to not be practically
feasible, the remainder of this work will be concerned with the development
of behavior reconstruction algorithms tailored specifically to CHnMMs. It is
assumed that the restrictions of the class of CHnMMs compared to HnMMs
makes those algorithms feasible.

In the following chapters, the specification presented in this chapter will be
used to develop solution algorithms to the four basic behavior reconstruction
tasks Evaluation, Decoding, Smoothing and Training for CHnMMs.
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Chapter 4

The Evaluation Task

4.1 Introduction

In this chapter a solution algorithm for the CHnMM Evaluation task will be
developed. Evaluation is the task of determining the probability that a given
observation sequence was caused by a given model, or formally [66] to deter-
mine1:

P (O|λ)

A typical practical application for Evaluation of HMMs is pattern recognition
[23]: For each pattern (e.g. drawn gestures, handwriting, movement gestures
[17, 18] or even a microphone to be classified [14]) to be recognized, a separate
model is built. For such a pattern recognition task an observation sequence of
the user input consists of characteristic points of the input such as direction
changes and zero crossings. Then, to determine the pattern the user attempted
to convey, the Evaluation probability of the observation sequence is computed
for each model in turn, and the model with the highest probability is taken as
the most likely user input.

To solve the Evaluation task for CHnMMs, we will extend the inductive
HMM Evaluation algorithm (The so-called “Forward algorithm”, cf. Section
2.1.2) with elements of the Proxel simulation method (cf. Section 2.6), and we
will develop further additions that ensure the computation of exact probabilities
where the Proxel method only provides approximations.

The next section will give a detailed overview of which parts from the HMM
Forward algorithm and the Proxel simulation algorithm can be reused, and
which have to be developed from scratch.

4.2 Existing Groundwork and Unresolved Issues

Applicable Concepts from the HMM Forward Algorithm As with
HMMs, it appears to be futile for CHnMMs to follow all possible paths of inter-
nal system behaviors that are consistent with a given observation sequence: The

1In the remainder of this work the explicit conditioning of probabilities on the model λ is
omitted when it is clear from the context that the desired probabilities are computed given
the current model

37
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number of those paths would increase exponentially in the number of individual
observations in the trace.

Instead, the basic inductive approach of the HMM Forward algorithm ap-
pears to be applicable to CHnMMs as well: The initial probability vector Π
can be interpreted as a vector of initial joint probabilities of the model to be
in each state at time t = 0 and having emitted all observations made so far,
since at t = 0 no observation has yet been made and thus the latter is always
true. If an induction step could be developed that uses the set of those joint
probabilities for the partial observation sequence of the first n observations to
compute them for the first n+ 1 observations, then this induction could be ap-
plied iteratively for the whole trace of observations. The result of this induction
would be individual probabilities of the model to be in each reachable state and
having emitted all of the observations. The sum of those probabilities would be
the probability of the system to be in any state and having emitted the whole
trace, and thus the desired Evaluation probability.

Applicable Concepts from the Proxel Method While the overall ap-
proach of the HMM Forward algorithm seems to be suitable for CHnMMs as
well, computation of the actual joint probabilities has to differ in order to
account for the non-Markovian concurrent behavior of CHnMMs. Some ap-
proaches to compute this behavior can be taken from the Proxel method, which
was developed to simulate concurrent non-Markovian behavior (cf. Section 2.6):

1. While the state transition probabilities in HMMs were constant, for
CHnMMs they vary following a continuous duration probability distri-
bution. The Proxel method provides formulas to compute approximations
of these state transition probabilities and provides the mathematical back-
ground on which exact formulas may be derived.

2. HMMs were inherently Markovian, meaning that the future behavior of an
HMM only depends on its current discrete state and not on its past. Thus,
the inductive forward algorithm could compute the joint probabilities after
the n+1th observation solely based on the joint probabilities of the discrete
states and the nth observation.

In CHnMMs, activities are non-Markovian. Their state transition proba-
bilities depend on how long the activity has been going on. So, to predict
future behavior it is insufficient to know the current discrete state of the
system, one also has to retain detailed information on the past. This
ostensibly makes it impossible to develop an efficient inductive algorithm
where the current system state alone is able to predict the future behavior.

The Proxel simulation method has the same challenge, and solved it
through an extension of the state description. In the Proxel algorithm,
the current system state consists not only of the discrete state, but is ex-
tended by supplementary variables storing the durations for which each
activity has been going on so far (the so-called “age vector”). This ex-
tended state description fully encodes the relevant history into the state
and thus completely determines the possible future behavior of the model.

For CHnMMs, basing an inductive Forward algorithm on this extended
state description would allow it to again compute the joint probabilities



4. The Evaluation Task 39

of the n+ 1th symbol emission based only on the joint probabilities of the
nth symbol emission.

3. In an HMM, the set of states is constant. Thus, the joint probabilities for
each time step can be stored in a fixed size vector.

In the Proxel simulation and for CHnMMs, each element of the extended
state’s age vector can potentially take on any positive real value, meaning
that the set of possible states is infinite and cannot be stored. For each
time of a symbol emission, the set of states that have non-zero probability
however is finite, but the actual states in that set vary from observation
to observation and are not predictable beforehand. Thus, storage in a
fixed-size vector is not possible.

The Proxel method provides a solution for this problem which is applicable
to CHnMMs as well: instead of using a single vector to store the associa-
tion between each state and its probability, the Proxel method stores each
individual state-probability association in a separate tuple, a so-called
Proxel. For each time step, the method maintains a set of arbitrary size
of those Proxels with non-zero probability.

4. Since the state description of a Proxel is sufficient to completely predict
its future, two Proxels with identical state (i.e. identical discrete state
and age vector) share the same future. Thus, the Proxel method - and
any algorithm on CHnMMs - can merge those Proxels with identical state
by adding their probabilities. This merging significantly reduces the com-
putational cost of the approach, since through it an inductive CHnMM
forward algorithm has to compute the probability of every possible behav-
ior only once.

Unresolved Issues So, the HMM Forward algorithm provides the basic al-
gorithm structure of an algorithm solving the CHnMM Evaluation task, and
the Proxel method provides concepts on how to structure the data for that al-
gorithm. Yet, some aspects of a CHnMM Evaluation task go beyond the HMM
Forward algorithm and the Proxel simulation method:

First, the core formula of the Proxel is the approximation of discrete state
change probabilities during the interval of a single time step. For CHnMMs
where the trace of observations is given, the exact times at which discrete state
changes occur are known in advance and no state changes can occur in the time
intervals between them.

Thus, the Proxel transition probability computation cannot be used for
CHnMMs, and a new one to compute the conditional state transition probabili-
ties at exact points in time (the times of the observations) given the observations
has to be derived.

Second, the computation of the probability for each reachable state will
be performed inductively over the times of symbol emissions. In CHnMMs,
these intervals are of variable length whereas the Proxel method and HMMs
work with equidistant time steps. However, such a modification to variable
time steps has already been attempted for the Proxel method [37, 82, 83] itself.
They have shown to only impact the numerical domain of the age values (which
are no longer always multiples of the fixed time step size, but arbitrary positive
real values) and the computation of the state transition probabilities. Thus,
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the only difficulty here is to ensure that the formulas for the state transition
probabilities, which are derived in the next section, work correctly even under
symbol emissions at arbitrary times.

4.3 Computing Exact State Change Probabili-
ties

An inductive CHnMM Forward algorithm would be provided with the joint
probabilities P (qt = Si∩aget = τ ∩ o1 . . . ot) of the model at the time of the tth
symbol emission (ot.e) to be in each state (discrete state Si and age vector τ)
and to have emitted the first t elements of the observed trace. Its task is then to
use those to compute the probabilities P (qt+1 = Sj ∩ aget+1 = τ ′ ∩ o1 . . . ot+1)
of the model at the time of the t + 1th symbol emission (ot+1.e) to be in each
possible successor state (discrete state Sj and age vector τ ′) and have emitted
the first t+ 1 elements of the trace.

The latter is the product of the prior multiplied by the probability that
the first discrete state change after ot.e is at ot+1.e, changes the discrete state
from Si to Sj , and emits the symbol ot+1.v. Using the definition of conditional
probability and taking into account that the emission of a symbol depends only
on the actual activity that causes the symbol-emitting state change, this state
change probability can be split into the product of three individual probabilities:

1. The sojourn probability that no activity is completed between ot.e and
ot+1.e

2. The change probability that the state change from discrete state Si to
Sj occurs exactly at time ot+1.e, given that no state change has occured
between ot.e and ot+1.e

3. The probability that the signal ot+1.v is emitted given that the state
change between states Si and Sj has occured

The third probability is given by the specification of the CHnMM as
aij .b(ot+1.v), but the other two have yet to be derived.

4.3.1 State Sojourn Probability

The first formula to be derived is the probability that no state change occurs (i.e.
no activity is completed) between the current and the next symbol emission. For
intelligibility, we call the time of the current symbol emission ot.e simply told
and the time of the next symbol emission ot+1.e simply tnew.

Let {TR1, TR2, ..., TRn} be the set of activities that may occur in the current
state Si with age vector ~τ . For each TRi, its stochastic duration is given by the
corresponding cdf Fi. Furthermore, none of the activities have been completed
until time told (otherwise the activity would not be active in the current state).
And at told, each activity TRi has been active for a duration of τi.

We are interested in the state sojourn probability between told and tnew, i.e.
the probability that no activity finishes until tnew, given that no activity has
finished up until told:

Psojourn = P (∀1 ≤ i ≤ n : TRi > tnew|∀1 ≤ i ≤ n : TRi > told)
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In this formula, TRi > tnew means that the activity TRi is completed later
than tnew.

Since the completion of the activities are statistically independent (the time
at which activity TRi finishes does not depend on any other activity), this
probability can be written as the product of the individual sojourn probabilities:

Psojourn =

n∏
i=1

P (TRi > tnew|TRi > told)

According to the definition of conditional probability [54], this can be written
as:

Psojourn =

n∏
i=1

P (TRi > tnew ∩ TRi > told)

P (TRi > told)

Here, TRi > tnew is a subset of TRi > told (whenever TRi finishes later than
tnew, it also has to finish later than told since tnew > told). Thus P (TRi >
tnew ∩ TRi > told) = P (TRi > tnew), yielding:

Psojourn =

n∏
i=1

P (TRi > tnew)

P (TRi > told)

For a given activity these probabilities can be computed from its cumulative
distribution function: F (t) is the probability for an activity to have finished
in less than t time, and thus 1 − F (t) is the probability that the activity has
finished after a duration of t. Thus,

Psojourn =

n∏
i=1

1− Fi(τi + (tnew − told))
1− Fi(τi)

. (4.1)

This equation can be used for any discrete state and age vector to compute the
exact sojourn probability to stay in the current state from told to tnew given
that the system was still in that state at told.

4.3.2 Virtual Probabilities

Before we derive a formula for the instantaneous state change probability, we
shortly discuss the peculiar features of the expected solution.

The probability in question is the probability of an activity to be completed
exactly at the time of a symbol emission given that it has not been completed
before. Formally, this means to determine the probability that a continuous
probability distribution (describing the activity duration) takes on a single dis-
rete value (the time of the symbol emission). For all probability distribution
functions this value is always infinitesimal and thus numerically zero. Yet, eval-
uating all these probabilities to zero would result in an Evaluation probability of
zero as well, irrespective of the model or the observation sequence. This would
be a useless result to the Evaluation task.

A potential solution to this problem is based on the observation that these
infinitesimal probabilities are by no means all identical. On the contrary, the
usual representation of a continuous probability distribution as a probability
distribution function (pdf) is a common way of giving different numerical values
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Figure 4.1: Graph of the probability distribution function for the normal distri-
bution with mean 1.0 and standard deviation 0.25.

to these infinitesimal quantities. For example, the pdf of a normal distribution ∼
N(1, 0.25) evalutes to about 1.6 at position 1 and 0.21 at position 0.5 (cf. Figure
4.1). These values must not – and cannot – be interpreted as probabilities, and
strictly speaking the probability of that normal distribution to take on either
value is infinitesimal. But what the pdf can be used for is to determine the
probabilities of the normal distribution (or any other probability distribution)
to take on different values relative to each other. So while the pdf values given
before must not be interpreted as absolute probabilities, the can be used to
assert that the normal distribution ∼ N(1, 0.25) is about eight times as likely
to take on a value of 1.0 (or rather a value in the ε-environment of 1.0) than it
is to take on the value 0.5.

Similar to the pdf , in the next section we will derive a formula for our instan-
taneous state change probabilities that assigns numerical values to infinitesimal
probabilities. We call these numerical values virtual probabilities, since they
behave similar, but not identical to actual probabilities. In particular, virtual
probabilities are also measures of likelihood for a given event to occur. And as
with values of a pdf , two virtual probabilities are in the same ratio as the corre-
sponding (potentially infinitesimal) probabilities and can thus be used to assess
the relative differences between the two corresponding events. However, virtual
probabilities differ from actual probabilities in that a single virtual probability
cannot be interpreted a probability measure: A single virtual probability has no
meaning by itself in the same way that a single value of a pdf has no meaning
by itself.

Thus, virtual probabilities can be used as stand-ins for infinitesimal actual
probabilities. In the following, we will derive a formula for the virtual instanta-
neous state change probability, which will result in the final Evaluation probabil-
ity to be a virtual probability as well. Similarly, the intermediate result for the
Decoding, Smoothing and Training tasks will be virtual probabilities as well.
These virtual probabilities will then be shown to either be a useful result to the
task at hand by themselves, or it will be shown that the actual probability to
be computed for that task can be derived from these virtual probabilities.



4. The Evaluation Task 43

4.3.3 Instantaneous State Change Probability

The second probability to be derived is the probability that the completion of
an activity causes a discrete state change at an exact point in time given that
the activity has not been completed before.

The derivation of this probability has been attempted before in [40] for gen-
eral HnMMs, but their final result was incorrect for two reasons: First, they
incorrectly assumed that the state change probability to be computed may be
conditioned on the next observation. But the Forward variables of HnMMs
(including CHnMMs) are joint probabilities to be in a given state and having
emitted the trace so far. Thus, to compute a Forward probability from such
a conditional probability, one would need to eliminate the conditioning on the
next observation. This, however, requires the determination of the absolute
probability of said observation, which the authors neglected to determine. And
second, their informal argument implicitly and unwarrantly additionally con-
ditions that state change probability on the current model state. Thus, their
approach is of little use for us.

Instead, we start from scratch by noting that the probability for an activity
with continuously distributed duration to finish at a discrete point in time (as
opposed to finishing in a certain time interval) is infinitesimal. We therefore
seek to represent this quantity as a virtual probability.

To obtain such a numerical value for the infinitesimal quantity we study
the ratio of two arbitrary instantaneous state change probabilities as the limit
that the activities are completed in an infinitesimal time interval around their
respective durations τ1 and τ2:

Pchange1
Pchange2

= lim
∆t→0

P (τ1 < TR1 ≤ τ1 + ∆t|TR1 > τ1)

P (τ2 < TR2 ≤ τ2 + ∆t|TR2 > τ2)

The right-hand side quotient may be expanded by 1/∆t yielding

Pchange1
Pchange2

= lim
∆t→0

P (τ1<TR1≤τ1+∆t|TR1>τ1)
∆t

P (τ2<TR2≤τ2+∆t|TR2>τ2)
∆t

.

As long as the limit of the denominator does not evaluate to zero, we can split
the limit into two separate limits:

Pchange1
Pchange2

=
lim∆t→0

P (τ1<TR1≤τ1+∆t|TR1>τ1)
∆t

lim∆t→0
P (τ2<TR2≤τ2+∆t|TR2>τ2)

∆t

Here, each limit corresponds to the definition of the hazard rate µ(t) = f(t)
1−F (t)

[52] of the duration probability distribution of the corresponding activity, and
thus

Pchange1
Pchange2

=
µ1(τ1)

µ2(τ2)
.

So, while we cannot numerically represent the infinitesimal Pchange itself, any
two non-zero Pchange are in the same ratio as the corresponding values of
their hazard rate functions. Or put another way, each infinitesimal proba-
bility Pchange is proportional to the value of the hazard rate function of the
corresponding activity probability distribution. The proportionality constant s
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is unknown, but it is identical for all instantaneous state change probabilities.
Thus, the quantity

P change = s ∗ Pchange = µ(t) (4.2)

is a virtual probability that assigns a numerical value to the infinitesimal
Pchange. Since the only difference between an ordinary probability and the
corresponding virtual probability is an (unknown) scaling factor, the behavior
of virtual probabilities is similar enough to that of ordinary probabilities to
allow us to solve the CHnMM Evaluation task.

First, virtual probabilities can be added and multiplied just like ordinary
probabilities. This allows us to perform all computations of a CHnMM Forward
algorithm and to solve the Evaluation task as if all values were ordinary prob-
abilities. Second, the ratio of two virtual probabilities has the same value as
would the ratio of the corresponding but intractable ordinary probabilities:

P change1
P change2

=
s ∗ Pchange1
s ∗ Pchange2

=
Pchange1
Pchange2

(4.3)

Thus, if one occurence has a virtual probability of 0.2 and another one has a
virtual probability of 0.6, then the second one is three times more likely than
the first one, even though the numerical values must not be interpreted as literal
probabilities.

So when the virtual Evaluation probabilities of multiple models for the same
observation are given, then these virtual probabilities alone can be used to de-
termine which model is the most likely explanation of the observation, and by
what factor it is more likely than the other models. Thus, the virtual probabil-
ities to be computed by the CHnMM Evaluation task can be used in the same
ways as the ordinary probabilities computed for the HMM Evaluation task.

In the remainder of this work, we will use virtual probabilities for the com-
putations of intermediate probabilities for all algorithms. For each algorithm
we will then show that either the computed virtual probabilities can be used
directly in place of ordinary probabilities (as was just done for the Evaluation
task), or that the desired ordinary probability can be computed from the virtual
probabilities obtained from the algorithm.

4.3.4 Summary: State Change Probability

Using the results above, the (virtual) state change probability that the first
discrete state change after ot.e is at ot+1.e, changes the discrete state from Si
to Sj , and emits the symbol ot+1.v can be computed as the product of:

1. the probability Psojourn to stay in state Si for the time interval ot.e to
ot+1.e

2. the virtual conditional probability P change to change state from Si to Sj
at the exact time of ot+1.e, given that no state change has occurred since
ot+1.e

3. the conditional probability aij .b(vk) to emit signal vk given that a state
change from Si to Sj takes place
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Now that the state change probability can be computed, it can be used along
with the known probability to be in each state at time t = 0 to compute the
virtual probabilities to be in every possible successor state at the time of the
first symbol emission and having emitted that first symbol. This approach can
then be used iteratively for each observation from a trace to inductively compute
the Forward probabilities for each time of symbol emission from the Forward
probabilities of the previous symbol emission. The sum of these virtual Forward
probabilities for the final observation is then the virtual probability of the model
to have caused the whole trace of observations, and is thus the solution to the
Evaluation problem.

It should be noted that the actual Evaluation probability for any CHnMM
without deterministic activity durations is always infinitesimal, since it depends
on point probabilities of continuous probability distributions (as shown in the
derivation of P change). The introduction of virtual probabilities allows us to as-
sign numerical values to these otherwise intractable probabilities. With these,
Evaluation can be used to select the most likely model out of a set of models to
explain a given trace of observations, since the virtual Evaluation probabilities
of different models are in the same ratio as the actual unknown infinitesimal
probabilities (cf. Equation 4.3). However, a single virtual Evaluation probabil-
ity is only a stand-in and must not be interpreted as the actual infinitesimal
probability of a model to have caused a given trace of observations.

So the HMM Forward algorithm provides a general algorithm structure for
an algorithm to solve the CHnMM Evaluation task, the Proxel simulation model
provides data structures that help adapt the HMM algorithm to non-Markovian
systems, and the formulas derived allow for exact computations of the proba-
bilities needed for such an algorithm. In the next section, all these individual
parts will be assembled to form the CHnMM Forward algorithm

4.4 Result: The CHnMM Forward Algorithm

The resulting algorithm is given in Algorithm 1. It uses Proxels ρ defined as
ρ = (q, ~τ , α), where q and ~τ are the discrete state and age vector, respectively,
and α is the virtual Forward probability for that state. Its input is the model
specification λ = (A,Π), the trace O, the set of activities TR and the numbers
of states N , observations T and activities K, respectively. It assumes that a
dummy observation at time t = 0 with an arbitrary symbol has beed added to
the trace O.

It initializes the set of Proxels for t = 0 from the initial probability vector
given by the CHnMM specification (line 1). It then iterates over all symbol
emissions from the given trace (line 2) in order to inductively compute the joint
probabilities of the model for each time step to be in a given state (disrete state
and age vector) and having caused all symbol emissions of the trace up to that
time step.

For each time of a symbol emission it iterates over all Proxels of the previous
symbol emission time (line 6) to determine all possible successor Proxels. So
for each Proxel, the sojourn probability (line 8) to stay in the current discrete
state between the previous and the current symbol emission is computed. The
algorithm then iterates over all possible state changes that may have caused the
current symbol emission (line 9).
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Algorithm 1: CHnMMForward

Input: A,Π, O, TR,N, T,K

R0 =
⋃

i∈{1,...N |πi 6=0}

{(i,~0, πi)};
1

for t = 1 to T do2

v = ot.v;3

∆t = ot.e− ot−1.e;4

Rt = ∅;5

foreach ρ ∈ Rt−1 do6

i = ρ.q;7

Psojourn =
∏

j∈{1,...,N | aij 6=∅}

1− cdf(aij .dist)(ρ.τaij .id + ∆t)

1− cdf(aij .dist)(ρ.τaij .id)
;

8

foreach j ∈ {1, . . . , N |aij 6= ∅} do9

Rowi = {ai1, . . . , aiN};10

Rowj = {aj1, . . . , ajN};11

~τ ′ : τ ′k =12 
τk + ∆t if TRk ∈ Rowi ∧ TRk 6= aij ∧ ¬isExp(TRk.dist) ∧

(TRk ∈ Rowj ∨ TRk.aging)

τk if TRk /∈ Rowi ∧ TRk.aging ∧ ¬isExp(TRk.dist)
0 otherwise

µ = hrf(aij .dist);13

ρ′ = (j, ~τ ′, ρ.α ∗ Psojourn ∗ µ(ρ.τaij .id + ∆t) ∗ aij .b(v));14

if ρ′.α = 0 then continue;15

if ∃ρ′′ ∈ Rt with (ρ′′.q = ρ′.q ∧ ρ′′.~τ = ρ′.~τ) then16

ρ′′.α+ = ρ′.α;17

else18

Rt = Rt ∪ {ρ′};19

return RT20
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For each of these state changes the adjusted age vector for the new state is
computed (line 12): The age is increased by the length of the current time step
(the time between the previous and the current symbol emissions) for all those
activities that were active for the whole time step and may still continue. This
includes all those activities that did not cause the current state change and are
either still active in the new discrete state or are of type RACE AGE and thus
may be interrupted to be resumed in a later discrete state. For all activities that
where not active in the current state and are of type RACE AGE, their age does
not change from the age they had before the time step. And in all other cases,
the age of the activity is reset to zero. This includes exponentially distributed
activities, which are memoryless and whose behavior is thus age-independent,
the activity that was just completed and caused the state change, and those
activities that where active in the previous state but are not in the new one and
thus are cancelled.

With the known age vector and discrete state after the current symbol emis-
sion a Proxel is created for that new state and its probability is computed
according to the formulas in Section 4.3 (line 14). If the set of Proxels for the
successor time step does not already contain a Proxel with the same discrete
state and age vector, then the newly created Proxel is added to that set (line
19). Otherwise, the two Proxels are merged by adding the new probability to
the already existing Proxel (line 17).

The algorithm terminates once the set of Proxels for the time of the final
observation from the trace have been created, and returns that set. Each of
these Proxels then contains the (virtual) joint probability of the model to be
in the state represented by the Proxel and having emitted the whole trace.
According to the law of total probability, summing up all those probabilities
yields the desire virtual Evaluation probability of the model to have created the
observation trace:

P (O) =
∑
ρ∈RT

ρ.α

Thus, this algorithm solves the CHnMM Evaluation task.

4.4.1 Differences to the Proxel Simulation Algorithm

The CHnMM Forward algorithm is generally similar to the Proxel simulation
method: all possible single model state changes are followed for each time step,
and the resulting states are stored in Proxels. However, in detail there are major
differences between the two algorithms:

Virtual Probabilities In the CHnMM Forward algorithm, the Proxels store
virtual probabilities which have no meaningful interpretation as an actual prob-
ability. In addition the CHnMM Forward algorithm stores joint probabilities of
a given state and the emission of a given trace in those Proxels, whereas the
Proxel simulation algorithm stores absolute state probabilities.

Accuracy The state change probabilities for the CHnMM Forward algorithm
are not approximations of the solution to an ODE, but are computed through
closed-form exact formulas.
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Figure 4.2: Schematic representation of the conditions under which Proxels have
identical age vectors and can thus be merged.

Additionally, the Proxel method made the unwarranted assumption that
only a single discrete state change may occur during each time step. This
assumption was made deliberately[29] in order to make the approach compu-
tationally feasible, but at the same time introduced a noticable approximation
error. The CHnMM Forward algorithm also makes this assumption, but for
CHnMMs this assumption is valid: since all discrete state changes emit an
observable symbol, there can be no discrete state change in the time interval
between two symbol emissions. This and the previous point together mean that
the CHnMM Forward algorithm does not contain any of the approximation
errors of the Proxel method and is thus accurate.

