
Photogrammetric Surveying of Wood

Piles on Handheld Devices

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von
Christopher Herbon, M.Eng.

geboren am 24.10.1987 in Göttingen

Magdeburg, den 20.10.2015

Gutachter:
Prof. Dr.-Ing. Klaus-Dietz Tönnies
Prof. Dr.-Ing. Bernd Stock
Prof. Dr.-Ing. Dietrich Paulus





Danksagung

Diese Dissertation ist während meiner Zeit als wissenschaftlicher Mitarbeiter an der HAWK

und während der Gründung der FOVEA GmbH entstanden. Mein großer Dank gilt Prof.

Dr.-Ing. Klaus-Dietz Tönnies, der mir durch die Annahme als externen Doktoranden eine

Chance gab, mein Forschungsvorhaben zu verwirklichen und mir stets mit seiner Expertise

und seinem Rat in wissenschaftlichen wie in organisatorischen Fragen zur Seite stand.

In besonderemMaße hat mich Prof. Dr.-Ing. Bernd Stock bei meinem Promotionsvorhaben

unterstützt. Daher möchte ich meine Dankbarkeit für die anhaltende Unterstützung bei der

Bewältigung aller formellen, organisatorischen und inhaltlichen Herausforderungen, die eine

Promotion mit sich bringt, sowie für das in mich gesetzte Vertrauen und für die Schaffung eines

produktiven Arbeitsumfeldes bedanken. Erst hierdurch war es mir möglich, meine Forschung

durchzuführen und diese Dissertation anzufertigen.

Bei Prof. Dr.-Ing. Dietrich Paulus möchte ich mich für die Bereitschaft zur Begutach-

tung meiner Dissertation und die sehr konstruktiven Anregungen im Vorfeld der Einreichung

bedanken.

Meinen Gründungs- und Arbeitskolleginnen und -kollegen bei FOVEA gilt mein Dank für

das mir entgegengebrachte Verständnis und Vertrauen sowie für die organisatorische Unter-

stützung während meiner Forschung und der Anfertigung dieser Dissertation. Meine Hoffnung

ist, dass die Ergebnisse meiner Arbeit noch lange Zeit Teil der Produktpalette von FOVEA

bleiben und die Arbeit in der Forstwelt erleichtern. Gleichermaßen danke ich meinen Kollegen

und Mitarbeitern des Forschungsprojektes FairLog 2020.

Ohne den Rückhalt meiner Familie wäre diese Arbeit nicht möglich gewesen. Daher be-

danke ich mich für die fortwährende Unterstützung und die Ermutigung, meinen Traum zu

verwirklichen.



Zusammenfassung

Das Interesse an der automatisierten Vermessung von Holzstapeln, sogenannten Holzpoltern,

hat im letzten Jahrzehnt bedeutend zugenommen. Dies zeigt sich insbesondere im stark an-

gestiegenen Bedarf der Holzwirtschaft an fotobasierten Baumstammzählungs- und Vermes-

sungsmethoden. Infolge eines vergleichsweise geringen Grades an Automatisierung in diesem

Industriezweig existiert ein hohes Potenzial für technologischen Fortschritt, was Forschung

und neue Ideen in diesem Bereich besonders interessant macht. Obwohl bereits einige Ansätze

präsentiert wurden, die die Erkennung und Segmentierung von Baumstämmen zum Thema

haben, werden viele wichtige Fragestellungen nicht berücksichtigt. Die meisten Methoden

funktionieren nur unter Laborbedingungen und es findet keine Untersuchung unter realen

Bedingungen statt. Die eigentliche Vermessung wird selten thematisiert und es erfolgt keine

ausreichende geometrische Beschreibung von Holzpoltern. Darüber hinaus werden oftmals le-

diglich Einzelbilder für die Auswertung herangezogen, was bei einer praktischen Anwendung

nicht realisierbar ist, da Holzpolter normalerweise zu groß sind, um von einem einzigen Bild

erfasst zu werden. Diese Schwächen werden in Ansätzen sichtbar, die darauf abzielen, Teilpro-

bleme zu lösen, aber in der Praxis versagen und keine Aussage über die Holzpoltervermessung

als Mittel zur Volumenbestimmung machen.

Die hier vorgelegte Dissertation vereint neue Lösungen für eine Reihe von Unterproblemen

zu einem robusten photogrammetrischen Holzpoltervermessungansatz. Um diese Zielstellung

zu erfüllen, werden Holzpolter als geometrische Metaobjekte beschrieben. Relevante Ansätze

in der Literatur werden aufgearbeitet und erweitert. Es wird gezeigt, auf welche Weise Baum-

stammerkennung als fundamentales Problem nicht nur effizient sondern auch mit hoher Ge-

nauigkeit und Wiederholbarkeit gelöst werden kann. Basierend auf einem neuen Algorithmus

für planare Panoramabildverarbeitung wird ein Ansatz zur zweidimensionalen Vermessung

vorgestellt. Alternativ zur objektbasierten Vermessung wird eine Evaluierung einer Methode

zur Segmentierung der Poltervorderfläche durchgeführt. Das Herzstück dieser Dissertation ist

eine photogrammetrische Vermessungsmethode, welche auf Multiperspektiven-Rekonstruktion

und Quadrikenfilterung basiert. Im Vergleich zum zweidimensionalen Ansatz wird erkennbar,

dass der Multiperspektivenansatz eindeutige Vorteile aufweist. Alle 354 Testdatensätze mit

7655 Bildern wurden öffentlich verfügbar gemacht und die Erstresultate für die vorgeschla-

genen Benchmarks werden angegeben. Die präsentierten Methoden sind auf handelsüblichen

Smartphones und Tablets lauffähig. Zusätzlich wird die Performanz der photogrammetrischen

Methode für diese Art von Gerät quantitativ evaluiert.



Abstract

The interest in automatic wood pile surveying has significantly increased in the last decade.

This manifests itself especially in the timber industry’s strong need for image-based wood

log counting and surveying methods. Due to a comparatively low degree of automation in

this industrial area, a high potential for technological advances makes research and novel

ideas in this area especially interesting. Although some approaches which address wood

log recognition and segmentation have already been presented, many important issues have

not been considered. Most methods only work under ideal laboratory conditions and do

not analyze performance under real world conditions. When using such methods, actual

surveying is rarely addressed and no sufficient geometric description of the wood pile is given.

Additionally, only single images are used for evaluation, which is not feasible in practice, since

wood piles are usually too large to be captured by a single image. These deficiencies become

apparent in approaches which aim to solve individual problems, but fail in practice and do

not address wood pile surveying as a means of dermining the wood volume.

This dissertation unifies novel solutions for a number of subproblems associated with a

robust photogrammetric wood pile surveying approach. To achieve this objective, wood piles

are described as geometric meta-objects. Relevant approaches in literature are reviewed and

extended. It is shown how wood log recognition as a fundamental problem can not only be

solved efficiently, but also with high accuracy and repeatability. Based on a novel planar

panoramic imaging algorithm, a two-dimensional surveying method is proposed. As an al-

ternative to object detection-based surveying, a method for the segmentation of the wood

pile front surface as a quasi-planar area is evaluated. The centerpiece of this dissertation

is a photogrammetric surveying approach, which builds on multiple view reconstruction and

quadric filtering. When compared to the two-dimensional approach, it becomes clear that

using a multiple viewpoint algorithm yields significant advantages. All 354 test datasets with

7655 images were made publicly available and initial results for the defined benchmarks are

given. The proposed methods are all capable of running on commercially available consumer-

level smartphones and tablets. Additionally, the photogrammetric method’s performance is

quantitatively assessed for these types of devices.
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Chapter 1

Introduction

This introduction provides an outline of the research presented in this thesis. The goals and

objectives are formulated based on the academic motivation for this dissertation. Several

prior publications serve as the foundation for the proposed methods and the experiments

conducted. Connections between different partial problems are drawn, to show how these

parts can be combined to establish sophisticated wood pile surveying methods.

1.1 Motivation

A wood pile is a special case of an object cluster. Many such clusters can be found in

nature and in artificial environments. An object cluster typically consists of objects with

similar properties which are subject to defined spatial constraints. Examples include cells

in microscopic scenes, piles of fruit (e.g. apples or potatoes), mussels, fish, and many more

[Gutzeit and Lukas, 2013]. While this thesis focuses on the detection, segmentation, and

surveying of wood piles, applicability to other areas is always retained and it is shown that

many of the novel methods described in this thesis can be applied to a variety of other

problems.

Wood pile surveying has been a research topic for many years. A large number of patents

has been filed in this area and many scientific contributions have been published in the last

two decades. Due to high costs for the measurement of roundwood and recent advances

in research, photo-optical surveying continually gains importance in the forestry industry.

The logging of roundwood in the European Union (EU-27) increased from 392 million cubic

meters (m3) in 2009 [European Commission and Eurostat, 2012] to an estimated 433

million m3 in 2011 [European Commission and Eurostat, 2013] (average 2004-2011: 423

million m3). Germany alone accounted for 56 million m3 in 2011 and 53 million m3 in 2013

[European Commission and Eurostat, 2013; Statistisches Bundesamt, 2014]. The

area covered by trees in Germany is approximately 32%, which corresponds to 112,000 km2

1
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Figure 1.1: Example of a wood pile under ideal conditions

[Bundesministerium für Ernährung und Landwirtschaft (BMEL), 2014].

In order to optimize the processing, dispatching, and distribution of roundwood in an

economical fashion, it is important to accurately measure wood piles on site. Manual meth-

ods for wood pile surveying are time-consuming and thus expensive. In Germany, 38,900

AWU (annual work units) were used in forestry and logging [European Commission and

Eurostat, 2013], which is the equivalent of 38,900 people working full-time. Even though

forest administrations are mostly governmental organizations, they are required to operate

in a profit-oriented manner. For this reason, the efficiency of all workflows is subject to

continuous optimization.

Photo-optical surveying methods have long been known to exhibit significant potential for

time savings in comparison to manual surveying. The time for measuring the solid wood

volume of a wood pile is usually between 30 minutes and several hours, depending on the

size of the wood pile. Automatic methods have the potential of reducing this time to a

few minutes or even seconds. Apart from the measurement itself, automatic procedures also

export digital results, which are beneficial for the traceability and transparency of wood log

logistics. Current computer-aided methods for wood pile surveying are solely based on desktop

computers or cloud servers. In many remote, rural areas there is no mobile internet connection

and it is not always feasible to carry a desktop or laptop computer. The processing power of

handheld devices, such as smartphones and tablets, has increased significantly over the last

years. Although the computational power of desktop computers is still higher, many computer

vision tasks can now be solved quickly on handheld devices. Computational efficiency and a
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small size combined with good portability make such devices predestined for off-road surveying

methods. For this reason, this thesis will focus on the applicability of handheld devices to

wood pile surveying.

1.2 Objective and contributions

The motivation for conducting the research in this thesis is used to outline the requirements

for the proposed methods and accompanying experiments. The objective of this dissertation

is to answer the question:

Can photogrammetric surveying of wood piles be performed on a handheld device?

While it has already been established that the general principles for recognizing clustered

objects can be applied to wood logs [Gutzeit and Lukas, 2013], no research has so far ad-

dressed the problem of on-site wood pile surveying with handheld devices. It is thus unknown

if such methods are feasible and if a sufficient accuracy can be achieved. The goal of this dis-

sertation is to investigate the applicability of mobile photogrammetric measurement methods

for wood pile surveying. The contributions obtained as a result of such investigations can be

summarized as follows:

Contributions

1. A new method for adaptive image stitching is proposed, with which a panoramic

image of a wood pile front surface or any other planar surface can be generated.

2. A novel state of the art image-based wood log detection method is presented.

3. This dissertation is the first to contribute algorithms for image-based wood pile

model generation.

4. The novel image stitching and wood log recognition methods are combined for a

new two-dimensional wood pile surveying method.

5. A recognition-independent method for the segmentation of the wood pile front

surface or any other quasi-planar surface is presented, which is based on image

registration and block matching.

6. Three-dimensional photogrammetric surveying is achieved through a novel multiple

view reconstruction and image-based wood log recognition approach.

7. Different scale estimation techniques for the surveying object are discussed and

quantitatively assessed.

8. The HAWKwood database, consisting of 7655 real, synthetic, and ground truth

images, is provided free of charge for academic use.
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It can be seen from the contributions that the objective of this dissertation is to estab-

lish different wood pile surveying methods and to compare the results to manually- and

automatically-obtained ground truth. The first method works in 2D space, by stitching mul-

tiple images and performing measurements based on object detection and segmentation. The

second method operates in 3D space. It combines multiple view reconstruction with object

detection, reconstruction, and surveying methods. Both approaches need to be optimized

for handheld devices with regards to computational efficiency and memory usage. A special

focus lies in the applicability of the methods to real world scenarios, a problem which is rarely

addressed by state-of-the-art algorithms. The results of both methods will be compared and

it will be proven that, indeed, both approaches work robustly and efficiently on handheld

devices.

To achieve these objectives, state-of-the-art wood log detection and segmentation meth-

ods are extended, significantly improved, and integrated into the reconstruction approaches

presented in this thesis. Many of the existing methods only work under laboratory conditions

[Fink, 2004] or impose very strong constraints on the geometry of the wood pile and the

conditions under which it is photographed [Gutzeit et al., 2011; Gutzeit and Voskamp,

2012]. The presented approaches are optimized to work on a handheld device, under real

world conditions, and to be used with very few constraints on the image acquisition process.

Smartphones and tablets often only provide limited memory resources and computational

power (which is strongly linked to battery drainage). It is therefore crucial to optimize all

algorithms to consider these constraints.

For the photogrammetric surveying methods to work robustly, multiple partial problems

must be solved. The most substantial of these problems is the image-based detection and

segmentation of wood log faces. Many of the proposed methods are built on the assumption

that wood logs can be detected with sufficient accuracy in images, so that these detection

results can be used as cues for further processing. It is therefore shown how wood log faces

can be detected and which parametrization should be chosen for the detection process in

order to optimize the true and false positive rate. A parametrizable model yields significant

advantages with regards to different applications. For example, in the case of multiple view

wood pile reconstruction it may be desirable to work with a higher true positive rate (and

thus an inherently higher false positive rate), as outliers can be filtered through geometric

constraints. On the other hand, the application to panoramic images requires a medium to

low false positive rate.

Both the two-dimensional and the three-dimensional surveying method will be extensively

evaluated. In order to establish a framework for reproducible testing, a large number of test

cases are defined and the results are compared for the three most important measurement

parameters: the number of wood logs, the solid wood volume, and the contour volume. In
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most cases the wood pile width is used as the scale reference. Therefore, the accuracy of the

wood pile width measurement is also subject to an evaluation and it is shown that it is the

most accurately measurable scale reference.

1.3 Outline of this thesis

In this section, the structure of this dissertation is briefly outlined to give an overview of the

presented methods, evaluation methodologies, and findings. Following this introductory chap-

ter one, the case study wood pile surveying will be examined in chapter two. The motivation

for choosing mobile photogrammetric wood pile surveying as a research field is discussed in

depth. Scientific, economic, and environmental challenges, which have a significant impact on

the scope of this thesis as well as the scope of the discussed methods, are considered and the

objective is concretized.

To establish logically and mathematically adequate models, the wood pile as a measurement

object must be well defined. It will be established that a wood pile is considered to be a meta-

object, consisting of single wood logs, which can be described by a set of parameters used

for surveying. In order to compare the obtained results to ground truth data and manual

measurements, current manual and automatic wood pile surveying methods are discussed

and compared. Each of these methods features advantages and disadvantages, which mostly

consist of time constraints and measurement errors. To minimize errors, the environmental

properties which can lead to measurement errors are further explored. For an extensive

evaluation of the proposed methods, the large, publicly available HAWKwood database is

introduced. Concluding chapter two, related applications, to which the presented algorithms

are relevant, will be discussed.

The Related work chapter reviews relevant computer vision foundations, the current state-

of-the-art wood pile surveying methods, and gives an overview of national and international

patents. Computer vision foundations and state-of-the-art methods include image-based ob-

ject recognition, segmentation, panoramic image stitching, multiple view reconstruction, and

structure from motion. The proposed algorithms are compared to current methods and the

scope of this thesis is placed in the context of related algorithms and methods.

Chapter four describes the basis for the 2D surveying method proposed in this thesis.

It takes as input a set of overlapping images and produces a panoramic image through a

novel image stitching technique. The images are weakly constrained to partly depict a planar

surface. Subsequently, the aim is to detect and segment objects (wood log faces) in single and

stitched images, which is discussed and evaluated in chapter five.

As an alternative step, a novel segmentation procedure for the front surface of a wood

pile is presented in chapter six. This method has the advantage of being independent of the
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detection of single wood logs, as it directly segments the wood pile front surface as a whole.

This thesis aims to provide a three-dimensional wood pile surveying method in chapter

seven (Three-dimensional surveying). The proposed approach relies on the research results of

the preceding chapters. Detected wood log faces are used as cues for the 3D reconstruction of

the wood pile. Following the generation of the 3D model, different parameters are measured

and quantitatively evaluated, such as the detected number of wood logs, the solid wood

volume, and the contour volume. At the end of chapter seven the use of handheld devices is

examined.

The Conclusion chapter reviews the contributions of this thesis in light of the obtained

results, while future work in wood pile surveying and further applications of the proposed

algorithms are outlined.



Chapter 2

Wood pile surveying as a case study

This chapter introduces the case study of this thesis. Wood pile surveying has been done

for hundreds of years, with the first single log measurement techniques having been applied

in the 18th century [Kramer and Akça, 2008, p. 1; Prodan, 1965, p. 3]. Kramer and

Akça [Kramer and Akça, 2008, pp. 1–2] portray how statistical methods and mechanical

measurement instruments gained importance during the 18th century. The development of

measurement techniques focused especially on measuring the diameter of individual wood

logs, which is important when surveying single logs either individually or inside a wood pile.

In Germany, the surveying of wood piles was first standardized by the HOMA Holzmeßan-

weisung : Bestimmungen über die Ausformung, Messung und Sortenbildung des Holzes in den

deutschen Forsten vom 1. April 1936 [HOMA, 1936] and later replaced by the Verordnung

über gesetzliche Handelsklassen für Rohholz vom 31. Juli 1969 [Bundesministerium für

Ernährung, Landwirtschaft und Forsten, 1969], where surveying with several types

of measurement procedures is described for different types of wood piles. In 2015, the new

agreement for the roundwood industry called Rahmenvereinbarung für den Rohholzhandel in

Deutschland (RVR) [Deutscher Forstwirtschaftsrat e.V. und Deutscher Holz-

wirtschaftsrat e.V., 2014], which mostly conforms to the HKS, came into effect. The

sorting of wood and classification of wood pile types [Frommhold, 2013] will be discussed in

depth in Section 2.5 (Manual surveying methods). Furthermore, this chapter includes a view

of the environmental constraints, research challenges, geometric constraints of a wood pile,

economic aspects of wood pile surveying, error estimations for different surveying techniques,

and a detailed description of the data basis which is used in this thesis.

2.1 Environmental constraints

For the work presented in this dissertation, the applicability to real world scenarios under

authentic conditions is emphasized. For this reason, there exists a set of constraints which

7
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must be considered during the research and implementation of the methods discussed below.

Constraints

1. All methods must be capable of operating on a consumer-level smartphone or tablet

with a single monocular camera.

2. No additional hardware may be used, except for forestry rangers’ standard equip-

ment.

3. An internet connection must not be required.

4. German standards for the felling, piling, and selection of tree species can be pre-

sumed.

The first constraint limits the usable third-party software, as not all algorithms are im-

plemented as multi-platform open source software. Some algorithms which can by applied to

photogrammetric wood pile surveying (e.g. [Furukawa and Ponce, 2010; Snavely et al.,

2006; Snavely et al., 2008]) can only be used on desktop PCs with a specific CPU platform

(e.g. Intel) or are implemented for a single operating system (OS) only. While the portation

to a mobile platform seems possible in general, it is not feasible in the scope of this thesis.

Apart from computational time constraints, the results without such software exhibit a similar

accuracy because the proposed methods are specifically optimized to work with compatible

software frameworks.

For scientific purposes, the accuracy of wood pile surveying in a laboratory environment

has been evaluated and discussed, e.g., in [Fink, 2004]. This thesis focuses on methods which

can be applied in a rural, rough terrain environment. While it is surely possible to use large

equipment such as laser scanners [Nylinder et al., 2008] or car mounted stereo cameras

[Dralle A/S, 2014] for scientific purposes or in wood processing plants, such measurement

instruments do not meet the portability requirements for real world use. Dietz [Dietz, 1985]

emphasizes that the rough conditions of forestry terrain must be considered in timber har-

vesting, as costs increase with terrain roughness. Thus tools aiding the surveying process

are limited to instruments that forestry rangers can easily carry. This includes measurement

tape, which will be used as a scale reference in some of the proposed methods.

Even in many technologically advanced countries, not all areas are covered by mobile

internet and mobile broadband internet is often only available in urban areas [Stiftung

Warentest, 2011]. The proposed methods must therefore be able to process data on-site.

As with all algorithmic measurement techniques, a measurement might have to be repeated

in some cases, e.g., when the image acquisition produces unusable images due to bad lighting

conditions or motion blur. A high-performance cloud server could be used when processing

data off-site, as proposed, e.g., by [Jørgensen and Kristiansen, 2008], but a successfully-

processed measurement cannot be guaranteed. An on-site measurement method that does not
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require an internet connection thus yields significant advantages for real world applications.

Due to the large variety in standards for wood piling and the hundreds of existing tree

species around the world, this thesis focuses on German standards and conventions. When

the directions for wood piling are known, constraints which represent the known geometric

properties of a wood pile can be incorporated into the algorithms. The constraints for auto-

matic surveying correspond to the constraints that are stipulated for manual surveying [Bun-

desministerium für Ernährung, Landwirtschaft und Forsten, 1969; Deutscher

Forstwirtschaftsrat e.V. und Deutscher Holzwirtschaftsrat e.V., 2014]. As a

consequence, manual and automatic methods can be compared for the same data.

2.2 Research challenges

At first glance, wood pile surveying seems like a simple problem. One may prematurely come

to the conclusion that this problem could be solved by using simple thresholding and mor-

phological operations. In some specific cases and under laboratory conditions, this is indeed

possible. For real world applications, which take place outdoors in a rough terrain environment

under varying light conditions, methods with higher robustness must be employed. During

the research for this thesis, a number of challenges have arisen, which will be discussed in this

section. Figure 2.1 shows a generic photo-optical surveying method, as used e.g. in [Herbon

et al., 2015a], which will be used to demonstrate the specific difficulties of each step.

Image 

acquisition

Prepro-

cessing

Model 

generation

Object 

detection
Surveying

Figure 2.1: A generic surveying method with intermediate steps. Most wood pile survey-

ing methods perform a similar process.

Image acquisition During image acquisition, many environmental factors must be consid-

ered, the most problematic of which are changes in illumination. Especially in an environment

with many trees occluding the sky, cast shadows pose a challenge. Direct sunlight can lead

to blooming artifacts, which Langford et al. [Langford et al., 2012] define as “[...] halos or

streaks recorded around images of bright light sources or other intense highlights.” Figure 2.2
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Figure 2.2: Left and center: cast shadows on a wood pile front surface. Right: direct

sunlight and blooming.

Figure 2.3: Illumination change in adjacent images due to automatic illumination adjust-

ment by the digital camera. Well-exposed regions in the left image are underexposed in

the right image, while the left image suffers from overexposed areas.

shows some examples of these phenomena. The combination of bright and dark regions makes

it difficult to perform thresholding operations. A camera’s autofocus must consider a larger

focus area, otherwise over- or underexposed regions may occur. Direct sunlight is problematic

in all image acquisition scenarios and should be avoided if possible.

When taking multiple overlapping pictures, illumination changes between images are prob-

lematic for feature matching. Many feature descriptors are invariant to illumination changes

up to a certain point, e.g. SIFT [Brown and Lowe, 2007; Lowe, 1999; Lowe, 2001;

Lowe, 2004; Mikolajczyk and Schmid, 2005; Moreno et al., 2009], but when an image

exhibits large over- or underexposed regions, even such invariant features fail. It can be seen

in Figure 2.3 that shadows lead to exposure problems, which prevent feature detection and

matching algorithms from working as intended.
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Preprocessing Following the acquisition process, the input images can be preprocessed for

further usage. Such preprocessing methods include histogram-based operations and scaling.

The scaling of the images is carried out for performance reasons. Mobile devices in particular

provide limited memory, which quickly becomes insufficient when dealing with a large number

of images. Since the actual wood log size is unknown, as is the distance from the camera to

the wood pile, a sufficiently large image size must be chosen in order to retain detectability

and segmentability of the wood log faces.

Model generation The model generation step of the surveying pipeline can be implemented

through different approaches. As discussed in the introduction, a model can be generated in 2D

(e.g. through image stitching) or 3D (e.g. through structure from motion). Both approaches

impose different constraints on the scene.

Panoramic images rely on the assumption of a planar scene, in other words a scene which

only consists of a two-dimensional surface, such as a wall, a floor, or a table [Capel and

Zisserman, 1998; Szeliski, 1996; Szeliski and Shum, 1997; Zoghlami et al., 1997], is

required. When performing rotational image stitching about the camera’s optical center, the

scene is a special case of a planar surface, as it can be described by a sphere [Brown and

Lowe, 2007; Chen and Klette, 1999; Shum and Szeliski, 2000; Szeliski, 2006; Szeliski

and Shum, 1997]. In [Herbon et al., 2014b] we have presented a hybrid approach, which

is able to automatically detect the panorama type, rotational or planar, from a set of im-

ages and perform adaptive stitching. When handling images of wood piles, the constraint

of a planar surface can be approximately satisfied in many cases. In Section 2.1 (Environ-

mental constraints) environmental constraint #4 was introduced, through which it can be

assumed that German standards for roundwood piling are met, such as the ones presented in

[Bayrische Staatsforsten, 2013]. This is necessary in order for a stitching mechanism to

work robustly. Nevertheless some errors are introduced when the wood pile front surface is

not strictly planar. The impact of these errors will be discussed in Section 2.6 (Measurement

errors and error propagation).

In contrast to panoramic image stitching, the scene must not be planar when performing

3D reconstruction through structure from motion, as it leads to the well-known planarity

degeneracy [Chum et al., 2005; Decker et al., 2008]. Hartley and Zisserman [Hartley

and Zisserman, 2004, pp. 295–296] show that not only is it a degenerate configuration if

all world points lie in a plane (degenerate structure), but also a purely rotational motion of

the camera is a degenerate case (degenerate motion). Both of these scenarios are eligible for

panoramic image stitching but must be avoided for 3D reconstruction. When reconstructing

wood piles and especially wood pile front surfaces, planar degeneracy always poses a threat

and should be avoided if possible. This can be achieved by including a larger foreground and
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background, so that not all points lie in a single dominant plane. If an image does indeed

depict large non-wood areas, it is all the more important for wood log detection methods to

work robustly in terms of a low false positive rate.

Object detection Object detection in the scope of this thesis refers to the detection of

roundwood log faces. As will be shown in Section 2.3.2 (Attributes of wood piles), a large

number of tree species must be considered. In addition to the different tree species, object

detection must be robust under different environmental conditions. The most important of

these are:

1. snow

2. mud

3. leaves on the ground

4. decay of the wood

5. spray paint

6. tree branches covering the front surface

Figure 2.4 shows examples of environmental challenges and underlines why wood log sur-

veying methods that work under laboratory conditions are not sufficient for real world usage.

In addition to these examples, the illumination changes shown in Figures 2.2 and 2.3 make

it difficult to establish a histogram-based model for wood log detection, as the color and

brightness distribution is non-uniform, even for wood logs that are theoretically exactly alike.

Some of the complications shown in Figure 2.4, such as vegetation and snow, can be manually

removed prior to image acquisition. Although this is not feasible in many cases, it could

improve detection results. On the other hand, removing mud or spray paint seems exhaustive

under real world conditions and decay of the wood is impossible to exclude. Methods for

wood log detection must thus take these environmental conditions under consideration and if

possible account for these obstacles while retaining a high detection rate.

Surveying Although wood piles are usually separated by a few meters, in some cases piles

are very close to each other or a pile is visible in the background, when processing another

pile. When rainfalls occur during harvesting of the stems or during piling, stems might sink

into the muddy ground. This makes surveying difficult, as the pile is only partly visible. The

same holds true for leaves covering the front faces. To enable automatic surveying procedures,

some constraints for piling are employed, which will be discussed in Section 2.3.3 (Geometric

constraints for roundwood piling).
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Figure 2.4: Examples for challenges in wood log detection. (a)-(c) different tree species,

(d) mud, (e) leaves (f) decay, (g)-(h) spray paint, (i)-(j) snow, (k)-(l) vegetation.

2.3 Wood pile as a geometric meta-object

Historically, wood measurement was restricted to single roundwood logs exclusively. Only

in the last century have advances been made to classify a wood pile as an object cluster

consisting of individual logs. In Germany, the regulations for measurement procedures are

subject to constant improvement [Plattform Forst & Holz, 2012; Plattform Forst

& Holz, 2014]. In this section, the geometric properties of wood logs and wood piles will be

investigated.

2.3.1 Attributes of roundwood logs

Parameters A roundwood log as a geometric object provides a number of properties which

are relevant for determining its merchantable volume and thus its value. West [West, 2009,

pp. 11–15] defines these properties, of which the following are most important for the methods

in this thesis:
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Figure 2.5: (a) wood log face, (b) stems with approximately equal length

1. diameter

2. length

3. cross-sectional shape (form factor)

4. bark thickness

The stems that are considered in this thesis are always of a known length, called the

ordered length (because this is the length that a buyer orders), as shown in Figure 2.5(b).

West [West, 2009, p. 14] emphasizes, that while a tree cross-section in general differs from an

ideal circle (Figure 2.5(a)), its average diameter nevertheless provides important information

about the stem. It closely correlates with the wood volume and its weight and therefore

gives information about its value. According to [Kramer and Akça, 2008, pp. 35–39] and

[West, 2009, pp. 14–15] deviation from the ideal circular form is caused by branches from

the stem, wind, fire damage, disease, or insects. In some very rare cases, some extraordinary

irregularities can be induced through trees being deformed by another tree or a solid object,

when growing on steep slopes, or through odd branching [Mattheck et al., 1991; West,

2009, pp. 14–15].

Diameter Kramer and Akça [Kramer and Akça, 2008, pp. 38], West [West, 2009, pp.

14–15], and Van Laar and Akça [Van Laar and Akça, 2007, p. 66] agree that despite the

well-known irregularities, the measurement of a roundwood log can be accurately performed

by measuring its (average) diameter and approximating the wood log face area as a circle.

Husch et al. [Husch et al., 2002, p. 85] define the goal of the circular approximation as

determining a circle with the same area as the area of the cross-section. The bias from this

approximation is negligible [West, 2009, pp. 14–15]. Usually the diameter is measured at

a single point for stems with a diameter of less than 20cm and at two orthogonal points for
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larger stems [Bundesministerium für Ernährung, Landwirtschaft und Forsten,

1969]. Prodan [Prodan, 1965, p. 84] describes that the repeatability accuracy for measuring

the diameter is higher when measuring the circumference of a stem and deriving the diameter

implicitly, a method which is difficult to use when wood logs are stacked.

Stem volume There exist several mathematical models for stem forms and volumes of

entire trees. The most accurate measurement instrument is the xylometer, which is based

on Archimedes’ principle of filling a tank with water and measuring the water’s displacement

[Van Laar and Akça, 2007, p. 86]. As this procedure is expensive in practice, a less accurate

but more time-efficient method can be applied, which consists of dividing a stem into sections

and calculating the volume of each section based on the diameter at its midpoint. For relative

sections (the number of sections is an integer), Equation 2.1 shows the computation of the

stem volume Vstem, where ls is the constant log section length and di is the mid point diameter

[Kramer and Akça, 2008, p. 36; Van Laar and Akça, 2007, p. 87].

Vstem =
π

4
ls

k∑
i=1

d2i =
π

4
ls
(
d21 + d22 + d22 + · · ·+ d2k

)
(2.1)

When dividing a stem into sections of a fixed length (absolute sections), the following

formula applies, where, in addition to the parameters of Equation 2.1, lt is the length and dt
is the midpoint diameter of the top section [Van Laar and Akça, 2007, p. 87].

Vstem =
π

4
ls

k−1∑
i=1

d2i +
π

4
ltd

2
t =

π

4
ls
(
d21 + d22 + d22 + · · ·+ d2k−1

)
+
π

4
ltd

2
t (2.2)

Additional formulae have been suggested to simplify the volume computation of roundwood

logs without performing sectioning. West [West, 2009, p. 26] names the following, of which

Huber’s formula (Equation 2.3) is the simplest and the most commonly used [Fink, 2004].

gm is the midpoint cross-section area and gu and gt are the cross-section areas at the lower

and upper end. The Smalian formula (Equation 2.4) also takes cases into account, where

the diameters at the end points of the wood log are significantly larger or smaller than the

midpoint diameter.

V = gml (2.3)

V =
gl + gu

2
l (2.4)

Bark In most cases, the merchantable volume does not include bark. The bark thickness

is different for various types of wood. Depending on the wood type, either the diameter is

reduced by a certain absolute amount or a specific percentage of the volume is subtracted
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to account for the bark [Prodan, 1965, pp. 105–106]. For the methods presented in this

thesis, all measurements are performed by including bark. This way, a better comparability

is ensured, while bark subtraction can be performed afterwards if needed.

