Reusability Evaluation of Component-Based
Embedded Automotive Software Systems

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultat fiir Informatik
der Otto-von-Guericke-Universitat Magdeburg

von: Dipl.-Inf.(FH) Martin Hobelsberger
geb. am 02.08.1981 in Freyung

Gutachter:

Prof. Dr. habil. Reiner Dumke
Prof. Dr. Christian Wolft
Prof. Dr. Jiirgen Mottok

Ort und Datum des Promotionskolloquiums: Magdeburg, den 15.05.2012

Abstract

The most important drivers of innovation in modern cars are embedded systems.
The design and development of these systems have become, as technology pro-
gresses, more and more complex and challenging. In order to meet these challenges,
component-based architectures were introduced to automotive embedded systems.
Reusability is an important aspect in the development of these systems and is fre-
quently seen as a powerful approach to develop high quality systems while reducing
complexity.

This thesis presents novel and efficient techniques for the evaluation and opti-
mization of the reuse of component-based embedded automotive systems. Two
problems are addressed: component reuse evaluation and component package gen-
eration with reuse optimization. With component reuse evaluation, individual
components are measured by their contribution to reuse. This technique applies
network analysis methods, derived from the research field of social network analysis
and graph theory. Focusing on the connections and relationships between compo-
nents and component groups, important and central individual components are
identified and clustered to reusable packages.

For large project repositories, the feasibility of the network analysis concepts
might be impeded due to very dense graphs. In such cases, the system architect
has to resort to an optimization heuristic, the second component reuse clustering
technique, proposed in this thesis. This optimization approach, based on simu-
lated annealing, selects and groups components in order to optimize reuse in the
component-based software architecture.

Both techniques work with information on system components which is automat-
ically collected from a company’s project repository. This information represents
the knowledge, experience and design decisions of system architects of past and
current projects and is transformed to a graph based structure.

To integrate the evaluation and clustering techniques in a company’s develop-
ment process and to support the handling (e.g. storing and retrieval) of individual
components a model-based architecture framework has been proposed.

Experimental results on real-life project repositories have proven and demon-
strated the feasibility of the proposed techniques.

Kurzfassung

Eingebettete Software Systeme sind derzeit eine treibende Kraft von Produktinno-
vationen in der Automobilindustrie. Der Entwurf und die Entwicklung dieser Sys-
teme werden mit bestehendem technologischem Fortschritt immer komplexer und
fithren zu neuen Herausforderungen. Um sich diesen Herausforderungen in der Au-
tomobilindustrie stellen zu konnen wurden komponenten-basierte Softwarearchitek-
turen eingefiihrt. Die Wiederverwendbarkeit ist ein wichtiger Aspekt bei der En-
twicklung dieser Systeme und wird als leistungsfahiger Ansatz zur Entwicklung von
hochqualitativen Systemen bei gleichzeitiger Reduzierung der Komplexitat und der
Entwicklungskosten gesehen.

In dieser Arbeit werden neue und effiziente Methoden zur Evaluation und Opti-
mierung der Wiederverwendbarkeit dieser Systeme vorgestellt. Bei der Evaluierung
werden individuelle Komponenten hinsichtlich ihres Beitrags zur Wiederverwen-
dung gemessen. Hierzu werden Methoden aus der Netzwerkanalyse, abgeleitet
aus dem Forschungsgebiet der sozialen Netzwerkanalyse und der Graphen The-
orie, angewendet. Durch den Fokus auf die Beziehungen zwischen Komponen-
ten und Komponentengruppen konnen zentrale Komponenten identifiziert und zu
wiederverwendbaren Komponentenpaketen gruppiert werden.

Bei sehr grofien Projektdatenbanken kann die Netzwerkanalyse, aufgrund sehr
dichter Graphen, nur eingeschrankt angewendet werden. In diesem Fall kann
der Systemarchitekt auf eine, in dieser Arbeit vorgestellte, Optimierungsheuristik
zurlickgreifen. Dieser Optimierungsansatz, basierend auf dem Prinzip von Simu-
lated Annealing, wahlt Komponenten aus und gruppiert diese mit dem Ziel, die
Wiederverwendbarkeit der Architektur zu optimieren.

Als Datenquelle fiir beide Methoden dient eine Projektdatenbank aus der au-
tomatisiert Informationen erhoben werden. Diese Informationen reprasentieren
das Wissen, die Erfahrung und die Entwurfsentscheidungen von Systemarchitek-
ten iiber abgeschlossene und aktuelle Projekte und werden in die Struktur eines
Graphen transformiert. Um die vorgestellten Methoden in den Entwicklungsprozess
eines Unternehmens zu integrieren und um die Anwendung (z.B. das Ablegen
und Wiederfinden von Komponenten) zu unterstiitzen wurde ein Modellbasiertes
Architektur-Framework vorgeschlagen. Experimentelle Ergebnisse auf Basis von
Projektdatenbanken aus der Industrie demonstrieren eine erfolgreiche Anwend-
barkeit der vorgestellten Techniken und Methoden.

11

Acknowledgements

This work is part of the BMBF founded research project DynaS? (“Dynamic soft-
ware architectures in electronic control units in automotive systems with consid-
eration of requirements for functional safety”) and is supported by the FHpro-
fUnd program of the German Federal Ministry of Education and Research (FKZ
1752X07). The main target of this work is to support the process of design and
evaluation of efficient dynamic software architectures in the automotive domain. It
is part of a cooperation between the University of Applied Sciences Regensburg, the
Otto-von-Guericke University Magdeburg and the Continental Automotive GmbH
- Powertrain Division.

Many people have either directly and indirectly contributed to this thesis. I
would like to take the opportunity to thank all of them for their support. First and
foremost, I would like to sincerely thank my supervisors Prof. Dr. Jiirgen Mottok
and Prof. Dr. Reiner Dumke for their guidance, invaluable suggestions, continued
encouragement and support during these years. I am also very grateful to Prof.
Dr. Christian Wolff for his review and expert opinions on the thesis at hand. I
am deeply grateful to my advisors at the Continental Automotive GmbH, Prof.
Dr. Michael Niemetz and Stefan Kuntz. I will particularly remember our valuable,
inspiring and lively discussions at our regular meetings. Special thanks go to my
former colleagues at the University of Applied Sciences Regensburg, Dr. Michael
Deubzer, Michael Schorer and Michael Steindl for their friendship, encouragement
and helpful advice over the years. I will never forget the time we spent on joint
research and conference travels, as well as the fruitful discussions and the social
activities in the evenings.

Finally, my very special thanks belong to Fritz, Gerlinde, and Stefan Hobels-
berger and Beata Kling for their warm support and for always believing in me all
these years.

Contents

List of Tables
List of Figures
List of Algorithms

Abbrevations

I. Preliminaries

1. Introduction
1.1. Motivation
1.2. Research Problem

1.2.1. Evaluate Component-Based Systems
1.2.2. Generate Reusable Packages
1.2.3. Framework for Component Reuse

1.3. Contributions
1.4. Dissertation Outline

2. Background
2.1. Software Reuse

2.1.1. Benefits of Software Reuse
2.1.2. Software Reuse Techniques
2.1.3. Component Repositories
2.2. Component-Based Development
2.3. Component-Based Software Engineering

2.3.1. Software Architectures
2.3.2. Architecture Model . .

2.4. Automotive Software Architecture

2.5. Network Analysis
2.6. Simulated Annealing

2.7. Expert Systems
2.8. SAE AADL

3. Related Work
3.1. Component Selection Problem

viii

xii

XV

p—

O OO UL W W

11
13
16
17
19
22
24
25
28
28
30
31

33
33

vil

Contents

3.2. Software Architecture Analysis.
3.3. Evaluation using Metrics L.
3.4. Evaluation using Human Expertise
3.5. Summary: Measurement Tasks., ..

Reusability Evaluation

System Reuse Modelling

4.1. Definition of the Solution Space
4.1.1. Data Collection
4.1.2. Generating the Component-Graph

4.2. Summary: An Experienced-Based Component-Graph

. Network Analysis Based Reuse Measurement

5.1. Centrality Measures,
5.2. Cohesive Subgroupso
5.3. Application of Network Analysis
5.4. Reuse Graph Metrics
5.4.1. Preliminaries,
5.4.2. Reuse Popularity
5.4.3. Component Rank
5.4.4. Component Package Complexity
5.5. Summary: Network Analysis Reuse-Metrics

. Reuse-Oriented Component Package Generation

6.1. Simulated Annealing for Component Clustering
6.1.1. Initializing the Solution and Parameters
6.2. A Recombinative Population-Oriented SA Algorithm
6.2.1. The Algorithm (RPOSA)
6.2.2. Candidate Recombination
6.2.3. Neighbor Recombination
6.3. Application of RPOSA,
6.4. Summary: Reuse-Oriented Component Packaging

I11. Evaluation Process and Framework

7.

Viil

Model-Based Architecture Evaluation Framework

7.1. Motivation

7.2. Functional Partitioning to Reuse Partitioning

7.3. Reuse-Oriented Development Process
7.3.1. Model-Based Reuse Framework
7.3.2. High Level System Architecture Specification

39

41
41
42
44
46

47
47
49
51
52
52
53
54
54
54

57
o8
58
64
66
68
70
72
7

Contents

7.3.3. Reusable Component Package Import 87

7.3.4. Architecture Refinement 87

7.3.5. Architecture Implementation and Instrumentation 87

7.3.6. Generation of Software Artefacts 88

7.4. Multicore Support 88
7.5. Summary: Reuse-Oriented Development Process 90
IV. Case Study: Engine Management System 93
8. Evaluation of the Engine Management System 95
8.1. EMS Reuse: Status Quo 95
8.2. Data Collection And Extraction 96
8.3. Application of Network Analysis Measures 97
8.4. Application of the RPOSA Algorithm 100
8.5. Summary: Case Study oL 104
V. Conclusions and Future Work 107
9. Conclusions and Future Work 109
9.1. Conclusions 109
9.2. Future Work 111
VI. Appendix 113
A. Example Project Repository 115

1X

List of Tables

2.1.

3.1.
4.1.

6.1.

6.2.

8.1.

Al

Comparison of strategies for optimization problems. 29
Example metrics for the assessment of software reuse ([Dumke2003]). 38

Project repository example. For the full list of components of the
example project repository used in Section 5.3, see Appendix A. . . 42

Tested values for the control parameters and the final decisions for

the example repository. oL L 74
Final clustering to reusable packages of the components from the
example repository (sorted in ascending order). 76

Tested values for the control parameters and the final decisions for
the full network. 103

Example of a companies possible project repository were individual
components are associated to a particular project. 115

x1

List of Figures

1.1. Evolution of engine management systems [Claraz et al.2004]. Each
dot represents a finished customer project. While time-to-market
has roughly been cut to a half and the ECU price to one third,
the need for ROM is increasing drastically. This is mostly due the
change from 16-Bit to 32-Bit systems (in gasoline (GS) as well as in

diesel (DS) projects) and the increasing number of functionalities. . 4
2.1. Potential reusable artefacts o000 11
2.2. Reusable components (assets) characterized by description and body

after [Dumke2003] and [Ezran et al.2002].. 16
2.3. Overview about the component-based development process. 18

2.4. Aspects of Component-based software engineering from [Dumke2003]. 19

2.5. The main goals for architectural decisions and their main dependen-
cies. Squares are indicating a target conflict, while the circle-style
connections indicate goals that combine well. 21

2.6. The Engine Management System (EMS2) partitioning according to
blocks of functionality. L 25

2.7. Figure (a) shows a high level model of the reuse structure of the
EMS2 architecture for powertrain control units. In Figure (b) the
configuration of an Aggregate, split into a fixed core, a configurable
part and a project-specific part, is shown. The different parts are
connected via an internal interface. 0 26

3.1. Potential measurement approaches within the context of a compo-
nent architecture after [Dumke et al.2002]. 36

4.1. Set A of component-based system architectures including candidate
architectures a composed of candidate components ¢ out of the data
set D. . . 42
4.2. Schematic view on the generation of the component-graph. The data
for the network analysis is generated by the cumulated adjacency
graphs (1) of the projects (a = {c1,¢a,...,cn}, D is the collection of
all possible modules). The final weighted component-graph (2) over
all projects is analyzed with network analysis measures. 43

xiil

List of Figures

Xiv

4.3.

5.1.

5.2.

5.3.

0.4.

6.1.

Exemplary graphical representation of a system, generated with the
methodology shown in Figure 4.2, as a component-graph G. The
components vy and v3 were both used in the candidate architectures
ai, as, az represented by an connecting edge with weight w = 3 and
a label with the corresponding candidate architectures. Each vertex
has a node label class C; representing the cluster a particular vertex
isassigned to.

Graphical representation of patterns in the reuse network. Graph
{1} represents a vertex (v;) with high degree (5) but low weighted
degree. It corresponds to a component which was used often but
in different contexts (systems) and therefore has a low reusability.
Graph {2} and {3} show vertices with high reusability while Graph
{3} represents a pattern which would lead to a high eigenvector
centrality of vertex v;. Graph {4} shows the concept of gatekeepers

The schematic representation of a network with community struc-
ture (as presented in [Girvan and Newman2002]). It shows three
communities (with densely connected vertices) with much lower den-
sity connections (gray lines) between them.

Figure (a) shows the graph of the example repository. The layouting
of the graph shows found clusters (e.g. IDs 0,1,2,3). Figure (b) shows
the corresponding dendrogram.

The key component analysis. The IDs of the most important com-
ponents in the network analyzed by eigenvector centrality and be-
tweenness centrality.o Lo

Example of possible neighbors and the connected path of a candidate
component. In this example, the neighborhood I'(v1) of the compo-
nent vy is formed by the adjacent components {vy, v3, vs,v7} while
the thick line marks an example of a connected path > 1 through
the network starting with the vertex vy to the vertex vig.

60

List of Figures

6.2.

6.3.

6.4.

6.5.

6.6.

The recombinative simulated annealing algorithm starts with ini-
tializing the solution set as a graph G = (V, E), setting the initial
parameters for the specific run (depending on the structure of the
problem) and choosing randomly one candidate solution from the
generated initial population P (which is evaluated according the ob-
jective function). On this candidate solution a candidate recombina-
tion and a neighbor recombination is performed a number [times and
the next candiate solution is choosen from the current population.
After the operations are performed on the current population P; it
is updated with the new candidate solutions and the temperature
is decreased according the cooling schedule. The final population is
evaluated according the objective function to measure the quality of
the new solutions.

Every candidate solution (each different color represents a differ-
ent solution) in the population explores the solution space and con-
tributes to the fitness of the packaging. Due to the two recombi-
nation methods the generation of new solutions as well as the dis-
carding of solutions is possible. In this example the algorithm starts
with a population containing only four candidate solutions. During
the run new solutions are generated.

Performing a candidate recombination operation. From the solution
in image {1} the candidate components vg and v, are selected for
recombination. Before the recombination the packages in image {1}
have a fitness value of 0 as they share no common candidate archi-
tecture. In image {2} the new formed solutions are pictured. While
the packages with one component each have a fitness of 0 the new
formed package with the candidate components vg, vg, v19 have a
fitness of 6 (ignoring the component rank in this example).

Performing a neighbor recombination operation. From the solution
p1 in image {1} the candidate component vg selects the components
vg and vy from the neighbor solution p} for a recombination opera-
tion. After the operation in image {2}, the new neighbor solution
p+’ would not be connected and the new solutions p*; and p«; are
created. The fitness of solution p; has an unchanged value of 3 (ig-
noring component ranks in this example) while the fitness values of
the new solutions also remain 0 after the recombination

RPOSA algorithm applied to the example repository. The dotted
line represents the best solution found in over 150 runs while the
black line pictures the fitness of the population over the iterations.
The grey line shows the development of the number of clusters in
the population. Lo

70

XV

List of Figures

Xvi

7.1. The current reuse process based on functional partitioning. The
system architect defines the functionality and the authority (the
function representative) for each function implements and supports
it. Parts of the function are composed together to an aggregate
which is used in system projects.o

7.2. The proposed reuse process based on reuse partitioning. Like in the
current process the system architect defines the functionality and the
authority (the function representative) for each function implements
and supports it. Parts of each function are composed together in
reusable packages which are used in system projects.

7.3. The proposed process the framework is wrappend in. After step
five (a component defines not only code but also documentation and
specification) the component repository is updated with the new
components.o Lo Lo

7.4. Proposed architecture framework with an experience-based compo-
nent repository (5), the software architecture (1) specified by an ar-
chitecture description language and the architecture implementation
(3) which is instrumented with various non-functional requirements
(2) for further analysis (e.g. real-time simulation) and contains the
functional parts for generation of code and documentation (4). . . .

8.1. This figure shows the reuse of modules over different projects.

8.2. This figure shows the reuse of modules over all projects. One bin
represents 20 projects.o

8.3. Generation of the maximum weighted spanning tree. One compo-
nent of the graph (1) is chosen as starting point. The components
with the maximum weight are chosen (2). The final graph (3) con-
tains all components with a reduced set of edges.

8.4. This figure shows the key component analysis. The IDs of the most
important components in the network analyzed by eigenvector cen-
trality and betweenness centrality. Scaled by eigenvector centrality.

8.5. This figure shows the degree distribution over the graph. Most of
the components have a degree between one and four.

86

99

99

8.6. The resulting graph after the edge betweenness community clustering101

8.7. Figure (a) shows the distribution of different aggregates in a selected
cluster. Two specific clusters have a very high share in this cluster.
In total, 20 aggregates have been grouped to one cluster. Figure
(b) shows a cluster with four different aggregates grouped together.
Components, which act as gatekeepers between the different aggre-
gates, could be identified. o000

List of Figures

8.8. RPOSA algorithm applied to the full network. The dotted line rep-
resents the best solution found (19208) in various test runs while the
black line pictures the fitness of the population over the iterations
(with a final value of 18661.82). The grey line shows the develop-
ment of the number of solutions in the population (with an initial
value of 104 and an final value of 972). 105

8.9. This figure shows the first 100000 iterations of the RPOSA algorithm
applied to the full network. This image pictures the exploration
phase of the algorithm at the first 20000 iterations. 106

Xvil

List of Algorithms

w

Simulated Annealing oL 30
RPOSA(G, F,a, Ty, Trnin, Xo, Y0, Linaz) + « « « o o oo oo o oo 69
Candidate Recombination 71
Neighbor Recombination 72

Xix

Abbrevations

AADL
ADL
CAME

CBD
CBSE
COTS
EMS
00
OOD
RPOSA
SA

SAE Architecture Analysis and Design Language

Architecture Description Language

Computer Assisted Software Measurement and Evaluation

tools

Component-Based Development

Component-Based Software Engineering

Commercial of the Shelf

Enginge Management System

Object Oriented

Object-Oriented Development

Recombinative Population-Oriented Simulated Annealing

Simulated Annealing

xx1

Part |I.

Preliminaries

1. Introduction

Reusability is an important aspect in the development of component-based software
for embedded automotive systems. This thesis adresses reuse in this systems with
an emphasis on component reuse and in particular the generation of reusable com-
ponent packages. Although the thesis concentrates on algorithms for the generation
of this packages, it also covers analysis methods for the evaluation of individual
components of component-based embedded software systems. This introductory
chapter presents the motivation behind this work, the research problem, contribu-
tions and an overview of the thesis.

1.1. Motivation

The increasing complexity of new-generation embedded systems raises major con-
cerns in various critical application domains, like for example, the automotive in-
dustry. Modern cars contain a huge amount of features regarding passenger safety,
environment protection or comfort. Most of them would not be possible without
the support of electronic devices, which are managed by controllers performing
complex control strategies. In recent years, the complexity of these algorithms
grew enormously (see Figure 1.1). Within twelve years, an increase in terms of
memory consumption and calculation power by the factor sixteen was observed.
In the same time, the software engineering methods changed from assembler pro-
gramming to the introduction of C as programming language and finally to the use
of model based development or even floating point based algorithms.

In the development of complex control strategies the increasing effort, that is re-
quired to manage state of the art combustion engines, as well as the cost pressure
and the short development cycles made it necessary to introduce a concept for
reusing solutions for the automotive powertrain domain.

During the last decade, engineering approaches have emerged that aimed at mas-
tering this complexity during the development process. One of these approaches
is the use of component-based software development which has proven to support
the development of complex software solutions [Rombach2003, Weisbecker2002].
Component-based engineering and, more recently, model-driven engineering ad-
dress the problem of complexity by promoting reuse and partial or total automation
of certain phases of the development process. For the successful implementation

1. Introduction

ROM (byte)
ROM slopes vs. technology
One point = one customer release o
reoo - Time-to-Market o

ECU Price

1200 000
32 bits DS
‘

Fo0 000 16 bits GS

400 000

94
96 | s
98
00
04

o o~ o~
o (o) o

Figure 1.1.: Evolution of engine management systems [Claraz et al.2004]. Each
dot represents a finished customer project. While time-to-market has
roughly been cut to a half and the ECU price to one third, the need
for ROM is increasing drastically. This is mostly due the change from
16-Bit to 32-Bit systems (in gasoline (GS) as well as in diesel (DS)
projects) and the increasing number of functionalities.

of component-based software engineering in the development process the reuse of
existing components is an essential requirement [Morisio et al.2002].

Frequently, reuse is seen as a powerful approach to reduce the number of soft-
ware errors in the final product. Components, while having been used in different
contexts, typically contain less undiscovered inactive bugs and because the test-
ing effort is only spent once, reuse also reduces the cost pressure on the testing
phase. So, if an application is built from such reused components, the likelihood

of failure is lower than in the case of building software from new components
[Gaffney et al.1989, Lim1994].

These engineering approaches must be supported by languages and tools that
provide means to ensure that the implemented system complies with its specifi-
cations. In particular, it is necessary to integrate analyses of quality attributes
(such as dependability and performance or reusability) in the development process
[Bachmann et al.2000].

1.2. Research Problem

The previous section stated that the embedded domain, and in particular the auto-
motive industry, is facing the challange of continously growing complexity in their

1.2 Research Problem

systems. To meet the challenge, in the year 2004 a component-based architecture
was developed for automotive engine management systems at Siemens VDO. They
were grouping the complete control unit into functionalities (e.g. injection control,
idle speed control), which then were structured into reusable parts, the so called
modules.

Over the years, the increasing complexity of algorithms resulted in an increasing
number of modules, making the management of the reuse more and more difficult
and inefficient. This led to an clustering of modules, to the so called aggregates.
The introduction of this additional level of reuse in the architecture was not only
aiming at simplifying the reuse (e.g. by reducing the integration effort of existing
solutions into new project environments), but also at structuring the development
to achieve a reduced number of variants.

As it is not clear, if the decisions that have been made when creating the parti-
tioning, will last for the lifetime of the architecture, a measure for the quality of
the defined architecture is required. Furthermore a solution to evaluate the reuse
desicions, made while introducing the concept of aggregates, is required in order
to determine to which extent the expected reuse benefits have materialized after
the adoption of the defined architecture. The following three main tasks where
identified:

e Evaluate component-based systems and in particular identify components
which qualify for reuse.

e Group components of existing solutions to reusable packages to reduce the
integration effort for new solutions.

e Provide a framework, supported by a defined process, for the handling of
components in component-based architectures.

This thesis solves problems related to all three of the tasks. In the following subsec-
tions the problem, which have been adressed by this thesis, are shortly presented.

1.2.1. Evaluate Component-Based Systems

Due to the increasing number of modules that result from new functionalities, the
increasing complexity of algorithms and the support for a product line approach,
the management of components has become difficult and inefficient. To choose
which individual component qualifies best to be reused for a specific task is al-
most impossible due to the vast number of versions and revisions of a component.
Therefore a solution for evaluating and measuring the importance and impact of
individual components is needed.

1. Introduction

1.2.2. Generate Reusable Packages

The way of grouping modules (the components of the system) into aggregates
was driven by several structuring concepts. First of all, functional coherence was
considered. The functionality of a combustion engine management system can be
divided hierarchically into units, thus creating a partitioning of the functionality
according to the engine management physics and the supporting functions (e.g.
comfort or legal requirements). Additionally, the complexity of interfaces and the
encapsulation of components was a driving factor for the partitioning definition.

Furthermore, it was ensured that the organizational responsibility matches the bor-
ders of the defined components to simplify cooperation and minimize communica-
tion problems between teams, especially in the communication with the customer.
To measure the maximum impact of reusability and maximize reuse efficiency, a
new solution for the grouping of components to reusable packages has to be evalu-
ated.

1.2.3. Framework for Component Reuse

To build new solutions from existing components, the systems have to have a
common architecture framework. Also the management of components, e.g. search
for specific components or component groups and retrieve them from the repository
which is integrated into the framework, could lead to a higher reuse efficiency.

1.3. Contributions

This thesis deals with issues related to reusability in component-based embedded
systems. The main contributions are summarized in the following:

Component reuse network. A component-based system architecture is trans-
formed into a graph. Graph theoretical measures are applied in the context
of reusability in component-based systems. Graph metrics are defined to
analyse the network for central components whereas clustering algorithms
are then applied to generate meaningfull groups of components.

Automatic reuse optimized clustering of components. A combinatorial op-
timization algorithm has been developed which, given a component reuse
network, clusters components to reusable packages. The algorithm adapts
the simulated annealing methodology to optimize clusters of components for
reuse.

1.4 Dissertation Outline

Evaluation Framework. A model-based framework serving as expert system has
been proposed to support system architects and integration engineers in the
development process.

Although these items are contributions by themselves and presented in Part II
(reusability analysis) and Part IIT (theoretical framework) respectively, they can
also be considered as part of one single proposed methodology for the improvement
of reuse in component-based embedded systems. The components are first eval-
uated for centrality and importance to help system experts with the selection of
individual components. In a second step the components are grouped to reusable
packages to separate project specific implementations from reusable parts and help
integration engineers with the construction of new solutions. These steps are com-
bined in a model-based framework.