Time Step Size In the Proxel method, the time step size has to be chosen
carefully by the user to select a tradeoff between computation time and result
accuracy[43]. For the CHnMM Forward algorithm the variable time step sizes
are selected automatically to conform to the time intervals between symbol
emissions, and this way eliminate all approximation errors. Thus, the CHnMM
Forward algorithm contains no user-tunable parameters and is thus easier to
use by practitioners.

Proxel Merging Proxel simulation and the CHnMM Forward algorithm both
employ Proxel merging: Whenever two Proxels for the same time step exist that
present the same discrete state and age vector, they are merged to form a single
Proxel with the combined probability of the two. This merging prevents both
algorithms from otherwise suffering an exponential increase in the number of
Proxels with each new time step, since each Proxel from one time step would
always have multiple successors in the next time step. Through merging, several
of those successors are combined to form a single Proxel whereby the number of
Proxels per time step is bounded for many models. Yet, both algorithms differ
in the circumstances under which mergable Proxels exist:

In the Proxel simulation, the age vector elements are discretized according
to the time step size and so Proxels that would otherwise only have similar age
vectors thus have identical ones and can be merged. In CHnMMs, age values
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are not discretized and can take on potentially any positive real value, virtually
eliminating chance mergings. This potentially reduces the probability of Proxel
mergings and thus increases the required computational effort.

Besides those virtually impossible chance mergings, Proxels can only be
merged in CHnMMs when the most recent symbol emission at which each ac-
tivity was completed matches between the Proxels. Figure 4.2 visualizes this
behavior: In a model with three activities (the sets of three parallel horizontal
lines), three proxels ρ1, ρ2 and ρ3 may have arbitrary age vectors at the time
of the On−4th symbol emission and thus cannot be merged. However, their age
vector values at time On.t (length of the colored line segments) depend only on
the time that has passed since each activity has been completed (yellow circles)
most recently. Thus, in this example, irrespective of

• the prior age vector values of ρ1, ρ2 and ρ3

• which activity has been completed at On−4.t

• whether the second or third activity has been completed at On−2.t,

as long as the On−3th observation is caused by the completion of the first ac-
tivity, the On−1th observation by the second activity and the Onth observation
by the third activity, the Proxels will have identical age vectors at time On.t
and – when their discrete states match as well – will be merged in the For-
ward computation step for On. So, even though age vector elements can take
on potentially any real number, the set of possible age values at the time of a
particular observation only depends on the combinatorics of which activity may
have cause what prior observation. Proxels for which these combinatorics result
in identical age vectors can then be merged when their discrete states match as
well. This condition for Proxel merging holds far more often than chance merg-
ings and is likely to be a major contributing factor in the practical feasibility of
the approach.

Furthermore, in CHnMMs successor Proxels are only created for state
changes and not also for inactivity (as with the Proxel simulation). This re-
duces the number of successors of each Proxel by one and thus reduces the
factor by which the number of Proxels could multiply in each time step. And in
CHnMMs, Proxels are only created for the times of symbol emissions, whereas
the Proxel simulation has to create Proxels in discrete time steps which are
usually far smaller than the time intervals between discrete state changes in
order to reduce the approximation errors inherent in the method. So the num-
ber of times at which the number of Proxels may multiply is also far lower for
CHnMMs.

Thus, even though the CHnMM Forward algorithm does not use discretized
age vector values as the Proxel simulation method and is thus less likely to
merge Proxels by chance, it may still be practically feasible. The actual Proxel
merging behavior and the general behavior of the CHnMM Forward algorithm
are tested experimentally in the next section.

4.5 Experiments

In this section, an application example is given for the newly developed CHnMM
Forward algorithm, and the algorithm is tested for its practical feasibility with
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respect to computation time and memory consumption.

4.5.1 Application Example

The Tester model (cf. Figure 3.1 on page 32) can serve as an example for
the application of the CHnMM Evaluation task. Assume that during normal
operation the two machines both produce defective items with a probability
of only 0.01. But suddenly the overall defect probability as recorded by the
quality tester increases to about 0.052. There are three likely scenarios that
could explain than increase of defects:

• The first machine was damaged and thus produces more defective items

• The second machine was damaged and thus produces more defective items

• The quality of the raw materials used has degraded causing both machines
to produce more defective items

To determine which of the three cases occurred the CHnMM Evaluation task
can be used: Three variations of the CHnMM Tester model are built to repre-
sent the three cases. In each model and based on the expected values of the
machine production durations, the defect probabilities of the two machines are
adjusted in order to account for the total number of defects recorded in the
observation trace. Then the Evaluation task is performed for each model with
the trace of observations in question. The resulting P (O|λi) all have numerical
values of about 10−3000, but since these are virtual probabilities they cannot
directly be interpreted as probabilities. However, they can be used to compute
the conditional probability for each model to have generated the trace of ob-
servations given that the trace had to be caused by one of the three models, as
follows:

P (O by λi|O by λ1, λ2 or λ3) =
P (O by λi ∩O by λ1, λ2 or λ3)

P (O by λ1, λ2 or λ3)

=
P (O by λi)∑3
j=1 P (O by λj)

=
P (O|λi)∑3
j=1 P (O|λj)

=
sn P (O|λi)∑3
j=1 s

n P (O|λj)

=
P (O|λi)∑3
j=1 P (O|λj)

Thus, this conditional probability simplifies to normalizing each virtual prob-
ability by dividing it by the sum of all three virtual probabilities. The results
are shown in the following table:

2The reader is reminded that in this work no real-life data was used. Instead, all traces of
observations are synthetic traces created with Monte-Carlo simulations using the AnyLogic
simulation software [8].
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Figure 4.3: Plot of the number of Proxels created for each of the first 1400 time
steps of the CHnMM Forward computation of the Car Rental Agency model,
for a single trace (left) and the average over 100 traces (right).

Scenario Normalized Probability
Machine 1 damaged ∼ 1
Machine 2 damaged 1.22 ∗ 10−26

Raw materials degraded 2.89 ∗ 10−7

In this case, the first scenario is more than ten million times more likely than
the other two combined. Thus, if the assumption holds that only those three
causes for defects exist, then Machine 1 is overwhelmingly likely to be damaged
and needs to be repaired.

In a real production facility this Evaluation approach could be used to find
defective equipment based solely on existing data and without the need for a
physical inspection – which would require downtime – of the machines.

4.5.2 Time Complexity

While the approach has been shown to be applicable to practical problems, it
is still necessary to asses its limits of practical applicability.

To that end, we assess the number of Proxels per time step and the closely
linked computation time subject to increasing trace length: If the number of
Proxels per time step stays about constant with increasing trace length, then
the computation time per time step would also stay constant and the total
computation time for a trace would increase only linearly with increasing trace
length, allowing for almost arbitrary trace length. If, on the other hand, the
number of Proxels per time step increases with each time step then the total
computation time would increase superlinearly with increasing trace length and
could quickly render the Evaluation of longer traces infeasible.

To asses both properties, the CHnMM Forward algorithm was applied to
the Car Rental Agency model and the number of Proxels in each time step as
well as the cumulated computation time were recorded. In the Tester model,
the Evaluation of a trace for one day took only about 70ms and never needed
more than 12 Proxels per time step. Both are considered to be too low to make
realistic assessments.

The left-hand side of Figure 4.3 shows the number of Proxels for each time
step of a single trace of the Car Rental Agency model with about 1400 ob-
servations. Initially, the number of Proxels increases exponentially with each
time step. For the remaining trace, the number of Proxels per time step varies
unpredictably. The likely reason is that some successor Proxels are not just
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Figure 4.4: Plot of the cumulated computation time required for the CHnMM
Forward computation of the Car Rental Agency model.

unlikely but impossible, i.e. either Psojourn or Pchange is zero. In these cases
the successor Proxel is omitted completely (cf. Line 16 in the CHnMM For-
ward pseudocode). So, in instances where the majority of successors have zero
probability, the number of Proxels per time step declines. Otherwise it may
grow exponentially. How often each of these situations occurs depends on the
time and symbol of the current and potentially of all previous symbol emissions.
Since those are random, the number of Proxels per time step varies randomly
as well.

To better characterize the number of Proxels per time step the experiment
was repeated 100 times with different traces that were generated through 100
independent replications of the simulation model. The right-hand side of Figure
4.3 shows the average number of Proxels per time step over these traces. Here,
it is apparent that the number of Proxels per time step is bounded - for the
Car Rental Agency model about 22000 Proxels are generated per time step on
average - and this number does not grow with increasing trace length. This
means that the potential exponential growth of the number of Proxels per time
step due to each Proxel having multiple successors is successfully counteracted
by Proxel merging and the elimination of impossible Proxels, and does not limit
the practical feasibility of the approach for longer traces.

Figure 4.4 shows the corresponding cumulated CPU time for each obser-
vation, i.e. the computation time required to execute the CHnMM Forward
task up to the given observation. The total computation time was only about
a minute for a trace of 1400 symbols corresponding to an observation time of
about 160h. Thus, for this model, even real-time online behavior reconstruction
of CHnMMs would be possible.

For the first few observations there is an exponential relationship between
the number of observations analyzed and the time spent, corresponding to the
initial exponential growth in the number of Proxels. But for longer traces, the
relationship is mostly linear, matching the boundedness of the number of Proxels
per time step.

Thus, the computation time of the CHnMM Forward algorithm seems to
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increase linearly with the length of the observation sequence. Practically, this
means that the Evaluation even for very long traces is feasible.

Limits of Practical Applicability The CHnMM Evaluation task has been
shown to be practically feasible for the given models and trace lengths, but its
general limits of applicability have not yet been investigated. The algorithm
would be unfeasible if the number of Proxels per time step is too high to allow
for efficient behavior reconstruction. Depending on the application area, this
may mean that either real-time Evaluation is no longer possible or that the task
takes longer than a few hours.

The experiments on computational complexity have already shown that the
number of discrete states is a relevant but not a limiting factor for this practical
feasibility: While the Evaluation of the Tester model with two discrete states
took 0.07s, Evaluation of the Car Rental Agency model with 2500 times as many
discrete states took about 1000 times as long. Thus, it may be assumed that
the computation time increases approximately proportionally to the size of the
reachable set of discrete states. Consequently, an increase in the size of the
discrete state space does not dramatically impact the practical feasibility.

The other influencing factor on the number of Proxels is the set of possible
age vectors, since Proxels with different age vectors may not be merged. This
number is heavily influenced by the number of concurrent activities, because
those determine the dimension of the age vector3.

To test this influence of the number of concurrent activities on the compu-
tation time, we performed experiments on variations of the Tester model with
different numbers of machines that are concurrently producing the items. The
results for a trace covering an observation time of 100000s can be seen in Figure
4.5. The computation time grows exponentially with increasing number of con-
current activities. For two concurrent activities, the Evaluation takes less than
0.1s, for four activities already more than a minute and for six activities more
than 45 hours, which is slower than real-time.

Since the number of concurrent activities is not the only factor affecting
computation time, the results presented here are not generalizable. Yet, they
show a certain trend: for pattern recognition in human-computer interaction,
computer feedback on human input has to be instantaneous. In that application
area, models may thus have at most two to three concurrent activities. In other
scenarios restrictions on permissible computation time may be more relaxed.
But even there six concurrent activities seem to be the upper limit for practically
feasible Evaluation.

In summary, the practical applicability of the CHnMM Forward algorithm
depends somewhat on the size of the discrete state space, and is severely limited
by the number of concurrent activities.

The next two sections of this chapter contain ideas for further applications
and possible extensions to the CHnMM Evaluation algorithm as well as imple-
mentation considerations for the algorithm.

3Strictly speaking, the dimension of the age vector is given by the total number of activities.
But inactive activities of type RACE ENABLE have an age value of zero and therefore do
not impact the size of the set of possible age vectors.
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Figure 4.5: Computation time of the CHnMM forward algorithm for the Tester
model with different numbers of concurrently active machines for traces of the
same duration.

4.6 Further Applications and Extensions

Solving the Filtering Task In addition to the four basic HMM behavior
reconstruction tasks for which CHnMM algorithms are to be developed, other
HMM tasks exist. One of those is the Filtering task [66], which computes the
conditional probabilities of the model to be in each state given that all elements
from the trace are emitted so far. For CHnMMs, this task is solved as a side-
effect of the CHnMM Forward algorithm developed for the Evaluation task:
The Proxels in the CHnMM Forward algorithm represent the corresponding
virtual joint probabilities and thus normalizing those so that they sum up to
one converts them into conditional probabilities.

The Filtering task could be used to reconstruct individual probabilities of
the model to be in a particular state at a particular time given the partial trace
of observations from the past of that time. However, Filtering is rarely used,
because the Smoothing algorithm developed in Chapter 6 solves the similar
probability of the model to be in a particular state at a particular time, given
the complete trace containing observations from the past and future of that
time. Smoothing therefore uses more information than Filtering and can thus
make more accurate predictions.

Performance Counters For some application scenarios CHnMMs may be
extended by performance counters than count the occurence of certain events,
e.g. the number of defective items from Machine 1 in the Tester model. Such
a counter can be added as another supplementary variable to each Proxel, and
each successor Proxel would either inherit the counter value from its predecessor,
or would change it when certain conditions occur – e.g. by increasing it by one
whenever Machine 1 produces a defective item.

An execution of the CHnMM Forward algorithm and normalization of the
Proxel probabilities for the final time step would then compute the virtual proba-
bilities that the model is in each reachable state with each possible given counter
value. From those Proxels, statistics on the counter values such as their distri-
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bution (as a histogram) or their expected values could be derived in order to
assess the model behavior under the trace [13].

In the general case, this additional information is bought through an increase
in computational complexity, because Proxels may now only be merged when
their discrete state and all supplementary variables (the age vector and the
counters) match. This increases the number of Proxels by a factor according to
the number of reachable different values for the counter.

However, if only an expected value of the counter is desired, the computation
need not slow down noticably compared to the normal Filtering algorithm. In
this case, the merging condition can be relaxed to allow the merging of Proxels
even when their counter values do not match. The counter value of the merged
Proxel will instead be set to the weighted average of the two source counter
values, weighting them by their probabilities. This effectively precomputes the
expected counter values over the merged Proxels and does not change the final
result. Yet it does not increase the state space of the model compared to the
general application of performance counters and thus is far more efficient.

More Efficient Computation of Evaluation Probabilities The CHnMM
Forward algorithm contains a number of redundancies [11]: State change prob-
abilities are recomputed for every Proxel, even though they may be identical for
several Proxels. And after the creation of each Proxel, Proxels that share its
state have to be found in the whole set of Proxels as a prerequisite for merging,
even though the creation of Proxels follows certain patterns.

For example, in the Car Rental Agency model the probability to change the
current discrete state only depends on what type of customer is currently being
served and how long that service has been going on. It does not depend on the
number of people waiting in line, and yet the same value is recomputed even for
Proxels that only differ in that number of waiting people. Also, for each Proxel
a state change through the activity ”A premium customer arrives“ predictably
changes the discrete state by always increasing the number of waiting premium
customers by one. Yet this structure is not exploited to make the behavior
reconstruction more efficient.

MultiProxels [11] cluster states according to those exploitable model struc-
tures, and store probabilities for each state of a cluster, instead of generating
individual Proxels for each state. With MultiProxels, redundant state change
probability computations need only be performed once per cluster and not for
individual Proxels anymore. And for all states clustered in a MultiProxel, du-
plicates that should be merged tend to be located in only a single other cluster
and are often found there directly instead of having to scan the whole set of
Proxels. Since the MultiProxel approach only reorders the computations of the
CHnMM Forward algorithm, the results are not altered and are still exact.

Experiments have shown that the MultiProxel approach can reduce the com-
putation time for the CHnMM Forward algorithm by up to 80%. Their draw-
backs are the more complex algorithm, and potentially an increased memory
consumption and even a slowdown on some models. The latter occurs when
many states of a MultiProxel state cluster have a probability of zero and yet need
to be stored and processed since a MultiProxel is always processed completely.
So, MultiProxels can dramatically speed of CHnMM Forward computations,
but the decision on whether to use them currently requires expert knowledge.
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4.7 Implementation Considerations

While the pseudocode of the CHnMM Forward algorithm shows what needs to
be computed when, it does not in full detail explain how the respective behavior
can be implemented efficiently, and what other things need to be considered in
an actual implementation of the algorithm. These issues are addressed here.

4.7.1 Implementation Considerations Derived from
Proxel Simulators

The inductive CHnMM Forward algorithm computes all Proxels of a given time
step based only on the set of Proxels of the previous time step. Furthermore,
the result of the algorithm is only the set of Proxels of its final time step. Thus,
whenever the successors of a Proxel have been computed, the Proxel itself has
become irrelevant and can be discarded to save memory. When discarding
individual Proxels is too inefficient, region-based memory management [3] may
be used instead to efficiently allocate memory for individual Proxels of a time
step, but to discard the whole set at once.

The Matrix A of a CHnMM is usually sparsely populated, since the width
and height of the matrix are determined by the size of the state space, but
the number of elements populated in a matrix row is given by the number of
concurrently active transitions. In the Car Rental Agency model with its over
5000 states, the matrix would have over 25 million elements, but only about
15000 of those are populated. Thus, to save memory A should not be stored as
a full matrix, but as an adjacency list, i.e. for each discrete state to store a list of
which activities are occurring in that state, and which discrete state is reached
by each activity being completed. A positive side effect of this implementation
is that in order to compute all successor Proxels one does not have to traverse
a complete matrix row, but only the short list of activities occurring.

The modification of age vector values of a new Proxel (i.e. whether each age
value is kept from the predecessor, increased, or set to zero) depends only on
the completed activity and the discrete states of the Proxel and its predecessor.
Those decisions are thus constant for each time step and may be precomputed
for each non-∅ entry of A, instead of having to make the decisions for every
Proxel again.

And finally, a core concept of the Proxel-based CHnMM Forward algorithm is
the merging of Proxels with identical discrete state and age vector. This implies
that the efficiency of an implementation of the algorithm is heavily impacted by
its ability to efficiently find duplicate Proxels. Known efficient ways are based
on storing the Proxels of a time step in a dictionary [68] indexed by the discrete
state and age vector, for example in a hash table or a self-balancing binary tree
[35].

All of these issues occur in Proxel simulators as well and have been solved
there in the same fashion [43].

4.7.2 Implementation Considerations Derived from HMM
Forward Implementations

While the Proxel method computes the probability of the model to be in each
reachable state, the CHnMM Forward algorithm computes only those joint prob-
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abilities of the model to be in a given state and having emitted all observations
prior to the current time step. It ignores the probabilities of the model to be
in any state while not having emitted all prior observations, since these are
not relevant for the Evaluation task. Consequently, while the Proxel method
guarantees a probability sum of one in each time step, the CHnMM Evaluation
algorithm is not conservative and ”loses“ probability mass in each time step.

The actual loss of probability mass varies per time step and even per Proxel,
and is not easily predicted beforehand. So, while a Proxel in one time step may
have the lowest probability of all Proxels, one of its successors may have the
highest probability of all Proxels in the next time step. The consequences of
this behavior are twofold.

First, in the Proxel method, Proxels with very small probability (e.g. <
10−15) are assumed to not noticably impact the final simulation result and are
thus ignored to speed up the simulation. In CHnMMs this is not possible,
because the successor Proxels of a Proxel with very low probability may still
have a comparatively high probability and thus a heavy impact on the result.

And second, since probability mass is lost in each time step, the remaining
probabilities may become very small. In the experiments on the Forward algo-
rithm (c.f. Section 4.5), a typical Evaluation probability has been shown to be
about 10−3000. And since this is the probability sum of all Proxels of the final
time step, the individual Proxel probabilities are even lower. These numbers
are too low to be represented by the IEEE 754 double type which is used to
represent floating point numbers on x86 commodity hardware.

For HMMs the standard solution to this problem [23, 62] is to store logarith-
mic probabilities and perform direct addition and multiplication of these loga-
rithmic values by applying the product rule of logarithms and the Kingsbury-
Rayner formula [32]. This solution also works sufficiently well for CHnMMs,
even without dedicated hardware support for logarithmic arithmetic [15].

With these details, it should be possible to implement the CHnMM Forward
algorithm.

4.8 Conclusion

In this Chapter, an exact algorithm for the CHnMM Evaluation task has been
developed. Experiments have demonstrated the applicability of the algorithm
to the pattern recognition problem. And the computation time of the algorithm
on small models has been shown to be low enough to perform the Evaluation
task in real-time on the commodity hardware of desktop computers.

Thus, the first goal of this work to provide an exact solution to the CHnMM
Evaluation problem has been reached. In the next chapter, this Forward algo-
rithm is modified to solve the CHnMM Decoding problem.
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Chapter 5

The Decoding Task

While the Evaluation task determined only a single virtual probability to char-
acterize an unobserved behavior, the Decoding task directly reconstructs the
complete internal behavior of the model during the time period of the observa-
tions. Its goal is to determine the most likely sequence of internal unobservable
discrete states that a model has passed while emitting a given trace. Formally,
this means finding

arg max
Q=q0...qT∈{S1,...,SN}T+1

P (q0 . . . qT |o1 . . . oT ).

Here, the relevant probability can be rewritten to

P (q0 . . . qT |o1 . . . oT ) =
P (q0 . . . qT ∩ o1 . . . oT )

P (o1 . . . oT )

=
sT P (q0 . . . qT ∩ o1 . . . oT )

sT P (o1 . . . oT )

=
P (q0 . . . qT ∩ o1 . . . oT )

sT P (o1 . . . oT )
.

In this representation, the denominator does not depend on the actual paths of
internal states, and therefore does not affect the arg max. Omitting it yields the
alternative more practical representation of the Decoding task to find

arg max
Q=q0...qT∈{S1,...,SN}T+1

P (q0 . . . qT ∩ o1 . . . oT ). (5.1)

Here, the virtual probabilities over which the arg max is to be determined are
individual joint path probabilities of the model to traverse the given sequence
of discrete internal states while emitting the given observation sequence. The
Forward algorithm developed for the Evaluation task would already compute
those probabilities if no Proxel merging took place. However, if Proxel merging
was simply disabled in the CHnMM Forward algorithm, then the number of
Proxels would grow exponentially with each time step, rendering the approach
unfeasible.

Instead, in order to solve this tasks for CHnMMs, we will follow the same
approach as for HMMs (cf. Section 2.1.3) and modify the corresponding Forward

59
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algorithm to omit those paths that cannot possibly yield the highest joint path
probability. The resulting CHnMM algorithm is usually practically feasible, but
for long traces may consume too much memory. We will therefore also develop a
modified algorithm for the Decoding task that is slightly slower than the original
one, but requires far less memory.

5.1 The Basic CHnMM Decoding Algorithm

A näıve approach to the Decoding problem would be to simply compute the
probability of all possible paths of internal states and would then select the one
with the highest probability. As Equation 5.1 shows, the probabilities to be
computed for this task are essentially the joint probabilities that the Forward
algorithm would generated without Proxel merging: with Proxel merging, the
Proxel probabilities represent the probability of the model to be in a given state
at a given time and having emitted the trace so far. Without Proxel merging,
each Proxel is caused by a single path of internal states, since each Proxel has
exactly one direct successor (the one Proxel that caused its creation). Thus, each
Proxel’s probability of the final time step represents the desired joint probability
of the model to have passed through a single path of internal states and have
emitted the observation sequence. Selecting the one Proxel with the highest
probability from the Proxel set of the final time step would solve the Decoding
problem.

Unfortunately, as shown for the Forward algorithm, the computation without
Proxel merging would result in an exponential growth in the number of Proxels
with each additional time step and is thus unfeasible for all but very short traces.

The solution to this problem is to allow merging, but to change its semantics:
When two Proxels are to be merged in the Forward algorithm, this is because the
model has reached the same state (i.e. same discrete state and same age vector)
through two different paths. Merging is possible, because the possible future
behavior depends only on the current (identical) state and not the (different)
prior paths of internal states. Thus, the one Proxel with higher probability will
also cause all paths of future behavior to have a higher probability than the
corresponding paths of future behavior from the other Proxel. This guarantees
that of two Proxels to be merged the one Proxel with the lower probability
cannot lay on the path with the highest probability to explain the observation
sequence.

Consequently, when two Proxels with identical state for the same time step
exist in the Decoding task, the one with the lower probability can be discarded.
For Proxel merging this means that the merged Proxel does not contain the
probability sum of all paths that pass through it, but only the probability of
the most likely path.

With this small change the modified Forward algorithm outputs a set of
Proxels for the final time step where each Proxel represents the probability of
the most likely path to end in that state. The highest of these probabilities
is then the probability of the most likely path to explain the given trace of
observations, and the discrete state of the corresponding Proxel is the final
discrete state of that path.

What is missing to complete the Decoding task is to determine the remain-
ing states on that path. This is easily done by adding links to the predecessor
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Proxel: even with the modified Proxel merging of the Decoding task, each Proxel
of that task after the first time step has a unique predecessor Proxel (it has to
have at least one predecessor, since Proxels are only created by following possi-
ble activity completions from other Proxels; and it has at most one predecessor,
since all others are discarded through the modified merging). To solve the De-
coding problem one simply adds enough information to each Proxel to uniquely
determine its predecessor, i.e. the predecessor’s discrete state and age vector.
Then, when the Proxel representing the final state of the most likely path has
been determined by the modified Forward algorithm, its links and those of its
predecessors can iteratively be followed backwards to reconstruct the complete
most likely path of (discrete) states, thereby solving the Decoding problem.