2.3.2 Attributes of wood piles

A wood pile consists of wood logs of the same length, wood quality, and, most of the time,

the same wood type. Since it is a cluster of similar objects, we consider it to be a meta-object

[Herbon et al., 2015a]. By choosing this representation, additional information apart from

the roundwood logs can be included, such as the space between wood logs, information about

the ground surface and the background, as well as about adjacent wood piles. We showed in

[Herbon et al., 2015a] that the most important parameters of a wood pile, which concern

wood pile survey are the following:

1. defined wood log length l

2. tree species

3. wood quality

4. number of wood logs N

5. solid wood volume Vs
6. wood pile contour volume Vc

The first three properties can be easily determined by a forestry ranger through visual

inspection. They do not require special focus during the surveying process. Nevertheless,

these parameters are important in determining the sales price.

Defined wood log length The length of the roundwood log is not measured, as the actual

log is usually longer than the defined length [Kramer and Akça, 2008, p. 38; Prodan, 1965,

p. 78; Bundesministerium für Ernährung, Landwirtschaft und Forsten, 1969].

The reason for this is that a certain minimum length is required for wood processing, which

can only be guaranteed if the actual length is higher. For volume computation in manual and

automatic methods, the defined wood log length, denoted as l, is used rather than the actual

length.

Tree species 51 different tree species exist in Germany. The four most common tree species,

which make up 73% of all trees, are the following in descending order: [Bundesministerium

für Ernährung und Landwirtschaft (BMEL), 2014]

1. spruce

2. pine
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Figure 2.6: Panoramic image of a wood pile. The logs have been counted by a forestry

ranger by using red spray paint. The number of logs (N = 214) is indicated on the front

face of a wood log.

3. beech

4. oak

Considering all possible German tree species implies a number of research challenges and

additional constraints, which are discussed in Section 2.2 (Research challenges).

Number of wood logs N The number of wood logs is a well defined integer quantity.

Figure 2.6 shows a panoramic image of a wood pile, where the number of wood logs has been

manually determined by a forestry ranger. A common procedure is to mark all counted logs

with spray paint; usually a dot is made, but sometimes small lines are used. The result of

the counting procedure is then indicated on one of the wood log faces. The next section will

show that the manual determination of the number of wood logs is not impeccable and that

it can benefit from automatic procedures.

Solid wood volume Vs The solid wood volume Vs is defined as the sum of the individual

wood log volumes. As demonstrated in Section 2.3.1 (Attributes of roundwood logs) the volume

of a single log is approximated by its midpoint diameter and the Huber’s formula, as defined

in the HKS [Bundesministerium für Ernährung, Landwirtschaft und Forsten,

1969]. Figure 2.7 shows the digitally marked front side diameters (green circles), which can

be used for the approximation of the solid wood volume.

Contour volume Vc The solid wood volume is sometimes not of interest because the wood

quality is low, so-called industrial wood (see next paragraph), or the wood logs are very small,

which would make the measurement disproportionately time-consuming [Ministerium für

Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz, 2013]. In such cases,

the contour volume Vc is calculated and the solid wood volume is derived by multiplication
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Figure 2.7: Solid wood volume Vs measured by accumulating the diameters (green). The

cumulated area of the log faces As is multiplied with the defined length l to obtain the

solid wood volume Vs.

Figure 2.8: Contour volume Vc measured through a concave hull (green). The front area

of the wood pile As is multiplied with the defined length l to obtain the contour volume

Vc.

with a defined factor called the stacking coefficient [Knyaz and Maksimov, 2014; Minis-

terium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz, 2013;

Rundholzsortierungsvorschrift, 1988]. In contrast to the solid wood volume, Vc in-

cludes the solid wood as well as the space between the wood logs (see Figure 2.8) [Min-

isterium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz, 2013;

Rundholzsortierungsvorschrift, 1988].

Wood quality According to the HKS [Bundesministerium für Ernährung, Land-

wirtschaft und Forsten, 1969] and the RVR [Deutscher Forstwirtschaftsrat

e.V. und Deutscher Holzwirtschaftsrat e.V., 2014] the quality of wood is defined

by the four classes A, B, C, and D. Sauter et al. [Sauter et al., 2012] define that class A

indicates the best possible quality with very few defects and D is the class with the lowest

sales prices, but which still contains at least 40% commercially usable wood. For wood that

belongs to one of these four classes, the three aforementioned parameters, number of wood
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logs N , wood pile contour volume Vc, and solid wood volume Vs, are applicable.

As previously mentioned, in some cases it is not desirable to measure each wood log individ-

ually. In addition to the four categories A through D, there exists a type of wood called indus-

trial wood, which is usually mechanically or chemically processed [Bundesministerium für

Ernährung, Landwirtschaft und Forsten, 1969; Deutscher Forstwirtschafts-

rat e.V. und Deutscher Holzwirtschaftsrat e.V., 2014], e.g., for the production of

paper. For industrial wood, only the contour volume and sometimes the number of wood logs

are relevant, while the solid wood volume is not considered for the sales price [Fink, 2004].

2.3.3 Geometric constraints for roundwood piling

Based on Sections 2.2, 2.3.1, and 2.3.2 the constraints for roundwood piling that make auto-

matic surveying possible can be identified:

1. Wood logs must be piled in a way so that the wood log faces align as much as possible.

2. Large vegetation, such as tree branches and tall grass, must be removed.

3. Spray paint can be used, but should not cover very large areas.

4. Wood log faces should be more than 75% visible.

Under these conditions, automatic surveying is possible. Obviously some of the deficiencies

of the log faces, as shown in Figure 2.4, can cause automatic detection methods to fail. Model

generation is still possible in such cases and surveying can be amended by user interaction.

2.4 Necessity for digital wood pile surveying

The main motivation for researching and developing automatic wood surveying methods is to

save time and to process wood more efficiently. If the volume and the number of wood logs

are known, the logistics for wood distribution can be planned accordingly, but the price for

a wood pile can also be determined based on the outcome of the on-site measurement. Fink

[Fink, 2004] summarizes, based on Maler [Maler, 1997], that on-site wood measurements

are usually used for the determination of the sales price between the negotiating parties.

As previously stated, the manual measurement of wood logs and wood piles is a time-

consuming task. According to Dietz [Dietz, 1985] the costs for harvesting and piling wood are

on average 31.50 DM (16.11e) per solid cubic meter without bark. Schöttle et al. [Schöttle

et al., 1999] report costs of 48.50 DM (24.80e) per solid cubic meter for harvesting and piling.

The piled wood must then be manually surveyed, which costs between 15 DM and 20 DM

(7.67e to 10.23e) per solid cubic meter [Fink, 2004; Guglhör, 1994; Wegelaar, 1997]

and thus accounts for a significant part of the overall costs. This can potentially be reduced

through automatic or half-automatic surveying methods [Fink, 2004].
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Apart from being time-consuming, manual surveying methods have also been proven to

be error prone. Bort et al. [Bort et al., 1989] report that in their measurement the number

of wood logs in a pile was underestimated by 0.3% to 7.1% (average: 0.5%), which linearly

reduces the value of the wood pile. In practice, not all wood logs of a wood pile are measured,

but rather a subset, which is defined as a representative sample [Bort et al., 1989] (see

Section 2.5 Manual surveying methods). According to Bort et al. [Bort et al., 1989] the

difference between a full measurement and the measurement of a meaningful sample was

between -1.4% and +3.7% with an average of +1.7%. For an accurate surveying method

it therefore seems preferable to measure all wood logs instead of a subset, but manually

measuring all individual wood logs is not feasible in many cases [Ministerium für Umwelt,

Forsten und Verbraucherschutz Rheinland-Pfalz, 2013]. Automatic procedures can

potentially solve this problem and the methods proposed in this thesis aim to provide sufficient

accuracy for real world applications.

2.5 Manual surveying methods

Fink [Fink, 2004] gives an overview of manual surveying methods that are applied by German

forestry rangers. These are the complete midpoint diameter inventory (CMDI), the line

sampling method, the free sampling method, the contour sampling method, and the contour

volume method. In this thesis, only the complete midpoint diameter inventory and the section

volume method are considered, because methods which only use a subset of wood logs are not

sufficiently accurate as a reference.

Complete midpoint diameter inventory (CMDI) The most time-consuming procedure

is the complete inventory of all wood logs, where the diameter of all wood logs is measured

before or after piling. In Figure 2.9(a) all diameters (in [cm]) were written on the wood log

faces. The solid wood volume Vs is then determined by accumulating all wood log volumes.

We have explicitly defined this formula (shown in Equation 2.5) in [Herbon et al., 2015a],

where N is the number of wood logs, di is the diameter of the ith log, and l is the defined

wood log length. A visual representation is depicted in Figure 2.7.

Vs =

N∑
i=1

(
di
2

)2

πl (2.5)

The HKS [Bundesministerium für Ernährung, Landwirtschaft und Forsten,

1969] and its successor the RVR [Deutscher Forstwirtschaftsrat e.V. und Deut-

scher Holzwirtschaftsrat e.V., 2014] require the diameter to be measured at midpoint.

What seems problematic here is that the midpoint diameter can only be determined before

piling, because most midpoints are occluded by stems lying on top. The midpoint diameter
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Figure 2.9: Manual surveying methods. (a) Complete midpoint diameter inventory. All

diameters in [cm] are written on the wood log faces. (b) Section volume method for

industrial wood. Sections of equal width are used to determine the average height of the

wood pile and the height in [m] is indicated with spray paint.

is necessary for the application of Huber’s formula (Equation 2.3), while Smalian’s formula

(Equation 2.4) only requires the diameters at the upper and lower end. Although it has been

proven by de Leóna and Uranga-Valenciaa [de Leóna and Uranga-Valenciaa, 2013] that

the error from applying Huber’s formula is in fact smaller than the error induced through

Smalian’s formula [de Leóna and Uranga-Valenciaa, 2013], a midpoint diameter cannot

be practicably obtained for already piled wood logs. The solid wood volume can be defined

by Smalian’s formula as shown in Equation 2.6, where the midpoint diameter is calculated as

the average of the upper (du,i) and the lower diameter (dl,i) of the ith log.

Vs =
N∑
i=1

(
du,i + dl,i

4

)2

πl (2.6)

Calculating the midpoint diameter first and deriving the solid wood volume from it is

equivalent to calculating the solid wood volume through the diameters on the front and on

the back of the pile and then averaging the results. This procedure is often used in practice.

The formula for this method is shown by Equation 2.7, where df,i and db,i are the diameters

of the ith wood log on the front and the back of the pile.

Vs =
1

2
(Vs,f + Vs,b) l =

1

2

(
N∑
i=1

(
df,i
2

)2

+
N∑
i=1

(
db,i
2

)2
)
πl (2.7)
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For wood logs with a diameter larger than or equal to 20cm the standards [Bundesmin-

isterium für Ernährung, Landwirtschaft und Forsten, 1969; Deutscher Forst-

wirtschaftsrat e.V. und Deutscher Holzwirtschaftsrat e.V., 2014] require two

measurements, orthogonal to each other, which are then averaged. This way, deviations from

the assumed circular model can be accounted for. Wood logs with a diameter smaller than

20cm only have to be measured once, since it is generally assumed that small wood logs do not

differ from the circular model as much as large wood logs do. Figure 2.10 shows how the di-

ameters on the front face should be measured in accordance with [Bundesministerium für

Ernährung, Landwirtschaft und Forsten, 1969; Deutscher Forstwirtschafts-

rat e.V. und Deutscher Holzwirtschaftsrat e.V., 2014].

d
d2d1

Figure 2.10: Orthogonal diameter measurement. (a) Pure horizontal measurement of the

diameter for wood logs with d <20cm, (b) orthogonal measurements for wood logs with

d ≥ 20cm. Image source: HAWKwood [Herbon, 2014b]

Section volume method The section volume method is mainly used for industrial wood

but sometimes it is used in addition to the complete midpoint diameter inventory [Fink, 2004].

The cost and time consumption for the section volume method is estimated by Fink [Fink,

2004] to be lowest of all methods. It is generally only capable of determining the contour

volume Vc, but it is possible to derive the solid wood volume based on the tree species and

wood pile specific factors [Van Laar and Akça, 2007, p. 88; Kramer and Akça, 2008,

p. 39; Fink, 2004]. If the number of wood logs in the pile is known, an average log volume

and log diameter can be determined in addition to the contour volume. We have defined the

contour volume based on the section volume method in [Herbon et al., 2015a]. Equation

2.8 shows this definition with wp being the wood pile width (which can be expressed as the

product of the equidistant section width ws and the number of sections ns) and hi being the
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measured height in the center of the ith section.

Vc = wpl
1

ns

ns∑
i=1

hi = wslns
1

ns

ns∑
i=1

hi = wsl

ns∑
i=1

hi (2.8)

Figure 2.9(b) shows how the sections are marked on a wood pile and the height of each sec-

tion (in [m]) is indicated with spray paint. The width of a section is defined in [Ministerium

für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz, 2013], where it

varies between ws = 1m for wp < 10m and ws = 16m for wp > 200m. The choice of a large

ws seems problematic for accurate surveying of ground truth data in this thesis. Therefore all

contour volumes have been measured with a section width smaller than the one proposed by

[Ministerium für Umwelt, Forsten und Verbraucherschutz Rheinland-Pfalz,

2013], usually ws = 0.25m. . . 0.5m.

The solid wood volume can be estimated from the contour volume via a correctional factor

fs,c, called the stacking coefficient [Knyaz and Maksimov, 2014]. This coefficient is depen-

dent on the tree species, wood quality, and log length, and is between 0.58 [Sachße, 2003]

and 0.8 [Kramer and Akça, 2008, p. 39]. Equation 2.9 introduces the solid wood volume

calculated from the contour volume Vs,c.

Vs,c = fs,c · Vc = fs,c · wsl

ns∑
i=1

hi (2.9)

2.6 Measurement errors and error propagation

A large number of parameters influence the outcome of manual and automatic surveying

techniques. In this section it will be clarified which measurement parameters affect the results

and which magnitude of error should be expected for different methods. In literature the

following error inducing parameters can be found:

• number of wood logs [Bort et al., 1989]

• wood log length [Kramer and Akça, 2008, pp. 38–39; Prodan, 1965, p. 78]

• midpoint diameter / cross-section area [Kramer and Akça, 2008, pp. 38–39; Prodan,

1965, pp. 76–78]

• conversion from Sc to Ss,c [Kramer and Akça, 2008, pp. 38–39]

2.6.1 Solid wood volume

This subsection aims to derive an error margin for manual measurements of the solid wood

volume, as to gain insight on the flaws of manual surveying techniques. As shown by [Bort

et al., 1989], the average error when manually determining the number of wood logs in a
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pile is −0.5% with a maximum error of −7.1%. Sachße [Sachße, 2003] provides results of

extensive testing. The number of wood logs was underestimated by 2.9% on average with

a range of 1.5% to 5.0%. This must be taken into account when calculating the volume of

a wood pile based on the number of wood logs. The length of a wood log is theoretically

measured with an error of 0.001% [Kramer and Akça, 2008, p. 38]. In practice, the length

is not measured, because a defined length is used for calculations, which differs from the actual

length. Therefore the length error does not need to be accounted for.

The measurement of midpoint diameter is influenced by a number of possible errors.

[Kramer and Akça, 2008, p. 38–39] and [Prodan, 1965, pp. 76–78] point out that the

following must be considered when anticipating the resulting error:

1. construction flaws of the measuring device

2. random errors in diameter measurement

3. irregular stem surfaces

4. non-representative diameter measurements

5. approximation of the cross-section with a circular model

6. shrinkage over time

7. rounding according to forestry standards

Points 1 and 6 do not apply in the cases considered in this thesis, as we use calibrated

measurement devices and measurements are performed within one day, so the shrinkage is

negligible. [Kramer and Akça, 2008, pp. 38–39] and [Prodan, 1965, p. 89] show that

the average absolute value for random errors of the diameter is 0.5% and an irregular stem

surface causes an error of approximately 1%. Non-representative diameter measurements

can be accounted for by measuring the diameter twice, with the second measurement being

orthogonal to the first. The remaining error is considered to be insignificant. Importantly

for the research of the methods in this thesis, the approximation of the cross-section with a

circular model causes only very small errors, which Kramer and Akça declare to be negligible.

The largest error is induced be rounding according to forestry standards, where diameters are

always rounded downward to whole centimeters [Bundesministerium für Ernährung,

Landwirtschaft und Forsten, 1969; Deutscher Forstwirtschaftsrat e.V. und

Deutscher Holzwirtschaftsrat e.V., 2014]. This procedure causes an error between

-3% and -6% depending on the diameter of the wood logs [Kramer and Akça, 2008, p. 39].

The overall error for the diameter is said to be -2% to -8%. The detailed empirical study

conducted by Staudenmaier [Staudenmaier, 2012] confirms that the average volume error of

a single log is -8%, when comparing measurements as required by [Bundesministerium für

Ernährung, Landwirtschaft und Forsten, 1969; Deutscher Forstwirtschafts-

rat e.V. und Deutscher Holzwirtschaftsrat e.V., 2014] to ground truth.



2.6. Measurement errors and error propagation 25

The solid wood volume is defined in Equation 2.5 as the product of the sum of midpoint

areas and the length of the wood log. This equation can also be rewritten to take the average

diameter as a parameter, respectively the average cross-section area g calculated from the

average diameter.

d =
1

N

N∑
i=1

di (2.10)

Vs = N

(
d

2

)2

πl = Ngl (2.11)

As mentioned above, in literature the error for g is said to be between −2% and −8%

[Kramer and Akça, 2008, p. 39] and the maximum error for the number of wood logs in

empirical evaluations is −7.1% [Bort et al., 1989]. Using these values, the error margin can

be estimated. [Papula, 2008, pp. 674–688] shows that the relative error for the solid wood

volume ∆Vs/Vs can be defined as the partial derivative shown in Equation 2.12.

∆Vs
|Vs|

=

∣∣∣∣∂Vs∂N
∆N

∣∣∣∣+

∣∣∣∣∂Vs∂g
∆g

∣∣∣∣+

∣∣∣∣∂Vs∂l ∆l

∣∣∣∣ (2.12)

Since only relative errors are known, the following must be defined. (Note that ∆l = 0 as

it is a defined length and not a measurement.)

∆N

N
= −0.071

∆g

g
= −0.08 (2.13)

When inserting Equations 2.13 and 2.11 into Equation 2.12, the relative error margin can

be calculated. Since the solid wood volume must always be positive, it is safe to declare

|Vs| = Vs.

∆Vs
Vs

=
0.071 ·Ngl + 0.08 ·Ngl

Ngl
= 0.071 + 0.08 = 15.1% (2.14)

It should be noted that this is the largest possible error, which can be concluded from

empiric observations. Real world measurements will, on average, possibly be much closer

to the real value. Sachße [Sachße, 2003] confirms that the number of wood logs, as well

as the diameter, are error-prone when measured in practice. In accordance with the error

propagation in Equation 2.14, Sachße provides a maximum error from empirical observations

of 13.7% for the solid wood volume.

2.6.2 Contour volume

The error propagation for the contour volume cannot be determined easily. This subsection

will discuss what types of errors can occur during measurements and which errors are induced

by the procedure itself.
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It was shown in Equation 2.8 that the contour volume is the product of wood pile width,

defined log length, and average section height. The wood pile width is influenced by some

of the same parameters that influence the estimation of the wood log diameter. The most

significant of these parameters are flawed measurement devices, random errors, and irregular

stem surfaces. Sachße [Sachße, 2003] suggests that vegetation around the pile can influence

the measurement of the pile width and lead to overestimation. While errors for the width

of the wood pile can be estimated this way and the defined log length is always constant,

the average section height must be subject to deeper analysis. In Figure 2.9(b) it was shown

how the manual sectioning of a wood pile is performed. By forestry standards, the section

width is ws ≥ 1m. The section height is measured in the middle of a section, as a means to

approximate the section’s average height. Although this procedure is convenient in practice,

a number of errors can occur:

1. The center section height is not necessarily representative for the whole section.

2. The chosen stacking coefficient fs,c is likely to differ from the true correctional factor,

although it may be correct on average.

3. The section center can be influenced by an offset, due to incorrect measurement of the

pile width. [Sachße, 2003]

4. Wood logs on the bottom of the pile can sink into the ground, making a measurement

difficult. [Sachße, 2003]

5. Protruding wood logs can make measurements at the section center impossible. [Sachße,

2003]

6. The measurement device usually does not provide a mechanism for exact vertical mea-

suring, making the upper and lower point of the section height ambiguous.

Due to the complex nature of the error-prone parameters, a deterministic evaluation of the

error propagation seems infeasible in the scope of this thesis. Instead, results from empirical

observations will be discussed to provide insight into the nature of errors induced by the

contour volume method.

Sachße [Sachße, 2003] compares the results of the section volume method to the results

for the complete midpoint diameter inventory. Interestingly, the number of wood logs was

lower by 3.0% for the full inventory, although the average contour volume was higher by

0.35%. In conclusion, the volume error of the full inventory would be even higher if all wood

logs had been measured. Sachße [Sachße, 2003] also reports results for Vc,s in comparison

to the true value, as determined by a certified roundwood measuring device. On average, the

contour volume method overestimated the volume by 4.5% with values ranging from −6.2%

to +18.4%. It can be concluded that the volume measurement method, as it is currently used

in practice, provides rough estimates at best. In the following sections it will be discussed
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how this method can be applied and improved to become adequate for automatic surveying.

2.6.3 Digital surveying

In digital surveying, new possible errors are introduced which can be compared to their

counterpart in analog surveying, as shown in Table 2.2.

digital error analog counterpart

scale reference width and height measurements

non-planarity of front surface non-planarity of front surface

pixel-based quantization reading accuracy

Table 2.2: Comparison of digital and analog errors

Scale reference Due to reconstruction ambiguities [Hartley and Zisserman, 2004, pp.

264–265], the scale of a photo or a multiple view reconstruction is lost. For surveying purposes,

an adequate scale reference must be introduced, through which metric measurements are

enabled. The error of this scale produces a quadratic error in the result because the width, as

well as the height, of the digital model are estimated based on this scale. The depth on the

other hand is known via the defined length and is therefore unaffected by the scale reference.

In advance of Section 7.3 (Scale reference), it can be said that the error for scale estimation

is small if the correct end points of the pile are used.

Non-planarity of the front surface A non planarity of the front surface is only relevant

if a planar surface model is used, e.g., for image stitching. From empirical observations it was

found that small non-planarities only affect the volume error in a linear fashion because the

images usually undergo planar projection in the image stitching process. Large non-planarities

lead to failure of the stitching pipeline. 3D reconstruction approaches are not affected by the

front surface geometry, unless heuristics which assume partial planarity are used.

Pixel-based quantization Although some image processing methods provide sub-pixel

accuracy (e.g., [Da and Zhang, 2010; Gehrig and Franke, 2007]), most measurements

are still subject to pixel-based quantization. This is comparable to the reading accuracy of

analog instruments, such as a measuring tape. When measuring distances in an image, the

error always influences the result linearly. 3D models from multiple view stereo can provide

sub-pixel accuracy through sub-pixel feature detection and matching [Tomasi and Kanade,

1991; Zheng and Chellappa, 1995] and are thus more influenced by the reconstruction

pipeline than the pixel quantization.
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2.7 Data basis - The HAWKwood Database

The methods presented in this thesis aim to estimate the volume of different types of wood

piles. The results need to be subject to quantitative evaluation. As demonstrated in Section

2.4 (Necessity for digital wood pile surveying), digital wood pile surveying is an active research

topic. One of the contributions of this thesis is a large set of wood pile images, which is

provided for academic and non-commercial use to researchers interested in this field of study.

The provided collection of images and ground truth data is called The HAWKwood Database

[Herbon, 2014b]. All images were taken by a standard digital or smartphone camera. One

of the main purposes of this database is to establish a platform for algorithm comparison

and benchmarking. The results of the methods proposed in the following chapters define the

initial benchmark values in the hope that further research will pick up and build upon the

advances provided by this thesis.

The database is divided into two different benchmarks, to account for different research

strategies. The single image benchmarks provide individual images of wood pile front surfaces,

combined with ground truth object location and segmentation information, on a pixel level.

For the surveying of entire wood piles, the multi-image benchmark supplies image sets of wood

piles where the images are taken from different viewpoints. Each set consists of between 5

and 60 images of the same pile, which can be used for panoramic image stitching and 3D

reconstruction. Ground truth data are provided for different parameters of the pile, which

may be used for evaluation purposes. The HAWKwood database includes a total of 7655

images, which are clustered into 354 data sets. A subset of these images was generated

synthetically. This way, ground truth can be calculated highly accurately without relying on

manual measurements. In the following sections, the benchmarks will be discussed in detail,

based on the elaborations of [Herbon, 2014b], and extending implementation descriptions

when necessary.

2.7.1 Categories

Each benchmark, single and multi-image, is divided into three categories, which address dif-

ferent problems of the respective research area with regards to wood log detection and wood

pile surveying. The categories are ordered incrementally so that each category can theoreti-

cally, but not necessarily, build on the results obtained in the previous category.

Single image benchmark

Category S.1: wood log detection

Category S.2: wood log faces segmentation

Category S.3: front surface segmentation
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S.1 S.2 S.3

images (real) 121 40 30

images (synthetic) 36 - -

data sets (real) 121 20 10

data sets (synthetic) 36 - -

ground truth (real) man. marked man. segmen. man. segmen.

ground truth (synthetic) man. marked - -

Table 2.4: Number of images, data sets, and ground truth type for the single-image benchmark

Multi-image benchmark

Category M.1: wood log detection

Category M.2: solid wood volume computation

Category M.3: contour volume computation

M.1 M.2 M.3

data sets (real, low overlap) 72 34 117

data sets (real, high overlap) 147 71 206

data sets (synth., high overlap) 40 40 40

ground truth (real) man. counted CMDI1 Sec. Vol.2

ground truth (synthetic) dig. counted computed computed

Table 2.6: Number of images, data sets, and ground truth type for the multi-image benchmark

2.7.2 Single-image benchmark

Category S.1: wood log detection Image-based wood log detection is one of the most

fundamental tasks in wood pile surveying. The S.1 category includes 121 real and 36 synthetic

images of wood pile front faces for which ground truth is available (Figure 2.11). In Section

2.3.1 (Attributes of roundwood logs), it has been shown that in literature performing a circular

approximation of the wood log front face is well-accepted. In the S.1 category, wood logs are

manually marked with a circle, which is stored as a bounding rectangle. A number of possible

occlusions can make the wood log detection task complex, as shown in Section 2.2 (Research

challenges). In order for algorithms to prove invariance to a reasonable amount of occlusion,

all wood logs which are occluded by up to 25% and which do not intersect the image borders
1Complete midpoint diameter inventory, described in Section 2.5 (Manual surveying methods)
2Section volume method, described in Section 2.5 (Manual surveying methods)
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Figure 2.11: Sample images and ground truth from category S.1. (a)-(c) Input images.

(d)-(f) Manually marked ground truth (blue: valid wood logs, red: partially occluded

wood logs). Image source: HAWKwood [Herbon, 2014b]

are considered. This definition is consistent with the geometric piling constraints introduced

in Section 2.3.3. Wood logs which are largely occluded are also marked manually, but it is

noted that these logs must not be considered. Should an algorithm detect one of these objects,

it can be assured that it is not counted as a false positive.

Category S.2: wood log faces segmentation Category S.2 provides manually seg-

mented ground truth for a subset of the images from the S.1 benchmark. All wood log front

faces, including bark, have been manually segmented on a pixel-level. The goal for algo-

rithms performing this benchmark should be to perform accurate binary segmentation of all

wood log faces and evaluate the results through the pixel-based comparison of the provided

ground truth segmentation masks. Figure 2.12 shows samples from category S.2 including

segmentation masks.

Figure 2.12: Sample images from category S.2 with different tree species and wood quali-

ties. (a)-(c) Input images. (d)-(f) Binary segmentation masks. Image source: HAWKwood

[Herbon, 2014b]
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Category S.3: front surface segmentation In contrast to category S.2, even partially

occluded wood logs are considered in the S.3 benchmark. This category is not concerned

with the segmentation of individual wood logs but rather with the segmentation of the wood

pile front surface as a whole. Wood logs that were previously excluded due to visibility

constraints are now included in the front surface definition. Each set offers two images of

the same wood pile surface taken from slightly different positions, similar to a stereo camera

setup. Additionally, a segmentation reference mask is provided to the left image. Algorithms

aiming to perform front surface segmentation may either use one or both images. When the

second image is used also, stereo auto-calibration can be performed. The pixel-based ground

truth is marked manually, as can be seen in Figure 2.13.

Figure 2.13: Sample images from category S.3. First column: left input image. Second

column: right input image. Third column: Manually marked ground truth for the left

image. Image source: HAWKwood [Herbon, 2014b]

2.7.3 Multi-image benchmark

The multi-image benchmark supplies data sets consisting of overlapping images of the same

wood pile. These wood piles are usually too large to be captured by a single image and

therefore a model must be established which fuses these images into a reconstruction of the

wood pile. Two possible fusion models are panoramic image stitching and multiple view

reconstruction. For each of the models a distinct set of images is defined:

1. Small overlap datasets can be used for panoramic image stitching (Figure 2.14).

2. Large overlap datasets can be used for multiple view reconstruction, e.g. structure from

motion (Figure 2.15).

Adjacent images with small overlap show approximately 50-70% of the same wood log pile

front surface. Large overlap is considered to be about 90%. Since the images were taken by

hand, these values cannot be guaranteed and are merely an approximation. Most of the data
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Figure 2.14: Images with small overlap. Samples from category M.1 -M.3. Top row: real

images, bottom row: synthetic images. Image source: HAWKwood [Herbon, 2014b]

Figure 2.15: Images with large overlap from category M.1 -M.3. Top row: real images,

bottom row: synthetic images. Image source: HAWKwood [Herbon, 2014b]

sets only depict one side of the wood pile. In real world scenarios, both sides of the wood pile

are measured individually and the results are averaged. In Equation 2.7 the validity of this

approach has been proven. Therefore, the digital surveying of the front surface is sufficient to

prove the validity of the surveying method.

Category M.1: wood log detection It has been shown in Section 2.4 (Necessity for digital

wood pile surveying) that the counting of wood logs can be error prone. For the determination

of the ground truth number of wood logs, the wood log faces were counted by seven persons,

independently of each other. When discrepancies occurred, the counting procedures were

repeated until consistency was reached, thus assuring the correct determination of the wood

log count. Some wood piles are put on underlays, which are additional wood logs, whose

purpose it is to keep the wood pile from sinking into the mud or snow. These underlays are

not included in the total number of wood logs.
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Figure 2.16: Orthographic projection of a wood log front surface and subsequent thresh-

olding of the image

Category M.2: solid wood volume computation For the data sets of real wood piles,

the solid wood volume Vs has been measured through the complete midpoint diameter in-

ventory, where each wood log diameter is measured once when it is smaller than 20cm and

twice when it is larger than or equal to 20cm [Bundesministerium für Ernährung,

Landwirtschaft und Forsten, 1969; Deutscher Forstwirtschaftsrat e.V. und

Deutscher Holzwirtschaftsrat e.V., 2014]. In Section 2.6.1 it has been shown that

the CMDI is not necessarily accurate in all cases. The ground truth data obtained this way

should not be seen as absolutely accurate, but rather as an approximation with which the

feasibility can be tested. This is sufficient by forestry standards and it is even more precise

than what is usually measured in practice [Fink, 2004], but it is not sufficient for a scientific

evaluation. For this reason, the M.2 category also provides synthetic data, for which ground

truth can be computed highly accurately. The solid wood volume is determined by performing

an orthographic projection of the wood log front faces, as shown in Figure 2.16.

Since an image cannot directly provide the scale of its contents, scaling information must be

provided additionally. In Section 7.3 (Scale reference) it will be shown that the most accurate

scale reference for a wood pile is the largest measurable distance, i.e. its width. For the M.2

and M.3 categories, the width of the wood pile (the largest possible distance) is provided. In

the case of real wood piles, the distance was measured by hand ten times and then averaged.

For synthetic wood piles, the width is computed automatically. The solid wood volume is

then calculated through the multiplication of the metric front surface with the defined wood

log length.

Category M.3: contour volume computation The contour volume Vc of a wood pile

must be determined in accordance with manual surveying methods. For the data sets which

depict real wood piles, the section volume method is used. This manual method requires the

average height to be calculated from a number of equidistant height measurements. For the

manual ground truth in categoryM.3, a section width of ws = 0.5m is used. The volume is then

calculated by multiplying the measured width, the average height, and the defined wood log
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length (depth of the pile). Similar to the M.2 benchmark, the ground truth for real wood piles

in theM.3 category is not free of error and should therefore be seen as an approximation, which

is defined by forestry standards [Bundesministerium für Ernährung, Landwirtschaft

und Forsten, 1969; Deutscher Forstwirtschaftsrat e.V. und Deutscher Holz-

wirtschaftsrat e.V., 2014] and which is generally accepted as the consensus in the forestry

industry. Precise ground truth for the contour volume of a wood pile can only be obtained by

using synthetic data. The computation of the contour volume is done similarly to the solid

wood volume, where the first step is to perform an orthographic projection of the wood log

front faces. Equation 2.8 shows how the contour volume is measured by averaging the height.

In real world scenarios it is not feasible to use a section width ws < 0.25m. For synthetic data

however, the computation can be performed on a pixel basis by measuring the height at each

x-location in the image (within the horizontal borders of the wood pile).

Vc,gt = l

wpx∑
i=1

hi,px · f2mppx (2.15)

fmppx =
wp

wpx
(2.16)

Equations 2.15 and 2.16 express the computation of the ground truth contour volume Vc,gt.

The volume is calculated by accumulating all pixels through the height at each x-location hi,px
and then by multiplying the result with the defined wood log length l and the correctional

factor (meters per pixel) fmppx squared. The correctional factor fmppx is necessary to convert

height and width measurements from pixels to meters. It is defined as the quotient of wood

pile width in [m] wp and the wood pile width in [px] wpx.