1.4. Dissertation Outline

The thesis is divided into five main parts. Part I introduces the motivation be-
hind the use of component-based systems in the embedded domain. It furthermore
presents the background needed to understand the thesis and a high-level overview
of the used concepts. Part II introduces methodologies for evaluating component-
based systems and cluster components to reusable packages. Then Part III demon-
strates the proposed methods on a industrial case study. Next Part IV presents a
model-based framework wrapped in a defined process. Finally Part V concludes
the thesis and points out a few areas for future work.

The five parts are divided into chapters as follows:

Part I: Preliminaries

e Chapter 1 shortly motivates the importance of reuse in the area of component-
based automotive systems. Furthermore it summarizes the problems dis-
cussed, states the contribution of this thesis and gives an overview of the
structure of this thesis.

e Chapter 2 provides background of the research area and introduces prerequi-
site concepts and methodologies.

e Chapter 3 adresses related work.
Part II: Reusability Evaluation

e Chapter 4 introduces the concept for collecting the data from project repos-
itories and the representation of a component-based system as a graph.

1. Introduction

e Chapter 5 introduces network analysis methods, discusses metrics to evaluate
the graph and the application to an example repository.

e Chapter 6 presents an optimization algorithm based on simulated annealing
for the generation of reusable component packages.

Part III: Evaluation Framework

e Chapter 7 presents the theoretical model-based framework, based on an ar-
chitecture description language and application scenarios.

Part IV: Case Study: Engine Management System

e Chapter 8 applies the discussed network analysis methods and the RPOSA
algorithm to the engine management system.

Part V: Conclusions and Future Work
e Chapter 9 concludes the thesis and discusses possible issues for future work.

In the Appendix at the end of the thesis, supplementary material (e.g. additional
results of experiments) and a summary of abbrevations and notations have been
included.

2. Background

This chapter explores the background to this research and is devoted to the intro-
duction of the basic concepts and terminologies. In Section 2.1 software reuse is
described in general and the boundaries of this research are definded. This work
aims to develop a methodology that supports the reuse management of software
components in embedded automotive systems.

As this work is based on component-based software systems the notion of component-
based development is discussed in Section 2.2. Reuse packages discussed in this
work are composed of many small reusable software components which are typi-
cally stored in a component library or database. Such components can have simple
or complex functionality, may be static or adaptable and can be built in-house or
bought off-the-shelf. These component characteristics are described in Section 2.2
and important considerations as well as an introduction to the target system are
discussed in Section 2.4.

Component reuse in embedded automotive systems discussed in Section 2.4 differs
significantly from static black-box component reuse. Several barriers to component-
based development, such as component retrieval techniques and the lack of support
for understanding and integrating components are identified in this section. To
measure the reusability of the system or system parts and evaluate individual
components for their impact on the overall reuse an approach based on network
analysis was used which is introduced in Section 2.5.

To provide means for the automatic clustering of components to reusable packages
which intend to optimize the packaging regarding reuse an algorithm, based on an
optimization heuristic, is presented. The background to this optimization approach
which uses simulated annealing as technique is presented in Section 2.6.

2.1. Software Reuse

The 1968 NATO Software Engineering Conference is generally considered the birth-
place of the software engineering field of reuse. The conference focused on the
software crisis — the problem of building large, reliable software systems in a con-
troled, cost-effective way. Software reuse by Mcllroy [Mcllroy et al.1969] — Mass
Produced Software Components — was an invited paper at the conference. There-
fore the idea of systematic reuse (the planned development and widespread use of

2.

Background

10

software components) was first proposed in 1968 by Doug Mcllroy. Since then,
many attempts at improving the software process by using reusable software com-
ponents have been proposed and tried, with varying degrees of success. One reason
for this may be the different viewpoints about what software reuse is.

Basili and Rombach [Basili and Rombach1988] define software reuse as the use of
everything associated with a software project, including knowledge. Braun [Braun]
defines reuse as the use of existing software components in a new context, either
elsewhere in the same system or in another system. An important aspect is whether
software to be reused may be modified. Cooper defines software reuse as the capa-
bility of a previosly developed software component to be used again or used repeat-
edly, in part or in its entirety, with or without modification [Cooper1994]. A more
general view of software reuse was defined by Krueger as follows [Krueger1992]:

Software reuse is the process of creating software systems from existing
software rather than building them from scratch.

Ezran et. al. [Ezran et al.2002] complemented this definition with the addition of
goals as follows:

Software reuse is the systematic practice of developing software from a
stock of building blocks, so that similarities in requirements and/or ar-
chitecture between applications can be exploited to achieve substantial
benefits in productivity, quality and business performance.

In [Dumke2003] Dumke established the following basic characteristics for software
reuse from the definition provided by Ezran et. al.:

e An exclusive reference to the software development while the maintenance is,
in a certain manner, included in the further development.

e The characterization of reuse components as a “stock of building blocks”
includes, refering to requirements and architecture components, both kinds
of components.

e Reuse is characterized as a systematic approach.

e The goals of reuse are higher productivity, quality and business performance.

In software development, the idea of reusability is generally associated with code
reuse. However, reusability is a much wider notion that goes beyond APIs and
class libraries to include many types of artefacts of the software development
project, e.g., requirements specification, design patterns, architectural description,
design rationale, document templates, test scripts and so forth [Wasserman1996].
A overview about those potential reusable artefacts is illustrated in Figure 2.1.

McCarey [McCarey et al.2008] characterised the reuse lifecycle for reusable arte-
facts generally into five steps:

2.1 Software Reuse

Requirements Documentation Product Families

Potentially

Architecture Reusable Source Code
Artefacts

Design Frameworks Guidelines Test Cases

Figure 2.1.: Potential reusable artefacts

1. Specify requirements in terms that can be matched with the description of
the artefacts.

2. Search for relevant artefacts.

3. Evaluate the retrieved artefacts reuse potential.

4. Select the most suitable artefact and adapt as appropriate.
5

. Integrate the artefact in the current project.

The goal of this research is to develop methodologies to automate the points two
and three of this reuse lifecycle. These artefacts can be loosely classified into two
categories, namely knowledge reuse and code reuse [McCarey et al.2008]. Knowl-
edge reuse describes the use of high-level abstract software artefacts which can be
modeled at different abstraction levels. These are, for example, design patterns or
software architectures. Code reuse refers to the instantiation of this knowledge via
source code. Unlike the classification of [McCarey et al.2008], component-based
reuse is classified as a form of knowledge reuse in this work. This is motivated by
the architecture of the case study which is discussed in Chapter 8. This component-
based system architecture defines a component as a composition of code, documen-
tation and test cases. A more detailed definition of this particular system archi-
tecture is provided in Section 2.4. In the following sections the benefits of software
reuse, varying techniques and implications of reuse are discussed in more detail.

2.1.1. Benefits of Software Reuse

The benefits of software reuse have been treaten many times in literature e.g. the
Encyclopedia of Software Engineering [Braun|, the NATO Standards for Software

11

. Background

Reuse [Braun1992] and in various overviews of software reuse in journals and books
[Sametinger1997, Mohagheghi and Conradi2007]. In summary the main benefits of
reuse result in quality improvements and effort reduction as stated by Sametinger
[Sametinger1997] as follows :

Quality improvements:

Quality: Error fixes accumulate from reuse to reuse through a higher testing cov-
erage. This yields higher quality for a reused component than would be the
case for a component that is developed and used only once.

Productivity: A productivity gain is achieved due to less code that has to be
developed. This results in less testing efforts and also saves analysis and
design labor, yielding overall savings in cost.

Reliability: Using well-tested components increases the reliability of a software
system. Furthermore, the use of a component in several systems increases the
chance of errors to be detected and strengthens confidence in that component.

Interoperability: Various systems can work better together if their interfaces are
implemented consistently. This is the case when they use the same compo-
nents for these interfaces.

Effort reduction:

Redundant work and development time: Developing every system from scratch
means redundant development of many parts. This can be avoided when these
parts are available as reusable components.

Time-to-Market: The success or failure of a software product is very often de-
termined by its time to market. Using reusable components will result in a
reduction of that time [Lim1998].

Documentaton: Reusing software components reduces the amount of documen-
tation to be written.

Maintenance costs: Fewer defects can be expected to occur when proven com-
ponents have been used, and less of the software system must be maintained.

Training costs: Over time, software engineers become familiar with the reusable
components available for their development efforts. So they have a good
working knowledge of many components of theses systems when they are
starting to design and develop new systems.

Team size: If many components ca be reused, then software systems can be de-
veloped with smaller teams.

Among all the powerful software technologies abailable today, software reuse is the
best way to acelerate the production of high quality software [McClure and McClure2001].

2.1 Software Reuse

Of course reuse has not only benefits. As Sametinger stated [Sametinger1997] there
are several obstacles to software reuse. There are many factors that directly or
indirectly influence the success or failure of reuse. These factors can be of concep-
tual, technical, managerial, organizational, psychological, economic or legal nature.
In this work we concentrate mainly on the conceptual and technical obstacles of
software reuse. Omne open problem is the difficulty of finding reusable software
components. Software can not be reused unless it can be found. Reuse is unlikely
to happen when a repository does not have sufficient information about compo-
nents or when the components are poorly classified. In complex component-based
systems the reusable parts have to be well-organized to maximize the reuse.

2.1.2. Software Reuse Techniques

Various techniques or approaches can be used in order to achieve software reuse.
One technique is Compositional reuse which supports bottom-up development of
systems from a repository of available lower-level components. The classification
and retrieval of components is very important in this context and is subject to
the approach presented in this thesis. Another approach is generative reuse which
is often domain-specific, adopting standard system structures, e.g. reference ar-
chitectures or generic architectures, and standard interfaces for components. An
extensive overview about the techniques are provided by Dumke in [Dumke2003]
and Sametinger in [Sametinger1997]. In the following various reuse techniques are
summarized:

Ad hoc Reuse: Ad hoc reuse is the reuse of software for a defined goal, a defined

point in time or a special requirement and is, in general, realized only once
[Dumke2003] .

Abstraction: Wegner [Wegner| stated that abstraction and reusability are two
sides of the same coin and is therefore essential in any software reuse tech-
nique. In software engineering it is a major challenge to raise the abstraction
level and to find concise abstractions for components is a difficult task.

Black-Box Reuse: Using black-box reuse means to use a component without
seeing, knowing or modifying any of its internals. The component provides
an interface that contains all the information necessary for its utilization.
Object-oriented techniques allow modifications of black boxes by making
modifications and extensions to a component without knowing its internals
[Sametinger1997].

Compositional Reuse: The idea of compositional reuse is based on reusable
components that remain unmodified in their reuse. Complex or higher-level
components are build by combining lower-level or simpler components. New
components are only build if a needed component is not available and cannot

13

. Background

14

be created by modification of exiting components. The components intended
for reuse are collected in repositories (e.g. function libraries).

Defensive Reuse: In the case of defensive reuse software requirements are in
general regarded as predefined and constant. Based on this a possible reuse
is designed and realized [Dumke2003].

Explicit Reuse: The explicit reuse includes the posibility of an exact identifica-
tion of the reuse component in the reuse process [Dumke2003].

External Reuse: The external software reuse uses components from parts out-
side of the realised software development. This form of reuse implies, after
Dumke [Dumke2003], the so called “Boundary Problem” which expresses the
complexity of the determination of external and internal borders.

Generative Reuse: Generative Reuse is based on the reuse of a generation pro-
cess rather than the reuse of components. Large structures are used as invar-
ians, i.e., reused without change.

Glass-Box Reuse: Goldberg and Rubin [Goldberg and Rubin1995] used the term
glass-box reuse if components are used as-is like black boxes, but their inter-
nals can be seen from the outside. It gives the software engineer information
about how the component works without the ability to change it. But this
may lead to dependencies on certain implementation details which become
fatal when the internals of the component are changed.

Grey-Box Reuse: In case of a grey-box reuse the components are not “Black
Box” to the extend that they can be parameterized (e.g. to interfaces).

Horizontal Reuse: The horizontal reuse refers to the application area and there-
fore is problem-/domainspecific oriented (to a certain extend regarded as
top-down reuse).

Implicit Reuse: In case of implicit reuse the reusable components are included
(or embedded via special techniques) in the product parts [Dumke2003].

Inside Reuse: In case of inside reuse the reused components are part of the final
product [Dumke2003].

Internal Reuse: Internal reuse is defined by solely use of components from the
software development area itself [Dumke2003].

Offensive Reuse: In case of offensive reuse the software requirements are, as far
as possible, adapted to the already existing components [Dumke2003].

Outside Reuse: In case of outside reuse the reused components, which are used
during the software development, are not part of the final product [Dumke2003].

2.1 Software Reuse

Systematic Reuse: The systematic software reuse is a reuse form that consists
of a (pre)defined process, specific techniques and a personnel structure which
is comprehnsible and therefore rateable [Dumke2003].

White-Box Reuse: White-box reuse means reuse of components by adaptation.
The internals of the component are changed for the purpose of reuse. Unlike
black-box reuse, a new component derived by modifications to an existing
component must be regarded as a new component and thoroughly tested.
It requires separate maintenance and in the case of the existance of many
copies of a component with slight modifications, it becomes burdensome to
fix errors that affect all of them [Dumke2003].

These techniques inted to maximize the reuse maturity in the development process
of a company. Reuse maturity can be seen as the range of expected results in
reuse efficiency, reuse proficiency and reuse effectiveness that can be achieved in an
organization by following a reuse process [Davis1992].

Reuse Efficiency: Reuse efficiency measures how much of the intended reuse op-
portunities have actually been exploited by an organization.

Reuse Proficiency: Reuse proficiency is the ratio of actual reuse to potential
reuse.

Reuse Effectiveness: Reuse effectivenewss is the ratio of reuse benefits to reuse
costs.

Within the scope of software reuse the term asset is used for a software com-
ponent. Assets describe what can be reused during the software development or
maintenance. Software assets are defined by Ezran et. al. [Ezran et al.2002] as
follows:

Software Assets are composed of a collection of related software work
products that may be reused from one application to another.

For the description of reusable components (assets) different approaches can be
found in the literature. In [Dumke2003] and [Ezran et al.2002] an asset is charac-
terized by a description and a body as shown in figure 2.2.

The description of an asset consists of meta information about the asset and
the body includes a number of actual products. The individual products of-
ten represents the very same piece of software on different levels of abstraction
(concept, analysis, design, implementation, test) [Dumke2003]. A more exten-
sive description on assets and a proposal for a defined structure is provided in
[Dumke and Schmietendorf2000]. In this work however the more general term com-
ponent is used.

Basili et. al. stated in [Basili et al.1992] that reuse is a simple concept, using the
same thing more than once. Although a simple concept, reuse is a powerful software

15

2.

Background

16

reusable component (asset)

/\

description body
= administrative information = analysis model
= classification = design model
= environment information ...
= qualification information
= usage information ssource code

=executable code
=test cases
=documentation

Figure 2.2.: Reusable components (assets) characterized by description and body
after [Dumke2003] and [Ezran et al.2002].

practice that can deliver significant improvements in software productivity and
quality, as well as substantially lower software development and maintenance costs.
However, as experiences from industry prove [Morisio et al.2002], it is nothing but
simple in practice.

2.1.3. Component Repositories

The main requirement for successful reuse is the availability of a wide variety
of high-quality components. But the existance of those components alone does
not guarantee successfull reuse. Proper classification and retrieval mechanisms,
sufficient and proper documentation of components, flexible means for combining
components, and means of adapting components to specific needs [Sametinger1997]
are critical factors for success. In an ideal scenario reused components are largely
atomic and remain unmodified. However, often this ideal cannot be achieved and
the components have to be modified and changed in order to fit the special purpose
(as defined as white-box reuse). In this process different versions and revisions
of components are constructed which lead to a higher complexity in repositories.
During composition, compontents are combined by predefined principles which are
crucial for systems being built from existing components. This principles could be
for example partitions because of functional coherences or the demand for higher
reuse in projects.

As libraries of reusable software components continue to grow, the issue of retriev-
ing components from software component repositories has captured the attention of

2.2 Component-Based Development

the software reuse community [Burton et al.1987, Devanbu et al.1991, Esteval995,
Fischer1998, Ostertag et al.1992, Frakes and Gandel1990, Frakes and Nejmeh1986,
Maarek et al., Prieto-Diaz and Freeman1987] and is still an open research topic.

According to Ostertag and Hendler [Ostertag et al.1992], the ability to reuse exist-
ing software requires four steps: definition, retrieval, adaptation, and incorporation.
The definition step describes the component which needs to be constructed in terms
of its functionality and relation to the rest of the environment. The retrieval step
takes this description and retrieves from the software library a list of components
with similar characteristics. One of these components is then selected. During
the adaptation step the needed component is generated, usually by modifying the
component that was selected from the library. The needed component is then in-
corporated in a new software package during development. Finally, new reusable
software components are derived from the current software development project,
and inserted into the software reuse library. The classification of a software com-
ponent for easy later retrieval from a software library is an important part of the
reuse procedure.

Despite the various obstacles, systematic reuse is generally recognized as a key tech-
nology for improving software productivity and quality [Mili et al.1995]. Software
reuse is practiced to save time and money, and to improve quality as discussed by
McClure in [McClure and McClure2001]. The popularity of object-oriented devel-
opment (OOD) brought the notion of reuse to the forefront [Dumke et al.1996] but
the software community was disappointed because less object reuse was achieved
than expected. Reuse, it seems, is not an automatic byproduct of OOD. The next
form of reuse centers on components and component-based development which is
introduced in the following section.

2.2. Component-Based Development

Component-Based Development (CBD) is a still emerging software development
paradigm that promises many benefits including reduced development and main-
tenance costs, and increased productivity. The main features of CBD originate
from business requirements: Short time-to-market. Large savings in time can be
achieved by constructing applications from already existing parts as well as the dis-
tribution of work among dedicated experts for development of components. Since
components are developed independently of the products the experts in particu-
lar domains can develop them. The latest trends show that different component
technologies are being developed for different domains. Similarly to the object-
oriented (OO) paradigm that is exploited in different OO languages, a component-
based paradigm based on certain common principles is slowly built and used in
different component technologies as discussed in [Bouyssounouse and Sifakis2005,
Crnkovic and Larsson2002].

17

2.

Background

18

Component Library

g

T

Store New Compon

@@) New @ %ﬁ Final
@ Components Current Development Product

Developers Customer

L/Reuse Components

Figure 2.3.: Overview about the component-based development process.

In [Dumke and Winkler1997] Dumke et. al. describe Component-based software
development as a new way for a more flexible software generation, composition and
integration while the components have the following main characteristics [Barry1996]:

e Components general do something useful

e Components are a small related set of functions or services

Real OO programs are component based

Classes are not components
e Components are composable

e Frameworks often define component families

Component-Based Development involves the technical process of designing and im-
plementing reusable components, and assembling applications from existing com-
ponents as is illustrated in Figure 2.3. Bachmann et. al [Bachmann et al.2000] refer
to the practice necessary to perform CBD in a repeatable way to build systems that
have predictable properties.

From the engineering point of view the advantages of CBD are based on standardis-
ation and reusability. Standardisation plays a crucial role as it enables independent
development and seamless integration of components. By reusing the same entities
the confidence of their behaviour and properties increases. Similar to other engi-
neering domains, CBD targets complexity: By reusing existing solution not only
on the component level but also on the system structure level CBD enables a better
understanding of complexity; the implementation details of components are hid-

2.3 Component-Based Software Engineering

den and only component services that are exposed through component interfaces
are visible. In this way the abstraction level is increased which is a key factor in
managing complexity.

Component-based systems result from adopting a component-based design strat-
egy, and software component technology includes the products and concepts that
support this design strategy. By design strategy (something very close to architec-
tural style) a high-level design pattern is meant, described by the types of compo-
nents in a system and their patterns of interaction [Clements and Kazman2003].
Component-based systems are the result of structuring a system according to a
particular design pattern. Dumke et. al [Dumke and Winkler1997] argue that
the general idea of component-based development leads to a “component-based”
software measurement.

2.3. Component-Based Software Engineering

In literature, the terms Component-Based Development and Component-Based
Software Engineering (CBSE) are often used indistinguishably. In a technical re-
port by Bachmann et. al. [Bachmann et al.2000] the concept of CBSE is stated
as:

Component-based software engineering is concerned with the rapid as-
sembly of systems from components where components and frameworks
have certified properties and these certified properties provide the basis
for predicting the properties of systems built from components.

In [Dumke2003] Dumke illustrated the fundamental software principles of component-

based technologies as shown in Figure 2.4.

But the rapid assembly of systems from components is not the only goal of component-

based system engineering. Clements et. al. [Clements and Kazman2003| summa-
rized the goals as follows:

Cost reduction: Costs are a main driving factor for all decisions in industrial
software development (see Figure 1.1). CBSE reduces the development steps
for creating and assembling software systems.

Ease of assembly: Due to the well defined interfaces of the components they
facilitate a quick and easy tool to support a subsequent assembly process.
This satisfies the demand for a reduced time-to-market.

Reusability: Designing software for reuse in different applications is supported
due to the partitioning of the complete software system into smaller parts
(the components).

19

2.

Background

20

Component-based Software Engineering (CBSE)
Components:
general: assets
special: COTS etc.
\V4
$ Integration:
\V4
Component system.:
Measurement: (Component-) Reuse: aggregation
Single Component ad hoc vs. systematic modell:
(e.g. CURE) black-box vs white-box composition
offensive vs. defensive
Structure or inside vs. outside process:
Architecture etc. cooperation
Reuse Repositories Asset Libraries

Figure 2.4.: Aspects of Component-based software engineering from [Dumke2003].

Customization and flexibility: In component-based systems, each component
supports a clearly defined range of different configurations regarding its be-
havior and its interfaces. This allows the customization of the component
and makes component design flexible.

Maintainability: The effect of changes can be restricted to a clearly defined set
of components.

These properties of CBSE help to improve the quality of the developed software
systems. In [Hobelsberger and Mottok2009] different software reliability models
have been applied to measure the improvement of the software quality. Especially
reuse and maintainability are playing a key role due to the higher test depth and
the local effect of changes. In Figure 2.5 the main goals for architectural decisions
and their dependencies to each other are shown.

Exploiting component-based development can provide very significant software pro-
ductivity, quality, and cost improvements to an organization which are summarized
by McClure [McClure and McClure2001] as follows:

e Deploy critical software applications more quickly

e Simplify large-scale software development

2.3 Component-Based Software Engineering

Ease of assembly

]

Cost Reduction +7% Reusability

—=

Maintainability

Customization
Flexibility

Figure 2.5.: The main goals for architectural decisions and their main dependen-
cies. Squares are indicating a target conflict, while the circle-style
connections indicate goals that combine well.

e Encapsulate business services into reusable application logic

e Shorten software development cycles

e Reduce the amount of new code to write

e Allow software applications to share functionality

e Make software applications more adaptable and easier to change
e Decrease software complexity

e Increase software reliability and overall quality

e Increase software productivity by reducing costs

The key consideration of component-based development is reusability and adapt-
ability. The component models must have a mean by which components can be
reused and adapted to the requirements. The work presented in this thesis focuses
on the reusability of components in the component-based systems engineering
process and particulary with the handling of the continously growing number of
components (manifesting in different versions and revisions). In the domain of em-
bedded automotive systems this has led to a number of implications which will be
discussed in more detail in Section 2.4.

One of the major issues in software systems development today is quality as stated
in [Dobrica and Niemel2002]. The idea of predicting the quality of a software
product from a higher-level design description is not a new one. In 1942, Parnas
[Parnas1972] described the use of modularization and information hiding as a means
of high-level system decomposition to improve flexibility and comprehensibility. In

21

2.

Background

22

1974, Stevens et al. [Stevens et al.1974] introduced the notions of module coupling
and cohesion to evaluate alternatives for program decomposition. During recent
years, the notion of software architecture has emerged as the appropriate level for
dealing with software quality.

This is because the scientific and industrial communities have recognized that soft-
ware architectures sets the boundaries for the software qualities of the resulting
system [Clements and Kazman2003]. In the following section an introduction to
the notion of software architectures is provided.

2.3.1. Software Architectures

There are several definitions and understandings of software architectures and the
basic concepts behind it in the field of computer science. At its essence, a software
architecture is defined quite simply, by Taylor [Taylor et al.2009] as follows :

Definition: A software systems architecture is the set of principal
design decisions made about the system.

He emphasizes that the notion of design decision is central to software architecture
and to all of the concepts based on it. The IEEE Standard 1471-2000 [Hilliard2000]
defines a software architecture as the fundamental organization of a system embod-
ied in its components, their relationships to each other and to the environment,
and the principles guiding its design and evolution while Paul Clements et. al.
[Clements and Kazman2003] defines the software architecture of a system as the
structure or structures of the system, which comprise software components, the ex-
ternally visible properties of those components, and the relationships among them.

Another useful definition of architecture, which adresses system evolution and
sumarizes the definitions stated above is that, provided by the ANSI/IEEE Stan-
dard 1471-2000, Recommended Practice for Architectural Description of Software-
Intensive Systems:

Definition: The architecture is the fundamental organization of a sys-
tem, embodied in its components, their relationships to each other and
the environment, and the principles governing its design and evolution.

The individual parts of the software architecture as stated above are described in
more detail in the following subsections.

2.3.1.1. Components

As stated, a software architecture describes the components of a software and the
relationships between these components. Now it is considered what can be thought
of as a component, and what as a relationship.

2.3 Component-Based Software Engineering

In [Taylor et al.2009] a software component is defined as follows:

Definition: A software component is an architectural entity that (1)
encapsulates a subset of the systems functionality and/or data, (2) re-
stricts access to that subset via an explicitly defined interface, and (3)
has explicitly defined dependencies on its required execution context.

Another, widely cited, definition of software component is provided by Clemens
Szyperski [Szyperskil998]:

Definition: A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to
composition by third parties.