The complete Decoding algorithm using modified Proxel merging and Proxel
backlinks is given as pseudocode in three parts: Algorithm 2 details the compu-
tations for a single time step of the modified Forward algorithm with alternative
Proxel merging semantics used to find the end state of the most likely path, Al-
gorithm 3 details the computations for a single backtracking step used to find a
given predecessor on the most likely path, and Algorithm 4 uses the other two
algorithms to solve the Decoding task for a given trace of observations.

All three algorithms assume that Proxels contain links to their predecessors,
so that the normal Proxel definition of ρ = (q, ~τ , α) needs to be extended to
ρ = (q, ~τ , α, qparent, ~τparent).

Algorithm 2: DecodingForwardStep

Input: A, TR,Rt, vt+1,∆t,N, T,K

Rt+1 = ∅;1

foreach ρ ∈ Rt do2

i = ρ.q;3

psojourn =
∏

j∈{1,...,N | aij 6=∅}

1− cdf(aij .dist)(ρ.τaij .id + ∆t)

1− cdf(aij .dist)(ρ.τaij .id)
;

4

foreach j ∈ {1, . . . , N |aij 6= ∅} do5

Rowi = {ai1, . . . , aiN};6

Rowj = {aj1, . . . , ajN};7

~τ ′ : τ ′k =8 
τk + ∆t if TRk ∈ Rowi ∧ TRk 6= aij ∧ ¬isExp(TRk.dist) ∧

(TRk ∈ Rowj ∨ TRk.aging)

τk if TRk /∈ Rowi ∧ TRk.aging ∧ ¬isExp(TRk.dist)
0 otherwise

µ = hrf(aij .dist);9

ρ′ = (j, ~τ ′, ρ.α ∗ psojourn ∗ µ(ρ.τaij .id + ∆t) ∗ aij .b(vn+1), ρ.q, ρ.~τ);10

if ρ′.α = 0 then continue;11

if ∃ρ′′ ∈ Rn+1 with (ρ′′.q = ρ′.q ∩ ρ′′.~τ = ρ′.~τ) then12

if ρ′.α > ρ′′.α then13

Rn+1 = (Rn+1\{ρ′′}) ∪ {ρ′};14

else Rn+1 = Rn+1 ∪ {ρ′};15

return Rn+116
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Algorithm 2 is almost identical to a single step of the CHnMM Forward
algorithm (cf. Algorithm 1 on Page 46) Its inputs arethe state transition matrix
M , the set of activities TR, the set of Proxels after the tth observation Rt, the
symbol vt+1 of the next observation, the time ∆t between the last and the next
observation, and the numbers of discrete states N , observations T and activities
K, respectively. The only differences to the Forward algorithm are the addition
of links to predecessor Proxels and the modified merging, which discards the
source Proxel with the lower probability.

Note that as with the Forward algorithm, all probabilities stored in Proxels
for the Decoding task are actually virtual probabilities that must not be inter-
preted as literal probabilities. However, since the ratio of two virtual probabili-
ties is the same as the ratio of the corresponding unknown actual probabilities,
the maximum of two virtual probabilities can be used in place of the maximum
of the unknown actual probabilities, and will yield the same path.

Algorithm 3: DecodingBacktrackingStep

Input: Rt, ρmaxt+1

Result: Proxel of the tth time step that is part of the most likely path of
internal states.

return only ρ ∈ Rt with ρ.q = ρmaxt+1 .qparent ∧ ρ.~τ = ρmaxt+1 .~τparent1

Algorithm 3 simply uses the links of a single Proxel ρmaxt+1
to find its

predecessor from the set of Proxels Rt of the previous time step.

Algorithm 4: Decoding Iterative

Input: A, TR,Π, O,N, T,K
Result: Sequence of internal states q0, . . . , qT that is most likely to have

created the sequence of observations O

R0 =
⋃

i∈{1,...N |πi 6=0}

{(i,~0, πi,∅,∅)};
1

for t = 1 to T do2

Rt = DecodingForwardStep (A, TR,Rt−1, ot.v, ot.e− ot−1.e,N, T,K3

);

ρmax = arg max
ρ∈RT

(ρ.α);
4

qT = ρmax.q;5

for t = T to 1 do6

ρmax = DecodingBacktrackingStep (Rt−1, ρmax));7

qt−1 = ρmax.q;8

return (q0, . . . , qT )9

Algorithm 4 uses the two other algorithms to solve the Decoding problem.
Its inputs are the same as for the Forward algorithm: The model specification
(A,Π), the set of activities TR, the trace of observations O and the numbers of
discrete states N , observations T and activities K. Like the Forward algorithm
it assumes that the trace being with a dummy observation o0 with an arbitrary
symbol and time o0.e = 0.
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It first creates all Proxels for all time steps with the modified Forward algo-
rithm (lines 2 and 3), then finds the Proxel representing the final state of the
most likely path (line 4) and finally iteratively follows the links of that Proxel
and its predecessors backwards to retrieve the complete path (lines 6–8).

Properties of the Algorithm The modified Forward algorithm and its back-
tracking as shown in Algorithm 4 together solve the CHnMM Decoding problem.
The computational complexity is identical to that of the normal CHnMM For-
ward algorithm that solves the Evaluation task: for the Forward part of the
computation, the same number of Proxels are generated in each time step of
the two algorithms, since successor Proxels with the same discrete state and
age vector are created in both algorithms and Proxels are also merged under
the same conditions. The adding of predecessor links to Proxels adds only a
small constant time overhead, and the following of links to predecessors in the
backtracking part of the algorithm requires only the lookup of a single Proxel
for each time step. Thus, judging by the computational complexity alone, the
algorithm for the Decoding task is practically feasible whenever the Forward
algorithm for the CHnMM Evaluation task is feasible and so the limitations of
practical feasibility of the Forward algorithm (cf. Section 4.5.2) ostensible apply
to the algorithm for the Decoding task as well.

However, the Decoding algorithm has a very different memory complexity:
In order to follow the links back to predecessors, those predecessor Proxels need
to exist and thus the algorithm must hold all Proxels of all time steps in memory
at the same time, whereas the Forward algorithm needed to store at most two
time steps at once.

This has a noticable influence on the memory consumption as the following
example shows: a single Proxel for the Decoding task of the Car Rental Agency
model has a size of 96 bytes on x86-64 hardware. For each time step the algo-
rithm generates on average 25000 Proxels, resulting in a memory requirement
of 2.4MB per time step. For the CHnMM Forward algorithm, this translates
to less than five megabytes of memory that are required to store all Proxels for
the respective current and next time step. To perform the Decoding task for
the Car Rental Station model with the trace used in the Experiments in Section
4.5 containing about 1400 observations would however require more than three
gigabytes of memory. That amount of memory is barely available for a single
application on 2011 commodity hardware.

The computational complexity of the algorithms has been shown experi-
mentally to be linear in the number of observations, meaning that behavior
reconstruction for far longer traces (e.g. 100000 observations and more) is com-
putationally feasible. For those traces, however, the memory consumption of
the modified Forward algorithm solving the Decoding task would be several
hundred gigabytes and thus would render such a task unfeasible with the cur-
rent algorithm on commodity hardware. In the next Section, an alternative
algorithm to solve the CHnMM Decoding task is therefore developed that has
a much more favorable memory consumption pattern.
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5.2 Reducing the Memory Consumption

One observation that enables the development of a more memory-efficient al-
gorithm for the Decoding task is that the existing algorithm indeed stores the
Proxels of all time steps, but does not require true random access over them. It
first linearly processes each time step from first to last, requiring only access to
the most recently processed time step. And after finding the Proxel representing
the final state of the most likely path it linearly processes each time step last to
first in order to determine the remaining discrete states on that path, requiring
only access to one time step at a time.

Ideally, one would like to have an inverse modified Forward algorithm that
takes the set of Proxels from one time step and reconstructs the set of Proxels
from the previous time step. This way, the Decoding Forward computation
could be executed by discarding all but the most recent time step as is done for
the Evaluation problem. And to reconstruct the most likely path, one would
iteratively use such an inverse Forward computation to reconstruct predecessor
time step Proxel sets, determining the element of the most likely path in that
time step and discarding all Proxel sets for later time steps. With such an
approach, the Decoding task would be solvable by only storing two Proxel sets
at any given time.

However, it is unlikely that an efficient inverse Forward algorithm is possi-
ble: In the Forward computation, successor Proxels are generated based on their
predecessor by adjusting the age vector and –among others – resetting the age
value corresponding to the activity whose completion is the cause of the new
Proxel. An inverse Forward computation would have to take such a Proxel with
zero-valued age vector elements and reconstruct the predecessor for which that
value was not zero. However, without additional information, that age value
could have had an arbitrary value and thus cannot be reconstructed unambigu-
ously. Evaluating additional information such as all prior observations from the
trace may limit the possible values for that age, but such an approach is likely to
be prohibitively slow by itself, because evaluating all possible influences of prior
observation on an age vector is a combinatorical task that essentially requires a
Forward computation by itself to be solved.

Yet, the initial observation that no random access to the Proxels of all time
steps is required still holds. And it can be exploited in a different way based
on a second observation: Through the deterministic nature of the modified
Forward algorithm, the set of Proxels for any time step can be reconstructed
by performing the modified Forward step (cf. Algorithm 2) again for that time
step (and for any of its predecessors if those have been discarded as well). Both
observation together suggest that it is possible to discard the Proxel sets of
arbitrary time steps in order to save memory, and to reconstruct them later
when they are needed.

However, the backtracking part of the Decoding task requires a reconstruc-
tion of those time steps from last to first, while the reconstruction is only possible
in the opposite order. Thus, an algorithm needs to be developed that discards
Proxel sets for as many time steps as possible, but retains a well-chosen small
subset of those time step Proxel sets in order to efficiently reconstruct the other
time steps when needed.
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5.2.1 Possible Proxel Set Discarding Policies

Many different policies for discarding time step Proxel sets are possible. A very
simple one would be to discard the Proxel sets of every other time step, and to
reconstruct those individually when actually needed for the backtracking. Such
an approach would reduce the memory consumption for the Decoding task by
about 50% and would require the reconstruction of only half of the Proxel sets,
increasing the computation time by about 50%. Yet, if the Decoding for a given
model and trace is practically unfeasible due to memory constraints, reducing
the memory consumption by 50% barely improves this feasibility.

Another extreme would be to discard the Proxel sets for every time step
that is not currently needed. For a trace of n observations, this would required
n modified Forward computation steps to determine the Proxel set of the final
time step and to determine the final Proxel of the most likely trace from that
set. With that one Proxel, the approach would then need to perform the first
n−1 modified Forward computation steps in order to reconstruct the Proxel set
for the last but one time step in order to find the last-but-one Proxel of the most
likely trace. This process would then be repeated, requiring the reconstruction
of i time steps to determine the ith Proxel on the most likely path, and thus
would require the reconstruction of O(n2) time steps. Therefore, this approach
requires only the storage of a constant number of Proxel sets independent of the
trace length and therefore has a feasible memory consumption for every trace
length. However, the resulting computation time of O(n2) in the number of
observations in the trace renders the approach practically unfeasible for longer
traces.

We therefore chose to design a policy for discarding time step Proxel sets
that has a more balanced trade-off between computation time and memory
consumption. This approach is based on the divide and conquer paradigm [61].
For a given trace of observations, it determines the Proxel set for the middle
time step of that trace while discarding all prior time steps Proxel sets. With
this Proxel set, the Decoding task can be solved for the second half of the
trace independent of the first half. And once the result for the second half (i.e.
the second half of the most likely path) is known, the Decoding task can be
performed for the first half independent of the second half. Since this division
into two halfes can be applied recursively, the memory consumption can be
reduced dramatically.

The algorithm is given as pseudocode in Algorithm 5. It uses the algo-
rithms DecodingForwardStep and DecodingBacktrackingStep from the known
Algorithms 2 and 3, respectively. Its input are the indices of the first and last
time step, lo and hi, which are to be processed in this recursion, the set of Prox-
els Rlo−1 from the time step before, the trace of observations O, state transition
matrix A, set of activities TR, the Proxel on the most likely path of time step
hi+1, ρmax, and the numbers of discrete states N , observations T and activities
K.

If the observation sequence is short enough (e.g. less than four observations),
the algorithm simply executes the ordinary CHnMM Decoding algorithms de-
veloped in the previous section to determine the Proxels of the most likely path,
and discards the Proxel set of each time step as soon as the Proxel belonging to
the most likely path of internal states has been determined for that time step
(lines 1–10). Otherwise it splits the trace into two halves (line 11). It then first
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performs the modified Forward steps for the first half and discards the Proxel
set for each time step whose successor has been computed (lines 12–17). The
resulting Proxel set Rmid for the middle observation of the trace is kept, and
the algorithm is executed recursively for the second half in order to determine
all Proxels on the second half of the most likely path (line 18). With the Proxel
of Rmid that is part of the most likely path now being known, the algorithm is
finally executed recursively for the first half of the trace to determine the first
half of the most likely path (line 19)1.

Algorithm 5: DecodingRecursive

Input: lo, hi, Rlo−1, O,A, TR, ρmax, N, T,K
Result: Sequence of internal states q0, . . . , qT that is most likely to have

created the time-stamped signal sequence

if hi− lo < 4 then1

for i = lo to hi do2

∆t = oi.e− oi−1.e;3

Ri = DecodingForwardStep ( Ri−1, oi.v,∆t, A, TR,N, T,K);4

for i = hi to lo− 1 do5

if i = T then ρmax = arg max
ρ∈RT

(ρ.α);
6

else ρmax = DecodingBacktrackingStep (Ri, ρmax) ;7

Ri = ∅ ;8

qi = ρmax.q;9

return ρmax10

mid = b(hi+ lo)/2c;11

∆t = olo.e− olo−1.e;12

Rlo = DecodingForwardStep ( Rlo−1, olo.v,∆t, A, TR,N, T,K);13

for i = lo+1 to mid do14

∆t = oi.e− oi−1.e;15

Ri = DecodingForwardStep ( Ri−1, oi.v,∆t, A, TR,N, T,K);16

Ri−1 = ∅17

ρ′ = DecodingRecursive (mid+ 1, hi, Rmid, O,A, TR, ρmax, N, T,K);18

return DecodingRecursive (lo,mid− 1, Rlo−1, O,A, TR, ρ
′, N, T,K);19

Accuracy This recursive Decoding algorithm performs the same operations
on the same data as the iterative algorithm: both construct the set of Proxels
for a given time step based on the set of Proxels from the previous time step;
and both follow the links of certain Proxels back to their unique predecessor in
order to determine the Decoding discrete state sequence. Thus, both algorithms
are also guaranteed to always compute exactly the same result.

The only difference between the two algorithms is that the recursive one
occasionally discards Proxel sets and recomputes them later. But since the

1In the pseudocode, the return value of the function DecodingRecursive is not the answer
to the Decoding task, but a value required to continue the algorithm, namely that Proxel of
the lo time step that lies on the most likely path. The actual output of the algorithm, the
elements of the most likely path of internal discrete states, are computed by line 9 and are
stored in global variables qi.
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Figure 5.1: A plot of the number of times that the modified Forward step had to
be executed for each time step in the recursive Decoding algorithm for a trace
of about 130 observations.

recomputation is based on the same data as the original computation, this does
not in any way affect the results.

Time Complexity To assess the time complexity of this algorithm in terms
of the number of time steps for which the Forward computation needs to be
performed it is noteworthy that this algorithm bisects the trace of observations
in each recursion step. Thus, the Forward computation for a time step is possibly
performed in in the first or the second half of that trace, but never in both. This
means that for each recursion depth, the Forward computation for each time step
is performed in at most a single instance of DecodingRecursive. Further, in
each call to DecodingRecursive, the Forward computation is performed at most
once for each of the time steps the call governs. Together with the bisection
property, this means that for a trace of length n, at each recursion depth at
most n Forward steps are performed.

Furthermore, the algorithm bisects the trace with each recursion step and
terminates once the trace is short enough. This means that the algorithm has a
recursion depth of at most dlog2 ne. Together with the at most n Forward steps
per recursion level, this yields an overall time complexity of O(n log n) in the
number of Forward steps.

Figure 5.1 shows the number of times that the modified Forward step had
to be executed for each time step of a trace of about 130 symbols in order to
solve the Decoding task with this algorithm. For the iterative algorithm, the
modified Forward step would have to be executed exactly once for each time
step. For the recursive one this number varies from time step to time step, but
– at least for this trace length – is about three on average.

Memory Complexity As mentioned for the time complexity, the recursive
Decoding algorithm has a maximum recursion depth of dlog2 ne. On each re-
cursion depth a call stores only a constant number of time steps at the same
time (two time steps for the iterative Forward computation to reach the mid-
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point time step, and afterwards the midpoint time step itself, while the recursive
calls are made). Thus, each recursion level requires only storage for O(1) time
steps, and with the maximum recursion depth of O(log(n)) this yields a memory
consumption of O(log(n)) in the number of observations in the trace.

Summary As shown, the recursive algorithm for the Decoding task has a time
complexity of O(n log n) and a memory complexity of O(log n) in the number
of observations in the trace and thus in the number of time steps. This is only
a slight increase in computational complexity from the O(n) of the iterative
algorithm, and a sharp reduction in memory complexity from O(n) to O(log n).
The slightly increased time complexity should barely impact the practical fea-
sibility of the algorithm, while the reduction of the memory complexity should
make the analysis of far longer traces feasible. Both properties are tested in the
experiments of the next section.

5.3 Experiments

In this section, the feasibility of the two Decoding algorithms with respect to
computation time and memory consumption will be tested experimentally.

5.3.1 Application Example

With the Decoding task it is possible to reconstruct the completion times of
individual activities in a model based on a trace of observations. For example,
suppose that in the production facility modelled by the Tester, both machines
have been determined to cause the same high fraction of defective items (cf.
first experiment in Section 4.5) and so should both be repaired. Now assume
further that due to severe financial constraints the company can only repair one
of the two machines. Further, some of the defective items have a characteristic
defect that points to a certain easily repairable damage in one of the machines.
Thus, if the company could determine whether all of these charateristic defects
are indeed caused by the same machine, they could quickly and cheaply repair
that one machine, while the other machine continues to produce items.

This problem can be approached with the Decoding task, which determines
the most likely internal state sequence of an observation sequence (here: the
production protocol). Since the CHnMM Tester was specified with two discrete
states that encode, which machine produced the most recent items (cf. Section
3.5), Decoding on that model directly reconstructs the most likely sequence of
completed activities as well and thus reveals the most likely machine to have
produced each individual item.

For this scenario, an experiment with a synthetic trace of 1500 symbols
(corresponding to about a day of observations) was conducted. In this case, the
actual cause of each defect was recorded and could be compared to the Decoding
result. The experiment revealed, that Decoding attributed 78.2% of all defects
to the correct machine. Thus, in the application example, Decoding would
show that almost 80% of the defects with a characteristic mark were caused by
Machine 1 and than it is therefore likely that Machine 1 has an easily repairable
damage and thus that repairing Machine 1 is the most time and cost-efficient
way of reducing the number of defective items.
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Figure 5.2: Plot of the computation time (CPU time) required by the iterative
and recursive Decoding algorithms for the Car Rental Agency model for various
trace lengths.

5.3.2 Comparison of Iterative and Recursive Approaches

In this Section, the iterative and recursive Decoding algorithms are tested exper-
imentally in order to assess their similarities and differences. As argued in Sec-
tion 5.2.1, both algorithms always compute exactly the same results. However,
they are designed to differ in their computation time and memory consumption,
and these differences are to be assessed experimentally.

For these experiments, the iterative and recursive Decoding algorithms were
tested with traces of various lengths on the Car Rental Agency model. The
Tester model with its two discrete states and its about ten Proxels per time
step was deemed too small to obtain accurate and meaningful measurements.

Figure 5.2 shows the computation time (CPU time) for both algorithms on
the Car Rental Agency model for various trace lengths. The iterative algorithm
was faster than the recursive one in all instances. And the factor by which it
is faster increases with increasing trace length, from about 2.8 for 125 obser-
vations to 4.8 for 1500 observations. This behavior is exactly as was expected
from the theoretical time complexities of O(n) for the iterative approach com-
pared to O(n log(n)) for the recursive one. Nevertheless, with the maximum
computation time of about five minutes for the tested trace lengths, the slightly
higher computational complexity of the recursive algorithm barely impacts its
practical feasibility.

The bigger difference between the two algorithms lies in the different memory
consumption patterns. Those are shown in Figure 5.3. The numbers represent
the actual memory consumption of the Proxels (here 96 bytes per Proxel) stored
concurrently. Furthermore, to interpret these numbers correctly, it is notewor-
thy that previous experiments (cf. Section 4.5) showed that the number of
Proxels per time step seems to be bounded, but that the actual number varies
randomly even between successive time steps.

The left hand side of Figure 5.3 shows the memory consumption of the iter-
ative algorithm. Since the peak number of Proxels for the iterative algorithm is
the sum of Proxels for all time steps, the effects of randomness are almost elimi-
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Figure 5.3: Plot of the memory consumption for storing the required Proxels for
the Car Rental Agency model under different trace lengths. The diagram on the
left-hand side shows the peak memory consumption for a single trace under the
iterative approach. The right-hand side shows the average of the peak memory
consumptions of 16 traces under the recursive Decoding algorithm. Note the
different scales for the memory consumption between the two graphs.

nated through that summation and thus the graph shows a clear linear increase
in the memory consumption for increasing trace length. For the tested model
and maximum trace length of 1500 symbols, that peak memory consumption is
already 2.8GB, an amount that barely fits in 2011 commodity hardware. De-
coding longer traces with this algorithm would therefore require memory paging
[78], which would slow down the computation by about two orders of magnitude
and would thus render the approach practically unfeasible for longer traces.

The right hand side of Figure 5.3 shows the corresponding memory consump-
tion for the recursive algorithm. Here, the peak memory usage is determined
by only a few time steps that are held in memory concurrently and thus the
effect of the random sizes of these time step Proxel sets on the actual memory
usage is noticeable. Thus, the peak memory usage of the recursive algorithm
for a single trace behaves erratically under increasing trace length. But with
the shown average of the peak memory consumption over 16 traces, a sublinear
increase in memory consumption with increasing trace length can be observed.
This fits well with the theoretical O(log(n)) memory usage.

Between the two algorithms it is noteworthy that the highest measured mem-
ory consumption of the recursive algorithm is less than 1% of the memory con-
sumption for the iterative algorithm. Together with the practical computation
time measurements this means that the recursive Decoding algorithm should
be practically feasible for far longer traces than those analyzed in this experi-
ment. The iterative algorithm on the other hand is slighty faster, but its much
higher memory consumption limits its practical applicability on today’s com-
modity hardware to traces about as long as those that these experiments were
conducted with.

5.4 Possible Extensions

Alternative Approaches to the Recursive Decoding Algorithm In this
chapter, the basic iterative Decoding algorithm has been argued to have a too
high memory footprint, and the recursive divide and conquer algorithm has been
developed as an alternative. Yet, several other approach are feasible to reduce
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the memory footprint of the Decoding task.
First, merging of Proxels with the modified Forward step effectively discards

all but one successor Proxel with a given state. Thus, some Proxels may not
have successors in the next time step. Without successors these can never be
part of the most likely path of internal states and can consequently be discarded.
When being discarded, their former predecessor Proxels may in turn no longer
have successors and may be discarded as well. The whole process of discarding
successorless Proxels can continue up to the Proxel set of the first time step.
Such an individual Proxel discarding scheme may be implemented through refer-
ence counting of the Proxels, or may occur naturally in programming languages
that feature a tracing garbage collector [85]. Depending on the model struc-
ture, this approach may discard a substantial fraction of the model’s Proxels,
reducing the approach’s memory footprint. And since relevant Proxels are never
discarded (as opposed to the recursive Decoding algorithm which also discards
relevant Proxels and recomputs them later), the links to predecessor Proxels
could directly be implemented as pointers and need not replicate the state of
the precessor Proxel, further reducing memory consumption. The downside of
this approach is its increased complexity and the unpredictability of how many
Proxel can actually be discarded. Furthermore, memory for Proxels needs to
be allocated per Proxel (instead of using a region-based approach to memory
management), further reducing the efficiency of the algorithm.

Second, other Proxel discarding schemes are possible. For example, one
may decide to perform the initial modified Forward computation for all n time
steps and to retain every

√
nth time step as a “checkpoint”. The backtracking

part of the Decoding path then initially requires only the reconstruction of the
set of the

√
n time steps between the last checkpoint and the final time step.