Chapter 3

Related work

The scope of this thesis includes a number of different topics which are combined for the

purpose of creating photogrammetric wood pile surveying approaches. This related work

chapter is divided into different sections, each of which addresses an individual subproblem.

To retain focus on the scientific contributions of this thesis, only methods are discussed which

are either directly relevant to the proposed novel methods or which are employed by current

state of the art wood pile surveying approaches. At the end of this related work chapter,

further areas of application are discussed to emphasize the importance of wood pile surveying

research. Starting with Chapter 4 (Adaptive image stitching), the remaining chapters of this

thesis are concerned with showing how the related work can be improved and incorporated

into distinct surveying approaches.

3.1 Prerequisites: 2D object recognition and segmentation

In recent years, a number of approaches have been presented which are able to accurately

recognize objects in digital images. Object recognition methods usually rely on local fea-

tures or the windowed processing of subregions in an image. It has been proven that these

approaches provide robust and accurate results when aiming to detect different object types

or combinations of objects. Object recognition information can be used as priors for seg-

mentation procedures. Due to the hundreds of algorithms proposed in the last decade, only

the most prominent approaches with direct applications to this thesis will be discussed. The

actual methods and the application of these methods are distinguished between for different

scenarios. In accordance with their implementations in the next sections, object recognition

methods will be discussed prior to segmentation methods.

35
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3.1.1 Object recognition methods

Scale Invariant Feature Transform (SIFT) Object recognition via SIFT (Scale Invari-

ant Feature Transform) [Brown and Lowe, 2007; Lowe, 1999; Lowe, 2001; Lowe, 2004]

is based on the idea of extracting key points from a template image and matching these

key points with an image of unknown content. For each key point, a feature descriptor is

computed which is rotation and scale invariant. According to Lowe [Lowe, 1999], SIFT fea-

tures are, within limits, robust to distortions, such as partial occlusion, scaling, changes in

illumination, and affine transformations. Apart from object recognition tasks, SIFT features

are often used in panoramic image stitching (Section 3.3 (Panoramic image stitching)) or 3D

reconstruction (Section 3.4 (3D reconstruction / structure from motion)) in order to perform

image registration. An improvement of the original SIFT features is PCA-SIFT [Ke and

Sukthankar, 2004], which computes features by including a principal component analysis

(PCA). The results are shown to be both more accurate and faster than the original SIFT

implementation.

Local Binary Patterns (LBP) One of the earliest classification / detection approaches,

based on a texture operator, is LBP (Local Binary Patterns) [Ojala et al., 1994; Ojala et al.,

1996]. LBP considers a neighborhood of pixels where binary thresholding is performed and

a local histogram is calculated, which is then used as a texture descriptor. The extension of

LBP with a contrast measure [Ojala and Pietikäinen, 1999], called LBP/C, provides good

results in unsupervised texture segmentation. Zhao and Pietikainen [Zhao and Pietikainen,

2007] propose to extend LBP to a third dimension with a volumetric approach (VLBP). This

way, LBP can be applied to a spatiotemporal domain, e.g., for use in videos to detect temporal

self-similarities.

LBP has received attention for its capability to detect human faces, as first proposed by

Ahonen et al. [Ahonen et al., 2006]. In this approach, faces are divided into regions, for which

features are computed and combined into a feature vector. The entire approach is based on

the multi-resolution LBP implementation by Ojala et al. [Ojala et al., 2002]. The computed

vector is then used as a face descriptor. In comparison to other texture descriptors, the

LBP-based face detection framework performs considerably better than gray-level difference

histograms, homogeneous texture descriptors, and texton histograms [Ahonen et al., 2004].

Based on these findings, face recognition has been improved by including motion pictures to

derive information about the person’s gender [Hadid and Pietikäinen, 2009]. A number

of further applications has been proposed [Feng et al., 2005; Tan and Triggs, 2010; Zhao

et al., 2009], from which it can be seen that Local Binary Patterns are applicable to a variety

of problems. Hence LBP is a strong candidate for object recognition in the case of wood log

faces.
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Histograms of Oriented Gradients (HOG) Histograms of Oriented Gradients (HOG)

were first proposed by Dalal and Triggs [Dalal and Triggs, 2005], with specific application

to the detection of humans. The method is based on support vector machines (SVMs, see

e.g. [Cristianini and Shawe-Taylor, 2000; Kecman, 2001]) and uses normalized local

histograms of image gradient orientations. During detection, an input image is divided into

cells and a histogram for gradient or edge orientations is computed. The obtained histograms

are then used as a feature vector. The original paper [Dalal and Triggs, 2005] includes

a study on two distinct data sets, containing 509 and 1805 training images respectively,

which show pedestrians in an urban environment. HOG features are shown to perform well

in comparison to PCA-SIFT [Ke and Sukthankar, 2004], shape contexts [Belongie et

al., 2001], and generalized Haar wavelets [Mohan et al., 2001]. Some improvements have

been made to HOG features, such as a speed-up of the computation time [Zhu et al., 2006]

or an adaptation to sketch-based image retrieval (SBIR) [Eitz et al., 2011], and the so-

called Gradient Field Histograms of Oriented Gradients (GF-HOG) [Hu et al., 2010; Hu and

Collomosse, 2013].

Haar-like features Haar-like features, as proposed by Viola and Jones [Viola and Jones,

2001], are named after wavelets with Haar basis functions [Haar, 1910]. Based on the integral

image representation, which is also introduced in the original paper, a number of features

are computed from a training data set. Via AdaBoosting [Schapire and Singer, 1999],

a feature selection procedure is run which chooses distinct rectangle features from a set of

180,000 features in a 24 by 24 pixel window. Similar to HOG and LBP features, Viola and

Jones train their detector on images of human faces and images which do not include faces.

The training procedure can be applied to any other object class as well.

3.1.2 Object segmentation methods

Object segmentation methods can be roughly divided into histogram-based, region-based,

edge-based, and model-based methods [Jähne, 2005, pp. 479–518]. Additionally, multi-scale

approaches consider information of different scales, as a means to achieve scale invariance

[Tönnies, 2005, pp. 206-208]. For histogram-based methods, the goal is to define one or

more thresholds, which are optimal in some sense, as defined e.g., by the well-known Otsu

method [Otsu, 1975]. Since the computed thresholds can be applied to each pixel individually,

histogram-based methods are considered to be a global approach. Methods which segment

an image based on homogeneity criteria, such as texture or gray-scale value distribution, are

called region-based [Tönnies, 2005, pp. 213–218]. In contrast to homogeneity information,

edge-based approaches use discontinuities (e.g. peaks in the image gradient) to detect edges.

Edges are considered to be natural borders between image segments and can thus be used to
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separate image regions while being less prone to oversegmentation caused by inhomogeneous

region characteristics [Tönnies, 2005, p. 221].

Watershed transform The basic idea of the watershed transform as an edge-based method

is to view a gray-scale image as a topographic surface [Beucher and Lantuéjoul, 1979].

Adjacent regions are separated by edges. Geographically, a watershed is the border between

two basins which are continually flooded with water. Flooding usually starts at local minima.

Oversegmentation poses a challenging problem for watershed algorithms. For this reason,

marker-based watershed has gained popularity. Markers can either be manually inserted or

computed using a priori information or heuristics. [Tönnies, 2005, pp. 225–227]

Some efforts have been made to optimize watersheds for computational efficiency, e.g.,

through parallelization [Roerdink and Meijster, 2000] or GPU implementation [Kauff-

mann and Piche, 2008]. Medical imaging is one of the areas where watersheds are often used

[Grau et al., 2004; Hahn and Peitgen, 2000; Ng et al., 2006; Shojaii et al., 2005; Umesh

Adiga and Chaudhuri, 2001]. Road segmentation / obstacle detection [Beucher et al.,

1990; Beucher and Bilodeau, 1994; Yu et al., 1992] and cell segmentation [Jiang et al.,

2003; Tek et al., 2005] often also achieve good results by applying the watershed transform.

Expectation maximization Expectation maximization (EM) is a histogram-based method,

which was introduced by Dempster et al. [Dempster et al., 1977]. [Köhler, 2005, p. 77] sees

it as one of the most important estimation algorithms in digital signal processing. It starts

from an initial estimate and iterates until convergence is achieved. In image processing, it is

realized through a mixture of multivariate normal distributions which represent, e.g., color or

texture information [Carson et al., 2002; Permuter et al., 2006; Tai et al., 2005]. The goal

is then to refine the parameters of the model to achieve a maximum likelihood estimation.

Different authors [Caetano and Barone, 2001; Greenspan et al., 2001; Kakumanu et al.,

2007; Phung et al., 2005; Yang and Ahuja, 1999; Zhu et al., 2004; Zhu et al., 2000] propose

to segment human skin in digital images or videos by using a mixture of Gaussian models.

The mixture model can also be combined with depth information, e.g., for segmenting people

in RGB-D data [Harville et al., 2001].

Graph Cuts Graph cuts are edge-based energy minimization algorithms, first described by

Greig et al. [Greig et al., 1989]. They can be applied to a wide variety of low-level computer

vision tasks where the problem can be formulated as an energy minimization problem. Image

segmentation by graph cuts is described in [Toennies, 2012, pp. 236–250], where the graph

representation of an image defines pixels as nodes while neighboring pixels are connected by

an edge. The segmentation can be achieved by assigning a cost to each edge and performing a

cut by computing the minimum cut along the edges. Boykov and Kolmogorov [Boykov and
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Kolmogorov, 2001; Boykov and Kolmogorov, 2004] propose an efficient implementation

for the computation of the max-flow of a graph in computer vision. The applications in

image segmentation are broad and include image restoration [Boykov et al., 2001], stereo

vision [Bleyer and Gelautz, 2007; Boykov et al., 2001; Hornung and Kobbelt, 2006;

Kolmogorov and Zabih, 2001; Kolmogorov and Zabih, 2002; Vogiatzis et al., 2007;

Vogiatzis et al., 2005], motion computation [Boykov et al., 2001], medical image processing,

and geodesic segmentation [Boykov and Kolmogorov, 2003; Price et al., 2010].

Rother et al. [Rother et al., 2004] propose to extend graph cuts with interactive user input,

an approach they call Grab Cut. The user defines a rectangular region in an image, in which

the object of interest is located. Regions outside the rectangle are marked as background.

From the color information, a Gaussian mixture model (GMM) is extracted, which is then

used to perform global optimization, as described by Boykov and Jolly [Boykov and Jolly,

2001]. According to Rother et al. [Rother et al., 2004], one of the main advantages of the

Grab Cut approach is the non-necessity of foreground labeling while requiring only minimal

user interaction.

Level sets Level sets were originally described by Osher and Sethian [Osher and Sethian,

1988] as an edge- / contour-based method which aims to track the motion of a front (e.g. the

boundary between two regions). The idea behind level sets is to describe an n-dimensional

contour by an n+1-dimensional surface. A curve in an image would thus be defined by a

three-dimensional surface and its intersection with the xy-plane, called the zero level set of a

defined level set function. The change of the curvature is described by a speed function F ,

which may depend on different factors of the front, such as local properties (e.g. curvature

or normal direction), global properties (shape and position of the front), and independent

properties which are not affected by the front itself [Sethian, 1999, p. 4]. Early approaches

are the geodesic active contours [Caselles et al., 1997] (Caselles et al.) and active contours

without edges [Chan and Vese, 2001] (Chan and Vese). Rousson and Paragios [Rousson

and Paragios, 2002] demonstrate how shape priors can be incorporated into level sets for

2D closed structures. In recent years, level sets have become popular in image segmentation

because the result yields an appealing representation of regions and their boundaries [Brox

and Weickert, 2004].

Based on the active contour model without edges, a multi-phase level set framework was

introduced by Vese and Chan [Vese and Chan, 2002] with which multiple regions can be

segmented without vacuum or overlap. Brox and Weickert [Brox and Weickert, 2004]

follow a similar approach and extend level sets to work with a dynamic number of regions,

as opposed to the classical foreground and background segmentation. Paragios and Deriche

[Paragios and Deriche, 2002] use level sets for supervised texture analysis, inspired by the
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geodesic active contour model.

So far state-of-the-art practices in wood pile surveying do not use level sets. Therefore

related applications will only be described briefly. Level sets are especially popular in medical

imaging. Nosrati and Hamarneh [Nosrati and Hamarneh, 2014] demonstrate an approach

where prior knowledge is incorporated into a level set framework, with the goal of obtaining

more accurate and more plausible results for the segmentation of cells. Similar to the problem

of cast shadows on wood pile surfaces, Li et al. [Li et al., 2011] propose a level set based method

for medical image segmentation, which is able to account for intensity inhomogeneities.

3.2 Recognition and segmentation of wood logs and clustered

objects

The first photo-optical measurement method for determining solid wood volume was intro-

duced by Gläser [Gläser, 1955; Prodan, 1965, p. 95]. A regular grid is laid over an image

of a wood pile front with points in equidistant locations. The number of points that are on

the wood are placed in relation to the overall number of points. This way, a factor can be

determined with which the solid wood volume can be calculated from the contour volume.

This very basic method lays the foundation for all photo-optical surveying methods, although

Gläser does not account for distortions of any kind, such as distortions from the camera or

distortions induced by not taking photos orthogonally to the wood pile front surface.

Another early approach was proposed by Meyer [Meyer, 1995], in which analog pictures

of wood logs are taken, digitized, and evaluated. The segmentation procedure relies on gray-

scale thresholding to separate foreground (wood logs) from background. Fink [Fink, 2004]

points out that in this procedure it is not possible to measure each individual wood log and

that only a cumulative computation of the solid wood volume is possible. A similar method,

through which the load of timber trucks can be measured, was presented by Carvalho et al.

[Carvalho et al., 1993]. The goal of their implementation is the computation of the stacking

coefficient fs,c, with which the solid wood volume can be derived from the contour volume.

Results for this factor vary from 0.55 to 0.8, depending on the tree species, the diameter of the

wood logs, and the wood quality. Tian and Murphy [Tian and Murphy, 1997] implemented

a computer vision system for detecting trimmed and occluded branches in tree stems. This

system aims to provide information about the texture, especially existing knots in freshly

harvested wood logs. Although this is usually done by laser scanning, Tian and Murphy show

that a computer vision system is also feasible for this task.

Many modern wood log segmentation procedures aim at reducing the segmentation problem

to a setup, in which a simple thresholding operation suffices. An important contribution is

the detailed analysis of Fink [Fink, 2004], which elaborates the needs of the forestry industry,
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argues for the development of image processing methods for wood log detection through

economic observations, and proposes a variety of methods with which wood logs can be

detected and segmented. Unfortunately, the proposed image processing pipelines are limited

to the evaluation of a single image under laboratory conditions. Fink’s work can be seen as

the extension of the work of Meyer [Meyer, 1995] and Carvalho et al. [Carvalho et al.,

1993]. Different methods for the segmentation of individual wood logs are proposed, which

include active contours (snakes) [Kass et al., 1988], the watershed transform [Beucher and

Lantuéjoul, 1979], and even stereo-imaging methods.

Two important problems are not addressed by Fink, specifically the spatial distribution

of wood logs (the large dimensions of wood piles and the self-similarity through geometric

constraints) and the conditions under which wood piles are measured outside of a factory

setting. The computer vision techniques mentioned are only applicable to single images and

how to extend these methods to multiple images or how to fuse several images, e.g., through

panoramic image stitching, is not discussed. All experiments were carried out in a laboratory

setting, which is not comparable to real world conditions, as shown in Section 2.2 (Research

challenges).

Dahl et al. [Dahl et al., 2006] extend the watershed segmentation approach of Fink. The

use of a scale space watershed segmentation procedure is proposed, which, in the end, produces

binary blobs (homogeneous regions in an image) that are merged and filtered. Similar to the

previously discussed approaches, Dahl et al. assume that the problem can be reduced to an

intensity based segmentation task. As shown at different points in this thesis, this constraint

can only be satisfied under laboratory conditions.

A histogram-based method for the determination of wood logs in a wood pile is shown

by Noonpan and Chaisricharoen [Noonpan and Chaisricharoen, 2013]. The use of a

mixture of morphological operations combined with histogram backprojection (see [Swain

and Ballard, 1992]) is proposed. An estimation accuracy of 78% is reached. For real world

applications this detection rate is not sufficient. It seems possible to use such an approach as a

preprocessing method. Similarly, Rahman et al. [Rahman et al., 2011] propose simple image

processing techniques for wood log detection on timber trucks. Building on this approach,

Yella and Dougherty [Yella and Dougherty, 2013] extend the methodology by using a

circular Hough transform to detect wood logs. The detection rate in this approach is low in

comparison to state-of-the-art methods, which will be discussed below.

The definition of a wood log face as a circular feature, along with the proposition for a

detector, is also used by Knyaz and Maksimov [Knyaz and Maksimov, 2014]. Based on

prior work [Knyaz and Vizilter, 2001], a stereo camera setup is proposed, which aims to

calculate the stacking coefficient. The shape of a wood log is assumed to be strictly circular

and a circle detection method is used to identify wood logs. From the locations and sizes, the
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stacking coefficient is derived. The proposed method requires a rather complex stereo camera

set up. On the one hand, this is needed to remove distortions, which is an important task in

photo-optical surveying, on the other hand, state-of-the-art methods for wood log detection

are able to perform a much more precise description and authentication of wood logs which

are not dependent on a strong circularity constraint. In Section 2.2 (Research challenges)

it has been shown that the volume of a wood log may be accurately approximated with a

circular model, but this does not necessarily hold true for object recognition. Since no actual

detection rate results are given, it can only be assumed that the circular detection model can

be significantly improved by state-of-the-art detection methods.

Some of the more advanced approaches are presented by Gutzeit et al. [Gutzeit et al.,

2010; Gutzeit et al., 2011; Gutzeit and Voskamp, 2012]. In [Gutzeit et al., 2011],

the authors describe a graph cut based segmentation procedure for wood log front faces. A

sub-image in the center of the original image is extracted, which is used to estimate a fore-

ground and background model. Based on this color information, the entire image is segmented

via graph cuts. Different weight-setting metrics for the graph cut procedure are evaluated.

A comparison between a histogram-based weight setting, k-means clustering [Forgy, 1965;

Lloyd, 1982; MacQueen et al., 1967], Gaussian mixture models with expectation maximiza-

tion, and a novel kd-tree-based [Bentley, 1975] nearest neighbor approach called KD-NN

is performed. It is shown that the KD-NN segmentation generally performs best. Although

the proposed method seems to perform well on the test image set, the acquisition constraints

on the images are very restrictive. The wood pile must be located at the image center, be-

cause the initial sub-image is extracted from this region. No spatial information is considered,

which would seem like an obvious constraint, given the geometric properties of a wood pile.

Furthermore, it is assumed that the extracted sub-image is well-segmentable by the intensity

values, which cannot be guaranteed during weather conditions like snow or rain.

The aforementioned shortcomings of [Gutzeit et al., 2011] are addressed in [Gutzeit and

Voskamp, 2012], where Gutzeit and Voskamp propose the use of Haar-like features [Viola

and Jones, 2001] as an initial detection step. This way, the location of the wood pile in

the image is not constrained to the center anymore and the spatial correlation of the wood

logs faces is taken into account when filtering the detected objects. The suggested method

performs an initial detection first, refines the locations of the detected objects, and then uses

the detected objects to derive information about the color distribution in the foreground and

background. The color model is used in the next step to set the weights for a graph cut

procedure, as described in [Gutzeit et al., 2011]. After the first segmentation, “holes” in the

binary image are used to find additional wood log faces. All remaining blobs are considered to

be wood logs. The results are compared to a distance-based watershed procedure (watershed

on the distance transform of the binary image) and to a binary image, consisting of the
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detected objects as circles. It is found that the graph cut based segmentation performs best,

with the distance-based watershed delivering comparable results. What seems problematic

for the use of this method is the assumption that blobs in the binary image are wood log

faces. From preliminary experiments for this thesis it became clear that many of these blobs

are not part of the wood pile. This issue will be addressed in Chapter 5 (Two-dimensional

surveying) based on our findings presented in [Herbon et al., 2014c].

In addition to academic literature, a number of patents have been filed which concern

the process of wood log surveying. Not all of the following patents have been granted, but

all relevant patent applications will also be discussed, as they contribute to state-of-the-art

techniques in wood pile surveying. Davis [Davis, 1990] proposes a stereographic surveying

technique, which measures the cross-section and length of each log on a truck and derives the

cumulated volume from the individual logs. Since a stereo camera is needed, this patent is not

applicable to surveying with monocular cameras, as exhibited in consumer-level smartphones.

A patent for measuring the external dimensions, the average diameter, and the length

of wood logs of a wood pile is claimed by Kauppinen [Kauppinen, 1993]. This method

requires a beam of light to be projected onto the wood pile, which is then photographed from

different angles. At least three sources of light and at least three video cameras are required

for the application of the patent, which disqualifies it for mobile, outdoor usage. Dralle and

Tard-Johansen filed patents [Dralle, 2005; Dralle and Mads, 2004; Dralle and Tard-

Johansen, 2010] and were granted a patent [Tarp-Johansen and Dralle, 2012] for a

vehicle-based stereo camera system, which measures the size, shape, surface, and location of

the wood logs. The computation is performed on a computer inside the vehicle and the wood

piles are referenced via GPS. A similar system, which measures wood on a gripper arm, has

been filed as a patent application by Seto [Seto, 2011].

Willmann [Willmann, 2009] describes a process in which digital images of wood piles are

taken and transferred to a PC, where they are processed to determine the contour volume,

the number of wood logs, and the average wood log diameter of a wood pile. A similar patent

was filed by Bombosch et al. [Bombosch et al., 2011a; Bombosch et al., 2011b], where

overlapping images of wood pile front surfaces are taken to determine the aforementioned

quantities, while the device is mounted on a forestry vehicle. [Ilumets, 2013] is a patent

application in which an apparatus consisting of cameras and lasers determines the volume,

and a number of other parameters, of wood on a truck. The patent described in [Freistaat

Sachsen Staatsbetrieb Sachsenforst und GIS-Dienst GmbH, 2012] builds on the

composition of a panoramic image, from which the number of wood logs and the contour

volume is derived, based on the known depth of the pile and an unspecified reference object.

The evaluation is performed externally on a PC. A patent based on markers, which are

mounted to the wood pile, was granted to Scheller et al. [Scheller et al., 2014]. The markers
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display bar codes, through which the individual sections of the wood pile are referenced.

During the image acquisition process, live feedback is given to the user in order so show

if a sufficient number of markers is recognized. Only the image acquisition, not the image

processing, is performed on site.

From the number of patents claimed, especially in the last five years, it becomes clear

that wood pile surveying is not only a very active field of academic research but also an

economically vital industrial area. This thesis aims at improving state-of-the-art methods,

while also providing faster methods with higher usability.

3.3 Panoramic image stitching

Panoramic image stitching refers to the task of registering and fusing two or more images,

which depict parts of the same scene [Szeliski, 2006]. Most digital cameras and especially

smartphone cameras have a very limited field of view (FOV). This is a significant limitation,

because many natural or man-made scenes are too large to be captured in a single image.

A common approach to solve this problem is panoramic image stitching. Many modern

smartphones, tablets, and digital cameras offer powerful processing units, which can stitch

images in a matter of seconds.

The registration and stitching of panoramic images is a well-studied and well-understood

research area, with many important contributions over the last two decades. It has broad

applications in computer vision, such as robot navigation [Bourque et al., 1998; Hrabar

and Sukhatme, 2003; Uyttendaele et al., 2004; Yuen and MacDonald, 2002; Zheng,

2003], video stabilization [Battiato et al., 2007; Hu et al., 2007; Lee et al., 2009; Litvin

et al., 2003; Shen et al., 2009], or creating image mosaics [Brown and Lowe, 2007; Chen

and Klette, 1999; Shum and Szeliski, 2000; Szeliski, 2006; Szeliski and Shum, 1997].

Panoramic image stitching relies on image registration. The degrees of freedom (DOFs) that

are necessary for image registration are dependent on the image acquisition geometry, as well

as on a priori information about the intrinsic parameters of a camera. Direct and feature-based

approaches are usually differentiated. Brown and Lowe [Brown and Lowe, 2007] elaborate

that direct approaches work on a pixel level and can provide very accurate registration results

when a sufficiently close initialization is provided. Feature-based methods are independent

of initialization values, but it is important to choose a feature type, which is invariant to

the kind of transform that relates a set of images, e.g., a pure translation, as seen (in the

ideal case) in some microscopic images, or a projective transform in the general case. In the

context of image stitching, adjacent images are related by a 3x3 homography matrix, which

is a matrix that relates two images of a plane by preserving straight lines [Szeliski, 2006].

According to Brown and Lowe [Brown and Lowe, 2007], SIFT features [Lowe, 2004] are
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well-suited for image registration, as the homography transform can be approximated by an

affine transform when linearization is performed. [Lowe, 2004] shows that SIFT features are

invariant to affine transforms when only a small image part is considered.

A homography matrix is a projective transform with eight degrees of freedom [Szeliski,

2006]. Since the homography itself is homogeneous, it is only defined up to scale. Although

a full rank 3x3 matrix generally offers nine degrees of freedom, one DOF must be subtracted

to account for arbitrary scaling. When registering images, this enables the computation of a

homography matrix through four point correspondences, as each point in R2 consists of two

degrees of freedom itself [Hartley and Zisserman, 2004, p. 88]. [Hartley and Zisserman,

2004, pp. 34–36] point out that a homography is induced through a world plane, meaning

that all world points captured by a camera lie in a common two-dimensional plane. A special

case of the common plane constraint occurs when all points lie on a common sphere. Szeliski

[Szeliski, 2006] shows that this case can be found when a camera undergoes a pure rotational

motion.

Panoramas, which are composed based on a common world plane constraint, will be referred

to as planar panoramas in this thesis. The stitching itself is defined as planar image stitching.

In the case where the optical center of a camera remains approximately stationary, the term

rotational panorama is used and the stitching process is called rotational image stitching.

In panoramic image stitching, many scenarios satisfy the common plane constraint. Agar-

wala et al. [Agarwala et al., 2006] propose a half-automatic (user-aided) system which is

capable of stitching facades of houses in a street to a large panoramic image. The result is

a multi-viewpoint panorama which seems natural to an observer. User interaction is mainly

required to remove or refine off-plane objects, such as cars, bicycles and pedestrians. In mi-

croscopy, image stitching gains importance for the stitching of high resolution images, which

can be used as virtual slides [Altinay and Bradley, 2011; Appleton et al., 2005; Steck-

han et al., 2008; Steckhan and Paulus, 2010; Zhang et al., 2013]. The use of virtual

microscopy is especially important in telepathology, where microscopes can be used through a

network service [Weinstein et al., 2009]. Document mosaicing is another important area, in

which planar fragments of a document are stitched together. Whichello and Yan [Whichello

and Yan, 1998] propose to stitch images from a digital camera or a scanner by using a pri-

ori knowledge about the overlapping segments. The approach is pixel-based and relies on

cross-correlation [Russ, 2011, pp. 385-391].

A feature-based approach, using PCA-SIFT, is presented by Liang et al. [Liang et al.,

2006]. In the first step, perspective distortions are removed and the registration problem is

reduced to a three-dimensional problem, leaving only two translational parameters and one for

scaling. The scale and translations are then recovered through a histogram-based multi-scale

approach. These parameters are further refined via a cross-correlation procedure. In the end,
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a projective transform for each image is recovered and the images are composed seamlessly.

Such a feature-based approach is also feasible for the use on mobile devices, as shown by

Hannuksela et al. [Hannuksela et al., 2007]. During the process, online motion estimation

is performed to guide the user when taking pictures. The high resolution image is processed

offline on a desktop computer and the resolution is found to be sufficient for OCR (optical

character recognition).

When dealing with rotational panoramas, the eight DOFs which a planar homography

uses can be reduced to three DOFs, one for each rotation direction [Brown and Lowe, 2007;

Szeliski and Shum, 1997]. Szeliski and Shum [Szeliski and Shum, 1997] advocate this ap-

proach and propose extracting three-dimensional camera rotations directly. It is elaborated

that this approach is significantly more robust with regards to image registration. Addition-

ally, the computational complexity and thus the computation time is reduced. A similar

approach is presented by Brown and Lowe [Brown and Lowe, 2007], which, in contrast to

[Szeliski and Shum, 1997], uses feature-based registration. A rotational homography can

be obtained by performing singular value decomposition (SVD) [Faugeras and Lustman,

1988; Malis and Vargas, 2007; Vargas and Malis, 2005]. Based on this foundation, a

number of other methods have been proposed, such as sequential image stitching for mobile

devices [Xiong and Pulli, 2009b], panorama painting for mobile devices [Xiong and Pulli,

2010], and super resolution panoramas [Capel and Zisserman, 1998].

In all these methods, a panorama type is assumed to be given. Planar as well as rotational

stitching pipelines generally only reject images which they consider to be outliers, but an

evaluation of the panorama type is not part of the registration procedure. We address this

problem in [Herbon et al., 2014b] and the integration into wood pile surveying methods is

discussed in Chapter 4 (Adaptive image stitching).

3.4 3D reconstruction / structure from motion

Structure from motion (SfM) is defined as the reconstruction of a scene (structure) and cam-

era movement (motion) from a set of images. Similar to human vision, the structure can

be recovered by matching features across images [Moeslund and Granum, 2001; Treue

et al., 1991; Young et al., 1993]. Hence, a three-dimensional structure can be retrieved from

two dimensional images. SLAM (simultaneous localization and mapping) is a similar task to

SfM, with optimization toward real time pose estimation and mapping of the environment.

It is mainly used for robot navigation [Nüchter, 2009]. Similar to image stitching meth-

ods, direct und feature-based SLAM and SfM methods are distinguished between [Irani and

Anandan, 2000; Torr and Zisserman, 2000]. While direct methods aim to minimize a

distance measure for each pixel of overlapping images, feature-based methods extract and



3.4. 3D reconstruction / structure from motion 47

match features through which the relations between images can be established [Torr and

Zisserman, 2000]. In this thesis, only feature-based methods are used, since this approach is

more suitable for a more general structure and motion setup, especially with regards to large

baseline geometries (cases in which the camera translation is large), as shown by Torr and

Zisserman [Torr and Zisserman, 2000].

A variety of different feature detectors and descriptors have been proposed, which are suit-

able for structure from motion. It is vital to distinguish between detectors and descriptors,

as detectors usually find corners (points with high peaks in the gradient domain), blobs, or

regions, and descriptors extract a unique description of the region around a feature point

which can be used for matching [Tuytelaars and Mikolajczyk, 2008]. Tuytelaars and

Mikolajczyk [Tuytelaars and Mikolajczyk, 2008] list some of the most prominent fea-

ture detectors, which are: the Harris corner detector [Harris and Stephens, 1988], SU-

SAN [Smith and Brady, 1997], Harris-affine [Mikolajczyk and Schmid, 2004], Hessian

affine region detector [Mikolajczyk and Schmid, 2002], salient regions detector [Kadir and

Brady, 2001], intensity-based regions [Tuytelaars and Van Gool, 2000], MSER [Matas

et al., 2004], and superpixels [Mori et al., 2004; Ren and Malik, 2003]. With these feature

detectors as a foundation, a number of feature descriptors and efficient implementations have

been developed.

Arguably the most prominent of these are SIFT [Lowe, 2004], PCA-SIFT [Ke and Suk-

thankar, 2004], SURF [Bay et al., 2008; Bay et al., 2006], FAST [Rosten and Drummond,

2005; Rosten and Drummond, 2006], ORB [Rublee et al., 2011], and recently A-KAZE

[Alcantarilla et al., 2012; Alcantarilla et al., 2013]. In this thesis, SIFT features will

be used, as they are well supported by many structure from motion pipelines. Alcantarilla et

al. [Alcantarilla et al., 2013] demonstrate that SIFT performs well for many different data

sets in terms of repeatability, although A-KAZE generally performs best. As long as images

can be registered at all, which is usually the case for images from the HAWKwood database,

the choice of feature descriptor in structure from motion is of less importance compared to

the SfM method and non-linear refinement (bundle adjustment, BA).

Most structure from motion and SLAM pipelines work incrementally, which, according to

Moulon et al. [Moulon et al., 2013a], means that an initial pair is chosen from which the

first part of the scene and the initial camera poses are reconstructed. More images are added

incrementally via resectioning. After each resectioning, bundle adjustment is performed,

as proposed for example by Wu et al. [Wu et al., 2011]. A number of incremental SfM

approaches have been presented; some often used pipelines include [Farenzena et al., 2009;

Gherardi et al., 2010; Gherardi and Fusiello, 2010; Moulon et al., 2013a; Snavely

et al., 2006; Snavely et al., 2008; Wu, 2011; Wu, 2013]. Moulon et al. [Moulon et al.,

2013b] point out that the incremental approach leaves room for optimization with regards
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to drift, which is induced through the incremental extension of the 3D model. Furthermore,

the choice of the initial pair has great influence on the overall calibration result. The global

approach of Moulon et al. [Moulon et al., 2013b], which computes relative global rotations

and translations first, then performs bundle adjustment, is proven to be superior in terms of

accuracy of the reconstruction, running time, and scalability. For global methods, the explicit

choice of an initial pair is not necessary, which improves the reduction of drift. By using the

trifocal tensor [Hartley and Zisserman, 2004, pp. 365–407], feature matches are not only

computed between image pairs, but between image triplets. This way, the drift is distributed

more evenly across the scene; hence, better scalability is achieved. For these reasons, the

proposed global pipeline seems to be a good fit for three-dimensional wood pile surveying and

in Chapter 7 (Three-dimensional surveying) how it can be employed for surveying on mobile

devices will be discussed.