This definition does not tell what a component is, but rather how it is to be
structured and used, both by software developers (by composing the component
into a system and deploying it) and by other components (by interacting with it
through explicit interfaces). This definition is very similar to several other defini-
tions (for example see Heineman and Councills Book [Heineman and Councill2001]
or Biggerstaff et. al. [Biggerstaff and Perlis1989]) as it does not separate data
from computation in software systems architectures similar to the object-oriented
paradigma in which all system elements are treated as objects, regardless of their
purpose.

A comprehensive overview about component architecture, requirements and a clas-
sification of different kinds of components is presented by Schmietendorf et. al in
[Schmietendorf et al.2002].

A component can be as simple as a single operation or as complex as an entire
system, depending on the architecture, the perspective taken by the designers, and
the needs of the given system. The key aspect of any component is that it can be
“seen” by its users, wheter human or software, from the outside only, and only via
the interface it (or, rather, its developer) has chosen to make public. Otherwise
it apperars as a “black box”. Software components are thus embodiments of the
software engineering principles of encapsulation, abstraction and modularity. In
turn, this has a number of positive implications on a components composability,
reusability, and evolvability.

2.3.1.2. Connectors

Components are in charge of processing or data, or both simultaneously. Another
fundamental aspect of software systems is interaction among the systems building
blocks. Most modern systems are build from large numbers of complex compo-
nents dynamically updated over long time periods. In such systems, ensuring

23

2. Background

appropriate interactions among the components may become even more important
and challenging to developers than the functionality of the individual components
[Taylor et al.2009]. In other words, the interactions in a system become a princi-
pal (architectural) concern. Software connectors are the architectural abstraction
tasked with managing component interactions.

Definition: A software connector is an architectural element tasked
with effecting and regulating interactions among components [Taylor et al.2009].

2.3.1.3. Configuration

Components and connectors are composed in a specific way in a given systems
architecture to accomplish that systems objective. That composition represents
the systems configuration, also referred to as topology which will become very
important to the clustering approach presented in section 6.2. Configuration is
definded as follows [Taylor et al.2009]:

Definition: An architectural configuration is a set of specific associ-
ations between the components and connectors of a software systems
architecture.

2.3.2. Architecture Model

A software systems architecture is captured in an architectural model using a par-
ticular modeling notation. Taylor [Taylor et al.2009] defined an architectural model
as follows:

Definition: An architectural model is an artifact that camptures some
or all of the design decisions that comprise a systems architecture. Ar-
chitectural modeling is the specification and documentation of those
design decisions.

One system may have many distinct models associated with it as, for example, one
model for every level of abstraction. Models may vary in the amount of detail they
capture, the specific architectural perspective they capture (for instance, structural
versus behavioral, static versus dynamic, entire sytem versus a particualar com-
ponent or subsystem), the type of notation they use, and so forth. In Chapter
4 a specific model for the capturing of reusability of a component-based software
system is presented.

Definition: An architectural modeling notation is a language or means
of capturing design decisions [Taylor et al.2009).

The notation for modeling software architectures are referred to as architecture
description languages (ADLs) . ADLs can be textual or graphical, informal, formal,

24

2.4 Automotive Software Architecture

domain-specific or general-purpose, proprietary or standardized. The ADL, used
for architectural modeling in our approach, is the SAE AADL [Aerospace2004]
which will be introduced in more detail in section 2.8. This choice for the SAE
AADL as modeling language is based on comprehensive comparisons on the use of
differend architecture description languages in the embedded domain presented in
[Hobelsberger2007], [Hobelsberger et al.2007] and [Hobelsberger et al.2008].

Architectural models are used as the foundation for most of the other usual activ-
ities in architecture-based software development processes, such as analysis, sys-
tem implementation (the automatic generation of code), deployment, and dynamic
adaption.

2.4. Automotive Software Architecture

In this section an automotive software architecture, which will serve as a case study
in Section 8.1 is presented: the engine management system of the Continental
Automotive GmbH - Powertrain Division.

The engine management system (EMS2) architecture [Claraz et al.2004] was in-
troduced in the year 2003 as a new, corporate wide standard in the powertrain
domain at SiemensVDO and is still the standard EMS architecture at Continental
Automotive Engine Systems. It is organized as a layer architecture which is used
as a basis for systematical abstraction of hardware dependencies. It allows e.g. to
exchange a used micro controller with a limited impact on the upper software lay-
ers. This hardware dependent software within the system is called Infrastructure.
The other part of the software is hardware independent. Both layers feature a
functional partitioning, which enables the reuse of individual parts following both
functional and interface dependencies.

The elements of this partitioning cover the complete functionality of the system
(see Figure 2.6). As these groups (hardware dependent and independent software)
are too big to be reusable, they have been split into subparts, called aggregates.

In total, around 100 aggregates are defined. They are the basis for reuse and
are themselves split into modules, which are the smallest units managed in the
configuration (see Figure 2.7(a)). Each aggregate contains a complete functionality,
allowing good encapsulation and weak binding between the aggregates.

Every aggregate is split into a fixed core, a configurable part, and a project-specific
part (see Figure 2.7(b)). The two first parts are intended for broad reuse. The fixed
core is strictly the same for all projects reusing the aggregate and is completely
independent of the system configuration. The configurable part can be adapted to
the requirements of the reusing project, by choosing one of the predefined configura-
tion options. Finally the specific part has to fulfill predefined interface constraints
but is considered as project integration code.

25

2.

Background

26

Vehicle Transverse

| Vehicle Motion Functions

1 Powertrain

|| Powertrain Management |

Il Engine - Gasoline or Diesel

1

1

1

1

1

1 1
1 ! -

il Combustion Air Exhaust Jif Electric Drive |!| Chassis System
uf Process Gas | i Manager
1 ' '
1 ' H
i " 1
i 1 :
:: Torque Ignition Engine i| Transmission |1| Body & Basic
|| (Gasoline) || Position & i 1| Interior ECU
H Speed |i ! Functions
T I
i H '
! - ;
:: Engine Fuel Engine |i 1| Electric Communi-
| States Cooling & [{ il Power cation
H Lubrication s I
i ! '
1 H H

Figure 2.6.: The Engine Management System (EMS2) partitioning according to
blocks of functionality:.

The way of grouping modules into aggregates was driven by several structuring
concepts. First of all, functional coherence was considered. The functionality of
a combustion engine management system can be divided hierarchically into units,
thus creating a partitioning of the functionality according to the engine manage-
ment physics and the supporting functio (e.g. comfort or legal requirements). Ad-
ditionally, the complexity of interfaces and the encapsulation of components was a
driving factor for the partitioning definition. Furthermore, it was ensured that the
organizational responsibility matches the borders of the defined components to sim-
plify cooperation and minimize communication problems between teams, especially
in the communication with the customer.

Due the several structuring concepts, reuse efficiency was not the only goal behind
the construction of aggregates and therefore different properties of CBSE (see Sec-
tion 2.2), had to be considered. As shown in Figure 2.5, target conflicts between
reusability (e.g. grouping by functional coherence), maintainability (e.g. organi-
zational responsibilites) as well as flexibility (e.g. encapsulation of components)
exist and affect the impact on the reusability. To measure the maximum impact
of reusability and maximize reuse efficiency a new grouping of components has to
be evaluated. In order to include the concept of aggregates in the measurement

2.4 Automotive Software Architecture

Project [O——— Run-Unit — —
| - | -
» »
I—?1 T* Reuse Generic Fixed
d Objects C
ore
Config-Files z > >
Aggregate
¢ _— > g
—" !
* Interface
IN/OUT N > >
“Atoms® '
Interface A of > Generic >
* .
i | Configurable Part 4
Module o v
I . —l Interface I— o —
®» ¢ ¢ > >
> oo >
4 Specific Part 4
| > pl |
Code ST;S" Docu
(a) Class diagram of the EMS2 architecture (b) The aggregate configuration

Figure 2.7.: Figure (a) shows a high level model of the reuse structure of the EMS2
architecture for powertrain control units. In Figure (b) the configura-
tion of an Aggregate, split into a fixed core, a configurable part and a
project-specific part, is shown. The different parts are connected via
an internal interface.

of reuse, a new reuse metric was defined as follows (J. Feder, G. Wirrer; Internal
Technical Report 2009; Continental Automotive GmbH):

rp:(M +2| | M +4an) zlzpilp, (2.1)

a€Acore beAp'rj peP peP

P = set of selected projects

rp = reuse indicator using P as basis, the smaller the better, 1 is best
A.ore = set of aggregate core part module versions used in P

Aprj = set of aggregate project part module versions used in P

M, = set of modules contained in aggregate part x

n, = number of modules not inside aggregates in project p

m, = number of modules in project p

The first summand of Equation 2.1 is the quantity of modules in the core part of the
aggregate (see Figure 2.7(b) Generic Fixed Core), the second summand (weighted
double) is the quantity of modules, which are in the aggregate but not in the
core part (see Figure 2.7(b) Generic Configurable Part) and the third summand
(quadruple weighted) is the number of modules not assigned to an aggregate. The
last part of the equation is a suitable normalization factor. The weighting indicates

27

2.

Background

28

that modules, which are part of aggregates lead to a higher reuse level (which is
desired) than project specific implementations.

The defined metric provides means to measure the reuse level while taking into
account the architectural concept of the system. Nevertheless it assumes that
the configuration of the architecture is optimal and that the use of modules from
the generic part has a higher impact on the reuse than modules from the generic
configurable or specific parts. As stated before the motivations for structuring the
components to component groups vary and it is not guaranteed that the selected
partitioning is optimal as constraints are changing over time.

Also, the metric tends to enforce the selected partitioning by the imposed weighting
without giving hints to improvements of the architecture. The drawbacks of this
metric are subject to the solutions provided in this thesis. One of the solutions
uses network analysis methods which is introduced in the following section.

2.5. Network Analysis

Section 5.1 discusses an approach which provides means to measure the reusability
of past and current systems and to evaluate individual components. This approach
uses methods from network analysis which became very popular in recent decades
in social network analysis. Wasserman stated in [Wasserman and Faust1994] that
the application of network analysis in behavioral and social science focuses on
the relationships among entities and on the patterns and implications of these
relationships.

Knoke described network analysis in [Knoke and Yang2008] as follows:

Central to the theoretical and methodological agenda of networks anal-
ysis is identifying, measuring, and testing hypotheses about the struc-
tural forms and substantive contents or relations among entities. The
Network perspective emphasizes structural relations as its key orient-
ing principle. Entities may be individual natural persons, small groups,
organizations or even nation-states. The central objectives of network
analysis are to measure and represent these structural relations accu-
rately, and to explain both why they occur and what are their conse-
quences.

The network perspective allows, similar to the application in social science, the
answering of research questions in the software domain by giving a precise formal
definition to the aspects of the component-based system and its structural envi-
ronment. From the network analysis view in the embedded software domain, the
component structure can be expressed as patterns or regularities in relationships
among interacting units.

2.6 Simulated Annealing

Many practitioners describe a software system playful as a living organism, and
it may be not that far from reality. Each software component may evolve over
time, become distinct, is merged with other components and has strong and weak
ties and relationships to other components in the environment which alike can
change over time too. The component environment becomes an ecosystem to which
many of the key structural measures and notions of social network analysis are
applicable. Because of the vast amount of data and information on component-
based architectures in industrial systems network analysis methods may not be
efficient enough. To overcome this challange heuristics will be discussed in later
sections and are introduced in the following.

2.6. Simulated Annealing

Simulated annealing (SA) was proposed as an appraoch to the approximate solution
of difficult combinatorial optimization problems by Kirkpatrick, Gelatt and Vecchi
[Kirkpatrick and Gelatt1983] in 1983 and independently by Cerny [Cerny1985] in
1985 based on the work of Metropolis et. al. [2]. This approach is based on ideas
from statistical mechanics and motivated by an analogy to the physical process of
annealing. It uses the notions of a probabilistic acceptance rule, exploration in the
neighborhood of the current solution, and the Boltzmann distribution and thermal
equilibrium to guarantee asymptotic convergence to global optima in combinatorial
optimization problems [Aarts and Korst1988]. It can be viewed as an enhanced
version of the technique of local optimization or iterative improvement, in which
an initial solution is repeatedly improved by making small local alterations until no
such alteration yields a better solution. Simulated Annealing contains three basic
elements:

1. probabilistic acceptance (Metropolis or logistic forms),
2. neighborhood exploration, and

3. a cooling schedule that respects thermal equilibrium.

SA has been demonstrated to be robust and capable of dealing with noisy and
incomplete real-world data [Nolle et al.1999, Nolle et al.2002] and when adapted
efficiently to optimization problems, SA is often characterised by fast convergence
and ease of implementation. These characteristics motivate the choice of SA for
N P-hard combinatorical optimization problems in general and for the optimiza-
tion problem discussed in this thesis in particular. In Table 2.6 a comparison of
strategies for optimization problems is presented.

Simulated annealing randomizes this procedure in a way that allows for occasional
downhill moves (changes that worsen the solution), in an attempt to reduce the
probability of becoming stuck in a poor but locally optimal solution. As with lo-

29

2. Background

Accuracy Complexity Advantages Disadvantages

Exhaustive Always finds the Exponential High Accuracy High complexity
optimal solution

Sequential Good if no back- Quadratic Simple and fast Cannot backtrack
tracking needed ~ O(Nzy)

Randomized Good with Generally low Designed to es- Difficult to
proper control cape local min- choose good
parameters ima parameters

Table 2.1.: Comparison of strategies for optimization problems.

cal search, simulated annealing can be adapted readily [Ingber1993] to old (e.g.
the traveling salesman problem [Kirkpatrick and Gelatt1983]) and new problems
in diverse areas such as neural networks as stated by Ackley [Ackley et al.1985],
Israel [Israel and Koutsougeras2002] and Bilbro [Bilbro et al.], pattern recogni-
tion discussed by Duda in [Duda et al.2001], circuit design presented by Wu in
[Wu and Sloane2002] or exploratory data analysis and clustering problems such as
the approach presented in Chapter 6.

SA, as described in [Metropolis et al.1953] (called the Metropolis algorithm), starts
with a high temperature 7" and any initial state. A neighborhood operator is applied
to the current state ¢ (having energy E;) to yield state j (having energy Ej). If
E; < E;, j becomes the current state. Otherwise j becomes the current state
with probability, eZ~Fi)/T (if j is not accepted, i remains the current state). The
application of the neighborhood operator and the probabilistic acceptance of the
newly generated state are repeated either a fixed number of iterations or until a
quasi-equilibrium is reached. The entire procedure is performed repeatedly, each
time starting from the current ¢ and from a lower 7'. At high T', almost any change
is accepted and the algorithm visits a very large neighborhood of the current state.
At lower T, transitions to higher energy states become less frequent and the solution
stabilizes.

2.7. Expert Systems

As discussed in the previous Section 2.1.3 crucial for the use of component repos-
itories are proper classification and retrieval mechanisms and flexible means for
combining components. In the context of the component-based automotive system
discussed in Section 2.4, combining components means to partition components
(so called modules) to component groups (so called aggregates) which are the basis
for reuse. The way of grouping was driven not only by functional coherence but

30

2.8 SAE AADL

Algorithm 1 Simulated Annealing

Determine an annealing schedule T;
Create an initial solution Yj
while T; > T,,;, do
Generate a new solution Y;; which is a neighbor of Y'(;)
Compute AE = —[J(Yi+1) — J(Y7)]
if AE <0 then
Always accept the move from Y; to Y; 1
else if downhill move then
Accept the move with probability P =
end if
Reduce T
end while

e~ AE/T;

also by the expected reuse scope, affiliation to customers or projects, complexity
of interfaces and even organizational aspects.

Unlike the goal in the research field of software clustering, to find the best grouping
of components to subsystems, i.e. the best cluster of an existing software system
[Clarke et al.2003], the goal of our approach is to find the component group or
cluster to maximize the reuse of components in a new system. In software clustering
most of the techniques determine clusters (subsystems) using either source code
component similarity [Muller et al.1993], sets of heuristic rules [Schwankel991],
concept analysis and clustering metrics [Anquetil2000, Hutchens and Basili1985,
Lindig and Snelting1997, Van Deursen and Kuipers1999].

2.8. SAE AADL

For the modeling of software architectures a new discipline has recently emerged
— model-driven engineering. Currently, the definition of model-driven engineer-
ing approaches is the subject of many efforts both from industry and academia.
One important concern in these approaches is the choice of the most appropriate
languages and tools to be used. Generally, this choice depends on the application
domain and on the variety and maturity of the tools that support a particular
language. Most of the model-driven engineering approaches under development
rely either on UML (Unified Modeling Language), which is a general-purpose mod-
eling language, or on ADLs (architecture description languages) that are usually
domain-specific, or on a combination of both. For the framework which will be
proposed in Chapter 7 an architecture description language is used.

The SAE Architecture Analysis and Design Language (AADL) [Aerospace2004] is
a textual and graphical language used to model and analyze the software and hard-
ware architecture of embedded systems. Feiler at. al. states in [Feiler et al.2006b]
that the AADL describes the structure of such systems as an assembly of soft-

31

2.

Background

32

ware components mapped onto a hardware platform. Furthermore it is used to
describe functional interfaces to components (such as data inputs and outputs)
and performance-critical aspects of components (such as temporal requirements)
which is a crucial requirement for the analysis of real-time systems.

As stated in [Aerospace2004] the language standard does not specify how detailed
the design of the architecture or the implementation of software and hardware
components has to be. This allows different levels of abstraction within one model
and therefore supports an iterative development approach. Furthermore AADL
may be used in conjunction with existing standard languages in these areas (e.g.
via an existing UML profile). The AADL describes interfaces and properties of
hardware components including processor, memory, communication channels, and
devices interfacing with the external environment. Detailed designs for such hard-
ware components may be specified by associating source text written in a hard-
ware description language such as VHDL. The AADL can describe interfaces and
properties of application software components implemented in source text, such as
threads, processes, and runtime configurations.

The language includes a standardized XML interchange format based on a Meta
model specification of AADL to facilitate model interchange and integration of
analytical models and supporting tools. The purpose of the SAE AADL is to
provide a standard and sufficiently precise (machine- processable) way of modeling
the architecture of an embedded real-time system, such as an automotive system or
avionic system, to permit analysis of its properties and to support the predictable
integration of its implementation. It provides a framework for system modeling
and analysis, facilitates the automation of code generation and other development
activities, and aims to significantly reduce design and implementation errors.

The AADL core language is designed to be extensible to accommodate analyses
of the runtime architectures that the core language does not completely support.
Extensions can take the form of new properties and analysis specific notations or
unique hardware attributes that can be associated with components.

3. Related Work

Component-based software engineering has achieved a lot of popularity in to-
day’s software development communities and several researcher have been working
on component-based software architectures and component integration, retrieval
strategies or component composition. After exploring the background to this re-
search in the previous chapter, this chapter aims to put the thesis in context to
related work and discuss similar approaches.

3.1. Component Selection Problem

By software composition usually the composition of components to satisfy func-
tional requirements, where each component possesses a clearly defined interface
and functional description, is meant [Bartholet et al.2005].

Component selection methods are traditionally done in an architecture-centric
manner, i.e. they aim to answer the question: given a description of a component
needed in a system, what is the best existing alternative available? Several Com-
mercial of the Shelf (COTS) component selection approaches exist [Albert et al.2002,
Comella-Dorda et al.2002, Mancebo and Andrews2005] which are largely based on
the selection and implementation of COTS based on business and functional crite-
ria. Reuse research as it relates to the perspective of component selection generally
takes one of three forms:

e Designing reuse metrics and models.
e Representing components.

e Selecting the best set of components.

To predict the costs and benefits of a reuse strategy and enable the measurement
of tradeoffs associated with specific components reuse metrics and models are used.
Frakes and Terry provide in [Frakes and Terry1996] a extensive summarization of
reuse metrics and models.

Component representations support the description of components and range from
informal text-based descriptions which where summarized by Frakes and Pole
in [Frakes and Pole1994] to formal descriptions introduced by Mili et. al. in

33

3.

Related Work

34

[Mili et al.1994]. More recently to the use of ontologies, domain models and frame-
works has come to use.

Finally, there is a need for a method to retrieve the best set of components given
metrics and descriptions. Component selection has been shown to be NP com-
plete [Petty et al.2003] while more recently, a polynomial time approximation al-
gorithm for component selection was discovered [Fox et al.2004]. For the selection
and identification of components most approaches are based on system functionali-
ties or system architecture [Haghpanah et al.2008, Vescan et al.2008]. Sugumaran
and Storey propose a semantic-based approach for the retrieval of components in
[Sugumaran and Storey2003]. Other methods include formal methods like model
checking [Xie|, artificial neural networks [Merkl et al.1994], information retrieval
[Maarek et al.1991], decision and utility theory [Alves et al.2005] and genetic algo-
rithms. For the latter Haghpanah et. al [Haghpanah et al.2008] adapted a greedy
approach and a genetic algorithm to approximate the component selection prob-
lem. Hoover et. al proposed in [Hoover and Khosla1996, Hoover et al.1999] an
analytical approach for the design and the change of the design of reusable real-
time software. In this approach a combination of genetic and simulated annealing
algorithms was used to measure the impact of change to the reusable system. While
this method could also be used to partition software to reusable parts no informa-
tion about the quality of components is taken into account and therefore does not
qualify for the problem at hand.

3.2. Software Architecture Analysis

Another approach to evaluate component-based software architectures is based on
software architecture analysis. Two basic classes of evaluation techniques, ques-
tioning and measuring, available at the architecture level are defined in two impor-
tant research reports [Clements and Kazman2003] [Abowd et al.1996]. Question-
ing techniques generate qualitative questions to be asked of an architecture and
they can be applied for any given quality. This class includes scenarios, question-
naires, and checklists. Measuring techniques suggest quantitative measurements
to be made on an architecture. They are used to answer specific questions and
they address specific soft- ware qualities and, therefore, they are not as broadly
applicable as questioning techniques [Dobrica and Niemel2002].

A number of methods have been developed to evaluate quality related issues at
the software architecture level. SAAM [Kazman et al.1996] and three extensions
SAAM for Evolution and Reusability (SAAMER) [Lung et al.1997], Architecture
Level Modifiability Analysis (ALMA) [Bengtsson et al.2004], Architecture Level
Prediction of Software Maintenance [Bengtsson and Bosch1999], Scenario Based
Architecture Reengineering [Bengtsson and Bosch1998], SAAM for Complex Sce-
narios [Lassing et al.1999], integrating SAAM in domain-Centric and Reuse-based

3.3 Evaluation using Metrics

development [Molter1999], and the architecture trade-off analysis method (ATAM)
[Kazman et al.1998]. These are scenario-based methods, a category of evaluation
methods considered quite mature. A comprehensice overview about the method-
ologies was collected by Babar in [Babar et al.2004].

3.3. Evaluation using Metrics

Evaluating a software architecture using a metrics system is often based on the
assumption that a object-oriented design is present. Metrics are used for different
kinds of calculations of dependencies between and within classes, which can give
guidelines on how good a structure the architecture in question has. Rosenberg
and Hyatt [Rosenberg and Hyatt1997] define five different qualities that can be
measured by metrics for object-oriented design: efficiency, complexity, understand-
ability, reusability, and testability /maintainability.

A extensive collection of Metrics was presented by Harrison et al. [Harrison et al.1998]
with the MOOD Framework while Chidamber and Kemerer proposed six object-
oriented design metrics in [Chidamber et al.1994]. In their study of the use of
object-oriented metrics to determine maintainability, Li and Henry [Li et al.1993]
used five of the six object-oriented metrics proposed by Chidamber and Kemerer.
The amount of software reuse (the reuse level) in a certain software system can be
determined, according Banker in [Banker et al.1993], by the ratio of reused compo-
nents (or their lines of code) to the total components of the system (or total amount
of code lines). Suri et. al presented in [SURI and Garg2009] software reuse met-
rics to measure the independence of components and argue that more independent
components are more reusable.

In [Dumke2003] software measurement is generally described as a process for quan-
tifying the attributes of objects or components in software engineering. This
is achieved by using measurement tools for specific measurement goals. This
tools that support the measurement process are classified as Computer Assisted
Software Measurement and Evaluation tools (CAME tools). The CAME tool
area includes tools for model-based software components analysis, metrics ap-
plication, presentation of measurement results, statistical analysis and evaluation
[Dumke and Winkler1997]. Dumke et al. present in [Dumke and Winkler1997] ex-
amples of CAME tools with the different possibilities of model based presentation,
metrics execution, component evaluation, and measurement education.

A large number of measurement approaches within the context of component-
based development where identified by Schmietendorf et al. in [Dumke et al.2002].
Selected examples which picture general starting points for software measurement
are shown in figure 3.1.

35

3.

Related Work

36

cost, reusability,
contract dependency

used components degree of coupling

o "

T e
NN

quality (functionality, compatibility, cohesion, stability,
efficiency, availability) effort for adaption granularity, size

Figure 3.1.: Potential measurement approaches within the context of a component
architecture after [Dumke et al.2002].

To be applicable in a large scale software development scope metrics are often
composen in frameworks. This software measurement frameworks can be directed
on the software process, product and resources components. Software measure-
ment frameworks are proposed by Dumke et al. in [Dumke and Grigoleit1997]
and by Fenton in [Fenton and Pfleeger1998]. In table 3.3 examples of metrics
from [Dumke2003] for the assessment of software reuse are presented. A com-
prehensive overview about measurement techniques is provided by Ebert et al. in
[Ebert and Dumke2007].

3.4. Evaluation using Human Expertise

The work suggested in the previous section uses formal methods for the evaluation
of component-based systems. While this methods provide important support for
system architects and engineers they can not completely replace human expertise.
While metrics may give a very good value to individual quality requirements ar-
chitectural decisions are based most of the time on multible objectives. Hence,
although metrics can aid in architecture evaluation and are basically the only way
of automated evaluation, they cannot replace the evaluation of experts.