All of those are kept in memory and the Proxels on the most likely path are
determined of all those time steps. Afterwards, the Proxel sets for all these
time steps can be discarded and those for the time steps between the last and
the last but one checkpoint can be reconstructed in order to determine their
Proxels on the most likely path, and so on for all checkpoint intervals up to the
first time step. Overall, this approach requires the concurrent storage of 2

√
n

time step Proxel sets and each of the Proxel sets has to be computed at most
twice (once to generate the checkpoints, and once for the backtracking between
the checkpoints). The approach is generalizable to a hierarchy of m levels of
checkpoints, yielding a memory complexity of O(m m

√
n) and a time complexity

of O(mn) time steps.
Third, the original iterative CHnMM Decoding algorithm may be used and

Proxel sets of time steps that are not currently used may simply be stored on
background storage devices such as hard disks or even digital tape, which both
feature abundant storage capacity. Since all Proxels of a time step can be read
or written at the same time, random access is not required and even those
mechanical storage systems can sustain a relatively high throughput. However,
even their linear read/write throughout is usually one to two orders of magnitude
lower than that of PC RAM. Furthermore, writing data to disc usually requires
some kind of serialization, which further slows down the computation.

And finally, instead of requiring links to parents and backtracking each
Proxel may directly store the most likely path that lead to it. With this, the
most likely path can easily be found after the modified Forward computation
has reached the final time step, since it is already completely stored in the
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Proxel with the highest probability for that time step. Thus, no backtracking is
required and time steps whose successors have been computed can be discarded
as with the original Forward algorithm for the Evaluation task. The downside
of this approach is that the size of Proxels grows with the trace length. Thus,
for longer traces, it might be unfeasible to even keep the Proxels of a single
time step in memory. And since the list of predecessor Proxels grows in size, in
a näıve implementation, the time complexity of generating a Proxel will grow
linearly with the number of observations in the trace.

Extensions to the Decoding Task The algorithms that solve the Decoding
task may be slightly modified to solve further tasks on CHnMMs.

First, since the observations are caused by the completion of activities and
not by remaining in a state (as with HMMs), a practitioner may be interested
in the most likely sequence of completed activities instead of the most likely
sequence of discrete states passed. Fortunately, the latter can easily be converted
into the former: for CHnMMs, at most one activity causes the state change from
one state Si to another state Sj . Thus, if on the most likely path the nth discrete
state is Si and the n+ 1th discrete state is Sj , then the n+ 1th activity whose
completion caused that state change must have been aij . This lookup can be
performed for every pair of adjacent most likely states to retrieve the sequence
of most likely activities.

Second, it might be of interest to not only find the one most likely path of
internal system states, but to find the n most likely paths. In order to find
those, it is not sufficient to find the n Proxels of the final time step with the
highest probabilities and to backtrack the corresponding paths, because the
modified Forward algorithm discards all Proxels that are not locally part of the
most likely path and thus no Proxel in the final time step may even exist for
the second most likely to nth most likely path. Instead, Proxels would have to
separately store the path probabilities of the n most likely paths through them
along with the predecessors’ discrete state and age vector for all n paths. On
Proxel merging, only those paths that do not fall into the n most likely list are
discarded. With this approach, it is guaranteed that Proxels exist in the final
time step for all n most likely paths, and that those paths can be backtracked.
Multiple of those top n paths may end with the same Proxel, but do not need
to.

Third, in addition to the most likely path itself, the Decoding algorithm
may be modified to compute the conditional probability of that path given the
observation sequence. This probability can be useful to assess whether the most
likely path is overwhelmingly likely to have caused the observation, or whether it
is just slightly more likely than many other paths. That conditional probability
for a trace of n observations is formally:

P (Q|O) =
P (Q ∩O)

P (O)
=
snP (Q ∩O)

snP (O)
=
P (Q ∩O)

P (O)

Here, sn is the unknown scaling factor introduced through the virtual instanta-
neous state change probability of each of the n Forward computation steps (cf.
Equation 4.2 on page 44). With its help the equation shows that the desired
conditional probability can be computed as a fraction of two virtual probabili-
ties even though the scaling factor used in computing these virtual probabilities
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remains unknown. The virtual probability of the numerator is the one computed
for the Proxel of the final time step that ends the most likely path as part of
the modified Forward computation. It is thus already computed as a side effect
of solving the Decoding problem. The denominator is the Evaluation probabil-
ity as computed in Chapter 4. So, the probability of the most likely internal
path given an observation sequence can be computed alone from (intermediate)
results of the existing Decoding and Evaluation algorithms.

5.5 Conclusion

In this Chapter two algorithms that solve the CHnMM Decoding task have been
developed: The iterative algorithm is a slightly modified version of the Forward
algorithm used for the Evaluation task. The recursive algorithm on the other
hand uses a divide and conquer approach to solve the task with a slightly higher
time complexity but with a much lower memory consumption.

With that recursive approach, an exact algorithm exists for the CHnMM
Decoding problem that is practically feasible even for very long traces with
potentially hundreds of thousands of observations. Thus, the goal of providing
an exact practically feasible CHnMM Decoding algorithm is reached.

Additionally, the chapter presented several possible alternative approaches
to the time-memory tradeoff of the recursive algorithm, and several possible
extensions to the Decoding algorithm in general to reconstruct further properties
of the unobserved behavior.

In the next chapter, an algorithm for the CHnMM Smoothing problem will
be developed based on the CHnMM Forward algorithm from Chapter 4 and the
recursive CHnMM Decoding algorithm from this chapter.



74 Conversive Hidden non-Markovian Models



Chapter 6

The Smoothing Task

6.1 Introduction

The Smoothing task is the task to determine the probability of the model to
be in a particular state (i.e. discrete state and age vector) after a particular
observation, given the whole observation sequence, which generally includes
observations before and after the observation in question. Formally, it computes

P (qt = Si ∩ aget = ~τ |o1 . . . ot . . . oT ).

It is therefore similar to the results computed with the Forward algorithm,
which determines the probability of the model to be in a particular state at a
particular time, given only the observations from the past of the observation.
However, since the Smoothing task includes more information in the form of
future observations, its behavior reconstruction is usually more accurate.

The Smoothing task is also similar to the Decoding task in that the Smooth-
ing probabilities can be used to determine the most likely model state for each
time of an observation. Yet, while the Decoding task determines the most likely
sequence of discrete internal states, the most likely states reconstructed by the
Smoothing task need not form a valid sequence. Thus, Smoothing may re-
construct the most likely discrete state at time t to be Si and the most likely
discrete state at time t + 1 to be Sj even though there is no possible discrete
state change from Si to Sj . Which behavior reconstruction task is more useful
depends on the particular problem to be solved.

6.2 Developing a CHnMM Smoothing Algo-
rithm

Analogous to the derivation of the Smoothing probability for HMM in Section
2.1.4, the Smoothing probability for CHnMMs can also be split into

P (qt = Si ∩ aget = ~τ |o1 . . . ot . . . oT ) =

P (qt = Si ∩ aget = ~τ ∩ o1 . . . ot) P (ot+1 . . . oT |qt = Si ∩ aget = ~τ)∑
~τ ′

∑
j

P (qt = Sj ∩ aget = ~τ ′ ∩ o1 . . . ot) P (ot+1 . . . oT |qt = Sj ∩ aget = ~τ ′)
(6.1)

75
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So the probability of the system to be in a particular state at a particular time
given a trace of observations is the normalized product of the probability to
have reached that state at that time while having emitted the trace so far, and
the probability to still be able to emit the remaining trace given the state at
the time.

Thus, the task of computing the probability of the model to be in a partic-
ular state given a trace of observations can be split into a fraction containing
individual products of probabilities to be in a given state and having emitted
a prior trace, with the corresponding probabilities of being able to emit the
remaining trace given the current state. This fraction may be expanded arbi-
trarily by st, the unknown scaling factor by which the Forward probabilities
have been scaled after t time steps (cf. Section 4.3.3), to yield

stP (qt = Si ∩ aget = ~τ ∩ o1 . . . ot) P (ot+1 . . . oT |qt = Si ∩ aget = ~τ)∑
~τ ′

∑
j

stP (qt = Sj ∩ aget = ~τ ′ ∩ o1 . . . ot) P (ot+1 . . . oT |qt = Sj ∩ aget = ~τ ′)
.

(6.2)
Here, the stP (qt = Sj ∩ aget = ~τ ′ ∩ o1 . . . ot) are the virtual Forward probabili-
ties of the model to be in a given discrete state Sj with age vector ~τ ′ after the
final observation ot of the partial trace o1 . . . ot has been emitted. The Forward
algorithm already generates individual Proxels for all states for which this prob-
ability is non-zero, and therefore provides part of the solution to the CHnMM
Smoothing task.

Furthermore, in this equation the denominator consists only of summands
which are in turn products of a single virtual Forward probability and another
probability for the same state. Thus, whenever a Forward probability is zero,
the product is zero as well and can be omitted from the sum. Therefore, in
conjunction with the fact that the Forward algorithm computes all existing
non-zero Forward probabilities, the equation can be simplified by omitting all
factors from the denominator for which the CHnMM Forward algorithm did not
create a Proxel. Thus, given the set of Proxels Rt from the Forward algorithm
for the tth time step, and the Proxel ρ′ ∈ Rt representing the state for which
the Smoothing probability is sought, the equation to compute the Smoothing
probability can be simplified to

P (qt = Si ∩ aget = ~τ |o1 . . . ot . . . oT ) =

ρ′.α P (ot+1 . . . oT |qt = ρ′.q ∩ aget = ρ′.~τ)∑
ρ∈Rt

ρ.α P (ot+1 . . . oT |qt = ρ.q ∩ aget = ρ.~τ)
. (6.3)

If no such Proxel ρ′ for the state in question exists then the Forward probability
for that state is zero. Consequently, the numerator of the equation and thus
the whole Smoothing probability for that state is zero as well and no further
computations are required to yield that result.

Otherwise, the Forward algorithm provides half of the values required to
compute Smoothing probabilities. The probabilities that yet remain to be de-
termined are of the form

P (ot+1 . . . oT |qt = ρ.q ∩ aget = ρ.~τ).
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These are the so-called Backward probabilities of the model to emit the remain-
ing observations ot+1 . . . oT given that at the time of the tth symbol emission
the system was in a particular discrete state with a particular age vector.

6.3 Computing Backward Probabilities

To compute those Backward probabilities, a similar approach to the Forward al-
gorithm is possible by starting from the final time step and iterating backwards:
For the final time step, all observations from the trace have already been emitted
and thus the Backward probabilities to emit all remaining observations given
that the model is in a particular discrete state with a particular age vector is
always one, independent of the actual state and age vector.

With this induction initialization in place, the remaining Backward prob-
abilities can be computed through backward induction in the same way as is
done for HMMs [23]: the probability of a model to emit the remaining trace
ot . . . oT given the current discrete state and age vector is the sum over all pos-
sible successor states of the probabilities to change the discrete state to the
successor state under the emission of the observation ot, times the probability
that the now remaining trace ot+1 . . . oT can still be emitted given the successor
state. Here, the latter is a Backward probability for the next time step, which
is already known (since the induction for the Backward algorithm starts at the
final time step and works backwards). And the former is the same state change
probability that was used in the Forward algorithm in Chapter 4 (cf. Section
4.3.4).

While this approach determines how Backward probabilities can be com-
puted, a problem that remains is to determine for which states the Backward
probabilities have to be computed. This problem also occured in the develop-
ment of a memory-saving Decoding algorithm (cf. Section 5.2). It is related
to the information loss caused by resetting the duration of an activity to zero
after it has been completed, which is essential to enable Proxel merging and
thus to make any Proxel-based approach feasible. In the Forward algorithm,
age vector elements are set to zero when either the activity has been completed
or cancelled, and thus, its prior age is no longer relevant.

But the Backward algorithm iterates from the final time step backwards to
the first one. Thus, if an age element is zero in a Proxel for one time step, its
value in the previous time step has to be reconstructed in order to generate the
predecessor Proxel and to compute its Backward probability. But if the activity
was cancelled due to the state change in question then the prior age value could
have been potentially any real value inside the support of the duration proba-
bility distribution of the activity. Thus its prior value is unknown, preventing
the development of a dedicated CHnMM Backward algorithm.

A look at Equation 6.1 offers a possible solution: The equation to compute
a Smoothing probability depends only on products of Forward and Backward
probabilities that share a common discrete state and age vector. Since a product
is zero if at least one factor is zero, it follows that the Backward probabilities
need only be computed for those states for which the Forward probabilities are
non-zero. Consequently, the Backward computation need only be performed
for those combinations of discrete state and age vector for which the Forward
algorithm has created Proxels. Thus, while the CHnMM Backward computation
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seems not to be possible as a dedicated algorithm (which is in contrast to what
was possible for HMMs), it can be performed as an extension to the Forward
algorithm by using backward induction to add Backward probabilities to those
Proxels that the Forward algorithm created. Consequences of this approach
are that the Forward and Backward computations for CHnMMs cannot be run
in parallel (as was possible for HMMs), since the beginning of the Backward
computation depends on the output of the Forward computation, and that the
Proxels from the Forward computation for all time steps need to be retained (as
with the Decoding algorithm) in order to compute the Backward probabilities.

A final problem in the computation of Smoothing probabilities is that the
Backward probabilities are computed using the same factors as for the Forward
probabilities, and thus the Backward probabilities are also virtual probabilities,
while Equation 6.3 requires ordinary Backward probabilities. However, extend-
ing the fraction on the right-hand side of the equation with sT−t, the unknown
factor by which the backward probabilities of the tth time step differ from the
corresponding actual unknown backward probabilities, yields

P (qt = Si ∩ aget = ~τ |o1 . . . ot . . . oT ) =

ρ′.α sT−tP (ot+1 . . . oT |qt = ρ′.q ∩ aget = ρ′.~τ)∑
ρ∈Rt

ρ.α sT−tP (ot+1 . . . oT |qt = ρ.q ∩ aget = ρ.~τ)
=

ρ′.α P (ot+1 . . . oT |qt = ρ′.q ∩ aget = ρ′.~τ)∑
ρ∈Rt

ρ.α P (ot+1 . . . oT |qt = ρ.q ∩ aget = ρ.~τ)
. (6.4)

So the Smoothing probabilities can be computed from the virtual Forward and
Backward probabilities alone. With this information, all problems in the devel-
opment of a CHnMM Smoothing algorithm are solved.

6.4 The CHnMM Smoothing Algorithm

Since the Smoothing problem requires Forward and Backward probabilities to
be computed for the same set of discrete states and age vectors, it is useful to
extend the Proxel definition to contain both. We therefore define a Proxel for
the Smoothing problem as ρ(q, ~τ , α, β, γ), where the additional element β holds
the Backward probability of the state, and γ holds its Smoothing probability.

An Algorithm for the CHnMM Smoothing task then needs to perform the
following steps:

• Perform an ordinary CHnMM Forward computation for every time step of
the given trace. Here, the additional Proxel elements β and γ are simply
set to zero

• For all Proxels of the final time step, set the Backwards probability β to
one

• Perform the inductive Backward computation by determining the Back-
ward probability of all Proxels generated by the Forward algorithm, start-
ing from the last-but-one time step and ending with the first one. Here,
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the Backward probability of a Proxel is computed as the sum over all
activities in its state, where each summand is the product of

– the probability Psojourn that no activity is completed between the
two time steps

– the virtual probability Pchange that the activity in question is com-
pleted right at the time of the next symbol emission, given that no
activity has been completed before

– the probability that the observed symbol is emitted, given that the
activity in question was completed

– and the probability that the remaining trace of observations may still
be emitted, i.e. the Backward probability of the successor state.

• Determine the Smoothing probability of each Proxel. With the given
Proxel definition containing Forward and Backward probabilities, Equa-
tion 6.4 for the Smoothing probabilities of each Proxel ρ′ of the tth time
step simplifies to

ρ′.γ =
ρ′.α ρ′.β∑

ρ∈Rt

ρ.α ρ.β
. (6.5)

The complete Forward-Backward algorithm is given in pseudocode below in
three parts: Algorithm 6 details a single Forward step. Given state transition
matrix A, the set of activities TR the set of Proxels Rt for the tth time step,
the symbol of the t + 1th observation, the duration ∆t between the tth and
the t+ 1th time step and the numbers of discrete states N and activities K, it
computes the set of Proxels Rt+1 for the t+ 1th time step and determines their
Forward probabilities. The only difference to the steps of the original CHnMM
Forward algorithm (cf. Algorithm 1 on page 46) is that the additional Proxel
elements β and γ are set to zero.

The corresponding Smoothing Backward step is given in Algorithm 7. Its
input is the same as for the Forward step, apart from the set of Proxels Rt+1 for
time step t+ 1, for which Forward and Backward probabilities are already com-
puted, and the set of Proxels Rt for time step t for which Forward probabilities
have already been computed, and Backward probabilities shall be computed.

The final iterative CHnMM Forward-Backward algorithm to solve the
Smoothing task is given in Algorithm 8. It uses the Forward and Backward
steps from Algorithms 6 and 7 to compute the final smoothing probabilities. It
assumes that the trace O begins with a dummy observation with an arbitrary
symbol and the time stamp 0, so that the length of the first time step can be
computed as a time stamp difference in the same way as all other time step
lengths.

Its output is the sets of Proxels for all time steps, where each Proxel contains
Forward, Backward and Smoothing probabilities.

With the result of this algorithm, the Smoothing probabilities for all states
(discrete state and age vector) at all times of symbol emissions can be deter-
mined: If a Proxel in the given time step exists with the given state, then
the desired Smoothing probability is the Smoothing probability of that Proxel,
otherwise the desired Smoothing probability is zero.
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Algorithm 6: SmoothingForwardStep

Input: A, TR,Rt, vt+1,∆t,N,K
Output: Rt+1

Rt+1 = ∅;1

foreach ρ ∈ Rt do2

i = ρ.q;3

psojourn =
∏

j∈{1,...,N | aij 6=∅}

1− cdf(aij .dist)(ρ.τaij .id + ∆t)

1− cdf(aij .dist)(ρ.τaij .id)
;

4

foreach j ∈ {1, . . . , N |aij 6= ∅} do5

Rowi = {ai1, . . . , aiN};6

Rowj = {aj1, . . . , ajN};7

~τ ′ : τ ′k =8 
ρ.τk + ∆t if TRk ∈ Rowi ∧ TRk 6= aij ∧ ¬isExp(TRk.dist) ∧

(TRk ∈ Rowj ∨ TRk.aging)

ρ.τk if TRk /∈ Rowi ∧ TRk.aging ∧ ¬isExp(TRk.dist)
0 otherwise

µ = hrf(aij .dist);9

ρ′ = (j, ~τ ′, ρ.α ∗ psojourn ∗ µ(ρ.τaij .id + ∆t) ∗ aij .b(vt+1), 0, 0);10

if ρ′.α = 0 then continue;11

if ∃ρ′′ ∈ Rt+1 with (ρ′′.q = ρ′.q ∧ ρ′′.~τ = ρ′.~τ) then12

ρ′′.α+ = ρ′.α;13

else Rt+1 = Rt+1 ∪ {ρ′};14

return Rt+115
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Algorithm 7: SmoothingBackwardStep

Input: A, TR,Rt, Rt+1, vt+1,∆t,N,K
Output: Rn updated with backward probabilities

foreach ρ ∈ Rt do1

i = ρ.q;2

psojourn =
∏

j∈{1,...,N | aij 6=∅}

1− cdf(aij .dist)(ρ.τaij .id + ∆t)

1− cdf(aij .dist)(ρ.τaij .id)
;

3

foreach j ∈ {1, . . . , N |aij 6= ∅} do4

Rowi = {ai1, . . . , aiN};5

Rowj = {aj1, . . . , ajN};6

~τ ′ : τ ′k =7 
τk + ∆t if TRk ∈ Rowi ∧ TRk 6= aij ∧ ¬isExp(TRk.dist) ∧

(TRk ∈ Rowj ∨ TRk.aging)

τk if TRk /∈ Rowi ∧ TRk.aging ∧ ¬isExp(TRk.dist)
0 otherwise

µ = hrf(aij .dist);8

ρ′ = the one element of Rt+1 with ρ′.q = j ∧ ρ′.~τ = ~τ ′)9

ρ.β+ = psojourn ∗ µ(ρ.τaij .id + ∆t) ∗ aij .b(vt+1) ∗ ρ′.β10

pSum = 0;11

foreach ρ ∈ Rt do pSum+ = ρ.α ∗ ρ.β;12

foreach ρ ∈ Rt do ρ.γ = ρ.α∗ρ.β
pSum13

return Rt14

Algorithm 8: SmoothingIterative

Input: A, TR,Π, O,N,K, T
Output: {R0, . . . , RT }, each containing proxels with Forward,

Backward and Smoothing probabilities

R0 =
⋃

i∈{1,...N |πi 6=0}

{(i,~0, πi, 0, 0)};
1

for t = 1 to T do2

∆t = ot.e− ot−1.e;3

Rt = SmoothingForwardStep (A, TR,Rt−1, ot.v,∆t,N,K);4

foreach ρ ∈ RT do ρ.β = 1 ;5

for t = T-1 to 0 do6

∆t = ot+1.e− ot.e;7

Rt = SmoothingBackwardStep (A, TR,Rt, Rt+1, ot+1.v,∆t,N,K);8
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Additionally, one may want to determine the Smoothing probability for a
discrete state, i.e. the probability that the model is in a given discrete state
Si at the time t of a given symbol emission, given the observation sequence,
but irrespective of the particular age vector. This probability can easily be
determined from the Proxels of the Forward-Backward algorithm by summing
up the Smoothing probabilities for all Proxels from Rt that share the discrete
state Si:

P (qt = Si|O) =
∑

ρ∈{Rt| ρ.q=Si}

ρ.γ

This Decoding probability can be used to determine the individually most likely
discrete state at a given time, similarly to the Decoding task.

6.5 Reducing the Memory Consumption

The algorithm developed so far solves the Smoothing task, but has the same
feasibility problem as the Decoding algorithm: For the algorithm to work, all
Proxel sets of all time steps have to be retained. This increases the memory
consumption about linearly with the number of observations in the trace (as-
suming that the number of Proxels per time step is bounded) and thus makes
the approach unfeasible for long traces.

The remedy, too, is very similar to that of the Decoding algorithm: For
Decoding, the backtracking progresses from the last time step to the first one,
and the memory-efficient divide-and-conquer algorithm recomputes the Forward
probabilities as needed. For Smoothing, the Backward computation progresses
from the last time step to the first one, and the same divide-and-conquer ap-
proach may be used to recompute the corresponding Forward probabilities.

One additional issue for Smoothing is the size of the result set: for Decoding,
the result was the sequence of the most likely discrete states with a single symbol
per observation, which could easily be stored for almost arbitrary trace length.
But for Smoothing, the result is the set of the Smoothing probabilities for all
Proxels of all time steps; exactly the set of Proxels that is too big to make the
approach feasible. Thus, if random access is required to the set of all Smoothing
probabilities, then the approach is indeed limited to rather short traces (e.g.
about 1000 observations for the Car Rental Agency model).

Yet, in practical applications, random access to that huge set is usually not
required. For example, to determine the most likely discrete state after each
observation, the Proxel sets for each time step can be processed individually,
the most likely discrete state is extracted and the remaining Proxels can be
discarded. And in the CHnMM Training (cf. Chapter 7) algorithm based on
the Smoothing task the Smoothing results can also be processed individually
for each time step.

Thus, in order to reduce the memory consumption for the Smoothing task,
we propose a change in architecture: Instead of providing the user with the
whole set of Smoothing Proxels for all time steps at once, he is provided with the
Proxel set containing Forward, Backward and Smoothing probabilities for each
two consecutive time steps1 in turn, and can perform arbitrary data analysis

1How many time step Proxel sets should be provided to the user at the same time depends
on the application of the Smoothing task. To determine the most likely discrete state of
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on those Smoothing probabilities. Afterwards, the set of Proxels from the later
time step is regarded as obsolete and can be discarded to save memory.

Algorithm 9: SmoothingRecursive

Input: A, TR,O, lo, hi, Rlo (containing Forward probabilities, but no
Backward or Smoothing probabilities), Rhi+1 (containing both
Forward, Backward and Smoothing
probabilities), EvFunc,N, T,K

Result: Proxels of time step hi+ 1 have been deleted (if they existed),
Forward and Backward algorithms have been executed for time
steps lo to hi and the results of these time steps have been
passed to EvFunc for analysis. Backward and Smoothing
variables have been added to time step lo

if hi− lo < 4 then1

for i = lo+ 1 to hi do2

∆t = oi.e− oi−1.e;3

Ri = SmoothingForwardStep (A, TR,Ri−1, oi.v,∆t,N,K);4

for i = hi to lo do5

if i = T then6

foreach ρ ∈ RT do ρ.β = 1;7

pSum =
∑
ρ∈Rt

ρ.α ∗ ρ.β;
8

foreach ρ ∈ RT do ρ.γ = ρ.α∗ρ.β
pSum ;9

EvFunc (A, TR,Rhi,∅, O, hi,N, T,K);10

continue;11

∆t = oi.e− oi−1.e;12

Ri = SmoothingBackwardStep (A, TR,Ri, Ri+1, oi.v,∆t,N,K) ;13

EvFunc (A, TR,Ri, Ri+1, O, i,N, T,K);14

Ri+1 = ∅ ;15

return Rlo;16

mid = b(hi+ lo)/2c;17

for i = lo+1 to mid do18

Ri = SmoothingForwardStep (A, TR,Ri−1, oi.v, oi.e− oi−1.e);19

if i− 1 > lo then Ri−1 = ∅;20

Rmid = SmoothingRecursive (A, TR,O,mid, hi, Rmid, Rhi+1, EvFunc);21

return SmoothingRecursive (A, TR,O, lo,mid− 1, Rlo, Rmid, EvFunc);22

The whole recursive divide-and-conquer Smoothing algorithm is given in
Algorithm 9. It uses the Smoothing Forward and Backward steps as given in the
Algorithms 6 and 7. As with the iterative Smoothing algorithm, it assumes that
a dummy symbol with time stamp zero has been introduced at the beginning
of the trace, in order to not require special code to determine the duration of
the first time step.

each time step, providing each set individually is sufficient. Here, the decision to provide the
user with two consecutive time steps at once was made with regard to the Training task (cf.
Chapter 7), which requires the Proxel sets for two consecutive time steps to be provided at
the same time.
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The whole algorithm is very similar to the recursive Decoding algorithm (cf.
Algorithm 5 on page 66). The major difference between the two is that for the
Smoothing algorithm, the user provides an evaluation function EvFunc. This
function is called for each pair of consecutive time step Proxel sets and performs
the data analysis on those Proxels that is required in the respective application
area.