All these methods, incremental or global, are feature-based and therefore only reconstruct

a sparse set of 3D points (point cloud). To obtain a quasi-dense point cloud, patch-based

multiple view stereo algorithms can be applied after reconstruction. Furukawa and Ponce

[Furukawa and Ponce, 2007; Furukawa and Ponce, 2010] propose detecting uniformly

distributed corner and blob features which are then matched across multiple images. For each

feature in one image, all features in the other images which satisfy the epipolar constraint

(they are close to the epipolar line in terms of an L2 norm), are considered to be potential

matches. They are then triangulated and filtered to ensure photometric consistency. In the

last step, patches are created, expanded, and filtered from the matched features. This way, a

quasi-dense set of patches can be obtained, which aims to cover the entire object surface. In

later parts of this thesis distinctions will be made between sparse and dense reconstructions,

with sparse reconstruction referring to the initial SfM model and dense reconstruction meaning

the reconstruction after quasi-dense surface patch expansion.

3.5 Wood pile surveying systems used in the wood industry

In the field of wood log surveying, some alternatives to photo-optical and photogrammetric

surveying have been proposed. Laser-scanning of timber trucks is performed by Nylinder et al.

[Nylinder et al., 2008], where logs of different dimensions are scanned and the stems on the

truck are reconstructed in 3D. Furthermore, a comparison between manual and automatic

surveying shows that the laser scanning procedure tends to underestimate the volume by up

to 5.0%. The systematic error is shown to be correlated to the log diameter. With decreasing

diameter, the negative error increases. Funck et al. [Funck et al., 1993] propose to measure

the roundness of wood logs with a laser scanning system. Wood grain can also be detected

by laser light scattering, as shown in [Simonaho et al., 2004].
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Since laser-scanning systems are expensive and difficult to transport, a number of photo-

optical surveying systems have been established in the wood industry. The Polterluchs-System

[Jaeger et al., 2014] from Wahlers Forsttechnik and Visiosens is able to count wood logs in

a pile and document the results based on digital images [Forbrig et al., 2012]. It does not

survey the actual wood mass. Ullrich and Krätzschmar [Ullrich and Krätzschmar, 2012]

from iABG introduce a wood log segmentation pipeline based on edge, color, and texture

features, where wood logs are approximated by an ellipse. A measuring stick is used as a

scale reference. No information is provided about the type of reconstruction model that is

used. The proposed method can be used for random sampling for the determination of the

wood log size distribution, but it is unclear how it could be employed for wood pile surveying.

Jørgensen [Jørgensen, 2008] from Heidegesellschaft proposes a pipeline which requires

a wood pile to be divided into sections with a measuring stick as a scale reference. Digital

images of these sections are taken and later evaluated on a desktop PC, where the images

are preprocessed and then manually segmented. This approach exhibits two significant dis-

advantages. Firstly, the results are not computed on-site. This means that image acquisition

errors lead to the failure of the entire surveying pipeline and the images have to be retaken.

When considering that a person needs to drive into the woods again, locate the wood pile,

and then take the pictures once more, it becomes clear that this is a very time-consuming

task. Secondly, the wood pile is not reconstructed in its entirety, only a side view is available.

Hence, the user cannot be sure that all photos actually belong to the wood pile, and the wood

pile cannot be compared to a digital model when negotiating the sales price on-site.

In accordance with their patent application [Scheller et al., 2014], Foese et al. [Bar-

kowski, 2013; Foese et al., 2012] from AFoRS offer a marker-based surveying method which

measures individual sections of the wood pile. The overlapping images are stitched based on

the detected markers. The surveying error (the definition is unspecified) is said to be less

than 5%. While this error can be assumed to be sufficiently low for surveying purposes,

the proposed method exhibits two problems. Firstly, applying markers to the wood pile is

not only time-consuming, the physical properties of the wood log cut surfaces contaminate

the markers with resin, which makes the markers sticky and increasingly difficult to handle.

Secondly, the method requires an active internet connection. This is a constraint which is

difficult to fulfill in rural areas, as the coverage is usually not sufficient for this task. Off-site

processing is possible, but the same problems as encountered by Heidegesellschaft then apply.

Dralle A/S [Dralle A/S, 2014] offers a vehicle-mounted camera system, as described

by their patent [Tarp-Johansen and Dralle, 2012], which consists of a stereo camera,

a lighting unit, and a GPS sensor. The vehicle drives along the side of the wood pile and

takes pictures of it. According to [Lohse and Heuer, 2014], the repeatability is 2% (no

confidence interval is given). Although this is no proof of the actual measurement accuracy,
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it suggests that the system is reasonably precise. Because a stereo camera system is used, no

scale reference is needed. The scale factor can be directly obtained from camera calibration

information. The measurement evaluation is performed onboard the vehicle. In rough terrain,

it can prove difficult to access certain wood piles with a vehicle, which is why the method is

well-suited for large, easily accessible piles, but lacks flexibility and portability for small to

medium off-road piles.

From this overview of the industrial surveying systems, it becomes clear, that none of them

fulfills all the constraints that were found to be crucial in Section 2.1. The motivation for this

thesis is therefore based on the non-existence of surveying methods which adequately meet all

the requirements of modern forestry. As shown in Section 3.2 (Recognition and segmentation

of wood logs and clustered objects), wood pile surveying is an active research area. This is

due to the fact that a solution for the academic challenges imposed by wood pile surveying

constraints is yet to be presented.

3.6 Related applications

In this chapter, the challenges and the related work of wood pile surveying have been discussed.

The methods proposed in this thesis can be transferred to a number of other problems with

different applications. These similar problems will be reviewed in this section with a brief

outlook on possible future academic work.

Gutzeit and Lukas [Gutzeit and Lukas, 2013] provide a summary of applications where

self-similar objects are being segmented. Four specific cases are listed, namely the segmenta-

tion of wood log faces, apples, fruit in general, and fish. The quality of food can be inspected

by computer vision methods, as demonstrated by [Brosnan and Sun, 2004]. A segmentation

procedure, which is applied to apples, is shown by Bulanon et al. [Bulanon et al., 2002],

where a simple thresholding operation is used. In [Leemans et al., 1998] and [Leemans

et al., 1999] a method is proposed to find defects on apples through a color-based segmen-

tation approach. An apple recognition rate of 81% is achieved by the pipeline presented by

Yongsheng et al. [Yongsheng et al., 2009], which is based on the k-means algorithm. Tabb

et al. [Tabb et al., 2006] successfully segment between 85% and 96% of apples from video

data by applying Gaussian mixture models. The detection of olives is addressed by Riquelme

et al. [Riquelme et al., 2008], who successfully find defects in different types of olives. An

overview of computer vision methods which can be used to locate fruit on trees can be found

in [Jimenez et al., 2000].

The detection and segmentation of fish is comparable to the surveying of wood piles.

Although the location of fish is not stationary in a temporal sense, fish usually appear in a

clustered fashion. Spampinato et al. [Spampinato et al., 2010] demonstrate an approach with
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which multiple instances of fish in a single image can be recognized. To achieve recognition,

texture features and shape features are combined. This approach also seems feasible for the

detection of wood logs. The correct detection rate is shown to be 92%. Huang et al. [Huang

et al., 2012; Huang et al., 2013; Huang and Huang, 2014] also aim for the detection of

fish based on a set of features, consisting of color, shape, and texture information. Li [Li,

2012] takes fish recognition one step further by proposing a method to segment parts of fish,

such as the tail, the contour, or the curvature. The extraction of fish features is addressed in

[Chuang et al., 2014]. Fourier descriptors are used to locate anatomical parts of fish, from

which a feature descriptor is obtained through a supervised learning approach. Appearance,

location, and size are extracted for each body part.

A research field, which closely resembles wood log segmentation, is the recognition of

cells. Like wood logs, cells appear in clusters of similar sizes and shapes, and segmentation

in microscopic images is important for medical image processing. [Wu et al., 1995] shows

that the segmentation of cells in low-contrast images under uneven illumination and intensity

conditions is possible. The cell is separated from the background and the cell boundary is

extracted. A dataset of hand-segmented fluorescence microscopy images is provided by Coelho

et al. [Coelho et al., 2009]. They implement and compare several computer vision methods

which employ techniques such as thresholding, watershed segmentation, active masks, and

region merging. The watershed algorithm by Lin et al. [Lin et al., 2003] was found to perform

best on the test dataset.

Dima et al. [Dima et al., 2011] compare state-of-the-art algorithms in cell segmenta-

tion. Active contours and convex energy functions are implemented by Bergeest and Rohr

[Bergeest and Rohr, 2011] and are tested on a set of microscopy images with different cell

types, through which a quantitative evaluation and a comparison to previous approaches is

undertaken. Cell recognition can also be achieved through template matching, as shown in

[Chen et al., 2013]. Hagwood et al. [Hagwood et al., 2012] perform pixel-based evaluations

of classification and segmentation algorithms, such as Otsu-based thresholding, k-means clus-

tering, Canny edge detection, and watershed segmentation. The segmentation of cell nuclei is

addressed in [Bergeest and Rohr, 2012], where level sets and convex energy functions are

used in combination with active contour segmentation. The detection of melanocytes, which

usually appear in spatially limited clusters, is important for the diagnosis of skin melanoma.

Lu et al. [Lu et al., 2013] examine histopathological images in which melanocytes are seg-

mented through a double ellipse descriptor. This descriptor is specifically designed to detect

biological features of melanocytes. Held et al. [Held et al., 2011] show the feasibility of

segmenting clustered macrophages in microscopic images through watershed and level set

methods.

Many other methods in cell segmentation and recognition have been proposed, which
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cannot all be discussed in the scope of this thesis. The pure number of publications shows the

importance of academic work in this research area. Most methods are directly transferrable to

wood log segmentation and vice versa, except for the fact that wood logs usually exhibit a non-

uniform background. This characteristic means that many of the simpler cell segmentation

methods fail and calls for some of the more advanced methods to be employed for this task.

Apart from the actual recognition of wood logs, some methods have recently been presented

which go beyond wood pile surveying and aim to characterize individual wood logs through

biometric features. The goal of these approaches is to create a photo-based tracking pipeline

for wood logs. In a preliminary study [Schraml, 2013], the traceability of wood logs based

on biometric features is investigated. For this purpose, log end images are taken and the

annual ring pattern of the cross-section is described as a texture pattern through biometric

features. The segmentation of the cross-section is a key aspect for the characterization of a

wood log, as is the estimation of the pith (the biological center of a wood log). A technique

for the robust estimation of the pith is reviewed in [Schraml and Uhl, 2013]. It is based on

different Fourier spectrum analysis methods. Peak analysis and principal component analysis

give the best results for pith estimation.

The starting point for the description of a wood log is the segmentation of the cross-

section. Unlike the related work discussed in Section 3.2 (Recognition and segmentation of

wood logs and clustered objects), where segmentation procedures for clustered wood logs are

shown, Schraml and Uhl [Schraml and Uhl, 2014a] propose a method for the segmenta-

tion of the cross-section in an image, when only one cut surface is visible. This is achieved

through a similarity-based region growing algorithm combined with intensity histograms as

texture features and a histogram distance measure. To further characterize and describe the

properties of a wood log, Schraml and Uhl [Schraml and Uhl, 2014b] compute temporal

and longitudinal variances of wood log cross-sections. These variances are then used as input

for a biometric fingerprint matching technique, where the goal is to match images of the same

wood log cross-section from different points in time. The annual ring pattern-based matching

is also discussed in [Schraml et al., 2014], where biometric feature fusion is found to increase

the robustness of the matching step. The combination of annual ring patterns and shape

features ensures robust recognition across cross-section variations.

In this section it was shown that there exists a wide variety of related applications which

are directly relevant to wood log surveying and vice versa. This increases the motivation for

academic research in this area, since the contributions of this thesis are of importance to all

of the aforementioned computer vision tasks.



Chapter 4

Adaptive image stitching

In this chapter, a novel method for adaptive image stitching is presented, which we originally

published in [Herbon et al., 2014b]. The proposed method is applicable to the general

stitching scenario and serves as the basis for the two-dimensional surveying approach of this

thesis. Based on the original paper, the following sections in part summarize and extend the

described method. The goal in the scope of this thesis is to take photos of a wood pile front

surface from different viewpoints and fuse these images together, while determining whether

or not the panorama was properly captured. Although image stitching itself is a well-studied

research field, the stitching of wood pile front surfaces imposes additional constraints. It will

be discussed what measures should be taken to ensure proper image acquisition and how

existing approaches can be incorporated into the novel stitching method. If the panorama is

valid according to the standards defined below, then it can be used as the input for a wood

log detection and segmentation method. Figure 4.1 shows an example of the desired output,

which was generated by the proposed approach.

Figure 4.1: Exemplary output of the proposed stitching pipeline, composed of eight input

images.

53



4.1. Objective 54

4.1 Objective

When performing image stitching, the goal is to seamlessly fuse overlapping photos into a

panoramic image. In Section 3.3 (Panoramic image stitching), it was shown that one out

of two constraints for the scene geometry must be enforced in order to retain validity of

the homographic registration model. In other words, the images must either all depict a

common world plane or be taken during a pure rotation about the camera’s optical center

(which is a special case of the common world constraint). When registering images for planar

stitching (common world plane constraint), eight degrees of freedom are necessary, which are

encapsulated into a general homography matrix. For the registration of rotational panoramas,

only three degrees of freedom are required, which greatly simplifies the stitching procedure.

The full homographic stitching model can also be applied to rotational image stitching, but

should be avoided if possible. The reason for this is that when applying an eight parameter

model to a problem with three degrees of freedom, the solution is ambiguous and the pipeline

becomes unstable [Brown and Lowe, 2007; Shum and Szeliski, 2000; Szeliski, 2006;

Szeliski and Shum, 1997].

In the case of wood pile surveying, a user must not perform rotational image stitching,

because a rotational model induces distortions towards the edges of the pile. The result-

ing panoramic image should rather come close to an orthogonal projection of the wood pile

front surface, as this is the model in which measurements are applied in forestry surveying

techniques. If one were able to approximate the camera translation based on image corre-

spondences, the validity of the camera trajectory and thus the correct homographic model

could be established.

The recovery of the camera trajectory is usually performed through multiple view auto

calibration techniques, such as visual odometry, SLAM, or structure from motion. In the

Research challenges section the constraints for multiple view reconstruction were discussed,

which include the so-called planarity degeneracy. According to [Hartley and Zisserman,

2004, pp. 295–296], the essential / fundamental matrix-based auto calibration requires that

not all world points are coplanar. This means that a degenerate configuration occurs when all

scene points lie in a common world plane, which is the case when taking pictures of wood pile

front surfaces. For this reason, the camera trajectory cannot be recovered through essential

matrix decomposition. In the next sections it will therefore be established how the camera

translation and rotation can be approximated based on a set of homographies which are

relating the input images.

Apart from validating the stitching model, the proposed method yields other advantages

over conventional pipelines. Firstly, rotational stitching can be performed significantly faster

when choosing a three parameter model over the eight DOFs model. Secondly, as discussed

above, the stitching process becomes more stable when using the correct number of DOFs.
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The third and most visually significant advantage is that a proper projection surface can

be chosen, so as to minimize distortions. In the case of rotational stitching, a spherical or

cylindrical mapping surface can be used, while a planar mapping surface works best for image

sequences of planar scenes. This goal builds towards the statement of Szeliski in [Szeliski,

2006], which reads as follows:

“Automatically making this [composition surface] selection and smoothly transi-

tioning between representations based on the extent of the panorama is an inter-

esting topic for future research.”

4.2 Adaptive stitching pipeline

Several approaches for image stitching pipelines have been proposed, most of which address

rotational image stitching [Brown and Lowe, 2007; Szeliski and Shum, 1997]. Based on

these methods, a new adaptive approach is described in this section. The main contributions

of the proposed method are:

1. Definition of the panorama type criterion (PTC)

2. Adaptive (planar and rotational) bundle adjustment

3. Selection of the correct mapping surface

4. Optimization for mobile devices

Figure 4.2 shows the different steps of the proposed pipeline, with the green boxes marking

the novel parts that are not included in standard pipelines. An image sequence without

additional information is taken as input. For each image the features are computed and feature

description is performed. In the proposed approach, SIFT features are chosen for robustness,

applicability to general image content, and wide availability, but any other feature-type can

be used as well. The choice of feature may also be based on potential a priori knowledge of

the content, where, e.g., blob-based features can be used for textureless content.

The feature-matching problem is solved by using FLANN [Muja and Lowe, 2009; Muja

and Lowe, 2012] (Fast Library for Approximate Nearest Neighbors). From the feature

matches, a homography for each image pair is computed through a RANSAC-based (Random

Sample Consensus) approach [Fischler and Bolles, 1981] if sufficient inliers are available.

Outliers are rejected based on the geometric model and the homography is refined from in-

liers only, as proposed by Zhang and Kosecka [Zhang and Kosecka, 2006a; Zhang and

Kosecka, 2006b]. A confidence level is computed for every homography, based on the num-

ber of inliers for the feature matches in relation to the number of outliers, which gives an

indication of the validity of the homography. If the confidence does not exceed a certain
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Figure 4.2: Adaptive stitching pipeline. The novel parts are marked green. Image based

on [Herbon et al., 2014b].

threshold, the homography is rejected and the stitching process is only performed for the

largest subset, in which the images were registered correctly.

The method so far is largely common practice in stitching pipelines, such as those proposed

by [Brown and Lowe, 2007; Szeliski and Shum, 1997]. After the homography computation,

the novel adaptive stitching approach takes place. The first step is to perform homography

decomposition based on the method provided by Borgstadt and Ferrier [Borgstadt and

Ferrier, 2001]. Each homography is decomposed into a rotational and a translational com-

ponent, R ∈ R3×3 and t ∈ R3×1. The details of the parametrization and decomposition will

be discussed in Section 4.4 (Homography decomposition). In the next step, a global camera

motion estimation is computed based on the homography decomposition. Any camera can be

used as the reference camera; in practice the first camera, or the camera in the center, of the

sequence, are chosen.

The main contribution of this approach is the definition of the panorama type crite-

rion. Based on the global motion, the criterion determines whether a rotational or a planar

panorama was captured. In the case of a rotational panorama, the panorama type criterion

can account for small translational motions that are usually inevitable when capturing im-

ages on a handheld device. A detailed description will be given in Section 4.6 (Panorama type

criterion). The last step of the novel approach is adaptive bundle adjustment. Depending on

the decision of the panorama type criterion, a suitable model is chosen, which is then used
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for nonlinear Levenberg-Marquardt optimization [Levenberg, 1944; Marquardt, 1963;

Moré, 1978]. Concluding the stitching pipeline, standard seam detection, exposure compen-

sation, and final stitching are performed. While the first two of these steps are independent

of the panorama type, the final stitching result is strongly influenced by the chosen mapping

surface, as explained by Szeliski [Szeliski, 1996; Szeliski, 2006]. Depending on the image

acquisition geometry, either a planar or cylindrical / spherical mapping surface should be

chosen, so as to minimize distortions. By making this distinction, a visually appealing, as

well as a geometrically correct, result image can be obtained.

4.3 Optimization for mobile devices

Choosing a three parameter model for rotational image stitching simplifies the stitching pro-

cess and reduces the computation time. Apart from this optimization, additional strategies

can be followed to further enhance the stitching approach specifically for mobile devices. The

choice of feature detector is an important aspect of the image registration step. In Section 3.3

(Panoramic image stitching), different feature detectors which can be used alternatively were

discussed. Since the stitching process takes place directly on the mobile device, parallelization,

through which feature detection and extraction can be performed during image acquisition,

is possible. By considering this strategy, the choice of feature detector is relativized, as the

extraction time becomes critical only if it takes more than a few seconds - the time which a

user needs to capture consecutive frames. Additionally, the image resolution can be reduced

for feature detection, while the end result can still be stitched in full resolution. By perform-

ing bundle adjustment, the quantization errors, which are introduced by scaling the image,

can be largely compensated.

Many stitching algorithms [Brown and Lowe, 2007; Szeliski, 2006] assume an unordered

image collection. While this assumption must be made for the general case, information about

image acquisition can be incorporated into the registration process. This is especially useful

if capturing and processing occur on the same device. Xiong and Pulli [Xiong and Pulli,

2009a; Xiong and Pulli, 2010] propose to perform sequential image stitching. Since the

order of the images is known, the registration can be performed between consecutive pictures

only. In other words, each image Ii must now only be registered with images Ii−1 and

Ii+1. The complexity for the panorama recognition problem is thus reduced from a quadratic

problem (O(n2)) to a linear problem (O(n)). Furthermore, global motion estimation can also

be performed sequentially, similar to SLAM-based approaches, as will be shown in Section 4.5

(Motion estimation).
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Figure 4.3: General principle of the homography decomposition technique by Borgstadt

and Ferrier [Borgstadt and Ferrier, 2001]. Image based on [Herbon et al., 2015b].

4.4 Homography decomposition

The panorama type criterion relies on accurate motion estimation. The basis for computing a

global motion is the decomposition of the homography matrices. There exist several decompo-

sition techniques, such as [Borgstadt and Ferrier, 2001; Faugeras and Lustman, 1988;

Malis and Vargas, 2007; Zhang and Hanson, 1996]. We have previously been successful

in applying the method provided by Borgstadt and Ferrier [Borgstadt and Ferrier, 2001],

as shown in [Herbon et al., 2014b] and [Herbon et al., 2015b]. The goal of homography

decomposition is to extract a rotational and a translational component from the homography

matrix, which offers insight into the camera trajectory. Figure 4.3 shows the principle of

this procedure, based on the connotation of Borgstadt and Ferrier. The initial step of the

approach in [Borgstadt and Ferrier, 2001] is to parametrize a given homography matrix

Hk, as shown in Equation 4.1.

Hk =


Rk,1,1 Rk,1,2 tk,1

Rk,2,1 Rk,2,2 tk,2

Rk,3,1 Rk,3,2 tk,3

 (4.1)

The first two columns of Hk correspond to the first two columns of the rotation matrix

Rk. This matrix Rk is the rotational component of the homography, as opposed to the

translational component tk. Since a homography only offers eight degrees of freedom, Hk

must be normalized. Borgstadt and Ferrier propose to perform normalization by Hk(3, 3).
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For this purpose, the translation vector tk is defined as

tk =


tk,1

tk,2

tk,3

 =


xk

yk
1

divk

 (4.2)

where divk is a measure for the scaling induced by the homography, called the divergence.

This scaling factor is equivalent to a translation along the z-axis when the assumption of a

pinhole camera model is made. Borgstadt and Ferrier provide a definition of divk, for which

the general, normalized homography of Equation 4.3 is presumed. The definition of divk is

then introduced as shown in Equation 4.4.

Hk =


ak bk ck

dk ek fk

gk hk 1

 (4.3)

divk =

√
a2k + b2k + d2k + e2k + g2k + h2k

2
(4.4)

The normalized parametrization of Hk is denoted as H ′k and is given by the following

equation.

H ′k =
1

divk


divkRk,1,1 divkRk,1,2 divkxk

divkRk,2,1 divkRk,2,2 divkyk

divkRk,3,1 divkRk,3,2 1

 (4.5)

The definition of the displacement vector tk alone is not sufficient for the approximation

of the camera trajectory. Since H ′k only includes the first two columns of the rotation matrix

Rk, the third column of Rk must be reconstructed based on the fact that rotation matrices

are orthogonal. The columns of Rk are denoted as r1, r2, and r3, so that Rk = [r1 r2 r3].

The normalized rotation matrix, where each column vector is normalized through |ri| = 1, is

defined as R′k = [r′1 r
′
2 r
′
3]. Due to the orthogonality property, r′3 can be defined as the cross

product of r′1 and r′2, which completes the homography decomposition procedure.

r′3 =
r′1 × r′2
|r′1 × r′2|

(4.6)

With the extraction of the rotational and translation component, estimation of the camera

trajectory is possible. This will be shown in the next section.

4.5 Motion estimation

The motion estimation technique builds on the optimization for mobile devices that enables

the registration to be constricted to consecutive frames. For this purpose consider images Ii
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Figure 4.4: Relationship between single and double indexed homographies. Image based

on [Herbon et al., 2014b].

with i = 1 . . . n. Each consecutive image pair is related by a double indexed homography

Hi,i+1, which relates images Ii and Ii+1. The establishment of a global motion requires a

reference image Ir, which introduces a global coordinate system. Based on the double indexed

homographies, a perspective transform in the global coordinate system that transforms the

image Ii to the global coordinate system, must now be computed for each input image. This

transform is denoted as the single indexed homography Hi. Figure 4.4 shows the relationship

between the double and the single indexed homographies.

Ir defines the global coordinate system and thus Hr = [I], with [I] being the 3×3 identity

matrix. The definition of the global, single indexed homographies is given by Equation 4.7,

where they are defined as the product of consecutive double indexed homographies.

Hi =



r+1∏
j=i

Hj−1,j = Hi−1,i ·... ·Hr,r+1 for i > r[
I

]
for i = r

r−1∏
j=i

Hj,j+1 = Hi,i+1 ·... ·Hr−1,r for i < r

(4.7)

The distinction between different cases becomes necessary due to the fact that matrix

multiplications are not commutative. Three cases, namely i > r, i = r, and i < r, must

be considered. The order in which matrices are multiplied must begin with the homography

closest to the image of interest and must end with the homography that links to the reference

image. This process will be referred to as homography chaining.

The homography decomposition produces a translational and a rotational component, from

which the camera center can be recovered. In the pinhole camera model the ith camera center

is defined, based on [Hartley and Zisserman, 2004, p. 156], as shown in Equation 4.8.

Ci = −R−1i · ti = −R−1i ·


xi
divi
yi
divi
1

divi

 (4.8)
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The initial definition of the reference image wasHr = [I], which is induced through Ri = [I]

and t′i = [0, 0, f ]T , where f is the focal length of the camera. t′i is then normalized by f , which

results in ti = [0, 0, 1]T . The reference camera center, according to Equation 4.8, is therefore

defined as shown by Equation 4.9.

Cr = −R−1r · tr = −


1 0 0

0 1 0

0 0 1

 ·


0

0

1

 =


0

0

−1

 (4.9)

According to [Hartley and Zisserman, 2004, p. 156] the approximation of the camera

pose can be defined by Equation 4.10. Since normalized point correspondences are assumed,

the intrinsic matrix K can be set to the identity matrix as K = [I]. Through the camera

centers and camera poses, the displacement of the cameras, and thus the camera trajectory,

can be obtained, which will be taken as input by the panorama type criterion in the next

section.

Pi = K[Ri | ti] = [Ri | ti] (4.10)

4.6 Panorama type criterion

The centerpiece of the proposed method is the panorama type criterion. The goal is to take

as input the global motion approximation and then initiate a decision process, which results

in one out of three possible outcomes: rotational panorama, planar panorama, or non-valid

motion. From Figure 4.2 it becomes clear that, at this stage, the homography computation

was successful, as was the global motion estimation. If the pipelines failed during these stages,

then the image sequence is not eligible for panoramic image stitching. Instead, multiple view

reconstruction can be performed, if sufficient overlap is given. In the previous steps, the

homography decomposition method is applied to each of the single indexed homographies.

The decomposition yields a translational and a rotational component. Figure 4.5 shows the

decision structure of the panorama type criterion, where the first step is to validate the

translational components.

Translational condition An ideal rotational panorama should exhibit no translation, so

that ti = 0 for i = 1 . . . n. In reality, panoramas taken with handheld cameras always

include small translations. Shum and Szeliski [Shum and Szeliski, 1999] propose to restrict

a user’s movement during rotational panorama acquisition to a concentric circle. Based on

this approach, the panorama type criterion allows for small translations, as long as a certain

threshold ξ is not exceeded. For this purpose, the Euclidean distance from the reference

camera center Cr is computed as Di = |Cr−Ci|. If there exists some distance di with di > ξ,
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Figure 4.5: Structure of the panorama type criterion. The part indicated by the dashed

line is optional. Image based on [Herbon et al., 2014b].

then the panorama type must be planar, since, at this stage, all images have been registered

successfully. The value for ξ depends on how permissive the panorama type criterion should

be. A good heuristic for handheld devices, which was experimentally obtained, is ξ = wr
f ,

with wr being the reference image width and f being the focal length. Figure 4.6 depicts the

translational condition with application to both kinds of panoramas.

Rotational condition If the translational threshold is not exceeded, then it is hypothesized

that the panorama is rotational. In Section 4.3 (Optimization for mobile devices) it was

discussed that the complexity can be greatly simplified by only stitching consecutive frames.

For this reason, the rotational motion can be restricted to a single row panorama. The

constraint is optional and if a single row panorama should be enforced, then this entails

that the rotation direction must be consistent. This can be ensured by computing the angle

between the optical axes of adjacent cameras. From Figure 4.7 it becomes clear that the

optical axis of a camera in global coordinates can be computed via the optical center of the

camera p̂′oc,i = [0, 0,−1, 1]T (normalized homogeneous representation), which is the point

where the optical axis passes through the image plane of the pinhole camera model. p̂′oc,i can

be transformed to the global coordinate system through the inverse of the camera pose matrix

Pi from Equation 4.10, as shown in Equation 4.11.

poc,i = P−1i · p̂′oc,i (4.11)

The direction of the optical axis vector oi can then be computed through the subtraction

of the camera center Ci (which is already in global coordinates) from poc,i and normalizing
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Figure 4.6: Translational condition for the panorama type criterion. (a) Biased circular

camera movement, typical for handheld devices. (b) Translational camera movement.

Red indicates cameras that exceed the proposed translation threshold ξ. Image based on

[Herbon et al., 2014b].

by the norm of the resulting vector.

oi =
Ci − poc,i
|Ci − poc,i|

(4.12)

With the optical axis vector known for each camera, the angle θ between two of these

vectors can be simply calculated via the inverse cosine of the dot product. θi−1,i denotes the

angle between cameras i− 1 and i.

θi−1,i = acos(oi−1 · oi) (4.13)

To ensure consistency between camera triplets for the rotational condition of the panorama

type criterion, both of the following equations must hold true.

θi−1,i+1 > θi−1,i (4.14)

θi−1,i+1 > θi,i+1 (4.15)

The rotational condition is valid, if the angle θi−1,i+1 is larger than θi−1,i and θi,i+1.

This means that the rotation between consecutive frames must be smaller than the rotation

between three frames. As soon as the rotation changes direction, θi−1,i+1 will decrease and

the rotational motion is considered to be non-valid. In this case, the panorama is dismissed,

in the other case, the stitching pipeline continues.
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et al., 2014b].

4.7 Adaptive stitching

4.7.1 Bundle adjustment

One of the major advantages of employing the panorama type criterion is the possibility of

using adaptive bundle adjustment. In panoramic image stitching as well as in multiple view

reconstruction, bundle adjustment is used for the optimization of intrinsic (e.g. principal

point, focal length) and extrinsic (rotation and translation) parameters [Triggs et al., 2000].

For the proposed method, Levenberg-Marquardt optimization is performed [Levenberg,

1944; Marquardt, 1963; Moré, 1978], via the implementation of [Bradski, 2000]. As

a cost function, the reprojection error, as defined by [Hartley and Zisserman, 2004, p.

95] (Equation 4.16), is used, which the bundle adjustment aims to minimize. x and x′ are

perfectly matched points in the first and second image respectively, x̂ and x̂′ are the same

points, transformed by the homography H, and D is the Euclidean distance. The selection of

the reprojection error as a geometric cost function is based on the property that it accounts

for uncertainties in both images.

∑
j

D(xj , x̂j)
2 +D(x′j , x̂

′
j)

2 with x̂′j = Hix̂j ∀j (4.16)

Since distinctions are made between two panorama types, the implementation of the adap-

tive bundle adjustment must provide two suitable models with the proper number of degrees

of freedom. In the case of a rotational model, bundle adjustment needs to optimize 3+3

DOFs, where the first three degrees account for intrinsic parameters (u, v of the principal

point and the focal length f) and the second three degrees represent the possible rotation an-
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gles. More parameters for the intrinsic matrix could be used, such as skew, but most cameras

are sufficiently described by three parameters [Hartley and Zisserman, 2004, p. 185]. As

mentioned previously, the reduction of the extrinsic parameters to three degrees of freedom

has been well studied, e.g. by [Brown and Lowe, 2007; Chen and Klette, 1999; Shum

and Szeliski, 2000; Szeliski, 2006; Szeliski and Shum, 1997]. The rotation matrix R can

be decomposed to its rotation angles θ1, θ2, θ3 by applying the Rodrigues formula [Mebius,

2007; Rodrigues, 1816], which are then directly used for nonlinear optimization.

If the translational condition indicates a planar panorama, the second bundle adjustment

model is used. It consists of a 3+8 parameter setup, where the three intrinsic parameters

remain the same, but eight extrinsic degrees of freedom cover the parameters of the general

homography matrix. The scale ambiguity is accounted for by enforcing a norm of 1. The

results of the bundle adjustment procedure will be discussed in Section 4.8 (Evaluation).

4.7.2 Mapping surface selection

Figure 4.8: Different mapping surfaces for the same scene. Rotational panorama with a

(a) cylindrical, (b) spherical, (c) planar mapping surface.

The second crucial part of the stitching process is the selection of the mapping surface

(for details see, e.g., [Szeliski, 2006]). Figure 4.8 (a)-(c) shows three examples of standard
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Figure 4.9: Planar mapping surface

mapping surfaces, namely a cylindrical, a spherical, and a planar model. All three images

originate from the same input images. It becomes clear that the panorama is rotational,

which is why generally a spherical mapping surface is appropriate. When mapping single row

panoramas, a cylindrical model can also be employed. This type of warping induces some

small distortions towards the top and the bottom, but the underlying mathematical model is

easier to implement [Szeliski and Shum, 1997]. Figure 4.8 (c) emphasizes the necessity for an

appropriate mapping surface. It can be seen that the planar mapping of a rotational panorama

produces strong distortions. The parts to the far left and far right of the image were clipped

in order to display the image at all. In contrast to the distorted rotational panorama, Figure

4.9 depicts the same scene captured as a planar panorama. Planar mapping is performed and

it can be observed that the result is free from mapping distortions.