The most widely used and known method for architecture evaluation is the Archi-
tecture Tradeoff Analysis Method (ATAM) by Kazman et al. [Kazman et al.2000].
Other known architecture evaluation methods are the Maintenance Prediction

3.5 Summary: Measurement Tasks

Method, which concentrates in evaluating maintainability, and the Software Ar-
chitecture Analysis Method developed in the Software Engineering Institute of
Carnegie-Mellon University, which is mainly used for evaluating quality attributes
that are related to modifiability [Bengtsson et al.2004].

3.5. Summary: Measurement Tasks

Subsuming the assessment of current approaches for component selection one can
say that no general applicable approach exists. The approach has to be tailored to
the task and needs to be based on a formal description of the architecture. Because
of the computational complexity, heuristics have proven to provide applicable re-
sults. But to create a real benefit in automated component selection approaches
they have to interface with CAME tools to measure the tradeoffs associated with
specific components.

In [Kunz2010] general short-comings of existing CAME tools where discovered.
This shortcomings include a rare native automation, high customization efforts,
etc. and result foremost in the need for expert knowledge to analyze measurement
results. Furthermore, to apply measurement tools in practical environments, it is
necessary to assure a continuous application into a measurement process, which is
integrated in the development process. One approach to provide the possibility of
an automated tool based analysis of the reuse is the establishment of a customized
architecture framework tailored to the development process of the environment
with interfaces to selection and measurement approaches. Finally, none of the
assessed metrics, discussed by Harrison et al. [Harrison et al.1998] and Dumke
[Dumke2003], are applicable for the, required to be automated, measurement tasks
at hand, which are:

e (Calculate the overall reuse of a layered component-based automotive software
system

e Assess individual components for reuse qualification
e (Calculate the individual contribution of components to the overall reuse
e (Calculate the contribution of component packages to the overall reuse

e Calculate individual components for the reuse contribution to individual
packages

e Assess new groupings of components to reusable packages for contribution to
the overall reuse

37

3. Related Work

Metric Type
Amortization after Calculation
Gaffney in [Poulin1997]

CcCOCOMO Estimation,
Modification after sure

Balda in [Poulin1997]

Cost Benefit after Estimation
Bollinger in [Poulin1997]

Cost Benefit after Estimation
Malan in [Poulin1997]

RCA [Poulin1997] Estimation
RCR (relative reuse Estimation
costs) [Poulin1997]

RCWR (reuse costs for Estimation
writing reuse

component)

[Poulin1997]

Reusable Index Assessment
[Sodhi and Sodhi1999]

Reuse Leverage Estimation
[Poulin1997]

Reuse Percent Estimation
[Poulin1997]

RVA [Poulin1997] Calculation

Mea-

Calculation

(RCR+RCW R/n—1)xR+1, n = number of
expected reuse, R = amount of reused code
in the product

LM = atNib, N1 = KDSI for unique code
use, N2 = KDSI for planned reuse, N3 =
KDSI from reused code, N4 = KDSI of mod-
ified components (KDSI = Kilo delivered
source instruction)

Benefit = withoutReuse - withReuse - Reuse
Investment

Costs = (withoutReuse - withReuse)-

ReuseOverhead

Reuse Cost Avoidance = Development Cost
Avoidance + Service Cost Avoidance

Effort for the use of a component without
modification (black-box reuse)

Effort for the development of a component
intended for reuse

Component assessment: 4 - most reusable,
., 1 - least reusable

ProductivityWithReuse
WithoutReuse

/ Productivity-
ReusedSoftware / TotalSoftware

Reuse Value Added = (TotalSource
Statements + SourcelnstructionsReused
ByOthers)/(TotalSourceStatements -
ReusedSourcelnstruction)

Table 3.1.: Example metrics for the assessment of software reuse ([Dumke2003]).

38

Part II.

Reusability Evaluation

39

4. System Reuse Modelling

In the following sections, an approach to collect data and represent the system
architectures as component-graphs is presented. In Section 4.1 the prerequisite
nomenclature used in this work for the generation of reuse packages is introduced.
For this, the system architectures are transformed and presented as component-
graphs and will be called component reuse networks in the following sections.
This component-graph represents the architecture model, descriped in Section
2.3.2, and captures the design decisions of system architects in projects regarding
reuse. In Chapter 5 network analysis measures are applied to this graph represen-
tation of the architecture model to evaluate it for key components and reusable
groups of components.

4.1. Definition of the Solution Space

In practice, system architecture design decisions are, as described in Section 2.4,
based on a variety of formal and informal constraints and presets. Only the knowl-
edge and understanding of experienced system experts ensures the useful integra-
tion of a vast amount of needed components to a meaningful system. With years of
development, new systems and system components the amount of different features
and particular constraints becomes a challenging task, even for the most experi-
enced system architects. To support the experts on design decisions for future
systems the knowledge and experience integrated in past and ongoing systems has
to be captured in a formal way.

To automatically capture knowledge about components and component groups,
data is collected from a company’s project repository following the approach pre-
sented in [Hobelsberger et al.2010]. For the approach to be applicable, it is assumed
that information about the history of the company (e.g. finished projects or systems
in the maintenance phase) and current systems (e.g. under active development)
exists in form of project repositories/databases. Commonly, the information in a
project repository includes an accurate and detailed picture of the organizational
structure, the software architecture and its components.

A project can define a system or a subsystem and therefore can be part of bigger
architectures. A project can also be structured in subprojects representing different

41

4.

System Reuse Modelling

42

stages in the development process. This knowledge represents the experience and
design decisions of system architects of past and current projects.

4.1.1. Data Collection

The sum of component-based system architectures from the project repository (e.g.
table 4.1.1) is defined as a set A = {ay, as, ..., a, } where |A| denotes the number of
elements and a corresponds to a candidate system architecture in the set A. The
candidate system architecture a = {cu1, C42; -, Can} defines a distinct number of
components from the data set D and represens a specific project of the company.
The data set D = {cy, ¢a, ..., ¢, } contains all the candidate components ¢ from which
a system architecture can be built (see Figure 4.1). A component c is defined as
a tuple ¢ = (N,C') where N is a unique identifier of the component (e.g. ID or
name) and C'is a class attribute (e.g. functional group or package ID).

Project Components
Project 1 c1, Ca, C3,C4, C5,Co
Project 2 C4, Cg, Cg, Cy
Project 3 1, C4, Cg, Co, C16

Table 4.1.: Project repository example. For the full list of components of the ex-
ample project repository used in Section 5.3, see Appendix A.

Set of component-based Architectures A

)

Candidate System Architecture a

Pl

Candidate Component ¢

my

Data Set D (set of components)

9 9 O
599

F________________—\

N e

\.

Figure 4.1.: Set A of component-based system architectures including candidate
architectures a composed of candidate components ¢ out of the data
set D.

To be both language independent and evaluable through an algorithm the software
architecture is transformed into a graph G. For finding meaningful clusters of com-

4.1 Definition of the Solution Space

ponents or subsystems (e.g. reusable component groups) the graph G is partitioned
into sets of non-overlapping clusters that cover all the vertices in the graph.

For this purpose, a component-graph, based on the common use of components
in past projects, is constructed. Figure 4.2 shows the basic process to gain this
experience about reused components and the construction of the component-graph.

Project 1 Cumulative Projects
cl ¢c2 ¢c3 c4 c5 c6 cl ¢c2 ¢c3 c4 c5 c6 c8 c9 c16
c1 H|E|m cl 1]11]12]1]2 111

c2 c2 11111

1111

c3 1
111 113|1]12]1
1
1

|

| c3
[ZH N |

|

|

c4

c5 c5

Nl[=|=]=]=

c6

1

c6 3
c8 1 1 1

2

1

c4 c6 c8 c9 c9

«[JuTaTs ‘@‘ >

cs|H| MW |
co|m|m|m

Project 3
cl c4 c6 c9 c16
[H|E|N

c4

c6

c9

c16

Figure 4.2.: Schematic view on the generation of the component-graph. The data
for the network analysis is generated by the cumulated adjacency
graphs (1) of the projects (a = {c1,¢a,...,¢n}, D is the collection
of all possible modules). The final weighted component-graph (2) over
all projects is analyzed with network analysis measures.

An adjacency matrix (see Figure 4.2 - 1) is generated for each project, based on
the used components using the bills of material stored in the company repository
for all projects. Every project differs in number and kind of components as not
all of the modules are needed, alternative components exist and new components
are implemented in case of specific needs. In this analysis no information about
data dependencies (as it is not available in most repositories) is considered. Only
the common use in a project, indicating compatibility from a functional point of
view, is taken into account. Consequently, in this matrix, each component used
in a dedicated project has a connection to every other component used in the

43

4.

System Reuse Modelling

44

Figure 4.3.: Exemplary graphical representation of a system, generated with the
methodology shown in Figure 4.2, as a component-graph G. The
components vy and vy were both used in the candidate architectures
ai, as, ag represented by an connecting edge with weight w = 3 and
a label with the corresponding candidate architectures. Each vertex
has a node label class C; representing the cluster a particular vertex is
assigned to.

same project. Out of this, a cumulated adjacency graph (see Figure 4.2 - 2) is
generated, which is transformed into a weighted component-graph (using a degree
of relationship as weight between two components, defined as the total number of
common use over all projects).

4.1.2. Generating the Component-Graph

A set of component-based system architectures A is represented as a weighted,
vertez-labeled and edge-labeled component-graph G = (V, E) (see Figure 4.3) where
V' is the finite set of vertices {vy, ..., v, } and the number of vertices n, = |V| is the
order of the component-graph.

Each individual component ¢ in the data set D defined by a candidate system
architecture a becomes a vertex v while the class attribute C' (representing the
cluster a particular vertex is assigned to) becomes a label of the corresponding
vertex. The set of vertices V' is a subset of the data set D (V' C D) such as each
vertex v in V' is mapped to a distinct element of the data set D.

A vertex v corresponds to a candidate component in the vertex set V. The vertex
set is partitioned into p classes C1,Cy, ...,C,, one for each set of candidate com-
ponents where the class attribute of the candidate component corresponds to the
class C;. |C;| denotes the number of elements in the set C; while |C| = n denotes
the number of unique classes. The class C' for a set of components represents a

4.1 Definition of the Solution Space

component group intended for reuse. The classes C; and C; are defined as adjacent,
denoted by C; ~ C}, if components (vertices) in C; and C; are constrained in the
same candidate architecture a and therefore are connected by edges.

The set E contains the edges {ey, ..., e, } of the component-graph where m = |E)|
denotes the number of elements in the set E (the size of the component-graph)
such that e; = {v;,,v;,}, with v;, # v;, and v;,,v;, € Vi = 1,...,m. The pairwise
use of components in a candidate system architecture a form the edges (E) of the
component-graph.

In an undirected component-graph, each edge is an unordered pair (v, u) represent-
ing a connection between two components v and u. The vertices v and u are called
endpoints of the edge.

The component-graph g = (V1,) is defined as a subgraph of G = (V, E)if V; C V,
and Fy C E. Every candidate architecture a represents a connected subgraph ¢ in
the cumulated component-graph GG. In Chapter 5 analysis methods are discussed
which are applied to the full component-graph as well as to a subgraph.

The edge labeling of an edge is the function v : E — Lg that assigns a label
Lg(e, G) from the finite label set Ly to each edge e of the component-graph G. An
edge label Ly = A", A" C A,Vv,u € A’ of the component-graph G represents the
candidate system architectures the endpoints of the edge have in common.

The node labeling of a vertex is the function pu : V' — Ly that assigns a label
Ly (v, G) from the finite label set Ly to each vertex v of the component-graph G.

In a weighted component-graph, a weight function w : E — R is defined that
assigns a weight to each edge. The weight of the edge is defined as the number of
candidate system architectures |A’| the endpoints have in common.

If the set of vertices {v, u} are element of F ({v,u} € F), v is defined as a neighbour
of u and w is said to be adjacent to v. Furthermore two edges are called adjacent if
they have a common endpoint. The set of neighbours for a given vertex v is called
the neighbourhood of v and is denoted by I'(v).

Two vertices v, u of a component-graph G = (V| E') are connected by a path if there
is a sequence of vertices vy, vy, ..., v,, such that v = v, ,u = v,,, and {v,,, v, } €
E,i = 1,..,p— 1. A component-graph G = (V, E) is connected if any pair of
distinct vertices v,u € V are connected by a path.

The eccentricity of a vertex v is the maximum distance from v to all other vertices
in G. The diameter is the maximum eccentricity. The periphery of a component-
graph is the set of vertices with an eccentricity equal to the diameter. The radius
is the minimum eccentricity while the center is the set of vertices with eccentricity
equal to radius.

For context specific analysis, different component-graphs can be generated, e.g.
with focus only on closed projects in a specific customer cluster to analyse the

45

4.

System Reuse Modelling

46

reuse on a per customer basis or limited to a special functionality to analyse the
reuse level of specific component groups.

4.2. Summary: An Experienced-Based
Component-Graph

Following the steps described in this chapter results in a component-graph those
connections represent the relationship between components over different projects.
This relationships capture and represent the design decisions of system architects
and engineers and hence reflect the informal experience and knowledge of experts
in an formal way. The fully automated transformation of the information to a
formal component description, the component-graph, is mapped to standard graph
theory definitions and therefore allows the application of network analysis measures
presented in the next chapter.

5. Network Analysis Based Reuse
Measurement

Once the network, based on definitions described previously (Section 4.1), is con-
structed, network analysis techniques can be applied. The network analysis focuses
on the connections or relationships between components and not on the attributes
of individual components. One of the most relevant features of graphs representing
real systems is the application of clustering (or community structuring as it is re-
ferred to in social network analyis), i.e. the organization of vertices in clusters, with
many edges joining vertices of the same cluster and comparatively few edges join-
ing vertices of the other clusters. In Section 5.1 measures for the identification of
central components in the network are discussed followed by a clustering approach
in Section 5.2 which is applied on the example component repository in Section
5.3. Metrics to measure the network regarding reuse are introduced in Section 5.4.

5.1. Centrality Measures

Beside clustering, one of the primary uses of graph theory in network analysis is
the identification of important, central or prestigious components in a network.
Central components are more visible because of their links to other components.
Prestigious components are more visible because they were more frequently chosen.

Centrality and prestige measures can be useful to understand the potential flows
of information or resources as well as constraints on components in a network.
Once interesting components or component groups are identified through network
analysis, quantitative or qualitative methods can be applied to explore or make
inferences about the attributes of the components. A component is important
or central in the reuse context, if it has direct connections to a, relative to the
number of components, high number of other components (and therefore has a
high quality [Gaffney et al.1989, Lim1994]) or is a gatekeeper to key components
(e.g. components with a high reuse or components, which are marked as crucial by
an expert).

To measure this type of centrality the concepts of degree, eigenvector centrality
and betweenness centrality are applied. They are defined as follows:

47

5. Network Analysis Based Reuse Measurement

48

Degree of a component: The degree of a component is the number of edges

connected to it (see Figure 5.1, Graph 1). In social network analysis, this
parameter reflects the popularity of an actor. This means that most popu-
lar components are those maintaining the highest number of relationships.
In the component reuse network, the degree of a component corresponds to
the number of other components it was used with in the same project con-
text. If versions and revisions of components are considered, a relatively high
number of direct connections may assert that the component did undergo
a lot of changes over the past projects while one conclusion of this could
be to treat the component in future projects as customer or project specific
implementation and remove it from the reuse library.

Weighted degree: In case of weighted component reuse networks (see Figure

5.1, Graph 2-4), the degree of a component may vary in its expressiveness.
A component with a high degree may not necessarily be well connected to
the network because all its edges may be weak. Alternatively, a component
may be strongly attached to the network if the weight of all its connections
is high. The weighted degree of a component is defined as the sum of the
weights of all edges connected to it.

Eigenvector centrality: Eigenvector centrality is a measure of the importance

of a node in a network. It assigns relative scores to all nodes in the net-
work based on the principle that connections to high-scoring nodes (nodes
that have a high level of reuse) contribute more to the score of the node in
question than connections to low-scoring nodes [Wasserman and Faust1994].
In [Bonacich2007] Bonacich argued that the eigenvector makes a good net-
work centrality measure. The eigenvector weights contacts according to their
centralities unlike the degree, which weights every contact equally. Bonacich
states that eigenvector centrality can also be seen as a weighted sum of not
only direct connections but indirect connections of every length and thus
takes the entire pattern in the network into account.

Betweenness centrality: With the criteria betweenness centrality the number

of shortest paths traversing that particular vertex (corresponding to a com-
ponent) is measured. The betweenness centrality affects the question how
other components (so called gatekeepers) control or mediate the relations be-
tween dyads that are not directly connected (see Figure 5.1, Graph 4, vertex
v3 or vertex vg). It measures the extent to which other components lie on
the geodesic path (shortest distance) between pairs of actors in the network.
Betweenness centrality is an important indicator of control over information
exchange or resource flows within the network [Knoke and Yang2008]. Given
a component v and a graph G it is defined as:

By= S 2 (5.1)

g
sFvALEV st

5.2 Cohesive Subgroups

with og(v) as the number of shortest paths from s to ¢t via v, and oy is the
total number of shortest paths between s and .

Figure 5.1.: Graphical representation of patterns in the reuse network. Graph {1}
represents a vertex (vy) with high degree (5) but low weighted degree.
It corresponds to a component which was used often but in different
contexts (systems) and therefore has a low reusability. Graph {2} and
{3} show vertices with high reusability while Graph {3} represents a
pattern which would lead to a high eigenvector centrality of vertex v;.
Graph {4} shows the concept of gatekeepers (vs, vg).

5.2. Cohesive Subgroups

To built clusters or groups of components, the concept of cohesive subgroups was
used. Cohesive subgroups are subsets of components among which relatively strong,
direct, intense, frequent or positive ties can be observed.

Subgroups can be determined by links between components, by structural similar-
ity, or by clustering. For the approach presented in this work, clustering methods
are used. Clustering methods are computational ways to iteratively select nodes
that are more closely linked to each other than to others in the network. In the
past few years, increased attention in the physics community has been directed
to community detection in large network graphs. Physicists have used analogs to
statistical mechanics, bridge circuits, and other physical systems to detect cohesive
subgroups or clusters.

Girvan and Newman presented in [Girvan and Newman2002] a clustering method
based on high edge betweenness scores. It is based on the assumption, that com-

49

5. Network Analysis Based Reuse Measurement

ponents in communities have more traffic, as, e.g., the information flow between
components in two communities (e.g. a subgraph within which vertex to vertex
connections are dense, but between which connections are less dense). In Figure
5.2 such a network structure is shown.

Figure 5.2.: The schematic representation of a network with community structure
(as presented in [Girvan and Newman2002]). It shows three commu-
nities (with densely connected vertices) with much lower density con-
nections (gray lines) between them.

This method has proven in several experiments to detect meaningfull clusters but is,
due to high complexity to calculate the edge betweenness in large networks O(m?n)
(where m is the number of edges and n the number of vertices), only applicable for
small networks with up to a few thousand vertices [Newman2004]. The stopping
point for clustering is determined by locating peaks in the modularity of the graph.
The modularity measures when the division is a good one, in the sense that there
are many edges within communities and only a few between them. The algorithm

proposed by Girvan et. al. is simply stated as follows [Girvan and Newman2002]:

1. Calculate the betweenness for all edges in the network.
2. Remove the edge with the highest betweenness.
3. Recalculate betweennesses for all edges affected by the removal.
4. Repeat from step 2 until no edges remain.
The community clustering method qualifies in particular for the clustering of com-

ponents with regard to interface dependencies to create packages with a strong
interface encapsulation.

20

5.3 Application of Network Analysis

{19,20,43,44,45}
(7,8,9,11,13,47,48,49}
(18,39,40,41,42,46}

E)
Oz
o5
=)
&)
(=) (&)
o)
=)
0 1
|
{17,21,23,24,26,27,28,29} “

{30,31,32,33,34,35,36,37,38} 4‘

9 {0.1,2,3,4,56,10,12,14,15,16,22,25}

(a) Graph of the example repository (b) Dendrogram of the community clustering

Figure 5.3.: Figure (a) shows the graph of the example repository. The layouting
of the graph shows found clusters (e.g. IDs 0,1,2,3). Figure (b) shows
the corresponding dendrogram.

5.3. Application of Network Analysis

Once the component reuse network is generated the standard network analysis mea-
sures discussed in the previous sections can be applied to the weighted component-
graph G. In the following, the measures are discussed by the use of the example
project repository. By taking the repository shown in Appendix A as an example
the result of Newmanns [Newman2006] community structure clustering algorithm
is shown in Figure 5.3(a). Several clusters could be identified and the individual
components are listed in the dendrogram in Figure 5.3(b), which could be used to
support an architecture expert in the process of selecting relevant (in the context
of functional dependencies and reuse) components from the repository.

In Figure 5.4, the result of the centrality analysis is shown. The eigenvector cen-
trality is plotted versus the betweenness centrality. A component with very high
betweenness but low eigenvector centrality may be a critical gatekeeper to a cen-
tral component. The analysis shows that component 20 is an example for such
a gatekeeper component. Likewise, a component with low betweenness but high
eigenvector centrality may have unique access to central components as, for exam-
ple, the component 37 in Figure 5.4.

51

D.

Network Analysis Based Reuse Measurement

o2

Key Actor Analysis
1.0-
20
19
0.8- 1 8
30
E 37 10
C 06-
5
C
(]
O
é 36
o "
g 32
C
S 04- 5
Ll 28
38
40
14
0.2- 41
42
44
4
47234
80
I | I | I
0 50 100 150 200

Betweenness Centrality

Figure 5.4.: The key component analysis. The IDs of the most important compo-
nents in the network analyzed by eigenvector centrality and between-
ness centrality.

5.4. Reuse Graph Metrics

In the following, component reuse network metrics, which are used to evaluate the
network regarding reuse, are introduced and preliminary definitions are provided.
This metrics will be incorporated in the heuristic optimization approach presented
in the following chapter, to evaluate and optimize the component reuse network.

5.4.1. Preliminaries

To measure the immediate adjacency of a vertex, the degree of a graph is used. An
edge connects two vertices which are said to be incident to that edge or equivalently,
that edge is incident to those two vertices. The degree dg(v) of a vertex v in a

5.4 Reuse Graph Metrics

graph G is the number of edges incident to v and is denoted by deg(v). The
mazximum degree of a graph G, denoted by A(G), and the minimum degree of a
graph, denoted by 0(G), are the maximum and minium degrees of its vertices.

In a weighted undirected graph G, the weighted degree of a vertex v is defined as
the sum of the weights of the edges incident to v in G divided by the weight of the
vertex w,. Let W(G) be the sum of the weights of all vertices. For a vertex v we
define the weighted degree d,,(v,G) in G as follows:

do(v, G) = W) (5.2)

Wy

The weight w,, of the edge(v,u) is calculated based on the number of candidate
system architectures a in which the vertices (or components respectively) were used
together. The weight w,, is defined as:

Wy = Z a;, V{v,u} € q; (5.3)
i=1

5.4.2. Reuse Popularity

According to the definition of degree in social network analysis, where the number
of connections represent the popularity of an actor in a network, the popularity
of a vertex v, representing a component in the weighted network, is defined as
component reuse popularity rp,:

TPy = —dlzl(;(’vc);) (5.4)

The reuse popularity measures how often a component in the network was reused.
It shows, following the construction method the network was generated with, which
components were used together, how often and in which context. A value of rp, > 1
(Figure 5.1, graph 3, vertex v;) indicates a frequent reuse, while rp, = 1 (Figure
5.1, graph 1, vertex v;) equals no reuse of the component. As defined in Section 4.1,
the weight of the edge of a vertex corresponds to the pairwise use of a component
in the same candidate architecture a.

93

D.

Network Analysis Based Reuse Measurement

o4

5.4.3. Component Rank

To measure the importance and impact of each component in the network, a ranking
measure is introduced. The component rank cr, derived from the page rank
equation [Page et al.1998], is defined as:

cr(v) = d Z) dgzg) (5.5)

uel'(v

where v represents a vertex, I'(v) is its neighbourhood, d is a factor used for nor-
malization and r(v) and r(u) are rank scores of the vertex v and u, respectively.
dg(u) denotes the degree of a vertex u, which is the number of links to other ver-
tices (see Section 5.1 and Figure 5.1 Image {1} where node v; has a degree of 5).
As only the probability of connected vertices ! is important in the context of reuse
clustering, the damping factor (1 — d) for the so called random surfer problem
[Page et al.1998], where it is possible to visit states in the graph which are not
directly connected, is not applied.

5.4.4. Component Package Complexity

With the component package complexity cpc, a measure for the complexity
(in terms of reuse) of a reusable package is introduced. A package is defined by
the structure of a connected subgraph g of G. The component package complexity
measures the graph distance, the eccentricity, of a vertex v to all other vertices
in the subgraph g. If the eccentricity ecc of the package is ecc > 1, the package
contains gatekeepers, which means that there exist components in the package
that have not been used in common in a candidate architecture. This conflicts
with the intention of reuse to have high quality components while the quality of a
component is defined on the test case coverage (e.g. the components, which have
no direct connection, are not tested together). The integration effort for such a
package, which is measured by the probability that the integration fails, is increased
with every component with no common use in a previous architecture.

5.5. Summary: Network Analysis Reuse-Metrics

Network analysis measures, which are applied in broad field in social sciences, pro-
vide powerful means to analyze relationships between components. The extracted
information about the network and on individual components helps experts with

!The reuse is defined by the connections between components. The grouping of components to
reusable packages, with no connection to each other is not allowed.

5.5 Summary: Network Analysis Reuse-Metrics

the design decisions and supports the extraction of relevant information from the
component repositories. Unfortunately, the vast amount of information results in
huge and very dense component reuse network, which results in poor analyzation
results of the network analysis algorithms. Furthermore the control about cluster-
ing decisions of the algorithm has proved to be very limited and depends strongly
on the topography of the generated network. Omne solution is the segmentation
of the component reuse network in smaller graphs or the restriction of the infor-
mation. Another solution is the combination of network analysis measures with a
heuristic optimization approach, which is presented in the next chapter. In this
optimization approach the metrics presented in the previous section are integrated
in the optimization function.