Algorithm 10: ExampleEvalFunc

Input: A, TR,Rt, Rt+1, O, t,N, T,K
Result: Determines the Probability P (q5 = S1|O) to have been in state

S1 after the emission of the fifth symbol, and stores it in the
global variable globalProb.

if t 6= 5 then return;1

globalProb =
∑

ρ∈Rt s.t. ρ.q=S1

ρ.γ;
2

A very simple example of such an evaluation function is given in Algorithm
10. It uses the Smoothing task to determine the probability that the model is
in the discrete state S1 right after the fifth observation. Note that this function
does not access most of the parameters passed to it. Those are present for
alternative evaluation functions that may need those values.

With different evaluation functions for the recursive Smoothing algorithm,
different aspects of unobserved behavior can be reconstructed. In the next
Experiments section, one additional example of such an evaluation function is
given, and the recursive and iterative algorithms are tested with respect to
computation time and memory consumption.

6.6 Experiments

6.6.1 Application Example

For an application example we resort to the example from used for Decoding
in Chapter 5: In the Tester model (cf. Figure 3.1 on page 32), both machines
produce items with the same defective probability. The individual defective
items have to be attributed to the originating machine in order to better plan
the repairs. We again use the same synthetic trace of 1500 symbols (about a
day of observations) for this task, but this time we use the Smoothing task to
determine the most likely source for each individual observation. This is done
with the Smoothing evaluation function for the recursive Smoothing algorithm
that is given in Algorithm 11. It simply sums up the Smoothing probability
of Proxels having the same discrete state, and then uses a majority vote to
determine the most likely source.

The results of this experiment are shown in Table 6.1. Using this Smoothing-
based approach 83.8% of the produced items could be attributed to the correct
machine, whereas the Decoding-based approach (cf. Section 5.3) only attributed
78.2% of the items correctly. This difference was to be expected, since the
Smoothing approach indeed attempts to identify the most likely correct source of
each observation, while Decoding only finds the most likely sequence of sources,
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Algorithm 11: MostLikelyStateEvalFunc

Input: A, TR,Rt, Rt+1, O, t,N, T,K
Result: The most likely discrete state after the tth symbol emission q∗t

if t = 0 then return;1

pM1 =
∑

ρ∈Rt s.t. ρ.q=Sprev from 1

ρ.γ;

2

pM2 =
∑

ρ∈Rt s.t. ρ.q=Sprev from 2

ρ.γ;

3

if pM1 ≥ pM2 then4

q∗t = Sprev from 1;5

else6

q∗t = Sprev from 2;7

Decoding Smoothing
Correctly Classified 78.2% 83.8%
Incorrectly Classified 21.8% 16.2%

Table 6.1: Results for the attribution of produced items to the correct source
for a trace of 1500 observations of the Tester model.

even if some of the elements of this sequence are rather unlikely. The downside of
the more accurate Smoothing approach is that its reconstructed sources may not
form a valid sequence of internal states. For example, the Smoothing approach
may attribute four consecutive observations to the same machine, even though
it is virtually impossible in this setting that the other machine has not produced
a single item in this time interval. Whether the more accurate Smoothing or the
guaranteed consistent Decoding is preferable depends on the actual application
scenario.

6.6.2 Comparison of Iterative and Recursive Approaches

To assess the feasibility of the iterative and the recursive Smoothing algorithms
their computation time and memory consumption are measured. Here, again,
the Car Rental Agency model is used for all experiments, since the Tester model
is too small and is solved too quickly for accurate measurements.

In the first experiment the computation time under increasing trace length
is assessed. Figure 6.1 shows the results for both algorithms, and the corre-
sponding values for the Decoding algorithms for comparison. For Decoding and
Smoothing, the iterative algorithm is faster than the recursive one, since it does
not have to recompute the Forward probabilities for discarded time steps.

For each type of algorithm (recursive and iterative), the Smoothing algo-
rithm is slightly slower than the corresponding Decoding algorithm. The expla-
nation is that for Decoding, an algorithm has to perform a certain number of
Forward steps; the additional backtracking involves only locating a single Proxel
per time step, which barely impacts the computation time. For Smoothing on
the other hand, in addition to the Forward steps a Backward computation step



86 Conversive Hidden non-Markovian Models

0 250 500 750 1000 1250 1500
0

100

200

300

400

Smoothing Recursive Smoothing Iterative
Decoding Recursive Decoding Iterative

Trace Length

C
P

U
 T

im
e

 (s
)

Figure 6.1: Plot of the computation time (CPU time) required by the itera-
tive and recursive Smoothing algorithms for the Car Rental Agency model for
different trace lengths. The computation time of the corresponding Decoding
algorithms is shown for comparison.

with essentially the same computation time as the Forward step has to be per-
formed for every time step. This also explains why the computation times of the
Smoothing algorithms differ by a much smaller factor (about three vs. five) than
those of the Decoding algorithms: For Smoothing, both algorithm have perform
the same number of Forward steps as their Decoding counterparts. But the
Smoothing algorithms both additionally have to perform the same number of
additional Backward steps, which brings their relative computation times closer
together.

Overall, the computation times of the Smoothing algorithms are very similar
to those of the Decoding algorithm. And as with the Decoding algorithms, the
factor by which the iterative algorithm is faster than the recursive one increases
along with the trace length, from 1.8 for 125 observations to 2.8 for 1500 ob-
servations. This behavior was to be expected, since the Smoothing algorithm
perform as many Forward computation steps as the corresponding Decoding
algorithms, and additionally perform at most as many additional (and equally
computationally expensive) Backward as Forward steps. Thus, the number of
Forward computation steps is the dominant factor on the time complexity, which
should thus be equal to that of the Decoding algorithms: O(n) for the iterative
approach and O(n log(n)) for the recursive one in the trace length n. Therefore,
judging by the computation time alone both approaches should be practically
feasible even for vastly longer traces (e.g. 100.000 observations and more).

However, the memory consumption of the algorithms limits the general fea-
sibility. Figure 6.2 shows the peak memory consumption of the two algorithms
under different trace lengths. They are very similar to the same measurements
for the Decoding algorithm (cf. Figure 5.3 on page 70 ). Indeed, the memory
consumption for Smoothing is smaller than that for Decoding of the same trace
length by a constant factor, because Smoothing does not need to store the age
vector of a parent Proxel in each Proxel.

Since the memory consumption and computation time of the Smoothing and
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Figure 6.2: Plot of the memory consumption for storing the required Proxels for
the Car Rental Agency model under different trace lengths. The diagram on the
left-hand side shows the peak memory consumption for a single trace under the
iterative approach. The right-hand side shows the average of the peak memory
consumptions of 10 traces under the recursive Smoothing algorithm. Note the
vastly different scales between the two graphs.

Decoding algorithms are similar, their limits of practical feasibility are close as
well: The iterative algorithms have a linear increase in memory consumption
with increasing trace length and reached the limit of physical memory present
in 2011 commodity hardware at traces with about 1500 observations. For the
recursive algorithms on the other hand the memory consumption increases only
with the logarithm of the trace length, so that even far longer traces can be
processed without a prohibitive increase in memory consumption. The drawback
of the recursive algorithms is their slightly increased computational complexity
compared to the iterative ones. But since their computational complexity is only
(O(n log(n))) in the number of observations (compared to O(n) of the iterative
approaches), this barely negatively impacts the practical feasibility.

6.7 Conclusion

In this chapter, the CHnMM equivalent of the HMM Backward computation
was developed and was used to develop an iterative algorithm to the CHnMM
Smoothing task. Based on experience from the development of the recursive De-
coding algorithm a recursive variant of the Smoothing algorithm was developed
as well. It has a slightly higher time complexity than the iterative approach,
but a dramatically reduced memory consumption. However, in contrast to the
Decoding task, the recursive Smoothing algorithm is only usable in application
areas where the computed Smoothing probabilities may be processed time step
by time step and no random access over all time steps is required.

Since the structure of the Smoothing algorithm is similar to that of the De-
coding algorithm, several of the alternative approaches to reduce the memory
consumption of the Decoding algorithm would also be applicable to the Smooth-
ing task as well. In particular, storing the Proxel set of time steps currently
not processed to secondary storage, and the checkpointing discarding scheme
(cf. Section 5.4) should work for the Smoothing task as well. In contrast, stor-
ing symbol sequences in Proxels to be able to omit the backtracking step is
not applicable, since the result of the Smoothing task is not a simple sequence
of discrete states, but the complete set of Proxels of all time steps. For the
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same reason, discarding individual Proxels that have become irrelevant is not
an option.

Still, the recursive algorithm has been shown to exactly solve the CHnMM
Smoothing task, and to be practically feasible even for big models (e.g. 5000
discrete states in the Car Rental Agency model) and traces longer than 1000
observations. Thus the goals of this work with respect to the Smoothing task
have been solved.

In the next chapter, the results of the Smoothing algorithm are used to train
conversive hidden non-Markovian models, i.e. to adapt existing models to better
explain given observation sequences.



Chapter 7

The Training Task

The algorithms for all CHnMM algorithms so far (Evaluation, Decoding and
Smoothing) assumed that a complete model of the system whose behavior is
to be reconstructed exists. In practical applications, this may not always be
the case: The behavior of the real system may have changed since the model
was built (e.g. machines age and thus fail more often or work slower) and thus
the model does not match the real system anymore. Or the real system may
be a black box whose behavior was never observable and thus could not be
analyzed to build a model (e.g. machine that performs a sequence of processing
steps, which must not be opened and so duration of individual steps cannot be
measured). In these cases no correct model exists of the real system and the
CHnMM behavior reconstruction algorithms would not be usable.

The solution is to develop a Training algorithm that can refine an existing
approximate model to better explain given observation sequences. Formally, the
Training task given an initial Model λ = (A,Π) and an observation sequence O
is to find an alternate model λ′ = (A′,Π′) with P (O|λ′) ≥ P (O|λ).

For HMMs, the most widely used Training algorithm is the Baum-Welch
algorithm [23, 62, 66]: (cf. Section 2.1), which is an instance of the Expectation-
Maximization (EM) approach[19]. It is thus a local optimization algorithm that
finds a better matching model, but not necessarily the best model to fit the
observation.

Since the goal of this work is to provide algorithms for CHnMMs to solve
the same tasks as are solved for HMMs, we will develop a CHnMM Training
algorithm based on the EM-based HMM Baum-Welch algorithm. Additionally,
in the second part of this chapter, we will develop an algorithm to directly
optimize parts of the model specification based on the Maximum Likelihood
principle [24].

7.1 Developing an EM Algorithm for CHnMM
Training

The EM-based CHnMM Training algorithm shall train the same model param-
eters as the Baum-Welch algorithm for HMMs. Since CHnMMs and HMMs are
specified differently, it is necessary to determine the correspondence between the

89
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HMM parameters trained by the Baum-Welch algorithm, and the corresponding
CHnMM model parameters:

1. The Baum-Welch algorithm for HMMs trains the initial state probabilities.
The description of a CHnMMs also contains an initial probability vector,
and thus this vector also needs to be trained for CHnMMs.

2. The Baum-Welch algorithm for HMMs trains the symbol emission prob-
abilities of all states. In CHnMMs, the symbols are emitted by and spec-
ified for the activities and not states and thus a Training algorithm for
CHnMMs needs to train the activity symbol emission probabilities.

3. Finally, the Baum-Welch algorithm for HMMs trains the state transition
probabilities, which have a direct relationship to the mean time until a
given state change occurs. In CHnMMs, the state change behavior is not
specified through constant probabilities, but through parametric or arbi-
trary probability distributions describing the durations of activities. Thus,
to solve the equivalent task of training HMM state transition probabilities,
we will train the mean durations of all activities of an CHnMM.

4. In addition to CHnMM parameters that are equivalent to trained HMM
parameters we will train the sample variance of the activity durations. For
the parametric probability distributions of CHnMMs the trained mean du-
ration would be insufficient to determine updated distribution parameters.
But for a given parametric probability distribution the mean and standard
deviation are often sufficient to uniquely determine the corresponding dis-
tribution parameters [30, 31].

7.1.1 Quantities to be Determined

Thus, to train a CHnMM the following quantities need to be determined, based
on a given trace:

1. the initial discrete state probabilities πi
1 for all discrete states Si

2. the symbol emission probabilities TRk.b(v) of all activities and all symbols

3. the mean activity durations E(TRk.dist) of all activities

4. the sample standard deviation stdev(TRk.dist) of all activities.

The first quantity is a Smoothing probability for t = 0 and can thus be com-
puted with the CHnMM Smoothing algorithm (cf. Chapter 6). To determine
the other three, the HMM Baum-Welch algorithm will be modified.

The Baum-Welch algorithm is based on the following general principle: First,
given the initial model, it executes the HMM Forward-Backward algorithm to
determine the Forward, Backward and Smoothing probabilities. These proba-
bility are then used for path counting, i.e. to compute the expected number of
times that the model took a given path of internal discrete states while emitting

1Note that the overbar in the expressions πi, TRk.b(v) and E(TRk.dist) does not mean
that those are virtual probabilities. It is simply used to differentiate those updated values
based on a given trace of observations from the original πi, TRk.b(v) and E(TRk.dist) from
the model specification.
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the observed trace. Ratios of these path probabilities are then computed to
determine the updated model parameters.

For example, the HMM Training algorithm uses the Smoothing probabilities
to compute the expected number of times that the model was in a particular
discrete state at all, and to compute the expected number of times that it was
in that particular state while a particular symbol was emitted. The ratio of the
latter divided by the former is then the updated probability that the particular
symbol was emitted given that the model was in the particular state, i.e. the
updated symbol emission probability.

For CHnMMs, we decided to follow the same approach. Some modifications
to the algorithm are necessary though, because in CHnMMs, a single activity can
be responsible for multiple different discrete state changes from and to different
discrete states. Thus, path counting for CHnMMs needs to be performed not
for each discrete state, but for each activity. A positive side effect is that since
multiple state changes can be caused by a single activity, there are generally
fewer activites to be trained in a CHnMM than state probabilities would need
to be trained in a corresponding HMM and thus less training data (shorter
traces of observations) should be required to train a CHnMM.

Expected Number of Activity Completions All quantities to be com-
puted will be shown to be dependent on the expected number of times Nk that
activity TRk was completed, given the current trace of observations.

Nk = E(TRk completed |O)

This can be broken down to the sum over all time steps that the activity TRk
is completed at the end of that time step

Nk =

T∑
t=1

P (TRk at ot.e|O)

and further to the sum over all time steps and all possible ages of the activity
TRk that it is completed at the end of that time step with that age:

Nk =

T∑
t=1

∑
τk

P (TRk at ot.e with τk|O)

At first glance, this sum over all possible ages of an activity appears to require
the evaluation of an infinite number of different age values. But since the Proxels
of the Smoothing task for each time step record all possibly occuring age values,
this sum can be computed based on these Proxel sets.

The actual formula for P (TRk at ot.e with τk|O) will be derived in the next
section, after it is shown that all model parameters to be trained can be com-
puted based on mathematical expressions very similar to that for Nk.

Symbol Emission Probabilities The emission probability of a particular
symbol caused by the completion of a particular activity given a trace is the
fraction of the number of completions of that activity that actually emitted the
symbol, given the trace:

TRk.b(v) =
E(TRk completed and emitting symbol v|O)

E(TRk completed |O)
(7.1)
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Here, the denominator is Nk, and the numerator can be broken down similarly
to Nk to yield

TRk.b(v) =
1

Nk

∑
t∈{1...T |ot.v=v}

∑
τk

P (TRk at ot.e with τk|O).

Thus, in order to determine updated symbol emission probabilities, one only
needs to be able to compute the probability that a particular activity TRk is
completed at a particular time ot.e after a particular duration τk. This quantity
will be determined in the next section.

Expected Activity Duration The mean duration of an activity can be esti-
mated by dividing its expected total duration (the sum of time intervals during
which the activity occurred and which ended with the completion of the activity)
by the number of times that the activity was completed:

E(TRk.dist) =
E(Total duration TRk was active and later completed |O)

E(TRk completed |O)

Here again, the denominator is Nk, and the numerator can be broken down
to a similar sum as was Nk. But in this case, the sum in not just computed
over the probabilities of the activity to be completed in each time step with
each possible age, but the weighted sum of those ages τk, weighted by the
corresponding probability:

E(TRk.dist) =
1

Nk

T∑
t=1

∑
τk

P (TRk at ot.e with τk|O) τk (7.2)

The only quantity that cannot yet be computed in this formula is
P (TRk at ot.e with τk|O), which is also the only yet unknown quantity in the
computation of the symbol emission probabilities.

Standard Deviation of Activity Duration Equation 7.2 follows the or-
dinary formula for the computation of a sample mean for weighted samples:
The τk are the samples, and the P (TRk at ot.e with τk|O) are the correspond-
ing weights. The corresponding weighted sample standard deviation can be
computed based on the sum of weighted squared samples

samplesws =

T∑
t=1

∑
τk

P (TRk at ot.e with τk|O) τ2
k (7.3)

as [1]

stdev(TRk.dist) =

√
samplesws −Nk E(TRk.dist)

2

Nk − 1
. (7.4)

Thus, the only quantity required for a CHnMM Training algorithm that is yet
unknown is P (TRk at ot.e with τk|O). Its derivation is the subject of the next
section.
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7.1.2 Conditional Probability of Activity Completion

So in order to train CHnMMs, the probability P (TRk at ot.e with τk|O) needs
to be computed for all observation times ot.e, all activities TRk and all age
values τk that are possible for that activity at that time.

To compute this conditional probability, we adopt the standard HMM ap-
proach of first computing the (for CHnMMs virtual) corresponding joint prob-
abilities

P (TRk at ot.e with τk ∩O)

for all activities and all possible values for τk, and then normalizing them using
the law of total probability to obtain the conditional probability. Here again, the
computation of a conditional probability from the fraction of two virtual joint
probabilities is possible, because two joint probabilities for the same time step
are in the same ratio as the corresponding virtual probabilities (cf. Equation
4.3 on page 44) and thus

P (TRk at ot.e with τk|O) =
P (TRk at ot.e with τk ∩ O)∑

i

∑
τi
P (TRi at ot.e with τi ∩ O)

=
P (TRk at ot.e with τk ∩ O)∑

i

∑
τi
P (TRi at ot.e with τi ∩ O)

.(7.5)

So, only the virtual probabilities that an activity TRk is completed at time ot.e
after going on for τk time, P (TRk at ot.e with τk ∩ O), need to be computed.
For this case (activity completion at a given time with a given age) to occur,
the following must all hold:

1. After the t− 1th state change ot−1.e, the model may be any state (Si, τ
′)

but must have emitted the trace so far, i.e. it must have emitted the
partial trace o1 . . . ot−1. Additionally, since the age τ ′k of activity TRk
must reach τk at time ot.e, at time ot−1.e it must have been

τ ′k = τk − (ot.e− ot−1.e). (7.6)

2. At exactly the time of the tth symbol emission ot.e, the model must change
its discrete state to an arbitrary new state (Sj , τ

′′) through the completion
of activity TRk and must emit the symbol ot.v.

3. After that disrete state change to state (Sj , τ
′′), the model must still be

able to emit the remaining trace ot+1 . . . oT .

For a single pair of states, (Si, τ
′) and (Sj , τ

′′) this virtual path probability can
be computed from the Smoothing results: the first probability is the Forward
probability of the Proxel for (Si, τ

′), the second is the state change probability
as used in the forward and backward computations (the product of Psojourn,
Pchange and the symbol emission probability TRk.b(ot.v)), and the third is the
Backward probability of the reached state (Sj , τ

′′).
In contrast, the whole probability P (TRk at ot.e with τk ∩ O) allows for

arbitrary discrete states before and after the activity completion and almost ar-
bitrary age vectors τ ′ and τ ′′ (the kth element of τ ′ must conform to Equation
7.6 and τ ′′ must be the result of TRk being completed at time ot.e). Thus, its
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value is the sum over all possible path probabilities for all (Si, τ
′) and (Sj , τ

′′) for
which τ ′ conforms with Eqaution 7.6, for which Proxels exist from the Smooth-
ing algorithm and which are connected by the activity completion of TRk. This
summation can easily be done in the following way:

1. Select all Smoothing Proxels from Rt−1 whose age vectors conform with
Equation 7.6.

2. For each, determine the discrete state and age vector for the corresponding
successor Proxel caused by the completion of TRk at time ot.e. This can
be done in the same way as detailed in the CHnMM Forward algorithm
(cf. Algorithm 1), where the successor Proxels are generated. With this
discrete state and age vector, find the corresponding successor Proxel in
Rt.

3. For each pair of Proxel and successor Proxel, compute the virtual path
probability as the product the Proxel’s Forward probability, the state
change probability between the two states and the successor Proxel’s Back-
ward probability.

4. Sum up all of those path probabilities.

This way, the joint activity completion probability P (TRk at ot.e with τk ∩ O)
is determined. With all these virtual joint path probabilities known the corre-
sponding conditional probabilities P (TRk at ot.e with τk|O) can be computed
(cf. Equation 7.5). And with those in turn, all updated model parameters
for the Training task can be computed. The next section summarizes all steps
required for the CHnMM Training.

7.1.3 Summary of CHnMM Training Steps

With the formulas derived in the previous section, the whole approach for
CHnMM Training is to

1. Execute the Smoothing algorithm (cf. Chapter 6) to provide Forward,
Backward and Smoothing probabilities for all states in all time steps.

2. Use the Smoothing probabilities for t = 0 as the new initial state proba-
bilities, i.e.

πi = ρ.γ s.t. (ρ ∈ R0 ∧ ρ.~τ = ~0 ∧ ρ.q = Si).

3. For each time step t use the probability computation from the previous
section to compute all individual conditional probabilities that the model
was in a given state since the t−1th state change, changed its state through
the completion of some activty TRk at the time of the tth state change
after going on for some τk time, and altogether emits the whole trace O.

4. For each time step t sum up these probabilities P (TRk at ot.e with τk|O)
over all occuring values for τk (those for which Proxels exist) to yield
P (TRk at ot.e).
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5. Interpret these conditional probabilities as the expected number of times
that activity TRk is completed during the tth symbol emission. Then,
sum up these expected values of an activity over

(a) all time steps to yield E(# state changes by TRk|O) = Nk

(b) all time steps that were reached under emission of symbol v to yield
E(# state changes by TRk with symbol v|O)

6. Compute the new symbol emission probability TRk.b(v) of the activity
TRk as the quotient of those two quantities (cf. Equation 7.1). This
completes the training of CHnMM symbol emission probabilities.

7. Use the computed P (TRk at ot.e with τk|O) with Equation 7.2 to deter-
mine the mean duration of each activity E(TRk.dist).

8. Similarly, use the computed P (TRk at ot.e with τk|O) and E(TRk.dist)
in Equations 7.3 and 7.4 to determine the standard deviation of each
activity duration stdev(TRk.dist)

With this algorithm, the individual model parameters can be trained, as long
as random access to all Proxels of all time steps is possible. However, requiring
random access to all Proxels of all time steps is often practically unfeasible
due to the high memory consumption. Therefore, in the next section these
computations are reordered to yield an efficient algorithm for the Training of
all relevant model parameters without requiring random access to the Proxels
of all time steps.

7.1.4 Efficient Computation of Training Probabilities

The CHnMM Training algorithm as given in Section 7.1.3 works, but has some
disadvantages: First, as shown in the Smoothing chapter the set of Proxels of
all time steps that this algorithm needs access to may require too much memory
to fit into the RAM of commodity hardware, rendering the approach unfeasible
for longer traces. This can be mitigated by noting that in order to compute the
updated model parameters, one in one case needs access only to the Proxels of
the first time step (for Πi) and on all other cases needs to compute a sum on an
expression over all time steps (for TRk.b(v), E(TRk.dist and stdev(TRk.dist)).
Thus, the computations can be serialized to access only the Smoothing Proxel
sets time step by time step. This allows for the Training algorithm to be im-
plemented as a evaluation function to the Smoothing algorithms, where only
O(log(T )) time step Proxel sets need to be stored in parallel. This is the ap-
proach we follow in this section.

Second, following the computations detailed above to the letter would mean
to repeatedly filter the set of Proxels for each time step to find those in which a
given activity is going on for a given duration. Instead, we process each Proxel
only once, note the age of each activity at the time of the next symbol emission,
and directly add the corresponding joint probability to the counters for the
total activity completion probability as well as for the weighted sum of activity
durations and weighted squared sum of activity durations. The normalization
needed to convert the computed joint probabilities is deferred until the end of the
processing of all Proxels for that time step, since at that time the normalization
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constant is naturally known as the sum of all individual path probabilities for
that time step (cf. Equation 7.5).