4.8 Evaluation

4.8.1 Results

The proposed method was tested on 50 data sets, of which 20 contain planar panoramas and

30 a rotational panorama, with between 5 and 15 images each. Some of these sets show the

same scene and both types of camera motions are captured. This way, a direct analysis of the

panorama type criterion is possible. The evaluation showed a 100% success rate in determining

the correct panorama type for each of the 50 data sets. The correct bundle adjustment and

mapping surface were chosen in all cases. Table 4.1 shows the average reprojection error after

bundle adjustment for different numbers of input images with a resolution of 800x600 pixels

and different panorama types. It can be observed that the reprojection error is low enough

for a good quality result. The error is slightly larger for rotational panoramas, which is due

to the fact that all images were captured by hand. This induces a small translation which

causes a deviation from the purely rotational model.

In Section 4.1 (Objective) it was claimed that rotational stitching can be performed faster
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images planar rotational

5 1.11px 1.27px

7 1.06px 1.28px

10 1.06px 1.31px

15 1.06px 1.30px

Table 4.1: Average reprojection error for 5, 7, 10, and 15 images in pixels. Table source:

[Herbon et al., 2014b]

than planar stitching, due to fewer degrees of freedom. Tables 4.2 and 4.3 show the average

bundle adjustment and overall processing times according to the number of input images,

measured on an iPhone 5S smartphone. As expected, the bundle adjustment and the process-

ing time increase with the number of images. The ratio between rotational and planar bundle

adjustment is always between 3.6 and 4.0, independent of the number of images. This way it

becomes clear, that the type of bundle adjustment also plays a significant role in the overall

processing time. The total time for stitching does not include feature detection, as this step

is performed during acquisition.

images 3+8 DOF 3+3 DOF ratio

5 0.954s 0.283s 3.944

7 2.765s 0.712s 3.884

10 3.759s 1.617s 3.602

15 12.159s 3.449s 3.637

Table 4.2: Bundle adjustment times for the

3+3 DOFs and 3+8 DOFs setups. Table

source: [Herbon et al., 2014b]

images planar rotational

5 2.83s 2.11s

7 5.39s 4.03s

10 7.77s 5.23s

15 14.56s 9.13s

Table 4.3: Overall processing time, exclud-

ing feature detection, for 5, 7, 10, and 15 im-

ages. Table source: [Herbon et al., 2014b]

Although the technical specifications of smartphones and other mobile devices gradually

improve, one strongly limiting factor is the available memory. Image stitching can be very

memory consuming, which is why the actual memory usage of the proposed method was

monitored and the results for images with a resolution of 800x600 pixels are shown in Table

4.4. The largest number of images in the available data sets was 15, which leads to a peak

memory usage of approximately 96MB. With a total memory of 1GB in the test device, the

proposed method takes up only about 10% of the memory and is therefore well suited for

mobile usage.
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images peak memory usage

5 49.6 MB

7 57.9 MB

10 72.8 MB

15 96.2 MB

Table 4.4: Average peak memory usage for 5, 7, 10, and 15 images. Table source: [Herbon

et al., 2014b]

4.8.2 Remarks

The proposed method is generally applicable to panoramic imaging for both multiple and

single row scenarios. The implementation of the approach builds on the complexity reduction,

which is introduced through homography chaining, meaning that only consecutive images are

registered. While this simplifies the computational complexity, it is still sufficient for most real

world applications, especially wood pile surveying. Nevertheless, one might wish to capture

panoramas with multiple rows. In this case only the image registration and the global motion

computation need to be adjusted. The panorama type criterion remains valid, and can even

be simplified by removing the necessity for the rotational condition.

The input data sets were all captured by a smartphone camera, which is the primary

area of application for the proposed method. The threshold for the translational condition is

designed for a fixed focal length of the camera. When stitching images with different focal

lengths, the criterion can be adjusted if necessary. A minimum number of five images has

been shown to work well for the application of the panorama type criterion. Fewer images

exhibit the risk of failure, since the camera translation might be insufficient to accurately

apply the translational condition of the panorama type criterion.

In both cases, rotational and translational, it is advisable to account for lens distortion.

Especially planar panoramas suffer from these distortions, which can be removed be perform-

ing intrinsic calibration first, e.g., through the method by Zhang [Zhang, 2000]. Further

visual results can be found in Appendix A: Stitching results. General scenes as well as wood

piles are shown, with some scenes captured as both planar and rotational panoramas.

4.9 Summary and application to wood pile surveying

In this chapter an approach was presented, which was proven to be capable of distinguishing

between rotational and translational panoramas. This problem has so far been rarely ad-

dressed in related work. The panorama type criterion provides the largest contribution and

is designed to be integrated into existing approaches, either to validate a stitching model or,
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as was also described in this chapter, for adaptive stitching. The camera trajectory is re-

covered through homography decomposition, which provides a rotational and a translational

component. A rotational panorama is present when all camera translations do not exceed a

specific threshold. This requirement is defined as the translational condition. Optionally, the

rotational component may be used to evaluate the consistency of the camera rotation, in case

the approach imposes the discussed complexity reduction for mobile devices.

The panorama can be stitched regardless of its type by choosing the proper degrees of free-

dom, performing adaptive bundle adjustment, and selecting a suitable mapping surface. For

planar panoramas, a 3+8 DOF bundle adjustment model, combined with a planar projection

surface, is used. Rotational panoramas can be optimized through a 3+3 DOF model, with

a mapping onto a spherical or a cylindrical surface. 50 data sets were used to quantitatively

and qualitatively evaluate the proposed approach. The results are shown in this chapter and

in Appendix A. The bundle adjustment of rotational panoramas is, on average, three and a

half to four times as fast as planar stitching.

For wood pile surveying, rotational stitching is not an option, because the image of a

wood pile would become distorted towards the edges. An orthographic projection of the front

surface conforms ideally to the definition of forestry surveying approaches. Planar stitching

poses an attractive alternative, as the computational complexity is lower than that of a full

3D reconstruction. The front of a wood pile can usually be considered to be approximately

planar, or quasi-planar. This constraint has been found to be sufficient for planar stitching,

illustrated by the results shown in Appendix A.2. The panorama type criterion helps to guide

a user on-site when capturing images of a wood pile. Non-valid planar panoramas can be

dismissed quickly after the global motion estimation and the user can improve acquisition by

moving the camera correctly. An interesting point for future research would be to perform

motion estimation during acquisition for live feedback.



Chapter 5

Two-dimensional surveying

The image-based recognition of wood logs is one of the most important aspects of wood

pile surveying. Many environmental influences affect the image acquisition and the visual

appearance of the wood pile. A potential method for this task must therefore be able to

deal with such varying conditions and still perform as well as possible. In [Herbon et al.,

2014c] we presented an approach which shows promising results for wood log recognition.

The current chapter is based on this original paper, while the evaluation results have been

greatly extended to not only consider a larger number of test images, but also the impact of

an extended parametrization.

5.1 Objective

This chapter describes an approach which recognizes wood logs in digital images and per-

forms surveying based on the detection results. A wood pile, including its wood logs, can

be geometrically described as a clustered object. Other examples of such clustered objects

include fish, fruit, cells, and many more, as shown in Section 3.6 (Related applications). The

proposed method can be viewed as a general scheme, which is refined by certain character-

istics of roundwood logs. The objective of the recognition method is to correctly detect as

many wood logs as possible (high true positive rate) with as few false matches as possible (low

false positive rate). This method is then used as the basis for the two-dimensional surveying

approach, where it is applied to panoramic images. These images are planar panoramas of

wood pile front surfaces created through the approach presented in Chapter 4 (Adaptive image

stitching).

In Section 2.2 (Research challenges) a number of obstacles were identified, which must be

accounted for during wood log recognition. In this context internal and external parameters

of the method are distinguished between. External parameters (such as illumination, noise,

3D rotation, and image resolution) alter the digital image before processing, while internal

70
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parameters of the algorithm are evaluated in order to find the best performing parametrization.

The results are assessed based on their true and false positive rate for both recognition and

segmentation. Like all methods discussed in this thesis, special attention is given to processing

time and memory consumption with regards to use on handheld devices.

5.2 Detection and segmentation
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Figure 5.1: Wood log recognition method overview. Image based on [Herbon et al.,

2014c].

The general scheme of the proposed recognition method is shown in Figure 5.1. This

approach is based on the method by Gutzeit and Voskamp [Gutzeit and Voskamp, 2012],

who propose to perform detection, create a statistical model, and recognize further objects

within potential regions of interest. The method in this chapter optimizes and extends this

approach, which will be shown in this section. The first step of the presented method is an

initial detection of wood logs in the input image Iin (Figure 5.2(a)), which yields the initial

object set Sinit. One or more feature detectors (cascades of boosted weak classifiers), such as

LBP, HOG, and Haar-like, are chosen for this task. All three types of detectors were trained

with 8767 positive and 5161 negative samples that are not contained in the test data set

of the HAWKwood database. All positive training images have a resolution of 24x24 pixels.

The specific combination of detectors is subject to evaluation in Section 5.4.2 (Image-based

detection). Since the objects of interest are not of a defined size, the detection procedure is

implemented as a multi-scale approach. At each scale, the image is resized with a scale factor

sdetector, whose influence will also be investigated in Section 5.4.2 (Image-based detection). In

advance of the evaluation results it is important to consider that a larger number of scales
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(smaller sdetector) results in a longer processing time. For this reason, sdetector should be

chosen with regard to the targeted performance.

Figure 5.2: Consecutive steps of the detection method. (a) Initial detection result, some

wood logs are missing. (b) Foreground estimated by the GMM. (c) Foreground without

known objects. (d) Candidates based on color model. (e) Validated candidates. (f) Final

segmentation result after 10 iterations.

Figure 5.3: Candidate objects from blob extraction. (a)-(b) Correctly identified objects.

(c)-(f) Rejected candidates, which are similar in color.

Once the initial detection is complete, the objects are filtered in a way such that overlapping

objects (more than 50%) are removed or merged. A Gaussian mixture model is computed

based on the color information provided by the remaining objects [Gutzeit and Voskamp,

2012]. Based on this color model a probability map is obtained, which is thresholded twice

to generate the trimap T [Gutzeit and Voskamp, 2012]. This trimap labels the pixels in

the input image as foreground, background, or unknown. Unlike Gutzeit and Voskamp, who

use graph cuts for segmentation, we perform a watershed transform. This is solely based on a
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consideration of the processing time, which is significantly lower, while the results are similar.

The trimap and the recognized objects are taken as input by the watershed transform, where

the objects are used as markers. Concluding the application of the watershed transform, the

binary foreground image Ifg is computed (Figure 5.2(b)). All initial objects are subtracted

from the foreground to compute the difference image (Figure 5.2(c)).

Via a distance transform, blobs are extracted and stored as potential candidate objects

Sblob (Figure 5.2(d)). The most important difference to [Gutzeit and Voskamp, 2012] is

the processing of these object candidates. While [Gutzeit and Voskamp, 2012] suggests to

view all blobs as correctly recognized objects, the method in this chapter performs a detailed

validation for each candidate, which removes candidates, that are just similar to a wood log

in color but that actually do not belong to the object cluster. Figure 5.3 emphasizes the

necessity for such a discrimination, by showing examples of object candidates. The detailed

validation is performed by decreasing the scale sdetector and running the detection scheme

with the combination of Haar-like, HOG, and LBP features locally in the areas of interest

(blobs). The validated objects Sblob,val (Figure 5.2(e)) are merged with the initial objects

as Scons = Sinit ∪ Sblob,val, where Scons are the consecutive objects with which processing

continues. In the next step, the GMM is refined from Scons and new candidates are extracted

and validated. This is repeated until Sblob,val = ∅, which means that no new objects were

found. In this case, Scons is the final detection result, and the last watershed segmentation is

the final segmentation result (Figure 5.2(f)).

In summary, the proposed method builds on the approach by Gutzeit and Voskamp

[Gutzeit and Voskamp, 2012], but provides some significant improvements that help to

optimize the detection result:

1. The proposed method offers a higher true positive rate, which is achieved through a

combination of different feature detectors, instead of a single detector.

2. The true positive rate is further increased through an iterative scheme, composed of

detection, statistical modeling, and merging steps.

3. The false positive rate is significantly lower, by performing individual validation of

candidate objects.

4. An extended parametrization offers the possibility to adjust the algorithm to specific

tasks.

5.3 Surveying

Building on the recognition and segmentation approach of the previous section and the stitch-

ing technique of Chapter 4, a method for two-dimensional surveying is derived in this section.

The quantities of interest are the wood log count, the contour volume Vc, and the solid wood
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Figure 5.4: Different measurements during surveying. (a) Measurement of the pile width.

(b) Solid wood volume. (c) Smoothed contour volume.

volume Vs. The surveying process begins with the automatic recognition approach and then

offers the user an interface for interactive editing. This way it can be assured that all wood

logs were correctly marked with minimal effort for the user. To perform the measurement,

the scale of the wood pile must be recovered. The most robust way to obtain the scale is to

measure the width of the wood pile wp in [m] and put it in relation to the width in the image

wpx in [px]. The width of the pile is defined as the largest measurable length (see Figure

5.4(a)). Due to its geometric properties, a wood pile’s width is always larger than its height

and the width is thus always an unambiguously defined property. Note that the width is not

measured purely horizontally, but also features a vertical component, which makes the pile

image invariant to rotations about the z-axis. The scale s, which converts pixel lengths to a

metric length is defined as shown by Equation 5.1.

s =
wp

wpx
(5.1)

In order to compute the solid cubic meters (Figure 5.4(b)), the number of wood pixels
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npx,wood must be converted to square meters, which corresponds to the solid wood area As of

the front surface.

As = npx,wood · s2 (5.2)

The solid wood volume can then be simply derived by multiplying the result with the

known log length l.

Vs = l ·As (5.3)

The computation of the contour volume requires additional preprocessing. In the forestry

standards for manual surveying [Bundesministerium für Ernährung, Landwirtschaft

und Forsten, 1969; Deutscher Forstwirtschaftsrat e.V. und Deutscher Holz-

wirtschaftsrat e.V., 2014], the section volume method would be suitable for this task.

Since no explicit definition exists for digital surveying, the formula for manual sectioning

can be adjusted to work on a pixel level. In recapitulation, the contour volume is defined

by Equation 2.8 as the product of the section width ws, the number of sections ns, and the

average height, computed by averaging the section heights hi with i = 1 . . . ns. The number

of sections can now be substituted by the horizontal number of pixels as ns → npx,horz. The

width of a section is 1 px, thus ws → 1, and the section height in [m] is substituted by the

section height in pixels hi → hi,px. Width and height in pixels can be easily obtained through

the image of the solid wood volume (Figure 5.4(b)). Equation 5.4 shows the computation

of the metric contour area, which is then used in Equation 5.5 for the determination of the

contour volume via the known length l.

Ac =

npx,horz∑
i=1

hi,px · s2 (5.4)

Vc = Ac · l (5.5)

The application of Equation 5.5 results in a rather unsteady contour. During manual

measurement, smoothing is performed automatically, based on continuity assumptions. These

adjustments need to be accounted for, in order to assure comparability of the results. In the

last step the contour is therefore smoothed by a morphological closing operation of the binary

contour area image. As a structuring element, a circle with the same diameter as the largest

detected wood log is used (see Figure 5.4(c)).
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5.4 Results

In this section the influence of internal and external parameters on detection and segmentation

is studied. The evaluation of the recognition performance is conducted for both single images

and panoramic images. Additionally, the pixel-based segmentation procedure is analyzed

for single images. On the basis of these results, the 2D surveying approach is compared to

manually obtained ground truth data. The HAWKwood database provides benchmarks for

each of these scenarios, which can be found in categories S.1 -S.2 and M.1 -M.3.

5.4.1 Evaluation metric

In a quantitative evaluation, the true and false positive rate (tpr and fpr) are the most

important parameters. Their definition for clustered object recognition must be explicitly

stated, because the false positive recognition results are not limited to a finite number of

cases. Therefore, both quantities will be measured with respect to the known ground truth

number of objectsNgt. In Equations 5.6 and 5.7, Ntp stands for true positive objects (correctly

matched objects) and Nfp declares the number of objects which were classified as such, but

actually do not exist.

tprlogs =
Ntp

Ngt
(5.6)

fprlogs =
Nfp

Ngt
(5.7)

The HAWKwood database provides wood pile images with ground truth. In the case of

object recognition, ground truth consists of an object list with center locations and diameters.

The ground truth number of wood logs Ngt is known from the size of the object list. When

comparing the recognition result to ground truth, a matching metric needs to be defined. For

clustered object recognition problems in two as well as in three dimension, the detection result

usually consists of the object sizes and locations. Therefore, two conditions must be fulfilled

(Equations 5.8 and 5.9), in order to establish a correct match.

D(c, cgt) ≤ rgt (5.8)

0.5rgt ≤ r ≤
1

0.5
rgt (5.9)

In the equations above c and cgt are the object center for the recognized object and the

center of the ground truth object respectively. D denotes the Euclidean distance and r /

rgt are the object and the ground truth radius. During evaluation of single images, only
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objects that do not intersect the image border and that are no more than 25% occluded are

considered.

The results for the wood log segmentation are characterized by their true and false positive

rate on a pixel level (tprpixel and fprpixel). In some cases, the results are described by their

precision and recall values. The term recall is a synonym for the true positive rate, while

precision is also referred to as the positive predictive value (ppv). The definitions of these

values are given by Equations 5.10, 5.11, and 5.12 [Cortes and Mohri, 2004], where n is the

number of pixels and the indices tp (true positive), fn (false negative), fp (false positive), and

tn (true negative) indicate the pixel class. Except for cases in which results are compared to

results obtained by state-of-the-art methods, the true and false positive rate will be used for

evaluation, due to their intuitive nature. All shown error bars represent the ±s interval (em-

piric standard deviation), which enables a visualization of the mean as well as the scattering

of the results.

tprpixel =
ntp

ntp + nfn
(5.10)

fprpixel =
nfp

nfp + ntn
(5.11)

ppvpixel =
ntp

ntp + nfp
(5.12)

For surveying, three parameters are calculated for each set of results. The difference

between a measurement Xi and the ground truth value µgt is defined as xi. This is used

to compute the average difference x̄ (Equation 5.13), which is a measure for the bias of a

surveying approach, where x̄ = 0.0 means that the approach is free of bias.

x̄ =

∑n
i=1 xi
n

=

∑n
i=1 (Xi − µgt,i)

n
(5.13)

In order to quantize how scattered the measurements are in respect to the ground truth

value, the empiric standard deviation s is used, which is defined by Equation 5.14.

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (5.14)

In some of the benchmarks, the same object is measured multiple times. In such cases, the

repeatability is an important measure for analyzing the deviation of different measurements.

Let k be the number of objects and nj the number of measurements for the jth object. Then
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the repeatability standard deviation srep is the average of the empiric standard deviations of

repeated measurements of the same surveying objects.

srep =
1

k

k∑
j=1


√√√√ 1

nj − 1

nj∑
i=1

(xi − x̄j)2
 (5.15)

5.4.2 Image-based detection

In this section, the influence of internal and external parameters on the wood log detection

results are discussed. Internal parameters are such parameters that alter the algorithms inter-

nal procedures, while external parameters solely affect the input image, either in acquisition

or post-processing. The goal of this section is to derive a set of standard internal parameters

which can be used for further applications of the method, with respect to the influence of

external parameters.

Noise and brightness The first parameter covers robustness regarding changes in bright-

ness and noise. For this purpose, a parametrizable model is defined, which changes the

brightness of an input image and adds Gaussian noise through the parameter β. For the

change in brightness, β is a multiplicative parameter, so that β = 1 does not change the

brightness, while β � 1 and β � 1 induces strong alterations. The modified image intensity

for a grayscale pixel Ii,j ∈ [0, 1] is therefore given by I ′i,j = βIi,j . Additionally, insufficient or

extensive lighting usually induces noise which is critical when considering the effect of direct

sunlight or dim lighting conditions. Gaussian noise is defined as shown in Equation 5.16,

which is added with a mean of µ = 0, where z = I
′
i,j is the grayscale value of a pixel.

NG(z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 (5.16)

The strength of the noise σ corresponds to the change in brightness, through a parametriza-

tion by β (Equation 5.17). This way, the image will exhibit more noise when changes in

brightness are very high and no noise when the brightness remains unchanged.

σ = 0.2 · |log10(β)| (5.17)

The results of the brightness and noise evaluation are displayed in Figure 5.5. It can be

observed that the method is, in general, robust against such changes. An increase in brightness

affects the true positive rate more strongly then a decrease. This is due to the fact that bright

pixels of the wood logs are more likely to become oversaturated and thus prevent detection.

With lower brightness, the false positive rate slightly increases. A very small or very large β

results in fewer detected objects, which directly affects the false positive rate.
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Figure 5.5: True and false positive rate for wood log detection and parameter β. Numeric

values are shown in Table B.1.

Image resolution All images are provided with a resolution of five megapixels or more.

As the second external parameter, the effect of the image resolution is evaluated. Scaling

is performed with constant aspect ratio a = 4
3 . Figure 5.6 shows that the effect of the

image resolution is small within certain boundaries. In the range of w = 2592 . . . 1036 (with

w being the image width) changes in the true positive rate are negligible. Only when the

width drops to w = 518, does tprlogs plummet. The false positive rate on the other hand,

decreases linearly with smaller image sizes. Although detection is implemented as a multi-

scale approach, detection seems to work best when the unknown objects’ size is similar to

the size of the training images. This behavior leads to the conclusion that the use of a lower

resolution is preferable, as long as the critical threshold is not exceeded. For this reason, a

resolution of 1036x774 px is used in further evaluations.
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Figure 5.6: True and false positive rate for wood log detection and the image width w.

Numeric values are shown in Table B.2.
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Rotation From empirical observations it became clear that inexperienced users sometimes

have difficulties capturing images orthogonally to the wood pile front surface. The proposed

methods must therefore provide a certain degree of rotation invariance about the x- and y-axis

of the camera coordinate system. The experiments shown below are performed with a rotation

about the y-axis. Until the rotation reaches 50◦, the fpr and tpr decrease only slightly. When

rotating more than 50◦ the tpr goes towards zero while the fpr rises. In practice, rotations

of no more than 10-20◦ are common when taking pictures with a handheld camera, even by

inexperienced users. These results indicate, that the proposed method is rotation invariant

in a way that is more than sufficient for practical purposes, when using handheld devices.
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Figure 5.7: True and false positive rate for wood log detection and artificial image rotation

about the y-axis. Numeric values shown in Table B.3.

Detector scale factor sdetector The scale factor sdetector was introduced in Section 5.3

(Surveying) as the factor between adjacent levels in the multi-scale detection step. Figure 5.8

shows that the tpr peaks at sdetector = 1.01. It is possible to sacrifice the high tpr for a lower

fpr, when choosing sdetector = 1.1. A higher scale factor should not be used because the tpr

decreases while the fpr remains approximately constant. A scale factor of sdetector < 1.01

leads to a significant increase of the fpr and should therefore also be avoided. In all further

evaluations sdetector = 1.01 is used.

Feature detectors Three different feature detectors and their combinations are analyzed

for the goal of optimizing the recognition task. Figure 5.9 shows results for Haar-like, HOG,

and LBP features, and combinations thereof. The exact values can be found in Table B.5.

The LBP detector offers the highest tpr and the HOG detector the lowest. Correspondingly,

the fpr is the highest for LBP and the lowest for HOG. The combination of LBP and HOG

features is especially interesting since it shows one of the highest true positive rates, while

the false positive rate is only slightly increased in comparison to the LBP detector. If a high
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Figure 5.8: True and false positive rate for wood log detection with respect to the scaling

factor sdetector. Numeric values shown in Table B.4.

true positive rate, regardless of a large number of false positives, is desired, the combination

of all three detectors is advisable. The standard setting of LBP and HOG is used in further

experiments, as it offers a good compromise, with a tendency toward a high tpr.
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Figure 5.9: True and false positive rate for different detectors. Numeric values shown in

Table B.5.

Iterations The iterative implementation of the proposed method optimizes the true and

false positive rate at each iteration. Figure 5.10 shows the average true and false positive

rate, where the tpr rises after the first iteration. Interestingly, the fpr is slightly lower after

two iterations, which is due to the refinement of the statistical model. In all test cases

convergence was reached after four iterations.
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Figure 5.10: True and false positive rate for wood log detection after each iteration.

Numeric values shown in Table B.6.

Standard parameters In all evaluations and in all future applications of the detection

method (unless noted otherwise), the combination of HOG+LBP detectors will be used with

a scale factor of sdetector = 1.01 and a detection resolution of 1036x774 px. In some cases

it may be plausible to choose the combination of all three detectors, when the true positive

rate is more important than the false positive rate. These standard parameters are used for

the segmentation results in the next section, where they will be compared to manual ground

truth segmentation.

Comparison to the state-of-the-art The only approach which is comparable to the pro-

posed method is the one presented by Gutzeit and Voskamp [Gutzeit and Voskamp, 2012].

The previous paragraphs have already shown that the combination of LBP and HOG fea-

tures outperforms Haar-like features. The iterative implementation of the proposed method

is able to increase the tpr while maintaining a constant fpr. For this reason, the novel

method described in this chapter offers better results than the current state-of-the-art. Table

5.1 shows a brief comparison between the new method and a reimplementation of [Gutzeit

and Voskamp, 2012]. The significantly lower false positive rate originates from the detailed

validation of candidate objects, which was proposed in Section 5.2.

detection new method [Gutzeit and Voskamp, 2012]

true positive rate 0.994 0.986

false positive rate 0.011 0.070

Table 5.1: Comparison of the novel detection method to the reimplementation of [Gutzeit

and Voskamp, 2012]
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5.4.3 Image-based segmentation

In this section, the segmentation procedure is evaluated. The HAWKwood database provides

20 images with ground truth pixel labeling. Two parameters are analyzed: the image resolu-

tion and the scaling of the markers for the watershed transform. The results are displayed as

ROC (receiver operating characteristic) diagrams [Fawcett, 2004] which show the tpr over

the fpr. Additionally, the area under the curve (AUC) is given as a quality measure. An

AUC of 1 describes an ideal classifier, while an AUC of 0.5 indicates random guessing.

Marker scale Marker-based watershed requires an initialization with known foreground.

The detected wood log objects are scaled down by the marker scale factor smarker and used as

definite foreground (figure 5.11). The effect of this parameter is shown in the ROC diagram in

Figure 5.12. Both the result for automatically detected wood logs as well as an initialization

with ground truth objects are plotted. As expected, the ground truth initialization shows a

higher AUC, although the automatic AUC is still very high with a value of 0.952 (Figures

5.12 and 5.13). The segmentation procedure is therefore well-suited to the separation of wood

logs from background.

Figure 5.11: Foreground markers for watershed

The best performing scaling value in terms of the best combination of tprsegm and fprsegm
has been determined to be smarker = 0.86, as it is the value with the smallest geometric

distance to the point (0,1), which is the point in the upper left corner of an ROC diagram,

e.g., in Figure 5.12. An initialization with the automatically detected objects produces a dent

for smarker = 1.0. This is caused by the marker being larger than the actual object in some

cases and thus marking some background parts as foreground. The result is an instability

of the watershed procedure. A marker scaling factor of smarker < 1.0 is therefore advisable.

The marker scale value of smarker = 0.86, which will be used as the standard value for this

parameter, produces the results shown in Table 5.2.
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Figure 5.12: ROC diagram with the marker scale smarker as a parameter. Blue curve:

automatic detection result. Green curve: ground truth initialization.
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Figure 5.13: True and false positive rate with different marker scales. Blue: automatic

detection result. Green: ground truth initialization. Numeric values shown in Table B.7.

segmentation tprpixel fprpixel

automatic 0.964 (s=0.016) 0.072 (s=0.030)

ground truth 0.958 (s=0.015) 0.029 (s=0.008)

Table 5.2: Segmentation results for smarker = 0.86

Image resolution For all segmentation procedures the full five megapixel resolution is used,

which leads to the results presented in the previous paragraphs. For performance reasons,

a reduction of the image resolution can be applied. Figure 5.14 shows the impact of the
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resolution on the segmentation result. The true positive rate decreases significantly with a

lower resolution, as does the false positive rate. When the image width falls under 1036 px

the segmentation algorithm becomes unstable, as can be concluded from the strong increase

of the standard deviation.
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Figure 5.14: True and false positive rate with different resolutions. Blue: automatic

detection. Green: ground truth initialization. Numeric values shown in Table B.8.

Comparison to the state-of-the-art Gutzeit and Voskamp [Gutzeit and Voskamp,

2012] tested their method under similar conditions. Different algorithms were implemented,

the best of which performed with a precision of 0.878 (s=0.08) and a recall of 0.95 (s=0.0334).

Table 5.3 shows the method proposed in this section (automatic results) in comparison to the

method by Gutzeit and Voskamp. The new method performs best in terms of precision as

well as recall, with significantly lower standard deviations. This speaks for a comparable

performance of the watershed transform and graph cuts, although the impact of the higher

automatic detection rate plays a role in these results.

segmentation new method [Gutzeit and Voskamp, 2012]

precision 0.890 (s=0.029) 0.878 (s=0.080)

recall 0.964 (s=0.016) 0.950 (s=0.033)

Table 5.3: Comparison of the novel segmentation method to [Gutzeit and Voskamp, 2012]

5.4.4 Two-dimensional surveying

On the basis of the 2D detection / segmentation and the panoramic image stitching described

in the previous chapter, the results for the proposed two dimensional surveying method will be
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discussed below. In general, the 2D recognition method is applied to panoramic images, and

the contour and solid wood volume are computed as shown in Section 5.3 (Surveying). The

input data sets are provided by the HAWKwood database, namely the multi-image benchmark

(categories M.1 -M.3 ).

Detection For the evaluation of the detection performance, the set of standard parameters

from Section 5.4.2 is used and the method is applied to all 72 test images from the HAWKwood

M.1 benchmark. Table 5.4 shows the results of the proposed method based on manually

segmented ground truth. The true positive rate is 0.9% lower than the detection result for

single images. This is caused by two factors. Firstly, panoramic images build on a planarity

constraint, which requires all points (in this case all wood log front surfaces) to lie in a

common plane. In reality this constraint is only approximately fulfilled and wood logs, which

lie outside of the common plane, are subject to seam detection and artifact removal which

complicates the detection procedure. Secondly, the wood logs on the border of the pile tend

to be more difficult to detect, since the contrast to background pixels is different to wood logs

within the pile.

detection tprlogs fprlogs

x̄ 0.985 0.020

s 0.015 0.027

Table 5.4: Detection results for panoramic images as the initial step of the 2D surveying

approach

Both of these factors also negatively affect the false positive rate, which is 0.9% higher

than for single images. Despite the slightly lower values in comparison to single images, the

detection rates show promising results for real world use, and work well under real world

conditions, reflected by the wide variety of input images.

Solid wood volume The solid wood volume and the contour volume are computed based

on the wood log objects after interactive editing. The edited objects are then used as the input

for the segmentation method. This way, the actual surveying performance can be measured

independently of the detection result. The HAWKwood M.2 benchmark (34 data sets) serves

as the data basis for the results shown in Table 5.5. The results are given as the average

difference to ground truth, which in this case is the result of manual surveying by using the

complete midpoint diameter inventory (see Section 2.5 (Manual surveying methods)). On

average, the solid wood volume is underestimated by 2.6% with a standard deviation of 3.8%.

The slight underestimation of the solid wood volume is due to the different color and texture

of the bark, compared to the actual wood. This makes it difficult to segment the wood log
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including its bark. The repeatability standard deviation of 2.3% shows that the method

generally produces results within a reasonable margin of error, when performing repeated

measurements of the same of object.

x̄ s srep

Vs -0.026 0.038 0.023

Table 5.5: Solid wood volume results (difference to ground truth) for panoramic images after

interactive editing

Contour volume The solid wood volume result serves as the basis for the calculation

of the contour volume. The HAWKwood M.3 benchmark offers ground truth for all 117

data sets, which was obtained through the section volume method (see Section 2.5 (Manual

surveying methods)). When comparing the contour volume results of Table 5.6 to the solid

wood volume segmentation, it can be observed that the average difference is lower, while the

standard deviation is slightly higher. Since the HAWKwood database does not offer synthetic

data for this benchmark, it cannot be ruled out that the imprecise section volume method

contributes to the higher variance, which is also indicated by the low repeatability standard

deviation. Nevertheless, the results indicate that the method is indeed usable in practice.

x̄ s srep

Vc -0.019 0.046 0.024

Table 5.6: Contour volume results (difference to ground truth) for panoramic images after

interactive editing

5.5 Summary

This chapter introduced a novel two-dimensional wood pile surveying approach. State-of-the-

art wood log recognition and segmentation methods were improved for the goal of optimizing

the number of correctly detected wood logs, while simultaneously significantly reducing the

number of false positives. Based on single images of wood pile front surfaces, the influence

of different parameters on the detection process was analyzed and the method was found

to be robust against noise, changes in brightness, varying image acquisition locations, and

image resolutions. A set of parameters was derived from the evaluation which best suits

the requirements for this method and which is used in further applications of the method

within this thesis. The proposed method outperforms the state-of-the-art method in terms
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of the true and false positive rate in wood log detection, as well as in precision and recall

for pixel-based segmentation. The recognition method can also be applied to other problems

where the goal is to detect and segment clustered objects. Applications in which the proposed

method might be useful were discussed in Section 3.6 (Related applications). These include

the detection of fruit, cells, or animals. For the purpose of wood pile surveying, a pipeline was

proposed, in which the wood log recognition method serves as the basis for the determination

of the contour and the solid wood volume. By generating a panoramic image, as described in

Chapter 4 (Adaptive image stitching), and by using the pile width as a scale, a wood pile can

be measured in its entirety, while providing visual results for a user.