95

6. Reuse-Oriented Component
Package Generation

In Chapter 5, the component reuse network was analysed for central and important
components with network analysis methods and component clusters were created
with community clustering algorithms. While the extracted information about the
network as well as individual components help system architects or system engineers
in the selection of reusable components from a company’s project repository, it
does not provide enough control (the success of the clustering depends on the
topography of the generated network and fails in the case of very dense graphs)
over the generation of reusable packages.

To overcome these restrictions, a new approach for the selection of software com-
ponents and their clustering to reusable packages is presented. The approach de-
scribed in the following sections provides means to select and group components
to reusable packages such as to maximize the reuse not of individual components
but of component packages without the need to change the package structure (add
or remove components). To achieve this, the components are combined in a man-
ner that maximizes the common usage in candidate architectures. This results in
2™ possible combinations of connected components which explains why exhaustive
search can not be feasible for this type of problem.

Therefore an optimization approach based on simulated annealing (SA) for the
selection and grouping of components (to optimize reuse in component-based soft-
ware architectures) was developed. When adapted efficiently to optimization prob-
lems, simulated annealing is often characterised by fast convergence and ease of
implementation for real-world problems. These characteristics motivate the choice
of SA for N P-hard combinatorial optimization problems such as the one described
above.

Simulated annealing is a candidate search method. A SA algorithm repeats an
iterative neighbour generation procedure and follows search directions that improve
the objective function value describing the fitness of a solution. While exploring
the solution space, the SA method offers the possibility to accept worse neighbour
solutions in a controlled manner in order to escape from local minima.

The classical simulated annealing approach (as described in Algorithm 1) maintains
only one solution at a time and whenever it accepts a new solution, it must discard
the old one. There is no history of past solutions and as a result, good solutions

o7

6. Reuse-Oriented Component Package Generation

(or in the extreme case the global optimum) can be discarded and may never be
regained. But then, this enables SA to handle NP-hard optimization problems.
The probability to reach a global minima depends on the topography of the input
problem and the parameters (e.g. the temperature profile).

SA is a variation of the hill-climbing algorithm [Russell and Norvig2009]. Both
start off from a randomly selected point within the search space. Unlike the hill
climbing algorithm, the new candidate solution is not automatically rejected if the
fitness of a new candidate solution is less than the fitness of the current solution.
Instead, it becomes the current solution with a certain transition probability p(T").
This transition probability depends on the difference in fitness AF and the temper-
ature T'. With SA applied to the type of problem here presented, the temperature is
an abstract control parameter for the algorithm rather than a real physical measure
(see Section 2.6).

In the following sections, the concept of simulated annealing is adapted to the
component clustering problem at hand and extended to be population oriented.
In Section 6.1, prerequisite preliminaries, the necessary parameters and the fitness
function of the optimization algorithm are introduced. In Section 6.2, the algorithm
for the combination of components to reusable packages is described and will be
discussed by applying it to the example component repository A in Section 6.3.

6.1. Simulated Annealing for Component Clustering

In this section, preliminary definitions about simulated annealing and the respec-
tive parameters as well as the modification and adaption of those parameters to
the actual optimization problem are introduced. The adaptation of SA to an op-
timization problem consists in general of the definition of its specific components
[Ingber1993] which are:

e representation of a solution (and the initial solution) of the problem,

the neighbour generation mechanism and the neighborhood for the solution
space exploration,

a method for an objective function value calculation,

and a cooling scheme (and possible parameter adaptation methods) including
stopping criteria.

6.1.1. Initializing the Solution and Parameters

In the following the specification and the respective parameters of the SA algorithm
are presented.

o8

6.1 Simulated Annealing for Component Clustering

6.1.1.1. Solution Representation

The solution representation is an important component of simulated annealing. It
has to be designed to allow an easy generation of neighbors and a fast calculation
of the objective function value degradation AF. Furthermore, it must guarantee
accessibility of the entire solution space at any point in time of the algorithm
run. With the representation of the component-based software architecture as a
graph as defined in Chapter 4 Section 4.1, the solution space fulfills all of those
specifications.

6.1.1.2. Feasible Solution

Given a graph G = (V, E) a feasible solution will be a partition of connected
subgraphs from a number of vertices v > 1, which are connected by a path. A
feasible solution does not mandatorily need to have all subgraphs to have a positive
value of the objective function, as the clustering of component packages should also
allow the grouping of components to packages with no reusability and therefore
allow to create clusters of components which will be considered as project specific
implementations.

6.1.1.3. Initial Solution

The starting set of solutions is the generated reuse component graph G. The classes
C of the candidate components specify each individual solution of the solution set.
The classes, and therefore the solutions, can be generated randomly (e.g. each
candidate component is its own solution, the solutions are uniformly distributed)
or predefined solutions (e.g. previously defined reuse packages or components that
are in the same solution because of expert decisions) are assumed. Unlike the
standard simulated annealing described by Kirkpatrick and defined in Chapter 1,
the adaption for the optimization problem at hand, optimizes not one solution but
a set of solutions, which is called, analog to genetic algorithms, the population of
the algorithm.

6.1.1.4. Solution Neighborhood

The neighborhood I' of a selected candidate solution (as seen in Figure 6.1) is
defined by the structure of the underlying graph G. A neighbor of a candidate
solution ¢; is any component ¢; which is adjacent to ¢;. The neighbourhood I'(v)
of a candidate component is restricted to the components which are connected to
¢; by a path through the network.

29

6.

Reuse-Oriented Component Package Generation

60

example path through the
neighborhood of v,

neighbors of v,

Figure 6.1.: Example of possible neighbors and the connected path of a candidate
component. In this example, the neighborhood I'(v;) of the component
vy is formed by the adjacent components {vy, v3, v5, v7} while the thick
line marks an example of a connected path > 1 through the network
starting with the vertex vy to the vertex wvyg.

Because of the vast number of solutions in the search space, it is practically in-
sufficient to choose in each run only one neighbour of the current solution as new
candidate solutions. Therefore, it is recommended (at least in the exploration phase
of the algorithm) to choose a number x > 1 of neighbour candidate solutions in a
random direction of the current solution in order to progress in an acceptable time
through the search space [Nolle et al.2001]. This number could either be a fixed
step width sw of neighbours at each iteration (e.g. sw = @), have an upper
limit swyay, may be choosen randomly between those or can be adapted on-line
while the algorithm performs (e.g. start with a high step width and degrade it
towards the end of the run). This on-line adaption of the step width can be linked
to the lowering of the temperature, coupled with the number of iterations or even

respond to an equilibrium.

If the maximum step width is chosen to be to small and the starting point for a
search run is too far away from the global optimum, the algorithm might not be
able to get near this optimum before the algorithm freezes, i.e the temperature
becomes so small that p(7") is virtually zero and the algorithm starts to perform
only hill climbing. In that case, it will get stuck in the nearest local optimum. If, on
the other hand, the step width has been choosen to be to large, and the peak of the
optimum is very narrow, the algorithm might well approach the global optimum but
never reaches the top because the steps are too large and new candidate solutions
might miss the peak. Hence, there is always a trade-off between accuracy and
robustness in selecting the appropriate step width.

6.1 Simulated Annealing for Component Clustering

6.1.1.5. Fitness Function

The fitness function F' is used to describe the quality of a solution in simu-
lated annealing or genetic algorithms and is a particular type of objective function.
To evaluate the fitness of a solution p, the current solution p is evaluated by an
objective function F'(p) at each iteration. For each move, the objective difference
AF = F(p')—F(p) is evaluated. For maximization problems p’ replaces p whenever
AF > 0. Otherwise, p’ could also be accepted with a probability P.

The objective function F'(p) for the optimization of component reuse is defined
as a linear metric in Equation 6.1. For a given solution p, defined by the candi-
date components {vy,...,v,}, the objective function is calculated by the product
of the number of candidate components and the number of common candidate
architectures multiplied with the sum of the candidate component ranks cr which
serves as imbalance factor of the function and values the selection of a high ranking
component (a component with a high reuse popularity) in case of a draw.

Flopowny = Hon v Hl{an, nan}l Y- er(v),Va € {vy, ..,v.} (6.1

Yoe{vi,...,un}

In the component based automotive system architecture described in Section 2.4 a
desired property for a generated reusable package is, to consist of a high number
of components but be still flexible enough for the reuse in many new architectures
without modifying the package. The fitness function F' favours, due the number
of candidate components as the main weighting factor, the construction of few but
big clusters. With the use in common candidate architectures as another factor
in F' it is guaranteed that the packages are, without modification, reusable in the
same context. This context is defined by the candidate architectures the candidate
components have in common.

The fitness of the complete system (the population) is the sum of the objective
functions of all solutions ., F(p;). For the application of simulated annealing in
non-trivial industry problems, the fitness function ideally nearly correlates with the
goal of the algorithm and yet has to be computed quickly. Therefore, the execution
speed is very important as the algorithm must be iterated many times in order to
produce usable results.

6.1.1.6. Temperature and Cooling Schedule

With the use of simulated annealing, several aspects of the algorithm must be
considered carefully. These are in particular the starting temperature Tj, the rate
or cooling schedule o which indicates how much the temperature is decreased, the

61

6.

Reuse-Oriented Component Package Generation

62

ending temperature 7,,;,, the number of candidate iterations I..ngidate, and the
stopping criterion.

The algorithm starts with a high temperature 7y, which is subsequently reduced
slowly, usually in steps, startig from the initial value T and using an attenuation
factor a(0 < a < 1). The temperature can be controlled by a cooling scheme
specifying, how the temperature should be progressively reduced to make the pro-
cedure more selective as the search progresses to neighborhoods of good solutions.
An overview about different cooling schedules and a respective comparison is given
in [Geman and Geman1993, Huang et al.1986]. The following equation shows the
standard cooling function introduced by Kirkpatrick [Kirkpatrick and Gelatt1983]:

Tn+1 = Tn (62)

There exist theoretical schedules guaranteeing asymptotic convergence towards the
optimal solution [Abbasi et al.2010]. This, however, requires infinite computing
time. In practice, much simpler and finite computing time schedules are preferred
even if they do not guarantee an optimal solution.

The starting temperature T, should be high enough that the probability of ac-
cepting a worse solution is, at least, of 80 % in the first iteration of the algorithm
[Kirkpatrick and Gelatt1983]. This requires a temperature Ty larger than the max-
imum difference in energy between any configurations. Such a high temperature
allows the system to move to any configuration which may be needed, as the ran-
dom initial configuration may be far from the optima. The decrease in temperature
must be both gradual and slow enough to guarantee that the system can move to
any part of the state space before being trapped in an unacceptable candidate
minimum.

At the very least, annealing must allow N/2 transitions, because a global optimum
may differ from an arbitrary configuration by at most this number of steps (in
practice, annealing can require polling several orders of magnitude more times than
this number [Duda et al.2001]). The final temperature 7T,,;, must be low enough
to ensure, that the probability that a system moves out in case it is in a global
minimum, is negligible. Early in the annealing process when the temperature is
high, the system explores a wide range of system configurations. Later, as the
temperature is lowered, only states close to the found minimum are tested.

On each step, the temperature must be held constant for an appropriate period of
time (i.e. the number of iterations) in order to allow the algorithm to settle in a
thermal equilibirum, i.e. in a balanced state. If this time is too short, the algorithm
is likely to converge to a candidate minimum. The combination of temperature
steps and cooling times is known as the annealing schedule, which is usually selected
empirically. The whole process is commonly called the cooling schedule.

6.1 Simulated Annealing for Component Clustering

If computational resources are of no concern, a high initial temperature Ty, a
high local iteration value and a large o are most desirable. Values in the range
0.75 < a < 0.99 have been found to work well in many real-world problems
[Duda et al.2001].

The finite time implementation of SA implies the use of stopping criteria. This
could be the total process time allowed for the search, the number of candidate
and /or global iterations, a minimum temperature, a number of neighborhood struc-
tures used in the search or any condition on the objective value.

6.1.1.7. Acceptance Probability Function

The factors that influence acceptance probability are the degree of objective func-
tion value degradation AF (smaller degradations induce greater acceptance prob-
abilities) and the temperature parameter 7' (higher values of T give higher accep-
tance probability). Simulated annealing is based upon the Metropolis procedure,
which consists of a Markov Chain Monte Carlo method that produces a simulation
of the system in equilibrium at a given temperature. If, for a minimization prob-
lem, the difference in AF', between the current state and the new one, is negative
then the process is continued with the new state. If AF > 0, then the probability
of acceptance of the new state is given by e /7. This acceptance rule for new
states is referred to as the Metropolis criterion [Metropolis et al.1953]. Follow-
ing this criterion, the system eventually evolves into thermal equilibrium, i.e. after
a large number of iterations the probability distribution of the states approaches
the Boltzmann distribution [Aarts and Korst1988]. This choice of the probability
distribution is generally called Boltzmann annealing. The method of simulated
annealing is defined by Kirkpatrick [Kirkpatrick and Gelatt1983] by the following
three functional relationships:

e The probability density of the state-space of the solution space defined by
the graph G.

e P(AF): Probability for acceptance of a new fitness given the previous value.

e T'(k): schedule of annealing the temperature 7' in annealing-time step k.

The acceptance probability is based on the chances of obtaining a new state with
fitness F}., 1 relative to a previous state with fitness Fy,

e Fr1/T
P(AF) = Y (6.3)
1
T 1+ AFT (6.4)
e AFIT (6.5)

63

6.

Reuse-Oriented Component Package Generation

64

where AF represents the fitness difference between the present and previous values
of the fitness (the values of the objective function) appropriate to the physical
problem, i.e., AF = Fj,; — Fy. This is commonly called the Boltzmann trial.
A Boltzmann trial refers to a competition between two solutions ¢ and j, where
element i wins with probability P = e=2/T,

6.2. A Recombinative Population-Oriented SA
Algorithm

In this section a recombinative population-oriented SA algorithm (RPOSA) for the
clustering of components to reusable packages is presented. As discussed in Section
2.6 simulated annealing as proposed by Kirkpatrick performs Boltzmann trials
between a selected solution and a randomly choosen neighbor. The initial solution
is repeatedly improved by choosing iteratively the solution with the highest fitness.
For the clustering of packages this method is extended to support populations of
solutions. To allow the generation of new populations the algorithm supports the
recombination of individual solutions. Recombination is an operation to vary the
configuration of a solution from one generation to the next. It is an analogy to the
reproduction or biological crossover upon which genetic algorithms are based. The
basic mechanism of the algorithm consists of the following steps:

1. Generate the initial population P (randomly, based on an initial clustering
or respecting expert decisions).

2. Initialize the parameters o, x := Xy, y := Yo, temp := To, Thuin, |, Limaz-

3. Perform a candidate recombination: Choose a number x > 1 of randomly
selected components from the current solution and hold a Bolzmann trial
between the current solution p; and a new solution p; where the selected
components are removed.

4. Perform a neighbor recombination: Choose a neighbor solution from the pop-
ulation, remove selected components from the neighbor solution and add it
to the current solution. Hold a Bolzmann trial between the newly generated
solutions.

5. Repeat the steps for each solution in the population (candidate iterations)
and decrease the temperature.

The main steps of the algorithm are shown in Diagram 6.2 and are discussed in
more detail in the following section. The recombination steps four and five are
described in more detail in the Sections 6.2.2 and 6.2.3.

6.2 A Recombinative Population-Oriented SA Algorithm

Initialize solution set G=(V,E)
and generate population P
T

Initialize parameters

1
while temperature > T,
for each solution in P

-- o e e —
Choose candidate component ¢; from n
candidate solution p; and remove it]
E]
o
: o
is connected o
-
- (]
Create new solutions from -
v each connected subgraph > ()
Hold Boltzmann trial between 3
the newly generated solutions Hold Boltzmann trial between 3
the newly generated solutions o
[5
+)
~
Update population o
with trial winner 3
.. LI
Choose a random neighbor solution p',
of the candidate solution p;
I
Select components ¢; from solution p'; ¢=n
and add it to solution p; o
=3
T
is connected -°1
Create new solutions from °
\ 4 each connected subgraph [
; of the neighbor solution °
Hold Boltzmann trial between 3
newly created solutions I T
p* and p', Hold Boltzmann trial -
between p* the newly o
generated solutions -
o
| s
Update population
with trial winner

L S EEEE L T R T T U T T T AR AR A AR R—

Evaluate fitness of
final population

Figure 6.2.: The recombinative simulated annealing algorithm starts with initializ-
ing the solution set as a graph G = (V| F), setting the initial param-
eters for the specific run (depending on the structure of the problem)
and choosing randomly one candidate solution from the generated ini-
tial population P (which is evaluated according the objective function).
On this candidate solution a candidate recombination and a neighbor
recombination is performed a number [times and the next candiate
solution is choosen from the current population. After the operations
are performed on the current population P; it is updated with the
new candidate solutions and the temperature is decreased according
the cooling schedule. The final population is evaluated according the
objective function to measure the quality of the new solutions. 65

6.

Reuse-Oriented Component Package Generation

66

6.2.1. The Algorithm (RPOSA)

In Listing 2 the recombinative population-oriented simulated annealing (RPOSA)
algorithm is listed in pseudocode. The RPOSA algorithm incoporatess the con-
cept of basic simulated annealing and extends it with mechanisms for population-
oriented annealing and on-line adaption mechanisms. In step one a graph is con-
structed (see section 4.1.2) from the set of architectures A and the initial population
set P with size |C] = n, defining the solutions pe,, pe,, . . . , e, , where p., Np.; = 0 if
1 # 7, is generated. For this a vertex-label from the set of classes C' is assigned to
each vertex vy, ..., v; of the weighted labeled graph G = (V, E)). The set of classes
C represents possible packages the components can be clustered with. Following
the basic simulated annealing mechanism the classes are assigned randomly while
the number of classes |C| represents the number of solutions (the start packages) of
the initial population. Alternatively the initial definition and assignment of classes
can be based on a previous clustering (e.g. with use of network analysis methods
like community clustering). The initial solutions pe,, Pe,, - - - , P, Of the initial pop-
ulation P, are evaluated according the objective function F(p) of equation 6.1
to assess the quality of the initial solution and measure the difference in value to
the final solution.

In step two the parameters are initialized. The right choice of the parameter val-
ues is crucial for the success of a simulated annealing algorithm [Duda et al.2001,
Nolle et al.2001]. There are four parameters which determine the number of itera-
tions: the initial temperature Ty, the final temperature 7,,;,, the cooling schedule
« and the number of candidate iterations L,,,,. As discussed in section 6.1.1.6,
to allow free motion in the search space G, the probability that any uphill move
is accepted should be close to 1 which implies a high starting temperature 7y in
the initial phase. The value of Ty however depends heavily on the topography of
G as the search space must not contain highland basins with no solution having
objective function values close to the global minimum and therefore there is no
need for a high initial temperature. If the basin depths are fairly moderate and
the phenomenon of highland basins is rare then the cooling steps may be increased
without seriously compromising the convergence properties of the algorithm.

The search of the RPOSA algorithm in the graph G (the solution space) is not
only controlled by the temperature parameter. By allowing the adaption of the step
width sw an aditional control parameter was introduced in Section 6.1.1.4. The step
width allows a faster motion through the solution space and can be adapted on-line
(and for every recombination operation individually) while the algorithms performs
the search. However, as the effect of the control parameters depends highly on the
topography of the solutions space G the values of the indiviual parameters must
be determined empirically.

The population is evaluated in step three where the recombination operations (dis-
cussed in detail in section 6.2.2 and 6.2.3) are performed. In the first run the

6.2 A Recombinative Population-Oriented SA Algorithm

fitness
population
fitness
Q N MR
) *O ,O
o L
ot » ‘@ A '. @ -@
. '., A
J iscarde AN
. ® solution vA """""" ~IX A A
P @
A.y. N y— - -l
N S P poeTT T Il R I -3
>

iterations

Figure 6.3.: Every candidate solution (each different color represents a different
solution) in the population explores the solution space and contributes
to the fitness of the packaging. Due to the two recombination methods
the generation of new solutions as well as the discarding of solutions
is possible. In this example the algorithm starts with a population
containing only four candidate solutions. During the run new solutions
are generated.

67

6.

Reuse-Oriented Component Package Generation

68

temperature parameter is set to the initial value. Each of the candidate solutions
in the population is performing the recombination operations, moving in the search
space and contributing to the fitness of the population. The candidate solutions
are moving individually a number L,,,, times for each annealing schedule. After
the maximum of candidate iterations is reached the population is updated with the
changed, new or destroyed solutions and the temperature is reduced according the
annealing schedule. This procedure is repeated until a stopping criterion (e.g. a
minimum temperature or a maximum number of iterations) is reached. The final
population is evaluated with the objective function and can be compared with the
inital population.

As discussed, the information in a project repository reflects component-based
system architectures. While it is desirable to be able to reuse all components of past
projects it is not very likely to acomplish this. Project specific implementations of
components provide special functionality or adaptions for a customers environment
and are used only once or only for that specific customer. Therefore not all clusters
will qualify as a reusable package. After the annealing is finished, packages with
relatively low fitness are combined to a cluster of project specific implementations.

6.2.2. Candidate Recombination

To provide means for the generation of new solutions (enlarge or reduce the number
of solutions in a population), a candidate recombination operation is performed
(see diagram 6.2). After a candidate solution p; is randomly choosen from the
population P a number z > 1 of candidate components ¢; of the current solution
Dorig 18 selected. This selection can either be random or based on a fitness value (e.g.
a component with the minimum reuse popularity rp of the candidate solution). A
new solution is generated from the original solution without the previously selected
components (which become a class of their own) as seen in Figure 6.5.

The newly created solution is evaluated if the components of the solution (rep-
resented as subgraph) are connected. If not, new solutions are created, one for
each connected subgraph. After the solutions are generated a Boltzmann trial is
hold between the original candidate solution p,;; and the newly created solution
Pnew (if the subgraph was not connected a trial is performed between the original
solution and the cumulative objective values of the newly generated solutions). If
the newly generated solutions have a higher fitness than the original solution they

become the new solution otherwise the original solution is kept with the probability
P = e—AF/T]

This operation provides means to enlarge or to reduce the number of solutions in the
population size and sets individual components free from bounds inside a solution.
Those components removed from the original solution have a class of their own
and therefore have a fitness which equals zero. If, for example, a previous neighbor

6.2 A Recombinative Population-Oriented SA Algorithm

Algorithm 2 RPOSA(G, F, o, To, Trnin, Xo, Yo, Limaz)

Input: G = (V, E): Solution set v, ..., v,; F(): Objective function; «(): Cooling schedule;
To, Trnin: Initial/Final temperature; Xo, Yp: Step width; L4, Number of candidate iterations.
Output: A set of reuse packages close to the optimum.

Step 1: Initialization of the population
Generate the Graph G = (V, E) from the solution set A.
Generate the initial population and evaluate candidate solutions p; with objective function F()

return Evaluated initial candidate solutions p1, ..., pn

Step 2: Initialize Parameters
Set Q, T = X07 Y= }/07 T07 Tmina l7 Liaz

Step 3: Evaluation of the Population
while Ty > T),,;, do
for all i € {1,...,n} do {For every solution in the population}
repeat
[:= 0 {candidate iterations}

Step 3.1: candidate recombination (see algorithm 3)
— Perform a candidate recombination on the candidate solution p; and accept or
reject the solution regarding a performed Bolzmann trial.

Step 3.2: Neighbor recombination (see algorithm 4)
— Perform, a neighbor recombination on the candidate solution p; and accept or reject
the solution regarding a performed Bolzmann trial.

l=1+1
until | = L4z

Update population with changed candidate solutions.

end for
To := a(Ty) {Reduce temperature}
end while
Evaluate final candidate solutions p; with objective function F'()
Cluster candidate solutions where fitness equals zero
return Evaluated final candidate solutions p1, ..., pn

69

6.

Reuse-Oriented Component Package Generation

70

|candidate recombination|
NV

Figure 6.4.: Performing a candidate recombination operation. From the solution in
image {1} the candidate components vg and v, are selected for recom-
bination. Before the recombination the packages in image {1} have a
fitness value of 0 as they share no common candidate architecture. In
image {2} the new formed solutions are pictured. While the packages
with one component each have a fitness of 0 the new formed package
with the candidate components vs, vg, v1g have a fitness of 6 (ignoring
the component rank in this example).

recombination was not successfull due to a high force of attraction (with the increase
of the fitness value the bound of the components in a solution becomes stronger)
of the component to the previous solution, now the component can be added to a
new solution or become a new solution of its own. The adding of components (by
removing them from a neighbor solution) to a solution is discussed in the following
section 6.2.3.

6.2.3. Neighbor Recombination

To explore the solution space G each candidate solution performs a neighbor re-
combination, listed in Algorithm 4, operation after the candidate recombination as
discussed in the previous section. The general procedure is pictured in diagram
6.2. For a randomly choosen candidate component c¢;, represented by a vertice v;
in the graph G, a neighbor p’ € N(p;) is choosen. The selection of a neighbor
is performed randomly in this approach, but can be easily adapted to select, for
example, the neighbor solution with the highest reuse popularity rp or extend the
neighbor selection to the whole neighborhood with an additional parameter for the
path width. From the selected neighbor solution p; a number Y (the step width
sw) of random (again, the selection can be adapted to be more selective respecting

6.2 A Recombinative Population-Oriented SA Algorithm

Algorithm 3 Candidate Recombination

— Pick a number z of random adjacent elements v as a set V; from p; as set p]
if |p;| > 1 and connected == True then
Let AF = F(p)) — F(p;)
if AF <0 then {uphill move}
— Remove set V; from p; with probability P
if P then {uphill move}
— Assign new class C), 1 to each element v of set V;
— Add new class to population P
end if
else if AF > 0 then {downhill move}
— Remove set V; from p;
— Assign new class C), 1 to each element v of set V;
— Add new class to population P
end if
else if |p;| > 1 and connected == False then
Assign a new class to each new connected candidate solution p;n
Lot AF = F(Y"9},) — F(p)
if AF <0 then {uphill move}
— Remove set V; from p; and generate net candidate solutions with probability e
if P then {uphill move}
— Assign new class C), 41 to each element v of set V;
— Add new class to population P
end if
else if AF' > 0 then {downhill move}
— Remove set V; from p;
— Assign new class C), 1 to each element v of set V;
— Add new class to population P
end if
end if

_ o —AF/t

_AF/t

71

6. Reuse-Oriented Component Package Generation

additional control parameters) adjacent components is choosen, removed from the
neighbor solution and added to the candidate solution p;.