The complete CHnMM Training algorithm that accounts for all of these
changes is given in Algorithm 12 as a Smoothing evaluation function. The
Smoothing algorithm calls this function individually for each time step, but
always also provides the Proxels for the next time step, since their Backward
probabilities are required for this computation. Consequently, the algorithm
cannot be executed for the Proxel set of the final time step (line 1).

While processing the Proxels for the first time step the updated initial state
probabilities are extracted from the corresponding Smoothing probabilities (line
2). Then, for all time steps but the last one, for each Proxel all successor
Proxels in the next time step are determined (lines 3–15) in the same way as
this is done in the Forward algorithm (cf. Algorithm 1 on Page 46). But
in the case of the Training task, those successor Proxels already exist from
the Backward part of the Smoothing algorithm. So, each existing successor
is located (line 16). And its Backward probabilities is used along with the
Proxel’s Forward probability and the state change probability between their
states to determine the virtual joint path probability (line 17). This probability
is then used in turn in the running sum of all path probabilities (line 18), the
probability that the corresponding activity caused the state change (line 19) as
well as the weighted sum of activity durations and squared activity durations
(lines 20 and 21). Once this process has been completed for all Proxels of a given
time step, pAnyActivityCompleted holds the sum of all path probabilities and
thus the normalizing factor for this time step, and so the computed running
sums for this time step are normalized in order to convert the computed joint
probabilities to the corresponding conditional probabilities, and those are added
to the corresponding running sums over all time steps (lines 18–19).

To work, the algorithm assumes that all variables whose names start with
global are initialized to zero before the Smoothing algorithm is executed, and
that those variables are kept in global (i.e. not function-level) memory locations
and are thus shared between all calls to the evaluation function.

After the Smoothing algorithm with the Training evaluation function has
finished, the quantities to be trained can be computed from those global variables
as follows:

• πi = globalInitialProbi

• TRk.b(v) =
globalActivityCompletedk,v

globalNk

• E(TRk.dist) = globalActivityDurationSumk

globalNk

• stdev(TRk.dist) =

√
globalActivityDurationSquaredk−globalNk E(TRk.dist)

globalNk−1

The next section evaluates how these quantities can be used to update the model
specification and thus solve the Training task.

7.1.5 Usage of Training Results

To train a model to adapt its parameters, one would repeatedly execute this
CHnMM Training algorithm with a single trace of observations, and after each
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Algorithm 12: TrainingEvalFunc

Input: A, TR,Rt, Rt+1, O, t,N, T,K
Output: Updated values for all variables prefixed with global

if t = T then return;1

if t = 0 then foreach ρ ∈ R0 do globalInitialProbρ.q+ = ρ.γ;2

symbol = oi.v;3

∆t = oi+1.e− oi.e;4

foreach ρ ∈ Ri do5

i = ρ.q;6

Psojourn =
∏

j∈{1,...,N | aij 6=∅}

1− cdf(aij .dist)(ρ.~τaij .id + ∆t)

1− cdf(aij .dist)(ρ.~τaij .id)
;

7

foreach j ∈ {1, . . . , N |aij 6= ∅} do8

µ = hrf(aij .dist);9

k = aij .id;10

transProb = Psojourn ∗ µ(ρ.~τk + ∆t) ∗ TRk.b(symbol);11

if transProb = 0 then continue;12

Rowi = {ai1, . . . , aiN};13

Rowj = {aj1, . . . , ajN};14

~τ ′ : τ ′k =15 
ρ.τk + ∆t if TRk ∈ Rowi ∧ TRk 6= aij ∧ ¬isExp(TRk.dist) ∧

(TRk ∈ Rowj ∨ TRk.aging)

ρ.τk if TRk /∈ Rowi ∧ TRk.aging ∧ ¬isExp(TRk.dist)
0 otherwise

successor = only element ρ′ ∈ Rt+1 with ρ′.q = j ∧ ρ′.~τ = ~τ ′;16

pathProb = ρ.α ∗ transProb ∗ successor.β;17

pAnyActivityCompleted+ = pathProb;18

pActivityCompletedk+ = pathProb;19

pActivityDurationSumk+ = pathProb ∗ (ρ.τk + ∆t);20

pActivityDurationSquaredk+ = pathProb ∗ (ρ.τk + ∆t)2;21

for k = 1 to K do22

globalActivityCompletedk,symbol+ = pActivityCompletedk
pAnyActivityCompleted ;23

globalActivityDurationSumk+ = pActivityDurationSumk

pAnyActivityCompleted ;24

globalActivityDurationSquaredk+ = pActivityDurationSquaredk
pAnyActivityCompleted ;25

globalNk+ = pActivityCompletedk
pAnyActivityCompleted ;26
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completion of the algorithm would update the model with the parameters ob-
tained through the Training.

However, as noted in the introducton to this chapter there is not a direct
correspondence between the quantities computed be the CHnMM Training al-
gorithm and the model specification: only the trained symbol emission proba-
bilities and initial probability vector can be used directly to update the model
specification based on a trace of observations. But the mean and standard devi-
ation of activity durations have no direct counterpart in the specification, since
CHnMM activities are not specified by their mean duration, but as parametric
or arbitrary continuous probability distributions. It is thus necessary to assess
under what conditions and in which way those activity duration statistics can
be used to update a model.

The mean activity duration was computed by measuring the total time that
an activity was going on until it was completed, and dividing it by the number
of times that the activity was completed during that time. But this computed
value is an estimate for the actual mean duration of the activity only if each
beginning of an activity is eventually followed by a completion. This estimate
is thus biased when activities can be cancelled and the corresponding durations
are thus not recorded. Therefore, the computed mean duration until completion
is an estimate for the actual mean of the probability distribution of the activity
only if the activity can never be cancelled, either because the activity is of type
RACE AGE, or due to a model structure where the only way that the model
can change its discrete state from a state in which an activity is active to a
state in which it is not active is through the completion of that activity itself.
In all other cases the computed mean duration is of little use for model training.
And since the standard deviation of the activity durations are computed for the
same samples, the same limitation holds for the applicability of the computed
standard deviation as well.

And even for those activities were the computed mean durations and sample
standard deviations can be used as an estimate for the mean duration and stan-
dard deviations of the activities, their usage depends on the type of probability
distribution that the activities follow. If the activity duration is known to be
exponentially distributed then the only parameter of that distribution is its rate,
the reciprocal of the computed mean value, and thus the computed mean du-
ration fully specifies the updated activity duration distribution function. Many
other well-known probability distributions such as the Erlang, Gamma, Lognor-
mal, Normal, Uniform and Weibull distributions are parameterized by exactly
two parameters which are directly related to the mean and standard deviation
of the distribution [1]. Thus the updated mean and sample standard devia-
tions determined by the Training algorithm can be used to determine updated
distribution parameters for those distributions.

But, if activity durations do not follow a well-known probability distribution
but are arbitrarily distributed or if the probability distribution function is un-
known, then there is no known way to use the trained mean activity duration to
update the model. Additionally, since this approach is EM-based it only finds
a local optimum of the model parameters and not the global optimum. Thus,
the Training approach described here is only a partial solution to the CHnMM
Training problem, even though it covers all model parameter equivalents to
those trained for HMM with the Baum-Welch algorithm.

While there is currently no solution for the first problem that the Training
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algorithm cannot train all aspects of a model, the next section details an alter-
native approach to CHnMM Training that in some instances solves the second
problem of finding the globally most likely parameter set.

7.2 Optimal Model Parameters through Maxi-
mum Likelihood Estimation

The EM-based CHnMM Training algorithm requires a fully-specified initial
model and modifies it to better fit the observations. This approach may not be
desirable if a fully-specified model cannot be supplied since some model parame-
ters are unknown, and randomly guessing values for the unspecified parameters
could cause the Training to reach a suboptimal local minimum.

In this section we therefore develop an alternate approach that leaves un-
known parameter values unspecified and find their truely globally optimal value.
This means that the approach finds those values for the unspecified parameters
that result in the highest Evaluation probability, i.e. the model with the highest
probability to have caused the trace used for training.

The approach is based on the maximum likelihood estimation (MLE, cf. [24])
principle: It attempts to describe the relevant optimization criterion (here: the
likelihood of the model to have created the trace) as a function of the unknown
model parameters. The position of the global maximum of that function then
corresponds to the most likely unknown parameter values.

The key difference between the classic MLE approach and the situation for
CHnMMs is that the classic MLE assumes that the individual observations
are statistically independent so that the likelihood function can be created as
the product of the individual observation probabilities (or the sum of the log-
likelihoods). In CHnMMs, however, the observations are not independent: Here,
the completion of an activity determines the next discrete state, which in turn
determine the next activity to be completed. Thus, there is a correlation be-
tween subsequent activities, and since the completion of activities causes the
observable symbol emissions, subsequent observations are correlated as well.

Consequently, the classic MLE approach of multiplying individual observa-
tion probabilities is not applicable to CHnMMs. So there are two challenges
for a MLE-based CHnMM Training algorithm: First, the likelihood function
for correlated observations has to be found. And second, the position of the
maximum of that likelihood function has to be determined in order to find the
most likely values for the unknown parameters. Both challenges are the subject
of the next two sections.

7.2.1 A Likelihood Function for Incomplete CHnMMs

In order to apply the MLE approach to CHnMMs, one needs to determine a
mathematical expression that describes the Evaluation probability (cf. Chapter
4) as a function of model parameters with unknown values. Using the Forward
algorithm is an obvious starting point, since the algorithm already computes
the Evaluation probability for a completely specified model.

The näıve extension of the Forward algorithm to determine a likelihood
functions would be to leave all unknown parameters of the model as symbolic
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variables, and to perform all computation of the Forward algorithm symboli-
cally. The resulting virtual Evaluation probability would then be a symbolic
mathematical expression in those symbolic variables and would therefore be a
likelihood function. And the position of the global maximum of that expression
would determine the most likely values for the unknown parameters.

Yet, while this approach is theoretically sound, it is not practically feasible:
When Proxels are merged, their probabilities are added. For symbolic proba-
bilities this requires a concatenation of the probability expressions of the source
Proxels, at least in the general case. Thus, whenever two Proxels are merged the
length of the resulting probability expression about doubles. And since Proxel
merging occurs in each time step, this causes an exponential increase in the
length of the Proxel probability expressions with increasing trace length, ren-
dering the approach practically unfeasible for all but the shortest traces. On the
other hand simply not merging Proxels would result in an exponential growth
of the number of Proxels per time step [29], rendering the approach unfeasible
as well.

Our solution to this feasibility problem is to restrict the mathematical ex-
pression representing the Proxel probabilities to a class that allows automatic
simplification of the concatenated expressions [12]. Such a class of mathematical
expressions would have to fulfill the following requirements:

1. When two expressions of that class are merged, then the resulting expres-
sion must not be substantially longer than either one of the two expres-
sions. This is required to limit the expression length caused by Proxel
merging and thus to keep Proxel merging feasible.

2. The length of a Proxel probability expression must not increase substan-
tially when multiplied by the state change probability (the product of
Psojourn, Pchange and the symbol emission probability) used in the induc-
tive Forward computation in order to keep it feasible.

3. The class needs to be closed under addition (for Proxel merging), multipli-
cation (for the inductive Forward computation), computation of Psojourn
(cf. Equation 4.1 on page 41) and computation of Pchange (cf. Equation
4.2 on Page 44) for all probability distributions. This means that when a
Proxel probability expression or the expression for a unknown model pa-
rameter is a member of the selected class, then all of these operations have
to yield expressions in that class as well. Otherwise, Proxel probability
expressions could “escape” the class, and would thereby violate the first
two requirements.

Unfortunately, no class of mathematical expression is known that fulfills all
three requirements, and it is unlikely that such a class exists: To be closed
under the Psojourn and Pchange of all conceivable continuous probability dis-
tributions would require a rather extensive, expressive class of mathematical
expression. The ability to simplify expressions to limit their length under addi-
tion and multiplication on the other hand requires a rather simple, limited class
of expressions.

To resolve this contradiction we decided to choose univariate polynomials as
our class of mathematical expressions, and to limit the applicability of the ap-
proach in order to make the class of those polynomials closed under all required
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operations. Since polynomials are not closed under the computation of Psojourn
and Pchange (if a distribution parameter is unknown and thus is replaced by a
symbolic variable or a polynomial in that variable, computed values for Psojourn
and Pchange will generally not by polynomials), the approach will not be ap-
plicable to the training of distribution parameters. One notable exception is
the Training of multiple exponentially distributed activities that always occur
concurrently and whose overall rate (i.e. the number of the times that any of
the activities is completed per time unit) is known (cf. Appendix B). Those are
closed and thus trainable using symbolic polynomials.

Additionally, univariate symbolic polynomials are closed under multiplica-
tion and addition only if the input polynomials are polynomials in the same
variable, i.e. when two univariate polynomials in different variables are added
or multiplied, the result is not a univariate polynomial, but a bivariate one.
Thus, the restriction to univariate polynomials further limits the applicability
of this MLE-based approach to models where all unknown parameter values can
be expressed as polynomials in a single common variable.

With these limitations univariate polynomials are closed under all required
operations, fulfilling the third requirement2. When adding the polynomials of
two Proxel probabilities during Proxel merging, all that needs to be done is
adding the corresponding coefficients of both polynomials. Thus, the degree of
a probability polynomial after Proxel merging is not higher than that of any of
the input polynomials, fulfilling the first requirement. And when multiplying the
probability polynomial of a Proxel with the state change probability polynomial
(whose length depends only on the model parameters and is thus independent of
length of the given trace) during the actual inductive Forward computation, the
degree of the Proxel probability polynomial increases only by the constant size
of the state change probability polynomial, fulfilling the second requirement.

Thus, with all three requirements fulfilled the following algorithm should be
a practically feasible approach to construct a likelihood function:

1. Express all allowed unknown model parameters (symbol emission prob-
abilities, initial state probabilities, rates of concurrent exponentially dis-
tributed activities with known total rate) as polynomials in a single free
variable.

2. Execute the CHnMM Forward algorithm (cf. Algorithm 1 on Page 46)
with this model; Perform all computations of the algorithm that involve
the free variable symbolically. Thus, all Proxel probabilities will no longer
be numbers, but polynomials in the free variable.

3. Sum up all Proxel probabilities of the final time step to yield the Evalua-
tion probability. Since the Proxel probabilities are symbolic polynomials,
the Evaluation probability will be a symbolic polynomial in the free vari-
able as well.

4. Interpret the Evaluation probability polynomial as a likelihood function
in the free variable.

2Allowing arbitrary multivariate polynomials would also have fulfilled this requirement.
But the length of a multivariate polynomial can increase substantially under multiplication,
violating the second requirement.
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The next section explains how this likelihood function can be used to deter-
mine updated model parameters.

7.2.2 Evaluation of the Likelihood Polynomial

The main goal of evaluating the likelihood polynomial is to extract the most
likely values of the unknown model parameters, and to that end to determine
the position of the valid maximum of that polynomial.

The accurate solution to this problem would be to symbolically compute
the first and second derivatives of the polynomial, to find the extrema using
numerical root-finding approaches [33] on the first derivative, and to select the
maxima from these roots using the second derivative. Additionally, potential
global maxima are interval boundaries for the valid intervals of the free variable,
those intervals in which all unknown model parameters expressed as polynomi-
als in the free variable have valid values (values in the interval [0, 1] for symbol
emission probabilities and initial state probabilities, values greater than zero for
rates of exponential distributions). For all of those potential global maxima, i.e.
the local maxima and the interval boundaries, the likelihood of the correspond-
ing parameter combination has to be determined by evaluating the likelihood
polynomial at their positions. The position (=the value of the free variable)
with the highest likelihood is then the global maximum.

An alternate less accurate solution that has practically been shown to usually
be sufficient is to sample the likelihood polynomial in small steps and chose the
one valid position with the highest likelihood of these samples as a sufficient
approximation of the most likely value of the free variable.

In both cases, the found most likely value of the free variable needs to be
inserted into all polynomials describing the unknown model parameters in order
to determine their most likely values.

Thus, this MLE-based CHnMM Training algorithm finds the most likely val-
ues of some unknown model parameters with a single iteration. The previously
developed EM-based Training approach on the other hand only finds a more
likely set of model parameters, and several iterations of that algorithm with
the same trace are required for the algorithm to at least converge to a locally
optimal parameter set. However, the symbolic computations of the MLE-based
algorithm introduce some difficulties for practical implementations that are de-
scribed in the next section.

7.2.3 Implementation Considerations

If symbol emission probabilities or distribution parameters are unknown then
the overall state change probability as the product of Psojourn, Pchange and
the symbol emission probability is a polynomial in the free variable. Thus, in
each time step the Proxel probabilities are multiplied by such a polynomial,
increasing the degree of the Proxel probability polynomial by at least one. The
likelihood polynomial as the sum of all Proxel polynomials of the final time step
may thus be a polynomial of very high order (e.g. of degree ∼ 1500 for the
traces used in the experiments of previous chapters).

This in turn causes the polynomial to be numerically unstable and thus re-
quires its coefficients to be stored with a high numerical accuracy in order to
obtain accurate results. As the next Section will show, the required precision is
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higher than the IEEE 754 double precision available in many programming lan-
guages and implemented in many hardware architectures. An implementation
of this algorithm on those platforms thus requires arbitrary precision arithmetic
[34] as provided by many software libraries such as GMP [26].

Furthermore, adding and multiplying Proxel probabilities are core operations
of this algorithm. The way of performing those operations may thus impact the
computation time and memory consumption of the algorithm.

For adding polynomials the naive approach of individually adding corre-
sponding coefficients (those for the same power) of both source polynomials is al-
ready asymptotically optimal: Since each coefficient of the two source operands
can potentially impact the result, they all have to be read at least once, result-
ing in lower bound of O(n) for the time complexity of adding two polynomials
of degree n. In the näıve approach, each coefficient of one polynomial is read
exactly once, added to the corresponding coefficient of the other polynomial,
and the result needs to be stored. This thus results in a time complexity of
O(n) in the degree of the polynomials.

For the multiplication of two polynomials the näıve approach is to multiply
each coefficient of one polynomial to each coefficient of the other polynomial.
The product of the ith degree coefficient of the first polynomial and the jth de-
gree coefficient of the second polynomial is then added to the (i+j)th coefficient
of the result. For two polynomials of degrees n and m this thus requires O(nm)
operations. More efficient algorithms with a lower time complexity exist [65],
but those are beneficial only for multiplying polynomials of similar degree. For
this Training algorithm, however, it is only necessary to multiply high degree
polynomials (the Proxel probabilities) with low degree polynomials (the speci-
fied symbol emission probabilities or rates of exponential distributions). Here,
the advanced algorithms have no practical advantage over the näıve implemen-
tation.

The algorithm implemented with these considerations as well as the initial
EM-based Training algorithm are tested experimentally in the next Section.

7.3 Experiments

In this chapter, two algorithms to solve the CHnMM Training task have been
developed. Those will now be tested in this section. First, an application exam-
ple for both algorithms is given. Then, it is argued why the computation time
and memory consumption of the EM-based approach are essentially identical
to the CHnMM Smoothing algorithm, and the computation time and memory
consumption of the MLE-based approach are tested. Finally, characteristics
specific to each algorithm are tested. The EM-based algorithm will usually
applied iteratively to successively improve a model; its results are thought to
converge to a local optimum. This convergence behavior is tested experimen-
tally. For the MLE-based approach, finding the global optimum is guaranteed
by the algorithm. But this approach requires a high numerical accuracy. How
high this accuracy needs to be is also tested in this section.
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Figure 7.1: Plot of the symbol emission probabilities for the symbol “Defective”
in the Tester model for several iterations until convergence. Iteration 0 is the
initial parameter set as estimated from the trace alone.

7.3.1 Application Example

As an application example we return to the Tester model and the initial task
of determining the probabilities with which each of the two machines produces
defective items. So far, this problem has been solved using the Evaluation
task for a special case, where only three values for the defect probabilities were
possible. Using the Training task it is possible to solve this problem even without
such limitations.

For the EM-based Training algorithm, solving this task means that arbitrary
values must first be used for the unknown parameter values. In this scenario,
the symbol emission probabilities (“ok” or “defective”) of the two machines are
unknown. In order to provide initial values for these, we determined the overall
fraction of defective items produced by both machines together as recorded in
the provided trace. This overall defective probability is then used as the initial
defective probability for both machines, and the probability to produce working
items is adjusted accordingly.

With this preliminary model the EM-based Training algorithm can be used
to determine more likely model parameters. Since in this scenario the actual
activity durations are known, the trained mean activity durations are ignored
and only the trained symbol emission probabilities are used to update the model.

Figure 7.1 shows the Training results for this model. Here, several iterations
of the Training task were performed until the model parameters converged to
a locally most-likely model. In this most likely model, the relevant defective
probabilities converged to about 0.1 for the first machine and to about 0.05 for
the second machine. These values can be taken as a good estimate for the de-
fective probabilities of the two machines, and can be used to make management
decisions regarding maintenance or replacement priorities.

The same problem can be solved with the MLE-based training algorithm as
well. Here, the challenge is to express all four unknown quantities (the symbol
emission probabilities for “ok” and “defective” of both machines, respectively)
as polynomials in a single variable. This can be done by estimating the total
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Figure 7.2: Plot of the normalized likelihood polynomial of the Tester model.
The independent variable is the “defective” probability of Machine 1.

number of produced items of each machine based on its mean activity duration
and the length of the observation time interval. With this estimate, the defect
probabilities of both machines can be relating to each other, since the expected
sum of produced defective items of both machines (expected number of pro-
duced items times the defect probability) has to match the recorded number of
defective items in the trace. Rearranging this equation shows that the defective
probability of one machine can be expressed as a polynomial in the defective
probability of the other machine. And since each machine has to emit either
the “defective” or the “ok” symbol, the “ok” probabilities are simply the com-
plementary probabilities of the respective “defective” probability. This way, all
four unknown symbol emission probabilities are expressed as polynomials in a
single “defective” probabilities. Consequently, all requirements for the execution
of the MLE-based Training algorithm are fulfilled.

Executing the MLE-based Training algorithm computes a likelihood poly-
nomial. To be better comprehensible, Figure 7.2 does not show the original
likelihood polynomial (whose values would be in the range of 10−3000), but a
scaled version where the polynomial has been multiplied by a constant value in
order for the area under the graph to yield 1. Such a scaling is permissible since
we are only interested in the position of the maximum of this polynomial, and
this position is independent of any actual scaling.

The position of the maximum of this polynomial - here about 0.1 - is then
the most likely value for the defective probability of Machine 1. And inserting
this value in the equations for the “defective” probability of Machine 2 yields
the corresponding most likely value for this parameter as well.

Thus, in this scenario both Training approaches compute very similar values
for the unknown model parameters.

7.3.2 Computation Time and Memory Consumption

As with all developed algorithms, the practical feasibility of the Training algo-
rithms is a primary concern. To that end, their computation time and memory
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consumption are to be evaluated.
For the EM-based Training approach, these properties can directly be de-

rived from the CHnMM Smoothing algorithm, since the EM-based Training al-
gorithm is implemented as an evaluation function for the Smoothing algorithm.
And that Evaluation function is almost identical to the CHnMM Backward com-
putation step (cf. algorithms 7 and 12 on pages 81 and 97, respectively). So, for
a trace of n observations the CHnMM Smoothing algorithm needs to perform
about nlog(n) Forward computation steps (or n if the iterative Smoothing algo-
rithm is chosen) and n Backward computation steps. The EM-based Training
algorithm needs to additionally execute the evaluation function n times, which
performs almost the same operations on the same data as the Backward compu-
tation, but retains only a constant amount of data. Thus, while the EM-based
Training algorithm increases the memory consumption by a small constant value
over the Smoothing algorithm and increases the computation time by a small
constant factor (< 2), its practical feasibility is virtually identical to that of
the Smoothing algorithm: Traces with over 1000 observations can feasibly be
processesed for models with thousands of discrete states as long as the model
has fewer than six concurrent activities.

The feasibility of the MLE-based Training approach is more difficult to as-
sess. On the face of it, it seems to have the same constraints to feasibility as
the CHnMM Forward algorithm developed to solve the Evaluation task, since
the core of the MLE Training algorithm is to perform the CHnMM Evalua-
tion task once using symbolical computations. However, the details of this
approach increase both computation time and memory consumption: The sym-
bolic computations require all probabilities to be stored as symbolic polynomials
as opposed to simple floating-point numbers. The degree of these polynomials
increases with each time step, increasing the memory consumption of individual
Proxel probabilities with each time step. Furthermore, due to the numerical
instability of the approach, each polynomial coefficient needs to be stored as a
high-precision number, which are bigger than normal floating-point numbers.
And finally, the computation time of mathematical operations on those poly-
nomials increases at least linearly with their length and thus is also heavily
increased. All of these effects cause a vast increase in computation time and
memory consumption for the MLE-based Training approach over the CHnMM
Forward algorithm.