Chapter 6

Front surface segmentation

The surveying approach proposed in the previous chapter is built on the assumption that

surveying can be performed based on object recognition. While this has been proven to be

true for the case study in this thesis, the question arises whether alternatives to detection-

based wood pile surveying exist. In this chapter, an approach will be presented which aims to

segment the front surface of a wood pile solely based on geometric constraints. Additionally,

applications of this method to autonomous vehicle navigation are discussed. We initially

published this method in [Herbon et al., 2015b] and the following chapter is based on the

original publication.

6.1 Objective

Motivation The approach of the previous section implicitly constrains the input images

to exhibit detectable wood log front surfaces. In all test cases provided by the HAWKwood

S.1 benchmark, the proposed algorithm was in general able to recognize these wood logs. In

some very rare cases wood log detection might not be possible. This may be caused by the

geometric properties or environmental factors. Figure 6.1 shows two examples of wood piles

which potentially cause problems for the detection and segmentation method. Since the cut

surfaces of the wood logs are largely covered in mud, color and texture based approaches are

bound to fail. Nevertheless, the geometric properties of the wood pile are conserved.

In Section 2.3 (Wood pile as a geometric meta-object), the geometric properties of a wood

pile were discussed. Based on this knowledge, a method is proposed in this chapter, which aims

for the segmentation of wood pile front surfaces without object detection. The front surface is

modeled as a so-called quasi-planar surface SQ, which is a surface that can be approximated

by a plane, called the principal plane, but also exhibits local non-planarities. In man-made

or artificial environments quasi-planar surfaces are common, since many structures can be

roughly approximated by a three-dimensional plane but would not be considered strictly pla-

89
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Figure 6.1: Examples of challenging wood piles where detection may fail

nar. While all points on a planar surface generally satisfy a coplanarity constraint, points

on a quasi-planar surface do not. The segmentation of quasi-planar surfaces has many appli-

cations, such as panoramic image stitching, autonomous vehicle navigation, auto-calibration,

and image registration. The proposed method is therefore not only applicable to wood piles

but considers these applications as well. Quasi-planar surfaces are especially of interest in the

field of robot navigation, where obstacle detection and 3D modeling are important aspects.

In off-road navigation, surfaces such as dirt roads and unpaved gravel roads can often be ap-

proximated by quasi-planar surfaces, as can be seen from e.g. [Chilian and Hirschmüller,

2009; Wellington and Stentz, 2004; Wellington and Stentz, 2006].

Related work There exist some approaches for the segmentation of planar surfaces, but

all of these methods consider strictly planar surfaces only. Even small non-planarities lead to

erroneous results. Some early approaches include the method by Sinclair and Blake [Sinclair

and Blake, 1996], which takes five point correspondences as inputs in order to perform plane

detection. An extension of this approach to stereo images is performed by Fornland and

Schnorr [Fornland and Schnorr, 1997]. A non-coplanarity constraint is enforced for the

point correspondences. Ohnishi and Imiya [Ohnishi and Imiya, 2005; Ohnishi and Imiya,

2006] use a sparse optical flow field to extract a low-resolution dominant plane from a robot

mounted camera. Optical flow is also used by Zucchelli et al. [Zucchelli et al., 2002], where

multiple planes can be detected through a least squares maximum likelihood estimator. An

interesting approach, with similar applications as the method in this chapter, has been pre-

sented by Pears and Liang [Pears and Liang, 2001], who argue that using the fundamental

matrix as a geometric relationship between images with strong planar regions is likely to fail

when monocular image acquisition is performed, as degeneracy poses a difficult challenge.

They instead propose a homography-based navigation approach, where the homography is
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calculated from corner features. All feature points on the dominant plane are grouped to a

bounding polygon. This shape is used to define the foreground color model (dominant plane)

and background color model for segmentation purposes. The approach suffers as soon as

the dominant plane exhibits concave regions or a non-uniform color distribution. Pears and

Liang also enforce a strong coplanarity constraint, which is not able to adequately model the

geometric properties of a wood pile front surface. The approach presented in this chapter is

related to what Irani et al. [Irani et al., 1998] propose as a method for multiple-view recon-

struction based on a plane+parallax formulation. This enables view synthesis by determining

a point’s displacement between two views based on a real or virtual planar surface in the

image. For this, the computation of the essential or fundamental matrix is not necessary (and

sometimes not possible due to degeneracy), because a homography sufficiently describes the

scene geometry.

Goal The 2D segmentation in the previous chapter aims for the extraction of the solid

wood volume before the contour volume is derived from the segmentation result. The goal

for the method in this chapter is to perform a segmentation of a dominant quasi-planar

surface directly, based on its geometric properties. In the case of wood pile surveying, the

front surface is segmented as a whole, which instantly yields the contour volume instead of

using the individual wood logs. The results of this approach will be compared to the two-

dimensional segmentation method. This task is performed through homographic registration

of an image pair and the use of block matching to recover depth information. The result of

the block matching step is used for the segmentation of the quasi-planar surface. In the next

section, this method will be described in detail.

6.2 Segmentation of quasi-planar surfaces

Overview The proposed method works by performing a homography-based registration of

two input images. Figure 6.2 shows a diagram which gives an overview of the proposed

approach. The input images are weakly constrained to show the same quasi-planar surface

SQ, which in this case is a wood pile front surface, but can be any other quasi-planar surface

as well. The homography is then computed and parametrized and the so-called principal flow

vector (PFV) is extracted from it. Both input images are aligned through the homography

matrix and rotated so that the principal flow vector aligns with the x-axis. Semi-Global-

Matching (SGM) is performed, based on the principal flow lines (similar but not equivalent

to the epipolar lines), which are the lines parallel to the PFV. The depth map produced by

the SGM is then segmented through an expectation maximization algorithm.
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Figure 6.2: Front surface segmentation method overview. Image based on [Herbon et

al., 2015b].

Contributions The approach described in this chapter offers four novelties which enable

the segmentation of quasi-planar surfaces:

1. The principal flow vector vpf of a planar homography is introduced.

2. It is shown how the principal flow vector can be used for inter-image rectification.

3. It is demonstrated how the search space for block matching can be defined based on the

principal flow vector, as opposed to the epipolar lines.

4. Two methods for the segmentation of the depth map, which are based on expectation

maximization, are described.

Projective relations The approach for quasi-planar surface segmentation described in this

section takes as input two overlapping images of a wood pile front surface. The proposed

method asserts that each image pair I0 and I1 depicts the same planar surface SP or quasi-

planar surface SQ from slightly different viewpoints. For every quasi-planar surface there

exists a strictly planar approximation, called the principal plane, which will be denoted as

SQ,P (Figure 6.3).

S
Q

S
Q,P

Figure 6.3: Planar approximation SQ,P (blue) of the quasi-planar surface SQ (green).

Image based on [Herbon et al., 2015b].
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The input images are related by a planar homography H, based on SQ,P, with eight

degrees of freedom (in contrast to affine or rotational homographies with six or three degrees

of freedom respectively) [Borgstadt and Ferrier, 2001]. Two image points in the planar

surface approximation, p0 = [x, y, 1]T in I0 and p1 = [x, y, 1]T in I1, are subject to the

following relation:

p1 = Hp0 (6.1)

Figure 6.3 shows that the first step of the proposed method is the computation of the

homography H. This is achieved through the extraction of SIFT features and then by per-

forming the well-known RANSAC-based registration approach. H is first computed from all

feature matches and is then refined from inliers only. During the computation of H, the

reprojection error is used as an error metric, which was defined in Equation 4.16. The camera

intrinsic matrix is known from prior calibration. For images I0 and I1, the quasi-planar surface

approximation SQ,P is implicitly defined by the homography matrix H. The actual pose of

the surface cannot by recovered by this approach, due to the planarity degeneracy. The pose

could be recovered if at least one point was known that is not coplanar to the points on SQ,P,

which cannot be guaranteed in general. For the proposed method only the homography is of

importance, not the pose of the plane itself, since the homography is sufficient for inter-image

rectification and depth map computation, as will be shown in the following paragraphs.

Principal flow vector vpf The definition of the principal flow vector is based on the ho-

mography decomposition by Borgstadt and Ferrier [Borgstadt and Ferrier, 2001], which

was described in detail in Section 4.4 (Homography decomposition). In summary, a homog-

raphy H can be decomposed into a translational component t and a rotational component

R. The principal flow vector is defined as the projection of the camera translation onto the

principal plane. The normal vector n of the principal plane is, by definition, parallel to the

z-axis of I0 as n = [0, 0, 1]T . The homogeneous principal flow vector v̂pf is then given by

Equation 6.2, where v̂pf is defined as the projection of t onto SQ,P. Based on Figure 4.3, the

derivation of the principal flow vector is visualized in Figure 6.4.

v̂pf =


1 0 0 0

0 1 0 0

0 0 0 1

 t̂ =


x

y

1

 (6.2)

Inter-image rectification As the next step in Figure 6.2, inter-image rectification is per-

formed, which in this case transforms image I1 to align with image I0 (Figure 6.5, left). After

rectification, points on the principal plane align perfectly (in theory), while points not on
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div vpf

Rt

H

R

Figure 6.4: Principal flow vector from homography decomposition in extension of Figure

4.3

the principal plane (but still on the quasi-planar surface) undergo a translation in the same

direction as vpf . A visual representation in image space is given by Figure 6.5, which shows

vpf in detail. It can be seen that a wood log face, that is slightly behind the principal plane,

exhibits a larger disparity than other wood logs.

Figure 6.5: Superposition of I0 andH−1I1 (left), and visual representation of the principal

flow vector vpf (right). Image source: [Herbon et al., 2015b]

Search space alignment The search space for corresponding pixels on the quasi-planar

surface in the rectified images is always along the principal flow vector, since it is that vector

which defines the translation of a pixel on SQ during rectification. Block matching is performed

on a horizontal search space, therefore vpf must be rotated to align with the x-axis, defined in

homogeneous coordinates as x̂ = [1, 0, 1]. The angle ϕ between the x-axis and the principal

flow vector is given by Equation 6.3 as the arccos of the dot product of x̂ and v̂pf , where 1



6.2. Segmentation of quasi-planar surfaces 95

must be subtracted due to homogeneous coordinates.

ϕ = arccos(x̂ · v̂pf − 1) (6.3)

The angle ϕ can now be used to compute the rotation matrix G, which transforms both

images so that the desired search space along vpf becomes purely horizontal. In Equation

6.4, cx and cy are the camera’s optical center, which can be either obtained from intrinsic

calibration or approximated by the image center.

G = TcRz(ϕ)T−1c =


1 0 cx

2

0 1
cy
2

0 0 1



− cos(ϕ) sin(ϕ) 0

− sin(ϕ) − cos(ϕ) 0

0 0 1




1 0 − cx
2

0 1 − cy
2

0 0 1

 (6.4)

The final preprocessing step for block matching consists of combining the rotation matrix

G with the inverse of the homography matrix and thus creating transform matrices M0 and

M1 for images I0 and I1 respectively. This way, rectification and search space alignment can

be combined into a single operation, thus minimizing distortions and processing time. The

images transformed by matrices M0 and M1 are denoted as I ′0 and I ′1.

M0 = G (6.5)

M1 = GH−1 (6.6)

Block matching The image pair I ′0 and I ′1 is now eligible for block matching. For the

proposed method, the block matching algorithm by Hirschmüller [Hirschmüller, 2005] is

used. Figure 6.6 shows the superposition of I ′0 and I ′1 on the left and the disparity map

DM on the right. Obviously depth can only be recovered in overlapping regions. It is very

important to note that the disparity values for the obtained depth map do not represent the

distance from the camera center but the distance from the principal plane. In this case, this

information is more useful than the distance from the camera center, because the goal of

this method is to extract the dominant plane. From Figure 6.6(b) it can also be seen that

many regions of the background are not detected by the block matching algorithm. This is

because the search space is only aligned for the quasi-planar surface. If one wishes to detect

background also, epipolar rectification would be a preferable choice, but planar degeneracy

may prevent the computation of an epipolar rectification in the monocular case. For quasi-

planar surface segmentation, the non-detected background is actually very beneficial, since it

can be quickly marked as not belonging to SQ,P.

Through a disparity map that provides a distance measure from the dominant plane, the

dimensionality of the problem is reduced, since the pose of the plane in 3D does not need to be



6.2. Segmentation of quasi-planar surfaces 96

Figure 6.6: (a) Superposition of I ′0 and I ′1, (b) Disparity map DM obtained by applying

[Hirschmüller, 2005]. Image source: [Herbon et al., 2015b].

considered. All perfectly overlapping pixels lead to a disparity of zero. Instead of performing

plane detection in three dimensions, globally consistent thresholding can be performed directly

on the disparity map without determining the pose of the plane, which will be the subject

of the next paragraph. This is based on the knowledge that disparities for pixels on the

quasi-planar surface will be close to (but not necessarily equal to) zero.

Histogram modeling The disparity map offers a depth value for each pixel DM(xi, yi) =

zi, where the pictures overlap. This overlapping region in images I ′0 and I ′1 is defined as the

region of interest (ROI) J = I ′0 ∩ I ′1. The goal of the segmentation procedure is now to find a

meaningful segmentation for the disparity values in J . The diagram in Figure 6.7 shows the

histogram of the disparity map of Figure 6.6 (blue), which is typical for the class of images

where there is one dominant quasi-planar surface present. It can be seen that most values are

close to 0 and that occasionally scattered values with z � 0 or z � 0 are present.

This histogram can be approximated by a mixture of Gaussian distributions, where the

number of distributions is nGMM. For nGMM = 1 the distribution is called unimodal, nGMM =

2 defines a bimodal distribution. For a bimodal distribution, as shown in Figure 6.7, the

distribution with the mean closest to zero represents pixels on the quasi-planar surface. The

second component models background pixels and noise. Equation 6.7 shows the definition of

the ith distribution dGMM,i, with mean µi, standard deviation σi, and weight wi.

dGMM,i(x) = wie
− (x−µi)

2

2σ2
i (6.7)

The GMM is obtained via expectation maximization, as described by Dempster et al.

[Dempster et al., 1977]. The model can then be used for segmentation in two different ways,

as will be shown in the next paragraphs.
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Figure 6.7: Histogram of the disparity map in Figure 6.6(b) (blue) with Gaussian mixture

model components (red and green). Figure based on [Herbon et al., 2015b].

σ-based segmentation Each component of the Gaussian mixture model includes a mean

µi and σi. The quasi-planar surface is described by µ1 and σ1. These parameters define a value

range Ω, as shown by Equation 6.8. Disparity values within this range of µ1−λσ1 . . . µ1 +λσ1

are considered inliers, while all other points are outliers.

Ω = [µ1 − λσ1, µ1 + λσ1] (6.8)

The quasi-planar surface segmentation can be characterized by this range, which is depen-

dent on both σ and a scaling parameter λ. Since σ would be zero for an ideally planar surface,

σ will be larger for quasi-planar surfaces with many pixels not on the principal plane. σ is

thus a measure for the planarity of the surface. In order to perform optimal thresholding the

parameter λ is analyzed and the true and false positive rate of the segmentation result are

evaluated in Section 6.3 (Results). In Figure 6.8, the 3D result of the thresholding procedure

can be seen, where only points in front of the principal plane SP,Q are shown on the right.

Top value segmentation The sigma-based segmentation is a parametric model, which

takes as input the histogram approximation by the GMM and the scaling parameter λ. When

handling scenes with unknown content, a parameterless model might be preferable, as op-

posed to an explicit parameter choice. Such a model can be well-established for a bimodal

histogram approximation with two Gaussian distributions, dGMM,1 (foreground) and dGMM,2
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Figure 6.8: (a) Point cloud of the back projection to 3D, (b) Principal plane SQ,P (gray)

cutting through the point cloud at z = µ1 with all visible vertices in the range of z ≤
µ1 + λσ1. Image source: [Herbon et al., 2015b]

(background). A pixel classification for each pixel px,y can be defined based on the two

distributions, as shown by Equation 6.9.

px,y =

{
1 for dGMM,1(DM(x, y)) ≥ dGMM,2(DM(x, y))

0 for dGMM,1(DM(x, y)) < dGMM,2(DM(x, y))
(6.9)

This method is comparable to the method proposed by Huang and Chau [Huang and

Chau, 2008], i.e. chooising the threshold as the average of the means. Since in some cases

two thresholds, a lower and an upper bound, are needed, the method by Huang and Chau is

extended by considering the histogram value of the disparity map at each given pixel location

di(DM(xi, yi)). In the case that the value of the first distribution is larger or equal to the

value of the second distribution, the pixel is marked as foreground. All pixels which do not

satisfy this condition are labeled as background. Figure 6.9 emphasizes this technique, where

background regions are marked red and foreground regions green. Thresholds are indicated

by vertical lines.

Key aspects in image acquisition The block matching algorithms require a certain degree

of texture in order to match blocks of pixels correctly. If large textureless regions are present

in the image, the block matching procedure might fail due to ambiguous matching results.

Failure in the block matching step leads to “holes” in the disparity map. Such holes can be filled

through interpolation if they are small enough, but larger holes might not be compensated

adequately.

The principal flow vector was defined as the projection of the homography’s translational
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Figure 6.9: Top value-based segmentation. The larger value of the two distributions

provides the label for each pixel. Figure based on [Herbon et al., 2015b].

component t onto the quasi-planar surface SQ,P. From this definition it becomes clear that a

degenerate exists for t = [0, 0, divk], which leads to vpf = 0. In other words, the translation

is purely in the z-direction. This case can be avoided by imposing the constraint shown in

Equation 6.10. In the case of wood pile surveying and robot navigation, this constraint is

usually fulfilled, since the user generally moves in parallel to the wood pile and a robot moves

in parallel to the floor, which induces xk � 0.

√
x2k + y2k � divk (6.10)

The proposed method is optimized for a dominant surface segmentation, which implies

that a large, single plane is present in the images. The approach can be extended to detect

multiple planes by applying k-means clustering [Lloyd, 1982]. This case is not relevant for

wood pile segmentation and is therefore not discussed in the scope of this thesis.

6.3 Results

In this section, the segmentation results of the proposed method and the different thresholding

approaches are compared. Two different databases are used for evaluation, one for quantitative

and one for qualitative analysis. In order to assess the potential of the method for integration

into the photogrammetric wood pile surveying approach, the results are compared to those

obtained by two-dimensional surveying in Chapter 5.
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6.3.1 Dominant Plane Database

The first database, called Dominant Plane Database [Herbon, 2014a], will be used for a

quantitative analysis. It contains 15 uncalibrated images pairs, which each show a dominant

planar or quasi-planar surface. Manual ground truth is provided for each image, so that the

segmentation results can be compared. All images were taken by a consumer level digital or

smartphone camera. Both the σ-based and the top value segmentation are applied to the

provided images.

σ-based segmentation As discussed in Section 5.4.3, the area under the curve is a quality

measure for a segmentation algorithm. The goal is to achieve perfect segmentation with an

AUC=1. Figure 6.10 shows the ROC diagram for the unimodal (nGMM = 1) and the bimodal

(nGMM = 2) σ-based segmentation. It can be seen that the bimodal distribution is better

suited for segmentation, since its AUC is higher than the AUC for unimodal segmentation.

For the actual application of the proposed method, a cutoff point pco must be defined. In this

case, pco is defined as the point with the smallest Euclidean distance to (0,1), as explained in

Section 5.4.3.
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Figure 6.10: ROC diagram for the unimodal (blue) and bimodal (green) σ-based segmen-

tation and parameter λ. Figure based on [Herbon et al., 2015b].

Table 6.1 shows results for the σ-based segmentation at the optimal cutoff points (indicated

through the parameter λ). In the case of a bimodal distribution, λ is larger than for the
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n λ tprpixel fprpixel AUC

1 0.7 0.969 (s=0.033) 0.083 (s=0.061) 0.968

2 3.0 0.940 (s=0.046) 0.049 (s=0.055) 0.979

Table 6.1: σ-based segmentation results for the Dominant Plane Database benchmark. Table

source: [Herbon et al., 2015b]

unimodal distribution (3.0 vs. 0.7). This shows that, on average, the unimodal distribution

features a larger σ and thus includes more uncertainty than actually necessary to model the

quasi-planar surface. In addition to the higher AUC, it therefore seems preferable to use the

bimodal distribution.

Top value segmentation Since the top value segmentation is a non-parametric model, a

meaningful ROC diagram cannot be obtained. Instead, the top value segmentation already

provides a segmentation, which is ideal with respect to the bimodal histogram approximation.

The results in Table 6.2 are very similar to the results of the bimodal σ-based segmentation.

tprpixel fprpixel

DPDB 0.943 (s=0.046) 0.053 (s=0.058)

Table 6.2: Top value segmentation results. Table based on [Herbon et al., 2015b].

6.3.2 HAWKwood database

The goal of the method proposed in this chapter is similar to the goal of the segmentation

procedure in Chapter 5 (Two-dimensional surveying). In contrast to the 2D segmentation

based on detected objects, the approach in this chapter segments the surface as a whole and

not just individual wood logs. This behavior is desired but poses a challenge for method

comparison. The HAWKwood S.3 benchmark offers images with ground truth only for the

actual wood logs (solid wood) and not for the entire front surface (contour volume). According

to [Van Laar and Akça, 2007, p. 88] the conversion from the contour volume to the solid

wood volume is usually done by a factor (stacking coefficient) of fs,c = 0.68 . . . 0.7. This

means that when comparing the results of the quasi-planar with the 2D segmentation results,

the false positive rate is expected to exhibit an increase of ∼30-32%. Some of the qualitative

results can be seen in Figure 6.11.

Table 6.3 shows that the fpr is indeed increased by approximately 30%. In comparison

to the 2D segmentation method, the quasi-planar surface segmentation shows a higher tpr

for the σ-based segmentation with nGMM = 2 and for the top value segmentation. The 2D

segmentation performs better in terms of the false positive rate and also exhibits a much lower
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Figure 6.11: Qualitative HAWKwood S.3 results for two data sets (left / right column).

First row: registered input image pair and horizontal alignment of principal flow vector.

Second row: disparity map. Third row: segmentation result using the top value approach.

Fourth row: segmentation result using the σ-based approach with nGMM = 2 and λ = 3.0.

Image source: [Herbon et al., 2015b]
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segmentation method tprpixel fprpixel

σ-based (nGMM = 1, λ = 0.9) 0.920 (s=0.072) 0.320 (s=0.093)

σ-based (nGMM = 2, λ = 3.0) 0.980 (s=0.013) 0.381 (s=0.111)

top value based 0.965 (s=0.034) 0.345 (s=0.108)

2D segmentation (sect. 5.4.3) 0.958 (s=0.015) 0.029 (s=0.008)

Table 6.3: Results for the HAWKwood S.3 benchmark and comparison to 2D segmentation.

Table partly based on [Herbon et al., 2015b].

empiric standard deviation for this parameter. Although the quasi-planar surface detection

method shows promising results, the 2D segmentation, performs at least as well.

6.4 Summary and further applications

Further applications In addition to wood pile segmentation, the proposed method can be

applied to a variety of problems. All scenarios, where the goal is to detect and segment a planar

or quasi-planar surface, can potentially benefit from this approach. One of the most important

areas for such a method is autonomous rough terrain navigation. Often roads are unpaved

in rural areas and gravel roads occur frequently. Some approaches have been presented to

perform terrain classification (e.g. [Häselich et al., 2013]) and many approaches exist for

road segmentation (e.g. [Kong et al., 2010; Kuhnl et al., 2011; Zhang and Nagel, 1994]),

although the homographic approach, including local non-planarities in the surface, is rarely

considered [Okutomi et al., 2002]. The proposed method imposes only very weak constraints

on the scene geometry. For this reason, it is well-suited for many types of off-road navigation

problems.

An example for the application of the proposed method to a rough terrain scene is shown

in Figure 6.12. One of the input images is given on the top left and a 3D reconstruction

can be seen on the top right of the Figure, which emphasizes the non-planarity of the scene.

On the bottom row, the segmentation for a strictly planar model (left) and the quasi-planar

model (right) are shown. In the strictly planar segmentation, many parts of the road are

not correctly segmented. Only parts that happen to lie on the principal plane are marked

as foreground. The quasi-planar segmentation includes the non-planar parts of the road and

still labels bushes and vegetation on the side of the road as obstacles.

Summary In this chapter it was proven that wood pile segmentation can in principle be

performed without recognition of individual wood logs. The proposed method is able to

segment a quasi-planar surface from a set of overlapping images. This is achieved through

homographic registration, planar rectification, and block matching. The principal flow vector,
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Figure 6.12: Segmentation results for rough terrain navigation. (a) Left input image. (b)

Side view of the 3D reconstruction. It can be seen that the surface is quasi-planar, but

not strictly planar. (c) Result for strictly planar segmentation. Many parts of the road

are incorrectly labeled as obstacles (red). (d) Segmentation result of our method with

correctly segmented obstacles on the side of the road (top left and top right). Image

source: [Herbon et al., 2015b]

defined as the projection of the translational homography component onto the principal plane,

is used to perform search space alignment for block matching, so that Semi-Global-Matching

can be used to extract a disparity map. This disparity map does not show the distance from

a pixel to the camera’s optical center, it is a measure of the pixel’s distance from the principal

plane. The method can be applied to wood pile segmentation and any other class of problems

where the goal is to find and segment a quasi-planar surface. For instance, off-road navigation

can benefit from this approach. If it is desired to only detect regions that very likely belong to

the foreground (road) then the parametrization can be changed to benefit the true negative

rate. Alternatively, the true positive rate can be increased by the parametrization to detect

more locally non-planar regions.

Based on the distance information, two distinct segmentation methods have been proposed,

which include the parametric σ-based segmentation and the non-parametric top value segmen-

tation. Both approaches were quantitatively evaluated through the Dominant Plane Database.

The parametric approach showed a high AUC of 0.979 (tprpixel = 0.940, fprpixel = 0.049) for
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nGMM = 2; the non-parametric segmentation resulted in tprpixel = 0.943 and tprpixel = 0.053.

These values emphasize the applicability of the method to quasi-planar surface segmentation.

Qualitative evaluation was performed for the HAWKwood S.3 benchmark, which also showed

promising results that were similar to those of the dominant plane benchmark. In comparison

to the 2D segmentation step, it became clear that, while the results are well-suited for the

general case of quasi-planar surface segmentation, the special case of wood pile segmentation

can be comparably solved by the 2D segmentation procedure introduced in Chapter 5 (Two-

dimensional surveying), which additionally provides individual wood log contours. The direct

computation of the contour volume via the quasi-planar surface can be used as a fallback,

should the rare case occur in which wood logs cannot be detected. An interesting point for

future research would be the combination of the quasi-planar surface segmentation with wood

log detection. The foreground estimation step in the wood log recognition pipeline could be

amended by the method proposed in this chapter. Such an approach could even be integrated

into the stitching pipeline, where homographic registration is done in any case.



Chapter 7

Three-dimensional surveying

The centerpiece of this dissertation is the three-dimensional photogrammetric surveying ap-

proach, which will be presented in this section. The method is based on our prior work,

namely [Herbon et al., 2014a] and [Herbon et al., 2015a], and a preliminary study [Otte,

2014], all of which address the three-dimensional object detection and the photogrammetric

surveying approach. The first publication describes in detail the recognition of wood logs and

other clustered objects in 3D space, based on structure from motion, 2D object detection, and

quadric filtering. The second paper focuses on surveying of the contour volume and the solid

wood volume based on the detection result and interactive editing. Many of the approaches

and considerations of the previous chapters are either included in the method proposed in

this chapter or used for comparing results.

7.1 Objective

So far in this dissertation, a two-dimensional surveying technique which uses either single or

panoramic images, performs wood log recognition and segmentation, and derives the wood vol-

ume through a scale factor has been proposed. The main motivation for the two-dimensional

approach was the use of the quasi-planarity property of the wood pile front surface, through

which a two-dimensional front surface model could be established. In Chapter 6, an initial

approach for the description of the wood pile as a three-dimensional geometric object was in-

troduced, which was based on the regulatory a priori knowledge [Bundesministerium für

Ernährung, Landwirtschaft und Forsten, 1969; Deutscher Forstwirtschafts-

rat e.V. und Deutscher Holzwirtschaftsrat e.V., 2014] of the wood pile front

surface being quasi-planar. The goal of the current chapter is to explore in which ways a

three-dimensional surveying approach can be beneficial for wood pile surveying and to inves-

tigate whether there are possible pitfalls when applying such a method. In comparison to

the two-dimensional approach, the proposed 3D method does not have to make assumptions

106
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about the planarity of the wood pile, but requires a sophisticated reconstruction model.

7.2 Method

7.2.1 Overview

In this section, the initialization and the 3D surveying method itself will be introduced briefly.

Important algorithmic and implementational aspects will be discussed in detail over the course

of the following sections.

Initialization Unlike the methods presented previously in this dissertation, the three-

dimensional surveying approach requires an initialization by preprocessing data with the

previously described methods (e.g., wood log recognition) and with external methods (lens

distortion correction and SfM). Figure 7.1 shows that the method takes as input a set of images

with high overlap and a scale reference. As discussed before, this scale reference is usually the

pile width wp, but other references will be considered as well. In addition to these inputs, the

intrinsic calibration of the cameras is provided. This was obtained through prior calibration

by the method of Heikkila and Silvén [Heikkila and Silvén, 1997]. The correction of the

lens distortion is performed through the approach by Zhang [Zhang, 2000]. This step could

be skipped and be performed during bundle adjustment, but performing distortion correction

prior to image registration was shown to yield more robust results [Sawhney and Kumar,

1999]. The reason for this is that feature matching for structure from motion is based on the

epipolar constraint, which requires images with little or no distortion. For each of the input

images, wood logs are detected through the recognition method of Chapter 5. In this step,

slightly different parameters are used, in order to optimize the processing time for mobile

devices, which is the subject of Sections 7.5.1 (Conceptual and parametrical optimizations)

and 7.5.2 (Processing time and memory consumption). No manual interaction takes place at

this point, which means the detection results show a fpr ≥ 0 and a tpr ≤ 1. At the same

time as object detection, structure from motion is computed. The result of the structure from

motion process is a set of calibrated cameras and a sparse point cloud, both of which are used

for the three-dimensional object detection step.

Object detection and surveying Based on the initialization step, the proposed method

(as shown in Figure 7.2) performs an initial three-dimensional object detection, which outputs

the wood log cut surfaces in 3D space. The three-dimensional wood logs can be used to

compute a concave hull of the wood pile (contour area / volume). The scale of the 3D

reconstruction is recovered through the scale reference, which, unless noted otherwise, is

the pile width. During visualization, the orientation of the wood pile becomes important.
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Figure 7.1: Initialization of the photogrammetric surveying approach
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Figure 7.2: Photogrammetric surveying approach. Image based on [Herbon et al.,

2015a].

The model is rotated based on the principal axes (obtained via PCA or RANSAC plane

fitting) so that it looks natural to a viewer. Similarly, while the texturing of the wood pile

is not necessarily important for surveying purposes, it is important for interactive editing to

emphasize whether or not a wood log was correctly detected. For the purpose of interactive

editing, the wood pile must be projected onto an image plane. Orthographic projection, as

opposed to a perspective projection, is used, in order to minimize distortions. Remaining

wood logs can be added and non-existent logs can be removed during this step. Should a user

modify the model this way, the computation is rerun. If no changes are made, the contour

volume and the solid wood volume are computed.

Contributions The proposed method provides a number of contributions, the most signif-

icant of which are:

1. The proposed method is the first mobile, photogrammetric wood pile surveying ap-

proach.

2. Clustered objects are recognized via 2D detection and reprojection to 3D.
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3. The objects’ locations in 3D are recovered through a novel quadric filtering and k-nn (k

nearest neighbors) approach.

4. The location of a detected object can be tracked over multiple frames based on the

location approximation.

5. The wood and contour volume are recovered based on the 3D objects’ locations.

6. All algorithms are specifically optimized for mobile devices.

7. Results of extensive testing are provided to prove the feasibility of the proposed method.

8. It is shown how metric surveying via RTK-GPS can be performed.

7.2.2 Image acquisition

The topic of planar degeneracy has been discussed in Chapters 4 and 6. Decker et al. [Decker

et al., 2008] elaborate that a degenerate case occurs when multiple solutions can be found

which are mathematically correct but which do not necessarily correctly map reality. Such

cases include the possibility of all points lying in a small area in the image or all points lying

on a common plane (planar degeneracy, a so-called H-degenerate configuration [Chum et al.,

2005]). The wood pile front surface poses a potential threat for planar degeneracy. During

image acquisition it is therefore crucial to include a substantial amount of the scene which

does not belong to the wood pile front surface.

Figure 7.3 shows how images of wood piles can be captured for this purpose. The image

on the left most likely causes a degenerate configuration, since not many off-plane points

are included. On the right hand side, the image includes a certain amount of ground pixels,

which can be used as non-coplanar points during essential matrix estimation. In conclusion,

the three-dimensional surveying approach inevitably reduces the space in an image, which

can be used for wood log recognition, but it is for the same reason that the wood pile can be

reconstructed in 3D.