Before the fitness difference AF = F(pi* —pl)+ F(p; — p;) is calculated it is verified
if the neighbor solution is still connected. If the neighbor solution is connected
a Boltzmann trial is hold and with AF > 0 the components selected from the
neighbor solution p) are added to the candidate solution p;. With AF < 0 they
are added with probability P = e/t If the neighbor solution is not connected
it is split and each connected subgraph of the neighbor solution becomes a new
solution in the population. The acceptance of this operation is also decided via a

Boltzmann trial with AF = F(}>"p;) — F(p:)-

Algorithm 4 Neighbor Recombination

— Choose a neighbor p’ € N(p;)
— Remove a number y of random adjacent components ¢ as a set V; from a selected random
neighbor p) as p/* and add it to p; as p}
if |pi| > 1 and connected == True then
— Let AF = F(p;" — p;) + F(pj — pi)
if AF <0 then {uphill move}
— p; = p; with probability P =
if P then {uphill move}
— Add new class to population P

o~ AF/t

end if
else if AF > 0 then {downhill move}
= pi =D
end if
else if |p}| > 1 and connected == False then

— Assign a new class to each new connected candidate solution pj
— Let AF =F(3_"p;,) — F(ps)
if AF <0 then {uphill move}
— p; = p; with probability P
if P then {uphill move}
— Add new class to population P
end if
else if AF > 0 then {downhill move}
— pi =Dj
— Add new class to population P
end if
end if

— o —AF/t

6.3. Application of RPOSA

In this section the previously discussed RPOSA algorithm is applied to the example
repository (see annex A). In order to determine the optimal variation among the
control parameters for the particular network topography of the example repository,
a number of experiments where carried out. In table 6.3 the variations of the tested

72

6.3 Application of RPOSA

w,

U
e
iﬂgv”wﬁ”u}
/

2

Figure 6.5.: Performing a neighbor recombination operation. From the solution p,
in image {1} the candidate component vg selects the components vg
and vg from the neighbor solution p} for a recombination operation.
After the operation in image {2}, the new neighbor solution p+" would
not be connected and the new solutions px; and px’ are created. The
fitness of solution py has an unchanged value of 3 (ignoring component
ranks in this example) while the fitness values of the new solutions also
remain 0 after the recombination

73

6. Reuse-Oriented Component Package Generation

values for the different control parameters as well as the final values for the example
repository are listed. The final configuration of the control parameters resulted in
1053 iterations and a total of 0.74 seconds running time (on a Intel Core 2 Duo
Laptop with 2.4 Ghz and 8 GB RAM). The running time is composed of <1% for
the generation of the graph (n=50), ~10% for the calculation of the component
rank and ~90% for execution of the RPOSA algorithm.

Parameter Tested Values Used Value
Start temperature Ty 30,25,20,15,10,8,6,5,4,3,2,1,0.1,0.01 10

Final temperature 7,,;, 0.1,0.01,0.001,0.0001,0.00001 0.001

Cooling schedule « 0.99,0.98,0.97,0.95,0.90,0.85,0.80 0.85VT > 1;0.98
Local Iterations L,,qx 20,15,10,5,3,2,1 3

Step width sw N(v), ‘Ng’)', 1 |N§”)|

Table 6.1.: Tested values for the control parameters and the final decisions for the
example repository.

Figure 6.6 shows the result of the RPOSA algorithm. The dotted line represents
the best population found in over 150 runs. While the fitness of the population
in that particular run tends to be the maximum, a significant trade-off in running
time (3238 iterations) was observed. Laarhoven et. al. [Laarhoven et al.1987]
argue, that the performance of a SA algorithm has to concentrate on the following
two quantities:

e the quality of the final solution obtained by the algorithm, i.e. the difference
in cost value between the final solution and a globally minimal solution;

e the running time of the algorithm.

For the simulated annealing algorithm, these quantities depend on the problem
instance as well as the cooling schedule. Two approaches for investigating the per-
formance of simulated annealing are possible: a theoretical analysis, which tries
to find a analytical expression for the quality of the solution and for the running
time, and an empirical analysis which solves many instances with different pa-
rameters and draws conclusions from the result with respect to both, quality and
running time. For the theoretical analysis the literature provides only worst-case
analysis results [Lundy and Mees1986, Aarts and Van Laarhoven1985]. No theo-
retical average-case analysis results are known for the running time and quality of
a solution [Laarhoven et al.1987].

As for the final configuration of the RPOSA algorithm, applied to the current
problem, a trade-off in accuracy was accepted in favor of the running time.

74

6.3 Application of RPOSA

80- r_' population fitness

_Fitness

n
[S
population size

20+

T T T T T
200 400 600 800 1000
Iterations

Figure 6.6.: RPOSA algorithm applied to the example repository. The dotted line
represents the best solution found in over 150 runs while the black line
pictures the fitness of the population over the iterations. The grey line
shows the development of the number of clusters in the population.

75

6.

Reuse-Oriented Component Package Generation

76

It can be observed in Figure 6.6 that the algorithm initially explores the search
space (large differences in fitness), while later on (after approximately 180 iterations
in this case) it exploits the most promising region. Hence, the behavior of the
algorithm at the beginning of the search is similar to a random walk, while towards
the end it performs like ordinary hill climbing. The grey line in the figure shows the
development of the population size. The randomly generated (uniform distribution)
initial population had a total fitness of 0 and 5 solutions. In the exploration phase
it raises to over 30 solutions and shrinks toward the end to a final number of 17
solutions in the population (shown in table 6.3) which has a final fitness of 84.076.

Components Count Fitness
€13, C12 2 1.219
€7, Cg, Cy 3 1.33
C8, C26 2 1.471
C43, C41 2 1.509
C42, C45 2 1.509
Ca65 Casa 2 1.509
C24, C25, C23 3 1.661
€39, €38, C40 3 1.781
€49, C50, Ca7, C48 4 2.436
C11, C10 2 5.091
C31, C29 2 5.654
C15, C14 2 6.094
€36, C37 2 6.823
C35, C34, C33,C32, C30, C28, Ca7 7 7.485
C2, C20, C21, C22, C17, C16,C19,C18 8 7.521
Cs,y C4 2 11.899
1, C3 2 19.084

Sum of the 17 solutions in the population: 50 84.076

Table 6.2.: Final clustering to reusable packages of the components from the ex-
ample repository (sorted in ascending order).

Not all packages of the final clustering would qualify as a reusable package. While
the cluster with the candidate components ¢; and c3 shows a very promising fitness

6.4 Summary: Reuse-Oriented Component Packaging

value, the clusters with 8 and 7 components have a relatively low fitness compared
to the promising package. Those two packages, and respective their components,
are combined to form a cluster of project specific implementations which are not
considered for reuse.

Once meaningfull packages of components are clustered the previously (see section
5.1) discussed network analysis methods can be reapplied. With centrality mea-
sures important components (e.g. gatekeepers or central components) of individual
reuse packages can be identified and will provide important knowledge for a system
architect and for the integration engineers in a project.

6.4. Summary: Reuse-Oriented Component
Packaging

In this chapter an optimization approach, which provides means to select and group
components to reusable packages, was introduced.

To optimize the reuse of component packages, the clustering of components to
individual reusable packages is improved, by measuring the impact of individual
components to these clusters. This is achieved by incorporating the proposed reuse
graph metrics (see Section 5.4) in a novel simulated annealing algorithm that uses
the component-graph generated in Chapter 4 and was extended to support the
optimization of a number of different solutions rathern than one particular.

Kunz argues in [Kunz2010] that in practice software measurement tools find small
acceptance due to their high costs, inflexible structures, missing integration capa-
bilities and the resulting unclear cost/benefit ratio. To overcome this obstacles and
support the architects with a shedule how and when to apply the various measure-
ment techniques, a reuse oriented process will be presented in the next chapter.
In this proposed process the evaluation and clustering techniques presented in the
previous sections are integrated in a company’s development process which is sup-
ported by a model-based architecture framework to support the handling (e.g.
storing and retrival) of individual components.

77

Part Ill.

Evaluation Process and Framework

79

7. Model-Based Architecture
Evaluation Framework

In this chapter a framework is presented, that intends to support software and
system architects as well as integration engineers at the process of developing new
solutions from existing components. The process, wrapped around the framework,
means to integrate modeling and evaluation of component-based automotive sys-
tems in a model-driven engineering (MDE) development process based on an ar-
chitecture description language (ADL). First the importance for a model-based
approach in the development of component-based embedded systems is motivated
and the current process is opposed to the new process. This is followed by a general
overview of the new process, a description of the enwrapped framework and a more
detailed discussion of the individual parts of the framework. To be prepared for
next generation automotive systems, SAE AADL has been extended to support
the specification and modeling of multicore architectures.

7.1. Motivation

A basic idea in component-based software engineering is to build systems from
existing components. This reusability is the ability of reusing the same component
in different projects or even applications. But this desired property includes the
assumption, that the architectural framework of the systems must be the same.
Such an architectural framework is provided by many model-based development
approaches, as they use the concept of formal description and specification of sys-
tems. Furthermore model-based approaches provide means to support communica-
tion (e.g. as interchange format between development groups or even customers),
verification and provide models that can be analyzed for multiple qualities.

Torngren et. al. [Torngren et al.2005] argue that the two approaches, component-
based system development and model-based methods, complement each-other and
are both required for the development of complex systems. This motivates the
process and framework, proposed in the following sections, which incorporates the
concepts for reuseability described in the Chapters 5 and 6 and supports the various
advantages [Selic2003, Puertal997, Schaetz et al.2002] of model-based development
like automated code generation or formal verification.

81

7.

Model-Based Architecture Evaluation Framework

82

function development aggregates project integration
aggregate frame
n 4 / project 1
< | > > AGGR,
wn —_
.
D .
3 aggregate frame prOJect 2
- —
o] G - |AGGR,
Q .
— project 3
E;‘ aggregate frame
a
3 G » | AGGR3

Figure 7.1.: The current reuse process based on functional partitioning. The sys-
tem architect defines the functionality and the authority (the function
representative) for each function implements and supports it. Parts of
the function are composed together to an aggregate which is used in
system projects.

7.2. Functional Partitioning to Reuse Partitioning

The current component partitioning and reuse concept, discussed in 2.4, is based
solely on a functional partitioning of the product lines. In Figure 7.1 the concept
is shown. The development process is triggered from a system/platform architect
who specifies the new architecture and decides about new functionality for the
system. The architect interfaces with the function representatives who manage the
versions and revisions of each function. From different versions and revisions of the
functions reuse packages are composed, which are used in different projects (e.g.
diesel/gasoline or customer specific).

The implications of this approach, discussed in Section 2.4, motivate the need for
a reuse-based process. The few but large aggregates, which serve as reusable pack-
ages, are not very flexible and make the reuse process very complicated and hard
to overlook. Figure 7.2 shows a new development process based on reuse decisions,
which would be mandatory to make use of the component package generation pro-
posed in this thesis.

The functionality is, like in the current development process, defined by a system
architect. The authority for the implementation and support of the functionality
is also still with the function representative. New to the proposed concept is the
replacement of the big (in terms of aggregated components) Aggregates, which
would be replaced by more and smaller reuse packages, which then are used in

7.3 Reuse-Oriented Development Process

function development reuse packaging project integration
te f
aggregate frame RPl
- prOJect 1
— [
-\¥ RP2

\> project 3

aggregate RPs

= RPs

aggregateffame RP, ' prOjeCt 2
/ —
)
h N RP,

wJojie|d/waisAs

Figure 7.2.: The proposed reuse process based on reuse partitioning. Like in the
current process the system architect defines the functionality and the
authority (the function representative) for each function implements
and supports it. Parts of each function are composed together in
reusable packages which are used in system projects.

different system projects and product lines. Such reuse packages are automatically
generated with the approach presented in this thesis.

7.3. Reuse-Oriented Development Process

In this section the various engineering steps of the reuse-oriented development
process, shown in Figure 7.3, are discussed. The process consists of the following
steps:

e Specification and modeling of the high level system architecture in an archi-
tecture description language.

e Enrichment of the system architecture with components and component pack-
ages from a component repository.

e Refinement of the architecture model with project or customer specific com-
ponents.

e Instrumentation of the system with non-functional requirements.
e Generation of the architecture implementation model.

e Generation of software artefacts.

33

7. Model-Based Architecture Evaluation Framework

i| High level specification of the system architecture
i in an architecture description language o
I c
i >
| | Import of reusable component packages > E
2 I ' from the component repository g
gl v
i >
f‘;f | Refinement of the architecture with project @
g I | specific component implementations
Q. g p—
== — e
@ I Architecture implementation. Instrumentation T
bt | with non-functional requirements g
o] E,
1 v &
= {| Automated generation of software artifacts (e.g. §
I ildocumentation, code, analysis models or test cases) £
| o e -
e —_—_—_——————————————— 1

<
®
o
=)
0
Q
(o
o
>
—
M
n
cr
0
=
Q
=
o
>
(o]
o)
-
=
=h
el
QU
=
o
>

Figure 7.3.: The proposed process the framework is wrappend in. After step five (a
component defines not only code but also documentation and specifica-
tion) the component repository is updated with the new components.

84

7.3 Reuse-Oriented Development Process

Prior to those steps the component repository has to be constructed using the
data collection methodology discussed in Section 4.1. After the component reuse
network has been constructed, components are evaluated with network analysis
methods to, for example, rank them and as such provide useful information for
an system expert. Followed by the network analysis the components are clusterd
with use of the RPOSA algorithm discussed in Section 6.1 to provide initial reuse
packages which then can be used following the steps listed above. In sum, the steps
needed prior to the development process are:

e Construction of the component reuse network(s)

e Evaluation and measurement of the components with network analysis meth-
ods

e Application of the RPOSA algorithm to create reuse packages

7.3.1. Model-Based Reuse Framework

A detailed description of the individual parts of the framework is shown in Fig-
ure 7.4. At first the high level system architecture is specified and modeled in
an architecture description language. This architecture description language pro-
vides the common framework for all future systems in the product lifecycle. The
architect is enabled to choose components and component packages from a compo-
nent repository which suggest components, based on evaluations described in the
Chapters 5 and 6. Choosen components are then added to the system architecture
model. If this step is completed, the architecture model is refined with project
or customer specific components. In the next step the system is instrumented
with non-functional requirements and implemented. From this architecture imple-
mentation model several software artefacts are generated automatically including
documentation, code, models for further analysis (e.g. a timing model for real-time
analysis) as well as test cases.

7.3.2. High Level System Architecture Specification

As introduced in the previous section the development of a new solution starts with
the specification of the architecture using models with well defined syntax and se-
mantics for designing the functionality as for example SAE AADL [Aerospace2004]
which was introduced in section 2.8. It offers the advantage of an international
standard and allows the precise definition of the semantics of a predefined set of
components. During this system engineering phase architectural decisions are made
and high-level components are specified. The SAE AADL offers a solid founda-
tion for the modeling approach as it is specialized for vehicular embedded systems

85

7. Model-Based Architecture Evaluation Framework

36

Figure 7.4.:

Real-Time
Simulation - -

Timing Model
N\

Documentation
Code Generation

Architecture Implementation

<< requirements >>
timing annotations

Hardware Architecture
Software Architecture

Applying network analysis measures and cluster component packages

Component Library

0

Proposed architecture framework with an experience-based component
repository (5), the software architecture (1) specified by an architecture
description language and the architecture implementation (3) which is
instrumented with various non-functional requirements (2) for further
analysis (e.g. real-time simulation) and contains the functional parts
for generation of code and documentation (4).

7.3 Reuse-Oriented Development Process

development. It also provides constructs and properties required for analysis of
safety, reliability and timing, as well as explicit models of software components.

With SAE AADL the component development process can be separated from the
system development process. This allows significantly shorter time-to market as
products are integrated from already existing components. While formal abstrac-
tions are important for analysis and verification, visual representations of models
are often important for comprehension of complex systems and the communication
of designs. The SAE AADL supports both, a textual as well as a graphical notation
and provides an open-source modeling environment [Feiler et al.2006a] which can
be integrated in an existing development process.

7.3.3. Reusable Component Package Import

After the initial high level system architecture is specified and modeled the system
architect uses a component library to search for reusable components and compo-
nent packages. This component library is automatically generated and updated
with the appraoch described in Chapter 6. Components and component packages
are generated and stored with measurement information attached to each individual
component or package. Implemented with sorting and search possibilities it serves
as an expert system, supporting the system architect at the process of deciding
which components or packages to reuse. For the use of SAE AADL as modeling
language the tool STOOD supports libraries of SAE AADL models [Dissaux2005].

7.3.4. Architecture Refinement

After the high-level system was modeled, the initial components will then be refined
by the addition of a hierarchy of subcomponents as well as lower level properties.
They also incorporate more detail and peculiarities of the implementation, fulfilling
the software requirements while preserving the global architecture of the particular
system (see Figure 7.4 (2,3)).

7.3.5. Architecture Implementation and Instrumentation

Dissaux described in [Dissaux2005] that the normal continuation of this activity
consists in performing the software detailed design and coding steps that will lead
to the automatic generation of ready to compile target source code and its synchro-
nized design documentation (see Figure 7.4 (4)). The capability to generate code
from the architecture model has become a very important factor in the development
of engine management systems at Continental Automotive Corporation.

87

7.

Model-Based Architecture Evaluation Framework

38

Several approaches to integrate the capability into SAE AADL exist [Brun et al.2008,
Dissaux2005] (e.g. the Ocarina tool suite [Lasnier et al.]) and are free to use. The
functionality of the components is implemented in C code. The SAE AADL ar-
chitecture model provides, with the concept of subprograms, a methodology to
instrument the model with implemented functionality. As the SAE AADL has
been chosen to describe these reusable components, a SAE AADL output trans-
formation is used to generate source code in a similar way as the target language
source code.

The implementation model of the architecture is now instrumented with non-
functional requirements e.g. safety, dependability or performance properties. As
an example and to support the modeling and simulative evaluation of emerging
multicore systems in the embedded domain, the SAE AADL was extended with
real-time properties for multicore systems in section 7.4.

7.3.6. Generation of Software Artefacts

An important side effect of the use of a modeling language for the design of the sys-
tem and automatic generation of code is the possibility to automatically document
data dependencies and information flows. This enables the data collection process,
described in Section 4.1, to generate a more detailed and less dense component
reuse network. Therefore means for more specific and more accurate evaluations
as well as a robuster way to group components to reusable packages as described
in section 6.1 are provided.

This architecture models can also be used for early design validation and verifi-
cation as well as for testing and integration. Other usages of the models include
information and process modeling. Developed in the right way, models become
assets that can themselves be reused within and between projects and customers.
The model-based methodology provides possibilities to develop and use a multitude
of models for different system aspects (i.e. product properties and constraints) such
as failure modes of components and their propagation, required timing behavior of
a real-time implementation, power consumption, and the behavior of the expected
environment.

7.4. Multicore Support

With the introduction of multicore systems to the embedded domain new require-
ments for the modeling and description of embedded systems emerge. This require-
ments include:

e Modeling of multicore hardware components including heterogeneous cores
with variable processing speed

7.4 Multicore Support

e Comprehensive execution time models, e.g. expressed by probabilistic distri-
butions

e Support for the annotation of scheduling policies

To integrate the new framework for the specification and evaluation of component-
based automotive systems architectures, the support for this new requirements has
to be provided by the ADL.

While SAE AADL provides the means for modeling the hardware platform (e.g.
processor or memory) it does not provide the possibility for the modeling or map-
ping of software components, tasks or ISRs, on a number of cores of a multicore
processor. To support multicore systems, the properties of the standard execution
platform component processor were extended to support the modeling of heteroge-
neous multicores [Deubzer et al.2010].

In Listing 7.1, an excerpt of the definition of the new properties is shown. In ad-
dition to the Cores property that defines a core of a processor, the possibility of
adding a quartz to each core (Quartz), as well as defining the quartz frequency
and the core instructions per quartz tick are defined. The mapping allows to as-
sign quartzes to specific cores. Additionally, it is possible to configure scheduling
policies.

Listing 7.1: Selected multicore extension of SAE AADL

property set multicoreEXT is

Quartz: aadlinteger applies to (device);

Cores: aadlinteger applies to (processor);
Core_Instructions_per_Tick: aadlinteger applies to (processor);
Quartz_Frequence_Hz: aadlinteger applies to (device);

— Scheduling
Scheduling_Protocol: type enumeration (osek, edf, global_edf, pf_pd2, pf_er_pd2,
partly_pf_pd2, p_er_pd2, edzl, llref);

— Mappings

—— Mapping Quartz to Core
Quartz_Core_Binding: inherit reference(processor) applies to (device);

end multicoreEXT;

With these additional properties and the standard scheduling annotations of the
SAE AADL, the modeling of a multicore system is possible. In Listing 7.2 an exam-
ple modeling of the hardware is shown. The processor multicore.dualcore has two
cores which each have a mapping to the same quartz. The cores (Cores.core0/1)
can be annotated with specific properties as defined in Listing 7.1.

39

7. Model-Based Architecture Evaluation Framework

Listing 7.2: Modeling of a dualcore processor in SAE AADL

— multicore processor
system implementation multicore.dualcore
subcomponents
core0: processor Cores.core0;
corel: processor Cores.corel;
quartz0: device Quartz.quartz0;
properties
— Mapping core to quartz
multicoreHW :: Sim_Processor => 1;
multicoreHW :: Quartz_Core_Binding => reference core0 applies to quartz0;
multicoreHW :: Quartz_Core_Binding => reference corel applies to quartzO;
end multicore.dualcore;

— processor—core
processor implementation Cores.core0
properties
multicoreHW :: Core => 1;
multicoreHW :: Core_Instructions_per_Tick => 10;
end Cores.core0;

— processor—core
processor implementation Cores.corel
properties
multicoreHW :: Core => 1;
multicoreHW :: Core_Instructions_per_Tick => 20;
end Cores.corel;

—— quartz
device implementation Quartz.quartz0
properties
multicoreHW :: Quartz => 1;
multicoreHW :: Quartz_Frequence_Hz => 100000000;
end Quartz.quartz0;

After the system is modeled in SAE AADL and annotated with the multicore
properties, it can be used as an input for the scheduling simulation. In addition to
the scheduling analysis, this specified single SAE AADL model can be analyzed for
multiple qualities e.g. availability and reliability, security or resource consumption.

7.5. Summary: Reuse-Oriented Development
Process

The application of measurement tools in practical environments is often confronted
with a number of different drawbacks, discussed by Lother in [Lother2007] and
Kunz in [Kunz2010]. Most of such drawbacks result from a missing integration of
the measurement tools in the development process. With the approach presented in
this chapter, means to integrate the measurement into the process and support the
development with a framework to ensure a continuous application, are provided.
With the use of an architecture description language for the design of the archi-
tecture additional benefits emerge. In Section 3.1 implications resulting from the

90

7.5 Summary: Reuse-Oriented Development Process

component selection problem, especially the retrieve of components, is discussed.
A tight integration of the modeling approach with a component repository, as pro-
posed in this chapter, will support the system architect with the difficult task of
finding and retrieving the right component for the current system under design.

91

Part V.

Case Study: Engine Management
System

93

8. Evaluation of the Engine
Management System

The engine management system (EMS2), introduced in Section 2.4 is evaluated by
using the discussed network analysis method of Chapter 5 and reusable packages
are generated with the proposed RPOSA algorithm proposed in Section 6.2. In the
following Section 8.1 the actual impact regarding reuse of the system is evaluated.
The data for the generation of the architecture model is extracted in Section 8.2. In
Section 8.3 the generated graph is evaluated with use of network analysis measures
followed by Section 8.4, where reusable packages are generated with the use of the
proposed simulated annealing approach.

8.1. EMS Reuse: Status Quo

In this section the actual impact and efficiency regarding the reuse of components
of the component-based EMS2 architecture, discussed in Section 2.4, is evaluated.
For this purpose, the baselines of successfully completed projects since the intro-
duction of the new architectural concept were analyzed with database data mining
techniques.

In Figure 8.1 it is shown how often modules, the “atoms” of the reuseable aggregates
(see Figure 2.7(a)), were reused over different projects. The reuse level analysis
reveals that around 54 percent of the modules were used in twenty or less projects,
while 26 percent of the modules were used only once.

Consequently, 74 percent of the modules where reused at least in two projects
while 12 percent of the modules were even used in one hundred or more projects.
The overall use of modules over all projects is shown in Figure 8.2. While a big
portion of around 87 percent where used less than 100 times, almost 700 modules
where used more than that. While this seems to be a reasonable reuse level for
the atomic parts, it does not give any information on the reuse efficiency of the
aggregate grouping (see Figure 2.7(b)) as discussed in Section 2.4. To evaluate the
current partitioning of modules to aggregates and apply network analysis methods
on the components the component reuse network has to be constructed.

95

8.

Evaluation of the Engine Management System

96

2845 53.8

2500
|

40

2000

absolute frequencies
1500
|
relative frequencies
30
|

1000
20

500
|
10

|

0 100 200 300 400 0 100 200 300 400
number of projects number of projects

Figure 8.1.: This figure shows the reuse of modules over different projects.

8.2. Data Collection And Extraction

The information in the companies project repository includes an accurate and
detailed picture of the organizational structure of the software architecture and its
components.