To assess the actual computation time and memory consumption, experi-
ments on the Car Rental Agency model were conducted (the Tester model was
shown to be too small to accurately measure computation time and memory
consumption). In the Car Rental Agency model (cf. Figure 2.2 on page 21) the
symbol emission probabilities need not be trained, since only one symbol exists
and thus the completion of each activity is certain to emit that symbol. Thus,
the only model properties that can be trained with the MLE-based approach are
the rates of the exponentially distributed arrival times. To train those parame-
ters, the algorithm needs to know the combined rate of those activities (i.e. the
rate with which customers arrive independent of whether they are premium or
standard customers). This combined rate can be estimated quite reliably from
the trace, since on average half of the observations must be due to arrivals (while
the other half is due to the completion of the service, after which a customer
leaves).

With this estimate, the likelihood polynomial and the resulting most likely
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Figure 7.3: Plot of the average memory consumption and average computation
time over 20 traces for the Car Rental Agency model under different trace
lengths for the MLE-based Training algorithm using symbolic polynomials. The
numerical precision of the Proxel polynomial coefficients was fixed at 256 bits
for all trace lengths.

parameter value for the arrival rates were computed for several traces of ob-
servations. Initial experiments showed that the memory consumption of the
algorithm is too high to process the usual trace lengths of about 1500 symbol,
and so traces with only 300 symbols were used.

Figure 7.3 shows the results for the cumulative computation time and mem-
ory consumption averaged over 20 traces for different trace lengths. The com-
putation time increases quadratically (a quadratic regression of the plotted data
yields a coefficient of determination of R2 = 0.9993) with increasing trace length
and already reaches about 30 minutes for a trace of 300 observations. This
quadratic increase was to be expected, since the length of the Proxel probabil-
ity polynomials and thus the computation time per time step increases linearly
in the trace length (and the cumulative computation time is the sum of the com-
putation times over all those time steps). Thus, doubling the trace length would
quadruple the computation time. This behavior severely limits the feasibility of
the approach to process longer traces.

The memory consumptions of the approach (cf. right-hand side of Figure
7.3) increases linearly with increasing trace length, reaching a memory con-
sumption of almost 900 MB for traces containing 300 observations. Here, the
reader is reminded that the MLE-based Training approach is in essence a single
execution of the algorithm for the Evaluation task, which needs to store the
Proxels for at most two time steps concurrently. Thus, the linear increase in the
memory consumption with respect to the trace length is caused by the linear
increase of the memory consumption of the Proxels for a single time step. This,
too, is explained by the linear increase of the degree of the Proxel probability
polynomials with increasing trace length. Since the algorithm already stores
only Proxels for the two necessary time steps, there is no simple way of further
decreasing the memory consumption of the approach.

The linear increase in memory consumption along with the quadratic in-
crease in computation time severely limits the practical feasibility of the MLE-
based Training approach compared to all other developed CHnMM behavior
reconstruction algorithms. The tested Car Rental Agency model along with the
used traces are close to the limits of practical feasibility: bigger models (more
concurrent activities or bigger discrete state space) would quickly exhaust the
available memory in today’s commodity hardware, and longer traces would ad-
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ditionally also quadratically increase the computation time beyond the limits of
most practical applications.

Yet, especially the ability to processing long traces is very desirable, because
it counteracts the problem known as overfitting [86]: when only little data (a
short trace of observations) is used to train a complex model, the model tends
to become just a memorization of the observations instead of representing the
general behavior of the real system, of which the trace of observations is just
one realization.

7.3.3 Convergence Behavior for the EM-Based Training
Algorithm

The EM-based Training algorithm for CHnMMs was developed based on the
Baum-Welch algorithm[62], which is used to train HMMs. For the original
Baum-Welch algorithm, it has been proven that Training never results in a
worse model with respect to the Evaluation probability of a given trace. This
property is desirable for the CHnMM Training approach as well.

To test the convergence behavior we repeatedly randomly parameterized our
model and then iteratively used the EM-based training algorithm with a single
trace with 1500 observations in order to train the model. In particual, we used
100 different parameterizations of the model and for each parameterization per-
formed 60 iterations of the CHnMM Training task. Since those 6000 iterations
of the Training task a very time intensive, we performed them on the smaller
Tester model3. Here, the model parameters to be trained are the parameters
of the duration normal distributions of each machine as well as their defect
probabilities. The initial defect probabilities were chosen randomly from the
interval [0, 1], the production duration means from the interval [0, 500] and the
corresponding standard deviations from [0, 50].

The Training of the differently parameterized models converged to two dif-
ferent final models: of the 100 initial models, 64 converged to a model very close
to the actual model specification from which the used trace was generated. 12
models converged to a very different model with a far lower Evaluation prob-
ability (∼ 3 ∗ 10−3436 vs. ∼ 6 ∗ 10−3092). And for the remaining 24 models,
Training was not possible, because the random initial model had zero Evalua-
tion probability of generating the trace. Thus, no path of internal states in that
model had non-zero probability to generate the trace and so the path-counting
which forms the basis of the CHnMM Training algorithm was not possible. For
the same reason, the same issue occurs in the Training of HMMs. Thus, this
limitation that the initial model has to have a non-zero Evaluation probability
with respect to the given trace in order for the model to be trainable is shared
between the EM-based Training algorithms for HMMs and CHnMMs.

The convergence behavior for the 64 models that converged to the actual
model specifications is shown in Figure 7.4, with a linearly scaled axis for the
probability on the left-hand side and a log-scaled axis on the right-hand side.
Both plots confirm that the Evaluation probability is monotonically increasing

3This is only to say that we thought it impractical to use the bigger Car Rental Agency
model for the experimental validation. To train the model for a practical application one
would only use very few or even just a single initial parameterization and thus would need
far fewer total iterations. Thus, in practical applications, Training of the Car Rental Agency
model would still be feasible.
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Figure 7.4: Convergence of the Training results for those randomly parameter-
ized Tester models whose Evaluation probability converges to 6.606 ∗ 10−3092

(in both plots normalized to one). Both plots show the same data, but the one
on the right-hand side has a log-scaled axis for the probability.
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Figure 7.5: Convergence of the Training results for those randomly parameter-
ized Tester models whose Evaluation probability converges to 3.301∗10−3436 (in
both plots normalized to one). Both plots show data from the same experiment.
But the plot on the right-hand side has a log-scaled axis for the probability and
only shows the results for the first 14 iterations of each Training task, as later
iterations would be indistinguishable on a log scale.

with each iteration and thus the EM-based CHnMM Training algorithm here
always finds a better model.

Figure 7.5 shows the corresponding results for those initial models that con-
verged to a common alternative model. Here, the convergence behavior was not
monotone. While Training converged to the same model in all cases eventually,
for some initial models a more likely model was found in between and in these
cases further Training actually reduced the Evaluation probability and thus the
model quality. So the developed EM-based CHnMM Training algorithm cannot
guarantee to always find a better model.

Further evaluation of the data at hand, however, suggests that the algorithm
may still reliably be used to find models that fit the observations well. Both
plots in Figure 7.5 show that the reduction of model Evaluation probability only
occurs when the model used in Training is already very close to the optimal
model. So, Training never made a bad model worse and thereby converged
to arbitrary model irrespective of the data. It only made the locally optimal
model slightly worse. In particular, for all of these initial models that eventually
converged to the alternative model, the Evaluation probability of the final model
is only about 20% lower than that of the locally optimal model. This is in
contrast to the hundreds or even thousands of orders of magnitude [sic] by
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Figure 7.6: Convergence of the Training results for 100 random models where
probability distribution parameters were fixed and only symbol emission prob-
abilities were trained.

which the random initial models were less likely to have generated the trace
than the model that they eventually converged to during Training. Thus, while
the CHnMM Training algorithm cannot guarantee to find the locally optimal
model, it has experimentally been shown to always find models that are very
close to that optimum.

A likely explaination for that discrepancy between the locally most likely
model and the model that training may converge to is that the sample statistics
(mean and standard deviation) computed to train the activity durations are
good, but not optimal values for the distribution parameters. The reason for
this discrepancy is that the set of random samples from which the statistics
are computed is finite and thus the shape of the distribution given by those
samples does not perfectly match that of the specified continuous probability
distribution. Since those shapes do not match, the computed mean and standard
deviation of the samples are not the best explanation for the mean and standard
deviation of the continuous probability distribution. Using them as such (for
lack of better estimates) can lead to the observed behavior subsequent Training
iterations of a near-optimal model lead to a slightly worse model.

To test this hypothesis that the discrepancy between optimal distribution
parameters and those derived from sample statistics cause the non-monotonous
Training behavior, we performed an additional experiment. We recorded
the distribution parameters of the suboptimal model (∼ N(300.4, 36.75) and
∼ N(85.64, 40.09), respectively) that these Training instances converged to.
Additional Training experiments were then conducted where the activity du-
ration distribution parameters were fixed to these values and only the symbol
emission probabilities were trained. If the hypothesis holds then Training should
now always lead to more accurate models.

Figure 7.6 shows the results and confirms the hypothesis. Even though the
probability distribution parameters were fixed to those values to which some
traces converged after initially having found a better model, when only the sym-
bol emission probabilities are trained, then the Training convergence behavior
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Figure 7.7: Plot of the normalized likelihood polynomial of the Tester model
for different numerical precisions. The independent variable is the “defective”
probability of Machine 1. The vertical axis is log-scaled to visualize values
of vastly different magnitudes. Gaps in the graphs occur when the computed
likelihoods were negative.

to that model is always monotonic.
Thus, while the EM-based CHnMM Training algorithm cannot guarantee to

find the locally most likely model, it has been shown in all experiments to find
a model that is very close to that local optimum and overwhelmingly closer to
the optimum that the random initial models that the Training started with.

7.3.4 Numerical Stability of the MLE-based Training Ap-
proach

The MLE-based CHnMM Training algorithm generates polynomials of very high
degree. It is thus numerically unstable and requires a high numerical precision
to compute accurate results.

To analytically assess the numerical precision required to accurate results
we performed the Training task from the application example above using var-
ious numerical accuracies for the computation of the probability polynomial
coefficients and the sample of the resulting model likelihood polynomial.

Figure 7.7 shows the results for this Training of the Tester model with a
trace of 1500 observations. The horizontal axis specifies the possible values for
the unknown value from the model specification, the defect probability of the
first machine. Its range contains all valid probabilities for this parameter, i.e.
all those values for which the defect probability of the first machine and the
dependent defect probability of the second machine are in the range [0, 1]. The
vertical axis specifies the corresponding normalized model likelihood (scaled by
a constant factor so that the area under the graph is one). It is log-scaled to
better visualize the likelihoods which cover several orders of magnitude. If this
axis were linearly scaled, the graphs for all precisions of at least 192 bits would
look like the one in Figure 7.2.

Since the graph for 512 bits has the highest precision tested, it is likely to
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be the most accurate. Using this as the baseline of accuracy, it is clear from
the graph that the results for 64 and 128 bits differ from the correct results by
several orders of magnitude. Furthermore, both graphs have gaps where the
likelihood was computed to be negative. Starting with a precision of 192, the
graph agrees with the correct result at least for most of the displayed value
interval. The higher the numerical accuracy is, the longer is the section of the
graph with correct results. And only the graph for 512 bits seems to be correct
over the whole interval.

Thus, selecting a suitable numerical precision is crucial for the accurate
performance of the MLE-based Training algorithm. However, currently there is
no known way to determine the necessary numerical precision of the algorithm
beforehand. The only existing viable approach is to perform the computations
with different precision levels and to judge from the graphed results whether
the precision is high enough to provide reliable results.

In the experiment conducted, 512 bits of precision for the computations of a
polynomial of degree 1500 seems to be sufficient. Thus, a preliminary heuristic
for selecting the precision would be to use n/3 bits of precision for a computation
that results in a polynomial of degree n.

7.3.5 Summary

Overall, the MLE-based CHnMM Training algorithm was developed to always
find the most likely model parameters, and will do so if a numerical accuracy
sufficient for the degree of the generated polynomial is chosen. Its practical fea-
sibility is limited by its memory consumption and computation time to models
no bigger than the used Car Rental Agency model and to comparatively short
traces of about 500 observations.

The EM-based algorithm on the other hand was developed to only find a
better matching model with each iteration, and to converge to a locally most
likely model eventually. It has been shown that this behavior cannot be guaran-
teed and that EM-based Training may converge to a slightly sub-optimal model
when symbol emission probabilities and parametric probability distributions are
trained. The great advantage of the EM-based algorithm are its speed and –
when based on the recursive CHnMM Smoothing algorithm – the low memory
consumption, which both make the algorithm feasible for bigger models and
longer traces than the MLE-based approach.

7.4 Differences between the EM and MLE
CHnMM Training Algorithms

As two different algorithms for very similar tasks were introduced in this chapter
it is useful to discuss their differences.

The expectation-maximization algorithm similar to the HMM Baum-Welch
algorithm uses a fully specified model and a trace to update the model to better
explain the emission of the trace. It thus requires at least estimates for all
model parameters. The maximum likelihood algorithm on the other hand can
naturally deal with missing values and does not require estimates.

Further, the EM-based algorithm determines only a – usually – more likely
model to explain the observations. It requires iterations to let the model con-
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verge to a final likely model, and is not guaranteed to ever locate the globally
most likely model. The MLE-based algorithm offers a way of directly comput-
ing the values for the unknown parameters that are certain to be optimal with
respect to explaining the trace.

Additionally, each iteration of the EM-based algorithm requires the execu-
tion of the CHnMM Smoothing algorithm. For n time steps it thus requires a to-
tal of at least 2n Forward and Backward computation steps (or about n+n log2 n
steps if the recursive Smoothing algorithm is used to reduce memory consump-
tion). The MLE-based algorithm only requires a single Forward computation
consisting of only n Forward computation steps.

However, the MLE-based algorithm has some severe drawbacks itself: All
probabilities computations have to be performed on polynomials instead of sin-
gle floating point numbers. And those polynomials grow in size (i.e. in the
number of coefficients they consist of increases) with each time step. Thus, the
probability computations for each time step are not only more costly for the
MLE approach than for the EM approach, their cost even increases with each
time step.

Furthermore, with the increasing degree of the polynomials with each time
step, their numerical instability increases as well. Thus, the longer the trace
used for Training is the higher the precision of the polygon coefficients has
to be in order to obtain accurate results. And there is currently no known
way of determining the required precision beforehand. So one has to either
have domain expert knowledge available or has to experiment with different
numerical precisions to find the sufficient level of numerical precision; or has to
resort to computationally expensive and complex approaches like floating point
filters [25] (in order to dynamically adjust the numerical accuracy during the
computation) or interval arithmetic [56] (in order to determine the need for
higher numerical precision).

Thus, the EM-based Training algorithm is an easy-to-implement algorithm
to improve an existing complete model to better explain a trace of observa-
tions. The MLE-based approach on the other hand is suitable for finding the
best values for one or few interdependent model parameters to explain a trace
of observations, but does not modify the already specified model parameters
and is complicated to implement and potentially prohibitively computationally
expensive.

7.5 Possible Extensions

So far, the EM-based CHnMM Training algorithm only determines the mean and
standard deviation of the duration of activities, but offers no help in determining
the type of the probability distribution. But the approach to determine those
two sample statistics may be extended to also determine higher moments [30]
such as the skewness and kurtosis. Those may then be used to identify the most
accurately matching parametric probability distribution. Thus, if higher order
moments were be determined, the EM-based Training algorithm could be used
to train more aspects of the duration of activities.

For the MLE-based CHnMM Training algorithm, several extensions are con-
ceivable. First, while the probability polynomials of the Proxels are of very
high order, the shape of the polynomial in the relevant range (cf. Section 7.2.2)
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is often relatively regular and may be reasonably approximated by a lower-
order polynomial, for example through Lagrange interpolation [21]. If such an
approach succeeds it may reduce the degree of the polynomials used in this
approach to a point were IEEE 754 floating-point numbers are sufficient for
the storage of polynomial coefficients and would thus eliminate the need for
arbitrary-precision arithmetic.

Furthermore, the likelihood polynomial of the MLE-based Training approach
may be used to better characterize the accuracy of the determined parameter
values, i.e. the likelihood that the reconstructed most likely parameter value is
indeed the actual parameter value. The value that the likelihood polynomial
evaluates to at a given position is proportional to the Evaluation probability of
the model to have caused the trace of observations used for the Training and
is thus similar to a continuous probability distribution function. The likelihood
polynomial may indeed be converted to a pdf by determining the area under its
graph (using symbolic computation of its antiderivative) over the valid range,
and normalizing the area under the graph to one by dividing the polynomial
by the computed area. From this true pdf a cumulative distribution function
may then be derived through symbolic integration, and this cdf can be used
to directly compute confidence intervals around the position of the most likely
parameter values to characterize the accuracy of the parameter reconstruction.

Finally, the MLE-based CHnMM Training approach might be extended to
train probability distribution parameters of activity durations. So far, this was
not directly possible using symbolic polynomials, as the quantities Psojourn and
Pchange cannot generally be expressed as polynomials in the distribution param-
eters. But it is possible to perform the computations for those two quantities for
several different values in a given range, and to construct an interpolation poly-
nomial to approximate their behavior between those values. The interpolation
polynomial could then be used in the normal MLE-based Training approach
using symbolic polynomials. One difficulty for this approach is to determine
a good number of samples and a good set of sampling points to sufficiently
closely approximate the actual behavior. And a severe drawback is that the
length of the Proxel probability polynomials increases by sum of the lengths
of the Psojourn and Pchange polynomials with each time step, since the proba-
bility of a successor Proxel is computed by multiplying - among other things -
the probability of the predecessor Proxel with the corresponding Psojourn and
Pchange polynomials. Thus, the higher the degree of the interpolation polyno-
mials the faster increase the Proxel probability polynomials their degree and
thus the higher does the precision of the Proxel coefficients have to be (thereby
increasing the computational complexity) in order to ensure accurate results.

7.6 Conclusion

In this chapter, two partial solutions for the Training of CHnMMs were
developed and tested: The Training algorithm based on the expectation-
maximization paradigm updates an existing completely specified model based
on a trace of observations in order to make the model better explain the ob-
servations. The second Training algorithm based on the maximum likelihood
approach uses a trace of observations to find the most likely values of unknown
parameters in an incomplete model.
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The practical feasibility of the EM-based approach is identical to that of the
CHnMM Smoothing algorithm (cf. Chapter 6), since the algorithm has been
shown to be implementable as an evaluation function to the recursive (or even
to the ordinary iterative) CHnMM Smoothing algorithm, and this particular
evaluation function barely increases the memory consumption or computation
time.

Both algorithms can be used to train initial state and symbol emission proba-
bilities. The EM-based algorithm can additionally train the parameters of many
well-known probability distributions. However, while the similar Baum-Welch
algorithm used to train HMMs has been proven to never result in a worse-fitting
model, this behavior cannot be guaranteed for the EM-based CHnMM Training
algorithm. Yet, it has been argued that the sometimes slightly suboptimal result
of the EM-based approach will usually be acceptable in practice. Overall, the
goal of this Chapter to provide a CHnMM Training algorithm with the same
power as the HMM Baum-Welch Training algorithm has largely been reached.

Still, no Training algorithm currently exist to train the type of parametric
probability distribution used to specify activity durations, or how to train ar-
bitrary distribution functions. The EM-based CHnMM Training approach is
not guaranteed to result in a model that is more likely to explain the trace of
observations than the input model. Thus, while the newly developed algorithms
enable the Training of certain aspects of CHnMMs for the very first time, the
overall problem of completely training CHnMMs is not yet solved completely.

In this and the previous three chapters, algorithms for all four basic behavior
reconstruct tasks derived from HMMs have been developed for the more expres-
sive model class of CHnMMs. The next chapter concludes this work by assessing
success or failure of completing the goals of this work. Furthermore, the pos-
sible impact of its findings with respect to other research areas and potential
applications will be discussed, and an outlook on possible further research will
be given.



116 Conversive Hidden non-Markovian Models



Chapter 8

Conclusion

In this work, Conversive Hidden non-Markovian Models as an extensive class
of partially observable discrete stochastic models have been introduced and de-
fined. CHnMMs are more expressive than the previous state-of-the-art in PODS
models, and are in fact a superset of it (cf. Table 2.1 on page 16). The main
benefit of CHnMMs over existing approaches is that they can model systems
that at the same time are continuous in time with arbitrarilily distributed ac-
tivity durations and contain concurrent activities. They can thus be used to
accurately model more real-life systems than was previously possible.

PODS models are usually used to solve one of four well known behavior
reconstruction tasks: Evaluation, Decoding, Smoothing and Training. For each
of the four tasks algorithms have been developed in this work that can solve
them for CHnMMs. The algorithms solve the tasks exactly without having to
resort to approximations where applicable (i.e. for Evaluation, Decoding and
Smoothing). And for each task, at least one developed algorithm has been
shown experimentally to be efficient enough to be practically feasible in real-life
applications.

CHnMMs thus extend the state-of-the-art in behavior reconstruction of par-
tially observable discrete stochastic sytems by expanding the set of practical
problems whose behavior can be reconstructed.

8.1 Assessment of Goal Completion

The goal for this work (cf. Section 1.3) was to enable practitioners to use
the four behavior reconstruction tasks Evaluation, Decoding, Smoothing and
Training in partially observable discrete stochastic systems that are continuous
in time and contain concurrent activities. Those systems can be modelled as
CHnMMs, which have been introduced in Chapter 3, and algorithms for the
four basic tasks have been developed in Chapters 4, 5, 6 and 7. Only the
CHnMM Training algorithms have been show to be somewhat limited in their
effectiveness. Thus, the goals of this work have generally been reached.

Furthermore, two success criteria on those goals where defined that should
ensure that the developed algorithms are not only of theoretical interest, but
are actually practically applicable to real-life problems. To that end, the first
criterion demanded that - where applicable - the algorithms must compute ex-
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act results and not approximations. For Evaluation, Decoding and Smoothing
algorithms have been developed that do not resort to any kind of approxima-
tions1 and are thus exact, fulfilling this success criterion. And to the Training
task the exactness requirement is not applicable, since the Training task is only
to find a better matching model, but does not require any particular model to be
returned. Thus, this mandatory success criterion has been met for the Training
task as well.

The second success criterion is a soft criterion that demands the developed
algorithms to be as efficient as possible with respect to memory consumption
and computation time. This criterion was established in order for the algorithms
to be computationally feasible for practical problems on commodity computer
hardware so that the cost savings realized through the behavior reconstruction
with CHnMMs are not eaten up by the additional costs of extensive computing
hardware. To that end, algorithms for all four tasks have been shown to be
practically feasible with respect to memory consumption and computation time.
This feasibility has been shown for a range of models that differ in the number
of concurrent activities and the number as well as the connectivity of discrete
states, and for long traces of observations (e.g. sequences of 10000 observations).
Furthermore, for each task the memory and time complexity of at least one
developed algorithm has been shown to be at most O(n log(n)) in the length of
the observation sequence whose behavior is reconstructed. Thus, with increasing
computing power, the length of an observation sequence whose behavior can be
reconstructed in a given amount of time increases by almost the same factor.
So, the soft criterion of allowing efficient behavior reconstruction on CHnMMs
has been met for a wide range of models and observation data.

Overall, the goals of this work have been reached and all success criteria
have been adhered to. The research was thus successful.

8.2 Limitations

While the goals set for this work have been reached the developed approaches
still have some limitations with regard to their applicability.

First, Conversive Hidden non-Markovian Models were specified as a subset of
the more general Hidden non-Markovian Models. This reduced expressiveness
made the development of efficient algorithm possible. However, its downside
is that CHnMMs can only model PODS systems in which the completion of
every activity causes the emission of an observable symbol. Real-life systems in
which the completion of some activities may go unnoticed cannot be modeled as
CHnMMs and their behavior cannot be analyzed with the algorithms developed.

Second, the CHnMM Training algorithms cannot train all characteristics of
a model: They cannot train the connectivity between states (i.e. determine
the completion of which activity causes what state change), the aging policy
(RACE AGE or RACE ENABLE) or the type of parametric probability distri-
bution that describes the duration of an activity. Thus, the developed Training
algorithms are not sufficient to build a complete CHnMM model of a real-life
system. Expert knowledge and manual modelling of the system is still required.

1The reader is again reminded that while the algorithms themselves are indeed exact,
practical implementations may deviate from the exact results due to their limited numerical
accuracy.
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Furthermore, the EM-based Training algorithm has been shown to not al-
ways generate more likely models with each iteration. So, in practical applica-
tions each model updated by that Training algorithm has to be validated using
the Evaluation algorithm in order to ensure that it indeed explains the data
better than the previous model. This barely increases the computation time,
since the Forward variables (which sum up to that Evaluation probability) are
computed by the Smoothing part of the next Training iteration in any case.
Still, it cannot be guaranteed that the EM-based CHnMM Training algorithm
finds even a locally most likely model – a clear disadvantage over the EM-based
HMM Training algorithm for which the convergence to a locally most likely
model has been proven [62].

Also, the derivation of the Pchange probability that is used in every algorithm
depends on the fact that the probability of a continuous probability distribution
to take on any discrete value is infinitessimal. This property holds for all contin-
uous probability distributions that are also functions, but is notably violated by
the deterministic distribution. This means that CHnMMs cannot directly model
systems with deterministic behavior. Practically though, this limitation should
be of little relevance, since deterministic behavior can be reconstructed without
CHnMMs and deterministic distributions may be reasonably approximated by
very narrow normal distributions.