7.2.3 Structure from motion

In Section 3.4 (3D reconstruction / structure from motion) different approaches for multiple

view reconstruction were discussed. The approach by Moulon et al. [Moulon et al., 2013b]

has shown promising results. The details of multiple view reconstruction exceed the scope of

this thesis, therefore only an overview will be given. In contrast to the common incremental

methods, [Moulon et al., 2013b] is a global approach, which achieves a higher precision

with regard to the ground truth camera locations in addition to a lower computation time.

Since a global solution is computed, the explicit choice of a starting pair is obsolete. The

approach works on image triplets, unlike incremental methods, which only use image pairs

and resectioning. This requires input images for this approach to show a comparatively high
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Figure 7.3: Including scene content to avoid planar degeneracy. Images from the HAWK-

wood multi-image benchmark (low and high overlap). (a) The lack of non-coplanar points

causes degeneracy. (b) Enough ground (off-plane area) is included to compute the essen-

tial matrix.

overlap. As its name implies, structure from motion provides two results, the structure of

the scene and the motion of the camera. The structure of the scene is provided as a sparse

point cloud, which consists of triangulated feature matches. For each of the input images Ii
the corresponding camera pose is provided as the 4x4 pose matrix Pi in the pinhole camera

model, shown in Equation 7.1 [Hartley and Zisserman, 2004, p. 156].

P = K[R|t] = K[R| −RC] (7.1)

In the above equation, K is the camera calibration matrix, R is the rotation of the camera

coordinate system, t is the translation of the world coordinate system in camera coordinates,

and C represents the camera center in world coordinates. Structure from motion only recovers

the scene and camera trajectory up to scale and unknown translation with respect to a real

world coordinate system. The term world coordinate system refers to a fixed coordinate

system with arbitrary scale and arbitrary translation with respect to a real world reference

frame. Both scale and translation can be recovered by registering the camera motion with

global coordinates, which were obtained, e.g., through a global navigation satellite system

(GNSS). This approach is discussed in Section 7.3 (Scale reference), as part of the scale

reference selection.

7.2.4 3D object detection

Patch definition The detection of wood log cut surfaces is one of the most crucial parts

of the surveying approach. For each of the input images I0 . . . In−1, two-dimensional object
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Figure 7.4: 3D object detection approach. Image based on [Herbon et al., 2014a].

detection is performed, as described in Chapter 5. The recognized objects are contained in

the object set O. For an object Oi,j , the image index is denoted by i, and j defines the object

within this specific image. Each object consists of a 2D location (x,y) and a parameter r,

which indicates the radius, thus Oi,j = {xi,j , yi,j , ri,j}.
The point cloud (structure), as the result of structure from motion, is denoted as Q, which

is a set of vertices in R3. Each vertex Qm is defined as Qm = {xm, ym, zm}. In order to

recover the 3D location approximation of an object, in this case a wood log cut surface, the

point cloud must be divided into patches q, where each patch qi is a subset of the point cloud

Q (see Figure 7.4). The goal is to extract a patch from the point cloud for each of the detected

2D objects Oi,j . Figure 7.5(a) shows how a patch (dark points) can be defined through a cone

(dashed line), which starts at the camera center and whose radius is defined by a detected

object (green). The cone can be thought of as the projection of the detected object on the

image plane back to 3D space. All vertices, which lie within the cone, are considered to belong

to the patch q.

Figure 7.5: Definition of a patch through quadric filtering. The dashed line defines the

cone, black vertices are kept after filtering. Image source: [Herbon et al., 2014a]

When assuming that a camera pose Pi = [I], where [I] is the 4x4 identity matrix, a circular
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cone can be defined as a quadric, shown by Equation 7.2 [Zwillinger, 2011, pp. 213-215].

xTAx+ 2bTx+ c = 0 (7.2)

The parameters of Equation 7.2 are defined as A ∈ R3×3, b ∈ R3, x ∈ R3, and c ∈ R with

A = diag

(
1

r2i,j
,

1

r2i,j
,− 1

f2i

)
(7.3)

b = 0 c = 0 (7.4)

where fi is the focal length of camera Pi and x is a vertex in R3. This quadric definition of the

circular cone can now be used to obtain all vertices of the point cloud within this cone. Since

the cone is not limited to the space in front of the camera, an additional constraint must be

imposed, which rejects points behind the camera. All remaining vertices form the patch qi.

Depth approximation In order to determine the location of the wood log object along

the z-axis of the cone, the vertices of qi are projected onto the image plane (Figure 7.6). A

vertex v = {vx, vy, vz} from the patch qi with its corresponding camera pose Pi is transformed

in a way that the camera pose becomes the identity matrix. The transformed camera matrix

P ′i can be obtained through multiplication with the inverse of the camera matrix as P ′i =

P−1i · Pi = [I]. Correspondingly, the transformed vertex is v′ = P−1i · v. The projection of v

onto the image plane is denoted as w = {wx, wy} in R2 with wx = fi
vx
vz

and wy = fi
vy
vz
.

Figure 7.6: (a) Projection of a patch to the image plane. The dashed lines indicate the

projection rays. (b) Visualization of the average z-value of the patch.

All projected vertices are scanned for statistical outliers (with regard to the z-axis), which

are excluded in the process. The k nearest vertices are selected that show the smallest

Euclidean distance from the object center. Out of these k vertices, the average z-value is

computed and used as the approximation of the object center’s z-value, which concludes the

location approximation.
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Object orientation Molton et al. [Molton et al., 2004] propose to view a patch around a

matched image feature as locally planar. This definition can be extended for the purpose of

multi-vertex patch definition, as to view the vertices of a patch qi as locally planar. Due to

this local planarity property, it is possible to determine a surface normal for each patch with

a RANSAC plane-fitting approach, implemented by Rusu and Cousins [Rusu and Cousins,

2011] based on [Fischler and Bolles, 1981]. For this approach, at least three vertices

must be contained in a patch, in order to define a plane. This constraint is not always met.

Structure from motion usually only performs sparse feature matching, and the point cloud

is thus also sparse with no information about the vertex density. The parameter k for the

k-nearest neighbors approach is selected based on geometric distance information. Should the

case occur that k < 3, fewer than three vertices of the patch are selected. In this scenario,

the radius r must be increased until k ≥ 3 and the surface normal of the patch can be

approximated.

n

Figure 7.7: Estimation of the patch orientation via RANSAC plane fitting.

When performing wood log detection, a priori information can be optionally incorporated

into the surface normal estimation. It is known that a wood pile front surface is quasi-planar.

For the recovery of the patch normal, local quasi-planarity is sufficient, as opposed to global

quasi-planarity of the entire pile front surface. This way, it can be determined whether the

computed surface normal of the wood log (Figure 7.7) is approximately parallel to the surface

normal of the surrounding wood pile front surface.

Object merging So far, the objects Oi,j in each individual image have been located in 3D.

The single indexed set Oi = {xi, yi, zi, ri} denotes the set of global, three-dimensional objects,

which can be obtained by merging the objects in Oi,j . Since the input images show significant

overlap, the same object will most likely have been detected multiple times. These multiple

detections must be merged in order to determine the correct number of wood logs but also

to properly compute the wood volume. In the merging step, the Euclidean distance between

neighboring objects Oa and Ob is computed, denoted as D(Oa, Ob). An object Oa is merged
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with all objects Oi with i = 0 . . . n and i 6= a if the following conditions hold true:

D(Oa, Oi) < max(ra, ri) (7.5)

0.8 ≤ ra
ri
≤ 1

0.8
(7.6)

This means that the Euclidean distance between the objects’ centers must be smaller than

the larger radius. By enforcing this condition, it can be assured that all objects which lie

within another object’s bounds are considered to be the same object. Additionally, the ratio

between the radii must not be smaller than 0.8 or larger than 1
0.8 .

An advantage of the multiple view recognition approach is its capability to filter outliers

based on the number of images in which an object was detected. This number will be referred

to as the minimum number of occurrences nocc. In the merging step, nocc is utilized in a way

that only objects are kept which were detected in at least nocc images. At the same time, this

implies that at least nocc images must be taken of a particular wood log, in order for it to be

recognizable. The impact of this parameter will be studied in the result Section 7.4.1 (Wood

log recognition).

7.2.5 Wood pile reconstruction

In the previous section, the wood logs were reconstructed in 3D space. The current section

builds on this result by reconstructing the wood pile model from the individual logs. The 3D

model of detected objects exhibits an arbitrary rotation and scale. The first step for pose

correction of the wood pile model is the computation of the concave hull, based on the vertices

of the reconstructed objects. Moreira and Santos [Moreira and Santos, 2007] propose a

k-nearest neighbors approach for concave hull calculation, which takes as a parameter k,

the number of adjacent vertices that should be considered. For the goal of contour volume

estimation, k is iteratively refined from an initial guess of k = 3 until a single concave hull is

found.

Considering the arbitrary rotation of the wood pile model, the goal is to perform a rotation

correction, so that the wood pile looks natural to an observer. This is not necessary for the

surveying procedure but it enhances the identification of digital and real wood logs. The

rotation about the x- and y-axis is corrected by performing the aforementioned RANSAC

plane fitting for the entire wood pile front surface. This can be done if the surveying object,

such as the wood pile front surface, can be described as a quasi-planar surface. Alternatively, a

principal component analysis of the vertex distribution can be used as a fallback, which yields

the eigen vectors Υ1, Υ2, and Υ3 of the pile, where Υ1 is the eigen vector with the largest

eigen value. By using Υ2 and Υ3 for orientation correction, similar results can be achieved
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Figure 7.8: Final wood pile reconstruction result. Image source: [Herbon et al., 2015b].

with the advantage of the method being applicable to the general case. In the process, the

x-y-plane of the wood pile is aligned to its canonical position, which is the x-y-plane in the

coordinate system of the 3D model.

The rotation of the wood pile about the z-axis is not as trivial as would be intuitively

expected. In most cases, the width vector (largest measurable distance) of the pile, which

corresponds approximately to Υ1, aligns well with the x-axis. However in some cases, the wood

pile is located on a mountain side so that one end is at a higher or lower altitude than the other

end and thus a rotation about the z-axis is introduced. Again, for surveying, this orientation

is not important, but it aids in optimizing the interactive editing. Szeliski [Szeliski, 2006]

points out that an observer has an expectation of the object’s or image’s y-axis being aligned

to the gravity vector. Υ1 of the pile could be used for this as an approximation, by rotating

the model so that Υ1 is orthogonal to the gravity vector (which in this case is the y-axis).

An approach which is more natural for an observer is discussed by Szeliski [Szeliski, 2006].

It is theorized that a user, when taking pictures, intuitively holds his camera in parallel to

the horizon, which implies that the image’s y-axis is aligned to gravitation vector. When

considering multiple cameras, e.g., in panoramic image stitching or structure from motion,

this task can be formulated as a least squares problem. The result of this formulation yields a

global rotation matrix that transforms (in this case) the 3D model in a way that it is correctly

aligned to the gravity vector. [Szeliski, 2006]

The problem of scale recovery will be addressed in Section 7.3 (Scale reference). For now

it can be assumed that the scale was robustly computed and the wood pile model can be used

for metric surveying. At the same time, the depth of the pile is known and the wood logs’ cut

surfaces are extended accordingly. The final reconstruction model is obtained by performing

texture mapping from the images onto the detected 3D objects. The camera, whose optical

axis aligns best with an object’s surface normal, is used for the extraction of the texture. This

way, distortions can be minimized and the initial reconstruction of the wood pile front surface
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is concluded, as shown in Figure 7.8.

7.2.6 Interactive editing

Before computing the contour volume and the solid wood volume, it must be ensured that all

wood logs were correctly detected and that no false positives are visible. This is especially

important for the scaling of the model, since the far left and far right wood log are used for

this task. A failure to mark these logs results in incorrect scaling of the model. The goal

in this section is to provide an interface for a user to check the reconstruction and detection

result. In the previous section, rotation correction was conducted. This makes the wood

pile model eligible for projection onto the x-y-plane. To minimize distortions, orthographic

projection is used for this task, with the resulting image being used as a visual representation

for user input. A user can freely move, scale, add, and delete objects. The process of deleting

objects is trivial, but adding objects to the model requires additional computational effort.

Similar to the object detection step, quadric filtering is performed when specifying a location

at which an object should be inserted. In Section 7.2.4 (3D object detection), this process

is described in detail. When scaling an object, the 3D location remains constant. In the

case that an object is translated, the z-coordinate is recomputed through the quadric filtering

approach. From Figure 7.2, it can be seen that if changes were made by a user, the 3D model

is reconstructed again, based on the new 3D objects. This process is run until no further

changes are made and surveying can commence.

7.2.7 Surveying

Contour volume The contour volume in this three-dimensional surveying approach is com-

puted based on the concave hull of the point cloud. In contrast to the two-dimensional sur-

veying approach, the orthographic projection of the wood pile front surface is used instead of

the panoramic image. This yields the advantage that the model for the wood pile has been

reconstructed more accurately through structure from motion and that only little distortions

from perspective projection are introduced. The contour volume is defined through the pro-

jection of the front surface onto the x-y-plane, which produces the contour area Ac. Equation

7.7 shows Green’s theorem [Cauchy, 1846] (implementation by [Rusu and Cousins, 2011]),

which is used to efficiently compute the area surrounded by the contour, where Cobj is the

object’s contour.

Ac =

∫∫
dA =

∫
Cobj

(f(x, y)dx− g(x, y)dy) (7.7)

The resulting contour is smoothed via a morphological operation to ensure comparability

to manual measurements, as proposed in Section 5.3. In Equation 5.5 it was shown that the
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Figure 7.9: Result images for (a) contour volume and (b) solid wood volume obtained

through orthographic projection. Image source: [Herbon et al., 2015b]

contour volume can now be obtained by multiplying the contour area Ac with the known

wood log length l. A graphical representation can be seen in Figure 7.9(a).

Solid wood volume The solid wood volume for the three-dimensional approach is not

computed on a pixel level as in the two-dimensional approach, but directly on the 3D objects.

The wood log faces in 3D are given by their circular approximation. In Section 2.3.1 (Attributes

of roundwood logs), it was shown that the circular approximation of a wood log is generally

accepted to be accurate enough. The solid wood area can thus be defined as the sum of all

wood log faces, as shown in Equation 7.8. The solid wood volume is computed based on

Equation 5.3, as previously discussed in Chapter 5. The result is shown in Figure 7.9(b).

Vs =
N∑
i=1

πr2i (7.8)

7.3 Scale reference

7.3.1 Reference length

The recovery of the scale after 3D reconstruction has great impact on the surveying result.

In Chapter 5 (Two-dimensional surveying), the wood pile width was used as a reference. The

same referencing method will be used in most cases of the three-dimensional surveying. For
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Figure 7.10: Digital width measurement of a wood pile

this, the largest measurable distance of the wood pile is used, which is defined by the outer

ends of the wood logs on the left and right side (Figure 7.10). Table 7.1 shows the results

of an extensive repeatability test, in which the width was measured 200 times by a total of

seven different people, for wood piles with widths of between 4.1m and 35.3m. It can be seen

that a very low repeatability standard deviation (defined in Equation 5.15) is achieved, which

supports the case for using the pile width as a scale reference. However, due to knowledge

about the camera locations, a couple of alternatives to width-referencing will be discussed in

the next sections.

measurements s̄rep

pile width repeatability 200 0.12%

Table 7.1: Repeatability for width measurements

7.3.2 First alternative: monocular sensor fusion

Elmenreich [Elmenreich, 2002] defines sensor fusion as the combination of sensory data for

the purpose of enhancing the data. Some of the advantages according to Elmenreich are a

higher robustness, an extended temporal and spatial coverage, an increase in the confidence of

the data (which implies lower uncertainty and less ambiguity), and an increase in resolution.

The term monocular sensor fusion refers to the use of monocular cameras, as opposed to stereo

cameras. While a stereo camera can be calibrated to produce metric depth images, monocular

cameras do not provide a scale of the depicted content. In theory, the acceleration and gyro

sensors of a smartphone can be used to determine a metric scale of a camera movement in

addition to the image sequence of the monocular camera. Mukai and Ohnishi [Mukai and

Ohnishi, 1999] show that the acceleration of a device, obtained from a noise-free acceleration-

gyro sensor, can be integrated as shown by Equation 7.9, in order to obtain the metric velocity
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of the camera. vWG is the velocity from the acceleration-gyro sensor, R is the rotation from the

base world coordinate system, aW is the sensor acceleration and gB is the gravitation vector.

vWG (t) = R(t)

{∫ t

t0

{
R−1(τ)aW (τ)− gB

}
dτ + vB(t0)

}
(7.9)

In reality, the acceleration sensor data includes noise, which leads to a significant drift. If

the velocity is integrated again, in order to determine the camera position, this drift is ampli-

fied. For that reason, simple integration of the accelerometer data does not work adequately

in real world scenarios. Some research has been done to combine accelerometer and gyro data

with the camera trajectory from a sequence of images, such as [Jung and Taylor, 2001;

Mukai and Ohnishi, 1999], the work by Nützi et al. [Nützi et al., 2011], and the approach

by Davison [Davison, 2003].

Mukai and Ohnishi [Mukai and Ohnishi, 1999] propose an approach for shape recovery of

a known object. The camera locations are fused with accelerometer and gyro data to obtain

the unknown scale factor. This is achieved by minimizing a function which includes the scale

factor and the velocity from both the image sequence and the acceleration sensor. Results for

the scale factor are reported for simple and complex camera motions. In the simple scene,

the scale factor was underestimated by up to 20%. In the complex case, a 94-frame sequence

(5.64 seconds) was used. According to the authors, the scale could not be recovered reliably.

A similar method is shown by [Strelow and Singh, 2002], who report position errors of up

to 25cm with unknown trajectory length.

Davison [Davison, 2003] proposes to use an object with known scale for initialization, such

as a sheet of paper. The goal of this approach is long-term navigation accuracy; the topic

of scale recovery is not discussed in detail. Nevertheless, using a reference object seems like

a straightforward approach, which is similar to the use of the pile width. An offline method

is proposed by Jung and Taylor [Jung and Taylor, 2001], who aim to perform trajectory

fitting between inertial and vision data. A small set of key frames is extracted from an image

sequence for which structure from motion is computed. For a 6.1m camera trajectory of an

omnidirectional video sequence, an average position drift of 4.5cm with a maximum drift of

16.4cm was achieved. For another sequence with large rotational motions, a maximum drift of

22.1cm (average 8.2cm) is reported. For a conventional, non-omnidirectional video sequence

of eleven second duration (and unknown camera displacement), an average displacement error

of 1.05cm with a maximum error of 3.35cm is given.

A more complex approach is presented by Nützi et al. [Nützi et al., 2011], with the im-

plementation of Weiss et al. [Weiss et al., 2011] being based on this method. The authors

compare the method by Jung and Taylor [Jung and Taylor, 2001] and a novel approach,

where an Extended Kalman Filter (EKF), which fuses inertial and vision data, is used. Ac-

cording to Nützi et al. the approach by Jung and Taylor provides a strongly varying accuracy
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in scale estimation, reaching from less than 5% to more than 50%. The Extended Kalman

Filter results for real data are shown as diagrams where the convergence of the scale λ is given

over time. After approximately 30 seconds, the scale converges, but still jitters in a range

of about 15%. Experiments performed within the scope of this thesis showed that even on

the same image sequence as used by the authors, the results are highly dependent on noise

estimation parameters and a correct initialization. The scale estimation, as reported by the

authors, could be achieved in the best case, but even slight deviations from the initialization

led to large differences in the estimated scale.

Out of the discussed methods, the approach by Nützi et al. seems to be the most promising.

Although these methods achieve good results in their respective fields, the scale estimation is

not suitable for wood pile surveying. The reason for this is twofold. Firstly, it seems excessive

for both computation time and consumption of resources to capture a video sequence of several

minutes and process a 3D reconstruction on a mobile device. While it is possible to do so, the

results are far less accurate when compared to using a reference object or length, which can

be seen from the reported scale and position errors. Even in the best case, the scale results

are not accurate enough. Secondly, the scale in [Nützi et al., 2011], although it converges,

still varies over time due to jitter, which makes it impossible to determine an adequate cutoff

point.

7.3.3 Second alternative: high precision global positioning

Related work The location determination via global positioning with mobile receivers has

significantly improved over the last few years. GPS, as the first global positioning system,

was deployed in the 1970s [El-Rabbany, 2002, pp. 78–80]. Today, the Russian GLONASS

system is also available, while several other positioning systems are currently being established,

such as the European GALILEO, the Indian IRNSS, the Japanese QZSS, and the Chinese

COMPASS [Bauer, 2011]. The accuracy of GPS is described to be between 10m and 22m

under perfect conditions [Kahmen, 2005, p. 315; Bauer, 2011, pp. 218–224], which is not

accurate enough for scale estimation of objects smaller than a few kilometers. This problem

can be overcome by using correctional signals [Wanninger, 2006] in addition to the pure

satellite-based navigation. Centimeter and even millimeter accuracy can be achieved when

using RTK-GPS (Real Time Kinematic) [Wanninger, 2006]. RTK uses correctional signals

from local reference stations, which are received via a cellular data connection. In most of

the related work, the fusion of structure from motion, SLAM, or visual odometry with RTK-

GPS data is only addressed as a means to compare the recovered camera positions to ground

truth, instead of incorporating these measurements for scale estimation (e.g. [Agrawal and

Konolige, 2007; Civera et al., 2009; Konolige et al., 2011; Royer et al., 2005]). In

contrast, [Hwang et al., 2012] propose to process RTK data directly on a smartphone, thus
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enabling high precision location estimation on mobile devices. A similar approach is followed

by [Kim et al., 2013] for gravity surveying.

Method The fusion of structure from motion with RTK-GPS for the purpose of scale re-

covery is rarely addressed in related work. Nevertheless, the approach seems promising as

an alternative to using a reference length. The idea behind the approach is to perform the

structure from motion reconstruction of the wood pile, as discussed in Section 7.2.3, and then

register the camera positions with the RTK-GPS locations for each frame. As opposed to

using camera translations as priors in structure from motion, this way the scale can be recov-

ered implicitly without a reference length, and the results can be compared to those obtained

by using the width as the reference. Moulon and Duisit [Moulon and Duisit, 2014] provide

an implementation based on [Haralick and Shapiro, 1992], which computes a transform

(rotation, translation, and scale) of two point sets. Jian and Vemuri [Jian and Vemuri, 2011]

formulate this task as an optimization problem, where the goal is to find a transformation

T , which transforms a point set S to align with a point set M . The optimization can be

performed in a least-squares sense (with the disadvantage of being sensitive to outliers) or by

using an M-estimator [Huber, 1981].

In the case of wood pile surveying, M is the set of ground truth camera locations, obtained

through RTK-GPS and S contains the camera centers after computing the structure from

motion results. The point set registration algorithm yields the transform T , which is not only

applied to the cameras from SfM but also to the point cloud representing the scene, i.e. the

fully-reconstructed wood pile. This way, the wood pile volume can be computed with a metric

scale based on the 3D model, without having to explicitly scale the model with a reference

length.

Challenges In contrast to pure GNSS location estimation RTK uses a cellular data connec-

tion which requires mobile internet. As discussed in Section 2.1 (Environmental constraints),

mobile internet coverage is very poor in most rural areas. This makes it difficult, if not im-

possible, for an RTK receiver to communicate with a cell phone tower, thus complicating the

reception of the correctional signal. Additionally, the satellite coverage suffers significantly

when the sky is occluded, e.g., when covered by tree branches. This problem occurs frequently

when performing measurements in or near a forest. Similar to buildings in urban areas, multi-

pass noise occurs when mountains are close to the GNSS receiver [Petrovski, 2014, p. 229].

For RTK, this leads to a lower accuracy and thus disqualifies the particular measuring site.

For this reason, only a limited set of test cases is discussed below, since it is very difficult to

find wood piles which qualify for both a good cellular reception and a good satellite signal

without occlusions of the sky. Nevertheless, the results give an impression of the suitability

of this technique.
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Width measurement comparison The first experiment is concerned with the comparison

of the scale factors obtained by a) the width measured with a tape measure and b) the width

measured via RTK-GPS. The conventional measurement by hand was conducted by measuring

the far left and far right end of the pile. The exact same positions were located via RTK-GPS

with an accuracy (as given by the receiver) of less than 1cm (usually 0.7-0.8mm) for latitude

and longitude and less than 2cm for height. Three different wood piles could be found, which

satisfy the conditions described in the previous paragraph, with widths of between 3m and

7m. A total of 21 measurements were performed.

x̄ s

scale difference manual width / RTK-GPS -0.002m (0.027%) 0.041m (0.746%)

Table 7.2: Absolute and relative difference between RTK-GPS width measurements and man-

ual width measurements via tape measure.

Table 7.2 shows the results for these measurements. The absolute as well as the relative

errors are very small, with the average error being only 0.027% with an empiric standard

deviation of 0.746%. From these results it becomes clear that both referencing techniques only

differ insignificantly. Hence, the width measurement via tape measure as well as the width

measurement via RTK-GPS are interchangeable in real world use. The highly precise RTK-

GPS measurement provides an advantage, when the wood pile geometry deviates strongly

from a quasi-planar surface, since the width might not be easily measurable by tape measure.

Scale factor comparison The fusion of RTK-GPS and structure from motion data is done

as explained above, by the method of Moulon and Duisit [Moulon and Duisit, 2014] based

on [Haralick and Shapiro, 1992], which means that the camera locations are registered

to the RTK-GPS locations and transformed accordingly, including a scaling operation. The

computed scale factor is compared to the manually measured scale factor by reference length

(tape measure) for a total of 14 data sets. Two different structure from motion techniques,

global [Moulon et al., 2013b] and incremental [Moulon et al., 2013a], are used to compare

the scale factors, as shown in Figure 7.11. The relative differences between the computed

scale factors are given, including their respective empiric standard deviation.

scale factor x̄ s

global [Moulon et al., 2013b] 0.5% 4.3%

incremental [Moulon et al., 2013a] 3.3% 4.5%

Table 7.3: Relative difference between the scale factor via manually-measured reference length

and scale factor via RTK-GPS for Figure 7.11
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Figure 7.11: Comparison of the scale factor via reference length (tape measure) and scale

factor via RTK-GPS. The relative error between the RTK-GPS length and the reference

length is given. Numeric values are shown in Table 7.3.

The referencing via RTK-GPS yields on average a slightly higher scale factor than the

scaling via reference length. While the empiric standard deviations are approximately equal,

the global method shows a much lower average offset (0.5% vs. 3.3%). This, again, speaks

for the higher robustness of the global method with regard to drift.

In order to assess the quality of the 3D reconstruction and its influence on the scale factor

determination, the average absolute difference of the SfM camera positions in comparison to

the RTK-GPS locations were determined (Figure 7.12). In accordance with [Moulon et al.,

2013b], it can be said that the global approach is more precise in terms of the average camera

position error and the empiric standard deviation of the positions. The differences of the

reconstructed camera locations to the ground truth locations explain the deviations in the

scale factor estimation. With increasing quality of the structure from motion reconstruction,

the scale factor estimation becomes more precise with regard to offset and standard deviation.

camera position error x̄ s

global [Moulon et al., 2013b] 0.016m 0.008m

incremental [Moulon et al., 2013a] 0.026m 0.019m

Table 7.4: Camera position error (SfM vs. RTK-GPS) for the global and the incremental

method, as shown in Figure 7.12

Conclusion Summarizing the insights of this section, the scale reference can be most ac-

curately determined through the wood pile width. In comparison to ground truth, obtained

via RTK-GPS, the width measurement only exhibits a 2mm (0.026%) offset with an empiric
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Figure 7.12: Camera position error (SfM vs. RTK-GPS) for the global and the incremen-

tal method. Numeric values are shown in Table 7.4.

standard deviation of 41mm (0.746%) on average. The first alternative scale referencing ap-

proach via sensor fusion is not accurate enough for real world use, since stable conditions

are hard to achieve. Even in best case scenarios, a scale deviation of up to 15% is possible.

The alternative scale estimation via RTK-GPS shows promising results. While the offset

and standard deviation are approximately one order of magnitude higher than manual width

measurement, this type of scale estimation could in theory be done without additional hard-

ware, assuming that future mobile devices could be equipped with RTK-GPS sensors, while

on-device processing of RTK-GPS data is already possible. The fusion of camera locations is

dependent on the quality of the 3D reconstruction result. Using the global method provides

a more accurate scale estimation than the incremental method, which is due to the position

errors of the individual cameras of the structure from motion result.

7.4 Surveying results

In this section, the results for the proposed photogrammetric surveying approach are discussed.

The data basis for the evaluation is the multi-image benchmark of the HAWKwood database.

A total of 246 data sets are provided; 40 of these sets are synthetic, which means that the

input images were digitally rendered. For all synthetic data sets, the number of wood logs,

the contour volume, and the solid wood volume are known. Out of the 206 real data sets, the

contour volume via the manual section volume method is provided for all data sets, 71 sets

include the solid wood volume obtained via the complete diameter inventory, and the number

of wood logs is known for 147 data sets. Four of the data sets could not be reconstructed

via structure from motion. The reason for this is a mixture of too little overlap and planar

degeneracy.
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Three different cases are analyzed, to obtain an impression of the method’s performance

under varying conditions. Firstly, the regular structure from motion results are used as input.

Since the point cloud in this case only contains few vertices, this will be referred to as the

sparse case. Secondly, the same point cloud is post-processed by applying a multiple view

stereopsis algorithm, as proposed by Furukawa and Ponce [Furukawa and Ponce, 2007].

The result of this method is a point cloud with more vertices and thus a higher vertex density,

which will be called the dense case. Thirdly, synthetic data sets are used to make a reliable

statement in noise free conditions about the accuracy of the proposed methods.

7.4.1 Wood log recognition

Performance for different data sets Figure 7.13 shows the results for the true and false

positive wood log detection rate. The true and false positive rate are defined in the same way

as for 2D surveying, which is by dividing the true and false positive number of logs by the

ground truth number of logs (see Section 5.4.1 (Evaluation metric), Equations 5.6 and 5.7).

Interestingly, there is no significant difference between the sparse and the dense true positive

rate. The false positive rate on the other hand is more than twice as high for the dense data

sets. From this it can be concluded that the multiple view stereopsis algorithm introduces

artifacts and noise which make wood log localization more difficult. This stands in contrast to

the intuitive expectation that a higher vertex density provides a more accurate result. Indeed,

the very precise vertices, which are the result of the global structure from motion pipeline,

are better suited for object localization.

The true and false positive rate for the sparse synthetic data sets outperform the real

data sets. This is not surprising, since the synthetic data sets provide intrinsic calibration

information, no lens distortion, and are generally free from noise or compression artifacts.

In other words, under ideal conditions the proposed three-dimensional wood log recognition

approach works almost perfectly. For real data sets with significantly worse input data, only

a slight decrease in performance is visible, which advocates the robustness of the method with

regard to image quality and extrinsic parameters, such as the camera trajectory.

wood log recognition x̄tpr stpr x̄fpr sfpr

sparse 0.988 0.013 0.007 0.013

dense 0.991 0.014 0.015 0.019

synthetic 0.999 0.003 0.003 0.005

2D surveying (sec. 5.4.4) 0.985 0.015 0.020 0.027

Table 7.5: Wood log recognition results for the three-dimensional approach in comparison to

the 2D method for Figure 7.13
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Figure 7.13: True and false positive wood log recognition rates for different data sets.

Numeric values shown in Table 7.5.

Comparison to 2D surveying The comparison between the real data sets for the two-

dimensional and the three-dimensional approach in Table 7.13 shows that the 3D approach

outperforms the 2D approach for all measured quantities. The true positive rate is higher for

the photogrammetric approach, with a lower empiric standard deviation. The most noticeable

difference is the false positive rate, which is approximately three times smaller for the sparse

data sets. The use of the 3D approach is thus very beneficial for wood log recognition.

Number of images per wood pile An important aspect of the discussed approach is

the number of input images. The true and false positive rate, with respect to the number of

images for the same synthetic wood piles, are shown in Figure 7.14. As expected, the true

positive rate increases with the number of images and the false positive rate decreases. From

this fact the conclusion can be drawn that, although the changes are not very drastic, a too

large or a too small number of images is not beneficial for the method’s performance. At a

certain point the true positive rate does not increase when adding more images but the false

positive rate is amplified. As a rule of thumb, approximately 2-3 images per meter of the pile

width provide the best results.

number of images 12 25 50 100

x̄tpr 0.997 0.999 1.000 1.000

stpr 0.003 0.002 0.002 0.002

x̄fpr 0.000 0.001 0.003 0.009

sfpr 0.000 0.002 0.004 0.004

Table 7.6: True and false positive detection rate for different numbers of images, as shown in

Figure 7.14
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Figure 7.14: True and false positive rate with respect to the number of images for the

same wood pile. Numeric values shown in Table 7.6.

Minimum number of occurrences During the object merging step, the minimum number

of occurrences can be specified. The impact of this parameter is shown in Figure 7.15 for the

sparse real data sets. A reasonable parameter range has been found to be nocc = 1 . . . 3. For

nocc = 3, the false positive rate only decreases slightly while the true positive rate decreases

almost linearly. nocc = 2, which was used in all other experiments, seems like a good parameter

choice, since the true positive rate is still comparably high while the false positive rate is

significantly lower.
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Figure 7.15: True and false positive rate with respect to wood log occurrences. Numeric

values shown in Table 7.7.
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occurrences 1 2 3

x̄tpr 0.996 0.988 0.981

stpr 0.011 0.013 0.017

x̄fpr 0.029 0.007 0.004

sfpr 0.024 0.013 0.008

Table 7.7: True and false positive rate for different numbers of occurrences, as shown in Figure

7.15.