By collecting data from the repository knowledge about components and compo-
nent groups was automatically captured. This knowledge is gained from projects
being already in the maintenance phase as well as projects being under active de-
velopment at Continental Automotive Engine Systems. The data was collected by
following the approach presented in Section 4.1.

For context specific analysis, different graphs where generated. For example graphs
with the focus only on closed projects in a specific customer cluster to analyse
reuse on a per customer basis were generated. To analyse the reuse level of specific
aggregates graphs can even be limited to a special functionality. The resulting
final weighted graph (over all projects, aggregates and customers) on the use of
components in past projects, has around 50 - 10* nodes (components) and 26 - 10°
edges (the number of connections between the components). To reduce the size and

8.3 Application of Network Analysis Measures

3000
|

2920

module
1500 2000 2500

1000
|

788

500
|

0 100 200 300 400 500
number of use in projects

Figure 8.2.: This figure shows the reuse of modules over all projects. One bin
represents 20 projects.

complexity of the network Prim’s algorithm [Morris et al.2008] was used to find a
maximum weighted spanning tree of the graph. This algorithm finds a subset of
edges forming a tree which includes every component. The total weight of all the
edges is maximized (see Figure 8.3). While some information on the degree of the
graph (the connections each component has) is lost, the important information
about the maximum reuse of components and component groups are preserved, as
well as the strong relationships between components, which are a crucial metric for
our clustering approach. For the application of the RPOSA algorithm from section
6.2 the full graph without the reduction to the spanning tree was used.

8.3. Application of Network Analysis Measures

Once the network based on the previous definitions is constructed, standard net-
work analysis concepts can be applied.

97

8.

Evaluation of the Engine Management System

98

In Figure 8.4 the result of the centrality analysis is shown. The eigenvector cen-
trality, defined in Section 5.1, is plotted versus the betweenness centrality. The
more a component is connected to other highly connected components the higher
is the weight the eigenvector centrality gives to this component. A component con-
nected to, for example, ten high-scoring components will have a higher eigenvector
centrality than a component connected to ten low-scoring components. Thus, it
can be interpreted as a measure for the importance of a component in a network
and marks components with high reusability e.g. high quality due to a high test
coverage. The betweenness centrality measures the number of shortest paths go-
ing through a specific component. Thus a high betweenness centrality marks the
importance of a component as a central hub with a potentially high amount of in-
formation flowing through that component. A high betweenness centrality marks
components which are used in different projects. The relatively low eigenvector
centrality of those components suggest that components that are used in differ-
ent projects are often changed and not much reused. Nevertheless this analysis
helped to identify a number of key components which will play a central role in the
repository.

The distribution of the degree in the network is shown in Figure 8.5. Few compo-
nents of the network have a very high degree and are subject to further analysis.
The degree distribution shows also that the network is a so called scale-free network,
which is defined by sequential addition of new nodes and preferential attachment.
One characeristic of a scale-free network is the relative commonness of components
with a degree that greatly exceeds the average. The highest-degree nodes are often
called hubs. For the component network this shows that high-degree nodes are
placed in the middle of the network and progressively lower-degree components are
added sequential (a project is started with legacy components and new components
are added around them).

To find groups of components, the concept of Section 5.2 was used. As discussed
in Section 2.4, the grouping of components to component groups (respectively

Figure 8.3.: Generation of the maximum weighted spanning tree. One component
of the graph (1) is chosen as starting point. The components with
the maximum weight are chosen (2). The final graph (3) contains all
components with a reduced set of edges.

8.3 Application of Network Analysis Measures

10- 469

8345
0.8- 1222

0.6-

Eigenvector Centrality

0.4-

0.2-

= o ™" s

| | | | |
0e+00 2e+08 4e+08 6e+08 8e+08
Betweenness Centrality

Figure 8.4.: This figure shows the key component analysis. The IDs of the most im-
portant components in the network analyzed by eigenvector centrality
and betweenness centrality. Scaled by eigenvector centrality.

o
o
+ - o o
@ o
=)
o
o
23 °
o o 7 o
= o
g “
B o
o o
= &
-+
o
@ | H-
- -
-
—
T T T T T T T T T
1 2 5 10 20 50 100 200 500

(log)degree

Figure 8.5.: This figure shows the degree distribution over the graph. Most of the
components have a degree between one and four.

99

8. Evaluation of the Engine Management System

modules to aggregates) was initially driven by several structuring concepts e.g. the
functional coherence or even organizational responsibility. The clustering approach
intends to define new groups of components that focus on the reusability and quality
of the components.

The result of the clustered graph is shown in figure 8.6 while groups of components
are in the same color and arranged next to each other. Components are sized
regarding their eigenvector centrality.

In Figure 8.7(a) the distribution of aggregates in a selected cluster is shown. This
cluster is dominated by two aggregates (32 percent and 23 percent) to whom a very
high degree of relationship could be detected. Another interesting fact that could be
identified is the high number of components from different aggregates in the cluster.
It shows a high degree of relationship between components of completely different
aggregate groups. The graph of a smaller cluster with components from only four
different aggregate groups is shown in Figure 8.7(b). Here, components which are
so called gatekeepers between different aggregate groups have been identified.

Furthermore, two very big clusters where found. Analysis of these clusters showed
that components of these clusters are mostly project specific modules with a weak
degree of relationship. Consequently, the components grouped in this cluster are

recommended to be moved into the project specific part of the aggregates (see
figure 2.7(b)).

8.4. Application of the RPOSA Algorithm

In this section the RPOSA algorithm discussed in Section 6.2.1 is applied to the
network generated in Section 8.2, which is refered to as full network in the following,
as well as on subnetworks which define a specific context. This context can be a
single aggregate (as defined in Section 2.4), a specific functional context (e.g. only
gasoline or only diesel systems) or a cluster of customers. In case of an aggregate
context the partitioning of modules to one aggregate is evaluated. In case of a
functional context the partitioning of aggregates is analyzed for modules which are
e.g. only used in gasoline or diesel projects and optimized regarding these. Similar
applications to the analysis on customer clusters the RPOSA algorithm helps to
decide if a partinioning for a specific context is meaningfull and favourable.

In order to determine the optimal variation among the control parameters for the
particular network topography, a number of experiments where carried out. In
Table 8.4 the variations of the tested values for the different control parameters
as well as the final values for the example repository are listed. The experiments
where carried out with two initial module partitionings (assignment of a class to
a module). First the current aggregate partitioning was applied to the modules.
Therefore the classes represent a specifc aggregate. This aggregate classification

100

8.4 Application of the RPOSA Algorithm

%
g ®
s
g

RPN s X1

S0804¢,

Figure 8.6.: The resulting graph after the edge betweenness community clustering

101

8. Evaluation of the Engine Management System

(a) Distribution of aggregates in a cluster (b) Gatekeeper components between aggre-
gates

Figure 8.7.: Figure (a) shows the distribution of different aggregates in a selected
cluster. Two specific clusters have a very high share in this cluster. In
total, 20 aggregates have been grouped to one cluster. Figure (b) shows
a cluster with four different aggregates grouped together. Components,
which act as gatekeepers between the different aggregates, could be
identified.

102

8.4 Application of the RPOSA Algorithm

was confronted with the assignment of 100 random classes to the modules. The
results of the experiments showed that the initial clustering has a very low signifi-
cance to the result of the optimization.

Parameter Tested Values Used Value
Start temperature T 300,280,250,220,200,150,120,100, 220

50,20,10,5,1

Final temperature T,,;, 0.1,0.01,0.001,0.0001,0.00001 0.0001

Cooling schedule « 0.99,0.98,0.97,0.95, 0.85VT > 1;0.98
0.90, 0.85,0.80

Local Iterations L., 2000,1800,1500,1200,1000,800,600, 1000
400,200

Step width sw N(v), % 110,100,200 LuGn

Table 8.1.: Tested values for the control parameters and the final decisions for the
full network.

The final configuration of the control parameters resulted in 456000 iterations and
a total of 12 days running time (on an Intel Core 2 Duo Laptop with 2.4 Ghz and 8
GB RAM). The running time is composed of <1% for the generation of the graph
(n=7881), ~1% for the calculation of the component rank and ~99% for execution
of the RPOSA algorithm. The graph has 4.7 million edges and an average degree
of 1197.6. Figure 8.8 shows the result of the RPOSA optimization while Figure
8.9 shows an extract after the first 100000 iterations. The dotted line represents
the best population found in various test runs of the parameter evaluation. As
discussed in Section 6.3 a significant trade-off in the runtime and the number of
packages was observed in the run with the maximum fitness value.

The run shown in Figure 8.8 with the parameters of Table 8.4 did show the best
results regarding fitness and number of packages. The initial fitness value (with 104
classes representing the aggregate configuration) of the full network is 754.291. Af-
ter the optimization with the RPOSA algorithm the final fitness value is 18661.82.
This resulted in 972 packages while 316 packages have a value which equals 0. 208
packages have a fitness value > 28.44, the arithmetic mean of the values, and are
proposed as the new module packages. This represent a fitness value of 14808.

In the current architecture the modules are clustered to 100 aggregates. The clus-
tering with the RPOSA algorithm produced about nine times the packages. This
behaviour, to split the modules in smaller packages, is to be expected and while
the effort to manage the packages might rise (the management of components is
discussed in more detail in Chapter 7), the improvement in reusability justifies

103

8. Evaluation of the Engine Management System

the overhead in component management. Furthermore if only the most promis-
ing packages (e.g. a fitness value above the arithmetic value) are used as reusable
packages the number of packages to manage drops to around twice the initial con-
figuration. Beside the improvement of reusability a better flexibility is expected
due smaller packages that can be used in more projects.

As discussed in Section 2.4, the decision how to cluster components is based on
multiple objectives. The clustering presented in this secion is based solely on reuse
information and design decisions of past projects. Therefore the RPOSA algorithm
can only serve as a tool which recommends packages to an system architecture
expert to support the decision process on which components should be packaged
together.

Nevertheless, after the clustering the network analysis techniques discussed in
Chapter 5 and applied in the previous section, can be reapplied to provide valuable
information about the individual clusters. This is possible because the optimization
algorithm preserves the network structure of the initial component reuse network.
Because of the vast number of components in each individual cluster measures like
the reuse popularity, component package complexity and the component rank can
be applied to help the architect in the process of evaluating the clustering.

8.5. Summary: Case Study

In the previous sections the steps prior to the reuse-oriented development process
where performed and the initial component repository was constructed. To follow
the process described in Chapter 7, the system architecture of the engine man-
agement system has to be modeled in an architecture description language which
provides interfaces to the component repository. At the time of this work several
different architecture description languages and modeling approaches are beeing
evaluated and no final choice has been made.

Component groups generated by the RPOSA algorithm have been subject to thor-
ough reviews by architecture experts at Continental Automotive GmbH and have
been proven to be meaningfull in terms of functional validity. On average an im-
provement of the overall reusability of about twenty five times the initial grouping
of packages was observed while the number of packages was around twice as high
(counting the most promising reuse packages) as the initial aggregate configuration.

Nevertheless the grouping of components to reusable packages is driven not only
by reusability aspects but also by many constraints resulting from organizational
structures or other aspects of the development process. Therefore the approaches
applied to the engine management system can only serve as an expert system in
the process of designing a future system architecture, supporting the architect by
providing experience and guidance from past projects.

104

8.5 Summary: Case Study

population fitness
population size

T T
3e+05 4e+05
Iterations

T
2e+05

T
le+05

T
0e+00

15000+
10000+
5000

SSaullq

Figure 8.8.: RPOSA algorithm applied to the full network. The dotted line rep-
resents the best solution found (19208) in various test runs while the
black line pictures the fitness of the population over the iterations (with
a final value of 18661.82). The grey line shows the development of the
number of solutions in the population (with an initial value of 104 and
an final value of 972). 105

8. Evaluation of the Engine Management System

1)
17
4] o)
= N
= wn
= =
o o
= -
] L]
> =
Q Q o
o 8_ S
o _8
[oe]
o
o
FO
o
o
7]
c
il
IS
@
()
=
o
o
FOo
o
<
o
o
FO
o
N
o
T T T T
o o o o
o o o o
o o o o
[oe] [{e} <t N

SSaullq

Figure 8.9.: This figure shows the first 100000 iterations of the RPOSA algorithm
applied to the full network. This image pictures the exploration phase
of the algorithm at the first 20000 iterations.

106

Part V.

Conclusions and Future Work

107

9. Conclusions and Future Work

This thesis has presented evaluation and clustering techniques in order to ana-
lyze component-based embedded software systems regarding reuse. Furthermore
a model-based framework and a process to support system experts in the design
of new solutions was proposed. This chapter summarizes theses techniques and
points out interesting issues for future work on this topic.

9.1. Conclusions

The most important driver of innovation in modern cars are embedded systems.
New-generation cars contain a huge amount of features which would not be pos-
sible without the support of electronic devices and their respective software. This
demand for new features and functions led to an increasing complexity in the de-
sign and development of embedded systems. Due to this high complexity, the
task of building such systems becomes increasingly challenging and raises major
concerns in critical application domains like the automotive industry. In order to
meet this challenge, component-based architectures where introduced to automo-
tive embedded systems. Reusability is an important aspect in the development of
these systems and is frequently seen as a powerful approach to develop high quality
systems while reducing the complexity.

This thesis presents techniques to improve reusability in the systems described
above and provides means to answer the following questions:

e How to evaluate component-based systems and in particular how to identify
components which qualify for reuse?

e How to group components of existing solutions to reusable packages to reduce
the integration effort for new solutions?

e How to support the handling of components in component-based architec-
tures?

As for the evaluation of these component-based systems in order to improve reuse,
two techniques are proposed in the thesis. Both techniques work with information
on system components which is automatically collected from a company’s project
repository. This information represents the knowledge, experience and design de-

109

9. Conclusions and Future Work

cisions of system architects of past and current projects. In order to be able to
perform analysis on this data the information is transformed in a graph based struc-
ture, a so called component reuse network. The process to extract this information
and generate a network is discussed in Chapter 4. In this component reuse network
links between components are constructed based on reuse information and project
scope.

The first technique, presented in Chapter 5, applies network analysis methods, de-
rived from the research field of social network analysis and graph theory, on the
component reuse network. The focus of this technique lies on the connections or
relationships between components and not on the attributes of individual compo-
nents. This technique provides means to identify important and central components
which can be used to understand potential flows of information or resources as well
as constraints on components in a network. Furthermore it allows to apply quan-
titative and qualitative methods to explore or make inferences about the role of
individual components in the network. Clustering techniques support system ar-
chitects to identify component groups and subgroups for the generation of reusable
packages of components.

For large project repositories, the feasibility of the proposed network analysis con-
cepts might be impeded due to very dense graphs. In such cases, the system archi-
tect has to resort to an optimization heuristic, the second component reuse cluster-
ing technique, proposed in Chapter 6 in this thesis. This optimization approach,
a recombinative population-oriented simulated annealing algorithm (RPOSA), se-
lects and groups components in order to optimize reuse in the component-based
software architecture. The optimization algorithm operates on the generated com-
ponent reuse network as well. On this graph, recombination operations are per-
formend in order to optimize the initial clusters according to a defined objective
function. The final clustering is evaluated according the objective function and
analyzed with the network analysis measures proposed in the first technique.

To integrate the evaluation and clustering techniques in a company’s development
process and to support the handling (e.g. storing and retrival) of individual com-
ponents a model-based architecture framework has been proposed in Chapter 7. In
this chapter a process to improve reusability is proposed and the extension of an
architecture description language to support the modeling of multicore systems is
briefly discussed.

In order to demonstrate the feasibility of the approaches, network analysis and
combinatorial optimization have been applayed to a realistic project repository in
a case study in Chapter 8. In this case study both techniques where applied to the
component-based engine management system architecture of the Continental Auto-
motive Corporation resulting in valuable improvement proposals for the company’s
component architecture.

110

9.2 Future Work

0.2. Future Work

This section presents topics and implications which should be investigated further
in order to improve, refine and extend the techniques and methodologies presented
in this thesis.

e Performance optimizations of the RPOSA algorithm: The running time and
performance of the RPOSA algorithm could be improved with a paralleliza-
tion of the algorithm following the method presented in [Ram et al.1996]. Ex-
periments with a prototype implementation resulted in promising speedups
between 2 and 4.5 times faster as the sequential implementation. Another
performance optimization could result from the implementation of the algo-
rithm in C or C++4 using the Boost Network Library for the management of
the graph. The current implementation uses Python 3.1 and the NetworkX
graph library. While the implementation with python is sufficient for early
experiments of the approach and easy to integrate in the development pro-
cess, a moderate performance gain could be expected from an implementation

in C/C++.

e On-line adaption of parameters: As argued the right choice of parameters
is crucial for the success of the algorithm. Especially in real-world applica-
tions where the runtime of the algorithm is important. Nolle et. al. and
Fogel [Nolle et al.2001, Fogel2002] discussed the possibility of the adaption
of a parameter (e.g. the maximum step width) to other SA parameters like
temperature or iterations or even to the fitness landscape at runtime. Nolle
et. al. showed that this on-line adaption, at least for the adaption of the
maximum step width for the neighbor selection, can significantly reduce the
search time through the solution space and improve the overall fitness.

o Multi-Objective Optimization: Due to the multiobjective nature of real world
problems the extension of the RPOSA algorithm to support multiobjective
optimization could improve the results of the approach and the acceptance of
an automatic clustering of components by the developers. Possible objectives
could be other quality attributes (beside reuse) like safety or reliability. On
the contrary multiobjective optimization has, unlike single objective, multiple
goals and makes it difficult to measure the quality of the solution and remains
an important research topic for scientists and researchers.

e Different network construction techniques: The expressiveness of the compo-
nent reuse network could be improved by using input and output data of the
interfaces of components for the construction of the network. The density of
the network would be decreased and thus, network analysis techniques would
provide better results.

e Integration with ADLs and standard development environments: To improve
the search an retrival process for components and provide a seamless integra-

111

9. Conclusions and Future Work

112

tion with the architecture description language an integration of the compo-
nent repository a framework (e.g. the Eclipse Framework) is suggested. Such
an integration would also contribute to the overall usability of the approaches
presented.

Design-Space exploration: A possible extension of the optimization approach
would be the integration of design-space exploration means. With the possi-
bility for experts to alter the component reuse network in a controlled manner,
studies about the impact of architectural changes to the overall architecture
could be conducted. Experts at Continental Corporation argued that this
would be a valuable tool for the architecture development department.

Part VI.

Appendix

113

A. Example Project Repository

Project Components

Project 1 c1, Co, C3,C4, Cs

Project 2 c1, €3, Cg, C7, Cg, Cy

Project 3 C3, C4, Cg, C10, C11, C12, C13

Project 4 ¢, ¢o, €3, ¢4, C5, C14, C15, C16, C17, C18; C19, C2o
Project 5 c¢o, €11, C23, Co4, C25

Project 6 €8, C14, C15, C26

Project 7 C1, C3, Cor, C28, C29, C30, C31, C32, C33, C34, C35, C36
Project 8 €10, €33, C36, C37, €38, C39, C40

Project 9 C4, C5, Ci4, C37, C41, C42, C43

Project 10 ca9, €30, €31, Ca7, Cag, Cag, Cso

Table A.1.: Example of a companies possible project repository were individual
components are associated to a particular project.

115

Bibliography

[Aarts and Korst1988] Aarts, E. and Korst, J. (1988). Simulated annealing and
Boltzmann machines.

[Aarts and Van Laarhoven1985] Aarts, E. and Van Laarhoven, P. (1985). Statisti-
cal cooling: A general approach to combinatorial optimization problems. Philips
J. Res., 40(4):193-226.

[Abbasi et al.2010] Abbasi, B., Niaki, S., Khalife, M., and Faize, Y. (2010). A
hybrid variable neighborhood search and simulated annealing algorithm to es-
timate the three parameters of the Weibull distribution. FExpert Systems with
Applications.

[Abowd et al.1996] Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop,
L., and Zaremski, A. (1996). Recommended best industrial practice for soft-
ware architecture evaluation. Software Engineering Institute Technical Report,

CMU/SEI-96-TR-025.

[Ackley et al.1985] Ackley, D., Hinton, G., and Sejnowski, T. (1985). A learning
algorithm for boltzmann machines®. Cognitive science, 9(1):147-169.

[Aerospace2004] Aerospace, S. (2004). Architecture Analysis & Design Language
(AADL). AS-5506, SAE International.

[Albert et al.2002] Albert, C., Brownsword, L., Bentley, C., Bono, T., Morris, E.,
et al. (2002). Evolutionary process for integrating COTS-based systems (EPIC):
An overview. SEI CMU, Pittsburgh, PA, Technical Report CMU/SEI-2002-TR-
009.

[Alves et al.2005] Alves, V., Matos Jr, P., Cole, L., Borba, P., and Ramalho, G.
(2005). Extracting and evolving mobile games product lines. Software Product
Lines, pages 7T0-81.

[Anquetil2000] Anquetil, N. (2000). A comparison of graphs of concept for re-
verse engineering. In Proceedings of the 8th International Workshop on Program
Comprehension, page 231. IEEE Computer Society.

[Babar et al.2004] Babar, M., Zhu, L., and Jeffery, R. (2004). A framework for
classifying and comparing software architecture evaluation methods. In Software
Engineering Conference, 2004. Proceedings. 2004 Australian, pages 309-318.

117

Bibliography

[Bachmann et al.2000] Bachmann, F., Bass, L., Buhrman, C., Cornella-Dorda, S.,
Long, F., Robert, J., Seacord, R., and Wallnau, K. (2000). Volume II: Technical
concepts of component-based software engineering. Technical report, Citeseer.

[Banker et al.1993] Banker, R., Kauffman, R., and Zweig, D. (1993). Reposi-
tory evaluation of software reuse. IFEFE Transactions on Software Engineering,

19(4):379-389.

[Barry1996] Barry, B. (1996). Component-Based Development of Smalltalk Appli-
cations. pages 25-26.

[Bartholet et al.2005] Bartholet, R., Brogan, D., and Reynolds Jr, P. (2005). The
computational complexity of component selection in simulation reuse. In Pro-
ceedings of the 37th conference on Winter simulation, pages 2472-2481. Winter
Simulation Conference.

[Basili et al.1992] Basili, V., Caldiera, G., and Cantone, G. (1992). A reference
architecture for the component factory. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 1(1):80.

[Basili and Rombach1988] Basili, V. and Rombach, H. (1988). Towards a compre-
hensive framework for reuse: A reuse-enabling software evolution environment.
In NASA, Goddard Space Flight Center, Proceedings of the Thirteenth Annual
Software Engineering Workshop 45 p(SEE N 91-10606 01-61).

[Bengtsson and Bosch1999] Bengtsson, O. and Bosch, J. (1999). Architecture level
prediction of software maintenance. In csmr, page 139. Published by the IEEE
Computer Society.

[Bengtsson and Bosch1998] Bengtsson, P. and Bosch, J. (1998). Scenario-based
software architecture reengineering. In Software Reuse, 1998. Proceedings. Fifth
International Conference on, pages 308-317.

[Bengtsson et al.2004] Bengtsson, P., Lassing, N., Bosch, J., and van Vliet, H.
(2004). Architecture-level modifiability analysis (ALMA). Journal of Systems
and Software, 69(1-2):129-147.

[Biggerstaff and Perlis1989] Biggerstaff, T. and Perlis, A. (1989). Software
reusability: vol. 1, concepts and models.

[Bilbro et al.] Bilbro, G., Mann, R., Miller, T., Snyder, W., Van den Bout, D., and
White, M. Optimization by mean field annealing. Advances in neural information
processing systems, 1:91-98.

[Bonacich2007] Bonacich, P. (2007). Some unique properties of eigenvector cen-
trality. Social networks, 29(4):555-564.

[Bouyssounouse and Sifakis2005] Bouyssounouse, B. and Sifakis, J. (2005). Em-
bedded systems design: the ARTIST roadmap for research and development.

118

Bibliography

Springer Verlag.

[Braun] Braun, C. Reuse, in John J. Marciniak, editor. Encyclopedia of Software
Engineering, 2:1055-1069.

[Braun1992] Braun, C. (1992). NATO standard for the development of reusable

software components. NATO Communications and Information Systems Agency.

[Brun et al.2008] Brun, M., Delatour, J., and Trinquet, Y. (2008). Code generation
from AADL to a real-time operating system: an experimentation feedback on
the use of model transformation. In Proceedings of the 13th IEEE International
Conference on on Engineering of Complex Computer Systems, pages 257-262.
IEEE Computer Society.

[Burton et al.1987] Burton, B., Aragon, R., Bailey, S., Koehler, K., and Mayes, L.
(1987). The reusable software library. IEEE software, 4(4):25-33.

[Cerny1985] Cerny, V. (1985). Thermodynamical approach to the traveling sales-
man problem: An efficient simulation algorithm. Journal of optimization theory
and applications, 45(1):41-51.

[Chidamber et al.1994] Chidamber, S., Kemerer, C., and MIT, C. (1994). A met-
rics suite for object oriented design. IEFE Transactions on software engineering,

20(6):476-493.

[Claraz et al.2004] Claraz, D., Eppinger, K., and Berentroth, L. (2004). Reuse
strategy at siemens VDO automotive: the EMS 2 powertrain platform architec-
ture. Ingenieurs de I’Automobile, T67.

[Clarke et al.2003] Clarke, J., Dolado, J., Harman, M., Hierons, R., Jones, B.,
Lumkin, M., Mitchell, B., Mancoridis, S., Rees, K., Roper, M., et al. (2003). Re-
formulating software engineering as a search problem. IEFE Proceedings-Software,
150(3):161-175.

[Clements and Kazman2003| Clements, P. and Kazman, R. (2003). Software Ar-
chitecture in Practices. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA.

[Comella-Dorda et al.2002] Comella-Dorda, S., Dean, J., Morris, E., and Obern-
dorf, P. (2002). A process for COTS software product evaluation. COTS-Based
Software Systems, pages 86—96.