Additionally, the developed algorithms have been shown to exhibit a time
complexity of at mostO(n log(n)) in the length of the input observation sequence
and the size of the discrete state space, and exponentially with the number of
concurrent activities. So, the model complexity that is practically feasible is
severely limited by the number of concurrent activities. Experiments showed
that the behavior reconstruction of systems with more than six concurrent ac-
tivities is not practically feasible on commodity hardware. The time complexity
of O(n log(n)) with respect to the size of the discrete state space and the length
of the observation sequence means that the algorithms are far more allowing of
a bigger discrete state spaces and longer observation sequences. Experiments
have been conduction for trace lengths of about 1500 observations, and should
still be feasible for traces of about 100000 observations. Similarly, experiments
have demonstrated feasible behavior reconstruction for systems with about 5000
discrete states, and systems with up to 100000 discrete states should still be
practically feasible. It should be noted though that the size of the discrete
state space increases combinatorically: For example, if the system contains four
queues that are filled and emptied independently of each other, and each queue
can hold up to 100 items, then a discrete state has to individually encode the
number of items present in each queue, generating a discrete state space of 100
million (1004) discrete states. Thus, even some conceptually simple CHnMMs
may exceed the number of feasible discrete states.

And finally, while the developed algorithms are the most efficient behavior
reconstruction algorithms known for CHnMM, they are less efficient than the
existing algorithms for less expressive classes of PODS models. Thus, if a real
system can be modelled without concurrent activities, behavior reconstruction
algorithms for GHSMMs [70] will be more efficient and easier to implement.
And if the system can be modelled with Markovian activity durations alone,
CVDHMMs [48] will be more efficient and easier to implement. In both special
cases, the CHnMM algorithms will also be far more efficient than for general
CHnMMs (since in both cases no age vectors are necessary), but will still be
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slower than the existing specialized algorithms.

8.3 Applicability of Findings Beyond CHnMMs

While the research in this work was specifically targeted at developing algo-
rithms for the behavior reconstruction of CHnMMs, some of its findings are
also applicable to and may further other research topics.

Reducing the Memory Consumption of Hidden Markov Models Most
behavior reconstruction algorithms for Hidden Markov Models assume that the
probabilities of the model to be in any state at any given time are concurrently
held in memory. For CHnMMs with their vastly increased state space this
was no longer feasible and recursive divide-and-conquer algorithms have been
developed that solve these tasks while only holding a small fraction of the set
of probabilities in memory at any given time. These approaches can directly be
used for Hidden Markov Models as well and may become relevant for HMMs
whose discrete state space is very extensive and thus memory consumption is
an issue.

Applicability of Findings to General HnMMs In this work, the class of
CHnMMs was deliberately chosen as a subclass of the more general Hidden non-
Markovian Models in order to reduce the complexity of the underlying behavior
reconstruction algorithms. CHnMMs require that the completion of every inter-
nal activity of the system is externally observable, while general HnMMs do not
have that limitation and thus allow for the completion of an arbitrary number
of activities in between two observed activity completions. For example, the
Tester model used throughout this work models a real system were two ma-
chines produce indistinguishable items, but where the completion of each items
test is detected. If this system was modelled as a general HnMM, its behavior
could even be reconstructed if the completion of some items went unnoticed
due to imperfect sensor equipment. Thus, fewer real systems can be modelled
as CHnMMs than could as general HnMMs. On the other hand, no feasible
behavior reconstruction algorithms for general HnMMs exist as of yet.

While the algorithms developed in this work cannot directly be applied to
general HnMMs, they may be extended to develop theoretical behavior recon-
struction algorithms for general HnMMs. The basic approach for this extension
is to split the time domain into the instants of time at which the completion
of activities was observed, and the time intervals between those observations in
which an arbitrary number of additional activities may have been completed.
For the instants of time of the recorded observations the CHnMM algorithms
may be used for the behavior reconstruction, and in the time intervals between
them the possible internal behavior can be simulated with the original Proxel
method [29] that the CHnMM algorithms are based on.

While this approach may yield theoretically sound algorithms for the behav-
ior reconstruction of general HnMMs, it is unlikely to yield practically feasible
algorithms: As discussed in Chapter 4, CHnMMs have some properties that slow
them down compared to the Proxel simulation method, and some that make
them more efficient than said method. But the behavior reconstruction algo-
rithms for general HnMMs would inherit the disadvantages of both approaches
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and thus render the behavior reconstruction of even tiny HnMMs practically un-
feasible. A small comparison experiment on the Tester model (cf. Appendix A)
showed that the CHnMM Evaluation algorithm takes 0.041 seconds for a trace
of 1000 symbols, while the general HnMM algorithm requires 0.096 seconds for
the same problem, but about five hours for the equivalent HnMM Tester model
where 10% of all item completions go unnoticed.

Thus, the developed CHnMM algorithms may be adapted to reconstruct
the behavior of general HnMMs, but the resulting algorithms would only be of
theoretical interest and would not be practically feasible.

MultiProxels for the Proxel Method MultiProxels [11] (cf. Section 4.6)
were initially developed to eliminate redundancies and thereby speed up the
computation of earlier versions of the CHnMM Training algorithms [12]. In these
algorithms the model itself contained counters that inflated the state space, but
did not change the behavior of the model.

However, the same type of redundancies are present in the other CHnMM
algorithms, and even in the original Proxel simulation method. For example the
computation time for the Proxel simulation of the “Warranty” model used in
the initial publications on the Proxel method [45] has been shown to be reduced
by about 50% using MultiProxels [11].

Thus, a technique developed for the behavior reconstruction of CHnMMs
can help to improve speed and therefore increase the practical model size for
state space-based simulation with the Proxel method.

8.3.1 Direct Probability Computation for the Proxel
Method

A common point between the CHnMM behavior reconstruction algorithm and
the Proxel simulation method is the need to determine probabilities of state
changes. The Proxel method used a set of coupled ordinary differential equations
of the type

dΠi

dt
= Πsojourn(t) ∗ µi(t+ τi)

to describe the state change behavior. The crude Euler integration method
or other expensive numerical integration methods are then used to solve these
ODEs and compute the desired probabilities [10].

For CHnMMs the same underlying ODEs have been used as a starting point,
but it has been shown that certain probabilities of this state change behavior
can be computed directly and exactly. These direct formulas developed for
CHnMMs can now be inserted into the ODEs and with their help those ODEs
can be simplified2 to integrals of type

Πi(t) =

∫ t

0

∏
j

1− Fj(t+ τj)

1− Fj(τj)

 µi(t+ τi) dt

Thus, formulas developed for the behavior reconstruction of CHnMMs can be
used to simplify the computation of state change probabilities in the Proxel

2“Simplify” here refers to the effort needed to solve the equation accurately, it does not
refer to the structure of the mathematical expression.
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method from numerical solution of ODEs to numerical solution of an integral,
which can be done by comparatively simple methods such as Simpson’s Rule
[33].

The potential benefit of computing those state change probabilities using in-
tegrals have been recognized before [41], but those older attempts used incorrect
formulas. The immediate practical impact of these new findings on the Proxel
method are low, because the method has at least three sources of errors [10] and
numerical integration is only one of them. And at least one of the other error
sources is of the same order as the numerical Euler integration [43] meaning that
a more accurate computation of state change probabilities will not automatically
yield more accurate results. However, if other error sources could be reduced
as well (e.g. through a procedure akin to DTMC uniformization [6, 76]), these
finding would be a first step in noticably reducing the approximation error of
the Proxel method.

8.4 Benefits and Applications of Findings

With the class of CHnMMs that were developed in this work, hidden behavior
reconstruction can be applied to additional real-world systems. Thus, it is
now possible for additional real-life systems to reconstruct their behavior from
already existing data, giving insights into these systems and saving the money of
introducing additional sensory equipment for data measurements. In particular,
behavior reconstruction is now possible for system with all of the following
properties

1. The system can be model with a discrete state space, i.e. all quantities
in the model can be represented as integers, and those quantities are only
changed through the completion of activities

2. Activity durations are random and follow arbitrary continuous probability
distributions. In particular, those durations need not be Markovian.

3. Activities can take place concurrently

4. The end times of all activities must be detectable. However, it need not
be detectable which activity ended, only that one did.

Prior to this work it was only possible to reconstruct the behavior of systems that
contain concurrent activities or arbitrarily distributed non-Markovian activities.
But behavior reconstruction was not possible for systems that contain both
characteristics at the same time.

This limitation severely restricted the practical application of prior ap-
proaches. Lifting it with CHnMMs is therefore a major step in increasing
the practical applicability of the behavior reconstruction of partially observ-
able discrete stochastic systems, especially since many real-life systems contain
concurrent non-Markovian activities:

For example, speech recognition of a single individual is often performed
using HMM-derivatives that model non-Markovian durations for individual
phonemes [62]. But recognizing speech of multiple speakers speaking at the same
time would requires the explicit modelling of the concurrent non-Markovian
speech activities, which was not possible until now.
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Similarly, touch-screen devices may allow for the user to interact with the
system by using movement gestures, i.e. by drawing certain shapes on the screen
with their fingers. The time needed to drawing characteristics parts of the
shape may be random, following a non-Markovian distribution, and a recorded
sequence of these times may be used to recognize the shape and therefore the
gesture. However, when this interaction is extended to bimanual gestures, then
two non-Markovian activities occur concurrently, requiring CHnMMs.

Beyond pattern recognition, most other real-life systems also contain con-
current non-Markovian activities. All systems containing independent agents
(i.e. people, cars, animals, machines or molecules) inherently perform activi-
ties independently. And most real-life activities are non-Markovian by nature:
Mechanical wear is usually Weibull-distributed, many empirically-determined
quantities follow a lognormal distribution and due to the central limit theorem
many compound activities are normally-distributed [1]. So, a significant num-
ber of real-life systems contain concurrent non-Markovian activities, and using
CHnMMs, their behavior may now be reconstructed for the very first time.

In particular, it is now possible for the first time to model and reconstruct
the behavior of partially observable systems with non-Markovian concurrency
process characteristics, such as fork, join, concurrency, competition, synchro-
nization and limited ressources.

And finally, CHnMMs are thought to provide the basis for the development
of virtual stochastic sensors [38], measurement devices that use an easily mea-
surable property of a system in order to estimate another system property that
is linked stochastically to the first one.

8.5 Possible Extensions and Future Research

The research in this work primarily led to the development of behavior recon-
struction algorithms for CHnMMs. Yet, it also found new questions and research
opportunities. Many of those have already been presented at the conclusion of
the individual chapters in which CHnMM algorithms were developed. Those
will not be repeated in this section. Instead, this section concludes this work
by detailing additional, more general ideas for further research.

CHnMMs with Spurious Observations The class of CHnMMs was care-
fuly chosen to be broad enough for practical application, but at the same time
limited enough to allow for efficient behavior reconstruction algorithms. Still,
one opportunity for further research is to find model classes that are more ex-
pressive than CHnMMs, but do not make behavior reconstruction much more
computationally expensive.

Lifting the requirement of CHnMMs that the end of every activity must be
detectable would lead to systems with “cause without observable effect”, i.e. to
general HnMMs, whose behavior reconstruction seems not to be feasible with
approaches similar to those developed for CHnMMs. But the opposite direction,
the behavior reconstruction of systems with “observable effect without actual
cause” may be feasible. This would allow behavior reconstruction of real systems
were observations are sometimes caused by false alarms (e.g. a laser barrier in
a factory that is triggered not by a passing item, but by dust particles in the
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air; or pattern recognition systems where observations are sometimes caused by
sensor noise and not by actual behavior).

In models of these systems changes of the internal discrete state are still only
possible at the times of symbol observations. Thus, the behavior reconstruction
should be similarly efficient to that of CHnMMs, which also adhere to this
limitation. The main extension over CHnMM behavior reconstruction is that
in these new class of models observations may not have a cause (at least none
that the model accounts for) and thus for each observation the possibility that
no activity has been completed needs to be taken into account.

Multi-Threaded Proxel-based Algorithms So far, the Proxel simulation
method as well as the Proxel-based CHnMM algorithms developed in this work
operate purely sequentially. Thus, implementations of these algorithm will only
utilize a single CPU core. Extending the existing algorithms to allow for true
multi-threading could greatly improve throughput of these algorithms on mod-
ern multi-core CPUs and can help to scale the algorithms further, even to high
performance computing (HPC) clusters.

All Proxel simulation and CHnMM behavior reconstruction algorithms are
ostensibly easy to parallelize: All algorithms iterate over the set of Proxels for
one time step and generate successor Proxels for the next time step. Splitting
that set of Proxels and letting each available CPU core generate the Proxels for
one of the subsets would easily parallelize the algorithms.

The core problem is that Proxel merging is essential to all of these algorithms:
duplicate elements in the Proxel set for the next time step need to be found and
merged. Currently, all active CPU cores would thus need access to a shared
data structure to find those duplicates, and access to this data structure poses
a bottleneck. The key challenge for parallelized Proxel-based algorithms is to
find a good locking strategy [78] to that data structure that allows for efficient
concurrent access while still guaranteeing data integrity.

One step further to scaling Proxel-based algorithms would be to use the mas-
sively parallel architecture of modern GPUs with hundreds of cores [60]. While
GPUs can potentially offer an order-of-magnitude increase in data throughput
[49], optimizing algorithms to take advantage of the unique capabilities of GPUs
is complex and not possible for all algorithms [46].

Behavior Reconstruction under Uncertainty with CHnMMs In all de-
veloped CHnMM algorithms the provided model specification and observation
traces are assumed to be exact. In practical applications, however, the model
specifications may be outdated, or the model specifications and trace informa-
tion may contain errors or inaccuracies based on inaccurate measurements.

One resulting research question that is yet unanswered is how accurate
the CHnMM behavior reconstruction results of the Evaluation, Decoding and
Smoothing algorithms are when the provided data is inaccurate within known
error margins.

CHnMMs with Correlated Behavior In this work, the durations of suc-
cessively completed activities as well as the symbol emission probabilities of
successive observations are independent of each other. In practical applications,
however, this may not always be the case. For example, if a machine in the
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“Tester” model produces a defective item, leftovers from the defective item may
stay in the machine and may be likely to damage the next item as well.

It is yet unclear whether the developed algorithms are still valid when cor-
relations exist in the system behavior, under which circumstances information
on the degree of correlation can be integrated into CHnMMs under the current
definition, and whether correlated behavior may even increase the information
content of the provided data and thus make the behavior reconstruction more
accurate.

Information-Theoretical Analysis of CHnMM Models In this work al-
gorithms for the exact behavior reconstruction of CHnMM were developed. Yet,
the question whether those results are statistically significant has not been an-
swered. For example, the Decoding algorithm determines the most likely se-
quence of unobserved internal behavior. But it does not determine whether this
most likely behavior is indeed very likely, or whether it is just marginally more
likely that any other out of a thousand different behaviors.

A useful tool for practitioners would be an approach to quantify the amount
of information present in a trace and thus the level of certainty with which the
behavior can be reconstructed. Such an information-theoretical approach may
be able to assess whether behavior reconstruction is viable for a given system,
or how long a trace on observations would need to be in order to accurately re-
construct the behavior. Ideally, such an approach would answer those questions
even before the observation data is ever collected.
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Appendix A

Feasibility of HnMM
Behavior Reconstruction

The purpose of this appendix is to provide data on how much more costly
computations on general HnMMs are compared to CHnMMs. To that end, ex-
periments will be conducted with variants of the Tester model (cf. Section 3.5
on page 31). To make the application of general HnMM algorithms necessary
in the first place, the Tester model needs to be modified so that not every com-
pletion of a production step emits an observable symbol. We generated such
a general HnMM by assuming that the quality tester in the Tester model is
faulty and thus fails to record test results for 10% of the tests. Thus, not every
completion of an activity causes a symbol emission and consequently activi-
ties may have been completed between observations - a system behavior that
CHnMMs cannot reconstruct and thus behavior reconstruction algorithms for
general HnMMs are required.

To assess the different algorithm computation times, the Evaluation task was
performed with a trace for the Tester model with 1500 observations covering a
time period of 100000s. With this trace the following behavior reconstructions
experiments were conducted:

• The CHnMM Evaluation algorithm was used for the behavior reconstruc-
tion of the original CHnMM Tester model in order to provide a baseline
against which the HnMM algorithm can be compared

• The general HnMM Evaluation algorithm (cf. Section 8.3) was used to
reconstruct the behavior of the original CHnMM Tester model in order
to determine the computational overhead of the general HnMM algorithm
on CHnMM models.

• Finally, the general HnMM Evaluation algorithm was used to reconstruct
the behavior of the HnMM Tester model modified as noted above. This ex-
periment determines the computation time of the HnMM on true HnMM
models and thus provides realistic insights into the computational com-
plexity of general HnMM algorithms.

Of these three scenarios, the first one directly computes an exact result,
since the CHnMM computations are exact. The usage of general HnMM algo-
rithms on CHnMMs in the second experiment also provides exact results. For
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Algorithm Mean Computation Time
(10 Replications)

CHnMM 0.041s
General HnMM 0.096s

Table A.1: Computation times for the CHnMM and general HnMM Evaluation
algorithms on the CHnMM Tester model.
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Figure A.1: Plots of the results of the HnMM Evaluation task and the corre-
sponding computation time for different time step sizes. The vertical axis in the
right-hand side plot is log-scaled.

the second experiment, the probability computations for activity completions
during time steps that the general HnMM algorithm takes directly from the
Proxel method are indeed only approximations, since they are numerical solu-
tions of either ODEs or of integrals. However, as long as the model is a CHnMM,
activities are never completed during time steps and thus the inaccurate com-
putations are not used, yielding exact results in the second experiment as well.
Only in the third experiment where the general HnMM algorithm is used on
general HnMMs do the approximations have an effect. Here, one thus has to
select a time step size for the algorithm and this will determine the trade-off
between result accuracy and computation time.

The results for the first two experiments are summarized in Table A.1. On a
CHnMM model, both algorithms are similarly computationally expensive. The
dedicated CHnMM Evaluation algorithm is about twice as fast as the general
HnMM one, but both are feasible for the behavior reconstruction of traces of
this length.

The results for the HnMM Evaluation task on the general HnMM Tester
model are more difficult to assess. Here the computed Evaluation virtual prob-
ability is only an approximation and its accuracy depends on the selected time
step size. Smaller time steps will result in a smaller error, but also in higher
computation times.

The results for different time step sizes are given in Figure A.1. The most
accurate computed value is that for the smallest time step size of 1s. As the plot
on the left-hand side shows, the relationship between decreasing step size and
the Evaluation result is non-linear, and it is therefore difficult to assess what
the correct Evaluation result for the theoretical step size of 0 would be and
thus also how accurate the computed results are. Nevertheless, the difference
between the most accurate and the second most accurate result is about 13%
and it is likely that the difference between the most accurate computed result
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and the exact result is at least as high. Thus, for a practical application where
the Evaluation probabilities of two models are to be compared to determine the
most likely model to cause an observation, even the most accurate computed
result would likely be too unreliable.

As the right-hand side of Figure A.1 shows decreasing the time step size leads
to an exponential increase in computation time. For the most accurate result the
computation time was about 5 hours. In contrast, the computation time for the
same algorithm and the same trace for the corresponding CHnMM model was
less than 0.1s. So in this case the behavior reconstruction of a general HnMM is
more than 100000 times more costly than that of the corresponding CHnMM.
With 5 hours of computation time it is barely viable for this very small model
containing only two concurrent activities and a single discrete state. With this
approach, the behavior reconstruction of bigger general HnMMs such as the
Car Rental Agency model with more than 5000 discrete states would not be
practical feasible for most application scenarios.
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Appendix B

Training Concurrent
Exponential Activities with
MLE

In the derivation of the MLE-based CHnMM Training algorithm (cf. Section
7.2) it was explained that the parameters of probability distributions cannot
generally be trained with this approach, because the resulting mathematical
expressions for Psojourn and Pchange would not be polynomials. It was further
noted that Training of those parameters is possible at least in one special case:
when some activities are always active together, their durations are all expo-
nentially distributed with unknown rates λi, and the total rate of all activities
together is known.

In this appendix it is shown why it is possible to train those parameters.
This will be done by separately showing that under these circumstances the
mathematical expressions for Psojourn and Pchange yield polynomials in the
unknown parameters.

Sojourn Probability Given a set of n exponentially-distributed activities
that fulfill the requirements above, then the sojourn probability is computed
based on these activities and all m other concurrently occurring activities as
(cf. Equation 4.1 on page 41):

Psojourn =

n+m∏
i=1

1− Fi(τi + ∆t)

1− Fi(τi)

This product can be split into two separate products, one for the n
exponentially-distributed activities, and one for the remaining m arbitrarily-
distributed activities:

Psojourn =

n∏
i=1

1− Fi(τi + ∆t)

1− Fi(τi)

n+m∏
i=n+1

1− Fi(τi + ∆t)

1− Fi(τi)

The second product depends only on the known parameters of the m arbitrarily-
distributed activities, and can therefore be evaluated to a definite number, sub-
sequently replaced by the constant c. And the first product can be evaluted
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by using the cumulative distribution function of the n exponentially distributed
activities with unknown parameters λ1, . . . , λn:

Psojourn = c

n∏
i=1

1− (1− e−λi(τi+∆t))

1− (1− e−λiτi)
= c

n∏
i=1

e−λi(τi+∆t)

e−λiτi
= c

n∏
i=1

e−λi∆t

This can be further simplified to

Psojourn = c e(
∑n

i=1−λi∆t) = c e−∆t(
∑n

i=1 λi)

Now since the total rate λ of all those exponentially distributed activities to-
gether is known, the sum of all unknown rates yields this total rate:

λ =

n∑
i=1

λi

Using this equality, the equation for Psojourn can further be simplified to

Psojourn = c e−∆tλ

This final equation does not depend on any of the unknown rate parameters,
but only on the known total rate. Therefore, Psojourn can be computed even if
the individual rate parameters are unknown, and the result is always a zeroth
degree polynomial (i.e. a constant) in the unknown parameters.

State Change Probability The instantaneous state change probability of
the ith activity is computed as (cf. Equation 4.2 on page 44):

Pchangei = µi(τi + ∆t) =
fi(τi + ∆t)

1− Fi(τi + ∆t)

For an exponential distribution with unknown rate λi this yields:

Pchangei =
λi e

−λi(τi+∆t)

1− (1− e−λi(τi+∆t))
= λi

So, for activities with exponentially distributed durations the corresponding vir-
tual probability Pchange always equals the unknown parameter λi and therefore
is a first degree polynomial in that parameter.

Conclusion It has thus been shown that for the special Training case of expo-
nentially distributed concurrent activities with unknown individual rate parame-
ters but known total rate the probabilities Psojourn and Pchange can be expressed
as polynomials in the unknown rates. Thus, the MLE-based CHnMM Train-
ing algorithm is applicable to this special class even though it is not applicable
to the general case of activities with unknown parameters for their duration
probability distribution.
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Symbols used in this Work

• N . . . number of discrete states

• {S1, . . . SN} . . . the set of discrete states

• M . . . number of emittable symbols

• {V1, . . . , VM} . . . the set of emittable symbols

• K . . . number of unique state transitions

• TR = {TR1, . . . , TRK} the set of state transitions, with each state
transtion being a tuple (dist, id, b(m), aging), with

– dist . . . the probability distribution of the state transition’s duration

– id . . . a unique identifier, defined as TRk.id = k

– b(m) . . . the function of symbol emission probabilities, maps each
symbol Vm to the probability that the state transition emits symbol
Vm while changing the discrete state

– aging . . . a boolean value (∈ {true, false}) specifying whether a
state transition memorizes how long it has been active before it was
deactivated by a state change (= true). If so, it will continue with
that stored age when it next becomes activated. Otherwise (= false)
it will start with age zero.

• pdf(dist), cdf(dist), hrf(dist): The probability density function, cumula-
tive distribution function and hazard rate function of a probability distri-
bution, respectively

• isExp(dist): returns whether the distribution dist is an exponential dis-
tribution and thus memoryless (=Markovian)

• A . . . matrix of state transitions, with each matrix element aij ∈ TR
representing the state transition from state Si to Sj

• Π . . . the initial state probability vector, with element πi being the prob-
ability of the model to be in discrete state Si at time t = 0

• λ . . . the complete model λ = (A,Π)
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• o . . . a symbol emission, given as the tuple o = (e, v), with

– v . . . the symbol emitted, v ∈ {V1, . . . , VM}
– e . . . the time stamp of the signal emission

• T . . . the number of symbol emissions in a trace

• O = o1o2 . . . oT . . . a trace (=sequence) of T symbol emissions;

• ρ . . . a Proxel with ρ = (q, ~τ , α[, β, γ]):

– q . . . the discrete state of the Proxel

– ~τ . . . the age vector, containing durations of activities for all non-
Markovian state transitions

– α . . . the Forward probability, i.e. the probability to be in the current
state (discrete state + age vector) after having emitted the symbol
trace so far

– β . . . (optional), the Backward probability, i.e. the probability to
still emit the remainder of the trace given that the model is in the
current state

– γ . . . (optional), the Smoothing probability, i.e. the probability of
the model to be in the current state at the current time, given the
observation of the whole trace

• Rt . . . The set of Proxels describing all reachable model states after the
tth symbol emission

• qt the discrete state of the model after the tth symbol emission

• aget the age vector after the tth symbol emission, containing the durations
that each activities has already been active since it was last cancelled or
completed
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