7.4.2 Solid wood volume

The solid wood volume for the three-dimensional approach is computed as shown by Equation

7.8. This is done after interactive editing, so that all wood logs are correctly marked as such

and no false positives are present. The result of the solid wood volume surveying are shown in

Table 7.8. Interestingly, the three-dimensional result exhibits a larger offset compared to the

2D surveying approach. This is caused by the merging step, in which the size of an individual

wood log is averaged. In some cases, wood logs are smaller due to projective distortions of

the input image or insufficient detection of the bark and thus the log size is decreased. An

alternative could be to use the median diameter.

The standard deviation is slightly better for the 3D approach, but most importantly,

the 3D results show a lower repeatability standard deviation, as defined in Section 5.4.1

(Evaluation metric). This speaks for the robustness of the method in terms of repeatability,

as it outperforms the two-dimensional approach, which means that the method produces stable

results when surveying the same wood pile multiple times. The same conclusion can be drawn

from synthetic data. While these data sets show a slightly higher offset, the repeatability

standard deviation is very small.

solid wood volume x̄ s srep

sparse -0.056 0.034 0.020

dense -0.078 0.037 0.021

synthetic -0.070 0.032 0.013

2D surveying (sec. 5.4.4) -0.026 0.038 0.023

Table 7.8: Solid wood volume results for the three-dimensional approach in comparison to

the two-dimensional results
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7.4.3 Contour volume

The contour volume surveying outperforms the 2D approach in all categories. There exist

only very slight differences for the dense and the sparse models, which shows that the use of

a multiple view stereopsis algorithm as a post-processing step does not provide a significant

benefit, but does negatively affect the processing time. Similar to the solid wood volume, the

synthetic results are very close to the real data results, with a lower repeatability standard

deviation than the 2D method. Again, this indicates a high robustness of the method with

regards to producing the same values for the same wood pile.

contour volume x̄ s srep

sparse 0.015 0.029 0.013

dense 0.014 0.025 0.018

synthetic 0.011 0.029 0.021

2D surveying (sec. 5.4.4) -0.019 0.046 0.024

Table 7.9: Contour volume results for the three-dimensional approach in comparison to the

two-dimensional results

7.5 Use on handheld devices

So far, the algorithmic details and results of the proposed three-dimensional approach have

been discussed. Since the method is designed to work on handheld devices, the considerations

for this implementation need to be elaborated. The goal of this dissertation is a proof of

concept for photogrammetric surveying. An extensive optimization for the method’s com-

putational performance is beyond this work’s scope. Nevertheless, some adjustments for the

algorithms and parameters, which will be discussed in this section, are necessary for the

method to work at all. On the algorithmic side, the choice of methods is crucial for the over-

all performance. For each of these methods, a number of parameters additionally influence

the processing time and the memory consumption. The algorithm adjustments for mobile

devices and parameter choices will be discussed in Section 7.5.1 (Conceptual and parametrical

optimizations). As part of the proof of concept, the processing time on the mobile device

will be briefly discussed in Section 7.5.2 (Processing time and memory consumption). All

experiments are performed on an iPhone 6 smartphone, which features an A8 processor, 1GB

RAM, and an 8 megapixel camera.
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7.5.1 Conceptual and parametrical optimizations

Parallelization Beginning at the initialization of the 3D approach, the image-based detec-

tion algorithm extracts wood logs from each input photo. For three-dimensional surveying,

the wood log recognition can make use of the multi-core CPU architecture of most modern

smartphones. This enables the wood log detection to be performed in parallel to image ac-

quisition. The processing can therefore start before a user is done with data acquisition. The

same concept enables the extraction of image features (e.g., SIFT) as well as feature match-

ing for structure from motion during image acquisition. A high number of CPU cores can

potentially speed up the processing significantly.

After feature matching, the structure from motion pipeline is invoked. The beginning

of this step implies that no further images will be acquired. During the processing of the

3D reconstruction, the scale reference in the form of the wood pile width can be measured

by a user, thus utilizing the time to gather information, while the method is computing

the preliminary results. When the structure from motion is complete, the results are scaled

according to the scale reference and interactive editing beings (see Figure 7.2).

Wood log recognition optimization A conceptual aspect of the 2D surveying is the

optimization of the true and false positive rate. In contrast to the 2D detection results, the 3D

approach uses a different detector scale factor, with sdetector = 1.05 instead of sdetector = 1.01.

While the true and false positive rate were shown to be better for a lower scale factor (Figure

5.8), the processing time increases strongly for a lower factor, which can be seen in Figure

7.16(a). For sdetector = 1.05, in comparison to sdetector = 1.01, the tpr is lower by 0.3% with

constant fpr.

To compensate for this, instead of using a higher detector scale factor, the iterative ap-

proach optimizes the detection result, while the processing time is only increased slightly.

Figure 7.16(b) shows that the second iteration adds approximately 50% of the additional

processing time, while the increase from additional iterations is marginal. Accordingly, Fig-

ure 5.10 confirms that the tpr is increased after the second iteration by 0.3%. It therefore

seems preferable, with regard to the processing time, to use a lower detector scale factor and

compensate for it by employing the iterative scheme.

sdetector 1.005 1.01 1.05 1.10 1.20

processing time / s 14.37 3.82 0.31 0.20 0.18

Table 7.10: Processing time for single image wood log detection and the scale factor sdetector
for Figure 7.16
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Figure 7.16: Processing time for single image wood log detection with respect to sdetector
and iterations. Numeric values shown in Tables 7.10 and 7.11.

iterations 1 2 3 4

processing time / s 2.61 3.82 3.84 3.83

Table 7.11: Processing time for single image wood log detection with sdetector = 1.01 with

respect to the number of iterations for Figure 7.16

Feature matching complexity reduction The global structure from motion method by

Moulon et al. [Moulon et al., 2013b] can be modified to specify which images should be

matched. When capturing an image sequence of a wood pile, it can be formulated as a

priori information that an image will only overlap with the k adjacent images of the image

sequence. A similar conjecture was made for the adaptive stitching approach (see Section

4.3 (Optimization for mobile devices)). As previously stated, the matching problem can be

reduced from a quadratic problem O(n2) to a linear problem O(n) only when the k adjacent

images of the image sequence are matched. Especially when capturing large wood piles,

this complexity reduction is beneficial for the processing time. Beyond the computational

complexity, applying this a priori knowledge also increases the stability of the matching step,

since a number of false image matches can be eliminated beforehand.

Relinquishment of multi-view stereopsis In Section 7.4 (Surveying results), the use of

a multiple view stereopsis algorithm was analyzed. It was shown that the advantages, if any,

are negligible. In some cases the results were even better for the sparse data sets, especially

in terms of the false positive rate. Therefore, this step is not included in the final version of

the proposed approach. All further evaluations are conducted based on the sparse data sets.
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Detector combination The use of different detectors leads to different processing times.

The diagram in Figure 7.17 shows that the HOG detector only takes about 0.5 seconds for

a single image, while the LBP and Haar-like detectors both need approximately 4 seconds

to compute the result. When choosing a detector combination with regard to the processing

time, the HOG detector can be safely combined with any of the other two, whereas the

combination of Haar-like and LBP features should be avoided if possible, if the goal is a low

computation time. In consideration of the detection performance (Figure 5.9), the choice of

LBP+HOG does not only show a decent processing time, but also provides the best detection

results.
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Figure 7.17: Average processing time for a single images with different detectors

7.5.2 Processing time and memory consumption

For the proof of concept for the proposed photogrammetric method, the processing time and

memory consumption must be assessed. In this evaluation, the synthetic data sets are used

because only four different image counts exist for these sets. This way, the processing time

and memory consumption of the entire implementation can be shown in respect to the number

of input images. Current smartphones are equipped with at least one gigabyte of memory,

therefore the goal for memory consumption should be to use less than that. Between 12 and

100 images per set are used. Images are scaled to 800x600 pixels, which is still well within

the range for a good wood log detection rate. During structure from motion, the matching

between images is limited to j = i − 5 . . . i + 5 and j 6= i, where j is the index of an image
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which should be matched to the current image Ii.

Figure 7.18 shows the average processing time for the entire surveying approach. Note

that the time for manual editing is not included, since it can vary depending on the user. As

expected, the processing time increases with the number of images. The shown processing

times vary from under a minute for 12 images to about 25 minutes for 100 images. In all of

the real HAWKwood data sets, a maximum of 60 images was used, while small wood piles

can be covered by fewer than 10 images. The photogrammetric processing is still significantly

faster than manual surveying. Nevertheless, the method shows potential for computational

optimization.
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Figure 7.18: Processing time for different number of images. The error bars indicate the

observed maximum and minimum processing time.

Crucial for the use on handheld devices is the peak memory consumption of the method.

In Figure 7.19, the average and peak memory usage are shown. With a maximum of approxi-

mately 400MB for a set with 100 images, the memory consumption is well within the physical

limits. The slope of the curve indicates that a minimum of 120MB is needed for the entire

pipeline, including interactive editing. Beyond that, memory consumption increases linearly,

which advocates good scalability of the proposed method. Certainly, the peak memory usage

can be reduced by writing files to the disk. In this case, negative effects on the computational

performance should be expected, but it seems possible to achieve constant, instead of linear,

memory consumption.



7.6. Summary and future work 134

12 25 50 100
0

256

512

768

1024

number of images

m
em

or
y
co
ns
um

pt
io
n
/
M
B

Figure 7.19: Average and peak memory consumption for different number of images. The

error bars indicate the observed maximum and minimum values.

7.6 Summary and future work

Summary The proposed photogrammetric surveying method works by performing structure

from motion in parallel with two-dimensional object detection from a set of images. In the

case study for this thesis, the images were taken by a smartphone camera or were rendered

synthetically. A novel approach for three-dimensional object detection was proposed, which

uses 3D reconstruction combined with detected 2D objects. Quadric filtering is performed,

in order to approximate the 3D location and size of an object and to track objects across

multiple frames. Based on the 3D objects, a digital model of the wood pile is established,

which is used for the determination of the solid wood volume and the contour volume.

Scaling is by default performed through a reference length, in this case the wood pile width.

It was shown that this size can be determined very accurately. Alternatively, referencing via

high-precision global positioning is possible. The results for this referencing method were

shown to be comparable, although the technical limitations (cellular and satellite reception)

proved to be limiting factors in terms of availability. The scaled and rotated wood pile is

orthographically projected onto an image plane, as to allow for interactive editing of the

recognized wood log front faces. An evaluation based on 246 real and synthetic data sets was

performed and the results were compared to ground truth and to the results obtained by the

2D surveying method.



7.6. Summary and future work 135

Conclusion In almost all aspects the photogrammetric method outperforms the two-dimen-

sional approach. Firstly, the reconstruction model is not limited to a planar or quasi-planar

surface, which is beneficial for the reduction of artifacts which occur, e.g., in the panoramic

images of the 2D approach. Secondly, the information about the camera locations can be

employed for an improved wood log detection result by filtering false positives and by rec-

ognizing wood logs from different viewpoints. A drawback of this method is caused by the

limitations of essential matrix estimation in epipolar geometry. The wood pile front surface,

which was shown to be geometrically describable as a quasi-planar surface, is very close to

a degenerate case, called an H-degenerate configuration or planar degeneracy. In four of the

data sets, the reconstruction failed partly because of this constraint. In most cases, capturing

sufficient off-plane foreground is enough to avoid the degenerate configuration, provided that

the off-plane foreground shows a certain degree of texture for feature extraction.

The surveying results show that the photogrammetric method produces a higher offset than

the two-dimensional method for the solid wood volume, but the empiric standard deviation

and repeatability standard deviation are lower. The contour volume exhibits a lower offset,

lower standard deviation, and lower repeatability standard deviation than the two-dimensional

method. This also points to the conclusion that the method provides stable results in terms

of repeatability and thus gives very similar results for multiple measurements of the same

wood pile. An advantage of the photogrammetric approach is the possibility for alternative

referencing. Although the scale estimation with RTK-GPS referencing is approximately one

order of magnitude less precise than referencing via size reference (see Tables 7.2 and 7.3),

the results are still promising for devices which may in the future be equipped with a high

accuracy receiver. The camera position registration with RTK-GPS is advantageous when the

outer logs cannot be accurately detected or measured, since only the camera locations and

not the scene content influences the scale estimation. The structure from motion result also

impacts the recovery of the scale through the accuracy of the camera trajectory. A higher

camera position accuracy results in a lower scale drift.

It was shown that the optimizations for mobile devices are necessary for the method to

run with a reasonable memory consumption. For a high number of images, the processing

time can take several minutes. Although normally no more than 50 to 60 images are needed,

the computation time could surely be improved. Nevertheless, time savings in comparison

to manual surveying can be achieved, given that manual surveying for large piles can take

several hours. In conclusion, the proof of concept was successful and it was shown that

photogrammetric wood pile surveying on mobile devices is indeed possible. Some limitations

and constraints exist, such as constraints for image acquisition, but the method is feasible in

general. With a possible integration of high precision GNSS receivers, the photogrammetric

method potentially works without any additional hardware on a single handheld device.
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Future work The proof of concept within this thesis was successful. A couple of interesting

topics for future research arise from the specific details of the implementation and the sur-

veying results. The photogrammetric approach outperforms the 2D surveying method in all

categories but the offset in the solid wood volume. This is most likely caused by the merging

step of the three-dimensional objects. For a lower offset, an alternative merging procedure

could be used, e.g., the median instead of the average wood log size could be used for higher

robustness in terms of diameter estimation. Another factor, which complicates the diameter

estimation in the two-dimensional object recognition step, is the bark of the wood logs. In

Section 2.2 (Research challenges) it was shown that different types of trees exhibit signifi-

cantly different bark consistencies. This poses a challenge for the circular approximation of

the wood log cut surface and thus influences the solid wood volume result. It could be useful

to differentiate between different types of wood, in order to model the appearance of the bark

appropriately. Additional a priori knowledge would be needed for the method to benefit from

a more precise wood log face segmentation.

The alternative scale estimation via high precision global positioning is currently used as

an interchangeable alternative for the reference size. This was chosen explicitly, in order

to enable good comparability. In recent years it has been proposed to use position priors

in structure from motion [Carceroni et al., 2006; Irschara et al., 2011; Maurer et al.,

2012; Pollefeys et al., 2008]. This could be an interesting topic for future research, since the

scale would be recovered automatically, while simultaneously improving the calibration result.

Especially in the proposed global structure from motion approach [Moulon et al., 2013b],

the individual camera translations are estimated in a distinct processing step. Either this

step could be skipped, or the translation estimation results can be validated by incorporating

high accuracy position priors.

Another method for scale and structure recovery could be to use stereo or depth images. In

both cases the scale is known, either from calibration of the stereo camera, or from calibration

of the laser / structured light / time of flight sensor. Since, to this date, no commercially

available smartphone with such sensors exists, this approach seems like an interesting field

for future research. In the case of using data from such 3D sensors, the wood log recognition

task could be performed directly in three dimensions and location priors for the wood log cut

surfaces could be used for an optimization of the recognition procedure. With the presented

monocular approach as a basis, it has been proven that photogrammetric wood pile surveying

is indeed possible. As with all such approaches, further optimization of specific tasks is

possible, but the proof of concept remains unaffected.



Chapter 8

Conclusion

8.1 Summary

Forestry industry and wood pile surveying The forestry industry is a very active in-

dustrial area. The field of wood surveying in particular shows a comparatively low degree

of automation and therefore offers a high potential for the application of computational as-

sistance. The goal of this dissertation has been to prove that photogrammetric wood pile

surveying can be performed on a handheld device without an internet connection and with

little or no use of additional hardware.

With the increasingly wide availability of smartphones and tablets, such devices are a

natural choice for on-site, low-cost surveying. In most cases it is neither practical nor feasible

to carry large and heavy equipment to surveying sites. Alternative techniques were discussed,

such as surveying with a vehicle mounted stereo camera or with offline and cloud-based

computation. Practical considerations made it abundantly clear that such methods are not

optimally suited to fulfill the requirements which arise in practice. Handheld devices on the

other hand, which are potentially small enough to fit in a jacket pocket, can considerably

increase the efficiency of wood pile surveying. The foundation for this is high computational

power, combined with the increasing quality of built-in photo cameras and means for user-

friendly interaction. The offline surveying constraint can be met with this technique, which

is very important, considering the virtually non-existent coverage with mobile internet and

given that results must be available immediately at the measuring site.

Geometric wood pile description A problem rarely addressed in related work is the geo-

metric description of a wood pile. Since a roundwood pile can be characterized as a clustered

object, it seems natural to define the wood pile itself as meta object, consisting of individual

wood logs, but also having distinctive properties based on the geometric distribution of those

logs. Such properties include the solid wood volume, the contour volume, the unambiguously
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determinable wood pile width, the front of the pile as a quasi-planar surface, the defined

depth of the pile, the wood quality, and the tree species. This information serves as a priori

knowledge for the proposed methods, but also defines a number of subproblems and inherent

challenges which the proposed methods must overcome.

Adaptive stitching The novel adaptive image stitching technique is able to provide an

image of the entire wood pile front surface, to which the object recognition method can be

applied. This method, referred to as the two-dimensional surveying technique, makes use of

the geometric description of the wood pile as a meta-object. One of the wood pile’s most

important properties is the quasi-planarity of the front surface. While quasi-planarity poses

a difficult challenge for other methods through the induction of a degenerate configuration,

planar image stitching is not only able to overcome the degeneracy, but can make use of this

property as geometric a priori information.

As with most stitching techniques, applications are very broad. Medical imaging (stitching

of microscopic photos) as well as robot navigation can incorporate the adaptive property of

the proposed approach. A consumer-level application is especially interesting, considering the

executability on mobile devices. With the capability of stitching planar as well as rotational

panoramas, a higher degree of flexibility is achieved.

Two-dimensional surveying Over the course of this dissertation it was shown that wood

pile surveying can be done in different ways, where each approach offers distinct characteristics

and advantages. The two-dimensional, image-based wood log recognition method was proven

to not only be useful as a standalone algorithm but can also be incorporated into other

approaches. The algorithm’s performance in regards to wood log detection and surveying

was tested on a large number of images. It was shown that the new method outperforms

the published state-of-the-art method. The determination both of the solid wood volume and

the contour volume were accomplished with a comparatively low drift and low repeatability

standard deviation, which makes this method applicable in practice.

A number of interesting observations were made, e.g., that a higher resolution is not always

beneficial for wood log recognition or that a higher scale factor increases the true positive

detection rate, but at the same time exponentially increases the processing time. Apart from

wood log recognition, a number of problems to which this method can potentially be applied

were identified. In all cases where objects are clustered and in which the objects’ properties can

be described in a consistent way, the proposed method can be used for enhanced recognition

and segmentation. Examples include food processing, recognition of fish, and medical imaging,

e.g., the detection of cells in microscopic images.
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Front surface segmentation Although very rare, the detection of wood logs can be chal-

lenging in some special cases. As an alternative it was proposed to perform direct segmentation

of the wood pile front surface, based on its quasi-planarity property and the introduction of

the principal flow vector, combined with a block matching method. The evaluation showed

that the results are comparable to recognition-based segmentation, but the latter shows a

significantly better repeatability standard deviation. This means that the quasi-planar sur-

face segmentation can best be incorporated into the other wood pile surveying pipelines to

improve results by providing an alternative segmentation approach, instead of serving as a

standalone algorithm. Furthermore, it was shown that the proposed method has applications

to autonomous vehicle navigation, especially for rough terrain navigation, which would be an

interesting topic for future research.

Photogrammetric surveying The core of this dissertation is the photogrammetric survey-

ing approach. Building on the object recognition method and a multiple view reconstruction

algorithm, the wood log cut surfaces are located in 3D and used as the basis for three-

dimensional surveying. A novel quadric-filtering approach was introduced, which is able to

locate an object in a structure from motion result, by back-projecting it onto the scene struc-

ture. This enables the tracking across multiple frames and aids in the removal of outliers and

false positives. A user can freely interact with the generated model and can thus assure that

the detection and surveying results are indeed correct. The photogrammetric surveying out-

performs the two-dimensional method in almost all aspects. An important issue for practical

applications is the processing time. With devices of the current generation, processing time

is in the range of minutes. This is still significantly faster than manual surveying and at the

same time exhibits a high potential for computational optimization.

Different scale estimation techniques were discussed, such as a manual reference size via

pile width, sensor fusion, and high precision global positioning. The sensor fusion approach

proved to be inadequate for this purpose, whereas the global positioning and the reference

size showed good results. While the reference size in the form of the pile width was proven to

be a very accurate scale reference, the fusion with global positioning data yields the distinct

advantage of being unaffected by the correct recognition of the outer wood logs.

On the other hand, the quality of the multiple view reconstruction strongly affects the

robustness of this estimation technique. In principle, this method can be applied to the same

problems as the 2D recognition approach wherever objects appear in a clustered fashion and

where their appearance can be described unambiguously. Examples include the detection and

location estimation of pedestrians via multiple surveillance cameras, recognition of cells, or

the supervision of food processing procedures.
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8.2 Contributions

The main contribution of this dissertation is the proof of concept for photogrammetric wood

pile surveying. To achieve this goal, a number of subproblems had to be solved. In the

previous chapters, the individual scientific contributions of this thesis were listed, the most

important of which are the following:

1. Description of the wood pile as a geometric meta-object

2. Availability of the HAWKwood database as a public benchmark

3. Definition of the panorama type criterion leading to adaptive image stitching

4. State-of-the-art image-based wood log recognition through an iterative scheme

5. Recognition-independent front surface segmentation based on the definition of the prin-

cipal flow vector

6. A novel photogrammetric surveying approach, based on multiple view reconstruction

and quadric-filtering

7. Assessment of scale estimation techniques

8. Methodical and parametrical optimization for mobile devices

9. Extensive evaluation based on the HAWKwood database

8.3 Future work

All proposed methods are designed for the surveying and recognition of the most important

types of wood, which are spruce, pine, beech, and oak. It was discussed that trees of these

species potentially exhibit quite different appearances. A thorough distinction between the

different types, especially for wood log recognition, is an interesting approach for future re-

search. It seems likely that such an approach could generate even better results. The same

holds true for the segmentation of bark for individual roundwood logs. With an a priori known

model for bark, segmentation can potentially be made more precisely.

For each method, a certain constraint for image acquisition is imposed, e.g., that panoramic

images should overlap a certain degree or that wood log recognition is best performed with

little camera rotation with respect to the wood pile front surface. When aiming for real world

applications, the importance of the usability should not be underestimated. For practical

purposes, a live feedback during image acquisition would be beneficial, especially for inexperi-

enced users. This requires a high processing power during acquisition, which at the moment is

already used for preprocessing. Future generations of handheld devices are expected to offer

higher computational capabilities, which will potentially solve this problem. The incorpora-

tion of a SLAM algorithm seems feasible for this task, since, with a certain degree of accuracy,

the camera trajectory and the structure can be used for self localization and orientation ad-
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justment with respect to a wood pile or other measuring objects. In recent years, the use

of three-dimensional image acquisition techniques has gradually gained importance. Multiple

approaches exist for this goal, e.g., time of flight sensors, laser scanners, stereo cameras, or

structured light sensors. Assuming that future handheld devices could be equipped with such

image acquisition systems, a natural next step is surveying based on pure three-dimensional

data. The same considerations concerning feedback during acquisition should be taken into

account for the identification of future research tasks.

Based on the promising results obtained in this thesis, the proof of concept for the recog-

nition and surveying of clustered objects (with wood piles as a case study) was shown to be

successful. This serves as a foundation for the future research tasks discussed above, which are

expected to enhance and improve wood pile surveying even more, through improved usability

during image acquisition and by incorporating detailed a priori models into the surveying

method. Furthermore, the novel solutions can be applied to a number of other surveying and

recognition problems, thus underlining the applicability of this dissertation’s contributions to

future research in many areas beyond wood pile surveying.



Appendix A

Stitching results

This appendix shows exemplary results of the stitching method in Chapter 4 (Adaptive image

stitching), divided into the categories “general scenes” and “wood piles”. For some general

scenes, both rotational and planar panoramas were captured and the results are shown in the

same Figure.

A.1 General scenes

Figure A.1: School wall scene. (a) Planar panorama stitched from 9 images, (b) rotational

panorama also stitched from 9 images. Image source [Herbon et al., 2014b]
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Figure A.2: Book shelf scene. (a) Planar panorama stitched from 8 images, (b) rotational

panorama stitched from 9 images. Image source [Herbon et al., 2014b]

Figure A.3: Rotational conference table scene, composed of 15 images. Image source

[Herbon et al., 2014b]
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A.2 Wood piles

Figure A.4: Example of a stitched wood pile front surface

Figure A.5: Example of a stitched wood pile front surface
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Figure A.6: Example of a stitched wood pile front surface

Figure A.7: Example of a stitched wood pile front surface

Figure A.8: Example of a stitched wood pile front surface

Figure A.9: Example of a stitched wood pile front surface
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Figure A.10: Example of a stitched wood pile front surface

Figure A.11: Example of a stitched wood pile front surface



Appendix B

Additional 2D results

B.1 Segmentation visualization

Figure B.1: Detection progress. a) Enlarged input image, b) initial detection result, c)

ROI (black) for candidate logs, d) candidates (blue) and validated objects (green) after

first iteration, e) final detection result after 4 iterations, f) final segmentation result.
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B.2 Image-based detection results

β 0.25 0.40 0.65 1.00 1.58 2.51 3.98

x̄tpr 0.984 0.992 0.994 0.994 0.992 0.979 0.932

stpr 0.030 0.015 0.012 0.014 0.014 0.020 0.040

x̄fpr 0.010 0.013 0.013 0.011 0.011 0.007 0.002

sfpr 0.027 0.027 0.021 0.027 0.016 0.006 0.002

Table B.1: True and false positive rate for wood log detection and parameter β for Figure 5.5

w / px 2592 2073 1555 1036 518

x̄tpr 0.996 0.996 0.996 0.994 0.833

stpr 0.005 0.011 0.011 0.012 0.114

x̄fpr 0.065 0.049 0.031 0.013 0.004

sfpr 0.077 0.056 0.079 0.027 0.008

Table B.2: True and false positive rate for wood log detection and the image width w for

Figure 5.6

θ / ◦ 0 10 20 30 40 50 60 70

x̄tpr 0.994 0.993 0.993 0.990 0.980 0.974 0.455 0.017

stpr 0.012 0.013 0.013 0.017 0.020 0.049 0.102 0.010

x̄fpr 0.011 0.014 0.012 0.015 0.020 0.057 0.451 0.214

sfpr 0.027 0.019 0.020 0.017 0.026 0.051 0.120 0.157

Table B.3: True and false positive rate for wood log detection and artificial rotation about

the y-axis for Figure 5.7
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sdetector 1.005 1.01 1.05 1.10 1.20

x̄tpr 0.993 0.994 0.991 0.988 0.982

stpr 0.014 0.012 0.017 0.018 0.026

x̄fpr 0.024 0.011 0.011 0.002 0.002

sfpr 0.033 0.027 0.009 0.005 0.004

Table B.4: True and false positive rate for wood log detection and scale factor sdetector for

Figure 5.8

detect. LBP HOG Haar LBP+HOG LBP+Haar HOG+Haar all

x̄tpr 0.994 0.935 0.987 0.996 0.996 0.988 0.997

stpr 0.012 0.031 0.025 0.010 0.012 0.017 0.010

x̄fpr 0.011 0.004 0.010 0.013 0.018 0.011 0.020

sfpr 0.027 0.007 0.016 0.034 0.027 0.016 0033

Table B.5: True and false positive rate for wood log detection and different detectors for

Figure 5.9

iterations 1 2 3 4

x̄tpr 0.991 0.994 0.994 0.994

stpr 0.018 0.012 0.013 0.013

x̄fpr 0.012 0.011 0.012 0.012

sfpr 0.027 0.027 0.026 0.026

Table B.6: True and false positive rate for wood log detection after each iteration for Figure

5.10



B.3. Image-based segmentation results 150

B.3 Image-based segmentation results

smarker 0.60 0.70 0.80 0.85 0.90 1.00

x̄tpr (aut.) 0.814 0.892 0.940 0.955 0.964 0.929

stpr (aut.) 0.053 0.038 0.022 0.018 0.026 0.063

x̄fpr (aut.) 0.015 0.021 0.041 0.066 0.109 0.221

sfpr (aut.) 0.012 0.016 0.022 0.029 0.042 0.083

x̄tpr (gt) 0.941 0.946 0.952 0.956 0.963 0.968

stpr (gt) 0.025 0.022 0.019 0.016 0.011 0.010

x̄fpr (gt) 0.025 0.026 0.027 0.029 0.031 0.038

sfpr (gt) 0.007 0.007 0.007 0.008 0.009 0.013

Table B.7: True and false positive rate for pixel-based segmentation with automatic detection,

ground truth detection, and smarker as a parameter for Figure 5.13

w 2592 2073 1555 1036 518

x̄tpr (aut.) 0.964 0.955 0.942 0.923 0.759

stpr (aut.) 0.016 0.017 0.017 0.022 0.246

x̄fpr (aut.) 0.072 0.072 0.055 0.040 0.218

sfpr (aut.) 0.030 0.025 0.023 0.021 0.378

x̄tpr (gt) 0.958 0.943 0.931 0.917 0.848

stpr (gt) 0.015 0.017 0.020 0.023 0.126

x̄fpr (gt) 0.029 0.028 0.021 0.015 0.061

sfpr (gt) 0.008 0.007 0.005 0.003 0.211

Table B.8: True and false positive rate with automatic detection, ground truth detection, and

different image resolutions for Figure 5.14



Acyronyms

Acronym Description

AUC Area under the curve

AWU Annual work unit

BA Bundle Adjustment

CMDI Complete midpoint diameter inventory

DOF Degree of freedom

EKF Extended Kalman filter

EM Expectation maximization

FLANN Fast library for approximate nearest neighbors

FOV Field of view

GMM Gaussian mixture model

GPS Global positioning system

GNSS Global navigation satellite system

HOG Histograms of oriented gradients

k-nn k nearest neighbors

LBP Local binary patterns

OCR Optical character recognition

OS Operating system

PCA Principal component analysis

PTC Panorama type criterion

PFV Principal flow vector

RANSAC Random sample consensus

RTK Real time kinematic

ROC Receiver operating characteristic

ROI Region of interest

SfM Structure from motion

SIFT Scale invariant feature transform

SBIR Sketch-based image retrieval
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SLAM Simultaneous localization and mapping

SGM Semi global matching

SVD Singular value decomposition

SVM Support vector machine



Symbols

Latin symbol Description

a Aspect ratio

Ac Contour area of the front surface of a wood pile in [m2]

As Solid wood area of the front surface of a wood pile in [m2]

aW Acceleration from an accelerometer

c Object center

cx Optical center (x coordinate)

cy Optical center (y coordinate)

C Camera center

Cobj An object’s contour

cgt Ground truth object center

d Measured midpoint diameter of a wood log in [cm]

D Euclidean distance

div Divergence

du / dl Measured upper / lower diameter of a wood log in [cm]

dGMM Distribution in a Gaussian mixture model

f Focal length

fmppx Factor for the conversion from [m] to [px] in [ mpx ]

fpr False positive rate

fprlogs False positive rate for wood logs

fprpixel False positive rate for pixels

fprsegm False positive rate for segmentation

fs,c Stacking coefficient / correctional factor for the calculation of Vs,c
from Vc

gB Gravity vector

gm Midpoint cross-section area of a wood log in [m2]

gu / gl Cross-section area at the upper / lower cross-section of a wood log

in [m2]
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hi Height of the ith section of a wood pile in [m]

hi,px Height of the ith section of a wood pile in [px]

H Homography matrix

Ii ith image

Ifg Foreground image

Iin Input image

l Defined wood log length in [m]

ls Length of a wood log section in [m]

J Region of interest, where two images overlap

K Camera intrinsic matrix

N Number of wood logs in a roundwood pile

Nfp False positive number of wood logs

Ngt Ground truth number of objects

Ntp True positive number of wood logs

n Number of pixels

nGMM Number of components in a Gaussian mixture model

nocc Number of occurrences

npx,wood Number of wood pixels

ns Number of sections

o Vector from the camera center to the optical center

O Object set containing 2D objects for multiple images

P Camera pose matrix

pco Cutoff point

poc Location of the optical center

px,y Pixel with x- and y-coordinates

Q Point cloud

r Object radius

R Rotation matrix

rgt Ground truth object radius

s Empiric standard deviation / scale factor for the reconstructed model

srep Repeatability standard deviation

sdetector Scale factor for multi-scale detection

Sblob Candidate objects from blobs

Sblob,val Validated objects from blobs

Scons Consecutive objects

Sinit Initial set of detected objects

SP Planar surface
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SQ Quasi-planar surface

SQ,P Planar approximation of a quasi-planar surface

t Translation vector

T Trimap

tpr True positive rate

tprlogs True positive rate for wood logs

tprpixel True positive rate for pixels

tprsegm True positive rate for segmentation

u Location of a camera’s optical center in x-direction

v Location of a camera’s optical center in y-direction

Vc Contour volume of a roundwood pile in [m3]

Vc,gt Ground truth contour volume in [m3]

vWG Velocity from a gyro sensor

Vs Solid wood volume of a roundwood pile in [m3]

Vstem Stem volume

Vs,f / Vs,b Solid wood volume of a roundwood pile measured from the front /

back in [m3]

w (Image) width

wp Width of a roundwood pile in [m]

wpx Width of a roundwood pile in [px]

wr Reference image width

ws Width of a section in [m]

x Location in x-direction / two- or three-dimensional point

x̄ Mean of a sample

y Location in y-direction

Greek symbol Description

β Parameter for noise and brightness

σ Standard deviation

θ Angle between two optical center vectors

ξ Translation threshold used in the translational condition of the

panorama type criterion

Υ Eigen vector
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