[Cooper1994] Cooper, J. (1994). Reuse-the business implications. Marciniak
Mar94, page 10711077.

[Crnkovic and Larsson2002] Crnkovic, I. and Larsson, M. (2002). Building reliable
component-based software systems. Artech House Publishers.

[Davis1992] Davis, T. (1992). Toward a Reuse Maturity Model,”. In Proceedings
of the WISR 5th Annual Workshop on Software Reuse,(Palo Alto, California).

119

Bibliography

[Deubzer et al.2010] Deubzer, M., Hobelsberger, M., Mottok, J., Schiller, F.
Dumke, R., Siegle, M., Margull, U., Niemetz, M., and Wirrer, G. (2010). Model-
ing and Simulation of Embedded Real-Time Multi-Core Systems. In Proceedings
of the 3rd Embedded Software Engineering Congress.

[Devanbu et al.1991] Devanbu, P., Brachman, R., and Selfridge, P. (1991). LaSSIE:
a knowledge-based software information system. Communications of the ACM,
34(5):34-49.

[Dissaux2005] Dissaux, P. (2005). AADL model transformations. In Proc DASIA
2005 Conference in Edinburgh, UK. Citeseer.

[Dobrica and Niemel2002] Dobrica, L. and Niemel (2002). A survey on software ar-
chitecture analysis methods. IEFEE Transactions on software Engineering, pages
638-653.

[Duda et al.2001] Duda, R., Hart, P., and Stork, D. (2001). Pattern classification,

volume 2. Citeseer.

[Dumke2003] Dumke, R. (2003). Software engineering: FEine Einfuehrung fuer In-
formatiker und Ingenieure; Systeme, Erfahrungen, Methoden, Tools;[mit Online-
Service zum Buch/. Vieweg.

[Dumke et al.2002] Dumke, R., Abran, A., Bundschuh, M., and Symons, C. (2002).
Software Measurement and Estimation. Vieweg.

[Dumke et al.1996] Dumke, R., Foltin, E., Koeppe, R., and Winkler, A.
(1996). Measurement-based Object-oriented Software Development of the Soft-
ware Project” Software Measurement Laboratory”. Citeseer.

[Dumke and Grigoleit1997] Dumke, R. and Grigoleit, H. (1997). Efficiency of
CAMEtools in software quality assurance. Software Quality Journal, 6(2):157—
169.

[Dumke and Schmietendorf2000] Dumke, R. and Schmietendorf, A. (2000).
Metriken-basierte Bewertung von Software-Komponenten. Softwaretechnik-
Trends, 20(4).

[Dumke and Winkler1997] Dumke, R. and Winkler, A. (1997). Managing the

component-based software engineering with metrics. sast, page 0104.

[Ebert and Dumke2007] Ebert, C. and Dumke, R. (2007). Software Measurement.
Controlling for IT and Software.

[Esteval995] Esteva, J. (1995). Automatic identification of reusable components.
In Computer-Aided Software Engineering, 1995. Proceedings., Seventh Interna-
tional Workshop on, pages 80-87.

[Ezran et al.2002] Ezran, M., Morisio, M., and Tully, C. (2002). Practical software
reuse. Springer Verlag.

120

Bibliography

[Feiler et al.2006a] Feiler, P., Greenhouse, A., and List, C. (2006a). OSATE Plug-
in Development Guide. CMU. Pittsburgh.

[Feiler et al.2006b] Feiler, P., Lewis, B., and Vestal, S. (2006b). The sae architec-
ture analysis & design language (aadl) a standard for engineering performance
critical systems. In 2006 IEEE Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE Interna-
tional Symposium on Intelligent Control, pages 1206-1211.

[Fenton and Pfleeger1998] Fenton, N. and Pfleeger, S. (1998). Software metrics: a
rigorous and practical approach. PWS Publishing Co. Boston, MA, USA.

[Fischer1998] Fischer, G. (1998). Seeding, evolutionary growth and reseeding: Con-
structing, capturing and evolving knowledge in domain-oriented design environ-
ments. Automated Software Engineering, 5(4):447-464.

[Fogel2002] Fogel, D. (2002). An introduction to simulated evolutionary optimiza-
tion. Neural Networks, IEEE Transactions on, 5(1):3-14.

[Fox et al.2004] Fox, M., Brogan, D., and Reynolds Jr, P. (2004). Approximating
component selection. In Proceedings of the 36th conference on Winter simulation,
pages 429-434. Winter Simulation Conference.

[Frakes and Gandel1990] Frakes, W. and Gandel, P. (1990). Representing reusable
software. Information and Software Technology, 32(10):653-664.

[Frakes and Nejmeh1986] Frakes, W. and Nejmeh, B. (1986). Software reuse
through information retrieval. In ACM SIGIR Forum, volume 21, pages 30—
36. ACM New York, NY, USA.

[Frakes and Pole1994] Frakes, W. and Pole, T. (1994). An empirical study of rep-
resentation methods for reusable software components. IFEE Transactions on
Software Engineering, pages 617-630.

[Frakes and Terry1996] Frakes, W. and Terry, C. (1996). Software reuse: metrics
and models. ACM Computing Surveys (CSUR), 28(2):415-435.

[Gaffney et al.1989] Gaffney, J. et al. (1989). Software reuse—key to enhanced pro-
ductivity: some quantitative models. Information and Software Technology,
31(5):258-267.

[Geman and Geman1993] Geman, S. and Geman, D. (1993). Stochastic relaxation,
Gibbs distributions and the Bayesian restoration of images*. Journal of Applied
Statistics, 20(5):25-62.

[Girvan and Newman2002] Girvan, M. and Newman, M. (2002). Community struc-
ture in social and biological networks. Proceedings of the National Academy of
Sciences of the United States of America, 99(12):7821.

121

Bibliography

[Goldberg and Rubin1995] Goldberg, A. and Rubin, K. (1995). Succeeding with

objects: decision frameworks for project management.

[Haghpanah et al.2008] Haghpanah, N., Moaven, S., Habibi, J., Kargar, M., and
Yeganeh, S. (2008). Approximation algorithms for software component selection
problem. In Software Engineering Conference, 2007. APSEC 2007. 14th Asia-
Pacific, pages 159-166. IEEE.

[Harrison et al.1998] Harrison, R., Counsell, S., and Nithi, R. (1998). An evalua-
tion of the MOOD set of object-oriented software metrics. IEEE Transactions
on Software Engineering, pages 491-496.

[Heineman and Councill2001] Heineman, G. and Councill, W. (2001). Component-
based software engineering: putting the pieces together. Addison-Wesley USA.

[Hilliard2000] Hilliard, R. (2000). IEEE-Std-1471-2000 Recommended Prac-
tice for Architectural Description of Software-Intensive Systems. I[EFEFE,
http://standards. ieee. org.

[Hobelsberger2007] Hobelsberger, M. (2007). Vergleich der Architekturbeschrei-
bungssprachen SAE AADL und EAST ADL sowie ihrer Beziehung zu AU-
TOSAR. Master’s thesis, University of Applied Sciences Regensburg.

[Hobelsberger et al.2010] Hobelsberger, M., Dumke, R., Mottok, J., Niemetz, M.,
and Wirrer, G. (2010). An Experiece-Based Repository of Reusable Components
for an Component-Based Automotive Software System. In Proceedings of the
IWSM/MetriKon/Mensura 2010, pages 218-240.

[Hobelsberger and Mottok2009] Hobelsberger, M. and Mottok, J. (2009). Soft-
ware Qualitaet eine Glaubensfrage? Ein Ueberglick ueber die Modelle der Soft-
warezuverlaessigkeit. In Proceedings of the 2nd Embedded Software Engineering
Congress, ISBN 978-3-8343-2402-3, pages 134-148.

[Hobelsberger et al.2008] Hobelsberger, M., Mottok, J., and Dumke, R. (2008).
Modellbasierte Sicherheitsanalysen von Software-Architekturen. In Proceedings
of the 1th Embedded Software Engineering Congress, ISBN 978-3-8343-2401-6,
pages 436-443.

[Hobelsberger et al.2007] Hobelsberger, M., Mottok, J., and Kuntz, S. (2007). Ar-
chitekturmodellierung: Vergleich von EAST ADL und SAE AADL. Hanser
Automotive 7-8.2007, page 4.

[Hoover and Khosla1996] Hoover, C. and Khosla, P. (1996). An analytical ap-
proach to change for the design of reusable real-time software. In Object-
Oriented Real-Time Dependable Systems, 1996. Proceedings of WORDS 96., Sec-
ond Workshop on, pages 144-151. IEEE.

[Hoover et al.1999] Hoover, C., Khosla, P., and Siewiorek, D. (1999). Analytical
design of reusable software components for evolvable, embedded applications. In

122

Bibliography

Application-Specific Systems and Software Engineering and Technology, 1999.
ASSET’99. Proceedings. 1999 IEEE Symposium on, pages 170-177. IEEE.

[Huang et al.1986] Huang, M., Romeo, F., and Sangiovanni-Vincentelli, A. (1986).
An efficient general cooling schedule for simulated annealing. In Proceedings of
the IEEE International Conference on Computer-Aided Design, pages 381-384.

[Hutchens and Basilil985] Hutchens, D. and Basili, V. (1985). System structure
analysis: Clustering with data bindings. IFEE Transactions on Software Engi-
neering, 11(8):749-757.

[Ingber1993] Ingber, L. (1993). Simulated annealing: Practice versus theory. Math-
ematical and computer modelling, 18(11):29-57.

[Israel and Koutsougeras2002] Israel, P. and Koutsougeras, C. (2002). An anneal-
ing approach to associative recall in the CBM model. In Neural Networks, 1990.,
1990 IJCNN International Joint Conference on, pages 633-638. IEEE.

[Kazman et al.1996] Kazman, R., Abowd, G., Bass, L., and Clements, P. (1996).
Scenario-based analysis of software architecture. IEEE software, 13(6):47-55.

[Kazman et al.1998] Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson,
H., and Carriere, J. (1998). The architecture tradeoff analysis method. In iceccs,
page 0068. Published by the IEEE Computer Society.

[Kazman et al.2000] Kazman, R., Klein, M., and Clements, P. (2000). ATAM:
Method for architecture evaluation. CMU/SEI

[Kirkpatrick and Gelatt1983] Kirkpatrick, MP Vecchi, S. and Gelatt, C. (1983).
Optimization by simulated annealing. Science, 220(4598):671-680.

[Knoke and Yang2008] Knoke, D. and Yang, S. (2008). Social network analysis.
Sage Publications.

[Krueger1992] Krueger, C. (1992). Software reuse. ACM Computing Surveys
(CSUR), 24(2):131-183.

[Kunz2010] Kunz, M. (2010). Framework for a service-oriented measurement in-
frastructure. Shaker Publ., Aachen.

[Laarhoven et al.1987] Laarhoven, P., van Laarhoven, P., and Aarts, E. (1987).
Simulated annealing: theory and applications. Springer.

[Lasnier et al.] Lasnier, G., Zalila, B., Pautet, L., and Hugues, J. OCARINA: An
Environment for AADL Models Analysis and Automatic Code Generation for
High Integrity Applications. Reliable Software Technologies—Ada-Europe 2009,
pages 237-250.

[Lassing et al.1999] Lassing, N., Rijsenbrij, D., and van Vliet, H. (1999). On Soft-
ware Architecture Analysis of Flexibility, Complexity of Changes: Size Isnt Ev-

123

Bibliography

erything. In Proc. Second Nordic Software Architecture Workshop NOSA, vol-
ume 99, pages 1103-1581.

[Li et al.1993] Li, W., Henry, S., Drives, K., and Radford, V. (1993). Maintenance
metrics for the object oriented paradigm. In Software Metrics Symposium, 1993.
Proceedings., First International, pages 52—60.

[Lim1994] Lim, W. (1994). Effects of reuse on quality, productivity, and economics.
IEEE software, 11(5):23-30.

[Lim1998] Lim, W. (1998). Managing Software Reuse. Prentice Hall.

[Lindig and Snelting1997] Lindig, C. and Snelting, G. (1997). Assessing modular
structure of legacy code based on mathematical concept analysis. In Proceedings

of the 19th international conference on Software engineering, pages 349-359.
ACM.

[Lother2007] Lother, M. (2007). From Software Measurement to E-measurement:
A Functional Size Measurement-Oriented Approach for Software Management.

[Lundy and Mees1986] Lundy, M. and Mees, A. (1986). Convergence of an anneal-
ing algorithm. Mathematical programming, 34(1):111-124.

[Lung et al.1997] Lung, C., Bot, S., Kalaichelvan, K., and Kazman, R. (1997).
An approach to software architecture analysis for evolution and reusability. In
Proceedings of the 1997 conference of the Centre for Advanced Studies on Col-
laborative research, page 15. IBM Press.

[Maarek et al.] Maarek, Y., Berry, D., and Kaiser, G. An Information Retrieval
Approach for Automatically Constructing Software Libraries (PDF). I[EEE
Transactions on software Engineering, 17(8).

[Maarek et al.1991] Maarek, Y., Berry, D., and Kaiser, G. (1991). An informa-
tion retrieval approach for automatically constructing software libraries. IEFE
Transactions on software Engineering, pages 800-813.

[Mancebo and Andrews2005] Mancebo, E. and Andrews, A. (2005). A strategy for
selecting multiple components. In Proceedings of the 2005 ACM symposium on
Applied computing, pages 1505-1510. ACM.

[McCarey et al.2008] McCarey, F., O Cinnéide, M., and Kushmerick, N. (2008).
Knowledge reuse for software reuse. Web Intelligence and Agent Systems,
6(1):59-81.

[McClure and McClure2001] McClure, C. and McClure, D. (2001). Software Reuse:
a standards-based guide. IEEE Computer Society, Los Alamitos, Calif.; Tokyo.

[Mcllroy et al.1969] Mcllroy, M., Buxton, J., Naur, P., and Randell, B. (1969).
Mass produced software components. Software Engineering Concepts and Tech-
niques, pages 88-98.

124

Bibliography

[Merkl et al.1994] Merkl, D., Tjoa, A., and Kappel, G. (1994). Learning the se-
mantic similarity of reusable software components. In Software Reuse: Advances
in Software Reusability, 1994. Proceedings., Third International Conference on,
pages 33-41. IEEE.

[Metropolis et al.1953] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.,
Teller, E., et al. (1953). Equation of state calculations by fast computing ma-
chines. The journal of chemical physics, 21(6):1087.

[Mili et al.1994] Mili, A., Mili, R., and Mittermeir, R. (1994). Storing and retriev-
ing software components: A refinement based system. In Proceedings of the 16th
international conference on Software engineering, pages 91-100. IEEE Computer
Society Press.

[Mili et al.1995] Mili, H., Mili, F., and Mili, A. (1995). Reusing software: Issues
and research directions. IEEE Transactions on Software Engineering, 21(6):528-
562.

[Mohagheghi and Conradi2007] Mohagheghi, P. and Conradi, R. (2007). Quality,
productivity and economic benefits of software reuse: a review of industrial
studies. Empirical Software Engineering, 12(5):471-516.

[Molter1999] Molter, G. (1999). Integrating SAAM in domain-centric and reuse-
based development processes. In Proceedings of the 2nd Nordic Workshop on
Software Architecture, Ronneby, pages 1-10. Citeseer.

[Morisio et al.2002] Morisio, M., Ezran, M., and Tully, C. (2002). Success and
failure factors in software reuse. Software Engineering, IEEE Transactions on,

28(4):340-357.

[Morris et al.2008] Morris, O., Lee, M., and Constantinides, A. (2008). Graph
theory for image analysis: An approach based on the shortest spanning tree.
Communications, Radar and Signal Processing, IEE Proceedings F, 133(2):146—
152.

[Muller et al.1993] Muller, H., Orgun, M., Tilley, S., and Uhl, J. (1993). A reverse
engineering approach to subsystem structure identification. Practice, 5(4):181—
204.

[Newman2004] Newman, M. (2004). Detecting community structure in networks.
The FEuropean Physical Journal B-Condensed Matter and Complex Systems,
38(2):321-330.

[Newman2006] Newman, M. (2006). Modularity and community structure in net-
works. Proceedings of the National Academy of Sciences, 103(23):8577.

[Nolle et al.1999] Nolle, L., Armstrong, A., Hopgood, A., and Ware, A. (1999).
Optimum work roll profile selection in the hot rolling of wide steel strip using
computational intelligence. Computational Intelligence, pages 435-452.

125

Bibliography

[Nolle et al.2001] Nolle, L., Goodyear, A., Hopgood, A., Picton, P., and Braith-
waite, N. (2001). On step width adaptation in simulated annealing for continuous
parameter optimisation. Computational Intelligence. Theory and Applications,
pages 589-5H98.

[Nolle et al.2002] Nolle, L., Goodyear, A., Hopgood, A., Picton, P., and Braith-
waite, N. (2002). Automated control of an actively compensated Langmuir probe
system using simulated annealing. Knowledge-Based Systems, 15(5-6):349-354.

[Ostertag et al.1992] Ostertag, E., Hendler, J., Diaz, R., and Braun, C. (1992).
Computing similarity in a reuse library system: an Al-based approach. ACM
Transactions on Software Engineering and Methodology (TOSEM), 1(3):228.

[Page et al.1998] Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The
pagerank citation ranking: Bringing order to the web.

[Parnas1972] Parnas, D. (1972). On the criteria to be used in decomposing systems
into modules. Communications of the ACM, 15(12):1058.

[Petty et al.2003] Petty, M., Weisel, E., and Mielke, R. (2003). Computational
complexity of selecting components for composition. In Proceedings of the Fall
2003 Simulation Interoperability Workshop, pages 14-19.

[Poulin1997] Poulin, J. (1997). Measuring software reuse. Addison-wesley.

[Prieto-Diaz and Freeman1987] Prieto-Diaz, R. and Freeman, P. (1987). Classify-
ing software for reusability. IEEE software, 4(1):6-16.

[Puertal997] Puerta, A. (1997). A model-based interface development environ-
ment. Software, IEEE, 14(4):40-47.

[Ram et al.1996] Ram, D., Sreenivas, T., and Subramaniam, K. (1996). Parallel
simulated annealing algorithms. Journal of parallel and distributed computing,
37(2):207-212.

[Rombach2003] Rombach, D. (2003). Software nach dem Baukastenprinzip. Fraun-
hofer Magazin, pages 30-31.

[Rosenberg and Hyatt1997] Rosenberg, L. and Hyatt, L. (1997). Software Quality
Metrics for Object-Oriented Environments. Crosstalk Journal, April.

[Russell and Norvig2009] Russell, S. and Norvig, P. (2009). Artificial intelligence:
a modern approach. Prentice hall.

[Sametinger1997] Sametinger, J. (1997). Software engineering with reusable com-
ponents. Springer Verlag.

[Schaetz et al.2002] Schaetz, B., Pretschner, A., Huber, F., and Philipps, J. (2002).
Model-based development of embedded systems. Advances in Object-Oriented
Information Systems, pages 331-336.

126

Bibliography

[Schmietendorf et al.2002] Schmietendorf, A., Dumke, R., Dimitrov, E., and
Nakonz, S. (2002). Bewertungsaspekte der komponentenorientierten Softwareen-
twicklung am Beispiel von Java-Komponenten. Otto-von-Guericke-Univ. Magde-
burg, Dekan, Fak. fuer Informatik.

[Schwanke1991] Schwanke, R. (1991). An intelligent tool for re-engineering soft-
ware modularity. In Proceedings of the 13th international conference on Software
engineering, pages 83-92. IEEE Computer Society Press Los Alamitos, CA, USA.

[Selic2003] Selic, B. (2003). The pragmatics of model-driven development. Soft-
ware, IEEE, 20(5):19-25.

[Sodhi and Sodhi1999] Sodhi, J. and Sodhi, P. (1999). Software Reuse - Domain
Analysis and Design Process. McGraw-Hill.

[Stevens et al.1974] Stevens, W., Myers, G., and Constantine, L. (1974). Struc-
tured design. IBM Systems Journal, 13(2):115-139.

[Sugumaran and Storey2003] Sugumaran, V. and Storey, V. (2003). A semantic-
based approach to component retrieval. ACM SIGMIS Database, 34(3):8-24.

[SURI and Garg2009] SURI, D. and Garg, N. (2009). Software reuse metrics: Mea-
suring component independence and its applicability in software reuse. IJCSNS,
9(5):237.

[Szyperskil998] Szyperski, C. (1998). Component Software: Beyond Object-
Oriented Software. Reading, MA: ACM/Addison- Wesley.

[Taylor et al.2009] Taylor, R., Medvidovic, N., and Dashofy, E. (2009). Software
Architecture: Foundations, Theory, and Practice.

[Torngren et al.2005] Torngren, M., Chen, D., and Crnkovic, 1. (2005).
Component-based vs. model-based development: a comparison in the context
of vehicular embedded systems. In Software Engineering and Advanced Applica-
tions, 2005. 31st EUROMICRO Conference on, pages 432-440. IEEE.

[Van Deursen and Kuipers1999] Van Deursen, A. and Kuipers, T. (1999). Identi-
fying objects using cluster and concept analysis.

[Vescan et al.2008] Vescan, A., Grosan, C., and Pop, H. (2008). Evolutionary
algorithms for the component selection problem. In Database and Expert Systems
Application, 2008. DEXA’08. 19th International Conference on, pages 509-513.
IEEE.

[Wasserman1996] Wasserman, A. (1996). Toward a discipline of software engineer-
ing. IEEE Software, 13(6):23-31.

[Wasserman and Faust1994] Wasserman, S. and Faust, K. (1994). Social network
analysis: Methods and applications. Cambridge Univ Pr.

127

Bibliography

[Wegner] Wegner, P. Varieties of reusability. Tutorial: Software Reusability, pages
24-38.

[Weisbecker2002] Weisbecker, A. (2002). Software-Management f
"ur komponentenbasierte Software-Entwicklung. Jost-Jetter.

[Wu and Sloane2002] Wu, Q. and Sloane, T. (2002). CMOS leaf-cell design using
simulated annealing. In Circuits and Systems, 1992., Proceedings of the 35th
Midwest Symposium on, pages 1516-1519. IEEE.

[Xie] Xie, G. Decompositional verification of Component-based Systems-A Hybrid
approach. In Automated Software Engineering, 2004. Proceedings. 19th Interna-
tional Conference on, pages 414-417. IEEE.

128

	List of Tables
	List of Figures
	List of Algorithms
	Abbrevations
	I Preliminaries
	1 Introduction
	1.1 Motivation
	1.2 Research Problem
	1.2.1 Evaluate Component-Based Systems
	1.2.2 Generate Reusable Packages
	1.2.3 Framework for Component Reuse

	1.3 Contributions
	1.4 Dissertation Outline

	2 Background
	2.1 Software Reuse
	2.1.1 Benefits of Software Reuse
	2.1.2 Software Reuse Techniques
	2.1.3 Component Repositories

	2.2 Component-Based Development
	2.3 Component-Based Software Engineering
	2.3.1 Software Architectures
	2.3.1.1 Components
	2.3.1.2 Connectors
	2.3.1.3 Configuration

	2.3.2 Architecture Model

	2.4 Automotive Software Architecture
	2.5 Network Analysis
	2.6 Simulated Annealing
	2.7 Expert Systems
	2.8 SAE AADL

	3 Related Work
	3.1 Component Selection Problem
	3.2 Software Architecture Analysis
	3.3 Evaluation using Metrics
	3.4 Evaluation using Human Expertise
	3.5 Summary: Measurement Tasks

	II Reusability Evaluation
	4 System Reuse Modelling
	4.1 Definition of the Solution Space
	4.1.1 Data Collection
	4.1.2 Generating the Component-Graph

	4.2 Summary: An Experienced-Based Component-Graph

	5 Network Analysis Based Reuse Measurement
	5.1 Centrality Measures
	5.2 Cohesive Subgroups
	5.3 Application of Network Analysis
	5.4 Reuse Graph Metrics
	5.4.1 Preliminaries
	5.4.2 Reuse Popularity
	5.4.3 Component Rank
	5.4.4 Component Package Complexity

	5.5 Summary: Network Analysis Reuse-Metrics

	6 Reuse-Oriented Component Package Generation
	6.1 Simulated Annealing for Component Clustering
	6.1.1 Initializing the Solution and Parameters
	6.1.1.1 Solution Representation
	6.1.1.2 Feasible Solution
	6.1.1.3 Initial Solution
	6.1.1.4 Solution Neighborhood
	6.1.1.5 Fitness Function
	6.1.1.6 Temperature and Cooling Schedule
	6.1.1.7 Acceptance Probability Function

	6.2 A Recombinative Population-Oriented SA Algorithm
	6.2.1 The Algorithm (RPOSA)
	6.2.2 Candidate Recombination
	6.2.3 Neighbor Recombination

	6.3 Application of RPOSA
	6.4 Summary: Reuse-Oriented Component Packaging

	III Evaluation Process and Framework
	7 Model-Based Architecture Evaluation Framework
	7.1 Motivation
	7.2 Functional Partitioning to Reuse Partitioning
	7.3 Reuse-Oriented Development Process
	7.3.1 Model-Based Reuse Framework
	7.3.2 High Level System Architecture Specification
	7.3.3 Reusable Component Package Import
	7.3.4 Architecture Refinement
	7.3.5 Architecture Implementation and Instrumentation
	7.3.6 Generation of Software Artefacts

	7.4 Multicore Support
	7.5 Summary: Reuse-Oriented Development Process

	IV Case Study: Engine Management System
	8 Evaluation of the Engine Management System
	8.1 EMS Reuse: Status Quo
	8.2 Data Collection And Extraction
	8.3 Application of Network Analysis Measures
	8.4 Application of the RPOSA Algorithm
	8.5 Summary: Case Study

	V Conclusions and Future Work
	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	VI Appendix
	A Example Project Repository

